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Abstract

In this dissertation, we are mainly concerned with the Diophantine equation

a

n
=

1

x1

+
1

x2

+ · · ·+ 1

xk

and its number of positive integer solutions Rk(n; a). We begin with the binary
case k = 2. Now the distribution of the function R2(n; a) is well understood. More
precisely, by averaging over n, the first moment and second moment behaviors of
R2(n; a) have been established. For instance, one of our results is∑

n≤N
(n,a)=1

R2(n; a) = NP2(logN ; a) +Oa(N log5N),

where P2(·; a) is a quadratic function whose coefficients depend on a. Furthermore,
we have shown that, after normalisation, R2(n; a) satisfies Gaussian distribution,
which is an analog of the classical theorem of Erdős and Kac,

lim
N→∞

1

N
card

{
n ≤ N :

log R2(n; a)− (log 3) log log n

(log 3)
√

log log n
≤ z

}
=

1√
2π

∫ z

−∞
e−

t2

2 dt.

On the other hand, we change the point of view and study the set of “excep-
tional numbers” that do not possess binary representations. Let Ea(N) denote the
number of n ≤ N such that R2(n; a) = 0. It is established that when a ≥ 3 we
have

Ea(N) ∼ C(a)
N(log logN)2m−1−1

(logN)1−1/2m
,

iii



with m defined in Chapter 4.
The next project would be to study the ternary case k = 3. While the conjec-

ture, by Erdős, Straus and Schinzel, that for fixed a ≥ 4, we have R3(n; a) > 0
when n is sufficiently large, is still wide open, it is rather interesting to know the
asymptotics for the mean value

∑
n≤N R3(n; a).
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Chapter 1
Introduction and overview

1.1 Introduction to Egyptian fractions

A fundamental theme in mathematics is to study integral solutions to Diophantine

equations. In this thesis, we are primarily interested in the following equation

a

n
=

1

x1

+
1

x2

+ · · ·+ 1

xk
(1.1)

which has received extensive attention in the past few decades. Since Egyptians

considered such representations, sums of unit fractions are sometimes called Egyp-

tian fractions. A central question in this area is that what pair of a and n will

entail a solution of the equation (1.1) in positive integers? and moreover how many

are they? A more sensible question is that for a fixed positive integer a what is the

minimum k such that for all sufficiently large n the equation (1.1) is always soluble

in positive integers, namely a
n

can be written as the sum of k unit fractions.

Now if a = 1, then there is nothing to talk about and the minimum k is trivially

1. If a = 2, then all odd n need two unit fractions and hence the minimum k should

be 2. In the case that a = 3, though slightly nontrivial, it is not hard to see that all

prime numbers congruent to 1 mod 3 need three unit fractions. Now what happens

if a ≥ 4? This turns out to be much more interesting and in order to answer this

question the following famous conjecture has been proposed.

Conjecture 1.1 (Erdős-Straus-Schinzel). For any integer a ≥ 4, there exists an
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Figure 1.1. R′3(n; 4) for 1 ≤ n ≤ 54999

Na, such that when n > Na the equation

a

n
=

1

x
+

1

y
+

1

z
(1.2)

is always solvable in positive integers.

The original conjecture for the case that a = 4 is due to Erdős and Straus

in 1948 and the general case is due to Schinzel in 1956. Actually the versions

presented by Erdős and Straus are slightly different. Straus conjectured that 4
n

can be written as the sum of three distinct unit fractions when n > 2. As a

matter of fact, these two versions are equivalent, the proof of which is included in

Appendix A. Though trivial observation reveals that one can always find a desired

representation when a ≤ k, a surprising fact is that this still remains the best we

can do in general! This means that we do not even know how to prove a
n

can be

expressed as the sum of a− 1 unit fractions for large n.

Let Rk(n; a) denote the number of positive integer solutions to the equation

(1.1) and let R′k(n; a) be the corresponding quantity with the condition x1 ≤ x2 ≤
· · · ≤ xk. In general the two functions should behave proportionally when a is

fixed and n grows. The central difficulty of the conjecture lies in the fact that
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both Rk(n; a) and R′k(n; a) oscillate a lot and do not admit any obvious pattern

of growth cf. Figure 1.1. In particular, the figure suggests that R′3(n; 4) grows

like a logarithmic functions of n instead of a polynomial of n. This prevents any

attempts to prove the conjecture by showing the asymptotic formula of R3(n; a)

as n goes to infinity, which simply does not exist. Hence powerful tools like the

Hardy-Littlewood circle method do not apply to this problem.

Remark 1.1. In 1974, William Webb [41] did some calculation to check how large

those Na in the Erdős-Straus-Schinzel conjecture should be. Especially, it is not

clear at all how fast those optimal Na grow as a tends to ∞. The original Erdős-

Straus conjecture simply says that N4 = 1. Webb’s calculation suggests that

N5 = N6 = 1, N7 = 2, N8 = 241. However, it is far from the truth that Na

is increasing. In fact it seems that Na grows quite irregularly as a grows. For

example, Webb’s calculation also suggests that N11 = 37 and N12 = 12241.

Remark 1.2. The numerical verification for the original Erdős-Straus conjecture

(i.e. when a = 4) has been carried out for n ≤ 1014 by Allen Swett in 1999 [34].

1.2 The number of counter examples

Put

Ea,k = {n ∈ N : Rk(n; a) = 0} (1.3)

and the Erdős-Straus-Schinzel conjecture is equivalent to the assertion that Ea,k is

a finite set for any k ≥ 3 and a ≥ 1. Let Ea,k(N) be the number of elements in

Ea,k that does not exceed N . Though the conjecture is out of reach in the current

state of play, one may ask what can be said about the size of Ea,k(N).

1.2.1 The binary case

In this subsection, we are primarily concerned with the number of counter examples

Ea,2(N) in the binary case k = 2. It obviously is true that both E1,2 and E2,2 are

empty. However, things become much more interesting when a ≥ 3.

In 1985, G. Hofmeister and P. Stoll [13] proved that the set Ea,2 has asymptotic
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density 0, and more precisely that

Ea,2(N)�a
N

(logN)1/φ(a)
.

For a = 5 and a ≥ 7 this bound is far from the truth. Their method is based on

the observation that if the equation (4.1) is insoluble, then n is not divisible by any

prime of the form p ≡ −1 (mod a) cf. Lemma 4.3. Thus a simple application of

Selberg’s upper bound sieve gives the stated bound. However when a = 5 or a ≥ 7

the bulk of the n deficient in such prime factors nevertheless have a representation.

We establish the precise asymptotic behavior of Ea,2(N) in Theorem 4.1, which

is the main result of [19].

For fixed a ≥ 3, let 2γ0pγ1

1 p
γ2

2 · · · p
γk
k be the canonical decomposition of a and

define m and δ by

2m|| gcd(δ, p1 − 1, p2 − 1, · · · , pk − 1)

and

δ =

{
0, if γ0 ≤ 1,

2, if γ0 ≥ 2.

Then we have

Ea,2(N) ∼ C(a)
N(log logN)2m−1−1

(logN)1−1/2m
,

where C(a) is a positive constant depending only on a.

No lower bound for Ea(N) has been drawn in [13] or in the literature, since most

of the work in the literature is based on sieve methods, which are usually reluctant

to produce nontrivial lower bounds. Also the bound in [13] is sharp only when

a = 3, 4, 6 and gets worse as a tends to infinity. However, Theorem 4.1 shows that

the worst bound is N√
logN

and that for some a the bound is even as good as N
(logN)1−ε

for some fixed small ε > 0. More precisely, it is not hard to observe that for some

random a ≥ 3 the probability that Ea(N) has order of magnitude N(log logN)2m−1−1

(logN)1−1/2m

is 1
2m

. Instead of sieve methods, we employ analytic methods based on Dirichlet

series and, more importantly, it is necessary to elucidate the underlying group

theoretic structure, which are the novel features of [19].

The proof of this result can be naturally split into two parts, i.e. the algebraic
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part and the analytic part.

The algebraic part is to understand the underlying structure of Ea,2, and we

embark on this in Section 4.2. This involves some interesting combinatorial and

group theoretic arguments, which are the key components of the proof.

On the other hand, the main analytic input of the proof is fairly routine, and

is based on an arithmetical application of a theorem of Delange (cf. Section 4.3).

Delange’s original theorem is stated as Lemma 4.10. In Lemma 4.11 we use stan-

dard methods on Dirichlet L-functions to transform Lemma 4.10 into a desired

form for our application. Results of this kind at least date back to Hardy and

Landau. Indeed, Hardy shows how to give the asymptotic formula for the number

of integers that cannot be represented by the sum of two squares in his book [10].

The generating Dirichlet series essentially involves the square root of the Riemann

zeta-function, and there are techniques going back to Landau for dealing with any

fractional power of the zeta function, namely Dirichlet series with an algebraic

pole. The novel feature of Lemma 4.11 is that it presents a unified version that

deals with both algebraic and logarithmic poles.

On the whole, the key innovation in the proof of Theorem 4.1 is that we have

a full understanding of the group theoretic structure of Ea,2 and the combinatorial

delicacy.

Remark 1.3. After we submitted our paper [19] to arXiv, Christian Elsholtz pointed

out his Ph.D. thesis [5] and some subsequent unfinished work to us, in which he

adumbrates some special cases of Theorem 4.1 but is not able to give a complete

proof of the general case. Even in the case when a is a prime, his attempted proof

is rather incomplete.

1.2.2 The ternary case

In order to understand the exceptional set Ea,3 in the ternary case k = 3, it turns

out that one needs to create a lot of solvable residue classes. This is shown in

Appendix B. Combining these elementary results with sieve methods yields upper

bounds on Ea,3. The quality of the upper bound differs according to different sieve

methods applied.
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M. Nakayama [29] showed in 1940 that

E4,3(N)� N√
logN

.

Later W. Webb [40] improved this to

E4,3(N)� N

(logN)7/4
.

The state of art result is due to R.C. Vaughan [38], who showed in 1970 that

Ea(N)� N

exp(ca(logN)
2
3 )
,

where ca depends at most on a.

The large improvement made by Vaughan is due to the application of the large

sieve to Diophantine problems of this kind for the first time, whilst the previous two

authors use only small sieves. Notice that the large sieve prevails since the number

of solvable residue classes for each prime modulus, as is obtained in Appendix B,

are unbounded.

Remark 1.4. By a finer adjustment to Vaughan’s argument, Elsholtz worked out

admissible values for ca in his diploma thesis [4]. But, I found a serious mistake in

his paper when I was doing my undergraduate thesis. Fortunately, we can fix that

mistake and still obtain weaker admissible values for ca as follows:

ca =
3

4(2e2a)
1
3

.

In particular, when a = 4, c4 = 0.1925 is admissible.

The current state of play remains unsatisfactory in various aspects. The large

sieve is presupposed to deal with the worst case, but our case might not be that bad;

The large sieve only takes advantage of those residue classes with prime modulus,

but we have more soluble residue classes with composite modulus; The large sieve

only uses the prime modulus up to
√
N , while we have a bunch of primes greater

than that.

It is not clear how to adjust Vaughan’s method to prove Ea(N) � N1−ε for
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some ε > 0. The number of solvable residue classes obtained in Proposition B.8 is

almost the best we can do, in the sense that it may subject to small improvement

that is not good enough to improve the order of the magnitude of the bound but

can just improve the constant ca. It seems to me that as long as we insist on relying

on the large sieve, it is very hard to improve Vaughan’s result. On the other hand,

if one seek to get new results along this line, one may want to devise a special sieve

which is particularly suitable to our problem. Ideally that sieve should make full

use of the information which we have, i.e. Proposition B.5, but which the large

sieve disregards largely. Unfortunately, such a sieve simply does not exist within

our current state of knowledge.

We have noted that those soluble residue classes will never cover square numbers

(cf. Proposition B.7). Bounds like Ea(N)�
√
N are the best that regular sieving

process can produce. But the Erdős-Straus-Schinzel conjecture says that Ea(N)

is bounded. This reminds us that the ideal approach for this problem is to prove

that all prime numbers are covered by the solvable residue classes produced in

Proposition B.5. However, hardly anything is known on infinite covering congruent

systems for integers, let alone such systems for the primes.

Our knowledge on the exceptional sets Ea,k(N) for the cases k > 3 is similar

to that of the case k = 3. Following Vaughan’s argument, it is proved by C. Viola

[39] that

Ea,k(N)� N

exp(ca(logN)1− 1
k−1 )

,

for some constant ca that depends on a. Z. Shan [32] improved this to

Ea,k(N)� N

exp
(
ca(logN)1− 1

k

) .
Finally, by looking into the parametric solutions closely and producing more solv-

able residue classes, C. Elsholtz was able to show

Ea,k(N)� N

exp
(
ca(logN)

1− 1

2k−1−1

) .
Notice that none of the above results improves Vaughan’s original bound when
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k = 3.

1.3 Averages and distributions

It is a convention in Mathematics that if one cannot understand well an individual

object, one may simply consider a family of such objects and try to investigate the

average behavior of certain properties and even the distribution of these properties

among the family. Not surprisingly we will follow this convention.

1.3.1 The binary case

We have proved the following mean value theorem for R2(n; a), cf. Theorem 2.1,

which is part of the results in [17].

∑
n≤N

(n,a)=1

R2(n; a) = NP2(logN ; a) +Oa(
√
N log5N)

where P2(·; a) is a quadratic function whose coefficients depend on a.

One major idea in the proof of Theorem 2.1 is to express R2(n; a) as coefficients

of a linear combination of Dirichlet L-functions and therefore powerful analytic

methods can be launched. Applying this idea, I have also proved a similar mean

value result for the Diophantine equation axy − x− y = n where a is fixed and n

varies. See Chapter 5 for more details and this result is also published in [14].

On the other hand, by further averaging over a, we have shown by a combination

of elementary and analytic methods that

∑
a

∑
n≤N

(n,a)=1

R2(n; a) =
1

4
CN(logN)3 +O

(
N(logN)2

)
,

where C =
∏
p

(
1− 3p−2 + 2p−3

)
.

This is included as Theorem 2.2 which improves upon an earlier result by Croot,

Dobbs, Friedlander, Hetzel and Pappalardi [2] in which the weaker error

O(N(logN)3)/ log logN)
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is obtained.

Moreover, in Chapter 3 (cf. [18]), we are able to establish the second mo-

ment estimate for R2(n; a), from which we have deduced that after normalization,

R2(n; a) admits a Gaussian distribution, which is an analog of the classical theorem

of Erdős and Kac. More precisely, we show:

For fixed positive integer a, we have, for every N ∈ N with N ≥ 2,

∑
n≤N

(n,a)=1

∣∣∣∣∣R2(n; a)− 1

φ(a)

∑
χ mod a
χ2=χ

0

χ̄(−n)
∑
u|n2

χ(u)

∣∣∣∣∣
2

�a N log2N,

where �a indicates that the implicit constant depends at most on a, and where

χ
0

denotes the principal character modulo a.

From this we readily deduce that when a is fixed, the normal order of logR2(n; a)

as a function of n is (log 3) log log n. With a bit more work, we establish the full

distribution of R2(n; a).

For fixed positive integer a, we have

lim
N→∞

1

N
card

{
n ≤ N :

log R2(n; a)− (log 3) log log n

(log 3)
√

log log n
≤ z

}
=

1√
2π

∫ z

−∞
e−

t2

2 dt.

From here we see that logR2(n; a) admits the normal distribution with mean

log 3 log log n and standard deviation log 3
√

log log n.

Lastly for completeness, we also obtain the regular second moment

∑
n≤N

(n,a)=1

R(n; a)2 = NP8(logN ; a) +Oa(N
35/54+ε)

where P8(· ; a) is a degree 8 polynomial with coefficients depending on a, and its

leading coefficient is

1

8!a2

∏
p|a

(
1− 1

p

)7∏
p-a

(
1 +

6

p
+

1

p2

)(
1− 1

p

)6

.

The proof of this result utilizes the twelfth moment estimate of the Dirichlet L-

functions on the critical line ([24] and [25]).
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1.3.2 The ternary case

The ternary case, k = 3, is much harder and resistant to attacks. Recently Chris-

tian Elsholtz and Terrence Tao [7] showed among other things that

N(logN)2 �
∑
p≤N

R3(p; a)�a N(logN)2 log logN,

where the summation runs over prime numbers. The double logarithmic factor

should not be there, though they cannot remove it due to some technical difficulties

in applying the Brun-Titchmarsh inequality.

I believe that a more interesting and more essential question is to estimate the

general mean value of R3(n; a), and I have conjectured that

Conjecture 1.2.

∑
n≤N

R3(n; a) = CaN(logN)9 + o(N(logN)9)

Even the stronger statement is very likely to be true

Conjecture 1.3.

∑
n≤N

R3(n; a) = NP9(logN ; a) +Oa(N
1−δ),

where δ > 0 and P9(x; a) is a polynomial of degree 9 in x whose coefficients depend

on a.

For the general case, I have also raised similar conjectures with an explicit

conjectural exponent of logN . The problems here are closely related with some

corresponding problems about Manin’s conjecture. More precisely, Roger Heath-

Brown [12] studied the density of rational points on the projective variety

1

x1

+
1

x2

+
1

x3

+
1

x4

= 0.

Motivated by his work, in an ongoing project [15] I am able to show the lower
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bound ∑
n≤N

R3(n; a)�a N(logN)9

which is of the correct order of magnitude as conjectured above. The exponent

9 should be compared with the exponent 6 that appears in [12]. In spite of the

similarities between these problems, the problem I am considering here has a dif-

ferent nature from the one in [12], in that Heath-Brown deals with the case that all

the variables xi are bounded by N , while my problem restricts only one variable.

Heath-Brown reduces the lower bound of his problem to the counting of the num-

ber of lattice points in some bounded regular region, however, after working out

the details for my problem, it turns out that I need to count the number of lattice

points in some hyperbolic region with cusps and to express that quantity explicitly

in terms of the parameters appearing in the problem in order for further averaging

over them, and this brings up some substantial difficulties. This also explains the

difference in the exponents of logarithmic powers in the two problems.

Unlike that in [12], the upper bound here seems genuinely harder and will be

a future project.



Chapter 2
Mean Value Theorems for Binary

Egyptian Fractions I

2.1 Introduction

The solubility of the Diophantine equation

a

n
=

1

x1

+
1

x2

+ · · ·+ 1

xk
, (2.1)

in positive integers x1, x2, . . . , xk has a long history. See, for example, Guy [8] for

a detailed survey on this topic and a more extensive bibliography. When k ≥ 3 it

is still an open question as to whether the equation is always soluble provided that

n > n0(a, k). When k = 3 the strongest result in this direction is Vaughan [37], [38]

(see also Shan [32], Viola [39] and Elsholtz [6] for general k). In this chapter we are

concerned with the case k = 2. In that case it is known that for any given a > 2

there are infinitely many n for which the equation is insoluble. For example, the

criterion enunciated in the first paragraph of Section 2.3 shows that no n with all

its prime factors p of the form p ≡ 1 (mod a) has such a representation. However

the number

R(n; a) = card

{
(x, y) ∈ N2 :

a

n
=

1

x
+

1

y

}
(2.2)
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of representations has an interesting and complicated multiplicative structure and

can be studied in a number of ways. Here we consider various averages

S(N ; a) =
∑
n≤N

(n,a)=1

R(n; a), (2.3)

T (N ; a) =
∑
n≤N

R(n; a)

and

U(N) =
∑
a

S(N ; a).

Croot et al. [2] have shown that

U(N) =
1

4
CN(logN)3 +O

(
N(logN)3

log logN

)
,

and in Theorem 2.2 below we obtain a significant strengthening. However, in the

main result of this chapter, Theorem 2.1, below, we show that it is possible to

obtain a strong asymptotic formula without the necessity of averaging over a.

Theorem 2.1.

S(N ; a) =
3

π2a

(∏
p|a

p− 1

p+ 1

)
N
(
(logN)2 + c1(a) logN + c0(a)

)
+ ∆(N ; a)

where

c1(a) = 6γ − 4
ζ ′(2)

ζ(2)
− 2 +

∑
p|a

6p+ 2

p2 − 1
log p

and

c0(a) = −2(log a)2 − 4(log a)
∑
p|a

log p

p− 1
+O(aφ(a)−1 log a),

and

∆(N ; a)� N
1
2 (log(N))5 a

φ(a)

∏
p|a

(
1− p−1/2

)−1

uniformly for N ≥ 4 and a ∈ N.



14

Since

T (N ; a) =
∑
d|a

S

(
N

d
;
a

d

)
it is a straightforward exercise to obtain the corresponding asymptotic expansion

for T .

The main novelty is the employment, for the first time in this area, of complex

analytic techniques from multiplicative number theory. One may speculate on

the utility of assuming the Generalised Riemann Hypothesis (GRH) in possibly

improving the error term here significantly. This is unlikely with the proof in its

present form, since the the main theoretical input from Dirichlet L–functions is via

Lemma 2.7 below and the bounds there are at least as strong as can be established

on GRH apart possibly from the power of the logarithm. However, in view of the

aforementioned criterion in Section 2.2, the underlying problem has some affinity

with the generalised divisor problem in the case of d3(n) and it is conceivable that,

by pursuing methods related to that problem, an error bound of the form

O(N θ)

can be obtained with
1

3
< θ <

1

2
.

Theorem 2.2. We have

U(N) =
1

4
CN(logN)3 +O

(
N(logN)2

)
,

where C =
∏
p

(
1− 3p−2 + 2p−3

)
.

Remark 2.1. In the Zentralblatt review of [2], the reviewer adumbrates a proof of

a result somewhat weaker than Theorem 2.2.

This chapter is organized as follows. In Section 2.2, we state several lemmas

which are needed in the proof of Theorem 2.1. In Section 2.3, we present an

analytic proof of Theorem 2.1 based on Dirichlet L-functions. And in Section 2.4,

an essentially elementary proof of Theorem 2.2 is given. Finally, in Section 2.5, we

list some open questions in this area.
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2.2 Preliminary Lemmas

We state several lemmas before embarking on the proof of Theorem 2.1. The

content of Lemma 2.3 can be found, for example, in Corollary 1.17 and Theorem 6.7

of Montgomery and Vaughan [28], and Lemma 2.4 can be deduced from Theorem

4.15 of Titchmarsh [36] with x = y = (|t|/2π)1/2.

Lemma 2.3. When σ ≥ 1 and |t| ≥ 2, we have

1

log |t|
� ζ(σ + it)� log |t|.

Lemma 2.4. When 0 ≤ σ ≤ 1 and |t| ≥ 2, we have

ζ(σ + it)� |t|
1−σ

2 log(|t|).

Lemma 2.5. Let χ be a non-principle character modulo a and s = σ + it and

assume that t ∈ R. Then

L(s, χ)� log(a(2 + |t|)), when σ ≥ 1

and

L(s, χ)� (a|t|)
1−σ

2
+ε , when

1

2
≤ σ ≤ 1.

Proof. The first part follows from Lemma 10.15 of Montgomery and Vaughan [28].

Now suppose that χ is primitive. Then by Corollary 10.10 of Montgomery and

Vaughan [28],

L(s, χ)� (a|t|)
1
2
−σ log(a(2 + |t|))

when σ ≤ 0. Then by the convexity principle for Dirichlet series, for example as

described in Titchmarsh [36] (cf. Exercise 10.1.19 of Montgomery and Vaughan

[28]),

L(s, χ)� (a|t|)
1−σ

2
+ε

when 0 ≤ σ ≤ 1. The proof is completed by observing that if 1
2
≤ σ ≤ 1 and χ
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modulo a is induced by the primitive character χ∗ with conductor q, then

L(s, χ) = L(s, χ∗)
∏
p|a
p-q

(1− χ∗(p)p−s)� |L(s, χ∗)|2ω(a).

Lemma 2.6. Let T ≥ 2, then we have∫ T

−T
|ζ(1

2
+ it)|4dt ∼ 1

π2T log4 T

and ∑∗

χ
mod a

∫ T

−T
|L(1

2
+ it, χ)|4dt� φ(a)T (log(aT ))4,

where
∑∗

indicates that the sum is over the primitive characters modulo a.

The first formula here is due to Ingham [20] and the second is Theorem 10.1 of

Montgomery [27].

Lemma 2.7. Let T ≥ 2, then

∑
χ

mod a

∫ T

−T
|L(1

2
+ it, χ)|4dt� aT (log(aT ))4,

Proof. Suppose that the character χ modulo a is induced by the primitive character

χ∗ with conductor q. Then the L–function in the integrand in modulus is

|L(1
2

+ it, χ∗)
∏

p|a,p-q(1− χ∗(p)p−1/2−it)| ≤ |L(1
2

+ it, χ∗)|
∏

p|a/q(1 + p−1/2).

Hence by the previous lemma

∑
χ

mod a

∫ T

−T
|L(1

2
+ it, χ)|4dt� T (log(aT ))4

∑
q|a φ(q)

∏
p|a/q(1 + p−1/2)4.
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The sum here is

∑
q|a

φ(q)
∏
p|a/q

(
1 + p−

1
2

)4

=
∏
pk‖a

((
1 + p−

1
2

)4

+
k−1∑
h=1

φ(ph)
(

1 + p−
1
2

)4

+ φ(pk)

)
= a

∏
p|a

(
1 + p−1

(
(1 + p−1/2)4 − 1

))
� a.

2.3 Proof of Theorem 2.1

Without loss of generality, we can assume a ≤ 2N , since R(n; a) = 0 whenever

a > 2n. Now we rewrite the equation a
n

= 1
x

+ 1
y

in the form

(ax− n)(ay − n) = n2.

After the change of variables u = ax − n and v = ay − n, it follows that R(n; a)

is the number of ordered pairs of natural numbers u, v such that uv = n2 and

u ≡ v ≡ −n (mod a).

Under the assumption that (n, a) = 1, R(n; a) can be further reduced to count-

ing the number of divisors u of n2 with u ≡ −n (mod a). Now the residue class

u ≡ −n (mod a) is readily isolated via the orthogonality of the Dirichlet characters

χ modulo a. Thus we have

S(N ; a) =
∑
n≤N

(n,a)=1

R(n; a)

=
∑
n≤N

(n,a)=1

1

φ(a)

∑
χ

mod a

χ̄(−n)
∑
u|n2

χ(u)

=
1

φ(a)

∑
χ

mod a

χ̄(−1)
∑
n≤N

χ̄(n)
∑
u|n2

χ(u),

where the condition (n, a) = 1 is taken care of by the character χ̄(n).
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Let

an(χ) = χ̄(n)
∑
u|n2

χ(u). (2.4)

Then we have

S(N ; a) =
1

φ(a)

∑
χ

mod a

χ̄(−1)
∑
n≤N

an(χ).

We analyze this expression through the properties of the Dirichlet series

fχ(s) =
∞∑
n=1

an(χ)

ns
.

The condition u|n2 can be rewritten uniquely as u = n1n
2
2 and n = n1n2n3 with

n1 square-free. Hence, for σ > 1 we have

fχ(s) =
∞∑
n=1

χ̄(n)

ns

∑
u|n2

χ(u)

=
∞∑

n1,n2,n3=1

µ(n1)2 χ̄(n1n2n3)χ(n1n
2
2)

ns1n
s
2n

s
3

=
∞∑

n1=1

µ(n1)2χ0(n1)

ns1

∞∑
n2=1

χ(n2)

ns2

∞∑
n3=1

χ̄(n3)

ns3

and so

fχ(s) =
L(s, χ0)

L(2s, χ0)
L(s, χ)L(s, χ̄), (2.5)

where χ0 is the principal character modulo a, and this affords an analytic contin-

uation of fχ to the whole of C.

By a quantitative version of Perron’s formula, as in Theorem 5.2 of Montgomery

and Vaughan [28] for example, we obtain

∑′

n≤N

an(χ) =
1

2πi

∫ σ0+iT

σ0−iT
fχ(s)

N s

s
ds+R(χ),
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where σ0 > 1 and

R(χ)�
∑

N
2
<n<2N
n6=N

|an(χ)|min

(
1,

N

T |n−N |

)
+

4σ0 +Nσ0

T

∞∑
n=1

|an(χ)|
nσ0

.

Here
∑′

means that when N is an integer, the term aN(χ) is counted with weight
1
2
.

Let σ0 = 1 + 1
logN

. By (2.4) we have |an(χ)| ≤ d(n2). Thus

∞∑
n=1

|an(χ)|
nσ0

� ζ(σ0)3 � (logN)3

and so R(χ)�ε N
1+εT−1, for any ε > 0. Hence

∑
n≤N

an(χ) =
1

2πi

∫ σ0+iT

σ0−iT
fχ(s)

N s

s
ds+O

((
N

T
+ 1

)
N ε

)
.

The error term here is

� N ε

provided that

T ≥ N.

The integrand is a meromorphic function in the complex plane and is analytic for

all s with <s ≥ 1
2

except for a pole of finite order at s = 1. Suppose that T ≥ 4.

By the residue theorem

1

2πi

∫ σ0+iT

σ0−iT
fχ(s)

N s

s
ds = Ress=1

(
fχ(s)

N s

s

)
+

1

2πi

(∫ 1
2
−iT

σ0−iT
+

∫ 1
2

+iT

1
2
−iT

+

∫ σ0+iT

1
2

+iT

)
L(s, χ0)L(s, χ)L(s, χ̄)N s

L(2s, χ0)s
ds

We have L(s, χ0) = ζ(s)
∏

p|a(1 − p−s). Hence, by Lemmas 1, 2 and 3 and

the fact that
∏

p|a(1 − p−s) � log log a when σ ≥ 1, the contribution from the
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horizontal paths is

� (log aT )2(log T )(log log a))NT−1 + T−1(aT )ε
∫ 1

1/2

(aT )
3(1−σ)

2 Nσdσ

� T−1(aT )εN + T−1(aT )3/4+εN1/2

and provided that a ≤ 2N and T ≥ N10 this is

� N−1.

On the other hand, by Lemma 1 the contribution from the vertical path on the

right is bounded by

N
1
2

∏
p|a

(1− p−
1
2 )−1

 (log T )
∑
2k≤T

2−kI(k, χ)

where

I(k, χ) =

∫ 2k+1

−2k+1

|ζ(1
2

+ it)L(1
2

+ it, χ)L(1
2

+ it, χ̄)|dt.

By Lemmas 4 and 5 and Hölder’s inequality

∑
χ

mod a

1

2πi

∫ 1
2

+iT

1
2
−iT

L(s, χ0)L(s, χ)L(s, χ̄)N s

L(2s, χ0)s
ds

� N
1
2

∏
p|a

(1− p−
1
2 )−1

 (log T )
∑
2k≤T

a(k + log a)3

� N
1
2

∏
p|a

(1− p−
1
2 )−1

 a(logN)5

on taking

T = N10.

Thus we have shown that

S(N ; a) =
1

φ(a)

∑
χ

mod a

χ̄(−1)Ress=1

(
fχ(s)

N s

s

)
+ ∆(N ; a)



21

where

∆(N ; a)� N
1
2 (logN)5 a

φ(a)

∏
p|a

(
1− p−1/2

)−1

It remains to compute the residue at s = 1.

By (2.5) there are naturally two cases, namely, χ 6= χ0 and χ = χ0. When

χ 6= χ0 the integrand has a simple pole at s = 1 and the residue is

Ress=1

(
L(s, χ0)L(s, χ)L(s, χ̄)N s

L(2s, χ0)s

)
=

6N

π2

∏
p|a

p

p+ 1

 |L(1, χ)|2.

It is useful to have some understanding of the behavior of

1

φ(a)

∑
χ 6=χ0
mod a

χ̄(−1)|L(1, χ)|2.

Let x = a3. Then for non-principal characters χ modulo a, by Abel summation

L(1, χ) =
∑
n≤x

χ(n)

n
+O(a−2).

Hence

1

φ(a)

∑
χ 6=χ0
mod a

χ̄(−1)|L(1, χ)|2

=
1

φ(a)

∑
χ 6=χ0
mod a

χ̄(−1)

∣∣∣∣∣∑
n≤x

χ(n)

n

∣∣∣∣∣
2

+O
(
a−1
)
.

The main term on the right is

1

φ(a)

∑
χ

mod a

χ̄(−1)

∣∣∣∣∣∑
n≤x

χ(n)

n

∣∣∣∣∣
2

− 1

φ(a)

( ∑
n≤x

(n,a)=1

1

n

)2

.
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We have

∑
n≤x

(n,a)=1

1

n
=
∑
m|a

µ(m)

m

∑
n≤x/m

1

n

=
∑
m|a

µ(m)

m
(log(x/m) + γ +O(m/x))

=
φ(a)

a

(
log x+ γ +

∑
p|a

log p

p− 1

)
+O(d(a)/x).

Hence the second term above is

−φ(a)

a2

(
log x+ γ +

∑
p|a

log p

p− 1

)2

+O(1/a).

The first term above is ∑
m,n≤x

(mn,a)=1
a|m+n

1

mn
.

The terms with m = n contribute

∑
m≤x

(m,a)=1
a|2m

1

m2
� a−2

and this can be collected in the error term. The remaining terms are collected

together so that m+ n = ak, m 6= n and k ≤ 2x
a

. If necessary by interchanging m

and n we can suppose that m < n. Thus the above is

∑
1≤k≤2x/a

∑
m≤x

0<ak−m≤x
m≤ak/2
(m,a)=1

2

m(ak −m)
.



23

On interchanging the order of summation this becomes

∑
m≤x

(m,a)=1

2

m

∑
2m/a<k≤(x+m)/a

1

ak −m
.

We now divide the sum over m according as m > a/2 or m ≤ a/2. In the former

case the inner sum can be written as the Stieltjes integral∫ (x+m)/a+

(2m/a)+

dbαc
aα−m

=
b(x+m)/ac

x
− b2m/ac

m
+

∫ (x+m)/a

2m/a

abαc
(aα−m)2

dα.

Since m ≤ x the first term is � 1/a, and the second term is 0 unless m ≥ a
2
, in

which case it is � 1/a. Thus these terms contribute � (log a)/a in total. The

integral here is∫ (x+m)/a

2m/a

aα−m− a(α− bαc) +m

(aα−m)2
dα = a−1 log(x/m) +O(1/a).

Thus the contribution to our sum is

a−1
∑

a/2<m≤x
(m,a)=1

2

m
log(x/m) +O

(
(log a)a−1

)
.

When m ≤ a/2 the sum over k becomes instead∫ (x+m)/a+

1−

dbαc
aα−m

=
b(x+m)/ac

x
+

∫ (x+m)/a

1

abαc
(aα−m)2

dα.

The first term is � 1/a and the integral is∫ (x+m)/a

1

aα−m− a(α− bαc) +m

(aα−m)2
dα = a−1 log(x/(a−m)) +O(1/a).

Thus we have shown that

1

φ(a)

∑
χ 6=χ0
mod a

χ̄(−1)|L(1, χ)|2 = a−1
∑
m≤x

(m,a)=1

2
m

log x
m
− a−1

∑
m≤a/2

(m,a)=1

2
m

log a−m
m
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− φ(a)

a2

(
log x+ γ +

∑
p|a

log p

p− 1

)2

+O((log a)a−1).

The first sum on the right is

2a−1
∑
k|a

µ(k)

k

∑
n≤x/k

n−1 log(x/kn)

and this is readily seen to be

a−1
∑
k|a

µ(k)

k

(
(log(x/k))2 + 2γ log(x/k) + C

)
+O(d(a)/(ax))

for a suitable constant C. Here the main term is

φ(a)

a2

((
log x+ γ +

∑
p|a

log p

p− 1

)2

+O
(
(log log(3a))2

))
.

Hence, we have

1

φ(a)

∑
χ 6=χ0
mod a

χ̄(−1)|L(1, χ)|2 = −a−1
∑
m≤a/2

(m,a)=1

2
m

log a−m
m

+O(a−1 log 2a).

The sum over m is

∑
m≤a/2

(m,a)=1

2
m

log a/2
m

+O(log 2a)

=
φ(a)

a

(
(log(a/2))2 − 2(log(a/2)

∑
p|a

log p

p− 1

)
+O(log 2a).

When χ = χ0, we have

fχ(s) =
L3(s, χ0)

L(2s, χ0)

=
ζ3(s)

∏
p|a

(
1− 1

ps

)3

ζ(2s)
∏

p|a

(
1− 1

p2s

)
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=
ζ3(s)

ζ(2s)

∏
p|a

(ps − 1)2

ps(ps + 1)
.

Let

F (s) =
(
(s− 1)ζ(s)

)3
ζ(2s)−1s−1,

G(s) =
∏
p|a

(ps − 1)2

ps(ps + 1)

and

H(s) = F (s)G(s).

Then H has a removable singularity at s = 1 and we are concerned with the residue

of

(s− 1)−3N sH(s)

at s = 1. This is

1

2
N(logN)2H(1) +N(logN)H ′(1) +

1

2
NH ′′(1)

which it is convenient to rewrite as

NH(1)
(

1
2
(logN)2 + (logN)H

′(1)
H(1)

+ H′′(1)
2H(1)

)
.

Now
H ′(1)

H(1)
=
F ′(1)

F (1)
+
G′(1)

G(1)

and
H ′′(1)

H(1)
=
F ′′(1)

F (1)
+ 2

F ′(1)G′(1)

F (1)G(1)
+
G′′(1)

G(1)

and F ′(1)/F (1) and F ′′(1)/F (1) can be evaluated in terms of Euler’s and Stieltje’s

constants and ζ(2) and its derivatives. In particular

F ′(1)
F (1)

= 3γ − 2 ζ
′(2)
ζ(2)
− 1.

The function G is more interesting. We have

G′(1)
G(1)

=
∑

p|a
3p+1
(p2−1

log p
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and
G′′(1)
G(1)

=
(
G′(1)
G(1)

)2

−
∑

p|a
3p3+2p2+3p

(p2−1)2 (log p)2.

Thus
G′(1)
G(1)
� log log(3a)

and
G′′(1)
G(1)

� (log log(3a))2.

�

2.4 Proof of Theorem 2.2

By the same argument in the beginning of Section 2.3, R(n; a) can be reduced

to counting the number of divisors u of n2 with u + n ≡ 0 (mod a). Now the

condition u|n2 can be rewritten uniquely as u = n1n
2
2 and n = n1n2n3 with n1

being square-free. Thus we have

R(n; a) =
∑
u|n2

a|u+n

1

=
∑

n1n2n3=n
a|n2+n3

µ2(n1)

and hence

U(N) =
∑
n1≤N

µ2(n1)

 ∑
n2n3≤N/n1

∑
a|n2+n3

(a,n1n2n3)=1

1

 .

The inner double sum is symmetric in n2 and n3, so writing M = N/n1 and

using Dirichlet’s method of the hyperbola it is

∑
n2≤
√
M

∑
a≤n2+M/n2

(a,n1n2)=1

∑
n3≤M/n2

n3≡−n2 (mod a)

2−
∑

n2≤
√
M

∑
a≤n2+

√
M

(a,n1n2)=1

∑
n3≤
√
M

n3≡−n2 (mod a)

1.

The second triple sum here is �
∑

n2≤
√
M

∑
a≤n2+

√
M

√
M
a
� M logM , leading to
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a contribution � N(logN)2 in the original sum. The first triple sum is

∑
n2≤
√
M

∑
a≤n2+M/n2

(a,n1n2)=1

2M

an2

with an error � M logM . The a in the range (M/n2, n2 + M/n2] are of order of

magnitude M/n2 and there are at most n2 of them, so the total contribution from

this part of the sum is�M , and the contribution from this to the original sum is

� N logN . Thus we are left with

∑
n2≤
√
M

∑
a≤M/n2

(a,n1n2)=1

2M

an2

.

Now using the Möbius function to pick out the condition (a, n1n2) = 1, the

inner sum over a can be written as

∑
k|n1n2

µ(k)

k

∑
b≤M/(n2k)

2M

bn2

.

Put k1 = (k, n1), k2 = k/k1, n′1 = n1/k1, so that k2|n2, (k2, n
′
1) = 1, and

let n′2 = n2/k2. Observe also that for µ(n1) = µ(n′1k1) = µ(n′1)µ(k1) 6= 0 it is

necessary that (n′1, k1) = 1. Thus substituting in the original sum gives

∑
k1≤N

∑
k2≤N

µ(k1k2)

k2
1k

2
2

∑
n′1≤N/k1

(n′1,k1k2)=1

µ2(n′1)

n′1

∑
n′2≤k

−1
2

√
N/(n′1k1)

∑
b≤N/(n′1n′2k2

1k
2
2)

2N

bn′2

and there are various implications for a non-zero contribution. Thus

n′1n
′
2k

2
1k

2
2 ≤ N,

and this is a more stringent condition on n′2 than n′2 ≤ k−1
2

√
N/(n′1k1) when

n′2 ≤ k1. Also n′1 ≤ N/(k2
1k

2
2) and k1k2 ≤

√
N . The sum over b is

log
(
N/(n′1n

′
2k

2
1k

2
2)
)

+O(1).
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Consider the error term here. The sum over n′1 and n′2 contributes

� N(logN)2.

Thus one is left to consider

∑
k1,k2

k1k2≤
√
N

µ(k1k2)

k2
1k

2
2

∑
n′1≤N/(k2

1k
2
2)

(n′1,k2)=1

µ2(n′1)

n′1

∑
n′2≤k

−1
2

√
N/(n′1k1)

n′2≤N/(n′1k2
1k

2
2)

2N

n′2
log

(
N

n′1n
′
2k

2
1k

2
2

)
.

The n′2 with n′22 k
2
2n
′
1k1 ≤ N < n′2n

′
1k

3
1k

2
2 satisfy n′2 ≤ k1 so they would contribute

� N(log k1) logN to the innermost sum and hence give a total contribution of

� N(logN)2. Thus we can ignore the condition n′2 ≤ N/(n′1k
2
1k

2
2).

Now the the summation over n′2 can be performed and this gives

2N

(
1

2
L2

1 + L1L2

)
where

L1 = log

√
N

k2

√
n′1k1

and

L2 = log

√
N

k1k2

√
n′1k1

with an error � N logN and a total error � N(logN)2. Now let

L = log
N

k2
1k

2
2n
′
1

,

then the above expression is easily seen to be a quadratic polynomial in L, i.e.

2N

(
1

2
L2

1 + L1L2

)
=

1

2

(
1

2
(L+ log k1)2 + (L+ log k1)(L− log k1)

)
=

1

4

(
3L2 + 2(log k1)L− (log k1)2

)
.

Observe that the major contribution comes from the quadratic term in L here,
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and the other terms contribute � N(logN)2 in the original sum. So one is left to

deal with

3

4

∑
k1≤
√
N

∑
k2≤
√
N/k1

µ(k1k2)

k2
1k

2
2

∑
n′1≤N/(k2

1k
2
2)

(n′1,k1k2)=1

µ2(n′1)

n′1
N

(
log

N

k2
1k

2
2n
′
1

)2

=
3

4

∑
k≤
√
N

µ(k)d(k)

k2

∑
n≤N/k2

(n,k)=1

µ2(n)

n
N

(
log

N

k2n

)2

.

When θ > 0 it follows by absolute convergence that the above sum is

3

4πi

∫ θ+i∞

θ−i∞
ζ(1 + s)D(1 + s)

N s+1

s3
ds

where

D(s) =
∏
p

(
1− 3

p2s
+

2

p3s

)
.

The Euler product D(s) converges locally uniformly for <s > 1
2

+ δ for any δ > 0.

Hence, by standard estimates for the Riemann zeta function the vertical path may

be moved to the vertical path <s = ψ where −1
2
< ψ < 0, picking up the residue

of the pole of order 4 at s = 0. It follows that

3

4

∑
k≤
√
N

µ(k)d(k)

k2

∑
n≤N/k2

(n,k)=1

µ2(n)

n
N

(
log

N

k2n

)2

=
3

2
N

(logN)3

6
D(1) +O(N log2N).

This establishes the theorem.

�

2.5 Further Comments

The corresponding questions for the equation (2.1) when k ≥ 3 are still open.

Indeed, whilst it follows from the criterion in the second paragraph of Section 2.3
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that

R(n; a)� nε,

and generally one could conjecture that Rk(n; a), the number of solutions of (2.1)

in positive integers, satisfies the concomitant bound

Rk(n; a)� nε,

this is far from what has been established. Indeed, if we define Sk(N ; a) for general

k by

Sk(N ; a) =
∑
n≤N

(n,a)=1

Rk(n; a)

when k ≥ 3 it has not even been established that

Sk(N ; a)� N1+ε.

It seems likely that

Sk(N ; a) ∼ CN(logN)α,

for some positive constants C and α which only depend on k and, in the case of C,

on a. One can also make similar conjectures for the corresponding Tk(N ; a) and

Uk(N).



Chapter 3
Mean Value Theorems for Binary

Egyptian Fractions II

3.1 Introduction

In Chapter 2 we studied the mean value

S(N ; a) =
∑
n≤N

(n,a)=1

R(n; a), (3.1)

of the number R(n; a) of positive integer solutions to the Diophantine equation

a

n
=

1

x
+

1

y
. (3.2)

Here we extend our investigation to the second moment and some consequences

thereof.

Theorem 3.1. For fixed positive integer a, we have, for every N ∈ N with N ≥ 2,

∑
n≤N

(n,a)=1

∣∣∣∣∣R(n; a)− 1

φ(a)

∑
χ mod a
χ2=χ

0

χ̄(−n)
∑
u|n2

χ(u)

∣∣∣∣∣
2

�a N log2N,

where �a indicates that the implicit constant depends at most on a, and where χ
0

denotes the principal character modulo a.
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In the character sum here the term χ = χ
0

contributes an amount d(n2) where d

is the divisor function and we can expect that this is the dominant contribution on

average. Thus as a consequence of the Erdős–Kac theorem, just as for the divisor

function d(n), one can anticipate that logR(n; a) admits a Gaussian distribution.

As a first approximation we establish the normal order of logR(n; a).

Theorem 3.2. When a is fixed, the normal order of logR(n; a) as a function of

n is (log 3) log log n.

Let

Φ(z) :=
1√
2π

∫ z

−∞
e−

t2

2 dt.

Then with a little more work we can establish the full distribution.

Theorem 3.3. For fixed positive integer a, we have

lim
N→∞

1

N
card

{
n ≤ N :

log R(n; a)− (log 3) log log n

(log 3)
√

log log n
≤ z

}
= Φ(z).

For completeness we also establish the mean square of R(n; a) for fixed a.

Since R(n; a) resembles quite closely the divisor function d(n2) in many aspects,

we expect that their mean squares share the same order of magnitude. Thus the

following theorem can be compared with the asymptotic formula

∑
n≤N

d2(n2) = NP8(logN) +O(N1−δ)

which holds for some δ > 0 and with P8(·) a polynomial of degree 8.

Theorem 3.4. Let a be a fixed positive integer and ε > 0. Then

∑
n≤N

(n,a)=1

R(n; a)2 = NP8(logN ; a) +Oa(N
35/54+ε)

where P8(· ; a) is a degree 8 polynomial with coefficients depending on a, and its

leading coefficient is

1

8!a2

∏
p|a

(
1− 1

p

)7∏
p-a

(
1 +

6

p
+

1

p2

)(
1− 1

p

)6

.
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The error term in the theorem above is closely related to the generalised divisor

problem, and in particular depends on a mean value estimate for the ninth moment

of Dirichlet L-functions L(s, χ) modulo a inside the critical strip. As is easily

verified, the error can be improved to Oa(N
1/2+ε) under the assumption of the

generalised Lindelöf Hypothesis.

3.2 Proof of Theorem 3.1

We rewrite equation (3.2) in the form

(ax− n)(ay − n) = n2.

After the change of variables u = ax − n and v = ay − n, it follows that R(n; a)

is the number of ordered pairs of natural numbers u, v such that uv = n2 and

u ≡ v ≡ −n (mod a).

Under the assumption that (n, a) = 1, R(n; a) can be reduced further to count-

ing the number of divisors u of n2 with u ≡ −n (mod a). Now the residue class

u ≡ −n (mod a) is readily isolated via the orthogonality of the Dirichlet characters

χ modulo a. Thus we have

R(n; a) =
1

φ(a)

∑
χ

mod a

χ̄(−n)
∑
u|n2

χ(u), (3.3)

where the condition (n, a) = 1 is taken care of by the character χ̄(n).

Hence

∑
n≤N

(a,n)=1

∣∣∣∣∣R(n; a)− 1

φ(a)

∑
χmod a
χ2=χ

0

χ̄(−n)
∑
u|n2

χ(u)

∣∣∣∣∣
2

�a

∞∑
n=1

(a,n)=1

e−n/N

∣∣∣∣∣ ∑
χmod a
χ2 6=χ

0

χ̄(−n)
∑
u|n2

χ(u)

∣∣∣∣∣
2

=
∑

χ
1

mod a

χ2

1
6=χ

0

∑
χ

2
mod a

χ2

2
6=χ

0

χ̄
1
χ

2
(−1)

∞∑
n=1

∑
u|n2

∑
v|n2

χ
1
(u)χ̄

2
(v)χ̄

1
χ

2
(n)e−n/N ,
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where χ
0

denotes the principal character modulo a. In order to evaluate the sum

over n, we analyze the Dirichlet series

fχ
1
,χ

2
(s) :=

∞∑
n=1

∑
u|n2

∑
v|n2

χ
1
(u)χ̄

2
(v)χ̄

1
χ

2
(n)n−s.

The condition u|n2 can be written as u1u
2
2|n2 with u1 squarefree, i.e. u1u2|n, and

likewise for v|n2. Thus

fχ
1
,χ

2
(s) =

∞∑
m=1

χ̄
1
χ

2
(m)

ms

∞∑
d=1

F (d)

ds
(3.4)

where

F (d) =
∑

u1,u2,v1,v2

d=[u1u2,v1v2]

µ2(u1)µ2(v1)χ
1
(u1u

2
2)χ̄

2
(v1v

2
2)χ̄

1
χ

2
(d).

The function F is multiplicative and so the inner sum above is

∏
p

(
1 +

∞∑
k=1

F (pk)p−ks

)
, (3.5)

where

F (pk) =
∑

u1,u2,v1,v2

[u1u2,v1v2]=pk

µ2(u1)µ2(v1)χ
1
(u1u

2
2)χ̄

2
(v1v

2
2)χ̄

1
χ

2
(pk). (3.6)

In particular we have

F (p) = χ
0
(p) +

∑
χ∈X\{χ̄

1
χ

2
}

χ(p),

where X = {χ
1
, χ

2
, χ

1
χ

2
, χ

1
χ̄

2
, χ̄

1
, χ̄

2
, χ̄

1
χ̄

2
, χ̄

1
χ

2
} (and the entries are considered

to be formally distinct), and

|F (pk)| ≤ 8k.

Thus the Dirichlet series f converges absolutely for σ > 1 and

fχ
1
,χ

2
(s) = Gχ

1
,χ

2
(s)L(s, χ

0
)
∏
χ∈X

L(s, χ), (3.7)



35

where Gχ
1
,χ

2
(s) is a function which is analytic in the region <s > 1/2 and satisfies

G(s)� 1 (σ ≥ 1
2

+ δ)

for any fixed δ > 0. As χ
1
, χ

2
are not characters of order 1 or 2, fχ

1
,χ

2
(s) has a

triple pole at s = 1 when χ
1

= χ
2

or χ
1
χ

2
= χ

0
, and a simple pole otherwise. By

Corollary 1.17 and Lemma 10.15 of [28], for fixed a,

L(s, χ)− E(χ)φ(a)

a(s− 1)
� 2 + |t|

uniformly for σ ≥ 1
2

where E(χ) is 1 when χ = χ
0

and 0 otherwise. Hence by

(5.25) of [28]

∞∑
n=1

∑
u|n2

∑
v|n2

χ
1
(u)χ̄

2
(v)χ̄

1
χ

2
(n)e−n/N =

1

2πi

∫ θ+i∞

θ−i∞
fχ

1
,χ

2
(s)N sΓ(s)ds,

where θ > 1. Since the gamma function decays exponentially fast on any vertical

line we may move the vertical path to the 3
4
–line picking up the residue of the

integrand at s = 1. The residue contributes an amount

� N(logN)2

and the new vertical path contributes

� N
3
4 .

This completes the proof of Theorem 3.1.

3.3 Proof of Theorem 3.2

By Theorem 3.1, we expect that for almost all n with (a, n) = 1, R(n; a) is close

to
1

φ(a)

∑
χmod a
χ2=χ

0

χ̄(−n)
∑
u|n2

χ(u).
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Thus we need to examine the contribution from the characters modulo a of order

1 and 2. For general a, there may be many quadratic characters modulo a. Nev-

ertheless we believe that the major contribution to the sum above comes from the

principal character, and this is of size

d(n2)

φ(a)
.

Thus, for fixed a, logR(n; a) should have the normal order of log d(n2), namely

(log 3) log log n. When (n, a) > 1 we have

R(n; a) = R(n/(n, a); a/(n, a)) (3.8)

and so we can expect that the general case follows from the special case (n, a) = 1.

Before embarking on the proof of Theorem 3.2, we state a lemma. We define,

for any quadratic character χ,

Ωχ(n) = card
{
p, k : k ≥ 1, pk|n, χ(pk) = 1

}
.

Lemma 3.5. Suppose that χ is a quadratic character to a fixed modulus a and

that N ≥ 3. Then

∑
n≤N

(
Ωχ(n)− 1

2
log logN

)2

� N log logN

and ∑
1<n≤N

(
Ωχ(n)− 1

2
log log n

)2

� N log logN.

Proof. The proof follows in the same way as Turán’s theorem (see Theorem 2.12

of [28]) on observing that

∑
p≤N
χ(p)=1

1

p
=

1

2
log logN +O(1)

and this is readily deduced from Corollary 11.18 of [28].
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It is an immediate consequence of the above lemma that Ωχ(n) has normal

order 1
2

log log n. In particular, for any fixed ε > 0, for almost all n,

3Ωχ(n) < 3( 1
2

+ε) log logn.

Now, for any quadratic character χ modulo a, let

gχ(n) =
∑
u|n2

χ(u).

This is ∏
pk‖n

(
1 + χ(p) + χ2(p) + · · ·+ χ2k(p)

)
.

When χ(p) = −1 the general factor is 1, and when χ(p) = 1 it is 2k + 1. Hence

0 < gχ(n) ≤ 3Ωχ(n).

Thus for any fixed ε > 0, for every quadratic character modulo a, for almost all n,

gχ(n) < (log n)( 1
2

log 3+ε). (3.9)

Let

r(n; a) =
1

φ(a/(n, a))

∑
χmod a/(n,a)

χ2=χ
0

χ̄(−n/(n, a))gχ(n/(n, a)).

Since R(n; a) = R(n/(n, a); a/(n, a)), it follows by Theorem 3.1 that

∑
n≤N

(R(n; a)− r(n; a))2 =
∑
d|a

∑
m≤N/d

(m,a/d)=1

(R(m; a
d
)− r(m; a

d
))2 � N(logN)2.

Hence, for any fixed ε > 0, for almost all n we have

|R(n; a)− r(n; a)| < (log n)1+ε.
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Therefore, by (3.9), for almost all n,∣∣∣∣R(n; a)− d ((n/(a, n))2)

φ(a/(a, n))

∣∣∣∣ < (log n)1+2ε. (3.10)

Now 3 ≤ d(p2k) = 1 + 2k ≤ 3k. Hence

3ω(n)−ω(a) ≤ d
(
(n/(a, n))2

)
≤ 3Ω(n) (3.11)

and it follows that

(log n)log 3−ε <
d ((n/(a, n))2)

φ(a/(a, n))
< (log n)log 3+ε

for almost all n. Theorem 3.2 now follows.

3.4 Proof of Theorem 3.3

By (3.10) and (3.11), for every fixed ε > 0, for almost all n,

3ω(n)

φ(a/(a, n))
− (log n)1+ε < R(n; a) < 3Ω(n) + (log n)1+ε.

Moreover, for almost all n we have Ω(n) ≥ ω(n) > (1− ε) log log n. Hence for any

δ with 0 < δ < log 3− 1 we have, for almost all n

3ω(n)−ω(a)−log φ(a/(a,n)) exp(−(log n)−δ) < R(n; a) < 3Ω(n) exp((log n)−δ)

and so

3ω(n) exp(−ε
√

log log n) < R(n; a) < 3Ω(n) exp(ε
√

log log n).

Let

S(N ; z) = card

{
n ≤ N :

logR(n; a)− (log 3) log log n

log 3
√

log log n
≤ z

}
,

S−(N ; z) = card

{
n ≤ N :

Ω(n)− log log n√
log log n

≤ z

}
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and

S+(N ; z) = card

{
n ≤ N :

ω(n)− log log n√
log log n

≤ z

}
,

Then for a non-negative monotonic function η(n) tending to 0 sufficiently slowly

as N →∞ we have

−η(N)N + S−(N ; z − ε) < S(N ; z) < η(N)N + S+(N ; z + ε).

Hence, by the Erdős–Kac theorem (see, for example Theorem 7.21 and Exercise

7.4.4 of [28]),

Φ(z − ε) ≤ lim inf
N→∞

N−1S(N ; z) ≤ lim sup
N→∞

N−1S(N ; z) ≤ Φ(z + ε).

The theorem now follows from the continuity of Φ.

3.5 Proof of Theorem 3.4

By a similar discussion to that in Section 3.2, we can show that the generating

Dirichlet series for R(n; a)2 is

∞∑
n=1

(n,a)=1

R(n; a)2

ns
=

1

φ(a)2

∑
χ

1
,χ

2
mod a

χ̄
1
χ

2
(−1)fχ

1
,χ

2
(s),

where fχ
1
,χ

2
(s) is analytic in the region <s > 1/2 and is given by (3.7). Here

fχ
1
,χ

2
(s) has a pole at 1 of order at least 1, and as high as 9 exactly when χ

1
and

χ
2

are equal to the principal character χ
0
. Now on applying Perron’s formula, we

have for θ = 1 + 1/ log(2N),

∑
n≤N

(n,a)=1

R(n; a)2 =
∑
χ

1
,χ

2
mod a

χ̄
1
χ

2
(−1)

2πiφ(a)2

∫ θ+iT

θ−iT
fχ

1
,χ

2
(s)

N s

s
ds+Oa(N

1+ε/T ). (3.12)

Since we are shooting for the asymptotics for the the mean square, smooth-

ing factors of the kind used in Section 3.2 are best avoided. Since the integrand

includes a product of nine L–functions, we cannot expect to be able to move the
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vertical integral path too close to the 1/2-line in the current state of knowledge.

Nevertheless, the following result of Meurman [24] which extends Heath-Brown’s

theorem [11] on the twelfth power moment of the Riemann zeta function to Dirich-

let L–functions, provides a starting point for the analysis.

Lemma 3.6. ∑
χ mod a

∫ T

−T
|L(1

2
+ it, χ)|12dt� a3T 2+ε,

where ε > 0, a ≥ 1 and T ≥ 2.

Then, adapting the argument of Chapter 8 of Ivić [21] for the Riemann zeta

function to Dirichlet L-functions establishes the following.

Lemma 3.7. ∫ T

−T
|L(35

54
+ it, χ)|9dt�a T

1+ε,

where ε > 0, χ is a fixed Dirichlet character modulo a ≥ 1 and T ≥ 2.

If one utilizes the sharpest estimates for the underlying exponential sums,

Lemma 3.7 is susceptible to slight improvements.

Now, we move the vertical integral path in (3.12) to the 35/54-line, picking up

the residue of the integrand at 1. Thus∫ θ+iT

θ−iT
fχ

1
,χ

2
(s)

N s

s
ds =

∫ 35/54−iT

θ−iT
fχ

1
,χ

2
(s)

N s

s
ds+

∫ θ+iT

35/54+iT

fχ
1
,χ

2
(s)

N s

s
ds

+

∫ 35/54+iT

35/54−iT
fχ

1
,χ

2
(s)

N s

s
ds+ Ress=1

(
fχ

1
,χ

2
(s)

N s

s

)
Here, in order to deal with the contribution from the horizontal integrals, we

cannot afford to use the crude convexity bounds on Dirichlet L-functions, due to

the large number of L–functions in the integrand. Fortunately, a sharper bound

has been established by C.D. Pan and C.B. Pan in Theorem 24.2.1 of [30].

Lemma 3.8. Let l ≥ 3, L = 2l−1 and σl = 1− l(2L− 2)−1. Then when σ ≥ σl

L(σ + it, χ)�a |t|1/(2L−2) log |t|

holds uniformly for |t| ≥ 2.
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When l = 3 we obtain

L(σ + it, χ)�a |t|1/6 log |t|

uniformly for |t| ≥ 2 and σ ≥ 1
2
, and when l = 4,

L(σ + it, χ)�a |t|1/14 log |t|

uniformly for σ ≥ 5/7. Thus, by the convexity principle for Dirichlet series,

L(σ + it, χ)�a |t|µ(σ)+ε

uniformly for |t| ≥ 2 and σ ≥ 1
2

where

µ(σ) =


1
6
− 4

9
(σ − 1

2
) when 1

2
≤ σ ≤ 5

7
,

1−σ
4

when 5
7
< σ ≤ 1,

0 when 1 < σ.

We note that µ(35
54

) = 49
486

< 1
9

and µ(5
7
) = 1

14
.

Now the horizontal paths contribute

�
∫ 1+ε

35/54

Nσ|fχ
1
,χ

2
(σ + iT )|T−1dσ.

and this is

� max
35/54≤σ≤1+ε

NσT 9µ(σ)−1+ε,

and by the piecewise linearity of σ and µ(σ) this is

� N1+εT−1 +N5/7T 9µ(5/7)−1+ε +N35/54T 9µ(35/54)−1+ε.

When T = N this is

� N35/54+ε.
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On the other hand, by Lemma 3.7 the vertical path also contributes

� N35/54+ε.

The main term comes from the residual contributions, which, in the case that

χ
1

= χ
2

= χ
0
, is NP8(logN ; a) where P8(· ; a) is a polynomial of degree 8 whose

coefficients depend on a. Notice that for other choices of χ
1

and χ
2
, the residual

contribution gives a polynomial of logN of lower degree than above.

For the leading coefficient, we need more precise information about fχ
0
,χ

0
. By

(3.4), (3.5) and (3.6) we have

fχ
0
,χ

0
= L(s, χ

0
)
∏
p-a

(
1 +

∞∑
k=1

8k

pks

)
(3.13)

= L(s, χ
0
)9
∏
p-a

(1 + 6p−s + p−2s)(1− p−s)6, (3.14)

from which the leading coefficient is readily deduced. This completes the proof of

Theorem 3.4.

In conclusion we remark that a concomitant argument will give

∑
n≤N

(n,a)=1

R(n; a)k = NP3k−1(logN ; a) +Oa

(
Nαk+ε

)

for any ε > 0, where P3k−1(· ; a) is a polynomial of degree 3k− 1 whose coefficients

depend on a and αk is a constant that depends on the best 3k-th power moment

estimates for L(s, χ) in the critical strip and the quantity µ(σ) defined above. This

question is closely related to the generalised divisor problem, and one is referred

to Chapter 13 in Ivić [21] for more details.



Chapter 4
On the Exceptional Set for Binary

Egyptian Fractions

4.1 Introduction

Let a be a fixed positive integer. We consider the binary Diophantine equation

a

n
=

1

x
+

1

y
(4.1)

and denote by R(n; a) the number of pairs of positive integer solutions (x, y) sat-

isfying the equation (4.1). A good deal is now known about the average behaviour

of R(n; a). See [2], [17] and [18] for details. In this chapter, we are concerned with

the number of n such that the equation (4.1) is not soluble in positive integers x

and y and to this end we define

Ea = {n ∈ N : R(n; a) = 0}.

Clearly both E1 and E2 are empty. When a ≥ 3 the structure of Ea is more delicate

and of great interest. In this paper, we investigate the asymptotic size of Ea. Thus

we define

Ea(N) = {n ∈ Ea : n ≤ N}

and

Ea(N) = #Ea(N).
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In 1985, G. Hofmeister and P. Stoll [13] proved that the set Ea has asymptotic

density 0, and more precisely that

Ea(N)�a
N

(logN)1/φ(a)
.

For a = 5 and a ≥ 7 this bound is far from the truth. Their method is based on

the observation that if the equation (4.1) is insoluble, then n is not divisible by

any prime of the form p ≡ −1 (mod a). Thus a simple application of Selberg’s

upper bound sieve gives the stated bound. However when a = 5 or a ≥ 7 the bulk

of the n deficient in such prime factors nevertheless have a representation.

The following theorem establishes the precise asymptotic behaviour of Ea(N).

Theorem 4.1. For fixed a ≥ 3, let 2γ0pγ1

1 p
γ2

2 · · · p
γk
k be the canonical decomposition

of a and define m and δ by

2m|| gcd(δ, p1 − 1, p2 − 1, · · · , pk − 1)

and

δ =

{
0, if γ0 ≤ 1,

2, if γ0 ≥ 2.

Then we have

Ea(N) ∼ C(a)
N(log logN)2m−1−1

(logN)1−1/2m

where C(a) is a positive constant depending only on a.

In order to establish this theorem we need first to investigate the underlying

structure of Ea, and we embark on this in Section 4.2. The case when a is a prime

power is somewhat easier to understand and, having established some preliminary

lemmata in 4.2.1, we consider this case in Section 4.2.2. This then leads into a

discussion of the general case in 4.2.3.

In Section 4.3 the main analytic input is introduced, and it is convenient to base

this on an arithmetical application of a theorem of Delange. Delange’s theorem

is a refinement of the Wiener–Ikehara theorem and is qualitative in nature. In

particular it does not give an explicit error term. By using instead a method allied

to that leading to the strongest known unconditional error term in the prime
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number theorem it would be possible to give a quantitative error term in Lemma

4.11 of a similar quality. However whilst this would be quite routine in nature

there would be many detailed complications and more importantly the extra effort

would not lead to any further illumination of the central problem of this paper in

that a greater loss in the error term appears at a later stage of our argument. We

are happy to leave this approach as an exercise to the reader.

The proof of the main theorem is completed in Section 4.4 through a suitable

combination of Sections 4.2 and 4.3.

After we submitted our paper [19] to arXiv, C. Elsholtz pointed out his thesis [5]

and a subsequent note to us, in which he adumbrates the special case of Theorem

4.1 that a is a prime. In particular, in his thesis it is showed that Ea(N) �a

N/
√

logN for all a ≥ 1 and that Ea(N) �a N/
√

logN for a ≡ 0, 3 (mod 4).

Furthermore, the asymptotic formula for the particular case a = 13 has been

worked out in his unpublished work. However, no strategy towards the proof of

the full result (even for the case that a is a prime) was present in either his thesis

or the unpublished note.

Throughout this chapter, we reserve the letters p, q and r for prime numbers

and calligraphic letters for sets and sequences. In particular, if A ⊆ N we denote

by A(N) the subset of A with elements less than or equal to N and |A(N)| denotes

the cardinality of A(N).

4.2 The Structure of Ea

4.2.1 Some elementary lemmata

It is more convenient to work with the notations E∗a , E∗a(N) and E∗a(N), defined as

follows:

E∗a = {n ∈ Ea : (n, a) = 1}

and E∗a(N) and E∗a(N) can be defined accordingly. Then we have immediately the

following.

Lemma 4.2. We have

Ea(N) =
⋃
d|a

E∗a/d(N/d)
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and hence have

Ea(N) =
∑
d|a

E∗a/d(N/d).

Thus the structure of Ea can be deduced readily from that of E∗a . Henceforward

we assume that n is a positive integer coprime to a, unless otherwise stated.

The starting point of our argument is the following elementary lemma.

Lemma 4.3. The equation (4.1) with (a, n) = 1 is soluble in positive integers if

and only if there exists a pair of coprime factors u and v of n such that a|u+ v.

Proof. If the equation (4.1) is soluble, then we rewrite it as axy = n(x + y), let

(x, y) = l and write x = ul and y = vl with (u,v)=1. Thus aluv = n(u+ v). Then,

as (a, n) = 1 and (uv, u+ v) = 1, we have uv|n and a|u+ v.

In the opposite direction, we write u + v = aa′ and n = uvn′, so that a
n

=
1

a′n′u
+ 1

a′n′v
.

This lemma suggests that the solubility of equation (4.1) solely depends on

the residue classes of factors of n modulo a, and hence depends on the residue

classes of prime factors of n modulo a, which naturally leads our discussion to the

distribution of prime factors of n in the multiplicative group (Z/aZ)∗.

4.2.2 The case that a is a power of odd prime

We consider the case that a = pγ is a power of odd prime in this subsection and

come back to the general case later. This strategy fits with both the motivational

purpose and the presentational purpose. Let G denote the cyclic group (Z/aZ)∗

of reduced residue classes modulo a = pγ, and let H be the maximal subgroup of

G = (Z/aZ)∗ with cardinality |H| being odd, namely H is the maximal subgroup

of G such that −1 /∈ H and clearly such a group is unique. Here and throughout

this article i means the residue class i (mod a), if there is no ambiguity about the

modulus a in the context. Now let φ(a) = 2md with d being an odd number. If we

fix a primitive root g modulo a, then

G = {g, g2, g3, . . . , g2md} (4.2)
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and

H = {g2m , g2·2m , g3·2m , . . . , gd·2
m}, (4.3)

by which one readily verifies that −1 /∈ H since gφ(a)/2 ≡ −1 (mod a). Hence we

have the index [G : H] = 2m and |H| = φ(a)
2m

= d.

Essentially the structure of E∗a is that any n ∈ E∗a can have arbitrarily many

prime factors lying in the residue classes in H but can have at most a bounded

number of prime factors lying outside H. It is this observation that renders the

counting function of E∗a susceptible to an analytic argument.

Lemma 4.4. We have the following inclusion relation of sets

{n ∈ N : q|n with q being prime ⇒ q ∈ H} ⊆ E∗a .

Proof. For any n on the left hand side, and for any pair of coprime positive integers

u and v with uv|n we have u, v ∈ H in light of the fact that H is a group. Since

−1 /∈ H, we have −v /∈ H and hence u 6= −v, in other words a - u + v. Now

Lemma 4.4 follows from Lemma 4.3.

The next lemma is central to our understanding of the structure of E∗a .

Lemma 4.5. Let m ≥ 1 and G denote the additive group Z/(2mZ), let {ej}t1 be a

sequence with t nonzero elements of G (i.e., repeated elements are allowed in {ej}),

and form the subset of G

S =

{
t∑

j=1

δjej : δj ∈ {−1, 0, 1}

}
.

(i) If t ≥ 2m−1, then 2m−1 ∈ S. Namely, as long as the length of {ej} exceeds

2m−1, for whatever choices of the elements ej, one can always find a partial

sum, as in the definition of S, such that it is equal to 2m−1.

(ii) If t = 2m−1 − 1, then the corresponding set S does not contain 2m−1 if and

only if the sequence {ej}t1 satisfies ej ≡ ±e (mod 2m) for each j and some

fixed e ∈ (Z/(2m)Z)∗.

Proof. We prove (i) first. Note that if one of the ej satisfies ej ≡ 0 (mod 2m−1)

then (i) is automatically true by choosing the δj for that particular j to be 1 and
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all the others to be 0. So without loss of generality we assume none of the ej for

1 ≤ j ≤ t is divisible by 2m−1. The proof is by induction on m. The initial case

m = 1 is trivial. Thus we can suppose that m ≥ 1 and that the conclusion is true

for m. Consider G = Z/(2m+1Z) and a sequence {ej}2m

1 ⊆ G. Note that none of

the ej is congruent to 0 modulo 2m and hence by the induction assumption, we

know that there exist δj ∈ {−1, 0, 1} for 1 ≤ j ≤ 2m such that

s1 :=
2m−1∑
j=1

δjej ≡ 2m−1 (mod 2m)

and

s2 :=
2m∑

j=2m−1+1

δjej ≡ 2m−1 (mod 2m).

Choose ui so that si = 2m−1 + ui2
m for i ∈ {1, 2}. Then by considering separately

the cases when the ui are of the same or differing parity it follows that either s1 +s2

or s1−s2 is congruent to 2m modulo 2m+1. This establishes (i). The proof of (ii) is

similar but a little more elaborate. If there is an e ∈ (Z/(2m)Z)∗ such that ej ≡ ±e
(mod 2m) for every j, then regardless of the choice of δj we have

∑t
j=1 δjej ≡ ±ue

(mod 2m) where |u| ≤ 2m−1 − 1. Thus 2m−1 6∈ S. Thus it remains to consider the

situation when 2m−1 is not contained in S. As before, we argue by induction on

m. When m = 1 we have t = 0 and S is empty so the conclusion is trivial. When

m = 2 we have t = 1 and 2m−1 = 2, and so e1 6≡ 0 or 2 (mod 4) and we are done.

Now suppose that the conclusion holds for a given value of m ≥ 2 and consider

the case with m replaced by m+ 1. That is, we suppose that 2m is not contained

in S and will deduce that there is an e ∈ (Z/(2m+1)Z)∗ such that each ej satisfies

ej ≡ ±e (mod 2m+1). We now form the partial sums

s1 :=
2m−1−1∑
j=1

δjej

and

s2 :=
2m−1∑
j=2m−1

δjej.

By (i) and the inductive hypothesis if there is no e such that ej ≡ ±e (mod 2m)



49

for 1 ≤ j ≤ 2m−1 − 1, where e ∈ (Z/(2m)Z)∗, then there is a choice of the δj such

that

s2 ≡ 2m−1 (mod 2m)

and

s1 ≡ 2m−1 (mod 2m).

Thus if there is no such e, then as before one of s1 ± s2 ≡ 2m (mod 2m+1), which

we have expressly excluded. Thus there is such an e. Moreover we can repeat the

argument with every permutation of the ej. Thus we can conclude that there is

an e such that ej ≡ ±e (mod 2m) for 1 ≤ j ≤ 2m − 1, where e ∈ (Z/(2m)Z)∗. In

other words

ej ≡ ±e or ± (e+ 2m) (mod 2m+1).

Now we may conclude that either all the ej are congruent to ±e or they are

congruent to ±(e+ 2m), because if, say, e1 ≡ ±e (mod 2m+1) and e2 ≡ ±(e+ 2m)

(mod 2m+1) then either e1 + e2 or e1 − e2 is 2m (mod 2m+1), contradicting 2m 6∈
S.

A weaker version of the lemma in which one replaces the exact lower bound

2m−1 of t in part (i) by the crude bound (2m − 1)(2m−1 − 1) + 1, would follow

by a direct application of the pigeonhole principle. An extension of this lemma

to general modulus (not necessarily a power of 2) could be formulated and then

proved by Kneser’s theorem (see chapter 1 in [9]), which is, however, not of direct

relevance to the purpose of this memoir. Nevertheless, it would be of the essence if

one desires to establish the lower order terms for the asymptotics in Theorem 4.1.

Having established the necessary preliminaries, we are poised to reveal the

structure of E∗a when a = pγ is a power of an odd prime.

Lemma 4.6. Let P be the sequence of prime factors of n, counted with multiplicity.

And let T be the subsequence of prime r in P with r /∈ H, then denote by t the

length of T . Considering the projection map: Z → Z/aZ, suppose the image of

the sequence P contains H.

(i) If t ≥ 2m−1, then n /∈ E∗a .

(ii) If t = 2m−1−1, then n ∈ E∗a if and only if every prime factor in T is congruent
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to ge
′

modulo pγ for a fixed primitive root g (mod pγ), and for some e′ such

that e′ ≡ ±e (mod 2m) with e being a fixed odd number.

Proof. Recall that G and H are give by (4.2) and (4.3) respectively, for a fixed

primitive root g modulo a. Denote T = {rj}t1. Let the sequence {ej} be such

that gej ≡ rj (mod a). By the assumption rj /∈ H we know ej 6≡ 0 (mod 2m), for

1 ≤ j ≤ t. Let G = Z/2mZ. Now {ej} can be viewed as a sequence of nonzero

elements in G. Clearly we see Lemma 4.5 gets into play here. More precisely, when

t ≥ 2m−1, there exist δj ∈ {−1, 0, 1} such that

t∑
j=1

δjej ≡ 2m−1 (mod 2m).

This is equivalent to
t∑

j=1

δjej ≡ b2m−1 (mod 2md),

for some odd number b such that 1 ≤ b ≤ d. Hence

t∑
j=1

δjej + (d− b)2m−1 ≡ 2m−1d (mod 2md).

Translating this using multiplicative language, we know that

g
d−b

2
·2m

t∏
j=1

(gej)δj ≡ g2m−1d ≡ −1 (mod a).

By assumption there exists q ∈ P such that q ≡ g
d−b

2
·2m (mod a). On the other

hand, gej ≡ rj (mod a) and q
∏t

j=1 rj|n. Hence there exist two coprime divisors

u and v of n, such that u
v
≡ −1 (mod a) namely u + v ≡ 0 (mod a). By Lemma

4.3, we know n /∈ E∗a . This proves part (i).

For part (ii), the necessity of the condition follows by exactly the same argument

as above, keeping in mind that Lemma 4.5 still plays an important role. Now in

order to prove the sufficiency, we just need to reverse the above argument and

argue by contradiction. (Notice that the condition P contains H is not needed in

this direction.)
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Our next task naturally is to extend Lemma 4.6 to general modulus. We will

see how one can carry the arguments here to the general case only with some mild

difficulties in the next subsection.

4.2.3 The case for general a

Now we treat the general case a = 2γ0pγ1

1 p
γ2

2 · · · p
γk
k . Of course by Chinese remainder

theorem we have the group isomorphism

(Z/aZ)∗ ' (Z/2γ0Z)∗ × (Z/pγ1

1 Z)∗ × · · · × (Z/pγkk Z)∗.

As before, we still denote this group by G. Here all the groups (Z/pγZ)∗ are cyclic

when p is an odd prime, but in general (Z/2γ0Z)∗ is not except that γ0 ≤ 2. For

instance, (Z/2Z)∗ is trivial and (Z/4Z)∗ is isomorphic to (Z/2Z,+). In particular,

there is no difference between the cases γ0 = 0 and γ0 = 1 because they exert no

influence to G. While, when γ0 ≥ 3, (Z/2γ0Z)∗ is a product of 2 cyclic groups with

generators −1 (mod 2γ0) and 5 (mod 2γ0) respectively, namely

(Z/2γ0Z)∗ ' 〈−1〉 × 〈5〉.

Apparently |〈−1〉| = 2 and |〈5〉| = 2γ0−2.

Here, we still want to find a maximal subgroup H of G such that −1 (mod a) /∈
H. However, the issue here is that such subgroups of G might not be unique. They

can be easily constructed as follows. Let Gi = (Z/pγii Z)∗, for 0 ≤ i ≤ k and Hi

to be the maximal subgroup of Gi such that −1 (mod pγii ) /∈ Hi. As we remarked

before, H1, H2, · · · , Hk are unique but H0 is not in general. In fact, H0 is trivial

if γ0 ≤ 2 and is one of the two subgroups of index 2 in the ambient group G0 if

γ0 ≥ 3. Recall our discussion in the cyclic case, hence [Gi : Hi] = 2mi for some

positive integer mi and for all 1 ≤ i ≤ k. Moreover

[G0 : H0] =

{
1, if γ0 ≤ 1

2, if γ0 ≥ 2.
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Now choose m such that

m =


min

1≤i≤k
mi, if γ0 ≤ 1

1, if γ0 ≥ 2,

namely

2m|| gcd(δ, p1 − 1, p2 − 1, · · · , pk − 1),

where

δ =

{
0, if γ0 ≤ 1,

2, if γ0 ≥ 2.

By definition, we have m ≥ 1. The subgroup H as described above is one of

the following groups with index [G : H] = 2m:

H0 ×G1 × · · · ×Gk, G0 ×H1 × · · · ×Gk, · · ·

in which we just replace the i-th component of G by Hi for 0 ≤ i ≤ k. We write

φ(a) = 2md and hence |H| = φ(a)
2m

= d. Notice that d is not necessarily odd in

general.

It’s routine to prove the following lemma (see the proof of Lemma 4.4).

Lemma 4.7. We have the following inclusion relation of sets

{n ∈ N : q|n with q being prime ⇒ q ∈ H} ⊆ E∗a .

The next lemma is crucial for our arguments.

Lemma 4.8. Let H ′ be a subset of G with cardinality |H ′| ≥ d. And suppose for

each h′ ∈ H ′, there are at least φ(a) many (counted with multiplicity) prime factors

q of n satisfying q ≡ h′ (mod a). Then n /∈ E∗a unless H ′ = H for some subgroup

H defined above.

Proof. The proof still relies on Lemma 4.3. Actually, by Lemma 4.3, if we can

find a divisor of n which is congruent to −1 (mod a), then n /∈ E∗a . Now our

argument goes roughly as follows, the fact that n has sufficiently many primes

factors lying in sufficiently many different reduced residue classes in G, forces n to
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have at least one divisor lying in the residue class −1 (mod a) unless H ′ is one of

the above subgroups of G. To make this statement rigorous, let H ′′ be the set of

all the residue classes of divisors of n in G. Then 1 ∈ H ′′ and for any two elements

h1, h2 ∈ H ′, we have h−1
1 = h

φ(a)−1
1 ∈ H ′′ and h1h2 ∈ H ′′. This means that H ′′

contains the subgroup 〈H ′〉 generated by the elements in H ′ and in particular this

subgroup has cardinality at least |H ′| ≥ d. However our H is maximized such that

−1 /∈ H, which implies either that −1 ∈ 〈H ′〉 and hence −1 ∈ H ′′, or that H ′ itself

is a maximal subgroup such that −1 /∈ H ′. In the former case, we have n /∈ E∗a by

Lemma 4.3 and in the latter case, we know by Lemma 4.7 that n ∈ E∗a .

Now we need an analogue of Lemma 4.6 for the general case. Here we need to

pay special attention to the power of 2 dividing a. When γ0 ≥ 2, we have m = 1,

which is sort of the “worst” case, for Ea(N) is largest possible.

Lemma 4.9. Suppose H = G0×G1×· · ·×Hi×· · ·×Gk is a subgroup of G defined

as above. Let P be the sequence of prime factors of n (counted with multiplicity).

And let T be the subsequence of prime r in P with r /∈ H. Then denote by t the

length of T . Considering the projection map: Z → Z/aZ, suppose the image of

the sequence P contains H.

(i) If t ≥ 2m−1, then n /∈ E∗a .

(ii) If t = 2m−1 − 1 and m ≥ 2 (in this case, γ0 ≤ 1 and hence G0 is trivial and

in particular our Hi here cannot be H0), then n ∈ E∗a if and only if every

prime factor in T is congruent to ge
′

modulo pγii for a fixed primitive root g

(mod pγii ), and for some e′ such that e′ ≡ ±e (mod 2m) with e being a fixed

odd number.

Proof. Generally speaking the arguments in the proof of Lemma 4.6 still work here.

Nevertheless, one needs to make some changes accordingly. It is trivial to verify

the conclusions when m = 1. So without loss of generality we assume m ≥ 2 hence

1 ≤ i ≤ k.

Denote T = {rj}t1 and fix a primitive root g modulo pγii . Let the sequence {ej}
be such that gej ≡ rj (mod pγii ). By the assumption rj (mod a) /∈ H namely rj

(mod pγii ) /∈ Hi we know ej 6≡ 0 (mod 2m), for 1 ≤ j ≤ t. Let G = Z/2mZ. Now
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{ej} can be viewed as a sequence of nonzero elements in G. Hence by Lemma 4.5,

when t ≥ 2m−1, there exist δj ∈ {−1, 0, 1} such that

t∑
j=1

δjej ≡ 2m−1 (mod 2m).

After writing φ(pγii ) = 2mdi with di odd. This is equivalent to

t∑
j=1

δjej ≡ b2m−1 (mod 2mdi),

for some odd number b such that 1 ≤ b ≤ di. Hence

t∑
j=1

δjej + (di − b)2m−1 ≡ 2m−1di (mod 2mdi).

Translating this using multiplicative language, we know that

g
di−b

2
·2m

t∏
j=1

(gej)δj ≡ g2m−1di ≡ −1 (mod pγii ).

By assumption there exists q ∈ P such that
q ≡ −

t∏
j=1

r
−δj
j (mod p

γj
j ), 1 ≤ j ≤ k, j 6= i

q ≡ g
di−b

2
·2m (mod pγii ).

Hence by the Chinese remainder theorem, we know

q

t∏
j=1

r
δj
j ≡ −1 (mod a)

namely there exist two coprime divisors u and v of n, such that u
v
≡ −1 (mod a)

namely u+ v ≡ 0 (mod a). Again by Lemma 4.3, we know n /∈ E∗a .

Part (ii) can be proved similarly (see the comment in the proof of Lemma

4.6).
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4.3 The Analytic Inputs

We need the following generalisation of Ikehara’s Tauberian Theorem, which is

due to Delange ([3], see also Theorem 7.15 in Tenenbaum [35]). This extends

Ikehara’s Theorem to the case of a singularity of mixed type, involving algebraic

and logarithmic poles. As usual we use σ to denote the real part of the complex

number s, and we define l(s) = log 1
s−1

for σ > 1 by taking l(2) = 0 and then

defining l(s) by continuous variation along the line segment joining 2 to s.

Lemma 4.10 (Delange, 1954). Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series with

non-negative coefficients, converging for σ > 1. Suppose that f(s) is holomorphic

at all points of the line σ = 1 other than s = 1 and that, in the neighborhood of

the this point and for σ > 1, we have

f(s) = (s− 1)−ω−1

t∑
j=0

gj(s)

(
log

(
1

s− 1

))j
+ g(s),

where ω is some real number, and the gj(s) and g(s) are functions holomorphic at

s = 1, the number gt(1) being non-zero. Then:

(i) if ω is not a negative integer, we have as x→∞

∑
n≤x

an ∼
gt(1)

Γ(ω + 1)
x(log x)ω(log log x)t,

(ii) if ω = −m− 1 for a non-negative integer m and if t ≥ 1, we have as x→∞

∑
n≤x

an ∼ (−1)mm!tgt(1)x(log x)ω(log log x)t−1.

The following lemma is the key analytic ingredient of this paper. Essentially it

plays the role of a sieve, but the upshot is that it produces asymptotics, not just

an upper bound as almost all sieves do.

Lemma 4.11. Suppose a is a positive integer, and let B = {b1, . . . , bw} be a subset

of (Z/aZ)∗ with w ≥ 0 elements, C = {cj}t1 be a sequence of length t with elements

in (Z/aZ)∗ (elements could be repeated). And suppose further that B and C do not
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share common elements. Now let P denote the set of primes and define

A = A(B, C) = {q1q2 . . . qlr1r2 . . . rt : qi ∈ P, rj ∈ P, qi ∈ B, rj = cj, l ≥ 0}.

Then

(i) if w ≥ 1, we have as x→∞

|A(x)| ∼ C(a,B, t) x(log log x)t

(log x)1−w/φ(a)
,

(ii) if w = 0 and t ≥ 1, we have as x→∞

|A(x)| ∼ C(a, t)
x(log log x)t−1

log x
.

The constants C(a,B, t) and C(a, t) are positive and do not depend on the choices

of the cj.

Proof. Let

an =

{
1, n ∈ A,
0, n /∈ A.

The set A(B, C) has a multiplicative structure, and this leads naturally to the

following Dirichlet series

f(s) =
∞∑
n=1

an
ns

=
∏
q∈P
q∈B

(1− 1/qs)−1

t∏
j=1

∑
r∈P
r=cj

1

rs
(4.4)

which converges absolutely and locally uniformly in the region σ > 1.

When D(s) is a Dirichlet series which converges absolutely and locally uni-

formly for σ > σ0, has an analytic continuation for σ > σ1, is non-zero for σ > σ2

and satisfies limσ→∞D(σ) = 1, we define D(s)α for σ > max(σ1, σ2) and an arbi-

trary complex number α by exp(α logD(s)) where we choose the principal value

of logD(σ3) for some suitably large σ3 and then define logD(s) by continuous

variation from σ3 to s.

Let e(χ) = 1
φ(a)

∑
χ mod a χ(q)χ̄(b). Then, by the orthogonality of Dirichlet
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characters, the product over q on the right of the equation (4.4) is

∏
b∈B

∏
q

(1− 1/qs)−e(χ)

=
∏
b∈B

∏
χ mod a

(L(s, χ)g1(s, χ))
χ̄(b)
φ(a)

where

g1(s, χ) =
∏
q

(1− χ(q)/qs)

(1− 1/qs)χ(q)
,

which converges absolutely when σ > 1
2
, and hence has no zeros in that region.

Thus g1(s, χ)
χ̄(b)
φ(a) is a well defined analytic function when σ > 1

2
.

Now the above product can be further rearranged as

L(s, χ0)
ω
φ(a) g1(s) (4.5)

where ω is the cardinality of B, χ0 is the principal character modulo a and

g1(s) =
∏
b∈B

∏
χ 6=χ0
mod a

(L(s, χ)g1(s, χ))
χ̄(b)
φ(a) .

In particular

g1(1) 6= 0.

Note that g1(1) may depend on the choice of B.

It is well known that L(s, χ) has no zeros with σ ≥ 1 and has an analytic

continuation to the whole complex plane. Moreover, when χ is non-principal it is

entire and when χ is a principal character χ0 it has a simple pole at s = 1 and

(s− 1)L(s, χ0) is entire. Thus, when χ is non-principal ,

L(s, χ)
χ̄(b)
φ(a)

is analytic in the region σ ≥ 1 and hence so is g1(s).

On the other hand, again by the orthogonality of Dirichlet characters the sum
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over r on the right of the equation (4.4) is

1

φ(a)

∑
χ mod a

χ̄(−cj)
∑
p

χ(p)

ps
.

Now it is readily verified that when σ > 1 we have

logL(s, χ) = −
∑
p

log

(
1− χ(p)

ps

)

=
∑
p

χ(p)

ps
+
∑
p

∞∑
k=2

χ(pk)

pks
.

The second sum on the right converges locally uniformly when σ > 1
2
. Thus

∑
p

χ(p)

ps
= logL(s, χ) + h(s, χ)

where h(s, χ) is holomorphic for σ > 1
2
. Notice that logL(s, χ) is analytic on the

line σ = 1 except when χ = χ0 when it has a logarithmic singularity at the point

s = 1. Hence ∑
p

p=cj

1

ps
=

1

φ(a)
logL(s, χ0) + h(s, cj)

where h(s, cj) is an analytic function of s for σ ≥ 1. Therefore

t∏
j=1

∑
p

p=cj

1

ps
=

1

φ(a)t

t∑
j=0

(logL(s, χ0))jhj(s) (4.6)

where the hj(s) are analytic when σ ≥ 1 and ht(1) = 1.

Now on combining (4.4), (4.5) and (4.6), we have

f(s) =
g1(s)

φ(a)t
L(s, χ0)

w
φ(a)

t∑
j=0

(logL(s, χ0))jhj(s).

We have L(s, χ0) = ζ(s)
∏

p|a(1 − p−s) and the Riemann zeta function ζ(s) has a
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simple pole at s = 1 with residue 1 at s = 1. Thus

L(s, χ0) =
φ(a)g2(s)

a(s− 1)
,

where g2(s) is an entire function with g2(1) = 1. On plugging this in to the above

expression for f(s), the asymptotic formula of Lemma 4.11 follows from Lemma

4.10. Notice that we apply part (i) of Lemma 4.10 when w ≥ 1 and part (ii) when

w = 0 and t ≥ 1. That the constants C(a,B, t) and C(a, t) are positive follows

by observing first that, by Lemma 4.10, they are non-zero and then that the left

hand side of the asymptotic formula is non-negative.

4.4 Proof of Theorem 4.1

The main analytic tool in the proof of Theorem 4.1 is Lemma 4.11 and we will

apply it to the various sets from Section 4.2.3. Recall the definitions of the groups

G and H and of the numbers m and d from Section 4.2.3. We denote by H the set

of all subgroups H defined in Section 4.2.3 for general a. Now as was defined in

Lemma 4.11, we form the set

A(H, C),

where

H = G0 ×G1 × · · · ×Hi × · · · ×Gk ∈ H

and C = {cj}t1 is a sequence of length t = 2m−1 − 1 with elements in G. Moreover

for a fixed primitive root g (mod pγii ) and a fixed odd number e we have cj ≡ ge
′

(mod pγii ) for some e′ with e′ ≡ ±e (mod 2m). For a fixed H ∈ H, there are only

finitely many possibilities (dt2t+m−1 actually) for C. Lemma 4.11 immediately

implies that

Lemma 4.12.

|A(H, C)(N)| ∼ C(H, C)N(log logN)2m−1−1

(logN)1−1/2m
.

Now we need to show that the intersection of any two distinct such sets,

A(H1, C1) and A(H2, C2), is a relatively small set.
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Lemma 4.13. We have

|
(
A(H1, C1) ∩ A(H2, C2)

)
(N)| �a

N(log logN)2m−2

(logN)1−1/4m

Proof. If H1 and H2 are the same, then C1 and C2 differs in at least one element.

Hence the intersection is empty. So without loss of generality, we can assume H1

and H2 are not the same. Then H1 ∩H2 is a subgroup of G with index 4m. Also

notice the relation

A(H1, C1) ∩ A(H2, C2) ⊆ A(H1 ∩H2, C1 ∪ C2)

where C1∪C2 is the union of the sequences C1 and C2 and hence is of length 2m−2.

Then the desired conclusion follows from Lemma 4.11.

Now set

U = ∪H ∪C A(H, C),

where the union runs through all H ∈ H and the corresponding sequences C for H

as defined above. We know that U ⊆ E∗a from Lemma 4.9.

Lemma 4.14. We have

E∗a(N)− |U(N)| �a


N(log logN)2m−1−2

(logN)1−1/2m , if m ≥ 2,

N(log logN)φ(a)φ(a)

(logN)1−1/2m+1/φ(a) , if m = 1.

Proof. We let W(n) be the set of residue classes modulo a in which there are at

least φ(a) (counted with multiplicity) prime factors of n. By Lemma 4.8 we know

that

(i) if |W(n)| ≥ d+ 1, then n /∈ E∗a ;

(ii) if |W(n)| = d, then n /∈ E∗a unless W(n) = H for some subgroup H of G as

above.

Let

N (i) = {n ∈ E∗a : |W(n)| = i}
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for 0 ≤ i ≤ φ(a). From the above discussion we know N (i) is empty as long as

i > d. Hence

E∗a =
d⋃
i=0

N (i).

Firstly observe that by Lemma 4.11 we have∣∣∣∣∣
(
d−1⋃
i=0

N (i)

)
(N)

∣∣∣∣∣�a
N(log logN)φ(a)φ(a)

(logN)1−1/2m+1/φ(a)
.

Now if m = 1, then we have N (d) = U by part (i) of Lemma 4.9, and if m ≥ 2,

then we have by Lemma 4.9 and Lemma 4.11 that

|(N (d))(N)| − |U(N)| �a
N(log logN)2m−1−2

(logN)1−1/2m
.

Therefore Lemma 4.14 follows by putting the above conclusions together.

Here we bound the error term rather crudely, following from Lemma 4.8. Ac-

tually it can be refined substantially by a generalisation of Lemma 4.5, which is,

however, not pertinent to the purpose of the current paper.

Now Theorem 4.1 follows from Lemma 4.2, Lemma 4.12, Lemma 4.13 and

Lemma 4.14. It should be noted that the leading constant C(a) appearing in

Theorem 4.1, can be traced back explicitly in our arguments, but is inevitably

messy, would require some non-trivial expenditure of effort and would not give

any further insights into our problem.



Chapter 5
A Mean Value Theorem for the

Diophantine Equation

axy − x− y = n

5.1 Introduction

People has been considering Diophantine equations involving products and sums

of some variables for a long time. The Diophantine equation

k∏
i=1

xi −
k∑
i=1

xi = n (5.1)

was studied by various people during the past a few decades. It is easy to see that

there always exists a few trivial solutions with most of xi’s equal to 1. So people

are asking about the number of solutions of this equation with all xi > 1.

The case when n = 0 is very special, since it concerns the number of k-

tuples with equal sum and product. In this case, it is conjectured by Misiurewicz

[26] that k = 2, 3, 4, 6, 24, 114, 174 and 444 are the only values of k for which

there are only trivial solutions. For general n, very little is known except that

in 1970s Viola [39] proved that if Ek(N) denotes the number of positive inte-

gers n ≤ N for which (5.1) is not soluble in integers x1, x2, . . . , xk > 1 then

Ek(N) = N exp(−ck(logN)1−1/(k+1)) for some positive constant ck. It is believed
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that for large n equation (5.1) always has a nontrivial solution, which nevertheless

is an open question in this area.

On the other hand, the case that k = 3 has received extensive attention, and

several variations of this problem were studied. Brian Conrey asked whether the

number of solutions in positive integers to the equation

xyz + x+ y = n (5.2)

can be bounded by Oε(n
ε) for any ε > 0. Kevin Ford posed a generalisation of

this problem, in which one would like to show that there are Oε(|AB|ε) nontrivial

positive integer solutions to the equation

xyz = A(x+ y) +B (5.3)

for given nonzero A,B ∈ Z.

In this chapter, we consider another variation of the case that k = 2, namely

the following equation

axy − x− y = n (5.4)

where a is a positive integer and n is any nonnegative integer. This can be viewed

as equation (5.3) in which z is fixed and A = 1. Hence if the number of solutions of

equation (5.4) is well understood, then one can probably understand the number

of solutions of equation (5.3) simply by averaging over a.

Let

Ra(n) = Card
{

(x, y) ∈ N2 : axy − x− y = n
}
.

Here we are considering the number of positive integer solutions of equation (5.4)

when a is fixed and n varies. A sharp asymptotic formula is established in this

chapter on the average of Ra(n) over n. Notice the case that a = 1 is trivial, since

then R1(n) = d(n+ 1) is just the divisor function of n+ 1, the average of which is

relatively well understood.

Theorem 5.1. For positive integers a > 1 and N ≥ 1, we have

∑
0≤n≤N

Ra(n) =
1

a

(
N logN − C(a)N

)
+ ∆a(N)
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where

C(a) = 2
Γ′(a−1

a
)

Γ(a−1
a

)
+ 2

∑
p|a

log p

p− 1
+ log a+ 2γ + 1 (5.5)

and

∆a(N)� φ(a)

√
N

a

(
log(aN)

)2

. (5.6)

Here Γ(s) =
∫ +∞

0
e−tts−1dt is the standard Γ function, and γ is the Euler constant.

In fact, since the error term above is roughly of size
√
aN
(

log(aN)
)2

, it is

conceivable that the main term will be inferior to the error term when a � N
1
3 .

So in order for the above asymptotic formula to really make sense, one would

impose a condition on a, such as a� N
1
3/ logN .

Moreover, one can argue what is the right order of magnitude of the error

∆a(N). In view of R1(n) = d(n + 1), one can think Ra(n) as a “generalized”

divisor function. Hence Theorem 5.1 just proves a mean value theorem for such

a “generalized” divisor function. Since for the classical divisor function, the error

is believed to be O(N1/4+ε). It is very natural to pose such a conjecture for our

error ∆a(N). The author suspects that following the van der Corput method on

exponential sums as in the classical case, one can show ∆a(N) = Oa(N
1/3−δ) for

some δ > 0.

Remark 5.1. It’s not hard to adapt the method in this chapter in order to deal

with equations like

axy − bx− cy = n

and prove similar asymptotic formulas.

5.2 Preliminary Lemmas

We state several lemmas before embarking on the proof of Theorem 1.

Lemma 5.2. Let T ≥ 2, then we have

∑
χ

mod a

∫ T

−T
|L(

1

2
+ it, χ)|2dt� φ2(a)

a
T log T.
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A proof of this lemma can be found for example in Montgomery [27].

Lemma 5.3. Let a be a positive integer greater than 1 and w > 0, we have

∑
n≤w

n≡−1 mod a

1

n
=

1

a

(
logw −

Γ′(a−1
a

)

Γ(a−1
a

)
− log a

)
+O(1/w).

Proof. By Abel summation, the left hand side above is

∑
n≤w

n≡−1 mod a

1

n
=

⌊
w + 1

a

⌋
1

w
+

∫ w

1

⌊
t+ 1

a

⌋
1

t2
dt

=
1

a
+

∫ w

1

t+ 1

at2
dt−

∫ w

1

{
t+ 1

a

}
dt

t2
+O(1/w)

=
1

a

(
logw + 2−

∫ ∞
1

a

{
t+ 1

a

}
dt

t2

)
+O(1/w).

Recall that the digamma function ψ(z) is defined as Γ′

Γ
(z), and ψ′(z) has a series

expansion
∑∞

k=0
1

(z+k)2 . So

∫ ∞
1

(
a

{
t+ 1

a

}
− {t} − 1

)
dt

t2
=

∞∑
h=0

∫ a

0

(
a

{
r + 1

a

}
− {r} − 1

)
dr

(ah+ r)2

=
1

a2

∫ a

0

(
a

{
r + 1

a

}
− {r} − 1

)
ψ′
(r
a

)
dr

(5.7)

Notice that

a

{
r + 1

a

}
− {r} − 1 =



0, if 0 ≤ r < 1

1, if 1 ≤ r < 2
...

...

a− 2, if a− 2 ≤ r < a− 1

−1, if a− 1 ≤ r < a
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Hence (5.7) is equal to

1

a2

(
a−2∑
l=1

l

∫ 1

0

ψ′
(
l + r

a

)
dr −

∫ 1

0

ψ′
(
a− 1 + r

a

)
dr

)

=
1

a

(
a−2∑
l=1

l

(
ψ

(
l + 1

a

)
− ψ

(
l

a

))
−
(
ψ(1)− ψ

(
a− 1

a

)))

= ψ

(
a− 1

a

)
− 1

a

a∑
l=1

ψ

(
l

a

)
= ψ

(
a− 1

a

)
+ log a+ γ

The last equality follows from a well known property of the digamma function ψ.

Now the lemma is established after the observation γ = 2−
∫∞

1
{t}+1
t2

dt.

Lemma 5.4. Let a be a positive integer greater than 1, then we have

1

φ(a)

∑
χ 6=χ0
mod a

χ̄(−1)L(1, χ) = −1

a

Γ′(a−1
a

)

Γ(a−1
a

)
+
∑
p|a

log p

p− 1
+ log a+ γ

 .

Proof. Let w be large compared to a (eventually we will let w goes to ∞). Then

for non-principal characters χ modulo a, by Abel summation

L(1, χ) =
∑
n≤w

χ(n)

n
+O(a/w).

Hence

1

φ(a)

∑
χ 6=χ0
mod a

χ̄(−1)L(1, χ)

=
1

φ(a)

∑
χ 6=χ0
mod a

χ̄(−1)
∑
n≤w

χ(n)

n
+O(a/w).



67

The main term on the right is

1

φ(a)

∑
χ

mod a

χ̄(−1)
∑
n≤w

χ(n)

n
− 1

φ(a)

∑
n≤w

(n,a)=1

1

n
.

We have

∑
n≤w

(n,a)=1

1

n
=
∑
m|a

µ(m)

m

∑
n≤w/m

1

n

=
∑
m|a

µ(m)

m

(
log(w/m) + γ +O(m/w)

)

=
φ(a)

a

(
logw +

∑
p|a

log p

p− 1
+ γ

)
+O

(
d(a)/w

)
.

Here we are using the fact that −
∑

m|a
µ(m)
m

logm = φ(a)
a

∑
p|a

log p
p−1

, this is because

−
∑
m|a

µ(m)

m
logm =

∑
p|a

log p

p

∑
k|a/p

(p,k)=1

µ(k)

k

=
∑
p|a

log p

p

∏
p′|a
p′ 6=p

(
1− 1

p′

)

=
∑
p|a

log p

p

(
1

1− 1
p

)∏
p′|a

(
1− 1

p′

)
=

φ(a)

a

∑
p|a

log p

p− 1
.

On the other hand, we have

1

φ(a)

∑
χ

mod a

χ̄(−1)
∑
n≤w

χ(n)

n
=

∑
n≤w

n≡−1 mod a

1

n
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And by lemma 5.3, this is

1

a

(
logw −

Γ′(a−1
a

)

Γ(a−1
a

)
− log a

)
+O(1/w).

Thus we have shown that

1

φ(a)

∑
χ 6=χ0
mod a

χ̄(−1)L(1, χ)

=
1

a

(
logw −

Γ′(a−1
a

)

Γ(a−1
a

)
− log a

)
− 1

a

(
logw +

∑
p|a

log p

p− 1
+ γ

)
+O(a/w)

= −1

a

Γ′(a−1
a

)

Γ(a−1
a

)
+
∑
p|a

log p

p− 1
+ log a+ γ

+O(a/w)

Now the lemma is established when we let w →∞ in the above.

5.3 Proof of Theorem 5.1

The starting point of the proof is the following observation. One can rewrite

equation (5.4) in the following form

(ax− 1)(ay − 1) = an+ 1. (5.8)

Namely we are going to count the following quantities,

Ra(n) = Card
{

(x, y) ∈ N2 : (ax− 1)(ay − 1) = an+ 1
}

and

Sa(N) =
∑

0≤n≤N

Ra(n).

After the change of variables u = ax− 1 and v = ay − 1, it follows that Ra(n)

is the number of ordered pairs of natural numbers u, v such that uv = an+ 1 and

u ≡ v ≡ −1 (mod a).

Now the residue class u ≡ −1 (mod a) and v ≡ −1 (mod a) are readily isolated
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via the orthogonality of the Dirichlet characters χ modulo a. Thus we have

Sa(N)

=
∑

0≤n≤N

∑
uv=an+1

u≡−1 mod a
v≡−1 mod a

1

=
∑
m≤M

∑
uv=m

u≡−1 mod a
v≡−1 mod a

1

=
1

φ2(a)

∑
χ1

mod a

∑
χ2

mod a

χ̄1(−1)χ̄2(−1)
∑
m≤M

∑
uv=m

χ1(u)χ2(v),

where M = aN + 1.

Let

am(χ1, χ2) =
∑
uv=m

χ1(u)χ2(v).

Then we have

Sa(N) =
1

φ2(a)

∑
χ1

mod a

∑
χ2

mod a

χ̄1(−1)χ̄2(−1)
∑
m≤M

am(χ1, χ2).

We analyze this expression through the properties of the Dirichlet series

fχ1,χ2(s) =
∞∑
m=1

am(χ1, χ2)

ns
= L(s, χ1)L(s, χ2). (5.9)

This affords an analytic continuation of fχ1,χ2 to the whole complex plane.

By a quantitative version of Perron’s formula, as in Theorem 5.2 of MV [28]

for example, we obtain

∑′

m≤M

am(χ1, χ2) =
1

2πi

∫ σ0+iT

σ0−iT
fχ1,χ2(s)

M s

s
ds+R(χ1, χ2),

where σ0 > 1 and

R(χ1, χ2)�
∑

M
2
<m<2M
m6=M

|am(χ1, χ2)|min
(

1, M
T |m−M |

)
+4σ0+Mσ0

T

∑∞
m=1

|am(χ1,χ2)|
mσ0

.
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Here
∑′

means that when M is an integer, the term aM(χ1, χ2) is counted with

weight 1
2
.

Let σ0 = 1 + 1
logM

. By (5.9) we have |am(χ1, χ2)| ≤ d(n). Thus

∞∑
m=1

|am(χ1, χ2)|
nσ0

� ζ(σ0)2 � (logB)2

and so R(χ1, χ2)�ε M
1+εT−1, for any ε > 0. Hence

∑
m≤M

am(χ1, χ2) =
1

2πi

∫ σ0+iT

σ0−iT
fχ1,χ2(s)

M s

s
ds+O

((
M

T
+ 1

)
M ε

)
.

The error term here is

�M ε

provided that

T ≥M.

The integrand is a meromorphic function in the complex plane and is analytic for

all s with <s ≥ 1
2

except for a possible pole of finite order at s = 1. Suppose that

T ≥ 4. By the residue theorem we have

1

2πi

∫ σ0+iT

σ0−iT
fχ1,χ2(s)

M s

s
ds

=
1

2πi

(∫ 1
2
−iT

σ0−iT
+

∫ 1
2

+iT

1
2
−iT

+

∫ σ0+iT

1
2

+iT

)
L(s, χ1)L(s, χ2)M s

s
ds

+ Ress=1

(
L(s, χ1)L(s, χ2)

M s

s

)
.

Hence, by Lemmas 2.3, Lemma 2.4 and Lemma 2.5, the contribution from the

horizontal paths is

� (log aT )2 M

T logM
+

(aT )ε

T

∫ 1

1/2

(aT )1−σMσdσ

� T−1(aT )εM + T−1(aT )1/2+εM1/2
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and provided that T ≥M5 this is

�M−1.

On the other hand, the contribution from the vertical path on the right is

bounded by

M
1
2

∑
2k≤T

2−k
∫ 2k+1

2k
|L(1

2
+ it, χ1)L(1

2
+ it, χ2)|dt.

And by Lemma 5.2

∑
χ1,χ2
mod a

χ̄1(−1)χ̄2(−1)
1

2πi

∫ 1
2

+iT

1
2
−iT

L(s, χ1)L(s, χ2)M s

s
ds

�M
1
2

∑
2k≤T

2−k
∫ 2k+1

2k

( ∑
χ

mod a

|L(1
2

+ it, χ)|
)2

dt

�M
1
2

∑
2k≤T

2−kφ(a)
∑
χ

mod a

∫ 2k+1

−2k+1

|L(1
2

+ it, χ)|2dt

�M
1
2

∑
2k≤T

φ3(a)

a
k

� φ3(a)

a
M

1
2 (logM)2

on taking

T = M5.

Hence we obtain

Sa(N) =
1

φ2(a)

∑
χ1

mod a

∑
χ2

mod a

χ̄1(−1)χ̄2(−1)Ress=1

(
fχ1,χ2(s)

M s

s

)
+ ∆a(N)

where

∆a(N)� φ(a)

a

√
M(logM)2 � φ(a)

√
N

a

(
log(aN)

)2

. (5.10)

It remains to compute the residue at s = 1.

By (5.9) there are naturally two cases, namely
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(i) χ1 = χ2 = χ0;

(ii) only one of χ1 and χ2 is equal to χ0 while the other one is equal to χ 6= χ0.

In the latter case the integrand has a simple pole at s = 1 and the residue is

∏
p|a

(
1− 1

p

)
L(1, χ)(aN + 1) = φ(a)L(1, χ)N +

φ(a)

a
L(1, χ).

By lemma 5.4, the sum over χ for the second term above is small, hence can be

absorbed in ∆a(N). While in the former case, the integrand has a double pole at

s = 1 and the residue is

∏
p|a

(
1− 1

p

)2 (
M logM −M

)
.

Hence we have shown that

Sa(N) = 1
a2

(
(aN + 1) log(aN + 1)− aN − 1

)
+

( 2

φ(a)

∑
χ 6=χ0
mod a

χ̄(−1)L(1, χ)
)
N + ∆a(N).

Now by lemma 5.4, this is

1

a

(
N logN − C(a)N

)
+ ∆a(N)

where C(a) and ∆a(N) are given by (5.5) and (5.6) respectively.

This completes the proof of Theorem 5.1.

�



Appendix A
The equivalence of Erdős’ and

Straus’ conjectures

Proposition A.1. When n > 2, then Equation (1.2)

a

n
=

1

x
+

1

y
+

1

z

has positive integer solutions if and only if it has pairwise distinct positive integer

solutions.

Proof. We apparently have
4

3
= 1 +

1

4
+

1

12

and
4

4
=

1

2
+

1

3
+

1

6

Since every integer larger than 2 is either a multiple of 4 or a multiple of some

odd prime, we just need to prove when p > 3 is a prime the above equation has a

solution implies that it has a pairwise distinct solution. Assume we have positive

integers x, y, z such that

4xyz = p(xy + yz + zx).

So p|xyz. Since p cannot divide all of x, y, z, without loss of generality, we assume

either (x, p) = 1, p|y and p|z or (x, p) = (y, p) = 1 and p|z. In the former case, if
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y 6= z then we are done. Otherwise, we assume y = z = tp and we have

4x− p
x

=
2

t
.

Since 4x− p is odd, we have 2|t. Let t = 2t1, so 4
p

= 1
x

+ 1
t1p

. If t1 = 1, then p = 3x

which contradicts our assumption. Hence t1 > 1 and we have

4

p
=

1

x
+

1

(t1 + 1)p
+

1

t1(t1 + 1)p
.

Notice that the denominators on the right are indeed pairwise distinct.

In the latter case, if x 6= y then we are done. So suppose x = y and z = tp,

and we have 4
p

= 2
x

+ 1
tp

. If 2|x, then x = 2s, s > 1. Therefore

2

x
=

1

s+ 1
+

1

s(s+ 1)
, s+ 1 6= s(s+ 1).

If x = 2s+ 1, then

2

x
=

1

s+ 1
+

1

(s+ 1)(2s+ 1)
, s+ 1 6= (s+ 1)(2s+ 1).

In either equation, if one of the denominator on the right is equal to tp, then we

are in the situation as in the former case, and we are done. Otherwise, if neither

of the two denominators is equal to tp, we are still done. Hence this finishes the

proof.

Remark A.1. This proposition was first proved by Z. Ke, Q. Sun and X. Zhang [22]

in 1964. But the proof here was worked out independently by the author when he

was doing his undergraduate thesis.



Appendix B
Some elementary results on soluble

residue classes

We begin with Lemma 4.3, which, for completeness, we reproduce here.

Proposition B.1. For positive integers a, n with (a, n) = 1, the equation a
n

= 1
x
+ 1
y

has positive integer solutions if and only if there exist two factors s and t of n such

that s+ t is divisible by a.

The following corollaries follow immediately.

Corollary B.2. If p is a prime and a is a positive integer with (a, p) = 1, then a
p

is the sum of two unit fractions if and only if p ≡ −1 (mod a).

Corollary B.3. 4
n

is the sum of two unit fractions if and only if n is even or n

has at least one prime factor congruent to 3 modulo 4.

Observing that in order to establish the Erdős-Straus-Schinzel conjecture, it

suffices to show the conjecture holds for prime numbers n. Hence without loss of

generality, we just need to deal with the case that n is a prime.

Now, we can apply Proposition B.1 to get a sufficient condition for the conjec-

ture.

Proposition B.4. For any positive integer n, if there exist a positive integer k

and its two factors s, t such that

sn+ t ≡ 0 (mod ak − 1)
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then the equation a
n

= 1
x

+ 1
y

+ 1
z

has positive integer solutions.

Proof. Since sn and t are divisors of kn and ak−1|sn+t, then by Proposition B.1 we

know ak−1
kn

= 1
x

+ 1
y

has positive integer solutions in x, y. Hence a
n

= 1
x

+ 1
y

+ 1
kn

.

This criterion has a convenient equivalent form.

Proposition B.5. Given positive integers a and k, and any factor b of k2, if a

positive integer n satisfies n ≡ −ab (mod ak− 1) or n ≡ 0 (mod ak− 1), then the

equation a
n

= 1
x

+ 1
y

+ 1
z

has positive integer solutions.

Proof. In the case that n ≡ −ab (mod ak − 1), we have b = s′t with s′|k and t|k.

Let k = ss′, so we have

sn ≡ −asb ≡ −ass′t ≡ −akt ≡ −t (mod ak − 1)

and we are done by Proposition B.4.

If n ≡ 0 (mod ak− 1), then by Proposition B.1 we know a
n

= 1
x

+ 1
y

is solvable,

and hence a
n

= 1
x

+ 1
2y

+ 1
2y

.

From now on, for the sake of convenience, instead of saying that for a given n,

the equation a
n

= 1
x

+ 1
y

+ 1
z

has positive integer solutions, we will simply say n is

soluble or solvable (if in the context the value of a is clear).

We explore a classical result by Mordell which can be obtained easily from the

above propositions.

Corollary B.6 (Mordell). When a = 4, except for n ≡ 1, 121, 169, 289, 361, 529

mod 840, n is always soluble.

Proof. Since 4
2

= 1 + 1
2

+ 1
2
, so n ≡ 0, 2, 4, 6 (mod 8) are soluble. By Proposition

B.5, we know n ≡ −1 (mod 4) and n ≡ −16k ≡ −2 (mod 8k − 1) are soluble, so

n ≡ 3, 5, 7 (mod 8) are soluble.

By setting k = 1, 2, 4 in Proposition B.5, we know that 0, 2 (mod 3), 0, 3, 5, 6

(mod 7) and 7, 11, 13, 14 (mod 15) are soluble residue classes. Besides 4
5

= 1
2

+
1
5

+ 1
10

, so we have 0, 2, 3 (mod 5) are soluble residue classes. Now the conclu-

sion follows by applying Chinese remainder theorem to the systems of congruence
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equations 
n ≡ 1 (mod 8)

n ≡ 1 (mod 3)

n ≡ 1, 4 (mod 5)

n ≡ 1, 2, 4 (mod 7)

We see from this elementary result, that it is quite easy to sieve out many

integers through the soluble residue classes in Proposition B.5. Nevertheless, it is

not clear at all whether these congruent classes can cover all the natural numbers,

in which case the Erdős-Straus-Schinzel conjecture would have been solved. But we

should be careful, for that all the soluble residue classes obtained in Proposition B.5

are quadratic non-residue classes, which means that squares can never be sieved

out by this argument. Fortunately, as remarked before, it suffices to deal with

primes. So eventually the conjecture can be solved by showing that all the primes

are covered by soluble residue classes. However, very little is known about infinite

covering congruent systems.

Proposition B.7. Let b be a divisor of k2, then −4b is a quadratic non-residue

modulo 4k − 1.

Proof. We invoke the Jacobi symbol
( ·
·

)
which is a natural generalization of the

Legrend symbol to composite modulus. Similar to the Gauss quadratic reciprocity,

the Jacobi symbol also admits the following reciprocity law:

For odd numbers a and b, we have

(i)
(−1
a

)
= (−1)

a−1
2

(ii)
(

2
a

)
= (−1)

a2−1
8

(iii)
(
a
b

)
= (−1)

a−1
2

b−1
2

(
b
a

)
If the Jacobi symbol is equal to 1 it does not necessarily catch quadratic residue

but if instead it is equal to -1 it certainly picks up quadratic non-residue.

Now let b = 2αc, with c odd. So(
−4b

4k − 1

)
=

(
−b

4k − 1

)
=

(
−1

4k − 1

)(
2

4k − 1

)α(
c

4k − 1

)
.
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Hitherto we have (
−1

4k − 1

)
= (−1)

4k−2
2 = (−1)2k−1 = −1

and (
2

4k − 1

)α
= (−1)

16k2−8k
8

α = (−1)k(2k−1)α

and(
c

4k − 1

)
= (−1)

c−1
2

4k−2
2

(
4k − 1

c

)
= (−1)

c−1
2

(
−1

c

)
= (−1)

c−1
2

+ c+1
2 = 1.

Also notice that if k is odd then α = 0, hence (−1)k(2k−1)α = 1 regardless of the

parity of k. Therefore, we conclude that(
−4b

4k − 1

)
= −1

i.e. −4b is a quadratic non-residue modulo 4k − 1.

Remark B.1. Result of similar flavor has been established by Schinzel [31]. The

same conclusion was proved in Elsholtz and Tao [7], but this proof was known to

the author when he was an undergraduate.

Remark B.2. The original Erdős-Straus-Schinzel conjecture requires that solutions

be positive integers. What if we relax them to be just integers? In 1978 Straus and

Subbarao [33] proved that when a < 40, the equation a
n

= 1
x

+ 1
y

+ 1
z

has integer

solutions for sufficiently large n. Their proof is somewhat tricky and it is not clear

how to get it to work for all a.

We have seen that there are many soluble residue classes for the conjecture.

Here is a result that is quantitative in nature.

Proposition B.8 (Vaughan, 1970). For each modulus ak − 1, there are at least
1
2
d(k2) distinct soluble residue classes.

Proof. Notice that k2 has
[

1
2
d(k2)

]
factors that are less than k, no pair among

which are congruent to each other modulo ak − 1. Now the desired result follows

from Proposition B.5.
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In fact, instead of writing 1
2
d(k2), Vaughan wrote 1

2

∑
t|k |µ(t)|d(k

t
), where µ(·)

is the Mobius function. But it turns out that Vaughan’s version coincides with the

version stated here, by virtue of d(k2) =
∑

t|k |µ(t)|d(k
t
), which is a good exercise

in elementary number theory. This proposition is the starting point of Vaughan’s

1970 paper [38], in which he obtained by far the best upper bound estimate of

Ea,3(N). One could possibly improve the above result a little bit. Actually we

have the following conjecture:

Conjecture B.9. When k is not divisible by a, no pair of distinct factors of k2

are congruent to each other modulo ak − 1.

Combining this conjecture with Proposition B.5, we immediately see that when

k is not divisible by a there are d(k2) distinct soluble residue classes module ak−1.

Also we remember that this is the largest possible number we can get through this

argument. It is plausible that we am just missing some simple argument to prove

the above conjecture. Anyway, for a = 4 we have tested it for k ≤ 108, which

strongly suggests its validity. Even with the conjecture, it is not possible to go

much further along this approach. After all, Vaughan’s version is good enough to

obtain the best upper bound so far for Ea,3(N).
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[26] Misiurewicz M., Ungelöste Probleme, Elem. Math., 21(1966) 90.

[27] Montgomery H.L., Topics in Multiplicative Number Theory, Springer-Verlag,
1971.



82

[28] Montgomery H.L. and Vaughan R.C., Multiplicative Number Theory I. Clas-
sical Theory, Cambridge University Press, 2007.

[29] Nakayama M., On the decomposition of a rational number into
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