
The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

CPU- AND GPU-BASED TRIANGULAR SURFACE MESH SIMPLIFICATION

A Thesis in

Computer Science and Engineering

by

Dragos Nistor

c© 2012 Dragos Nistor

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

May 2012

The thesis of Dragos Nistor was reviewed and approved∗ by the following:

Suzanne M. Shontz
Assistant Professor of Computer Science and Engineering
Thesis Adviser

John Hannan
Associate Professor of Computer Science and Engineering

Raj Acharya
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

Mesh simplification and mesh compression are important processes in the realms of computer

graphics and high-performance computing, as they allow the mesh to take up less memory. In

particular, current simplification and compression algorithms do not take advantage of both the

central processing unit (CPU) and the graphics processing unit (GPU).

We propose and analyze the results of two mesh simplification algorithms based on the edge-

collapse operation that take advantage of the GPU by allocating a portion of the computation to

the CPU and a portion of the computation to the GPU. Our algorithms are the näıve marking

algorithm and the inverse-reduction algorithm.

Experimental results show that when the algorithms take advantage of both the CPU and

the GPU, there is a decrease in running time for simplification compared to performing all of the

computation on the CPU. The marking algorithm provides higher simplification rates than the

inverse-reduction algorithm, whereas the inverse-reduction algorithm has a lower running time

than the marking algorithm.

iii

Table of Contents

List of Figures vi

List of Tables viii

Acknowledgments x

Chapter 1

Introduction 1

1.1 Motivation and Previous Work . 1

1.2 Organization . 3

Chapter 2

Simplification Algorithms 4

2.1 Edge-Collapse Operation . 4

2.2 Workload Splitting . 5

2.3 Definition of Affected Elements . 5

2.4 CPU Edge-Collapse Algorithm . 6

2.4.1 Description . 6

2.4.2 Algorithm . 7

2.5 GPU Marking Algorithm . 7

iv

2.5.1 Description . 7

2.5.2 Algorithm . 8

2.6 GPU Inverse-Reduction Algorithm . 8

2.6.1 Description . 8

2.6.2 Algorithm . 9

2.6.3 Correctness . 9

Chapter 3

Experiments 11

3.1 Experimental Design . 11

3.2 Results . 13

3.2.1 Marking Algorithm . 13

3.2.2 Inverse-Reduction Algorithm . 28

Chapter 4

Conclusions and Future Work 40

4.1 Conclusions . 40

4.2 Future Work . 41

Bibliography 42

v

List of Figures

2.1 An edge-collapse on e = (v1, v2). 5

2.2 Elements considered affected by edge-collapse of (v1, v2). 6

3.1 Initial meshes used for testing. 12

3.2 The time taken to simplify each test case for every split using the näıve GPU

algorithm. As the CPU-GPU split increases, the CPU workload increases, and the

GPU workload decreases. 17

3.3 The percentage of the time spent on the GPU for every split using the näıve GPU

algorithm. 18

3.4 The amount of memory used by the GPU, in KB, for every split using both the

näıve GPU algorithm and the inverse-reduction GPU algorithm. 19

3.5 The resulting meshes after three iterations of the marking algorithm. 21

3.6 The resulting meshes after ten iterations of the marking algorithm. 25

3.7 The simplification percentage of the vertices as a function of the iteration number. 26

3.8 The simplification percentage of the faces as a function of the iteration number. . 27

3.9 The time taken to simplify each test case for every split using the inverse-reduction

GPU algorithm. As the CPU-GPU split increases, the CPU workload increases,

and the GPU workload decreases. 30

3.10 The percentage of the time spent on the GPU for every split using the inverse-

reduction GPU algorithm. 31

3.11 The resulting meshes after three iterations of the inverse-reduction algorithm. . . 36

vi

3.12 The resulting meshes after ten iterations of the inverse-reduction algorithm. . . . 37

3.13 The simplification percentage of the vertices as a function of the iteration number. 38

3.14 The simplification percentage of the faces as a function of the iteration number. . 39

vii

List of Tables

3.1 Various values of the metrics for the initial meshes. 13

3.2 The time taken to simplify for each CPU-GPU split using the näıve GPU algorithm. 14

3.3 The percentage of time spent on the GPU for different CPU-GPU splits using the

näıve GPU algorithm. 15

3.4 The amount of memory used, in KB, by the GPU during simplification for each

CPU-GPU split for both the näıve GPU algorithm and the inverse-reduction GPU

algorithm. 16

3.5 Various values of the metrics for the meshes after one iteration. 20

3.6 Various values of the metrics for the meshes after ten iterations. 20

3.7 The simplification percentage of the armadillo mesh over multiple iterations. This

data is shown in Figures 3.8 and 3.7. 22

3.8 The simplification percentage of the bunny mesh over multiple iterations. This data

is shown in Figures 3.8 and 3.7. 22

3.9 The simplification percentage of the gargoyle mesh over multiple iterations. This

data is shown in Figures 3.8 and 3.7. 23

3.10 The simplification percentage of the hand mesh over multiple iterations. This data

is shown in Figures 3.8 and 3.7. 23

3.11 The simplification percentage of the horse mesh over multiple iterations. This data

is shown in Figures 3.8 and 3.7. 24

3.12 The simplification percentage of the kitten mesh over multiple iterations. This data

is shown in Figures 3.8 and 3.7. 24

viii

3.13 The time taken to simplify for each CPU-GPU split using the inverse-reduction

GPU algorithm. 28

3.14 The percentage of time spent using the GPU for different CPU-GPU splits using

the inverse-reduction GPU algorithm. 29

3.15 Various values of the metrics for the meshes after one iteration. 32

3.16 Various values of the metrics for the meshes after one iteration. 32

3.17 The simplification percentage of the armadillo mesh over multiple iterations. This

data is shown in Figures 3.14 and 3.13. 33

3.18 The simplification percentage of the bunny mesh over multiple iterations. This data

is shown in Figures 3.14 and 3.13. 33

3.19 The simplification percentage of the gargoyle mesh over multiple iterations. This

data is shown in Figures 3.14 and 3.13. 34

3.20 The simplification percentage of the hand mesh over multiple iterations. This data

is shown in Figures 3.14 and 3.13. 34

3.21 The simplification percentage of the horse mesh over multiple iterations. This data

is shown in Figures 3.14 and 3.13. 35

3.22 The simplification percentage of the kitten mesh over multiple iterations This data

is shown in Figures 3.14 and 3.13.. 35

ix

Acknowledgments

I would like to thank my whole family and friends for the support they have given me during

my time at The Pennsylvania State University. I would also like to thank my research advisor,

Dr. Suzanne M. Shontz, for the guidance and support she has given me throughout my research

and writing of this thesis. Finally, I would like to thank my honors advisor and committee

member, Dr. John Hannan, for his suggestions and comments on my work.

Additionally, I would like to thank multiple institutions for allowing use of their models for

research. I would like to thank the Georgia Institute of Technology for their Large Geometric

Models Archive, from which we obtained the skeleton hand and horse models, the Stanford

University Computer Graphics Laboratory, from which we obtained the bunny and armadillo

models, and the ISTI Visual Computing Laboratory and Frank ter Haar, from which we obtained

models of the gargoyle and kitten through the AIM@SHAPE Shape Repository, respectively.

x

Chapter 1
Introduction

1.1 Motivation and Previous Work

Three-dimensional geometric models of varying detail are useful for solving problems in areas

such as computer graphics [20], surface reconstruction [15], computer vision [18], and communi-

cation [4]. Such models give rise to the problems of mesh simplification, mesh compression [14],

and mesh optimization [16]. This thesis focuses on solving the problem of mesh simplification

using both the central processing unit (CPU) and the graphics processing unit (GPU) found on

most modern computers.

Mesh simplification is the process of removing elements and vertices from meshes to create

a simpler model. Mesh simplification can be applied in areas such as surface reconstruction [3],

three-dimensional scanning [17], computer animation [12], and terrain rendering [10]. For exam-

ple, when rendering a movie scene, a model with extremely high detail is not required for an

object that is located far away from the camera.

Multiple serial CPU-based algorithms have been proposed to solve this problem. Some al-

gorithms use a simple edge-collapse operation [14], which involves repeatedly collapsing edges

into vertices to obtain a simplified mesh. Others use a triangle-collapse operation [23]. While

the triangle-collapse operation yields more simplified meshes per operation [6], there are more

possible cases to handle when performing this operation. Our algorithms will be based on the

edge-collapse operation for its simplicity.

Other algorithms focus on controlled vertex, edge, or element decimation [24], where a vertex,

1

edge, or element is removed from the mesh if it meets the decimation criteria. Any resulting holes

in the mesh are patched through available methods such as triangulation. One other method for

mesh simplification is vertex clustering [19]. When performing mesh simplification using vertex

clustering, vertices are clustered by topological location and a new vertex is created to represent

each cluster. Elements can then be created through surface reconstruction [15]. Our algorithms

do not focus on decimation or clustering, as neither clustering, which requires remeshing after

clustering, nor decimation, which also requires a clean-up process after decimation, are designed

with the concurrency provided by the GPU in mind.

A few parallel CPU-based algorithms based on the serial algorithms have been proposed as

well. One parallel algorithm is based on vertex decimation [11], where the importance of each

vertex is evaluated, and vertices with low importance are removed. A GPU-based implementa-

tion of this algorithm has also been proposed [13] and is discussed later in this section. However,

as we are interested in the results of an algorithm that takes advantage of both the CPU and

GPU by splitting the simplification workload between the two. For example, we could potentially

remove vertices with a high global importance simply because they have a low ranking among all

vertices in the CPU or in the GPU. This issue could be solved by ample communication between

the CPU and GPU to estimate the global ranking of the vertices. However, the transfer rate

between the CPU and GPU is a significant bottleneck [25].

Other simplification algorithms focus on distributed systems [5] and efficient communication

between nodes. Such algorithms would suffer from the same communication latency between

the CPU and the GPU if implemented to take advantage of the GPU. Another algorithm [9]

focuses on greedily splitting a mesh into equal subparts and assigning each part to a CPU core

to be simplified by applying the edge-collapse operation. The techniques introduced could be

used when implementing a GPU-based algorithm. However, as the GPU can support many more

threads at any one time than a multi-core CPU can, there is no need to split our test meshes

into subparts; each thread focuses on one element.

Some GPU-based simplification algorithms have also been proposed. One such algorithm

offloads the computationally-intensive parts of vertex decimation to the GPU [13], while leav-

ing the data structure representing the mesh in main memory. While this approach is valid, it

assumes that the CPU will be available during the whole process. A popular method [8] based

on vertex clustering exists as well. A downside of it is that it assumes that the surface mesh is

2

closed and that there is access to the full mesh during the simplification process, which excludes

streaming input models.

We propose three simplification algorithms, one of which runs on the CPU and two of which

run on the GPU. The algorithms are based on the edge-collapse operation, as it is an extremely

simple and small-scale operation, and it works even if there is no access to the full mesh. The

CPU algorithm visits every available element and performs the edge-collapse operation on the

element if it is not yet marked as affected (defined in section 2.3, as does one of the GPU al-

gorithms. The other GPU algorithm takes full advantage of the concurrency of the GPU and

attempts to collapse more edges each iteration. All algorithms are described in more detail in

Chapter 2.

1.2 Organization

In Chapter 2, we present three simplification algorithms: the CPU simplification algorithm,

a näıve GPU simplification algorithm, and a GPU simplification algorithm based on reductions.

We discuss the correctness of the algorithms, as well. In Chapter 3, we describe our experimental

setup and results for various CPU-GPU workload splits for both GPU algorithms and for multiple

iterations of each GPU algorithm. In Chapter 4, we draw conclusions based on our results and

propose ideas for future work.

3

Chapter 2
Simplification Algorithms

We propose three CPU- and GPU-based algorithms which work in tandem to simplify a mesh.

The algorithms simplify meshes uniformly and exhaustively, ensuring maximal simplification

occurs. All proposed algorithms rely on the edge-collapse operation, which is defined in section

2.1. Additionally, all algorithms are lossless, so mesh compression is a natural extension to the

algorithms.

2.1 Edge-Collapse Operation

Our simplification algorithms rely on the edge-collapse operation [14], which is defined as

follows for an input mesh containing a set of vertices V and a set of elements T:

For some edge e = (v1, v2) shared by elements t1 = (v1, v2, v3) and t2 = (v4, v2, v1), define

vm =
v1 + v2

2
. (2.1)

To collapse edge e, t1 and t2 are removed from the mesh, and any references to v1 or v2 are

updated to refer to vm. Figure 2.1 shows an edge-collapse operation on edge (v1, v2). For

the edge-collapse operation, the listing order of the vertices that make up an element does not

matter. If additional information, such as the original positions of v1 and v2 are stored, the

edge-collapse operation is reversible. Therefore, any compression or simplification algorithms

based on this operation are lossless, meaning that no information regarding the original mesh is

4

Figure 2.1: An edge-collapse on e = (v1, v2).

lost when performing the compression or simplification. The original mesh can be recovered by

reversing the steps taken to compress or simplify the mesh.

2.2 Workload Splitting

Our simplification algorithms allocate a portion of a mesh to the CPU and the rest to the

GPU to simplify. We propose an extremely simple method for allocation. For a CPU-GPU split

k% where k ∈ R and 0 ≤ k ≤ 100 of a mesh M = (Vertices, Elements), the CPU simplifies the

first k% of all elements, and the GPU simplifies the rest. For example, a CPU-GPU split of 30%

means that the CPU simplifies the first 30% of all elements and the GPU simplifies the rest.

2.3 Definition of Affected Elements

Since edge-collapse operations should be performed uniformly across the mesh, we determine

whether or not elements are affected by previous edge collapses. Elements which are affected will

not take part in any new edge-collapse operations.

Define N(t) for t = (va, vb, vc) to be elements which contain any of the vertices va, vb, or vc.

If edge e = (v1, v2) between elements t1 = (v1, v2, v3) and t2 = (v4, v2, v1), for example, has been

collapsed, then the elements in N(t1) ∪ N(t2) are considered affected. The elements shaded in

gray in Figure 2.2 would be considered affected if edge (v1, v2) were collapsed.

Since each edge-collapse operation causes neighboring elements to become affected, there

is a hard limit on the number of edge-collapse operations, and on the amount of simplification

5

Figure 2.2: Elements considered affected by edge-collapse of (v1, v2).

per iteration of the algorithm. To assess the full range of simplification capabilities, multiple

iterations of the algorithms will be performed on each test case.

2.4 CPU Edge-Collapse Algorithm

To simplify portions of the mesh using the CPU, we propose a simple edge-collapse algorithm.

We describe it in mathematical terms below; the pseudocode is provided in Algorithm 2.2.

2.4.1 Description

The CPU edge-collapse algorithm works by searching through all elements assigned to the

CPU one at a time. Each element is examined to see if it is affected, and if an element t =

(v1, v2, v3) that is not affected is found, an edge-collapse is performed on (v1, v2). When all

elements are affected or have taken part in an edge-collapse operation, the algorithm terminates.

6

This ensures that the edge-collapse operation is performed uniformly and exhaustively across the

elements assigned to the CPU, and that no one area is more or less simplified or deformed.

2.4.2 Algorithm

The pseudocode for the CPU edge-collapse simplification algorithm is provided in Algo-

rithm 2.2 below.

Algorithm 2.1 The CPU Edge-Collapse Simplification Algorithm

function mark-as-affected(element)
for all v ∈ element do

affected[v] ← true
end for

end function

function mark-as-collapsed((v1, v2))
for all t ∈ elements ⊃ {v1, v2} do

collapsed[t] ← true
end for

end function

function CPU-Simplify(elements, vertices)
for all t = (v1, v2, v3) ∈ elements do

if t ∈N(affected elements) then
mark-as-affected(t)

else
collapse((v1, v2))
mark-as-collapsed((v1, v2))

end if
end for

end function

2.5 GPU Marking Algorithm

We propose a näıve GPU algorithm to simplify portions of the mesh based on the edge-

collapse operation. We describe it in mathematical terms below; the pseudocode is provided in

Algorithm 2.1.

2.5.1 Description

The näıve GPU marking simplification algorithm works by searching through all elements

assigned to the GPU one at a time. If an element t = (v1, v2, v3) that is not affected is found,

7

an edge-collapse is performed on (v1, v2), and all tn ∈ N(t) are concurrently marked as affected.

When all elements are affected or have taken part in an edge-collapse operation, the algorithm

terminates. This also ensures that the edge-collapse operation is performed uniformly and ex-

haustively across all elements assigned to the GPU, and that no one area is more or less simplified

or deformed.

2.5.2 Algorithm

The pseudocode for the näıve GPU marking simplification algorithm is provided in Algo-

rithm 2.1 below.

Algorithm 2.2 The CPU Edge-Collapse Simplification Algorithm

function GPU-Mark(mark, elements, vertices)
for all t ∈ N(mark) do GPU thread t : mark-as-affected(t)
end for

end function

function GPU-Mark-Simplify(elements, vertices)
for all t = (v1, v2, v3) ∈ elements do

if not marked(t) then
collapse((v1, v2))
mark-as-collapsed((v1, v2))
GPU-Mark(t)

end if
end for

end function

2.6 GPU Inverse-Reduction Algorithm

We propose a GPU mesh simplification algorithm that leverages the full strength of the

GPU. We describe it in mathematical terms below; the pseudocode is provided in Algorithm 2.3.

2.6.1 Description

In our previous algorithms, one element was examined at each iteration of the main loop.

Instead of performing a linear search to find the next element which is not affected, we will

now examine twice as many elements each iteration, with each element examined by a different

GPU thread. To fully take advantage of the architecture of the GPU, a soft-grained blocking

8

[21] method based on test-and-set [1] is used to decide if any edge of an element should be

collapsed. We attempt to lock each vertex in an element by calling test-and-set on the affected

bit of each vertex in the element. More details regarding correctness are provided in section 2.6.3.

2.6.2 Algorithm

The pseudocode of the GPU inverse-reduction simplification algorithm is provided in Algo-

rithm 2.3.

Algorithm 2.3 The GPU Inverse-Reduction Simplification Algorithm

function GPU-Simp-Try(target = (v0, v1, v2), elements, vertices)
if affected(target) then

return
end if
if test-and-set(collapsed[v0]) = 0 then

if test-and-set(collapsed[v1]) = 0 then
if test-and-set(collapsed[v2]) = 0 then

collapse((v0, v1))
GPU-Mark(target)

end if
collapsed[v1] ← 0
collapsed[v0] ← 0

end if
collapsed[v0] ← 0

end if
end function

function GPU-IR-Simplify(elements, vertices)
i = |elements|

while i ≥ 1 do
if threadid mod i = 0 then

GPU-Simp-Try(elements[threadid])
end if
i = i div 2

end while
end function

2.6.3 Correctness

The GPU-Simp-Try method attempts to lock each vertex of an element by checking to make

sure the vertex has not already been collapsed. If it finds that a vertex has already been locked,

it releases all previouly-locked vertices. Therefore, if a thread successfully locks v1, v2, and v3

9

for element t, it must mean that no other thread has locked any tn ∈ N(t), either currently

or previously. Therefore, the algorithm simplifies the mesh both uniformly and exhaustively,

ensuring that no one area is too simplified or deformed.

10

Chapter 3
Experiments

3.1 Experimental Design

The algorithms were implemented in C++ and compiled with the NVIDIA C++ compiler

included with the CUDA Toolkit [7]. They were tested on a Dell XPS 17 laptop running Windows

7 Professional equipped with an NVIDIA GeForce GT 550M GPU and an Intel Core i5-2430M

CPU running at 2.4 GHz with 3.90 GB of usable main memory.

We ran our algorithms on the following six test cases: armadillo, bunny, gargoyle, hand,

horse, and kitten, which are shown in Figure 3.1. Armadillo and bunny are included courtesy of

Stanford [26]. Gargoyle and kitten are included courtesy of their owners through the AIM@Shape

Shape Repository [2]. Hand and horse are included courtesy of the Georgia Institute of Technol-

ogy [22].

11

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.1: Initial meshes used for testing.

12

mesh # vertices # faces min ∠ max ∠ min area avg area volume

armadillo 172974 345944 0.034750 170.907 7.424e-08 1.840e-1 1.42690e+6
bunny 34834 69664 0.494800 177.515 7.925e-08 1.573e-2 7.54700e+3
gargoyle 863182 1726364 0.000215 179.820 3.638e-12 4.553e-2 1.63730e+6
hand 327323 654666 0.545000 177.995 5.161e-11 1.078e-4 1.64936e+1
horse 15366 30728 0.385500 177.119 1.118e-14 2.118e-6 1.58866e-3
kitten 137098 274196 0.004609 179.936 1.427e-08 8.846e-2 8.38625e+5

Table 3.1: Various values of the metrics for the initial meshes.

We obtained the following regarding the output mesh: vertex count, element count,

minimum angle, maximum angle, minimum element area, average element area, volume, and wall

clock running time in seconds of the algorithm. These metrics are generally used in assessing the

quality of a mesh. To properly measure running time, we collect the amount of wall clock time

the algorithm spent on the computations for 100 times per test case and compute the average.

Table 3.1 contains the values of the metrics for the initial meshes.

3.2 Results

3.2.1 Marking Algorithm

To examine the effects of splitting the mesh simplification workload between the CPU and the

GPU using the näıve marking algorithm, we recorded the time spent during the simplification

process for different CPU-GPU splits on all test cases. We tested the following CPU-GPU

workload splits: 100-0, 95-5, 90-10, 85-15, 80-20, 75-25, 70-30, 65-35, 60-40, 55-45, 50-50, 45-55,

40-60, 35-65, 30-70, 25-75, 20-80, 15-85, 10-90, 5-95, and 0-100. The time taken in seconds for

the tested splits can be seen in Table 3.2 and Figure 3.2. The proportion of running time spent

in the GPU for the tested is shown in Table 3.3 and Figure 3.3. The GPU memory usage for the

tested splits is shown in Table 3.4 and Figure 3.4.

13

CPU-GPU split

mesh 100-0 95-5 90-10 85-15 80-20 75-25 70-30

armadillo 12.4 12.4 12.3 12.3 12.3 12.2 12.2
bunny 3.51 3.51 3.52 3.52 3.53 3.53 3.53
gargoyle 68.4 68.0 67.4 66.9 66.3 65.8 65.4
hand 28.6 28.5 28.3 28.2 28.0 27.8 27.7
horse 2.12 2.13 2.13 2.15 2.16 2.16 2.17
kitten 13.3 13.3 13.2 13.2 13.2 13.1 13.1

mesh 65-35 60-40 55-45 50-50 45-55 40-60 35-65

armadillo 12.2 12.1 12.1 12.1 12.1 12.0 12.0
bunny 3.53 3.54 3.54 3.55 3.55 3.56 3.57
gargoyle 65.0 64.6 64.0 63.3 62.8 62.0 61.4
hand 27.7 27.6 27.4 27.2 27.1 27.0 26.8
horse 2.18 2.20 2.21 2.23 2.25 2.26 2.28
kitten 13.0 13.1 13.0 12.9 12.9 12.8 12.8

mesh 30-70 25-75 20-80 15-85 10-90 5-95 0-100

armadillo 12.0 11.9 11.9 11.9 11.8 11.8 11.8
bunny 3.58 3.58 3.59 3.59 3.60 3.60 3.61
gargoyle 60.8 60.2 59.7 59.2 58.6 58.0 57.3
hand 26.6 26.6 26.5 26.3 26.2 26.0 25.9
horse 2.29 2.31 2.32 2.34 2.36 2.36 2.38
kitten 12.8 12.7 12.6 12.6 12.5 12.4 12.5

Table 3.2: The time taken to simplify for each CPU-GPU split using the näıve GPU algorithm.

14

GPU % time

mesh 100-0 95-5 90-10 85-15 80-20 75-25 70-30

armadillo 0 9.2 14.5 19.6 24.6 29.4 34.1
bunny 0 5.4 8.8 12.1 15.2 18.2 21.1
gargoyle 0 10.4 15.8 21.1 26.3 31.3 36.1
hand 0 9.4 14.8 20.0 25.1 29.9 34.7
horse 0 5.0 8.0 10.9 13.6 16.2 18.7
kitten 0 8.2 13.4 18.4 23.2 27.9 32.5

mesh 65-35 60-40 55-45 50-50 45-55 40-60 35-65

armadillo 38.6 43.1 47.5 51.7 55.8 59.8 63.6
bunny 23.9 26.5 29.0 31.4 33.6 35.7 37.7
gargoyle 40.8 45.4 49.9 54.3 58.6 62.7 66.7
hand 39.3 43.9 48.4 52.7 56.9 61.0 64.8
horse 21.1 23.3 25.4 27.4 29.2 30.9 32.5
kitten 36.8 41.2 45.5 49.6 53.6 57.4 61.1

mesh 30-70 25-75 20-80 15-85 10-90 5-95 0-100

armadillo 67.4 70.9 74.3 77.5 80.6 83.4 86.0
bunny 39.5 41.3 42.9 44.4 45.8 47.2 48.5
gargoyle 70.5 74.2 77.7 81.0 84.2 87.2 89.1
hand 68.7 72.3 75.8 79.0 82.2 84.2 87.8
horse 33.9 35.3 36.5 37.6 38.6 39.4 40.1
kitten 64.8 68.2 71.4 74.5 77.4 80.1 82.5

Table 3.3: The percentage of time spent on the GPU for different CPU-GPU splits using the
näıve GPU algorithm.

15

CPU-GPU split

mesh 100-0 95-5 90-10 85-15 80-20 75-25 70-30

armadillo 0 2568 2770 2973 3176 3378 3581
bunny 0 517 558 599 640 680 721
gargoyle 0 12813 13824 14836 15847 16859 17871
hand 0 4859 5242 5626 6009 6393 6777
horse 0 228 246 264 282 300 318
kitten 0 2035 2196 2356 2517 2678 2838

mesh 65-35 60-40 55-45 50-50 45-55 40-60 35-65

armadillo 3784 3986 4189 4392 4595 4797 5000
bunny 762 803 844 884 925 966 1007
gargoyle 18882 19894 20905 21917 22928 23940 24951
hand 7160 7544 7927 8311 8695 9078 9462
horse 336 354 372 390 408 426 444
kitten 2999 3160 3320 3481 3642 3802 3963

mesh 30-70 25-75 20-80 15-85 10-90 5-95 0-100

armadillo 5203 5405 5608 5811 6014 6216 6419
bunny 1048 1089 1129 1170 1211 1252 1293
gargoyle 25963 26974 27986 28998 30009 31021 32032
hand 9845 10229 10613 10996 11380 11763 12147
horse 462 480 498 516 534 552 570
kitten 4124 4284 4445 4606 4766 4927 5088

Table 3.4: The amount of memory used, in KB, by the GPU during simplification for each
CPU-GPU split for both the näıve GPU algorithm and the inverse-reduction GPU algorithm.

16

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.2: The time taken to simplify each test case for every split using the näıve GPU
algorithm. As the CPU-GPU split increases, the CPU workload increases, and the GPU workload
decreases.

17

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.3: The percentage of the time spent on the GPU for every split using the näıve GPU
algorithm.

18

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.4: The amount of memory used by the GPU, in KB, for every split using both the näıve
GPU algorithm and the inverse-reduction GPU algorithm.

19

mesh # vertices # faces min ∠ max ∠ min area avg area volume

armadillo 147739 295496 2.938e-3 179.991 2.140e-08 2.149e-1 1.42733e+6
bunny 30102 60194 1.618e-3 179.997 8.211e-07 1.820e-2 7.56100e+3
gargoyle 735345 1470688 3.079e-4 179.987 2.303e-09 5.349e-2 1.64247e+6
hand 278849 557718 1.442e-2 179.673 1.992e-10 1.265e-4 1.65230e+1
horse 13180 26598 6.280e-2 179.811 3.006e-12 2.446e-6 1.58903e-3
kitten 116952 233901 4.609e-3 179.843 6.234e-08 1.038e-1 8.38671e+5

Table 3.5: Various values of the metrics for the meshes after one iteration.

mesh # vertices # faces min ∠ max ∠ min area avg area volume

armadillo 56469 111617 3.091e-2 179.86 3.901e-07 6.077e-1 1.42548e+6
bunny 9979 20129 1.477e-1 179.645 6.242e-06 5.759e-2 7.56014e+3
gargoyle 278305 629188 3.688e-4 179.981 8.967e-08 1.143e-1 1.64053e+6
hand 99635 213061 1.969e-2 179.912 2.674e-09 3.937e-4 1.65117e+1
horse 5428 10927 1.874e-2 179.339 1.032e-11 7.162e-6 1.58650e-3
kitten 39991 87997 1.530e-2 179.799 2.320e-06 5.259e-1 8.38547e+5

Table 3.6: Various values of the metrics for the meshes after ten iterations.

As seen in Figure 3.2, the armadillo, gargoyle, hand, and kitten meshes show an increas-

ing trend in running time, whereas the bunny and horse meshes exhibit a decreasing trend, with

regard to increasing the workload of the GPU. If the mesh is large, the time taken decreases as

the GPU workload increases. If the mesh is small, the reverse holds. This result can be attributed

to the extra time taken to allocate memory in the GPU and copying the data from main memory

to the GPU cache in addition to the time required for simplification.

We obtain the following metrics after one iteration and after ten iterations of the algorithm

with a CPU-GPU split of 0-100: vertex count, face count, minimum angle, maximum angle,

minimum area, average area, volume, vertex simplification percentage, and face simplification

percentage. The metrics can be seen in Table 3.5 and Table 3.6.

Simplification using the näıve marking algorithm does not affect the volume of the test

meshes significantly. It does, however, increase the average area of each element, which is to be

expected. Additionally, the simplification rate is approximately 14% to 15% for one iteration of

the algorithm. We will also look at the simplification rate of multiple iterations of the algorithm.

We also consider the simplification rate after performing multiple iterations of the näıve

GPU algorithm on the test meshes. The simplification rates for ten iterations of the algo-

rithm run on the armadillo, bunny, gargoyle, hand, horse, and kitten meshes can be see in

Tables 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12, respectively.

20

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.5: The resulting meshes after three iterations of the marking algorithm.

21

iteration # vertices # faces vertex simplification % face simplification %

0 172974 345944 0.0 0.0
1 147739 295456 14.6 14.6
2 129444 258746 25.2 25.2
3 114272 228141 33.9 34.0
4 101551 202291 41.3 41.5
5 90807 180363 47.5 47.9
6 81659 161547 52.8 53.3
7 73903 145486 57.3 57.9
8 67203 131575 61.1 62.0
9 61407 119454 64.5 65.5
10 56469 111617 67.4 67.7

Table 3.7: The simplification percentage of the armadillo mesh over multiple iterations. This
data is shown in Figures 3.8 and 3.7.

iteration # vertices # faces vertex simplification % face simplification %

0 34834 69664 0.0 0.0
1 30102 60194 13.6 13.6
2 26103 52183 25.1 25.1
3 22772 45487 34.6 34.7
4 19976 39846 42.7 42.8
5 17603 35026 49.5 49.7
6 15588 30942 55.3 55.6
7 13870 27413 60.2 60.6
8 12396 24391 64.4 65.0
9 11093 21703 68.2 68.8
10 9979 20129 71.4 71.1

Table 3.8: The simplification percentage of the bunny mesh over multiple iterations. This data
is shown in Figures 3.8 and 3.7.

The simplification rate hovers around 64% to 71% for both vertices and faces after ten

iterations. After three iterations, we can see that there are visible areas where simplification

occurred on the bunny and horse meshes as shown in Figure 3.5, but not so on the larger meshes.

After ten iterations, the bunny, horse, and kitten meshes as shown in Figure 3.6 exhibit an ex-

treme loss of detail. The armadillo lost some detail in the head area, and the other meshes do

not show too much loss of detail. This reinforces the notion that the larger a mesh is initially,

the more that it can be simplified without any visible effects.

Figure 3.7 shows the simplification percentage as a function of iteration for the vertices in

each mesh. Figure 3.8 shows the simplification percentage as a function of the iteration number

for the faces in each mesh. After each iteration, the increase in the simplification percentage is

smaller. This suggests that as the vertex and element count of a mesh increase, the decrease in

22

iteration # vertices # faces vertex simplification % face simplification %

0 863182 1726364 0.0 0.0
1 735345 1470688 14.8 14.8
2 646764 1292036 25.1 25.2
3 573431 1142601 33.6 33.8
4 512166 1042650 40.7 39.6
5 458718 952966 46.9 44.8
6 412135 872794 52.3 49.4
7 371523 801356 57.0 53.6
8 336120 737405 61.1 57.3
9 305243 680268 64.6 60.6
10 278305 629188 67.8 63.6

Table 3.9: The simplification percentage of the gargoyle mesh over multiple iterations. This data
is shown in Figures 3.8 and 3.7.

iteration # vertices # faces vertex simplification % face simplification %

0 327323 654666 0.0 0.0
1 278849 557718 14.8 14.8
2 242541 484654 25.9 26.0
3 212871 423987 35.0 35.2
4 188294 387082 42.5 40.9
5 167095 354151 49.0 45.9
6 148251 289761 54.7 49.4
7 133491 267845 59.2 55.7
8 120632 247917 63.1 62.1
9 109398 229686 66.6 64.9
10 99635 213061 69.6 67.5

Table 3.10: The simplification percentage of the hand mesh over multiple iterations. This data
is shown in Figures 3.8 and 3.7.

running time achieved by using the GPU simplification algorithm instead of the CPU simplifica-

tion algorithm increases as well.

23

iteration # vertices # faces vertex simplification % face simplification %

0 15366 30728 0 0
1 13180 26598 14.2 13.4
2 11486 23363 25.3 24.0
3 10079 19766 34.4 35.7
4 9095 17950 40.8 41.6
5 8258 16393 46.3 46.7
6 7534 15037 51.0 51.1
7 6916 13850 55.0 54.9
8 6364 12767 58.6 58.5
9 5874 11788 61.8 61.6
10 5428 10927 64.7 64.4

Table 3.11: The simplification percentage of the horse mesh over multiple iterations. This data
is shown in Figures 3.8 and 3.7.

iteration # vertices # faces vertex simplification % face simplification %

0 137098 274196 0.0 0.0
1 116952 233901 14.7 14.7
2 101877 203656 25.7 25.7
3 89283 178272 34.9 35.0
4 78753 162117 42.6 40.9
5 69578 147564 49.2 46.2
6 61558 122015 55.1 55.5
7 55093 112134 59.8 59.1
8 49391 103193 64.0 62.4
9 44383 95182 67.6 65.3
10 39991 87997 70.8 67.9

Table 3.12: The simplification percentage of the kitten mesh over multiple iterations. This data
is shown in Figures 3.8 and 3.7.

24

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.6: The resulting meshes after ten iterations of the marking algorithm.

25

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.7: The simplification percentage of the vertices as a function of the iteration number.

26

(a) Armadillo. (b) Bunny.

(c) Gargoyle. (d) Hand.

(e) Horse. (f) Kitten.

Figure 3.8: The simplification percentage of the faces as a function of the iteration number.

27

CPU-GPU split

mesh 100-0 95-5 90-10 85-15 80-20 75-25 70-30

armadillo 12.4 12.4 12.3 12.3 12.2 12.1 12.1
bunny 3.51 3.51 3.51 3.50 3.50 3.49 3.49
gargoyle 68.4 67.6 66.9 66.2 65.4 64.5 63.7
hand 28.6 28.4 28.2 28.0 27.7 27.4 27.1
horse 2.12 2.12 2.12 2.13 2.13 2.13 2.14
kitten 13.3 13.2 13.1 13.1 13.0 13.0 12.9

mesh 65-35 60-40 55-45 50-50 45-55 40-60 35-65

armadillo 12.0 11.9 11.8 11.8 11.7 11.6 11.6
bunny 3.48 3.48 3.48 3.47 3.47 3.46 3.46
gargoyle 63.0 62.2 61.3 60.5 59.5 58.6 57.9
hand 26.8 26.7 26.4 26.2 25.9 25.7 25.5
horse 2.14 2.14 2.14 2.15 2.15 2.16 2.16
kitten 12.8 12.8 12.7 12.7 12.6 12.5 12.4

mesh 30-70 25-75 20-80 15-85 10-90 5-95 0-100

armadillo 11.6 11.5 11.4 11.3 11.1 11.1 11.0
bunny 3.45 3.43 3.44 3.43 3.43 3.42 3.42
gargoyle 57.2 56.3 55.4 54.5 53.5 52.3 51.4
hand 25.3 25.0 24.7 24.4 24.1 23.9 23.6
horse 2.17 2.17 2.18 2.18 2.19 2.20 2.20
kitten 12.2 12.2 12.1 11.9 11.7 11.7 11.6

Table 3.13: The time taken to simplify for each CPU-GPU split using the inverse-reduction GPU
algorithm.

3.2.2 Inverse-Reduction Algorithm

To examine the effects of splitting the mesh simplification workload between the CPU and the

GPU using the inverse-reduction algorithm, we recorded the time spent during the simplification

process for different CPU-GPU splits on all test cases. We tested the following CPU-GPU

workload splits: 100-0, 95-5, 90-10, 85-15, 80-20, 75-25, 70-30, 65-35, 60-40, 55-45, 50-50, 45-55,

40-60, 35-65, 30-70, 25-75, 20-80, 15-85, 10-90, 5-95, and 0-100. The time taken in seconds for

the tested splits can be seen in Table 3.13 and Figure 3.9. The proportion of running time spent

in the GPU for the tested is shown in Table 3.14 and Figure 3.10. The GPU memory usage for

the tested splits is shown in Table 3.4 and Figure 3.4.

28

GPU % time

mesh 100-0 95-5 90-10 85-15 80-20 75-25 70-30

armadillo 0 8.2 13.3 18.2 22.8 27.4 31.9
bunny 0 5.0 8.3 11.5 14.4 17.3 20.1
gargoyle 0 9.2 14.4 19.5 24.4 29.2 33.8
hand 0 8.3 13.5 18.4 23.1 27.8 32.5
horse 0 4.7 7.7 10.5 13.1 15.7 18.1
kitten 0 7.4 12.4 17.2 21.8 26.3 30.7

mesh 65-35 60-40 55-45 50-50 45-55 40-60 35-65

armadillo 36.2 40.5 44.7 48.7 52.6 56.4 59.8
bunny 22.7 25.2 27.6 29.8 31.9 33.9 35.7
gargoyle 38.3 42.6 46.8 51.0 55.1 58.9 62.7
hand 36.9 41.3 45.6 49.7 53.7 57.6 61.1
horse 20.4 22.5 24.6 26.5 28.2 28.8 31.4
kitten 34.8 38.9 43.0 46.8 50.7 54.3 57.8

mesh 30-70 25-75 20-80 15-85 10-90 5-95 0-100

armadillo 63.4 66.7 69.7 72.4 75.0 77.2 79.0
bunny 37.4 39.1 40.5 41.9 43.2 44.5 45.7
gargoyle 66.2 69.7 73.0 76.0 79.0 81.7 83.4
hand 64.9 68.3 71.4 74.2 76.9 79.2 81.1
horse 32.6 33.9 34.9 35.9 36.8 37.5 38.1
kitten 61.3 64.5 67.5 70.3 73.0 75.6 77.1

Table 3.14: The percentage of time spent using the GPU for different CPU-GPU splits using the
inverse-reduction GPU algorithm.

29

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.9: The time taken to simplify each test case for every split using the inverse-reduction
GPU algorithm. As the CPU-GPU split increases, the CPU workload increases, and the GPU
workload decreases.

30

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.10: The percentage of the time spent on the GPU for every split using the inverse-
reduction GPU algorithm.

31

mesh # vertices # faces min ∠ max ∠ min area avg area volume

armadillo 154583 309156 5.975e-3 179.982 1.157e-09 2.050e-1 1.42706e+6
bunny 31142 62278 4.948e-1 178.476 1.020e-06 1.760e-2 7.55900e+3
gargoyle 779354 1558590 2.154e-4 179.993 1.802e-10 5.046e-2 1.64223e+6
hand 294585 589173 1.520e-2 179.558 1.158e-10 1.198e-4 1.65060e+1
horse 13916 27823 2.965e-3 179.621 1.118e-14 2.341e-6 1.58783e-3
kitten 123496 246988 4.609e-3 179.843 1.424e-08 9.830e-2 8.38419e+5

Table 3.15: Various values of the metrics for the meshes after one iteration.

mesh # vertices # faces min ∠ max ∠ min area avg area volume

armadillo 65091 129131 2.271e-2 179.949 1.656e-07 5.190e-1 1.42659e+6
bunny 13043 25936 5.214e-2 179.805 1.000e-07 4.455e-2 7.55771e+3
gargoyle 351150 693992 3.044e-3 179.991 3.046e-08 1.211e-1 1.64145e+6
hand 132063 259374 1.449e-2 179.920 8.594e-10 2.940e-4 1.64892e+1
horse 6623 12719 1.251e-2 179.520 6.054e-11 5.698e-6 1.58656e-3
kitten 53725 106863 1.076e-2 179.912 1.476e-06 2.404e-1 8.38289e+5

Table 3.16: Various values of the metrics for the meshes after one iteration.

Again, the horse mesh shows an increasing trend, and the armadillo, bunny, gargoyle,

hand, and kitten show a decreasing trend with regard to an increasing workload on the GPU.

If the mesh is large, the time taken decreases as the GPU workload increases. If the mesh is

small, the reverse trend holds. This result can be attributed to the extra time taken for memory

allocation in the GPU and copying the data from main memory to the GPU cache, shown in Ta-

ble 3.4 and Figure 3.4, in addition to the time required for simplification. Additionally, because

the inverse-reduction algorithm is more efficient than the näıve marking algorithm, we see that

the time taken to simplify the bunny decreases as the GPU workload increases, now decreasing

anywhere between 5.55% for the bunny mesh to 11.48% for the gargoyle mesh when the GPU is

given the full workload when compared to the näıve algorithm.

We collected the following metrics after one iteration and after ten iterations of the algo-

rithm with a CPU-GPU split of 0-100: vertex count, face count, minimum angle, maximum

angle, minimum area, average area, volume, vertex simplification percentage, and face simpli-

fication percentage. The values for iteration one and iteration ten can be seen in Tables 3.15

and 3.16 respectively.

Simplification using the inverse-reduction algorithm does not affect the volume of the test

cases significantly. It does, however, increase the average area of each element, which is to be

expected. Additionally, the simplification rate is approximately 9% to 10% after one iteration of

32

iteration # vertices # faces vertex simplification % face simplification %

0 172974 345944 0.0 0.0
1 154583 309156 10.6 10.6
2 138843 277675 19.7 19.7
3 125244 250215 27.6 27.7
4 113079 225885 34.6 34.7
5 102365 204419 40.8 40.9
6 93153 185910 46.1 46.3
7 84855 169216 50.9 51.1
8 77459 154266 55.2 55.4
9 70931 141022 59.0 59.2
10 65091 129131 62.4 62.7

Table 3.17: The simplification percentage of the armadillo mesh over multiple iterations. This
data is shown in Figures 3.14 and 3.13.

iteration # vertices # faces vertex simplification % face simplification %

0 34834 69664 0.0 0.0
1 31142 62278 10.6 10.6
2 27980 55954 19.7 19.7
3 25216 50383 27.6 27.7
4 22809 45567 34.5 34.6
5 20657 41261 40.7 40.8
6 18762 37463 46.1 46.2
7 17069 34064 51.0 51.1
8 15548 31013 55.4 55.5
9 14230 28349 59.1 59.3
10 13043 25936 62.6 62.8

Table 3.18: The simplification percentage of the bunny mesh over multiple iterations. This data
is shown in Figures 3.14 and 3.13.

the algorithm, which is much lower than that of the näıve algorithm. There is a tradeoff between

speed and rate of compression. We will also look at the simplification rate for multiple iterations

of the algorithm.

We also consider the simplification rate after performing ten iterations of the inverse-

reduction GPU algorithm on the test meshes. The simplification rates for performing ten it-

erations of the algorithm on the armadillo, bunny, gargoyle, hand, horse, and kitten meshes can

be seen in Tables 3.17, 3.18, 3.19, 3.20, 3.21, and 3.22 respectively.

The simplification rate of both vertices and faces after running ten iterations of the

algorithm hovers around 57% to 63%. After three iterations, we can see that there are visible

areas where simplification occurred on the horse mesh as shown in Figure 3.11, but this is not

so on the larger meshes. After ten iterations, the the bunny, horse, and kitten meshes exhibit an

33

iteration # vertices # faces vertex simplification % face simplification%

0 863182 1726364 0.0 0.0
1 779354 1558590 9.7 9.7
2 704379 1408640 18.4 18.4
3 639370 1276589 25.9 26.1
4 581774 1161369 32.6 32.7
5 531048 1059586 38.5 38.6
6 486874 970716 43.6 43.8
7 446693 889413 48.3 48.5
8 410960 816781 52.4 52.7
9 379788 753007 56.0 56.4
10 351150 693992 59.3 59.8

Table 3.19: The simplification percentage of the gargoyle mesh over multiple iterations. This
data is shown in Figures 3.14 and 3.13.

iteration # vertices # faces vertex simplification % face simplification %

0 327323 654666 0.0 0.0
1 294585 589173 10.0 10.0
2 266077 532157 18.7 18.7
3 241322 481523 26.3 26.4
4 219254 437357 33.0 33.2
5 199875 398439 38.9 39.1
6 183105 364576 44.1 44.3
7 167838 333558 48.7 49.0
8 154553 306309 52.8 53.2
9 142677 281686 56.4 57.0
10 132063 259374 59.6 60.4

Table 3.20: The simplification percentage of the hand mesh over multiple iterations. This data
is shown in Figures 3.14 and 3.13.

extreme loss of detail, as shown in Figure 3.12. The armadillo lost some detail in the head area,

and the other meshes do not show too much loss of detail. This reinforces the notion that the

larger a mesh is initially, the more that it can be simplified without any visible bad effects.

Figure 3.13 shows the simplification percentage as a function of the iteration number for

the vertices in each mesh. Figure 3.14 shows the simplification percentage as a function of the

iteration number for the faces in each mesh. After each iteration, the increase in the simplifi-

cation percentage is decreased. This suggests that as a mesh increases in size, the decrease in

running time achieved by using the GPU simplification algorithm instead of the CPU simplifica-

tion algorithm increases as well.

34

iteration # vertices # faces vertex simplification % face simplification %

0 15366 30728 0.0 0.0
1 13916 27823 9.4 9.5
2 12643 25277 17.7 17.7
3 11546 22920 24.9 25.4
4 10559 20934 31.3 31.9
5 9696 19185 36.9 37.6
6 8932 17605 41.9 42.7
7 8251 16179 46.3 47.3
8 7640 14904 50.3 51.5
9 7104 13779 53.8 55.2
10 6623 12719 56.9 58.6

Table 3.21: The simplification percentage of the horse mesh over multiple iterations. This data
is shown in Figures 3.14 and 3.13.

iteration # vertices # faces vertex simplification % face simplification %

0 137098 274196 0.0 0.0
1 123496 246988 9.9 9.9
2 111461 222918 18.7 18.7
3 100828 201453 26.5 26.5
4 91563 182928 33.2 33.3
5 83234 166259 39.3 39.4
6 75871 151511 44.7 44.7
7 69330 138378 49.4 49.5
8 63537 126736 53.7 53.8
9 58359 116252 57.4 57.6
10 53725 106863 60.8 61.0

Table 3.22: The simplification percentage of the kitten mesh over multiple iterations This data
is shown in Figures 3.14 and 3.13..

35

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.11: The resulting meshes after three iterations of the inverse-reduction algorithm.

36

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.12: The resulting meshes after ten iterations of the inverse-reduction algorithm.

37

(a) Armadillo. (b) Bunny.

(c) Gargoyle. (d) Hand.

(e) Horse. (f) Kitten.

Figure 3.13: The simplification percentage of the vertices as a function of the iteration number.

38

(a) Armadillo (b) Bunny

(c) Gargoyle (d) Hand

(e) Horse (f) Kitten

Figure 3.14: The simplification percentage of the faces as a function of the iteration number.

39

Chapter 4
Conclusions and Future Work

4.1 Conclusions

In this thesis, we proposed two GPU-based surface mesh simplification algorithms: the

marking algorithm, which uses multiple GPU threads to concurrently mark elements as affected,

and the inverse-reduction algorithm, which attempts to perform the edge-collapse operation on

twice as many edges at each step. Each of these algorithms were tested on six test meshes: an

armadillo, a bunny, a gargoyle, a hand, a horse, and a kitten. The combinations of the CPU

algorithm with the two GPU algorithms were novel; they leveraged the concurrency of the GPU

to aid in simplifying our test meshes. These algorithms can be used in various areas of computer

graphics, where there is a clear benefit in creating multiple unique meshes from a single source

mesh or a simplified version of an original mesh, such as video games and computer imaging.

The simplification rate and running time of the algorithms on different meshes depended

on multiple factors, including the backing GPU algorithm itself. Both algorithms used the same

amount of memory on the GPU for any specific CPU-GPU split, as they both needed to keep

track of the same amount of vertices and elements on the GPU. As the workload of the GPU was

increased, the amount of memory used by the GPU increased as well. For both algorithms, as the

size of a mesh increased, the decrease in simplification time got bigger, as the GPU workload was

increased. The simplification rate of approximately 68% that the marking algorithm achieved

was higher than the simplification rate of approximately 59% achieved by the inverse-reduction

algorithm, over ten iterations. This slight increase in simplification rate provided by the mark-

40

ing algorithm was counterbalanced by an increase of anywhere between 5.55% to 11.48% in the

running time when the GPU is given the full workload. This suggests that the GPU marking

algorithm should be used when a larger simplification rate per iteration is needed and running

time is not a limiting factor, and that the inverse-reduction GPU algorithm should be used when

time is a limiting factor or a smaller simplification rate per iteration is required, such as for

smaller meshes.

4.2 Future Work

We saw that specific areas of the mesh were repeatedly simplified over multiple iterations,

causing the meshes to look excessively simplified in certain areas, as as can be seen by the dark

spots on the meshes. An idea to prevent the simplification of the same areas would be to reorder

the elements of the mesh. An element of randomness such as reordering would make it less likely

that elements in the same area are chosen for simplification each iteration.

Second, it would be interesting to implement a hybrid algorithm that takes advantage of the

speed of the inverse-reduction algorithm and the simplification rate of the marking algorithm.

This could potentially increase the simplification rate and decrease the running time of a simpli-

fication algorithm.

Third, the effects of these algorithms on textured meshes should be studied. Our results

regarding how well the algorithms perform may differ from the results obtained by running the

algorithms on textured meshes.

Fourth, a mesh optimization algorithm should be included as a post-processing step. This

would yield better quality meshes after each iteration, and it would minimize the visual effects

of simplifying the same area multiple times over many iterations.

Finally, it may be beneficial to modify the algorithms to utilize all CPU cores. While the

algorithms do show an increase in speed over the CPU-only algorithm in most cases, they may

possibly show additional speed increases if all CPU cores are utilized, especially in the context

of computer graphics, where running time is often a critical factor.

41

Bibliography

[1] Yehuda Afek, Eli Gafni, John Tromp, and Paul Vitanyi. Wait-free test-and-set. In Adrian

Segall and Shmuel Zaks, editors, Distributed Algorithms, volume 647 of Lecture Notes in

Computer Science, pages 85–94. Springer Berlin / Heidelberg, 1992.

[2] AIM@SHAPE. Aim@shape shape repository 4.0, February 2012.

http://shapes.aimatshape.net/.

[3] Maria-Elena Algorri and Francis Schmitt. Mesh simplification. Computer Graphics Forum,

15(3):77–86, 1996.

[4] C.L. Bajaj, V. Pascucci, and G. Zhuang. Progressive compression and transmission of

arbitrary triangular meshes. In Proceedings Visualization ’99, Visualization ’99, pages 307–

537, 1999.

[5] Dmitry Brodsky and Jan Baekgaard Pedersen. A parallel framework for simplification of

massive meshes. In Proceedings of the 2003 IEEE Symposium on Parallel and Large-Data

Visualization and Graphics, PVG ’03, pages 17–24, Washington, DC, USA, 2003. IEEE

Computer Society.

[6] P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplification algorithms.

Computers & Graphics, 22:37–54, 1997.

[7] NVIDIA Corporation. CUDA toolkit, January 2012.

http://developer.nvidia.com/cuda-toolkit-41.

42

[8] Christopher DeCoro and Natalya Tatarchuk. Real-time mesh simplification using the gpu.

In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, I3D ’07,

pages 161–166, New York, NY, USA, 2007. ACM.

[9] F. Dehne, C. Langis, and G. Roth. Mesh simplification in parallel. ICA3PP ’00, pages

281–290, 2000.

[10] Christian Dick, Jens Schneider, and Rüdiger Westermann. Efficient geometry compression

for GPU-based decoding in realtime terrain rendering. Computer Graphics Forum, 28(1):67–

83, 2009.

[11] Martin Franc and Václav Skala. Parallel triangular mesh decimation without sorting. In

Proceedings of the 17th Spring Conference on Computer graphics, SCCG ’01, pages 22–,

Washington, DC, USA, 2001. IEEE Computer Society.

[12] Paul Heckbert and Michael Garl. Multiresolution modeling for fast rendering. In Proceedings

of Graphics Interface, pages 43–50, 1994.

[13] Jon Hjelmervik and Jean-Claude Leon. GPU-accelerated shape simplification for mechanical-

based applications. In Proceedings of the IEEE International Conference on Shape Modeling

and Applications 2007, SMI ’07, pages 91–102, Washington, DC, USA, 2007. IEEE Computer

Society.

[14] Hugues Hoppe. Progressive meshes. In Proceedings of the 23rd Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pages 99–108, New York,

NY, USA, 1996. ACM.

[15] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Surface

reconstruction from unorganized points. SIGGRAPH Comput. Graph., 26(2):71–78, July

1992.

[16] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Mesh

optimization. In Proceedings of the 20th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’93, pages 19–26, New York, NY, USA, 1993. ACM.

43

[17] Martin Isenburg, Peter Lindstrom, Stefan Gumhold, and Jack Snoeyink. Large mesh simplifi-

cation using processing sequences. In Greg Turk, Jarke J. van Wijk, and Robert J. Moorhead

II, editors, IEEE Visualization, pages 465–472. IEEE Computer Society, 2003.

[18] Andrew E. Johnson and Martial Herbert. Control of polygonal mesh resolution for 3-d

computer vision. Graph. Models Image Process., 60(4):261–285, July 1998.

[19] Kok-Lim Low and Tiow-Seng Tan. Model simplification using vertex-clustering. In Proceed-

ings of the 1997 Symposium on Interactive 3D Graphics, I3D ’97, pages 75–ff., New York,

NY, USA, 1997. ACM.

[20] David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin Reddy, and Amitabh Varsh-

ney. Level of Detail for 3D Graphics. Elsevier Science Inc., New York, NY, USA, 2002.

[21] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and block-

ing concurrent queue algorithms. In Proceedings of the Fifteenth Annual ACM Symposium

on Principles of Distributed Computing, PODC ’96, pages 267–275, New York, NY, USA,

1996. ACM.

[22] Georgia Institute of Technology. Large geometric models archive, February 2012.

http://www.cc.gatech.edu/projects/large models/.

[23] Zhigeng Pan, Kun Zhou, and Jiaoying Shi. A new mesh simplification algorithm based on

triangle collapses. J. Comput. Sci. Technol., 16(1):57–63, 2001.

[24] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle

meshes. SIGGRAPH Comput. Graph., 26(2):65–70, July 1992.

[25] Sudipta N. Sinha, Jan michael Frahm, Marc Pollefeys, and Yakup Genc. Gpu-based video

feature tracking and matching. Technical report, In Workshop on Edge Computing Using

New Commodity Architectures, 2006.

[26] Stanford University. The stanford 3D scanning repository, January 2012.

http://graphics.stanford.edu/data/3Dscanrep/.

44

