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ABSTRACT 

Reliable analysis of transportation networks is crucial for design and planning purposes. 

A pipeline network system could range from a simple to very sophisticated and complex 

arrangement: from a single pipe transporting fluid from a place to another or elaborated 

as an interconnected set of fluid networks for intra-state or international transportation. 

As the complexity of the network system grows, the solution for the network model 

complicates further. For a natural gas network system, the resulting set of fluid flow 

governing equations is highly non-linear. In such situations, the customary method 

employed for the solution of a set of non-linear equations is the multivariable Newton-

Raphson method despite its potentially negative drawbacks. Newton-Raphson solution 

protocols demand a good initialization (i.e., a good initial ñguessò of the actual solution) 

for satisfactory performance because convergence is only guaranteed to occur within a 

potentially narrow neighborhood around the solution vector. This prerequisite can 

become fairly restrictive for the solution of large gas network systems, where estimations 

of ñgoodò initial gas load and nodal values across the domain can defy intuition. In 

addition, some Newton-Raphson formulations require pre-defining flow loops within a 

network system prior to attempting a solution, which proves to be a challenging task in an 

extensive network. An alternate, simple yet elegant method to address the 

aforementioned problems is proposed. The proposed solution methodology retains most 

advantages of the Newton-nodal method while removing the need for initial guesses and 

eliminating the need for expensive Jacobian formulations and associated derivative 

calculations. The resulting linear-pressure analog model is robust, reliable and its 



iv 
 

execution and convergence is independent of user-defined initial guesses for nodal 

pressures and flow rates. This allows the simulation study of a steady-state gas network 

system to be efficiently and straight-forwardly conducted. 
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CHAPTER 1 

INTRODUCTION  

Gas transportation and distribution networks around the world involve a remarkable set 

of highly integrated pipe networks which operate over a wide range of pressures.  The 

ever-increasing demand for gas makes it vital to adapt and expand these systems while at 

the same time ensuring safe delivery and cost-effective engineering. Model simulation 

and system analysis play a major role in planning and design stages as they enable 

engineers to optimize the pipeline networks and decide on the location of non-pipe 

elements such as compressors (Mohitpour et al., 2007; Menon, 2005). The aim of a static 

simulation is to estimate the values of pressures at the nodes and flow rates in the pipes 

(Ayala, 2012; Larock et al., 2000; Kumar, 1987; Osiadacz, 1987). 

 

Most practical situations in fluid transportation involve systems of pipelines that are 

interconnected forming a network. Natural gas network simulation entails the definition 

of the mathematical model governing the flow of gas through a transportation and 

distribution system (Ayala, 2012; Larock et al., 2000; Kumar, 1987; Osiadacz, 1987). 

Typical networks can be made up of highly integrated pipes in series, pipes in parallel, 

branching pipes, and looped pipes. Pipeline systems that form an interconnected net or 

network are composed of two basic elements: nodes and node-connecting elements. 

Node-connecting elements can include pipe legs, compressor or pumping stations, valves, 

pressure and flow regulators, among other components. Nodes are the points where two 
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pipe legs or any other connecting elements intercept or where there is an injection or 

offtake of fluid. Figure 1.1 depicts a typical pipeline network schematic, where nodal, 

supply, and demand locations are highlighted and the type of node-connecting elements 

is restricted to pipelines. 

 

Figure 1.1: A pipeline network schematic 

 

A steady-state network problem can be formulated in a number of ways, but in general, it 

consists of a system made up of ñNò nodes, ñBò pipe branches or bridges (edges or arcs), 
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and ñLPò pipe loops as depicted in Figure 1.1. It is not uncommon for network systems 

to have at least one closed-pipe circuit or pipe loop. The presence of pipe loops increases 

the reliability of delivery of the transported fluid because certain network nodes can be 

reached simultaneously by more than one pipe.  For the gas network in Figure 1.1, N=9, 

B=12, LP=4. Network theory shows that these three quantities are mathematically related 

through the expression: B = (N-1) + LP, where LP represents the number of independent 

loops that can be defined in a network graph with N nodes and B branches. In network 

problems, all physical features of the network are assumed to be known and the analysis 

consists of determining the resulting flow though each pipe and the associated nodal 

pressures. This can be accomplished on the basis of known network topology and 

connectivity information, fluid properties, and pipe characteristics combined with mass 

and energy conservation statements, as shown in the next sections. This assumes 

knowledge of the constitutive equation for each node-connecting elementði.e., prior 

knowledge of the mathematical relationship between flow across the element and its 

nodal pressures.  

 

A complete natural gas network system usually comprises compressors, wells and several 

other surface components besides pipelines.  A compressor station is one of the most 

important elements in a natural gas pipeline system. Compressor stations are needed to 

transport gas in a pipeline. Compressor stations supply the energy to pump gas from 

production fields to overcome frictional losses in transmission pipelines (Ikoku, 1984).  

In a long distance pipeline, pipeline pressure by itself is not sufficient to transport the gas 
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from one location to another. Hence, compressors are installed on the gas pipeline to 

transport gas from one location to another by providing the additional pressure. For 

network simulation with a compressor, several important variables associated with the 

compressor are the flow through the compressor, inlet and outlet pressure, and 

compression ratio (Osiadacz, 1987). Compression ratio is a cardinal parameter in 

determining horsepower required to compress a certain volume of gas and also the 

discharge temperature of gas exiting the compressor. Optimum locations and pressures at 

which compressor stations operate could then be identified and analyzed through a 

simulation study. Modeling and understanding the behavior of a network system is not a 

matter of studying the performance of a single constituent component; but rather one 

must undertake a comprehensive study of the consequences of the interconnectivity of 

every component of the system. Traditionally, a gas network system is solved by 

simplifying the network system with assumptions.  In the advent of advanced computer 

technology, complex designs and heavy computational simulations are no longer time 

and cost consuming, thus many assumptions are relaxed as numerical simulation proves 

to be more accessible and sensitivity analysis could be incorporated easily. 

 

Hence, the simultaneous solution of the resulting set of highly non-linear equations 

enables natural gas network simulation to predict the behavior of highly integrated 

networks for a number of possible operating conditions. These predictions are routinely 

used to make design and operational decisions that impact a network system, which take 
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into account the consequences of interconnectivity and interdependence among all 

elements within the system. 
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CHAPTER 2 

LITERATURE REVIEW  

Fluid pipeline network modeling and development have been traditionally conducted in 

the area of civil, chemical and mechanical engineering. Throughout the course of history, 

many empirical approaches had been formulated in order to attempt to capture the 

different parameters that are believed to be governing the gas flow (Johnson and Berwald, 

1935). Most of the equations were formulated based on experimental data and matching 

field data from operational gas pipeline systems. For example, the Weymouth equation 

was developed by Thomas R. Weymouth in the 1910s while he was matching 

compressed air test data flowing through small diameter pipes (Weymouth, 1912). 

Several decades later, Panhandle-A equation was developed with the intention of 

proposing flow equations suitable for larger-diameter pipes, since the Weymouth 

equation overestimated pressure losses for these systems. The ñmodifiedò Panhandle-A 

equation, or Panhandle-B, was then published in 1952 when more empirical data were 

obtained from the other Panhandle pipelines (Boyd, 1983). Weymouth, Panhandle-A and 

Panhandle-B equations are popular due to its nature of simplicity and also non-iterative 

properties. The American Gas Association (AGA) then proposed the AGA equation in 

the 1960s based on the general gas equation, with a simplified version of Colebrookôs 

friction factor. Ultimately what differs in these equations are the governing friction factor. 

They could all be expressed in a generalized equation with their own respective friction 

factor as presented in Table 3.1 in Chapter 3. 
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As the need for efficiently utilizing natural gas operations grows, tools capable of 

handling the resulting problems are also needed. According to Crafton (1976), a steady-

state gas pipeline network analysis is a useful design and planning tool as it allows supply 

and demand optimization, allocation or proration evaluation and compressor optimization. 

It is, however, vital that the numerical solution procedure of the simulation tool meet two 

crucial criteria: assurance of rapid solution convergence, uniqueness, thus economical 

solution costs and also flexibility in handling a wide variety of piping, loop and 

compressor configurations encountered in gathering and transmission networks. 

 

In a simulation of a natural gas pipeline system, an accurate representation of all 

components in the pipeline system model is required. In order to minimize the pipeline 

fuel consumption to maximum extent possible, optimization requires detailed compressor 

information for each of the individual compressor components (Murphy, 1989). A 

network problem is eventually expressed in terms of a set of highly non-linear equations 

for each component in the natural gas network system. It must be solved simultaneously 

in terms of the desired target unknowns: the q- or nodal-loop formulation has ñBò 

simultaneous equations and the target unknowns are pipe flow rates; the p- or nodal 

formulation has ñN-1ò simultaneous equations and solves for nodal pressures; or the æq- 

or loop formulation has ñLPò simultaneous equations and solves for loop flows (Ayala, 

2012). As the size of network grows, the more complex the resulting system of equations 

becomes. Throughout the years, a number of protocols for the simplified solution of 

network equations have been proposed, most notably, the Hardy-Cross method (Cross, 
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1932) and the Linear Theory method (Wood and Carl, 1972). The Hardy-Cross method, 

was originally proposed for the analysis of frames in structural engineering by moment 

distribution, and became widely popular for the analysis of fluid networks because it 

implemented an iterative scheme readily suitable for hand calculations that circumvented 

the significant labor of solving the simultaneous set of equations. The Linear Theory 

method also became a popular approach to approximately linearize the non-linear subset 

of loop equations within the nodal-loop formulation, but it is also known to suffer from 

convergence problems.  

 

Osiadacz (1987) then classifies steady-state gas network mathematical methods into 

Newton-nodal, Newton-loop and Netwon-loop-node, depending on whether they are 

solving p-, æq-, or q- equations, respectively. This classification further emphasizes the 

widespread use of Newton-Raphson as the method of choice in gas network analysis. 

Osiadacz (1987) and Li, An and Gedra (2003) discuss the advantages and disadvantages 

of these three Newton-based methods. The Newton-nodal method is said to be the most 

straightforward to formulate, creating Jacobian matrixes of large sparsity, but plagued 

with very poor convergence characteristics due to the well-known initial value problem 

(i.e., convergence is highly sensitive to starting values) inherent to all locally-convergent 

Newton-Raphson protocols. Newton-nodal is typically not recommended unless the user 

has extensive knowledge of the network system and is able to provide very reasonable 

initial guesses for every nodal pressure. The Newton-loop formulation is based on the 

application of Kirchoffôs second law, which requires the definition of all loops and 
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knowledge of the spanning tree of the gas network. In this method, a loop flow correction 

is calculated and applied to all edge flows inside the given loop. The Newton-Raphson 

procedure is used to drive pressure drops around the loop to zero. This method has better 

convergence characteristics and is less sensitive to initial guesses. Its major problem is 

the need for definition of loops, non-unique loops, resulting in a much less sparse 

Jacobian matrix with sparsity dependent on loop choice. This leads to a more complex 

solution to formulate than the Newton-nodal method, especially when elements other 

than pipes are found in the system. In the Newton loop-node method, both loop and nodal 

equations are used to form a hybrid method of the above two in terms of advantages and 

disadvantages. All Newton-based methods are still however, prone to lack of 

convergence and sensitivity to initial guesses, with the nodal formulation being the most 

susceptible of all.  Heavy-reliance on good initial guesses is the staple of every existing 

method for solving gas network equationsðand not only for Newton-based methods but 

also for the far less-efficient Hardy-Cross and the Linear Theory methods. 

 

Nowadays, the application of the multivariate Newton-Raphson method is rather the 

norm applied in the simultaneous solution of the large systems of non-linear network 

equations. However, the most significant limitation of Newton-Raphson methods is their 

unfortunate tendency of hopelessly diverging when not initialized sufficiently close to the 

actual solution (i.e., their ñlocal convergenceò property). To alleviate this problem, the 

quadratic local convergence of Newton-Raphson is typically coupled with a globally 

convergent strategy that can better guarantee progress and convergence towards the 
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solution (see, for example, Press et al., 2007). However, even for globally-convergent 

methods, convergence towards a solution is not guaranteed if the initial starting point is 

too far away from a physically feasible solution. A successful Newton-Raphson 

implementation thus remains highly dependent on a proper selection of initialization 

conditions for the problem. In this study, a methodology that remediates this significant 

shortcoming for gas network modeling is proposed and analyzed. 
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CHAPTER 3 

NETWORK MODEL ANALYSIS  

For the purpose of this study, three major components will be identified in a gas network 

system and analyzed with the proposed methodology: pipeline, compressor and 

wellheads. Each component in a gas network system could be expressed in a 

mathematical equation with parameters governed by their respective properties. 

 

In developing the model for single-phase steady-state gas flow in pipeline networks, 

several assumptions are taken based on engineering judgments or industryôs standards 

(Nagoo, 2003). In the present analysis, it is assumed that: 

1) The gas is dry and is considered as a continuum for which basic laws of 

continuum mechanics still apply. 

2) Gas flow is one-dimensional, single-phase and steady-state. 

3) Pipelines do not deform regardless of maximum pressure in the pipes. 

4) The minimum pressure in a pipe is always above the vapor pressure of gas, hence 

no liquids are formed. 

5) Average gas compressibility and average temperature are assumed to be 

everywhere in network. 

6) Gas is considered to be a Newtonian fluid and polarity effects are negligible. 

7) Acceleration effects are negligible.  
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3.1 Pipe Flow Network Equation 

A pipeline is essentially a node-connecting element which connects 2 points together. 

The interest of the study is the pipeline throughput (flow rate) which depends upon the 

gas properties, pipe diameter and length, initial gas pressure and temperature, and 

pressure drop due to friction (Menon, 2005). The following assumptions are used during 

the development of the generalized gas flow equation in a pipeline for this study: 

1) Single-phase one-dimensional flow 

2) Steady-state flow along pipe length segment 

3) Isothermal flow 

4) Constant average gas compressibility 

5) Kinetic change along the pipe length segment is negligible 

6) Flowing velocity is accurately characterized by apparent bulk average velocity 

7) Friction factor is constant along the pipe length segment 

The fundamental difference among the specialized formulas for the flow through pipes is 

how friction factors are evaluated. The most comprehensive approach for the calculation 

of frictional losses in single-phase compressible fluid flow in pipelines is the application 

of the General Gas equation where its friction factor is calculated based of Moodyôs 

Chart. Section 3.1.1 shows the derivation of the constitutive equation for gas pipe flow 

from fundamental principles. For the case of single-phase flow of gases in pipes, these 

constitutive equations are well-known and are presented in Table 3.1 below. 
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3.1.1 Derivation of Pipe Flow Equation for Single-Phase Flow 

Total pressure losses in pipelines can be calculated as the sum of the contributions of 

friction losses (i.e., irreversibilities), elevation changes (potential energy differences), and 

acceleration changes (i.e, kinetic energy differences) as stated below: 

T f e a

dp dp dp dp

dx dx dx dx

å õ å õ å õ å õ
= + +æ ö æ ö æ ö æ ö

ç ÷ ç ÷ ç ÷ ç ÷
                                         (3.1) 

Equation (3.1) is a restatement of the first law of thermodynamics or modified 

Bernoulliôs equation. Each of the energy terms in this overall energy balance is calculated 

as follows: 

dg

vf

dx

dp

cf

22 r
-=ö

÷

õ
æ
ç

å
                                   (3.2) 

dx

dz

g

g

dx

dp

celev

r-=ö
÷

õ
æ
ç

å
                       (3.3) 

dx

dv

g

v

dx

dp

cacc

r
-=ö

÷

õ
æ
ç

å
             (3.4) 

In pipeline flow, the contribution of the kinetic energy term to the overall energy balance 

is considered insignificant compared to the typical magnitudes of friction losses and 

potential energy changes. Thus, by integrating this expression from pipe inlet (x=0, p=p1) 

to outlet (x=L, p=p2) and considering M vAr=  with 4/2dA p= , one obtains: 

ñññ --=

LLp

p

dzdxdp

0

2

0

2

1

rbar              (3.5) 



14 
 

where )/()32( 522 dgfm cpa "= and ( / )( / )cg g H Lb= D . For the flow of liquids and 

nearly incompressible fluids, density integrals can be readily resolved and volumetric 

flow can be shown to be dependent on the difference of linear end pressures. However, 

for the isothermal flow of gases, the fluid density dependency with pressure (pr=f) 

introduces a stronger dependency of flow rate on pressure to yield: 

bh

a )1(

2

2
2

2
1

-
=-

s
s e
pep                        (3.6) 

where )/()( avavairg RTZMWgh=  and Ls hb2= . Equation (3.6) states the well-known 

fact that the driving force for gas flow through pipelines is the difference of the squared 

pressures. Therefore, for inclined pipes, the design equation gas flow in pipelines 

(evaluated at standard conditions, sc GscW qr= with )/()( scairgscsc TRMWp Ö= gr ) 

becomes: 

2 2 0.5( )ijs

Gij ij i jq C p e p= Ö -                        (3.7) 

where ñCijò is the pipe conductivity, 

0.5
2 2.5

0.5 0.5 0.5

/

64 ( )

c sc sc
ij

air g av av e

g R T p d
C

MW T Z f L

p

g

å õ
=æ ö
ç ÷

, which 

captures the dependency of friction factor, pipe geometry, and fluid properties on the 

flow capacity of the pipe. In Table 3.1, pipe efficiency, fe is introduced in the pipe 

conductivity term as a tuning parameter for calibration purposes to account for any 

discrepancies in results (Schroeder, 2011). For horizontal flow ( 0==bs ; 

1/)1( ­- bse ), this equation becomes: 
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2 2 0.5( )Gij ij i jq C p p= Ö -                                                      (3.8) 

with Le = L. Depending on the type of friction factor correlation used to evaluate pipe 

conductivity, Equations (3.7) and (3.8) above can be recast into the different traditional 

forms of gas pipe flow equations available in the literature such as the equations of 

Weymouth, Panhandle-A, Panhandle-B, AGA, IGT, and Spitzglass, among others (Ayala, 

2012; Mohitpour et al., 2007; Menon, 2005; Kumar, 1987; Osiadacz, 1987). 

 

Table 3.1: Summary of specialized equations for gas flow (adapted from Ayala, 2012) 

 

Generalized Gas Flow Equation: 
2 2 0.5( )s

Gij ij i jq C p e p= Ö -
 

2.5

0.5

. 1
with:      ( )  

G f sc
ij

sc F eG av av

e T d
C

p f LSG T Z

s
= Ö  

Gas Flow Equation 

 

Friction Factor Expression 

General Gas Equation Moody chart or Colebrook Equation 

ö
ö

÷

õ

æ
æ

ç

å
+-=

FF f

de

f Re

02.5

7.3

/
log0.4

1
10  

 

Weymouth 3/1d
f W
F
k

=  

Panhandle-A 

(Original Panhandle) 0.1461

PA
F

Gsc G

f
q SG

d

k
=

Öå õ
æ ö
ç ÷

 

Panhandle-B 

(Modified Panhandle) 0.03922

PB
F

Gsc G

f
q SG

d

k
=

Öå õ
æ ö
ç ÷

 

AGA 

(partially turbulent) 
 

41.1

Re
log4

1
10 ö

ö

÷

õ

æ
æ

ç

å
=

F
D

F

f
F

f

 

AGA 

(fully turbulent) 
ö
÷

õ
æ
ç

å
= e

d

Ff

7.3

10log0.4
1  
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where: s = dimensionless elevation parameter equal to 0.0375 G

av av

SG H

Z T

å õÖD
æ ö

Öç ÷ 

in 

customary field units (æH in ft, T in R),  Le = pipe equivalent length, defined as 

L
s

e
L

s

e
)1( -

= . Note that s=0, e
s
=1, Le=L  for horizontal pipes (æH=0). For 

friction factor calculations, ‖ȟ‖ ȟ‖ = unit-dependent constants: ‖ =0.008 

for d(in) or 0.002352 for d(m); ‖  = 0.01923 for d(in), qGsc (SCF/D) or 

0.01954 for d(m), q(sm
3
/d); ‖ =0.00359 for d(in), qGsc (SCF/D) or  0.00361 

for d(m), q(sm
3
/d); „ = unit-dependent constant for conductivity calculations, 

where for qGsc(SCF/D), L(ft), d(in), p(psia), T(R ): „= 2,818; for qGsc(SCF/D), 

L(miles), d(in), p(psia), T(R ): „= 38.784; for SI units, qGsc (sm
3/
/d), L(m), 

d(m), p(KPa), T(K ): „= 574,901. For the AGA equations: FD = AGA drag 

factors (0.90-0.97),   Re = Reynolds number. ef =pipe efficiency. 

3.2 Compressor Network Equation 

A compressor is a major component in a gas network system as it supplies the energy to 

transport gas from one end to another. The amount of energy input to the gas by the 

compressor is dependent upon the pressure of gas and flow rate. Horsepower (HP) 

represents the energy per unit time and it depends on the gas pressure and flow rate and 

as flow rate increases, the pressure also increases, hence increasing the total HP required. 

The head developed by the compressor is defined as the amount of energy supplied to the 

gas per unit mass of gas. Section 3.2.1 shows the derivation of the compressor equation 

based of several fundamental properties and assumptions.  
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3.2.1 Derivation of Compressor Equation for Single-Phase Flow 

There are different processes by how gas is compressed and they are categorized as 

isothermal, adiabatic (isentropic) and polytropic compression. Isothermal compression is 

a process where the gas pressure and volume are compressed as such that there will be no 

changes in temperature. Hence, the least amount of work done is through isothermal 

compression with comparison to other types of gas compression. However, this process is 

only of theoretical interest since it is virtually impossible to maintain temperature 

constant while compression is taking place (Menon, 2005).  

On the other hand, adiabatic compression is essentially a process defined by zero heat 

transfer occurring between any molecules in contact with the gas. Isotropic is referred as 

when an adiabatic process is frictionless. Polytropic compression is intrinsically similar 

to adiabatic compression, except that there is no need for zero heat transfer in the process. 

The relationship between pressure and volume for both an adiabatic and a polytropic 

process is as follows: 

pn
PV C=                           (3.9) 

and 

1 1 2 2
p pn n

PV PV=              (3.10) 

where: P = pressure, V= volume, C= constant 

np = polytropic exponent (polytropic process). Note that np= ɔ = ratio of specific 

heats of gas if the process is adiabatic (isentropic). 
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Hence, work done by compression could then be calculated by integrating the expression 

(3.10): 

2

1

p

p
W dp= nñ              (3.11) 

where: W = work done by compression. Taking the integral of expression (3.11) then 

yields, for a polytropic process: 

 

1

( ) 1
1

p

p

n

np j

i i

p i

n p
W p v

n p

-è ø
é ù= -

- é ù
ê ú

                                                                                      (3.12) 

Since energy could be defined as work done by a force, the power required to run the 

compressor station could then be expressed in the context of gas flow rate and discharge 

pressure of compression station: 

HP = M W              (3.13) 

Substituting  M =ɟsc qsc and expression (3.12) into expression (3.13), the equation written 

in terms of Power is as below: 

1

( ) 1
1

p

p

ij

n

np j

sc g i i

p i

n p
HP q p v

n p

-è ø
é ù=r -

- é ù
ê ú

            (3.14) 

where: HP = Power, 

 M    = Mass Flow Rate, 

 scr   = Density at standard conditions 
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ijgq  = Gas Flow Rate 

Using real gas law, pV ZRT= can be substituted in the expression (3.14) to account for 

average compressibility factor effects.  

Considering units conversion for oilfield units standard, a rather common form of the 

formula for multistage compression, which assumes intercooling and equal compression 

ratios across all stages, is: 

1

1
0.0857 ( ) ( ) 1

1

p

p st

ij

n

n nst p j

G i av

p i

n n p
HP q T Z

n ph

-

Ö
è øÖ
é ù= -

- é ù
ê ú

       (3.15) 

where: 

HP = compressor horsepower, HP 

np = polytropic coefficient or ratio of specific heats (if adiabatic), dimensionless 

nst = number of compression stages, 

Ὕ = suction temperature of gas, R 

ή  = gas flow rate, MMSCFD 

ὖ = entry suction pressure of gas, psia 

ὖ = final discharge pressure of gas, psia 

ὤ = average gas compressibility, dimensionless 

– = compressor adiabatic (isentropic) or polytropic efficiency, decimal value (0.75-0.85) 
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3.3 Wellhead Network Equation 

Wells are primarily treated as sources for the natural gas network. Wells are assumed to 

be producing from a defined shut-in pressure (i.e., reservoir pressure at shut-in conditions 

adjusted by hydrostatics) and the flow rate is ultimately dependent on prevailing wellhead 

pressures. The classic backpressure equation relating gas rate to flowing pressure as 

developed by Rawlins and Schellhardt (1936) is expressed at reservoir conditions as: 

2 2( )n

wGi R R wfq C p p= Ö -
 

         for 0.5 < n < 1        (3.16) 

where: ὅ = reservoir conductivity or productivity index. The productivity index is only 

constant when the well is producing in a pseudo-steady state and it could be obtained 

from well-testing data or isochronal testing of the well. This equation can also be 

rewritten at surface (wellhead) conditions with the following approximation: 

2 2( )n

wGi w shut whq C p p= Ö -            for 0.5 < n < 1        (3.17) 

where  Cw = well conductivity. Please note that Cw essentially captures or integrates the 

effects of the reservoir productivity index and tubing performance using outflow/inflow 

nodal analysis.  

The backpressure equation originated from field observations for a low-pressure gas well, 

the backpressure coefficient is found to be n=1 as it matches the behavior predicted by 

Darcyôs Law in Equation (3.16). Smaller values of n reflect the deviations from Darcyôs 

law that affect the calculations and interpretations of gas well production. The equation 

was empirically developed after interpreting several hundreds of multi-rate gas wells. A 
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linear trend was actually scrutinized on the log-log plot of rate versus delta pressure-

squared (Golan and Whitson, 1991). It was observed that the pressure squared actually 

accounts for the fluid properties that are highly dependent on pressure such as the gas 

viscosity and compressibility factor.  

 

3.4 Newton-Based Gas Network Model 

Gas network analysis entails the calculations of flow capacity of each pipeline segment 

(B-segments) and pressure at each pipe junction (N-nodes) in a network. This can be 

accomplished either by making pipe flows the primary unknowns of the problem (i.e., the 

q-formulation, or nodal-loop formulation, consisting of ñBò unknowns) or by making 

nodal pressures the primary unknowns (i.e., the p-formulation, or nodal formulation with 

ñN-1ò unknowns). In looped networks, a æq-formulation or loop formulation, where loop 

flow corrections become the primary unknowns in the problem, is also possible. In all 

cases, in order to achieve mathematical closure, the number of available equations must 

match the number of unknowns in the formulation. 

3.4.1 Nodal-loop or q-formulation 

In a nodal-loop formulation, network governing equations are articulated via the 

application of mass conservation principles applied to each node and energy conservation 

principles applied to each loop in the system in order to solve for all ñBò unknowns (i.e., 

individual pipe flow rates). The approach is known as the ñnodal-loopò formulation 

because of the source of the equations being used, but also as a ñq-formulationò because 



22 
 

of the type of the unknowns being solved for. Mass conservation written at each node 

requires that the algebraic sum of flows entering and leaving the node must be equal to 

zero. In other words, 

0=-+-ää DSqq out

Gij

in

Gij
  written for each node and flows converging to it       (3.18) 

ñNò equations of mass conservation of this type can be written at each nodal junction in 

the system. Equation (3.18) is recognized as the 1
st
 law of Kirchhoff of circuits, in direct 

analogy to the analysis of flow of electricity in electrical networks. ñSò and ñDò represent 

any external supply or demand (sink/source) specified at the node. For gas networks, this 

equation is actually a mass conservation statement even though it is explicitly written in 

terms of volumetric rates evaluated at standard conditions. Equation (3.18) provides ñN-

1ò admissible equations because only ñN-1ò nodal equations are linearly independent. In 

this nodal-loop formulation, ñLPò additional equations are also needed to exactly balance 

the number of unknowns ñBò [ since (N-1) + LP = B ] and achieve mathematical closure 

in the formulation.  These equations are formulated by applying the 2
nd

 law of Kirchhoff 

to every independent loop. In any closed loop, the algebraic sum of all pressure drops 

must equal zero. This is true of any closed path in a network, since the value of pressure 

at any point of the network must be the same regardless of the closed path followed to 

reach the point. The signs of the pressure drops are taken with respect to a consistent 

sense of rotation around the loop, and the loop equation is written as: 

2 2( ) 0
loop

i j

ij

p p
Í

- =ä  written for each pipe within any given loop                (3.19) 
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Following Table 3.1, loop equations are rewritten in terms of flow rates using the 

horizontal pipe flow constitutive equation in terms of pipe conductivities: 

0

/1

=
ö
ö

÷

õ

æ
æ

ç

å
äij

n

ij

Gij

C

q
 written for each pipe within any given loop               (3.20) 

Once mathematical closure has been attained (number of equations = number of 

unknowns), a mathematical solution strategy is formulated, which is the subject of the 

solution of network equations section in this manuscript. Please note that the loop-node 

formulation requires the user to pre-define or identify all flow loops within the system in 

order to formulate network governing equations.  

 

3.4.2 Loop or æq-formulation  

In a loop formulation, network equations are written in terms of the principles of energy 

conservation around a loop stated in Equations (3.19) and (3.20) above. The energy 

conservation equation is given by Kirchhoffôs 2
nd  

law which states that sum of pressure 

drops around any loop is zero. Because only ñLPò equations become available in this 

approach, flow rate corrections (æqloop) defined for each loop become the unknowns of 

the formulation as shown below: 

1/

0

n
old
Gij loop

ij
ij

q q

C

å õ+D
æ ö=
æ ö
ç ÷

ä  written for each pipe within any given loop                 (3.21)  

Two different sets of flows are defined in a ȹq-formulation or loop formulation: branch 

flows and loop flows. Branch flows (qGij) are approximations to the true pipe flow values 
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and loop flows (ȹqloop) are introduced to correct prevailing branch flows in order to yield 

the actual values. Initial values for both branch flow and loop flows are required for the 

iterative procedure. When Equation (3.21) is satisfied for all loops, convergence has been 

attained. This formulation also requires the user to identify all flow loops within the 

network system prior to formulating associated governing equations. Since a number of 

permutations of independent loops are possible for any given large network, this 

formulation further requires optimization strategies for the optimal set of loops that 

would be used during the solution strategy. 

 

3.4.3 Nodal or p-formulation  

In a nodal formulation, network equations are written on the basis of the principle of 

nodal mass conservation (continuity) alone. This yields ñN-1ò linearly independent 

equations that can be used to solve for ñN-1ò unknowns (i.e., nodal pressures) since one 

nodal pressure is assumed to be specified within the system. In this formulation, nodal 

mass conservation statements in Equation (3.18) are rewritten in terms of nodal pressures 

using the pipe flow constitutive equations in Table 3.1, which yields for horizontal flow: 

0)( 22 =-+-Öäij

n

jiij DSppC                                           (3.22) 

In Equation (3.22), fluid flowing into the node is assumed positive and fluid leaving the 

node is given a negative sign. External supplies and demands (sink/sources) specified at 

the node are also considered. The p-formulation or nodal method does not require the 

identification or optimization of loops and the application of the 2
nd

 law of Kirchhoff is 

circumvented. However in a p-formulation, the resulting set of governing equations is 
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more complex and more non-linear than the ones found in the loop- and nodal-loop 

counterparts since pressures are expressed in squared difference. In addition, the method 

is well-known to suffer from poor convergence characteristics or severe sensitivity to 

initialization conditions when Newton-Raphson protocols are implemented to achieve a 

solution (Ayala, 2012; Larock et al., 2000, Osiadacz, 1987).  

 

With that, this study shows that the highly non-linear nodal equations in Equation (3.22) 

can be readily transformed into linear equations to circumvent this problem. As a result, 

the poor convergence characteristics of the p-formulation are eliminated, convergence is 

made independent of user-defined initial guesses for nodal pressures and flow rates, and 

the needs of calculating expensive Jacobian formulations and associated derivatives are 

also removed. Concurrently, the analog method which will be discussed below retains the 

advantages of the p-formulation in terms of not requiring loop identification protocols. 
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CHAPTER 4 

THE LINEAR PRESSURE ANALOG MODEL  

4.1 Linear Analog Model 

Regardless of the type formulation used, all Newton-based methods are prone to lack of 

convergence and sensitivity to initial guesses, with the nodal formulation being the most 

susceptible of all.  Presumption of appropriate initial guesses is the key for solving gas 

network equations for every existing method. In order to circumvent network solution 

convergence problems of currently available methods and their potentially costly 

implementation, this study proposes the implementation of a linear-pressure analog 

model for the solution of the highly non-linear equations in natural gas transportation 

networks. The method consists of defining an alternate, analog system of pipes that obey 

a much simpler pipe constitutive equation, i.e., a linear-pressure analog flow equation, 

which is written for horizontal pipes as follows: 

)( jiijGij ppLq -Ö=                                     (4.1) 

where Lij is the value of the linear pressure analog conductivity. Note that Equation (4.1) 

uses the flow-pressure drop dependency prescribed by the Hagen-Poiseuilleôs law for 

liquid flow in laminar conditions. Consequently, the proposed analog seeks to map the 

highly non-linear gas flow network problem into the much more tractable liquid network 

problem for laminar flow conditions. When gas pipe flows are written in terms of such a 

linear pressure analog, nodal mass balances used in p-formulations (Equation 3.22) 
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collapse to a much simpler (and more importantly, linear) set of algebraic equations 

shown in Equation (4.2): 

( ) 0ij i jL p p S DÖ - + - =ä                                    (4.2)  

which can be simultaneously solved for all nodal pressures in the network using any 

standard method of solution of linear algebraic equationsðas opposed to its non-linear 

counterpart of Equation (3.22). 

 

Linear-pressure analog conductivities are straightforwardly calculated as a function of 

actual pipe conductivities according to the following transformation rule: 

ijijij CTL Ö=                                                (4.3) 

where Lij  is the conductivity of the linear-pressure analog pipe which conforms to the 

linear equation in (4.1), and Cij is the actual pipe conductivity conforming to the 

generalized flow equation definition in Table 3.1 that for horizontal pipes becomes: 

n

jiijGij ppCq )( 22-Ö=                                                    (4.4) 

In Equation (4.4), n is equal to 0.50 as prescribed by the generalized gas flow equation.  

It is straightforwardly demonstrated that the variable Tij in Equation (4.3), i.e., the analog-

pipe conductivity transform, is given by the expression: 

1

2
1

-
+=

ij

ij
r

T

                                                               (4.5) 

This analog-pipe transform is a dimensionless quantity that enforces the flow-rate 

equivalency of Equations (4.1) and (4.4) for the pipe of interest. The dimensionless 
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analog-pipe transform turns out to be solely dependent on r ij, i.e., the pressure ratio 

between the pipe end pressures as shown in Equation (4.6): 

j

i
ij

p

p
r =                                                             (4.6) 

where i= upstream node and j= downstream node as defined in Equations (4.1) and (4.4). 

The derivation of linear-pressure analog conductivity is shown in Figure 4.1 below.  
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Figure 4.1: Derivation of Linear-Pressure Analog Conductivity 
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Because pressure ratios are always higher than one (pi > pj for fluid to flow, given that 

the i-th node is always defaulted to the upstream location), analog-pipe transforms are 

constrained to take values larger than unity. Figure 4.2 illustrates this dependency for a 

variety of pressure ratios. Since Tij > 1, it follows that ijij CL >  from the transformation 

rule in equation (4.3). Resulting linear-analog conductivities have larger values than 

actual pipe conductivity, i.e., linear-analog pipes are more ñconductiveò than their gas 

counterparts in terms of absolute conductivity values. In general, ijL ôs at least double 

ijC ôs in most networks, given that pipes rarely operate at very large ijr ôs since energy 

losses would be excessive for an economical operation. 

 

Figure 4.2: Analog-pipe conductivity transform (Tij) as a function of pipe pressure ratio          

(r ij) 
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Once the linear-analog transform has been applied, all unknown nodal pressures in the 

network can be calculated by solving the resulting linear set of algebraic equations. Since 

actual pressure ratios (r ij) are not known in advance, the linear analog method starts its 

first iteration with the condition ijij CL = . Note that no initial guesses for nodal pressure 

values or pipe flow rates are needed. However, once a first set of estimated nodal 

pressures become available during the first iteration, interim pressure ratios ('
ijr ), pipe 

conductivities, and pipe flow rates can be calculated. In this first iteration, resulting 

pressure drops would become significantly overestimated because pipe analogs are forced 

to be less conductive than they should since ijij CL >  instead of ijij CL = . Interim 

pressure ratios ('ijr ) thus start at significantly overstated values during the first iteration 

and, upon successive substitutions and after a few inexpensive iterations, they steadily 

adjust to actual r ij. When this occurs, the non-linear network problem has been fully 

solved. Convergence is attained when any further nodal pressure update would become 

inconsequential within a prescribed tolerance (e.g. ‐ ρπ ὴίὭὥ).  

 

Because pressure drops are always overestimated in the first analog iterations, upstream 

pressures will be underestimated if downstream pressures are specified. This may force 

upstream pressure to take negative values early during the iterative procedure. For these 

cases, a direct application of Equation (4.6) would violate the analog principle that 

requires all pipe pressure ratios to be positive and higher than 1. Therefore, if  negative 

downstream pressure is calculated, Value of pressure ratio calculations is defaulted to a 
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minimum value (equal to atmospheric pressure) and upstream pressure is displaced 

accordingly using the calculated pipe pressure drop. In other words, 

| ( ) | 14.7

14.7

i j

ij

p p
r

- +
=                  (4.7) 

Please note that this type of adjustment can be avoided altogether if instead of initializing 

the analog method with the condition
 ijij CL =  (first iteration), one uses a multiple of the 

pipe conductivity (such as 2ij ijL C=
 
or 3ij ijL C= ) for initialization. Such initialization 

makes the linear analog more conductive from the onset, thus avoiding unnecessarily 

large pressure loss estimations during the first iteration. 

 

It can be shown that the proposed analog method has a remarkably stable performance. 

This is due in part because its iterations do not necessitate user-prescribed guesses and 

each individual iteration solves a feasible liquid-flow scenario with a unique solution. 

This is to be compared to the potentially unconstrained behavior of Newton-Raphson 

protocols, which demand the use of good initializations (i.e., initial ñguessesò sufficiently 

close to the actual solution) for convergence to be possible. The proposed approach is 

also fundamentally different from the Linear Theory method (Wood and Carl, 1972) in 

the sense that it always relies on exact solutions to well-behaved linear-analog liquid 

fluid flow problems for each of its iterations. The Linear Theory Method, instead, relies 

on solving approximate sets of linearized equations, which do not necessarily correspond 
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to physically-constrained systems and thus is susceptible to spurious numerical 

oscillations. 

  

Note that the value of ijC in the transformation in Equation (4.3) remains constant 

during the iteration process for all flow equations where friction factor (and thus pipe 

conductivity as per its definition in Table 3.1) are defined to be independent of flow rate. 

This is the case, for example, of the Weymouth and the AGA fully-turbulent friction 

factor equations in Table 3.1. For all other flow-rate-dependent friction factor equations, 

in order to preserve initial-guess-free nature of the solution process, the ijC  estimation is 

defaulted to that of flow-rate independent flow equation such as Weymouth. For all 

subsequent iterations,  ijC  becomes simultaneously updated based on the most current 

flow rate information using the friction factor expression of choice from Table 3.1. The 

proposed workflow for the implementation of the linear-analog methodology is displayed 

in Figure 4.3. 
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Figure 4.3: Flow Chart for Linear-Analog Implementation 
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4.1.1 Extension to Networks with Inclined-Pipes 

 

Similar analog transformations can be proposed to extend the linear-analog model to 

network systems with inclined pipes. The constitutive gas flow equation (4.4) for inclined 

pipes becomes 

2 2 0.5( )ijs

Gij ij i jq C p e p= Ö -
            (4.8) 

 

where s is the pipe elevation parameter, n is equal to 0.50, and Cij is the actual pipe 

conductivity for the inclined generalized flow equation definition shown in Table 3.1. On 

the basis of this constitutive equation, the linear pressure analog model for inclined pipe 

systems is postulated as: 

ή ὒ ὴ Ὡὴ                                (4.9) 

which leads to the same analog-pipe conductivity transform in Equation (4.5):  
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(4.10)

                                                  

but with a slightly modified definition of the pressure ratio for inclined pipes given by: 

j

s

i
ij

pe

p
r

2

=                                                             (4.11) 

Note that the analog-pipe conductivity transform for inclined pipes is identical to that of 

horizontal pipes, and only the pressure ratio definition is slightly modified with the 

elevation correction for the downstream pressure. The resulting characteristic matrix K, 

as discussed in Chapter 5 Results and Discussions, would be asymmetric due to the 

elevation correction introduced in the linear analog model. 
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However, it is also possible to redefine the linear-analog transform for inclined pipes in 

order to preserve the symmetry of the characteristic matrix K , whenever desired, if the 

application of efficient Cholesky algorithms is deemed of importance. Characteristic 

matrix symmetry can be preserved by implementing the analog constitutive equation in 

Equation (4.1) for inclined pipes, reproduced below: 

)( jiijGij ppLq -Ö=                              (4.12) 

which would lead to a different analog-pipe conductivity transform than the one used 

thus far: 

Ὕ                                   (4.13) 

and which uses the same conventional pressure ratio definition: 

ὶ                         (4.14) 

This alternative approach would lead to linear algebraic equations with a symmetric 

characteristic matrix. All proposed analog methods are summarized in the Table 4.1 

below. 

 

Table 4.1: Summary of Linear-Pressure Analog Constitutive Equations ( ὒ ὅ ϽὝ ) 

Network Type Linear-Pressure Analog  

Constitutive Equation 

Analog Conductivity Transform,  Tij 

Horizontal Pipes 

(for a symmetric 

characteristic matrix) 

ή ὒ ὴ ὴ  
Ὕ ρ

ς

ὶ ρ
 ȟύὬὩὶὩ ὶ

ὴ

ὴ
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4.1.2 Extension to Networks with Compressors 

As discussed in Chapter 3.2, the compressor equation is given by: 
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1
0.0857 ( ) ( ) 1

1
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n nst p j

G i av

p i

n n p
HP q T Z

n ph

-

Ö
è øÖ
é ù= -

- é ù
ê ú

       (4.15) 

Since the linear analog model is developed based upon the nodal formulation and the 

network formulation is based upon the principle of nodal mass continuity, the compressor 

equation is then written in terms of pipe flow constitutive equations.  

Rearranging the compressor equation at a short-hand equation, one obtains:   

1

( ) 1

ij p

st p
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G n

n n
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Ö
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è ø
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é ù
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                       (4.16) 

where: 

1
0.0857( ) ( )( )

1

st p

c i av

p

n n
k T Z

n h

Ö
=

-
         (4.17) 

Inclined Pipes  

- Approach 1 

(for an asymmetric 

characteristic matrix) 

ή ὒ ὴ Ὡ ὴ  
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Inclined Pipes  

- Approach 2 

(for a symmetric 

characteristic matrix) 

ή ὒ ὴ ὴ  

 

Ὕ
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The total compressor ratio for a compression station is calculated as the ratio of its final 

compressor discharge pressure to its entry suction pressure: 

ij

j

c

i

p
r

p
=             (4.18) 

In order to construct linear sets of equations from coupling compressors, the compression 

ratio is assumed to be the target variable that needs to be specified by the user. For such 

scenarios, 

.  
ij c jG iCq HP=             (4.19) 

where the compressor constant is given as:   

( )
1

1

1
p

st pn n

cij n

c cij

C

k r Ö

-å õ
-ææ

ç

=

öö
÷

 [MMSCD/HP]                  (4.20) 

The compressor equation is then incorporated into the gas network system by predefining 

the compressor desired total compression ratio, which results in the determination of the 

horsepower required for the compressor to be solved for as an unknown within the 

system of equations.  

 

4.1.3 Extension to Networks with Wellheads 

The wellhead equation at surface (wellhead) conditions can be written as:  

2 2.( )  
i

n

wG w shut whpCq p= -    for 0.5 < n < 1                   (4.21) 
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This constitutive relationship retains a form identical to that of the pipeline gas flow 

equation and hence a similar analog transformation could be applied to linearize the 

wellhead equation. The backpressure equation is similar to the way the generalized pipe 

equation is expressed, while the coefficients n and ὅ  vary for different reservoir and 

tubing properties for the backpressure equation. 

The linear analog equation for any wellhead in the network system is then given by: 

( )wGi w shut whq L p p= Ö -
           (4.22) 

Linear-pressure analog conductivities for a wellhead are again computed as a function of 

actual well conductivities according to the following transformation rule: 

w w wL T C= Ö                                               (4.23) 

where Lw is the wellhead conductivity in the linear-pressure analog model which 

conforms to the linear equation in (4.22), and Cw is the actual well conductivity 

conforming to the wellhead equation (4.21). The analog-well conductivity transform Tw 

in Equation (4.23) now becomes a function of the well flow exponent (which ranges from 

0.5 to 1) and the well shut-in pressure, as shown below: 

1 2 11 1
(1 ) (1 )n n n

w shut

w w

T p
r r

- -= - Ö + Ö             (4.24) 

where the wellhead pressure ratio, wr is given by the ratio of shut-in pressure, shutp  to 

wellhead pressure,whp . 

shut
w

wh

p
r

p
=             (4.25) 
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Since rw is not available until the next iteration, wL  is to be approximated by the 

following expression during the first iteration: 

2 1n

w shut wL p C-= Ö
               (4.26) 

Please note that 
2 1n

shutp -

is the constant that appears in the wT
term and hence it should be 

introduced in the first iteration to ensure a reasonable conductivity approximation in the 

first iteration. 

Figure 4.4 depicts the dependency of the analog-well conductivity transform for a range 

of flow exponents. Since Tw > 1, it follows that ijij CL >  from the transformation rule in 

equation (4.23). Similarly, resulting linear-analog conductivities have larger values than 

actual well conductivity, i.e., linear-analog wells are more ñconductiveò or ñproductiveò 

than their gas counterparts in terms of the absolute values of their conductivity. In Figure 

4.4, Pshut was assumed to be 100 psia for illustration purposes. 
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Figure 4.4 Analog-well conductivity transform (T w) as a function of well pressure 

ratio (r w) (for Pshut = 100 psia) 

 

Similar to the discussion for pipes, there may be occasions where wellhead pressures can 

be estimated to be negative during the first iterations. This is due to the fact that early 

analogs tend to overestimate actual pressure drops in the system. For these cases, since 

pressure ratios must always be positive and higher than one, the following expression is 

used when wellhead pressure is deemed to be negative by early iterations:
 

14.7

shut
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                         (4.27) 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

5.1 Case Study 1: Horizontal Pipe Network System 

For this case study, the horizontal network system depicted on Figure 1.1 is analyzed 

using the generalized gas flow equation coupled with AGA-fully turbulent friction factor 

calculations. An average flowing temperature of 75 ºF and an average compressibility 

factor of 0.90 are assumed for the entire system for illustration purposes; however, the 

methodology would remain unchanged if each pipe were to be considered to operate at 

different average temperatures and if compressibility factors were calculated in terms of 

standard natural gas correlations. Those variables would only affect the update of actual 

pipe conductivities Cij described in the solution protocol of Figure 4.3. The network 

handles a gas with a specific gravity of 0.69 and all pipes are assumed to be carbon steel 

(e = 0.0018 in), horizontal, 30-miles long and NPS 4 Sch 40, except for pipes (1,2), (2,3), 

(1,4) and (4,7) which are NPS 6 Sch 40. The pressure specification is given at node 9 and 

it is set at 130 psia. Based on the implementation of the solution protocol in Figure 4.3, 

the gas network under study generates the following linear system of algebraic equations 

in terms of nodal pressures: 
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which, in compact notation, could be expressed as: 

K P = S 

where K  is the network characteristic matrix, P is the network pressure vector and S is 

the network supply/consumption vector. In the K  matrix, the diagonal entries Oi represent 

the summation of all off-diagonal entries for the i-th row. For instance, O1 = L12 + L14;  

O5 = L25 + L45 + L56 + L58; and O8 = L58 + L78 + L89. All pipe conductivities (Lij and Cij) 

are assumed in MMSCFD/psi in this example. Given that what results is a system of 

linear equations, solution of the matrix equations is simple and straightforward. It could 

be directly solved using LU decomposition, Gaussian Elimination, Conjugate Gradient 

methods or any linear equation solver. 

 

Brebbia and Ferrante (1983) present a streamlined protocol for the assembly of the 

network characteristic matrix and supply/consumption vector for the analysis of a water 

network under laminar flow, which becomes fully applicable for the assembly of the 

proposed natural gas linear-analogs. It is shown that the characteristic matrix of the 

network K  is straightforwardly constructed in terms of a connectivity table (which 
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matches each pipe branch with its upstream and downstream nodes) available from input 

data. This assembly protocol streamlines the identification of the location of each pipe 

conductivity contribution within the characteristic matrix as a function of the information 

in the connectivity table. The assembly protocol also honors the presence of boundary 

conditions, such as pressure and supply/demand specifications. It is recognized that the 

matrix K  is a banded matrix, which is a property that can be used to save storage space 

during computations. The half-bandwidth of this matrix is a function of the maximum 

difference in the numbers of any two nodes connected to each other; in particular, the half 

bandwidth is equal to that maximum difference plus one because of the presence of the 

diagonal. From Figure 1.1, this maximum difference is equal to 3, corresponding to the 

difference between the node numbers of pipes (5,8) or (1,4) for instance. This yields a 

half-bandwidth of 4 which is evident in the matrix above. A properly numbered large 

network system can be made to have small half-bandwidths, thus making large storage 

savings possible. 

 

By moving all known pressure-node matrix entries (L69 and L89) to the consumption 

vector, the characteristic matrix can also become fully symmetric, i.e., K = K
T
. This 

property can not only be used to save additional storage space (i.e., only the upper or 

lower portion of the matrix needs to be stored) but also to implement efficient linear 

equation solvers that fully exploit this property. A system of linear equations with a 

positive-definite and symmetric matrix can be efficiently and inexpensively solved using 

Cholesky decomposition, which can be shown to be roughly twice as efficient as LU 
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decomposition for solving systems of linear equations (Press et al., 2007). Matrix K  is 

positive-definite because it is symmetric and diagonally-dominant with positive diagonal 

entries. Note that positive diagonal entries are obtained by multiplying all matrix and 

right-hand-side vector entries by -1 for all equations other than the dummy constant-

pressure specification.  

 

The inexpensive, steady convergence nature of the proposed protocol is depicted in 

Figures 5.1.1 to 5.1.5 for the iterative solution of the case under study. The final 

converged solution is provided in Figure 5.1.6, which fully satisfies the original set of 

highly non-linear gas network equations. Note, again, that no user-provided guesses of 

pressure or flow rate are needed at any point of the protocol and that just a few 

inexpensive iterations are needed for the protocol to reach the immediate neighborhood 

of the actual solution. Figure 5.1.1 demonstrates that the values of analog-pipe 

conductivity transform ratios steadily converge to their true values as the number of 

iterations increases. This can be further visualized in Figure 5.1.2, where it becomes 

evident that pipe pressure ratios progressively stabilize as the number of iteration 

increases. The relationship between the analog-pipe conductivity transforms and pressure 

ratios (originally illustrated in Figure 4.3) is continuously honored during the process as 

demonstrated by Figure 5.1.3. As a result, nodal pressures and flow rates steadily 

approach their true values as the protocol progresses, as shown in Figure 5.1.4 and 

Figure 5.1.5, respectively. These figures demonstrate that nodal pressures and flow rates 

are initially overestimated because linear analog conductivities were initially made equal 
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to actual pipe conductivities. This significantly underestimates linear-analog 

conductivities and artificially creates initially large pressure drops in the linear-analog 

model. 

 

 

 

Figure 5.1.1: Analog-pipe conductivity transform improvement ratio (Tk+1/Tk) vs. no. of 

iterations (k) ï Case Study 1 
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Figure 5.1.2: Pressure ratio (r ij) vs. no. of iterations (k) ï Case Study 1 

 

Figure 5.1.3: Analog-pipe conductivity transform (Tij) vs. pressure ratio (r ij) ï Case 

Study 1 
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Figure 5.1.4: Nodal pressures (pi) vs. no. of iterations (k) ï Case Study 1 

 

Figure 5.1.5: Pipe flow rate (qGij) vs. no. of iterations (k) ï Case Study 1 
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Figure 5.1.6: Fully-converged natural gas network distribution scenario ï Case Study 1 

 

5.2 Case Study 2: Inclined Pipe Network System 

 

Case Study 2 considers an identical network and scenario as the one presented in Case 

Study 1 (illustrated in Figure 1.1), but after placing all nodes at different elevations. 

Reference node 9 is placed at datum level (Elevation=0) and its pressure remains 
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specified at 130 psia. This case study seeks to incorporate the effect that elevation losses 

or gains can have on the system into the linear-analog model, which was neglected in the 

previous case study. Nodal elevation information is provided in Figure 5.2. 

 

Figure 5.2: Node Elevations for Case Study 2 

 

Based on the implementation of the solution protocol in Figure 4.3, the application of the 

linear-pressure analog constitutive equation in (4.9) for elevated pipes to the gas network 

under study generates the following linear system of algebraic equations: 
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which, in compact notation, is expressed as: 

K P = S 

In the new K  characteristic matrix, the upper right portion of the matrix contains all the 

ñe
sij/2
ò elevation corrections applicable to downstram nodes and the lower left portion of 

the matrix contains conductivity information for the upstream nodes. Diagonal entries Oi 

are no longer just the summation of all off-diagonal entries, given that elevation terms 

must be taken into account for all cases where node ñiò is found in the downstream 

position. For instance, O1 = L12 + L14; but  O5 = L25 e
s25/2

 + L45 e
s45/2

 + L56 + L58; and O8 

= L58 e
s58/2

 + L78 e
s78/2 

+ L89. All pipes conductivities (Lij and Cij) remain in MMSCFD/psi 

in this example.  The resulting characteristic matrix K  remains banded but no longer 

symmetric; therefore, the implementation of a Cholesky decomposition is no longer 

possible. The resulting system of linear equations is then directly solved using any other 

standard linear equation solver such as LU decomposition, Gaussian Elimination, or 

Conjugate Gradient methods. Figure 5.2.1 to 5.2.5 present the results of such iterative 

solution protocol which follows the workflow of Figure 4.3. Final converged values or 

the actual network solution are displayed in Figure 5.2.6. As previously shown, analog 
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conductivity and pressure ratios steadily converge to true values (Figure 5.2.1 and 5.2.2, 

respectively) and maintain the same functional dependency among them (Figure 5.2.3). 

Pressure and flow rate estimations converge steadily and progresively as highlighted in 

Figures 5.2.4 and 5.2.5, respectively. Again, flow rate and pressures are initially 

overestimated at the beginning because of the actual pipe conductivity are used in the 

linear analog constitutive equation for the first iteration. Convergence behavior remains 

smooth and steady. 

 

Figure 5.2.1: Analog pipe conductivity transform improvement ratio (Tk+1/Tk) vs. no. of 

iterations (k) ï Case Study 2 
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Figure 5.2.2: Pressure ratio (r ij) vs. no. of iterations (k) ï Case Study 2 

 

Figure 5.2.3: Analog conductivity transform (Tij) vs. pressure ratio (r ij) ï Case Study 2 
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Figure 5.2.4:  Nodal pressures (pi) vs. no. of iterations (k) ï Case Study 2 

 

Figure 5.2.5:  Pipe flow rate (qGij) vs. no. of iterations (k) ï Case Study 2 


















































































