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Abstract

In this dissertation we present sum of histories formulations of loop quantum cos-
mology. These are considered for exactly soluble LQC expressed in a Schrodinger
form with time provided by a scalar field where we are interested in transition
amplitudes and as a constrained system where we are interested in the physical
inner product defined by group averaging. As loop quantum cosmology is based on
the new quantum mechanics motivated from the representation of loop quantum
gravity the sum over histories have many distinct features from standard Feynman
path integrals. The sum over histories is given by an discrete sum over histories
which change configuration only finitely many times. The resulting sum over his-
tories have strong similarities to the current spin foam models while being derived
from a well-controlled canonical quantization. Thus we are able to probe many of
the open questions of spin foam models as well as provide new insights and avenues
of research.
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Chapter 1
Introduction

The beginning of the 20th century saw a great leap in our understanding of both

the large scale and the small structure of the universe through the development of

general relativity and quantum mechanics. The pressures of theoretical inconsis-

tencies between established theories and their conflict with new experimental data

required a new understanding of our universe. General relativity and quantum

mechanics have each been astonishingly successful in explaining the physics within

their own realms of validity. Despite a lack of direct conflict with experiment, it

quickly became apparent that while the two theories should be combined within

a single framework, commonly called quantum gravity, the physical and mathe-

matical structures upon which they are based are radically different. Perhaps the

most striking difference is that quantum mechanics and its relativistic extension,

quantum field theory (QFT), make heavy use of fixed background geometries while

on the other hand general relativity indicates that the force of gravity is encoded

in the geometry of space-time which is itself a dynamic object.

There have been many attempts and are currently many approaches to obtain

a theory of quantum gravity most of which derive from one of two paths from

a classical system to a corresponding quantum theory. The first is the canonical

approach as pioneered by Dirac for the quantization of constrained systems [1],

which is rooted in the Hamiltonian formulation of classical mechanics. Second,

is path integral or sum over histories quantization as introduced by Feynman [2]

with closer ties to Lagrangian mechanics. In well understood systems the two

approaches are known to be equivalent [3]. It is then natural to expect the same
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to hold for quantum gravity; given a canonical description of quantum gravity

there should exist an equivalent sum over histories description and vice versa. In

this dissertation we analyze the sum over histories representations of canonical

loop quantum gravity (LQG) by constructing them in the simplified model of loop

quantum cosmology (LQC). Further we use the sum over histories representations

of LQC as a window into the open problems of spin foam models (SFM) which are

conjectured to be related to canonical LQG.

1.1 Canonical Quantum Gravity

Canonical quantum gravity is a long standing program to quantize gravity following

the procedures for the quantization of systems with constraints as pioneered by

Bergmann and Dirac. It is rooted in the development of a Hamiltonian framework

for general relativity where the basic canonical variables are a 3-metric on a spatial

slice and its conjugate momentum. Thus the Einstein field equations for the full

metric, which determines the geometry of space-time, are reinterpreted as evolution

equations for the 3-metric. The dynamics are encoded in the Hamiltonian for

general relativity, which due to the diffeomorphism invariance of the theory is a

sum of constraints. The constraints serve two purposes: one to restrict the choice

of 3-metric and its conjugate momentum, and second to generate the symmetries

of the theory through the Poisson brackets of the canonical variables with the

constraints.

The basic content of the Dirac procedure for such a constrained theory is to

first quantize the theory ignoring the constraints obtaining a kinematical Hilbert

space and afterwards to impose the constraints as operators on the kinematic

Hilbert space to obtain the physical theory. The first step is to choose a set of

elementary variables that will be represented in the quantum theory such as the

configuration and momentum variables of Schrodinger quantum mechanics. These

form an algebra generated by products and sums of variables and most importantly

the Poisson brackets between them. The second step is to obtain a representation

of this algebra by operators on a Hilbert space where the Poisson bracket between

elementary variables is replaced by the commutator between the corresponding

operators. The resulting space is referred to as the kinematic Hilbert space and
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serves as the foundation for the quantization of the constrained theory. The third

step is to write the constraints in terms of the elementary variables and represent

them as operators on the kinematic Hilbert space. The fourth and final step is to

find the physical states which are annihilated by the constraint operators and to

choose an inner product on the space of these physical states. The result is the

physical Hilbert space consisting of states that are annihilated by each constraint.

Loop quantum gravity is the latest development of the canonical quantization

program. [4, 5, 6]. Beginning with the introduction of a new set of variables [7, 8]

rephrasing general relativity as a theory of connections, the theory is expressed

in the same language as the gauge theories which describe the other fundamen-

tal forces. The phase space of general relativity is then given by pairs of SU(2)

connections, Ai
a, and its conjugate momenta, Ea

i , from which the metric can be

reconstructed. Drawing intuition from lattice gauge theory the elementary config-

uration variables are taken to be the holonomy, he(A), of the connection, Ai
a, which

determine how a spinor is parallel transported along the edge, e. The elementary

momentum variables are the fluxes of the gravitational ’electric’ field, Ea
i through

surfaces S, E(S, f) =
∫

S
Ea

i f
id2Sa. Together these define the holonomy/flux alge-

bra that is represented in the quantum theory. Through the rigorous construction

of a measure on the space of connections, it was possible to construct the Hilbert

space of square integrable functions of (generalized) connections, L2(A, dµAL), on

which the holonomy/flux algebra can be represented [9, 10, 11, 12, 13] . Further

it has been shown that up to technical assumptions this representation is unique

due to the requirement of diffeomorphism invariance [14, 15]. Therefore unlike the

the original approach to canonical quantum gravity in terms of metric variables, in

LQG the kinematic Hilbert space can be rigorously constructed thereby providing

a solid foundation upon which to build the physical theory.

Already at the kinematic level there are profound implication for quantum grav-

ity. First although the full kinematic Hilbert space is non-separable and seemingly

too large to allow practical computations, it can be decomposed into orthogonal

Hilbert spaces Hγ,j which are each finite dimensional. Each Hilbert space, Hγ,j is

labelled by a graph, γ and spins j (non-zero half integers) associated to each edge

of the graph. For each choice of graph, γ, and spins the Hilbert space Hγ,j is the

Hilbert space of a simple spin system. Each element of the Hilbert spaces Hγ,j
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is referred to as a spin-network state and can be specified by the assignment of

an intertwiner (an object from representation theory) to each vertex of the graph,

γ. These spin-network states provide a basis for the full kinematic Hilbert space

called the spin-network basis. Second, these spaces are invariant under the action

of geometric operators constructed solely from the fluxes, including most impor-

tantly the operators associated to the area of a surface and to the volume of a

region. Further these geometric operators constructed from the fluxes have a dis-

crete spectrum rovelli:1995, qtg1, qtg2, thiemann:1998. This has the surprising

implication that both area and volume are quantized and are allowed to take only

certain discrete values. In this sense the spin-network states provide the eigenstates

of quantum geometry.

1.2 The Problem of Dynamics

As much is known about the kinematical structure of the LQG, there is a large out-

standing problem for the field: Dynamics. The rigorously developed kinematical

Hilbert space, Hkin, provides the foundation upon which to construct the physical

Hilbert space by incorporating the constraints. The dynamics of general relativity

written as theory of connections is given by three constraints: the Gauss and dif-

feomorphism constraints which generate local gauge transformations and spatial

diffeomorphisms and the Hamiltonian constraint which generates the dynamics

or equivalently time reparametrizations. The problem of dynamics is three-fold:

first, to find a viable representation of the constraints (or their exponentiation) on

the kinematic Hilbert space 1 by writing the classical constraints in terms of the

elementary operators; second, given a particular candidate for the quantum con-

straints to find the states annihilated by them (or equivalently the states invariant

under the group generated by their exponentiation) and a suitable inner product

between these physical states ; and third, to extract from this physical Hilbert

space observable physics.

For both the Gauss and diffeomorphism constraints this construction has been

carried out. The construction of the full physical Hilbert space composed of solu-

tions to all the constraints including the Hamiltonian constraint remains the major

1Or a suitable space of distributional states
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open question of the theory. The main obstruction to obtaining the complete dy-

namics has been the myriad of ambiguities present in writing the Hamiltonian

constraint operator in terms of the elementary operators [16, 17, 18] and further

the lack of simple means to determine the ’viability’ of a particular choice. Given

a particular choice of the quantum Hamiltonian constraint the second difficulty is

in obtaining physical Hilbert space. The Gauss and diffeomorphism constraints

each generate a simple action on the kinematic Hilbert space making it possible to

construct the physical states and the physical inner product for example through

the group averaging procedure. On the other hand, even classically the Hamil-

tonian constraint does not generate a simple geometric action, so naturally the

corresponding operator is equally complex. The problem of dynamics has been a

point of bifurcation leading researchers in two primary directions. First, working

in simpler systems such as symmetry reduced models, gravity in lower dimensions,

and recently parametrized field theory which has provided considerable insight and

key directions for future progress. The other primary direction has been to try to

gain insight into the canonical theory by developing an analogous theory within

the path integral paradigm, which has led to a very enticing picture for quantum

gravity.

1.3 Spin Foam Models

One approach to understand the dynamics of LQG has been spin foam models

(SFM). These models side-step the problem of defining the Hamiltonian constraint

operator and obtaining the physical Hilbert space by working within the path inte-

gral approach to quantization. Recall that in non-relativistic quantum mechanics

the probability amplitude for a particle initially in the configuration qi at time

t = ti to evolve to a final configuration qf at time t = tf , as defined by the canon-

ical theory, can be equivalently expressed as an integral over all histories of the

configuration variable q(t) interpolating between these configurations (q(ti) = qi

and q(tf) = qf ) each weighted by the exponential of the classical action, eiS,

evaluated on q(t). The path integral representation can be constructed from the

canonical theory following the method introduced by Feynman [2], or can be used

to directly define the quantum theory. The latter route is often used in quantum
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field theory where a path integral is used to define the theory and to derive the

Feynman diagrams used to compute scattering amplitudes.

The path integral paradigm gives a distinct route to quantum gravity as de-

fined by a sum over all possible histories of the 3-geometries of a spatial slice, or

equivalently a sum over all 4-geometries each weighted by an exponential of the

classical Einstein-Hilbert action. In ordinary quantum mechanics and quantum

field theories on a fixed background geometry, such a path integral provides the

transition amplitude for the first state, specified at initial time, to evolve to the

second state at the final time. In the background independent context of quantum

gravity, one does not have access to a time variable and dynamics is encoded in

constraints. Therefore the notion of a transition in a pre-specified time interval is

not a priori meaningful. Rather, the sum over histories would have to provide the

physical inner product between solutions to the quantum constraints, extracted

from the initial and final states.

Such an approach was introduced formally by Misner [19]. Defining quantum

gravity by a sum over all possible metrics or 4-geometries is exceedingly difficult

to implement beyond the formal level due to the diffeomorphims invariance of the

theory. The presence of this symmetry implies that there are many 4-geometries

which are physically equivalent only one of which should contribute to the path

integral. In path integrals for gauge theories such as QED where there are sim-

ilarly many physically equivalent histories it is necessary to introduce a gauge

fixing or some method to parametrize the space of physically distinct histories.

For gravity the exceptional difficulty is in parametrizing the space of diffeomor-

phism equivalence classes of geometries. A more recent approach is to introduce a

discretization of gravity using the ideas of Regge calculus [20, 21, 22, 23]. In this

approach the space of physically distinct geometries can be parametrized allowing

for the definition of a regularized sum over geometries. Approaches of this type

have a distinct difficulty which is the need to eventually take the continuum limit

where the regularization is removed.

New insight coming from both the kinematic structure of LQG as well as results

from lower dimensional gravity has led the an enticing picture for quantum gravity

expressed as a sum over quantum 4-geometries. The basic concept is that in con-

structing a path integral from the canonical theory the precise form of the histories
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of the configuration variables is specified by the eigenvalues of the corresponding

operators. In Schrodinger quantum mechanics the spectrum of the position oper-

ator is identical to the classical configuration space, so the histories summed over

are simply those q(t) taking values in the classical configuration space. In LQG

the eigenvalues of geometrical operators such as area and volume are discrete as

opposed to the continuous classical geometry. As such we would expect a path

integral derived from LQG to be a sum over histories of quantum 3-geometries,

or since the spin-network basis states effectively provide the eigenstates of geome-

try the path integral is expected to consist of sums over histories of spin-network

states.

In the language of SFM this heuristic idea is expressed as follows. A general

SFM can be defined by considering a general 2-dimensional piecewise linear cell

complex ∆∗, which is roughly a finite collection of polygons glued together along

their edges with two boundaries that are graphs. Depending on the model this

2-cell complex is either considered to be embedded in a 4-manifold M where the

its boundaries lie on the two 3-surfaces, S1 and S2, bounding the manifold M or it

is considered to be simply an abstract object. The cell complex ∆∗ plays the role

of a discretization of the 4-manifold M ; for certain choices of the 2-dimensional cell

complex there is an associated discretization of the manifold into the 4-dimensional

analogue of tetrahedra, a simplicial decomposition ∆ where each vertex of ∆∗ lies

inside a 4-dim tetrahedra, each edge of ∆∗ is related to a tetrahedra of ∆, and so

on. For this reason ∆∗ is often referred to as the dual triangulation. The 2-cell

complex is often referred to as the dual triangulation as One can think of S1 as an

‘initial’ surface and S2 as a ‘final’ surface. On each surface one can fix a basis state

of the kinematic Hilbert space of LQG, a spin network, to specify an ‘initial’ and

a ‘final’ state of the quantum 3-geometry. A quantum 4-geometry interpolating

between the initial and final states is given by assigning to each face (polygon) of

the 2-cell complex a spin j and to each edge of the 2-cell complex an intertwiner.

The dual triangulation colored with spin labels and intertwiners of SU(2) can be

seen as a history of spin-network states and therefore a history of quantum 3-

geometries interpolating between the initial and final states. To each such coloring

of ∆∗ by spins and intertwiners there is an associated amplitude. The spin foam

amplitude associated to the 2-cell complex is then given by a sum over all coloring
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of the 2-cell complex. The conjecture is that the physical inner product can then

be obtained by summing these spin foam amplitudes over a suitable family of the

dual triangulations ∆∗. The sum over all dual triangulations is often referred to as

the vertex expansion because the M − th term in the series corresponds to a dual

triangulation with M vertices.

Four different avenues to quantum gravity point towards the framework which

underlies the spin-foam models (SFMs). The first avenue is the heuristic idea from

LQG as above. The other routes are each provided by quantum gravity in lower

dimensions. The first comes from the equivalence of general relativity in 3 space-

time dimensions with BF theory [24], a topological gauge theory having no local

degrees of freedom. For BF theory and thus gravity in 3 space-time dimensions

there is a sum over histories of the SFM type. Although as the theory is topo-

logical the path integral is defined with a fixed but arbitrary discretization and is

independent of the choice of discretization. In higher dimension general relativity

can be regarded as a constrained BF theory [25]. The path integral formulation

of the BF theory provided the second avenue and led to the SFM of Barret and

Crane [26] as defined by constraining the SFM of BF theory. The third route

comes from the Ponzano-Regge model of 3-dimensional gravity [27] that inspired

Regge calculus in higher dimensions [20, 21, 22]. Here one begins with a simplicial

decomposition of the space-time manifold, describes its discrete Riemannian geom-

etry using edge lengths and deficit angles and constructs a path integral in terms of

them. If one uses holonomies and discrete areas of loop quantum gravity in place

of edge lengths, one is again led to a spin foam. The fourth avenue starts from

approaches to quantum gravity in which gravity is to emerge from a more funda-

mental theory based on abstract structures that, to begin with, have nothing to do

with space-time geometry. Examples are matrix models for 2-dimensional gravity

and their extension to 3-dimensions —the Boulatov model [28]— where the basic

object is a field on a group manifold rather than a matrix. The Boulatov model

was further generalized to a group field theory (GFT) tailored to 4-dimensional

gravity [5, 29, 30]. The perturbative expansion of this GFT turned out be very

closely related to the vertex expansions in SFMs. Thus the SFMs lie at a junction

where four apparently distinct paths to quantum gravity meet.

While the heuristic idea is well motivated by the convergence of the kinematic
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structure of LQG and quantum gravity in 3-dimensions, there are numerous open

questions about the detailed structure of SFMs for 4-dimensional gravity First,

SFMs in 4-dimension are developed entirely within the framework of discretized

gravity, so the relationship to continuous gravity is not clear. As the theory does

have local degrees of freedom it is not independent of the choice of discretization

and this dependence must be removed to obtain a quantum theory of continuous

gravity. The candidates for recovering continuous gravity are either a sum over

all triangulations or a refinement of a fixed triangulation, but not a continuum

limit as expected from non-topological gauge theories or the standard Regge ap-

proach [31]. Hints in this direction come from the perturbative expansion of GFT

which gives a sum over triangulations as in the vertex expansion of SFMs. Second

the SFMs in 4-dimensions have not not been systemically derived following estab-

lished quantization procedures, either those coming from path integral or canonical

quantization. The derivations are based on new methods of imposing second class

constraints in the quantum theory, which have yet to be tested sufficiently in known

systems. Where they have been analyzed they have been shown to fail by not giv-

ing the correct physical states and dynamics of the quantum theory [32]. We are

thus led to ask if the SFM picture survives beyond topological models.

1.4 Simpler Systems as Probe of Dynamics

The second main program to understand the dynamics of LQG has been the appli-

cation of the quantization techniques of LQG to simpler systems such as symmetry

reduced gravitational systems, gravity in lower dimensions , and parametrized

field theory. Each provides a simpler arena in which to probe the problems

mentioned above by reducing the degrees of freedom and the number of con-

straints, or by allowing comparison with systems whose quantization is known

through other methods. First, Loop quantum cosmology (LQC) provides a tech-

nically simpler yet physically interesting context to explore the problem of dy-

namics. In LQC the principles of LQG are applied to cosmological models hav-

ing a high degree of symmetry where this symmetry is imposed at the classi-

cal level. Thanks to this symmetry it has been possible to construct and ana-

lyze in detail the physical Hilbert space for these models in a number of cases
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[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. LQC shares many of the

conceptual problems and mathematical structures of LQG and thus provides a

fertile ground to test various and ideas of full LQG. LQC thus far has success-

fully provided insight into the dynamics of LQG including how to extract physical

information and most importantly hints into the correct form of the Hamiltonian

constraint. Similarly recent work by Varadarajan and Laddha [47, 48, 49] and later

by Thiemann [50] used insights gained from LQC to carry out a detailed analysis of

the dynamics of polymer parametrized field theory. Further the combined insight

from this work and LQC has led to the remarkable construction of a diffeomor-

phism constraint operator for full LQG [51]. Thus insights from simplified systems

have had dramatic impact on the full theory of LQG

As LQC has provided a successful test bed for many of the open questions of

LQG we are led to ask if LQC can additionally provide insight into the structure

of possible path integral representations of LQG including the SFMs. In this dis-

sertation we start from the well understood and exactly soluble model of LQC,

which is the canonical quantization of homogeneous and isotropic cosmology with

a massless scalar using the tools of LQG. This model has the benefit of two equiva-

lent descriptions. First, as a system where the scalar field is treated as a clock and

the quantum dynamics are defined by a Schrodinger like equation. This framework

allows for contact with the standard quantum mechanics and allows for simpler

extraction of physical results form the model. Second, the system can be analyzed

within the timeless framework where instead of the quantum states evolving in

’time’ according to a Schrodinger equation, the quantum dynamics are given by

the requirement that the physical states are annihilated by the quantum constraint.

For each picture we will derive a path integral for soluble LQC by closely following

the Feynman construction from the canonical theory. The resulting path integrals

though are quite distinct from those of Schrodinger quantum mechanics due to the

different representation used in LQC which is motivated from the unique represen-

tation used in LQG. We show that the path integrals derived mimic the structure

of the vertex expansion of the SFMs. In particular the path integrals are given by

discrete sums over histories where the configuration variable changes value only a

finite number of times.

The vertex expansion for LQC has the benefit of being constructed from the
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well-understood canonical quantization. As such it is possible to avoid formal ma-

nipulations and to pinpoint the single assumption required to obtain the vertex

expansion. Further we can compare the resulting expansion to the exact physical

inner product. We can then use the similarity between the path integrals of LQC

and the SFM to shed light on the open questions of the current SFMs. Most im-

portantly the vertex expansion of LQC provides a proof of concept that a vertex

expansion as in the SFMs can be constructed starting from the canonical theory.

We show that this construction exists for a large class of models with representa-

tions similar to LQG. Within the context of LQC we are able to study how the

vertex expansion solves the quantum constraint and further how well it provides

an approximation to the exact physical inner product. We are able to probe long-

standing issues such as the role of orientation in the spin foam histories and the

physical interpretation of the coupling constant λ appearing in the perturbative

expansion of GFT. We also introduce new tools for the study of vertex expansions

of SFM such as a notion of coarse graining or renormalization.

1.5 Overview

The outline of the dissertation is as follows. In chapter two we first overview the

salient features of LQC and introduce the deparametrized form of LQC where the

scalar field is used as a clock variable. We then follow the Feynman construction

of sum over histories representation for the deparametrized form leading to the

vertex expansion for LQC, and conclude with a study of the properties of the

expansion and its relation to SFMs. Chapter three introduces the group averaging

procedure as a way to solve the constraints of quantum gravity and extends the

construction of chapter two to obtain a distinct vertex expansion as derived from

the timeless framework. Chapter four then extends the construction of the vertex

expansion beyond LQC to more complex gravitational systems coupled to a scalar

field. Finally chapter five considers the vertex expansion of vacuum models of LQC

which require a regularization to remain well defined.



Chapter 2
Deparametrized LQC

Loop quantum cosmology provides a physically interesting yet technically simpler

context in which explore the open issues of loop quantum gravity [52, 53]. In this

chapter we will use LQC to probe the connection between loop quantum gravity

(LQG) and the spin foam models (SFM). The goal of this chapter is to show

that a detailed analysis of this example provides support for the general paradigm

underlying SFMs and also sharpens the discussion of many open questions. Further

this chapter serves to introduce the techniques and ideas used in the later chapters

in a technically and conceptually simpler setting.

In this chapter we will first provide an overview of the salient aspects of LQC.

Then starting from the deparametrized form of LQC where the scalar field is

treated as a clock variable we construct a sum over histories expansion by follow-

ing the Feynman construction as closely as possible. The result is a sum over dis-

crete histories that closely mimics the vertex expansion in the spin foam paradigm.

We then test the vertex expansion to see how well it provides a perturbative ap-

proximation to the exact transition amplitudes of LQC. We finally conclude with

discussion of the relation to SFM and insights gained.

2.1 Soluble Loop Quantum Cosmology

In this chapter and the next we will focus on the simplest LQC model that has

been analyzed in detail [33, 34, 35, 38]: the k=0, Λ=0 Friedmann model with a

massless scalar field as a source. However, since the derivations do not depend
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on the detailed structure of the model, it is rather straightforward to extend this

analysis to allow for more complex models such as those with non-zero cosmological

constant [39, 40], the spatially compact k=1 case [36], anisotropic models [41, 42],

and inhomogeneous models [44, 45, 46]. In this section then we provide an overview

of the important aspects of soluble LQC.

As mentioned in the introductory chapter LQC is the quantization of symmet-

ric systems in general relativity following as closely as possible the quantization

of LQG. The canonical quantization procedure begins with the Hamiltonian for-

mulation of general relativity in terms of connection variables [7, 8] where the

phase space consists of an SU(2) valued connection, Ai
a and the conjugate electric

field , Ea
i . Based on this there is a natural algebra of functions on this classical

phase space: the holonomies of the connection along edges, h(A, e) = P exp
∫

e
Aiτi,

and the fluxes of the conjugate field through surfaces, E(S, f) =
∫

S
Eif

i. This

’holonomy-flux’ algebra is what is represented in the quantum theory in such a

way that preserves the background independence of the theory.

For the homogeneous and isotropic FRW models, classically one begins by fixing

a (spatial) manifold S, topologically R
3, cartesian coordinates xi thereon, and a

fiducial metric qo
ab given by qo

abdx
adxb = dx2

1+dx2
2 +dx2

3. Since the model considers

homogeneous and isotropic metrics, the physical 3-metric qab is then determined

solely by a scale factor a; qab = a2qo
ab. For the Hamiltonian analysis one further

fixes a cubical fiducial cell V whose volume with respect to qab is given by V = a3Vo.

This cell is necessary to obtain finite results in the Hamiltonian theory, but it is

ensured that any physical quantity is independent of the cell.

Using homogeneity and isotropy the triad and connection can be fixed such

that they depend on the spatially constant variables c, p.

Ai
a = cV −1/3

o
oωi

a Ea
i = pV −2/3

o

√
oqoea

i (2.1)

From these we classically construct the holonomies and fluxes along the edges and

surfaces that are tailored to the symmetries of the system. These are entirely

determined by the quantities p and eiµc, which form algebra that we seek a rep-

resentation for. Following input from the full theory the resulting representation

is one where the operator eiµc is well-defined, while there is no operator corre-
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sponding to the connetion, c. From the dynamics of LQC it is more convenient to

express the theory in terms of the conjugate variables ν and b where the quantity

ν is related to the volume by V = 2πγℓ2Pl |ν| [38].1

The kinematical Hilbert space is a tensor product Hkin = Hgrav
kin ⊗Hmatt

kin of the

gravitational and matter Hilbert spaces. Elements Ψ(ν) of Hgrav
kin are functions of

ν with finite norm

||Ψ||2 :=
∑

ν

|Ψ(ν)|2 (2.2)

where the sum runs over all real values ν. Elements of Hgrav
kin must then have

support on only a countable number of points. On this space ν acts simply by

multiplication and eiλb acts by translations. The matter Hilbert space on the

other hand is the standard one: Hmatt
kin = L2(R, dφ). Thus, the kinematic quantum

states of the model are functions Ψ(ν, φ) with finite norm

||Ψ||2 :=
∑

ν

∫
dφ |Ψ(ν, φ)|2. (2.3)

A (generalized) orthonormal basis in Hkin is given by |ν, φ〉 with

〈ν ′, φ′ | ν, φ〉 = δν′ν δ(φ
′, φ) . (2.4)

Notice that here the volume eigenstates have an inner product given by the

Kronecker delta function as opposed to the Dirac delta function of matter Hilbert

space. This is a key similarity to LQG where the kinematic Hilbert space is non-

separable and the spin network basis, the eigenstates of quantum geometry, has a

similar inner product that can be normalized to a Kronecker delta. This property

is a result by the diffeomorphism invariance of the theory and leads to many of the

interesting aspects including the non-existence of an operator corresponding to the

connection. Additionally having a basis normalizable to the Kronecker delta is the

essential element for the derivation of the vertex expansion in the following sections

and any system sharing this feature will admit a similar expansion. Namely the

1In LQG the basic geometric variable is an orthonormal triad and the physical metric qab

is constructed from it. If the triad has the same orientation as the fiducial one, given by the
coordinates xi, the configuration variable ν is positive and if the orientations are opposite, ν is
negative. Physics of the model is insensitive to the triad orientation and hence to the sign of ν.
In particular quantum states satisfy Ψ(ν, φ) = Ψ(−v, φ).
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vertex expansion presented here can be extended to full loop quantum gravity.

We will refer to such systems as having a discrete kinematical Hilbert space or a

discrete inner product. Where here discrete refers to the discrete topology of the

Hilbert space coming from the Kronecker delta inner product.

Now to obtain the physical Hilbert space one must impose a quantum version

of the constraint equation. One first notes that the quantum constraint can be

written in terms of the basic operators as

CΨ(ν, φ) ≡ p2
φ/~

2Ψ(ν, φ) − ΘΨ(ν, φ) = 0 (2.5)

where Θ is a positive and self-adjoint operator on Hgrav
kin [54]. More explicitly, Θ is

a second order difference operator [41]

(
ΘΨ

)
(ν) := −3πG

4ℓ2o

[ √
|ν(ν + 4ℓo)| (ν + 2ℓo) Ψ(ν + 4ℓo) − 2ν2Ψ(ν)

+
√

|ν(ν − 4ℓo)| (ν − 2ℓo) Ψ(ν − 4ℓo)
]
, (2.6)

where ℓo is related to the minimum area eigenvalue of LQG, the ‘area gap’,

∆ = 4
√

3πγ ℓ2Pl via ℓ2o = ∆. The form of Θ shows that the space of solu-

tions to the quantum constraint can be naturally decomposed into sectors in

which the wave functions have support on specific ‘ν-lattices’ [34] given by {νo +

4nℓo | νo ǫ [0, 4ℓo) and n ǫ Z}. For definiteness, we will restrict ourselves to the

lattice {4nℓo} where n is an integer. Details of the expression of Θ will not be

needed in the following analysis.

2.2 Deparameterized Framework

To obtain the physical states we first notice that the scalar field φ is monotonic on

all classical solutions (also in the cases when k=1, and Λ 6=0) and therefore serves as

a relational time variable, a la Leibnitz, in the classical theory. This interpretation

carries over to the quantum theory. Where, the form of the quantum constraint

(2.5) is similar to that of the Klein-Gordon equation with φ playing the role of

time and −Θ of the spatial Laplacian (or, the elliptic operator generalizing the

Laplacian if we are in a general static space-time). Therefore, in LQC, one can use
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φ as an internal time variable with respect to which physical quantities such as the

density, scalar curvature, anisotropies and other geometric quantities evolve.

A second conceptually important observation is that, as in the Klein-Gordon

case, there is a superselection. A complete set of physical observables (Dirac ob-

servables), which are those that commute with the Hamiltonian constraint, is given

by the scalar field momentum pφ = −i∂φ and the volume V |φo (or, equivalently, the

energy density operator ρ|φo) at the value φ = φo of the internal time [34, 38, 35].

The action of these Dirac observables as well as time evolution leaves the space

of positive and negative frequency solutions invariant. Therefore, as in the Klein-

Gordon theory, we are led to work with either set. In LQC, one generally works

with the positive frequency ones. The similarity of the form of the quantum con-

straint to the Klein-Gordon equation suggests that we use φ as relational time

to deparameterize the quantum theory. As in the Klein-Gordon theory, one can

perform a group averaging procedure to arrive at the physical Hilbert space Hphy

[33]. Then the physical Hilbert space Hphy of LQC consists of positive frequency

solutions Ψ+(ν, φ) to the quantum constraint (2.5), i.e. solutions satisfying

−i∂φ Ψ+(ν, φ) =
√

ΘΨ+(ν, φ) ≡ HΨ+(ν, φ) (2.7)

with the inner-product

(Ψ+, Φ+)phy =
∑

ν=4nℓo

Ψ̄+(ν, φo) Φ+(ν, φo) . (2.8)

which is independent of the value φo of φ at which the right side is evaluated.

Note that, because of deparametrization, the quantum constraint can be regarded

as ‘evolving the state in relational time φ’.

While this construction of Hphy does not require us to think of φ as internal time

in quantum theory, this interpretation is natural in the light of final Eqs (2.7) and

(2.8). For, these equations suggest that we can think of ν as the sole configuration

variable and introduce ‘Schrödinger states’ Ψ(ν) through the physical inner product

(2.8). These ‘evolve’ via (2.7). In this picture, the restriction to positive frequency

states has direct interpretation: pφ ≡
√

Θ is now a positive operator on Hphy just

as p0 is a positive operator on the traditional Klein-Gordon Hilbert space.
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2.3 Sum Over Histories

Given LQC expressed in the Schrodinger picture where we regard ν as a configu-

ration variable and φ as time we will now construct a configuration path integral

for this model. As the physical states evolve via a Schrödinger like equation:

−i∂φ Ψ(ν, φ) =
√

ΘΨ(ν, φ) ≡ HΨ(ν, φ) , (2.9)

the primary object of interest will be the transition amplitude

A(νf , φf ; νi, φi) = 〈νf | eiH(φf−φi)|νi〉 (2.10)

for the initial configuration |νi〉 at time φi to evolve to |νf〉 at time φf . Because

of the close similarity of (2.9) with the Schrödinger equation, we can now pass

to a sum over histories formulation of quantum dynamics using the procedure

introduced by Feynman [2]. It is immediate from the form of (2.9) that this

amplitude depends only on the difference φf − φi. Therefore, without loss of

generality we will set φi = 0 and φf = ϕ and refer to this time interval as I. Let

us divide I into N parts each of length ǫ = ϕ/N and write the transition amplitude

as

A(νf , ϕ; νi, 0) := 〈νf |eiϕH |νi〉 = 〈νf |
N∏

n=1

eiǫH |νi〉 (2.11)

we then introduce a decomposition of the identity operator at each intermediate

time φ = nǫ, (n = 1, 2, . . . , N − 1), I =
∑

ν̄ |ν̄〉〈ν̄|, where the sum runs over the

invariant lattice. 2

A(νf , ϕ; νi, 0) =
∑

ν̄N−1,...,ν̄1

〈ν̄N |eiǫH |ν̄N−1〉〈ν̄N−1|eiǫH|ν̄N−2〉 . . . 〈ν̄1|eiǫH|ν̄0〉

=
∑

ν̄N−1,...,ν̄1

Uν̄N ν̄N−1
Uν̄N−1ν̄N−2

. . . Uν̄1ν̄0 , (2.12)

For notational simplicity we set νf = ν̄N and νi = ν̄0 and to further simplify de-

noted the matrix element 〈ν̄n| exp iǫH|ν̄n−1〉 by Uν̄nν̄n−1 . The division of I provides

2Here the complete basis can be just the lattice ν = 4nℓo or equivalently all real values of ν.
The dynamics will automatically select the invariant lattice as the matrix elements Uν̄nν̄n−1

are
non-zero only if both νn and νn−1 lie on the same lattice.
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a skeletonization of the time interval. An assignment σN = (ν̄N , . . . , ν̄0) of volumes

to the N +1 time instants φ = ǫn can be regarded as a history of the configuration

variable associated with this skeletonization since one can envision the system as

evolving from each ν̄n−1 at time φ = ǫ(n − 1) to ν̄n at time φǫn. The transition

amplitude is thus given by a sum of amplitudes for each of these histories, a la

Feynman:

A(νf , ϕ; νi, 0) =
∑

σ̄N

A(σ̄N ) with A(σ̄N ) = Uν̄N ν̄N−1
Uν̄N−1ν̄N−2

. . . Uν̄2ν̄1 Uν̄1ν̄0 .

(2.13)

Recall, that the Hamiltonian theory implies A(νf , ϕ; νi, 0) = 〈νf |eiHϕ|νi〉. Hence

the value of the amplitude (2.13) does not depend on N ; the skeletonization was

introduced just to express this well-defined amplitude as a sum over histories. In

non-relativistic quantum mechanics, the amplitude for each history would be sim-

plified in the limit of infinitely refining the skeletonization (N → ∞) where the

amplitude for each history can be expanded in epsilon giving,

A(σ̄N ) =〈ν̄N |1 + iǫH|ν̄N−1〉 〈ν̄N − 1|1 + iǫH|ν̄N−2〉 . . . (2.14)

× 〈ν̄2|1 + iǫH|ν̄1〉 〈ν̄1|1 + iǫH|ν̄0〉 + O(ǫ)

Here, if the gravitational kinematic Hilbert space was the standard L2(R, dν) each

matrix element in the above amplitude is distributional. The amplitude would

then be evaluated by inserting a complete basis in the conjugate momenta b for

each matrix element which results in the following,

A(σ̄N ) ≈
N−1∏

m=0

(∫
dbm

)
exp i

N−1∑

n=0

ǫ

(
bn

(ν̄n+1 − ν̄n)

ǫ
+H(ν̄, b)

)
(2.15)

where H(ν̄, b) is some discretization of the Hamiltonian (depending on the factor

ordering chosen). The full amplitude in the limit N → ∞ would be formally

written as a phase space path integral as in non-relativistic quantum mechanics

where if possible one would integrate out the momenta to arrive at a configuration

space path integral.

Where in the standard representation each term in the product is distributional,

for LQC each matrix element in (2.14) is simply a complex number since the volume
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eigenstates are normalizable in the kinematic Hilbert space. That the eigenstates

of the configuration variable are normalizable leads to sum over histories very

distinct from that of Schrodinger quantum mechanics. First it allows for a more

rigorous analysis of the limit N → ∞ of removing the skeletonization. Further

since the amplitudes already depend only on histories in the configuration variable

it is not necessary to pass to the phase space path integral. 3.

We find that while the continuum limit of the amplitude for a single configura-

tion history (2.15) in the Schrodinger representation gives to a non-trivial contri-

bution to the overall amplitude, for LQC the continuum limit of each individual

history (2.14) is zero. This can be seen by looking at the family of amplitudes

of a generic path for each refinement of the skeletonizationi, N , as defined by

νn = ν(ǫn) for some history ν(φ). Up to order ǫ the amplitude is a product of the

following matrix elements

〈ν̄n|1 + iǫH|ν̄n−1〉 = δν̄n,ν̄n−1 + iǫHν̄nν̄n−1 (2.16)

where Hν̄′ν̄ denote the matrix elements of the physical Hamiltonian. Notice that

due to the Kronecker delta, unless the two volumes are equal the matrix elements

is of order ǫ. Thus if along a history the volume changes values M times the

amplitude for that history will be of order ǫM and is zero in the limit that the

skeletonization is removed. It is not possible then to use the limit N → ∞ to

simplify the amplitude for each individual history

2.4 Reorganizing the Sum Over Histories

In section 2.3 we found that the limit, N → ∞, cannot be taken in a naive manner.

In this section we will reorganize the sum (2.13) such that this limit can be taken.

The result will be a sum over discrete histories changing values only finitely many

times, which can be cast as a ‘vertex expansion’ in the spirit of SFM. The idea is

that while the continuum time limit of individual histories is trivial by grouping

together histories the limit can be taken. This is clearly true for the entire set of

3Although, a phase space path integral can be constructed and has many interesting features
[55]
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histories as summing over all histories returns the exact amplitude, but we will see

this is equally true for subsets of the set of histories. More explicitly the idea is as

follows: the total amplitude is written as a sum over amplitudes of histories at a

fixed N,

A(νf , ϕ; νi, 0) =
∑

σ̄N

A(σ̄N ) (2.17)

We will remove the dependence on the skeletonization N from the sum over his-

tories by summing over all histories of all lengths N ,

A(νf , ϕ; νi, 0) =
∑

σ̄

AN (σ̄) (2.18)

where the amplitude AN (σ̄) is zero if the skeletonization associated to the history

σ is not N and returns the amplitude (2.13) otherwise. Now we are interested in

finding a partitioning of the space of histories of all lengths N + 1, such that for

each subset the limit of removing the skeletonization is well defined and commutes

with the sum over histories.

A(νf , ϕ; νi, 0) =
∑

α

∑

σ̄α

AN(σα) (2.19)

where each alpha denotes a subset of the set of histories and

lim
N→∞

∑

α

∑

σ̄α

AN (σα) =
∑

α

lim
N→∞

∑

σ̄α

AN(σα) (2.20)

In the following we construct a given partition such that the limit is well defined

and the commutitivity above holds.

Since the configuration space given by the set of ν̄ eigenvalues is discrete, even

in the limit that the skeletonization is removed the histories are not continuous

functions ν(φ). The paths then simply consist of those that are constant in ν̄ aside

from discontinuous jumps to new values of the volume. At fixed N we first note

that along a path σN , the volume ν̄ is allowed to remain constant along a number of

time steps, then transition to another value, where it could again remain constant

for a certain number of time steps, and so on. The first key idea is to group paths

according to the number of volume transitions rather than time steps. Let us then
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consider a path σ̄M
N which involves M volume transitions (clearly, M ≤ N):

σ̄M
N = ( νM , . . . , νM ; νM−1, . . . , νM−1; . . . . . . , ν2;

N2︷ ︸︸ ︷
ν1, . . . , ν1; ν0, . . . , ν0︸ ︷︷ ︸

N1

) . (2.21)

Thus, the volume changes from νm−1 to νm at time φ = Nmǫ and remains νm till

time φ = Nm+1 ǫ. Clearly N1 ≥ 1 and NM ≤ N . (Note that νm is distinct from ν̄m

used in section 2.3: while νm is the volume after the m-th volume transition along

the given discrete path, ν̄m is the volume at the end of the m-th time interval, i.e.,

at φ = mǫ.) It is clear that any history is of this type.

These histories can be labelled more transparently by two ordered sequences

σ̄M
N = { (νM , νM−1, . . . , ν1, ν0); (NM , NM−1, . . . , N2, N1) }, νm 6= νm−1, Nm > Nm−1.

(2.22)

Note that while no two consecutive volume values can be equal, a given volume

value can repeat in the sequence; νm can equal some νn if n 6= m ± 1. The

probability amplitude for such a history σM
N is given by:

A(σ̄M
N ) = [UνMνM

]N−NM UνM νM−1
. . . [Uν1ν1]

N2−N1−1 Uν1ν0 [Uν0ν0]
N1−1 (2.23)

The second key idea is to carry out the sum over all these amplitudes in three

steps. First we keep the ordered set of volumes (νM , . . . , ν0) fixed, but allow the

volume transitions to occur at any value φ = nǫ in the interval I, subject only to

the constraint that the m-th transition occurs before the (m+1)-th for all m. The

sum of amplitudes over this group of histories is given by

AN (νM , . . . , ν0) =

N∑

NM =M

NM−1∑

NM−1=M−1

. . .

N2−1∑

N1=1

A(σM
N ). (2.24)

Next we sum over all possible intermediate values of νm such that νm 6= νm−1,

keeping ν0 = νi, νM = νf to obtain the amplitude A(M) associated with the set

of all paths in which there are precisely M volume transitions:

AN(M, νf , νi, ϕ) =
∑

νM−1,...,ν1

νm 6=νm+1

AN (νM , . . . , ν0, ϕ) (2.25)
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Finally the total amplitude A(νf , ϕ; νi, 0) is obtained by summing over all volume

transitions that are permissible within our initially fixed skeletonization with N

time steps:

A(νf , ϕ; νi, 0) =
N∑

M=0

AN(M, νf , νi, ϕ) ≡
N∑

M=0

[ ∑

νM−1,...,ν1

νm 6=νm+1

AN(νM , . . . , ν0, ϕ)
]
.

(2.26)

This is clearly a reorganization of the sum over histories given by

∑

σ̄N

=

N∑

M=0

∑

σM

∑

σ̄M
N

(2.27)

Where the barred σ̄N and σ̄M
N are the histories in the time φ and σM keeps track

of only the values of the volume taken along the history. In the following we will

call σM a discrete history.

Recall, however, that the value of the amplitude (2.26) does not depend on N at

all; the skeletanization was introduced just to express this well-defined amplitude

as a sum over histories. Thus, while the range of M in the sum and the amplitude

AN(M) in (2.26) both depend on N , the sum does not. We are now well positioned

to get rid of the skeletonization altogether by taking the limit N goes to infinity.

Note first that with our fixed skeletonization, the gravitational amplitude is a finite

sum of terms,

AG(νf , νi, ϕ) =AN(0; νf , νi, ϕ) + AN(1; νf , νi, ϕ) + . . . (2.28)

+ AN(M ; νf , νi, ϕ) + . . .+ AN(N ; νf , νi, ϕ)

each providing the contribution of all discrete paths that contain a fixed number

of volume transitions. We will rewrite this as

AG(νf , νi;α) = lim
N→∞

∞∑

M=0

∑

νM−1,...,ν1

νm 6=νm+1

AN (νM , . . . , ν0;ϕ) (2.29)

where the partial amplitude AN(M ;α) is defined to be zero if M is larger than N

the total number of transitions thus decoupling the limit N → ∞ from the sum
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over the amplitudes. Focusing on the Mth term in the sum:

The third key idea is to get rid of the skeletonization altogether by taking the

limit as N goes to infinity, to express the total transition amplitude as a vertex

expansion in the spirit of spin-foam models. To carry out this step, we first note

that a straightforward but non-trivial calculation presented in A.1 shows that with

the grouping of paths defined above limN→∞AN (νM , . . . , ν0) exists and is given by:

A(νM , . . ., ν0) := lim
N→∞

AN(νM , . . . , ν0)

=

∫ ϕ

0

dφM

∫ φM

0

dφM−1 . . .

∫ φ2

0

dφ1 A(νM , . . . , ν0;φM , . . . , φ1) , (2.30)

where,

A(νM , . . . , ν0;φM , . . . , φ1) := ei(ϕ−φM )HνM νM (iHνMνM1
) ei(φM−φM−1)HνM−1νM−1 ×

. . . ei(φ2−φ1)Hν1ν1 (iHν1ν0) e
iφ1Hν0ν0 (2.31)

The structure of these equations can be understood as follows. In the limitN → ∞,

the length ǫ = ϕ/N of the elementary time intervals goes to zero, which made the

amplitude due to a single history vanish. Here each ǫ combines with a discrete

sum appearing in (2.24) over the time where the transitions occur resulting in

continuous integrals over φ1, ..., φM . Clearly the ordered sums over Ni in (2.24)

gives the structure of Eq (2.30) which says that the final, i.e., M-th volume tran-

sition can occur anywhere in the interval I, the (M-1)-th transition can occur

anywhere before the M-th, and so on. In passing from (2.24) to (3.29), the factors

[UνMνM
]NM−NM−1 = [1 + i((NM −NM−1)ǫ)HνMνM

+ O(ǫ2)] go to ei(φM−φM−1)HνM νM

while the factors UνMνM−1
= iǫHνM νM−1

+ O(ǫ2) simply contribute multiplicative

factors, iHνM νM−1
. Thus we find that as expected by a suitable grouping of paths

the limit N → ∞ can be taken leading to a non-zero value.

The dependence on the intermediate times in (2.30) can be removed by in-

tegrating out the variables (2.24) leading to an expression A(νM , . . . , ν0) just in

terms of matrix elements of H . For simplicity, let us first consider the case of a

discrete history where the diagonal elements Hνmνm are all distinct values, which

for this system is equivalent to the requirement that the volumes (νM , . . . , ν0) are
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all distinct. Then, we have:

A(νM , . . . , ν0, ϕ) = HνMνM−1
. . . Hν1,ν0

M∑

m=0

eiϕ Hνmνm

∏M
j=0
j 6=m

(Hνmνm −Hνjνj
)
. (2.32)

More generally if the diagonal elements are not distinct, there are P distinct vol-

umes νi(d) taken during the discrete history each repeating ni times. Clearly then

n1 + . . .+nP = M + 1. For this general case the integral is given by the following:

A(νM , . . . , ν0, ϕ) = HνMνM−1
HνM−1νM−2

. . .Hν2ν1Hν1ν0 ×
P∏

k=1

1

(nk − 1)!

(
∂

∂Hk

)nk−1 P∑

i=1

eiHiϕ

∏P
j 6=i(Hi −Hj)

∣∣∣∣∣
Hi=Hνi(d)νi(d)

(2.33)

which is computed by first taking the derivatives and then evaluating the resulting

function at the distinct values of the diagonal matrix elements Hνi(d)νi(d)
. Finally,

since limN→∞AN (νM , . . . , ν0, ϕ) exists, the contribution AM from paths with pre-

cisely M volume changes has a well defined ‘continuous time’ limit and the total

amplitude is given by a discrete sum over M :

A(νf , ϕ; νi, 0) =
∞∑

M=0

AM(νf , ϕ; νi, 0) (2.34)

where the partial amplitudes AM are given by

AM(νf , ϕ; νi, 0) =
∑

νM−1,...,ν1

νm 6=νm+1

A(νf , νM−1, . . . ν1, νi, ϕ) (2.35)

=
∑

νM−1,...,ν1

νm 6=νm+1

HνMνM−1
HνM−1νM−2

. . .Hν2ν1Hν1ν0 ×

P∏

k=1

1

(nk − 1)!

(
∂

∂Hk

)nk−1 P∑

i=1

eiHiϕ

∏P
j 6=i(Hi −Hj)

∣∣∣∣∣
Hi=Hνi(d)νi(d)

.

In this limit the reference to the skeletonization of the time interval disappears

and volume changes can now occur at any time in the continuous interval (φi =

0, φf = ϕ). As one might expect, the final expression involves just the matrix
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elements of the Hamiltonian H =
√

Θ. These are calculated in Appendix B.

Eq (2.34) mimics the vertex expansion of SFMs. The key similarity is that

the resulting sum over histories extends over the discrete histories characterized

by simply a finite number of values the volume takes along the history instead

of continuous functions. More precisely, the parallels are as follows. The analog

of the manifold M with boundaries Σi,Σf in SFMs is the manifold V × I, where

V is the elementary cell in LQC and I the closed interval bounded by φ = 0

and φ = ϕ. The analog of the dual-triangulation in SFMs is just a ‘vertical’ line

in V × I with M marked points or ‘vertices’ (not including the two end-points

of I). What matters here is the number M ; the precise location of vertices is

irrelevant. Coloring of the dual-triangulation in SFMs corresponds to an ordered

assignment (νM , νM−1, . . . ν1, ν0) of volumes to edges bounded by these marked

points (subject only to the constraints νM = νf , ν0 = νi and νm 6= νm−1). Each

vertex signals a change in the physical volume along the quantum history. The

probability amplitude associated with the given coloring is A(νM , . . . , ν0) and a

sum over colorings yields the amplitude A(M) associated with the triangulation

with M ‘vertices’, which is related to current SFM which are defined on fixed

triangulations. The total amplitude A(νf , ϕ; νi, 0) is given by a sum (2.34) over

these M-vertex amplitudes, which gives insight into the conjectured sum over

triangulations needed to recover continuum general relativity.

Here we also highlight one key difference as well. Current SFM have locality as

a key assumption. By locality it is meant that the amplitude corresponding to a

fixed triangulation with a given set of labels is a product of amplitudes associated

to each element of the dual triangulation (faces, edges, and vertices) which may

depend only on those elements in their immediate neighborhood. In this system

the amplitude (2.35) associated to each triangulation is not local in this sense. The

amplitude depends on the entire history as can be seen by the explicit dependence

on the number of times a given volume repeats in a history.

The assumption of locality can be related to the assumption that given two

manifolds M and M ′ and triangulation thereof, the amplitude associated to the

triangulation obtained by glueing together M and M ′ is given by the product of

the amplitudes of the two triangulations summed over the labels of the glueing

surface. The corresponding statement for the vertex expansion (2.34) would be
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that the partial amplitude for M + M ′ vertices is given by the product of the

partial amplitudes for M and M ′ vertices with a sum over the intermediate value

of the volume. It can be clearly seen that this feature is not present at the level of

(2.34)

Starting from the full amplitude we can derive composition law for the partial

amplitudes corresponding to two triangulations M and M ′ by simply splitting the

transition amplitude by inserting a complete basis in ν and applying the vertex

expansion to each resulting transition amplitude.

〈νf |ei(ϕ1+ϕ2)H |νi〉 =
∑

ν

〈νf |eiϕ2H |ν〉〈ν|eiϕ1H |νi〉 (2.36)

We can then apply the vertex expansion to each amplitude on the right hand side

of (2.36).

∑

M=0

λMAM(νf , ϕ1+ϕ2; νi, 0) =
∑

ν

∑

M1=0

λM1AM1(νf , ϕ2; ν, 0)
∑

M2=0

λM2AM2(ν, ϕ1; νi, 0)

(2.37)

From which we can find the following composition law for the partial amplitudes,

AM(νf , ϕ1 + ϕ2; νi, 0) =

M∑

M ′=0

∑

ν

AM−M ′(νf , ϕ2; ν, 0)AM ′(ν, ϕ1; νi, 0) (2.38)

The amplitude associated to a larger triangulation M+M ′ is then the not product

of two smaller triangulations but the sum of all possible decompositions into two

triangulations.

One the other hand we can see from the derivation of the amplitudes that the

following holds

AM(νf , ..., νi, ϕ) =

∫
dϕ′AM1(νf , ..., νM2+1, ϕ− ϕ′)iHνM2+1νM2

AM2(νM2, ..., νi, ϕ
′, )

(2.39)

where M1 +M2 +1 = M . Here we do find that the amplitude corresponding to the

larger triangulation M1+M2 is given by a product of the amplitudes corresponding

to M1 and M2 connected by an action of the constraint, if additionally we integrate

over all possible ’times’ at which these amplitudes are combined. In this sense the
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expansion is local when one considers both degrees of freedom.

To conclude this section, we emphasize that the resulting vertex expansion was

derived from a Hamiltonian theory. We did not postulate that the left side of (2.34)

is given by a formal path integral. Rather, a rigorously developed Hamiltonian

theory guaranteed that the left side is well-defined and provided the expression

(2.12) for it. We simply recast this expression as a vertex expansion with one

assumption of the exchange of the limit N → ∞ with the sum over the discrete

histories.

2.5 Vertex Expansion as a Perturbation Series

We will now show that the expression (2.34) of the transition amplitude can also

be obtained using a specific perturbative expansion. This alternative derivation

provides three benefits. First it provides a direct justification of the reordering of

the sum used in the previous section and the interchange of the sum over discrete

histories and the limit N → ∞. The perturbative approach avoids skeletonization

altogether and has the advantage that it guarantees a convergent series. Second,

structurally this derivation of the vertex expansion is reminiscent of the pertur-

bative strategy used in group field theory (see, e.g., [29, 30]), which presents new

insights for group field theory and its connection with quantum gravity. Finally

we will see in later chapters that this derivation provides an additional avenue for

generalization of the expansion presented in this chapter and the next.

Let us begin by decomposing the ‘Hamiltonian’ H into the diagonal part D and

the remainder, the non-diagonal part K which is responsible for volume change of

the in the basis |ν = 4nℓo〉

Dν′ν = Hνν δν′ν , Kν′ν =

{
Hν′ν ν ′ 6= ν

0 ν ′ = ν
(2.40)

Again this decomposition of H is possible due to the discrete inner product of the

basis. Clearly H = D+K. The idea is to think of D as the main part of H and K

as a perturbation. To implement it, introduce a 1-parameter family of operators

Hλ = D+λK as an intermediate mathematical step. The parameter λ will simply

serve as a marker to keep track of powers of K in the perturbative expansion; we
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will have to set λ = 1 at the end of the calculation as there is no true coupling

constant in the theory - the only dimensionfull parameters in H appear equally in

each term of the constraint.

Following the textbook procedure, let us define the ‘interaction Hamiltonian’

as

HI(φ) = e−iDφ λK eiDφ. (2.41)

Then the evolution in the interaction picture is dictated by the operator

Ũλ(φ) = e−iDφeiHλ φ , satisfying
dŨλ(φ)

dφ
= iHI(φ)Ũλ(φ) , (2.42)

whose solution is given by a time-ordered exponential:

Ũλ(ϕ) = T ei
R ϕ
0 HI(φ)dφ

=

∞∑

M=0

∫ ϕ

0

dφM

∫ φM

0

dφM−1 . . .

∫ φ2

0

dφ1 [iHI(φM)] ... [iHI(φ1)] .(2.43)

Next, let us express the evolution operator as Uλ(ϕ) = eiDϕŨλ(ϕ), with Ũλ(ϕ)

given by (2.43), take matrix element between initial and final states, |νi ≡ ν0〉 and

|νf ≡ νM〉, write out explicitly the product of the HI ’s, and insert a complete a

complete basis between each HI . The result is

Aλ(νf , ϕ; νi, 0) =
∞∑

M=0

∫ ϕ

0

dφM ...

∫ φ2

0

dφ1

∑

νM−1, ..., ν1

[ei(ϕ−φM )DνM νM ] (iλKνMνM−1
) ×

[ei(φM−φM−1)DνM−1νM−1 ] . . . (iλKν1ν0) [eiφ1Dν0ν0 ] .

(2.44)

We can now replace D and K by their definition (3.42). Because K has no diagonal

matrix elements, only the terms with νm 6= νm+1 contribute to the sum and the

sum becomes

Aλ(νf , ϕ; νi, 0) =
∞∑

M=0

λM
[ ∑

νM−1,...,ν1

νm 6=νm+1

A(νM , . . . , ν0)
]
, (2.45)

where A(νM , . . . , ν0) is defined in (2.32). If we now set λ = 1, Eq. (2.45) reduces
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to Eq. (2.34) obtained independently in section 2.4.

Thus, by formally regarding the off-diagonal piece of the Hamiltonian as a

perturbation of the diagonal piece we have obtained an independent derivation of

the vertex expansion of the amplitude Aλ(νf , ϕ; νi, 0) as a power series expansion

in λ, the power of λ serving as a book-keeping device to keep track of the order

in the vertex expansion. In this sense this alternate derivation is analogous to the

vertex expansion obtained using group field theory.

2.6 Satisfaction of the Schrodinger Equation

Recall that in the deparametrization scheme, the Schrödinger equation (2.9) in-

corporates both the quantum constraint and the positive frequency condition.

By its very definition, the exact transition amplitude A(νf , ϕ; vi, 0) satisfies this

Schrödinger equation if viewed as a function of νf and ϕ.

(i∂ϕ +H)A(νf , ϕ; vi, 0) = 〈νf |(i∂ϕ +H)eiϕH |νi〉 = 0 (2.46)

As a non-trivial check of the perturbative expansion (2.34) we are led to ask

whether the Schrödinger equation is solved by the vertex expansion and in a con-

trolled approximate sense if we were to truncate the series on the right side of

(2.34) at a finite number , M⋆, of vertices. We will now show that this is indeed

the case.

The action of H on the vertex expansion is given by

HλA(νf , ϕ; vi, 0) =
∑

M

λMHλAM (νf , ϕ; vi, 0) (2.47)

since each term of the vertex expansion can be treated as a function of νf and ϕ.

Here we have kept λ which will act as a place-holder to simplify the calculation.

Since Hλ = D + λK, the Schrödinger equation would be solved order by order in

λ if for each M we have:

(i∂ϕ +Df )AM(νf , ϕ; vi, 0) +KfAM−1(νf , ϕ; vi, 0) = 0 . (2.48)

Using the expression of the partial amplitudes AM(νf , ϕ; νi, 0) this is equivalent to
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the requirement that

∑

νM−2,...,ν1

νm 6=νm+1

[ ∑

νM−1
νM−1 6=νM−2

(i∂ϕ +Df)AM(νf , νM−1, . . . , ν1, νi;ϕ) (2.49)

+KfAM−1(νf , νM−2, . . . , ν1, νi;ϕ)
]

(2.50)

vanishes for each M . Where again we view AM(νf , νM−1, . . . , ν1, νi;ϕ) as func-

tions of νf and ϕ for fixed νM−1, . . . , νi. It is clearly possible that the above

expression could vanish only through cancellations between terms from the en-

tire sum over νM−1, ..., ν1. Surprisingly though using the expression (2.35) for

A(νf , vM−1, . . . ν1, νi;ϕ), one can verify that the cancellations occur path by path

i.e. for each νM−1, . . . , νi the term in brackets is zero.

∑

νM−1
νM−1 6=νM−2

(i∂ϕ +Df )AM(νf , νM−1, . . . , ν1, νi;ϕ) (2.51)

+KfAM−1(νf , νM−2, . . . , ν1, νi;ϕ) = 0 (2.52)

To see this we compute the action of the diagonal and off-diagonal parts of the

Schrödinger equation on the partial amplitudes (2.35). Without loss of generality

we assume that νf = vP (d) in (2.35). Then we have that the action of i∂ϕ +Df is

(i∂ϕ +Df)A(νf , νM−1, . . . , ν1, νi;ϕ) = HνfνM−1
HνM−1νM−2

. . . Hν2ν1Hν1ν0 ×[
P∏

k=1

1

(nk − 1)!

(
∂

∂Hk

)nk−1 P∑

i=1

−Hie
iHiϕ

∏P
j 6=i(Hi −Hj)

(2.53)

+ Hvp(d)vp(d)

P∏

k=1

1

(nk − 1)!

(
∂

∂Hk

)nk−1 P∑

i=1

eiHiϕ

∏P
j 6=i(Hi −Hj)

] ∣∣∣∣∣
Hi=Hνi(d)νi(d)

.

If HνP (d)νP (d)
occurs with multiplicity nP = 1, if νf is the only point in the history

taking the value νP (d) then there are no derivatives in HνP (d)νP (d)
in the above

equation and it simplifies to

(i∂ϕ +Df )A(νf , νM−1, . . . , ν1, νi;ϕ) = Hνf νM−1
HνM−1νM−2

. . .Hν2ν1Hν1νi
×
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[
P∏

k=1

1

(nk − 1)!

(
∂

∂Hk

)nk−1 P∑

i=1

(HP −Hi)e
iHiϕ

∏P
j 6=i(Hi −Hj)

]∣∣∣∣∣
Hi=Hνi(d)νi(d)

= −Hνf νM−1
A(νM−1, . . . , ν1, νi;ϕ) . (2.54)

Where in the final step we recognized that the term (HP −Hi) renders the P − th

term of the sum zero and removes the HP dependence from each other term in the

series. Together these reduce the structure to that of a history without the final

point νf . Thus, on simple paths where the final volume occurs only once in the

history, the action of i∂ϕ +Df is to give the amplitude of the history without νf ,

times a matrix element of H related to the transition from νM−1 to νf . In general,

the value of the final volume can be repeated in the discrete history; nP 6= 1. In

that case we need to push HνP (d)νP (d)
under the derivatives in (2.53). We push the

factor of Hp under the derivatives using the identity that

x
∂n

∂xn
f(x) =

∂n

∂xn
(xf(x)) − n

∂n−1

∂xn−1
f(x) (2.55)

giving

(i∂ϕ +Df)A(νM , . . . , ν0;ϕ) = HνfνM−1
HνM−1νM−2

. . .Hν2ν1Hν1ν0 ×
[

P∏

k=1

1

(nk − 1)!

(
∂

∂Hk

)nk−1 P∑

i=1

(Hp −Hi)e
iHiϕ

∏P
j 6=i(Hi −Hj)

(2.56)

−
P−1∏

k=1

1

(nk − 1)!

(
∂

∂Hk

)nk−1
1

(np − 2)!

(
∂

∂Hp

)np−2 P∑

i=1

eiHiϕ

∏P
j 6=i(Hi −Hj)

]

= −Hνf νM−1
A(νM−1, . . . , ν1, νi;ϕ)

As above the (HP −Hi) appearing in the first term removes the HP dependence,

so the derivative with respect to HP is zero. The result is simply the second term

which is again the amplitude of the history without the final point, νf , times a

matrix element Hνf νM−1
. Thus, in all cases we have

(i∂ϕ +Df )A(νM , . . . , ν0;ϕ) = −Hνf νM−1
A(νM−1, . . . , ν1, νi;ϕ) . (2.57)

Finally, it is straightforward to evaluate the action of the off-diagonal part on
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AM−1:

Kf A(νf , νM−2, . . . , ν1, νi;ϕ) =
∑

νM−1

Hνf νM−1
A(νM−1, νM−2, . . . , ν1, νi;ϕ) . (2.58)

Putting these two results together we see that (2.51) is satisfied by the partial

amplitudes A(νM , νM−1, . . . , ν1, νi;ϕ). Thus the Schrödinger equation is solved in

a surprisingly simple fashion. It is satisfied path by path due to the satisfaction of

eqn (2.51) by the partial amplitudes A(νM , vM−1, . . . ν1, νi;ϕ) Thus we have shown

that the vertex expansion resulting from the perturbation series satisfies quantum

dynamics in a well-controlled fashion: If we were to terminate the sum at M = M⋆,

we would have

(i∂ϕ +Df + λK)
[ M⋆∑

M=0

λMAM(νf , ϕ; vi, 0)
]

= O(λM⋆+1) (2.59)

This brings out the precise sense in which a truncation to a finite order of the ver-

tex expansion incorporates the quantum dynamics of the deparameterized theory

approximately. If only up to a finite number M = M⋆ of vertices are included then

the sum provides a solution to the Schrödinger equation up to terms depending on

paths with M = M⋆+1 vertices. The difficulty though is that to recover expansion

corresponding to the original constraint we must set λ = 1 so it is not clear that the

terms of higher order in λ are necessarily small. It would be necessary to explicitly

compute each term or be able to set bounds on them to show that each successive

term is smaller. Here we do know that the series converges as it is derived from

the expansion of the unitary evolution operator via standard perturbation theory,

so there does exist M⋆ such that for all M > M⋆, the partial amplitudes AM have

the necessary falloff. The terms of the expansion could then be increasing up to

say M = 100, so there is a no a priori reason why any finite number of terms

will provide a good approximation the physical inner product without additional

knowledge of the amplitudes.
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Figure 2.1. Real (solid) and imaginary (dashed) parts of the partial amplitude with
zero vertices A0(4λ,ϕ; 4λ, 0) plotted as a function of

√
12πGϕ. This provides the first

term of the vertex expansion.

2.7 Testing the Expansion

In the previous section we demonstrated that the vertex expansion provides a per-

turbative solution to the constraint in a very simple manner - i.e. path by path.

On the other hand there is at present no a priori way to determine if the concate-

nation of the series at some finite order will provide a good approximation to the

exact physical inner product. In this section then we explicitly test the expansion

through comparison with the exact amplitude. It is imperative to test any new

approximation methods or quantization technique with well known systems to en-

sure that results can be trusted in more complex systems where exact calculations

are not available.

The strategy for this section is as follows: For the simple choice of initial and

final volumes, νi = 4λ and νf = 4λ, we analyze the first few terms of the expansion

first individually to check the falloff behavior and second how the sum to compares

to the exact amplitude. We will see that the behavior of the expansion exhibits the

concern of the previous section that higher order terms can dominate the sum. In

particular we see that higher order terms become more important at large values

of scalar field.

We see here an explicit realization of the concern that even though the series
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Figure 2.2. Real (solid) and imaginary (dashed) parts of the second term in the vertex
expansion with two vertices (M = 2) A2(4λ,ϕ; 4λ, 0) plotted as a function of

√
12πGϕ.

Comparing with figure 2.1, for
√

12πGϕ < 2 the M = 2 term is smaller than the M = 0
while clearly the M = 2 term of the vertex expansion dominates the M = 0 for larger
values of ϕ, so we see for longer evolution in ϕ terms with more vertices can contribute
more than the lower terms in the vertex expansion.
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Figure 2.3. Real (solid) and imaginary (dashed) parts of the partial amplitude with two
vertices A4(4λ,ϕ; 4λ, 0) plotted as a function of

√
12πGϕ. Again comparison with figures

2.1 and 2.2 the M = 4 term of the vertex expansion is larger than both M = 0,M = 2
terms for larger values of ϕ. We again clearly see that for longer evolution in ϕ higher
order terms in the vertex expansion will dominate the expansion.
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Figure 2.4. The exact transition amplitude A(4λ, 4λ,ϕ) (solid line) and the vertex
expansion up to order M = 2 (dashed), M = 4 (dot-dashed), and M = 6 (dotted)
plotted as functions of

√
12πGϕ. With more terms of the expansion included the vertex

expansion converges up to a larger value of ϕ, but there is large deviation from the exact
amplitude beyond that value. Thus it is necessary to include higher and higher terms
in the vertex expansion to have even a first-order approximation of the exact transition
amplitude.

is convergent it does not require that the each subsequent term after the first is

smaller - that especially for longer evolution in ϕ the amplitudes increase withM up

to some critical value of M beyond which they must fall-off since the overall series

is convergent. It is necessary to then to take many terms in the vertex expansion

even to obtain a first order approximation of the exact transition amplitude. This

is an important realization for spin-foam models where there is equally no coupling

constant and little knowledge about the relative size of different terms of the vertex

expansion. Carrying over our intuition from this system we would expect that for

’short time-scale’ phenomena the first few terms of the expansion may suffice,

but for ’long time-scale’ phenomena such as cosmological evolution or scattering

amplitudes the first terms would actually provide a negligible contribution.

2.8 Discussion

Let us start with a brief summary. In section 2.3 we began with Hamiltonian

LQC, divided the time interval into N segments thereby expressing the transition
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amplitude A(νf , φf ; vi, φi) as a sum (2.13) over histories. In section 2.4 we reorga-

nized this sum according to the number of volume transitions allowing us to take

the N → ∞ limit to get rid of the skeletonization of the time interval. This led

us to the expression (2.45) of the transition amplitude. The M-th term in this

expansion corresponds to a sum over all histories in which there are precisely M

volume transitions, allowed to occur at any time in the interval (φf , φi). Therefore

as discussed in 2.4 the expansion resembles the vertex expansion of SFMs where

the dual-triangulation is simply a line with M vertices and the coloring is simply a

labeling of each edge by a volume. In section 2.4 we showed that the same vertex

expansion can be arrived at by formally splitting the Hamiltonian H into a main

part D and a ‘perturbation’ λK and expanding the transition amplitude using

standard perturbation theory in the interaction picture. (Here the ‘coupling con-

stant’ λ was introduced just as a mathematical label to keep track of the number

of vertices in various terms and we have to set λ = 1 at the end to recover the

physical transition amplitude). This expansion in powers of λ resembles the vertex

expansion in group field theory.

While our final result yields vertex expansions in the spirit of SFMs, we did

not begin with a particular SFM and arrive at the vertex expansion by a suitable

symmetry reduction, e.g., by summing over the degrees of freedom other than the

total volume. Rather, since our goal is to analyze spin foam models from the point

of view of standard quantization techniques we begin from the canonical theory. A

parallel approach would be to study SFM from standard path integral techniques

of quantum field theory [56, 57, 58]. While ideally our analysis would begin with

LQG, our procedure is much more modest: As is usual in LQC, we carried out the

symmetry reduction at the classical level by partial gauge fixing, constructed the

Hamiltonian quantum theory and used it to obtain vertex expansions. Also, so far,

vertex expansions have been discussed in SFMs only for source-free gravity, while

the presence of a scalar field played a key role in LQC. Thus the results obtained

here are better tailored then to deparametrized LQG based on for example the

Brown-Kuchar model [59]. Nonetheless our results provide support for the heuris-

tic framework underlying SFMs. In addition, since we have an exactly soluble,

concrete example, we can use it to analyze the status of open issues of the SFM.

First, as hoped in SFMs, the physical inner product can indeed be expressed



37

as a vertex expansion, a sum over discrete histories each characterized by a fi-

nite number of configurations. The inner product is defined independently by the

canonical theory and this well-defined quantity is merely expanded out as a conve-

nient series. Second, the expectation that the expansion should be derivable from

a suitable Hamiltonian theory has been realized. In addition, as one would expect

from [60], each vertex can be thought of as emerging from the action of the Hamil-

tonian operator. Finally, in our decomposition H = D + λK (or Θ = D + λK)

one can think of D as the free part of the Hamiltonian because it does not change

the volume and K as the interaction part because it does. Thus, as in group field

theory, the factors of λ are associated with ‘interaction’ piece of the Hamiltonian

(which is responsible for the volume transitions in LQC). Third, the expansion

provide a perturbative solution to the Schrodinger equation order by order in the

number of vertices, changes in volume.

One key issue of SFMs is the lack of connection to continuum general relativity,

since the construction of SFMs is based on a discretization of GR. An issue that is

often raised in the literature on SFMs is whether the physical inner product should

be given by summing over triangulations, each with a finite number of vertices, or

if one should take a “continuum” limit at the end as in, e.g., lattice QCD. If one

defines the inner product as a discretized path integral there is no clear answer.

However, since we began with a well-controlled Hamiltonian theory, in the LQC

example, the answer is clear. We did not have to take the limit; the physical inner

product is given by a discrete sum over amplitudes associated to triangulation

with a finite number of vertices or equivalently over discrete histories with a finite

number of volume changes.

A related issue is how well a finite number of elements of this sum over triangu-

lations will approximate the exact transition amplitude. As the coupling constant

λ here and coming from GFT is a dimensionless parameter that is set to one in

the expansion there is a priori no reason for the terms of higher order in λ to be

sub-dominant. In the vertex expansion for LQC presented here we explicitly see

that the terms of higher order in λ can be larger than the lower order terms. In

particular at large values of the scalar field terms with more volume transitions

dominate the expansion.

Finally, the vertex expansion of LQC does not fit with one of the key assump-
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tions of the SFMs. In the general definition of a SFM the amplitude associated to

a given dual triangulation is given by a product of amplitudes associated to each

vertex, edge, and face which depends on only the immediate neighborhood of each.

The LQC vertex expansion in contrast was extremely non-local in its dependence

on the volume labels. This feature will persist in the next chapter where we derive

a distinct vertex expansion without using the scalar field as a clock variable to

deparametrize the theory. There we will further explore this lack of locality.



Chapter 3
Vertex Expansion from Group

Averaging

As seen in the previous chapter we derived at a sum over histories expansion of

LQC starting from a deparametrization of the canonical theory using the scalar

field as a clock. This sum over histories extended over those histories that feature

a discrete number of changes in volume mimicking the structure of SFMs, so we

refer to the expansion as a vertex expansion of LQC. In general there is no such

method for deparametrizing full general relativity. Although, there are proposals

for deparametrized models which will be well defined on a suitable sub-space of

the full phase space of general relativity coupled to suitable matter fields [59, 61].

The expansion for deparametrized LQC could then be extended to such models,

but not to full LQG. In this chapter we then derive a distinct vertex expansion

starting from the timeless framework with a Hamiltonian constraint instead of the

deparametrized system.

Recall that spin network states are used in LQG to construct a convenient or-

thonormal basis in the kinematical Hilbert space. A key challenge is to extract

physical states from them by imposing constraints. Formally this can be accom-

plished by the group averaging procedure which also provides the physical inner

product between the resulting states [62, 12]. From the LQG perspective, the

primary goal of SFMs is to construct a path integral that leads to this physical

Hilbert space. Similarly in LQC the physical Hilbert space can be obtained from

the group averaging procedure. We then construct a vertex expansion starting
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from the group averaging procedure.

We will find that this expansion bears out the ideas and conjectures that drive

the spin foam paradigm more thoroughly as it has a stronger connection to the

spin foam framework. Specifically, we will show that: i) the physical inner product

in the timeless framework equals the transition amplitude in the theory that is

deparameterized using the scalar field; ii) the physical inner product admits a ver-

tex expansion a la SFMs distinct from that of the deparametrized system; iii) the

exact physical inner product is again obtained by summing over just the discrete

geometries; no ‘continuum limit’ is involved; and, iv) the vertex expansion can

be interpreted as a perturbative expansion in the spirit of GFT, where, moreover,

the GFT coupling constant λ is closely related to the cosmological constant Λ.

Since the Hilbert space theory is fully under control in this example, we will be

able to avoid formal manipulations and pin-point the one technical assumption

that is necessary to obtain the desired vertex expansion: that one can interchange

the group averaging integral and a convergent but infinite sum defining the gravi-

tational contribution to the vertex expansion(see discussion at the end of section

3.2). This analysis will shed light on some long standing issues in SFMs such as the

role of orientation in the spin foam histories [63], the somewhat puzzling fact that

spin foam amplitudes are real rather than complex [64]. Further it will introduce

new insights and new issues for SFM.

The chapter is organized as follows. We begin with an overview of group

averaging as a way to obtain the physical Hilbert space of LQC. In section 3.2

we adapt the main results from chapter 2 to the timeless framework by showing

that the physical inner product as defined by group averaging can be expressed

as a vertex expansion. In section 3.3 we will arrive at the same expansion using

perturbation theory in a suitably defined interaction picture. As an important

consistency check, in section 3.4 we verify that this perturbative expansion does

satisfy the constraint order by order. In section 3.5 we observe that, in this simple

example, the coupling constant λ used in the expansion is intimately related to the

cosmological constant Λ. Although the precise relation we obtain is tied to LQC,

the observation illustrates in a concrete fashion how one may be able to provide

a gravitational interpretation to λ in GFTs. Finally, in 3.6 we numerically test

the vertex expansion for a simple choice of initial and final volumes. Section 3.7
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summarizes the main results and discusses some generalizations and open issues.

3.1 Group Averaging LQC

We began our discussion in the previous chapter by carrying out a deparametriza-

tion (using φ as the relational time variable) because this is the procedure used in

LQC to extract physics from the quantum theory and provides contact with stan-

dard non-relativistic quantum mechanics. In the SFM and LQG, by contrast, one

does not have access to such a preferred time and therefore one chooses to work

with the timeless formalism where the dynamics is encoded by constraints instead

of a Schrodinger like equation. Furthermore, a convenient deparametrization is

not always available even in cosmology if we allow the scalar field to have general

potentials or the gravitational field to admit inhomogeneities or when considering

vacuum general relativity. In this case we have to return to the constrained system

and construct the physical Hilbert space differently. The standard construction of

Hphy in LQG is done using group averaging which provides both the solutions to

the constraint and their inner product. Therefore we first forgo the emphasis on

using φ as internal time and implement the group averaging procedure which uses

the constraint operator as a whole [62, 12]. Then the basic object of interest is not

the transition amplitude but the physical inner product.

As the group averaging procedure is the basis of the remaining discussions we

will summarize it in some detail. The necessity of the procedure arises since the

spectrum of the constraint is continuous and thus the eigenstates of the constraint

are not normalizable in the kinematical Hilbert space requiring the construction of

a new Hilbert space and inner product which we will denote as the physical Hilbert

space and physical inner product. One begins by fixing a dense sub-space S of Hkin.

In LQC, this is generally taken to be the Schwartz space of smooth functions f(ν, φ)

which fall off to zero at infinity faster than any polynomial. This Schwartz space

serves two purposes one to provide a set of kinematic states from which to generate

solutions to the constraint and second to give a meaning to the distributional

solutions as states in the dual of S. The first step in the group averaging procedure

is then to extract a solution Ψf(ν, φ) to the quantum constraint operator (2.5) from

each f ∈ S. Here the constraint is a self-adjoint operator, so we can define the
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physical state as.

(Ψf | =

[∫
dα eiαC |f〉

]†
(3.1)

where C = p2/~2 −Θ is the constraint operator and the round bracket on the left

side of the equation denotes a ‘generalized bra’, an element of the algebraic dual

(called Cyl⋆ in the literature) of a suitable dense subspace of Hkin, S. Where here

the terminology ’group averaging’ is clear - as we are averaging over the action of

the unitary evolution operator generated from the constraint thus constructing a

state that is invariant under this group.

The second step of the group averaging procedure provides an appropriate

inner product between solutions Ψf . As the solutions are distributional states the

physical inner product between Ψf and Ψg is defined by the action of Ψf on any

state |g〉 which gives Ψg when group averaged.

(Ψf |Ψg)phys = (Ψf |g〉 = (Ψg|f〉 (3.2)

1 Formally, integration over the ‘lapse’ α introduces the factor δ(C) that is neces-

sary to extract physical states from kinematical ones and also yields the physical

inner product between the resulting physical states. This procedure can be carried

out in detail for LQC as follows [33].

Denote by ek(ν), with k ∈ (−∞,∞) a complete set of orthonormal eigenfunc-

tions of Θ on Hgrav
kin . We will denote the eigenvalues by ω2

k and, without loss of

generality, assume that ωk ≥ 0 [34, 35]. (Eigenfunctions and operator functions of

Θ are discussed in appendix B.) Any f(ν, φ) ∈ S can be expanded as

f(ν, φ) =
∫

dk 1
2π

∫
dpφ f̃(k, pφ) e

ipφ φ ek(ν) . (3.3)

Here and in what follows the range of integrals will be from −∞ to ∞ unless

otherwise stated. Using this expansion, we can group-average any f(ν, φ) to obtain

a distributional solution (in S
⋆) Ψf(ν, φ) to the quantum constraint:

Ψf (ν, φ) : =
∫

dα [eiαC 2|pφ| f(ν, φ)] (3.4)

1There is some freedom in the definition of the action of elements of Cyl⋆. In LQC, this
freedom is used to simplify the expression of the physical inner product [33] and the subsequent
action of Dirac observables on Hphy. We will use the same conventions here.
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=
∫

dk
∫

dpφ δ(p
2
φ − ω2

k) 2|pφ|f̃(k, pφ) e
ipφ φ ek(ν) ,

where, the operator 2|pφ| has been introduced just for later technical simplification.

Had we dropped it, we would have associated with f the solution (2|pφ|)−1 Ψf and,

in the end, obtained a unitarily equivalent representation of the algebra of Dirac

observables.

By carrying out the integral over pφ the expression of Ψf can be brought to the

desired form:

Ψf(ν, φ) =
∫

dk
[
f̃(k, ωk) e

iωkφ ek(ν) + f̃(k,−ωk) e
−iωkφ ek(ν)

]

=: Ψ+
f (ν, φ) + Ψ−

f (ν, φ) . (3.5)

By their very definition Ψ±
f (ν, φ) satisfy

Ψ±
f (ν, φ) = e±i

√
Θ (φ−φo) Ψ±

f (ν, φo) , (3.6)

whence they can be interpreted as the ‘positive and negative frequency solutions’ to

(2.5) with respect to the relational time φ considered in the deparametrized system.

Thus the group average of f is a solution Ψf to the quantum constraint (2.5) which,

furthermore, is naturally decomposed into positive and negative frequency parts.

Ψf is to be regarded as a distribution in S
⋆ which acts on elements g ∈ S via the

kinematic inner product [62, 12]:

(Ψf |g〉 := 〈Ψf |g〉
=

∫
dk

∫
dpφ δ(p

2
φ − ω2

k) 2ωk
¯̃
f(k, pφ) g̃(k, pφ)

=
∫

dk [
¯̃
f(k, ωk) g̃(k, ωk) +

¯̃
f(k,−ωk) g̃(k,−ωk)] . (3.7)

Finally, the group averaged scalar product on solutions Ψf is given just by this

action [62, 12]. Thus, given any elements f, g in S, the scalar product between the

corresponding group averaged states Ψf ,Ψg is given by

(Ψf , Ψg) := (Ψf |g〉 = (Ψg|f〉 . (3.8)

In section 3.2 we will obtain a vertex expansion for this scalar product.
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As discussed in the previous chapter there is a superselection allowing us to

work with either the set of positive or negative frequency solutions. Therefore, as in

the Klein-Gordon theory, we are led to work with either set. In LQC, one generally

works with the positive frequency ones. Then the physical Hilbert space Hphy of

LQC consists of positive frequency solutions Ψ+(ν, φ) to the quantum constraint

(2.5), i.e. solutions satisfying

−i∂φ Ψ+(ν, φ) =
√

ΘΨ+(ν, φ) ≡ HΨ+(ν, φ) (3.9)

with inner-product (3.8). This inner product can be re-expressed simply as:

(Ψ+, Φ+)phy =
∑

ν=4nℓo

Ψ̄+(ν, φo) Φ+(ν, φo) . (3.10)

and is independent of the value φo of φ at which the right side is evaluated. The

physical Hilbert space obtained through group averaging is precisely that discussed

in the previous chapter.

3.2 Sum Over Histories

To mimic the general spin foam constructions in LQC, in this section we will largely

disregard the fact that the scalar field can be used as relational time and that the

final constraint has the form of the Schrödinger equation. Instead, we will use the

group averaging procedure for the full constraint

C = −∂2
φ − Θ ≡ p2

φ − Θ (3.11)

and incorporate the positive frequency condition in a second step. None of the

steps in this analysis refer the evolution in relational time mentioned above. The

primary object of interest will be the physical scalar product, rather than the

transition amplitude for a Schrodinger state Ψ(ν, φi) at an initial ’time’ φi to

evolve to another state Φ(ν, φf) at a final ’time’ φf .

In section 3.1 we considered general kinematic states f(ν, φ). Here, in contrast,

we will focus on the basis vectors |ν, φ〉 in Hkin which are the LQC analogs of spin

networks that are used to specify the boundary states in SFMs. Following the
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setup introduced in section 2.2 let us then fix two kinematic states, |νi, φi〉 and

|νf , φf〉. For notational simplicity, we will denote the group averaged solutions to

(3.11) they define by |[νi, φi]) and |[νf , φf ]). The group averaged inner product

between these states is given by

([νf , φf ], [νi, φi]) = 2
∫

dα 〈νf , φf | eiαC |pφ| |νi, φi〉 . (3.12)

From our discussion in section 3.1, one would expect this physical scalar product

([νf , ϕ]+, [νi, 0]+)phy = G(νf , ϕ; νi, 0) to be equivalent to the transition amplitudes

considered in section 2.2. This is indeed the case. For, the positive frequency

solution Ψνi,φi
≡ [νi, φi]+ obtained by group averaging the kinematic basis vector

|νi, φi〉 is given by

Ψνi,φi
(ν, φ) =

∫
dk (ēk(νi) e

−iωkφi) eiωk(φ) ek(ν) (3.13)

(see Eq.(3.5)) so that the physical scalar product between positive frequency solu-

tions [νi, φi]+ and [νf , φf ]+ is given by

([νf , φf ]+, [νi, φi]+)phy =
∫

dk eiωk(φf−φi) ēk(νi) ek(vf ) (3.14)

(see Eq (3.8)). The right hand side is precisely the expression of the transition

amplitude 〈νf | eiHϕ|νi〉 =
∫

dk 〈νf | eiHϕ|k〉〈k|νi〉. Since ek(ν) = 〈ν|k〉, we have the

equality: G(νf , ϕ; νi, 0) = A(νf , ϕ; νi, 0).

If we restrict ourselves to the positive part of the spectrum of p̂φ —or, to

‘positive frequency’ physical states— as in LQC, the physical inner product is

given precisely by the transition amplitude A(νf , φf ; νi, φi) we focused on in chap-

ter 2. On the ‘negative frequency’ solutions it is given by the complex conju-

gate, [A(νf , φf ; νi, φi)]
⋆ (because the matrix elements Hνm,νn and Θνm,νn are all

real.) If we allow both, then the inner product is always real: 〈νf , φf |νi, φi〉phys =

A(νf , φf ; νi, φi) + [A(νf , φf ; νi, φi)]
⋆. Thus, the physical inner product, the key

object in the timeless framework, can be readily constructed from the transition

amplitude, the key object in the deparameterized framework.

Our goal is to express the scalar product given by (3.12) as a vertex expansion
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a la SFMs and study its properties. To do so we first focus on the amplitude

A(νf , φf ; νi, φi;α) = 2 〈νf , φf | eiαC |pφ| |νi, φi〉 (3.15)

which constitutes the integrand of (3.12). Our strategy is to first expand this

amplitude such that the integral α can be carried out term by term in the resulting

vertex expansion. We will find that this is a highly non-trivial requirement.

Mathematically one can choose to regard αC as a Hamiltonian operator. Then

A(νf , φf ; νi, φi;α) can be interpreted as the probability amplitude for an initial

kinematic state |νi, φi〉 to evolve to a final kinematic state |νf , φf〉 in a unit ‘time

interval’ and we can follow Feynman’s procedure [2] to express it as a sum over

histories. More precisely the constraint C generates gauge evolution, so we will

obtain a sum over gauge histories. Technically, a key simplification comes from the

fact that the constraint C is a sum of two commuting pieces that act separately

on Hmatt
kin and Hgrav

kin . Consequently, the amplitude (3.15) factorizes as

A(νf , φf ; νi, φi;α) = Aφ(φf , φi;α)AG(νf , νi;α) (3.16)

with

Aφ(φf , φi;α) = 2 〈φf |eiαp2
φ |pφ||φi〉, and AG(νf , νi;α) = 〈νf |e−iαΘ|νi〉 . (3.17)

It is easy to cast the first amplitude, Aφ, in the desired form using either a standard

Feynman expansion or simply evaluating it by inserting a complete eigen-basis of

pφ. The result is:

Aφ(φf , φi;α) = 2
∫

dpφ e
iαp2

φ eipφ(φf−φi) |pφ| (3.18)

The expansion of the gravitational amplitude AG is not as simple. We will first

express it as a sum over histories following the strategy from chapter 2. In a

second step, we will evaluate the total amplitude (3.15) by integrating over α for

each history separately. Although it is not a priori obvious, we will find that the

amplitude associated to each history is manifestly finite and the total amplitude

can be written as a discrete sum that mimics the vertex expansion in SFMs.
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3.2.1 The gravitational amplitude AG

As mentioned above, to apply the standard Feynman procedure we will regard

e−iαΘ as an ‘evolution operator’ with ‘Hamiltonian’ αΘ and a ‘time interval’ ∆τ =

1. We emphasize that this ‘evolution’ is a just a convenient mathematical construct

and does not correspond to the physical evolution with respect to a relational time

variable. Rather, since it is generated by the constraint C, physically it represents

gauge transformations (or time reparameterizations).

As the construction of chapter 2 did not depend on the particular details of

the Hamiltonian, H , it is simply extended to this amplitude. We then follow

the construction of chapter 2 leaving out details. We first divide the interval

∆τ = 1 into N parts each of length ǫ = 1/N and write the gravitational amplitude

AG(νf , νi;α) as

〈νf |e−iαΘ|νi〉 =
∑

ν̄N−1,...,ν̄1

〈νf |e−iǫαΘ|ν̄N−1〉〈ν̄N−1|e−iǫαΘ|ν̄N−2〉 ... 〈ν̄1|e−iǫαΘ|νi〉

(3.19)

where we have first split the exponential into N identical terms and then intro-

duced a decomposition of the identity operator at each intermediate ‘time’ τ = nǫ,

n = 1, 2, .., N − 1. For notational simplicity, we will denote the matrix element

〈ν̄n|e−iǫαΘ|ν̄n−1〉 by Uν̄nν̄n−1 and set νf = ν̄N and νi = ν̄0. We then have

AG(νf , νi;α) =
∑

ν̄N−1,...,ν̄1

Uν̄N ν̄N−1
Uν̄N−1ν̄N−2

. . . Uν̄1ν̄0 . (3.20)

Where it is important to note that the Uν̄n+1ν̄n appearing here is distinct from

the U introduced in the previous chapter as it depends on αΘ instead of
√

Θ.

The division of ∆τ again provides a skeletonization of this ‘time interval’. An

assignment σN = (ν̄N , . . . , ν̄0) of volumes to the N +1 time instants τ = ǫn is now

regarded as a discrete (gauge) history associated with this skeletonization. The

matrix element is given by a sum of amplitudes over histories with fixed endpoints,

AG(νf , νi;α) =
∑

σN

A(σN ) ≡
∑

σN

Uν̄N ν̄N−1
Uν̄N−1ν̄N−2

. . . Uν̄2ν̄1 Uν̄1ν̄0 . (3.21)

The next step is to take the ‘continuum’ limit, N → ∞, of the skeletonization.
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Again since our basis |νn〉 is discrete, one can make rigorous sense of the N → ∞
limit by reorganizing the well-defined sum (3.21) according to the number of volume

transitions.

We first group paths according to the number of volume transitions rather than

time steps. Let us then consider a path σM
N which involves M volume transitions

(clearly, M ≤ N):

σM
N = ( νM , . . . , νM ; νM−1, . . . , νM−1; . . . . . . ;

N2︷ ︸︸ ︷
ν1, . . . , ν1; ν0, . . . , ν0︸ ︷︷ ︸

N1

) . (3.22)

Thus, the volume changes from νm−1 to νm at ‘time’ τ = Nmǫ and remains νm till

time τ = Nm+1 ǫ. Where νm is the volume after the m-th volume transition along

the given discrete path, ν̄m is the volume at the end of the m-th time interval, i.e.,

at τ = mǫ. These discrete histories are labeled more transparently by two ordered

sequences

σM
N = { (νM , νM−1, . . . , ν1, ν0); (NM , NM−1, . . . , N2, N1) }, νm 6= νm−1, N ≥ Nm > Nm−1.

(3.23)

where νM , . . . , ν0 denote the volumes that feature in the history σM
N and Nk denotes

the number of time steps after which the volume changes from νk−1 to νk. Note

that while no two consecutive volume values can be equal, a given volume value

can repeat in the sequence; νm can equal some νn if n 6= m ± 1. The probability

amplitude for such a history σM
N is given by:

A(σM
N ) = [UνM νM

]N−NM UνMνM−1
. . . [Uν1ν1]

N2−N1−1 Uν1ν0 [Uν0ν0]
N1−1 . (3.24)

Second we to perform the sum over all these amplitudes in three steps. First we

keep the ordered set of volumes (νM , . . . , ν0) fixed, but allow the volume transitions

to occur at any value τ = nǫ in the interval ∆τ , subject only to the constraint that

the m-th transition occurs before the (m+1)-th for all m. The sum of amplitudes

over this group of histories is given by

AN (νM , . . . , ν0;α) =
N−1∑

NM =M

NM−1∑

NM−1=M−1

. . .

N2−1∑

N1=1

A(σM
N ). (3.25)
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This is again the grouping of histories with well defined N → ∞ limit. Next

we sum over all possible intermediate values of νm such that νm 6= νm−1, keeping

ν0 = νi, νM = νf to obtain the amplitude AN(M) associated with the set of all

paths in which there are precisely M volume transitions:

AN(M ;α) =
∑

νM−1,...,ν1

νm 6=νm+1

AN (νM , . . . , ν0;α) (3.26)

Finally the total amplitude AG(νf ; νi, α) is obtained by summing over all volume

transitions that are permissible within our initially fixed skeletonization with N

time steps:

AG(νf , νi;α) =
N∑

M=0

AN(M ;α) (3.27)

This concludes the desired re-arrangement of the sum (3.21). The sum on the

right side is manifestly finite. Furthermore, since AG(νf , νi;α) = 〈νf |e−iαΘ|νi〉, the

value of the amplitude (3.27) does not depend on N at all; the skeletonization

was introduced just to express this well-defined amplitude as a sum over histories.

Thus, while the range of M in the sum and the amplitude AN(M ;α) in (3.27) both

depend on N , the sum does not.

Now, in 2.4 the limit limN→∞AN(νM , . . . , ν0;α) exists for each grouping of

histories and is given by

A(νM , . . . , ν0;α) := lim
N→∞

AN (νM , . . . , ν0;α)

=
∫ 1

0
dτM

∫ τM

0
dτM−1 . . .

∫ τ2
0

dτ1 A(νM , . . . , ν0; τM , . . . , τ1;α) (3.28)

where

A(νM , . . . , ν0; τM , . . . , τ1; α) := e−i(1−τM )αΘνM νM (−iαΘνM νM−1
) ×

. . . e−i(τ2−τ1)αΘν1ν1 (−iαΘν1ν0) e
−iτ1αΘν0ν0 . (3.29)

Note that the matrix elements Θνmνn = 〈νm|Θ|νn〉 of Θ in Hgrav
kin can be calculated

easily from (2.6) and vanish if (νm−νn) 6∈ {0,±4ℓ0}. Therefore, explicit evaluation

of the limit is rather straightforward. We will assume that the limit N → ∞ can be

interchanged with the sum over νM−1, . . . ν1. (This assumption is motivated by the
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fact that in the expression of A(νM , . . . , ν0;α) most matrix elements of Θ vanish,

and since the initial and final volumes are fixed, the sums over intermediate volumes

νM−1, . . . , ν1 extend over only a finite number of non-zero terms. It is further

verified by the perturbation expansion of section 3.3). With this assumption it

follows that

AG(M ;α) := lim
N→∞

AN(M ;α) (3.30)

=
∑

νM−1,...,ν1

νm 6=νm+1

lim
N→∞

AN(νM , . . . , ν0;α)

exists for each finite M . Finally, the total gravitational amplitude can be written

as an infinite sum:

AG(νf , νi;α) =

∞∑

M=0

AG(M ;α) (3.31)

AG(M ;α) =
∑

νM−1,...,ν1

νm 6=νm+1

A(νM , . . . , ν0;α) (3.32)

where the partial amplitude associated to each discrete history νM , . . . , ν0 is given

by (3.29). Note that the reference to the skeletonization disappears in this limit.

Thus, AG(M ;α) is the amplitude obtained by summing over all paths that contain

precisely M volume transitions within the ‘time interval’ ∆τ = 1, irrespective of

precisely when and at what values of volume they occurred.

While each partial amplitude AG(M ;α) is well-defined and finite, it does not

ensure that the infinite sum converges. A priori the infinite sum on the right hand

side of (3.31) could be, for example, only an asymptotic series to the well-defined

left side. Also, our derivation assumed that the limit N → ∞ commutes with the

partial sums. Both these limitations will be overcome in section 3.3: We will see

that AG(νf , νi;α) is indeed given by a convergent sum (3.31).

Here the expansion is clearly seen as a sum over all histories of the configuration

variable ν which are given by piecewise constant functions each taking a countable

number of values νm. As compared to the standard path integral the sum over

histories is clearly defined as a sum over M , the number of times ν changes along

the history, a sum over (νM−1, . . . , ν1) the constant values taken, and finally a

time ordered integral over the length of each constant part. We have not yet
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removed the dependence of τm, the time of each transition, yet here this sum can

be viewed equivalently as a sum over all triangulations of the interval I in a distinct

sense from the sum over triangulation analogous to that of the spin foam models

presented in section 2.4. This brings to light two distinct notions of triangulation.

The first being the construction of an abstract simplicial complex composed of an

abstract set of simplices, the basic geometric objects, and the information about

how they are connected. This we refer to as an abstract triangulation as it is not

built upon some pre-existing manifold. The second notion of triangulation arises

from geometric realization of these abstract simplicial complexes or the embedding

in a topological space. This we refer to as an embedded triangulation as it is built

upon the underlying manifold. It is clear that these are two very different notions

of triangulation as for a given number of simplices, M , here there is a single

abstract triangulation of the interval I while there is an uncountable number of

embedded triangulations given by the set of possible partitions of the interval I
into M subsets. Expressed as a sum over embedded triangulations the amplitude

for each triangulation is simply a product of elements associated to each piece while

we find in the following the the amplitude can be reduced to a sum over abstract

triangulations whereby the local nature is lost. This realization raises the natural

question as to whether the spinfoam sum over triangulations should extend over

simply abstract triangulations or embedded triangulations.

As mentioned the expression (3.28) still contains some integrals of τ relating to

the length of each constant portion of the history. These can be performed exactly

thus reducing to a sum over abstract triangulations depending only on the number

of times the volume changes and not on the time at which it changes. This is akin

to modding out by time-reparametrizations. The case when all of (νM , . . . , ν0) are

distinct is straightforward and the result as given in [65]. The general case is a

little more complicated and is analyzed in Appendix A.2. The final result is:

A(νM , . . . , ν0;α) = ΘνMνM−1
ΘνM−1νM−2

. . .Θν2ν1Θν1ν0 ×
p∏

k=1

1

(nk − 1)!

(
∂

∂Θk

)nk−1 p∑

i=1

e−iαΘi∆τ

∏p
j 6=i(Θi − Θj)

∣∣∣∣∣
Θi=Θνi(d)νi(d)

(3.33)
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where, since the volumes can repeat along the discrete path, νi(d) label the p distinct

values taken by the volume and nm the number of times that each value occurs

in the sequence. The nm satisfy n1 + . . . + np = M + 1. In doing so we notice

that the amplitude is no longer local as it depends on how many times a given

volume reoccurs during the history. It is clear here that locality is not a necessary

ingredient for a sum over histories expansion and may disappear at some order of

the construction.

To summarize, we have written the gravitational part AG(νf , νi;α) of the am-

plitude as a ‘sum over histories’:

AG(νf , νi;α) =

∞∑

M=0

∑

νM−1,...,ν1

νm 6=νm+1

A(νM , . . . , ν0;α) (3.34)

with A(νM , . . . , ν0;α) given by (3.33). This expression consists of a sum over M ,

the number of volume transitions, and a sum over the (finite number of) sequences

of M − 1 intermediate volumes that are consistent with the boundary conditions

and the condition that νm 6= νm+1. It is important to note that this is only one

component of the physical inner product it is necessary to combine this with the

scalar field component and integrate out the lapse α. The ability to carry out this

integral is a highly non-trivial requirement.

3.2.2 Vertex expansion of the physical inner product

Thus for we have only considered the transition amplitudes for the evolution be-

tween an initial and final state as generated by the gauge evolution. Recall that

the group-averaged scalar product is expressed in terms of these amplitudes as

([νf , φf ], [νi, φi]) = 2
∫

dαAφ(νi, φi;α)AG(νf , νi;α) . (3.35)

In the previous section we constructed a vertex expansion for the gravitational

part of (3.35) which we can insert in the above expression.

([νf , φf ], [νi, φi]) = 2
∫

dαAφ(φf , φi;α)
∑∞

M=0

∑
νM−1,...,ν1

νm 6=νm+1

A(νM , . . . , ν0;α)

(3.36)



53

If we desire a vertex expansion for the physical inner product it is then necessary to

carry out the integral over lapse α for each term of the vertex expansion seperately.

If this does not give meaningful results it is then clear that the sum over vertices

must be carried out before the group averaging and there does not exist a vertex

expansion ala SFMs as constructed in this way. The main assumption then in our

derivation —the only one that will be required also in section 3.3— is that one can

interchange the integration over α and the (convergent but infinite) sum over M

in the expression of AG(νf , νi;α). Let us then use expressions (3.18) and (3.34) of

Aφ and AG, make the interchange and carry out the integral over α. If this can be

done, the scalar product (3.35) will then be re-expressed as a sum of amplitudes

associated with each discrete path (νM , . . . , ν0):

([νf , φf ], [νi, φi]) =

∞∑

M=0

[ ∑

νM−1,...,ν1

νm 6=νm+1

A(νM , . . . , ν0;φf , φi)
]
. (3.37)

where,

A(νM , . . . , ν0;φf , φi) = 2

∫
dαAφ(φf , φi;α)A(νM , . . . , ν0;α) (3.38)

By replacing the partial amplitude A(νM , . . . , ν0;φf , φi) with the expression (3.33)

and carrying out the integral over the lapse α.

A(νM , . . . ,ν0; φf , φi) = ΘνMνM−1
ΘνM−1νM−2

. . .Θν2ν1Θν1ν0 ×
p∏

k=1

1

(nk − 1)!

(
∂

∂Θk

)nk−1 P∑

i=1

∫
dpφ e

ipφ(φf−φi) 2|pφ|
δ(p2

φ−Θi∆τ)
QP

j 6=i(Θi−Θj)

∣∣∣∣∣
Θi=Θνi(d)νi(d)

(3.39)

The right side is a sum of distributions depending on the matrix elements of Θ and

pφ, but the result is well defined as it is integrated over pφ. It is straightforward

to perform this integral over pφ and express A(νM , . . . , ν0; φf , φi) in terms of the

matrix elements of Θ:

A(νM , . . . ,ν0;φf , φi) = ΘνMνM−1
ΘνM−1νM−2

. . . Θν2ν1 Θν1ν0 × (3.40)



54

P∏

k=1

1

(nk − 1)!

( ∂

∂Θk

)nk−1
P∑

i=1

ei
√

Θi∆φ + e−i
√

Θi∆φ

∏P
j 6=i(Θi − Θj)

∣∣∣∣∣
Θi=Θνi(d)νi(d)

where ∆φ = φf − φi. Since by inspection each amplitude A(νM , . . . , ν0, φf , φi) is

real, the group averaged scalar product (3.37) is also real.

Finally, as explained in section 3.1, the group averaging procedure yields a

solution which has both positive and negative frequency components while the

physical Hilbert space consists only of positive frequency solutions. Let us denote

the positive frequency parts of the group averaged ket |[ν, φ]〉 by |[ν, φ]+〉. Then,

the physical scalar product between these states in Hphy is given by a sum over

amplitudes A(M), each associated with a fixed number of volume transitions:

([νf , φf ]+, [νi, φi]+)phy =

∞∑

M=0

A(M) (3.41)

=

∞∑

M=0

[ ∑

νM−1,...,ν1

νm 6=νm+1

ΘνMνM−1
ΘνM−1νM−2

. . . Θν2ν1 Θν1ν0

×
P∏

k=1

1

(nk − 1)!

( ∂

∂Θk

)nk−1
P∑

i=1

ei
√

Θi∆φ

∏P
j 6=i(Θi − Θj)

∣∣∣∣∣
Θi=Θνi(d)νi(d)

]
.

(Note that the right side is in general complex, a point to which we will return

in section 3.3.) This is the vertex expansion of the physical inner product we

were seeking. It has two key features. First, the integral over the parameter α

was carried out and is not divergent. This is a non-trivial and important result

if we are interested in computing the physical inner product perturbatively, i.e.,

order by order in the number of vertices. Second, the summand involves only the

matrix elements of Θ which are easy to compute. As remarked earlier, significant

simplification arises because Eq (2.6) implies that Θνmνn is zero if νm − νn 6∈
{0,±4ℓ0}. This provides a clear benefit over the deparametrized model - as the

sum runs over a finite number of paths for each partial amplitudes with M vertices.

Let us summarize. We did not begin by postulating that the physical inner

product is given by a formal path integral. Rather, we started with the kinematical

Hilbert space and the group averaging procedure and derived a vertex expansion

of the physical inner product. Because the Hilbert space framework is fully under
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control, we could pin-point the one assumption that is needed to arrive at (3.41):

the sum over vertices and the integral over α can be interchanged. In the full theory,

one often performs formal manipulations which result in divergent individual terms

in the series under consideration. (For instance sometimes one starts by expanding

the very first amplitude (3.15) in powers of α even though the α integral of each

term is then divergent [60, 66]). In our case, individual terms in the series are all

finite. Nonetheless, at present the interchange of the α-integral and the infinite

sum over M has not been justified. If this gap can be filled, we would have a fully

rigorous argument that the well-defined physical inner product admits an exact,

convergent vertex expansion (3.41). (This assumption is needed only in the timeless

framework because the integration over α never appears in the deparameterized

framework of section 2.3.)

Thus, the total transition amplitude has been expressed as a vertex expansion

(3.41) a la SFMs. We provided several intermediate steps because, although the

left hand sides are equal, the final vertex expansions is different from that ob-

tained in section 2.3: While (2.34) features matrix elements of H =
√

Θ, (3.41)

features matrix elements of Θ itself. The existence of distinct but equivalent ver-

tex expansions is quite surprising. In each case we emphasized a distinct aspect

of dynamics: the timeless framework and group averaging in (3.41), and relational

time and deparametrization in (2.34). This fact leads to two important differences.

First
√

Θνmνm, the square root of the matrix element of Θ, is distinct from Hνmνm ,

the matrix element of the square root of Θ. Second, because the off diagonal el-

ements Θνmνn in Eq (3.40) are non-zero only if νm = νn ± 4ℓo, consecutive νm in

second sum in Eq (3.41) can differ only by ±4ℓo. There is no such simplification

in Eq (2.34). Because of these differences, although the physical inner product

obtained by group averaging is related in a simple manner to the transition am-

plitude, the vertex expansion obtained in this section is completely different from

that obtained in the last two sections. If we were to terminate the sum at any

finite order, the results would not be simply related.
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3.3 Perturbation Series

We will now show that the expression (3.41) of the transition amplitude can also

be obtained using a specific perturbative expansion in the same manner as the de-

parametrized system. Structurally, this second derivation of the vertex expansion

is reminiscent of the perturbative strategy used in group field theory (see, e.g.,

[29, 30]).

We begin by considering the diagonal and off-diagonal parts D and K of the

operator Θ in the basis |ν = 4nℓo〉. Thus, matrix elements of D and K are given

by:

Dν′ν = Θνν δν′ν , Kν′ν =

{
Θν′ν ν ′ 6= ν

0 ν ′ = ν
(3.42)

Clearly C = p2
φ −D −K. We think of p2

φ −D as the ‘main part’ of C and K as a

‘perturbation’. To implement it, introduce a 1-parameter family of operators

Cλ = p2
φ − Θλ := p2

φ −D − λK (3.43)

as an intermediate mathematical step. The parameter λ simply serves as a marker

to keep track of powers of K in the perturbative expansion and we will have to set

λ = 1 at the end of the calculation. As opposed to the deparametrized case, here

we must be more careful and ensure that the the spectrum of these constraints Cλ

is continuous in the parameter λ at the point λ = 0. At the very least we require

that zero remains in the continuous part of the spectrum. This problem is brought

to the fore in the vacuum models where when defining the operator Cλ as above

the spectrum becomes completely discrete at λ = 0, at which point expansion

becomes ill-defined.

Our starting point is again the decomposition (3.16) of the amplitude A(νf , φf ; νi, φi;α)

into a scalar field and a gravitational part. The λ dependence appears in the grav-

itational part:

A
(λ)
G (νf , νi, α) := 〈νf |e−iαΘλ|νi〉. (3.44)

We construct a perturbative expansion of this amplitude. Again we think of e−iαΘλ

as a mathematical ‘evolution operator’ defined by the ‘Hamiltonian’ αΘλ and a

‘time interval’ ∆τ = 1. The ‘ unperturbed Hamiltonian’ is αD and the ‘per-
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turbation’ is λαK. Following the textbook procedure, we define the ‘interaction

Hamiltonian’ as

HI(τ) = eiαDτ αK e−iαDτ . (3.45)

Then the evolution in the interaction picture is dictated by the 1-parameter family

of unitary operators on Hgrav
kin

Ũλ(τ) = eiαDτe−iαΘλ τ , satisfying
dŨλ(τ)

dτ
= −iλHI(τ)Ũλ(τ) . (3.46)

The solution of this equation is given by a time-ordered exponential:

Ũλ(τ) = T e−i
∫ τ

0
HI(τ)dτ

=
∞∑

M=0

λM
∫ τ

0
dτM

∫ τM

0
dτM−1 . . .

∫ τ2
0

dτ1 [−iHI(τM)] ... [−iHI(τ1)] .(3.47)

Using use the relation e−iαΘλ = e−iαDŨλ(1), with Ũλ given by (3.47), take the

matrix element of eiαΘλ between initial and final states, |νi ≡ ν0〉 and |νf ≡ νM〉,
and write out explicitly the product of the HI ’s. The result is

A
(λ)
G (νf , νi, α) =

∞∑

M=0

λM
∫ 1

0
dτM...

∫ τ2
0

dτ1
∑

νM−1, ..., ν1
[e−i(1−τM )αDνM νM ] ×

(−iαKνM νM−1
) . . . (−iαKν1ν0) [e−iτ1αDν0ν0 ] . (3.48)

We can now replace D and K by their definition (3.42). Because K has no diagonal

matrix elements, only the terms with νm 6= νm+1 contribute and the sum reduces

precisely to

A
(λ)
G (νf , νi, α) =

∞∑

M=0

λM
[ ∑

νM−1,...,ν1

νm 6=νm+1

A(νM , . . . , ν0;α)
]
, (3.49)

where A(νM , . . . , ν0;α) is given by (3.33) as in the sum over histories expansion of

section 3.2.1.

We can now construct the total amplitude by including the scalar field factor

(3.18) and performing the α integral as in section 3.2.2. Then the group averaged
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scalar product is given by

([νf , φf ], [νi, φi])
(λ) =

∞∑

M=0

λM
[ ∑

νM−1,...,ν1

νm 6=νm+1

A(νM , . . . , ν0, φf , φi)
]

(3.50)

where A(νM , . . . , ν0, φf , φi) is given in (3.40). If we now set λ = 1, (3.50) re-

duces to (3.41) obtained independently in section 3.2.1. Finally, let us restrict

ourselves to the positive frequency parts |[ν, φ]+〉 of [ν, φ]〉 which provide ele-

ments of Hphy. Reasoning of section 3.2.2 tells us that the physical scalar product

([νf , φf ]+, [vi, φi]+)phy is given by (3.41).

Thus, by formally regarding the volume changing, off-diagonal piece of the con-

straint as a perturbation we have obtained an independent derivation of the vertex

expansion for ([νf , φf ]+, [vi, φi]+)phy as a power series expansion in λ, the power

of λ serving as a bookmark that keeps track of the number of vertices in each

term. In this sense this alternate derivation is analogous to the vertex expansion

obtained using group field theory. This derivation has a technical advantage. Since

HI is self-adjoint on Hgrav
kin , it follows that the expansion (3.47) of Ũλ(τ) is conver-

gent everywhere on Hgrav
kin [67]. This in turn implies that the right hand side of

(3.49) converges to the well-defined gravitational amplitude A
(λ)
G = 〈νf |e−iαΘλ |νi〉.

However, to arrive at the final vertex expansion starting from (3.49) we followed

the same procedure as in section 3.2.2. Therefore, this second derivation of the

vertex amplitude also assumes that one can interchange the integral over α with

the (convergent but) infinite sum over M in (3.49). This derivation has a second

benefit as it clearly demonstrates a potential breaking point of the theory, which

is where the spectrum of the family of operators Cλ is discontinuous around λ = 0.

3.4 Satisfaction of the constraint

The physical inner product between the basis states defines a 2-point function:

G(νf , φf ; νi, φi) := ([νf , φf ]+, [νi, φi]+)phy (3.51)
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and it follows from section 3.1 that it satisfies the constraint equation in each

argument. Since G(νf , φf ; νi, φi) = Ḡ(νi, φi; νf , φf), it suffices to focus just on one

argument, say the final one. Then we have:

[∂2
φf

− Θf ]G(νf , φf ; νi, φi) = 0 (3.52)

where Θf acts as in (2.6) but on νf in place of ν. If one replaces Θ by Θλ, one

obtains a 2-point functionGλ(νf , φf ; νi, φi) which, as we saw in section 3.2.2 admits

a perturbative expansion:

Gλ(νf , φf ; νi, φi) =

∞∑

M=0

λM AM(νf , φf ; νi, φi), (3.53)

where AM is the amplitude defined in (3.41):

AM(νf , φf ; νi, φi) =
∑

νM−1,...,ν1

νm 6=νm+1

A+(νM , . . . ν0; φf , φi)

≡
∑

νM−1,...,ν1

νm 6=νm+1

ΘνMνM−1
ΘνM−1νM−2

. . . Θν2ν1 Θν1ν0 (3.54)

×
P∏

k=1

1

(nk − 1)!

( ∂

∂Θk

)nk−1
P∑

i=1

ei
√

Θi∆φ

∏P
j 6=i(Θi − Θj)

∣∣∣∣∣
Θi=Θνi(d)νi(d)

The suffix + in A+(νM , . . . , ν0; φf , φi) emphasizes that we have taken the positive

frequency part.

As a non-trivial check on this expansion we will now show that Gλ satisfies

(3.52) order by order. As the derivation of 3.54 requires the key assumption that

the integral over the lapse α can be exchanged with the sum over vertices this

provides a check of the validity of the expansion. Since Θλ = D + λK, our task

reduces to showing

(∂2
φf

−Df )AM(νf , φf ; νi, φi) −Kf AM−1(νf , φf ; νi, φi) = 0 . (3.55)

We will show that as with the expansion of Chapter 2, the left hand side is zero

path by path in the sense that for every history acted on by the off-diagonal part
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there are two histories acted on the diagonal part that cancel it. To see how

the constraint acts on the partial amplitude with M vertices we first act on each

amplitude A+(νM , . . . ν0; φf , φi) viewed as a free function of νf and φf . Without

loss of generality we assume that νf = νi(d). Then we have

(∂2
φf

−Df)A+(νf , νM−1, . . . , ν1, νi;φf , φi) = ΘνfνM−1
ΘνM−1νM−2

. . .Θν2ν1Θν1νi
×

[
P∏

k=1

1

(nk − 1)!

(
∂

∂Θk

)nk−1 P∑

i=1

Θie
i
√

Θi∆φ

∏P
j 6=i(Θi − Θj)

(3.56)

− Θvp(d)vp(d)

P∏

k=1

1

(nk − 1)!

(
∂

∂Θk

)nk−1 P∑

i=1

ei
√

Θi∆φ

∏P
j 6=i(Θi − Θj)

] ∣∣∣∣∣
Θi=Θνi(d)νi(d)

.

If νP (d) occurs with multiplicity nP = 1, if νf is the only volume to take the value

νP (d) then there are no derivatives in ΘP in the above equation and it simplifies to

(∂2
φf

−Df )A+(νf , νM−1, . . . , ν1, νi;φf , φi) = Θνf νM−1
ΘνM−1νM−2

. . .Θν2ν1Θν1νi
×

[
P∏

k=1

1

(nk − 1)!

(
∂

∂Θk

)nk−1 P∑

i=1

(Θi − ΘP )ei
√

Θi∆φ

∏P
j 6=i(Θi − Θj)

∣∣∣∣∣
Θi=Θνi(d)νi(d)

. (3.57)

= ΘνfνM−1
A+(νM−1, . . . , ν1, νi;φf , φi) .

Where in the final step we recognized that the term (Θi −ΘP ) renders the P − th

term of the sum zero and removes the ΘP dependence for each other term in the

series. Together these reduce the structure to that of a history without the final

point νf . Thus, on simple histories where the final volume occurs only once in the

sequence, the action of [∂2
φf
−D] is to give the amplitude of the history without νf ,

times a matrix element of Θ related to the transition from νM−1 to νf . In general,

the value of the final volume can be repeated in the discrete history; np 6= 1. It

can be shown using the same strategy as that of section 2.4 that in all cases,

(∂2
φf

−Df )A+(νf , νM−1, . . . , ν1, νi;φf , φi) = ΘνfνM−1
A+(νM−1, . . . , ν1, νi;φf , φi) .

(3.58)

Finally, it is straightforward to evaluate the action of the off-diagonal part on AM−1
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(see (3.55)):

K A+(νf , νM−2, . . . , ν1, νi;φf , φi) =
∑

νM−1

Θνf νM−1
A+(νM−1, νM−2, . . . , ν1, νi;φf , φi) .

(3.59)

Combining these results we see that Eq. (3.55) is satisfied as it can be expressed

as,

∑

νM−2,...,ν1

νm 6=νm+1




∑

νM−1

(∂2
φf

−Df)A+(νf , . . . ν0; φf , φi) +KA+(νf , νM−2, . . . ν0; φf , φi)



 = 0

(3.60)

Thus the vertex expansion we obtained is a solution to the quantum constraint

equation. Further it is a good perturbative solution in the sense that, if we only

take histories in which the number of volume transitions is less than some M⋆,

then the constraint is satisfied to the order λM⋆
:

[∂2
φf

− (Df + λKf)]
M⋆∑

M=0

λM AM(νf , φf ; νi, φi) = O(λM⋆+1) (3.61)

Also in this calculation the cancelations occur in a simple manner; the off-diagonal

part acting on histories with M−1 transitions gives a contribution for each history

withM transitions that could be obtained by a adding a single additional transition

in the original history. These contributions cancel with the action of the diagonal

part on the histories with M transitions.

We again stress though that while the series above solves the constraint the

solution may be purely formal. It is not a priori clear whether that the series

is convergent, asymptotic, or simply a divergent series and secondly if cutting

off the series at some finite point provides a good approximation of the exact

physical inner product. In a later section we well examine these questions through

explicit computation. Nonetheless this section provides an explicit check on our

perturbative expansion of the physical inner product. This is a concrete realization,

in this simple example, of a central hope of SFMs: to show that the physical inner

product between spin networks, expressed as a vertex expansion, does solve the

Hamiltonian constraint of LQG order by order.
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This further leads to important insights into the structure of the vertex expan-

sion for the full spin foam models. First it is clear in this system that no single

term of the vertex expansion provides a solution of the constraint. It is necessary

to include the full sum over all terms of the vertex expansion to obtain a solution.

Although, since the solution of the constraint happens through the cancellation of

closely related triangulations and even closely related colored triangulations this

can provide very deep insight into the structure of the sum over triangulations

including the relative weighting of the amplitude associated to each triangulation.

Further this can be used as a procedure to generate higher order triangulations

from lower order terms in the expansion.

3.5 The ‘coupling constant’ λ and the cosmolog-

ical constant Λ

So far we have regarded the perturbation theory as purely a calculational tool and

the coupling constant λ as a book-keeping device which merely keeps track of the

number of vertices in the vertex expansion. We found that by taking only histories

with up to M∗ vertices that the constraint is solved to O(λM∗

+ 1) , but from this

standpoint values of λ other than λ = 1 have no physical significance. This leads

us to question what the more convergent series with λ < 1 means. Further, if one

regards GFT as fundamental and gravity as an emergent phenomenon, one is forced

to change the viewpoint. In this perspective, the coupling constant λ is physical

and can, for example, run under a renormalization group flow. The question we

raised in section 3 is: What would then be the physical meaning of λ from the

gravitational perspective? Surprisingly, in the LQC model under consideration, λ

can be regarded as (a function of) the cosmological constant Λ.

Let us begin by noting how the quantum constraint changes in presence of a

cosmological constant Λ:

−C(Λ) = ∂2
φ + Θ(Λ) ≡ ∂2

φ + Θ − πGγ2Λν2 . (3.62)

Thus, only the diagonal part of Θ is modified and it just acquires an additional

term proportional to Λ. In the GFT-like perturbation expansion, then, we are led
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to decompose Θλ(Λ) as

Θλ(Λ) = D(Λ) + λK where D(Λ) = πG (
3

2ℓ2o
− γ2Λ) ν2 . (3.63)

It is now easy to check that Ψ(ν, φ) satisfies the constraint equation

[∂2
φ +D(Λ) + λK] Ψ(ν, φ) = 0 (3.64)

with cosmological constant Λ if and only if Ψ̃(ν, φ̃) satisfies

[∂2
φ̃

+D(Λ̃) +K] Ψ̃(ν, φ̃) = 0 (3.65)

where

Λ̃ =
Λ

λ
+

3

2γ2ℓ2oλ
(λ− 1), φ̃ =

√
λφ, and Ψ̃(ν, φ̃) = Ψ(ν, φ) . (3.66)

Consequently the two theories are isomorphic. Because of this isomorphism, the

gravitational meaning of the coupling constant λ is surprisingly simple: it is related

to the cosmological constant Λ.

First this gives meaning to the vertex expansion with λ 6= 1. We find that it

is related to the expansion of the normal gravitational constraint with a shifted

value of the cosmological constant. Thus if we take the expansion where λ 6= 1

and Λ = 0 this is equivalent to the expansion with λ = 1 and with the following

values of the cosmological constant

Λ =
3

2γ2ℓ2o
(1 − 1

λ
) (3.67)

In particular if we look at the values of λ for which the series is clearly more

divergent λ > 1 we find that this corresponds to a positive cosmological constant

taking values Λ ǫ (0, 3
2γ2ℓ2o

). On the other hand taking the values of λ < 1 leading

to a more convergent series is equivalent to values of the cosmological constant

Λ ǫ (−∞, 0].

Second a conjectural but interesting point is the following. Suppose we want

to consider the Hamiltonian theory (or the SFM) for zero cosmological constant.
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Then we are interested in the Hamiltonian constraint (3.65) with Λ̃ = 0. From the

GFT perspective, on the other hand, the cosmological constant is Λ which ‘runs

with the coupling constant’ λ via2

Λ =
3

2γ2ℓ2o
(1 − λ) (3.68)

At λ = 1, we have Λ = 0, whence the GFT reproduces the amplitudes of the

SFM with zero cosmological constant. The question is: What is the space-time

interpretation of GFT for other values of λ? From the perturbation theory per-

spective, λ will start out being zero in GFT and, under the renormalization group

flow, it will hopefully increase to the desired value λ = 1. In the weak coupling

limit λ ≈ 0, the SFM will reproduce the amplitudes of the theory which has a pos-

itive but Planck scale cosmological constant Λ ≈ 3/2γ2ℓ2o. This is just what one

would expect from the ‘vacuum energy’ considerations in quantum field theories

in Minkowski space-time. As the coupling constant λ increases and approaches

the SFM value λ = 1, the cosmological constant Λ decreases. Now, suppose that

the renormalization group flow leads us close to but not all the way to λ = 1. If

we are just slightly away from the fixed point λ = 1, the cosmological constant Λ

would be small and positive. These considerations are only heuristic. But they

suggest an avenue by which a fully developed GFT could perhaps account for the

smallness of the cosmological constant.

3.6 Testing the Expansion

As done for the deparametrized model in 2.4, we will now directly test the abil-

ity of the expansion to approximate the exact physical inner product using only

finitely many terms of the vertex expansion. In the following we again analyze the

expansion for a simple choice of initial and final volumes, νi = 4, νf = 4, and a

range of values of the scalar field. We compute the first few orders in M of the

vertex expansion exactly seeing how they vary with increasing order and compare

the sum to the exact expression for the physical inner product.

2Note incidentally that, contrary to what is often assumed, running of constant under a
renormalization group flow is not related to the physical time evolution in cosmology [68].
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Figure 3.1. Real (solid) and imaginary (dashed) parts of the partial amplitude with
zero vertices A0(4λ, 4λ,∆φ) plotted as a function of

√
12πGϕ.

Similar to the deparametrized vertex expansion the initial terms of the expan-

sion do not necessarily provide a good approximation to the exact physical inner

product. In particular at larger values of ∆φ the sum is dominated not by the

first terms of the expansion, but higher orders. This can be seen in figures 3.1-3.3

where for example both the M = 2, M = 6 partial amplitude dominates the M = 0

partial amplitudes for large ∆φ. We see in 3.4 the comparison of the sum over

partial amplitudes up to order M = 0, M = 6, M = 10, and M = 18 as compared

to the exact physical inner product. As more terms are included the expansion

converges up to larger values of ∆φ, but has drastically large error beyond that.

This indicates that either terms of higher order dominate the sum at those values

of the scalar field or the series is asymptotic beyond a certain value of ∆φ.

We again find that a priori it is not clear what a fixed number of terms of

the vertex expansion mean. For small values of ∆φ they do provide a very good

approximation to the exact physical inner product, but for larger values they may

not even provide a zeroth order approximation. This expansion then serves as a

clear warning for similar computations within more complicated models. Without

a coupling constant in the theory that ensures that higher order terms are sub-

dominate as in QED or in large N expansions of Yang-Mills, a finite number of

terms in an expansion may not provide a good approximation to the physical
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Figure 3.2. Real (solid) and imaginary (dashed) parts of the partial amplitude with
two vertices A2(4λ, 4λ;∆φ) plotted as a function of

√
12πG∆φ. For

√
12πG∆φ < 2 the

M = 2 is smaller than the M = 0 while clearly the M = 2 term of the vertex expansion
dominates the M = 0 for larger values of ∆φ, so we see for larger ∆φ terms with more
vertices can contribute more than the lower terms in the vertex expansion.

2 4 6 8 10
12 Π G Φ

-3

-2

-1

1

2

3
A6H4Λ, 4ΛL

Figure 3.3. Real (solid) and imaginary (dashed) parts of the partial amplitude with
two vertices A6(4λ, 4λ;∆φ) plotted as a function of

√
12πG∆φ. Again the M = 6 term

of the vertex expansion is larger than both M = 0,M = 2 terms for larger values of
∆φ. We again clearly see that for larger ∆φ terms with more vertices can dominate the
expansion.
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Figure 3.4. The exact transition amplitude A(4λ, 4λ,∆φ) (solid line) and the vertex
expansion up to order M = 2 (large dashes), M = 6 (dashed), and M = 10 (dot-
doshed), and M = 18 (dotted) plotted as functions of

√
12πG∆φ. With more terms

of the expansion included it converges at a larger value of ∆φ, but diverges strongly
from the exact amplitude beyond that value. Thus it is necessary to include higher and
higher terms in the vertex expansion to have even a first-order approximation of the
exact transition amplitude.

inner product. Although, while there is no coupling constant, when computing the

physical inner product at a fixed value of ∆φ using the vertex expansion the series

does converge to the exact result.

3.7 Discussion and Relation to SFM

We begin a brief summary. Group averaging provides a Green’s functionG(νf , φf ; νi, φi)

representing the inner product between physical states extracted from the kine-

matic kets |vf , φf〉 and |νi, φi〉. We saw in section 3.2 that this quantity is equal

to the transition amplitude A(νf , φf ; νi, φi) for the physical state |νi〉 at the initial

instant φi to evolve to the state |νf 〉 at the final instant of time φf as provided

by the Schrödinger evolution of the deparameterized theory. Although they are

equal, they emphasize different physics. Following the procedure of chapter 2 to

pass from a Hamiltonian theory to a sum over discrete histories, we were able to

obtain a series expansion, (3.41) for G(νf , φf ; νi, φi) - that mimics the vertex ex-

pansion of SFMs. In section 3.2, we had to make one assumption in the derivation
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of the vertex expansion of G(νf , φf ; νi, φi): in the passage from (3.49) to (3.50) we

assumed that the integration over α of the group averaging procedure commutes

with an infinite sum in (3.49). This is an additional assumption on top of the those

required for chapter 2.

In sections 3.3 we were able to obtain the same vertex sum using a perturbative

expansion, in a coupling constant λ, that is reminiscent of GFTs. In sections 3.4

we showed that this is a useful expansion in the sense that the Green’s function

satisfy the constraint equation order by order in λ. Thus, if we were to truncate the

expansion to order M , the truncated Green’s function would satisfy the constraint

equation up to terms of the order O(λM+1). In section 3.5 we showed that the cou-

pling constant λ inspired by GFTs is closely related to the cosmological constant.

This interpretation opens a possibility that a detailed study of the renormalization

group flow in GFT may be able to account for the very small, positive value of the

cosmological constant.

There is again a detailed parallel between this construction and the SFMS. The

vertex expansion (3.41) can be seen as a sum over amplitudes corresponding to

triangulations ∆M of a given manifold as in the spin foam paradigm. The ana-

log of the manifold M with boundaries Σi,Σf in SFMs is the manifold V × I,

where V is the elementary cell in LQC and I, a closed interval in the real line

(corresponding to τ ∈ [0, 1] in the timeless framework. The analog of a triangula-

tion in spin-foams is just a division of V × I into M parts by introducing M − 1

time slices. Just as the triangulation in SFMs is determined by the number of

4-simplices, what matters in LQC is the number M ; the precise location of slices is

irrelevant. The analog of the dual-triangulation in SFMs is just a ‘vertical’ line in

V ×I with M marked points or ‘vertices’ (not including the two end-points of I).

Again, what matters is the number M ; the precise location of vertices is irrelevant.

Coloring of the dual-triangulation in SFMs corresponds to an ordered assignment

(νM , νM−1, . . . ν1, ν0) of volumes to edges bounded by these marked points (subject

only to the constraints νM = νf , ν0 = νi and νm 6= νm−1). Each vertex signals

a change in the physical volume along the quantum history. The probability am-

plitude associated with the given coloring is given by A(νf , . . . , ν0;φf , φi), (3.40)).

A sum over these colorings yields the partial amplitude associated with the trian-

gulation with M ‘vertices’. These partial amplitudes then correspond to the spin
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foam amplitude corresponding to a fixed triangulation ∆M . Finally, the Green’s

function G(νf , φf ; νi, φi) is given by a sum over all M-vertex amplitudes.

Thus, the physical inner product of the timeless framework can be expressed

as a discrete sum of amplitudes associated with triangulations of the interval I
without the need of a ‘continuum limit’: A countable number of vertices suffices;

the number of volume transitions does not have to become continuously infinite.

This result supports the view that LQG and SFMs are not quite analogous to

quantum field theories on classical space-times. Discrete quantum geometry at

the Planck scale makes a key difference. Taken together, these results provide

concrete support for the general paradigms that underlie SFM and GFT. By giving

a construction from the canonical theory leading to a spin foam like structure we

have both a proof of concept that canonical quantum gravity and spin foam models

can be related and a more rigorous framework to help pin-down open issues of the

spin foam models.

However, we again emphasize that this analysis has a limitation: We did not

begin with a SFM in full general relativity and then arrive at the LQC model

through a systematic symmetry reduction of the full vertex expansion. Rather,

we began with an already symmetry reduced model in the canonical language and

recast the results in the spin foam language. Reciprocally, a key strength of these

results is that we did not have to start by postulating that the physical inner

product or the transition amplitude is given by a formal path integral. Rather,

a rigorously developed Hamiltonian theory guaranteed that these quantities are

well-defined. We simply recast their expressions as vertex expansions. Thus we

are not necessarily providing insight about the current spin-foam models from

within their own framework rather we provide insight into the open questions of

the current spin foam models through the assumption that they are derivable from

a given canonical theory. This has the strong benefit of being based on traditional

quantum mechanics as well as retaining a connection to continuous gravity.

It is often the case that exactly soluble models not only provide support for or

against general paradigms but they can also uncover new issues whose significance

had not been realized before. The LQC analysis has brought to forefront five such

issues.

First, as the derivations of the current SFM’s is based on a discretization of
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general relativity on a fixed triangulation the theory does not tell us how to recover

the continuum theory. The expected route to recover the continuum theory is to

sum over all choices of triangulations, which is supported by the vertex expansion

constructed here. The vertex expansion of LQC actually presents two distinct

notions of a sum over triangulations. First there are the abstract simplicial com-

plexes that are usually considered in the SFM. These are defined without reference

to an underlying manifold, depending only on the set of abstract simplices, the

basic geometric objects, and how they are connected together. The second notion

of triangulation arises from the geometric realization of these abstract simplicial

complexes, from the their embedding in a manifold. At different stages of the

derivation each notion of triangulation, abstract and embedded, appears in the

vertex expansion of LQC. Prior to the integration over the times at which each

vertex appears, the amplitude 3.28 can be seen as an integral over the set of all

embedded triangulation - here given by all partitions of the interval I into M + 1

intervals. In this case two triangulations with the same number of vertices but

different times at which the vertices are located will have different amplitudes.

Following the integration over these intermediate times the amplitude naturally

reduced to a sum over abstract triangulations where all that matters is how many

vertices there are not at what time they occur. This extends the standard ques-

tion in SFM about what triangulations should be summed over beyond whether

one consider triangulations more general than simplicial complexes; in addition one

may need to consider not abstract triangulations, but also all possible embeddings.

Second, related to these two notions of triangulation is the presence or lack of

’locality’ in the vertex expansions presented here. Recall that locality in SFM is

defined as the property where the amplitude corresponding to a coloring of a fixed

triangulation is given as the product of amplitudes corresponding to each edge,

face, and vertex (each simplex) of the dual triangulation. Further the amplitude

corresponding to each simplex depends only on its immediate neighbors. For the

vertex expansion of LQC expressed as a sum over embedded triangulations, the

gravitational amplitude 3.29 for a given choice of triangulation and of volumes is

simply a product of elements associated to each edge and vertex of the triangu-

lation. Following the reduction to a sum over abstract triangulations this simple

product structure is lost 3.33. This loss of locality is then transferred to the vertex
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expansion for the physical inner product. Locality is a key assumption of SFM

that must of course be tested. In many systems locality as mentioned above does

occur. The examples often cited include standard Feynman path integrals and

the amplitudes associated to Feynman diagrams in momentum space. Similarly

though there are many systems for which this locality is not present - for example

Feynman diagrams in position space.

Third, it has revealed the advantage of adding matter fields. It is widely ap-

preciated that on physical grounds it is important to extend SFMs beyond vac-

uum general relativity. However what was not realized before is that, rather than

complicating the analysis, this generalization can in fact lead to interesting and

significant technical simplifications. This point is brought out by a recent analysis

of Rovelli and Vidotto [69]. They considered a simple model on a finite dimen-

sional Hilbert space where there is no analog of the scalar field or the possibility of

deparametrization. There, individual terms in the vertex expansion turn out to be

well defined only after a (natural) regularization. In our example, the presence of

the scalar field simplified the analysis (in the transition from (3.37) to (3.40)) and

individual terms in the vertex expansion are finite without the need of any regular-

ization. Furthermore, this simplification is not an artefact of our restriction to the

simplest cosmological model. For example, in the Bianchi I model the Hamiltonian

theory is also well-developed in the vacuum case [70]. Work done by Campiglia,

Henderson, Nelson and Wilson-Ewing shows that technical problems illustrated in

[69] arise also in this case, making it necessary to consider a regularization or other

modification. These problems simply disappear if one also includes a scalar field.

This issue will be further discussed in the following chapters.

Fourth, it came as a surprise that there are two distinct vertex expansions. The

standard group averaging procedure implies that (for ‘positive frequency’ physical

states) the physical inner product in the timeless framework equals the transition

amplitude in the deparameterized framework used in LQC [33]. But whereas the

perturbative expansion (2.34) involves the matrix elements ofH , (3.41) involves the

matrix elements of Θ (and their square-roots). Thus, while the sum yields the same

quantity, if we were to truncate the perturbation series to any finite order one would

obtain distinct results. This is not an artefact of using the simplest cosmological

model. Indeed, from a Hamiltonian perspective, it would appear that distinct
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vertex expansions can arise whenever a well-defined deparametrization is available

or when the constraint can be solved explicitly as in 2 + 1 gravity. This raises an

interesting and more general possibility. Can there exist distinct spin foam models

—constructed by using, say, distinct vertex amplitudes— for which the complete

vertex expansions yield the same answer? Finite truncations of these expansions

could be inequivalent, but each could be tailored to provide an approximation to

the full answer for a specific physical question. One may then be able to choose

which truncated expansion to use to probe a specific physical effect.

The fifth issue concerns three related questions in the spin foam literature: i)

Should the physical inner products between states associated with spin networks

be real rather than complex [64]? ii) In the classical limit, should one recover cosS

in place of the usual term eiS, where S is the Einstein Hilbert action [71, 72]?

iii) Should the choice of orientation play a role in the sum of histories [63]? In

the LQC example we studied in this paper, these three questions are intimately

related. The inner product between the physical states [ν, φ]+ determined by the

kinematic basis vectors —which are the analogs of spin networks in this example—

are in general complex (see Eq (3.41)). However, if we had dropped the positive

frequency requirement, the group averaged inner products would have been real

(see Eq (3.37)). The situation with action is analogous. And, as we show in the

next paragraph, the positive frequency condition also selects a time-orientation.

Since this is an important issue, we will discuss it in some detail. Let us begin

with the classical theory. The phase space is 4-dimensional and there is a single

constraint: C(ν, b;φ, pφ) := Gp2
φ − 3π (ℓ2Plν

2) b2 = 0. Dynamics has two conceptu-

ally interesting features. First, given a solution (ν(t), φ(t)) to the constraint and

dynamical equations, (−ν(t), φ(t)) is also a solution (where t denotes proper time).

They define the same space-time metric and scalar field; only the parity of the spa-

tial triad is reversed. Therefore (ν(t), φ(t)) → (−ν(t), φ(t)) is regarded as a gauge

transformation. The second feature arises from the fact that the constraint surface

has two ‘branches’, pφ > 0 and pφ < 0, joined at points pφ = 0 which represent

Minkowski space-time. As is usual in quantum cosmology, let us ignore the trivial

flat solution. Then each of the two portions Γ̄± of the constraint surface defined

by the sign of pφ is left invariant by dynamics. Furthermore, there is a symmetry:

Given a dynamical trajectory (ν(t), φ(t)) in Γ̄+, there is a trajectory (ν(t),−φ(t))
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which lies in Γ̄−. This represents a redundancy in the description in the sense

that we recover all physical space-time geometries gab(t) even if we restrict only to

one of the two branches Γ̄±. In particular, the dynamical trajectories on Γ̄+, for

example, include solutions which start with a big-bang and expand out to infinity

as well as those which start out with infinite volume and end their lives in a big

crunch. The difference is in only in time orientation: If we regard φ as an internal

or relational time variable and reconstruct space-time geometries from phase space

trajectories, space-times obtained from a trajectory on Γ̄+ defines the same geome-

try as the one obtained from the corresponding trajectory on Γ̄− but with opposite

time orientation. As in the Klein-Gordon theory of a free relativistic particle, this

redundancy is removed by restricting oneself either to the pφ > 0 sector or to the

pφ < 0 sector. In the quantum theory, then, the physical Hilbert space is given

by solutions Ψ(ν, φ) to the quantum constraint (3.11) which in addition have only

positive (or negative) frequency so that the operator pφ is positive (or negative)

definite. (They are also invariant under parity, Ψ(ν, φ) = Ψ(−ν, φ)). Thus, the

LQC example suggests that in general SFMs one should fix the time-orientation,

lending independent support to the new ideas proposed in [63]. Reality of the

physical inner products between spin network states [64] and the emergence of

cosS in place of eiS [71, 72] can be traced back to the fact that in most of the

SFM literature one sums over both orientations. However, our analysis provides

only a hint rather than an iron-clad argument because all our discussion is tied to

LQC models where symmetry reduction occurs prior to quantization.

Next, we saw that the inner product between physical states extracted from

the kinematic basis vectors |ν, φ〉 are in general complex (as is generally true for

constrained systems). However, if we were to enlarge the physical Hilbert space

allowing for both ‘positive and negative frequency’ solutions, they become real. In

SFMs the obvious analog of the LQC ‘positive frequency’ restriction is a choice

of an orientation. Currently, the sum involves both orientations and the inner

products between the physical states extracted from spin network states are all

real. The LQC analysis naturally raises a question: Should one also impose a

suitable restriction allowing, e.g., only those histories with only one orientation

[63]? Or, does correct quantum physics require us to have only real physical scalar

products in this basis? If so, why is there a qualitative difference in LQC?
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We conclude with a hopeful direction for new insight into the construction of

SFM. Coming from the view of the gravitational amplitude expressed as a sum

of embedded triangulations 3.28. The vertex amplitude of LQC can be thought

of as a sum over all piece-wise constant histories in the configuration variable.

This is natural given the discrete topology of the spectrum of the configuration

variable coming from the Kronecker delta inner product. This raises the hope

that it is possible to derive the vertex expansion of spin foam models not by first

discretizing the theory and then writing a path integral expression, but given the

insight into the the structure of the kinematic Hilbert space of LQG of quantum

geometries consider the space of piecewise constant configurations. The sum over

all histories compatible with the quantum geometry would then decompose into

a sum over different embedded triangulations and integrals over the values of the

configuration variables in each constant patch.



Chapter 4
Generalization of Vertex Expansion

In the previous chapters we introduced two distinct sum over histories expansions

for exactly soluble LQC, a quantization of FRW coupled to a massless scalar field.

The first was constructed by identifying the scalar field as a clock, deparametrizing

the system, and then following the Feynman construction of a sum over histories.

The result is a sum over discrete histories where the volume changes only a finite

number of times, which we call a vertex expansion due to the connection with the

expansion of the same name in the spin foam models. The second was constructed

without deparametrizing, but instead through constructing a vertex expansion

for the group averaging expression for the physical inner product. The vertex

expansion of this soluble model provided both a method of perturbative calculation

for LQC as well as insight into the current SFMs albeit in a simplified setting. For

both reasons we should extend the construction to more complex models such as

anisotropic cosmologies [41, 42, 43] and inhomogeneous systems ([44, 45, 46]). For

these systems there is little known analytically, so the vertex expansion provides a

tool to perturbatively compute the physics of these models. Second, systems with

more degrees of freedom capture more features of full quantum gravity and thus

provide more precise insight into the structure of SFMs.

Although each vertex expansion was constructed for a particular model, the

derivations did not make extensive use of the detailed properties of the model. In

this chapter we analyze more general models with a single Hamiltonian constraint:

first by extending the construction to general gravitational parts of the constraint

while keeping the massless scalar field and then by additionally allowing for more
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general matter contribution to the constraint. We show that the vertex expansion

directly extends to a large class of systems. We find though that the requirement

of being able to carry out the integral over the lapse, α, in the group averaging

procedure is the main obstacle to generalization of the vertex expansion of the

timeless framework. New input is needed for the integrals over α to be well defined

Rather than being an insurmountable problem though, this leads to deeper insights

into the vertex expansion and to spin foam models.

4.1 General Sum Over Discrete Histories

We will first return to the discrete sum over histories introduced in section 2.4 that

was the basis of the vertex expansion for both the deparametrized and timeless

framework. Here we analyze the necessary assumptions of that expansion to see

to how specific the construction is to soluble LQC and hence how generally it

can be applied. Recall that that the structure of the sum over discrete histories

corresponding to the transition amplitude is,

〈νf | eiHt|νi〉 = A(νf , t; νi, 0) =

∞∑

M=0

AM(νf , t; νi, 0) (4.1)

where the partial amplitudes AM are given by a sum over amplitudes corresponding

to each discrete history where the volume changes M times.

AM(νf , t; νi, 0) =
∑

νM−1,...,ν1

νm 6=νm+1

A(νf , νM−1, . . . ν1, νi, t) (4.2)

The amplitude for a general discrete history is then given by

A(νf , νM−1, . . . ν1, νi, t) =
∑

νM−1,...,ν1

νm 6=νm+1

HνMνM−1
HνM−1νM−2

. . . Hν2ν1Hν1ν0 ×

P∏

k=1

1

(nk − 1)!

(
∂

∂Hk

)nk−1 P∑

i=1

eiHiϕ

∏P
j 6=i(Hi −Hj)

∣∣∣∣∣
Hi=Hνi(d)νi(d)

.
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where even though neighboring volumes are required to be distinct the same volume

can repeat many times during the history. The νi(d) then denote the P distinct

values of the volume taken along the history and ni denote the degeneracy of

each of those values. Here this encompasses both the vertex expansion of the

deparametrized system, H =
√

Θ and t = ϕ, and of the gravitational amplitude of

the timeless system, H = −αΘ and t = 1.

The key ingredients going into the construction were the following. We require

a kinematical Hilbert space with a basis normalizable to the Kronecker delta, which

encompasses every Hilbert space. For the cases above this was given by the basis

of volume eigenstates with an inner product given by the Kronecker delta,

〈ν1|ν2〉 = δν1,ν2 (4.3)

It was this structure allowed the continuous time limit (N → ∞) to be rigorously

taken leading to a sum over discrete histories instead a path integral over continu-

ous histories. Similarly the use of such a normalizable basis allowed for the decom-

position of the Hamiltonian into diagonal and off-diagonal parts in the derivation

of the vertex expansion from perturbation theory. It is preferable if the normaliz-

able basis is provided by the eigenstates of a natural configuration variable. This is

one point where LQG and LQC are distinct from standard Schrodinger quantum

mechanics where the position and momentum eigenstates used to construct the

Feynman path integral are non-normalizable in the Hilbert space, as opposed to

the normalizable volume eigenstates of LQC. The second input was a self-adjoint

operator H on this kinematical Hilbert space of which no additional assumptions

were made.

From here we see that the derivation of (4.1 − 4.3) is completely general. It

extends to any Hilbert space, with any choice of a normalizable basis and any self-

adjoint operator on that Hilbert space. The vertex expansion can then be applied

to standard Schrodinger quantum mechanics using for example the eigenstates of

the simple harmonic oscillator. It most naturally extend though to theories where

the normalizable basis consists of the eigenstates of a natural configuration vari-

able. Importantly, the spin network basis of LQG has precisely such a normalizable

basis, so the vertex expansion is directly generalizable to LQG. The vertex expan-
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sion In the following we will take a general kinematical Hilbert space given by

finite linear combinations of basis elements given by states |s〉 for all s in some

index set S. In soluble LQC the states |s〉 are the eigenstates of the volume and

S is isomorphic to the set of integers. For the LQC of Bianchi I the states |s〉
are the simultaneous eigenstates of the volume ν and two variables describing the

anisotropy and in LQG the states |s〉 are elements of the spin network basis with

S given by the set of all piecewise-analytic graphs on the spatial slice Σ colored

with SU(2) spins. The inner product between these basis elements is given simply

as

〈s1|s2〉 = δs1,s2 ∀s1, s2 ǫ S (4.4)

We have then that given any deparametrizable system or any system with a

true Hamiltonian the construction of the vertex expansion presented in chapter

two can be simply generalized. The barriers to constructing a useful expansion of

these systems lie primarily in the ability to compute the matrix elements of the

Hamiltonian. Even in the exactly soluble system this was highly non-trivial.

4.2 Vertex Expansion of Physical Inner Product

In the previous section we saw that the vertex expansion of the amplitude to

evolve between two kinematical states can be extended to any constrained system

admitting a deparametrization through a choice of clock variable. For a general

constrained system such a deparametrization is not available. Additionally, for

more complex LQC models such as Bianchi I that do admit a deparametrization

it is extremely difficult to calculate the matrix elements appearing in the vertex

expansion (4.3). In either case we must return to the timeless framework and

obtain the physical states and physical inner product through the group averaging

procedure. We will find in this section though that to derive the vertex expansion

in the timeless framework there are more stringent requirements to on the choice

of basis states and the form of the constraint.

The derivation of the vertex expansion for the physical inner product con-

structed in chapter 3 required the following inputs. First we required a kinematical

Hilbert space that was the tensor product of a gravitational Hilbert space with a
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normalizable basis with the standard Hilbert space, Hmatt
kin = L2(R, dφ), for the

scalar field. In the following we denote the gravitational basis states by |s〉 where

s is an element of some index sex S and the states have an inner product given

by (4.4. The construction necessarily required the presence of a matter degree of

freedom - the extension to purely vacuum models will be presented in the next

chapter. Second the constraint is assumed to be given by a gravitational part plus

a matter contribution corresponding to a massless scalar field

C = p2
φ/~

2 − Θ (4.5)

It is this feature that allows the system to be simply deparametrized. Third, the

gravitational part of the constraint, Θ has all non-zero matrix elements in the

basis, 〈s|Θ|s〉 6= 0 for all s. Given the first two assumptions the physical inner

product can be written as follows.

([sf , φf ], [si, φi]) = 2
∫

dα 〈sf , φf | eiαC |pφ| |si, φi〉 (4.6)

=
∫

dαAφ(φf , φi;α)AG(sf , si;α) (4.7)

with

Aφ(φf , φi;α) = 2 〈φf |eiαp2
φ |pφ||φi〉, and AG(sf , si;α) = 〈sf |e−iαΘ|si〉 . (4.8)

since the constraint simply breaks into one term acting on the gravitational Hilbert

space and one term acting on the scalar field Hilbert space. Here without any

additional assumptions the gravitational amplitude AG(sf , si;α) can be expanded

in a vertex expansion using (4.1-4.3).

Inserting this vertex expansion into the expression for the physical inner prod-

uct above, assuming that the diagonal matrix elements are non-zero, and again

interchanging the integration over α with the sum over vertices M we arrive at the

following.

([sf , φf ], [si, φi]) =
∞∑

M=0

[ ∑

sM−1,...,s1

sm 6=sm+1

A(sM , . . . , s0;φf , φi)
]
, (4.9)
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where the partial amplitude associated to each number of vertices M is given by

A(sM , . . . , s0;φf , φi) = ΘsMsM−1
ΘsM−1sM−2

. . . Θs2s1 Θs1s0 × (4.10)
P∏

k=1

1

(nk − 1)!

( ∂

∂Θk

)nk−1
P∑

i=1

ei
√

Θi∆φ + e−i
√

Θi∆φ

∏P
j 6=i(Θi − Θj)

∣∣∣∣∣
Θi=Θsi(d)si(d)

as obtained by first integrating over the lapse α and then over the scalar field mo-

mentum pφ. In a discrete history sf , sM−1, . . . , s1, si there can be many states si

that lead to the same diagonal element. In the above expression then P is the num-

ber of distinct values of Θss taken along the history, Θsi(d)si(d)
denotes the i-th such

distinct value, and ni denotes the number of times that value repeats. For SLQC

the diagonal elements of Θνν were distinct if the volumes ν were distinct along

the discrete history. In that case this construction led to the correct expansion as

observed by the fact that it solved the constraint and that it well approximated

the physical inner product at least for at least some range of values. Similarly the

vertex expansion (4.9) solves the constraint C = p2
φ −Θ for a generic gravitational

part Θ with non-zero diagonal matrix elements.

To reiterate the necessary features for the construction above are the following:

• The presence of a scalar field

• A splitting of the constraint operator into a gravitational part and a massless

scalar field part.

• A gravitational part of the constraint Θ having nonzero diagonal elements.

Together these three assumptions allowed us to interchange the integral over α with

the sum over M the number of vertices obtaining a well-defined amplitude for each

discrete history. In the following we will seek to relax the last two assumptions

and finally relax the first assumption in the next chapter.

4.3 Zero Diagonal Elements

The simplest generalization leaves the matter part of the constraint untouched

and simply considers the most general possible self-adjoint operator Θ whose di-

agonal matrix elements can be zero. Even for the Bianchi I model, the simplest
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anisotropic cosmology, the gravitational part of the constraint ΘBI has all zero

diagonal matrix elements in a natural basis given by eigenstates of geometric op-

erators. The presence of a single zero diagonal matrix leads to divergences in the

vertex expansion in the timeless framework. It is then necessary to introduce new

ideas to obtain a well defined vertex expansion.

We first recall that the derivation of the vertex expansion for the gravitational

part of the amplitude does not depend on the details of the operator Θ.

AG(sf , si;α) =〈sf |e−iαΘ|si〉 =

∞∑

M=0




∑

sM−1,...,s1

sm 6=sm+1

A(sM , . . . , s0;α)



 (4.11)

A(sM , . . . , s0;α) =ΘsMsM−1
ΘsM−1sM−2

. . .Θs2s1Θs1s0 ×
P∏

k=1

1

(nk − 1)!

(
∂

∂Θk

)nk−1 P∑

i=1

e−iαΘi∆τ

∏P
j 6=i(Θi − Θj)

∣∣∣∣∣
Θi=Θsi(d)si(d)

(4.12)

where the derivates are taken and then the expression is evaluated at values of the

diagonal elements associated to the distinct states in the history. This is equally

valid when the diagonal elements are zero.

The barrier to obtaining a vertex expansion of the physical inner product is

whether or not the integral over α appearing in (4.6) can be carried out for each

discrete history separately. Without loss of generality we can assume that that the

matrix element ΘsP (d)sP (d)
is zero. To clearly see the breakdown of the expansion

we carry out the integrals over α and pφ and then take the limit as ΘP goes to

zero for the amplitude corresponding a single discrete history (4.10).

A(sM , . . . , s0;φf , φi) = ΘsMsM−1
ΘsM−1sM−2

. . . Θs2s1Θs1s0 ×

4.3.2

P∏

k=1

1

(nk − 1)!

(
∂

∂Θk

)nk−1 P∑

i=1

ei
√

Θi∆φ

∏P
j 6=i(Θi − Θj)

∣∣∣∣∣
Θi=Θsi(d)si(d)

(4.13)

The limit ΘP → 0 is well defined for the terms i = 1 to P − 1 of the sum. Though
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the limit is clearly divergent for the P-th term of the sum when nP ≥ 2. The

dominant term in that case is given by

A(sM , . . . , s0;φf , φi) ≈ lim
ΘP→0

1

ΘP
nP−3/2

(4.14)

coming from the repeated derivatives of ei
√

ΘP ∆φ with respect to ΘP . The ampli-

tude for a discrete history which contains states whose diagonal matrix elements

are zero have divergent amplitudes and further the divergence is proportional to

the number of such states appearing in the history repeat. We thus see a clear

need to modify the expansion such that the integral over α will be well defined.

There are three natural solutions

• Introduce a different grouping of histories resulting in a finite integral over α,

which was the strategy to obtain a well-defined limit as the skeletonization

was removed, N → ∞.

• Change to a basis where the operator Θ has all non-zero diagonal matrix

elements.

• Introduce a different splitting of the Hamiltonian into ’Free’ and ’Interaction’

terms in the derivation from perturbation theory.

These are each related but provide different intuition for generalizing the vertex

expansion. In the following we discuss these three solutions with focus on the first

as it has the closest contact to the path integral paradigm.

4.3.1 New Basis/Choice of Free and Interaction Terms

Two natural solutions from the canonical perspective are simply consider change

of basis in which the diagonal matrix elements are all non-zero or to consider a

different choice of free and interaction terms in the perturbation theory expansion.

We can simply see that the choosing a different basis while following the exact

derivation of the vertex expansion as in 3.3 is equivalent working with the same

basis and using a different choice of free and interaction terms. We can first choose

a new normalizable basis {|d〉} such that 〈d|d′〉 = δdd′ . Splitting the operator Θ
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into a diagonal part D′, and off-diagonal part K ′ in terms of the new basis states

and following the derivation of section 3.3 of the vertex expansion where we find,

A
(λ)
G (sf , si, α) =

∞∑

M=0

λM
∫ 1

0
dτM ...

∫ τ2
0

dτ1
∑

dM ,...,d0
dm 6=dm+1

〈sf |dM [e
−i(1−τM )αD′

dM dM ] ×

(−iαK ′
dM dM−1

) . . . (−iαK ′
d1d0

) [e−iτ1αD′
d0d0 ] 〈s0|si〉. (4.15)

The gravitational amplitude is simply expressed as a sum over discrete histories of

the new basis states.

Similarly we can consider working with the original basis and choosing a dif-

ferent splitting of the gravitational part of the constraint, Θ = D′ +K ′, where D′

is not diagonal in the original basis and the spectrum of D′ is still discrete (the

eigenstates of D′ are normalizable). Treating D′ as the free part of the constraint

and K ′ as the interaction term we can again follow the derivation of section 3.3

of the vertex expansion. Starting with the gravitational part of the amplitude we

take the perturbative expansion around the free part D′,

A
(λ)
G (sf , si, α) =

∞∑

M=0

λM
∫ 1

0
dτM ...

∫ τ2
0

dτ1 〈sf |[e−i(1−τM )αD′

] (−iαK ′) ×

(−iαK ′) [e−i(τM−τM−1)αD′

] . . . [e−i(τ2−τ1)αD′

] (−iαK ′) [e−iτ1αD′

]|si〉 .
(4.16)

To evaluate the above expression we insert a decomposition of the identity operator

in terms of the eigenstates |d〉 of free part D′ between each interaction term. Since

the spectrum of D′ was assumed to be discrete the eigenstates can be normalized

to an inner product given by the Kronecker delta and the resulting perturbative

expansion is a vertex expansion,

A
(λ)
G (sf , si, α) =

∞∑

M=0

λM
∫ 1

0
dτM ...

∫ τ2
0

dτ1
∑

dM , ..., d0
dM(sf )[e

−i(1−τM )αD′
dM dM ] ×

(−iαK ′
dM dM−1

) . . . (−iαK ′
d1d0

) [e−iτ1αD′
d0d0 ] d0(si). (4.17)

which is equivalent to (4.15) if additionally the free and interaction terms are

chosen such that for all eigenstates of D′ |d〉 the diagonal matrix elements of the
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interaction term, Kdd are zero. We then find that either approach produces the

same vertex expansion, so in the following we focus on the choice of a different

splitting of the constraint.

If the free part, D′, is chosen such its eigenvalues are always non-zero the vertex

expansion for the physical inner product can be derived leading to

([sf , φf ], [si, φi]) =

∞∑

M=0

[ ∑

dM ,...,d0
dm 6=dm+1

〈sf |dM〉A(dM , . . . , d0;φf , φi)〈d0|si〉
]
, (4.18)

with sums over discrete histories of the eigenstates d instead of the original basis

states. The partial amplitude associated to each number of vertices M is given by

A(dM , . . . , d0;φf , φi) = K ′
dM dM−1

K ′
dM−1dM−2

. . . K ′
d2d1

K ′
d1d0

× (4.19)

P∏

k=1

1

(nk − 1)!

( ∂

∂D′
k

)nk−1
P∑

i=1

ei
√

D′
i∆φ + e−i

√
D′

i∆φ

∏P
j 6=i(D

′
i −D′

j)

where the D′
i the distinct values of the matrix elements Ddmdm taken along the

discrete history and ni are the number of times each distinct value D′
i is repeated

along the history. The problem is then to find a suitable splitting of the constraint

that will lead to a free part with no zero eigenvalues and to matrix element of the

interaction term, K ′
dd, that are zero for each eigenstate of D′. Such a splitting will

lead to a well defined vertex expansion given.

For LQC and similar systems where the kinematic basis is isomorphic to the

integers there is a simple generalization of the splitting of Θ into diagonal and

off-diagonal parts satisfying the above properties. In such systems the operator

Θ can be written as a matrix. For soluble LQC for example the operator Θ is a

tri-diagonal matrix with entries only along the main diagonal and the diagonals

above and below it. A natural splitting in these cases is to consider the free part of

Θ, D′, to be a block-diagonal matrix instead of simply diagonal. The spectrum of

this block diagonal free part is then given simply by the eigenvalues of each block,

Di, along the diagonal. The simplest such choice is to take each zero diagonal
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element to be in a 2 × 2 block as in the following example,





Θ4λ 4λ Θ4λ 8λ 0 0 0

Θ8λ 4λ 0 Θ8λ 12λ 0 0

0 Θ12λ 8λ Θ12λ 12λ Θ12λ 16λ 0

0 0 Θ16λ 12λ 0 . . .

0 0 0 . . . . . .





=





D1 K12
0

0

K21 D2 0
. . .

0 0 0 . . . . . .




(4.20)

where D1 is the block containing the matrix elements with respect to 4λ and 8λ

and D2 with respect to 12λ,16λ. For this simple choice the spectrum of the free

part D′ will necessarily not contain 0. Each zero diagonal element of Θ is contained

in a 2 × 2 block

Ds =

[
0 Θss′

Θs′s Θs′s′

]
(4.21)

whose eigenvalues are non-zero for all values of Θss′ 6= 0 and Θs′s′ .

More generally the gravitational part of the constraint Θ cannot be written as

a simple matrix as above. There remains though a clear notion of a block diagonal

decomposition. It is helpful to first introduce the following picture: as Θ is a

self-adjoint operator on the kinematic Hilbert space it necessarily maps a single

element of the basis to a finite linear combination of states |s〉. The index set S

then inherits from Θ a graph structure where to each s ǫ S there is a vertex and

there is a link between the vertices s and s′ iff Θss′ 6= 0 (Allowing links between

s and itself). From this there is a clear notion of distance between two elements

of the kinematic basis as the minimum number of links connecting the two points,

or equivalently the minimum n such that 〈s′|Θn|s〉 is non-zero. We say that two

points are n-connected if there exists is a path of n-links connecting them.

The block diagonal decomposition is then constructed as follows. We take a

partitioning of the set S into disjoint countable subsets Sα such that the induced

graph on each Sα is connected graph with some maximum number of distance

betweens elements. In other words we partition the graph into connected subgraphs

Sα. The decomposition into free and interaction parts is then as follows:

Dss′ = Θss′ if there existsα such that s, s′ ǫ Sα (4.22)
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Kss′ = Θss′ if there does not existα such that s, s′ ǫ Sα (4.23)

Here each block of the free part of the constraintD is given by the restriction of Θ to

a single subset Sα. The off-diagonal part K then connects elements within distinct

subsets Sα and S ′
α acting as a generalization of the interaction term introduced in

section 3.3. The eigenvalues of D are simply given by the eigenvalues of each block

Dα, the restriction of D to a single Sα and the eigenstates of D be chosen to be the

eigenstates of each Dα. Then it is true that the diagonal matrix elements of the

interaction term in the basis of eigenstates of D. The final and most important

requirement is to chose the subsets Sα such that the eigenvalues of each block Dα

are non-zero. The simplest choice is to take each Sα to be a connected pair of states,

which corresponds to the simple example above for LQC. If such a decomposition

exists then a vertex expansion exists for the model and is given by (4.18) and

(4.19).

The choice of splitting Θ into a free part which is block diagonal and an inter-

action term provides one way to resolve the divergences that occur in the vertex

expansion when the Θ has diagonal matrix elements that are zero. Although, in

practice it may be difficult to construct a splitting such that the free part D does

not have zero as an eigenvalue.

4.3.2 Coarse Graining

The most natural generalization from the sum over histories derivation of the

vertex expansion is to consider further grouping together the histories prior to

taking integral over α coming from the group averaging. This was precisely the

approach that led to a well-defined limit N → ∞ in sections 2.4 and 3.2. Originally

we considered the simplest grouping of histories that allowed for the limit N → ∞
to be taken. This was defined for each finite set of volumes (νM , νM−1, . . . , ν0) by

summing together all piecewise constant histories where the transitions between

each constant value, νm → νm−1, is allowed to happen at any time, τm along the

history. Coincidentally this choice also resulted in a well defined expression when

interchanging the integral over α with the sum over discrete histories when the
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operator Θ had no zero diagonal matrix elements.

([sf , φf ], [si, φi]) = 2

∫
dα

∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

Aφ(φf , φi;α)A(sM , . . . , s0;α) (4.24)

=

∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

∫
dα 2Aφ(φf , φi;α)A(sM , . . . , s0;α) (4.25)

Denoting the sum over discrete histories as

∑

σ

:=
∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

(4.26)

where σ denotes the set of all discrete histories of any length M . The assumption

above is that the sum over all discrete histories in σ commutes with the integral

over α. Clearly assumption breaks down in the case that Θ has some diagonal

matrix elements that are zero where the integral over α is divergent.

Since the integral over α cannot be trivially interchanged with the entire sum

over all histories, we are led to ask if there exist a further grouping of paths such

that the integral over α is well-defined for sum of amplitudes corresponding to the

whole grouping. It is clear that if we sum over all discrete histories in (4.9) the

gravitational part of the amplitude reduces to its exact value and the resulting

integral over α will give the exact physical inner product (assuming everything is

convergent). We then seek subsets, σβ of the set of all discrete histories such that

the sum over amplitudes of the histories within a σβ has a well-defined integral

over the lapse and that the integral over the lapse, α, can be interchanged with

the sum over the subsets indexed by β ǫ B.

∫
dα

∑

β ǫ B

∑

σβ

=
∑

β ǫ B

∫
dα

∑

σβ

(4.27)

To obtain a well-defined limit N → ∞ in sections 2.4 and 3.2 we consider the sets

of histories with M volume transitions between a fixed set of volumes νM , . . . , ν0

where the transitions could occur at arbitrary times. Here we consider a similar

construction: As we saw in (4.14) if for some basis state, |so〉 the diagonal matrix
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element of Θsoso is zero the size of the divergence in the amplitude of a discrete

history is given by the number of times that state repeats in the history. As such

our intuition is to take for each σβ those paths which oscillate arbitrarily around

states with zero diagonal matrix element to those states are nearby (states, |s〉 for

which Θsos is non-zero). We can view this as a coarse graining of our notion of

’constant’ path to be one that fluctuates to nearby points.

To describe this grouping of paths we can return to the picture of the graph on

S. For each element s ǫ S we take its immediate neighborhood to be C(s, 1) set

of states that are a distance one from s.

C(s, 1) = {s′|Θs s′ 6= 0 s′ 6= s} (4.28)

and C(s, 2) to be the set of states that are a distance two away from s not including

s itself.

C(s, 2) = {s′|Θ2
ss′ 6= 0 and s′ 6= s} (4.29)

We now follow the same idea as that of 2.3 and 3.2 where we re-organized the

sum over histories in ’time’ emphasizing the number of volume transitions thereby

obtaining a well-defined limit as the skeletonization was removed. Here we re-

organize the sum over discrete histories emphasizing the ’double-transitions’, or

transitions from a state s to a state s2 ǫ C(s, 2). We first notice that any dis-

crete history with M transitions can be written as a sequence of N0 (possibly 0)

transitions between the initial point s0 and states of C(s0, 1), followed by a double

transition directly to an element s1 in C(s0, 2) followed by N1 transitions between

s1 and states of C(s1, 1), etc... Then instead of focusing on the number of single

transitions we characterize histories by the number of double transitions which do

not return to the original state.

Each discrete history can be characterized by a set of ordered sequences. First

a set σM of M+1 states along the history each separated by a double transition. A

set of M +1 integers Nm denoting the number of transitions between each element

of σM and it’s neighbouring states. Finally M + 1 sequences of length 2Nm giving

the sequence of transitions between sm and nearby states in C(sm, 1). A generic
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history can then be written as

σM,N = (sM ,

2NM︷ ︸︸ ︷
s
(M)
1 , sM , s

(M)
2 , . . . , s

(M)
NM

, sM , s
(M,M−1), sM−1, s

(M−1)
1 , sM−1, . . . (4.30)

, s1, s
(1)
1 , s1, . . . , s

(1)
N1
, s1︸ ︷︷ ︸

2N1

, s(1,0), s0, s
(0)
1 , s0, . . . s

(0)
N0
, s0︸ ︷︷ ︸

2N0

) sm+1 ǫ C(sm, 1)

where sM , sM−1, . . . , s1, s0 denote the states separated by double transitions, eachsm ǫ C(sm−1, 2).

s
(M)
1 , . . . , s

(M)
NM

denote the states in C(sM , 1), the neighboring states of sM , and sim-

ilarly each each element s
(m)
n is an element of C(sm, 1). The states s(m,m−1) then

are the intermediate states that connect sm and sm+1 separated by two transitions,

they are elements of C(sm+1, 1) ∩ C(sm, 1).

The idea is to sum over all histories with the same coarse grained history

sM , sM−1, . . . , s1, s0 of states separated by two transitions. To do so we first sum

over all possible sequences of transitions between each states of the coarse grained

history, sm, and it’s neighboring states in C(sm, 1) for a fixed coarse grained history

and fixed numbers of transitions Nm. Second we sum over all Nm the number of

transitions between each sm and it’s neighboring states. The result is an amplitude

depending only on the coarse grained amplitude sM , sM−1, . . . , s1, s0. To obtain the

full amplitude we must then sum over all such histories of fixed length and finally

over the number of double transitions M . This will provide the full amplitude only

in the case that the final states sM can be reached from the initial state s0 only

by an even number of actions of the operator Θ.

For simplicity we will discuss here the case where all diagonal elements of the

Θ are zero, which is the case for simplest anisotropic LQC model, Bianchi I, with

basis states labelled by the volume and two variables encoding the anisotropy. For

such cases the gravitational amplitude for a single discrete history is simply

A(sM , . . . , s0;α) = ΘsMsM−1
ΘsM−1sM−2

. . .Θs2s1Θs1s0

(−iα)M

M !
(4.31)

whereby the resulting integral over α would be strongly divergent as in 4.14. To

carry out the coarse graining we first then consider a fixed history of states that

are separated by two transitions, sM , sM−1, . . . , s0, and a fixed number Nm of

oscillations around each state, sm, in the history. The amplitude corresponding to
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this is given by a sum over all possible sets of Nm neighboring states for each sm

and all possible states connecting each sm to sm−1. This can easily be seen to be

the following,

A(2)(sM , . . . , s0;NM , . . . , N0) =
(−iα)2(NM +NM−1+...+N0+M)

(2(NM +NM−1 + . . .+N0 +M))!
(4.32)

× (Θ2
sMsM

)NM (Θ2
sMsM−1

)(Θ2
sM−1sM−1

)NM−1 . . . (Θ2
s1s0)(Θ

2
s0s0)

N0

where (Θ2
ss′) simply denote the matrix elements of the operator Θ2

We next sum over all NM , . . . , N0 with a fixed coarse grained history.

A(2)(sM , . . . , s0;α) =

∞∑

NM =0

. . .

∞∑

N0=0

A(2)(sM , . . . , s0;NM , . . . , N0) (4.33)

By inserting (4.32) and defining PM = NM + NM−1 + . . . + N0, PM−1 = NM−1 +

NM−2 + . . .+N0, . . ., P0 = N0, (4.33) can be expressed as,

A(2)(sM , . . . ,s0;α) = (Θ2
sMsM−1

) . . . (Θ2
s1s0)

∞∑

PM=0

PM∑

PM−1=0

. . .
P1∑

P0=0

(4.34)

(−iα)2(PM +M)

(2(NM +M))!
(Θ2

sMsM
)PM−PM−1(Θ2

sM−1sM−1
)PM−1−PM−2 . . . (Θ2

s0s0)
P0

From this form the sums can be simply carried out for the case where the diagonal

matrix elements of Θ2 for states in the coarse grained history are all distinct.

A(2)(sM , . . . , s0;α) = (Θ2
sMsM−1

) . . . (Θ2
s1s0)

M∑

i=0

e−iα
√

Θ2
sisi + e+iα

√
Θ2

sisi

∏
j 6=i(Θ

2
sisi

− Θ2
sjsj

)
(4.35)

When the diagonal matrix elements of Θ2 are not distinct along a history (4.35) is

generalized in the same manner as (4.3.2),

A(2)(sM , . . . , s0;α) =(Θ2
sMsM−1

) . . . (Θ2
s1s0) (4.36)

×
P∏

k=1

1

(nk − 1)!

(
∂

∂Θ2
k

)nk−1 P∑

i=1

e−iα
√

Θ2
i + e+iα

√
Θ2

i

∏
j 6=i(Θ

2
i − Θ2

j)

where Θ2
i now denote the P distinct values of the diagonal matrix elements of
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Θ2 along the history and ni again label how many times each value Θ2
i repeats.

The overall gravitational amplitude is then given as a sum over these amplitudes

corresponding to coarse grained histories.

AG(sf , si;α) =
∞∑

M=0




∑

sM−1,...,s1

sm ǫ C(sm+1,2)

A(2)(sM , . . . , s0;α)



 (4.37)

where since we have introduced a coarse graining this expansion can only give the

gravitational amplitude for states sf and si that are connected by an even number

of actions of the constraint. In terms of the picture of Θ giving a graph on the

space of basis states, sf and si are connected by only even length paths. This can

be simply generalized, but will be discussed in the following chapter where it can

be given a simpler formulation.

The final expression for the amplitude corresponding to coarse grained histories

now does not depend on the diagonal matrix elements of Θ, which if zero rendered

the expansion of the physical inner product divergent. Instead the amplitude

(4.36) depends on the diagonal matrix elements of Θ2 which if zero for some state

indicate that the state is entirely decoupled from the dynamics. Further the partial

amplitude for each coarse grained history has the same form as the amplitude for

the original discrete histories (4.10) except it depends on the matrix elements of

Θ2 in place of Θ and it contains exponential terms with both signs. From here this

amplitude can be combined with the amplitude for the scalar field as in (4.6) and

the group averaging integral can be carried out leading to a result much like (4.9-

4.10) but now depending on the matrix elements of Θ2. The coarse graining has

taken a gravitational amplitude that would lead to a divergent vertex expansion

for the physical inner product and by a suitable resummation has produced a

gravitational amplitude that will allow for a well defined vertex expansion.

To summarize we have found that the construction of the vertex expansion

for the physical inner product breaks down when the diagonal matrix elements

of Θ are zero. There exists at least two modifications to the construction that

produce a well defined vertex expansion. First to choose a new basis such that the

diagonal matrix elements of Θ are non-zero or equivalently chose a new splitting

of the constraint into free and interaction terms while keeping the original basis.
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A candidate for a splitting of the constraint was presented based on choosing

a ’block-diagonal’ free part as opposed to the diagonal free term in the original

construction. In examples such a choice does produce a well defined expansion,

but may be difficult to implement in models with non-separable Hilbert spaces. A

second way to remove the divergences is to effectively coarse grain the sum over

histories prior to carrying out the integral over α. For each M and for each coarse

grained history (sM , sM−1, . . . , s0) with each state sm+1 connected to sm now by

two transitions, we group together all discrete histories that oscillate arbitrarily

many times between each sm and the nearby states. This process reduces the

vertex expansion of the gravitational amplitude to a sum over the coarse grained

histories which admits a well defined integral over α and thus a well-defined vertex

expansion for the physical inner product. We will return to this coarse graining in

the following chapter where it can be analyzed in general.

4.4 General Matter Terms

Up till now we have consistently worked with systems with a trivial matter part,

excluding those that are physically interesting such as inflationary models which

require a potential term for the scalar field. A very important generalization then is

to extend the vertex expansion to more general matter terms including those where

the constraint does not split into commuting gravitational and matter parts. We

will explore these again in the context of homogeneous cosmology while recalling

that the construction is independent of the details of Hkin. While initially one

would expect this to be a large hurdle to overcome we find that for a very general

class of matter contributions to the Hamiltonian constraint the vertex expansion

can be carried out nearly to completion and leads to important insights into the

possible structure of spin foams coupled to matter.

We analyze a very general class of constraints given by

C = Hmatt − Θ (4.38)

where Θ is a self-adjoint operator acting only on the gravitational part of Hkin

with non-zero diagonal matrix elements (which can be generalized using the ideas
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of the previous section). Hmatt acts on both the gravitational and matter parts

of Hkin, but we assume that it depends only on the volume, ν. This is a natural

assumption and is satisfied by most couplings of LQC with matter. Thus the

matter Hamiltonian is diagonal on the gravitational part of the kinematic Hilbert

space. For such models it is no longer possible to deparametrize the system by

using the scalar field as a clock, so we must necessarily work within the timeless

framework and use group averaging to extract physics from the model. We will

then begin with the argument of the group averaging expression for the physical

inner product.

A(νf , φf ; νi, φi;α) = 〈νf , φf | eiαC |νi, φi〉 (4.39)

Where since the constraint does not trivially split into one part acting on the

matter Hilbert space and one acting on the gravitational part, the amplitude can

not be split into a product of scalar field and gravitational amplitudes. We will

again follow the Feynman construction as far as possible, where now we treat the

entire constraint, αC as our ’Hamiltonian’ with a unit time interval. Starting from

(4.39 we split the exponential as a product of N terms, and insert a complete

kinematical basis between each giving,

A(νf , φf ; νi, φi;α) =
∑

ν̄N−1,...,ν̄1

∫
dφN−1...dφ1 〈νN , φN |eiǫαC |ν̄N−1, φN−1〉 (4.40)

× . . . 〈ν1, φ1|eiǫαC |ν̄0, φ0〉 (4.41)

Then as with the standard derivation we make use of the limit N → ∞ to simplify

the matrix elements in the above expression. The gravitational matrix elements

are simple to calculate, while to evaluate the scalar field matrix elements it is

necessary to insert a complete basis of the scalar field momentum, p, resulting in,

A(νf , φf ; νi, φi;α) =
∑

ν̄N−1,...,ν̄1

∫
dφN−1...dφ1

∫
dpN . . .dp1 e

i
PN

n=1 pn(φn−φn−1)

(4.42)

× U(ν̄N , ν̄N−1, φN , φN−1, pN) . . . U(ν̄1, ν̄0, φ1, φ0, p1)
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where up to order ǫ = 1/N ,

U(ν̄n, ν̄n−1, φn, φn−1, pn) =δν̄n,ν̄n−1 + iǫ δν̄n,ν̄n−1H(pn, φn, φn−1, ν̄n) (4.43)

− iǫ αΘν̄nν̄n−1 + O(ǫ)

In the limit as the skeletonization is removed, N → ∞ the gravitational part

will again take the form of a vertex expansion due to the normalizable volume

eigenstates while on the other hand the matter part will take the form of a standard

path integral as it is constructed with the distributional eigenstates of φ and p.

To see this we again group together those histories with a finite number of M

transitions in the volume ν to allow for a well defined limit as the triangulation

is removed. At fixed N we first focus on the histories with M volume transitions

taking the values (νM , νM−1, . . . , ν0) and a fixed scalar field history φ(τ), p(τ) from

which we obtain (φN , . . . , φ0) and (pN , . . . , p1) by φn = φ(nǫ) and pn = p(nǫ). By

grouping together all histories where the volume transitions are allowed to happen

at any time during the history according, we find that by a slight extension of the

proof in appendix A.1 the limit N → ∞ exists for this sum over histories and is

given by

A(νM , νM−1, . . . , ν0;φ(τ), p(τ);α) =

[∫ 1

0

dτM ...

∫ τ2

0

dτ1 exp(i
∫ 1

0
dτ pφ̇) (4.44)

e−i(1−τM )αΘνM νM (−iαΘνM νM−1
) ...(−iαΘν1ν0) e

−i(τ1)αΘν0ν0

exp(iα
∫ 1

τM
dτ Hmatt(p, φ, νM)) × . . . exp(iα

∫ τ1
0

dτ Hmatt(p, φ, ν0))
]

The full amplitude is again given by a sum over all numbers of volume transitions,

M , discrete histories of volumes, (νM , νM−1, . . . , ν0), and additionally integrals over

all continuous scalar field histories.

A(νf , φf ; νi, φi;α) =

∞∑

M=0

∑

νM−1,...,ν1

νm 6=νm+1

∫

φ(0)=φi

φ(1)=φf

Dφ
∫

DpA(νf , νM−1, . . . , ν0;φ(τ), p(τ);α)

(4.45)

Thus we obtain a sum over histories for the argument of the group averaging inte-

gral which is a hybrid of a traditional path integral for the matter contribution with
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a sum over piecewise constant paths for the gravitational part. The resulting am-

plitude for a given history of geometries specified by the volumes (νM , νM−1, . . . , ν0)

and scalar field histories 4.44 can be written as

A(νM , νM−1, . . . , ν0;φ(τ), p(τ);α) =

∫ 1

0

dτM ...

∫ τ2

0

dτ1e
−i(1−τM )αΘνM νM (4.46)

× (−iαΘνM νM−1
) . . . (−iαΘν1ν0) e

−i(τ1)αΘν0ν0 exp(iSmatt(p, φ, ν))

Where the matter action Smatt(p, φ, ν) is the original action 1 where the gravita-

tional dependence in the action is evaluated on simple piecewise constant histories.

Smatt(p, φ, ν) =

∫ 1

0

dτ pφ̇) +

∫ τ1

0

αdτ Hmatt(p, φ, ν0) + . . .

∫ 1

τM

dτ αHmatt(p, φ, νM)

(4.47)

This is not surprising given the appearance of such piecewise histories of the volume

appearing in the simpler models, but may be very powerful for analyzing quantum

cosmologies with more complicated matter Hamiltonians.

This it opens the possibility of utilizing standard path integral tools of quantum

field theory on fixed backgrounds, since the matter path integral simple reduces

to a path integral on constant geometries. The vertex expansion (4.45) is still

expressed as a sum over embedded triangulations with explicit integrals over τ the

times at which the volume transitions occur. An open question is precisely how

the vertex expansion (4.45) is reduced to a sum over discrete histories where the

dependence on τ is removed.

4.5 Conclusion

In this chapter we found that the vertex expansion introduced for exactly soluble

LQC is extremely general. FIrst, for any non-separable Hilbert space and any self-

adjoint operator H there exists a vertex expansion for the transition amplitude toi

’evolve’ between two kinematic states via the evolution operator eitH . This vertex

expansion is characterized by a discrete sum over histories where the state changes

1Up to modifications depending on precisely how Hmatt is represented on the kinematic Hilbert
space
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only finitely many times. This structure will be shared by all configuration space

path integrals in such models unless the path integral expansion is carried out

with a non-normalizable basis in the kinematic Hilbert space. While the vertex

expansion can be trivially extended to a wide range of systems, the further step of

carrying out the group averaging procedure by integrating over the lapse α for each

element of the vertex expansion separately is more difficult to generalize. When

extending the vertex expansion to generic gravitational parts of the constraint we

found the terms of the sum to be divergent if the operator Θ has any diagonal

matrix elements with respect to the basis states that are zero. These divergences

can be cured by a variety of closely related techniques: considering a different basis

for the gravitational kinematic Hilbert space, considering a different splitting of

the constraint into ’free’ and ’interacting’ terms when performing derivation via

perturbation expansion, and finally consider a coarse graining of the sum over his-

tories. The third will be further investigated in the following chapter as a possible

cure for both divergences due to a vanishing diagonal terms and divergences due

to the entire summation.

We finally considered extensions of the vertex expansion to systems with more

general matter terms in the constraint. There again the vertex expansion of the

transition amplitude generated by eiαC can be easily generalized. This already

leads to an interesting structure. The resulting sum over histories expansion of

the above transition amplitude is a hybrid of the vertex expansion and a standard

path integral for the matter. The first construction takes the form of a sum over

piecewise histories in the volume ν together with a standard path integral over

the scalar field and its conjugate momentum. The matter action appearing in this

hybrid path integral depends not an continuous geometries as we would expect

but instead on piecewise constant geometries. This opens the possibility to use

established path integral techniques associated to QFT on a fixed background

spacetime even within the context of quantum gravity. This also leads to an

intuition for the addition of matter to spin-foam models. We find that instead of the

matter having a discrete evolution tailored to the discrete histories in the volume,

the matter follows a continuous evolution on piecewise constant configurations. Of

course if we additionally consider diffeomorphism invariant measures for the matter

Hilbert space we will be similarly led to non-seperable spaces for the matter as well.



Chapter 5
Vacuum Vertex Expansion

We have seen in the previous chapters that the relationship between the canonical

and spin-foam languages can be studied in the simplified context of cosmology.

For a very general class of models, the standard path integral construction carried

out using a normalizable basis leads to a vertex expansion that mimics the struc-

ture of the vertex expansion of SFM. The previous discussions though included a

massless scalar field which was later generalized to allow for more general matter

contributions to the constraint, but current spin-foam models are intended to be

models of vacuum quantum gravity only. In this chapter we then extend of the

construction of the vertex expansion to vacuum models.

For the vertex expansions presented thus far, matter played two roles. The

presence of a massless scalar field allowed for the theory to be deparametrized

by using the scalar field as a clock. Further, integration over the matter degrees

of freedom makes the otherwise distributional terms of the vertex expansion well

defined. In the absence of matter or another suitable variable with continuous

spectrum the theory cannot be deparametrized, requiring us to work within the

timeless framework where we will show that the resulting vertex expansion will be

in general distributional. Although the expansion is distributional we will see that

it still provides a formal perturbative solution to the constraint equation.

In this chapter we will introduce a regular δ in the group averaging procedure

making each term of the expansion a regular function of the discrete histories.

We introduce two choices of regulator, the Gaussian and Feynman regularizations.

The second leads to a simple local expansion which makes better contact with
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the current SFM, so we will explore it in more detail. The hope is that the

vertex expansion for the regulated physical inner product is accurate up to some

specifiable small error which vanishes as δ → 0. In simple examples though, the

resulting vertex expansion is divergent in the usual sense even when the exact

physical inner product is well defined. We will show that while divergent in the

normal sense the vertex expansion for these simple systems is Borel summable and

does produce the exact physical inner product.

The chapter is organized as follows. We first carry out the expansion of a generic

vacuum model showing how the expansion breaks down and use this to motivate

the regularizations. In sections 5.2 and 5.3 we introduce the expansion with each

type of regularization. We then focus on the local expansion as it provides the best

contact with current SFM. In section 5.4 we derive the conditions under which the

local expansion provides a good approximation to the physical inner product. In

sections 5.5 and 5.6 we test the local expansion by applying first to exactly soluble

LQC and then to a simple vacuum model. As the expansion for the vacuum model

is a strongly divergent in 5.7 we analyze ways to improve the series properties

through the coarse graining introduced in chapter 4.

5.1 The Vertex Expansion

In this section we illustrate the breakdown of the vertex expansion in the timeless

framework when applied to the vacuum models of LQC and similarly LQG. When

followed exactly each term of the vertex expansion is a sum of distributions. While

each term is distributional we find that in examples the entire series is well defined

and does provide a solution to the constraint. Thus much like the divergences

of standard quantum field theory there is physical information contained even in

these distributional terms.

We start with a vacuum model with a normalizable basis of states |s〉 with

inner product 〈s′|s〉 = δs′,s and a single constraint operator, C. We will initially

assume that the diagonal matrix elements of the constraint are non-zero in the

given basis. Following the introduction of the regularization we will find that the

assumption can be relaxed. We will also naturally assume that zero lies within the

continuous spectrum of the constraint. As for a general system it is not possible to
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deparametrize we will work within the timeless framework and construct a vertex

expansion for the physical inner product defined by group averaging.

([sf ], [si]) =
1

2π

∫ ∞

−∞
dα〈sf |eiαC |si〉 (5.1)

We again follow the strategy of first obtaining a vertex expansion of the argument of

the group averaging integral. For generic constraint operator this vertex expansion

is given by (4.1-4.3),

〈sf |eiαC |si〉 =

∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

A(sM , sM−1, . . . , s1, s0;α), (5.2)

where each partial amplitude is given by

A(sM , sM−1, . . . , s1, s0;α) = CsMsM−1
. . . Cs1s0× (5.3)

[
P∏

k=1

1

(nk − 1)!

(
∂

∂Ck

)nk−1
]

P∑

i=1

eiαCi

∏P
j 6=i(Ci − Cj)

, (5.4)

where Ci are the P distinct values of Csisi
taken along the history and ni is the

number of times the each value Ci is repeated. Recall that in the simplest case of

all the ni being 1, this is simply1

A(sM , sM−1, . . . , s1, s0;α) =

M∑

i=0

eiαCi

∏
j 6=i(Ci − Cj)

. (5.5)

The last step is to perform the integral over α and express the physical in-

ner product, ([sf ], [si]) by interchanging of the infinite sum M over the number

of transitions with the integral over α coming from group averaging. In the sim-

plest case where the diagonal matrix elements along the history are all distinct,

(Csmsm 6= Cs′ms′m for all sm and sm′ along the discrete history, , one obtains a sum of

Dirac delta distributions. More generally the amplitude for each path is a sum of

derivatives of Dirac delta distributions. The total amplitude is then a discrete sum

1Even though expression (5.3) is well defined in the limit that some of the diagonal ma-
trix elements of the constraint are zero, the integral over α in Eq. (5.2) is divergent instead of
distributional in this limit.
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over distributions outside of any integral and the vertex expansion would strictly

fail to be well defined.

Carrying out the integral over α without introducing any sort of regulator

results in the following expansion

([sf ]|[si]) =
∞∑

M=0

AM(sf , si) (5.6)

=

∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

Ā(sM , . . . , s0),

where

Ā(sM , . . . , s0) =
1

2π

∫ ∞

−∞
dα A(sM , . . . , s0;α). (5.7)

This integral can be easily evaluated giving

Ā(sM , . . . , s0) =

[
p∏

k=1

1

(nk − 1)!

(
∂

∂Ck

)nk−1
]

p∑

i=1

δ(Ci)∏p
j 6=i(Ci − Cj)

, (5.8)

where, as before, Ci are the p distinct values of Csisi
taken along the history and

ni is the number of times the value Ci is repeated. When viewed as a distribu-

tion depending on C1, . . . , CP (or equivalently some parameter common to each

diagonal matrix element) one can verify that this distribution is equivalent to the

following simpler one:

Ā(sM , . . . , s0) = (−1)M+1

p∑

i=1

(−1)ni

(ni − 1)!

(
∂

∂Ci

)ni−1
δ(Ci)∏p
j 6=iC

nj

j

. (5.9)

Despite being a totally distributional expression the vertex expansion (5.6) provides

formal solution to the constraint. As in sections 2.5 and 3.4 we can introduce a

parameter λ as a marker of the number of vertices and write the constraint as

diagonal plus off-diagonal part, C = D + λK. The constraint equation is then

satisfied if for each M ,

DAM(sf , si) +KAM−1(sf , si) = 0 (5.10)
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From the previous chapter we would expect that this is satisfied by cancellations

between similar histories,

∑

sM−2

. . .
∑

s1




∑

sM−1

DA(sf , sM−1, . . . , si) +KA(sf , sM−2, . . . , si)



 = 0 (5.11)

meaning that (5.11) vanishes simply because the term in brackets is zero. To show

this we again look at the action of D and K on the amplitude corresponding to

a discrete history, Ā(sM , . . . , s0). Without loss of generality we may assume that

is Csf sf
is the P − th distinct diagonal matrix element, CP . The action of the

diagonal part of the constraint can be simply evaluated,

DA(sf , . . . , si) = Csfsf
A(sf , . . . , si) = CP

p∑

i=1

(−1)ni

(ni − 1)!

δ(ni−1)(Ci)∏p
j 6=iC

nj

j

. (5.12)

where δ(n)(x) denotes the n− th derivative of the Dirac delta function. For i 6= P

in the sum the CP simply reduces the power of CP in the denominator. While the

Pth term in the sum simplifies to

(−1)M+1 (−1)nP−1

(nP − 2)!

δ(nP−2)(CP )
∏P

j 6=P C
nj

j

(5.13)

where we have used the identity that

xδ(n)(x) = −nδ(n−1)(x) (5.14)

Overall all then the action of D gives the amplitude for the discrete history with

one less configuration having the diagonal matrix element CP .

DA(sf , sM−1, . . . , si) = −Csf sM−1
A(sM−1, . . . , si) (5.15)

The off-diagonal part of the constraint acts very simply

KA(sf , sM−2, . . . , si) =
∑

sf 6=sM−1

CsfsM−1
A(sM−1, sM−2, . . . , si) (5.16)
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Together we find that (5.11) is satisfied, so the distributional vertex expansion

(5.6) does provide a formal solution to the constraint.

As this series provides a formal solution to the constraint one would natu-

rally ask how this relates to the actual physical inner product. Above we have

obtained an infinite sequence of distributions. These have a natural notion of con-

vergence obtained from their action on test functions. A sequence of distributions,

dn, converges to a given distribution, d, if the sequence
∫
dn(x)f(x) converges to

∫
d(x)f(x) for all test-functions f(x). For simple sequence of distributions the limit

d(x) can be found, but it is intractable in general. Alternatively we consider in the

following sections a regularization of the distributional series. We can look at the

convergence of the regulated series and if convergent take the limit as the regulator

is removed for the sum of the regulated series. We introduce two such regulators

parametrized by δ, first a Gaussian suppression of the group averaging integral

and then a linear suppression akin to that used in the Feynman propagator.

5.2 Gaussian Regulator

A natural way to regulate the distributional vertex expansion (5.6) is by introduc-

ing a gaussian suppression in the integral over α in the group averaging procedure.

The approximate physical inner product given by this regulated group averaging

is

([sf ]|[si])G,δ =
1

2π

∫ ∞

−∞
dα 〈sF |eiαC−δ2α2 |si〉kin. (5.17)

While the standard group averaging procedure extracts only the kernel of the con-

straint, the regulated definition will clearly include eigenstates within some spread

δ around the zero eigenstates. The correct physical inner product is recovered in

the limit δ → 0.

Following the same procedure outlined in section 5.1 in order to obtain a vertex

expansion for this regulated inner product, we obtain

([sf ]|[si])G,δ =
1

2π

∫ ∞

−∞
dα

∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

e−δ2α2

A(sM , sM−1, . . . , s1, s0;α), (5.18)
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where A(sM , sM−1, . . . , s1, s0;α) is again given by Eq. (5.3). Pulling the sum over

M outside of the integral and evaluating the integral over α leads to the following

regulated vertex expansion

([sf ]|[si])G,δ =
1

2π

∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

ĀG,δ(sM , . . . , s0). (5.19)

Where the gaussian regulated amplitude for each discrete history is given by

ĀG,δ(sM , sM−1 . . . , s1, s0;α) =

P∏

k=1

1

(nk − 1)!

(
∂

∂Ck

)nk−1 P∑

i=1

√
π

δ

e−C2
i /4δ2

∏P
j 6=i(Ci − Cj)

.

(5.20)

Again the Ci label the p distinct values of Css taken along the history (sM , . . . , s0)

and ni the number of times that value is repeated. Notice that one cannot take

the limit of δ → 0 at this point, the fact that δ is nonzero is absolutely necessary

in order to pull the sum over M outside of the integral.

The integral here gives Gaussians and derivatives thereof instead of Dirac delta

distributions and derivatives thereof. Each term of the regulated physical inner

product is then well defined. A priori though it is not clear how well this expansion

will approximate the exact physical inner product. First, since the expansion itself

is not clearly convergent or even asymptotic for a given choice of constraint and

initial/final states. Second, if we assume that the series is convergent, since it is

necessary to leave δ at some finite value, there remains an error term parametrized

by δ.

〈sF |s0〉phy = 〈sF |s0〉G,δ + O(δ) (5.21)

The properties of this error term are not known as of yet for the Gaussian regu-

larization, but will be discussed in more detail for the Feynman regularization.

5.3 Feynman Regulator

Another possible approach is to introduce a linear suppression in the group averag-

ing integral much as is done in computing the Feynman propagator. This provides

the closest contact with the current SFM as it leads to a local expansion where the
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amplitude for each discrete history is simply a product. The Feynman regulated

physical inner product is as follows,

(sf |si)F,δ =
1

2π

∫ ∞

−∞
dα 〈sf |eiαC−|α|δ|si〉 (5.22)

=
1

2π

∫ ∞

0

dα 〈sf |eiαC−δα|si〉kin +
1

2π

∫ 0

−∞
dα 〈sf |eiαC+δα|si〉kin

= (sf |si)+,δ + (sf |si)−,δ,

where (sf |si)+/−,δ denote the integrals over positive and negative, α. If we con-

struct a phase space path integral for this system as done for LQC [55] we find that

α plays the role of the lapse. Each term (sf |si)+/−,δ then corresponds to fixing one

sign for the lapse or fixing a single direction for the time evolution, and will be

directly related to the positive and negative frequency solutions to the constraint

for deparametrizable systems such as soluble LQC. In what follows we will refer

to (sf |si)+/−,δ as the positive and negative lapse amplitudes. For general systems

though it is necessary to include both terms to obtain the correct physical inner

product when the regulator is removed.

The negative lapse amplitude can be obtained by simply replacing C by −C
in the positive lapse amplitude, so for simplicity we first focus on just one half of

this expression.

(sf |si)+,δ =
1

2π

∫ ∞

0

dα 〈sf |eiαC−δα|si〉, (5.23)

the vertex expansion of 〈sf |eiαC |si〉 can be carried out as in (5.2) and assuming

that the integral over α can be exchanged with the sum over discrete histories the

positive lapse expansion is given by

(sf , si)+,δ =
1

2π

∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

Ā+,δ(sf , sM−1 . . . , s1, si), (5.24)

where the amplitude associated to each discrete history is,

Ā+,δ(sM , sM−1 . . . , s1, s0) =

∫ ∞

0

dα e−δαA(sM , sM−1, . . . , s0;α), (5.25)

and A(sM , sM−1, . . . , s1, s0;α) is given by (5.3). Surprisingly, the integral over α
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reduces the very nonlocal expression given in (5.3) with a simple local one which

is just a product of matrix elements:

Ā+,δ(sM , sM−1, . . . , s1, s0) =
i(−1)MCsMsM−1

. . . Cs1s0∏M
m=0(Csmsm + iδ)

. (5.26)

Inserting this simple result into the full expression, the resulting positive lapse

expansion is

(sf , si)+δ =
i

2π

∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

(−1)MCsMsM−1
. . . Cs1s0

(CsMsM
+ iδ)(CsM−1sM−1

+ iδ) . . . (Cs0s0 + iδ)
.

(5.27)

The negative lapse expansion can be obtained by interchanging C with −C in 5.28.

(sf |si)−δ = − i

2π

∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

(−1)MCsfsM−1
. . . Cs1s0

(CsMsM
− iδ)(CsM−1sM−1

− iδ) . . . (Cs0s0 − iδ)
.

(5.28)

The vertex expansion for the regulated physical inner product is then given as the

sum of the two local expansions above,

(sf |si)F,δ = (sf |si)+δ + (sf |si)−δ (5.29)

As with the Gaussian regulator it is not possible to remove δ at a finite order in

the expansion. The positive and negative lapse expansions separately have a well-

defined limit as δ → 0 when each Css is non-zero. Together though they limit to

the distributional expansion 5.6. When the matrix elements of the constraint are

all real the physical inner product, regulated by the parameter δ, is given simply

by the real part of the positive vertex expansion. Equivalently we have that the

exact physical inner product in that case is given by

(sf |si) = 2 Re(sf |si)+δ + err(δ), (5.30)

where err(δ) is an error term which vanishes in the limit of δ → 0. Notice that
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(5.28) can be rewritten in the form

(sf |si)+δ =
i

2π

∞∑

M=0

∑

sM−1,...,s1

sm 6=sm+1

∏

f

Af (sf)
∏

v

Av(sf ), (5.31)

where f = 0, ...,M ; v = 1, ...,M ; the “face” amplitude is Af = (Θsfsf
+ iδ)−1,

the “vertex” amplitude is Av = −Θsvsv−1
. The expression (5.31) is precisely the

general expression for (local) SFM, if as in chapter 3 we identify the sum over M

with a sum over triangulations, the sum over the sf with a sum over coloring of

each dual triangulation.

The Feynman regulated expansion reproduces a local expression fitting with

the current expression for SFM. Where again locality means that the amplitude of

a single history is a product of amplitudes of the elements that form the history.

This type of locality was not present for the constructions of the vertex expansions

in previous chapters. Locality is one of the key assumptions of the current SFM.

This assumption is motivated by path integrals of Schrodinger QM and QFT where

the amplitude ei
∫

M
L can be written as a product of amplitudes each depending on

the Lagrangian, L, integrated on a subset of M , and by the amplitude associated

to Feynman diagrams which is a product of amplitudes associated to propagators

and vertices when written in momentum space. Locality though is not a universal

feature. For example the simple local form of Feynman diagram amplitudes breaks

down when written in position space. Similarly we saw in chapter 3 that the

locality present in a path integral can be lost when reducing the vertex expansion

to a sum over only abstract triangulations. In the following then we will focus on

the Feynman regulated expansion, henceforth referred to as the regulated vertex

expansion as it provides a simpler form of the expansion allowing for analytical

results and as it provides the best contact with the current SFM.

5.4 Solution to the Constraint

For the vertex expansions in systems with matter we found that the vertex expan-

sion solved the constraint equation, and further in a very simple manner. For the

regulated expansions derived above it is critical to test the hope that they solve the
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constraint up to a controlled error in the regulator δ. We analyze this here for the

Feynman expansion. We show that there are conditions such that the regulated

expansion provides a solution to the constraint up to a controlled error in δ, but

these do not appear to be satisfied by the physically interesting vacuum models.

For this analysis we are again interested in evaluating the action of the constraint

operator on the vertex expansion for the regulated physical inner product viewed

as a function of the final state. We would expect that the result will be non-zero,

but will vanish in the limit δ → 0.

Cf(sf , si)F,δ = O(δ) (5.32)

To check this we first find the action of the constraint on the positive lapse expan-

sion by acting on each term of the expansion as follows

Cf (sf , si)+δ =
1

2π

∞∑

M=0

(D + λK)λMAM (sf , si) (5.33)

where we have included the placeholder λ to simplify calculations. It is again

instructive to find the λM term of the above expression given by the action of D

on the partial amplitudes with M transitions and the action of K on the partial

amplitudes with M − 1 transtions.

DĀ+δ(sf , sM−1, . . . , s1, si) =
(−1)MCsfsf

CsfsM−1
. . . Cs1si

(Csfsf
+ iδ) . . . (Csisi

+ iδ)
(5.34)

KĀ+δ(sf , sM−2, . . . , si, si) =
∑

sM−1 6=sf ,sM−2

(−1)M−1CsfsM−1
. . . Cs1s0

(CsM−1sM−1
+ iδ) . . . (Csisi

+ iδ)
(5.35)

Together we find that for all M 6= 0

DAM(sf , si) +KAM−1(sf , si) =
∑

sM−1,...,s1

sm 6=sm+1

CsfsM−1
. . . Cs1s0

(Csfsf
+ iδ) . . . (Csisi

+ iδ)

(
Csfsf

Csfsf
+ iδ

− 1

)

(5.36)

= −iδAM (sf , si)
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As opposed to the previous expansions where (5.36) was identically 0, here there

is a non-zero result that vanishes as δ → 0. For M = 0 the only contribution is

the action of the diagonal part D given by

DA0(sf , si) = −iδA0(sf , si) + δ(sf , si) (5.37)

Together we find that the action of the constraint on the positive lapse expansion

is,

Cf(sf |si)+δ = −iδ(sf |si)+δ + iδ(sf , si). (5.38)

From which the action of the constraint negative lapse expansion of the can be

simply obtained by replacing i→ −i in the result for the positive expansion.

Cf(sf |si)−δ = +iδ(sf |si)−δ − iδ(sf , si) (5.39)

The vertex expansion for the regulated physical inner product is provided by the

sum of the positive and negative expansions, so overall the action of the constraint

on the complete vertex expansion is given by

Cf(sf |si)δ = −iδ[(sf |si)+δ − (sf |si)−δ] (5.40)

In the case where all matrix elements of the constraint are real the above expression

reduces to

Cf(sf |si)δ = −iδ[2Im((sf |si)+δ)] (5.41)

so while the real part gives the approximate physical inner product, the imaginary

part specifies the error. Thus we find that there is a controllable error in how well

the regulated physical inner product solves the quantum constraint equation if the

positive and negative lapse expansions are convergent series. If the positive and

negative expansions are each convergent then both the regulated vertex expansion

for the physical inner product and the error term are well-defined. In practice

though each of the positive and negative lapse expansions are actually divergent

series.

Note that the above discussion does not specify the error between the regu-

lated vertex expansion and the exact physical inner product, but just how well the
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regulated vertex expansion approximates a solution to the quantum constraint.

In addition the statement that the series well-approximates the constraint is con-

ditional on the convergence of the vertex expansions corresponding to each the

positive and negative halves of the regulated inner product while in the following

we will see though that the expansions are far from convergent in the normal sense.

5.5 Local Expansion of Soluble LQC

As an example we can apply the local vertex expansion to exactly soluble LQC in

the timeless framework. For this system the local expansion leads to the same result

as obtained from the group averaging procedure (3.41). It provides an alternate,

more compact expression for the amplitudes associated to each history (3.40).

Further for this deparametrizable system the positive and negative lapse expansions

correspond to the positive and negative frequency solutions of the constraint.

We begin with the expression, 3.12, for the physical inner product

([νf , φf ], [νi, φi]) =
1

2π

∫
dα 〈νf , φf | eiαC 2|pφ| |νi, φi〉 . (5.42)

with the constraint

C = p2
φ − Θ. (5.43)

By inserting a complete basis in the scalar field momentum we obtain

([νf , φf ], [νi, φi]) =
1

2π

∫
dpφ e

ipφ(φf−φi) 2|pφ|
∫

dα 〈νf | eiα(p2
φ−Θ)|νi〉 (5.44)

. Now we can focus on the term under the integral over pφ which for each fixed

value of pφ is an expression of the form 5.1, so we can construct the positive lapse

vertex expansion for this term.

∫
dα 〈νf | eiα(p2

φ−Θ)|νi〉+,δ =

∞∑

M=0

∑

νM−1,...,ν1

νm 6=νm+1

(5.45)

ΘνMνM−1
. . .Θν1ν0

(p2
φ − ΘνMνM

+ iδ)(p2
φ − ΘνM−1νM−1

+ iδ) . . . (p2
φ − Θν0ν0 + iδ)

We can insert this positive lapse expansion into the original expression to obtain
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the following positive lapse expansion for the regulated physical inner product.

([νf , φf ], [νi, φi])+δ =
∞∑

M=0

∑

νM−1,...,ν1

νm 6=νm+1

A+,δ(νf , νM−1, . . . , ν1, νi;φf , φi) (5.46)

where each partial amplitude is given by

A+,δ(νf , νM−1, . . . , ν1, νi;φf , φi) =
∫

dpφ e
ipφ(φf−φi) 2|pφ| i

2π
(5.47)

ΘνMνM−1
. . .Θν1ν0

(p2
φ − ΘνMνM

+ iδ)(p2
φ − ΘνM−1νM−1

+ iδ) . . . (p2
φ − Θν0ν0 + iδ)

The full physical inner product, (5.42), is then real part of (5.46) in the limit δ → 0,

which reproduces exactly the expression (3.39) obtained from the original vertex

expansion in the timeless framework. Additionally though each of the positive and

negative expansions individually have well defined limits as δ → 0 and provide the

positive and negative frequency expansions obtained in chapter 3.

Focusing on the partial amplitudes (5.47) we see that the integrand has poles

for each distinct values of Θνν and further that the factor of iδ selects only one

of the positive or negative pole pφ = ±
√

Θνν . The limit δ → 0 of the partial

amplitude (5.47) then reduces by the residue theorem to the negative frequency

analogue of the expression (3.41) ∆φ is positive and positive frequency is ∆φ is

negative. 2 This observation was made independently in [73]. We see in this

example that the regulated vertex expansion is equivalent to the original vertex

expansion constructed for LQC in timeless framework. Further we find that for

LQC the regulator can be removed at a finite order since the positive and negative

lapse expansions separately provide solutions to the constraint so we can work with

one or the two expansions where the limit δ → 0 is well defined. It is unknown if

this behavior extends to models that are not deparametrizable.

2The result is the negative frequency expression due to the choice of sign of the constraint
appearing in the group averaging. Choosing e−iαC leads to both the correct action and to the
match up of the positive lapse expansion and the positive frequency solutions.



111

5.6 DIvergence of Local Expansion

Above we tested whether the regulated vertex expansion is well-defined in the sense

that it provides a solution to the constraint up to a controlled error depending

on δ. We found that the regulated vertex expansion provides an approximate

solution to the physical inner product only if each the positive and negative vertex

expansions converge independently. When applied to physically interesting systems

such as the vacuum Bianchi I LQC it is found that the positive and negative vertex

expansions are divergent and thus the regulated vertex expansion does not provide

an approximation to the physical inner product. In this section we analyze a

simple example which nonetheless captures the features of more complex models

that lead to the divergence of the regulated vertex expansion. For this simple

example we find that while the regulated expansion is divergent in the usual sense

it is convergent in a more general sense as the series is Borel summable.

The simple vacuum model we consider is defined as follows: The kinematical

Hilbert space is the same as the gravitational Kinematic space of LQC, whose basis

states we will denote by |n〉. The constraint is chosen to generate a very simple

difference equation in the ’volume’ n,

C = sin2(b) − sin2(θ) (5.48)

where θ ǫ [0, π/2] is a constant. The action of the constraint on states ψ(n) is the

simple difference equation,

Cψ(n) = −1

4
ψ(n− 2) + (

1

2
− sin2(θ))ψ(n) − 1

4
ψ(n+ 2) (5.49)

The matrix elements of this constraint in the n basis are then simply,

Cn n±2 = −1

4
(5.50)

Cn n =
1

2
− sin2(θ) =

1

2
cos(2θ). (5.51)

In this model the difference equation satisfied by the physical states, the group

averaging procedure, and the vertex expansion can all be analyzed exactly allow-

ing for direct comparison of the exact physical inner product with the regulated
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expansions.

First the group averaging can be carried out exactly for this system. Starting

with the group averaging expression for the physical inner product we obtain,

([n], [m]) =
1

2π

∫
dα 〈n|eiα(sin2(b)−sin2(θ))|m〉 (5.52)

=
1

2π

∫
dα

1

2π

∫ 2π

0

db eib(n−m)eiα(sin2(b)−sin2(θ)) (5.53)

=
1

2π

∫ 2π

0

db eib(n−m)δ(sin2(b) − sin2(θ)) (5.54)

. Where we have inserted a complete basis in the conjugate variable b and then

carried out the integral over α. Now for θ = 0 and θ = π/2 the above expression

is divergent, so consider θ ǫ (0, π/2) and note that the group averaging expression

above can be simply modified to ensure convergence. The integral over b can then

be carried out exactly giving the following physical inner product between the

physical states extracted from the kinematic basis states.

([n], [m]) =

{
0 n−m odd
2
π

cos(θ(n−m))
sin(2θ)

n−m even
(5.55)

It is simply checked that treating this physical inner product as a free function of

n that it satisfies the constraint.

On the other hand we can also consider the regulated vertex expansion con-

structed for this system. The positive lapse expansion of the regulated physical

inner product is the following,

(n,m)+δ =
i

2π

∞∑

M=0

∑

nM−1,...,n1
nm+1=nm±2

(−1)M(−1/4)M

(1/2 cos(2θ) + iδ)M+1
(5.56)

Since amplitude is independent of the values nm taken during each discrete history,

the sums over the intermediate states can be evaluated by counting the number

of paths between the initial state m and final state n with M transitions. T his

is a simple combinatoric problem with the result that for M = 2M ′ + (n −m)/2

transitions there are 2M choose M ′ paths between the initial and final states. The
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positive lapse expansion above then reduces to the following

(n,m)+δ =
i

2π

∞∑

M ′=0

(
2M ′ + (n−m)/2

M ′

)
(4

(2 cos(2θ) + 4iδ)2M ′+(n−m)/2+1
(5.57)

The resulting series is highly divergent do to the large number of possible histories

for each M ′. For all θ in (0, π/2) the above series is purely divergent. We are led

to ask in what sense this expansion is related to the exact inner product. The

resulting vertex expansion does not provide a good approximation to the physical

inner product even as an asymptotic series, so how can we extract information

from it?

We can first see that although this series is divergent it does reproduce the

exact physical inner product in a clear way. The divergence appearing here is

much like that of traditional quantum field theory where even though each term

of the Feynman diagram expansion is finite after renormalization the overall series

is diverges. There we typically find that the series is asymptotic up to some order

as compared to this example where the series simply diverges. Overall though the

perturbation series as defined by Feynman diagrams while divergent according to

the usual notion of series convergence, is convergent according to more general

notions. In particular the perturbation series in many cases is known to be Borel

summable, which says that under certain technical conditions there is a unique

function whose power series expansion will reproduce the terms of the series. We

find a similar property for the vertex expansion obtained here.

Obtaining the Borel sum of a divergent series
∑
λnbn requires two steps. First

to introduce a new series

B(λ, t) =

infty∑

n=0

bnλ
ntn

n!
(5.58)

which naturally has better convergence properties than the original due the fac-

torial. If this series converges for all t then we take the Laplace transform of the

function B(λ, t).

A(λ) =

∫ ∞

0

dt e−tB(λ, t) (5.59)

A(λ) then is the Borel sum of the original series. For series that converge in the

normal sense we can check that this process returns the expected sum, since term-
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wise the Laplace transform acts to remove the tn/n! introduced in forming the

more convergent series.

We can now carry out this process for the vertex expansion given above. First

we define the new series

B(t) =
i

2π(1/2 cos(2θ) + iδ)

∞∑

M ′=0

t2M ′+(n−m)/2

(M ′ + (n−m)/2)!M ′!

(
1

2 cos(2θ) + 4iδ

)2M ′+(n−m)/2

(5.60)

Recalling that the series expansion of the Bessel function is

Jn(x) =

∞∑

M=0

(−1)M

M !(M + n)!

(x
2

)2m+n

(5.61)

We find that B(t) does converge and is given by

B(t) =
i

2π
(−i)(n−m)/22ωJ(n−m)/2(iωt) (5.62)

ω =
1

cos(2θ) + 2iδ
(5.63)

Finally we can carry out the Laplace of transform of B(t) to give the Borel sum

of the series (n,m)+δ,

(n,m)+δ =

∫ ∞

0

dt e−tB(t) =
i

π

(1 +
√

1 − ω2)−(n−m)/2 ω(n−m)/2+1

√
1 − ω2

(5.64)

The limit δ → 0 of this final result is clearly defined and can be simply evaluated

to be

(n|m)+ =
1

π sin(2θ)
(e−i(n−m)θ) (n−m) even (5.65)

Now finally as this is a system whose matrix elements are all real the exact physical

inner product is recovered by simply taking twice the real part of 5.65, which

reproduces the exact expression obtained from group averaging (5.55). We see

then that the local vertex expansion constructed does reproduce the exact result

of the group averaging procedure, but not in the desired manner. To recover the

group averaging result it was necessary to have knowledge of the full series and to

compute the Borel sum. The above technique cannot be carried out at a finite order
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of the vertex expansion, so it does not give a well-defined perturbative procedure

for computing the physical inner product.

A surprising consequence though is that the positive frequency expansion of

the physical inner product returned exactly the positive frequency solution of the

constraint equation. Looking at simply breaking the group averaging integral

into integrals over positive and negative α it is not clear that the restriction to

integration on the positive frequency part should return a solution to constraint.

A similar analysis can be considered for the cases θ = 0 and θ = π, but there

the group averaging procedure as carried out above is divergent. It is necessary to

insert a factor of
√
C in the definition of the physical inner product to recover a

finite result.

A further interesting question is to analyze for when the expansion for the

above simple system will be convergent. Taking the constraint to be

C = sin2(b) − Λ (5.66)

where Λ ≥ 1, the constraint equation does not have even distributional solutions.

The vertex expansion though

(n,m)+δ =
i

2π

∞∑

M ′=0

(
2M ′ + (n−m)/2

M ′

)
4

(2 − 4Λ + 4iδ)2M ′+(n−m)/2+1
(5.67)

is convergent. If we let Λ = cosh(φ)2 then the series converges to

(n,m)+δ =
i

π sinh(2φ)
(−1)(n−m/2)e−(n−m)φ. (5.68)

Further, much in the way that the Borel sum (5.65) gives the positive frequency

solution to the constraint (5.48), (5.68) gives the divergent solutions to (5.66). The

full physical inner product though is given by the real part of the (5.68), which is

zero. While the positive/negative vertex expansions can individually be non-zero

even when the constraint equation does not have solutions, in this case the physical

inner product is zero as expected.

In this explicit example we see that the local expansion is a divergent series

due to the large number of discrete histories. Further it does not give a good
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asymptotic series for the physical inner product since the terms in the expansion

typically grow, so similarly the error grows at each order of the expansion. Thus in

this simple example we have obtained a local expansion similar to the current SFM

at the expense of the ability of the series to approximate the physical inner product

using a finite number of terms. Additionally this problem is not particular to the

simple model considered. If we consider more complex models such as vacuum

Bianchi I the sum is divergent in a similar manner since for large volumes the

amplitudes approach the simple constant amplitudes of this simple model. Thus

this is a very general concern.

5.7 Coarse-Graining/Renormalization

In section 4.3.2 we introduced a notion of coarse graining of the sum over histories

as a cure for the divergences arising from the presence zero matrix elements of

the constraint. The coarse graining was conceptually simple, just considering the

sum over all paths that fluctuate around those states leading to zero diagonal

matrix elements, but the implementation was more complicated. Here since the

amplitude for a given history is much simpler we can state the exact action of this

renormalization. For each basis state s we consider the set of states that are in its

immediate neighborhood, C(s, 1) defined by

C(s, 1) = {s′|Css′ 6= 0 and s′ 6= s} (5.69)

and the set of states that are separated by two actions of the constraint, C(2, s),

defined by

C(s, 2) = {s′|C2
ss′ 6= 0 and s′ 6= s} (5.70)

As in section 4.3.2 we consider coarse grained histories characterized by a sequence

of a states connected by 2-transitions

σM = (sM , sM−1, . . . , s1, s0) sm+1 ǫ C(2, sm) (5.71)

We will refer to these as 2-histories since they are made up of states separated by

two transitions and use A(2) to denote the amplitude associated to them. We can



117

similarly refer to the original discrete histories as 1-histories.

The amplitude corresponding to such a history is given by the sum over all

histories of single transitions that start at s0 transition arbitrarily many times be-

tween states in C(s0, 1) and s0 followed by 2-transition leading to s1, arbitrarily

many transitions between states in C(s1, 1) and s1 and so on. Since the ampli-

tude corresponding to a 1-history is totally local it can be written as a product

amplitudes corresponding to each part of the history,

A(2)(sM , sM−1, . . . , s1, s0) =

∞∑

NM=0

. . .

∞∑

N0=0

A(2)(sM , NM)K(2)(sM , sM−1) (5.72)

× A(2)(sM−1, NM−1) . . .K(2)(s1, s0)A(2)(s0, N0)

Where A(2)(s,N) denotes the amplitude corresponding to the sum over all histories

that transition between s and elements of C(s, 1) a total N times and K(2)(s, s
′)

denotes the amplitude corresponding to the sum over all 2-transitions between s

and s′. The amplitude above can be simplified as follows: We first absorb the

’edge’ amplitudes into each ’vertex’ amplitude to simplify the calculation. Then

the amplitude corresponding to a single discrete 1-history can be written as

A(sM , sM−1, . . . , s1, s0) = VsMsM−1
. . . Vs1s0 (5.73)

where

Vss′ =
−Css′√

(Css + iδ)(Cs′s′ + iδ)
for s 6= s′ (5.74)

and the overall amplitude for the positive part is then

(sf |si)+δ =
i

2π

1√
(Csf sf

+ iδ)(Csisi
+ iδ)

∞∑

M=0

∑

sM−1,...,s1

A(sM , sM−1, . . . , s1, s0)

(5.75)

The amplitudes corresponding to an arbitrary number of oscillations between a

state s and it’s neighboring elements can be simply computed,

∞∑

N=0

A(2)(s,N) =
∞∑

N=0

∑

sN ,...,s1 ǫ C(s,1)

VssN
VsNsVssN−1

VsN−1s . . . Vss1Vs1s (5.76)
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=
∞∑

N=0

(
∑

s′ ǫ C(s,1)

Vss′Vs′s)
N (5.77)

=
1

1 − ∑
s′ ǫ C(s,1) Vss′Vs′s

≡ 1

D(2)(s, s)
(5.78)

Similarly the amplitude corresponding to the double transition can be simply eval-

uated as

K(2)(s, s
′) =

∑

B(s,1)∩B(s′′,1)

Vss′′Vs′′s′ (5.79)

Thus the overall amplitude corresponding to a coarse grained history is given by

A(2)(sM , sM−1, . . . , s1, s0) =
K(2)(sM , sM−1)K(2)(sM−1, sM−2) . . .K(2)(s1, s0)

D(2)(sM , sM)D(2)(sM−1, sM−1 . . .D(2)(s0, s0))
(5.80)

Thus the coarse grained amplitude has an identical form to the original with new

vertex and edge amplitudes. We can clearly read off the action of this renormal-

ization group on the vertex and edge amplitudes.

K(2)(s
′, s) =

∑

C(s,1)∩C(s′,1)

Cs′s′′Cs′′s√
CssCs′′s′′

√
Cs′s′

(5.81)

D(2)(s, s) = 1 −
∑

s′ ǫ C(s,1)

Css′Cs′s

CssCs′s′
(5.82)

Since the coarse graining reproduced an amplitude of the exact same form this

process can be repeated arbitrarily many times generating a renormalization group

flow of the edge and vertex amplitudes. The overall amplitude is then given as a

sum over all sequences of states separated by double transitions with the above

amplitude for each history,

(sf , si)+δ =
i

2π

1√
(Csfsf

+ iδ)(Csisi
+ iδ)

∑

sM−1,...,s1

sm+1 ǫ C(sm,2)

A(2)(sM , sM−1, . . . , s1, s0)

(5.83)

if the states sf and si are connected by an even number of actions of the constraint.

Applied to the simple example considered in section 5.6 this coarse graining

does provide improved convergence. In the regime where the vertex expansion
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was convergent, which is the non-physical region where there is no solution to the

constraint, the convergence is accelerated. For the physically interesting range of

values θ the coarse graining does not produce a convergent sequence although it

dramatically improves the accuracy of the first terms of the series. If the coarse

graining is repeated eventually the first term of the series provides a sufficiently

good approximation to the exact physical inner product. Thus the coarse grain-

ing discussed here can provide a means to extract physical information from the

otherwise often purely divergent series generated by the local vertex expansion.

5.8 Discussion

For the systems without matter considered in this chapter the resulting vertex

expansion was a sum over distributions. The resulting expansion while providing a

formal solution to the constraint does not provide a viable perturbative scheme for

computing the physical inner product. We have introduced two possible regulators

in the group averaging procedure which lead to vertex expansions that are well

defined term by term. The Feynman regulator further gives vertex expansion

with a simple local expression for the amplitude for each discrete history. The

Feynman regularization adds an additional similarity to spin foams. The spin foam

amplitude for a single triangulation and set of labels, for a single history of spin

networks, is given by a product of amplitudes associated to each vertex, face, and

edge. This is in contrast to the vertex expansions presented in the previous chapters

which were essentially non-local, with the amplitude for a history depending on the

properties of the entire history. The Feynman regularization was given by a sum

of two vertex expansions, the positive and negative part, each of which are local

in the above sense. In the simple case where all matrix elements of the constraint

are real, the regulated physical inner product is given simply by the real part of

the positive expansion.

This regulator though cannot be removed at a finite order of the expansion

of the regulated physical inner product as in the limit δ → 0 each term becomes

distributional. The hope was then that the regulator could be left at a small value

δ at which the regulated vertex expansion would provide an approximation to the

exact physical inner product up to a controlled error. Unfortunately we generally
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find that the regulated vertex expansion is divergent and thus does not provide a

good approximation to the physical inner product. The regulated vertex expan-

sion is not devoid of physical information though. Similar to the Feynman diagram

expansion of QFT the regulated vertex expansion in examples is convergent in a

more general sense as it it Borel summable and further the Borel sum does repro-

duce the exact physical inner product. Thus the regulated local vertex expansion

may similarly generate a Borel summable series for physical inner product.

While the local vertex expansion provides better contact with the current SFMs

it also leads to a highly divergent series that does not provide a good approximation

to the physical inner product by taking finitely many terms.



Appendix A
Proofs and Identities for Vertex

Expansion

A.1 Limit in Eq (3.28)

It is convenient to rewrite AN(νM , . . . , ν0;α) defined in (3.25) in the following way:

AN(νM , . . . , ν0;α) = UνMνM−1
. . . Uν1ν0 [UνM νM

]N [UνMνM
. . . Uν0ν0]

−1 ×
N−1∑

NM =M

NM−1∑

NM−1=M−1

. . .

N2−1∑

N1=1

[
UνM−1νM−1

UνMνM

]NM

. . .

[
Uν0ν0

Uν1ν1

]N1

.

(A.1)

Our aim is to calculate the limit N → ∞ of (A.1) and show that is given by

A(νM , . . . , ν0;α), of Eq (3.28) which we rewrite as

A(νM , . . . , ν0;α) = (−iα)M ΘνMνM−1
. . .Θν1ν0 e

−iαΘνM νM ×
∫ 1

0
dτM

∫ τM

0
dτM−1 . . .

∫ τ2
0

dτ1 eτM bM . . . eτ1b1 (A.2)

where

bm := −iα(Θνm−1νm−1 − Θνmνm). (A.3)

We start by calculating the N ≫ 1 behavior of the terms appearing in (A.1).
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These are:

Uνm+1νm = −iα
N

Θνm+1νm +O(N−2), (A.4)

[UνMνM
]N = eN log UνM νM

= eN(−i α
N

ΘνM νM
+O(N−2))

= e−iαΘνM νM +O(N−1), (A.5)

[UνM νM
. . . Uν0ν0]

−1 = 1 +O(N−1), (A.6)

[
Uνm−1νm−1

Uνmνm

]Nm

= eNm(log Uνm−1νm−1−log Uνmνm)

= eNm(bm/N+O(N−2))

= e
Nm
N

bm +O(NmN
−2), (A.7)

with bm given in (A.3). In (A.5) and (A.7) we have used the fact that the multival-

ued nature of the log function does not affect the final result: eN(log x+2πik) = eN log x

where k ∈ Z reflects the multiple values that log can take.

We now substitute expressions (A.4) to (A.7) in (A.1) to obtain

AN(νM , . . . , ν0;α) =
[
(−iα)MΘνMνM−1

. . .Θν1ν0e
−iαΘνM νMN−M +O(N−M−1)

]
×

M∏

m=1

[
Nm+1−1∑

Nm=m

e
Nm
N

bm +O(NmN
−2)

]
(A.8)

where the product denotes the M nested sums in (A.1). Each sum in (A.8) has

two terms. The first one gives a contribution of
∑

Nm
e

Nm
N

bm ∼ O(N) while the

second one is
∑

Nm
O(NmN

−2) ∼ O(1). The M sums then give a contribution of

order [O(N) + O(1)]M ∼ O(NM) + O(NM−1). By combining this with the first

factor of (A.8), we find that the non-vanishing contribution comes from the first
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terms of the sums:

AN(νM , . . . , ν0;α) =(−iα)M ΘνMνM−1
. . . Θν1ν0 e

−iαΘνM νM ×

N−M
M∏

m=1

[
Nm+1−1∑

Nm=m

e
Nm
N

bm

]
+O(N−1). (A.9)

Eq (A.9) has all the pre-factors appearing in (A.2). It then remains to show

that N−M times the sums in (A.9) limits to the integrals in (A.2). But this is rather

obvious, as the sums can be seen as Riemann sums for the integrals. Specifically,

lim
N→∞

N−M
M∏

m=1

[
Nm+1−1∑

Nm=m

e
Nm
N

bm

]

= lim
N→∞

N−M

N∑

NM=0

NM∑

NM−1=0

. . .

N2∑

N1=0

e
NM
N

bM . . . e
N1
N

b1

=
∫ 1

0
dτM

∫ τM

0
dτM−1 . . .

∫ τ2
0

dτ1 eτM bM . . . eτ1b1 (A.10)

where, in the second line, we have slightly changed the limits on the sums, intro-

ducing an O(N−1)-term which vanishes in the limit. This concludes the proof of

the limit (3.28).

A.2 General Integrals in Eq (3.28)

The integrals over τ appearing in the amplitude for a single discrete path (3.28)

can be evaluated for a general sequence of volumes (νM , ..., ν0). In this appendix

we will perform these integrals first for the case where all νi are distinct and then

for the general case. The amplitude for a single discrete path given by (3.28) is

A(νM , . . . , ν0, α) =
∫ ∆τ

0
dτM

∫ τM

0
dτM−1 . . .

∫ τ2
0

dτ1e
−i(∆τ−τM )αΘνM νM (−iαΘνM νM1

) ×
e−i(τM−τM−1)αΘνM−1νM−1 . . . e−i(τ2−τ1)αΘν1ν1 (−iαΘν1ν0) e

iτ1αΘν0ν0

(A.11)
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This expression can be written in terms of the following integral.

I(xM , . . . , x0,∆τ) =
∫ ∆τ

0
dτM

∫ τM

0
dτM−1 . . .

∫ τ2
0

dτ1(i)
M ei(∆τ−τM )xM ei(τM−τM−1)xM−1

(A.12)

...ei(τ2−τ1)x1eiτ1x0

We will first evaluate this integral for the case where all xi are distinct. By

induction on M —the number of vertices or the number of times that x changes

value— we will show that when the xi are all distinct the integral is given by

I(xM , . . . , x0,∆τ) =

M∑

i=0

eixi∆τ

∏M
j 6=i(xi − xj)

(A.13)

This is true by inspection for M = 0. If we assume that (A.13) holds for M we

can evaluate the integral with M + 1 vertices.

I(xM+1, xM , . . . , x0,∆τ) =
∫ ∆τ

0
dτM+1 ie

i(∆τ−τM+1)xM+1I(xM , . . . , x0, τM+1)

(A.14)

=
∫ ∆τ

0
dτM+1 ie

i(∆τ−τM+1)xM+1
∑M

i=0
eixiτM+1

QM
j 6=i(xi−xj)

=

M∑

i=0

eixi∆τ

∏M+1
j 6=i (xi − xj)

− ei∆τxM+1

M∑

i=0

1
∏M+1

j 6=i (xi − xj)

In the first step we recognized that the M + 1-th integral contains the M-th and

then, in the second step, we inserted the assumed result for the M − th integral.

In the second step the integral over τM+1 is carried out. Finally using the identity

M+1∑

i=1

1
∏M+1

j 6=i (xi − xj)
= 0 (A.15)

The integral can be written as

I(xM+1, xM , . . . , x0,∆τ) =
M+1∑

i=0

eixi∆τ

∏M+1
j 6=i (xi − xj)

(A.16)
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Therefore if (A.13) holds for M it also holds for M + 1, thus by induction it holds

for all M ≥ 0.

If the xi are not distinct, if there exist i, j such that xi = xj , then the proof

follows in a similar way. The key element is that the integral I(xM , ..., x0) is

independent of the order of the xi’s. This can be seen by rewriting the integral in

terms of the time intervals ∆τi = τi+1 − τi where τ0 = 0 and τm+1 = ∆τ .

I(x0, x1, ...xM ,∆τ) =
∫ ∆τ

0
d∆τMd∆τM−1..d∆τ0 δ(∆τm + ... + ∆τ0 − ∆τ) (A.17)

(i)Mei∆τM xMei∆τM−1xM−1...ei∆τ1x1ei∆τ0x0

It is clear that this is symmetric under the interchange of xi with xj for all i, j, so

the integral is independent of the order of the sequence xi. Since the integral is

independent of the order of the values xi it should be characterized by the distinct

values, labeled by yi and their multiplicity ni. Where n1 + . . . + np = M + 1.

Given a set of values xi we will evaluate the integral for the case where they are

organized such that any xi sharing the same value are grouped together. Doing so

the integral simplifies to

I(yp, np, . . . , y1, n1,∆τ) =
∫ ∆τ

0
dτM

∫ τM

0
dτM−1 . . .

∫ τ2
0

dτ1(i)
Mei(∆τ−τn1+...+np−1)yp

(A.18)

ei(τn1+...+np−1−τn1+...+np−2)yp−1 ...ei(τn1+n2−τn1 )y2eiτn1y1

By induction on p, the number of distinct values, we show that this integral is

given by

I(yp, np, ..., y1, n1,∆τ) =
1

(np − 1)!

(
∂

∂yp

)np−1

. . .
1

(n1 − 1)!

(
∂

∂y1

)n1−1 p∑

i=1

eiyi∆τ

∏p
j 6=i(yi − yj)

(A.19)

=

p∏

k=1

1

(nk − 1)!

(
∂

∂yk

)nk−1 p∑

i=1

eiyi∆τ

∏p
j 6=i(yi − yj)

For p = 1 (A.18) can be easily evaluated giving

I(y1, n1) =
∫ ∆τ

0
dτn1−1 . . .

∫ τ2
0
dτ1(i)

n1−1eiy1∆τ = (i∆τ)n1−1

(n1−1)!
eiy1∆τ (A.20)



126

=

(
∂

∂y1

)n1−1
1

(n1 − 1)!
eiyi∆τ

And if y1 = 0

I(y1, n1) = (i∆τ)n1−1/(n1 − 1)! (A.21)

If we assume that (A.19) holds for p distinct values then we can evaluate it for

p+ 1 distinct values as follows.

I(yp+1, np+1, yp, np . . . , y1, n1,∆τ) =
∫ ∆τ

0
dτM . . .

∫ τM−np+1+2

0 dτM−np+1+1 (A.22)

(i)np+1−1ei(∆τ−τM−np+1+1)yp+1I(yp, np, . . . , y1, n1, τM−np+1+1)

Plugging in the assumed result for p distinct values and performing the integrals

over τ we obtain

I(yp+1, np+1, . . . , y1, n1,∆τ) =

p∏

k=1

1

(nk − 1)!

(
∂

∂yk

)nk−1 p∑

i=1

1∏p
j 6=i(yi − yj)

(A.23)

[
eiyi∆τ

(yi − yp+1)np+1
−

np+1∑

m=0

eiyp+1∆τ

(yi − yp+1)m

(i∆τ)np+1−m

(np+1 −m)!

]

If one diagonal element is zero without loss of generality we can assume the p+1−th
element is.

I(yp+1, np+1, . . . , y1, n1,∆τ) =

p∏

k=1

1

(nk − 1)!

(
∂

∂yk

)nk−1 p∑

i=1

1∏p
j 6=i(yi − yj)

(A.24)

[
eiyi∆τ

(yi)np+1
−

np+1∑

m=0

1

(yi)m

(i∆τ)np+1−m

(np+1 −m)!

]

We recognize that the term in brackets can be written as derivatives with

respect to yp+1 of a simple function.

I(yp+1, np+1, yp, np . . . , y1, n1,∆τ) =

p∏

k=1

1

(nk − 1)!

(
∂

∂yk

)nk−1 p∑

i=1

1∏p
j 6=i(yi − yj)

(A.25)
[

1

(np+1 − 1)!

(
∂

∂yp+1

)np+1−1 (
eiyi∆τ

yi − yp+1
− eiyp+1∆τ

yi − yp+1

)]
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Finally simplifying the expression and using eqn (A.15) we obtain

I(yp+1, np+1, . . . , y1, n1,∆τ) =

p+1∏

k=1

1

(nk − 1)!

(
∂

∂yk

)nk−1 p+1∑

i=1

eiyi∆τ

∏p
j 6=i(yi − yj)

(A.26)

Thus if (A.19) holds for p then it also holds for p+ 1, so it is true for all p ≥ 0.

Using this result we find that the contribution due to each discrete path is

A(νM , . . . , ν0, α) = (ΘνMνM−1
)(ΘνM−1νM−2

) . . . (Θν2ν1)(Θν1ν0) (A.27)
p∏

k=1

1

(nk − 1)!

(
∂

∂Θwkwk

)nk−1 p∑

i=1

e−iαΘwiwi∆τ

∏p
j 6=i(Θwiwi

− Θwjwj
)

where wi label the distinct values taken by ν along the path and ni the multiplicity

of each value.



Appendix B
Eigenstates and Matrix Elements of

f(Θ)

In the timeless framework of section of chapter 3, the vertex expansion featured

matrix elements Θνmνn = 〈νm|Θ|νn〉. These are easy to evaluate directly from the

definition of Θ. In the deparameterized framework of chapter 2, on the other hand,

the vertex expansion involves matrix elements of
√

Θ. To evaluate these one needs

the spectral decomposition of Θ. In the first part of this Appendix we construct

eigenstates of Θ and discuss their relevant properties. In the second part we use

these eigenstates to evaluate the matrix elements functions of Θ, including
√

Θ.

B.1 Eigenstates of Θ

Recall that Θ is a positive, self-adjoint operator on Hgrav
kin . By its definition (2.6), it

follows that Θ preserves each of the three sub-spaces in the decomposition Hgrav
kin =

H− ⊕ H0 ⊕ H+, spanned by functions with support on ν < 0, ν = 0 and ν > 0

respectively. In particular, |ν = 0〉 is the unique eigenvector of Θ, with eigenvalue

0; H0 is 1-dimensional. Our first task is to solve the eigenvalue equation for a

general eigenvalue ω2
k:

Θ ek(ν) = ω2
k ek(ν) . (B.1)
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This task becomes simpler in the representation in which states are functions χ(b)

of the variable b conjugate to ν: 1

χ(b) :=

√
ℓo
π

∑

ν=4nℓo

e
i
2

νb Ψ(ν)√
|ν|

. (B.2)

In this representation, the eigenvalue equation (B.1) takes the form of a simple

differential equation

(
Θχk

)
(b) = −12πG

(
sin ℓob

ℓo
∂b

)2

χk(b) = ω2
k χk(b), (B.3)

whose solutions are

χk(b) = A(k) eik log(tan ℓob
2

) with ω2
k = 12πGk2 , (B.4)

where A(k) is a normalization factor and k ∈ (−∞,∞). k = 0 yields a discrete

eigenvalue ωk = 0 and in the ν representation the eigenvector can be expressed

simply as e0(ν) = δ0,ν . Eigenvectors with non-zero eigenvalues can also be ex-

pressed in the ν representation by applying the inverse transformation of (B.2) to

(B.4):

ek(ν) = A(k)

√
ℓo|ν|
π

∫ π/ℓo

0
db e−

i
2
νb eik log(tan ℓob

2
) where k 6= 0 . (B.5)

Let us note two properties of these eigenvectors. First, ek and e−k have the

same eigenvalue and so the ω2
k-eigenspace is two-dimensional. Second, the vectors

ek(ν) we have obtained have support on both ν > 0 and ν < 0. However, since

Θ preserves the sub-spaces H±, it is natural to seek linear combinations e±k (ν) of

ek(ν) and e−k(ν) which lie in these sub-spaces. In particular, this will simplify the

problem of normalization of eigenfunctions.

Let us begin by rewriting the integral in (B.5) as a contour integral in the

1Our normalization is different from that in [38]. The wave function Ψ̃(ν) in [38] is related to

the one here by Ψ(ν) =
√

ℓo

π|ν| Ψ̃(ν).
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complex plane. Recalling that ν = 4ℓo n and setting z = eibℓo we obtain

ℓo
π

∫ π/ℓo

0
db e−2ibneik log(tan ℓob

2
) = e−πk/2

πi

∫
Cz

−2n−1
(

1−z
1+z

)ik
dz =: J(k, n), (B.6)

where C is the unit semicircle in counterclockwise direction in the upper half, ℑz >
0, of the complex plane. As remarked earlier, ek(ν) = A(k)

√
ℓo|ν|/π J(k, ν/4ℓo)

has support on both positive and negative values of ν = 4ℓo n. Now, the second

independent eigenfunction e−k(ν) with the same eigenvalue ω2
k can be represented

in a similar fashion by setting z = −eibℓo . The result is a contour-integral along

the unit semicircle in counterclockwise direction in the lower half, ℑz < 0 of the

complex plane. By combining the two integrals, we obtain a closed integral along

the unit circle:

1

2πi

∮
z−2n−1

(
1 − z

1 + z

)ik

dz =
1

2

(
eπk/2J(k, n) + e−πk/2J(−k, n)

)
=: I(k, n) .

(B.7)

Being a linear combination of ek(ν) and e−k(ν), this I(k, n) gives also an eigen-

function of Θ with eigenvalue ω2
k. Moreover, using elementary complex analysis,

one finds that it has support only on positive n:

I(k, n) =






1
(2n)!

d2n

ds2n

∣∣∣
s=0

(
1−s
1+s

)ik
n ≥ 0

0 n < 0.
(B.8)

Repeating the argument but taking z = e−ibℓo and z = −e−ibℓo one obtains

1

2

(
e−πk/2J(k, n) + eπk/2J(−k, n)

)
=

1

2πi

∮
z2n−1

(
1 − z

1 + z

)ik

dz = I(k,−n) (B.9)

which has support only on negative n. Thus, the basis we are looking for is given

by

e±k (ν) :=
1

2

(
e±πk/2ek(ν) + e∓πk/2e−k(ν)

)
= A(k)

√
π|ν|
ℓo

I(k,± ν

4ℓo
) . (B.10)

By construction, e±k ∈ H±.

Next, let us calculate the normalization of these vectors. It is convenient to
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introduce kets |k±〉 such that 〈ν|k±〉 = e±k (ν). Then, it is clear that 〈k′ ± |k∓〉 =

0. To calculate the nontrivial inner product, 〈k′ ± |k±〉, let us return to the b

representation. There, the functions describing the states |k±〉 are

χ±
k (b) =

A(k)

2

(
e±πk/2eik log(tan ℓob

2
) + e∓πk/2e−ik log(tan ℓob

2
)
)

(B.11)

and their inner product is given by [38]

〈k′ ± |k±〉 =
∫ π/ℓo

0
db |A(k)|2 χ±

k′(b) |2i∂b|χ±
k (b) (B.12)

where |2i∂b| is the absolute value of the volume operator ν̂ = 2i∂b. Simplification

occurs because e±k (ν) have support only on positive/negative ν values. Because of

this property, one can replace |∂b| in (B.12) by ±∂b. The calculation now reduces

to a straightforward integration. The result is

〈k′ ± |k±〉 = |A(k)|2 2πk sinh(πk) δ(k′, k). (B.13)

B.2 Matrix Elements for f(Θ)

We will now use the eigenbasis | ± k〉 of Θ to calculate the matrix elements

〈4nℓo|f(Θ)|4mℓo〉, of the operators of the form f(Θ), for a measurable function

f . Throughout this section, the normalization factor A(k) is chosen to be unity.

From the normalization condition (B.13) with A(k) = 1, we have the following

decomposition of the identity:

I =
∫ ∞

0
dk

2πk sinh(πk)
(|k+〉〈k + | + |k−〉〈k − |) . (B.14)

which can be inserted in 〈4nℓo|f(Θ̂)|4mℓo〉. If m and n have different signs, the

result is zero. It suffices to consider the case where both are positive. By writing

〈4nℓo|k+〉 in terms of derivatives (see equations (B.10) and (B.8)), one obtains

〈4nℓo|f(Θ̂)|4mℓo〉 =
2
√
mn

(2n)!(2m)!

d2m

ds2m

d2n

dt2n

∣∣∣∣
s=t=0

Ff(Θ)

(
1 + s

1 − s

1 − t

1 + t

)
(B.15)
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with Ff(Θ) the ‘generating function’ given by2

Ff(Θ)(x) =
∫ ∞

0
dk f(12πGk2)xik

k sinh(πk)
. (B.16)

We now give the generating function for
√

Θ. It is also useful (at least to check

normalization factors) to write down the generating functions for operators whose

matrix elements are known, namely Θ and the identity I. These generating func-

tions are given by,

FI(x) = −2

(
log(1 + x) + log Γ(1/2 + i

log x

2π
)

)
(B.17)

F√
Θ(x) =

√
12πG

(
2ix

1 + x
− 1

π
ψ(1/2 + i

log x

2π
)

)
(B.18)

FΘ(x) = 12πG

(
2x

(1 + x)2
− 1

2π2
ψ′(1/2 + i

log x

2π
)

)
(B.19)

where Γ(z) is the gamma function, and ψ(z) = Γ′(z)/Γ(z) the polygamma function.

In obtaining these functions, it is useful to observe the following relations among

them:

F√
Θ(x) = −i

√
12πGx

d

dx
FI(x) (B.20)

FΘ(x) = −i
√

12πGx
d

dx
F√

Θ(x), (B.21)

which can be derived from (B.16).

We will conclude by noting that the matrix elements for the evolution operator

U(ϕ) = eiϕ
√

Θ are easy to find: From (B.16) one sees that FU(ϕ)(x) = FI(e
√

12πGϕx).

2For a general f , integral as defined may diverge. However the divergent terms (e.g., those
which are x-independent) do not contribute to the expression of the matrix element and can
therefore be discarded. This ‘finite part extraction’ is implicit in going from (B.16) to (B.17),
(B.18) and (B.19) .
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