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Abstract

Recent explosive growth of interconnected document collections such as citation
networks, network of web pages, content generated by crowd-sourcing in collabo-
rative environments, etc., has posed several challenging problems for data mining
and machine learning community. One central problem in the domain of document
networks is that of link prediction among any two documents or document centric
entities, such as authors, based upon already present links in a given network. The
problem of link prediction in document networks is a fundamental problem. Sev-
eral applications, such as recovering missing link among entities in a given network
of documents, citation recommendation to research professionals, collaborator rec-
ommendations to authors, discovering influential authors or bloggers in research
articles or web-logs respectively, studying ideas and opinion propagation in evolv-
ing collection of research documents or news media, disambiguating references of
people mentioned in news articles, etc. can be cast as a particular flavour of link
prediction problem to be solved. This thesis studies following three link prediction
based research problems in document networks: (i)Who influences other’s actions
in a collaborative research environment?, (ii)which documents get cited by a doc-
ument that joins a citation network?, and (iii) which is the correct entity for an
entity mention in free text?.

Among various computation methods to solve domain specific link prediction
problem, statistical machine learning based techniques are an increasingly accept-
able method due to their capability of modeling complex relationships among doc-
uments and document centric entities and dedicated efforts from research com-
munity to make the resulting intractable inference computationally scalable. This
thesis proposes two types of statistical models: (1) models that mimic the gener-
ation process of document networks e.g. citation network of scientific documents,
interconnected blog articles, web pages, etc.; (2) models that are capable of incor-
porating a specific task oriented features as supervision. The proposed statistical
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models are an extension of Latent Dirichlet Allocation, also known as topic models.
In this work, I show how topic models can be adapted for the above mentioned
link prediction problems. The proposed techniques perform superior to previous
approaches for these link prediction problems.
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Chapter 1
Introduction

1.1 Learning to Predict Links in Document Net-

works

With the advent of world-wide-web, various collections of inter-connected doc-

uments, such as web-logs, hypertext documents, encyclopedic articles, scientific

documents, etc., are easy to obtain. These collection of documents can be de-

scribed as relational network of entities where documents and their attributes,

such as authors, words and categories, act as nodes and connections among them

act as links. These relational datasets have been widely utilized for analysing

various prediction tasks such as author collaboration in collaboration networks of

scientific publications, citation prediction in citation networks, time sensitive pre-

diction of citation network evolution, etc. One can cast these various prediction

tasks into a framework of a fundamental link prediction problem in document net-

works. Formally, link prediction can be defined as the estimation of the likelihood

of a link between any two entities.

Fundamentally, there are two types of algorithmic approaches to solve link

prediction problems: (1) Topological structure analysis of graph associated with

entities [33, 35], and (2) statistical machine learning techniques that learn from

existing links to infer parameters that govern or explain link formulations in doc-

ument network [12, 22, 42]. Analysis of graph structure for link prediction is

algorithmically easy and tractable; however, often leads to inferior results com-
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pared to statistical machine learning approaches [33]. Although computationally

intractable in nature, statistical machine learning approaches have proven to be

effective and, also, provide an extensible framework which is both theoretically and

practically appealing. This dissertation provides an in depth analysis of a partic-

ular class of statistical machine learning methods, known as topic models, from

a link prediction perspective. Additionally, I provides analysis of three specific

variants of link prediction problem: (1) citation prediction (2) influential author

detection, and (3) entity disambiguation in crowed-sourced knowledge bases.

Learning in document network with machine learning approaches is a challeng-

ing task. Traditionally, machine learning for network (or graph) oriented datasets

assumes a random sample of homogeneous objects with a singly type of relations to

learn for any given task [18]. However, a given sample of document network pose

two specific challenges contrary to this assumption: (1) multi-type relations among

entities present in documents, e.g., document-word relation, document-author re-

lation, author-author relation, etc., and (2) relations with attributes, e.g. anchor

text with hyper-links, citation context for citations, etc. Generative models for

documents, in the form of topic models, have emerged as a natural class of models

that can accommodate features in their generative process to address both of these

challenges.

1.2 Topic Models for Document Networks

Latent Dirichlet allocation (LDA) [7] was among the first topic model proposed

to understand the generative process of document collections. LDA defines topics

as a multinomial distribution over vocabulary of words in a given corpus, where

the weight of each word in a topic signifies its importance in the topic. The gen-

erative process of LDA assumes that there lies unobserved (or latent) concepts in

the corpus that imposes an inherent clustering on documents and each document

probabilistically belongs to a concept. An arguably similar class of latent class

models, named latent semantic analysis (LSA) [15], can be seen as predecessors of

topic models as follows. LSA applies singular value decomposition (SVD) on the

occurrence matrices obtained from document-word or document-citation relations

and construct a lower rank matrix representation of documents, words and cita-
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tions respectively. However, this representation can introduce negative concept

associations which can be problematic for interpreting concept representations.

Probabilistic latent semantic analysis (PLSA) [26] overcomes this drawback by

formulating a probabilistic generative model that assigns probabilities to docu-

ment concept association and document word association, however, PLSA is prone

to over-fitting [7]. LDA overcomes the over-fitting problem with a Bayesian version

of PLSA where each document has a prior knowledge about its concept propor-

tion/representation that can be pre-specified of learnt from the corpus itself. An

in-depth comparisons of these techniques follow in incoming chapters.

Topic models provide an extensible framework to incorporate attributes of doc-

uments in their generative processes. Authors and citation among documents are

among the most common attributes of documents and are integral part of rela-

tional document networks dealt with in this dissertation. Author Topic Model

(ATM) [47] extends topic models to let authors generate the content of documents

whereas Link-LDA [42] generates links in documents depending upon document’s

probabilistic association with topics. However, recent advancement of web tech-

nologies have introduced increasingly sophisticated means to collaboratively gen-

erate collection of documents, e.g. crowd sourced media such as Wikipedia. These

document collections are endowed with extra features such as document categories,

entity cataloguing, etc., and these features can potentially help in improving link

prediction quality. However, incorporating these features into topic models is not

straightforward and a challenging problem. The next section introduces specific

topic models for two types of document networks: (1) citation networks of scientific

and web documents (2) Crowd-sourced media, i.e. Wikipedia. The main focus of

the below mentioned topic-model based approaches are two-fold: (1) modeling a

generative process that is informative about the features in the dataset, and (2)

application of these approaches to link prediction in the dataset.
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1.3 Application of Topic Models to Variants of

Link Prediction problems in Document Net-

works

1.3.1 Citation Prediction with Context Sensitive Topic Mod-

els

A document network where one document cites another document, e.g. hyper-

linked web-pages, citation network of scholarly articles, has been analysed for min-

ing patterns present in the links structure of the graph. One of the corresponding

problem is to detect latent structures like topics, present in a given corpus and ap-

ply these topics for citation prediction [42, 11]. These latent structures, inherently,

tend to seek a clustering of semantically similar entities present in the collection.

Probabilistic approaches such as LDA [7] and PLSA [26] model the co-occurrence

patterns present in text and identify a probabilistic membership of the words and

the documents in a lower dimensional space. The link structure contains mean-

ingful information about entities, e.g., documents, authors etc.; this information

has been successfully utilized in web search [9]. However, the content based topic

models [7, 26, 6] completely ignore this information. Recently, Dietz, et al. [16],

Nallapati, et al. [42] and Cheng, et al. [11] have shown that modeling the citation

and the content together not only helps to better understand the latent structure

present in the data, but also helps to understand certain aspects of a linked corpus

such as novelty detection, influence prorogation, citation prediction etc. Although

current approaches look at what other documents influenced the content of a docu-

ment, they overlook how those documents influenced the content of this document.

This thesis puts emphasis upon modeling the context in which a citation appear

in a document.

In document networks, the context in which a citation appears provides extra

information about the cited document. However, associating terms in the context

to the cited document remains an open problem. We propose a novel document

generation approach that statistically incorporates the context in which a docu-

ment links to another document. I quantitatively show that the proposed gener-
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ation scheme explains the linking phenomenon better than previous approaches.

The context information along with the actual content of the document provides

significant improvements over the previous approaches for various real world evalu-

ation tasks such as link prediction and log-likelihood estimation on unseen content.

As I demonstrate in chapter 2, the proposed method is more scalable to large col-

lection of documents compared to the previous approaches.

1.3.2 Author Influence Detection with Context Sensitive

Topic Models

Modeling the interest of authors given a corpus of documents has been studied to

answer important queries about the authors such as who produces similar work [47],

who belongs to the same research community [34], etc. These queries form the basis

of several information retrieval and machine learning tasks such as expert search,

community detection, etc. Recently, several generative models of document corpus

have begun exploring latent structures such as topics, present in the documents.

LDA [7] and PLSA [26] model the co-occurrence patterns present in text and iden-

tify a probabilistic membership of words and documents in a lower dimensional

space. Rosen-Zvi, et al., [47] extended these approaches to answer queries related

to interests of authors. However, these approaches are unable to answer another

fundamental question about the attribution of interests: who influences the gen-

eration of new content in a particular topic of interest? In chapter 3, I propose

generative models that take the linkage between authors of citing and cited docu-

ments into consideration and explore various qualitative and quantitative aspects

of this question.

1.3.3 Entity Disambiguation with Hierarchical Topic Mod-

els

Disambiguating entity references by annotating them with unique ids from a cat-

alog is a critical step in the enrichment of unstructured content. In this paper, we

show that topic models, such as Latent Dirichlet Allocation (LDA) and its hier-

archical variants, form a natural class of models for learning accurate entity dis-
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ambiguation models from crowd-sourced knowledge bases such as Wikipedia. Our

main contribution is a semi-supervised hierarchical model called Wikipedia-based

Pachinko Allocation Model (WPAM) that exploits: (1) All words in the Wikipedia

corpus to learn word-entity associations (while existing approaches only use words

in a small fixed window around annotated entity references in Wikipedia pages),

(2) Wikipedia annotations to appropriately bias the assignment of entity labels to

annotated (and co-occurring unannotated) words during model learning, and (3)

Wikipedia’s category hierarchy to capture co-occurrence patterns among entities.

We propose a new sampling algorithm to speed up model learning when topics are

organized in a hierarchy, and a scheme for pruning spurious nodes fromWikipedia’s

crowd-sourced category hierarchy. Finally, in experiments with multiple real-life

datasets, we show that WPAM outperforms state-of-the-art baselines by as much

as 22% in terms of disambiguation accuracy.

1.4 The Hypotheses and the Organization of the

Dissertation

In this section, I specify the hypotheses that I verify in the dissertation and describe

the organization of the dissertation.

1.4.1 The Hypotheses

In this dissertation, I verify following hypotheses:

H.1. Latent Dirichlet Allocation based models, i.e. topic models provides a

natural mechanism to explain, with a statistical process, the generation of links

among documents in document networks.

H.2. Topic models can be adapted to predict citations in document network

of scientific articles as well as links among hypertext documents.

H.3 Topic models can be adapted to identify research area specific influential

authors in a given corpus of scientific documents.

H.4. Content surrounding mention of links, i.e., citation context, in document

networks of scientific and hypertext documents provide important citation usage
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information that can improve prediction of links between recently introduced ar-

ticles to the network.

H.5. Topic models can learn from citation context explicitly and the resultant

models can have an improved link prediction capability.

H.6. Crowd-sourced knowledge-bases, such as Wikipedia, provide a weak form

of supervision for predicting links between entity pages and their references within

the knowledge-base. Hierarchical extensions of topic models provide a natural

framework to incorporate crowd source induced features as weak form of supervi-

sion to learn effective entity-entity associations which, in turn, provides improve-

ments in predicting above mentioned links.

1.4.2 The Organization of the Dissertation

The rest of the dissertation is organised as follows. In Chapter 2, I describe ex-

tensions of topic modes for citation network of scientific documents as well as

hypertext documents. I also describe how citation context of cited documents can

be incorporated into topic models’ generation process to achieve improvements

in predicting citations among documents. In chapter 3, I introduce topic models

to determine topic specific influential authors. I also describe application of topic

models for predicting links among citing and cited authors. In chapter 4, I describe

hierarchical extensions of topic models that learn from annotations and categories

present in Wikipedia. In this chapter, I also apply these extension to predicting

links among entity references present in textual documents in Wikipedia and news

media and the corresponding entity profiles in Wikipedia. I conclude the disser-

taion in chapter 5 and lay ground for future research direction that can be pursued

based upon the work in this dissertation by discussing some research questions

that are yet unanswered.



Chapter 2
Context Sensitive Topic Models for

Citation Networks

In a citation network of documents such as network of scholarly articles in sci-

entific digital libraries, web-logs, etc., words surrounding a citation mention in a

document, i.e., citation context, provides extra information for the usage of the

citation in the citing document. This chapter present context sensitive models

for citation network which learns from citation contexts explicitly. The models

build upon Latent Dirichlet Allocation (LDA) adding a key property in the mod-

eling approach: topics distribution in a citation context affects both the word and

citation generation. I provide results on multiple real-world datasets providing

evidence that the citation context helps in improving model quality compared to

the context insensitive topic models in (1) explaining the unseen content, and (2)

recovering missing links in the citation network.

2.1 Introduction

Large collections of interlinked documents such as the World Wide Web, digi-

tal libraries of scientific literature, weblogs have given rise to several challenging

problems, e.g., detecting latent structures like topics, present in a given corpus.

These latent structures, inherently, tend to seek a clustering of semantically sim-

ilar entities present in the collection. Probabilistic approaches such as LDA [7]

and PLSA [26] model the co-occurrence patterns present in text and identify a



9

probabilistic membership of the words and the documents in a lower dimensional

space. These topic models have been used to explore various aspects of the doc-

ument collection, such as correlation among different topics [6], the evolution of

concepts [19], etc.

In a linked corpus, the link structure contains meaningful information about en-

tities, e.g., documents, authors etc.; this information has been successfully utilized

in web search [9]. However, the content based topic models [7, 26, 6] completely

ignore this information. Recently, Dietz, et al. influence, Nallapati, et al. plsa-lda

and Cheng, et al. relation-topic have shown that modeling the citation and the

content together not only helps to better understand the latent structure present

in the data, but also helps to understand certain aspects of a linked corpus such as

novelty detection, influence propagation, citation prediction etc. Although current

approaches analyze the citation phenomenon to identify which documents influ-

enced the content of a particular document, however, these approaches overlook

how the cited document influences the content of the citing document. In other

words, the process of incorporation of the citation information ignores the context

in which that citation appears in the document.

In this chapter, for the citation network, we propose a generative model of the

content and citations in a document that incorporate context information while

modeling content and citations jointly. We hypothesize that context information

can help in improving the topic identification for words and, in turn, documents.

We assume that the author of the citing document chooses a topic first, and then

while writing the text of the document chooses the citation context to describe a

citation. The citation context does not necessarily portray the entire content of

the cited document, but, provides a description from the author’s perspective in

relation to the citing document’s topic. The citation context contains words related

to the chosen topic and these words can help identify the major topics in the cited

document. On the other hand, the topic of the context words can be identified

using the major topics of the cited document as well. On the world-wide-web,

anchor text and words surrounding the anchor text represent the context of the

hyper-linked document.

The organisation of the rest of the chapter is as follows. In section 2, we discuss

the relevant related work for topic modeling based document network analysis.
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In section 3, we describe our context sensitive approaches for document network

modeling. In the subsequent section 4, we formulate the inference algorithms

using Gibbs sampling for our modeling approaches listed in the previous section.

We provide quantitative evaluation of our models on three real-world datasets with

a few anecdotal evidences in section 5 and summarize in section 6.

2.1.1 Related Work

One of the earliest attempts at modeling text and citation together in a linked

corpus was posed as an extension of probabilistic latent semantic analysis [26] and

its analogue for citations named missing link model [13]. The Bayesian version

of the missing link model was proposed as the mixed membership model [50] and

link-LDA [42] with the Dirichlet distribution acting as a conjugate distribution to

the multinomial distribution for the citation and word generation process in the

missing link model. The generation process of links in link-LDA is similar to the

generation process of words in LDA (shown in fig 1(a)) as in the same document-

specific topic distribution, i.e. θ in fig 1(b), is used to generate words and links.

The corresponding plate-diagram for link-LDA is shown in fig 2.1.2.
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Figure 2.1. Bayesian Network for (a) Latent Dirichlet Allocation, (b) link-LDA, (c)
link-PLSA-LDA

Although missing link model and its Bayesian extensions are quantitatively

successful in clustering the citations and words, the underlying generative process

is too simplistic to explain various phenomenon related to linked structure of the

corpus, e.g. influence propagation, associating words and links, etc. Recently,

Nallapati, et al., plsa-lda proposed a more rigorous modeling of the content and

links together, link-PLSA-LDA (depicted in Figure 2.1.3), where the data is par-
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titioned into two subsets of cited and citing documents1 and both the subsets are

modeled differently with the same global parameters due to scalability concerns.

The cited set of documents is modeled using PLSA and the citing set of docu-

ments is modeled using the link-LDA model. The underlying assumption behind

the link-PLSA-LDA model is that there exist both a global topic-citations distri-

bution according to which the citing document chooses its citations and a global

word-topic distribution from which the words are generated. This bipartite rep-

resentation approach was first proposed by Dietz, et al., influence to impose an

explicit relation between the cited and the citing text so that the two together can

augment the information provided by the citation links, while modeling a linked

corpus.

Grueber, et al., htm and Guo, et al., nec-bern proposed a generative model for

linked documents with a two step statistical process where first, the presence or

absence of a link is decided and second, an actual link is “generated”. Grueber, et

al., htm uses a multinomial distribution over the links present in the document with

an additional empty link whereas Guo, et al., nec-bern uses a Bernoulli random

variable to decide whether to link to an external document or not. In contrast to

these methods, our context sensitive approach takes a direct approach where we

make an explicit use of the citation location in the citing document and assumes a

definite influence of the citation over the words in a window around the citation.

2.2 Utilizing Context in Modeling Approaches

2.2.1 Context Sensitive Topic Models for Citation Network

Notations: Let V , D, Nd and C denote the size of the word vocabulary, the

total number of documents, number of words in document d and the number of

cited documents respectively. Let K denote the number of topics and suppose

there exist a K × V topic-word distribution matrix φ that indexes a probabilistic

distribution over words given the topic and a K × C topic-citation distribution

matrix ϕ that indexes the probability of a document being cited given a topic.

At the document level, we assume that the author chooses to mix the topics with

1duplication is done for those documents that are both citing and cited in the corpus
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θd as the mixing proportion for document d. We treat the context information

explicitly as follows. First, we define a citation context for a cited document as a

bag of words that contains a certain number of words appearing before and after

the citation’s mention in the citing document. Table 2.1 shows such an example

of a citation context. In case a cited document is mentioned multiple times, we

assimilate all the corresponding context words.

Citing paper: A Statistical Learning Model of Text Classification for
Support Vector Machines → Cited paper: Latent Semantic Indexing,
A Probabilistic Analysis

Abstract of the citing paper: ....“Unlike conventional approaches to
learning text classifiers, which rely primarily on empirical evidence,
this model explains why and when SVMs perform well for text clas-
sification. In particular, it addresses the following questions: Why
can support vector machines handle the large feature spaces in text
classification effectively? ”

Citation & its Context: ...“ Papadimitriou et. al, is most similar
in spirit to the approach presented here[16]. They show that latent
semantic indexing leads to a suitable lowdimensional representation
”...

Table 2.1. An example of a citation context

Following is the formal introduction to our context sensitive topic models for

document network. We take a stepwise approach and first extend the basic Link-

LDA [50] model and its extension, Link-PLSA-LDA, to model the citation context

explicitly. Later, we propose two statistical approaches that model the influence

of a cited document over the generation of the context in the citing document.

2.2.1.1 cite-LDA Model

The basic underlying assumption while incorporating the above mentioned context

is that, given a topic, the choice of words in the context surrounding a cited

document mention and the cited documents are independent. Suppose the author

has a topic in mind (i.e., a distribution over words), and she comes across multiple

documents that she can cite related to this topic. Now, if she has sufficiently

narrowed down the topic, then the choice of words to describe the cited document
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Figure 2.2. Bayesian Network for (a) cite-LDA, (b) cite-PLSA-LDA

depends only upon the topic instead of the document that she would cite. Based

upon this simplifying statistical assumption, next we describe the model for a linked

corpus. cite-LDA is a generative model with the generation process described in

Algorithm 1 and the corresponding plate diagram is given in Figure 2.2.1.

Formally, given the model parameters αθ, αφ and αϕ, the joint distribution of

the topic variables z, the document w and the citation context c can be written

as:

p(z,w,c|αθ, αφ, αϕ)

=

∫ D
∏

d=1

p(θd|αθ)

Nd−Ld
∏

n=1

p(zn|θ)p(wn|zn, β)

Cd
∏

n=1

p(zn|θd)p(wn, cn|zn, αφ, αϕ)dθd

=

∫ D
∏

d=1

p(θd|αθ)

Nd−Ld
∏

n=1

p(zn|θd)p(wn|zn, αφ)

Ld
∏

n=1

p(zn|θd)p(wn|zn, αφ)p(cn|zn, αϕ)dθd (2.1)

=

∫ D
∏

d=1

p(θd|αθ)

Nd
∏

n=1

p(zn|θd)p(wn|zn, αφ)

Ld
∏

n=1

p(cn|zn, αϕ)dθd (2.2)

Ld is the total length of all citations contexts in the document d. The indepen-

dence assumption allows us to factorize the joint distribution separately for the

words in the context and the citations. Intuitively, Eq. 2.1 implies that the author

first picks the words from the topic and then citations from the topic or vice versa.

The product p(zn|θd).p(wn|zn) acts as the mixing proportions for the citation gen-

eration probability over the entire citation context of the corresponding citation.

Therefore, one can expect that this explicit relation between citation generation

probability and the word generation probability will lead to a better association

of words and citations with documents than without utilizing the citation context
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Algorithm 1: The cite-LDA generation process
for each document d ∈ (1, 2, .., D): do

θd ∼ Dir(.|αθ).
for each word in wn ∈ d that appears outside any citation context: do

Choose a topic zn ∼ Mult(.|θd).
Choose wn from word-topic distribution, i.e. wn ∼ Mult(.|zn, φzn).

end for

for each word in wn ∈ d that appears inside of any citation context: do
Choose a topic zn ∼ Mult(.|θd).
Choose wn from topic-word distribution, i.e. wn ∼ Mult(.|zn, φzn).
Choose a document cn to link from topic-citation distribution i.e.
cn ∼ Mult(.|zn, ϕzn).

end for

end for

explicitly.

2.2.2 Context aware approach for modeling the influence

of cited documents

In the generation processes described so far, once a topic for a word is identified,

we assume that the citation that is associated with the context only depends upon

the topic. However, this assumption can be restrictive in cases where the word

is tightly associated with the citation. For example, words such as “LDA” and

“PLSA” are associated with Blei, et al. lda and Hoffman plsa respectively and

this association is irrespective of the topic with which these documents are cited.

The accommodation of these associations requires that we relax the independence

assumption and model the correlations among citations and words directly, which

is described through following additional modeling schemes.

2.2.2.1 cite-PLSA-LDA Model

Similar to the link-PLSA-LDA model [42], this model views the data as two sep-

arate sets of citing and cited documents as explained previously. The cite-PLSA-

LDA model assumes that the words and citations occurring in the citing documents

generate from a smoothed (with a Dirichlet prior) topic-word and topic-citation

multinomial distributions respectively. We model the generation of citation con-

text by assuming the conditional independence of a word and a citation given the
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word. However, for cited documents, we assume that an empirical distribution of

the topics is to be fitted that explains the generation of documents and words in

the cited set. Therefore, LDA [7] and PLSA [26] become the natural choice of

frameworks for modeling the citing and the cited set respectively. The generation

process assumed by the cite-PLSA-LDA model is described in Algorithm 2 and

the corresponding graphical depiction is given in Figure 2.2.2.

Algorithm 2: The Cite-PLSA-LDA generation process
for each word wn in cited set of documents: do

Choose zi ∼ Mult(.|π).
Choose wn ∼ Mult(.|zi, φzi).
Sample di ∈ 1, ...D← ∼ Mult(.|zi, ϕzi).

end for

for each citing document d ∈ (1, 2, .., D→): do
θd ∼ Dir(.|αθ).
for each word in wn ∈ d that appears outside any citation context: do

Choose zn ∼ Mult(.|θd).
Choose wn from word-topic distribution, i.e. wn ∼ Mult(.|zn, φzn).

end for

for each word in wn ∈ d that appears inside of any citation context: do
Choose a topic zn ∼ Mult(.|θd).
Choose wn from topic-word distribution, i.e. wn ∼ Mult(.|zn, φzn).
Choose a document cn to link from topic-citation distribution i.e.
cn ∼ Mult(.|zn, ϕzn).

end for

end for

Formally, given the model parameters αθ, αφ, αϕ and π (the topic mixture for

cited documents), the complete data likelihood can be obtained by marginalizing

the joint distribution of a topic mixture θ for citing documents, the topic variable

z, the document w and the citation context c and can be written as:

p(w,c|αθ, αφ, αϕ, π) =

N←
∏

n=1

(
∑

k

p(z|π)p(dn|z)p(wn|z))

×
D→
∏

d

∫

p(θd|αθ)(

Nd
∏

n=1

K
∑

z=1

(p(zn|θd)p(wn|zn, αφ))×
C
∏

n=1

K
∑

z=1

(p(cn|zn, αϕ)))dθd

(2.3)

Here, dn indicates the document to which word wn belongs to.

2.2.2.2 The Switch-Cite-LDA Model

To handle the associations among citations and the words in their contexts, we let

the citation or the citing document choose to “generate” the topic of a word in its
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context. Before generating any word in the citation context, the statistical process

tosses a biased coin to decide whether the citation or the citing document shall

“generate” the word. Each citation indexes a distribution over topics, ϕ, 2 which

is used to generate topics in the context of the citation. The generative process for

switch-cite-LDA is described in Algorithm 3 and its corresponding plate diagram

is shown in Fig. 2.3.1.

Algorithm 3: The switch-cite-LDA generation process
for each topic t ∈ (1, 2, .., T ): do

Sample φt ∼ Dir(.|αφ)
end for

for each cited article c ∈ (1, 2, .., C): do
Sample λc ∼ Beta(.|αλθ

, αλϕ
)

Sample ϕc ∼ Dir(.|αϕ)
end for

for each document d ∈ (1, 2, .., D): do
θd ∼ Dir(.|αθ).
for each word in wn ∈ d that appears outside any citation context: do

Choose a topic zn ∼ Mult(.|θd).
Choose wn from word-topic distribution, i.e. wn ∼ Mult(.|zn, φzn).

end for

for each word in wn ∈ d that appears inside of any citation context: do
Sample s ∼ Bern(.|λcn)
if (s == 0): then

Choose a topic zn ∼ Mult(.|θc).
else

Choose a topic zn ∼ Mult(.|ϕc).
end if

Choose wn from topic-word distribution, i.e. wn ∼ Mult(.|zn, φzn).
end for

end for

In addition to the document-topic mixture parameter αθ, topic-word distribu-

tion parameter αφ and citation-topic mixture parameter αϕ, we assume that the

parameter αλ controls the biasing of the coin corresponding to each citation in its

favor. Intuitively, αλ governs the generation of those words from αϕ that tend to

appear with the citation very frequently. Later, we demonstrate the qualitative

importance of this switching parameter.

2the parameter variable ϕ is different from the one in previous models. However, to maintain
the consistency among the notations, we choose to use the same notation
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Figure 2.3. Bayesian Network for (a) Switch-Cite-LDA, (b) Bipartite-Switch-Cite-LDA

The complete log-likelihood of the model can be written as follows.

p(w,z,c,s|αθ, αλ, αφ, αϕ) =

∫ D
∏

d=1

(

p(θd|αθ)

Nd−Ld
∏

n=1

p(wn|zn, φzn , αφ)p(zn|θd)×

Ld
∏

n=1

p(wn|zn, φzn , αφ)p(zn|θd, cn, sn, ϕc, αϕ)p(sn|λcn , αλ)
)

dθd (2.4)

2.2.2.3 The Bipartite-Switch-Cite-LDA Model

The model proposed in this subsection extends the Switch-Cite-LDA model by

modeling the generation of the content of the cited documents as well as the citing

documents. The parameter ϕ for a cited document c in Switch-Cite-LDA model

infers its distribution over topics from the words in the citation context of c only

whereas one can hope that a better estimate obtained by additional inference from

the content of c. However, as any cited document can also belong to the set of citing

documents, therefore, we take a bipartite view over the corpus where we divide the

documents into the cited and citing set of documents. A document can belong to

the cited set as well as the citing set depending upon whether the document has

been cited at least once or not. The generation process of the Bipartite-Switch-

Cite-LDA generates the words in the citing set of documents as well as in the

cited set of documents. The bipartite view for the generation process has also

been adopted by Dietz, et al. influence, however, their model has an additional

statistical component in the generation process that chooses to generate the cited
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document for each word in the citing document. We avoid this step by associating

the words in the citation context with the citation itself.

The generative process for the Bipartite-Switch-Cite-LDA is described in Al-

gorithm 4 and its corresponding plate diagram is shown in Fig. 2.3.2.

Algorithm 4: The Bipartite-Switch-Cite-LDA model generation process
for each topic t ∈ (1, 2, .., T ): do

Sample φt ∼ Dir(.|αφ)
end for

for each cited article c ∈ (1, 2, .., C): do
Sample λc ∼ Beta(.|αλθ

, αλϕ
)

Sample ϕc ∼ Dir(.|αϕ)
for each word in w in cited article c: do

Choose a topic zn ∼ Mult(.|ϕc).
Choose wn from word-topic distribution, i.e. wn ∼ Mult(.|zn, φzn).

end for

end for

for each document d ∈ (1, 2, .., D): do
θd ∼ Dir(.|αθ).
for each word in wn ∈ d that appears outside any citation context: do

Choose a topic zn ∼ Mult(.|θd).
Choose wn from word-topic distribution, i.e. wn ∼ Mult(.|zn, φzn).

end for

for each word in wn ∈ d that appears inside of any citation context: do
Sample s ∼ Bern(.|λcn)
if (s == 0): then

Choose a topic zn ∼ Mult(.|θc).
else

Choose a topic zn ∼ Mult(.|ϕc).
end if

Choose wn from topic-word distribution, i.e. wn ∼ Mult(.|zn, φzn).
end for

end for

The complete log-likelihood of the model can be written as follows.

p(w,z,c,s|αθ, αλ, αφ, αϕ) =

∫ ∫ D
∏

d=1

(

p(θd|αθ)

Nd−Ld
∏

n=1

p(wn|zn, φzn)p(zn|θd)×

Ld
∏

n=1

p(wn|zn, φzn , αφ)p(zn|θd, cn, sn, ϕc)p(sn|λcn , αλ)
)

× (2.5)

C
∏

c=1

p(ϕc|αϕ)
(

Cd
∏

n=1

p(wn|zn, φzn , αφ)p(zn|ϕc)
)

dϕc dθd
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2.2.3 Dynamic Selection of Length of Context Window

Since the cite-* models imposes independence assumption in the context window

surrounding the citation mention, it becomes important to identify the context

that refers to the cited article. Previous work on context utilization in topic mod-

els, either assumes a fixed window of 10 words radius surrounding the citation

mention [28] or the whole document as the context for any citation mention [53].

However, the amount of relevant context in the vicinity of the citation anchor de-

pends upon various factors such as the strength of the influence of cited article

over the citing article, the location of the citation mention in the citing article,

etc. Therefore, I propose to identify a dynamic window surrounding the citation

anchor with the following method.

Let
←−
d represent the cited document for a given citation anchor cdi , where i

ranges over all citation mentions in the citing document d. Let S(cdi ) (or simply

Si) represent the bag of words in the citation context surrounding cdi . The objective

function that I choose to maximize is f(
←−
d |Si) which is defined as:

f(
←−
d |Si) = σ(Z←−

d
.ZSi

) (2.6)

Here, Zp is the topic vector defined as 1
Np

∑

n zp,n where n ranges over all the tokens

in the bag p and Np denotes the cardinality of p. σ represents the sigmoid func-

tion and ′.′ represents the dot product between two vectors. Intuitively, f(
←−
d |Si)

represents the topical similarity between cited document and its corresponding

context.

[?]
Si kssj

Figure 2.4. An illustrative citation context window

Next I describe our dynamic context selection procedure. I allow our window

to grow over sentences beginning with the sentence that has the citation mention,

although the method proposed is general enough to be applicable to any building

block such as words or paragraphs. I choose to begin with the sentence that

contains the citation mention as the sentence carries most of the information about

the cited document. I let Si denote the current context window and sj and sk

are the next left and right candidates to either include in the window or to let



20

the growth stop in either direction. I update the window as defined below and

continue to grow in the direction which maximizes the objective function 3.3.

Si = max{f(
←−
d |Si), f(

←−
d |{Si, sj}), f(

←−
d |{Si, sk}), f(

←−
d |{Si, sj , sk})} (2.7)

2.3 Inference using Gibbs Sampling

The computation of the posterior distribution of the hidden variables θ and z

is intractable for both the cite-LDA and cite-PLSA-LDA model because of the

pairwise coupling between θ, β and θ, γ. Therefore, we need to utilize approximate

methods e.g. variational methods [42] or sampling techniques [21] for inference.

Considering that the Markov Chain Monte Carlo sampling methods such as Gibbs

sampling come with a theoretical guarantee of converging to the actual posterior

distribution and the recent advances that make its fast computation feasible over a

large corpus [45], we utilize Gibbs sampling as a tool to approximate the posterior

distribution for both the models.

2.3.1 Inference Estimation for cite-LDA:

According to Eq. 2.2, the joint probability distribution of the latent and the ob-

served variables can be factorized as follows:

p(w, c, z|αθ, αφ, αϕ) = p(w|z, αφ)p(c|z, αϕ)p(z|αθ) (2.8)

Let n
(b)
a denote the number of times entity b is observed with entity a. Particularly,

let n
(c)
k denote the number of times document c is observed with topic k. According

to the multinomial assumption on occurrences of citations, we obtain:

p(c|z, ϕ) =

C
∏

i=1

p(ci|zi) =

K
∏

k=1

C
∏

c=1

ϕ
n
(c)
k

k,c

ϕk,c is the probability that document c to be cited with the topic k. The target

posterior distribution for citation generation, i.e. p(c|z, αϕ), can be obtained by
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p(zi = k|z−i,w) ∝
n
(t)
k,−i

+αt
φ

∑V
t=1 n

(t)
k,−i

+αt
φ

.
n
(k)
m,−i+α

k
θ

∑K
k=1 n

(k)
m,−i+α

k
θ
−1

; if zi ∈ (z,w). (i)

p(zi = k|z−i,w, c) ∝
n
(t)
k,−i

+αt
φ

∑V
t=1 n

(t)
k,−i

+αt
φ

.
n
(c)
k,−i

+αc
ϕ

∑D
c=1 n

(c)
k,−i

+αc
ϕ

.
n
(k)
m,−i+α

k
θ

∑K
k=1 n

(k)
m,−i+α

k
θ
−1

; if zi ∈ (z,w, c) (ii)

p(zi = k|z−i,w, c) ∝
n
(t)
k,−i

+αt
φ

∑V
t=1 n

(t)
k,−i

+αt
φ

.
n
(c)
k,−i

+αc
ϕ

∑D
c=1 n

(c)
k,−i

+αc
ϕ

.
n
(.)
k

N←
; if zi ∈ (z,w←, c) (iii)

Table 2.2. Gibbs updates for cite-LDA(i,ii) and cite-PLSA-LDA(i,ii,iii)

integrating over all possible values of ϕ:

p(c|z, αϕ) =

∫ K
∏

z=1

1

∆(αϕ)

D
∏

c=1

ϕ
n(c)
z +αc

ϕ−1
z,c dϕz; where ∆(αϕ) =

∏C
c=1 Γ(α

c
ϕ)

Γ(
∑C

c=1 α
c
ϕ)
×

=

K
∏

z=1

∆(nzϕ + αϕ)

∆(αϕ)
; where nzϕ = {n(c)

z }
D
c=1

A similar derivation holds for p(w|z, αφ) and p(z|αθ) leading to the expression

(see [21] for further details) for joint distribution:

p(w, c, z|αθ, αφ, αϕ) =
K
∏

z=1

∆(nzφ + αφ)

∆(αφ)

K
∏

z=1

∆(nzϕ + αϕ)

∆(αϕ)

D
∏

d=1

∆(nm + αθ)

∆(αθ)

For Gibbs sampler, we need to derive p(zi = k|z−i,w, c) where z−i denote the

entire state space of z except the ith token and i iterates over each word in the

corpus. With some algebraic manipulation, the updates for cite-LDA can be shown

equivalent to Eq. (i) & (ii) in Table 2.2. Here, (z,w) implies that z is sample from

outside the citation context whereas (z,w,c) inside the citation context.

2.3.2 Inference Estimation for cite-PLSA-LDA:

The joint distribution of the hidden topic variables z, words w and the citations c

can be written as:

p(w, c, z|αθ, αφ, αϕ, π) = p(w|z, αφ)p(c|z, αϕ)p(z|αθ)p(z|π) (2.9)

The derivation in previous section applies here, which leads to following algebraic
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Algorithm 5: Gibbs sampling for cite-PLSA-LDA model
while Not Converged do

while Not Converged do

for each word token wn in citing documents: do
if wn appears in citation context of cited document cn then

sample zi from p(zi = k|z−i,w, c) according to Eq.(ii), Table 2.2.
else

sample zi from p(zi = k|z−i,w) according to Eq.(i), Table 2.2.
end if

end for

end while

for each word token wn in cited documents: do
sample zi from p(zi = k|z−i,w, c) according to Eq.(iii) in Table 2.2.

end for

end while

expression:

p(w, c, z|αθ, αφ, αϕ, π) =
K
∏

z=1

∆(nz
→

φ + αφ)

∆(αφ)

K
∏

z=1

∆(nz
→

ϕ + αϕ)

∆(αϕ)

D→
∏

d=1

∆(nm + αθ)

∆(αθ)
(2.10)

×
K
∏

z=1

∆(nz
←

φ + αφ)

∆(αφ)

K
∏

z=1

∆(nz
←

ϕ + αϕ)

∆(αϕ)

K
∏

z=1

π
n(.)
z

z

where (→)/(←) indicates that the corresponding token was seen in citing/cited

set and n
(.)
z indicates the number of times topic z was observed in the cited set.

The corresponding updates are obtained as given in Eq. (i), (ii) & (iii) in

Table 2.2. However, as we noted in section 2.2.2.1, we intend to fit the topic

distribution of words and citations learned from the citing set onto the cited set

of documents. Therefore, a sequential scan over all the three partitions of the

state space is inappropriate. Since the cited set of documents are not “generated”

by the Cite-PLSA-LDA model, therefore, if we want to capture the conditional

dependence based on topics between the citing set of documents and the cited

set of documents, an iterative scheme of inference over citing documents and cited

documents needs to be constructed. We begin with fitting the distribution over the

cited set of documents and then generate the words in the citing set of documents.

These two steps are repeated until convergence is reached. The corresponding

Gibbs sampling update algorithm is depicted in Algorithm 5.
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2.3.3 Inference Estimation for Switch-Cite-LDA:

Eq 2.4 can be factorized as follows:

p(w,z,c,s|αθ, αλ, αφ, αϕ) = p(w|z, αφ)p(z|c,s, αθ, αλ, αϕ)p(s|αλ) (2.11)

The algebraic manipulation of the above factorization, as in section 2.3.1, lead us

to following expression.

p(w, z, s = 1, c|αθ, αλ, αφ, αϕ) =

K
∏

z=1

∆(nzφ + αφ)

∆(αφ)
×

K
∏

c=1

∆(nc
zϕ + αϕ)

∆(αϕ)

D
∏

m=1

∆(nm
z

+ αθ)

∆(αθ)

C
∏

c=1

nc
si=1 + αλϕ

nc
si
+ αλϕ

+ αλθ

(2.12)

The Gibbs sampler needs to sample from p(zi = k|z−i,w, c, s) where index i

runs over all the words in the corpus. Depending upon the position of index i in

the document, i.e. inside or outside the context, the distributions that sampler

needs to sample from can be over following possible combinations of variables:

p(zi = k|z−i,w), if outside the context window; p(zi = k|z−i,w, c, s), if inside the

context window. Also, since switching variable s is unobserved, Gibbs sampler

need to obtain a sample from p(si = 0, 1|s−i, c). The algebraic forms of these

above mentioned distributions is listed in Table 2.2.

2.3.4 Inference Estimation for Bipartite-Switch-Cite-LDA

The joint likelihood of hidden and observed variable in Eq 2.5 can be factorized as

follows:

p(w,z,c,s|αθ, αλ, αφ, αϕ) = p(w|z, αφ)p(z|c,s, αθ, αλ, αϕ)p(z|αϕ)p(s|αλ) (2.13)

As above, the algebraic form for the above equation can be obtained as below.

The difference in Eq. 2.11 and Eq. 2.13 is that of one additional factor of cited

documents’ likelihood in Eq. 2.13.

p(w, z, s = 1, c|αθ, αλ, αφ, αϕ) =

K
∏

z=1

∆(nzφ + αφ)

∆(αφ)

K
∏

c=1

∆(nc
zϕ + αϕ)

∆(αϕ)
×

D
∏

m=1

∆(nm
z

+ αθ)

∆(αθ)

C
∏

m=1

∆(nm
z

+ αϕ)

∆(αϕ)

C
∏

c=1

nc
si=1 + αλϕ

nc
si
+ αλϕ

+ αλθ

(2.14)
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p(zi = k|z−i,w) ∝
n
(t)
k,−i

+αt
φ

∑V
t=1 n

(t)
k,−i

+V.αt
φ

.
n
(k)
m,−i+α

k
θ

∑K
k=1 n

(k)
m,−i+K.α

k
θ

(i)

p(zi = k|z−i, ~w) ∝
n
(t)
k,−i

+αt
φ

∑V
t=1 n

(t)
k,−i

+V.αt
φ

.
n
(k)
m,−i+α

k
ϕ

∑K
k=1 n

(k)
m,−i+K.α

k
ϕ

(ii)

p(si = 0|c, s−i) ∝
n
(si=0)
c,−i +αλθ

−1
∑

si
n
(si)
c,−i+αλθ

+αλϕ−1
(iii)

p(si = 1|c, s−i) ∝
n
(si=1)
c,−i +αλϕ−1

∑
si
n
(si)
c,−i+αλθ

+αλϕ−1
(iv)

p(zi = k|z−i, c,w, si = 0) ∝
n
(t)
k,−i

+αt
φ

∑V
t=1 n

(t)
k,−i

+V.αt
φ

.
n
(k,s=0)
c,−i +αk

θ
∑K

k=1 n
(k,s=0)
c,−i +K.αk

θ

(v)

p(zi = k|z−i, c,w, si = 1) ∝
n
(t)
k,−i

+αt
φ

∑V
t=1 n

(t)
k,−i

+V.αt
φ

.
n
(k,s=1)
c,−i +αk

ϕ
∑K

k=1 n
(k,s=1)
c,−i +K.αk

ϕ

(vi)

Table 2.3. Gibbs updates for Switch-Cite-LDA(i,iii, iv, v, vi) and Bipartite-Switch-
Cite-LDA(i,ii,iii,iv,v,vi)

In contrast to the previous subsection, the Gibbs sampler needs to sample from

cited documents as well. Therefore, each sampling iteration, we extend the Gibbs

sampler to sample from p(zi = k|z−i, ~w), where ~w corresponds to words in the

cited documents. The rest of the distributions are identical to the ones in previous

subsection and their algebraic forms are listed in Table 2.3.

2.4 Experiments

2.4.1 Evaluation of Context Sensitive Topic Models for Ci-

tation Networks

We undertake two main tasks to quantitatively evaluate our proposed models:(1)

comparison of the log-likelihood of unseen documents in test set, and, (2) capability

of predicting outgoing links from the citing documents in a test set to the cited

documents in the whole corpus.

2.4.1.1 Data Sets and Experimental Settings

We generate our citation networks from the following datasets: (1) scientific doc-

uments from the CiteSeer digital library, and (2) web-pages from the WebKb data

set. These datasets have also been utilized by Nalapatti, et al. [42] for the two

tasks.
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CiteSeer Dataset: This labeled dataset3 was made publicly available by Lise

Getoor’s research group at the University of Maryland and is derived from the

CiteSeer4 digital library. The data set contains 3312 documents belonging to six

different research fields and the vocabulary consists of 3703 unique words. There

are a total of 4132 links present in the data set. We supplement the data set with

the context information for each link. For each link, we add 60 words in the radius

of size 30 originating at the citation mention in the document. We vary the radius;

that proves to be crucial for the performance of the models (described later). As

pre-processing, we remove 78 common stop words and stem the words with the

Porter Stemmer, which gives us 1987 unique words in the corpus. Further, we split

the 1485 citing documents into 10 sets of 70-30 training and test split respectively.

Since the link-PLSA-LDA and cite-PLSA-LDA model require bipartite structure

for the corpus, we split the documents into two sets with duplication as suggested

by Nalapatti, et al. plsa-lda.

CiteULike Dataset: For evaluations on a user selected scientific documents

dataset, I also acquired dataset from CiteULike 5 for over 2 years from Novem-

ber 2005 to January 2008 (referred as CiteSeer-DS2). The dataset is available

at http://citeulike.org. Overall, there are 33,456 distinct papers in CiteULike

sample. I map the document ids of CiteULike documents to document ids of Cite-

Seer documents 6 to gain access to citation network of the sample. The resultant

CiteSeer-DS2 contains 18354 documents in which 9571 documents are cited. There

are a total of 29645 unique authors in CiteSeer-DS2 out of which 15967 authors are

cited at least once. I follow the same preprocessing step as the CiteSeer dataset

mentioned above.

WebKb Dataset: We also used the WebKb dataset that was collected by the

CMU WebKb project7. The dataset consists of web pages from the computer

science department of various US universities. It includes faculty, staff, project

and course web pages. The dataset consists of 2,877 different web pages with a

vocabulary size of 102,927 words. After removing the stop words and stemming, the

3http://www.cs.umd.edu/s̃en/lbc-proj/LBC.html
4http://CiteSeer.ist.psu.edu/
5http://citeulike.org
6mapping is obtained from http://citeulike.org
7http://www.cs.cmu.edu/ WebKB/
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vocabulary size is 24,447 words. Note that the large vocabulary size as compared

to CiteSeer dataset is due to the fact that a majority of pages contain unique

nouns like faculty and staff names, project names etc. We found 1764 citations

(hyperlinks) in the dataset with an average anchor text length of 3.02 words.

Experimental Set-up: Considerable prior work has been done on hyper-parameter

tuning for topic models [54], however, we choose to fix the hyper-parameters and

evaluate different models within same setting. We set the hyper-parameters to the

following values: αθ = 50/T , αφ = 0.01, αϕ = 0.01. We fix the number of topics to

100 except in cases where we indicate otherwise. We run 1000 iterations of Gibbs

sampling for training and extend the chain with 100 iterations over the test set.

The multinomial parameters of the model are calculated by taking expectations of

the corresponding counts from 10 samples collected during test iterations.

For dynamic window selection, I collect 10 samples from the chain after every

10 iterations starting from 1000 iterations, and compute the new window with

the average of the samples using Eq. 2.7. After the window update, I let the

chain converge and start to update the window again. Starting with the sentence

that contains the citation mention, I allow our window to grow up to a maximum

of 5 sentences in either direction. The multinomial parameters of the model are

calculated by taking expectations of the corresponding counts from 10 samples

collected during test iterations.

2.4.1.2 Loglikelihood Estimation on Unseen Text

We estimate quantitatively the generalization capabilities of a given model over

unseen data. In order to find the log-likelihood of words in the test set, we followed

a similar approach taken byRosen-Zvi, et al., atm where the inference algorithm

is run exclusively on the new set of documents. We achieve this by extending

the state of the Gibbs sampler with the observation of the new documents. Before

sweeping the test set, our algorithm first randomly assigns topics to the words and

the citations in the test set and then loops through the test set, until convergence,

using following Gibbs sampling updates:

p(zui |w
u
i = t, zu

−i
,wu

−i
) =

n
(t)
k,−i + β

∑V
t=1 n

(t)
k,−i + V.β

.
n
(k)
mu,−i + α

∑K
k=1 n

(k)
mu,−i +K.α− 1

(2.15)



27

where the superscript (.u) stands for any unseen element. The sampling updates

in Eq. 7 can be used to update the model parameters, Π = (θ, φ, ϕ) for new

documents as:

θmu,k =
n
(k)
mu + αk

∑K
k=1 n

(k)
mu + αk

;φ =
n
(t)
k

u
+ n

(t)
k + βt

∑V
t=1 n

(t)
k

u
+ n

(t)
k + βt

The predictive log-likelihood of a text document in the test set, i.e. log(p(wu)),

given the model Π = (θ, φ, ϕ) can be directly expressed as a function of the multi-

nomial parameters of any given model:

p(wu|Π) =

Nmu
∏

n=1

K
∑

k=1

p(wn|zn = k).p(zn = k|d = mu) =

V
∏

t=1

(

K
∑

k=1

φk,t.θmu,k)
n
(t)
mu (2.16)
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Figure 2.5. Comparision of Loglikelihood (a & b) for the proposed models with link-
PLSA-LDA [42] and link-LDA [50] on CiteSeer and WebKb datasets.

Fig. 3.3(a) & (b) show the comparison results on the two data sets. For both the

data sets, we perform a 10-fold cross validation and report the average of the log-

likelihood. Clearly, the cite-PLSA-LDA model outperforms all the other models on

both of the data sets. The improvement in the performance is due to the fact that

the association between a citation and the words appearing in its context helps to

identify the topic of the word. Also, the performance of cite-LDA and link-PLSA-

LDA is comparable because, for obtaining the topical association of words in the

citing document, the information provided by the link structure of the corpus and
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the context of the links is as good as the content of cited document.

The improvements obtained for the CiteSeer data set is relatively larger than

that obtained in the WebKb data set. Primarily because the contexts of the links in

the WebKb data set are very noisy. There are very few instances where the author

of the web-page discusses a scientific project or his work and inserts some links that

are relevant to that discussion. In most cases, the links correspond to class projects

and departmental home-pages that do not have any context information close to

the position of the link. On the other hand, the citations in the CiteSeer data

always appear along with a context that describes the topic of the cited document.

Next, we discuss the effect of varying the context radius on the performance

of the cite models. We measure the radius from the citation mention and vary it

from 3 to 15 words. We observe a rapid increase in the log-likelihood function with

the radius increasing from 3 to 10 words. After 10 words, the log-likelihood starts

to stabilize and does not vary much after 14 words. This is mainly because after

10 words radius, the topic of discussion, generally, broadens beyond the topics in

the cited document. Also, for the WebKb data, we observed this trend to appear

only after 6 words of radius. Fig. 2.6(a) shows, for cite-PLSA-LDA, the change

in log-likelihood with the change in the number of topics and the context radius.

The same trend was observed for link models as well. The automatic selection of

the appropriate radius for a given corpus will be of interest in future work.
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Figure 2.7. Comparision of link prediction task (a & b) for the proposed models with
link-PLSA-LDA [42] and link-LDA [50] on CiteSeer and WebKb datasets.

2.4.1.3 Link Prediction

The experimental design for this task is very similar to the one in previous subsec-

tion. First, we ran the inference algorithm, described in the previous section, on

the training set for each model. Then, we extended the Gibbs sampler state with

the samples from the test set using the following updates:

p(zui |w
u
i = t, zu

−i
,wu

−i
) =

n
(t)
k,−i + β

∑V
t=1 n

(t)
k,−i + V.β

.
n
(k)
mu,−i + α

∑K
k=1 n

(k)
mu,−i +K.α− 1

p(zi = k|z−i,w, c) ∝
n
(t)
k,−i + β

∑V
t=1 n

(t)
k,−i + V.β

.
n
(c)
k,−i + γ

∑D
c=1 n

(c)
k,−i +D.γ

.
n
(k)
mu,−i + α

∑K
k=1 n

(k)
mu,−i +K.α− 1

; if zi ∈ (z,w, c) (2.17)

The parameters φ and θ were obtained as in Eq. 8, and the parameter ϕ can be

obtained as:

ϕ =
n
(c)
k

u
+ n

(c)
k + γt

∑D
c=1 n

(c)
k

u
+ n

(c)
k + γt

The probability p(c|wd), where c is the document to be cited and wd is the

citing document, can be expressed as:

p(c|wd) =
∑

z

p(c|z)

∫

p(z|θd)dθd ∝
∑

k

ϕc,k.θk,d
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To evaluate the different models, we take an approach similar to the one taken

by Nallapatti, et al. [42]. We label the actual citations of the document as the

relevant set for that citing document and evaluate our models based upon what

rankings are given to these actual citations. In Fig. 2.7 (a) & (b), we plot the

average of the maximum rankings given to these relevant links. The plot shows

the average over all the test set. Clearly, the lower the rank assigned by the

model, the better it performs. Cite-PLSA-LDA outperforms all the other models

and cite-LDA and link-PLSA-LDA have comparable performance. Other models

outperform the link-LDA model because of its over-simplicity.

We also evaluate our models with recently published relevance framework based

context sensitive citation recommendation (mentioned as Relevance) [24]. The

setting for Relevance method used in the following evaluation is the one described

as “local” recommendation in [24]. That is, for each citation context, the position

of original citation is used for evaluation purposes. The normalization in this case

is done based upon total number of citation contexts as opposed to total number

of documents in other evaluation metrics.

We take three evaluation metrics for this comparison: (1) Precision@ K, (2)

Recall @ K, and (3) NDCG. Here, NDCG is defined as below. Here, rel(i) is 0, if

a document is not cited and 1 otherwise. Also, p ranges over all the missing links

in a given citing document. The below mentioned NDCG metric is normalized.

NDCG = rel(1) +

p
∑

i=2

rel(i)

log2i

Fig. 2.8 shows the evaluation of different models on link prediction task. Ta-

ble 2.4 shows the NDCG evaluation on two CiteSeer datasets. Strangely, although

we observed that introducing more complexity to model improves the log-likelihood

criterion but does not improve the link prediction criterion. For link prediction, a

simple context sensitive extension, i.e. cite-LDA, provides the best results.

Table 2.4. NDCG Evaluation on CiteSeer datasets
Cite-LDA Link-LDA Cite-PLSA-LDA Relevance Collective Matrix Factorization

CiteSeer 0.3152 0.1496 0.1680 0.2403 0.1134
CiteSeer-DS1 0.3221 0.1254 0.2580 0.2703 0.08134
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Figure 2.8. Comparision of link prediction task (a & b) for the proposed models .

2.4.1.4 Evaluating Adaptive Window Selection

Fig. 2.9 shows the results of evaluating the effect of window length on various

evaluation metric. Fig. 2.9(a) shows how the log-likelihood on test set varies with

various window lengths. In Fig. 2.9, -1 indicates the adaptive window length,

whereas all the other lengths refer to a fixed radius surrounding the citation men-

tion sentence. Adaptive window performs very well on the likelihood criterion;

however, link prediction is only above average performance. We believe this is be-

cause the likelihood and link prediction are not correlated functions by definition,

therefore, a good performance on one does not guarantee a similar performance on

the other.
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Figure 2.9. Experiments with varying window size and adaptive window selection.
These experiments are carried out on CiteSeer Dataset. Here, -1 indicates adaptive
window length.

2.4.1.5 Complexity Analysis and Runtimes

For link-LDA and link-PLSA-LDA, the time complexity of a single iteration of the

Gibbs sampler grows linearly with the number of links present in the corpus. This

growth can be prohibitive in the case of large corpuses such as the world-wide-web

where the number of links are in the order of 106. For cite-LDA and cite-PLSA-

LDA, the modeling of the citation variable is explicitly associated with the word

variable. Therefore, sampling from the posterior distribution of the topic variable

does not depend upon the number of links and only grows linearly with the number

of words in the corpus. The time complexity of one sampling iteration from the

citing set for cite-PLSA-LDA and cite-LDA is O(
∑

d

∑

n dn ∗ K) where K is the

number of topics, d is the iterator over the documents and n is the iterator over

the words in document d, whereas it is O(
∑

d(
∑

n dn ∗K+
∑

l dl ∗K) for link-LDA

and link-PLSA-LDA, where l is iterator over citations in document d.

Runtimes: Fig. 2.6(b) shows the convergence time for the four models on the

CiteSeer data with varying number of topics. For the cite-PLSA-LDA and the

link-PLSA-LDA model, we compare the performance of the outer loop of Gibbs

sampling until the model parameters reach convergence. The performance of cite-

LDA and link-LDA is comparable and the performance of cite-PLSA-LDA and

link-PLSA-LDA model is comparable. In both cases, the former perform better
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than the latter.

2.4.1.6 Anecdotal Evidences

Table 2.5(a) and (b) show the topics assigned to the example citation context in

Table 2.1 by link-LDA [13] and cite-LDA respectively. The words belonging to the

“support vector machine” topic in the document are assigned one topic whereas

the “latent semantic indexing” topic words in the citation context are assigned

different topics. However, the assignments by cite-LDA (Table 2.5(b)) are also

coherent for the latter topic. The coherent topic assignment is due to the affect

of simultaneous sampling of topics for citation as well as words in the citation

context.

(a) Unlike conventional approaches to learning text classifiers, which
rely primarily on empirical evidence, this model explains why and
when SVMs perform well for text classification. In particular, it ad-
dresses the following questions: Why can support vector machines
handle the large feature spaces in text classification effectively? ...
Papadimitriou et. al, is most similar in spirit to the approach pre-
sented here[16]. They show that latent semantic indexing leads to a
suitable low dimensional representation...

(b) Unlike conventional approaches to learning text classifiers, which
rely primarily on empirical evidence, this model explains why and
when SVMs perform well for text classification. In particular, it ad-
dresses the following questions: Why can support vector machines
handle the large feature spaces in text classification effectively? ...
Papadimitriou et. al, is most similar in spirit to the approach pre-
sented here[16]. They show that latent semantic indexing leads to a
suitable low dimensional representation...

Table 2.5. Topic assignments recovered using (a) link-LDA [13] and (b) cite-LDA (this
chapter). Different colors indicate different topics.

2.5 Summary

We presented a framework that utilizes context information of citations in docu-

ments to model the generation process of documents and citations. The context
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around a citation mention in a citing document has topical information regarding

the relationship between citing and cited document. We show how to statistically

model the citation context explicitly. Our model explains the generation process

of the links and content both qualitatively and quantitatively. We utilize Gibbs

sampling to perform inference on emission probabilities corresponding to citations

and words given a topic and show significant improvement on various objective

functions. We test our models on several real-world datasets and observe that,

quantitatively, the cite-PLSA-LDA model outperforms the models which do not

model the cited documents and context information explicitly. The cite-PLSA-

LDA model achieves superior performance in both missing citation prediction and

model fitting experiments.

In addition, we propose novel models for author-author linkage conditioned on

topics latent in the content of the documents. We exploit the citations between

documents to infer influence of certain authors over topics. We also propose context

sensitive extensions of the proposed model that incorporates the context of the

cited document and how it infers the topic of both cited and citing authors with

better quality.



Chapter 3
Context Sensitive Models for

Authorship Networks

In a document network such as a citation network of scientific documents, web-

logs, etc., the content produced by authors exhibits their interest in certain topics.

In addition some authors influence other authors’ interests. In this work, I propose

to model the influence of cited authors along with the interests of citing authors.

Moreover, I hypothesize that apart from the citations present in documents, the

context surrounding the citation mention provides extra topical information about

the cited authors. However, associating terms in the context to the cited authors

remains an open problem. I propose novel document generation schemes that in-

corporate the context while simultaneously modeling the interests of citing authors

and influence of the cited authors. The experiments show significant improvements

over baseline models for various evaluation criteria such as link prediction between

document and cited author, and quantitatively explaining unseen text.

3.1 Introduction

The popularity of Web 2.0 applications has resulted in large amounts of online text

data, e.g. weblogs, digital libraries of scientific literature, etc. These data require

effective and efficient methods for their organization, indexing, and summariza-

tion, to facilitate delivery of content that is tailored to the interests of specific

individuals or groups. Topic models such as Latent Dirichlet Allocation (LDA) [7]
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and Probabilistic Latent Semantic Analysis (PLSA) [26] are generative models of

text documents, which successfully uncover hidden structures, i.e., topics, in the

data. They model the co-occurrence patterns present in text and identify a proba-

bilistic membership of words and documents into a much lower dimensional space

compared to the original term space. Since their introduction, many extensions

have been proposed.

One such line of research aimed at modeling the interests of authors to answer

important queries about authors, e.g., who produced similar work [47], who belongs

to the same research community [34] and who are the experts in a domain [53].

However, another fundamental question about the attribution of topics to authors

still remains not answered: who influences the generation of new content in a

particular topic of interest? In this work, I propose generative models that take

the linkage between authors of citing and cited documents into consideration and

explore various qualitative and quantitative aspects of this question.

Another line of research aimed at modeling topics for content and citations

together to quantify the influence of citations over the newly generated content [16,

42, 11, 28]. However, these statistical methods for parameterizing the influence of

a document cannot easily quantify the influence of authors because one document

often has multiple authors.

In this chapter, I exploit the complementary strengths of the above lines of

research to answer queries related to authors’ influence on topics. Specifically,

I present two different generative models for inter-linked documents, namely the

author link topic (ALT) and the author cite topic (ACT) models, which simultane-

ously model the content of documents, and the interests as well as the influence of

authors in certain topics. As in the author topic model (ATM) [47], ALT models a

document as a mixture of topics, with the weights of the mixture being determined

by the authors of the document. In order to capture the influence of cited authors,

ALT extends ATM to let the set of cited authors in a document be represented

as a mixture of topics and again the weights of the topics are determined by the

authors of the document.

Moreover, I hypothesize that the context in which a cited document appears in

a citing document indicates how the authors of the cited document have influenced

the contributions by the citing authors. ACT extends ALT to explicitly incorporate
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the citation context, which could provide additional information about the cited

authors. Kataria et al. kataria have previously used the citation context while

jointly modeling documents and citations (without authors) and have shown that

a fixed-length window around a citation mention can provide improvements over

context-oblivious approaches. Unlike Kataria et al. kataria, I model the authors

of the document along with the content and argue that a fixed-length window

around a citation mention can provide either limited or erroneous information in

cases where the context spans are larger or smaller, respectively, than the length

of the window. Hence, I dynamically select an adaptive-length window around

a citation that is statistically more likely to explain the cited document than a

fixed-length window.

In summary, this chapter has following research contributions:

• I propose generative models for author-author linkage from linked documents

conditioned on topics of interest to authors. Our models are able to distin-

guish between authors’ interests and authors’ influence on the topics.

• I utilize the context information present in the citing document explicitly

while modeling the cited authors and obtain significant benefits on evaluation

metrics on real world data sets. Moreover, I dynamically select the length

of context surrounding the citation mention and circumvent the erroneous

context inclusion by a fixed window approach.

3.2 Related work

One of the earliest attempts at modeling the interests of authors is the author topic

model (ATM) [47], where the authors and the content are simultaneously modeled

with coupled hyper-parameters for the interests of authors and the themes present

in text (shown in Fig. 3.1(a)). The (latent) topics represent the shared dimensions

among the interest of authors and the themes. Bhattacharya and Getoor entity-lda

extended ATM to disambiguate incomplete or unresolved references to authors.

Another stream of author centric modeling deals with expert finding [17, 1, 53]

where an expert is defined as a person knowledgeable in the field. I define an

expert/interested author as someone who has produced several contributions in
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a particular field whereas an influential author as someone who has certain key

contributions in that field and gets cited more often. Therefore, given a field, an

influential author is not necessarily an expert in that field, however, her key con-

tributions have led several interested authors to contribute to that field. However

our main goal is to model the influence of authors [29] along with the interest of

authors.

Linking to external content or entities is an important ingredient of social con-

tent such as citation graph of academic documents, asynchronous communications

such as weblogs, e-mails, etc. The mixed membership model [50], also referred

as linked-LDA [42], extended LDA to model links among documents with an ad-

ditional parameter that governs link generation from citing documents to cited

documents. Further extensions of linked-LDA analyzed the association between

words and hyperlinks [42, 23, 11], influence propagation [16], community of links

detection [34], context-sensitive citation and text modeling [28]. To model the

authors in an inter-linked corpus of documents, Tu et al. TJRH10 proposed an

extension of the author topic model to inter-linked documents. In contrast to our

approach, they consider the entire citing document as the context of the citation,

which, as explained in 3.4.2, can easily be considered as a special case of our

approach. In addition, it performs inferior to dynamically selecting the context

length.

Topic models have also been extended to social networks of entities where

entity-entity relationships conditioned upon topics are explored. Mccallum, et

al., enron extended the basic ATM to cluster the entity pairs based upon topic

of conversation in e-mail corpus. Their approach assumes that the sender and

the recipient both decide the entire topic of conversation. This assumption is not

applicable in our setting because only the author of the citing document decides

the topic of the document and every cited authors may not share the interest in all

the topics discussed in citing document. Newman et al. entity-topic and Shiozaki

et al. entity-topic1 proposed other entity-entity relationship models for named-

entities in news articles where documents are modeled as mixture of topics over

both entities and words.
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Figure 3.1. Plate diagram for: (a) Author Topic Model; (b) Author Link Topic Model;
and (c) Author Cite Topic Model.

3.3 Models

Before presenting our models, I introduce some useful notations. Let V , D, A,

ad and Nd denote the size of the word vocabulary, the number of documents,

the number of authors, a set of authors and the number of words in document d

respectively. Let T denote the number of latent topics, i.e., the latent variable z

(see Fig. 3.1) can take any value between 1 and T inclusively. Suppose there exists

a T × V topic-word distribution matrix φ that indexes a probabilistic distribution

over words given a topic and a T×A topic-author distribution matrix θ that indexes

the probability with which an author shows interest in a topic. The corresponding

hyper-parameters for distributions φ and θ are αφ and αθ respectively.
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3.3.1 Detecting Influential Authors with Author Link Topic

Model

Citations among documents exhibit the biases of citing authors towards certain

influential authors who have key contributions in the topic of discourse. I quantify

the influence of an author given a topic by the probability, denoted by ϕcz, that

the author c’s work gets cited when there is a mention of the topic z in a citing

document. Since the Author Topic Model (ATM) does not model the citations

among the documents, it is not possible to estimate the influence of an author

given a topic. In contrast, Author link topic model (ALT) generates the references

to cited authors along with the words from a mixture of topics. As in ATM, a set

of authors ad decides to write a document. To generate each word, an author x

is chosen uniformly at random from ad, and a topic is sampled from the chosen

author’s specific distribution. Then the corresponding word is generated from the

chosen topic. For each author in the referenced set of authors in the document

d, again an author x is chosen to generate a topic, and based upon the topic, an

author c is selected from the topic specific distribution over authors. ALT model

captures the intuition that given a topic and a list of relevant authors to be cited,

authors from ad would choose to reference those authors’s work that are influential

in that topic. Fig. 3.1(b) shows the plate diagram for the ALT model.

In the following subsections, I will usew and c to denote the words and observed

cited authors in a document and z to denote the vector of topic assignments in the

document. With the model hyper-parameters αθ, αφ and αϕ, the joint distribution

of authors x, the topic variables z, the document w and the cited authors c can be

written as below. Here, Ld stands for the number of cited authors in the document

d.

p(x,c,z,w|ad, αθ, αφ, αϕ) = (3.1)

∫ ∫ ∫ Nd
∏

n=1

p(x|ad)p(zn|x, θx)p(wn|zn, φzn)p(θx|αθ)p(φzn|αφ)

Ld
∏

l=1

p(x|ad)p(zl|x, θx)p(cl|zl, ϕzl)p(θx|αθ)p(ϕzl |αϕ)dθdφdϕ
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3.3.2 Context sensitive modeling of Author-linkage : Au-

thor Cite Topic Model

ALT model does not utilize the context in which a document cites an author.

Although ALT models the cited authors in the citing document, yet, because of the

bag of words assumption, the topic assignment to the authors does not explicitly

depend upon the topics assigned to the content in that document. To enforce this

dependence, I model the cited authors along with the context of the citation. In

contrast to ALT, the Author Cite Topic (ACT) model associates cited authors and

the words in the citation context of the cited authors with topic assignments to the

context words. This association is based upon the assumption that given a topic,

the choice of words and the authors to be cited are independent (see the plate

diagram in Fig 3.1(c). With this independence assumption, the topic sampled for

words in the citation context window generates both a word and a reference to the

cited author. Since I observe a set of authors for a cited document, I treat c as

hidden similar to x. The parameters of the ACT model remain the same as those of

the ALT model, however the complete data log-likelihood function is different due

to a difference in the generation process. The log-likelihood function to optimize

can be written as below. Here, Cd is the total length (number of words) of all

citation contexts in the document d.

p(x,c,z,w|ad, αθ, αφ, αϕ) =

∫ ∫ ∫ Nd−Cd
∏

n=1

(

p(x|ad)p(zn|x, θx)p(wn|zn, φzn)p(θx|αθ)

p(φzn|αφ)
)

Cd
∏

n=1

(

p(x|ad)p(zn|x, θx)p(θx|αθ)p(wn|zn, φzn)

p(φzn|αφ)p(cn|zn, ϕzn)p(ϕzn|αϕ)
)

dθdφdϕ (3.2)

Intuitively, Eq. 3.2 implies that the author first picks the words from the topic and

then chooses to cite an author’s work or vice versa. The product p(zn|x, θx).p(wn|zn, φzn)

acts as the mixing proportions for the author “generation” probability over the en-

tire citation context of the corresponding citation. Therefore, one can expect that
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this explicit relation between citation generation probability and the word genera-

tion probability will lead to a better association of words and citations, and in turn

authors, with documents than without utilizing the citation context explicitly.

3.3.3 Dynamic Selection of Length of Context Window

Since the ACT model imposes independence assumption in the context window

surrounding the citation mention, it becomes important to identify the context

that refers to the cited article. Previous work on context utilization in topic mod-

els, either assumes a fixed window of 10 words radius surrounding the citation

mention [28] or the whole document as the context for any citation mention [53].

However, the amount of relevant context in the vicinity of the citation anchor de-

pends upon various factors such as the strength of the influence of cited article

over the citing article, the location of the citation mention in the citing article,

etc. Therefore, I propose to identify a dynamic window surrounding the citation

anchor with the following method.

Let
←−
d represent the cited document for a given citation anchor cdi , where i

ranges over all citation mentions in the citing document d. Let S(cdi ) (or simply

Si) represent the bag of words in the citation context surrounding cdi . The objective

function that I choose to maximize is f(
←−
d |Si) which is defined as:

f(
←−
d |Si) = σ(Z←−

d
.ZSi

) (3.3)

Here, Zp is the topic vector defined as 1
Np

∑

n zp,n where n ranges over all the tokens

in the bag p and Np denotes the cardinality of p. σ represents the sigmoid func-

tion and ′.′ represents the dot product between two vectors. Intuitively, f(
←−
d |Si)

represents the topical similarity between cited document and its corresponding

context.

[?]
Si kssj

Figure 3.2. An illustrative citation context window

Next I describe our dynamic context selection procedure. I allow our window

to grow over sentences beginning with the sentence that has the citation mention,
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although the method proposed is general enough to be applicable to any building

block such as words or paragraphs. I choose to begin with the sentence that

contains the citation mention as the sentence carries most of the information about

the cited document. I let Si denote the current context window and sj and sk

are the next left and right candidates to either include in the window or to let

the growth stop in either direction. I update the window as defined below and

continue to grow in the direction which maximizes the objective function 3.3.

Si = max{f(
←−
d |Si), f(

←−
d |{Si, sj}), f(

←−
d |{Si, sk}), f(

←−
d |{Si, sj , sk})} (3.4)

3.3.4 Inference using Gibbs Sampling

I utilize Gibbs sampling as a tool to approximate the posterior distribution for

both the models. Specifically, I want to estimate θ, φ and ϕ parameters of the

multinomial distributions Multi(.|θ), Multi(.|φ) and Multi(.|ϕ), respectively, in

Fig. 3.1(b) and 3.1(c).

p(zi = k, xi = x|z−i,x−i,w) ∝
n
(t)
k,−i

+αt
φ

∑V
t=1 n

(t)
k,−i

+V.αt
φ

.
n
(k)
x,−i+α

k
θ

∑K
k=1 n

(k)
x,−i+K.α

k
θ

(i)

p(zi = k, xi = x|z−i,x−i, c) ∝
n
(c)
k,−i

+αc
ϕ

∑C
c=1 n

(c)
k,−i

+C.αc
ϕ

.
n
(k)
x,−i+α

k
θ

∑K
k=1 n

(k)
x,−i+K.α

k
θ

(ii)

p(zi = k, xi = x, ci = c|z−i,x−i, c−i,w) ∝
n
(t)
k,−i

+αt
φ

∑V
t=1 n

(t)
k,−i

+V.αt
φ

.
n
(c)
k,−i

+αc
ϕ

∑C
c=1 n

(c)
k,−i

+C.αc
ϕ

.
n
(k)
x,−i+α

k
θ

∑K
k=1 n

(k)
x,−i+K.α

k
θ

(iii)

Table 3.1. Gibbs updates for ALT(i,ii), ACT(i,iii)

According to Eq. 3.2, the joint probability distribution of the latent and the

observed variables can be factorized as follows:

p(x, c, z,w|ad, αθ, αφ, αϕ)

= p(w|z, αφ)p(c|z, αϕ)p(z|x, ad, αθ)p(x|ad) (3.5)

To generalize the notations, let n
(b)
a denote the number of times entity b is

observed with entity a. Particularly, if an observation of topic z is made with

author x, then n
(z)
x denotes the number of times this observation is made in the
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whole corpus. Similarly, I define n
(t)
z , n

(c)
z where t and c stand for term and cited

author respectively. Here, I derive p(c|z, αϕ). Other factors can be obtained in a

similar fashion. The target posterior distribution for cited author generation, i.e.,

p(c|z, αϕ), can be obtained by integrating over all possible values of ϕ:

p(c|z, αϕ)

=

∫ K
∏

k=1

1

∆(αϕ)

A
∏

c=1

ϕ
n
(c)
z +αc

ϕ−1
z,c dϕz =

K
∏

z=1

∆(nzϕ + αϕ)

∆(αϕ)
(3.6)

where ∆(αϕ) =

∏dim(αϕ)
i=1 Γ(αiϕ)

Γ(
∑dim(αϕ)

i=1 αiϕ)
and nzϕ = {n(c)

z }
A
c=1

With the likely treatment to other factors, the joint distribution can be written as:

p(x,w, c, z|αθ, αφ, αϕ)

=
K
∏

z=1

∆(nzφ + αφ)

∆(αφ)

K
∏

z=1

∆(nzϕ + αϕ)

∆(αϕ)

A
∏

x=1

∆(nx + αθ)

∆(αθ)
(3.7)

where nzφ = {n
(t)
z }

V
t=1 and nx = {n(z)

x }
K
z=1

Starting with a random assignment of topics z and authors x from the list of co-

authors in a document, Gibbs sampler iterates through each word and cited authors

in a document, for all the documents in the corpus. For the ALT model, I need to

sample topic assignment for each word variable and cited author variable. Since

I have two unobserved random variables x and z for both types of assignments,

our Gibbs sampler performs blocked sampling on these two random variables.

I draw a sample from p(zi = k, xi = x|z−i,x−i,w) for the word variable and

from p(zi = k, xi = x|z−i,x−i, c) for the cited author variable. The subscript −i

indicates that I leave the ith token out from the otherwise complete assignment.

After algebraic manipulation to Eq. 3.7, I arrive at the sampling equations as given

in Eq. (i & ii) in Table 3.1.

Unlike the ALT model, Author Cite Topic (ACT) model has one additional



45

unobserved random variable c that appears inside the citation context of a given

citation in any document. I initialize c from the co-authors of the cited documents

by uniformly selecting one author. The remaining initializations remains the same

as above. I block x, z and c while sampling and for each word in the citation

context, I sample from the conditional distribution, i.e. p(zi = k, xi = x, ci =

c|z−i,x−i, c−i,w). The algebraic form of the conditional distribution is given in

Eq.(iii) in Table 3.1.

3.4 Experiments

I describe our data set and experimental settings below and, in 3.4.2 and 3.4.3,

I provide the details of evaluation tasks with corresponding results.

3.4.1 Data Sets and Experimental Settings

I use two different subsets of scientific documents for our evaluation purpose. For

the first dataset (referred as CiteSeer-DS1), I use publicly available 1 subset of the

CiteSeer 2 digital library. The data set contains 3312 documents belonging to 6

different research fields and the vocabulary size is 3703 unique words. There is

a total of 4132 links present in the data set. The dataset contains 4699 unique

authors3 where 1511 authors are cited. After standard preprocessing of remov-

ing stop words, I supplement the data set with the context information for each

citation.

I employ CiteSeer-DS1 because various previous studies [42], [11] have used the

dataset for link prediction task, however CiteSeer-DS1 is a hand-picked dataset

prepared for document classification purposes [36]. For both qualitative and quan-

titative evaluations on a user selected scientific documents dataset in a collab-

orative setting, I also acquired dataset from CiteULike 4 for over 2 years from

November 2005 to January 2008 (referred as CiteSeer-DS2). The dataset is avail-

able at http://citeulike.org. Overall, there are 33,456 distinct papers in CiteULike

1http://www.cs.umd.edu/s̃en/lbc-proj/LBC.html
2http://CiteSeer.ist.psu.edu/
3I use disambiguated authors for each documents available at

http://CiteSeerx.ist.psu.edu/about/metadata
4http://citeulike.org
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sample. I map the document ids of CiteULike documents to document ids of Cite-

Seer documents 5 to gain access to citation network of the sample. The resultant

CiteSeer-DS2 contains 18354 documents in which 9571 documents are cited. There

are a total of 29645 unique authors in CiteSeer-DS2 out of which 15967 authors

are cited at least once. I follow the same preprocessing step as the CiteSeer-DS1

dataset.

Experimental Set-up: I choose to fix the hyper-parameters and evaluate dif-

ferent models with the same setting. I set the hyper-parameters to the following

values [47]: αθ = 50/T , αφ = 0.01, αϕ = 0.01. I run 1000 iterations of Gibbs

sampling for training and extend the chain with 100 iterations over test set. For

dynamic window selection, I collect 10 samples from the chain after every 10 itera-

tions starting from 1000 iterations, and compute the new window with the average

of the samples using Eq. 3.4. After the window update, I let the chain converge

and start to update the window again. Starting with the sentence that contains

the citation mention, I allow our window to grow up to a maximum of 5 sentences

in either direction. The multinomial parameters of the model are calculated by

taking expectations of the corresponding counts from 10 samples collected during

test iterations.

3.4.2 Model Evaluation on Unseen Content

This task quantitatively estimates the generalization capabilities of a given model

on unseen data. In particular, I compute the perplexity on the held-out test set.

I run the inference algorithm exclusively on the unseen words in the test set of

documents, same as [47], to obtain the log-likelihood of test documents. Before

extending the Gibbs sampling chain and sweeping the test set, I first initialize

the topic assignment to authors and unseen words randomly and run the Gibbs

iteration on the test set with following Gibbs updates:

p(zui , x
u
i |w

u
i = t, zu−i,w

u

−i,x
u

−i)

5mapping is obtained from http://citeulike.org
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=
n
(t)
k,−i + β

∑V

t=1 n
(t)
k,−i + V.β

.
n
(k)
xu,−i + αkθ

∑K

k=1 n
(k)
xu,−i +K.αkθ

(3.8)

Superscript (.u) stands for any unseen element. The sampling updates in Eq. 3.8

can be used to calculate the model parameters, Π = (θ, φ, ϕ) for unseen documents

as:

θxu,k =
n
(k)
xu + αkθ

∑K

k=1 n
(k)
xu +K.αkθ

;φk,t =
n
(t)
k

u
+ n

(t)
k + βt

∑V

t=1 n
(t)
k

u
+ n

(t)
k + βt

(3.9)

The predictive log-likelihood of a text document in the test set, given the

model Π = (θ, φ, ϕ), can be directly expressed as a function of the multinomial

parameters:

p(w|Π) =
Nx
∏

n=1

T
∑

k=1

( 1

|ad|

∑

x∈ad

p(wn|zn = k).p(zn = k|d = x)
)

=
Nx
∏

n=1

(
1

|ad|

∑

k,x∈ad

φk,tθx,k) (3.10)

Next, I compute the perplexity as defined below. Here, Nw is the total number

of word occurrences in the test set.

Perplexity(w) = exp(
−log p(w)

Nw

) (3.11)

Baselines: I use following two baselines from [47] and [53], namely Author

Topic Model (ATM) and Citation Author Topic Model (CAT) respectively. Since

ATM does not learn from links among documents, comparison with ATM signifies

the importance of learning from links along with the text of the documents. CAT

model treats all the content of a citing document as context for any cited document

within, therefore, comparison with CAT highlights the importance of choosing

a context window surrounding the citation mention. I compare these baselines

against the proposed Author Link model (ALT), fixed length window Author Cite

Topic Model (Fixed-ACT) 6 and dynamically selected window based ACT model

6I set the radius to be 10 words from the citation mention after stop word removal, i.e., 20
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Figure 3.3. Experimental results for (a) Perplexity on CiteSeer datasets DS1, (b)
Perplexity on CiteSeer datasets DS2, (c) Precision @ K for cited author prediction on
CiteSeer datasets DS1 and (d) Precision @ K for cited author prediction on CiteSeer
datasets DS2

(Dynamic-ACT). For our experiments, the training data consists of 4 splits with

75% documents (training docs) along with the 25% words of the remaining 25%

of the documents (test docs). The rest 75% words in test documents are used to

calculate log-likelihood. The average value over the 4 splits are reported in the

experiments.

Fig. 3.3 (a)&(b) show the comparison of perplexity on test set of CiteSeer-DS1

and CiteSeer-DS2, respectively. The ATM model performs slightly better than the

ALT model. I believe that this is because the links considered separately from the

content actually deteriorate the prediction capability of the models over words. In

words window
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contrast, while training, links along with the content help to learn the topics better.

However, when all the content is treated as context for every cited article [53] in

a given citing document, the performance deteriorates significantly. Therefore, I

argue that a wise selection of context window is essential when a context sensitive

topic modeling approach is considered.

Dynamic-ACT outperforms all the other approaches (see Fig. 3.3 (a)&(b)).

During our experiments, I observed that the length of a relatively large fraction

of citation contexts was limited to a single sentence that contains the citation

mention. The fraction decreases as I increase the number of topics. Specifically,

for CiteSeer-DS1, 78% of the total citation contexts were composed of only one

sentence when I set the number of topics to 10. This number drops to 65% with

100 topics. Also, I found the average window length on CiteSeer-DS1 to be 1.4

with 10 topics and 1.6 with 100 number of topics. I observe the similar trend with

CiteSeer-DS1 where 81% of the total total citation contexts were composed of only

one sentence with topic count 10 whereas the number decreases to 62% with 100

topics. Considering that the topic assignment to words is fine grained with a large

number of topics, the growth outside the window is more likely to explain the finer

details mentioned in the cited document.

3.4.3 Cited Author Prediction

In this task, I evaluate the capability of the models to predict the authors that

this document links to. That is, given the text of a test document, which authors’

work should this document cite to? The experimental design for this task is very

similar to the one in the previous subsection. I again perform the Gibbs update

following the sampling from conditional distribution in Eq. 3.8 and calculate the

model parameters. With the model parameters for the ALT and ACT models, the

probability p(c|wd), where c is the author to be cited given a document wd is:

p(c|wd) =
∑

z

p(c|z)

∫

x∈ad

1

|ad|
p(z|θx)dθx ∝

∑

k

1

|ad|
ϕc,k.θd,k (3.12)

Baselines: Because the ATM does not model the links, it is not possible to

treat ATM as a baseline for this task. I keep all the other four comparisons intact

for this task. The training data consists of 4 splits with 75% documents and their
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outgoing links to cited authors (training docs) and the 25% outgoing links of the

remaining 25% of the documents (test docs). The rest of 75% outgoing links in

the test documents are used for this task. I set the number of topic to be 100 for

this task. I use Precision@K as the evaluation metric. The average value over the

4 splits are reported in the experiments.

To evaluate the prediction accuracy for the proposed models, I first label the

actual authors that are cited by a test document as its relevant result set. I rank

the authors in the train corpus against each test document using p(c|wd) and

compare the models based upon the precision of the retrieved results. Fig. 3.3(c)

& (d) shows the results for the three methods on CiteSeer-DS1 and CiteSeer-DS2,

respectively.

3.4.4 Anecdotal Evidences

Table 3.2 shows the most likely words, interested and influential authors in 6 topics

from the CiteSeer-DS2 dataset obtained using the ACT model (e.g. Griffith, Beal,

etc., as interested authors and Mackay, Ghahramani and Hinton as influential

authors in Bayesian learning). For each topic shown in the table, most influential

authors are well known in their respective areas and their authored papers gets

cited in the respective fields.

3.5 Summary

I propose novel models for author-author linkage conditioned on topics latent in

the content of the documents. I exploit the citations between documents to infer

influence of certain authors over topics. I also propose context sensitive extensions

of the proposed model that incorporates the context of the cited document and

how it infers the topic of both cited and citing authors with better quality
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Topic-6
Top Words Top interested authors Top influential authors

scale 0.01663 k. mikolajczyk 0.95714 c. schmid 0.08392
shape 0.01434 j. ponce 0.95641 j. malik 0.07407
object 0.01385 t. lindeberg 0.95619 d. g. lowe 0.06075
images 0.01069 s. lazebnik 0.95412 s. belongie 0.04564
matching 0.01000 r. fergus 0.86715 k. mikolajczyk 0.03996
recognition 0.00846 a. c. berg 0.86306 j. puzicha 0.03863
features 0.00772 g. loy 0.85624 j. shi 0.02436
local 0.00751 e. rosten 0.04269 d. p. huttenlocher 0.01704

Topic-97
Top Words Top interested authors Top influential authors

retrieval 0.03634 s.-fu chang 0.04901 j. r. smith 0.05583
images 0.01635 s. mehrotra 0.04856 t. s. huang 0.04141
texture 0.01572 r. paget 0.04451 y. rui 0.03214
color 0.01184 j. z. wang 0.04399 r. jain 0.03025
features 0.01016 m. ortega 0.04214 a. efros 0.02561
content 0.00958 p. harrison 0.04118 t. leung 0.02385
search 0.00763 g. wiederhold 0.04098 w.-ying 0.01933
visual 0.00754 r. peteri 0.04058 j. malik 0.01732

Topic-45
Top Words Top interested authors Top influential authors

learning 0.02424 xiaoli li 0.04352 t. mitchell 0.09649
classification 0.02189 k. nigam 0.04203 k. nigam 0.08227
text 0.01635 t. mitchell 0.04146 a. mccallum 0.05819
training 0.01420 a. mccallum 0.04076 a. blum 0.05808
unlabeled 0.01351 yang dai 0.04031 d. d. lewis 0.04469
examples 0.01150 andrew ng 0.03843 s. thrun 0.03260
set 0.00913 r. gilleron 0.03619 ken lang 0.02693

Topic-71
Top Words Top interested authors Top influential authors

model 0.01829 t. l. griffiths 0.04683 d. j.c. mackay 0.07512
data 0.01164 m. j. beal 0.04588 z. ghahramani 0.06245
learning 0.00817 z. ghahramani 0.04376 g. e. hinton 0.04727
bayesian 0.00791 b. j. frey 0.04345 l. r. rabiner 0.03903
mixture 0.00773 d. m. blei 0.04263 t. hofmann 0.03840
inference 0.00689 d. j.c. mackay 0.04158 c. e. rasmussen 0.03226
distribution 0.00657 r. m. neal 0.04147 r. m. neal 0.02999

Topic-46
Top Words Top interested authors Top influential authors

algorithms 0.01376 e. zitzler 0.04734 d. e. goldberg 0.06921
quantum 0.01087 k. deb 0.04655 k. deb 0.06606
genetic 0.01043 k. sastry 0.04552 p. j. fleming 0.05680
optimization 0.00847 t. goel 0.04523 c. m. fonseca 0.04943
objective 0.00792 l. thiele 0.04520 n. srinivas 0.04930
pareto 0.00713 l. barbulescu 0.04503 k. l. clarkson 0.03059
population 0.00708 d. aharonov 0.04448 l. k. grover 0.02802
evolutionary 0.00658 k. svozil 0.04429 j. horn 0.02654

Table 3.2. Top words, interested authors and influential authors for 6 topics in CiteSeer-
DS2



Chapter 4
Topic Models for Entity

Disambiguation in Document

Networks

Disambiguating entity references by annotating them with unique ids from a cat-

alog is a critical step in the enrichment of unstructured content. In this chapter,

we show that topic models, such as Latent Dirichlet Allocation (LDA) and its hi-

erarchical variants, form a natural class of models for learning accurate entity dis-

ambiguation models from crowd-sourced knowledge bases such as Wikipedia. Our

main contribution is a semi-supervised hierarchical model called Wikipedia-based

Pachinko Allocation Model (WPAM) that exploits: (1) All words in the Wikipedia

corpus to learn word-entity associations (while existing approaches only use words

in a small fixed window around annotated entity references in Wikipedia pages),

(2) Wikipedia annotations to appropriately bias the assignment of entity labels to

annotated (and co-occurring unannotated) words during model learning, and (3)

Wikipedia’s category hierarchy to capture co-occurrence patterns among entities.

We propose a new sampling algorithm to speed up model learning when topics are

organized in a hierarchy, and a scheme for pruning spurious nodes fromWikipedia’s

crowd-sourced category hierarchy. Finally, in experiments with multiple real-life

datasets, we show that WPAM outperforms state-of-the-art baselines by as much

as 22% in terms of disambiguation accuracy.
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4.1 Introduction

Even though the world wide web is a veritable knowledge base for everything under

the sun, a large chunk of it still exists in the form of unstructured text generated

with little or no curation. One important step to instilling structure into such

free-form text is to collect all references to entities within it and annotate them

with ids from an existing catalog of entities. Doing this will not only enable merge

operations with other pieces of similarly annotated text but also promises to aid

semantic search, information extraction and integration, document classification,

and a host of other applications. For instance, if we know that a user is browsing

a page about Michael Jordan the basketball player, then we can show the user

additional articles related to only Michael Jordan the sportsperson and not Michael

I. Jordan the machine learning researcher.

The crucial task in annotating entity references is to decide which entity from

the catalog a particular reference is associated with. In this chapter, we refer to

this problem as the entity disambiguation problem [27].

4.1.1 Leveraging Wikipedia for Entity Disambiguation

With over 3.4 million crowd-sourced entities, Wikipedia1 is clearly a formidable

resource, one that can serve as a comprehensive reference catalog for large-scale

entity disambiguation. Each Wikipedia entity has a separate page, and a vast

network of internal links annotate words in the body of pages with entities that

they refer to. The copious annotations constitute valuable training data, and prior

work [10, 37, 14, 39, 30] has used them to learn models for disambiguating entities

at scale. Thus, Wikipedia has enabled a paradigm of weak supervision where freely

available annotations are used to train machine-learned models.

One way to broadly categorize the various entity disambiguation approaches

proposed in the literature is based on the sources of evidence that they utilize. The

local context of a reference forms one major source of evidence used in previous

work [10, 37, 14, 30]. More precisely, words that appear in the vicinity of a reference

often help to decide which entity is being referred to. For instance, there exist a

number of Columbus’s, e.g., explorer, film director, etc., but if the words “ocean”

1http://www.wikipedia.org

http://www.wikipedia.org
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or “ship” appear in the vicinity then that should increase our belief that the

reference is to the explorer. Existing approaches use local context evidence for

entity disambiguation in two steps. First, they learn the context for each entity

from the local context of annotated references to the entity (embedded in other

Wikipedia pages). Subsequently, to resolve a reference, they compare the local

context of the reference with the (learned) context for each candidate entity to

determine their compatibility.

Co-occurrence patterns form yet another major source of evidence used in prior

work [14, 39, 30] where the hypothesis is that certain entities often appear together

and disambiguating one reference should help to decide which entities the other

references within the same document are referring to. For example, there are eight

Michael Jordan’s (basketball player, researcher, actor, etc.) and three Charles

Barkley’s (basketball player, politician, etc.) in Wikipedia. But if a document

contains mentions of both Michael Jordan and Charles Barkley, then we can be

fairly certain that both references are to basketball players.

Of the existing disambiguation approaches, [30] exploits the two above-mentioned

sources of evidence the most. Specifically, it attempts to annotate references with

entities so that the sum of the local context compatibility for the entities and the

co-occurrence between entity pairs is maximized.

4.1.2 Shortcomings of Existing Approaches

A general shortcoming of existingWikipedia-based entity disambiguation approaches

[10, 37, 14, 39, 30] is that they are somewhat ad hoc in the manner in which they

combine and compute the various sources of evidence. For instance, local con-

text compatibility and entity co-occurrence are calculated using entirely different

mechanisms and may have disparate value ranges, yet they are combined in [30]

by simply summing the two quantities together.

Similarly, when computing local context compatibility, prior research works

have used a range of window sizes around each reference for determining the words

that are a part of its local context. [10] picked an “optimum” length of 55 words

centered around the entity reference. On the other hand, [37] used a window of 3

words to the left and right of the reference, set through cross-validation. And [30]
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used a window but do not specify its length. Clearly, there is a lack of consensus

on the best setting for the window size parameter – a window size that is too small

can cause important words to be excluded from the local context while irrelevant

words may become part of the context with too large a window size.

Furthermore, even though freely available knowledge bases such as Wikipedia

contain a large number of annotations, they are still at best, only partially an-

notated datasets. (Usually, only the first occurrence of a relevant reference on a

page is annotated as advocated by Wikipedia’s manual of style2.) Existing dis-

ambiguation methods completely ignore un-annotated references to an entity in

a Wikipedia page, and so the local context of these references is not included in

the context for the entity. Thus, by ignoring un-annotated parts, we risk losing

out on learning likely word-entity associations that might prove crucial for disam-

biguation performance. Note here that, many un-annotated references are indirect

references like pronouns, or short forms like “JFK” for “John F. Kennedy” – these

are generally difficult to resolve.

Finally, prior work [30] has also proposed using human-annotated training

datasets to train classifiers for computing local context compatibility. A general

problem with such (strongly) supervised approaches is the substantial amount of

human effort required to create training datasets that are representative of a wide

variety of document types (e.g., news articles, research reports) and domains (e.g.,

sports, health).

One way to broadly categorize the various entity disambiguation approaches

proposed in the past is based on the sources of evidence they utilize. The content

available in the text forms one major source of evidence used in prior work [10, 37,

14, 39, 30]. More precisely, words that appear in the vicinity of a reference often

helps decide which entity is being referred to. For instance, there exist a number

of Columbus’s, e.g., explorer, film director etc., but if the words “ship” or “ocean”

appear in its vicinity then that should increase our belief for it being a reference to

the explorer. Co-occurrence patterns form another major source of evidence used

in prior work [14, 39, 30] where the hypothesis is that certain entities often appear

together and disambiguating one reference should help decide which entities the

other references within the same document are referring to.

2http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style

http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style
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Another major component aiding the development of large-scale entity dis-

ambiguation is the use of weak supervision. Prior work [30] has proposed using

human-annotated training datasets to learn disambiguation models. Besides the

standard issues involved with such an approach such as requiring substantial hu-

man effort, for applications such as entity disambiguation that may require new

entities to be added to the catalog, it is entirely possible that one might need

to re-train existing models and learn new models frequently. Weak supervision

[10, 37, 39] on the other hand, denotes the use of prior annotations freely available

in many large-scale, crowd-sourced knowledge bases such as Wikipedia3. Weak su-

pervision holds the promise to be able to incorporate new entities into the catalog

at almost no extra cost.

4.1.3 Problem Definition

We denote the set of all Wikipedia entity pages by W . Consider an arbitrary

set of documents D. These can be news articles, product or restaurant reviews,

blog posts, or crawled web pages. The entity disambiguation problem is to label

the entity references in documents from D with Wikipedia entities in W . In this

chapter, we assume that entity references are given to us. Thus, we do not address

the problem of identifying entity references in text which is a separate problem

that can be handled using named-entity recognizers as described in [14].

4.1.4 Our Contributions

Our main contribution is a weakly semi-supervised hierarchical topic model for

entity disambiguation calledWikipedia-based Pachinko Allocation Model (WPAM).

WPAM is a hierarchical variant of the popular Latent Dirichlet Allocation (LDA)

[5] topic model, and is inspired by the Pachinko Allocation Model (PAM) recently

proposed in [32]. However, unlike PAM which is completely unsupervised, WPAM

is semi-supervised. WPAM extensively leverages Wikipedia pages, annotations,

and category information to provide a form of weak supervision when training

models. To the best of our knowledge, our work is the first to apply topic models

in conjunction with Wikipedia for large-scale entity disambiguation.

3http://www.wikipedia.org

http://www.wikipedia.org
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There is a body of work [2, 8, 49] that employs topic models for entity resolution

but, like PAM, these are also completely unsupervised and do not exploit Wikipedia

resources.

Topic models such as LDA posit that each document is a mixture of latent

dimensions or topics, and they achieve this by associating with each word in the

document a unique topic variable. There are two key ideas underlying our use of

topic models for disambiguating entities: (1) We associate with each Wikipedia

entity a unique topic, and (2) We learn models on the Wikipedia corpus W and

use the learned model to label words in D. This way, by annotating words with

topics, we in fact annotate words with entities, thus achieving disambiguation.

Topic models provide a principled approach to entity disambiguation.

Unlike existing disambiguation schemes (described earlier), topic models are

oblivious to window size settings – their internal machinery naturally selects words

that frequently co-occur with each entity (across the entire document corpus) to

learn word-entity mappings. The selected words can be from anywhere within

a document including the neighborhood of un-annotated references. Thus, topic

models can learn word-entity associations of a higher quality compared to previous

approaches, and this can boost disambiguation accuracy.

Even though earlier topic models like LDA relied primarily on co-occurrences at

the word level for labeling, later hierarchical versions such as PAM are capable of

capturing not only word-entity associations but also co-occurrence patterns among

entities. A hierarchical topic model takes as input a topic hierarchy and annotates

each word with a root-to-leaf path as opposed to topics. The model induces a

clustering effect among the topic paths used to annotate a document’s words with

a preference for paths that share subpaths beginning at the root. Consequently,

with a topic hierarchy that has entities at the leaf level, the model labels a

document’s words with semantically related and co-occurring entities that are close

by in the topic hierarchy. Thus, hierarchical topic models such as PAM and WPAM

allow diverse sources of evidence like entity context and co-occurrence patterns to

be combined in a single unified framework for entity disambiguation.

WPAM uses the Wikipedia category hierarchy4 as the topic hierarchy to dis-

ambiguate entities with hierarchical topic models. Wikipedia’s category hierarchy

4http://en.wikipedia.org/wiki/Special:Categories

http://en.wikipedia.org/wiki/Special:Categories
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has a DAG structure with entities forming the leaves and each entity or category

assigned to (one or more) parent categories. Furthermore, semantically related

entities (that are likely to occur together in documents) are grouped under one

or more relevant categories. For instance, Michael Jordan and Charles Barkley

are both assigned to the category “African American basketball players” (among

a number of others) which is a sub-category of “American basketball players” and

“African-American sportspeople”.

Thus, WPAM uses a flexible, semantically rich topic hierarchy that captures

entity correlations much better compared to the rigid hierarchies with a fixed

number of levels used by different PAM variants (e.g., four-level PAM [32]).

Furthermore, PAM is completely unsupervised and relies on co-occurrence re-

lationships among words and entities to assign topics to words. However, with

millions of fine-grained topics, one per entity, the space of possible word-topic as-

signments is enormous and this can easily confound PAM. Thus, a key challenge

here is to be able to guide the topic models so that they annotate words with the

correct entities. To this end, we develop weakly semi-supervised techniques that

exploit Wikipedia’s crowd-sourced annotations for WPAM model learning. Dur-

ing learning, when selecting an entity (leaf of a topic path) to label a word, our

techniques introduce a bias in favor of entities that frequently appear in annota-

tions for either the word or the document containing it. This bias originating from

annotated words also spreads to co-occurring un-annotated words, and recursively

through them to more words. Thus, since un-annotated portions of documents

also play a role in propagating entity labels, WPAM’s learning techniques are

semi-supervised.

Finally, learning the WPAM model involves sampling topic paths from the

Wikipedia category hierarchy and assigning these sampled paths to words. Since

the Wikipedia hierarchy is a DAG containing tens of thousands of categories and

millions of entities, naive sampling strategies that enumerate each individual path

are not scalable. We develop an efficient path sampling algorithm whose running

time is proportional to the number of edges in the hierarchy as opposed to the

number of paths which can be significantly higher.

Also, due to the lack of curation and the crowd-sourced manner in which it

is produced, the Wikipedia hierarchy contains some spurious categories that can
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mislead our WPAM model. For example, Michael Jordan is listed under the cat-

egories “Living People” and “1963 Births”. We develop techniques to prune such

irrelevant categories containing uncorrelated entities which co-occur infrequently.

To gauge the effectiveness of our topic model-based entity disambiguation ap-

proach, we conduct an extensive experimental study using two real-life datasets as

the ground truth: (1) Held-out subset of annotated Wikipedia data, and (2) Pre-

annotated news articles from New York Times (NYT). Our experimental results

indicate that even with a semi-supervised version of LDA that leverages Wikipedia

annotations, we are able to obtain an impressive disambiguation accuracy of 81%

compared to 59% for the current state-of-the-art method of [30]. The accuracy

gains are even higher for WPAM that exploits Wikipedia’s category hierarchy as

well, with disambiguation accuracy numbers reaching 81%.

The rest of the chapter is organized as follows. In sec:lda, we develop weakly

semi-supervised techniques for LDA and use Wikipedia annotations to learn ac-

curate models of disambiguation based on entity context alone. In sec:pam, we

develop weakly semi-supervised techniques for our WPAM hierarchical topic model

that exploits both Wikipedia annotations and its category hierarchy to learn ac-

curate models of disambiguation based on both entity context and co-occurrence.

In sec:experiments, we experiment with real-life Wikipedia and NYT datasets

to demonstrate the efficacy of our proposed techniques. We take a closer look at

relevant related work in Section 4.5, and sec:conclusion concludes the chapter.

4.2 Weakly Semi-Supervised Topic Model

Topic models represent each document as a mixture of (latent) topics, where each

topic is a probability distribution over words. The document-topic and topic-word

distributions are learned automatically from the data in an unsupervised manner

with no human labeling or prior knowledge required.

Our entity disambiguation models build upon the popular LDA topic model

which has been extensively used for classification of short text segments [44], un-

supervised entity and author resolution [2, 8, 49], prediction of movie ratings from

reviews [4], and extraction of ratable aspects of objects from online user reviews

[52]. In this section, we first show how we can use LDA to assign entity labels
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to document words by mapping each entity to a separate topic. We then present

techniques that leverage Wikipedia annotations to bias prior document-topic and

topic-word distributions. The result is a semi-supervised version of the LDA model

which is different from the unsupervised models previously used for entity resolu-

tion [2, 8, 49].

4.2.1 Latent Dirichlet Allocation

LDA is a probabilistic generative model that assumes Dirichlet priors on document-

topic and topic-word distributions. Consider a collection ofM documents contain-

ing words from the vocabulary of terms {1, . . . , T}, and let {1, . . . , K} be a set

of topics. The LDA model is defined by two parameters: (1) the multinomial

distribution ~θm = P (z|d = m) over topics for each document m, and (2) the multi-

nomial distribution ~φk = P (w|z = k) over words for each topic k. LDA’s document

generation process is as follows:

• For each topic k, sample word distribution ~φk ∼ Dir(~β).

• For each document m

– Sample topic distribution ~θm ∼ Dir(~α).

– For each word wi in document m

∗ Sample a topic zi ∼ Mult(~θm).

∗ Sample a word wi ∼ Mult(~φzi).

Above, Dir(~α) and Dir(~β) are Dirichlet distributions with hyper-parameters ~α and

~β, respectively. And Mult(~θm) and Mult(~φzi) are multinomial distributions. In the

following subsections, we will use −→w to denote the vector of words contained in

the documents, and −→z to denote the corresponding topics for the words.

4.2.2 Inference Using Gibbs Sampling

The problem of statistical inference involves estimating the probability distribution

~φk over words associated with each topic k, the distribution over topics ~θm for each

document m, and often, the topic responsible for generating each word. Instead
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of directly estimating ~φk and ~θm, we use the approach of [20] that first constructs

the posterior distribution P (~z|~w) and then estimates ~φk and ~θm from this posterior

distribution.

To efficiently estimate the posterior distribution, [20] uses Gibbs sampling

which is a simple and widely applicable Markov chain Monte Carlo (MCMC) al-

gorithm for sampling from complex high-dimensional distributions. Starting with

a random topic assignment ~z, the Gibbs sampling algorithm iterates through each

word in the document corpus. In each step, the algorithm samples a topic assign-

ment for a word wi conditioned on the topic assignments of all other words. More

formally, in each Gibbs sampling step, the algorithm replaces zi by a topic drawn

from the distribution P (zi|~z−i, ~w), where ~z−i is ~z without the ith component.

For a word wi = t in document m, the conditional probability that zi = k is

given by (a detailed derivation of the formula below can be found in [25]):

P (zi = k|~z−i, ~w, ~α, ~β) (4.1)

∝
n
(k)
t,−i + βt

∑T

t′=1(n
(k)
t′,−i + βt′)

·
n
(m)
k,−i + αk

∑K

k′=1(n
(m)
k′,−i + αk′)

Above, n
(k)
t,−i is the number of times term t is assigned topic k excluding the

current assignment; similarly, n
(m)
k,−i is the number of words in document m that

are assigned topic k excluding the current assignment. The Gibbs sampling equa-

tion (4.1) is fairly intuitive – the first term is the probability of term t under topic

k and the second term is the probability of topic k in document m. Observe that

due to the second term, the topic assignment for a word is heavily influenced by

the topic assignments for the remaining words in the document. Therefore, co-

occurring words do influence each other’s topic assignments and will very likely be

assigned the same topic by the Gibbs sampling algorithm.

The sequence of samples obtained from Gibbs sampling form a Markov chain

that converges to the posterior distribution P (~z|~w). Thus, after an initial burn-

in period, we can get a representative set of samples from the distribution by

collecting Gibbs samples at regularly spaced intervals. These can then be used to

estimate the distributions ~φk and ~θm as described in [20, 25].
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In our implementation, we estimate the ~α and ~β Dirichlet hyper-parameters

using Minka’s fixed-point iteration [41].

4.2.3 Using LDA for Entity Disambiguation

We use LDA to develop an unsupervised algorithm for disambiguating the entity

references in document set D. Essentially, our disambiguation algorithm runs

Gibbs sampling with a separate topic per Wikipedia entity. Thus, Gibbs sampling

assigns entity labels to all the words in the documents, effectively disambiguating

all the entity references.

Our disambiguation algorithm has two phases: training and labeling. In the

training phase, we run Gibbs sampling only on the collection of Wikipedia pages

W . Let ~zW denote the topic assignments for words in W at the end of the train-

ing phase. Next, in the labeling phase, we run an incremental Gibbs sampling

algorithm on W ∪ D that only samples topics for words in D while keeping the

topics for words in W fixed at ~zW . Let ~zD be the topic assignments for words in

D. Then, in each incremental Gibbs sampling step during the labeling phase, only

~zD changes but ~zW stays constant. A topic for word wi in D is sampled according

to the Gibbs sampling equation (4.1). Note that the count n
(k)
t,−1 in the equation is

the total number of times term t is assigned topic k across ~zD and ~zW .

A major scalability challenge is that with a separate topic per Wikipedia entity,

the number of topics K is equal to the number of entities in Wikipedia which can

be quite large. As a result, in each Gibbs sampling step, the cost of sampling a

topic assignment for wi from its conditional distribution can be prohibitive since

we need to compute the conditional probabilities for all K topics according to

Equation (4.1). The key observation we make here is that in general only a few

entities are relevant to each document. And these are typically entities with a

surface form that matches a keyword in the document. (The surface forms for

an entity are the anchor text appearing within links to the entity embedded in

Wikipedia pages.) Thus, for each document, we identify the entities with matches,

and only consider topics corresponding to these entities when sampling a topic

assignment for a word in the document. This simple optimization results in a

substantial speedup, enabling us to scale to lots of topics.
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4.2.4 Weakly Semi-Supervised LDA

The standard LDA topic model is completely unsupervised, and determines topics

for words entirely based on the co-occurrence patterns of words across documents.

However, with millions of fine-grained topics, the space of topic assignments to

words is vast, and this makes the task of finding a “good” topic assignment ex-

tremely challenging.

In this section, we leverage the prior Wikipedia annotations of words with en-

tities to provide a form of weak supervision to the basic LDA model with the ob-

jective of improving its labeling accuracy. Let A denote the portions of Wikipedia

pages containing only annotated words along with their entity labels. The key

idea underlying our approach is to bias the topic-word distributions ~φk in favor of

words that are frequently annotated with (the entity corresponding to) topic k in

A, and the document-topic distributions ~θm in favor of topics (corresponding to

entities) that frequently occur in document m’s annotations in A.

We consider the Wikipedia annotationsA as multinomial observations that bias

the distributions of parameters ~θm and ~φk. Recall that ~θm and ~φk have Dirichlet

priors with hyper-parameters ~α and ~β, respectively. The posterior distribution of

~φk conditioned on annotations A is given by:

P (~φk|~β,A) =

∏

wi∈A,zi=k
P (wi|~φk) · P (~φk|~β)

∫
∏

wi∈A,zi=k
P (wi|~φk) · P (~φk|~β) · d~φk

=

∏T

t=1 φ
δ
(k)
t

kt ·
Γ(

∑T
t=1 βt)∏T

t=1 Γ(βt)
·
∏T

t=1 φ
βt−1
kt

∫
∏T

t=1 φ
δ
(k)
t

kt ·
Γ(

∑T
t=1 βt)∏T

t=1 Γ(βt)
·
∏T

t=1 φ
βt−1
kt · d~φk

=

∏T

t=1 φ
δ
(k)
t +βt−1
kt

∫
∏T

t=1 φ
δ
(k)
t +βt−1
kt · d~φk

=
Γ(
∑T

t=1(δ
(k)
t + βt))

∏T

t=1 Γ(δ
(k)
t + βt)

·

T
∏

t=1

φ
δ
(k)
t +βt−1
kt

= Dir(~φk/~β + ~δ(k))

Above, δ
(k)
t is the number of times term t is assigned topic k in A. Thus, ~φk
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has a Dirichlet posterior with hyper-parameters ~β + ~δ(k). Similarly, we can show

that ~θm has a Dirichlet posterior with hyper-parameters ~α+ ~δ(m). Here δ
(m)
k is the

number of annotated words in document m that are assigned topic k in A. Note

that δ
(m)
k is zero for documents in D corresponding to non-Wikipedia pages since

they do not contain any annotations.

Thus, in our weakly semi-supervised LDA model, the document generation

process draws each ~φk from a Dirichlet distribution with hyper-parameters ~β+~δ(k)

(instead of ~β), and each ~θm from a Dirichlet distribution with hyper-parameters

~α + ~δ(m) (instead of ~α). Substituting the posterior distributions for ~φk and ~θm in

the derivation of the conditional distribution equations, we finally get that the new

conditional probability that zi = k (for word wi = t in document m) given the

observed Wikipedia annotations A is:

P (zi = k|~z−i, ~w, ~α, ~β,A) (4.2)

∝
n
(k)
t,−i + βt + δ

(k)
t

∑T

t′=1(n
(k)
t′,−i + βt′ + δ

(k)
t′ )
·

n
(m)
k,−i + αk + δ

(m)
k

∑K

k′=1(n
(m)
k′,−i + αk′ + δ

(m)
k′ )

Thus, we incorporate the knowledge of Wikipedia annotations in the new Gibbs

sampling equation (4.2) above by adding the prior counts δ
(k)
t and δ

(m)
k observed

in A to the counts n
(k)
t,−i and n

(m)
k,−i, respectively. This has the effect of biasing the

topic assignment for a word (in each Gibbs sampling step) in favor of topics that

frequently appear in annotations A for either the word or the document containing

it. Furthermore, this topic bias spreads to other occurrences of the word in the

document corpus as well as to co-occurring words, and recursively through them

to more words. These words that propagate topic assignment biases can be un-

annotated words not contained in A, and hence our LDA model with biased ~φk

and ~θm distributions is semi-supervised. Note that this bias propagation can be

quite powerful in practice; in fact, previous research on semi-supervised learning

[38, 43] has shown that if we can avail of large amounts of unlabeled data and

combine that with the labeled training data then the accuracy of machine-learned

models can be drastically improved.
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4.3 Weakly Semi-Supervised Hierarchical Topic

Model

LDA selects topics based entirely on the correlations among words, but it does not

explicitly model correlations among topics. However, real-world documents are

generally topically coherent, and so a model that can capture topic correlations

as well can lead to higher disambiguation accuracy. As we pointed out earlier in

Section 4.1, exploiting topic correlations can help to resolve an ambiguous reference

to Michael Jordan to the basketball player (as opposed to the researcher) if the

document also contains a reference to Charles Barkley the basketball player. LDA

may have difficulty disambiguating such references correctly because it can combine

arbitrary sets of topics.

Hierarchical topic models extend LDA to capture both word and topic corre-

lations in a single unified framework. A hierarchical model takes as input a topic

hierarchy which can be an arbitrary DAG over topics with interior nodes repre-

senting a correlation among child topics. It assigns each word a root-to-leaf topic

path with a preference for annotating a document’s words with overlapping paths

that share subpaths starting at the root. Thus, the topics for each document are

close by in the topic hierarchy, and therefore highly correlated.

In Section 4.3.1, we describe our weakly semi-supervised hierarchical topic model

which we call Wikipedia-based Pachinko Allocation Model (WPAM). WPAM builds

on the Pachinko Allocation Model (PAM) proposed in [32] but differs from the work

of [32] in two important respects. First, [32] focuses on a fixed four-level topic hi-

erarchy – a problem with such a rigid structure is that it may not accurately model

real-world topic correlations. In contrast, WPAM leverages the Wikipedia cate-

gory hierarchy that has a flexible DAG structure with a different number of levels

in different regions of the hierarchy. The Wikipedia hierarchy groups semantically

related entities (and categories) under one or more relevant categories – thus, it

is quite effective at capturing topic correlations. A second key difference between

PAM and WPAM is that PAM is unsupervised. WPAM, on the other hand, is a

weakly semi-supervised model that uses Wikipedia annotations as training data to

bias topic assignments.

The Wikipedia hierarchy contains over 0.34 million categories, and so learning
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models with such a big hierarchy poses a serious challenge. In Section 4.3.2, we

present an algorithm for efficiently sampling paths from large topic hierarchies in

each Gibbs sampling step. Also, since Wikipedia’s category hierarchy is generated

by human volunteers, it is not perfect and contains irrelevant categories like “Living

People” and “People with Year of Birth Missing”. In Section 4.3.3, we describe a

scheme for cleansing the hierarchy of such extraneous category nodes.

4.3.1 Wikipedia-based Pachinko Allocation Model

WPAM uses Wikipedia’s category hierarchy as the topic hierarchy which we denote

byH. Non-leaf topics inH are the Wikipedia categories, and leaf topics correspond

to Wikipedia entities. We denote the set of children of a non-leaf topic k in H

by c(k). WPAM assigns a root-to-leaf path zi = 〈zi1, zi2, . . . , zili〉 from H to each

word wi in the document corpus. Here, zi1 is always the root, and topic zi(j+1)

is a child of zij . The WPAM model is defined by the following parameters: (1)

For each document m and non-leaf topic k, a multinomial distribution ~θmk over

k’s children c(k), and (2) For each leaf topic k, a multinomial distribution ~φk over

words.

The model parameters ~θmk have a Dirichlet prior with hyper-parameters ~αk,

and the parameters ~φk have a Dirichlet prior with hyper-parameters ~β. As shown

in Section 4.2.4, with the Wikipedia annotations A, ~φk has a Dirichlet posterior

with hyper-parameters ~β + ~δ(k) which we denote by ~β(k) (recall that δ
(k)
t is the

number of times term t is assigned topic k in A). Similarly, if δ
(m)
kk′ is the number

of topic paths in document m in A containing k′ as a subtopic of k, then ~θmk can

be shown to have a Dirichlet posterior with hyper-parameters ~αk + ~δ
(m)
k which we

denote by ~α
(m)
k .

A slight problem we face here is that Wikipedia annotations only specify entities

and not paths in the topic hierarchy H. Furthermore, since H is a DAG, there

can be multiple paths in H from the root to the leaf topic corresponding to an

entity. This makes it difficult to obtain exact δ
(m)
kk′ counts for topic, subtopic pair

occurrences in A. So we approximate δ
(m)
kk′ as follows. First, for each annotation

a ∈ A in document m, we compute the fraction of paths in H from the root to the

entity specified in a that pass through topic k and its subtopic k′. The fraction



67

essentially represents the probability that a topic path for annotation a passes

through the topic, subtopic pair (k, k′). Our δ
(m)
kk′ estimate is then the sum of the

fraction values for all the annotations in document m. Note that we can compute

the number of paths between any two nodes of a DAG efficiently using dynamic

programming, and this can be used to calculate the path fraction value for each

annotation.

WPAM uses the Dirichlet posterior distribution for each ~φk and ~θmk to generate

documents, and so it is a semi-supervised model. The generative process for a

document collection under WPAM is as follows:

• For each leaf topic k, sample word distribution ~φk ∼ Dir(~β(k)). Here, ~β(k) =

~β + ~δ(k).

• For each document m

– For each non-leaf topic k, sample topic distribution ~θmk ∼ Dir(~α
(m)
k ).

Here, ~α
(m)
k = ~αk + ~δ

(m)
k .

– For each word wi in document m

∗ Sample a root-to-leaf path zi = 〈zi1, zi2, . . . , zili〉 of length li from

the topic hierarchy H. For each topic zij in the topic path, sample

child zi(j+1) ∼ Mult(~θmzij).

∗ Sample a word wi ∼ Mult(~φzili ).

Following this process, the joint probability of generating the observed words

~w and the topic path assignments ~z can be computed by integrating out the ~φk’s

and the ~θmk’s. Ignoring constants, we get

, and the multinomial distributions Φ = {~φk} and Θ = {~θmk} is

P (~z, ~w,Φ,Θ/{ ~αk}, ~β,A)

=
M
∏

m=1

K′
∏

k=1

P (~θmk/~αk,A) ·
∏

wi∈m

li−1
∏

j=1

P (zi(j+1)/~θmzij) ·

K
∏

k=K′+1

P (~φk/~β,A) ·
∏

wi

P (wi/~φzli )
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=
M
∏

m=1

K′
∏

k=1

Γ(
∑

k′∈c(k) αkk′ + δ
(m)
kk′ )

∏

k′∈c(k) Γ(αkk′ + δ
(m)
kk′ )

·
∏

k′∈c(k)

(θmkk′)
n
(m)

kk′
+αkk′+δ

(m)

kk′
−1 ·

K
∏

k=K′+1

Γ(
∑T

t=1 βt + δ
(k)
t )

∏T

t=1 Γ(βt + δ
(k)
t )
·

T
∏

t=1

(φkt)
n
(k)
t +βt+δ

(k)
t −1

The joint distribution of all observed words ~w and hidden topics can be com-

puted by integrating out the ~φk’s and the ~θmk’s.

P (~z, ~w|{ ~αk}, ~β,A) (4.3)

=
M
∏

m=1

K′
∏

k=1

∏

k′∈c(k) Γ(n
(m)
kk′ + αkk′ + δ

(m)
kk′ )

Γ(
∑

k′∈c(k)(n
(m)
kk′ + αkk′ + δ

(m)
kk′ ))

·

K
∏

k=K′+1

∏T

t=1 Γ(n
(k)
t + βt + δ

(k)
t )

Γ(
∑T

t=1(n
(k)
t + βt + δ

(k)
t ))

Above, n
(k)
t is the number of occurrences of term t with leaf topic k, and n

(m)
kk′

is the number of times topic k′ appears as a subtopic of topic k in a topic path of

document m. From the above joint distribution equation, it follows that WPAM

favors topic assignments that (1) assign each leaf topic to only a small number

of distinct terms (this increases the numerator value in the second term), and (2)

within each document, assign topic paths containing only a few subtopics for each

non-leaf topic (this increases the numerator value in the first term). The second

point introduces a clustering effect among the topic paths within a document with

a preference for paths with common subpaths from the root. Thus, words in a

document are assigned entity labels that are close by in H, and hence correlated.

As before, we can use Gibbs sampling to compute the topic path assignments

~z for document words in ~w. Essentially, Gibbs sampling draws samples from the

posterior distribution P (~z|~w) by sequentially sampling topic paths for each zi from

P (zi|~z−i, ~w). For a word wi = t in document m, the conditional probability that

zi = 〈k1, k2, . . . , kl〉 is given by:

P (zi = 〈k1, k2, . . . , kl〉|~z−i, ~w, {~αk}, ~β,A) (4.4)
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∝
n
(kl)
t,−i + β

(kl)
t

∑T

t′=1(n
(kl)
t′,−i + β

(kl)
t′ )
·

l−1
∏

j=1

n
(m)
kjkj+1,−i

+ α
(m)
kjkj+1

∑

k′∈c(kj)
(n

(m)
kjk′,−i

+ α
(m)
kjk′

)

P (zi = 〈k1, k2, . . . , kl〉|~z−i, ~w, {~αk}, ~β,A) ∝ (4.5)

n
(kl)
t,−i + βt + δ

(kl)
t

∑T

t′=1(n
(kl)
t′,−i + βt′ + δ

(kl)
t′ )
·

l−1
∏

j=1

n
(m)
kjkj+1,−i

+ αkjkj+1
+ δ

(m)
kjkj+1

∑

k′∈c(kj)
(n

(m)
kjk′,−i

+ αkjk′ + δ
(m)
kjk′

)

Above, n
(kl)
t,−i is the number of occurrences of term t with leaf topic kl excluding

the current assignment, and n
(m)
kj ,k′,−i

is the number of times topic k′ appears as a

subtopic of topic kj in a topic path of document m excluding the current assign-

ment. In Equation (4.5) above, the first term is the probability of term t under leaf

topic kl and the second term is the probability of path 〈k1, k2, . . . , kl〉 in document

m. Observe that the second term induces a clustering effect among the topic paths

of a document with a preference for paths with common subpaths from the root.

Thus, words in a document are assigned entity labels that are close by in H, and

hence correlated.

Our entity disambiguation algorithm first runs WPAM’s Gibbs sampling on

the collection of Wikipedia documents W . In the labeling phase, it disambiguates

each reference in D by running incremental Gibbs sampling (see Section 4.2.3) on

W ∪ D. Each reference is labeled with the entity at the leaf of the topic path

assigned it.

4.3.2 Speeding up Gibbs Sampling

Each Gibbs sampling step in WPAM takes time proportional to the number of

paths in the topic hierarchy H. This is because we need to compute conditional

probabilities for all paths in order to sample a topic path from the conditional

distribution P (zi|~z−i, ~w). Notice that since the hierarchy H is an arbitrary DAG,

the number of paths in it can be quite large. In fact, in the worst case, for a DAG

with n nodes and depth h, the number of paths in the worst case can be O(nh).

Thus, a naive strategy of enumerating all paths is not scalable for the Wikipedia

hierarchy containing thousands of categories and millions of entities.
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Algorithm 6: GibbsSamplingStep

Input: Word vector ~w and topic path assignments ~z, topic hierarchy H,
topic path zi to be sampled for word wi = t from document m;

Output: Sample from P (zi|~z−i, ~w);

1 foreach leaf topic k do F (k) =
n
(k)
t,−i+β

(k)
t

∑T
t′=1(n

(k)

t′,−i
+β

(k)

t′
)
;

2 foreach non-leaf topic k (in bottom-up order) do

F (k) =
∑

k′∈c(k)(
n
(m)

kk′,−i
+α

(m)

kk′

∑
k′′∈c(k)(n

(m)

kk′′,−i
+α

(m)

kk′′
)
· F (k′));

3 k1 = root of H;
4 j = 1;
5 while kj is not a leaf do
6 Sample topic k′ from kj ’s children c(kj) with probability

1
F (kj)

·
n
(m)

kjk
′,−i

+α
(m)

kjk
′

∑
k′′∈c(k)(n

(m)

kjk
′′,−i

+α
(m)

kjk
′′ )
· F (k′);

7 j = j + 1;
8 kj = k′;

9 return 〈k1, . . . , kj〉;

In this subsection, we present an efficient algorithm for sampling a path from

H during each Gibbs sampling step. The key idea is to incrementally construct a

path sample by recursively drawing samples from the children of topics along the

path. This helps to reduce the time complexity of our algorithm to be proportional

to the number of edges in H. In the worst case, the number of edges in H is O(n2)

which can be a lot smaller than the worst-case number of paths O(nh). Thus, our

path sampling algorithm can significantly speed up each Gibbs sampling step.

Algorithm 6 describes our procedure for sampling the topic path assignment

zi during a Gibbs sampling step. The algorithm starts by recursively computing

F (k) for topics k in H in a bottom-up fashion starting with the leaf topics. It is

easy to see that all the F (·) values can be computed in time proportional to the

number of edges in H. Also, observe that the value of F (·) for the root is equal to

the sum of the conditional probability values (RHS of Equation (4.5)) for all topic

paths in H.

Once all the F (k)’s have been computed, Algorithm 6 samples a path top-down

starting from the root and recursively sampling a child for each topic in the path
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until a leaf is reached. We now show that Algorithm 6 samples paths from H

according to WPAM’s Gibbs sampling equation (4.5). It is straightforward to see

that the algorithm selects root-to-leaf path 〈k1, . . . , kl〉 with probability
∏l−1

j=1
1

F (kj)
·

n
(m)
kjkj+1,−i

+α
(m)
kjkj+1

∑
k′∈c(kj)

(n
(m)

kjk
′,−i

+α
(m)

kjk
′ )
·F (kj+1).

n
−i
mk1k2

+αk1k2
∑

k′∈c(k1)
n
−i

mk1k
′
+α

k1k
′

·F (k2)

F (k1)
· · ·

n
−i
mkl−2kl−1

+αkl−2kl−1
∑

k′∈c(kl−2)
n
−i

mkl−2k
′
+α

kl−2k
′

·F (kl−1)

F (kl−2)
·

n
−i
mk1k2

+αk1k2
∑

k′∈c(k1)
n
−i

mk1k
′
+α

k1k
′

·

n
−i
klt

+βt
∑T

t′=1
n
−i

klt
′
+β

t′

F (kl−1)
. Notice that all the intermediate F (kj)’s cancel out

except for F (k1) for the root topic k1 which is shared by all the paths in H, and

F (kl) for the leaf topic kl which is equal to
n
(kl)

t,−i+β
(kl)
t

∑T
t′=1(n

(kl)

t′,−i
+β

(kl)

t′
)
. Thus, we get that

Algorithm 6 samples path 〈k1, . . . , kl〉 according to Equation (4.5).

Note that even with our efficient path sampling algorithm, drawing a path

sample from the entire Wikipedia hierarchy H may be too expensive because of its

huge size. A key observation here is that each document is typically only about a

few topics and entities – so we can significantly reduce the overhead of our sampling

algorithm by only considering the restriction of H to topics and entities mentioned

in the document. Specifically, let Em be the set of entities with a surface form

that matches a keyword in document m. Then, our restricted hierarchy Hm for

document m consists of all root-to-leaf paths in H to entities in Em. Note that Hm

can be computed efficiently using simple depth-first search. Furthermore, Hm only

needs to be computed once at the start of the sampling procedure (and not in each

step). Now, in each Gibbs sampling step, when sampling topic path assignment zi

in document m, we use the much smaller hierarchy Hm instead of H. Specifically,

in Algorithm 6, for each non-leaf topic k, the children c(k) are defined with respect

to the restricted hierarchy Hm and not H.

4.3.3 Pruning Noisy Categories from Hierarchy

As mentioned earlier, due to the crowd-sourced manner in which it is produced,

the Wikipedia hierarchy contains some spurious categories. These categories can

cause WPAM to incorrectly infer topic correlations, and assign wrong entity labels

to words. In this subsection, we propose a scheme to detect such spurious non-leaf

topics, and prune them from the topic hierarchy H.

Good topics are the ones whose child topics are correlated and frequently co-
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occur in documents. Thus, our scheme for detecting spurious topics defines a

goodness measure for each topic based on the co-occurrence of its children, and

then deletes the topics with low goodness scores. For a non-leaf topic k, let S(k)

denote the set of all entities that are reachable from k in H. Furthermore, consider

the set of Wikipedia documents W , and let λm(e) be 1 if a reference to entity e

appears in document m ∈ W . Then, the quantity Q(k) defined below captures the

co-occurrence counts for entities associated with the sub-topics of topic k.

Q(k) =
∑

m∈W

∑

e1,e2∈S(k)

λm(e1) · λm(e2)

Essentially, Q(k) counts the number of distinct occurrences of all entity pairs

e1, e2 ∈ S(k). Clearly, a larger value of Q(k) is an indicator of higher co-occurrence

among k’s children. Observe that more entities are reachable from topics in H that

are closer to the root; consequently, we expect that topics nearer to the root will

have higher Q(k) values. Thus, in order to compare co-occurrence counts for

topics throughout the hierarchy, we normalize the Q(k) values using the number

of distinct entity occurrences for each topic k. Specifically, we divide each Q(k)

value by

R(k) =
∑

m∈W

∑

e∈S(k)

λm(e)

Thus, our goodness measure that captures co-occurrence counts for topic k is

given by G(k) = Q(k)/R(k). A natural candidate for the goodness measure is

entropy since it increases with the number of subtopics per document and as the

co-occurrence among subtopics grows bigger. Consider the set of Wikipedia pages

W . Let ~z be the topic paths in H assigned to words in W by WPAM’s Gibbs

sampling algorithm when training the WPAM model on W . Then, for a non-leaf

topic k, we define the entropy E(k) as:

E(k) = −
∑

m∈W

∑

k′∈c(k)

n
(m)
kk′

∑

k′∈c(k) n
(m)
kk′

log
n
(m)
kk′

∑

k′∈c(k) n
(m)
kk′

(4.6)

(Recall that n
(m)
kk′ is the number of times topic k′ appears as a subtopic of topic
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k in a topic path of document m.) It is easy to see that if each document contains

very few of topic k’s children, then the value of E(k) is low. In fact, in the extreme

case, when only one subtopic of k appears per document, k’s entropy is 0. On

the other hand, if many of k’s subtopics appear in each document, then the value

of E(k) is higher. The maximum value of course is |W| · log |c(k)| when all of

k’s subtopics are uniformly distributed within each document. Thus, the entropy

E(k) is effective at capturing subtopic co-occurrence counts for topic k, and so we

use it as the goodness measure for topics.

Our scheme for pruning spurious topics from the Wikipedia hierarchy H itera-

tively deletes topics k with the lowest entropy scores E(k). During each iteration,

it breaks ties between topics with identical entropy scores by selecting the topic

k that occurs most frequently in topic paths. The rationale here is that frequent

topics have higher confidence levels. A topic k is deleted from hierarchy H by

performing the following two modifications: (1) For every child k′ of k, new edges

are added from the parents of k to k′ (thus parents of k become parents of k’s

children), and (2) Topic k and all the edges incident on k are deleted.

Specifically, in each iteration, it first computes the entropy scores for topics

with the current hierarchy H, and selects the topic k with the smallest entropy

score E(k) for deletion. Let H−k be the resulting hierarchy when topic k is deleted

from the current hierarchy H. We learn a WPAM model using Gibbs sampling for

the hierarchy H−k. If the model for H−k has disambiguation accuracy that is at

least as high as the accuracy of the model for H, then we go ahead and delete topic

k from H. Thus, we proceed to the next iteration with the new current hierarchy

H = H−k. Else if the accuracy for H−k is lower compared to H, then our algorithm

terminates and returns the current hierarchy H.

The stopping criterion for deleting topics from H is once the disambiguation

accuracy of models trained with the new hierarchy (after a deletion) starts to

decrease. In our experiments, we measure the disambiguation accuracy for a hier-

archy H by first learning on a training dataset and then testing the learned model

on a validation set.

each model on a held out validation set which is a subset of Wannot. Note

here that the annotations for the held out validation set are not considered when

learning models.
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In each iteration, our algorithm orders topics based on the goodness measure

G(k), and selects the one with the smallest G(k) value for deletion. In practice,

however, we have found that ordering topics according to the ratio G(k)/G(π) is

more effective – here π is the parent of k with the maximum G(·) value. This is

because we have found that despite normalizing each Q(k) value with R(k), G(k)

values tend to be higher for topics that are closer to the root. Ordering nodes

by G(k)/G(π) instead of simply G(k) helps to correct this bias, and thus is more

robust.

4.4 Experimental Results

In this section, we show that our WPAM model performs better than the state-of-

the-art baselines proposed in [30] on real-life datasets. More specifically, we show

that WPAM improves the disambiguation accuracy by as much as 22% compared

to [30]. We also show that hierarchical topic models outperform the best per-

forming LDA model by as much as 26%. We finally show that hierarchy pruning

improves disambiguation performance by 6%.

4.4.1 Experimental Setup

Datasets: We created two datasets – one from Wikipedia and the other from

the New York Times corpus. The first dataset (called WIKI) is an extract of

Wikipedia containing people belonging to seven categories – tennis, basketball,

football and baseball players along with actors, musicians, and scholars. This

dataset contains 58,577 people, each with an entity page, 627,370 intra-Wikipedia

links/annotations and 13,035,881 tokens (after stop word removal). The other

dataset is a subset of the New York Times annotated corpus5. The full corpus con-

tains 1,855,658 annotated articles published in the New York Times, with 2,372,244

annotations. In some of our experiments, we train on WIKI and test on a subset

of the New York Times corpus containing entities that occur in WIKI too. To do

this, we first need to match the entity names that occur in the WIKI dataset with

those that occur in the New York Times corpus. We use exact string matching

5http://www.ldc.upenn.edu/Catalog/

http://www.ldc.upenn.edu/Catalog/
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to identify matching entity names. The subset of the New York Times corpus

that contains references to these matched entities is what we use to perform our

experiments and we refer to this extract as NYT in the sequel. NYT contains 9151

unique person names, 65,012 references, 47,581 documents (containing only the

references along with 300 characters of local context), and 1,130,872 tokens after

stopword removal.

Metrics: In the experiments, we use precision as the primary metric of com-

parison: precision is the fraction of entity references that are annotated correctly.

In some applications, instead of the best matching entity, a (short) ranked list of

entities is used to capture the correct entity. The metric used in these cases is

“Precision@k” – defined as the fraction of references for which the correct entity

appears in the top-k candidate list for that reference. In our experiments, follow-

ing prior work [30], we compare words appearing in the text with surface forms of

entities in Wikipedia to identify references.

Outline of Experiments: The experiments are performed in unlabeled and

held-out modes. In the “unlabeled” mode, we present the dataset to the algorithms

after hiding a subset of the annotations present in the dataset. Subsequently, we

estimate performance based on the predictions on the hidden references. In the

held-out mode, all references in the test data are unannotated. The datasets are

called WIKI-U, WIKI-H, and NYT-H.

WIKI-U: In WIKI-U (WIKI data in the unlabeled mode), the training data

consists of four splits each containing 75% of the pages in WIKI. In the remaining

25%, we hide 30% of the annotations. 100% of the data is used for training and

precision is computed on the hidden part. We report the average precision over

splits.

WIKI-H: In WIKI-H (WIKI in held-out mode), the splits are the same as

WIKI-U. The hidden part of the pages is used to evaluate performance and not

used for training.

NYT-H: In this case, WIKI is used for training and NYT is used for testing.

We perform the following experiments.

• Baseline, LDA, and WPAM run on WIKI-U and WIKI-H.

• Baseline, LDA, and WPAM run on NYT-H.
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4.1.1 (a) WIKI-U 4.1.2 (b) WIKI-H

4.1.3 (c) NYT-H

Figure 4.1. Precisions of baselines, LDA variants and WPAM.

• Hierarchy pruning.

• Train and test execution times.

Baselines: We use the following two baselines from [30].

Local Context (LC): Given a local context window around a reference and an en-

tity, LC first builds a feature vector by comparing the window with the entity’s

textual metadata (extracted from Wikipedia) using string similarity metrics. The

feature vector is fed into a support vector machine (SVM) and the entity with the

highest SVM score is the disambiguation result.

Collective Disambiguation (CD): CD uses all local contextual windows in a docu-

ment and attempts to assign an entity to each window such that the sum of the

average SVM scores and the average relatedness scores [39] among pairs of assigned
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(a) WIKI-U (b) NYT-H

Figure 4.2. Precision@k results for WPAM and LC.

entities is maximized. For this optimization, in addition to the greedy hill climb-

ing implemented in [30], we also use more sophisticated inference algorithms such

as loopy belief propagation (LBP) [55]. The results we report were obtained using

max-product LBP (using exponentiated relatedness as entries in clique potentials).

LDA variants: Section 4.2.4 introduced weakly semi-supervised LDAs. To

estimate the gains in performance achieved by biasing the distributions of parame-

ters ~θm and ~φk, we experiment with two variants of weakly semi-supervised LDAs.

Recall that semi-supervised learning was achieved by adding precounts ~δ(k) and

~δ(m) to Dirichlet hyperparameters ~β and ~α, respectively. We refer to WLDA with

only precounts in ~β as WLDAB, and with precounts in both ~α and ~β as WLDABA.

In our WPAM implementation, we found that instead of initializing the Gibbs

sampling algorithm with a random topic assignment, initializing word topics in

a document with more frequently occurring candidate entities in it gives better

performance. We report results with the latter initialization scheme.

4.4.2 Performance Comparison

pat1-fig shows the results of testing on WIKI-U, WIKI-H, and NYT-H. On all

three datasets, WPAM outperforms the remaining models.

On the WIKI-U dataset (see pat1-fig(a)), WPAM shows a clear 16% improve-

ment over CD. WLDAB and WLDABA show a nice progression of performance

improvements demonstrating the benefits of increasing levels of supervision.

On the WIKI-H dataset (see pat1-fig(b)), WPAM improves upon LC and CD
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by 23% and 15%, respectively. In this held-out experiment, even WLDABA does

better than the baseline methods perhaps indicating some degree of overfitting by

the SVM-based methods. The precision of WLDABA is 59.64% which 7% less

than WPAM.

On the NYT-H dataset (see pat1-fig(c)), even WLDAB and WLDABA out-

perform the baselines, again indicating some degree of over-fitting. In fact, all of

WLDAB, WLDABA, and WPAM have similar precision on NYT-H, with WPAM

doing 1% better than WLDAB.

A likely explanation for this is that since the test set is held out, WPAM is not

able to estimate the document’s mixture over entities properly. In such a scenario,

we found out that biasing the ranking obtained for a reference over the set of

entities using the content in the document produces better results. In this case, we

sample using the WPAM sampling equation until the joint distribution stabilizes

and we begin sampling from the modes of the distribution. In the end, to compute

the ranking over the set of entities, we order entities that explain the words in the

document better by computing: score(k, t) =
∏

i∈m(n
(k)
t,−i+β

(k)
t )/(

∑

t′(n
(k)
t′,−i+β

(k)
t′ )),

where k is an entity, m is the held-out document and t denotes the term from the

vocabulary i corresponds to. Comparing with eq:hlda-cond, score(k, t) corresponds

to the first part of the equation. This boosts WPAM’s precision from 78.53% to

81.08% on NYT.

precatn-fig shows Precision@k results, for k = 1, · · · , 5, for WPAM and LC. We

use SVM scores and likelihoods to rank for LC and WPAM, respectively. precatn-

fig(b) shows that P@5 can reach as high as almost 90%, which is achieved by

WPAM on NYT-H.

The superior performance of WPAM can be attributed to the use of theWikipedia

hierarchy to capture entity co-occurrence patterns. Our topic models also benefit

significantly in many cases from the semi-supervised learning enabled by Wikipedia

annotations. This is corroborated by the fact that unsupervised LDA (on WIKI-U)

has a precision of only 9.34%.
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Figure 4.3. Variation of precision with pruning.

4.4.3 Hierarchy Pruning

The default Wikipedia hierarchy for all the entities in our dataset consists of 1225

non-leaf nodes, 58577 leaves, and 75910 paths. As mentioned in Section 4.3.3, not

all of the nodes help WPAM, and hence it is necessary to prune the hierarchy.

The pruning is done using the entropy-based method as described in sec:pam,

which not only uses the topic path assignments for document words, but also the

performance of the learned WPAM model on a held-out dataset.

We performed pruning with three datasets, each being a 10% random extract

of the WIKI. depicts the variation of precision with number of nodes deleted from

the hierarchy averaged across the splits. The performance of pruning reaches a

maximum when the optimal hierarchy is reached, and then drops drastically upon

further pruning. Since the performance does not increase monotonically towards

the maximum, we use this drastic drop as the stopping criterion for pruning.

The reason the performance reaches a maximum at the last stages of pruning

is due to the nature of the Wikipedia corpus and its corresponding hierarchy.

The final pruned hierarchy consists of one root with 8 non-leaf nodes for children

thus forming a three-level hierarchy (along with the entities forming the leaves).
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Hence, dynamic pruning deletes most of the non-leaf nodes (more than 1200) in the

hierarchy to obtain optimal performance. Observe that the final pruned hierarchy

has 6% higher precision compared to the original hierarchy.

4.4.4 Training and Test Times

Topic models are known to require excessive amounts of training time. Our code on

full WIKI takes two and a half days to train. For a mid-to-large scale application

such as ours, this issue exists with the baseline algorithms too. For example, [30]

points out that it is not difficult to generate SVM learning problems for with

millions of constraints. The number of constraints is a function of the number of

annotations and entities in the training set. Training an SVM on full WIKI has

6,241,263 constraints even after we restrict the number of candidates per reference

to 10 and takes almost a day (using the libsvm6 JAVA implementation).

Labeling with WPAM’s Gibbs sampling algorithm, however, is much faster

compared to the baseline. For our experiments, the labeling time of WPAM is

roughly of the order of few tens of milliseconds per reference. In contrast, testing

with the baseline models may require comparing each window with each entity

in the extreme case costing around 0.2 sec of disambiguation time per reference.

Hence labeling using topic models is approximately 10 times faster.

4.4.5 Anecdotal Evidence

One advantage of using topic models is that we get useful by-products as a result

of training, such as, dominant words for entities, dominant entities figuring promi-

nently in documents, etc. In anecdotal, we show some of the top-30 entities in four

categories ranked by decreasing values of αk learned by WPAM. These entities are

more prominently featured in the pages of WIKI. Most of the names in anecdotal

are well-known (Novak Djokovic, Peyton Manning, Jackie Chan, etc.) as expected,

besides some surprises such as Kareem Abdul Jabbar who shows up in the top-30

list of actors but not in the top-30 list of basketball players (Kareem Abdul was

a basketball player and an actor, as reflected in the Wikipedia hierarchy we were

using).

6http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Tennis
Players

Jelena Jankovic, Li Na, Jim
Courier, Rafael Nadal, Xavier
Malisse, Mary Pierce, Novak
Djokovic

Football
Players

Jerome Bettis, Kevin Mawae,
Adrian L. Peterson, Dan Marino,
Peyton Manning, Donovan McN-
abb

Basketball
Players

Tim Duncan, Dwyane Wade, Ray
Allen, Karl Malone, Chauncey
Billups, Shaquille O’Neal

Actors Gong Li, Amitabh Bachchan,
Prasenjit Chatterjee, Greta Garbo,
Jackie Chan, Kareem Abdul
Jabbar

Table 4.1. Top entities sorted by learned αk values.

4.5 Related Work

Due to its scale and coverage, Wikipedia has been the knowledge base of choice for

most of the large-scale entity disambiguation approaches proposed in the literature

[10, 14, 37, 39, 30]. The early Wikipedia-based disambiguation schemes [10, 37]

resolved one reference at a time using only local context information. Subsequent

works [14, 39, 30] propose to disambiguate all the references in a page collectively

taking into account the relatedness of entities. Of these, [39] performs a limited

form of collective disambiguation based on entity co-occurrence patterns – the

entities selected to disambiguate the ambiguous references in a page are the ones

that co-occur frequently with (entities for) the unambiguous references in the page.

Unlike [39], [14] performs full-fledged collective disambiguation by also includ-

ing ambiguous references in each disambiguation decision. It represents each entity

as a feature vector consisting of local context information and categories for the

entity. It then disambiguates a reference in a page with the entity whose feature

vector matches best with the aggregated feature vector for the page (over all possi-

ble entity disambiguations for all references in the page). Clearly, a problem with

the scheme of [14] is that the aggregate vector for a page may include irrelevant

entities.
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[30] formulates the entity disambiguation problem as a joint optimization prob-

lem that seeks to collectively annotate all the references within a document so that

the compatibility of each entity’s context with the local context of its reference and

the co-occurrence between entity pairs is maximized. The optimization problem is

NP-hard, and the authors resort to a hill-climbing strategy that greedily annotates

references with entities that maximize the objective function.

We pointed out the shortcomings of previous Wikipedia-based disambiguation

approaches in Section 4.1.2 – these include combining the various sources of evi-

dence like entity context and co-occurrence in a somewhat ad-hoc fashion, using

a fixed-size window around a reference to define its local context (with no consen-

sus on the best window size), and ignoring words that appear in the vicinity of

un-annotated references when computing the context for an entity.

Our WPAM entity disambiguation model does not suffer from any of the above-

mentioned problems since it is based on hierarchical topic models. Hierarchical

models allow diverse sources of evidence like word-entity associations and entity

co-occurrence patterns to be combined in a single unified framework for entity dis-

ambiguation. Moreover, topic models do not need to use difficult-to-set window

parameters – their internal machinery can naturally use words from anywhere in

the document, including the vicinity of un-annotated references, to learn high-

quality word-entity mappings. WPAM differs from previously proposed hierarchi-

cal models like PAM [32] in two aspects: (1) WPAM uses the Wikipedia category

hierarchy, and (2) Learning in WPAM is weakly semi-supervised with Wikipedia

annotations serving as training data.

Word sense disambiguation and entity resolution are two related areas of re-

search that bear close connections to entity disambiguation. Topic models have

been used in both of these areas previously [2, 8, 49]. The main differentiating fac-

tor between entity disambiguation and such related fields is the assumption of the

presence of a catalog of entities. Word sense disambiguation and entity resolution

usually do not assume the presence of any such catalog and researchers in these

fields have devoted most of their efforts to developing unsupervised algorithms.

Thus, none of [2, 8] or [49] consider including prior annotations/labels for weakly

semi-supervised learning the way we do in this chapter.

Recently, there have been attempts to incorporate document labels into topic
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models [4, 31, 46]. Since our aim is to annotate words instead of documents, these

approaches are quite different from the topic models we develop in this chapter.

[52] proposes the Multi-grain LDA topic model that uses local topics at the sen-

tence level to capture ratable aspects like sound quality, battery life, etc. in user

reviews. The Multi-grain LDA model is orthogonal to hierarchical topic models

that instead model semantic relationships between topics typically at the docu-

ment level. Similar to us, [44] runs LDA on Wikipedia pages to discover hidden

topics that are then used as additional features to classify short text segments.

However, [44] only considers a few hundred coarse-grained topics, and does not

exploit Wikipedia’s annotations or category hierarchy for topic inference.

Due to its scale and coverage, Wikipedia has been the knowledge base of choice

for developing large-scale entity disambiguation approaches [10, 14, 37, 39, 30]. One

aspect of Wikipedia that has been exploited widely is the fact that internal links in

Wikipedia are expressed as pairs composed of the entity reference and the page of

the actual entity it refers to. Thus, these internal links can be used to construct a

fully labeled training set of disambiguated entities to learn disambiguation models

from.

As mentioned in the Introduction, existing approaches use two key pieces of

evidence from Wikipedia for entity disambiguation. First, for an unresolved refer-

ence, the local context of the reference is compared with the textual metadata for

a candidate entity to obtain a local context compatibility score. Here, the textual

metadata for each entity consists of words from the entity’s Wikipedia page and

the local context of references to the entity in other Wikipedia pages. The second

piece of information is a relatedness score that captures co-occurrence patterns

between entity pairs. The relatedness score between two entities is proportional to

the overlap between Wikipedia pages that contain references linked to the entity.

The early Wikipedia-based disambiguation schemes [10, 37] resolved one refer-

ence at a time, essentially selecting the entity with the highest local compatibility

score. [39] used the relatedness scores between entity pairs to collectively disam-

biguate all the references within a page. For each ambiguous reference in a page,

candidate entities are scored based on their relatedness scores with respect to the

entities for unambiguous references in the page, and these scores along with some

additional coherence and quality parameters are used to select the final entity.
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[14] also proposes to disambiguate all the references in a page simultaneously,

but adopts a slightly different approach. Each entity is represented by a feature

vector consisting of the textual metadata and categories for the entity. At test time,

given a reference in document d, [14] proposes returning the entity whose feature

vector matches best with the aggregated feature vector obtained by summing over

all possible disambiguations of the remaining references in d.

Even though [14] does not begin by constructing a fully labeled training set,

they too propose an approach where every entity e is represented by a feature

vector. A major component of this feature vector comprises entities that co-occur

with e obtained from the annotated internal links in Wikipedia. At test time,

given a reference in document d, [14] proposes returning the entity whose feature

vector matches best with the aggregated feature vector obtained by summing over

all possible disambiguations of the remaining references in d.

As we pointed out earlier, the current Wikipedia-based approaches combine the

various forms of evidence in a somewhat ad-hoc fashion, define the local context of

a reference as a fixed-size window around it (different approaches use different size

windows ranging from a few words to an entire para), and only take into account

words appearing in the local context of annotated references. As we shall see in

subsequent sections, and perhaps testament to the fact that they form a natural

model for entity disambiguation, topic models do not need to use such difficult-to-

set window parameters and the internal machinery can naturally use words in the

vicinity of both annotated as well as un-annotated references to disambiguate.

Using only the annotated parts of Wikipedia is unlikely to produce substantial

amounts of training data required to learn large-scale models of disambiguation.

On the other hand, research on semi-supervised learning [38, 43] has shown that

if we can avail of large amounts of unlabeled data and combine that with the

labeled training data then the accuracy of machine-learned models can be drasti-

cally improved. Wikipedia certainly provides significant amounts of un-annotated

references (for instance, all instances of “Karl Rove” are not expressed as internal

Wikipedia links on George W. Bush’s page in Wikipedia7). A rough count of the

number of person references in Wikipedia showed that compared to the internal

links pointing to a person’s page there are a possible number of un-annotated per-

7http://en.wikipedia.org/wiki/George_W._Bush

http://en.wikipedia.org/wiki/George_W._Bush
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son references. Research on semi-supervised learning has developed a number of

different techniques to exploit unlabeled data along with labeled data (see [56]

for a survey), we concentrate on developing on an approach that lets us incorpo-

rate content, entity co-occurrence patterns and easily includes both annotated and

un-annotated references. To this end, we concentrate on using topic models.

Topic models allow one to learn a set of multinomial distributions over words

called topics to describe documents [5]. As mentioned in the introduction, one of

our key ideas that allows us to extend the use of topic models to disambiguate

entities is to associate with each entity a unique topic. This way, for each en-

tity, the multinomial distribution over words that we end up learning captures the

content-entity associations for that entity which we subsequently use to disam-

biguate. The earliest topic models assumed topics were independent [5] and could

not capture correlations between topics. [3] was one of the earliest proposals to

represent correlations among topics but they used a set of O(k2) parameters to

model correlations between k topics. [32] proposed modeling a directed acyclic

graph (DAG) structure among topics to capture correlations using a restricted set

of parameters. [32] allowed modeling correlations between parent-child topics and

the number of extra parameters required is O(E) where E is the number of edges

in the DAG structured hierarchy which, in the worst case, can be O(k2) but usu-

ally is much less. Most of the discussion in [32] is restricted to a four level topic

hierarchy.

In this chapter, we extend the techniques proposed in [32] to general, non-

uniform, arbitrary sized DAGs such as the Wikipedia concept hierarchy to capture

co-occurrence among entities. Note that, category information from the Wikipedia

concept hierarchy has been used before to disambiguate entities [10, 14] but more

as words from an augmented vocabulary that captures content similarity and not

to capture entity co-occurrence patterns.

Recently, there have been attempts to incorporate document labels into topic

models [4, 31, 46]. Since our aim is to annotate words instead of documents, these

approaches are quite different from the topic models we develop in this chapter.

Perhaps closer to our application, [48] considers annotating words with labels they

refer to as “aspects”. However, unlike our approach of using entity-specific topics,

[48] uses topics to generate both the word and its label parallely. Of course, [48]
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does not use concept hierarchies to incorporate co-occurrence patterns.

Word sense disambiguation and entity resolution form two related areas of

research that bear close connections to entity disambiguation. Topic models have

been used in both of these areas previously [2, 8, 49]. The main differentiating

factor between entity disambiguation and such related fields is the assumption of

the presence of a catalog of entities. Certainly, if entity references in different

documents were not annotated using ids from the same catalog then some of the

applications of entity disambiguation such as information integration would not be

possible. Word sense disambiguation and entity resolution usually do not assume

the presence of any such catalog and researchers in these fields devote most of their

efforts to developing unsupervised algorithms. Thus, none of [2, 8] or [49] consider

including prior annotations/labels and none of them consider developing weakly

semi-supervised techniques the way we do in this chapter.

4.6 Summary

In this chapter, we proposed the weakly semi-supervised hierarchical topic model

WPAM for disambiguating entities. WPAM uses all the words in a document,

including those in the vicinity of un-annotated references, to learn high-quality

word-entity associations. It leverages Wikipedia annotations to appropriately bias

the assignment of entity labels to annotated words (and un-annotated words co-

occurring with them), and the Wikipedia category hierarchy to capture entity

context and co-occurrence patterns in a single unified disambiguation framework.

We devised an algorithm for efficiently sampling paths from large topic hierarchies,

and a scheme for pruning spurious categories with poorly correlated sub-categories

in the hierarchy. In large-scale experiments with both held out subsets of Wikipedia

and the NYT corpus, our WPAM model achieved 81% disambiguation accuracy

compared to 59% for the existing state-of-the-art baselines. Promising directions

for future work include exploring the use of other hierarchical topic models (e.g.,

hPAM [40]) for entity disambiguation, and learning good topic hierarchies from

Wikipedia using non-parametric priors (e.g., hierarchical Dirichlet processes [51]).



Chapter 5
Conclusion and Future Work

In this thesis, I have worked on enhancing the capabilities of a particular exist-

ing class of generative machine learning models, named topic models, specific to

domain of document networks. Aligned to the enhancing efforts, this thesis also

proposes novel topic models applicable to link prediction problems in document

network. The proposed topic models are designed for following three kind of link

prediction problems in document networks: (1) citation prediction in scientific

documents, (2) predicting links among the citing authors and cited authors in an

author citation graph of document networks, and (3) predicting links among an

entity reference and its Wikipedia page. I describe my individual research contri-

bution next.

1. Utilizing Citation Context in Topic Models for Citation Recom-

mendation

I presented topic modeling based statistical generative models that utilizes

context information of citations in documents to model the generation pro-

cess of documents and citations together. Identifying the text from the con-

text that describes the cited document and utilizing it in topic model based

statistical process is a challenging task. I demonstrate how context length

for each individual context can be selected effectively and how topic mod-

els can incorporate the selected citation context explicitly. For selecting the

context length for each citation mention in a citing article, I greedily select

only the length of context which best “matches” the concepts described in
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the cited article. For incorporating the selected citation context in topic

modeling framework, I make a simplifying statistical independence assump-

tion between the generation of link and generation of words in the context

window. Both of these two processes happen simultaneously and I design a

heuristic Gibbs sampling mechanism to infer the parameters of the designed

model. The proposed models explains the generation process of the links and

content both qualitatively and quantitatively. The designed Gibbs sampling

to perform inference on emission probabilities corresponding to citations and

words given a topic and show significant improvement on various objective

functions.

2. Detecting Topic Specific Influential Authors

I proposed novel models for author-author linkage in author citation networks

conditioned on topics latent in the content of the documents. The proposed

models exploit the citations between documents to infer influence of certain

authors over topics. Drawing motivation from context sensitive topic models

in chapter[], I also proposed context sensitive extensions of the topic mod-

els for author citation network. Corresponding to a given topic, I identified

two kind of authors in document networks: (1) interested authors, and (2)

influential authors; where I define an expert/interested author as someone

who has produced several contributions in a particular field whereas an in-

fluential author as someone who has certain key contributions in that field

and gets cited more often. I evaluated the quality of these identifications

quantitatively by predicting which authors get cited in a given document.

I also presented various anecdotal evidences to ascertain the quality of the

interested and influential authors in various topics.

3. Employing Topic Models for Learning to Link to Wikipedia

I proposed the weakly semi-supervised hierarchical topic model, WPAM, for

disambiguating entities. WPAM has two primary sources of supervision:

(1) annotated references of entities in Wikipedia pages, and (2) category

information for entity pages present in Wikipedia. WPAM takes advan-

tage of the already present supervision in Wikipedia in following ways: (1)

WPAM uses all the words in a document, including those in the vicinity of
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un-annotated references, to learn high-quality word-entity associations. It

leverages Wikipedia annotations to appropriately bias the assignment of en-

tity labels to annotated words (and un-annotated words co-occurring with

them), and (2) WPAM utilizes Wikipedia category hierarchy to capture co-

occurrence patterns present among entities and learns high-quality entity-

entity associations. Moreover, WPAM presents these learning capabilities in

a single unied disambiguation framework. I also devised a scheme for prun-

ing spurious categories with poorly correlated subcategories in the hierarchy.

In large-scale experiments with both held out subsets of Wikipedia and the

NYT corpus, the WPAM model achieved over 70% disambiguation accuracy

compared to about 54% for the existing state-of-the art baselines.

5.1 Future Work

Following are few future research directions that can be explored based upon the

work presented in this dissertation.

1. Utilizing Hierarchical Topic Models for Citation Prediction

Digital libraries such as ACM, IEEE Xplore, etc., provides the document

collection with category information. An interesting direction to pursue is to

adapt hierarchical topic models, such as Pachinko Allocation Model (PAM),

Chinese Restaurant Processes (CRP), for citation prediction. Intuitively,

within a citing document, authors tend to cite documents from same field of

study as that of the citing article. Since hierarchical topic models tend to

obtain a hierarchical clustering of documents, it can be interesting to study

the citation pattern with in a bottom-up hierarchy of documents.

2. Future directions for “Topic” based Citation Recommendation Sys-

tem

Contextual Query Sensitive Citation Recommendation

Although the training phase of Citation Recommendation learn from cita-

tions explicitly, however, in on-line phase, it suggest citations based upon a
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global level topical analysis of query document. The query document may

contain several topics discussed, however, usually the context of citation

contains a few topics which are related to both citing and cited topics. An

explicit consideration of topics in citation context while making recommeda-

tions may improve the quality of recommendations.

3. Automatic Construction of Hierarchy in Crowd-Sourced knowledge

bases As mention in chapter 4, the category present in Wikipedia is crowd-

sourced in nature and uncorrelated with topics present in Wikipedia corpus.

For example, category such as “Person born in Year XXXX” are uncorrelated

with field of person and provides a noisy measurement for topical clustering

of entities. I proposed a method to prune the hierarchy based upon topi-

cal cohesion of entities falling in one hierarchy with entropy based method.

However, the purpose of pruning is to obtain a better link prediction in

Wikipedia. However, the method proposed in this thesis can also be appli-

cable to automatic construction of hierarchy in crowd-sourced documents.
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