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Abstract

Inaccuracy in computation has usually been considered with a negative connota-
tion, and therefore, conventional computing systems have always been designed
with a strict notion of correctness. However, inaccuracy or approximation is not
always bad since several application domains are intrinsically tolerant to vary-
ing degrees of relaxation in accuracy, and thus, such a property can be exploited
for significant gains in application performance or fault-tolerance. This concept,
known as approximate computing or soft computing, has been recently applied to
several application domains primarily for quantifying the tradeoffs between poten-
tial performance gains and accuracy losses. A weakness of all these studies is that
the error bound is not strictly limited. The main contribution of this work is a
feedback control based scheme, called DACA, to approximate computing that can
be used to constrain the loss in accuracy, while maximizing potential performance
benefits. We demonstarate the design of the feeback controller to dynamically
actuate the approximate computing mecahanism using an object tracking applica-
tion, Bodytrack. In addition, we also propose a roll-back technique to control large
variance in inaccuracy that cannot be easily controlled by the feedback mechanism.
Our evaluations indicate that the proposed approach can improve performance by
as much as 260%, while guaranteeing inaccuracy limit between 10% to 30%.
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Chapter 1
Introduction

The accuracy of computations is one of the invariants in conventional applications,

and therefore, inaccuracy in computation has usually been taken with a negative

connotation. In particular, most computer systems, security applications, and

database systems are built on the strict computational accuracy in mind. However,

a large class applications can tolerate varying degree of inaccuracy, especially when

the quality of the solution can be interpreted by users. Accuracy measurements in

such applications are occasionally expressed by relative terms. In the Fuzzy logic

[1], for example, a room temperature can be represented by one of three words

(hot, warm, cold), not always by a number in Fahrenheit or Celsius. Similarly,

many error tolerant applications such as multimedia, graphics, and data mining

have built-in redundancy in computations, and therefore, may achieve acceptable

results if a part of the computations is skipped. Such approximation in computing

is a promising approach to enhance application performance, energy consumption

and fault-tolerance if exploited intelligently. Specifically, applications with big

data sets or embedded applications with real-time/QoS constraints can benefit

significantly from approximate computing.

Approximate computing (also known as soft computing [2, 3], probabilistic

computing [4] and stochastic computing [5]) refers to a collection of methodologies

exploiting the tolerant nature of imprecision, uncertainty, partial truth, and ap-

proximation to achieving low cost solutions [6]. Prior research explored application-
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specific approaches aiming at improving performance at the cost of accuracy [6, 7].

Systematic methods for achieving low cost solutions have also been investigated

through skipping computation in several ways [8, 9, 10]. All these prior efforts

tried to remove redundancy in computation for better performance.

However, most of the existing work on approximate computing are oriented

towards quantifying the tradeoffs between potential performance benefits and ac-

curacy losses. They do not address how to control the performance knobs not to

exceed a specified or accepted level of inaccuracy. We believe this is an important

aspect of approximate computing since many well-understood applications may

specify their tolerable performance margin and given such a margin, one has to

develop appropriate techniques to trigger approximate computing. To the best of

our knowledge, there is no prior attempt to control the dynamics of inaccuracy

through the entire execution of an application to satisfy customized requirements.

In this paper, we propose a Dynamic Approximate Computing Architecture

(DACA) that tries to guarantee a given inaccuracy bound, while improving per-

formance as much as possible. This architecture skips computation by skipping

iterations in a loop, and dynamically controls the amount of the skipped iterations

to keep the resulting inaccuracy under a reference inaccuracy bound provided by

a user. In this work, we employ formal control theory to regulate the states of our

system. Feedback control theory enables us to control the properties of a system,

which are otherwise highly dynamic. It is also very effective in minimizing dis-

turbance in the system. This property is a unique advantage of feedback control

theory for applications whose system characteristics are unknown. Specifically, in

the context of approximate computing, the benefits of a feedback control based ar-

chitecture include (i) dynamically controlling the amount of computation to skip

over the course of execution; (ii) limiting the high variance in inaccuracy due to

the dynamics of input data set and system conditions; and (iii) theoretically guar-

anteeing system stability, settling time to the bounding inaccuracy, and overshoot

of inaccuracy.

We also propose a roll-back strategy in DACA to avoid occasional high varia-

tions in inaccuracy that are difficult to control using feedback control theory solely.

These variations mostly occur due to a specific state of a target system or the cor-

responding optimization algorithms. In most cases, it is not possible to predict
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the moment at which the high variation will occur. Our strategy tries to minimize

high variations by selectively rolling back a few computations and repeating them

without skipping computation. Despite the overhead of the roll-back policy, our

results indicate that our control architecture with the roll-back strategy achieves

high performance gain.

We demonstrate the feasibility and advantages of the DACA policy by using

a running example of an object tracking application, Bodytrack, which tracks a

human body through video streams. DACA, when applied to Bodytrack, achieves

as much as 260% performance gain while bounding inaccuracy between 10% to

30%. We also show the generality of the scheme by applying it to a data-mining

application-k -means clustering.



Chapter 2
The Dynamic Approximate

Computing Architecture

In this section, we describe the technical details of DACA. The main part of this

architecture is a feedback control loop that controls the inaccuracy during runtime,

with the goal of maximizing the performance of the target application (Bodytrack

in our case). Note that, the use of our proposed scheme is not limited to a specific

application like Bodytrack and it can be applied to other error tolerant applica-

tions. DACA is composed of six main components illustrated in Figure 2.1. These

components are: Skipping Controller, Target System (Bodytrack), InputStream

Source, State History Table, Inaccuracy Calculator and Solution Validator.

In Figure 2.1, Bodytrack (Target System) receives the number of iterations to

be skipped (k) from the skipping controller. Input images are fed to Bodytrack

Figure 2.1: Feedback control DACA for Bodytrack.
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from ImageStream Source, and Bodytrack approximately tracks a body position on

the images by skipping k iterations in a loop, and Inaccuracy Calculator computes

the inaccuracy with the tracked body position. In every frame, Bodytrack stores

4,000 particles and their likelihood in the State History Table and restores them

when a roll-back signal is emitted from Solution Validator.

As will be discussed in Section 3, the inaccuracy can occasionally jump to high

values, and therefore it may violate the maximum overshoot specification described

in Section 4.1. This happens due to the unexpected change in the system state

which is not captured by a statistical system identification strategy described in

Section 4. Solution Validator detects this case by monitoring the measured inaccu-

racy, and emits roll-back signals to ImageStream Source and State History Table

if the specification is not met. Receiving the first roll-back signal, the two com-

ponents roll-back 1 frame, and feed images and states to Bodytrack again. The

inaccuracy for the roll-backed frame is evaluated again, which is also monitored

by Solution Validator. If it violates the specification again, Solution Validator

sends another roll-back signal so that 4 frames are roll-backed; otherwise, DACA

continues tracking a body in following frames. If the inaccuracy still fits the spec-

ification, 16 frames are roll-backed at last. The number of frames to roll-back is

an adjustable parameter.

2.1 Feedback Control Theory

In this work, we employ a Single-Input, Single-Output (SISO) controller. A closed-

loop control system with a SISO controller is illustrated in Figure 3.1. As an

example of the closed-loop SISO controller, consider a cruise system on a car,

which maintains the constant velocity of the car regardless of road conditions by

controlling power that the engine generates. Suppose that the power is controlled

by a Controller whose role is to adjust the engine power by controlling the engine’s

throttle position automatically. The desired velocity is called Reference Input in

control theory terminology. A Control Error is calculated as the difference from

the reference velocity and a measured velocity of the car (System Output) in this

example. The controller takes the instantaneous error as input, and determines

the amount of power generated by the engine in order to reduce the error as much
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Terms Phrases in DACA

Reference Input Reference Inaccuracy
Control Input Inaccuracy level we can more tolerate

System Error tolerant application
System Output Measured inaccuracy

Controller Inaccuracy controller
System Model the employed ARX model

Table 2.1: For terms in Control Theory and their corresponding phrases in DACA.

as possible. The Transducer is an optional component that converts the system

output so that it can be compared with the reference input.

DACA can be applied to error tolerant applications that process large data sets.

Skipping Controller periodically observes the difference between the reference in-

accuracy (Reference Input) given by users and measured inaccuracy (System Out-

put) generated by the target application, and advices the amount of computation

to skip. For example, it may ask the application to skip more computation by

20% for the next period in execution if the measured inaccuracy is lower than the

reference inaccuracy. The target application generates an approximated output

which is later transduced into the same type as the reference input. Note that

the controller knows the inaccuracy dynamics of the application as the amount of

computation skipped is varied. The information is collected by building a system

model in Control Theory. Table 2.1 parallels the formal terms in Control Theory

to the corresponding phrases in DACA.

2.2 Inaccuracy Control

Skipping Controller follows the classic Single-Input and Single-Output controller

[11]. It takes an error e(i), and decides the amount of computation to skip, which

is really the number of iterations to skip in Bodytrack, during execution for next

frame. Error e(i) represents the difference between reference inaccuracy Ref and

a measured inaccuracy q(i) at frame i:

e(i) = Ref − q(i).
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We select a proportional-integral (PI) controller because it theoretically satisfies

the performance specifications defined in Section 4.1. The discrete time domain

form of the PI controller is:

u(i+ 1) = u(i) + (KP +KI)e(i)−KP e(k − 1),

where u(i) is the number of iterations to skip at the frame i. KP and KI in this

form are referred to as the controller gains, which are to be determined to meet

the performance specifications of closed-loop systems.



Chapter 3
Example Application: Background

In this work, we use Bodytrack as our running example to illustrate the key con-

cept we introduce. This computer vision application, from the PARSEC bench-

mark suite [12], tracks a human body through multiple video streams concurrently

captured from several cameras. We use the native input set included in PARSEC,

which contains four video streams with VGA (640x480) resolution, and 261 frames

per stream. Figure 3.2 shows an example of how the tracked result for a frame is

produced. A human body is modelled by ten cylindrical parts: head, torso, two

upper legs, two lower legs, two upper arms, two lower arms. The estimated posi-

tions of individual parts are denoted using separate rectangles. Bodytrack takes

as input the initial position of the person in the video stream from an external

file, and generates the estimated positions of the person for every frame. It then

outputs a vector of 31 numbers denoting the position, converts it to positions of 10

cylinders in 3D Cartesian coordinate system, and finally projects them onto four

2D images.

Figure 3.1: Single-Input Single-Output Control Model.



9

Inaccuracies in Bodytrack application is calculated by comparing the refer-

ence body position to the estimated position obtained by skipping computations.

The reference body positions are attained from the execution of Bodytrack with-

out skipping computation. Specifically, inaccuracies of a frame is the ratio of

non-overlapped area between rectangles in the reference body positions and their

corresponding rectangles in estimated positions. The non-overlapped ratio of each

body on an image is first calculated, and the inaccuracy of a frame is acquired as

the average inaccuracy of the 4 images in the frame, which can be formed as:

Inaccuracy =
1

4

4∑

i=1

(
1−

Area (r1(i) ∩ r2(i))

Area (r1(i) ∪ r2(i))

)

where r1(i) refers to the rectangles of reference positions in ith camera image on a

frame, and r2(i) is its corresponding rectangles in the estimated positions. Area(r),

in the expression, computes the area of the rectangles r. Figure 3.3 compares the

outputs of Bodytrack at a frame with several inaccuracy levels. Figure 3.3a shows

the optimal body position obtained without any computation skipping up to the

current frame. Note that identifying the distortion of outputs with the 10% inac-

curacy is difficult. Note also that one might accept 30% or even 50% inaccuracy if

one could obtain large performance benefits in return. Inaccuracy larger than 30%

might be unacceptable, because the rectangle supposed to enclose a leg is off the

leg. Because of this, we divide the inaccuracy range into three regions using relative

terms: accurate(0% to 10%), acceptable(10% to 30%) and unacceptable(≥30%).

In our experiments, we control the inaccuracy in the acceptable range.

Figure 3.4 shows the tradeoffs between performance and inaccuracy in this

application. The amount of computation skipped is varied between 0% (original

case) and 90%, and the observed inaccuracy/execution time values are recorded.

The inaccuracy in this context is defined as the average inaccuracy through the

entire video streams. We see that the normalized execution time decreases linearly

as the amount of computation skipped increases, while the inaccuracy generally

increases. For example, when we skip 60 percent of computation, the inaccuracy

is slightly lower than 5%.

In addition to this intuitive observation, the self-healing nature of Bodytrack, as

illustrated in Figure, 3.5 should also be taken into account to control the inaccuracy
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Figure 3.2: An example of tracking rectangles correspond to head, torso, upper
legs, lower legs, upper arms, and lower arms.

over the whole execution of the application. In this figure, we skipped 90% of

computation for the first 50 frames, which results in high inaccuracy of 32.4% at

the frame 50. After that, the inaccuracy dramatically drops to less than 10% as

we stop skipping computation.

Applications amenable to approximate computing exhibit three important char-

acteristics: redundancy, adaptivity, and reduced precision [13], all of which Body-

track possesses. Executing redundant computation may not improve the quality

of the result. Skipping such redundancy leads performance benefits without a sig-

nificant loss in accuracy. Further, since such workloads are designed with errors in

mind, injecting a small error on purpose at a moment is expected to decrease to

an acceptable level as an underlying algorithm progresses in its execution. In this

paper, we inject artificial error by skipping computation, and control the amount

of the error injected to maximize performance gain with an accuracy bound.

Simulated Annealing (SA), employed in Bodytrack, is an iterative algorithm to

find a good solution to a global optimization problem in a large search space [14].

Objective functions are given to evaluate the quality of a solution. Prior to solving

a problem, a large number of solutions are spread out through the search space. It

is common to denote a solution by a list of numbers or a vector. At a high level,
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(a) 0% (b) 10% (c) 20%

(d) 30% (e) 50%

Figure 3.3: Tracked body with inaccuracies: 0%, 10%, 20%, 30% and 50%

Figure 3.4: Performance-inaccuracy tradeoff. The x-axis indicates the amount of
computation ”skipped”.

the operation of SA can be divided into three steps: (i) Random noise bounded

by a threshold T are added to the solutions; (ii) The dirty solutions are evaluated

by the objective functions; and (iii) High scored solutions are duplicated, while

low scored solutions are eliminated so that the total number of solutions remains

the same. After that, SA repeats these steps with smaller noise bound such as

Tnew = alpha ∗ Told, where 0 < α < 1. The iteration continues until estimated
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Figure 3.5: Self-healing: inaccuracy drops after stopping the computation skipping
at frame 50.

solutions are good enough or we reach a pre-specified iteration limit.

In Bodytrack, 4,000 solutions, referred to as particles, are spread out through

a solution space S, where dim(S) = 31. A particle forms a vector ~pi ∈ R31. The

”Update” function in ”ParticleFilter.h” encloses the main loop of the SA algorithm,

which iterates 5 times for estimating a body position at a frame with decreasing

noise threshold ~T ∈ R31. In each iteration, the noise threshold ~T , initially given

from an external file, decreases by multiplying ~T with a scaling constant α, where

0 < α < 1. Particles are updated by adding uniformly distributed random values

bounded by ~T , and thus duplicated or eliminated according to their qualities,

which are log-likelihood evaluated by an objective function. After the 5 iterations,

the element-wise average of the 4,000 vectors is determined as a body position at

the frame.

In our experiments, an inaccuracy occasionally jumps by a large degree, al-

though it is quickly regulated by our control architecture. This occurs when a

solution, possible body position, on the search space S moves close to a neighbor-

ing local optimum after polluted by random noise during the initial iterations of

the main loop, and the rest of iterations are skipped. The solution would have

adjusted close to the reference position if the rest of iterations are not skipped.

Once the inaccuracy jumps happens, it violates the maximum overshoot specifica-

tion described in Section 4.1 for a while. We avoid this severe inaccuracy jumps
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by introducing a roll-back strategy which is a part of DACA.



Chapter 4
Controller Design

In this section, we present the details of how the controller is designed.

4.1 Performance Specification

In formal control theory, to design a controller, once the type of the controller is

known, the next step is to determine the values of the controller parameters to con-

trol the behavior of the system. The followings are the main system characteristics

that we consider in this work:

• System stability: A stable system generates bounded outputs when its con-

trol inputs are bounded. The number of iterations to skip in Bodytrack is

bounded from 0 to 5, and therefore, the resulting inaccuracies have to be

bounded.

• Settling time: Ts is the time it takes for a system output to converge to a

given reference input. Our PI controller is designed to satisfy the settling

time Ts < 10 frames.

• Maximum overshoot: Mp is the maximum amount that system output ex-

ceeds a steady state during a transient response. We set the upper bound

of the maximum overshoot Mp = 0.1, meaning that the overshoot does not

exceed a reference inaccuracy by more than 10%.
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• Steady state error: In an accurate system, system output in steady state

is equal to the reference input. PI controller theoretically guarantee the

accuracy of a system if controller coefficients are properly selected.

4.2 System Identification

The primary difficulty in designing the controller in many computer systems lies

in the lack of analytic models. Unlike physical systems, which is expressed by

an explicit mathematical differential equations, it would not that easy to model

computer systems analytically. As a result, blackbox modeling [11] is a common

method to overcome the difficulty using statistical techniques. We assume that the

number of iterations to skip is the primary factor to determine inaccuracy and to

construct system models accordingly.

y(k + 1) = a1y(k) + · · ·+ any(k − n− 1)

+ b1u(k) + · · ·+ bmu(k −m− 1)
(4.1)

The ARX model shown above is an approximation of a non-linear system by

a nth order linear system around an operating point. We use the 1st order ap-

proximation to express the dynamics of Bodytrack in inaccuracy, which captures

sufficient information to design the Skipping Controller. The 1st order ARX model

is as follows:

y(k + 1) = a1y(k) + b1u(k). (4.2)

In Equation (4.2), y(k) refers to the offset of the inaccuracy ỹ(k) from the op-

erating point INACCURACY at frame k, and u(k) refers to the offset of number

of iteration to skip ũ(k) from the operating point SKIP . Operating points are

constant points such that when Bodytrack skips SKIP iterations for a long time,

the measured inaccuracy eventually converges to the INACCURACY , which is

called a steady state. The operating point SKIP is set to 2.5, the median of skip

ranges from 0 to 5. The operating point INACCURACY is determined to 8.5,

which is the average inaccuracy when 2.5 iterations are skipped in average.
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Figure 4.1: Inaccuracy changes when skipping 0, 4 iterations.

4.3 White Noise Input

To observe the dynamic behavior of our proposed system, we randomly choose the

number of iterations to skip through the first 60 frames. For system identification

with the blackbox model, white noise input method has been commonly used in

control theory [15].

Figure 4.1 plots how the inaccuracy changes with the given number of iterations

to skip. The horizontal axis and vertical axis denote the inaccuracy at kth and

(k + 1)th frames, respectively. For example, the point on (x, y) denotes that the

inaccuracy x at kth frame changes to y at the next frame. A point over the 45◦

degree line indicates an increase in inaccuracy at the next frame. Similarly, a point

under the line corresponds to a decrease in inaccuracy. As one can observe from

Figure 4.1, the inaccuracy increases when we skip 4 iterations or 80 % of the total

iterations, and decreases when no iteration is skipped.

4.4 Linear Least Square Estimator

In this section, we determine coefficients of the system model using Linear Least

Square method [16]. This is a standard approach in estimating coefficients for a

linear system which minimizes the residual error. This error can be expressed as

follows for Equation (4.2),
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r =
N∑

k=1

[y(k + 1)− a1y(k)− b1u(k)]
2
. (4.3)

By applying the white noise input, we obtain 60 equations in the form of

Equation (4.2), and a Linear Least Square problem is obtained.

~y = A~x, (4.4)

where ~y = (y1, y2, ..., y60)
T , and ~x = (a1, b1)

T . The n-by-2 system matrix A is as

follows:

A =




y0 u0

y1 u1

...
...

y59 u59




We solve this linear system problem by multiplying both sides of Equation (4.4)

by the pseudo-inverse matrix A+ = (ATA)−1AT . Thus, we have ~x = (ATA)−1AT~y,

and the two coefficients a1 and b1 in the vector ~x are determined by matrix cal-

culations. It is well-known that the obtained coefficients a1 and b1 minimize the

residual error [16]. The final solution of the coefficient vector ~x is determined as

(0.695, 0.645)T .

4.5 Controller Design

Having the system model given in Equation (4.2), the values of the controller

parameters can be determined such that the controller performance specifications

described in Section 4.1 are satisfied. The system model given in Equation (4.2) can

be written as G(z) = 0.645
z−0.675

in z-domain which is called transfer function in formal

control theory terminology that relates the input and the output of the system in

complex domain. Different characteristics of a control system can be obtained from

the locations of the poles of the closed-loop system transfer function (the poles of a

function are the roots of the equation when the nominator of the function is set to

zero). Note that because our model and PI controller are first order systems, the

close-loop system is a second order system, which, thus, has two poles we need to
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located. We assume the poles are complex conjugate re±jθ. We choose the radius

of the poles r such that r < e
−4/Ts = 0.368 which is known to be the upper bound

of the radius that satisfy the settling time specification. We choose 0.35 for the

radius r which also holds the stability specification as well because r < 1. We

also decide θ to be 1.43 such that θ < π log r
logMp

to ensure the maximum overshoot

specification. We, thus, construct a desired characteristic polynomial as follows:

z2 − 2r cos θz + r2 = z2 − 0.098z + 0.1225 = 0

The next step is finding two coefficients KP and KI by equating the characteristic

polynomial with the denominator in transfer function of the closed-loop system
K(z)G(z)

1+K(z)G(z)
, where K(z) = (KP+KI)z−KP

z−1
. Finally, we choose KP and KI as 0.8876

and 1.588, respectively. The PI controller can be expressed as:

u(k + 1) = u(k) + 2.47 ∗ e(k)− 0.8876 ∗ e(k − 1).

Details of this procedure are described in [11].



Chapter 5
Experimental Evaluation

In this section, we evaluate DACA using Bodytrack application on an AMD-based

quad-core machine.

5.1 Model Verification

As we discussed earlier, the system model that we employ (as given in Equation

(4.2)), captures the influences of the variations in control parameters u(k) on the

measured inaccuracy y(k+1). To evaluate the accuracy of the model, we compare

the predicted inaccuracy by the model ŷ(k+1) and measured inaccuracy y(k+1).

In assessing the accuracy of the system model, the coefficient of determination R2

and the mean absolute percentage error M are widely used. R2 ≈ 1 indicates

the model is accurate; the accuracy of the model is reasonably acceptable with

R2 > 0.8. The M value is the average error of the model. These are calculated as

follows:

R2 = 1−
var(y − ŷ)

var(y)

M =
1

N

N∑

i=1

|
y(i)− ŷ(i)

y(i)
|

In our model, the value of the two coefficients R2 and M are 0.893 and 0.087,

respectively, which shows that our system model is accurate.
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Figure 5.1: Regulated inaccuracies with reference inaccuracies: 10%, 20%, and
30%.
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Figure 5.2: The amount of computation skipped with reference inaccuracies: 10%,
20%, and 30%.

5.2 Inaccuracy Guaranteed Best Performance

In this section, we test DACA to quantity the performance benefits achieved with

the guaranteed inaccuracy. All experiments shown below are performed with native

input data set. Our experiment tries to control the inaccuracy between 10% and

30%. Figure 5.1 plots the dynamics of inaccuracy, with reference inaccuracies

ranging from 10% to 30%. As can be observed from these results, our approach
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Figure 5.3: Regulated inaccuracies without roll-back strategy with reference inac-
curacies: 10%, 20%, and 30%.
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Figure 5.4: Normalized execution time and overhead of roll-back.

is able to limit the inaccuracy under a specified bound. Figure 5.2 shows the

amount of computations skipped in percentage. In each frame, Skipping Controller

skips computation from 0% to 100%(a body position is the same as the previous

position) or 0 to 5 iterations in a loop. The skipping ratio largely fluctuates

while the inaccuracies are regulated. On the other hand, the effect of roll-back

strategy is presented in Figure 5.3. When DACA ignores roll-back signals for 10%

reference inaccuracy, for instance, the inaccuracy is not appropriately regulated

due to significant changes of internal states in Bodytrack.

Performance benefits due to our DACA is illustrated in Figure 5.4. All val-

ues in the figure are normalized to the execution time of intact Bodytrack, which

does not skip computation. The normalized execution time with 10%, 20% and

30% inaccuracies are 0.52, 0.44 and 0.27 respectively. Thus, with 30% inaccu-

racy, DACA achieves speed-up of 3.6. In general, the execution time decreases as

reference inaccuracy increases. The dominant reason is that the large inaccuracy

margin in large reference inaccuracy lowers the chances of triggering roll-back sig-

nals, which significantly reduces the overhead of roll-back. On the other hand,

Figure 5.5 compares the average inaccuracy and maximum inaccuracy to the ref-

erence inaccuracy through whole execution. The average inaccuracy is slightly less

than the corresponding reference inaccuracy. For example, the average inaccuracy

with 10% and 30% of reference inaccuracies are 9.25 and 28.26, respectively. This

is because when no computation is skipped at a frame, the resulting inaccuracy

tends to decrease more than the system model predicts. Note that the maximum

inaccuracy does not exceed reference inaccuracies by more than 10%, holding the

maximum overshoot specification.
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Figure 5.5: Average and maximum inaccuracies.

5.3 DACA for k-means

As stated earlier, DACA can be applied to applications from various domains,

as long as (i) ”inaccuracy” in an application can be defined, (ii) one can toler-

ate certain inaccuracy, and (iii) we have the knowledge to control the inaccu-

racy/performance tradeoff. For example, We applied DACA to a clustering algo-

rithm, k -means, which is common in data-mining applications. k -means aims to

partition n data points into k clusters, so that the distance between data points

and the means of their clusters are minimized. In each iteration, k -means evaluates

the membership of data points (partition that a point belongs to), and adjust the

means of partitions accordingly. We skip computations in membership evaluation,

which is the most time consuming portion, by assuming that data points, whose

membership are changed at the previous iteration, will change at the next iteration.

In every iteration, we first evaluate the membership of those data points, and then

evaluate the rest of data point whose membership are not changed at the previous

iterations. In this application, inaccuracy is defined as the fraction of data points

whose membership changes (as compared to the original case). In monitoring the

inaccuracy, k -means stops the iteration if the inaccuracy drops under a reference

inaccuracy. Although now shown here due to space constraints, we observe about

24% improvement in performance when we keep the inaccuracy to 10% through

DACA.



Chapter 6
Related Work

Prior work proposed approximate computing based methods targeting error re-

silient codes in a wide range of application domains including bio-informatics, ma-

terial science, earth science, chemistry and data-mining [17, 18, 19]. In addition

to these application-specific optimizations, prior work also explored programming

language and compiler based techniques. For example, Rinard et al proposed a

compiler framework, where computations are skipped through loop and code per-

foration, and through early-terminate at barrier synchronization points [8, 9]. In

this work, a compiler generates codes for skipping computation around loops and

thread barriers. Green [20] is a flexible compiler based system aiming at approx-

imating computation at a function level. Two extra functions (an approximated

function and a quality evaluation function) are supplied by a user, which are used

to construct a quality model, and execute the rest of the program ”approximately”

at the cost of accuracy. The compiler based approximate computing methodologies

have the simple assumption that the loss of accuracy depends on the amount of

computation skipped. In practice, however, the loss of accuracy in the execution

of an application with a large input data set fluctuates over the entire execution.

Our proposed approach addresses the dynamics of the inaccuracy and controls the

inaccuracy through the entire execution of an application.

[21] and [22] proposed a best-effort service model that can generate significant

performance improvements in multicore platforms. In these works, dependencies

across threads are relaxed, which eventually removes the necessity of thread com-

munication and improves parallel speed-up of target applications. In addition to
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these software based approaches, architectural supports for approximation for low-

power consumption have been actively investigated [23, 24]; A set of instruction

and implementations with low-power consumption are introduced. Truffle [25]

proposes the dual-voltage operations, with a high voltage operations for precise

operations and low voltage operations for approximate ones. Compiler techniques

are usually accompanied to identify instructions (mostly from hints by users) which

can be replaced for the proposed low-power instructions. Unlike all prior research,

our work proposes a controlled architecture for approximate computing, where we

honor the specified inaccuracy level throughout the entire execution of an applica-

tion by dynamically skipping computation, and thereby improving performance.



Chapter 7
Future Works

Despite the high performance gain with limited inaccuracy, current implementation

has limitations in practice. Inaccuracy Calculator component assumes that it has

the best body positions for all frames, and it calculates inaccuracy based on the

information. However, it is very unlikely that we would run an application again

if we have the best result. To make our approach feasible in practice, inaccuracy

can be obtained without the information.

One alternative way to infer an inaccuracy without comparing to the best result

is predicting an inaccuracy using a statistical method, extrapolation. As described

earlier, Bodytrack uses 4,000 particles or positions per frame in tracking a human

body from which loglikelihood values are evaluated later. Using the loglikelihood

value as a predictor for inaccuracy, we can predict the inaccuracy with larger

number of particles. In this case, the control knob would be the number of particles

rather than number of iterations as used in this paper. For example, if a user set

the maximum number of particles as N , and at a frame, if the Bodytrack uses 4
5
N

particles at a frame, it is possible to calculate loglikelihood of estimated positions

with 1
5
N , 2

5
N , 3

5
N , 4

5
N particles. After that, we can extrapolate the data to

predict the loglikelihood when it would be if N particles are used. Comparing

the predicted loglikelihood to the measured loglikehood with 4
5
N particles, we can

estimate inaccuracy at the frame without the information of best positions. Figure

7.1 plots the loglikelihood over the number of particles, which gives us the intuition

that loglikelihood is predictable out of the range in some extend. Loglikelihood

inacreases as the number of particles increases, and it is almost linear if we focus



26

Figure 7.1: Loglikelihood over number of particles

on the region that the number of particles is larger than 500.

We are also interested in extending our soft computing scheme to hardware

architecture. Specifically, on a S-NUCA system with large number of cores, shared

L2 cache modules are spread over cores, which incurs the L2 cache latency varies

depending on the distance between a core that issues a memory request and a

cache that holds the requested cache line. Assuming all memory access evenly

contribute to results, skipping the memory access whose latency is large benefits

the performance in total execution cycles at most. Since memory access latency

is tightly correlated to the distance which can be obtained by hardware before

the request is issued, this idea will be feasible in practice, and the performance

gain is expected to be high. Beside the load instruction, other costly instructions

such as mul, div may be skipped or replaced for a low-power instructions with

less accuracy. This instruction level approximation is proposed for GPGPU which

extensively executes arithmetic instructions, but not for general purpose CPU yet.

Programmer should identify the code section in which instructions can be

skipped or replaced, because not all the load instruction can be skipped. A single

skip of load instruction may crash the application at all. Thus, it is the program-

mer’s role to denote the code section, and thus a compiler decides the specific

instructions to skip or replace according to the hint that a programmer gives. The

hint may be expressed by a pragma in C language as:

#pragma approximate(p)
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{

statement 1;

statement 2;

...

}

The p argument of the pragma indicates the portion of instructions to be skipped.

For example, p is given by 0.2, 20% of load instructions accessing L2 cache are

skipped. Once a compiler replaces the load instructions with load.approx instruc-

tions, it is decided on runtime by a CPU whether it is skipped or not according to

the location of corresponding cache lines.



Chapter 8
Conclusion

In this paper, we propose a feedback control theory-based scheme, DACA, which

regulates the inaccuracy of an error-tolerant application throughout the entire

execution, and can therefore, achieve significant performance gains by controlled

computation skipping. We propose a SISO controller to dynamically monitor the

error margin and activate the compuation skipping based on the margin. The

effectiveness of the DACA design is demonstrated using the Bodytrack application,

where we can achieve at least 2 fold improvement in performance when the error

margin is limited to 30% without affecting the quality of perception significantly.
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