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ABSTRACT 
 

The rich resource of Marcellus gas has recently boosted up the interest of people 

as the drilling technology advances. Apart from the difficulties in exploration and drilling 

for natural gas, problems of building and developing network that delivers the gas to 

customers remain unsolved for shale gas companies and government. In the paper, we 

investigate an in-land shale gas infrastructure and production planning problem. Multiple 

gas fields with uncertain reserves are considered. Platforms are connected by pipelines, 

which will eventually transport the gas to a central pipeline that delivers gas to merchants 

and customers. The goal is to obtain the maximum expected net present value of the 

project within a given time horizon. As the revelation of field reserves will affect the 

decision maker’s action, we develop a stochastic model with endogenous uncertainties. 

Modern stochastic programming technique is applied. Specifically, conservative 

approximations are obtained under the assumption of piecewise constant binary and 

linear real-valued decision rules. The decision rule approximation successfully solves a 

small sized example with continuously distributed uncertainty parameters. Near-optimal 

results are obtained efficiently and can be improved by increasing partition subsets. 
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Chapter 1  
 

Introduction 

 The Marcellus shale, a layer of shale rock beneath the rolling hills and mountains 

of Pennsylvania, is the largest unconventional natural gas reserve in the world. This well-

known geological formation that contains significant amounts of natural gas was never 

considered worthwhile until recent technology advances. Though reserve estimates are 

considered uncertain at this point, most of the completed Marcellus well revealed 

abundant recoverable reserves. Together with the emphasis on consuming green energy 

due to environmental issues, natural gas, which has considerably lower carbon content 

than petroleum and coal, will no doubt grasp its own share of the market. 

Marcellus shale gas play becomes more and more attractive these days as the 

drilling technology advances. Reports show that the activity in the Marcellus will 

continue to expand and natural gas production from Marcellus could rise to almost 4 

billion cubic feet BCF per day by 2020 (Considine and Watson 2009). However, among 

some key factors affecting development is infrastructure and production planning. 

Though it may seem hard to explore and drill for natural gas, the real work happens to be 

the development of a network consisting of thousands of miles of gathering lines and 

pipelines to carry the gas to consumers (Considine et al. 2010). Besides, building natural 

gas processing facilities takes considerable time and incurs significant costs. To sum up, 

developing transportation and production processing networks takes money and time. But 

the high potential environment and investment impact stimulates the research. 
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One of the most major concerns is that the decision maker is exposed to a great 

deal of uncertainty. Though the location of gas fields could be identified, the amount of 

gas in these reserves remains uncertain until the platform is built. Therefore, it is crucial 

to take uncertainties into account when formulating the model. 

A typical shale gas infrastructure and production problem has multiple potential 

reserves within a region to build well platforms on. The extracted natural gas needed to 

be purged and dried before sold to merchants and customers for use. Therefore, a 

production platform is usually built on site to process the gas before it can be transported 

to other areas. In the paper, we call the combo of well platform and production platform 

‘a platform’ in general. After the gas is processed on site, it is transported via pipelines 

that connecting platforms together. All the gas produced is to be transported to a central 

pipeline that connects different regions together. The shale gas infrastructure and 

production planning problem requires the decision maker to select when and where to 

build platforms, to increase the capacity of platforms and to install pipelines. Besides, 

operation decisions are to be made to determine the production schedule for different gas 

fields. 

For simplification, the planning horizon is discretized into time periods. The 

decision maker is to make decision at the beginning of each time period and all the 

decision take immediate effect. As the decisions regarding when and where to build 

platforms and pipelines are represented as binary variables, and other decisions including 

the capacity expansion and extraction schedule are real-valued, the formulation has the 

form of mixed binary integer programming. However, all the decision variables are 

dependent on the information of gas reserves. The problem thus becomes a stochastic 
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programming with endogenous uncertainties. In the following chapter, we will present 

both a one-stage and a multi-stage stochastic programming model for the shale gas 

infrastructure and production planning. 

The paper is organized as follows: 

In chapter 2, a literature review is presented regarding previous work on gas 

production planning. Research works on stochastic programming that are used to handle 

uncertainty are also summarized. 

 In chapter 3, the problem statement and assumptions are presented. The 

description of the model is also discussed. 

In chapter 4 and 5, models are built for the one-stage and the multi-stage 

infrastructure and production planning respectively. An approximation of each one of the 

problems is presented followed by a numerical example with three gas fields and five 

links. 

The last chapter consists of conclusions of the thesis together with some 

suggested future research directions. 

 

 

 

 



 

 

Chapter 2  
 

Literature Review 

The economic impact of shale gas is studied by Considine et al. (2009, 2010). 

They use IMPLAN modeling system to estimate the job creation, value added, etc. 

However, the development of the shale gas network consisting of thousands of miles of 

gathering lines and pipelines to carry the gas to consumers remains a major concern 

(Considine et al. 2010). 

 Though the shale gas infrastructure and production planning problem is a 

relatively new topic, there have been intensive research studies regarding the oil and gas 

field infrastructures. Comprehensive studies on deterministic approaches can be dated 

back to 1998 (Ierapetritou, Floudas, Vasantharajan and Cullick, 1998; Iyer, Grossmann, 

Vasantharaja and Cullick, 1998; Grothey and McKinnon, 2000; Barnes, Linke and 

Kokossis, 2002; Kosmidis, Perkins and Pistikopoulos, 2002; Lin and Floudas, 2003; 

Ortiz-Gomez, Rico-Ramirez and Hernandez-Castro, 2002). Uncertainty has also been 

considered in some of the literatures (Haugen 1996; Meister, Clark and Shah 1996; 

Jonsbraten 1998; Goel and Grossmann 2004). 

 A dynamic stochastic programming model that incorporates with uncertainty in 

the size of oil fields is proposed by Haugen (1996). The author only considers the 

decisions made for scheduling of oil fields. Exploration and production decisions for one 

field under uncertainty in reserves and oil price are studied by Meister, Clark and Shah 

(1996). Jonsbraten (1998) uses the progressive hedging algorithm to make decisions for 
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an oil field with uncertainty in oil prices. The problem is formulated as a mixed integer 

linear programming. The author also studies the sequencing of oil wells under uncertainty 

in size of oil fields. Both of these two works only include one oil field. 

 Based on the dependence of the order of revelation of uncertainties on decision 

maker’s action in stochastic programming, the uncertainties can be categorized as 

exogenous uncertainties and endogenous uncertainties (Jonsbraten 1998). Jonsbraten 

(1998) investigates decision problems in which actions can affect both the distribution of 

the uncertainties and the timing of revelation. Besides, there are research studies focusing 

on problems based on the assumption that uncertain parameters follow a discrete 

distribution, which could be solved using a finite scenario tree. Goel and Grossmann 

(2004) propose a model for off-shore gas field development problem with discretely 

distributed endogenous uncertainties and reformulate it as a mixed binary program. 

 Problems with continuously distributed random parameters, otherwise, need to be 

discretized before any of the above techniques can be applied. One alternate solution 

could be Monte Carlo sampling, but such technique is not considered computationally 

efficient (Dyer and Stougie 2006, Shapiro and Nemirovski 2005). While discretization 

may be able to get accurate approximations, it can increase computing cost dramatically 

when applied to medium or large-sized problems. Vayanos and Kuhn (2011) proposed a 

methodology for solving dynamic problems with endogenous uncertainties. They suggest 

approximating the adaptive measurement decisions by piecewise constant functions and 

the adaptive real-valued decisions by piecewise linear functions of the uncertainties. 

 The contribution of this paper is as follows: 
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 First, in this paper, we seek to propose models suitable for in-land shale gas 

infrastructure and production planning, which has not been studied before. A one-stage 

model and a multi-stage model with endogenous uncertainties are presented respectively. 

The assumptions and restrictions of the model are discussed. 

 Second, most of the past research works in oil field development planning under 

uncertainty deal with discretely distributed random parameters or a single oil field. We 

explore the problem in a broader context as multiple oil fields with continuously 

distributed uncertain reserves are presented and the project can last for multiple time 

horizons. 

 Finally, we provide a stochastic programming technique to solve the multi-region 

and multi-stage dynamic decision making problem efficiently by partition of uncertainty 

set. Near-optimal conservative approximations are obtained under the assumption of 

piecewise constant binary and linear real-valued decision rules. 

 

 

 



 

 

Chapter 3  
 

Problem Statement 

A gas company has several region for gas extraction, and for each region, the gas 

company has located several gas fields with unknown reserves. As for the case with in-

land shale gas production, the production platform is always built next to a gas field that 

the company decides to exploit. The gas will be processed on-site at each production 

platform and then transported to a main pipeline. Suppose the main pipeline is built and 

known and the company is assumed to be aware of the exact locations of the individual 

gas fields. The company needs to plan the gas production process and build the pipeline 

to transport the gas to the main pipeline. 

 

 

Figure 3-1. Shale gas network. 
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The model’s formulation requires the notation in table 3-1. 

Table 3-1. Notation. 

  Time horizon, in years 

P  The set of candidate production platforms. 

L  The set of possible pipelines between production platforms 

o  Main pipeline 

( )L p  The set of all ingoing pipeline to production platform p  

( )L p  The set of all outgoing pipeline from production platform p  

pr  Maximum production rate at production platform p  

td  Discount factor at year t  

gc  Unit price for gas 

p

cc  Unit capacity expansion cost for production platform p  

p

ec  Unit gas extraction cost for platform p  

l

ic  Cost for building pipeline l  

p

ic  Cost for building platform p  

p  Gas field size. Random variable. 

p

tx  Binary variable. =1 if production platform p  exists in year t  

l

tx  Binary variable. =1 if pipeline l  exists in year t  

,

p

e ty  

The amount of gas extraction for production platform p  in 

year t  
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,

l

f ty  The amount of gas flow through pipeline l  in year t  

,

p

c ty  

The capacity of production platform p  that is increased at 

the beginning of year t  

 

Assume the company has a project horizon of T  years, the time horizon is 

discretized into T  segments, with each one equals to a year. The company makes 

decisions on platform expansion, gas extraction and platform and pipeline construction at 

the beginning of each year. 

To extract gas from a certain gas reserve, platform has to be installed at the 

corresponding field.  Installed pipelines and platforms are not to be salvaged. Capacity 

expansion and gas extraction schedules may differ from year to year. All decisions take 

immediate effect. Once platform is built at p , the size of the gas field p will be 

revealed. The total amount of gas extracted should not exceed the reserve of the gas field 

p . Once information is revealed, it is assumed not to be forgotten. Annual gas 

production is also limited by a production rate which may vary field by field, depending 

on the platform. 

The uncertainty is characterized by the reserve of each gas field, which follows a 

continuous distribution. The company is to make investment and operational decisions 

each year based on the information it has up to each corresponding year. As random 

parameters are continuously distributed and decisions are dependent of the uncertainty, a 

dynamic tree model will not be suitable for the problem. As the uncertainties are unfold 

over the entire time horizon T  based on the investment decisions and operational 
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decisions are dynamic and spread over the entire time horizon, recourse decisions should 

be considered. 

The problem could be stated in detail as below. 

The company’s goal is to maximize the expected net present value of the project. 

The profit for a single year equals to the sales of gas less the construction cost of 

pipelines and platforms less the capacity expansion cost at each platform installed less the 

gas extraction cost. Note that the profit at a later year will be discounted by a factor td  

before added to the objective function. 

, 1

( )

1 , ,

( ) ( ( ) ( ))

.
( ( ) ( )) ( ) ( )

l l l l

g f t i t t

l Ll L o

t p p p p p p p
t i t t c c t e e t

p P

c y c x x

z d
c x x c y c y

  

   







 



   
 

   
   

 

 



 

 1. The total amount of gas extracted over the entire time horizon from a single gas 

field should not exceed the gas field size. Thus, 

, ( ) .p p

e t

t

y p P 


    

2. Gas production is limited by a maximum production rate at a particular 

production platform. Hence, 

,0 ( ) .p

e t py r p P     

3. The network subjects to the flow conservation constraint. So, 

, , ,

( ) ( )

( ) ( ) ( ) .p l l

e t f t f t

l L p l L p

y y y p P  
  

      

4. Gas flow from a particular production platform should not exceed its capacity. 

Hence, 
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, ,

1( )

( ) ( ) , .
t

l p

f t c

l L p

y y p P t


 
 

      

5. No gas flow from pipeline l  if the pipeline has not been built. Thus, 

,0 ( ) ( ) , .l l

f t ty Mx l L t       

6. No expansion can be constructed if production platform p  has not been built. 

It follows that 

,0 ( ) ( ) , .p p

c t ty Mx p P t       

7. Existing pipelines and production platforms are not to disappear in the network. 

Thus, 

1( ) ( ) , ,p p

t tx x p P t       

1( ) ( ) , .l l

t tx x l L t       

 



 

 

Chapter 4  

 
One-stage Infrastructure and Production Planning 

Model 

Notation. In this chapter, uncertainty is modeled by a probability space 

( , ( ), )k k   that consists of the sample space k and the Borel  -algebra ( )k , 

which is the set of events that are assigned probabilities by the probability measure  . 

Let ,k n  denote the space of all measureable functions from k  to n . Let ( )E   denote 

the expectation operator with respect to   and x y  denote the Hadamard product of two 

vectors , nx y . 

 This section discusses the one-stage infrastructure and production planning 

problem with endogenous uncertainty. The decision maker first selects some gas fields, 

i.e. some elements within   to observe. The construction of the platform i , which is the 

observation of i  will cost the decision maker a price of if . Then the decision ( ) ny    

is selected subject to the field size, flow conservation, platform capacity and network 

structure, which could be represented as ( ) ( )Ax By b    , where m nB   and at a 

cost of ( )Tc y  . The decision maker is to find the function ,k ny F  so as to minimize the 

cost or maximize the profit. Therefore, the decision problem can be formulated in the 

following general form: 
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min ( ( ))T Tf x c y   

,. . ,

( ) ( )
,

( ) ( )

k

k ns t x y F

Ax d By h

y y x

 


 

 

   
 

  

 

where ( ) ny   denotes the decision/strategy with respect to the stochastic variable. x  is 

a binary decision vector for construction of pipelines and platforms, with ix  forcing the 

unobserved variable i  equals to 0 and hence has no effect on the strategy function y . 

Let   denotes a compact polyhedral subset of 1{ : 1}k   , which will enforce that 

the affine functions of the non-degenerate uncertain parameters could be represented in a 

compact way as linear functions of 1( ,..., )k   .  

Approximation  

To approximate the one-stage stochastic problem solution, we use a linear 

assumption of the underlying data of the form 

( ) ,

( ) .

n k

m k

y Y Y

h H H

 

 





 

 
 

This assumption will reduce the admissible decisions/strategies to those that are 

presented as affine dependence. Then the original stochastic problem is converted to a 

semi-infinite type as it includes only a finite number of variables but an infinite number 

of constraints parameterized by   : 

min ( ) ,T Tf x c Y  
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. . ,

.
( ) ( )

k n ks t x Y

Ax d BY H

y y x

 


 

 

   
 

  

 

Note that the last constraint in the problem can be restated as 

1,..., , 1,..., .ij jY Mx i n j k    

This set of constraints hold that if j  is not observed, then the decision/strategy 

( ) ny    should be independent of j . But M should be large enough to make sure that 

ijY  is unaffected when 1jx  . 

The support of the probability measure   could be represented as the form 

{ : }.k W v      

Proposition: For any ,k  the following statements are equivalent: 

(i) T Ax d     for all   , where { : };k W v      

(ii) l   with 0  , TW z  , and .Tv Ax d    

Proof: Using the duality properties of mixed integer linear programming, we have 

T Ax d     for all   , where { : }k W v      

 min :
k

T W v Ax d


  


     

 max : , 0
l

T Tv W Ax d


   


      

l   with 0  , TW z  , and .Tv Ax d    

Then the original problem can be reformulated as 

min ( ),T Tf x c Y    
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. . , , ,

,

0,

0.

k n k m ls t x Y

W BY H

v Ax d

   

  

   

 

 

The above approximation formulation of one-stage stochastic programming can be solved 

efficiently as a mixed integer binary program. Its size grows polynomially with , ,k m n  

and l , which are the size of the original problem and the number of constraints in the 

underlying uncertainty set  . The resulting solution is a conservative approximation of 

the original problem. 

Numerical Example 

Now considering one-stage decision making in region A of figure 3-1, the 

decision maker is to maximize the profit of gas production. He is to make decisions only 

once based on the stochastic information. For simplification, constraints on production 

rate may be omitted. Instead, the size of the gas field will place a limit on the amount of 

gas extracted. The model is generalized as follows: 

 

( )

max ( ) ( ) ( ) ,l p p p p p p l l

g f i c c e e i

p P l Ll L o

E c y c x c y c y c x  
  

 
    

  
    



16 

 

( ) ( )

( )

, , ,

. . ( ) ,

0 ( ) ,

( ) ( ) ( ) ,

( ) ( ) ,

0 ( ) ,

0 ( ) ,

, {0,1} , ,

, , .

p p

e

p

e p

p l l

e f f

l L p l L p

l p

f c

l L p

l l

f

p p

c

l p

l p p

f p l e p p c p p

s t y p P

y r p P

y y y p P

y y p P

y Mx l L

y Mx p P

x x l L p P

y F y F y F

 



  

 





 



 



  

   

   

  

   

   

   

  

 


 

As for region A, three platforms and five pipelines are considered to be built at 

the very beginning. Once a platform is built, the corresponding field size is revealed. The 

binary variable will enforce the decision rules not relying on unexploited gas fields. 

Suppose the input parameters of the problem are summarized in table 4-1. 

Table 4-1. Input parameters for one-stage. 

p

 

Gas field size. Random variable: uniform distributed 

(0,20)U , (0,10)U , (0,10)U  

gc

 

Unit price for gas  

2  

p

cc

 

Unit capacity expansion cost for production platform p  

(0.2, 0.2, 0.2)  

p

ec

 

Unit gas extraction cost for platform p  

(0.1, 0.1, 0.1)  
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l

ic

 

Cost for building pipeline l  

(2,1, 3,1, 5)  

p

ic

 

Cost for building platform p  

(4, 2, 2)  

  

A detailed formulation of region A can therefore be formulated as 

3 5

2 4

1 1

max ( ( ) ( )) ( ) ( ) ,
p l

l l p p p p p p l l

g f f i c c e e i

p p l l

E c y y c x c y c y c x   
 

 
     

 
   

31 1

52 1 2

3 3 5 4

31 1

52 2

3 4

1 2 3

1 2

. . ( ) { , , },

( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ),

0 ( ) { ,

p p

e

lp l

e f f

lp l l

e f f f

p l l l

e f f f

lp l

c f f

lp l

c f f

p l

c f

l l

f

s t y p p p p

y y y

y y y y

y y y y

y y y

y y y

y y

y Mx l l l

 

  

   

   

  

  

 



  

 

  

  

 

 



    3 4 5

1 2 3

1 2 3 4 5 1 2 3

3,5 3,3 3,3

, , , },

0 ( ) { , , },

, {0,1} { , , , , }, { , , },

, , .

p p

c

l p

l p p

f e c

l l l

y Mx p p p p

x x l l l l l l p p p p

y F y F y F

   

    

  

 

Following the approximation steps discussed, under the assumption of linear 

decision strategy and underlying data, we have 
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11 3

9 3

( ) ,

( ) .

y Y Y

h H H

 

 





 

 
 

The underlying uncertainty set of stochastic variable   can also be represented as 

3{ : }.W v      

Together with the constraints that enforce the decision/strategy ( )y   should be 

independent of any unobserved j . Then the original problem is reformulated as the 

following standard mixed integer problem: 

  

3 5

1 1

2 4max ( ( ) ( )) ( ) ( ) ,
p l

f f p p l l p c p e

g i i c e

p p l l

E c Y E Y c x c x c Y E c Y E   
 

 
     

 
   

3 5 11 3 9 6. . , , , ,

,

0,

0,

0 1,2,...5,

0 , 1,2,3,

0 1,2,3,

0 , , , 1, 2,3.

i

i

i

j

p l

lf

i

pe c

i i

pc

i

pf e c

ij ij ij

s t x x Y

W BY H

v

Y Mx i

Y Y Mx i

Y Mx i

Y Y Y Mx i j

    

  

 

 

  

  

  

   

 

where 

  ,f e cB B B B      ,

f

e

c

Y

Y Y

Y

 
 


 
  

 



19 

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

,1 1 0 0 1

0 0 1 1 1

1 0 1 0 0

0 1 0 0 1

0 0 0 1 0

fB

 
 
 
 
 
 
  
 

  
 
 
 
 
 

 

1 0 0

0 1 0

0 0 1

1 0 0

,0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

eB

 
 
 
 
 
 
  
 

 
 
 
 
 
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0 0 0
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0 0 0

,0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

cB

 
 
 
 
 
 
 
 
 
 
 

 
  

 

1 0 0

0 1 0

0 0 1

0 0 0

,0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

H

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

1 0 0

0 1 0

0 0 1
,

1 0 0

0 1 0

0 0 1

W

 
 
 
 

  
 
 
 

 

 

0

0

0
.
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10
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v

 
 
 
 

  
 
 
 
 

 

Solving the above problem using GAMS, we obtain the following result, 

1 0 0

1 1 0

,0 0 0

0 0 1

0 0 0

fY

 
 
 
 
 
 
  

 

1 0 0

1 1 0 ,

0 0 1

cY

 
 


 
  

 

1 0 0

0 1 0 ,

0 0 1

eY

 
 


 
  

 

(1,1,1),px   

(1,1, 0,1, 0),lx   

objective function 20.z   

According to fY , we can infer that flow goes through pipeline 1 equals to the size 

of gas field 1, flow of pipeline 2 equals to the size of gas fields 1 and 2 and pipeline 4 
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delivers the gas from gas field 3. Besides, pipeline 3 and 5 are not constructed in this 

problem. From cY , we can tell that the capacity of each gas field is enough to deliver the 

gas to the following pipeline. Also, eY  indicates that all of the gas within each gas well is 

exploited to obtain the maximize profit. 

The results are intuitive. The decision maker is to maximize the profit of the 

project in one calendar year. Thus, he will need to extract all the gas from each gas field 

where platforms are built. To transport gas from each platform to the central pipeline, 

pipelines will be built and platforms will be expanded to a capacity that will pump all the 

incoming gas to outgoing pipelines. In other words, no gas will be wasted because of 

insufficient of transportation.  

From the result, we can infer that pipelines 3 and 5 are not constructed. This is 

because pipelines 3 and 5 are relatively expensive as compared to other pipelines, and 

capacity expansion cost is not high enough for the company to build extra pipelines to 

transport the gas another way. Also, notice that all the gas fields are exploited as 

(1,1,1)px  . 

Under this scenario, the result is the same with a static problem with the size of 

each gas field fixed and equal to the expectation of each, which also agrees with Monte 

Carlo sampling. The problem is bounded and solved efficiently, which obviously is an 

advantage over Monte Carlo sampling. 

 

 



 

 

Chapter 5  

 
Multi-stage Infrastructure and Production Planning 

Model 

The dynamic infrastructure and production planning problem in this section is 

considered in a way that a decision maker makes sequential investment and operational 

decisions, and obtain observation of the uncertainty parameters 1( ,..., )k   , which are 

still defined on the probability space ( , ( ), )k k  , over a finite planning horizon 

: {1,..., }T t . Such problem can be formalized as 

min ( ( ) ( )),T T

t t t t

t T

f x c y 


   

, ,

1

1

1

1

. . , ,

( ) ( ) ( )

( )

( ) ( ) , ,

( ) ( ( ) )

( ) ( ( ) )

t k k k k n

t

t t t

t t

t t

t t t

t t t

s t x F y F t T

A x B y h

x

x x t T

x x x

y y x

   


  



  

  

  









   


  








   


  

 





 

Where ( )ty   is a vector that denotes the decision rules/strategies at time t , and ( )tx   is 

an adaptive decision variable that encodes binary information of construction up to time 

t , which is dependent on the uncertain gas field reserve  . The set tZ , which the 
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adaptive decision variable belongs to is a subset of {0,1}k , as it may include constraints 

which enforce the order of the gas field reserve revealed. For example, a platform can 

only be built at a certain gas field after another platform is constructed or certain 

pipelines can be built only after certain stages. If i  is observed and included in the 

information base at time t , then , ( ) 1t ix   , which will also incur a cost of ,t if  and 

another term ( )tB y    in the time t  constraint. The constraint 1( ) ( )t tx x   will 

enforce that the construction will not be removed, and thus , ( )t ix   is monotonous, which 

will stay on 1. The last two constraints in the formulation enforce non-anticipativity, 

which restrict the decision strategies ( )ty   to only depend on gas fields information 

obtained up to time 1t  . 

The above type of problem involves a multi-stage dynamic programming with 

adaptive decision rules/strategies and binary recourse variables and is shown to be 

computationally intractable. To approximate a conservative solution, linear assumptions 

and partition of uncertainty set are therefore necessary. 

Approximation  

Compared to the one-stage production planning model, the multi-stage is more 

complicated and expensive in computing. Past research on multi-stage stochastic 

programming has studied the approximation of stochastic programming with continuous 

recourse variables, of which conservative solutions could be obtained by linear decision 

rules (Ben-Tal et al. 2004). Also, finite adaptability, which is the middle ground of 



23 

 

complete adaptability where the decision-maker has arbitrary adaptability to the exact 

realization of the uncertainty and static robust formulation where the decision-maker has 

no information on the realization of the uncertainty, has also proved tractable and 

efficient when solving multi-stage stochastic programming (Bertsimas. D., and 

Caramanis, C, 2010). The idea of the approach is partitioning the uncertainty space and 

receiving information about the realization of the uncertainty, which provides an 

opportunity to trade off computing expense with optimality. Based on this idea, Vayanos 

et al. (2011) solve the stochastic programming problem with endogenous uncertainty by 

approximating the binary decision rules that are piecewise constant and real-valued 

decisions that are piecewise linear with respect to a pre-selected partition set. 

Let s  denotes the subset of the partition of the uncertainty set  

 1: : , 1,..., ,
i i

i i

s s i sa a i k        

where  1: 1,..., ,k k

i is S r    

which separate the original uncertainty set   into ( )k

ir  subset by breaking along the i  

axis into ir  parts. 

Thus, the piecewise constant binary decision rule has the form 

( ) ( ) ,
s

s

t t

s S

x x 



   

where {0,1} , ,s k

tx s S t T    and 
s

  denotes the indicator function of s . 

Similarly, real-valued decisions can be approximated by piecewise linear decision 

rules of the form 



24 

 

( ) ( ) ,
s

s

t t

s S

y Y  



   

where , ,tn ks

tY s S t T


   . 

Under the above assumptions, the non-anticipativity constraints 

1

1

( ) ( ( ) ),

( ) ( ( ) ),

t t t

t t t

x x x

y y x

  

  





 

 
 

can be re-expressed as  

1 1, ', : ( ) ( ') ',

( ) ( '),

( ) ( ').

t t

t t

t t

t x x

x x

y y

     

 

 

    





 

Substituting the assumptions into the above equations, we have: 

'

1 1

'

'

, ', : ',

,

,

s s

t t

s s

t t

s s

t t

s s t x s x s

x x

Y Y

    





 

and 

, 1,, , , .s s

t ij t ji j s t Y Mx    

Note that non-anticipativity across distinct subsets of the partition is enforced in 

the former part of the constraints while a restriction within each subset is placed in the 

latter part. 

Vayanos et al. (2009) then reformulate the above constraints to reduce the 

notational overhead by suppressing the domain of the variables as follows: 
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'

, ' , ' 1,

'

, ' , ' 1,

, ', , ', : ' ,

,

,

j j

s s s

t j t j t j

s s s

t ij t ij t j

j j s s t s s

x x x

Y Y Mx i

 





 

 

  

 

and 

, 1,, , , .s s

t ij t ji j s t Y Mx    

Therefore, the original problem is reformulated as 

min ( ( ) ( )),T T

t t t t

t T

f x c y 


   

, ,

1

1

'

, ' , ' 1,

'

, ' , ' 1,

, 1,

. . , ,

( ) ( ) ( )

( ) , ,

( ) ( )

, ', , ', : ' ,

, , , .

t k k k k n

t

t t t

t t

t t

s s s

t j t j t j

j j
s s s

t ij t ij t j

s s

t ij t j

s t x F y F t T

A x B y h

x t T

x x

x x x

j j s s t s s

Y Y Mx i

Y Mx i j s t

   

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 

 







 





   


  




   


 



 

 

  


 



 

where 

( ) ( )
s

s

t t

s S

x x 



  , ( ) ( ) .
s

s

t t

s S

y Y  



   

The partition of the uncertainty set could be represented as the form 

{ : }.k

s s sW v      

We follow similar steps in one-stage stochastic programming. The original 

problem can be reformulated as a mixed-binary linear programming problem by 
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substituting the piecewise constant and linear assumptions into every other constraints. 

Hence, 

min ( ),T s T s

s t t t t

s S t T

p f x c Y E 
 

   

1

1

1
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, ' , ' 1,

'
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, 1,

. . , , , ,
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W B Y H
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x x x
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


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
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



    


   





   



  


 

  
 

   







, , , .s

j i j s t

 

The new formulation of multi-stage stochastic programming has the form of a 

standard mixed-binary linear programming. Its size is bounded by the size of the original 

problem, the partition of the uncertainty set and the number of constraints in each 

underlying uncertainty set s . The resulting solution is a conservative approximation of 

the original problem. 

Numerical Example 

Now, we consider the problem in a more comprehensive way. Assume the 

company plans taking on the project for a ten-year period, during which time the decision 
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maker needs to organize the gas extraction and transportation process. The goal is to 

maximize the net present value of the project. 

Different from the one-stage problem, the decision maker now has multiple years 

to make decisions for gas production. The size of each gas field is not necessarily 

revealed in the first period, as the decision maker may choose a later time to reduce the 

cost of building the platform. However, the revenue of the sales of gas will also decrease 

when the gas is extracted at a later time. 

Thus, in the multi-stage shale gas production problem, both strategy and binary 

variables which represent the construction of platform and pipeline will be dependent of 

the revelation of the size of gas wells. As discussed previously, the multi-year gas 

production model can be formulated as follows: 

 

, 1

( )

1 , ,

( ) ( ( ) ( ))

max ,
( ( ) ( )) ( ) ( )

l l l l

g f t i t t

l Ll L o

t p p p p p p p
t i t t c c t e e t

p P

c y c x x
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c x x c y c y

  
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



 



  
 

  
    
 

 



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To make a comparison between multi-stage stochastic programming on the shale 

gas production project, we assume similar input parameters as for the one-stage problem. 

Thus, input parameters are shown as in table 5-1. Notice that an upper limit is placed on 

the annual production rate, forcing the decision maker taking account of longer period. 

 

Table 5-1. Input parameters for multi-stage. 

p

 

Gas field size. Random variable: uniform distributed 

(0,20)U , (0,10)U , (0,10)U  

pr

 

Maximum annual production rate 

(2, 2, 2)  

td
Discount factor in year t  
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1

1

1.01t
 

gc

 

Unit price for gas  

2  

p

cc

 

Unit capacity expansion cost for production platform p  

(0.2, 0.2, 0.2)  

p

ec

 

Unit gas extraction cost for platform p  

(0.1, 0.1, 0.1)  

l

ic

 

Cost for building pipeline l  

(2,1, 3,1, 5)  

p

ic

 

Cost for building platform p  

(4, 2, 2)  

 

Now considering the multi-stage decision making problem within region A, the 

problem can be described as follows: 
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To approximate the decision rule, we partition the uncertainty set 
p  into some 

preselected subsets. Specifically, each 1,2,3ip
i    is divided into two parts. With each 

part denoted by s , we have a total of eight subsets with the same probability. The 

assumption that gas fields follow an uniform distribution makes the partition 
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straightforward and easy to implement. Table 5-2 shows the partition of the entire 

uncertainty set. 

Table 5-2. Partition of uncertainty set. 

Subset s
1

( )
8

sP   Gas fields 1p , 2p , 3p  

1s   (0,10)U , (0,5)U , (0,5)U  

2s   (10,20)U , (0,5)U , (0,5)U  

3s   (0,10)U , (5,10)U , (0,5)U  

4s   (10,20)U , (5,10)U , (0,5)U  

5s   (0,10)U , (0,5)U , (5,10)U  

6s   (10,20)U , (0,5)U , (5,10)U  

7s   (0,10)U , (5,10)U , (5,10)U  

8s   (10,20)U , (5,10)U , (5,10)U  

 

Based on the above partition, we approximate the measurement decisions by 

binary-valued decision rules that are piecewise constant and the real-valued decisions by 

decision rules that are piecewise constant. 

The binary-valued decisions are approximated in the form. 

,( ) ( ) ,
s

l l s

t t

s S

x x 



   

,( ) ( ) ,
s

p p s

t t

s S

x x 



   

where  
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, 5{0,1} , , ,l s

tx s S t    

, 3{0,1} , , ,p s

tx s S t    

and 
s

  denotes the indicator function of s . 

Similarly, real valued decisions can be approximated as the form 

,

, ,( ) ( ) ,
s

l l s

f t f t

s S

y Y  



   

,
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s
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e t e t

s S

y Y  



   

,

, ,( ) ( ) ,
s

p p s

c t c t

s S

y Y  



   

where 
, 5 3 , 3 3 , 3 3

, , ,, , .l s p s p s

f t e t c tY Y Y      

Apart from the constraints we already had in the original formulation, the 

reformulation requires additional non-anticipativity constraints, which further ensure that 

decision variables are independent of unrevealed gas fields. Under the partition above, 

such constraints can be represented as 

1

1
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which are equivalent to 
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where 
1

1 1 1: ( ,..., , ,..., ) .k

j j j ks s s s s 

     

After substituting the linear assumption and taking into account the non-

anticipativity constraints, the optimization problem becomes 
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, ' , , ' , {1,2,...,10}, , ' {1,2,3}.s s S t j j       

The above optimization problem is a standard mixed-integer programming with 

its size bounded by the size of the original problem, the partition of the uncertainty set 

and the number of constraints in each underlying uncertainty set s . I use GAMS with 

CPLEX solver to solve the problem. It takes the software 5 seconds to obtain the result. 

Some optimal results of decision variables are indicated and explained below. 

As binary variables in this problem are monotonic, platforms and pipelines will 

not be deconstructed and only the periods when pipelines and platforms are built are 

indicated in table 5-3. 

Table 5-3. Optimal construction. 

 1s  2s  3s  4s  5s  6s  7s  8s  

1l  NA 1 1 1 NA 1 1 1 

2l  9 1 1 1 8 1 1 1 

3l  3 NA NA NA 6 NA NA NA 

4l  1 NA 6 9 6 4 1 1 

5l  NA NA NA NA NA NA NA NA 

1p  1 1 1 1 1 1 1 1 
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2p  1 1 1 1 1 1 1 1 

3p  1 3 1 1 2 3 1 1 

 The numbers in the table indicate the index of period t . 

 NA means the pipeline/platform is not built under this scenario. 

Notice that most of the gas fields are exploited during the first period. This is 

because the revenue of the gas in the first year is more profitable compared to the cost of 

building pipelines and platforms. We can also see that different results are obtained under 

different partition subsets. For instance, pipeline 4 is built in a different time period for 

most scenarios. Platform 3 is not exploited in the first period within subset 2s , 5s  and 6s . 

Nonetheless, pipeline 5 is never constructed under all scenarios, which agrees with the 

result of the one-stage gas production model. The difference between each uncertainty 

subset demonstrates the necessity of partition when approximating the result. 

The amounts of gas extracted from each platform is indicated in table 3-6. 

Table 5-4. Optimal gas extraction. 

 1p  2p  3p  

1t  0.929 0.875 0.453 

2t  0.929 0.875 0.375 

3t  1.018 0.875 0.453 

4t  1.018 0.875 0.641 

5t  1.018 0.875 0.641 

6t  1.143 0 0.437 
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7t  1.143 0 0.438 

8t  0.964 0.104 0.437 

9t  0.964 0.229 0.375 

10t  0.875 0.229 0.375 

Total 10.001 4.937 4.625 

  

 From the table, we can tell that the total amount of gas extracted from each 

platform is close to the expectation of each field size. Other factors that might affect the 

amount of gas extracted include the capacity of the platforms that the gas transports, the 

construction cost of the pipeline and the layout of the network. Notice that the limitation 

of gas production rate is not a deciding factor in this case. 

The amount of capacity expanded during each period is indicated in table 5-5. 

Table 5-5. Optimal capacity expansion. 

 1p  2p  3p  

1t  0.929 1.804 0.453 

2t  0 0 0 

3t  0.089 0 0.089 

4t  0 0 0.187 

5t  0 0 0 

6t  0.125 0 0.375 
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7t  0 0 0 

8t  0 0.104 0 

9t  0 0.125 0.125 

10t  0 0 0 

Total 1.143 2.033 1.229 

 

It is obvious that decision maker would rather choose a later period to increase 

capacity as the cost goes down period by period due to the discount factor. Platform 2 has 

a relatively high capacity, because the gas from platform 1 needs to go through platform 

2 to reach the central pipeline. Another reason is that in most cases pipeline 3 is not built 

due to the high cost which makes pipeline 1 the only way to transport gas from platform 

1.  

The amounts of capacity expanded during each period are indicated in table 5-6. 

Table 5-6. Optimal gas flow. 

 1l  2l  3l  4l  5l  

1t  0.929 1.804 0 0.453 0 

2t  0.929 1.804 0 0.375 0 

3t  0.929 1.804 0.089 0.542 0 

4t  0.929 1.804 0.089 0.73 0 

5t  0.929 1.804 0.089 0.73 0 
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6t  0.929 0.929 0.214 0.652 0 

7t  0.929 0.929 0.214 0.652 0 

8t  0.75 0.854 0.214 0.652 0 

9t  0.75 0.979 0.214 0.589 0 

10t  0.75 0.979 0.125 0.5 0 

 

Since pipeline 5 is never built under any scenarios, the flow through pipeline 5 

will always be zero. However, pipeline 3 is built in 3t  under subset 1s  and in 6t  under 

subset 5s . Then the flow through pipeline 3 will not be zero as it is calculated as 

expectation which averages the flow under different scenarios. We also notice that the 

flow in pipeline 3 goes up in 6t  as pipeline 3 is built under another scenario. This 

evidence confirms the above explanation. 

Finally the objective function is 

22.817.z   

Compared to the one-stage project, the multi-stage project has a higher net present 

value which allows the decision maker to earn an extra profit. The conservation 

approximation obtained lies in-between the situation when the decision-maker has 

arbitrary adaptability to the exact realization of the uncertainty and the static robust 

formulation where the decision-maker has no information on the realization of the 

uncertainty. The approximation could be more accurate if the number of partitions is 
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increased. However, this will also increase the computing cost as the size of the problem 

is dependent on the partition. 

 



 

 

Chapter 6  
 

Conclusions and Future Work 

The shale gas infrastructure and production planning problem is discussed in this 

paper. The problem is modeled as stochastic programming with endogenous 

uncertainties. Approximations using the adaptive measurement decisions by piecewise 

constant functions and the adaptive real-valued decisions by piecewise linear functions of 

the uncertainties could be applied to obtain conservative solutions.  

The decision rule approximation successfully solves the problem with 

continuously distributed uncertainty parameters. The approximation is considered close 

to optimal and can be improved by increasing the partition of the uncertainty set. A one-

stage numerical is equivalent to a static problem where each field size equals the 

expectation of the underlying uncertainty parameter. Results of the multi-stage numerical 

experiment are reasonable. Decision makers are able to obtain more profit by taking on 

the project for multiple years. 

Future work can improve the sophistication of the shale gas infrastructure. A 

more complicated network with a longer investigating time horizon can be considered to 

better fit the context of shale gas production. The partition of subset maybe increased if 

necessary to obtain more accurate solution.
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