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ABSTRACT

Use of non-linear ultrasonic waves for material rakterization is a topic of
significant interest in many applications. Use aidgd waves for this purpose is a
promising option but appropriate selection of gdideave modes for the generation of
cumulative higher harmonics is of critical importandue to the multi-mode nature of
ultrasonic guided waves.

This thesis deals with the problem of generating-tmmear guided waves in plates
from a theoretical perspective. A theoretical framek to predict the higher harmonic
guided wave generation in plates has been developedmetric and material non-
linearities are incorporated by using the Lagramgs&rain (non-linearized strain) and
higher order terms in the strain energy functionnéw formulation in terms of the
displacement gradient has been developed for tesept problem. A perturbation
techniqgue and normal mode expansion have beentasadve the problem and arrive at
the conditions of “internal resonance” which areffisient for the generation of
cumulative second harmonics. A comprehensive aisadgsto which guided wave modes
have the capability to generate cumulative secoaanbnic guided waves has been
performed. This is extended to predict the nondinmteraction of guided waves in
plates that can be used to predict any higher haicgeneration in plate.

The analysis led to the conclusion that Shear ldoted and Rayleigh Lamb
modes can generate only Rayleigh Lamb symmetricesi@$ second harmonics with

single primary mode excitation. Specific modes thatisfy the condition of internal
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resonance have been identified. The analysis oergkred interaction of guided wave

modes led to a more complete understanding of itjeeh harmonic guided waves in

plates.
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Chapter 1

INTRODUCTION

In this chapter we introduce the preliminaries famn-linear ultrasonics and
guided waves in general and those in plate in qdati. This Chapter is organized as
follows. Section 1.1 presents the basics of guidade mechanics and the advantages it
offers as a tool for NDE (Non Destructive Evaluajicand SHM (Structural Health
Monitoring). Section 1.2 presents the historicabedlepment of the field of non-linear
ultrasonics and the advantages it offers as a tgglrio monitor the micro-structure of

the material as suggested by various researchers.

1.1 GUIDED WAVE MECHANICS

Guided waves are waves that travel in bodies wathstrained boundaries. The
interactions of waves with the boundaries guidevthee through the body. Guided wave
inspection has proven to be a valuable tool adfer® the following advantages when
compared to methods using bulk-waves:

» Can travel long distances with less attenuation.
* Inspection can be carried out from a single locatialike the bulk wave which
requires point by point inspection.

» Sensitivity to a variety of defects can be improbgdappropriate mode selection.
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Guided waves have beeised to inspect pipelines, pldtke structures (air

craft wings) and multi layered structurand were found to be promising for varic

other applications.

1.1.1Guided waves in plate

ZhIS S,

Figure 1.1 Schematic showing an infinite plate with a thicknes 2h and the

coordinate system used

Consider a infinite traction free plate aothickness 2h shown Figure 1.1. We
use thecoordinate system indicated to describe the wavebe plate. Thidbalance of

linear momentum for the plain index notation is given by

dv;

with traction free boundary conditioon top and bottom surfaces
T;mi =0 1.2
WhereT is the Cauchy stress ten:p is the masslensity of the materi: b denotes the
body force per unit massting (1 the material and» denotes thearticlevelocity.
Assuming the material to be an ropic elastic solid the stress str.

relationship is given t classical linearized theory as follows
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Tij = Aekkdij + ZﬂEi]‘ 1.3

where A,u denote the Lame's constanfs, is the Kronecker delta and; is the

linearized strain tensor and is related to theldegments as follows
1
Eij = E (ui_j + ujll-) 14

Using the above relations leads to Navier’s equati terms of displacement as follows:

azui
at?

Assuming plane strain (not general), one can usmktdtz decomposition (Rose,1999)

to express the above equation in terms of potsrdigfollows:

u = grad(¢) + curl(yp) 1.6

whereg is a scalar andp is a vector with components (010(x;, x))

Equation 1.5 is satisfied provided

0% 0% 1 02
dple 199 1.7
0x1%2  0xy%2 %2 0t2

0% 0% 1 92
by Py _ 10y
0x12 = 0x,%2 42 Ot?

wherec,, c; are the longitudinal and transverse wave speetieimaterial.
Assuming time harmonic dependence o$,yp of the form

P = P(xy)e!¥1=@Dandy = P(x,)e!**1=@0 gne can then rewrite the above equations

as

0 | (2 2) =0

0x,2 1



0%y (wz 2)
27,2 + o2 k<)Y =0 1.10
The general solutions for the above set of equatia as follows

¢(x,) = Acos(px,) + Bsin(px,) 1.11

Y(x,) = Ccos(qx,) + Dsin(qx,) 1.12

w 2 2 w 2 2
wherep = (c—l) —k? and ¢ (c—t) — k? and A,B,C,D are unknown constants to

be determined.
Considering the boundary conditions on the top laoitom surfaces one gets the
following relations for the stress components

and

Tzz(Xz = —h) = Tzz(Xz = h) = 0. 1.14

Using these boundary conditions and Equations #3,56,1.11,1.12 leads to the system
of 4 equations (1.15-1.18) in A,B,C,D which hasoaAtrivial solution if and only if the

determinant of the coefficient matrix vanishes. d&di waves in plates can be classified
into two groups depending on the through-thickndisplacement profiles. The modes
that have a symmetric through thicknegsdisplacement profiles are called symmetric

modes (equations 1.15,1.16) and those that hawgyambetric displacement profiles are
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called antisymmetric modes (Equations 1.17,1.18nr8etric modes have B=C=0 and

antisymmetric modes have A=D=0.

p(—2ikpAsin(ph) + (k? — q*)Dsin(qh)) = 0 1.15

—A(k? + p?)Acos(ph) — 2u[p?Dcos(ph) + ikDcos(qh)] = 0 1.16
1(2ikpBcos(ph) + (k? — q*)Ccos(qh)) =0 1.17

—A(k? + p?)Bsin(ph) — 2u[p?Bcos(ph) — ikCcos(qh)] = 0 1.18

Equating the determinant of the coefficient mathix each of the systems
1.13&1.14, 1.15&1.16 gives the following dispersietations

tan(qh) _ —4k?*pq
tan(ph)  (q2-k?)?’

Symmetric modes 1.19

h —(q%-k?)? . .
tan (qh) = (@ ) ; Antisymmetric modes 1.20
tan (ph) 4kZpq

The above relations are the Rayleigh-Lamb (RL) elision relations and give those
(w, k) combinations at which guided wave modes exishenglate. These guided wave
modes are named Rayleigh-Lamb (RL) modes and daeized in thex;-x, plane.

The case of plane strain considered above is eomibst general of the problems
as it does not consider all possible solutions.r@tee other modes called the Shear
Horizontal (SH) modes polarized in tle direction that propagate in the direction.

One can use a similar procedure (Rose,1999) toirokdatime harmonic

displacement of the formu; = uz(x,)e!®*1=®Y and by satisfying the traction free
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boundary conditiond;3(X,=+th)=0 we get the following dispersion relation for the

shear horizontal modes

gh="Z 1.21

where n=0,1,2.. is any arbitrary integer.

1.1.2 Dispersion Curves

This section shows the phase velocity and groupcitgl dispersion curves for both RL

and SH modes.

Phase velocity:The speed with which a given mode i.ewak) combination propagates

in the material is termed the phase velocity arikisoted by:,,.

c, =2 1.22
k

Group velocity: The speed with which a wave packet consistingwkj combinations
in a close neighborhood of a given mode propagateeymed as the group velocity and
denoted byc,. This is more important from a practical point wew as in the
experiments we generally end up exciting more thaa @, k) due to the finiteness of

the source and the frequency bandwidth of the dweer. The group velocity can be

related to the phase velocity by using the relatign= Z—'I‘: as follows

v
= U D5izay

1.23

where f== and d=2h.
2T
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Figures (1.2-1.5) present the phase and group ieldispersion curves for RL and SH

modes. The material chosen for the plate is alumiminose properties are presented in

Table 1-1.

Aluminum
A 2 p
58.5 GPa 26 GPa 2700kg /m3

Table 1-1 Material propertig of Aluminium

Figure 1.2 shows phase velocity dispersion cureesRL modes in aluminum plate.
Different modes have been indicated in the fig@alenotes a symmetric mode and A
denotes an antisymmetric mode. Every mode exceptuiidamental\,&S, have a cut
off frequency i.e, a frequency below which theyra exist. Also, all the modes except
the fundamental modes converge to the phase welegital to the transverse wave speed
c; in the material at high fd products. The modg&S, converge to the Rayleigh wave
speed €z) in the material at high fd products. The flat pm¢ of phase velocity

dispersion curves correspond to the modes that $ewe phase and group velocity.



Phase Velocity Dispersion Curves
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Figure 1.2 Phase velocity dispersion curves for Rimode in Al plate

Figure 1.3shows group velocity dispersion curves for RL nsoigealuminum plate. The peaks
in group velocity dispersion curves corresponctoghase velocity and group velocity being

equal at those particular modes.



Group Velocity Dispersion Curves

Cg(m m/usec)
w

fd(Mhz-mm)

Figure 1.3 Group velocity dispersion curves for RLmodes in Al plate

Figure 1.4shows the phase velocity dispersion curves fom&Hdes. The fundamental n=0 SH
mode is non-dispersive with a phase velocity etu#he shear wave speéd) in the material.

All the higher modes approach the fundamental maidéigher fd products. Except for the
fundamental mode, all other modes have cut-offieegies below which that particular mode

does not propagate in the plate.
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Phase Velocity Dispersion Curves for SH modes

Cp(mm/usec)
ol

fd(Mhz-mm)

Figure 1.4 Phase velocity dispersion curves for Skodes in Al plate

Figure 1.5shows group velocity dispersion curves for SH nsode aluminum plate. The
primary mode has a group velocity @f All other higher modes have group velocities s

c¢; and approach it at higher fd products.

Group Velocity Dispersion Curves for SH modes

Cg(m m/usec)

1.5~

fd(Mhz-mm)

Figure 1.5 Group velocity dispersion curves for SHnodes in Al plate
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1.1.3 Wave Structures

The through- thickness displacement profiles aferimed to as the “wave-structures” and

some of the sample wave-structures for some maegzrasented in this section. The following

figures (1.6-1.9) show the wave structures fovaRL modes in the plate.

Figure 1.6shows the wave structure f65 mode at 0.1 MHz. As can be seen, the

through-thickness profile for the displacemeant is symmetric about the mid-plane and that of

u, is antisymmetric about the mid-plane.

SO0 mode at 0.1MHz

2 :
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Figure 1.6 Wavestructure for the SO mode at 0.1 Mhz

Figure 1.7shows the wave structure for thg mode at 0.1 MHz. As can be seen, the through-

thickness profile for the displacemant is antisymmetric about the mid-plane and that.ofs

symmetric about the mid-plane.



AO mode at 0.1MHz
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Figure 1.7 Wavestructure for the AO mode at 0.1 Mhz

Figure 1.8shows the wave structure for tiemode at 2MHz.
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Figure 1.8 Wave structure for the S1 mode at 2Mhz
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Figure 1.9shows the wave structure for tiS¢ mode at 2MHz.

Al mode at 2 MHz
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Figure 1.9 Wave structure for the AO mode at 2 Mhz

The following figures (1.10-1.11) show the waveustures for the SH modes. One
important feature concerning the wave structuregshef SH modes is that, unlike the wave
structures of the RL modes they do not change adogiyen mode in the dispersion curve. The
odd values of ‘n’ give the antisymmetric modes awén values of ‘n’ gives the symmetric

modes.

Figure 1.10shows the wave structure for n=1 SH mode. As dtatmlier, the wave

structure is antisymmetric with respect to the iihae.
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Wave structure for n=1 SH mode
2 ‘ | ‘

1.5

Thickness (mm)
-

O L L L
-1 -0.5 0 0.5 1

Normalized Displacement

Figure 1.10 Wavestructure for n=1 SH mode

Figure 1.11shows the wave structure for n=2 SH mode. As dtelier, the wave structure is

symmetric with respect to the mid-plane.

Wavestructure for n=2 SH mode
2 T T T

Thickness(mm)
-

0.5+

O L L L
-1 -0.5 0 0.5 1

Normalized Displacement

Figure 1.11 Wave structure for n=2 SH mode
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1.2 NON-LINEAR ULTRASONICS

1.2.1 History

The theoretical development of the field of noreén ultrasonics started with
researchers examining the effect of introducing-lvear displacement terms in the
wave equation and studying the behavior of thetmwia. The earliest account of it can
be found in Landau and Lifschitz [1956,1970] in act®on titled “Anharmonic
vibrations”. Later, Goldberg [1960] studied the dmear interaction of longitudinal and
transverse elastic waves from a theoretical stantipad proved that these waves cannot
propagate independently in order to satisfy the evaquation with nonlinear terms.
Hikata and Elbaum [1965,1966a,1966b] presented ratysis for the generation of
second and third harmonics due to dislocationgodk some time until the higher
harmonics were found to be sensitive to the micuosire of material. Cantrell [1994]
used a non-linearity parameferto quantify the degree of non-linearity and exaedithe
effect of crystal structure oif. Cantrell and Yost [2001] used this technique to
characterize fatigue damage. Cantrell [2006] usedustic harmonic generation to
guantify fatigue damage accumulation in metals. t€@Hn[2009] used ultrasonic
harmonic generation for the assessment of fatijeeahd came up with a correlation
between the acoustic non-linearity paramegteand the percent remaining life of the
material. The work by Cantrell and others emplopedk-waves for higher harmonic
generation and used the acoustic non-linearityrpater to quantify the material damage

states. Guided waves offer superior inspection lméfyawhen compared to bulk-waves
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and the use of higher harmonic guided waves to tmotiie microstructure appears to be

a more attractive option. The first step in thigaiel was taken by Deng [1998] with
formulation of the problem of the interaction beéneShear Horizontal guided wave
modes. Deng [1999] extended the above work for L-arabke propagation in plates. de
Lima and Hamilton [2003] developed a procedureualify the cumulative propagation
of second harmonic guided waves in plates. de lanthHamilton [2005] later extended
this approach to waveguides of arbitrary but cortsteoss section. Srivastava and Lanza
di Scalea used the approach by de Lima and Hamittgredict the existence of higher
harmonics in plates [2009] and rods [2010].

The present work aims to provide a more completietstanding of the problem
of higher harmonic generated guided waves in pldteprovides a new approach to
predict the nature of guided wave mode interactidrnich addresses the theoretical

inconsistencies that appear in the works of previesearchers.

1.2.1 Preliminaries

In this section we introduce the problem of 1D wavepagation in an elastic
material with weak nonlinearities. Consider an wtasaterial with the following stress-

strain relation

o =Ee(1+%e) 4.2

where the non-linearity considered is of seconceoid straine and E is the Young’s

modulus, whileg quantifies the extent of the non-linearity.
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Consider the 1D version of the balance of lineamaietum

do 0%u
3% Paz 1.25
ou 1 (w2
&= e + > (a) 1.26

Using the stress-strain relation (equation 1.2#e ocan write the equation of motion

(Cantrell,1994) as

Ou _ 2 0% pou
=21+ 1.27

If we consider a primary wave of the formy = A cos (kx — wt) travelling in the
material one can solve the above problem usingtanbation approach by assuming that
the second harmonic generated is small in amplitodepared ta, .

Letu = u, + u,. Substituting this in the equation 1.27 one gets pproblems

0%u, 2 0%uy

——c*—=0 1.2
ot2 0x2 8
0%u 0%u du, 0%u

2,22 72 —1 1 1.29
ot2 0x?2 0x 0x2

The equation 1.28 is identically satisfied by osswamption thatz, is a travelling wave in
the medium. The second problem can be solved grattecular solution to the second

problem is (de Lima and Hamilton, 2003)

2 2
U, = %xcos(ka —2wt) . 1.30
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This is a wave with amplitude linearly increasingthwpropagating distance and
travelling with the same phase velocity as the primwave and is termed as a
“cumulative second harmonic”. Equation 1.30 is dgrovidedu, «< u, as assumed in

the perturbation solution.
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Chapter 2

SECOND HARMONIC PROBLEM FORMULATION

INTRODUCTION

In this chapter we formulate the ultrasonic guidede problem of the generation
of higher harmonics from the principles of contimumechanics. This chapter is divided
into two sections. Section 2.1 presents the pralmes of continuum mechanics along
with the notation adopted in the remainder of thesis. Section 2.2 presents the problem

formulation for second harmonic guided wave progiagan plates.

2.1 CONTINUUM MECHANICS

2.1.1 Kinematics

XZJ'TZ

X3,x3

Figure 2.1 Schematic depicting the motion of a body
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We denote byB the abstract body consisting of material particsdenotes the

reference configuration of the material on whicliodmation is enforced. We denote by
B, the deformed configuration of the material. By defation, we mean an invertible
mapping X :B, = B, .

We use a coordinate system as depicted in Figute t@ describe the
deformations. Also, we use lett¥rand x for depicting the position (with reference to
the above coordinate system) of a material particlehe reference and deformed
configurations respectively. If we consider a coantius sequence of deformations
ordered in time we writet =Y (X,t) .We denote by (X, t) the velocity of the material

particle occupying positioX in the reference configuration and defined as

v(X,t) = % . 2.1

We denote by the deformation gradient defined as follows
F=Grad(X (X.)) =5% . 2.2
For sufficiently smoottX it can be proved thdhe determinant df i.e. , det(F) > 0.

From the above definitions it is easy to see thatdisplacement of a material particle is

uX,t) = x—X 2.3

Also, we have-=I+Grad(u(X, t)) wherel is the identity tensor and Grad has the same
meaning as defined previously. The quantByad(u(X,t)) is called the Lagrangian
displacement gradient and is denotedy

So, we have

F=I+H. 2.4

We use a Lagrangian measure of strain defined as
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E=2(F"F-1) 2.5

whereFT is the transpose of deformation gradiEnt

In terms of the displacement gradiéhtwe get

E:%(H+HT +HTH). 2.6
The above infrastructure will be sufficient to délse the motions we would be dealing
with in this work. Any new notation introduced latgill be made clear at that point of

time. Now, we move on to study the balance laws.

2.1.2 Balance Laws

Balance of mass
Under the assumption that the only cause for a gdan mass density is
deformation, one can show that
p+pdiv(v) =0 2.7

wherediv(v) is the divergence of the velocity field.

Balance of linear and angular momentum
Under Cauchy’'s assumption, by employing Euler’stfand second law to every

sub-partP € B we get

div(T)+pb=p% (Balance of Linear momentum) 2.8

T=TT (Balance of Angular momentum)2.9

: the local form where T is the Cauchy stress tenso
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The above equations can be expressed in referéntnalas follows

Div(S) + p,.b = p,,v (Balance of Linear momentump.10

and

SFT = FST (Balance of Angular momentun.11

whereS is the first Piola-Kirchoff stress tensor and ifated to the Cauchy stre3sas

follows

S =det(F)TFT. 2.12

2.1.3 Constitutive Theory

Using the Coleman-Noll procedure, which employsaiBak of Energy, Second
Law of Thermodynamics and material frame indiffeerone can show that the first
Piola-Kirchoff stress for an elastic homogeneousenma can be written in terms of the
deformation gradient as follows

_ W
~ 9F

S 2.13
WhereW (F) is the strain energy function expressed in ternts. of
Another expression for the Second Piola-KirchoffessTzr (Appendix A) can be

developed in terms of Lagrangian str&ims follows

TRR = 214

WhereW (E) is the strain energy function of the material espegl in terms dE.
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For an isothermal, isotropic, elastic solid one eapresSW(E) in terms of invariants of

E. Choosingtr(E) ,tr(E?),tr(E3) as the set of invariants & one can write [see Landau

and Lifschitz,1970]

W(E) = A(tr(E))? + utr(E?) + 3 C(tr(E))? + Btr(E)tr(E2) + ; Atr(E?)
2.15

up to third order terms in strain multiples whay@ are the Lame’s constants a@@®, A
are third order elastic constants (See Norris [1998

Using the above strain energy function one getddahewing expression for the second
Piola —Kirchoff stress

Trr = Atr(E)I + 2uE + C(tr(E))?I + Btr(E?)I + 2Btr(E)E + AE? 2.16

In what follows, we use the above expression fer 8econd Piola-Kirchoff stress in
terms of Lagrangian strak.
The first Piola-Kirchoff stresS is related to the second Piola-Kirchoff stresstems

S = FTRR 217

where F is the deformation gradient.

For enhancing the clarity, we use the notat®fH)/Trr(H) or S(E)/ Tgr(E) to
explicitly describeS andTgrg as functions of their arguments.

Using equation 2.6 foE in the expression fdfgg (E) given in equation 2.16, we have,

up to second order id

Ter(H) = %tr(H +HDI+ p(H + HT) + %tr(HTH)l + C (tr(H))?I + pHTH +
Btr(H)(H + H™) + 2 tr(H? + HTH)I + 5 (HZ +HT + HHT + HTH) 2.18

Keeping the future use of the above expressionimamve break it in to two, namely

Tee“(H) = %tr(H +HOI + p(H + HT) 2.19
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Tre " (H) = > tr(HTH)I + C (tr(H)) T+ pH™H + Btr(H)(H + H") +

2tr(H? + HTH)I + 5 (HZ +H™* + HHT + HTH) 2.20

whereTgg"(H) andTgg " (H) are the linear and non linear functions of theguanentH
and

TRR = TRRL(H) + TRRNL(H) 221
Now we focus on developing similar expressionsSid). We know that

S= FTRR i e.,

S(H) = (1 + H) (TRRL(H) + TRRNL(H)) 2.22
SL(H) = Trp"(H) 2.23
SNL(H) = HTrg “(H) + Trg""(H) . 2.24

2.2 SECOND HARMONIC PROBLEM FORMULATION

Consider the equation of balance of linear momenituneferential form for a
traction free plate in the absence of body folse:
Div(S) = p, it

Sn,.=0 2.25

Sis the first Piola-Kirchoff stress tensor angdis theunit outward normal of the surface
of the plate in the reference configuration amds the displacement.

We use a perturbation method (de Lima and Hamil[@2®03]) to decompose the
displacement field as

u =uq +u, with lug| > |usl,
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whereu; andu, are the primarand secondary displacement fields respectively.

So from the definition oH we have

whereH; = Grad(u,) andH, = Grad(u;).

From the notation used previously
S(H) = S'(H) + SN (H)

= S(H) = S(H,) + S*(H;) + SN (H,+H,). 2.27

In the elaborate expression f8M(H,;+H,) we retainonly the terms which involve
second order contributions froHy.We name these as the interaction terms and use the
notation SN (H,, Hy, 2) to designate theseSN“(H,;, H;,2) can be read as “Non-linear
terms which are of order 2 due to self interachetweerH, andH;".

Finally we have

S(H) = SL(Hl) + SL(Hz) + SNL(Hl, Hl’ 2) 228

Going back to the equation for balance of linearnmaotum and substituting the

expressions fon = u; + u, andS(H) we have

Div(Sh(H,) + S*(Hz) + SN*(Hy, Hy, 2)) = py(iiy + itz) 2.29
{Div(S"(Hy)) — pyity} + {Div(S*(Hy)) — p,il, +Div(SN"(H;, Hy, 2))} = 0
2.30
with the following boundary condition
SL'(Hy)n, + S*(H)n, + SN“(H;,Hy, 2)n,, = 0 2.31

Now we decompose the above problem into two probjeme involvingu, and another
involving u,,

Div(S"(H1)) — pyily = 0
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St(Hyn, =0 2.32

and
Div(S"(Hz)) — pyit; = —Div(SN"(Hy, Hy, 2))

St(Hy)n, = —SN'(H,, Hy, 2)n, . 2.33

The first problem is a standard problem for wtu, is a solution.

The second problem is an inhomogeneous versioreffitst with the forcing terr
—Div(SN'(H4, Hq,2)). The above formulation is geral for any set of displacemen
Uuy , U, such that|uy| > |u,|.

Now, we restrict our attention to guided wave pgation in plates i., when bothu,
, Uy are waves in the pla Figure 2.2 showse schematic of the plate and coordinate

system we use for throblem formulatior

ZhI L x,

Figure 2.2 Schematic of the plate with the coordinate systemsec

As said earliemt; is a guided wave mode andnce can be assumed to be of the fi
u; = Re{u,(X;)el*1=@D} where Re{ } denoteghe real part of the argume
Additionally, u, is a solution t the first problemand is one among the infinitely ma
solutions termed adNormal Modes” to that proble (see Section 1.1)

Now we focus our attention on the second probleronsitler the forcing terr
—Div(SNt(H4, Hq, 2)) on the right hand side the second problenDue to the second

degree products iH, it has a factor of the forne=2t,
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Following de Lima and Hamilton [2003] we seek ausioh to the second problem in the

form of an asymptotic expansion of the normal moddso, from the observation made
previously it suffices to seek an asymptotic expamsf the solutions at a frequenzy,
i.e., let

SL(Hp) = 221 An(X1)Sm and

Uy = Ym=1An XDV 2.34

Here S,,, v,, are the stress and velocity variables fam!*guided wave modes at a

frequency2w.

As shown by Auld [1990] A, (X;) is a solution to the ordinary differential equation

each m and all n for which,,,, # 0.

dAm ., x .
4B (E — ik Am) = (f ™7 + f,"01) 2% 2.35
1 +h van* Sn*vm
Pan = =3 11 (G420 ) g X, 2.36
surf __ 1 oNL i h
fa - _ES (H1,H1,2)vn .n, |—h 2.37
h . .
£ = %f_h Div (SNL(Hl,Hl, 2)).vn dX, 238

For every mode m there is only one mode n suchRhat# 0. If m is a propagating
mode then the mode n is the same as mode m andsifan evanescent mode then the
mode n is such that, = k,,".

A, (0) = 0 as there is no second harmonic propagation injt&lX; = 0.

The general solution to the ordinary differentiquation above is
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_i(fnsurf_l_fnvol

A (X,) = S22 ) (elkn"X1 — gi2kX1) jfk * 2 2k 2.39

surf vol
Am(X) = &2y, ifk," = 2k 2.40
The above solutions imply that if the mode n iststi@atf, """ + £,"*" # 0 and k,* =
2k then the amplitude of the second harmonic incedisearly with the propagating

distance and is termed a cumulative second harmonic

Thus two conditions are needed for the generati@onmulative second harmonic
1. A propagating guided wave mode n such tkgt = 2k at frequency ®@. This is
termed as the phase matching criterion as the mga®pagates with the same
phase velocity as the primary mode. For our futliseussions we consider this as
a necessary condition.
2. And £, + £,"°' = 0 for that particular mode n, which is generallyned

nonzero power flow.

In the coming chapters we investigate the exist@idbose primary modes that

guarantee cumulative second harmonic generati@nipfoying the above criterion.
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Chapter 3

NECESSARY CONDITION FOR THE EXISTENCE OF CUMULATIVE

SECOND HARMONIC GUIDED WAVES IN PLATES

INTRODUCTION

This chapter presents an analytical formulatiothef necessary condition for the
existence of a cumulative second harmonic by enpdpthe phase matching criterion.
We do this by considering the dispersion relatidos Rayleigh-Lamb and Shear-
Horizontal mode propagation in plates. The chapeorganized into three sections.
Section 3.1 presents the necessary conditions erexistence of cumulative second
harmonic Rayleigh-Lamb modes when the primary meddso a Rayleigh-Lamb mode.
Section 3.2 presents the necessary conditionshiorekistence of cumulative second
harmonic Rayleigh-Lamb modes when the primary misda Shear-Horizontal mode.
Section 3.3 presents some special cases and disdingsconditions which are sufficient
for non-existence of cumulative second harmonicl&gly Lamb or Shear Horizontal

modes.

3.1 THEORY

The dispersion relations for Rayleigh-Lamb modegué&tions 3.1 & 3.2) were

developed as equations 1.19 & 1.20 and are praséete for convenience
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tan(qgh) _ —4k®pq i mod 31
= symmetric modes :
tan(h)  (@2-k22 7
tan (qh —(q%-k?)?
(ah) _ _@ ) antisymmetric modes 3.2

tan (ph)  4k2pq

Here ‘I’ is the half-thickness of the platp,= /(Cg)2 —k? ,p= /(cﬁ)2 — k2.
t l

Where w=2r11 is the angular frequency, k is the wave numigis longitudinal wave
speed and; is shear wave speed.

We obtain the necessary condition for the existeoica cumulative second
harmonic by considering the possible ordered p@irst) for which both(w, k) and
(2w, 2k) are guided wave modes in a plate. This procedugeneral in the sense that
one could uséw, k) and(nw, nk) for studying the existence of thé" harmonic.

We begin the analysis by observing the followingt$aabout the dispersion
relations presented above. fs, k) is replaced by2w, 2k) we have

. q-2qp-2p
ii. Given the transformatiofw, k) » (2w, 2k), the right hand sides of Equations

3.1 and 3.2 remain unchanged
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3.1.1Phase matching criterion when both primary and secadary modes are

Rayleigh-Lamb modes

We present the analysis in two cases. Case a i Wwbhéh the primary and

secondary modes are of the same nature and Casehen they are of different nature.

Case a:Both (w, k) and(2w, 2k) are either symmetric or antisymmetric modes.

From Equation 3.1

tan(qh) _ —4k’pq ;
tan(ph) _ (q2—k2)z &
tan(2qh —4k?
tangzzh; = - ,ﬁfz when both are symmetric modes 3.3
Or
tan (qh) —(q%-k?)?
- and

tan (ph)  4k2pq

tan (2qh) _ —(q%—k?)?
tan (2ph)  4k2pq

when both are antisymmetric modes 3.4

In writing the above set of equations we exploited fact that the right hand side of
Equation set 3.1 is unaltered by the transformatiork) — (2w, 2k)

From equations 3.3&3.4 we get;

tan(2qh)  tan (qh)
tan(2ph)  tan (ph)

& sin(2qh) cos(2ph) sin(ph) cos(qh) — sin(2ph) cos(2qh) sin(qh) cos(ph) = 0
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& 2sin(qh) sin(ph) {cos?(gh)cos (2ph) — cos?(ph) cos (2qh)} = 0

& sin(gh) sin(ph) {(1 + cos(2gh))cos (2ph) — (1 + cos (2ph))cos (2qh)} = 0
& 2sin(gh) sin(ph) (cos (2ph) — cos (2gh)) =0

& gh = nn or ph = nn or (qh — ph) = nnor (gh + ph) = n=n

where g = /(Cﬂt)2 —k%z |, p= /(Cgl)2 — k? as mentioned before and n is an

arbitrary whole number.

The above analysis holds true even when one oratid q are imaginary. The
only change one has to make to the above derivaitirat cos(ph) must be changed into
cosh(-iph) and sin(ph) must be changed into siphj-iOf course p can be replaced by g
in the previous sentence. Also, care is takemstuee that we do not miss any solutions
falling in these categories while writing the fallmg subcases.

Sub-case algh = nm butph # nn but p may be 0.
From the above condition, for symmetric modes wefrgen Equation (3.1)—4k?pq =

0

= (k=0 = (w,k)is a cut of f mode) or (p=0:>%=cl)or(q=0:> %zct)

Nmc;c,
hyc;? —c;?

The case q=0 should be handled with limit dispersigations which are obtained by

w
p=0z>;=clandqh=nn:>w=

considering the limit as q goes to O in the disperselations for symmetric modes
(equation 3.1).

The dispersion relation for symmetric modes is
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tan(qgh) _ —4k?pq
tan(ph)  (q%-k2)2

t h
( anc(lq )) ) _4k2p
tan (ph) ~ (¢ — k?)?

Taking limit as g goes to zero on the left hane sie get [Aslimq_)otanqﬂ = h]

h  —4k?p
tan (ph)  (q2—k?)2

Multiplying by p on both sides we get the followihigit dispersion relation

ph —4p?

tan (ph) k2

3.5

From equation 3.5 we have

tan (ph) 41{2

ph ~  p?

tan (ph c?
— (P)=4 ]

which is a transcendental equation and should beddor

ph c1?—ct?
purely imaginary values of p to get the modes @agjitmdinal velocityc; on the dispersion
curves.

Now the phase matching criterion takes the form

tan (ph) _ tan (2ph)
ph o 2ph

The above equation does not have any solutioreiptesent case.

For antisymmetric modes, from Equation (3.2) weehéy* — k?)? = 0
w

= g2 :kzzz»zzx/ict

V2nmes

Sincegh = nt we havew = :
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Conclusions from this sub-case al:

. . NnmCeCy w .
1. All primary symmetric modes ab = ———= and ¢, = — = ¢; can give
c12—cs? p k
secondary symmetric modes.
V2nmes

2. All primary antisymmetric modes atv = andc, = % =42 C; can

give secondary antisymmetric modes.

Sub-case a2ph = nn butgh # n=n
From the above condition, for symmetric modes, femmation 3.1 we gefq? — k?)? =

0
w
= g2 :kzzz»zzx/ict
If this condition has to be satisfied we na@ct = C;, as ph = nrn is a real number.

V2nmceics
h |2c:2—c;?

For antisymmetric modes, from equation 3.2 we gék?pg = 0

under this assumption, we get=

w w
= k =0 ((w,k)is a cut of f mode) or (p=0:>;=cl)or(q=0:> E:Ct)

The condition p=0 should be handled using limipdision relation for anti symmetric
modes. This can be obtained in the similar way Wtaioed equation 3.5 by considering
the limit as p goes to zero for the dispersionti@tain equation 3.2.

The limit dispersion relation is

tan(qh) _ —(qz—kz)2
gh  4k2q2
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The phase matching criterion takes the form

tan(qh) _ tan(2qh)
qgh o 2qh

& qh = nm for some whole number n (which is against the @¢@rdfor the present sub-

case and also the limit dispersion relation issatisfied)

)
(g=0= T and ph = nm does not give any modes since ph = 0 = ¢, = ¢;)

Conclusions from this sub-case aZ2:
V2nmcics

h /thz—clz

w .
¢, = —=V2¢ cangenerate secondary symmetric modes.
k

1. If \/EthCI then primary symmetric modes ab = and

2. No primary antisymmetric modes satisying the coodg of this subcase can

generate secondary antisymmetric modes.

Sub-case a3(gh — ph) = nn or (gh + ph) = n® and ph # nmt andgh # nn)
(gh — ph) = nn = tan(gh) = tan(ph)

tan(qh)

—4k’pq —(q* - k*)? _ tan(qh)
tan(ph)

=1

1= @ —Kk22 _  4k’pq ~ tan(ph)

= conditions for both symmetric and anti symmetric modes are satisfied
= (w, k) is a point of intersection of symmetric and antisymmetric modes

(gh + ph) = nn = tan(gh) = —tan(ph)
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tan(ph) n - (g% — k?)? = 4k?pq B B tan(ph)

tan(qh) —4k*pq —(q* —k*)? _ 1 tan(qh)

= conditions for both symmetric and anti symmetric modes are satisfied
= (w, k) is a point of intersection of symmetric and antisymmetric modes
Conclusions from this sub-case a3:
1. All primary modes which are intersections of a syeme and antisymmetric
mode can generate a secondary mode which is algtesection of symmetric

and a antisymmetric mode.

Sub-case a4:ph = nt andgh = mn for some natural numbers m,n.
It is easy to see that in this case also the psimade is a mode which is an intersection

of symmetric and antisymmetric modes.

Case b: (w,k) is a symmetric/antisymmetric mode anfw,2k) is an
antisymmetric/symmetric mode. (one primary mode egates secondary mode of
opposite nature)

tan(gh)  —4k’pq

anh) (@2 — k)2

tan(2qh)  —(q* —k?)*
tan(2ph)  4k?pq '

Or

tan(qh) —(q* — k?)?

= d
tan(ph) 4k?pq an
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tan (2qh)  —4k’pq
tan (2ph) (g2 — k2)?’

From the above cases we get

tan(qh) tan(2qh)
tan(ph) tan(2ph)

& sin(2qh) sin (gh)cos (ph) cos(2ph) — sin(2ph) cos(2qh) sin(ph) cos(gh) = 0
& 2 cos(gh) cos (ph){cos(2ph) sin?(qh) — cos(2qh) sin?(ph)} = 0

& 2 cos(qh) cos (ph){cos(2ph) (1 — cos(2gh)) — cos(2qh) (1 — cos (2ph))} =0
& 2 cos(qh) cos (ph){cos(2ph) — cos (2qh))} =0

& gh=(2n+ 1); or ph = (2n + 1)§or (gh — ph) = nnor (gh + ph) = n=n
where n is an arbitrary whole number.

Sub-case blgh = (2n+1)7 but ph # (2n + 1)

For symmetric modes, from equation 3.1, we(@ét— k?)? = 0

= g2 =k2:>cp=%=\/§ct

V2(2n+1)mc,

T[ —
Asgh = (2n + 1)5 we havew = o

For antisymmetric modes, from equation 1, we-g&k?pq = 0

w w
=k = 0 ((w, k)is a cut of f mode) or (p=0=>;=cl)or(q=0=> E=ct)

The case p=0 should be dealt with using the linsipersion relation i.e,

tan(qh) —(qz—kz)2
gh  4k2q2

andgh = (2n + 1) 7

< k = 0 = no mode that satisfies this condition exists (abaff modes exist at; ).
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Conclusions from this Sub-case b1l:

V2(2n+1)me,

1. Primary symmetric modes ab = -

w
andcp—;—\/ict can

generate secondary antisymmetric modes.

Sub-case b2ph = (2n+ 1)~ but gh # (2n + 1) >
For Symmetric modes from Equation 3.1, we-gék?pq = 0

= (k=0 = (w,k)is a cut of f mode) or (p=0:>%=cl)or(q=0:> %zct)

(p =0= % = cl) is not a possible case single = (2n + 1)%

The case =0 should be dealt with the limit disiperselation i.e,

tan (ph)

k2 T
oh 4Eandph—(2n+1)5

= No modes that satisfy the above conditions exist.

For Antisymmetric modes, from Equation 3.2, we @ét— k2)? = 0
w

If this condition has to be satisfied we need\/fct = as
ph = (2n+ l)g is a real number.

V2(2n+1)mcice
2h /thz—clz

Conclusions from this Sub-case b2:

Under this assumption we get =
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: : : 2(2n+1
1. If V2¢; = ¢; then primary antisymmetric modes @t = entbmace ooq
2h [2¢.2—c)?
Cp = % = V2 ¢, can generate secondary symmetric modes.

Sub-Case b3:(gh — ph) = nnor (gh + ph) = n=n
This sub-case has been clearly discussed as panbetase a3 and it was observed that
both the primary and secondary modes correspotigetantersections of symmetric and

antisymmetric modes on the dispersion curves.

Sub-Case b4ph = (2n + 1)~ and gh = (2m + 1)~

This Sub-Case would result in the Sub-Case b@hs- ph) = rrand (gh + ph) = sn
for arbitrary integers r=m-n,s=m+n+1.

These also correspond to the primary modes beitgrsigctions of symmetric and

antisymmetric modes in the dispersion curves.

3.1.2 Phase matching criterion when the primary moe is a Shear-Horizontal mode and the

secondary mode is a Rayleigh-Lamb mode

In this section we discuss the cases w{weyk) is a Shear-Horizontal mode and
(2w, 2k) is a Rayleigh Lamb mode.

Case a:(w, k) is a Shear-Horizontal mode a2, 2k) is a Symmetric mode.

nT tan (2qh) _ —4k?pq
2

. = L
= gh =—and an ph) . @—kD? buttan(2qh) = 0 as gh = .
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1)
= tan(2ph) = 0or k = O((a), k)is a cutof f mode)or (p =0= r=c ) or

(g=0= % =Ct)
= 2ph = mrz= ph = %; m is an arbitrary whole number or (g = 0 = % =c;)or
p=0= % = Ct)
If m # 0and n # 0 then the secondary symmetric mode is a mode antiesection of a
symmetric and antisymmetric mode @ > ¢;.

If (p=0< m=0)andn # 0 then the secondary symmetric mode is a mode at

nmCcCy

¢, === and frequencRw = —=—=
p =T SO N
The cas€q = 0 © n = 0) should be dealt with limit dispersion relatioa, i.

tan (2ph k2
tan (2ph) = —4— andc, = ¢;.
2ph p2

The above equation has to be solved numerically hsd solutions only at very high
frequencies where the dispersion RL curves convergransverse wave speed.
m=0 and n=0 is not possible because both p andmptde zero simultaneously.

m+# 0 andn # 0 corresponds to primary mode being a mode whossephalocity

1 1 _m2 1 1
a?  cp? "~ n2 \c?2 Cp?

The secondary mode is an intersection of symmaeaindt anti symmetric modes in the

satisfies the equation

dispersion curve.
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Case b:(w, k) is a Shear-Horizontal mode a(izly, 2k) is an Antisymmetric mode.

_nm tan(2qh) _ —(q%*-k?)? . _ — o
> gh= - and an@ph) . akipg buttan(2gh) = 0 as gh = -

= tan(2ph) = 0 or—(q? — k?)? = 0;
:phz% or ¢ = k?

Sub-case blgh = nz—“ and ph = %

m=0 and n=0 is not possible because one cannetgw=® and q=0 simultaneously.

m=0 andn # 0 then this case has to be dealt with the limit elisjpn relation i.e,

tan(2qh) _(qz_kz)z nm
= andgh = —
2qh 4k2q2 2

=q*-k*=0=¢, = % =2 ¢, (which is not possible as p=& % =q)
= there is no solution in this case

m # O0and n = 0 = There is no secondary mode.

m # 0and n # 0 = The secondary mode is an intersection of symmeancl

antisymmetric modes a}, > c;. ¢,, satisfies the following equation as in case a

1 1\ m2f1 1
a?  cp? "~ n2 \c?2 Cp?
Sub-case b2 gh = =% and ¢* = k*

nmv2 c,

V2 ¢, and w = oh

w
=>Cp—z—

nmv2 ct

Primary Shear Horizontal mode ab = ~

w
and ¢, = = 2 ¢, can generate

secondary antisymmetric mode<at = ""T‘/Ect and ¢, =~ =2 ¢
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If n=0 no mode that satisfies the conditions of #$ub-case exists.

3.2 CONCLUSIONS

In this section we presented some conditions treasafficient for non existence
of cumulative second harmonics.

1. Shear Horizontal modes cannot be generated as dagomnodes when the
primary modes are Rayleigh-Lamb modes. Hence, dhaysis has not been
performed.

2. Any primary mode that is capable of generating enwative secondary mode
will fall into at least one of the following categes

a. Ithasc, = ¢.

b. It hasc, = V2c,.(Lame modes)
c. It is an intersection of a symmetric and antisymimetmode on the
dispersion curves.
d. Itis a cut-off mode
3. So, if a mode does not satisfy any of the aboveditions then it can be
concluded that it cannot be used to generate alatineisecond harmonic in the

plate.
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Chapter 4

INTERACTION OF GUIDED WAVE MODES IN PLATE

INTRODUCTION

In this chapter we examine the power flow criteriondetermine which of the
guided wave modes obtained from the phase matdhitegion can be used to generate a
cumulative second harmonic. We also formulate aeggized problem that will be able
to predict the non-linear interaction of two aréiyr guided wave modes propagating in
the plate. The content of this chapter is organaedollows. Section 4.1 examines the
cumulative second harmonic guided wave problem frnpower-flow perspective.
Section 4.2 formulates the generalized problem goided wave mode interaction.

Section 4.3 presents the conclusions.

4.1 Power flow analysis for cumulative second harnmic generation with primary

Rayleigh-Lamb modes

In Chapter 2 we obtained the non-zero power floitegon (Equation 2.40) for
cumulative second harmonic generation, i.e, extgt@f a guided wave mode ‘n’ having

k, = 2k at a frequencyd such that

£+ 700 4.1

where (equations 2.37, 2.38)
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fnsurf — —%SNL(HI,HLZ)vn*'nZ ’—1h 4.2

1ch . *
£ =2 0 Div (SN(Hy, Hy, 2)). v, dX. 4.3

Now we examine under what conditions or which prynmodesu,; are capable of

satisfying the above criterion. For this we introduhe following terminology.

‘Sym’ matrix/vector: A matrix of the following structure where E derotan even
function andO denotes an odd function is called a ‘Sym’ matrXote the distinction

betweer0 and 0)

E 0 0
0O E 0
0 0 E

A vector of the following structure is called a {8yvector

8

‘Anti’ matrix/vector: A matrix of the following structure where E deroten even

function andO denotes and odd function is called an ‘Anti’ matrix

0O E 0
E 0 0
0 0 E

A vector of the following nature is called the ‘Antector

8
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Now we list some lemmas and their proofs, whichl viiélp in generalizing the

cumulative harmonic generation via mode-interaction

Lemma 1 If u is a symmetric/antisymmetric Rayleigh Lamb modenthl=Grad(u)
when represented in Cartesian co-ordinate systanSlyan’/ ‘Anti’ nature.

Proof Let

u1(Xz)
u;(Xz)

u=Re{
0

ei(kxl—wt)}

whereu,is an even/odd function ang is an odd/even function with respectXg for a

symmetric/antisymmetric mode. Since the derivativan even function is odd and vice-

aul
X,

iku1 0
aﬂ 0 ei(kxl—wt)

versa,H when represented as a matrix looks liie Lkuz

X, J
0 0 0
which has a ‘Sym’/Anti’ structure depending on Wiher u is a
symmetric/antisymmetric mode.

Lemma 2 The product of matrices of identical nature resuita matrix of ‘Sym’ nature

and the product of matrices of opposite naturelt®gua matrix of ‘Anti’ nature.

o Qm omo
moo mog

oM omQ oQm o Qm
o QOm oQm omd omd
Mmoo mog mog moo
OCcmO o0l omQO ©OMm
moo mog mog moo
oO0lm OomMQO omQ o O
omo o QO m o QO m omo

oQm omod
moo mog
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Proof The proof is a consequence of the fact that theymof two functions of the

same parity is even and that of opposite paribdis.

E O O][E O O ExE+0%x0 ExO+O=%E 0 E 0 0
O E 0||0 E O|=|0xE+E*xO Ox0O+E=xE 0 |[=]10 E O
0 0 EILO 0 E 0 0 ExE 0 0 E
E 0 0][0 E O E«xO+0*E E*xE+0=*0 0 O E O
O E O||E O 0|=|0x0+E*xE O+E+E=xO0 0O |[=|E O O
0 0 EILO 0 E 0 0 ExE 0 0 E
0O E OJ[E O O E«xO+0*E E*xE+0=*0 0 O E O
E O 0||0 E 0|=|0*x0+E*xE O+E+E=x0 0O |[=|E O O
0 0 EILO 0 E 0 0 ExE 0 0 E
0O E 0][0 E O O«xO+E+xE O*xE+E=xO0O 0 E 0 0
E O O||E O O|=|ExO+0+E ExE+0=%0 0 [=]10 E O
0 0 EILO 0 E 0 0 ExE 0 0 E

Lemma 3 The product of a matrix and vector of identicalunat(whenever the product is
meaningful) results in a ‘sym’ vector and a prodbetween those of opposite nature
results in a vector of ‘Anti’ nature.

Proof Follows along the same lines as above
ExE+0x0

=10+xE+Ex*x0O¢=
0

omQ
Mmoo
o Q

Ox0O+E=xE
E«xO0+0x*Er=
0

Ex0+0+*E
=100+ ExE¢=
0

cO0m omQ o©oOQtm

oOomQ omQO o O
I

omQo ooOm
moo moo
omQO o Q@
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0O E O](E OxE+E=xO0 0
E O O0|30;=3E*xE+0=+=0;=3E
0 0 EI\ 0 0

Lemma 4 For any primary Rayleigh Lamb mode the matrix representation for
SNL(H,H, 2) is a ‘Sym’ matrix.
Proof

From equation 2.24

SNL(H, H,2) = HTpg"(H) + Tre““(H, H, 2) 4.4

where

Ter“(H) = %tr(H +HDI + p(H + HT) 45

Tre""(H, H, 2) = %tr(HTH)I + C (tr(H))?I + pH™H + Btr(H)(H + HT) +

tr(H? + HTH)I + 5 (H2 + H™ + HH" + H™H) 4.6

HTge"(H) = %tr(H +HDH + p(H? + HHT) 4.7

If H is of ‘Sym’/’Anti’ nature then tr(H + HT) is an even(E)/oddY) function being
linear in the diagonal terms.

So the first ternr-% tr(H + H")H in Equation 4.7 has one of the following forms

E 0 O ExE ExO 0 E 0 O
El0 E O|=|ExO ExE 0[=|0 E 0
0 0 E 0 0 0 0 0 O
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O E 0 0«0 O+E O E O O
O|lE 0 0|=|0+«E 0x0 0|=]|0 E O
0 0 E 0 0 0 0 0 O

Usinglemma’s 1 and 2it is easy to show thap(H? + HHT) has a Sym nature. So, we
can concludeHTgg“(H) has a ‘Sym’ nature.

Using the consequences of Lemma 2 we can condhadestch of the terms dfgg V" (H) has
‘Sym’ nature and hencBg""(H, H,2) has ‘Sym’ nature.

So, SNL(H) = HTgg"(H) + Tre"“(H, H, 2) has a ‘Sym’ nature.

Corollary: From the above lemma, it can be seen that the xmegpresentation of

E O O
SNL(H) has the following structur%o E 0] i.e., the third rows are all zetethe non
0 0 O

linear terms corresponding to the displacemen&jndirection are zers> Primary
Rayleigh Lamb modes cannot generate secondary Sloeaontal modes (SH modes) as
SH modes have only; component of displacement.

Primary RL modes cannot generate secondary SH modes.

Lemma 5The vector representirlgiv(SNL(H, H, 2)) has a ‘Sym’ nature.

Proof

In lemma 4 we proved that the matrix representatio8N"(H, H, 2) has a sym nature.
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9E | 90
ox, Tox | (E
So,Div(SNL(H, H,Z)) has the following naturg 90 9 :{O} (Since the derivative
ax; x| (o
0

with respect toX; does not change the nature of the function, bdemvative with
respect tX, flips it).

Lemma 6 The power flowf, """ + £,”°! # 0 = v,, is a symmetric mode.

In the context of the above discussigs”” = —%SNL(Hl,Hl,Z)vn*.nz |Eh is non-

zero= SN (Hy, Hy,2)v,*. 1y, is an odd functior= SNY(Hy, Hy, 2)v,," is a ‘Sym’ vector

& v, is of ‘'Sym’ nature asN'(H,, H, 2) is a ‘Sym’ matrix & v,, is symmetric mode.

fu? =2 [" Div (SN“(H;, Hy, 2)).v," dX; is non-zeroe Div(SM(Hy, Hy,2)).v," is

an even functior= v,, is symmetric mode 6Biv(SNL(H1, H,, 2)) is ‘Sym’ vector from
lemma 5.

Corollary: From the above lemma, it can be concluded thaptiveer flow is non-zero

only to the symmetric modes.

So, for a single primary Rayleigh Lamb mode excitation, cumulative second harmonics

exist only as symmetric modes.
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4.2 Power flow analysis for generation of second haonic with primary SH mode

excitation

In this section we examine the case when the pyintdl modes generate a

secondary RL mode.

0
0

Letu = Re{
uz(Xz)

e"("‘Xl‘“”f)} be the fundamental SH Mode.

H=Grad(u) has the following matrix representation

0 0 0
Re 0 ag 0 ei(kxl—a)t)
iku; — 0
X,

Following the same procedure as outlined in thegumg section we make the following
observations
1. tr(H)=tr(HT)=0.

2. H2=0 HT? = 0.

0 0 O
3. Matrix representation dAHT has the following structur%) 0 0| where Eis
0 0 E
an even function.
E 0 O
4. Matrix representation oHTH has the following structur¢g0 E 0] i.e the
0 0 O

structure of ‘sym’ matrix.
5. The matrix representation 8N“(H,H,2) (equation 4.4) hasym structure

whetheru is a symmetric/antisymmetric mode.
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6. Div(SNL(H, H, 2)) has the structure of a sym/anti vector depending/logtheru

is a symmetric/antisymmetric mode.

7. £S5 = —%SNL(Hl, H;,2)v,".n, |Eh is zero for every SH mode,

8. £, = —%Sl"L(Hl,Hl,Z)vn*.n2 |’_lh is non-zero only for symmetric RL
modesv,,

9. £, = %f_hh Div (SNL(Hl, HI,Z)).vn* dX, is non zero only for symmetric RL

modesv,, .

We can conclude that single primary SH mode excitation can only generate RL

symmetric modes as cumulative second harmonics.

4.3 Interaction of Rayleigh-Lamb Guided wave modes

In this section we formulate a generalized problennch helps us to predict the
guided wave mode interaction. This is importanttha following reasons:

* In most of the experiments involving guided wavese excites more
than one mode owing to the finiteness of source ted frequency
bandwidth of the transducer. So, it is importardttione studies the
problem of guided wave mode interaction.

* It is also important for the study of higher harntomuided wave
generation in plates i.e., harmonics above therskcbhis is because, one

can think of higher harmonics as interactions betwgrimary mode and
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the other lower harmonics and it is essential that has a theoretical

framework for studying these interactions.

We consider the interaction of two guided wave nsadg u, propagating in the
plate.

Following the same procedure as in Chapter 2 tted thisplacement field in the
plate (up to second order interactions) is

U=Ug,+Up+ Uy +Ugp + Upp 4.8

where u,,, up, are displacement fields due to the self-interactionnodde a and b
respectively, ande,, is the displacement field due to the mutual intéoacbetween
modes a and b.

The displacement gradient is

H e Ha + Hb + Haa + Hab + be. 49

The first Piola-Kirchoff stress tensor is given by

S(H)=S“(H,) + SU(Hp) + St (Hgy) + SY(Hgp) + SU(Hpp) + SNE(H, + Hy). 4.10

We note that

SNL(Ha + Hb) = SNL (Hal Ha; 2) + SNL(Hbl Hbl 2) + SNL(HaJ Hb) 2) 4.11

whereSNt (H,, H,, 2), SNE(H,, Hp, 2) are the self-interaction terms as defined in Chrapte
2 andSN“(H,, H,, 2) denotes the other second order interaction terns&i(H, + Hj)

(equation 2.24)
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SNL (Haf Hbf 2)

A A
= Etr(Hb +H,")H, + pH,(H, + H,T) + Etr(Ha +H,")H,
A
+ pH,(H, + H,") + Etr(HaTH,, + H, "H,)1 + 2Ctr(H,)tr(H,)I
+u(H,"H, + H,"H,) + Btr(H,) (H, + H,") + Btr(H,) (H, + H,")

+2tr(HHy + HyH, + Hy"Hy + H,"H,)I + 2 (HoH,, + HyH, +
H,"H," + H,"H," + H,"H, + H,"H, + H H," + H,H,")
4.12
If u, = Refu,(Xp)eikaX1i—@at)} 'y, = Re{u, (X,)elkX1=@sD} thenSNL (H,, Hy, 2)
contains terms with the following exponentials

ei((ka“‘kb)xl_(wa"'wb)t), ei((ka_kb)xl_(wa_wb)t)’ e_i((ka"'kb)xl_(wa"'wb)t)’ e_i((ka_kb)xl_(wa_wb)t)

These terms correspond to modesugt € wy, k, + kp) and @, — wp, kg — kp).
So, if the phase matching criterion is satisfied, iif there exist propagating guided wave
modes at any of the above frequency-wave numberbic@tions then there is a
possibility of cumulative guided wave mode propagatf the non-zero power flow
condition is satisfied for that mode. To commenttbis we examine the structure of

SNL(H,, H,,, 2) for various combinations of modas,, u,,.

We can consider each of the termsS8t(H,, H,,2) and perform an analysis

similar to that in section 4.1 to conclude thedualing
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1. Matrix representation 8N-(H,, Hy, 2) has astructure of ‘Sym’ matrix ifug, u,

are modes of the same nature and has an ‘Antictstrel if the modest,, u;, are
of opposite nature.

2. If SNL(H,, Hp, 2) has a ‘Sym’/'Anti’ structure the power floyj, """ + £,”" =
0 © v, is a symmetric/antisymmetric mode.

3. If u,, u, are modes of the same nature then the guided wade whue to their
interaction is a symmetric mode and if they arembosite nature then the guided

wave mode due to their interaction is an antisytnmenode.

The above observations are consistent with ourltee¢or cumulative second
harmonic generation using single primary mode akoih. We found that the cumulative
second harmonics exist only as symmetric modeghasadan be thought of as interaction
of the same mode which would lead to a ‘Sym’ madtixicture folSN'(H,, Hp, 2) where

a=b.

4.4 Conclusions

The following conclusions can be drawn from thelgsia performed in this
chapter
1. Single primary Rayleigh-Lamb mode excitation canegate only symmetric RL
modes as cumulative secondary harmonics.
2. Primary modes consisting of only Rayleigh Lamb nsodannot generate higher

harmonic SH modes.
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3. Single primary SH mode excitation can generate sgiymetric Rayleigh Lamb

modes as cumulative secondary harmonics.
4. Interaction of Rayleigh-Lamb modes of same natuag generate symmetric
modes as secondary modes, while interaction betwezse of opposite nature

can generate antisymmetric modes as secondary hasno
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Chapter 5

LITERATURE IN THE CONTEXT OF THESIS FORMULATION

INTRODUCTION

In this chapter we discuss in detail some of thiezavork done in relation to
higher harmonic guided wave generation in plates. di¢cuss the contributions of the
earlier work and also adopt a critical viewpointeieamine how the results fit into the
theoretical framework developed as part of thissitheThe content of this chapter is
organized as follows. Section 5.1 presents theudson as stated earlier in a

chronological manner of the work in higher harmagugded wave generation in plates.

5.1 Literature in the context of thesis

One of the earlier works on the nonlinear inteacf guided wave modes was
by Deng [1998] in which he studied the non-linegeraction of SH modes in plate. He
concluded that the cumulative second harmonic geioar of SH modes from the self
interaction of SH modes is not possible, which ne @f the results obtained from the
analysis in Chapter 4 in this thesis. The thecaktformalism he adopted was quite
different from the one in the present thesis. Hpressed the primary wave-field using
the partial wave approach and then consideredebenslary wave-field as arising out of
non-linear interactions among the partial waveserirthe secondary wave field is also

made to satisfy the boundary conditions to obtasetsof relations which necessitate the
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existence of cumulative second harmonics. Deng9qJL8Qtended his approach to study

the non-linear interaction of RL modes in a plat#e concluded that the cumulative
second harmonics exist only as symmetric modess iBhalso one of the conclusions
drawn from the analysis presented in chapter defhesis. Although the work of Deng
was able to demonstrate the existence of cumulageend harmonics, it did not present
a complete understanding of which modes could leel s generate cumulative second
harmonics. The present work in this thesis includedetailed analysis in chapter 3 on
how should one go about picking out those modegterate any higher order harmonic.
We were able to come up with a list of guided wawvades which can be used for the
generation of cumulative second harmonics.

de Lima and Hamilton [2003] have developed a nennédism for the study of
second harmonic guided wave propagation in plaiéss is the formalism that we
adopted in this thesis. The article by de Lima Hiaghilton [2003] used this approach to
formulate the generalized problem of guided wavedeninteraction. They used a
perturbation approach to formulate the second haienaroblem and arrived at the two
conditions required for the generation of cumukatecond harmonic. The first one is the
phase matching criterion and the second one isntdmezero power flux. These two
conditions together lead to the “internal resonanmendition. Although this work
provided a framework for the analysis of guided gamode interaction there was no
discussion on which modes could be used for theergéion of cumulative second
harmonics. The present thesis used the formalismdebyima and Hamilton and went
about the analysis to predict which modes genemateulative second harmonics and

also predict the interaction of guided wave modeslate.
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Bermeset al. [2007] used the RL modes to characterize matedatlimearity in

aluminium plates. The primary modes they seleabedhis purpose is th& mode at the
longitudinal velocity, which generates a cumulatsecond harmoni§, mode at the
longitudinal velocity. This mode pair was also aricome of our analysis from chapters
3 and 4. Experiments were performed on two alumirplates whose material non-
linearity parameters were initially estimated usioggitudinal waves. The material non-
linearity parameters estimated using the Lamb wawer® compared to those estimated
using longitudinal waves and were found to be inywgood agreement. iler et al.
[2010] has identified (but not derived) the segafded wave modes that can be used for
the generation of cumulative second harmonics. Ttmysidered the group velocity
matching criterion in addition to the phase matghand power flow criterion to arrive at
those modes. These are exactly the same as thebta@sed going through the analysis
presented in chapters 3 and 4 of the present th&his criterion of group velocity
matching does not arise out of the theoreticaltewiuto the second harmonic problem
but is considered necessary from a practical pdimtew. The rationale behind this is the
argument that if the group velocities of the prignand secondary modes differ, then the
power flow from the primary to the secondary modess not take place after a certain
propagation distance, then the cumulative increasamplitude for second harmonic
does not occur. Mller et al. have not presented a generalized approach foptiase
matching criterion as the one presented in chahtarhich can be extended to study the
generation of any higher harmonic. The power floalgsis presented by dMler et al. is
along the same lines as the one presented in #semrthesis except for the fact that the

thesis explicitly uses the displacement gradidnfor carrying out the analysis which
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greatly simplifies and clarifies it. The usagetbfoffers several advantages which are

quite evident while studying the generalized problef RL guided wave mode
interaction in chapter 4. Matlaek al. [2011] used the RL mode-pai$s-S, andS,-S, to
characterize the efficiency of each of the modespai estimating the material non-
linearity parametef. It was concluded the,-S, was more efficient but it resulted in
more unwanted modes when comparedSieS,. Hence they used,-S, for their
experiments but made a note stating #haf, could be used with more sophisticated
experimental methods.

Srivastava and di Scalea [2009] used the theatdticmalism developed by de
Lima and Hamilton and tried to predict the exiseermf symmetric and antisymmetric
modes at higher harmonics. To that end, they stavith ann®" order generalized strain
energy function that contains higher order strairitiples up to orden. The theoretical
formulation was based on linearized strain asswmnptather than the full Lagrangian
strain. This aspect of their work is plausibly imezt for reasons listed below:

» The higher order strain terdTH is significant enough in the context of the
present work to be able to be neglected in thensbat to be included in the
higher order strain multiples.

For example consider the following strain energyction with third order terms

in strain.

W(E) = 3 A(tr(E))? + utr(E?) + 3 C(tr(E))® + Btr(E)tr(E2) + 7 Atr(E®) 5.1

with the resulting second Piola-Kirchoff stresss@mnfrom equation 2.16
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Trr = Atr(E)I + 2uE + C(tr(E))?I + Btr(E?)I + 2Btr(E)E + AE? 5.2

We write two expressions fofgrg one using linearized strail{,,) and the other

using the full Lagrangian straik}).
The linearized strain i€, = %(H +HT)
Trr When linearized straiBy;, is used, is as follows

Trr = %tr(H +HOI+ p(H + HT) + S tr(H + HD21+ S tr((H + HD?)I +
gtr(H +HT)(H +HT) +%(H +HT)?2 5.3

Trr When Lagrangian strail is used, is as follows
Trr (H) = %tr(H +HDI+pH+HT) + %tr(HTH)I +C (tr(H)*1 + pHTH +
Btr(H)(H + HT) + gtr(HZ +HTH)I + % (H2 + H™ + HH™ + HTH) 5.4
In the expression witligg using linearized strain terms Iilgetr(HTH)I, uHTH

are droppedbut include terms of the same order Ii{:«eH+HT)Z,§tr(H+

HT)?], gtr((H +HD?)I and gtr(H + HT)(H + HT). This seems theoretically

inconsistent and also has its impact on the highenonic guided wave problem
formulation as will be illustrated in the followirgpint.

» The work presumed the cause for the generatiomgbkeh harmonics is only the
primary mode, but in reality once the amplitudesetondary mode becomes
comparable to that of the primary mode after aagepropagation distance, the
perturbation assumption initially made is incorranod one has to consider the
interaction between the primary and secondary mddes Thus, if one is
formulating the problem for a third harmonic geti@raone has to include the

non-linear stress contribution not only from thémary modeSN'(H,, H,, 3)
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but also due to the interaction between primary aetond harmonic

modesSNt(H,, Hy, 2).

We illustrate the above fact by formulating therdhiharmonic problem.

Consider the displacement in the plate up to d trider perturbation.
u=uy+u; +us

H:H1+H2+H3

The first Piola-Kirchoff stress for the above dam@ment can be written as

(Equation 2.28)

S(H) = S*(Hy) + S“(H;) + S"(H3) + SN:(Hy, Hy, 2) + SNE(Hy, Hp, 2) +
SNL(Hy,Hy, 3) 5.5

Following the notation introduced in chapter 2 wan dormulate the three

problems foruq, u,, usz as follows

Fundamental wave

Div(S"(Hy)) — pycily = 0

SY(H)n, =0 5.6

Second Harmonic
Div(St(H,)) — p,it, = —Div(SN'(H,, Hy,2))

SL(HZ)nK = _SNL(HIJ Hll Z)nk 5.7
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Third Harmonic:

Div(St(H3)) — p,ii3 = —Div(SN*(Hy, Hq, 3)) —Div(SN'(Hy, Hy, 2))

SL(Hg)nK = —SNL (Hl' Hl’ 3)11,( - SNL(Hl, Hz, Z)nx 58

Each of the above equations (5.6-5.8) can be satvedmanner analogous to
that presented in chapter 2. The behavior of thaisa for the third harmonic
problem can be inferred from the non-linear striesms SN“(H,, H,,3) and
SNL(H,, Hy, 2). From the analysis presented in chapter 4 eatieaibove terms
represent the self-interaction betwe#j and mutual interaction between
H;, H,. We note that for a given primary modg, u, consists of displacement
contributions from all the modes at the second baimfrequency. So, the non-
linear stress terr8N“(H,, H,, 2) can be thought of as the interaction between the
primary mode and the secondary modes which con&ibto the
displacementt,. If it so happens that the primary mode satisfifes condition
of phase matchingnd non-zero power flow to any of the modes thatrdoute
to displacemenu, then one can expect cumulative third harmonic geier
due to their interaction. This exactly is the c#sat is not considered in the

generalized analysis presented in Srivastava anda.di Scalea [2009] .

In the light of the above assumptions made, thayloole that antisymmetric
modes do not exist at even harmonics but symmeiodes exist at any harmonic. This is
one of the conclusions drawn as part of our armaliyschapter 4. These conclusions are
true only for a single primary mode excitationh#s been proven as part of this thesis in

chapter 4 that the interaction of RL guided wavede® of same nature leads to
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symmetric modes and that between those of oppasdieire can give rise to

antisymmetric modes. So, if one starts with antekoin of two modes of opposite nature
at the same frequency one could expect their ictierato yield an antisymmetric mode
at the second harmonic. This is contradicting #salt given by Srivastava and Lanza di
Scalea [2009] and arises as a result of not comsglehe interaction terms like
SNL(H,, Hy, 2) that arises in the generalized higher harmoniclproformulation.

Matsuda and Biwa [2011] presented an analysisway very similar to that of
Miiller et al. where they identified the set of modes which canubed for cumulative
second harmonic generation. These included the lrapdes and extra Rayleigh modes
in addition to symmetric modes at longitudinal wapeed and the mode intersection of
symmetric and antisymmetric modes. These weredhesnodes that we obtained as a
result of our analysis in chapter 3.

The entire problem formulation and analysis preseim this thesis is carried out
independently except for the approach used by geland Hamilton [2003] to solve the

non-linear wave equation using normal mode expansio
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Chapter 6

CLOSURE

INTRODUCTION

This chapter presents the summary, conclusionssagdestions for future work
with relation to the higher harmonic guided wavése content of this chapter is
organized as follows. Section 1 presents the outcomthe combined analysis of the
results obtained in chapters 3 and 4. Section 2epts a discussion of the results

presented in the literature with those discusseeliime

6.1 SUMMARY

The thesis work led to the development of a themakframework that can model
and predict higher harmonic guided wave generadiod propagation in weakly non-
linear homogeneous isotropic plates. The framewusk been developed from the
principles of continuum mechanics. Material noreérity is taken care of by considering
Lagrangian (non-linearized) strain and includingh@r order terms in the strain energy
function. The problem is formulated in the refereronfiguration using the first Piola-
Kirchoff stress. A perturbation approach along withe normal mode expansion
technique is used to solve the boundary value prolfbrmulated. This led to the two
conditions required for cumulative second harmageoeration in plates. These are the
phase matching criterion and the non-zero power dhiterion. These two put together is

termed as “internal resonance”. The analysis pteden chapters 3 and 4 use the above



65
criterion and this results in the set of guided &vawodes that can be used for the

generation of cumulative second harmonic guided ewavihe generalized problem
formulation of guided wave mode interaction in deap4 was able to correct the
theoretical inconsistencies arising in the problemmulation by previous researchers.
The conclusions drawn from this can be used fodiptieg higher harmonic guided

waves in plates.

6.2 CONCLUSIONS

This section presents a summary of the resultsrdfemm the analysis presented

in chapters 3 and 4.

6.2.1 Primary modes that are capable of generatingumulative second harmonics

In chapter 4 we concluded that the cumulative sgédwermonics exist only as
symmetric Rayleigh-Lamb modes based on the non-peweer flux requirement for
internal resonance. So, it suffices to considely dhbse modes which are capable of
generating secondary symmetric modes for a singiddmental wave. The modes that
satisfy the phase matching criterion were listedhapter 3. We consider three separate
cases, i.e., primary symmetric modes giving secgndgymmetric modes, primary
antisymmetric modes giving secondary symmetric recaled primary Shear Horizontal

mode giving secondary Rayleigh-Lamb symmetric mode.
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Primary Rayleigh-Lamb symmetric modes that can givesecondary symmetric

modes

a)

b)

d)

nm

Ct .
can give secondary

Cut-off modes: Primary symmetric cutoff modes at= -

symmetric modes.

nmcice

Symmetric modes atc, = ¢; : Symmetric modes ab = can give

ci?2—c;?
secondary symmetric modes.
Mode intersections: All the modes at the intersection of symmetric amdi

symmetric modes can give secondary symmetric modes.

Lame modes with ¢, = V2¢, (if V2¢, > ¢; ) : Primary symmetric modeat

V2nmcjcs

h /thz—clz

w = can generate secondary symmetric modes.

Primary Rayleigh-Lamb antisymmetric modes that can give secondary

symmetric modes

a)

b)

Cutoff modes: Primary antisymmetric cutoff modes at= —(2";)”“

can give
secondary symmetric modes.

Mode intersections: All the modes at the intersection of symmetric andi
symmetric modes can give secondary symmetric modes.

Lame modes withc, = v2¢, (if V2¢, > ¢; ) : Primary antisymmetric modes at

_ \2@2n+1)mcict

2h [2¢2—c)2

can generate secondary symmetric modes.
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Primary Shear Horizontal modes that can give secoraty Rayleigh-Lamb

symmetric modes

nr

Z:t gives secondary symmetric

a) Cut-off modes: Primary cut off modes ab =

modes.
. . __ nmcice . .
b) Modes atc, = ¢;: Primary modes ab YN give secondary symmetric

modes.

c) Special modesPrimary modes at phase velocities satisfying theaggn

1 1 _m2 1 1
a?  cp? "~ n2 \c?2 Cp?

for some integers m,n give secondary modes attikeesection of symmetric and

antisymetric modes on the dispersion curves.

6.3 Interaction of RL Guided wave modes - Conclusits

The following conclusions were obtained as restithe analysis of interaction

RL guided wave modes. By interaction of two guigea/e modegw,, k,) and(wy, k)

we mean the secondary modes that are generate@wat— wy, k, — kp) or (w, +

wy, k, + kp) predicted using the approach presented in sedtiin

1. The interaction of RL guided wave modes of sameineatesult in symmetric
modes and that between those of opposite natul resantisymmetric modes.
2. With single primary mode excitation, the above lesanslates as the existence

of only symmetric modes as cumulative second haicson
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6.4 FUTURE WORK SUGGESTIONS

1. Scope for future work lies in performing experingensing the guided wave
modes obtained as part of the analysis in the ptegerk for cumulative second
harmonic generation in plates.

2. Use the theoretical framework developed to stu@ypttoblem of higher harmonic
guided waves in plates.

3. Develop or extend the theory developed for cumgatsecond harmonic
generation in pipes, shells and other arbitrargsisections like rail.

4. Use the cumulative second harmonic guided wavebaoacterize microstructure
evolution of Alloy 617 and other materials.

5. Use the framework developed herein for acoustaeigsanalysis of plates for

stress determination.
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Appendix

Cauchy and Piola-Kirchoff stress tensors

We present the formal definitions and backgroundlifferent kinds of stress tensors
used in this thesis.

Cauchy stress:This relates the traction in the current configwrato the geometry of

the current configuration. It denoted the traction vector anddenotes the unit normal
to the surface of a body in the current configomtithen the Cauchy stre$srelates

them as follows

t=Tn A-1

First Piola Kirchoff stress: This relates the traction in the current configaratto the
geometry of the reference configuration.tlitlenoted the traction vector ang denotes
the unit normal to the surface of a body in theemafice configuration, then the first

Piola-Kirchoff stressS relateshem as

tda = Sn,dA A-2
where da, dA are elemental areas in current arderefe configurations respectively.
For Hyperelastic materials, W(F) denotes the strain energy function in terms of the

deformation gradient then the first Piola Kirchsffess is given by
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__OW(F)

S=— A-3

Second Piola-Kirchoff stress:lt is born out of a need to measure the stressepowthe

correct configuration with respect to the Lagrandsrain.

For Hyperelastic materials, W(E) denotes the strain energy function in terms of the

Lagrangian straif, then the first Piola-Kirchoff stress is given by
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