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Abstract

In this thesis I explore the dynamics of infectious diseases in rodents. Using
Sin Nombre hantavirus (SNV) in deer mice as a model system and a combination
of mark-recapture analysis and mathematical models, I explore how infectious dis-
eases can affect individuals, populations and communities, and analyze population,
community, and ecosystem level patterns in disease dynamics. I also explore the
effect of infectious disease on evolutionary histories, specifically, how bacterial in-
fection may have shaped mammalian hibernation patterns. I use a combination
of statistical analysis of longterm data and mathematical models to understand
observed ecological patterns and improve our ability to forecast dynamics.

Microparasites can have a number of effects on individuals, populations, and
communities. I explore the effect of SNV on the deer mouse host and what effect
this may have on the host population dynamics and persistence of the disease in
the population. I find that SNV decreases survival of antibody positive male deer
mice by 15.4%. This can affect both the host population dynamics, by leading
to regulation of the host population, as well as the population-level patterns seen
in SNV infection, by increasing the critical host density and making the chain of
transmission more likely to be broken.

Since the host population dynamics can be affected by many intrinsic and ex-
trinsic factors, such as environmental forcing, disturbance, availability of resources,
competition, and other food web interactions, these can all have strong influences
on the persistence and spread of a pathogen in the host population. I quantita-
tively evaluate the proposed bottom-up trophic cascade hypothesis to explain the
original SNV outbreak, using 15 years of data from Montana. I show that mouse
population dynamics in Montana are strongly correlated to precipitation and tem-
perature with a 0 to 5 month lag. These changing environmental conditions alter
the carrying capacity of the environment, which can lead to delayed density de-
pendence in prevalence of the virus (with a lag of up to 16 months or more) in
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the mouse population and intermittent crossing of the critical host density neces-
sary for hantavirus endemicity. My work helps shed some light on the notoriously
difficult to understand dynamics of the virus, such as seemingly inverse density
dependence in prevalence and sporadic disappearance of the virus from local pop-
ulations. Since there is no effective treatment or vaccine for HPS, the most effective
strategy is to take preventative measures. This quantitative understanding of the
lags between environmental conditions and prevalence of the virus may allow us
advance warning (up to 20 months or more) of increased risk to humans.
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Chapter 1
Introduction, Overview and Synthesis

Mathematical models and statistical analysis have contributed greatly to our

understanding of the role of infectious diseases in population dynamics and ob-

served patterns of disease spread (i.e., Kermack and McKendrick, 1927; Bartlett,

1957; Anderson and May, 1978). However, through much of the last century, par-

asitism was thought to be a less significant ecological force than predation and

competition, and after the discovery of vaccines, antibiotics, and other medical ad-

vancements in the last century, many thought that infectious diseases were mostly

a concern of the past, at least in developed countries. However, several emerging

infectious diseases, such as HIV, West Nile virus, lyssaviruses, hantavirus, prions,

and SARS and the emergence of drug-resistance have brought pathogens back

to the forefront of the public attention. Furthermore, theoretical ecologists have

shown that parasites can be important ecological forces (Anderson and May, 1981;

Hudson et al., 1998). In the last decade the US has seen a surge in the study of

the ecology of infectious diseases in wildlife.

In this thesis I explore various questions in disease ecology choosing to be

taxonomically focused on rodents. Examining diseases in rodents in particular

is valuable because they are the reservoirs of many zoonoses (pathogens which

are transmitted from animals to humans), from relatively trivial (e.g. cowpox

causes skin lesions) to deadly (e.g., Sin Nombre virus causes Hantavirus Pulmonary

Syndrome (HPS) in humans and can have up to a 35 to 60% mortality rate), but

also because they are a good model for understanding the ecology of infectious

diseases because they are readily trapped and monitored.
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1.1 Microparasite effects on individuals

Microparasites can have various effects on individuals, including mortality and a

number of sublethal effects. Historical conventional wisdom has been that parasites

should evolve toward being relatively benign, since harming the host may harm

their chances of transmission to new hosts, and those that were virulent were a

result of recent emergence or cross-over, in which the pathogen has not yet had time

to adapt to the new host. However the application of life-history theory has been

valuable in explaining patterns of virulence in host-pathogen systems (Antia et al.,

1994; Frank, 1996). It is true that pathogens with high virulence may decrease

their chances of transmission by decreasing the infectious period either by killing

the host or inducing a strong immune response. However, virulence can also be

beneficial to the parasite, since it is often correlated with parasite reproduction,

and some symptoms can help in transmission (coughing, for example). Therefore,

an intermediate level of virulence may be the optimal strategy for the parasite

(May, 1983).

Even with this knowledge, some still contend that zoonotic pathogens are

mostly avirulent in their reservoir hosts (Begon, 2003). Indeed, in some medical

texts, a reservoir host is by definition an asymptomatic carrier (Dorland, 1994).

I find the Haydon et al. (2002) definition more appropriate: a reservoir is one or

more epidemiologically connected populations in which the pathogen can be per-

manently maintained and from which infection is transmitted to a defined target

population in which the pathogen is not maintained endemically (here, humans).

The relationship to a target population should not alter the fact that there should

be a range of virulences experienced in reservoir hosts, but often an intermediate

level of virulence.

Pathogens can cause mortality directly, or indirectly, through an increase in

predation for example. However, sublethal effects of infection can also have im-

portant effects on individual lifetime fitness, such as impairment of reproduction.

Parasites may affect reproduction directly, causing sterility in the most extreme

cases (Alvarez et al., 1995). However, if infection is acute (nonpersistent), it may

be the host’s optimal strategy to downregulate current reproduction to increase

chance of survival and future reproduction. Fighting parasites can be energetically
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expensive, and energy that would have gone into reproduction is instead used to

fight infection. An infected individual that chooses to reproduce will suffer both

the costs of reproduction and mounting an immune response. An individual may

maximize its own fitness if it chooses to delay or downregulate reproduction. An

example of an infection that reduces fecundity is cowpox infection in bank voles

and wood mice. Infected females delay maturity and timing of first litter (Telfer

et al., 2005; Feore et al., 1997). This can have a significant impact on their lifetime

reproductive fitness.

Seemingly paradoxically, infection has also been linked to increased survival

(Telfer et al., 2002; Burns et al., 2005). One possible mechanism can be explained

by life history theory. Parasites are by definition detrimental to their hosts, but if

only one life history trait is measured, they may appear to have a positive effect

on fitness. Physiological tradeoffs in life history traits occur when an individual

has a finite amount of energy to devote to two or more processes. Life history

tradeoffs exist between survival and reproduction and also between current and

future reproduction (as the cowpox example above). If a host chooses to delay

reproduction when acutely infected and reproduction is more energetically costly

than fighting infection, the remaining energy balance can be used for maintenance,

foraging, etc, which may lead to an increase in body condition and could increase

survival. Even if fighting infection is as energetically costly as reproduction, delay-

ing reproduction may still increase survival if behaviors required for reproduction

increase risk of predation (displaying, calling, increasing movement to find mates,

etc).

In chapter 3, I explore the effect of Sin Nombre virus (SNV) on its rodent host.

Although SNV is the etiologic agent of hantavirus pulmonary syndrome (HPS) and

can have a 40-60% mortality rate in humans, it has traditionally been thought to

cause a chronic, avirulent infection in the deer mouse reservoir host (i.e. Calisher

et al., 1999; Botten et al., 2000; Easterbrook and Klein, 2008). Using capture-

mark-recapture statistical modeling, I found that antibody positive males had a

15.4% decrease in monthly survival probability. This adds to the sparse literature

of how chronic infections affect reservoir hosts of zoonotic diseases in nature, and

may have important consequences for the persistence and spread of the disease as

discussed in section 1.2.
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1.2 Microparasites and populations

The effects at the individual level described above can impact the dynamics

at the population level. If transmission of the microparasite is density dependent

(contacts and transmission increase with increased density) and there is disease-

induced mortality, decreased survival will occur in a density dependent manner,

and may lead to regulation of the host population, holding the number of individ-

uals below the disease free equilibrium, if the disease-induced mortality rate (µ)

is greater than the host growth rate (realized birth rate - death rate). In chapter

3, I show that SNV transmission is density dependent rather than frequency de-

pendent (contacts and transmission are independent of density) and causes disease

induced mortality. Therefore, SNV has the potential to regulate the deer mouse

host population. In chapter 4, I explore this topic further with a stage-structured

epidemiological model for SNV dynamics. In a host population experiencing logis-

tic growth with a variable carrying capacity (like SNV in the deer mouse popula-

tion), the pathogen’s ability to regulate the host population will depend not only

on µ and intrinsic birth and death rates (b and d), but also the abundance of the

host population in relation to the equilibrium or carrying capacity, K, since these

determine the realized birth and death rates.

I find that the largest impact of SNV on the population occurs when prevalence

is high, which is largely determined by K. As the environmental carrying capacity

increases, mouse density increases, resulting in a nonlinear increase in prevalence

(see Fig 4.8). As described in more detail in section 1.3.2 and chapter 4, there

is a lag between a peak in host density and a peak in prevalence, so that the

greatest prevalence and greatest disease induced mortality can be seen when the

population density may already be on the decline because of an environmentally

induced reduction in K, making the disease less likely to persist after an epidemic.

Delayed density dependent regulation can lead to destabilization of host population

dynamics, and the observed mouse density is far from stable (there are small-scale

and large-scale fluctuations through time; see Fig. 4.4). However, in this case, the

climatic drivers are the dominant force in this system, which act independent of

density, often bringing the population density low enough to cause the virus to go

locally extinct.
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Population level patterns of microparasites can range from violent epidemics

followed by pathogen extinction to stable endemicity. Where a pathogen lies

on this axis is determined by pathogen and host characteristics such as viru-

lence, transmission rate, host immunity, and host demographics. In addition to

the virulence-transmission tradeoff discussed in section 1.1, there can also be an

invasion-persistence tradeoff. Highly acute (virulent or highly immunizing) infec-

tions may be more likely to invade and cause a larger epidemic, but then experience

deeper troughs and may be more likely to fade-out. On the other hand, less acute

or chronic infections may be less likely to take off but more likely to persist and

become endemic (Grenfell, 2001; King et al., 2009). The highly acute pathogens

can only persist at the metapopulation level.

In chapter 4, I explore how disease induced mortality affects the population dy-

namics of SNV. Disease induced mortality effectively reduces the infectious period

and decreases R0, making the virus less likely to invade and more likely to fade-out.

The addition of disease induced mortality in the model increases the critical host

density necessary to sustain an epidemic, Nc. Without disease induced mortality

(what was previously believed), Nc would be 19 mice per 2 hectares, whereas with

the calculated µ of 0.085, Nc = 33 mice per 2 hectares. If µ is underestimated (as

it may well be; see chapter 3), then Nc may be even higher.

1.3 Microparasites, communities and ecosystems

Host population dynamics can have strong impacts on disease dynamics, partic-

ularly for diseases with density dependent transmission. Anything that affects the

density of hosts will affect contact rates and disease transmission. Since the host

population dynamics can be affected by many intrinsic and extrinsic factors, such

as environmental forcing, disturbance, availability of resources, competition, and

other food web interactions, these can all have strong influences on the persistence

and spread of a pathogen in the host population.

Not only do community interactions affect pathogen dynamics, but the re-

verse is true as well. If a pathogen affects its host’s population dynamics, it may

have cascading effects through the ecosystem and affect other interactions in the

community. Even if the pathogen has a negligible effect on the host population
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dynamics, pathogen spillover or cross-species transmission to other hosts in the

community can alter interactions between species. In this section I will discuss

ecosystem and community interactions that may impact pathogen dynamics, with

particular interest to SNV dynamics.

1.3.1 Environmental Forcing

Organisms live in changing environments, yet most epidemiological models as-

sume static conditions. This may be a reasonable assumption when the processes

being modeled are short relative to environmental changes or demographic pro-

cesses of the host, like for example during the course of a rapid epidemic in a

long lived host, such as a local flu epidemic in humans. However, in many cases,

we are interested in modeling the long-term dynamics, and the inclusion of host

population dynamics can have a great impact on the disease dynamics.

When background host population dynamics are considered in epidemiological

models, they are typically very simple. Human populations in developing coun-

tries are relatively stable and are commonly modeled with a constant birth rate

balanced by death rate. In developing countries the population is often increasing,

and background host dynamics are often modeled as growing exponentially. The

effect this has on the disease dynamics will depend on the assumption of how the

number of contacts changes with host density. For diseases with density dependent

transmission, as population size grows, infection rates increase, R0 increases, and

the average age at infection decreases (Anderson and May, 1991).

One type of external forcing that has been fairly well studied is seasonality

(Altizer et al., 2006). Birth, death, or disease transmission rates can vary seasonally

and have a strong effect on the dynamics. Transmission rates can vary seasonally

because of changes in behavior. For example, children have increased contact rates

during school terms, and animals may have increased contacts rates during the

mating season or around water sources in the dry season. Hosts and vectors can also

have strongly seasonal birth and death rates. Seasonal forcing can change dynamics

from damped oscillations to sustained oscillations, can give rise to regular cycles

each year (harmonic oscillations, where the interepidemic period is the same as the

forcing), multiple year cycles (subharmonic resonance, where the interepidemic



7

period is a multiple of the forcing period), or even chaos (Dietz, 1976; Keeling

et al., 2001; Hosseini et al., 2004).

Other sources of environmental forcing, such as stochastic climatic fluctuations,

large scale oscillations (like El Nino) and trends, have received less attention his-

torically, but with recent interest in climate change research, interest is beginning

to surge. Climate is known to be an important factor for vector-borne diseases,

such as malaria and dengue fever, by altering the abundance and/or distribution

of vector hosts (Hopp and Foley, 2003; Pascual et al., 2006), as well as for water-

borne diseases, such as cholera, through an increase in environmental reservoirs

(de Magny et al., 2008). However, less studied is the effect of climate on vertebrate

reservoir hosts of zoonotic diseases, through changes in demography, distribution

or abundance. In chapters 2 through 4, I examine how changing environmental

conditions can affect host demography and in turn, affect the disease dynamics.

1.3.2 Trophic cascades

These environmental and other ecological forces which affect one trophic level

can have cascading effects through the ecosystem. Trophic cascades can be defined

as reciprocal consumer-resource effects that alter the abundance, biomass or pro-

ductivity of a population, community or trophic level across more than one link in

a food web (Pace et al., 1999). Trophic cascades can be top-down or bottom-up.

Top-down or consumer-driven trophic cascades, occur when for example, preda-

tors keep herbivore prey populations at levels below the population size that would

be observed in the absence of predators, which allows for an increase in primary

productivity due to a release of herbivory. Bottom-up or resource-driven trophic

cascades can occur when factors such as food and/or habitat availability are the

main drivers explaining population fluctuations, and these in turn affect higher

trophic levels. With top-down trophic cascades, the direction of effects between

adjacent trophic levels is usually in opposite directions (e.g., an increase in preda-

tors leads to a decrease in prey). In contrast, responses between trophic levels

are typically in the same direction with bottom-up cascades (e.g., an increase in

plants leads to an increase in herbivores). There can be a time lag in response of

bottom-up effects (Gratton and Denno, 2003; Bjokman et al., 2004). This means
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that given a change in a lower trophic level, there may be time to predict and

possibly mitigate effects at the higher trophic levels.

A handful of studies have examined the role of disease in trophic cascades (Laf-

ferty, 2004; Wilmers et al., 2006; Holdo et al., 2009). Parasites are often overlooked

in food webs, but with the effects on the host population as described earlier, they

could have cascading top-down effects through the ecosystem. A great example of

a top-down disease-mediated trophic cascade is from the Serengeti (Holdo et al.,

2009). Until its eradication in the 1960s, rinderpest regulated the wildebeest on the

savannah. After rinderpest eradication, an irruption of wildebeest led to greater

grazing pressure, and a decrease in fire extent. This led to an increase in tree den-

sity, causing the savannah ecosystem to change from a carbon source to a carbon

sink (Holdo et al., 2009).

Evidence of disease outbreaks resulting from bottom-up trophic cascades is even

more rare. However, there is some evidence for climate affecting plague outbreaks

in black-tailed prairie dogs, possibly through interactions with arthropod vectors

and hosts (Collinge et al., 2005), as well as some previous evidence qualitatively

linking an increase in precipitation to human hantavirus cases in the Southwest

(Engelthaler et al., 1999). In chapters 2 through 4, using 15 years of data from cen-

tral Montana, I quantitatively explore the bottom-up trophic cascade hypothesis

for Sin Nombre hantavirus outbreaks.

1.3.3 The trophic cascade hypothesis for HPS outbreaks

During the spring and summer of 1993, thirteen people mysteriously died from

acute respiratory distress in the Four Corners region of southwestern U.S. Soon

thereafter, the Centers for Disease Control and Prevention (CDC) discovered that

the cause was a previously unknown hantavirus, named Sin Nombre virus (SNV).

Since the discovery, there have been approximately 500 human cases of Hantavirus

Pulmonary Syndrome (HPS), with a 35-60% mortality rate. The main reservoir

host for SNV is the deer mouse (Peromyscus maniculatus), an omnivorous gen-

eralist whose range spans most of North America. Humans contract this deadly

disease when they come into contact with an infected mouse’s excreta or saliva.

The original outbreak in the Four Corners Region was preceded by an El Nino
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Southern Oscillation event, which brought increased precipitation to this usually

arid region. A bottom-up trophic cascade hypothesis was proposed to explain the

HPS outbreak (Mills et al., 1999a; Parmenter et al., 1993), in which increased pre-

cipitation would lead to increased primary productivity and a greater abundance

of food for the deer mouse. Increases in resources would lead to higher population

density and increased transmission and prevalence of SNV in the deer mice, and

therefore a greater chance of spillover to humans. There is no effective treatment or

vaccine for HPS, therefore the most effective strategy is to take preventative mea-

sures. Understanding the environmental risk factors associated with epidemics in

the reservoir hosts and increased human risk may allow public health officials to

predict outbreaks and effectively target prevention strategies.

Since the original outbreak in 1993, longitudinal studies sponsored by the CDC

have monitored the population dynamics and infection status of rodent popula-

tions in the southwestern U.S. and Montana (Mills et al., 1999b). The studies in

the southwestern U.S. have indeed demonstrated a qualitative correlation among

precipitation, rodent population size, incidence of hantavirus infection in rodent

populations, and consequent risk of hantavirus infection in humans (Mills et al.,

1999b; Abbott et al., 1999; Engelthaler et al., 1999). A quantitative understand-

ing of how these environmental factors affect the mouse demography and lead to

outbreaks is key in creating a predictive model and effectively preventing human

infection. Relatively simple epidemiological models have been shown to be effec-

tive at predicting epidemics if key ecological processes, including the essence of

transmission and demography, are included in the model (for example, Bjørnstad

et al., 2002; Grenfell et al., 2002).

The bulk of my thesis was done in collaboration with Richard Douglass at

Montana Tech of the University of Montana and James Mills at the CDC. For

the last 15 years they have been conducting monthly year-round monitoring of the

small mammal population in Cascade county, central Montana, in which deer mice

account for over 85% of the small mammal assemblage (Douglass et al., 2001). Each

mouse caught is tagged with an individual ear-tag, allowing for individual capture

histories in which the mouses capture status (caught/ not caught), breeding status,

body mass, and prevalence of antibody to hantavirus can be noted for each monthly

capture occasion. This is the largest hantavirus dataset of its kind, including
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more monthly mouse captures and higher seroprevalence than seen in studies in

the southwestern U.S. We also have precipitation and temperature data from a

meteorological tower less than 1 km from the field site.

In chapters 2-4, I examine the role of environmental factors, specifically the

impact of seasonality, precipitation and temperature, on hantavirus dynamics in

the deer mouse and create population and epidemiological models including key

climatic variables, of hantavirus dynamics in the deer mouse population.

In chapter 2, I explore the first part of the trophic cascade hypothesis, that pre-

cipitation and temperature affect the mouse population dynamics. Using capture-

mark-recapture statistical methods, I estimated deer mouse survival, maturation

and birth rates and tested the relative importance of seasonality, population density

and local climate in explaining temporal variation in these deer mouse demographic

rates. From these estimates I designed a population model to simulate deer mouse

population dynamics given climatic variables and compared the model to observed

patterns. Month, precipitation 5 months previously, temperature 5 months previ-

ously, and to a lesser extent precipitation and temperature in the current month,

are important in determining deer mouse survival. Month and the sum of both

precipitation and temperature over the last 4 months are important in determining

birth and immigration rates. These results are consistent with the trophic cascade

hypothesis; the climatic factors are most likely affecting primary productivity, but

it is not as simple as the more-rain-equals-more-food-equals-more-mice hypoth-

esis. The effects of precipitation and temperature depend on the month. For

example, higher temperatures and more precipitation during the summer through

early winter were correlated with increased survival and recruitment, but not dur-

ing the spring, perhaps because of an overabundance of water already present in

the form of melting snow. While climatic drivers appear to have a complex influ-

ence on dynamics, the models forecasting ability is quite good, explaining 79% of

the variation seen in mouse abundance, predicting 4 months ahead.

Although studies of SNV in deer mice have been conducted since the original

outbreak, there were still several key questions to be answered before creating an

epidemiological model. In chapter 3, I ask a) Is there disease induced mortal-

ity in the mice? and b) Does transmission depend on the density of the mouse

population? Other field studies have revealed either no effect or marginally signif-
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icant effects of SNV on the deer mouse reservoir host (i.e., Calisher et al., 1999;

Douglass et al., 2001). Using more advanced capture-mark-recapture statistical

methods than previously used, I have discovered that SNV does indeed decrease

survival of infected deer mice, but surprisingly only in males. Infected male deer

mice experience a 15.4% reduction in survival. This substantial reduction in lifes-

pan could have a significant effect on the dynamics of the virus in the host as

described in section 1.2. Transmission of the virus was also found to be density de-

pendent, so there is a greater chance of transmission of the virus among the mouse

population and a greater chance of an epidemic as the number of mice increases.

In chapter 4, including the density dependent transmission and disease induced

mortality discovered in chapter 3, I created an age-structured SI (or Susceptible-

Infected) model for hantavirus in the deer mouse reservoir. This is a model in which

individuals are grouped into categories reflecting their infection status: susceptible

(uninfected) or infected, and categories reflecting their age: juvenile, subadult,

or adult. The model includes density dependent population growth in which the

number of mice supported varies with changing environmental conditions. Using

maximum likelihood, I estimated the remaining parameters for this epidemiological

model and calculated 2 important threshold values, the basic reproductive rate,

R0, and the critical host density necessary to sustain an epidemic, Nc. R0, is the

average number of cases resulting from one infected individual in a fully susceptible

population. When R0 > 1 the disease can invade and cause an epidemic, and

when R0 < 1, it cannot invade and will fade out. The critical host density is the

density of hosts necessary for R0 = 1. The analysis revealed that approximately

17 mice per hectare are necessary to get an outbreak, and 52% of the time the

population was below this critical threshold. This finding helps explain some of the

previously unexplained patterns seen in the SNV-deer mouse system, such as the

sporadic disappearance of the virus and reintroductions of the virus just resulting

in only a few infected individuals, rather than an epidemic. SNV in deer mice

appears to be at the edge of local persistence. There is local extinction followed

by reintroduction by infected immigrants from other populations; the virus must

persist at the regional rather than local scale.

A key finding in the epidemiological model is that an increase in the carrying

capacity (from favorable environmental conditions) and the resulting increase in
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mouse density leads to a delayed increase in prevalence (if the population is above

the critical host density). This can help explain another puzzling pattern seen in

the data- seemingly inverse density dependence. Typically, directly transmitted

diseases have density dependent transmission, and the analysis in chapter 3 in-

dicates that SNV does. However, diseases with density dependent transmission

should increase in prevalence at increased density, yet the SNV data reveals either

no correlation between current density and current prevalence or sometimes a neg-

ative one. Our model reveals that we were looking at the wrong time scale. The

increase in prevalence happens slowly for this slowly circulating disease, which is

often on the edge of local persistence. In the data there was an approximately 16

month lag between the peak in mouse abundance in 2002 and the subsequent peak

in prevalence. With the epidemiological model we can explore what conditions

affect the length of this lag. It appears to be correlated to R0, which is a function

of all the demographic and epidemiological parameters, including the carrying ca-

pacity, as defined in chapter 4. In the same way that diseases with a lower R0 have

a higher age at first infection (Anderson and May, 1991), this slowly circulating

virus may take a number of months to build to a maximum prevalence. Therefore,

the finding that older mice are more likely to be infected may not only be due to

the probable transmission mechanism of aggressive contacts which occur mostly

in reproductive individuals, but also because the virus has a low R0 and is slowly

circulating.

There are several possible future directions for this research. I would like to

estimate a more refined approximation of K, the carrying capacity of the environ-

ment, from temperature and precipitation data from chapter 2. I would also like to

use transfer functions (Nisbet and Gurney, 1982) to help describe how interactions

in demography and transmission amplify or dampen stochastic changes in K and

provide a measure of lag between environmental perturbation and the responses

of population and disease dynamics. It would also be interesting to examine the

models’ applicability to other field sites in Montana. A preliminary look at the field

data from another site in Montana, reveals that the dominant lag there between

density and prevalence is about 8 months. It would be interesting to see how the

demographic rates, transmission rates, etc, are different between the 2 sites and

how that affects the dynamics.
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1.4 Microparasites can shape evolutionary histo-

ries

With all the interactions described above, parasites and hosts are sure to have

strong evolutionary pressures on each other. There are many known instances of

coevolution between host and parasite. Parasites evolve to optimize reproduction,

transmission, and infection of new hosts, thereby increasing their fitness. Although

it occurs on a much slower time scale, the hosts can also evolve better strategies

to fight the parasites and increase their own fitness.

In chapter 5, I explore the hypothesis that microparasites may have shaped

mammalian hibernation patterns. In order to conserve energy when resources are

scarce, hibernating mammals experience torpor in which their body temperature

and heart rate decrease dramatically, and many other physiological functions slow

down or are effectively shut off. These torpor bouts are punctuated by periodic

arousal from torpor in which their body temperature and other physiological func-

tions return to almost normal levels. These periodic arousals from hibernation

use up to 80% of their stored energy reserves (Kayser, 1953; Wang, 1978), but

their function remains unclear. There are many hypotheses for why these periodic

arousals occur. One hypothesis is that immune stimulation could be an impor-

tant factor (Prendergast et al., 2002). While in torpor the immune response is

effectively turned off and periodic arousals may be necessary to check for and com-

bat any itinerant infection. Using a simple mathematical model of the general

dynamics of bacterial abundance at body temperatures experienced during hiber-

nation, I ask if bacterial infection could be a factor in shaping observed hibernation

patterns, using data from European ground squirrels. Using maximum likelihood

to estimate model parameters, our analyses suggest that indeed, there are some

pathogenic bacteria that can grow at low body temperatures, and they may be a

selective force on torpor behavior.

1.5 Approach

An interesting area of personal development during my graduate research has

been on the relationship between theoretical models and data. In my thesis, I took
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two main approaches. In chapters 2 and 3, I use capture-mark-recapture (CMR)

statistical modeling, as discussed in section 1.5.1, to estimate demographic and

epidemiological rates. These methods take advantage of more of the data than

just the time series of abundance. By tracking individual histories, it is possible

to separate out survival and recapture, as well as births (or recruitment) and

deaths, which can be difficult when estimating parameters from time series. CMR

statistical modeling is an area that has seen exciting new developments in the last

decade, combining Jolly-Seber models (Jolly, 1965; Seber, 1965) with generalized

linear models (White and Burnham, 1999). Parameters may be specified as a

function of covariates. The data determines the formulation of the model, but

it is constrained within the generalized linear model framework. Although the

processes being modeled may be continuous (e.g., animals are not all born or die

at the beginning of every month), the data is invariably collected at discrete time

intervals, and the parameters estimated using these methods are discrete (e.g., the

probability of surviving one month).

The other approach taken in chapter 4 was to create a mechanistic theoreti-

cal model with a priori assumptions (e.g the carrying capacity formulation) and

parameterize it using the time series of abundances of the different classes of in-

dividuals through time (juvenile, sub-adult susceptible, sub-adult infected, adult

susceptible, adult infected). I used maximum likelihood estimation combined with

numerical integration of ordinary differential equations to estimate parameters of

these mechanistic models and explore the model’s dynamics. The advantage of

these models is that they are more flexible, more realistic, and can be analyti-

cally more tractable. We can look at equilibrium conditions and threshold criteria,

etc. The disadvantage of this approach is that there is much less information in

the time series data and there can be problems with collinearity when estimating

parameters.

A complication of using these 2 different types of models in conjunction is that

it can be difficult to move between them. The CMR estimates are for discrete

time parameters, and the more flexible theoretical models are in continuous time.

Parameters and external covariates that change through time (e.g., coefficients

for how seasonality affects survival, and the external covariates precipitation and

temperature) need to be smoothed so that they are continuous and C2 differen-
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tiable (i.e. have finite and continuous first and second derivatives) in order to be

useful in the continuous-time framework. However, external covariates may not

be amenable to a smoothing spline without losing a lot of variation. For exam-

ple, precipitation and temperature measurements are not continuous and are very

stochastic and jagged. Smoothing may lead to a loss of the signal. For these

reasons, I have been unable thus far, to write a continuous time model including

precipitation and temperature that shows the temporal variability and fit of the

discrete time model.

Another problem is that since the CMR statistical models are constrained

within the generalized linear model framework, the parameters may not be the

same. For instance, with the CMR population model I could form an expression

for how monthly precipitation and temperature influence survival and recruitment,

yet, with the continuous time ODE epidemiological model, I wanted to use a more

commonly used formulation of how environmental forces affect density through a

carrying capacity, K. Therefore, the birth and death rate parameters are not the

same between the two models.

Jan 2003 Dec 2004
Sex

005550000000000000000000 1 0;
555565000000000000000000 1 0;
500666666600000000000000 0 1;
000001333300000000000000 0 1;
000002305355000000000000 0 1;
000000030300000000000000 1 0;

Male Female

Figure 1.1. An example multistrata capture history format. Each row represents one
mouse, and each column a monthly trapping occasion. Entries are coded as follows:
0=not captured, 1=juvenile susceptible, 2=juvenile antibody positive, 3=sub-adult sus-
ceptible, 4=sub-adult positive, 5=adult susceptible, 6=adult positive. The group infor-
mation (here sex) can be noted at the end. For example the first row represents a male
that was not captured in January or February 2003, but was caught March, April and
May, and at each occasion, he was an adult susceptible.
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1.5.1 Capture-mark-recapture statistical modeling using

Program MARK

Since a large part of chapters 2 and 3 is dedicated to estimating population

and epidemiological parameters from field data using Program MARK (White

and Burnham, 1999), I will give an overview of the theory behind capture-mark-

recapture statistical modeling and the nomenclature used.

The 15 years of deer mouse field data contain a great deal of information.

Animals were live-caught monthly on permanent grids and each animal was tagged

with an individual ear tag, which allows us to follow individuals through time, and

note at each capture occasion if the animal was captured, its sex, weight (which

can be used to estimate age), whether the animal was in breeding condition, as well

as take a blood sample to test for presence of antibodies to SNV. All these data can

be represented in a multistrata capture history format, as in Fig 1.1. The different

strata could be age classes, breeding condition, SNV status, or a combination,

and are denoted with a unique character in the capture histories. From these

data we can estimate recapture probability, survival probability, recruitment rate,

abundance, and probability of changing strata (e.g. from juvenile to adult, or

uninfected to infected), among other things. These parameters can be specified

as constant, time varying or a function of serostatus, age, sex, or other covariates,

such as month, precipitation, or temperature.

To illustrate the theory, we can look at a simple example in which we want

to estimate time varying recapture and survival probabilities. At each capture

alive

dead

caught

not caught1- ϕ

ϕ

p

1-p

Figure 1.2. At each capture occasion, a mouse could be either alive (with probability φ)
or dead (1-φ), and if alive will be caught with probability, p. Therefore, the probability
of seeing an animal will be φp.
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occasion, a mouse could be either alive (with probability φ) or dead (1-φ), and

if alive will be caught with probability, p. Therefore, the probability of seeing

an animal at any occasion will be φp (Fig 1.2). If an animal was not caught

in a particular period, but was caught previously and at a later occasion, we

know that it was alive for that period, yet not caught, φ(1-p). However if an

animal was not caught at the occasion or any later occasion, we don’t know if

the animal was alive and not caught, or if it was dead, therefore we add the

possible probabilities together, φ(1-p)+(1-φ). For a simple example with 3 capture

occasions with time dependent parameters, there are 2 survival parameters: φ1

(probability of surviving from occasion 1 to 2) and φ2 (between occasion 2 and 3)

and 2 recapture parameters, p2 and p3 (recapture at occasion 2 and 3 respectively).

The following table shows some sample capture histories, the number of individuals

with those capture histories, along with the probability of seeing that capture

history.

capture history probability freq obs
111 φ1p2φ2p3 7
110 φ1p2(1− φ2p3) 13
101 φ1(1− p2)φ2p3 6
100 1-φ1p2 − φ1(1− p2)φ2p3 29

The likelihood of observing these different capture histories follows a multinomial

distribution. The multinomial likelihood function for this example is

L = (φ1p2φ2p3)7×(φ1p2(1−φ2p3))13×(φ1(1−p2)φ2p3)6×(1−φ1p2−φ1(1−p2)φ2p3)29.

MARK estimates these 4 parameters (φ1, φ2, p2, and p3) to maximize this likeli-

hood, L.

The parameters can be transformed so that they are ensured to be positive

using a log link, or ensured to lie between 0 and 1 (for all the parameters that are

probabilities: recapture, survival, maturation, becoming seropositive, etc) using a

logit link: log
(

x
1−x

)
. On the link scale, parameters can also be defined to be a

function of 1 or more covariates (as per the GLM formalism), for example:

logit(p) = β0 + β1X1 + β2X2
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where X1 and X2 are 2 vectors of covariates such as temperature and precipita-

tion over the study period. Here, the β coefficients are the parameters that are

estimated by MARK.

Different models (ones with time varying parameters, seasonal parameters, con-

stant parameters, etc) can be compared by their AICc values (Akaike’s information

criterion adjusted for differences in effective sample size). AICc assesses fit of the

model to the data, penalizing models with more parameters. It is calculated for a

particular model as

AICc = −2 logL+ 2K +
2K(K + 1)

M −K − 1
,

where L is the likelihood, K is the number of parameters in the model, and M is

the effective sample size (the total number of captures). The most parsimonious

model is the one with the lowest AICc.

If the most parameterized model does not fit the data well by a goodness of

fit (GOF) test, this typically indicates that 1 of 2 assumptions is violated: that

every marked animal present in the population (or group) at time (t) has the same

probability of recapture (pt), or that every marked animal in the population (or

group) immediately after time (t) has the same probability of surviving to time

(t+1). If there is a lack of fit, a correction factor, ĉ can be estimated, which is

the GOF χ2 divided by the degrees of freedom. The AICc will become QAICc,

in which the term −2 logL is divided by ĉ. Values of ĉ significantly larger than

one will penalize models more for having more parameters. This can indicate the

need to include more groups in the analysis; for example in chapter 2, I did not

include sex or SNV antibody status in the capture history data (because of com-

puting limitations with the large dataset), and these were found to be important

in survival and recapture rates in chapter 3. GOF tests revealed a lack of fit for

the models in chapter 2, and I needed to use the QAICc and ĉ. However, with the

addition of these groups, it was not necessary in chapter 3.

Using RMark (Laake, 2007), a package for the R software (R Development

Core Team, 2005), models can be specified using the same nomenclature as for

generalized linear models, e.g. φ(∼ time) p(∼ 1) is a model in which φ is a

function of time, and p is constant. Covariates and interactions can be included,
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e.g. φ(∼ sex)p(∼ month*age class) is a model in which 2 φ values are estimated,

one for each sex, and p is a function of month and age class and their interaction.

The results are typically presented in a table with the candidate models ranked

by AICc (or QAICc), along with the number of parameters, and their Akaike

weights, which are relative likelihoods for each model in the candidate set. The

weights are calculated as

wi =
exp (−∆AIC

2
)

Σ{exp (−∆AIC
2

)}
,

where ∆AIC is the difference in AIC between model i and the model with the lowest

AIC value. The denominator is the sum of this expression for all the models, which

allows the weights to sum to 1.

The results are presented in a table, such as

model # parameters AICc weight
φ(∼ 1)p(∼1) 2 322.6 0.96003
φ(∼ time)p(∼1) 7 330.1 0.02253
φ(∼ 1)p(∼ time) 7 330.7 0.01650
φ(∼ time)p(∼ time) 11 336.4 0.00093

Although Program MARK is a powerful tool for estimating demographic rates

and identifying factors that may be important in determining them, it has its

limitations, particularly with large datasets. The Montana SNV dataset is much

larger than typically used in this kind of analysis (large number of individuals and

number of trapping occasions as well as several individual and temporal covariates).

The specification of covariates for a dataset this large was impossible before the

advent of RMark (Laake, 2007). However, even with RMark, running these models

challenges our desktop computers (with modern specs) to their limits of memory

and processing power. It is often necessary to leave out some important information

when formating the data. For example, when formating the data by age in chapter

2, I was unable to also include information about sex or infection status, because

of computational constraints.
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1.6 Conclusions

A combination of statistical analysis and mathematical models can be a power-

ful tool for understanding observed ecological patterns and helping forecast dynam-

ics. The models developed in this thesis can help us to understand how external

forcing, such as from climate and seasonality, can drive population and disease

dynamics, and since there may be a delay between climatic events and their corre-

sponding effects, this can add to our forecasting abilities. In the case of SNV, we

may have up to 20 months or more advance warning of increased human risk of

HPS, after sufficient climatic conditions. The interaction of external forcing along

with disease pressures can also affect the host’s population dynamics, physiology

and behavior. Models presented here can help explain how disease can regulate

the host population, but only with sufficient climatic conditions, and how disease

along with seasonality may lead to the observed patterns in hibernation physiology

and behavior.



Chapter 2
The effect of seasonality, density and climate on the

population dynamics of Montana deer mice,

important reservoir hosts for Sin Nombre hantavirus

2.1 Abstract

Since Sin Nombre virus was discovered in the U.S. in 1993, longitudinal stud-

ies of the rodent reservoir host, the deer mouse (Peromyscus maniculatus) have

demonstrated a qualitative correlation among mouse population dynamics and risk

of hantavirus pulmonary syndrome (HPS) in humans, indicating the importance of

understanding deer mouse population dynamics for evaluating risk of HPS. Using

capture-mark-recapture statistical methods on a fifteen-year dataset from Mon-

tana, we estimated deer mouse survival, maturation and recruitment rates and

tested the relative importance of seasonality, population density and local climate

in explaining temporal variation in deer mouse demography. From these estimates

we designed a population model to simulate deer mouse population dynamics given

climatic variables and compared the model to observed patterns. Month, precip-

itation 5 months p reviously, temperature 5 months previously and to a lesser

extent precipitation and temperature in the current month, were important in de-

termining deer mouse survival. Month, the sum of precipitation over the last 4

months, and the sum of the temperature over the last 4 months were important in

determining recruitment rates. Survival was more important in determining the

growth rate of the population than recruitment. While climatic drivers appear to
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have a complex influence on dynamics, our forecasts were good. Our quantitative

model may allow public health officials to better predict increased human risk from

basic climatic data.

2.2 Introduction

It is becoming increasingly more apparent that climate can have significant

impacts on infectious disease dynamics (Harvell et al., 2002; Patz et al., 2005).

Understanding the influence of climatic drivers on disease emergence and inci-

dence can help in forecasting and prevention and is becoming more urgent in this

era of climate change. Climate can affect vector-borne diseases, such as malaria

and dengue fever, by altering the abundance and/or distribution of vector hosts

(Hopp and Foley, 2003; Pascual et al., 2006), as well as the occurrence of water-

borne diseases, such as cholera, through an increase in environmental reservoirs

(de Magny et al., 2008). Less studied is the effect of climate on vertebrate reser-

voir hosts of zoonotic diseases, through changes in demography, distribution or

abundance. One zoonotic pathogen for which climate appears to affect reservoir

host demography is Sin Nombre hantavirus.

The main reservoir host for Sin Nombre virus (SNV), the primary etiologic

agent of hantavirus pulmonary syndrome (HPS), is the deer mouse, Peromyscus

maniculatus, an omnivorous generalist whose range spans most of North America.

The first recognized outbreak of HPS in 1993 in the Four Corners region of the

southwestern U.S. (where the states of Arizona, New Mexico, Colorado and Utah

adjoin) was preceded by an El Niño Southern Oscillation (ENSO) event, which

brought increased precipitation to this normally arid region. Parmenter et al.

(1993) proposed a bottom-up trophic cascade hypothesis to explain the epidemic of

HPS in which increased precipitation would lead to increased primary productivity,

and greater abundance of preferred food items of the deer mouse. Increases in

resources would allow the mice to survive and reproduce which would lead to

higher population density. This increase in density has been hypothesized to lead

to increased transmission and prevalence of SNV in the deer mice and therefore a

greater chance of spillover to humans (Mills et al., 1999a; Yates et al., 2002). The

length of the cascade leads to the prediction that there should be a delay between
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the climatic triggers and increased risk to humans.

Since the original outbreak in the Four Corners region, longitudinal studies

sponsored by the U.S. Centers for Disease Control and Prevention (CDC) have

monitored the population dynamics and infection status of rodent populations

in the southwestern U.S. and Montana (Douglass et al., 1996, 2001; Mills et al.,

1999b). Some of these studies have demonstrated a correlation among precipita-

tion, rodent population size, prevalence of SNV antibody in rodent populations,

and consequent risk of HPS in humans (Abbott et al., 1999; Engelthaler et al.,

1999; Glass et al., 2000; Mills et al., 1999a; Yates et al., 2002). A few novel studies

have taken a more quantitative approach with satellite imagery (Glass et al., 2000,

2002). However, we still lack a clear understanding of how changing climatic con-

ditions lead to changes in host demography (survival, maturation and birth rates)

and increase the risk of disease outbreaks. Several recent studies have highlighted

the importance of reservoir demography on human risk. Because hantaviruses

cause chronic (often life-long) infection in their natural hosts, antibody is often

used as a marker of infection (Mills et al., 1999b). Madhav et al. (2007) demon-

strated delayed density dependence in antibody prevalence, and Calisher et al.

(2001) demonstrated that populations with an older age structure have higher

antibody prevalence.

Reservoir demography can be affected by both density-dependent and indepen-

dent processes. Understanding both processes and their interaction may be needed

in order to fully understand reservoir demography and what leads to outbreaks.

There is now a broad consensus that both density-dependent and independent fac-

tors are important in population ecology, but their relative importance may vary

among and within species (Higgins et al., 1997; Lewellen and Vessey, 1998b; Lima

et al., 2001; Merritt et al., 2001). This is illustrated by the wealth of studies of

population dynamics of rodents. Northern Fennoscandian rodent populations, for

example, undergo regular cycles thought to be due to delayed density dependence

mediated by specialist predators and competition (Stenseth et al., 1996). These

populations are therefore thought to be predominantly under density dependent

controls. In contrast, populations of the muroid genera Peromyscus in North Amer-

ica and its sister genus, Apodemus, in Eurasia, while showing evidence of density

dependent competition for space (e.g., Saitoh et al., 1999), are significantly influ-
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enced by external drivers. These drivers include large scale climatic oscillations

(Brown and Heske, 1990; Glass et al., 2002; Stapp and Polis, 2003) and more local

scale fluctuations in productivity such as acorn mast (Ostfeld et al., 2006; Shimada

and Saitoh, 2006; Wolff, 1996) and periodic emergence of insects (e.g., cicadas and

gypsy moths; Elkinton et al., 2004; Marcello et al., 2008).

Since there is no effective treatment or vaccine for HPS, the most effective

strategy is prevention. Since human risk is linked to mouse density and demogra-

phy, in order to understand what leads to spillover, we need to dissect deer mouse

population dynamics to determine the relative contributions of endogenous and

exogenous factors. A quantitative understanding of how environmental factors af-

fect mouse demography and human risk may allow public health officials to better

predict outbreaks and more effectively target prevention strategies.

Using a capture-mark-recapture dataset spanning fifteen years (Douglass et al.,

1996, 2001), we evaluated the seasonal and interannual variation in survival, matu-

ration rates and recruitment rates and explored the relative importance of environ-

mental versus density dependent factors on deer mouse demography and dynam-

ics. Because the bottom-up trophic cascade model postulates a delayed response

to climate, we carefully evaluated evidence of lagged effects of climatic drivers.

We then formulated a population model including climatic drivers to capture the

key dynamics of this system and tested its predictive capabilities. Through our

capture-mark-recapture analyses we discovered a high level of predictability to the

dynamics once key environmental drivers and their lags were taken into account.

2.3 Methods

2.3.1 Study site and field methods

Long-term studies of deer mice have been conducted in Cascade County, central

Montana since June of 1994. The study site is grassland supporting an active

cattle ranch where deer mice typically account for over 85% of the small mammal

assemblage (Douglass et al., 2001). It is a highly seasonal environment which

receives about 36 cm of precipitation a year, mostly in spring. Often this spring

precipitation is in the form of snow, which may persist for 2-3 months or last only
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a few days, depending on wind and temperature. Temperatures also fluctuate

widely; one January it may be -37◦C and next year 10◦C, and temperatures in the

summer may range from 1◦C in the morning to 35◦C in the afternoon.

Live trapping was conducted for three consecutive nights each month on two

grids (3 km apart) from June 1994 through May 2009. Grids consisted of 100

trap stations equally spaced (10 meters apart) in a square of 0.81 ha with one

Sherman live trap per station. Since the mouse abundances on the two grids were

significantly correlated (Pearsons product moment correlation test on minimum

number alive (MNA); R=0.77, p< 0.001), we analyzed the capture histories from

the two grids jointly. Each captured mouse was tagged with a uniquely numbered

ear-tag, its breeding status, body mass and presence of scars noted, and a blood

sample taken to test for hantavirus antibody. For a detailed description of the field

methods see Douglass et al. (1996).

2.3.2 Climatic and vegetation data

Climatic data, including mean temperature and summed precipitation, were ob-

tained from the Western Regional Climate Center (www.wrcc.dri.edu). Data were

collected from a meteorological tower less than 1 km from the study site (Cascade

20 SSE, Station number 241557). Normalized difference vegetation indices (NDVI)

for the study area from 2000 through 2004 were obtained from MODIS satellite
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Figure 2.1. Monthly abundance of the deer mouse population from two trapping grids
in Cascade county, Montana, represented as minimum number known alive (MNA) and
Jolly-Seber estimates
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data (http://www.modis.ornl.gov/modis/index.cfm).

2.3.3 Estimating density and demographic parameters

Models were formulated from capture-mark-recapture data from June 1994

through 2004 and were tested against data through May 2009. These data were

used to estimate density and demographic rates. Individuals were classified into

age classes at each capture occasion based on mass according to the definitions of

Fairbairn (1977): juveniles < 14g, subadults > 14 and < 17g, and adults > 17g.

For the purposes of this study, we combined juveniles and subadults, because

they represent the non-reproductive portion of the mouse population, hereafter

called juveniles. For analysis, the data for the three consecutive trapping days

were collapsed into one primary trapping occasion, which resulted in 127 monthly

primary trapping occasions for the demographic rate analyses, from June 1994 to

December 2004, and 180 monthly occasions for the density analysis, through May

2009. We did not use robust design models (Pollock, 1982) because the data for the

secondary occasions were not recorded for most of the study. Goodness of fit tests

were performed on both the multistrata capture histories (stratum for each age

class) and the single stratum histories (without separating juveniles and adults)

(Pradel et al., 2003), as implemented in U-CARE (Choquet et al., 2005).

The POPAN formulation (Schwarz and Arnason, 1996) of Jolly-Seber models

(Jolly, 1965; Seber, 1965) was used to estimate population density, as implemented

in Program MARK (White and Burnham, 1999). We estimated survival (S) and

maturation (φ) probabilities using multi-strata models (Nichols et al., 1992) and

recruitment rates (f) using Pradel models (Pradel, 1996), as implemented in Pro-

gram MARK. We evaluated the appropriateness of including covariates (age class,

month, season, year, precipitation, temperature, density, including at several lags)

using quasi-Akaikes information criterion (QAICc). Covariates were included in

models by altering the design matrix using RMark (Laake, 2007), a package for

the R software (R Development Core Team, 2005) with an interface to Program

MARK. The demographic parameters were essentially modeled as a function of

these covariates assuming multinomial errors and a generalized linear framework

(McCullagh and Nelder, 1989). The link function was logit for the recapture, sur-
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vival and maturation analyses, and log for recruitment. In the capture history

data, survival is confounded with emigration and births are confounded with im-

migration, so the parameters estimated here are apparent survival (hereafter called

survival) and recruitment.

For the three demographic parameters, we initially explored a basic set of

models, which included constant, age class dependent, monthly, seasonal, yearly

and fully time-dependent models, without density and environmental covariates.

A large suite of models was subsequently tested, in order to test for significant

seasonality, density dependence and climatic forcing, including those containing

covariates for month, temperature and precipitation deviation from monthly means

and density, at various time lags. We looked at precipitation and temperature lags

up to six months; such lags have been shown to affect both grassland primary

productivity and small mammal abundance (Collins and Weaver, 1978; Lewellen

and Vessey, 1998a; Perry, 1976). Models were ranked based on their QAICc values.

We also estimated seniority probabilities (γ) for our best model in order to

explore the possible contribution of survival versus recruitment on the population

growth rate (Nichols et al., 2000). Seniority probability (γ) is the probability that

an individual in the population at the current time step was also there at the

previous time step, equivalent to reversing the capture histories and calculating

survivorship (Pradel, 1996). From the seniority estimates (γ), we can determine

the relative contribution of survivors and new recruits to the population growth

rate, λ, equivalent to elasticities (Caswell and Trevisan, 1994). If γ <0.5, then

recruitment is more important. If γ >0.5, survivorship is more important.

2.3.4 Population Model

To simulate the mouse population dynamics we developed a discrete-time pop-

ulation model with monthly time steps. The model is:

Nt+1 = (S[s, c, d] + f [s, c, d])Nt (2.1)

where N is mouse abundance, and t is time in months, therefore Nt+1 and Nt refer

to the mouse abundance in the next month and the current month, respectively. S

is the probability of survival to the next month, and f is the recruitment rate per
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individual at month t. Both parameters may be a function of covariates, [s, c, d]:

season (or month), climate and density. To test the predictive power of the model,

we used the Pearsons product moment correlation between abundance predicted

by the model four months ahead (parameterized from the data through 2004) and

MNA or Jolly-Seber abundance estimates (for the full time series through May

2009), using the following equation:

Npredt+4 = (St + ft)(St+1 + ft+1)(St+2 + ft+2)(St+3 + ft+3)Nobst (2.2)

where Npred is the predicted abundance and Nobs is the observed abundance.

We use both MNA and Jolly-Seber estimates because we feel neither is ideal.

The MNA estimates do not account for low trappability, whereas the Jolly-Seber

estimates were calculated using Program Mark and are not fully independent of

the demographic rate estimates. (Robust design models would give population

estimates with minimal sampling correlation to vital rates (Kendall and Pollock,

1992), however, the secondary trapping information was not recorded for most of

the study. We compared the different population estimates for dates in which we

had the additional data, from August 2004 through May 2009, and found that the

population estimates using a closed robust design gave estimates very similar to

MNA (Pearsons product-moment correlation, R=0.93); See Appendix Fig. A1 and

Table A1). Formulating the population model from the demographic estimates and

comparing the output to the data allows us to test the accuracy of the estimates

and test the predictive power of the model.

2.4 Results

There was a total of 4288 captures representing 2036 individuals on the two

grids over the study period from June 1994 to December 2004 and 5930 captures

representing 2770 individuals over the study through May 2009. Minimum number

known alive (MNA) as well as Jolly-Seber estimates of abundance were used as

indices of population density (Fig. 2.1). Goodness of fit tests on the fully time-

dependent mark-recapture statistical models revealed some evidence of lack of

fit (p < 0.001). There appeared to be a significant number of transients seen



29

(animals that were passing through the study site en route to other locations;

χ2 = 189.2, df = 114, p < 0.001) as well as some trap-dependence (i.e. trap-happy

animals; χ2 = 318.5, df = 102, p < 0.001). To accommodate the lack of fit, we

estimated the correction factor, ĉ, for the QAICc. (As ĉ or lack of fit increases,

models with fewer parameters are favored.) ĉ was calculated to be 1.796 for the

single stratum capture history data and 1.28 for the multistrata data.

2.4.1 Demographic Rates

First we explored the basic suite of mark-recapture models for the demographic

rates that did not include covariates (i.e. density, precipitation and temperature).

For recapture probability (p), the fully time-dependent and age class-dependent

model (i.e. p ∼age class + time) was the most parsimonious (Appendix Table

A2). For survival and maturation probabilities, models calculating a separate

probability for each month were the best models (according to QAICc values) in

the basic suite of models (Table 2.1), demonstrating that seasonality is important

for these demographic parameters. For recruitment rates, the year model (an

estimate for each of the eleven years of trapping) was the best model (Table 2.2). To

explore if precipitation, temperature and/or density could explain some additional

variation, we evaluated a large suite of candidate models (Appendix Tables A3 and

A4), including covariates, such as precipitation and temperature variables as well

as density, at several time lags.

The most parsimonious models were

logit(Survivalt) ∼ month * Prcpt−5 + month * Tempt−5 + month * Prcpt +

month * Tempt

logit(Maturationt) ∼ month

log(Recruitmentt) ∼ month * sum(Prcpt→t−4) + month * sum(Tempt→t−4)

where Prcp is precipitation, Temp is temperature, t− 5 indicates 5 months previ-

ously, t indicates the current month, t→ t− 4 indicates the current month through

4 months previously, and * indicates the interaction of two terms in the model (as

well as the individual terms). (Tables 2.1 and 2.2 show these models in relation

to the basic suite of models, and Appendix Tables A3 and A4 show all the models

considered.) Precipitation, temperature and seasonality were important factors ex-
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Table 2.1. The basic set of statistical models tested for variation in survival (S) and
maturation (ψ) probabilities, along with the most parsimonious model with covariates,
using multistrata models in Program MARK.

Model Npar QAICc Weight QDev
S(month*Pt−5+month*Tt−5+month*Pt +
month*Tt) ψ(month)

211 8056.5 1 3408.9

S(∼month)ψ(∼month) 163 8079.9 0 3537.1
S(∼age class+month) ψ(∼month) 164 8081.9 0 3536.9
S(∼year) ψ(∼month) 162 8087.3 0 3546.6
S(∼age class*month) ψ(∼month) 175 8088.3 0 3519.4
S(∼age class) ψ(∼month) 153 8137.4 0 3616.1
S(∼month) ψ(∼year) 161 8138.5 0 3600.0
S(∼time) ψ(∼month) 277 8142.7 0 3246.2
S(∼year) ψ(∼year) 160 8145.5 0 3609.1
S(∼time) ψ(∼1) 255 8221.5 0 3475.1
S(∼month) ψ(∼time) 391 8395.7 0 3330.6

(Npar is the number of estimable parameters. QAICc is the estimated quasi-
Akaikes information criterion, using the correction factor, ĉ=1.28, to adjust for
lack-of-fit. Weight gives the statistical weight of that model compared to the other
candidate models, and QDev is the model deviance. P and T denote precipita-
tion and temperature, respectively; t-5 indicates 5 months previously; t indicates
the current month; time denotes the full time-specific variation with 126 values
estimated, one for each capture occasion; month denotes 12 values estimated, one
for each month of the year; age class denotes 2 values estimated, one for juveniles
and one for adults; a one denotes no time-specific variation, which is a single value
estimated for all capture occasions; and * indicates the interaction of two terms
as well as the individual terms. For all models capture probabilities were p(∼age
class+time) accounting for 127 parameters.)

plaining variation in survival and recruitment rates. Climatic variables important

in determining survival were precipitation and temperature in the current month

and 5 months previously, whereas the sum of precipitation over the last 4 months

and the sum of temperature over the last 4 months were important for recruitment

rates. Full equations are given in the appendix (Eqns B1-3). These survival and

recruitment models did significantly better (had a lower QAICc value) than the

best model in the basic suite of models that did not consider covariates (Tables 2.1

and 2.2). Survival did not appear to be age specific (i.e. models which estimated a

separate survivorship for juveniles and adults had higher QAICc values than those
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Table 2.2. The basic set of statistical models tested for variation in recruitment rates
(f), along with the most parsimonious model with covariates, using Pradel models.

Model npar AICc Weight QDev
f(∼month*Pt→t−4+month*Tt→t−4) 175 15232.3 1 1765.7
f(∼year) 150 15259.4 0 1846.8
f(∼time) 265 15334.3 0 1667.5
f(∼season) 143 15587.9 0 2190.3
f(∼month) 151 15591.1 0 2176.3
f(∼1) 140 15603.2 0 2212.1

(See footnote for Table 2.1. Pt→t−4 and Tt→t−4 denote the sum of precipitation and
the sum of temperature, respectively, from the current month through 4 months
previously. For all models capture probabilities, p, were fully time-dependent, and
survival probabilities, φ, were monthly, i.e. φ(month)p(time), accounting for 131
of the parameters. ĉ =1.796.)

which did not). For comparison, we found that NDVI for the study area from

2000 through 2004 was best explained by month, precipitation 2 months ago, and

temperature 3 months ago, and their interactions.

The estimates of monthly population growth rates (S+ f) ranged from 0.51 to

2.10 with a mean overall growth rate (λ) of 1.02 (standard deviation (sd) = 0.27).

Seniority estimates (γ) for our mouse population ranged from 0.23 to 1.0, with a

mean of 0.66 (sd = 0.15), suggesting considerable variability in the importance

of recruitment versus survivorship. However, for 110 out of 126 months, γ was

greater than 0.5, indicating that most often, survivorship is more important than

recruitment in determining the growth rate of the mouse population.

Seasonality was important for all three demographic rates. Under mean precip-

itation and temperature conditions, survival was highest in December and January,

decreased in the early spring and slowly increased through the summer and fall.

Recruitment generally increased through the spring, peaked in the summer, and

declined through the fall with another small peak in January. Maturation was low

in late fall, increased to a peak in spring, and declined through mid summer with

another small peak during late summer. For survival and recruitment rates, the

interactions between month and the climatic variables were important, meaning

that precipitation and temperature had different effects in different months.

From these models we can describe some likely general trends of the effect
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Table 2.3. The effect of precipitation (Prcp) and temperature (Temp), occurring during
the given season, on recruitment (f) 0-4 months later and survival (S) 5 months later
based on the most parsimonious MARK models.

Effect on demographic rates
Season More Prcp Warmer Temp
Early spring ↓ f ↓ f, ↓ S
Late spring ↓ f, ↓ S ↓ f, ↑ S
early summer ↑ f, ↓ S ↑ f, ↓ S
late summer ↑ f, ↑ S ↑ f, ↑ S
early fall ↑ f, ↑ S ↑ f, ↑ S
late fall ↑ f, ↑ S ↑ f, ↑ S
early winter ↑ f, ↑ S ↓ f, ↑ S
late winter ↓ f ↓ f, ↑ S

(Up and down arrows indicate an increase or decrease, respectively, in recruitment
rate or survival probability. Prcp had mixed to no effect on survival late winter
and early spring. The effects were reversed for less Prcp and cooler Temp.)

of precipitation and temperature on demographic rates. The effects of precipita-

tion and temperature on recruitment rates and survival 5 months into the future

were fairly consistent across seasons and between other similar models. Recruit-

ment rate was positively correlated with cooler temperatures December through

June, warmer temperatures July through October, less precipitation from February

through May, and more precipitation July through December (Table 2.3). More

precipitation occurring from August through January, less precipitation February

and May through July, higher temperatures September through February, and May

and June, and lower temperatures April and July through August were positively

correlated with Survival 5 months in the future (Table 2.3).

2.4.2 Population Model

The above models are more parsimonious than all the other models tested based

on QAICc-rankings. It is however important to ask the extent to which they have

predictive power relative to long-term population dynamics. To investigate this,

we combined the demographic estimates from the best models with our population

model (Eqn 2.1), and predicted the abundance for each time point. We used the

estimates from the mark-recapture models to predict abundance for the data that



33

Time

A
bu

nd
an

ce

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0
10

0
30

0

Model 4−step ahead prediction
Joly−Seber estimates

Figure 2.2. Four-step-ahead predictions simulated using demographic parameters es-
timated in MARK for the best models for survival and recruitment, along with the
Jolly-Seber population estimates

was not used in the mark-recapture analysis (January 2005 through May 2009).

We did 4-step ahead predictions (Eqn 2.2) and then compared the model results

with our density indices (MNA and Jolly-Seber estimates), over the study period.

The recruitment rates predicted in this manner contained a few values that

were unreasonably high (> 1000). These abnormally large values corresponded

to several December months. Because of low trappability, the data were partic-

ularly sparse for several of the December months, resulting in a large standard

error for the β coefficient for the effect of precipitation for December. In order

to correct for this sparseness in the data, we averaged the recruitment rates for

December through 2003, and used this average, f = 0.27, for the recruitment rate

for December 2004, 2005, 2006 and 2008.

The simulated abundance from the population model predicted 4 months ahead

(Eqn 2.2) for the sample data (June 1994 - December 2004) was highly correlated

to MNA (R=0.85) and to Jolly-Seber estimates (R=0.89) (Fig. 2.2). The model

did not fit the out-of -sample data as well (R= 0.26), though the correct range in

abundance was predicted. For the whole time series, the model was correlated to

the data with R=0.79 for Jolly-Seber estimates and R=0.77 for MNA. The data

points for which there was the biggest discrepancy were winter months and these

are the months when the data are the sparsest.
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2.5 Discussion

The objective of our study was to evaluate the importance of seasonality, popu-

lation density and climate on population dynamics of the deer mouse and formulate

population models that can describe the dynamics and forecast abundance. A large

amount of the variation seen in the population dynamics of the deer mouse was ex-

plained by seasonality, precipitation, and temperature, confirming the importance

of density independent forces, and lending significant predictability to this system.

Given the current and previous months’ precipitation and temperature, we were

able to reasonably predict population dynamics several months in advance. Several

studies of the effect of food supplementation, acorn masting or periodical cicadas

on Peromyscus found an increase in population density with increased food avail-

ability (Gilbert and Krebs, 1981; Hansen and Batzli, 1978; Marcello et al., 2008;

Shimada and Saitoh, 2006; Smith, 1971; Sullivan and Sullivan, 2004; Taitt, 1981;

Yunger, 2002), suggesting that many Peromyscus populations may be limited by

food or at least high quality food. Increasing food items such as the introduced

biocontrol agent, gall flies, for knapweed, caused an increase in deer mouse popu-

lation density in Montana and increased SNV antibody prevalence (Pearson and

Callaway, 2006), although other areas in Montana have shown significant increases

in density without knapweed (Douglass et al., 2001). If deer mouse populations

are often limited by food, increasing primary productivity may increase population

density, either directly through an increase in seeds, nuts and fruits, or indirectly

through insects.

The time lags between changes in environmental variables and changes in de-

mographic rates indicated by our models (0-5 months) are consistent with those for

primary productivity. NDVI was best explained by precipitation at a 2-month lag

and temperature at a 3-month lag. So, there was another few months after primary

productivity was affected until mouse demography was affected. This lag might be

due to time for plants to set seed, for insects to respond, and for mice to reproduce

and for their progeny to enter the trappable population. Since environmental vari-

ables appear to affect primary productivity and deer mouse demography with a

time lag, our study lends support to a bottom-up trophic phenomenon. However,

the relationship for our system is not as simple as the more-rain-equals-more-food-
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equals-more-mice hypothesis. The effects of precipitation and temperature depend

on the month and for some months were not as we had predicted; higher tem-

peratures and more precipitation during the summer through early winter (not

in the spring) were correlated to increased survival and recruitment. Previous

studies have shown that spring precipitation best predicts grass production, but

fall-through-summer precipitation better predicts total forage production (Noller,

1968; Whitman and Haugse, 1972). Our results are not unlike those reported for

deer mouse populations in Colorado where populations responded favorably to

rainfall during warm periods, but crashed when high rainfall occurred during cold

periods (Calisher et al., 2005a; Mills, 2005).

In our analysis, juvenile survival was not significantly different from adult sur-

vival. Conventional wisdom is that Peromyscus juveniles have a higher mortality

rate than adults (Myers and Master, 1983; Terman, 1968). We speculate that the

juveniles we captured had already survived the period of high mortality (in the nest

or while dispersing) before entering the trappable population. The finding that re-

cruitment is affected by environmental factors from the current month through 4

months previously suggests that we are detecting a combination of immigration

and in situ reproduction, since gestation and growth of offspring before leaving

the nest would take approximately two months. The small peak in recruitment

in January under mean environmental conditions is most likely due to immigra-

tion, given the well-known seasonality in reproduction in the deer mouse (Douglass

et al., 2001).

Our population model formulated with the most parsimonious MARK models

for survival and recruitment accounted for most of the variation seen in mouse

abundance for the sample data, but a significant amount of unexplained variation

was seen in the out-of-sample data. Some of this reduction in the correlation coeffi-

cient can be explained by the restricted range of mouse abundances observed during

the out-of-sample period. (As is well known, the statistical R is both a function

of the overall predictability of any given system and the range of observed val-

ues along the abscissa.) If we, for example consider the in-sample predictability of

abundances that covers the range of the out-of-sample forecast (0-100 individuals),

the in-sample R is reduced by about half to 0.46, more comparable to our out-of-

sample predictability of 0.26. There were a large number of models tested, so it is
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possible that some associations could occur by chance. However, for the recruit-

ment analysis, most models containing precipitation and temperature (whatever

the lag) did better than time varying, monthly or yearly models, suggesting a real

effect of the environmental factors. There may be a number of sources for the

remaining unexplained variation. Our models did not consider predation, para-

sitism or interspecific competition - all factors that have been implicated in deer

mouse demography (Grant, 1971, 1972; Kaufman and Kaufman, 1989; Pedersen

and Greives, 2008). Furthermore, some of the covariates may have non-linear in-

fluences on demographic rates other than those implied by the logit- and log-links

associated with the mark-recapture formalism. We also did not consider time lags

longer than 6 months; there is evidence that precipitation can have lagged effects

of up to 2 years, perhaps by increasing soil moisture or altering nutrient cycling

rates (Perry, 1976). Delayed-density dependence of longer lags has been impli-

cated in certain small rodents. However that is typically associated with cyclic

populations of voles and lemmings and has not been reported for Peromyscus or

Apodemus (see, for example, Saitoh et al., 1999) for a sympatric comparative anal-

ysis). Acorn mast (Elkinton et al., 1996; Jones et al., 1998) and knapweed (Pearson

and Callaway, 2006) have been shown to affect Peromyscus abundance but were

not found at our study site. Another possibility is that environmental factors op-

erated differently during the first part of the study than the last. The inability

of the model to predict abundance well for the out-of-sample data suggests that

more data collection is necessary in order to fully understand climatic influences

on deer mouse population dynamics. The uncertainty in the winter months seems

to be particularly important.

Understanding what leads to changes in deer mouse abundance is important for

predicting Sin Nombre virus epizootics. Hantaviruses are directly transmitted and

thought to have density dependent transmission (Madhav et al., 2007), therefore,

mouse abundance affects the possibility and size of epizootics. Several previous

studies have suggested qualitative correlations between environmental factors and

deer mouse population dynamics. Our study quantitatively described this correla-

tion through changes in demographic rates. While it is true that we found the link

to be complex, a significant amount of the variability seen in mouse abundance

can be predicted from climatic drivers. This is encouraging because it suggests
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that armed with a more precise understanding of the links and time-lags between

climatic conditions and deer mouse increases, we may be able to better predict epi-

zootics. This particular model may not apply to the southwestern US, because the

climate and habitat types are quite different; a separate analysis may be needed

for each region of concern. We are currently testing the model to determine its

applicability to other field sites in Montana with different habitat types (i.e. sage-

brush and pine forests) and formulating an epidemiological model, with the aim

to relate environmental forcing to number or proportion of individuals infected. A

better understanding may allow public health officials to enhance HPS prevention

strategies, as well as help scientists predict possible effects of climate change on

hantavirus-host dynamics.
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Chapter 3
Sin Nombre Hantavirus Decreases Survival of Male

Deer Mice

3.1 Abstract

How pathogens affect their hosts is a key question in infectious disease ecology,

and it can have important influences on the spread and persistence of the pathogen.

Sin Nombre virus (SNV) is the etiological agent of hantavirus pulmonary syndrome

(HPS) in humans. A better understanding of SNV in its reservoir host, the deer

mouse, can help lead to improved prediction of circulation and persistence of the

virus in the mouse reservoir and help identify the factors that lead to increased hu-

man risk of HPS. Using mark-recapture statistical modeling on longitudinal data

collected over 15 years, we found a 15.4% decrease in survival of male deer mice

with antibody to SNV compared to uninfected mice. Males were also on average

1.5 times as likely to become infected than females. The data identified that trans-

mission was consistent with density dependent transmission, implying that there

may be a critical host density, below which SNV cannot persist. Perhaps these

observations coupled with the previously overlooked fatality in the host population

can contribute to a better understanding of why SNV often goes extinct locally

and only seems to persist at the metapopulation scale and why human spillover is

episodic and hard to predict.
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3.2 Introduction

The effects of a pathogen on its reservoir host can have important consequences

on the transmission and persistence of the pathogen. Historically, the conventional

wisdom was that well-adapted pathogens should be relatively harmless to their

hosts, although current evolutionary tradeoff theory shows that an intermediate

level of virulence can be the optimal strategy for directly transmitted pathogens

(Frank, 1996). More virulent pathogens may have a shorter infectious period be-

cause they may kill the host or induce a strong immune response. However, they

are often more transmissible, since increased parasite reproduction and shedding

are often correlated to virulence. At the population level, they may be more likely

to invade, but experience wider fluctuations in prevalence and are more likely to

go extinct or have a higher critical community size (King et al., 2009). Although

theory can provide important insights on expected patterns and processes, empir-

ical evidence of how chronic infections affect reservoir hosts of zoonotic diseases in

nature is rare (but see Telfer et al., 2002; Kallio et al., 2007). We examine the ef-

fect of Sin Nombre virus (SNV) on the reservoir host, the deer mouse (Peromyscus

maniculatus), using mark-recapture statistical modeling and long-term field data.

Although SNV is the etiologic agent of hantavirus pulmonary syndrome (HPS)

and can have a 40-60% mortality rate in humans, it has traditionally been thought

to cause a chronic, avirulent infection in its reservoir host, the deer mouse (Per-

omyscus maniculatus) (LeDuc, 1987; Mills et al., 1999a). Both laboratory and

field studies have revealed that in the deer mouse reservoir, the virus is horizon-

tally and directly transmitted (Botten et al., 2002; Mills et al., 1999a). Virus is

shed in infected rodents urine, feces and saliva, and transmission occurs through

inhalation of aerosolized virus or through aggressive encounters among mice (Mills

et al., 1999a). Infection appears to be life-long, however recent studies reveal that

infected mice may move from an acute phase, in which virus is readily isolated

from blood and tissues, to a chronic phase, in which virus is only detected inter-

mittently (Botten et al., 2003; Kuenzi et al., 2005); and infected mice may be most

infectious in the first few months after infection (Botten et al., 2000).

Authors of published studies generally assume or claim that there is no effect

of SNV on the deer mouse reservoir host (i.e. Calisher et al., 1999; Botten et al.,
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2000; Easterbrook and Klein, 2008). Indeed, there has been a long-standing be-

lief that hantaviruses have experienced a long coevolutionary history with their

rodent hosts, possibly dating back to the divergence of higher muroid taxa (i.e.

Yates et al., 2002; Jackson and Charleston, 2004; Plyusnin and Morzunov, 2001). It

has been postulated that during this long coevolutionary history, the rodent hosts

may have evolved adaptations to mitigate detrimental effects of infection (Easter-

brook and Klein, 2008). However, this conflicts with life history trade-off theory

that predicts an intermediate level of virulence is often the evolutionarily favored

strategy (Frank, 1996). Regardless, recent phylogenetic studies refute the claim of

a long coevolutionary history. The time to most recent common ancestor of han-

taviruses in the sub-family Sigmodontinae was found to be only approximately 200

years ago (Ramsden et al., 2008). Finally, mathematical theory broadly predicts

that chronic, avirulent pathogens should exhibit a pattern of stable endemicity

akin to logistic growth within the host population. This seems at odds with the

empirical pattern of sporadic disappearance of the virus and recurrent epidemics

seen in the deer mouse reservoir (Douglass et al., 2001). A chronic pathogen at

the edge of local persistence however, could also lead to the observed dynamics.

Evidence is slowly mounting that SNV infection in its deer mouse host is not

as asymptomatic as previously supposed. Netski et al. (1999) saw changes in lung

morphology in infected deer mice, similar to humans with HPS. However, Botten

et al. (2000) reported no histopathologic changes even when RNA load was high.

Douglass et al. found a decrease in weight gain for newly infected males (2007)

and a decrease in persistence on the study site for antibody positive juveniles and

subadults (2001). However, probability of capture was not taken into account; it

needs to be determined if antibody-positive mice are less likely to be recaptured

or less likely to survive.

Using capture-mark-recapture analyses on 15 years of longitudinal data, we

examine the hypothesis that there is SNV-induced reduction in survival in deer

mice. These data also give us a chance to examine the competing hypotheses of

density-dependent transmission (transmission proportional to density of infected

individuals) versus frequency-dependent transmission (transmission proportional

to the frequency of infected individuals; McCallum et al., 2001), by testing which

model for the force of infection (the probability of becoming infected per unit
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time) is best supported by the data. This question is of great applied interest

because important dynamic properties relating to persistence and circulation of

the pathogen depend critically on how transmission scales with population size. A

greater understanding of SNV in its reservoir host, including patterns of transmis-

sion and possible disease-induced mortality, would lead to a better understanding

of emergence and persistence of the virus in the mouse reservoir and human risk.

This is particularly important for this deadly pathogen, since there is no effective

vaccine or cure; currently, the best strategy is to take preventative measures.

3.3 Methods

3.3.1 Field Site and Animal Processing

Long-term studies of deer mice have been conducted in Cascade County, central

Montana since June of 1994. The study site is agricultural grassland where deer

mice typically account for over 85% of the small mammal assemblage (Douglass

et al., 2001). Live trapping was conducted for three consecutive nights each month

on two grids (3 km apart) from June 1994 through December 2008. Grids con-

sisted of 100 trap stations equally spaced (10 meters apart) in a square of 0.81 ha

with one Sherman live trap per station. Since the mouse abundances on the two

grids were significantly correlated (Pearsons product moment correlation test on

minimum number alive (MNA); R=0.77, p< 0.001), we analyzed the capture his-

tories from the two grids jointly. Each captured mouse was tagged with a uniquely

numbered ear-tag, its breeding status, body mass and presence of scars noted,

and a blood sample taken. Whole blood samples were tested for IgG antibodies

to SNV using an enzyme-linked immunosorbent assay (ELISA) at the Montana

Department of Health and Human Services or the Montana State University. For

a detailed description of the field methods see Douglass et al. (2001).

3.3.2 Capture-Mark-Recapture Analysis

We analyzed the capture histories using capture-mark-recapture (CMR) statis-

tical modeling (Lebreton et al., 1992), as implemented in Program MARK (White

and Burnham, 1999). We collapsed the three consecutive secondary trapping occa-



42

sions into one primary trapping occasion, which resulted in 175 monthly trapping

occasions. To estimate probability of recapture (p), survival (S), and force of in-

fection (ψ, probability of becoming infected over the one month trapping interval),

we used multistrata models (Nichols et al., 1992), with two strata, SNV antibody-

negative mice and SNV antibody-positive mice. Goodness of fit (GOF) tests were

performed on the multistrata capture histories (Pradel et al., 2003) using U-CARE

(Choquet et al., 2005). We evaluated the appropriateness of including covariates,

such as sex, seasonality (or month), and antibody status, using Akaikes informa-

tion criterion (AICc). Minimum number known alive (MNA) was used as an index

of density and in the same way, minimum number infected (MNI) was calculated

and used an index of number infected. Covariates were included in the models

by altering the design matrix using RMark (Laake, 2007), a package for the R

software (R Development Core Team, 2005). Probability of recapture, survival,

and force of infection were essentially modeled as a function of these covariates,

assuming multinomial errors and a generalized linear framework (McCullagh and

Nelder, 1989). The link function was logit for all three parameters. In the capture

history data, deaths are confounded with emigration, so the parameter estimated

here is apparent survival hereafter called survival.

3.4 Results

Over the 15-year study period, there were 5,930 captures of 2,770 different

mice. GOF tests revealed the most general model fit the data well (males: χ2

Table 3.1. Mark-recapture models for probability of recapture, p, using the following
models for survival and force of infection: S(∼antibody status) ψ(∼antibody status).

Model npar AICc Weight
p(∼antibody status + time) 179 12602.27 0.680
p(∼sex + antibody status + time) 180 12604.09 0.274
p(∼time) 178 12608.44 0.031
p(∼sex + time) 179 12609.94 0.015
p(∼month) 16 13363.39 0.00
p(∼antibody status) 6 13672.59 0.00
p(∼antibody status + sex) 7 13673.92 0.00
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=324.7, d.f.=316, p=0.356; females: χ2=192.8, d.f.=270, p=1.00). The best model

(lowest AICc value) for probability of recapture included antibody status and time

(a different value for each of the 174 months) (Table 3.1). Antibody-positive

individuals were more likely to be recaptured than antibody-negative individuals

(mean probability of recapture, 0.74 vs. 0.58). Both sex and antibody status, as

well as month, were important for the probability of survival over the one month

trapping period. Antibody positive males had on average a 15.4% decrease in

survival compared with antibody negative males and females (Fig 3.1). Therefore,

the best model by AICc was a model that contained a dummy variable for the

interaction between sex and antibody status, in which survival for infected males

was estimated separately from females and uninfected males (Table 3.2).

We investigated two types of models for force of infection (probability of be-

coming infected each month), ψ: the density dependent model, for which the force

of infection is a function of the density of infected individuals in the previous

month (It−1), and the frequency dependent model, for which the force of infection

is a function of the prevalence of infection (It−1/ Nt−1). We also tested for sex

differences and seasonality (using month as a covariate). The best model for the

force of infection included sex and a density dependent formulation (Table 3.2).

On average, females had a 0.94% chance of becoming infected (and surviving long

enough to develop detectable antibody) each month, and males had a 1.4% chance.
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Figure 3.1. Monthly probability of deer
mouse survival for the model, S(∼sex *
antibody status + month) p(∼antibody
status + time) ψ(∼sex + It−1).
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Table 3.2. Mark-recapture models for survival, S, and force of infection, Ψ, using the
best model for recapture, p(∼antibody status+time) accounting for 175 parameters.

Model npar AICc Weight
S (∼dummy + month) ψ(∼sex + It−1) 192 12481.16 0.363
S (∼dummy + month) ψ(∼It−1) 191 12481.28 0.342
S (∼sex + antibody status + month) ψ(∼It−1) 192 12483.21 0.130
S (∼sex * antibody status + month) ψ(∼It−1) 193 12483.70 0.102
S (∼sex + month) ψ(∼It−1) 191 12485.77 0.036
S (∼month) ψ(∼It−1) 190 12486.81 0.021
S (∼dummy + month) ψ(∼It−1/Nt−1) 191 12489.83 0.005

3.5 Discussion

Although some recent studies have suggested that SNV infection in deer mice

may be symptomatic and influence the survival of deer mice, this question has not

previously been addressed directly. We addressed this issue by comparing survival

of antibody-positive and antibody-negative mice and found a decrease in survival

of infected deer mice. Interestingly, this 15.4% decrease in survival was only seen

in infected males. Males were also 1.5 times more likely to become infected than

females in a given month.

This 15.4% reduction in survival is likely to be an underestimate since we do

not know how long after infection animals are likely to experience disease induced

mortality. We speculate that the length of the incubation period would be 2 to 4

weeks, since substantial RNA levels can be detected at one week and peaked at

3 weeks post infection (Botten et al., 2000). Unfortunately, we also do not know

precisely when many infected individuals acquired infection. Using the presence

of antibodies to the virus as a marker of infection means we cannot detect in-

fected individuals until after they develop detectable antibody, which appears to

also take approximately 2 to 4 weeks (Botten et al., 2000). Infected mice that

experience disease-induced mortality would only be detected if their incubation

period is longer than their time to seroconversion. Inter-trapping intervals longer

than the time to seroconversion would also decrease detection of infected individu-

als. If the incubation period is shorter than the one month inter-trapping interval,

we may not detect animals experiencing disease-induced mortality, depending on

when they became infected in relation to the trapping occasions. Therefore, there
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may be higher prevalence and incidence in the reservoir population than the lon-

gitudinal data suggest.

Previous research established that, in mammals, males tend to have a greater

prevalence and intensity of many micro- and macroparasitic infections than fe-

males, possibly through increased exposure or increased susceptibility mediated

through sex hormones, such as testosterone (Poulin, 1996; Klein, 2000), or sex-

ual size dimorphism (Moore and Wilson, 2002). Males often have larger home

ranges, disperse more, and have more aggressive contacts than females (Klein,

2000), which could increase their exposure to diseases. Male Norway rats infected

with Seoul hantavirus tended to have higher circulating testosterone and neuro-

transmitters that may contribute to aggression and increase the likelihood of trans-

mission through bites (Easterbrook et al., 2007). Peromyscus sp. have also been

shown to increase social contacts with an increase in testosterone (Grear et al.,

2009). Testosterone has been shown to decrease both humoral and cell mediated

immune responses (Ahmed et al., 1985; Klein, 2000), and castration of males can

increase protection to both micro- and macroparasites relative to that of females

(Ahmed et al., 1985). Another possible mechanism for sex-biased parasitism is

sexual size dimorphism; the larger sex may be exposed more to infection (because

it is a larger target), or there may be an energetic tradeoff between somatic growth

and immune function (Moore and Wilson, 2002). Male-biased mortality is common

and has been correlated to male-biased parasitism (i.e. Moore and Wilson, 2002;

Grobler et al., 1995). If our analyses had not included the SNV data, we would

have seen a male bias in overall mortality, although it would be weak (male β

coefficient for S ∼sex+month, -0.09, SE=0.05). With the additional data on SNV

prevalence we were able to determine that this male biased mortality is associated

with infection.

Our results suggest that transmission of the virus is density dependent, rather

than frequency dependent. This is a common assumption for directly transmit-

ted pathogens (McCallum et al., 2001), although empirical evidence is equivocal

(Smith et al., 2009). Aggressive encounters are thought to be an important trans-

mission mechanism, and fights over mates or territory can increase with increased

density (Wolff, 1989). These results may also help shed light on the sporadic disap-

pearance of the virus from the population. For pathogens with density dependent
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transmission, there is a critical host density necessary to get disease invasion or per-

sistence. We recently showed that environmental conditions have a strong impact

on the population dynamics of the deer mouse (Luis et al., 2010). If the envi-

ronmental carrying capacity drops below the critical host density, the pathogen

cannot persist and will fade-out.

Older males are more likely to be infected with SNV than the rest of the popula-

tion (Douglass et al., 2001). Therefore, one hypothesis is that infected individuals

have a lower survival just because they are older. However, in previous analyses on

deer mouse population dynamics, in which we did not consider the infection, we

showed that juvenile and adult deer mouse survival were not significantly different

in this population (Luis et al., 2010). Furthermore, we also tested a subset of the

CMR data used here, including age class in the analysis, and again, models in-

cluding age class were not significantly better than those without (A. Luis, unpub.

data). This suggests that the decrease in survival is not purely a function of age.

With these analyses we are unable to separate mortality and permanent emigra-

tion or dispersal. Therefore, the alternative hypothesis is that rather than decrease

survival, SNV may make males more likely to emigrate. However, a previous study

of dispersal in this mouse population revealed no significant correlation between

dispersal and being antibody-positive for SNV (Lonner et al., 2008). Therefore it

appears more likely that infection is causing a decrease in survival. Although there

was not a significant correlation between dispersal and antibody status, the dis-

persers were more likely to be adult males with scars, also the subpopulation more

likely to be infected (Lonner et al., 2008). If, in fact, infected mice are more likely

to emigrate, this could be important for spread and metapopulation persistence of

the virus.

Survival is estimated to be high over the winter months, 70-90%, and high

survival during winter and low survival in spring have been observed in other

rodents (Telfer et al., 2002). In our analyses winter is also when estimated disease-

induced reduction in survival is lowest. This is in contrast to the findings of Kallio

et al. (2007) that Puumala hantavirus decreased mainly overwinter survival in bank

voles. One reason for this discrepancy could be the model structure imposed by the

additive survival model, S(∼dummy+month). If we look at the monthly survival

estimates for the model with interactions, S(∼dummy*month), March and May
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were the months with the greatest disease induced reduction in survival. However,

the multiplicative model was quite low in the model rankings by AICc (although

the deviance was lower, because of the addition of 12 more parameters).

These results, along with those from other studies, should cause us to question

the previous belief that SNV causes a chronic, avirulent disease in its reservoir

host. It seems more likely that SNV is a moderately virulent virus, with both an

acute and a chronic stage. For diseases that cause a reduction in host survival,

the infectious period is effectively shortened, which could decrease the spread of

the infection and local persistence of the virus. Perhaps the overlooked fatality in

infected deer mice along with density dependent transmission can help explain how

SNV often goes extinct locally and only seems to persist at the metapopulation

scale (Mills et al., 1999a; Kuenzi et al., 1999; Douglass et al., 2001). A quantitative

model for the SNV-deer mouse system including disease-induced mortality would

be useful for exploring this possibility further.
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Chapter 4
A Stage-Structured Model for Sin Nombre

Hantavirus

4.1 Introduction

A new hantavirus named Sin Nombre virus (SNV) was first recognized in 1993

after it caused an outbreak of Hantavirus Pulmonary Syndrome (HPS) in the

southwestern U.S. This emerging infectious disease has since been found to occur

across most of the U.S., with a majority of cases in the western half of the coun-

try. The original outbreak of HPS in the Southwest was preceded by an El Nino

Southern Oscillation event which brought increased precipitation to this usually

arid region, and it was hypothesized that human infection was the result of an

ecological cascade (Parmenter et al., 1993), as follows. Local climatic fluctuations

affect primary productivity, altering the food supply for deer mice. An increase

in food for the deer mice will increase density and alter the age-structure of the

population. This will increase prevalence of SNV in the reservoir population and

lead to enhanced human risk of HPS.

Our previous work showed that local climatic fluctuations can have a strong

but complex impact on mouse population dynamics in Montana, with temperature,

precipitation, and seasonality being strong influences on survival and recruitment

rates, accounting for most of the variation seen in deer mouse abundance (Luis

et al., 2010). There is also support for this in the southwest (Glass et al., 2002).

However, there is still not a clear understanding of how these changing environ-

mental conditions and mouse population dynamics lead to the observed patterns
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of SNV infection in the deer mouse reservoir. Nor is it clear how, or if at all, SNV

affects rodent demography.

SNV infection dynamics in the deer mouse reservoir host has been notoriously

difficult to understand. The virus sporadically disappears from the mouse popu-

lation and seems to only persist at the metapopulation scale (Mills et al., 1999b;

Kuenzi et al., 1999; Douglass et al., 2000; Glass et al., 2002). Most disease models

have included a spatial component and posit that there are ’refugia’ in which infec-

tion is maintained (i.e., Abramson and Kenkre, 2002; Aguirre et al., 2002). When

dispersal is included in the models, traveling waves of infection appear (Abramson

et al., 2003). The spatial dynamics of these models are difficult to corroborate,

since it has not been feasible to carry out field studies at the large spatial scale

and the temporal resolution necessary. However, there is evidence of refugia in

the Southwest, areas identified as high risk for HPS from satellite imagery, where

mouse abundance is greater and with higher prevalences of SNV infection (Glass

et al., 2007).

Predicting prevalence in any one area has also been difficult. When the virus

is present in a local population, it does not seem to follow typical temporal pat-

terns of incidence or prevalence expected for directly transmitted microparasites.

Previous models have assumed that disease transmission is density dependent (in-

creased transmission and prevalence with increased density) (i.e., Abramson and

Kenkre, 2002; Aguirre et al., 2002; Abramson et al., 2003; Escudero et al., 2004;

Kenkre, 2005), but they have not shown that the data support this. Our previous

work indicated that the density dependent formulation for the force of infection

(the probability of a susceptible being infected) is better supported by the data

than the frequency dependent formulation (Luis, et al. in review; see chapter 3).

However, with density dependent transmission one should see increased prevalence

with increased density, and the data show either no relationship (Mills et al., 1997;

Calisher et al., 1999) or inverse density dependence with higher prevalences at

lower densities (Douglass et al., 2001; Calisher et al., 2005b; see Fig 4.5a).

There is evidence of delayed density dependence in prevalence. Madhav et al.

(2007) found that antibody prevalence in May was correlated to deer mouse den-

sity the previous September. They cited a hypothesis with a 3 step mechanism,

as follows (Mills et al., 1999a): Recruitment of uninfected juveniles following the
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Figure 4.1. Abundance of susceptible sub-adults, (SSA), infected sub-adults (ISA),
susceptible adults (SA), and infected adults (IA) over the 15-year study.

spring/summer breeding period results in high densities but low prevalence in the

fall. Recruitment halts and cumulative virus transmission and over-winter mortal-

ity result in lower population density and high infection prevalence the following

spring. Increased crowding over the fall and winter facilitates transmission, and

antibody prevalence in the spring is correlated to density the previous fall. Fur-

thermore, Adler et al. (2008) showed that host population dynamics can lead to

delayed density dependent prevalence; prevalence in Yates et al. (2002) is correlated

to density with an approximately 15 month lag (Adler et al., 2008).

To help understand and predict dynamics, we created a stage structured SI

(Susceptible-Infected) model for SNV in the deer mouse reservoir host, which was

parameterized from 15 years of field data. We explored how climatic forcing of

demographic rates affects the pathogen dynamics, how the pathogen affects the

host population dynamics, and conditions required for circulation and persistence

of the virus. We estimated age-structured demographic and epidemiological pa-

rameters, including transmission rates, R0, and critical host density and showed

how altering the carrying capacity of the environment can lead to delayed density

dependence in prevalence of SNV infection (with a lag of up to 16 months or more)

in the mouse population and intermittent crossing of the critical host density nec-

essary for hantavirus endemicity. We also demonstrate that SNV has the ability

to regulate the host population, at as much as 25% below the carrying capacity in

a high density endemic setting.
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4.2 A mathematical model

With our stage-structured SI model for SNV infection in the deer mouse, we

would like to address these specific questions: Is there a critical host density nec-

essary to get disease invasion? If so, what is this threshold density, and can it help

explain the SNV population level patterns we see? Can we get delayed density

dependence in prevalence? If so, what affects this delay? Can SNV regulate the

deer mouse host population?

4.2.1 Density dependent demographics

Our epidemiological model includes background host population dynamics with

logistic growth, where the host population experiences density dependence in both

birth and death rates. The root of which is the well-known logistic growth equation:

dN

dt
= rN

(
1− N

K

)
, (4.1)

where N is the total population size, K is the carrying capacity of the environment,

and r is the intrinsic growth rate of the population (birth rate,b, minus death rate,

d).

In order to separate births and deaths for our age structured population we

used this modified logistic formulation, after Gao and Hethcote (1992):

dN

dt
= N

(
b− arN

K

)
−N

(
d+ (1− a)r

N

K

)
, (4.2)

where a is the proportion of density dependence due to density dependence in

birth rates. If a = 0, then birth rates are density independent, and all the density

dependence seen is due to density dependence in the death rates, and conversely,

if a = 1, then all the density dependence is in the birth rates. Note that equation

4.2 collapses to 4.1 and that the non-trivial equilibrium is still K.

We found previously, using capture-mark-recapture statistical analysis, that

realized survival and recruitment rates are a function of precipitation and temper-

ature (Luis et al., 2010, chapter 2). We believe that the mouse population growth

is strongly density dependent and that precipitation and temperature are moving
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the carrying capacity up and down, affecting the realized demographic rates.

4.2.2 The stage structured SI Model with density depen-

dent demographics

In the stage-structured epidemiological model, the mouse population is classi-

fied into 3 functional age classes, juveniles (J), sub-adults (SA), and adults (A).

We find that juveniles with SNV antibodies become antibody negative over time.

Their positive result is most likely due to maternal antibodies, which wane over

time (Borucki et al., 2000). Therefore, in the model, the juveniles are not con-

sidered susceptible to disease. This assumption will depend on the prevalence of

maternal antibodies in the population, but our qualitative conclusions are robust

to this assumption. Since SNV infection is chronic and life-long, sub-adults and

adults are either susceptible (S) or infected (I). This leads to 5 classes of mice,

juveniles (J), susceptible sub-adults (SSA), infected sub-adults (ISA), susceptible

adults (SA), and infected adults (IA). (See figure 4.2 for a life cycle diagram.)

Transmission is assumed to be density dependent (see Luis, et al. in review; chap-

ter 3 for the empirical evidence of this), meaning that as density increases, contacts

between susceptible and infected individuals increase. Birth and death rates are

Figure 4.2. Life cycle diagram for the system. See tables 4.1 for variable and parameter
information.
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assumed density dependent as in Eqn 4.2. Maturation from juveniles to sub-adults

is constant (m1), but maturation from sub-adult to adult depends on the density

of adults, where m2 is the maximum maturation rate (in the absence of adults).

We used this formulation because the presence of adults is known to inhibit sub-

adults from maturing and becoming reproductive (Millar, 1989). Since we recently

documented that SNV decreases survival, we included a parameter for disease in-

duced mortality (µ) (Luis et al., in review, chapter 3, Douglass et al., 2001). The

resulting set of equations is:

dJ

dt
= A

(
b− arN

K

)
− J

(
d+ (1− a)r

N

K

)
− Jm1

dSSA
dt

= Jm1 − SSA
(
d+ (1− a)r

N

K

)
− β1SSAI − SSAm2

(
1− A

K

)
dISA
dt

= β1SSAI − ISA
(
µ+ d+ (1− a)r

N

K

)
− ISAm2

(
1− A

K

)
(4.3)

dSA
dt

= SSAm2

(
1− A

K

)
− SA

(
d+ (1− a)r

N

K

)
− β2SAI

dIA
dt

= β2SAI + ISAm2

(
1− A

K

)
− IA

(
µ+ d+ (1− a)r

N

K

)
,

where, β1 is the transmission rate for sub-adults, and β2 is the transmission rate for

adults. (See table 4.1 for a list of variables, parameters and their descriptions.) All

the parameters can be estimated using the field data as described below. We follow

the convention of using Roman letters for demographic parameters and Greek

letters for epidemiological parameters. For the statistical estimation (see below)

we assume that all of the parameters are nonnegative, and a to be a proportion,

constrained to the interval [0,1].

4.2.3 R0, threshold criteria, and equilibria

In the absence of disease, the equilibrium population (N∗) will not be K, but

a proportion, p, of K. N∗ = pK, where p is a lengthy function of the demographic

parameters, which we estimated numerically. The reason it is not K is that in

this model only adults reproduce. If juveniles and sub-adults also reproduced, the

other parameters would cancel out and result in N∗ = K. From this model, we can
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Table 4.1. Notation used to denote model variables and parameters and their maximum
likelihood estimates.

Estimate Description
Variables

J number of juveniles
SSA number of susceptible sub-adults
ISA number of infected sub-adults
SA number of susceptible adults
IA number of infected adults
A total number of adults
I total number of infected individuals
N total number of individuals
K carrying capacity

Parameters
b 0.315 maximum birth rate (when N = 0)
d 3.66× 10−5 minimum death rate (when N = 0)
r 0.3149 b− d
a 0.614 proportion of the density dependence attributable to

births
m1 2.12 maturation rate from juvenile to sub-adult
m2 1.05 maximum maturation rate (when A = 0) from sub-

adult to adult
p 0.879 proportion of K that is the disease-free equilibrium

(N∗ = pK)
β1 1.94× 10−3 transmission rate for sub-adults
β2 7.50× 10−3 transmission rate for adults
µ 0.085 disease-induced mortality rate (Luis et al., in review;

chapter 3)
DSA 0.215 proportion of the population made up of sub-adults at

the disease-free equilibrium
DA 0.737 proportion of the population made up of adults at the

disease-free equilibrium

derive an expression for the basic reproductive number, R0. Where, as always, R0

is the expected number of secondary cases from a single case in a fully susceptible

population. If R0 > 1, then a single case will, on average, result in more than one

secondary case, and the disease can invade and cause an epidemic. If R0 < 1, the

disease cannot invade and will fade out. For our model:

R0 =
β1N

∗DSA + β2N
∗DA

µ+ d+ (1− a)rp
, (4.4)
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Figure 4.3. Minimum number alive, MNA, (light dashed line), carrying capacity, K,
(heavy solid line), used to estimate parameters, and simulated abundance from the model
(heavy dashed line).

where D is the stable age distribution, so that DSA and DA are the proportion of

the population that is made up of sub-adults and adults, respectively.

Because the virus has density dependent transmission, and R0 is a function of

density, there will be a critical host density below which the virus cannot invade,

(e.g. Anderson et al., 1981). This critical host density, Nc, is the density at which

R0 = 1. If the density falls below this threshold, R0 will drop below one and the

disease cannot invade. If the density increases above this threshold, an epidemic

is possible. For our model, the critical host density is

Nc =
µ+ d+ (1− a)rp

β1DSA + β2DA

. (4.5)

If environmental conditions are favorable, K increases, the equilibrium density

increases, and the mouse population increases above Nc. If SNV is present, it can

persist and cause an epidemic.

4.2.4 Data

To parameterize the model, we used 15 years of mark-recapture data from two

trapping grids (3 km apart) in Cascade County, central Montana from June 1994

through December 2008. Deer mice accounted for over 85% of the small mammal

assemblage (Douglass et al., 2001). Live-trapping occurred for three consecutive

nights each month. Grids consisted of 100 trap stations equally spaced (10 meters

apart) in a square of 0.81 ha with one Sherman live trap per station. Individu-
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als were tagged with uniquely numbered ear tags and classified into age classes

based on weight according to the definitions of Fairbairn (1977): juveniles <14g,

subadults >14 and <17g, and adults ≥17g. Since the mouse abundances on the

two grids were significantly correlated (Pearsons product moment correlation test

on minimum number alive (MNA); R=0.77, p= 2.2 × 1016; Luis et al, 2010), we

analyzed the capture histories from the two grids jointly. Individuals were con-

sidered infected if they had detectable antibodies to SNV (except for juveniles, as

explained above) by enzyme-linked immunosorbent assay (ELISA) at the Montana

Department of Health and Human Services or at Special Pathogens Branch, Cen-

ters for Disease Control and Prevention, Atlanta, Georgia (Feldmann et al., 1993).

For a detailed description of the field methods see Douglass et al. (2001).

4.2.5 Parameter Estimation

We used mouse captures on the two grids as an index for density of the 5

classes. The disease-induced reduction in monthly survival probability for infected

deer mice was estimated using mark-recapture statistical modeling as described

previously (Luis et al. in review, chapter 3). This probability was converted to

a rate for the estimate of disease-induced mortality, µ, which was an average of

the female and male rates (according to rate=-log(1-probability)). We numerically

integrated the first-order ordinary differential equations (eq 4.3) as implemented

in the ’lsoda’ function from the odesolve package for R software (R Development

Core Team, 2005). Although we do not have an independent measurement of

the time varying K for the system at this time, we use the simplifying scenario

that density lags behind K by a few months. The implicit assumption is that

demographic change is relatively fast compared to environmental change. We

set K equal to a smoothed spline of the MNA 4 months ahead. We used these

time varying K values to estimate the remaining parameters in the model using

maximum likelihood (e.g., Bolker, 2008). For this, we numerically minimized the

negative log-likelihood between the model and the vectors of abundance for the 5

classes over the whole trajectory assuming Poisson errors and using the Nelder-

Mead algorithm implemented in the ’optim’ function.
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4.2.6 Analysis

To analyze the lags between density and prevalence, we used the cross cor-

relation function to find the lag which gave the largest correlation for both the

data and model. We also ran simulations to determine the effect of the different

parameters on the dynamics. Using a push disturbance, from K = 50 to K = 120,

we varied all the model parameters individually (b, d, m1, m2, β1, β2, a, and µ),

and determined the lag between maximum density and maximum prevalence, and

compared this lag to R0 for the given parameter values. We ran simulations with

different values of K and determined the time lag between maximum density and

maximum prevalence. Also, for different values of K, starting from equilibrium

in the absence of infected individuals, we determined how long it took to reach 5

infected individuals from 1 initial infection.

4.3 Results

This relatively simple stage structured SI model has interesting dynamical prop-

erties. In the absence of disease, the population reaches disease free equilibrium,

N∗ = pK. In the presence of disease, the model shows stable endemic dynamics
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Figure 4.4. (a) The prevalence of the virus is determined by the equilibrium population
size, N∗, or K. As a result, (b) the regulatory impact of the virus is a function of N∗,
shown here as the proportion of the disease free equilibrium population remaining in the
presence of the disease.
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Figure 4.5. Deer mouse abundance (MNA; solid black line) over the study period in
relation to the critical host density, Nc (dotted black line), as well as number of infected
mice (MNI; red dashed line; scale on the right).

when R0 > 1. Increasing K leads to a linear increase in R0 and a nonlinear increase

in the equilibrium prevalence once the critical host density, Nc is exceeded (Fig

4.4a).

All maximum likelihood estimates for the model parameters are given in table

4.1. The stable age distribution of the model and the mean age distribution of the

data were similar (model: J = 0.05, SA = 0.21, A = 0.74; data: J = 0.05, SA =

0.19, A = 0.76). Using these estimates and assuming the stable age distribution

for the model, the critical host density, Nc, was 33 mice (per 2 ha). We find that

in the data, the population was below this critical threshold 52% of the time (Fig

4.5). R0 ranged from 0.19 to 5.73 in the best environmental conditions, with a

mean=1.27, and median=0.96. If we use the number of sub-adults and adults

present, rather than the model predicted stable age distribution, R0 was estimated

to be below one 64% of the time.

Disease-induced mortality was estimated from the mark-recapture data as de-

scribed in Luis et al. (submitted; chapter 3), and as we discussed there, this is

likely to be an underestimate. Therefore, we explored the effect of varying µ on the

pathogen dynamics. The disease-induced mortality affects both R0 and the criti-

cal host density. With the estimated parameters, if there was no disease-induced

mortality, the critical host density would be as low as 19 mice; increasing µ to 0.2

would increase the critical host density to 53 mice (Fig 4.6).
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Although our previous work shows support for density dependent transmission

(chapter 3), the prevalence is not predicted to increase with density if looking at

the current month (Fig 4.7). Instead, there is clear evidence of delayed density

dependence in prevalence. The dominant lag between a peak in abundance and

a peak in prevalence was 16 months for both the data (R=0.367, p< 0.0001,

CCF=0.348) and the model (R=0.90, p< 0.0001, CCF= 0.737) (Fig 4.6). This

lag can be seen in the large increase in density in 2002 and the subsequent peak

in prevalence in 2003 (see Fig 4.8).

To explore what affects this lag between density and prevalence, we ran simu-

lations individually varying the carrying capacity and model parameters. All the

model parameters affected this lag to some extent. By individually varying b, d,

m1, m2, β1, β2, a, and µ, and calculating both the lag and the R0 associated with

these parameter values, we found that the lag between a peak in density and a

peak in prevalence is negatively correlated with R0 (Fig 4.9a).

We also looked at the effect of K on this lag. With higher K values, the pop-

ulation reached equilibrium and maximum prevalence faster, because of increased

transmission. To illustrate, for various K values, starting from equilibrium in the

absence of infected individuals, we looked at how long it took to reach 5 infected

individuals from 1 initial infection (Fig 4.9b). For a K value of 50 (near the mean

of the data), it took 37 months to reach only 5 infected individuals. With K = 150,

it took 4 months. If the population is not starting from equilibrium, (if K has just

increased), it will take even longer to equilibrate and reach the maximum density

and maximum prevalence.

0 20 40 60 80 120

0
1

2
3

4

N=N*

R
o

●

●

●

●

●

●

● µ=0
µ=0.04
µ=0.085
µ=0.12
µ=0.2
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Figure 4.7. Prevalence appears to be negatively correlated with current density in both
(a) the data and (b) the model, although transmission is positively density dependent.

Since SNV causes disease-induced mortality, it has the potential to regulate

the deer mouse population (Luis et al., in review; chapter 3). The strength of

the impact on the population is largely determined by the prevalence, which as

discussed above, is a function of previous density or carrying capacity as shown in

Fig 4.4. For example, for the estimated disease-induced mortality, when prevalence

is at 30% (as seen in the study) the population is reduced to 18% below the disease-

free equilibrium density (shown in Fig 4.4a as 82% remaining in the presence of

disease).

4.4 Discussion

This is the most comprehensive study to date of SNV and deer mouse pop-

ulation dynamics, including age-structured demographic and epidemiological pa-

rameter estimates, transmission rates, R0, critical host density, and impact on the

host population dynamics, using detailed long-term demographic data. Several

aspects of the observed patterns of SNV infection in deer mice are explained with

this simple age-structured SI model. The analysis revealed that approximately 33

mice per 2 hectares are necessary for invasion, and 52% of the time the population
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Figure 4.8. The strongest correlation between density and prevalence by cross correla-
tion function (CCF) is at a 16 month lag for both (a) the data and (b) the model.

was below this critical threshold. This finding explains the sporadic disappearance

of the virus and reintroductions of the virus resulting in only a few infected indi-

viduals, rather than an epidemic. SNV in deer mice appears to be at the edge of

local persistence. There is local extinction followed by reintroduction by infected

immigrants from other populations; the virus must persist at the regional rather

than local scale (similar to that described by Glass et al., 2000).

Another pattern elucidated is the relationship between density and prevalence.

The two most commonly used formulations for disease transmission are density

dependent and frequency dependent transmission (McCallum et al., 2001). One

way to determine if transmission is density dependent or frequency dependent

is to look at the prevalence of the infection in relation to the density of hosts.

If prevalence increases with host density, the infection is said to have density

dependent transmission. If prevalence remains roughly the same with increased

density the infection is said to have frequency dependent or density independent

transmission. The results presented here suggest that the time scale at which this

relationship is investigated is important. The current or previous month’s density

does not appear to be positively correlated to the prevalence of SNV. This may

lead one to assume that transmission is not density dependent. However, after
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an increase in the carrying capacity and an increase in mouse density, this slowly

circulating virus can take months to reach a maximum in prevalence, by which

time, the population density may have begun to decline again from a decrease in

the carrying capacity. The lag at which a positive correlation between density and

prevalence would be found depends on all the demographic and epidemiological

parameters, and appears to be longer for pathogens with lower R0. In the same

way that diseases with a lower R0 have a higher age at first infection (Anderson and

May, 1991), a more slowly circulating virus may take a number of months to build

to a maximum prevalence after an increase in density. Another complication is that

this lag may not always be the same, even in the same population, because it also

depends on the carrying capacity which may be constantly changing. Therefore,

even within one time series, determining if the infection is density dependent or

independent may be difficult.

A consistent finding in SNV field studies is that older, heavier mice are more

likely to be infected (i.e., Abbott et al., 1999; Bennett et al., 1999; Mills et al.,

1999b; Douglass et al., 2001). Our results concur; the rate at which adults became

infected was almost 4 times greater than that for subadults (β2=7.50 × 10−3 and

β1=1.94 × 10−3, respectively). This is fitting since much of the transmission is
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Figure 4.9. (a) The lag between a peak in density and the peak in prevalence is
negatively correlated with R0. (b) The number of months it takes to reach 5 infected
individuals from 1 initial infection is negatively correlated with the carrying capacity,
K.
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thought to occur through aggressive contacts, which are more common in repro-

ductive individuals (Glass et al., 1988; Mills et al., 1997). However, these findings

also suggest that another reason for a higher age at infection is that the virus has

a low R0 and is slowly circulating.

As discussed above, Madhav et al. (2007) found a positive correlation between

density in September and prevalence the following May. Since our model did not

include seasonality, the delayed-density dependence is not simply due to strong

seasonality in birth rates and transmission, although this may explain why preva-

lence often peaks in the spring (Douglass et al., 2001; Kuenzi et al., 2005; Madhav

et al., 2007). Another mechanism proposed by Madhav et al. (2007) and Mills et al.

(1999a), dilution by new recruits, appears to be one important mechanism for this

delay. An increase in density through an increase in birth rate when environmental

conditions are favorable leads to more uninfected mice (since there is no vertical

transmission), and a number of months may be necessary for enough transmission

to increase the prevalence significantly. A portion of the data used in this study

was also used in their study along with data from other field sites in Montana.

Madhav et al. (2007) reported an 8 month lag, however in that study they did not

examine months other than September and May or different lag times. Our find-

ings suggest that the delay between density and prevalence may vary between field

sites if certain demographic and epidemiological rates and environmental drivers

differ between habitat types. This is an important area for future study.

Although we were able to explain the SNV epizootic in 2003 after the mouse

irruption in 2002, we were not able to explain all other smaller fluctuations in

prevalence that occurred when N < Nc. In these cases, mouse densities were

insufficient to sustain a chain of transmission and infections were most likely in-

troduced from an infected immigrant or two which resulted in a stuttering chain

of transmission before fading out. This means that we only have data on a single

robust outbreak in which the population was above Nc for a significant amount of

time. There were times when N increased to slightly above Nc for a few months.

However, a much longer time or much larger change in density is needed to cause

a significant outbreak. For example, if K increased to 50, density would increase

to 44 mice (which is above Nc), and if one infected mouse was introduced it would

take 37 months to get enough transmission to give rise to 5 infected mice, because
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contact rates and transmission are still low for this density. Long before that time,

K would likely have decreased again and the density fallen to below Nc, causing

the infection to fade out. Therefore, it appears that the 4 or fewer individuals

infected at any one month through the rest of the study, were likely stochastic

immigration events. Therefore, the largest problem with prediction is the large

amount of stochasticity. Although we are not able to predict these smaller fluc-

tuations, the largest threat of HPS to humans probably occurs when R0 is above

one. In support of this, the most human cases per year in Montana (5) occurred

in 2003 (unpublished data from the Montana State Department of Public Health

and Human Services).

The infected immigrants must be coming from some location whereR0 is greater

than 1. SNV studies in the U.S. Southwest have concentrated on finding these ’refu-

gia’, small patches of suitable habitat that can support a high enough density of

mice to support transmission, even when environmental conditions are unfavorable

elsewhere. Using satellite imagery, Glass et al. (2002, 2007) have identified some

probable refugia sites in the Southwest, which are characterized by deciduous or

mixed forest land cover on moderate to steep slopes above 2130 m elevation and

tended to be near water bodies or on mesas or mountains. The refugia sites could

be very different in Montana, and more research is needed to try to identify pos-

sible habitat characteristics associated with densities above Nc, where disease can

persist.

Previous SNV models assume no disease-induced mortality (i.e., Abramson

and Kenkre, 2002; Aguirre et al., 2002; Abramson et al., 2003; Buceta et al.,

2004; Escudero et al., 2004; Adler et al., 2008). We estimated the disease-induced

mortality rate, µ, to be 0.085 (chapter 3), which has important effects on the

disease dynamics as well as the host population dynamics. Having disease-induced

mortality effectively reduces the infectious period and decreases R0, making the

virus less likely to invade and more likely to fade-out. The addition of disease-

induced mortality in the model increases the critical host density necessary to

sustain an epidemic, Nc. Without disease induced mortality, Nc would be 19 mice

per 2 hectares, whereas with the calculated µ of 0.085, Nc = 33 mice per 2 hectares.

If µ is underestimated (as it may well be; see chapter 3), then it may increase our

estimate for Nc.
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Since SNV causes disease induced mortality (chapter 3), it has the potential to

regulate the host population. Here, the strength of regulation largely depends on

the prevalence of the virus, which is determined by the carrying capacity. During

the study, prevalence reached as high as 30%, and during that time, the population

may have been regulated to 18% below the disease-free equilibrium. Since there

is a delay between an increase in density and an increase in prevalence and the

subsequent effect on host population dynamics, this can lead to delayed density

dependent regulation, which can lead to destabilization of the host population

dynamics (Xiao et al., 2009). However, in this case, the climatic drivers are the

dominant force in determining prevalence in this system, which act independent

of density, often bringing the population density low enough to cause the virus to

go locally extinct.

There is evidence that in rodents, disease transmission may be a saturating

function of density, with density dependent transmission at low population densi-

ties and frequency dependent at high densities (Smith et al., 2009). This could be

explored by replacing the density dependent force of infection, βSI, with a more

flexible force of infection,βSI
Nq , which could include frequency dependent transmis-

sion (if q = 1), density dependent transmission (if q = 0), or other relationships

between host density and transmission (other values of q) (Smith et al., 2009). We

explored this question of how SNV transmission scales with deer mouse density, by

using the more flexible force of infection, and the maximum likelihood estimate for

q was < 0.0001 (data not shown), indicating that density dependent transmission,

as presented here, was appropriate.

Since a was estimated to be 0.614, this means that density dependence was

slightly stronger in birth rates than in death rates. This does not necessarily mean

that litter sizes changed with density. Since the birth rate, b, is estimated from the

number of juveniles trapped per adult, it is a combination of litter sizes, number

of litters, and nestling survival until entering the trappable juvenile population, as

well as early immigration.

Previously, models of SNV have demonstrated interesting theoretical dynamical

properties, some of which are described here, such as increasing prevalence with

increased density and the presence of a critical host density, which could lead to

local extinction after environmental conditions decreased the carrying capacity.
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However, only two previous studies have compared or fit their models to field

data of SNV infection in deer mice (Peixoto and Abramson, 2006; Adler et al.,

2008). Abramson and Peixoto fit a non-age-structured SI model to data from

Yates et al. (2002) from Zuni, New Mexico and estimated the critical host density

to be 2 mice per hectare (Abramson, 2004; Peixoto and Abramson, 2006). They

fit parameters for birth, death, and transmission rates from small subsets of the

full dataset, and say to take their estimates ”cum grano salis.” The time series

of density and prevalence confirms a low critical host density; there were infected

mice present at densities as low as 2 mice per hectare (Yates et al., 2002). It is

interesting how much lower this value is than our Nc = 16.5 mice per hectare. Even

without disease-induced mortality, the critical host density for our study would be

9.5 mice per hectare. It is possible that the way in which mouse contact rates

vary with density differs between the Southwest and Montana, and transmission

is not density dependent in their study. Adler et al. (2008) also fit a non-age-

structured model to the data from Yates et al. (2002). They did not calculate a

critical host density. There was no carrying capacity in this model; instead, birth

and death rates were modeled in two different ways, constant birth rate with time

varying death rate or vice versa. The baseline values for birth and death rates were

not estimated from those data, but from previously published studies elsewhere.

Transmission rates were estimated from the data to match the prevalence seen.

Adler et al. (2008) showed that a peak in the density of mice lead to a peak in

prevalence 15 months later, very similar to our data. Our study builds on these by

giving precise estimates of parameters and the critical host density from detailed

long-term field data, exploring what affects the lag between a peak in density and

a peak in prevalence, and showing that SNV has the potential to regulate the deer

mouse host population.

This relatively simple deterministic model neglects several factors that may be

important in the dynamics. Demographic stochasticity could make a difference,

when most often I < 10. However, our deterministic model allowed for fractions of

infected individuals, which made intermittent immigration of infected individuals

unnecessary. We did not include sex even though males are more likely to be

infected (Mills et al., 1999b; Douglass et al., 2001) and experience higher disease-

induced mortality (chapter 3). The disease-induced mortality rate used here was an
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average of that for males and females, therefore the model had less male deaths and

more female deaths than expected in the natural system. It is difficult to surmise

what affect this would have on the population since both male and female mice can

be promiscuous (Wolff, 1989). However, it is likely that removing males from the

population will have less of an impact on the population than removing females,

since males can inseminate many females. There is some evidence for increased

infectiousness in the first few months after infection (Botten et al., 2000), which

could affect the dynamics.

Since there is no effective treatment or vaccine for HPS, the most effective

strategy is to take preventative measures. This quantitative understanding of the

lags between environmental conditions and prevalence of infection may allow us

advance warning (up to 20 months or more) of increased risk to humans. Even

without knowledge of what environmental conditions are necessary to raise the

carrying capacity, monitoring the density of mice may provide several months

warning of a significant increase in prevalence of infection in rodent populations

and increased human risk.

4.5 Notes

This chapter will be submitted for publication with Richard J. Douglass, James

N. Mills, and Ottar N. Bjørnstad as coauthors.



Chapter 5
Hibernation patterns in mammals: a role for

bacterial growth?

5.1 Abstract

To examine the hypothesis that stimulation of immune function plays a role

in periodic arousal from hibernation, bacterial growth during hibernation was es-

timated using a simple mathematical model of the general dynamics of bacterial

abundance at body temperatures experienced during hibernation. In the model,

periodic arousals were important for animals infected with Salmonella at body

temperatures above 7◦C, but not below. In contrast, periodic arousals appeared

to be important at all temperatures examined when infected with several species

of coliform bacteria and Pseudomonas sp., species which grow well at low temper-

atures. The modeled outputs were compared to torpor patterns seen in captive

European ground squirrels, Spermophilus citellus, under natural light and tem-

perature conditions. We used maximum likelihood to estimate model parameters

and show that the six bacterial species examined are consistent with the immune

stimulation hypothesis. Our analyses suggest that bacterial infection could be a

selective force on torpor behavior and warrants further experimental investigation.
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5.2 Introduction

Hibernation is an adaptive strategy used by endotherms when periods of re-

duced food availability coincide with low winter temperatures and result in in-

creased demand for metabolic energy to maintain body temperature (Karmanova,

1995). Torpid hibernators are thermo-conforming over a wide range of ambient

temperatures and allow their body temperature to drop to 1-2◦C above the ambient

temperature and drastically decrease their cardiac, respiratory and metabolic rates

(Geiser and Kenagy, 1988). Indeed, every physiological system seems to be affected

(Lyman, 1958; Nedergaard and Cannon, 1990; Karmanova, 1995). The adaptive

value of hibernation is to conserve energy, although hibernating animals periodi-

cally emerge and their body temperature and cardiac, respiratory and metabolic

rates return to normal for a period of usually less than 24 hours (Pengelley and

Fisher, 1961; Willis, 1982; Geiser et al., 1990). These periodic arousals can cost

animals up to 80% of their stored energy resources (Kayser, 1953; Wang, 1978),

but the true function remains unclear and indeed may be multi-factorial. Several

hypotheses have been considered to explain these arousals, including, restoration

of electrolyte balance, regeneration of gonads, prevention of muscular atrophy,

elimination of metabolic wastes, evaporative water loss, replenishment of blood

glucose, and elimination of sleep debt (Fisher, 1964; Fisher and Manery, 1967;

Galster and Morrison, 1970; Barnes et al., 1986; Wickler et al., 1987; Daan et al.,

1991; Thomas and Geiser, 1997). However, several of these hypotheses have been

challenged (Willis, 1982), and the true function of periodic arousals remains un-

certain.

One additional hypothesis is that periodic arousals are necessary for mounting

an immune response to tackle pathogens that invade the host prior to or during

torpor (Prendergast et al., 2002). Energetically the immune system is very costly

to maintain (Lochmiller and Deerenberg, 2000). Furuse and Yokota (1984) showed

that germ free birds fed a diet with limited protein, grew 78% faster than birds

with normal gut bacteria. Since hibernation is primarily an adaptation for conserv-

ing energy, and the immune system is energetically costly then we would expect

hibernators to reduce their response during torpor but to reactivate the dormant

immune system by exhibiting periodic arousals that would test the infection status
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of the host (Prendergast et al., 2002). Although the effect of hibernation on the im-

mune system has received little attention, a few studies have demonstrated that the

activation of lymphocytes, production of antibodies, and the acute phase response

to lipopolysaccharide (LPS) are arrested during torpor (McKenna and Musacchi,

1968; Maniero, 2000; Prendergast et al., 2002), so it appears that arousals may be

needed to mount an effective immune response.

Hibernating animals may not be able to determine their infection status while

in torpor (Prendergast et al., 2002), consequently, they would need to arouse peri-

odically to check for infections. Given the high energetic cost of arousal we should

ask how often animals should arouse from torpor. The natural torpor patterns ex-

pressed by hibernating animals vary between species and even among individuals

of the same species, but some general patterns are observed. For instance, torpor

bouts are shortest at the onset of hibernation and become longer as the hibernation

season progresses, until prior to emergence when they once again shorten (Geiser

and Brigham, 2000; Henning et al., 2002; Hut et al., 2002; Zervanos and Salsbury,

2003). There is good evidence that torpor bout varies with ambient temperature

(Ransome, 1971; Geiser and Kenagy, 1988; Geiser et al., 1990; Park et al., 2000).

In this study we ask if these patterns could be explained by bacterial dynamics.

Presumably, hibernating animals expressing the optimal torpor bout length will

be selected for, since if the torpor bout is too long, rampant infection could cause

host damage or mortality. On the other hand, if the torpor bouts are too short, the

animal would waste critical energy reserves which may lead to reduced condition

in the spring or even mortality.

To examine the hypothesis that bacterial infection could account for host torpor

patterns, we designed a mathematical model of the optimal torpor patterns that

incorporated bacterial growth rates at different host temperatures and then com-

pared outputs with observed torpor arousal data. We asked two specific questions:

What torpor patterns could we expect if the function of arousals is to control bac-

terial infection? Can we explain the torpor patterns observed in European ground

squirrels, Spermophilus citellus, with our simple mechanistic model? Modeling

predicted torpor patterns in relation to bacterial growth could provide insights to

direct further experimentation needed to address this hypothesis.
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5.3 Methods

5.3.1 Model and Data

Bacterial growth rates in relation to temperature were estimated using the

equation from Ratkowsky et al. (1982):

√
r = b(T − T0) (5.1)

where, r is the bacterial growth rate and T is the temperature. When the square

root of the growth rate (
√
r ) is plotted against temperature (T ), b is the slope of

the regression line, and T0 is the x-intercept. Initially, two representative bacte-

rial species were selected, based on availability of growth rate data in relation to

temperature. Salmonella enterica data were obtained from Mackey and Kerridge

(1988), and a Coliform species (C1) from Baig and Hopton (1969) (Fig. 5.1). Bac-

terial population growth inside a hibernating animal was examined assuming that

bacteria continue to divide at a constant rate with no density dependent food or

space constraint. This was described using the doubling equation:

Nt+1 = 2rNt (5.2)

where, N is the bacterial population size, and r is the growth rate of the bacteria

( ≈1/ generation time).

When infected during torpor we assume that the bacteria grow exponentially

at a rate determined by the host body temperature, until they either damage or

kill the host. The immune stimulation hypothesis postulates that there would be

a selective advantage amongst those individuals that terminate a torpor bout to

let the immune system check and combat any itinerant infection before it causes

damage. For this model, we assumed arousal and immune function should occur

when the bacteria population reaches 109. Although this number is essentially

arbitrary, we know that for at least some bacterial pathogens (i.e., Salmonella

enterica), when numbers increase above 109, the host becomes septicemic and may

die (Vazquez-Torres et al., 2004). We used this figure as a starting point and then

undertook a sensitivity analysis to determine the sensitivity of any conclusions to
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this amount. We also assumed that the bacteria infect the host at the beginning

of hibernation and that the initial inoculum size is 100 bacteria.

Antibody production during hibernation is insignificant and even during peri-

ods of arousal is significantly less than in non-hibernating animals, and takes much

longer to reach detectable levels such that it takes several periods of arousal for the

acquired immune response to rise (Dempster et al., 1966; McKenna and Musacchi,

1968; Burton and Reichman, 1999). In the model we therefore assume the animals

produce no antibodies, and consequently there is no clearance of the bacteria, so

the innate immune response is the principle mechanism for controlling infection.

The innate response acts to reduce the bacterial population to 105, an arbitrary

level, but one based on the innate control of bacterial numbers in wildtype mice

recorded in both Salmonella and Bordetella bronchiseptica (Vazquez-Torres et al.,

2004; Mann, 2005). We then explored the significance of this level on our final con-

clusions using a sensitivity analysis. In the model, the animal remains euthermic

for 18 hours, which is a typical length of an arousal episode, including re-warming,

euthermic period, and cooling below 30◦C (Hut et al., 2002). After 18 hours, the

animal returns to torpor, allowing the bacterial numbers to increase again from

105.

Next, how the ambient temperature in the hibernaculum and minimum tor-

por body temperature changed during a hibernation season were considered. A

representative profile of minimum body temperature throughout hibernation was

recorded in the European ground squirrel by Henning et al. (2002; Fig. 5.2c). This

temperature profile can be represented over 4320 hours or a 6 month hibernation

period by the equation:

y = 2× 10−6x2 − 0.0105x+ 15.011 (5.3)

where, y is the temperature (◦C), and x is the time (hours). Since the rate of

bacterial growth changes with temperature, torpor bout length becomes dynamic

using this changing temperature profile in the model. Torpor patterns over an

entire hibernation season were predicted with respect to Salmonella and coliform

C1 bacterial growth, and subsequently other psychrophilic bacteria (after Baig

and Hopton) including coliform species designated C4 and EBT and Pseudomonas
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Table 5.1. Estimated slope, b, and x-intercept, T0, for the psychrophilic bacteria in
Baig and Hopton (1969) when the square root of the growth rate (divisions per hour) is
plotted against temperature (K).

Bacterium b T0

Coliform species
C1 0.020 264.77
C4 0.019 265.77

EBT 0.019 264.74

Pseudomonad species
P11 0.017 264.74
P14 0.022 265.50
P26 0.019 264.55

species P11, P14 and P26 (1969).

The model outputs were compared to observed torpor patterns and correspond-

ing minimum body temperatures collected for six European ground squirrels held

in captivity in outdoor enclosures under natural light and ambient temperature

conditions from Hut et al. (2002) and one European ground squirrel in the labo-

ratory under simulated natural conditions from Henning et al. (2002).

5.3.2 Analysis

In the model, torpor bout length is determined by body temperature through-

out the bout. The relationship between minimum body temperature during a

torpor bout and torpor bout length for European ground squirrels was explored

and compared to the modeled outputs for the six psychrophilic bacteria from Baig

and Hopton (1969). Given the European ground squirrel data (Henning et al.,

2002; Hut et al., 2002) and our model (equations 5.1 and 5.2), we used maximum

likelihood techniques to estimate what parameters for bacterial growth (b and T0)

would be consistent with the immune stimulation hypothesis. We assumed Gaus-

sian likelihoods for the torpor lengths, such that the negative log likelihood is equal

to (1/n) logSS (e.g., McCullagh and Nelder, 1989), where SS is the squared differ-

ence between the observed and model predicted torpor lengths. Unique maximum

likelihood estimates for b and T0 were found using the Nelder-Mead algorithm
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as implemented in the optim function in R (R Development Core Team, 2005).

However, because of the strong colinearity between b and T0, there is a range of

parameter combinations with almost identical likelihoods. We therefore used two

dimensional profile likelihood to map the set of near optimal parameter combina-

tions. We used likelihood ratios assuming χ2 distributions with 1 degree of freedom

(e.g. McCullagh and Nelder, 1989) to compare the observed bacterial growth data

with those expected based on the maximum likelihood estimates. All calculations

were done using R version 2.0.1 (R Development Core Team, 2005).

5.4 Results

From known temperature dependent growth rates of bacteria, we extrapolated

growth rates using equation (5.1) from Ratkowsky et al. (1982) (Table 5.1). Ini-

tially, we examined the growth rates of Salmonella enterica (Mackey and Kerridge,

1988), and a coliform species (C1 from Baig and Hopton (1969)). At temperatures

above 11.5◦C, Salmonella grows better than coliform, but below 11.5◦C, coliform

grows better than Salmonella (Fig. 5.1).

We examined bacterial growth rates in a hibernating animal with a body tem-

perature of 10◦C. For Salmonella, which has a growth rate of 0.1074 divisions per

hour at 10◦C, the initial torpor bout lasted approximately 9 days, and the subse-

quent torpor bouts were approximately 5.3 days until bacterial numbers reached

109. Coliform bacteria have a higher growth rate (r = 0.1354) at 10◦C than

Salmonella, and, subsequently, this species reached 109 faster than Salmonella.

The model predicted an initial torpor bout of approximately 7.2 days and subse-

quent torpor bouts of 4.2 days, for this bacterial species.

Running the model using the minimum body temperatures during hiberna-

tion described by equation (5.3) gives two distinct sets of torpor patterns for the

two bacterial species, Salmonella and coliform (Figs 5.2a and b, respectively).

Since Salmonella does not grow well at temperatures below 7◦C, the optimal tor-

por bouts lengthen since it now takes much longer for the bacteria to reach 109.

However, since coliform bacteria grow well at these low temperatures, the torpor

bout durations only moderately lengthen (Fig. 5.2b). Running the model with

other psychrophilic bacteria, coliform species C4 and EBT and Pseudomonas sp.
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Figure 5.1. Relationship between square root of bacterial growth rate and temperature
for Salmonella (Mackey and Kerridge, 1988) and coliform C1 (Baig and Hopton, 1969)

P11, P14, and P26 (Baig and Hopton, 1969), gives similar patterns as C1 (data

not shown). Data from a representative European ground squirrel (figure 1 from

Henning et al., 2002) are presented for comparison (Fig. 5.2c).

Using maximum likelihood, bacterial parameters (b and T0) that give the best

fit of the model to the data were calculated as: b =0.0119 and T0 = 256.700. Using

these optimal bacterial parameters, torpor bout length was predicted for the body

temperatures from European ground squirrels and compared to the corresponding

torpor bout lengths recorded. Linear regression gives an R2 of 0.57. Due to the

co-linearity of the model parameters, the result is a ridge in likelihood space (Fig.

5.3). All six bacterial species from Baig and Hopton (1969) (C1, C4, EBT, P11,

P14 and P26) are within the 0.01 likelihood ratio statistic, which corresponds to

p= 0.92 (1 df).

A sensitivity analysis on the threshold values of 105 and 109 revealed that

changing these parameters by 10 fold changed the likelihood ratio by just 0.01,

which is still highly significant (p> 0.85) and makes no substantive differences to

the findings of this model.
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Figure 5.2. Predicted and observed torpor patterns throughout a hibernation sea-
son. (a) Predicted expression for a hibernating animal exposed to bacterial pathogens
with growth properties similar to Salmonella and (b) coliform C1. (c) Observed torpor
patterns in a European ground squirrel in captivity under simulated natural light and
ambient temperature conditions (figure 1 from Henning et al., 2002).

5.5 Discussion

We explored the hypothesis proposed by Prendergast et al. (2002) that bacterial

infection is an important selective force on torpor patterns because the immune

system is impaired during torpor, and periodic arousals are necessary to initiate

control of any itinerant infections. Specifically, we asked: What torpor patterns

would we expect to see if the function of arousals is to control bacterial infection?

How do these predicted torpor patterns compare to observed patterns? Through

modeling we found that the predicted torpor patterns are dependent on the growth
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properties of the bacterium in relation to temperature. Although bacterial growth

rates are much slower at temperatures experienced during mammalian hibernation,

some bacteria are able to replicate at temperatures as low as -20◦C (Deming, 2002).

If animals are exposed to pathogenic bacteria with growth properties similar to

Salmonella, periodic arousal to control infection would be an important adaptation

at temperatures above 7◦C, but not below 7◦C because, pathogenic bacteria with

these growth properties do not grow well at low temperatures. However, if animals

are exposed to pathogenic bacteria that are able to grow well at low temperatures,

like the psychrophilic coliform and Pseudomonas sp. described by Baig and Hopton

(1969), periodic arousals would be important throughout hibernation at all the

temperatures examined.

Fitting optimal bacterial parameters to the model results in a ridge in likeli-

hood space in which the six bacteria described from Baig and Hopton (1969) fit

within the 0.01 likelihood test statistic. Therefore, 92% of the time we would see

data this extreme if the model fit the data. From this, we conclude that several

species of psychrophilic bacteria could produce the torpor patterns observed. Fur-

thermore, this simple model that considers only bacterial growth rates at different

temperatures, offers a parsimonious explanation for the general torpor patterns

observed in some hibernating animals. These findings do not suggest that all an-

imals arouse because they are infected, but that the animals that express these

torpor patterns may have been selected for because they were able to deal with

bacteria that are able to grow well at low temperatures, such as some coliform and

Pseudomonas species. This approach provides support for the hypothesis because

the data are consistent with the model but experimental studies are needed to test

the hypothesis.

An interesting discrepancy between the model and the data is that in nature,

hibernating animals generally do not have a longer first torpor bout than subse-

quent bouts, whereas the model shows this to be the case. However, in the model

the length of the first bout is determined by the bacterial inoculum size, whereas

subsequent bouts are not, so the length of the first bout is a consequence of the

initial infection size while subsequent ones are not. In nature, some hibernators

display a shorter first torpor bout in which they experience shallow decreases in

body temperature, called test drops. These animals may be re-setting their hy-
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pothalamic thermostat which may help to acclimate cellular functions to the onset

of low body temperature (Hammel, 1967; Zervanos and Salsbury, 2003).

Hibernators thermo-conform over a wide range of ambient temperatures, how-

ever, when ambient temperature (Ta), drops below a threshold, body temperature

(Tb) remains constant. This threshold is the body temperature set point (Tbset).

As Ta decreases below Tbset, the animal thermoregulates and maintains Tb at Tbset

to avoid a lethal decline in Tb (Geiser and Kenagy, 1988; Buck and Barnes, 2000).

If considered at all temperatures, our model would predict that torpor bout length

always increases as Tb decreases. However, in hibernating animals this is only ob-

served when Tb is above Tbset. When Tb drops below Tbset, the torpor bout lengths

decrease (Geiser and Kenagy, 1988; Buck and Barnes, 2000).

Other hypotheses have been proposed to explain the function of arousals and

may explain this phenomenon. Several of these can be grouped under metabolism

effects, such as reduction of energy substrates and accumulation of metabolic

wastes. Metabolic rate decreases with Ta until it drops below Tbset therefore,

these metabolic effects would occur at a slower rate as ambient temperature de-
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Figure 5.3. Bacterial parameters (b and T0) that give the best fit of the model to the
data, using maximum likelihood estimates. Contours show likelihood test statistics. The
six psychrophilic bacteria described by Baig and Hopton (1969) are givsen by circles, and
the filled triangle represents the optimal parameter combination.
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clines to Tbset, allowing for longer torpor bouts (Geiser and Kenagy, 1988; Geiser

and Brigham, 2000), also producing the inverse relationship of torpor bout lengths

and Ta as predicted from other temperature dependent processes such as bacterial

growth. However, regression analyses by Geiser et al. (1990) suggest that tor-

por bout lengths at Tas above Tbset are more strongly correlated with Tb than

metabolism, as measured by consumed volume of O2, lending some credence to

the immune stimulation hypothesis. However, at Tas below Tbset, metabolic rate

increases as the animal thermoregulates. Therefore, the relationship between tor-

por bout length and temperature at temperatures below Tbset is consistent with

metabolic rate hypotheses for the function of arousals (Buck and Barnes, 2000).

However, since at Tas above Tbset, torpor bout length is more strongly correlated

with Tb than metabolic rate (Geiser et al., 1990; Buck and Barnes, 2000), it appears

there may be two different arousal triggers, one for Tas below Tbset and another for

above Tbset. Buck and Barnes (2000) speculated that animals may need to arouse

more often at Tas below Tbset due to an increase in metabolism, to replenish glyco-

gen stores, whereas above Tbset, a temperature sensitive timing mechanism may

operate. This hypothesis is consistent with our model. Nevertheless, none of these

hypotheses for periodic arousals are mutually exclusive and these processes may,

in fact, act in concert.

Burton and Reichman (1999) argued that most pathogens are not able to repli-

cate at low temperatures. Mitosis at low temperatures has been shown to lead

to damage caused by disrupted microtubulin polymerization in some organisms

(Roth, 1967; Nagasawa and Dewey, 1972). However, each bacterial species has

different growth properties. Some are better at growth at low temperatures than

others and may be able to grow at temperatures lower than 5◦C, although at slower

rates (Baig and Hopton, 1969). So these bacteria could be an important selective

pressure that influences torpor patterns.

Different species of hibernating animals show large variations in their maximum

torpor bout lengths. For example, the edible dormouse has a reported maximum

torpor bout length of 792 hours, and the Turkish hamster has a reported maximum

torpor bout length of only 130 hours. In terms of the immune stimulation hypoth-

esis, this could be explained by differences in bacteria that these different species

have been exposed to. Furthermore, other microorganisms follow the growth rela-
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tionship described by equation (5.3) including fungi (Ratkowsky et al., 1982). In

fact, fungal pathogens often grow better at low temperatures (such as those Tbs

experienced by hibernating animals) as compared to bacteria (Ratkowsky et al.,

1982). Differences in maximum torpor bout length may be a result of exposure to

different bacterial or fungal pathogens. Furthermore, as mentioned earlier, none

of the hypotheses for the function of periodic arousal are mutually exclusive and

torpor patterns may result from a combination of factors.

Key simplifying assumptions were made in the model. One assumption is that

bacterial growth is not density dependent. We believe this is a reasonable as-

sumption since we are considering time points early in the growth process. We

also assume that bacterial growth and immunity rates are immediate and rise to

maximum, and the animal enters and arouses from torpor such that its body tem-

perature rises quickly to 37◦C. Although we know that animals may take less than

an hour to a few hours to arouse from torpor and longer to enter torpor, increasing

or decreasing their body temperatures between euthermic and ambient tempera-

tures (Hut et al., 2002; Park et al., 2000), no studies that we are aware of have

addressed the question of when during this re-warming process the immune system

begins to function effectively and when during cooling it ceases to function effec-

tively. Therefore, adding cooling and re-warming phases does nothing to improve

the model. To date, no experiments have characterized bacterial growth rates in a

hibernating animal, so the data for bacterial growth used in this model came from

experiments on minced beef (Mackey and Kerridge, 1988) and in culture (Baig and

Hopton, 1969).

The model indicates that hibernators exposed to bacterial pathogens would

benefit from periodic arousals, however several studies suggest that hibernators

exposed to viruses may not. Viral studies performed on hibernating animals in-

dicate that viral replication is undetectable during torpor, yet may occur during

periods of arousal (Sulkin et al., 1960; Dempster et al., 1966; Sulkin et al., 1966;

Main, 1979; Herbold et al., 1983). Dempster et al. (1966) also found that Coxsackie

B-3 virus was able to reach higher titers faster in animals recently aroused from

torpor, whether infected during torpor or 48 hours after arousal, and caused more

severe pathology than seen in non-hibernating animals. This would imply that

there are immunological trade-offs involved in periodic arousals, not only between
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conserving resources and immunological defense, but also between the optimal

immune responses for viruses and bacteria.

Understanding host-pathogen interactions in wildlife reservoirs is important if

we are to obtain insight into the emergence and spread of zoonotic diseases. Some

wildlife disease reservoirs are hibernating animals, such as bats, but relatively little

is known about disease dynamics in hibernators. Furthermore, with the increased

attention to hibernation for medical applications, such as preservation of tissue at

low temperature and reduction of physiological damage caused from trauma and

ischemia (Carey et al., 2003), understanding bacterial and immune dynamics at

these decreased temperatures could have important implications for human health.
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Appendix A
Supplemental Figures and Tables to Chapter 2

A.1 Robust Design Capture-Mark-Recapture

Model Comparisons

Table A.1. Statistical models tested using Closed Robust Design models to obtain an es-
timate for abundance at each monthly primary trapping occasion (session), N(∼session).

Model npar AICc Weight
S (∼time)γ”(∼1)γ’(∼1)p(∼session*time)c(∼session) 297 -2526.7 1
S (∼time)γ”(∼1)γ’(∼1)p(∼session*time)c(∼1) 242 -2492.9 0
S (∼time)γ”(∼time)γ’(∼time)p(∼session*time)c(∼session) 412 -2372.4 0
S (∼time)γ”(∼1)γ’(∼1)p(∼session)c(∼session) 237 -2046.6 0

(npar is number of estimable parameters, S is survivorship, γ is the probability of an
individual that was available for encounter during the last primary session temporarily
emigrating between the previous and current session, γ is the probability of remaining
outside the study area, p is probability of first capture, and c is the probability of
recapture. S(∼time) means that an estimate for survivorship is calculated for each
primary trapping session (month). ∼1 means a single value is estimated. Session means
an estimate for each primary trapping session. ∼session*time for p means an estimate
for each trapping occasion, primary or secondary. Since we saw some emigration during
the primary period we pooled the second and third sampling occasions into one (Kendall,
1999))
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Time

N

0 10 20 30 40 50 60
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40

80
12

0 Robust design
Jolly−Seber
MNA

Robust design
Jolly−Seber
MNA

Figure A.1. Population abundance estimates including Minimum Number Alive
(MNA), Jolly-Seber, and Closed Robust Design estimates from August 2004 to May
2009.
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A.2 Multistrata Capture-Mark-Recapture

Model Comparisons

Table A.2. Statistical models tested for variation in recapture rates (p), using multi-
strata models.

Model npar QAICc Weight
p(∼age class+time) 163 8079.9 0.987
p(∼time) 162 8088.6 0.013
p(∼month) 48 8363.0 0.000
p(∼season) 40 8389.2 0.000
p(∼age class) 38 8506.2 0.000
p(∼1) 37 8538.5 0.000

(npar is number of estimable parameters, age classes (strata) are juvenile and adult
based on weight, time denotes the full time-specific variation with 126 values estimated,
one for each capture occasion, month denotes 12 values estimated, one for each month
of the year, year denotes 11 values estimated, one for each year of the study, season
denotes 4 values estimated, one for each of the seasons, and a one denotes no time-
specific variation, which is a single value estimated for all capture occasions. For all
models survival (S) and maturation (ψ) models were the best of the basic models tested,
i.e. S(∼month) ψ(∼stratum*month), accounting for 36 of the parameters. QAICc is
the estimated quasi-Akaikes information criterion, using the correction factor, ĉ=1.28,
to adjust for lack-of-fit. Weight gives the statistical weight of that model compared to
the other candidate models.)
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Table A.4. Ranking of Pradel MARK models for recruitment rate (f)
with the following models for survival, φ, and capture probability, p:
φ(∼month*Pt−5+month*Tt−5+month*Pt + month*Pt) p(∼time).

Model npar QAICc Weight
f(∼month*Pt→t−4+month*Tt→t−4) 223 15218.68 0.481
f(∼month*Pt−2+month*Tt−4+MNAt) 224 15219.53 0.315
f(∼month*Pt→t−4+month*Tt→t−4 +MNAt) 224 15220.86 0.162
f(∼month*Pt→t−5+month*Tt→t−5+MNAt) 224 15224.58 025
f(∼month*Pt→t−5+month*Tt→t−5+MNAt−1) 224 15226.60 0.009
f(∼month*Pt−4+month*Tt−4+MNAt−1) 224 15227.04 0.007
f(∼month*Pt+month*Tt+MNAt) 224 15232.77 0
f(∼month*Pt−3+month*Tt−3+MNAt−1) 224 15236.56 0
f(∼month*Pt+month*Tt) 223 15238.57 0
f(∼month*Pt−4*Tt−4) 235 15241.34 0
f(∼month*Pt−2+month*Tt−3+MNAt) 224 15242.60 0
f(∼month*Pt−2*Tt−2) 235 15244.28 0
f(∼month*Tt) 211 15246.32 0
f(∼month*Pt*Tt) 235 15248.38 0
f(∼month*Pt*Tt) 235 15248.38 0
f(∼month*Pt*Tt+MNAt) 236 15250.34 0
f(∼month*Tt−5) 211 15255.89 0
f(∼month) 199 15256.46 0
f(∼month*Pt−7+month*Tt−7+MNAt) 224 15257.52 0
f(∼year) 198 15257.61 0
f(∼month*Pt−1+month*Tt−1+MNAt) 224 15258.93 0
f(∼month*Pt−5+month*Tt−5+MNAt−1) 224 15259.74 0
f(∼month*Pt−1+month*Tt−1) 223 15262.68 0
f(∼month*Pt−5) 211 15266.70 0
f(∼month*Pt−5*Tt−5) 235 15268.98 0
f(∼month*Pt−5*Tt−5*MNAt−2) 283 15286.82 0

(npar is number of parameters, and QAICc is the estimated quasi-Akaikes information
criterion, using the correction factor, ĉ=1.28, to adjust for lack-of-fit. P is precipitation
deviation from monthly mean, T is temperature deviation from monthly mean, t indicates
the current month and t − 5 means 5 months previously, etc. Pt→t−4 is the sum of
the precipitation deviation over the last 4 months, etc. Time indicates the fully time
dependent model (a separate value is estimated for each trapping occasion). MNA is
minimum number alive, an index for density.)



Appendix B
Supplemental Equations for Chapter 2

Mark-Recapture Models
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Equation for Survival (Eqn B1):

where the vectors represent month of the year, and Pt−5 represents precipitation 5
months previously, Tt represents temperature this month, etc.



92

Equation for recruitment (Eqn B2):
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Equation for maturation probability (Eqn B3):
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Bjørnstad, O. N., B. Finkenstädt, and B. T. Grenfell, 2002. Endemic and epidemic
dynamics of measles: Estimating epidemiological scaling with a time series sir
model. Ecological Monographs 72:169–184.



96

Bolker, B. M., 2008. Ecological models and data in R. Princeton Univ Pr.

Borucki, M. K., J. D. Boone, J. E. Rowe, M. C. Bohlman, E. A. Kuhn, R. De-
Baca, and S. C. St Jeor, 2000. Role of maternal antibody in natural infec-
tion of peromyscus maniculatus with sin nombre virus. J Virol 74:2426–9.
Ai36418/ai/niaid Ai39808/ai/niaid Ca09563/ca/nci Comparative Study Jour-
nal Article Research Support, U.S. Gov’t, P.H.S. United states.

Botten, J., K. Mirowsky, D. Kusewitt, M. Bharadwaj, J. Yee, R. Ricci, R. M.
Feddersen, and B. Hjelle, 2000. Experimental infection model for sin nombre
hantavirus in the deer mouse (peromyscus maniculatus). Proceedings of the
National Academy of Sciences, USA 97:10578–83.

Botten, J., K. Mirowsky, D. Kusewitt, C. Ye, K. Gottlieb, J. Prescott, and
B. Hjelle, 2003. Persistent sin nombre virus infection in the deer mouse (per-
omyscus maniculatus) model: sites of replication and strand-specific expression.
Journal of Virology 77:1540–50.

Botten, J., K. Mirowsky, C. Ye, K. Gottlieb, M. Saavedra, L. Ponce, and B. Hjelle,
2002. Shedding and intracage transmission of sin nombre hantavirus in the deer
mouse (peromyscus maniculatus) model. Journal of Virology 76:7587–94.

Brown, J. H. and E. J. Heske, 1990. Temporal changes in a chihuahuan desert
rodent community. OIKOS 59:290–302.

Buceta, J., C. Escudero, F. J. de la Rubia, and K. Lindenberg, 2004. Outbreaks
of hantavirus induced by seasonality. Physical Review E 69:–. Part 1 803UG
Times Cited:4 Cited References Count:19.

Buck, C. and B. Barnes, 2000. Effects of ambient temperature on metabolic rate,
respiratory quotient, and torpor in an arctic hibernator. American Journal of
Physiology-Regulatory Integrative and Comparative Physiology 279:R255–R262.

Burns, C., B. J. Goodwin, and R. S. Ostfeld, 2005. A prescription for longer life?
bot fly parasitism of the white-footed mouse. Ecology 86:753–761.

Burton, R. and O. Reichman, 1999. Does immune challenge affect torpor duration?
Functional Ecology 13:232–237.

Calisher, C. H., J. N. Mills, W. P. Sweeney, J. R. Choate, D. E. Sharp, K. M.
Canestorp, and B. J. Beaty, 2001. Do unusual site-specific population dynamics
of rodent reservoirs provide clues to the natural history of hantaviruses? Journal
of Wildlife Diseases 37:280–8.



97

Calisher, C. H., J. N. Mills, W. P. Sweeney, J. J. Root, S. A. Reeder, E. S. Jentes,
and B. J. Beaty, 2005a. Population dynamics of a diverse rodent assemblage in
mixed grass shrub habitat, southeastern colorado, 1995-2000. Journal of Wildlife
Diseases 41:12–28.

Calisher, C. H., J. J. Root, J. N. Mills, J. E. Rowe, S. A. Reeder, E. S. Jentes,
K. Wagoner, and B. J. Beaty, 2005b. Epizootiology of sin nombre and el moro
canyon hantaviruses, southeastern colorado, 1995-2000. Journal of Wildlife Dis-
eases 41:1–11.

Calisher, C. H., W. Sweeney, J. N. Mills, and B. J. Beaty, 1999. Natural history of
sin nombre virus in western colorado. Emerging Infectious Diseases 5:126–34.
U50/ccu809862-03/phs Journal Article Research Support, U.S. Gov’t, P.H.S.
United states.

Carey, H., M. Andrews, and S. Martin, 2003. Mammalian hibernation: Cellular
and molecular responses to depressed metabolism and low temperature. Physi-
ological Reviews 83:1153–1181.

Caswell, H. and M. C. Trevisan, 1994. Sensitivity analysis of periodic matrix
models. Ecology 75:1299–1303.

Choquet, R., A. M. Reboulet, J. D. Lebreton, O. Gimenez, and
R. Pradel, 2005. U-care 2.2 user’s manual. CEFE, Montpellier, France.
(http://ftp.cefe.cnrs.fr/biom/Soft-CR/) .

Collinge, S. K., W. C. Johnson, C. Ray, R. Matchett, J. Grensten, J. F. Cully,
K. L. Gage, J. E. Kosoy, M. Y. adn Loye, and A. P. Martin, 2005. Testing the
generality of a trophic-cascade model for plague. EcoHealth 2:102–112.

Collins, D. and T. Weaver, 1978. Effects of summer weather modification (irri-
gation) in festuca idahoensis-agropyron spicatum grasslands. Journal of Range
Management 31:264–269.

Daan, S., B. Barnes, and A. M. Strijkstra, 1991. Warming up for sleep- ground-
squirrels sleep during arousals fro hibernation. Neuroscience Letters 128:265–
268.

de Magny, G. C., R. Murtugudde, M. R. P. Sapiano, A. Nizam, C. W. Brown, A. J.
Busalacchi, M. Yunus, G. B. Nair, A. I. Gil, C. F. Lanata, J. Calkins, B. Manna,
K. Rajendran, M. K. Bhattacharya, A. Huq, R. B. Sack, and R. R. Colwell, 2008.
Environmental signatures associated with cholera epidemics. Proceedings of the
National Academy of Sciences of the United States of America 105:17676–17681.

Deming, W. J., 2002. Psychrophiles and polar regions. Current Opinion in Micro-
biology 5.



98

Dempster, G., E. I. Grodums, and W. A. Spencer, 1966. Experimental coxsachie
b-3 virus infection in citellus lateralis. Journal of Cellular Physiology 67:443–
454.

Dietz, K., 1976. The incidence of infectious diseases under the influence of seasonal
fluctuations. Lect. Notes Biomath. 11:1–15.

Dorland, W. A. N., 1994. Dorland’s illustrated medical dictionary. W. B. Saunders,
London.

Douglass, R. J., C. H. Calisher, K. D. Wagoner, and J. N. Mills, 2007. Sin nombre
virus infection of deer mice in montana: characteristics of newly infected mice,
incidence, and temporal pattern of infection. Journal of Wildlife Diseases 43:12–
22.

Douglass, R. J., A. J. Kuenzi, T. Wilson, and R. C. Van Horne, 2000. Effects
of bleeding nonanesthetized wild rodents on handling mortality and subsequent
recapture. Journal of Wildlife Diseases 36:700–704.

Douglass, R. J., R. Van Horn, K. W. Coffin, and S. N. Zanto, 1996. Hantavirus
in montana deer mouse populations: preliminary results. Journal of Wildlife
Diseases 32:527–30.

Douglass, R. J., T. Wilson, W. J. Semmens, S. N. Zanto, C. W. Bond, R. C.
Van Horn, and J. N. Mills, 2001. Longitudinal studies of sin nombre virus in
deer mouse-dominated ecosystems of montana. American Journal of Tropical
Medicine and Hygiene 65:33–41.

Easterbrook, J. D., J. B. Kaplan, G. E. Glass, M. V. Pletnikov, and S. L. Klein,
2007. Elevated testosterone and reduced 5-hiaa concentrations are associated
with wounding and hantavirus infection in male norway rats. Hormones and
Behavior 52:474–481.

Easterbrook, J. D. and S. L. Klein, 2008. Immunological mechanisms mediating
hantavirus persistence in rodent reservoirs. PLoS Pathogens 4:e1000172.

Elkinton, J., W. M. Healy, J. P. Buonaccorsi, G. H. Boettner, A. M. Hazzard, H. R.
Smith, and A. M. Liebhold, 1996. Interactions among gypsy moths, white-footed
mice, and acorns. Ecology 77:2332–2342.

Elkinton, J., A. M. Liebhold, and R. Muzika, 2004. Effects of alternative prey
on predation by small mammals on gypsy moth pupae. Population Ecology
46:171–178.



99

Engelthaler, D. M., D. G. Mosley, J. E. Cheek, C. E. Levy, K. K. Komatsu,
P. Ettestad, T. Davis, D. T. Tanda, L. Miller, J. W. Frampton, R. Porter,
and R. T. Bryan, 1999. Climatic and environmental patterns associated with
hantavirus pulmonary syndrome, four corners region, united states. Emerging
Infectious Diseases 5:87–94.

Escudero, C., J. Buceta, F. J. de la Rubia, and K. Lindenberg, 2004. Effects of in-
ternal fluctuations on the spreading of hantavirus. Physical Review E 70:061907.

Fairbairn, D. J., 1977. The spring decline in deer mice: Death or dispersal? Cana-
dian Journal of Zoology 55:84–92.

Feldmann, H., A. Sanchez, S. Morzunov, C. F. Spiropoulou, P. E. Rollin, T. G.
Ksiazek, C. J. Peters, and S. T. Nichol, 1993. Utilization of autopsy rna for the
synthesis of the nucleocapsid antigen of a newly recognized virus associated with
hantavirus pulmonary syndrome. Virus Research 30:351–367.

Feore, S. M., M. Bennett, J. Chantrey, T. Jones, D. Baxby, and M. Begon, 1997.
The effect of cowpox virus infection on fecundity in bank voles and wood mice.
Proceedings of the Royal Society B-Biological Sciences 264:1457–1461.

Fisher, K. C., 1964. On the mechanisms of periodic arousal in the hibernating
ground squirrel. Annales Academiae Scientiarum Fennicae-Biologia 71:141–156.

Fisher, K. C. and J. F. Manery, 1967. Water and electrolyte metabolism in het-
erotherms. In K. C. Fisher, A. R. Dawe, C. P. Lyman, E. Schonbaum, and F. E.
South, editors, Mammalian Hibernation III, pages 235–279. Oliver and Boyd,
London.

Frank, S. A., 1996. Models of parasite virulence. Quarterly Review of Biology
71:37–78.

Furuse, M. and H. Yokota, 1984. Protein and energy-utilization in germ-free
and conventional chicks given diets containing different levels of dietary-protein.
British Journal of Nutrition 51:255–264.

Galster, W. A. and P. Morrison, 1970. Cyclic changes in carbohydrate concentra-
tions during hibernation in arctic ground squirrel. American Journal of Physi-
ology 218:1228–&.

Gao, L. Q. and H. W. Hethcote, 1992. Disease transmission models with density-
dependent demographics. Journal of Mathematical Biology 30:717–731.

Geiser, F. and R. Brigham, 2000. Torpor, thermal biology, and energetics in
Australian long-eared bats (Nyctophilus). Journal of Comparative Physiology
B-Biochemical Systemic and Environmental Physiology 170:153–162.



100

Geiser, F., S. Hiebert, and G. J. Kenagy, 1990. Torpor bout duration during the
hibernation season of two sciurid rodents: interrelations with temperature and
metabolism. Physiological Zoology 63:489–503.

Geiser, F. and G. J. Kenagy, 1988. Torpor duration in relation to temperature and
metabolism in hibernating ground-squirrels. Physiological Zoology 61:442–449.

Gilbert, B. S. and C. Krebs, 1981. Effects of extra food on peromyscus and clethri-
onomys populations in the southern yukon. Oecologia 51:326–331.

Glass, G. E., J. E. Cheek, J. A. Patz, T. M. Shields, T. J. Doyle, D. A. Thor-
oughman, D. K. Hunt, R. E. Enscore, K. L. Gage, C. Irland, C. J. Peters,
and R. Bryan, 2000. Using remotely sensed data to identify areas at risk for
hantavirus pulmonary syndrome. Emerging Infectious Diseases 6:238–47.

Glass, G. E., J. E. Childs, G. W. Korch, and J. W. LeDuc, 1988. Association of
intraspecific wounding with hantaviral infection in wild rats (rattus norvegicus).
Epidemiology and Infection 101:459–472.

Glass, G. E., T. Shields, B. Cai, T. L. Yates, and R. Parmenter, 2007. Persistently
highest risk areas for hantavirus pulmonary syndrome: potential sites for refugia.
Ecological Applications 17:129–39.

Glass, G. E., T. L. Yates, J. B. Fine, T. M. Shields, J. B. Kendall, A. G. Hope,
C. A. Parmenter, C. J. Peters, T. G. Ksiazek, C. S. Li, J. A. Patz, and J. N.
Mills, 2002. Satellite imagery characterizes local animal reservoir populations of
sin nombre virus in the southwestern united states. Proceedings of the National
Academy of Sciences, USA 99:16817–22.

Grant, P. R., 1971. Experimental studies of competitive interaction in a two-species
system. iii. microtus and peromyscus species in enclosures. Journal of Animal
Ecology 40:323–350.

Grant, P. R., 1972. Interspecific competition among rodents. Annual Review of
Ecology and Systematics 3:79–106.

Gratton, C. and R. F. Denno, 2003. Inter-year carryover effects of a nutrient puslse
on spartina plants, herbivores, and natural enemies. Ecology 84:2692–2707.

Grear, D. A., S. E. Perkins, and P. J. Hudson, 2009. Does elevated testosterone
result in increased exposure and transmission of parasites? Ecology Letters
12:528–37.

Grenfell, B. T., 2001. Dynamics and epidemiological impact of microparasites.
In G. L. Smith, W. L. Irving, and J. W. McCauley, editors, New challenges to
health: the threat of virus infection, pages 33–52. Cambridge University Press,
Cambridge.



101

Grenfell, B. T., O. N. Bjørnstad, and B. Finkenstädt, 2002. Endemic and epidemic
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