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Abstract

Living things come in all shapes and sizes, from bacteria, plants, and animals
to humans. Knowledge about the genetic mechanisms for biological shape has
far-reaching implications for a range of spectrum of scientific disciplines includ-
ing anthropology, agriculture, developmental biology, evolution and biomedicine.
Despite the fundamental importance of morphological shape, the difficulty in quan-
tifying the shape and modeling the ultra-high dimension of the image data make
the task of genetic mapping on it increasingly difficult.

In this dissertation, we derived several statistical models for mapping specific
genes or quantitative trait loci (QTLs) that govern the variation of morphological
shape. We are pioneer in the functional shape genetics area and able to detect
several significant genes that control the static allometry of the leaf shape traits
by incorporating image analysis, statistical model and marker-based linkage dise-
quilibrium (LD) analysis.

After quantifying the morphological shapes numerically through RCC (Radius
Centroid Contour) skills, each phenotype, as a datum, is in the form of sam-
ples of functional curves or trajectories with high dimension. In the first model,
we decreased the dimension by PCA and illustrated the shape variation piece by
piece. In the second model, we developed a nonparametric method to model the
mean curve by GEE (Generalized Estimating Equation) local polynomial kernel
and model the covariance matrix by functional PCA (Principal Component Anal-
ysis. Through functional PCA, we characterized the dominant modes of variation
around the overall mean trend function and avoided facing directly the extremely
huge dimensional covariance matrix. The models are formulated within the mix-
ture framework, in which different types of shape are thought to result from geno-
typic discrepancies at a QTL. The EM algorithm was implemented to estimate
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QTL genotype-specific shapes based on a shape correspondence analysis.

Through incorporating these procedures into the LD based mapping framework,
our model led to the detection of several individual significant QTLs responsible
for global and local shape variability, addressed many questions in the genetic
control of biological shape, and simultaneously estimated QTL allele frequency
and marker-QTL linkage disequilibrium. The statistical behavior of the model
and its utilization were verified by both real data analysis on the leaf data from
China, and computer simulated data.
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Chapter 1
Introduction

In this dissertation, we tackle the challenge of mapping quantitative trait loci

(QTLs) that control the variation of leaf shape traits through shape analysis,

statistical model, and marker-based linkage disequilibrium (LD) analysis. Three

major advances in life and physical science during the last decades will make it

possible to study shape variation and its genetic underpinnings. First, DNA-based

molecular markers allow the identification of quantitative trait loci (QTLs) and

biochemical pathways that contribute to quantitatively inherited traits such as

shape. Second, functional mapping of longitudinal traits such as growth curve,

HIV dynamics, programmed cell death, circadian rhythms and pharmacodynam-

ics/pharmacokinetics, constructed by Wu et al. (Wu et al. 2003; 2004a; 2004b;

2004c; 2006; 2007; Wang et al. 2004; Lou et al. 2003) has unearthed high through-

put statistical models to locate QTLs that underly quantitative traits. Third, the

past two decades have witnessed an increasing interest and development in shape

analysis technologies, such as shape acquisition, shape detection, shape represen-

tation, shape transforms, shape classification, and shape retrieval (Kendall 1984;

Small 1996; Cootes et al. 1995; Belongie et al. 2002; Chang et al. 2002; Kong

et al. 2007; Yushkevich et al. 2001; Mcneill 2006; Gower 2004; Stegmann 2002).

Although each of these three fields is not new, we are pioneer in integrating them

to extend the idea of QTLs to map the genes governing the phenotypic shape trait,

which is quite complicated compared to other phenotype traits.
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1.1 Motivation

Morphology is one of the most complex physical phenomenon in the world, as all

living creature from microbes, bacteria, plants, insects, animals to humans taking

an extraordinary diversity of morphological variability. Many biological process,

from cellular metabolism, embryonic growth, fruit yield, heartbeat, times of blood

circulation, lifespan, to population dynamics, are affected by shape (Wu et al.

2002a). Therefore, knowledge about the genetic mechanisms for biological shape

has far-reaching implications for a range spectrum of scientific disciplines including

anthropology, agriculture, developmental biology, evolution and biomedicine. For

example, it can help us to detect genes that control fruit shape to improve yield and

control root shape to improve environment; help us to locate the gene that might

cause cancer, as abnormality in organ shape can be related to certain diseases;

and help us to address why all organisms persistently attain morphological and

anatomical variations in their own respective form, and so on. It has long been

known that schizophrenia runs in families. And schizophrenia often caused by the

structural changes in the brain. Hence, by locating the genes that control the shape

change of the brain might cure the schizophrenia, which is one of the incurable

disease in the world.

Despite the fundamental importance of morphological shape, little is known

about the detailed genetic mechanisms of shape variation. The motivation of

this dissertation is to develop a statistical and computational model for mapping

specific QTLs that are responsible for the variation of morphological shape. His-

torically, genetic mapping has been focused on the numerical phenotypic traits,

with an operable dimension, say 1 dimension or at most 30 dimensions. But image

data are neither numerical values nor operable dimensions. Generally, image are

input in the form of photo, which is saved in the form of huge dimensional matrix.

What shape analysis does is to turn photos into numerical values.

This dissertation proposes a new techniques called shape mapping for link-

ing gene action with key morphometric parameters of a shape within a statistical

framework. We will perform both real data and computer simulation to examine

the statistical properties of the model. While the models described in this disserta-

tion are belong to the field of statistical genetics, they can be widely applicable to
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many scientific areas such as finance, biology, computer vision, pattern recognition,

and so on.

1.2 Background and Previous Work

Due to the rapid development of digital and information technologies, image data

are more and more easy to be acquired in digital form from varieties of sources.

However, there is still a big gap before we know how to take advantage of these

visual information. Human’s visual system is able to recognize and compare objects

by their shapes easily. But, making computer has this visual ability is a hard

process. Moreover, development of quantitative methods for describing shapes are

even harder. By overcoming these difficulties, shape analysis is a process that

recognizes and describes shapes by quantitative nature.

1.2.1 Shape Analysis Background

Shape is the contour or geometrical boundary of an object. Kendall (1984) gives a

more accurate definition, by stating that “shape is all the geometrical information

that remains when location, scale and rotational effects are filtered out from an

object”. The procedure that remove location, scale and rotational effects is called

alignment or similarity transformation.

The input to shape analysis is a colorful or gray-scale image of a scene con-

taining the objects of interest. In order to manipulate shape variation, there are

basically three steps in 2D shape analysis to turn an image into numeric values.

First is the shape representation. Shape representation establishes a geometric

representation of the original shape such as a graph to preserve the important

characteristics of the shape. Second is the shape description. Shape description

generates a set of features from the representation, and these features must be in-

variant under translation, scale and rotation. Third is the shape classification.

Shape classification refers to methods for analyzing and comparing shapes.

Shape representation can be roughly divided into two big categories: region

based, which use all the pixels in an image, and contour based which only

exploit shape boundary. A very popular contour based representation method is
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landmarks, which are a finite set of points on the boundary assigned by either

geometrical property such as high curvature or an extremum point, or specific

biological meaning to efficiently describe a shape (Cootes et al. 1995; Belongie et

al. 2002; Chang et al. 2002). The theory of contour based shape representation has

been well established by Kendall (1984) and Small (1996). A very popular region

based representation is level set functions, which embed the boundary curve C

into the zero level set of a 2D function z = ϕ(x, y), and hence represent a shape

implicitly (Tsai et al. 2005). The theory of region based shape representation has

been well invented by Osher and Sethian (1988).

Each method has its own advantages and disadvantages. So, the choice of

shape representation or description depends on the specific problem at hand. Re-

gion based method is very time-consuming and inefficient. It need huge space

to save a shape, and hard to accomplish any transformation such as scale and

rotation. On the contrary, contour based method only need the information of

the boundary, and hence obtaining a considerable data reduction without loss of

information. Therefore, any numerical implementation can be readily applied.

Although contour-based representation is a powerful method that can describe

a shape efficiently and accurately, it has several drawbacks. First, is is possible

that different images yield different landmark locations and different number of

landmark points. To make a good performance of shape analysis, there should

one to one correspondence between landmarks of one shape and those of another

shape in such a way that the corresponding landmarks are at the same location

of the same shape boundaries. Second, landmark method might not be able to

deal with the non-convex shapes or high curvature locations. Especially for the

shapes whose radii cross the boundary more than once. Third, landmark method

has difficulty in handling topological changes, and hard to generalize to 3D shapes.

Forth, landmark method might not stable to noise and initial contour placements.

But region based method does not have these drawbacks. On the contrary, region

based method is able to capture some global properties that might be missed by

contour based methods, and can be generalized to 3D case easily.

Different methods work well for different shapes. Hence, it is necessary for us

to apply both methods in this dissertation.
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1.2.2 Previous Work of Shape Analysis

As is known, shape is one of the most important features. In recent years, signifi-

cant progress has been made in shape analysis.

1.2.2.1 Contour-based Shape representation

Contour based method is very popular, hence many work has been done. Cootes

represent shapes by landmarks and choose points manually to make sure the corre-

spondence problem (Cootes et al. 1995). Abbasi et al. (2000) and Super (2004) use

maximum curvature to determine points automatically. Zhang et al. (2003) repre-

sent shape by points chosen from the manifold (shape space). i.e. high-dimensional

surface, on which different view (transformation, rotation, scale) of the same shape

will correspond to a single point. Then they compute geodesic distance to recog-

nize the shape boundary. Bookstein pick the points on the boundary of a shape

by some specific biological meaning (Bookstein 1978). Rhodri. proposed a way to

automate the choice of landmarks using the minimum description length criterion

(Davies et al. 2001; 2002). Although they can avoid the manually procedure,

this method is very time consuming. Staib et al. (1992) and Szekely represent

boundaries of the shape as a weighted sum of Fourier basis functions and consider

the weights as the interest. Golland et al. (1999) represent a shape by a fixed

topology skeleton, which is to describe a shape by the width and curvature along

the medial axis. Yushkevich et al. (2001) describe shapes using a multiscale medial

representation. They use coarse-scale for entire object and fine-scale for part of

the shape. Tan et al. (2000) use centroid-radii model to represent shapes. How-

ever, it cannot deal with the non-convex shapes. i.e. whenever the radii cross the

boundary more than once, the algorithm will fail to represent the boundary cor-

rectly. Kong et al. (2007) overcome this shortcoming by combining centroid-raddi

model with Haar wavelet transform, and expand the representation to any kind of

shape, no matter convex or not. Freeman chain code approximates a curve with

a sequence of directional vectors lying on a square grid. But, it is very sensitive

to noise. Sun et al. (2006) propose CCCV (chain code coherence vector) and

CCDV (Chain code distribution vector) to overcome the shortcomings of Freeman

chain code, and hence invariant to translation, rotation and scaling. Dubois et
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al. (1986) use autoregressive model to perimetrically express the landmark points

equispaced angularly obtained from the boundary, since these points are spatially

correlated. Chuang et al. (1996) developed a planar curve descriptor that has a

multiscale analysis capability by using the wavelet transform. Yadav et al. (2007)

compared three descriptor techniques: FD (Fourier descriptors), GFD (generic

Fourier descriptors), and WFD (Wavelet-Fourier descriptors), and conclude that

WFD performs best among the three. Greenander et al. (1993) proposed a general

stochastic shape model to characterize the random shape variability among objects

by using Bayesian formulation.

1.2.2.2 Region-based Shape representation

The level set method represent regions and set of interfaces with a continuous

function defined over every pixel of the whole image. So, it is called the region-

based method. Using level set function to represent implicitly a boundary of a

shape was first proposed by Osher and Sethian (1988). By evolving a higher-

dimensional embedding function, they can propagate the boundary points in the

2D plane. As early as 90’s, Malladi, Caselles, Kichenassamy, and Deriche started

to use level set function to do image segmentation. In recent years, a lot of work

have been developed. Tsai et al. (2003) adopt the level set method and propose a

shape based approach to do segmentation. After representing the shape boundary

by signed distance function of each pixel, Tsai et al. (2005) incorporates the level

set method within the framework of EM algorithm to do classification. Samson

et al. (2000) also apply level set to represent the shape implicitly, then they

assume different classes own different level sets and use optimal partition to do

classification by minimizing a unique functional.

Besides above level set method, moment based shape representation is one of

the earliest and most popular region based representations. It provides a numerical

similarity measurement that is invariant to translation, scale, and rotation. The

moment representation describe a shape by defining the gray level image function

as a probability density of 2D random variable. Flusser (2000) use geometrical

moments, Teague (1980) and Khotanzad (1990) use zernike moments, Mukundan

et al. (2001) use Tchebichef moments.

Zhang et al. (2002) proposed a generic Fourier descriptor (GFD) by apply-
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ing 2D Fourier transform on a polar raster sampled shape image. GFD is the

modified Fourier transform to treat the polar image in polar space as a normal

two dimensional rectangular image in Cartesian space. Goshtasby (1985) develop

a polar quantization matrix by considering not only the outer geometry but also

inner geometry. Lu et al. (1999) suggested a grid based approach that is simple

and intuitive.

1.3 Basic Genetics and Previous Work

It is well known that many things including IQ, height, characters, and some

disease such as schizophrenia, hypertension, and diabetes are easily inherited from

parent to offspring. Hence, locating the genes that regulate all kinds of phenomena

has become a very important field nowadays.

1.3.1 Basic Genetics

Genes are pairwise units by which the biological characteristics can transmit un-

changeably from parents to offspring. If a pair have similar genes, it is called

homozygous. Otherwise, it is called heterozygous. For example genes named A

and a, then AA and aa are homozygous, and Aa is heterozygous. These alternative

genes are named alleles. It is easy to understand that a single pair of alleles can

make three possible genotypes AA, Aa, and aa. Chromosome is the microscopic

body that genes located in some specific order. The location that a specific gene

lies is called locus. Since both genes and chromosomes come in pairs, we call them

loci. The final goal of QTLs mapping is to locate the genes that affecting some

phenotypic traits, which is described by quantitative values.

Gamete (ova and spermatozoa) is the reproductive cells by which only one

chromosome from each parent passes one gene. Fertilization is a process when a

sperm carrying one gene from the father integrating with an ovum carrying one

gene from the mother to complete one pair. This makes the new offsprings owning

one gene from mother and the other from father in each body cell of them. The

number of chromosomes in a gamete is called haploid, and that in a fertilized zygote

is called diploid. The Mendel’s first law says that if a parent has genotype Aa, then
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either A or a has the probability of 0.5 to be passed into the gamete. Assume we

cross two individuals with AA and aa, then all zygotes in F1 (first generation) will

be Aa. If continue crossing two individuals of F1, then three possible genotypes

AA, Aa, aa will be generated in F2 with the ratio of 1:2:1. Backcross is the process

that one individual from F1 carrying Aa cross over with one homozygous parent

carrying either AA or aa. Mendel’s second law states that different pairs of genes

segregate independently and do not affect each other. For the genes in different

chromosomes, this law might be true. However, for the genes located in the same

chromosome, it is high likely that they are correlated to each other. Considering

the relation between neighbor genes is what linkage analysis does. As a matter of

fact, the segregating rules in real life often violate the Mendel’s first and second

laws. Hence, Linkage Disequilibrium (LD) analysis is used in this dissertation.

Consider a gene with alleles A (with probability p0) and a (with probability

p1). From above, we know that the individual in F2 will have three genotypes

AA,Aa,aa. Assume their population frequencies are P2, P1, and P0, respectively.

Hardy-Weinberg law says that, if the individuals mated with each other randomly,

then the Hardy-Weinberg equilibrium

P 2
1 = 4P2P0 (1.1)

is always hold for any generation. See (Wu et al. 2006) for more details.

In later chapters, we will describe in detail the models for LD, and backcross.

1.3.2 Previous Work of QTLs Mapping on Shape

As early as the beginning of this century, Hedrick et al. (1907) and Price et

al. (1908) started genetic map on tomato fruit shape. However, the relationship

between morphological shape and genes are poorly understand during the past 100

years, since almost all focus measured shape mainly by some simple scale such as

length or width (Grandillo et al. 1999). Currence (1934) found that locus o in

chromosome 2 controls the relative length of tomato fruit got by length/diameter

(Zygier et al. 2005). Young et al. (1947) detected gene f on chromosome 11

and lc on chromosome 2 control the fruit shape by representing the tomato fruit

shape by the locule number. Grandillo et al. (1996) reported fs8.1 that controls
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tomato fruit shape by using the ratio of longitudinal diameter (L) and equatorial

diameter (D) as phenotypic traits (Ku et al. 2000). Jiang et al. (2000) did a more

advanced work by recording 14 measures (lobe numbers, main-lobe length and

width, second-lobe length and width, et. al) to describe a leaf shape. Fulton et al.

(1997) detected 16 QTLs that control tomato fruit shape by denoting 1 for round

tomato shape, and denoting 2 for elongated tomato shape. In his seminal review,

Tanksley (2004) summarized some major discoveries of genes for fruit size and

shape in tomato. In a long process of domestication, tremendous shape variation

has occurred in tomato fruit from almost invariably round (wild or semiwild types)

to round, oblate, pear-shaped, torpedo-shaped, and bell pepper-shaped (cultivated

types). Some of the QTLs that cause these differences, namely fw2.2, ovate, and

sun, have been cloned (Fray et al. 2000; Liu et al. 2001; Xiao et al. 2008).

While these above past work once brought a great breakthrough to this area,

they failed to describe allometry accurately and thoroughly, since two objects with

totally different shape, say a circle and a diamond, can take exactly the same mass,

length, and even surface area. Unlike roughly computing the ratio of size such as

width or height, shape variability analysis is the best way to describe allometry

meticulously, as it can measure not only size, width, or any above scale but also all

kinds of unobservable morphological value. Despite its powerful skills, there is, so

far as we know, few literature can be found about mapping genes in morphology

using shape analysis. What aggravate the complexity is that the phenotypic trait

of each shape is not traditional number but photo or picture.

So far in the literature, there is only one paper (Langlade et al. 2005) that is

a little close to our present work. Langlade et al. also used shape analysis skills

to map the genes that control allometry of leaf shape. Their work is much accu-

rate than above simply measuring shape by simple scale such as length or width

(Whitfield 2001; Enquist et al. 1998; 1999; West et al. 1997; 1999a; 1999b; 2008).

However, our work have five main benefits and differences. First, Langlade et al.

use interval mapping to locate the genes that control evolutionary allometry in

leaf shape for 18 different antirrhinum species. Instead, we apply linkage disequi-

librium to map the genes that affect static allometry in leaf shape for different

individual trees from the same poplar species. Second, Langlade et al. roughly

connected 19 points for all different leaves to represent their boundaries. But, us-
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ing only 19 fixed points for all leaves is not a forceful way to represent any shape

boundaries, especially for those with complicated and non-smooth outlines (For

example Fig. 2.1. Leaf LS29-2). Instead, we use radius centroid contour (RCC)

to describe each leaf shape in a very meticulous way. Third, Langlade et al. put

all middle veins horizontal to filter rotation effect. However, The middle veins of

different leaves are not always parallel and straight (For example Fig. 2.1. Leaf

LS17-1), and hence alignment using middle veins is not a very persuadable and

accurate way. Instead, we use procrustes analysis to align leaves systematically

and automatically by model. Fourth, Langlade et al. only capture the biggest

shape variability by PCA. We not only capture the global shape variability, but

also catch the local minor shape variability. Moreover, we also transform back from

reduced space to original image domain, and show the different effect of genotype

in both image domain and vector domain. Fifth, our work is unique since the

poplar trees are planted in different elevation, longitude and latitude of Tibet of

China. Hence, it can at least illustrate a genetic property in a unique location of

the earth.

1.4 Overview of Chapters

The remainder of this dissertation is organized as follows:

In Chapter 2, we tackle the challenge of mapping quantitative trait loci (QTLs)

that control the variation of leaf shape traits through contour-based shape analysis,

statistical model, and marker-based linkage disequilibrium (LD) analysis. The

model is validated by analyzing a mapping data collected from two different natural

populations of poplar, and identifying several QTLs for leaf shape in this species.

In Chapter 3, simulated data is used to test the power of the statistical model.

In this experiment, to make it simple, we make many assumptions such as inde-

pendent pixels and backcross markers, etc. We use region-based shape analysis

here because the leaves are not all convex.

In Chapter 4, we developed a nonparametric smoothing method to model the

mean curve by GEE (Generalized Estimating Equation) local polynomial kernel

and model the covariance matrix by functional PCA (Principal Component Anal-

ysis). Through this model, we estimate both the mean and covariance as the
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function of spatial angle, characterize the dominant modes of variation around the

overall mean trend function, and hence avoid facing directly the extremely huge

dimensional covariance matrix.

Chapter 5 concludes with a discussion of the contributions of this dissertation

and possible future work.



Chapter 2
Mapping Shape QTLs Using a

Radius-Centroid-Contour Model

In this chapter, we will explain in detail the contour based shape analysis, genetic

design, and the statistical model. To the end, the accurate and quantitative rep-

resentation of a shape is produced with aligned Radius-Centroid-Contour (RCC)

curves, i.e., a function of radial angle at the centroid. The high dimensionality of

the RCC data, crucial for a comprehensive description of the geometric feature of a

shape, is reduced by principal component (PC) analysis, and the resulting PC axes

are treated as phenotypic traits, allowing specific QTLs for global and local shape

variability to be mapped, respectively. The usefulness and utilization of the new

model for shape mapping in practice are validated by analyzing the mapping data

collected from two natural populations of poplar, and identifying several QTLs for

leaf shape in this species. The model provides a powerful tool to compute which

genes determine biological shape in plants, animals and humans.

2.1 Introduction

Tremendous variation in morphological shape provides a fuel for the evolution of

biological function and the formation of new species that best adapt to a specific

environment (Albertson et al. 2005; Klingenberg 2010; Klingenberg et al. 2012).

Genes are thought to play an important role in controlling phenotypic variation

in shape; according to quantitative genetic analyses in animals, shape may have
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a heritability of 0.60 - 0.70 (Klingenberg and Leamy 2001; Monteiro et al. 2002;

Klingenberg 2003; Mezey and Houle 2005; Gilchrist and Crisafulli 2006). With

the development of genotyping techniques, genetic mapping that dissects pheno-

typic variation into individual quantitative trait loci (QTLs) (Lander and Botstein

1989) has been used to detect specific QTLs for morphological shape in mice and

Drosophila, providing many promising results (Klingenberg et al. 2001; 2004;

Leamy et al. 2008; Weber et al. 1999; Mezey et al. 2005). More recently, Fu et al.

(2010) developed a binary model for shape mapping based on computer-simulated

black and white shape data. Langlade et al. (2005) used 19 representative points

for a leaf to map the QTLs that control the allometry of leaf shape and pioneered

the integration of shape QTLs with interspecific divergence and evolution.

Many of these shape genetic studies are based on a simple geometric analysis

and, thus, do not intend to resolve the inherently complicated structure of a biolog-

ical shape. For example, simple morphological measures for length, width, height,

ratio, and angle do not separate size and shape clearly (Rohlf and Marcus 1993), al-

though these two aspects perform different biological functions. In addition, some

more advanced genetic analysis of shape mostly focus on drastic morphological

changes, but do not allow a quantitative description of detailed structures of organ

morphology, such as leaf margins that can be entire, serrated, or lobed (reviewed

in Klingenberg 2010).

As an important approach for shape analysis, geometric morphometrics (GM)

has a capacity to quantify each piece of subtle variation that accumulatively con-

tributes to shape (Klingenberg 2010). By analyzing the polar coordinates of

anatomical landmarks, shape analysis based on the GM model retains geomet-

ric information from digitized data and relates abstract, multivariate results to the

physical structure of the original specimens (Adams et al. 2004; Slice 2007). The

development of image and digital technologies has greatly facilitated shape recog-

nition and shape registration based on the theory that a shape can be represented

by a number of carefully selected and coded image patches extracted from images

taken from different view-points (Belongie et al. 2002). The recent years have seen

the development of new technologies used to analyze and interpret the molecular,

mechanical and dynamic mechanisms that form shape (Nath et al. 2003; Rolland-

Lagan et al. 2003; Coen et al. 2004). Coen and colleagues used clonal analysis
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techniques to study the dynamic relationship between gene expression pattern and

leaf shape (Rolland-Lagan et al. 2005). Liang and Mahadevan (2009) capital-

ized on a combination of scaling, stability and asymptotic analysis to quantify leaf

shape and the conditions that cause different morphologies of leaves. As a first

step of our shape gene identification project, here we develop a model for studying

the genetic mechanisms of morphological shape by mapping specific quantitative

trait loci (QTLs) involved in shape variation. This model integrates existing GM

analysis into a framework for QTL mapping through a series of statistical bridges.

By measuring radii from the centroid to the contour at regular intervals, we quan-

tify the geometric features of a shape and further use a procrustes analysis to

align shapes with different poses, scales and rotations. The high dimension of

shape data measured by a Radius-Centroid-Contour (RCC) analysis is reduced by

principal component (PC) analysis producing orthogonal PC axes that capture

global and local variability, respectively. Based on the PC axes of RCC values,

a QTL mapping model is derived and then the QTL effects detected on shape

structure are transformed back to image domains in order to intuitively visualize

how QTLs affect shape variation. To demonstrate the utility and usefulness of the

new model, we used it to analyze a mapping population of a poplar species, lead-

ing to the detection of several significant QTLs that govern leaf shape. The new

model combines the strengths from genetic mapping and shape analysis, providing

a powerful tool for the genome-wide identification of QTLs with varying sizes of

genetic effects on shape diversity.

2.2 Contour-Based Shape Analysis

The theory of shape analysis has well been established by Kendall (1984), in which

a finite number of landmarks are used to represent a shape of an object. According

to Kendall’s definition, “shape is all the geometrical information that remains when

location, scale and rotational effects are filtered out from an object.” Here we

integrate this theory into the genetic mapping framework by which to characterize

the structural, functional, and developmental features of shape.

To capture the complicated structure of a shape, we used a high dimension of

pixels to describe its boundary and detailed inner feature. A vector of representa-
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tion for the shape can be denoted as coordinates (x(s), y(s))(s = 0, 1, . . . ,m − 1)

extracted from a digital image, where m is the number of coordinates, determin-

ing the accuracy of shape representation. Below are steps for shape analysis with

digital images.

During this shape representation, we divide the procedures into four steps:

shape compression to decrease the original resolution to an operable size; shape

detection to distinguish the background from the object; shape alignment to min-

imize the variation caused by location, scale and rotation; and shape description

to describe a shape using numerical vectors.

2.2.1 Shape Detection

After decrease the dimension to 150 by 225, we need to recognize the leaf from

the background. Since each pixel of color image is saved in RGB (Red, Green,

Blue) value, we notice that the object (leaf here) has very high green value and

the background in purple color happen to has very high red value. By applying a

simple threshold on both R and G value, we successfully convert the color image

into a binary image. At each pixel, we use 0 to denote the background (black) and

1 to denote the object (white). Finally we complete the preprocessing procedure

through de-noising and removing all isolated segments. Once a black and white

image is obtained, the shape boundary can be easily detected. The vector that

represents a shape can be denoted as (x(s), y(s)), s = 0, 1, . . . ,m − 1. Here m

determines the accuracy of the shape representation, the larger m is, the more

details of the shape information can be kept, and consequently, the shape analysis

will be more accurate. We use 360 points to finely describe the boundary.

2.2.2 Shape Alignment

All shapes need to be aligned, in order to minimize variation caused by pose.

Shape alignment is a process by which to establish a coordinate reference for all

shapes with respect to position, scale and rotation, commonly known as pose. An

orthogonal procrustes analysis is used to undertake this alignment (Gower et al.

2004).

To make shape representation invariant to translation, we shift all shapes to
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their centroids by

(x1(s), y1(s)) = (x(s)− xc, y(s)− yc), (2.1)

where (xc, yc) is the centroid of the shape, which is defined as

xc =
1

m

m−1∑
s=0

x(s), yc =
1

m

m−1∑
s=0

y(s). (2.2)

By using the new coordinate system (x1(s), y1(s)), all shapes have the origin at

the centroid and thus eliminate any influence caused by position.

To filter a scale effect, we normalized all shapes by dividing each shape by its

Euclidean or Frobenius norm, which produces the normalized shape:

(x2(s), y2(s)) =
(x1(s), y1(s))

||(x1(s), y1(s))||
. (2.3)

The last and most complicated step for shape alignment is to remove the rota-

tion effect. The idea behind is to rotate each shape one by one so that they can be

close to a reference shape as much as possible. We use the Euclidean or Frobenius

norm to measure the distance between two shapes. The smaller the Euclidean

norm, the closer they are. In addition, the average of all shapes is used as the

reference shape (denoted as Z). Now, we assume

Q =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
,

is the rotation matrix, by multiplying which on the right hand side of (2.3), the

shape get rotated θ angle clockwise. Denote Z as (x2(s), y2(s)). By definition, we

hope to solve Q by minimizing

||ZQ− Z̄||.

Since

||ZQ− Z̄|| = trace(QTZTZQ+ Z̄T Z̄)− 2trace(Z̄TZQ),
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= trace(ZTZ + Z̄T Z̄)− 2trace(Z̄TZQ),

where the first part does not contain Q so that we only need to maximize the trace

of Z̄TZQ. By singular value decomposition, there exist an orthogonal matrix U

and V , and diagonal matrix D such that Z̄TZ = UDV T . Hence

trace(Z̄TZQ) = trace(UDV TQ),

= trace(DV TQU),

= trace(DH),

=

p∑
i=1

(dihii).

where H = V TQU is an orthogonal matrix, dl is the lth diagonal element of diag-

onal matrix D, and hll is the lth diagonal element of H. Therefore, trace(Z̄TZQ)

is maximized when H = I. This is equivalent to Q = V UT .

It can be seen from the above derivation that we should multiply the right-

hand side of (x2(s), y2(s)) by V UT to rotate a shape to be closed to the average

of all shapes. The three steps described above are repeated and iterated until the

rotated shapes provide the best fit of differences among all shapes caused by pose.

We use (x̃(s), ỹ(s)), s = 0, 1, . . . ,m − 1 to denote final coordinates of each shape

after alignment.

2.2.3 Shape Representation

As a popular contour based method, we use landmarks for shape representation.

Landmarks are a set of points on the boundary assigned by either geometrical

property (such as high curvature), or an extremum point, or specific biological

meaning (Cootes et al. 1995; Belongie et al. 2002). To make a one to one

correspondence between landmarks of one shape and all other shapes, we choose

the same angle or the same arc length. We select points on the boundary spaced

at equal radial angle θ = 2π/m, where m is the number of points. This gives an

accurate and robust description of shape. A shape can be described by Radius-

Centroid-Contour (RCC) values (Belongie et al. 2002), i.e.,
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r(s) = (x̃(s)2 + ỹ(s)2)1/2. (2.4)

which are used for QTL mapping.

2.3 Statistical Design

2.3.1 Likelihood

A segregating population is prerequisite for mapping trait QTLs. Consider a nat-

ural population from which a sample of n individuals is drawn randomly. All these

individuals are genotyped for a panel of molecular markers. Meanwhile, the shape

of an organ, such as leaf, is measured for each individual by taking a photo of

representative leaves. It is likely that a set of QTLs controls shape, forming a

total of J genotypes. Although we cannot observe these QTL genotypes directly,

they can be inferred from the markers (M) that are linked to the QTLs. For this

reason, a basic statistical model for QTL mapping is a mixture model, in which

each observation Y is assumed to have arisen from one of the J QTL genotypes,

each genotype (j) being modeled from a density function (frequently a normal

distribution is assumed). Thus, the likelihood of Y is expressed as

L(ω, ϕ, η|Y,M) =
n∏

i=1

J∑
j=1

ωj|ifj(Yi|ϕj, ηi), (2.5)

where ω is composed of mixture proportions ωj|i of individual i carrying a QTL

genotype j, ϕj is the expectation parameter vector specific to a QTL genotype j,

and ηi is the variance-covariance parameter common to all genotype groups, and

fj(Yi|ϕj, ηi) is the probability density function of observations for individual i at

QTL genotype j. For a natural population, the mixture proportions (ωj|i) of each

QTL genotype j in likelihood (2.5) are described in terms of allele frequencies at

the markers and QTLs and their linkage disequilibria (LD) (Wang et al. 2004).

The size of LD reflects the degree to which the markers and QTLs are associated.
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2.3.2 Dimension Reduction

Since the dimension of the RCC values is still too high to be handled, the dimension

reduction skills need to be applied to obtain the MLEs from likelihood (2.5). Many

approaches can be used to decompose the original m-dimensional space to a space

of reduced dimension. Principal component analysis (PCA) is one of such powerful

approaches by removing redundant information through mapping the high dimen-

sional data to the subspace that best accounts for the distribution of the original

pattern. Denote n shape data by R = {r1, r2, . . . , rn} in the Rm space, where ri is

the RCC curve of the ith leaf shape with length m. The average of these data is

defined by

µ =
1

n

n∑
i=1

ri,

and the MLE of variance can be given by ΣR = 1
n

∑n
i=1(ri − µ)(ri − µ)T . Let

X = {r1 − µ, r2 − µ, . . . , rn − µ}, then we have ΣR = XXT , a m × m matrix,

which is too big to be manipulated practically. The main idea behind PCA is

to maximize the variance by finding a certain number of orthogonal axes, called

principal components (PCs), that is much fewer than m. Therefore, through PCA,

we can use Yi = vTkX
T
i Xi, where vk (k = 1, . . . , K) is the eigenvector of XTX in

terms of the kth PC, to model the likelihood (2.5). The first K largest PCs are

chosen. Next, we will describe a procedure for linkage disequilibrium mapping of

QTLs using these PC values (Wang et al. 2004).

2.3.3 Linkage Disequilibrium Mapping

To map QTLs in a natural population, we need to implement linkage disequilibrium

as a parameter that link markers with QTLs. For clarity of model description, we

assume one QTL controlling a shape which is associated with a marker, with two

allelesM (with a probability p) and m (with a probability 1−p), through a linkage

disequilibrium D. At the shape QTL, there are two alleles A (with a probability

q) and a (with a probability 1 − q) that form three genotypes, expressed as AA

(denoted as 1), Aa (denoted as 2), and aa (denoted as 3). The marker and QTL

form four haplotypes MA, Ma, mA, and ma, with the frequencies denoted as

p11 = pq+D, p10 = p(1− q)−D, p01 = (1− p)q−D, and p00 = (1− p)(1− q)+D,
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respectively, where max(−pq,−(1− p)(1− q)) ≤ D ≤ min(p(1− q), (1− p)q). The

haplotypes from maternal and paternal parents unite randomly to generate nine

marker-QTL genotypes.

2.3.4 Modeling Mixture Proportions

The conditional probabilities of a given QTL genotype, conditional upon a marker

genotype for individual j, expressed as ωj|i in the likelihood (2.5), can be calculated

(Wang et al. 2004). The observations of three genotypes at the marker are denoted

as n1 for MM , n2 for Mm, and n3 for mm.

In a natural population at HWE, the frequency of a joint marker and QTL

diplotype can be expressed as the product of the frequencies of the two haplotypes

derived from different parents that constitute the diplotype. For the genotypes

which are homozygous at one or two loci, the diplotype frequency is the same

as the genotype frequency (Table 2.1). The double heterozygote AaMm contains

two possible diplotypes AM |am and Am|aM , where the haplotypes derived from

maternal and paternal parents are separated by the vertical lines. Thus, the total

frequency of genotype AaMm is the sum of the frequencies of these two diplotypes.

Since unobservable QTL genotypes can be inferred from observed marker genotypes

due to the marker-QTL association, we will derive the the conditional probability

of a QTL genotype (AA,Aa, aa) given a marker genotype (MM,Mm,mm) using

the joint genotype frequencies from Table 2.1.

Table 2.1. Joint genotype frequencies at the marker and QTL

AA Aa aa
MM p211 2p11p10 p210
Mm 2p11p01 2p11p00 + 2p10p01 2p10p00
mm p201 2p01p00 p200

2.3.5 Parameter Estimation

The parameters that define the likelihood (2.5) are obtained by differentiating the

likelihood with respect to each parameter, letting the derivative equal to zero,

and then solving the log-likelihood equations. We implemented the EM algorithm
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to estimate the parameters. The E step is designed to calculate the posterior

probability with which subject i carries QTL genotype j given its marker and

phenotypic information, expressed as

Ωij =
ωj|ifj(Yi)∑3

j′=1 ωj′|ifj′(Yi)
. (2.6)

Using the calculated posterior probabilities, the M step is derived to solve the

haplotype frequencies expressed as

µj =

∑n
i=1(Ωij ∗ Yi)∑n

i=1Ωij

, ∀j = 1, 2, 3

σ2 =
1

n

n∑
i=1

[
Ωi1(Yi − µ1)

2 + Ωi2(Yi − µ2)
2 + Ωi3(Yi − µ3)

2
]
,

p̂11 =
1

2n

[
n1∑
i=1

(2Ωi1 + Ωi2) +

n2∑
i=1

(Ωi1 + θΩi2)

]
,

p̂10 =
1

2n

[
n1∑
i=1

(Ωi2 + 2Ωi3) +

n2∑
i=1

(Ωi3 + (1− θ)Ωi2)

]
,

p̂01 =
1

2n

[
n3∑
i=1

(2Ωi1 + Ωi2) +

n2∑
i=1

(Ωi1 + (1− θ)Ωi2)

]
,

p̂00 =
1

2n

[
n3∑
i=1

(Ωi2 + 2Ωi1) +

n2∑
i=1

(Ωi3 + θΩi2)

]
,

(2.7)

where θ = p11p00/(p11p00 + p10p01). The iteration are repeated between including

equation (2.6) and equations (2.7) until the estimates converge to stable values.

These stable values are the maximum likelihood estimates (MLEs) of parameters.
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2.3.6 Hypothesis Tests

Based on likelihood (2.5), the significance of a shape QTL can be tested by using

the following hypotheses:

H0 : µj = µ, (j = 1, 2, 3)

H1 : At least one of the equalities above does not hold.
(2.8)

where the H0 corresponds to the reduced model, in which the data can be fit

by a single shape, and the H1 corresponds to the full model, in which three QTL

genotype-specific shapes exist to fit these data. The log-likelihood ratio (LR) of the

full to reduced model is calculated as the test statistics for the above hypotheses.

An empirical approach based on permutation tests is used to determine the critical

threshold (Churchill and Doerge 1994). The significance level was further corrected

for multiple comparisons using Bonferroni’s criterion.

After a significant QTL is found to exist, we need to test whether this QTL

can be detected by a given marker using the hypotheses:

H0 : D = 0,

H1 : D ̸= 0,
(2.9)

where the H0 corresponds to the reduced model, in which the marker and QTL

are at the linkage equilibrium, and the H1 corresponds to the full model, in which

there is a linkage disequilibrium between the marker and QTL. The test statistics

for this hypothesis is calculated as χ2 = 2nD2/[p(1 − p)q(1 − q)], which is χ2-

distributed with one degree of freedom. The significance level was corrected for

multiple comparisons using Bonferroni’s criterion.

2.4 Examples

2.4.1 Populus szechuanica var. tibetica

The new model was used to analyze leaf shape data for a mapping population of

poplar, Populus szechuanica var. tibetica. Belonging to the Tacamahaca section,

P. szechuanica is naturally distributed throughout the Tibet Plateau, growing in
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Figure 2.1. A set of original leaf images (with IDs given at the bottoms) chosen from the
mapping population for Populus szechuanica var. tibetica, showing pronounced variation
in leaf shape.

mountains at an altitude of 1100 - 4600 m over a wide range of regions in Gansu,

Shaanxi, Sichuan, Xizang, and Yunnan Provinces of China (Hamzeh et al. 2004).

Its wide ecological adaptation of this species, along with its pronounced variation

in leaf size and shape (Fig. 2.1), makes this species ideal to study the genetic

variation of leaf morphology using molecular markers. The overall shape of leaf

blade in Populus szechuanica var. tibetica varies markedly from broadly ovate to

ovate-orbicular to ovate-lanceolate. The bases of leaf blades are rounded, cuneate,

or shallowly cordate with glandular dentate margins at the first ciliate. Leaves

grow from short branchlets with petioles 2.5 - 8 cm. A precise shape analysis

approach is needed to identify and quantify such a diversity of leaf shape.

Langlade et al. (2005) pioneered a numerical analysis for shape variation in

leaves by placing 19 key landmarks on the leaf margin and leaf mid vein from digital

images. However, joining these 19 points with straight lines can only capture the

global feature of a leaf outline. The choice of sparse anatomical landmarks by this
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A B C D

Figure 2.2. Four typical leaf shapes detected from the mapping population. In A,
B and C, leaf margins are not always smoothly curved, as shown by green lines, which
makes it difficult to determine anatomical landmarks on the leaf outlines using traditional
approaches. In D, the mid-vein is crooked, which cannot be used as a reference to align
leaf shapes.

approach is extremely difficult when some leaves (see examples in Fig. 2.2 A,B,C)

are abruptly curved. This part of leaf shape variation may be linked with some

particular ecological function (Kessler and Sinha 2004) and, therefore, should be

taken into account. Furthermore, in Langlade et al. (2005), a straight mid-vein

was used to align leaf shapes (see their Fig. 2.2). In our example, however, many

leaves display a curved mid-vein (Fig. 2.2 D), making it difficult to align shapes

using the mid-vein as a reference.

As a pilot study of shape mapping, we selected 107 trees randomly from a nat-

ural population of Populus szechuanica var. tibetica and from each tree three rep-

resentative leaves were sampled to take photos. The sampled trees were genotyped

for 29 microsatellite markers to be used to detect leaf shape QTLs. By reading

600 × 900 pixels from a leaf digital image, we obtained three matrices for red,

green and black colors that discern the object and background (Fig. 2.3 A), from

which binary smaller matrix was generated to capture the leaf shape by recording

its contour (Fig. 2.3 B). Using the procedure for shape alignment described in

METHODS, we obtained a vector of 360 coordinates (x̃(s), ỹ(s))(s = 0, 1, . . . , 359)

to represent leaf shape. It turns out that 360 points can well describe the leaf

boundary (Fig. 2.3 C,D). Fig. 2.4 is the diagrammatic representation of several

key steps (A, B, C, and D) described in Fig. 2.3. The 360 representative points

shown in a vector (Fig. 2.3 D) can be actually expressed as a Radius-Centroid-
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Figure 2.3. The procedure of extracting leaf-shape information from a leaf image. In
A, the leaf is read by 900× 600 pixels based on different colors, red (R), green (G) and
black (B) for the object and background. In B, the leaf outline is read as a 1/0 binary
variable with a dimension-reduced matrix. In C, the Cartesian coordinates of points
on the leaf outline are calculated. In D, all coordinates in C are expressed as single
Radius-Centroid-Contour (RCC) values.

(A) (B) (C)

(D)

Figure 2.4. Diagrammatic representation of the extracting procedure described in Fig.
2.3 A - D in this figure correspond to those in Fig. 2.3, respectively. The vector of RCC
values in Fig. 2.3D is expressed as a curve which is a function of radial angle (θ) (see
the text).
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Contour (RCC) curve (Fig. 2.4 D).

Leaf shape shows considerable variation caused by scale, rotation and trans-

lation (Fig. 2.5 A). Through alignment (see Subsection 2.2.2), all this has been

filtered out from the objects (Fig. 2.5 B). A high dimension of leaf shape data de-

scribed by RCC values, i.e., the coordinates along the leaf boundaries, is reduced

using PCA. It was found from PCA that six orthogonal axes, termed PCs, could

explain 88.1% of the variation among the samples, which, ordered according to the

percentages of variance they explained, are PC1, 47.3%, PC2, 23.2%, PC3, 6.7%,

PC4, 5.1%, PC5, 3.5%, and PC6, 2.3%. These PCs can describe each leaf shape

by capturing different aspects of leaf shape variability including global and local.

To map the QTLs that affect leaf shape, the PC values were associated with 29

microsatellite markers. Table 2.2 tabulates the names of significant markers, their

allele frequencies, the allele frequencies of the QTLs detected by these markers,

and marker-QTL linkage disequilibria. PC1, PC3, PC4 and PC5 were each found

to exhibit significant associations with three markers, whereas PC6 is associated

with one marker. Some markers may be associated with different types of PC axes,

suggesting that the same QTLs have a pleiotropic effect on different features of a

leaf shape. For example, marker GCPM 1063 is significantly associated with PC1

(P = 1.01 × 10−10), PC3 (P = 1.88 × 10−8), PC4 (P = 1.14 × 10−7) and PC5

(P = 3.55 × 10−7). It is possible that the same QTL causes the association of
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Figure 2.5. Linking 360 coordinates on the leaf outlines for leaves of all sampled
trees from the mapping population. In A, raw leaf shapes, showing variation in scale,
position and orientation. In B, this variation is removed from the objects through shape
alignment.
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GCPM 1063 with these four PC axes because the QTLs detected for all the four

PC axes have a similar allele frequency (0.49 - 0.51) and linkage disequilibrium

(0.09 - 0.12).

Table 2.2. Detection of Leaf Shape QTLs by the Linkage Disequilibrium Analysis of
Microsatellite Markers in a Natural Population of Populus szechuanica var. tibetica

PC(%Explained) Microsatellite
Marker

Effect p-value q̂ p̂ D̂ LD p-value

PC1(47.3%) GCPM 1063 1.01× 10−10 0.74 0.49 0.12 5.77× 10−15

GCPM 1026− 1 2.42× 10−10 0.31 0.43 -0.12 2.42× 10−13

GCPM 1093− 1 1.93× 10−05 0.43 0.47 -0.05 1.57× 10−3

PC3(6.7%) GCPM 1063 1.88× 10−08 0.81 0.51 0.09 2.94× 10−13

GCPM 1064− 1 1.68× 10−05 0.44 0.43 -0.05 8.20× 10−6

GCPM 1− 1 3.42× 10−04 0.73 0.56 0.08 1.72× 10−11

PC4(5.1%) GCPM 1063 1.14× 10−07 0.77 0.51 0.13 0

GCPM 1026− 1 9.56× 10−07 0.60 0.23 0.07 4.64× 10−13

GCPM 1034− 1 8.54× 10−04 0.45 0.14 -0.06 3.49× 10−7

PC5(3.5%) GCPM 1063 3.55× 10−07 0.79 0.51 0.10 0

GCPM 1064− 1 1.63× 10−04 0.72 0.43 0.11 0

GCPM 1025− 1 4.95× 10−04 0.73 0.44 0.11 0

PC6(2.3%) GCPM 1053− 1 2.11× 10−04 0.26 0.49 -0.12 0

In Table 2.2, p is the allele frequency of a marker, q is the allele frequency of

a QTL detected by the marker, and D is the linkage disequilibrium (LD) between

the marker and QTL. The effects of QTLs are tested by hypothesis (2.8), and the

LD between markers and QTLs tested by hypothesis (2.9).

In general, the QTLs detected by PC1 control overall leaf shape variation,

whereas the QTLs detected by the other PCs are responsible for local leaf variation.

Generally speaking, the QTL detected by marker GCPM 1063 alters leaf shape

from lanceolate (AA) to ovate-orbicular (Aa) to ovate (aa) through PC1 (Fig.

2.6 A), whereas this QTL determines the detailed structure of broadly-ovate leaf

shape, e.g., different degrees of deltoidness at leaf base among the three genotypes

(Fig. 2.6 B). Fig. 2.7 illustrates the fitness of PC1 curves (A) and PC3 curves

(B) to the RCC curves of all poplar trees, respectively, for three genotypes, AA,

Aa and aa, at the QTL detected by marker GCPM 1063. Difference in leaf shape

explained by PC1 and PC3 curves of the same QTL genotype is diagrammed in

Fig. 2.8 where such a difference is found to be genotype-specific.

The linkage disequilibria of markers with the QTLs are highly significant (P =
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AA Aa aa

A

B

AA Aa aa

Figure 2.6. Three representative leaf shapes of Populus szechuanica var. tibetica cor-
responding to three different genotypes, AA, Aa and aa, at the QTL detected by marker
GCPM 1063. PC1 defines overall leaf shape (A), whereas PC3 defines local shape vari-
ability (B). In B, three genotypes all have broadly ovate leaf shape, but genotypes AA
and Aa are more deltoid than genotype aa at leaf base.

1.57 × 10−3), suggesting that these QTLs can possibly map to a narrow genomic

region. Of the two other PC1 QTLs that control overall leaf shape in a similar

manner, but with a lesser extent, one detected by marker GCPM 1026−1 displays

a larger effect on shape variation and is also closer to the QTL than one detected

by marker GCPM 1093 − 1 (Table 2.2). The QTLs associated with the other

PCs tend to affect the local variation of leaf shape at various positions of leaves.

Although it is subtle, such local variation may be tightly linked with gradient

changes of some environmental factors. Thus, ecological functions of “local” QTLs

deserve further investigations.
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Figure 2.7. RCC curves of leaf shape as a function of radial angle θ at the centroid,
explained by the PC1 curve (A) and PC3 curves (B) for the three genotypes, AA, Aa
and aa, at the QTL detected by marker GCPM 1063.
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Figure 2.8. The pleiotropic control of the same QTL on different features of leaf shape
specified by PC1 and PC2. The difference of leaf shape defined by PC1 (blue) and PC3
axes (red) for the same genotype, AA, Aa or aa, is shown.
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2.4.2 Populus euphratica oliv.

Populus euphratica oliv., as one of the oldest members of poplar family, is a very

special species to be researched because of its vast plasticity ability in dramat-

ically different environment, temperature, light, and humidity, and so on. It is

distributed from Mediterranean Woodlands and Shrublands, Semi-steppe shrub-

lands, Shrub-steppes, to Deserts, and even prosperous in the Takla makan Desert.

The leaves of Populus euphratica oliv. are polymorphic, i.e. have quite different

shapes among different trees or among different branches of the same tree (Fig.

2.9. T036 − 1, T036 − 6, T036 − 7, T036 − 11 are four examples from the same

tree). The leaf blade shapes of Populus euphratica oliv. vary significantly from

lanceolate, elliptic, oblong, to rhomboid. Moreover, the most strikingly difference

is the irregular dentation on the boundary of the leaves (Fig. 2.9).

In order to detect the significant QTLs that contribute to the variation of the

Populus euphratica oliv. leaf shapes, we randomly selected 471 trees from a natural

Figure 2.9. A set of original leaf images (with IDs given at the bottoms) chosen from
the mapping population for Populus euphratica oliv., showing pronounced variation in
leaf shape.
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population of Populus euphratica oliv., and took the photos of 25 leaves randomly

from each tree. Therefore, there were altogether 11775 leaves under experiment,

which has a huge sample size. Each leaf was saved in a separate colorful image

with the resolution of 350 × 440. In Matlab, each colorful image was saved in

the form of three dimensional matrix to record the RGB (Red, Green, and Blue)

values that are enough to describe the original photo. Among these 471 trees, there

were 421 progenies genotyped using 104 molecular markers. Because the different

leaves from the same tree have quite big variations in shape and it is unreasonable

to assume that the leaves from the same tree are independent, we computed the

average of all 25 leaves as the phenotype for each progeny.

Since we use similar Linkage Disequilibrium genetic design and the morpholog-

ical shape of Populus euphratica oliv. is not much different from that of Populus

szechuanica var. tibetica, the methodologies for these two data are similar, except

for some tiny differences. In the following, we only address the parts that are

different.

In Subsection 2.4.1, we used the Radius-Centroid-Contour method to repre-

sent the leaf boundary by recording one point per θ. It worked well for many

2-dimensional shapes. However, this method with fixed θ has two problems. One

problem is that it can not describe the non-convex shapes properly. For example,

the result will be bad if there are more than one point when connecting the cen-

troid to the contour. Another problem is that it will loss the information between

two neighbor θs if the outline is not smooth. In the case of the leaf shape of P.

euphratica oliv., there exists a lot of irregular and sharp dentation, which can not

be represented accurately by the fixed θ method any more. Therefore, a more

accurate shape representation skill is necessary to capture every tiny and sharp

corner of the dentation that is one of the most striking variation of the Populus

euphratica oliv. leaves.

Kong et al. (Kong et al. 2007) proposed a new shape descriptor based on

directional radii vector and the Haar wavelet transform. Because the boundary of

the shape was closed, we were able to choose any two consecutive points on the

boundary, one as the starting point and the other as the end point. If all the points

between the starting point and the end point on the boundary were recorded one

by one, there was no any information loss. Still used (x(si), y(si)), (si = 1, . . . ,Mi)
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to denote the x and y coordinates of all the boundary points for individual shape

i. But in the new method, the coordinates were subject to the individual. i.e. for

each different shape i, the coordinates x(si) and y(si), and the number of points

Mi all changed as i changed. In addition, the points on the boundary were visited

by location or index rather than θ. By the new shape representation method, we

obtained a curve or a long vector, with different length for each different shape. To

make data analysis and shape alignment feasible, we must standardize the length

of different vectors by interpolation. Let C to denotes the common length of all

shapes, which is much larger than θ = 360. Once the length of the curves were

uniformed, the shape alignment formula described in Section 2.2.2 and the shape

representation formula (2.4) were still applicable.

Since C (=910) was a big number which made the computation heavy and

improved the complexity of statistical modeling, we used Haar wavelet transform

(Kong et al. 2007; Zhao et al. 2008) to capture the important information. The

goal of wavelet-transform is to take advantage of redundancy in the original in-

formation and obtain a good reconstruction upon decompression by dividing the

original signal into two sequences of wavelet coefficients of equal length. Math-

ematically, Haar wavelet transformation is to represent the original signal as a

superposition of a set of basis functions formed by a sequence of rescaled ”square-

shaped” functions. These basis functions are obtained from a single prototype

wavelet called the mother wavelet ψ(t), by dilations or scaling and translations.

The Haar wavelet’s mother wavelet function can be described as

ψ(t) =


1, 0 ≤ t < 1/2;

−1, 1/2 ≤ t < 1;

0, ow.

By Implementing the Haar wavelet transform, we compressed the original di-

rectional radii vectors into half of its original length. Then, we used exactly the

same methods as Subsection 2.4.1 for the remaining parts. It turned out that the

first eleven PCs, explain total 97.86% of the variation among the samples from dif-

ferent aspect, are in detail, PC1, 42.89%, PC2, 32.77%, PC3, 10.68%, PC4, 4.58%,

PC5, 2.50%, PC6, 1.57%, PC7, 0.98%, PC8, 0.86%, PC9, 0.40%, PC10, 0.33%,

and PC11, 0.30%. To map the QTLs that affect leaf shape, these PC values were
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associated with 104 molecular markers. Then we performed two hypothesis tests.

As mentioned in Section 2.3.6, a significant QTL that contributes to the shape

variation must reject both of the two hypothesis tests. Considering there are 104

markers, we use Bonferroni correction to control the family rate. Then, the critical

value for the hypothesis test (2.8) with the df value 2 is 15.28, for hypothesis test

(2.9) with the df value 1 is 12.19. Among these eleven PCs, PC 4, PC8, PC10, and

PC11 failed to reject both the two hypothesis tests. For the other seven significant

ones, in Table 2.3, we summarized their allele frequencies, the allele frequencies

of the QTLs detected by these markers, and marker-QTL linkage disequilibria.

Table 2.3. Detection of Leaf Shape QTLs by the Linkage Disequilibrium Analysis of
Molecular Markers in a Natural Population of Populus euphratica oliv.

PC(%Explained) Microsatellite
Marker

Effect p-value q̂ p̂ D̂ LD p-value

PC1(42.89%) Marker1 1.45× 10−12 0.43 0.17 -0.07 0

Marker28 5.70× 10−10 0.42 0.42 -0.05 3.13× 10−09

Marker56 1.93× 10−09 0.46 0.17 -0.04 4.99× 10−08

Marker54 4.63× 10−09 0.64 0.60 0.06 5.73× 10−11

Marker13 9.45× 10−08 0.57 0.34 0.04 4.34× 10−08

PC2(32.77%) Marker7 2.00× 10−15 0.41 0.59 -0.04 1.90× 10−06

Marker96 2.22× 10−15 0.46 0.24 -0.04 3.63× 10−07

Marker10 6.93× 10−14 0.44 0.35 -0.05 3.84× 10−08

Marker17 1.42× 10−13 0.43 0.243 -0.05 2.13× 10−10

Marker95 9.47× 10−11 0.55 0.16 0.04 2.24× 10−09

PC3(10.68%) Marker36 8.22× 10−12 0.88 0.86 0.06 0

Marker90 1.13× 10−11 0.61 0.29 0.07 0

Marker70 1.82× 10−11 0.61 0.28 0.07 0

Marker76 1.79× 10−10 0.60 0.37 0.06 1.21× 10−11

Marker54 1.01× 10−09 0.69 0.60 0.07 0

Marker35 1.27× 10−09 0.62 0.24 0.08 0

PC5(%) Marker10 0 0.60 0.35 0.05 1.07× 10−08

Marker86 0 0.57 0.24 0.03 2.41× 10−06

Marker69 0 0.64 0.34 0.08 0

Marker13 0 0.58 0.34 0.04 3.71× 10−07

PC6(%) Marker67 3.57× 10−11 0.30 0.43 -0.12 0

PC7(%) Marker89 1.36× 10−4 0.44 0.22 -0.05 7.07× 10−11

PC9(%) Marker55 1.79× 10−4 0.83 0.66 0.11 0

In Table 2.3, p is the allele frequency of a marker, q is the allele frequency of a

QTL detected by the marker, and D is the linkage disequilibrium (LD) between
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Figure 2.10. Three representative leaves of Populus euphratica oliv. corresponding to
three different genotypes, AA, Aa and aa, at the QTL detected by marker1 for PC1
(A) and marker7 for PC2 (B). In A, the genotypes corresponding to PC1 show quite
big variation. AA has lanceolate, Aa has oblong, and aa has rhomboid leaf shape. In
B, three genotypes all have broadly ovate leaf shape, but the dentation patterns are
different among three different genotypes associated with PC2.

the marker and QTL. The effects of QTLs are tested by hypothesis (2.8), and the

LD between markers and QTLs tested by hypothesis (2.9).

Since the QTLs detected by PC1 and PC2 control the first two biggest overall

leaf shape variation (almost half of the total variation), we illustrated the effect

of PC1 and PC2 in Fig. 2.10. Generally speaking, the QTL detected by marker1

alters leaf shape from lanceolate (AA) to oblong (Aa) to rhomboid (aa) through

PC1 (Fig. 2.10 A). And the QTL detected by marker 7 determines the detailed

structure of the dentation. (Fig. 2.10 B). Fig. 2.11 illustrates the fitness of

PC1 curves (Top panel) and PC2 curves (Bottom panel) to the DRV (Directional

Raddi Vectors) of all trees, respectively, for three genotypes, AA, Aa and aa, at the

QTL detected by marker1 and by marker7, respectively. Difference in leaf shape

explained by PC1 and PC2 leaves of the same QTL genotype is diagrammed in

Fig. 2.12 where such a difference is found to be genotype-specific.
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Figure 2.11. Directional Radii Vectors of leaf shape as a function of index explained
by the PC1 curve (Top) and PC3 curves (Bottom) for the three genotypes, AA, Aa and
aa, at the QTL detected by marker1 and marker 7, respectively.
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Figure 2.12. The control of the same QTL on different features of leaf shape specified
by PC1. The difference of leaf shape defined by PC1 for the same genotype, AA, Aa or
aa, is shown from image domain.



Chapter 3
Mapping Shape QTLs Using Level

Set Method

In this Chapter, we derived a statistical model for mapping specific genes or quan-

titative trait loci (QTLs) that control morphological shape. After the region based

shape analysis skills, we obtained n level set functions Y = {Y1, Y2, · · · , Yn} cor-

responding to n aligned shapes. Each Yi is a L by L matrix. The model was

formulated within the mixture framework, in which different types of shape are

thought to result from genotypic discrepancies at a QTL. The EM algorithm was

implemented to estimate QTL genotype-specific shapes based on a shape corre-

spondence analysis. Computer simulation was used to investigate the statistical

property of the model. By identifying specific QTLs for morphological shape, the

model developed will help to ask, disseminate and address many major integrative

biological and genetic questions and challenges in the genetic control of biological

shape and function.

3.1 Introduction

Morphological shape is one of the most conspicuous aspects of an organism’s phe-

notype and provides an intricate link between biological structure and function in

changing environments (Ricklefs et al. 1994; Reich 2001). For this reason, compar-

ing the anatomical and shape feature of organisms has been a central element of

biology for centuries. Nowadays, attempts have been made to unlock the genetic
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secrets behind phenotypic differentiation in developmental shape (Tanksley 2004),

understand the origin and pattern of shape variation from a developmental per-

spective (Klingenberg 2001; Klingenberg et al. 2001), and predict the adaptation

of morphological shapes in a range of environmental conditions (Tsukaya 2005).

Three major advances in life and physical science during the last decades will

make it possible to study shape variation and its biological underpinnings. First,

DNA-based molecular markers allow the identification of quantitative trait loci

(QTLs) and biochemical pathways that contribute to quantitatively inherited traits

such as shape. In his seminal review, Tanksley (Tanksley 2004) summarized some

major discoveries of genes for fruit size and shape in tomato. In a long process

of domestication, tremendous shape variation has occurred in tomato fruit from

almost invariably round (wild or semiwild types) to round, oblate, pear-shaped,

torpedo-shaped, and bell pepper-shaped (cultivated types). Some of the QTLs that

cause these differences, namely fw2.2, ovate, and sun, have been cloned (Frary et

al. 2000; Liu et al. 2002; Xiao et al. 2008).

Second, digital technologies through computerized analysis and processing pro-

cedures can obtain a comprehensive representation of the involved objects, capable

not only of representing most of the original information, but also of emphasizing

their less redundant portions (Bookstein 1978; Monteiro et al. 2002; Adams et

al. 2004; Bernal 2007; Stegmann et al. 2002; Basri et al. 1998). Third, sta-

tistical and computational technologies have well been developed for analyzing

high-dimensional, large-scale, high-throughput data of high complexity (Dempster

et al. 1977; Tsai et al. 2005). With the development of missing data analysis,

Lander and Botstein (1989) have been able to pioneer an approach for dissecting

complex quantitative traits into individual QTLs using genetic linkage maps con-

structed with molecular markers. There has been a vast wealth of literature in the

development of QTL mapping models (Zeng 1994; Jansen et al. 1994; Xu et al.

1995; Lynch et al. 1998; Broman et al. 2002; Zou et al. 2004; Yi et al. 2005).

The motivation of this study is to develop a statistical and computational

model for mapping specific QTLs that are responsible for differences in morpho-

logical shape. Historically, genetic mapping has been focused on the genetic control

of a trait at a static point, ignoring the dynamic behavior and spatial properties

of the trait. Now, by integrating the developmental principle of trait growth, a
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new genetic mapping approach, called functional mapping (Ma et al. 2002; Wu et

al. 2003; Wu et al. 2006), can be used to study the dynamic control of genes in

time course. The central idea of functional mapping is to connect the genetic con-

trol of a developmental trait at different time points through robust mathematical

and statistical equations. Complementary to functional mapping, the model de-

veloped for shape mapping in this study links gene action with key morphometric

parameters of a shape within a statistical framework. We will perform computer

simulation to examine the statistical properties of the model.

3.2 Region-Based Shape Analysis

For the region based shape representation method, we divide the procedures into

two steps: shape alignment to minimize the variation caused by location, scale and

rotation; and shape description to describe a shape using numerical matrices.

3.2.1 Shape Alignment

According to the definition of Kendall (Dryden et al. 1998), “shape is all the

geometrical information that remains when location, scale and rotational effects

are filtered out from an object”. Assume that each backcross progeny is measured

for the leaf shape as shown in Fig. 3.1. For a given shape, I i (i = 1, ..., n),

described by a black and white image, it is gridded as an L×L matrix, where L is

the number of pixels in the row and column. At each point in the matrix, we use 0

to denote the background (black) and 1 to denote the leaf (including an arbitrary

shape of it) (white). The 1/0 value of the matrix is assumed to follow a Bernoulli

distribution. All these n shapes, T = {I1, I2, · · · , In}, need to be aligned, in order

to minimize the interference caused by pose variations. This can be carried out

by establishing a coordinate reference with respect to position, scale and rotation,

commonly known as pose to which all shapes are aligned (Bookstein 1978; Adams

et al. 2004; Stegmann et al. 2002).

Denote the pose parameter for each shape I i by pi = [a, b, h, θ]T where a and b

correspond to x and y translations, h is the scaling parameter, and θ corresponds to

rotation. The transformed image of I i, based on the pose parameter pi, is denoted
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Figure 3.1. The Diagram of twelve leaf shapes from the backcross population. Five of
them are wild Cucurbita argyrosperma sororia and seven of them are cultivated cucurbita
argyrosperma.

by Ĩ i, defined as

Ĩ i(x̃, ỹ) = I i(x, y),

where
x̃

ỹ

1

 = T [p]


x

y

1

 =


1 0 a

0 1 b

0 0 1




h 0 0

0 h 0

0 0 1




cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




x

y

1

 ,

which yields {
x̃ = a+ hxcos(θ)− hysin(θ),

ỹ = b+ hycos(θ) + hxsin(θ).
(3.1)

The translation matrix T [p] is the product of three matrices: a translation

matrix M(a, b), a scaling matrix H(h), and an in-plane rotation matrix R(θ). The

transformation matrix T [p] maps the coordinates (x, y) ∈ R2 into coordinates

(x̃, ỹ) ∈ R2, where x, y = 1, · · · , L.
An effective strategy to jointly align the n binary images is to use a gradient

descent to minimize the following energy function:

E =
n∑

i=1

n∑
j=1,j ̸=i

{∫ ∫
Ω
(Ĩ i − Ĩj)2dA∫ ∫

Ω
(Ĩ i + Ĩj)2dA

}
, (3.2)

where Ω denotes the image domain. Minimizing the energy function (3.2) is equiva-

lent to simultaneously minimizing the difference between any pair of binary images

in the training database. What we would like to estimate is the pose parameter pi
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for each I i.

The derivative respective to pi of equation (3.2) is

∇piE =2Σn
j=1,j ̸=i

{
2
∫ ∫

Ω
(Ĩ i − Ĩj)∇pi Ĩ

idA∫ ∫
Ω
(Ĩ i + Ĩj)2dA

−
2
∫ ∫

Ω
(Ĩ i − Ĩj)2dA

∫ ∫
Ω
(Ĩ i + Ĩj)∇pi Ĩ

idA

(
∫ ∫

Ω
(Ĩ i + Ĩj)2dA)2

}
,

(3.3)

where ∇pi Ĩ
i =

[
∂Ĩ i

∂a
,
∂Ĩ i

∂b
,
∂Ĩ i

∂h
,
∂Ĩ i

∂θ

]T
.

By a chain rule and equation (3.1), we get

∂Ĩ i

∂a
=

∂Ĩ i

∂x̃
=
∂I i

∂x
,

∂Ĩ i

∂b
=

∂Ĩ i

∂ỹ
=
∂I i

∂y
,

∂Ĩ i

∂h
=

∂I i

∂x
(xcos(θ)− ysin(θ)) +

∂I i

∂y
(ycos(θ) + xsin(θ)),

∂Ĩ i

∂θ
=

∂I i

∂x
(−hxsin(θ)− hycos(θ)) +

∂I i

∂y
(−hysin(θ) + hxcos(θ)).

Hence, we can obtain the value of ∇piE as long as pi and Ĩ i are given in each

iterative step. The steepest gradient algorithm is then used to minimize E in (3.2)

and get the pose parameter pi for each shape I i. All the training shapes after the

alignment procedure described above are obtained (Fig. 3.2).

Figure 3.2. Leaf shapes after alignment for leaf shapes shown in Fig. 3.1.
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3.2.2 Shape description

After all the training shapes are aligned, a shape representation scheme needs to be

chosen for T = {Ĩ1, Ĩ2, · · · , Ĩn}., i.e., the transformed images, which now become

continuous variables. We will use the implicity representation of boundary by level

set method, which is an Eulerian approach (Osher et al. 1988).

A closed curve can divides the image domain into three parts: The region inside

the curve I, the region outside the curve Ic, and the boundary C. The boundary

of a shape is a curve satisfying some specific function. Osher and Sethian define

a smooth function ϕ(x, y) such that the set where ϕ(x, y) = 0 corresponding to

the boundary C. If ϕ has the following property, then it is said to be a level set

function:

ϕ(x, y) < 0, if (x, y) ∈ I

ϕ(x, y) > 0, if (x, y) ∈ Ic

ϕ(x, y) = 0, if (x, y) ∈ C

By this definition, we are able to embed the boundary curve C into the 0 level

set of a 2D function z = ϕ(x, y), and hence represent a shape implicitly. For any

given boundary, you might find several level set functions, but once the level set

function is chosen, the boundary will be uniquely determined. Signed distance

function |ϕ(x)| = minxI∈C d(x,XI) is a traditional way to be served as a shape

descriptor to represent the contours of the shape. As you can see, it satisfies

the definition of level set function. Each contour is embedded as the zero level

set of a signed distance function with negative distances assigned to the inside

and positive distances assigned to the outside. This technique yields n level set

functions Y = {Y1, Y2, · · · , Yn} corresponding to above n aligned training shapes.

By now, we finish all the steps of shape analysis and are able to substitute Yi

to the statistical model in the following to map the genes that control the shape

variability for the simulated leaf shapes.
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3.3 Statistical Design

3.3.1 Genetic Design

We assume a backcross design although the model can be modified to accommo-

date any other mapping designs. Consider a backcross progeny population of size

n, founded with two inbred lines that are sharply contrasting in leaf shape. Be-

cause of gene segregation, there is a range of variation in leaf shape among the

backcross progeny. Such shape variation is illustrated in Fig. 3.1 by using leaf

morphology in cucurbit plants (Schlichting et al. 1998). To map the shape trait,

the mapping population is typed for a panel of molecular markers from which a

genetic linkage map covering the genome is constructed. The statistical approach

for linkage analysis and map construction is reviewed in Wu et al. (Wu et al.

2007). Assume that there are some specific QTLs responsible for the biological

shape. The approach being developed aims to detect and map such QTLs by capi-

talizing on knowledge about shape analysis and biological principles behind shape

formation and variation.

3.3.2 Statistical Model

From the standpoint of QTL mapping, we treat Y = {Y1, Y2, · · · , Yn} as the mul-

tiple phenotypic traits of n individuals. For a progeny i (i = 1, 2, · · · , n), we

have

Yi =


y11 y12 · · · y1L

y21 y22 · · · y2L
...

...
. . . · · · ...

yL1 yL2 · · · yLL

 . (3.4)

Thus, each individual has a total of m = L2 dimensions.

For the backcross progeny population, there are always two different genotypes

at each locus. The genotypes at a shape QTL, expressed as QQ (denoted as 1)

and Qq (denoted as 2), cannot be observed directly but can be inferred from the

markers that are linked to the QTL. For this reason, the basic statistical model for

QTL mapping is based on a mixture model, in which each observation Y is assumed
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to have arisen from one of the two groups of QTL genotypes, each group being

modeled from a density function (frequently a normal distribution is assumed).

Thus, the population density function of Y is

f(Y |ω, ϕ, η) =
2∑

j=1

ωj|ifj(Yi|µj, η), (3.5)

where ω represents the mixture proportions (ω1|i, ω2|i), which are constrained to

be nonnegative and sum to unity, µj is the expectation of different QTL genotypes

j = 1, 2, and η is the variance-covariance parameter common to all genotype

groups, and fj(Yi|µj, η) is the probability density function for QTL genotype j.

After images are transformed, Yi can be assumed to follow a multivariable normal

distribution, i.e.,

fj(Yi) =
1

(2π)m/2|Σ|1/2
exp[−(Yi − µj)

TΣ−1(Yi − µj)/2], (3.6)

with the expectation matrix of each QTL genotype expressed as

µj =


µj
11 µj

12 · · · µj
1L

µj
21 µj

22 · · · µj
2L

...
...

. . . · · · ...

µj
L1 µj

L2 · · · µj
LL

 , for j = 1, 2, (3.7)

and (m×m) residual variance-covariance matrix of the variables Σ.

In order to simplify the problem, we use the most natural sampling strategy

to utilize the L × L rectangular grid of the training shapes to generate m =

L × L lexicographically ordered samples (where the columns of the matrix grid

are sequentially stacked on top of one other to form one large row). Also, we

assume that all the components of the same random vector are independent and the

variance of the different random vectors are common among the different progenies.

now, from equation (3.5), we get the likelihood function as

L(y) =
n∏

i=1

f(Yi|ω, µ, η)
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=
n∏

i=1

2∑
j=1

ωj|ifj(Yi|µj, η)

=
n∏

i=1

2∑
j=1

ωj|i
1

(2π)m/2|Σ|1/2
exp[−(Yi − µj)

TΣ−1(Yi − µj)/2], (3.8)

where the mean matrix (µj) of QTL genotype j is modeled by parameter µj, and

covariance matrix (Σ) is a diagonal matrix with common values in the diagonals.

3.3.3 Parameter estimation

To obtain the maximum likelihood estimates (MLEs) of parameters in likelihood

(3.8), we implement a standard EM algorithm. In the E step, we compute the

posterior probability with which a backcross individual carries a QTL genotype j

using

Ωij =
ωjfj(Yi|µj, η)∑2
l=1 ωlfl(Yi|µl, η)

. (3.9)

In the M step, we estimate the parameters using

µjk =

∑n
i=1Ωijyik∑n
i=1 Ωij

, (3.10)

for j = 1, 2 and k = 1, 2, · · · ,m.

The EM steps are iterated between equations (3.9) and (3.10) until the esti-

mates converge to stable values. It should be pointed out that the data set for

shape analysis is highly sparse and high-dimensional. For example, if a shape is

described by (75× 75) pixels, i.e., L = 75, then we will have m = 752 = 5625, and

an (n× 5625) matrix for the phenotypic observations. Several approaches will be

developed to model the structure of the variance-covariance matrix. One of the

simplest approaches is to use σ = 1
2

√
2L2. This choice is large enough to assure

that various levels of differences lie well within a Gaussian distribution.



45

3.3.4 Hypothesis tests

A hypothesis about the existence of a significant QTL that controls a morphological

shape can be tested by calculating the log-likelihood ratio under the hypotheses:

H0 : µ1 = µ2 vs H1 : µ1 ̸= µ2 (3.11)

As like an usual mapping approach, shape mapping has a problem of uncertain

distribution for the log-likelihood test statistic. However, an empirical approach

based on permutation tests, which does not rely on the distribution of log-likelihood

ratios, can be used to determine the threshold for claiming the existence of a sig-

nificant QTL.

3.4 Simulation Design and Experimental Results

Cucurbit (Cucurbita argyrosperm) plants display tremendous variation in shape

between cultivars and wild types (Schlichting et al. 1998). By mimicking leaf

morphologies of this species, we performed simulation studies to examine the sta-

tistical behavior of our shape mapping model. A backcross population of 200

progeny was simulated for a linkage group with 11 equally spaced markers. A

QTL that determines leaf shape is hypothesized on the third marker interval. The

phenotypic values of the shape were simulated with a (75 * 75) dimension by

Yi = ξjµ1 + (1− ξj)µ2 + ei, where µj is the mean shape matrix for QTL genotype

j (j = 1, 2), ξj is the indicator variable defined as 1 and 0 if progeny i carries QTL

genotype QQ (1) and qq (2), respectively, and ei follows a multivariate normal dis-

tribution with mean vector zero and covariance matrix Σ. To simplify computing,

we assumed that Σ is an identity matrix. We designed two simulation schemes to

test our shape mapping algorithm.

The first scheme assumes that there exists a ”big” QTL which triggers a tremen-

dous effect on the difference in leaf shape of cucurbit plants between their cultivars

and wild types. This QTL has two different genotypes, one, QQ, corresponding to

the wild type shape (right) and the second, Qq, to the domesticated shape (left)

(Fig. 3.3A). The QTL genotypes are determined by the conditional probability of
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Figure 3.3. The first simulation scheme: A ”big” QTL controls differences in leaf shape
between wild types and cultivars for cucurbit plants. A: Two given QTL genotypes, QQ
for the wild type (left) and Qq for the cultivar (right); B: Part of the simulated backcross
progeny; C: Two estimated QTL genotypes, QQ for the wild type (left) and Qq for the
cultivar (right).

a QTL genotype, conditional upon the genotypes of the two markers that flank the

QTL (Wu et al. 2006). Part of the 200 progeny simulated with two assumed QTL

genotypes were given in Fig. 3.3B, in which some leaf shape looks more like the

wild type, some more like the domesticated type, and the other is in between. The

model described above was used to analyze the simulated data. The log-likelihood

ratio test statistic calculated under hypotheses (3.11) is greater than the critical

threshold for testing the existence of a QTL obtained from permutation tests,

suggesting that two genotype-specific shapes for QQ and Qq were detected and

identified. Fig. 3.3B also illustrates the shapes of two detected QTL genotypes

from the simulated data. As shown, the estimated shapes are similar to the true

shapes for the two backcross QTL genotypes, suggesting that our model has great

power to identify the QTL that control morphological shape.

The second scheme simulated two QTLs that determine the differences of leaf

shape among wild-type plants and domesticated plants, respectively. Compared to

the ”big” QTL assumed in the first scheme, these two QTLs are ”small” because

their two genotypes correspond to slightly different leaf shapes. Fig. 3.4 and Fig.
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Figure 3.4. The second simulation scheme: A ”small” QTL controls differences in leaf
shape among different plants from wild types of cucurbit plants. A: Two given QTL
genotypes, QQ for the wild type (left) and Qq for the cultivar (right); B: Part of the
simulated back-cross progeny; C: Two estimated QTL genotypes, QQ for the wild type
(left) and Qq for the cultivar (right).

3.5 provide the results about shape mapping for wild-type plants and domesticated

plants, respectively. In the upper panel (A) of each figure, two original QTL

genotypes are assumed, from which 200 backcross progeny were simulated with

a range of leaf shape. The middle panel (B) gives part of the backcross. In the

bottom panel (C), two genotypes were estimated using our algorithm. It can

be seen that the model can well detect a QTL even if it has a small effect on

morphological shape.

To show the fitness of our model, we put the estimated QTL genotypes on the

simulated backcross population for the first (A) and second (B and C) simulation

scheme (Fig. 3.6) on the image domain. The leaf shape of two QTL genotypes

in each case well covers the simulated leaf shape, showing a good fitness of the

mapping model.
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Figure 3.5. The second simulation scheme: A ”small” QTL controls differences in
leaf shape among different plants from cultivars of cucurbit plants. A: Two given QTL
genotypes, QQ for the wild type (left) and Qq for the cultivar (right); B: Part of the
simulated backcross progeny; C: Two estimated QTL genotypes, QQ for the wild type
(left) and Qq for the cultivar (right).

Figure 3.6. The fitness of estimated QTL genotypes to simulated leaf shape in a
backcross. A: A ”big” QTL for the shape difference between wild types and cultivars of
cucurbit plants. B: A ”small” QTL for the shape difference between different wild types.
C: A ”small” QTL for the shape difference between different cultivars.



Chapter 4
Functional QTL Mapping for Ultra

High Dimensional Biological Shape

Curves

After quantifying the morphological shapes numerically through RCC (Radius

Centroid Contour) skills, each phenotype, as a datum, is in the form of sam-

ples of functional curves or trajectories with high dimension. In this section, we

developed a nonparametric smoothing method to model the mean curve by GEE

(Generalized Estimating Equation) local polynomial kernel and model the covari-

ance matrix by functional PCA (Principal Component Analysis). Through this

model, we estimate both the mean and covariance as the function of spatial angle,

characterize the dominant modes of variation around the overall mean trend func-

tion, and hence avoid facing directly the extremely huge dimensional covariance

matrix.

4.1 Introduction

Despite the fundamental importance of morphological shape, the difficulty in quan-

tifying the image photo and modeling the ultra-high dimension of the shape data

make the task of genetic mapping on it increasingly difficult.

In this Chapter, we provide novel insights into the genetic mechanisms that
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control the structure of the morphological shapes, by developing a framework un-

der which the semi- and non-parametric statistical models, functional data analysis

skills, shape analysis skills, and functional QTL mapping schemes can be integrated

together to achieve our purpose. In this model, both the mean and variance are

modeled as functions of the spatial angle, utilizing the semi- and non-parametric

kernel regression and functional PCA, respectively. Functional PCA describes ob-

served random trajectories in terms of a number of functional principal component

scores, and eigenfunctions have been interpreted as the modes of variation of the

curves (Yao et al. 2005a; 2003; 2006; Muller et al. 2006). The proposed model is

data-adaptive and does not require pre-specified functional forms and it automat-

ically detects characteristic patterns.

By a Nature Review Genetics paper (Klingenberg 2012), quantifying the shape

by landmarks is a quite new skill. After the mathematical definition of shape

(Dryden et al. 1998) and the manual landmark points (Cootes et al. 1995) first

proposed in 1995, the landmark has become a popular contour based shape rep-

resentation method (Renaud et al. 2010; Langlade et al. 2005; Abbasi et al.

2000; Super 2004; Zhang et al. 2003; Rhodri et al. 2001; 2002; Tan et al. 2000;

Kong et al. 2007). In current literature, multivariate analysis models have been

mainly used to model the multidimensional landmark points. For example, prin-

cipal component analysis used for examining the main patterns of variation in the

data (Langlade et al. 2005; Drake et al. 2010), multivariate regression used for

analyzing allometry or evolutionary change in shape over time (Drake et al. 2008;

Monteiro 1999). However, the shape representation data is more meaningful to

be treated as curves or trajectories rather than un-constructed vectors. Although

the landmarks are recorded discretely, a continuous curve or function lies behind

these data and the spatial dynamics is a major factor for shape variation. After

quantifying the morphological shapes numerically through RCC (Radius Centroid

Contour) skills (Tan et al. 2000; Kong et al. 2007), each phenotype, as a datum,

is in the form of samples of functional curves with respective to the spatial angle

rather than scalars or vectors. By considering the curves as the function of spatial

angle, FDA (Functional Data Analysis) models the trends as a smooth dynamic

function of spatial angel and is able to handle infinite-dimensional or/and irregu-

lar sparse curves. Therefore, FDA is more appropriate than simply modeling the
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random vectors like the multivariate analysis does (Muller 2005). FDA is also a

quite new area and the first book on FDA was published in 1997 (Ramsay et al.

1997), hence FDA has hardly been used in image analysis area (Epifanio et al.

2011). Currently in the literature, there are only two articles implementing FDA

to the shape analysis area. But they had nothing related to genetic shape mapping.

They just applied the ”fda” library installed in MATLAB or R to the shape data

and had no specified statistical models either. All in all, to our best knowledge,

our work stated in this paper is the first article that related to functional genetic

mapping on shape analysis area.

As early as 1946, karhunen (Karhunen 1946) founded the theoretical ideas

about the stochastic process in Hilbert space. Grenander (Grenander 1950) ex-

panded the Karhunen Loeve Theorem to the functional data and proposed the first

functional regression theory. Rao (Rao 1958) applied functional PCA (principal

components analysis) to the growth curves. Ramsay (Ramsay et al. 1997; 2002)

gave an detailed introduction on the functional PCA and its applications. The

discussions of Ramsay make the functional regression models popular. Hall (Hall

et al. 2006) summarized two different approaches to model the functional data.

If the measurements are recorded on a sense grid of time points, then the data

are typically termed as one curve per subject and the nonparametric approaches

are employed. On the other hand, if the measurements are recorded sparsely and

irregularly varying among subjects, then the time will be added into the model as

a random variables and GEE (generalized estimating equations) are applied. The

importance of smoothing in the estimation of functional PCA has been empha-

sized several times (Yao et al. 2005a; Rice et al. 1991). Lin (Lin et al. 2000)

ignored the correlation structure and provided theoretical evidence in support of

the semi-parametric GEE independence model for longitudinal data.

In our application, we use the AIC (Akaike Information Criterion) to choose the

tuning parameters, such as the number of principal components, and the band-

width (Yao et al. 2005a). Yao mentioned that AIC is more efficient than the

leave-one-curve-out Cross Validation, as far as the computation cost is concerned.
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4.2 Statistical Models

In Chapter 2, through the shape analysis skills, each leaf shape was uniquely

represented by a RCC curve, denoted as Yi1, . . . , YiNi
. Here ij, i = 1, . . . , n, j =

1 . . . , Ni denoting the jth spatial angle on the ith subject. Since the measurements

might vary among different subjects, for instance, irregular or sparse data, we

need to treat spatial angle as a random variable, denoted as tij, i = 1, . . . , n, j =

1, . . . , Ni, lying in the compact interval T . Then for each subject i, the observations

show up in pairs (tij, Yij).

In order to figure out the possible QTLs, forming a total of three genotypes, that

control the shape curve variations, we take advantage of the association between

the observable markers (M) and the latent but unobservable QTLs. The basic

statistical model for QTL mapping is a mixture model, in which each observation

(tij, Yij) is assumed to have arisen from one of the three QTL genotypes, each

genotype (c = 1, 2, 3) being modeled from a density function (the Gaussian Process

is assumed). Therefore, considering the QTL effect associated with the marker M,

we have the model

Yij =
3∑

c=1

ξicXic(tij) + εij, i = 1, . . . , n, j = 1, . . . , Ni, (4.1)

where ξic is an indicator variable describing a possible QTL genotype c for subject i

(c = 1 for AA, 2 for Aa, and 3 for aa) which is defined as 1 if a particular genotype

is observed and 0 otherwise. Xic(t) is a smooth random trajectory of an underlying

stochastic process in L2(T ) for a particular genotype, c = 1, . . . , 3; and εij is the

experimental error and assumed to be independent and identically distributed as

N(0, σ2). We also assume that tij are independent and identically distributed and

X ′
is, t

′
ijs and ε′ijs are totally independent on each other.

For a fixed genotype c, the mean effect of Xic(t) is µc(t) and covariance function

is Gc(s, t) = cov{Xc(s), Xc(t)}, s ∈ T , t ∈ T . Here µc(t) is interpreted as the

genotypic value of the QTL for the phenotypes with genotype c. Throughout this

paper, it is assumed that µc(t) is a smooth function of t, and Gc(s, t) is a positive

definite and bivariate smooth function of s and t, for s, t ∈ T . Then, the path of

Xc(t) is also a smooth function. The “smooth” refers to twice continuously differ-
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entiable. The idea of above model (4.1) is that the observed data are decomposed

into a smooth process that is sampled on a discrete dense grid and additive noise.

Based on model (4.1), the likelihood of Yij can be expressed as

L(∆) =
n∏

i=1

[
2∑

c=0

πc|i fc{Yij|µc(tij),Σc(tij, til)}

]
, (4.2)

where ∆ denotes all the unknown parameters specifying the likelihood, πc|i is

the conditional prorability for the individual i to carry a QTL genotype c, and

fc{Yij|µc(tij),Σc(tij, til)} is the probability density function of the observation Yij

at QTL genotype c, which is assumed to be the Gaussian Process with mean

function µc(t) and covariance function Gc(s, t), s ∈ T , t ∈ T . For a natural

population, the mixture proportions (πc|i) of each QTL genotype c in likelihood

(4.2) are described in terms of allele frequencies at the markers and QTLs and

their linkage disequilibria (LD) (Wang et al. 2004; Wu et al. 2007). The size of

LD reflects the degree to which the markers and QTLs are associated.

4.2.1 Semi-parametric Independent Model

Lin (Lin et al., 2000) proposed a semi-parametric model for longitudinal data us-

ing local polynomial kernel. They stated that the estimator is efficient if ignoring

within subject correlation. In that case, independence is assumed and the covari-

ance matrix will be an identity matrix.

Following Lin’s idea, for a fixed c, the covariance matrix Gc(s, t) will be

Gc(s, t) =
{ G(t, t) + σ2, s = t

0, s ̸= t
(4.3)

Then, substituting this covariance structure (4.3) into model (4.1), we have

Yij =
3∑

c=1

ξic[µc(tij) + ε∗c(tij)], i = 1, . . . , n, j = 1, . . . , Ni, (4.4)
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where ε∗c(tij) are independent with mean 0, and variance σ∗2
c (tij). (4.3) implies

that σ∗2
c (tij) = Gc(t, t) + σ2 if i = j. And if i ̸= j, σ∗2

c (tij) = 0. Therefore, in this

independent model, for fixed QTL genotype c, the density function in likelihood

function (4.2) will be equivalent to

fc{Yij|µc(tij), Gc(sij, tij) + σ2 · I} = fc{Yij|µc(tij), σ
∗2
c (tij)} ∼ N(µc(t), σ

∗2
c (t)).

4.2.2 Nonparametric Functional PCA Model

If counting the correlation structure, based on the above definition, we have

cov{Xc(s), Xc(t)} = Gc(s, t), s ̸= t, s ∈ T , t ∈ T and cov{Xc(t), Xc(t)} =

Gc(t, t) + σ2, t ∈ T . The main idea of functional PCA is to interpret Gc(s, t) as

the kernel of a liner mapping on the space L2(T ) of square-integrable functions on

T , mapping f ∈ L2(T ) to AGf ∈ L2(T ) defined by (Hall et al., 2006)

(AGf)(t) =

∫
T
f(s)Gc(s, t)ds.

An eigenfunction v of the operator AG is a solution of the equation (AGv)(t) =

λv(t), with eigenvalue λ. For the fixed c, we assume that the operators AG have

a sequence of smooth orthonormal eigenfunctions vqc satisfying
∫
T vkc(t)vqc(t)dt =

δkq (here δkq is the Kronecker symbol), with ordered eigenvalues λ1c ≥ λ2c ≥ . . . ≥
0. By Mercer’s Theorem (Indritz 1963), applying a spectral decomposition on the

function Gc, Hilbert-Schmidt kernel, yields

Gc(s, t) =
∞∑
q=1

λqcvqc(s)vqc(t). (4.5)

Since the eigenfunctions vqc’s form a complete orthonormal sequence on L2(T ), by

the generalized Fourier expansion (Karhunen−Loeve Theorem (Karhunen 1946)

or functional principal component expansion) of the stochastic process Xic, we

have

Xic(t) = µc(t) +
∞∑
q=1

ζiqcvqc(t), (4.6)
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where the sum is defined in the sense of L2 convergence, with uniform convergence,

and

ζqc =< Xc − µc, vqc >=

∫
T
(Xc(t)− µc(t))vqc(t)dt (4.7)

are uncorrelated random variables with E(ζqc) = 0, and var(ζqc) = λqc, subject

to the L2 convergence, i.e. Σqλqc < ∞. ζqc are frequently referred to as the qth

functional principal component score or the qth dominant modes of variation effect.

Combining the above equations (4.1) and (4.6), we have

Yij =
3∑

c=1

ξic[µc(tij) +
∞∑
q=1

ζiqcvqc(tij)] + εij, i = 1, . . . , n, j = 1, . . . , Ni. (4.8)

4.2.3 Parameter Estimate

Using the observation data set D = {(tij, Yij), 1 ≤ j ≤ Ni, 1 ≤ i ≤ n}, we will

propose the estimating procedures for all unknown parameters µ̂(t), Ĝc(s, t) and σ̂
2

stated in model (4.1). Applying the smoothing procedures, we are able to obtain

consistent estimates for µc and Gc.

If the estimator of µ̂(t) is obtained, then we can compute a rough estimate of

covariance from all observed pairs of data points for the same subject, (tij, Yij),

and (til, Yil) by

Ḡijlc = (Yij − µ̂c(tij))(Yil − µ̂c(til)).

The local linear smoother estimate Ĝc(s, t) for Gc(s, t) is obtained by minimizing

(Yao et al. 2006; Muller et al. 2006)

n∑
i=1

πc|i
∑

1≤j ̸=l≤Ni

K2(
tij − s

hG
,
til − t

hG
){Ḡijlc − β0 − β11(s− tij)− β12(t− til)}2, (4.9)

with respect to β = (β0, β11, β12). Here K2(·, ·) is the bivariate nonnegative com-

pactly supported kernel function used as weights for locally weighted least squares

smoothing in two dimensions. As a valid kernel function, K2 is symmetric with

zero mean and finite variance and ∥ K2 ∥2=
∫ ∫

K2
2(s, t)dsdt <∞. hG is the band-

width corresponding to the kernel function K2. The minimization with respect to

(4.9) yields Ĝc(s, t) = β̂0(s, t) (Muller et al. 2006), which can be solved in a close
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form

Ĝc(s, t) =

∑n
i=1 πc|i

∑
1≤j ̸=l≤Ni

ḠijlcK2(
tij−s

hG
, til−t

hG
)∑n

i=1 πc|i
∑

1≤j ̸=l≤Ni
K2(

tij−s

hG
, til−t

hG
)

(4.10)

Once the smoothed covariance function Ĝc(s, t) is computed from (4.10), it is then

discretized on a suitable finite grid and represented as a covariance matrix.

The estimate of eigenfunctions are obtained by the corresponding spectral de-

composition on Ĝc(s, t) (Rice et al. 1991). To be more specific, λ̂qc are eigenvalues

of Ĝc, given by ∫
T
Ĝc(s, t)v̂qc(s)ds = λ̂qcv̂qc(t).

And v̂qc are the eigenfunctions corresponding to λ̂qc, satisfying
∫
T v̂

2
qc(t)dt = 1

and
∫
T v̂pcv̂qc(t)dt = 0 if p ̸= q. Here Ĝc also agrees an empirical version of the

expansion (4.5)

Ĝc(s, t) =
∞∑
q=1

I(λ̂qc > 0)λ̂qcv̂qc(s)v̂qc(t) (4.11)

Here the I is an identity function. The positive definiteness of the estimated

covariance matrix Ĝc(s, t) is not always guaranteed and might be a problem in

practical applications. Yao proposed a trick to avoid this (Yao et al. 2003; Muller

2005). Once λ̂qc and v̂qc are obtained, we should check whether or not λ̂qc > 0. If

some λ̂qc is negative, then we drop this negative eigenvalue and its corresponding

eigenfunction, and reconstitutes the estimate from the remaining eigenvalue and

eigenfunction estimates.

After v̂qc and λ̂qc are got, the fitting of individual trajectories requires estima-

tion of functional principal component scores. By the discretization on the equation

(4.7), plugging µ̂c and v̂qc into a Riemann sum approximation of the integral, we

have

ζ̂iqc = ΣNi
j=1(Yij − µ̂(tij))v̂qc(tij)(tij − ti,j−1) (4.12)

setting ti0 = 0 (Muller 2005). In our motivating example, the spatial angle are

recorded densely spaced so approximation this sum in formula (4.12) to the integral

is reasonable. If the data is noisy, sparse or irregular, another approach called

PACE (Principal Analysis through Conditional Expectation) can be referred (Yao

et al. 2005a).
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After above complicated procedures, we are able to get estimators related to

the covariance structure. Now, it is time to estimate the mean. The idea is that we

will estimate the mean from residuals after removing the covariance part. Define

Y ∗
ij = Yij −

3∑
c=1

ξic

∞∑
q=1

ζ̂iqcv̂qc(tij), i = 1, . . . , n, j = 1, . . . , Ni.

Then from model (4.8), it is easy to understand that

Y ∗
ij =

3∑
c=1

ξicµc(tij) + εij, i = 1, . . . , n, j = 1, . . . , Ni. (4.13)

Model (4.4) and (4.13) are quite similar in that they are both Mixture Gaussian

Process with independent covariance matrix. Therefore, we can apply the EM

algorithm here if the dimension is feasible. For the ultra-high dimension case in

our motivating example, we need to simultaneously apply nonparametric kernel

smoothing.

Let W = {ω1, . . . , ωm} ∈ T be m knots at which the mean and variance

functions can be estimated. For any ωl ∈ W , we approximate µc(tij) by µc(ωl),

and σ∗2
c (tij) by σ∗2

c (ωl) for tij located within bandwidth hu neighborhood of ωi.

Then the corresponding local logikelihood function of model (4.13) will be

n∑
i=1

log

[
3∑

c=1

πc|i

Ni∏
j=1

fc{Y ∗
ij |µc(tij), σ

2}

]
K1(

tij − ωl

hu
), (4.14)

Here K1(·) is a nonnegative univariate compactly supported kernel function that

is used as weights for local polynomial smoothing in one dimension satisfying the

basic requirement for a kernel function. The log-likelihood function of model (4.4)

will be very similar if changing Y ∗
ij by Yij and σ2 by σ∗2

c (tij). After a derivation,

we can apply the EM algorithm based on W = {ω1, . . . , ωm} ∈ T . The E step

is designed to calculate the posterior probability with which subject i has QTL

genotype c given its marker and phenotypic information, expressed as

Πc|i =
πc|i
∏Ni

j=1 fc{Y ∗
ij |µc(tij), σ

2}∑3
k=1 πk|i

∏Ni

j=1 fk{Yij|µk(tij), σ2}
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Using the calculated posterior probabilities, the M step is derived to solve the

haplotype frequencies expressed as (Wang et al. 2004)

µc(ωl) =

∑n
i=1Πc|i

∑Ni

j=1 Y
∗
ijK1(

tij−ωl

hu
)∑n

i=1Πc|i
∑Ni

j=1K1(tij − ωl)
,

σ̂2 =
1∑n

i=1Ni

n∑
i=1

3∑
c=1

Πc|i

Ni∑
j=1

[Y ∗
ij − µc(tij)]

2,

σ∗2
c (ωl) =

∑n
i=1Πc|i

∑Ni

j=1[Yij − µc(ωl)]
2K1(

tij−ωl

hu
)∑n

i=1Πc|i
∑Ni

j=1K1(tij − ωl)
,

p̂11 =
1

2N

[
N1∑
i=1

(2Πi1 +Πi2) +

N2∑
i=1

(Πi1 + θΠi2)

]
,

p̂10 =
1

2N

[
N1∑
i=1

(Πi2 + 2Πi3) +

N2∑
i=1

(Πi3 + (1− θ)Πi2)

]
,

p̂01 =
1

2N

[
N3∑
i=1

(2Πi1 +Πi2) +

N2∑
i=1

(Πi1 + (1− θ)Πi2)

]
,

p̂00 =
1

2N

[
N3∑
i=1

(Πi2 + 2Πi1) +

N2∑
i=1

(Πi3 + θΠi2)

]
,

(4.15)

where θ = p11p00/(p11p00 + p10p01).

The last thing need to mention is the selection of the tuning parameter. As we

known, the number of eigenfunctions used to approximate the infinite-dimensional

longitudinal process and the degree of smoothness are simultaneously determining

the performance of the model. And, in practical implementation, the degree of

smoothness is determined by the number and location of knots, and the size of the

bandwidth. One-curve-leave-out CV (Cross Validation) is a very popular method

to select the tuning parameters. Without loss much efficiency, we use AIC instead.

Yao (Yao et al. 2005a) compared two methods and pointed out that AIC is com-

putationally more efficient but the results are similar to those obtained by cross
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validation. Then the optimal K̂ is chosen by minimizing

AIC(K̂) ∝
n∑

i=1

3∑
c=1

πc|i{−
1

2
(Yi−µ̂ic−

K̂∑
q=1

ζ̂iqcv̂iqc)
TΣ−1

i (Yi−µ̂ic−
K̂∑
q=1

ζ̂iqcv̂iqc)}+3∗K̂,

(4.16)

here Yi = (Yi1, . . . , YiNi
)T , µ̂ic = (µ̂c(ti1), . . . , µ̂c(tini

))T , Σi = diag(σ̂2, . . . , σ̂2), and

v̂iqc = (v̂qc(ti1), . . . , v̂qc(tini
)).

Finally, we summarize the estimating procedures in the following:

1) From the marker information, give an initial guess of p̂, q̂, D̂, and π̂c|i, through

which give a rough initial estimate µ̂c(t) and initial ξ̂ic. Then, compute the rough

estimate of the covariance matrix Ḡijlc.

2) Estimate the smooth covariance surface Ĝc(s, t) by two-dimensional local liner

smoothing formula (4.9,4.10).

3) Compute the eigenfunctions v̂qc(t) and eigenvalues λ̂qc of Ĝc(s, t). Only keep

the terms with positive eigenvalues.

4) Use formula (4.12) to compute the functional principal component scores ζ̂iqc

5) Compute Ŷ ∗
ij .

6) Apply EM algorithm (4.15) to update µ̂c(t), ξ̂ic, σ̂
2, p̂11, p̂10, p̂01, p̂00, p̂, q̂, D̂, and

π̂c|i.

Then back to step 1). Repeated until convergence.

4.2.4 Hypothesis Tests

From the model structure description in the beginning of this section, it is easy

to understand that significant QTL effects show evidence in the significant differ-

entiation among three genotype curves, which are described by the three smooth

mean functions (µ1(t), µ2(t), µ3(t)) in model (4.2). Therefore, the significance of a

shape QTL can be tested by using the following hypotheses:

H0 : µj(t) ≡ µ(t), (j = 1, 2, 3)

H1 : At least one of the equalities above does not hold,

where the H0 corresponds to the reduced model, in which the data can be fit by

a single function, and the H1 corresponds to the full model, in which there exist
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three QTL genotype-specific functions to fit these data. The test statistics for the

above hypotheses is calculated as the log-likelihood ratio (LR) of the reduced to

the full model. The degree of freedom is 2 ∗Ni (=720 in our case). An empirical

approach based on permutation tests is used to determine the critical threshold

(Churchill et al. 1994).

In our genetic design, we locate the true but unobservable genes by its associ-

ation with the marker. Therefore, the linkage disequilibrium is our basic assump-

tion. After a significant QTL is found to exist, it is necessary for us to test whether

or not this QTL exists a significant linkage disequilibrium with the given marker

using the hypotheses:

H0 : D = 0 vs. H1 : D ̸= 0,

where the H0 corresponds to the reduced model, in which the marker and QTL are

at the linkage equilibrium (i.e. independence), and the H1 corresponds to the full

model, in which there is a linkage disequilibrium between the marker and QTL.

The test statistics for this hypothesis is χ2 = 2nD2/(p(1−p)q(1−q)), which follows

a χ2 distribution with one degree of freedom (Wu et al. 2007).

4.3 Numerical Implementation

The objects of our analysis is to identify significant QTLs that regulate the varia-

tion of leaf shapes in a natural population of poplar species, Populus szechuanica

var. tibetica, distributed throughout the Tibet Plateau. Applying the advanced

new model in Chapter 4 to the data set described in Chapter 2.4.1 and using the

same genetic design in Chapter 2.3.3 and 2.3.4, in the following, we will describe

the implementation result.

Now, apply both the semi-parametric independent model (4.4) and the non-

parametric functional PCA model (4.8), we get all smooth estimates on the mean

function µc(t), variance function σ
∗2
c (t), and the eigenfunctions extracting the dom-

inant modes of variation vqc(t), for three different genotypes. The optimal number

of principal components chosen by AIC is 6. We also roughly chose the bandwidth

to be 0.08, and chose 50 knots equally spaced to make sure that there are enough
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Figure 4.1. The smooth estimates of the mean function µc(t) (Top Panel) and smooth
estimates of the variance function σ∗2

c (t) (Bottom Panel) of the RCC curves for three
genotypes obtained from semi-parametric independent model (4.4)

neighborhood points within each smoothing window.

In Fig. 4.1, we illustrate the smoothing estimates of µ̂c(t), and σ̂∗2
c obtained

from model (4.4). The mean has an approximate periodic trend because we mea-

sured the observation circularly from 0 to 2π clockwise. But it is not exactly

periodic and the two peaks are not symmetric because the leaf shape is not a

round circle. For all the three genotypes, there are two peaks, with the first one

located near t = π
2
and the second peak located near t = 3π

2
. The variance is clearly

nonstationary, with high variability near t = π
2
and t = 3π

2
, which corresponding

to the tip and bottom area of the leaf blades. Therefore, we claim that the most

significant effect of genes is found to narrowing the leaf shape from the tip and

bottom parts. In Fig. 4.2, we illustrate the smoothing estimates of µ̂c(t) obtained
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Figure 4.2. The smooth estimates µc(t) of the RCC curves for three genotypes obtained
from nonparametric functional PCA model (4.8).

from model (4.8). The two estimated mean functions µ̂c(t) got from two different

models are very similar, except some small tiny details. From both results, it seems

that the genotype AA (in blue color) control leaves with more round shape and

short tips.

Next, consider the eigenfunction decomposition of the smooth estimated covari-

ance function Ĝc(s, t). Six eigenfunctions vqc, q = 1, . . . , 6 shown in Fig. 4.3 are

used to approximate the infinite dimensional process. The first two eigenfunctions

have similar trends as the mean function. We also notice that the first eigenfunc-

tion v̂1c have negative values along intervals (0,
π
4
), (3π

4
, 5π

4
), and (7π

4
, 2π), for all c =

1, 2, 3. It means that a RCC curve Yi with a positive (or negative) functional princi-

pal component score ζ̂i1c along the direction of v̂1c tends to have smaller (or larger)

values in these intervals than the overall population average. In addition, the re-

sults agrees with the estimated variance function in Fig. 4.1. For the genotype

c = 1, these eigenfunctions account for %63.66,%14.36,%11.45,%4.30,%2.67, and

%1.82 (altogether explains %98) of the total variation, respectively. For the geno-

type c = 2, these eigenfunctions account for %68.30,%11.85,%8.02,%5.58,%3.20,

and %1.50 (altogether explains %98) of the total variation, respectively. For the

genotype c = 3, these eigenfunctions account for %43.86,%28.97,%9.10,%7.63,

%3.78, and %3.45 (altogether explains %96) of the total variation, respectively. It
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Figure 4.3. Smooth estimates of the first six eigenfunctions of RCC curves for three
genotypes obtained from model (4.8).

seems that different genotype has different partition on the total variations. The

first eigenfunction of genotype c = 3 (in color green) does not contribute as much

as that of genotype c = 1 (in color blue) or c = 2 (in color red). And the second

eigenfunction of genotype c = 3 has almost double contribution as that of c = 1

and c = 2.



Chapter 5
Discussion and Future Work

This chapter reviews and discusses the contribution of this dissertation in Section

5.1. Then, followed by a discussion in Section 5.2 of future work, including unsolved

goals for future research, and possible new areas of application of the presented

methods.

5.1 Summary of Contributions

Knowledge about the genetic mechanisms for shape variation has far-reaching im-

plications for a range spectrum of scientific disciplines (Ricklefs and Miles 1994;

Klingenberg 2010). Comparing the anatomical and shape feature of organisms has

been a central element of biology for centuries (Bookstein 1978; Klingenberg and

Leamy 2001; Monteiro et al. 2002; Adams et al. 2004). For example, as one of

the most conspicuous aspects of a plant’s phenotype, leaf shape has been used

to provide an intricate link between biological structure and function in changing

environments (Tsukaya 2005). With an increasing interest in studying shape ge-

netics (Weber et al. 1999; Langlade et al. 2005; Mezey et al. 2005; Leamy et al.

2008), we have now developed a computational model for mapping specific quan-

titative trait loci (QTLs) that contribute to shape variation by using leaf shape as

an example of demonstration.

In Chapter 2, we present a new statistical model for mapping shape QTLs in

a segregating population. We did a very accurate shape analysis by using Radius

Centroid Contour to represent a shape, and using the General Procrustes analysis
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to align the shapes to minimize any variation caused by translation, scale, and

rotation. The new model embeds shape analysis within a mixture model framework

in which different types of morphological shape are defined for individual genotypes

at a QTL. The advantage of shape mapping lies in its capacity to quantify subtle

differences in any corner of a morphological shape and detect specific QTLs that

contribute to these differences. Results from both real data and simulation studies

suggest that the model has reasonably high power to detect a QTL that control

shape difference. Even with a modest sample size, the model is able to discern the

effect of a QTL not only in global shape variability (such as elongating, narrowing),

but also in local shape variability (such as tail leaning). We also computing the

ratio of length of petiole over the length of blade in order to compare the traditional

method with our shape analysis method to illustrates the improvements. It turns

out that shape analysis is able to locate much more QTLs than traditional simple

method. Finally, we find that latitude is strongly significant (under significant

level 0.1) in effecting the QTL that control the global shape variability.

Unlike traditional morphological data that concern single measurements of an

object, such as size or weight, shape data that capture the proportions and relative

positions of various parts of the object are viewed as a photograph (Klingenberg,

2010). We incorporate statistical models for extracting shape information from

photographs into a mixture-model framework for QTL mapping. Different aspects

of a shape are specified by orthogonal principal components (PCs). Statistical

parameters that define genotype-specific differences in shape-related PCs are esti-

mated by implementing the EM algorithm. This so-called shape mapping model

enables geneticists to examine the control patterns of specific QTLs on the origin,

properties, and functions of leaf shape.

Our model is, to some extent, similar to the approaches for shape-QTL mapping

by Langlade et al. (2005) and Klingenberg (2003; 2010) in terms of the use of PCA

to reduce data dimension. However, our model is distinct from the latter two types

of shape modeling. First, rather than using a limited number of sparse anatomical

landmarks, i.e., those points, assigned by an expert, that corresponds between

objects of study in a way meaningful in the disciplinary context, our model detects

and capitalizes on mathematical landmarks that are located on an object according

to its specific mathematical or geometrical property. This shape variation can
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be well described by mathematical landmarks. Second, our model expresses a

series of coordinates taken on an object as a radius-centroid-contour (RCC) curve

(i.e., a function of radial angle at the centroid). Thus, more powerful statistical

approaches, such as longitudinal data analysis of RCC, can be incorporated into a

QTL mapping framework, enhancing the biological relevance of shape mapping.

To demonstrate its application, shape mapping was used to map QTLs for leaf

shape with the data collected from a natural population of Populus szechuanica

var. tibetica. This poplar species is naturally distributed in the mountains at

an altitude of 1100-4600 m in the southwestern China (Hamzeh and Dayanandan

2004), providing an ideal model system to study the genetics of leaf morphology and

its relationship with ecological adaptations. Interestingly, we detected a number

of shape QTLs associated with microsatellite markers by shape mapping. From

the PCA of shape data extracted from leaf images, six major PCs were detected

to together explain 88.1% of the variation among leaf shapes. By mapping these

PCs, we identified the QTLs that leaf shape from various morphological aspects.

Of these QTLs, those obtained through the major PC that accounts for almost

a half of the variation determine the overall or global shape variation of leaves,

whereas those through the other minor PCs control the local shape variation. It

is worthwhile to further investigate specific QTLs that determine the ecological

relationships of leaf shape and environmental factors by sampling more poplar

trees from different populations.

Different from Langlade et al.’s (2005) work, shape mapping focuses on mapping

leaf shape by separating it from leaf size through uniformly scaling leaf images.

Although this helps to clarify the genetic control of leaf shape in its own right,

the biological functions of leaf size and shape may be inherently linked (Wu et

al. 1997). Our model can be readily extended to perform simultaneous mapping

of leaf shape and leaf size within a unifying framework, allowing the pleiotropic

test of QTL effects on these two leaf traits. Also, given its critical role in trait

control (Wang et al. 2011), epistasis between different QTLs should be modeled

and tested by implementing multi-QTL genotypes into the mixture likelihood.

With the availability of data collected for large-scale and complex problems in

genetic, ecological and physiological research, our shape mapping model described

will provide a powerful analytical tool to effectively and efficiently test and build
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hypotheses, and extract useful information for scientific inferences and prediction.

In Chapter 3, we present a new statistical model for mapping shape QTLs in a

segregating population. The new model embeds shape analysis within a mixture

model framework in which different types of morphological shape are defined for

individual genotypes at a QTL. The model was solved using a traditional shape

correspondence analysis approach and EM algorithm. The advantage of shape

mapping lies in its capacity to quantify subtle differences in any corner of a mor-

phological shape and detect specific QTLs that contribute to these differences.

Results from simulation studies suggest that the model has reasonably high power

to detect a QTL that control shape difference. Even with a modest sample size,

the model is able to discern the effect of a QTL with a small effect on morpholog-

ical shape. The model can be easily extended to model epistatic interactions on

morphological shape by including more components in the mixture model.

When specific genes that control morphological shape and physiological func-

tion are identified, we are in an excellent position to address fundamental questions

related to growth, development, adaptation, domestication, and human health. In

the past decades, the increasing availability of DNA-based markers has inspired

our hope to map genes or quantitative trait loci (QTLs) for complex phenotypes

(Zeng 1994; Jansen et al. 1994; Xu et al. 1995; Lynch et al. 1998; Broman et al.

2002; Zou et al. 2004; Yi et al. 2005). However, only several studies have been

alert to map so-called shape genes; a few successful examples are the positional

cloning of genes for fruit shape in tomato (Tansley 2004; Frary et al. 2000; Liu

et al. 2002; Xiao et al. 2008). These successes result from the fact that a major

mutation occurs to determine shape difference. For many quantitatively inher-

ited shape traits, genetic mapping will provide a powerful tool for characterizing

QTLs affecting morphological shape. Klingenberg and colleagues (Klingenberg et

al. 2001; Klingenberg 2001) have developed quantitative genetic theory to estimate

the heritability of shape by integrating geometric shape analysis. This theory was

used to map specific QTLs for morphometric shapes in the mouse (Leamy et al.

2008; Klingenberg et al. 2004). Airey et al. (Airey et al. 2006) used Procrustes

superimposition to study shape differences in the cortical area map of inbred mice.

The model will be needed to be modified for integrating developmental events

and their consequences into ontogenetic trajectories of shape. Modern biological
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studies display an increasing interest in understanding shape variation in ontoge-

netic processes that bring about differentiation at an adult stage (Vioarsdottir et

al. 2002; Quillevere et al. 2002). In a longitudinal study of radiographs of the

Denver Growth Study, Bulygina et al. (Bulygina et al. 2006) investigated the

morphological development of individual differences in the anterior neurocranium,

face, and basicranium. The modified model can map the QTLs that cause varia-

tion in shape developmental trajectories. In biology, a cell or organ fulfill certain

biological functions through its shape. Shape is thought to govern the extent and

pattern of energy, matter and signal transduction through the surface and inner

structure of the biological object. For this reason, an understanding of biological

curvature and texture has received a surge of interest in structural biology. The

new model can be extended to map the QTLs that determine a three-dimensional

(3D) shape and texture of a biological object. Vision technologies have been de-

veloped to estimate the 3 D shape of an object from 2 D image data without

information about its texture (albedo), its pose and the illumination environment

(Romdhani et al., 2005; 2006). These technologies include a 3 D morphable model

(3DMM) that represents the 3 D shapes and textures as a linear combination of

shapes and textures principal components, a stochastic Newton optimization algo-

rithm that is the 3DMM to a single facial image, thereby estimating the 3 D shape,

the texture and the imaging conditions, and a multi-features fitting algorithm that

uses not only the pixel intensity but also other image cues such as the edges and

the specular highlights. Statistical models can be developed to map QTLs that

control the 3 D shape and texture of a biological object with image data. A se-

ries of hypothesis tests about the genetic control of topological features (such as

stepness and ridgeness) and texture of a shape will be formulated.

In Chapter 4, a mixture functional principal component analysis model for high

dimensional functional data (cab be sparse or irregular spaced) is proposed. The

functional data are modeled as samples of smooth random trajectories which are

observed under additive noise. The noise include white noise caused by experimen-

tal error and a smooth random trajectories of variance extended from the concept

of a variance function used in non- and semi-parametric regression analysis (Muller

et al. 2006). After quantifying the shapes by RCC curves, we use local polyno-

mial kernel smoothing to model the mean function, with the covariance structure
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modeled by a set of orthogonal eigenfunctions and random coefficients referred as

functional principal component scores (Yao et al. 2003; 2005a; 2006). In addi-

tion to the general benefits of other functional data analysis models, this model

can handle the mixture gaussian process and integrate with QTL mapping. Since

eigenfunctions have been interpreted as the modes of variation of the functional

data, we are able to detect significant genes that regulate the variation of the

shape.

5.2 Future Work

5.2.1 QTL Mapping on the Growth of Shape

Growth is a physiological process that each organism transforms essential nutri-

ents into living protoplasm. Every physiological mechanisms such as body height,

body weight, organs, hormonal, nutritional and so on, underly a growth process.

From molecular biological aspect, every growth procedure consists of two steps:

hypertrophy (increase in cell size), and hyperplasia(increase in cell number). Dur-

ing growth, morphological or physiological characteristics can be expressed as a

function of time t from the embryogenesis to maturity. Fig. 5.1 gives an example

of the growth of human body during fetal and postnatal stages. As you can notice,

the proportion of head and limb to the whole body changes a lot during growth.

The head takes almost 1/2 of the human body for a newborn infant. However,

the head is only 1/8 of the whole body for an adult. The proportion of the legs to

the whole body for an adult is as twice as that of the new born kids. All human

being has the similar growth pattern. However, different individual might growth

in a different speed, different form and proportion of the body shape. Gene is an

important in determining this difference. Fig. 5.2 illustrates the developmental

changes from very young leaves to very old leaves (Wu et al. 2003). As we can

seen from Fig. 5.2, leaf shape has different growth changing style from human.

Cultivated leaf shape and wild leaf shape also has different growth pattern.

By the research in quantitative genetic, growth is controlled by the particular

variants of the genes. Unraveling the genetic control of growth is critical for human

to understand the origin of life and ultimately control growth rule to the trajecto-
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Figure 5.1. Changes in human body proportion from the second fetal month to adult-
hood.

Figure 5.2. Developmental differences in leaf shape between wild Cucurbita argyros-
perma sororia (left) and cultivated Cucurbita argyrosperma argyrosperma (right).

ries beneficial to human. However, growth is a very complex dynamic phenotype

and hence figuring out the relationships between the growth and underlying ge-

netic construction is difficult and challenging. Modern biological studies display an

increasing interest in understanding shape variation in ontogenetic processes that

bring about differentiation at an adult stage (Vioarsdottir et al. 2002; Quillevere

et al. 2002). Nowadays, attempts have been made to unlock the genetic secrets

behind phenotypic differentiation in developmental shape, understand the origin
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and pattern of shape variation from a developmental perspective (Klingenberg et

al. 2001; Klingenberg 2001), and predict the adaptation of morphological shapes

in a range of environmental conditions (Tsukaya 2005). In a longitudinal study of

radiographs of the Denver Growth Study, Bulygina et al. (Bulygina et al. 2006)

investigated the morphological development of individual differences in the ante-

rior neurocranium, face, and basicranium. The modified model can map the QTLs

that cause variation in shape developmental trajectories.

From statistical aspect, longitudinal data is the repeated observations of the

same individuals over a period of time or an interval. As we known, there is correla-

tion exists for the same individual among different time period. Unlike traditional

simple longitudinal data, the ontogenetic shape data is special longitudinal data in

the form of a huge matrix rather than a single number at each time stage. Hence,

the super high dimension for each time stage and the extremely complex covariance

matrix among different time stage will make it extremely challenging to develop a

statistical model for the shape variation in ontogenetic processes.

Our model in previous chapters will need to be modified for integrating de-

velopmental events and their consequences into ontogenetic trajectories of shape.

This is our next work.

5.2.2 QTL Mapping on the 3D Morphological Shape

Due to the rapid development of photography, image data can be saved in 3D

photo. Since we live in a 3D world, 3D image data can describe a shape even

more accurately. For example, 2D image can never reflect the texture, skin, or

movement of the human faces.

Vision technologies have been developed to estimate the 3D shape of an object

from 2D image data without information about its texture (albedo), its pose and

the illumination environment (Quillevere et al. 2002). These technologies include

a 3D morphable model (3DMM) that represents the 3D shapes and textures as

a linear combination of shapes and textures principal components, a stochastic

Newton optimization algorithm that applying the 3DMM to a single facial image,

thereby estimating the 3D shape, the texture and the imaging conditions, and a

multi-features fitting algorithm that uses not only the pixel intensity but also other
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image cues such as the edges and the specular highlights. Statistical models can

be developed to map QTLs that control the 3D shape and texture of a biological

object with image data. Then, our model can also be extended to map the QTLs

that determine a three-dimensional (3D) shape and texture of a biological object.

A series of hypothesis tests about the genetic control of topological features (such

as stepness and ridgeness) and texture of a shape will be formulated.
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