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ABSTRACT 

Use of non-linear ultrasonic waves for material characterization is a topic of 

significant interest in many applications. Use of guided waves for this purpose is a 

promising option but appropriate selection of guided wave modes for the generation of 

cumulative higher harmonics is of critical importance due to the multi-mode nature of 

ultrasonic guided waves.  

This thesis deals with the problem of generating non-linear guided waves in plates 

from a theoretical perspective. A theoretical framework to predict the higher harmonic 

guided wave generation in plates has been developed. Geometric and material non-

linearities are incorporated by using the Lagrangian strain (non-linearized strain) and 

higher order terms in the strain energy function. A new formulation in terms of the 

displacement gradient has been developed for the present problem. A perturbation 

technique and normal mode expansion have been used to solve the problem and arrive at 

the conditions of “internal resonance” which are sufficient for the generation of 

cumulative second harmonics. A comprehensive analysis as to which guided wave modes 

have the capability to generate cumulative second harmonic guided waves has been 

performed. This is extended to predict the non-linear interaction of guided waves in 

plates that can be used to predict any higher harmonic generation in plate.  

The analysis led to the conclusion that Shear Horizontal and Rayleigh Lamb 

modes can generate only Rayleigh Lamb symmetric modes as second harmonics with 

single primary mode excitation. Specific modes that satisfy the condition of internal 
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resonance have been identified. The analysis on generalized interaction of guided wave 

modes led to a more complete understanding of the higher harmonic guided waves in 

plates.  
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Chapter 1  

INTRODUCTION 

In this chapter we introduce the preliminaries for non-linear ultrasonics and 

guided waves in general and those in plate in particular. This Chapter is organized as 

follows. Section 1.1 presents the basics of guided wave mechanics and the advantages it 

offers as a tool for NDE (Non Destructive Evaluation) and SHM (Structural Health 

Monitoring). Section 1.2 presents the historical development of the field of non-linear 

ultrasonics and the advantages it offers as a technique to monitor the micro-structure of 

the material as suggested by various researchers.  

1.1 GUIDED WAVE MECHANICS  

Guided waves are waves that travel in bodies with constrained boundaries. The 

interactions of waves with the boundaries guide the wave through the body. Guided wave 

inspection has proven to be a valuable tool as it offers the following advantages when 

compared to methods using bulk-waves: 

• Can travel long distances with less attenuation. 

• Inspection can be carried out from a single location unlike the bulk wave which 

requires point by point inspection. 

• Sensitivity to a variety of defects can be improved by appropriate mode selection. 



 

Guided waves have been u

craft wings) and multi layered structures 

other applications. 

1.1.1 Guided waves in plates

Figure 1.1 Schematic showing an infinite plate with a thickness 2h and the 
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with traction free boundary conditions 

Where T is the Cauchy stress tensor,

body force per unit mass acting o

Assuming the material to be an isot

relationship is given by

Guided waves have been used to inspect pipelines, plate-

craft wings) and multi layered structures and were found to be promising for various 

Guided waves in plates 

Schematic showing an infinite plate with a thickness 2h and the 

coordinate system used 

n infinite traction free plate of thickness 2h shown in

coordinate system indicated to describe the waves in the plate. The 

linear momentum for the plate in index notation is given by  

T��,� � ��� � � 	
�
	�                                                     

ith traction free boundary conditions on top and bottom surfaces  

T��
� � 0                                                                 

is the Cauchy stress tensor, � is the mass density of the material,

acting on the material and  � denotes the particle 

Assuming the material to be an isotropic elastic solid the stress strain 

relationship is given by classical linearized theory as follows 

�� 

�� 

2 
-like structures (air 

and were found to be promising for various 

 

Schematic showing an infinite plate with a thickness 2h and the 

thickness 2h shown in Figure 1.1. We 

coordinate system indicated to describe the waves in the plate. The balance of 

                                                  1.1 

                                                                1.2                                                              

density of the material, b denotes the 

particle velocity.  

ropic elastic solid the stress strain 
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T�� = ������� + 2����                                            1.3 

where  �, � denote the Lame‘s constants, ��� is the Kronecker delta and ��� is the 

linearized strain tensor and is related to the displacements as follows 

��� = �
� (��,� + ��,�)                                                1.4 

Using the above relations leads to  Navier’s equation in terms of displacement as follows: 

(� + �)��,�� + ���,�� + ��� = � � !�
��                                 1.5 

Assuming plane strain (not general), one can use Helmholtz decomposition (Rose,1999) 

to express the above equation in terms of potentials as follows: 

� = "#$%(&) + '�#(())                                               1.6 

where & is a scalar and  * is a vector with components (0,0, )(+�, +�)) 

Equation 1.5 is satisfied provided 

� ,
�-. + � ,

�-  = �
/0 

� ,
��                                                 1.7 

� 1
�-. + � 1

�-  = �
/2 

� 1
��                                                 1.8 

where '3, '� are the longitudinal and transverse wave speeds in the material. 

Assuming time harmonic dependence of &, ) of the form 

& = &(+�)4�(�-.56�)and ) = )(+�)4�(�-.56�) one can then rewrite the above equations 

as  

� ,
�-  + 76 

/0 − 9�: & = 0                                         1.9 
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� 1
�-  + 76 

/2 − 9�: ) = 0                                                                                                                                                                                1111....10101010 

The general solutions for the above set of equations are as follows  

&(+�) = ='>?(@+�) + A?B
(@+�)                                     1.11 

)(+�) = C'>?(D+�) + E?B
(D+�)                                     1.12 

where @ = F76
/0

:� − 9�   and  q= F76
/2:� − 9�  and A,B,C,D are unknown constants to 

be determined. 

Considering the boundary conditions on the top and bottom surfaces one gets the 

following relations for the stress components 

T��(X2 = −ℎ) = T��(X2 = ℎ) = 0                                   1.13 

and 

  
T��(X2 = −ℎ) = T��(X2 = ℎ) = 0....                                                                                                                                                            1111....14141414 

Using these boundary conditions and Equations 1.3,1.4,1.6,1.11,1.12 leads to the  system 

of 4 equations (1.15-1.18) in A,B,C,D which has a non-trivial solution if and only if the 

determinant of the coefficient matrix vanishes. Guided waves in plates can be classified 

into two groups depending on the through-thickness displacement profiles. The modes 

that have a symmetric through thickness �� displacement profiles are called symmetric 

modes (equations 1.15,1.16) and those that have antisymmetric displacement profiles are 
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called antisymmetric modes (Equations 1.17,1.18). Symmetric modes have B=C=0 and 

antisymmetric modes have A=D=0. 

�J−2B9@=?B
�@ℎ� � �9� − D��E?B
�Dℎ�K � 0            1.15 

−�(9� + @�)='>?(@ℎ) − 2�L@�E'>?(@ℎ) + B9E'>?(Dℎ)M = 0           1.16 

�J2B9@A'>?(@ℎ) + (9� − D�)C'>?(Dℎ)K = 0           1.17 

−�(9� + @�)A?B
(@ℎ) − 2�L@�A'>?(@ℎ) − B9C'>?(Dℎ)M = 0           1.18 

 

Equating the determinant of the coefficient matrix in each of the systems 

1.13&1.14, 1.15&1.16 gives the following dispersion relations  

NOP(QR)
NOP(SR) = 5T� SQ

(Q 5� ) ;               Symmetric modes           1.19 

NOP (QR)
NOP (SR) = 5(Q 5� ) 

T� SQ ;             Antisymmetric modes    1.20 

The above relations are the Rayleigh-Lamb (RL) dispersion relations and give those 

(V, 9) combinations at which guided wave modes exist in the plate. These guided wave 

modes are named Rayleigh-Lamb (RL) modes and are polarized in the +�-+� plane. 

The case of plane strain considered above is not the most general of the problems 

as it does not consider all possible solutions. There are other modes called the Shear 

Horizontal (SH) modes polarized in the +W direction that propagate in the +� direction. 

One can use a similar procedure (Rose,1999) to obtain a time harmonic 

displacement of the form �W = �W(+�)4�(�-.56�) and by satisfying the traction free 
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boundary conditions T13(X2=±h)=0 we get the following dispersion relation for the 

shear horizontal modes 

Dℎ = [\
�                                                       1.21 

where n=0,1,2.. is any arbitrary integer. 

1.1.2 Dispersion Curves  

This section shows the phase velocity and group velocity dispersion curves for both RL 

and SH modes.  

Phase velocity: The speed with which a given mode i.e, a (V, 9) combination propagates 

in the material is termed the phase velocity and is denoted by 'S. 

'S = 6
�                                                                 1.22 

Group velocity: The speed with which a wave packet consisting of (V, 9) combinations 

in a close neighborhood of a given mode propagates is termed as the group velocity and 

denoted by ']. This is more important from a practical point of view as in the 

experiments we generally end up exciting more than one (V, 9)  due to the finiteness of 

the source and the frequency bandwidth of the transducer. The group velocity can be 

related to the phase velocity by using the relation  '] = �6
��  as follows 

'] = /^ 

/^5(_	) `a^
`(bc)

                                      1.23 

where f= 
6
�\ and d=2h. 
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Figures (1.2-1.5) present the phase and group velocity dispersion curves for RL and SH 

modes. The material chosen for the plate is aluminum whose properties are presented in 

Table 1-1. 

 

Aluminum 

� 

58.5 fg$ 

� 

26 fg$ 

� 

27009" /kW 

 

                       Table 1-1 Material properties of Aluminium 

 

Figure 1.2 shows phase velocity dispersion curves for RL modes in aluminum plate. 

Different modes have been indicated in the figure. S denotes a symmetric mode and A 

denotes an antisymmetric mode. Every mode except the fundamental Am&Sm have a cut 

off frequency i.e, a frequency below which they do not exist. Also, all the modes except 

the fundamental modes converge to the phase velocity equal to the transverse wave speed 

'� in the material at high fd products. The modes Am&Sm converge to the Rayleigh wave 

speed ('p) in the material at high fd products. The flat portions of phase velocity 

dispersion curves correspond to the modes that have same phase and group velocity. 
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Figure 1.2 Phase velocity dispersion curves for RL mode in Al plate 

 

Figure 1.3 shows group velocity dispersion curves for RL modes in aluminum plate. The peaks 

in group velocity dispersion curves correspond to the phase velocity and group velocity being 

equal at those particular modes.  
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Figure 1.3 Group velocity dispersion curves for RL modes in Al plate 

 

Figure 1.4 shows the phase velocity dispersion curves for SH modes. The fundamental n=0 SH 

mode is non-dispersive with a phase velocity equal to the shear wave speed �'��  in the material. 

All the higher modes approach the fundamental mode at higher fd products. Except for the 

fundamental mode, all other modes have cut-off frequencies below which that particular mode 

does not propagate in the plate.  
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Figure 1.4 Phase velocity dispersion curves for SH modes in Al plate 

Figure 1.5 shows group velocity dispersion curves for SH modes in aluminum plate. The 

primary mode has a group velocity of '�. All other higher modes have group velocities less than 

'� and approach it at higher fd products. 

 

Figure 1.5  Group velocity dispersion curves for SH modes in Al plate 
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1.1.3 Wave Structures 

The through- thickness displacement profiles are referred to as the “wave-structures” and 

some of the sample wave-structures for some modes are presented in this section. The following 

figures (1.6-1.9) show the wave structures for a few RL modes in the plate. 

 

Figure 1.6 shows the wave structure for S0 mode at 0.1 MHz. As can be seen, the 

through-thickness profile for the displacement  �� is symmetric about the mid-plane and that of 

�� is antisymmetric about the mid-plane. 

 

Figure 1.6 Wavestructure for the S0 mode at 0.1 Mhz 

Figure 1.7 shows the wave structure for the A0 mode at 0.1 MHz. As can be seen, the through-

thickness profile for the displacement �� is antisymmetric about the mid-plane and that of �� is 

symmetric about the mid-plane. 
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Figure 1.7 Wavestructure for the A0 mode at 0.1 Mhz 

Figure 1.8 shows the wave structure for the S� mode at  2MHz. 

 

 

Figure 1.8 Wave structure for the S1 mode at 2Mhz 
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Figure 1.9 shows the wave structure for the  S� mode at  2MHz. 

 

 

Figure 1.9 Wave structure for the A0 mode at 2 Mhz 

 

The following figures (1.10-1.11) show the wave structures for the SH modes. One 

important feature concerning the wave structures of the SH modes is that, unlike the wave 

structures of the RL modes they do not change along a given mode in the dispersion curve. The 

odd values of ‘n’ give the antisymmetric modes and even values of ‘n’ gives the symmetric 

modes. 

 

Figure 1.10 shows the wave structure for n=1 SH mode. As stated earlier, the wave 

structure is antisymmetric with respect to the mid-plane.  
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Figure 1.10 Wavestructure for n=1 SH mode 

Figure 1.11 shows the wave structure for n=2 SH mode. As stated earlier, the wave structure is 

symmetric with respect to the mid-plane.  

 

 

Figure 1.11 Wave structure for n=2 SH mode 
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1.2 NON-LINEAR ULTRASONICS  

1.2.1 History 

The theoretical development of the field of non-linear ultrasonics started with 

researchers examining the effect of introducing non-linear displacement terms in the 

wave equation and studying the behavior of the solutions. The earliest account of it can 

be found in Landau and Lifschitz [1956,1970] in a section titled “Anharmonic 

vibrations”. Later, Goldberg [1960] studied the non-linear interaction of longitudinal and 

transverse elastic waves from a theoretical standpoint and proved that these waves cannot 

propagate independently in order to satisfy the wave equation with nonlinear terms. 

Hikata and Elbaum [1965,1966a,1966b] presented an analysis for the generation of 

second and third harmonics due to dislocations. It took some time until the higher 

harmonics were found to be sensitive to the microstructure of material. Cantrell [1994] 

used a non-linearity parameter q to quantify the degree of non-linearity and examined the 

effect of crystal structure on q. Cantrell and Yost [2001] used this technique to 

characterize fatigue damage. Cantrell [2006] used acoustic harmonic generation to 

quantify fatigue damage accumulation in metals. Cantrell [2009] used ultrasonic 

harmonic generation for the assessment of fatigue-life and came up with a correlation 

between the acoustic non-linearity parameter q and the percent remaining life of the 

material. The work by Cantrell and others employed bulk-waves for higher harmonic 

generation and used the acoustic non-linearity parameter to quantify the material damage 

states. Guided waves offer superior inspection capability when compared to bulk-waves 
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and the use of higher harmonic guided waves to monitor the microstructure appears to be 

a more attractive option. The first step in this regard was taken by Deng [1998] with 

formulation of the problem of the interaction between Shear Horizontal guided wave 

modes. Deng [1999] extended the above work for Lamb-wave propagation in plates. de 

Lima and Hamilton [2003] developed a procedure to qualify the cumulative propagation 

of second harmonic guided waves in plates. de Lima and Hamilton [2005] later extended 

this approach to waveguides of arbitrary but constant cross section. Srivastava and Lanza 

di Scalea used the approach by de Lima and Hamilton to predict the existence of higher 

harmonics in plates [2009] and rods [2010]. 

The present work aims to provide a more complete understanding of the problem 

of higher harmonic generated guided waves in plates. It provides a new approach to 

predict the nature of guided wave mode interaction which addresses the theoretical 

inconsistencies that appear in the works of previous researchers. 

1.2.1 Preliminaries  

In this section we introduce the problem of 1D wave propagation in an elastic 

material with weak nonlinearities. Consider an elastic material with the following stress-

strain relation 

r � st�1 + β

� t)                                                 1.24 

where the non-linearity considered is of second order in strain t and E is the Young’s 

modulus, while β  quantifies the extent of the non-linearity. 
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Consider the 1D version of the balance of linear momentum  

�u
�- � � � !

��                                                      1.25 

t � �!
�- � �

� 7�!
�-:�

                                              1.26 

Using the stress-strain relation (equation 1.24), one can write the equation of motion 

(Cantrell,1994) as  

� !
�� � '� � !

�- �1 + q �!
�-)                                        1.27 

If we consider a primary wave of the form �� = =�cos (9+ − Vy) travelling in the 

material one can solve the above problem using a perturbation approach by assuming that 

the second harmonic generated is small in amplitude compared to ��. 

Let � = �� + ��. Substituting this in the equation 1.27 one gets two problems 

 

� !.
�� − '� � !.

�- = 0                                                           1.28 

� ! 
�� − '� � ! 

�- = −q �!.
�-

� !.
�-                                         1.29 

 

The equation 1.28 is identically satisfied by our assumption that �� is a travelling wave in 

the medium. The second problem can be solved and a particular solution to the second 

problem is (de Lima and Hamilton, 2003) 

�� = z� {. 
�|}/ +'>?(29+ − 2Vy� .                                        1.30 
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This is a wave with amplitude linearly increasing with propagating distance and 

travelling with the same phase velocity as the primary wave and is termed as a 

“cumulative second harmonic”. Equation 1.30 is valid provided �� ≪ �� as assumed in 

the perturbation solution. 
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Chapter 2  
 

SECOND HARMONIC PROBLEM FORMULATION 

INTRODUCTION 

In this chapter we formulate the ultrasonic guided wave problem of the generation 

of higher harmonics from the principles of continuum mechanics. This chapter is divided 

into two sections. Section 2.1 presents the preliminaries of continuum mechanics along 

with the notation adopted in the remainder of the thesis. Section 2.2 presents the problem 

formulation for second harmonic guided wave propagation in plates. 

2.1 CONTINUUM MECHANICS 

2.1.1  Kinematics 

 

Figure 2.1 Schematic depicting the motion of a body 
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We denote by � the abstract body consisting of material particles. �� denotes the 

reference configuration of the material on which deformation is enforced. We denote by 

��  the deformed configuration of the material. By deformation, we mean an invertible 

mapping   � : �� → �� . 

 We use a coordinate system as depicted in Figure 2.1 to describe the 

deformations. Also, we use letter ΧΧΧΧ and �  for depicting the position (with reference to 

the above coordinate system) of a material particle in the reference and deformed 

configurations respectively. If we consider a continuous sequence of deformations 

ordered in time we write � =χχχχ (ΧΧΧΧ,t) .We denote by �(ΧΧΧΧ, �) the velocity of the material 

particle occupying position ΧΧΧΧ in the reference configuration and defined as  

�(ΧΧΧΧ, �) = �χχχχ
��  .                                                          2.1 

We denote by F the deformation gradient defined as follows 

F= Grad(χχχχ (ΧΧΧΧ,t) ) = �χχχχ
�ΧΧΧΧ   .                                    2.2  

For sufficiently smooth χχχχ it can be proved that the determinant of F i.e. ,  ���(�) > 0. 
From the above definitions it is easy to see that the displacement of a material particle is 

�(ΧΧΧΧ, �) =  � − ΧΧΧΧ                                                   2.3 

Also, we have F=I+Grad( �(ΧΧΧΧ, �)) where I  is the identity tensor and Grad has the same 

meaning as defined previously. The quantity Grad(�(ΧΧΧΧ, �)) is called the Lagrangian 

displacement gradient and is denoted by H. 

So, we have  

FFFF====IIII++++HHHH .                                                                       2.4 

We use a Lagrangian measure of strain defined as  
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� � �
� ���� − ��                                                           2.5                             

where �� is the transpose of deformation gradient F. 

In terms of the displacement gradient H, we get 

E= 
�
� �� � �� � ����.                                               2.6 

 

The above infrastructure will be sufficient to describe the motions we would be dealing 

with in this work. Any new notation introduced later will be made clear at that point of 

time. Now, we move on to study the balance laws.   

2.1.2 Balance Laws 

Balance of mass 

Under the assumption that the only cause for a change in mass density is 

deformation, one can show that  

��+�%B���� � 0                                                       2.7 

where %B�(�) is the divergence of the velocity field.  

 

Balance of linear and angular momentum 

Under Cauchy’s assumption, by employing Euler’s first and second law to every 

sub-part � ⊆ � we get  

divdivdivdiv((((TTTT)+)+)+)+ρρρρbbbb====ρρρρ  ��
��           (Balance of Linear momentum)      2.8 

� = ��          (Balance of Angular momentum)    2.9 

: the local form where T is the Cauchy stress tensor. 
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The above equations can be expressed in referential form as follows 

 ¡¢�£� � ¤�¥ � ¤���    (Balance of Linear momentum)   2.10 

and 

£�� � �£�   (Balance of Angular momentum)  2.11 

where £ is the first Piola-Kirchoff stress tensor and is related to the Cauchy stress T as 

follows 

£ � ¦§������5� .                                                         2.12 

 

2.1.3 Constitutive Theory 

Using the Coleman-Noll procedure, which employs Balance of Energy, Second 

Law of Thermodynamics and material frame indifference one can show that the first 

Piola-Kirchoff stress for an elastic homogeneous material can be written in terms of the 

deformation gradient as follows  

£ = �¨(�)
��                                                               2.13 

Where ̈ (�) is the strain energy function expressed in terms of F. 

Another expression for the Second Piola-Kirchoff stress �©© (Appendix A) can be 

developed in terms of Lagrangian strain E as follows 

�©© = � ª̈ (�)
��                                                               2.14 

Where ̈ª (�) is the strain energy function of the material expressed in terms of E. 
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For an isothermal, isotropic, elastic solid one can express ̈ª ��� in terms of invariants of 

E. Choosing tr(E) ,tr( ��),tr( �«� as the set of invariants of E one can write [see Landau 

and Lifschitz,1970]  

ª̈ ��� � �
� ¬��­����� � ®�­���� � �

« ¯��­����« � °�­����­���� � �
« ±�­��«� 

2.15 

up to third order terms in strain multiples where ¬, ®  are the Lame’s constants and ¯, °, ± 

are third order elastic constants (See Norris [1998] ). 

Using the above strain energy function one gets the following expression for the second 

Piola –Kirchoff stress 

�©© =  ¬�­(�)� + �®� + ¯(�­(�))�� + °�­(��)� + �°�­(�)� + ±��   2.16 

In what follows, we use the above expression for the Second Piola-Kirchoff stress in 

terms of Lagrangian strain E. 

The first Piola-Kirchoff stress S is related to the second Piola-Kirchoff stress tensor as  

£ = ��©©                                                               2.17 

where F is the deformation gradient. 

For enhancing the clarity, we use the notation £(�)/�©©(�) or £(E)/ �©©(�) to 

explicitly describe S and �©© as functions of their arguments. 

Using equation 2.6 for E in the expression for �©© (E) given in equation 2.16, we have, 

up to second order in H 

�©©(�) = ¬
� �­(� + ��)� + ®(� + ��) + ¬

� �­(���)� + ¯ (�­(�))�� + ®��� +
°�­(�)(� + ��) + °

� �­(�� + ���)� + ±
² 7�� + ��� + ��� + ���:  2.18 

Keeping the future use of the above expression in mind, we break it in to two, namely  

�©©³(�) = ¬
� �­(� + ��)� + ®(� + ��)                                2.19 
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 �©©´³��� � ¬
� �­������ � ¯ J�­(�)K�� + ®��� + °�­(�)(� + ��) + 

°
� �­(�� + ���)� + ±

² 7�� + ��� + ��� + ���:        2.20 

 

where �©©³(�) and �©©´³(�) are the linear and non linear functions of their argument H 

and 

�©© = �©©³(�) + �©©´³(�)                                      2.21 

Now we focus on developing similar expressions for £(�). We know that 

£ = ��©©         i. e., 
    

£(�) = (� + �) 7�©©³(�) + �©©´³(�):                                                                                                                                    2.22 

£³(�) = �©©³(�)                                                                2.23 

£´³(�) = ��©©³(�) + �©©´³(�) .                                         2.24 

2.2 SECOND HARMONIC PROBLEM FORMULATION 

Consider the equation of balance of linear momentum in referential form for a 

traction free plate in the absence of body forces b=0 : 

 ¡¢(£) = ¤��¶  
SSSS·�====0000                                                                 2.25    

S is the first Piola-Kirchoff stress tensor and ·� is the unit outward normal of the surface 

of the plate in the reference configuration and  � is the displacement. 

We use a perturbation method (de Lima and Hamilton [2003]) to decompose the 

displacement field as 

� = �� + ��   with       |��| ≫ |��| , 
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where �� and �� are the primary and secondary displacement fields respectively. 

So from the definition of H we have 

 � = HHHH1111++++HHHH2222                                                              2.26 

where HHHH1111 = º»¼�(��) and HHHH2222 � º»¼�����. 

From the notation used previously   

£��� � £³��� � £´³��� 

⟹ £��� � £³���� � £³���� � £´³�HHHH1111++++HHHH2222�.                 2.27 

 

In the elaborate expression for £´³�HHHH1111++++HHHH2222� we retain only the terms which involve 

second order contributions from HHHH1111.We name these as the interaction terms and use the 

notation £´³(HHHH1111, HHHH1111, �) to designate these.  £´³(HHHH1111, HHHH1111, �) can be read as “Non-linear 

terms which are of order 2 due to self interaction between HHHH1111 and HHHH1111”. 

Finally we have  

£(�) = £³(��) + £³(��) + £´³(HHHH1111, HHHH1111, �)                         2.28 

Going back to the equation for balance of linear momentum and substituting the 

expressions for � = �� + ��   and £(�) we have 

 ¡¢7£³(��) + £³(��) + £´³(HHHH1111, HHHH1111, �): = ¤�(�¶ � + �¶ �)           2.29 

¾DivDivDivDiv(£³(��)) − ¤��¶ �À + ¾DivDivDivDiv(£³(��)) − ¤��¶ �+DivDivDivDiv(£´³(��, ��, �))À = Á  
2.30 

with the following boundary condition 

£³(��)·� + £³(��)·� + £´³(HHHH1111, HHHH1111, �)·� = Á                               2.31 

Now we decompose the above problem into two problems; one involving �� and another 

involving ��, 

 DivDivDivDiv(£³(��)) − ¤��¶ � = Á 



 

and  

DivDivDivDiv�£
£³��

The first problem is a standard problem for which 

The second problem is an inhomogeneous version of the first with the forcing term 

 −DivDivDivDiv�£´³���, ��, ���. The above formulation is gen

�� , ��  such that  |��| ≫
Now, we restrict our attention to guided wave propa

, �� are waves in the plate.

system we use for the problem formulation.

Figure 2.2 Schematic of the plate with the coordinate system used

As said earlier �� is a guided wave mode and he

�� � Â�Ã���XXXX2222)�Ä(ÅXXXX11115Æ�

Additionally, �� is a solution to

solutions termed as “Normal Modes” to that problem

Now we focus our attention on the second problem. Consider the forcing term 

 −DivDivDivDiv�£´³���, ��, ��� on the right hand side of 

degree products in �� it has a factor of the form  

£³����·� � Á                                                            

£³����� − ¤��¶ � �  −DivDivDivDiv�£´³���, ��, ��� 

����·� � −£´³�HHHH1111, HHHH1111, ��·� .                                                 

The first problem is a standard problem for which �� is a solution.   

The second problem is an inhomogeneous version of the first with the forcing term 

The above formulation is general for any set of displacements  

|��|. 
Now, we restrict our attention to guided wave propagation in plates i.e

are waves in the plate. Figure 2.2 shows the schematic of the plate and the 

problem formulation. 

Schematic of the plate with the coordinate system used

is a guided wave mode and hence can be assumed to be of the form 

Æ��Ç where  Â�¾ À denotes the real part of the argument. 

is a solution to the first problem and is one among the infinitely many 

Normal Modes” to that problem (see Section 1.1). 

Now we focus our attention on the second problem. Consider the forcing term 

on the right hand side of the second problem. 

has a factor of the form  �5�ÄÆ�. 

26 
                                                          2.32 

�
                                                 2.33 

The second problem is an inhomogeneous version of the first with the forcing term 

eral for any set of displacements  

gation in plates i.e., when both �� 

he schematic of the plate and the coordinate 

 

Schematic of the plate with the coordinate system used 

nce can be assumed to be of the form 

the real part of the argument.  

and is one among the infinitely many 

.  

Now we focus our attention on the second problem. Consider the forcing term 

second problem. Due to the second 
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Following de Lima and Hamilton [2003] we seek a solution to the second problem in the 

form of an asymptotic expansion of the normal modes. Also, from the observation made 

previously it suffices to seek an asymptotic expansion of the solutions at a frequency 2V,  

i.e., let     

£³���� � ∑ AÉ(X�)£Ê∞∞∞∞ÊË�   and 

�� � = ∑ AÉ(X1)�Ì∞∞∞∞ÌË� .                                            2.34 

 

Here £Ê, �Ì are the stress and velocity variables for  k�Rguided wave modes at a 

frequency 2V. 

As shown by Auld [1990] , AÉ(X�) is a solution to the ordinary differential equation for 

each m and all n for which gÍ[ ≠ 0. 

4gÍ[ 7	ÏÐ
	X.

− B9[∗AÉ: = JÒ[ Ó!Ô_ + Ò[
Õ3K4���X1               2.35 

 

gÍ[ = − �
² Ö 7×Ì�·∗

² + ×·∗�Ì
²  : . ·�

Ø
5Ø dX2                            2.36 

Ò[ Ó!Ô_ = − �
� £´³(HHHH1111, HHHH1111, �)�·∗. ·� |5ØØ                            2.37                     

 

Ò[
Õ3 = �
� Ö  ¡¢Ø

5Ø 7£´³(HHHH1111, HHHH1111, �):. �·∗ dX�                     2.38 

For every mode m there is only one mode n such that gÍ[ ≠ 0. If m is a propagating 

mode then the mode n is the  same as mode m and if m is an evanescent mode then the 

mode n is such that 9[ = 9Í∗. 

AÉ(0) = 0 as there is no second harmonic propagation initially at X� = 0. 

The general solution to the ordinary differential equation above is  
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AÉ(X�) = 5Ù(_ÚÛÜÝbÞ_Úßà0)
TáÐâ(ãâ5�ã) (eÙãâ∗ä. − eÙ�ãä.)    if kP∗ ≠ 2k                       2.39 

 

AÉ(X�) = (_ÚÛÜÝbÞ_Úßà0)
TáÐâ

X�        if kP∗ = 2k                         2.40 

 

The above solutions imply that if the mode n is such that Ò[Ó!Ô_ + Ò[
Õ3 ≠ 0 and   kP∗ =
2k then the amplitude of the second harmonic increases linearly with the propagating 

distance and is termed a cumulative second harmonic. 

 

Thus two conditions are needed for the generation of a cumulative second harmonic  

1. A propagating guided wave mode n such that  kP∗ = 2k at frequency 2ω. This is 

termed as the phase matching criterion as the mode n propagates with the same 

phase velocity as the primary mode. For our future discussions we consider this as 

a necessary condition. 

2. And Ò[ Ó!Ô_ + Ò[
Õ3 ≠ 0 for that particular mode n, which is generally termed 

nonzero power flow. 

 

In the coming chapters we investigate the existence of those primary modes that 

guarantee cumulative second harmonic generation by employing the above criterion.   
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Chapter 3  

NECESSARY CONDITION FOR THE EXISTENCE OF CUMULATIVE  

SECOND HARMONIC GUIDED WAVES IN PLATES 

INTRODUCTION 

This chapter presents an analytical formulation of the necessary condition for the 

existence of a cumulative second harmonic by employing the phase matching criterion. 

We do this by considering the dispersion relations for Rayleigh-Lamb and Shear-

Horizontal mode propagation in plates. The chapter is organized into three sections. 

Section 3.1 presents the necessary conditions on the existence of cumulative second 

harmonic Rayleigh-Lamb modes when the primary mode is also a Rayleigh-Lamb mode. 

Section 3.2 presents the necessary conditions for the existence of cumulative second 

harmonic Rayleigh-Lamb modes when the primary mode is a Shear-Horizontal mode. 

Section 3.3 presents some special cases and discusses the conditions which are sufficient 

for non-existence of cumulative second harmonic Rayleigh Lamb or Shear Horizontal 

modes.  

3.1 THEORY 

The dispersion relations for Rayleigh-Lamb modes (equations 3.1 & 3.2) were 

developed as equations 1.19 & 1.20 and are presented here for convenience 
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NOP�QR�
NOP�SR� � 5T� SQ

�Q 5� �     symmetric modes                                       3.1 

NOP (QR)
NOP (SR) = 5(Q 5� ) 

T� SQ   antisymmetric modes                                3.2 

Here ‘h’ is the half-thickness of the plate, D = F(6
/2

)� − 9�  ,  @ = F(6
/0

)� − 9�. 

Where ω=2πf is the angular frequency, k is the wave number, '3  is  longitudinal wave 

speed and '� is shear wave speed. 

We obtain the necessary condition for the existence of a cumulative second 

harmonic by considering the possible ordered pairs (V, 9) for which both (V, 9) and 

(2V, 29� are guided wave modes in a plate. This procedure is general in the sense that 

one could use �V, 9) and (
V, 
9) for studying the existence of the  
�R harmonic.  

We begin the analysis by observing the following facts about the dispersion 

relations presented above. As (V, 9) is replaced by (2V, 29� we have 

i. D → 2D, @ → 2@ 

ii. Given the transformation �V, 9) →  (2V, 29�, the right hand sides of Equations 

3.1 and 3.2 remain unchanged 
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3.1.1 Phase matching criterion when both primary and secondary modes are 

Rayleigh-Lamb modes 

We present the analysis in two cases. Case a is when both the primary and 

secondary modes are of the same nature and Case b is when they are of different nature. 

 

Case a: Both �V, 9) and (2V, 29� are either symmetric or antisymmetric modes.  

From Equation 3.1 

NOP�QR�
NOP�SR� � 5T� SQ

�Q 5� �   and 

         
NOP(�QR)
NOP(�SR) = 5T� SQ

(Q 5� )   when both are symmetric modes                                3.3 

Or  

NOP (QR)
NOP (SR) = 5(Q 5� ) 

T� SQ    and 

NOP (�QR)
NOP (�SR) = 5(Q 5� ) 

T� SQ   when both are antisymmetric modes                      3.4 

In writing the above set of equations we exploited the fact that the right hand side of 

Equation set 3.1 is unaltered by the transformation (V, 9) → (2V, 29�  

From equations 3.3&3.4 we get;  

 

tan�2Dℎ�
tan�2@ℎ� � tan (Dℎ)

tan (@ℎ) 

⇔ sin(2Dℎ� cos�2@ℎ� sin(@ℎ) cos(Dℎ) − sin(2@ℎ� cos�2Dℎ� sin(Dℎ) cos(@ℎ) = 0 
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⇔ 2sin(Dℎ) sin(@ℎ) ¾cos�(Dℎ)cos (2@ℎ� − cos��@ℎ� cos (2Dℎ�À � 0 

⇔ sin(Dℎ) sin(@ℎ) ¾(1 + cos(2Dℎ��cos (2@ℎ� − �1 + cos (2ph��cos (2Dℎ�À � 0 

⇔ 2sin(Dℎ) sin(@ℎ) (cos (2ph� − cos (2Dℎ�� � 0 

⇔ qh = nπ or ph = nπ or (qh − ph) = nπ or (qh + ph) = nπ   

where D = F(6
/2

)� − 9�  ,  @ = F(6
/0

)� − 9�  as mentioned before and n is an 

arbitrary whole number. 

The above analysis holds true even when one or both p and q are imaginary. The 

only change one has to make to the above derivation is that cos(ph) must be changed into  

cosh(-iph) and sin(ph) must be changed into sinh(-iph). Of course p can be replaced by q 

in  the previous sentence. Also, care is taken to ensure that we do not miss any solutions 

falling in these categories while writing the following subcases.   

Sub-case a1: qh = nπ but ph ≠ nπ  but p may be 0.  

From the above condition, for symmetric modes we get from Equation (3.1)  −49�@D �
0  

⇒ (9 = 0 ⟹ (V, 9)B? $ '�y >ÒÒ k>%4) ># 7@ = 0 ⇒ V
9 = '3 : ># (D = 0 ⇒  V

9 = '� )  

@ = 0 ⇒ V
9 = '3 $
% Dℎ = nπ ⇒ V = 
ï'3'�

ℎð'3� − '��  

The case q=0 should be handled with limit dispersion relations which are obtained by 

considering the limit as q goes to 0 in the dispersion relations for symmetric modes 

(equation 3.1). 

The dispersion relation for symmetric modes is  
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NOP�QR�
NOP�SR� � 5T� SQ

�Q 5� �   

⟹  
(tan(Dℎ)

D )
tan (@ℎ) = −49�@

�D� − 9��� 

Taking limit as q goes to zero on the left hand side we get  [As limQ→m NOP (QR)
Q = ℎ] 

R
NOP (SR) = 5T� S

(Q 5� )   

Multiplying by p on both sides we get the following limit dispersion relation 

SR
NOP (SR) = 5TS 

�                                             3.5 

From equation 3.5 we have  

tan (@ℎ)
ph = −4 k�

p� 

⟹ NOP (SR)
óô = 4 õö 

õö 5õ÷   which is a transcendental equation and should be solved for 

purely imaginary values of p to get the modes at longitudinal velocity '3 on the dispersion 

curves. 

Now the phase matching criterion takes the form  

NOP (SR)
óô = NOP (�SR)

�óô   

The above equation does not have any solution in the present case. 

For antisymmetric modes, from Equation (3.2) we have  (D� − 9�)� = 0 

⇒ D� = 9� ⇒ V
9 = √2 '� 

Since qh = nπ we have V =  √�[\/2 
R     
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Conclusions from this sub-case a1: 

1. All primary symmetric modes at V � [\/0/2
Rð/0 5/2  $
% 'S = 6

� = '3  can give 

secondary symmetric modes. 

2. All primary antisymmetric modes at  V =  √�[\/2 
R    and 'S = 6

� = √2 '� can 

give secondary antisymmetric modes. 

 

Sub-case a2: ph = nπ but qh ≠ nπ 

From the above condition, for symmetric modes, from equation 3.1 we get  (D� − 9�)� =
0 

⇒ D� = 9� ⇒ V
9 = √2 '� 

If this condition has to be satisfied we need √2'� ≥ '3 , as  ph � nπ is a real number. 

under this assumption, we get V = √�[\/0/2
RF�/2 5/0 

 

For antisymmetric modes, from equation 3.2 we get  −49�@D � 0 

⇒ 9 = 0 J(V, 9)B? $ '�y >ÒÒ k>%4K ># 7@ = 0 ⇒ V
9 = '3 : ># (D = 0 ⇒  V

9 = '� ) 

The condition p=0 should be handled using limit dispersion relation for anti symmetric 

modes. This can be obtained in the similar way we obtained equation 3.5 by considering 

the limit as p goes to zero for the dispersion relation in equation 3.2. 

The limit dispersion relation is  

NOP(QR)
QR = 5JQ 5� K 

T� Q  . 
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The phase matching criterion takes the form 

NOP�QR�
QR � NOP��QR�

�QR   

⇔ Dℎ � 
ï for some whole number n (which is against the condition for the present sub-

case and also the limit dispersion relation is not satisfied) 

�D � 0 ⇒  V
9 = '� and @ℎ = 
ï does not give any  modes since @ℎ ≥ 0 ⇒ 'S ≥ '3) 

 

Conclusions from this sub-case a2: 

1. If √2'� ≥ '3 then primary symmetric modes at V � √�[\/0/2
RF�/2 5/0 

  and 

'S = 6
� = √2 '�   can generate secondary symmetric modes.  

2. No primary antisymmetric modes satisying the conditions of this subcase can 

generate secondary antisymmetric modes. 

Sub-case a3: (qh − ph) = nπ or (qh + ph) = nπ and (ph ≠ nπ and qh ≠ nπ) 

(qh − ph) = nπ ⇒ tan(qh) = tan(ph) 

⇒ tan(Dℎ)
tan(@ℎ) = 1 = −49�@D

�D� − 9���  ⇒  −(D� − 9�)�
49�@D � 1 = tan(Dℎ)

tan(@ℎ)
⟹ conditions for both symmetric and anti symmetric modes are satisýied
⟹ (V, 9) is a point of intersection of symmetric and antisymmetric modes 

(qh + ph) = nπ ⇒ tan(qh) = −tan(ph) 
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⇒ tan�Dℎ�
tan�@ℎ� � −1 = −49�@D

�D� − 9���  ⇒  −(D� − 9�)�
49�@D � −1 = tan(Dℎ)

tan(@ℎ)
⟹ conditions for both symmetric and anti symmetric modes are satisýied
⟹ (V, 9) is a point of intersection of symmetric and antisymmetric modes 

Conclusions from this sub-case a3: 

1. All primary modes which are intersections of a symmetric and antisymmetric 

mode can generate a secondary mode which is also an intersection of symmetric 

and a antisymmetric mode. 

 

Sub-case a4:  ph = nπ and qh = mπ for some natural numbers m,n. 

It is easy to see that in this case also the primary mode is a mode which is an intersection 

of symmetric and antisymmetric modes. 

 

Case b:  (V, 9) is a symmetric/antisymmetric mode and (2V, 29� is an 

antisymmetric/symmetric mode. (one primary mode generates secondary mode of 

opposite nature) 

tan�Dℎ�
tan�@ℎ� � −49�@D

�D� − 9���   $
% 

tan(2Dℎ�
tan�2@ℎ� � −�D� − 9���

49�@D ;  

Or 

tan(Dℎ)
tan(@ℎ) = −(D� − 9�)�

49�@D  $
% 
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tan (2Dℎ�
tan (2@ℎ� � −49�@D

�D� − 9��� ; 

From the above cases we get  

tan�Dℎ�
tan�@ℎ�

tan�2Dℎ�
tan�2@ℎ� � 1 

⇔ sin(2Dℎ� sin (qh)cos (ph) cos(2@ℎ� − sin(2@ℎ� cos�2Dℎ� sin(@ℎ) cos(Dℎ) = 0 

⇔ 2 cos�Dℎ� cos (@ℎ)¾cos(2@ℎ� ?B
��Dℎ� − cos�2Dℎ� ?B
��@ℎ�À � 0 

⇔ 2 cos�Dℎ� cos (@ℎ)¾cos(2@ℎ� �1 − cos(2Dℎ�� − cos�2Dℎ� �1 − cos (2@ℎ��À � 0 

⇔ 2 cos�Dℎ� cos (@ℎ)¾cos(2@ℎ� − cos (2Dℎ��À � 0 

⇔ qh = (2n � 1) þ
�  or ph = (2n � 1) þ

� or (qh − ph) = nπ or (qh + ph) = nπ  

where n is an arbitrary whole number. 

Sub-case b1: qh = (2n � 1) þ
�  but  ph ≠ (2n � 1) þ

� 

For symmetric modes, from equation 3.1, we get (D� − 9�)� = 0 

⇒ D� = 9� ⇒ 'S = V
9 = √2 '� 

As qh = (2n � 1) þ
�  we have V =  √�(�[Þ�)\/2 

�R  

For antisymmetric modes, from equation 1, we get −49�@D � 0 

⇒ 9 = 0 J(V, 9)B? $ '�y >ÒÒ k>%4K ># 7@ = 0 ⇒ V
9 = '3 : ># (D = 0 ⇒  V

9 = '� )  
The case p=0 should be dealt with using the limit dispersion relation i.e, 

NOP(QR)
QR = 5JQ 5� K 

T� Q  and qh = (2n � 1) þ
�   

⟺ 9 = 0 ⟹ no mode that satisfies this condition exists (no cut off modes exist at '3 ). 
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Conclusions from this Sub-case b1: 

1. Primary symmetric modes at V �  √�(�[Þ�)\/2 
�R   and 'S = 6

� = √2 '� can 

generate secondary antisymmetric modes. 

 

Sub-case b2: ph = (2n + 1) þ
�  but  qh ≠ (2n + 1) þ

� 

For Symmetric modes from Equation 3.1, we get −49�@D = 0 

⇒ (9 = 0 ⟹ (V, 9)B? $ '�y >ÒÒ k>%4) ># 7@ = 0 ⇒ V
9 = '3 : ># (D = 0 ⇒  V

9 = '� )  
7@ = 0 ⇒ 6

� = '3 : is not a possible case since ph = (2n + 1) þ
�   

 

The case q=0 should be dealt with the limit dispersion relation i.e, 

NOP (SR)
óô = −4 ã 

ó  and  ph = (2n + 1) þ
�  

⟹ No modes that satisfy the above conditions exist. 

 

For Antisymmetric modes, from Equation 3.2, we get (D� − 9�)� = 0 

⇒ D� = 9� ⇒ V
9 = √2 '� 

If this condition has to be satisfied we need √2'� ≥ '3 as 

ph = (2n + 1) þ
�  is a real number. 

Under this assumption we get V = √�(�[Þ�)\/0/2
�RF�/2 5/0   

Conclusions from this Sub-case b2: 
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1. If √2'� ≥ '3 then primary antisymmetric modes at V � √���[Þ��\/0/2
�RF�/2 5/0 

  and 

'S � 6
� � √2 '� can generate secondary symmetric modes. 

 

Sub-Case b3: (qh − ph) = nπ or (qh + ph) = nπ 

This sub-case has been clearly discussed as part of sub-case a3 and it was observed that 

both the primary and secondary modes correspond to the intersections of symmetric and 

antisymmetric modes on the dispersion curves. 

 

Sub-Case b4: ph = (2n + 1) þ
�  and  qh = (2m + 1) þ

� 

This Sub-Case would result in the Sub-Case b3 as (qh − ph) = rπ and (qh + ph) = sπ 

for arbitrary integers r=m-n,s=m+n+1. 

These also correspond to the primary modes being intersections of symmetric and 

antisymmetric modes in the dispersion curves. 

3.1.2 Phase matching criterion when the primary mode is a Shear-Horizontal mode and the 

secondary mode is a Rayleigh-Lamb mode 

In this section we discuss the cases when (V, 9) is a Shear-Horizontal mode and 

(2V, 29) is a Rayleigh Lamb mode. 

Case a: (V, 9) is a Shear-Horizontal mode and (2V, 29) is a Symmetric mode. 

⇒ qh = Pþ
�  and  

NOP (�QR)
NOP (�SR) = 5T� SQ

(Q 5� ) ;  but tan(2Dℎ) = 0 $? qh = Pþ
�   
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⟹ tan�2@ℎ� � 0 ># 9 = 0J(V, 9)B? $ '�y>ÒÒ k>%4K># 7 @ = 0 ⇒ V
9 = '3 : >#  

    (D = 0 ⇒ 6
� = '� )  

⇒ 2@ℎ = kπ ⟹ @ℎ = Í\
� ; k is an arbitrary whole number or (D = 0 ⇒ 6

� = '� ) or  

(@ = 0 ⟹ 6
� = '�)  

If k ≠ 0$
% 
 ≠ 0 then the secondary symmetric mode is a mode at the intersection of a 

symmetric and antisymmetric mode at  'S > '3 . 

If  (@ = 0 ⇔ k = 0) $
% 
 ≠ 0 then the secondary symmetric mode is a mode at 

'S = 6
� = '3  and frequency 2V = [\/0/2

Rð/0 5/2   

The case (D = 0 ⇔ 
 = 0) should be dealt with limit dispersion relation i.e, 

NOP (�SR)
�óô = −4 ã 

ó  and 'S = '�. 

The above equation has to be solved numerically and has solutions only at very high 

frequencies where the dispersion RL curves converge to transverse wave speed. 

m=0 and n=0 is not possible because both p and q cannot be zero simultaneously. 

k ≠ 0 and 
 ≠ 0 corresponds to primary mode being a mode whose phase velocity 

satisfies the equation  

� 1
'3� − 1

'S�� = k�

� � 1

'�� − 1
'S�� 

The secondary mode is an intersection of symmetric and anti symmetric modes in the 

dispersion curve. 
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Case b: �V, 9) is a Shear-Horizontal mode and (2V, 29) is an Antisymmetric mode. 

⇒ qh = Pþ
�   and  

NOP(�QR)
NOP(�SR) = 5(Q 5� ) 

T� SQ  ;  but tan(2Dℎ) = 0 $? qh = Pþ
�  

⟹ tan(2@ℎ) = 0  or −(D� − 9�)� = 0; 

⇒ @ℎ = kï
2  ># D� = 9� 

Sub-case b1: qh = Pþ
�   and  ph = Í\

�  

 m=0 and n=0 is not possible because one cannot have p=0 and q=0 simultaneously. 

m=0 and 
 ≠ 0 then this case has to be dealt with the limit dispersion relation i.e, 

 
NOP(�QR)

�QR = 5JQ 5� K 
T� Q   and qh = Pþ

�  

⟹ D� − 9�=0 ⟹ 'S = 6
� = √2 '� (which is not possible as p=0 ⟹ 6

� = '3) 

⟹ there is no solution in this case 

k ≠ 0$
% 
 = 0 ⟹ There is no secondary mode. 

 k ≠ 0$
% 
 ≠ 0 ⟹ The secondary mode is an intersection of symmetric and 

antisymmetric modes at 'S > '3. 'S satisfies the following equation as in case a 

� 1
'3� − 1

'S�� = k�

� � 1

'�� − 1
'S�� 

Sub-case b2 qh = Pþ
�   and  D� = 9� 

⇒ 'S = V
9 = √2 '� $
% V = 
ï√2 '�2ℎ  

Primary Shear Horizontal mode at V = [\√� /2
�R  $
% 'S = 6

� = √2 '� can generate 

secondary antisymmetric modes at 2V = [\√� /2
R  $
% 'S = 6

� = √2 '�. 
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If n=0 no mode that satisfies the conditions of this sub-case exists. 

3.2 CONCLUSIONS 

In this section we presented some conditions that are sufficient for non existence 

of cumulative second harmonics. 

1. Shear Horizontal modes cannot be generated as secondary modes when the 

primary modes are Rayleigh-Lamb modes. Hence, this analysis has not been 

performed. 

2. Any primary mode that is capable of generating a cumulative secondary mode  

will fall into at least one of the following categories 

a. It has 'S � '3. 

b. It has 'S � √2'�.(Lame modes) 

c. It is an intersection of a symmetric and antisymmetric mode on the 

dispersion curves. 

d. It is a cut-off mode 

3. So, if a mode does not satisfy any of the above conditions then it can be 

concluded that it cannot be used to generate a cumulative second harmonic in the 

plate.  
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Chapter 4  
 

 INTERACTION OF GUIDED WAVE MODES IN PLATE 

INTRODUCTION 

In this chapter we examine the power flow criterion to determine which of the 

guided wave modes obtained from the phase matching criterion can be used to generate a 

cumulative second harmonic. We also formulate a generalized problem that will be able 

to predict the non-linear interaction of two arbitrary guided wave modes propagating in 

the plate. The content of this chapter is organized as follows. Section 4.1 examines the 

cumulative second harmonic guided wave problem from a power-flow perspective. 

Section 4.2 formulates the generalized problem for guided wave mode interaction. 

Section 4.3 presents the conclusions. 

4.1 Power flow analysis for cumulative second harmonic generation with primary 

Rayleigh-Lamb modes 

In Chapter 2 we obtained the non-zero power flow criterion (Equation 2.40) for 

cumulative second harmonic generation, i.e, existence of a guided wave mode ‘n’ having 

kP � 2k at a frequency 2ω such that 

Ò[ Ó!Ô_ � Ò[
Õ3 ≠ 0                                            4.1                                                  

where (equations 2.37, 2.38)  
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Ò[ Ó!Ô_ � − �
� £´³�HHHH1111, HHHH1111, �)�·∗. ·� |5ØØ                                        4.2                            

 

Ò[
Õ3 = �
� Ö  ¡¢Ø

5Ø 7£´³(HHHH1111, HHHH1111, �):. �·∗ dX2.                              4.3 

Now we examine under what conditions or which primary modes �� are capable of 

satisfying the above criterion. For this we introduce the following terminology. 

 

‘Sym’ matrix/vector:  A matrix of the following structure where E denotes an even 

function and O denotes an odd function is called a ‘Sym’ matrix. (Note the distinction 

between � and 0) 

�s � 0� s 00 0 s� 
A vector of the following structure is called a ‘Sym’ vector 

�s�0	 
‘Anti’ matrix/vector:  A matrix of the following structure where E denotes an even 

function and O denotes and odd function is called an ‘Anti’ matrix. 

�� s 0s � 00 0 s� 
A vector of the following nature is called the ‘Anti’ vector 

��s0	 
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Now we list some lemmas and their proofs, which will help in generalizing the 

cumulative harmonic generation via mode-interaction. 

Lemma 1 If � is a symmetric/antisymmetric Rayleigh Lamb mode then H=Grad(�� 

when represented in Cartesian co-ordinate system has ‘Sym’/ ‘Anti’ nature. 

Proof Let 

� � Â� �����
��
���
��

Á
� �Ä�Å��5Æ��	 

where ��is an even/odd function and �� is an odd/even function with respect to �� for a 

symmetric/antisymmetric mode.  Since the derivative of an even function is odd and vice-

versa, H when represented as a matrix looks like  Â�
�

�
���
�ÄÅ�� ���

�
� Á
ÄÅ�� ���

�
�
Á

Á Á Á���
�

�Ä�Å��5Æ��

��
�

 , 

which has a ‘Sym’/‘Anti’ structure depending on whether � is a 

symmetric/antisymmetric mode. 

Lemma 2 The product of matrices of identical nature results in a matrix of ‘Sym’ nature 

and the product of matrices of opposite nature results in a matrix of ‘Anti’ nature. 

�s � 0� s 00 0 s� �s � 0� s 00 0 s� � �s � 0� s 00 0 s� 
�s � 0� s 00 0 s� �� s 0s � 00 0 s� � �� s 0s � 00 0 s� 
�� s 0s � 00 0 s� �s � 0� s 00 0 s� � �� s 0s � 00 0 s� 
�� s 0s � 00 0 s� �� s 0s � 00 0 s� � �s � 0� s 00 0 s� 
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Proof  The proof is a consequence of the fact that the product of two functions of the 

same parity is even and that of opposite parity is odd. 

�s � 0� s 00 0 s� �s � 0� s 00 0 s� � �s ∗ s � � ∗ � s ∗ � � � ∗ s 0� ∗ s � s ∗ � � ∗ � � s ∗ s 00 0 s ∗ s� � �s � 0� s 00 0 s� 
 

�s � 0� s 00 0 s� �� s 0s � 00 0 s� � �s ∗ � � � ∗ s s ∗ s � � ∗ � 0� ∗ � � s ∗ s � ∗ s � s ∗ � 00 0 s ∗ s� � �� s 0s � 00 0 s� 
 

�� s 0s � 00 0 s� �s � 0� s 00 0 s� � �s ∗ � � � ∗ s s ∗ s � � ∗ � 0� ∗ � � s ∗ s � ∗ s � s ∗ � 00 0 s ∗ s� � �� s 0s � 00 0 s� 
 

�� s 0s � 00 0 s� �� s 0s � 00 0 s� � �� ∗ � � s ∗ s � ∗ s � s ∗ � 0s ∗ � � � ∗ s s ∗ s � � ∗ � 00 0 s ∗ s� � �s � 0� s 00 0 s� 
 

Lemma 3 The product of a matrix and vector of identical nature (whenever the product is 

meaningful) results in a ‘sym’ vector and a product between those of opposite nature 

results in a vector of ‘Anti’ nature. 

Proof  Follows along the same lines as above 

�s � 0� s 00 0 s� �s�0	 � �s ∗ s � � ∗ �� ∗ s � s ∗ �0 	 � �s�0	 
�� s 0s � 00 0 s� ��s0	 � �� ∗ � � s ∗ s

s ∗ � � � ∗ s0 	 � �s�0	 
�s � 0� s 00 0 s� ��s0	 � �s ∗ � � � ∗ s� ∗ � � s ∗ s0 	 � ��

s0	 
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�� s 0s � 00 0 s� �s�0	 � �� ∗ s � s ∗ �
s ∗ s � � ∗ �0 	 � ��

s0	 
 

Lemma 4 For any primary Rayleigh Lamb mode � the matrix representation for 

£´³��,HHHH, �) is a ‘Sym’ matrix. 

Proof 

From equation 2.24 

£´³(�, �, �) = ��©©³(�) + �©©´³(�, �, �)                                           4.4 

where 

�©©³(�) = ¬
� �­(� + ��)� + ®(� + ��)                                4.5 

�©©´³(�, �, �) = ¬
� �­(���)� + ¯ (�­(�))�� + ®��� + °�­(�)(� + ��) +
°
� �­(�� + ���)� + ±

² (�� + ��� + ��� + ���)         4.6 

 

��©©³(�) = ¬
� �­(� + ��)� + ®(�� + ���)                      4.7 

If H is of ‘Sym’/’Anti’ nature then  tr(H + H�) is an even(E)/odd(O) function being 

linear in the diagonal terms. 

So the first term 
¬
� �­(� + ��)�  in Equation 4.7 has one of the following forms  

s �s � 0� s 00 0 s� = �s ∗ s s ∗ � 0s ∗ � s ∗ s 00 0 0� = �s � 0� s 00 0 0� 
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� �� s 0s � 00 0 s� � �� ∗ � � ∗ s 0� ∗ s � ∗ � 00 0 0� � �s � 0� s 00 0 0� 
Using lemma’s 1 and 2  it is easy to show that  ®��� � ���� has a Sym nature. So, we 

can conclude  ��©©³��� has a ‘Sym’ nature. 

Using the consequences of Lemma 2 we can conclude that each of the terms of �©©´³��� has 

‘Sym’ nature and hence �©©´³��, �, �)  has ‘Sym’ nature.  

So,  £´³(�) = ��©©³(�) + �©©´³(�, �, �) has a ‘Sym’ nature. 

Corollary: From the above lemma, it can be seen that the matrix representation of  

£´³(�) has the following structure �s � 0� s 00 0 0� i.e., the third rows are all zero⟹the non 

linear terms corresponding to the displacement in XW direction are zero⟹ Primary 

Rayleigh Lamb modes cannot generate secondary Shear Horizontal modes (SH modes) as 

SH modes have only �W component of displacement. 

Primary RL modes cannot generate secondary SH modes. 

 

 

Lemma 5 The vector representing  ¡¢7£´³(�, �, �): has a ‘Sym’ nature. 

Proof 

In lemma 4 we proved that the matrix representation of  £´³(�, �, �) has a sym nature. 
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So,  ¡¢7£´³��, �, �): has the following nature 

�

� ��

��. + ��
�� ��

��. + ��
�� 0 ��

�
=�s�0	 (Since the derivative 

with respect to X� does not change the nature of the function, but a derivative with 

respect to X� flips it). 

Lemma 6 The power flow Ò[ Ó!Ô_ + Ò[
Õ3 ≠ 0 ⟺ �· is a symmetric mode. 

In the context of the above discussion, Ò[ Ó!Ô_ = − �
� £´³(HHHH1111, HHHH1111, �)�·∗. ·� |5ØØ  is non-

zero ⟺ £´³(HHHH1111, HHHH1111, �)�·∗. ·� is an odd function ⟺ £´³(HHHH1111, HHHH1111, �)�·∗ is a ‘Sym’ vector 

⟺ �· is of ‘Sym’ nature as £´³(HHHH1111, HHHH1111, �) is a ‘Sym’ matrix  ⟺ �· is symmetric mode. 

Ò[
Õ3 = �
� Ö  ¡¢R

5R 7£´³(HHHH1111, HHHH1111, �):. �·∗ %X2 is non-zero ⟺  ¡¢7£´³(HHHH1111, HHHH1111, �):. �·∗ is 

an even function ⟺ �· is symmetric mode as  ¡¢7£´³(HHHH1111, HHHH1111, �): is ‘Sym’ vector from 

lemma 5. 

Corollary: From the above lemma, it can be concluded that the power flow is non-zero 

only to the symmetric modes. 

 

So, for a single primary Rayleigh Lamb mode excitation, cumulative second harmonics 

exist only as symmetric modes.  
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4.2 Power flow analysis for generation of second harmonic with primary SH mode 

excitation  

In this section we examine the case when the primary SH modes generate a 

secondary RL mode.  

Let � � �4 �� 00�W���)� 4����.5ω��	 be the fundamental SH Mode. 

H=Grad(�) has the following matrix representation  

Â��� Á Á Á
Á Á Á

ÄÅ�«
��«
�
�

Á �Ä�Å��5ωωωω��! 

 

Following the same procedure as outlined in the preceding section we make the following 

observations 

1. tr(H)=tr(���=0. 

2. ��=0, ��� � Á. 

3. Matrix representation of ��� has the following structure �0 0 00 0 00 0 s� where E is 

an even function. 

4. Matrix representation of ��� has the following structure �s � 0� s 00 0 0� i.e the 

structure of ‘sym’ matrix. 

5. The matrix representation of £´³�HHHH,HHHH, �) (equation 4.4) has sym structure 

whether � is a symmetric/antisymmetric mode.  
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6.  ¡¢7£´³��, �, �): has the structure of a sym/anti vector depending on whether � 

is a symmetric/antisymmetric mode. 

7. Ò[ Ó!Ô_ = − �
� £´³(HHHH1111, HHHH1111, �)�·∗. ·� |5ØØ  is zero for every SH mode �· 

8. Ò[ Ó!Ô_ = − �
� £´³(HHHH1111, HHHH1111, �)�·∗. ·� |5ØØ  is non-zero only for symmetric RL 

modes �· 

9. Ò[
Õ3 = �
� Ö  ¡¢R

5R 7£´³(HHHH1111, HHHH1111, �):. �·∗ %X2 is non zero only for symmetric RL 

modes �· .  

We can conclude that single primary SH mode excitation can only generate RL 

symmetric modes as cumulative second harmonics. 

4.3 Interaction of Rayleigh-Lamb Guided wave modes 

In this section we formulate a generalized problem which helps us to predict the 

guided wave mode interaction. This is important for the following reasons: 

• In most of the experiments involving guided waves, one excites more 

than one mode owing to the finiteness of source and the frequency 

bandwidth of the transducer. So, it is important that one studies the 

problem of guided wave mode interaction. 

• It is also important for the study of higher harmonic guided wave 

generation in plates i.e., harmonics above the second. This is because, one 

can think of higher harmonics as interactions between primary mode and 
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the other lower harmonics and it is essential that one has a theoretical 

framework for studying these interactions.  

We consider the interaction of two guided wave modes �¼, �¥ propagating in the 

plate. 

Following the same procedure as in Chapter 2 the total displacement field in the 

plate (up to second order interactions) is 

� = �¼ + �¥ + �¼¼ + �¼¥ + �¥¥                                   4.8 

where �¼¼, �¥¥ are displacement fields due to the self-interaction of mode a and b 

respectively, and �¼¥ is the displacement field due to the mutual interaction between 

modes a and b. 

The displacement gradient is 

� = �¼ + �¥ + �¼¼ + �¼¥ + �¥¥.                             4.9 

The first Piola-Kirchoff stress tensor is given by 

SSSS((((HHHH)=)=)=)=£³((((�¼)))) + £³(�¥) + £³((((�¼¼)))) + £³((((�¼¥)))) + £³((((�¥¥)))) + £´³(�" + �#).        4.10 

We note that  

£´³(�¼ + �¥) = £´³(�¼, �¼, �) + £´³(�¥, �¥, �) + £´³(�¼, �¥, �)                       4.11 

where £´³(�¼, �¼, �), £´³(�¥, �¥, �) are the self-interaction terms as defined in Chapter 

2 and £´³(�¼, �¥, �) denotes the other second order interaction terms in £´³(�¼ + �¥) 

(equation 2.24) 
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£´³��¼, �¥, �)
=  ¬

� �­J�¥ + �¥�K�¼ + ®�¼J�¥ + �¥�K + ¬
� �­J�¼ + �¼�K�¥

+ ®�¥J�¼ + �¼�K + ¬
� �­J�¼��¥ + �¥��¼K� + �¯�­(�¼)�­(�¥)� 

+®J�¼��¥ + �¥��¼K + °�­(�¼)J�¥ + �¥�K + °�­(�¥)J�¼ + �¼�K 

+ °
� �­J�¼�¥ + �¥�¼ + �¼��¥ + �¥��¼K� + ±

² (�¼�¥ + �¥�¼ +
�¼��¥� + �¥��¼� + �¼��¥ + �¥��¼ + �¼�¥� + �¥�¼�)                                                                                                           

4.12 

If �¼ = Â�Ã�¼(XXXX2222)�Ä(Å¼XXXX11115Æ¼�)Ç , �¥ = Â�Ã�¥(XXXX2222)�Ä(Å¥XXXX11115Æ¥�)Ç then £´³(�¼, �¥, �) 

contains terms with the following exponentials 

4����$Þ�%��.5�6$Þ6%���, 4����$5�%��.5�6$56%���, 45����$Þ�%��.5�6$Þ6%���, 45����$5�%��.5�6$56%���

. 

These terms correspond to modes at (V& � V' , 9& + 9') and (V& − V', 9& − 9'). 

So, if the phase matching criterion is satisfied i.e., if there exist propagating guided wave 

modes at any of the above frequency-wave number combinations then there is a 

possibility of cumulative guided wave mode propagation if the non-zero power flow 

condition is satisfied for that mode. To comment on this we examine the structure of  

£´³(�¼, �¥, �) for various combinations of modes  �¼, �¥. 

 

We can consider each of the terms of £´³(�¼, �¥, �) and perform an analysis 

similar to that in section 4.1 to conclude the following  
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1. Matrix representation of £´³��¼, �¥, �) has a structure of ‘Sym’ matrix if �¼, �¥ 

are modes of the same nature and has an ‘Anti’ structure if the modes �¼, �¥ are 

of opposite nature. 

2. If £´³(�¼, �¥, �) has a ‘Sym’/’Anti’ structure the power flow Ò[ Ó!Ô_ + Ò[
Õ3 ≠
0 ⇔ �· is a symmetric/antisymmetric mode. 

3. If �¼, �¥ are modes of the same nature then the guided wave mode due to their 

interaction is a symmetric mode and if they are of opposite nature then the guided 

wave mode  due to their interaction is an antisymmetric mode. 

The above observations are consistent with our results for cumulative second 

harmonic generation using single primary mode excitation. We found that the cumulative 

second harmonics exist only as symmetric modes and this can be thought of as interaction 

of the same mode which would lead to a ‘Sym’ matrix structure for £´³(�¼, �¥, �) where 

a=b. 

4.4 Conclusions 

The following conclusions can be drawn from the analysis performed in this 

chapter 

1. Single primary Rayleigh-Lamb mode excitation can generate only symmetric RL 

modes as cumulative secondary harmonics. 

2. Primary modes consisting of only Rayleigh Lamb modes cannot generate higher 

harmonic SH modes. 
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3. Single primary SH mode excitation can generate only symmetric Rayleigh Lamb 

modes as cumulative secondary harmonics. 

4. Interaction of Rayleigh-Lamb modes of same nature can generate symmetric 

modes as secondary modes, while interaction between those of opposite nature 

can generate antisymmetric modes as secondary harmonics.  
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Chapter 5  

LITERATURE IN THE CONTEXT OF THESIS FORMULATION 

INTRODUCTION 

In this chapter we discuss in detail some of the earlier work done in relation to 

higher harmonic guided wave generation in plates. We discuss the contributions of the 

earlier work and also adopt a critical viewpoint to examine how the results fit into the 

theoretical framework developed as part of this thesis. The content of this chapter is 

organized as follows. Section 5.1 presents the discussion as stated earlier in a 

chronological manner of the work in higher harmonic guided wave generation in plates. 

5.1 Literature in the context of thesis 

One of the earlier works on the nonlinear interaction of guided wave modes was 

by Deng [1998] in which he studied the non-linear interaction of SH modes in plate. He 

concluded that the cumulative second harmonic generation of SH modes from the self 

interaction of SH modes is not possible, which is one of the results obtained from the 

analysis in Chapter 4 in this thesis. The theoretical formalism he adopted was quite 

different from the one in the present thesis. He expressed the primary wave-field using 

the partial wave approach and then considered the secondary wave-field as arising out of 

non-linear interactions among the partial waves. Then the secondary wave field is also 

made to satisfy the boundary conditions to obtain a set of relations which necessitate the 
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existence of cumulative second harmonics. Deng [1999] extended his approach to study 

the non-linear interaction of RL modes in a plate. He concluded that the cumulative 

second harmonics exist only as symmetric modes. This is also one of the conclusions 

drawn from the analysis presented in chapter 4 of the thesis. Although the work of Deng 

was able to demonstrate the existence of cumulative second harmonics, it did not present 

a complete understanding of which modes could be used to generate cumulative second 

harmonics. The present work in this thesis included a detailed analysis in chapter 3 on 

how should one go about picking out those modes to generate any higher order harmonic. 

We were able to come up with a list of guided wave modes which can be used for the 

generation of cumulative second harmonics. 

de Lima and Hamilton [2003] have developed a new formalism for the study of 

second harmonic guided wave propagation in plates. This is the formalism that we 

adopted in this thesis. The article by de Lima and Hamilton [2003] used this approach to 

formulate the generalized problem of guided wave mode interaction. They used a 

perturbation approach to formulate the second harmonic problem and arrived at the two 

conditions required for the generation of cumulative second harmonic. The first one is the 

phase matching criterion and the second one is the non-zero power flux. These two 

conditions together lead to the “internal resonance” condition. Although this work 

provided a framework for the analysis of guided wave mode interaction there was no 

discussion on which modes could be used for the generation of cumulative second 

harmonics. The present thesis used the formalism by de Lima and Hamilton and went 

about the analysis to predict which modes generate cumulative second harmonics and 

also predict the interaction of guided wave modes in plate. 
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Bermes et al. [2007] used the RL modes to characterize material non-linearity in 

aluminium plates. The primary modes they selected for this purpose is the S� mode at the 

longitudinal velocity, which generates a cumulative second harmonic S� mode at the 

longitudinal velocity. This mode pair was also an outcome of our analysis from chapters 

3 and 4. Experiments were performed on two aluminum plates whose material non-

linearity parameters were initially estimated using longitudinal waves. The material non-

linearity parameters estimated using the Lamb waves were compared to those estimated 

using longitudinal waves and were found to be in very good agreement.  Mu¶ ller et al. 

[2010] has identified (but not derived) the set of guided wave modes that can be used for 

the generation of cumulative second harmonics. They considered the group velocity 

matching criterion in addition to the phase matching and power flow criterion to arrive at 

those modes. These are exactly the same as the ones obtained going through the analysis 

presented in chapters 3 and 4 of the present thesis. The criterion of group velocity 

matching does not arise out of the theoretical solution to the second harmonic problem 

but is considered necessary from a practical point of view. The rationale behind this is the 

argument that if the group velocities of the primary and secondary modes differ, then the 

power flow from the primary to the secondary modes does not take place after a certain 

propagation distance, then the cumulative increase in amplitude for second harmonic 

does not occur. Mu¶ ller et al. have not presented a generalized approach for the phase 

matching criterion as the one presented in chapter 3, which can be extended to study the 

generation of any higher harmonic. The power flow analysis presented by Mu¶ ller et al. is 

along the same lines as the one presented in the present thesis except for the fact that the 

thesis explicitly uses the displacement gradient H for carrying out the analysis which 
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greatly simplifies and clarifies it. The usage of H offers several advantages which are 

quite evident while studying the generalized problem of RL guided wave mode 

interaction in chapter 4. Matlack et al. [2011] used the RL mode-pairs S�-S� and S�-ST to 

characterize the efficiency of each of the mode-pairs in estimating the material non-

linearity parameter q. It was concluded that S�-ST was more efficient but it resulted in 

more unwanted modes when compared to S�-S�. Hence they used S�-S� for their 

experiments but made a note stating that S�-ST could be used with more sophisticated 

experimental methods. 

Srivastava and di Scalea [2009]  used the theoretical formalism developed by de 

Lima and Hamilton and tried to predict the existence of symmetric and antisymmetric 

modes at higher harmonics. To that end, they started with an 
�R order generalized strain 

energy function that contains higher order strain multiples up to order n.  The theoretical 

formulation was based on linearized strain assumption rather than the full Lagrangian 

strain. This aspect of their work is plausibly incorrect for reasons listed below: 

• The higher order strain term HHHHTTTTHHHH  is significant enough in the context of the 

present work to be able to be neglected in the strain but to be included in the 

higher order strain multiples.  

For example consider the following strain energy function with third order terms 

in strain. 

(̈ ��) � �
� ¬��­����� � ®�­���� � �

« ¯��­����« � °�­����­���� � �
« ±�­��«� 5.1 

 

with the resulting second Piola-Kirchoff stress tensor from equation 2.16 
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�©© �  ¬�­��)� � �®� � ¯��­������ � °�­����� � �°�­���� � ±��       5.2 

We write two expressions for  �©© one using linearized strain (�)¡*� and the other 

using the full Lagrangian strain (E). 

The linearized strain is  �)¡* � �
� �� � ���  

�©© when linearized strain �)¡* is used, is as follows 

  �©© � ¬
� �­�� � ���� � ®�� � ��� � ¯

² �­�� � ����� � °
² �­��� � ������ �

°
� �­�� � ����� � ��� � ±

² �� � ����                                              5.3 

�©© when Lagrangian strain E is used, is as follows 

�©©��� � ¬
� �­�� � ���� � ®�� � ��� � ¬

� �­������ � ¯ ��»�+))�� � ®��� �
°�­����� � ��� � °

� �­��� � ����� � ±
² ��� � ��� � ��� � ����  5.4 

In the expression with �©© using linearized strain terms like 
,� �­����)-, ®��� 

are dropped but include terms of the same order like 
±
² (� + ��)�, ¯

² �­(� +
��)�-, °² �­((� + ��)�)�  and  

°
� �­(� + ��)(� + ��). This seems theoretically 

inconsistent and also has its impact on the higher harmonic guided wave problem 

formulation as will be illustrated in the following point.   

• The work presumed the cause for the generation of higher harmonics is only the 

primary mode, but in reality once the amplitude of secondary mode becomes 

comparable to that of the primary mode after a certain propagation distance, the 

perturbation assumption initially made is incorrect and one has to consider the 

interaction between the primary and secondary modes too. Thus, if one is 

formulating the problem for a third harmonic generation one has to include the 

non-linear stress contribution not only from the primary mode £´³(��, ��, «) 
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but also due to the interaction between primary and second harmonic 

modes £´³���, ��, �).  

We illustrate the above fact by formulating the third harmonic problem. 

Consider the displacement in the plate up to a third order perturbation. 

� = �� + �� + �« 

� = �� + �� + �« 

 

The first Piola-Kirchoff stress for the above displacement can be written as 

(Equation 2.28) 

£(�) = £³(��) + £³(��) + £³(�«) + £´³(��, ��, �) + £´³(��, ��, �) +£´³(��, ��, «)                                                                               5.5 

 

Following the notation introduced in chapter 2 we can formulate the three 

problems for  ��, ��, �« as follows 

Fundamental wave 

DivDivDivDiv(£³(��)) − ¤��¶ � = Á 

£³(��)·� = Á                                                               5.6 

Second Harmonic 

DivDivDivDiv(£³(��)) − ¤��¶ � =  −DivDivDivDiv(£´³(��, ��, �)) 

£³(��)·� = −£´³(HHHH1111, HHHH1111, �)·�                                  5.7 
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Third Harmonic: 

DivDivDivDiv�£³��«)) − ¤��¶ « �  −DivDivDivDiv�£´³���, ��, «)) −DivDivDivDiv(£´³(��, ��, �)) 

£³(�«)·� = −£´³(HHHH1111, HHHH1111, «)·� − £´³(HHHH1111, HHHH2222, �)·�                 5.8 

 

Each of the above equations (5.6-5.8) can be solved in a manner analogous to 

that presented in chapter 2. The behavior of the solution for the third harmonic 

problem can be inferred from the non-linear stress terms £´³(��, ��, «) and 

£´³(HHHH1111, HHHH2222, �). From the analysis presented in chapter 4 each of the above terms 

represent the self-interaction between �� and mutual interaction between 

HHHH1111, HHHH2222. We note that for a given primary mode ��, �� consists of displacement 

contributions from all the modes at the second harmonic frequency. So, the non-

linear stress term £´³(HHHH1111, HHHH2222, �) can be thought of as the interaction between the 

primary mode and the secondary modes which contribute to the 

displacement ��. If it so happens that the primary mode satisfies the condition 

of phase matching and non-zero power flow to any of the modes that contribute 

to displacement �� then one can expect cumulative third harmonic generation 

due to their interaction. This exactly is the case that is not considered in the 

generalized analysis presented in Srivastava and Lanza di Scalea [2009] .  

In the light of the above assumptions made, they conclude that antisymmetric 

modes do not exist at even harmonics but symmetric modes exist at any harmonic. This is 

one of the conclusions drawn as part of our analysis in chapter 4. These conclusions are 

true only for a single primary mode excitation. It has been proven as part of this thesis in 

chapter 4 that the interaction of RL guided wave modes of same nature leads to 
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symmetric modes and that between those of opposite nature can give rise to 

antisymmetric modes. So, if one starts with an excitation of two modes of opposite nature 

at the same frequency one could expect their interaction to yield an antisymmetric mode 

at the second harmonic. This is contradicting the result given by Srivastava and Lanza di 

Scalea [2009] and arises as a result of not considering the interaction terms like  

£´³�HHHH1111, HHHH2222, �) that arises in the generalized higher harmonic problem formulation. 

Matsuda and Biwa [2011] presented an analysis in a way very similar to that of 

Mu¶ ller et al. where they identified the set of modes which can be used for cumulative 

second harmonic generation. These included the Lame modes and extra Rayleigh modes 

in addition to symmetric modes at longitudinal wave speed and the mode intersection of 

symmetric and antisymmetric modes. These were the same modes that we obtained as a 

result of our analysis in chapter 3. 

The entire problem formulation and analysis presented in this thesis is carried out 

independently except for the approach used by de Lima and Hamilton [2003] to solve the 

non-linear wave equation using normal mode expansion.  
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Chapter 6  
 

CLOSURE 

INTRODUCTION 

This chapter presents the summary, conclusions and suggestions for future work 

with relation to the higher harmonic guided waves. The content of this chapter is 

organized as follows. Section 1 presents the outcome of the combined analysis of the 

results obtained in chapters 3 and 4. Section 2 presents a discussion of the results 

presented in the literature with those discussed herein. 

6.1 SUMMARY 

The thesis work led to the development of a theoretical framework that can model 

and predict higher harmonic guided wave generation and propagation in weakly non-

linear homogeneous isotropic plates. The framework has been developed from the 

principles of continuum mechanics. Material non-linearity is taken care of by considering 

Lagrangian (non-linearized) strain and including higher order terms in the strain energy 

function. The problem is formulated in the reference configuration using the first Piola-

Kirchoff stress. A perturbation approach along with the normal mode expansion 

technique is used to solve the boundary value problem formulated. This led to the two 

conditions required for cumulative second harmonic generation in plates. These are the 

phase matching criterion and the non-zero power flux criterion. These two put together is 

termed as “internal resonance”. The analysis presented in chapters 3 and 4 use the above 
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criterion and this results in the set of guided wave modes that can be used for the 

generation of cumulative second harmonic guided waves. The generalized problem 

formulation of guided wave mode interaction in chapter 4 was able to correct the 

theoretical inconsistencies arising in the problem formulation by previous researchers. 

The conclusions drawn from this can be used for predicting higher harmonic guided 

waves in plates. 

6.2 CONCLUSIONS 

This section presents a summary of the results drawn from the analysis presented 

in chapters 3 and 4.  

6.2.1 Primary modes that are capable of generating cumulative second harmonics  

In chapter 4 we concluded that the cumulative second harmonics exist only as 

symmetric Rayleigh-Lamb modes based on the non-zero power flux requirement for 

internal resonance. So, it suffices to consider only those modes which are capable of 

generating secondary symmetric modes for a single fundamental wave. The modes that 

satisfy the phase matching criterion were listed in chapter 3. We consider three separate 

cases, i.e., primary symmetric modes giving secondary symmetric modes, primary 

antisymmetric modes giving secondary symmetric modes and primary Shear Horizontal 

mode giving secondary Rayleigh-Lamb symmetric mode. 
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Primary Rayleigh-Lamb symmetric modes that can give secondary symmetric 

modes 

a) Cut-off modes: Primary symmetric cutoff modes at V � [\/2
R  can give secondary 

symmetric modes. 

b) Symmetric modes at ./ � .0 : Symmetric modes at V � [\/0/2
Rð/0 5/2  can give 

secondary symmetric modes. 

c) Mode intersections: All the modes at the intersection of symmetric and anti 

symmetric modes can give secondary symmetric modes. 

d) Lame modes with ./ � √�.� (if √�.� > .0 ) : Primary symmetric modes at 

V � √�[\/0/2
RF�/2 5/0 

  can generate secondary symmetric modes. 

 

Primary Rayleigh-Lamb antisymmetric modes that can give secondary 

symmetric modes 

a) Cutoff modes: Primary antisymmetric cutoff modes at V � ��[Þ��\/2
�R  can give 

secondary symmetric modes. 

b) Mode intersections: All the modes at the intersection of symmetric and anti 

symmetric modes can give secondary symmetric modes. 

c) Lame modes with ./ � √�.� (if √�.� > .0 ) : Primary antisymmetric modes at 

V � √���[Þ��\/0/2
�RF�/2 5/0 

  can generate secondary symmetric modes. 
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Primary Shear Horizontal modes that can give secondary Rayleigh-Lamb 

symmetric modes 

a) Cut-off modes: Primary cut off modes at V � [\/2
�R  gives secondary symmetric 

modes. 

b) Modes at ./ � .0: Primary modes at V � [\/0/2
�Rð/0 5/2  give secondary symmetric 

modes. 

c) Special modes: Primary modes at phase velocities satisfying the equation  

� 1
'3� − 1

'S�� � k�

� � 1

'�� − 1
'S�� 

 

for some integers m,n give secondary modes at the intersection of symmetric and 

antisymetric modes on the dispersion curves. 

6.3 Interaction of RL Guided wave modes - Conclusions 

The following conclusions were obtained as result of the analysis of interaction 

RL guided wave modes. By interaction of two guided wave modes �V&, 9&) and (V' , 9')  

we mean the secondary modes that are generated at  (V& − V' , 9& − 9') or (V& +
V' , 9& + 9') predicted using the approach presented in section 4.3. 

1. The interaction of RL guided wave modes of same nature result in symmetric 

modes and that between those of opposite nature result in  antisymmetric modes. 

2. With single primary mode excitation, the above result translates as the existence 

of only symmetric modes as cumulative second harmonics. 
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6.4 FUTURE WORK SUGGESTIONS 

1. Scope for future work lies in performing experiments using the guided wave 

modes obtained as part of the analysis in the present work for cumulative second 

harmonic generation in plates. 

2. Use the theoretical framework developed to study the problem of higher harmonic 

guided waves in plates. 

3. Develop or extend the theory developed for cumulative second harmonic 

generation in pipes, shells and other arbitrary cross-sections like rail. 

4. Use the cumulative second harmonic guided waves to characterize microstructure 

evolution of Alloy 617 and other materials. 

5. Use the framework developed herein for acoustoelasticity analysis of plates for 

stress determination. 
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Appendix  
 

Cauchy and Piola-Kirchoff stress tensors 

 

We present the formal definitions and background of different kinds of stress tensors 

used in this thesis. 

Cauchy stress: This relates the traction in the current configuration to the geometry of 

the current configuration. If  t denoted the traction vector and n denotes the unit normal 

to the surface of a body in the current configuration, then the Cauchy stress T relates 

them as follows  

 

� � TTTT·                                                                        A-1 

 

First Piola Kirchoff stress: This relates the traction in the current configuration to the 

geometry of the reference configuration. If  t denoted the traction vector and ·� denotes 

the unit normal to the surface of a body in the reference configuration, then the first 

Piola-Kirchoff stress  S  relates them as  

 

��¼ � SSSS·��1                                                         A-2                                                                       

where da, dA are elemental areas in current and reference configurations respectively. 

For Hyperelastic materials, if W�F) denotes the strain energy function in terms of the 

deformation gradient then the first Piola Kirchoff stress is given by  
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SSSS���� ∂W∂W∂W∂W����FFFF����∂∂∂∂FFFF                                                               A-3 

Second Piola-Kirchoff stress: It is born out of a need to measure the stress power in the 

correct configuration with respect to the Lagrangian Strain.  

For Hyperelastic materials, if W( �E� denotes the strain energy function in terms of the 

Lagrangian strain E, then the first Piola-Kirchoff stress is given by  

 

TTTTRRRRRRRR���� ∂∂∂∂67����EEEE����∂E∂E∂E∂E                                                           A-4 
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