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ABSTRACT
Reliable analysis of transportation networks is crucial for design and planning purposes.
A pipeline network system could range fr@asimple to very sophisticated and complex
arrangement: from a sitgpipe transporting fluid from a place to another or elaborated
as an interconnected set of fluid networks for hstiEe or international transportation.
As the complexity of the network system grows, the solution for the network model
complicates furter. For a natural gas network system, the resulting set of fluid flow
governing equations is highly ndimear. In such situations, the customary method
employed for the solution of a set of Alimear equations is the multivariable Newton
Raphson methodedpite its potentially negative drawbacks. NewRaphson solution
protocols demand a good initialization (i
for satisfactory performance because convergence is only guaranteed to occur within a
potentialy narrow neighborhood around the solution vector. This prerequisite can
become fairly restrictive for the solution of large gas network systems, where estimations
of fgoodo initial gas | oad and nodal val u
addition some NewtorRaphson formulations require pdefining flow loops within a
network system prior to attempting a solution, which proves to be a challdagkip an
extensive network. An alternate, simple yet elegant method to address the
aforementionegbroblemsis proposedThe proposed solution methodology retains most
advantages of the Newtorodal method while removing the need for initial guesses and
eliminating the need for expensive Jacobian formulations and associated derivative

calculations. Theresulting lineatpressure analog model is robust, reliable and its



execution and convergence is independent of-deined initial guesses for nodal
pressures and flow rates. This allows the simulation study of a st&stdygas network

system to be effiently and straightorwardly conducted.
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CHAPTER 1

INTRODUCTION

Gas transportation and distribution networks around the world involve a remarkable set
of highly integrated pipe networks which operate over a wide range of pressures. The
everincreasing demand for gas makiegital to adapt and expand these systems while at

the same time ensuring safe delivery and-effgictive engineering. Model simulation

and system analysis play a major role in planning and design stages as they enable
engineers to optimize the pipelimetworks and decide on the location of +mope
elements such as compressors (Mohitpour et al., 2007; Menon, 2005). The aim of a static
simulation is to estimate the values of pressures at the nodes and flow rates in the pipes

(Ayala, 2012; Laroclet al.,2000; Kumar, 1987; Osiadacz, 1987).

Most practical situations in fluid transportation involve systems of pipelines that are
interconnected forming a network. Natural gas network simulation entails the definition
of the mathematical model governing thewlmf gas through a transportation and
distribution system (Ayala, 2012; Laroek al., 2000; Kumar, 1987; Osiadacz, 1987).
Typical networks can be made up of highly integrated pipes in series, pipes in parallel,
branching pipes, and looped pip&pelinesystems that form an interconnected net or
network are composed of two basic elements: nodesnaddconnectingelements.
Nodeconnectingelements can include pipe legs, compressor or pumping stations, valves,

pressure and flow regulators, among other ponents. Nodes are the points where two



pipe legs or any other connecting elements intercept or where there is an injection or
offtake of fluid. Figure 1.1 depicts a typical pipeline network schematic, where nodal,
supply, and demand locations are highieghand the type afodeconnectingelements

is restricted to pipelines.

Demand
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b d N A :> Demand
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Figure 1.1: A pipeline network schematic

A steadystate network problem can be formulated in a number of ways, but in general, it

~

consists of a system made up of ANO nodes,



and ALPO pi pe |Fgwelsl Itasmnot dnegmmmantfoe retwarknsystems

to have at leagine closeepipe circuit or pipe loop. The presence of pipe loops increases
the reliability of delivery of the transported fluid because certain network nodes can be
reached simultaneously by more than one pipe. For the gas netwagume 1.1, N=9,

B=12, LP=4. Network theory shows that these three quantities are mathematically related
through the expression: B = {N + LP, where LP represents the number of independent
loops that can be defined in a network graph with N nodes and Bhlesania network
problems, all physical features of the network are assumed to be known and the analysis
consistsof determiningthe resulting flow though each pipe anie associated nodal
pressures. This can be accomplished on the basis of known newypwlogy and
connectivity information, fluid properties, and pipe characteristics combined with mass
and energy conservation statements, as shown in the next sections. This assumes
knowledge of the constitutive equation for eaubdeconnectingelemend i.e., prior
knowledge of the mathematical relationship between flow across the element and its

nodal pressures.

A completenatural gas network system usuallymmisescompressors, wells and several
other surface components besides pipelinAscompressor station is one of the most
important elements in a natural gas pipeline systeampressor stations are needed to
transport gas in a pipeline. Compressor stations supply the energy to pump gas from
production fields to overcome frictional lossestransmission pipelinefkoku, 1984)

In a long distance pipeline, pipeline pressure by itself is not sufficient to transport the gas



from one location to another. Hemccompressors are installed thre gas pipeline to
transport gas from one location to another by providing the additional pre§sure.
network simulation witha compressagrseveralimportant variables associated with the
compressor areghe flow throughthe compressor,inlet and outletpressure and
compression ratio(Osiadacz, 1987)Compression ratio is a cardinglarameter in
determining horsepower required to compress a certain volume of gas and also the
discharge temperature of gas exiting the compre€xatimum locations and pressures at
which compressor stations operate could thenidentified andanalyzed througha
simulation study. Modeling and understanding the behavior of a network system is not a
matter of studying the performance of a single constituent component; but rather one
must undertake a comprehensive study of the consequendtes inferconnectivityof

every componenbf the system.Traditionally, a gas network system is solved by
simplifying the network systewith assumptions In the advent oadvanced computer
technology complex designs and heavy computational simulations arenger time

and cos consumingthus many assumptions are relaxed as numerical simulation proves

to bemoreaccessible ansensitivity analysis could be incorporated easily.

Hence, the simultaneous solution of the resulting set of highlylinear equations
enables naturagjas network simulation to predict the behavior of highly integrated
networks for a number of possible operating conditions. These predictions are routinely

used to make design and operational decisions that impact a network system, which take



into accountthe consequences of interconnectivity and interdependence among all

elements within the system.



CHAPTER 2

LITERATURE REVIEW

Fluid pipeline network modeling and development have been traditionally conducted in
the area of civil, chemical and mechanical engineering. Throughout the course of history,
many empirical approaches had been formulated in order to attempt to capture the
different parameters that are believed to be governing the gagJibddbnesorandBerwald,

1935) Most of the equations were formulated based on experimental data and matching
field data from operatial gas pipeline systems. For example, the Weymouth equat

was developed by Thomas R. Weymouth in the 1910s while he was matching
compressed air test data flowing through small diameter pipésymouth, 1912)
Several decades later, Panhamilleequation was developed with thentention of

proposing flav equations suitable for largdrameter pipes since the Weymouth

equation overestimadepressure losses for these systelmér e o @ mf i ed 0-APanhan

equation or Panhandld, was then published in 1952 when more empirical oatee
obtained from the other Panhandle pipeli(i@syd, 1983) Weymouth, Panhandi& and
PanhandleB equations are popular dueitse nature of simplicity and also neterative
properties. The American Gas Association (AGAgn proposed the AGA equation in

the 1960s based on the general gas equation,ansth mp |l i fi ed versi on
friction factor. Ultimately what diffes inthese equations are the governing friction factor.
They could all be expressed in a generli equation with their own respective friction

factor as presented irable 3.1in Chapter 3.

o



As the need forefficiently utilizing naturalgas operation grows, tools capable of
handlingthe resulting problems asdsoneeded. According tGrafton (1976) a steady

state gas pipeline network analysis is a useful design and planniras iballows supply

and demand optimization, allocation or proration evaluation and compressor optimization.
It is, however, vital that the numerical solution procedurthefsimulation tool meet two
crucial criteria: assurance of rapid solution convergence, uniqueness, thus economical
solution costs and also flexibility in handling a wide variety of piping, loop and

compressor configurations encountered in gathering andrfrission networks.

In a simulation ofa natural gas pipeline system, an accurate representation of all
components in the pipeline system model is required. In order to minimize the pipeline
fuel consumption to maximum extent possible, optimization reguletailed compressor
information for each of the individual compressor componéMarphy, 1989) A

network problem is eventually expressed in terms of a set of highHimear equations

for each component in the natural gas network systemusdt be solved simultaneously

in terms of the desired target unknowns: tireor nodal oop f or mul at i on
simultaneous equations and the target unknowns are pipe flow tteégs or nodal

for mul ati dm mkasnufiNlaneous equationsthesapd sol v
or | oop formulation has ALPO si muAymlaneous
2012) As the size ohetworkgrows the more complex thesulting system of equations
becomes. Throughout the years, a number of protocols for the simplified solution of

network equations have beeroposed, most notably, the Har@yoss method (Cross,



1932) and the Linear Theory method (Wood and Carl, 19%®).HardyCross method,

was originally proposed for the analysis of frames in structural engineering by moment
distribution, and became widely popular for the analysis of fluid networks because it
implemented an iterative scheme readily suitable for halodlasions that circumvented

the significant labor of solving the simultaneous seequations. The Linear Theory
method also became a popular approach to approximately linearize thaesrsubset

of loop equations within the nodelop formulation, ot it is also known to suffer from

convergence problems.

Osiadacz (1987}then classifies steadgtate gas network mathematical methods into
Newtonnodal, Newtodoop and Netwofoop-node, depending on whether they are
solvingp-, ¢-p®r g- equationsyespectively. This classification further emphasizes the
widespread use of NewtdRaphson as the method of choice in gas network analysis.
Osiadacz (1987) and Li, AandGedra (2003) discuss the advantages and disadvantages
of these three Newtebased meitbds. The Newtomodal method is said to be the most
straightforward to formulate, creating Jacobian matrixes of large sparsity, but plagued
with very poor convergence characteristics due to the-kmelvn initial value problem

(i.e., convergencss highly sensitive to starting values) inherent to all locaiyvergent
NewtonRaphson protocols. Newtarodal is typically not recommended unléiss user

has extensive knowledge of the network system and is able to provide very reasonable

initial guesses for eary nodal pressuréhe Newtortloop formulation is based on the

application of Kirchoffds second | aw, whi



knowledge of the spanning tree of the gas network. In this method, a loop flow correction
is calculated an@pplied to all edge flows gide the given loop. The Newtdtaphson
procedure is used to drive pressure drops around the loop to zero. This method has better
convergence characteristiaad isless sensitive to initial guessd$s major problemis

the need for definition of loopshonunique loops, resulting in a much less sparse
Jacobian matrix with ggsity dependent on loop choice. Theads to a more complex
solution to formulate thathe Newtorrnodal method especially when elements other
than pipesre found in the system. In the Newton legge method, botlobp and nodal
equations are used to foranhybridmethodof the above two in terms of advantages and
disadvantages. All Newtebased methods are stilhowever, prone to lack of
convergence ansensitivity to initial guesses, with the nodal formulation being the most
susceptible of all. Heawseliance on good initial guesses is the staple of every existing
method for solving gas network equatidnsnd not only for Newtotrased methods but

also Pr the far lesfficient HardyCross and the Linear Theory methods

Nowadays, the application of the multivariate NewReaphsonmethod is rather the

norm applied in the simultaneous solution of the large systems elingam network

equations. However, the most significant limitation of NewRaphson methods is their
unfortunate tendency of hopelessly diverging when not iragdlisufficiently close to the
actual solution (i.e., their Al ocal conver
guadratic local convergence of NewABaphson is typically coupled with a globally

convergent strategy that can better guarantee m®grad convergence towards the
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solution (see, for example, Press et al., 2007). However, even for globailgrgent
methods, convergence towards a solution is not guaranteed if the initial starting point is
too far away from a physically feasible solutioA successful NewteRaphson
implementation thusemains highly dependent on a proper selection of initiadizat
conditions for the problemnin this study,a methodology that remediates this significant

shortoming for gas network modeling is proposed analyzed.
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CHAPTER 3

NETWORK MODEL ANALYSIS

For the purpose of this study, three major components will be identified in a gas network
system and analyzed with the proposed methodology: pipeline, compressor and
wellheads. Each component ima gas network system could be expressed in a

mathematical equation with parameters governed by their respective properties.

In developing the model for sirggphase steadgtate gas flow in pipeline networks,
several assumptions are taken based on engineeg j udgments or i ndu

(Nagoo, 2003)In the present analysis, it is assumed that:

1) The gas is dry and is considered as a continuum for which basic laws of
continuum mechanics still apply.

2) Gas flow is onalimersional, singlephase and steasbtate.

3) Pipelinesdo not deform regardless of maximum pressure in thespipe

4) The minimum pressure mpipe is always abovéhe vapor pressure of gas, hence
no liquids are formed.

5) Average gas compressibility and average teniperaare assumed to be
everywhere in network.

6) Gas is considered to laeNewtonian fluid and polarity effects are negligible.

7) Acceleration effects are negligible.
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3.1 PipeFlow Network Equation
A pipeline is essentially aodeconnectingelement which connects 2 points together.
The interest of the study is the pipeline throughput (flow rate) which depends upon the
gas properties, pipe diameter and length, initial gas pressure and temperature, and
pressure drop due to frictigMlenon, 2005)The following assumptions are used during
the development of the generalized gas flow equatiarpipeline for this study

1) Singlephase oneimensional flow

2) Steadystate flow along pipe length segment

3) Isothermal flow

4) Constant average gas compressibility

5) Kinetic change along the pipe length segment is negligible

6) Flowing velocity is accurately characterized by apparent bulk average velocity

7) Friction factor is constant along the pipe length segment
The fundamental difference among the specialized formulas for the flow through pipes is
how friction factors are evaluatetihe most comprehensive approach for the calculation
of frictional losses in singlphase compressible fluid flow in pipelines is #dpplication
of the Gener al Gas equation where its fri
Chart. Section 3.1.1shows the derivation of the constitutive equation for gas pipe flow
from fundamental principles-or the case of singlghase flow of gases in pipes, these

constitutive equations are wddhown and are presentedTiable 3.1below.
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3.11 Derivation of Pipe Flow Equation for SinglePhase Flow
Total pressure losses in pipelines can be calculated asutheof the contributions of
friction losses (i.e., irreversibilities), elevation changes (potential energy differences), and

acceleration changes (i.e, kinetic energy differences) as stated below:

adp 6_ dig pdp &  dp

O_ S : 3.1
Fx & oF, Tax BT, G4
Equation (3.1 is a restatement of the first law of thermodynamics or modified
Bernoulli éds equation. Each of the energy
as follows:
adpg _ 2frv?
&Pg ==Y (3.2
adp d
&re =.r 9% (33)

= 2 (34)

In pipeline flow, the contribution of the kinetic energy term to the overall energy balance
is considered insignificant compared to the typical magnitudesiction losses and
potential energy changes. Thus, by integrating this expression from pipe inlet (x0, p=p
to outlet (x=L, p=p) and consideringM = r vA with A=,0d2 /4, one obtains:

P2 L

L
fydp=-affx- by 2dz (35)
Py 0 0

t



14

where a = (322 ) /(p2g.d®)and £ =(g/ g)( B/ L). For the flow of liquids and

nearly incompressible fluids, density integrals can be readily resolved and volumetric
flow can be shown to be dependent on the difference of linear end peddowever,

for the isothermal flow of gases, the fluid density dependency with pressure )

introduces a stronger dependency of flow rate on pressure to yield:

2 so2_a(e-)
-e =
P1 P2 2 b

(3.6)

where/1 = (ggMWr ) (Z5yRTay) ands=2h & . Equation (3.p states the weknown

fact that the driving force for gas flow through pipelines is the difference of the squared

pressures. Therefore, for inclined pipes, the design equation gas flow in pipelines

(evaluated at standard condition/ =/ Og with 7gc = (Pscdgq MWy, ) (RO )

becomes:
O =G r € 53)0'5 (3.7)
o 05
N : ap’gR 0 T/ p. . d°° :
wherGo dis the pi[ge= “A-d gl-e£ 45 ¥5 » Which
: C 4MWair - (gg-l;v AV)O- fo. LSS

captures the dependency of friction factor, pipe geometry, and fluid properties on the

flow capacity of the pipeln Table 3.1 pipe efficiency,e, is introduced in the pipe

conductivity term as a tuning parameter falibraion purposesto account for any

discrepanciesin results (Schroeder, 2011) For horizontal flow (s=56=0 ;

(e%-1)/b- 1), this equation becomes:
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Ui =G (€ 92)0'5 (38)

with L, = L. Depending on the type of friction factor correlation used to evajupte
conductivity, Equations (3) and B.8) above can be recast into the different traditional
forms of gas pipe flow equations available in the literature such as the equations of
Weymouth, Panhandi&, PanhandleB, AGA, IGT, and Spitzglass, among others (Ayala,

2012; Mohitpour et al., 2007; Menp2005; Kumar, 1987; Osiadacz, 1987).

Table 3.1: Summary of specialized equations for gas flow (adapted from Ayala, 2012)

Generalized Gas Flow Equation:

Osij :Cij @2 e ﬁ)O'S

with: ¢ = 2o  (Tuy [l 47
. ij !SQ -I;V Zav psc f;: LOe.S
GasFlow Equation Friction Factor Expression
General Gas Equatio Moody chart or Colebrook Equation
a Q
1 :‘4-0|09ma§/d+ 5.02 8
Na 893.7 Re,/ f @
f :M
Weymouth F E
PanhandleA ¢ = Kon
Original Panhandle Fog = 0,1461
(Orig ) 80, BG 0
® 4y 0
(; -
PanhandleB _ Kog
(Modified Panhandle) fe = N
& 4 0
g d -
AGA 1 &Re/fr 8
(partially turbulent) N logmge 141 0
AGA 1 43.7d g

=4.0log;oF e 2

(fully turbulent) Jie
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where:s = dimensionless elevation parameter equa(b.tlB?Egesz%% in
G “av “Hav
customary field unitsaH in ft, T in R), Le = pipe equivalent length, defined
— (eS B 1) _ S_ _ . . _
Le = L . Note thats=0, e=1, L=L for horizontal pipesgH=0). For
friction factor calculations] R  H = unitdependent constants: =0.008

for d(in) or 0.002352 for d(m)] = 0.01923 for d(in),gesc (SCF/D) or
0.01954 ford(m), q(sni/d); I =0.00359 for d(in)gesc (SCF/D) or 0.0036]
for d(m), q(sn¥d);,, = unit-dependent constant for conductivity calculatig
where for @s{SCF/D), L(ft), d(in), p(psia), T(R ), = 2,818, for @s{SCF/D),
L(miles), d(in), p(psip T(R ):, = 38.784; for SI units, & (sn/d), L(m),
d(m), p(KPa), T(K );, = 574,901. For the AGA equationsy E AGA drag
factors (0.960.97), Re = Reynolds numbey=pipe efficiency.

3.2 CompressorNetwork Equation

A compressois amajor component in a gas network system as it supplies the energy to
transport gas from one end to another. The amount of energy input to thy taes
compressolis dependent upon the pressure of gas and flow rate. Horsepower (HP)
represents the energer unit timeand itdepends on the gas pressure and flow rate and

as flow rate increases, the pressure also increases, hence increasing the total HP required.

The head developed by the compressor is defined as the amount of energy supplied to the
gas per unit mass of gaSection 3.2.1shows the derivationf the compressor equation

based of several fundamental properties and assumptions.
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3.21 Derivation of CompressorEquation for Single-Phase Flow

There are dferent processes by how gas is compressed and they are categorized as
isothermal, adiabatic (isenpic) and polytropic compressiolsothermalcompression is

a process where the gas pressure and volume are compressed as such that there will be no
changes in temperature. Hence, the least amount of work done is through isothermal
compression with comparison to other typégas compressiofowe\er, this process is

only of theoretical interest since it is virtually impossible to maintain temperature

constant while compression is taking pléeknon, 2005)

On the other hand,dabatic compression is essentially a psx defined by zero heat
transfer occurring between any molecules in contact thi¢ghgas. Isotropic is referred as
when an adiabatic process is frictionleBslytropic compression imtrinsically similar

to adiabatic compressipaxceptthat there is n@eed for zero heat transfer in the process.
The relationshipbetween pressure and volume for batihadiabatic anda polytropic

processs as follows:

PV™ =C (3.9
and
RV," = BV," (3.10

where:P = pressureY= volume,C= constant
np = polytropic exponent (polyopic process)Notethatp= o0 = r ati o of

heats of gas if the process is adiabatic (isentropic).

N
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Hence, work done by compression cothénbe calculated byntegrating the expression

(3.10:

where W = work done by compressiomaking the integral of expression (3)lihen
yields, for a polytropic process

A np-1

xPiym 4 (3.12
P

7

=

I

©

<
(DD D (D

Sinceenergy could be defined as work done by a force, the power required to run the
compressor station could then be expressed in the context of gas flow raisciadge

pressure of compression station:

HP=MW (3.13

SubstitutingM = pcgscandexpression (3.12nto expression (3.1)3the equation written

in terms of Poweis as below:

n,-1

HP = M oy &Py
= L4, PV e—) 2 (3.14
n, - 1 8 o}

where:HP = Power,
M = Mass Flow Rate

r.. = Densityat standard conditions
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0y, = Gas Flow Rate

Using real gataw, pV = ZRTcan besubdituted in the expression (3.Lltb account for

averagecompressibilityfactor effects.

Considering units conversion for oilfield units standaadsathercommon form ofthe
formulafor multistagecompres®n, which assumes intercooling and equal compression

ratios across all stages:

np-1

n, € p =
HP =0.0857>—2 poq_TiéV%)eH)"pms‘ -1 (3.19
n-1" 8 o}

p

where

HP = compressor horsepower, HP

np = polytropic coefficient oratio of specific heatéf adiabatic) dimensionless
Nnst = number of compression stages,

“Y= suction temperature of gas, R

n = gas flow rate, MMSCFD

Ca

= entrysuction pressure of gas, psia
0 =final discharge pressure of gas, psia
& = average gas compressibility, dimensionless

— = compressor adiabatic (isentropar)polytropicefficiency, decimal value (0.76.85)
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3.3 Wellhead NetworkEquation

Wells areprimarily treated asource for the natural gasietwork Wells areassumed to
be producingfrom a defined shuih pressurdi.e., reservoir pressurat shutin conditions
adjusted by hydrostaticand the flow ra is ultimately dependent gmevailingwellhead
pressuresThe dassic backpressure equation relating gas rate to flowing preasure

developed by Rawlins and I8glhardt (1936) is expressatireservoir conditionas

G =Cr OF Ho)" for0.5<n<1 (3.19

where:0 = reseavoir conductivity or productivity index. The productivity indexasly
constant when the well igroducingin a pseudesteady state and could be obtained
from welltesting dataor isochronal testing of the welllhis equation can also be

rewritten at surface (wellhead) conditions with the following approximation:

qui = C:w Cpﬁhut pzwh)n for 05 <n<l1 (317)

where C,, = well conductivity Please note tha&l, essentiallycaptures or integrates the
effects ofthe reservoir productivity index and tubing performance using outflow/inflow

nodal analysis.

The backpressure equatioriginatedfrom field observations for a lowressure gas well,

the backpressure coefficient isufad to be n=1 as it matches the behavior predicted by

Dar cy oisEquatow (3.1 Smalervaluesofnr ef | ect t he devi ati o
law that affect the calculations and interpretations of gas well produdt@nequation

was empirically developed after interpreting several hundreds of malé gas wed A
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linear trend was actuallgcrutinized on the lotpg plot of rate versus delta pressure
squared(Golanand Whitson, 1991)It was observed thahé pressure squared actually
accountsfor the fluid properties that are highly dependent on pressure sutie gss

viscosity anccompressibility factor.

3.4Newton-Based Gas Network Model

Gas network analysis entails the calculations of flow capacity of each pipeline segment
(B-segments) and pressure at each pipe junctieno@dés) in a network. This can be
accomplished either by making pipe flows the primary unknowns of the problenthg.e.,
g-formulation, or nodal oop f or mul ati on, consisting of
nodal pressures the primary unknowns (i.e.,p@mulation, or nodal formulation with

ANLO unknowns) . | ee-forrautator @ loop dotmulationk veheteop

flow corrections become the primary unknowns in the problem, is also possible. In all
cases, in order to achieve mathematical closure, the number of available equations must

match the number of unknowns in fleemulation.

3.4.1 Nodatloop or g-formulation

In a nodalloop formulation, network governing equations are articulated via the
application of mass conservation principles applied to eadeand energy conservation

principles applied to eadbopi n t he system i nBoonkndvwens (iet,0 s ol
individual pipe fl ow r at e sgdatoopoh ef oarprpurl ocaat ci h

because of the source of t lgéormelgiomatheasudei
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of the type of the unknowns being solved for. Mass conservatiotewidt each node
requires that the algebraic sum of flows entering and leaving the node must be equal to

zero. In other words,

a ag - a ag'+S- D=0 written for each node and flovwenverging to it (3.19

ANO equations of ngpe san e ovintteneat each nadangiionnf t hi s
the system. Equation (318 recognized as thé'law of Kirchhoff of circuits, in direct
analogy to the analysis of {3 owhodfriieepreecsternt
any external supply oresnand (sink/source) specified at the node. For gas networks, this
equation is actually a mass conservation statement even though it is explicitly written in
terms of volumetric rates evaluated at standard conditions. Equatidh ( pr ov-i des i
10 adime ssdgwati ons-1benaudsaée¢ emquptidns are |
thisnodatloopf or mul ati on, ALPO additional equatio
the number of un klhtoLR B ] ahndBaohieye mathematieal cioshre

in the formulation. These equations are formulated by applying"Hav of Kirchhoff

to every independent loop. In any closed loop, the algebraic sum of all pressure drops
must equal zero. This is true of any closed path in a network, since the valessafrpr

at any point of the network must be the same regardless of the closed path followed to
reach the point. The signs of the pressure drops are taken with respect to a consistent

sense of rotation around the loop, and the loop equation is written as:

I loop

a (pf- p) ®  written for each pipe within any given loop (3.19

ij
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Following Table 3.1, loop equations are rewritten in terms of flow rates using the

horizontal pipe flow constitutive equation in terms of pipe conductivities:

/n

=0 written for each pipe within any given loop (3.20

1000
[

B

Once mathematical closure has been attained (number of equations = number of
unknowns), a mathematical solution strategy is formulated, which is the subject of the
solution of network equations section in this manuscript. Please note that theott®p
formulation requires the user to gitefine or identify all flow loops within the system in

order to formulate network governing equations.

3.4 2 L o aormaolationse

In a loop formulation, network equations are written in terms of the principles ofyenerg
conservation around a loop stated in Equatidhd9 and 3.20 above. The energy
conservation equat i o"hlawiwhichgtatese¢hat sumyof pkessure h h o f
drops around any | oop is zero. Becasise on
approach, flow rate corrections®{oop) defined for each loop become the unknowns of

the formulation as shown below:

" éqgli(jj + Doop 16“

a i BECI— 0 =0 written for each pipe within any given loop (3.2)
e i 0
c J h

Two different sets of flows are defined irgagformulation or loop formulation: branch

flows and loop flows. Branch flows¢ij) are approximations to the true pipe flow values
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and | o o plopfareonwaslucéddoccorrect prevailing branch flowsrideo to yield

the actual values. Initial values for both branch flow and loop flows are required for the
iterative procedure. When EquatidhZ]) is satisfied for all loops, convergence has been
attained. This formulation alsgequires the user to identify all flow loops within the
network system prior to formulating associated governing equations. Since a number of
permutations of independent loops are possible for any given large network, this
formulation further requires optization strategies for the optimal set of loops that

would be used during the solution strategy.

3.4.3 Nodal orp-formulation

In a nodal formulation, network equations are written on the bddlseoprinciple of

nodal mass conservation (continuity) adon T hi s -1yoi ell idse affN y i nde
equations that canlobenksmneodvntso (Saleve fnaordafi N
nodal pressure is assumed to be specified within the system. In this formulation, nodal
mass conseation statements ikquation (3.1Bare rewritten in terms of nodal pressures

using the pipe flow constitutive equationsTiable 3.1, which yields for horizontal flow:

4,C, @p?- p})"+S- D=0 (3.29

In Equation 8.22), fluid flowing into the node is assumed positive and fluid leaving the
node is given a negative sign. External supplies and demands (sink/sources) specified at
the node are also considered. Théogmulation or nodal method does not require the
identification or optimizéion of loops and the application of th& 2aw of Kirchhoff is

circumvented. Howevein a pformulation, the resulting set of governing equations is
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more complex and more ndimear than the ones found in the lecgnd nodaloop
counterpartsince pressres are expressed in squared differetc@addition, he method

is well-known to suffer from poor convergence characteristics or severe sensitivity to
initialization conditions when NewteRaphson protocols are implemented to achieve a

solution (Ayala, P12; Larocket al.,2000, Osiadez, 1987).

With that, this study shows that theghly norlinear nodal equations in Equatic®.Z2)

can be readily transformed into linear equations to circumvent this proAkmresult,

the poor convergenagharacteristics of the-fprmulation are eliminated, convergence is
made independent of useefined initial guesses for nodal pressures and flow rates, and
the need of calculating expensive Jacobian formulations and associated derivatéves
also removd. Concurrently, the analog methatiich will be discussed beloretains the

advantages of theffermulation in terms of not requiring loop identification protocols.
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CHAPTER 4

THE LINEAR PRESSURE ANALOG MODEL

4.1 Linear Analog Model

Regardless of the type formulation used, all Newdased methods are prone to lack of
convergence and sensitivity to initial guesses, with the nodal formulation being the most
susceptible of all. Presumption bappropriatenitial guesses is thkey for solving gas
network equationgor every existing methodn order to circumvent network solution
convergence problems of currently available methods and their potentially costly
implementation, this study proposes the implementation of a {preasure aaog
model for the solution of the highly néimear equations in natural gas transportation
networks. The method consistsddfining an alternate, analog system of pipes that obey
a much simpler pipe constitutive equation, i.e., a liprassure analofiow equation,

which is written for horizontal pipes as follows:

aaij = Lij @pi - pj) (4.1)
whereL; is the value of thénear pressure analogorductivity. Note that Equation (4).1

uses the flowpressure droglependency prescribed by the Hadgen i seui | | eds
liquid flow in laminar conditions. Consequently, the proposed analog seeks to map the
highly nonlinear gas flow network problem into the much more tractable liquid network

problem for laminar flow caditions. When gas pipe flows are written in terms of sach

linear pressure analog, nodal mass balances usedfdrmplations (Equatior3.22



27

collapse to a much simpler (and more importantly, linear) set of algebgaiations

shown in Equation (4)2
aLdn p) DO (4.2
which can be simultaneously solved for all nodal pressures in the network using any

standard method of solution bifiear algebraic equatiodsas opposed to its ndimear

counterpart of Equatior8(22).

Linearpressure analog conductivities are straightforwardly calculated as a function of

actual pipe conductivities according to the following transformation rule:

L, =T, &, (4.3
wherelL; is the conductivity of thdinear-pressure analogipe which confams to the
linear equation in (4)1 and C; is the actual pipe conductivity conforming to the
generalized flow equation definition irable 3.1that for horizontal pipes becomes:

qGij :Cij Qpiz - pj2)n (4-4)

In Equation 4.4), nis equal t00.50 as prescribed by the generalized gas flow equation.

It is straightforwardly demonstrated that the variallen Equation 4.3), i.e., the analog

pipe conductivity transform, is given by the expression:

” (4.5
This analogpipe transform is a dimensionless quantity that enforces therétav

equivalency of EquationsA(l) and @.4) for the pipe of interest. The dimensionless
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analogpipe transfom turns out to be solely dependent gn i.e., the pressure ratio

between the pipe end pressures as shown in Equéti®n (

=P (4.6

wherei=upstream node arjg¢ downstream node atefinedin Equations 4.1) and @.4).

The derivation ofinearpressure analog conductivigyshown inFigure 4.1below.

n
= P
0
. T b Qo 2—
0 p
0 i p 8
o] i p
q q
0 “YO

Figure 4.1 Derivationof LinearPressurénalog Conductivity
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Because pressure ratios are always higher thanpprep( for fluid to flow, given that
the i-th node is always defaulted to the upstream location), aympe® transforms are

constrained to take values larger than urfiigure 4.2 illustrates his dependency for a

variety of pressure ratios. Sincg > 1, it follows thatlL; >C; from the transformation

rule in equation(4.3). Resulting lineaanalog conductivities have larger values than

actual pipe conductivity, i.e., linearnal og pi pes are more fAconc
counterparts in terms of absolute conductivity valuesgenerall; 6 s a't | east d
Cos in most net wor ks, given Lbatsipnpesenma

losses would be excessive for an economical operation.

Ty 509

0.00

0.00 0.50 3.00

Figure 4.2: Analog-pipe conductivity transformil{) as a function of pipe pressure ratio

(riy)
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Once the lineaanalog transform has been applied, all unknown nodal pressures in the
network can be calculated by solving the resulting linear salgebraic equations. Since

actual pressure ratios;) are not known in advance, the linear analog method starts its

first iteration with theconditionL; =C; . Note that no initial guesses for nodal pressure
values or pipe flow rates ameeeded. However, once a first set of estimated nodal
pressures become available during the first iteration, interim pressure nqaitboqoiﬁoe

conductivities, and pipe flow rates can be calculated. In this first iteration, resulting

pressure drops would become significantly overestimated because pipe analogs are forced

to be less conductive than they should sibge>Cj instead ofl; =C; . Interim

j .
pressure ratiosr@t ) thus start at signiantly overstated values during the first iteration

and, upon successive substitutions and aftlsw inexpensive iterations, they steadily
adjust to actualj. When this occurs, the ndimear network problem has been fully
solved. Convergence etained when any further nodal pressure update would become

inconsequential within a prescribed tolerareg( p T N i JQ®

Because pressure drops are always overestimated in the first analog iterations, upstream
pressures will be underestimatiédlownstream pressures are specified. This may force
upstream pressure to take negative values early during the iterative procedure. For these
cases, a direct application of Equation (4.6) would violate the analog principle that
requires all pipe pressuratios to be positive and higher than 1. Therefdreggative

downstream pressuis calculated, \@lue of pressure ratio calculations defaulted to a
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minimum value equal to atmospheric pressurand upstream pressure is displaced

accordindy usingthe calculated pipe pressure drop. In other words,

_I(p- Rl 247
! 14.7

(4.7)

Please note thalis type ofadjustment can be avoidedagetherf instead of initializing

the analog method with the conditidg =C; (first iteration), one uses a multiple of the
pipe conductivity (such ak; =2G orl; =3C; ) for initialization. Such initialization

makes the linear analog more conductive from the onset, thus avoiding unnecessarily

large pressure loss estimations during the first iteration.

It can be shown thahé proposednalogmethod has a remarkably stable performance

This is due in part because itsrations do not necessitate upeescribed guesses and

each individualiteration solvesa feasible liquidflow scenario with a unigue solution.

This is to be compared to the potentially unconstrained behavior of Né&aioimson
protocols, which demand the use of good in
closeto the actual solution) for convergencehi® possible. The proposed approach is

also fundamentally different from the Linear Theory method (Wood and Carl, 1972) in

the sense that it always relies on exact solutions to-vedlhved lineaanalog liquid

fluid flow problems for each of its iterations. The Linear Theory Method, instead, relies

on solving approximate sets of linearized equations, which do not necessarily correspond
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to physicallyconstrained systems and thus is susceptible to spurious numerical

oscillations.

Note that the value oCij in the transformation in REetion (4.3 remairs constant

during the iteration process for all flow equations where friction factor (and thus pipe
conductivity as per its definition ifable 3.1) are defined to be independent of flow rate.
This is the case, for example, of the Weymouth and the AGA-futlyulent friction

factor equations iffable 3.1 For all other flowratedependent friction factor equations,

in order to preserve initigjuessfree nature of the solution process, tﬁq estimation is
defaulted to that of flowate independent flow equation such as Weymouth. For all
subsequent iterationsCij becomes simultaneously updated based on thé coosent

flow rate information using the friction factor expression of choice fi@ble 3.1 The
proposed workflow for the implementation of the lineaaalog methodology is displayed

in Figure 4.3



Input: Pipe, Fluid,
Network Properties

J

Calculate C;; (Table 1)
Let Li; = wCjj for first iteration only
Where w is a positive integer (1,2.3 ...)

Solve ¥ Lj(Pi— P;) +S—D =0

simultaneously for all nodes

v

Obtain P for All Nodes

Check for
Convergence

(Appax <€)

Network System Solved

Update Lii = Tjj. Cyj

Calculate T;; using

available pressure data,
Update C;; if flow-dependent

Figure 4.3 Flow Chart for LineatAnalog Implementabn

33
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4.11 Extension to Networks with Inclined-Pipes

Similar analog transformations can be proposed to extend the-#inekng model to
network systems with inclined pipeghe constitutive gas flow equati@¢s.4) for inclined

pipes becomes

4% =G &F € P> 4.9
wheres is the pipe elevation parameter,s equal t00.50, andCj is the actual pipe
conductivity for the inclined generalized flow equation definition showFainle 3.1 On

the basis of this constitutiveguation, the linear pressure analog model for inclined pipe

systems is postulated as:
n O n  an (4.9

which leads to the same analpipe conductivity transform in Equatiod.p):

(4.10)

(4.11)

w

e’p,
Note thatthe analogpipe conductivity transform for inclined pipes is identical to that of
horizontal pipes, and only the pressure ratio definition is slightly modified with the
elevation correction for the downstream pressiile resulting characteristic matri,
as discussed in Chapter 5 Resu gl Discussionswould be asymmetric due to the

elevation correction introduced in the linear analog model.
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However, t is alsopossibleto redefine the lineaanalog transform for inclined pipes in
order to preserve the symmetry of the characteristic mitriwhenever desired, if the
application of efficient Cholesky algorithms deemed of importance. Characséc
matrix symmetry canoe preserved by implementing the analog constitutive equation in

Equation 4.1) for inclined pipes, reproduced below:
aaij =Lij @pi - pj) (4.12)
which would lead to a different analqgpe conductivity transform than the one used

thus far:

Y _— (4.13)
and which uses the same conventional pressure ratio definition:
i — (4.19)

This alternative approach would lead to linear algebraic equations with a symmetric
characteristic matrix. All proposed analog methods are summarized ihatile 4.1

below.

Table 4.1: Summary of LineaPressure Analog Constitutive Equations ( 6 JY)

Network Type Linear-Pressure Analog| Analog Conductivity Transform, T;;
Constitutive Equation
Horizontal Pipes N 0 N ) C ..
(for a symmetric Y p —— M 1Q —
characteristic matrix) ' Y n
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Inclined Pipes ~— )
- Approach 1 d Lo Y P _° _mpmiio ——
(for an asymmetric S an
characteristic matrix)
Inclined Pipes N 0 N n i Q . f
- Approach 2 Y — M IQ
(for asymmetric L n
characteristic matrix)
4.1.2 Extension to Networks with Compressors
As discussed in ChapterZ3the compressor equation is giver by
n, € p o
HP=0.08572"2q, TZ, % L g (4.15)
n-1" & o}

Since the linear analog model is developed based upon the nodal formaladighe
network formuétion is based upon the prin@mf nodal mass continuityhe compressor
eqguation ighenwritten in terms opipeflow constitutive equations

Rearangingthe compressor equatiat ashorthand equatiompne obtains:

O, = — (4.16)

where

=0.0857 n 9, % ) 4.17
k. =0. W)E(Zav) ) (4.17)
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The total ompressor ratidor a compression statias calculatedasthe ratio of its final
compressor dischargegssure to itentrysuction pressure:

r _B (4.18)
P

Gj

In order to construct linear sets of equations from coupling compresmcempression
ratiois assumedio bethe target variable that needs to be specified by the user. For such

scenarios,
O, :CC”..HP (4.19)

wherethe compressor constant is given as:

C. = 1 [MMSCD/HP] (4.20)

clj n,-1

kc?%rcij )ﬁmp - 19
C +

The @mpressor equatios thenincorporatednto the gasetwork system by predefining
the compressor desired total compressiatio, which results inhe determiation of the
horsepowerrequired for the compressoto be solved foras an unknownwithin the

systemof equatiors.

4.1.3 Extension to Networks with Wellheads

Thewellhead equatioat surfacgwellhead) conditions can be written as:

qwq = CW'(pshut2 _pwhz)n for0.5<n<1 (4.2)
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This constitutiverelationshipretainsa form identical to thatof the pipeline gas flow
equation and henca similar analogtransformation could be appligd linearize the
wellhead equationThe backpressure equation is similar to wes the generéized pipe
equation is expressewhile the coefficiens n andd vary for different reservoirand

tubingproperties fothe backpressure equation

Thelinearanalogequationfor any wellhead in the network system is then given by:
q\NGi = Lw @shut pwl‘) (42)

Linearpressure analog conductivitiew a wellheadareagaincomputed as a function of
actualwell conductivities according to the following transformation rule:

L, =T, O, (4.23
where L, is the wellhead conductivity in the linear-pressure analogmodel which
confams to the linear equation in (22 and C, is the actualwell conductivity
conforming to thewellhead equation (4.21The analogwell conductivity transformr,,

in Equation 4.23) now becomes a function of the well flow exponent (which ranges from
0.5 to 1) and the well shin pressure, as shown below:

=@ Y @ Pk (4.24)

w shut
w

where he wellheadpressure ratior, is given by the ratio of shuh pressurep,,, to

wellhead pressure,,, .

r, = Dot (4.25)
pwh
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Since f, is not available until the next iteratioh,, is to be approximated by the

following expressiorduring the first iteration:
Lw = pshutzn-1 (")w (426)

2n-1
Please note thalfsnut

is the constant that appeam the TWterm and hence it should be
introduced in the first iteration to ensuaereasonableonductivityapproximation in the

first iteration.

Figure 4.4depicts thedependencyf the analogwell conductivity transfornfor arange

of flow exponentsSinceT,, > 1, it follows that Lij >C”- from the transformation rule in
equation(4.23. Similarly, resulting linearanalog conductivities have larger values than
actualwell conductivity, i.e., lineaanalogwells ar e moreofcdédpdoduicV é ¢

than their gas counterparts in termgt@fabsolutevalues of theiconductivity.In Figure

4.4, Psprwas assumed to be 100 psia for illustration purposes.
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Figure 4.4  Analog-well conductivity transform (T ) as a function of well pressure
ratio (rw) (for Pshy: = 100 psia)

Similar to the discussion for pipetheremay beoccasions wherevellhead pressures can

be estimated to be negative during the first iterations. This is due to the fact that early
analogs tend to overestimate actual pressure dnofie system. For these cases, since
pressure ratios must always be positive and higher thartten&llowing expressiors

used whenvellhead pressure is deemedoe negativéy early iterations:

- pshut

14.7 (4.27)
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CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Case Study 1: Horizontal Pipd&etwork System

For this case study, the horizontal network system depictdéigure 1.1 is analyzed

using the generalized gas flow equation coupled with A@WK turbulent friction factor
calculations. An average flowing temperature of°?5andan average compressibility
factor of 0.90are assumed for the entire system for illustrationpmses; however, the
methodologywould remainunchanged if each pipe were to be considered to operate at
different average temperatures and if compressibility factors were calculated in terms of
standard natural gas correlations. Those variables wouldaffelst the update of actual

pipe conductivitiesC;; described in the solution protocol &fgure 4.3 The network
handles a gas with a specific gravity of 0.69 and all pipes are assumed to be carbon steel
(e =0.0018 in), horizontal, 3tnileslong and NPS 4 Sch 40, except for pipes (1,2), (2,3),
(1,4) and (4,7) which are NPS 6 Sch 40. The pressure specification is given at node 9 and
it is set at 130 psia. Based on the implementation of the solution protdeglire 4.3

the gas network undetudy generates the following linear system of algebraic equations

in terms of nodal pressures:
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which, in compact notation, could be expressed as:
KP=S
whereK is the network characteristic matriR,is the network pressure vector a8ds
the network supply/consumption vector. In Henatrix, the diagonal entri€3; represent
the summation of all offliagonal entries for thieth row. For instanceQ©; = L1, + Li4;
Os = Los+ Las+ Lsg+ Lsg; andOg = Lsg + L7g+ Lgo. All pipe conductivities I(j andC;)
are assumed in MMSCFD/psi in this example. Given that what results is a system of
linear equations, solution of the matrix equasisimple and straightforward. It could
be directly solved usingU decomposition, Gaussian Elimination, Conjugate Gradient

methods or any linear equation solver.

Brebbia and Ferrante (1983) present a streamlined protocol for the assembly of the
network characteristic matrix and supply/consumption vector for the @&nalya water
network under laminar flow, which becomes fully applicable for the assembly of the
proposed natural gas lineanalogs. It is shown that the characteristic matrix of the

network K is straightforwardly constructed in terms of a connectivity table (which
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matches each pipe branch with its upstream and downstream nodes) available from input
data. This assembly protocol streamlines the identification of the location of each pipe
conducivity contribution within the characteristic matrix as a function of the information

in the connectivity table. The assembly protocol also honors the presence of boundary
conditions, such as pressure and supply/demand specifications. It is recognizbd that
matrix K is a banded matrix, which is a property that can be used to save storage space
during computations. The hdiandwidth of this matrix is a function of the maximum
difference in the numbers of any two nodes connected to each other; in parieutalf
bandwidth is equal to that maximum difference plus one because of the presence of the
diagonal. Fronfigure 1.1, this maximum difference is equal to @rresponding to the
difference between the node numbers of pipe®) @ (1,4) for instane. This yields a
half-bandwidth of 4 which is evident in the matrix above. A properly nuetbiarge
network system can be made to have smalkbatidwidths, thus making large storage

savings possible.

By moving all known pressumeode matrix entriesLég and Lgg) to the consumption
vector, the characteristic matrix can also become fully symmetricKi.e,K'. This
property can not only be used to save additional storage space (i.e., only the upper or
lower portion of the matrix needs to be stored) but also to implement efficient linear
equation solvers that fully exploit this property. A system of linear teansg with a
positivedefinite and symmetric matrix can be efficiently and inexpensively solved using

Cholesky decomposition, which can be shown to be roughly twice as efficient as LU
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decomposition for solving systems of linear equations (Reess, 2007). Matrix K is
positivedefinite because it is symmetric and diagonrdityninant with positive diagonal
entries. Note that positive diagonal entries are obtained by multiplying all matrix and
right-handside vector entries byl for all equations other &m the dummy constant

pressure specification.

The inexpensive, steady convergence nature of the proposed protocol is depicted in
Figures 5.1.1 to 5.1.5for the iterative solution of the case under study. The final
converged solution is provided Figure 5.1.6 which fully satisfies the original set of
highly nonlinear gas network equations. Note, again, that no-sestided guesses of
pressure or flow rate are needed at any pointhef protocol and that jush few
inexpensive iteratianare needed fothe protocol to reach the immediate neighborhood

of the actual solutionFigure 5.1.1 demonstrates that the values of anglque
conductivity transformratios steadily converge to themue valus as the number of
iterations increases. This can be fertlvisualized inFigure 5.1.2, where it becomes
evident that pipe pressure ratios progressively stabilize as the number of iteration
increases. The relationship between the anpipg conductivity transforms and pressure
ratios (orginally illustrated inFigure 4.3) is continuously honored during the process as
demonstrated byrigure 5.1.3 As a result, nodal pressures and flow rates steadily
approach their true values as the protocol progresses, as shdvigure 5.1.4 and
Figure 5.1.5 respectivelyThese figures demonstrate that nodal pressures and flav rate

are initially overestimated because linear analog conductivities were initially made equal
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to actual pipe conductivities. This sificantly underestimates lineanalog

conductivities and aridially creates initially large pressure drops in the lireaalog

model.
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Figure 5.1.1 Analogpipe conductivity transform improvement rati.(/Ti) vs. no. of

iterations k) i Case Study 1
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Figure 5.1.3 Analogpipe conductivity transformT{) vs. pressure ratigi) i Case

Study 1



P (psia)

1100

1000

900

800

700

600

500

400 |-

300
g

200

100
1

Ygij {(SCFID)

Figure 5.1.5 Pipe flow rate @g;;) vs. no. of iterationskj i Case Study 1

s vapdaoos+xoo

Pipe (1,2)
Pipe (2,3)
Pipe (1,4)
Pipe (2,5)
Pipe (3,6)
Pipe (4,5)
Pipe (5,6)
Pipe (4,7)
Pipe (5,8)
Pipe (6,9)
Pipe (7.,8)
Pipe (8,9)

47



48

Demand
2 MMSCFD
378.83 psia
N1 N2 ﬁ N3 Demand
Supply ) - O > O:> 2 MMSCFID
16 MMSCFD q12 =7.74 MMSCFD q23= 3.83 MMSCFD 328.87 psia
536.11 psia o
> 5 >
0] g g
% = =
T W T
3 “ﬁ @
v o v ©
Shhee —0 >— O —O— 2 E"&?QE’;FD
3 MMSCFD N4 45 =162 MMSCFD lf N5 q56 =122 MMSCFD | N6 ,
351.08 psia 198.79 psia
A Demand o A
i 1 MMSCFD 3 i
] 264.16 psia = @
2 i s :
3 2 2
3 1l -
Il fos) Il
vo \a v Demand
Demand =) —C ——(r=)> 2 MMSCFD
2 MMSCFD N7 078 =164 MMSCFD N8 489 =095MMSCFD N9 Psp=130 psia
300.38 psia ﬂ
Demand
2 MMSCFD
187.53 psia

Figure 5.1.6 Fully-converged natural gas network distribution scerafiase Study 1

5.2 Case Study2: Inclined Pipe Network System

Case Study2 considers an identical network and scenario as the one presented in Case
Study 1 (illustrated irFigure 1.1), but after placing all nodes at different elevations.

Reference node 9 is placed at datum level (Elevation=0) and its pressure remains
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specified at 130 psia. This case study seeks to incorporate the effect that elevation losses
or gains can have on the system into the lh@@mog model, which was neglected in the

previous case study. Nodal elevation information is providédgare 5.2

2000

10000 ..

Elevation (ft)

500.] .

Figure 5.2 Node Elevations for Case Study 2

Based on the implementation of the solution protocéligure 4.3 the application of the
linearpressure aalog constitutive equation in @).for elevated pipeto the gas network

under study generatdset following linear system of algebraic equations:
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which, in compact notation, is expressed as:

KP=S
In the newK characteristic matrixthe upper right portion of the matrix contains all the
ie’?0 el evat i capplicabtetordewndtranonodes and the lower left portion of
the matrix contains conductivity information for the upstream nodiegyddal entrie;
are no longer just the summation of all-dfagonal entries, given that elevation terms
mu st be taken into accoants fboumd!| i tashks
position.For instanceD; = L1o + L1g, but Os = Lps €252+ L4562+ Lgg+ Lsg; andOg
= Lsg€™¥2+ L7€"®%+ Lgo. All pipes conductivitiesl(; andC;) remain in MMSCFD/psi
in this example. The resulting characteristic matrkk remains banded but no longer
symmetric; thereforethe implementation of a Cholesky decomposition is no longer
possible. The resultingystem of linear equations is then directly solved using any other
standard linear equation solver such as LU decomposition, Gaussian Elimination, or
Conjugate Gradient ntleods.Figure 5.21 to 5.25 present the results of such iterative

solution protocol which follows the workflow dfigure 4.3 Final converged values or

the actual network solution are displayedfigure 5.26. As previously shown, analog
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conductivity andoressure ratios steadily converge to true val&egufe 5.21 and5.22,
respectively) and maintain the same functional dependency among Rigeme(5.23).
Pressure and flow rate estimations converge steadily and progresively as highlighted in
Figures 5.2.4 and 5.5, respectively. Againflow rate and pressures are initially
overestimated at the beginning because of the actual pipe conductivity are used in the
linear analog constitutive equation for the first iteration. Convergence behavior remains

smath and steady.
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Figure 5.21: Analogpipe conductivity transform improvement ratidg(:/Ty) vs. no. of

iterations K) i Case Study 2
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Figure 5.23: Analog conductivity transfornil) vs. pressure ratiajf) I Case Study 2



Figure 5.24: Nodal pressuregy) vs. no. of iterationskj 1 Case Study 2

Figure 5.25: Pipe flow rate g;j) vs. no. of iterationsk i Case Study 2
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