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Abstract

This dissertation is concerned with feature screening and variable selection in ultra-

high dimensional data analysis, where the number of predictors, p, greatly exceeds

the sample size n. That is, p � n. Ultrahigh dimensional data analysis has be-

come increasingly important in diverse fields of scientific fields, such as genetics

and finance.

In Chapter 3, we develop a sure independence screening procedure based on

the distance correlation learning (DC-SIS, for short) to select important predictors

for ultrahigh dimensional data. The DC-SIS can be implemented as easily as the

sure independence screening procedure based on the Pearson correlation (SIS, for

short) proposed by Fan and Lv (2008). However, the DC-SIS can significantly

improve the SIS. Fan and Lv (2008) established the sure screening property for

the SIS based on linear models. That is, with a proper threshold, it can select

all important predictors with probability approaching to one as n → ∞. We

show that the sure screening property is valid for the DC-SIS under more general

settings including linear models. Furthermore, the implementation of the DC-

SIS does not require model specification (e.g., linear model or generalized linear
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model) for responses or predictors. This is a very appealing property in ultrahigh

dimensional data analysis. Moreover, the DC-SIS can be used directly to screen

grouped predictor variables and for multivariate response variables. We establish

its sure screening property for the DC-SIS, and conduct simulations to examine

its finite sample performance. An iterative procedure DC-ISIS is also proposed to

enhance the finite sample performance. Numerical comparison indicates that the

DC-SIS performs much better than the SIS in various models. We also illustrate

the performance of DC-SIS and DC-ISIS through two real data examples.

In Chapter 4, we propose a two-stage feature screening and variable selec-

tion procedure to study the estimation of the index parameter in heteroscedastic

single-index models with ultrahigh dimensional covariates. In the screening stage,

we propose a robust independent ranking and screening (RIRS) procedure to re-

duce the ultrahigh dimensionality of the covariates to a moderate scale. Aside

from its computational simplicity, the RIRS procedure maintains the ranking con-

sistency property in the terminology of Zhu, Li, Li and Zhu (2011) and the sure

screening property in the terminology of Fan and Lv (2008). Therefore, in an

asymptotic sense the RIRS procedure guarantees to retain all the truly active pre-

dictors. However, some inactive predictors may be selected as well. In the cleaning

stage, we propose penalized linear quantile regression to refine the selection of the

preceding RIRS procedure, and to simultaneously estimate the direction of the

index parameter. We establish the consistency and the oracle property of the re-

sulting penalized estimator, and demonstrate through comprehensive numerical

studies that the two-stage estimation procedure is computationally expedient and

presents an outstanding finite sample performance.
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Chapter 1
Introduction

1.1 Background

Various regularization methods have been proposed for feature selection in high

dimensional data analysis, which has become increasingly frequent and important

in various research fields. These methods include, but are not limited to, the

LASSO (Tibshirani, 1996), the SCAD (Fan and Li, 2001; Kim, Choi and Oh, 2008;

Zou and Li, 2008), the LARS algorithm (Efron, Hastie, Johnstone and Tibshirani,

2004), the elastic net (Zou and Hastie, 2005; Zou and Zhang, 2009), the adaptive

LASSO (Zou, 2006) and the Dantzig selector (Candes and Tao, 2007). All these

methods allow the number of predictors to be greater than the sample size, and

perform quite well for high dimensional data.

With the advent of modern technology for data collection, researchers are able

to collect ultrahigh dimensional data at relatively low cost in diverse fields of sci-

entific research. The aforementioned regularization methods may not perform well

for ultrahigh dimensional data due to the simultaneous challenges of computa-

tional expediency, statistical accuracy and algorithmic stability (Fan, Samworth

and Wu, 2009). These challenges call for new statistical modeling techniques for
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ultrahigh dimensional data. Fan and Lv (2008) proposed the sure independence

screening (SIS) and showed that the Pearson correlation ranking procedure pos-

sesses a sure screening property for linear regressions with Gaussian predictors

and responses. That is, all truly important predictors can be selected with prob-

ability approaching one as the sample size diverges to ∞. Hall and Miller (2009)

extended Pearson correlation learning by considering polynomial transformations

of predictors. To rank the importance of each predictor, they suggested a boot-

strap procedure. However, how to choose an optimal transformation remains an

open issue and is often difficult. Fan, Samworth and Wu (2009) and Fan and

Song (2010) proposed a more general version of independent learning which ranks

the maximum marginal likelihood estimators or the maximum marginal likelihood

for generalized linear models. Fan, Feng and Song (2011) considered nonpara-

metric independence screening in sparse ultrahigh dimensional additive models.

They suggested estimating the nonparametric components marginally with spline

approximation, and ranking the importance of predictors using the magnitude of

nonparametric components. They also demonstrated that this procedure possesses

the sure screening property with vanishing false selection rate. Wang (2009) also

proposed a variable screening method, called forward regression (FR), to identify

the relevant predictors consistently even when p� n. Zhu, Li, Li and Zhu (2011)

proposed a sure independent ranking and screening (SIRS) procedure to screen

significant predictors in multi-index models. They further show that under lin-

earity condition assumption on the predictor vector, the SIRS enjoys the ranking

consistency property (i.e, the SIRS can rank the important predictors in the top

asymptotically). Ji and Jin (2012) proposed the two-stage method: screening by

Univariate thresholding and cleaning by Penalized least squares for Selecting vari-

ables, namely UPS. They further theoretically demonstrated that under certain
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settings, the UPS can outperform the LASSO and subset selection, both of which

are one-stage approaches. This motivates us to develop more effective screening

procedures using two-stage approaches for ultrahigh dimensional data analysis.

1.2 Contribution

This dissertation consists of two main parts based on two research manuscripts. In

Chapter 3, we propose a new feature screening procedure for ultrahigh dimensional

data based on distance correlation. Szekely, Rizzo and Bakirov (2007) and Szekely

and Rizzo (2009) showed that the distance correlation of two random vectors equals

to zero if and only if these two random vectors are independent. Furthermore, the

distance correlation of two univariate normal random variables is a strictly increas-

ing function of the absolute value of the Pearson correlation of these two normal

random variables. These two remarkable properties motivate us to use the distance

correlation for feature screening in ultrahigh dimensional data. We refer to our

Sure Independence Screening procedure based on the Distance Correlation as the

DC-SIS. The DC-SIS can be implemented as easily as the SIS. It is equivalent to

the SIS when both the response and predictor variables are normally distributed.

However, the DC-SIS has appealing features that existing screening procedures

including SIS do not possess. For instance, none of the aforementioned screening

procedures can handle grouped predictors or multivariate responses. The proposed

DC-SIS can be directly employed for screening grouped variables, and it can be di-

rectly utilized for ultrahigh dimensional data with multivariate responses. Feature

screening for multivariate responses and/or grouped predictors is of great interest

in pathway analyses. As in Chen, et al. (2011), pathway here means sets of pro-

teins that are relevant to specific biological functions without regard to the state of

knowledge concerning the interplay among such protein. Since proteins may work
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interactively to perform various biological functions, pathway analyses complement

the marginal association analyses for individual protein, and aim to detect a priori

defined set of proteins that are associated with phenotypes of interest. There is

a surged interest in pathway analyses in the recent literature (Ashburner, et al.,

2000; Mootha, et al., 2003; Subramanian, et al., 2005; Tian, et al., 2005; Bild, et

al., 2006; Efron and Tibsirani, 2007; Jones, et al., 2008). Thus, it is of importance

to develop feature screening procedures for multivariate responses and/or grouped

predictors.

We systematically study the theoretic properties of the DC-SIS, and prove that

the DC-SIS possesses the sure screening property in the terminology of Fan and

Lv (2008) under very general model settings including linear regression models, for

which Fan and Lv (2008) established the sure screening property of the SIS. The

sure screening property is a desirable property for feature screening in ultrahigh

dimensional data. Even importantly, the DC-SIS can be used for screening features

without specifying a regression model between the response and the predictors.

Compared with the model-based screening procedures (Fan and Lv, 2008; Fan,

Samworth and Wu, 2009; Wang, 2009; Fan and Song, 2010; Fan, Feng and Song,

2011), the DC-SIS is a model-free screening procedure. This virtue makes the

proposed procedure robust to model mis-specification. This is a very appealing

feature of the proposed procedure in that it may be very difficult in specifying

an appropriate regression model for the response and the predictors with little

information about the actual model in ultrahigh dimensional data.

We conduct Monte Carlo simulation studies to numerically compare the DC-

SIS with the SIS and SIRS. Our simulation results indicate that the DC-SIS can

significantly outperform the SIS and the SIRS under many model settings. We

also assess the performance of the DC-SIS as a grouped variable screener, and the
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simulation results show that the DC-SIS performs very well. We further examine

the performance of the DC-SIS for feature screening in ultrahigh dimensional data

with multivariate responses; simulation results demonstrate that screening features

for multiple responses jointly may have dramatic advantage over screening features

with each response separately. Fan and Lv (2008) developed an iterative SIS (ISIS)

which performs much better than the SIS when some important predictors are

marginally independent of the response. The development of DC-ISIS is indeed

challenging and interesting because, unlike the SIS, we do not want to specify a

regression model for the response and the predictors. Following Zhu, Li, Li and

Zhu (2011), we further propose an iterative DC-SIS procedure (DC-ISIS). We also

conduct a Monte Carlo simulation to examine the finite sample performance of

DC-ISIS and demonstrate that the DC-ISIS is a dramatic improvement over the

DC-SIS.

In Chapter 4, we consider heteroscedastic single-index model which assumes

that both the mean and the variance functions of Y vary with the values of x. To

be precise, we assume that E(Y | x) = G(xTβ) and var(Y | x) = σ2(xTβ). Follow-

ing the convention of the literature, we can write equivalently the heteroscedastic

single-index model as follows,

Y = G(xTβ) + σ(xTβ)ε. (1.1)

For identification purpose, we assume the independent error term ε has zero mean

and unit variance. Because both G(·) and σ(·) are unknown functions, the index

parameter β is not identifiable. Thus, the direction of β, rather than its true value,

is of primary interest in the literature. Our goal is to identify the indices of the

zero elements of β and to estimate the magnitudes of the nonzero elements of β

up to a proportionality constant.
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We develop a two-stage feature screening and variable selection procedure for

ultrahigh dimensional heteroscedastic single-index models. In the first stage, a

novel robust independent ranking and screening procedure (RIRS, for short) is

proposed to reduce ultrahigh dimensionality down to a moderate scale for a gen-

eral framework including heteroscedastic single-index model (1.1). Unlike the SIS

(Fan and Lv, 2008) which utilizes the marginal Pearson correlation between each

predictor and the response, the RIRS defines the marginal utility as the marginal

Pearson correlation between each predictor and the rank of the response. Thus,

the RIRS is insensitive to the extreme values and outliers in the response variable.

Then, we establish both the ranking consistency property in the terminology of

Zhu, Li, Li and Zhu (2011) and the sure screening property in the terminology of

Fan and Lv (2008) for the proposed RIRS under mild conditions. Monte Carlo

simulation studies and real data analysis demonstrate that the RIRS performs very

well, especially in the presence of heteroscedasticity and outliers in the response,

compared to the existing independence screening procedures, such as SIS by Fan

and Lv (2008) and DC-SIS by Li, Zhong and Zhu (2012).

In the second stage, we propose to apply penalized linear quantile regression

to further exclude unimportant covariates selected by the screening stage and to

estimate the direction of the index parameter in the heteroscedastic single-index

models. The penalized linear quantile regression inherits the merit of RIRS in

the sense that it is also robust to the extreme values and outliers in the response.

We remark here that, the underlying heteroscedastic single-index models are pos-

sibly nonlinear, however, the resultant estimator from penalized linear quantile

regression is still consistent up to a proportionality constant, and has the ora-

cle property in the terminology of Fan and Li (2001). The two-stage estimation

procedure avoids estimating the nonlinear functions, and is very computationally
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efficient in ultrahigh dimensional setting. We also demonstrate through compre-

hensive numerical studies that the whole procedure presents an outstanding finite

sample performance.

1.3 Organization

The dissertation is organized as follows. In Chapter 2, the existing variable se-

lection procedures for high dimensional data analysis and independence screening

methods for ultrahigh dimensional data analysis are reviewed as well as their the-

oretic properties. The preliminary study on distance correlation is introduced in

this chapter. In Chapter 3, we propose the DC-SIS and study its theoretic sure

screening property. An iterative independence screening procedure (DC-ISIS) is

also proposed to further enhance the finite sample performance. In Chapter 4,

we propose a robust two-stage feature screening and variable selection procedure

for ultrahigh dimensional heteroscedastic single-index models, and examine the

theoretic properties and the finite sample performance via comprehensive numer-

ical studies. Concluding remarks and future research are discussed in Chapter 5.

Finally, the references and the curriculum vitae are provided in the end.



Chapter 2
Literature Review

Ultrahigh dimensional data analysis has become increasingly frequent and popular

due to the modern technologies and methodologies of data collection in diverse

scientific fields such as microarrays, genomics and finance. In the ultrahigh di-

mensional data, the number of predictors, say p, is usually much larger than the

sample size, say n. That is, p� n. In particular, p = O(exp(αn)) with α > 0. It

is certainly challenging to select important predictors from ultrahigh dimensional

candidates using well-established variable selection methods, such as best subset

selection, the LASSO (Tibshirani, 1996), the SCAD (Fan and Li, 2001; Kim, Choi

and Oh, 2008; Zou and Li, 2008) and among others. These existing methods may

not perform well due to computational expediency, statistical accuracy and algo-

rithmic stability (Fan, Samworth and Wu, 2009).

Recently researchers advocated a two-stage variable selection procedure, screen-

ing and cleaning (Ji and Jin, 2012), to identify important predictors in the ultrahigh

dimensional analysis. At the screening stage, marginal screening procedures are

proposed to remove as many irrelevant variables as possible to reduce the dimen-

sionality from ultrahigh p to a relatively large scale d, which can be less than n.

Therefore, the marginal screening procedures can dramatically reduce the compu-
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tational complexity. At the same time, the screening procedures can possess some

favorable theoretic properties, such as the sure screening property (Fan and Lv,

2008) and the ranking consistency property (Zhu, Li, Li and Zhu, 2011). At the

cleaning stage, the well-established variable selection methods, such as the LASSO

and the SCAD, are proposed to simultaneously select significant variables from the

remaining ones in the screening stage and estimate statistical effects of selected

variables.

This chapter is organized as follows. Section 2.1 reviews well-established vari-

able selection methods for linear regression models. Section 2.2 provides a brief

review of the existing independence screening methods. Section 2.3 presents the

definition of the distance correlation (Szekely, Rizzo and Bakirov, 2007) and its the-

oretic properties, based on which we will propose a new independence screening

procedure in Chapter 3.

2.1 Variable Selection Approaches

Variable selection techniques play an increasingly important role in the high di-

mensional problems. Here, the high dimensionality means that p = O(nα) with

0 < α < 1, comparing with the ultrahigh dimensionality p = O(exp(αn)) with

α > 0. At the beginning stage of statistical modeling, it is typical to include as

many as potential influential predictors into the model to reduce possible model

bias. It is natural to assume that only a subset of predictors contribute to the

response in the true model. Under this sparsity assumption, variable selection can

improve both the prediction accuracy and the interpretability of the fitted model.

Consider the linear regression model:

y = Xβ + ε, (2.1)
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where y = (Y1, . . . , Yn)T is an n × 1 vector of responses, X = (x1, . . . ,xn)T is an

n×p random design matrix, β = (β1, . . . , βp)
T is a p×1 vector of parameters, and

ε = (ε1, . . . , εn)T is an n×1 vector of independent and identically distributed(i.i.d.)

random errors. When the dimension p is large, it is natural to assume the model

is sparse. That is, only a small subset of predictors, say true predictors {Xj : βj 6=

0, j = 1, . . . , p}, contribute to the response Y .

2.1.1 Classic Variable Selection Criteria

A variable selection criterion is a statistic of a fitted model to measure the good-

ness of fit. In the past forty years, there are many literature covering this topic.

For instance, Akaike (1973) proposed the Akaike’s information criterion (AIC);

Schwartz (1978) suggested the Bayesian information criterion (BIC); Craven and

Wahba (1979) proposed the generalized cross validation statistic (GCV ); Shao

(1997) discussed the consistency and efficiency of variable selection and Miller

(2002) provided a comprehensive review of the subsect selection in regression.

Residual Sum of Squares (RSS). For the linear regression model (2.1), many

variable selection criteria are built on the residual sum of squares (RSS), which is

defined by

RSS = ‖y −Xβ̂‖2 =
n∑
i=1

(Yi − xiβ̂)2, (2.2)

where β̂ is an estimate of β. Because xiβ̂ is the fitted value of the ith observation

Yi, RSS can measure the goodness of model fit.

R2 and Adjusted R2. R2 is a commonly used statistic for model fitting , which
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is defined based on RSS by,

R2
d = 1− RSSd

RSS0

, (2.3)

where RSSd is the residual sum of squares when an intercept and d predictors are

fitted in the model, where 1 ≤ d ≤ p, and RSS0 is the RSS with only the intercept

fitted. R2 can measure how well the fitting of the d predictors is. However, R2

increases with the number of predictors in the model. Therefore, R2 cannot serve

as a variable selection criterion. The adjusted R2 can improve the performance of

R2 via adding a penalty on the increase of the number of predictors. The adjusted

R2 is also called Fisher’s A-statistic, which is defined by

Ad = 1− (1−R2
d)
n− 1

n− d
= 1− RSSd/(n− d)

RSS0/(n− 1)
. (2.4)

Fisher’s A-statistic Ad doesn’t necessarily increase when a new predictor is added

into the model. Therefore, it can be a variable selection criterion from an aspect

of model fitting.

Prediction Sum of Squares (PRESS). Allen (1974) proposed a prediction-

based variable selection criterion, the prediction sum of squares (PRESS). When

the model includes d predictors, PRESSd is defined as

PRESSd =
n∑
i=1

(Yi − Ŷid)2, (2.5)

where Ŷid is the predicted value of Yi from the fitted model using all observations

but ith one.

The idea of PRESS can be generalized to the cross validation (CV ). The idea

of CV is that we randomly set a small number of observations (the testing set)
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aside, and then use the remaining observations (the training set) to fit the model

and predict the testing dataset, and summarize the performance of the prediction.

For example, K-fold cross validation first partitions the data into K subsets with

equal size nK , and then we denote by Yk the response in the kth subset and Ŷk its

predicted value based on the other (K−1) subsets. Then, the K-fold CV, denoted

by CVK , is defined by

CVk =
1

K

K∑
k=1

‖Yk − Ŷk‖2/nK . (2.6)

If we only set one observation aside each time, this so-called leave-one-out CV is

essentially the PRESS. In practice, we can partition the dataset into K equivalent

parts, leave one part out each time and predict this part using the remaining K−1

parts. Both CV and PRESS can estimate the prediction errors of the fitted model

and provide a good measure of how well the prediction of the proposed model is.

Craven and Wahba (1979) proposed the generalized cross validation statistic

(GCV ) for the linear regression model, which is defined by

GCV =
RSSd/n

(1− d/n)2
. (2.7)

It is shown that under the mild conditions, the PRESS statistic can be asymp-

totically approximated by

PRESSd ≈
n2

(n− d)2
RSSd =

RSSd
(1− d/n)2

= nGCV, (2.8)

if n is much larger than d. Therefore, GCV is also a widely used variable selection

criterion.

Akaike’s information criterion (AIC). Akaike (1973) proposed the Akaike’s in-
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formation criterion (AIC) via considering the Kullback-Leibler mean information.

It is defined as

AIC = RSSd + 2dσ2, (2.9)

which is equivalent to the famous Mallows’ Cp (Mallows (1973)) in the linear

regression model. Mallows’ Cp of the model with d predictors is defined by

Cp =
RSSd
σ2

− (n− 2d). (2.10)

Bayesian information criterion (BIC). Schwartz (1978) suggested the Bayesian

information criterion (BIC), which is defined by

BIC = RSSd + log(n)dσ2. (2.11)

In practice, we choose a model with the smallest information criterion to achieve

variable selection. It can be shown that the BIC is a consistent criterion. That

is, when assuming there exists a true model with finite parameters, the BIC can

determine the true model as the sample size approaches the infinity. However,

the AIC may provide an overfitted model. On the other hand, the AIC is an

asymptotically loss efficient criterion (Shao, 1997), but the BIC is not.

2.1.2 Penalized Least Squares

It is demonstrated that the best subset selection with classic variable selection cri-

teria can perform well in practice, but it suffers from the highly expensive compu-

tational cost, especially for the high dimensional regression models. Furthermore,

the subset selection approaches are lack of stability and their theoretical properties
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are difficult to examine (Breiman, 1996).

To overcome these drawbacks, the penalized least squares (PLS) methods were

proposed for (2.1) via minimizing the following objective function Q(β) to obtain

the estimate β̂:

Q(β) =
1

2
‖y −Xβ‖2 + n

p∑
j=1

pλ(|βj|), (2.12)

where pλ(·) is the penalty function and λ is the regularity parameter to control the

size of the penalty.

In the rest of this section, we will discuss some well-known penalty functions

as well as how to choose a good penalty function. Moreover, we will provide the

connection between the penalized least squares (2.12) and the classic best subset

selection and the ridge regression.

2.1.2.1 Lq Penalties with 0 ≤ q ≤ 2

• L0 Penalty: Best Subset Selection.

The best subset selection with classic variable selection criteria can be written

as the form of PLS with some L0 penalty functions. Notice that choosing a

model with the minimum Cp is equivalent to minimizing the following PLS

object function

Q(β) =
1

2
‖y −Xβ‖2 + σ2

p∑
j=1

I(|βj| 6= 0). (2.13)

Motivated by (2.13), the best subset selection with classic variable selec-

tion criteria is equivalent to minimizing the object function (2.12) with the
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following L0 penalty function

pλ(|βj|) =
λ2

2
I(|βj| 6= 0) (2.14)

with different tunning parameters λ’s.

For example, AIC is asymptotically equivalent to the following PLS

Q(β) =
1

2
‖y −Xβ‖2 + n

(σ
√

2/n)2

2

p∑
j=1

I(|βj| 6= 0). (2.15)

with λ = σ
√

2/n.

BIC is asymptotically equivalent to the following PLS

Q(β) =
1

2
‖y −Xβ‖2 + n

(σ
√

log(n)/n)2

2

p∑
j=1

I(|βj| 6= 0). (2.16)

with λ = σ
√

log(n)/n.

• L2 Penalty: Ridge Regression.

The well-known ridge regression was proposed by Hoerl and Kennard (1970)

to deal with collinearity problem in predictors. Although ridge regression

cannot possess the variable selection feature, it is also a solution of penalized

least squares (2.12) with L2 penalty. That is, pλ(|βj|) = λ
2
|βj|2. Therefore,

the ridge regression estimates can be obtain via minimizing the following

PLS object function

Q(β) =
1

2
‖y −Xβ‖2 +

nλ

2

p∑
j=1

|βj|2. (2.17)

Like the ordinary least squares, the ridge regression also has the explicit
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solution

β̂ = (XTX + nλIp)
−1XTy, (2.18)

where Ip is a p× p identity matrix.

• Lq Penalty: Bridge Regression.

Frank and Friedman (1993) proposed the bridge regression with Lq penalty

via minimizing

Q(β) =
1

2
‖y −Xβ‖2 +

nλ

q

p∑
j=1

|βj|q, (2.19)

where 0 < q < 2. Lq penalty bridges L0 penalty and L2 penalty.

• L1 Penalty: LASSO.

Tibshirani (1996) proposed the Least Absolute Shrinkage and Selection Op-

erator (LASSO) to shrink coefficients and select significant predictors. The

LASSO solution is obtained by

min
β

1

2
‖y −Xβ‖2, subject to

p∑
j=1

|βj| ≤ s, (2.20)

where the tuning parameter s controls the regularization size. It is equivalent

to the penalized least squares with L1 penalty

Q(β) =
1

2
‖y −Xβ‖2 + nλ

p∑
j=1

|βj|. (2.21)

Therefore, the LASSO is a special case of the bridge regression with q = 1.

The following Figure 2.1 shows the difference of solutions via the LASSO and
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the ridge regression. In Figure 2.1(a), the LASSO solution is the first place

that the contours touch the constrained square (shaded). When the touch

happens at a corner, the LASSO produces a corresponding zero coefficient.

Figure 2.1(b) shows that the ridge regression rarely obtains a zero solution,

because the constrained circle provides no corner for contours to hit. There-

fore, the LASSO can exactly shrink some coefficients to zero and hence gives

a sparse model, while the ridge regression can only shrink coefficients.

Figure 2.1. Estimation Pictures for (a) the LASSO and (b) the Ridge Regression
(Tibshirani, 1996).

2.1.2.2 Seeking a Good Penalty Function

Penalized L0 regression can conduct variable selection, but the computation is

expensive and the result is unstable. Penalized L2 regression (ridge regression) can

shrink the estimated coefficients to make the result stable, but it cannot possess the

variable selection feature. Penalized L1 regression (LASSO) can provide shrinkage

estimation and variable selection, but the estimators are biased even for the large

true coefficients. The natural question: What kind of penalty functions are

good for variable selection and parameters estimation?
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Fan and Li (2001) advocated that good penalty functions should provide the

estimators with the following three properties in the high dimensional regression

problems:

(1) Unbiasedness: the penalized estimator should be nearly unbiased to reduce

model bias, especially for the large true coefficients.

(2) Sparsity: the penalized estimator can automatically set small estimated co-

efficients to zero to achieve variable selection and reduce model complexity.

(3) Continuity: the penalized estimator is continuous in the data to avoid insta-

bility in model prediction.

To understand the above properties and discover a good penalty function, Fan and

Li (2001) considered the linear regression model (2.1) with the design matrix X

satisfying XTX = nIp, where Ip is a p× p identity matrix. Then, (2.12) reduces to

Q(β) =
1

2
‖y −Xβ̂0‖2 +

n

2
‖β̂0 − β‖2 + n

d∑
j=1

pλ(|βj|),

=
1

2
‖y −Xβ̂0‖2 + n

d∑
j=1

{
1

2
(β̂0j − βj)2 + pλ(|βj|)

}
, (2.22)

where β̂0 = XTy/n is the ordinary least square estimate. The first term of (2.22)

is constant with respect to β, so minimizing the object Q(β) reduces to a compo-

nentwise regression problem. Consider the univariate minimization problem

θ̂(z) = arg min
θ∈R

{
1

2
(z − θ)2 + pλ(|θ|)

}
. (2.23)

Antoniadis and Fan (2001), Fan and Li (2001) examined the conditions under

which the univariate penalized estimator θ̂(z) can possess the above three proper-

ties:
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(1) Unbiasedness if p′λ(|θ|) = 0 for large |θ|,

(2) Sparsity if min
θ
{|θ|+ p′λ(|θ|)} > 0,

(3) Continuity if and only if argmin
θ 6=0

{|θ|+ p′λ(|θ|)}=0,

where pλ(θ) is nondecreasing and continuously differentiable on [0,∞), and p′λ(0)

means p′λ(0+) here. In general, a good penalty function pλ(θ) should be singular

at the origin to generate sparse estimators in variable selection, and concave when

θ is large to reduce the model bias.

2.1.2.3 The SCAD Penalty

In the principle of a good penalty function, Fan and Li (2001) showed that the

convex L1 penalty (LASSO) does not satisfy the unbiasedness condition, so it

increases the model bias. Furthermore, other Lq penalties can’t satisfies all three

conditions either. To construct a penalty function satisfying all three conditions,

Fan and Li (2001) introduced the smoothly clipped absolute deviation (SCAD)

penalty, which has the first derivative:

p′λ(θ) = λ

{
I(θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I(θ > λ)

}
, (2.24)

where a > 2 is a constant and θ > 0. The resulting PLS solution to (2.23) is given

by

θ̂(z) =



0, if |z| ≤ λ

sgn(z)(|z| − λ), if λ < |z| ≤ 2λ

{(a− 1)z − sgn(z)aλ}/(a− 2), if 2λ < |z| ≤ aλ

z, if |z| ≥ aλ

, (2.25)

where sgn(·) is the sign function.
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To compare SCAD thresholding rule (2.25) with other rules, we introduce the

well-known hard and soft thresholding rules here. Antoniadis (1997) and Fan

(1997) introduced the hard thresholding penalty

pλ(|θ|) = λ2 − (|θ| − λ)2I(|θ| < λ), (2.26)

which leads to the hard thresholding rule

θ̂(z) = zI(|z| > λ). (2.27)

The LASSO (Tibshirani, 1996) yields a soft thresholding rule

θ̂(z) = sgn(z)(|z| − λ)+. (2.28)

The Figure 2.2 displays the three different penalty functions.

Figure 2.2. Plot of Penalty Functions for (a) the Hard Thresholding Penalty, (b) the
LASSO (L1) Penalty and (c) the SCAD Penalty with λ = 2 and a = 3.7.(Fan and Li,
2001).

The Figure 2.3 shows the three different thresholding rules. In Figure 2.3(a),

the hard thresholding solution is sparse and unbiased for the large coefficients.

However, it is not continuous and hence it is unstable. That is, a small change of



21

Figure 2.3. Plot of Thresholding Rules for (a) the Hard Thresholding, (b) the Soft
(LASSO) Thresholding and (c) the SCAD Thresholding with λ = 2 and a = 3.7.(Fan
and Li, 2001).

the data may result in a big change of the estimate. In Figure 2.3(b), the LASSO

can provide the sparse model and the corresponding soft thresholding solution is

continuous. But the resulting estimates are biased for the large coefficients. In

Figure 2.3(c), the SCAD solution can satisfy all desirable properties and hence it

is better than the other two rules.

To compare the performance of those thresholding estimators, we compute

the corresponding risks R(θ) = E[θ̂(Z) − θ]2 in the fundamental model in which

Z ∼ N(θ, 1). Figure 2.4 shows the risk functions R(θ) for three commonly used

penalty functions with λ = 2. Overall, the SCAD gives the smallest risk and

performs better that the other two under this model setting.

Fan and Li (2001) has systematically studied the asymptotic oracle property

of the proposed SCAD-penalized likelihood estimator. That is, the regularization

estimation with the SCAD penalty works as well as if the correct submodel were

known, when the regularization parameter is appropriately chosen. In other words,

it can estimate the zero components to exactly zero with probability tending to 1,

and the onezero components as well as when the correct submodel is known. We

denote by β0 = (βT

10,β
T

20)T the true parameter with assuming that β20 = 0. Let
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Figure 2.4. The Risk Functions for Penalized Least Squares under the Gaussian Model
for the Hard Thresholding Penalty (Hard), the LASSO (Soft) and the SCAD With λ = 2
and a = 3.7 for the SCAD.(Fan and Li, 2001).

β̂ = (β̂
T

1 , β̂
T

2 )T be the SCAD-penalized likelihood estimator. We further denote

Σ = diag{p′′λn(|β10|), . . . , p′′λn(|βs0|)}, and

b = (p′λn(|β10|)sgn(β10), . . . , p′λn(|βs0|)sgn(βs0))T,

where s is the number of components of β10. The following theorem presents the

desirable oracle property of β̂.

Theorem 2.1.1. (Oracle Property). Let (X1, Y1), . . . , (Xn, Yn) be indepen-

dent and identically distributed, each with a density f(Xi, Yi,β) satisfying regular-

ity conditions (A)-(C) in Appendix of Fan and Li (2001). Assume that the penalty

function pλn(|θ|) satisfies that

lim inf
n→∞

lim inf
θ→0+

{
p′λn(θ)/λn

}
> 0.

If λn → n and
√
nλn → ∞ as n → ∞, then with probability tending to 1, the
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root-n consistent β̂ must satisfy:

(a) Sparsity: β̂2 = 0.

(b) Asymptotic Normality:

√
n (I1(β10) + Σ)

{
β̂1 − β10 + (I1(β10) + Σ)−1b

}
→ N {0, I1(β10)} ,

in distribution, where I1(β10) = I(β10,0), the Fisher information knowing β20 = 0.

Besides, there is a vast literature of penalty functions. For example, the adap-

tive LASSO proposed by Zou (2006), the elastic net which is a linear combination

of L1 and L2 penalties in Zou and Hastie (2005) and minimax concave penalty

(MCP) in Zhang (2010). For details, see the corresponding reference.

2.1.3 Computational Algorithms

• LQA Algorithm. When the convex penalty function (e.g. the L1 penalty)

is used, the object function (2.12) is convex and hence convex optimization

algorithms can be applied. However, some penalty functions (e.g. the SCAD

penalty) are used, and then the object is not convex any more. Fan and Li

(2001) proposed a unified and effective local quadratic approximation (LQA)

algorithm for optimizing nonconvex penalized object function. The idea is

to use the quadratic curve to locally approximate the object function. To

be specific, for a given initial value β0 = (β10, . . . , βp0)T which is not close

to 0, the penalty function pλ(·) can be locally approximated by a quadratic

function as

[pλ(|βj|)]′ = p′λ(|βj|)sgn(βj) ≈ {p′λ(|βj0|)/|βj0|}βj, for βj ≈ βj0. (2.29)
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In other words,

pλ(|βj|) ≈ pλ(|βj0|) +
1

2

p′λ(|βj0|)
|βj0|

(β2
j − β2

j0), for βj ≈ βj0. (2.30)

With the LQA, the object function (2.12) with nonconvex penalty becomes

a convex function and admit a closed-form solution. The LQA algorithm set

the sufficiently small coefficients to zero and hence produce a sparse model.

But a drawback is that once a coefficient is shrunken to zero, it will remains

zero in subsequent iterations.

• LLA Algorithm. Instead of using LQA, Zou and Li (2008) proposed a

better approximation by using the local linear approximation (LLA):

pλ(|βj|) ≈ pλ(|βj0|) + p′λ(|βj0|)(|βj| − |βj0|), for βj ≈ βj0. (2.31)

Figure 2.5 displays the local linear and local quadratic approximations to the

SCAD penalty function. Figure 2.5 also shows that the LLA is the minimum

convex majorant of the concave function on [0,∞). With the LLA, the object

function (2.12) with a nonconvex penalty becomes an iteratively reweighted

penalized L1 regression. See Zou and Li (2008) for details.

• LARS Algorithm. Efron, Hastie, Johnstone and Tibshirani (2004) pro-

posed the least angle regression (LARS) algorithm for penalized variable

selection. This fast and efficient algorithm can produce the entire LASSO

solution path {β̂(λ), λ > 0}, which is piecewise linear in λ. See Efron, Hastie,

Johnstone and Tibshirani (2004) for details.
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Figure 2.5. The Local Quadratic (dotted) and the Local Linear (dashed) Approxima-
tions to the SCAD Penalty Function (solid) With λ = 2 and a = 3.7 at a given point
|θ| = 4.(Zou and Li, 2008).

2.2 Independence Screening Procedures

2.2.1 Sure Independence Screening

For ultrahigh dimensional linear regression model, Fan and Lv (2008) proposed

the Sure Independence Screening procedure via Pearson correlation learning(SIS,

for short) to reduce the ultrahigh dimension down to a relative large scale.

Consider the same linear regression model as (2.1):

y = Xβ + ε.

Under the sparsity assumption, denote the true model asM∗ = {1 ≤ j ≤ p : βj 6=

0} with the model size s = |M∗|, where |M∗| represents the number of elements

in the set M∗. Then denote by Xs the design matrix standardized columnwisely

and define ω = (ω1, . . . , ωp)
T as follows

ω = XT

sy. (2.32)
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Note that ωj is the marginal Pearson correlation between the jth predictor Xj

and the response Y scaled by the standard deviation of the response. On the

other hand, ωj can also be considered as the least square estimated coefficient for

standardized Xj in the marginal regression y = Xjβj + ε. Therefore, |ωj| can

characterize the magnitude of marginal relationship between the predictor Xj and

the response Y .

The SIS ranks the importance of all predictors according to |ωj| and removes

those predictors weakly correlated with the response Y , i.e., ones with small abso-

lute values of ωj. To be specific, for any given γ ∈ (0, 1), the SIS selects predictors

with the first [γn] largest |ωj| and defines the submodel

M̂γ = {1 ≤ j ≤ p : |ωj| is among the first [γn] largest of all}, (2.33)

where [γn] denotes the integer part of γn.

Sure Screening Property. Define

z = Σ−1/2x, and Z = XΣ−1/2, (2.34)

where x = (X1, . . . , Xp)
T and Σ = cov(x). Fan and Lv (2008) imposed the fol-

lowing five conditions/assumptions to establish the sure screening property of the

SIS.

(C1) p > n and log p = O(nξ) for some ξ > 0.

(C2) z has a spherically symmetric distribution (Chmielewski, 1981) and the ran-

dom matrix Z is has the concentration property. That is, there exist some

constants c, c1 > 1 and C1 > 0 such that the deviation inequality

P
(
λmax(p̃−1Z̃Z̃T) > c1 and λmin(p̃−1Z̃Z̃T) > 1/c1

)
≤ e−C1n, (2.35)
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holds for any n× p̃ submatrix Z̃ of Z with cn < p̃ ≤ p.

(C3) var(Y ) = O(1) and for some κ ≥ 0 and c2, c3 > 0,

min
i∈M∗

|βi| ≥
c2

nκ
and min

i∈M∗
|cov(β−1

i Y,Xi)| ≥ c3. (2.36)

(C4) For some τ ≥ 0 and c4 > 0 such that

λmax(Σ) ≤ c4n
τ . (2.37)

(C5) ε ∼ N (0, σ2) for some σ > 0.

Remark: Condition (C1) shows that the proposed SIS is suitable for the ultra-

high dimensional problem. Although there is no explicit restriction on ξ, the

concentration property in condition (C2) makes restriction on ξ. Condition (C3)

removes the case in which a significant variable is marginally uncorrelated with the

response Y , but jointly correlated with Y . Condition (C4) rules out the situation

of strong collinearity among predictors. Condition (C5) provides a restriction on

the error distribution.

Theorem 2.2.1. (Sure Screening Property) Under above conditions (C1)-

(C5), if 2κ+ τ < 1 then there exists some θ < 1− 2κ− τ such that when γ ∼ cn−θ

with c > 0, assume the true model size s ≤ [γn], we have for some C > 0,

P(M∗ ⊂ M̂γ) = 1−O(exp(−Cn1−2κ/ log n)), (2.38)

therefore,

P(M∗ ⊆ M̂γ)→ 1, as n→∞. (2.39)
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Theorem 2.2.1 shows that the proposed SIS can efficiently shrink the ultrahigh

dimension p down to a relatively large scale d = [γn] = O(n1−θ) for some θ > 0,

while all truly important predictors can be selected into the submodel M̂γ with

probability approaching one as the sample size tends to ∞.

2.2.2 Generalized Correlation Ranking

Sure independence screening via Pearson correlation learning (Fan and Lv, 2008)

can perform well in the ultrahigh dimensional linear regression model. However,

Pearson correlation can only capture the linear relationship between each predictor

Xj and the response Y . When Pearson correlation ρ(Xj, Y ) is zero, it only means

that the response Y is linearly uncorrelated with the predictor Xj. If the predictor

Xj is nonlinearly but not linearly influential to the response Y , the SIS is most

likely to miss this important predictor. In order to capture the nonlinearity in

the ultrahigh dimensional problems, Hall and Miller (2009) suggested techniques

based on ranking generalized empirical correlation between the response Y and

each predictor Xj, which can capture both linearity and nonlinearity.

Hall and Miller (2009) defined the generalized correlation between two random

variables X and Y as

ρg(X, Y ) = sup
h∈H

cov{h(X), Y }√
var{h(X)}var(Y )

, (2.40)

where H is a class of functions including all linear functions. For example, it

is a class of polynomial functions up to a given degree. Remark that if H is

restricted to be a class of all linear functions, ρg(X, Y ) is the absolute value of

Pearson correlation ρ(X, Y ). Therefore, ρg(X, Y ) can be naturally considered as a

generalization of the conventional Pearson correlation.

Assume that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are independent and identically
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distributed observed pairs of two random variables X and Y . The generalized

correlation ρg(X, Y ) between X and Y can be estimated by

ρ̂g(X, Y ) = sup
h∈H

∑n
i=1{h(Xi)− h̄}(Yi − Y )√∑n

i=1{h(Xi)2 − h̄2} ·
∑n

i=1(Yi − Y )2

, (2.41)

where h̄ = n−1
∑n

i=1 h(Xi) and Y = n−1
∑n

i=1 Yi.

The proposed generalized correlation characterizes both linear and nonlinear

relationships between two random variables. Therefore, the generalized correlation

ρg(Xj, Y ) can be considered as a marginal utility to measure the influential effort of

the predictor Xj on the response Y . In practice, Hall and Miller (2009) suggested

to rank the predictors based on the magnitude of estimated generalized correlation

ρ̂g(Xj, Y ). In the result, one orders ρ̂g(Xj, Y ) as ρ̂g(Xĵ1
, Y ) ≥ ρ̂g(Xĵ2

, Y ) ≥ . . . ≥

ρ̂g(Xĵp
, Y ) and takes

ĵ1 � ĵ2 � . . . � ĵp

to denote the empirical ranking of the indices of all predictors. Intuitively, the

higher ranking the predictor has, the more important it is on the response in term

of the generalized correlation. Therefore, given a suitable cutoff, one can select

predictors with higher rankings and thus reduce the ultrahigh dimensionality to a

relatively low scale.

Hall and Miller (2009) suggested the bootstrap procedure to choose a cut-

off. Let S = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} be the original dataset, and S∗ =

{(X∗1 , Y ∗1 ), (X∗2 , Y
∗

2 ), . . . , (X∗n, Y
∗
n )} be a resample drawn randomly from S with re-

placement. Denote r(j) be the ranking of the jth predictor Xj such as ĵr(j) = j.

Let r∗(j) be the ranking of Xj using the bootstrapped resample S∗. Given a value

α, such as 0.05, one may compute a nominal (1 − α)-level two-sided prediction

interval of the ranking, [r̂−(j), r̂+(j)], based on the bootstrapped r∗(j)’s. Hall
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and Miller (2009) proposed a criterion to regard the predictor Xj as influential if

r̂+(j) < 1
2
p. In practice, the cutoff can also be replaced by some smaller fraction of

p, such as 1
4
p. Therefore, the proposed generalized correlation ranking reduces the

ultrahigh p down to the size of the selected model M̂k = {j : r̂+(j) < kp}, where

0 < k < 1/2 is a constant multiplier to control the size of the selected model M̂k.

To present a theoretical property of the proposed generalized correlation rank-

ing, Hall and Miller (2009) imposed the following assumptions:

(D1) (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are independent and identically distributed;

(D2) H is the class of polynomial functions up to a given degree d ≥ 1;

(D3) var{h(Xij)} = var(Yi) = 1 for all i and j;

(D4) for constants γ > 0, c > 0 and sufficiently large n, p ≤ cnγ;

(D5) supn maxj≤pE|X1j|C <∞, supnE|Y1|C <∞, for a constant C > 4d(γ + 1).

Given constants 0 < c1 < c2 <∞, define I1(c1) = {j : |cov(Xj, Y )| ≤ c1

√
log n/n}

and I2(c2) = {j : |cov(Xj, Y )| ≥ c2

√
log n/n}.

Theorem 2.2.2. Under assumptions (D1)-(D5), for sufficiently small c1 and suf-

ficiently large c2, in the correlation-based ranking ĵ1 � ĵ2 � . . . � ĵp, all the indices

in I2(c2) are listed before any of the indices in I1(c1) with the probability converging

to 1 as n→∞.

Theorem 2.2.2 shows that variables with sufficiently large covariance with the

response Y in the order of
√

log n/n are very likely to be ranked ahead of those

with smaller covariances.
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2.2.3 Sure Independence Screening for GLM

The SIS procedure (Fan and Lv, 2008) provides a possibility to handle the ul-

trahigh dimensional problems. However, the SIS only restricts to the ordinary

linear regression model and the theoretical properties rely heavily on the joint nor-

mality assumptions on the response and predictors. This limits significantly its

applicability for categorical variables, even within the context of linear models.

To this end, Fan and Song (2010) proposed a more general version of sure

independence screening procedure for generalized linear models. They considered

the maximum marginal likelihood estimator (the MMLE, for short) or the marginal

likelihood ratio as a marginal utility to rank the importance of each predictor. The

conditions under which the proposed MMLE possesses the sure screening property

are also explored. Moreover, Fan and Song (2010) discussed the size of the selected

model and false positive rate controlling.

First, consider the generalized linear model (GLM) with canonical link. That

is, the response variable Y conditional on the predictors x = (X1, . . . , Xp)
T is from

an exponential family, whose probability density function takes the canonical form

fY |x(y|x) = exp {yθ(x)− b(θ(x)) + c(y)} , (2.42)

for some known functions b(·), c(·) and θ(x) = xTβ. Without loss of generality,

assume that the dispersion parameter φ = 1 and each predictor is standardized

with mean 0 and variance 1. Therefore, the log-likelihood for the natural parameter

θ of the GLM is

`(θ, y) = b(θ)− yθ. (2.43)

Parallel to Fan and Lv (2008), let M∗ = {1 ≤ j ≤ p : βj 6= 0} be the true
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model with the model size s = |M∗|. Fan and Song (2010) defined the maximum

marginal likelihood estimator (MMLE) β̂
M

j of the jth predictor Xj as

β̂
M

j = (β̂Mj,0, β̂
M
j ) = arg min

β0,β1

n∑
i=1

`(β0 + β1Xij, Yi), (2.44)

where Yi is the ith observed response and Xij is the ith observation of the jth

predictor. Although the MMLE β̂Mj is a incorrectly estimated coefficient for jth

predictor Xj in the joint model, the β̂Mj can preserve useful non-sparsity informa-

tion of Xj in the joint model for variables screening under some mild conditions.

Therefore, it is reasonable to consider the magnitude of β̂Mj as a marginal utility

to rank the importance of Xj and select a submodel, given a prespecified threshold

γn,

M̂γn = {1 ≤ j ≤ p : |β̂Mj | ≥ γn}. (2.45)

To establish the theoretical properties of MMLE, Fan and Song (2010) denoted

the population version of the marginal likelihood maximizer as

βMj = (βMj,0, β
M
j ) = arg min

β0,β1

E`(β0 + β1Xij, Yi),

and provided the following conditions:

(D1) The marginal Fisher information: Ij(βj) = E{b′′(XT
j βj)XjX

T
j } is finite and

positive definite at βj = βMj , for j = 1, . . . , p. Moreover, ‖Ij(βj)‖B =

supβ∈B,‖x‖=1
‖I(β)1/2x‖ is bounded from above, where B = {|βMj,0| ≤ B, |βMj |

≤ B} is a square with the width B.

(D2) b′′(θ) is continuous and positive. There exists an ε1 > 0 such that for some
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sufficiently large positive constants Kn and all j = 1, . . . , p,

sup
β∈B,‖β−βMj ‖≤ε1

|Eb(XT

j β)I(|Xj| > Kn)| ≤ o(n−1).

(D3) For all βj ∈ B, E(l(XT
j βj, Y ) − l(XT

j β
M
j , Y )) ≤ V ‖βj − βMj ‖2, for some

V > 0, bounded from below uniformly over j = 1, . . . , p.

(D4) There exists some positive constants m0,m1, s0, s1 and α, such that for suf-

ficiently large t,

P (|Xj| > t) ≤ (m1 − s1) exp{−m0t
α}, for j = 1, . . . , p,

and that

E exp(b(xTβ + s0)− b(xTβ)) + E exp(b(xTβ − s0)− b(xTβ)) ≤ s1.

(D5) |cov(b′(xTβ), Xj)| ≤ c1n
−κ for j ∈M∗ and a constant c1 > 0.

Theorem 2.2.3. (Sure Screening Property) Assume above conditions (D1)-

(D4) hold, then

(i) If n1−2κ/(k2
nK

2
n) → ∞, where kn = b′(KnB + B) + m0K

α
n/s0, then for any

c3 > 0, there exists a constant c4 > 0 such that

P

(
max
1≤j≤p

|β̂Mj − βMj | ≥ c3n
−κ
)

≤ p
{

exp(−c4n
1−2κ/(knKn)2) + nm1 exp(−m0K

α
n )
}
. (2.46)

(ii) In addition, condition (D5) holds, then by taking γn = c5n
−κ with c5 ≤ c2/2,
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the following inequality holds,

P(M∗ ⊆ M̂γn) ≤ 1− s
{

exp(−c4n
1−2κ/(knKn)2) + nm1 exp(−m0K

α
n )
}
.(2.47)

Theorem 2.2.3 shows that the MMLEs are uniformly convergent to the popu-

lation values and establishes the sure screening property of the MMLE screening

procedure. Fan and Song (2010) also indicated that the MMLE can handle the

ultrahigh NP-dimensionality:

log p = o(n(1−2κ)α/(α+2)).

Specifically, it can deal with the NP-dimensionality as high as log p = o(n(1−2κ))

for the logistic model with bounded predictors, and log p = o(n(1−2κ)/4) for the

ordinary linear model without the joint normality assumption.

Fan and Song (2010) further discussed how large the selected model M̂γn is.

Under some regularity conditions, they showed that with probability approaching

one,

|M̂γn | = O{n2κλmax(Σ)}, (2.48)

where κ is a constant in condition (D5), which determines how large the thresh-

olding parameter γn is, and λmax(Σ) is the maximum eigenvalue of the covariance

matrix Σ of predictors x, which controls how correlated the predictors are. If

λmax(Σ) = O(nτ ), the size of M̂γn has the order O(n2κ+τ ), which can guide prac-

titioners to choose the thresholding rule.

In addition, Fan and Song (2010) also proposed another feature screening

method via using the marginal likelihood ratio test, which was demonstrated to
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have the same spirit as the MMLE screening. For details, one can refer to Fan and

Song (2010).

2.2.4 Sure Independent Ranking and Screening

Zhu, Li, Li and Zhu (2011) proposed a model-free feature screening, called sure

independent ranking and screening (SIRS), for ultrahigh dimensional data. Com-

pared with the SIS and other model-based sure independence screening approaches,

the SIRS works for a very general model framework including many commonly used

parametric and semiparametric models, including the linear model, the generalized

linear model, the index model and others. Therefore, the proposed SIRS is more

robust to possible model mis-specification and can be considered as model-free.

Let Ψy be the support of the response Y and denote the conditional distribution

function of Y given x as F (y|x) = P (Y ≤ y|x). Define the indices sets of active

predictors and inactive predictors, respectively, by

A = {k : F (y | x) functionally depends on Xk for some y ∈ Ψy},

I = {k : F (y | x) does not functionally depend on Xk for any y ∈ Ψy}.

Xk for k ∈ A is called an active predictor, whereas Xk for k ∈ I is called an

inactive predictor. Without of generality, assume that the first p1 predictors are

active and the rest p−p1 predictors are inactive. In other words, A = {1, 2, . . . , p1}

and I = {p1 + 1, . . . , p}.

Considering a general model framework, we assume that F (y | x) depends on

x only through βTxA for some p1 ×K constant matrix β. That is,

F (y | x) = F0(y | βTxA), (2.49)
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where F0(· | ·) is an unknown function.

Without of generality, assume that E(Xk) = 0 and var(Xk) = 1 for k = 1, . . . , p.

Define

Ω(y) = E{xF (y|x)} = E{xE[1(Y ≤ y)|x]} = cov{x,1(Y ≤ y)}.

Then define a new marginal utility ωk at the population level by

ωk = E{Ω2
k(Y )}, k = 1, . . . , p, (2.50)

where Ωk(y) is the kth element of Ω(y). Intuitively, if Xk and Y are independent,

then Xk and 1(Y ≤ y) for any y ∈ Ψy are independent resulting so that ωk = 0.

On the other hand, if Xk and Y are correlated, then Xk and 1(Y ≤ y) for some

y ∈ Ψy are correlated and thus ωk > 0.

For a random sample {(Xi1, . . . , Xip, Yi), i = 1, . . . , n} from {x, Y }, the sample

moment estimator of ωk is derived by

ω̂k =
1

n

n∑
j=1

Ω̂2
k(Yj) =

1

n

n∑
j=1

{
1

n

n∑
i=1

Xik1(Yi ≤ Yj)

}2

, k = 1, . . . , p, (2.51)

Zhu, Li, Li and Zhu (2011) suggested to employ the sample estimate of ωk to rank

all the candidate predictors, and select the top ones as the estimate of the active

predictors.

Ranking consistency property. To demonstrate the utility of the proposed SIRS,

Zhu, Li, Li and Zhu (2011) established the consistency in ranking of the SIRS based

on the following conditions:
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(F1) The following inequality condition holds uniformly for p:

K2λmax{cov(xA,x
T
I)cov(xI ,x

T
A)}

λ2
min{cov(xA,xT

A)}
<

mink∈Aωk
λmax{ΩA}

, (2.52)

where ΩA = E{ΩA(Y )ΩT
A(Y )}, ΩA(y) = {Ω1(y), . . . ,Ωp1(y)}T, and λmax{M}

and λmin{M} represent the maximum and minimum eigenvalues of a matrix

M , respectively. Note that λmax{M} and λmin{M} may depend on the di-

mension of M . Throughout this dissertation, “a < b holds uniformly for p”

means that “lim supp→∞{a(p)− b(p)} < 0”.

(F2) The linearity condition:

E{x|βTxA} = cov(x,xT

A)β{cov(βTxA)}−1βTxA

(F3) The moment condition: there exists a constant t0 > 0 such that

max
1≤k≤p

E{exp(tXk)} <∞, for 0 < t ≤ t0.

Remark: Condition (F1) provides an assumption on the correlations among the

predictors. Condition (F2) holds if x is normal or follows an elliptically symmetric

distribution. Furthermore, when the number of predictors p diverges while the di-

mension K is fixed, the linearity condition (F2) can hold asymptotically. Condition

(F3) assumes that all moments of the predictors are uniformly bounded. There-

fore, condition (F3) holds for the normal distribution and others with bounded

support.

Theorem 2.2.4. Under Conditions (F1)-(F3), the following inequality holds uni-
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formly for p:

max
k∈I

ωk < min
k∈A

ωk. (2.53)

Theorem 2.2.4 shows that ωk of an inactive predictor is always smaller than

ωk of an active predictor, which will provide a theoretical separation of predictor

ranking.

Theorem 2.2.5. (Consistency in Ranking) In addition to Conditions (F1)-

(F3), assume that p = o{exp(an)} for a > 0. Then, for any ε > 0, there exists a

sufficiently small constant sε > 0 such that

P

(
sup

k=1,...,p
|ω̂k − ωk| > ε

)
≤ 2p exp{n log(1− εsε/2)/3}. (2.54)

In addition, if let δ = min
k∈A

ωk−max
k∈I

ωk, then there exists a sufficiently small constant

sδ > 0 such that

P

(
max
k∈I

ω̂k < min
k∈A

ω̂k

)
≤ 2p exp{n log(1− δsδ/4)/3}. (2.55)

Theorem 2.2.5 demonstrates the ranking consistency property of the proposed

SIRS. That is, the SIRS screening method using ω̂k always ranks an active predictor

ahead of an inactive one with the probability tending to one. Further, consistency

in ranking provides a clear separation between the active and inactive predictors.

Thus, with an appropriate cutoff, the SIRS can be consistent in selection in the

ultrahigh dimensional problems.

For the independence screening, Fan and Lv (2008) suggested a hard thresh-

olding rule to choose the top variables in the order of O(n/ log n). Besides, Zhu,

Li, Li and Zhu (2011) recommended a soft thresholding rule based on adding arti-
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ficial auxiliary variables to the data. First, randomly generate q auxiliary variables

{Z1, . . . , Zq} which are independent of both x and Y. Then, consider the (p + q)

dimensional vector (X1, . . . , Xp, Z1, . . . , Zq) as the predictors and apply the inde-

pendence screening method to pick top variables. In details, denote ωk as the

marginal utility for kth predictor for k = 1, . . . , p + q. Because {Z1, . . . , Zq} are

truly inactive, max
l=1,...,q

ωp+l < min
k∈A

ωk holds by Theorem 2.2.4 and under some mild

conditions, max
l=1,...,q

ω̂p+l < min
k∈A

ω̂k holds with probability tending to one by Theorem

2.2.5. Then select the predictor subset

M̂s = {k : ω̂k > max
l=1,...,q

ω̂p+l} (2.56)

Zhu, Li, Li and Zhu (2011) also gave an upper bound on the probability of

selecting any inactive predictors by this soft thresholding rule.

Theorem 2.2.6. Assume the exchangeability condition. That is, {Xj, j ∈ I} and

{Zj, j = 1, . . . , q} are exchangeable in the sense that both any Xj for j ∈ I and

Zj are equally likely to be selected by the soft thresholding procedure. Then, for

r ∈ N+,

P
(
|M̂s ∩ I| ≥ r

)
≤
(

1− r

p+ q

)q
. (2.57)

Zhu, Li, Li and Zhu (2011) suggested to choose q = p empirically and used

numerical studies to show that the soft thresholding rule with this choice can work

quite well. For details about the SIRS, one can refer to Zhu, Li, Li and Zhu (2011).
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2.2.5 Extensions of Independence Screening

2.2.5.1 Iterative Version of Independence Screening

Fan and Lv (2008) has shown that the SIS can perform very well when the con-

ditions are satisfied. However, when these restrictive conditions fail, the SIS pro-

cedure may be problematic. For example, when a variable is jointly correlated,

but marginally uncorrelated with the response, the SIS is unlikely to select this

important variable, resulting in high false negative rate. On the other hand, when

a variable is jointly uncorrelated but highly marginally correlated with the re-

sponse, the SIS is likely to select this unimportant variable, resulting in high false

positive rate. To overcome this problem, Fan and Lv (2008) provided an impor-

tant methodological extension of the SIS, called the Iterative Sure Independence

Screening (the ISIS, for short).

The steps of the ISIS procedure are provided as follows:

Step.1 Apply the SIS to the full dataset and select an indices set Â1 of size d =

[n/ log n]. Then implement the variable selection approaches, such as pe-

nalized least square with SCAD penalty, on the indices set Â1 to select a

submodel M̂1. Let M̂ = M̂1.

Step.2 Compute the residuals from regressing the response Y over {Xj : j ∈ M̂}.

Then treat these residuals as the new responses and apply the same procedure

in Step 1 to the remaining variables with indices {1, . . . , p}\M̂ to obtain

another submodel M̂2. Let M̂ = M̂1 ∪ M̂2.

Step.3 Iterate the process until |M̂| ≤ d′, where d′ is the prescribed number and

d′ ≤ n. The indices set M̂ is the final selected submodel by the ISIS.

The ISIS procedure has been empirically proved by Fan and Lv (2008) that it

can perform better than the ordinary SIS. Besides this version of iterative inde-
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pendence screening, Fan, Samworth and Wu (2009) extended the idea to a model

general version using the marginal likelihood to rank the importance of variables;

Fan, Feng and Song (2011) provided iterative nonparametric independence screen-

ing for the sparse ultrahigh dimensional additive models; Zhu, Li, Li and Zhu

(2011) also created an iterative version of the model-free independence screening

with iteratively transforming the space of predictors.

2.2.5.2 Reduction of False Positive Rate

The independence screening procedures are commonly used for feature selection,

but they are usually conservative and result in many false positive variables. Fan,

Samworth and Wu (2009) proposed a simple resampling technique to reduce the

false positive rate.

Let A be the set of active indices. Partition the samples randomly into two

parts with the same sample size, and then apply one independence screening, such

as the SIS and the ISIS, to two halves. Denote Â1 and Â2 as the selected submodel

based on the first half and the second half of the samples, respectively. Under some

conditions, both Â1 and Â2 possess the sure screening property. That is, both Â1

and Â2 can contain all active indices (i.e. A) with the probability tending to one,

i.e.

P (A ⊆ Â1)→ 1, P (A ⊆ Â2)→ 1, as n→∞.

Then define Â = Â1 ∩ Â2 as a new estimate of the active set A. Therefore, the

estimate Â also satisfies the sure screening property:

P (A ⊆ Â)→ 1, as n→∞.

Intuitively, the probability that one unimportant variable has to be selected twice
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into both Â1 and Â2 is very small, so Â can be expected to contain much fewer

unimportant variables which may be falsely selected into Â1 or Â2. In the result,

this simple resampling approach reduces the false positive rate efficiently.

Fan, Samworth and Wu (2009) constructed a theoretical upper bound on the

probability of selecting any unimportant variable into the model based on the

following exchangeability condition.

(G1) The model satisfies the exchangeability condition at level r ∈ N+ if the set

of random vectors

{(Y,XA, Xj1 , . . . , Xjr) : j1, . . . , jr are distinct elements of Ac}

is exchangeable.

This condition guarantees that each unimportant variable is equally likely to be

selected by the independence screening procedure.

Theorem 2.2.7. (Upper Bound of False Positive) Under the exchangeabil-

ity condition (G1),

P(|Â ∩ Ac| ≥ r) ≤

 d

r

2

 p− |A|

r

 ≤
1

r!

(
d2

p− |A|

)r
, (2.58)

where d is the prespecified size of the selected set Â1 or Â2, and d2 ≤ p − |A| is

required for the second inequality.

Theorem 2.2.7 shows that the probability of selecting at least r unimportant

variables can be very small when p is large, d is small and |A|, the number of
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important variables, is small. This result seems a little bit unusual. However, we

realize that the probability of missing important variables is expected to increase

with p and decrease with d.

2.3 Distance Correlation

2.3.1 Definition of Distance Correlation

Szekely, Rizzo and Bakirov (2007) advocated using the distance correlation for

measuring dependence between two random vectors. To be precise, let φu(t) and

φv(s) be the respective characteristic functions of the random vectors u and v,

and φu,v(t, s) be the joint characteristic function of u and v.

Definition 2.3.1. (Distance Covariance) Szekely, Rizzo and Bakirov (2007)

defined the distance covariance between u and v with finite first moments to be

the nonnegative number dcov(u,v) given by

dcov2(u,v) =

∫
Rdu+dv

‖φu,v(t, s)− φu(t)φv(s)‖2w(t, s) dt ds, (2.59)

where du and dv are the dimensions of u and v, respectively, and

w(t, s) =
{
cducdv‖t‖1+du

du
‖s‖1+dv

dv

}−1

with cd = π(1+d)/2/Γ{(1 + d)/2}.

We let ‖a‖d stand for the Euclidean norm of a ∈ Rd, and ‖φ‖2 = φφ̄ for a

complex-valued function φ with φ̄ being the conjugate of φ. The integral at 0 and

∞ in (2.59) is meant in the sense: lim
η→0

∫
Rdu+dv\{ηB+η−1Bc}, where B is the unit ball

in Rdu+dv with center at 0 and Bc stands for the complement of B.
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Definition 2.3.2. (Distance Correlation) The distance correlation (DC) be-

tween u and v with finite first moments is defined as

dcorr(u,v) =
dcov(u,v)√

dcov(u,u)dcov(v,v)
, (2.60)

if dcov(u,u)dcov(v,v) > 0. Otherwise, dcorr(u,v) = 0.

2.3.2 Estimate of Distance Correlation

Szekely, Rizzo and Bakirov (2007, Remark 3) stated that

dcov2(u,v) = S1 + S2 − 2S3,

where Sj, j = 1, 2 and 3, are defined below:

S1 = E {‖u− ũ‖du‖v − ṽ‖dv} ,

S2 = E {‖u− ũ‖du}E {‖v − ṽ‖dv} , (2.61)

S3 = E {E (‖u− ũ‖du| u)E (‖v − ṽ‖dv | v)} .

where (ũ, ṽ) is an independent copy of (u,v).

Suppose that {(ui,vi), i = 1, · · · , n} is a random sample from the population

(u,v). Szekely, Rizzo and Bakirov (2007) proposed to estimate S1, S2 and S3

through the usual moment estimation. To be precise,

Ŝ1 = n−2

n∑
i=1

n∑
j=1

‖ui − uj‖du‖vi − vj‖dv ,

Ŝ2 = n−2

n∑
i=1

n∑
j=1

‖ui − uj‖dun−2

n∑
i=1

n∑
j=1

‖vi − vj‖dv , and
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Ŝ3 = n−3

n∑
i=1

n∑
j=1

n∑
l=1

‖ui − ul‖du‖vj − vl‖dv .

Thus, a natural estimator of dcov2(u,v) is given by

d̂cov
2
(u,v) = Ŝ1 + Ŝ2 − 2Ŝ3.

Similarly, we can define the sample distance covariances d̂cov(u,u) and d̂cov(v,v).

Accordingly, the sample distance correlation between u and v can be defined by

d̂corr(u,v) =
d̂cov(u,v)√

d̂cov(u,u)d̂cov(v,v)

.

2.3.3 Properties of Distance Correlation

Szekely, Rizzo and Bakirov (2007) systematically studied the theoretic properties of

the distance correlation. Note that the definition of the dcorr in (2.60) suggests an

analogy with the corresponding Pearson’s product-moment correlation. Analogous

properties of the dcorr are established in the following theorem.

Theorem 2.3.3. (Properties of dcorr)

(a) If E(|u|du + |v|dv) < ∞, then 0 ≤ dcorr(u,v) ≤ 1, and dcorr(u,v) = 0 if

and only if u and v are independent.

(b) 0 ≤ d̂corr(u,v) ≤ 1.

(c) If d̂corr(u,v) = 1, then there exist a vector a, a nonzero real number b and

an orthogonal matrix C such that Y = a + bXC.

The property (a) of the DC in Theorem 2.3.3 motivates us to utilize it in

a feature screening procedure, which will be detailed in the next chapter. Note



46

that two univariate random variables U and V are independent if and only if

U and T (V ), a strictly monotone transformation of V , are independent. This

implies that a DC-based feature screening procedure can be more effective than

the marginal Pearson correlation learning in the presence of nonlinear relationship

between U and V . Furthermore, Chapter 3 will demonstrate that a DC-based

screening procedure is a model-free procedure, in which one does not need to

specify a model structure between the predictors and the response.

Szekely, Rizzo and Bakirov (2007) also presented the relationship between the

distance correlation and the Pearson correlation coefficient between two univariate

normal random variables in the following theorem.

Theorem 2.3.4. (Results for the Bivariate Normal Distribution) If

two univariate random variables U and V follow standard normal distributions, let

ρ be the classic Pearson correlation between U and V , then

(a) dcorr(U, V ) ≤ |ρ|,

(b) dcorr2(U, V ) =
ρ arcsin(ρ)+

√
1−ρ2−ρ arcsin(ρ/2)−

√
4−ρ2+1

1+π/3−
√

3
,

(c) infρ6=0
dcorr(U,V )
|ρ| = limρ→0

dcorr(U,V )
|ρ| = 1

2(1+π/3−
√

3)1/2 ≈ 0.89066.

The plot of dcorr2(U, V ) versus ρ2 in the following Figure 2.6 shows the rela-

tionship between dcorr(U, V ) and ρ derived in Theorem 2.3.4.

The property (b) of the DC in Theorem 2.3.4 shows that the distance correlation

dcorr(U, V ) is strictly increasing in |ρ|. This property implies that the DC-based

feature screening procedure is equivalent to the marginal Pearson correlation learn-

ing for linear regression with normally distributed predictors and random error. In

such a situation, Fan and Lv (2008) showed that the Pearson correlation learning

has the sure screening property.
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Figure 2.6. Square of Distance Correlation dcorr2 (solid line) and Square of Pearson
Correlation ρ2 (dashed line) between two univariate normal variables.(Szekely, Rizzo and
Bakirov, 2007).



Chapter 3
Feature Screening via Distance

Correlation Learning

3.1 Introduction

In this chapter, we propose a new feature screening procedure for ultrahigh di-

mensional data based on distance correlation (DC-SIS, for short) and an iterative

DC-SIS procedure (DC-ISIS). We systematically study the theoretic properties of

the DC-SIS, and prove that the DC-SIS possesses the sure screening property in the

terminology of Fan and Lv (2008). Monte Carlo simulation studies and real data

analysis are conducted to examine the finite sample performance of both DC-SIS

and DC-ISIS, and demonstrate their outstanding finite sample performance.

The rest of the chapter is organized as follows. In Section 3.2, we develop the

DC-SIS for the ultrahigh dimensional data. Then, the sure screening property is

established for the DC-SIS in Section 3.3. In Section 3.4, we examine the finite

sample performance of the DC-SIS via Monte Carlo simulations as well as a real

data example. In Section 3.5, we propose the DC-ISIS to further enhance the finite

sample performance of the DC-SIS. All technical proofs are given in Section 3.6.
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3.2 A New Independence Screening Procedure

In this section we propose an independence screening procedure built upon the

DC. Let y = (Y1, · · · , Yq)T be the response vector with support Ψy, and x =

(X1, . . . , Xp)
T be the predictor vector. We regard q as a fixed number in this

context. In an ultrahigh-dimensional setting the dimensionality p greatly exceeds

the sample size n. It is thus natural to assume that only a small number of

predictors are relevant to y. Denote by F (y | x) the conditional distribution

function of y given x. Without specifying a regression model, we define the index

set of the active and inactive predictors by

D = {k : F (y | x) functionally depends on Xk for some y ∈ Ψy},

I = {k : F (y | x) does not functionally depend on Xk for any y ∈ Ψy}.(3.1)

We further write xD = {Xk : k ∈ D} and xI = {Xk : k ∈ I}, and refer to xD as

an active predictor vector and its complement xI as an inactive predictor vector.

The index subset D of all active predictors or, equivalently, the index subset I

of all inactive predictors, is the objective of our primary interest. Definition (3.1)

implies that y⊥⊥xI | xD, where ⊥⊥ denotes statistical independence. That is, given

xD, the remaining predictors xI are independent of y. Thus the inactive predictors

xI are redundant when the active predictors xD are known.

For ease of presentation, we write

ωk = dcorr2(Xk,y), and ω̂k = d̂corr
2
(Xk,y), for k = 1, · · · , p.

based on a random sample {xi,yi}, i = 1, . . . , n. We consider using ωk as a

marginal utility to rank the importance of Xk at the population level. We uti-

lize the DC because it allows for arbitrary regression relationship of y onto x,



50

regardless of whether it is linear or nonlinear. The DC also permits univariate and

multivariate response, regardless of whether it is continuous, discrete or categori-

cal. In addition, it allows for groupwise predictors. Thus, this DC based screening

procedure is completely model-free. We select a set of important predictors with

large ω̂k. That is, we define

D̂? =
{
k : ω̂k ≥ cn−κ, for 1 ≤ k ≤ p

}
,

where c and κ are pre-specified threshold values which will be defined in condition

(C3.2) in the subsequent section.

3.3 Theoretical Properties

3.3.1 Preliminary Lemmas

The following three lemmas will be used in the proof of Theorems 3.3.4 sure screen-

ing property. The Lemma 3.3.1 below provides a useful decomposition of the dis-

tance correlation (Szekely, Rizzo and Bakirov, 2007) between the kth predictor Xk

and the q-dimemsional response y at the population level.

Lemma 3.3.1. Let φXk(t) and φy(s) be the respective characteristic functions of

Xk and y, and φXk,y(t, s) be the joint characteristic function of Xk and y. Let

w(t, s) =
{
c1cq|t|21|s|q+1

q

}−1
with cq = π(q+1)/2/Γ {(q + 1)/2} and c1 = π. Then

dcov2(Xk,y) =

∫
Rq+1

|φXk,y(t, s)− φXk(t)φy(s)|2w(t, s)dtds

= Sk1 + Sk2 − 2Sk3,
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where

Sk1 = E‖Xk − X̃k‖1‖y − ỹ‖q,

Sk2 = E‖Xk − X̃k‖1E‖y − ỹ‖q, and

Sk3 = E{E(‖Xk − X̃k‖1|Xk)E(‖y − ỹ‖q|y)},

and {X̃k, ỹ} is an independent copy of {Xk,y}, respectively.

Szekely, Rizzo and Bakirov (2007) mentioned the result in Lemma 3.3.1 in their

Remark 3. However, they did not provide a rigorous proof. A detailed technical

proof is provided in Section 3.6.

Note that the sample counterparts of Ski’s can be estimated by the method of

moment as follows,

Ŝk1 =
1

n2

n∑
i,j=1

‖Xik −Xjk‖1‖yi − yj‖q,

Ŝk2 =
1

n2

n∑
i,j=1

‖Xik −Xjk‖1
1

n2

n∑
i,j=1

‖yi − yj‖q, and

Ŝk3 =
1

n3

n∑
i,j,l=1

‖Xik −Xlk‖1‖yj − yl‖q.

Then, by definitions of distance covariance and sample distance covariance, we

have that

d̂cov
2
(Xk,y) = Ŝk1 + Ŝk2 − 2Ŝk3.

These following two lemmas provide us two exponential inequalities, and are

extracted from Lemma 5.6.1.A and Theorem 5.6.1.A of Serfling (1980).

Lemma 3.3.2. Let µ = E(Y ). If Pr (a ≤ Y ≤ b) = 1, then

E [exp {s(Y − µ)}] ≤ exp
{
s2(b− a)2/8

}
, for any s > 0.
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Lemma 3.3.3. Let h(Y1, · · · , Ym) be a kernel of the U-statistic Un, and the pa-

rameter θ = E {h(Y1, · · · , Ym)}. If a ≤ h(Y1, · · · , Ym) ≤ b, then, for any t > 0 and

n ≥ m,

Pr (Un − θ ≥ t) ≤ exp
{
−2[n/m]t2/(b− a)2

}
,

where [n/m] denotes the integer part of n/m.

Due to the symmetry of U -statistic, Lemma 3.3.3 entails that

Pr (|Un − θ| ≥ t) ≤ 2 exp
{
−2[n/m]t2/(b− a)2

}
.

3.3.2 Sure Screening Property

Next we study the theoretical properties of the proposed independence screening

procedure built upon the DC. The following conditions are imposed to facilitate

the technical proofs, although they may not be the weakest ones.

(C3.1) Both x and y satisfy the sub-exponential tail probability uniformly in p.

That is, there exists a positive constant s0 such that for all 0 < s ≤ 2s0,

sup
p

max
1≤k≤p

E
{

exp(s‖Xk‖2
1)
}
<∞, and E{exp(s‖y‖2

q)} <∞.

(C3.2) The minimum distance correlation of active predictors satisfies

min
k∈D

ωk ≥ 2cn−κ, for some constants c > 0 and 0 ≤ κ < 1/2.

Condition (C3.1) follows immediately when x and y are bounded uniformly, or

when they have multivariate normal distribution. The normality assumption has
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been widely used in the area of ultrahigh dimensional data analysis to facilitate

the technical derivations. See, for example, Fan and Lv (2008) and Wang (2009).

Next we explore condition (C3.2). When x and y have multivariate normal dis-

tribution, Theorem 2.3.4 (b) gives an explicit relationship between the DC and the

squared Pearson correlation. For simplicity, we write dcorr(Xk,y) = T0 (|ρ(Xk,y)|)

where T0(·) is strictly increasing given in Theorem 2.3.4 (b). In this situation, con-

dition (C3.2) requires essentially that min
k∈D
|ρ(Xk,y)| ≥ Tinv(2cn

−κ), where Tinv(·)

is the inverse function of T0(·). This is parallel to condition 3 of Fan and Lv (2008)

where it is assumed that min
k∈D
|ρ(Xk,y)| ≥ 2cn−κ. This intuitive illustration implies

that condition (C3.2) requires that the marginal DC of active predictors cannot be

too small, which is similar to condition 3 of Fan and Lv (2008). We remark here

that, although we illustrate the intuition by assuming that x and y are multivariate

normal, we do not require this assumption explicitly in our context.

The following Theorem 3.3.4 establishes the sure screening property for the

DC-SIS procedure, which is a desired property for ultrahigh dimensional statistical

learning. The technical proof of Theorem 3.3.4 is provided in Section 3.6.

Theorem 3.3.4. (Sure Screening Property) Under condition (C3.1), for

any 0 < γ < 1/2− κ, there exist positive constants c1 > 0 and c2 > 0 such that

Pr

(
max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ
)
≤ O

(
p
[
exp

{
−c1n

1−2(κ+γ)
}

+ n exp (−c2n
γ)
])
.(3.2)

Under conditions (C3.1) and (C3.2), we have that

Pr
(
D ⊆ D̂?

)
≥ 1−O

(
sn
[
exp

{
−c1n

1−2(κ+γ)
}

+ n exp (−c2n
γ)
])
, (3.3)

where sn is the cardinality of D.



54

The sure screening property holds for the DC-SIS under milder conditions than

those for the SIS (Fan and Lv, 2008) in that we do not require the regression

function of y onto x to be linear. Thus, the DC-SIS provides a unified alternative

to existing model-based sure screening procedures. Compared with the SIRS (Zhu,

Li, Li and Zhu, 2011), the DC-SIS can effectively handle grouped predictors and

multivariate responses.

To balance the two terms in the right hand side of (3.2), we choose the optimal

order γ = (1− 2κ)/3, then the first part of Theorem 3.3.4 becomes

Pr
(

max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ
)
≤ O

(
p
[
exp

{
−c1n

(1−2κ)/3
}])

,

for some constant c1 > 0, indicating that we can handle the NP-dimensionality

of order log p = o
(
n(1−2κ)/3

)
. If we further assume that Xk and y are bounded

uniformly in p, then we can obtain without much difficulty that

Pr

(
max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ
)
≤ O

(
p
[
exp

{
−c1n

1−2κ
}])

.

In this case, we can handle the NP-dimensionality log p = o (n1−2κ) .

3.4 Numerical Studies

In this section we assess the performance of the DC-SIS by Monte Carlo simulation.

Our simulation studies were conducted using R code. We further illustrate the

proposed screening procedure with an empirical analysis of a real data example.

In Examples 1, 2 and 3, we generate x = (X1, X2, · · · , Xp)
T from normal dis-

tribution with zero mean and covariance matrix Σ = (σij)p×p, and the error term

ε from standard normal distribution N (0, 1). We consider two covariance matrices
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to assess the performance of the DC-SIS and to compare with existing methods:

(i) σij = 0.8|i−j| and (ii) σij = 0.5|i−j|. We fix the sample size n to be 200 and vary

the dimension p from 2,000 to 5,000. We repeat each experiment 500 times, and

evaluate the performance through the following three criteria.

1. S: the minimum model size to include all active predictors. We report the

5%, 25%, 50%, 75% and 95% quantiles of S out of 500 replications.

2. Ps: the proportion that an individual active predictor is selected for a given

model size d in the 500 replications.

3. Pa: the proportion that all active predictors are selected for a given model

size d in the 500 replications.

The S is expected to be close to the number of truly active predictors. The sure

screening property ensures that Ps and Pa are both close to one when the estimated

model size d is sufficiently large. We choose d to be d1 = [n/ log n], d2 = 2[n/ log n]

and d3 = 3[n/ log n] throughout our simulations to empirically examine the effect

of the cutoff, where [a] denotes the integer part of a.

Example 1. This example is designed to compare the finite sample performance

of the DC-SIS with the SIS (Fan and Lv, 2008) and SIRS (Zhu, Li, Li and Zhu,

2011). In this example, we generate the response from the following four models:

(1.a): Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0) + c4β4X22 + ε,

(1.b): Y = c1β1X1X2 + c3β21(X12 < 0) + c4β3X22 + ε,

(1.c): Y = c1β1X1X2 + c3β21(X12 < 0)X22 + ε,

(1.d): Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0) + exp(c4|X22|)ε,

where 1(X12 < 0) is an indicator function. The regression functions E(Y | x) in



56

Table 3.1. The 5%, 25%, 50%, 75% and 95% quantiles of the minimum model size S
out of 500 replications in Example 1.

S SIS SIRS DC-SIS
Model 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

case 1: p = 2000 and σij = 0.5|i−j|

(1.a) 4.0 4.0 5.0 7.0 21.2 4.0 4.0 5.0 7.0 45.1 4.0 4.0 4.0 6.0 18.0
(1.b) 68.0 578.5 1180.5 1634.5 1938.0 232.9 871.5 1386.0 1725.2 1942.4 5.0 9.0 24.5 73.0 345.1
(1.c) 395.9 1037.2 1438.0 1745.0 1945.1 238.5 805.0 1320.0 1697.0 1946.0 6.0 10.0 22.0 59.0 324.1
(1.d) 130.5 611.2 1166.0 1637.0 1936.5 42.0 304.2 797.0 1432.2 1846.1 4.0 5.0 9.0 41.0 336.2

case 2: p = 2000 and σij = 0.8|i−j|

(1.a) 5.0 9.0 16.0 97.0 729.4 5.0 9.0 18.0 112.8 957.1 4.0 7.0 11.0 31.2 507.2
(1.b) 26.0 283.2 852.0 1541.2 1919.0 103.9 603.0 1174.0 1699.2 1968.0 5.0 8.0 11.0 17.0 98.0
(1.c) 224.5 775.2 1249.5 1670.0 1951.1 118.6 573.2 1201.5 1685.2 1955.0 7.0 10.0 15.0 38.0 198.3
(1.d) 79.0 583.8 1107.5 1626.2 1930.0 50.9 300.5 728.0 1368.2 1900.1 4.0 7.0 17.0 73.2 653.1

case 3: p = 5000 and σij = 0.5|i−j|

(1.a) 4.0 4.0 5.0 6.0 59.0 4.0 4.0 5.0 7.0 88.4 4.0 4.0 4.0 6.0 34.1
(1.b) 165.1 1112.5 2729.0 3997.2 4851.5 560.8 1913.0 3249.0 4329.0 4869.1 5.0 11.8 45.0 168.8 956.7
(1.c) 1183.7 2712.0 3604.5 4380.2 4885.0 440.4 1949.0 3205.5 4242.8 4883.1 7.0 17.0 53.0 179.5 732.0
(1.d) 259.9 1338.5 2808.5 3990.8 4764.9 118.7 823.2 1833.5 3314.5 4706.1 4.0 5.0 15.0 77.2 848.2

case 4: p = 5000 and σij = 0.8|i−j|

(1.a) 5.0 10.0 26.5 251.5 2522.7 5.0 10.0 28.0 324.8 3246.4 5.0 8.0 14.0 69.0 1455.1
(1.b) 40.7 639.8 2072.0 3803.8 4801.7 215.7 1677.8 3010.0 4352.2 4934.1 5.0 8.0 11.0 21.0 162.0
(1.c) 479.2 1884.8 3347.5 4298.5 4875.2 297.7 1359.2 2738.5 4072.5 4877.6 8.0 12.0 22.0 83.0 657.9
(1.d) 307.0 1544.0 2832.5 4026.2 4785.2 148.2 672.0 1874.0 3330.0 4665.2 4.0 7.0 21.0 165.2 1330.0

models (1.a)-(1.d) are all nonlinear in X12. In addition, models (1.b) and (1.c)

contain an interaction term X1X2, and model (1.d) is heteroscedastic. Following

Fan and Lv (2008), we choose βj = (−1)U(a + |Z|) for j = 1, 2, 3 and 4, where

a = 4 log n/
√
n, U ∼ Bernoulli(0.4) and Z ∼ N (0, 1). We set (c1, c2, c3, c4) =

(2, 0.5, 3, 2) in this example to challenge the feature screening procedures under

consideration. For each independence screening procedure, we compute the asso-

ciated marginal utility between each predictor Xk and the response Y , that is, we

regard x = (X1, . . . , Xp)
T ∈ Rp as the predictor vector in this example.

Tables 4.1 and 3.2 depict the simulation results for S, Ps and Pa. The perfor-

mances of the DC-SIS, SIS and SIRS are quite similar in model (1.a), indicating

that the the SIS has a robust performance if the working linear model does not

deviate far from the underlying true model. The DC-SIS outperforms the SIS and

SIRS significantly in models (1.b), (1.c) and (1.d). Both the SIS and SIRS have

little chance to identify the important predictors X1 and X2 in models (1.b) and

(1.c), and X22 in model (1.d). The main reason is that both the SIS and SIRS
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fail to identify important predictors which are symmetrically relevant to the re-

sponse variable. To be precise, the marginal utilities of both the SIS and SIRS will

be exactly zero if Xk satisfies E(Xk | Y ) = E(Xk). In models (1.b) and (1.c),

because X1 and X2 are highly correlated, both exhibit symmetric patterns with Y

(plots are not shown here). In model (1.d) the symmetry of X22 is obvious in that

E(X22 | Y ) = E(X22). In contrast, the DC-SIS does not suffer from the symmetry

issue. It performs quite well throughout all scenarios. This demonstrates a specific

advantage of the distance correlation over the Pearson correlation upon which the

SIS and SIRS are built.

This can be interpreted to mean that the regularity conditions for the SIS

or the SIRS may not hold for the current model settings. It is challenging to

impose a model structure with little prior information between the response and the

predictors under the ultrahigh dimensional setting. Thus, the DC-SIS procedure

may be more desirable than the SIS, because the screening property of the SIS was

established based on the linear regression model in Fan and Lv (2008). Although

Zhu, Li, Li and Zhu (2011) claims that the SIRS is model-free, it fails to select

some predictors either, such as X22 in the model (1.d). The potential reason is

that the SIRS cannot handle the interaction information in models (1.b), (1.c)

or the signal contained in the conditional variance in the model (1.d).

Example 2. We illustrate that the DC-SIS can be directly used for screening

grouped predictors. In many regression problems, some predictors can be naturally

grouped. The most common example which contains group variables is the multi-

factor ANOVA problem, in which each factor may have several levels and can be

expressed through a group of dummy variables. The goal of ANOVA is to select

important main effects and interactions for accurate predictions, which amounts

to the selection of groups of dummy variables. To demonstrate the practicability
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Table 3.2. The empirical probabilities of each active predictor (denoted by Ps) and
all active predictors (denoted by Pa) are chosen for a given model size di, where d1 =
[n/ log n], d2 = 2[n/ log n] and d3 = 3[n/ log n].

SIS SIRS DC-SIS
Ps Pa Ps Pa Ps Pa

model size X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

case 1: p = 2000 and σij = 0.5|i−j|

d1 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.95 1.00 0.94 1.00 1.00 0.97 1.00 0.96
(1.a) d2 1.00 1.00 0.98 1.00 0.97 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.98 1.00 0.98

d3 1.00 1.00 0.98 1.00 0.98 1.00 1.00 0.97 1.00 0.97 1.00 1.00 0.99 1.00 0.98
d1 0.08 0.07 0.97 1.00 0.03 0.02 0.03 0.98 1.00 0.00 0.72 0.70 0.99 1.00 0.58

(1.b) d2 0.12 0.13 0.98 1.00 0.06 0.05 0.05 0.99 1.00 0.01 0.85 0.84 1.00 1.00 0.76
d3 0.15 0.17 0.99 1.00 0.07 0.06 0.06 0.99 1.00 0.01 0.89 0.88 1.00 1.00 0.82
d1 0.12 0.13 0.01 0.99 0.00 0.04 0.03 0.51 1.00 0.01 0.93 0.93 0.77 1.00 0.65

(1.c) d2 0.17 0.18 0.03 0.99 0.00 0.07 0.05 0.67 1.00 0.01 0.97 0.96 0.84 1.00 0.79
d3 0.21 0.21 0.05 0.99 0.00 0.09 0.08 0.75 1.00 0.02 0.98 0.97 0.89 1.00 0.84
d1 0.42 0.22 0.14 0.42 0.02 1.00 0.98 0.87 0.05 0.04 1.00 0.91 0.81 0.99 0.73

(1.d) d2 0.48 0.29 0.22 0.50 0.03 1.00 0.99 0.91 0.10 0.09 1.00 0.94 0.87 1.00 0.82
d3 0.56 0.32 0.26 0.54 0.04 1.00 0.99 0.93 0.12 0.11 1.00 0.96 0.92 1.00 0.88

case 2: p = 2000 and σij = 0.8|i−j|

d1 1.00 1.00 0.63 1.00 0.63 1.00 1.00 0.62 1.00 0.62 1.00 1.00 0.78 1.00 0.77
(1.a) d2 1.00 1.00 0.71 1.00 0.72 1.00 1.00 0.70 1.00 0.69 1.00 1.00 0.84 1.00 0.84

d3 1.00 1.00 0.77 1.00 0.78 1.00 1.00 0.75 1.00 0.75 1.00 1.00 0.86 1.00 0.86
d1 0.12 0.13 0.81 1.00 0.06 0.04 0.04 0.88 1.00 0.02 0.97 0.98 0.92 1.00 0.88

(1.b) d2 0.19 0.19 0.86 1.00 0.12 0.07 0.07 0.91 1.00 0.03 0.99 0.99 0.95 1.00 0.94
d3 0.22 0.23 0.88 1.00 0.15 0.09 0.11 0.93 1.00 0.06 1.00 0.99 0.96 1.00 0.96
d1 0.17 0.16 0.03 0.99 0.00 0.04 0.04 0.53 1.00 0.02 1.00 1.00 0.75 1.00 0.75

(1.c) d2 0.22 0.22 0.06 1.00 0.01 0.08 0.08 0.71 1.00 0.03 1.00 1.00 0.85 1.00 0.86
d3 0.27 0.27 0.10 1.00 0.03 0.10 0.10 0.81 1.00 0.05 1.00 1.00 0.90 1.00 0.90
d1 0.44 0.38 0.11 0.45 0.03 1.00 1.00 0.73 0.05 0.04 0.99 0.98 0.68 1.00 0.67

(1.d) d2 0.51 0.46 0.18 0.53 0.05 1.00 1.00 0.81 0.09 0.08 1.00 0.98 0.76 1.00 0.75
d3 0.55 0.49 0.22 0.57 0.06 1.00 1.00 0.84 0.14 0.11 1.00 0.99 0.80 1.00 0.80

case 3: p = 5000 and σij = 0.5|i−j|

d1 1.00 1.00 0.94 1.00 0.94 1.00 0.99 0.92 1.00 0.92 1.00 0.99 0.96 1.00 0.95
(1.a) d2 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.97 1.00 0.97

d3 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.98 1.00 0.98
d1 0.06 0.06 0.94 1.00 0.02 0.02 0.02 0.96 1.00 0.00 0.59 0.60 0.98 1.00 0.46

(1.b) d2 0.09 0.09 0.96 1.00 0.03 0.03 0.03 0.97 1.00 0.01 0.72 0.72 0.99 1.00 0.61
d3 0.12 0.10 0.97 1.00 0.04 0.05 0.04 0.98 1.00 0.01 0.79 0.78 0.99 1.00 0.68
d1 0.06 0.06 0.01 0.99 0.00 0.03 0.02 0.30 1.00 0.00 0.86 0.87 0.61 1.00 0.41

(1.c) d2 0.10 0.10 0.02 1.00 0.00 0.04 0.03 0.45 1.00 0.00 0.92 0.93 0.69 1.00 0.57
d3 0.12 0.12 0.02 1.00 0.00 0.05 0.05 0.53 1.00 0.00 0.94 0.95 0.73 1.00 0.64
d1 0.39 0.21 0.11 0.40 0.01 1.00 0.97 0.82 0.02 0.02 0.99 0.87 0.74 0.99 0.65

(1.d) d2 0.44 0.24 0.14 0.45 0.01 1.00 0.98 0.88 0.04 0.03 0.99 0.90 0.81 0.99 0.75
d3 0.48 0.28 0.17 0.47 0.02 1.00 0.99 0.90 0.06 0.05 0.99 0.92 0.85 1.00 0.79

case 4: p = 5000 and σij = 0.8|i−j|

d1 1.00 1.00 0.55 1.00 0.55 1.00 1.00 0.55 1.00 0.55 1.00 1.00 0.70 1.00 0.69
(1.a) d2 1.00 1.00 0.61 1.00 0.62 1.00 1.00 0.61 1.00 0.61 1.00 1.00 0.76 1.00 0.76

d3 1.00 1.00 0.67 1.00 0.67 1.00 1.00 0.64 1.00 0.64 1.00 1.00 0.80 1.00 0.80
d1 0.10 0.09 0.74 1.00 0.05 0.02 0.02 0.83 1.00 0.00 0.94 0.94 0.90 1.00 0.82

(1.b) d2 0.12 0.13 0.81 1.00 0.07 0.03 0.04 0.87 1.00 0.01 0.97 0.97 0.93 1.00 0.89
d3 0.15 0.16 0.84 1.00 0.10 0.05 0.06 0.90 1.00 0.02 0.98 0.98 0.95 1.00 0.92
d1 0.10 0.10 0.02 0.98 0.00 0.02 0.03 0.34 1.00 0.00 1.00 1.00 0.64 1.00 0.63

(1.c) d2 0.13 0.14 0.04 0.99 0.01 0.04 0.04 0.50 1.00 0.01 1.00 1.00 0.74 1.00 0.74
d3 0.16 0.18 0.05 0.99 0.01 0.05 0.05 0.61 1.00 0.02 1.00 1.00 0.79 1.00 0.79
d1 0.42 0.32 0.09 0.40 0.01 1.00 1.00 0.66 0.02 0.01 0.99 0.97 0.63 0.98 0.59

(1.d) d2 0.48 0.39 0.12 0.44 0.02 1.00 1.00 0.74 0.04 0.03 0.99 0.97 0.70 1.00 0.68
d3 0.51 0.42 0.15 0.46 0.02 1.00 1.00 0.78 0.05 0.04 0.99 0.98 0.73 1.00 0.71
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of the DC-SIS, we adopt the following model:

Y = c1β1X1 + c2β2X2 + c3β3{1(X12 < q1) + 1.5× 1(q1 ≤ X12 < q2)

+2× 1(q2 ≤ X12 < q3)}+ c4β4X22 + ε,

where q1, q2 and q3 are the 25%, 50% and 75% quantiles of X12, respectively. The

variables X with the coefficients ci’s and βi’s are the same as those in Example 1.

We write

x̃12 = {1(X12 < q1), 1(q1 ≤ X12 < q2), 1(q2 ≤ X12 < q3))}T .

These three correlated variables naturally become a group. The predictor vector

in this example becomes x = (X1, . . . , X11, x̃12, X13, . . . , Xp)
T∈ Rp+2. We remark

here that the marginal utility of the grouped variable x̃12 is defined by

ω̂12 = d̂corr
2
(x̃12, Y ).

The 5%, 25%, 50%, 75% and 95% percentiles of the minimum model size S are

summarized in Table 3.3. These percentiles indicate that with very high proba-

bility, the minimum model size S to ensure the inclusion of all active predictors

is small. Note that [n/ log(n)] = 37. Thus, almost all Pss and Pas equal 100%.

All active predictors including the grouped variable x̃12 can almost perfectly be

selected into the resulting model across all three different model sizes. Hence, the

DC-SIS is efficient to select the grouped predictors.

Example 3. In this example, we investigate the performance of the DC-SIS with

multivariate responses. The SIS proposed in Fan and Lv (2008) cannot be directly

applied for such settings. In contrast, the DC-SIS is ready for screening the active
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Table 3.3. The 5%, 25%, 50%, 75% and 95% quantiles of the minimum model size S
out of 500 replications in Example 2.

S p = 2000 p = 5000
5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

σij = 0.5|i−j| 4.0 4.0 4.0 5.0 12.0 4.0 4.0 4.0 6.0 16.1
σij = 0.8|i−j| 4.0 5.0 7.0 9.0 15.2 4.0 5.0 7.0 9.0 21.0

Table 3.4. The proportions of Ps and Pa in Example 2. The user-specified model size
d1 = [n/ log n], d2 = 2[n/ log n] and d3 = 3[n/ log n].

p = 2000 p = 5000
Ps Pa Ps Pa

size X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL
d1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

σij = 0.5|i−j| d2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
d3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
d1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

σij = 0.8|i−j| d2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
d3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

predictors by the nature of DC. In this example, we generate y = (Y1, Y2)T from

normal distribution with mean zero and covariance matrix Σy|x = (σx,ij)2×2, where

σx,11 = σx,22 = 1 and σx,12 = σx,21 = σ(x).

We consider two scenarios for the correlation function σ(x):

(3.a): σ(x) = sin(βT

1x), where β1 = (0.8, 0.6, 0, . . . , 0)T.

(3.b): σ(x) = {exp(βT

2x)− 1} / {exp(βT

2x) + 1}, where β2 = (2−U1, 2−U2, 2−

U3, 2−U4, 0, . . . , 0)T with Ui’s being independent and identically distributed

according to uniform distribution Uniform[0, 1].

The simulation results are reported in Tables 3.5 and 3.6. Once again, we can

see from Table 3.5 that the minimum model size S to include all active predictors

is much smaller than the sample size and close to the number of the truly active

predictors. Table 3.6 indicates that the proportions that the active predictors

are selected into the model are close to one, which supports the assertion that

the DC-SIS processes the sure screening property. It implies that the DC-SIS
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can identify the active predictors contained in correlations between multivariate

responses. This may be potentially useful in gene co-expression analysis.

Table 3.5. The 5%, 25%, 50%, 75% and 95% quantiles of the minimum model size S
out of 500 replications in Example 3.

S p = 2000 p = 5000
Model 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

σij = 0.5|i−j| (3.a) 4.0 9.0 18.0 39.3 112.3 6.0 22.0 48.0 95.3 296.4
(3.b) 6.0 19.0 43.0 92.0 253.1 14.0 45.0 92.5 198.8 571.6

σij = 0.8|i−j| (3.a) 2.0 3.0 6.0 12.0 40.0 2.0 6.0 14.0 32.0 98.0
(3.b) 4.0 4.0 4.0 6.0 10.0 4.0 4.0 5.0 8.0 18.1

Table 3.6. The proportions of Ps and Pa in Example 3. The user-specified model size
d1 = [n/ log n], d2 = 2[n/ log n] and d3 = 3[n/ log n].

p = 2000 p = 5000
(3.a) (3.b) (3.a) (3.b)
Ps Pa Ps Pa Ps Pa Ps Pa

size X1 X2 ALL X1 X2 X3 X4 ALL X1 X2 ALL X1 X2 X3 X4 ALL
d1 0.95 0.76 0.74 0.71 0.98 0.98 0.72 0.47 0.79 0.49 0.42 0.48 0.91 0.90 0.53 0.20

σij = 0.5|i−j| d2 0.98 0.90 0.90 0.85 0.99 0.99 0.85 0.71 0.93 0.70 0.67 0.67 0.97 0.97 0.71 0.45
d3 1.00 0.95 0.95 0.91 0.99 1.00 0.90 0.81 0.97 0.81 0.80 0.75 0.98 0.99 0.78 0.55
d1 0.98 0.95 0.94 1.00 1.00 1.00 1.00 1.00 0.92 0.84 0.81 1.00 1.00 1.00 0.99 0.99

σij = 0.8|i−j| d2 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 0.98 0.95 0.93 1.00 1.00 1.00 1.00 1.00
d3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.96 1.00 1.00 1.00 1.00 1.00

Example 4. The Cardiomyopathy microarray dataset was once analyzed by Segal,

Dahlquist and Conklin (2003) and Hall and Miller (2009). The goal is to identify

the most influential genes for overexpression of a G protein-coupled receptor (Ro1)

in mice. The response Y is the Ro1 expression level, and the predictors Xk’s are

other gene expression levels. Compared with the sample size n = 30 in this dataset,

the dimension p = 6319 is very large.

The DC-SIS procedure ranks two genes, labeled Msa.2134.0 and Msa.2877.0,

at the top. The scatter plots of Y versus these two gene expression levels with

cubic spline fit curves in Figure 3.1 indicate clearly the existence of nonlinear

patterns. Yet, our finding is different from Hall and Miller (2009) in that they
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ranked Msa.2877.0 and Msa.1166.0 at the top with their proposed generalized

correlation ranking. A natural question arises: which screening procedure performs

better in terms of ranking? To compare the performance of these two procedures,

we fit an additive model as follows:

Y = `k1(Xk1) + `k2(Xk2) + εk, for k = 1, 2.

The DC-SIS, corresponding to k = 1, regards Msa.2134.0 and Msa.2877.0 as the

two predictors, while the generalized correlation ranking proposed by Hall and

Miller (2009), corresponding to k = 2, regards Msa.2877.0 and Msa.1166.0 as

predictors in the above model. We fit the unknown link functions `ki using the

R mgcv package. The DC-SIS method clearly achieves better performance with

the adjusted R2 of 96.8% and the deviance explained of 98.3%, in contrast to

the adjusted R2 of 84.5% and the deviance explained of 86.6% for the generalized

correlation ranking method. We remark here that deviance explained means the

proportion of the null deviance explained by the proposed model, with a larger

value indicating better performance. Because both the adjusted R2 values and the

explained deviance are very large, it seems unnecessary to extract any additional

genes.

3.5 The Iterative Screening Procedure

The DC-SIS may fail to identify some active predictors which are marginally inde-

pendent of the response. In this section, we develop an iterative DC-SIS procedure

to fix this issue. We first describe this phenomenon via an illustrative example

considered by Fan and Lv (2008).
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Figure 3.1. The scatter plot of Y versus two genes expression levels identified by the
DC-SIS.

We consider the following model

Y = 5X1 + 5X2 + 5X3 − 15
√
ρX4 + ε. (3.4)

Each predictor is generated from a normal distribution with zero mean and unit

variance. All Xk’s except X4 are equally correlated with the Pearson correlation

coefficient ρ, while X4 has the Pearson correlation
√
ρ with all other p − 1 vari-

ables. In this example, X4 is marginally independent of but jointly relevant to

the response variable Y . Both SIS and DC-SIS can only pick out X4 by chance,

although X4 is clearly a variable of interest.

For linear models, one may calculate the least squares fit with selected vari-

ables, and further calculate the residuals. Thus, Fan and Lv (2008) proposed an

iterative SIS (ISIS) to detect significant predictors that are marginally independent

of the response by regarding the residual as a new response. It is more challenging

for the DC-SIS to handle such an issue because we do not want to impose a regres-

sion model, and thus residuals are not available. Below we introduce an iterative
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sure independent screening via distance correlation (DC-ISIS) procedure to handle

the issue. Zhu, Li, Li and Zhu (2011) proposed a similar iterative procedure for

their SIRS. Below we apply their strategy for the DC-SIS. The DC-ISIS procedure

consists of four steps as follows:

Step 1. In the initial stage, we apply the DC-SIS procedure for y and x. Suppose

we select p1 predictors, which are denoted by D1 =
{
X

(1)
1 , . . . , X

(1)
p1

}
, where

p1 < d, where d is user-specified model size. Fan and Lv (2008) suggested

choosing d = O(n/ log n). In this paper, we simply set d = 2[n/ log n].

Step 2. Create new predictor variables xnew by regressing the screened-out vari-

ables on variables in D1. Specifically, denote by X1 the corresponding design

matrix of variables inD1, and Xc
1 the corresponding design matrix of variables

in Dc1, the complement of D1. Define Xnew =
{
In −X1 (XT

1X1)−1 XT
1

}
Xc

1,

the corresponding design matrix of new predictor variables xnew. Then, ap-

ply the DC-SIS procedure for y and xnew. Suppose we select p2 predictors

D2 = {X(2)
1 , . . . , X

(2)
p2 }.

Step 3. Let L = 2 and DS = D1 ∪ · · · ∪DL. Repeat Step 2 with replacement D1

and Dcc with DS and DcS, respectively. Denote the selected pL+1 predictors

by DL+1 = {X(L+1)
1 , . . . , X

(L+1)
pL+1 }.

Step 4. Let L = 3, 4, · · · , k, repeat Step 3 and update the selected predictors set

with D1 ∪ D2 ∪ · · · ∪ Dk until p1 + p2 + · · ·+ pk ≥ d.

How to decide the sizes pi’s can be challenging, and it usually depends upon model

complexity. For the purpose of simplicity, we set all pi’s to be 5 in our simula-

tion studies presented in next section. It will show that the proposed DC-ISIS

can efficiently identify the active predictors that marginally independent of the

responses.
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Example 5. In this example, we compare the empirical performance of DC-ISIS

with the DC-SIS, SIS and ISIS in the same linear model (3.4) designed by Fan

and Lv (2008). We consider two different values of the correlation coefficient: (i)

ρ = 0.5 and (ii) ρ = 0.8. To make the simulation more challenging, we vary the

dimension p from 1000 to 5000 for the fixed sample size n = 200. Table 3.7 depicts

the simulation results of Ps and Pa for each independence screening procedure. As

illustrated before, X4 is marginally independent of but jointly important to the

response Y , so the SIS and DC-SIS can hardly select X4. However, the proposed

DC-ISIS is able to select X4 perfectly in our model setting, and the ISIS also

performs well to select X4. We remark that the DC-ISIS doesn’t implement any

regression information, while the ISIS uses the true information of linear regression.

In this sense, the DC-ISIS is model free and more flexible to various regression

models, which can also be seen in the following examples.

Table 3.7. The proportions of Ps and Pa in Example 5 with the user-specified model
size d = 2[n/ log n].

ρ = 0.5 ρ = 0.8
Ps Pa Ps Pa

p Method X1 X2 X3 X4 ALL X1 X2 X3 X4 ALL
SIS 1.00 1.00 1.00 0.00 0.00 0.93 0.94 0.93 0.00 0.00

1000 ISIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
DC-SIS 1.00 1.00 1.00 0.01 0.01 0.91 0.92 0.93 0.00 0.00
DC-ISIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SIS 1.00 1.00 1.00 0.00 0.00 0.88 0.90 0.89 0.00 0.00
5000 ISIS 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.95 0.95

DC-SIS 1.00 1.00 1.00 0.00 0.00 0.88 0.88 0.89 0.00 0.00
DC-ISIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Example 6. The proposed DC-ISIS can be directly implemented for the categor-

ical response. This simulation is designed to access the finite-sample performance

of the DC-ISIS for the regression models with the categorical response. We first
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generate the response variable Y as same as Example 5, and then transform Y

to a new categorical variable in the following two ways: (a) a binary response

defined by Y ∗ = 1(Y > 0), where 1(·) is the indicator function; (b) a multi-level

categorical response defined by

Y ∗ =



1, if Y < −3;

2, if −3 ≤ Y < 0;

3, if 0 ≤ Y < 3;

4, if Y ≥ 3.

In each simulated model, (X1, X2, X3, X4) are relevant to the new response Y ∗,

but X4 is marginally independent of Y ∗. We only report the simulation results for

the sample size n = 200 and the dimension p = 1000 in the paper. The results for

p = 5000 are available upon request. Table 3.8 summarizes the simulation results

of Ps and Pa for both types of the new responses. It demonstrates that the DC-

ISIS can improve the performance of the DC-SIS dramatically, in the sense that

the DC-ISIS can select all relevant predictors with sufficiently high probability,

especially X4 which is always missed by the DC-SIS.

Table 3.8. The proportions of Ps and Pa in Example 6 with the user-specified model
size d = 2[n/ log n].

ρ = 0.5 ρ = 0.8
Ps Pa Ps Pa

Y ∗ Method X1 X2 X3 X4 ALL X1 X2 X3 X4 ALL
(a) DC-SIS 1.00 1.00 1.00 0.00 0.00 0.89 0.89 0.88 0.00 0.00

DC-ISIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98
(b) DC-SIS 1.00 1.00 1.00 0.01 0.01 0.90 0.90 0.90 0.00 0.00

DC-ISIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Example 7. Thanks to the appealing property of DC, both the DC-SIS and

DC-ISIS can be directly used for screening grouped predictors. In many regres-
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sion problems, several predictors can be represented by a group. For example, in

the additive regression model with nonparametric components, each component

may be expressed as a linear combination of several basis functions of the origi-

nal variable, which can be naturally considered as a group. In the high/ultrahigh

dimensional space, selecting the important original variables is equivalent to se-

lecting the important groups of basis functions. Another common example is the

multi-factor analysis-of-variance (ANOVA) problem (Yuan and Lin, 2008).

In this example, we generate p predictors (X1, X2, · · · , Xp)
T from multivariate

normal distribution with zero mean and covariance matrix Σ = (σij)p×p with

entries σjj = 1 for j = 1, 2, . . . , p, and σij = ρ1 for i 6= j. Then, we generate

a new predictor X ′4 from the standard normal distribution. X ′4 is introduced to

have the much higher correlation ρ3 with X4, and the lower correlation ρ2 with

other p− 1 variables. Here, we consider two highly correlated variables X4 and X ′4

as one group, denoted by X̃4 = {X4, X
′
4}. Then, the predictors vector becomes

(X1, X2, X3, X̃4, · · · , Xp)
T ∈ Rp+1.

We design the following model to generate the response variable Y :

Y = 5X1 + 5X2 + 5X3 − 15

[(
ρ2ρ3 − ρ1

ρ2
3 + 1

)
X4 +

(
ρ1ρ3 − ρ2

ρ2
3 + 1

)
X ′4

]
+ ε, (3.5)

where ε is an independent random error from standard normal distributionN (0, 1).

It can be shown that both X4 and X ′4 are marginally independent of but jointly

important to the response Y , so is the grouped predictor X̃4. We remark here that

the marginal utility of the grouped predictor X̃4 is defined by ω̂4 = d̂corr
2
(X̃4, Y ).

In this example, we consider two dimensions varying from 1000 to 5000 for the

fixed sample size 200. We set ρ1 = 0.5, ρ2 = 0.3 and ρ3 = 0.9, then the regression
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model (3.5) becomes

Y = 5X1 + 5X2 + 5X3 − 15(1.21X4 − 0.79X ′4) + ε.

The simulation results of Ps and Pa in Table 3.9 demonstrate that the DC-ISIS is

efficient to select all active predictors including the grouped variable X̃4, although

X̃4 is marginally independent of the response Y .

Table 3.9. The proportions of Ps and Pa in Example 7 with the user-specified model
size d = 2[n/ log n].

Ps Pa
p Method X1 X2 X3 X4 ALL

1000 DC-SIS 1.00 1.00 1.00 0.00 0.00
DC-ISIS 1.00 1.00 1.00 1.00 1.00

5000 DC-SIS 1.00 1.00 1.00 0.00 0.00
DC-ISIS 1.00 1.00 1.00 0.99 0.99

Example 8. The DC-SIS and DC-ISIS are available to screen the active pre-

dictors for the multivariate responses by the nature of DC. In this example, we

investigate their empirical performance in the model with a bivariate response. We

generate (X1, X2, · · · , Xp)
T from multivariate normal distribution with zero mean

and covariance matrix Σ = (σij)p×p, where σij = ρ|i−j|, for i, j = 1, 2, . . . , p. We

consider two covariance matrices with (i) ρ = 0.5 and (ii) ρ = 0.8, respectively.

Here, the sample size n is fixed to be 200 and the dimension p varies from 2000 to

5000. For ease of interpretation, a bivariate response y = (Y1, Y2)T is generated by

the following bivariate normal distribution:

 Y1

Y2

 ∼ N


 5X1 + 5X2 − 5(ρ+ ρ2)X3

5X11 + 5X12 − 5(ρ+ ρ2)X13

 ,

 1 0.5

0.5 1

 . (3.6)

In consequence, X3 and X13 are marginally independent of but jointly relevant



69

to the bivariate response variable y. Table 3.10 indicates that the proportions

that the active predictors are selected into the model by the DC-ISIS equal to one

under the model setting, but the DC-SIS can only pick the variables X3 and X13

by random chance. Thus, the DC-ISIS can efficiently select active predictors for

multiple responses. This may be potentially useful in genetical pathway analyses

in the ultrahigh dimensional space.

Table 3.10. The proportions of Ps and Pa in Example 8 with the user-specified model
size d = 2[n/ log n].

ρ = 0.5 ρ = 0.8
Ps Pa Ps Pa

p Method X1 X2 X3 X11 X12 X13 ALL X1 X2 X3 X11 X12 X13 ALL
1000 DC-SIS 1.00 1.00 0.07 1.00 1.00 0.06 0.00 1.00 1.00 0.25 1.00 1.00 0.14 0.04

DC-ISIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5000 DC-SIS 1.00 1.00 0.02 1.00 1.00 0.01 0.00 1.00 1.00 0.09 1.00 1.00 0.01 0.00

DC-ISIS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Example 9. In this example, we apply the DC-ISIS procedure for a rat eye

expression dataset to conduct an empirical analysis and comparison with existing

methods. This dataset was once used by Scheetz, et al. (2006) and Huang, Ma

and Zhang (2008). In this dataset, 120 twelve-week-old male rats were selected

for tissue harvesting from the eyes and for microarray analysis. The microarrays

used to analyze the RNA from the eyes of these rats contain 31, 042 different probe

sets. Following Huang, Ma and Zhang (2008), we excluded the probes that were

not expressed sufficiently or that lacked sufficient variation, leaving 18,976 probes

which satisfy these two criteria. The response variable TRIM32, which was recently

found to cause Bardet-Biedl syndrome (Chiang, et al., 2006), is one of the selected

18,976 probes. We then selected 3,000 probes with the largest variances from the

remaining 18, 975 probes. The goal of our analysis is to identify the genes that are

most relevant to the expression level of TRIM32 from the 3,000 candidate genes.

Huang, Ma and Zhang (2008) used the SIS to shrink the dimension p from
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3,000 down to 200, then selected 19 genes with the adaptive LASSO (aLASSO)

from these 200 candidate genes in the linear regression model. We refer to their

procedure as HMZ(2008) below. To analyze this dataset, we first applied the

DC-SIS and DC-ISIS procedures to shrink the dimension from 3, 000 down to

2[n/ log(n)] = 50. Then, we conducted some exploratory data analysis for the

selected 50 probes and the response, and found that each selected probe was lin-

early correlated to the response in some sense. Thus, we followed Huang, Ma

and Zhang (2008) to apply linear regression model to the selected genes. For the

purpose of comparison, we also implemented the aLASSO to select those most rel-

evant genes from the selected 50 genes. The DC-ISIS+aLASSO eventually chose

12 genes, and the DC-SIS+aLASSO chose only 6 genes. The resulting dimensions

are summarized in Table 3.11.

Table 3.11. Results of Example 9: rat eye expression dataset.
# of Var R2 MSPE(RSD)

HMZ(2008) 19 73.4% 0.371(0.161)
DC-SIS+aLASSO 6 62.6% 0.411(0.232)

DC-ISIS+aLASSO 12 81.1% 0.232(0.106)

We fitted the data set by a linear model and compared their performance in

terms of the adjusted R2. The results are displayed in Table 3.11, in which the

column labeled ‘# of Var’ stands for the number of selected variables and the col-

umn of R2 for the adjusted R2. It can be clearly seen that the DC-ISIS+aLASSO

performs the best with the largest R2 value 81.1%, indicating that the itera-

tive procedure identifies some features missed by the DC-SIS+aLASSO. Although

HMZ(2008) selected 19 genes from 200 candidates, it does not perform as well as

DC-ISIS+aLASSO, partly because SIS may miss some important features when

the predictors are not normally distributed.

Next, we randomly partitioned the data into a training data, consisting of
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100 observations, and a test data consisting of the remaining 20 observations.

We fitted linear models respectively for HMZ(2008), DC-SIS+aLASSO and DC-

ISIS+aLASSO with the training data, then calculated the prediction error in the

test dataset. To be precise, we estimated the parameters from the training dataset,

calculated the squared distance between the observed and predicted response values

in the test dataset. The column labeled ‘MSPE(RSD)’ in Table 3.11 displays the

median of the mean squared prediction errors (MSPE) with associated robust

estimate of the standard deviation (RSD = IQR/1.34) in the parenthesis over

1000 repetitions. Once again, DC-ISIS+aLASSO produced the smallest MSPE,

confirming the better performance of DC-ISIS+aLASSO.

3.6 Theoretical Proofs

3.6.1 Proof of Lemma 3.3.1

Following Székely, Rizzo and Bakirov (2007), we remark here that all involved

integrals at 0 and ∞ are meaningful in the sense that lim
ε→0

∫
Rd/{εB+ε−1Bc}, where B

is the unit ball centered at 0 in Rd. We first note that

|φXk,y(t, s)|2 = φXk,y(t, s)φXk,y(−t,−s).

After simple algebraic calculation, it follows that

∫
Rq+1

|φXk,y(t, s)− φXk(t)φy(s)|2w(t, s)dtds

=

∫
Rq+1

{φXk,y(t, s)− φXk(t)φy(s)} {φXk,y(−t,−s)− φXk(−t)φy(−s)}w(t, s)dtds

=

∫
Rq+1

φXk,y(t, s)φXk,y(−t,−s)w(t, s)dtds



72

−
∫
Rq+1

φXk,y(t, s)φXk(−t)φy(−s)w(t, s)dtds

−
∫
Rq+1

φXk(t)φy(s)φXk,y(−t,−s)w(t, s)dtds

+

∫
Rq+1

φXk(t)φy(s)φXk(−t)φy(−s)w(t, s)dtds.

In the sequel we will deal with the above four quantities separately. Denote F (Xk),

F (y) and F (Xk,y) be the distribution functions of Xk, y and (Xk,y), respectively.

We first deal with the first term. Using the fact that exp(itXk) = cos(tXk) +

i sin(tXk) and the Fubini theorem, we obtain

∫
Rq+1

φXk,y(t, s)φXk,y(−t,−s)w(t, s)dtds

=

∫
S(Xk,y)

∫
S(X̃k,ỹ)

∫
Rq+1

exp
{
it(Xk − X̃k) + isT(y − ỹ)

}
w(t, s)dtdsdF (Xk,y)dF (X̃k, ỹ)

=

∫
S(Xk,y)

∫
S(X̃k,ỹ)

∫
Rq+1

cos
{
t(Xk − X̃k) + sT(y − ỹ)

}
w(t, s)dtdsdF (Xk,y)dF (X̃k, ỹ)

+

∫
S(Xk,y)

∫
S(X̃k,ỹ)

∫
Rq+1

i sin
{
t(Xk − X̃k) + sT(y − ỹ)

}
w(t, s)dtdsdF (Xk,y)dF (X̃k, ỹ)

=

∫
S(Xk,y)

∫
S(X̃k,ỹ)

∫
Rq+1

cos
{
t(Xk − X̃k)

}
cos
{
sT(y − ỹ)

}
w(t, s)dtdsdF (Xk,y)dF (X̃k, ỹ),

where (X̃k, ỹ) is an independent copy of (Xk,y), and S(Xk,y) and S(X̃k, ỹ) are the

supports of (Xk,y) and (X̃k, ỹ), respectively. Since sin(·)w(·) is an odd function,

we can easily obtain that

∫
S(Xk,y)

∫
S(X̃k,ỹ)

∫
Rq+1

sin
{
t(Xk − X̃k) + sT(y − ỹ)

}
w(t, s)dtdsdF (Xk,y)dF (X̃k, ỹ) = 0,

and

∫
S(Xk,y)

∫
S(X̃k,ỹ)

∫
Rq+1

sin
{
t(Xk − X̃k)

}
sin
{
sT(y − ỹ)

}
w(t, s)dtdsdF (Xk,y)dF (X̃k, ỹ) = 0.



73

Let Rd
ε = Rd/{εB + ε−1Bc}, where B is the unit ball centered at 0 in Rd. Recall

that the integrals at 0 and ∞ are meant in the following sense that lim
ε→0

∫
Rdε

. Using

Lemma 1 of Székely, Rizzo and Bakirov (2007) and the facts that

cosu cos v = 1− (1− cosu)− (1− cos v) + (1− cosu)(1− cos v), and

w(t, s) =
{
c1|t|21

}−1 {
cq|s|q+1

q

}−1
= w(t)w(s),

we have

∫
Rq+1
ε

|φXk,y(t, s)|2w(t, s)dtds

=

∫
S(Xk,y)

∫
S(X̃k,ỹ)

∫
Rq+1
ε

[
1−

{
1− cos

(
t(Xk − X̃k)

)}
− {1− cos (sT(y − ỹ))}

+
{

1− cos
(
t(Xk − X̃k)

)}{
1− cos (sT(y − ỹ))

}]
w(t, s)dtdsdF (Xk,y)dF (X̃k, ỹ)

=

∫
Rq+1
ε

w(t, s)dtds−
{∫

Rqε
w(s)ds

}∫
S(Xk,y)

∫
S(X̃k,ỹ)

|Xk − X̃k|pdF (Xk,y)dF (X̃k, ỹ)

−
{∫

Rε
w(t)dt

}∫
S(Xk,y)

∫
S(X̃k,ỹ)

|y − ỹ|qdF (Xk,y)dF (X̃k, ỹ)

+

∫
S(Xk,y)

∫
S(X̃k,ỹ)

|Xk − X̃k|1|y − ỹ|qdF (Xk,y)dF (X̃k, ỹ)

=

∫
Rq+1
ε

w(t, s)dtds−
{∫

Rqε
w(s)ds

}
E{|Xk − X̃k|1}

−
{∫

Rε
w(t)dt

}
E{|y − ỹ|q}+ E

{
|Xk − X̃k|1|y − ỹ|q

}
=: A1 − A2 − A3 + Sε1.

The notations Ai’s and Sε1 are denoted in an obvious way. Next we turn to the

second quantity. Assume (Xk,y), X̃k1 and ỹ2 are mutually independent, and X̃k1

and ỹ2, are respective copies of Xk and y. Using Fubini Theorem and similar



74

arguments for handling the first term, we obtain that

∫
Rq+1
ε

φXk,y(t, s)φXk(−t)φy(−s)w(t, s)dtds

=

∫
S(Xk,y)

∫
S(X̃k1)

∫
S(ỹ2)

∫
Rq+1
ε

exp
{
it(Xk − X̃k1) + isT(y − ỹ2)

}
w(t, s)dtdsdF (Xk,y)dF (X̃k1)dF (ỹ2)

=

∫
S(Xk,y)

∫
S(X̃k1)

∫
S(ỹ2)

∫
Rq+1
ε

cos
{
t(Xk − X̃k1)

}
cos {sT(y − ỹ2)}w(t, s)dtdsdF (Xk,y)dF (X̃k1)dF (ỹ2)

=

∫
Rq+1
ε

w(t, s)dtds

−
{∫

Rqε
w(s)ds

}∫
S(Xk,y)

∫
S(X̃k1)

∫
S(ỹ2)

|Xk − X̃k1|1dF (ỹ2)dF (X̃k1)dF (Xk,y)

−
{∫

Rε
w(t)dt

}∫
S(Xk,y)

∫
S(X̃k1)

∫
S(ỹ2)

|y − ỹ2|qdF (ỹ2)dF (X̃k1)dF (Xk,y)

+

∫
S(Xk,y)

∫
S(X̃k1)

∫
S(ỹ2)

|Xk − X̃k1|1|y − ỹ2|qdF (ỹ2)dF (X̃k1)dF (Xk,y)

=

∫
Rq+1
ε

w(t, s)dtds−
{∫

Rqε
w(s)ds

}
E{|Xk − X̃k|1}

−
{∫

Rε
w(t)dt

}
E{|y − ỹ|q}+ E

{
E
(
|Xk − X̃k|1 | Xk

)
E (|y − ỹ|q | y)

}
= A1 − A2 − A3 + Sε3.

Since

∫
Rq+1
ε

φXk(t)φy(s)φXk,y(−t,−s)w(t, s)dtds

=

∫
Rq+1
ε

φXk(−t)φy(−s)φXk,y(t, s)w(t, s)dtds.

The third term is identical to the second term. Consequently,

∫
Rq+1
ε

φXk(t)φy(s)φXk,y(−t,−s)w(t, s)dtd(s) = A1 − A2 − A3 + Sε3.
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Finally we move to the last quantity. Let Xk1, X̃k1, y2 and ỹ2 be mutually inde-

pendent random variables. In addition, the first two have identical distribution,

and the last term have identical distribution as well. Following similar arguments,

we can obtain that

∫
Rq+1
ε

φXk(t)φy(s)φXk(−t)φy(−s)w(t, s)dtds

=

∫
S(Xk1)

∫
S(y2)

∫
S(X̃k1)

∫
S(ỹ2)

∫
Rq+1
ε

exp
{
it(Xk1 − X̃k1) + isT(y2 − ỹ2)

}
w(t, s)dtdsdF (ỹ2)dF (X̃k1)dF (y2)dF (Xk1)

=

∫
S(Xk1)

∫
S(y2)

∫
S(X̃k1)

∫
S(ỹ2)

∫
Rq+1
ε

cos
{
t(Xk1 − X̃k1)

}
cos {sT(y2 − ỹ2)}

w(t, s)dtdsdF (ỹ2)dF (X̃k1)dF (y2)dF (Xk1)

=

∫
Rq+1
ε

w(t, s)dtds

−
{∫

Rqε
w(s)ds

}∫
S(Xk1)

∫
S(y2)

∫
S(X̃k1)

∫
S(ỹ2)

|Xk1 − X̃k1|1dF (ỹ2)dF (x̃1)dF (y2)dF (x1)

−
{∫

Rε
w(t)dt

}∫
S(Xk1)

∫
S(y2)

∫
S(X̃k1)

∫
S(ỹ2)

|y2 − ỹ2|qdF (ỹ2)dF (x̃1)dF (y2)dF (x1)

+

∫
S(Xk1)

∫
S(X̃k1)

|Xk1 − X̃k1|pdF (X̃k1)dF (Xk1)

∫
S(y2)

∫
S(ỹ2)

|y2 − ỹ2|qdF (ỹ2)dF (y2)

=

∫
Rq+1
ε

w(t, s)dtds−
{∫

Rqε
w(s)ds

}
E
{
|Xk − X̃k|1

}
−

{∫
Rε
w(t)dt

}
E
{
|y − ỹ|q

}
+ E

{
|Xk − X̃k|1

}
E
{
|y − ỹ|q

}
= A1 − A2 − A3 + Sε2.

Hence, we can conclude that

lim
ε→0
{(A1 − A2 − A3 + Sε1)− (A1 − A2 − A3 + Sε3)

−(A1 − A2 − A3 + Sε3) + (A1 − A2 − A3 + Sε2)}

= lim
ε→0

(Sε1 + Sε2 − 2Sε3) = S1 + S2 − 2S3.
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This completes the proof of Lemma 3.3.1.

3.6.2 Proof of Thoerem 3.3.4

We aim to show the uniform consistency of the denominator and the numerator of

ω̂k under regularity conditions respectively. Because the denominator of ω̂k has a

similar form as the numerator, we deal with its numerator only below. Throughout

proof, the notations C and c are generic constants which may take different values

at each appearance.

We first deal with Ŝk1. Define Ŝ∗k1 = {n(n − 1)}−1
∑
i 6=j
‖Xik − Xjk‖1‖yi − yj‖q,

which is a usual U -statistic. We shall establish the uniform consistency of Ŝ∗k1 by

using the theory of U -statistics (Serfling, 1980, Section 5). By using the Cauchy-

Schwartz inequality,

Sk1 = E (‖Xik −Xjk‖1‖yi − yj‖q) ≤
{
E
(
‖Xik −Xjk‖2

1

)
E
(
‖yi − yj‖2

q

)}1/2

≤ 4
{
E(X2

k)E‖y‖2
q

}1/2
.

This together with condition (C3.1) implies that Sk1 is uniformly bounded in p,

that is, sup
p

max
1≤k≤p

Sk1 < ∞. For any given ε > 0, take n large enough such that

Sk1/n < ε. Then it can be easily shown that

Pr
(∣∣Ŝk1 − Sk1

∣∣ ≥ 2ε
)

= Pr
{∣∣Ŝ∗k1(n− 1)/n− Sk1(n− 1)/n− Sk1/n

∣∣ ≥ 2ε
}

≤ Pr
{∣∣Ŝ∗k1 − Sk1

∣∣(n− 1)/n ≥ 2ε− Sk1/n
}

≤ Pr
(∣∣Ŝ∗k1 − Sk1

∣∣ ≥ ε
)
.

(3.7)

To establish the uniform consistency of Ŝk1, it thus suffices to show the uniform

consistency of Ŝ∗k1. Let h1(Xik,yi;Xjk,yj) = ‖Xik−Xjk‖1‖yi−yj‖q be the kernel
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of the U -statistic Ŝ∗k1. We decompose the kernel function h1 into two parts: h1 =

h11(h1 > M) + h11(h1 ≤M) where M will be specified later. The U -statistic can

now be written as follows,

Ŝ∗k1 = {n(n− 1)}−1
∑
i 6=j

h1(Xik,yi;Xjk,yj)1 {h1(Xik,yi;Xjk,yj) ≤M}

+ {n(n− 1)}−1
∑
i 6=j

h1(Xik,yi;Xjk,yj)1 {h1(Xik,yi;Xjk,yj) > M}

= Ŝ∗k1,1 + Ŝ∗k1,2.

Accordingly, we decompose Sk1 into two parts:

Sk1 = E [h1(Xik,yi;Xjk,yj)1 {h1(Xik,yi;Xjk,yj) ≤M}]

+ E [h1(Xik,yi;Xjk,yj)1 {h1(Xik,yi;Xjk,yj) > M}]

= Sk1,1 + Sk1,2.

Clearly, Ŝ∗k1,1 and Ŝ∗k1,2 are the respectively unbiased estimates of Sk1,1 and Sk1,2.

We deal with the consistency of Ŝ∗k1,1 first. With the Markov’s inequality, for

any t > 0, we can obtain that

Pr(Ŝ∗k1,1 − Sk1,1 ≥ ε) ≤ exp (−tε) exp(−tSk1,1)E{exp(tŜ∗k1,1)}.

Serfling (1980, Section 5.1.6, Pages 180-181) showed that any U -statistic can be

represented as an average of averages of independent and identically distributed

(i.i.d) random variables; that is, Ŝ∗k1,1 = (n!)−1∑
n!

Ω1(X1k,y1; · · · ;Xnk,yn), where∑
n!

denotes the summation over all possible permutations of (1, . . . , n), and each

Ω1(X1k,y1; · · · ;Xnk,yn) is an average of m = [n/2] i.i.d random variables that is,

Ω1 = m−1
∑
r

h
(r)
1 1{h(r)

1 ≤ M}. Since the exponential function is convex, it follows
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from Jensen’s inequality that, for 0 < t ≤ 2s0,

E{exp(tŜ∗k1,1)} = E
[

exp
{
t(n!)−1

∑
n!

Ω1(X1k,y1; · · · ;Xnk,yn)
}]

≤ (n!)−1
∑
n!

E [exp {tΩ1(X1k,y1; · · · ;Xnk,yn)}]

= Em
{

exp
(
m−1th

(r)
1 1{h(r)

1 ≤M}
)}
,

which together with Lemma 3.3.2 entails immediately that

Pr(Ŝ∗k1,1 − Sk1,1 ≥ ε) ≤ exp (−tε)Em
{

exp
(
m−1t

[
h

(r)
1 1{h(r)

1 ≤M} − Sk1,1

])}
≤ exp

{
−tε+M2t2/(8m)

}
.

By choosing t = 4εm/M2, we have Pr(Ŝ∗k1,1 − Sk1,1 ≥ ε) ≤ exp (−2ε2m/M2).

Therefore, by the symmetry of U -statistic, we can obtain easily that

Pr
(∣∣Ŝ∗k1,1 − Sk1,1

∣∣ ≥ ε
)
≤ 2 exp

(
−2ε2m/M2

)
. (3.8)

Next we show the consistency of Ŝ∗k1,2. With Cauchy-Schwartz and Markov’s in-

equality,

S2
k1,2 ≤ E

{
h2

1(Xik,yi;Xjk,yj)
}

Pr {h1(Xik,yi;Xjk,yj) > M}

≤ E
{
h2

1(Xik,yi;Xjk,yj)
}
E [exp {s′h1(Xik,yi;Xjk,yj)}] / exp (s′M) ,

for any s′ > 0. Using the fact (a2 + b2)/2 ≥ (a+ b)2/4 ≥ |ab|, we have

h1(Xik,yi;Xjk,yj) =
{

(Xik −Xjk)
2(yi − yj)

T(yi − yj)
}1/2

≤ 2
{(
X2
ik +X2

jk

) (
‖yi‖2

q + ‖yj‖2
q

)}1/2 ≤
{(
X2
ik +X2

jk + ‖yi‖2
q + ‖yj‖2

q

)2
}1/2

= X2
ik +X2

jk + ‖yi‖2
q + ‖yj‖2

q,
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which yields that

E [exp {s′h1(Xik,yi;Xjk,yj)}] ≤ E
[
exp

{
s′
(
X2
ik +X2

jk + ‖yi‖2
q + ‖yj‖2

q

)}]
≤ E

{
exp

(
2s′X2

ik

)}
E
{

exp
(
2s′‖yi‖2

q

)}
.

The last inequality follows from the Cauchy-Schwartz inequality. If we choose

M = cnγ for 0 < γ < 1/2 − κ, then Sk1,2 ≤ ε/2 when n is sufficiently large.

Consequently,

Pr
(∣∣Ŝ∗k1,2 − Sk1,2

∣∣ > ε
)
≤ Pr

(∣∣Ŝ∗k1,2

∣∣ > ε/2
)
. (3.9)

It remains to bound the probability Pr
(∣∣Ŝ∗k1,2

∣∣ > ε/2
)
. We observe that the events

satisfy

{∣∣Ŝ∗k1,2

∣∣ > ε/2
}
⊆
{
X2
ik + ‖yi‖2

q > M/2, for some 1 ≤ i ≤ p
}
. (3.10)

To see this, we assume that X2
ik + ‖yi‖2

q ≤ M/2 for all 1 ≤ i ≤ p. This as-

sumption will lead to a contradiction. To be precise, under this assumption,

h1(Xik,yi;Xjk,yj) ≤ X2
ik + X2

jk + ‖yi‖2
q + ‖yj‖2

q ≤ M . Consequently,
∣∣Ŝ∗k1,2

∣∣ = 0,

which is a contrary to the event
∣∣Ŝ∗k1,2

∣∣ > ε/2. This verifies the relation (3.10) is

true.

By invoking condition (C3.1), there must exist a constant C such that

Pr(‖Xk‖2
1 + ‖y‖2

q ≥M/2) ≤ Pr(‖Xk‖1 ≥
√
M/2) + Pr(‖y‖q ≥

√
M/2)

≤ 2C exp(−sM/4).
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The last inequality follows from Markov’s inequality for s > 0. Consequently,

max
1≤k≤p

Pr
(∣∣Ŝ∗k1,2

∣∣ > ε/2
)
≤ n max

1≤k≤p
Pr(‖Xk‖2

1 + ‖y‖2
q ≥M/2)

≤ 2nC exp(−sM/4). (3.11)

Recall that M = cnγ. Combining the results (3.8), (3.9) and (3.11), we have

Pr
(∣∣Ŝk1 − Sk1

∣∣ ≥ 4ε
)
≤ 2 exp

(
−ε2n1−2γ

)
+ 2nC exp (−snγ/4) . (3.12)

In the sequel we turn to Ŝk2. We write Ŝk2 = Ŝk2,1Ŝk2,2, where Ŝk2,1 =

n−2
∑
i 6=j
‖Xik − Xjk‖1, and Ŝk2,2 = n−2

∑
i 6=j
‖yi − yj‖q. Similarly, we write Sk2 =

Sk2,1Sk2,2, where Sk2,1 = E{‖Xik −Xjk‖1} and Sk2,2 = E{‖yi − yj‖q}. Following

arguments for proving (3.12) we can show that

Pr
(∣∣Ŝk2,1 − Sk2,1

∣∣ ≥ 4ε
)
≤ 2 exp

(
−ε2n1−2γ

)
+ 2nC exp

(
−sn2γ/4

)
, and

Pr
(∣∣Ŝk2,2 − Sk2,2

∣∣ ≥ 4ε
)
≤ 2 exp

(
−ε2n1−2γ

)
+ 2nC exp

(
−sn2γ/4

)
.

(3.13)

Condition (C3.1) ensures that Sk2,1 ≤ {E(‖Xik −Xjk‖2
1)}1/2 ≤ {4E(X2

k)}1/2
and

Sk2,2 ≤
{
E(‖yi − yj‖2

q)
}1/2 ≤

{
4E(‖y‖2

q)
}1/2

are uniformly bounded. That is,

max
{

max
1≤k≤p

Sk2,1, Sk2,2

}
≤ C,

for some constant C. Using (3.13) repetitively, we can easily prove that

Pr
{∣∣(Ŝk2,1 − Sk2,1)Sk2,2

∣∣ ≥ ε
}
≤ Pr

(∣∣Ŝk2,1 − Sk2,1

∣∣ ≥ ε/C
)

≤ 2 exp
{
−ε2n1−2γ/(16C2)

}
+ 2nC exp

(
−sn2γ/4

)
,

Pr
(∣∣Sk2,1(Ŝk2,2 − Sk2,2)

∣∣ ≥ ε
)
≤ Pr

(∣∣Ŝk2,2 − Sk2,2

∣∣ ≥ ε/C
)

≤ 2 exp
{
−ε2n1−2γ/(16C2)

}
+ 2nC exp

(
−sn2γ/4

)
,

(3.14)
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and

Pr
{∣∣(Ŝk2,1 − Sk2,1)(Ŝk2,2 − Sk2,2)

∣∣ ≥ ε
}

≤Pr
(∣∣Ŝk2,1 − Sk2,1

∣∣ ≥ √ε)+ Pr
(∣∣Ŝk2,2 − Sk2,2

∣∣ ≥ √ε)
≤4 exp

(
−εn1−2γ/16

)
+ 4nC exp

(
−sn2γ/4

)
.

(3.15)

It follows from Bonferroni’s inequality, inequalities (3.14) and (3.15) that,

Pr
(∣∣∣Ŝk2 − Sk2

∣∣∣ ≥ 3ε
)

= Pr
(∣∣∣Ŝk2,1Ŝk2,2 − Sk2,1Sk2,2

∣∣∣ ≥ 3ε
)

≤Pr
{∣∣∣(Ŝk2,1 − Sk2,1)Sk2,2

∣∣∣ ≥ ε
}

+ Pr
{∣∣∣Sk2,1(Ŝk2,2 − Sk2,2)

∣∣∣ ≥ ε
}

+ Pr
{∣∣∣(Ŝk2,1 − Sk2,1)(Ŝk2,2 − Sk2,2)

∣∣∣ ≥ ε
}

≤2 exp
{
−ε2n1−2γ/(16C2)

}
+ 2nC exp

(
−sn2γ/4

)
+ 2 exp

{
−ε2n1−2γ/(16C2)

}
+ 2nC exp

(
−sn2γ/4

)
+ 4 exp

(
−εn1−2γ/16

)
+ 4nC exp

(
−sn2γ/4

)
≤8 exp

{
−ε2n1−2γ/(16C2)

}
+ 8nC exp

(
−sn2γ/4

)
,

(3.16)

where the last inequality holds for ε sufficiently small and C sufficiently large.

It remains to the uniform consistency of Ŝk3. We first study the following

U -statistic:

Ŝ∗k3 =
1

n(n− 1)(n− 2)

∑
i<j<l

{
‖Xik −Xjk‖1‖yj − yl‖q + ‖Xik −Xlk‖1‖yj − yl‖q +

‖Xik −Xjk‖1‖yi − yl‖q + ‖Xlk −Xjk‖1‖yi − yl‖q +

‖Xlk −Xjk‖1‖yi − yj‖q + ‖Xlk −Xik‖1‖yi − yj‖q
}

=:
6

n(n− 1)(n− 2)

∑
i<j<l

h3(Xik,yi;Xjk,yj;Xlk,yl). (3.17)

Here, h3(Xik,yi;Xjk,yj;Xlk,yl) is the kernel of U -statistic Ŝ∗k3. Following the
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arguments to deal with Ŝ∗k1, we decompose h3 into two parts: h3 = h31(h3 >

M) + h31(h3 ≤M). Accordingly,

Ŝ∗k3 =
6

n(n− 1)(n− 2)

∑
i<j<l

h31(h3 ≤M) +
6

n(n− 1)(n− 2)

∑
i<j<l

h31(h3 > M)

= Ŝ∗k3,1 + Ŝ∗k3,2,

Sk3 = E {h31(h3 ≤M)}+ E {h31(h3 > M)} = Sk3,1 + Sk3,2.

Following similar arguments for proving (3.8), we can show that

Pr
(∣∣Ŝ∗k3,1 − Sk3,1

∣∣ ≥ ε
)
≤ 2 exp

(
−2ε2m′/M2

)
, (3.18)

where m′ = [n/3] because Ŝ∗k3,1 is a third-order U -statistic.

Then we deal with Ŝ∗k3,2. We observe that h3(Xik,yi;Xjk,yj;Xlk,yl) ≤ 4(X2
ik+

X2
jk+X2

lk+‖yi‖2
q+‖yj‖2

q+‖yl‖2
q)/6, which will be smaller than M if X2

ik+‖yi‖2
q ≤

M/2 for all 1 ≤ i ≤ p. Thus, for any ε > 0, the events satisfy

{∣∣Ŝ∗k3,2

∣∣ > ε/2
}
⊆
{
X2
ik + ‖yi‖2

q > M/2, for some 1 ≤ i ≤ p
}
.

By using the similar arguments to prove (3.11), it follows that

Pr
(∣∣Ŝ∗k3,2 − Sk3,2

∣∣ > ε
)
≤ Pr

(∣∣Ŝ∗k3,2

∣∣ > ε/2
)
≤ 2nC exp(−sM/4). (3.19)

Then, we combine the results (3.18) and (3.19) with M = cnγ for some 0 < γ <

1/2− κ to obtain that

Pr
(∣∣∣Ŝ∗k3 − Sk3

∣∣∣ ≥ 2ε
)
≤ 2 exp

(
−2ε2n1−2γ/3

)
+ 2nC exp (−snγ/4) .(3.20)
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By the definition of Ŝk3,

Ŝk3 =
(n− 1)(n− 2)

n2

{
Ŝ∗k3 +

1

(n− 2)
Ŝ∗k1

}
.

Thus, using similar techniques to deal with Ŝk1, we can obtain that

Pr
(∣∣∣Ŝk3 − Sk3

∣∣∣ ≥ 4ε
)

= Pr

{∣∣∣∣(n− 1)(n− 2)

n2

(
Ŝ∗k3 − Sk3

)
− 3n− 2

n2
Sk3

+
n− 1

n2

(
Ŝ∗k1 − Sk1

)
+
n− 1

n2
Sk1

∣∣∣∣ ≥ 4ε

}
.

Using similar arguments for dealing with Sk1, we can show that Sk3 is uniformly

bounded in p. Taking n large enough such that {(3n − 2)/n2}Sk3 ≤ ε and {(n −

1)/n2}Sk1 ≤ ε, then

Pr
(∣∣Ŝk3 − Sk3

∣∣ ≥ 4ε
)
≤ Pr

(∣∣Ŝ∗k3 − Sk3

∣∣ ≥ ε
)

+ Pr
{∣∣Ŝ∗k1 − Sk1

∣∣ ≥ ε
}

≤ 4 exp
(
−ε2n1−2γ/6

)
+ 4nC exp (−snγ/4) .

(3.21)

The last inequality follows from (3.12) and (3.20). This, together with (3.12),

(3.16) and the Bonferroni’s inequality, implies

Pr
{∣∣(Ŝk1 + Ŝk2 − 2Ŝk3)− (Sk1 + Sk2 − 2Sk3)

∣∣ ≥ ε
}

≤Pr
(∣∣Ŝk1 − Sk1

∣∣ ≥ ε/4
)

+ Pr
(∣∣Ŝk2 − Sk2

∣∣ ≥ ε/4
)

+ Pr
(∣∣Ŝk3 − Sk3

∣∣ ≥ ε/4
)

=O
{

exp
(
−c1ε

2n1−2γ
)

+ n exp (−c2n
γ)
}
,

(3.22)

for some positive constants c1 and c2. The convergence rate of the numerator of

ω̂k is now achieved. Following similar arguments, we can obtain the convergence

rate of the denominator. In effect the convergence rate of ω̂k has the same form of

(3.22). We omit the details here. Let ε = cn−κ, where κ satisfies 0 < κ+ γ < 1/2.
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We thus have

Pr
{

max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ
}
≤ p max

1≤k≤p
Pr
{
|ω̂k − ωk| ≥ cn−κ

}
≤ O

(
p
[
exp

{
−c1n

1−2(κ+γ)
}

+ n exp (−c2n
γ)
])
.

The first part of Theorem 3.3.4 is proven.

Now we deal with the second part of Theorem 3.3.4. If D * D̂?, then there

must exist some k ∈ D such that ω̂k < cn−κ. It follows from condition (C3.2) that

|ω̂k − ωk| > cn−κ for some k ∈ D, indicating that the events satisfy
{
D * D̂?

}
⊆{

|ω̂k − ωk| > cn−κ, for some k ∈ D
}

, and hence En =
{

max
k∈D
|ω̂k − ωk| ≤ cn−κ

}
⊆{

D ⊆ D̂?
}
. Consequently,

Pr(D ⊆ D̂?) ≥ Pr(En) = 1− Pr(Ecn) = 1− Pr
(

min
k∈D
|ω̂k − ωk| ≥ cn−κ

)
= 1− snPr

{
|ω̂k − ωk| ≥ cn−κ

}
≥ 1−O

(
sn
[
exp

{
−c1n

1−2(κ+γ)
}

+ n exp (−c2n
γ)
])
,

where sn is the cardinality of D. This completes the proof of the second part.



Chapter 4
Robust Feature Screening and

Variable Selection for Ultrahigh

Dimensional Heteroscedastic

Single-Index Models

4.1 Introduction

To explore the relationship between a response variable Y ∈ R and a covariate

vector x = (X1, . . . , Xpn)T ∈ Rpn , regression analysis often decomposes Y into two

parts, namely, Y = E(Y | x) + ε where ε denotes an independent error. The

linear regression which assumes that E(Y | x) = xTβ, where β = (β1, . . . , βpn)T ∈

Rpn represents an unknown parameter vector, has been extensively studied in the

literature. Due to its simplicity and interpretability, the linear regression lays out

a foundation of contemporary regression analysis. However, in usual practice the

linear regression is insufficient to capture how the mean function of Y varies with

the value of x. To enhance the flexibility while maintaining the interpretability
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of linear regression, Härdle, Hall and Ichimura (1993) proposed the single-index

model which assumes that E(Y | x) = G(xTβ) for some unknown function G(·).

That is, the mean function of Y depends on x through a single linear combination

(xTβ). Consequently, the single-index model avoids the “curse of dimensionality”,

which makes it popular in high dimensional data analysis. Powell, Stock and Stoker

(1989), Duan and Li (1991), Horowitz and Härdle (1996), Carroll et al. (1997) and

Xia et al. (2002) systematically studied the parameter estimation of single-index

models and the associated theoretical properties.

In this chapter, we consider the following heteroscedastic single-index model

Y = G(xTβ) + σ(xTβ)ε. (4.1)

For identification purpose, we assume the independent error term ε has zero mean

and unit variance. Because both G(·) and σ(·) are unknown functions, the index

parameter β is not identifiable. Thus, the direction of β, rather than its true value,

is of primary interest in the literature. Our goal is to identify the indices of the

zero elements of β and to estimate the magnitudes of the nonzero elements of β

up to a proportionality constant.

The precision of parameter estimation and the accuracy of response prediction

will deteriorate substantially if there are a large number of irrelevant covariates

included in the model (Altham, 1984; Fan and Li, 2001). In model (4.1), these truly

irrelevant covariates correspond to the coordinates of β with values being exactly

zero. When the covariate dimension is very high and yet smaller than the sample

size, some regularization procedures for variable selection are prominent in terms of

removing the irrelevant covariates from the single-index models. See, for example,

Naik and Tsai (2001), Kong and Xia (2007), Zhu, Qian and Lin (2011) and Liang et

al. (2010) and references therein. When the dimension of predictors is much larger
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than the sample size, however, how to remove these truly irrelevant covariates

still remains a challenging problem. In such an ultrahigh dimensional setting,

the regularization methods for variable selection may fail to perform well due to

the simultaneous challenges of computational expediency, statistical accuracy and

algorithmic stability (Fan, Samworth and Wu, 2009).

To ease the computational complexity of ultrahigh dimensional data analysis,

Fan and Lv (2008) proposed the sure independence screening (SIS) procedure to

reduce the ultrahigh dimensionality down to a relatively moderate scale. They

proposed to rank the importance of each covariate through its marginal correla-

tion with the response variable and select the covariates highly correlated with

the response variable. The SIS is computationally expedient. In addition, Fan

and Lv (2008) proved that the SIS processes the sure screening property when the

covariates and the response are jointly normal. That is, in an asymptotic sense it

guarantees to pick up all truly important covariates. Fan and Song (2010) gener-

alized the idea of SIS and proposed to utilize the marginal maximum likelihood.

Zhu, Li, Li and Zhu (2011) suggested a sure independent ranking and screening

(SIRS) procedure and proved that the SIRS has the ranking consistency property.

That is, it ensures to rank the truly important covariates in the top asymptotically.

In this chapter, we propose the two-stage feature screening and variable se-

lection procedure for the heteroscedastic single-index model (4.1) with ultrahigh

dimensional covariates. Our goal is to identify the truly important covariates and

to estimate the direction of β. In the first stage, we propose a robust independent

ranking and screening (RIRS) procedure for feature screening in an ultrahigh di-

mensional space and show that the RIRS possesses the sure screening property in

the terminology of Fan and Lv (2008) and the ranking consistency property in the

terminology of Zhu, Li, Li and Zhu (2011). In addition, we demonstrate that the
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RIRS is robust to the extreme values and outliers in the response variable. The

RIRS procedure can reduce the ultrahigh dimensionality to a moderate scale, and

it guarantees to select all truly important covariates. However, some unimportant

covariates will be chosen as well. Thus, in the second stage, we propose to apply

penalized linear quantile regression to further exclude the unimportant covariates

and to estimate the direction of β in model (4.1). We also study the theoreti-

cal properties of the resultant estimator and show that it still consistent up to a

proportionality constant, and has the oracle property in the terminology of Fan

and Li (2001). The two-step estimation procedure avoids completely estimating

the nonlinear function G(·) and σ(·), and is computationally expedient in ultra-

high dimensional setting. Aside from this, we demonstrate through comprehensive

numerical studies that the whole procedure presents an outstanding finite sample

performance.

The rest of this chapter is organized as follows. In Section 4.2, we illustrate the

rationale of the RIRS procedure for feature screening and establish its ranking con-

sistency and sure screening properties. In Section 4.3, we introduce the penalized

linear quantile regression and study the consistency and the oracle property of the

resultant penalized estimator. In Section 4.4, we compare the finite sample per-

formance of the RIRS with other competitors through comprehensive simulations

and an application to a real dataset. We also assess the finite sample performance

of linear quantile regression with different penalties. All technical proofs are given

in the Section 4.5.
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4.2 Robust Independent Ranking and Screening

4.2.1 Some Preliminaries

Let Y be the response with support Ψy, and x = (X1, . . . , Xpn)T be the predictor

vector. We denote by F (y | x) the conditional distribution function of Y given x.

Without specifying a regression model, we define the active and inactive predictors

by

A = {k : F (y | x) functionally depends on Xk for some y ∈ Ψy},

I = {k : F (y | x) does not functionally depend on Xk for any y ∈ Ψy}.

We further write xA = {Xk : k ∈ A} and xI = {Xk : k ∈ I} and refer to xA as

an active predictor vector and its complement xI as an inactive predictor vector.

We consider that the conditional distribution function F (y | x) depends on x only

through xTβ for some parameter β. That is, F (y | x) = F (y | xTβ). This model

framework contains a large number of parametric and semiparametric models,

where the response Y depends on the predictors x only through linear combination

xTβ, including the heteroscedastic single-index model (4.1).

In an ultrahigh dimensional setting where the covariate dimension pn greatly

exceeds the available sample size n, it is natural to assume the sparsity principle

that only a small number of covariates are truly relevant to Y . Accordingly, many

coordinates of β are zero. Thus, in terms of model (4.1), A = {k : βk 6= 0} and

I = {k : βk = 0}. We further denote by βA the nonzero coordinates of β, namely,

βA = {βk : k 6= A}. When the sparsity principle applies, model (4.1) indicates

immediately that

Y = G(xT

AβA) + σ(xT

AβA)ε. (4.2)
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We observe that model (4.1) together with (4.2) implies that

F (y | x) = F (y | xTβ) = F (y | xT

AβA), for y ∈ Ψy and x ∈ Rpn , (4.3)

It also indicates that x and Y are statistically independent when xT
AβA is given.

Our primary goal in this section is to develop a robust marginal utility to rank the

importance of each covariate. We anticipate the robust marginal utility to behave

well when extreme values and outliers are present in the observed values of Y .

4.2.2 The Robust Marginal Utility

Suppose {(xi, Yi), i = 1, . . . , n} is a random sample of (x, Y ). For the sake of no-

tational clarity, we assume throughout that the covariates have been standardized

marginally, namely, n−1
∑n

i=1Xik = 0 and n−1
∑n

i=1 X
2
ik = 1 for 1 ≤ k ≤ pn. Mo-

tivated by the SIS procedure (Fan and Lv, 2008) which ranks the importance of

Xk through the sample estimator of the marginal correlation between Xk and Y ,

we propose to rank the importance through the sample estimator of the marginal

correlation between Xk and the rank of Y . The rank of Y at the sample level has

the form of Ri =
∑n

j=1 1(Yj ≤ Yi). Thus, up to a proportionality constant, the

marginal correlation can be equivalently written as

ω̂k = n−2

n∑
i=1

XikRi.

We propose to rank the importance of Xk, k = 1, . . . , pn, through the magnitude

of the marginal utility ω̂k. With a pre-specified threshold γn, we select a set of

variables

Â =
{
k : ω̂2

k ≥ γn
}
. (4.4)
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We except A ⊆ Â which ensures to select all truly active covariates.

We remark here that the marginal utility ω̂k is equivalent to the sample es-

timator of the marginal correlation between Xk and the marginal distribution

function of Y . To be precise, we denote by Fn(Yi) = n−1
∑n

i=1 1(Yj ≤ Yi) the

empirical distribution function of Y . Then ω̂k can be rewritten equivalently as

ω̂k = n−1
∑n

i=1 {XikFn(Yi)}. It can be easily seen that ω̂k is a sample estimator of

ωk = E{XkF (Y )}, where F (y) = E {1(Y ≤ y)} denotes the marginal distribution

function of Y . We make the following two observations.

(i) Because we utilize a bounded transformation of Y instead of Y itself in

calculating the marginal utility ω̂k, it is robust to the presence of extreme

values and outliers in Y .

(ii) Let the notation ⊥⊥ stand for statistical independence. Because the trans-

formation function F (·) is monotone, model (4.1) implies that Y⊥⊥x | xT
AβA

which is equivalent to F (Y )⊥⊥x | xT
AβA. We can expect naturally that ωk

captures all the regression information of model (4.1) and hence model (4.3).

4.2.3 Theoretical Properties

Next, we investigate the theoretical properties of the proposed robust independent

ranking and screening (RIRS) procedure. We assume the following conditions to

establish the ranking consistency property in the terminology of Zhu, Li, Li and

Zhu (2011), which ensures that all the truly active covariates are ranked above the

inactive ones with an overwhelming probability, and the sure screening property in

the terminology of Fan and Lv (2008), which guarantees to select all truly active

covariates in an asymptotic sense.
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(A4.1) The following inequality holds uniformly in p:

max
k∈I

{
cov2(Xk,x

T

AβA)
}
< min

k∈A

{
cov2(Xk,x

T

AβA)
}
. (4.5)

(A4.2) The linearity condition

E{x | xT

AβA} = cov(x,xT

A)βA {βT

Acov(xA,x
T

A)βA}
−1
βT

AxA. (4.6)

(A4.3) The covariates x satisfy the sub-exponential tail probability uniformly in p.

That is, there exist positive constants t0 and C such that

max
1≤k≤p

E {exp(t|Xk|)} ≤ C <∞, for 0 < t ≤ t0. (4.7)

(A4.4) The minimal signal of the truly active covariates satisfies that

min
k∈A

{
cov2(Xk,x

T

AβA)
}
> c1n

−κ, (4.8)

for some positive constants c1 and 0 ≤ κ < 1/2.

Condition (A4.1) is intuitive and it requires in spirit that the correlation between

the truly active covariates and Y be stronger than the correlation between the truly

inactive covariates and Y . It allows for arbitrary mean and variance functions in

model (4.1), and hence retains the model-free flavor in the sense of Zhu, Li, Li and

Zhu (2011). It is always true when there is only a single active covariate. This

condition rules out the situations in which the truly active covariates are highly

correlated with the truly inactive covariates. In this regard, the condition is parallel

to conditions 3 and 4 in Fan and Lv (2008) and condition (C1) in Zhu, Li, Li and

Zhu (2011). The linearity condition (A4.2) follows if x has an elliptically symmetric
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distribution (Fang, Kotz and Ng, 1989). Hall and Li (1993) demonstrated that,

no matter what the covariate distribution is, the linearity condition always offers

an ideal approximation of the reality as long as pn is sufficient large. Therefore,

the linearity condition is typically regarded as mild in an ultrahigh dimensional

setting. The sub-exponential tail condition (A4.3) assumes essentially that all

moments of the covariates are uniformly bounded. It holds true when the covariates

follow multivariate normal distribution or are bounded uniformly. This condition

is widely assumed in analysis of ultrahigh dimensional data to derive exponential

inequalities. See, for example, Bickel and Levina (2008) and Zhu, Li, Li and Zhu

(2011). Condition (A4.4) is assumed in Fan and Lv (2008) and Fan and Song

(2010). This condition is often considered as a minimum requirement for ensuring

the sure screening property.

Theorem 4.2.1 states the ranking consistency property at the population level.

That is, the marginal utility of an active covariate is always larger than that of an

inactive covariate.

Theorem 4.2.1. If conditions (A4.1) and (A4.2) hold, then the following inequal-

ity holds uniformly in p,

max
k∈I

ω2
k < min

k∈A
ω2
k.

Theorem 4.2.2 states the ranking consistency property at the sample level.

Theorem 4.2.2. (Ranking Consistency Property) If condition (A4.3)

holds, then for any positive ε sufficiently small, there exists some positive constant

a1 such that

Pr

(
max
1≤k≤p

∣∣ω̂k − ωk∣∣ ≥ ε

)
≤ 2(pn + 1) exp

(
−a1nε

2
)
, (4.9)
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If, in addition, conditions (A4.1) and (A4.2) hold, then

Pr

(
max
k∈I

ω̂2
k ≥ min

k∈A
ω̂2
k

)
≤ 2(pn + 1) exp

(
−a2nδ

2
)
, (4.10)

where δ = min
k∈A

ω2
k −max

k∈I
ω2
k > 0 and a2 is some positive constant.

It is worthwhile to observe that, as long as pn = o{exp(an)} with any constant

a > 0,

Pr

(
max
k∈I

ω̂2
k < min

k∈A
ω̂2
k

)
→ 1, as n→∞.

That is, the proposed RIRS guarantees to rank the truly active covariates above

the inactive ones with probability approaching one as n→∞.

Next we investigate the sure screening property in the terminology of Fan and

Lv (2008). The following lemma paves the road for establishing the sure screening

property.

Lemma 4.2.3. If condition (A4.4) holds, there exists a positive constant c2 > 0

such that

min
k∈A

ω2
k ≥ c2n

−κ. (4.11)

Lemma 4.2.3 indicates that the signal of an active covariate is at least as large

as the order of n−κ for some 0 ≤ κ < 1/2. Theorem 4.2.4 presents the sure

screening property, which guarantees that the RIRS procedure can select all truly

active covariates in an asymptotic sense.
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Theorem 4.2.4. (Sure Screening Property) If conditions (A4.3)-(A4.4)

hold and we set γn = c3n
−κ with c3 ≤ c2/2, there exists a positive constant a3 > 0

such that, for n sufficiently large,

Pr
(
A ⊆ Â

)
≥ 1− 2(qn + 1) exp

(
−a3n

1−2κ
)
, (4.12)

where qn is the cardinality of A.

Theorem 4.2.4 implies that the RIRS maintains the sure screening property

even when log pn = o(n1−2κ) under some mild conditions. This is the same rate

obtained by Fan and Lv (2008) in the linear model with Gaussian predictors and

response. This result is also slightly stronger than Fan and Song (2010) who

permits log pn = o{n(1−2κ)α/(α+2)}. In addition, the proposed RIRS is robust to

the presence of heteroscedasticity and outliers in the response. The robustness is

an appealing property of the RIRS as an independence screening procedure.

4.3 Penalized Linear Quantile Regression

4.3.1 Motivations

In the previous section, we propose the RIRS procedure to remove the truly inac-

tive covariates. The ranking consistency and the sure screening properties ensure

that the RIRS procedure guarantees to select all active covariates, however, some

inactive covariates may be remained in the selected model as well. In this sec-

tion, we will discuss how to refine the selection by removing those truly inactive

covariates remained in the preceding RIRS stage. We are also interested in esti-

mating the nonzero coefficients of the truly active covariates in model (4.1) up to

a proportionality constant.
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In the second stage, we only retain the covariates selected by the first screening

stage and let {(xi,Â, Yi), i = 1, . . . , n} denote the working dataset, where xi,Â

represents the coordinates of xi indexed by Â. We denote by βÂ the coordinates

of β indexed by Â, and dn the cardinality of Â, namely, dn = |Â|. Without loss of

generality, we write xi,Â = (Xi,1, . . . , Xi,dn)T and βÂ = (β1, . . . , βdn)T in the sequel.

Both the ranking consistency and the sure screening properties in Theorems 4.2.2

and 4.2.4 ensure that A ⊆ Â holds asymptotically, which allows us to rewrite

model (4.1), or equivalently model (4.2), as follows,

Y = G(xT

ÂβÂ) + σ(xT

ÂβÂ)ε. (4.13)

Because some truly inactive covariates may be selected after the RIRS procedure,

some coordinates of βÂ will be exactly zero. Therefore, it is important to fur-

ther refine the selection by removing those inactive covariates and to estimate the

magnitudes of the nonzero coefficients up to a proportionality constant.

REMARK. In the model (4.13), merely for the technical proofs, we assume that

the index Â is independent of the data {(xi,Â, Yi), i = 1, . . . , n}, although Â is

obtained from the same data in the first screening stage. For a rigorous theoretic

development, one may randomly partition the data into two parts, the screening

set and the cleaning set. In the first stage, the RIRS procedure is applied to the

screening set, which completely determine the estimated index set Â. In the second

stage, the penalized linear quantile regression is implemented to the cleaning set.

Consequently, Â is independent with the cleaning set, and thus the above technical

assumption does not need any more. The comprehensive simulation studies in the

latter section show that both the estimation using the all data for both two stages

and that using the separate set for each stage have the similarly outstanding finite

sample performance.
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4.3.2 The Penalized Estimation

The primary interest in this section is to identify the index set A and estimate the

direction of βÂ. We first illustrate the rationale of estimating βÂ through linear

quantile regression at the population level. Let ρτ (r) = τr − rI(r < 0) be the

check loss function at the τ -quantile. Define

Lτ (u,b) = E{ρτ (Y − u− xT

Âb)}, and (uoτ ,β
o
τ ) = argmin

u,b
{Lτ (u,b)}, (4.14)

where b = (b1, . . . , bdn)T ∈ Rdn . Zhu, Huang and Li (2011) proved that, if the

linearity condition (A4.2) holds and A ⊆ Â, then βoτ is proportional to βÂ for

arbitrary mean and variance functions G(·) and σ(·) in model (4.13). Accordingly,

we call βoτ the true linear quantile estimator. This observation motivates us to

consider the following penalized linear quantile regression

Q(u,b) =
1

n

n∑
i=1

ρτ (Yi − u− xT

i,Âb) +
dn∑
j=1

pλ(|bj|). (4.15)

We implement the penalty function pλ(·) to shrink some small values of b to zero.

We advocate using the SCAD penalty for its unbiasedness, continuity and sparsity

properties (Fan and Li, 2001). The SCAD penalty is defined as follows,

pλ(b) = λ|b|I(0 ≤ |b| < λ) +
aλ|b| − (b2 + λ2)/2

a− 1
I(λ ≤ |b| ≤ aλ)

+
(a+ 1)λ2

2
I(|b| > aλ),
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where a = 3.7 suggested by Fan and Li (2001). The penalized estimator (ûτ , β̂τ )

at the τ -th quantile is defined through

(ûτ , β̂τ ) = argmin
u,b

{Q(u,b)}. (4.16)

The penalized quantile regression identifies the indices to nonzero components of

βÂ and simultaneously estimates its direction. In addition, it maintains the merit

of the RIRS in that it is insensitive to the presence of extreme values and outliers

in the response.

4.3.3 The Oracle Property

In this section we study the asymptotic property of the oracle estimator in the

linear quantile regression. We define this oracle estimator at the population level

as

Lτ (u,b1) = E{ρτ (Y − u− xT

Ab1)}, and (uoτ ,β
o
τ1) = argmin

u,b1

{Lτ (u,b1)}, (4.17)

where b1 = (b1, . . . , bqn)T ∈ Rqn . If A ⊆ Â holds, without lose of generality,

we can denote βoτ = (βoT

τ1,0
T)T, where βoτ1 represents a qn-dimensional vector of

nonzero components associated with the covariates indexed by A and 0 denotes a

(dn − qn)-dimensional vector of zeros.

Accordingly, we define it at the sample level as

Lτn(u,b1) =
1

n

n∑
i=1

{ρτ (Yi − u− xT

i,Ab1)}, and (ûoτ , β̂
o

τ1) = argmin
u,b1

{Lτn(u,b1)}.(4.18)

In addition to conditions (A4.1)-(A4.4), we need further assume the following

regularity conditions to facilitate the derivations of the consistency of the oracle
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estimator and the oracle property of the penalized linear quantile regression.

(A4.5) There exist positive constants 0 < C1 ≤ C2 <∞, such that

C1 ≤ λmin{E(xAxT

A)} ≤ λmax{E(xAxT

A)} ≤ C2,

where λmin and λmax represent the smallest eigenvalue and largest eigenvalues,

respectively. In addition, suppose that (xi,A, Yi) are in general positions

(Koenker, 2005, Section 2.2), for i = 1, 2, . . . , n.

(A4.6) The probability density function of Y − xTβτ conditional on x, denoted by

f(· | x), is uniformly bounded away from 0 and ∞ in the neighborhood

around uoτ .

(A4.7) The true model dimension qn satisfies qn = O(nc1) for some 0 ≤ c1 < 1/2.

(A4.8) For βoτ1 = (βoτ,1, β
o
τ,2, . . . , β

o
τ,qn)T, there exist positive constants c2 and C such

that 2c1 < c2 ≤ 1 and

min
1≤j≤qn

|βoτ,j| ≥ Cn−(1−c2)/2.

Lemma 4.3.1 states the convergence rate of the oracle estimators ûoτ and β̂
o

τ1.

Lemma 4.3.1. Suppose Conditions (A4.3) and (A4.5)-(A4.7) hold, then the oracle

estimators ûoτ and β̂
o

τ1 satisfy

‖β̂
o

τ1 − βoτ1‖ = Op

(√
qn/n

)
and ‖ûoτ − uoτ‖ = Op

(√
qn/n

)
. (4.19)

Next, we study the oracle property of the resulting estimator in the following

Theorem 4.3.2.
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Theorem 4.3.2. Suppose Conditions (A4.3) and (A4.5)-(A4.8) hold, dn = O (n)

and λ = o
{
n−(1−c2)/2

}
. Let Bn(λ) be the set of local minima β̂τ of the objec-

tive function Q(u,b) with the SCAD penalty and tuning parameter λ. The oracle

estimator β̂
o

τ = (β̂
oT

τ1,0
T)T satisfies

Pr
{
β̂
o

τ ∈ Bn(λ)
}
→ 1, as n→∞.

Theorem 4.3.2 implies that the oracle estimator β̂
o

τ is a local minimizer of the

objective function (4.15) with the probability approaching one as n → ∞. This

is different from Theorem 2.4 of Wang, Wu and Li (2012) where the underlying

true mode is linear whereas in our context the underlying true model is possible

nonlinear. Therefore, together with the result that βoτ is proportional to βÂ and

A ⊆ Â, the direction of the estimator β̂τ of the objective function Q(u,b) is

asymptotically equivalent to that of the index parameter βÂ in model (4.13).

4.4 Numerical Studies

4.4.1 Simulations

Example 1. In this example, we assess the finite sample performance of the

proposed RIRS by Monte Carlo simulation. Our simulation studies were conducted

using R code. In this simulation example, we generate x = (X1, X2, · · · , Xp)
T from

a normal distribution with zero mean and covariance matrix Σ = (σij)p×p, where

we set σij = 0.5|i−j|. We consider the dimensionality p = 1000 and the sample

size n = 200. We repeat each experiment 500 times, and evaluate the performance

through the following three criteria.

1. S: the minimum model size to include all active predictors. We report the
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5%, 25%, 50%, 75% and 95% quantiles of S out of 500 replications.

2. Ps: the proportion that an individual active predictor is selected for a given

model size d in the 500 replications.

3. Pa: the proportion that all active predictors are selected for a given model

size d in the 500 replications.

When the ranking consistency property holds, we expect S to be close to the

number of truly active predictors. We also expect S to offer an approximation

of the cardinality of A when the active predictors are ranked in the top. The

sure screening property ensures that Ps and Pa are both close to one when the

estimated model size d is sufficiently large. Followed the thresholding suggested by

Fan and Lv (2008), we choose d to be d1 = [n/ log n] and d2 = 2[n/ log n], where

[a] denotes the integer part of a.

This example is designed to compare the performance of the proposed robust

procedure RIRS with the SIS (Fan and Lv, 2008) and DC-SIS (Li, Zhong and Zhu,

2012). We consider the following true single index

xTβ = 3X1 + 1.5X2 + 2X7,

so X1, X2 and X7 are truly important predictors out of the 1000 candidates. This

setting was originated by Fan and Li (2001). Then, we generate the response from

the following four single-index models including the linear model, and consider

different error terms to obtain both homoscedastic and heteroscedastic data.

Model (I) : Y = βTx + ε (4.20)

Model (II) : Y = exp{βTx− 1}+ ε (4.21)

Model (III) : Y = exp{2− βTx/2}+ {2− βTx/2}2 + ε (4.22)
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Model (IV) : Y = exp{βTx− 1} ∗ sin2{βTx}+ ε (4.23)

where ε is the error term independent of x. We consider three different error terms

in the following.

Scenario 1: ε ∼ N (0, 1), standard normal distribution;

Scenario 2: ε ∼ exp(βTx/2)N (0, 1);

Scenario 3: ε ∼ t(1), t distribution with degree freedom 1.

Remark. The error term in Scenario 2 depends on the single index xTβ and

makes the response heteroscedastic. t(1) in Scenario 3 is the well-known Cauchy

distribution and has the heavy probability tails to produce outliers in the response

easily.

Tables 4.1 and 4.2 depict the simulation results for S, Ps and Pa. We can

see that the finite sample performances of four independence screening procedures

are similarly good for the linear model with ordinary normal error. However, in

the presence of heteroscedasticity in the response, the SIS and the DC-SIS do not

perform well. On the other hand, the RIRS can perform very well and select the

truly important predictors with very high probability in our model settings.

Table 4.1. The 5%, 25%, 50%, 75% and 95% quantiles of the minimum model size S
out of 500 replications.

Model Error SIS DC-SIS RIRS
Scenario 1 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 4.0

(I) Scenario 2 6.0 90.5 337.0 721.0 945.2 3.0 3.0 3.0 5.0 30.0 3.0 3.0 3.0 5.0 24.0
Scenario 3 3.0 10.0 119.5 585.2 942.2 3.0 3.0 3.0 4.0 41.2 3.0 3.0 3.0 3.0 4.0
Scenario 1 5.0 28.0 75.5 196.0 641.1 3.0 6.0 24.0 78.8 298.2 3.0 3.0 3.0 3.0 4.0

(II) Scenario 2 4.0 22.8 63.5 170.2 660.2 3.0 5.0 17.0 75.0 380.1 3.0 3.0 3.0 3.0 4.0
Scenario 3 5.0 25.8 76.5 178.0 642.0 3.0 5.0 20.0 88.2 373.2 3.0 3.0 3.0 4.0 6.0
Scenario 1 3.0 3.0 5.0 15.0 122.2 3.0 3.0 3.0 3.0 6.0 3.0 3.0 3.0 3.0 4.0

(III) Scenario 2 3.0 3.0 5.0 19.0 198.3 3.0 3.0 3.0 4.0 11.0 3.0 3.0 3.0 3.0 5.0
Scenario 3 3.0 3.0 5.0 16.2 286.1 3.0 3.0 3.0 4.0 7.0 3.0 3.0 3.0 3.0 4.0
Scenario 1 5.0 27.0 76.0 202.0 696.0 3.0 7.0 25.0 101.0 479.8 3.0 3.0 3.0 4.0 8.0

(IV) Scenario 2 5.0 26.8 83.5 243.0 737.0 3.0 6.0 28.0 103.0 377.8 3.0 3.0 4.0 7.0 32.1
Scenario 3 6.0 31.8 93.5 242.2 610.3 3.0 9.0 32.0 118.2 386.1 3.0 3.0 4.0 6.0 39.1
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Table 4.2. The empirical probabilities of each active predictor (denoted by Ps) and all
active predictors (denoted by Pa) are chosen for a given model size.

SIS DC-SIS RIRS
Ps Pa Ps Pa Ps Pa

Model Size X1 X2 X7 ALL X1 X2 X7 ALL X1 X2 X7 ALL
Scenario 1: ε ∼ N (0, 1)

(I) d1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
d2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(II) d1 0.97 0.83 0.45 0.34 0.99 0.96 0.62 0.59 1.00 1.00 1.00 1.00
d2 0.99 0.90 0.58 0.50 1.00 0.98 0.76 0.74 1.00 1.00 1.00 1.00

(III) d1 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
d2 1.00 1.00 0.92 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(IV) d1 0.96 0.83 0.44 0.33 0.99 0.94 0.60 0.56 1.00 1.00 0.99 0.99
d2 0.99 0.90 0.57 0.50 1.00 0.98 0.72 0.70 1.00 1.00 0.99 0.99

Scenario 2: ε ∼ exp(βTx/2)N (0, 1)
(I) d1 0.56 0.44 0.27 0.15 1.00 1.00 0.96 0.96 1.00 1.00 0.97 0.97

d2 0.62 0.53 0.34 0.24 1.00 1.00 0.98 0.98 1.00 1.00 0.98 0.98
(II) d1 0.97 0.82 0.50 0.36 1.00 0.94 0.69 0.63 1.00 1.00 1.00 1.00

d2 0.99 0.89 0.63 0.53 1.00 0.97 0.77 0.75 1.00 1.00 1.00 1.00
(III) d1 1.00 0.97 0.82 0.81 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00

d2 1.00 0.98 0.88 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(IV) d1 0.96 0.80 0.40 0.30 1.00 0.94 0.60 0.56 1.00 1.00 0.94 0.94

d2 0.99 0.89 0.55 0.47 1.00 0.97 0.71 0.68 1.00 1.00 0.97 0.97
Scenario 3: ε ∼ t(1)

(I) d1 0.67 0.59 0.42 0.36 0.99 0.98 0.95 0.95 1.00 1.00 1.00 1.00
d2 0.71 0.64 0.51 0.43 0.99 0.99 0.96 0.97 1.00 1.00 1.00 1.00

(II) d1 0.98 0.82 0.44 0.32 1.00 0.95 0.64 0.61 1.00 1.00 0.99 0.99
d2 0.99 0.90 0.57 0.50 1.00 0.97 0.74 0.72 1.00 1.00 1.00 1.00

(III) d1 0.98 0.97 0.85 0.84 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00
d2 0.98 0.98 0.90 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(IV) d1 0.95 0.81 0.42 0.30 0.99 0.92 0.59 0.53 1.00 1.00 0.95 0.95
d2 0.99 0.87 0.56 0.45 1.00 0.97 0.69 0.67 1.00 1.00 0.98 0.98

Example 2. In this example, we will examine the finite sample performance of

the proposed penalized linear quantile regression for the single-index models. We

generate simulated data from the single-index Model (III) with the same sample

size n = 200 and dimensionality p = 1000; That is,

Y = exp(2− βTx/2) + (2− βTx/2)2 + ε, (4.24)
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where we also consider three different error terms ε, which are defined in section

4.4.1 and the true direction of the single-index parameter is

β0/‖β0‖ = (3, 1.5, 0, 0, 0, 0, 2, 0, . . . , 0)T

p×1/
√

15.25 (4.25)

In the first screening stage, we apply the proposed robust independence ranking

and screening (RIRS) to reduce the dimensionality down to the reduced model Â

with the size 2[n/ log n]. Consequently, we note that all three true predictors

have been screened into Â. In the second cleaning stage, the proposed penalized

linear quantile regression is implemented on the dataset indexed by Â to estimate

the direction of the true single-index parameter and select variables via shrinking

some coefficients to zeros. For the conditional quantile regression, we consider

three different quantiles τ = 0.25, 0.50 and 0.75, which correspond to the 1st

quartile, the median and 3rd quartile of the response conditional on the predictors.

An additional independent data set of size 10n is generated to select the tuning

parameter λ by minimizing the estimated prediction error based on the quantile

check loss function.

In the penalized linear quantile regression procedure, we consider three popular

penalty functions: LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001) and MCP

(Zhang, 2010). We denote the final estimate by β̂τ = (β̂1, β̂2, . . . , β̂p)
T. Based on

100 repetitions, we evaluate the simulation performance in terms of the following

criteria.

Size: The average number of non-zero estimated regression coefficients β̂j 6= 0 for

1 ≤ j ≤ p;

C: The average number of truly non-zero coefficients correctly estimated to be

non-zero;
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IC: The average number of truly zero coefficients incorrectly estimated to be non-

zero;

AE: The average of absolute estimation error of β̂τ , which is defined by

p∑
j=1

∣∣∣∣∣ β̂j

‖β̂τ‖
− β0j

‖β0‖

∣∣∣∣∣ ,
where the true parameter β0 = (β01, β02, . . . , β0p)

T defined in (4.25).

Table 4.3 displays the simulation results for Size, C, IC and AE. In each

column, the value represents the mean of 100 replicates with its sample standard

deviation in the parentheses. For each scenario, the first three columns demon-

strate that the LASSO is relatively conservative and tends to select larger models

while the SCAD and MCP are consistent to select the true model. The relatively

small values in the column labeled “AE” shows that the proposed penalized linear

quantile regression procedure can produce the consistent estimator and support

the theoretical findings in Theorem 4.3.2. The outstanding simulation results of

Scenario 2 and 3 demonstrate that the proposed two-stage procedure is robust to

the presence of heteroscedasticity and outliers in the response. In conclusion, the

simulation results confirm the excellent finite sample performance of the penalized

linear quantile regression approach.

In addition, we mentioned in section 4.3.1 that one may partition the full

dataset into two separate parts for two estimation stages to avoid the technical

assumption that Â is independently of the data. To sufficiently study the proposed

two-stage procedure, we randomly partition the data into the two equal parts, the

screening set and cleaning set. In the screening stage, we apply the proposed

RIRS on the screening set to obtain the reduced model Â with the size [n/ log n],

which is naturally independent of the cleaning set. Consequently, we note that
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Table 4.3. Simulation Results for Penalized Linear Quantile Regression with difference
τ ’s (25%, 50% and 75%) and difference penalty functions (LASSO, SCAD, MCP), when
the full dataset is used in both screening and cleaning stages.

Scenario 1: ε ∼ N (0, 1)
Method Size C IC AE

LASSO(τ = 0.25) 16.40(5.44) 3.00(0.00) 13.40(5.44) 0.30(0.16)
LASSO(τ = 0.50) 12.35(5.85) 3.00(0.00) 9.35(5.85) 0.59(0.31)
LASSO(τ = 0.75) 9.20(4.85) 2.99(0.10) 6.21(4.85) 0.84(0.45)
SCAD(τ = 0.25) 3.67(1.17) 3.00(0.00) 0.67(1.17) 0.07(0.04)
SCAD(τ = 0.50) 3.46(0.91) 3.00(0.00) 0.46(0.91) 0.20(0.12)
SCAD(τ = 0.75) 3.57(1.25) 2.91(0.29) 0.66(1.17) 0.43(0.23)
MCP(τ = 0.25) 3.44(0.95) 3.00(0.00) 0.44(0.95) 0.07(0.04)
MCP(τ = 0.50) 3.47(0.92) 3.00(0.00) 0.47(0.92) 0.21(0.12)
MCP(τ = 0.75) 3.60(1.20) 2.91(0.29) 0.69(1.14) 0.43(0.23)

Scenario 2: ε ∼ exp(βTx/2)N (0, 1)
Method Size C IC AE

LASSO(τ = 0.25) 20.25(6.17) 3.00(0.00) 17.25(6.17) 0.33(0.14)
LASSO(τ = 0.50) 16.69(6.32) 3.00(0.00) 13.69(6.32) 0.66(0.29)
LASSO(τ = 0.75) 13.05(6.42) 2.97(0.17) 10.08(6.45) 1.11(0.60)
SCAD(τ = 0.25) 3.67(1.41) 3.00(0.00) 0.67(1.41) 0.06(0.05)
SCAD(τ = 0.50) 3.21(0.59) 3.00(0.00) 0.21(0.59) 0.15(0.10)
SCAD(τ = 0.75) 3.58(1.44) 2.90(0.30) 0.68(1.39) 0.41(0.31)
MCP(τ = 0.25) 3.48(1.28) 3.00(0.00) 0.48(1.28) 0.06(0.05)
MCP(τ = 0.50) 3.20(0.59) 3.00(0.00) 0.20(0.59) 0.15(0.10)
MCP(τ = 0.75) 3.47(1.23) 2.89(0.31) 0.58(1.18) 0.41(0.30)

Scenario 3: ε ∼ t(1)
Method Size C IC AE

LASSO(τ = 0.25) 20.02(4.68) 3.00(0.00) 17.02(4.68) 0.50(0.20)
LASSO(τ = 0.50) 15.43(6.30) 3.00(0.00) 12.43(6.30) 0.80(0.38)
LASSO(τ = 0.75) 11.85(6.08) 2.96(0.20) 8.89(6.06) 1.07(0.53)
SCAD(τ = 0.25) 3.46(0.82) 3.00(0.00) 0.46(0.82) 0.07(0.04)
SCAD(τ = 0.50) 3.29(0.62) 3.00(0.00) 0.29(0.62) 0.18(0.11)
SCAD(τ = 0.75) 3.51(1.69) 2.92(0.27) 0.59(1.65) 0.41(0.29)
MCP(τ = 0.25) 3.40(0.88) 3.00(0.00) 0.40(0.88) 0.07(0.04)
MCP(τ = 0.50) 3.26(0.56) 3.00(0.00) 0.26(0.56) 0.19(0.11)
MCP(τ = 0.75) 3.57(1.80) 2.92(0.27) 0.65(1.76) 0.42(0.30)

all three true predictors have been screened into Â. In the cleaning stage, the

proposed penalized linear quantile regression is implemented on the cleaning set

indexed by Â to estimate the direction of the true single-index parameter and

select variables via shrinking some coefficients to zeros. The similar simulation

results are presented in Table 4.4, which demonstrates the excellent performance
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of the proposed two-stage approach again.

Table 4.4. Simulation Results for Penalized Linear Quantile Regression with difference
τ ’s (25%, 50% and 75%) and difference penalty functions (LASSO, SCAD, MCP), when
the dataset is partitioned into the screening set and the cleaning set.

Scenario 1: ε ∼ N (0, 1)
Method Size C IC AE

LASSO(τ = 0.25) 17.26(4.93) 2.98(0.14) 14.28(4.92) 0.50(0.30)
LASSO(τ = 0.50) 13.88(6.46) 2.98(0.14) 10.90(6.44) 0.85(0.43)
LASSO(τ = 0.75) 9.46(5.39) 2.89(0.31) 6.57(5.32) 1.05(0.51)
SCAD(τ = 0.25) 3.53(1.36) 2.97(0.17) 0.56(1.34) 0.11(0.11)
SCAD(τ = 0.50) 3.45(1.19) 2.96(0.20) 0.49(1.16) 0.31(0.20)
SCAD(τ = 0.75) 3.18(1.67) 2.68(0.51) 0.50(1.55) 0.63(0.40)
MCP(τ = 0.25) 3.46(1.02) 2.98(0.14) 0.48(1.00) 0.11(0.11)
MCP(τ = 0.50) 3.45(1.15) 2.96(0.20) 0.49(1.18) 0.31(0.20)
MCP(τ = 0.75) 3.26(2.03) 2.70(0.50) 0.56(1.90) 0.63(0.40)

Scenario 2: ε ∼ exp(βTx/2)N (0, 1)
Method Size C IC AE

LASSO(τ = 0.25) 16.52(5.48) 2.92(0.27) 13.60(5.41) 0.45(0.33)
LASSO(τ = 0.50) 13.64(5.85) 2.92(0.27) 10.72(5.82) 0.73(0.37)
LASSO(τ = 0.75) 10.10(5.58) 2.84(0.37) 7.26(5.52) 1.18(0.63)
SCAD(τ = 0.25) 3.47(1.18) 2.91(0.32) 0.56(1.11) 0.15(0.22)
SCAD(τ = 0.50) 3.42(1.01) 2.90(0.30) 0.52(0.94) 0.29(0.21)
SCAD(τ = 0.75) 3.43(2.03) 2.63(0.56) 0.80(1.87) 0.65(0.43)
MCP(τ = 0.25) 3.29(0.90) 2.91(0.32) 0.38(0.83) 0.15(0.22)
MCP(τ = 0.50) 3.43(1.10) 2.90(0.30) 0.53(1.04) 0.29(0.21)
MCP(τ = 0.75) 3.49(2.09) 2.64(0.56) 0.85(1.92) 0.66(0.43)

Scenario 3: ε ∼ t(1)
Method Size C IC AE

LASSO(τ = 0.25) 15.53(4.58) 2.96(0.20) 12.57(4.58) 0.58(0.33)
LASSO(τ = 0.50) 13.41(6.20) 2.96(0.20) 10.45(6.18) 0.88(0.44)
LASSO(τ = 0.75) 9.54(5.66) 2.88(0.33) 6.66(5.61) 1.11(0.56)
SCAD(τ = 0.25) 3.56(1.04) 2.96(0.20) 0.60(1.03) 0.15(0.19)
SCAD(τ = 0.50) 3.54(1.30) 2.91(0.29) 0.63(1.24) 0.34(0.24)
SCAD(τ = 0.75) 3.64(2.94) 2.66(0.48) 0.98(2.80) 0.69(0.42)
MCP(τ = 0.25) 3.32(0.72) 2.96(0.20) 0.36(0.72) 0.15(0.18)
MCP(τ = 0.50) 3.42(1.08) 2.91(0.29) 0.51(1.02) 0.33(0.23)
MCP(τ = 0.75) 3.59(2.31) 2.67(0.47) 0.92(2.14) 0.69(0.42)
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4.4.2 Real Data Analysis

In this subsection, we examine the proposed two-stage feature screening and vari-

able selection procedure on the Cardiomyopathy microarray dataset. This dataset

has been analyzed by Segal, Dahlquist and Conklin (2003) , Hall and Miller (2009)

and Li, Zhong and Zhu (2012). The primary interest is to determine the most

influential genes for overexpression of a G protein-coupled receptor (Ro1) in mice.

G protein-coupled receptors “comprise a large protein family of transmembrane

receptors that sense molecules outside the cell and activate inside signal trans-

duction pathways and, ultimately, cellular responses ” (Wikipedia). In this data

analysis, the Ro1 expression level is the response Y and genetic expression levels

are considers as the predictors Xk’s. The dimension of predictors is 6319, denoted

by p, while the number of observed specimens is only 30, denoted by n. Thus,

p� n and this is a ultrahigh dimensional data analysis problem.

First, we conduct some exploratory data analysis on this microarray dataset.

The histogram of Y on the left side of Figure 4.1 reveals that the distribution of

the response is highly skewed. The right side of Figure 4.1 depicts the boxplot of

Y , where the distance the plot whiskers extend out from the box is set to be 1

in order to detect the potential outliers. The boxplot shows that the distribution

is positively skewed and there exist some potential outliers in the response. This

motivates us to use the model (4.1) with the proposed two-stage procedure to

conduct empirical analysis of this dataset.

In the screening stage, we implement the proposed RIRS on this microar-

ray dataset to reduce the ultrahigh dimension to the reduced model Â with the

size 2[n/ log n] = 16. The RIRS selects the two genes, labeled Msa.2877.0 and

Msa.2134.0, in the top, which are same as the DC-SIS (Li, Zhong and Zhu, 2012).

The gene, Msa.1166.0, identified by generalized correlation ranking (Hall and
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Figure 4.1. Exploratory Data Analysis: Histogram and Boxplot of Ro1.

Miller, 2009) is also ranked in the top by the RIRS. Figure 4.2 depicts scatter

plots of Y against all 16 selected gene expression levels with cubic spline fitted

curves, which indicate the marginal relationship between the response and each

selected predictor.

In the cleaning stage, we implement the proposed penalized linear quantile

regression on the reduced model Â to estimate the direction of the single-index

parameter and select important variables for different conditional quantiles of the

response. Like the simulation studies, we consider three quantiles, τ = 0.25, 0.50

and 0.75, and three different penalty functions, LASSO, SCAD and MCP. We

use leave-one-out cross validation to select the tuning parameter for each method.

After obtaining the estimated the single index, we propose to use the cubic splines

to estimate the function G(·) in the model (4.1). As a benchmark, we also consider

the model with 16 selected genes by the RIRS, denoted by NONE in Table 4.5.

To compare the performances of different methods with different quantiles, we

report the the number of nonzero coefficients selected by each method, denoted

by “Size” in the first column of Table 4.5. In addition, to evaluate the goodness

of fit for each model, we follow the idea of R2 for the linear model and define the
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Figure 4.2. The scatter plots of Y versus top 16 genes expression levels identified by
the proposed RIRS.

quantile-adjusted R2 (Q-R2) as follows

Q-R2 =

{
1−

∑n
i=1 ρτ (Yi − Ĝ(XT

i β̂τ ))
2∑n

i=1 ρτ (Yi − Ŷτ )2

}
× 100%, (4.26)

where ρτ (·) the τth quantile check loss function, Ĝ(·) is the estimate of G(·) by

cubic splines and thus Ĝ(XT
i β̂τ ) is the fitted value of Yi, and Ŷτ is the sample τth
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quantile of Y . The larger Q-R2 is, the better the model fit is. For example, for

τ = 0.75, SCAD selected 5 predictors, which can explain 93.3% variance of the

response in terms of the defined Q-R2.

In addition, we also report the estimated coefficients of 16 gene expression

levels in Table 4.6, and the scatter plots of Y versus the estimated single index

with cubic splines fitted curves in Figure 4.3. It is interesting to note that the

important predictors selected by each method are different at different quantiles.

The top ranked genes, Msa.2877.0 and Msa.2134.0, are selected as the important

predictors for the conditional median (τ = 0.5) of Y ; However, Msa.2134.0 is not

important for the conditional third quartile (τ = 0.75) of Y and Msa.2877.0 is only

very slightly important for the conditional first quartile (τ = 0.25) of Y (see the

first two rows of Table 4.6).

Next, we conduct 50 random partitions to examine the prediction performance

of each method. For each partition, we random select 90% of the data (27 ob-

servations) as the training set and the rest 10% (3 observations) as the test set.

Leave-one-out cross validation is implemented on the training set to select the tun-

ing parameter. The average of the model sizes selected by each method with its

standard error across 50 partitions in the parenthesis is reported in the third col-

umn (“Ave Size”) of Table 4.5. The column labeled by “PE” denotes the prediction

errors based on the quantile check loss function and the corresponding standard

errors in the parentheses. In conclusion, the penalized linear quantile regression

improve both the model interpretability in terms of the model size and the model

predictability in terms of the prediction errors.
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Table 4.5. Empirical analysis of Cardiomyopathy microarray dataset.
All Data Partitioned Data

Method Size Q-R2 Ave Size PE

NONE(τ = 0.25) 16 77.9 16(0) 0.63(0.36)
NONE(τ = 0.50) 16 91.9 16(0) 0.66(0.37)
NONE(τ = 0.75) 16 93.1 16(0) 0.56(0.39)

LASSO(τ = 0.25) 9 60.9 8.64(2.25) 0.48(0.17)
LASSO(τ = 0.50) 11 89.1 10.28(1.92) 0.50(0.21)
LASSO(τ = 0.75) 7 94.3 6.42(1.64) 0.42(0.17)
SCAD(τ = 0.25) 3 55.5 7.90(2.97) 0.49(0.22)
SCAD(τ = 0.50) 10 91.0 8.28(2.82) 0.48(0.32)
SCAD(τ = 0.75) 5 93.3 4.50(2.29) 0.45(0.21)
MCP(τ = 0.25) 3 53.7 7.88(3.59) 0.53(0.11)
MCP(τ = 0.50) 10 91.1 8.82(3.09) 0.55(0.26)
MCP(τ = 0.75) 4 93.9 4.66(2.43) 0.47(0.25)

Table 4.6. Estimated coefficients of 16 gene expression levels for Cardiomyopathy
microarray dataset.

Quantile τ = 0.25 τ = 0.50 τ = 0.75
Method LASSO SCAD MCP LASSO SCAD MCP LASSO SCAD MCP
Msa.2877.0 0 0.032 0.033 0.370 0.549 0.557 0.493 0.729 0.698
Msa.2134.0 0.308 0.463 0.463 0.214 0.366 0.361 0 0 0
Msa.1166.0 0 0 0 0 0 0 -0.006 -0.069 0
Msa.15442.0 0.192 0 0 0.139 0.078 0.081 0.010 0 0
Msa.10108.0 0.243 0.260 0.260 0.100 0.047 0.041 0.027 0 0
Msa.5794.0 -0.054 0 0 -0.031 -0.023 -0.030 0 0 0
Msa.5248.0 0.077 0 0 0.076 0.193 0.203 0 0 0
Msa.1590.0 0 0 0 0.085 0.078 0.086 0.166 0.041 0.140
Msa.610.0 0.021 0 0 0 0 0 0 0 0
Msa.26025.0 0 0 0 0.098 0.036 0.039 0.136 0.098 0.104
Msa.10044.0 0.088 0 0 0.037 0.065 0.064 0 0.073 0.010
Msa.5727.0 0 0 0 0 0 0 0 0 0
Msa.5583.0 0 0 0 0 0 0 0 0 0
Msa.3273.0 0 0 0 0 0 0 0 0 0
Msa.33222.0 0.053 0 0 0.167 0.260 0.266 0 0 0
Msa.2551.0 0.033 0 0 0.050 0 0 0.078 0 0
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Figure 4.3. The scatter plots of Y versus the estimated single index with cubic splines
fitted curves for LASSO, SCAD and MCP at three different quantiles (τ = 0.25, 0.50
and 0.75).

4.5 Theoretical Proofs

4.5.1 Preliminary Lemmas

Lemma 4.5.1. (Bernstein’s Inequality) Let X1, . . . , Xn be independent zero-

mean random variables such that E|Xi|m ≤ m!Mm−2νi/2, for every m ≥ 2, all i



114

and some constants M and νi. Then

Pr

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > ε

)
≤ 2 exp

{
− ε2

2(ν +Mε)

}
, (4.27)

for any ε > 0 and ν ≥ ν1 + . . .+ νn.

For details, See Lemma 2.2.11, van der Vaart and Wellner (1996).

Lemma 4.5.2. (Dvoretzky-Kiefer-Wolfowitz Inequality)

Let Y1, Y2, . . . , Yn be real-valued independent and identically distributed random

variables with distribution function F (·). Let Fn(·) denote the associated empirical

distribution function, then the following inequality holds for any ε > 0,

Pr

(
sup
y∈R
|Fn(y)− F (y)| > ε

)
≤ 2 exp{−2nε2}. (4.28)

For details, see Dvoretzky, Kiefer and Wolfowitz (1956).

4.5.2 Proof of Theorem 4.2.1

We recall that ωk = E{XkF (Y )}, which, by the law of iterated expectations, is

equal to E [E {XkF (Y ) | xT
AβA}]. In addition, we observe that x is independent of

Y when xT
AβA is given. These facts, together with the linearity condition (A4.2)

and the law of iterated expectations, indicate that

ωk = E [E (Xk | xT

AβA)E {F (Y ) | xT

AβA}]

= cov(Xk,x
T

A)βA {βT

Acov(xA,x
T

A)βA}
−1
E {βT

AxAF (Y )} .
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Consequently, it follows that

min
k∈A

ω2
k −max

k∈I
ω2
k =

{
min
k∈A

cov2(Xk,x
T

AβA)−max
k∈I

cov2(Xk,x
T

AβA)

}
× E {xT

AβAF (Y )}2

{βT

Acov(xA,xT
A)βA}

2 ,

where must be positive invoking condition (A4.1). The proof of Theorem 3.3.4 is

completed.

4.5.3 Proof of Theorem 4.2.2

At first, we prove the first part (4.9) of the Theorem 4.2.2. Note that

ω̂k − ωk =
1

n

n∑
i=1

XikFn(Yi)− E{XkF (Y )}

=
1

n

n∑
i=1

Xik[Fn(Yi)− F (Yi)] +
1

n

n∑
i=1

[XikF (Yi)− E{XkF (Y )}]

Therefore, for any ε > 0

Pr( max
1≤k≤pn

|ω̂k − ωk| ≥ ε)

= Pr

(
max

1≤k≤pn

∣∣∣∣∣ 1n
n∑
i=1

Xik[Fn(Yi)− F (Yi)] +
1

n

n∑
i=1

[XikF (Yi)− E{XkF (Y )}]

∣∣∣∣∣ ≥ ε

)

≤ Pr

(
max

1≤k≤pn

∣∣∣∣∣ 1n
n∑
i=1

Xik[Fn(Yi)− F (Yi)]

∣∣∣∣∣ ≥ ε/2

)

+ Pr

(
max

1≤k≤pn

∣∣∣∣∣ 1n
n∑
i=1

[XikF (Yi)− E{XkF (Y )}]

∣∣∣∣∣ ≥ ε/2

)
=: A+B. (4.29)
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Then, we consider the part (A) first,

Pr

(
max

1≤k≤pn

∣∣∣∣∣ 1n
n∑
i=1

Xik[Fn(Yi)− F (Yi)]

∣∣∣∣∣ ≥ ε/2

)

≤ Pr

 max
1≤k≤pn

√√√√{ 1

n

n∑
i=1

X2
ik

}{
1

n

n∑
i=1

[Fn(Yi)− F (Yi)]2

}
≥ ε/2


≤ Pr

(
1

n

n∑
i=1

[Fn(Yi)− F (Yi)]
2 ≥ ε2/4

)

≤ Pr

(
max
0≤i≤n

|Fn(Yi)− F (Yi)| ≥ ε/2

)
≤ Pr

(
sup
y∈R
|Fn(y)− F (y)| ≥ ε/2

)
≤ 2 exp(−nε2/2), (4.30)

where the first inequality follows from Cauchy-Schwartz inequality and the fact

that n−1
∑n

i=1X
2
ik = 1, and the last inequality follows by Lemma 4.5.2 (Dvoretzky,

Kiefer and Wolfowitz, 1956).

For the second part (B), let Tik = XikF (Yi) − E{XkF (Y )}, then E(Tik) = 0

and Tik are identical and independently distributed for all i = 1, . . . , n.

For every m ≥ 2 and any 0 < t ≤ t0,

E |Tik|m ≤ E |XikF (Yi)− E{XkF (Y )} |m

≤ m!t−mE exp {t |XikF (Yi)− E{XkF (Y )}|}

≤ m!t−mC ≤ 1

2
m!

(
1

t

)m−2(
2C

t2

)
,

where the second inequality follows the fact xm ≤ m! exp (x) for any x > 0 and the

third inequality follows condition (A4.3) and Jensen’s inequality. By Bernstein’s
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inequality (Lemma 4.31), for any γ > 0 ,

Pr

(∣∣∣∣∣
n∑
i=1

Tik

∣∣∣∣∣ > γ

)
≤ 2 exp

(
−1

2

γ2

2nC/t2 + γ/t

)
.

Then,

Pr

(
max

1≤k≤pn

∣∣∣∣∣ 1n
n∑
i=1

[XikF (Yi)− E{XkF (Y )}]

∣∣∣∣∣ ≥ ε/2

)

≤ pn max
1≤k≤pn

Pr

(∣∣∣∣∣ 1n
n∑
i=1

[XikF (Yi)− E{XkF (Y )}]

∣∣∣∣∣ ≥ ε/2

)

= pn max
1≤k≤pn

Pr

(∣∣∣∣∣
n∑
i=1

Tik

∣∣∣∣∣ ≥ nε/2

)

≤ 2pn exp

(
−1

4

nε2

4C/t2 + ε/t

)
≤ 2pn exp

(
−C ′nε2

)
, (4.31)

where the last inequality holds for ε > 0 sufficiently small and some positive

constant C ′. Therefore, (4.30) and (4.31) together entails that

Pr

(
max

1≤k≤pn
|ω̂k − ωk| ≥ ε

)
≤ 2 exp{−nε2/2}+ 2pn exp

(
−C ′nε2

)
= 2(pn + 1) exp

(
−a1nε

2
)
→ 0, (4.32)

with some positive constant a1, as n→∞.

Next, we show the second part of Theorem 4.2.2. Let δ = min
k∈A

ω2
k−max

k∈I
ω2
k, then

by Theorem 4.2.1, δ > 0 holds uniformly for pn under conditions (A4.1)-(A4.3).

Therefore,

Pr

(
max
k∈I

ω̂2
k ≥ min

k∈A
ω̂2
k

)
= Pr

(
max
k∈I

ω̂2
k −max

k∈I
ω2
k ≥ min

k∈A
ω̂2
k −min

k∈A
ω2
k + δ

)
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≤ Pr

(∣∣∣∣max
k∈I

ω̂2
k −max

k∈I
ω2
k

∣∣∣∣+

∣∣∣∣min
k∈A

ω̂2
k −min

k∈A
ω2
k

∣∣∣∣ ≥ δ

)
≤ Pr

(∣∣∣∣max
k∈I

ω̂2
k −max

k∈I
ω2
k

∣∣∣∣ ≥ δ/2

)
+ Pr

(∣∣∣∣min
k∈A

ω̂2
k −min

k∈A
ω2
k

∣∣∣∣ ≥ δ/2

)
≤ Pr

(
max
k∈I

∣∣ω̂2
k − ω2

k

∣∣ ≥ δ/2

)
+ Pr

(
max
k∈A

∣∣ω̂2
k − ω2

k

∣∣ ≥ δ/2

)
(4.33)

We observe that ω̂2
k ≤ {n−1

∑n
i=1X

2
ik} {n−1

∑n
i=1 F

2
n(Yi)} ≤ 1 and ω2

k ≤ EX2
k = 1.

Then (4.33) entails that

Pr
(

max
k∈I

ω̂2
k ≥ min

k∈A
ω̂2
k

)
≤ Pr

(
max
k∈I
|ω̂k − ωk| ≥ δ/4

)
+ Pr

(
max
k∈A
|ω̂k − ωk| ≥ δ/4

)
≤ 2(pn + 1) exp

(
−a2nδ

2
)
→ 0, (4.34)

with some constant a2 > 0, as n → ∞. The last inequality follows the same

arguments for proving (4.32). This completes the proof of Theorem 4.2.2.

4.5.4 Proof of Lemma 4.2.3

According to the proof of Theorem 4.2.1, we have that

min
k∈A

ω2
k =

{
min
k∈A

cov2(Xk,x
T

Aβ)

}{
cov−1(βTxA)E[βTxAF (Y )]

}2

≥ (c1n
−κ)
{

cov−1(βTxA)E[βTxAF (Y )]
}2

= c2n
−κ, (4.35)

where we denote c2 = {cov−1(βTxA)E[βTxAF (Y )]}2
c1 > 0.
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4.5.5 Proof of Theorem 4.2.4

We follow the uniform convergence rate of ω̂k in (4.9) and set ε = c4n
−κ with any

c4 > 0. Consequently, for n sufficiently large, there exists a constant a′1 > 0,

Pr

{
max

1≤k≤pn
|ω̂k − ωk| ≥ c3n

−κ
}
≤ 2(pn + 1) exp(−a′1n1−2κ). (4.36)

Let En =

{
max
k∈A
|ω̂2
k − ω2

k| ≤ c3n
−κ
}

, where c3 ≤ c2/2. On the event En, by Lemma

4.2.3, we have that

c3n
−κ ≥ max

k∈A
ω2
k −min

k∈A
ω̂2
k ≥ c2n

−κ −min
k∈A

ω̂2
k,

then min
k∈A

ω̂2
k ≥ c3n

−κ, which entails that A ⊆ Âγn by the choice of γn = c3n
−κ.

Therefore,

Pr(A ⊆ Âγn) ≥ Pr(En) = 1− Pr(Ecn) = 1− Pr

{
max
k∈A

∣∣ω̂2
k − ω2

k

∣∣ ≥ c3n
−κ
}

≥ 1− Pr

{
max
k∈A
|ω̂k − ωk| ≥ c3n

−κ/2

}
≥ 1− 2(qn + 1) exp{−a3n

1−2κ},

where qn is the cardinality of A, the second inequality follows that that ω̂2
k ≤

{n−1
∑n

i=1 X
2
ik} {n−1

∑n
i=1 F

2
n(Yi)} ≤ 1 and ω2

k ≤ EX2
k = 1, the last inequality

holds for n large enough and some positive constant a3 > 0, which follows the

same arguments for proving (4.36). This completes the proof of Theorem 4.2.4.

4.5.6 Proof of Lemma 4.3.1

First, we need an additional lemma in the following.

Lemma 4.5.3. According to (4.17), we have E {I(Y − xT
Aβ

o
τ1 ≤ uoτ ) | xA} = τ .
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Proof: Let ξτ be the τth quantile of Y − xT
Aβ

o
τ1 conditional on xA. Then,

E {I(Y − xT
Aβ

o
τ1 ≤ ξτ ) | xA} = τ . It is enough to show, Lτ (ξτ ,βoτ1) ≤ Lτ (u,βoτ1)

holds for any u. To be specific,

Lτ (u,βoτ1)− Lτ (ξτ ,βoτ1)

= E{ρτ (Y − u− xT

Aβ
o
τ1)} − E{ρτ (Y − ξτ − xT

Aβ
o
τ1)}

= E {(u− ξτ )[I(Y − ξτ − xT

Aβ
o
τ1 ≤ 0)− τ ]}

+ E

{∫ u−ξτ

0

[I(Y − ξτ − xT

Aβ
o
τ1 ≤ t)− I(Y − ξτ − xT

Aβ
o
τ1 ≤ 0)] dt

}
≥ 0,

where the second equality follows the identity (Knight, 1998). In the second equal-

ity, the first term is zero based on the definition of ξτ and the second term is always

nonnegative. Therefore, E {I(Y − xT
Aβ

o
τ1 ≤ uoτ ) | xA} = τ .

To prove Lemma 4.3.1, it suffices to show that for any fixe η > 0, there exists

two constants ∆1 and ∆2 such that for all sufficiently large n,

Pr

 inf
‖γ‖=∆1
|u|=∆2

Lτn(uoτ + n−1/2q1/2
n u,βoτ1 + n−1/2q1/2

n γ) > Lτn(uoτ ,β
o
τ1)

 ≥ 1− η.

We define that

Gn(u, γ) =: nq−1
n

{
Lτn(uoτ + n−1/2q1/2

n u,βoτ1 + n−1/2q1/2
n γ)− Lτn(uoτ ,β

o
τ1)
}

= q−1
n

n∑
i=1

n−1/2q1/2
n (u+ xT

i,Aγ)
{
I(Yi − xT

i,Aβ
o
τ1 ≤ uoτ )− τ

}
+ q−1

n

n∑
i=1

∫ n−1/2q
1/2
n (u+xT

i,Aγ)

0

{
I(Yi − xT

i,Aβ
o
τ1 ≤ uoτ + s)− I(Yi − xT

i,Aβ
o
τ1 ≤ uoτ )

}
ds

=: In1 + In2,

where the second equality follows from Knight (1998)’s identity. Note that
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E {I(Y − xT
Aβ

o
τ1 ≤ uoτ ) | xA} = τ by Lemma (4.5.3) and hence E(In1) = 0. In

addition,

var(In1) = E{var(In1 | xA)}+ var{E(In1 | xA)}

= τ(1− τ)q−1
n E

{
n−1

n∑
i=1

(u+ xT

i,Aγ)2
}

≤ 2τ(1− τ)q−1
n [u2 + λmax {E(xAxT

A)} ‖γ‖2]

≤ Cq−1
n (∆2

1 + ∆2
2),

which together with condition (A4.5) implies that In1 = Op

(
q
−1/2
n

)√
∆2

1 + ∆2
2.

Next we evaluate In2. We denote by F (· | xA) and f(· | xA) the respective

conditional distribution and density of Y − xT
Aβ

o
τ1 given xA.

E (In2) = q−1
n E

[
n∑
i=1

∫ n−1/2q
1/2
n (u+xT

i,Aγ)

0

{F (uoτ + s | xi,A)− F (uoτ | xi,A)} ds

]

= q−1
n E

[
n∑
i=1

∫ n−1/2q
1/2
n (u+xT

i,Aγ)

0

f(uoτ + s′ | xi,A)sds

]

≥ Cq−1
n E

[
n∑
i=1

{
n−1/2q1/2

n (u+ xT

i,Aγ)
}2

]
= CE(u+ xT

Aγ)2 ≥ C (1 + λmin {E(xAxT

A)}) (u2 + ‖γ‖2)

≥ C(∆2
1 + ∆2

2),

where the first inequality follows from condition (A6) and the last inequality follows

from condition (A4.5). Therefore, E (In2) = O(1)(∆2
1 + ∆2

2). Next we consider the

variance of In2,

var (In2) ≤ nq−2
n E

[∫ n−1/2q
1/2
n (u+xT

Aγ)

0
{I(Y − xT

Aβ
o
τ1 ≤ uoτ + s)− I(Y − xT

Aβ
o
τ1 ≤ uoτ )} ds

]2

≤ nq−2
n n−1/2q1/2

n E

[
|u+ xT

Aγ|
∫ n−1/2q

1/2
n (u+xT

i,Aγ)

0
{F (uoτ + s|xA)− F (uoτ |xA)} ds

]
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≤ nq−2
n n−3/2q3/2

n E
(
|u+ xT

Aγ|
3 ).

Next we study the order of E
(
|xT
Aγ|

3 ). Condition (A4.3) ensures that

E
(
|xT

Aγ|
3 ) ≤ E

(
‖xA‖3

)
‖γ‖3 ≤

{
E
(
xT

AxA
)3}1/2‖γ‖3 = O(q3/2

n )‖γ‖3,

and hence

var (In2) = O
(
nq−2

n n−3/2q3/2
n q3/2

n

)
(|u|3 + ‖γ‖3) = O(qnn

−1/2)(|u|3 + ‖γ‖3)

which converges to zero as q2
n/n → 0. This indicates that |In2 − E(In2)| = op(1)

by Chebyshev’s inequality. Furthermore, since In2 is always nonnegative,

In2 = E(In2) + op(1) ≥ C(∆2
1 + ∆2

2) + op(1).

For sufficiently large ∆1 and ∆2, In2 will dominate In1 asymptotically as n→∞.

Therefore, for any fixed η > 0, there exists two constants ∆1 and ∆2 such that for

all sufficiently large n, we have Gn(u, γ) > 0 with probability at least 1− η.

4.5.7 Proof of Theorem 4.3.2

The proof of Theorem 4.3.2 is parallel to the proof of Theorem 2.4 in Wang, Wu and

Li (2012). With slightly notational abuse, we write xA = (1,xA)T, xÂ = (1,xÂ)T

βoτ = (uoτ ,β
oT

τ )T, β̂τ = (ûτ , β̂
T

τ )T and β̂
o

τ = (ûoτ , β̂
oT

τ )T. where β̂τ denotes the

penalized linear quantile estimator and β̂
o

τ = (β̂
oT

τ1,0
T)T is the oracle estimator.

Accordingly, we write βoτ1 = (uoτ ,β
oT

τ1)T and β̂
o

τ1 = (ûoτ , β̂
oT

τ1)T.

The objective function (4.15) with the SCAD penalty can be written in terms
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of β = (u,bT)T,

Q(β) =
1

n

n∑
i=1

ρτ (Yi − xT

i,Âβ) +
dn∑
j=1

pλ(|bj|),

which is the difference of two convex functions in β:

Q(β) = g(β)− h(β),

where g(β) = n−1
∑n

i=1 ρτ (Yi − xT

i,Âβ) + λ
∑dn

j=1 |βj|, and h(β) =
∑dn

j=1 Hλ(βj),

with

Hλ(βj) =


0, 0 ≤ |βj| < λ;

(β2
j − 2λ|βj|+ λ2)/{2(a− 1)}, λ ≤ |βj| ≤ aλ;

λ|βj| − (a+ 1)λ2/2, |βj| > aλ.

Thus, the subdifferential of h(β) at any β is

∂h(β) =

{
µ = (µ0, µ1, . . . , µdn)T ∈ Rdn+1 : µ0 = 0, µj =

∂h(β)

∂βj
, j = 1, 2, . . . , dn

}
.

The subdifferential of g(β) at any β is

∂g(β) =

{
ξ = (ξ0, ξ1, . . . , ξdn)T ∈ Rdn+1 : ξj = (1− τ)n−1

n∑
i=1

XijI(Yi − xT

i,Âβ < 0)

−τn−1

n∑
i=1

XijI(Yi − xT

i,Âβ > 0)− n−1

n∑
i=1

Xijvi + λlj

}
,

where vi = 0 if Yi − xT

i,Âβ 6= 0 and vi ∈ [τ − 1, τ ] otherwise; l0 = 0; lj = sgn(βj) if

βj 6= 0 and lj ∈ [−1, 1] otherwise, for 1 ≤ j ≤ dn.

Let s(β̂) =
{
s0(β̂), s1(β̂), . . . , sdn(β̂)

}T
be the set of the subgradient functions
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for the unpenalized quantile regression, where

sj(β) = (1− τ)n−1

n∑
i=1

XijI(Yi − xT

i,Âβ < 0)

−τn−1

n∑
i=1

XijI(Yi − xT

i,Âβ > 0)− n−1

n∑
i=1

Xijvi,

where vi = 0 if Yi − xT

i,Âβ̂ 6= 0 and vi ∈ [τ − 1, τ ] otherwise.

We first provide Lemmas 4.5.4, 4.5.5 and 4.5.6 to facilitate the proof of Theorem

4.3.2. Tao and An (1997) proposed the numerical algorithm based on the convex

difference representation and we present the result in the following Lemma 4.5.4.

The following Lemmas 4.5.5 and 4.5.6 characterize the properties of the oracle

estimator β̂
o

τ and the associated subgradient functions s(β̂
o

τ ) corresponding to the

active and inactive variables, respectively.

Lemma 4.5.4. (Difference Convex Program) g(x) and h(x) are two convex

functions. Let x∗ be a point that admits a neighborhood U such that ∂h(x) ∩

∂g(x∗) 6= ∅, ∀x ∈ U ∩ dom(g). Then x∗ is a local minimizer of g(x)− h(x).

Lemma 4.5.5. Assume the conditions (A4.7)-(A4.8) holds and λ = o(n−(1−c2)/2).

For the oracle estimator β̂
o

τ , there exist v∗i which satisfies v∗i = 0 if Yi−xT

i,Âβ̂
o

τ 6= 0

and v∗i ∈ [τ − 1, τ ] otherwise, such that, with probability approaching one, we have

sj(β̂
o

τ ) = 0, j = 0, 1, . . . , qn, and |β̂j
o
| ≥ (a+ 1/2)λ, j = 1, . . . , qn.

Proof of Lemma 4.5.5: The unpenalized quantile loss objective function is

convex. By the convex optimization theory,

0 ∈ ∂
n∑
i=1

ρτ (Yi − xT

i,Âβ̂
o

τ ).
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Therefore, there exists v∗i such that sj(β̂
o

τ ) = 0 with vi = v∗i for j = 0, 1, . . . , qn.

On the other hand,

min
1≤j≤qn

|β̂j
o
| ≥ min

1≤j≤qn
|βoτ,j| − max

1≤j≤qn
|β̂j

o
− βoτ,j|.

Condition (A4.8) requires that min
1≤j≤qn

|βoτ,j| ≥ Cn−(1−c2)/2. In addition, max
1≤j≤qn

|β̂j
o
−

βoτ,j| ≤ ‖β̂
o

τ − βoτ1‖ = Op(
√
qn/n) = Op(n

−(1−c1)/2) = op(n
−(1−c2)/2). Therefore,

min
1≤j≤qn

|β̂j
o
| ≥ Cn−(1−c2)/2−op(n−(1−c2)/2), where c1 and c2 are defined in conditions

(A4.7) and (A4.8) respectively. For λ = o(n−(1−c2)/2), we have that, with probabil-

ity approaching one, |β̂j
o
| ≥ (a + 1/2)λ, j = 1, . . . , qn, which completes the proof.

Lemma 4.5.6. Assume the conditions (A4.3) and (A4.5)-(A4.8) hold and λ =

o(n−(1−c2)/2), dn = O
(
n
)
. For the oracle estimator β̂

o

τ and the sj(β̂
o

τ ), with proba-

bility approaching one, we have

|sj(β̂
o

τ )| ≤ λ, and |β̂j
o
| = 0, j = qn + 1, . . . , dn.

Proof of Lemma 4.5.6: Since the β̂
o

τ is the oracle estimator, |β̂j
o
| = 0, j =

qn + 1, . . . , dn. It remains to show that

Pr
(
|sj(β̂

o

τ )| > λ, for some j = qn + 1, . . . , dn

)
→ 0, as n→∞.

Let D = {i : Yi−xT

i,Âβ̂
o

τ = 0} = {i : Yi−xT
i,Aβ̂

o

τ1 = 0}, then for j = qn + 1, . . . , dn,

sj(β̂
o

τ ) = (1− τ)n−1
n∑
i=1

XijI(Yi − xT

i,Âβ̂
o

τ < 0)− τn−1
n∑
i=1

XijI(Yi − xT

i,Âβ̂
o

τ > 0)− n−1
n∑
i=1

Xijvi,

= n−1
n∑
i=1

Xij

{
I(Yi − xT

i,Âβ̂
o

τ ≤ 0)− τ
}
− n−1

n∑
i=1

Xij

{
vi + (1− τ)I(Yi − xT

i,Âβ̂
o

τ = 0)
}
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= n−1
n∑
i=1

Xij

{
I(Yi − xT

i,Aβ̂
o

τ1 ≤ 0)− τ
}
− n−1

∑
i∈D

Xij [v
∗
i + (1− τ)],

where v∗i ∈ [τ − 1, τ ] with i ∈ D satisfies sj(β̂
o

τ ) = 0 with vi = v∗i , for j = 1, . . . , qn

by Lemma 4.5.5.

Pr(|sj(β̂
o

τ )| > 2λ, for some j = qn + 1, . . . , dn)

≤ Pr
(∣∣∣n−1

n∑
i=1

Xij

{
I(Yi − xT

i,Aβ̂
o

τ1 ≤ 0)− τ
}∣∣∣ > λ, for some j = qn + 1, . . . , dn

)
+ Pr

(∣∣∣n−1
∑
i∈D

Xij{v∗i + (1− τ)}
∣∣∣ > λ, for some j = qn + 1, . . . , dn

)
=: Tn1 + Tn2.

First, we deal with Tn2. Let M = O(nτ ) with a carefully chosen 0 < τ < 1/2, we

have that

Tn2 ≤ Pr
(

max
qn+1,...,dn

∣∣∣n−1
∑
i∈D

Xij1{|Xij| ≤M}{v∗i + (1− τ)}
∣∣∣ > λ/2

)
+ Pr

(
max

qn+1,...,dn

∣∣∣n−1
∑
i∈D

Xij1{|Xij| > M}[v∗i + (1− τ)]
∣∣∣ > λ/2

)
=: Tn21 + Tn22.

Since (xi,A, Yi) are in general positions (Koenker, 2005, Section 2.2), with prob-

ability approaching one there exists exactly qn + 1 elements in D. Thus, with

probability approaching one,

max
qn+1,...,dn

∣∣∣n−1
∑
i∈D

Xij1{|Xij| ≤M}{v∗i + (1− τ)}
∣∣∣

≤M(qn + 1)n−1 = O(nτ+c1−1) = o(λ),

where the last equality holds for λ = o(n−(1−c2)/2) and 0 < τ < 1/2. Therefore,
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Tn21 → 0 as n→∞. Next, we deal with Tn22. Note that the events satisfy

{∣∣∣n−1
∑
i∈D

Xij1{|Xij| > M}
∣∣∣ > λ/2

}
⊆ {|Xij| > M, for some i ∈ D},

because that if |Xij| ≤ M for all i ∈ D, then n−1
∑

i∈DXij1{|Xij| > M} = 0.

Therefore,

Tn22 ≤ dn Pr
(∣∣∣n−1

∑
i∈D

Xij1{|Xij| > M}[v∗i + (1− τ)]
∣∣∣ > λ/2

)
≤ dn(qn + 1) max

i∈D,qn+1≤j≤dn
Pr (|Xij| > M)

≤ dn(qn + 1) exp(−tM)E{exp(t|Xij|)}

≤ Cdn(qn + 1) exp(−tM)

= O(n)O(nc1) exp(−tnτ )→ 0,

as n → ∞, where the second inequality holds from Markov’s inequality and the

third inequality follows from Condition (A4.3). Therefore,

Tn2 = Tn21 + Tn22 → 0, as n→∞.

Therefore, it is enough to show that

Pr
(∣∣∣n−1

n∑
i=1

Xij{I(Yi−xT

i,Âβ̂
o

τ < 0)− τ}
∣∣∣ > λ, for some j = qn + 1, . . . , dn

)
→ 0,

as n→∞.

Next, we consider

Pr
(

max
qn+1,...,dn

∣∣∣n−1
n∑
i=1

Xij{I(Yi − xT
i,Aβ̂

o

τ1 ≤ 0)− τ}
∣∣∣ > λ

)
≤ Pr

(
max

qn+1,...,dn

∣∣∣n−1
n∑
i=1

Xij{I(Yi − xT
i,Aβ

o
τ1 ≤ 0)− τ}

∣∣∣ > λ

2

)
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+ Pr
(

max
qn+1,...,dn

∣∣∣n−1
n∑
i=1

Xij{I(Yi − xT
i,Aβ̂

o

τ1 ≤ 0)− I(Yi − xT
i,Aβ

o
τ1 ≤ 0)}

∣∣∣ > λ

2

)
≤ Pr

(
max

qn+1,...,dn

∣∣∣n−1
n∑
i=1

Xij{I(Yi − xT
i,Aβ

o
τ1 ≤ 0)− τ}

∣∣∣ > λ

2

)
+ Pr

(
max

qn+1,...,dn
sup

‖β1−β
o

τ1‖≤∆
√
qn/n

∣∣∣n−1
n∑
i=1

Xij

[
I(Yi − xT

i,Aβ1 ≤ 0)− I(Yi − xT
i,Aβ

o
τ1 ≤ 0)

−
{

Pr(Yi − xT
i,Aβ1 ≤ 0)− Pr(Yi − xT

i,Aβ
o
τ1 ≤ 0)

} ]∣∣∣ > λ

4

)
+ Pr

(
max

qn+1,...,dn
sup

‖β1−β
o

τ1‖≤∆
√
qn/n

∣∣∣n−1
n∑
i=1

Xij

{
Pr(Yi − xT

i,Aβ1 ≤ 0)− Pr(Yi − xT
i,Aβ

o
τ1 ≤ 0)

}∣∣∣ > λ

4

)
=: Jn1 + Jn2 + Jn3.

First, let us consider Jn1. We choose a M = O(nτ ) with 0 < τ < 1/2, then

Jn1 ≤ Pr
(

max
qn+1,...,dn

∣∣∣n−1

n∑
i=1

Xij1{|Xij| ≤M}{I(Yi − xT

i,Aβ
o
τ1 < 0)− τ}

∣∣∣ > λ/4
)

+ Pr
(

max
qn+1,...,dn

∣∣∣n−1

n∑
i=1

Xij1{|Xij| > M}{I(Yi − xT

i,Aβ
o
τ1 ≤ 0)− τ}

∣∣∣ > λ/4
)

=: Jn11 + Jn12.

By Hoeffding’s inequality, we have that

Pr
(∣∣∣n−1

n∑
i=1

Xij1(|Xij| ≤M){I(Yi − xT

i,Aβ
o
τ1 ≤ 0)− τ}

∣∣∣ > λ/4
)
≤ 2 exp

(
− nλ2

8M2

)
.

Thus, Jn11 ≤ 2dn exp{−nλ2/(8M2)} → 0, as n→∞. On the other hand, we can

similarly follow the arguments that deal with Tn22 and have that

Jn12 ≤ dn Pr
(∣∣∣n−1

n∑
i=1

Xij1{|Xij| > M}
∣∣∣ > λ/4

)
≤ dnn max

n+1≤i≤2n
Pr (|Xij| > M)→ 0,
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as n→∞. Therefore,

Jn1 = Jn11 + Jn12 = o(1).

Following similar arguments for proving Lemma 4.3 of Wang, Wu and Li (2012),

we can show that Jn2 = o(1). It remains to deal with Jn3. For a fixed M = O(nτ )

with 0 < τ < 1/2,

Jn3 ≤ Pr
(

max
qn+1,...,dn

sup
‖β1−β

o

τ1‖≤∆
√
qn/n

∣∣∣n−1

n∑
i=1

Xij1{|Xij| ≤M}

{
Pr(Yi − xT

i,Aβ1 ≤ 0)− Pr(Yi − xT

i,Aβ
o
τ1 ≤ 0)

}∣∣∣ > λ

8

)
+ Pr

(
max

qn+1,...,dn
sup

‖β1−β
o

τ1‖≤∆
√
qn/n

∣∣∣n−1

n∑
i=1

Xij1{|Xij| > M}

{
Pr(Yi − xT

i,Aβ1 ≤ 0)− Pr(Yi − xT

i,Aβ
o
τ1 ≤ 0)

}∣∣∣ > λ

8

)
=: Jn31 + Jn32.

To handle Jn31, we observe that

max
qn+1,...,dn

sup
‖β1−β

o

τ1‖≤∆
√
qn/n

∣∣∣n−1

n∑
i=1

Xij1{|Xij| > M}

{
Pr(Yi − xT

i,Aβ1 ≤ 0)− Pr(Yi − xT

i,Aβ
o
τ1 ≤ 0)

}∣∣∣
≤ M sup

‖β1−β
o

τ1‖≤∆
√
qn/n

∣∣∣E{f(ζ|xA)xT

A(β1 − βoτ1)
}∣∣∣

≤ M sup
‖β1−β

o

τ1‖≤∆
√
qn/n

λ1/2
max {E(xAxT

A)} ‖β1 − βoτ1‖

≤ O(
√
qn/n) = O(n−(1−c1))

where f(·|xA) is defined in Condition (A4.6) with ζ is between uoτ+xT
A(β1−βoτ1) and

uoτ and thus the second inequality follows Condition (A4.6) and Cauchy-Schwartz

inequality, and the third inequality follows Condition (A4.5). Consequently, to-
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gether with λ = o{n−(1−c2)/2}, we have that Jn31 ≤ Pr{O(n−(1−c1)) > λ/8} = o(1).

We can also follow similar arguments for handling Jn12 and obtain that Jn32 = o(1).

Therefore, Jn3 = Jn31 + Jn32 = o(1).

Hence,

Pr
(

max
qn+1,...,dn

∣∣∣n−1

n∑
i=1

Xij{I(Yi − xT

i,Aβ̂
o

τ1 < 0)− τ}
∣∣∣ > λ

)
≤ Jn1 + Jn2 + Jn3 = o(1),

which implies that

Pr
(
|sj(β̂

o

τ )| > λ, for some j = qn + 1, . . . , dn

)
→ 0, as n→∞.

That is, Pr
(
|sj(β̂

o

τ )| ≤ λ, for j = qn + 1, . . . , dn

)
→ 1, as n → ∞. This com-

pletes the proof.

Recall that

Q(β) = g(β)− h(β),

where h(β) =
∑dn

j=1 Hλ(βj), and for the SCAD penalty function,

Hλ(βj) =


0, 0 ≤ |βj| < λ;

(β2
j − 2λ|βj|+ λ2)/{2(a− 1)}, λ ≤ |βj| ≤ aλ;

λ|βj| − (a+ 1)λ2/2, |βj| > aλ.
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Thus, ∂h(β)/∂β0 = 0, and for j = 1, . . . , d

∂h(β)

∂βj
=


0, 0 ≤ |βj| < λ;

{βj − λsgn(βj)}/(a− 1), λ ≤ |βj| ≤ aλ;

λsgn(βj), |βj| > aλ.

By the definition of the set ∂g(β), we obtain

∂g(β̂τ ) =
{
ξ = (ξ0, ξ1, . . . , ξd)

T ∈ Rdn+1 : ξj = sj(β̂τ ) + λlj

}
.

By Lemma 4.5.5, there exist v∗i such that sj(β̂τ ) = 0 for j = 1, 2, . . . , qn. By

Lemma 4.5.6, Pr(|sj(β̂τ )| ≤ λ, for j = qn+1, . . . , dn)→ 1, as n→∞. Thus, there

exist l∗j ∈ [−1, 1], such that Pr
{
sj(β̂τ ) + λlj = 0, for j = qn + 1, . . . , dn

}
→ 1, as

n→∞.

We denote ξ∗ be the vector ξ in ∂g(β̂τ ) with vi = v∗i and lj = l∗j , then we have

Pr(ξ∗ ⊆ ∂g(β̂τ ))→ 1, as n→∞,

where ξ∗ = (ξ∗0 , ξ
∗
1 , . . . , ξ

∗
dn

)T satisfies

ξ∗0 = 0; ξ∗j = λsgn(β̂j
o
), j = 1, 2, . . . , qn; ξ∗j = 0, j = qn + 1, . . . , dn.

Consider any β in a ball U(β̂τ , λ/2) in Rdn+1 with the center β̂τ and radius λ/2.

It suffices to show that

Pr
(
ξ∗ =

∂h(β)

∂βj
, for j = 0, 1, . . . , dn

)
→ 1, as n→∞.

(1) For j = 0, it is obvious that ξ∗0 = ∂h(β)/∂β0 = 0;
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(2) For j = 1, . . . , qn, ξ∗j = λsgn(β̂oj ). Lemma 4.5.5 states that, with portability

approaching one, for any β = (β0, βj, . . . , βdn) ∈ U(β̂τ , λ/2),

min
1≤j≤qn

|βj| ≥ min
1≤j≤qn

|β̂j
o
| − max

1≤j≤qn
|β̂j

o
− βj| ≥ (a+ 1/2)λ− λ/2 = aλ.

Thus,

Pr

{
∂h(β)

∂βj
= λsgn(βj), j = 1, . . . , qn

}
→ 1, as n→∞.

Since β ∈ U(β̂τ , λ/2), for n sufficiently large, β̂oj and βj has the same sign.

Therefore,

Pr(
∂h(β)

∂βj
= ξ∗j , j = 1, . . . , qn)→ 1, as n→∞.

(3) For j = qn + 1, . . . , dn, ξ∗j = 0. Lemma 4.5.6 states that, with portability

approaching one, for any β = (β0, βj, . . . , βdn) ∈ U(β̂τ , λ/2),

max
qn+1≤j≤dn

|βj| ≤ max
qn+1≤j≤dn

|β̂j
o
|+ max

qn+1≤j≤dn
|β̂j

o
− βj| ≤ λ/2.

Thus,

Pr

{
∂h(β)

∂βj
= 0, j = qn + 1, . . . , dn

}
→ 1, as n→∞.

Then,

Pr

{
∂h(β)

∂βj
= ξ∗j , j = qn + 1, . . . , dn

}
→ 1, as n→∞.

By above (1), (2) and (3), we have

Pr

{
∂h(β)

∂βj
= ξ∗j , j = 0, 1, . . . , dn

}
→ 1, as n→∞.
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That is, for ∀β ∈ U(β̂τ , λ/2)

Pr(∂h(β) ∩ ∂g(β̂
o

τ ) 6= ∅)→ 1, as n→∞.

Hence, by Lemma 4.5.4,

Pr(β̂
o

τ ∈ B∗n(λ))→ 1.

This completes the proof.



Chapter 5
Conclusion and Future Research

5.1 Conclusion Remarks

In this dissertation, we systematically reviewed the existing variable selection meth-

ods for the high dimensional regressions and independence screening procedures

for the ultrahigh dimensional problems. We proposed a novel sure independence

screening procedure using distance correlation (DC-SIS, for short) for the ultrahigh

dimensional data analysis in Chapter 3 and the two-stage robust feature screen-

ing and variable selection estimation procedure for the ultrahigh dimensional het-

eroscedastic single-index models.

In Chapter 3, we proposed the DC-SIS to select potential predictors when the

number of predictors, p, greatly diverging as the sample size n. Then, we theo-

retically studied that the proposed DC-SIS processes the desirable sure screening

property in the terminology of Fan and Lv (2008). That is, with an appropriate

threshold, it can select all important predictors with probability approaching to

one as n goes to the infinity. The proposed DC-SIS has several appealing properties

which are unique among the existing independence screening procedures. Based

on the fact that the distance correlation is defined for predictors x and responses y
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in arbitrary dimensions, it allows to consider independent screening for groupwise

predictors and multivariate responses. Because the distance correlation charac-

terizes the dependence between x and y, the proposed DC-SIS built on distance

correlation imposes little assumption on regression structure. Therefore, it allows

arbitrary regression relationship between x and y and thus is robust to model

misspecification. In the end of the chapter, we examined the finite-sample per-

formance of the proposed procedure via Monte Carlo studies and three real data

examples, which supported that the DC-SIS perform quit well in the ultrahigh

dimensional regressions.

In Chapter 4, in the first stage, we proposed the new robust independent rank-

ing and screening procedure and demonstrated that the robust RIRS enjoys both

the ranking consistency property (Zhu, Li, Li and Zhu, 2011) and the sure screen-

ing property (Fan and Lv, 2008) under mild conditions. In the second stage, we

applied the penalized linear quantile regression to further select the important

variables and estimate the direction of the index parameter. It maintains the ap-

pealing robustness property of the RIRS in that it is insensitive to the presence

of extreme values and outliers in the response. We demonstrated that the result-

ing estimator is consistent and processes the oracle property (Fan and Li, 2001),

even the single-index model structure is mis-specified. Numerical studies confirmed

the outstanding finite sample performances of the proposed two-stage estimation

procedure.
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5.2 Future Research

5.2.1 False Positive Rate Controlling

Independence screening procedures are commonly used for feature selection. How-

ever, there always exist positive selection false and negative deletion false. That

is, to select the truly irrelevant predictors into the model and to exclude the truly

important predictors out of the model, respectively. How to control the false pos-

itive and false negative rates is important. Therefore, it becomes an open issue to

theoretically study both false rates.

5.2.2 Criteria to Independence Screening

There are many well-established model-based and model-free independence screen-

ing procedures in literature (Fan and Lv, 2008; Fan and Song, 2010; Fan, Feng and

Song, 2011; Zhu, Li, Li and Zhu, 2011; Li, Zhong and Zhu, 2012). However, there

are no commonly-used criteria to judge the independence screening procedures.

When more than one independence screening procedures are available, it is diffi-

cult to choose a proper one, especially for the real data analysis. In the future,

we will examine the existing screening procedures and further design criteria to

choose an appropriate independence screening procedure.

5.2.3 Application to Genome-Wide Association Studies

The modern development of genotyping technologies allows the fast and accurate

collection of genotype data throughout the entire genome. Genome-wide associ-

ation studies (GWASs) can be used to test the associations between Single nu-

cleotide polymorphism (SNPs) and diseases and estimate genetic effects of SNPs

on traits. Both cases involve hundreds of thousands of SNPs collected from hun-
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dreds or thousands of subjects. It is impossible for traditional regression methods

to analyze the data where the number of SNPs highly exceeds the sample size.

As a direct application, the proposed independence screening procedures in this

dissertation can be used to select the SNPs which have significant genetic effects

on traits.

On the other hand, the interaction effects among SNPs always exist in the

genetics. To consider the interaction terms into the regression model will expo-

nentially increase the number of predictors. We may further consider to apply

the proposed independence screening procedures to detect both important main

predictors and interaction effects in the GWASs.
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