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Abstract

A variety of synthetic catalytic nanomotors have been fabricated in recent years,
one aim being to mimic microscopic biological motors. We propose and analyze
a model for deterministic dynamics of hydrogen peroxide powered bimetallic mo-
tors, which have been shown to operate by electrokinetic self-propulsion. Using
perturbation analysis and the method of matched asymptotic expansions, we find
the particle velocity to leading order in Debye length and first order in reaction-
induced ion flux for spherical and spheroidal particles. The results are consistent
with experiments and numerical calculations. The velocity depends linearly on
interfacial potential at the particle surface and hydrogen ion production intensity,
as well as inversely on the fluid viscosity, background ion concentration in the elec-
trolyte and hydronium diffusion coefficient. In the regime of low Reynolds flow,
both the deterministic and the stochastic dynamics of the nanomotor contribute
to the dynamics of the particle. The coupling between these two types of dynam-
ics results in quasi-circular trajectories. We analyzed the proposed mechanisms of
motion for some nanorotors and proposed some design principles for making faster
rotors. We also showed that the coupling of deterministic dynamics and stochastic
orientational dynamics of nanorotors leads to an effective translational diffusion
which can be as significant as the translational diffusion of unpowered nanorod.
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Chapter 1
Nanomotors and Nanorotors

1 Introduction and Background

The past decade has witnessed remarkable progress in powering at the nanoscale.

Before that, biological systems at low Reynolds number were the focus of dynamics

at micro- and nanoscales [1, 2, 3, 4, 5]. With rapid developments in nanotechnology

and the need to power at these scales, researchers started to focus on ways to

develop artificial systems that can convert different types of energy into mechanical

energy at the nanoscale [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Ismagilov et al [17] pioneered the development of small scale artificial au-

tonomous motors that could interact with each other. They fabricated millimeter-

scale boats consisting of a hemicylindrical plate attached to a small platinum-

covered glass. The motors floated on the air-liquid interface of an aqueous solution

of hydrogen peroxide (see Fig. 1.1a). The platinum decomposed hydrogen per-

oxide catalytically according to 2 H2O2 (liquid) → O2 (gas) + 2 H2O (liquid), resulting

in impulses of generated oxygen bubbles. This process led to motion of the boat

away from the platinum-coated glass tail.

Subsequently, in an attempt to move from the millimeter scale to the nanoscale,

Paxton et al. [18] fabricated half-gold/half-platinum bimetallic rods of about 2 µm

in length and 350 nm in diameter and placed them in aqueous solution of hydrogen

peroxide. The nanorods moved autonomously with speeds of 10 − 20µm/s. Sur-

prisingly, not only was there no bubble formation, but also the rods moved toward

the platinum head. This scale-down and change in the composition of motors from
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Autonomous Movement and Self-Assembly**
Rustem F. Ismagilov, Alexander Schwartz,
Ned Bowden, and George M. Whitesides*

Many complex systems–from swarming bacteria and
schooling fish to transportation networks and capital mar-
kets–show a number of characteristics in common, among
which are autonomous movement of the components of these
systems, and interactions (which can be both attractive and
repulsive) among these components.[1] We have begun a
program to explore complexity by designing and fabricating/
synthesizing components that bothmove and interactwith one
another, and then characterizing the patterns that emerge
from groups of these components. As part of this program, we
wish to develop entities capable of autonomous movement,
and to explore the collective behaviors of these entities in
motion. This paper describes the behavior of small (!1 cm)
hemicylindrical plates that have a small area of platinum on
one surface and that float at the surface of an aqueous
solution of hydrogen peroxide. These plates moved under the
impulse of bubbles generated by the platinum-catalyzed
decomposition of hydrogen peroxide (2H2O2(l) ! O2(g) "
2H2O(l)).[2] The edges of these plates were also patterned to
have hydrophobic and hydrophilic regions; capillary inter-
actions between menisci at the hydrophobic edges attract the
plates to one another. We have shown previously that
capillary interactions can cause the assembly of periodic 2D
and 3D structures in systems of particles with sizes ranging
from 10 !m to several millimeters.[3]

Autonomous movement occurs in many animate systems
and a surprising number of inanimate ones. Animate move-
ment is normally due to the action of rotary and linear
molecular motors–driven by the dissipation of ion gradients
across membranes or by the hydrolysis of ATP.[4] Inanimate
motion takes a wide variety of forms, with the simplest
systems often taking advantage of gradients in concentration
or temperature. Self-propulsion of camphor crystals placed on
an air/water interface occurs by preferential dissolution of
camphor from one of the sides of the crystal; this dissolution
creates a gradient in surface tension of the air/water interface
and induces motion.[5] Gels swollen with an organic solvent
(such as ethanol or tetrahydrofuran) can move when slow
injection of the solvent at one face of the gel locally reduces
the surface tension.[6] Marangoni effects can generate motion
in fluids or droplets under a variety of circumstances:[7] for
example, a fluid film heated by a solid surface on one side and
cooled by air on the other side spontaneously develops
convection cells in which fluid motion transfers heat from the

warmer to the cooler surface.[8] There are many other
chemical systems that generate motion. A mercury droplet
placed in proximity to a dissolving potassium dichromate
crystal in water shows motion in the developing concentration
gradient of the oxidant.[9] Pieces of sodium move on the
surface of water while dissolving and reacting.[10] Tin clusters
show complex motion on copper surfaces while alloying with
the substrate.[11] These systems are all conceptually related
and, although their components move, they do not offer a
clear opportunity for the design of systems with motion and
interactions that can be tailored. Most also suffer from the
disadvantage that they consume or dissipate a material stored
™on board∫ and are thus limited in the duration over which
they can move and in the constancy of that motion.

We have designed a system in which the components move
autonomously by ejecting small bubbles of gas formed by
catalytic decomposition of a liquid. The fuel (or ™food∫)
required for motion is thus present in the environment and
can, in principle, sustain motion indefinitely. Metallic plati-
num is an excellent catalyst for the decomposition of hydro-
gen peroxide into water and dioxygen. Under the conditions
used in the experiments described herein, the action of this
catalytic system is approximately constant over two hours, or
five times the interval of time required to complete the
experiments shown in the Figures. Plates floating in a
container with a large amount (1 L) of the aqueous solution
of hydrogen peroxide continued moving for several days,
albeit with a slow decrease in velocity due to the depletion of
H2O2 in solution; motion could be restored to its original level
by replenishing the H2O2.

Self-propulsion. Self-propelling plates were fabricated from
polydimethylsiloxane (PDMS) using rapid prototyping;[12]

Figure 1A shows the design. The plates were placed at the

Figure 1. A) Schematic of a self-propelling object. A thin plate (circa 1 ±
2 mm thick and 9 mm in diameter) was fabricated from PDMS in a desired
shape, and specified faces were rendered hydrophilic by oxidation in a
plasma formed in air. A 2# 2 mm2 piece of porous glass filter (covered with
platinum by an electron beam evaporation) was mounted on the PDMS
piece with a stainless steel pin. B) A diagram illustrating self-assembly by
capillary interactions.

liquid/air interface of a 1 ± 3% aqueous solution of H2O2 at
room temperature. The evolution of gaseous O2 began
immediately and caused motion of the plates. These plates
moved on the surface of H2O2 with velocities of up to 1 ±
2 cms$1 for several hours. This motion was reproducible for
all plates in a group of 20 plates. The energy required for

[*] Prof. G. M. Whitesides, Dr. R. F. Ismagilov,
Dr. A. Schwartz, N. Bowden
Department of Chemistry and Chemical Biology
Harvard University
12 Oxford St., Cambridge, MA 02138 (USA)
Fax: ("1)617-495-9857
E-mail : gwhitesides@gmwgroup.harvard.edu

[**] This work was supported by DoE under grant 00ER45852. The salary
of R.F.I. was provided by the DARPA and NSF under grant NSF ECS-
9729405; the salary of A.S. was provided by the NSF under grant NSF
CHE-9901358.

(a)

(b)

Figure 1.1. (a) The millimeter size boat with a platinum covered plate attached on un-
derside. [17] The boat decomposes the hydrogen peroxide catalytically and the formation
and releasing of bubbles results in impulses that push the boat in the direction opposite
the platinum end. (b) The bimetallic nanorod [18] decomposes the hydrogen peroxide
electrocatalytically through oxidation of hydrogen peroxide on the platinum side and
reduction of oxygen molecules and hydrogen peroxide on the gold side. Te asymmetric
cloud of hydrogen ions pulls the negatively charged particle toward the platinum end.

single metallic to bimetallic structures had changed the direction of motion, reveal-

ing a change in the mechanism of motion. The development of these self-propelling

colloidal particles gave birth to a fascinating new field in colloid science.

Among the many mechanisms proposed to explain the motion of the nanomo-

tors [19, 20, 21, 22, 23], electrokinetic self-propulsion has proved to be a accu-

rate/dominant mechanism [23, 24, 25, 26] for explaining the dynamics of the

bimetallic nanomotors. A bimetallic nanorod and hydrogen peroxide solution

comprise an electrochemical cell. As depicted in Fig. 1.1b, hydrogen ions are

produced on the platinum side through anodic reaction, and are consumed on the

gold side through cathodic reactions. An asymmetric cloud of ions forms around

the nanomotor, which pulls the negatively charged particle toward the side with a
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(c) (d)

(a) (b)

Figure 1.2. Different modes of nanorod motion (a) linear (b) rotary with one one end
anchored to the substrate (c) rotating parallel to a substrate on a quasi- circular path.
(d) fast rotors. (with modification from Ref [6])

higher concentration of hydrogen ions, i.e., the platinum end. The non-equilibrium

state of the asymmetric cloud of ions is sustained by the continuous chemical re-

action on the surface of the nanorod, and keeps the particle moving.

Up until recently, colloid scientists dealt with particles whose non-equilibrium

state was imposed externally by imposed flow, gravity, electric field, concentration

gradient of solutes, etc [27]. In this new motor system, however, the particles

are active and transduce the chemical energy of their environment to mechanical

energy, which has opened up fascinating possibilities, including the tantalizing

possibility of mimicking the behavior of biological motors and microorganisms,

or of programming artificial motors to perform specific tasks, such as carrying

chemical cargo or engaging in complex collective behavior.

More recently, many research groups have focused on design, fabrication and

enhancement of the performance of autonomous nanomotors. Spherical bimetallic

Janus particles have been fabricated [28], expanding on the diversity of geometries

of such systems. Different modes of motion for nanorods have been observed.

Ozin et al [29] fabricated Au/Ni nanowires, anchored from the gold side to the

substrate, that could perform rotary motion (Fig. 1.2b). Qin et al [30] fabricated

Au/Pt nanorods that could rotate parallel to the substrate (Fig. 1.2c) with an

angular velocity of about 23.7 rpm. Wang et al [31] reported ultrafast nanorotors

(Fig. 1.2d) with one order of magnitude enhancement in the average angular
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velocity to about 180 rpm.

Paxton et al. [18], in their aforementioned pioneering work, reported Au/Pt

nanorods having linear deterministic motion coupled to Brownian stochastic dy-

namics on a glass substrate. This early generation of nanorods could move as

fast as 10 − 20µm/s (5 − 10 body lengths per second). Incorporation of carbon

nanotubes into the platinum side increased nanomotor speeds up to 50µm/s [32].

Further enhancement of dynamics was achieved by replacing the gold segment with

cathodic silver/gold alloys leading to speeds of over 150µm/s [33] due to the higher

rates of electron transfer reactions of hydrogen peroxide on these alloys. It was also

observed that increasing the surface area of catalysts by roughening can increase

the speed of bimetallic nanomotors [34]. Wang et al [24] observed that the direc-

tion of motion of the nanorod was toward the metal with the lower mixed potential

(the potential at which anodic and cathodic reactions happen at the same rate for

a specific metal). As the difference in the mixed potentials of the two metals in a

nanomotor increased, the particle moved with higher speed. The order of mixed

potentials of metals in their study was Rh < Pt < Ni < Pd < Au < Ru.

In order to control the dynamics of nanomotors or develop more efficient sys-

tems, it is essential to understand the principles underlying the dynamics of these

species. This motivated us to develop mathematical models that could give more

insight into the relationship between the performance of nanomotors and the pa-

rameters of the system. Such models not only give us the power of prediction, but

also give more insight into the physics of the problem and can be used as a basis

for further research in the field.

Moran et al. [26] examined electrokinetic self-propulsion by numerical calcu-

lation of a model system in which the surface reaction was modeled by the flux

of hydrogen ions based on experimental data. The calculated range of velocities

for the nanomotors was consistent with the experimental observations. They ob-

served a linear relationship between the velocity of nanorods and both the flux of

hydrogen ions and the interfacial electric potential on the surface of the particle.

Although experiments and computations illustrate the physics of the problem,

they do not provide a complete understanding of the interplay between the physical

parameters of the system. A standard approach for attaining such a knowledge is

to use perturbation analysis in the limit of small values for the driving force in the
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system. Yariv [23] used perturbation theory to relate the velocity of a spherical

nanomotor (and slender body) to physical parameters of the system and kinetic

parameters of a Butler-Volmer type reaction of hydrogen peroxide on the surface

of the nanomotor. In our study, we use a more general approach by solving the

problem for spherical and spheroidal nanomotors based on a general form of the

distribution of hydrogen ion flux of the surface on the nanomotor.

In addition to linear nanomotors, we will study the dynamics of nanorotors.

Nanorotors are a specific class of nanomotors that perform deterministic circular

motion coupled to stochastic Brownian motion, leading to motion on quasi-circular

orbits. To date, most modeling efforts have focussed on clarifying the mechanisms

of linear motion in axisymmetric nanomotors. However, the large class of recently

developed colloidal rotary motors remains largely unexplored. Here, we provide

a fundamental theory for driven nano/micro-scale rotary motion in fluids at low

Reynolds number and explain how to infer important aspects of motor function –

i.e. force and torque distributions – directly from an analysis of the rotor trajectory.

2 The scope of the thesis

In chapter 2 we explain the physics of electrokinetic self-propulsion and formulate

a mathematical model for the problem. In chapter 3, we apply the method of

matched asymptotic expansions to solve the model for the velocity of a spherical

nanomotor in the limit of small Debye length and small intensity of hydrogen ion

flux. The resulting expression explains the relationship between the nanomotor

velocity and background concentration, interfacial potential, hydrogen ion flux,

diffusivity of hydrogen ion, etc. We further study the effect of geometry and

distribution of hydrogen ion flux on the performance of the nanomotor.

In chapter 4, we solve the electrokinetic model for a spheroidal particle. The

more general analysis presented in this chapter has the advantage that by changing

eccentricity from zero to one we can model a range of geometries from a sphere to

a rod. The result is similar to the case of a spherical particle up to a geometrical

coefficient which in the limit of zero eccentricity reduces to the geometrical factor

of a sphere.

In chapter 5, we examine the application of scaling analysis to derive an equa-
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tion for the nanomotor velocity. We observe that this result is misleading in rep-

resenting the relationship between the nanomotor velocity and some parameters

of the system. Based on the results of previous chapters, we discuss the motion

of the particle in more detail, stating the the range of validity of the perturbation

analysis, and bring up issues that need to be considered in designing nanomotors.

Motion at the micro- and nanoscale is characterized by two main features: (1)

irreversibility of deterministic dynamics at low Reynolds number and (2) stochas-

tic Brownian dynamics. In chapter 6, we study the deterministic and stochastic

dynamics of nanorotors. We show that the deterministic motion of a nanorotor

is along a circular path. The contribution of the stochastic component to the dy-

namics of the nanorotor results in deviation of the trajectory from a circular to a

quasi-circular path.

In chapter 7, we study the coupling between deterministic and stochastic dy-

namics of nanorotors within the context of powered random walkers. We show the

long time behavior of nanorotors resulting from a combination of their determinis-

tic and stochastic dynamics manifests itself in the form of an effective translational

diffusion. We exmine the importance of this effective diffusion compared to the

natural translational diffusion of unpowered nanorotors to identify the contribution

of powered motion to the translational dynamics of the nanorotors.

In chapter 8, we suggest future research ideas that have not been studied in

this thesis.
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1 Introduction

Any molecule in the bulk of a simple liquid experiences the same interaction forces

that other molecules in that liquid experience. This results in a homogeneous

isotropic structure in the liquid. However, the liquid molecules near the wall of the

liquid’s container experience a different form of force field than the molecules in

the bulk, because the type of interaction between the liquid molecules is different

from liquid and solid molecules. Therefore, the structure of the liquid and the

orientation of molecules near the wall are different from those in the bulk. Liquid

electrolytes form more complicated molecular structures when the liquid is brought

in contact with a particle surface or wall.

An electrolyte consists of positive and negative ions i with charge zi and a

background concentration C
˜∞

. The ions organize so that the chemical potential

µ
˜
i = k

B
T ln

C
˜ i
C
˜∞

+ zieφ
˜

(2.1)

of each species i is constant everywhere in the fluid (k
B

is the Boltzmann constant,

e is the charge of a proton, and T is the absolute temperature). This leads to

a uniform concentration C
˜ i

of ionic species and constant electric potential φ
˜

in
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Figure 2.1. (a) The distribution of positive and negative ions of a binary symmetric
electrolyte in contact with an infinite flat plate at thermal equilibrium. The ions in the
stern layer 0 < x < s are immobile. The ions are mobile in the diffuse layer s < x < λD
(b) Most of the electric potential is screened out over the diffuse layer. (c) The charge
density in the double layer in non-zero. (with modification from [35])

the bulk of the liquid. When the ionic solution is brought into contact with a

charged surface, the ions reorganize to reach equilibrium such that ∇
˜
µ
˜
i = 0. For

a infinite flat plate in contact with a binary symmetric electrolyte z = z+ = −z−,

this condition leads to

C
˜±

= C
˜∞

exp

(
∓ zF
RT

φ
˜

)
(2.2)

where F is the Faraday constant and R is the universal gas constant. The ions

form a double layer near the wall, which screens out the electric potential over a

length scale λ
D

, called the Debye length. There is a layer of counter-ions that stick

to the wall and neutralize the charge on the plate. This immobilized layer is called

Stern layer. The ions outside this layer are mobilized in a layer whose thickness is

of the order of the Debye length, called the diffuse layer.

The Poisson-Boltzmann equation relates the charge density to the electric po-

tential,

∇
˜

2φ
˜

= 2
z RC

˜∞
ε

sinh

(
∓ zF
RT

φ
˜

)
. (2.3)

Integrating this equation with boundary conditions φ
˜

(x
˜

= 0) = φ
˜

0 and

φ
˜

(x
˜
→ ∞) = 0 gives the Gouy-Chapmann equation

φ
˜

(x
˜

) =
4RT

zF
tanh−1

[
tanh

(
zFφ
˜

0

4RT

)
exp

(
− x

λ̃
D

)]
(2.4)



9

Electrokinetic Self-Propulsion

H2O22H++O2+2e-

4H++O2+4e-
2H2O

O2 ,H+  

e-

2H++H2O2+2e-2H2O
Overall Reaction

2H2O2 ! O2 + 2H2O

Figure 2.2. Due to asymmetric electrocatalytic decomposition of hydrogen peroxide,
hydrogen ions are produced on the anode surface (source) and consumed on the cathode
surface (sink). The phenomena can be modeled as source and sink of hydrogen using a
position dependent flux of hydrogen ions.

where

λ
D

=

√
εRT

2C
˜∞

z2F 2
(2.5)

is the Debye length based on the physical parameters of the system.

A bimetallic nanomotor and a solution of hydrogen peroxide constitute an

electrochemical cell. In the next section, we discuss the physics of electrokinetic

self-propulsion and the importance of the double layer and Debye length in the

formulated mathematical model.

2 Electrokinetic self-propulsion

Electrocatalytic bimetallic nanomotors are made out of two different metals that

can decompose hydrogen peroxide through an electrochemical mechanism. The

connected metals in hydrogen peroxide solution act like an electric pile where

H2O2 is used as a fuel. There are three main electrokinetic reactions (see Fig (2.2));

oxidation of hydrogen peroxide

H2O2 −→ 2H+ + O2 + 2e− (2.6)
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happens at anode, and reduction of hydrogen peroxide

2H+ + H2O2 + 2e− −→ 2H2O, (2.7)

and reduction of oxygen

4H+ + O2 + 4e− −→ 2H2O (2.8)

occur at the cathode. The overall reaction

2H2O2 −→ 2H2O + O2. (2.9)

can take part non-electrocatalytically (catalytically) on the surface of both metals

with different rates. The overall reaction doesn’t contribute the the concentration

of hydrogen ions in the solution and we are mainly concerned with the electrocat-

alytic reactions.

The asymmetric electrocatalytic decomposition of hydrogen peroxide results

in the production (source) of hydrogen ions at the anode and the consumption

(sink) on the cathode. This source-sink process can be represented by a position

dependent flux of hydrogen ions on the surface of the nanomotor. At steady state,

there will be an excess of hydrogen ions compared to the background concentration.

The same amount, but with negative charge, of electrons will be accumulated in

the nanorod following the principle of charge neutrality.

After placing the nanomotor in water, it absorbs some ions from the aqueous

media and acquires a negative interfacial potential. Addition of hydrogen peroxide

to the system results in a further negative charge on the particle at steady state.

The asymmetric flux of hydrogen ions results in an asymmetric distribution of ions

around the particle, and consequently, an electric field pointing from the anode to

the cathode. The negatively charged particle moves towards the anode side under

the electric field.

This propulsion mechanism works through the non-equilibrium state of the ionic

cloud around the nanomotor. At each instance, the negatively charged particle and

the positive cloud of ions move toward each other in order to reach mechanical

equilibrium in which the net force acting on charged entities is zero. However, the
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asymmetric electrochemical reactions preserve the shape of the asymmetric cloud

of ions as nanomotors moves toward the anode side and consequently keeps the

system out of mechanical equilibrium.

Hydrogen ions can electrodiffuse toward the sink from the source or background.

They can also move as a part of bulk flow due to an electrostatic body force acting

on a charged fluid and pulls it toward the sink. Momentum is conserved in these

processes.

3 Formulation of the Model

Our model consists of a conductive axisymmetric particle in a symmetric binary

electrolyte of positive (+) and negative ions (-) with charges z+ and z− (z = z+ =

−z−) and diffusion coefficients D+ and D−, respectively. The particle, consisting

of two different catalytic metals, decomposes hydrogen peroxide electrochemically

through surface reactions. Part of the nanomotor acts as the source and the

other acts as the sink of hydrogen ions. The normal component of the flux of

hydrogen ions on the surface is represented by n̂·J
˜+ = jp

˜
f(x
˜

) where jp
˜

is a measure

of hydrogen peroxide that decomposes electrochemically and f(x
˜

) represents the

distribution of flux over the surface. The particle is impermeable to negative ions:

n̂ · J
˜−

= 0. An asymmetric distribution of positive ions is produced around the

particle. At the steady state, the production and consumption of positive ions will

be equal. This imposes the constraint

∫

S
˜
ds
˜
f(x
˜

) = 0 (2.10)

on the surface distribution of hydrogen ion flux.

The metallic particle in aqueous solution attracts ions and acquires a negative

surface potential. Adding hydrogen peroxide to the system initiates the electro-

chemical reactions, which in part, adds to the negative surface potential on the

particle’s surface. The electric potential Φ
˜

is φ
˜

on the surface of the particle and

vanishes at infinity. The Poisson equation relates the distribution of ions in solution
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to the local electric potential Φ
˜

,

∇2Φ
˜

= −F (z+C˜+ + z−C˜−
)/ε (2.11)

where F is the Faraday constant, C
˜+ is the molar concentration of hydrogen ions,

C
˜−

is the molar concentration of negative ions and ε is the permittivity of the

solution. For the symmetric binary electrolyte in our model, z = z+ = −z− is the

absolute value of charge on each ion. The asymmetric distribution of ions is the

result of asymmetric production and consumption of hydrogen ions on the surface

while negative ions do not participate in any reaction. The ionic flux is related to

ion concentration and electric potential via

J±
˜

= −D±(∇
˜
C
˜±

+
Fz±
RT

C
˜±
∇
˜

Φ
˜

) (2.12)

in which D+ is the diffusion coefficient of hydrogen ions, D− is the diffusion co-

efficient of negative ions, R is the universal gas constant and T is the absolute

temperature. The conservation of species leads to the steady state Nernst-Planck

equation

∇
˜
· J
˜±

+ U
˜
· ∇
˜
C
˜±

= 0 (2.13)

where U
˜

is the velocity field of the fluid.

The local electric field acts on ions and consequently applies forces to the fluid

element containing the ions. This leads to the flow of fluid around the nanomotor.

As we are in the regime of low Reynolds number, this flow is represented by the

Stokes equation,

−∇
˜
P
˜

+ µ∇
˜

2U
˜

+ ε∇
˜

2Φ
˜
∇
˜

Φ
˜

= 0 (2.14)

where P
˜

is the pressure and µ is the viscosity of the fluid. Finally, assuming an

incompressible fluid, the continuity equation gives

∇
˜
·U
˜

= 0 (2.15)

Let’s define Ds = min(D+, D−), and δ± = Ds/D±. To proceed further, we work

in units of length

x
˜
∗ = a, (2.16)
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concentration

C
˜
∗ = C

˜
∞, (2.17)

flux

J
˜
∗ = DsC˜

∞/a, (2.18)

electric potential

Φ
˜
∗ = RT/zF, (2.19)

pressure

P
˜
∗ = Φ

˜
∗2/a2, (2.20)

and velocity

U
˜
∗ = εΦ

˜
∗2/µa. (2.21)

We also define the Peclet number

Pe = U
˜
∗a/Ds (2.22)

as the ratio of characteristic time of diffusion over the characteristic time of convec-

tion. In the regime of low Peclet number, where the diffusion transport dominates

the convective transport, the convective term in the Nernst-Planck equation be-

comes negligible. We also define the Debye length

λ
D

=

√
Φ∗ε

2zFC
˜
∞ (2.23)

as the length scale over which the electric potential is significantly screened out.

Using the dimensionless Debye length λ = λ
D
/a and the dimensionless strength

of hydrogen ions flux jp = jp
˜
/J∗ the above mentioned equations take the dimen-

sionless forms

2λ2∇2Φ = −(C+ − C−) (2.24)

J± = −δ−1
± (∇C± ± C±∇Φ) (2.25)

∇ · J± + Pe U · ∇C± = 0 (2.26)

−∇P +∇2U +∇2Φ∇Φ = 0 (2.27)
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∇ ·U = 0 (2.28)

with boundary conditions on the surface of the particle

n̂ · J+ = jpf(x) (2.29)

n̂ · J− = 0 (2.30)

Φ = φ (2.31)

U = 0 (2.32)

and boundary conditions at infinity (r =∞)

C± = 1 (2.33)

Φ = 0 (2.34)

U = −U (2.35)

In the next section, we solve these nonlinear equations through perturbation

analysis [36] to the leading order in dimensionless Debye length and first order in

the dimensionless strength of hydrogen ions flux.

4 Perturbation Analysis

Perturbation analysis provides a controlled approximation to solve nonlinear equa-

tions in the regime of small parameters [36]. Regular perturbation analysis is ap-

plied in systems where the leading order behavior of the equation does not change

the nature of the equation. In situations where the small parameter is multiplied

by the highest order of derivative in the equation, the equation to the leading order

in the small parameter loses its highest order. In such systems in the domain of

study may be a small region(s) wherein the highest derivative is large such that it

compensates for the small parameter. The domain of study is then divided into

an inner region (boundary layer), where we have fast change in the field, and an

outer region where the small parameter dominates the higher derivative.

In the set of governing equations, the dimensionless Debye length is multiplied

by the laplacian of electric potential, which is the highest order of the derivative in
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that equation. The dimensionless flux of hydrogen ions appears in the boundary

condition and the equations, to the leading order in jp, doesn’t lose its nature.

In what follows, we first use singular perturbation for small dimensionless Debye

length λ � 1 to calculate for slip velocity around the particle. We further apply

regular perturbation to the first order in small dimensionless flux of hydrogen ions

jp � 1 to linearize the equations further and solve for the velocity of the particle.

In equation (2.24) λ2 is multiplied by ∇2Φ. While λ2∇2Φ can be zero to the

leading order in λ in the majority of the domain of study, near the surface of the

particle, this term can be of order one due to rapid change in Φ. We divide the

domain into an inner domain near the surface where the radial change in electric

potential is fast enough for λ2∇2Φ to be of order one, and an outer domain where

this term vanishes to the leading order in λ2. All the fields match at some transition

region between the inner and outer region. We identify the fields in the inner and

the outer regions by superscripts i and o, respectively.



Chapter 3
Spherical Nanomotor

1 Introduction

The sphere is the simplest geometry in colloid science. It is both isotropic and

symmetric. Classically, problems involving the motion of particles in a fluid are

first solved for a spherical particle. In this chapter, we solve the equations gov-

erning electorkinetic self-propulsion for a spherical nanomotor in spherical coordi-

nates, where each point is characterized by (r, θ, ϕ). For an axisymmetric spherical

nanomotor, the physics is independent of the azimuth angle ϕ.

2 The Governing Equation

In chapter 2 we discussed the physics of electorkinetic self-propulsion and formu-

lated a mathematical model with some governing equations and their boundary

conditions that explain the interactions between a nanomotor and its surrounding

fluid and ions. In this chapter, we would like to solve the model for the velocity

of the nanomotor in the domain of thin Debye layer and to the first order in the

intensity of hydrogen ion flux. The radius of the sphere is used as the characteristic

length scale in this problem. In order to use the method of matched asymptotic

expansion, we work with dimensionless equations in the frame of reference of the

particle. The flow field is explained by the Stoke’s equation,

−∇P +∇2U +∇2Φ∇Φ = 0. (2.27)
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and the continuity equation

∇ ·U = 0 (2.28)

where on the surface of the particle we have no slip boundary condition

U(r = 1) = 0 (2.32)

and far field unperturbed velocity field is

U (r →∞) = −U (2.35)

in which U is the nanomotor velocity in the laboratory frame of reference. The

body force∇2Φ∇Φ in the Stokes equation depends on the electric potential Φ. The

Poisson equation relates the the electric potential to the concentration of positive

C+ and negative C− ions in the electrolyte,

2λ2∇2Φ = −(C+ − C−). (2.24)

where λ is the dimensionless Debye length. The electric potential on the equipo-

tential surface of the conductive nanomotor is

Φ(r = 1) = φ, (2.31)

and at far distances,

Φ(r →∞) = 0. (2.34)

The motion of the ions in the electrolyte is governed by the equations of continuity

of species

∇ · J± + Pe U · ∇C± = 0 (2.26)

in which

J± = −δ−1
± (∇C± ± C±∇Φ) (2.25)

are the molar fluxes of the positive and the negative ions and the Peclet number

Pe is the ratio of characteristic time of diffusion over the characteristic time of
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convection. The nanomotor surface is impermeable to negative ions

n̂ · J−
∣∣∣
r=1

= 0 (2.30)

and the flux of positive ions is asymmetrically distributed over the surface in the

form of

n̂ · J+

∣∣∣
r=1

= jpf(x) (2.29)

where f(x) is a general function whose definition depends on the physics of the

problem and the prefactor jp is the dimensionless strength of positive ion flux on

the surface of the sphere. For the axisymmetric spherical nanomotor, we represent

the position dependence of distribution function f(x) by f(cos θ). We will work

in the domain of jp � 1 and since this second small parameter appears in the

boundary condition, we will apply regular perturbation analysis for jp. At far

distances, the electro-neutrality condition for the electrolyte holds and we have

C±(r →∞) = 1. (2.33)

3 Perturbation Analysis

We would like to solve the governing equation in the limit of small dimensionless

Debye length λ and small dimensionless strength of hydrogen ions flux jp.

3.1 Singular Perturbation

In the Poisson equation (2.24), the small parameter λ is multiplied by the highest

derivative ∇2Φ in the equation. Therefore, near the surface of the particle there

is a region were the change in the electric potential is high enough to compensate

for the smallness of λ and their product is of order one. We call this region the

boundary layer or inner region (see Fig. 3.1). The remainder is called the outer

region where to the leading order in λ the term λ2∇2Φ vanishes. There is a region

at the end of inner region and the beginning of the outer region where the solution

of these two region matches.
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2λ2∇2Φ = −(C+ − C−)λ

ρ =
r − 1

λ

ρ = 0 ρ = ∞

∂

∂r
= λ−1 ∂

∂ρ

Inner Region

Outer Region

Matching

Figure 3.1. The fluid around the particle is divided to an inner region, where the high
variation in the electric potential compensates for the smallness of λ2, and an outer
region. By changing the variable from r to ρ, we expand the inner region. Matching of
the inner and the outer solutions happens at the boundary of inner and outer regions.

3.1.1 Inner Region Near The Particle Surface

To capture the rapid radial variation of electric potential in the thin boundary

layer of thickness O(λ) at the surface of the particle, we stretch the domain using

the transformation

ρ =
r − 1

λ
, (3.1)

r = 1 + λρ, (3.2)

∂r = λ−1∂ρ. (3.3)

For the fields in this inner region, we can write asymptotic expansions of the form

Gi =
∞∑

n=n0

λnGi(n) (3.4)

where n0 = −2 for P i, n0 = −1 for J±ρ, n0 = 0 for C±, Φ, J±θ, φ, U and Uθ, and

n0 = 1 for Uρ.

Our main goal in this section is to calculate the slip velocity U
(0)
slip to the leading

order in λ. To do this, we need to calculate the angular component of velocity

U
i(0)
θ to the leading order in λ in the inner region, and evaluate it at the end of

the inner layer, that is, U
(0)
slip = limρ→∞ U

i(0)
θ . To calculate U

i(0)
θ we use the angular
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component of the Stokes’ flow to the order O(λ−2),

−∂θP i(−2) + ∂2
ρU

i(0)
θ + ∂θΦ

i(0)∂2
ρΦ

i(0) = 0. (3.5)

To solve this equation, we need to have a relation for the pressure P i(−2) and the

electric potential Φi(0). We use the radial component of the Stokes’ equation to

the order O(λ−3),

−∂ρP i(−2) +
1

2
∂ρ
(
∂ρΦ

i(0)∂ρΦ
i(0)
)

= 0 (3.6)

which relates the pressure to the electric potential. To find Φi(0), we use the Poisson

equation to the order O(λ0),

∂2
ρΦ

i(0) = −
(
C
i(0)
+ − Ci(0)

−

)
/2. (3.7)

For solving this equation, we need the concentration of the position and the neg-

ative ions. The order O(λ−2) of the continuity of the species equation gives us

∂ρJ
i(−1)
±ρ = 0 (3.8)

in which the ion fluxes are

J
i(−1)
±ρ = −δ−1

±

[
∂ρC

i(0)
± ± Ci(0)

± ∂ρΦ
i(0)
]
. (3.9)

Also, we would like to know how the leading order fluxes J
i(0)
±ρ of the positive and

the negative ions behave in the inner region and match to the outer region at the

matching region. We use the continuity of species to the order O(λ−1),

∂ρJ
i(0)
±ρ + 2J

i(−1)
±ρ = 0. (3.10)

For the boundary condition at the surface of the sphere (ρ = 0), we have

U
i(0)
θ = 0, (3.11)

Φi(0) = φ(0), (3.12)

J
i(−1)
+ρ = J

i(−1)
−ρ = J

i(0)
−ρ = 0, (3.13)
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and

J
i(0)
+ρ = jp f(cos θ). (3.14)

3.1.2 Outer region

In the outer region, we can write asymptotic expansions of the form

Go =
∞∑

n=0

λ2nGo(2n). (3.15)

for the independent variables and boundary conditions since λ2 is the small pa-

rameter appearing in the governing equations. We would like to calculate the

nanomotor velocity U (0) to the leading order in λ. To do this, we need to solve the

Stokes’ equation to the order O(λ0) in the frame of reference of particle,

−∇P o(0) +∇2U o(0) +∇Φo(0)∇2Φo(0) = 0 (3.16)

with the far field, r →∞, boundary condition

U o(0) = −U (0)ẑ (3.17)

The Poisson equation to the leading order in λ2 leads to electroneutrality condition

in the outer region

C
o(0)
+ − Co(0)

− = 0 (3.18)

subjected to far field boundary condition

C
o(0)
± = 1. (3.19)

Finally, the motion of ions is governed by the continuity of species

∇ · Jo(0)
± + Pe U o(0) · ∇Co(0)

± = 0 (3.20)

where

J
o(0)
±r = −δ−1

±

[
∂rC

o(0)
± ± Co(0)

± ∂rΦ
o(0)
]

(3.21)
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is the flux of ions to the leading order in λ2. The far field (r → ∞) boundary

conditions are

∇Φo(0) = 0 (3.22)

J
o(0)
± = 0 (3.23)

3.2 Slip Velocity

In the previous two sections, we presented the appropriate governing equation and

their boundary conditions for calculating the nanomotor velocity to the leading

order in λ. By solving the equations in the inner and the outer region, and matching

the the solutions, we can calculate the nanomotor velocity. In this section, however,

we lump all the flow properties of the inner layer into the slip velocity, and in the

next section, we will use it as a boundary condition on the surface of the particle

for flow field in the outer region.

Equation (3.18) states the electro-neutrality condition to the leading order in

λ in the outer region.

C
o(0)
+ = C

o(0)
− ≡ Co(0) (3.24)

Since we have an electro-neutrality condition at the beginning of the outer region,

the same condition holds at the end of the inner region, due to the matching

criteria. We represent the concentration of ions at the end of the inner region and

beginning of the outer region by

Co(0)(1, θ) ≡ lim
r→1

Co(0)(r, θ) = lim
ρ→∞

C
i(0)
± (ρ, θ), (3.25)

that is, to the leading order in λ, as we approach the end of the inner region, the

concentration of the positive ions and negative ions become equal to Co(0)(1, θ).

We also represent

Φo(0)(1, θ) ≡ lim
r→1

Φo(0)(r, θ) = lim
ρ→∞

Φi(0)(ρ, θ) (3.26)

as the matching value of the inner Φi(0) and outer Φo(0) electric potentials to the

leading order in λ. The equations for the continuity of species in the inner region

(3.8) to the order O(λ2) can be integrated, along with the zero boundary condition
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for ion flux of order O(λ−1) at the surface of the particle, j
i(−1)
ρ± (0) = 0, to yield

∂ρC
i(0)
± ± Ci(0)

± ∂ρΦ
i(0) = 0. (3.27)

Integrating this equation, considering the matching conditions (3.25) for C
(0)
± and

(3.26) for Φ(0), we obtain

C
i(0)
± (ρ, θ) = Co(0)(1, θ) exp

[
∓
(
Φi(0)(ρ, θ)− Φo(0)(1, θ)

)]
(3.28)

The Poisson equation (3.7) then takes the form

∂2
ρΦ

i(0) = −
(
C
i(0)
+ − Ci(0)

−

)
/2

≡ Co(0)(1, θ) sinh
[
Φi(0)(ρ, θ)− Φo(0)(1, θ)

]
. (3.29)

Defining

ψ(ρ, θ) = Φi(0)(ρ, θ)− Φo(0)(1, θ), (3.30)

the nonlinear Poisson-Boltzmann equation (3.29) takes the form

∂2
ρψ = Co(0)(1, θ) sinhψ. (3.31)

Keeping in mind that in the inner region ψ is negative and ∂ρψ is positive, using

the identity ∂ρ (∂ρψ)2 = 2 ∂ρψ ∂2
ρψ, we integrate the above equation to obtain

∂ρψ = −2
√
Co(0)(1, θ) sinh(ψ/2). (3.32)

where we have used the matching condition for the radial component of the electric

field Er of order O(λ−1),

lim
r→1

Eo(−1)
r = 0 = lim

ρ→∞
Ei(−1)
ρ = lim

ρ→∞
∂ρΦ

i(0) ≡ lim
ρ→∞

∂ρψ. (3.33)

Further integration gives us

tanh
ψ

4
= tanh

ψ0

4
e−ρ
√
Co(0)(1,θ) (3.34)
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where

ψ0(θ) = Φi(0)(0, θ)− Φo(0)(1, θ) ≡ φ(0) − Φo(0)(1, θ). (3.35)

is the potential drop across the inner layer. Recasting (3.34) yields the familiar

Gouy-Chapman equation

Φi(0)(ρ, θ) = Φo(0)(1, θ) + 4 tanh−1

[
tanh

(
ψ0(θ)

4

)
e−ρ
√
Co(0)(1,θ)

]
. (3.36)

The non-zero pressure in the outer region starts from the leading order in λ. There-

fore, using the matching condition for the order O(λ−2) of pressure,

lim
r→1

P o(−2)(r, θ) = 0 = lim
ρ→∞

P i(−2)(ρ, θ) (3.37)

and the matching condition (3.33) forO(λ−1) of the radial component of the electric

field ∂ρΦ
i(0), we integrate the order O(λ−2) of the angular component of the Stokes’

equation (3.6) to obtain

P i(−2) =
1

2

(
∂ρΦ

i(0)
)2 ≡ 1

2
(∂ρψ)2 (3.38)

To calculate U
i(0)
θ and consequently the slip velocity, we substitute this equation

into the radial component of Stokes equation of order O(λ−2), equation (3.5).

Using the nonlinear Poisson-Boltzmann equations (3.31), equation (3.32) for the

derivative of electric potential, the relation (3.38) for the pressure P i(−2), and the

definition of ψ (3.30), we obtain

∂2
ρU

i(0)
θ = 2 sinh2(ψ/2) ∂θC

o(0)(1, θ) − ∂θΦo(0)(1, θ) ∂2
ρψ (3.39)

Further integration, and using
∫∞
ρ
∂2
ρU

i(0)
θ dρ = −∂ρU i(0)

θ , we obtain

∂ρU
i(0)
θ = −2 [cosh(ψ/2)− 1]

∂θC
o(0)(1, θ)√

Co(0)(1, θ)
− ∂θΦo(0)(1, θ) ∂ρψ (3.40)

where we have used the matching condition for the order O(λ−1) of the radial
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derivative of angular component of velocity,

lim
r→1

∂rU
o(−1)
θ = 0 = lim

ρ→∞
∂ρU

i(0)
θ . (3.41)

Integrating equation (3.40) using the relation (3.34) and the no-slip boundary

condition on the surface of the particle in the inner region, yields the angular

component of the velocity to the leading order in λ in the inner region,

U
i(0)
θ = (ψ0 − ψ) ∂θΦ

o(0)(1, θ) + 4ρ
∂θC

o(0)(1, θ)√
Co(0)(1, θ)

(3.42)

+2∂θ ln
[
Co(0)(1, θ)

]
ln





1− tanh2(ψ0/4)

exp
[
2ρ
√
Co(0)(1, θ)

]
− tanh2(ψ0/4)





We can then calculate the slip velocity

U
(0)
slip = lim

ρ→∞
U
i(0)
θ

= ψ0 ∂θΦ
o(0)(1, θ) + 2 ln

{
1− tanh2(ψ0/4)

}
∂θ ln

[
Co(0)(1, θ)

]

= ψ0 ∂θΦ
o(0)(1, θ)− 4 ln cosh(ψ0/4) ∂θ ln

[
Co(0)(1, θ)

]
. (3.43)

This relation is equivalent to the Dukhin-Deryaguin slip formula, used as a slip

boundary condition for the outer region.

Before proceeding to the physics in the outer region and calculating the velocity

of the particle, we need to match the leading order radial fluxes J
i(0)
±ρ and J

o(0)
±r .

From the order O(λ−1) of the continuity of the species equation (3.10) and the fact

that J
i(−1)
±ρ = 0, we have

∂ρJ
i(0)
±ρ = 0 (3.44)

So, J
i(0)
±ρ is independent of the radial coordinate ρ in the inner region. The boundary

condition on the surface of the particle leads to

J
i(0)
+ρ (ρ, θ) = jp f(cos θ) (3.45)

and

J
i(0)
−ρ (ρ, θ) = 0 (3.46)
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throughout the inner region. The matching condition

lim
ρ→∞

J
i(0)
±ρ (ρ, θ) = lim

r→1
J
o(0)
±r (r, θ)

then results in the following boundary conditions for the outer region:

J
o(0)
+r (r → 1, θ) = jp f(cos θ), (3.47)

and

J
o(0)
−r (r → 1, θ) = 0. (3.48)

3.3 Regular Perturbation

We would like to solve the leading order equation of Stokes’ flow for the nanomotor

velocity. For this purpose we need to solve the leading order of the Stoke’s equation

in the outer region,

∇P o(0) +∇2U o(0) +∇Φo(0)∇2Φo(0) = 0 (3.16)

We can rewrite the leading order equations of the continuity of the species (3.20)

in the form of two equations for positive and negative ions

−∇ ·
(
∇Co(0)

± ± Co(0)
± ∇Φo(0)

)
+ δ±Pe U

o(0) · ∇Co(0)
± = 0. (3.49)

Adding and subtracting these convection-diffusion equations for positive and neg-

ative ions, and using the fact that Co(0) ≡ C
o(0)
+ = C

o(0)
− , we obtain

∇2Co(0) =

(
δ+ + δ−

2

)
Pe U o(0) · ∇Co(0) (3.50)

and

∇ ·
(
Co(0)∇Φo(0)

)
=

(
δ+ − δ−

2

)
Pe U o(0) · ∇Co(0) (3.51)

with corresponding boundary conditions

∂rC
o(0) = Co(0)∂rΦ

o(0) = δ+ jp

[−1

2
f(cos θ)

]
r → 1 (3.52)
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∂rC
o(0) = Co(0)∂rΦ

o(0) = 0 r →∞ (3.53)

U o(0) = −U (0)ẑ r →∞ (3.54)

To proceed with the solution of the nonlinear set of equations we use a regular

perturbation expansion in powers of the small parameter jp to obtain the leading

and first order equations. The expansions of the fields in poweres of jp are

Co(0) = 1 + jp C
o(0,1) +O(jp

2) (3.55)

Φo(0) = Φo(0,0) + jp Φo(0,1) +O(jp
2) (3.56)

Uo(0) = jp Uo(0,1) +O(jp
2) (3.57)

φ(0) = φ(0,0) + jpφ
(0,1) +O(jp

2) (3.58)

U (0) = jp U (0,1) +O(jp
2) (3.59)

The leading order of the equation (3.51) with the boundary condition (3.52) on

the surface of the particle and (3.53) as r →∞ leads to

∇2Φo(0,0) = 0 (3.60)

∂rΦ
o(0,0) = 0 r = 1 (3.61)

Φo(0,0) = 0 r →∞ (3.62)

which has the trivial solution

Φo(0,0) = 0. (3.63)

The order O(jp) of the equations (3.50) and (3.51) with boundary conditions (3.52)

on the surface of the particle and (3.53) as r →∞ to first order in jp simplify to

∇2Co(0,1) = 0 (3.64)

∂rC
o(0,1) = −1

2
δ+f(cos θ) r = 1 (3.65)

Co(0,1) = 0 r →∞ (3.66)

and

∇2Φo(0,1) = 0 (3.67)
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∂rΦ
o(0,1) = −1

2
δ+f(cos θ) r = 1 (3.68)

Φo(0,1) = 0 r →∞ (3.69)

which imply

Co(0,1) = Φo(0,1). (3.70)

Using this equality and expanding the slip velocity (3.43) in powers of jp yields

the tangential velocity at the surface of the particle

U
(0)
slip = jp U

(0,1)
slip +O(jp

2) (3.71)

where

U
(0,1)
slip =

[
φ0 − 4 ln cosh

(
φ0

4

)]
∂θΦ

o(0,1)(1, θ) (3.72)

in which we have used the notation

φ0 ≡ φ(0,0) (3.73)

for the electric potential at the surface of particle to the leading order in λ and

jp. Similarly, the outer region boundary condition for the radial component of the

velocity at the particle surface is given by

U (0,1)
r = 0. (3.74)

These conditions supplement the Stokes’ equation to describe the flow field around

the particle to leading order in jp.

3.4 Particle Velocity

Changing the coordinate system from the particle frame of reference to the labo-

ratory frame of reference, the resulting equations and boundary conditions for the

flow field can be written to first order in jp as

−∇P o(0,1) +∇2Uo(0,1) = 0, (3.75)

r = 1 : U(0,1) = U
(0,1)
slip êθ + U (0,1) êz, (3.76)
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r →∞ : Uo(0,1) = 0. (3.77)

Even though the Stokes’ equation (3.75) appears to contain no explicit dependence

on concentration and electric potential, the effects of these components manifest

themselves through the slip boundary condition. Since velocity vanishes at infin-

ity, we can use the Lorentz reciprocal theorem to solve for the unknown U (0,1).

The Lorentz reciprocal theorem relates the solution of two different Stokes flow

problems through

∫

S

n̂ · To(0,1) ·U′ ds =

∫

S

n̂ · T′ ·Uo(0,1) ds (3.78)

where

To(0,1) = −po((0,1)I +∇Uo(0,1) +
(
∇Uo(0,1)

)T
(3.79)

is the stress tensor for the flow in our problem, whereas U′ and T′ are respectively

the velocity field and its corresponding stress tensor for another Stokes flow in this

geometry. In order to proceed, consider U′ to correspond to uniform flow over a

sphere where the velocity at infinity is along the axis of symmetry and equal to êz.

The corresponding stress tensor in index notation (equation (A.31) from appendix

A) is

T ′ij =
−3

4

[
−
(
δi3∂j

1

r
+ δj3∂i

1

r

)
+

(
xi∂j∂3

1

r
+ xj∂i∂3

1

r

)
+

2

3
∂i∂j∂3

1

r

]
(3.80)

and the traction on the particle surface is given by

n̂ · T′ = −3

2
êz (3.81)

Inserting the corresponding entities in equation (3.78), we get the form

−3

2

∫

S

êz ·Uo(0,1) ds =

∫

S

n̂ · To(0,1) · êz ds (3.82)

Since the particle is moving with constant velocity, the net force on the particle,

represented by the right hand side of the above equation, must be zero. Thus,

using êθ · êz = − sin θ and a boundary condition for the velocity at the particle
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surface (3.76), the reciprocal relation (3.82) reduces to

0 =

∫

S

êz ·Uo(0,1) ds = −
∫

S

U
(0,1)
slip sin θ ds+

∫

S

U (0,1) ds

= −2π

∫ π

0

U
(0,1)
slip sin2 θ dθ + 4π U (0,1). (3.83)

The electroviscous velocity is then found by substituting equation (3.72) into (3.83)

to yield

U (0,1) =
1

2

∫ π

0

U
(0,1)
slip sin2 θ dθ

=
1

2

[
φ0 − 4 ln cosh

(
φ0

4

)]∫ π

0

[
∂θΦ

o(0,1)(1, θ)
]

sin2 θ dθ (3.84)

Since the electric potention Φo(0,1) satisfies the Laplace equation (3.67), we can

expand it in terms of Legendre polynomials,

Φo(0,1)(r, θ) =
∞∑

n=0

αn
Pn(cos θ)

rn+1
. (3.85)

Thus, the electric potential at the surface of the particle in the outer region is

Φo(0,1)(1, θ) =
∞∑

n=0

αnPn(cos θ), (3.86)

and for its corresponding angular derivative we have

∂θΦ
o(0,1)(1, θ) =

∞∑

n=0

αn(− sin θ)
dPn(cos θ)

d(cos θ)
. (3.87)

We can can evaluate the integral in (3.84) using the orthogonality of Legendre

polynomials, yielding,

∫ π

0

[
∂θΦ

o(0,1)(1, θ)
]

sin2 θ dθ = −4

3
α1 (3.88)
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which leads to the velocity

U (0,1) =
−2

3
α1

[
φ0 − 4 ln cosh

(
φ0

4

)]
(3.89)

where α1 is given by

α1 =
3

8
δ+

∫ π

0

P1(cos θ)f(cos θ) sin θ dθ =
3

8
δ+f1 (3.90)

Recasting equations (3.89) and (3.90), the explicit expression for the nanomotor

velocity U = jp U (0,1) + O(λ>0, j>1
p ) to leading order in the dimensionless Debye

length λ and first order in dimensionless flux of hydrogen ions jp becomes

U ' −1

4
δ+jp f1

[
φ0 − 4 ln cosh

(
φ0

4

)]
(3.91)

where

f1 =

∫ π

0

P1(cos θ)f(cos θ) sin θ dθ =

∫ 1

−1

P1(η)f(η) dη (3.92)

is the first coefficient of the Legendre expansion for the distribution function. In

equation (3.91) the term ln cosh (φ0/4) is very small compared to φ0 in the range

of |φ0| < 2. Thus, we can ignore this term to obtain

U ' −1

4
δ+jp f1φ0 (3.93)

In order to show the relationship between particle velocity and the parameters of

the system, the velocity equation can be written in dimensional form as

U
˜
' −f1

4

(
ε

µD+C˜
∞

)
jp
˜

[(
RT

zF

)
φ
˜

0 − 4 ln cosh

(
RT

zF

φ
˜

0

4

)]

' −f1

4

(
εRT

zFµD+C˜
∞

)
jp
˜
φ
˜

0 (3.94)
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!0 

Figure 3.2. The relative areas of the source and sink can be described by θ0.

This equation can also be recast in terms of the Debye length λ
D

as

U
˜
' −f1

2

(
λ2
D
zF

µD+

)
jp
˜
φ
˜

0 (3.95)

3.5 The Effect of Source-Sink Geometry

From equation (3.95) for the order O(λ0, j1
p) of nanomotor velocity it is evident

that for fixed jp
˜

the only parameter determining the effect of particle geometry is

f1. A variety of geometries can be considered by changing the relative sizes of the

source and sink regions on the surface of the particle. As shown in Fig. (3.2), if

the axisymmetric configuration of the particle is to be maintained, all geometries

can be simply characterized by the angle θ0.

In the foregoing analysis, it was assumed that the flux of ions at the source

and sink are uniform over each region. At steady state, there is no change in the

charge of the particle with time. Consequently, the fluxes of positive ions at the

source and the sink differ based on the areas of the those regions, and the following

constraint applies: ∫ π

0

f(cos θ) sin θ dθ = 0 (3.96)

At the same time, the surface integral of the absolute value of f(cos θ) is a

measure of the net amount of hydrogen peroxide that is consumed in electrocat-

alytic (not catalytic) reactions. To set a basis for comparison between different

source/sink configurations, we consider the case where the areas of the source and

the sink regions are equal (θ0 = π/2) to be the reference configuration for which
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f(cos θ) = sgn(cos θ). For this configuration,

∫ π

0

|f(θ)| sin θ dθ =

∫ π/2

0

sin θ dθ −
∫ π

π/2

sin θ dθ = 2. (3.97)

This can be considered as a constraint for other configurations to keep the elec-

trochemically consumed amount of hydrogen peroxide fixed as a common basis for

comparison. We can then examine how changing the distribution of f(cos θ) under

the above two constraints affects the velocity of the particle.

As an example, consider the flux distribution f(cos θ) to be of the form

f(cos θ) =

{
f+ if θ < θ0

−f− if θ > θ0

(3.98)

The aforementioned constraints then lead to the requirements

0 =

∫ π

0

f(cos θ) sin θ dθ = f+

∫ θ0

0

sin θ dθ − f−
∫ π

θ0

sin θ dθ

= f+(1− cos θ0)− f−(1 + cos θ0) (3.99)

and

2 =

∫ π

0

|f(cos θ)| sin θ dθ = f+

∫ θ0

0

sin θ dθ + f−

∫ π

θ0

sin θ dθ

= f+(1− cos θ0) + f−(1 + cos θ0) (3.100)

Therefore, the uniform flux distributions must have the following dependence on

the value of θ0:

f(cos θ) =

{
(1− cos θ0)−1 if θ < θ0

−(1 + cos θ0)−1 if θ > θ0

(3.101)

The first Legendre coefficient f1 is then given by

f1 =

∫ π

0

P1(cos θ)f(cos θ) sin θ dθ = 1,

which shows that f1 is independent of θ0 for the model source-sink in this section.
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This means that for small values of hydrogen ion flux in the limit of thin double

layer, and a given amount of electrocatalytically consumed hydrogen peroxide, the

nanomotor velocity is independent of source/sink geometry.



Chapter 4
Spheroidal Nanomotor

A prolate spheroid is a body of revolution obtained by rotating an ellipse about

its semi-major axis. After a problem is solved for a spherical geometry in colloid

science, usually, a spheroid is the next geometry to be studied. This is because

the eccentricity e of a spheroid can be changed to represent a range of geometries

from a sphere (e = 0) to an approximate for slender bodies and rods (0� e < 1).

In this chapter we solve the electrokinetic equation for nanomotor velocity to

leading order in λ and first order in jp, using the method of matched asymptotic

expansion and van Dyke matching. We see the same scaling relationship between

the parameters of the system that we observed in the case of a sphere. Also, the

final result reduces to the case of a sphere in the limit of e→ 0.

1 Prolate Spheroidal Coordinates

An ellipse is the locus of points where the sum of their distances from two fixed

points (the foci) in space are constant. The interfocal distance is 2c. The line seg-

ment along the fixed points is the semi-major axis of length 2a; the perpendicular

line segment bisecting the foci is the semi- minor axis with length 2b. A hyper-

bola, consisting of two disjoint curves, is the locus of points where the difference

between their distances from the foci is constant. The hyperbola is orthogonal to

the ellipse and these two together form a curvilinear orthogonal coordinate system

in two dimensional plane.

A prolate spheroidal coordinate consists of the rotation of the aforementioned
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Figure 4.1. The ellipse and hyperbola in the xy-plane; in (a) rA+ rB is constant, while
in (b) |rA − rB| is constant. (with modification from [37])

coordinate system around the semi-major axis of the ellipse. The important note

here to mention is that since the rotation about the symmetry axis is a 2π revo-

lution, the rotated object is a half-ellipse rather than a fully closed ellipse. Every

point in space corresponds to a tuple (ξ, η, φ) where ξ is the radial coordinate, η

is the angular coordinate and φ represents the azimuthal angle. As depicted in

Fig. (4.1), the radial ξ and angular η coordinates can be defined using the focal

radii ro and ro′ in the form

ξ =
ro + ro′

2c
(4.1)

and

η =
|ro − ro′ |

2c
. (4.2)

The azimuthal coordinate φ = tan−1
(
z
y

)
is measured from the xy-plane in a anti-

clockwise fashion. The coordinates of a point in prolate spheroidal system (ξ, η φ)

can be transformed to the Cartesian system (x, y, z) using

x = cηξ (4.3)

y = c
√

(ξ2 − 1)(1− η2) cosφ (4.4)

z = c
√

(ξ2 − 1)(1− η2) sinφ (4.5)

where

−1 ≤ η ≤ 1, (4.6)

1 ≤ ξ <∞, (4.7)
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ξ = 1.0

ξ = 1.1

ξ = 1.4

ξ = 1.7

η = cos(0◦)

η = cos(15◦)

η = cos(30◦)

η = cos(45◦)

η = cos(60◦)

η = cos(75◦)η = cos(90◦)η = cos(105◦)

η = cos(120◦)

η = cos(135◦)

η = cos(150◦)

η = cos(165◦)

η = cos(180◦)
c−c

Figure 4.2. Constant coordinate curves for prolate spheroidal coordinate in a half-
plane of constant φ.

0 ≤ φ < 2π. (4.8)

Fig. (4.2) demonstrates the family of curves of constant radial coordinate ξ (blue

curves) and the family if curves of constant angular coordinate η (red curves) in a

half-plane of constant φ.

Using equations (4.3), (4.4), and (4.5), we can calculate the the scale factor for

prolate spheroidal coordinate by taking the derivatives of the Cartesian position

vector ~r = x êx + y êy + z êz.

hξ =

∣∣∣∣
∂~r

∂ξ

∣∣∣∣ = c

√
ξ2 − η2

ξ2 − 1
(4.9)

hη =

∣∣∣∣
∂~r

∂η

∣∣∣∣ = c

√
ξ2 − η2

1− η2
(4.10)

hφ =

∣∣∣∣
∂~r

∂φ

∣∣∣∣ = c
√

(ξ2 − 1)(1− η2) (4.11)

The unit vectors are defined as

êξ =
1

hξ

∂~r

∂ξ
(4.12)

êη =
1

hη

∂~r

∂η
(4.13)

êφ =
1

hξ

∂~r

∂φ
(4.14)
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and the transformation of the unit vectors from spheroidal coordinate to Cartesian

coordinate is

êx = η

√
ξ2 − 1

ξ2 − η2
êξ + ξ

√
1− η2

ξ2 − η2
êη, (4.15)

êy = ξ

√
1− η2

ξ2 − η2
cosφ êξ − η

√
ξ2 − 1

ξ2 − η2
cosφ êη − sinφ êφ, (4.16)

êz = ξ

√
1− η2

ξ2 − η2
sinφ êξ − η

√
ξ2 − 1

ξ2 − η2
sinφ êη + cosφ êφ. (4.17)

Consequently, the vectorial differential operators in the axisymmetric prolate

spheroidal system take the form

~∇f(ξ, η) =
êξ
hξ

∂

∂ξ
f +

êη
hη

∂

∂η
f

=
êξ
c

√
ξ2 − 1

ξ2 − η2

∂

∂ξ
f +

êη
c

√
1− η2

ξ2 − η2

∂

∂η
f (4.18)

∇2f(ξ, η) =
1

hξhηhφ

[
∂

∂ξ

(
hηhφ
hξ

∂f

∂ξ

)
+

∂

∂η

(
hφhξ
hη

∂f

∂η

)]

=
1

c2(ξ2 − η2)

{
∂

∂ξ

[
(ξ2 − 1)

∂f

∂ξ

]
+

∂

∂η

[
(1− η2)

∂f

∂η

]}
(4.19)

~∇ · ~F =
1

hξhηhφ

[
∂

∂ξ
(hηhφFξ) +

∂

∂η
(hφhξFη)

]

=
1

c(ξ2 − η2)

{
∂

∂ξ
(
√

(ξ2 − η2)(ξ2 − 1)Fξ) +
∂

∂η
(
√

(ξ2 − η2)(1− η2)Fη)

}

(4.20)

2 Spheroid

In the Cartesian coordinates we describe the prolate spheroid by

x2

a2
+
y2

b2
+
z2

b2
≡ x2

a2
+
r2

b2
= 1 (4.21)
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where r2 = y2 + z2 and b ≤ a. The interfocal length 2c and the eccentricity e are

related by

c =
√
a2 − b2 = ea (4.22)

The eccentricity is the ratio of the interfocal distance to the length of the semi-

major axis, e = c/a and varies as 0 ≤ e ≤ 1. In the case where e = 0, the foci

coincide and the spheroid is a sphere. The hyperbola then becomes two lines of

opposite slope crossing at the origin.

In the prolate spheroidal coordinate, a prolate spheroid is represented by a

surface of constant ξs > 1. For this geometry, the semi-major axis is a = cξs and

semi-minor axis is b = c
√
ξ2
s − 1 . The degenerate surface ξs = 1 corresponds to

interfocal line segment. Comparing c = ea and a = cξs, we obtain

ξs =
1

e
(4.23)

The normal n̂ on the surface of the spheroid in the index notation takes the form

ni =
b
a
x1δ1i + a

b
x2δ2i + a

b
x3δ3i√

a2 − e2x2
1

=
1√
R1R2

(
b

a
x1δ1i +

a

b
x2δ2i +

a

b
x3δ3i

)

=
1√
R1R2

(a
b

)
(xi − e2x1δ1i) (4.24)

where the indices 1, 2 and 3 refer to x-, y- and z-axes, respectively.

3 Velocity and Pressure Field for Flow Over a

Prolate Spheroid

For a free stream velocity at infinity of the form

U = U êx (4.25)

where êx is the unit vector in the x direction, the velocity field and pressure field

around the spheroid are given by [38]
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u = U

{
êx − 2αB1,0 êx − α

(
1

R2

− 1

R1

)
(y êy + z êz) + αr2B3,0 êx − 2β∇B1,1

}

(4.26)

and

p = 2µαU

(
1

R1

− 1

R2

)
, (4.27)

respectively, where

α =
2e2

1− e2
β =

e2

−2e+ (1 + e2)Le
, (4.28)

Le = ln

(
1 + e

1− e

)
, (4.29)

R1 =
√

(x+ c)2 + r2 , (4.30)

R2 =
√

(x− c)2 + r2 , (4.31)

B1,0 = ln

(
R2 − (x− c)
R1 − (x+ c)

)
, (4.32)

B1,1 = R2 −R1 + x B1,0 , (4.33)

and

B3,0 =
1

r2

(
x+ c

R1

− x− c
R2

)
. (4.34)

The distribution of traction for this flow filed on the surface of the sphere in the

index notation is given by is

njTji = 4eµαU
1√
R1R2

(a
b

)
δ1i =

(
4µαU

ea

)
1√

(ξ2
s − η2)(ξ2

s − 1)
δ1i (4.35)

where the x-direction is represented by δ1i. We will use this equation with Reynolds

reciprocal theorem to calculate the nanomotor velocity. For a detailed derivation

of the distribution of traction, please refer to appendix B.

4 The Model of Electrokinetic Self-Propulsion

In chapter 2, we developed a set of electrokinetic equations governing the interac-

tion between nanomotor and surrounding fluid and ions. The length scale in this
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problem is the half length of the semi-major axis, which is a. Working with the

dimensionless equations, we would like to solve the Stokes’ equation

−∇P +∇2U +∇2Φ∇Φ = 0 (2.27)

for the far field velocity of fluid

U(ξ →∞) = −U ẑ (4.36)

in the frame of reference attached to the particle. In the laboratory frame of

reference, U is the nanomotor velocity. We use the no-slip boundary condition on

the surface of the particle,

U(ξ = ξs) = 0. (4.37)

The motion of ions in the electrolyte is governed by the equations of continuity of

species

∇ · J± + Pe U · ∇C± = 0 (2.26)

where the ion fluxes are given by

J± = −δ−1
± (∇C± ± C±∇Φ). (2.25)

The particle is impermeable to negative ions

n̂ · J−
∣∣∣
ξ=ξs

= 0 (2.30)

and the distribution of positive ions on the surface of the spheroid is given by

n̂ · J+

∣∣∣
ξ=ξs

= jpf(η) (2.29)

where the prefactor jp is the strength of hydrogen ion flux and f(η) is a function

defined over the surface of the spheroid. Since the geometry is axisymmetric,

this distribution function only depends on η. The electric potential is related to

concentration of positive C+ and negative C− ions through the Poisson’s equation,

2λ2∇2Φ = −(C+ − C−). (2.24)
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2λ2∇2Φ = −(C+ − C−)λ
Outer Region

Matching

ρ =
ξ − ξs

λ
∂

∂ξ
= λ−1 ∂

∂ρ

ρ = 0 ρ = ∞

Inner Region

Figure 4.3. The fluid around the spheroid is divided into an inner region, where the
high variation in the electric potential compensates for the smallness of λ2, and an outer
region. By change of variable from ξ to ρ, we can expand the inner region. The surface of
the spheroid is represented by ξ = ξs. We calculate the unknown coefficients of the inner
and outer solutions by matching these solutions at the boundary of the two regions.

The electric potential on the surface of the conductive nanomotor is constant

Φ(ξ = ξs) = φ, (2.31)

and vanishes at infinity,

Φ(ξ →∞) = 0. (2.34)

Far away from the particle, the electro-neutrality condition holds in the electrolyte

and the concentration of ions are equal to background concentration,

C±(ξ →∞) = 1. (2.33)

5 Perturbation Analysis

In this chapter we solve the governing equation in the limit of small dimension-

less Debye length λ � 1 and small dimensionless strength of hydrogen ions flux

jp � 1. We use singular perturbation analysis for the former parameter and

regular perturbation analysis for the latter.
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5.1 Singular Perturbation Analysis

In the Poisson equation (2.24), the small parameter λ2 is multiplied by the highest

derivative ∇2Φ in the equation. There is a boundary layer near the surface of the

spheroid where the spatial variation of the electric potential is rapid; therefore,

∇2Φ can compensate for the smallness of λ2. That is, in this region λ2∇2Φ is of

order one (see Fig. 4.3). We use the method of matched asymptotic expansion in

which we divide the space into two region; the inner region where to the leading

order in λ the term λ2∇2Φ is of order one and the outer region where to the leading

order in the small parameter, λ2∇2Φ vanishes. We solve the fields in the inner and

outer regions and match the corresponding orders using van Dyke matching.

To capture the rapid radial variation of electric potential in the thin boundary

layer of thickness O(λ) at the surface of the particle, we stretch the domain to

a stretched radial coordinate ρ that varies between zero and infinity using the

transformation

ρ =
ξ − ξs
λ

, (4.38)

ξ = ξs + λρ, (4.39)

∂ξ = λ−1∂ρ. (4.40)

Then, we expand each fields G as a function of ρ in the inner region in powers of

λ as

Gi(ρ, θ) =
∞∑

k=n0

λkGi(k)(ρ, θ) (4.41)

where the value of the integer n0 depends on the field G and the number k in the

parenthesis indicates the order of the function Gi(k). We also expand the same

field as a function of r in the outer region in powers of λ

Go(r, θ) =
∞∑

k=0

λ2kGo(2k)(r, θ) (4.42)

where the outer fields of odd order are zero since the small parameter in the outer

region is λ2. However, for the purpose of applying the van Dyke matching, we

consider the outer expansion in powers of λ with terms of odd powers equal to

zero, i.e. Go(2k+1) = 0. Inserting these assumptions in the governing equations



44

results in different equations based on the order of of the small parameter. We

solve the equations for the outer and the inner regions and match the inner and

the outer fields of the same order using van Dyke matching. We represent the

matching condition for the field G by the notation

OmInG = InOmG (4.43)

where InOm is the n-term inner expansion of the m-term outer solution and OmIn
is the m-term outer solution of the n-term inner solution. To evaluate InOmG

we take the first n-terms (the terms of power λn0 to λn+n0−1) of the following

expansion in λ given ρ fixed,

m−1∑

k=0

λkGo(k)(1 + λρ, θ) (4.44)

and to evaluate OmInG we take the first m-terms (the terms of power λ0 to λm−1)

of the following expansion in λ given r-fixed,

n−n0−1∑

k=n0

λkGo(k)

(
r − 1

λ
, θ

)
. (4.45)

We apply singular perturbation analysis in this section to calculate for slip velocity

and lump the properties of the inner layer into a boundary condition for the fields

of the outer region.

As discussed before, for the fields in the inner region, we can write an asymp-

totic expansion, Gi =
∑∞

n=n0
λn Gi(n) where n0 = 0 for Ci

±, Φi(0), J i±θ, U
i
θ, φ and

U . Using equations (2.25), (2.27), and (2.28), we have n0 = −1 for J i±ρ, n0 = 1

for U i
ρ, n0 = −2 for P i. We would like to calculate the angular component of the

velocity U
i(0)
η to the leading order in λ from which we can calculate the slip velocity

U
(0)
slip = êη lim

ρ→∞
U i(0)
η . (4.46)

The leading order angular component of velocity in the inner region appear in the
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order O(λ−2) of the angular component of the the Stokes’ equation,

−
(
ξs

√
1− η2

ξ2
s − η2

∂η

)
P i(−2) +

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

U i(0)
η

+

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

Φi(0) = 0 (4.47)

The velocity field on the surface of the particle should satisfy the no slip boundary

condition,

U i(0)
η (ρ = 0) = 0. (4.48)

To relate the pressure P i(−2) to electric potential Φi(0), we use the order O(λ−3) of

the radial component of the the Stokes’ equation,

−
(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
P i(−2) +

1

2

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)[(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
Φi(0)

]2

= 0.

(4.49)

The Poisson’s equation to the leading order in λ relates the electric potential Φi(0)

to the concentration of positive C
i(0)
+ and negative C

i(0)
− ions,

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

Φi(0) = −
(
C
i(0)
+ − Ci(0)

−

)
/2. (4.50)

The potential on the surface of the conductive sphere is constant,

Φi(0)(ρ = 0) = φ(0). (4.51)

The continuity of species to the order O(λ−2) gives

∂ρJ
i(−1)
±ρ = 0 (4.52)

with boundary conditions

J
i(−1)
+ρ = J

i(−1)
−ρ = 0 (4.53)
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where

J
i(−1)
±ρ = −δ−1

±

[(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
C
i(0)
± ± Ci(0)

±

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
Φi(0)

]
. (4.54)

From the equation (4.52), we find that in the inner region, the fluxes J
i(−1)
±ρ have

no radial dependence, J
i(−1)
±ρ = K̂±(η). Since the order O(λ−1) of ion fluxes vanish

(4.53) on the surface of the particle, the angular coordinate dependent functions

are zero, K̂±(η) = 0, and we obtain

J
i(−1)
±ρ = 0. (4.55)

Consequently,

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
C
i(0)
± ± Ci(0)

±

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
Φi(0) = 0 (4.56)

which leads to

C
i(0)
± = K̂ ′±(η) exp

(
∓Φi(0)

)
= K̂ ′±(η)

(
cosh Φi(0) ∓ sinh Φi(0)

)
(4.57)

where K̂ ′±(η) are angular coordinate dependent functions. Inserting these concen-

trations fields in to the Poisson’s equation (4.50), we obtain

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

Φi(0) = −
(
C
i(0)
+ − Ci(0)

−

)
/2

= −1

2

(
K̂ ′+(η) e−Φi(0) − K̂ ′−(η) eΦi(0)

)

= −1

2

[(
K̂ ′+ − K̂ ′−

)
cosh Φi(0) −

(
K̂ ′+ + K̂ ′−

)
sinh Φi(0)

]
.

(4.58)

Defining Θ =
(
ξs

√
ξ2
s−1

ξ2
s−η2 ∂ρ

)
Φi(0), Â = K̂ ′+ − K̂ ′− and B̂ = K̂ ′+ + K̂ ′−, we have

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

Φi(0) = Θ ∂Φi(0)Θ =
1

2
∂Φi(0)Θ2
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= −1

2

[
Â(η) cosh Φi(0) − B̂(η) sinh Φi(0)

]
, (4.59)

from which we obtain

Θ2 = −Â(η) sinh Φi(0) + B̂(η) cosh Φi(0) + K̂ ′′. (4.60)

The electric potential in the inner layer increases with an increase in the radial

coordinate, and its radial derivative is positive, Θ =
(
ξs

√
ξ2
s−1

ξ2
s−η2 ∂ρ

)
Φi(0) > 0;

therefore,

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
Φi(0) =

[
−Â(η) sinh Φi(0) + B̂(η) cosh Φi(0) + K̂ ′′

] 1
2
. (4.61)

For further calculations, we need to determine the coefficients Â, B̂ and K̂ ′′, for

which we need to match with the outer solution.

For the fields in the outer region, we can write the asymptotic expansion based

on λ and there is no need for a change of variable,

Go =
∞∑

n=0

λ2nGo(2n). (4.62)

To the leading order in λ2, the Poisson’s equation leads to electro-neutrality con-

dition in the outer region

C
o(0)
+ = C

o(0)
− ≡ Co(0). (4.63)

We use van Dyke matching for the concentrations of positive and negative ions,

I1O1 C
o
+(ξ, η) = O1I1 C

i
+(ρ, η) (4.64a)

I1O1 C
o
−(ξ, η) = O1I1 C

i
−(ρ, η) (4.64b)

which along with the electroneutrality condition (4.63) results in

O1I1 C
i
+(ρ, η) = O1I1 C

i
−(ρ, η), (4.65)

where I1O1 is the one-term inner expansion of the one-term outer solution and

O1I1 is the one-term outer solution of the one-term inner solution, according to
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standard van Dyke matching. Therefore,

lim
λ→0

ξ−fixed

K̂ ′+(η)
(
cosh Φi(0) − sinh Φi(0)

)
= lim

λ→0
ξ−fixed

K̂ ′−(η)
(
cosh Φi(0) + sinh Φi(0)

)

(4.66)

or

lim
λ→0

ξ−fixed

Â(η) cosh Φi(0) = lim
λ→0

ξ−fixed

B̂(η) sinh Φi(0). (4.67)

This equation gives us the relationship between Â and B̂,

Â(η) = B̂(η) tanh
[
Φi(0)(∞, η)

]
. (4.68)

Inserting this relation into equation (4.61) and defining

ψ(ρ, η) = Φi(0)(ρ, η)− Φi(0)(∞, η) (4.69)

yields

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
Φi(0) =

[(
B̂(η)

cosh [Φi(0)(∞, η)]

)
cosh (ψ) + K̂ ′′

] 1
2

. (4.70)

We also have

K̂ ′+ =
1

2

(
Â+ B̂

)
=

(
B̂(η)

2 cosh [Φi(0)(∞, η)]

)
exp

[
Φi(0)(∞, η)

]
(4.71)

Therefore, we have

(
B̂(η)

cosh [Φi(0)(∞, η)]

)
= 2 K̂ ′+ exp

[
−Φi(0)(∞, η)

]
= 2C

i(0)
+ (∞, η) (4.72)

Using the fact that C
i(0)
+ (∞, η) = Co(0)(ξs, η), and inserting (4.72) into the radial

derivative of the electric potential (4.70) yields

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
Φi(0) =

[
2Co(0)(ξs, η) cosh (ψ) + K̂ ′′(η)

] 1
2
. (4.73)
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We further need to match the radial component of the electric field of the order

O(λ−1) in the inner layer, that is, E
i(−1)
ρ =

(
ξs

√
ξ2
s−1

ξ2
s−η2 ∂ρ

)
Φi(0) with E

0(−1)
ξ in the

outer region. However, we know that the asymptotic expansion in the outer region

start from the leading order in λ, and therefore, E
o(−1)
ξ = 0. Applying the van

Dyke matching, we obtain

O1I1 E
i
ρ = I1O1 E

o
ξ = 0 (4.74)

which yields

lim
λ→0

ξ−fixed

[
2Co(0)(ξs, η) cosh (ψ) + K̂ ′′(η)

] 1
2

=
[
2Co(0)(ξs, η) + K̂ ′′(η)

] 1
2

= 0. (4.75)

This relation gives

K̂ ′′(η) = −2Co(0)(ξs, η) (4.76)

and we obtain

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
Φi(0) =

[
2Co(0)(ξs, η) cosh (ψ)− 2Co(0)(ξs, η)

] 1
2

=

[
4Co(0)(ξs, η) sinh2

(
ψ

2

)] 1
2

. (4.77)

Since ∂ρΦ
i(0) = ∂ρψ, the above equation takes the form

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
ψ = −2

√
Co(0)(ξs, η) sinh

(
ψ

2

)
. (4.78)

The minus sign is due to negative value of sinh
(
ψ
2

)
in the inner region. Integration

of the above equation gives

tanh
ψ

4
= tanh

ψ0

4
exp


−ρ

√
Co(0)(ξs, η)(

ξs

√
ξ2
s−1

ξ2
s−η2

)


 (4.79)

where

ψ0(η) = Φi(0)(0, η)− Φi(0)(∞, η) (4.80)
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is the electric potential difference between the surface of the particle and the

boundary of the inner region. We can recast equation (4.79) into the familiar

Gouy-Chapman equation,

Φi(0)(ρ, η) = Φi(0)(∞, η) + 4 tanh−1





tanh

(
ψ0

4

)
exp


−ρ

√
Co(0)(ξs, η)(

ξs

√
ξ2
s−1

ξ2
s−η2

)







.

(4.81)

Also, the nonlinear Poisson’s equation (4.58) takes the form

∂2
ρψ =

(
1

ξs

√
ξ2
s − η2

ξ2
s − 1

)2

Co(0)(ξs, η) sinhψ (4.82)

So far we have calculated the leading order electric potential Φi(0) in the inner

layer. In order to solve the order O(λ−2) of the angular component of the Stokes’

equation (4.47) for the leading order tangential component of the velocity U
i(0)
η

we need to calculate the pressure P i(−2) of the order O(λ−2). Integrating O(λ−3)

radial component of the Stokes’ equation (4.49) gives

P i(−2) =
1

2

[
ξs

(√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
Φi(0)

]2

+ K̂ ′′′(η). (4.83)

To determine K̂ ′′′(η), we match the pressure of the order O(λ−2),

I1O1 P
o = O1I1 P

i. (4.84)

Since the asymptotic expansion of fields in the outer region starts from the leading

order in λ2, we have P o(−2) = 0. Consequently,

0 = lim
λ→0

ξ−fixed

1

2

[
ξs

(√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
Φi(0)

]2

+ K̂ ′′′(η) = K̂ ′′′(η), (4.85)

where we have used the vanishing of radial component of the electric field (4.74)
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of the order O(λ−1) at the end of the inner region. Therefore, we obtain

P i(−2) =
1

2

[
ξs

(√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
Φi(0)

]2

≡ 1

2

[
ξs

(√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
ψ

]2

. (4.86)

Using the nonlinear Poisson-Boltzmann equation (4.82), equation (4.78) for the

derivative of electric potential, relation (4.86) for pressure P i(−2), and the definition

(4.69) for ψ, we would like to solve the order O(λ−2) of the angular component of

the the Stokes’ equation (4.47) for the leading order tangential component of the

velocity U
i(0)
η ,

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

U i(0)
η =

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
P i(−2)

−
(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

Φi(0).

The term containing pressure is

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
P i(−2) =

1

2

(
ξs

√
1− η2

ξ2
s − η2

∂η

)[(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
ψ

]2

=
1

2

(
ξs

√
1− η2

ξ2
s − η2

∂η

)(
−2
√
Co(0)(ξs, η) sinh(ψ/2)

)2

=

(
−2
√
Co(0)(ξs, η) sinh(ψ/2)

)

×
[(

ξs

√
1− η2

ξ2
s − η2

∂η

)(
−2
√
Co(0)(ξs, η) sinh(ψ/2)

)]

=

(
−2
√
Co(0)(ξs, η) sinh(ψ/2)

)

×
[
−2 sinh(ψ/2)

(
ξs

√
1− η2

ξ2
s − η2

∂η

)√
Co(0)(ξs, η)

−
√
Co(0)(ξs, η) cosh(ψ/2)

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
ψ

]
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= 2 sinh2(ψ/2)

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Co(0)(ξs, η)

+Co(0)(ξs, η) sinhψ

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
ψ

(4.87)

The electric body force takes the form

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

Φi(0)

=

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
(
ψ + Φi(0)(∞, η)

)
(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

ψ

=

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
ψ

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

ψ

+

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

ψ

= Co(0)(ξs, η) sinhψ

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
ψ

+

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

ψ

(4.88)

Therefore, the angular component of the velocity to the leading order in λ becomes

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

U i(0)
η = 2 sinh2(ψ/2)

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Co(0)(ξs, η)

−
(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

ψ

(4.89)

Integrating the above equation gives us
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∫ ∞

ρ

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)2

U i(0)
η dρ =

(
ξs

√
ξ2
s − 1

ξ2
s − η2

)2 ∫ ∞

ρ

∂ρU
i(0)
η dρ

= 2

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Co(0)(ξs, η)

∫ ∞

ρ

sinh2(ψ/2) dρ

−
(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

)2 ∫ ∞

ρ

∂2
ρψ dρ

= 2

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Co(0)(ξs, η)

∫ 0

ψ

sinh2(ψ/2)

(
∂ρ

∂ψ

)
dψ

−
(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

)2 [
∂ρψ

]∞
ρ

= 2

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Co(0)(ξs, η)

×
∫ 0

ψ

sinh2(ψ/2)

−2
(

1
ξs

√
ξ2
s−η2

ξ2
s−1

)√
Co(0)(ξs, η) sinh(ψ/2)

dψ

+

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

)2

∂ρψ

= −

(
ξs

√
1−η2

ξ2
s−η2 ∂η

)
Co(0)(ξs, η)

√
Co(0)(ξs, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

)∫ 0

ψ

sinh(ψ/2)dψ

+

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

)2

∂ρψ

= 2

(
ξs

√
1−η2

ξ2
s−η2 ∂η

)
Co(0)(ξs, η)

√
Co(0)(ξs, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

)
[cosh(ψ/2)− 1]

+

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

)2

∂ρψ (4.90)
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Using the relation
∫∞
ρ
∂2
ρU

i(0)
η dρ = −∂ρU i(0)

η we obtain

−
(
ξs

√
ξ2
s − 1

ξ2
s − η2

)2

∂ρU
i(0)
η

= 2

(
ξs

√
1−η2

ξ2
s−η2 ∂η

)
Co(0)(ξs, η)

√
Co(0)(ξs, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

)
[cosh(ψ/2)− 1]

+

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

)2

∂ρψ (4.91)

Factoring out
(
ξs

√
ξ2
s−1

ξ2
s−η2

)
from the both sides of the equation yields

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
U i(0)
η = −2 [cosh(ψ/2)− 1]

(
ξs

√
1−η2

ξ2
s−η2 ∂η

)
Co(0)(ξs, η)

√
Co(0)(ξs, η)

−
(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ρ

)
ψ

(4.92)

Further integration of this equation using the relation (4.79) and the no-slip bound-

ary condition gives us the inner tangential velocity to the leading order in λ,

U i(0)
η = (ψ0 − ψ)

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φi(0)(∞, η)

+4
ρ

ξs

√
ξ2
s−1

ξ2
s−η2

(
ξs

√
1−η2

ξ2
s−η2 ∂η

)
Co(0)(ξs, η)

√
Co(0)(ξs, η)

+2

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
lnCo(0)(ξs, η) ln





1− tanh2(ψ0/4)

exp


2ρ
√
Co(0)(ξs,η)

ξs

√
ξ2s−1

ξ2s−η2


− tanh2(ψ0/4)





(4.93)
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Considering Φi(0)(∞, η) = Φo(0)(ξs, η), the slip velocity takes the form

U
(0)
slip = lim

ρ→∞
U i(0)
η

= ψ0

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φo(0)(ξs, η)

+2 ln
{

1− tanh2(ψ0/4)
}
(
ξs

√
1− η2

ξ2
s − η2

∂η

)
lnCo(0)(ξs, η) (4.94)

= ψ0

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φo(0)(ξs, η)

−4 ln cosh(ψ0/4)

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
lnCo(0)(ξs, η) (4.95)

This relation is the equivalent form of the Dukhin-Deryaguin slip formula that is

used as a slip boundary condition for the outer region.

So far we have calculated the slip velocity as a boundary condition for Stokes

flow in the outer region. We need to have the leading order fluxes of ions as

boundary condition for the continuity of species in the outer region too. For this

purpose, we use the order O(λ−1) of the equation of continuity of species (2.26) in

the inner region,

∂ρJ
i(0)
±ρ +

ξ2
s (2ξ

2
s − 1− η2)

(ξ2
s − η2)

√
(ξ2
s − η2)(ξ2

s − 1)
J
i(−1)
±ρ = 0. (4.96)

From equation (4.55) we know that J
i(−1)
±ρ = 0, and therefore we have

∂ρJ
i(0)
±ρ = 0 (4.97)

which means

J
i(0)
±ρ (ρ, η) = K̂ ′′′′± (η) (4.98)

This equation is valid in the inner region and should satisfy the boundary condition

on the surface of the particle with boundary conditions

J
i(0)
+ρ

∣∣∣
ρ=0

= jpf(η), (4.99)
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J
i(0)
−ρ

∣∣∣
ρ=0

= 0. (4.100)

We obtain K̂ ′′′′+ (η) = jpf(η) and K̂ ′′′′− (η) = 0. So, for the leading order of ion fluxes

in the inner region we have

J
i(0)
+ρ (ρ, η) = jpf(η), (4.101)

J
i(0)
−ρ (ρ, η) = 0. (4.102)

These boundary conditions, along with the matching conditions J
i(0)
±ρ (ρ→∞, η) =

J
o(0)
±ξ (ξ → ξs, η), give the boundary condition of the leading order ion fluxes for the

outer region,

J
o(0)
+ξ (ξs, η) = jpf(η), (4.103)

J
o(0)
−ξ (ξs, η) = 0. (4.104)

5.2 Regular Perturbation Analysis

Having lumped the properties of the inner layer into boundary conditions for the

outer region, we would like to solve the leading order far field velocity of fluid in

the frame of reference of the particle,

U o(0) = −U (0) êx, (4.105)

where U (0) is the nanomotor velocity in the laboratory frame of reference to the

leading order in λ. To do this, we use the leading order of Stoke’s equation,

−∇P o(0) +∇2U o(0) +∇Φo(0)∇2Φo(0) = 0 (4.106)

with the slip velocity (4.95) boundary condition

U o(0)(ξs, η) = U
(0)
slip êη. (4.107)

Using the electro-neutrality condition Co(0) = C
o(0)
+ = C

o(0)
− , the equations of

continuity of species to the leading order in λ takes the form
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∇ · Jo(0)
± + Pe U o(0) · ∇Co(0) = 0 (4.108)

where

J
o(0)
±ξ = −δ−1

±

[(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Co(0) ± Co(0)

(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φo(0)

]
(4.109)

and boundary conditions

J
o(0)
+ξ (ξs, η) = jpf(η), (4.103)

J
o(0)
−ξ (ξs, η) = 0, (4.104)

in the beginning of the inner region and the far field (ξ →∞) boundary conditions

∇Φo = 0, (4.110)

Co
± = 1, (4.111)

Jo
± = 0. (4.112)

We can rewrite the equation (4.108) in the form

−∇ ·
(
∇Co(0) ± Co(0)∇Φo(0)

)
+ δ±Pe U

o(0) · ∇Co(0) = 0. (4.113)

Adding and subtracting the above equations for positive and negative ions, we

obtain

∇2Co(0) =

(
δ+ + δ−

2

)
Pe U o(0) · ∇Co(0) (4.114)

∇ ·
(
Co(0)∇Φo(0)

)
=

(
δ+ − δ−

2

)
Pe U o(0) · ∇Co(0) (4.115)

with corresponding boundary conditions in the beginning of the outer region (ξ →
ξs)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ξ

)
Co(0) = Co(0)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ξ

)
Φo(0) = δ+jp

[−1

2
f(η)

]
,

(4.116)
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and the far field (ξ →∞) boundary condition

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ξ

)
Co(0) = Co(0)

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ξ

)
Φo(0) = 0. (4.117)

These equations are still nonlinear and thus making them difficult to solve. We

linearize the equations by solving them in the limit of small jp. Expansions of the

fields in powers of jp are of the forms

Co(0) = 1 + jp C
o(0,1) +O(jp

2), (4.118)

Φo(0) = Φo(0,0) + jp Φo(0,1) +O(jp
2), (4.119)

φ(0) = φ0 +O(jp), (4.120)

Uo(0) = jp Uo(0,1) +O(jp
2), (4.121)

U (0) = jp U (0,1) +O(jp
2), (4.122)

P o(0) = jp P
o(0,1) +O(jp

2). (4.123)

in which we have used the notation

φ0 ≡ φ(0,0) (4.124)

for the electric potential at the surface of particle to the leading order in λ and jp.

To leading order in jp equation (4.115) with boundary conditions (4.116) on the

surface of the particle and (4.117) as ξ goes to infinity result in

∇2Φo(0,0) = 0 (4.125)(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ξ

)
Φo(0,0) = 0 ξ = ξs (4.126)

Φo(0,0) = 0 ξ →∞ (4.127)

Therefore, Φo(0,0) = 0, and consequently, on the surface,

Φo(0,0)(ξs, η) = 0 (4.128)

To first order in jp equations (4.114) and (4.115) with boundary conditions (4.116)
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on the surface of the particle and (4.117) as ξ →∞ result in

∇2Co(0,1) = 0 (4.129)(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ξ

)
Co(0,1) = −1

2
δ+ f(η) ξ = ξs (4.130)

Co(0,1) = 0 ξ →∞ (4.131)

and

∇2Φo(0,1) = 0 (4.132)(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ξ

)
Φo(0,1) = −1

2
δ+ f(η) ξ = ξs (4.133)

Φo(0,1) = 0 ξ →∞ (4.134)

which yields

Co(0,1) = Φo(0,1). (4.135)

The Stokes’ equation to the leading order in jp takes the form

−∇P o(0,1) +∇2Uo(0,1) = 0 (4.136)

This equation apparently doesn’t contain any dependence on concentration and

electric potential as the differential equation has no electric body force term. How-

ever, the effect of electric potential appears in the slip velocity boundary condition.

To leading order in jp on the surface of the particle (beginning of the outer region)

we have

U
(0,1)
ξ = 0 (4.137)

For the tangential velocity, we use the Taylor expansion ln coshx = x2

2
− x4

12
+ · · ·

and equation (4.135), to expand the slip velocity (4.95) in powers of jp,

U
(0)
slip = jp U

(0,1)
slip +O(jp

2), (4.138)
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where

U
(0,1)
slip =

[
φ0 − 4 ln cosh

(
φ0

4

)](
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φo(0,1)(ξs, η). (4.139)

Changing the coordinates from particle frame of reference to laboratory frame of

reference, we can solve the velocity using

−∇P o(0,1) +∇2Uo(0,1) = 0 (4.140)

ξ = ξs : U(0,1) = U
(0,1)
slip êη + U (0,1) êx (4.141)

ξ →∞ : Uo(0,1) = 0 (4.142)

The particle is moving with constant velocity; therefore, according to Newton’s

first law, the particle is force-free, Fo(0,1) = 0. Since velocity vanishes at infinity,

we can exploit the Lorentz reciprocal theorem to solve for the unknown U (0,1).

The Lorentz reciprocal theorem relates the solution of two different Stokes flows

through ∫

S

ds n̂ · To(0,1) ·U′ =
∫

S

ds n̂ · T′ ·Uo(0,1) (4.143)

where

To(0,1) = −po((0,1)I +∇Uo(0,1) +
(
∇Uo(0,1)

)T
(4.144)

is the stress tensor for the flow in our problem, whereas U′ and T′ are respectively

the known velocity field and the stress tensor of another Stokes flow for this ge-

ometry. In order to proceed, let’s assume that U′ corresponds to a flow caused by

a spheroid with velocity êx. The corresponding traction on the surface, according

to appendix B, is

n̂ · T′ = −4α

e
√

(ξ2
s − η2)(ξ2

s − 1)
êx (4.145)

Inserting the corresponding entities in equation (4.143) yields

∫

S

ds n̂ · T′ ·Uo(0,1) =

∫

S

ds n̂ · To(0,1) · êx (4.146)

The force-free condition leads to
∫
S
ds n̂ · To(0,1) · êx = F

o(0,1)
x = 0, and using the

integral relation,
∫
S
ds n̂ · T′ · Uo(0,1) = −4α

∫
S
ds 1

e
√

(ξ2
s−η2)(ξ2

s−1)
êx · Uo(0,1), we
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obtain ∫

S

ds
1

e
√

(ξ2
s − η2)(ξ2

s − 1)
êx ·Uo(0,1) = 0 (4.147)

The surface element on the surface of the spheroid (ξ = ξs) is

ds = hη dη hφ dφ = e

√
ξ2
s − η2

1− η2
e
√

(ξ2
s − 1)(1− η2) dη dφ (4.148)

and we have

ds

e
√

(ξ2
s − η2)(ξ2

s − 1)
=

dη dφ

e
√

(ξ2
s − η2)(ξ2

s − 1)
e

√
ξ2
s − η2

1− η2
e
√

(ξ2
s − 1)(1− η2)

= e dη dφ. (4.149)

Using

êx · êη = ξs

√
1− η2

ξ2
s − η2

, (4.150)

the integral equation (4.147) takes the form

0 =

∫

S

ds
1

e
√

(ξ2
s − η2)(ξ2

s − 1)
êx ·Uo(0,1)

=

∫

S

e dη dφ

{(
ξs

√
1− η2

ξ2
s − η2

)[
φ0 − 4 ln cosh

(
φ0

4

)]

×
(
ξs

√
1− η2

ξ2
s − η2

∂η

)
Φo(0,1)(ξs, η) + U (0,1)

}
(4.151)

Therefore,

U (0,1) = −1

2

[
φ0 − 4 ln cosh

(
φ0

4

)]
ξs

∫

S

dη

(
ξs

√
1− η2

ξ2
s − η2

)2

∂ηΦ
o(0,1)(ξs, η)

(4.152)

To take the integral, we need to solve for Φm(0,1) that satisfies the Laplace equation.

The general form solution for this geometry is

Φm(0,1) =
∞∑

n=0

AnQn(ξ)Pn(η) (4.153)
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where Pn and Qn are the Legendre functions of first and second kind, respectively.

The function Qn(ξ) can be written either in the form [39]

Qn(ξ) = Pn(ξ)Q0(ξ)−
n−1∑

k=0

(2k + 1)[1− (−1)n+k]

(n+ k + 1)(n− k)
Pk(ξ) (4.154)

where

Q0(ξ) =
1

2
ln
ξ + 1

ξ − 1
(4.155)

or in the form [40]

Qn(ξ) =

√
π Γ(n+ 1)

Γ(n+ 3
2
) (2ξ)n+1

F

(
1

2
n+ 1,

1

2
n+

1

2
;n+

3

2
; ξ−2

)
n ≥ 0

(4.156)

where the gamma function is

Γ(n) =

∫ ∞

0

tn−1 e−t dt (4.157)

and the hypergeometric function is

F (a, b; c; z) =
∞∑

k=0

(a)k (b)k
(c)k k!

zk |z| < 1. (4.158)

with

(a)0 = 1, (a)k = Γ(a+ k)/Γ(a) k ≥ 0. (4.159)

We calculate the coefficients An using

(
ξs

√
ξ2
s − 1

ξ2
s − η2

∂ξ

)
Φo(0,1) = −1

2
δ+f(η) ξ = ξs (4.160)

that is,

∂ξΦ
o(0,1)

∣∣∣
ξ=ξs

= − δ+

2ξs

√
ξ2
s − η2

ξ2
s − 1

f(η) (4.161)

Therefore,
∞∑

n=0

An ∂ξQn(ξ)
∣∣∣
ξ=ξs

Pn(η) = − δ+

2ξs

√
ξ2
s − η2

ξ2
s − 1

f(η) (4.162)
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Using the orthogonality relation

∫ 1

−1

dηPn(η)Pm(η) =
2

2n+ 1
δmn (4.163)

we obtain

An = −
(

2n+ 1

4

)

 1

∂ξQn(ξ)
∣∣∣
ξ=ξs


 δ+

∫ 1

−1

dη
1

ξs

√
ξ2
s − η2

ξ2
s − 1

Pn(η)f(η) (4.164)

and therefore,

U (0,1) = −1

2

[
φ0 − 4 ln cosh

(
φ0

4

)]
ξs

∞∑

n=0

AnQn(ξs)

∫ 1

−1

dη

(√
1− η2

ξ2
s − η2

)2

∂ηPn(η)

(4.165)

We can write the final results as

U ' −1

4
δ+ F jp

[
φ0 − 4 ln cosh

(
φ0

4

)]
(4.166)

where the geometric factor is

F = −ξs
∞∑

n=0

Qn(ξs)


 2n+ 1

2∂ξQn(ξ)
∣∣∣
ξ=ξs



[∫ 1

−1

dη

√
ξ2
s − η2

ξ2
s − 1

Pn(η)f(η)

]

×



∫ 1

−1

dη

(√
1− η2

ξ2
s − η2

)2

∂ηPn(η)


 . (4.167)

In the limit e→ 0, F reduces to

F =

∫ 1

−1

dη P1(η)f(η) ≡ f1 (4.168)

which is the same as in case of the sphere, that is, equation (3.92).



Chapter 5
Design Principles

1 Introduction

In the preceding chapters, we studied the physics of electrokinetic self-propulsion,

and formulated a mathematical model to describe it (chapter 2). Using the method

of matched asymptotic expansions, we solved the model problem for spherical

(chapter 3) and spheroidal particles (chapter 4) through rigorous mathematical

calculations. While we solved the nonlinear equations to the leading order in di-

mensionless Debye length and first order in dimensionless strength of hydrogen ion

flux, we can, in principle, solve the equations to higher orders of the small parame-

ter(s) and obtain for precise solutions. The possibility to solve the equations with

controllable approximation to our desired precision is an important advantage of

perturbation analysis. In addition, it yields an analytical result that demonstrates

the interplay between the parameters of the physical system under study.

Another approach for establishing a relationship between the parameters of

the physical system is to perform a scaling analysis. Such an analysis is based on

certain assumptions, and there is no control over the precision of the approxima-

tion. Moreover, the results are in the form of a proportionality relationship rather

than an equality. This type of analysis has been frequently used in the nanomotor

studies for its simplicity. In this chapter, we will apply scaling analysis to find

a relationship between the velocity of the nanomotor and the parameters of the

system. We will discuss the validity of the results and show how scaling analysis

can be misleading in understanding the dependence of velocity on Debyle length
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and its related quantities.

We will study the limits of accuracy of the perturbation analysis, and also

use numerical calculations to find the maximum possible velocity that can be

achieved by nanomotors. Using the aforementioned studies, we will discuss the

design principles that lead us to develop nanomoters with desired properties.

2 Scaling Analysis

Using scaling analysis, Moran et al. [26] have proposed the electroviscous velocity

U
˜ev
∝ h
˜
λ
D
F

µD+

φ
˜

0 j
p

˜
(5.1)

for a nanorod of length h
˜

and interfacial potential φ
˜

0. The difference between this

formula and our equation (3.95) for the nanomotor velocity is the appearance of the

nanomotor length h instead of Debyle length λD in the numerator of equation (5.1).

Moran et al. have not provided a fully detailed explanation of these assumptions

in order to derive their result. In this section, we will derive the same relationship

for cylindrical and spherical nanomotors, including a detailed explanation of the

assumptions involved to determine the possible source for the difference.

Assumption (1): The current of ions is limited to a region of thickness λ
D

around the particle’s surface. The current of ions pass through a region in space

with average cross sectional area A
˜current

. These ions are produced from a surface

area A
˜flux

. The current of ions in the Debye layer is equal to production current

I
˜
∝ zFA

˜flux
jp

˜
. (5.2)

Assumption (2): The electric field in the Debye layer that pulls the ion from

source to sink is constant. The current of ions is related to electric field E0 in the

Debye layer through

I
˜
∝ σ
˜
A
˜ current

E
˜ 0 (5.3)

where σ
˜

is the conductivity of the electrolyte.
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Assumption (3): The charge density in the Debye layer is equal to the back-

ground charge density. This assumption implies

σ
˜

=
z2F 2C

˜
∞D+

RT
=
εD+

λ2
D

. (5.4)

Therefore,

E
˜ 0 ∝

A
˜flux
A
˜ current

zFjp

˜
σ
˜

=
A
˜flux
A
˜ current

zFjp

˜
λ2
D

εD+

(5.5)

Assumption (4): The double layer is very thin compared to particle size,

λ
D
� R

˜
(R
˜

is the radius of either the rod or the sphere). In the case of a sphere,

A
˜flux

= 1
2

(
4πR
˜

2
)

and A
˜ current

= 2πR
˜

2λ
D
/πR
˜

, leading to the uniform electric field

E
˜
sph
0 ∝ R

λ̃
D

zFjp

˜
λ2
D

εD+

=
zFjp

˜
R
˜
λ
D

εD+

. (5.6)

For a cylinder of length L
˜

and radius R
˜

, we have
A
˜fluxA
˜current

=
πR
˜

2+ 1
2(2πR
˜
L
˜)2πR

˜
λ
D

=
R
˜

+L
˜2λ
D

.

When the aspect ratio of the cylinder L
˜
/2R
˜

is either very large or of order one,
A
˜fluxA
˜current

∝ L

λ̃
D

. In that case, the electric field for the cylinder is

E
˜
cyl
0 ∝

L

λ̃
D

zFjp

˜
λ2
D

εD+

=
zFjp

˜
L
˜
λ
D

εD+

. (5.7)

Defining h
˜

to be the particle’s length, where h
˜

= 2R
˜

for a sphere and h
˜

= L
˜

for a

cyinder, equations (5.6) and (5.7) can be written in the unified form

E
˜ 0 ∝

zFjp

˜
h
˜
λ
D

εD+

. (5.8)

From the Poisson-Boltzmann equation, ε∇
˜

2φ
˜

= −ρ
˜
e, we can define a characteristic

charge density ρ
˜
e0 within the Debye layer as

ρ
˜
e0 ∝

εφ
˜

0

λ2
D

. (5.9)
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The electroviscous velocity can then be obtained from the Stokes equation as

U
˜ev
∝
ρ
˜
e0E˜ 0

µ/d
˜

2
∝
(
d

λ̃
D

)2 εφ
˜

0E˜ 0

µ
, (5.10)

where d is the viscous length scale.

Assumption (5): The viscous length d is equal to Debye length λ
D

since the

body force ρ
˜
eE˜

deriving the flow is primarily in the Debye layer. Based on this

assumption, the electric field in equation (5.8) can be substituted into expression

(5.10) for the particle velocity to yield

U
˜ev
∝ zh

˜
λ
D
F

µD+

φ
˜

0 j
p

˜
(5.11)

For z = 1, this expression reduces to equation (5.1) proposed in [26]. Equation

(5.11) has two evident flaws. First, by increasing the length of the nanomotor, the

velocity of the nanomotor increases without bound. This contradicts experimental

observations. Also, since the Debye length is inversely proportional to ion charge

z, the velocity will be independent of ion charge while in practice z is a param-

eter of the problem that can affect the dynamics of the nanomotor. The major

reason behind the failure of the scaling analysis is that assuming a uniform elec-

tric field inside the double layer (assumption 2) is in violation of the requirement

that the nanomotor surface be an equipotential surface. Therefore, the simplifying

assumptions underlying the scaling analysis can be misleading in determining the

relationship between nanomotor velocity and the parameters of the system, un-

derscoring the need for a more detailed and rigorous analysis such as perturbation

analysis.

3 The limits

We used the method of matched asymptotic expansions to solve the model for

nanomotor velocity in the limit of very thin double layer (λ
D
/a� 1) using singular

perturbation analysis and weak hydrogen ion flux (jp � 1). To the leading order

in dimensionless Debye length λ and first order in strength of hydrogen ion flux
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jp, the nanomotor velocity is found to be

U
˜

(0,1) ' −F
4

(
ε

µD+C˜
∞

)
jp
˜

[(
RT

zF

)
φ
˜

0 − 4 ln cosh

(
RT

zF

φ
˜

0

4

)]
(5.12)

where the geometric factor F depends on particle geometry and the surface

distribution of hydrogen ion flux. In the regime that these motors work,

10 mV < φ
˜

0 < 60 mV, the velocity of nanomotor exhibits negligible non-

linearity in φ
˜

0. That is,
(
RT
zF

)
φ
˜

0 � 4 ln cosh
(
RT
4zF

φ
˜

0

)
, and the velocity can be

written as

U
˜

(0,1) ' −F
4

(
εRT

zFµD+C˜
∞

)
jp
˜
φ
˜

(0,0)
0 ' −F

2

(
λ2
D
zF

µD+

)
jp
˜
φ
˜

(0,0)
0 (5.13)

In the domain of small parameters the velocity is independent of Peclet number

because diffusive transport of ions is much faster than their convective transport.

Although the size of the particle does not explicitly appear in these equations,

its effect is to determine the range of validity of the perturbation analysis. The

dimensionless flux strength is related to the particle size through jp = jp
˜
/J
˜
∗ =

(jp
˜
/DsC˜

∞)a. Since the results of the perturbation analysis are expected to be

valid for small jp, increasing the particle size leads to a smaller range of validity

in terms of the dimensional flux strength jp
˜

, and equation (5.13) will be valid for

a smaller range of particle velocities. The conditions for small parameters

jp = a
jp
˜

DsC˜
∞ � 1 =⇒ a� DsC˜

∞

jp
˜

(5.14)

and

λ =
λ
D

a
� 1 =⇒ a� λ

D
(5.15)

yields the expression

jp
˜
� DsC˜

∞

λ
D

(5.16)

which implies that with decreasing pH (increasing C
˜
∞), the range of values of

hydrogen ion flux for which we can use the results of the perturbation analysis

increases.
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The perturbation analysis is valid only for small values of hydrogen ion flux.

To determine the maximum possible velocities and hydrogen ion fluxes within the

model, we numerically solved the equations and boundary conditions using COM-

SOL Multiphysics 4.1a. In our calculations, we used the COMSOL modules Stokes

flow and mathematical equations, with the zero Peclet approximation. We stud-

ied the dynamics of a spherical nanomotor of radius 1µm at different background

concentrations corresponding to pH values of 5.2, 5.6, 6.0, 6.5 and 7.0. In the ac-

tual experiments, when the solution is exposed to air, carbon dioxide is dissolved

in water and reduces the pH of the liquid. Therefore, we studied the dynamics

of the nanomotor at smaller values of pH to examine the effect of changes in the

background concentrations.

The maximum limit of velocity is reached when the hydrogen ion concentra-

tion becomes zero at the sink. Any further increase in the intensity jp
˜

at that

point results in non-physical negative hydrogen ion concentrations at the sink. We

determined the maximum velocity and maximum flux intensity for each pH and

interfacial potential in our parameter space. The interfacial potentials considered

in these computations are 5, 10, 15, · · · , 45, 50 mV.

Fig. 5.1a shows the maximum velocity of the nanomotor as a function of

interfacial potential φ0 for different values of pH. For a given value of φ0, the

maximum nanomotor velocity increases with decreasing pH. While the maximum

nanomotor velocities for all values of pH are about the same at lower values of

φ0, their differences become more pronounced with increasing values of interfacial

potential.

The effect of background concentration on the limiting hydrogen ion flux is

depicted in Fig. 5.1b. For fixed φ
˜

0, the maximum flux decreases with increasing

pH. The limiting state is determined by the concentration of hydrogen ions around

the sink. At higher values of pH, the background concentration of hydrogen ions

around the sink is low; therefore, a smaller strength of hydrogen ion flux is re-

quired to bring the concentration of hydrogen ions to zero at the sink. At lower

values of pH, even for low values of φ
˜

0, the limiting flux has high values. With

increasing interfacial potential, the concentration of hydrogen ions around the par-

ticle increases, and higher value of limiting flux is required to consume all of the

hydrogen ions around the sink.
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Figure 5.1. (a) Maximum velocity versus interfacial potential at different pH’s. (b)
maximum hydrogen ion flux versus interfacial potential at different pH’s. (c) maximum
velocity versus maximum interfacial potential at different pH’s.

Fig. 5.1c demonstrates the relationship between the limiting velocity and lim-

iting flux for different values of pH. It is clear from the figure that a given velocity

can be achieved at lower flux as the pH increases. However, the highest achievable

velocity decreases with decreasing pH.
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4 Discussion

The dependence of nanomotor velocity on physical parameters such as viscosity,

temperature, diffusivity, pH and charge of ions can be inferred by

U
˜

(0,1) ∝
(

εRT

zFµD+C˜
∞

)
jp
˜
φ
˜

0 ∝
(
λ2
D
zF

µD+

)
jp
˜
φ
˜

0 (5.17)

In addition to providing a better understanding of the experimental data, this

equation furnishes us with a prediction tool for designing better nanomotors.

Increasing the viscosity leads to a reduction in nanomotor velocity. At low

Reynolds number, inertial effects are negligible and viscous effects dominate flow

behavior. An increase in viscosity results in a larger drag force, and consequently,

a slower motion of the nanomotor. The effect of temperature is complicated by

its effect on other parameters, such as viscosity or diffusivity. Nanomotor velocity

has a nearly linear dependence on interfacial potential.

Increasing the diffusivity results in less asymmetry in the cloud of ions, leading

to a smaller driving force on fluid elements, and a smaller particle velocity. The

background concentration plays an interesting role. At high pH (near 7), where

the concentration of hydrogen ions is low at a given flux, the ions should move

from the source toward the sink so that the motor can function. However, at lower

pH values, for the same amount of flux, there are more hydrogen ions available

near the sink. Therefore, there is a smaller driving force for the produced ions

from the source to move toward the sink, resulting in less force on fluid elements,

and consequently, less velocity.

The velocity equation (5.17) shows that increasing the interfacial potentials

leads to a higher speed for the nanomotor. Experimentally, we may be able to add

some functional groups to the surface of the particle to make it more negatively

charged. However, this manipulation has a counter effect by reducing the active

sites on the particle needed for electrocatalytic decomposition of hydrogen perox-

ide. There can be an optimum point between these counter effects which can be

tested experimentally.



Chapter 6
Dynamics of Nanorotors

1 Introdcution

All nanorotors must break inversion symmetry to induce rotation; beyond this

simple geometrical fact, some particular mechanisms have been proposed for the

origin of the resultant torques: bubble-derived [30], or electrokinetic [31] forces

directed perpendicular to the motor axis and centered either towards one end of

the rotor [30] or roughly through the rotor’s geometrical center [31], as depicted

in Figure 6.1. Tadpole-shaped hybrid Pt/TiO2 nanorotors [41, 42] provide a third

class of such devices.

Axisymmetric linear nanomotors are characterized by a deterministic linear

speed v and a stochastic orientational diffusion coefficient Do (plus a trivial con-

tribution from translational diffusion Dt which does not couple directly to the

powered motion). Therefore, a linear motor has two characteristic times: the time

for powered motion to overcome translational diffusion, Dt/v
2, and the time over

which the motor orientation is forgotten, τo = D−1
o . Since linear nanomotors are

axisymmetric, the motor’s symmetry axis is always aligned with the instantaneous

velocity. In contrast, rotary motors introduce a new timescale τω = 2πω−1 set by

the angular velocity and nanorotor orientation has a more complex relationship

with the instantaneous direction of the trajectory, a relationship which can be an-

alyzed to extract information about the spatial distribution of driving forces along

the surface of the rotor.

Most nanorotors developed to date are based on an underlying cylindrical
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nanomotor geometry, with an added asymmetry-brealing part as a compositional

variation. Hence, they retain a well-defined structural axis which is easily visible in

optical microscopy. The asymmetric force distribution on the nanorotor generates

not only a net torque, but also net forces along and perpendicular to this axis. The

main axis of a nanorod is not necessarily tangent to the trajectory, in contrast to

the case for translationally linear nanomotors.

In order to specify the orientation of the nanorotor with respect to its trajectory,

we define φ (see Fig. 6.2(c)) to be the angle between the symmetry axis of the

nanorod n̂ and the direction of translational velocity. Namely, φ = cos−1(n̂ · ~v/v)

or

tanφ =
vp
vn
, (6.1)

where φ = π
2

and φ = 0 represent the motion of the nanorod perpendicular (vn = 0,

Fig. 6.2(d)) and tangent (vp = 0) to its trajectory, respectively. The angle φ is

easily extracted from experimental motor trajectories. (see Fig 6.2)

Dynamic Interactions between Fast Microscale Rotors
Yang Wang,† Shih-to Fei,† Young-Moo Byun,‡ Paul E. Lammert,‡ Vincent H. Crespi,‡ Ayusman Sen,†

and Thomas E. Mallouk*,†
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Nano- and microscale machines were originally envisioned by
Feynman, who suggested the possibility of nanomanipulators for
device assembly.1 A significant obstacle to the realization of such
nanomachines has been the problem of powering them. Recently,
several groups have demonstrated that catalytic reactions can be
used to drive the movement of particles on the micrometer and
submicrometer length scales.2-8 Biology provides “living proof”
that catalytic machines are scalable to very small dimensions, and
indeed, some of the behavior of catalytic motors (e.g., chemotaxis9

and predator-prey behavior10) is biomimetic. The observation of
emergent collective behavior suggests that it may be possible to
design systems in which synthetic nano- or micromotors could work
cooperatively, provided that their interactions are well-understood.

Catalytic motors influence their local environment by generating
chemical concentration gradients and fluid flows. These effects have
been exploited with stationary catalyst patterns on surfaces to make
catalytic pumps.11 Autonomous motors that rotate without translating
represent another interesting class of objects with which to study these
effects, because of the possible emergence of cooperative behavior.
While several groups have now made rotary catalytic motors,3,8,12 their
movement has been too slow to observe cooperative movement. Here
we describe catalytic microrotors that rotate an order of magnitude
faster than those described previously, and we analyze the interactions
between pairs of rotors that occur over distances of micrometers.

Catalytic microrotors (Figure 1) were fabricated by electrochemical
replication of anodic alumina membranes.2,13 After the Au-Ru bimetallic
rods were freed from the membrane, additional Cr, SiO2, Cr, Au, and Pt
layers were sequentially vapor-deposited on one side of each rod [see the
Supporting Information (SI)]. The design is similar to that of asymmetric
bimetallic rods reported by Mirkin and co-workers,12 except that the second
Au/Pt catalytic bilayer adds a perpendicular force that moves the rod
toward the center of the orbit induced by the asymmetric flow. This results
in more pure rotary (as opposed to orbital) motion. Higher fuel concentra-
tion (15 vs 3%12) drives the rotors fast enough for rotor-rotor interactions
to become apparent.

These microrods rotated rapidly in aqueous 15% hydrogen peroxide
solution. The rotation rate averaged 180 rpm, and the fastest rods
rotated at ∼400 rpm (Figure 2). This is consistent with the speed
expected for Au-Ru bimetallic rods, which have linear velocities of
∼30 µm/s.13 The velocity at the tip of a 3.5 µm long 180 rpm rotor
is 33 µm/s. The direction of rotation (clockwise or counterclockwise)
was random. Tracking the position of the center of a rod showed slow
Brownian movement (Figure 2c). The microrotor design thus induces
fast rotary movement with relatively little translation.

Whitesides and co-workers14,15 have studied the interactions of
macroscopic rotating objects in fluids and found that the flows they
generate result in attractive and repulsive forces. It is interesting
to consider whether analogous forces might be operative in the low
Reynolds number regime of micromotors and to ask about the
distances over which they would be larger than the Brownian forces.
Figure 3 shows tracking data for pairs of rotors approaching each
other along with snapshots taken at their closest center-to-center
distance. In the case of unpowered rods (i.e., catalytic rotors in
water with no fuel added), the particles can approach closely and
orient side-by-side. For powered, rapidly spinning rods, sideways
contact is not possible, and the closest possible approach is at a
center-to-center distance equal to the rod length, at which point
the tips collide. Although such collisions are frequently observed
for rods spinning in opposite directions, those rotating in the same
direction approach each other to a minimum tip-to-tip distance of
∼1 µm. A histogram of many such co-rotating rod pairs (Figure
S3 in the SI) shows an average minimum tip-to-tip distance of 0.9
µm for 3.5 µm long rotors with an average speed of 180 rpm.

Both kinds of apparent interactions between pairs of rotating rods
(Figure 3) are interesting. Repulsive interactions between co-rotating
rods might be used to form lattices,14,15 and attractive interactions

† Department of Chemistry.
‡ Department of Physics.

Figure 1. (top) Field-emisson scanning electron microscope image of an
electrochemically grown Au-Ru microrod with sequentially deposited Cr/
SiO2/Cr, Au, and Pt layers. (bottom) Schematic drawing of the structure,
showing the forces induced by catalytic H2O2 decomposition and the
resulting rotary motion of the rod.

Figure 2. (a) Snapshots of a rotor in 15% H2O2. The width of each frame
is 8.6 µm, and the rod is 3.2 µm long; each successive frame corresponds
to a time delay of 0.033 s. The rod moves in a counterclockwise manner.
(b) Histogram of the speeds of rotors in 15% H2O2. (c) Rod-center trajectory
over 10 s. The motion in (a) and (c) is shown in video I in the SI.

Published on Web 07/02/2009

10.1021/ja904827j CCC: $40.75  2009 American Chemical Society9926 9 J. AM. CHEM. SOC. 2009, 131, 9926–9927

(a) 

(b) 

(d) (c) 

Figure 6.1. Nanorotors must break axial symmetry in some manner. Experimental
implementations include (a) Au rods with asymmetric Pt patches [30] , (b) Rh/Au rods
with SiO2/Au/Pt layers applied to one side [31], and (c) [41] and (d) [42] tadpole-like
SiO2/Pt/TiO2 structures.
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Figure 6.2. The deterministic motion of a nanorotor along a circular path with nanoro-
tor head pointing (a) outside and (b) outside of the circle. (c) The angle φ is between
the axis of the nanorod of direction n̂ and the direction of velocity. (d) If there is no
force acting along the axis of the nanorod, its axis is perpendicular to its trajectory.

The instantaneous state of deterministic motion decomposes into solid rotation

with angular velocity ω around some point O fixed in the body frame and transla-

tion of point O with velocity ~v in the plane. The angular velocity ω is independent

of O. On symmetry grounds, the ideal (i.e. purely deterministic) trajectory of

a nanorotor must be circular, and the instantaneous translational velocity can be

decomposed into components along (vn) and perpendicular (vp) to the structural

axis of the rotor. The radius of the trajectory is then:

R =

√
v2
n + v2

p

ω
≡ v

ω
. (6.2)

The “observable” orientation, velocity, and angular velocity of the rotor can

be related directly to the “unobservable” net force and net torque in order to gain

insight into the motor mechanism. Since Stokes flow is linear, we can write the
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net force ~F and net torque ~L on the motor as a linear superposition of ~v and ω:

~F = A · ~v + BT · ~ω, (6.3a)

~L = B · ~v + D · ~ω, (6.3b)

where A and D are true tensors and B is a pseudo-tensor. These tensorial coeffi-

cients in principle depend on the geometry and electrokinetic characteristics of the

system, but in the regime of dynamics of nanorotors, we can approximate these

coefficients to be sole functions of geometry.

Assume that an operating nanomotor can be held immobile by an external

force −~F and torque −~L, i.e. that the action of the motor produces force and

torque ~F and ~L. Compare this to a passive particle of the same dimensions on

which external force and torque (~F , ~L) are applied. At low Reynolds number, the

steady motion of such a particle is linearly related to the applied (~F ,~L) in a manner

similar to (6.3). Since the Stokes equations are linear, we may add the two flows

just discussed to obtain a flow corresponding to the sum of the forces, which is zero.

The motor mechanism also produces body forces on the fluid; these are unchanged

by the introduction of the second flow if the transport processes involved in the

mechanism are fast enough. For an electrokinetic motor, the relevant transport

is ionic diffusion over distances comparable to the motor size, corresponding to a

speed Dion/` ∼ 103 µm/s for ` ∼ 1µm. The assumption of unchanged forces is good

to the extent that this exceeds the motor speed. Thus, the velocity and angular

velocity of the motor are directly related to its Stokes drag coefficient even though

the flow pattern driven directly by the motor mechanism may be very different

from that around a body simply dragged through the fluid.

To proceed with applying the linear relations (6.3) to our problem and iden-

tifying the geometry-dependent tensorial coefficients, we approximate the rotary

nanorod as an axisymmetric particle with fore-and-aft symmetry and a mirror

symmetry plane containing the rotation axis passing through O. Consider the

situation reflected through the symmetry plane and the reversibility of Stokes

flow: For a nanorod with non-translational motion (v = 0), according to equation

(6.3a), reversing ω should reverse the direction of force while, due to the symmetry

of the particle, ~F should be indifferent to the direction of rotation. This leads to
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BT ·ω = 0. For a particle with solely translational dynamics (ω = 0) along or per-

pendicular to the symmetry plane, there would be no torque acting on the particle

in the z-direction (perpendicular to the plane of motion) and B ·~v has zero compo-

nent in the z-direction. Moreover, the corresponding components of velocity and

force along and perpendicular to the symmetry plane are proportional: Fn ∝ vn

and Fp ∝ vp, where Fn and Fp are the components of the net force along n̂ and p̂,

respectively. Therefore the linearity relations (6.3) can be simplified to

~v = A−1 · ~F = A−1
n Fn n̂ + A−1

p Fp p̂, (6.4a)

ω =
(
D−1 · L

)
z

= D−1
z Lz, (6.4b)

where Lz is the net torque in the z-direction. The parameters An, Ap and Dz

depend on the shape of the nanorotor (and its surroundings). For example, a sphere

of radius a (withO at its center) in an unbounded fluid of viscosity η hasAn = Ap =

6πηa and Dz = 8πηa3. The prolate spheroid (defined by a−2 x2 + b−2 (y2 + z2) = 1

where a ≥ b) provides a better approximation to the shape of actual nanorotors:

by changing the eccentricity e =
√

1− (b/a)2, it can be smoothly transitioned

from a sphere to a long thin needle. In an unbounded Stokes flow, the prolate

spheroid has shape parameters [43]:

An = (6πηa)
8

3
e3

[
−2e+

(
e2 + 1

)
ln

(
1 + e

1− e

)]−1

(6.5a)

Ap = (6πηa)
16

3
e3

[
2e+

(
3e2 − 1

)
ln

(
1 + e

1− e

)]−1

(6.5b)

Dz = (8πηa3)
4
3
e3 (2− e2)[

−2e+ (e2 + 1) ln
(

1+e
1−e
)] . (6.5c)

A video of the dynamics of a nanorotor provides us with the dimensions, trans-

lational velocity v and angular velocity ω of the nanorod in addition to the angle

φ. Approximating the nanorod by a spheroid, eccentricity e can be assigned based

on the dimensions of the particle. Using the geometrical factor Dz given by (6.5c)

for the motion of particle in an unbounded domain as a first approximation and

taking advantage of the linearity in equation (6.4b) with ω, we can calculate the

net torque Lz = Dz ω on the particle in the z direction. Also, using the velocity
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Figure 6.3. With an increase in the aspect ratio of the spheroid or an increase in the
angle φ the ratio of the force perendicular to the symmetry axis and the force parallel
to symmetry axis increases.

v, the angle φ and the eccentricity, the force can be calculated as

F =
√
F 2
n + F 2

p = v
√
A2
n cos2 φ+ A2

p sin2 φ . (6.6)

From a design perspective, we would like to apply the force and torque on a

particle of given dimension so that we obtain the desired translational, angular

velocity and nanorod’s orientation with respect to its trajectory. Recasting the

equation (6.1) using the geometrical coefficients yields

Fp
Fn

=
Ap
An

tanφ, (6.7)

which shows that for a given geometry, φ is a measure of the relative strength of

the net force perpendicular to and along the nanorod axis. Fig. 6.3 shows this

relation for different values of φ as a function of the aspect ratio a/b =
√

1− e2

(the ratio of the semi-major axis to the semi-minor axis). For a given angle φ,

the magnitude of the perpendicular force to the tangential force (with respect to

the axis of the nanorotor) increases with an increase in the relative length of the

nanorotor. Fig. 6.4 shows that, for a fixed a, increasing the aspect ratio (making

the rotor smaller) requires less force to achieve a desired velocity.

The analysis so far has been based on approximating a nanorotor by a prolate
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spheroid. However, linearity of Stokes flow can be exploited for designing other

kinds of geometries. In order to have fast in-place rotors, we need to minimize

the net force and maximize the net torque on the particle. Our analysis provides

us with insight into designing more efficient rotors. The tadpole structure in Fig.

(6.5), for example, would be one way of making a rotor that minimizes the net

force acting on the particle while maximizing the net torque around the center of

mass. This structure can be fabricated using the methods explained in Ref [41]

and [44].

The nanomotor in our example consists of a bead and an arm. The bead is

a spherical SiO2 particle in which the bottom hemisphere is coated with Pt. The

arm is a TiO2 backbone whose top is partly covered by Pt. There are two major

forces acting on this particle when we place it in a hydrogen peroxide solution.

The force exerted on the arm, ~Farm, and the force acting on the lower part of the

bead, ~Fbead, due to a reaction on Pt surfaces. The angle α corresponds to the angle

between the top of the arm and the plane separating Pt and SiO2 on the bead.

The net force acting on the particle is given by

Fnet =
(
F 2
arm + F 2

bead − 2FarmFbead cosα
) 1

2 . (6.8)

As θ becomes smaller and the forces on the arm and the bead become aligned with
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Figure 6.4. For a given particle geometry and magnitude of driving force, the particle
whose angle φ is smaller will achieve a higher velocity. The highest velocity occurs at
φ = 0 when the the symmetric axis of spheroid is tangent to the trajectory.
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Figure 6.5. The final structure has a minimized net force and a maximized net torque.
The angle between the arm and the substrate during the fabrication can adjust the force
and torque. The lower the angle, the lower the net force in the direction of the axis of
the arm.

each other, the value of Fnet becomes smaller and the nano-tadpole has a higher

tendency to rotate in place.

We can also exploit the analysis to examine the possible mechanisms of nanomo-

tor dynamics. Previous work on nanorotors at Penn State [31] resulted in ultrafast

nanorotors that could rotate in-place (Fig. (6.1b)). These nanorods had a Pt/Au

cap and it was conjectured that this cap would pull the nanomotor toward the cen-

ter of the circular orbit, making it appear as if the rod rotated in place. However,

1 4 3 2 

8 7 6 5 

Figure 6.6. Trajectory of one counter-clockwise rotation of the slow nanorotor in Ref
[30] . (Green) Actual path of the center of mass of the nanorod; which shows stochastic
fluctuations of the center of mass position. (Blue) The fitted equivalent circle to the
actual trajectory. The rod is almost pointing toward the inside of the circle or tangent
to the circle. (The frames are not equidistance in time)
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Figure 6.7. Angular fluctuation ∆θ(t) for nanorotors in (red) Ref [30] and (blue) Ref
[31]. The deviation of the orientation of the nanomotor from the deterministic orientation
can be significant (up to 90◦).

equation (6.2) for the radius of curvature indicates that the addition of the lateral

force increases the net force, and consequently, increases the radius of the trajec-

tory, contradicting the initial argument. That leaves us with an open question of

what is really the mechanism behind the fast in-place rotation of these particles.

The nanorotor made by Qin et al [30] (Fig. (6.1a)) is believed to move due to

the force exerted perpendicular to the axis of the nanorod by bubble propulsion.

In their proposed mechanism, the force along the axis of the rod is zero. For such

a system, the direction angle (6.7) is zero and the direction of the axis of the

nanorod is perpendicular to its trajectory of motion (Fig. 6.2(d)). However, the

nanorotor in [30] exhibits an angle far from φ = 0. In Fig. (6.6), we have analyzed

the quasi-circular path provided in the supporting information of Ref [30]. The

rod is closer to being tangent to the trajectory than perpendicular. Again, that

leaves us with an open question of what is the real mechanism behind the motion

of these nanorotors.

2 Stochastic Brownian Contribution

So far, we have discussed the deterministic aspect of nanomotor motion leading to

a circular trajectory. However, the coupling between the deterministic rotational

motion and the stochastic orientational dynamics leads to the experimentally ob-
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served quasi-circular trajectories. In designing a nanorotor we would like to know

how the parameters of the nanorotor affect the trajectory of the nanorotor, or how

to design a nanorotor to have more control over its trajectory.

As we discussed in the beginning of this chapter, nanorotors have two natural

time scales: the characteristic orientational time, τo = D−1
o , and the deterministic

rotation period, τω = 2πω−1. The deviation of the trajectory from a perfect circular

path depends on these time scales. In the case where τω � τo during one rotation,

the influence of the stochastic component is small, and the nanorotor’s path is close

to circular. However, in the limit τω � τo, the direction of the nanorotor changes

many time, before the nanorotor completes a deterministic rotation, and therefore,

the observer may not even recognize the circular trajectory. The translationally-

linear nanomotors, fabricated experimentally, are, in fact, in this category. These

particles are meant to be fabricated as perfect axisymmetric objects. However,

due to defects, the nanomotor is not perfectly axisymmetric. This leads to a net

torque on the particle while moving, and the particle has the tendency to rotate.

Since the asymmetry in structure is also very small, however, the resulting torque

and angular velocity are very small, and consequently, the characteristic rotation

time, τω, is very large. Therefore, the observed dynamics of these particles appears

to be linear, with an occasional change of direction of the nanomotors, instead of

quasi-circular paths.

We analyzed the deterministic rotational and the stochastic orientational dy-

namics of the slow [30] and fast [31] nanorotors from the videos in the supporting

information of their corresponding papers. The measured average angular veloc-

ities are ωslow = 22.3 rpm and ωfast = 279.8 rpm for the slow and fast nanoro-

tors, respectively. The corresponding characteristic rotation times (period) are

τω,slow = 2.7 s and τω,fast = 0.2 s.

During the time period that the particle performs a full rotation around its

center of mass, it completes a cycle around its trajectory. While the particle is

rotating around its center of mass with average angular velocity ω, it simultane-

ously receives stochastic kicks from the fluid elements, causing deviations in the

direction of the nanorotor velocity, and turning its circular path into quasi-circular

trajectories. At each instance, the difference between the actual orientation of

the nanorod and its expected deterministic orientation can be described by the
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temporal angle fluctuation

∆θ(t) = θ(t)− ωt, (6.9)

where θ characterizes the orientation of the nanomotor, as depicted in Fig. (6.2).

Fig. (6.7) shows the angular fluctuations for the nanorotors of Refs [30, 31]. It

is clear from the figure that the angular deviation can be significant, showing the

effect of the stochastic component on the direction of nanomotor velocity.

In order to calculate the orientational diffusion coefficients from the videos, we

calculated the temporal angle fluctuation

δθ(t; ∆t) = ∆θ(t+ ∆t)−∆θ(t) (6.10)

during the time interval ∆t. If the change in the direction of the nanorotor is

due to Brownian kicks, the distribution of temporal angular deviation for time

difference ∆t should follow the normal distribution

N(δθ; 〈δθ〉, σ) =
1√
2πσ

exp

(
(δθ − 〈δθ〉)2

2σ2

)
, (6.11)

where, for one-dimensional diffusion in θ coordinate the average temporal angular

deviation is zero 〈δθ〉 = 0, and the width of the distribution is related to the

orientational diffusion coefficient Do through

σ =
√

2Do∆t. (6.12)

Figures (6.8) and (6.9) show that the distributions of temporal angular deviation

fit the normal distribution, with the center of the distribution nearly at zero.

This suggests that the temporal angular deviation can be represented by a one-

dimensional random walker.

The diffusion coefficients of the slow and fast nanorotors were found to be

Do,slow = 0.102 rad2s−1 and Do,fast = 0.462 rad2s−1, respectively (see Fig. (6.10)).

The corresponding characteristic times of orientational diffusion are τo,slow = 50 s

and τo,fast = 2.165 s. Since τo,slow � τω,slow, the slow nanorotor follows a path close

to a circular trajectory (see Fig. 6.6). For the fast rotor, τo,fast is one order of

magnitude larger than τω,slow, and therefore, we expect to see a trajectory close to a
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Figure 6.8. The fit distributions of the temporal angular deviation δθ for the nanorotor
of Ref [31] to normal distribution for different time intervals ∆t.

circular path. For a spheroidal nanorotor in unbounded domain, the characteristic

time of orientation is given by τo = Dz/kT , where Dz is the geometrical coeffi-

cient (6.5c), k is the Boltzmann factor, and T is the absolute temperature. For a

nanorotor of given geometry with known torque Lz, we can calculate the period τω

using the linearity relation (6.4b), and compare it with with τo to determine the
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Figure 6.9. The fit distributions of the temporal angular deviation δθ for nanorotor of
Ref [30] to normal distribution for different time intervals ∆t.

trajectory of the nanorotor.
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3 Discussion

In this chapter, the steady state deterministic trajectory of a nanorotor, with a

center of mass translational velocity ~v and an angular velocity ω around the center

of mass, was shown to be a circular path of radius R = v/ω. In order to decrease

the radius of the trajectory and make an in-place rotor, the net torque on the

particle must be maximized while minimizing the net force on the nanorotor. A

structure that could demonstrate the application of our proposed design principle

was also suggested. The validity of the various mechanisms proposed for the motion

of nanorotors can be investigated by simply looking at their trajectories and the

orientations of particles with respect to their trajectories. The deviation from

a circular path to a quasi-circular one can be attributed to rotational Brownian

dynamics, from which the rotational diffusion coefficient of the rods was calculated.

The rotational diffusion coefficient must be minimized to yield a nanorotor that

has the smallest deviation from the circular trajectory.



Chapter 7
Coupling of Deterministic and

Stochastic Dynamics in Powered

Random Walkers

1 Introduction

Orientational and translational diffusion are considered to be independent physical

processes of a particle. Nanorotors represent a system of powered random walk-

ers in which these two processes are tightly coupled. The deterministic circular

motion, by itself, is a steady state motion which doesn’t change the center of the

circular trajectory (the guiding center) with time. The stochastic orientational

dynamics for an unpowered nanorotor can also lead to a change of the direction of

the nanorotor without any translational motion. However, in a powered nanoro-

tor the deterministic dynamics and the stochastic rotational dynamics are coupled

to each other, leading to displacement, and an effective translational diffusion of

the nanorotor over time. In this chapter, we study this coupling and the rela-

tion between the rotational diffusion of the nanorotor to its powered translational

diffusion.

While in ordinary unpowered colloidal nanorods, even for translational motion

under an external driving force, the Brownian translational and orientational dif-

fusion are independent, for nanomotors the direction of the deterministic powered
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v2 !c o2 
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v 

Figure 7.1. The particle rotates due to the net torque and its velocity has an angle with
respect to the axis of the rod due to the asymmetric distribution of force on the particle.
The Brownian orientational diffusion deviates the particle’s path from a circular (solid)
to a quasi-circular (dashed). This process results in change in the direction of velocity
v1 6= v2 , the displacement in the position of center of mass ∆x, and the displacement
∆c in position of the guiding center after one rotation. o1 and o2 are the guiding centers
in the beginning and end of one rotation, respectively.

motion is influenced by the stochastic orientational component.

Many theoretical models have been proposed solely to explain the mechanism

of deterministic motion for different nanomotors. An interesting feature of mo-

tion at this length scale is the contribution of both deterministic and stochastic

dynamics to the motion of the nanorod. The deterministic dynamics happens in

the form of linear or rotational motion. The Brownian orientational and trans-

lational diffusion of nanorotors are characterized by the diffusion coefficients Dort

and Dtrs, respectively. Understanding the full dynamics of nanomotors and the

possible emergent phenomena, therefore, requires an understanding of how the

deterministic and stochastic dynamics interact.

Nanorotors are a class of nanomotors whose deterministic motion is well char-

acterized by translational v and angular ω velocities on a circular path of radius

R = v/ω as described in chapter 6. The rotational dynamics is a result of the

asymmetric distribution of force on the surface of the nanorotor leading to a net

torque on the particle and also (for nanorotors that happen to be in the shape

of a rod) the net forces both along and perpendicular to the axis of the nanorod.
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Consequently, the velocity would not be along the axis of the nanorod and the

particle acquires an angle with respect to its trajectory (see Fig. 7.1). Depending

on the direction of ω, the nanorotor may rotate clockwise or counter-clockwise.

This chirality results in a constraint on the dynamics of nanorotor, which is the

major distinction between linear motors and nanorotors.

In this chapter, we study the effect of coupling between deterministic transla-

tional and stochastic orientational dynamics of a powered random walker; focusing

on the motion of nanorotors. Separately, neither a powered orientationally non-

diffuser, nor an unpowered orientational diffuser, will exhibit center of mass (CoM)

diffusion. When these two act together in the form of a powered orientational dif-

fuser, the stochastic orientational dynamics causes the nanoparticle to deviate from

its deterministic circular path into a quasi-circular path (see Fig 7.1). This leads

to a displacement of the CoM and the guiding center of rotation after one period

T1 of deterministic rotation. We will refer to a “period” in a shorthand fashion

but it signifies one “period of deterministic motion”.

2 Modeling

In this section we will corelate the deterministic and stochastic properties of a

nanorotor to its long run translational behavior. We work in units of v for velocity,

ω−1 ≡ T1/2π for time and R = v/ω for length. Within these units, v = ω = R = 1

and T1 = 2π. We divide the time into very short spans [t, t+dt). As demonstrated

in Fig. 7.2a, at time t stochastic rotational diffusion changes the orientation of

the particles velocity by dθRND and simultaneously makes a displacement dc (“c”

stands for the center of rotation) for the guiding center. During (t, t + dt), the

nanorotor rotates deterministically around its new guiding center leading to dis-

placement dx in the CoM (Fig. 7.2b).

If we draw the position vectors r1, r2 and r3 from the same origin (Fig. 7.2c), the

total motion in the reference frame of the guiding center is a displacement dp (“p”

stands for perimeter) of a random walker that moves on a circle with a deterministic

velocity superimposed by a stochastic motion. We call this circular path in the

reference frame of the guiding center the “c-frame circle”. It is important to note

that although the nanomotor moves on quasi-circular trajectories in the laboratory
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Figure 7.2. Dynamics of nanorotor in the time span [t, t+dt) (a) At time t the particle
exhibits an stochastic orientational change of size dθRND. A displacement of dc = r1−r2

is resulted in the instantaneous center of rotation. (b) During the time period (t, t+dt),
the particle does deterministic translational motion, leading to displacement of the center
of mass by dx = r3−r2. (c) In the frame of reference of the guiding center, the nanorotor
performs a deterministic displacement dx superimposed by stochastic displacement dc
leading to a displacement dp = dx− dc on a circular path.

frame of reference, it follows a perfect circular path in the reference frame of the

guiding center.

The stochastic orientational contribution dθRND has a one-dimensional Gaus-

sian distribution with properties 〈dθRND〉 = 0 and 〈dθ2
RND〉 = σ2dt where

σ2 =
2Dort

ω
(7.1)

is the dimensionless variance of Brownian orientational change at time t = 1. Using

the normalized variable dWt = dθRND/σ, for which

〈dWt〉 = 0, 〈dW 2
t 〉 = dt, (7.2)

and hence,

〈eiσdWt〉 = e−σ
2dt/2. (7.3)

The total change in the direction of motion during the time interval [t, t + dt)

becomes

dθ = dt+ σdWt (7.4)
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Powered Random Walkers

(a) Unbounded Line (b) Periodic Line Segment (c) Circular Path

Figure 7.3. One dimensional powered random walkers (a) on an unbounded line, since

the deterministic displacement scales with t while the stochastic part scales with t
1
2 ,

on long run as t → ∞, the deterministic dynamics dominates the total dynamic of
the random walker. (b) Constraining the dynamics from unbounded line to the motion
on a line segment with periodic boundary condition changes physics of the problem and
introduce a natural time scale 2πω−1 depending on the length of the segment and velocity
of the particle. This dynamic can be well represented by a powered random walker on a
circular path with translational velocity v and angular velocity ω.

and the orientation θt of the particle at time t is

θt = t+
∑

0≤s<t
σdWs (7.5)

in which without the lose of generality we have set θ0 = 0.

Representing the position vectors of Fig. 7.2 in the complex plane by r1 = eiθt ,

r2 = ei(θt+σdW ), and r3 = ei(θt+σdW+dt), we obtain the displacements

dxt = r3 − r2 = ei(θt+σdWt)
(
eidt − 1

)
, (7.6)

dct = r1 − r2 = eiθt
(
1− eσdWt

)
, (7.7)

dpt = dxt − dct = r3 − r1 = eiθt
[
ei(dt+σdWt) − 1

]
. (7.8)

The core of our analysis is to calculate the change in these three types of

displacement after n periods Tn, that is, ∆r(Tn) where r = x, c or p. As we

discussed previously, the rotational deterministic motion of the particle imposes

a chirality constraint, depending on clockwise or counterclockwise rotation, on

the dynamics of the particle moving along a circular path. The orientational

stochastic dynamics changes the direction of motion, and correspondingly changes

the location of the guiding center (displacement of the instantaneous center of

rotation). For an unpowered nanorotor, we don’t have a guiding center, but a
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point at distance R from a nanorotor has a stochastic motion on a circle with the

origin at the position of the CoM of the particle. Powering the particle would

superimpose a deterministic motion onto the particle dynamics. Therefore, in the

frame of reference of the guiding center, the particle moves on a circular path,

and the displacement on this c-frame circle is a combination of stochastic and

deterministic displacement.

The constraints on movement along the c-frame circle has principal importance

in understanding the dynamics of the nanorotor and the interaction between the

deterministic and stochastic dynamics. Consider a one dimensional powered ran-

dom walker on an unbounded line (see Fig 7.3a); the deterministic displacement

scales with t while the stochastic part scales with t
1
2 ; in the long run t → ∞,

the deterministic dynamics dominates. However, constraining the dynamics to a

line segment with periodic boundary conditions (see Fig 7.3b) changes the physics

of the problem, and introduces a natural time scale 2πω−1 which depends on the

length of the segment and velocity of the particle. If we look at the displacement

only at discrete multiples of 2πω−1, we don’t see the effect of deterministic motion

and it looks like the particle only moves due to Brownian dynamics. This is the

consequence of the periodic boundary conditions and the natural time scale of the

system.

The dynamics of a powered random walker with translational velocity v and

angular velocity ω along a circular path (see Fig 7.3c) is similar to the motion of

a powered random walker on a line segment with periodic boundary conditions.

The difference between the two is that the displacement vector over time on the

line segment is one dimensional while in case of the circular path the displacement

is a two dimensional vector. In the one dimensional problem, the displacements

are not correlated, that is, 〈∆p(T1) ·∆p(T2)〉 = 0, however, in the circular motion

〈∆p(T1) · ∆p(T2)〉 < 0, since if the displacement returns on itself on the second

turn, the dot product is more negative than the case where the particle doesn’t

return on itself.

Before moving into the detailed calculation, we study two limiting cases, σ >> 1

and σ << 1, using scaling analysis to predict the long-time behavior of the powered

random walker. At long times the mean square displacement over time for the

CoM and the guiding center will be equal, limTn→∞
〈|∆x|2〉
Tn

= limTn→∞
〈|∆c|2〉
Tn

. In
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the limit of large σ = 2Dort

ω
, the characteristic time of the deterministic motion

is much larger than the characteristic time of the orientational diffusion. We can

subdivide the trajectory of a particle to a set of blobs analogous to a conformation

of a polymer chain. The sequential displacements of the particle after one period

inside a blob are correlated, but the end to end distance of a trajectories inside

blobs are weakly correlated or uncorrelated. The time scale for the rotor to go

through a blob is the time that the particle can forget most of its correlations in

successive displacements, that is, the characteristic time of orientational diffusion,

τ = 1
Dort

. During this time period, the particle moves a distance l ∝ vτ where v is

the linear velocity of the particle. We can define an effective translational diffusion

for the nanorotor as

Deff ∝
l2

τ
∝ v2

Dort

for σ � 1. (7.9)

In the limit σ � 1 during one rotation, the center of mass has small displacement

equal to l ∝ R∆θ where R is the radius of the c-frame circle and ∆θ =
√
Dort τ is

the total angular deviation in the direction of the velocity over one period τ ∝ ω−1.

Therefore, the effective translational diffusion would be

Deff ∝
(R∆θ)2

τ
∝ v2

ω2
Dort for σ � 1. (7.10)

So far, we formulated the problem and studied the limiting cases. In the next

section, we calculate the mean square displacement of the three different types of

displacements and the correlation functions that explain their behavior.

3 Mathematical Derivations

In our analysis, we represent the two dimensional vectors in a complex plane. We

will use frequently the inner product between the vectors for calculating the correla-

tion functions. Since we are in the complex plane instead of Cartesian coordinates,

we work out the dot product in the complex plane. We represent the Cartesian

vector ~A = A(cosφAêx + sinφAêy) in the complex plane by a corresponding com-

plex number A = AeiφA . The dot product of two vectors ~A and ~B in the Cartesian
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plane is ~A · ~B = AB cos(φA − φB). The product of their corresponding complex

numbers (one is conjugated) is AB = ABei(φA−φB). Therefore, the correspondence

to the dot product in the complex plane is

~A · ~B = <
{
AB

}
= <

{
AB

}
(7.11)

where < is the real-part operator. In our derivations we work with the product of

complex numbers as the dot product and at the end, we will use the real part of

the complex number.

3.1 Velocity Correlation Function

The coupling of stochastic orientational dynamics to the deterministic dynamics of

the nanorotor not only deviates the trajectory from circular to quasi-circular, but

also changes the direction of the particle velocity after each rotation. We would

like to determine the number of periods of deterministic oscillations before the

particle forgets its initial direction of velocity.

The direction of the nanomotor velocity at each instant is described by the

angle φt = θt + π
2
. We define the velocity correlation function after k rotation to

be the inner product between the initial velocity and the velocity at time Tk,

Cv(k) = <{〈e−iφ0eiφTk 〉} ≡ <{〈eiθTk 〉} (7.12)

where Tk = kT1 is the time of k deterministic oscillation, and T1 = 2π is the period

of one oscillation. Using the identity (7.3), we calculate

〈eiθTk 〉 =

〈
exp

(
iTk + i

∑

0≤s<Tk
σdWs

)〉
=

∏

0≤s<Tk

〈
eiσdWs

〉

=
∏

0≤s<Tk
e−σ

2ds/2 = e−σ
2Tk/2 (7.13)

We obtain,

Cv(k) = e−k/kc (7.14)
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where the characteristic rotation kc is

kc = (πσ2)−1 . (7.15)

3.2 Diffusion on the C-Frame Circle

We begin our analysis of the three types of displacement (i.e., dp, dx, dc) with the

displacement dp of the moving object on a circle in the frame of reference of the

guiding center. The particle is constrained to move in a circle via deterministic

and stochastic displacements. The displacement during the time span [t, t+ dt) is

dpt = eiθt
[
ei(dt+σdWt) − 1

]
(7.16)

and we would like to calculate the root-mean-square displacement 〈|p(Tn)|2〉 after

n deterministic rotations,

〈|p(Tn)|2〉 =

〈∣∣∣∣∣
∑

0≤u<Tn
dpu

∣∣∣∣∣

2〉
=
∑

u

〈dp2
u〉+

∑

u>s

〈dpsdpu〉+
∑

u<s

〈dpsdpu〉. (7.17)

where u and s represent time in these summations. Depending on the magnitude

of u and s with respect to each other (u = s, u > s or u < s) , we have three

different summations of 〈dpsdpu〉 on the right hand side of the above equation.

In case where u = s ≡ t, we have

dptdpt = e−iθt
[
e−i(dt+σdWt) − 1

]
eiθt
[
ei(dt+σdWt) − 1

]

=
[
e−i(dt+σdWt) − 1

] [
ei(dt+σdWt) − 1

]

= 2[1− cos(dt+ σdWt)] (7.18)

We need the expansion of this equation to the first order in dt.

〈dptdpt〉 = 2 〈1− cos(dt+ σdWt)〉 = σ2dt+O(dt2) (7.19)

For u > s, we have

dpsdpu = e−iθs
[
e−i(dts+σdWs) − 1

]
eiθu

[
ei(dtu+σdWu) − 1

]
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= ei(θu−θs)
[
e−i(dts+σdWs) − 1

] [
ei(dtu+σdWu) − 1

]

= ei(u−s)eiσdWs exp

(
iσ
∑

s<t′<u

dWt′

)
[
e−i(dts+σdWs) − 1

] [
ei(dtu+σdWu) − 1

]

= ei(u−s) exp

(
iσ
∑

s<t′<u

dWt′

)
e−idts

[
1− ei(dts+σdWs)

] [
ei(dtu+σdWu) − 1

]

(7.20)

where we have arranged the terms so that they are independent of each other

and therefore, the average of the whole term will be the product of average of

the individual terms. Taking the average of dpsdpu and keeping the terms to the

second order in dt gives us

〈dpsdpu〉 = ei(u−s)
( ∏

s<t′<u

〈eiσdWt′ 〉
)
e−idts

[
1− eidts〈eiσdWs〉

] [
eidtu〈eiσdWu〉 − 1

]

= ei(u−s)
( ∏

s<t′<u

e−σ
2dtt′/2

)
e−idts

[
1− eidtse−σ2dts/2

] [
eidtue−σ

2dtu/2 − 1
]

= ei(u−s)e−σ
2(u−s)/2e−idts

[
1− e

(
i−σ2

2

)
dts

] [
e

(
i−σ2

2

)
dtu − 1

]

= ei(u−s)e−σ
2(u−s)/2

(
1− idts +O(dt2s)

)[
−
(
i− σ2

2

)
dts +O(dt2s)

]

×
[(
i− σ2

2

)
dtu +O(dt2u)

]

= −
(
i− σ2

2

)2

dtsdtue
i(u−s)e−σ

2|u−s|/2 +O(dt3) (7.21)

Similarly, for u < s we can write

dpsdpu = e−iθs
[
e−i(dts+σdWs) − 1

]
eiθu

[
ei(dtu+σdWu) − 1

]

= e−i(θs−θu)
[
e−i(dts+σdWs) − 1

] [
ei(dtu+σdWu) − 1

]

= e−i(s−u)e−iσdWu exp

(
−iσ

∑

u<t′<s

dWt′

)
[
e−i(dts+σdWs) − 1

] [
ei(dtu+σdWu) − 1

]

= ei(u−s) exp

(
−iσ

∑

u<t′<s

dWt′

)
eidtu

[
e−i(dts+σdWs) − 1

] [
1− e−i(dtu+σdWu)

]

(7.22)
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By taking the average and expanding to the second order in dt we obtain

〈dpsdpu〉 = ei(u−s)
( ∏

u<t′<s

〈e−iσdWt′ 〉
)
eidtu

[
e−idts〈e−iσdWs〉 − 1

] [
1− e−idtu〈e−iσdWu〉

]

= ei(u−s)
( ∏

u<t′<s

e−σ
2dtt′/2

)
eidtu

[
e−idtse−σ

2dts/2 − 1
] [

1− e−idtue−σ2dtu/2
]

= ei(u−s)e−σ
2(s−u)/2eidtu

[
e
−
(
i+σ2

2

)
dts − 1

] [
1− e−

(
i+σ2

2

)
dtu

]

= ei(u−s)e−σ
2|u−s|/2

(
1 + idtu +O(dt2s)

)[
−
(
i+

σ2

2

)
dts +O(dt2s)

]

×
[(
i+

σ2

2

)
dtu +O(dt2u)

]

= −
(
i+

σ2

2

)2

dtsdtue
i(u−s)e−σ

2|u−s|/2 +O(dt3) (7.23)

Therefore, we have

u > s : 〈dpsdpu〉 =

[(
1− σ4

4

)
+ iσ2

]
dtsdtue

i(u−s)e−σ
2|u−s|/2+O(dt3) (7.24)

s > u : 〈dpsdpu〉 =

[(
1− σ4

4

)
− iσ2

]
dtsdtue

i(u−s)e−σ
2|u−s|/2+O(dt3) (7.25)

If u < s, the only difference is that u− s becomes s−u; writing |u− s| covers both

cases. We can now calculate the root-mean-square of displacement on the circular

trajectory in the frame of reference of guiding center after time T .

〈|p(T )|2〉 =

〈∣∣∣∣∣
∑

0≤u<T
dpu

∣∣∣∣∣

2〉
=
∑

u

〈dp2
u〉+

∑

u>s

〈dpsdpu〉+
∑

u<s

〈dpsdpu〉

' σ2T +

(
1− σ4

4

)∫ T

0

∫ T

0

ei(u−s)−σ
2|u−s|/2 du ds

+iσ2

∫ T

0

∫ u

0

ei(u−s)−σ
2|u−s|/2 du ds− iσ2

∫ T

0

∫ s

0

ei(u−s)−σ
2|u−s|/2 ds du

(7.26)
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In the following, we see that the last two terms in the right side of the equation

are complex conjugates,

iσ2

∫ T

0

∫ u

0

ei(u−s)−σ
2|u−s|/2 du ds− iσ2

∫ T

0

∫ s

0

ei(u−s)−σ
2|u−s|/2 ds du

= iσ2

∫ T

0

∫ u

0

ei(u−s)−σ
2(u−s)/2 du ds− iσ2

∫ T

0

∫ s

0

e−i(s−u)−σ2(s−u)/2 ds du

= iσ2

∫ T

0

∫ u

0

e(i−σ2/2)(u−s) du ds+ (−iσ2)

∫ T

0

∫ s

0

e(−i−σ2/2)(s−u) ds du

= iσ2

∫ T

0

∫ u

0

e(i−σ2/2)(u−s) du ds+ (−iσ2)

∫ T

0

∫ u

0

e(−i−σ2/2)(u−s) du ds

= 2<
{
iσ2

∫ T

0

∫ u

0

e(i−σ2/2)(u−s) du ds

}
(7.27)

We first calculate the argument, and then select its real part.

iσ2

∫ T

0

∫ u

0

e(i−σ2/2)(u−s) du ds = iσ2

∫ T

0

du e(i−σ2/2)u

∫ u

0

e−(i−σ2/2)s ds

= iσ2

∫ T

0

du e(i−σ2/2)u

[
e−(i−σ2/2)s

−
(
i− σ2

2

)
]u

0

=
iσ2

−
(
i− σ2

2

)
∫ T

0

du e(i−σ2/2)u
[
e−(i−σ2/2)s − 1

]

=
iσ2

−
(
i− σ2

2

)
∫ T

0

du
[
1− e(i−σ2/2)u

]

=
iσ2

−
(
i− σ2

2

)
[
u− e(i−σ2/2)u

(
i− σ2

2

)
]T

0

=
iσ2

−
(
i− σ2

2

)
[
T − e(i−σ2/2)T − 1(

i− σ2

2

)
]

=
iσ2

i
(
1 + iσ

2

2

)
[
e(i−σ2/2)T − 1(

i− σ2

2

) − T
]

(7.28)

If T = Tn = 2πn is the time for n deterministic oscillations, ei Tn = 1, and we have

2<
{
iσ

∫ Tn

0

∫ u

0

e(i−σ2/2)(u−s) du ds

}
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= 2<
{

σ2

(
1 + iσ

2

2

)
[
e(−σ2/2)Tn − 1(

i− σ2

2

) − Tn
]}

= 2<




σ2
[
e(−σ2/2)Tn − 1

]

(
i− σ2

2

) (
1 + iσ

2

2

) − σ2Tn(
1 + iσ

2

2

)





= 2σ2
[
e(−σ2/2)Tn − 1

]
<
{

1

−σ2 + i
(
1− σ4

4

)
}
− 2σ2Tn<

{
1(

1 + iσ
2

2

)
}

= 2σ2
[
e(−σ2/2)Tn − 1

]{ −σ2

σ4 +
(
1− σ4

4

)2

}
− 2σ2Tn

{
1(

1 + σ4

4

)
}

= −2

{
σ4

σ4 +
(
1− σ4

4

)2

}[
e(−σ2/2)Tn − 1

]
−
{

2σ2

(
1 + σ4

4

)
}
Tn (7.29)

which gives us the result of last two terms in equation (7.26). We also need to

calculate the double integral,
∫ T

0

∫ T
0
ei(u−s)−σ

2|u−s|/2 du ds, in equation (7.26). To

do so, we use the change of variables

α = u− s, β = u+ s (7.30)

The variable α can vary between −T (u = 0, s = T ) and T (u = T, s = 0),

and the variable β can change between 2T − |α| and |α|. The Jacobian of the

transformation is 1/2, that is du ds = 1
2
dα dβ. Therefore,

∫ T

0

∫ T

0

ei(u−s)−σ
2|u−s|/2 du ds =

1

2

∫ T

−T
dα eiα−

σ2

2
|α|
∫ 2T−|α|

|α|
dβ

=

∫ T

−T
dα eiα−

σ2

2
|α|(T − |α|)

= 2<
{∫ T

0

dα eiα−
σ2

2
α(T − α)

}
(7.31)

Defining z = σ2

2
− i, we have

∫ T

0

dα e−zα(T − α) = T

∫ T

0

dα e−zα −
∫ T

0

dαα e−zα

=
T

z

(
1− e−zT

)
+
T

z
e−zT − 1

z2

(
1− e−zT

)
(7.32)
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=
T

z
− 1

z2

(
1− e−zT

)
(7.33)

We are interested in the displacement after n deterministic oscillations, where

Tn = 2πn. This gives e−zTn = e−
σ2

2
Tn and

<
{
Tn
z
− 1

z2

(
1− e−σ

2

2
Tn
)}

=
Tn<{z}
|z|2 − <{z

2}
|z2|2

(
1− e−σ

2

2
Tn
)

= Tn

(
σ2

2
σ4

4
+ 1

)
−

(
σ4

4
− 1
)

(
σ4

4
− 1
)2

+ σ4

(
1− e−σ

2

2
Tn
)

(7.34)

Therefore, we obtain

∫ Tn

0

∫ Tn

0

ei(u−s)−σ
2|u−s|/2 du ds = 2Tn

(
σ2

2
σ4

4
+ 1

)
− 2

(
σ4

4
− 1
)

(
σ4

4
− 1
)2

+ σ4

(
1− e−σ

2

2
Tn
)

(7.35)

We will use this equation later when we discuss the displacement of the center of

mass and the guiding center. The root-mean-square displacement of the circle in

the reference frame of guiding center is

〈|p(Tn)|2〉 =

〈( ∑

0≤u<Tn
dpu

)2〉
=
∑

u

〈dp2
u〉+

∑

u>s

〈dpsdpu〉+
∑

u<s

〈dpsdpu〉

' σ2Tn +

(
1− σ4

4

)∫ Tn

0

∫ Tn

0

ei(u−s)−σ
2|u−s|/2 du ds

+2<
{
iσ

∫ Tn

0

∫ u

0

e(i−σ2/2)(u−s) du ds

}

= σ2Tn +

(
1− σ4

4

){(
σ2

σ4

4
+ 1

)
Tn −

(σ4 − 4) /2
(
σ4

4
− 1
)2

+ σ4

(
1− e−σ

2

2
Tn
)}

−2

{
σ4

σ4 +
(
1− σ4

4

)2

}[
e(−σ2/2)Tn − 1

]
−
{

2σ2

(
1 + σ4

4

)
}
Tn

=
[
e(−σ2/2)Tn − 1

]{(
1− σ4

4

)
(σ4 − 4) /2

(
σ4

4
− 1
)2

+ σ4
− 2σ4

σ4 +
(
1− σ4

4

)2

}



100

+Tn

{
σ2 +

(
1− σ4

4

)(
σ2

σ4

4
+ 1

)
− 2σ2

1 + σ4

4

}
(7.36)

Calculate the terms in the curly brackets

(
1− σ4

4

)
(σ4 − 4) /2

(
σ4

4
− 1
)2

+ σ4
− 2σ4

σ4 +
(
1− σ4

4

)2

=

(
1− σ4

4

) −2
(

1− σ4

4

)

(
σ4

4
− 1
)2

+ σ4
− 2σ4

σ4 +
(
1− σ4

4

)2

=
−2
(

1− σ4

4

)2

− 2σ4

(
σ4

4
− 1
)2

+ σ4
= −2 (7.37)

and

σ2 +

(
1− σ4

4

)(
σ2

σ4

4
+ 1

)
− 2σ2

1 + σ4

4

= σ2 +

(
1− σ4

4
− 2

)(
σ2

σ4

4
+ 1

)

= σ2 − σ2 = 0 (7.38)

gives us

〈|p(Tn)|2〉
Tn

=
2
(

1− e−σ
2

2
Tn
)

Tn
=

1− e−nπσ2

nπ
(7.39)

In the limit of long time

lim
Tn→∞

〈|p(Tn)|2〉
Tn

= 0 (7.40)

3.3 Displacement of the Center of Mass

The displacement of the center of mass during the time interval [t, t+ dt) is

dxt = ei(θt+σdWt)
(
eidt − 1

)
(7.41)
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and we would like to calculate the root-mean-square of displacement of the center

of mass after n periods,

〈|x(T )|2〉 =

〈∣∣∣∣∣
∑

0≤u<T
dxu

∣∣∣∣∣

2〉
=
∑

u

〈dx2
u〉+

∑

u6=s
〈dxudxs〉 (7.42)

We calculate 〈dxsdxu〉 for cases u = s ≡ t, u > s and u < s. For the first case

dxtdxt =
[
e−i(θt+σdWt)

(
e−idt − 1

)] [
ei(θt+σdWt)

(
eidt − 1

)]

=
(
e−idt − 1

) (
eidt − 1

)
= 2[1− cos(dt)] (7.43)

and

〈dxtdxt〉 = 2 〈1− cos(dt)〉 = dt2 +O(dt4) (7.44)

On the other hand, for u > s,

dxsdxu =
[
e−i(θs+σdWs)

(
e−idts − 1

)] [
ei(θu+σdWu)

(
eidtu − 1

)]

=
[
e−idts − 1

]
exp

(
i(u− s) + iσ

∑

s<t′≤u
dWt′

)
[
eidtu − 1

]

= ei(u−s)
[
e−idts − 1

] [
eidtu − 1

]
eiσdWu exp

(
iσ
∑

s<t′<u

dWt′

)
(7.45)

The terms are independent, and we can take the average,

〈dxsdxu〉 = ei(u−s)
[
e−idts − 1

] [
eidtu − 1

]
〈eiσdWu〉

∏

s<t′<u

〈eiσdWt′ 〉

= ei(u−s)
[
e−idts − 1

] [
eidtu − 1

]
e−σ

2dtu/2
∏

s<t′<u

e−σ
2dt′/2

= ei(u−s)
(
− idts +O(dt2s)

)(
idtu +O(dt2u)

)(
1− σ2dtu/2 +O(dt2u)

)
e−σ

2(u−s)/2

= dtsdtue
i(u−s)e−σ

2(u−s)/2 +O(dt3) (7.46)
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If u < s, the only difference is that u− s becomes s−u; writing |u− s| covers both

cases. Then, for the root-mean-square-displacement of the center of mass we have

〈|x(T )|2〉 =

〈( ∑

0≤u<T
dxu

)2〉
=
∑

u

〈dx2
u〉+

∑

u6=s
〈dxudxs〉

'
(
T

dt

)
dt2 +

∫ T

0

∫ T

0

ei(u−s)−σ
2|u−s|/2 du ds

'
∫ T

0

∫ T

0

ei(u−s)−σ
2|u−s|/2 du ds (7.47)

T

∫ ∞

−∞
eis−σ

2|s|/2 ds = T

( −1

i− σ2/2
+

1

i+ σ2/2

)
= T

σ2

σ4/4 + 1
=

4σ2

σ4 + 4
T (7.48)

Using the identity (7.35) we obtain

〈|x(Tn)|2〉
Tn

'
(

σ2

σ4

4
+ 1

)
− (σ4 − 4) /2
(
σ4

4
− 1
)2

+ σ4

(
1− e−σ

2

2
Tn

Tn

)
(7.49)

Depending on the choice of displacement per number of rotations, 〈|x(Tn)|2〉
Tn

varies.

In the limit of long time, n→∞, this equation reduces to

4D∞ = lim
Tn→∞

〈|x(Tn)|2〉
Tn

'
(

σ2

σ4

4
+ 1

)
(7.50)

3.4 Displacement of the Guiding Center

In this section, we employ the same methodology that we have used in the previous

two sections. The displacement of the guiding center during the time span [t, t+dt)

is

dct = (−eiθt)
[
eiσdWt − 1

]
(7.51)

In order to calculate

〈|c(T )|2〉 =

〈∣∣∣∣∣
∑

0≤u<T
dcu

∣∣∣∣∣

2〉
=
∑

u

〈dc2
u〉+

∑

u6=s
〈dcudcs〉 (7.52)
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we calculate 〈dcsdcu〉 for u = s ≡ t, u > s and u < s. In the first case,

dctdct =
[
e−iσdWs − 1

] [
eiσdWt − 1

]
= 2(1− cos(σdWt)) (7.53)

and to the fist order in dt we have

〈dctdct〉 = 2 〈1− cos(σdWt)〉 = σ2dt+O(dt2). (7.54)

For u > s,

dcsdcu =
[
e−iσdWs − 1

]
exp

(
i(u− s) + iσ

∑

s≤t′<u
dWt′

)
[
eiσdWu − 1

]

= ei(t−s)
[
1− eiσdWs

]
exp

(
iσ
∑

s<t′<u

dWt′

)
[
eiσdWu − 1

]
(7.55)

and averaging gives us

〈dcsdcu〉 = ei(u−s)〈1− eiσdWs〉
∏

s<t′<u

〈eiσdWt′ 〉〈eiσdWu − 1〉

= ei(t−s)
(
− σ2dts/2 +O(dt2)

)
e−σ

2(u−s)/2
(
σ2dtu/2 +O(dt2)

)
(7.56)

If u < s, the only difference is that u− s becomes s−u; writing |u− s| covers both

cases. The root mean square displacement of the guiding center after time Tn is

calculated by

〈|c(Tn)|2〉 =

〈∣∣∣∣∣
∑

0≤u<Tn
dcu

∣∣∣∣∣

2〉
=
∑

u

〈dc2
u〉+

∑

u6=s
〈dcudcs〉

' σ2Tn −
σ4

4

∫ Tn

0

∫ Tn

0

ei(u−s)−σ
2|u−s|/2 du ds (7.57)

Therefore, using identity (7.35), we obtain

〈|c(Tn)|2〉
Tn

'
(

σ2

σ4

4
+ 1

)
+

(
σ4

4

)
(σ4 − 4) /2

(
σ4

4
− 1
)2

+ σ4

(
1− e−σ

2

2
Tn

Tn

)
(7.58)
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Depending on the choice of displacement per number of rotations, 〈|x(Tn)|2〉
Tn

varies.

In the limit of long time n→∞, this equation reduces to

4D∞ = lim
Tn→∞

〈|c(Tn)|2〉
Tn

'
(

σ2

σ4

4
+ 1

)
(7.59)

In the limit, TN →∞, the root-mean-square of displacement of center of mass and

displacement of the guiding center are equal,

4D∞ = lim
Tn→∞

〈|x(Tn)|2〉
Tn

= lim
Tn→∞

〈|c(Tn)|2〉
Tn

(7.60)

So far, we calculated the displacement after time Tn for three different types of

displacement. In the next three sections, we calculate the correlation functions of

these displacements.

3.5 Displacement Correlation Function on the C-Frame

Circle

Let’s define the displacement of the circle during the kth rotation by

∆p(k) = p(Tk)− p(Tk−1) (7.61)

where Tk = 2πk and p(Tk) is the position of the rotor on the circle at time Tk.

Then, we have

∆p(k) =
∑

Tk−1≤u<Tk
dpu (7.62)

The displacement correlation function of on the circle is then defined as

C
∆p

(k) = <
{
〈∆p(1)∆p(k)〉

}
(7.63)

We first calculate the argument, and then take the real part.

〈∆p(1)∆p(k)〉 =

〈 ∑

0≤s<T1

∑

Tk−1≤u<Tk
dpsdpu

〉
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= −
(
i− σ2

2

)2 ∫ T1

0

∫ Tk

Tk−1

ei(u−s)−σ
2(u−s)/2 du ds

=

(
−σ

4

4

)∫ T1

0

e
−
(
i−σ2

2

)
s
ds

∫ Tk

Tk−1

e

(
i−σ2

2

)
u
du

= −
(
i− σ2

2

)2
(
−1(
i− σ2

2

)e−
(
i−σ2

2

)
s
∣∣∣
T1

0

)(
1(

i− σ2

2

)e
(
i−σ2

2

)
u
∣∣∣
Tk

Tk−1

)

= −
(
i− σ2

2

)2 −1
(
i− σ2

2

)2

(
eπσ

2 − 1
)(

e−kπσ
2 − e−(k−1)πσ2

)

= −
(

1− eπσ2
)2

e−kπσ
2

(7.64)

Then,

C
∆p

(k) = −
(

1− eπσ2
)2

e−kπσ
2

(7.65)

3.6 Displacement Correlation Function for the Center of

Mass

Similar to previous section, we define the displacement during the kth rotation by

∆x(k) = x(Tk)− x(Tk−1) (7.66)

where Tk = 2πk and x(Tk) is the position of the center of mass of the powered

random walker at time Tk. Then, we have

∆x(k) =
∑

Tk−1≤u<Tk
dxu (7.67)

The displacement correlation function is then defined as

C
∆x

(k) = <
{
〈∆x(1)∆x(k)〉

}
(7.68)

We have

〈∆x(1)∆x(k)〉 =

〈 ∑

0≤s<T1

∑

Tk−1≤u<Tk
dxsdxu

〉
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=

∫ T1

0

∫ Tk

Tk−1

ei(u−s)−σ
2(u−s)/2 du ds

=

∫ T1

0

e
−
(
i−σ2

2

)
s
ds

∫ Tk

Tk−1

e

(
i−σ2

2

)
u
du

=

(
−1(
i− σ2

2

)e−
(
i−σ2

2

)
s
∣∣∣
T1

0

)(
1(

i− σ2

2

)e
(
i−σ2

2

)
u
∣∣∣
Tk

Tk−1

)

=
−1

(
i− σ2

2

)2

(
eπσ

2 − 1
)(

e−kπσ
2 − e−(k−1)πσ2

)

=
1

(
i− σ2

2

)2

(
1− eπσ2

)2

e−kπσ
2

(7.69)

By taking the real part of this equation, we obtain

C
∆x

(k) =

(
σ4

4
− 1
)

(
σ4

4
− 1
)2

+ σ4

(
1− eπσ2

)2

e−kπσ
2

(7.70)

3.7 Displacement Correlation Function for the Guiding

Center

Let’s define the displacement of the instantaneous center of rotation during the

kth rotation by

∆c(k) = c(Tk)− c(Tk−1) (7.71)

where Tk = 2πk and c(Tk) is the position of the instantaneous center of rotation

of the powered random walker at time Tk. Then, we have

∆c(k) =
∑

Tk−1≤u<Tk
dcu (7.72)

The displacement correlation function of the instantaneous center of rotation is

then defined as

C
∆c

(k) = <
{
〈∆c(1)∆c(k)〉

}
(7.73)
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We have

〈∆c(1)∆c(k)〉 =

〈 ∑

0≤s<T1

∑

Tk−1≤u<Tk
dcsdcu

〉

=

(
−σ

4

4

)∫ T1

0

∫ Tk

Tk−1

ei(u−s)−σ
2(u−s)/2 du ds

=

(
−σ

4

4

)∫ T1

0

e
−
(
i−σ2

2

)
s
ds

∫ Tk

Tk−1

e

(
i−σ2

2

)
u
du

=

(
−σ

4

4

)( −1(
i− σ2

2

)e−
(
i−σ2

2

)
s
∣∣∣
T1

0

)(
1(

i− σ2

2

)e
(
i−σ2

2

)
u
∣∣∣
Tk

Tk−1

)

=

(
−σ

4

4

) −1
(
i− σ2

2

)2

(
eπσ

2 − 1
)(

e−kπσ
2 − e−(k−1)πσ2

)

=

(
−σ

4

4

)
1

(
i− σ2

2

)2

(
1− eπσ2

)2

e−kπσ
2

(7.74)

Then,

C
∆c

(k) =

(
−σ4

4

)(
σ4

4
− 1
)

(
σ4

4
− 1
)2

+ σ4

(
1− eπσ2

)2

e−kπσ
2

(7.75)

By comparison we see

C
∆c

(k) =

(
−σ

4

4

)
C

∆x
(k) (7.76)

4 Results and Discussion

The stochastic orientational dynamics changes the direction of motion of the

nanorotor after each rotation. At low σ2, it is expected to have less deviation

from the circular path, and therefore, less deviation in the direction of velocity

after one rotation (see Fig. 7.4). In this domain the deterministic rotational con-

straint is stronger than the orientational stochastic dynamics. We calculated the

velocity correlation function

Cv(k) = e−k/kc (7.14)
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Figure 7.4. Stochastic rotational dynamics of the nanorotor deviates its path from
circular to quasi-circular. Simultaneously, after one rotation, the direction of velocity v2

of the particle changes with respect to its initial direction v1.

where the characteristic rotation number

kc = (πσ2)−1 (7.15)

is a measure of number of rotations that a nanorotor requires to forget the orien-

tation of its initial velocity. Variances around σ2 = π−1 ' 0.32 represent a domain

where the particle starts to forget its velocity after each rotation.

The dynamics of the nanorotor on the c-frame circle is the result of the motion

of a powered random walker constrained to move on a circular path. We calculated

the mean-square displacement of the particle over time on the c-frame circle,

〈|p(Tn)|2〉
Tn

=
2
(

1− e−σ
2

2
Tn
)

Tn
=

1− e−nπσ2

nπ
(7.39)

With an increase in the time span of measurement, the mean-square displacement

over time decreases (see Fig. 7.5) and over long time goes to zero.

lim
Tn→∞

〈|p(Tn)|2〉
Tn

= 0 (7.40)

This is one of the consequences of being constrained to move on a circular path.
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Figure 7.5. The diffusion 〈|p(Tn)|2〉
Tn

of powered random walker on a circle whose center is
the guiding center. Increase in the time span, Tn = 2πn, over which the random walker
moves, the diffusion on the circle reduces, approaching zero.

Over long time, the particle moves a distance more than half the perimeter of the

circle; however, the current position of the particle on the c-frame circle could be

achieved at earlier times if the particle would choose the reverse direction.

We also observed that the mean-square displacement of center of mass and the

guiding center over long time are equal and linear in time.

4D∞ = lim
Tn→∞

〈|x(Tn)|2〉
Tn

= lim
Tn→∞

〈|c(Tn)|2〉
Tn

'
(

σ2

σ4

4
+ 1

)
(7.60)

This means that the powered random walker over long time behaves as an unpow-

ered random walker with an effective translational diffusion coefficient

D∞ =

(
σ2

4
σ4

4
+ 1

)
(7.77)

In the limit of small σ � 1 we obtain

D∞ ∝ σ2 ⇒ ω

v2
Deff ∝

Dort

ω
⇒ Deff ∝

v2

ω2
Dort (7.78)

which is the same as the result of scaling analysis (7.10). In the limit of σ � 1 we
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Figure 7.6. The functions, fx (solid blue curve), and fc (dashed red curve), multiplied

by 〈|p(Tn)|2〉
Tn

show the deviation of 〈|x(Tn)|2〉
Tn

and 〈|c(Tn)|2〉
Tn

from the limiting value 4D∞.

obtain

D∞ ∝ σ−2 ⇒ ω

v2
Deff ∝

ω

Dort

⇒ Deff ∝
v2

Dort

(7.79)

which is consistent with the scaling analysis (7.9).

For short mean-square displacement over time after n period we have

〈|x(Tn)|2〉
Tn

= 4D∞ + fx(σ)
〈|p(Tn)|2〉

Tn
(7.80)

and
〈|c(Tn)|2〉

Tn
= 4D∞ + fc(σ)

〈|p(Tn)|2〉
Tn

(7.81)
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Figure 7.7. (a) The curves of 〈|x(T1)|〉/T1 (dashed green), 〈|c(T1)|〉/T1 (dotted blue),
and 4D∞ (red). (b) the same curve in more details near the peak. The maximum of
4D∞ occurs at σ2 = 2.
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Figure 7.8. The curves of 〈|x(T1)|2〉
T1

(dashed red) and 4D∞ (solid green) vs σ2. In the
linear-linear plot (a) it seems as both curves almost fall over each other even for small
values of σ2, however the log-linear plot (b) shows that for small values of σ2 the two
curves are distinct and after the peak for large values of σ2 they coincide. (c) is the
peak in more details and (d) is the region where the curves begin to coincide. (Inset:
the linear-linear plot of the main log-linear plot.)

where

fx(σ) =
−
(
σ4

4
− 1
)

(
σ4

4
− 1
)2

+ σ4
(7.82)

and

fc(σ) =

(
σ4

4

)(
σ4

4
− 1
)

(
σ4

4
− 1
)2

+ σ4
(7.83)

are functions of σ2 (see Fig. 7.6). The root-mean-square of displacement after one

rotation, that is, 〈|x(T1)|2〉
T1

and 〈|c(T1)|2〉
T1

along with the limiting behavior 4D∞ are

demonstrated in Fig. (7.7)

For dynamics of the center of mass at small values of σ2 we see that 〈|x(T1)|2〉
T1

and 4D∞ behave as two distinct curves, (see Fig 7.8) while at higher values of σ2,

in a region were fx ' 0 these two curves begin to coincide. With increasing the
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Figure 7.9. The curves of 〈|c(T1)|2〉
T1

(dashed red) and 4D∞ (solid green) vs σ2. The
linear-linear (a) and log-linear (b) plots show that for small values the two curves coincide
and near the peak dissociate. (c) is the peak in more details and (d) is the region where
the curves take parts. (Inset: the linear-linear plot of the main log-linear plot.)

observation time Tn, the curves σ2, 〈|x(Tn)|2〉
Tn

and 4D∞ coincide at smaller values of

σ2.

In the case of the displacement of the guiding center over time, at small values

of σ2, 〈|c(T1)|2〉
T1

and 4D∞ coincide with each other (see Fig 7.8). These two curves

begin to separate in a region were fc ' 0. This is the domain where the velocity of

the nanorotor loses most of its memory (due to the circular path constraint in the

reference frame of the guiding center) after one deterministic period of oscillation.

With increase in the observation time Tn, the curves σ2, 〈|c(Tn)|2〉
Tn

and 4D∞ begin

to separate at higher values of σ2.

The most important outcome of this study is the diffusive behavior of the

nanorotors at long times. To see this more clearly, let’s work in dimensional units

and insert σ2 = 2Dort

ω
and

(
ω
v2

)
Deff = D∞ into the effective translational diffusion
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coefficient (7.77) to obtain

Deff =
1

2

v2

ω

Dort

ω(
Dort

ω

)2
+ 1

(7.84)

This equation demonstrates that the coupling of the deterministic components of

the motion (v and ω) and stochastic orientational diffusion Dort at long times

produces an effective translational diffusion Deff .

The total translational diffusion coefficient Dtot
trs of the nanorotor is the sum of

its translational diffusion coefficient Dtrs and the effective translational diffusion

Deff . So, it is important to know the relative contribution of Dtrs and Deff to Dtot
trs .

It shows the importance of the coupling on the general dynamics of the nanorotor.

The measured translational diffusion coefficient for a 2 µm long nanorod in

water is Dtrs = 0.4 µm2 s−1 [18]. In chapter 6 we calculated the orientational

diffusion coefficient of nanorotors from the videos in the supporting informations

of [30] and [31]. For the former we have ω = 22.29 rpm = 2.334 rad/s−1, Dort =

0.102 rad2s−1, and approximately, v ∼ 10µm/s which gives us σ2 = 0.087 rad2

and Deff = 0.934 µm2 s−1. The effective translational diffusion is more than two

times the nanrod’s translational diffusion. This shows that even for small values of

σ2 � 1, the effective translational diffusion has important effect. For the nanorotor

in [31] we have ω = 279.79 rpm = 29.3 rad s−1, Dort = 0.462 rad2s−1, and approxi-

mately, v ∼ 30µm s−1 [24] which gives us σ2 = 0.032 rad2 and Deff = 0.242 µm2 s−1.

Therefore, in the fast nanorotor, the effective translational diffusion is approxi-

mately half the translational diffusion of the unpowered nanorod.

In addition to the effective translational diffusive dynamics of the nanorotors,

we also calculated the correlation between the displacements after different periods.

The displacement correlation function is defined as the correlation between the

displacements during the first and kth rotation for variable r (= x, c or p) to be

C
∆r

(k) = <
{
〈∆r(1)∆r(k)〉

}
. (7.85)

For the powered random walker on the c-frame circle we have

C
∆p

(k) = −
(

1− eπσ2
)2

e−kπσ
2

. (7.86)



114

0.001 0.01 0.1 1 10 100 1000
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Σ
2

C
D

H2
L

Figure 7.10. (Dotted blue) C∆p(2) (Dashed red) C∆x(2) (Solid Green) C∆c(2). Both
C∆p(2) and C∆c(2) go to -1 at large values of σ.

As we predicted while discussing the difference between moving on a segment with

periodic boundary conditions and on a circle, the correlation function is negative

for displacements on a circle, while it is zero for displacements on the segment with

periodic boundary conditions. This is due to the restriction that the particle has

to move on a circular path. Similarly, we calculated the correlation function for

the displacements of CoM

C
∆x

(k) = fx(σ)C
∆p

(k) (7.87)

and for the displacement of the guiding center,

C
∆c

(k) = fc(σ)C
∆p

(k). (7.88)

It is clear from Fig. 7.10 that both C
∆p

(2) and C
∆c

(2) go to -1 at large values of

σ. This behavior is the direct consequence of chirality and the restriction of the

powered random walker to move on the c-frame circle.

Fig. 7.11 demonstrates the effect of the restriction of motion on the c-frame

circle at large values of σ � 1. We can write the displacement correlation function
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Figure 7.11. ∆p(1) can be written as the sum of two vectors ∆p(1) = a + b where a
is a constant vector, and b varies depending on the amount of the stochastic component
of dynamics over one period. For large values of σ � 1 b can achieve all the possible
orientations. The average of ∆p(2) given ∆p(1) fixed, in this domain of σ is a vector
that begins at the end of ∆p(1) and ends at the center of the circle. Therefore, we have
〈∆p(2)〉∆p(1) = −b.

in the form of

C
∆p

(2) = <
{
〈∆p(1)∆p(2)〉

}
= <

{
〈∆p(1)

(
〈∆p(2)〉∆p(1)

)
〉
}
. (7.89)

In the right hand side 〈∆p(2)〉∆p(1) means the average of ∆p(2) given ∆p(1) is

fixed. During the first period, the powered random walker undergoes the displace-

ment ∆p(1). Since in the regime of large σ the vector ∆p(1) can obtain all the

possible displacement on the circle, the average 〈∆p(2)〉∆p(1) is a vector from the

end of ∆p(1) to the center of the circle. At the same time we can write the vector

∆p(1) in the form of a sum of two other vectors ∆p(1) = a + b where a is a

constant and as shown in Fig. 7.11 we have b = −〈∆p(2)〉∆p(1). Therefore, for

the correlation function we obtain

C
∆p

(2) = <
{
〈∆p(1)

(
〈∆p(2)〉∆p(1)

)
〉
}

= −bb + b〈a〉. (7.90)

Since on a circle of radius 1 we have bb = 1 and in this domain of σ the average

〈a〉 = 0 vanishes, we obtain

C
∆p

(2) = −1 for σ � 1 (7.91)
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which is the behavior we observed in Fig. 7.10.

We can use the same argument for the correlation function of guiding center

reaching −1 at large values of σ. In general we can write

∆x = ∆c + ∆p (7.92)

for the relationship between the three types of displacement. At large values of

σ the characteristic time of deterministic rotation ω−1 is much bigger than the

characteristic time of orientational diffusion D−1
ort. In this domain the displacement

of the center of mass ∆x is negligible compared to the two other types of displace-

ments. Therefore, we can write ∆c ' −∆p and for the displacement correlation

function of the guiding center we have

C
∆c

(2) = <
{
〈∆c(1)∆c(2)〉

}
= <

{
〈
[
−∆p(1)

]
[−∆p(2)〉]

}
= C

∆p
(2) (7.93)

as we observe in Fig. 7.10.



Chapter 8
Future Research

In this thesis, we discussed the deterministic dynamics of electrocatalytic nanomo-

tors, moving by electrokinetic self-propulsion. A mathematical model is proposed

and solved in the limit of thin double layer and small intensity of hydrogen ion

flux for spherical and spheroidal geometries. The models lumps all the kinetic

properties of the chemical reactions on the surface of the particle into a surface

distribution of hydrogen ion flux. Also, the physical properties of the solution, such

as viscosity and diffusivity of ions ,are assumed to be constant. For future work,

we suggest considering an appropriate kinetic model for the chemical reaction and

revisit the model under the new condition.

In the proposed model, we concentrated on the deterministic dynamics of a

single nanomotor in the unbounded domain. We did not consider the motor-motor

interaction and the motor-substrate interaction. The interaction of a nanomotor

with other nanomotors, or the substrate, can be the subject of further studies.

We analyzed the deterministic and the orientational stochastic component of

nanorotor dynamics. We observed that the deterministic motion of a nanorotor is

along a circular path. The coupling of these deterministic dynamics with stochas-

tic orientational dynamics deviates the nanorotor’s trajectory from a circular to a

quasi-circular path. From analyzing the experimental data, we observed that the

stochastic orientational dynamics of nanorotors follows the statistics of a one di-

mensional random walker. We suggest studying the effect of particle geometry on

its orientational diffusion and consequently the deviation from the circular path.

We studied the effect of coupling of deterministic dynamics of nanorotors and
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the stochastic orientational dynamics. This coupling leads to an effective trans-

lational diffusion, which is of the same order of magnitude as the translational

diffusion of unpowered nanorods for the experimentally analyzed nanorotors. We

suggest running experiments to calculate the effective translational diffusion and

compare the data with our theoretical predictions.



Appendix A
Stokes’ Flow Past a Sphere

A sphere of radius r
˜

= a moves with velocity U
˜

= U
˜

Û in a Newtonian fluid of

viscosity µ. Working in units of x
˜
∗ ∼ a and U

˜
∗ ∼ U

˜
, dimensionless quantities are

used to describe the flow by the dimensionless Stokes equation

∇ · T = −∇p+∇2u = 0 (A.1)

and boundary conditions

u = Û at r = 1, (A.2)

u = 0 at r →∞. (A.3)

Taking the divergence of the Stokes equation and using the continuity equation for

incompressible fluid ∇ · u = 0, we obtain the Laplace’s equation for the pressure

field,

∇2p = 0. (A.4)

The fundamental solution of Laplace equation for a given quantity Φ,

∇2Φ = 0 (A.5)

is

Φ(0)(x) =
1

|x| ≡
1

r
(A.6)
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from which we can construct the other solutions of the Laplace equation as decaying

harmonic tensors of rank n as

Φ(−n)(x) = (−1)n
n︷ ︸︸ ︷

∇∇ · · ·∇ 1

r
, (A.7)

and the growing harmonic tensor of rank n as

Φ(n)(x) = r2n+1 Φ(−n)(x). (A.8)

Correspondingly, the first three decaying harmonic tensors, used extensively in our

analysis, in the vectorial and index notation take the forms

Φ(−1)(x) = −∇1

r
=

x

r3
, (A.9)

Φ
(−1)
i (x) =

xi
r3
, (A.10)

Φ(−2)(x) = ∇∇1

r
=

3xx

r5
− I
r3
, (A.11)

Φ
(−2)
ij (x) =

3xixj
r5
− δij
r3
, (A.12)

Φ(−3)(x) = −∇∇∇1

r
, (A.13)

Φ
(−3)
ijk (x) = 3

[
5xixjxk
r7

−
(δijxk

r5
+
δikxj
r5

+
δjkxi
r5

)]
. (A.14)

Therefore, we can write the solution for Laplace equation (A.4) of the pressure

field p as a linear combination of decaying harmonics whose coefficients are linear

in Û,

p = A
(0)
i ÛiΦ

(0) + A
(−1)
ij ÛiΦ

(−1)
j + A

(−2)
ijk ÛiΦ

(−2)
jk + A

(−3)
ijkl ÛiΦ

(−3)
jkl + · · · (A.15)

where “A” tensorial coefficients solely depend on geometry. We cannot use growing

harmonics since they diverge at the far field where the pressure goes to zero. A

sphere is an isotropic object, and these coefficients should be isotropic tensors.

Therefore, A
(0)
i = 0, A

(−1)
ij = λ1δij, A

(−2)
ijk = λ2εijk, A

(−3)
ijkl = λ3δijδkl + λ4δikδjl +

λ5δilδjk, and · · · Because of parity, λ2 = 0 and because of the Laplace equation,

the product A
(−3)
ijkl Φ

(−3)
jkl vanishes. The rest of the terms vanish either due to parity
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or Laplace equation. The pressure solution takes the form

p = A
(−1)
ij ÛiΦ

(−1)
j = λ1δijÛiΦ

(−1)
j = λ1ÛjΦ

(−1)
j ≡ λ1Ûj

xj
r3

(A.16)

The velocity field can be divided into two parts, u = uh + up ; the homogeneous

part uh that only satisfies ∇2uh = 0 and the inhomogeneous (particular) solution

up that satisfies the equation ∇2up −∇p = 0. We have

up =
1

2
px (A.17)

where, in tensor notation, takes the form

upi =
1

2
pxi =

λ1

2
ÛjΦ

(−1)
j xi ≡

λ1

2
Ûj

xjxi
r3

(A.18)

The next step is to find the homogeneous solution of the velocity field. In doing

so, we write the solution as a combination of decaying harmonic terms whose

coefficients are linear in Û.

uhi = C
(0)
ij ÛjΦ

(0) + C
(−1)
ijk ÛjΦ

(−1)
k + C

(−2)
ijkl ÛjΦ

(−2)
kl + C

(−3)
ijklmÛjΦ

(−3)
klm + · · · (A.19)

Again, “C” tensorial coefficients must be isotropic due to the isotropy of the sphere.

Hence, C
(0)
ij = λ′0δij, C

(−1)
ijk = λ′1εijk, C

(−2)
ijkl = λ′2δijδkl + λ′3δikδjl + λ′4δilδjk and · · ·

λ′1 = 0 and C
(−3)
ijklm = 0 because of parity. We have C

(−2)
ijkl Φ

(−2)
kl = (λ′3 + λ′4)Φ

(−2)
ij

as a result of the Laplace equation (Φ
(−2)
kk = 0) and symmetry of Φ

(−2)
ij . Using the

notation λ′′ ≡ λ′3 + λ′4, the homogeneous solution takes the form

uhi = λ′0δijÛjΦ
(0) + λ′′ÛjΦ

(−2)
ij (A.20)

So, we can write the velocity field as

ui = uhi + upi = λ′0δijÛjΦ
(0) +

λ1

2
ÛjΦ

(−1)
j xi + λ′′ÛjΦ

(−2)
ij

= Ûj

[
λ′0δijΦ

(0) +
λ1

2
Φ

(−1)
j xi + λ′′Φ(−2)

ij

]
(A.21)
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We then apply the boundary condition ui(r = 1) = Ûi at the surface of the sphere

Ûi = Ûj

[
λ′0δij +

λ1

2
xjxi + λ′′(3xixj − δij)

]

= Ûj

[
(λ′0 − λ′′)δij + (

λ1

2
+ 3λ′′)xixj

]

= (λ′0 − λ′′)Ûi + (
λ1

2
+ 3λ′′)xixjÛj (A.22)

to obtain

λ′′ = λ′0 − 1 = −λ1

6
. (A.23)

Applying the continuity equation to this flow field

∇ · u = ∂iui = Ûj

[
λ′0δij∂iΦ

(0) +
λ1

2
∂iΦ

(−1)
j xi +

λ1

2
Φ

(−1)
j ∂ixi + λ′′∂iΦ

(−2)
ij

]

= Ûj

[
− λ′0δijΦ(−1)

i − λ1

2
Φ

(−2)
ij xi +

λ1

2
Φ

(−1)
j δii − λ′′Φ(−3)

iij

]

= Ûj

[
− λ′0δij

xi
r3
− λ1

2

(3xixj
r5
− δij
r3

)
xi + 3

λ1

2

xj
r3

]
(A.24)

= (−λ′0 +
λ1

2
)Ûj

xj
r3

= 0 , (A.25)

gives us

λ′0 =
λ1

2
(A.26)

which yields the following values for the coefficients

λ′0 =
3

4
, λ1 =

3

2
, λ′′ = −1

4
(A.27)

Combining these results gives the pressure field and velocity field caused by a

moving sphere in a fluid as

p =
3

2
ÛjΦ

(−1)
j ≡ 3

2
Ûj

xj
r3

(A.28)

ui =
3

4
Ûj

[
δijΦ

(0) + Φ
(−1)
j xi −

1

3
Φ

(−2)
ij

]
(A.29)
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The next step is to calculate the stress tensor in the fluid and the force applied by

the sphere on the fluid. For this purpose, we use the constitutive equation

Tij = −pδij + 2Eij (A.30)

For the strain deformation tensor we write

2Eij = ∂iuj + ∂jui

=
3

4
Ûk

[
δjk∂iΦ

(0) + ∂iΦ
(−1)
k xj + Φ

(−1)
k ∂ixj −

1

3
∂iΦ

(−2)
jk

]

+
3

4
Ûk

[
δik∂jΦ

(0) + ∂jΦ
(−1)
k xi + Φ

(−1)
k ∂jxi −

1

3
∂jΦ

(−2)
ik

]

=
3

4
Ûk

[
− δjkΦ(−1)

i − Φ
(−2)
ik xj + Φ

(−1)
k δij +

1

3
Φ

(−3)
ijk

]

+
3

4
Ûk

[
− δikΦ(−1)

j − Φ
(−2)
jk xi + Φ

(−1)
k δji +

1

3
Φ

(−3)
jik

]

=
3

4
Ûk

[ (
2δijΦ

(−1)
k − δikΦ(−1)

j − δjkΦ(−1)
i

)
−
(

Φ
(−2)
jk xi + Φ

(−2)
ik xj

)
+

2

3
Φ

(−3)
ijk

]

from which we obtain the following relation for the stress tensor

Tij =
−3

4
Ûk

[ (
δikΦ

(−1)
j + δjkΦ

(−1)
i

)
+
(

Φ
(−2)
jk xi + Φ

(−2)
ik xj

)
− 2

3
Φ

(−3)
ijk

]
(A.31)

In order to calculate the drag force applied by a fluid on the sphere we first calculate

traction f̂i = njTij. Working with dimensionless quantities, the normal of the

sphere surface equals the position vector, that is, ni = xi. So, we have (on the

surface of sphere r = 1)

f̂i = xjTij =
−3

4
Ûk

[ (
δikxjxj + δjkxjxi

)
+
(

(3xjxk − δjk)xixj + (3xixk − δik)xjxj
)

−2

3
× 3
(

5xixjxkxj − (δijxkxj + δikxjxj + δjkxixj)
)]

=
−3

4
Ûk

[ (
δik + xkxi

)
+
(

(2xixk) + (3xixk − δik)
)

× −2
(

5xixk − (xkxi + δik + xixk)
)]

=
−3

4
Ûk × 2δik =

−3

2
Ûi (A.32)
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We can now calculate the drag force

F̂ drag
i =

∫

S

f̂idA = 4π ×
(−3

2
Ûi

)
= −6π Ûi (A.33)

The sphere is force free, so the force F̂ applied by the sphere to the fluid is equal

in magnitude to drag force but opposite in direction.

F̂i = −F̂ drag
i = 6π Ûi (A.34)

We can substitute Ûi = 1
6π
F̂i and rewrite the pressure field, velocity field and

stress tensor field in terms of applied force.

p =
1

4π
F̂jΦ

(−1)
j (A.35)

ui =
1

8π
F̂j

[
δijΦ

(0) + Φ
(−1)
j xi −

1

3
Φ

(−2)
ij

]
(A.36)

Tij =
−1

8π
F̂k

[ (
δikΦ

(−1)
j + δjkΦ

(−1)
i

)
+
(

Φ
(−2)
jk xi + Φ

(−2)
ik xj

)
− 2

3
Φ

(−3)
ijk

]
(A.37)

Working with dimensional quantities x
˜

= ax, u
˜

= Uu, p
˜

= µU
a
p, T
˜

= µU
a
T,

F
˜

= µUaF̂, Φ
˜

(0)
i = a−1Φ

(0)
i , Φ

˜
(−1)
i = a−2Φ

(−1)
i , Φ

˜
(−2)
i = a−3Φ

(−2)
i , Φ

˜
(−3)
i = a−4Φ

(−3)
i ,

these equations take the dimensional form

p
˜

=
1

4π
F
˜ j

Φ
˜

(−1)
j (A.38)

u
˜i

=
1

8πµ
F
˜ j
[
δijΦ˜

(0) + Φ
˜

(−1)
j x
˜i
− 1

3
a2Φ
˜

(−2)
ij

]
(A.39)

T
˜ ij

=
−1

8π
F
˜k
[ (

δikΦ˜
(−1)
j + δjkΦ˜

(−1)
i

)
+
(

Φ
˜

(−2)
jk x
˜i

+ Φ
˜

(−2)
ik x
˜j
)
− 2

3
a2Φ
˜

(−3)
ijk

]
(A.40)

The moving sphere in fluid in the limit of a→ 0 acts like a point force of strength

F
˜

. Therefore, the contribution of the moving object to the flow field can be sum-

marized in a terms of F
˜
δ(x− x0) in the Stokes equation

∇
˜
p
˜

+ µ∇
˜

2u
˜

+ F
˜
δ(x− x0) = 0 (A.41)
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The solution to Stokes equation with a point-force is given by

p
˜
(x
˜

) =
1

8π
P
˜ j

(x
˜
,x
˜0)F
˜ j

(A.42)

u
˜i

(x
˜

) =
1

8πµ
G
˜ij

(x
˜
,x
˜0)F
˜ j

(A.43)

T
˜ ij

(x
˜

) =
1

8π
T
˜ ijk

(x
˜
,x
˜0)F
˜k

(A.44)

where using the notation ξ = x− x0, these Green functions are

P
˜ j

(ξ
˜
) = 2Φ

˜
(−1)
j (ξ

˜
)

= 2
ξ
˜
j

ξ
˜

3
(A.45)

G
˜ij

(ξ
˜
) = δijΦ˜

(0) + ξ
˜
iΦ˜

(−1)
j (ξ

˜
)

=
δij
ξ
˜

+
ξ
˜
iξ
˜
j

ξ
˜

3
(A.46)

T
˜ ijk

(ξ
˜
) = −

[ (
δikΦ˜

(−1)
j (ξ

˜
) + δjkΦ˜

(−1)
i (ξ

˜
)
)

+
(
ξ
˜
iΦ˜

(−2)
jk (ξ

˜
) + ξ
˜
jΦ˜

(−2)
ik (ξ

˜
)
)]

= −6
ξ
˜
iξ
˜
jξ
˜
k

ξ
˜

5
(A.47)



Appendix B
Stokes’ Flow Past a Spheroid

1 Spheroid

An spheroid in the Cartesian coordinates is defined by

x2

a2
+
y2

b2
+
z2

b2
≡ x2

a2
+
r2

b2
= 1, (B.1)

where r2 = y2+z2 and b ≤ a. The focal length 2c and the eccentricity e (0 ≤ e < 1)

are related by

c =
√
a2 − b2 = ea (B.2)

and the eccentricity is related to a and b by

(1− e2) =
b2

a2
(B.3)

or

b2 = a2(1− e2). (B.4)

2 Velocity and Pressure Field

For a free stream velocity at infinity of the form

U = U êx (B.5)
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where êx is the unit vector in the x direction, the velocity and pressure fields

around the spheroid are given by [38]

u = U

{
êx − 2αB1,0 êx − α

(
1

R2

− 1

R1

)
(y êy + z êz) + αr2B3,0 êx − 2β∇B1,1

}

(B.6)

and

p = 2µαU

(
1

R1

− 1

R2

)
, (B.7)

respectively, where

α =
2e2

1− e2
β =

e2

−2e+ (1 + e2)Le
, (B.8)

Le = ln

(
1 + e

1− e

)
, (B.9)

R1 =
√

(x+ c)2 + r2, (B.10)

R2 =
√

(x− c)2 + r2, (B.11)

B1,0 = ln

(
R2 − (x− c)
R1 − (x+ c)

)
, (B.12)

B1,1 = R2 −R1 + x B1,0, (B.13)

and

B3,0 =
1

r2

(
x+ c

R1

− x− c
R2

)
. (B.14)

We would like to calculate the stress tensor on the surface of the particle. To do

so we will use the following identities;

∂jR1 =
1

R1

(xj + c δ1j). (B.15)

∂jR2 =
1

R2

(xj − c δ1j). (B.16)

∂jB1,0 =
xj − (R2 + c) δ1j

R2 [R2 − (x1 − c)]
− xj − (R1 − c) δ1j

R1 [R1 − (x1 + c)]
(B.17)

∂

∂xi

[
1

R2

(xj − c δ1j)

]
=
δij
R2

− xixj − c(xiδ1j + xjδ1i) + c2δ1iδ1j

R3
2

(B.18)
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∂

∂xi

[
1

R1

(xj + c δ1j)

]
=
δij
R1

− xixj + c(xiδ1j + xjδ1i) + c2δ1iδ1j

R3
1

(B.19)

∂

∂xi

[
xj − (R2 + c) δ1j

R2 [R2 − (x1 − c)]

]
=

R2δij − (xi − cδ1i)δ1j

R2
2 [R2 − (x1 − c)]

− [xj − (R2 + c) δ1j]

×2R2(xi − c δ1i)− (x1 − c)(xi − c δ1i)−R2
2 δ1i

R3
2 [R2 − (x1 − c)]2

(B.20)

and,

∂

∂xi

[
xj − (R1 − c) δ1j

R1 [R1 − (x1 + c)]

]
=

R1δij − (xi + cδ1i)δ1j

R2
1 [R1 − (x1 + c)]

− [xj − (R1 − c) δ1j]

×2R1(xi + c δ1i)− (x1 + c)(xi + c δ1i)−R2
1 δ1i

R3
1 [R1 − (x1 + c)]2

(B.21)

The normal n̂ on the surface of the spheroid is

ni =
b
a
x1δ1i + a

b
x2δ2i + a

b
x3δ3i√

a2 − e2x2
1

=
1√
R1R2

(a
b

)
(xi − e2x1δ1i) (B.22)

For convenience in the calculations we define the vector

n′i = xi − e2x1δ1i (B.23)

which is related to the normal by nj = 1√
R1R2

(
a
b

)
n′j. The following identities hold

on the surface of the spheroid.

r2 = (1− e2)(a2 − x2
1) (B.24)

R1 = a+ ex1 (B.25)

R2 = a− ex1 (B.26)

B1,0 = ln

(
1 + e

1− e

)
= Le (B.27)

B3,0 =
2e

(1− e2)(a2 − e2x2
1)

=
1

R1R2

2e

(1− e2)
(B.28)



129

a2 − (R1 − c)x1 = (a− x1)R1 (B.29)

a2 − (R2 + c)x1 = (a− x1)R2 (B.30)

a2 + cx1 = aR1 (B.31)

a2 − cx1 = aR2 (B.32)

R1 − (x1 + c) = (1− e)(x− a) (B.33)

R2 − (x1 − c) = (1 + e)(x− a) (B.34)

1

R2

+
1

R1

=
2a

R1R2

(B.35)

1

R2

− 1

R1

=
2ex1

R1R2

(B.36)

n′j(xjδ1i + xiδ1j) = (1− e2)(x1xi + a2δ1i) (B.37)

n′jδ1jδ1i = x1(1− e2)δ1i (B.38)

n′j(xj + cδ1j) = b2 + cx1(1− e2) = R1a(1− e2) (B.39)

xi − (R1 − c) δ1i = (xi − x1δ1i)− [R1 − (x1 + c)]δ1i (B.40)

xi − (R2 + c) δ1i = (xi − x1δ1i)− [R2 − (x1 − c)]δ1i (B.41)

xjxj − e2x1x1 = b2 (B.42)

x2x2 + x3x3 = (1− e2)(a2 − x1x1). (B.43)

1

R2[R2 − (x1 − c)]
− 1

R1[R1 − (x1 + c)]
=

1

R2(a− x1)(1 + e)
− 1

R1(a− x1)(1− e)

=
R1(1− e)−R2(1 + e)

R1R2(a− x1)(1− e2)

=
(R1 −R2)− e(R1 +R2)

R1R2(a− x1)(1− e2)

=
(2ex1)− e(2a)

R1R2(a− x1)(1− e2)
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=
−2e(a− x1)

R1R2(a− x1)(1− e2)

=
−2e

R1R2(1− e2)
(B.44)

1

R2[R2 − (x1 − c)]
+

1

R1[R1 − (x1 + c)]
=

1

R2(a− x1)(1 + e)
+

1

R1(a− x1)(1− e)

=
R1(1− e) +R2(1 + e)

R1R2(a− x1)(1− e2)

=
(R1 +R2) + e(−R1 +R2)

R1R2(a− x1)(1− e2)

=
(2a) + e(−2ex1)

R1R2(a− x1)(1− e2)

=
2(a− e2x1)

R1R2(a− x1)(1− e2)
(B.45)

1

R2 − (x1 − c)
− 1

R1 − (x1 + c)
=

1

(1 + e)(a− x1)
− 1

(1− e)(a− x1)

=
(1− e)− (1 + e)

(1− e2)(a− x1)

=
−2e

(1− e2)(a− x1)
(B.46)

=
−2e(a2 − e2x2

1)

R1R2(1− e2)(a− x1)
(B.47)

2.1 Simplified Velocity Field

To proceed further with deriving the stress tensor, we rewrite the velocity equation

in index notation,

ui/U = (1− 2αB1,0 + αr2B3,0)δ1i − α
(

1

R2

− 1

R1

)
(x2δ2i + x3δ3i)− 2β

∂

∂xi
B1,1

(B.48)
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We first simplify the above equation.

r2B3,0δ1i =

(
x1 + c

R1

− x1 − c
R2

)
δ1i = −x1

(
1

R2

− 1

R1

)
δ1i + c

(
1

R2

+
1

R1

)
δ1i

(B.49)

(
1

R2

− 1

R1

)
(x2δ2i + x3δ3i) =

(
1

R2

− 1

R1

)
(xi − x1δ1i)

=

(
1

R2

− 1

R1

)
xi − x1

(
1

R2

− 1

R1

)
δ1i (B.50)

∂

∂xi
B1,1 = ∂iR2 − ∂iR1 + δ1iB1,0 + x1∂iB1,0

=
1

R2

(xi − c δ1i)−
1

R1

(xi + c δ1i) + δ1iB1,0 + x1∂iB1,0

= xi

(
1

R2

− 1

R1

)
− c δ1i

(
1

R2

+
1

R1

)
+ δ1iB1,0 + x1∂iB1,0 (B.51)

ui/U = δ1i − 2αB1,0δ1i + αr2B3,0δ1i − α
(

1

R2

− 1

R1

)
(xi − x1δ1i)

−α
(

1− e2

e2

)
∂

∂xi
B1,1

= δ1i − 2αB1,0δ1i − αx1

(
1

R2

− 1

R1

)
δ1i + αc

(
1

R2

+
1

R1

)
δ1i

−α
(

1

R2

− 1

R1

)
xi + αx1

(
1

R2

− 1

R1

)
δ1i

−α
(

1− e2

e2

)
xi

(
1

R2

− 1

R1

)
+ α

(
1− e2

e2

)
c δ1i

(
1

R2

+
1

R1

)

−α
(

1− e2

e2

)
δ1iB1,0 − α

(
1− e2

e2

)
x1∂iB1,0

= δ1i − 2αB1,0δ1i − α
(

1− e2

e2

)
δ1iB1,0 − α

(
1− e2

e2

)
x1∂iB1,0

+αc

(
1

R2

+
1

R1

)
δ1i + α

(
1− e2

e2

)
c δ1i

(
1

R2

+
1

R1

)

−α
(

1

R2

− 1

R1

)
xi − α

(
1− e2

e2

)
xi

(
1

R2

− 1

R1

)
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= δ1i − α
(

1 + e2

e2

)
δ1iB1,0 − α

(
1− e2

e2

)
x1∂iB1,0

+
αc

e2

(
1

R2

+
1

R1

)
δ1i −

α

e2

(
1

R2

− 1

R1

)
xi (B.52)

Let’s define

u
(1)
i = δ1iB1,0 (B.53)

u
(2)
i =

(
1

R2

+
1

R1

)
cδ1i −

(
1

R2

− 1

R1

)
xi (B.54)

u
(3)
i = ∂iB1,0 (B.55)

The velocity formula then takes the form

ui = δ1i − α
(

1 + e2

e2

)
u

(1)
i +

( α
e2

)
u

(2)
i − α

(
1− e2

e2

)
x1u

(3)
i (B.56)

We further define

α′ =
αU

e2
(B.57)

to obtain

ui = Uδ1i − α′(1 + e2)u
(1)
i + α′u(2)

i − α′(1− e2)x1u
(3)
i (B.58)

3 The Distribution of Traction on the Surface of

the Spheroid

3.1 Introduction to Strain Tensor Eji

For the gradient of velocity field, we have

∂jui = −α′(1 + e2)∂ju
(1)
i + α′∂ju

(2)
i − α′(1− e2)∂j(x1u

(3)
i )

= −α′(1 + e2)∂ju
(1)
i + α′∂ju

(2)
i − α′(1− e2)δ1ju

(3)
i − α′(1− e2)x1∂ju

(3)
i

(B.59)



133

We form the strain tensor, Eji = ∂iuj + ∂jui, from the velocity field

Eji = −α′(1 + e2)
[
∂ju

(1)
i + ∂iu

(1)
j

]
+ α′

[
∂ju

(2)
i + ∂iu

(2)
j

]
(B.60)

−α′(1− e2)
[
δ1ju

(3)
i + δ1iu

(3)
j

]
− α′(1− e2)x1

[
∂ju

(3)
i + ∂iu

(3)
j

]

where

δ1ju
(3)
i = δ1j∂iB1,0 = ∂i(δ1jB1,0) = ∂iu

(1)
j , (B.61)

and

δ1ju
(3)
i + δ1iu

(3)
j = ∂iu

(1)
j + ∂ju

(1)
i (B.62)

Therefore, the strain tensor takes the form

Eji = −2α′
[
∂ju

(1)
i + ∂iu

(1)
j

]
+ α′

[
∂ju

(2)
i + ∂iu

(2)
j

]
− α′(1− e2)x1

[
∂ju

(3)
i + ∂iu

(3)
j

]

(B.63)

Defining

E
(k)
ji = ∂iu

(k)
j + ∂ju

(k)
i k = 1, 2, 3 (B.64)

we can write the strain tensor in the form

Eji = −2α′E(1)
ji + α′E(2)

ji − α′(1− e2)x1E
(3)
ji (B.65)

In order to calculate the distribution of traction on the surface of the spheroid

we need to calculate njEji. To do so, we first calculate the terms n′jE
(k)
ji for each k

and later form the final equation for the distribution of traction. We will decompose

the elements into two perpendicular directions δ1i and xi − x1δ1i. The first one

δ1i represents the direction of the symmetric axis and the second one xi − x1δ1i

represent the vectors in a plane perpendicular to the axis of symmetry.

3.2 Term n′jE
(1)
ji

We use the identity

∂jB1,0 =
xj − (R2 + c) δ1j

R2 [R2 − (x1 − c)]
− xj − (R1 − c) δ1j

R1 [R1 − (x1 + c)]
(B.66)
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to calculate

E
(1)
ij = E

(1)
ji = ∂j(B1,0δ1i) + ∂i(B1,0δ1j) =

(xjδ1i + xiδ1j)− 2(R2 + c) δ1jδ1i

R2 [R2 − (x1 − c)]

− (xjδ1i + xiδ1j)− 2(R1 − c) δ1jδ1i

R1 [R1 − (x1 + c)]

(B.67)

Using the identities

n′j(xjδ1i + xiδ1j) = (1− e2)(a2δ1i + x1xi) (B.68)

and

n′jδ1jδ1i = (1− e2)x1δ1i (B.69)

we obtain

n′jE
(1)
ji = (1− e2)

{
(a2δ1i + x1xi)− 2(R2 + c) x1δ1i

R2 [R2 − (x1 − c)]
− (a2δ1i + x1xi)− 2(R1 − c) x1δ1i

R1 [R1 − (x1 + c)]

}

(B.70)

To simplify the equation further, we separate the terms and use the appropriate

identities.

n′jE
(1)
ji = (1− e2)

{
(a2δ1i + x1xi)

(
1

R2[R2 − (x1 − c)]
− 1

R1[R1 − (x1 + c)]

)

−2x1δ1i

(
R2

R2[R2 − (x1 − c)]
− R1

R1[R1 − (x1 + c)]

)

−2cx1δ1i

(
1

R2[R2 − (x1 − c)]
+

1

R1[R1 − (x1 + c)]

)}

= (1− e2)

{
(a2δ1i + x1xi)

(
1

R2[R2 − (x1 − c)]
− 1

R1[R1 − (x1 + c)]

)

−2x1δ1i

(
1

R2 − (x1 − c)
− 1

R1 − (x1 + c)

)

−2eax1δ1i

(
1

R2[R2 − (x1 − c)]
+

1

R1[R1 − (x1 + c)]

)}

= (1− e2)

{
(a2δ1i + x1xi)

1

R1R2

( −2e

1− e2

)
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−2x1δ1i

( −2e(a2 − e2x2
1)

R1R2(1− e2)(a− x1)

)

−2eax1δ1i

(
2(a− e2x1)

R1R2(a− x1)(1− e2)

)}

=
−2e

R1R2

{
(a2δ1i + x1xi)− 2x1δ1i

(
a2 − e2x2

1

a− x1

)
+ 2ax1δ1i

(
a− e2x1

a− x1

)}

(B.71)

−2x1δ1i

(
a2 − e2x2

1

a− x1

)
+ 2ax1δ1i

(
a− e2x1

a− x1

)

= −2x1δ1i

(
a2 − e2x2

1

a− x1

− a2 − e2ax1

a− x1

)

= −2x1δ1i

(
e2x1(a− x1)

a− x1

)
= −2e2x2

1δ1i

(B.72)

Then we have

n′jE
(1)
ji =

−2e

R1R2

{
(a2δ1i + x1xi)− 2e2x2

1δ1i

}
(B.73)

We decompose this equation into the two perpendicular directions δ1i and xi−x1δ1i.

(a2δ1i + x1xi)− 2e2x2
1δ1i = (a2δ1i + x1xi − x1x1δ1i + x1x1δ1i)− 2e2x2

1δ1i

= a2δ1i + x1(xi − x1δ1i) + x1x1δ1i − 2e2x2
1δ1i

= x1(xi − x1δ1i) + (a2 + x2
1 − 2e2x2

1)δ1i (B.74)

Therefore, the first term of the strain tensor becomes

n′jE
(1)
ji =

−2ex1

R1R2

(xi − x1δ1i) +
−2e(a2 + x2

1 − 2e2x2
1)

R1R2

δ1i (B.75)

3.3 Term n′jE
(2)
ji

For R1 =
√

(x1 + c)2 + x2
2 + x3

3 the derivative with respect to xj gives

∂jR1 =
1

2R1

∂j
[
(x1 + c)2 + x2

2 + x3
3

]
=

1

R1

(xj + c δ1j). (B.76)
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Similarly, for R2 =
√

(x1 − c)2 + x2
2 + x3

3 we have

∂jR2 =
1

2R2

∂j
[
(x1 − c)2 + x2

2 + x3
3

]
=

1

R2

(xj − c δ1j). (B.77)

u
(2)
i =

(
1

R2

+
1

R1

)
cδ1i −

(
1

R2

− 1

R1

)
xi (B.78)

∂j

(
1

R2

+
1

R1

)
cδ1i = −

[
(xj − c δ1j)

R3
2

+
(xj + c δ1j)

R3
1

]
cδ1i

=

(
1

R3
2

+
1

R3
1

)
(−cxjδ1i) +

(
1

R3
2

− 1

R3
1

)
c2δ1iδ1j(B.79)

∂j

[
−xi

(
1

R2

− 1

R1

)]
= −δij

(
1

R2

− 1

R1

)
+ xi

[
(xj − c δ1j)

R3
2

− (xj + c δ1j)

R3
1

]

= −δij
(

1

R2

− 1

R1

)
+ xixj

(
1

R3
2

− 1

R3
1

)

−cxiδ1j

(
1

R3
2

+
1

R3
1

)
(B.80)

Therefore,

∂ju
(2)
i = −δij

(
1

R2

− 1

R1

)
+ (xixj + c2δ1iδ1j)

(
1

R3
2

− 1

R3
1

)

−c(xiδ1j + xjδ1i)

(
1

R3
2

+
1

R3
1

)
(B.81)

and consequently,

E
(2)
ji = −2δij

(
1

R2

− 1

R1

)
+ 2(xixj + c2δ1iδ1j)

(
1

R3
2

− 1

R3
1

)

−2c(xiδ1j + xjδ1i)

(
1

R3
2

+
1

R3
1

)
(B.82)

Using the identities

n′jδji = n′i = xi − e2x1δ1i (B.83)
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n′j(xixj + c2δ1iδ1j) = a2(1− e2)(xi + e2x1δ1i) (B.84)

n′j(xiδ1j + xjδ1i) = (1− e2)(x1xi + a2δ1i) (B.85)

we obtain

n′jE
(2)
ji = −2(xi − e2x1δ1i)

(
1

R2

− 1

R1

)
+ 2a2(1− e2)(xi + e2x1δ1i)

(
1

R3
2

− 1

R3
1

)

−2c(1− e2)(x1xi + a2δ1i)

(
1

R3
2

+
1

R3
1

)
(B.86)

We need to simplify this equation further. First we decompose the terms into the

two perpendicular directions δ1i and xi − x1δ1i .

xi − e2x1δ1i = xi − x1δ1i + x1δ1i − e2x1δ1i = (xi − x1δ1i) + (1− e2)x1δ1i (B.87)

xi + e2x1δ1i = xi − x1δ1i + x1δ1i + e2x1δ1i = (xi − x1δ1i) + (1 + e2)x1δ1i (B.88)

x1xi+a2δ1i = x1xi−x1x1δ1i+x1x1δ1i+a2δ1i = x1(xi−x1δ1i)+(x2
1 +a2)δ1i (B.89)

1

R2

− 1

R1

=
R1 −R2

R1R2

=
(a+ ex)− (a− ex)

R1R2

=
2ex1

R1R2

(B.90)

a

(
1

R3
2

− 1

R3
1

)
− ex1

(
1

R3
2

+
1

R3
1

)
=

1

R3
2

(a− ex1)− 1

R3
1

(a+ ex1) =
1

R2
2

− 1

R2
1

(B.91)

and

(1 + e2)ax1

(
1

R3
2

− 1

R3
1

)
− e(x2

1 + a2)

(
1

R3
2

+
1

R3
1

)

=
1

R3
2

(ax1 + e2ax1 − ex2
1 − ea2)− 1

R3
1

(ax1 + e2ax1 + ex2
1 + ea2)

=
1

R3
2

(a− ex1)(x1 − ea)− 1

R3
1

(a+ ex1)(x1 + ea)

=
(x1 − ea)

R2
2

− (x1 + ea)

R2
1

(B.92)
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which gives

2a2(1− e2)(xi + e2x1δ1i)

(
1

R3
2

− 1

R3
1

)
− 2c(1− e2)(x1xi + a2δ1i)

(
1

R3
2

+
1

R3
1

)

= 2a(1− e2)

{
a(xi + e2x1δ1i)

(
1

R3
2

− 1

R3
1

)
− e(x1xi + a2δ1i)

(
1

R3
2

+
1

R3
1

)}

= 2a(1− e2)

{
a[(xi − x1δ1i) + (1 + e2)x1δ1i]

(
1

R3
2

− 1

R3
1

)

−e[x1(xi − x1δ1i) + (x2
1 + a2)δ1i]

(
1

R3
2

+
1

R3
1

)}

= 2a(1− e2)

{
(xi − x1δ1i)

[
a

(
1

R3
2

− 1

R3
1

)
− ex1

(
1

R3
2

+
1

R3
1

)]

+δ1i

[
(1 + e2)ax1

(
1

R3
2

− 1

R3
1

)
− e(x2

1 + a2)

(
1

R3
2

+
1

R3
1

)]}

= 2a(1− e2)

{
(xi − x1δ1i)

(
1

R2
2

− 1

R2
1

)
+ δ1i

[
(x1 − ea)

R2
2

− (x1 + ea)

R2
1

]}

(B.93)

Therefore,

n′jE
(2)
ji = − 4ex1

R1R2

[(xi − x1δ1i) + (1− e2)x1δ1i]

+2a(1− e2)

{
(xi − x1δ1i)

(
1

R2
2

− 1

R2
1

)
+ δ1i

[
(x1 − ea)

R2
2

− (x1 + ea)

R2
1

]}

(B.94)

Recasting the above equation, we get

n′jE
(2)
ji =

−4ex1

R1R2

(xi − x1δ1i) + 2a(1− e2)

(
1

R2
2

− 1

R2
1

)
(xi − x1δ1i)

+
−4ex2

1

R1R2

(1− e2)δ1i + 2a(1− e2)

[
(x1 − ea)

R2
2

− (x1 + ea)

R2
1

]
δ1i

(B.95)

Using

(x1 − ea)

R2
2

− (x1 + ea)

R2
1

= x1

(
1

R2
2

− 1

R2
1

)
− ea

(
1

R2
2

+
1

R2
1

)
(B.96)
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the final form at this stage becomes

n′jE
(2)
ji =

−4ex1

R1R2

(xi − x1δ1i) + 2a(1− e2)

(
1

R2
2

− 1

R2
1

)
(xi − x1δ1i)

+
−4ex2

1

R1R2

(1− e2)δ1i + 2ax1(1− e2)

(
1

R2
2

− 1

R2
1

)
δ1i

−2ea2(1− e2)

(
1

R2
2

+
1

R2
1

)
δ1i (B.97)

3.4 Term n′jE
(3)
ji

Finally, we would like to calculate

E
(3)
ji = ∂iu

(3)
j + ∂ju

(3)
i = ∂i∂jB1,0 + ∂j∂iB1,0 (B.98)

We have

∂jB1,0 =
xj − (R2 + c) δ1j

R2 [R2 − (x1 − c)]
− xj − (R1 − c) δ1j

R1 [R1 − (x1 + c)]
(B.99)

and from that

∂

∂xi

(
xj − (R2 + c) δ1j

R2 [R2 − (x1 − c)]

)
=

δij − 1
R2

(xi − cδ1i)δ1j

R2 [R2 − (x1 − c)]
− [xj − (R2 + c) δ1j]

× [R2 − (x1 − c)] ∂iR2 +R2 [∂iR2 − ∂ix1]

R2
2 [R2 − (x1 − c)]2

=
R2δij − (xi − cδ1i)δ1j

R2
2 [R2 − (x1 − c)]

− [xj − (R2 + c) δ1j]

×
2(xi − c δ1i)− 1

R2
(x1 − c)(xi − c δ1i)−R2 δ1i

R2
2 [R2 − (x1 − c)]2

=
R2δij − (xi − cδ1i)δ1j

R2
2 [R2 − (x1 − c)]

− [xj − (R2 + c) δ1j]

×
(

2R2(xi − c δ1i)− (x1 − c)(xi − c δ1i)−R2
2 δ1i

R3
2 [R2 − (x1 − c)]2

)

(B.100)

and similarly,

∂

∂xi

(
xj − (R1 − c) δ1j

R1 [R1 − (x1 + c)]

)
=

R1δij − (xi + cδ1i)δ1j

R2
1 [R1 − (x1 + c)]

− [xj − (R1 − c) δ1j]
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×2R1(xi + c δ1i)− (x1 + c)(xi + c δ1i)−R2
1 δ1i

R3
1 [R1 − (x1 + c)]2

(B.101)

So, we can write

∂i∂jB1,0 =

(
R2δij − (xi − cδ1i)δ1j

R2
2 [R2 − (x1 − c)]

)

−[xj − (R2 + c) δ1j]

(
2R2(xi − c δ1i)− (x1 − c)(xi − c δ1i)−R2

2 δ1i

R3
2 [R2 − (x1 − c)]2

)

−
(
R1δij − (xi + cδ1i)δ1j

R2
1 [R1 − (x1 + c)]

)

+[xj − (R1 − c) δ1j]

(
2R1(xi + c δ1i)− (x1 + c)(xi + c δ1i)−R2

1 δ1i

R3
1 [R1 − (x1 + c)]2

)

(B.102)

and therefore,

E
(3)
ij =

(
2R2δij − (xiδ1j + xjδ1i) + 2cδ1iδ1j

R2
2 [R2 − (x1 − c)]

)

−[xj − (R2 + c) δ1j]

(
2R2(xi − c δ1i)− (x1 − c)(xi − c δ1i)−R2

2 δ1i

R3
2 [R2 − (x1 − c)]2

)

−[xi − (R2 + c) δ1i]

(
2R2(xj − c δ1j)− (x1 − c)(xj − c δ1j)−R2

2 δ1j

R3
2 [R2 − (x1 − c)]2

)

−
(

2R1δij − (xiδ1j + xjδ1i)− 2cδ1iδ1j

R2
1 [R1 − (x1 + c)]

)

+[xj − (R1 − c) δ1j]

(
2R1(xi + c δ1i)− (x1 + c)(xi + c δ1i)−R2

1 δ1i

R3
1 [R1 − (x1 + c)]2

)

+[xi − (R1 − c) δ1i]

(
2R1(xj + c δ1j)− (x1 + c)(xj + c δ1j)−R2

1 δ1j

R3
1 [R1 − (x1 + c)]2

)

(B.103)

Using this relation, we can write down the last term of strain tensor as

n′jE
(3)
ji =

(
2R2(xi − e2x1δ1i)− (1− e2)(x1xi + a2δ1i) + 2c x1(1− e2)δ1i

R2
2 [R2 − (x1 − c)]

)

−(1− e2)(a− x1)R2

(
[2R2 − (x1 − c)](xi − c δ1i)−R2

2 δ1i

R3
2 [R2 − (x1 − c)]2

)
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−[xi − (R2 + c) δ1i]

(
[2R2 − (x1 − c)]aR2(1− e2)−R2

2 (1− e2)x1

R3
2 [R2 − (x1 − c)]2

)

−
(

2R1(xi − e2x1δ1i)− (1− e2)(x1xi + a2δ1i)− 2c x1(1− e2)δ1i

R2
1 [R1 − (x1 + c)]

)

+(1− e2)(a− x1)R1

(
[2R1 − (x1 + c)](xi + c δ1i)−R2

1 δ1i

R3
1 [R1 − (x1 + c)]2

)

+[xi − (R1 − c) δ1i]

(
[2R1 − (x1 + c)]aR1(1− e2)−R2

1 (1− e2)x1

R3
1 [R1 − (x1 + c)]2

)

(B.104)

Using c = ea, R1 = a+ ex1 and R2 = a− ex1 we have the identities

x1xi+a
2δ1i−2cx1δ1i = x1(xi−cδ1i)+aδ1i(a−ex1) = x1(xi−cδ1i)+aδ1iR2 (B.105)

x1xi + a2δ1i + 2cx1δ1i = x1(xi + cδ1i) + aδ1iR1 (B.106)

xi − (R1 − c) δ1i = (xi − x1δ1i)− [R1 − (x1 + c)]δ1i (B.107)

xi − (R2 + c) δ1i = (xi − x1δ1i)− [R2 − (x1 − c)]δ1i (B.108)

For the ease of dealing with simplifying these equations, we define

A1 = [R1 − (x1 + c)] = (1− e)(a− x1) (B.109)

and

A2 = [R2 − (x1 − c)] = (1 + e)(a− x1) (B.110)

to achieve

n′jE
(3)
ji =

(
2R2(xi − e2x1δ1i)− (1− e2)[x1(xi − cδ1i) + aR2δ1i]

R2
2A2

)

−(1− e2)(a− x1)

(
(R2 + A2)(xi − c δ1i)−R2

2 δ1i

R2
2A

2
2

)

−(1− e2)[(xi − x1δ1i)− A2δ1i]

(
aA2 + (a− x1)R2

R2
2A

2
2

)

−
(

2R1(xi − e2x1δ1i)− (1− e2)[x1(xi + cδ1i) + aR1δ1i]

R2
1A1

)

+(1− e2)(a− x1)

(
(R1 + A1)(xi + c δ1i)−R2

1 δ1i

R2
1A

2
1

)
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+(1− e2)[(xi − x1δ1i)− A1δ1i]

(
aA1 + (a− x1)R1

R2
1A

2
1

)

(B.111)

and then simplifying

n′jE
(3)
ji =

(
2R2(xi − e2x1δ1i)− (1− e2)[x1(xi − cδ1i) + aR2δ1i]

R2
2A2

)

−(1− e)
(
A2(xi − c δ1i) +R2[xi − (R2 + c)δ1i]

R2
2A2

)

−[(xi − x1δ1i)− A2δ1i]

(
a(1− e2) + (1− e)R2

R2
2A2

)

−
(

2R1(xi − e2x1δ1i)− (1− e2)[x1(xi + cδ1i) + aR1δ1i]

R2
1A1

)

+(1 + e)

(
A1(xi + c δ1i) +R1[xi − (R1 − c)δ1i]

R2
1A1

)

+[(xi − x1δ1i)− A1δ1i]

(
a(1− e2) + (1 + e)R1

R2
1A1

)
(B.112)

We can further write it in the form

n′jE
(3)
ji =

(
2R2(xi − e2x1δ1i)− (1− e2)[x1(xi − cδ1i) + aR2δ1i]

R2
2A2

)

−
(

(1− e)A2(xi − c δ1i) + (1− e)R2[(xi − x1δ1i)− A2δ1i]

R2
2A2

)

−[(xi − x1δ1i)− A2δ1i]

(
a(1− e2) + (1− e)R2

R2
2A2

)

−
(

2R1(xi − e2x1δ1i)− (1− e2)[x1(xi + cδ1i) + aR1δ1i]

R2
1A1

)

+

(
(1 + e)A1(xi + c δ1i) + (1 + e)R1[(xi − x1δ1i)− A1δ1i]

R2
1A1

)

+[(xi − x1δ1i)− A1δ1i]

(
a(1− e2) + (1 + e)R1

R2
1A1

)
(B.113)

to

n′jE
(3)
ji =

(
2R2(xi − e2x1δ1i)− (1− e2)[x1(xi − cδ1i) + aR2δ1i]

R2
2A2

)
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−
(

(1− e)(xi − c δ1i)

R2
2

)

−[(xi − x1δ1i)− A2δ1i]

(
a(1− e2) + 2(1− e)R2

R2
2A2

)

−
(

2R1(xi − e2x1δ1i)− (1− e2)[x1(xi + cδ1i) + aR1δ1i]

R2
1A1

)

+

(
(1 + e)(xi + c δ1i)

R2
1

)

+[(xi − x1δ1i)− A1δ1i]

(
a(1− e2) + 2(1 + e)R1

R2
1A1

)
(B.114)

Dissociating the terms yields

n′jE
(3)
ji =

(
2(xi − e2x1δ1i)

R2A2

− (1− e2)x1(xi − cδ1i)

R2
2A2

− (1− e2)aδ1i

R2A2

)

−
(

(1− e)(xi − c δ1i)

R2
2

)

−[(xi − x1δ1i)− A2δ1i]

(
a(1− e2)

R2
2A2

+
2(1− e)
R2A2

)

−
(

2(xi − e2x1δ1i)

R1A1

− (1− e2)x1(xi + cδ1i)

R2
1A1

− (1− e2)aδ1i

R1A1

)

+

(
(1 + e)(xi + c δ1i)

R2
1

)

+[(xi − x1δ1i)− A1δ1i]

(
a(1− e2)

R2
1A1

+
2(1 + e)

R1A1

)
(B.115)

Using the identities

(1− e2)x1(xi − cδ1i)

R2
2A2

+
(1− e)(xi − c δ1i)

R2
2

=
(1− e2)a(xi − cδ1i)

R2
2A2

(B.116)

(1− e2)x1(xi + cδ1i)

R2
1A1

+
(1 + e)(xi + c δ1i)

R2
1

=
(1− e2)a(xi + cδ1i)

R2
1A1

(B.117)

we get

n′jE
(3)
ji =

(
2(xi − e2x1δ1i)

R2A2

− (1− e2)a(xi − cδ1i)

R2
2A2

− (1− e2)aδ1i

R2A2

)

−[(xi − x1δ1i)− A2δ1i]

(
a(1− e2)

R2
2A2

+
2(1− e)
R2A2

)
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−
(

2(xi − e2x1δ1i)

R1A1

− (1− e2)a(xi + cδ1i)

R2
1A1

− (1− e2)aδ1i

R1A1

)

+[(xi − x1δ1i)− A1δ1i]

(
a(1− e2)

R2
1A1

+
2(1 + e)

R1A1

)
(B.118)

We further use the identities

xi + cδ1i = (xi − x1δ1i)− A1δ1i +R1δ1i (B.119)

xi − cδ1i = (xi − x1δ1i)− A2δ1i +R2δ1i (B.120)

to obtain

n′jE
(3)
ji =

(
2(xi − e2x1δ1i)

R2A2

− 2(1− e2)aδ1i

R2A2

)

−[(xi − x1δ1i)− A2δ1i]

(
2a(1− e2)

R2
2A2

+
2(1− e)
R2A2

)

−
(

2(xi − e2x1δ1i)

R1A1

− 2(1− e2)aδ1i

R1A1

)
(B.121)

+[(xi − x1δ1i)− A1δ1i]

(
2a(1− e2)

R2
1A1

+
2(1 + e)

R1A1

)

recasting the equation we get

n′jE
(3)
ji = −[(xi − x1δ1i)− A2δ1i]

[
2a(1− e2)

R2
2A2

]

+

(
2

R2A2

)[
(xi − e2x1δ1i)− (1− e2)aδ1i − [(xi − x1δ1i)− A2δ1i](1− e)

]

+[(xi − x1δ1i)− A1δ1i]

[
2a(1− e2)

R2
1A1

]

−
(

2

R1A1

)[
(xi − e2x1δ1i)− (1− e2)aδ1i − [(xi − x1δ1i)− A1δ1i](1 + e)

]

(B.122)

Thus gives

(xi − e2x1δ1i)− (1− e2)aδ1i − [(xi − x1δ1i)− A2δ1i](1− e)
= (xi − e2x1δ1i)− (1− e2)aδ1i − (1− e)(xi − x1δ1i) + (a− x1)(1− e2)δ1i
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= (xi − e2x1δ1i)− (xi − x1δ1i − exi + ex1δ1i)− (1− e2)x1δ1i

= (1− e2)x1δ1i + e(xi − x1δ1i)− (1− e2)x1δ1i

= e(xi − x1δ1i) (B.123)

Similarly, we have

(xi − e2x1δ1i)− (1− e2)aδ1i − [(xi − x1δ1i)− A1δ1i](1 + e)

= (xi − e2x1δ1i)− (1− e2)aδ1i − (1 + e)(xi − x1δ1i) + (a− x1)(1− e2)δ1i

= (xi − e2x1δ1i)− (xi − x1δ1i + exi − ex1δ1i)− (1− e2)x1δ1i

= (1− e2)x1δ1i − e(xi − x1δ1i)− (1− e2)x1δ1i

= −e(xi − x1δ1i) (B.124)

n′jE
(3)
ji = −2a(1− e2)(xi − x1δ1i)

(
1

R2
2A2

− 1

R2
1A1

)

+2a(1− e2)δ1i

(
1

R2
2

− 1

R2
1

)

+2e(xi − x1δ1i)

(
1

R2A2

+
1

R1A1

)

= 2a(1− e2)δ1i

(
1

R2
2

− 1

R2
1

)

+2(xi − x1δ1i)

{
e

(
1

R2A2

+
1

R1A1

)
− a(1− e2)

(
1

R2
2A2

− 1

R2
1A1

)}

(B.125)

1

R2A2

+
1

R1A1

=
1

R2(1 + e)(a− x1)
+

1

R1(1− e)(a− x1)

=

(
1

R1R2(1− e2)(a− x1)

)
[R1(1− e) +R2(1 + e)]

=

(
1

R1R2(1− e2)(a− x1)

)
[(a+ ex1)(1− e) + (a− ex1)(1 + e)]

=

(
1

R1R2(1− e2)(a− x1)

)

×{a[(1− e) + (1 + e)] + ex1[(1− e)− (1 + e)]}
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=
2(a− e2x1)

R1R2(1− e2)(a− x1)
=

2(a2 − e2x2
1)(a− e2x1)

R2
1R

2
2(1− e2)(a− x1)

=
2(a3 − e2a2x1 − e2ax2

1 + e4x3
1)

R2
1R

2
2(1− e2)(a− x1)

(B.126)

1

R2
2A2

− 1

R2
1A1

=
1

R2
2(1 + e)(a− x1)

− 1

R2
1(1− e)(a− x1)

=

(
1

R2
1R

2
2(1− e2)(a− x1)

)
[R2

1(1− e)−R2
2(1 + e)]

=

(
1

R2
1R

2
2(1− e2)(a− x1)

)
[(a+ ex1)2(1− e)− (a− ex1)2(1 + e)]

=

(
1

R2
1R

2
2(1− e2)(a− x1)

)

×{[(a+ ex1)2 − (a− ex1)2]− e[(a+ ex1)2 + (a− ex1)2]}

=

(
1

R2
1R

2
2(1− e2)(a− x1)

)
[4eax1 − 2e(a2 + e2x2

1)] (B.127)

(a3 − e2a2x1 − e2ax2
1 + e4x3

1)− a(1− e2)[2ax1 − (a2 + e2x2
1)]

= (a3 − e2a2x1 − e2ax2
1 + e4x3

1)

−(2a2x1 − a3 − e2ax2
1 − 2e2a2x1 + e2a3 + e4ax2

1)

= 2a3 + e2a2x1 + e4x3
1 − (2a2x1 + e2a3 + e4ax2

1)

= 2a2(a− x1)− e2a2(a− x1)− e4x2
1(a− x1)

= (2a2 − e2a2 − e4x2
1)(a− x1) (B.128)

e

(
1

R2A2

+
1

R1A1

)
− a(1− e2)

(
1

R2
2A2

− 1

R2
1A1

)

=

(
2e(a3 − e2a2x1 − e2ax2

1 + e4x3
1)

R2
1R

2
2(1− e2)(a− x1)

)
− a(1− e2)

(
2e[2ax1 − (a2 + e2x2

1)]

R2
1R

2
2(1− e2)(a− x1)

)

=

(
2e

R2
1R

2
2(1− e2)(a− x1)

)

×{(a3 − e2a2x1 − e2ax2
1 + e4x3

1)− a(1− e2)[2ax1 − (a2 + e2x2
1)]}

=

(
2e

R2
1R

2
2(1− e2)(a− x1)

)
{(2a2 − e2a2 − e4x2

1)(a− x1)}
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=
2e(2a2 − e2a2 − e4x2

1)

R2
1R

2
2(1− e2)

(B.129)

n′jE
(3)
ji = 2a(1− e2)

(
1

R2
2

− 1

R2
1

)
δ1i +

(
4e(2a2 − e2a2 − e4x2

1)

R2
1R

2
2(1− e2)

)
(xi − x1δ1i)

(B.130)

3.5 Strain Tensor

Let’s summarize what we have

Eji = −2α′E(1)
ji + α′E(2)

ji − α′(1− e2)x1E
(3)
ji (B.131)

n′jE
(1)
ji =

−2ex1

R1R2

(xi − x1δ1i) +
−2e(a2 + x2

1 − 2e2x2
1)

R1R2

δ1i (B.132)

n′jE
(2)
ji =

−4ex1

R1R2

(xi − x1δ1i) + 2a(1− e2)

(
1

R2
2

− 1

R2
1

)
(xi − x1δ1i)

+
−4ex2

1

R1R2

(1− e2)δ1i + 2ax1(1− e2)

(
1

R2
2

− 1

R2
1

)
δ1i

−2ea2(1− e2)

(
1

R2
2

+
1

R2
1

)
δ1i (B.133)

n′jE
(3)
ji = 2a(1− e2)

(
1

R2
2

− 1

R2
1

)
δ1i +

(
4e(2a2 − e2a2 − e4x2

1)

R2
1R

2
2(1− e2)

)
(xi − x1δ1i)

(B.134)

We now calculate n′jEji

α′−1n′jEji = −2E
(1)
ji + E

(2)
ji − (1− e2)x1E

(3)
ji

=
4ex1

R1R2

(xi − x1δ1i) +
4e(a2 + x2

1 − 2e2x2
1)

R1R2

δ1i

+
−4ex1

R1R2

(xi − x1δ1i) + 2a(1− e2)

(
1

R2
2

− 1

R2
1

)
(xi − x1δ1i)

+
−4ex2

1

R1R2

(1− e2)δ1i + 2ax1(1− e2)

(
1

R2
2

− 1

R2
1

)
δ1i
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−2ea2(1− e2)

(
1

R2
2

+
1

R2
1

)
δ1i

−2ax1(1− e2)

(
1

R2
2

− 1

R2
1

)
δ1i + 2ae2x1(1− e2)

(
1

R2
2

− 1

R2
1

)
δ1i

−x1

(
4e(2a2 − e2a2 − e4x2

1)

R2
1R

2
2

)
(xi − x1δ1i) (B.135)

Recasting the equation we obtaion

α′−1n′jEji =
4eδ1i

R1R2

[(a2 + x2
1 − 2e2x2

1)− x2
1(1− e2)]

+2ea(1− e2)δ1i

[
ex1

(
1

R2
2

− 1

R2
1

)
− a

(
1

R2
2

+
1

R2
1

)]

+4e(xi − x1δ1i)

[
a(1− e2)

(
1

2e

)(
1

R2
2

− 1

R2
1

)
− x1

(
(2a2 − e2a2 − e4x2

1)

R2
1R

2
2

)]

(B.136)

In order to simplify the equation, we work on the terms individually

(a2 + x2
1 − 2e2x2

1)− x2
1(1− e2) = a2 − e2x2

1 (B.137)

ex1

(
1

R2
2

− 1

R2
1

)
−a

(
1

R2
2

+
1

R2
1

)
= − 1

R2

(a−ex1)− 1

R1

(a+ex1) = −
(

1

R2

+
1

R1

)

(B.138)

a(1− e2)

(
1

2e

)(
1

R2
2

− 1

R2
1

)
− x1

(
2a2 − e2a2 − e4x2

1

R2
1R

2
2

)

= a(1− e2)

(
1

2e

)(
4eax1

R2
1R

2
2

)
− x1

(
2a2 − e2a2 − e4x2

1

R2
1R

2
2

)

=

(
2a2x1 − 2e2a2x1

R2
1R

2
2

)
−
(

2a2x1 − e2a2x1 − e4x3
1

R2
1R

2
2

)

=
e4x3

1 − e2a2x1

R2
1R

2
2

=
−e2x1(a2 − e2x2

1)

R2
1R

2
2

=
−e2x1(a− ex1)(a+ ex1)

R2
1R

2
2

=
−e2x1

R1R2

(B.139)

Inserting these terms, we obtain,

α′−1n′jEji =
4eδ1i

R1R2

(a2 − e2x2
1)− 2ea(1− e2)δ1i

(
1

R2

+
1

R1

)
− 4e3x1

R1R2

(xi − x1δ1i)
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=
4eδ1i

R1R2

(a2 − e2x2
1)− 2ea(1− e2)δ1i

(
2a

R1R2

)
− 4e3x1

R1R2

(xi − x1δ1i)

=
4eδ1i

R1R2

[
(a2 − e2x2

1)− (1− e2)a2
]
− 4e3x1

R1R2

(xi − x1δ1i)

=
4eδ1i

R1R2

(e2a2 − e2x2
1)− 4e3x1

R1R2

(xi − x1δ1i) (B.140)

Therefore, we have

α′−1n′jEji =
4e3(a2 − x2

1)

R1R2

δ1i −
4e3x1

R1R2

(xi − x1δ1i) (B.141)

Using the definition α′ = αU/e2 we obtain,

n′jEji = αU

(
4e(a2 − x2

1)

R1R2

)
δ1i − αU

(
4ex1

R1R2

)
(xi − x1δ1i) (B.142)

3.6 Stress Tensor and Distribution of Traction

The stress tensor is defined as

Tji = −pδji + µEji (B.143)

and the distribution of traction is calculated through

n′jTji = −pn′jδji + µn′jEji = −pn′i + µn′jEji (B.144)

For the pressure term we have

−pn′i = −2µαU

(
1

R1

− 1

R2

)
(xi − e2x1δ1i)

= −2µαU

(−2ex1

R1R2

)
[(xi − x1δ1i) + (1− e2)x1δ1i]

= µαU

(
4ex1

R1R2

)
(xi − x1δ1i) + µαU

(
4ex2

1(1− e2)

R1R2

)
δ1i (B.145)

Inserting this into the traction equation, we obtain

n′jTji = −pn′i + µn′jEji
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= µαU

(
4ex1

R1R2

)
(xi − x1δ1i) + µαU

(
4ex2

1(1− e2)

R1R2

)
δ1i

+µαU

(
4e(a2 − x2

1)

R1R2

)
δ1i − µαU

(
4ex1

R1R2

)
(xi − x1δ1i)

= µαU

(
4eδ1i

R1R2

)[
(a2 − x2

1) + x2
1(1− e2)

]

= µαU

(
4eδ1i

R1R2

)
(a2 − e2x2

1)

= µαU

(
4eδ1i

R1R2

)
R1R2

Therefore

n′jTji = 4eµαUδ1i (B.146)

Using nj = 1√
R1R2

(
a
b

)
n′j the distribution of traction on the surface of the spheroid

is

njTji = 4eµα
1√
R1R2

(a
b

)
δ1i (B.147)

We have

lim
e→0

eα =
3

8
(B.148)

and

lim
e→0

R1R2 = a2 (B.149)

Therefore, in the limit e→ 0 we obtain

lim
e→0

njTji =
3

2

µU

a
δ1i (B.150)

which is the distribution of traction on the surface of a sphere of radius a. This

can be a confirmation of the accuracy of our final results.

In the prolate spheroidal coordinates (ξ, η, φ), we have x1 = cηξ and on the

surface of the particle ξs = e−1. This results in

R1R2 = (a+ ex1)(a− ex1) = a2 − e2x2
1 = a2 − e2(aeξsη)2

= a2(1− e2η2) = a2e2(ξ2
s − η2) (B.151)
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njTji = 4eµαU
1√

a2e2(ξ2
s − η2)

(a
b

)
δ1i

= 4µαU
1√

ξ2
s − η2

(
1

b

)
δ1i (B.152)

We also have

1

b
=

1

a
√

(1− e2)
=

1

ea
√

(e−2 − 1)
=

1

ea
√
ξ2
s − 1

(B.153)

Therefore,

njTji =

(
4µαU

ea

)
1√

(ξ2
s − η2)(ξ2

s − 1)
δ1i (B.154)
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