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Abstract

A variety of synthetic catalytic nanomotors have been fabricated in recent years,
one aim being to mimic microscopic biological motors. We propose and analyze
a model for deterministic dynamics of hydrogen peroxide powered bimetallic mo-
tors, which have been shown to operate by electrokinetic self-propulsion. Using
perturbation analysis and the method of matched asymptotic expansions, we find
the particle velocity to leading order in Debye length and first order in reaction-
induced ion flux for spherical and spheroidal particles. The results are consistent
with experiments and numerical calculations. The velocity depends linearly on
interfacial potential at the particle surface and hydrogen ion production intensity,
as well as inversely on the fluid viscosity, background ion concentration in the elec-
trolyte and hydronium diffusion coefficient. In the regime of low Reynolds flow,
both the deterministic and the stochastic dynamics of the nanomotor contribute
to the dynamics of the particle. The coupling between these two types of dynam-
ics results in quasi-circular trajectories. We analyzed the proposed mechanisms of
motion for some nanorotors and proposed some design principles for making faster
rotors. We also showed that the coupling of deterministic dynamics and stochastic
orientational dynamics of nanorotors leads to an effective translational diffusion
which can be as significant as the translational diffusion of unpowered nanorod.
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Chapter

Nanomotors and Nanorotors

1 Introduction and Background

The past decade has witnessed remarkable progress in powering at the nanoscale.
Before that, biological systems at low Reynolds number were the focus of dynamics
at micro- and nanoscales [1, 2, 3, 4, 5. With rapid developments in nanotechnology
and the need to power at these scales, researchers started to focus on ways to
develop artificial systems that can convert different types of energy into mechanical
energy at the nanoscale [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Ismagilov et al [17] pioneered the development of small scale artificial au-
tonomous motors that could interact with each other. They fabricated millimeter-
scale boats consisting of a hemicylindrical plate attached to a small platinum-
covered glass. The motors floated on the air-liquid interface of an aqueous solution
of hydrogen peroxide (see Fig. 1.1a). The platinum decomposed hydrogen per-
oxide catalytically according to 2H202 (1iguia) = O2 (gas) T 2 H20 (1iguiq), Tesulting
in impulses of generated oxygen bubbles. This process led to motion of the boat
away from the platinum-coated glass tail.

Subsequently, in an attempt to move from the millimeter scale to the nanoscale,
Paxton et al. [18] fabricated half-gold/half-platinum bimetallic rods of about 2 pm
in length and 350 nm in diameter and placed them in aqueous solution of hydrogen
peroxide. The nanorods moved autonomously with speeds of 10 — 20 um/s. Sur-
prisingly, not only was there no bubble formation, but also the rods moved toward

the platinum head. This scale-down and change in the composition of motors from



(2)

=— gteel pin

Pt-covered
porous glass

-\.
%,

%

hydrophilic hydrophobic

Overall Reaction

2H,0 2H*+H,0,+2e 2H,0, — Og + 2H,0

(b)

O, H*| 2H*+0O,+2¢- H0,

2H,0 4H*+0O,+4e

Figure 1.1. (a) The millimeter size boat with a platinum covered plate attached on un-
derside. [17] The boat decomposes the hydrogen peroxide catalytically and the formation
and releasing of bubbles results in impulses that push the boat in the direction opposite
the platinum end. (b) The bimetallic nanorod [18] decomposes the hydrogen peroxide
electrocatalytically through oxidation of hydrogen peroxide on the platinum side and
reduction of oxygen molecules and hydrogen peroxide on the gold side. Te asymmetric
cloud of hydrogen ions pulls the negatively charged particle toward the platinum end.

single metallic to bimetallic structures had changed the direction of motion, reveal-
ing a change in the mechanism of motion. The development of these self-propelling
colloidal particles gave birth to a fascinating new field in colloid science.

Among the many mechanisms proposed to explain the motion of the nanomo-
tors [19, 20, 21, 22, 23], electrokinetic self-propulsion has proved to be a accu-
rate/dominant mechanism [23, 24, 25, 26] for explaining the dynamics of the
bimetallic nanomotors. A bimetallic nanorod and hydrogen peroxide solution
comprise an electrochemical cell. As depicted in Fig. 1.1b, hydrogen ions are
produced on the platinum side through anodic reaction, and are consumed on the
gold side through cathodic reactions. An asymmetric cloud of ions forms around

the nanomotor, which pulls the negatively charged particle toward the side with a
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Figure 1.2. Different modes of nanorod motion (a) linear (b) rotary with one one end
anchored to the substrate (c) rotating parallel to a substrate on a quasi- circular path.
(d) fast rotors. (with modification from Ref [6])

higher concentration of hydrogen ions, i.e., the platinum end. The non-equilibrium
state of the asymmetric cloud of ions is sustained by the continuous chemical re-
action on the surface of the nanorod, and keeps the particle moving.

Up until recently, colloid scientists dealt with particles whose non-equilibrium
state was imposed externally by imposed flow, gravity, electric field, concentration
gradient of solutes, etc [27]. In this new motor system, however, the particles
are active and transduce the chemical energy of their environment to mechanical
energy, which has opened up fascinating possibilities, including the tantalizing
possibility of mimicking the behavior of biological motors and microorganisms,
or of programming artificial motors to perform specific tasks, such as carrying
chemical cargo or engaging in complex collective behavior.

More recently, many research groups have focused on design, fabrication and
enhancement of the performance of autonomous nanomotors. Spherical bimetallic
Janus particles have been fabricated [28], expanding on the diversity of geometries
of such systems. Different modes of motion for nanorods have been observed.
Ozin et al [29] fabricated Au/Ni nanowires, anchored from the gold side to the
substrate, that could perform rotary motion (Fig. 1.2b). Qin et al [30] fabricated
Au/Pt nanorods that could rotate parallel to the substrate (Fig. 1.2c¢) with an
angular velocity of about 23.7 rpm. Wang et al [31] reported ultrafast nanorotors

(Fig. 1.2d) with one order of magnitude enhancement in the average angular



velocity to about 180 rpm.

Paxton et al. [18], in their aforementioned pioneering work, reported Au/Pt
nanorods having linear deterministic motion coupled to Brownian stochastic dy-
namics on a glass substrate. This early generation of nanorods could move as
fast as 10 — 20um/s (5 — 10 body lengths per second). Incorporation of carbon
nanotubes into the platinum side increased nanomotor speeds up to 50um/s [32].
Further enhancement of dynamics was achieved by replacing the gold segment with
cathodic silver/gold alloys leading to speeds of over 150um/s [33] due to the higher
rates of electron transfer reactions of hydrogen peroxide on these alloys. It was also
observed that increasing the surface area of catalysts by roughening can increase
the speed of bimetallic nanomotors [34]. Wang et al [24] observed that the direc-
tion of motion of the nanorod was toward the metal with the lower mixed potential
(the potential at which anodic and cathodic reactions happen at the same rate for
a specific metal). As the difference in the mixed potentials of the two metals in a
nanomotor increased, the particle moved with higher speed. The order of mixed
potentials of metals in their study was Rh < Pt < Ni < Pd < Au < Ru.

In order to control the dynamics of nanomotors or develop more efficient sys-
tems, it is essential to understand the principles underlying the dynamics of these
species. This motivated us to develop mathematical models that could give more
insight into the relationship between the performance of nanomotors and the pa-
rameters of the system. Such models not only give us the power of prediction, but
also give more insight into the physics of the problem and can be used as a basis
for further research in the field.

Moran et al. [26] examined electrokinetic self-propulsion by numerical calcu-
lation of a model system in which the surface reaction was modeled by the flux
of hydrogen ions based on experimental data. The calculated range of velocities
for the nanomotors was consistent with the experimental observations. They ob-
served a linear relationship between the velocity of nanorods and both the flux of
hydrogen ions and the interfacial electric potential on the surface of the particle.

Although experiments and computations illustrate the physics of the problem,
they do not provide a complete understanding of the interplay between the physical
parameters of the system. A standard approach for attaining such a knowledge is

to use perturbation analysis in the limit of small values for the driving force in the



system. Yariv [23] used perturbation theory to relate the velocity of a spherical
nanomotor (and slender body) to physical parameters of the system and kinetic
parameters of a Butler-Volmer type reaction of hydrogen peroxide on the surface
of the nanomotor. In our study, we use a more general approach by solving the
problem for spherical and spheroidal nanomotors based on a general form of the
distribution of hydrogen ion flux of the surface on the nanomotor.

In addition to linear nanomotors, we will study the dynamics of nanorotors.
Nanorotors are a specific class of nanomotors that perform deterministic circular
motion coupled to stochastic Brownian motion, leading to motion on quasi-circular
orbits. To date, most modeling efforts have focussed on clarifying the mechanisms
of linear motion in axisymmetric nanomotors. However, the large class of recently
developed colloidal rotary motors remains largely unexplored. Here, we provide
a fundamental theory for driven nano/micro-scale rotary motion in fluids at low
Reynolds number and explain how to infer important aspects of motor function —

i.e. force and torque distributions — directly from an analysis of the rotor trajectory.

2 The scope of the thesis

In chapter 2 we explain the physics of electrokinetic self-propulsion and formulate
a mathematical model for the problem. In chapter 3, we apply the method of
matched asymptotic expansions to solve the model for the velocity of a spherical
nanomotor in the limit of small Debye length and small intensity of hydrogen ion
flux. The resulting expression explains the relationship between the nanomotor
velocity and background concentration, interfacial potential, hydrogen ion flux,
diffusivity of hydrogen ion, etc. We further study the effect of geometry and
distribution of hydrogen ion flux on the performance of the nanomotor.

In chapter 4, we solve the electrokinetic model for a spheroidal particle. The
more general analysis presented in this chapter has the advantage that by changing
eccentricity from zero to one we can model a range of geometries from a sphere to
a rod. The result is similar to the case of a spherical particle up to a geometrical
coefficient which in the limit of zero eccentricity reduces to the geometrical factor
of a sphere.

In chapter 5, we examine the application of scaling analysis to derive an equa-



tion for the nanomotor velocity. We observe that this result is misleading in rep-
resenting the relationship between the nanomotor velocity and some parameters
of the system. Based on the results of previous chapters, we discuss the motion
of the particle in more detail, stating the the range of validity of the perturbation
analysis, and bring up issues that need to be considered in designing nanomotors.

Motion at the micro- and nanoscale is characterized by two main features: (1)
irreversibility of deterministic dynamics at low Reynolds number and (2) stochas-
tic Brownian dynamics. In chapter 6, we study the deterministic and stochastic
dynamics of nanorotors. We show that the deterministic motion of a nanorotor
is along a circular path. The contribution of the stochastic component to the dy-
namics of the nanorotor results in deviation of the trajectory from a circular to a
quasi-circular path.

In chapter 7, we study the coupling between deterministic and stochastic dy-
namics of nanorotors within the context of powered random walkers. We show the
long time behavior of nanorotors resulting from a combination of their determinis-
tic and stochastic dynamics manifests itself in the form of an effective translational
diffusion. We exmine the importance of this effective diffusion compared to the
natural translational diffusion of unpowered nanorotors to identify the contribution
of powered motion to the translational dynamics of the nanorotors.

In chapter 8, we suggest future research ideas that have not been studied in
this thesis.



Chapter

Electrokinetic Self-Propulsion;

Concepts and Modeling

1 Introduction

Any molecule in the bulk of a simple liquid experiences the same interaction forces
that other molecules in that liquid experience. This results in a homogeneous
isotropic structure in the liquid. However, the liquid molecules near the wall of the
liquid’s container experience a different form of force field than the molecules in
the bulk, because the type of interaction between the liquid molecules is different
from liquid and solid molecules. Therefore, the structure of the liquid and the
orientation of molecules near the wall are different from those in the bulk. Liquid
electrolytes form more complicated molecular structures when the liquid is brought
in contact with a particle surface or wall.

An electrolyte consists of positive and negative ions ¢ with charge z; and a

background concentration C,. The ions organize so that the chemical potential

Ci
pi =k, TIn C'; + zieg (2.1)
of each species i is constant everywhere in the fluid (k, is the Boltzmann constant,
e is the charge of a proton, and T is the absolute temperature). This leads to

a uniform concentration C'; of ionic species and constant electric potential ¢ in



Figure 2.1. (a) The distribution of positive and negative ions of a binary symmetric
electrolyte in contact with an infinite flat plate at thermal equilibrium. The ions in the
stern layer 0 < x < s are immobile. The ions are mobile in the diffuse layer s <z < X,
(b) Most of the electric potential is screened out over the diffuse layer. (c) The charge
density in the double layer in non-zero. (with modification from [35])

the bulk of the liquid. When the ionic solution is brought into contact with a
charged surface, the ions reorganize to reach equilibrium such that Yy; = 0. For
a infinite flat plate in contact with a binary symmetric electrolyte z = 2, = —z_,

this condition leads to P
z
Ci=C4« — 2.2
Cy = Coexp (:F T Q) (2.2)

where F'is the Faraday constant and R is the universal gas constant. The ions
form a double layer near the wall, which screens out the electric potential over a
length scale A, called the Debye length. There is a layer of counter-ions that stick
to the wall and neutralize the charge on the plate. This immobilized layer is called
Stern layer. The ions outside this layer are mobilized in a layer whose thickness is
of the order of the Debye length, called the diffuse layer.

The Poisson-Boltzmann equation relates the charge density to the electric po-

tential,
zRC zF
Vi¢p=2———sinh(F—=0]). 2.3
) 23)
Integrating this equation with boundary conditions gvﬁ(;g = 0) = ¢o and

¢(x — o0) =0 gives the Gouy-Chapmann equation

F
o(z) = 4ZRFT tanh ™! [tanh (ZR%?) exp (—%)] (2.4)




Overall Reaction

2Hzo 2H++H7_02+2e- 2H202 R 02 + 2H2O

X

<
{ Oy HY  2H*+O,+2e0 H,O,
2H,0 4H"+O,+4e

Figure 2.2. Due to asymmetric electrocatalytic decomposition of hydrogen peroxide,
hydrogen ions are produced on the anode surface (source) and consumed on the cathode
surface (sink). The phenomena can be modeled as source and sink of hydrogen using a
position dependent flux of hydrogen ions.

| eRT

is the Debye length based on the physical parameters of the system.

>

where

A bimetallic nanomotor and a solution of hydrogen peroxide constitute an
electrochemical cell. In the next section, we discuss the physics of electrokinetic
self-propulsion and the importance of the double layer and Debye length in the

formulated mathematical model.

2 Electrokinetic self-propulsion

Electrocatalytic bimetallic nanomotors are made out of two different metals that
can decompose hydrogen peroxide through an electrochemical mechanism. The
connected metals in hydrogen peroxide solution act like an electric pile where
H,0, is used as a fuel. There are three main electrokinetic reactions (see Fig (2.2));

oxidation of hydrogen peroxide

H202 — 2H" + OQ + 2e”~ (26)
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happens at anode, and reduction of hydrogen peroxide
2H" + Hy0, + 2¢~ — 2H,0, (2.7)
and reduction of oxygen
AH* 4 Oy 4 4e~ —> 2H,0 (2.8)
occur at the cathode. The overall reaction
2H,05 — 2H,0 + O,. (2.9)

can take part non-electrocatalytically (catalytically) on the surface of both metals
with different rates. The overall reaction doesn’t contribute the the concentration
of hydrogen ions in the solution and we are mainly concerned with the electrocat-
alytic reactions.

The asymmetric electrocatalytic decomposition of hydrogen peroxide results
in the production (source) of hydrogen ions at the anode and the consumption
(sink) on the cathode. This source-sink process can be represented by a position
dependent flux of hydrogen ions on the surface of the nanomotor. At steady state,
there will be an excess of hydrogen ions compared to the background concentration.
The same amount, but with negative charge, of electrons will be accumulated in
the nanorod following the principle of charge neutrality.

After placing the nanomotor in water, it absorbs some ions from the aqueous
media and acquires a negative interfacial potential. Addition of hydrogen peroxide
to the system results in a further negative charge on the particle at steady state.
The asymmetric flux of hydrogen ions results in an asymmetric distribution of ions
around the particle, and consequently, an electric field pointing from the anode to
the cathode. The negatively charged particle moves towards the anode side under
the electric field.

This propulsion mechanism works through the non-equilibrium state of the ionic
cloud around the nanomotor. At each instance, the negatively charged particle and
the positive cloud of ions move toward each other in order to reach mechanical

equilibrium in which the net force acting on charged entities is zero. However, the
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asymmetric electrochemical reactions preserve the shape of the asymmetric cloud
of ions as nanomotors moves toward the anode side and consequently keeps the
system out of mechanical equilibrium.

Hydrogen ions can electrodiffuse toward the sink from the source or background.
They can also move as a part of bulk flow due to an electrostatic body force acting
on a charged fluid and pulls it toward the sink. Momentum is conserved in these

processes.

3 Formulation of the Model

Our model consists of a conductive axisymmetric particle in a symmetric binary
electrolyte of positive (+) and negative ions (-) with charges z; and z_ (z = z; =
—z_) and diffusion coefficients D, and D_, respectively. The particle, consisting
of two different catalytic metals, decomposes hydrogen peroxide electrochemically
through surface reactions. Part of the nanomotor acts as the source and the
other acts as the sink of hydrogen ions. The normal component of the flux of
hydrogen ions on the surface is represented by n-J = j, f(x) where j, is a measure
of hydrogen peroxide that decomposes electrochemicaﬁy and f(x) ;epresents the
distribution of flux over the surface. The particle is impermeable to negative ions:
n-J_ = 0. An asymmetric distribution of positive ions is produced around the
particle. At the steady state, the production and consumption of positive ions will

be equal. This imposes the constraint
[ dsfe0 =0 (2.10)
)

on the surface distribution of hydrogen ion flux.

The metallic particle in aqueous solution attracts ions and acquires a negative
surface potential. Adding hydrogen peroxide to the system initiates the electro-
chemical reactions, which in part, adds to the negative surface potential on the
particle’s surface. The electric potential @ is ¢ on the surface of the particle and

vanishes at infinity. The Poisson equation relates the distribution of ions in solution
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to the local electric potential @,
V2@ = —F(2,Cy +2-C)/e (2.11)

where F' is the Faraday constant, C'; is the molar concentration of hydrogen ions,
C'_ is the molar concentration of negative ions and € is the permittivity of the
solution. For the symmetric binary electrolyte in our model, z = 2z, = —z_ is the
absolute value of charge on each ion. The asymmetric distribution of ions is the
result of asymmetric production and consumption of hydrogen ions on the surface
while negative ions do not participate in any reaction. The ionic flux is related to

ion concentration and electric potential via
F,Zi
Jy=—-D (VCi+ ﬁQiY@) (2.12)

in which D, is the diffusion coefficient of hydrogen ions, D_ is the diffusion co-
efficient of negative ions, R is the universal gas constant and T is the absolute
temperature. The conservation of species leads to the steady state Nernst-Planck
equation

V-Ji+U-YCs=0 (2.13)

where U is the velocity field of the fluid.

The local electric field acts on ions and consequently applies forces to the fluid
element containing the ions. This leads to the flow of fluid around the nanomotor.
As we are in the regime of low Reynolds number, this flow is represented by the

Stokes equation,

~VP + uV?U +cV?2Ve = 0 (2.14)

where P is the pressure and p is the viscosity of the fluid. Finally, assuming an

incompressible fluid, the continuity equation gives

V-U=0 (2.15)

Let’s define Dy = min(D,, D_), and 1 = Ds/D.. To proceed further, we work
in units of length
= a, (2.16)
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concentration
Cr =, (2.17)

flux

J* = D.C*/a, (2.18)
electric potential

¢* = RT'/zF, (2.19)
pressure

P — /e, (2.20)
and velocity

U* = e®*/pa. (2.21)
We also define the Peclet number

Pe=U"a/D; (2.22)

as the ratio of characteristic time of diffusion over the characteristic time of convec-
tion. In the regime of low Peclet number, where the diffusion transport dominates
the convective transport, the convective term in the Nernst-Planck equation be-

comes negligible. We also define the Debye length

[ D*e
= 2.2
)\D 2ZFQOO ( 3)

as the length scale over which the electric potential is significantly screened out.

Using the dimensionless Debye length A = A /a and the dimensionless strength
of hydrogen ions flux j, = j,/J* the above mentioned equations take the dimen-

sionless forms

2A°V20 = —(C, — C_) (2.24)
Ji=—6."(VCy £ CLVD) (2.25)
V- Jiy+PeU-VCL =0 (2.26)

—VP + VU + V?0V® =0 (2.27)
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V-U=0 (2.28)

with boundary conditions on the surface of the particle

O T T (2.20)
A-J. = 0 (2.30)
o = ¢ (2.31)
U = 0 (2.32)
and boundary conditions at infinity (r = oo)
Cp = 1 (2.33)
> =0 (2.34)
U = -U (2.35)

In the next section, we solve these nonlinear equations through perturbation
analysis [36] to the leading order in dimensionless Debye length and first order in

the dimensionless strength of hydrogen ions flux.

4 Perturbation Analysis

Perturbation analysis provides a controlled approximation to solve nonlinear equa-
tions in the regime of small parameters [36]. Regular perturbation analysis is ap-
plied in systems where the leading order behavior of the equation does not change
the nature of the equation. In situations where the small parameter is multiplied
by the highest order of derivative in the equation, the equation to the leading order
in the small parameter loses its highest order. In such systems in the domain of
study may be a small region(s) wherein the highest derivative is large such that it
compensates for the small parameter. The domain of study is then divided into
an inner region (boundary layer), where we have fast change in the field, and an
outer region where the small parameter dominates the higher derivative.

In the set of governing equations, the dimensionless Debye length is multiplied

by the laplacian of electric potential, which is the highest order of the derivative in
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that equation. The dimensionless flux of hydrogen ions appears in the boundary
condition and the equations, to the leading order in j,, doesn’t lose its nature.
In what follows, we first use singular perturbation for small dimensionless Debye
length A < 1 to calculate for slip velocity around the particle. We further apply
regular perturbation to the first order in small dimensionless flux of hydrogen ions
Jp < 1 to linearize the equations further and solve for the velocity of the particle.

In equation (2.24) A? is multiplied by V?®. While A*V2® can be zero to the
leading order in A in the majority of the domain of study, near the surface of the
particle, this term can be of order one due to rapid change in ®. We divide the
domain into an inner domain near the surface where the radial change in electric
potential is fast enough for \2V2® to be of order one, and an outer domain where
this term vanishes to the leading order in A\2. All the fields match at some transition
region between the inner and outer region. We identify the fields in the inner and

the outer regions by superscripts ¢ and o, respectively.



Chapter

Spherical Nanomotor

1 Introduction

The sphere is the simplest geometry in colloid science. It is both isotropic and
symmetric. Classically, problems involving the motion of particles in a fluid are
first solved for a spherical particle. In this chapter, we solve the equations gov-
erning electorkinetic self-propulsion for a spherical nanomotor in spherical coordi-
nates, where each point is characterized by (r, 6, ¢). For an axisymmetric spherical

nanomotor, the physics is independent of the azimuth angle .

2 The Governing Equation

In chapter 2 we discussed the physics of electorkinetic self-propulsion and formu-
lated a mathematical model with some governing equations and their boundary
conditions that explain the interactions between a nanomotor and its surrounding
fluid and ions. In this chapter, we would like to solve the model for the velocity
of the nanomotor in the domain of thin Debye layer and to the first order in the
intensity of hydrogen ion flux. The radius of the sphere is used as the characteristic
length scale in this problem. In order to use the method of matched asymptotic
expansion, we work with dimensionless equations in the frame of reference of the

particle. The flow field is explained by the Stoke’s equation,

~VP + VU + V?0V® = 0. (2.27)
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and the continuity equation
V-U=0 (2.28)

where on the surface of the particle we have no slip boundary condition
Ur=1)=0 (2.32)
and far field unperturbed velocity field is
U(r—o0)=-U (2.35)

in which U is the nanomotor velocity in the laboratory frame of reference. The
body force V2@V ® in the Stokes equation depends on the electric potential ®. The
Poisson equation relates the the electric potential to the concentration of positive

C and negative C_ ions in the electrolyte,
2A°V20 = —(Cy — C1). (2.24)

where X is the dimensionless Debye length. The electric potential on the equipo-

tential surface of the conductive nanomotor is

O(r=1) =9, (2.31)
and at far distances,

O(r — 00) = 0. (2.34)

The motion of the ions in the electrolyte is governed by the equations of continuity

of species

V-J.+PeU-VCy =0 (2.26)

in which

Ji=—6.1(VCy £ CLVD) (2.25)

are the molar fluxes of the positive and the negative ions and the Peclet number

Pe is the ratio of characteristic time of diffusion over the characteristic time of
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convection. The nanomotor surface is impermeable to negative ions

—0 (2.30)

and the flux of positive ions is asymmetrically distributed over the surface in the

form of

B3| =) (2:29)

where f(x) is a general function whose definition depends on the physics of the
problem and the prefactor j, is the dimensionless strength of positive ion flux on
the surface of the sphere. For the axisymmetric spherical nanomotor, we represent
the position dependence of distribution function f(x) by f(cosf). We will work
in the domain of j, < 1 and since this second small parameter appears in the
boundary condition, we will apply regular perturbation analysis for j,. At far

distances, the electro-neutrality condition for the electrolyte holds and we have

Ci(r — o0) =1. (2.33)

3 Perturbation Analysis

We would like to solve the governing equation in the limit of small dimensionless

Debye length A and small dimensionless strength of hydrogen ions flux jp,.

3.1 Singular Perturbation

In the Poisson equation (2.24), the small parameter A is multiplied by the highest
derivative V2® in the equation. Therefore, near the surface of the particle there
is a region were the change in the electric potential is high enough to compensate
for the smallness of A and their product is of order one. We call this region the
boundary layer or inner region (see Fig. 3.1). The remainder is called the outer
region where to the leading order in A the term A\2V2® vanishes. There is a region
at the end of inner region and the beginning of the outer region where the solution

of these two region matches.
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P —~
- Outer Region

222V%0 = —(C, — C_)

r—1

: \ Matching

N

p:

Inner Region

Figure 3.1. The fluid around the particle is divided to an inner region, where the high
variation in the electric potential compensates for the smallness of A%, and an outer
region. By changing the variable from r to p, we expand the inner region. Matching of
the inner and the outer solutions happens at the boundary of inner and outer regions.

3.1.1 Inner Region Near The Particle Surface

To capture the rapid radial variation of electric potential in the thin boundary
layer of thickness O(A) at the surface of the particle, we stretch the domain using

the transformation
r—1

p=" (3.1)
r=1+ Ap, (3.2)
0, = X109, (3.3)

For the fields in this inner region, we can write asymptotic expansions of the form

G'=Y_ aGt (3.4)
n=ng
where ng = —2 for P', ng = —1 for Ji,, ng = 0 for Cy, ®, Jig, ¢, U and Uy, and
nog = 1 for U,,.
Our main goal in this section is to calculate the slip velocity U s(lol.; to the leading
order in A\. To do this, we need to calculate the angular component of velocity
U;(O) to the leading order in A in the inner region, and evaluate it at the end of

0) i(0)

the inner layer, that is, U S(lip = lim, ,o, U, . To calculate U;(O) we use the angular
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component of the Stokes’ flow to the order O(\~?),
~9, P 1+ 92U, + 9,9 920 = 0. (3.5)

To solve this equation, we need to have a relation for the pressure P*-? and the
electric potential & We use the radial component of the Stokes’ equation to
the order O(A73),
. 1 ) )
—9,P? ¢ 500 (0,9'99,0') =0 (3.6)

which relates the pressure to the electric potential. To find ), we use the Poisson

equation to the order O(\?),
02010 = — (Ci“’) - oi“”) /2. (3.7)

For solving this equation, we need the concentration of the position and the neg-

ative ions. The order O(A™?) of the continuity of the species equation gives us

9,J50 =0 (3.8)
in which the ion fluxes are
JEY = —07t 9,040 £ ¢i9,010). (3.9)

Also, we would like to know how the leading order fluxes Ji(g) of the positive and
the negative ions behave in the inner region and match to the outer region at the

matching region. We use the continuity of species to the order O(A 1),
9, 2700 = . (3.10)
For the boundary condition at the surface of the sphere (p = 0), we have
U =, (3.11)

o0 = 40, (3.12)

e L A} (3.13)
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and
er(g) = j, f(cos@). (3.14)
3.1.2 Outer region

In the outer region, we can write asymptotic expansions of the form

GO = NG, (3.15)

n=0

for the independent variables and boundary conditions since A? is the small pa-
rameter appearing in the governing equations. We would like to calculate the
nanomotor velocity () to the leading order in X. To do this, we need to solve the

Stokes’ equation to the order O(\°) in the frame of reference of particle,
—VPO 4 VU0 1 vl v2eo® = (3.16)
with the far field, r — oo, boundary condition
U= _y0z (3.17)

The Poisson equation to the leading order in A? leads to electroneutrality condition

in the outer region

0 — 0~ (3.18)

subjected to far field boundary condition
o =1, (3.19)
Finally, the motion of ions is governed by the continuity of species
V- JXO 4 pe U . v =0 (3.20)

where
JSO = _57116,099 + 999,500 (3.21)
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is the flux of ions to the leading order in A\2. The far field (r — oo) boundary

conditions are

v — o (3.22)
JO = ¢ (3.23)

3.2 Slip Velocity

In the previous two sections, we presented the appropriate governing equation and
their boundary conditions for calculating the nanomotor velocity to the leading
order in A\. By solving the equations in the inner and the outer region, and matching
the the solutions, we can calculate the nanomotor velocity. In this section, however,
we lump all the flow properties of the inner layer into the slip velocity, and in the
next section, we will use it as a boundary condition on the surface of the particle
for flow field in the outer region.

Equation (3.18) states the electro-neutrality condition to the leading order in

A in the outer region.
o0 = ¢ = o) (3.24)

Since we have an electro-neutrality condition at the beginning of the outer region,
the same condition holds at the end of the inner region, due to the matching
criteria. We represent the concentration of ions at the end of the inner region and

beginning of the outer region by

C°0(1,0) = lim C°O(r,0) = lim C(p, ), (3.25)

r—1 p—+00

that is, to the leading order in A, as we approach the end of the inner region, the
concentration of the positive ions and negative ions become equal to C°)(1,6).

We also represent

°0(1,0) = lim °©(r,0) = lim &' (p, ) (3.26)

r—1 pP—+00
as the matching value of the inner ®*© and outer ®°(© electric potentials to the
leading order in A. The equations for the continuity of species in the inner region

(3.8) to the order O(A\?) can be integrated, along with the zero boundary condition
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for ion flux of order O(A™') at the surface of the particle, j;(i_l)(()) =0, to yield
9,01 + 199, = 0. (3.27)

Integrating this equation, considering the matching conditions (3.25) for C’E_LO ) and
(3.26) for @ we obtain

CL%(p,0) = C°O(1,0) exp [F (27 (p,6) — 2°(1,0))] (3-28)

The Poisson equation (3.7) then takes the form

0 = — (- ) 2
= C°O(1,0) sinh [@'©(p,0) — 9 (1,0)] . (3.29)
Defining
U(p,0) = @O (p,0) — °(1,6), (3.30)

the nonlinear Poisson-Boltzmann equation (3.29) takes the form
2 _ o(0 :
o =C ©0)(1, 6) sinh . (3.31)

Keeping in mind that in the inner region 7 is negative and 0,1 is positive, using
the identity 0, (8,,1&)2 =200 agm we integrate the above equation to obtain

8,1 = —24/CoO)(1,6) sinh(1)/2). (3.32)

where we have used the matching condition for the radial component of the electric
field E, of order O(A1),

lim £2CY =0 = lim ECY = lim 9,8 = lim 9,1 (3.33)

r—1 pP—00 pP—00 p—+00

Further integration gives us

tanh% = tanh %e_p\/ CoO9 (3.34)
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where

Yo(0) = ©'0(0,0) — 2O (1,0) = ¢ — d°0 (1, ). (3.35)

is the potential drop across the inner layer. Recasting (3.34) yields the familiar

Gouy-Chapman equation
. 0 /Co0) (1.0)
o0 (p,0) = @0(0)(1, 0) + 4tanh™! {tanh (—M)i )) e PV (0>(1,9)] ) (3.36)

The non-zero pressure in the outer region starts from the leading order in A\. There-

fore, using the matching condition for the order O(\~?) of pressure,
lim P°2(r,0) = 0 = lim P*“?(p,0) (3.37)
r—1 p—>00

and the matching condition (3.33) for O(A™!) of the radial component of the electric

field 8p<I>i(0), we integrate the order O(A\72) of the angular component of the Stokes’
equation (3.6) to obtain
Pi(—2) _

(0,9'9)° = = (9,1)? (3.38)

DN | —
DN | —

To calculate U;(O) and consequently the slip velocity, we substitute this equation
into the radial component of Stokes equation of order O(A™?), equation (3.5).
Using the nonlinear Poisson-Boltzmann equations (3.31), equation (3.32) for the
derivative of electric potential, the relation (3.38) for the pressure P=2) and the
definition of ¥ (3.30), we obtain

020, = 2sinh?(y/2) 9,C°0(1,0) — 9,9°)(1,0) 9%y (3.39)
Further integration, and using fpoo 8gUg(0)dp = —9,U” | we obtain

9pC°0) (1, 6)

J/COI(1,0)

where we have used the matching condition for the order O(A™!) of the radial

8,U%) = —2 [cosh(v/2) — 1] — 9p®°)(1,0) D, (3.40)
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derivative of angular component of velocity,

. o(-1) _ n _ 1: 1(0)

llgri oU, 7 =0= ,}LI?O 0,Uy". (3.41)
Integrating equation (3.40) using the relation (3.34) and the no-slip boundary
condition on the surface of the particle in the inner region, yields the angular

component of the velocity to the leading order in A in the inner region,

0C°0) (1, 6)

Ui — — ) 3,0°0(1,6) + 4
p (Vo — ) 0p@°(1,0) + 4p Ol

(3.42)

1 — tanh?(¢y/4)

exp [2/)\/00(0)(1, e)} — tanh? (¢ /4)

+209p In [C°9(1,6)] In

We can then calculate the slip velocity

Us(ﬁi, ,,IHEO Ui©
= o 0p@°V(1,0) + 21n {1 — tanh®(1hy/4) } 99 In [C°O)(1,0)]
= o 0p9°V(1,0) — 41ncosh(¢/4) 9y In [C°O(L,0)] . (3.43)

This relation is equivalent to the Dukhin-Deryaguin slip formula, used as a slip
boundary condition for the outer region.

Before proceeding to the physics in the outer region and calculating the velocity
of the particle, we need to match the leading order radial fluxes Ji(g) and Ji(ro).
From the order O(A™!) of the continuity of the species equation (3.10) and the fact
that th(;l) = 0, we have

8,70 =0 (3.44)

So, th(g) is independent of the radial coordinate p in the inner region. The boundary

condition on the surface of the particle leads to

T (p,0) = j, f(cosb) (3.45)

p

and
i(0) _
T (p,6) = (3.46)



throughout the inner region. The matching condition

lim J4)) (p,6) = lim J” (r, 0)
r—

p—00

then results in the following boundary conditions for the outer region:

T (r = 1,0) = j, f(cos0),

and
IO = 1,0) = 0.

3.3 Regular Perturbation
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(3.47)

(3.48)

We would like to solve the leading order equation of Stokes’ flow for the nanomotor

velocity. For this purpose we need to solve the leading order of the Stoke’s equation

in the outer region,

VPO(O) + v2U0(0) + v@O(O)vQ@O(O) — 0

(3.16)

We can rewrite the leading order equations of the continuity of the species (3.20)

in the form of two equations for positive and negative ions

V. (vc;ﬁo) + c;<°>vq>°<0>) 46, Pe U0 . yo® — g,

(3.49)

Adding and subtracting these convection-diffusion equations for positive and neg-

ative ions, and using the fact that C°©) = C’i(o) = we obtain

V2000 (5+ + 5—) Pe U°O . w0
2

and
o0y —0_

V- (COOVe0) = ( ) Pe U . v

with corresponding boundary conditions

-1
8TC'O(0) = CO(O)a'r'@O(O) - 5+ jp |:7f(cos 0):| r— 1

(3.50)

(3.51)

(3.52)
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8,0°0 = ¢°09,3°® =0 r - o (3.53)
U=y 0z 7 — 00 (3.54)

To proceed with the solution of the nonlinear set of equations we use a regular
perturbation expansion in powers of the small parameter j, to obtain the leading

and first order equations. The expansions of the fields in poweres of j, are

CO = 145, C°Y +0(j,”) (3.55)
CI)O(O) — (I)o(O,O) +jp (I)o(o,l) + O(]p2) ( )
U0 = 5 U0 10,2 (3.57)
o0 = ¢ 4 6 1+ O(j,%) (3.58)
u® = 4, U +0(,? (3.59)

The leading order of the equation (3.51) with the boundary condition (3.52) on
the surface of the particle and (3.53) as r — oo leads to

Vet — 0 (3.60)
0,00 = ¢ r=1 (3.61)
00 = ¢ r— 00 (3.62)
which has the trivial solution
00 — 0 (3.63)

The order O(j,) of the equations (3.50) and (3.51) with boundary conditions (3.52)

on the surface of the particle and (3.53) as r — oo to first order in j, simplify to

VQCO(OJ) = 0 (364)
1

0,C°0 = —§5+f(COS 0) r=1 (3.65)

C«O(O,l) = 0 r — 00 (366)

and

Ve — (3.67)
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0,01 — —§6+f(cos 6) r=1 (3.68)
0D — o r— 00 (3.69)
which imply
00(0,1) — @0(071)' (370)

Using this equality and expanding the slip velocity (3.43) in powers of j, yields

the tangential velocity at the surface of the particle
0 10,1 :
Us(liza =Jp Us(lip) + O<Jp2> (3.71)

where

slip

gy — [¢0 — 4 Incosh (%)} Dp®°OV (1, 6) (3.72)

in which we have used the notation

b = @O0 (3.73)

for the electric potential at the surface of particle to the leading order in A and
Jp- Similarly, the outer region boundary condition for the radial component of the

velocity at the particle surface is given by
Ul =o. (3.74)

These conditions supplement the Stokes’” equation to describe the flow field around

the particle to leading order in j,.

3.4 Particle Velocity

Changing the coordinate system from the particle frame of reference to the labo-
ratory frame of reference, the resulting equations and boundary conditions for the

flow field can be written to first order in j, as

—v PO 4 vl = g, (3.75)
r=1: U=yl e+ue, (3.76)
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r—oo : UL = (3.77)

Even though the Stokes’ equation (3.75) appears to contain no explicit dependence
on concentration and electric potential, the effects of these components manifest
themselves through the slip boundary condition. Since velocity vanishes at infin-
ity, we can use the Lorentz reciprocal theorem to solve for the unknown 4%V,
The Lorentz reciprocal theorem relates the solution of two different Stokes flow

problems through

/ﬁTwWU@:/ﬁTWﬂW$ (3.78)
S S
where

ToOD = —peOD] 4 YU 4 (VUeon)” (3.79)

is the stress tensor for the flow in our problem, whereas U’ and T’ are respectively
the velocity field and its corresponding stress tensor for another Stokes flow in this
geometry. In order to proceed, consider U’ to correspond to uniform flow over a
sphere where the velocity at infinity is along the axis of symmetry and equal to e,.
The corresponding stress tensor in index notation (equation (A.31) from appendix
A)is

3

- 1 1 1 1\ 2 1
T'ij = T |:— (5z38j; + (5]381;) + (Q?lajag; + x]&@g;) + galajag;‘| (380)

and the traction on the particle surface is given by
n-T =—e, (3.81)
Inserting the corresponding entities in equation (3.78), we get the form

-3

— @lﬂw@:/ﬁTWWQM (3.82)
2 Js s

Since the particle is moving with constant velocity, the net force on the particle,

represented by the right hand side of the above equation, must be zero. Thus,

using €y - €, = —sinf and a boundary condition for the velocity at the particle
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surface (3.76), the reciprocal relation (3.82) reduces to

0 = /éz~U°(0’1) ds:—/ Us(np sm@ds—I—/L{(O’l) ds
s s

= 27 / Ul sin®0do + dx U Y. (3.83)
0

The electroviscous velocity is then found by substituting equation (3.72) into (3.83)
to yield

slip

Ul — %/ U9 sin2 6 dg
0

= % {% —4 Incosh (%)} /O’T [89(1)0(0,1)(179)] sinZ 0 do (3.84)

Since the electric potention ®°(%!) satisfies the Laplace equation (3.67), we can

expand it in terms of Legendre polynomials,

[e.9]

COI) Z COS@ (3.85)

=0

Thus, the electric potential at the surface of the particle in the outer region is

Z Py (cosf), (3.86)

and for its corresponding angular derivative we have

dP n(cos @)
0(0,1) ~ 7
0p @™ (1, 0) 5 Q, (—sin 6 J(cost) (3.87)

We can can evaluate the integral in (3.84) using the orthogonality of Legendre

polynomials, yielding,

™ 4
/ (0,27 (1,0)] sin 0 df = —30 (3.88)

0
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which leads to the velocity

—2
Uy — e {gbo — 4 Incosh (%)] (3.89)
where «; is given by
3 N , 3
o) = §(5+ P1(cos ) f(cos) sinf df = §(5+f1 (3.90)
0

Recasting equations (3.89) and (3.90), the explicit expression for the nanomotor
velocity U = j, UV + O(N>0, Jp 1) to leading order in the dimensionless Debye

length A and first order in dimensionless flux of hydrogen ions j, becomes

U ~ _Tl(hjp fi [gzﬁo — 4 Incosh <%>} (3.91)

where

1

fi= /07T Pi(cos ) f(cosf) sinf df = / Pi(n)f(n)dn (3.92)

-1

is the first coefficient of the Legendre expansion for the distribution function. In
equation (3.91) the term In cosh (¢g/4) is very small compared to ¢ in the range

of |¢o| < 2. Thus, we can ignore this term to obtain

_1 )
U ~ T5+ Jp f10 (3.93)

In order to show the relationship between particle velocity and the parameters of

the system, the velocity equation can be written in dimensional form as

~ _fl € ) RT RT?O
4 = 4 \pD, C> I I\ 2F ¢o — 4 Incosh )

—fi eRT .
4 (ZFMD+Q°°) o & (394
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0o

Figure 3.2. The relative areas of the source and sink can be described by 6.

This equation can also be recast in terms of the Debye length A\ as

—fi (N22FN
U=~ \p) oo (3:95)

3.5 The Effect of Source-Sink Geometry

From equation (3.95) for the order O()\°, jll,) of nanomotor velocity it is evident
that for fixed j, the only parameter determining the effect of particle geometry is
f1. A variety 0? geometries can be considered by changing the relative sizes of the
source and sink regions on the surface of the particle. As shown in Fig. (3.2), if
the axisymmetric configuration of the particle is to be maintained, all geometries
can be simply characterized by the angle 6.

In the foregoing analysis, it was assumed that the flux of ions at the source
and sink are uniform over each region. At steady state, there is no change in the
charge of the particle with time. Consequently, the fluxes of positive ions at the
source and the sink differ based on the areas of the those regions, and the following

constraint applies:

/7r f(cos®) sinfdf =0 (3.96)
0

At the same time, the surface integral of the absolute value of f(cosf) is a
measure of the net amount of hydrogen peroxide that is consumed in electrocat-
alytic (not catalytic) reactions. To set a basis for comparison between different
source/sink configurations, we consider the case where the areas of the source and

the sink regions are equal (6y = 7/2) to be the reference configuration for which
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f(cos®) = sgn(cos@). For this configuration,

/7r |f(0)| sinfdf = /W/Q sin 0 df — /7r sinf df = 2. (3.97)
0 0 /2

This can be considered as a constraint for other configurations to keep the elec-
trochemically consumed amount of hydrogen peroxide fixed as a common basis for
comparison. We can then examine how changing the distribution of f(cos ) under
the above two constraints affects the velocity of the particle.

As an example, consider the flux distribution f(cos) to be of the form

if 0 <0
f(cos®) = f+ ' 0 (3.98)
—f if 0 > 6,
The aforementioned constraints then lead to the requirements
s 6o T
0 = / f(cos @) sin9d9:f+/ sinfdf — f_ sin 6 df
0 0 6o
= fi(1—cosby) — f_(1+ cosby) (3.99)

and

™

g 0o
2:/ |f(cos®)| sinfdf = f+/ sinfdf+ f- | sinfdf
0 0

o
— f+(1 — COoS 90) + f_(l -+ cos 90) (3.100)

Therefore, the uniform flux distributions must have the following dependence on

the value of 6y:

(1 —cosfy)! it 0 < 6,

L (3.101)
—(1 4+ cosbp) it 6 > 6,

f(cosh) = {
The first Legendre coefficient f; is then given by

fi :/ Pi(cos @) f(cosf) sinfdh = 1,
0

which shows that f; is independent of 6, for the model source-sink in this section.
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This means that for small values of hydrogen ion flux in the limit of thin double
layer, and a given amount of electrocatalytically consumed hydrogen peroxide, the

nanomotor velocity is independent of source/sink geometry.



Chapter

Spheroidal Nanomotor

A prolate spheroid is a body of revolution obtained by rotating an ellipse about
its semi-major axis. After a problem is solved for a spherical geometry in colloid
science, usually, a spheroid is the next geometry to be studied. This is because
the eccentricity e of a spheroid can be changed to represent a range of geometries
from a sphere (e = 0) to an approximate for slender bodies and rods (0 < e < 1).

In this chapter we solve the electrokinetic equation for nanomotor velocity to
leading order in A and first order in j,, using the method of matched asymptotic
expansion and van Dyke matching. We see the same scaling relationship between
the parameters of the system that we observed in the case of a sphere. Also, the

final result reduces to the case of a sphere in the limit of e — 0.

1 Prolate Spheroidal Coordinates

An ellipse is the locus of points where the sum of their distances from two fixed
points (the foci) in space are constant. The interfocal distance is 2c. The line seg-
ment along the fixed points is the semi-major axis of length 2a; the perpendicular
line segment bisecting the foci is the semi- minor axis with length 2b. A hyper-
bola, consisting of two disjoint curves, is the locus of points where the difference
between their distances from the foci is constant. The hyperbola is orthogonal to
the ellipse and these two together form a curvilinear orthogonal coordinate system
in two dimensional plane.

A prolate spheroidal coordinate consists of the rotation of the aforementioned
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(2) Half - Ellipse (2) Half - Hyperbola

Figure 4.1. The ellipse and hyperbola in the xy-plane; in (a) 74 + rp is constant, while
in (b) |ra — rp| is constant. (with modification from [37])

coordinate system around the semi-major axis of the ellipse. The important note
here to mention is that since the rotation about the symmetry axis is a 27 revo-
lution, the rotated object is a half-ellipse rather than a fully closed ellipse. Every
point in space corresponds to a tuple (£, 7, ¢) where £ is the radial coordinate, 7
is the angular coordinate and ¢ represents the azimuthal angle. As depicted in
Fig. (4.1), the radial £ and angular 7 coordinates can be defined using the focal

radii r, and r, in the form

To+ To

— 4.1

£=" (4.1
and | |
To = To

= —. 4.2

7 5 (4.2)

The azimuthal coordinate ¢ = tan™! <§> is measured from the zy-plane in a anti-
clockwise fashion. The coordinates of a point in prolate spheroidal system (£, ¢)

can be transformed to the Cartesian system (z,y, z) using

r = cné (4.3)
y = /(€2 —1)(1 —n?)cos¢ (4.4)
s = /@D Psing (45)
where
1< g <1, (4.6
1< € <o, (4.7)
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n = cos(105°) "= cos(90%) n = cos(75°)
1 = cos(120°) 1 = cos(60°)
n = cos(135°) = cos(45°)

1 = cos(150°) 1 = cos(30°)

1 = cos(165°) 1 = cos(15°)

n = cos(180°) ° n = cos(0°)

£=10 .

Figure 4.2. Constant coordinate curves for prolate spheroidal coordinate in a half-
plane of constant ¢.

0< ¢ <2 (4.8)

Fig. (4.2) demonstrates the family of curves of constant radial coordinate £ (blue
curves) and the family if curves of constant angular coordinate 7 (red curves) in a
half-plane of constant ¢.

Using equations (4.3), (4.4), and (4.5), we can calculate the the scale factor for
prolate spheroidal coordinate by taking the derivatives of the Cartesian position

vector =z €, +y e, + 2z e,.

oF £ — 2

B or B &2 —n?
h"] = 8_7] = C 1 — ’r]2 (410)
or
he = |55l = VE@=DI=) (4.11)
The unit vectors are defined as

107
e = —— 4.12
€ e 06 (4.12)

) 1 0r
s, = LT (4.14)

e¢ = h_ga_gb
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and the transformation of the unit vectors from spheroidal coordinate to Cartesian

coordinate is

€z = 7 €2 2 e+ ¢ £2 2 €n; (4.15)
R 1—n? . £-1 L
e, = ¢ g cos P € — 1 - cos ¢ €, —sin¢ &, (4.16)
R L—n* . . e-1 . . R
e. = ¢§ 2 sing € —n - sing €, + cos ¢ €. (4.17)

Consequently, the vectorial differential operators in the axisymmetric prolate

spheroidal system take the form

Vign) = —5 o
_ & (€10, & [1-m 0
= c\e—peel Te\espa’ 418)

B 1 g hnh¢% g h¢hfg
VEf(&m) = Tl [35( h a§>+ 77( hy 77>]

9
9 5{(52 _ 1)%] + a% {(1 - n?)g_ﬂ } (4.19)

€
I 1 0 0
1 0 0
= el 2 _ 2)\(£2 _ “ 2 _ 2 2\(] — 2
e { VE @ IR + 5 (E AR )
(4.20)
2 Spheroid
In the Cartesian coordinates we describe the prolate spheroid by
2 2 2 2 2
x_+y_+z_zx_+7’_:1 (4.21)

a2 b2 b2 a? b2
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where 72 = y? + 2% and b < a. The interfocal length 2c and the eccentricity e are
related by

c=va> -0 =ea (4.22)

The eccentricity is the ratio of the interfocal distance to the length of the semi-
major axis, e = ¢/a and varies as 0 < e < 1. In the case where e = 0, the foci
coincide and the spheroid is a sphere. The hyperbola then becomes two lines of
opposite slope crossing at the origin.

In the prolate spheroidal coordinate, a prolate spheroid is represented by a
surface of constant & > 1. For this geometry, the semi-major axis is a = c¢£; and
semi-minor axis is b = c\/fgi—l . The degenerate surface & = 1 corresponds to
interfocal line segment. Comparing ¢ = ea and a = c&;, we obtain

1
e

&= (4.23)

The normal n on the surface of the spheroid in the index notation takes the form

b a a
—ZEl(Sh' + 312522‘ + 3x353i 1 <b a a )
n, = a = —xél—i——xél—i——xéz
a2_e2$% R1R2 all b22 b33

- i () b i 420

where the indices 1, 2 and 3 refer to x-, y- and z-axes, respectively.

3 Velocity and Pressure Field for Flow Over a
Prolate Spheroid

For a free stream velocity at infinity of the form
U=Ue, (4.25)

where €, is the unit vector in the x direction, the velocity field and pressure field

around the spheroid are given by [38]
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1 1
u=U éI—QOéBloé$—O[ — = (yéy+2éz)+OéT2Bgoém—QﬂVBll
s RQ Rl > >
(4.26)
and
2ualU L L (4.27)
= 2l o .
p H R, R, )’
respectively, where
2e? e?
= = 4.28
“ 1—625 —2e+ (1+e€?)L,.’ (4.28)

Le:m(He) , (4.29)

l1—e
Ry =+/(z+c¢)?+12, (4.30)
Ry =+/(x —c)2+12, (4.31)
Bio=1In (%) , (4.32)
Bi1=Ry—Ri+2 By, (4.33)
and
Byo = 712 (“’;C - xR_zc) . (4.34)

The distribution of traction for this flow filed on the surface of the sphere in the

index notation is given by is

B 1 ay . (4palU 1 '
it =t e (5)0 - (Y0 vammen . 09

where the x-direction is represented by d1;. We will use this equation with Reynolds
reciprocal theorem to calculate the nanomotor velocity. For a detailed derivation

of the distribution of traction, please refer to appendix B.

4 The Model of Electrokinetic Self-Propulsion

In chapter 2, we developed a set of electrokinetic equations governing the interac-

tion between nanomotor and surrounding fluid and ions. The length scale in this
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problem is the half length of the semi-major axis, which is a. Working with the

dimensionless equations, we would like to solve the Stokes’ equation
~VP+ VU + V?*®Vd =0 (2.27)
for the far field velocity of fluid
U — o0)=-Uz (4.36)

in the frame of reference attached to the particle. In the laboratory frame of
reference, U is the nanomotor velocity. We use the no-slip boundary condition on
the surface of the particle,

U =¢)=0. (4.37)

The motion of ions in the electrolyte is governed by the equations of continuity of
species
V-Ji+PeU-VCL =0 (2.26)

where the ion fluxes are given by
Ji =6 (VCy £ CLV®). (2.25)
The particle is impermeable to negative ions

- J_‘ —0 (2.30)
§=&s
and the distribution of positive ions on the surface of the spheroid is given by

Bede| =G0 (2.29)

where the prefactor j, is the strength of hydrogen ion flux and f(n) is a function
defined over the surface of the spheroid. Since the geometry is axisymmetric,
this distribution function only depends on 7. The electric potential is related to

concentration of positive C'; and negative C_ ions through the Poisson’s equation,

2A°V20 = —(Cy — CL). (2.24)
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—

2N°V?0 = —(C4 — C-
(Cs ) Outer Region

— 6_ gs
P=X
0 ., 0 —
% = A 18_;) Matching\
=0

p:

. —

Inner Region

Figure 4.3. The fluid around the spheroid is divided into an inner region, where the
high variation in the electric potential compensates for the smallness of A2, and an outer
region. By change of variable from £ to p, we can expand the inner region. The surface of
the spheroid is represented by £ = &. We calculate the unknown coefficients of the inner
and outer solutions by matching these solutions at the boundary of the two regions.

The electric potential on the surface of the conductive nanomotor is constant

(¢ =¢) = ¢, (2.31)

and vanishes at infinity,
O(§ — o00) =0. (2.34)

Far away from the particle, the electro-neutrality condition holds in the electrolyte

and the concentration of ions are equal to background concentration,

Cul€ — 00) = 1. (2.33)

5 Perturbation Analysis

In this chapter we solve the governing equation in the limit of small dimension-
less Debye length A < 1 and small dimensionless strength of hydrogen ions flux
Jp < 1. We use singular perturbation analysis for the former parameter and

regular perturbation analysis for the latter.
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5.1 Singular Perturbation Analysis

In the Poisson equation (2.24), the small parameter A\? is multiplied by the highest
derivative V2® in the equation. There is a boundary layer near the surface of the
spheroid where the spatial variation of the electric potential is rapid; therefore,
V2® can compensate for the smallness of A\2. That is, in this region \2V?2® is of
order one (see Fig. 4.3). We use the method of matched asymptotic expansion in
which we divide the space into two region; the inner region where to the leading
order in X the term A\2V2® is of order one and the outer region where to the leading
order in the small parameter, A2V2® vanishes. We solve the fields in the inner and
outer regions and match the corresponding orders using van Dyke matching.

To capture the rapid radial variation of electric potential in the thin boundary
layer of thickness O(\) at the surface of the particle, we stretch the domain to

a stretched radial coordinate p that varies between zero and infinity using the

transformation
p= b (4.38)
A )
£ =&+ Ap, (4.39)
e = X109, (4.40)
Then, we expand each fields G as a function of p in the inner region in powers of
A as .
G'(p,0) = > NG®(p,0) (4.41)
k=ng

where the value of the integer ny depends on the field G and the number £ in the
parenthesis indicates the order of the function G**). We also expand the same

field as a function of r in the outer region in powers of A

G°(r,0) = > N*GPH(r,6) (4.42)

k=0
where the outer fields of odd order are zero since the small parameter in the outer
region is A\2. However, for the purpose of applying the van Dyke matching, we
consider the outer expansion in powers of A\ with terms of odd powers equal to

zero, i.e. GOkt — (. Inserting these assumptions in the governing equations
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results in different equations based on the order of of the small parameter. We
solve the equations for the outer and the inner regions and match the inner and
the outer fields of the same order using van Dyke matching. We represent the

matching condition for the field G by the notation
o,l, G =1,0,G (4.43)

where 1,,0,, is the n-term inner expansion of the m-term outer solution and Q,,I,,
is the m-term outer solution of the n-term inner solution. To evaluate I,0,, G
we take the first n-terms (the terms of power A" to A\"*"0~1) of the following

expansion in A given p fixed,

—

m—

MNGOR (1 4 Mp, 0) (4.44)

k=0

and to evaluate 0,,I,G we take the first m-terms (the terms of power A\° to A™~1)

of the following expansion in A given r-fixed,

n—ngo—1
1
3 NG (TT 9) . (4.45)

k=ng

We apply singular perturbation analysis in this section to calculate for slip velocity
and lump the properties of the inner layer into a boundary condition for the fields
of the outer region.

As discussed before, for the fields in the inner region, we can write an asymp-
totic expansion, G* = 77 A" G'™ where ng = 0 for C°, @O Ji, Ui ¢ and
U. Using equations (2.25), (2.27), and (2.28), we have ng = —1 for Ji , ng = 1
for U,i, nyg = —2 for P*. We would like to calculate the angular component of the
velocity Ué(o) to the leading order in A from which we can calculate the slip velocity

U(O)

slip

= ¢, lim U0 (4.46)

p—00 n

The leading order angular component of velocity in the inner region appear in the
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order O(A7?) of the angular component of the the Stokes’ equation,

2
1—n i(— &1 i
(=) e (g )

2
1—n? , 21 ,
+ (gs 52 _:}72 a’?) (I)Z(O) (gs 528_ 772 aﬁ) (I)Z(O) =0 (447>

The velocity field on the surface of the particle should satisfy the no slip boundary
condition,

(0 _ —
Ui (p=0)=0. (4.48)

To relate the pressure P~2) to electric potential ), we use the order O(A~3) of

the radial component of the the Stokes’ equation,

2
| & -1 i) L | & -1 | & -1 i
_<fs W80>P(2)+§<§S W@[) [(55 m@)@“’)] = 0.
(4.49)

The Poisson’s equation to the leading order in A relates the electric potential ®*(*)

to the concentration of positive er(o) and negative c'© ions,

2
(55 / 5522__—7712 a,,) o0 — — (¢ — 1) 2. (4.50)

The potential on the surface of the conductive sphere is constant,
'O (p=0) =, (4.51)
The continuity of species to the order O(A\7?) gives
9,J50 =0 (4.52)

with boundary conditions
e (4.53)
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where

i~ - [& -1 i i £2—1 ;
Ji(p V= —0%! [(55 o 8,;) Ci(o) + Ci(o) (fs o2 9, | V| . (4.54)

From the equation (4.52), we find that in the inner region, the fluxes ij;l) have

no radial dependence, Ji(;l) =K +(n). Since the order O(A™!) of ion fluxes vanish
(4.53) on the surface of the particle, the angular coordinate dependent functions

are zero, K. (n) = 0, and we obtain
JEY =0, (4.55)

Consequently,

i1 i i -1 i
R =D R

which leads to

CL = K (1) exp (F0'V) = KL (n) (cosh ¥ F sinh &) (4.57)

where K ' (n) are angular coordinate dependent functions. Inserting these concen-

trations fields in to the Poisson’s equation (4.50), we obtain

2
2—-1 i i i
(53,/ —5;_772 ap> o0 — (- c) /2

(Rt — K2 ) )
= — [(Kﬁr — f(’_) cosh &) — (f(ﬁr + K’_) sinh @i(o)} )
(4.58)

Defining © = <§8@/§2§_—_7]12 8p> 0 A = IA(; — K’ and B = K:L + K’ , we have

2
2 _1 . 1
(cf§m) o = otemo= jome
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A(n) cosh @ — B(n) sinh & | | (4.59)

DN | —

from which we obtain
0% = —A(n) sinh &' + B(n) cosh &' + K. (4.60)

The electric potential in the inner layer increases with an increase in the radial
coordinate, and its radial derivative is positive, © = (fs,/ £l s )@Z(O > 0;

therefore,

> _ R A . . ~ 3
(@V% 0 ) 10 — |~ A(n) sinh @' + B(y) cosh @ + K|* . (4.61)
s "N

For further calculations, we need to determine the coefficients A, B and K", for
which we need to match with the outer solution.
For the fields in the outer region, we can write the asymptotic expansion based

on A and there is no need for a change of variable,

GO = NG, (4.62)

n=0

To the leading order in A2, the Poisson’s equation leads to electro-neutrality con-

dition in the outer region
o0 = ¢ = o), (4.63)

We use van Dyke matching for the concentrations of positive and negative ions,

L0, C2(&,m) = Oily Ci(p, 1) (4.64a)
L0, C?2(&,n) = 011 Ci(p, n) (4.64b)

which along with the electroneutrality condition (4.63) results in
O, C4(p,n) = Oily CZ(p,m), (4.65)

where [0, is the one-term inner expansion of the one-term outer solution and

O41; is the one-term outer solution of the one-term inner solution, according to
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lim K, (n) (cosh ' — ginh @i(o)) = lim K’ (n) (cosh ®© 4 sinh (Di(o))

A=0 A=0
e—fixed ¢—fixed
or
lim A(n) cosh®® = lim B(n) sinh &,
A=0 A=0
¢—fixed ¢—fixed

This equation gives us the relationship between A and B,
A(n) = B(n) tanh [0 (00, 7)] .
Inserting this relation into equation (4.61) and defining

W(p,n) = O (p,n) — &V (c0,n)

yields

-1 o) oo - B() .,
(55 652 — 772 ap) 0 — [(Cosh [cI)i(O)(oo’ 17)]) cosh (77/}) + K

We also have

v L (i4B) = B(n) 0
Ko=g(A+B)= <2cosh [@(0)(00,77)0 exp [0 (00, )]

Therefore, we have

N|=

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

Using the fact that Cﬁr(o)(oo,n) = C°0) (¢, n), and inserting (4.72) into the radial

derivative of the electric potential (4.70) yields

53 —1 i(0) _ 0(0) 2l
g O | 1 = 2070 m) cosh (8) + K7 ()

(4.73)
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We further need to match the radial component of the electric field of the order
O(A7!) in the inner layer, that is, E <§s~/ G-l > ) with EO( Y in the

outer region. However, we know that the asyrnptotlc expansion in the outer region

start from the leading order in A, and therefore, Eg(fl)

= 0. Applying the van
Dyke matching, we obtain

Ol BL =1,0, B2 =0 (4.74)

p

which yields
lim 2070 g, ) cosh (v) + K"(m)]* = [2C°O&m) + K"(m)]* = 0. (4.75)

A—0
¢—fixed

This relation gives
K"(n) = —2C°O (&) (4.76)

and we obtain

N

(55 g __;2 ap> 'O = [20°0(&,,n) cosh () —2C (&, n)]
— l4 (&, m) sinh? <%>} : (4.77)

Since 9,9 = 9,1, the above equation takes the form

[e2 1
(55 ;5_—772 3p> = —24/C°O) (&, n) sinh (%) : (4.78)

The minus sign is due to negative value of sinh (%) in the inner region. Integration

of the above equation gives

(0 Yo —p/C°O (&, n)

= tanh — exp

I B (e=y

wo(n) = @7©(0,1) — &' (00, n) (4.80)

tanh — (4.79)

where
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is the electric potential difference between the surface of the particle and the
boundary of the inner region. We can recast equation (4.79) into the familiar

Gouy-Chapman equation,

L ] — 0(0)
&0 (p, n) = O (00, ) + 4 tanh~! tanh(@) exp | =7 CoO) (£, )

! (6y/E)

(4.81)

Also, the nonlinear Poisson’s equation (4.58) takes the form

2
o = (é,/%) €0, ) sinh (1.82)

So far we have calculated the leading order electric potential ®*©) in the inner
layer. In order to solve the order O(A™2) of the angular component of the Stokes’
equation (4.47) for the leading order tangential component of the velocity Ué(o)
we need to calculate the pressure P2 of the order O(A~2). Integrating O(A~?)

radial component of the Stokes’ equation (4.49) gives

. 1 &2 -1 .
i(—2 s (0
P ):§[§S< 52_7726p>¢()

To determine K" (n), we match the pressure of the order O(A72%),

+ K" (n). (4.83)

1LO; P° =041, P (4.84)

Since the asymptotic expansion of fields in the outer region starts from the leading

order in A2, we have P°(=2 = (. Consequently,

2

o . 1 §52 —1 i(0) o111 T
0= lim =& (UW ap) ® + K" (n) = K" (n), (4.85)
e—fixed

where we have used the vanishing of radial component of the electric field (4.74)
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of the order O(A™!) at the end of the inner region. Therefore, we obtain

2 2
1 [e2 -1 ol 1 [ €2 -1
pi=2) =3 [£s< o 3p> (I)(O)] =3 [&( & .2 8,,) wl . (4.86)

Using the nonlinear Poisson-Boltzmann equation (4.82), equation (4.78) for the
derivative of electric potential, relation (4.86) for pressure PA~?), and the definition
(4.69) for v, we would like to solve the order O(A~?) of the angular component of
the the Stokes’ equation (4.47) for the leading order tangential component of the
velocity Ué(o),

2
£-1 i 1—n i(—
(53 ) B Ul e ) R
2
L= 5, ) 80 S-1p) e
“eEp “e—p ) T

The term containing pressure is

1—n? oy 1 1—n? £2-1
S —)( —) (E=52)

2

X
—
VR

723
vy
UJMH

|
3

L a) (-2y/c0ien sinhw/z))]
( 2% sinh( w/2>

X [—2 sinh(¢)/2) (&s,/;_ n 8) \/ C°O (&, m)
00(0)(55777) cosh(1/2) ( “512 L 0) ) w]
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— 25sinh?(¢)/2) <§s T, &7 (&, n)

+CoO (g, m) sinh o) fs,/ )

The electric body force takes the form

2
Rl

(4.87)

Il
/\ /\
U:M tow
\_/ v
@
+
=4
8
d
Nt
VR
™M
vy
AT
]
Jm —_
bQ.D
~_
[N}
<

(4.88)

Therefore, the angular component of the velocity to the leading order in A becomes

2 _ ? , —n?
(ss, e ap> U = 2sinh}(5/2) (ss,/ﬁ an> € ¢,m)
2
[1-— ; [ & -1
_<£S 52 77 (9)(1) ( )(fs §2 a) w

(4.89)

Integrating the above equation gives us
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Using the relation [~ 83U£(0)dp = —0,U"” we obtain

fs 12__7172 0 CO(O) (55, 7]) 2 _
(/e ) (gs G- nl) cosh(6/2) — 1]

2
1 —n? i 53_1
<55,/g ’372(9)@ (00 )(55 63_772) o (4.91)

Factoring out (55. / 523_—7712) from the both sides of the equation yields

(fs : —771 3p> UI© = —2cosh(1/2) — 1] (68 80) €O gm)

& N O, 7)

1 - , 2 _1
_(5 /52 IR 0)(1)2(0)(00,77) (55 55—772 8p>¢

(4.92)

Further integration of this equation using the relation (4.79) and the no-slip bound-

ary condition gives us the inner tangential velocity to the leading order in A,

UO = (¢ — ) (53,/52 Ui a) (00, )

s (E )
£/ VCO (&, m)

4 )
2
<€\/ 9, | mC O 6 n L tanh (o)
S 5 17 S
exp |2V W — tanh? (1o /4)
&/ 2
\ &5—m /

(4.93)



95

Considering ') (00, n) = ®°)(¢,, ), the slip velocity takes the form

= lim Uz

p—>00

= o <§SH§2 s 8) )(53777)

+2 1n{1—tanh2(¢0/4)}< ny 512_” 8>lnC°(0)(§s,n) (4.94)
= Yo <£S,/£Q L a)@‘)“”(@m)

—4 In cosh(tpg/4) ( ,/;2 L 6)1n00(0)(§8’n) (4.95)

This relation is the equivalent form of the Dukhin-Deryaguin slip formula that is
used as a slip boundary condition for the outer region.

So far we have calculated the slip velocity as a boundary condition for Stokes
flow in the outer region. We need to have the leading order fluxes of ions as
boundary condition for the continuity of species in the outer region too. For this
purpose, we use the order O(A™!) of the equation of continuity of species (2.26) in

the inner region,

1 222 1—n i
R e N e R (4.96)

From equation (4.55) we know that J:it(;l) = 0, and therefore we have

8,70 =0 (4.97)
which means
T (p,m) = K" () (4.98)

This equation is valid in the inner region and should satisfy the boundary condition

on the surface of the particle with boundary conditions

TS|, = ), (4.99)
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g = 0. (4.100)

We obtain K”(n) = j,f(n) and K" (n) = 0. So, for the leading order of ion fluxes

in the inner region we have

T = Gpf ), (4.101)
T = 0. (4.102)

These boundary conditions, along with the matching conditions Ji(g)(p — 00,1) =
Ji(éo) (& — &, m), give the boundary condition of the leading order ion fluxes for the

outer region,

T m) = G f (), (4.103)

T (&,m) = 0. (4.104)

5.2 Regular Perturbation Analysis

Having lumped the properties of the inner layer into boundary conditions for the
outer region, we would like to solve the leading order far field velocity of fluid in

the frame of reference of the particle,
U =_yVe,, (4.105)

where U is the nanomotor velocity in the laboratory frame of reference to the

leading order in A. To do this, we use the leading order of Stoke’s equation,
—vPO + v2UoY + vorOvieo® — (4.106)
with the slip velocity (4.95) boundary condition

U0 () = U

slip

&,. (4.107)

Using the electro-neutrality condition C°) = C'JOF(O) = 03(0)’ the equations of

continuity of species to the leading order in A takes the form
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V- J20 4 pe o0 .y ce® — (4.108)

where

o — 1 —n? o o 1= o
7O = 5y [(58,/—52 — an> o0 £ o0 <€s e &7) @ “”] (4.100)

and boundary conditions

JIO (€ n) = Guf (), (4.103)
T, m) =0, (4.104)

in the beginning of the inner region and the far field (¢ — oo) boundary conditions

Ve© = 0, (4.110)
co o= 1, (4.111)
Jo = 0. (4.112)

We can rewrite the equation (4.108) in the form
V- (VCO £ OOV 4§, Pe U . v = . (4.113)

Adding and subtracting the above equations for positive and negative ions, we

obtain

V20O — (5+ ‘g 5‘) Pe U . v (O (4.114)
A

V- (COOVe) = ( ) Pe U . v O (4.115)

with corresponding boundary conditions in the beginning of the outer region (§ —

&)

[e2 1 [ €2 —1 -1
(ﬁs 55——772 35> o) = o0 (fs % a&) 90 = 04 Jp [7]0(77)} )

(4.116)
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and the far field (¢ — oco) boundary condition

&-l o(0) _ (10(0) g1 o(0)
A\ e 2 O | €77 =C €s 22 O | @7 = 0. (4.117)

These equations are still nonlinear and thus making them difficult to solve. We
linearize the equations by solving them in the limit of small j,. Expansions of the

fields in powers of j, are of the forms

Co(o) = 14+ jp 00(071) + (’)(]'p?)’ (4.118)

PO —  o©.0) 4 Jp PO | 0(5,), (4.119)

o0 = ¢+ O(jp), (4.120)

U0 = U0 4 0(,2), (4.121)

U — Jp yo1 + (’)(ij)’ (4.122)

PO = POl 1 0,2). (4.123)

in which we have used the notation

b0 = ¢(070) (4.124)

for the electric potential at the surface of particle to the leading order in A and j,,.
To leading order in j, equation (4.115) with boundary conditions (4.116) on the
surface of the particle and (4.117) as & goes to infinity result in

V20 = ¢ (4.125)

&2 -1
(gs —f;_ 7 ag) 00 = ¢ £=¢ (4.126)
00— £ — 00 (4.127)

Therefore, ®°(%9 = 0, and consequently, on the surface,
o0 (g, n) =0 (4.128)

To first order in j, equations (4.114) and (4.115) with boundary conditions (4.116)
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on the surface of the particle and (4.117) as £ — oo result in

VQC«O(O,I) = 0 (4129)
53 -1 o 1
oy O | OO0V = —o f() €=¢ (4.130)
£ —n 2
00(071) = 0 f — 00 (4131)
and
V2CI)O(O’1) = 0 (4132)
&1 o0, 1
(55 g O | ® o1 = —§5+ f(n) §=2E&s (4.133)
(I)O(O’l) = 0 5 — 00 (4134)
which yields
o0:1) _ @o(0.1) (4.135)

The Stokes’ equation to the leading order in j, takes the form
—v P 4 vl =g (4.136)

This equation apparently doesn’t contain any dependence on concentration and
electric potential as the differential equation has no electric body force term. How-
ever, the effect of electric potential appears in the slip velocity boundary condition.

To leading order in j, on the surface of the particle (beginning of the outer region)

we have
0,1
U =0 (4.137)
For the tangential velocity, we use the Taylor expansion Incoshz = % — % + -

and equation (4.135), to expand the slip velocity (4.95) in powers of j,,,

Ul = UG + 00, (4.138)
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where

Ui’ = P 4 neosh (%)] (és V&= G ) e (g, m).  (4.139)

Changing the coordinates from particle frame of reference to laboratory frame of

reference, we can solve the velocity using

_y po0) 4 g2en) (4.140)
f=¢ : U =plle +u® e, (4.141)
£ oo i UMD (4.142)

The particle is moving with constant velocity; therefore, according to Newton’s
first law, the particle is force-free, F°1) = (. Since velocity vanishes at infinity,
we can exploit the Lorentz reciprocal theorem to solve for the unknown (1),
The Lorentz reciprocal theorem relates the solution of two different Stokes flows
through

/ ds - TN . U’ = / ds a-T' - U°OD (4.143)
S S

where
To©.1) — _po((O,l)H Lyye©n 4 (VUO(O,l))T (4.144)

is the stress tensor for the flow in our problem, whereas U’ and T’ are respectively
the known velocity field and the stress tensor of another Stokes flow for this ge-
ometry. In order to proceed, let’s assume that U’ corresponds to a flow caused by
a spheroid with velocity €,. The corresponding traction on the surface, according
to appendix B, is

h-T = o &, (4.145)

e/(&—n?) (& -1)

Inserting the corresponding entities in equation (4.143) yields

/ ds - T - U = / ds - TV ¢, (4.146)
S S

The force-free condition leads to fS ds n-TOD e, = FoOY = 0, and using the

: : A 0(0,1) _ 1 A 0(0,1
integral relation, [¢ds n-T' - U 01 = —da [gds mem U0 | we
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obtain
é, - Ul =g (4.147)

/ /(62 — 1 2)(€2—1)

The surface element on the surface of the spheroid (§ = &) is

ds = hydyhsdd = e 52 - 77 e /(€ — 1)(1— %) dndo (4.148)

and we have

ds _ dn dé 52 —
Ve-Pe-1  eJe-me-n /@)
= edndg. (4.149)
Using
A 772
€0 &y =& 52 (4.150)

the integral equation (4.147) takes the form

|
0 = [d 5, . U0
fo N GEDICE
- /ednd¢{<g 12_”2) [gbo 4 Incosh (@ﬂ
S § 4
X (55\/;2_ g ) o0, n) +u<071>} (4.151)
Therefore,

2
1
0 =~ o=t oo () | fan (fs o ) 0,0"0 (&, )

(4.152)
To take the integral, we need to solve for @1 that satisfies the Laplace equation.

The general form solution for this geometry is

V=" 4,Qu(&) Paln) (4.153)
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where P, and @), are the Legendre functions of first and second kind, respectively.
The function @, (§) can be written either in the form [39]

n—1

n+k
QulE) = OO -3 S e (1154)
where ) .
R (4.155)

or in the form [40]

Qn(§) = Vrl(n+ 1) F(1 +11n+1n+ 7€ ) n >0

D(n+ 3) (261 \2 2 2
(4.156)
where the gamma function is
[(n) = / t" e tdt (4.157)
0
and the hypergeometric function is
(@) )k,
F(a,b;c;2) Z o o |z| < 1. (4.158)
k=0
with
(a)o =1, (a)r = T(a+k)/T(a) k> 0. (4.159)
We calculate the coefficients A,, using
63 —1 o 1
(fs g O | POV =5 fn) =4 (4.160)
that is,
2 _
0,70V | = & 4.161
; e 255 o oA (4.161)
Therefore,

> 40 2:QuO]_ Pu =500 (4.162)
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Using the orthogonality relation

1
2
[ AP Pt = 50 (1.163)
we obtain
A, = — (Q"I 1) ! (4.164)
2Qu(e)|_,

and therefore,
o ! 2\
u((] 1) l¢0 —4 Incosh ( ):| gs ZAnQn gs / ( 52 ng) aﬂpn(n>
(4.165)

We can write the final results as

U~ _Tl(L F jp [qbo — 4 Incosh (%)] (4.166)

where the geometric factor is

- 2n+1 52 —n?
Fo= =&) Onll) | ——— [ dn [ P f( )]
2% e [ o

—Gs

1 1 _ nz 2
« / dn (2= 0,P.(n) (4.167)
-1 s 1N
In the limit e — 0, F reduces to
1
7= [ amonso = (1168)
~1

which is the same as in case of the sphere, that is, equation (3.92).



Chapter

Design Principles

1 Introduction

In the preceding chapters, we studied the physics of electrokinetic self-propulsion,
and formulated a mathematical model to describe it (chapter 2). Using the method
of matched asymptotic expansions, we solved the model problem for spherical
(chapter 3) and spheroidal particles (chapter 4) through rigorous mathematical
calculations. While we solved the nonlinear equations to the leading order in di-
mensionless Debye length and first order in dimensionless strength of hydrogen ion
flux, we can, in principle, solve the equations to higher orders of the small parame-
ter(s) and obtain for precise solutions. The possibility to solve the equations with
controllable approximation to our desired precision is an important advantage of
perturbation analysis. In addition, it yields an analytical result that demonstrates
the interplay between the parameters of the physical system under study.
Another approach for establishing a relationship between the parameters of
the physical system is to perform a scaling analysis. Such an analysis is based on
certain assumptions, and there is no control over the precision of the approxima-
tion. Moreover, the results are in the form of a proportionality relationship rather
than an equality. This type of analysis has been frequently used in the nanomotor
studies for its simplicity. In this chapter, we will apply scaling analysis to find
a relationship between the velocity of the nanomotor and the parameters of the
system. We will discuss the validity of the results and show how scaling analysis

can be misleading in understanding the dependence of velocity on Debyle length
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and its related quantities.

We will study the limits of accuracy of the perturbation analysis, and also
use numerical calculations to find the maximum possible velocity that can be
achieved by nanomotors. Using the aforementioned studies, we will discuss the

design principles that lead us to develop nanomoters with desired properties.

2 Scaling Analysis

Using scaling analysis, Moran et al. [26] have proposed the electroviscous velocity

¢o J° (5.1)

for a nanorod of length i and interfacial potential ¢. The difference between this
formula and our equation (3.95) for the nanomotor velocity is the appearance of the
nanomotor length A instead of Debyle length Ap in the numerator of equation (5.1).
Moran et al. have not provided a fully detailed explanation of these assumptions
in order to derive their result. In this section, we will derive the same relationship
for cylindrical and spherical nanomotors, including a detailed explanation of the
assumptions involved to determine the possible source for the difference.
Assumption (1): The current of ions is limited to a region of thickness A,
around the particle’s surface. The current of ions pass through a region in space
with average cross sectional area A.u.rent- These ions are produced from a surface

area A,,.. The current of ions in the Debye layer is equal to production current
LoczFA,, 5" (5.2)

Assumption (2): The electric field in the Debye layer that pulls the ion from
source to sink is constant. The current of ions is related to electric field Ey in the
Debye layer through

I xdgA E, (5.3)

~=Ccurrent

where ¢ is the conductivity of the electrolyte.
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Assumption (8): The charge density in the Debye layer is equal to the back-
ground charge density. This assumption implies
Z2F2QOOD+ €D+

Therefore,
A, FE AL 2FjPN?

~ fluz
€D+

~f

Eo x (5.5)

“current Q: ~current

Assumption (4): The double layer is very thin compared to particle size,
A, < R (R is the radius of either the rod or the sphere). In the case of a sphere,
A= % (4#52) and A = 27 R?)\, /7R, leading to the uniform electric field

~ flux ~current

Esph Eads ~ P _ . 5.6
~0 > )\D €D+ €D+ ( )
: ¢ : A mR?+3(2rRL)  R+L
For a cylinder of length L and radius R, we have Lo = Ty, =
When the aspect ratio of the cylinder L/2R is either very large or of order one,
A L
T o< .. In that case, the electric field for the cylinder is
~current D
I 2FjP\? 2F P L\
EW o =2 =77 (5.7)
)\D €D+ €D+

Defining h to be the particle’s length, where h = 2R for a sphere and h = L for a

cyinder, equations (5.6) and (5.7) can be written in the unified form

2FPhA,
Eyo« ——. 5.8
By ox — 5 53)
From the Poisson-Boltzmann equation, €Y2? = —pe, we can define a characteristic

charge density p., within the Debye layer as

6?0
Beo X )\—2 . (59)

D
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The electroviscous velocity can then be obtained from the Stokes equation as

BeoEO d 2 GQOEO
U x ( ) : (5.10)

A AN, T

D

where d is the viscous length scale.

Assumption (5): The viscous length d is equal to Debye length A, since the
body force p.E deriving the flow is primarily in the Debye layer. Based on this
assumption, the electric field in equation (5.8) can be substituted into expression

(5.10) for the particle velocity to yield

uev oK — = ¢0 jp (511>

For z = 1, this expression reduces to equation (5.1) proposed in [26]. Equation
(5.11) has two evident flaws. First, by increasing the length of the nanomotor, the
velocity of the nanomotor increases without bound. This contradicts experimental
observations. Also, since the Debye length is inversely proportional to ion charge
z, the velocity will be independent of ion charge while in practice z is a param-
eter of the problem that can affect the dynamics of the nanomotor. The major
reason behind the failure of the scaling analysis is that assuming a uniform elec-
tric field inside the double layer (assumption 2) is in violation of the requirement
that the nanomotor surface be an equipotential surface. Therefore, the simplifying
assumptions underlying the scaling analysis can be misleading in determining the
relationship between nanomotor velocity and the parameters of the system, un-
derscoring the need for a more detailed and rigorous analysis such as perturbation

analysis.

3 The limits

We used the method of matched asymptotic expansions to solve the model for
nanomotor velocity in the limit of very thin double layer (A, /a < 1) using singular
perturbation analysis and weak hydrogen ion flux (j, < 1). To the leading order

in dimensionless Debye length A and first order in strength of hydrogen ion flux
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Jp, the nanomotor velocity is found to be

RT RT %o
(z_F) ?0 —4 lncosh (Z_FZ>

where the geometric factor F depends on particle geometry and the surface

(5.12)

distribution of hydrogen ion flux. In the regime that these motors work,

10 mV. < ¢9 < 60 mV, the velocity of nanomotor exhibits negligible non-
linearity in Qo‘ That is, (f—;) Qo > 41ncosh (ﬁ—?@)), and the velocity can be

written as

F eRT F (N2 2F
0,1) Y M . (0,0 - _ L 5 ) (0,0) .
e (Y TS

In the domain of small parameters the velocity is independent of Peclet number
because diffusive transport of ions is much faster than their convective transport.
Although the size of the particle does not explicitly appear in these equations,
its effect is to determine the range of validity of the perturbation analysis. The
dimensionless flux strength is related to the particle size through j, = j,/J* =
(jp/DsC>)a. Since the results of the perturbation analysis are expecte:i to be
V;lid for small j,, increasing the particle size leads to a smaller range of validity
in terms of the dimensional flux strength j~p, and equation (5.13) will be valid for

a smaller range of particle velocities. The conditions for small parameters

Jp <O
- ~ 1 — = 5.14
o= 05w < o< (5.14)
and \
A=2<L]l = a> )\, (5.15)
a
yields the expression
. D,C*
o€ (5.16)
/P A,

which implies that with decreasing pH (increasing C'*°), the range of values of
hydrogen ion flux for which we can use the results of the perturbation analysis

increases.
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The perturbation analysis is valid only for small values of hydrogen ion flux.
To determine the maximum possible velocities and hydrogen ion fluxes within the
model, we numerically solved the equations and boundary conditions using COM-
SOL Multiphysics 4.1a. In our calculations, we used the COMSOL modules Stokes
flow and mathematical equations, with the zero Peclet approximation. We stud-
ied the dynamics of a spherical nanomotor of radius 1 um at different background
concentrations corresponding to pH values of 5.2,5.6,6.0,6.5 and 7.0. In the ac-
tual experiments, when the solution is exposed to air, carbon dioxide is dissolved
in water and reduces the pH of the liquid. Therefore, we studied the dynamics
of the nanomotor at smaller values of pH to examine the effect of changes in the
background concentrations.

The maximum limit of velocity is reached when the hydrogen ion concentra-
tion becomes zero at the sink. Any further increase in the intensity j, at that
point results in non-physical negative hydrogen ion concentrations at the~sink. We
determined the maximum velocity and maximum flux intensity for each pH and
interfacial potential in our parameter space. The interfacial potentials considered
in these computations are 5,10,15,--- ,45,50 mV.

Fig. 5.1a shows the maximum velocity of the nanomotor as a function of
interfacial potential ¢y for different values of pH. For a given value of ¢y, the
maximum nanomotor velocity increases with decreasing pH. While the maximum
nanomotor velocities for all values of pH are about the same at lower values of
¢, their differences become more pronounced with increasing values of interfacial
potential.

The effect of background concentration on the limiting hydrogen ion flux is
depicted in Fig. 5.1b. For fixed ¢, the maximum flux decreases with increasing
pH. The limiting state is determined by the concentration of hydrogen ions around
the sink. At higher values of pH, the background concentration of hydrogen ions
around the sink is low; therefore, a smaller strength of hydrogen ion flux is re-
quired to bring the concentration of hydrogen ions to zero at the sink. At lower
values of pH, even for low values of ¢, the limiting flux has high values. With
increasing interfacial potential, the concentration of hydrogen ions around the par-
ticle increases, and higher value of limiting flux is required to consume all of the

hydrogen ions around the sink.
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Figure 5.1. (a) Maximum velocity versus interfacial potential at different pH’s. (b)
maximum hydrogen ion flux versus interfacial potential at different pH’s. (¢) maximum
velocity versus maximum interfacial potential at different pH’s.

Fig. 5.1c demonstrates the relationship between the limiting velocity and lim-

iting flux for different values of pH. It is clear from the figure that a given velocity

can be achieved at lower flux as the pH increases. However, the highest achievable

velocity decreases with decreasing pH.
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4 Discussion

The dependence of nanomotor velocity on physical parameters such as viscosity,

temperature, diffusivity, pH and charge of ions can be inferred by

2
oy o [ €RT 1\ . A2 zZFN X
U <zFuD+QOO> Jp Po (MD+ Jp Qo (5.17)

In addition to providing a better understanding of the experimental data, this

equation furnishes us with a prediction tool for designing better nanomotors.

Increasing the viscosity leads to a reduction in nanomotor velocity. At low
Reynolds number, inertial effects are negligible and viscous effects dominate flow
behavior. An increase in viscosity results in a larger drag force, and consequently,
a slower motion of the nanomotor. The effect of temperature is complicated by
its effect on other parameters, such as viscosity or diffusivity. Nanomotor velocity
has a nearly linear dependence on interfacial potential.

Increasing the diffusivity results in less asymmetry in the cloud of ions, leading
to a smaller driving force on fluid elements, and a smaller particle velocity. The
background concentration plays an interesting role. At high pH (near 7), where
the concentration of hydrogen ions is low at a given flux, the ions should move
from the source toward the sink so that the motor can function. However, at lower
pH values, for the same amount of flux, there are more hydrogen ions available
near the sink. Therefore, there is a smaller driving force for the produced ions
from the source to move toward the sink, resulting in less force on fluid elements,
and consequently, less velocity.

The velocity equation (5.17) shows that increasing the interfacial potentials
leads to a higher speed for the nanomotor. Experimentally, we may be able to add
some functional groups to the surface of the particle to make it more negatively
charged. However, this manipulation has a counter effect by reducing the active
sites on the particle needed for electrocatalytic decomposition of hydrogen perox-
ide. There can be an optimum point between these counter effects which can be

tested experimentally.



Chapter

Dynamics of Nanorotors

1 Introdcution

All nanorotors must break inversion symmetry to induce rotation; beyond this
simple geometrical fact, some particular mechanisms have been proposed for the
origin of the resultant torques: bubble-derived [30], or electrokinetic [31] forces
directed perpendicular to the motor axis and centered either towards one end of
the rotor [30] or roughly through the rotor’s geometrical center [31], as depicted
in Figure 6.1. Tadpole-shaped hybrid Pt/TiOy nanorotors [41, 42] provide a third
class of such devices.

Axisymmetric linear nanomotors are characterized by a deterministic linear
speed v and a stochastic orientational diffusion coefficient D, (plus a trivial con-
tribution from translational diffusion D; which does not couple directly to the
powered motion). Therefore, a linear motor has two characteristic times: the time
for powered motion to overcome translational diffusion, D;/v?, and the time over
which the motor orientation is forgotten, 7, = D,'. Since linear nanomotors are
axisymmetric, the motor’s symmetry axis is always aligned with the instantaneous
velocity. In contrast, rotary motors introduce a new timescale 7,, = 2rw ™! set by
the angular velocity and nanorotor orientation has a more complex relationship
with the instantaneous direction of the trajectory, a relationship which can be an-
alyzed to extract information about the spatial distribution of driving forces along
the surface of the rotor.

Most nanorotors developed to date are based on an underlying cylindrical
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nanomotor geometry, with an added asymmetry-brealing part as a compositional
variation. Hence, they retain a well-defined structural axis which is easily visible in
optical microscopy. The asymmetric force distribution on the nanorotor generates
not only a net torque, but also net forces along and perpendicular to this axis. The
main axis of a nanorod is not necessarily tangent to the trajectory, in contrast to
the case for translationally linear nanomotors.

In order to specify the orientation of the nanorotor with respect to its trajectory,
we define ¢ (see Fig. 6.2(c)) to be the angle between the symmetry axis of the
nanorod n and the direction of translational velocity. Namely, ¢ = cos™ (n - 7/v)

or
tan ¢ = &, (6.1)

Un
where ¢ = 7 and ¢ = 0 represent the motion of the nanorod perpendicular (v, = 0,
Fig. 6.2(d)) and tangent (v, = 0) to its trajectory, respectively. The angle ¢ is

easily extracted from experimental motor trajectories. (see Fig 6.2)

Au to balance resistance and weight

Au to passivate Pt side

Center of mass Fpropel

Au to passivate Pt end

Pt to catalyze
HO Fresist H,0+1120, oxygen generation
£

Center of drag
— Pt

Au
Cr/SiO,/Cr

Figure 6.1. Nanorotors must break axial symmetry in some manner. Experimental
implementations include (a) Au rods with asymmetric Pt patches [30] , (b) Rh/Au rods
with SiO2/Au/Pt layers applied to one side [31], and (c) [41] and (d) [42] tadpole-like
SiO2/Pt/TiO4 structures.
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Figure 6.2. The deterministic motion of a nanorotor along a circular path with nanoro-
tor head pointing (a) outside and (b) outside of the circle. (c) The angle ¢ is between
the axis of the nanorod of direction n and the direction of velocity. (d) If there is no
force acting along the axis of the nanorod, its axis is perpendicular to its trajectory.

The instantaneous state of deterministic motion decomposes into solid rotation
with angular velocity w around some point O fixed in the body frame and transla-
tion of point O with velocity ¥ in the plane. The angular velocity w is independent
of @. On symmetry grounds, the ideal (i.e. purely deterministic) trajectory of
a nanorotor must be circular, and the instantaneous translational velocity can be
decomposed into components along (v,,) and perpendicular (v,) to the structural

axis of the rotor. The radius of the trajectory is then:

oo VETE

v
w w

(6.2)

The “observable” orientation, velocity, and angular velocity of the rotor can
be related directly to the “unobservable” net force and net torque in order to gain

insight into the motor mechanism. Since Stokes flow is linear, we can write the
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net force F and net torque L on the motor as a linear superposition of ¢ and w:

F = A-7+B"-3, (6.3a)
= B-v+D-d, (6.3b)

wll}

where A and D are true tensors and B is a pseudo-tensor. These tensorial coeffi-
cients in principle depend on the geometry and electrokinetic characteristics of the
system, but in the regime of dynamics of nanorotors, we can approximate these
coefficients to be sole functions of geometry.

Assume that an operating nanomotor can be held immobile by an external
force —F and torque —E, i.e. that the action of the motor produces force and
torque F and L. Compare this to a passive particle of the same dimensions on
which external force and torque (ﬁ , E) are applied. At low Reynolds number, the
steady motion of such a particle is linearly related to the applied (ﬁ ,E) in a manner
similar to (6.3). Since the Stokes equations are linear, we may add the two flows
just discussed to obtain a flow corresponding to the sum of the forces, which is zero.
The motor mechanism also produces body forces on the fluid; these are unchanged
by the introduction of the second flow if the transport processes involved in the
mechanism are fast enough. For an electrokinetic motor, the relevant transport
is ionic diffusion over distances comparable to the motor size, corresponding to a
speed Dio,/f ~ 10% ym/s for £ ~ 1um. The assumption of unchanged forces is good
to the extent that this exceeds the motor speed. Thus, the velocity and angular
velocity of the motor are directly related to its Stokes drag coefficient even though
the flow pattern driven directly by the motor mechanism may be very different
from that around a body simply dragged through the fluid.

To proceed with applying the linear relations (6.3) to our problem and iden-
tifying the geometry-dependent tensorial coefficients, we approximate the rotary
nanorod as an axisymmetric particle with fore-and-aft symmetry and a mirror
symmetry plane containing the rotation axis passing through @. Consider the
situation reflected through the symmetry plane and the reversibility of Stokes
flow: For a nanorod with non-translational motion (v = 0), according to equation
(6.3a), reversing w should reverse the direction of force while, due to the symmetry
of the particle, F should be indifferent to the direction of rotation. This leads to
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B”.w = 0. For a particle with solely translational dynamics (w = 0) along or per-
pendicular to the symmetry plane, there would be no torque acting on the particle
in the z-direction (perpendicular to the plane of motion) and B - ¢ has zero compo-
nent in the z-direction. Moreover, the corresponding components of velocity and
force along and perpendicular to the symmetry plane are proportional: F,, o« v,
and F), « v,, where F), and F}, are the components of the net force along n and p,

respectively. Therefore the linearity relations (6.3) can be simplified to

7 = AT F=A'"F,n+A'F,p, (6.4a)
w = (D'-L) =D;'L., (6.4b)

where L, is the net torque in the z-direction. The parameters A,, A, and D,
depend on the shape of the nanorotor (and its surroundings). For example, a sphere
of radius a (with O at its center) in an unbounded fluid of viscosity n has A, = A, =
67na and D, = 8mna®. The prolate spheroid (defined by a 222 +b72 (y? + 2%) = 1
where a > b) provides a better approximation to the shape of actual nanorotors:
by changing the eccentricity e = /1 — (b/a)?, it can be smoothly transitioned
from a sphere to a long thin needle. In an unbounded Stokes flow, the prolate

spheroid has shape parameters [43]:

A, = (6mna) ge?’ {—26 + (e*+1)In (1 t Z)} B (6.5a)
A, = (6mna) %663 [26 + (3¢ —1)In (1 i_ z)} B (6.5Db)
(2 )

D, = (87r7)a3)[ 3¢ (6.5¢)

—2e+ (24 1)In (£9)]

e

A video of the dynamics of a nanorotor provides us with the dimensions, trans-
lational velocity v and angular velocity w of the nanorod in addition to the angle
¢. Approximating the nanorod by a spheroid, eccentricity e can be assigned based
on the dimensions of the particle. Using the geometrical factor D, given by (6.5¢)
for the motion of particle in an unbounded domain as a first approximation and
taking advantage of the linearity in equation (6.4b) with w, we can calculate the

net torque L, = D, w on the particle in the z direction. Also, using the velocity
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Figure 6.3. With an increase in the aspect ratio of the spheroid or an increase in the
angle ¢ the ratio of the force perendicular to the symmetry axis and the force parallel
to symmetry axis increases.

v, the angle ¢ and the eccentricity, the force can be calculated as

F:,/F3+Fp?:11\/A%0082¢+Agsin2¢. (6.6)

From a design perspective, we would like to apply the force and torque on a

particle of given dimension so that we obtain the desired translational, angular
velocity and nanorod’s orientation with respect to its trajectory. Recasting the

equation (6.1) using the geometrical coefficients yields

FP _ AP
Fn = A_n tan qb, (67)

which shows that for a given geometry, ¢ is a measure of the relative strength of
the net force perpendicular to and along the nanorod axis. Fig. 6.3 shows this
relation for different values of ¢ as a function of the aspect ratio a/b = /1 — €2
(the ratio of the semi-major axis to the semi-minor axis). For a given angle ¢,
the magnitude of the perpendicular force to the tangential force (with respect to
the axis of the nanorotor) increases with an increase in the relative length of the
nanorotor. Fig. 6.4 shows that, for a fixed a, increasing the aspect ratio (making
the rotor smaller) requires less force to achieve a desired velocity.

The analysis so far has been based on approximating a nanorotor by a prolate
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spheroid. However, linearity of Stokes flow can be exploited for designing other
kinds of geometries. In order to have fast in-place rotors, we need to minimize
the net force and maximize the net torque on the particle. Our analysis provides
us with insight into designing more efficient rotors. The tadpole structure in Fig.
(6.5), for example, would be one way of making a rotor that minimizes the net
force acting on the particle while maximizing the net torque around the center of
mass. This structure can be fabricated using the methods explained in Ref [41]
and [44].

The nanomotor in our example consists of a bead and an arm. The bead is
a spherical SiOy particle in which the bottom hemisphere is coated with Pt. The
arm is a TiOy backbone whose top is partly covered by Pt. There are two major
forces acting on this particle when we place it in a hydrogen peroxide solution.
The force exerted on the arm, ﬁarm, and the force acting on the lower part of the
bead, ﬁbead, due to a reaction on Pt surfaces. The angle « corresponds to the angle
between the top of the arm and the plane separating Pt and SiO5 on the bead.

The net force acting on the particle is given by

arm

1
Fnet = (F2 + Ferad - 2FarmFbead COS Oé) 2. (68>

As 0 becomes smaller and the forces on the arm and the bead become aligned with

1.0 \
L \\ ¢ — 900
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~| g 0.6 ‘\‘\\
© | ERNNY
04l e S
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Figure 6.4. For a given particle geometry and magnitude of driving force, the particle
whose angle ¢ is smaller will achieve a higher velocity. The highest velocity occurs at
¢ = 0 when the the symmetric axis of spheroid is tangent to the trajectory.
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Fbead

Figure 6.5. The final structure has a minimized net force and a maximized net torque.
The angle between the arm and the substrate during the fabrication can adjust the force
and torque. The lower the angle, the lower the net force in the direction of the axis of
the arm.

each other, the value of F),.; becomes smaller and the nano-tadpole has a higher
tendency to rotate in place.

We can also exploit the analysis to examine the possible mechanisms of nanomo-
tor dynamics. Previous work on nanorotors at Penn State [31] resulted in ultrafast
nanorotors that could rotate in-place (Fig. (6.1b)). These nanorods had a Pt/Au
cap and it was conjectured that this cap would pull the nanomotor toward the cen-

ter of the circular orbit, making it appear as if the rod rotated in place. However,

1 ' 2 l 3 4

j 5 : 6 C 7 Q 8
Figure 6.6. Trajectory of one counter-clockwise rotation of the slow nanorotor in Ref
[30] . (Green) Actual path of the center of mass of the nanorod; which shows stochastic
fluctuations of the center of mass position. (Blue) The fitted equivalent circle to the

actual trajectory. The rod is almost pointing toward the inside of the circle or tangent
to the circle. (The frames are not equidistance in time)
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Figure 6.7. Angular fluctuation A#(t) for nanorotors in (red) Ref [30] and (blue) Ref
[31]. The deviation of the orientation of the nanomotor from the deterministic orientation
can be significant (up to 90°).

equation (6.2) for the radius of curvature indicates that the addition of the lateral
force increases the net force, and consequently, increases the radius of the trajec-
tory, contradicting the initial argument. That leaves us with an open question of
what is really the mechanism behind the fast in-place rotation of these particles.
The nanorotor made by Qin et al [30] (Fig. (6.1a)) is believed to move due to
the force exerted perpendicular to the axis of the nanorod by bubble propulsion.
In their proposed mechanism, the force along the axis of the rod is zero. For such
a system, the direction angle (6.7) is zero and the direction of the axis of the
nanorod is perpendicular to its trajectory of motion (Fig. 6.2(d)). However, the
nanorotor in [30] exhibits an angle far from ¢ = 0. In Fig. (6.6), we have analyzed
the quasi-circular path provided in the supporting information of Ref [30]. The
rod is closer to being tangent to the trajectory than perpendicular. Again, that
leaves us with an open question of what is the real mechanism behind the motion

of these nanorotors.

2 Stochastic Brownian Contribution

So far, we have discussed the deterministic aspect of nanomotor motion leading to
a circular trajectory. However, the coupling between the deterministic rotational

motion and the stochastic orientational dynamics leads to the experimentally ob-
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served quasi-circular trajectories. In designing a nanorotor we would like to know
how the parameters of the nanorotor affect the trajectory of the nanorotor, or how
to design a nanorotor to have more control over its trajectory.

As we discussed in the beginning of this chapter, nanorotors have two natural
time scales: the characteristic orientational time, 7, = D! and the deterministic
rotation period, 7, = 2rw~!. The deviation of the trajectory from a perfect circular
path depends on these time scales. In the case where 7, < 7, during one rotation,
the influence of the stochastic component is small, and the nanorotor’s path is close
to circular. However, in the limit 7,, > 7,, the direction of the nanorotor changes
many time, before the nanorotor completes a deterministic rotation, and therefore,
the observer may not even recognize the circular trajectory. The translationally-
linear nanomotors, fabricated experimentally, are, in fact, in this category. These
particles are meant to be fabricated as perfect axisymmetric objects. However,
due to defects, the nanomotor is not perfectly axisymmetric. This leads to a net
torque on the particle while moving, and the particle has the tendency to rotate.
Since the asymmetry in structure is also very small, however, the resulting torque
and angular velocity are very small, and consequently, the characteristic rotation
time, 7, is very large. Therefore, the observed dynamics of these particles appears
to be linear, with an occasional change of direction of the nanomotors, instead of
quasi-circular paths.

We analyzed the deterministic rotational and the stochastic orientational dy-
namics of the slow [30] and fast [31] nanorotors from the videos in the supporting
information of their corresponding papers. The measured average angular veloc-
ities are wgow = 22.3rpm and wyese = 279.8rpm for the slow and fast nanoro-
tors, respectively. The corresponding characteristic rotation times (period) are
Tw,slow = 2.7 and 7, fqst = 0.2,

During the time period that the particle performs a full rotation around its
center of mass, it completes a cycle around its trajectory. While the particle is
rotating around its center of mass with average angular velocity w, it simultane-
ously receives stochastic kicks from the fluid elements, causing deviations in the
direction of the nanorotor velocity, and turning its circular path into quasi-circular
trajectories. At each instance, the difference between the actual orientation of

the nanorod and its expected deterministic orientation can be described by the
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temporal angle fluctuation
AO(t) = 0(t) — wt, (6.9)

where 6 characterizes the orientation of the nanomotor, as depicted in Fig. (6.2).
Fig. (6.7) shows the angular fluctuations for the nanorotors of Refs [30, 31]. It
is clear from the figure that the angular deviation can be significant, showing the
effect of the stochastic component on the direction of nanomotor velocity.

In order to calculate the orientational diffusion coefficients from the videos, we

calculated the temporal angle fluctuation
30(t; At) = AG(t + At) — AO(t) (6.10)

during the time interval At. If the change in the direction of the nanorotor is
due to Brownian kicks, the distribution of temporal angular deviation for time

difference At should follow the normal distribution

N(60; (656), o) — \/217r_aexp <W) | (6.11)

where, for one-dimensional diffusion in # coordinate the average temporal angular
deviation is zero (60) = 0, and the width of the distribution is related to the

orientational diffusion coefficient D, through

o =+/2D,At. (6.12)

Figures (6.8) and (6.9) show that the distributions of temporal angular deviation
fit the normal distribution, with the center of the distribution nearly at zero.
This suggests that the temporal angular deviation can be represented by a one-
dimensional random walker.

The diffusion coefficients of the slow and fast nanorotors were found to be
Dy siow = 0.102 rad®s™! and D, f4s = 0.462 rad®s™!, respectively (see Fig. (6.10)).
The corresponding characteristic times of orientational diffusion are 7, 50, = 50's
and 7, fqst = 2.165 8. Since 7o, siow > Tuw slow, the slow nanorotor follows a path close
to a circular trajectory (see Fig. 6.6). For the fast rotor, 7, fus is one order of

magnitude larger than 7, g0, and therefore, we expect to see a trajectory close to a
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Figure 6.8. The fit distributions of the temporal angular deviation 06 for the nanorotor
of Ref [31] to normal distribution for different time intervals At.

circular path. For a spheroidal nanorotor in unbounded domain, the characteristic
time of orientation is given by 7, = D,/kT, where D, is the geometrical coeffi-
cient (6.5¢), k is the Boltzmann factor, and 7" is the absolute temperature. For a
nanorotor of given geometry with known torque L., we can calculate the period 7,

using the linearity relation (6.4b), and compare it with with 7, to determine the
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Figure 6.9. The fit distributions of the temporal angular deviation 06 for nanorotor of
Ref [30] to normal distribution for different time intervals At.

trajectory of the nanorotor.
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3 Discussion

In this chapter, the steady state deterministic trajectory of a nanorotor, with a
center of mass translational velocity v and an angular velocity w around the center
of mass, was shown to be a circular path of radius R = v/w. In order to decrease
the radius of the trajectory and make an in-place rotor, the net torque on the
particle must be maximized while minimizing the net force on the nanorotor. A
structure that could demonstrate the application of our proposed design principle
was also suggested. The validity of the various mechanisms proposed for the motion
of nanorotors can be investigated by simply looking at their trajectories and the
orientations of particles with respect to their trajectories. The deviation from
a circular path to a quasi-circular one can be attributed to rotational Brownian
dynamics, from which the rotational diffusion coefficient of the rods was calculated.
The rotational diffusion coefficient must be minimized to yield a nanorotor that

has the smallest deviation from the circular trajectory.



Chapter

Coupling of Deterministic and

Stochastic Dynamics in Powered
Random Walkers

1 Introduction

Orientational and translational diffusion are considered to be independent physical
processes of a particle. Nanorotors represent a system of powered random walk-
ers in which these two processes are tightly coupled. The deterministic circular
motion, by itself, is a steady state motion which doesn’t change the center of the
circular trajectory (the guiding center) with time. The stochastic orientational
dynamics for an unpowered nanorotor can also lead to a change of the direction of
the nanorotor without any translational motion. However, in a powered nanoro-
tor the deterministic dynamics and the stochastic rotational dynamics are coupled
to each other, leading to displacement, and an effective translational diffusion of
the nanorotor over time. In this chapter, we study this coupling and the rela-
tion between the rotational diffusion of the nanorotor to its powered translational
diffusion.

While in ordinary unpowered colloidal nanorods, even for translational motion
under an external driving force, the Brownian translational and orientational dif-

fusion are independent, for nanomotors the direction of the deterministic powered
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Figure 7.1. The particle rotates due to the net torque and its velocity has an angle with
respect to the axis of the rod due to the asymmetric distribution of force on the particle.
The Brownian orientational diffusion deviates the particle’s path from a circular (solid)
to a quasi-circular (dashed). This process results in change in the direction of velocity
v1 # va , the displacement in the position of center of mass Ax, and the displacement
Ac in position of the guiding center after one rotation. o1 and oy are the guiding centers
in the beginning and end of one rotation, respectively.

motion is influenced by the stochastic orientational component.

Many theoretical models have been proposed solely to explain the mechanism
of deterministic motion for different nanomotors. An interesting feature of mo-
tion at this length scale is the contribution of both deterministic and stochastic
dynamics to the motion of the nanorod. The deterministic dynamics happens in
the form of linear or rotational motion. The Brownian orientational and trans-
lational diffusion of nanorotors are characterized by the diffusion coefficients D,
and Dy, respectively. Understanding the full dynamics of nanomotors and the
possible emergent phenomena, therefore, requires an understanding of how the
deterministic and stochastic dynamics interact.

Nanorotors are a class of nanomotors whose deterministic motion is well char-
acterized by translational v and angular w velocities on a circular path of radius
R = v/w as described in chapter 6. The rotational dynamics is a result of the
asymmetric distribution of force on the surface of the nanorotor leading to a net
torque on the particle and also (for nanorotors that happen to be in the shape

of a rod) the net forces both along and perpendicular to the axis of the nanorod.
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Consequently, the velocity would not be along the axis of the nanorod and the
particle acquires an angle with respect to its trajectory (see Fig. 7.1). Depending
on the direction of w, the nanorotor may rotate clockwise or counter-clockwise.
This chirality results in a constraint on the dynamics of nanorotor, which is the
major distinction between linear motors and nanorotors.

In this chapter, we study the effect of coupling between deterministic transla-
tional and stochastic orientational dynamics of a powered random walker; focusing
on the motion of nanorotors. Separately, neither a powered orientationally non-
diffuser, nor an unpowered orientational diffuser, will exhibit center of mass (CoM)
diffusion. When these two act together in the form of a powered orientational dif-
fuser, the stochastic orientational dynamics causes the nanoparticle to deviate from
its deterministic circular path into a quasi-circular path (see Fig 7.1). This leads
to a displacement of the CoM and the guiding center of rotation after one period
T, of deterministic rotation. We will refer to a “period” in a shorthand fashion

but it signifies one “period of deterministic motion”.

2 Modeling

In this section we will corelate the deterministic and stochastic properties of a
nanorotor to its long run translational behavior. We work in units of v for velocity,
w™t =Ty /27 for time and R = v/w for length. Within these units, v =w = R =1
and 77 = 27. We divide the time into very short spans [¢,t+dt). As demonstrated
in Fig. 7.2a, at time ¢ stochastic rotational diffusion changes the orientation of
the particles velocity by dfrnp and simultaneously makes a displacement dc (“c”
stands for the center of rotation) for the guiding center. During (¢,t + dt), the
nanorotor rotates deterministically around its new guiding center leading to dis-
placement dx in the CoM (Fig. 7.2b).

If we draw the position vectors ry, ry and rj from the same origin (Fig. 7.2c), the
total motion in the reference frame of the guiding center is a displacement dp (“p”
stands for perimeter) of a random walker that moves on a circle with a deterministic
velocity superimposed by a stochastic motion. We call this circular path in the
reference frame of the guiding center the “c-frame circle”. It is important to note

that although the nanomotor moves on quasi-circular trajectories in the laboratory
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Figure 7.2. Dynamics of nanorotor in the time span [t, %+ dt) (a) At time ¢ the particle
exhibits an stochastic orientational change of size dfryp. A displacement of dc = r{ —ro
is resulted in the instantaneous center of rotation. (b) During the time period (¢, ¢+ dt),
the particle does deterministic translational motion, leading to displacement of the center
of mass by dx = rg—rs. (c¢) In the frame of reference of the guiding center, the nanorotor
performs a deterministic displacement dx superimposed by stochastic displacement dc
leading to a displacement dp = dx — dc on a circular path.

frame of reference, it follows a perfect circular path in the reference frame of the
guiding center.
The stochastic orientational contribution dfrxp has a one-dimensional Gaus-

sian distribution with properties (dfrnp) = 0 and (df3yp) = o2dt where

2 _ 2l)ort
w

(7.1)

g

is the dimensionless variance of Brownian orientational change at time ¢ = 1. Using

the normalized variable dW; = dfgnp /o, for which
(dWy) =0, (dW}?) = dt, (7.2)

and hence,
<€iath> _ efazdt/Z' (73)

The total change in the direction of motion during the time interval [t,¢ + dt)

becomes

o = dt + odWW, (7.4)
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Powered Random Walkers

v v
| |
e B s TSR » I < @ > I
dp dp w
G e
(a) Unbounded Line (b) Periodic Line Segment (c) Circular Path

Figure 7.3. One dimensional powered random walkers (a) on an unbounded line, since
the deterministic displacement scales with ¢ while the stochastic part scales with t%,
on long run as t — oo, the deterministic dynamics dominates the total dynamic of
the random walker. (b) Constraining the dynamics from unbounded line to the motion
on a line segment with periodic boundary condition changes physics of the problem and
introduce a natural time scale 2rw ™! depending on the length of the segment and velocity
of the particle. This dynamic can be well represented by a powered random walker on a
circular path with translational velocity v and angular velocity w.

and the orientation 6, of the particle at time ¢ is

O =t+ > odW, (7.5)

0<s<t

in which without the lose of generality we have set 6y = 0.

Representing the position vectors of Fig. 7.2 in the complex plane by r; = e,

ry = e!0todW) and ry = eH0todWHd) e obtain the displacements
dx;, = 13— 1y = OToW) (it 1) (7.6)
de;, = 11 —1y=c"(1—e"™), (7.7)
dp: = dx;—dc, =r3—1; = [ei(dH"th) — 1} ) (7.8)

The core of our analysis is to calculate the change in these three types of
displacement after n periods T,,, that is, Ar(7},,) where r = x,c or p. As we
discussed previously, the rotational deterministic motion of the particle imposes
a chirality constraint, depending on clockwise or counterclockwise rotation, on
the dynamics of the particle moving along a circular path. The orientational
stochastic dynamics changes the direction of motion, and correspondingly changes
the location of the guiding center (displacement of the instantaneous center of

rotation). For an unpowered nanorotor, we don’t have a guiding center, but a
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point at distance R from a nanorotor has a stochastic motion on a circle with the
origin at the position of the CoM of the particle. Powering the particle would
superimpose a deterministic motion onto the particle dynamics. Therefore, in the
frame of reference of the guiding center, the particle moves on a circular path,
and the displacement on this c-frame circle is a combination of stochastic and
deterministic displacement.

The constraints on movement along the c-frame circle has principal importance
in understanding the dynamics of the nanorotor and the interaction between the
deterministic and stochastic dynamics. Consider a one dimensional powered ran-
dom walker on an unbounded line (see Fig 7.3a); the deterministic displacement
scales with t while the stochastic part scales with t%; in the long run ¢t — oo,
the deterministic dynamics dominates. However, constraining the dynamics to a
line segment with periodic boundary conditions (see Fig 7.3b) changes the physics
of the problem, and introduces a natural time scale 2rw ™" which depends on the
length of the segment and velocity of the particle. If we look at the displacement
only at discrete multiples of 2w ™!, we don’t see the effect of deterministic motion
and it looks like the particle only moves due to Brownian dynamics. This is the
consequence of the periodic boundary conditions and the natural time scale of the
system.

The dynamics of a powered random walker with translational velocity v and
angular velocity w along a circular path (see Fig 7.3c) is similar to the motion of
a powered random walker on a line segment with periodic boundary conditions.
The difference between the two is that the displacement vector over time on the
line segment is one dimensional while in case of the circular path the displacement
is a two dimensional vector. In the one dimensional problem, the displacements
are not correlated, that is, (Ap(73) - Ap(73)) = 0, however, in the circular motion
(Ap(Th) - Ap(Ty)) < 0, since if the displacement returns on itself on the second
turn, the dot product is more negative than the case where the particle doesn’t
return on itself.

Before moving into the detailed calculation, we study two limiting cases, ¢ >> 1
and o << 1, using scaling analysis to predict the long-time behavior of the powered
random walker. At long times the mean square displacement over time for the

(|Acl?)

CoM and the guiding center will be equal, limp, % = limz, 500 . In

n n
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2Dort
w

the limit of large o = the characteristic time of the deterministic motion
is much larger than the characteristic time of the orientational diffusion. We can
subdivide the trajectory of a particle to a set of blobs analogous to a conformation
of a polymer chain. The sequential displacements of the particle after one period
inside a blob are correlated, but the end to end distance of a trajectories inside
blobs are weakly correlated or uncorrelated. The time scale for the rotor to go
through a blob is the time that the particle can forget most of its correlations in

successive displacements, that is, the characteristic time of orientational diffusion,

1
Dort ’

the linear velocity of the particle. We can define an effective translational diffusion

T = During this time period, the particle moves a distance [ oc v7 where v is

for the nanorotor as

12 2

v
Dog x —
T Dort

for o> 1. (7.9)

In the limit ¢ < 1 during one rotation, the center of mass has small displacement
equal to [ o« R A where R is the radius of the c-frame circle and Al = /Dy, T is

the total angular deviation in the direction of the velocity over one period 7 oc w™?.
Therefore, the effective translational diffusion would be
(RAG)? 02

Dep X ~——= ¢ —5 Doy for o< 1. (7.10)
T w

So far, we formulated the problem and studied the limiting cases. In the next
section, we calculate the mean square displacement of the three different types of

displacements and the correlation functions that explain their behavior.

3 Mathematical Derivations

In our analysis, we represent the two dimensional vectors in a complex plane. We
will use frequently the inner product between the vectors for calculating the correla-
tion functions. Since we are in the complex plane instead of Cartesian coordinates,
we work out the dot product in the complex plane. We represent the Cartesian
vector A = A(cos pae, + sin¢4€,) in the complex plane by a corresponding com-

plex number A = Ae’®4. The dot product of two vectors A and B in the Cartesian
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plane is A-B=AB cos(¢4 — ¢p). The product of their corresponding complex
numbers (one is conjugated) is AB = ABe'(®4~?8) Therefore, the correspondence

to the dot product in the complex plane is
A-B=%R{AB} =R{AB} (7.11)

where R is the real-part operator. In our derivations we work with the product of
complex numbers as the dot product and at the end, we will use the real part of

the complex number.

3.1 Velocity Correlation Function

The coupling of stochastic orientational dynamics to the deterministic dynamics of
the nanorotor not only deviates the trajectory from circular to quasi-circular, but
also changes the direction of the particle velocity after each rotation. We would
like to determine the number of periods of deterministic oscillations before the
particle forgets its initial direction of velocity.

The direction of the nanomotor velocity at each instant is described by the
angle ¢; = 0; + 5. We define the velocity correlation function after & rotation to

be the inner product between the initial velocity and the velocity at time T},
C, (k) = R{(e™" e )} = R{(e"")} (7.12)

where T}, = KT} is the time of k deterministic oscillation, and T} = 27 is the period

of one oscillation. Using the identity (7.3), we calculate

<6i9Tk> = <exp (iTk—}-i Z gdWS)>: H <6iadWS>

0<s<T} 0<s<T}

_ H o—0%ds/2 _ ,—0?Ty/2 (7.13)

0<s<T}

We obtain,

C, (k) = ek/ke (7.14)

v




94

where the characteristic rotation k. is

k., = (mo?)7t|. (7.15)

3.2 Diffusion on the C-Frame Circle

We begin our analysis of the three types of displacement (i.e., dp, dx, dc) with the
displacement dp of the moving object on a circle in the frame of reference of the
guiding center. The particle is constrained to move in a circle via deterministic

and stochastic displacements. The displacement during the time span [t,¢ + dt) is
dp; = ' [ei(dH"th) —1] (7.16)

and we would like to calculate the root-mean-square displacement (|p(T;,)|?) after

n deterministic rotations,

> dp,

0S’U,<Tn

> = (dp2) + Y (dp,dp.) + Y _(dp,dp,). (7.17)

u u>s u<s

([p(T0)*) = <

where u and s represent time in these summations. Depending on the magnitude
of u and s with respect to each other (u = s, u > s or u < s) , we have three
different summations of (dp,dp,) on the right hand side of the above equation.

In case where u = s = t, we have

dﬁtdpt — e—iﬁt [e—i(dt+oth) . 1} €i9t [ei(dt+crth) i 1]

[e—i(dt—i—ath) . 1} [ei(dt—i-ath) . 1}

= 2[1 — cos(dt + odW;)] (7.18)
We need the expansion of this equation to the first order in dt.
(dp,dp:) = 2 (1 — cos(dt + odW,)) = o*dt + O(dt?) (7.19)
For u > s, we have

dp,dp, = e " [eildetodWs) _ 1] it [oildtutodWs) _ ]
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oi(0u—05) [e—i(dt5+adW5) _ 1] [ei(dtu—i—adwu) _ 1}

_ ei(u—s)eiadWS exp (ZO' Z th/> [6—i(dts+adWS) . 1} [ei(dtu—‘raqu) - 1]

s<t'<u

_ ei(u—s) exp (ZO' Z th/) e—idts [1 o ei(dts—i—adWS)] [ei(dtu—l—Uqu) _ 1}
s<t/<u

(7.20)

where we have arranged the terms so that they are independent of each other
and therefore, the average of the whole term will be the product of average of
the individual terms. Taking the average of dp,dp, and keeping the terms to the

second order in dt gives us

(dp,dp,) = ei(u=s) ( H <6ioth,>> eidts [1 _ eidts<€iadWs>} [eidtu <6i0qu> _ 1}

s<t'<u

oo _ 2 o . 2 : 2
_ ez(u s) < H e~ C dtt//2> e idts [1 . ezdtse o dts/2i| |:ezdtue o?dty/2 1i|

s<t'<u
L gilus) o (us)/2 it [1 B e(i—‘722>dt5:| [e(i—f’;)dtu _ 1}

2

— ei<u—s>e—02<u—8>/2(1 —idt, + O(dt§)> [— <z — 0—) dts + O(dti)]

2
X K@ - %2) dt,, + O(dti)]

2\ 2
= - (z — %) dtydt "D e =512 L O(d?) (7.21)

Similarly, for u < s we can write

dp.dp, = e i0s [e—i(dts-i-crdVVs) _ 1} oifu [ei(dtu+aqu) . 1]

o~ i(6:—u) [efi(dteradWS) . 1} [ei(dtu+aqu) . 1}

— g is—u) —iodWy exp (—ZU Z th,> [efi(dts+crdWs) _ 1] [ei(dtquaqu) _ 1}

u<t'<s

_ ei(ufs) exp (-ZO’ Z th/> eidtu [efi(dteradWS) _ 1j| [1 . efi(dtquo'qu)}
u<t'<s

(7.22)
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By taking the average and expanding to the second order in dt we obtain

_ 6i(u—s) ( H <6_det’>> eidtu [e—z‘dts <e—z‘o—dW3> _ 1} [1 . e—idtu <€—iaqu>]

u<t'<s

_ ilu—s) ( H 6—02dtt//2> pidtu |:€—idtse—02dts/2 _ 1} [1 _ e—idtue—a2dtu/2}

u<t'<s

L pilus) gm0 (s—u) /2 it [e (#+ )dts _ 11 {1 _ e—<i+‘722>dtu:|

2
—  pilu=s) =0 lu—s|/2 (1 1ddt, + O(dtﬁ)) {_ (Z + %) dts + O(dtﬁ)}

X K@ + %2) dt, + (’)(dti)]

2\ 2
- (w%) dt dt, Do e=s2 L O (7.23)

Therefore, we have

u>Ss:

S>Uu:

) ) i
(dpdp.) = (1 - %) +i0? | dtydt,e D= 2L O(dt?) (7.24)

] A ]
(dp,dp,) = (1 — %) —i0? | dtydt,e' e 2L O(dt?) (7.25)

If u < s, the only difference is that u— s becomes s — u; writing |u — s| covers both

cases. We can now calculate the root-mean-square of displacement on the circular

trajectory in the frame of reference of guiding center after time 7.

([p(T))

> dp,

< o<u<T
2 o’ i(ufs)fcrz\ufs\/2
ocT+ 11— — e duds
4 0 0
T u T s
+Z~0_2/ / 6i(u—s)—cr2|u—s|/2 duds — ,L'O_Q/ / ei(u—s)—az\u—s\/Z ds du
0 0 0 0

(7.26)

u>s u<s

2
>—Z dp}) + Y _(dp,dp.) + Y _(dp,dp.)

12
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In the following, we see that the last two terms in the right side of the equation

are complex conjugates,

T ru T s
iOQ/ / 6i(u—s)—02|u—s|/2 duds — iO' / / ei(u—s)—a2|u—s|/2 ds du
0 0 0 0

T u
io? / / =% /D(w=9) g, s
o Jo

and then select its real part.

io2 6(1—02/2)u]
= . o u . o
-(i-%) (i=%) ],
Z'O.Q e(z a?/)T _
ol D
io2 e(i—02/2)T 1
Cirig) | (%)

1_

T u T s
Z'O'Q/ / ei(u—s)—ch(u—s)/Q duds — iO’ / / e—i(s—u)—ch(s—u)/Q ds du
0 0 0 0
T ru ) T ps o,
@'02/ / e /DW=3) dy ds + (—io )/ / e T /D) g duy
0 0
) T u o,
i / / (i—0?%/2)(u—s) duds + (-ZO’ )/ / e(—z—a /2)(u—s)
0
2R {@02/ / =/ (w=s) gy ds}
0 0

We first calculate the argument,

T u
ia2/ du e(i02/2)u/ 67(1'702/2)3 ds
0 0
T o, ' v
2'0_2/ du e(zfa [u | &~
0

(7.28)

If T =T, = 27n is the time for n deterministic oscillations, e!?» = 1, and we have

Th u
R {2'0 / / eli=0%/2)(w=s) g, ds}
o Jo
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ot _o2/2)T 20
:_2{04”1_%)2}[4 /2) _1}_{@}7’” (7.29)

which gives us the result of last two terms in equation (7.26). We also need to
calculate the double integral, fOT fOT eiu=9)=0"lu=sl/2 gy ds, in equation (7.26). To

do so, we use the change of variables
a=u-—Ss, f=u+s (7.30)

The variable a can vary between —7 (u = 0,s = T) and T (u = T,s = 0),
and the variable § can change between 2T — |a| and |a|. The Jacobian of the

transformation is 1/2, that is duds = %doz dfB. Therefore,

T T , 1T . 27— |a
/ / ez(ufs)fa |lu—s|/2 duds = _/ dov 620*7“3‘4 / dﬁ
o Jo 2/ r la]

T o
= / da e =TT — |a)

-T

— R {/OT dov =7 (T — a)} (7.31)

o _

5 — 1, we have

Defining z =

T
/ dae™ (T —a) =
0

(1—e™) 4= - 1 (1—e") (7.32)
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-1 (1—e) (7.33)

z z2

We are interested in the displacement after n deterministic oscillations, where

2
. . _ _ o
T, = 27n. This gives e ?'n = ¢~ 7T and

%{ﬂ_i (1_6%)} _ LRz} R{z’) (1- %)

|2? |2%?

Therefore, we obtain

Tn Tn 0'_2 (%4 - 1) 02
/ / el )= o msl/2 gy ds = 2T, 042 —2——— (1—6*7Tn)
G

(7.35)

We will use this equation later when we discuss the displacement of the center of

mass and the guiding center. The root-mean-square displacement of the circle in

the reference frame of guiding center is

(p(TP) = << S dpu>2> > () + Y (dpdp) + 3 (ap.p)

0<u<Ty u>s u<s

oA\ [Tn (Ta ,
O_ZTn + (1 . _) / / ez(ufs)fcr |lu—s|/2 du ds
T, ,
+2§R{m/ / (i=0%/2)(u— S)duds}
1_4)/2 o2
= QTn + (1 - _) 040 T, — 40 2>/ (1 — 6_7Tn>
4 o t+1 (UI - 1) + ot
4 2 2
_9 g ~ [€<—02/2>Tn _1] = Lﬁ T,
ot + (1 - ) (1 + T)

_ —02/2)T, o’ (o —4)/2 204
_ [e( /2) _1}{(1—1) (0_4_1)2+U4—U4+(1_0_4)2}

4

12
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4 2 2
4T, ﬁ+<y—1> A (7.36)
\Fe1) ey

Calculate the terms in the curly brackets

) e
:<1_0_4> ~2(1-7) a0
(

Fo1) o (1)

= 7.37
En o
and
4 2 942 4 2
02+<1_UZ> <U4U )_ 004 = 02+ 1—%_2) (040 >
di1) 142 2 +1
= 02—0?=0 (7.38)
gives us
o2
(orpy _2(1=e ") e 739
T. T,  onm '
In the limit of long time
- (p(T)]?) _
T}Llinoo T =0 (7.40)

3.3 Displacement of the Center of Mass

The displacement of the center of mass during the time interval [t, ¢ + dt) is

dx; = e'OtodWo) (eidt _ 1) (7.41)
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and we would like to calculate the root-mean-square of displacement of the center

of mass after n periods,

Z dx,

0<u<T

> = Z(dxi) + Z(diudxs> (7.42)

U u#s

([x(T)[*) = <

We calculate (dXsdx,) for cases u = s =t, u > s and u < s. For the first case

A%, dx, = [efi(QtJroth) (e — 1)] [ei(0t+ath) (e — 1)]
= (e —1) (" — 1) =2[1 — cos(dt)] (7.43)
and
(dXydx,) = 2 (1 — cos(dt)) = dt* + O(dt*) (7.44)

On the other hand, for u > s,

dx.dx, = [e—i(es-‘radWs) (e—idts _ 1)} [ei(eu-i-aqu) (eidtu . 1)]
= [e’idts — 1] exp (z(u —s)+io Z th,> [eidtu — 1]
s<t'<u

— ilus) [e—idts _ 1} [ez‘dtu o 1} piodW exp (ia Z th,> (7.45)

s<t'<u

The terms are independent, and we can take the average,

<d§5dxu> — pilu—s) [e—idt5 _ 1] [eidtu _ 1] <€inWu> H <€iath/>

s<t'<u
o . . _ 2 24
ez(u s) [6 idts 1] [ezdtu _ 1] e ° dty /2 H e ° dt'/2

s<t'<u

— iu=9) ( —ddt, + O(dt§)> (idtu + O(dt3)> (1 — o2t )2 + O(dti))e‘”Q(“‘s)/Q

= dtydt,e Ve B2 L Ot

(7.46)
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If u < s, the only difference is that u — s becomes s —u; writing |u — s| covers both

cases. Then, for the root-mean-square-displacement of the center of mass we have

([x(D)FF) = << >, qu) > =D (dx3) + ) (dx.dx,)

0<u<T uF#s

T T T )

(—) dt* + / / e/ 2y ds
T T ,

/0 /0 eilu=s) = lu=sl/2 gy ds (7.47)

S -1 1 o’ 4o
T is—o?|s|/2 ds =T =T = T (7.48
/_ooe § i—02/2+i+02/2 ct/4+1 ot+4 (7.48)

Using the identity (7.35) we obtain

<|X(Tn)|2> - o? B (0'4 — 4) /2 1-— e‘%Tn
T, o (%4_’_1) (%4_ )2+U4 ( T, ) (7.49)

(Ix(Tn)[?)
Tn

12

12

Depending on the choice of displacement per number of rotations, varies.

In the limit of long time, n — oo, this equation reduces to

4D, = Jim EEIE) 2( o ) (7.50)

v
Tn—00 Tn T +1

3.4 Displacement of the Guiding Center

In this section, we employ the same methodology that we have used in the previous
two sections. The displacement of the guiding center during the time span [¢, t+dt)
is

de, = (=€) [e7™t — 1] (7.51)

In order to calculate

> = (dcl) + ) (de,dc.) (7.52)

u UuF#£Ss

(e(T)*) = <




we calculate (dc,dc,) for u=s=1t, u> s and u < s. In the first case,
dc,de, = [e 7™M — 1] [ — 1] = 2(1 — cos(cdWy))
and to the fist order in dt we have
(de,dc,) = 2 (1 — cos(adW,)) = o?dt + O(dt?).

For u > s,

dc.,dc, = [e_i"dWS — 1] exp <z(u —8) +io Z th/) [ei"qu —1]

s<t'<u

= ¢t=9) [1— €] exp (2’0 Z th/) [e" 7 —1]

s<t/'<u

and averaging gives us

(dCyde,) = ot u—s) (1- eiadWs> H { eiath/> ( piodWu 1)

s<t'<u
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(7.53)

(7.54)

(7.55)

_ ei(t—s>< o2ty )2+ O(dt2))e_”2(“‘s)/2 (a2dtu 2+ (’)(dt2)> (7.56)

If u < s, the only difference is that u — s becomes s — u; writing |u — s| covers both

cases. The root mean square displacement of the guiding center after time 7, is

calculated by

(le(Tw)]*) = < > dey >—Z<d<¢3>+z<déudcs>
0<u<T, u UF£S

ot (Tn [Tn )
0_2Tn . _/ / ez(u—s)—a lu—sl|/2 du ds
4 0 0

Therefore, using identity (7.35), we obtain

(le(@))®) [ o o\ (0t —4)/2 [1-—eFT
L (%4+1> i <Z) (2 - 1)+ ( T, >

12

(7.57)

(7.58)
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Depending on the choice of displacement per number of rotations, <|X(§“)‘2> varies.

In the limit of long time n — oo, this equation reduces to

4D, = Jim ST :( o ) (7.59)

Tp—00 T, %4 +1

In the limit, Ty — oo, the root-mean-square of displacement of center of mass and

displacement of the guiding center are equal,

4D, = lim (XTIE) _ oy, Sle@) (7.60)

Tp—00 T, Th—o0 T,

So far, we calculated the displacement after time T, for three different types of
displacement. In the next three sections, we calculate the correlation functions of

these displacements.

3.5 Displacement Correlation Function on the C-Frame

Circle

Let’s define the displacement of the circle during the kth rotation by

Ap(k) = p(Tx) — p(Ti-1) (7.61)

where T, = 2wk and p(T}) is the position of the rotor on the circle at time Ty.

Then, we have

Ap(k)= Y dpu (7.62)

Ty <u<Ty

The displacement correlation function of on the circle is then defined as

Cp(k) =R {(Ap(1)Ap(k)) | (7.63)

We first calculate the argument, and then take the real part.

(Bp(1)Ap(K) = <Z ) dﬁsdpu>

0<s<T1 T—1 <u<Ty
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Then,

Ok = (1~ emz)Q ¢—hro? (7.65)

3.6 Displacement Correlation Function for the Center of

Mass
Similar to previous section, we define the displacement during the kth rotation by

Ax(k) = x(Ty) — x(Tk-1) (7.66)

where T, = 2wk and x(T}) is the position of the center of mass of the powered

random walker at time T},. Then, we have

Ax(k)= Y dx, (7.67)

Ty—1 <u<Ty

The displacement correlation function is then defined as
C.(k)="r {<E(1)AX(]€)>} (7.68)

We have

(Ax(1)Ax(k)) = <Z > dﬁsdxu>

0<s<T1 T—1 <u<Ty
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T T ,
— / / ez(ufs)fa (u—s)/2 du ds
0 Ty
£t

T
— / e (i*§>sds ' e<if§)udu
0

1 2
= 5 (1-e) e (7.69)

By taking the real part of this equation, we obtain

(k) = (0;%4 )2:) - (1 - 6”02)2 e~kmo? (7.70)

3.7 Displacement Correlation Function for the Guiding

Center

Let’s define the displacement of the instantaneous center of rotation during the
kth rotation by
Ac(k) = c(Tx) — c(Ty-1) (7.71)

where T}, = 27k and c(T}) is the position of the instantaneous center of rotation

of the powered random walker at time 7). Then, we have

Ack)= ) de, (7.72)

Ty—1<u<Ty

The displacement correlation function of the instantaneous center of rotation is
then defined as
C

Ac

(k) = R {(Bc(1)Ac(k)} (7.73)
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We have
(Ac(D)Ac(k)) = < > > de dcu>
s<T1 Ty _ 1<U<Tk
_ ( U_4>/T1 z(u s—aus/2dud8
4 Ti—1
4 . Ty 2
_ (_“_)/ T g [T ) gy
4 0 Ti_1
- (—U—4>< ,_102 e_(z_é>s Tl) ( : 102 e(i_éﬁ T )
4)\(i-%) 0 ) \(i-%) Tt
o ) —1 no? —kno? —(k—1)mo?
= . — e —1) (e
()t ) )
U4> 1 2 2 —k
= -7 ) = 1—e™ ) e (7.74)
( 1 (i-%) ( )
Then,
el I (oA |
OAc(k) _ < 44 > < ;1 ) <1 _ 67r02>2 e—lwra (7‘75)
(5 -1+
By comparison we see
4
Cult) = (=) Cantt (7.76)

4 Results and Discussion

The stochastic orientational dynamics changes the direction of motion of the

nanorotor after each rotation. At low

O'

, it is expected to have less deviation

from the circular path, and therefore, 1ess deviation in the direction of velocity

after one rotation (see Fig. 7.4). In this domain the deterministic rotational con-

straint is stronger than the orientational stochastic dynamics. We calculated the

velocity correlation function

(k)=¢e

—k/ke

(7.14)
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Figure 7.4. Stochastic rotational dynamics of the nanorotor deviates its path from
circular to quasi-circular. Simultaneously, after one rotation, the direction of velocity v

of the particle changes with respect to its initial direction vy.

where the characteristic rotation number
k. = (mo?)7! (7.15)

is a measure of number of rotations that a nanorotor requires to forget the orien-
tation of its initial velocity. Variances around o? = 7~! ~ (.32 represent a domain
where the particle starts to forget its velocity after each rotation.

The dynamics of the nanorotor on the c-frame circle is the result of the motion
of a powered random walker constrained to move on a circular path. We calculated

the mean-square displacement of the particle over time on the c-frame circle,

(p(T)2) _ 2 (1- €_§Tn> _ Lo (7.39)

T, T, nm
With an increase in the time span of measurement, the mean-square displacement

over time decreases (see Fig. 7.5) and over long time goes to zero.

tim (PEID (7.40)

Ty—00 Tn

This is one of the consequences of being constrained to move on a circular path.
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Figure 7.5. The diffusion @(;7")% of powered random walker on a circle whose center is

the guiding center. Increase in ‘the time span, T,, = 27n, over which the random walker
moves, the diffusion on the circle reduces, approaching zero.

Over long time, the particle moves a distance more than half the perimeter of the
circle; however, the current position of the particle on the c-frame circle could be
achieved at earlier times if the particle would choose the reverse direction.

We also observed that the mean-square displacement of center of mass and the

guiding center over long time are equal and linear in time.

4Dy = tim Iy leTF) :( o ) (7.60)

Tp—oo T, Tp—oo T, %4 +1

This means that the powered random walker over long time behaves as an unpow-

ered random walker with an effective translational diffusion coeflicient

02
Do = (”—i 1) (7.77)
4

In the limit of small ¢ < 1 we obtain

2

Do,
Do x 0% = %Deﬁ ox T % Dy o %Dm (7.78)

which is the same as the result of scaling analysis (7.10). In the limit of o > 1 we
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Figure 7.6. The functions, fx (solid blue curve), and f. (dashed red curve), multiplied
by % show the deviation of <|X(§:)‘2> and <‘c(;:)‘2> from the limiting value 4D.

obtain
2
Duwoxo? = “Dg = Do o — (7.79)
UQ Dort Dort
which is consistent with the scaling analysis (7.9).
For short mean-square displacement over time after n period we have
T.)|? T.)|?

and

001 & ‘ ‘ ‘ ‘ J oLk ‘ ‘ ‘ ‘ ‘ g
0.001 0.01 01 1 10 100 1000 0.2 05 10 20 50 10.0 20.0
2 2
o o

Figure 7.7. (a) The curves of (|x(71)])/T1 (dashed green), (|c(T1)|)/T1 (dotted blue),
and 4D, (red). (b) the same curve in more details near the peak. The maximum of
4D, occurs at o2 = 2.
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Figure 7.8. The curves of w (dashed red) and 4D, (solid green) vs o2. In the
linear-linear plot (a) it seems as both curves almost fall over each other even for small
values of o2, however the log-linear plot (b) shows that for small values of o2 the two
curves are distinct and after the peak for large values of o2 they coincide. (c) is the
peak in more details and (d) is the region where the curves begin to coincide. (Inset:
the linear-linear plot of the main log-linear plot.)

where \
fx(o) = (%: <T)2+>04 (7.82)
and \ \
folo) = <f) <72 -y (7.53)
(51 o

are functions of o2 (see Fig. 7.6). The root-mean-square of displacement after one
rotation, that is, % and (VD Tl along with the limiting behavior 4D, are
demonstrated in Fig. (7.7)

For dynamics of the center of mass at small values of 0% we see that %11”2)
and 4D, behave as two distinct curves, (see Fig 7.8) while at higher values of o2,

in a region were fy, >~ 0 these two curves begin to coincide. With increasing the
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Figure 7.9. The curves of w (dashed red) and 4Dy (solid green) vs o2. The

linear-linear (a) and log-linear (b) plots show that for small values the two curves coincide
and near the peak dissociate. (c) is the peak in more details and (d) is the region where
the curves take parts. (Inset: the linear-linear plot of the main log-linear plot.)

observation time 7},, the curves o2, MTF—")P) and 4D, coincide at smaller values of

a2

In the case of the displacement of the guiding center over time, at small values
of o2, %1)‘% and 4D, coincide with each other (see Fig 7.8). These two curves
begin to separate in a region were f. ~ 0. This is the domain where the velocity of
the nanorotor loses most of its memory (due to the circular path constraint in the
reference frame of the guiding center) after one deterministic period of oscillation.
With increase in the observation time 7},, the curves o2, % and 4D, begin
to separate at higher values of o2

The most important outcome of this study is the diffusive behavior of the
nanorotors at long times. To see this more clearly, let’s work in dimensional units

% and (U%) D.s = D, into the effective translational diffusion

and insert o2
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coefficient (7.77) to obtain

Do = ~——2— (7.84)

This equation demonstrates that the coupling of the deterministic components of
the motion (v and w) and stochastic orientational diffusion D,y at long times
produces an effective translational diffusion D.g.

The total translational diffusion coefficient D' of the nanorotor is the sum of

its translational diffusion coefficient Dy, and the effective translational diffusion

tot

D.g. So, it is important to know the relative contribution of Dy,s and Deg to Dyy;.

It shows the importance of the coupling on the general dynamics of the nanorotor.

The measured translational diffusion coefficient for a 2 pm long nanorod in
water is Dys = 0.4 pm?s~! [18]. In chapter 6 we calculated the orientational
diffusion coefficient of nanorotors from the videos in the supporting informations
of [30] and [31]. For the former we have w = 22.29 rpm = 2.334 rad/s™ ', Dy =
0.102 rad®s~', and approximately, v ~ 10um/s which gives us o? = 0.087 rad?
and Deg = 0.934 pm? s~!. The effective translational diffusion is more than two
times the nanrod’s translational diffusion. This shows that even for small values of
0% < 1, the effective translational diffusion has important effect. For the nanorotor
in [31] we have w = 279.79 rpm = 29.3 rads™!, Dy = 0.462 rad®s™!, and approxi-
mately, v ~ 30um s~ [24] which gives us 02 = 0.032 rad® and Dz = 0.242 ym? s 1.
Therefore, in the fast nanorotor, the effective translational diffusion is approxi-
mately half the translational diffusion of the unpowered nanorod.

In addition to the effective translational diffusive dynamics of the nanorotors,
we also calculated the correlation between the displacements after different periods.

The displacement correlation function is defined as the correlation between the

displacements during the first and kth rotation for variable r (= x, c or p) to be

O, (k) = R {(Br(1)Ar(k))} (7.85)

For the powered random walker on the c-frame circle we have

Cy (k) = — (1 - 6”02)2 e~kno? (7.86)
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Figure 7.10. (Dotted blue) C,_(2) (Dashed red) C, (2) (Solid Green) C,_(2). Both
C,,(2) and C, (2) go to -1 at large values of o.

As we predicted while discussing the difference between moving on a segment with

periodic boundary conditions and on a circle, the correlation function is negative
for displacements on a circle, while it is zero for displacements on the segment with

periodic boundary conditions. This is due to the restriction that the particle has
to move on a circular path. Similarly, we calculated the correlation function for
(7.87)

the displacements of CoM
Can(k) = fx(o) Oy, (K)

and for the displacement of the guiding center,
Cro(k) = fo(o) Oy, (K). (7.88)

It is clear from Fig. 7.10 that both C, (2) and C,_(2) go to -1 at large values of
o. This behavior is the direct consequence of chirality and the restriction of the

powered random walker to move on the c-frame circle.
Fig. 7.11 demonstrates the effect of the restriction of motion on the c-frame

circle at large values of 0 > 1. We can write the displacement correlation function
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Figure 7.11. Ap(1) can be written as the sum of two vectors Ap(1) = a + b where a
is a constant vector, and b varies depending on the amount of the stochastic component
of dynamics over one period. For large values of ¢ > 1 b can achieve all the possible
orientations. The average of Ap(2) given Ap(1) fixed, in this domain of ¢ is a vector
that begins at the end of Ap(1) and ends at the center of the circle. Therefore, we have

(Ap(2))ap) = —b.
in the form of

Crp(2) = R{{Ap(1)Ap(2)) } = R {(Ap(1) ((AP(2))apm))} - (7.89)

In the right hand side (Ap(2))ap(1) means the average of Ap(2) given Ap(1) is
fixed. During the first period, the powered random walker undergoes the displace-
ment Ap(1). Since in the regime of large o the vector Ap(1) can obtain all the
possible displacement on the circle, the average (Ap(2))apa) is a vector from the
end of Ap(1) to the center of the circle. At the same time we can write the vector
Ap(1l) in the form of a sum of two other vectors Ap(l) = a + b where a is a
constant and as shown in Fig. 7.11 we have b = —(Ap(2))apa). Therefore, for

the correlation function we obtain

C.p(2) = R{BD(1) ((AD(@))ap))} = —Pb+bla).  (7.90)

Since on a circle of radius 1 we have bb = 1 and in this domain of ¢ the average
(a) = 0 vanishes, we obtain

C

Ap

(2)=-1 for o>1 (7.91)
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which is the behavior we observed in Fig. 7.10.
We can use the same argument for the correlation function of guiding center

reaching —1 at large values of 0. In general we can write
Ax = Ac+ Ap (7.92)

for the relationship between the three types of displacement. At large values of

1

o the characteristic time of deterministic rotation w™" is much bigger than the

characteristic time of orientational diffusion D!

- In this domain the displacement

of the center of mass Ax is negligible compared to the two other types of displace-
ments. Therefore, we can write Ac ~ —Ap and for the displacement correlation

function of the guiding center we have

Cue(2) = R{(Ac(1)Ac(2))} = R{{[-Ap(1)] [-AP(2))]} = O\, (2)  (7.93)

as we observe in Fig. 7.10.



Chapter

Future Research

In this thesis, we discussed the deterministic dynamics of electrocatalytic nanomo-
tors, moving by electrokinetic self-propulsion. A mathematical model is proposed
and solved in the limit of thin double layer and small intensity of hydrogen ion
flux for spherical and spheroidal geometries. The models lumps all the kinetic
properties of the chemical reactions on the surface of the particle into a surface
distribution of hydrogen ion flux. Also, the physical properties of the solution, such
as viscosity and diffusivity of ions ,are assumed to be constant. For future work,
we suggest considering an appropriate kinetic model for the chemical reaction and
revisit the model under the new condition.

In the proposed model, we concentrated on the deterministic dynamics of a
single nanomotor in the unbounded domain. We did not consider the motor-motor
interaction and the motor-substrate interaction. The interaction of a nanomotor
with other nanomotors, or the substrate, can be the subject of further studies.

We analyzed the deterministic and the orientational stochastic component of
nanorotor dynamics. We observed that the deterministic motion of a nanorotor is
along a circular path. The coupling of these deterministic dynamics with stochas-
tic orientational dynamics deviates the nanorotor’s trajectory from a circular to a
quasi-circular path. From analyzing the experimental data, we observed that the
stochastic orientational dynamics of nanorotors follows the statistics of a one di-
mensional random walker. We suggest studying the effect of particle geometry on
its orientational diffusion and consequently the deviation from the circular path.

We studied the effect of coupling of deterministic dynamics of nanorotors and
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the stochastic orientational dynamics. This coupling leads to an effective trans-
lational diffusion, which is of the same order of magnitude as the translational
diffusion of unpowered nanorods for the experimentally analyzed nanorotors. We
suggest running experiments to calculate the effective translational diffusion and

compare the data with our theoretical predictions.



Appendix A

Stokes’ Flow Past a Sphere

A sphere of radius r = a moves with velocity U = U U in a Newtonian fluid of
viscosity . Working in units of x* ~ a and U* ~ U, dimensionless quantities are

used to describe the flow by the dimensionless Stokes equation

V-T=-Vp+V*u=0 (A1)

and boundary conditions
u =710 at r=1, (A.2)
u =0 at r — 0. (A.3)

Taking the divergence of the Stokes equation and using the continuity equation for
incompressible fluid V - u = 0, we obtain the Laplace’s equation for the pressure
field,

V2p = 0. (A.4)

The fundamental solution of Laplace equation for a given quantity &,
V20 =0 (A.5)

18
1

"=y
X

S |
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from which we can construct the other solutions of the Laplace equation as decaying

harmonic tensors of rank n as
/—“n\‘ 1
dM(x) = (=1)" V-V, (A7)
and the growing harmonic tensor of rank n as

oM (x) = 2+ ") (x), (A.8)

Correspondingly, the first three decaying harmonic tensors, used extensively in our

analysis, in the vectorial and index notation take the forms

PV(x) = —v% = ;3 (A.9)
o (x) = % (A.10)
oD(x) = vv% _ 3;‘_5" _ % (A.11)
() = %_i_; (A.12)
d3(x) = —vvv%, (A.13)
o Vx) = 3 [5”“";?” - (57{?’“ + 51??’ + 5J7’j;”)] . (A.14)

Therefore, we can write the solution for Laplace equation (A.4) of the pressure
field p as a linear combination of decaying harmonics whose coefficients are linear
in fJ,

p=A"000 + ATVU@ Y + ALYU0L P + ALYVUeY + - (A1)

where “A” tensorial coefficients solely depend on geometry. We cannot use growing
harmonics since they diverge at the far field where the pressure goes to zero. A
sphere is an isotropic object, and these coefficients should be isotropic tensors.

Therefore, A\ = 0, ALY = Mdiy, ALY = aeiny AL = Aaijon + Mabidy +
A50i0;k, and - - - Because of parity, Ay = 0 and because of the Laplace equation,
3)

the product Agﬁj) <I>§-;l vanishes. The rest of the terms vanish either due to parity
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or Laplace equation. The pressure solution takes the form

L
i3

P = AZ(]_l)IAJZ(I)g_l) = Aléijfjifbg_l) = Alﬁjq)g-_l) = Alfj (A16)
The velocity field can be divided into two parts, u = u” + u” ; the homogeneous
part u” that only satisfies V*u" = 0 and the inhomogeneous (particular) solution
u” that satisfies the equation V2u? — Vp = 0. We have

1
u’ = Px (A.17)

where, in tensor notation, takes the form

1 A
:§P$i— IUCI’( Y i

)\1 T;X;
2 U] :

uf 3 (A.18)
The next step is to find the homogeneous solution of the velocity field. In doing
so, we write the solution as a combination of decaying harmonic terms whose
coefficients are linear in U.

uf = 000 + o V00 + oL D00 Y + ol U Y 4 (A19)
Again, “C” tensorial coefficients must be isotropic due to the isotropy of the sphere.
Hence, C) = X 52], OO = Neiji, CL = Ny + NyGidju + Nydudjp and - -
Al = 0 and C’Uklm = 0 because of parity. We have C’Z.(];?)CI),(J% = (N\; + AQ)(I)Z(;Q)
as a result of the Laplace equation (@;;2) = 0) and symmetry of @gj_Q). Using the

notation A" = A\; + X}, the homogeneous solution takes the form
ul = Nyoy U0 + VU0 (A.20)
So, we can write the velocity field as

N A~ _ ~ —
w=ul ol = NG00 + 20 A”Uj<1>§j K
A1

= U; N0, 00 + 5 S A TRINL (A.21)
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We then apply the boundary condition w;(r = 1) = U, at the surface of the sphere

A1
U, = U [X 0ij + 9 $sz+)‘”<3$zx] 5%’9')}

. A
- U, [(Ag — X8+ (5 + 3X')xixj}

to obtain \
N =X —1= _El‘ (A.23)

Applying the continuity equation to this flow field

T )\ _ A~ _

- B )\ A
= U - Nyl - 21 oV, + 21<1> R

R - T; )\1 3$ixj 5@3 )‘1 Lj
= U, N - 5(T—5 - r3> . 3?73] (A.24)

)\1 ~ T
= (—)\6 + ?>UJT_§ = 0, <A25)
gives us
A
N = 31 (A.26)

N, = 2 M = ; N = - (A.27)

Combining these results gives the pressure field and velocity field caused by a

moving sphere in a fluid as

U, (A.28)

3 . 1.
Ui:ZLUj 5U<I>()—|—(I)( Dy —gq)(-Q)] (A.29)
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The next step is to calculate the stress tensor in the fluid and the force applied by

the sphere on the fluid. For this purpose, we use the constitutive equation
Tij = —pdij + 2E;; (A.30)
For the strain deformation tensor we write

2Eij = 8iuj—|—6’jui

- % Uy 30,0 + 9,0\ Va; + o Vo, — %a’@;w ]

+ % U, 0 0;® + ;0 Va; + @7V, — %ajq>§k2> ]

_ % Uk; — 50 — @ Vg 4+ U5, + %cbﬁj‘,f) ]

+ Z U = 0a0l" = @ P+ @ Vo + %q>§;k3) |

= SO (205007~ 5ul ) 50l ) (@0, + @) + Sal ]

from which we obtain the following relation for the stress tensor

-3 = -1 ~1 -2 -2 2 (-3

Ty = = O] (000" + 6500 ) + (0 P + 0Py ) — 20l | (A31)
In order to calculate the drag force applied by a fluid on the sphere we first calculate
traction ﬁ = n,;T;;. Working with dimensionless quantities, the normal of the
sphere surface equals the position vector, that is, n;, = x;. So, we have (on the
surface of sphere r = 1)
. -3 .
fi = ZEjT%j = T Uk[ ((%MEjZEj + 5jkxjxi> + ((3{L‘]ZL‘k — (Sjk)l‘il'j + (3[EZZL‘]€ — 5zk)m]x]>

2
—g X 3<5£L’1.Z'jl'kl'j — ((Sij.%kiCj + (SikiCj.%j + §]kxzxj))]
-3 .

X _2<5$i$k — ({EkCBZ + 0 + £l$k)>]

-3 . -3 -
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We can now calculate the drag force
Fdra £ -3 = &
Fras — | fdA = dr x (7 U@-) — 67 U, (A.33)
s

The sphere is force free, so the force Ia applied by the sphere to the fluid is equal

in magnitude to drag force but opposite in direction.
F = —F"9 — 67 U, (A.34)

We can substitute Ijz = %Fz and rewrite the pressure field, velocity field and

stress tensor field in terms of applied force.

| P
p=—F oY (A.35)

)
Ty = g—; F| (0@ + 00l 70) 4 (@ Pai + @ Vay) - 2500 | a8
p

Working with dimensional quantities x = ax, u = Uu,
F = pUaF, @ = a10!”, o™ = 420", ™2 = ¢3¢\ o™ = (—4p?

~ ~ ~1

these equations take the dimensional form

1 (-1

= —F;9; A.
p=F (A.38)
1 1
w; = - Ey[ 5ij@(0) + (l)g ),@z -3 2(1)1] } (A.39)
-1 2
_ -1) ( ( 2) (

The moving sphere in fluid in the limit of a — 0 acts like a point force of strength
F. Therefore, the contribution of the moving object to the flow field can be sum-

marized in a terms of Fd(x — x) in the Stokes equation

Vp+ pV*u+Fo(x —x0) =0 (A.41)
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The solution to Stokes equation with a point-force is given by

1

p(x) = 8—7T73j(2,<,>$o)Ej (A.42)
1

%x(%) = %Qij(§7§0)5j (A~43)
1

Tij(x) = S—WIijk(%,Xo)Ek (A.44)

where using the notation £ = x — X, these Green functions are

2071 (¢)
Q,E_,; (A.45)

5,00 + &0V (¢)

5ij §z§
P+ a (A.46)




Appendix B

Stokes’ Flow Past a Spheroid

1 Spheroid

An spheroid in the Cartesian coordinates is defined by
Tyl =t (B.1)

where r? = y?+22 and b < a. The focal length 2c and the eccentricity e (0 < e < 1)
are related by

c=Vva* -0 =ea (B.2)
and the eccentricity is related to a and b by
2 b
(1—¢%) = o] (B.3)
or
b =a*(1 —é?). (B.4)

2 Velocity and Pressure Field

For a free stream velocity at infinity of the form

U=Ué, (B.5)
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where €, is the unit vector in the x direction, the velocity and pressure fields

around the spheroid are given by [38]

1 1
u:U{éx—zaBlo &, — <—— —) (y &, +2 &)+ ar’Bsg ém—Q@’VBM}
s R2 Rl s >
(B.6)
and
; U( Lo ) (B.7)
=2ualU | — — — ], .
p I R, R,
respectively, where
2e? e?
pu— = B-
=TT e T oAy (B-8)
1+e
L.=1 , B.
n <1 — e) (B.9)
Ry = /(x4 )2+ r2, (B.10)
Ry = /(x —c)? + 12, (B.11)
Ry — (z — c))
Bio=In{———F2], B.12
10 D(Rl—(a:—l—c) (B.12)
Bi1 = Ry — Ry + 1 By, (B.13)
and .
r+c¢c T—c¢
Bso = — — : B.14
T2 ( R R, ) (B-14)

We would like to calculate the stress tensor on the surface of the particle. To do

so we will use the following identities;

1
ale = —<ZL’j +c (51]'). <B15)
Ry
1
ajRQ == —(l’j — C (51]‘). (B]_G)
Ry
I‘—(R2+C>51' LC'—<R1—C>51'
0;Big = 2 I _ J B.17
TP Ry [Ry — (11— )] Ri[Ri— (21 +0)] (B17)
0 1 52 T;X; — C(ZEZ'(Sl' +z 511) + C25u51'
i —c )| = 2L T (e J B.1
Ox; {32 ()~ IJ)} Ry R3 (B-18)
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0 |1 0 xixj + (w0 + 1j01;) + ?01:01;
% 1

9 { z; — (R + ¢) 0y ] - Mmooy [2j — (B2 +¢) oy}
— j J

Ry [Ry — (21 — ¢)] RS [Ry — (21— ¢)]
% ZRQ(IZ — C (511) — (l‘l — C)([Ez — C 611) — R% 5“
R} [Ry — (1 — ¢)]”

(B.20)
and,
0 |2 —(Bi—c)dy R16i; — (25 + ¢d13)01;
O, | Ry TRy = (i + ) RR- (o) 77 =

% 2R1(£Ui +c 511) — (331 -+ C)({L’l +c 512) — R% (51,'
R? [Rl - (.131 + C)]2

(B.21)

The normal n on the surface of the spheroid is

Q:véi—l—@xéi—i-gscéi 1
n; = o171 o272 b 7373 = <g> (l’l — eleéu) (BQQ)
a? — e2z? VR Ry \b

For convenience in the calculations we define the vector

/

n, =x; — 621’15” <B23)

which is related to the normal by n; = \/ﬁ (%) n’;. The following identities hold

on the surface of the spheroid.

r? = (1-e*)(a*—27) (B.24)
R = a+ten (B.25)
Ry = a—ex; (B.26)

Bip = In G * Z) _ I, (B.27)
Bsy = 2¢ L 2¢ (B.28)

(1—e2)(a2 —e22?)  RiRy (1 — €2
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a? — (R, — ¢)x1 = (a — 1) Ry (B.29)
a’> — (Ry +c)x1 = (a — 1) Ry (B.30)
a’+ cxy = aRy (B.31)
a® —cxy = aRy (B.32)
Ri—(r1+c)=(1—-¢€)(z—a) (B.33)
Ry—(x1—c¢)=(14+¢)(x—a) (B.34)
1 1 2a
— 4= = B.
R, - Ry,  RiR, (B.35)
1 1 2ex
S B.
Ry Ry RiRy (B-36)
n;(:vﬂu + 2i015) = (1 — €*)(z17; + a*61;) (B.37)
n;51j51i = [El(l - 62>61i (B38)
n(x; + cby;) = 0% + cxy (1 — €%) = Ria(l — €) (B.39)
T; — (Rl — C) (511' = (QTZ — ZEl(Sli) — [R1 — (ZL‘l + C)](Sli (B40)
T; — (RQ -+ C) 511' = (Il — $1(51i) — [Rg — (1’1 — C)]éli <B41)
zjr; — 2wz = b (B.42)
ToTy + w373 = (1 — €?)(a® — 2177). (B.43)

1 1 1 1

Ry[Ry — (21— ¢)]  Ri[Ry — (z1 + ¢)] Ry(a—x1)(1+e) Ri(a—a1)(1—e)
Rl(l — 6) — R2(1 + 6)
RiRy(a — x1)(1 — e?)
(R1 — Ry) —e(Ry + Ry)
RiRy(a — x1)(1 — €?)
(2exq) — e(2a)
Ry Ry(a — x1)(1 — €?)
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_ —2e(a — x1)
R1R2(62L —x1)(1 — €?)
- RRA=E (B.44)
1 . 1 B 1 . 1
Ro[Ry — (w1 — )] Ri[Ri—(z1+¢)]  Rola—z)(1+e)  Rifa—z1)(1—e)
_ Ri(1—-e)+ Ry(1+e)
 RiRy(a—z1)(1 —e?)
. (R1 +R2) +6<—R1 +R2)
 RiRy(a—x1)(1 —€?)
_ (2a) + e(—2exy)
RiRy(a — x1)(1 — €?)
B 2(a — e*xy)
= RiRala—m)(1— ) (B.45)
1 - 1 B 1 - 1
Ry—(r1—¢) Ri—(v1+c¢)  (1+e)a—x) (1—e)(a—mx)
(1—e)—(14e¢)
(1—e?)(a—x)
- 2 (B.46)
(1—e2)(a— 1) '
_ —2e(a* — e*z7) (B.47)

Ry Ry(1 —e?)(a — x1)

2.1 Simplified Velocity Field

To proceed further with deriving the stress tensor, we rewrite the velocity equation

in index notation,

1 1
UZ/U == (]_ — QO[Bl 0 + 017“233 0)512' -\ = — = (1'2521‘ + 1‘3531‘) — 25
I I R2 Rl

0
8277;

B
(B.48)
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We first simplify the above equation.

+c x1—cC 1 1 1 1
2By 6y, = (L1 b= —xy [ — — =) 6y, — 4=\ 6y
2300 <R1 m )T T\ R, TR )TN\ R TR )Y

1 1 1 1
(R—2 — R_1> (2209; + x303;) = (Ez - E) (zi — 21014)

0
8:13-31’1 = 0;Ry — O;R1 + 01,819 + 210, B1
1 1
= E(l‘z —c0y4) — R—l(Iz + ¢ 015) + 01;B1o + 210, B1o
= N —c 0y i—i—i + 01:B1o + 210;B1 o (B.51)
- 7 R2 Rl 1% R2 Rl 1: 1,0 1Y P10 .
, 11
’U/,L/U = 511' — 20&B1 0(511' + ar Bg 0(512' — x| = — — (l’z — LL’l(SM)
’ ’ Ry, R

1—e?\ 0
@ ( e? ) ox; Bia

11 11
— 5y — 20By o0y — — =)y, — =)y
li T Q51,001 T A (RQ Rl) ! +O‘C(Rg+Rl) !

1 1 . 1 1 5
—o|l—=——— )z +axr; | — — —=— | o,
R, R "\R, R
1—e? 1 1 N 1—e? 5 1 n 1
—a T | — — — « coy | —+ —
€2 R, R, e2 "\ R, R
1 — 2 1— 2
—Q ( 626 ) 511'B170 — ( 626 ) :vlé?iBLo
1 —e? 1—e?
= 01 —2aB; 001 — « ( 26 ) 01,810 — ( 26 ) 210;B1
e e
+ac L+i 01 + o ey c 0y i—i—i
R2 Rl 1 e2 1 RQ Rl

R2 Rl ‘ 62 ‘ R2 Rl
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(&

ac [ 1 1 o 1 1
S e I Ity (- B.52
+62 (RQ_'_Rl) ! 62 (RQ R1>x ( )

Let’s define
Ugl) = 611'3170 (B53)
1 1 1 1

@ _ (s o (22, B.54
u; <R2+R1)Ch (R2 Rl)fﬁz ( )
UES) = @BLO (B55)

The velocity formula then takes the form

1+ e? 1—¢é?
w; = 0y — ( +2€ ) ugl) + (%) ul@) -« (—26) m1u§3) (B.56)
e e e

We further define

alU
to obtain
w = Udy; — o' (1+ eul + o'u® — o/ (1 = e)zyu? (B.58)

3 The Distribution of Traction on the Surface of
the Spheroid

3.1 Introduction to Strain Tensor Ej;

For the gradient of velocity field, we have

Ojui = —a/(1+e)du + 0u — o/ (1 = )9 (210"

= —d(1+ 62)(9]-1151) + o/ajuZ@ —a(1— 62)(51ju£~3) —a(1- ez)xlﬁjuf’)
(B.59)
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We form the strain tensor, Ej; = d;u; + 0;u;, from the velocity field

E; = —d(1+¢?) [(%ul(-l) + @uy)} +a [(%ul@ + &-u?)} (B.60)
—ao/(1—¢€?) [51ju§3) + (51iu§3)} — /(1 —eHay [ajuf.?’) + @ug?’)}
where
51ju§3) = 51j82~Bl,0 = 8i(51j3170) = 8iu§-1), (B61)

and
51ju53) + (51¢U§-3) = &ugl) + (9juz(»1) (BGZ)

Therefore, the strain tensor takes the form

Ej; = —2d @»uﬁ” + &ué-l)} +a |:6ju,52) + @ug-z) — /(1 - ey 83‘“53) + 8m§-3)

(B.63)
Defining
k k k
EY = o + ojul” k=1,2,3 (B.64)
we can write the strain tensor in the form
B = —2d/E\Y + EY — /(1 - &*)a, EY (B.65)

In order to calculate the distribution of traction on the surface of the spheroid
we need to calculate n; ;. To do so, we first calculate the terms n;E](f) for each k
and later form the final equation for the distribution of traction. We will decompose
the elements into two perpendicular directions d;; and z; — x101;. The first one
01; represents the direction of the symmetric axis and the second one x; — x10y;

represent the vectors in a plane perpendicular to the axis of symmetry.
1

3.2 Term n;EJ(Z)

We use the identity

T — (R2 —|—C) 51]‘ B Tj— (R1 - C) 51]‘
Ry[Ry — (z1—¢)]  Ri[Ry — (71 +¢)]

0By = (B.66)



134

to calculate

301 + i015) — 2(Ra + ¢) 1500
R, [Rz - (351 - C)]

(#0u + @idyy) — 2(Ry — ) 61504

Ry [Ry — (21 + ¢)]

EZ(;) — Ej(zl) = 0j(B1001;) + 0i(Bigd1;) = (

(B.67)
Using the identities
n; (a:j(ﬁi + :UZ-(SU) = (1 — 62)(612(511' + Z’l.ZCi) <B68)
and
n}élj(sli = (1 — 62)ZU1511' (B69)
we obtain
n/ E(l) . (1 . 62) { (azéli + l’lfL‘Z‘) — 2(R2 + C) x1517; _ (a2(51i + l’lfﬁi) — 2(R1 — C) ZL‘lau}
o Ry [Ry — (21 — ¢)] Ry [Ry — (21 + ¢)]

(B.70)

To simplify the equation further, we separate the terms and use the appropriate

identities.

WED = (1-¢) {(cﬂéu + 217;) (RQ[RQ _1(561 — )] Ri[R —1(961 + 0)]>

—22,0; (RQ[RQ _R(le “09” RiR —R(lxl + C)])

—2ca,6y, ( "l _1(951 o] " R —1(x1 + c)]) }
- (1-¢) {(cﬂéu + 1) (RQ[Rz _1(;51 o] RiR —1(951 + C)])

—22104; <R2 — &1 —¢ R - (Zl + 0))

—2caz; 8y, ( i _1(3;1 —ol T RiR —1(:c1 + c)]) }

1 —2e
= (1 — 62) {(a251i + xlxl)ﬁ (]_ _ 62>
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Cor g —2e(a® — e2x?)
o Ry Ry(1 —€?)(a — x1)

2(a - €2$1)
e (3132(61 — 1)1 —€?)
—2 2_ 2.2 e
= € {(a2512~ + $1Ii) — 2x101; (M) 1 2ax,0y; <ﬂ> }
a

Ri Ry a— I — I
(B.71)
2 2.2 9
C9ui6., (w) + 22161, (u)
a — X a— I
a — X a — I
2 _
= —2110y; <M) = —2e*175y;
a T
(B.72)
Then we have 5
1 — €
n;E](Z) = BT {(a2(5u + z2;) — 2621’%(511} (B.73)

We decompose this equation into the two perpendicular directions dy; and z; —x101;.

(&2511‘ + I’lxz‘) — 2621’%511‘ = (a251i + 1T — ZL‘lfL’l(Sli + 1'11'1512‘) — 2621‘%511‘
= a*dy; + x1(x; — x101;) + T12101; — 2621‘%511

= ZE1<I'Z‘ — x151i) + (CL2 + Jf% - 2621’%)511‘ (B74)

Therefore, the first term of the strain tensor becomes

—2e(a® + 3 — 2e2x?)

—2ex
/~E(1) — 1
" Ry R,

J gt Ry R

(LL’i — .771511') + 5” <B75)

3.3 Term n;Eﬁ)

For Ry = /(71 + ¢)2 + 2% + 3 the derivative with respect to z; gives

1 1
—0; [(z1 + ) + 23 + 23] = —(z; + ¢ ;). (B.76)

O = 2R, R,
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Similarly, for Ry = /(21 — ¢)2 + 23 + 23 we have

@-Rg = 2—R28j [(i[)l — 0)2 + 33'3 + $§:| = E(Z'] —C 51j)' <B77)
1 1 1 1
@_ (L. Y (L _ LY, B.78
Uz (R2+Rl)cl’b (R2 R1>$Z ( )
1 1 (x; —cdyy)  (x;+cdyy)
a. _ _ 52 - _ J J J J 5@
](R2+R1)Cl [ R3 i Ry -
1 1 1 1
= (= =) (cewtn) + = — = ) 200,61,(B.T9
(7 ) oot + (g~ ) Couiut70
1 1 1 1 (x; —cdyj)  (xj+cbyj)
a'_i - _ _51” - ; J J/ J J
][ ’ (R2 Rlﬂ J(R2 Rl>+x [ R R
1 1
- (E A
1 1
—cxi0; | =5 + —) (B.80)
? (R% R}
Therefore,
1 1 1 1
ou? = 5, =— - = i+ 2600 [ = — =
]uz J(R2 Rl)—i_(xajj—i_c 1 1]) <R§) Ri’,)
1 1
—c(xiélj + xjéli) (ﬁ + ﬁ) (BSl)
2 1
and consequently,
1 1 1 1
2 _ 2
Eji = _251']' (R—2 — E) + 2(1’1$] +c 512'(51]') <R_§ — R_:l)’>
1 1
—20(1’1'513‘ + wjéh-) (E + ﬁ) <B82)
2 1

Using the identities

n;&w = n; = T; — €2£E1(517; (B83)
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TL;(:L’Z[L'J + 62511'51]') = a2(1 — 62)(l'i + 621'1512‘) (B84)
n; (xiélj + xjéh-) = (1 - 62)(I1$¢ + CL2(51¢> <B85)
we obtain
1 1 1 1
(2 _ 2 2 2

nE; = —2(v; — e r101) <R2 Rl) +2a*(1 — €*)(z; + e*x161;) (Eg — R_f)

1 1
—2¢(1 — €*)(zy2; + a*dy;) (— + —) (B.86)

VAR R

We need to simplify this equation further. First we decompose the terms into the

two perpendicular directions d,; and x; — x101; .
Tr; — 62171611' =T — m1(51i + 1171511' - 62$151i == (I’z - ZIZl(Sli) + (1 — 62)1'1(51,‘ (B87)

x; + 621’151i =T; — 1'1511' + 131517; + €2$151i = (ZL’Z — ‘771511') + (1 + 62)I1(511’ <B88)

$1Z’i+@251i = .CEliUZ'—$1$151i+$1$151i+a251i = .%'1(5131‘—5131(511‘)4—(33%—‘—&2)(511' <B89)

1 1 Ri-R (atex)—(a—ex) 2exn
R, Ry RRy RiR, - RiRy

(B.90)

11 11 1( ) 1( ten) 11
Ol = — = | —ex = a—er)— —=ater)) = —— =
R} RS "\ TR R} Yo R3 VTR R

(B.91)
and
1 1 1 1
(1+ e*)am; (ﬁ - ﬁ) —e(x} + a?) (R3 + R3)
1 1
—(azy + €*azxy — ex] — ea®) — —(azy + €’azy + exi + ea®)

R R3
1 1
R3 (a —exy)(z1 — ea) — Vi (a+ exy)(z1 + ea)

_ (r1—ea)  (z1+ea) (B.92)

R3 Ry
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which gives
2a*(1 — e*)(x; + e*x16y;) R —2¢(1 — €*)(zyz; + a®6y;) i—l—i
% 1012 R% R:{’ 144 17 R% R:%

1 1 1 1
= 2a(1 —¢%) {a(%‘ + €°1101;) (ﬁ — ﬁ) — e(z12; + a*dy;) <§ + ﬁ) }
2 1 2 1

—elwi(x; — x101;) + (2] + a*)dy,] (Rig + Rii)’) }
= 2a(1 — ¢?) {(:cz — 2101;) {a (Rig - }%’)) - (Rié’ i Ri:f)]
s (g~ ) et (o )] )

= 2a(1 — €?) {(mi — 2101;) (Ri% — Ri%) + 61 {(%}%ea) _ (xlg%ea)} }

(B.93)
Therefore,
g _den 51) + (1 — X110
njyt = —RIRQ[(%—% 1) + (1 = €")z161]
1 1 (x1 —ea) (a1 +ea)
(B.94)
Recasting the above equation, we get
—4dex 1 1
@ _ 1
H;Eﬂ = R1R2 ($z — 93151,-) + 2@(1 — 62) (R_% — R_%) (ZBZ — 371512')
—4ex? (r1 —ea) (a1 +ea)
1—e*)dy; + 2a(1 — €2 — 01
+R1R2( e”)o1i + 2a( e)[ It I 1
(B.95)
Using

(x1 —ea) (x1+ea) 1 1 1 1
- —a (= - =) —ea =+ = B.96
7 mo\mE) M\ ER (20
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the final form at this stage becomes

11
R R

TL,-E(2) —46.231

2
il = RlR2($i—$151i)+2@(1—6)(

) (2 — 2101,)

—4ex? ) 1 1
1 —eHoy +2az,(1 —€?) | = — =5 ) b
+R1R2( e“)1; + 2ax( 6)(R§ R%) 1
1 1
—26&2(1 — 62) (R_% + E%) (511' (B97)
1 (3)
3.4 Term njEji
Finally, we would like to calculate
E](?) = 82U§3) + 8ju§3) = 81-(9]-3170 -+ @-@-BLO <B98)
We have R 5 A 5
GJBLOZ%_( 21¢) 0y i —(Bi—c)dy (B.99)

Ry[Ry — (z1 —¢)]  Ri[Ry — (21 + ¢)]

and from that

0 (2;—(Ry+c) by 0 — R%(xi — ¢617)01;

ox; (RQ [Rz - (SL’1 — C)] N Rs [R2 — (551 _ C)] [xj (R2 + C) 513]

Ry — (x1 — ¢)] O;Ry + Ry [0; Ry — O;1]
R3 [Ry — (21 — C)]2

_ Radij — (zi — ¢013)01 o |

= TBE-moo) 7R

Q(JIZ — C 511) — L(ZL’l — C)(CL’Z — C (512) — RQ 611'
X

"

Ro
R} [Ry — (a1 — ¢)]”
_ Rody — (w5 — cd14)6y; g — o) 61
- R% [R2 — (xl _ C)] [ J <R2 + ) 51]]
y (2R2($i —cou) = (v1 — o) (wi —c o) — 3 51z‘)
R} [Ry — (21 — o)’

(B.100)

and similarly,

0 ( zr; — (R1 —c¢) ) _ BRidij — (w4 c0ui)dyy — [z; — (R1 — ¢) d4;]
= J J

0@ R1 [Rl — (1'1 + C)] R% [Rl — (111 + C)]
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% 2R1($1 +c 511) — (ZL’l + C)(l’z +c (511> — R% (511'
Rili [Rl — (1’1 + C)]2

(B.101)

So, we can write

(RQ(Sij — (I’Z — 0(511‘)(51]‘>

0i0;B10 B[Ry — (o1 — )

—[:Ej B (R2 n C) 51j] (2R2($i —cC (511'})%%—[}(zf1_—(;)1(ii C—)]2C 51i) — R; 5”)
(oo
R [Ry — (21 + ¢)]

2R1(.T1 +c 611) — (LEl + c)(mz +c (51@) — R% (511>

oy = (= o) d] R

(B.102)
and therefore,

3)
ES

(2R25ij — (@61 + xj01;) + 2051,;51j>
R3[Ry — (71 — )]
2Ry(x; — ¢ 81;) — (21 — ¢)(w; — ¢ by;) — R3 51,-)
R3[Ry — (21— o)
2Ry(w; — ¢ dyy) — (11 — ¢)(x; — ¢ 0y;) — R3 51j)
R3[Ry — (21 — o)

oy~ (o) ]

—[z; — (R2 +¢) 615 (

2R10;j — (w01 + xj01;) — 2c§1i51j>
N ( R} [Ri — (21 + ¢)]
2Ry (z; + ¢ 613) — (w1 + ¢)(z; + ¢ 6y;) — R? 61i)
R}[Ry — (x1 + )]
2R (x; + ¢ b1;) — (21 + ¢)(xj + ¢ §1,) — R} 51])
R}[Ry — (21 + o)

oy = (= ) 0]

—f—[CL’Z — (Rl - C) 517/] (
(B.103)

Using this relation, we can write down the last term of strain tensor as

I E® 2Ry (x; — €*w101;) — (1 — €2)(zy2; + a?d1;) + 2¢ x1(1 — €2)dy;
7 R3[Ry — (21 — ¢)]

[2R2 — (.lel — C)](ilfl — C 612) — R% (511)

_(1 — 62)(a — .Tl)RQ ( R;’ [R2 = (ml — c)]2
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—[z; — (Ry + ¢) b4] ([2R2 — (7 —]%][C;iz(_l (;16_) C_)]2R2 (1—e )x1>
_ <2R1(xi — ¢midu) — (1= ) (@1 + a’du) — 2c 2 (1 — 62)51i)
R} [R1 — (21 + ¢)]

) 2R; — (z1 + o)](z; + ¢ 01;) — R by,
+(1—e)(a—x)Ry < R (B — (01 1 c)]2 )
[2R1 - (131 + C)]CLRl(l — 62) — R% (1 — 62>f171)
R3[Ry — (14 o)

+[.I’l - (Rl — C) (511] (
(B.104)

Using ¢ = ea, Ry = a + ex; and Ry = a — ex; we have the identities

.T1$i+612(51i—26$151i = :cl(xi—c&i)—l—aéu(a—exl) = .Z'l(l'i—Cdli)—i-Cl(Sh'Rg (B105)

12 + a251i + 2C$151i = iL‘l(.Ti + C51i) + a51iR1 (B106)
T; — (Rl — C) 511' = (ZL’Z — $151i) — [Rl - (Il + C)](sli (B107)
XT; — (Rz + C) 511' = (l‘l — 371511‘) — [RQ — (1'1 — C)]dli (B108)

For the ease of dealing with simplifying these equations, we define

A =R —(x1+¢)]=(1-¢)(a—z) (B.109)
and
A2 = [RQ - (I‘l - C)] = (]. + 6)((1 — .Tl) (Bl].O)
to achieve
n;Ej(f) _ (2R2(a:i —e?2101;) — (1 — eH)[xy (i — cby) + aRQ(SH])

R34,
_ _ 2 _ (RQ + AQ)(LCz —C 612) — R% 51i
(1—e*)(a— 1) ( —

)
O o mid) — A (aAg + (a — xl)Rz)
)

R3A3
. 2R1 (ZL’Z — €2ZE1(51¢) — (]_ — 62)[.%'1 (ZEZ + C(Sli) + GR151z']
R2A,

. N — R2 5.
+(1 _ 62)(a _ ,SL’l) (Rl + Al)(l'z —|2— 02511> Rl 611
RlAl
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L (5 ) — A (aA1 + (a — xl)R1>

RYA
(B.111)

and then simplifying

n/E(B) _ (ZRQ(IZ - 621'1(512') — (1 — 62)[1’1 ((L’Z — C(SM) -+ aRQ(Sli])
37 RA,
(1—e¢) <A2($z‘ — ¢ 01i) + Rolz; — (Ro + 0)511])
R3A,

s — 28] — Asdi] <a(1 — 62;{—%}-14(21 — e)R2)

. 2R1 (I‘Z — 621‘151i) — (1 — 62)[$1(l‘i + C(Sli) + athsh‘]
RIA,

(1 +e) (Al(xi + ¢ 01;) —i—R];jj:i — (Ry — 6)5”]>
+[(z; — 2101;) — A1014] <a(1 —€ 3%‘%1:4(11 + €)R1) (B.112)

We can further write it in the form

W E® <2—R2(=’Ei — e21101;) — (1 — )|y (@ — c0y) + CLR251¢]>

s R3 A,
B ((1 — G)Ag(l’i —C 511) + (1 - B)RQ[(ZE@ — [L’ltsli) — Az(;h])
RIA,
1—e)+(1—-¢e)R
—[(% - $151i) - A251i] (a( ‘ j?%A(Q e) 2>
_ 2R1(]§'1 — 621'1(511') — (1 — €2>[£L‘1($i + 0511') + ClRldli]
R2A,
(1 + G)Al(l'l' +c (511> + (1 + 6)R1[<l’2 — .1'1611‘) — A151¢]
+ 2
R2A,
a(l—e®>)+ (1+e)R
+[(x; — 21015) — A1014] ( ( ;%214( ) 1) (B.113)
1411
to
1 —(3) (QRQ(.CEZ — 62$151i) — (1 — 62)[.231 (.Tl — C(Sli) + aR251i])
njEﬂ =

R2A,
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B <(1 — e)(]x%— c 51i))
(s — 21825) — Agb <a(1 — eZ)R—I;Zil — €)R2)
B (2R1 (; — €2x101;) — (1 — €2)[xy (z; +2C51i) + GR1512‘]>

R2A,
(1+e)(z; +c o)
i ( R )
+[(x; — 2101;) — A161i] <a(1 —° )R—;jfl i e)R1> (B.114)

Dissociating the terms yields

n'. E®

J gt

Ry A, RZA, RyA;
(=) — e bu)
( K ) a(l—¢?)  2(1- e)>

—[(@; — 2101;) — A1) ( R%Ag + Ry
B (2(331 — e2x1(51i) (1 — 62)331(557; + Céli) (1 — 62)(1,(511')

(2@ —r8y) (- ez —edy)  (1— 62)a5u)

R1A1 R%Al RlAl
Ry

+H{(z; — 21015) — A1614] (a%%_ATQ) + 22;;116)) (B.115)

Using the identities

(1 —e?)zy(z; — cdyy) N (I—e)(z; —cdy)  (1—e*)alz; — cdy)

= B.116
R3A, R3 R2A, ( )
(L= em(aitcb)  (te)@itedn) (1= efalzi+ch) (B.117)
RiA; R? R2A, :
we get
n ED 2(z; — nidy)  (1-Palz; —cd) (1 —e?)ady;
s Ry A R2A, Ry A,

—[(z; — 2161;) — Asby;] (a(l —e?) N 2(1 — e)>

R%AQ R2A2
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B (2(@» —e*r6y;) (1 —e?a(w; + o) (1— eQ)aéh-)

RlAl R%Al RlAl
a(l—¢e?)  2(1+e)
2100) — Aydy, B.11
Fllwi = mou) Al‘s“]( A, RA (B.118)

We further use the identities

xX; + C(Sli = (JTZ — 1131(511') — A151i + Rléli (Bllg)
T; — C(Sh‘ == (I’Z - 1'151Z‘) — AQ(SM + R251i (B120)
to obtain
’}’L;Ej(?) _ 2(.%‘2 — 62%'1(512‘) _ 2(1 — 62)(1511'
R2A2 RQAQ
20(1 —€?)  2(1—ce)
—[(xz — 56'1(511') — A251i] ( R%AQ -+ R2A2
2(ZL’Z — 621’15“) 2(1 — 62)a51i
— — B.121
( RlAl RIAI ( )

2a(1 — e?) 2(1+e))

_|-[(x2 — 5131511') - A151i] < R%Al R A

recasting the equation we get

2a(1 — €?)
1)
il = @i = 2101) = Asdu] {W}
2
+ (R A ) [(l'z - 6233'1512'> - (1 — 62)(1(511- — [(:CZ — $151i) — A251i]<1 — e)}
242
2a(1 — ¢
2
— <R A ) [(«Iz - 621'1517;) - (1 — 62)a51i — [(l‘z - Illélz') — Alalz](l -+ e)j|
141
(B.122)
Thus gives

(IZ‘ — 621’1(512‘) — (1 — 62)a(512' — [(ZCZ — I‘1511> — A2511](1 — 6)
= (ZL’Z — 621'1612‘) — (1 — 62)61(5” — (1 — 6)(1‘Z — 1’1511') + (CL — $1)(1 — 62)51,'
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= (SBZ — 621'1612‘) — ($Z — 1‘1511' —ex; + 61’1512‘) — (1 — 62)1‘1512‘
= (1 — 62)!171611' + 6(%2' — xléli) — (1 — 62).1’1511'
= G(IZ’ — 1‘1511') (B123)

Similarly, we have

(z; — €®2161;) — (1 — eHady — [(2; — 2161;) — A1dy](1 +e)
(1—e*)ady; — (1 + €)(z; — 21615) + (a — 21) (1 — €*)dy;
= (1; — €*1161;) — (x5 — 2101 + ex; — ex101;) — (1 — €210y,
= (1 —eHa10y; — e(x; — 2161) — (1 — e*)a 10y
= —e(x; — x1014) (B.124)

= (z; — 6293151,)

1 1
(3) _ 2 —
n;Eﬂ = —2@(1 — € )(I‘Z 5131511) <R2A2 R%Al)

1 1

2a(1 — )6y | =5 — =5
2t =6 (7~ )
+2€(9c-—x(5-)(#+ ! )

7 1V1¢ R2A2 R1A1
1 1
— 2a(1 — €2)dy, —
1= (7~ )

1 1 o1 1
+2(I‘1 — $1(51i) {6 (R2A2 + RlAl) - CL(l — € ) (—R%A2 — —R%/h)}
(B.125)

R2A2 R1A1 1 +6 (I—ZL‘l Rl(]_ (L—J?l)

Rl 1—6 +R2(1—|—€)]

[(a+ex1)(1—e)+ (a—exy)(l+e)]

(R1R2 1—62 a—xl )

(R1R2 1—e?)(a— 1)

R Ry( 1—62 a—x1>
x{al(1 =)+ (1+ )] +em[(1— ) — (1+ )]}
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2(a — e*xy) _ 2(a® — e*ri)(a — eay)
RiRy(1—e2)(a—x1) RIR3(1—e2)(a— 1)
Nad — a2 — 2an? + ered
_ (a 2€2a r1 — e“axr] + e*zy) (B.126)
RiR3(1 — e*)(a — x1)

1 1 1 1

R3A, RIA,  Ri(1+e)a—z) RA1—e)(a—a)
1

[Ri(1—e) — Ry(1 +e)]

[(a +ex1)?(1 —€) — (a — ex1)*(1 +¢)]

x{[(a+ex1)* — (a — ex1)?] —e[(a + exy)?* + (a — ex1)?]}

) [4eax; — 2e(a® + *z7)] (B.127)

(a® — e*a*r, — *ax? + e*2?) — a(1 — €*)[2az; — (a® + e*2?)]

= (a® — e*a’x; — *ax? + e*a?)

—(2a%z; — a® — *ax? — 2e%a’x, + e*a® + etax?)
= 2a® + e*a’ry + e'ad — (2aPx, + e%a® + etax?)
=2d*(a — 1) — e*a*(a — x1) — e*2?(a — 1)

= (2a* — e?a* — e'2?)(a — x1) (B.128)

Lo, 1o (L 1
e —a(l—€*) | = — ——
Ry As R A R%AQ R%Al
2e(a® — e*a’wy — Pax] +e'af)\ (1-¢) 2¢[2az; — (a® + €*z?)]
RER3(1— e?)(a — a1) RiR3(1 - e?)(a — a1)

x{(a® — e*a’z, — e*ax® + e*z}) — a(l — €*)[2ax; — (a® + *z})]}
2e
RER3(1 —e*)(a — z1)

( 2
- (R%R%S - e€2><a - m)
(

) {(2a? — €%a® — e*2?)(a — 1)}
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2e(2a* — e*a® — e'x?)

RIR2(1 — €2)

(B.129)

— 2.2 42
) _ 2a(1 — ) (i 1 ) 51 + (46(2a ea’ —e IE1)> (2 — 21613)

T R2 R2 R2R%(1 — ¢€2?)
(B.130)
3.5 Strain Tensor
Let’s summarize what we have
Ej;i = —QO/E](;) + O/E](-?) —a(1- 62):1:1E](-§’) (B.131)
W ED = T2 gy 2T 20, (B.132)
390 R1R2 7 1914 R1R2 i .
—4dex 1 1
2 _ 1 2
TL;E]Z = R1R2 (I‘Z — ZL‘l(;u) -+ 2@(1 — € ) (R#% — E%) (I’z — x151i)
—dex? 1 1
+ RlR;(l — By + 2az, (1 — &%) (R2 - R2) 01
1 1
—2ea*(1 — ¢€?) (R R2> 014 (B.133)

1 1 4e(2 2 _ 2,2 4.2
n, B = 2a(1 — €%) (— )511 ( el2a —ca’ e ml)) (% — 101;)

I R3 R2 R2R3(1 — €2)
(B.134)
We now calculate n’, Ej;
o WE; = 2B +E? —(1-e)n B
dexy 4e(a® + 23 — 2e%x?)
R1R2 (LE 101 ) + R1R2 1
—4ex 1 1
+ R1R2 (ZL’Z — l‘151i> + 2&(1 — 62) (R_% — R_%) ({L‘Z — 1'1512‘)
—dex? 1 1
1 — ey +2ax1(1 =€) | = — =5 | 0u
* Ri Ry ( €)1 + 2az:( ¢) (R% R%) !
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1 1
—2ea’(1 — €?) (R2 RQ) 014

1 1 1 1
—2ax1(1 — €?) (? — R2> 81 + 2ae*w1(1 — €?) (ﬁ% — E%) 01

de(2a® — e%a® — e*a?
—T1 ( ( R2R2 1)) (IZ - x1512-) (B135)
1442

Recasting the equation we obtaion

4ed i
7 Bﬁz [(a? + 22 — 2¢%22) — 22(1 — ¢%)]

1 1 1 1
+2ea(1 — 62)51i [exl (R_S — R_%) - (R2 Rz)]

1 1 1 2a% — e%a® — e*x?
vt —mi) [o0-) (5 ) (- ) = (g2
5 1 1115
(B.136)

/llE _

In order to simplify the equation, we work on the terms individually

(a® + 27 — 2e%23) — 22(1 — €%) = a® — e®2?% (B.137)

ex S —a L—iri ——i(a—ex)—i(a—l—ea:)—— L+L
"\RZ R? RZ R’} R, YR YT\ R R
(B.138)

1 1 1 2a% — e%a® — e*x
- (5.) (m ) ( wm )
4

4 2 2.2 2
_a1—e (2 €2CLIK21 a 62a 2 ela?

RR? RR?
_(2ax—Qeax1) axl—eax—ex:{’)

RIRZ RPRZ
_elat —eta’ry  —e’wy(a® —e®a})  —e*wi(a —exy)(a+ exy)
- RIR3 RYR3 N RR3
2
- Relé’z (B.139)

Inserting these terms, we obtain,

a/—ln/ N 46511‘
i =
7 Ry Ry

1 1) 4e3x,

(a® — e*z7) — 2ea(1l — e*)dy; (R 7 RlRQ( — 21015)
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4ed1; , 5 9 o 9 2a 4e3xy
= — U (a? —e*2?) — 2ea(l — €2)o; - i — 2103
R R, (a® —e*xy) — 2ea(l — %), R BB (x; — x1015)
46(512‘ 4‘331’1
— il =) — (1 - )] - T - md)
4ed1; , 5 o 2.2 dea,
= — — i — x10714 B.140
p(ea® - etad) = Tk = ) (B.140)
Therefore, we have
4e3(a® — x?) 431y
=1 /E: L 51— i 51 B141
NGy RiRs 1 R1R2(SU 2101;) ( )
Using the definition o/ = aU/e? we obtain,
de(a® — 2?) 4exy
3.6 Stress Tensor and Distribution of Traction
The stress tensor is defined as
Tji = —pdji + pbj; (B.143)
and the distribution of traction is calculated through
0Ty = —pn0z; + pn; By = —png 4+ pn; Ej; (B.144)

For the pressure term we have

1 1

_pn; = —QIUCV U (E — R_) (.’L‘Z — 621‘1511’)
1 2

—2exy

= —QIuOé U ( R1R2 ) [(ZCZ — 33'1(511') + (1 — 62)1'1(51@']

dexy dex?(1 — €?)
- s — 2100 ) ) 6y, (B4
MQU<R1R2) (x al 1)+/LOJU( R1R2 1 ( 5)

Inserting this into the traction equation, we obtain
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4 4ex?(1 — e?
= /LO&U( “ (iL’Z — .1'1(510 +/LO(U (M> (511'

Ry Ry Ry Ry
+paU (%) 01; — palU <;_l£leQ) (x; — x101;)
— ol () (@ = )+ 221 - )
= paU (2?2;) (a® — e*z?)
- w0 ()
Therefore
n;Tj; = depalloy; (B.146)

Using n; = \/ﬁ (%) n’; the distribution of traction on the surface of the spheroid

18

1 a
Ty =4 (3) o B.147
Nt eﬂo‘m b 1 ( )
We have 3
‘IBI_I% ea = o (B.148)
and
lim R, Ry = a® (B.149)
e—0
Therefore, in the limit e — 0 we obtain
3 U
lim n]T e 511 (B.150)
e—0

which is the distribution of traction on the surface of a sphere of radius a. This
can be a confirmation of the accuracy of our final results.
In the prolate spheroidal coordinates (£,7,¢), we have 1 = cné and on the

surface of the particle & = e~1. This results in

RiRy = (a+exy)(a—ex))=a®—e*r? =a®— e*(aelsn)?

= a*(1 —e’n?) = a®e* (&2 — n?) (B.151)



1 a
Wi = denol s () b
1 1
= 4palU o (E) 014
We also have
I 1 B 1 B 1
b ay/(1—e€2) eary/(e2—1) ea/E2—1
Therefore,
4 1
n; Ty = il 014
ca ) (€ -n*)(E-1)

151

(B.152)

(B.153)

(B.154)
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