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Abstract 
 
The pathological progression of neoplastic tissues requires the concerted activities of 

normal stromal cells to orchestrate a series of growth promoting effects similar to that found in 

healing wounds but without resolution.  Bone marrow derived leukocytes are instrumental in 

initiating and mediating many of these processes through various mechanisms employed during 

periods of inflammation.  Recently, studies using chemical and genetic tumor models have 

demonstrated novel tumor promoting roles for immune cells of the lymphoid lineage, a 

seemingly counterintuitive discovery. 

To model and study the contributions of lymphocytes to oncogene induced pre-malignant 

inflammation and tumor development, we targeted a Harvey-RASG12V transgene to basal (K14) 

and suprabasal (Inv) layers of squamous epithelia under inducible control of a tetracycline 

transactivator.  Reduced doses of doxycycline (dox) induced expression of RAS transgene in 

InvtTA/tetORas (InvRas) mice leading to outgrowth of benign papillomatous lesions.  RAS 

expression on a lymphocyte deficient Rag1-/- genetic background greatly blunted tumor onset 

and total burdens indicating lymphocyte involvement in the promotion of RAS induced skin 

carcinogenesis.  Antibody depletion of CD8+ T cells in Rag1+/+ mice partially but significantly 

reduced the early onset of papillomas while Rag1-/- reconstitution of purified CD8+ T cells 

briefly stimulated lesional growth similar to WT groups that could not be sustained over the 

course of the study.  Examination of the acute inflammatory response to RAS expression 

revealed diverse myelocytic infiltration into cutaneous tissues predominated by intraepidermal 

infiltration of cytotoxic Ly6G+ neutrophils.  Conversely, when acute RAS expression was 

observed on Rag1 -/- mice, epidermal proliferation and skin inflammation was greatly 

attenuated.  Neutrophilia, microabcesses, and keratinocyte proliferation levels similar to 
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Rag1+/+ mice could be rescued by reconstitution of transgenic Rag1-/- mice with total CD3+ T 

or CD8+ T cells.  Depleting CD8+ but not CD4+ T cells diminished or ablated all of these 

pathologies as well as reduced Th17 and γδ-17 cell activation, demonstrating the requirement for 

CD8+ T cells in driving global RAS inflammatory responses.  Neutralization of IFN-γ blocked 

neutrophilic inflammation and keratinocyte proliferation caused by CD8+ repletion of Rag1-/- 

mice thereby implicating this cytokine as a mechanism of action. 

RAS expression driven by an epithelial basal layer promoter (K14Ras) also activated 

severe systemic and skin inflammation but was characterized more predominantly by the 

expansion of Ly6Chi inflammatory monocytes capable of suppressing T cell proliferation ex vivo.  

This immunosuppressive behavior could be ameliorated by titration of RAS transgene quantities 

that correlated linearly with reduced GM-CSF expression in keratinocytes.  Strikingly, the 

acquisition of immunosuppressive functionality in these myeloid subsets could also be abrogated 

by crossing RAS transgenes onto the Rag1-/- background.  Depletion of CD4+ and/or CD8+ T 

cells was ineffective at reproducing this phenomenon.  However, B cell reconstitution into 

K14Ras/Rag1-mice completely recovered Ly6Chi mediated blockade of T cell proliferation 

suggesting B cells were the lymphocyte mediating these activities.  B cell depletion, in contrast, 

did not reverse these effects because of an anti-CD20 resistant Breg population that likely 

stimulates MDSC phenotypes through the paracrine activities of IL-10. 

Finally, we show that the unique inflammatory responses observed in basal and 

suprabasal RAS expressing mice may be caused by inherently different signaling properties in 

differentiated and proliferating keratinocytes.  RAS activation of ERK1/2 was greatly inhibited 

in differentiated keratinocytes in vitro and in vivo, whereby MKK4 activation was increased.  As 

AP-1 blockade during RAS activation revealed a repressive role for AP-1 in cytokine 
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transcription, we hypothesize that increased AP-1 activation due to enhanced JNK signaling in 

post-mitotic keratinocytes may dampen RAS mediated immunosuppressive pathways in mutated 

non-dividing epidermal layers.  In turn, this disparity in the ability to provoke regulatory myeloid 

cells that inhibit anti-tumor immunity may provide a reasonable explanation for the increased 

malignant potential in basal/stem cell driven epithelial cancers. 
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Chapter 1: Introduction 

1.1 Inflammation: A cancer perspective 

Virtually all living organisms inherently contain at least the primitive ability to defend 

themselves from infectious attack as well as repair damaged cells and tissues (1).  One 

mechanism by which Animalia distinguishes itself from other organismal kingdoms is by the 

complexity in their ability to carry out these functions (2).  In order for many animals to maintain 

homeostasis and survive potentially injurious environments, an inflammatory process must be 

initiated and resolved.  Inflammation is an integral biological response to numerous pathological 

insults to vascularized tissues including but not limited to: physical injury, microbial invasion, 

and neoplastic development with the goal of restoring homeostatic balance (3).  Parturition is 

even initiated by an inflammatory event (4) and age associated diseases are thought to be 

mediated by low-level inflammation (5).  An inflammatory process involves the dynamic 

interplay between cells of the epithelia, stroma, and a variety of resident and tissue infiltrating 

leukocytes that seek to reshape tissue, repair wounds and eliminate infections (6).  

Understanding the mechanistic details and properties of inflammation will not only provide 

clinicians with the therapeutic tools to treat inflammatory related diseases but also educate 

numerous other scientific disciplines into the biology of eukaryotic cells.  Indeed, the 

involvement of multiple systems during the inflammatory process demonstrates a unique 

opportunity to study biology holistically at a biochemical, molecular, cellular, and organismal 

level. 

1.1.1 Acute Inflammation 

When clinically classifying inflammation, one can divide these events based on the 

relative duration that the cells or soluble mediators reside and persist within the tissue itself.  The 
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fate and end result of this process and the reasons for these biological checkpoints will be 

discussed later, but despite the disparity in the outcome of inflammation and the evolution of the 

soluble and cellular components that make up its consistency, almost all inflammatory processes 

begin in the same manner: the cellular identification and recognition of something foreign or 

potentially injurious and the genetic decision to respond accordingly (7).  Cells have the innate 

ability to respond to stressful environments, and inflammation is typically the biochemical and 

cellular chain reaction of these cells responding to stress (8).  Pathological stress commonly 

causes cell death and these dead cells need to be removed in order for the injured tissue to heal 

properly and certain leukocytes are specifically equipped to carry out their removal (9).  

Hematopoietic cells with the ability to engulf foreign material and remove dead/dying cellular 

debris are known as professional phagocytes for their ability to consume and process 

macromolecules and microbes.  These immunocytes of myeloid origin include neutrophils, 

monocytes, macrophages, and dendritic cells.  Danger signals activate tissue resident 

macrophages that in turn stimulate chemotaxis and extravasation of neutrophils and monocytes, 

the first responders during acute inflammation, whose job is to non-specifically seek to destroy 

potentially harmful bacterium that have invaded tissue compartments (10).  Following tissue 

infiltration and respiratory burst, neutrophils release a myriad of stored intracellular mediators 

such as leukotrienes (11), anti-microbial polypeptides and proteases (12), and reactive oxygen 

intermediates that non-specifically destroy bacterial pathogens but also can wield extensive 

collateral damage if not regulated properly (13).  Monocytes differentiate within tissues into 

macrophages whose function is to help shape and tune more specialized adaptive immune 

reactions as well as to resolve acute inflammation by phagocytosing apoptotic neutrophils, 

effectively blunting granulopoesis and neutrophil infiltration (14).  The nature and intensity of 
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this response is usually determined by the nature and intensity of the pathological insult as well 

as the specific organ and/or tissue that it occurs in.  During infections that which occurs in the 

skin or gastrointestinal tract may be more severe and widespread than that affiliated within 

immune privileged sites like the brain (15).  Clinically diagnosing stages and grades of cancer as 

well as prediction of disease course based on the severity and type of inflammation is now 

becoming a common alternative to grading tumors (16;17).  A viral hepatitis infection can induce 

a relatively intense inflammatory response in the liver when compared to alcoholism, a 

pathology that targets the same organ and can take years to produce similar liver inflammation 

(18).  Furthermore, obesity, which can produce a small, underlying, and clinically undetectable 

amount of inflammation, is now thought to increase the risk of cancer in certain tissues despite 

the obvious presence of tissue pathology (19;20).  Another aspect affecting the severity of 

inflammation is the quantitative dose of the infectious or toxicological agent encountered by the 

organism whereas, for instance, a higher microbial load will require stronger immune activation 

resulting in greater inflammation in order to eliminate the entirety of the infection.  Finally, 

higher classes of animals such as mammals, have adaptive immune systems providing an 

organism the capability of generating an immune response that is tailored to more efficiently 

attack a particular microorganism based on lymphocyte receptor antigen specificity (21).  A 

hallmark of adaptive immunity is immunological memory, a process that retains a proportion of 

immune cells with a specific killing capacity for the newly encountered microorganism after its 

primary activation.  For infectious microbes that have evolved to escape immune recognition and 

share very little biochemical homology to other microbes, the first inflammatory process can be 

relatively intense so as to mount a specific adaptive response as efficiently and quickly as 

possible (22).  Viruses typically seek to multiply efficiently and overwhelm their host but 
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without being detected by the host immune system so as to avoid the dramatic effects of intense, 

acute inflammation (23).  For instance, H5N1 influenza and African trypanosomes are constantly 

evolving as a result of the influential selective pressures administered by their host’s immune 

system (24;25).  This culminates in a never ending evolutionary battle between pathogens and 

the immune systems they seek to escape from.  From an evolutionary perspective, it generally 

does not benefit the microorganism to kill its host unless it has the ability to infect another viable 

host; thus the most infectious and Darwinian fit pathogens are those with the ability to propagate 

within a host and escape its host’s defense system (26).  In all of these cases, acute inflammation 

is generally beneficial to the diseased organism where innate immunity precedes and conditions 

the subsequent adaptive immune response as necessary.  The damaged tissue is repaired and/or 

the foreign invader is eliminated efficiently. 

1.1.2 Chronic inflammation 

While acute and self-limiting inflammation is ultimately advantageous  to the host 

organism, it is now well established that when left unchecked, inflammatory components can 

endure and maintain a chronic environment that actually increases tissue pathology (27).  Indeed, 

in the context of carcinogenesis, chronic inflammation is often associated with tumor progression 

and malignancy and is now widely considered a risk factor for cancer development (28).  One 

caveat of note is the chronic inflammatory environment established during psoriasis in the skin 

which is, conversely, an inhibitory factor for cancer development of cutaneous origin (29).  

Although quantitatively defining the hallmark traits of physiological versus pathological 

inflammation can be an ambiguous process, there are certain cellular and molecular features of 

chronic inflammation that distinguish it from that of the acute nature.  For instance, the immuno-

cellular consistency of chronic inflammation tends to be dominated by lymphocytes and 
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macrophages whereas acute inflammation tends to favor chemotaxis and tissue residency of 

myeloid cells such as neutrophils and monocytes (30;31).  Typically, myeloid cells respond more 

rapidly due to their innate nature and ability to mobilize from the bone marrow upon chemotactic 

and cytokine storms, hence these cells have an expanded role during acute inflammation (32).  In 

contrast, lymphocytes undergo a self/non-self antigen-education process where T and B cells are 

genetically selected to respond only to a particular foreign antigen in the thymus and bone 

marrow respectively (22).  This adaptation to non-self antigens also allows for greater functional 

diversity as compared to myeloid cells which typically are programmed to perform a more 

limited number of biological processes as well as a more restricted capacity for phenotypic and 

morphological variability.  At odds with this generality is that macrophages are almost always 

the most abundant immune cell type within solid tumor masses and can have extremely polarized 

and variable phenotypes (33).  This immune cell and its specialized functions contributions to 

tumor development will be discussed at great lengths in later sections as its role is becoming 

increasingly more appreciated for its pro-tumorigenic properties.  Finally, chronic inflammation 

linked to cancer can be further classified based upon the order and manner in which it develops.  

That which arises as a consequence to oncogene activation is regarded as cell intrinsic 

inflammation and that which is established preceding the initiating genetic alteration is referred 

to as extrinsic inflammation as is the case with infection or autoimmune conditions. 

1.1.3 Cooperative crosstalk between mediators of inflammatory signal transduction 

Chronic inflammation arising extrinsically is unique in the ability to orchestrate multiple 

signaling feed forward loops that ultimately potentiate an environment favoring maintenance of 

the inflamed state.  Stimulation of this complex intracellular circuitry is rarely beneficial to the 

host.  One of the more well known feed forward loops is through the synergistic activation of 
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NFκb and STAT3 (34;35).  NFκb and STAT3 are transcription factors expressed in all cell types 

and their activation leads to expression of pro-inflammatory and cell survival genes in many 

different cell types (36).  Direct protein/protein binding interactions between the transcription 

factors have been demonstrated in multiple studies (37-39) and adjacent, bi-regulated genomic 

consensus sites have also been shown for these two transcription factors (40;41)   The 

augmentation of this reinforcing pro-inflammatory activity is fully realized when cytokine 

expression initiated by NFκb or STAT3 leads to the autocrine and paracrine effects of these 

secreted cytokines by binding cytokine receptors whose signal transduction culminates in further 

NFκb and/or STAT3 transcriptional activation.  IL-6, for instance, is a known NFκb target gene 

and ligand engagement of its receptor causes the gp130 subunit to directly activate STAT3 which 

subsequently can upregulate genes such as IL-17, IL-23, CCL2, and IL-1β that potentiate further 

NFκb activation in other microenvironment or malignant cells (42;43).  A model of colitis 

induced colon cancer revealed IL-6 was a critical tumor promoter whose effects could be 

abrogated by genetic STAT3 ablation in intestinal epithelial cells (44).  Unabated IL-6 signaling 

rendered U266 myeloma cells resistant to apoptosis (45) and similarly, constitutive STAT3 

activation targeted to the epidermis by means of transgenic manipulation enhanced malignant 

progression during 2-stage chemical carcinogenesis (46).  This feed forward cycle is further 

propagated by the fact that STAT3 and NFκb cooperate analogously in stromal immune cells 

where numerous tumor promoting functions are regulated by the nuclear workings of these 

transcription factors (47-50).  Additionally, STAT3 has been shown to prolong the nuclear 

retention of NFκb through p300 mediated acetylation of p65, thereby inhibiting IκB directed 

nuclear export and enhanced NFκb transcriptional activity (39).  The synergistic relationship 

between NFκb and STAT3 is just one of many examples supporting the molecular mechanisms 
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of shared and redundant pro-inflammatory signaling pathways within progressing malignancies.  

Other signaling proteins mediating similar tumor cell/stromal cell crosstalk include AP-1, JNK, 

PI3K, and ERK1/2 (51-55).  When inflammatory dysregulation is firmly established, oncogene 

expression in cancer cells leading to these pro-inflammatory feed forward loops can cause the 

accumulation of additional mutations in cell cycle genes and constitutive activation of various 

other cytokine and chemokine inducing transcription factors.  For these reasons, solid tumors 

that reach a critical mass for inflammation, proliferation, and vascularization rarely regress 

without therapeutic or surgical intervention. 
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Figure 1-1: Extrinsic and intrinsic NFκb and STAT3 cross-talk between cancer and immune cells leads to 
chronic reinforcement of pro-inflammatory feedback pathways.  Top: Activation of either signal transducer can 
be initiated upstream by cancer cell intrinsic oncogene activity leading to de novo production of autocrine/paracrine 
factors that subsequently engage cell surface receptors linked to further NFκb and STAT3 signal transduction.  
Upregulation of a gene mediated by one transcription factor also can lead to activation of the other as is the case of 
NFκb regulated IL-6 transcription whereby ligand binding to the IL6 receptor directly activates STAT3.  Persistent 
STAT3 signaling may also aid in p65/RelA nuclear retention by inducing p300 acetyltransferase activity.  Bottom: 
Alternatively and cooperatively, proximal inflammatory cells can secrete a variety of NFκb and STAT3 activating 
cytokines that chronically sustain signaling through these pathways in cancer cells as well as other leukocytes 
leading to recruitment of additional inflammatory cells.  These leukocytes harness NFκb and STAT3 crosstalk 
much in the same manner malignant cells do, providing a permissive and favorable environment for tumor 
promotion and malignant progression.   Top: Reprinted by permission from: Macmillan Publishers Ltd: Nat. Rev. 
Cancer,Yu et al., Vol. 9,Issue 3, pp. 798-809, © 2009 (top).  Bottom: Reprinted from Cytokine and Growth Factors 
Review, Vol. 21, Grivennikov and Karin, Dangerous Liasons: STAT3 and NF-κB collaboration and crosstalk in 
cancer pp. 11-19, © 2010 with permission from Elsevier and Lancet. 
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Table 1-1: The links of inflammation to cancer can be well appreciated when 
examining all of the chronic inflammatory syndromes that expose tissues to 
malignant growth.  Reprinted from: Cancer Cell, Vol. 7, Balkwill et al., 
Smoldering and polarized inflammation in the initiation and promotion of 
malignant disease, pp. 211-217, © 2005, with permission from Elsevier and 
Lancet Ltd. 

1.1.4 Autoimmunity, infection, and cancer risk  

The most well known example of chronic inflammation is autoimmunity.  Autoimmunity 

is a disease defined by chronic and persistent immunocyte activation against self-antigens, absent 

of canonical immunological resolution, and an abnormal persistence of leukocytic tissue 

residency.  Chronic inflammatory diseases can predispose certain tissues to carcinogenesis such 

as IBD in the colon, hepatitis in the liver, and diabetes in the pancreas (28).  Genetic 

predisposition often precedes establishment of a true autoimmune disease but is not an absolute 

prerequisite.  Indeed, many rheumatologists believe the underlying cause of many (but not all) 

autoimmune pathologies may arise due to an abnormal immune responses to infection (56).  

Helicobacter pylori is a 

bacterium whose etiology is 

known to cause chronic 

gastritis and ulcers which lead 

to the development of stomach 

cancer (57).  HBV and HCV 

infections are well known to 

establish persistent 

autoimmune-like hepatitis that 

greatly increase the risk for 

hepatocellular carcinoma 

development (58).  Multiple sclerosis is linked with respiratory pathogens (59), EBV (60), and 

systemic infections (61).  PCR amplified transcripts of Parvovirus B19 were found in 75% of 

rheumatoid arthritis patients compared with 17% of other chronically inflamed joint sufferers 
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(62).  Regardless of the underlying infectious mechanisms, the clinical manifestations of 

autoimmunity are generally a prognosticator for cancer development within the tissues 

autoimmunity has arisen in.  For instance, specific species of commensal gut flora are known 

etiological agents for the development of Crohn’s disease (63); an autoimmune precursor to 

colon cancer (64).  When examining these two diseases from a purely immunological standpoint, 

the mechanisms and effector functions in which immune cells become pathological and cause 

disease can be very similar.  As many as 15-20% of all cancer related deaths worldwide are 

attributed to infection and inflammation (65) and multiple tumor types respond favorably to non-

steroidal anti-inflammatory treatments that can alleviate mortality rates (66-68).  These 

similarities beg the question of if many more immuno-therapies applied to autoimmunity can 

also be efficacious against advanced staged malignancies. 

1.1.5 Biological parallels between solid tumors and healing wounds 

Scientists have frequently defined solid tumor development as “wounds that do not heal” 

(69) because many of the biological processes occurring in a healing wound parallel those 

occurring in a developing and/or established solid tumor.  Infiltration of inflammatory cells, 

clearance of apoptotic cells, hyperproliferation leading to tissue re-epithelialization, collagen 

deposition and fibrosis, and an increased vasculature are all distinct traits shared by solid tumors 

and healing wounds (70).  Furthermore, many of the same immunological responses, both in cell 

type and function, mark wounds and tumors similarly (71).  While Th1 mediated immunity 

controls most microbial infections and acute inflammatory processes, Th2 responses dominate 

the environments of both wounds and tumors as well as parasitic infections (72).  Th2 polarized 

immune activity is defined primarily by the involvement of eosinophils, mast cells, alternatively 

activated macrophages and CD4+ T lymphocytes that express IL-4 and IL-13 (73).  The 
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cytokines produced during this specialized immune response not only stimulate recruitment and 

activation of those cell types listed but also can repress hematopoietic lineages and cytokines that 

are most frequently found in Th1 responses.  The major difference between wounds and 

developing cancers is that wound repair is resolved through self limiting regulation of these 

inflammatory processes. (74).  An example of this is the induction of CCL2, a chemokine 

leading to monocyte and lymphocyte recruitment, also simultaneously stimulates upregulation of 

the Th2 cytokine IL-4 in T cells while shutting down IL-12 production (75) thus establishing a 

classic negative feedback loop.  This is important because Th2 mediated immunity also 

stimulates tissue repair programs and immunosuppressive genes that ultimately blunt the wound 

responding Th1 driven acute inflammation that can lead to autoimmunity and collateral tissue 

damage.  Meanwhile, many advanced staged tumors demonstrate an abundance of Th2 type 

leukocytes in their stroma along with cytokine/chemokine profiles that are strongly Th2 

polarized and this correlates with poor patient prognosis suggesting that tumors chronically 

hijack Th2 immunity to stimulate support their expansion and block Th1 driven anti-tumor 

responses. (76-78).  TGFβ, a pleiotropic cytokine with multiple context dependent functions, is 

highly secreted and active in wounds and aids in fibrosis or scarring (79).  TGFβ is also greatly 

upregulated in numerous tumors and is a potent tumor suppressor (80).  Its presence signals to 

epithelial cells to reshape their morphology towards a more fibroblastic-like phenotype that 

allows for enhanced mobility, a process referred to as “epithelial to mesenchymal transition” 

(81;82).  This cytoskeleton reorganizing event is required for epithelial cells to acquire greater 

motility so they may fill in open space within the tissue where the physical damage has occurred 

but also becomes another deregulated event during metastatic dissemination of cancer cells (83).  

TGFβ also can have significant impact on angiogenesis and numerous studies have implicated its 
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requirement for new blood vessel formation (84-87).  Angiogenesis is the process by which 

tissues lay down new blood vessels and increased blood flow is necessary to repairing wounds in 

order to allow nutrients and inflammatory cells to flow into the wound and waste products and 

immune cells to be carried away when healing is complete (88).  All accelerating solid tumors 

eventually outgrow their blood supply and initiate seminal blood vessel formation to keep pace 

with their increased tissue bulk.  Many immune cell derived cytokines have been 

 

shown to contribute to this process including IL-8, VEGF, MMP’s, and IL-17 (89-92).  Not 

inconsequently, TGFβ also affects locally resident immune cells, shaping their phenotypes 

towards any number of well studied immune profiles (93;94).  Production of TGFβ in copious 

quantities within tissues generally has anti-inflammatory properties but this is an extreme 

Figure 1-2: Epithelial wound healing (a) vs. deregulated malignant growth (b).  While epithelial proliferation, 
angiogenesis, matrix remodeling, and leukocyte infiltration are biological processes shared in both contexts, only healing 
wounds maintain self-regulatory networks leading to resolution of those phases.  Conversely, with the aid of leukocytes 
tumors deregulate these self-limiting signals thereby establishing progressive cancer cell proliferation and expansion of 
the stromal components to support its growth.  Reprinted by permission from Macmillan Publishers Ltd: Nature, Coussens 
and Werb, Vol. 420, Issue 6917, pp. 860-867, © 2002. 

12



overgeneralization because its presence along with other cytokines, such as IL-6 and IL-2, 

demonstrates far different signaling properties than when cells experience TGFβ alone; an 

environment that never occurs in the context of wounds and tumors.  This cytokine is an absolute 

requirement in the generation of the specialized CD4+ T lymphocytes, Th17 and Treg cells 

(95;96), and can induce further cytokine expression from fibroblasts and epithelial cell that 

ultimately potentiates inflammation (97;98). 

1.1.6 Questions to consider 

Despite these studies, questions remain about how uniform inflammatory responses are in 

these different pathological contexts as well as what are the key mechanisms for avoiding 

resolution of them in causing disease.  Furthermore, are there immune responses unique to 

certain tissues and what types of cells or genes govern the specificity of that tissue?  For 

instance, do epithelial cells regardless of tissue localization (i.e. skin, lung, gut, and breast) have 

an equal capacity to regulate and influence similar immune activities?  Is there a qualitative 

difference in the inflammation responding to danger (DAMP) signals derived from epithelial or 

mesenchymal cells?  What is the role of symbiotic tissue microbiota in preventing or tuning 

chronic inflammation?  Finally, can the quantity or intensity of inflammation determine the 

nature of the evolving immune response? 

 

1.2 Inflammatory contributions to specific stages of carcinogenesis 

1.2.1 Initiation 

Cancer biologists have compartmentalized experimental tumor development into 3 well-

characterized molecular and/or histopathological stages: initiation, promotion and malignant 

conversion (99).  These events are analogous to the acquisition and progression of human tumors 
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as well.  Although these classifications represent a fluid continuum of neoplastic progression, 

distinct differences can be identified and are implicit in determining treatment courses and the 

level of clinical intervention.  Initiation encompasses the seminal and irreversible mutational 

activation of oncogenes or deactivation of tumor suppressors in somatic cells and is an event 

rarely, if ever detected in human cancers because biopsies of palpable tumor masses contain 

numerous mutations that could be the initial cancer causing event.  The detection, correction and 

elimination of mutated genomic DNA are normal homeostatic processes of somatic cells.  

Considering mutational events are actually quite common, arising spontaneously 10-6 to 10-11 in 

each round of DNA replication, genomic editing is a standard and necessary mechanism of 

ensuring balanced cell cycling (100).  When the editing machinery fails to correct these genetic 

errors or remove cells with mutations, these cells have a selective advantage over neighboring 

cells for division and growth.  It is postulated that the chronic presence of inflammatory cells 

within tissues contributes to increased DNA damage.  In support of this, one study found 

mutation rates nearly 4 times higher in inflamed non-cancerous tissue than normal adjacent 

(101).  One mechanism inflammatory cells may achieve this is through the induction of oxidative 

stress by reactive oxygen species (ROS) and nitric oxide (NO), which produce perioxynitrates 

and hypochlorous acid, thereby greatly increasing rates of mutation and transformation (102).  

Both neutrophils and macrophages are rich sources of these reactive oxidative products during 

inflammatory activation normally intended for anti-microbial defenses.  NO is also a potent 

inhibitor of p53 function (103;104) and the amount of NO is directly proportional to the number 

of p53 mutations in inflamed tissue due to its genotoxic effects (105;106).  Not surprisingly, 

genes with dominant functions in regulating cell cycle entry, proliferation, growth arrest, 

apoptosis and senescence are the most frequently mutated in cancer cells (107).  Even non-
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cancerous cells residing within chronic inflammatory conditions such as arthritis and IBD 

contain p53 mutations at rates similar to those found in solid tumors of the same tissue (108).  

Production of cytokines also augments genomic instability.  IL-6 signaling creates 

hypermethylated regions in the p53 promoter (109) and TNF-α, IL-1β, IL-4, IL-13, and TGFβ all 

induce upregulation of activation induced cytidine deaminase (AID) (110-112) which promotes 

double stranded DNA breaks in p53, c-MYC (113;114), and BCL-6 (115).  Known and putative 

chemical and infectious carcinogens often target many of these same genes.  Depending on the 

functions of these proto-oncogenes, these mutations may cause constitutive activation or 

inactivation.  A single mutation is rarely adequate or sufficient to induce unregulated, cancerous 

cell growth since activation and upregulation of tumor suppressing genes such as p53 will occur 

as a negative regulatory consequence to the mutational event (107;116).  Therefore, the 

simultaneous chronic presence of pro-proliferative and DNA damaging inflammatory agents 

would be a favorable cancer conditioning environment.  To that end, sequences of cancer 

genomes show mutations in multiple genes with overlapping functions and often a pro-mitotic 

activating mutation will occur contemporaneously with an inactivating mutation in a pro-

apoptotic or growth arrest protein (117). 

1.2.2. Promotion to Malignant conversion 

Following initiation, pre-malignant outgrowth must occur through expansion of cancer 

cells and cancerous tissue so as to establish a palpable benign tumor mass.  Evasion of growth 

arrest and apoptosis leading to sustained proliferative signaling and the capacity for unlimited 

self-renewal must occur in order for cells with initiating mutations to lead to palpable tumor 

masses.  At this stage proliferation is promoted in mutated cells through any number of 

inflammatory mediated mechanisms which can encourage these cells to acquire additional trailer 
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mutations that augment its ability to form neoplastic lesions.  Cytokines can perpetuate 

proliferative signaling in cancer cells through direct and indirect mechanisms.  IL-1α upregulates 

IL-6 production in Kupffner cells leading to compensatory cell survival in hepatocytes (118).  

The risk of HCC progression correlates well to the relative circulating IL-6 levels in tumor 

bearing patients (119).  TNF-α can stimulate epithelial to mesenchymal transition (120) and 

regulates chemokine expression in ovarian cancer cells (121).  High expression of TNF-α in 

human tumors is also associated with poor prognosis, loss of hormone responsiveness and 

cachexia (122-124).  TNF-α is also a potent mitogen for hepatocytes (125) making it currently an 

attractive target for cancer therapy (126).  IL-23, a potentiator of IL-17 mediated inflammation, 

is secreted by macrophages and dendritic cells and has been linked to the Warburg effect, a 

metabolic process in cancer cells favoring glycolysis to oxidative phosphorylation (127).  As 

stated previously, constitutive cytokine signaling can propagate permanent cellular changes.  For 

instance, increased expression of BCL-2 and BCL-X1, two anti-apoptotic proteins, is mediated 

by the increased activities of NFκb, STAT3, and/or AP-1 (128).  STAT3 inhibits p53 synthesis 

(129) and positively regulates cyclin D1, D2, B, and c-MYC, thereby fostering proliferative cell 

cycle entry (130).  However, solid human tumors are never strict masses of genetically 

monoclonal cancer cells, contrary to tumor models utilizing syngeneic and/or orthotopic 

transplantation of homogenous, transformed, and highly malignant cell lines.  Until much later 

stages, benign solid tumors maintain many of the morphological tissue organization found in 

normal tissue where proliferation and apoptosis are increased concomitantly suggesting most 

cells within the tumor mass still maintain homeostatic cell cycle regulation.  Promotion of these 

tumors leads to progressive deterioration of this organization where the most undifferentiated 

phenotypes lead to more malignantly aggressive forms (131-133).  This process of tumor 
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Figure 1-3: Stage 
specific 
contributions of 
leukocytes to 
carcinogenesis. 
Immune cells can 
affect every stage 
of carcinogenesis.  
Phagocytes 
produce genotoxic 
oxidative products 
which increase 
mutation rates.  
Myeloid cells 
provide matrix 
remodeling, pro-
angiogenic, and 
immunosuppressiv
e factors that 
increase pr e-
malignant 
progression and 
avoid anti-tumor 
immunity.  
Chemokines direct 
metastatic cells to 
distal tissue sites 
where specific 
cytokines promote 
cancer cell 
survival.  
Reprinted from: 
Cell, Vol. 140,   
Grivennikov et al, 
Immunity, 
Inflammation, and 
Cancer,  pp. 883-
899, © 2010, with 
permission from 
Elsevier and 
Lancet. 

promotion is most evidently carried out indirectly by immune cells that provide pro-angiogenic 

and tissue remodeling soluble factors as well as chemokines that augment immunocellular 

recruitment into the 

tumor.  VEGF is 

necessary to stimulate 

endothelial cell 

proliferation and 

migration and immature 

Gr-1+ myeloid cells and 

macrophages are a key 

intratumoral source of 

VEGF (134;135).  

Production of the 

chemokine CXCL12 

activates the recruitment 

of CXCR4+ endothelial 

cells during hypoxic 

conditions which is 

thought be the seminal event in stimulating 

the angiogenic switch (136).  Mast cell derived IL-8, TGF-α, PDGF, tryptase and chymase also 

contribute to vascular development during tumorigenesis (137).  Matrix metallo-proteases 

(MMP) are critically important for remodeling tissues through their abilities to proteolytically 

degrade extracellular matrix proteins such as collagen and cell to cell adhesion molecules such as 
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integrins (138).  MMPs can contribute to angiogenesis and as is the case with VEGF, leukocytes 

such as macrophage, neutrophils and mast cells are rich sources of these proteins and release 

them upon inflammatory activation (139;140).  Bone marrow derived MMP9 was required for 

myelomonocytic-derived vasculogenesis in a mammary carcinoma model (141) as well as in the 

skin restricted HPV16 driven transgenic squamous tumor mouse (90).  These studies have led to 

numerous clinical trials targeting the inhibition and depletion of MMP activity and signaling, the 

majority of which have been unsuccessful (142).  MMPs can also regulate the bioavailability of 

growth factors, including cytokines (143).  In keratinocytes, IFN-γ and TNF-α induced 

upregulation of MMPs leads to shedding of membrane bound pro-TGF-α and enhanced ERK1/2 

mediated CCL2, CCL5, and CXCL10 mRNA stability.  This skews the inflammatory infiltrate 

from neutrophils to monocytes and T cells (55).  Finally, chemokine expression leading to 

cyclically augmented leukocyte recruitment and ultimately enhanced tumor growth, is 

upregulated in immune cells, stromal fibroblasts, and cancer cells as the result of autocrine and 

paracrine cytokine signaling (144-146). 

1.2.3 Malignant Conversion to Metastasis 

Once pre-malignant tumor masses have successfully been established, some cancer cells 

acquire malignant properties that can allow for the formation of metastasis, a mobile bolus of 

cancer cells that travels away from the autochthonous primary tumor and invades distal organs 

and tissues.  Malignant conversion is defined by the histological observation that the cancer cells 

have breached the basement membrane, a proteinacious barrier between the epithelium and 

fibroblast stroma that maintains organization and tissue orientation (147).  When cancer cells 

degrade and invade through this barrier, metastasis is made possible through proximal access to 

the systemic roads of lymphatic channels and blood vessels (148).  The dissemination of 
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malignancy and metastasis is, again, a process that is clearly promoted by contributions by 

inflammatory cells.  Immune cell derived proteases play a large role in mediating these events 

(149).  Abrogation of the type 2 TGFβ receptor in mammary carcinomas led to increased Gr-

1/CD11b cell recruitment into the invasive front by upregulation of CXCL5/12 and these 

myeloid cells reciprocally aided tumor invasion through an MMP-dependent mechanism (150).  

Ablating the downstream mediator of TGFβR signaling, SMAD4, in the colon, produced similar 

tumor biology through CCL9/CCR1 chemotaxis of CD34+ immature myeloid cells (iMCs) that 

employed MMP2/9 to increase carcinomas invasion (151).  TNF-α signaling can biochemically 

stabilize Snail, a key mediator in EMT induction and metastasis (152).  CSF-1 and CXCL12 may 

mediate a physical interaction between TAMs and cancer cells, thus facilitating metastasis (153) 

and CSF1 null mice have strikingly attenuated PyMT-driven pulmonary metastasis (154).  

Additionally, chemokine gradients cooperatively direct the coordinated migration of metastatic 

seeds through the chemokine receptors CXCR4, CCR4, CCR7, CCR9, and CCR10 (155).  

Malignant cells exposed to inflammatory mediators upregulate many of these receptors, making 

them more responsive to the chemotactic factors leukocytes secrete (156).  CXCR2 expression 

on keratinocytes has been shown to be critical for proliferation, migration and tumor volume in 

the skin two-stage carcinogenesis model (157).  Other examples include: CXCR5 and liver 

metastasis from primary colon tumors (158), CXCR4 and breast carcinoma metastasis (159) and 

CXCR1, CXCR2 and CXCR3 in malignant melanoma (160).  Since it is estimated that 0.01% of 

cancer cells survive in circulation to produce metastatic colonies at distant sites, the combined 

actions of TNF-α, IL-6, and epiregulin promote metastatic spread by inhibiting NK cell 

destruction (161) or by directly promoting cell survival genes (162).  The arrival of metastasis 

into secondary organs is regulated by the concerted actions of integrin-dependent arrest onto 
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endothelium, and depletion of macrophages reduced the propensity of this process during breast 

cancer metastasis to the lung (163). 

 

1.3 Skin structure and physiology 

The skin represents the outer-most barrier for a vertebrate animal and is constantly 

exposed to a variety of potentially injurious pathological insults.  This integumentary organ is 

designed to positively regulate water loss, maintain a symbiotic relationship with commensal 

surface microorganisms, sample and protect against foreign environments, grow hair in 

mammals, thermo-regulate, absorb harmful UV radiation, provide sensory information for 

external stimuli and synthesize vitamin D (164).  Keratinocytes are the primary cell type of the 

epidermis arranged in a stratum of progressively differentiating squamous cells beginning with a 

basal proliferating layer and ending with the apoptotic stratum corneum; a process regulated by 

calcium and cellular orientation (165;166).  This differentiation process is marked biochemically 

by a specific keratin expression pattern where K5/K14 pairs are expressed in basal layers, and 

K1/K10 as well as involucrin and filaggrin are induced in suprabasal, spinous and granular layers 

respectively (167).  In mice, the epithelium may only be 1 or 2 cell layers thick but humans 

homeostatically maintain a stratum of 4-6 cells (164).  Directly beneath the epidermis is the 

dermis, primarily composed of fibroblasts interdigitized within a dense matrix of collagen.  

Blood vessels, lymphatic channels, nerves and hair follicles also extend and reside within the 

dermis, structures that provide a complex support system to the entire cutaneous tissue.  Lastly, a 

layered bed of smooth muscle and adipose tissue mark the hypodermis just below the dermis.  

For the purpose of this review, the focus will be on the relationship between keratinocytes, 

resident immune cells, and infiltrating leukocytes during inflammation and highlighting their 
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roles in skin carcinogenesis.  Like most tissues, bone marrow derived immune cells are present 

in significant quantities within the skin and serve an important role in regulating homeostasis.  

Langerhan cells are a specialized type of dendritic cell and make up the largest proportion of 

CD45+ immunocytes while inhabiting the epidermis.  These professional antigen presenting cells 

populate the epidermis in a TGFβ dependent manner during development and are the key 

mediators of skin immunity and tolerance (168).  Furthermore, in murine and bovine, but not 

human epidermis, a morphologically similar hematopoetically derived cell to the Langerhan cell 

is the aptly termed dendritic epidermal T cell (DETC) (169).  These cells are γδTCR/CD3 double 

positive and require TCR gene rearrangement and selection in the thymus similarly to other 

TCR+ subclassed lymphocytes.  However, they function in a more innate-like fashion where less 

biochemically stringent polyclonal antigens are seemingly able to activate these cells (170).  

DETCs are also thought to function in wound healing (171).  Indeed, multiple groups have 

demonstrated that DETC (and human counterparts) activate effector functions through 

upregulated stress-induced self antigens such as RAE-1, H60, and MULT; all of which are 

NKG2D ligands (172-174).  Analogously, humans maintain significant populations of γδTCR+ T 

cells within other epithelium, most evidently the lining of intestines.  Human γδT T cells are also 

activated by NKG2D ligands, MICA and MICB suggesting their involvement in maintaining 

tolerance dealing with stress responses (175).  In addition, quiescent mast cells are present in 

large numbers within the dermis and when activated are responsible for many pro-inflammatory 

reactions including releasing histamine during an allergic response (176).  Beyond these cells 

types, numerous dendritic cell subsets inhabit the dermis, with different phenotypes than that of 

the Langerhan cell but perform similar antigen sampling and immunoregulatory functions 

specific to dermal immunity (177).  Macrophages, monocytes, granulocytes, NK cells and 
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αβTCR+ T cells typically reside in small numbers within normal skin tissue and will be discussed 

later in regards to their roles during carcinogenesis (178). 

 

1.4 Two-stage skin chemical carcinogenesis 

The two-stage chemical carcinogenesis (CC) model provides a biologically relevant tool 

for studying squamous cell carcinoma development in situ where observations can be 

extrapolated to many other epithelial-derived malignancies (179).  This protocol faithfully 

mimics the stages of initiation, promotion and malignant conversion.  The initiating mutation, 

caused by single 7, 12-dimethylbenze[a]anthracene (DMBA) application to the dorsal skin of 

mice, occurs 90% of the time in the H-ras gene of epidermal keratinocytes which produces a 

constitutively active oncogenic form of the GTPase (180).  Most frequently a point mutation, 

caused by the irreversible DNA damaging activities of diol epoxide metabolites, substitutes a 

glycine residue at position 61 with a valine and hence inactivation of the GTPase activity (179).  

The type and position of the initiated keratinocyte in relation to the rest of the epidermis is 

currently unknown but is thought to likely occur in a basal interfollicular cell or a stem cell 

residing within the bulge of the hair follicle (181).  However, most of these hypothesis are 

speculative and based on circumstantial evidence that proliferation and cell cycle dysregulation 

can only be occur in a moderately to highly undifferentiated keratinocytes.  Terminal 

differentiation of cells by definition must signal acquisition of permanent genetic changes that 

prevent the cell from infinite self-renewal and provoke programmed cell death or arrest without 

further entry into the cell cycle (182).  Once initiation following DMBA exposure is complete, 

chemical promotion is carried out by repeated application of TPA, a potent phorbol ester and 

PKC activator.  Constant PKC activation provokes upregulation of numerous NFκb regulated 
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pro-inflammatory cytokines and chemokines within keratinocytes including but not limited to 

TNF-α, CXCL1/2, S100A8/9, G-CSF, and GM-CSF  that provoke continual chemotaxis of 

inflammatory cells thereby promoting cancer cell proliferation and neoplastic progression (183-

186).  This protocol is highly effective at inducing consistent, repeatable, papilloma outgrowth.  

Among these benign lesions there are a small fraction of which contain cells at a high risk for 

malignant conversion into SCC (132;187).  SCC and BCC are the malignant forms of benign 

skin papillomas and are the most commonly acquired malignancies in the United States (188).  

 

Cytokine/Immunocellular Knock-out Phenotypes during Skin 2-stage Chemical 
Carcinogenesis 

Gene Tumor Progression Mouse Strain Reference 
Rag2 Resistant C57BL/6 (189) 
JH (B cell) Resistant C57BL/6 (189) 
TCRδ Susceptible FVB/n (190) 
TCR γV5/δV1 (DETC)  Susceptible FVB/n (191) 
TCRβ Resistant FVB/n (high dose TPA) (192) 
CD4 Susceptible FVB/n (low dose TPA) (193;194) 
CD8 Resistant FVB/n (high dose TPA) (194;195) 
CD4 Resistant C3H/HeN (196) 
CD8 Susceptible C3H/HeN (197) 
Langerin-DTA  Resistant FVB/n (198) 
p19 (IL-23) Resistant C57BL/6 (199) 
p35 (IL-12) Susceptible C57BL/6 (199) 
p40 (IL-12/IL-23) Resistant C57BL/6 (199) 
IL-17 Resistant C57BL/6 (200) 
INFγR Resistant 129/SV/EV (201) 
TNF-α Resistant C57/BL/6 and Balb/c (202) 
 
Table 1-2: A summary of the immunocellular and cytokine genetic knockout mice and their effect on tumor growth in the two-
stage chemical skin carcinogenesis protocol.  Increased resistance or susceptibility of tumor burdens is relative to WT controls 
used in those studies.  DTA = dipheria toxin transgene 
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1.5 RAS oncogene 

1.5.1 Signal transduction:  

RAS, in its 3 isoforms, H (Harvey), K (Kirstens) and N (Neuroblastoma), activates 

numerous downstream signal transduction pathways and are mutated in 30% of all human 

cancers (203).  Thus the skin carcinogenesis model has particular relevance to RAS driven 

human cancers.  Pancreatic cancers have upwards of 90% K-Ras mutations, further support for 

the significance of this proto-oncogene in carcinogenesis (204).  Colon, intestine and lung 

malignancies also have significant proportions have RAS mutations (205).  Furthermore, the 

tyrosine kinases EGFR and ERB2 are greatly upregulated in many human tumors (including 

BCC and SCC).  These receptors transduce their signals through RAS, creating a constitutively 

active RAS signal in cancer cells (206).  It is the defining member of larger group of small 

GTPases that hydrolyze guanine nucleotide triphosphate (GTP) into the diphosphate form 

(GDP).  RAS was originally discovered to be oncogenic by isolation and transfection of genetic 

elements from rat sarcoma virus (ras) infected cells that could be transformed by both the Harvey 

and Kirstens strains (207).  N-Ras was later discovered and cloned from neuroblastoma and 

leukemia cell lines (208).  Although all 3 three isoforms exhibit high sequence homology, their 

individual expression level varies in specific tissues as well as the types of cancers they are 

mutated in.  For instance, N-Ras is most highly expressed in thymus and testis and is 

preferentially mutated in melanoma, myeloid leukemia, and Hodgkin’s lymphoma (209-212).  H-

Ras transcripts are found in highest quantities in skin, brain and muscle and the oncogene is 

found most frequently in bladder carcinomas (213).  Finally, K-Ras mutations are the most 

common in colon and pancreas while normal expression of the K isoform can be found most 
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abundantly in gut and lung (214-216).  These circumstantial lines of evidence suggest that RAS 

isoforms do contain context specific functionality. 

In normal somatic cells, RAS is frequently at the inception of signal transmission from 

extracellular stimuli on the cell surface to the nucleus where a myriad of necessary biological 

processes can begin including proliferation and cell cycle entry, cytoskeletal rearrangement, 

differentiation, metabolism, survival and cell death (203).  RAS accomplishes this through its 

ability to bind GTP causing conformational activation, subsequently creating proper targets for 

its RAS-GTP biochemical binding partners.  GTP binding is facilitated and accelerated by a GTP 

exchange factor (GEF) that removes bound GDP molecules on RAS.  SOS is member of the 

GEF family and links EGFR signaling transduction to RAS activation.  When GEFs remove 

GDP molecules, GTP binding to RAS becomes an stoichiometrically favorable event because of 

the 10 fold higher intracellular concentration of GTP and the higher binding affinity of GTP to 

RAS than GDP (217).  Hydrolysis of GTP is also assisted by a GTPase activating protein (GAP) 

that stimulates the enzymatic activity of the small G protein.  NF1 is a RasGAP gene and its 

mutational inactivation is the initiating carcinogenic event found in neurofibromatosis where 

peripheral nerve cells cannot turn off RAS activation (218).  Oncogenic mutations in RAS 

almost always occur at 1 of 3 amino acid positions: 12, 13, and 61 (219).  These genetic 

alterations prevent RasGAPs from instigating GTP hydrolysis, and thus RAS remains 

permanently bound to the trinucleotide rendering the protein constitutively active (220).  Three 

major signaling molecules that lay directly downstream of activated RAS are RAF, PI3K, and 

RalGDS (221).  All 3 are required for skin carcinogenesis and their activity is also necessary for 

transformation in vitro when RAS is transfected or virally transduced cultured cells (222-224).  

The kinase RAF was the first major effector protein discovered to have been directly linked to 
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RAS activation.  Four independent groups verified that RAS-GTP physically bound to RAF and 

this subsequently lead to elucidation of the downstream MAPK targets, MEK1 and ERK1/2 

(225-229).  ERK1/2 phosphorylation and nuclear translocation leads to nuclear activation of 

multiple transcription factor targets such as ETS proteins, Fos, and ELK-1 as well as other 

nuclear kinases like p90RSK (230).  Transcriptional upregulation of genes resulting from MAPK 

cell signaling are pro-mitogenic and affect differentiation and actin rearrangement (231).  The 

PI3K pathway activates multiple kinases important for cell survival and inflammation; AKT, 

mTOR, PLC and PKC (232).  These proteins are capable of NFκb activation that in turn 

mediates transcription of cytokine and anti-apoptotic genes (233-235).  Termination of PI3K 

activity is regulated by the phosphatase PTEN which dephosphorylates the second messenger 

PIP3, thus deactivating the pathway (236).  Recently, PTEN was discovered to be the 2nd most 

commonly mutated protein in cancers after p53 demonstrating the significance of PI3K signaling 

in cellular homeostasis (237).  RalGDS is a RAS GEF that links RAS GTPase to Ral GTPase 

(238).  Activation of this pathway alone without PI3K or RAF activation proved sufficient to 

transform human kidney epithelial cells (239).  Ral activation leads to another MAPK pathway 

where JNK is the ultimate kinase that leads to c-jun transcriptional activity (240).  Together, 

activation of both NFκb and MAPK in intestinal epithelial cells were required to provoke 

destructive chronic inflammation in the colon that neither pathway could provoke upon singular 

activation alone demonstrating the significance of stimulating multiple signaling pathways 

during establishment of pathological inflammatory states (241). 
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Figure 1-4: RAS activation and signal transduction.  GEF mediated GTP binding of RAS initiates downstream 
activation of numerous molecules that control a multitude of cellular processes.  When oncogenic mutations occur at 
residues 12, 13, or 61, RasGAPs are unable to catalyze the GTPase reaction and constitutive RAS signal transduction 
leads to unregulated cell cycle entry, promotion of pro-inflammatory pathways and ultimately transformation.  The 
color coded legend indicates developmental disorders associated with mutations of the indicated genes.  Reprinted by 
permission from MacMillan Publishers Ltd: Nat. Rev. Mol. Cell Bio., Karnoub and Weinberg, Vol. 9, Issue 7, pp. 
517-531, © 2008. 

 

 

 

 

1.5.2 RAS and inflammation 

Inflammation invoked by RAS expression and oncogenic activation has only recently 

gained attention when control of tissue specific and conditional expression of RAS, RAS 

oncogenes, and RAS effectors could be achieved.  In a model of non-small cell lung cancer, 

oncogenic K-RAS expression requires multiple inflammatory components to achieve complete 

tumorigenesis (242).  Similarly, a K-RASG12D knock-in transgene targeted to bronchiolar 

epithelia provoked a macrophage and neutrophil inflammatory lung infiltrate that ultimately 

contributed to lung adenocarcinomas (243).  Inducible H-RASG12V in xenografted tumor cells 

revealed that AP-1 and NFκb mediated IL-8 expression and secretion potentiated tumor 

associated inflammation leading to enhanced neovascularized tumor beds (244).  Inflammatory 

contributions by macrophages, γδT cells and IL-1α are required to promote wound initiated 

tumors in an epidermal-specific, MEK1 skin tumor model (245-247).  RAF transgene expression 

restricted to a K14 promoter also yielded tumors whose phenotype could be ameliorated by Gr-1 
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depletion (248).  Pancreatitis was shown to exacerbate malignant progression of pancreatic 

ductal adenocarcinomas in a mouse model of KRasG12D expression relative to non-inflammatory 

conditions (249).  This pancreas specific inflammation was then further demonstrated to be the 

mechanism underlying the ability of cancer cells to overcome K-Ras induced senescence (250).  

Finally, immunization with an Arg12 mutant RAS peptide intended to stimulate oncogene 

specific cytotoxic T cells actually enhanced tumor development in a model of RAS skin 

tumorigenesis suggesting, in converse, activation of RAS specific tumor promoting inflammation 

(251).  Despite these clues, all of these studies required additional application of pro-

inflammatory toxicants or engraftment of already malignant cell lines meaning the inflammatory 

contributions could not solely be attributed to RAS initiation.  The direct contributions of RAS to 

inflammation have yet to be fully determined. 

 

1.6 Immune Cells and Cancer 

Nearly every bone marrow-derived immunocyte subset has been implicated in altering 

the biological outcomes of the aforementioned defined stages of cancer (252).  Furthermore, 

depending on the tissue context as well as the driving mutation, each immunocyte contains the 

potential to contribute either tumor inhibitory or promotional properties (27).  Because most 

immune cells are released from the bone marrow and reside in peripheral lymph tissues as 

differentiated, yet immature cells and maintain biologically quiescent phenotypes, they possess 

the ability to respond to disparate microenvironments accordingly.  This in turn allows the 

immune system to shape a specific inflammatory response as needed.  The driving force behind 

this is the large and distinct number of soluble factors released by immune and non-immune cell 

types during pathological insults.  Through paracrine and autocrine stimulation of 

cytokine/chemokine receptors, leukocytes can tailor their phenotypes to match the requirements 
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for microbial elimination and/or healing.  Tumors are large, metabolically active tissue masses 

capable of secreting copious amounts of these immune-editing factors.  As previously discussed, 

the nature of the unrelenting positive feedback loops in tumor cells can cause acute and 

beneficial inflammation to often evolve into chronic and harmful inflammation.  The limitless 

potential for phenotypical plasticity in immune cells during cancer progression has recently 

garnered much attention. 

 

1.6.1 Myeloid Lineages 

Neutrophils 

Neutrophils (PMNs) are innate immune cells of myeloid lineage that constitute the 

cellular majority of first responders in any given inflammatory cascade.  Their increased tissue 

residency normally serves to remove infectious microbes and repair damaged tissue.  However, 

during chronic inflammation, their constitutive presence within tissues correlates with poor 

clinical outcomes (253-255).  Activated neutrophils produce many toxic products and proteins 

such as hypochlorous acid (HOCl), nitric oxide (NO), free oxygen radicals (O2-), hydrogen 

peroxide (H202), proteases and TNF-α (256).  Paradoxically, these mediators can have tumor 

promoting and tumor inhibiting effects.  Genotoxicity of proximal cells is the most often 

observed abnormality as a result of these neutrophil respiratory burst products.  Chronic release 

of these compounds by infiltrating neutrophils may generate multiple mutations required for 

tumor formation.  Depletion of neutrophils during LPS induced inflammation reduced the 

genotoxic effects of HOCl on airway epithelial cells due to elimination of its catalyzing enzyme, 

myeloperoxidase (257).  In support of this, a functionally defective polymorphism in the MPO 

gene is associated with a decreased risk for lung cancer (258;259).  Co-culture of activated 
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human neutrophils with numerous cancer cell lines increased mutation rates in these cells, 

attributable to the phagocytes ability to alter DNA by oxidation, nitration, depurination, 

methylation and deamination (260).  These neutrophil derived chemicals are beneficial and 

necessary, especially during wound healing and bacterial infection but during carcinogenesis 

rarely prevent tumor development (261).  Conversely, high quantities of HOCl produced by 

PMNs can be cytotoxic to leukemic cell lines (262).  Neutrophils can also trigger antibody 

dependent cell mediated cytotoxicity (ADCC) tumor cell lysis through FcαR recognition of IgA 

bound tumor cells (263) and neutrophil regulated ADCC has also been shown to occur with 

melanoma, neuroblastoma, and colorectal cancer cells (264-266).  A model of syngeneic 

mammary adenocarcinoma demonstrated that PMNs can cooperate with CD8+ T cells in 

mitigating malignant growth by enhancing immunosurveillance and tumor rejection (267).  

Interestingly, neutrophils can also display two entirely different phenotypes within the same 

tumor dependent on intrinsic cancer cell signaling.  For instance, Friedlender and colleagues 

demonstrated that TGFβ signaling in K-RAS knock-in lung tumors controlled whether 

neutrophils would be tumoricidal and promote anti-tumor CD8 responses or immunosuppressive 

and inhibit CD8 CTL activation (268).  Message RNA profiling of ALK5-inhibited neutrophils 

isolated from tumors revealed downregulation of arginase, a key immunosuppressive enzyme, 

and increased production of tumoricidal NO and H202 (268).  This cytotoxic phenotype was only 

induced upon blockade of the TGFβ pathway, supporting a critical role for this pathway during 

morphogenesis of cytotoxic and immunosuppressive pathways.  Neutrophil depletion by use of 

the anti-Gr-1 depleting antibody RB6-8C5 has been shown to inhibit tumor growth (269), and in 

one model of xenografted H-RASG12V tumor cells this was linked to drastic reduction in CD31 

positive blood vessels and inhibition of angiogenic pathways within the tumor beds (244).  Other 
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neutrophil derived cytokines with potential immuno-modulatory effects include IL-1β, IL-6, and 

IL-12 (270).  Perhaps the most significant tumor effecting factors that neutrophils provide are 

proteases.  Neutrophil-derived elastase was critical in promoting proliferation of A549 cells and 

accelerating tumor growth of K-RAS transgenic knock-in lung adenocarcinomas by degrading 

intracellular cancer cell stores of IRS-1, an inhibitor of PDGF/PDGFR induced PI3K signaling 

(271).  Also of significance in this study was the result that elastase could be transferred into 

tumor cells by endosomal uptake, thus mediating the protease’s activity distally in a paracrine 

manner instead of within neutrophils themselves.  Matrix metalloprotease (MMP) type 9 is also 

abundant in neutrophil granules and is released upon inflammatory ignition (272).  Neutrophils 

were shown to be the dominant sources of MMP9 in the RIP-Tie2 pancreatic tumor model and 

this proteolytic activity contributed significantly to VEGF bioavailability and the angiogenic 

switch (273).  CCR2 null K14-HPV16 mice exhibit reduced MMP9 expressing macrophage 

infiltration but have only modestly decreased dysplastic/angiogenic phenotypes due to a 

compensatory recruitment of neutrophils that also express MMP9 within neoplastic tissue (274).  

MMP9 also greatly contributes to stromal remodeling, a necessary ingredient in provoking 

benign lesions to become malignant carcinomas (275). 

Monocytes 

Monocytes maintain a more plastic state than neutrophils as they are the precursors to 

macrophages and dendritic cells.  Furthermore, subsets of monocytes can be found in any given 

inflammatory cascade, a condition thought to exist specifically for macrophage or dendritic cell 

differentiation.  In peripheral blood of mice, monocytes can be classified as either 

CD11b+/Ly6Chi/CX3CR1lo inflammatory monocytes (CD14+/CD16-/CCR2+/CX3CR1lo in 

humans) or CD11b+/Ly6Clo/CX3CR1hi patrolling monocytes (CD14+/CD16+/CCR2lo/CX3CR1hi 
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in humans) with distinct functions and migration patterns (276;277).  A specialized Tie2+ 

monocyte subset was shown in one study to provide distinct pro-angiogenic signals critical for 

tumor neovascularization (278).  CCL2 is a critical cytokine in monocyte recruitment and is 

highly expressed by tumor epithelial cells and fibroblasts (279;280) and blockade of the 

chemokine during chronic colitis associated cancer development reduced macrophage infiltration 

and tumor development (281).  In similar studies on prostate cancer, anti-CCL2 therapy was 

effective at restricting tumor burden which stringently correlated with the decreased residency of 

intratumoral macrophages (282;283).  Since macrophages are the most abundant immunocyte 

subset found within nearly all solid tumors, monocyte recruitment and differentiation are critical 

biological checkpoints for tumor progression as well obvious avenues to exploit immunotherapy 

for advanced staged cancers (284). 

Macrophages 

Like neutrophils, macrophages are fully capable of secreting cytokines that influence and 

sculpt the surrounding environment upon activation.  In mice, macrophages can be distinguished 

by their simultaneous expression of CD11b, F4/80, CD68, CSF1R, CD163 and MHCII (285).  

As innate antigen presenting cells, macrophages are key contributors to microbial immunity 

through presentation of antigen and activation of specific Th1 and Th2 immune responses.  

Furthermore, their ability to phagocytose dying cells, including neutrophils, is necessary to repair 

wounds and maintain granulocytic homeostasis.  Also like neutrophils, their proteolytic tissue 

remodeling functions are well documented.  Through expression of MMP2, 9, and 11 

macrophages greatly contribute to tissue remodeling and angiogenesis during wound healing and 

carcinogenesis.  Inhibition of MMP-9 in macrophages with zolendronic acid reduced 

angiogenesis in the K14-HPV16 squamous model leading to amelioration of dysplastic 
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progression (286).  This macrophage biology is phenocopied during wound healing and eye 

development (287;288).  Macrophages are also direct contributors of VEGF, thereby also 

directly stimulating blood vessel formation within tumor stroma (289).  Macrophage derived 

EGF as a response to CSFR stimulation enhanced tumor invasion in the PyMT driven breast 

cancer mouse (290) establishing an CSF/EGF paracrine loop between breast cancer cells and 

macrophages that has been confirmed in numerous other laboratories (291-293).  Perhaps most 

significantly, two macrophage phenotypes with distinctive and unique functional properties have 

spawned renewed interest in their contextual roles during carcinogenesis.  Macrophages can be 

classified based upon their gene expression profiles as classically (M1) or alternatively activated 

(M2) (294).  M1 macrophages infiltrate tissues in the context of bacterial and viral infections, 

establishing this phenotype through precursor monocyte recruitment where Th1 polarized 

responses are required to eliminate these foreign invaders (295).  Markers of the M1 phenotype 

include: iNOS, TNF-α, IFN-γ, IL-12, and IL-23 (296); genes upregulated in response to LPS 

stimulation in vitro.  Through these cytokines, M1 macrophages establish a pro-inflammatory 

phenotype, present antigen more robustly and generally favor anti-tumor responses (297).  

Indeed, direct tumoricidal behavior from M1 phenotypes has been demonstrated in cancer 

models through the activities of TNF-α (298), NO (299) and ROS (300).  STAT6 deficiency 

skewed macrophages to an M1 bias that resulted in increased Tc cell driven immunity on 4T1 

breast cancer xenografts (301).  In contrast, M2 macrophages establish pro-tumor immunity 

through expression of Arginase (Arg1), mannose receptor, IL-10, PDGF, TGFβ, CXCL12, 

CXCL13, and CCL24 (302).  This gene expression profile is induced largely through the 

activities of Th2 secreted IL-4 and IL-13 on their cognate macrophage IL4Rα receptors (303).  

M2 macrophages can be found in abundance within healing wounds as they are very efficient at 
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promoting fibrosis and angiogenesis (304;305).  Furthermore, the anti-inflammatory properties 

of M2 macrophages are necessary to resolve inflammation following wounding so as to prevent 

dissemination of autoimmunity (306-308).  Arg1 is the key protein that mediates this process 

through extracellular exhaustion of arginine, an amino acid required by T cells to properly 

activate (309-311).  IL-10 also has significant immunosuppressive activities, specifically on 

CD4+ Th1 directly and CD8+  CTL’s indirectly (312;313).  Through these cytokine networks, 

solid tumors spawn M2 dominated phenotypes where the neoplastic microenvironment requires 

neovascularization, tissue remodeling and suppression of cytotoxic T cells that would seek to 

prevent new growth (314-316).  In a genetic breast cancer mouse model M2 macrophages and 

Th2 cells were shown to drive the fulminant metastatic potential to lung tissue and this 

phenotype could be reversed with anti-CSF and anti-IL-4 therapy through a cytotoxic CD8+ T 

cell dependent mechanism (291;317).  Additionally, the CD68/CD4/CD8 ratio further correlated 

very stringently with disease free survival supporting a concept that an immune signature could 

predict clinical outcome (317).  One context dependent difference of note was a study 

demonstrating that IFN-γ production from macrophages, a canonical M1 marker, increased 

melanomagenesis and migration in response to UV, an early melanocyte response preceding the 

onset of melanoma (318).  The arrival of M2 macrophages within tissues also may be quite a 

distinct process from M1 tissue populating events.  It was originally thought that all 

macrophages expanded in tissue during inflammatory processes via monocyte precursor 

recruitment and subsequent differentiation (319).  However, a study using a helminth infection 

recently demonstrated that local macrophage proliferation was not only possible but actually 

preferred during Th2 driven immunity (320).  This unique biology could certainly be 

extrapolated to mechanisms of macrophage expansion during carcinogenesis where Th2 and M2 
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cells dominate the CD45+ immunocyte armament.  These studies, however, have yet to be 

performed in the context of cancer development. 

Myeloid Derived Suppressor Cells 

A significant amount of cancer research has recently been devoted to immune cells that 

arise from myeloid progenitors and are phenotypically classified based upon their unique 

immunosuppressive roles.  This morphologically heterogeneous population of Gr-1/CD11b 

double positive cells are collectively termed myeloid derived suppressor cells (MDSC), although 

this term can be somewhat misleading (321).  The first recorded observation of 

immunosuppressive myeloid cells was made by Young and colleagues in a mouse model of 

Lewis Lung carcinoma where cancer cell derived CSF-1 stimulation of bone marrow derived 

monocytes inhibited T lymphocyte blastogenesis (322).  The observation that these cells existed 

in humans was never fully appreciated until similar immunosuppressive HLA-DR-/CD11b+/Lin-

/CD14- and CD15+ cells were observed in pancreatic (323), melanoma (324), renal cell 

carcinoma (325), breast, non-small cell lung cancer, and HNSCC bearing patients (326).  These 

cells are not per say, a specific immune subset, with distinct lineages.  More appropriately, they 

expand and arise from the same common myeloid progenitor stem cells as neutrophils and 

monocytes but extreme cytokine environments they are exposed to during hyperinflammatory 

states render them incapable of canonical hematopoietic differentiation.  Indeed, when extracted 

ex vivo from their inflamed habitats and placed in culture with appropriate concentrations and 

combinations of cytokines, MDSC repeatedly differentiate into antigen presenting cells such as 

dendritic cells (327-329).  This suggests that MDSC maintain the ability to appropriately respond 

to varying cytokines but resist a normal immune life cycle by remaining in cytokine-induced 

pluripotent phenotypes.  An illustration of this comes from a study where CT26 tumor cell 

35



conditioned media induced JAK2/STAT3 hyperactivity in myeloid cells, thus preventing normal 

dendritic cell maturation (330).  MDSC accomplish immunosuppression of T cells by 

upregulation of Arg1 and/or iNOS, sapping extracellular arginine stores and producing reactive 

oxygen and nitrogen intermediates that induce T cell death, dysfunction and/or anergy (331).  

iNOS synthesis of NO was demonstrated to be a precursor step towards production of 

perioxynitrates that rendered TCRs from antigen specific CD8+ T cells unresponsive to antigenic 

stimulation due to nitration of TCR tyrosine residues (332).  Arg1 mediated exhaustion of tumor 

microenvironmental arginine resulted in T cell suppression via downregulation of the CD3 zeta 

chain (333).  Since their initial characterization, both granulocytic (Ly6G+/Ly6Clo) and 

monocytic (Ly6G-/Ly6Chi) subsets have demonstrated acquisition of MDSC functionality 

depending on tumor type (334).  These myeloid phenotypes are not solely unique to 

carcinogenesis but have also been observed during autoimmunity (335), infection (336) and 

traumatic injury (337).  MDSC have also been shown to promote cancer progression through 

neoplastic tissue reorganization, growth factor bioavailability and angiogenic stimulation making 

them highly analogous to M2 macrophage phenotypes (338).  However, it is still yet 

undetermined if monocytic MDSC subsets are just M2 macrophages precursors or if their 

immature states preclude them from tissue macrophage differentiation.  Definitive MDSC and 

M2 markers (Ly6C+ monocytic MDSC and F4/80+ macrophages) can be distinguished by 

intratumoral FACS analysis but whether this represents a fluid differentiation continuum or 

myeloid lineage endpoints has yet to be determined. 

Mast Cells 

Mast cells are bone marrow derived myeloid cells that reside within the stroma of 

epithelial tissues such as skin, lung, and connective tissue.  Their functions in the context of 
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mediating allergic reactions are well appreciated (339).  Following allergen exposure to epithelia, 

mast cells rapidly release pro-inflammatory mediators from their abundant intracellular granule 

stores; the most well know being histamine, a potent vasodilator.  Mast cell granules also contain 

copious amounts of proteases such as chymase, tryptase, cathepsin and MMP2/9 as well as 

heparin, VEGF, TNF-α, IL-1β, IL-10, TGFβ, and GM-CSF (340).  Recently, the roles of mast 

cells during carcinogenesis are becoming well documented.  Quantities of mast cells in prostate 

tumors is a prognostic factor for poor clinical outcomes (341) as well as in neurofibromatosis 

(NF1) patients (342).  Furthermore, a novel mechanism of mast cell tumor promotion was 

discovered with an NF1 mouse model whereby NF1 heterozygosity in mast cells, but not in 

Schwann cell alone was required for tumor initiation by creating a hyperactivated pro-

inflammatory mast cell phenotype (343).  During the genesis of incipient squamous neoplasias, 

mast cells were required for progression to dysplastic and malignant states through the pro-

angiogenic activities of mast cell derived proteases most notably MMP9 (90;344).  Inhibiting 

mast cell degranulation during MYC induced pancreatic cancer abrogated pro-angiogenic 

pathways thereby blunting cancerous beta cell progression (345).  Finally, mast cell derived 

LTB4 enhanced recruitment of MDSC, an attribute that led to increased intestinal epithelial cell 

proliferation and polyposis (346).  Since mast cells are so effective at initiating an inflammatory 

response the contributions of mast cells to carcinogenesis are likely only to increase as more 

attention is paid to these unique cells. 
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1.6.2 Lymphoid Lineages 

γδ T cells 

Lymphocytes have traditionally been thought to exclusively provide roles in anti-tumor 

immunity.  Recently, however, this paradigm has required alteration due to multiple studies 

exhibiting the pro-tumorigenic activities of lymphocytes during neoplastic progression and 

malignancy.  In that regard, the 2-stage skin chemical carcinogenesis assay has provided 

definitive clues into the paradoxical roles of specific lymphocyte subsets.  Using this model, 

γδTCR+ T cells were shown to provide a protective role from papilloma development (347).  

Conversely, when TCRδ -/- bone marrow was transferred into irradiated transgenic Inv-MEK1 

mice, these mice exhibited an attenuated tumor burden suggesting γδT cells provided 

promotional inflammatory cues towards squamous tumor development (348).  The explanation 

Table 1-3: Paradoxical roles of immune cells during carcinogenesis.  Reprinted from: Cell, Vol. 140,   Grivennikov et 
al, Immunity, Inflammation, and Cancer,  pp. 883-899, © 2010, with permission from Elsevier and Lancet.. 
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between these two models may be as simple as methods used to initiate tumors (chemical versus 

transgenic) or potentially the oncogene driving malignant outgrowth (RAS vs. MEK1).  The 

intentional wounding in the transgenic model may also play a role as γδT cells are known to 

activate macrophages in human burn wounds (349).  NKG2D receptor engagement on γδT cells 

stimulated cytolysis of a broad range of human epithelial cancer cells (350) and this study was 

supported by another where γδT cells killed H60C (a novel NKG2D ligand) expressing primary 

keratinocytes in vitro (351).  MICA/B was expressed on a wide variety of epithelial derived 

human tumors and γδT cells directly lysed many cell lines derived from these tumors (352).  

Conversely, in a different study γδT cells actually directly suppressed cytolytic Tc anti-tumor 

responses (353). 

αβ T cells 

T lymphocytes of the αβTCR lineage also can perform dichotomous functions during 

tumorigenesis and malignant progression.  While γδTCR+ T cells were shown to provide a 

protective role during skin chemical carcinogenesis in FVB/n mice, genetic ablation of αβTCR+ 

T cells revealed the exact opposite (192).  To that end, αβTCR+/CD4+ T helper cells display a 

wide diversity of functions effecting tumor outcomes.  Performing the two stage protocol on a 

C3H/HeN mouse strain revealed a reduced tumor burden on CD4-/- mice relative to WT and 

CD8-/- groups (354).  In a genetic model of mammary carcinogenesis that is driven the polyoma 

middle T antigen, CD4+ T cells promoted lung metastasis but had no effect on primary tumor 

development (291).  These CD4+ T cells were characterized as strongly Th2 biased, mediating 

their effects through IL-4.  Similarly, the K14HPV16 squamous tumor model supported these 

conclusions by demonstrating that CD4 null mice had decreased dysplastic lesions through a 

mechanism of reduced skin recruitment of MMP9 expressing Gr-1/CD11b cells (355).  
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Conversely, antibody depletion of CD4 cells during UVB exposure, potentiated neutrophil 

infiltration into the skin and enhanced tumorigenesis suggesting a protective role for CD4+ T 

cells (356).  In the transgenic RIP-Tag2 pancreatic tumor model, CD4+ T cells were shown to 

induce proliferation and recruitment of antigen specific CD8+ T cells that ultimately led to 

cytolysis of the cancerous islet cells (357).  Finally, total CD4+ T cells were necessary and 

sufficient to implement sustained tumor regression upon MYC inactivation, a process that 

involved activation of senescence pathways (358). 

CD4+ T cells 

Studies on specific CD4 lineages further implicate their tumor promoting effects.  

Perhaps the most famous and well characterized functions for in αβTCR+ T cells in cancer is the 

role of CD4+ T regulatory cells (Tregs) in dampening anti-tumor immunity and enhancing solid 

tumor progression; now a heavily exploited avenue of cancer immunotherapy (359).  Tregs 

accomplish their immunosuppressive effects through TGFβ and IL-10 and are greatly expanded 

in lymphatic and tumor tissue usually during later stages of malignancy where the cytokine 

polarizing requirement of TGFβ is broadly available (360).  Again, like many of the 

dysfunctional inflammatory processes discussed, Treg expansion is necessary for normal 

immunological resolution but through multiple mechanisms, the presence of Tregs within solid 

tumors is chronically reinforced producing harmful consequences (361;362).  Depletion of Tregs 

by anti-CD25 treatment culminating in enhanced cytotoxic immunity was an effective therapy 

for numerous mouse tumors, irrespective of tumor type, and provides rational for targeting Tregs 

as an immunotherapy or adjuvant therapy for human cancers (363-366).  IL-17 producing CD4+ 

T cells, commonly known as Th17 cells, expand greatly under pro-inflammatory conditions in 

which the concerted actions of TGFβ and IL-6 simultaneously induce upregulation of the 
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transcription RORγT and IL-17 expression (367).  The role of Th17 cells in driving autoimmune 

diseases, including psoriasis, is well documented (368;369).  Additionally, Th17 cells regulate 

neutrophil hematopoiesis (370) and can potentiate angiogenesis within tumor stroma (371) and 

their presence within human cancers reveals complex functional duality (372).  In the 2-stage 

skin carcinogenesis model inactivation of IFN-γ signaling during TPA promotion either with a 

neutralizing anti-IFN-γ antibody or through the use of IFNGR knockout mice suppressed tumor 

formation and this was linked to reduced Th17 pro-inflammatory activity (201).  In agreement 

with this, Th17 cells exhibited strong recruitment and activation properties for Gr-1/CD11b 

MDSC populations that ultimately enhanced lymphoma, prostate, and melanoma xenograft 

tumor growth (373).  Furthermore, chemically induced skin tumor formation is greatly attenuated 

in IL-17 knock-out mouse, a result attributed to both cancer cell autonomous and extrinsic 

factors (200).  In corroboration with this study, B16 melanoma and MB49 bladder carcinoma 

growth were blunted in IL-17-/- mice due to reduced IL-6-STAT3 signaling (374).  The anti-

tumor effects mediated by Th17 cells have also been observed.  Their high rates of 

differentiation within human prostate tumors and mouse pancreatic cancers is a positive 

prognostic factor (375;376).  Using the same B16 melanoma tumor model, Martin-Orozoca et al 

observed that Th17 cells actually enhanced CD8+ CTL anti-tumor immunity thereby preventing 

B16 lung nodules through a mechanism of increased CCR6+ dendritic cell recruitment to tumor 

sites (377).  Another group demonstrated the efficacy of adoptively transferred in vitro polarized 

Th17 cells in debulking large, established B16 melanomas underscoring their anti-B16 immune 

responses (378).  Moreover, neutralization of IL-17 reversed the anti-tumor immune effects of 

TGFβ mediated squamous tumor regression punctuating the functional plasticity of this unique T 

helper phenotype (379). 
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CD8+ T cells 

Differing from the CD4 lineage, αβTCR+/CD8+ T cells are traditionally thought to 

contain a more limited phenotypic diversity, providing tumor antigen specific cytotoxicity and 

indeed, there is ample evidence to support this paradigm (380-383).  Furthermore, many of the 

immune-targeted therapeutic efforts have been aimed at stimulating sustained CTL responses in 

advanced stage cancer patients either through vaccination or adoptive transfer of autologous 

CD8+ T cells (384).  Researchers have even explored the therapeutic viability of transferring 

CTLs transduced with chimeric antigen receptors whose TCR’s bind tumor antigen with up to 

1000 fold greater affinity than their endogenous counterparts (385;386).  Unfortunately, these 

attempts have been met with limited success (387), mostly against CD19+ chronic lymphocytic 

leukemias (388).  On the contrary, recent research has begun to show CD8+ T cells also possess 

the capacity for pro-tumorigenic functionality.  Following up on their result that TCRβ-/- mice 

yielded reduced tumor volumes and prolonged carcinoma development in FVB/n mice, Girardi 

and colleagues identified a definitive role for pro-tumorigenic CD8+ T cells by using the skin 

carcinogenesis protocol on CD8 -/- mice (194).  Here complete ablation of CD8+ T cells 

recapitulated results using the TCRβ-/- mouse.  Reconstitution with purified splenic/lymph node 

CD8β+ T cells into adults or neonatal reconstitution with CD4-/- fetal liver hematopoietic cells 

(FLHC) into TCRβ-/- recovered WT tumor growth and malignant conversion (194).  This unique 

CD8+ T cell biology was subsequently characterized as co-expressing IFN-γ, IL-10, and IL-17 

while simultaneously being deficient for perforin production, a key cytolytic protein (389).  A 

similar cytokine profile was observed in human HCC patients where the frequency of IL-

17+/CD8+ T cells (Tc17) within cancerous liver tissue correlated with a poor prognosis (390).  

Also, Tc17 cells, and not Th17 cells increased within psoriatic lesions on human skin, supporting 
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a pathogenic role for immune cells rarely observed during homeostatic conditions (391).  The in 

vitro requirements for IL-17 expression in CD8+ T cells polarizing them to a Tc17 phenotype 

seem to be identical to that of Th17 cells and adoptive transfer of these Tc17 conditioned cells 

caused disease exacerbation of a diabetes model (392).  Other chronic inflammatory syndromes 

where Tc17 cells have been found in high proportions and contributed to disease progression are 

multiple sclerosis (393), pulmonary inflammation (394) and allergic dermatitis (395).  In contrast 

to these studies, another group using B16 melanoma xenografts discovered transferring in vitro 

generated, antigen specific Tc17 cells actually enhanced anti-tumor CTL immunity in part by 

stimulating cytotoxic neutrophils, thereby inhibiting tumor growth (396).  Heinrichs and 

colleagues supported these conclusions with similar B16 melanoma study of their own (397).  

All of these studies indicate that the pathogenic roles of CD8+ T cells may be more complex 

during chronic inflammatory processes including carcinogenesis and demands more creative 

reanalysis when considering CD8+ T cell-targeted clinical intervention. 

B cells 

B lymphocytes are a necessary component to immunological activation and prevention of 

infectious disease dissemination through establishment of humoral immunity.  Antibody 

production is essential in fighting bacterial and viral infections by stimulating innate immune 

cells through complement and FcR activation.  B cells also express MHCII molecules, providing 

T cells with a 3rd antigen presenting option.  However, researchers have also implicated B 

lymphocytes in the pathogenesis of numerous inflammatory related diseases.  As proof of 

principle, Rituximab, anti-CD20 therapy originally approved for lymphoma patients, has also 

been approved to ameliorate the disease course of rheumatoid arthritis and systemic lupus 

erythematosus (398;399).  Anti-CD20 treatments ameliorated tumor burden in 50% of treated 
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colorectal cancer patients (400) and a B cell deficiency enhanced the efficacy of a melanoma 

vaccine in mice (401).  Abnormally high quantities of immune complexes (IC) within neoplastic 

tissues is correlates with increased disease progression and poor cancer patient survival in head 

and neck, breast, and genitourinary malignancies and is considered a risk factor within pre-

malignant, chronically inflamed organs (402).  Furthermore, a recent flow cytometric and 

histochemical analysis of leukocyte composition in human breast cancer tissue revealed a heavy 

and significant B cell infiltrate that decreased in stage matched patients receiving chemotherapy 

(403).  Genetic manipulation of mouse cancer models has also allowed researchers to 

unequivocally identify a causal role for B cells in promoting squamous cancer development, 

most notably in the K14-HPV16 transgenic model of incipient squamous neoplasia.  Here, IgG-

stimulated FcγR+ myeloid cell recruitment was required for neoangiogenesis and matrix 

remodeling leading to pre-malignant progression (404).  Total B cell repletion as well as 

repeated injections of serum from transgenic mice into B cell deficient JH-/- or Rag1-/- mice 

faithfully phenocopied incipient neoplastic progression in B cell competent K14HPV16 

littermates demonstrating immunoglobulin production alone was sufficient to initiate disease 

(405).  Similarly, using the two-stage CC model, adoptively transferred IL-10 secreting B 

regulatory cells were capable of partial recovery of WT skin tumor burdens in JH-/- and Rag1-/- 

mice again suggesting a crucial role for B cells in the development of non-melanoma skin cancer 

(189).  A comprehensive study using multiple cancer cell xenografts on IgM-/- mice revealed 

greatly enhanced CTL activity that led to tumor resistance in the B cell deficient mice (406).  

Moreover, transfer of IL-10 competent, CD5+/CD1dhi B regulatory cells (Bregs), even in 

relatively small numbers, limited anti-CD20 therapy and fully restored tumor growth in a 

lymphoma model (407).  Finally, B cells were required to mediate the inflammatory promotion 
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of castrate resistant prostate cancer through the paracrine effects of lymphotoxin (408).  

Consistent with the paradoxical theme of leukocytes and cancer, B cells also have been shown to 

contribute to anti-tumor immunity.  High rates of intratumoral B cell infiltration is positively 

associated with survival and lower relapse rates in humans with node-negative breast cancer 

(409), ovarian cancer (410), non-small cell lung cancer (411), and cervical cancer (412).  In 

mice, CD20 depletion abrogated CD4 and CD8 immune responses during syngeneic B16 tumor 

growth, allowing for greater tumor volume and lung metastasis (413).  A leukemia mouse model 

induced by Friend Leukemia virus also had reduced T cell responses in B cell deficient mice 

(414) and direct cytotoxicity of tumor by B cells was observed through IFN-α inducible TRAIL 

expression (415).  Along with parallels drawn from autoimmune disorders, these recent results in 

cancer patients and murine models clearly point to multiple B cell driven mechanisms of disease 

onset and progression during carcinogenesis. 

Lymphocyte/Myelocyte Interactions 

Rarely do lymphocytes exert their pro-tumorigenic functions directly upon cancer cells in 

advanced stage tumors or pre-malignant tissue.  Most often, they act indirectly through complex 

cell to cell interactions such as stimulating the chemotaxis of myeloid cells or skewing the 

tumor-promoting phenotypes of other leukocytes.  The vast majority of research on myelocyte 

and lymphocyte interactions during carcinogenesis is related to macrophage phenotype and 

function.  For instance, the studies previously discussed involving the promotional roles of Th2 

cells in PyMT and B lymphocytes in K14-HPV16 transgenic mice both pointed to mechanisms 

of macrophage recruitment bearing a strong M2 bias (317;404).  In the MMTV mammary model, 

anti-IL-4 treatment or IL-4Ra deficiency reversed the pro-metastatic effects from M2 

macrophages.  In the HPV16 skin model, FcγR stimulation by HPV16 induced immune 
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complexes promoted gene expression of a number of M2 genes.  Correlatively, the transferred 

CD5+/CD1dhi Bregs that provided a tumor protective response to anti-CD20 therapy in a model 

of Burkett’s lymphoma, also promoted differentiation of macrophages to the M2 phenotype 

(407).  These regulatory B cells achieved this through the effects of IL-10 dampening the 

phagocytic capabilities of monomyelocytic cells, thus rendering anti-CD20 therapy ineffectual 

because anti-CD20 ADCC is mediated by FcγR expressing phagocytes (416).  Indeed, the effects 

of IL-10 on monocytes/macrophages include downregulation of MHCII, CD80, CD86, IL-12, 

IL-1, iNOS, IL-23, TNF-α and phagocytic mechanisms, and the upregulation of IL-10, IL-1Rα, 

soluble TNFαR, FcγR, and favors macrophage differentiation over dendritic cells from 

monocytic precursors (417).  The tumor promoting CD4+ Th cells in HPV16 mice worked 

through a mechanism of stimulating MMP9 expressing Gr-1+/Mac-1+ cell recruitment to enhance 

tissue remodeling and dysplasia in the E6/E7 transgenic skin model (418).  The cell killing 

activities of neutrophils contributed to dwindling melanoma tumor sizes through the paracrine 

effects of in vitro conditioned Tc17 cells adoptively transferred into mice bearing B16 xenografts 

(419).  Consistent with the positive feedback loops in cancer inflammation, M2 macrophages 

themselves robustly express chemokines that attract Th2 polarized immunity such as CCL17, 

CCL22, and CCL24 (420).  IL-4 and IL-13, Th2 produced cytokines are strong M2 polarizing 

cytokines, secreted in copious amounts within solid tumor masses and IL4Rα knockout mice 

have reduced MDSC phenotypes (421).  In addition, IL-4 increased cathepsin expression in 

macrophages that influenced pancreatic adenocarcinoma invasion properties (422).  IL-17 was 

shown to stimulate recruitment of MDSC that ultimately contributed to tumor growth, a 

phenotype reversed in IL-17R null mice (423).  A similar study with the PyMT mouse showed 

that MDSC recruited to TGFBR2 null breast carcinomas reciprocally provided Th17 polarizing 
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IL-6, TGFβ, and IL-23 cytokines and the immunosuppressive properties of MDSC were reversed 

by IL-17 neutralization in tumors (424).  The promotional effects of Th17 cells on tumor growth 

were also observed by Wang and colleagues in a melanoma and bladder carcinoma model where 

IL-17 potentiated tumor cell IL-6 production thereby activating STAT3 mediated pro-survival 

and pro-angiogenic pathways in stromal inflammatory cells (425).  Human monocytes cultured 

in the presence of CD4+/CD25+ Tregs favor an M2 like phenotype, that secrete low amounts of 

TNF-α and high amounts of IL-10 (426).  Furthermore, four independent groups showed the 

distinct positive relationship between MDSC and Tregs where expansion of one immunocyte 

subset promoted differentiation of the other (427-430). 

 

1.7 Hypothesis and objectives 

These previous studies in mice and humans establish a precedent for the complex 

relationships between lymphocytes and myeloid cells that cooperatively orchestrate and reinforce 

tumor promoting inflammatory activity.  Most evidently, the work involving genetic ablation of 

lymphocytes during multistage skin carcinogenesis models with either a basal keratinocyte 

targeted E6/E7 transgene or chemical initiation of an H-Ras oncogene followed by inflammatory 

promotion strongly indicate that B cells and CD8+ T cells provide necessary pro-inflammatory 

signals for fulminant squamous tumor formation.  Additionally, since RAS is a common 

oncogene in many other epithelial derived malignancies, and a few other groups have 

circumstantially linked RAS oncogene to inflammatory tumor promotion, a logical approach to 

studying this biology would be to directly target an oncogenic RAS transgene to the skin.  By 

removing the requirement of phorbol ester application, we can implicate a direct link between 

RAS oncogene and tumor promoting inflammation.  Other groups have previously demonstrated 
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this approach and its usefulness in studying squamous tumor development but only as it relates 

to tumor cell autonomous effects (431-435).  To that end we have employed two inducible and 

skin restricted H-RASG12V transgenic mouse models to answer this question.  We hypothesize 

that leukocytes provide critical signals to RAS transformed keratinocytes and the pre-malignant 

stroma that promote tumor expansion and progression. 

Chapter 3 reveals a crucial role for CD8+ T cells in enhancing acute myeloid 

inflammation in response to RAS induction. This inflammatory response enhances keratinocyte 

proliferation ultimately leading to increased tumor formation.  The diverse myelocytic infiltrate 

encompassed neutrophils, mast cells and macrophages of which neutrophil and mast cell 

residency were the most critical for squamous tumor development.  Furthermore, CD8+ T cells 

provoke neutrophil inflammation through the paracrine actions of IFN-γ.  

Data in chapter 4 implicates the necessity of B cells for CD11b+/Ly6Chi monocytes to 

acquire immunosuppressive functionality in response to basal layer RAS activation.  In addition, 

I show how the level of oncogene expression is directly proportional to the severity of 

inflammation and development of MDSC populations.  

In chapter 5, the specific inflammatory differences between basal layer/stem cell and 

suprabasal layer driven RAS expression are highlighted as a potential mechanism behind the 

increased risk for malignant progression in tumors arising from initiated basal/stem cell layer 

keratinocytes.  I provide evidence for inherent RAS signaling properties unique to proliferating 

and terminally differentiated keratinocytes and propose this leads to specific cytokine expression 

patterns. 

These studies are not only important in elucidating immune-mediated mechanisms of 

epithelial carcinogenesis but also mimic chronic inflammatory environments observed in 
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cutaneous tissues.  These data contribute new insight into how RAS induced inflammation 

affects disease outcome and should be taken into consideration by clinical researchers when 

designing novel immune-therapies for the treatment of solid tumors. 
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Chapter 2: Materials and Methods 

2.1 Animal Studies 

InvtTA (1) or K14rTA (2) transgenic mice were crossed with the homozygous 

tetOHRASG12V line (3) to yield littermates of tetOHRASG12V (ST) and double transgenic (DT) 

InvtTA/tetOHRASG12V (InvRas) or K14rTA/tetOHRASG12V (K14Ras) offspring.  Genotypes 

were determined by PCR with specific primer sets.  Transgene expression in InvRas mice was 

suppressed by doxycycline (10 μg/ml) administered ad libitum in drinking water of breeding and 

weaned mice and was induced in K14Ras mice by varying amounts of dox chow.  Unless 

otherwise noted, all K14Ras and control mice in those studies were given the standard maximal 

dox dose of 1 g/kg ad libitum.  Specific leukocytes were depleted with 500 μg of RB6-8C5 (α-

Gr-1), GK1.5 (α-CD4), YTS169.4 (α-CD8β), and HB94 (α-IgG) monoclonal antibodies 

administered intraperitoneally every other day (α-Gr-1) or once weekly (α-CD4, α-CD8β) 

coincident with dox removal.  B cells were depleted with 150 μg α-CD20 mAb (5D2, 

Genentech) 7 days prior to dox induction and control groups received equal amounts of 

appropriate α-Ragweed isotype control.  Rag1 -/- mice were reconstituted by retro-orbital 

transfer of 5 million negatively selected FACS and/or MACS® (Miltenyi Biotec) purified T or B 

cells isolated from inguinal lymph nodes and spleen of non-transgenic FVB/n mice (1:4 ratio) 2 

days prior to transgene induction.  Purities of > 95% were routinely achieved during cellular 

purification and efficiency of depletion and repletion was validated by flow cytometry.  

Differential leukocyte counts were determined on a Mascot™ Hemavet 950FS blood analyzer 

(Drew Scientific Inc.).  For cytokine neutralization, 500 μg of neutralizing α-IFN-γ, XMG1.2 

(BioXcell) and α-IL-17A, TC11-18H10.1 (Biolegend) antibodies were administered IP every 3 

days beginning on day 0 through one day before animal sacrifice.  To induce tumors, shaved DT 
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mice were switched to 250 ng/ml dox (InvRas) or fed 0.01 g/kg dox chow for 2 weeks followed 

by 0.025 g/kg dox for 1-2 weeks (K14Ras).  One hour prior to sacrifice for all mice, 6 mg/mouse 

of 5-Bromo-2’-deoxyuridine (BRDU; Sigma-Aldrich) was injected IP for incorporation of 

BRDU into proliferating cells in S phase.  Wright-Giemsa stains (Ricca Chemical Company) 

were performed on cardiac blood smears and sorted cytospins.  All mice were on FVB/n 

background and animal studies were performed in compliance with the U.S. Department of 

Health and Human Services Guide for the Care and Use of Laboratory Animals following 

protocols approved by The Pennsylvania State University IACUC. 

2.2 Primary keratinocyte studies 

Primary keratinocytes were harvested from newborn offspring of  K14Ras breeder pairs 

as previously described (4).  Following isolation, keratinocytes were cultured in LoCal medium 

(0.05mM Ca2+) in 6 well dishes until confluent.  To induce differentiation, medium was switched 

in select groups to 0.12 mM or 0.5 mM Ca2+ (HiCal) for 24 hours.  Doxycycline (dox) was added 

to culture medium (1 μg/ml) to induce transgene expression for 24 hours.  The MEK1/2 inhibitor 

U0126 (Calbiochem) was added to cultures at a 10 μM concentration for 8 hours following dox 

treatments to block ERK1/2 activation.  To block AP-1 and NFκb activity, keratinocytes were 

infected with replication deficient adenoviral vectors (MOI 10) expressing dominant negative 

proteins 24 hours prior to further experimentation.  The AP-1 DNA binding mutant A-FOS (5) 

and the degradation resistant IκBα mutant IKBsr (6) have been previously described.  Following 

treatments, keratinocytes were scraped in RIPA buffer for protein lysates or Trizol for RNA 

isolation and further processed as described below. 

2.3 Tissue Histology and Analysis 

Immediately following sacrifice of mice, skin sections were immersed in 10% neutral 
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buffered formalin (NBF) or 70% ethanol (EtOH).  Following 24 hours fixation, NBF fixed 

sections were switched to 70% EtOH and stored until paraffin embedding.  Five micron sections 

were deparrafinized (Histochoice) and rehydrated through a graded series of alcohols (100%, 

90%, and 70%) into PBS.  Immunohistochemistry (IHC) for CD45, F4/80, and p-ERK1/2 was 

performed on NBF fixed sections by heat mediated antigen retrieval (95˚ C, 15 minutes, 10 mM 

Citrate/0.01% Tween/pH 6.2).  Myeloperoxidase (MPO), CD3, and BRDU were detected using 

EtOH fixed sections.  For BRDU staining sections were first treated with 4N HCL, 7 minutes at 

room temperature.  For all IHC stains, 3% H202 was used to quench endogenous peroxides, and 

VECTASTAIN® ABC (Vector Laboratories) and ImmPACT™ DAB (Vector Laboratories) 

were employed for streptavidin/peroxidase immunodetection.  Epidermal thickness was 

quantitated by photographic capture of 10 random fields of view (FOV) on at least 5 

sections/experimental group and then averaging 10 vector measurements/FOV from the basal 

layer of the epidermis to bottom of the stratum corneum using Spot Advanced imaging software 

(Diagnostic Instruments Inc.).  Percent BRDU+ cells were calculated by counting the number of 

positively stained cells in the epidermis and normalizing to the number of keratinocytes in the 

basal layer/FOV.  Metachromatic toluidine blue staining (0.1%) was used to distinguish mast 

cells which turn violet in a pH of 2.0-2.5. 

2.4 Cytotoxicity Assay 

An experimental assay for detecting cellular mediated cytotoxicity by neutrophils was 

modified from similar cytotoxicity assays (7) using the KDalert ™ GAPDH Assay Kit (Applied 

Biosystems) to quantitate GAPDH.  Percent cytotoxicity was calculated using the following 

equation: % killing = [GAPDHCo-culture – (GAPDHeffectors + GAPDHtarget )]/GAPDHtotal effector lysates 

* 100.  
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2.5 Suppression Assay 

A method to measure suppression of in vitro activated T cell proliferation was adopted 

and modified from similar studies (8;9).  Following 4 days of dox chow administration in 

K14Ras mice or 7 days of dox removal in InvRas mice, single cell suspensions from spleens or 

skin were prepared and stained with α-CD11b, α-Ly6G, and when noted, α-Ly6C and α-F4/80.  

Specific myeloid populations were FACS sorted on a Cytopeia Influx Sorter (BD Biosciences) 

and collected in RPMI 1640 1x (CellGro) media.  One day prior to sorting, flat-bottomed 96 well 

tissue culture plates (Griener CellStar) were coated with 50 μl of 10 μg/ml α-CD3 (15A2, 

eBioscience) and 10 μg/ml α-CD28 (37.51, BD Biosciences).  Following cell sorting, syngeneic, 

non-transgenic splenocytes were harvested into a single cell suspension, counted and the 

appropriate amount of splenocytes were stained with 2.5 μM CFSE (Molecular Probes) in 

1xPBS/0.1% BSA at a cell concentration of 10 x 106 c/ml for 15 min. at 37˚C.  Following 

staining, the remaining unbound CFSE was quenched with 5 volumes of complete RPMI media 

(10% heat inactivated FBS, 1mM Na-P, 1% Pen/Step, 50μM β-ME, and 20mM Hepes buffer).  2 

x 105 CFSE labeled splenocytes were then admixed with sorted myeloid subsets at a 1:1, 1:2, or 

1:4 CD11b+ cell: splenocyte ratio and placed in PBS washed CD3/CD28 coated tissue culture 

plates with 200 μl complete RPMI media and co-cultured for 60-72 hours in a 37˚C/5% CO2 

incubator.  Following incubation, individual wells were harvested, washed and stained with α-

CD4/PE and α-CD8/PE-Cy5 for FACS analysis.  All groups were co-cultured in triplicate.  In 

some assays, the Arg1 inhibitor Nor-NOHA (500 mM) or the iNOS inhibitor L-NMMA (500 

mM) was added to co-cultures to attempt to inhibit T cell suppression. 

2.6 Antibodies 

Unconjugated antibodies used for IHC were as follows: Rabbit α-MPO (1:500, Dako 

88



Cytomation), Mouse α-BRDU (1:50, BD Biosciences), Rat α-F4/80 (C1:A3-1, 1:500, 

Biolegend), Rat α-CD45 (30-F11, 1:500, eBioscience), Rabbit α-CD3ε (1127, 1:150, Santa 

Cruz), Rabbit a-p-ERK1/2 T202/Y204 (1:500, 4370, Cell Signaling).  Fluorescently conjugated 

antibodies used for flow cytometry and cell sorting were as follows: Rat α-Gr-1/FITC (RBC-

8C5, BD Biosciences), Rat α-CD45/APC-EFluor780 and FITC (30-F11, eBioscience), Rat α-

Ly6G/PE (1A8, BD Biosciences), Rat a-Ly6C/FITC (AL-21, BD Biosciences), Rat α-

CD11b/APC (M1/70, eBioscience), Rat α-IL-17/PE (17B7, eBioscience), Rat α-IFN-γ/PE-Cy7 

(XMG1.2, BD Biosciences), Rat α-IL-10/APC (JES5-16E3, BD Biosciences), Rat α-FoxP3/PE 

(FJK-16s, eBioscience), α-TCRβ/FITC (H57-597, BD Biosciences), Rat α-CD4/PE, PE-Cy5, and 

FITC (GK1.5, eBioscience), Rat α-CD8α/PE-Cy5 and FITC (53-6.7, eBioscience), Rat α-

CD44/PE-Cy5 (1M7, eBioscience), Rat α-CD62L/PE (MEL-14, BD Biosciences), Rat α-

B220/PE-Cy7 (RA3-6B2, BD Biosciences), Rat α-CD19/FITC or PE-Cy7 (6D5, Biolegend), Rat 

α-CD1d/PE (1B1, Biolegend), Rat α-CD5/FITC (53-7.3, Biolegend).  The eBioscience Treg 

staining set was used to detect FoxP3 positive cells. The Red Live/Dead® Fixable Dead Cell 

Stain kit (Molecular Probes) was used to distinguish live and dead cells in skin preps. 

2.7 FACS analysis 

Single cell suspensions were prepared for flow cytometric staining by gentle mechanical 

dissociation of lymphoid and skin tissue or simple syringe collection of blood by cardiac 

puncture.  Liberated cells in lymph nodes, spleen, and blood were subsequently passed through a 

70 micron mesh filter (BD Biosciences) and erythrocytes lysed using a hypotonic buffer (150 

mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA, pH 7.3).  Skin leukocytes were isolated from 

mechanically minced whole skin tissue by collagenase digestion [complete RPMI, 0.825 mg/ml 

collagenase I, 2.5 mg/ml collagenase IV (Worthington), 0.25 mg/ml hyaluronidase IV-S (Sigma), 
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1000 units/ml DNase (MP Biomedicals)] for 1 hour @ 37˚ C with constant agitation.  Following 

enzymatic treatments, tissue suspensions were passed thoroughly through a 16 gauge syringe and 

needle and strained through 70 micron mesh filters and washed with PBS.  To distinguish live 

and dead cells, we used the Red Live/Dead® Fixable Dead Cell Stain kit (Molecular Probes).  

All single cell suspensions regardless of tissue origination were first blocked with α-CD16/CD32 

prior to primary antibody staining and 1% BSA/1x PBS was used as a common wash and stain 

buffer.  To fix and permeabilize cells for intracellular cytokine detection, 4% fresh preparations 

of paraformaldehyde (fixation) and 0.2% saponin/1% BSA/1x PBS (permeabilize) were applied 

to cells already stained for extracellular surface antigens.  To facilitate FoxP3 staining, the 

eBioscience Treg staining set was used.  Fluorescently stained single cell suspensions were 

analyzed on an FC500 (Beckman Coulter) or an LSRFortessa (BD Biosciences) cytometer. 

2.8 Biochemical and Molecular Analysis 

Total skin protein lysates were made by homogenization of stone ground snap frozen 

tissue pieces in RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 1% NP-40, 0.5% Sodium 

deoxycholate, 0.1% SDS, 1 mM EDTA), rotated for 1 hour at 4°C and centrifuged at 14,000 

RPM for 10 min to separate insoluble biomaterial.  Total keratinocyte protein lysates were 

harvested by direct addition of RIPA buffer to PBS washed keratinocytes and cell scraping.  

Cytosolic and nuclear fractionation was carried out using two buffers.  First, cells were scraped 

in buffer A (cytosolic fraction): 0.33 M sucrose/10 mM Hepes pH 7.4/1 mM MgCl2/0.1% Triton 

X-100; and incubated 15 min. on ice followed by 2 washes with Buffer A.  The remaining 

fraction was incubated with buffer B (nuclear fraction): 0.45 M NaCl/10 mM Hepes pH 7.4, 1 

mM MgCl2; 30 min. on ice with agitation and centrifugation to remove insoluble debris.  Total 

protein concentrations were determined using a colorimetric BCA detection kit (Sigma).  15-30 
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μg of protein lysates were electrophoresed onto an 8-12% acrylamide gel, transferred to 

nitrocellulose and blotted with primary antibodies against H-Ras (Santa Cruz), p-ERK1/2 (Cell 

Signaling), p-MEKK4 (Cell Signaling), p-MKK3/6 (Cell Signaling), p-AKT (Cell Signaling), 

total AKT (cell signaling), p50 (1190, Santa Cruz), p65 (8008, Santa Cruz), and β-actin 

(Millipore) for protein loading control.  Total RNA was isolated from skin using the same 

method as protein isolation except Trizol reagent (Invitrogen) was used instead of RIPA buffer.  

RNA was then reverse transcribed into cDNA using M-MLV reverse transcriptase (Promega).  

mRNA transcript levels of specific cytokine/chemokine genes were determined by qRT-PCR 

using PerfeCTa™ SYBR® Green SuperMix for iQ™ (Quanta BioSciences) and normalized to 

level of the house keeping gene GAPDH. 

2.9 Statistical Analysis 

Student’s t tests calculated p values between experimental groups of two only.  For 

groups of 3 or more, one way Anova was used along with Tukey’s post-analysis t tests.  

GraphPad Prism 4.0 was employed to format all figures and calculate significance.  * p < 0.05, 

** p < 0.01, *** p < 0.001.  
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Chapter 3: Proinflammatory CD8+ T cells promote Ras-induced cutaneous inflammation 
and squamous tumor formation 

 

3.1 Abstract 

CD8+ T cells primarily function in anti-tumor immunity but a potential role in tumor 

promotion is not well understood.  Here we show that proinflammatory CD8+ T cells co-

expressing IFN-γ and IL-17A infiltrate squamous tumors formed by inducible expression of an 

epidermally targeted and inducible H-RASG12V oncogene.  Depletion of CD8+ T cells prior to 

RAS induction led to reduced tumor burden, delayed tumor onset, and blunted intra-tumoral 

inflammation.  The initial response to RAS expression in the normal epidermis was an increase in 

cutaneous IFN-γ and IL-17A co-expressing CD8+ T cells and Th17 cells, as well as systemic 

neutrophilia and intraepidermal infiltration of cytotoxic Ly6G+ cells.  Depletion of CD8+ but not 

CD4+ T cells at this early stage reduced cutaneous and systemic inflammation, suppressed the 

RAS-induced increase in cutaneous Th17 and IL-17A+ γδ T cells, and ameliorated epidermal 

hyperproliferation similar to that observed on a Rag1-/- background.  Reconstitution of Rag1-/- 

inducible RAS mice with purified CD8+ T cells restored neutrophilic inflammation and 

epidermal hyperproliferation but did not recover tumor formation or tissue mast cell infiltration, 

indicating potential cooperation with other lymphocyte subsets.  Neutralization of IFN-γ but not 

IL-17A in CD8+ T cell reconstituted Rag1-/- mice blocked CD8-mediated skin inflammation and 

epidermal hyperproliferation.  These observations support a tumor promoting role for 

proinflammatory CD8+ T cells in the pathogenesis of squamous cell cancer mediated primarily 

through the paracrine effects of IFN-γ on myeloid and adaptive immune cells. 
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3.2 Introduction 

Chronic inflammation is now widely considered a risk factor for cancer development 

(1;2).  Opposing the pro-tumorigenic effects of chronic inflammation is lymphocyte-mediated 

tumor immunosurveillance and anti-tumor immunity (3).  However, recent clinical and 

experimental studies have also documented the protumorigenic roles of specific lymphocyte 

subsets.  For instance, CD4+ T regulatory cells have been shown to dampen anti-tumor immunity 

(4-6), while CD4+ T cells expressing IL-17 (Th17 cells) can exacerbate recruitment of myeloid 

cells that aid in malignant progression (7;8).  Similar studies in experimental breast cancer show 

a link between Th2 cells and recruitment of macrophages that promote metastasis (9).  In 

contrast to disparate functions of CD4+ lineages, the majority of clinical and experimental 

evidence show that CD8+ T lymphocytes  primarily have a role in preventing solid tumor 

development (10-13).  However more recent studies implicating IL-17 and IFN-γ co-expressing 

CD8+ T cells in the pathogenesis of inflammatory diseases such as psoriasis (14;15), COPD (16) 

and human HCC (17) suggest that CD8+ T cell functionality during chronic inflammation and 

carcinogenesis may be more complex.  

 In the mouse 2-stage skin carcinogenesis model, activating mutations in the H-Ras gene 

are caused by the carcinogen 7, 12-dimethylbenze[a]anthracene (DMBA) (18), and repetitive 12-

O-tetradecanoylphorbol-13-acetate (TPA) treatment induces chronic inflammation and 

proliferative stimuli that drive squamous papilloma outgrowth, some of which progress to SCC 

(19).  In this model skin resident γδTCR+ T cells suppress papilloma development while αβTCR+ 

T cells enhance premalignant progression (20), with the latter linked to tumor infiltrating, IL-

17/IFN-γ/IL-10 expressing CD8+ αβ T cells with a reduced cytotoxic phenotype (21).  Genetic 

ablation of B cells also reduces tumor formation in the 2-stage model (22), indicating that 
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multiple lymphocyte lineages can promote squamous tumors.  Despite these studies it is not clear 

if the inflammatory microenvironment caused by RAS activation is entirely tumor cell 

autonomous or is modulated by specific components of the adaptive immune system, especially 

in early neoplastic stages, in part because the two stage model itself requires chronic treatment 

with a potent inflammatory stimulus.  Here we have directly examined the effects of the innate 

and adaptive immune system on RAS-induced inflammation using a doxycycline suppressible 

bitransgenic mouse model in which human tetOHRASG12V (23) expression is driven by the 

suprabasally expressed Involucrin promoter of the epidermis linked to the tetracycline 

transactivator (24).  Our results show that the primary inflammatory response to oncogenic RAS 

expression is dependent on CD8+ but not CD4+ T cells, and the myelocytic infiltrate correlating 

with maximal papilloma formation is mediated in part through IFN-γ.  This work elucidates and 

supports a previously unappreciated relationship between CD8+ T cells and squamous tumor 

development that underscores the need to manipulate the immune microenvironment in order to 

achieve successful therapeutic intervention. 

 

3.3 Results 

CD8+ T cells drive skin tumor development and enhance intra-tumoral inflammation 

To determine the effects of the adaptive immune system on RAS driven skin tumor 

formation we switched 7 week-old InvtTA/tetORASG12V (DT) on a Rag1+/+ and Rag1-/- 

background from a maintenance dose of 10 µg/ml doxycycline (dox) that completely suppressed 

RASG12V transgene expression to 250 ng/ml dox.  Within 10 days focal tumors began to form on 

dorsal and ventral skin and on tails, lips and feet (Fig. 3-1A).  The average maximal tumor 

burden in DTRag1+/+ mice was 10 papillomas/mouse after approximately 26 days, but on a 

95



Rag1-/- background tumor onset was delayed and total tumor burden was attenuated to 2 

tumors/mouse (Fig. 3-1A).  Tumors that formed in both groups were exophytic papillomatous 

lesions (Fig. 3-1D).  To assess the role of CD8+ T cells during Ras-induced tumorigenesis, we 

injected DT mice with the depleting anti-CD8β monoclonal antibody YTS169.4 or 

corresponding isotype control once weekly throughout the duration of the tumor study.  CD8-

depleted mice had a similar tumor latency and initial kinetics of tumor formation as the DTRag1-

/- mice (Fig. 3-1A), but at later timepoints the total tumor burden in the CD8-depleted group 

surpassed that of DTRag1-/- mice.  Furthermore, although there appeared to be an initial 

stimulation of tumor formation, transfer of naïve CD8+ T cells into DTRag1-/- mice did not 

sustain tumor development to that of DTRag1+/+ animals (Fig. 3-1A).  Tumor cell infiltration of 

CD3+ lymphocytes in CD8-depleted mice confirmed the presence of remaining T cell subsets as 

well as the recovery of CD8+ T cells in CD8-repleted DTRag1-/- mice (Fig. 3-1E).  Lymph 

nodes harvested from CD8-repleted mice also revealed significant CD8+ lymphocyte populations 

(data not shown).  The majority of tumor infiltrating CD8+ T cells isolated from pooled DT 

tumors and CD8+ T cell reconstituted Rag1-/- mice expressed both IL-17A and IFN-γ  (Fig. 3-

1B).  Interestingly, the reconstituted CD8+ T cells exhibited increased proportions of IFN-γ+ and 

IFN-γ+/IL-17+ phenotypes relative to endogenous tumor infiltrating CD8+ T cells in wildtype 

tumors indicating Tc cells may possess altered proinflammatory activity in the absence of other 

adaptive immune cells.  We compared myeloid cell infiltration in tumors taken at 1 month after 

RAS induction to determine if this was linked to CD8-dependent tumor formation.  As expected 

there was abundant infiltration of MPO+ (myeloperoxidase) neutrophils and mast cells (toluidine 

blue) within the stroma of DT tumors (Fig. 3-1C).  However, in the DTRag1-/- and CD8-

depleted DTRag1+/+ tumors that formed, the pronounced infiltration of neutrophils and mast 
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Figure 3-1: CD8+ T cells accelerate squamous tumor development:  A) Development 
of skin tumors in DTRag1WT (+/+) (■), CD8-depleted DTRag1WT (▲), DTRag1KO (-/-) 
(▼), and CD8-repleted DTRag1KO (♦) mice determined at the timepoints indicated by 
quantitating papilloma development from skin of the entire animal.  Mice were sacrificed at 
day 32 following switch to reduced dox dose.  Control mice were untreated or α-IgG treated 
DT/Rag1+/+ mice.  WT control n = 11, WT α-CD8 n = 9, KO control n = 15, KO + CD8 n = 
7. Graph displays results averaged from 2 independent experiments. * = significantly 
different from CD8 depleted DT and DTRag1KO respectively.  B) Intracellular cytokine 
FACS for IL-17A and IFN-γ on PMA/ionomycin stimulated single cell suspensions isolated 
from tumors quantitated in A. CD8+ flow profiles were gated on live/CD45+/TCRβ+/CD8+ 

populations.  Individual tumors were pooled to perform FACS and means and SEM’s are 
calculated from tumors of 5 different mice.  C) Representative tumor sections from the 
indicated groups stained for neutrophils (anti-MPO, left, magnification x20) or mast cells 
(toluidine blue, right magnification x40).  Arrows indicate positively stained cells.  D) 
Representative tumors from DTRag1WT and DTRag1KO mice exhibiting benign papilloma 
histology, magnification 4X.  E) Representative images of tumor sections from indicated 
groups stained for anti-CD3ε; magnification 40x.  Arrows point to CD3+ cells.  T = tumor, S 
= stroma.  F) Intracellular cytokine FACS analysis on live/CD45+/CD4+ T cells isolated from 
end stage tumors of DT/Rag1WT mice. 
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cells was significantly reduced (Fig. 3-1C).  Transfer of CD8+ T cells to DTRag1-/- mice 

restored levels of neutrophil tumor infiltration but did not restore mast cell infiltration (Fig. 3-

1C).  Together these data indicate that proinflammatory, tumor infiltrating CD8+ T cells are 

necessary but not sufficient for early phases of tumor outgrowth and this may be linked to their 

ability to provoke infiltration of tumor promoting myeloid subsets.   

 

Conditional expression of H-RASG12V in the epidermis activates both innate and adaptive 

immune response. 

To determine how CD8+ T cells could influence early stages of RAS-driven tumor 

formation we next examined the acute inflammatory responses to transgene expression in the 

epidermis.  Three days after dox removal DT mice had a scruffy hair coat, scaling, and inflamed 

ears and tails coinciding with expression of the RAS transgene (Fig. 3-3A) with no change in 

single transgenic (ST) littermates (Fig. 3-2A).  Dorsal skin sections examined after 7 days 

revealed severe epidermal acanthosis, hyperkeratosis, hyperemia, basal layer hyperproliferation 

and extensive dermal CD45+ immune infiltrates (Fig. 3-2A) as well as increased cutaneous 

expression of proinflammatory cytokines and chemokines (Fig. 3-3B).  As expected, expression 

of the hematopoietic cytokines G-CSF and GM-CSF in RAS-expressing skin correlated with a 

systemic increase in Gr1+/CD11b+ myelocytes (Fig. 3-3D), and the majority of these cells had a 

polymorphonuclear morphology (Figure 3-3C).  In the skin, there was a significant increase in 

Ly6G+/CD11b+ cells (Fig. 3-3E) and this intense infiltrate rendered formation of small to 

moderately sized microabscesses containing MPO+ neutrophils within the hyperplastic epidermis 

(Fig. 3-2A), as well as increased dermal residency of polychromatic mast cells and F4/80+ cells 

(Fig. 3-2A).  Neutrophils isolated from RAS-expressing mice, but not control mice, were 
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Figure 3-2: Conditional expression of H-RASG12V causes acanthosis, hyperkeratosis, 
hypereamia, and intraepidermal inflammation.  A) Representative skin sections from 
control DT mice on dox or ST mice off dox (-RAS) or DT mice removed from dox (+RAS) 
for 7 days.  Sections were stained with hematoxylin and eosin (H&E), anti-BRDU (BRDU) 
for cell proliferation, anti-CD45 (CD45) for leukocytes, anti-myeloperoxidase (MPO) for 
neutrophils, Toluidine blue (Tol. Blue) histochemical stain for mast cells, and anti-F4/80 
(F4/80) for macrophages arrows indicate positivity, magnification 20X.  B) Top: Total lymph 
node cell number after RAS induction by trypan blue exclusion.  Middle and Bottom: FACS 
analysis of inguinal lymph node cells for CD4+ and CD8+ T cell subsets gated on 
CD45+/CD3+ and the surface markers listed. Intracellular cytokine staining for IFN-γ and 
the transcription factor FoxP3 for regulatory CD4+ T cell populations was done on at least 7 
mice and repeated in 2 experiments independent of each other.  C) Representative FACS 
profiles gated on viable CD45+ cells/lymphocyte SSC demonstrating TCRβ+ staining from 
ST (- Ras) and DT (+ Ras) dorsal skin.  Results are average from 5 ST and 6 DT mice and 
repeated independently twice.  D) Quantitative FACS on skin single cell suspensions for 
viable CD45+/lymphocyte SSC/CD4+ and CD45+/TCRβ+/CD8+ lymphocytes. Means and 
SEM were collected from the same number of mice as in C. 
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Figure 3-3: Epidermal RAS expression causes systemic neutrophilia and cutaneous 
inflammation through proinflammatory cytokine gene expression.  A) Immunoblot on 
total skin lysates probed with α-H-Ras and α-β-actin.  B) QRT-PCR analysis of cDNA 
synthesized from total skin RNA.  Although not indicated, all fold increases were statistically 
significant below a p value of 0.05.  C) Giemsa stains of peripheral blood from ST and DT 
mice off dox for 7 days. D) FACS profiles from blood  (top 2) and spleen (bottom 2) of ST 
and DT mice off dox for 7 days gated on CD45+ cells depicting CD11b/Gr-1 staining.  E) 
FACS profile from single transgenic ST (- Ras) and DT (+ Ras) dorsal skin gated on 
live/CD45 cells and plotted for Ly6G/CD11b.  Mice were off dox for 7 days.  Means and 
SEM were calculated in blood and spleen from at least 12 and 5 mice respectively. 
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cytotoxic in a dose dependent manner in vitro for primary mouse keratinocytes and the papilloma 

tumor cell line, SP-1 (Fig. 3-6C).  

Inguinal skin draining lymph nodes from DT mice were enlarged and there was a 

significant increase in total cell number relative to ST littermates indicating activation of an 

adaptive immune response (Fig. 3-2B).  There were significant increases in CD4+ and CD8+ T 

cell effector memory populations (CD44+/CD62L-), as well as IFN-γ-secreting CD8+ and CD4+ 

cells and CD4+/Foxp3+ Treg cells (Fig. 3-2B).  Skin residency of TCRβ+ lymphocytes increased 

from 41% to 62% of total CD45+ lymphocytes in RAS expressing skin, comprised of both CD4+ 

and CD8+ T cells but we observed undetectable B cell infiltration (Fig. 3-2C, D, and data not 

shown).  Both subsets of TCRβ+ lymphocytes produced significant amounts of IFN-γ and IL-

17A relative to ST littermates (Fig. 3-4A and B), but TCRβ+/CD8+ lymphocytes were the 

primary producers of IFN-γ in the skin following RAS induction (Fig. 3-4B).  In addition to co-

expression of these cytokines, CD8+ T cells that infiltrated the skin in response to RAS also 

expressed IL-10 (data not shown) similar to the tumor promoting CD8+ phenotype found in 

DMBA/TPA induced late stage skin papillomas and SCC (25).   

 

Lymphocytes augment RAS-induced epidermal hyperplasia and inflammation. 

To determine if lymphocytes contributed to these early RAS-induced inflammatory 

changes and epidermal hyperproliferation we compared effects of RAS induction on a Rag1+/+ 

and -/- background. Seven days after dox removal cutaneous inflammation and epidermal 

microabscesses were strikingly attenuated in DTRag1-/- mice (Fig. 3-5A).  Neutrophil and mast 

cell infiltration was reduced from 50% to 30% of CD11b+ cells and ~2.5 fold respectively (Fig. 

3-5B) and the level of the CXCR2 ligands KC and MIP2 were diminished ~4 fold in DTRag1-/- 
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Figure 3-4: RAS increases IL-17A and IFN-γ expressing lymphocytes in skin.  A) 
Intracellular cytokine FACS analysis for IL-17A obtained from ex vivo stimulated skin single 
cell suspensions as percent positive of viable/CD45+ cells and the lymphocyte marker 
indicated, and expressed as fold increase relative to control mice (- Ras); means and SEM 
from at least 6 mice per group.  B) Left panel: Intracellular cytokine FACS analysis for IFN-
γ obtained from ex vivo stimulated skin single cell suspensions as percent positive of 
viable/CD45+ cells, and expressed as fold increase relative to control mice; means and 
SEM from at least 6 mice per group. Right panel: Percent of skin infiltrating CD8+ T cells 
expressing IFN-γ, measured by intracellular cytokine FACS analysis from ex vivo 
stimulated skin single cell suspensions gated on viable/CD45+/TCRβ+ cells.  IFN-γ+/CD8+ T 
cells in control mouse skin were not detectable (ND). 
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Rag1 KO Rag1 WT 

Figure 3-5: Lymphocyte ablation ameliorates RAS-induced epidermal proliferation 
and intra-epidermal inflammation.  A) Representative H&E images (20x) of DT/Rag1WT 
and DT/Rag1KO dorsal skin, off dox for 7 days.  B) Top: Quantitative FACS analysis 
displaying Ly6G+ neutrophils stained from dorsal skin single cell suspensions of DT 
/Rag1WT or KO mice gated on the live CD45+/CD11b+ population. Bottom: Mast cell 
counts in dorsal skin sections as determined by differential toluidine blue staining. * 
signifies relative increase from Rag1WT ST and DT mice; ** signifies relative decrease 
between DT mice.  C) Top: Quantitation of hyperplasia from H&E stained dorsal skin 
sections of ST and DT Rag1 WT and KO mice. Means and SEM were collected from 3 ST 
mice and at least 8 DT mice.  Bottom: Basal layer epidermal proliferation analysis was 
determined by BRDU incorporation between ST and DTRag1WT and KO mice.  Statistical 
significance was calculated between DT groups. BRDU+ cells were counted on 5 random 
fields of view (FOV) from 5 sections per both WT and KO groups.  D) QPCR for KC and 
MIP-2 amplified from total skin RNA harvested from RAS expressing DT Rag1KO and 
Rag1WT mice after 7 days. N = 5/group. 
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Figure 3-6: Gr-1 depletion of Ras-induced cytotoxic neutrophils does not block 
epidermal hyperproliferation.  A) H&E stained dorsal skin sections from DTRag1+/+ 
mice receiving isotype IgG or α-Gr-1 by intraperitoneal injections every other day for 7 days 
beginning at day 0.  B) Quantitation of epidermal thickness and proliferation of dorsal skin 
sections from indicated mice.  All p values indicate significance between RAS-expressing 
groups calculated from 10 mice. C) Cell death was measured in co-cultures between either 
primary keratinocytes (left) or the mouse skin papilloma cell line SP1 (right) and sorted 
splenic Ly6G+/CD11b+ neutrophils from ST and DT mice off dox for 7 days at the indicated 
target: effector ratio.  Percent cell death was determined as stated in material and 
methods. Data is presented as the mean and SEM from 3 independent experiments 
performed in triplicate co-cultures.  P values indicate significance of co-cultures with 
neutrophils from Ras-expressing groups versus non-Ras-expressing groups. 
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skin tissue (Fig. 3-5C).  Significantly, in the absence of lymphocytes, RAS-induced keratinocyte 

proliferation was reduced as was epidermal thickness (Fig. 3-5D).  When Gr-1+ cells were 

depleted concomitantly with RAS induction for 7 days, epidermal microabscess formation was 

blocked (Fig. 3-6A) and there was a small but significant increase in epidermal hyperplasia but 

no significant change in keratinocyte proliferation (Fig. 3-6B).  Thus, lymphocytes are required 

for cutaneous myeloid inflammation and maximal epidermal proliferation caused by oncogenic 

RAS expression, while Gr-1+ myelocytic inflammation alone may be immediately dispensable 

for RAS driven epidermal hyperproliferation. 

 

CD8+, but not CD4+ T cells, are necessary for cutaneous inflammation and keratinocyte 

proliferation. 

We next determined the contribution of CD4+ and CD8+ T cells to the RAS-induced 

inflammatory response using antibody-mediated depletion immediately prior to RAS induction. 

Figures 3-7A and B show that in the CD8-depleted but not CD4-depleted mice systemic 

neutrophilia was reduced 2-fold, cutaneous CD11b+/Ly6G+ cells decreased from 47% to 27% 

and microabscesses were suppressed.  Interestingly, in RAS-expressing CD8-depleted mice 

reductions were also observed in CD4+ T cell effector memory cells in skin draining lymph 

nodes, CD4+ skin infiltration and skin Th17 differentiation and IL-17 production by cutaneous γδ 

T cells (Figs. 3-7C, D).  Increases in mast cell residency were also reduced in CD8-depleted but 

not CD4-depleted DT mice to numbers similar to that found in the DTRag1 -/- mice (Fig. 3-7E).  

Importantly, these losses in myeloid inflammation again correlated distinctly with suppression of 

RAS-induced epidermal proliferation from 42% to 28% BRDU+ keratinocytes/FOV in α-CD8β 

treated DT groups (Fig. 3-7F).  These data suggest that CD8+ T cells are necessary to generate 
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Figure 3-7: Depleting CD8+ but not CD4+ T cells diminishes RAS-induced cutaneous 
inflammation and keratinocyte proliferation.  A) Representative H&E images (20x) from 
dorsal skin sections from α-CD4, α-CD8β or IgG DTRag1 +/+ mice.  B) Left: Total blood 
neutrophil counts from mice receiving IP injections of α-CD4, α-CD8β or 
IgG isotype control antibody removed from dox for 7 days. Right: FACS analysis on skin 
Ly6G+ cells gated on the viable CD45+/CD11b+ population. Data was collected from 7 
mice in each treatment group and repeated twice.  C) Expression of CD4 activation 
markers or total CD4+ cells gated on lymphocyte scatter respectively from mice injected 
with IgG or α-CD8 antibody. Means and SEM were calculated from 5 mice in each group.  
D) Ex vivo stimulated skin single cell suspensions from ST or DT, and IgG or CD8 depleted 
mice without dox for 7 days. Percent fold increase in IL-17A+ cells is relative to ST groups 
after gating on a live/CD45+ population and either CD4+ or γδTCR+ subset.  E) Mast 
cells/FOV were quantitated from IgG, a-CD4, or a-CD8 dorsal skin sections on 5 separate 
sections/group. NS = not significant.  F) Epidermal proliferation quantified by anti-BRDU 
immunohistochemical from dorsal skin sections. Determined from 5 random fields of view 
(FOV) from 5 sections per group. 
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the multiple pro-inflammatory components that may contribute to maximal RAS-induced 

epidermal proliferation. 

 

CD8+ T cells are sufficient to recover neutrophilia, intra-epidermal tissue damage and 

hyperproliferation. 

Despite that CD8+ T cell transfer alone was not sufficient to restore tumor formation in 

DTRag1-/- mice (Fig. 3-1A) we tested if CD8+ lymphocytes were sufficient to restore the acute 

phenotypes of RAS-induced myeloid inflammation and keratinocyte proliferation as they may 

still potentially be important at conditioning a permissive neoplastic microenvironment during 

hyperplastic stages.  To achieve this, DTRag1 -/- mice were reconstituted with purified, total 

CD3+ or CD8+ T cells, and RAS expression induced for 7 days.  Skin from both total T cell and 

CD8+ cell-repleted mice had increased percentages of CD11b+/Ly6G+ infiltrates compared to 

control mice as well as restoration of systemic neutrophilia to near wild type levels (Fig. 3-8B 

and E).  Furthermore, both lymphocyte reconstitutions yielded intraepidermal chemotaxis of 

cytotoxic neutrophils (Fig. 3-8A and D).  Of note, while depletion of CD8+ T cells decreased 

dermal mast cell numbers, they were not restored after RAS-induction in CD8+ T cell transferred 

mice (Fig. 3-8G).  This suggests that multiple lymphocytes could be important in RAS-induced 

mast cell infiltration although further kinetic and adoptive transfer studies are required to 

determine this.  Transfer of both CD3+ and CD8+ T cells also increased RAS-induced epidermal 

proliferation from 30% to 40% and 28% to 45% BRDU+ keratinocytes/FOV respectively 

indicating that the CD8-dependent Gr-1+ myeloid inflammation was sufficient to enhance RAS-

activated proliferation of keratinocytes (Fig. 3-8E).  Significantly, lymphocyte transfer into 

STRag1-/- littermates had no effect on inflammation and proliferation excluding the possibility 
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Figure 3-8: Reconstitution with total CD3+ and CD8+ T cells recovers neutrophilia, 
cytotoxic Ly6G+ skin inflammation and epidermal proliferation in DT/Rag1 -/- mice.  
A) Representative H&E images (20x) from dorsal skin of DTRag1KO mice repleted with 
saline or total splenic/lymph node CD3+ T cells.  B) Left: Total neutrophils in whole blood 
isolated from ST and DT mice either on DTRag1WT or DT/Rag1KO backgrounds mock 
reconstituted or with naïve T cells Right: Quantitation of skin Ly6G+ neutrophils isolated 
from DT/Rag1KO repletion groups gated on viable CD45+/CD11b+ cells.  Data are from at 
least 6 mice in each group, repeated twice.  C) Epidermal proliferation in dorsal skin of 
mock (saline) or naïve T cell reconstituted DTRag1KO mice off dox for 7 days.  D) Dorsal 
skin histology from mock or CD8-repleted DT/Rag1KO mice expressing transgene for 7 
days.  E) Left: Total neutrophil counts in whole blood of DTRag1KO mice reconstituted with 
saline or naïve splenic and lymph node CD8+ cells. Right: Fold increase of skin infiltrating 
Ly6G+ neutrophils in viable CD45+/CD11b+ cells. CD8-reconstitution was done on 6 
(saline) and 7 (CD8) mice from 3 independent experiments.  F) Epidermal proliferation in 
mock or CD8 repleted DTRag1KO mice off dox for 7 days. BRDU+ basal keratinocytes 
were counted on 5 random fields of view (FOV) from 5 sections per group.  G) Mast cell 
numbers determined from toluidine blue staining of indicated repletion groups in 
DTRag1KO mice, 5 sections per group. NS = not significant. 
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of CD8 mediated skin autoimmunity (data not shown).  Thus, although CD8+ T cells were 

incapable of recovering total tumor burden, they were sufficient to initiate the pro-proliferative 

effects of RAS activated inflammation. 

 

IFN-γ but not IL-17 mediates CD8+ T cell driven inflammation 

Since IFN-γ and IL-17A expressing CD8+ T cells were present in squamous tumors and 

inflamed skin of RAS-expressing mice we tested if they were responsible for the CD8-driven 

inflammatory response.  Figure 3-9 shows that neutralization of IFN-γ in CD8+ T cell repleted 

DTRag1-/- mice completely ablated Ly6G+ skin infiltration (Fig. 3-9A), and strongly reduced  

epidermal hyperplasia (Fig. 3-9B) and keratinocyte proliferation (Fig. 3-9C).  In contrast, IL-17A 

neutralization had no effect on Ly6G+ skin infiltration or keratinocyte proliferation (data not 

shown).  Together these data suggest that IFN-γ production by CD8+ T cells precedes and drives 

the acute inflammatory process during hyperplastic stages of RAS-induced neoplasia.  In turn, 

these early events may contribute to skin tumor promotion and development.
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repleted isotype control, and CD8-repleted IFN-γ neutralized mice.  Data compiled from 6 
mice/group.  B) Representative histology from CD8 repleted DTRag1KO mice receiving 
IP antibody treatments.  C) Epidermal proliferation determined by α-BRDU 
immunohistochemistry. Determined from 5 random fields of view (FOV) from 5 sections 
per group. 
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3.4 Discussion 

While CD8+ T cells are most often viewed as an arm of anti-tumor immunity (26) our 

results demonstrate that RAS-induced epidermal inflammation and tumor formation is initially 

driven by skin infiltrating IFNγ/IL-17/IL-10 co-expressing CD8+ T cells.  Recent studies on 

human cancers and autoimmune diseases demonstrate a pro-inflammatory phenotype of CD8+ T 

cells with cytokine profiles similar to that described here, including IL-17+/CD8+ T cells (Tc17) 

that correlated with poor clinical prognosis in HCC (27;28), tumor promoting CD8+ T cells 

generated by high TPA doses in the 2-stage skin carcinogenesis model (29) and Tc17, but not 

Th17, cells that significantly increase in human psoriatic skin lesions (14).  Although numerous 

clinical and experimental studies implicate Th17 cells as critical mediators in the pathogenesis of 

inflammatory skin disorders (30-33), and we observed increased CD4+ activation and infiltration 

of Th17 cells into RAS expressing skin, depletion of CD8+ but not CD4+ T cells reduced RAS-

induced cutaneous inflammation.  However, we find that neutralization of IFN-γ, but not IL-17A, 

blocked the ability of transferred CD8+ T cells to drive inflammation in response to RAS, 

indicating that IFN-γ is the primary driver of cutaneous inflammation in this model of RAS-

driven squamous cancer.  We cannot definitively exclude the possibility that other IL-17 

isoforms may be contributing to acute skin inflammation but several other studies support our 

claims.  Elevated serum IFN-γ has been linked to pathological severity in several skin 

inflammatory diseases (34-36), and high expression levels of IFN-γ is coincident with promotion 

of chemical carcinogenesis (37).  Interestingly, neutralization of IFN-γ or IFNGR1 deficiency 

suppressed papilloma formation in the 2-stage model in part through reduced IL-17 expression 

and Th17 frequencies (38).  Thus the apparent lack of effect of IL-17A neutralization we observe 

may reflect the initial stages of the inflammatory response that are dependent on IFN-γ while 
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later stages of tumor outgrowth may also require IL-17.  In support of this hypothesis, skin tumor 

burdens on IL-17 null mice are greatly attenuated during chemical carcinogenesis (39) and we 

also observed copious amounts of IL-17 secreting CD4+ T cells that infiltrated Rag1WT and 

CD8 depleted Rag1WT tumors (Fig. 3-1F).  While CD8+ T cells are the likely source of IFN-γ 

for promotion of epidermal squamous tumors, IFN-γ from skin infiltrating macrophages also 

promote pre-malignant inflammatory activity in a mouse model of melanomagenesis (40).  Thus, 

depending on the tumor context IFN-γ produced by different cell types may have similar tumor 

promoting roles. 

Depletion of CD8+ T cells reduced Th17 and γδ-17 tissue residency, total CD4+ skin 

infiltration and tumor formation but CD8 transfer into DTRag1-/- mice did not recover tumor 

formation to wildtype levels.  These results suggest that Th-17 and γδ-17 cells may participate in 

tumor promotion but require a CD8+ T cell trigger.  Conversely, depleting CD4+ T cells 

enhanced CD8+  T cell activation (data not shown), and adoptively transferred intratumoral CD8+ 

T cells produced higher IFN-γ and IL-17 amounts in the absence of other lymphocytes (Fig. 3-

1B) suggesting an even more dynamic CD4+/CD8+ cellular interaction in the skin.  The inability 

to reduce epidermal proliferation by depletion of Gr-1+ cells alone in DTRag1+/+ mice also 

contrasted with the recovery of acute epidermal proliferation and Gr-1 inflammation in CD8-

repleted DTRag1-/- mice.  This suggests that Gr-1+ cellular inflammation may indeed be pro-

proliferative but that other non-Gr-1+ myeloid cells that increase following RAS induction are 

also key contributors to cutaneous inflammation and are augmenting epidermal proliferation and 

tumor formation.  Supporting this concept, Gr-1+ cells have been shown to exhibit various pro-

tumorigenic properties in multiple tumor models (41-43).  Given that squamous tumor formation 

in B cell null mice was only partially reduced compared to Rag2 -/- mice, and B cells isolated 
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from DMBA/TPA treated mice and transferred into Rag2 -/- mice only partially recovered wild 

type tumor numbers (44) these results strongly suggest that both B cells and CD8+ T cells are 

required either independently or interdependently for maximal inflammatory responses that drive 

squamous tumor development.  The link between B cells and mast cell infiltration in squamous 

cancer (45;46) suggests that in this Ras-driven tumor model B cell mediated mast cell skin 

infiltration may be the missing myeloid component that is critical for collaboration with CD8+ T 

cells for tumor development although further studies will be needed to confirm this.  Indeed, 

CD8+ T cells alone were incapable of recovering acute mast cell infiltration (Fig. 3-8G), 

consistent with the requirement of IgG production by B cells to stimulate chemotaxis and 

activation of non-Gr-1+ myelocytes into pre-malignant tissue (47).  Differences between 

these models and that described here could reflect both tissue compartment of oncogenic 

expression and engagement of multiple downstream effectors by activated RAS, such as JNK 

and p38 MAPK signaling, which previous studies have shown can lead to qualitatively distinct 

skin inflammatory responses (48;49). 

Activating mutations in RAS occur in approximately 30 percent of all human cancers 

(50).  K-RAS mutations can cause severe chronic inflammation that potentiates neoplastic 

progression (51;52), and in some cases this has been directly linked to expression of specific 

proinflammatory cytokines (53-55).  Although tumor promoting roles of CD4+ T cells and B 

cells have been demonstrated, our work shows for the first time that RAS-induced inflammation 

and squamous tumor development also requires CD8+ T cells through the action of IFN-γ on 

infiltrating inflammatory myeloid cells.  These results highlight the potential of targeting pro-

inflammatory CD8+ T cells for cancer prevention or as adjuvant cancer therapy to suppress 

tumor promoting inflammation.  
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Chapter 4: B cells are required for immunosuppressive activity in Ly6Chi monocytes 
during inflammation initiated by epidermally restricted H-RAS expression 
 

4.1 Abstract 

 B lymphocytes are critical contributors to immunological activation and prevention of 

infectious disease dissemination.  More recently human and mouse studies have identified a role 

for B cells in promoting squamous cancer development, most notably in a transgenic model of 

incipient squamous neoplasia of the skin and the classical 2-stage skin carcinogenesis model.  To 

further elucidate the pro-tumorigenic inflammatory roles of B cells, we created a doxycycline-

inducible bi-transgenic mouse model in which human Harvey (H)-RASG12V expression is 

restricted to basal layer epithelia by a keratin 14 (K14) promoter-driven reverse tetracycline 

transactivor (rTA).  Double transgenic (DT) K14rTA/tetORasG12V mice given doxycycline (dox) 

rapidly develop systemic and cutaneous inflammation that includes expansion of a specific 

Ly6Chi/Ly6Gneg/CD11b+ monocytic population that exhibits nitric oxide (NO) dependent 

immunosuppression in vitro and in vivo.  When DT mice were crossed onto a RAG1 null 

background, immunosuppressive activity in the same population was completely ablated.  

Despite significant tissue infiltration of TCRβ+ T cells but not B cells, depletion of CD4+, CD8+ 

or CD4+ and CD8+ T cells did not affect the immunosuppressive phenotype in bitransgenic Rag1 

+/+ mice.  In contrast, reconstitution with B cells alone into bitransgenic Rag1 null mice was 

sufficient to recover monocytic mediated immunosuppression of polyclonal stimulated 

splenocytes.  Depletion of B cells was ineffective at alleviating the immunosuppressive 

functionality of Ly6Chi monocytes due to persistence of IL-10 producing Breg cells resistant to 

α-CD20 therapy.  Taken together, these results demonstrate for the first time a requirement of B 

cells to directly stimulate immunosuppressive activity in a monomyelocytic subpopulation 

during an inflammatory process.  This novel information may be useful for clinicians seeking to 
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combine chemotherapy with adjuvant therapy targeted at ameliorating tumor promoting 

inflammation. 

 

4.2 Introduction 

B lymphocytes are the sole producers of immunoglobulin in the human body.  Through 

the secretion of these glycoproteins they serve are important modifiers of adaptive humoral 

immunity and can secrete numerous cytokines that influence innate immune cells and tailor 

specific immune responses to infection.  The roles of B cells in sustaining chronic inflammation 

during autoimmunity is now well appreciated (1).  Recently, the role of B lymphocytes during 

tumor promotion and carcinogenesis has also been elucidated in numerous cancer models.  B cell 

infiltration into cancerous human mammary tissue was increased relative to normal adjacent 

tissue and could be decreased following chemotherapy treatment (2).  Neoplastic progression of 

E6/E7 oncogene driven squamous carcinogenesis was greatly attenuated in B cell null mice (3) 

and the promotional roles were later demonstrated to involve a mechanism of mast cell and 

macrophage activation by immune complex/FcγR ligation (4).  Moreover, enhanced Th1 and Tc 

anti-tumor immunity in IgM-/- B cell knockout mice led to the rejection and/or slow onset of 

multiple transplanted tumor grafts (5).  A similar model of squamous skin cancer by 

DMBA/TPA application produced parallel observations in B cell knockout mice where 

production of IL-10 by B cells was critical to yield the tumor promoting effects of TNF-α (6).  In 

agreement with this, B1 cells (CD5+) co-cultured with macrophages influenced macrophage 

phenotype through the paracrine effects of IL-10 by downregulating pro-inflammatory TNF-α, 

IL-1β and CCL3 which ultimately led to permissive B16 xenograft growth (7).  Tedder and 

colleagues demonstrated the unique requirement of CD5+/CD1dhi Bregs in dampening 
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monocyte/macrophage phagocytosis of anti-CD20 treated lymphomas providing experimental 

evidence for Rituximab resistance (8).  Furthermore, lymphotoxin from B cell sources induced 

castration resistance in prostate cancer bearing mice by stimulating IKKα and STAT3 activity in 

cancer cells, provoking metastasis (9).  Cancer patients do develop specific antibody responses 

(10) but these elevated serum immunoglobulin levels correlates poorly with disease outcome 

(11).  All of these studies point to a putative and disease-potentiating role for B lymphocytes 

during carcinogenesis of solid and fluid malignancies. 

Myeloid derived suppressor cells (MDSC) is a term given to a phenotypically 

heterogeneous group of bone marrow derived myelocytes that share common 

immunosuppressive functionality (12).  Most MDSC co-express Gr-1/CD11b surface markers 

and systemically expand during processes of intense or chronic inflammation including cancer 

development, sepsis, infection, autoimmunity and trauma (13).  Nearly every myeloid lineage, 

depending on pathological context, has been characterized as MDSC (14-16).  The acquisition of 

immunosuppressive activities has been shown to possibly result from cytokine quality where the 

type or combination of cytokine(s) influences MDSC outcomes (17) or cytokine quantity where 

the amount of a single cytokine may determine immunosuppressive acquisition (18).  In this 

instance, it was clearly demonstrated that Gr-1/CD11b immature myeloid cells (iMC) expanded 

during both GM-CSF adjuvant treatments but their effects on tumor development were 

dichotomous.  Results from previous studies indicated that these MDSC phenotypes may 

represent iMC halted in an undifferentiated state by constitutive cytokine receptor signaling (19). 

Removing these iMCs from this environment or by blocking cytokine signaling caused MDSC to 

lose many of their classical phenotypes and complete their intended life cycles (20-22).  In vitro 

induction of MDSC from bone marrow derived c-Kit progenitors required the presence of GM-
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CSF in multiple studies (23-25) and hyperactivation of STAT3 is responsible for deregulated 

dendritic cell differentiation (26;27). 

Based on these previous studies and our observations made in a similar model of RAS-

driven skin carcinogenesis and acute inflammation, we hypothesized there may exist a 

pathological role for B cells by influencing the phenotypes of expanded Gr1/CD11b populations.  

Using a keratin 14 (K14) tetON regulated transgenic mouse, we show for the first time a direct 

causality between the activities of IL-10 expressing Breg cells and the pre-malignant expansion 

of Ly6Chi/Ly6G-/CD11b+ immunosuppressive monocytic cells responding to expression of an H-

RASG12V oncogene.  The findings can be extended to increasing the therapeutic options for the 

treatment of solid tumors where chronic depression of anti-tumor responses prevents sustained 

cancer remission. 

 

4.3 Results 

K14-RAS expression causes systemic heterogeneous expansion of immature myelocytes 

Oncogenic H-RASG12V expression was restricted to basal layer epithelia  and controlled 

by a K14rTA transgenic mouse (28) crossed to a second tetOHRASG12V (29) mouse.  When 

double transgenic (DT) mice were fed doxycycline chow (1g/kg), transgene induction led to 

immediate and drastic epidermal hyperplasia and infiltration of CD45+ leukocytes (Fig. 4-1A and 

B).  Immunohistochemical and FACS staining of single cell suspensions from skin revealed that 

many of the tissue resident immune infiltrates also expressed the macrophage marker F4/80 and 

the Ly6G neutrophil marker (Fig. 4-1A and C).  Correlatively, FACS analysis of peripheral 

blood and spleen revealed systemic expansion of Gr-1/CD11b double positive myeloid cells and 

upregulation of numerous chemotactic and hematopoietic cytokines that correspond with the 
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Figure 4-1: Basal layer epidermal RAS induction provokes acanthosis and 
infiltration of myeloid-derived leukocytes.  A) Top: H&E staining of dorsal skin sections 
from single transgenic (ST) tetoHRASG12V (- Ras) or double transgenic (DT) 
K14rTA/tetoHRASG12V mice (+ Ras) on doxycycline chow (1g/kg) for 5 days.  Bottom: 
Immunohistochemical (IHC) detection of the leukocyte specific marker CD45 (left)  or the 
macrophage/dendritic cell marker F4/80 (right).  B) Immunoblot on total skin protein 
lysates from ST + dox or DT + dox mice probed with α-H-Ras, α-pERK1/2, and α-β-actin 
as a loading control.  C) FACS analysis of total skin single cell suspensions from +/- Ras 
mice stained with α-CD45/CD11b/Ly6G gated on the live/CD45+ population. 
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Figure 4-2: RAS transgene expression causes systemic expansion of 
morphologically heterogeneous myelocytes.  A) Peripheral blood FACS analysis 
stained with α-CD45/CD11b/Gr-1 and gated on CD45+ cells.  Population “A” = Ly6G+; 
population B = Ly6G-.  B) Giemsa stains of blood smears collected from ST or DT mice 4 
days on dox chow.  Arrows point to the population of myeloid cells indicated.  C) mRNA 
expression from total skin RNA for the genes indicated as measured by q-RT-PCR.  All fold 
changes in + Ras mice are statistically significant relative to - Ras mice which is 
normalized to 1. 
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systemic and cutaneous inflammation (Fig. 4-2A and C).  The Gr1/CD11b cells could be further 

characterized based on their Ly6G expression patterns where CD11b+/Ly6G+ cells were 

neutrophilic in morphology and CD11b+/Ly6G- cells displayed mononuclear features (Fig. 4-

2B).  Interestingly, cells with ring shaped nuclear morphology also expanded systemically 

indicative of immature myeloid (iMC) morphology (Fig. 4-2B).  These ring shaped iMC have 

been described to arise in both monocytic and granulocytic lineages constituting nearly 50% of 

bone marrow cells but are nearly absent in the periphery during steady state (30).  Expanding 

iMC with ringed nuclei have also been described in periods of intense inflammation during 

infection (31), shock (32), trauma (33), myeloproliferative diseases (34) and malignancy (35). 

 

Ly6Chi/Ly6G-/CD11b+ monocytes from RAS expressing mice inhibit T cell proliferation 

through nitric oxide production 

MDSC populations, depending on tumor type, have been described as either arising from 

the granulocytic lineage or monocytic lineage where nuclear morphology would mirror that of 

their respective leukocytes (36).  Based on the rapid systemic expansion of both Ly6G- and 

Ly6G+ myeloid cells with immature morphology, we then used these markers to sort and collect 

these populations to determine their relative immunosuppressive properties and any defining 

characteristics.  Cytospins of the purified cell preps revealed both subsets contained iMC with 

ring shaped nuclei suggesting global myeloid differentiation defects (Fig 4-3A).  After 4 days of 

dox administration, the purified Ly6G- population isolated from spleens of K14Ras mice greatly 

inhibited proliferation of in vitro anti-CD3/CD28 stimulated naïve splenocytes (Fig. 4-3B).  

There was no T cell specificity in inhibiting proliferation as both CD4+ and CD8+ subset 

proliferation decreased equally (Fig. 4-3B).  Conversely, the Ly6G+ neutrophilic population was 
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Figure 4-3: Ly6G-/CD11b+ cells isolated from RAS expressing mice suppress 
CD3/CD28 stimulated proliferation of T cells.  A) Cytospins of FACS purified Ly6G+/- 
fractions demonstrating nuclear heterogeneity and ring morphology in both fractions.  B) 
FACS sorted CD11b+ Ly6+/- cells from spleens of +/- Ras mice on dox for 4 days were co-
cultured with CFSE labeled syngeneic  splenocytes from non-transgenic mice in α-
CD3/CD28 coated wells.  Following 72 hours in culture, cells were isolated and stained for 
CD4 (left) and CD8 (right) and measured for dilution of CFSE fluorescence by flow 
cytometry.  Data is expressed as a percent  relative to the maximal proliferation achieved 
of CFSE labeled splenocytes cultured alone.  ** = p < 0.01. 
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completely incapable of inhibiting T cell proliferation.  Ly6G- cells isolated from ST littermates 

on dox and DT littermates off dox contained no ability to suppress T cell proliferation 

confirming the requirement of RAS oncogene expression to mediate these effects (Fig. 4-3B). 

We further characterized the Ly6G- population using the Ly6C marker as the Gr-1 

molecule consists of both Ly6G and Ly6C molecules and Ly6C has been shown to be expressed 

on multiple leukocytes.  This FACS gating strategy revealed that Ly6C+/Ly6G-/CD11b+ cells 

actually contained two distinct Ly6C expression patterns, Hi and Low (Fig. 4-4A).  These 

myeloid subsets were confirmed to be primarily eosinophilic (lo) and monocytic (hi) in nature 

although iMC nuclear morphology was again present in both fractions (Fig. 4-4B).  Additionally, 

sorted Ly6Chi but not Ly6Clo cells were capable of suppressing polyclonal stimulated T cells in 

vitro (Fig. 4-4C).  This inhibition took place in a dose dependent manner and could be reversed 

by the addition of L-NMMA, a pseudo iNOS substrate, but not the pseudo Arginase substrate 

Nor-NOHA (Fig. 4-4D).  As iNOS and Arginase have been shown to be the primary mechanisms 

behind MDSC mediated immunosuppression, these results suggest that these expanding 

Ly6Chi/Ly6G-/CD11b+ myelocytes fit many of the characteristics of inflammatory monocytes 

that have acquired an immunoregulatory MDSC phenotype through the production of nitric 

oxide intermediates (14). 

 

Levels of RAS oncogene dictate the acquisition of an immunosuppressive phenotype 

Much speculation has arisen as to the nature and cause of existing MDSC populations 

within a pro-inflammatory environment.  One postulate is that the intensity of inflammation may 

determine the phenotypic outcome of responding innate cells where cytokine quantity may 

overrule the complementary actions of multiple secreted products in a given tissue 
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inflammatory monocytes that suppress T cell proliferation by iNOS.  A) Blood FACS 
profile gated on CD45/CD11b cells and displayed as a quadrant gate for Ly6G and Ly6C 
expression.  B) Giemsa stain on Ly6Chi and Ly6Clo sorted cells displaying eosinophilic 
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as before co-cultured with Ly6Clo and Ly6Chi splenic myeloid populations.  P value is 
relative to Ly6Clo group.  D) T cell suppression  assay co-cultures were cultured Ly6Chi 
cells and either Nor-NOHA (500mM), L-NMMA (50mM) or no inhibitor.  Significance is 
relative to the no-inhibitor treatment alone. 
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Figure 4-5: Titration of RAS transgene correlates with cytokine expression levels 
and the nature of systemic Gr1/CD11b expansion.  A) Immunoblot for H-Ras, pERK1/2, 
total ERK1/2 and the loading control B-actin on protein lysates from DT primary 
keratinoctyes cultured in the presence of the indicated doxycycline concentrations for 24 
hours.  B) Q-RT-PCR for GM-CSF expression was performed on cDNA made from primary 
keratinocytes cultured with increasing dox doses for 24 hours.  C) Gr1/CD11b FACS 
profiles from peripheral blood collected from DT mice + dox chow at the indicated doses 
fed for 4 days. 
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microenvironment.  We addressed the potential of this hypothesis in DT/RAS mice by taking 

advantage of the dose responsive nature of the rTA/tetO system where quantitative transgene 

levels can be manipulated correspondingly with titration of doxycycline amounts (37).  Figure 4-

5 demonstrates that increasing dox concentrations in vitro correlated well with upregulation of 

GM-CSF in primary keratinocytes, a known inducer of MDSC activity (38;39) (Fig. 4-5B).  

Blood FACS analysis revealed a proportional decrease in CD11b+/Ly6G- cells relative to the 

total Gr-1+/CD11b+ population indicating a preferential hematopoietic response to specific 

myeloid subsets (Figure 4-5C).  Furthermore, sorting and co-culturing Ly6G-/CD11b+ cells from 

K14Ras mice receiving various dox doses yielded a reduction in suppressive activity on a per 

cell basis (Fig. 4-6A).  Corresponding to this loss of immunosuppression, the splenocyte T cell 

numbers were inversely proportional to increasing dox doses suggesting an increase in local 

immunosuppression in vivo with higher transgene expression levels (Fig. 4-6B).  Taken together, 

we interpret these results to mean that levels of oncogene expression can reflect cytokine 

quantities that potentially determine the qualitative outcome of a given inflammatory cascade.  

However, an alternative explanation to the reduction in T cell numbers that we cannot presently 

exclude is that the increase in the severity of inflammation produces an abundance of cell death 

inducing cytokines such as TNF-α and FAS ligand.   

 

A non-CD4+/CD8+ lymphocyte is required for suppressive activity in Ly6Chi monocytes 

Based on these data and previous studies clearly demonstrating a link between regulatory 

lymphocyte populations and immunosuppressive myeloid phenotypes (40;41) we hypothesized 

that there may exist a requirement of lymphocytes for the development of MDSC in our model.  

To assess this, we crossed both K14rTA and tetORAS transgenic mice onto the lymphocyte 
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Figure 4-6: RAS expression levels dictate acquisition of immunosuppressive 
capability.  A) Inhibition of T cell proliferation was measured as before in co-cultures of 
CFSE labeled splenocytes and Ly6G-/CD11b+ cells isolated from DT spleens fed 
decreasing concentrations of dox chow for 4 days.  B) Immuno-staining for H-Ras 
transgene and B-actin loading control on protein lysates collected from total skin of mice 
used in “A”.  C) Representative spleens harvested from mice receiving titrated dox doses 
exhibiting  changes in splenic size with increasing dox concentrations.  D) Total CD4+ and 
CD8+ T cell counts were performed on spleens from dox titrated DT mice by 
hemocytometer and FACS staining. 
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deficient Rag1-/- background to yield DTRag1-/- mice.  In the absence of lymphocytes, RAS 

transgene expression provoked similar cutaneous inflammation and skin hyperplastic pathology 

(Fig. 4-7A).  Strikingly, however, when putative Ly6Chi monocytic MDSC were sorted from 

RAS expressing DTRag1-/- mice and co-cultured in the suppression assay these cells 

demonstrated a complete inability to suppress T cell proliferation (Fig. 4-7B).  This led us to 

further examine the lymphocyte subset responsible for instructing Ly6Chi MDSC to acquire their 

immunosuppressive capabilities.  We examined this by administering depleting antibodies 

against CD4+ and CD8β+ T cells prior to RAS induction and subsequently cultured 

Ly6Chi/CD11b+ cells in the suppression assay.  Interestingly, neither removal of CD4+ or CD8+ T 

cells alone or in combination had any effect on Ly6Chi suppression of T cell proliferation (Fig. 4-

7C).  These data indicate that a lymphocyte is required to induce the T cell suppressive actions of 

Ly6Chi monocytes but that lymphocyte is not of CD4/CD8 T cell origin. 

 

B cells restore the suppressive capability of RAS induced Ly6Chi MDSC 

In light of these findings and previous studies using B cell null mice, we hypothesized B 

cells may provoke these immunosuppressive traits in monocytic MDSC populations.  We tested 

this by reconstituting DTRag1-/- mice with 5 million MACS purified splenic/lymph node B cells 

2 days prior to dox administration.  In stark contrast to CD4/CD8 depletion in DTRag1+/+ mice, 

B cell repletion of DTRag1-/- fully restored Ly6Chi inhibition of α-CD3/CD28 T cell stimulation. 

This strongly suggests that B cells were the lymphocyte orchestrating Ly6Chi acquisition of 

MDSC phenotypes during RAS-induced inflammation (Fig. 4-8A).  To confirm the necessity of 

B cell presence in mediating MDSC activity, we followed up on these observations by 

performing a suppression assay with Ly6Chi cells purified from spleens of anti-CD20 depleted 
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Figure 4-7: A specific non-CD4+/CD8+ lymphocyte is required for Ly6Chi cells to be 
immunosuppressive.  A) Representative skin histology from DT/Rag1+/+ (WT) and 
DT/Rag1 -/- (KO) mice on dox for 4 days.  B) Ly6Chi/CD11b+ cells were sorted from 
spleens of DT/Rag1WT mice or DT/Rag1KO mice that were fed dox chow for 4 days and 
co-cultured in the suppression assay as before.  C) Two days prior to dox administration, 
DT WT mice were IP injected with depleting antibodies against CD4, CD8, irrelevant 
isotype control (IgG) or CD4 and CD8.  After 4 days on dox, Ly6Chi/CD11b+ cells were 
again purified by FACS and assessed for their inhibition of T cell proliferation.  Cells sorted 
from DT KO mice were used as a negative control for suppressive activity.  Indicated 
significance is relative to IgG treated Rag WT suppressive activity. 
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Figure 4-8: B cell reconstitution rescues MDSC phenotype but α-CD20 depletion 
does not ablate it.  A) T cell suppression assay co-cultures with Ly6Chi cells sorted from 
spleens of DT/Rag1 WT or DT/Rag1 KO mice reconstituted with saline or total 
splenic/lymph node B cells on dox for 4 days.  *** = significant relative to Ly6Chi cells from 
mock reconstituted Rag1 KO mice.  B)  DT/Rag1 WT mice were IP injected with depleting 
antibodies as indicated either 2 days (CD4 and CD8) or 7 days (CD20) prior to Ras 
induction by dox chow.  Ly6Chi cells were then sorted from spleens after 4 days on dox and 
co-cultured in the T cell suppression assay. 

*** 
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DTRag1+/+  mice 7 days prior to RAS expression.  Surprisingly, B cell depletion had no effect 

on immunosuppressive activity of Ly6Chi monocytes even in combination with CD4 and CD8 

depletion suggesting there was not a compensatory T cell mediated mechanism of MDSC 

induction in the absence of B cells (Fig. 4-8B).  When verifying complete B cell depletion we 

discovered that although peripheral blood and lymph node CD19+/B220+ lymphocytes had been 

completely depleted, a definitive CD19+/B220lo splenic B cell population persisted (Fig. 4-9A).  

This likely did not represent increased B cell hematopoiesis in RAS expressing mice as α-CD20 

treatments on normal ST + dox littermates mirrored remaining B cell percentages in DT + dox 

mice, even after IP dosing DT mice twice during the study, or varying the duration allowed for 

full B cell depletion to occur (Fig. 4-9B).   

 

IL-10 expressing B regulatory cells likely cause MDSC phenotypes 

Previous studies have shown that the anti-CD20 clone MB20-11 is capable of depleting 

splenic B cells to similar percentages as we observed but not to the extent as for CD4 and CD8 

monoclonal depletion (Fig. 4-9) (42).  To that end, we wanted to characterize the α-CD20 

resistant population to see if any B cell subsets were preferentially increased after the treatments.  

The ~8% remaining CD19+/B220lo cells displayed significantly higher proportions of 

CD5+/CD1dhi and CD5+/CD1dlo phenotypes, again consistent with residual B cell populations 

following similar CD20 depletion studies (Fig. 4-10 and Fig. 4-11A) (8).   These B cell subsets 

have been shown to possess immunoregulatory properties through the expression of IL-10, 

classified as B-regulatory (Bregs) cells (43).  More specifically, IL-10 competent CD5+CD1dhi 

Bregs have been termed B10 cells and CD5+/CD1dlo as B1-a cells (44).  This led us to 

hypothesize that Ly6Chi monocytes in RAS expressing mice gain immunosuppressive behavior 
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Figure 4-9: A resistant B cell population persists following depleting α-CD20 
treatment regardless of dosage, RAS expression, or duration following  depletion.  
A) Flow cytometry of spleen single cell suspensions CD19+/B220+ B cells and CD4+ or 
CD8+ T cells from DT mice on dox for 4 days, gated on CD45+ population.  Anti-CD20 
antibodies were injected 7 days prior and α-CD4/CD8 antibodies 2 days prior to dox chow 
feeding.   B) ST or DT mice were given α-CD20 or α-IgG IP injections 2 days prior to 
feeding dox chow for 4 days and a separate DT group was given a 2nd IP injection 2 days 
after dox administration.  Spleens were then harvested and stained for CD45, CD19 and 
B220 for flow cytometric analysis. 
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through the effects of Breg derived IL-10.  Following 4 days of dox, IL-10+ B cells increased in 

the spleens of DT mice (Fig. 4-11A).  Negligible IL-10 production was observed in the CD19+ 

fraction in blood or inguinal lymph nodes as determined by intracellular FACS staining (data not 

shown).  Acute RAS expression did not, however, have any effect on the ratio of Breg 

differentiation (data not shown).  Furthermore, IL-10 positivity increased within the remaining 

B10 and B1-a subsets after α-CD20 administration indicating a proportional decrease not only in 

non-regulatory B cells but also in α-CD20 sensitive Bregs devoid of IL-10 competency (Fig. 4-

11C).  Thus, α-CD20 depletion is ineffective at reducing immunosuppressive MDSC functions 

because of a specific α-CD20 resistant B cell subset that may be driving these myeloid 

phenotypes.  These data elucidate a crucial role for Bregs in the development of MDSC during 

oncogene activation that may depend on key regulatory signals from IL-10. 

 

4.4 Discussion 

To our knowledge, this is the first report directly linking lymphocytes to the acquisition 

of immunosuppressive functionality in MDSC populations.  Contrary to this, Gallina et al 

observed that total CD11b cells isolated from spleens of syngeneic, tumor bearing Rag2-/-γc-/- 

mice maintained the ability to thwart specific T cell lysis when co-cultured in an MLR assay 

(14).  The differences in that study and ours include the method of inflammatory provocation 

(transgenic oncogene vs. syngeneic malignant cell engraftment), the mouse strain used (FVB/n 

vs. C57BL/6 and Balb/c), NK cell functional deficiency in γc-/- mice, and the malignant stage at 

which MDSC were studied (pre-malignant vs. advanced staged tumors); all variables which can 

produce significant differences in MDSC biology.  The causal role of B cells in shaping aspects 

of innate immunity is not a new concept, and that which is pertaining to monomyelocytic biology 
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Figure 4-11: CD20 depletion preferentially depletes non-IL-10 expressing B cells 
and RAS expression promotes B10 cell differentiation.  A) Graphical compilation of 
data from figure 3-10.  Spleens were harvested from DT mice following single IP injection 
of α-IgG or α-CD20 7 days prior to 4 days of dox chow feeding.  FACS percentages are 
expressed as percent positive of the markers listed gated first on the CD45+/CD19+ 
population.  B) As in “A”, the Breg subsets indicated were examined for their IL-10 
expression following PMA/ionomycin/LPS stimulation and intracellular flow staining.  C) 
Cytoplasmic IL-10 expression in total CD19+ spleen cells of – Ras or + Ras mice on dox 
chow for 4 days examined by FACS as previously described.  N = 6 in all panels shown. 
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is most relevant to these results.  The three major mechanisms B cells can influence 

monocytes/macrophages are: interactions of IgG with FcγR, immune complex/complement 

activation, and cytokine secretion.  Our results combined with a number of research studies 

causes us to favor a hypothesis involving cytokine mediated mechanism of B cell induced 

MDSC activation in our model.  Co-culturing B1 cells, but not B2, with macrophages pushed 

their gene expression profiles towards M2 phenotypes and dampened M1 gene expression; a 

phenomenon dependent on B cell derived IL-10 (45).  The aforementioned study by Schioppa et 

al discovered that one of the mechanisms behind skin tumor resistance in TNF-α-/- mice was a 

lack of IL-10 production in B cells (6).  This also involved a mechanism of increased skin 

macrophage infiltration correlating with decreased CTL responses.  Moreover, co-culturing total 

splenocytes from C57BL/6 WT or μT -/- B cell knockout mice with various irradiated tumor cell 

lines resulted in increased IFN-γ production from CD8+/CD3+ cells in B cell null co-cultures.  

This involved, in part, a CD40L/CD40 interaction and the increased production of tumor cell 

stimulated IL-10 in B cells (46).  Accordingly, IgM -/- mice also exhibited enhanced IFN-γ 

responses and anti-tumor immunity to EL-4, B-16, and MC-38 transplantable cancers and B cell 

reconstitution reversed these effects (5).  All of these studies circumstantially implicate IL-10 

production by B cells in mediating the immune inhibitory responses of alternatively activated 

macrophages.  However, one novel study implicated C5R signaling as a novel mechanism for the 

accumulation of MDSC into tumors and their T cell inhibitory properties (47).  FcγR deficiency, 

as previously discussed, greatly attenuated the pro-angiogenic effects of macrophages leading to 

defective cutaneous dysplastic progression (4) and direct IgG ligation of FcγR I/III on 

macrophages inhibited IL-12 and upregulated IL-10 expression, a hallmark M2 trait (48).  

Interestingly, the most abundant immunoglobulins produced in response to transgene expression 
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in the K14-HPV16 model did not target non-self E6/E7 antigens but were autoantibodies with 

specificity to type 1 collagens; (4;49).  Secretion of autoantibodies is biology unique to CD5+ B1 

subsets.  These studies indicate that there exist multiple mechanisms of monomyelocytic 

regulation by B cells during skin carcinogenesis.  Because FACS defined B cell subsets are 

capable of different functions, and the induction of MDSC biology is not specific to one 

independent process (12), it is plausible that MDSC expansion, chemotaxis, immunosuppression, 

and pro-angiogenic behaviors can be regulated independently of one another by a distinct B cell 

mediated mechanism. 

The influential role of IL-10 on monomyelocytic functionality is also now well 

understood.  IL-10 signals directly through STAT3 (50) thereby inhibiting monocytic 

differentiation to dendritic cells while promoting macrophage development (51).  Blockade of 

STAT3 signaling has been shown to reverse this inhibition, thereby breaking the dysfunctional 

immunosuppressive myeloid phenotype (52-54).  Other effects of IL-10 on monocytes and 

macrophages include suppression of pro-inflammatory cytokine production (55;56), upregulation 

of the secretion of anti-inflammatory molecules (57;58), and decreased antigen presentation by 

downregulating MHCII and CD86 (55;59;60), hence skewing monomyelocytic cells towards a 

strong M2 macrophage phenotype.  Ironically, our inability to fully deplete B cells actually 

supports our hypothesis since IL-10 produced from anti-CD20 resistant Breg populations would 

severely dampen the FcγR-mediated ADCC capability of mononuclear phagocytes (61).  In 

support of our results, this phenomenon has been observed in another study demonstrating B1 

cells residing in the peritoneum mediated resistance to Rituximab therapy (42).  A follow up 

study from this group went on to demonstrate these B1 cells were predominantly of a 

CD5+/CD1dhi phenotype that encompassed the majority of IL-10 producing B cells and greatly 

145



enhanced A20 lymphoma growth in the midst of α-CD20 treatments (8).  Macrophages co-

cultured with these B10 cells displayed decreased MHCII and CD86 expression as well LPS 

stimulated TNF-α and NO production, a strong indication that B10 cells directly induced M2 

polarized phenotypes.  Although not analyzed, a similar percentage of B1 cells in the peritoneum 

presumably resisted CD20 depletion as well in our model along with the residual splenic Breg 

populations (Fig. 3-9), potentially providing an additional IL-10 reservoir for MDSC induction. 

The similarities between M2 macrophages and MDSC are well appreciated but both 

myeloid populations are considered morphologically distinct from one another (62).  Both 

myeloid subsets can express immunosuppressive molecules such as Arg1 in both M2 and 

MDSCs subsets and iNOS in MDSC.  Our putative MDSC population was characterized 

systemically as CD11b+/Ly6G-/Ly6Chi mononuclear cells that suppress via a mechanism of 

iNOS but not Arg1 (Fig. 3).  This is a classic phenotype of inflammatory monocytes that express 

high levels of CCR2, distinguished from CCR2lo/CX3CR1/Ly6Clo “patrolling” monocytes (63).  

Alternatively activated M2 macrophages are hypothesized to differentiate from Ly6Clo monocyte 

progenitors and dendritic cells from Ly6Chi subsets but the evidence for this is still highly 

controversial.  However, one study provided evidence that Ly6Chi inflammatory monocytes 

seeded tumors for continuous renewal of all macrophage subtypes and their phenotypes 

depended on the geographical context of their intratumoral residency (64).  We did observe a 

substantial increase in dermal resident F4/80+ cells and upregulation of CCL2 in RAS expressing 

skin (Fig. 3-2C) and this may indicate a corresponding infiltration of MDSC inflammatory 

monocytes that under the differentiating roles of IL-10 favor macrophage development.  In turn, 

skin microenvironmental cues may skew these macrophages towards M2 phenotypes.  Indeed, 

greater upregulation of Arg1 transcripts were also observed in RAS expressing skin (Fig. 4-2C) 
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suggesting increased skin resident M2 phenotypes in these mice but more evidence will be 

needed to clarify this hypothesis. 

Of further interest was the result that the level of RAS oncogene expression directly 

correlated with reduced cytokine expression and in turn, reduced immunosuppressive behavior in 

MDSC populations (Fig. 4-5 and 4-6).  This would seemingly underscore the hypothesis that 

MDSC phenotypes are acquired as a result of quantitatively high cytokine environments.  This 

postulate is supported by a cancer vaccine study in mice that defined a threshold dose of GM-

CSF adjuvant in tipping the balance from anti-tumor to pro-tumor CD11b+ cells (65).  As it 

appeared both the expansion of MDSC populations decreased as well as the functional ability to 

suppress T cells, it is likely multiple cytokine levels correlate with oncoprotein expression levels.  

The physiological relevance would be that when the severity of the pathological insult is great 

enough, self-limiting immunoregulation would be favored to immediately resolve a potentially 

damaging inflammatory response.  This hypothesis has already been proposed for Th2/M2 

driven immunity to parasitic infections that can cause significant tissue destruction requiring 

wound healing (66) that cannot take place until Th1/M1 immunity has effectively resolved (67).  

The inflammatory balance perverted by progressing malignancies favoring the chronic presence 

of regulatory leukocytes such as Bregs and MDSCs would fit such a paradigm. 

While we show strong evidence that IL-10 producing Bregs are likely responsible for 

inducing immunosuppressive behavior of Ly6Chi MDSC in our RAS model, we do not yet 

provide definitive proof for this mode of action.  In future studies, we plan to reconstitute 

DTRag1-/- mice with IL-10-/- B cells to test whether IL-10 is required for the recovery of 

suppressive capabilities observed in wild type B cell repleted DT/Rag1-/- mice (Fig. 4-7A).  

Also, with advanced sorting methods we can purify putative Breg populations (CD5+/CD1dhi) 
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and compare their ability to regenerate MDSC ability to non-Breg populations that we and others 

have shown are not IL-10 competent (Fig. 4-10).  This assay could also be combined with α-IL-

10 ligand neutralization or IL-10R blockade for further demonstration of a specific IL-10 

mechanism.  As it will be important to also demonstrate immunosuppression in mice, our ex vivo 

suppression assay could extrapolated in vivo by transfer of CFSE labeled T cells with or without 

B cells into DTRag1-/- mice.  Finally, we will seek to further characterize the phenotype of 

Ly6Chi monocytes by examining changes to known IL-10 target genes such as: downregulation 

of CD86, MHCII, and LPS-induced TNF-α and IL-12 expression as well as upregulation of 

SOCS3 and hyperactivation of STAT3.  We will also sort myeloid populations from K14Ras 

skin to examine the immunosuppressive status of tissue resident inflammatory cells.  Whether 

this phenomenon has an effect on squamous tumor development will be difficult to prove 

because of our current lack of a B cell or IL-10 deficient FVB/n mouse.  Examining skin tumor 

development in B cell reconstituted DTRag1-/- mice will not support our claims that dampened 

anti-tumor immunity due to MDSC immunosuppressive activity enhances tumor progression 

because of the lack of T cell targets to for Ly6Chi cells to suppress in Rag1-/- mice.  

Furthermore, we clearly show that total depletion of B cells is not possible so classic remove and 

add-back experiments are not presently possible.  
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Chapter 5 – Inflammatory responses specific to oncogene expression in basal and post-
mitotic epidermal compartments may contribute to malignant potential 

 

5.1 Introduction 

One of the more centralized questions in the field of cancer biology is the localization of 

the initiated cancer cell within the epithelial compartment.  The epidermis is organized into a 

stratified squamous epithelium with a basement layer of basal proliferating keratinocytes beneath 

progressively differentiating squames of post-mitotic layers that are irreversibly in cell cycle exit 

culminating in apoptotic cornification or “sloughing off”.  This process is tightly regulated by 

calcium concentration and integrin-mediated cell to cell contacts with the basement membrane 

that direct apical and basolateral polarity (1;2).  Epidermal compartments are not only indentified 

by spacial localization in relation to one another but also by their unique cytokeratin expression 

patterns where basal keratinoctyes distinctly express the pairs of type 5/14 (K5/K14) and 

suprabasal keratinocytes express K1/K10 in addition to the terminal differentiation markers 

Involucrin, filaggrin and loricrin.  This tissue organization extends to hair follicle structures 

where additional subsets of undifferentiated keratinocytes reside in bulge region niches, 

biochemically identifiable through co-expression of (K15) and the stem cell marker (CD34).  

These unique stem cell keratinocytes also expresses the K5/K14 basal markers and are widely 

thought to be the primary target of malignant epithelial growth because of their pluripotent 

potential (3). 

Benign lesions arising on epithelial skin surfaces during the chemical carcinogenesis 

tumor protocol have a variable progression to malignant conversion.  Standard DMBA/TPA 

protocols require 1 time DMBA application to initiate H-Ras/A61T transversions followed by 

once or twice weekly TPA treatments to promote clonal proliferation of mutated keratinocytes.  

155



This method yields numerous papilloma outgrowths by 10-15 weeks where a proportion can 

spontaneously regress after removal of TPA promotion and another population progresses to 

SCC around 20 weeks albeit at a relatively low ratio (3-5%) of the total tumor burden.  However, 

an alternative protocol that terminates phorbol ester treatments after 5 weeks produces much less 

frequent papilloma numbers that do not regress in the absence of TPA and convert to SCC with 

significantly greater probability (15-25%) (4).  The reasons for this discrepancy are still unclear, 

but these studies suggest that there may be a subset of target cells derived from different 

epidermal compartments that are genetically inclined for greater potential to cause malignant 

conversion.  DMBA application to the dorsal surface of rodents is ubiquitous where all 

keratinocytes, regardless of differentiation stage, are exposed to the carcinogen and thus have an 

equal probability of acquiring an H-Ras mutation.  Cancer cell transformation only occurs when 

multiple mutational events (5 in humans, 2-3 in mice) successively activate proliferative cell 

cycle entry while simultaneously deactivating tumor suppressor pathways.  Ras oncogene 

activates cellular growth arrest through INK4A/ARF and p53 in primary keratinocytes thereby 

blocking transformation in vitro (5) and mutation of one or the other is required for RAS to cause 

progression to SCC in the 2-stage assay (6).  As the majority of H-RAS mutations caused by 

DMBA would no doubt be lost in the process of terminal differentiation, the necessary amount of 

genetic alterations required to induce tumor formation are more likely to occur in an epidermal 

resident with inherently long lived and self-renewal properties like interfollicular and/or bulge 

region keratinocyte stem cells. 

Regression of papillomas during low risk protocols likely implies cytotoxic 

immunosurveillance can ensue following TPA removal.  This also suggests that mutant RAS has 

the ability to intrinsically regulate the promotion of clonal expansion of transformed 
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keratinocytes in the absence of a potent pro-inflammatory phorbol ester.  Based on these results, 

a number of groups have targeted a RAS oncogene with promoters expressed in various layers of 

the epithelium to demonstrate the malignant potential of mutations arising from keratinocytes are 

different stages of differentiation.  A K10-Ras transgene produced benign papillomas that never 

progressed to SCC on areas of the skin associated with grooming and scratching suggesting 

wounding may promote tumor growth (7).  Similarly, an independent study showed K1-Ras 

expression resulted in almost an identical phenotype (8).  MEK1 expression driven by an 

Involucrin promoter could also spontaneously induce benign papilloma formation that was 

drastically increased by punch biopsy wounding (9;10).  In stark contrast, targeting constitutive 

or conditionally inducible RAS expression to a K5 or K14 promoter caused SCC conversion on 

multiple epithelial surfaces; malignant lesions that were refractory to TPA promotion and 

completely independent of wounding (11-13).  These seminal studies indicate that while skin 

tumors can form from any mutated keratinocyte, SCC development almost certainly arises from 

a basal/stem cell lineage.  While there are likely numerous keratinocyte intrinsic mechanisms 

(cell cycle status) that can account for an enhanced inclination to progress to malignancy, no one 

has examined the possibility that cancer cells provoke extrinsic factors unique to mutations in 

proliferating or differentiating epithelial cell layers that may influence tumor outcome.  Of note, 

Arwert et al did demonstrate that the Inv-MEK1 benign tumor formation was dependent on γδT 

cells and macrophages (9).  Interestingly, when characterizing microarray gene expression 

profile signatures unique to either high or low risk papillomas, low T cell infiltration was a 

distinguishing factor for high risk skin tumors supporting the potential for immune-derived 

mechanisms of malignant progression associated with basal/stem cell mutations (14). 
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To address the hypothesis that immune mediated mechanisms influence the disparate 

malignant outcome of skin carcinogenesis initiated from pre and post-mitotic oncogene 

expression, we compared inflammatory responses in InvtTA and K14rTA tetOHRASG12V mice.  

The results presented herein demonstrate cytokine signaling patterns unique to RAS expression 

in each compartment that may explain the variable progression risk between differentiated and 

stem cell driven skin cancer. 

 

5.2 Results 

We have initially compared acute inflammation in both InvRas (7 days off dox) and 

K14Ras (4 days on dox) mice in order to investigate any immediate differences to RAS 

expression that would be mainly attributable to keratinocyte autonomous RAS signaling.  The 

most overt difference between these two Ras expression models was the lack of neutrophil 

microabscesses in K14rTA/tetORAS (K14Ras) mice despite obvious dermal infiltration of 

leukocytes and systemic expansion of Gr-1/CD11b myeloid cells (Fig. 5-1A).  However, closer 

examination of blood leukocytes revealed Gr-1 expression on the Ly6G+ neutrophilic population 

was markedly reduced from K14Ras mice and there was a greater expansion of Ly6G- cells in 

proportion to Ly6G+ cells (Fig 5-1C).  The immature nuclear morphology of sorted Ly6G+ cells 

suggest neutrophils responding to basal RAS expression had a blunted activation phenotype and 

were more immature than suprabasal RAS neutrophils although this has yet to be validated 

functionally (Fig 5-1D).  Also, in support of previous studies, all tumors arising from InvRas 

expression were of a benign phenotype but preliminary studies on tumor development in K14Ras 

mice produced 1 SCC from 2 mice although both mice were sacrificed before a full 

histopathological analysis could be performed (Fig. 5-1B).  These data indicate that cytotoxic 
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Figure 5-1: Basal RAS expression leads to myeloid expansion devoid of epidermal 
microabscesses and  tumor progression to SCC.  A) Representative H&E images of 
K14rTA/tetORas mice on dox chow for 5 days or InvtTA/tetORas mice off dox water for 7 
days displaying lack of microabscesses in K14Ras skin.  B) Tumor H&E stains from 
transgenic mice on low dox dose protocols exhibiting benign (Inv Pap) and malignant (K14 
SCC) histology. C) Gr-1/CD11b FACS profiles gated on CD45+ population from peripheral 
blood collected at the time of necropsy as in A.  Boxes indicated Ly6G+ population.  D) 
Cytopsins of sorted Ly6G+/CD11b+ cells from the groups indicated.  Note lack of PMN 
morphology in Ly6G+ cells from K14Ras mice. 
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respiratory burst mechanisms were inhibited in neutrophils that expanded systemically in 

K14Ras mice possibly due to dampened maturation and myeloid inflammation that favored 

monocytic expansion over neutrophils. 

Because of the drastic quantitative difference in peripheral blood myeloid populations 

between these two epidermal RAS models, we hypothesized there also may be a qualitative 

functional discrepancy in the monomyelocytic subset.  As before, the immunosuppressive 

potential of Ly6G-/CD11b+ cells purified from spleens was compared in InvtTA and K14rTA 

models.  K14Ras Ly6G- cells, again, potently inhibited CD3/CD28 induced proliferation of 

CD4+ and CD8+ T cell but the same population isolated from InvRas mice exhibited no 

suppressive capability (Fig. 5-2A).  Furthermore, F4/80+/CD11b+ cells isolated from skin of 

InvRas mice were also incapable of inhibiting T cell proliferation (Fig. 5-2B).  A parallel study 

of immunosuppressive properties of F4/80+ cells from K14Ras skin has not been done yet but the 

expression of the key immunosuppressive gene Arg1 was upregulated in skin of K14Ras mice 

but not InvRas mice. This result suggests that skin resident macrophages in K14Ras mice could 

have similar suppressive function as that observed in splenic monocytes (Fig. 5-2C). 

Based on these data we postulated that cytokine expression originating from the skin in 

these two models may not be equivalent, thus causing their distinct inflammatory responses.  

Indeed, relative to InvRas skin, K14Ras skin demonstrated increased mRNA transcripts of 

S100A9, CCL2 and KC, while InvRas skin had higher expression of GM-CSF, IL-1α, and IL-1β 

(Fig. 5-3).  S100A9 has been shown to be a critical cytokine in inducing MDSC activity by 

preventing myeloid differentiation and CCL2 is important in monocyte MDSC recruitment 

supporting the previous results on the immunosuppressive functions of Ly6G-/CD11b+ cells in 

each RAS model (15).  This indicated to us that oncogenic RAS may have a varying potential to 
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Figure 5-2: Splenic Ly6G-/CD11b+ and skin F4/80+/CD11b+ cells from InvRas mice are 
not suppressive.  A) Suppression assay using sorted CD11b+ cells from spleens of 
InvRas (left) or K14Ras (right) mice respectively.  B) Skin single suspensions were 
prepared from InvRas mice and sorted for F4/80+ or Ly6G+/CD11b+ cells and placed in the 
suppression assay.  Ly6G- cells from K14Ras spleens were used as a positive control.  C) 
QRT-PCR for Arg1 transcripts in total skin from the indicated groups. 
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Figure 5-3: Differential cytokine expression patterns in InvRas and K14Ras mice.  
QPCR amplification of dorsal skin cDNA from non-Ras expressing (control), InvRas, and 
K14Ras mice for the genes listed.  Each group is the mean and standard error of 4-6 mice. 
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activate downstream signaling dependent on the differentiation status of the cell it is expressed 

in.  Indeed, p-ERK1/2 immunoblotting of total skin lysates from InvRas or K14Ras mice showed 

that even though total RAS transgene levels were higher in InvRas skin, ERK activation was 

equivalent or somewhat diminished compared to its basal RAS counterparts (Fig. 5-4A).  

Supporting this concept, p-ERK1/2 immunohistochemical staining on dorsal skin sections from 

both models showed ubiquitous staining in K14Ras epidermis compared to sporadic and non-

uniform p-ERK1/2 in InvRas skin (Fig. 5-4B). 

Next we analyzed primary keratinocyte RAS signaling in vitro to eliminate paracrine 

contributions from stromal cells that could confound any interpretation of the strictly cell 

autonomous RAS downstream signal transduction in basal and differentiating keratinocytes.  We 

also examined only K14Ras keratinocytes and manipulated their differentiation states by 

changing extracellular calcium concentrations to avoid kinetic variables between the InvtTA and 

K14rTA dox inducible systems.  When keratinocytes were differentiated with a 0.5mM Ca2+ 

(HiCal) switch prior to dox induction of RAS transgene, ERK1/2 activation was noticeably 

reduced, confirming that RAS in terminally differentiated keratinocytes is less capable of 

activating its immediately downstream MAPK pathway (Fig. 5-5A).  Importantly, this 

phenomenon may be specific to ERK1/2 as phosphorylation of AKT was left unaffected (Fig. 5-

5A).  Correspondingly, cytokine expression induced by RAS was inhibited by both calcium 

increases and the MEK1/2 inhibitor U0126 (Fig. 5-6A and B).  These results suggest a critical 

role for the involvement of ERK in mediating specific cytokine expression induced by RAS. 

As most of these cytokine genes induced by RAS have NFκb consensus elements in their 

promoters and thus potentially regulated by NFκb transcriptional activity, we tested whether 

RAS expression directly activated NFκb and if blockade of NFκb signaling could inhibit 
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Figure 5-4: InvtTA/tetoRas mice exhibit reduced ERK1/2 activation.  A) Immunoblot on 
total skin lysates from the groups listed stained with antibodies against H-Ras, p-ERK1/2, 
total ERK1/2, and the loading control β-actin.  B) Immunohistochemical staining of dorsal 
skin sections with α-p-ERK1/2.  Control – Ras sections had negligible pERK1/2 staining in 
the epidermis (not shown). 
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Figure 5-5: Differentiating primary keratinocytes blocks ERK1/2 activation by RAS.  
Primary keratinocytes isolated from K14rTA/tetoRas mice were cultured in LoCal medium 
(0.05mM) for 2 days and a group was switched to HiCal (0.5mM) for 24 hours to induce 
differentiation.  Dox (1ug/ml) was then added to + dox groups and protein lysates 
harvested 24 hours later.  SDS-PAGE and western blots were subsequently run and 
stained with the antibodies indicated.  This experiment was repeated 2 other times 
independently  
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Figure 5-6: MEK1/2 inhibition and Ca2+ differentiation attenuates RAS induced 
cytokine upregulation.  A) QPCR for S100A9 and IL-1α was performed on cDNA from 
K14Ras keratinocytes +/- dox for 48 hours followed by 8 hour treatments with either 
DMSO vehicle or the MEK1/2 inhibitor U0126 (10μM).  B) As in “A”, S100A9 and IL-1a 
QPCR analysis was carried out on cDNA from K14Ras keratinocytes treated with the 
Ca2+ concentrations indicated followed by +/- dox (1ug/ml) treatments for 36 hours.  
These experiments were repeated in 2 separate keratinocyte preps. 
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cytokine transcriptional activity.  Upon RAS activation in cells maintained in LoCal media, both 

p50 and p65 subunits increased their nuclear localization (Fig. 5-7A).  Introduction of the 

dominant negative IκBα super repressor (IκBsr) by adenoviral transduction prior to dox 

treatment blocked RAS’s ability to upregulate numerous, but not all cytokine genes, confirming 

the requirement for NFκb nuclear translocation in RAS induced pro-inflammatory gene 

transcription (Fig. 5-7B).  When bitransgenic keratinocytes were infected with an adenovirus 

expressing A-FOS, a modified Fos gene which blocks all DNA binding by AP-1 transcription 

factors, expression of virtually every cytokine gene tested was enhanced, indicating in the 

context of oncogenic RAS expression, AP-1 was transcriptionally repressive for these genes.  

Conversely, AP-1 or NFκb blockade in HiCal keratinocytes was ineffectual in preventing or 

synergistically activating RAS induced GM-CSF expression which suggests differentiated 

keratinocytes do not require either transcription factor for RAS mediated cytokine transcription 

(Fig. 5-7C).  However, as both of these proteins are known to play a direct role in the process of 

terminal differentiation blocking their activity after inducing differentiation may be after the key 

transcriptional events have already taken place.  Further studies will be required to elucidate this 

discrepancy and if differentiated keratinocytes upregulate a specific set of cytokines in 

discordance to basal keratinocytes. 

Since InvRas mice exhibited increased pro-inflammatory cytokine expression in vivo and 

displayed an obviously inflamed skin tissue phenotype, we next wanted to see if RAS expressed 

in terminally differentiated cells preferably activated a distinct signaling pathway downstream 

from RAS that could be linked to specific cytokine expression patterns.  Previous studies have 

shown that blocking EGFR or ERK signaling during TNF-α, TGF-α or IFN-γ treatments of 

primary human keratinocytes switched downstream signaling cascades toward p38 and JNK 
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Figure 5-7: RAS activated NFκb is required for cytokine upregulation while AP-1 is 
repressive in basal keratinocytes.  A) Western blots on fractionated cytosolic and 
nuclear protein lysates isolated from K14Ras LoCal keratinocytes 3 hours after dox 
treatments for the NFκb subunits p50 and p65.  B) Adenoviral vectors carrying LacZ control 
or the AP-1 and NFκb dominant negative genes A-FOS and IκBsr were infected into 
keratinocytes 24 hours prior to dox treatments in LoCal media.  RNA was harvested 24 
hours later, made into cDNA and analyzed by QPCR of specific  mRNA transcripts.  C) As 
in B, except keratinocytes were cultured in HiCal media for 24 hours prior to adenoviral 
transduction and maintained in HiCal media for the duration of the experiment. 
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Figure 5-8: RAS expression in differentiated cells may  selectively activate the JNK 
pathway over p38 or ERK1/2.  A) Western blotting for the activated forms of the JNK 
kinase MKK4 and the p38 kinase MKK3/6 on protein lysates from Lo/HiCal keratinocytes 
+/- dox for 24 hours.  B) As in “A”, immunoblotting for p-MKK4 and loading control on 
InvRas or K14Ras total skin lysates.  Non-ras expressing control skin had negligible MKK4 
activation. 
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mediated upregulation of CCL2, CCL5, and CXCL10 and suppression of CXCL8 (16;17).  

Indeed, blotting for the kinases directly upstream from JNK and p38 revealed that expression of 

RAS in basal/proliferating keratinocytes blocked MKK4 expression while expression of 

transgene in differentiating keratinocytes enhanced MKK4 phosphorylation (Fig 5-8A).  

Increasing Ca2+ concentrations also blocked RAS activation of MKK3/6 indicating multiple 

MAPK pathways were non-responsive to downstream Ras signaling in differentiated cells (Fig. 

5-8A).  We also observed reduced levels of p-MKK4 in K14Ras total skin lysates compared to 

InvRas skin, supporting the concept of differential pathway activation dependent on 

differentiation status (Fig. 5-8B).  However, as total MKK4 and MKK3/6 protein levels have not 

yet been determined, we cannot exclude the possibility that increases in phosphorylated levels 

may represent upregulation of these genes in InvRas skin and differentiated keratinocytes.  Since 

the culmination of JNK signaling is c-Jun transcriptional activity these results suggest oncogenic 

RAS signal transduction preferentially activates this MAPK cascade in differentiated cells over 

the RAF-MEK-ERK pathway that basal RAS expression selects.  In turn, this difference in RAS 

signaling may be one reason why InvRas mice provoke a cytotoxic neutrophil inflammatory 

response and have a benign tumor phenotype and K14Ras expression induces an 

immunosuppressive monocyte response that contributes to a greater risk of SCC development.   

 

5.3 Discussion 

In this chapter, we show preliminary evidence for specific inflammatory responses 

unique to oncogenic RAS expression in basal and post-mitotic epithelial layers.  These data, 

although intriguing, require greater experimental proof that can definitively link a particular 

myeloid inflammatory response to a greater risk of malignant progression.  It is likely that 
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suprabasal RAS expression has paracrine effects on basal keratinocytes in the InvRas model.  

Indeed, proliferation data in chapter 2 showed that most of the BRDU positive cells in InvRas 

dorsal skin are constrained to the basal layer.  The study on Inv-MEK1 mice demonstrated that 

epidermal proliferation increased when transgenic mice were crossed with a K14-IL-1R1 mouse 

where the IL-1 receptor is overexpressed in the basal layer (18).  Furthermore, Inv-MEK1 wound 

induced tumor onset was decreased by application with an IL-1R antagonist supporting the 

concept that paracrine activation of basal cells by suprabasal derived cytokines is a necessary 

component to stimulating proliferation in the non-oncogenic layer (9).  Conversely, targeting a 

MYC oncogene to the Involucrin promoter causes loss of differentiation and proliferation to the 

suprabasal keratinocytes MYC is activated in (19).  Whether InvRas expressing keratinocytes are 

de-differentiating over time with RAS expression is an important concept that has yet to be 

determined in our model. 

Subunits of AP-1 dimers have variable expression patterns in the epidermis depending on 

the differentiation status and their role in mediating keratinocyte terminal differentiation has 

been well studied (20).  Interestingly, in murine epidermis Fos and Fra-1 are both expressed in 

the basal layer and whereas only Fra-1 is predominantly expressed in the suprabasal layer (21).  

Furthermore, whereas Fos is primarily a positive regulator of gene transcription, Fra-1 has been 

shown to be largely repressive (22;23).  Both subunits are activated upon v-ras transduction in 

keratinocytes indicating both play roles in epidermal transformation (24).  Our data shows that in 

basal keratinocytes, NFκb is activated in response to H-RASG12V expression and mediates RAS 

induced cytokine gene upregulation but AP-1 blockade has the reverse effect.  This likely 

implies that although RAS activates both transcription factors, they have opposite functions on 

inflammatory gene transcription.  Cataisson et al demonstrated that the IκBsr could block KC 
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and MIP2 expression in v-ras infected basal keratinocytes (25).  This same group also showed an 

A-FOS transgene could not block the inflammatory skin phenotype in TPA treated K5-PKCα 

mice and enhanced pro-inflammatory gene expression in vitro in response to TPA (26).  

Introduction of the IκBsr in a subsequent study did reverse the effects of PKCα hyperactivity 

(27).  Since Ras activates PKCα in keratinocytes (28) these results are directly applicable with 

ours.  PKCα is also a well known upstream activator of NFκb which would link RAS to NFκb 

activity in our model (29).  Because AP-1 is indeed repressive to cytokine transcription, it would 

make sense that suprabasal epidermal layers would have a decreased potential to increase gene 

expression because Fra-1 would be expressed and JNK signaling is preferably activated in 

differentiated keratinocytes.  MKK4 activation was also decreased in basal RAS expressing 

keratinocytes in our model but in another study conditional K14-Cre mediated epidermal 

ablation of MKK4 resulted in reduced tumor kinetics in the 2-stage CC assay suggesting greater 

complexity during tumorigenesis linked to this MAPK pathway (30). 

Regulation of cytokine expression by ERK1/2 in keratinocytes has been exquisitely 

demonstrated in human keratinocytes where ERK1/2 activation by TGF-α treatment coordinated 

high CXCL8 expression but suppressed CCL2, CCL5, and CXCL10 (16).  The reverse effect 

occurred when EGFR signaling was blocked in TNF-α treated cells through a mechanism of 

increased mRNA stability of the latter 3 chemokines that ultimately lead to qualitatively distinct 

inflammatory responses.  This novel study indicates that in the context of inflammation, 

constitutive ERK1/2 activity can serve as an inflammatory rheostat by regulating keratinocyte 

cytokine/chemokine output.  The potential role of EGFR signaling in this study and ours cannot 

be ignored.  RAS is the immediate downstream signaling effector of EGFR stimulation and 

EGFR and its ligands are potently upregulated during skin carcinogenesis, wound healing and 
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psoriasis (31;32).  RAS itself induces EGFR ligand synthesis formulating a critical growth factor 

autocrine loop that likely effects cytokine expression as well (33).  Supportively, GM-CSF 

expression by TNF-α or IFN-γ treatment of human keratinocytes was potentiated by TGF-α co-

treatment (34).  Tumor growth from grafts of v-ras infected EGFR null primary keratinocytes 

was markedly reduced, evidence for the critical role of in vivo EGFR signaling during squamous 

tumor progression (35). 

Taken together, our data establishes an important extrinsic contribution to malignant 

progression in squamous tumors where oncogenic cytokine signaling is determined by the 

differentiation status of the transformed epithelial cell.  Chronic suppression of adaptive 

immunity by MDSC in basal/stem cell driven epidermal cancer would remove the 

immunosurveillant checkpoints that would be intact in tumors with a suprabasal mutation thus 

providing a fertile environment for progression to SCC.  Future studies will be critical to confirm 

if specific intracellular signaling pathways in cancer cells leading to MDSC formation do exist in 

order to selectively antagonize them to enhance anti-tumor immunity and reduce risks of 

malignant conversion.  Current therapeutic attempts at mitigating RAS signaling in the treatment 

of malignant disease include targeting B-Raf kinase in melanoma (36), RAS post-translation 

farnesylation in hematologic cancers (37), EGFR blocking mAb and tyrosine kinase inhibitors in 

various solid tumors (38), MEK1/2 (39), and PI3K (40).  Our findings could have broad 

implications for the diagnosis and treatment of multiple cancer types arising in multilayered 

stratified epithelium where stem cells are thought to contain the greatest malignant potential.  
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Chapter 6: Conclusion and Future Direction 

6.1 Discussion 

The data presented herein provides strong evidence for the putative tumor promoting 

roles of lymphocytes in oncogenic RAS initiated skin carcinogenesis.  Although similar studies 

have been carried out before, the genetic nature of the RAS transgenic tumor models and direct 

examination of primary immune cell interactions in vivo indicate that lymphocytes exert tumor-

promoting actions in physiologically relevant tumor settings during the onset of inflammation in 

pre-malignant stages.  These contextual differences are worth noting because solid human 

tumors are not solely composed of genetically monoclonal cancer cells that autonomously 

regulate sustained proliferation, evasion of apoptotic and senescent pathways, and metastatic 

dissemination.  Instead, malignant tissue masses arise utilizing proximal contributions from 

normal somatic cells that include resident and infiltrating leukocytes, stromal fibroblasts, 

endothelial cells and pericytes.  Together, these cells form an accessory relationship with 

transformed cells that is needed to achieve the defined hallmarks of cancer (1).  It should be 

reiterated that similar biology to that demonstrated in these studies has been observed in 

analogous skin tumors models where CD8+ T cells and B cells (independently) were required for 

2-stage chemical carcinogenesis and B cells during K14-HPV16 driven squamous progression 

(2-5).  The fact we have supported these claims using our RAS transgenic models leads us to 

believe that there may be tissue specificity in determining standardized immune responses to 

pathological events rather than disease specific mechanisms. 

When closely examining the kinetics of our squamous tumor study, the removal of CD8+ 

T cells caused a greater latency of tumor onset only during the early stages of development.  

Conversely, during later timepoints, CD8-depleted DT/Rag1+/+ mice demonstrated a rapid 
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recovery of total skin tumor burdens.  Additionally, CD8 repletion of DT/Rag1-/- mice initially 

stimulated tumor outgrowth similar to DT/Rag1+/+ mice, albeit for a short duration, thus 

confirming the requirement for additional lymphocyte subsets to sustain papillomatous 

outgrowth.  Intra-tumoral neutrophil infiltration in these groups also mirrored that of 

DT/Rag1+/+ cohorts implying that the acute inflammatory skin biology is extrapolated to 

malignant stages.  This suggests that the pro-inflammatory effects of CD8+ T cells promote early 

pre-malignant proliferation of cancerous keratinocytes requisite for the nascent appearance of 

benign lesions but potentially transition to an inhibitory phenotype later on.  Alternatively, the 

type of myeloid cell (neutrophil) that CD8+ T cells specifically affect may be distinct from that 

of other lymphocyte lineages whereby neutrophils only serve purpose for inducing acute 

epidermal proliferation but do not greatly contribute to other tumor tissue alterations like stromal 

remodeling and angiogenesis; events required predominantly in later stages of malignancy.  As 

we observed similar cytokine profiles in CD8+ T cells infiltrating acute inflamed skin as well as 

those isolated from endpoint tumors, the latter hypothesis seems more plausible.  Girardi and 

colleagues did provide experimental evidence for the separation of  two CD8+ T cell phenotypes 

showing co-expression of IFN-γ, IL-17, and IL-10 simultaneously occurred with downregulation 

of perforin during 2-stage chemical carcinogenesis; a required phenomenon for the promotion of 

tumor volume and malignant conversion (2;3).  Similarly, CD8+ T cell cells conditioned in 

strong Tc17 polarizing conditions (TGFβ, IL-6, IL-23, IFN-γ, IL-1β, α-IL4) potently expressed 

IL-17 and TNF-α but not granzyme B, perforin and FAS ligand (6).  It should be noted, however, 

that a separate in vitro conditioning study using only TGFβ and IL-6 to polarize CD8+ T cells 

into Tc17 phenotypes did result in cytotoxic Tc17 effectors with comparable granzyme B 

expression to Tc1 polarized cells (7).  We did not, however, examine expression of cytolytic 
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effector molecules such as granzyme or perforin so comparing the pro-inflammatory versus 

cytotoxic potential of these cells cannot presently be concluded.  Other further interest was the 

result that only high dose but not low dose TPA treatment during chemical carcinogenesis was 

able to provoke disparate papilloma volumes and malignant conversion ratios in CD8-/- and 

TCRβ-/- vs. WT FVB/n mice (2;3;8).  This may suggest that CD8+ T cell functionality and 

phenotypes may depend on the intensity of the inflammatory microenvironment.  High dose 

phorbol ester application and RAS overexpression per our model would likely qualify for such 

environments.  If there indeed is a distinct functional difference between pro-inflammatory Tc17 

and cytotoxic Tc1 cells, it will be imperative to categorize these differences so targeted therapies 

aimed at phenotypic favoritism could be developed depending on disease context. 

In support of the hypothesis that skin tumor progression requires multiple lymphocyte 

lineages activating different myeloid sets, the studies in the K14-HPV16 model clearly linked 

IgG production by B cells with recruiting and activating angiogenic pathways in mast cells and 

macrophages that led to the enhancement of dysplastic cutaneous architecture (5;9).  Meanwhile, 

B cell reconstitution of Rag2-/- mice only partially recovered DMBA/TPA squamous tumors (4) 

again supporting the claim that B cells and CD8+ T cells are required for maximal squamous 

tumor formation.  CD8+ T cells can express a wealth of genes that directly affect neutrophil 

egress and respiratory burst including IFN-γ, TNF-α, GM-CSF, G-CSF and IL-3 providing a 

direct link between the neutrophilia and cytotoxic activities of skin infiltrating neutrophils 

controlled by RAS induced pro-inflammatory CD8+ T cells.  Since CD8 reconstitution only 

recovered neutrophilic and not mast cell inflammation in DT/Rag1-/- acute hyperproliferative 

skin and papillomas, our data also fits with this dual lymphocyte hypothesis.    The study 

implicating CD8+ “T-pro” cells did not compare 2-stage CC tumor development in TCRβ-/- or 
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CD8-/- mice to that in total lymphocyte deficient Rag-/- groups preventing a direct comparison 

between these two studies.   In the future, it will be necessary to reconstitute DTRag1-/- mice 

with purified CD8+ T and B lymphocytes to experimentally validate this postulate. 

Only two human cancer studies to date have implicated a causal role for pro-

inflammatory Tc17 cells.  Kuang et al observed a high proportion of Tc17 cells in the invading 

edges of hepatocellular carcinomas where these cells also produced IFN-γ, TNF-α and were 

again largely deficient in perforin and granzyme B (10).  Ji et al also FACS analyzed 21 

nasopharyngeal carcinomas and discovered increased percentages of TNF-α/IFN-γ secreting 

Tc17 cells (11).  The idea that the pro-inflammatory activities of CD8+ T cells can lead to 

augmentation of pathological disease states is a relatively new concept in the field of tumor 

immunology.  Because of their obvious significance in directly mediating cytotoxic effector 

mechanisms, these cells were likely overlooked for their potential to cause opposable functions 

in tumors.  We argue, however, that CD8+ T cells inherently contain all of the same capabilities 

and effector mechanisms observed during any given inflammatory cascade regardless of disease 

classification.  In this light, the histological and immunological similarities between psoriasis and 

our InvtTA/tetORas mouse model should not be ignored.  A hyperproliferative basal epidermal 

layer, acanthosis, neutrophil “Munro” microabcesses, activated T cell infiltration, IL-17/IL-23 

production, and residency of diverse myeloid cell subpopulations are all key features shared 

between our model and chronic inflammatory diseases of the skin (12).  Indeed, the etiology of 

the autoimmune condition, psoriasis, is widely believed to be driven by the chronic infiltration of 

IFN-γ and/or IL-17 secreting Th and CD8+ T cells that drive abnormal tissue accumulation of 

activated neutrophils.  Both CD3 depletion and experimentation on a Rag2-/- background greatly 

attenuated the disease scoring during imiquimod induction of a psoriasis-like phenotype in mice 
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(13).  IL-17+/CD8+ cells but not Th17 cells were overrepresented in human psoriatic plaques (14) 

supported by a similar study that showed these cells could also produce TNF-α and IFN-γ while 

exhibiting cytotoxic behavior ex vivo (15).  Th1 and IFN-γ+ Tc cells are increased in the lesional 

epidermis and blood of psoriasis patients (16;17).  And perhaps the most compelling evidence 

linking the immunobiology of psoriasis and skin cancer is that α-TNF-α (Etanercept) therapy is 

highly effective at alleviating psoriasis plaque pathology (18) and TNF-α-/- mice are resistant to 

chemical carcinogenesis (19).  Yet, with all of the data linking chronic inflammation to the risk 

of cancer development, psoriasis persists as one of the lone examples of a negative corollary 

between pre-existing inflammation and malignant onset (20).  We propose the reasons for this 

are two-fold: 1) Cells expressing a mutationally activated oncogene or deactivated tumor 

suppressor disparately respond to cytokines and immune derived factors than those of the same 

cell type without a mutation; 2) Epithelial cells of different tissue origin inherently contain a 

predetermined cytokine/chemokine expression potential that may depend on constitutive PAMP 

signals from symbiotic microfluora specific to that microenvironment. 

There is experimental evidence to support these hypotheses.  TNF-α and IFN-γ treatment 

of normal primary keratinocytes leads to irreversible activation of growth arrest pathways that 

involves upregulation of p16 and p21 (21).  But in the context of chronically inhibited growth 

arrest, as would be the case with E6/E7 transgenic blockade of p53 and Rb in the K14-HPV16 

model, cytokine signaling may lead to very different cellular responses.  For instance, NFκb is 

commonly regarded as a master regulator of cytokine/chemokine gene transcription but its 

paradoxical roles in regulating keratinocyte cell cycling, cutaneous inflammation and skin 

homeostasis make it unique when examining biology specific to the skin.  In normal basal 

keratinocytes, NFκb is activated in response to UV stress (22), cytoplasmic in proliferating basal 
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keratinocytes but nuclear in differentiated suprabasal layers (23) and prevents proliferation by 

inducing p21 dependent growth arrest in numerous studies in vitro and in vivo (24-26).  RAS 

transformation of NIH-3T3 fibroblasts is dependent on NFκb transcriptional activation (27) by 

suppressing oncogenic RAS activated apoptotic pathways independent of p53 (28).  Transgenic 

overexpression of a dominant negative form of IkBα (IkBαSR ) targeted to the basal layer of the 

epidermis leads to super repression of NFκb nuclear translocation causing spontaneous SCC 

development and dichotomously, increased epidermal apoptosis (29).  Furthermore, this forced 

prevention of NFκb translocation by degradation resistant IκBα transgenic expression or genetic 

ablation of epidermal IKKβ surprisingly results in significant TNFR-dependent skin 

inflammation despite the absence of this major pathway to cytokine transcriptional activity 

(30;31).  Intriguingly, both models also required macrophages to initiate and sustain this 

inflammation (32).  Because of NFκB’s pro-survival roles in epithelial cells, it has been proposed 

that the increased apoptotic cell death may be the trigger for the influx of inflammatory 

phagocytes.  In direct opposition to the studies, K5Cre-IκBαfl/fl mice yielded almost identical 

skin inflammatory phenotypes suggesting that both persistent inhibition and activation of NFκb 

signaling in keratinocytes redundantly provokes cutaneous inflammation; although the 

mechanisms for this contradiction may be distinct (33).  Finally, retroviral transduction of H-

RasG12V concomitantly with dominant negative IκBα in human keratinocytes overcame Ras 

activated p15/p16/p21/Rb mediated growth arrest that introduction of oncogenic Ras could not 

achieve alone, demonstrating that blockade of NFκb senescent signaling was required for SCC 

development driven by a Ras oncogene (34).  Taken together, these studies indicate that in skin 

tumors that have inactivated tumor suppressor pathways, persistent NFκb activation by the 

presence of immune derived pro-inflammatory cytokines could lead to positive reinforcement of 
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intrinsic cytokine/chemokine expression without the ability to simultaneously activate growth 

arrest in cancer cells.  Therefore, cytokine signaling in keratinocytes during the steady state may 

result in very different biological outcomes depending on the mutational status of key cell cycle 

checkpoints.  

Regarding involvement of commensal microorganisms and the probability for tissue 

specificity, chronic TLR signaling on colonic epithelia has become a recognized regulatory 

mechanism for gut homeostasis (35).  Similar to skin keratinocytes, IKKγ/NEMO genetic 

ablation targeted to intestinal epithelial cells (NEMOIEC-KO) results in TNFR1-dependent colitis 

(36).  However, crossing NEMOIEC-KO mice onto a MYD88 deficient background greatly 

attenuated inflammatory disease progression demonstrating a requirement for TLR signaling in 

causing this inflammation (37).  Intriguingly, MYD88 knockout mice are also more resistant to 

2-stage chemical carcinogenesis skin tumorigenesis, strong evidence for the direct role TLR 

signaling can play in promoting skin tumor growth (38).  In a similar manner deactivation of 

NFκb signaling in liver parenchymal cells (LPC-hepatocytes and bile duct epithelial cells) by 

IkBαSR expression or genetic knockout of IKKβ/IKKα, NEMO, or p65 leads to increased 

sensitization to TNF-α or LPS induced acute liver damage (39-41).  LPC-targeted NEMO-/- mice 

also spontaneously develop chronic hepatitis as a prerequisite to HCC onset (42).  Conversely, 

deploying similar methods of inhibiting NFκb signaling in CNS tissue (43), muscle (44), and 

pancreas (45) resulted in ameliorated inflammatory conditions in those tissues.  The most logical 

theory for these tissue specific differences is that the liver, skin, and intestine are organs exposed 

to environmental stimuli such as toxins and microbial products whereas muscle, brain, and 

pancreas are relatively protected.  As symbiotic microorganisms express a variety of different 

PAMPs (CpG, LPS, ss/dsRNA, bacterial flaggelin, fungal zymosan) each activating a specific 
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TLR subtype, it is plausible that inherent epithelial TLR signaling activated by tissue specific 

commensal (or pathogenic) microbiota may affect the outcomes of carcinogenic inflammatory 

signaling unique to certain microenvironments.   

Furthermore, we are not excluding the demonstrable effects of CD4+ Th cells, more 

specifically Th17 subsets.  Depletion of CD4 cells proved virtually ineffectual in regards to acute 

epidermal hyperproliferation, mast cell residency and neutrophil inflammation, contrasting with 

CD8-depletion (Fig. 3-7).  However, as we did not assess transgenic tumor development in CD4-

depleted DT mice, their fundamental contributions during RAS driven skin carcinogenesis 

cannot fully be analyzed at this juncture.  Since skewing of CD4+ helper T cell lineages has a 

more established paradigm of functional diversity, depleting all CD4 cells may yield ambiguous 

results.  Both lymph node Tregs and skin resident Th17 cells significantly increased upon 

transgenic RAS activation and these two cell types have counteracting and opposable functions.  

Interestingly, skin carcinogenesis on FVB/n CD4-/- mice using a low dose TPA promotion 

protocol indicated CD4+ T cells were actually inhibiting squamous tumor formation (2), 

conflicting with  results gathered from the same experiment performed on C3H/HeN strains (46).  

We also observed that depleting total CD4 cells resulted in enhanced CD8 activation suggesting 

that anti-inflammatory dampening by Tregs may be responsible for this.  The study by Denardo 

et al showed that CD4+ T cells were dispensable for primary tumor growth in MMTV transgenic 

mice and only affected metastatic disease progression (47), further supporting a tumor stage 

specific hypothesis on the pro-tumorigenic effects of CD4+ T cells.  In addition, Th17 cells may 

play an important role in enhancing CTL tumor immunity.  Removal of CD8+ T cells in our 

model diminished Th17 differentiation which implies that some of the decreased tumor 

promotion in those mice may be due to a lack of Th17 activity.  Their adoptive transfer into B16 
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bearing mice was proportionally more effective than Th1 cell transfer at provoking tumor 

specific CTL activity (48).  In a Pan02 pancreatic mouse model, Th17 skewing led to delayed 

tumor growth (49).  In humans, Th17 intratumoral levels in ovarian cancer patients correlated 

with increased survival by inducing CXCL9/10 recruitment of NK and CD8+ T cells (50) and 

slower disease progression has also been linked in prostate (51), lung adenocarcinoma, and SCC 

(52).  In sum, depleting total CD4 cells in our skin tumor model may not lead to the systematic 

mechanistic dissection required to elucidate a putative immunological role for CD4+ T cell 

subsets in our model.  A better method would be reconstitution of CD4 or Rag1-/- mice with 

purified CD4+ T cells genetically deficient in Th polarizing and effector genes such as Foxp3 

(Treg), RORγT and IL-17 (Th17), IL-4 (Th2), and IFN-γ (Th1). 

Healthy and effective immune systems are able to deactivate immune responses just as 

quickly as they mount them.  In addition to Tregs and Bregs, expansion and activation of 

immunosuppressive myeloid populations seems to be a common self-regulatory mechanism 

employed by the immune system during periods of potentially harmful inflammation.  Their 

evolutionary purpose seems logical as the chronic hyperactivation of T lymphocytes would 

certainly lead to life threatening allergy and autoimmunity.  Cancers, in their unique and 

seemingly intuitive ability to hijack homeostatic immunological processes, take advantage of 

MDSC biology by chronically suppressing immunosurveillant lymphocytes that seek to limit 

tumor cell proliferation and malignant progression.  Tumor microenvironments are endless and 

abundant sources of chemokines such as CXCL1/2, CCL2, CCL7, CCL5, CSF-1/2/3, S100A8/9 

that ensure the constant hematopoietic expansion and infiltration of myeloid cells.  However, 

since dendritic cells, macrophages, and neutrophils are important innate immune effectors in 

shaping and activating cytotoxic adaptive responses to cancer cells, attempting to completely 
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shut down these pathways to prevent further tumor growth seems counterproductive.  

Furthermore, MDSC are by definition only a functional description of their phenotype, not a 

separate myeloid lineage and are likely immature myelocytes stuck in various stages of 

differentiation due to the cytokine environments they are exposed to.  A more rational approach 

would be to target immunosuppressive pathways or effectors thereby not only inhibiting T cell 

non-responsiveness but also potentially reversing the grip on myeloid cell differentiation.  

Indeed, clinical research trials have aimed at reversing the immature and suppressive phenotypes 

of MDSC.  Vitamin D3 treatments on HNSCC bearing patients effectively caused the 

differentiation of CD34+ iMC, thereby improving CD8+ T cell responses, although clinical tumor 

responses were not tested (53).  In a study on renal cell carcinoma patients, all-trans-retinoic acid 

(Vitamin A) produced similar observations (54) and can directly cause in vitro MDSC 

differentiation into macrophages and dendritic cells (55).  Treatment with sildenafil-citrate, a 

PDE5 inhibitor, resulted in downregulated immunosuppressive markers Arg1, iNOS, and IL4Rα 

in MDSC of tumor bearing mice which lead to greater CD8-mediated inhibition of tumor 

growth.  When HNSCC and myeloma bearing patients were treated with sildenafil in the same 

study, proliferation of ex vivo stimulated CD4/CD8 T cells significantly increased (56).  Use of a 

nitro-aspirin adjuvant increased cancer vaccine elicited CTL responses by directly inhibiting 

iNOS and Arg1 enzymatic activity in MDSC (57).  Utilizing the inducibility of our RAS 

transgenic system we provide proof that the immunosuppressive capability of MDSC may be 

manipulated without affecting other facets of myelocytic inflammation.  Whether this effects 

tumor development or not in our model will need to be tested in the future. 

The broad supportive role B cells may play, not only in skin carcinogenesis but also for 

the development of other solid tumors, should draw wide therapeutic interest since anti-CD20 
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therapy is relatively safe and B cell depletion is an effective method of alleviating autoimmune 

disease progress.  Our studies, however, suggest that a specific CD20-resistant Breg population 

may significantly contribute to the pro-tumorigenic properties of monomyelocytic cells thus 

ruling out Rituximab as an adjuvant therapy when seeking to decrease the immunosuppressive 

affects of MDSC.  Based on other reports in conjunction with our findings, it is tantalizing to 

speculate that B cells are intimately involved in the progression of a wide variety of cancers and 

not just those limited to the skin.  The majority of human cancer patients mount specific 

autoantibody responses raised against their tumors (58).  Since autoantibody production is 

attributed to the CD5+ B-1 subset of B lymphocytes, it seems plausible to hypothesize that most 

of the pro-tumorigenic properties of B cells are restricted to regulatory populations.  The 

aforementioned studies on the K14-HPV16 and 2-stage CC skin tumor models support this idea 

(4;9).  Malignant xenografts  on B cell deficient mice in two different studies produced decreased 

tumor growth and increased CTL anti-tumor immunity (59;60), pro-tumoral M2 macrophage 

phenotypes were influenced directly by Bregs in two other studies (60-62), and the anti-

inflammatory polarizing effects of IL-10 on monomyelocytic leukocytes are well understood 

(63).  Perhaps this represents B cell biology unique to conditions of “sterile” inflammation where 

an immune system would have no imperative to eliminate a pathogenic microorganism and 

instead would favor resolution of acute inflammation to avoid harmful, chronic immune 

activation.  IL-10 expressing Bregs are significantly expanded in numerous autoimmune models 

and dampen contact hypersensitivity reactions (64) and EAE disease progression (65).  IL10 null 

mice spontaneously develop inflammatory bowel disease (66) a disease where increased 

numbers of tissue resident IL10+/CD1dhi  B cells have been found and suppress disease 

progression through modulating IL-1 and STAT3 signaling (67).  Transfer of anti-CD40 and 
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collagen activated B cells from IL-10 WT but not KO mice prevented CIA development in mice, 

a T cell-dependent model of rheumatoid arthritis (68).  Finally, the transfer of B cells into NOD 

mice conferred protection from type 1 diabetes, a phenotype that again IL10-/- B cells could not 

recapitulate (69).  This is in stark contrast to the overwhelming amount of evidence suggesting B 

cells are critical components of initiating and perpetuating autoimmune diseases (70).  Excessive 

production of self-reactive immunoglobulins are no doubt a recognized pathogenic mechanism 

of exacerbating autoimmunity and CD20 depletion is used to abrogate symptoms stemming from 

systemic lupus erythematosus (SLE), arthritis, and other autoimmune pathologies (71).  

However, as plasma cells and other mature B2 subsets are the predominant producers of immune 

stimulating antibodies, removing these populations while letting Breg subsets persist may 

account for Rituximab’s therapeutic efficacy. 

The capability of Bregs to administer their activity in vivo is extraordinary when 

calculating how many IL-10+ B cells we transferred into DT/Rag1-/- mice while still achieving 

the acquisition of immunosuppressive functionality in Ly6Chi monocytes.  We transferred 5 

million total naïve B cells of which only ~ 3% (150,000) were theoretically IL-10+.  The other 

study confirming these data also needed to transfer relatively small numbers of IL-10 expressing 

CD5+/CD1dhi Bregs (200,000) to promote lymphoma growth where the TLR stimulators LPS, 

CpG, and PolyI:C effectively reversed the IL-10 induced anti-inflammatory M2 phenotype.  

These data demonstrate the impressive potency of IL-10 on mononuclear phagocytes.  As 

Rituximab therapy requires FcγR-dependent ADCC of B cells by macrophages/monocytes and 

not NK cells (72) and IL-10 upregulates expression of inhibitory FcγRIIB (with an ITIM 

domain) on these cells (73) while downregulating pro-inflammatory properties, it makes sense 

that by observing the inability of mononuclear cells to deplete α-CD20 bound Bregs that they 
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would then also be primed for immunosuppressive functionality when acute inflammation was 

invoked by RAS expression.  IL-10R signaling primarily activates STAT3 (74) and this 

transcription factor is a vital player in mediating MDSC biology.  The prevention of iMC 

differentiation into dendritic cells by tumor cell conditioned media was shown to be mediated 

through a STAT3 mechanism (75).  The same group subsequently showed that pharmacological 

inhibition of STAT3 in vivo could enhance anti-tumor immunity and slow tumor growth (76).  

Moreover, exosomes derived from tumors induced immunosuppressive pathways in MDSC via 

activation of STAT3 and siRNA knockdown of STAT3 in MDSC abrogated their in vitro 

suppressive ability (77).  The most definitive study implicating STAT3 and MDSC biology came 

from Kortylewski et al where conditional genetic ablation of STAT3 targeted to bone marrow 

cells allowed greater IL-12 production and antigen presenting functions in dendritic cells, 

increased neutrophil cytotoxicity, decreased intratumoral Treg infiltration, enhanced antigen 

specific CD8 responses, and ultimately reduced T cell dependent tumor growth in mice with 

STAT3-/- bone marrow (78).  We note that the direct influence of Bregs on 

monocytes/macrophages is not specific to RAS expressing mice as CD20 depletion in ST 

littermates resulted in persistence of a similar proportion of CD20-resistant B cells.  However, 

Ly6Chi/Ly6G- monocytes isolated from normal mice do not inhibit T cell proliferation in vitro 

suggesting that IL-10 priming events are necessary but not sufficient for the RAS induced 

appearance of MDSC populations.  We propose that a series of coordinated events leads to the 

genesis of MDSC where hematopoietic expansion, prevention of differentiation, upregulation of 

immunosuppressive effector genes, and tissue chemotaxis are governed by independent 

processes and paracrine mediators.  The data in this thesis provides evidence for just one of those 

steps.  It will be necessary in future studies to explore the mechanism of how B cells activate 
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immunosuppressive Ly6Chi monocytes through the use of IL-10 deficient B cell transfer and 

performing a molecular characterization of the putative MDSC population for distinct gene 

expression and signaling alterations dependent on B cell derived factors. 

The logical implication that leukocytes play a causal role in promoting or impeding solid 

tumor progression is ostensibly realized when surveying the myriad of immune targeted 

therapies currently approved or being explored for the treatment of malignant diseases (79).  

Indeed, induction of anti-tumor immunity has long been considered the gold standard for cancer 

therapy because of the adaptive and self-sustaining nature and establishment of sentinel memory 

cells that would continually provide cytotoxic elimination of cancer cells.  Cancer vaccines 

would theoretically be the most rational approach to achieving this goal as permanent antigenic 

education would result from the boosting of specific tumor antigens exposed only during the 

onset of tumors even when the antigen is technically of “self” origin.  A multitude of T cell 

recognized tumor antigens have been discovered although the therapeutic viability varies greatly 

(80).  Prostatic acid phosphatase administered to prostate cancer patients improved the median 

survival by 4 months compared to groups with placebo treatments (81;82).  Antigen loaded 

dendritic cells injected intratumorally provoked tumor specific immune responses in ~50% of 

sarcoma bearing patients (83).  However, a recent comprehensive analysis of all stage 3 vaccine 

clinical trials since 2004 catalogued CR/PR responses in only 3.6% of 984 patients, sobering 

results by any measure (84).  The reasons for these failures can likely be attributed to the chronic 

presence of immunosuppressive cells that would counteract any acute increases in CD8 

reactivity.  Without also reversing the cytokine induced stranglehold tumors have on innate 

immune phenotypes that are notoriously Th2/M2/Treg biased, therapy targeted solely at 

enhancing CTL immunoreactivity and tumor antigenicity will likely be futile.  In light of these 
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circumstances, depleting Tregs in melanoma patients with an IL-2/diphtheria toxin conjugate 

(85) or anti-CTLA antibody (86) has yielded encouraging results when combined with vaccine 

delivery in two different trials.  Furthermore, Kao and colleagues used the tyrosine kinase 

inhibitor Sunitinib to reverse the effects of MDSC in patients with oligometastasis and achieved 

responses in 59% of treated patients (87).  Alternatively, to circumvent the pitfalls of the 

immunosuppressive environments tumors create on cytotoxic CD8+ lymphocytes, researchers 

have employed adoptive transfer of in vitro conditioned, autologous CD8+ CTLs transduced with 

chimeric antigen receptors (CAR) with stronger antigenic specificity.  Most of the success has 

come from CD19 targeting for the treatment of CLL (88;89).  However, despite the potency in 

killing systemic leukemic B cells and reducing bone marrow tumor seeds, the major side effect 

has been autologous autoimmune reactions resembling graft versus host disease (GVHD).  This 

subsequently requires immunosuppressive treatments that in turn allow for re-establishment of 

the B cell neoplasm (90).  This method of immunotherapy seems promising, but the threat of 

dangerous autoimmune reactions requiring a lifetime of pharmacological dependence to 

continually boost and dampen CTL activity runs counter to the goal of generating self-sustaining 

adaptive memory and immuno-regulation.   

The combination of immune targeted adjuvant therapy with the cytotoxic protocols of 

chemotherapy and radiation is proving synergistically effective in reversing immunosuppression 

in tumors (91).  CT and RT are extremely adept at activating cell death pathways, especially in 

rapidly dividing cancer cells, and in turn provoke the immune system to clean up the dead tissue.  

However, normal immune programming instructs macrophages to formulate an M2 phenotype to 

heal the new “wound”, thus preventing effective anti-tumor immunity to persist and protect 

cancer patients from malignant recurrence.  In support of this, a novel breast cancer study 
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demonstrated that inhibition of CSF1R signaling in conjunction with paclitaxel chemotherapy 

synergistically reduced tumor burdens in MMTV mice (92).  The mechanism behind this was 

inhibiting TAM infiltration and macrophage reprogramming from M2 to M1 phenotypes, 

allowing for greater CD8 tumor reactivity.  Additionally, a CD40 agonist/gemcitabine dual 

regimen led to M1 mediated tumor cytotoxicity and partial tumor regression (93).  Immune 

reprogramming therapies therefore would especially be useful in overcoming a permanent 

pathological immune status when cytotoxic chemo and/or radio-therapy leaves necrotic tumor 

tissue capable of recalling “tissue healing” immunological responses. 

In sum (Fig. 6-1), the data presented in this dissertation elucidates novel immune 

mediated mechanisms for the promotion of skin carcinogenesis during complex pre-malignant 

inflammatory processes.  Through the paracrine actions of IFN-γ, pro-inflammatory CD8+ T 

cells stimulate neutrophilic cutaneous inflammation leading to enhanced keratinocyte 

proliferation and IL-10 producing Bregs activate specific immunosuppressive pathways in 

Ly6Chi monocytes that dampen T cell activation in mouse models of epidermal H-RasG12V 

expression.  Additionally, the unique inflammatory responses to proliferating and non-

differentiating keratinocyte driven RAS expression may contribute to malignant progression 

where chronic inhibition of T cell activation induced by the basal/stem cell compartments 

correlates with a higher risk for SCC development.  We do not believe these observations of 

CD8+ T cell and B cell biology are entirely limited to the context of epidermal oncogene 

expression but likely have broader implications for understanding regulatory immunocellular 

relationships during any given acute and chronic inflammatory cascade. 
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Figure 6-1: Model for inflammatory skin tumor promotion.  Keratinocytes expressing a RAS 
oncogene in differentiated compartments of the epidermis (Post-mitotic oncogene) will stimulate CD8+ T 
cells to express IL-17 and IFN-γ that in turn drive early inflammatory responses necessary for maximal 
tumor cell proliferation.  These Tc17 cells are sufficient to activate and recruit cytotoxic neutrophils 
through IFN-γ during acute inflammation but cannot by themselves sustain papilloma outgrowth likely 
because of a requirement for additional lymphocyte subsets such as B cells.  Alternatively, RAS 
expression driven by a basal proliferating/stem cell keratinocyte, provokes expansion of Ly6Chi/Ly6G-

/CD11b+ immunosuppressive monocytes that seek to dampen CD4+ and CD8+ anti-tumor immunity by 
nitric oxide production (NO).  B cells are necessary and sufficient to mediate the acquisition of this 
suppressive phenotype, likely through the activities of IL-10 production by regulatory B cell subsets.  
This chronically immunosuppressed microenvironment could be one mechanism skin cancers initiated in 
undifferentiated cells contain a higher risk for malignant conversion.  Reprinted and modified from 
Cancer Cell, Vol. 17, Andreau et al., FcRγ Activation Regulates Inflammation-Associated 
Squamous Carcinogenesis, pp. 121-134, © 2010, with permission from Elsevier and Lancet.  
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