The Pennsylvania State University
The Graduate School

MACHINE LEARNING FOR TEXT MINING: CLASSIFICATION,

RETRIEVAL AND RECOMMENDATION

A Dissertation in
Computer Science and Engineering

by
Yang Song

(© 2009 Yang Song

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

May 2009



The dissertation of Yang Song was reviewed and approwgdhe following:

C. Lee Giles
Professor of Information Sciences and Technology
Dissertation Advisor, Chair of Committee

Wang-Chien Lee
Professor of Computer Science and Engineering

Jia Li
Professor of Statistics

Jesse Barlow
Professor of Computer Science and Engineering

Bing Li
Professor of Statistics

Raj Acharya
Professor of Computer Science and Engineering

Department Head of Computer Science and Engineering

*Signatures are on file in the Graduate School.



Abstract

We all witnessed the information explosion of the World Wilfeb which has brought
us with continuously rapid growth of information and datawéver, as the amount of
data grows day and night, the need for efficient and effeati@eagement of information
has also increased dramatically. As a result, using igetli computerized algorithms
to discover new and useful information from existing data bacome a hot-pursuit in
recent research of computer and information science.

This thesis addresses the issues of discovering usefutmiatton from textual con-
tent of the data, as well as efficient management and orgamzef the data. These
research issues are usually referred to as the task of texagniwhich is a branch of
the broad area of information retrieval research that égostaany interesting and chal-
lenging problems and applications. In this thesis, we nydotus on four issues of text
mining: text classification (Chapter& 3), text retrieval (Chapter 4), text recommen-
dation (Chapter 5) and topic discovery (Chapter 6). SpeatificChapter 2 proposes
dimension reduction and collaborative filtering techngjteeimprove the scalability of
text classification; Chapter 3 further addresses the pednce issue of text classifica-
tion by introducing a new nearest neighbor classificatiothioe Chapter 4 deals with
retrieving correct name entities from the web and textualudeents where the names
are ambiguous; Chapter 5 deals with text recommendatioscfentific documents and
webpages; Chapter 6 aims at discovering dynamic topic $rand correlations in sci-
entific documents; Chapter 7 concludes this thesis. We V&t &ry to answer some
difficult research questions based on our study.
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Chapter

Introduction

The World Wide Web has been growing at a phenomenal rate gmesnergence in
the last century. A recent study has shown that the Intermetains about 9.36 bil-
lion pages. These pages contain rich information of images, videospimst impor-
tantly, text contents. According to a recent sttjcpproximately 80 to 85 of all data
stored in databases are texts. Due to the heterogenou® rwdttire WWW, the text
contents in those pages are usually unstructured and tlhdddbe discovered easily.
Consequently, leveraging computers to automaticallyadiscuseful information from
previously seen data becomes more and more desirable.

In this thesis, we address a research branch of the broadnafmn management
research — text mining. Generally, it means the processsabdering useful patterns,
structures and other valuable information from unstreduratural language texts. Text
mining, sometimes referred to as data mining, contains nmagesting and challenging
tasks. For examples, commercial search engines (e.g.,|&aod Yahoo!) highly
leverage text mining techniques to retrieve relevant demtsmaccording to user-input
gueries, which is a way of showing the success of text minimgffective information
extraction from massive amount of unstructured data.

The aforementioned application is an example of the broadareh area of text
mining, namely text retrieval. The research issues of téring have been studied for
decades, by researchers from different research areaslinglapplied mathematics,
statistics, machine learning, natural language procgsana etc. Apparently, we are

Ihttp://www.cs.uiowa.edw/asignori/web-size/
2http://www.edbt2006.de/edbt-share/Introduction TaMring. pdf



unable to cover all sub areas of text mining and thus we wdugoon four important
areas in this thesis: text classification, text retrievakt recommendation and topic
discovery.

1.1 Text Classification

Text classification, which is sometimes called text categdion [126, 34, 118, 116],
refers to the process of automatic assignment of textualrdeats into one or more
predefined categories. This supervised learning approacsists of two major steps:
learning and prediction. During the learning step, a setibéled training documents
is presented to the algorithm, where the labels are usuetjyieed by human-effort.
For efficiency, the documents are often represented by reatvere the elements in the
vectors correspond to specific words, and the values of dmeazits refer to the number
of appearances of the words in the documents. This repeggants the most common
one in text analysis, namely the bag-of-words (BOW) moddierthe algorithm learns
a classifier from the training documents, the classifier éntbapable of categorizing
new unlabeled documents into the existing categories.

The benefit of performing text classification is multifoldb@ously, text classifica-
tion can reduce the cost and time of human-effort for lalgetiocuments, which also
reduces the probability of making errors during labelingorbver, a classifier can also
act as a feature selection algorithm which selects the itapbword features and elim-
inates irrelevant ones [29, 40]. This helps reducing theedisionality of the feature
space and consequently slashes the computational cost ¢édming algorithm. Fi-
nally, text classification can also be leveraged as a preegsing step to improve the
performance of other tasks. For example, classifying wgbpato several topics (e.g.,
news, education and etc) can substantially improve theracgwf text retrieval [28].

Text classification is arguably one of the most importargaesh areas of text mining
and machine learning. Applications of text classificatioclude many research fields,
such as query classification [63, 17], email spam filtering, [69], and micro-array
classification [48, 135] in biological sciences.



1.2 Text Retrieval

Text retrieval, or document retrieval, aims at matching-uiseut keywords (or queries)
with a collection of text documents. It belongs to the broagkarch area of information
retrieval, which includes image retrieval, video retrieaad so on. Since the emergence
of search engines like Yahoo! and Google, text retrieval been widely applied in
all commercial search engines and digital libraries aratnedvorld. Regardless of the
applications, the general process of text retrieval ugualhsists of two steps: (1) find
relevant documents based on the input; (2) sort the rettideeuments according to
their relevance to the query. These two steps thereforetpasmajor challenges to the
retrieval tasks, i.e., efficiency and effectiveness.

To efficiently return the query results in real-time, modtieval systems use an
index to speed up the lookup process [19]. When there is amiegtttveen the query
words and the document content, the document is then traateglevant and retrieved
by the system. On the other hand, many useful metrics haveibeduced to measure
the rank or significance of documents / webpages to a speciécyq Including the
traditional term frequency (tf), inverse document frequyefidf) [62] and more recently,
the pagerank score by Google [93].

1.3 Text Recommendation

Text recommendation is often used in recommender systenhvelnggest relevant
documents (or items) based on user queries. For example, avhiser buys a book on
Amazor?, the system will then suggest other relevant books baseleocantent of the
book as well as the similarity between the user and othersaldwmwbought this book. A
classic technique used in the scenario is named collabertering (CF) [15], which
calculates the similarity between users and recommeneiesting items based on user
history.

More recently, text recommendation has been applied takbookmarking sys-
tems like deliciousand FlickP. These social systems allow users to specify their own
keywords for their collection of webpages, images and \sdednich greatly facilitates

Shttp://www.amazon.com
4http://delicious.com/
Shttp://www.flickr.com/



the organization and sharing of resources among userse Tises-defined keywords are
often called tags or social bookmarks. A recent hot reseastte aims at recommend-
ing relevant tags to a new resource or a new user [119, 117\ B0ike the traditional
taxonomy, tags are not bounded by any pre-defined vocabilairyissue thus becomes
more challenging than the traditional text recommendaagks.

In general, text recommendation is very similar to the pssad text retrieval, except
that the retrieved results may not contain the user-inpatl abut still quite relevant to
the queries. Therefore, text recommendation is often mbaienging than retrieval
since it requires richer information than standard reafiéasks, e.g., user history and so
on.

1.4 Topic Discovery

Since Latent Semantic Analysis (LSA) was introduced tomeixiing in 1988 [31], topic
analysis has become a very popular research area thatsattrany computer scientists
and statisticians. The simple idea behind topic analysfsatsa collection of documents
can be treated as a mixture of topics, where each topic ecantaany words that form
an unknown probabilistic distribution within the topic. wh essentially reduces the
dimensionality of document representation from words itojpics. Therefore, topic
analysis can substantially reduce the effort to manage kang ever-growing collections
of documents.

Recently, probabilistic graphical topic models such agptiobabilistic LSA (PLSA)
[54] and latent Dirichlet allocation (LDA) [12], which impwe the LSA model by in-
troducing statistical analysis, have become very useblsttor several crucial tasks in
text information retrieval [152, 2, 87].

Compared to the supervised text classification methods; topdels are unsuper-
vised learning approaches, which do not require any priomkadge of the document
labels. Thus they are used more frequently than superviassdification methods.

1.5 Text Mining Metrics

Regardless of the application type, the measurement (onétic) of the effectiveness
of a text mining algorithm is typically carried out by comay the performance of the



algorithm in the testing set of documents after a trainirig B&#o most frequently used
metrics areprecisionandrecall (See Figure 1.1).

e Precision: The proportion of retrieved and relevant doauisi¢o all the docu-
ments retrieved. i.e., “How many documents are assumed io the category
truly belong to it"?

e Recall: The proportion of relevant documents that areeedd, out of all relevant
documents in a system. i.e., “How many documents that belemthe category
have been deemed as such”?

Ideally, one may want to achieve high precision and rec#i@same time (e.g., Fig-
ure 1.2(left)), shown in Figure. But sometimes the algonghmay compromise one for
the other as represented in Figure 1.2(midd(ejght). As a result, to measure the aver-
age performance of an algorithii] score, defined asprecision-recall /(precision+
recall), is also considered a popular and effective metric.

| RelRetrieved | Recall — IReleetrieve.cH
| Retrieved | | Rel in Collection |

Precision =

All objects

Figure 1.1. lllustration of precision and recall and their measurem@ntom C. Lee Giles: IST
441, Information Retrieval and Search Engines.)



Figure 1.2. lllustration of the performance of precision and recalleftl. High precision and
high recall. (Middle) High precision with low recall. (RighLow precision with high recall.
(From C. Lee Giles: IST 441, Information Retrieval and Skdtagines.)

Relevant

1.6 Challenges of Text Mining Tasks

Although text mining has been studied for decades, thetexsists several challenges
and issues that should be addressed (and will be addrestesl ihesis):

e Performance Ideally, for each category the algorithm is assumed to furedye
thing relevant in the system (high recall) and only retrithase into that category
(high precision). The accuracy of the model depends largelyiow the docu-
ments are represented as well as the distribution of therdents. For example,
in document classification, the documents are usually ifaime of vectors. Thus
the vector space is usually quite large and sparse, whitteisain cause of the
“curse of dimensionality” phenomena. Achieving the bestgrenance has been
the major measurement for almost all text mining tasks.

e Scalability. Efficiency is as crucial as performance for large-scaldiegons.
To achieve better performance, usually more training denimare preferable,
which could in turn causes prohibitively long model tragitime for the algo-
rithm. For example in most scenarios of text classificattbie, training time is
linear or quadratic to the number of training documents. ¢hg training time
for support vector machine classifiers (SVMs) [145, 60, 3Qjsually quadratic
until a recent improvement which turns the training time édibear [61]. Some
other simple classifiers, e.g., K-nearest neighbors ¢lesfl16], logistic regres-
sion [146], their training cost is also decided by the nuntdferategories in the
training data.



e Adaptivity . An algorithm may perform well in one application (e.g., eacat-
egorization) but bad for another (e.g., text categorizgtioMore commonly, a
classifier may have different performance on different data in the same appli-
cation. Thus building a universal algorithm that is bothlaggpion-independent
and dataset-independent becomes quite desirable.

e Customization(Personalization) Retrieving relevant documents based on user
preferences has become a new research trend. For web teeatgarithms have
to deal with documents with diverse content and users witbrde interests.Thus
traditional algorithms (e.g., classifiers) that fix categenn advance obviously
cannot cater for all user interests.

For example, impersonalized classificatiothe users are assumed to create their
own personalized categories. The classifiers will then benaatically trained for
classifying objects under such categories. Example agmies include online
news classification, book recommendation (e.g., Amazomestore) and so on.

In the domain of text classification, personalized classifon can be considered
astext filtering where one or more set of features is first constructed with ea
representing a different user interest domain. Based omseéh®ntic closeness
with the features, relevant documents are then retrievad the corpus for differ-
ent users. This problem have been well-studied in the Texti®&l Conference
(TREC) [1].

In general, two types of processes are employed for pergedatlassification,
namelyflat processandhierarchical proces$124]. The flat process corresponds
to the case that the personalized categories are definedeindently of each
other, while the hierarchical process refers to the sibmatnat each personalized
category is defined within some general category.

1.7 Objective and Structure of This Thesis

The objective of this thesis is to answer the following reskeauestions:

1. Can dimension reduction techniques boost the performancefoext classifica-
tion?



2. Is it possible to overcome the “curse of dimensionality” forthe K-nearest
neighbor classifier?

3. Are unsupervised learning algorithms comparable with supevised learning
methods for retrieving correct name entities (i.e., name diambiguation)?

4. Are computerized text recommendation algorithms suitablefor Web2.0 ap-
plications in recommending social bookmarks to users?

5. Instead of simply breaking a document collection into statt topics, is it pos-
sible to model the dynamic change of topics within the docunm collection
during a range of time? Moreover, can we monitor the topic corelations
between several document collections dynamically?

In the remaining of this thesis, | will discuss the liter&wf this area as well as my
previous work on text mining. The rest of this thesis is orgad into 7 chapters. Specif-
ically, Chapter 2 proposes dimension reduction and cotkthe filtering techniques to
improve the scalability of text classification; Chapter 3tlier addresses the perfor-
mance issue of text classification by introducing a new rstareighbor classification
method; Chapter 4 deals with retrieving correct name estitiom the web and textual
documents where the names are ambiguous; Chapter 5 ddalextitecommendation
for scientific documents and webpages; Chapter 6 aims ab\aisag dynamic topic
trends and correlations in scientific documents; Chaptentclades this thesis.



Chapter 2

Text Classification: Dimension
Reduction and Collaborative
Filtering

Mathematically speaking, text classification is the taskmbroximating the unknown
target function® : D x C — {7, F'} by means of a functio® : D x C — {7, F'}
named theclassifier such thatb can be approximated as much as possibl@bydere
C ={«,...,cn} ia a predefined fixed set of categoriBsis a corpus of objects. In most
cases, the categoriésare assumed to be numerical. i.e., there is no specific mganin
of a class label since it is not helpful in building a classifie

Depending on the application, classification may be:

e Single label: In this case each object must be assigned wétttly one label. A
special case of this is when = 2, i.e., binary classification (labels are usually
{-1, +1} or {0, 1}).

e Multiple label: Each object may have one or more labels ia taise. A special
case is document tagging (See Chapter 5 for details).

Meanwhile, classification may be required to perform défely depending on the
application:

e Hard classification: Based on our definition, it is to provalealue in{7’, F'}
which indicates membership or non-membershig,ah c;.
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e Soft classification: In this case, the classifier is only regpito provide a value
between0, 1] which indicates the degree of confidence of the membership of
in C;.

Typically, a classifier fofC can be built either manually or automatically. In the first
case, a set of type of rules are set by people with domain gespeéo decide the label of
all objects. Nevertheless, due to the large-scale andgrearing number of objects in
most situations nowadays, it has become labor-intensatectuses prohibitively long
time to finish the task, as well as other defect made by huneamgb which makes this
approach error-prone and cost-ineffective.

As a result, the second approach, namely automatic claggific is usually prefer-
able. This process is generally carried out by supervisethima learning techniques,
which leverage a set dfaining objects that is pre-classified (i.e., labelled)Gnand
make automatic predictions of the labels for the new objedtéch are usually referred
to astestingobjects. Generally, the representation of objects is irfdh@ of vectors,
where the length of the vectors indicates the numbdeaturesthat is included in at
least one training object. The value (or the weights) of daature denotes the number
of occurrence in each object, which may be binary (indicapresence or absence of
the feature in the object) or non-binary.

In literature, numerous supervised learning techniquees baen proposed for text
classification. Among all of them, successful algorithmdude neural networks [104,
151, 94], decision tree [56, 86], probabilistic classifig8, 137, 91], nearest neighbors
[5, 50, 150] and etc. More recently, support vector machjhés, 60, 30] and boosting
algorithms [20, 92] are becoming more popular with gengitaditter performance.

To overcome long training time for the classifier in largelsapplications, dimen-
sion reduction are often performed before the data is sehetolassifier. Feature selec-
tion, feature extraction and re-parameterizations arenthet common used methods. In
this chapter, | will focus on the issue of dimension redutiiounstructured document
classification.

2.1 Challenge of Unstructured Document Classification

Industry analysts suggest that ovet’80f the content within the typical Global 2000
organization is unstructured — that is, content which dags$itneatly into the rows and
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columns of a relational database. The fact is, this unsiradtcontent is key to many
business processes across the organization and througbduisiness value chain, from
engineering drawings and specifications, to brand asselsasisales and marketing
collateral, legal documents, educational videos and ial&ronline product catalogs,
and customer service information.

However, experience with the CiteSeer Digital Librairydicates that there still exist
several challenges in text classification for unstructutath on the Web, particularly
when the number of classification labels is large.

In CiteSeer, several concept taxonomies exist for clasgjfgcademic materials, in-
cluding the taxonomy for computer science provided by th&/AEor the purposes of
this project, publication venues are used as classificddioels under the assumption
that each publication venue encapsulates a distinguisitainicept focus. Since Cite-
Seer (and most search engines) automatically crawls acadiErruments from venue
websites, author homepages and then extracts textuaimatmm from them to create
metadata, false labels are inevitably assigned to manyndects. Due to the increas-
ing similarities between different venues (e 9IGKDDandPKDD, ECML andICML),
the effort needed to accurately classify a document intatexane category becomes
greater. Moreover, lack of keyword fields, improperly definerms, and other feature
deficiencies create unique challenges for text classificati

2500

2000~ b --

# of Samples
P P
@] a
o o
@] @]

500

40 60 80 100
Class Labels

20

Figure 2.1. Distribution of documents w.r.t. classes in CiteSeer. lacBce, documents on the
Web are also unevenly distributed.

This problem is further exacerbated due to the imbalanceaidichents available for

Ihttp://citeseer.ist.psu.edu/
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training in each class, i.e., the documents are uneverntylited in different categories
on the Web (for example, CiteSeer has a collection of more #@00 documents for
INFOCOM, while for some other conferences, the cumulative numbyers@more than
200); Figure 2.1 gives an actual document distribution o afithe data sets used later
in the paper.

Traditionalbag-of-wordsapproach represents each document as a feature vector and
often leads to feature spaces that are sparse and largelagsification accuracies are
thus hard to get. Contemporary approaches of text clagsiiceoncentrate on extract-
ing more meaningful features from structured text, e.gdireglnumeric features such
as timestamps [83], capturing features that share mutta@hvation and are dependent
on each other [133], as well as seeking better methods terefeclassification model
based on the prediction errors from the training data s€&sf3]. Several classifiers
have been introduced to text classification, e.g., NaiveeB495], maximum entropy
[90] and Boosting [20]. Support Vector Machines (SVMs) [14,7, 153], which fo-
cus on finding the hyperplane that maximizes the margin betwesitive and negative
classes, have typically been the most effective classifiglsregards to the classifica-
tion errors. Forming the feature space has become for mamycetpart of using SVMs
as text classifiers, since naturally there are hundredsrofstén each document and
thousands of documents in each class, which results in ughtdimensional feature
spaces. Yet it has been reported that SVMs can still achigvedtcuracy in document
classification without feature selection [125].

Research on entity extraction spans the fields of ling@siimd computer science.
Linguistic techniques can be employed to enhance featleetgs from raw text by
grouping text into semantically meaningful chunks. Depebents in entity extraction
technology have traditionally been concerned with theassficomputational complex-
ity as well as extraction accuracy and domain specificitytidds for entity extraction
from unstructured data typically fall into two categorigsittern-based approaches and
model-based approaches. Pattern-based extractionseegensive manual labor for
detecting patterns and is generally not robust to variatat. d@an the other hand, model-
based approaches like hidden Markov models (HMMs) [111] &uds [71], while
requiring careful feature selection, have proved to be sband flexible.

The major contributions of this chapter are: (1) dimenskduction by leveraging
entity extraction methods, (2) using collaborative filbgritechnique for refining mini-
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Figure 2.2. Feature space augmentation by using CF algorithm.

mal, noisy feature spaces, and (3) a comparison of the peaface of SVM versus Ad-
aBoost classifiers for the problem of categorizing acadetoauments by publication
venue. Collaborative filtering is employed to predict th&ueaof missing features for
each class. Experimental evaluations on both real-worta sklst and benchmark corpus
show great improvement with regard to classification acyuc@mpared with classifi-
cation using the original feature space and the featurets@bemethod — Information
Gain (IG). Figure 2.2 shows the structure of our approach.

2.2 Entity Extraction using SVM-decision-tree

Text documents are often treated as “bags of words” for nm&cleiarning tasks, repre-
sented only by each word as a feature along with an assodratptency count. Some
heuristic improvement that reduce the dimension of feadpeees include the removal
of stop words, link words and punctuation from the term listowever, the “bag of
words” approach does not help defining meaningful entitresrasults in a very large
feature space. Documents on the Web usually fall into matggoaies, e.g., in digi-
tal libraries, academic documents span many research, &&es of which may have
different meanings for the same words thus making the temisguous. The feature
space may be reduced by chunking text into meaningful unisteeating each chunk
as an individual feature. This process is known as entitsaexbn.

Entity extraction techniques typically fall into one of twategories: named entity
recognition (NER) and phrase extraction. NER deals withtidigng proper names text,
extracting paper titles and author names in on-line putitina and so on. Phrases, or
meaningful entities, can be recognizedsagaturethat best represent the main idea of
papers, most of which can be found in the titles, abstractkapword fields in a paper.
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However, only a few publication venues require keyword &&ld

Maximum Entropy (ME) is a feature reduction approach thatksdy choosing the
model with the most uniform probability distribution (theghest entropy), the model
is described a®(w|h) = 55 - e i difilhw) “where f;(h, w) denotes a binary feature
function that describes a certain terrqy;is a parameter that indicates how important
featuref; is for the model. The disadvantage of ME is that it cannotmatically select
features from given feature sets thus relying on carefuufesselection techniques.

Conditional random fields (CRFs) [73] is another NER techaithat aims to label
and segment data into phrases. It works by defining a conditiprobability distri-
bution over training data given a particular observatioraph. It usually works better
than HMM and avoids the label bias problem, however, thenimgitime of CRFs is
prohibitively high.

To identify non-trivial noun phrases with semantic measimgthe documents, noun
phrases (NP) chunking is adopted for this purpose. Churikiogps together semanti-
cally related words into constituents, a step beyond PO&-FfaSpeech) tagging; but
it does not identify the role of these constituents with e$po the sentence, nor their
inter-relationships. In our system, we revised and implaee a previous chunking
algorithm [70] as a simplified yet more efficient two-level \based NP chunker.

The NP chunking problem is formalized as a three class @iesson problem,
which assigns each word with one of the labels: B (Beginniniy®), | (Inside NP),
O (Outside NP). A feature space is constructed, with dintgrssiepresenting the sur-
rounding words, the POS tags of those words, and the alreadygt chunk tags. Three
SVM models (BI, IO, OB) are trained, each designed to tag alwofavor of one label
over the other, for example, the Bl model provides a hypeaspta tag a word with label
B rather than label I.

We adopt the pairwise method that allows the SVM to classififtirtlass problems.
Traditional methods have considered using three SVMs bhegeit each time, i.e., in the
worst case, three comparisons need to be made in order tonile¢éethe label of a word.
However, we use a method that allows us to use two SVMs insikttee, which in
turn accelerates the chunking time by one third. The hibsaof the two-level decision
tree employed is shown in Figure 2.3. Furthermore, TablesBdws an example to

2From an investigation of ACM & DBLP metadata cross-refeszhwith CiteSeer data, 5% of venues
do not have an identifiable abstract field and more than 70%mdi&s lack a keyword field.
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Bl Model
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OB<0 I0>=0

Figure 2.3. Two-level decision tree for tagging.

clarify the method we use.

Given a paragraph of unstructured text, the extraction guwesigh the steps of sen-
tence segmentation, POS tagging using Brill taggad NP chunking. In this example,
collaborativeandfiltering are labeled as adjective and noun by Brill tagger, the chunk-
ing decision forcollaborativeis based on the results of the SVMs: the result of Bl model
is 0.5 (in favor of label B), so the OB model is used which y#i@.6 (in favor of label
B), thus B-NP is chosen as the chunk tag for this word. Tofalbhrases are extracted
in the above example shown in Figure 3, by merging the chgntdgs and discarding
general terms yields three meaningful entitientity extractioncollaborative filtering
andfeature space

2.2.1 Extract NP as Phrases

Various kinds of chunks are usedmatural language processin@Noun Phrases, Verb
Phrases, Prepositional Phrases, Adjective Phrases aretlfBlarases) for different pur-
poses including location extraction, noun phrase extacind so on. However, for a
specific task of text processing, it is not necessary to usehahks together. For ex-
ample, it is generally believed that in information retagwsing only NPs and VPs in
a sentence can be enough. Our approach is similar to the DAG{S8] approach in
essence, however, for the task of extracting meaningfuienfrom documents, only
NP tags are considered in our case. Of&gmnaturesare recognized as some combina-

Shttp://research.microsoft.comEbrill/



16

current word | POS tag | chunk tag
This DT B-NP
paper NN I-NP
describes VBZ 0]
our PRP B-NP
attempt NN I-NP
to TO 0]
unify VB O
entity NN B-NP
extraction NN [-NP
and CcC O
collaborative | JJ B-NP
filtering NN [-NP
to TO O
boost VBG O
the DT B-NP
feature NN [-NP
space NN I-NP
O

Table 2.1.Chunk representation example. Each word is first taggedMB tag, and POS tags
are then classified into B-NP, I-NP and O tags.

tion of noun phrases in documents, which in our case are yndstloted as B-NPs and
I-NPs. As a result, instead of making use of all NP chunks &gging, chunk labels
except B-NPs and I-NPs are masked under the label of O, whsgslsome information
during training, but significantly speeds up the traininggass as only three chunk-
ing tags are taken into account. Our program then simply aoeslkB-NPs and I-NPs
between O tags and treated thensamaturedor the documents.

To summarize, our propos&VM-decision-treenethod finds an effective trade-off
between performance and cost for extracting phrases fratrugtured data, which is
served as preliminary results for our final task of text afasgion. On one hand, we
know lessn the feature space which yields little impact on the piieaisf NP chunking,
testing results indicate that the performance is only redwtightly by our approach
on the other hand, the algorithm slashes a lot of computaitiome that is required by
shallow parsing methods. In our experiments, our NP chunkes even faster than the

40n the Wall Street Journal data set, our model achievedsioeadf 90.2%, comparable with previous
results in [70].
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POS tagger, making it an highly efficient solution for largale data.

2.3 Feature Space Refinement

Inspired by the analogy betweeser behaviorandvenue focuse@.e., different users
may have similar preferences, different conferencegi@isrmay focus on the same
research areas), we employ collaborative filtering (CF)efime the feature space by
predicting missing values as well as reducing noise fadtors the feature space. Here
we propose two alternatives of the traditional CF algorithfhe first one is a refined
instance selection algorithm, while the second algorithmsaat clustering similar users
to user groups for better efficiency.

There are two major approaches of collaborative filteringmgmary-based and model-
based. Memory-based algorithms store users ratingsfprefes in storage, and give
recommendations based on known scores from existing ugedel-based algorithms
describe users preference by applying descriptive modelsérs and/or ratings; the
virtue being that once the model is established, little cotaton is required for pre-
diction. However, the training requirements of both modetyuire trade-offs between
on-line and offline computation.

CF has the following issues - efficiency of the algorithms gndlity of the rec-
ommendations. In general, the computational complexitpemory-based and model-
based algorithms ar@(nm?) and O(nm), respectively, where: denotes the number
of users and: denotes the number of items (e.g., movies) in the data setsewdoth
have an upper bound @t x n. Currently, data sets from large on-line stores contain
millions of items as well as millions of registered usersjahcan be computationally
expensive.

The quality of the recommendation is problematic and is prilmdue to the number
of items that users rated. Given the large number of itemisdrdata sets, a single user
may want to buy or rate a very small portion of the items, asgllin most items in
the data sets unrated. For example, in the EachMalatabase, a user rates 20 movies
on average, while the whole database contains more thaf @0ies. Thus making
recommendations from very limited data can lead to unaebéperrors.

Shttp://www.grouplens.org/taxonomy/term/14
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2.3.1 Best Selection Algorithm (BS1) for Memory-Based CF

For the introduction to CF, we refer interested readerseactassic paper [15]. In this
section, we first give a formal definition of our memory-ba&é#dalgorithm [113].

2.3.1.1 ARevised Inner Product-Based Weight Function

Given a vector spact € R™" and a field of scalar&” (which is either in the fieldR
of real numbers or the file@ of complex numbers), an inner product is defined as a
function< .,. >: V x V — K which satisfies the properties lifiearity, conjugate
symmetnyandpositive definiteGenerally, an inner product is a generalization of the dot
product. Usually in a vector space, the inner product is asegiway to multiply vectors
together, with the result of this multiplication being alstaln the area of information
retrieval, inner product is used as a measurement of vettolagty that represents
how similar two or more queries/sentences are to each oBssed on these features,
we introduce our new weight function as follows:

2 j—o ((min(Ve;, ea), min(Vy;, e)) , Sim(a, 1, j))

Wi = min( L 1L ey

Where functiorSimis defined as:

(S — [Vaj — Viyl)
S

Sim(a,i,j) = (2.2)
Here in equation (2.1) and equation (2.R); represents the rating of userc [1,m]
over itemj € [1,n|, |I;| denotes the number of items (features) that dusated, m
equals to the total number of items aficstands for the rating scale (e.g., [0-1], [0-5]
and etc). The vectar = {ey, €2, ...€, } are some significant small coefficients that are a
little bit smaller than the lowest feature frequencies faclesample. Specifically,

(V) = min
(V) =i "I,

where|| - ||; represents thé,, norm (i.e.,||f||s = >_|fi]). The reason that instead
of using the true value of;;, we usemin(V;;, ¢;) in equation (2.2) for computing the

(2.3)

weight function is that we are only concerned about whetlserss# andi: have rated
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item 5 or not. How close their ratings are related is decided bydhetfonSim/(), which
computes the similarity between two ratings by calculatimgdifference between user
ratings divided by the rating scale resulting in vector alises (or similarity). It is
evident that the higher the similarity, the closer relasioips users have to each other.
ObviouslySim(a, a,i) = 1 for all a’s andi’s, which implies that the similarity between
a user and itself is always the highest.

The multiple inner product [15] directly computes the vectonilarity between
users which for some cases is similar to calculating the oh@niis/queries similarity,
but is generally not a very strict estimate for defining theglvefunction with respect
to collaborative filtering. Given an extreme example, faethusers:, i, j, suppose
Ve = (1,1,1), V; = (5,5,5) andV; = (1,1,1). In this case that user disliked all
three items and rated them all 1's, ugdikes all three items, and usgrdisliked all.
Intuitively, usera has more similarity to userthan uset. However, if we compute by
multiplying vectors directly (V,, V;) = 15,(V,,V;) = 3), the similarity between user
a andi would be much higher, which is in conflict. However, by apptyiour Sim
function, we end up having weights of value$a, i) = 1/5 andw(a, j) = 1, showing
that usew and; have more similar profiles.

2.3.1.2 Algorithm and Analysis

Based on the weight function we computed previously, we gsepur first algorithm
Best Selection (BS1).

In algorithm 1,a is the active user whose ratings we want to predictandn are
used to denote the number of users and the number of itenpectesely. The idea
behind this algorithm is that instead of doing computatioroas the entire datasets
only for a single prediction, we choose totallyg m| users that has theestsimilarity
with the active uset for prediction. In other words, these candidates are thiedmes to
represent user's ratings of the items in the same data set. To achieve thedmdt, the
algorithmis iteratedlog m | times, at each tim@log m | users are randomly picked, and
only thebestone that has the highest similarity (judged by the weightfiam )V (a, 7))
with the active uset: is selected and inserted into the candidates list.

Once we have the candidates list and the weight function,amepecedict uset’s
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Algorithm 1 Best Selection Algorithm (BS1)

1: input:  user-item matrixP € R™*"

weight matrix)y € R™*"™

. output: candidates lis€ € R[logmIxn

. Initialize C — 0

: for each active user do

for i equals 0 tglog m] do
randomly chooselog m| userg/ from P
select the candidate that satisfies:
Vvelandv # p, W(a,pn) > W(a,v)
Ci — CiUP(p)

end

: end

outputC

coNT RN

=
N i

rating for item; as follows (remembef is the candidates list):

[log m]
Qa,j) = Z W(a,c) *P(c,j),ceC (2.4)
c=0

Some previous memory-based approaches [15] predictedats®ys by collecting rat-
ings from all users in the datasets. Two shortcomings aréabvhere: first, lots of
noise factors were introduced to the prediction process, the ratings of those users
whom have very little similarities with the active useare also added up to predict its
ratings, as long as the weights between these users angreater than 0. Secondly,
time are wasted to compute these useless ratings, whichveayeninor effects to the
final prediction results.

By adopting instance selection, we minimize the noise fadiy selecting the most
representative users from the data set. As a result, onliskial the candidates list,
we could get better prediction results by computing from aimsmaller set, but def-
initely no less reliable, of related users, regardlesseshg. The running time is also
significantly reduced t6(n log® m).

It has also been realized that by using random selection, ae get the optimal
result for each step, but we may not achieve the optimumisalgfobally. i.e., those
users that have the highest weights with the active user ¢faaeces of not being se-
lected as candidates. However, trying to find the absolus¢ tendidates each time
would be labor-intensive and time-consuming. By mentigriasthere, we mean that
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our approach finds the best trade-off between computatamaplexity and prediction
results. In other words, by selecting the best candidatedoh step and repeating the
same steplog m| times, we have minimized the standard deviation of errascbuld
cause mis-prediction.

2.3.2 Clustering Approach — Improved Best Selection Algothm
(BS2)

In this section, we continue to propose the second seleatgurithm that unifies in-
stance selection and feature selection techniques tags#tected instances are further
clustered with selected features into several clustersdoas user profiles.

2.3.2.1 Select Features from Candidates List

Generally, feature selection is different from instandec®n regarding selection cri-
teria. i.e., instances are selected based on user sineawhile features are chosen
according to the quantity of ratings provided by users. goathm 2, we want to se-
lect those features that have been rated most frequentlhgdéns.uAt the beginning of
BS2, a candidates list is retrieved by using BS1. Based dnwleacount the number of
items that have been rated by the users in the candidatesrigsselect the firdtlog n |
features according to the descending order of the frequency

The initialization part of algorithm 2 take®(n log”m) time with respect to the
number of users: and number of features. The first part of the algorithm computes
the number of times that the items have been rated by thetséleandidates, taking
O(nlogm) time to finish. The second part of the algorithm sel€dtg n| features
from all the items, requiring no more th@nlogn) time. Considering in normal cases,
n % m andm % n, the running time of algorithm 2 is still bounded BY(n log” m),
which makes BS2 as fast as BS1.

2.3.2.2 Clustering for Predicting User Ratings

After applied to BS2, the sample data collected have beeimaetd for prediction.
The prediction is then carried out by clustering the tragnilata set based on the user
profiles. In practice, the size of the raw data sets varied.aAs a result, how to
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Algorithm 2 Best Selection Algorithm (BS2)

1:
. input:  user-item matrixP € R™*"

. output: instance-feature lisE € R[logmIx[logn]
. Initialize C «— BS1(P), F «— 0,7 «— ()

. for i equals 0 ton do

PR R R R R R R R
© N UOMWNREO

program Best-Selection-Two

for j equals 0 tdlogm| do
if C(j,1) >0
Z(i)«—Z@()+1
end

:end
: Append active usei to C : C « P(a)
: for ¢ equals 0 tdlog n] do

select the feature from C that satisfies:
VEéeCand& # k,I(k) >TI(€)

Fi — FiUC(k)

C+—C—0Cx

: end
: outputF

dynamically choose the number of clusters that could leaddBults of clustering to

the best prediction outcome becomes the key part of emgdine classical clustering

algorithm.
Several approaches have been applied to cluster the datef seter-item matrices,

which were mentioned in [33] as repeated clustering. In ppra@ach, users who have

similar preferences of the same items are clustered togeifbedetermine the quality

of clustering results, two metrics namely the average 4iokaas compactness and inter-

class looseness of clusters are employed:

3

ZZK;J
SN

i=1 7

?ﬁlH

1

Ma

RIH

1

—U(i))? (2.5)

C(j))? (2.6)

In equation (2.5) and (2.6}4/(i) € F, whereF is the result from BS2 andr <
Rlleemix[logn] = denotes the number of clusters; represents the total number of

users in class, andC (i) is the centroid of classwhich is defined as:
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Cli) =+ > u(i (2.7)

The purpose of clustering is to minimize the average intaasccompactness while
simultaneously maximizing inter-class looseness. In Atgm 3, two initial thresholds
€1, €; @are chosen for intra-class compactness and inter-classress, respectively. The
number of cluster& are initialized to be half the number of instances selecatenh f
BS1. Each time when the KMeans algorithm is called, we gelabels for instances
cluster centroids and the modified instance-feature 5t which appends the labels to
the last column ofF. After that, newp and7 are computed by using the new labels. If
both conditions are satisfied, we take the clustering resuit compute the prediction
value of the active user. However, if the computed is larger than the initial thresh-
old, we recognize that the current clusters are not compamigh, i.e., users that are
clustered in the same class may still exhibit different ysefiles, indicating that the
current clusters still need to be split.

In the third case, if the value g@fis small enough, but is smaller than the threshold
(which means we have "over-cluster” the users and clustersxat maximally sepa-
rated), then clusters are merged to get larger inter-atesehess values.

The running time of clustering, however, is still bounded®y: log” m), which is
equal to the running time of BS1. The worst situation happemsn we need to try all
K’s from 2 to [logm|, in which situation the selection of initial thresholdsand e,
may not be optimal.

To summarize, choosing the right initial values for inttass compactness and inter-
class looseness becomes crucial to both the program ruminiegand clustering re-
sults. During the experiments, we found that for intralesmpactness|log m/2]) x
maxdist(F) would be an optimal choice, whereaxzdist(F) stands for the maximum
pairwise distances between instances in the instanceréeaatrix. The value for inter-
class looseness, however, varies a lot due to the distart@sdn centroids of clusters,
which are greatly dependent on the distribution of the $®leanatrix. In practice, we
figure out that the optimal value fdts is always aroundp([logm]) / R, whereR is a
value between of (2, 4).
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Algorithm 3 Clustering for Prediction
1: program Cluster-Prediction

2: input:  instance-feature list € RIogm1xlogn]
3: output: rating-prediction listP’ € R[log™]
4: Initialize IC < [logm/2], p « €1, T < €,
L—0,c—0,P <0
5: while £ > 2 andC < [logm| — 1 do
6: (i,¢,F') «— KMeans(F, K)
7:  for i equals 1 toC do
8: for j equals 1 taV; do
9: p— Cp(F")
10: 7 Ls(F')
11: end
12:  end
13: ifp<pand7 >
14: break

15: elseifp > p

16: K—K+1

17: elseifp < pand7 <7
18: K—K-1

19: end while

20: for i equals 1 tdlogm| do
21: for j equals 1 tow do
22: if Ly = L’—logm]+1

23: P« Pi +W(i, [logm] + 1)P([logm] + 1, )
24. end

25: end

26: outputP’

2.4 Classifiers for Text Classification

In this section, we continue to discuss the classifiers wel@yagd for text classifica-
tion. We begin by first showing how we use SVM as a classified, taen present the
algorithm AdaBoost.MH for multiclass classification.

2.4.1 SVM for Text Classification

Support Vector Machines (SVM) classify training examplgauking the strategy that
maximizes the margin between critical examples and theragpg hyperplane. Given

a set of training exampleS = ((x1,v1), ..., (zn,yn)), Where each examplg € R”

and each labe}; € {+1, —1}. Our task is to find a hyperplane that optimally separates
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the positive and negative examples which can be interpested- = + b = +1 (w €
R™ b € R). By optimal we mean that the hyperplane maximizes the Eealidlistance
to the closest examples. In order to maximize the margin,&eelhto minimize|w||.

Generally, SVM is employed as a binary classifier. Nevee$®!two approaches
can be used to extend SVM for multi-class classification .[4#irwise classification
trains SVMs for each pair of classes, thus totﬂﬁgi) SVMs need to be trained for
classes, these SVMs are then arranged in trees where eaztdemates an SVM. On the
other handpne-against-alapproach only needs to trainSVMs. The trick is to treat
only one class as a positive class (with label +1) at a timeadinrémaining as negative
classes (with label -1). Recently, multiclass SVMs havergegtto be an alternative
and reported to be more effective than the predecessorkisipdper, we employ [25]
as an implementation of multiclass SVM.

2.4.2 AdaBoost.MH

AdaBoost.MH (cf Algorithm 4) is used for multiclass mul@idel text classification.
Given a sequence of training examptes- ((x1,41), ..., (zn, yn)) Where each example
x; € X and each labe); € Y, for Y C ) which is the set of labels assigneditg Y[/
(¢ € V) is defined as 1 if € Y and 0 otherwise.

In each round, the distributiof; (i) over all instances is dynamically maintained
and updatedD; (7) is initially set to be uniform. During theth round, the distribution
D,(7) and the example sequengare sentto the weak learner which later returns a weak
hypothesig:; that minimizes thedamming lossi.e., to minimize the probability of the
number of examplesi, /) whose sign off (x;, ¢) differs from its observed sigi;[/].

As a result,D, (i) is updated in the manner that more weight is given to the elesnp
that were misclassified by, during thet-th round. AfterT iterations or a termination
condition is met, the final hypothests(z, ¢) is calculated. For each example, the label
can also be computed by(x) = sign (H(z,{)).

2.4.2.1 Weak Hypotheses for Text Classification

Boosting is well-suited as a general purpose method thabbeacombined with any
classifier. The weak hypothesksve use here is as simple as a one-level decision tree.
For example, a possible phrase couldtbmputer graphicghe corresponding predictor
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Algorithm 4 AdaBoost.MH for Multiclass Classification
1: procedure AdaBoost.MH
2: input: N labeled document§z1,y1), ..., (xn,yn))
3: wherey, € Y = {1,...,k}

distribution D over theN documents

weak learning algorithriWeakLearn

number of iteration§”

o gk

7: Initialize Dy (i,¢) = 1/(mk). I* uniform distribution*/
8: fort=1,2,..,T do
9: 1. CallWeakLearn, providing with distributionD;
10: 2. Get back a weak hypothegis: X x Y — R.
11: 3. Choose optimal update step € R
12: 4. Update the new distribution
13: 5. Set the new weights vector:

14 Dy (i, 0) = Dy (i) eXP(—g:K'[@ht(ﬂﬁiaé))

15: fori=1,..,.N,y €Y —{y;}.

160 whereZy = 3711 D ey p, (i,60) exp(—au Vil he (zs.0))
17: end

18: Output the hypothesisH (z, ) = .1 a;hy(x, 0).

is “If computer graphicgppears in the document then predict that the document in the
classSIGGRAPHwith high confidence; predict that the document in the cl&sVv

with low confidence; and predict that it does not belong to atier classes with low
confidence.” Formally, the weak hypothegesan be defined as:

Wz, ) :{ cor Ifw €& x;

cre Ifwex.

Wherew € x denotes that a possible phraseoccurs in document, which was
categorized based on a binary featuredorYy = {z : w ¢ x} andX; = {z : w € x}.

The process of constructing weak hypotheses is as folloash eound the weak
learners check all possible phrases, for each of which theesa;, are selected with
respect to some criteria, and a score is given for the regutieak hypothesis. When
the search of all phrases are done, the weak hypothesisheitbwest score is returned
by the weak learner.

To simplify the weak hypotheses, we choose discrete vaturesf i.e., the value of
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¢;¢ is either +1 or -1. Thus we set the predictign= sign (W7 —W?")8. HerelV!" and
W7 are the weights of documents iy that are labeled and not labelédespectively.
Each round they are updated as follows:

Wit = Zm:Dt(i,E) o € X; AY[l] =b],be {~1,+1}. (2.8)

To minimize D,, the corresponding optimal parameter update is given by

at:%ln(1+rt), (2.9)

1—7}

wherer; is a weighted major vote over examples in blo€k specified as:

ro= 0 S W

je{0,1} L€y
= D (WY —WY 4 W - W, (2.10)
ey

Notice that when; is positive, the distributiorD; is updated in the way that the
weight of misclassified example-label pairs always inagsa¥Vith the normalization of
weight distribution in mind, this means that more weightsgaut to the samples that are
not correctly classified by in ¢'s iteration.

2.5 Empirical Analysis of Collaborative Filtering Algo-
rithms

To evaluate our proposed CF algorithms, we evaluate themmeaince based on com-
putational complexity and prediction accuracy. In thisteeg we first introduce the

data sets used for experiments, then present the protowbth@ metrics for evaluation.
Subsequently, we show the results of our experiments.

je
5The alternative is to use real values tor, where the prediction;, = % In (%)
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2.5.1 Data Sets Preparation

We use both self generated data set and real data sets tonparfange of experiments.
For the self generated data, two random matrices are créeedontain 200 rows and
500 columns, and intensionally prevent O from user ratifi¢& reason is to intension-
ally create very detailed user profiles regarding the itemihé data sets, which can’t
be observed from the real data sets. In the same time, we séstwo open data sets
from GroupLens, the first of which contains 943 users andZLy68vies, with totally
100,000 ratings, about 8Z30of the entries in the matrix are non—empty. The second data
set consists of 6,040 users of MovieLens and approximat@§Bmovies, with totally
1,000,209 ratings. It is even sparser than the first data senh-4.2% entries have
ratings. Table 2.2 summarizes the statistics.

2.5.2 Experiment Setup

To better visualize the outcome of our proposed algoritithmge representative algo-
rithms in three different categories are selected for cammpa. The first one is from

Breese et al. [15], the classical memory-based CF algorittahapplies vector simi-

larity as its weight function (VSIM); the second is Fast @bation-Based Filter [148]

(FCBF) that uses feature selection technique; the lastrsoRality Diagnosis [97] (PD)

that unifies memory and model-based approaches.

Name Instances Features
Synthetic data 200 500
Movielenl 943 1,682

Movielen2 6,040 3,900

Table 2.2. Summary of benchmark datasets

Three protocols are employeall but one which simply chooses a random rating for
each user that is not equal to 0 and withholdjien twoandgive ten which withholds
all user ratings except the given number of ratings.

For evaluation metrics, we employ two classical metid8E andRS plus another
effective measuremeMUG.

e MAE (Mean Absolute Error) — MAE represents how much the meaadipted
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values deviate from the actual/observed values of all us¢hne datasetd/ AE, =l
o= Y e, [Paj — 0| Obviously, the lower the MAE is, the better the prediction.

e RS(Ranked Scoring) — RS multiplies the utility of an item hg tikelihood that
the item may be rated by the user. It estimates the probakilét an item will
be viewed by the useRS, = >~ max(0a; — d,0) * 35=r7m=r- The higher RS
score is, the better the prediction is.

e MUG(Mean User Gain) — MUG computes the average quality obmenenda-
tions for the predicted values for useldUG, = nia > iep, UG(paj)-

2.5.3 Results and Discussions

Table 2.4, Table 2.5 and Table 2.6 exhibit the experimentlt®esvith regard to MSE
scores, RS scores and MUG scores, respectively. BS1 and @&2m better than PD,
FCBF and VSIM in all three protocols for all test data setse @lkierage improvements
of BS1 and BS2 regarding MSE, RS and MUG scores are 12.7%/@and 13.5%, by
comparing to the average scores of the three algorithmsur&@.4 shows two results.
(We only pick one algorithm that performs best in that situratfor comparison to our
approach in each graph)

Datasets Running Time (in ms)

VSIM PD FCBF BS1 BS2
Synthetic 3765 2688 3211 2166 2238
MovieLenl 4833 3200 4587 2544 3517
MovieLen2 15669 5644 102384233 5291

Table 2.3. Algorithm Running Time.

Table 2.3 shows the running time of these five algorithms. B&d BS2 require
significantly less time than the other three algorithmseeslly for the large data sets.
Figure 3 depicts how running time changes as the data setsiedarger, where incre-
ments for both BS1 and BS2 are small, which indicates thaalmarithms are scalable
and the performance gain will be greater for larger data sets

While BS1 and BS2 outperform others, it is necessary to makgarison between
these two. Table 2.7 summarizes the performance compaestwreen BS1 and BS2.
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We use the measurement of how much can BS2 improve from BS1.

We notice that BS2 performs better for the metrics MSE and Mwile BS1 still
have advantage on RS scores and running time. Since BS2hgsessults (candidate
lists) from BS1, it is then reasonable for BS2 to cost a libilemore time than BS1.

The main cost of BS2 is the KMeans function. In BS2, we call ke several times
with different value ofC that equals to the number of clusters. During the experiment
we find out that the number of iterations for the clusteringoathm is usually very
small, which results in a fast converge of the algorithm.

Datasets  Algorithms Protcols
AllButl Givenl0 Given2
Synthetic PD 0.710 0.756 0.698

FCBF 0.875 0.924 0.933

VSIM 1.324 1.368 1.297

BS1 0.724 0.788 0.655

BS2 0.692 0.724 0.633

MovielLenl PD 0.964 0.986 1.039
FCBF 0.999 1.069 1.296

VSIM 2.136 2.235 2.113

BS1 0.825 0.826 0.878

BS2 0.814 0.835 1.022

MovieLen?2 PD 1.023 1.011 1.125
FCBF 1.001 1.068 1.265

VSIM 2.345 2.274 2.256

BS1 1.078 1.079 1.079

BS2 0.802 0.811 0.978

Table 2.4.MSE Scores

2.6 Text Classification Experiments and Discussions

In this experimental evaluation, we ran a series of expartei® compare our proposed
text classification approach with traditional methods oo tata sets: CiteSeer Digital
Library and WebKB benchmark corpus[26]. Specifically, ehkends of experiments are

carried out:
First, we make comparison between entity extraction tegres in terms of the di-
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Figure 2.4. MSE scores and RS scores of PD, BS1 and BS2.

Datasets  Algorithms RS Results
AllButl Givenl0 Given2
Synthetic PD 69.58  69.20 75.72

FCBF 76.81 71.17 59.70

VSIM 68.33 62.34 57.22

BS1 85.33 85.43 81.05

BS2 87.11 87.03 83.92
MovielLenl PD 65.22 65.08 61.22
FCBF 73.45 70.23 59.27

VSIM 62.51 60.31 58.11

BS1 74.11 77.25 75.33

BS2 72.35 75.42 69.21
MovielLen2 PD 62.11 64.35 59.22
FCBF 65.33 68.24 62.77

VSIM 61.24 53.27 55.78

BS1 68.25 69.77 60.23

BS2 69.33 64.44 62.91

Table 2.5.RS Scores

mensionality of the feature space. We compare our prop83&d-decision-treap-
proach to théag-of-wordamethod with the standard TFIDF approach as an extension.
To be more convincingnformation Gain(IG) is applied to théag-of-wordsapproach

as a feature selection criteria. A featuyrés deemed useful if its expected I1G exceeds
the threshold. Comparisons are also made between IG @Wi-decision-tree

"Experimentally, the threshold is usually chosen to maxéntie F-measure on a validation set.
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Datasets  Algorithms MUG Results
AllButl Givenl0 Given2
Synthetic PD 0.62 0.68 0.12

FCBF 0.81 0.61 0.42
VSIM 0.34 0.32 0.08
BS1 0.83 0.72 0.32
BS2 0.89 0.87 0.55
MovielLenl PD 0.58 0.54 0.09
FCBF 0.78 0.60 0.37
VSIM 0.35 0.37 0.11
BS1 0.81 0.75 0.68
BS2 0.78 0.62 0.60
MovielLen?2 PD 0.49 0.45 0.11
FCBF 0.72 0.55 0.54
VSIM 0.31 0.30 0.07
BS1 0.75 0.65 0.69
BS2 0.72 0.60 0.55

Table 2.6. MUG Scores

Synthetic MovielLenl MovieLen$OveralI

MSE 5.6% 4.7% 9.2% 6.5%
RS -2.4% -2.8% -1.9% -2.4%
MUG 6.5% 5.8% 6.3%9 6.2%
Running Time -3.2% -29% -19.9%-17.4%

Table 2.7.Performance Improvement of BS2 over BS1.

Furthermore, to illustrate that the CF algorithm indeeddtethe feature space, we
compare the distribution of features in each class Befotalarative Filtering (B-CF)
and After Collaborative Filtering (A-CF). To be more comsiimg, we also calculate the
distribution of features from prediction results by usihg tlassic Inner Product ap-
proach (I-CF) proposed by Breese et al. in [15], where thgltdunction is calculated
asw(a,i) = 3, \/2:6; = \/EZEJI = and the prediction score is computed through
the whole data set.

Finally, we use multiclass SVM [25] and AdaBoost.MH [23] tassify the feature
space extracted by (1) not using CF (B-CF-SVM and B-CF-Bo¢2} using IG feature

selection (IG-SVM and I1G-Boost), and (3) using CF (A-CF-S\avid A-CF-Boost).
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Figure 2.5. Comparison between algorithm running time. BS1 and BS2ireauauch less time
than other algorithms.

The Vector Similarity method (VSIM) is used as baseline fomparison. Addition-
ally, since it was shown that SVMs can perform well even withfeature selection
[125](SVM-NOo), it is also compared in the experiment. We lgdprecision Recalland
F-measureas measures for our text classification.

2.6.1 Information Gain

Despite the existence of many successful feature selectethods, Information Gain
(IG) has been experimentally proved to be among the mostaoapproach for feature
ranking [39]. It is a measure based on Entropy. Formallyegithe set of all training
examplesX = {xzi,...,z,,} and the number of featurés = {yi, ...,y,}, the IG of a
featurey is defined as:

1G(X,y) = H(X)—H(Xly)

m

= = p(j)logy p(j) + p(y)

Jj=1 J

p(zily) logp(xily)  (2.11)

-

1

Given a training corpus, the IG of all features are computieel &xtracted bybag-
of-words approach{with TFIDF extension). A featureg is then deemed useful if its
expected IG exceeds the threshold. Experimentally, trestimid is usually chosen to
maximize the F-measure on a validation set.
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Figure 2.6. Features extracted byag-of-words(BOW) andSVM-decision-tre€S-D) from the
summarizing parts of the documents in CiteSeer data setiew®d creates a much smaller
feature space as a function of example size. The number aif@ga chosen by IG is decided
by maximizing the F-measure on the validation set.

2.6.2 CiteSeer Data Preparation

The data we used for experiments are from CiteSeer, one dduthest digital libraries
which now holds about 747,588 documents primarily in the @iorof computer science,
and the number is ever-growing. Several kinds of data fas@ied indexed concurrently
(txt, pdf, ps, archiveand so on), for the purpose of text extraction, we only malkeadis
plain text files or convert non-text formats into text fornbgtprogramming. As men-
tioned in Section 3, for the purpose of current experimemésonly consider extracting
entities from the summarizing parts of the documents,the.titles, abstracts and key-
word fields. Documents that do not contain either abstrackeywords are not under
consideration.

Document class labels are obtained from ¥ieaue impact padavhich lists 1,221
major venues whose titles are named according to DBbPmat. For the purpose
of experiments, we only consider the top 200 publicationuesnlisted in DBLP in
terms of impact rates, each of which was referred as a clasé9a Furthermore, we

8http://citeseer.ist.psu.edu/impact.html
Shttp://dblp.uni-trier.de/
0we manually merged venues with the same names but diffecémtnes, likeECCV(1), ECCV(2)



number of examples

118,058

number of classes

193

number of examples per clagss 590

average file size

40KB

total file size

4728MB

Table 2.8. Statistics of CiteSeer data set.
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examples VSIM || SVM-No| Before CF Info Gain After CF
SVM Boosting| SVM Boosting| SVM  Boosting
P 10,000 24.31| 62.17 | 46.44| 65.74 | 53.77| 56.29 | 80.25| 85.24
25,031 25.17| 85.77 | 68.33| 82.33 | 85.63| 87.21 | 91.01| 94.08
50,000 25.24| 86.02 | 70.47| 82.53 | 86.31| 88.24 | 92.53| 93.22
118,05827.96|| 89.42 | 82.77| 85.32 | 89.32| 89.33 | 95.77| 94.66
R 10,000 10.23| 13.75 | 11.43| 11.77 | 11.85| 12.11 | 14.53| 12.11
25,031 25.72|| 33.23 | 26.22| 30.25| 28.53| 31.74 | 42.77| 40.69
50,000 34.81|| 50.25 | 35.79| 29.88 | 42.79| 40.01 | 50.25| 49.00
118,05872.38|| 84.88 | 74.25| 77.91 | 83.99| 72.53 | 85.27| 73.00
F 10,000 14.40|| 22.52 | 18.34| 17.73 | 20.11| 18.35 | 24.61| 25.21
25,031 25.44| 47.90 | 37.89| 44.24 | 38.29| 48.32 | 58.19| 56.81
50,000 29.26| 63.25 | 47.47| 43.88 | 56.77| 60.11 | 64.13| 64.24
118,05840.34( 87.09 | 78.28| 81.45 | 79.52| 83.23 | 90.22| 81.14

Table 2.9. Experimental results of CiteSeer data set in terms of Reec{®), Recall(R) and F-
measure(F), averaged over all classes. VSIM is comparetaseadine approach. Our approach
(A-CF) shows competitive results on both classifiers. |Godes top: features to maximize the
F-measure of the validation set. For the entire data set@b88 k is around 20,000.

intentionally filtered those classes that contain too fewneples (i.e., less than 100
documents). Overall, the total number of documents we usethé experiments is up

to 118,058, divided into training set and testing set by gdif-fold cross-validation.

Notably, we keep the imbalance of the classes, i.e., sonssadahave more training

examples than others. A few statistics are shown in Table 2a®le 2.10 shows the

number of documents in the top 20 classes.
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class samples class samples class samples
PLDI 1259 SOSP 816 SIGCOMM| 1416
MICRO 812 POPL 1741 ICML 1924
HPCA 895 ICCV 1316 KDD 1236
VLDB 2431 AAAI 1268 INFOCOM | 3366
MOBICOM 505 SIGGRAPH| 1511 SIGIR 878
CVPR 1611 PODS 842 NIPS 3421

SIGMOD 1843 WwWwW 382

Table 2.10.Distribution of samples of top 20 classes in terms of samplabers

2.6.3 Metrics Setup

We use three most widely used metrics in information resi@s measures for our text
classification.

number of relevant documents retrieved

number of documents retrieved
number of relevant documents retrieved

number of relevant documents
2 - precision - recall

Precision =

Recall =

F — measure = —
precision + recall
Notice that the generdl' — measure is defined ag3? + 1) x px r/ (6% x p) + 1),
here we seti = 1.

2.6.4 Classification Results on CiteSeer Data Set

Figure 2.6 presents the number of features extracted byhtke techniques. We ran
the experiments with the number of documenfs, equal to 10,000, 25,031, 50,000
and 118,058. UsingVM-decision-treapproach yields a much lower-dimensional fea-
ture space compared with thag-of-wordamethod (with TFIDF), especially when the
number of examples are very large. Information Gain suéelgseduces the feature
space to half the dimension bag-of-words but when the training data size becomes
larger (118,058), it still creates a feature space of maaa 20,000 features, while our
approach ends up with a feature space with a little more th@®@07&eatures. We also
notice that the dimension of feature space generated byppuoach is almost linear in

so the total number of venues actually used for classifinasid 96.



37

the number of examples, indicating nice scalability of aufitg extraction technique.
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Figure 2.7. Feature distribution where B-CF denotes the feature spafoeebapplying CF, I-CF
the feature space augmented by Inner-Product method, &€DH the feature space augmented
by our CF algorithm.

In Figure 2.7, we depict the distribution of features foetapproaches that applied
to the feature space extracted 8y M-decision-tre@pproach. Before applying CF al-
gorithm (B-CF), the features are unevenly distributed ioheelass due to the random
distribution of training examples in different categorieBy using the Inner Product
algorithm (I-CF) it first computes the correlations betweaich pair of examples, and
then predicts the feature frequencies from the knowledgdl @xamples. As a result,
I-CF generates too many features for each class that itdywitauses overlapping in the
feature spaces, which leads to reduction of classificatonracy. Finally, by employ-
ing the CF algorithm we proposed (A-CF), the feature spabedsted to a reasonably
dense level that yields a nearly even distribution of fezgun each class. The virtue
of the boosted feature space is not only that it contains gindeatures within each
class which makes it easy to classify, but also results ig \regte overlapping of dif-
ferent classes in the feature space, which reduces theasssiotation rate significantly
in comparison with I-CF. Figure 2.8 compares the featureapdor 2 classes by ap-
plying I-CF and A-CF, respectively. We u&ngular Value DecompositiofsVD) to
get the first Jorincipal componentsf the matrix and visualize in a 3-D graph. It is not
hard to see that I-CF leads to a much more overlapping spaoeotlr approach, which
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Figure 2.8. Visualization of SVD feature distribution of classeSIGMOD, WW\W). The left
figure shows features by the I-CF inner-product, the rightréghe boosted feature space by our
A-CF algorithm.

generally separates two classes very well.

Table 2.9 summarizes experimental results for the threeicaetveraged over all
classes. With regard tprecision our approach achieves significant improvement on
both classifiers. When the number of examples is small (00,00 CF-SVM and A-
CF-Boost improve the precision over the VSIM baseline appinoby nearly 4 times,
and nearly twice as much as the results of Information G&a3VM and 1G-Boost).
When the whole data set is applied to the experiment (118,05&F-SVM and A-
CF-Boost achieve the best results of 9%57and 94.66; respectively, about® more
than 1G. Meanwhile, without feature selection, SVM (SVMMstows almost the same
precision as IG-SVM, with a slightly better result when thienber of examples is small.

In terms ofrecall, all methods have very close performances. Comparatig&fiy)
performs slightly better than AdaBoost regardless of dataand entity extraction tech-
niques. Especially when the data size is large (118,058 h&lseline approach achieves
recall of 72.38%, almost the same as A-CF Boost method (73%R0However, both of
which are nearly 13 lower than A-CF-SVM approach. Both SVM-No and A-CF-SVM
achieve the best recall among all when the number of exarepigsls 50,000.

Our approach outperforms I1G for both classifiers in term§&-oheasure with an
exception when the data size is 118,058, IG-Boost outpagoh-CF-Boost by %.
Both 1G-Boost and A-CF-Boost are almost/L0ess than that of A-CF-SVM method,
which shows the best performance of all. During the expeamnis)eve also noticed that
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No. of pages BOW+TFIDF | IG | SVM-DT
1,000 2,413 1,533 977
2,000 4,987 2,422 1,777
4,000 7,400 5,324 3,599
8,282 10,322 6,891| 5,111

Table 2.11. Number of features exacted by three techniques w.r.t. numbpages for the
WebKB data set. SVM-DT approach yields a much smaller feagpace.

the training time of SVM and AdaBoost are almost the same @&\ slightly better
in some cases.

2.6.5 WebKB:World Wide Knowledge Base

The WebKB data set contains web pages collected from cs tepats of many uni-
versities by the World Wide Knowledge Base project of the Ckt learning group in
January 1997. For performance evaluation, we divide the id&b training and testing
set with the proportion of 4:1. A series of experiments werdgrmed with the number
of documents equal to 1,000, 2,000, 4,000 and 8,282. The euaihterations!” for
AdaBoost is set to 500.

Table 2.11 summarizes the number of features with regaiuetdraining data size.
The SVM-decision-tre@pproach creates a much smaller feature space libgrof-
wordsandInformation Gain—20% less than the IG and 50less than the BOW when
the total WebKB collection is used.

Figure 2.9(a) shows the result of tMicro-F scores. When the number of training
pages is small, our approach has almost the same perforrmaahm@eor both classifiers,
with less than % improvement. As the page size get larger, the performanpeowve-
ment of our approach becomes greater. When the whole doldstused, our approach
outperforms IG by more thar’g but the performance decreases for both methods as
the best results are achieved when the page size is 4,000 tiINdtSVM-No has almost
the same performance as IG-SVM.

Macro-F scores are shown in Figure 2.9(b). Clearly, the baselineoagh VSIM
performs the worst regardless of data size. SVM-No agaifopas nearly the same as
IG-SVM. Note that with the increase of pages, the macro-Fescmcrease as well for
all methods. Our approach generally outperforms IG, an@ddvantage becomes larger
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Figure 2.9. Micro-F(a) and Macro-F(b) results for WebKB w.r.t. dataesiz

with the increase of data size. Our approach achieves disagttiimprovement by 8
over |G for both classifiers when the whole WebKB collectisapplied.

2.7 Related Work

Collaborative Filtering

Predicting user preferences and giving useful recommendato users with lim-
ited information gained from the users has become a keyesigal for E-commerce
companies. Collaborative filtering (CF) has been widely€ld as a technique for con-
structing recommender systems, but is also well-suitedhalle research issues in areas
such as atrtificial intelligence (Al) and human computerratgon (HCI).

GroupLens [102] became the first open architecture for meleged collaborative
filtering. Users rated articles upon reading them and thesmeting server of Grou-
pLens would use that information to automatically make nec®ndations to others.
Breese et al. [15] described various CF algorithms such adehltzased Bayesian
algorithms, memory-based correlation coefficient alpons, etc. Matrices such as
Mean Absolute Error (MAE) and Ranked Scoring (RS) were usedaValuation pur-
poses. Additionally, their data set EachMovie has beconeeobthe most widely used
databases. Memory-based and model-based algorithms aratereed together to form
a new algorithm, personality diagnosis (PD) [97]. Recemirapaches include integrat-
ing collaborative filtering with content-based filteringatithms [6], applying statistical
and mathematical methods such as feature selection, nfettorization and Gaussian
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processes for high dimensional data [148, 100, 120], amgudustering algorithms
(EM, Gibbs sampling) to group existing users in data sets different clusters for
recommendations[130], as well as the determination oébeteight functions for more
robust prediction [89].

Entity Extraction

Entity extraction techniques typically fall into one of twategories: named entity
recognition (NER) and phrase extraction. NER deals withtiigng proper names text,
extracting paper titles and author names in on-line putitina and so on. Phrases, or
meaningful entities, can be recognizedsagaturethat best represent the main idea of
papers, most of which can be found in the titles, abstrackapword fields in a paper.
However, only a few publication venues require keyword €ld

Maximum Entropy (ME) is a feature reduction approach thatkedy choosing the
model with the most uniform probability distribution (theghest entropy), the model
is described a® (w|h) = ;- e =M, where f;(h,w) denotes a binary feature
function that describes a certain teri;is a parameter that indicates how important
featuref; is for the model. The disadvantage of ME is that it cannotmatocally select
features from given feature sets thus relying on carefulfesselection techniques.

Conditional random fields (CRFs) [73] is another NER techagithat aims to label
and segment data into phrases. It works by defining a conditiprobability distri-
bution over training data given a particular observatioraph. It usually works better
than HMM and avoids the label bias problem, however, thenimmgitime of CRFs is
prohibitively long.

Traditionalbag-of-wordsapproach represents each document as a feature vector and
often leads to feature spaces that are sparse and largeslaggification accuracies are
thus hard to get. Contemporary approaches of text clagsiiiceoncentrate on extract-
ing more meaningful features from structured text, e.gdiragi numeric features such
as timestamps [83], capturing features that share mutta@hiation and are dependent
on each other [133], as well as seeking better methods teréfenclassification model
based on the prediction errors from the training data sés§3]. Several classifiers
have been introduced to text classification, e.g., NaiveeB495], maximum entropy
[90] and Boosting [20]. Support Vector Machines (SVMs) [14,7, 153], which fo-

From an investigation of ACM & DBLP metadata cross-refeezhwith CiteSeer data, 5% of venues
do not have an identifiable abstract field and more than 70%mdi&s lack a keyword field.
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cus on finding the hyperplane that maximizes the margin betwesitive and negative
classes, have typically been the most effective classwigls regards to the classifi-
cation errors. Forming the feature space has become for manycial part of using

SVMs as text classifiers, since naturally there are hundséteyms in each document
and thousands of documents in each class, which resultsyrhigh-dimensional fea-

ture spaces. Yet it has been reported that SVMs can stileaehiigh accuracies in
document classification without feature selection [125].

Research on entity extraction spans the fields of lingwsiimd computer science.
Linguistic techniques can be employed to enhance featleetgm from raw text by
grouping text into semantically meaningful chunks. Depebents in entity extraction
technology have traditionally been concerned with theassficomputational complex-
ity as well as extraction accuracy and domain specificitytidds for entity extraction
from unstructured data typically fall into two categorigsittern-based approaches and
model-based approaches. Pattern-based extractionseextensive manual labor for
detecting patterns and is generally not robust to variatat. d@n the other hand, model-
based approaches like hidden Markov models (HMMs) [111] &uds [71], while
requiring careful feature selection, have proved to be sband flexible.



Chapter 3

Informative KNN Classification

3.1 Pattern Recognition Leveraging/K-nearest Neigh-
bor Algorithm

The K-nearest neighbor (KNN) classifier has been both a workeharngl benchmark
classifier [24, 4, 3, 96, 150]. Given a query point and a set ofV labeled points
{z;,9;}Y, KNN classifier tries to predict the class labehgfon the predefine® classes
by finding the K nearest neighbors af, and applying a majority vote to determine its
label. Without prior knowledge, the KNN classifier usualppéies Euclidean distances
as the distance metric. Nevertheless, this simple methodusaally yield competi-
tive results even compared to other sophisticated mackaraihng methods. It has been
well-used in applications include image categorizatianefrecognition, document clas-
sification and etc.

Since itis well known that by effectively using prior knowlige such as the distribu-
tion of the data and feature selection, the performance dfliKMssifiers can be signif-
icantly improved, researchers have attempted to proposeapproaches to improving
the performance of the KNN method, e.g., Discriminant AdepNN [53] (DANN),
Adaptive Metric NN [35] (ADAMENN), Weight Adjusted KNN [S0]WAKNN), Large
Margin NN [140] (LMNN) and so on. Despite the success anaratie of these meth-
ods, most have several limitations in practice, including &ffort to tune numerous
parameters (DANN introduces two new parametéig, ande; ADAMENN has six in-
put parameters in total that could potentially cause overd}, the required knowledge
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in other research fields (LMNN applies semidefinite prograngfor the optimization
problem), the dependency on specific applications (WAKN#8Eisigned specifically for
text categorization) and so on. Additionally, choosing pineper value ofi is still a
crucial task for most KNN extensions, making it more comptedh
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Figure 3.1. A toy classification problem(Left) The original distribution of two classeéMid-
dle) Results of KNN & = 7) method where the query point is misclassifi¢Right) One of
our proposed methods LI-KNN uses one informative point fedjction.

Therefore, itis desirable to enhance the performance of KNhout compromising
its efficiency by introducing much overhead to this simplehmod. We thus propose two
KNN methods which are ubiquitous and the performances aensitive to the change
of input parameters. Figure 3.1 gives an example that shbe/snotivation of our
approach, in which the traditional KNN method fails to pdhe class label of the
query point withK' = 7. Meanwhile, one of our methods (LI-KNN) finds the most
informativepoint (I = 1) for the query point with the samg& according to the new
distance metric, and makes a correct prediction.

3.1.1 Our Contribution

In this chapter, we propose two novel extensions to the KNhot whose perfor-
mances are relatively insensitive to the change of paramet®oth of our methods
are inspired by the idea afiformativenessGenerally, a point is treatadformativeif
it is close to the query point and far away from the points withedsifit class labels
Specifically,

(1) We introduce a new concept named informativeness to unealse importance
of points, which can be used as a distance metric for clagsdit. (2) Based on the new
distance metric, we propose an efficitotally informativekK NN (LI-KNN) method. (3)
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By learning a weight vector from the training data, we praposr second method that
finds theglobally informativepoints for KNN classification (GI-KNN). (4) We perform
a series of experiments on real world image data sets by aamgpaith several pop-
ular classifiers including KNN, DANN, LMNN, SVM and Boosting5) We discuss
the optimal choice of the input parametefs &nd /) for LI-KNN and GI-KNN and
demonstrate that our methods are relatively insensitileda@hange of parameters.

3.2 Locally Informative KNN (LI-KNN)

Without prior knowledge, most KNN classifiers apply Euchdedistances as the mea-
surement of thelosenesvetween examples. Since it has been shown that treating the
neighbors that are of low relevance as the same importanttesas of high relevance
could possibly degrade the performance of KNN procedurg} [de believe it to be
beneficial to further explore the information exhibited ksighbors. In this section,

we first propose a new distance metric that assesses thenetigeness of points given

a specific query point. We then proceed to use it to augment KKMNbkification and
advocate our first method, LI-KNN.

3.2.1 Definition of Informativeness

We use the following naming convention§.denotes the query poink indicates the
K nearest neighbors according to a distance metric,/atheinotes informative points
based on equation 3.k, denotes point’s feature vectorg;; its j-th feature and; its
class label N represents the number of training points, each of whichhéeatures.

Definition 1. Specify a set of training poin{s:;, v; } & with z; € R andy; € {1,...m}.
For each query pointr;, the informativeness of each of the remaining N-1 points
{z;,y;}V (j = 1,...N, j # i) is defined as:

L(aj|Q = @) = —log(1 = F(25|Q = @) » F(x;|Q = ), (3.1)

whereF(z;|Q = z;) is the weight of point; (with respect ta)), and can be defined
as:
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N 1=n
F(zj|Q = ;) = Zil W(z;|Q = ;)" (H (1—W(z]Q = an)ﬂ[yj#yn])) (3.2)

The first termw(z;|Q = ;)" in equation 3.2 can be interpreted as the likelihood
that pointz; is close to th&), while the second part indicates the possibility thats
far apart from dissimilar points. The indicatffif] equals to 1 if the condition is met
and 0 otherwiseZ; is a normalization factor anglis introduced as a balancing factor

Ne,

that determines the emphasis of the first term. Intuitivelis set to—;

, Wwhere N,
represents the number of points in the same class of pgint

The rationale of informativeness is that two points areljite share the same class
label when their distance is sufficiently small, assumirgggbints have a uniform dis-
tribution. This idea is the same as KNN classification. Iniaodid to measuring the
pairwise distances between the query point and its neighbar metric also considers
that the informative points should have a large distancen fdissimilar points. This
guarantees that the locations of the informative pointso&rine most density in the
same class.

Figure 3.2(left) provides a clarification, in which pointddapoint 2 (with the same
class label) both have the same distasié®m @, but point 1 is closer to the real class
boundary. Thus, point 1 is more likely to be closer to the t®in other classes. As
such we claim that point 1 is less informative than point 2oy Definition 1. Since
assuming the distribution over the concept location isarnif it is more likely that
points (e.g., ¥ 4) having the same label as point£12 will more likely distribute
around point 2.

3.2.2 Informativeness Implementation

To definew(z;|Q = z;) in equation 3.2, we can model the weight of an individual poin
on( as a function of the distance between them:

W(;|Q = zi) = f(llei — ;) (3.3)
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Figure 3.2. An illustration of 7-NN and the correspondirignformative points for the query
point. (Left) 7-NN classification and the real class boundary (in dasts)inéRight) i(i =
{1,2,3,4}) informative points for the same query point.

where||z; — z;||, denotes th@-norm distance betweenr; andx;. To achieve higher
possibility when two points are close to each other, we meqfij-) to be a function

inverse to the distance between two points. The generalizetidean distance metric
satisfies this requirement. In this paper, we implement&ggu&.3 as follows:

[l — 4]

) v >0 (3.4)
Y

W(z;|Q = ;) = exp(—
In practice, it is very likely that the features have diffesrénportance, making it
desirable to find the best weighting of the features. Spetlfiove defind|z; — z;||*> =
>, wy(wy — 25,)%, wherew, is a scaling factor that reflects the relative importance of
featurep. One way to specify the scaling factoy, is as follows:

m

1 1 «
w, = — Z Wpk = — ZVarxk, (Xpk) (3.5)
k=1

k=1
We obtainw, by averaging over all classes’ weights;,, each of which is calculated
using the variance of all points in each clasat feature, denoted byary, (x,).
The normalization factoZ; in equation (3.2) ensures the well-defined probabilities
of neighbors for a given query point. Specifically,Z; = Zj.vzl W(z;|Q = z;). In this
way the normalization is guaranteed, i.E;V:l Fl(zj|Q = x;) = 1.
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Based on the implementation, we have the following propmsitegarding the in-
formativeness metric:

Proposition 1. Given a querytg, V z;, z; that satisfie§z; —x¢||* = kd and||z;—z¢]* =
dwithd € Rt k > 1, z; is guaranteed to bexp((k — 1)d)” times more informative
thanz;, i.e., Z(z;|zo) > exp((k — 1)d)"Z(z;|xo).

Proof. For simplicity, we only consider the case thaandz; are in the same class,
l.e.,y; = y;. Without loss of generality, we let = 1 for equation 3.4. We have

Flal@ =) _ W(z|Q = xo)"H(xj)
P(2:|Q = o) W(;|Q = o) H (;)'~
exp(—d)"H (z;)' "

exp(—kd)"H (z;)'"
— exp((k >d>’7gi%) (3.6)

x;) =
where H (x) = (HL (1 - Pr(x|Q = xn)ﬂ[y;ﬁyn})). Since (-) is independent of the

query point, its expected value (taken oxeand eachx,,) can be defined as

E(H(x)) = FE <H (1-W(xQ = wn)ﬂ{ysﬁyn]))

n=1

I
—1=

(B (1= Wx|Q = )Tty

S
Il
—_

Il
—1=

(E(l —exp(—||x — xn”Q)H[y#yn]))

S
Il
—

Il
—1=
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Recall thatr; andz; are in the same class, thus the set of dissimilar points{(say., } 1)l
should be the same. The above equation can then be simphfieghioving the indica-
tor variables:

EHx) = [[((1 = Eexp(=|x—a,[1*))

n=1
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with N' — oo, it is easy to verify that”(H (z;)) = E(H(x;)). Applying the results to
equation (3.6), we have

F(|Q = o) .
—_ = —1d)">1 h 1 g
F(w:Q = 20) exp((k—1)d)" > 1 (withk > 1) (3.7)
Applying equation (3.7) to equation (3.1), we finally have:

L(|Q = o) _ log(1 — F(x;|Q = 20))
I(z|@ = o) log(l — F(2:|Q = o))

exp((k — 1)d)”

= lOg(l—]-'(x”Q:xo)) (1 = F(25]Q = x0)) - exp((k — 1)d)"
>exp((k—1)d)" O

3.2.3 LI-KNN Classification

So far we have proposed to compute the informativeness ot the entire data dis-
tribution for a specific query). However, considering the large number of data points
with high dimensionality in practice, the computationastoould be prohibitively high.
We propose to make use of the new distance metric defined atiequB.1 by restrict-
ing the computation between the nearest neighbors in anenigoiquery-basedKNN
classifier.

Algorithm 5 gives the pseudo-code of LI-KNN classificatidnstead of finding the
informative points for eaclr; by going over the entire data set, LI-KNN retrievés
locally informative points by first getting th& nearest neighbors (we consider the Eu-
clidean distance here). It then applies equation (3.1 tdsthecal points and the major-
ity label between the first points are assigned tq. Specifically, wherl = 1, LI-KNN
finds only the most informative point far;, i.e.,y; = argmax,, reqi,.. xy Z(2x|Q =
x;). In this way the computational cost of finding the most infative points is reduced
to a local computation. Note that whéhequals taV, the locally informative points are
exactly the optimal informative points for the entire daistribution as in Definition 1.
Likewise, whenl equals toi, LI-KNN performs exactly the same as the KNN method.
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Algorithm 5 LI-KNN Classification
1: Input: (S, K, I)
target matrix:S = {x;, y; }
number of neighborsk” € {1,...,N — 1}
number of informative points € {1, ..., K'}
2: Initialize err < 0
3: for each query point; (i = 1to N) do
4:  find K nearest neighbor&’x using Euclidean distance

5.  find I most informative points among K neighbors (equation (1))
6:  majority vote between thé points to determine the class labelgf
7. if x; is misclassified
8: err «—err +1/N
9:  endif

10: end for

11: Output: err

Although our LI-KNN method introduces one more paramétier the KNN methodj
itis not hard to figure out that LI-KNN is relatively inserigé to both parameter& and
1. (1) Regardless of the choice af, the points that are closest (in Euclidean distance)
to () are always selected as neighbors, which by equation 3.2ahhigh possibility to
be informative. (2) On the other hand, given a fixed numbek pthe informativeness
of the local points are fixed which insures that the most mitive ones are always
chosen. For example, in Figure 3.2(left), poirk B are selected as the neighborsdbr
with K increasing from 3 to 7. Meanwhile, whénequals to 7 and ranges from 1 to 3,
the informative sets (Figure 3.2(right)) af2},{2, 3} and{2, 3, 1} respectively, which
include the most informative points in all cases that ers@res classified correctly.

3.3 GI-KNN Classification

The LI-KNN algorithm classifies each individual query pobyt learning informative
points separately, however, the informativeness of thesghibors are then discarded
without being utilized for other query points. Indeed, inghecenarios, different queries
may yield different informative points. However, it is pdde that some points are more
informative than others, i.e., they could be informativeghbors for several different
points. Thus, it would seem reasonable to put more emphagitobally informative
points. Since it has been shown that KNN classification [1gE)] be improved by
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learning a distance metric from the training examples, weaane the power of the
informativeness metric and propose a boosting-like itezanethod, namelglobally
informativeKNN (GI-KNN).

3.3.1 Algorithm and Analysis

The goal of GI-KNN is to obtain an optimal weight vectdrfrom all training points
for classification of testing points. The algorithm itesalé predefined steps to get the
weight vector, which was initially set to be uniform. In eatération, an individual
point is classified in the same way as LI-KNN by findihghformative neighbors, with
the only exception that in GI-KNN the distance metric w@ghtedEuclidean distance
whose weight is determined by (line 5 & 6 in Algorithm 6, whereD(z;, x) denotes
the Euclidean distance betweenand all the remaining training points, af; (z;, x)

is the weighted distance)V/, (r) denotes the’s informative points forz; according
to the informativeness metric. We usg € (0, 1) to denote theveightedexpected
weight loss ofz;’s informative neighbors during step. The cost function”! is a
smooth function of’ , which guarantees to be in the range of (0,1) and positietited
with € . Here we use a tangent function as the cost function, depint&igure 3.3.
The weight vectorA is updated in the manner thataf is classified incorrectly, the
weights of its informative neighbors which have differesmibéls fromz; are decreased
exponentially to the value af?, (line 9,¢e(x;, z,) = C%, if y; # ye; line 13, A(zy) «—
A(xy) - exp(—e(z;, ). Meanwhile, the weights remain the same for neighborsen th
same class with; even ifz; is misclassified (line %(z;, z,) = 0 if y; = y,). Clearly,
the greater the weight the query point is, the higher the [peofimisclassification will
be for the selected neighbot4d.is then normalized before the next iteration.

While GI-KNN has several parallels to Boosting such as thecsire of the algo-
rithm, GI-KNN differs from Boosting in the way weights aredgied. Specifically,
Boosting assigns high weights to points that are misclassifi the current step, so
that the weak learner can attempt to reduce the error induterations. For GI-KNN,
the objective is to find globally informative points, thugher weights are given to the
points that seldom make wrong predictions. Notice that tegit of the query remains
unchanged.

LIn practice, we did not find much difference in performancedifferent~. Therefore, we choose
7 = 1 for our implementation.
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Algorithm 6 GI-KNN Training
1: Input: (T, K,I, M)
training set:7’ = {x,y} € RV*?
number of neighborsk” € {1,...,N — 1}
number of informative points! € {1,..., K'}
number of iterationsM € R
2: Initialization: A = {1,...,1} € RV*! [the weight vectdr
3: for m =1to M do
4. for each query point; (: = 1to N) do

5: D(x;,x) = % [calculate the weighted distanice
6: N « I mostinformative points according 104 (z;, x)
7y = Alw) - EaNG] = A(zi) - 2300 AWG()
8: Ci, = 2(1 +tanh(r = (¢}, — 1))
9:
Ch ifyi # yes
O A
10: if pointz; is classified incorrectlyJpdate the neighbors weights
11: erty, < erry, + %
12: for eachz, (¢ € N;(x;)) do
13: A(zy) «— A(xy) - exp(—e(zi, )
14: end for
15.  renormalizesA so thaty Y | A(i) = N
16: end for
17: & —erry, —errp,—1
18: end for

19: Output: the weight vectorA

3.3.2 Learning the Weight Vector

At completion, the learned vectaet can be used along with a distance metric (d.g.
distance metric) for KNN classification at each testing pog Specifically, given the
training setl’ = {x;, y;}\V, the distance betweei and each training point; is defined
as

Vit - xﬁ?(to s (3.8)

By adding weights to data points, GI-KNN in essence is sintialearning a Maha-

D(to, 7;) = |[to — il|a, =

lanobis distance metriD(z;, ;) for k-nearest neighbor classification. i.8(z;, z;) =
Dz, x5) = ||z; — zj|la = /(2; — ;)T A(z; — z;), whereA is a covariance matrix
that determines the similarity between features. In oue casneasures the importance

of each training point rather than their features.
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Figure 3.3. Cost function () used for GI-KNN.

3.4 Experiments

In this section, we present experimental results with bahchmark data and image
data to demonstrate the merits of LI-KNN and GI-KNN. We skgrtesting on 10 stan-
dard UCI data sets to assess the performance of the twothalgsti Then our proposed
methods are applied to image categorization by using thiemsively bench-marked
data sets, namely ORLCOIL-20° and MINST*.

For performance evaluation, several classifiers are ugesbfoparison. The classic
KNN [24] classifier is used as the baseline algorithm. We anpnted DANN [53]
as an extension of KNN To be more convincing, we also compare with one of the
newest KNN extensions — Large Margin Nearest Neighbor @leason (LMNN)®.
Two discriminant classifiers are also compared: a Suppatovéachine (SVM) and
a Boosting classifier. We use the AdaBoost.MH [106] and thétiMiass SVM [25]
software (K.Crammer et d). for multi-class classification.

2http://www.cl.cam.ac.uk/research/dtg/attarchived¢ttatabase.html

Shttp://www1.cs.columbia.edu/CAVE/software/softlibiic20.php

4http://lyann.lecun.com/exdb/mnist/

SDuring the experiment, we set the parametits = maxz(N/5,50) ande = 1 according to the
original paper.

5The code is available at http://www.seas.upenn eHilianw/Imnn/

’See http://www.cis.upenn.edutrammer/code-index.html
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Data | N D
Iris 150 |4

Wine | 178 13
Glass | 214 10
lono |351 |34

KNN  DANN LMNN LI-KNN GI-KNN SVM Boosting
0.044 (9) 0.040 (5) 0.053 (3)0.013 (9, 5)010(25) 0.042 0.038 (45)
0.263 (3) 0.250 (7)0.031(5)0.137 (9, 1) 0.137 (13) 0.205 0.192 (135)
0.372 (5) 0.436 (5) 0.356 (8)L78(7, 3) 0.198 (202)0.2220.178(304)
0.153 (5) 0.175 (7) 0.100 (5)0.127 (5, 3) 0.127 (%).090 0.092 (156)
Breast| 699 |9 0.185 (7) 0.120 (11)0.927 (5)0.080 (4, 0)045(48) 0.052 0.048 (657)
Heart | 779 | 14 0.102 (3) 0.117 (5) 0.092 (8)078(7, 1) 0.078(192)0.078 0.080 (314)
Digit | 2000 | 649| 10 0.013 (3) 0.010 (3) 0.009 (8)005(19, 1)0.005(137)0.010 0.005(175)
Isolet | 7797 | 617] 26| 0.078 (11)0.082 (11)0.053 (5)0.048 (1303)42(175)0.044 0.042(499)
Pen |10992| 16 |10]0.027 (3) 0.021 (5)0.020(3)0.020(9, 1) 0.020(42) 0.033 0.038 (482)
Letter | 20000| 16 | 10| 0.050 (5) 0.045 (3) 0.042 (5)0.045 (5, 3) 0.040 (Z2P28 0.031 (562)

Table 3.1. Testing error rates for KNN, DANN, LMNN, SVM, Boosting, LIHKN and GI-KNN

of 10 UCI Benchmark data setsV, D andC' denote the number of instances, dimensionality
and number of classes respectively. Numbers in the paisgghindicate the optimal neighbors
K for KNN, DANN and LMNN, (K, I) for LI-KNN, and number of iterationd/ for GI-KNN
and Boosting.

GIYN|NN| W WA

3.4.1 UCI Benchmark Corpus

We evaluate our algorithms by using 10 representative datgafeom UCI Machine
Learning Repositofy The size of the data sets ranges from 150 to 20,000 with dimen
sionality between 4 and 649, including both two classes amiti4tiass data(( = 3, 26
etc). For evaluation, the data sets are split into trainetg and testing sets with a fixed
proportion of 4:1. Table 3.1 reports the best testing ematgs for these methods, aver-
aged over ten runs. Our methods on these data sets exhiljpetibrre results in most
scenarios.

Figure 3.4 shows the stability of LI-KNN on the testing egoates of the Iris data
set. KNN always incurs higher error rates than our algorghmhe performance of
LI-KNN is depicted for four different values af. It is obvious that even with different
values off (given the samé), the results are similar, indicating that the performawice
LI-KNN does not degrade when the number of informative poatitanges. In addition,
with the change of<, LI-KNN is relatively stable regarding the error rate. Tlagiation
of LI-KNN is roughly 3%, meaning that< does not have a large impact on the results
of LI-KNN.

Figure 3.5 compares Boosting and GI-KNN on the Breast Cattatx for the first
1,000 iterations. Overall, GI-KNN incurs lower error ratesrom 620 to about 780

8http://www.ics.uci.edutmlearn/MLRepository.html
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iterations GI-KNN's error rates are slightly higher thand3ting. However, the error
rates of Boosting fluctuate quite a bit from 0.048 to 0.153ilevB@1-KNN is relatively

stable as iterations increase and the performance varlgsetween (0.043, 0.058).
Moreover, our algorithm obtains the optimal results sigatfitly earlier than Boosting.

05— ; .
—Li-KNN 1 b
0.4 —Li-KNN 3 o
g —Li-KNN 5 :
@ 5l —Li-KNN 7 v
g -==KNN !
w '
202 '
2 - ol
et Tmen 0t TS
0.1

10 20 30 40 50 60 70 80 90 100
K: number of neighbors

Figure 3.4. Results on Iris forK from 1 to 100. LI-KNN chooses the number of informative
points ()tobe 1, 3, 5and 7.
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Figure 3.5. Results on Breast Cancer for AdaBoost.MH and GI-KNN (with= 5 andl = 1).
The best result for GI-KNN is slightly betted.(045) than that of AdaBoost.MH0(048).
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Figure 3.6. Results on ORL data set for randomly generated samflep) Random samples.
(Bottom) LI-KNN results.

3.4.2 Face Recognition on ORL

The ORL Database of Faces consists of ten different images) ef which has 40
distinct faces. The dimension was reduced by subsampliagpbes to 23« 28 pixels.
Figure 3.6 shows the one nearest neighbor of LI-KNN for sev@ndomly generated
samples. Clearly, each of them are from the same class aarttiem samples.

Figure 3.7 depicts the box plots of theacro-Ferror rates. The optimal parameters
are estimated by 4-fold cross-validation on the training kes evident that the spread
of the error distribution of our algorithms is very close &r@, which clearly indicates
that LI-KNN and GI-KNN obtain robust performance over diffat classes.

o
)
T

Macro-F Error Rates (%)
o
=
&

o
i
T

=
0.05 él =

Il Il Il Il Il Il Il
KNN DANN LMNN SVM Boosting LI-KNN GI-KNN

= =

Figure 3.7.Box plots of macro-F error rates on the ORL data set.

3.4.3 Object Recognition on COIL-20

We use the processed version of COIL-20 database for olgieatinition. The database
is made up with 20 gray-scale objects, each of which congimages with size 128
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Figure 3.8. Randomly generated images from each object in the COIL-2fbdse.

x 128. Figure 3.8 shows 20 sample images for each object.

We treat each object as one class, spliting the data intainigaand testing set with
the proportion of 3:1. Figure 3.9 shows the classificatianrsrregarding the 5 algo-
rithms, whereK ranges from 1 to 11. GI-KNN and LI-KNN generally outperform
others with the best parameters, while both show stabldtsesith the change of.

”

0.4
* KNN
g 0.3 DANN
L

LMNN
0.2
0.1
1 3 5 7 9 11

K: number of neighbors

Figure 3.9. Results on COIL-20 with different number of neighbors.

3.4.4 MNIST Handwritten Digits

MNIST handwritten digits database has been used extepdivdkst various pattern
recognition methods. We use the preprocessed dad contains 8-bit grayscale im-
ages of0 through9; there are roughly 6,000 training examples of each classl@@D
test examples. We further reduce the dimension by subsaghgkamples to 16& 16
pixels. KNN (with L, distance metric) and DANN incut.2% and4.15% testing error

Available at http://www.cs.toronto.edufoweis/data.html
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Hd71 23960740
0723/661 ¢ (Y

Original Data

KNN results

LI-KNN results G / J % ? 5 U 7 -

Figure 3.10. Results on MNIST data set. Examples (top) are misclassififetFHN with Eu-
clidean distance (middle), while classified correctly bydNIN with 7 = 1 (bottom).

rates respectively, while LI-KNN with one informative nblgpr yields2.1% error rate,
improving the performance by roughly 80 LMNN in this case also has good perfor-
mance of incurring only2.5% error raté®. Figure 3.10 shows some examples that are
misclassified by KNN, while LI-KNN successfully classifiggtse points by finding the
most informative point{ = 1).

3.4.5 Discussion of Experimental Results

Although we did not prove optimal choices for eith&r or 7, our empirical studies
with different values on several data sets permits rulehafib. Basically, the value
of K should be reasonably large. The lardéris, the more information can be gath-
ered to estimate the distribution of neighborhood for thergypoint. However, ag
increases, the computational complexity of the infornatass of neighbors (equation
(3.2)) grows exponentially. In practice, the choice of agawf X' € (7,19) gives
good trade-off regardless of data size. In contrast, a emalk preferable for the best
predictions. Experimental results indicate that 1, 3 usually yield the best results.
What is the appropriate choice of the cost functigip for GI-KNN training (line 8
in Algorithm 6)? Since GI-KNN has a different objective (todithe best weight vector)
than boosting and other machine learning algorithms (tarmae a smooth convex sur-
rogate of the 0-1 loss function), we did not compare the perémce between different
loss functions like exponential loss, hinge loss, etc. Weesfate that performance will
not be significantly improved for different loss functions.

10The authors reported an error rate of%.81 their paper [140] by using a different pre-processing
method.
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There are questions regarding the GI-KNN algorithm thatséiteopen for discus-
sion. Can the convergence of GI-KNN be proved, or is therepgebound given spe-
cific K and/? In practice, is it possible to specify an early stoppintgcia? Since this
is a boosting-like algorithm, can we replace the 0-1 losstion with a smooth convex
cost function to improve the performance? Furthermorepiileé be interesting to see
whether the definition of the informativeness metric can fiygliad to semi-supervised
learning or noisy data sets. And of course, other data seigineto be explored.

3.5 Related Work

Nearest Neighbor Method and its Extentions

The idea of nearest neighbor pattern classification wasifingiduced by T. Cover
and P. Hart in [24], in which the decision rule is to assign aolassified sample point
according to the labels dk” nearest points. The authors proved that when the amount
of data approaches infinity, the one nearest neighbor Glz#on is bounded by twice
the asymptotic error rate as the Bayes rule, independeheafistance metric applied.

T. Hastie and R. Tibshirani [53] developed an adaptive ntktbionearest neigh-
bor classification (DANN) by using locally discriminativaformation to estimate a
subspace for global dimension reduction. They estimatedvéiiues of betweenH)
and within (/) the sum-of-squares matrices, and used them as a locakrsati as
>~ = W-IBW~!. They showed that their work can be generalized by applyieg s
cialized distance measurgs for different problems.

K Weinberger et al. [140] learned a Mahanalobis distanceioier KNN classifi-
cation by using semidefinite programming, a method refeiwex$ large margin nearest
neighbor (LMNN) classification. Their method seeks a largggim that separates ex-
amples from different classes, while keeping a close digtéetween nearest neighbors
that have the same class labels. LMNN is novel in the sens¢hitbanethod does not
try to minimize the distance between all examples that si@reame labels, but only to
those that are specified &sget neighborsExperimental results exhibit great improve-
ment over KNN.

By learning locally relevant features from nearest neighpd. Friedman [41] in-
troduced a flexible metric that performs recursive partitig to learn the local rele-
vance, which is defined a&(z) = (E[f] — E[f|x; = z])?, where E[f] denotes the
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expected value over the joint probability density:) of an arbitrary functionf(z).
The most informative feature is recognized as the one hatimtprgest deviation from
P(z|x; = ).

E. Han et al. [50] proposed an application of KNN classifimatio text categoriza-
tion by using the adjusted weight of neighbors (WAKNN). WAKNries to learn the
best weight for vectors by measuring the cosine similargiyeen documents. Specif-
ically, cos(X,Y, W) = \/thtgfvtj)zti;gzjgXWt)Q, whereX andY are two docu-
ments,IV the weight vector and’ the set of features (terms). Optimizations are also
performed to speed up WAKNN. The experiments on benchmaegsds indicate that

WAKNN consistently outperforms KNN, C4.5 and several ottiassifiers.




Chapter |

A Text Retrieval Application:

People Name Disambiguation

With the emergence of major search engines such as Googhéadiod! that automate
the process of gathering web pages to facilitate searchtihgs become increasingly
common for Internet users to search for their desired resolspecific queries through
search engines, with name queries making up approximatély/sof all searchers.
Name queries are usually treated by search engines as raywabrd searches without
attention to the ambiguity of particular names. For exapggarching Google for “Yang
Song” results in more than 11,000,000 pages with the sansmpsrname, of which
even the first page shows five different people’s home pagable®.1 lists the first
four results which correspond to four different people. Buthis heterogeneous nature
of data on the Internet crawled by search engines, the iSSgemtity uncertainty or
name ambiguityhas attracted significant research attention. Beyond tbbklgm of
sharing the same name among different people, name misgpe&lame abbreviations
and other reference variations compound the challengemémasambiguation.

The same issue also exists in most Digital Libraries (DLnparing the perfor-
mance and quality of information retrieval and credit &tition. In DL such as DBLP
and CiteSeer [43], textual information is stored in metadatords to speed up field
searching, including titles, venues, author names and aliia. However, the exis-
tence of botlsynonymsaindpolysemsas well as typographical errors makes the problem
of disambiguating author names in bibliographies (cita)anon-trivial. In the case of

thttp://www.informatik.uni-trier.detley/db/index.html
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Yang Song
Homepage ofvang Song PhD candidate of Penn State
Department of Computer Sciences and Engineering.
http://www.cse.psu.edtyasong/

Yang Song

Home page offang Song CALTECH, Department of
Electrical Engineering...
http://www.vision.caltech.edu/yangs/

Yang Sonds Homepage

SONG, Yang Department of Statistics,
UW-Madison Medical Science Center...
http://www.cs.wisc.edufyangsong/

Song Yang the Cartoonist

Song Yangis certainly the most successful cartoonist
on the Mainland...
http://japanese.china.org.cn/english/NM-e/155786.ht

Table 4.1. First 4 search results of the query “Yang Song” from Googé tkfer to 4 different
people.

synonymgsan author may have multiple name variations/abbreviafionitations across
publications, e.g., the author name “C. Lee Giles” is somes written as “C. L. Giles”

in citations. Fompolysemsdifferent authors may share the same name label in multiple
citations, e.g., both “Guangyu Chen” and “Guilin Chen” asedi as “G. Chen” in their
citations. In addition to the issue of citations, authorg/rba inclined to use different
name variations even in the title pages of their publicatidue to a variety of reasons
(such as the change of their maiden names).

Existing approaches that address the issue of name disaatioig generally fall into
two categories: supervised learning and unsuperviseditepmethods. In the case of
supervised learning [51], the objective is to determinertéime labeby leveraging the
related information (e.g., page contents and citationrmédion). Careful labeling with
specific domain knowledge is usually required for supedrigarning, which makes
it both error-prone and label intensive. Comparativehsupervised learning methods
[52, 8] do not require manual labeling but instead prudeciigose features (e.g., so-
cial networks, link structures, co-authorship) to classiimilar instances into groups
or clusters. A variety of clustering methods including Kane and spectral clustering
have been extensively utilized and compared for unsupsdvime disambiguation.
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Nevertheless, choosing the right set of features oftertseisubetter performance than
exhaustively seeking the best clustering method. Howsugervised learning methods
generally achieve better performance with the trade-oéxplensive training time.

4.1 Our Contribution

The objective of this paper is to propose an approach of nasaentbiguation that in-
cludes the attractive properties of both supervised andpersised learning methods
while trying to avoid the respective limitations. Speciligawe explore the use of a
two-stage approach to address the problem of disambigupgnson names in both
web appearances and scientific documents (includingaiisiti During the first stage,
we present two novebpic-basednodels inspired by two generative models for docu-
ments: Probabilistic Latent Semantic Analysis (PLSA) aateht Dirichlet Allocation
(LDA). Our models differ from the general methods by exphcintroducing a variable
for persons After an initial model is built, person names are disamhbtgd by lever-
aging an unsupervised hierarchical agglomerative clugtenethod [18], which groups
similar instances together in a bottom-up fashion. We eoglly study our models
by comparing against three other clustering methods on Wweth data and scientific
documents.

The underlying rationale for using generative models vatkemt variables is to har-
ness the unique topic distribution related to differenspas. For example, the basket-
ball player “Michael Jordan” is more likely to appear in tic sports while Professor
“Michael Jordan” in Berkeley may have high probability ofifig associated with the
topic academics Likewise, for the authors of scientific papers, one may Haséer
own focus, e.g. Professor “Jia Li” in the math department tzfbama and Professor
“Jia Li” in the statistics department of Penn State. Morepegen authors within the
same research field should be distinguishable by topics, &g researchers named
“Amit Kumar” working separately at Cornell and Rice are bottolved in research on
networks, but with specific focus on network routing and ¥eiss networks respectively.
As a result, topic distribution may be a usefeature sethat allows us to distinguish
people from each other in a principled and efficient way.

Although both PLSA and LDA have been extensively studied amolied to vari-
ous applications, there has been relatively few compasibetween their performance
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in real-world studies except in [12]. Theoretically, PLSAed not need to make any
assumptions regarding the document distribution, thusntare flexible when dealing
with abnormal data sets. Meanwhile, the LDA (Bayesian) apghn is more robust on
sparse data. With a large feature space, LDA generally @gHibtter performance than
PLSA as well as other probabilistic models.

4.2 Related Work

Generative Models for Documents

Using generative models for characterizing documents dswenages has become
arecent trend in machine learning research. The first wadiskh model was introduced
by Deerwester [31], namelyatent Semantic Analys{(£SA). The key idea of LSA is
to map high-dimensional input data to a lower dimensionpiegsentation in datent
semantic spacthat reflects semantic relations between words, the mappasgdone
by Singular Value Decomposition (SVD), and thus restrid¢tebe linear. LSA assumes
that there aré( underlying latent topics, to which documents are generatedrdingly.
Those latent topics are assumed to be approximately the aandecument classes,
resulting in a significant compression of data in large cbidas.

From a statistical point of view, Hofmann [54] presented Heraative to LSA, or
Probabilistic Latent Semantic Analysis/Indexing (PLSIAAP), which discovers sets of
latent variables with a more solid statistical foundatidie model is described as an
aspect modethat is essentially a latent class statistical mixture rhoalesuming the
existence of hidden factors underlying the co-occurrermraeng two sets of objects.
Thus, a single word is generated from a single topic whilked#ht words may belong
to different topics within a documentExpectation-MaximizatioEM) algorithm is
applied for the inference of parameters in this model thatimae the likelihood of
the data. An obvious problem of PLSA is that the model has abeurof parameters
that grow linearly with the size of the document collectigie]ding a large potential for
overfitting. Due to its efficiency and flexibility, PLSA hasdyewidely used in many
research fields, including collaborative filtering [55],age categorization [112], and
web information retrieval [143, 59].

Blei et al. later introduced a Bayesian hierarchical modatent Dirichlet Alloca-
tion (LDA) [12], in which each document has its own topic disttiba, drawn from a
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conjugate Dirichlet prior that remains the same for all doents in a collection. The
words within that document are then generated by choosingia from this distribu-
tion. A word is picked from that topic according to the pogteprobability of the topic,
which is determined by another Dirichlet prior. Inferendeparameters and model
learning are performed efficiently via variational EM aliglom, since exact inference
is intractable in LDA due to the coupling of parameters. BHady, this model can
be statistically treated as a fully generative aspect madach assumes an exchange-
ability for words and topics in documents. Experimentattssindicate that LDA has
better generalization performance than PLSA and a mixtboaigrams model as well
as higher classification accuracies and better predicbbuoser preferences in the task
of collaborative filtering. Successful applications anteesions of the LDA model in-
cludes unsupervised nature scene classification [123d@8lment retrieval [139] and
time series analysis [136].

Name Disambiguation

Prior name disambiguation research can be categorizedupervised classification
and unsupervised clustering. In [51], different classiicoca methods such as hybrid
Naive Bayes and Support Vector Machines (SVM) have beeneapia a DBLP dataset.
In large-scale digital libraries, however, supervisedsification is inappropriate due to
the unaffordable cost of human annotation for each name.

Different clustering methods have also been applied in iteeature. Earlier ap-
proaches such as hierarchical clustering [85] sufferechftibe transitivity problerh
Han et al [52] used a more sophisticated K-spectral clugjariethod to cluster author
appearances. While Han’s method could find an approximatiaghe global optimal
solution (in terms of a criteria function) for a sampled datait is unsuitable for large-
scale digital libraries since K is not known a priori for areeincreasing digital library
and the computational complexi€y( N?) is intractable for N=739,135 in CiteSeer. Lee
et al. [77] successfully addressed the scalability issuedigg a two level blocking
framework; however, this resulted in inconsistent lalgptine to the transitivity problem
in such a solution. In [57], used a SVM-based distance fonatras used to calculate
the similarity of the metadata records of author appeasaraned explicitly solved the
transitivity problem in labeling with the DBSCAN clustegmmethod. [9] proposed an

2The transitivity problem refers to a name A that is co-refiexeith B, and B with C, while A is not
co-referent with C. C.f. [57] for more detailed discussions
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LDA-based entity resolution method which is generative doés not require pair-wise
decisions.

The aforementioned work mainly tackled the name disambigug@roblem using
the metadata records of the authors. This paper solves e disgambiguation problem
in a novel way, by accounting for the topic distribution o&thuthors and adopting
unsupervised methods. As such it yields an accurate anditefjltient solution to the
person name disambiguation problem.

4.3 Topic-based PLSA

We use the following notations in this paper.

e A documentl is a sequence ad¥ words denoted by = {wy, ws, ..., wy }, Where
w,, denotes theith word in a document, plus a sequencébiname appearances
denoted bya = {a1, as, ..., an }, Wherea; represents th¢th name appearances
in the document. For web data, name appearances refer taviiner of their
homepages or the subject of the articles. For scientific mhecus, it means the
authors of the papers as well as the authors in the citations.

e A corpusis a collection ofl’ documents denoted by = {d;, ds, ..., dr}.

o W = {wy,...,w,} represents the number of unique words (i.e., vocabularg) in
corpus with size. A = {ay, ..., a, } indicates the number of name appearances in
a corpus with size.

e The relationships between documents, names and wordsranected by a set of
latent variablesZ = {zi, ..., zx } with size K, each of which represents a latent
topic.

In our document-name-word scenario, an observation isstless a triple{d, a, w}
that represents an instance that a narappears in documetrif which contains the word
w. The relationship inherent in the triplets is associatead I3gt of topicsZ. Our mix-
ture model has a conditional independence assumption @bles, i.e., the observed
objects are conditionally independent on the state of tlata® latent variables, which
are essentially treated as persons’ interests. Spedgffiealiocumentl is potentially



67

related to several topicg with different probabilities, and the latent variables sen
guently generate a set of wordsand name appearanceshat are closely related to a
specific topic. Figure 4.1 (a) shows the graphical illugtrabf the generative model.

@

® .
@

Ny

d p
(a) The three-way aspect model

(b) An alternative view of the aspect model

Figure 4.1. Graphical model representation. (a) The original docureme-word modelD

is the number of document®/,; is the number of words in documeditand A, is the number

of name appearances in documeént(b) The alternative view of the model. Shaded nodes are
observed variables.

4.3.1 The Aspect Model

The joint probability of the aspect model ovéx a x w is defined as the mixture:
P(d,a,w) = P(d)P(a,wl|d) (4.1)

P(a,wld) = > P(a,w|2)P(z|d) (4.2)

z€Z
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The definition of the generative model can be described ifalt@ving procedure:
1. pick a documend from the corpusD with probability P(d),

2. select a latent clasg with probability P(z|d),

3. generate a word with probability P(w|z),

4. generate a namewith probability P(a|zy).

In this model, we introduce a set of latent variablgbat breaks the direct relation-
ships between documents, words and names, i.e., they al@ioaally independent but
still associated through latent variables. Note that byergng the arrow from docu-
ments and words to latent topics, an equivalent symmetrabaires shown in Figure 4.1
(b) can be parameterized by

P(d,a,w) = ZP(Z)P(d|z)P(w|z)P(a|z). 4.3)

z€Z

This paper will focus on Figure 4.1 (a) for inference unlesgeonise mentioned.

4.3.2 Model Fitting with the EM Algorithm

The goal of model fitting for PLSA is to estimate the paramefe(z), P(a|z), P(z|d)
and P(w|z), given a set of observationd, a,w). The standard way to estimate the
probability values is the Expectation-Maximization (EMge@rithm [21], which alter-
nates two steps: (1) an expectation (E) step where posfaobabilities are estimated
for the latent variables, based on the current estimatdseqgiarameters; and (2) a max-
imization (M) step where parameters are estimated againatomize the expectation
of the complete data (log) likelihood. In the E-step, we catep

o _ P(2)Plalz)P(d]z) P(w]z)
> P(2)Plal2) P(d]2) P(wl]z')

P(z|d,a,w) (4.4)
In the M-step, we aim at maximizing the expectation of the plate data likelihood,

the formulas are:
Zd,w n(d,a,w)P(z|d,a,w)

Zcl,a’,w n(d7 a/’ w)P(Z|d, (1,, U})

P(a|z) (4.5)
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Za’d n(d,a,w)P(z|d,a,w)

P
(w]2) ox Zd%w, n(d,a,w")P(z|d, a,w")

(4.6)

za,w n(d7 a, U))P(Z|d7 a, w)
> i M a,w)P(2|d a,w)

P(z|d) (4.7)

wheren(d, a, w) denotes the number of occurrences of warth document/ with
namea. The EM algorithm stops on convergence, i.e., when the ingment of the
log-likelihood is significantly small:

D W
L= Z Z Z n(d,a,w)log P(d, a,w) (4.8)

a=1 d=1 w=1

4.3.3 Predicting New Name Appearances

Despite the effectiveness of PLSA for mapping the same deatito several different
topics, it is still not a fully generative model at the levéldmcuments, i.e., the number
of parameters that need to be estimated grows proportjowéh the size of the train-
ing set. Additionally, there is no natural way to assign @tabty to new documents.
Therefore, to predict the topics of new documents (with piady new names) after
training, the estimated (w|z) parameters are used to estimétg:|z) for new names
a in test documend through a “folding-in” process [54]. Specifically, the Eeptis the
same as equation (4.4); however, the M-step maintains flgenalr P(w|z) and only
updatesP(a|z) as well asP(z|d).

4.3.4 Probabilistic Inference

The PLSA model mentioned in the above section not only caneleglationships be-
tween documents, words and names, but by using probabihdérence, it can also be
used to model the topic patterns for names. SpecificallgrgR(a|z) the probability of
observing a name appearance given a certain topic, we cael th@dprobability that a
certain topic is of interest to a given name by simply apmyime Bayes rule:

P(z|a) : (4.9)
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In this way people that share similar topics can be modeleditih the same pattern.
By applying unsupervised learning methods, we can furthester names for the task
of name disambiguation.

4.4 Topic-Based LDA

In this section, we propose another topic-based BayesiateimOur model is primarily
an extension of the Latent Dirichlet Allocation (LDA) mogebposed by Blei et al. in
2003 [12], which has quickly become regarded as one of the effagent and effective
probabilistic modeling algorithm in statistical machimaitning.

The major difference between PLSA and LDA is that in PLSA #ient variables
are dependent on each document, while in LDA the topic mexisidrawn from a con-
jugate Dirichlet prior which remains the same for all docuise Thus LDA is able to
overcome the over-fitting problem in PLSA while naturallyhgeating new documents
with consistent generative semantics.

The generative process of our topic-based LDA model cantoediized as follows:

e Draw a multinomial distributior, for each topic: from a Dirichlet distribution
with prior 3;

e For each document, draw a multinomial distributiod; from a Dirichlet distri-
bution with priora;

e For each worduvy in documenti, draw a topicz,; from the multinomial distribu-
tion 0;

e Draw a wordwy; from the multinomial distributiorp.,, ;
e Draw a name,;; from the multinomial distribution,,,.

Figure 4.2 (a) depicts our model. Regarding the generatigau@metersq and 5
are corpus-level parameters and only sampled once wheimgr&@e generative corpus;
0, are document-level variables, sampled once for each dawmg wy; anday; are
word-level variables and need to be sampled once for eactmame in the document.

Although there is resemblance between our proposed LDA hattkthe author-
topic model [103], there exists important differences ie talationship between name
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O OO

(b) The author-topic model [103].

Figure 4.2. Graphical model representation of the LDA model. (a) Ouiddiased model. (b).
The author-topic model K is the number of topicsD is the total number of documentd,

is the number of tokens in documettand A, represents the number of name appearances in
document.

appearances and words. In the author-topic madéénotes an author who is responsi-
ble for a given word. In our model, however, names (authard)eords are not directly
related, i.e., each topic can generate a set of names andawetds simultaneously
with different probabilities, allowing more freedom to theodel in parameter estima-
tion.
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4.4.1 Inference and Parameter Estimation

The inference problem in LDA is to compute the posterior @f (locument-level) hid-
den variables given a documeht= (w, a) with parameters: and, i.e.,

p(0.¢,zlw,a,a, 5, ),

p(67 (b? Z7 W7 a|a7 ﬁ7 )\)

p(0,¢,zlw,a,a,B,\) = (w2l B (4.10)
Herep(w,a|a, 3, A) is usually referred to as the marginal distribution of doeuin
d:
p(w,ala, B, \)
N
— [ ttarmels) )1 ETE Hp (46,2 dbde
~ [ etarmels) TS ol lo)plicn)on >>>
n=1 zn
: (H > 2(zal8)p(am|2n, A))) dfde (4.11)
m=1 zp

By marginalizing over the hidden variablethe name distributiop(a|f, ) can be
represented as follows:

pald, \) Zp alz, \)p (4.12)

As a result, the likelihood of a document collectibncould be calculated by taking
the product of the marginal probabilities of individual dogents,

p(Dlev, 8, A) =
[ TLvte-15) [T pieule) (H (a0, >)
. (H plam|o, A)) dfdg (4.13)

Unfortunately, inference cannot be performed exactly aartiodel due to the prob-
lematic coupling between parametérg and\. Alternative methods have been widely
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developed to approximate the inference, including vaeti inference [12] and other
methods. In the following section, we apply the Gibbs sanmgpframework to get
around the intractability problem of parameter estimation

4.4.1.1 Gibbs sampling for the LDA model

The Gibbs sampling algorithm was developed as a specialafabe Markov Chain
Monte Carlo (MCMC) algorithm, which estimates the compleixj probability distri-
bution of several variables by generating random sampies the observed data. Note
that the sampling algorithm is actually used to derive coonal probabilities for the
sampler. Specifically, we need to know the conditional pbaliees p(60,,,|a, zim1, -, Zmn)
P(Zmn|Om, Winn, B), Wwherem = 1,.... M andn =1,..., N.

We construct a Markov chain that converges to the posterstrilclition onz and
then use the results to inférando, i.e.,p(z|w, a).

Based on the graphical representation in Figure 4.2, theeposdistribution can be
derived as follows:

p(zi = jlz—, w,a) < p(z; = j|z_)p(wi|z, w-;)p(ai|z, a;) (4.14)

Notations | Explanations

|14 number of words (vocabulary)

K number of topics

D number of documents

A number of name appearances

2z =7 the assignment of thith word in a
document to topig

Z_; all topic assignments not including the
1th word, i.e.,{Zl, ooy Zim1y Zidly ey ZK}

HT number of times wordh assigned to topic
j, except the current instance

HPT number of times documentcontains topic
j, except the current instance

O the probability of using wordh in topic j

04 the probability of document contains
topic j

Table 4.2.Notations used for Gibbs sampling.
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HP" + « HYT+ 3
X Y
S HPE+Kay HYT+WS

(4.15)

where the first two terms of Equation (15) is inferred by faling the Dirichlet distri-
bution derivation.

Note that in our case, we do not estimate the parametefsand \. For simplicity
and performance, they are fixedst/ ', 0.01 and 0.1 respectively.

Equation (13) is considered as the conditional probabititthe random variable
and¢. For any individual sample, we can estimate them from thenlatariablez by

. HPT +
Oy = ! : (4.16)
T Y HYT + Ka
. HYT +
Gy = m (4.17)

S BT W5

4.5 People Name Disambiguation

Learning both the PLSA and LDA models is equivalent to leagrthe probability dis-
tribution of the topic-wordP(w|z) and the topic-namé(a|z) matrices. However, the
topic-name matrix only reflects the relationships betwesnes and topics, thus several
people may have very similar topic interests, especialhg¢hfrom the same research
group. For the purpose of name disambiguation, the topicenaatrix is processed
further with a hierarchical clustering method. We extend ¢higinal agglomerative
clustering method for our task, since it has been shown teabottom-up clustering
method performs better than the K-means method as well as twtp-down clustering
methods in terms of both computational cost and clustermegracy, particularly when
the number of desired clusters is not significantly smalantthe number of points.

4.5.1 Agglomerative Clustering

To distinguish people that have similar topic interestsvith different names, we gen-
erate a name-name matrix that measures the pairwise styjnb@tween names. Lev-

enshtein distance [78] (defined A8(z, y)) is used as the measurement and as a result

the similarity between two namesandy can be defined as follows$ (| represents the
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length of the string):
Le(z,y)

maz([z]. 19]) (4-18)

Sim(x,y) =1-—

Our modified agglomerative clustering method is shown inoftlpm 7, in which
each name; is a vector of lengthi, a;, reflects the probabilities of hame being
in a specific topick, and satisfie , a;, = 1. We apply Euclidean distance as our

point-level distance metric, i.€D(a;, a;) = />, (ax — a;;x)?. Meanwhile, to measure

the distance between clusters, the complete-link metfi¢ iSused that considers the
maximum distance of all elements in two cluster§wo additional parameters should
also be specified at the beginning of the algorithrand#, as the stopping criteria for

the entire program and the merge criteria for two names/ransters, respectively. In

practice, we set = 0.05 andd = 0.5.

4.6 Experiments

To evaluate the two proposed methods, we perform the expatgsron two applica-
tions, i.e., disambiguation of people’s web appearancdsaathor names in scientific
documents.

4.6.1 Evaluation Metrics

Instead of using a matching matrix (a.k.a. a confusion matrisupervised learning)
as in [52] (since the number of clusteiS needs to be specified explicitly in advance,
making it inappropriate for unsupervised learning), twis & metrics are applied in our
experiments as in [141, 57], namglgir-level pairwise F1scoref'1 P andcluster-level
pairwise F1scoreF1C. F1P is defined as thearmonic meahof pairwise precision

pp and pairwise recall pr, wherepp is measured by the fraction of co-referent pairs
in the same cluster, and- the fraction of co-referent pairs placed in the same cluster
Likewise, F'1C' is the harmonic mean afluster precision ¢p and cluster recall cr,
wherecp is the fraction of totally correct clusters to the number lokters acquired by
the algorithm, andr is the fraction of true clusters to that of the algorithm.

3We also tried both single-link algorithm and wards meth@®B[1the performance are almost equally
well.

4H($1,$2) = %
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Algorithm 7 Agglomerative Clustering
1: Input:
ai, ...apr. names to cluster
D(a;, a;): point-level distance metric
C(c;, ¢;): cluster-level distance metric
Sim(a;, a;): name-name similarity matrix
€, 0: threshold parameter
2: Initialize
place each name in a singleton cluster,
calculate the pairwise distance between
names according tD,
setC «— D,
3: Clustering Procedure
4: Repeat
find two namesd;, ;) or name clustersc(, ;) that
are closest according © andcC,
randomly choose a name to represent a cluster,
if Sim(a;,a;) is greater thad
merge the pair to form a new cluster,
else
find the next closest pair or quit if no pair satisfy
the criteria,
update the distance between clusters accordiidg to
5. Until the distance between the closest pair of any two clustereaey than,
6: Output: Clusterscy, ...c,.

As the baseline method, we extracted names from the cordadt®rmed aaame-
word matrix, which was augmented by the standesidf method, we then applied the
agglomerative clustering using inter-cluster closenessha measure (Agglo). Our
methods are further compared with two unsupervised legrapproaches, the k-way
spectral clustering (Spectral) [52] and the LASVM+DBSCAppeoach (DBSCAN) as
described in [57].

The most influential parameter on the performance as wehasdalability of our
models is the number of topids. Following convention [54, 12], we chose the values
of K from the sef{2, 5, 10, 20, 50, 100, 200}. For interests of space, only the best results
with optimal K are reported. Meanwhile, as mentioned above, the ptigfsand \ for
the LDA model are chosen @8/ K, 0.01 and 0.1 respectively.
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4.6.2 Web Appearances of Person Names

In this section, we consider the problem of automatic diggodiion of person names
on the web. To be specific, when users submit name queriesMiahael Jordan”
to search engines, we want to distinguish name results bgahtent of the retrieved
web pages. We utilize the public datasgénerated by Ron Bekkerman and Andrew
McCallum [8]. 12 person names including SRI employees aonéepsors (e.g., “David
Israel” and “Andrew Ng”) are submitted as queries to the Gesgarch engine, the first
100 pages are then retrieved for each query. Post-progeissoerformed to clean the
pages, resulting in a total of 1,085 web pages referring todifferent people. All pages
are manually labeled in the title indicating the positiorthe person. Among these web
pages, 420 are found relevant to the 12 particular namese Statistics can be found
in [8].

For our experiment, the data set is further processed. Wertrsslate the titles into
labels with +1 indicating relevant and -1 otherwise. All URibcluded in the pages are
removed as well as other trivial characters. We then useaihbaw tool to process the
remaining text to produce the term-document matrix. Stamgrand stop words removal
are performed, words that appear less than twice are renas/eell. Furthermore, to
eliminate the bias towards longer documents, only the fDSt\®ords are used in each
example.

Table 4.3 summarizes the clustering results regardingiRedfd F1C scores. Over-
all, our topic-based models consistently outperform othethods for both metrics, with
more than 9% on F1P score and>% on F1C score on average. For most of the peo-
ple, both PLSA and LDA achieve the best performance with pcg) which decrease
sharply with the increase of topic numbers. The highest EbRes for both models are
achieved from the class “Leslie Pack Kaelbling”, since iydras two namesakes in that
class. For the “Tom Mitchell” class that has 37 namesakasyathods are still able to
achieve85% and82.4% F1P scores respectively, with the trade-off of using mopéct
(20) to disambiguate. Generally, the performance decseasé the number of topics
increases with more namesakes in the class. RegardingusieicF1 scores, since no
credits will be given to clusters that gpartially correct (i.e., either having more or less
instances than the real clusters), the performance is coymmrse than the pair-wise

Shttp://www.cs.umass.edutonb
Shttp://www.cs.cmu.edw/mccallum/bow
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# Agglo Spectral DBSCAN PLSA+Agglo LDA+Agglo
pages FIP F1C| FIP F1C| F1P F1C| F1P Fi1C F1P F1C

Cheyer | 97 | 0.580 0.217 0.602 0.333 0.852 0.65( 0.920 0.677 (10)0.935 0.725 (20)
Cohen | 88 | 0.515 0.204 0.500 0.21( 0.742 0.52( 0.888 0.625 (10)0.850 0.625 (10)
Hardt | 81 | 0.350 0.159 0.362 0.267 0.744 0.5710.755 0.625(5)|0.875 0.717 (10)
lsrael | 92 |0.700 0.455 0.720 0.46§ 0.855 0.680 0.952 0.877 (20)0.975 0.841 (20)
Kaelbling| 89 | 0.825 0.429 0.825 0.4240.875 0.7390.972 0.757 (10)0.955 0.767 (20)
Mark 94 [0.396 0.204 0.475 0.34Q 0.575 0.50( 0.855 0.717 (10)0.871 0.704 (10)
McCallun] 94 | 0.785 0.504 0.830 0.524 0.000 0.7170.924 0.785(5) ]| 0.955 0.824 (10)
Mitchell | 92 [0.750 0.487 0.762 0.489 0.785 0.490 0.850 0.776 (20)0.824 0.643 (20)
Mulford | 94 |0.555 0.322 0.573 0.309 0.853 0.7270.911 0.826 (10)0.926 0.833 (10)

Ng 87 | 0.750 0.5420.785 0.57540.915 0.845 0.951 0.925 (50) 0.953 0.911 (20)
Pereira | 88 | 0.565 0.333 0.548 0.320 0.788 0.720 0.926 0.851(5)| 0.946 0.923(5)
\Voss 89 | 0.375 0.220 0.345 0.196 0.625 0.60Q 0.876 0.633(10) 0.850 0.667 (10)

Mean 90 | 0.596 0.340 0.611 0.37140.792 0.647 0.909 0.756 0.911 0.765

Table 4.3. Clustering results of the Web Appearances data set in tefpaielevel pairwise F1
Scorefo) (F1P) and cluster-level pairwise F1 scéi@(F1C). Greedy Agglomerative Clustering
is compared as a baseline approach. Our approaches (PLI£#)donsistently show better
results than both spectral clustering and DBSCAN methots. number of topicg( is chosen
from the set{2, 5, 10, 20, 50, 100, 200}. The best results with optima& (given in parentheses)
are presented here.

metrics. The best F1C scores are achieved in the class “Aidgé which has 29 name-
sakes, larger number of topics (50 and 20 for PLSA and LDAeetgely) shows better
performance.

Figure 4.3 plots the result of the McCallum class for both gisdby projecting the
data matrix on the first three eigenvectors. We choose twstenisi for visualization
here, one is “Andrew McCallum” from UMass and other peoplthhe identical name
for the other cluster. It is evident that both models have Wgh clustering accuracies
and separate two clusters quite well. Specifically, PLSA omisclassified one positive
instance to be negative while LDA misclassified one negatisence to be positive.

4.6.3 Author Appearances in Scientific Docs

To disambiguate author appearances in the scientific dotisimee collect data from
the CiteSeer Digital Library. CiteSeer is currently onehadf targest digital libraries that
holds more than 750,000 documents, primarily in the dombaomputer and informa-
tion science. CiteSeer indexes several kinds of data farifedat PDF, PS; however,

for our experiment, we convert non-text formats into texti amly make use of plain
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McCallum-PLSA McCallum-LDA

(b)
Figure 4.3. 3D visualization of feature distribution of theame-topicmatrix in the web ap-

pearances data set. *'s indicate the positive class (i.adféw McCallum” from UMass) and
represents negative classés). PLSA result.(b). LDA result.

text files. For the purpose of efficiency, extraction is perfed only from the summa-
rizing parts (title, author names, abstracts and keywoldsjeand the first page of each
document.

We obtained the nine most ambiguous author names from thre data set as shown
in Table 6.2, each of which has at least 20 name variatiorthelmworst case (C. Chen),
103 authors share the same name.

Two steps of pre-processing are performed before the erpats. First, author
names are extracted from individual documents, each oftwdoatains the author meta-
data associated with a unique paper identifier. Secondpargferences are extracted
from citations by regular expressions and manual correctiRainbow is then applied
to form the document-term and document-author matrices.

Figure 4.4 plots the results of the CiteSeer data set on Fadfesand F1C scores.
Clearly, our methods consistently outperform both greegi@nerative clustering and
spectral clustering, and better than DBSCAN except forMhelonesclass. Overall,
PLSA and LDA achieve92.3% and 93.6% pair-wise F1 metric, respectively, which
shows a gain of more thatd% and86.6% improvement over the spectral clustering and
greedy agglomerative clustering. DBSCAN also achievesapewmative result§9.3%)
in this case.

In terms of the cluster F1 metric, PLSA and LDA models haveadaitthe same
performance, both achieve significantly better resultsrémban140%) than spectral
clustering and agglomerative clustering. The relativegh=1C scores of our methods
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Name Variations | Records
A. Gupta 44 506
A. Kumar 36 143
C. Chen 103 536
D. Johnson 41 350
J. Robinsor 30 115
J. Smith 86 743
K. Tanaka 20 53
M. Jones 53 352
M. Miller 34 230
Mean 49.7 336.4

Table 4.4. Summary of the 9 CiteSeer data sets of different author naméshe data size.
These names are most representative for the worst caseisdar@uthor name appearances in
scientific documents.

indicate that the number of unique authors can be estimatadive number of achieved
clusters from the original data set.

lllustrative examples of these results are presented ife b, which summarizes
the results of the PLSA model by showing the 10 highest prtibatvords along with
their corresponding conditional probabilities from 4 wgpin the CiteSeer data set. Ad-
ditionally, we show 3 author name variations correspondnthe same person with
their probability for each topic. The appearance of new angtlis handled by using
the “folding-in” process discussed in Section 3.3. Cleaty selected 4 topics reveal
that the 3 name variations have very high probability to eeséame author. The figure
beneath depicts the probability distributions over 50 ¢spof which the three names
exhibit quite similar patterns.

Likewise, Table 4.6 lists the results from the LDA model. Wit several topics
that show the maximum differences in probabilities to diseyunate authors witexactly
the same name. As for the name “Yang Song”, one author hashiginyprobability of
topic 4 (0.2210) while the other are highly related with opi (0.2682), thus showing
completely different patterns of their probability diuitions over topics.

4.6.3.1 Scalability and comparison of the two models

Theoretical issue of scalability for large-scale data set hot yet been addressed for
either PLSA or LDA. As a result, we empirically tested our ratsdfor the entire Cite-
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Figure 4.4. Clustering results on the CiteSeer data set. 1:A. Gupta,KRummar, 3:C. Chen, 4:D.
Johnson, 5:J. Robinson, 6:J. Smith, 7:K. Tanaka, 8:M. Jéhis Miller.

Seer data set with more than 750,000 documents. PLSA yi&gl$a0 unique authors
in 2,570 minutes, while LDA finishes in 4,390 minutes with 418 authors. Both are
quite consistent with previous results [57, 52]. Consiigthat our methods only make
use of a small portion of the text for each instance (metaglas the first page), we
believe the framework can be efficient for large-scale dets. s

The results of the two models are quite close to each otheotim imetrics across
two data sets; however, they may have different generaizaiapabilities. In Figure
4.5, we show the comparison between PLSA and LDA in terms @fttponential of
the negative likelihood (a.k.gerplexity, which is commonly used as a measure of the
generalization performance of probabilistic models. Galhe lower perplexity over a
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Figure 4.5. Exponential of the Negative Likelihood of the two modelstioe CiteSeer data set.
X axis shows the number of topics. Here we show the resultsiof\20% training data.

set of held-out test data indicates better performance.

Figure 4.5 depicts the results for the 2 models being condp&@eth models exhibit
the overfitting problem when the number of topiEsincreases. Comparatively, LDA
is less sensitive to the change Bt This probably explains why PLSA is notfally
generativemodel, since PLSA applies “folding-in” process to manage decuments.
This process assumes that documents in the testing seitdkieilsame topic distribu-
tion (E-step of the EM algorithm) as those in the training sétich is not essentially
true in many cases. In LDA, by generating probability witkegefined priors to test-
ing documents, all documents essentially exhibit the sapi tistribution, thus no
assumption is required for new authors in the testing docwsnéevertheless, the best
performance for both models are quite close, achieved vihéeneither 5 or 10.
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Topic 13 Topic 24
“Image Categorization” “Content Retrieval”
classifiers 0.0311 feature 0.0318
region 0.0285 learning 0.0216
image 0.0211 content 0.0138
indexing 0.0157 images 0.0130
photo 0.0152 clusters 0.0130
colors 0.0133 cluster 0.0130
color 0.0123 retrieval 0.0112
extract 0.0111 location 0.0112
aesthetics 0.0103 query 0.0064
light 0.0085 classifiers 0.0061
James Wang 0.2721 James Wang 0.1478
J. Z. Wang 0.2215 J. Z. Wang 0.1362
James Ze Wang 0.2533 James Ze Wang 0.1577
0.351
03 Image Categorization - James Wang
\ —-g: jlai{e\glezlngang
0.251
> o2 Content Retrieval Bioinformatics

§0.15

0.1

0.05

00

Topics

Table 4.5. An illustrative example of the author-topic relationshipsthe CiteSeer data set

extracted by the topic-based PLSA model. 10 most correspgndords are shown for each

topic. We summarize the titles of the topics to the best ofunaferstanding. Below each topic

shows the probabilities of authors with name variationghis example three names refer to the
same person.



Topic 4 Topic 11
“Text Classification” “Vision & Motion”
boosting 0.0473 position 0.0486
text 0.0473 motion 0.0411
classification 0.0473 perceive 0.0220
classifiers 0.0473 vision 0.0220
feature 0.0422 label 0.0162
document 0.0215 tracked 0.0162
corpora 0.0215 moving 0.0111
words 0.0116 actions 0.0111
vectors 0.0116 humans 0.0105
dimensionality 0.0116 visual 0.0105
Yang Song(PSU) 0.2210 Yang Song(PSU) 0.0320
Yang Song(Caltech)  0.0202 Yang Song(Caltech) 0.2682

=+ Yang Song(PSU)
0.3r Vision & Motion <7 Yang Song(Caltech)

0.25[Text ClassificationW

Probability

Table 4.6.LDA topic distributions of two authors with the same namefiyeSong”.




Chapter 5

Text Recommendation for Social

Bookmarking Systems

Tagging, or social bookmarking, refers to the action of esding a relevant keyword or
phrase with an entity (e.g. document, image, or video). \Wiérecent proliferation of

Web 2.0 applications such as Del.icic.asd Flick? that support social bookmarking
on web pages and images respectively, tagging servicesbeaoee red-hot popufar

among users and have drawn much attention from both acaderdiandustry. These

web sites allow users to specify keywords or tags for ressynehich in turn facilitates

the organizing and sharing of these resources with othesus®ince the amount of
tagged data potentially available is virtually free andmited, interest has emerged in
investigating the use of data mining and machine learninthaus for automated tag
recommendation or both text and digital data on the web [743280].

5.0.4 The Problem

Tag recommendation refers to the automated process of stiggeiseful and infor-
mative tags to an emerging object based on historical irdtion. An example of the
recommendation by the Del.icio.us system is shown in Figu2e where the user is
bookmarking a webpage regarding data mapper and the systammmends relevant

http://del.icio.us/

2http://www.flickr.com/

3Recent statistics indicated that del.icio.us gets roudi@,000 posts per day while Flickr gets
1,000,000 photos per day.
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tags as well as popular ones for annotation. While the objecbe tagged can be im-
ages, videos or documents, we will focus on documents inpéner unless otherwise
mentioned. In general, a tagged document is usually agedaidth one or more tags,
as well as users who annotated the document by different Tdgss, a tagging behav-
ior to a document! performed by user with tagt can be represented using a triplet
(u,d,t). Using a graph representation where each node is one of éheeats in the
triplet, and edges between nodes being the degree of commetis obvious that both
the users and the documents are highly connected to thenthis the relationship be-
tween tags themselves cannot be observed directly (showgume 5.1). Consequently,
recommending relevant tags to new users or new documenttahe done indirectly
from the user perspective or the document perspective.

Figure 5.1. A connectivity graph of users, tags and documents. In thease of tagging, a
user annotates a document by creating a personal tag. Asliecabserved, tags are not directly
connected to each other, but to the users and documentadnste

As it can be observed, tag recommendation can be addressed different as-
pects. i.e., user-centered approaches and documentaetatgproaches. User-centered
approaches aim at modeling user interests based on th&iribéd tagging behaviors,
and recommend tags to a user from similar users or user grddpshe other hand,
document-centered approaches focus on the documentaleaiisis by grouping doc-
uments into different topics. The documents within the stopé are assumed to share
more common tags than documents across different topicsoré&tically, both models
can be learnt by using classic machine learning approackes.example,collabo-
rative filtering (CF) techniques [15] can be applied to learn the user intefes the
user-centered approaches. For document-centered appsydoth unsupervised topic
models (e.g., LDA topic models [12]) and supervised classiibn models (e.g., SVM
[27]) are good candidates for categorizing document topas.

While both approaches seem to be plausible, it turns outlieatiser-centered ap-
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Figure 5.2. An example of recommended tags by the Del.icio.us recomaresydstem.

proaches are not very effective due to several obvious nsadeéirst, according to re-
search in [37], the distribution of users vs. the number gfdpplications follows a
long tail power law distribution, meaning that only a veryahportion of the users
perform tagging extensively (see Figure 5.3 (a)). Addgibtn researchers have also
shown that the reusability of tags are quite low, while thealmlary of tags constantly
grows [37] (see Figure 5.3 (b)). With relatively few userarrhation acquired, it makes
the user-centered approaches difficult to find a suitableetodperform effective tag
recommendation. While clustering users into interestsiggccan somewhat alleviate
the issue of sparseness, user-centered approaches aegynfexible in monitoring the
dynamic change of user interests over time.

Comparatively, the document-centered approaches are moloust because of the
rich information contained in the documents. Moreoverihéerlying semantics within
tags and words create a potential link between topics anteotsin the documents,
where tags can be treated as class labels for documents ste¢hario of supervised
learning, or summarizations of documents as an unsupeérigsening approach. This
makes it flexible to apply any sophisticated machine legrilgorithms for the user-
centered tag recommendation approach.

Additionally, while botheffectivenesandefficiencyneed to be addressed for ensur-
ing the performance of the tagging services, most of theiagisvork has focused on
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Figure 5.3. Challenge of tag applications. (a) Number of users vs. numobig applications.
Relatively few users generated most of the tag applicati¢b} Frequency matrix of tags and
users, where X-axis indicates Tag ID and Y-axis is User Ipwshg that the matrix is very
sparse.

effectiveness [7, 22, 45]. Efficiency, while not being tbtagnored, has only been of
recent interest [80].

5.1 Our Contributions

In this thesis, we propose two frameworks for addressingraatic tag recommenda-
tion for social recommender systems. From a machine legupenspective of view, we
want our models to beeusablefor different applications and systensgalableto large
web-scale applications, and the results effectivefor all of them. The first approach
we proposed is @raph-basedmethod, in which the relationship among documents,
tags, and words are represented in two bipartite graphs. cAstate framework is ad-
vocated for learning from previously seen data. During tfine learning stage, we
use the Lanczos algorithm feymmetridow rank approximation for the weighted ad-
jacency matrix for the bipartite graphs, and Spectral ReeeriEmbedding (SRE) [149]
to symmetrically partition the graphs into multi-classstlkrs. We propose a novel node
ranking algorithm to rank nodes (tags) within each clusted then apply a Poisson
mixture model [81] to learn the document distributions facle class.

During the online recommendation stage, given a documettbieits posterior
probabilities of classes are first calculated. Then basat®foint probabilities of the
tags and the document, tags are recommended for this dotuies two-way Pois-
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son mixture model (PMM) applied here is very efficient forsdéication. Comparing
to other classification methods, the two-way PMM has the aidwege of modeling the
multivariate distribution of words in each class, so tha itapable of clustering words
simultaneously while classifying documents, which hekxucing the dimensionality
of the document-word matrix. The two-way PMM is flexible inocise component dis-
tribution for each topic class, i.e., different classes rhaye different number of com-
ponents. i.e., number of sub-topics. Moreover, this modegiogpms asoftclassification
for new documents that allows tags to be recommended frderelift classes.

The second approach igeototype-basedhethod. Instead of using the entire train
ing data, this method aims at finding the most representatifaset within the training
data so as to reduce the learning complexity. This supehtesaning approach clas-
sifies documents into a set of pre-defined categories, whekdetermined by the pop-
ularity of existing tags. Similar to the graph-based metltibd tags are ranked within
each category and recommended to a new document based ojoititegprobabilities.
To achieve an online speed of recommendation while sebptti@ best prototypes, we
propose a novel sparse Gaussian processes (GP) framewstgfyesting multiple tags
simultaneously. Specifically, a sparse multi-class GP éw&ark is introduced by ap-
plying Laplace approximation for the posterior latent ftioie distribution. Laplace
approximation [101] has been successfully proposed toegddhe intractability caused
by binary GP classification, and we are the first to give a close-formtswni for the
sparseandmulti-classGP classification. To find the best portion of the trainingadzit
ficiently, we suggest a prototype selection algorithm tea&iipable of locating the most
informative prototypes for each class within a few learrsteps.

While a lot of classifiers are good candidates for the clasdibn of tagged doc-
uments, we advocate the use of GP for tag recommendationdoujle of reasons.
First, GP have become an important non-parametric tooll&ssdication (and regres-
sion). Unlikegenerativeclassifiers such like Naive Bayes, GP make no assumption
on the form of class-conditional density of the data, whichkes it immune to any
poor performance caused by a false model assumption. Anathentage of GP is
that the predicted result of the model yields a probabdistterpretation, while tradi-
tionaldiscriminativeclassifiers such like Support Vector Machines (SVMs) [2 Tally
do not consider the predictive variance of test chsésr tag recommendation where

4Although Platt suggested an ad-hoc probabilistic SVM in],[#9does not consider the predictive



90

the tagged data (e.g., web pages) usually does not contgiolass labels, the user-
assigned tags can be used as labels. In this case, GP ctagsifieinherit some level
of uncertainty can provide a probabilistic classificationieh tolerates the limitations
and possible errors caused by the tags. The predictivenearialso offers flexibility of
making predictions to new instances.

As mentioned above, another characteristic of tagged ddkeeiunbounded vocab-
ulary of the tagging systems [37]. Therefore, the tagged dats used for empirical
analysis are usually of high-dimensionality and sparseflesd]. In this case, the effi-
ciency of the model training should also be considered intaadto the performance
issue. Nevertheless, massive training data often reglairge memory and high com-
putational cost for most discriminative approaches iniclgcEVMs. Ad-hoc methods
have been developed to select subset for training but thgs®aches are somewhat
heuristic and often performed outside of the model itselétéad, the sparse GP frame-
work we developed directly selects a subset of most infas@atocuments from all
tagged data during training. The prototype selection @lgorwe developed requires
no extra cost because it reuses the covariance functiotog@ceby the GP framework.
Consequently, the GP model shows a very promising perfocenaen limited training
resources are available by comparing to SVMs [101].

5.2 Related Work

For the user-centered approaches, it has been observeoythahing usage patterns
from current userscollaborative filtering(CF) can be applied to suggest tags from
users who share similar tagging behaviors [45, 7]. Spedtifjaduring thecollabora-
tive step, users who share similar tagging behaviors with thewsevant recommend
tags to are chosen based on the between-user similaritresh \are calculated based
on the users’ tagging history. This step usually requireseacpmputed look-up table
for the between-user similarities, which is usually in tben of weighted symmetric
matrices. After that, théltering step selects the best tags from those similar users for
recommendation. As discussed above, the drawback of thr®@aph is obvious: a new
user that does not have recorded history are unable to bé&woefithis approach at all
since the similarities with existing users cannot be calmd. Moreover, calculating

variance of the function.
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the between-user similarity matrix poses a quadratic caatiomal cost to the number
of users. Unfortunately, the whole matrix needs to be reutated whenever a new
user pattern is injected into the system, making this ampraafeasible for web-scale
applications.

Among various unsupervised learning methods, clustegofrtique is of particu-
lar popularity for the document-centered approaches. 3, [(he authors suggested
a method named P-TAG for automatically generating pers&medhtags in a semantic
fashion. They paid particular attention to personalizedogations of web pages. In
their document-oriented approach, a web page is compartdandesktop document
using either cosine similarity or latent semantic analykisywords are then extracted
from similar documents for recommendation. The second kegwriented approach
alternatively finds the co-occurrence of terms in differ@atuments and recommends
the remaining tags from similar desktop documents to the pege. The third hybrid
approach combines the previous two methods. From a coliéiberfiltering point of
view, the first two methods can be interpreted as item-bageavith the item being
documents and keywords respectively. Their methods, hexveo not investigate the
behaviors between different users for similar web pages.

A clustering-based approach was proposed in [7] to aggeegahantically related
user tags in to similar clusters. Tags are represented abgrahere each node is a
tag and the edge between two nodes corresponds to theirccorecce in the same
documents. Tags in the same cluster were recommended tséhne lbased on their
similarities. Similarly, an automatic annotation methad images was proposed in
[80]. A generative model is trained by exploiting the stiate relationships between
words and images. A discrete distribution (D2-) clusteafgprithm was introduced for
prototype-based clustering of images and words, resultirggvery efficient model for
image tagging.

5.3 Approach 1: A Graph-based Method

The graph-based method we proposed consists of four stépsefresents the rela-
tionship among words, documents and tags into two bipagtaphs, then cut the graph
into sub-graphs as topic clusters, (2) ranks the tags wihth topic based on their
frequency, (3) trains a two-way Poisson mixture model focuwdoents and words, (4)
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performs a soft classification for a new document and recamanteegs with the highest
probabilities.

5.3.1 Bipartite Graph Representation

We define a graplty = (V, E, W) as a set of verticeg and their corresponding edges
E, with W denoting the weight of edges. e.gu;; denotes the weight of the edge
between verticesandj.

A graphd is bipartiteif it contains two vertex classes andY suchthal” = XUY
andX NY = (), each edge;; € E has one endpoint)in X and the other endpoinj)
in Y. In practice, X andY usually refer to different types of objects ahtrepresents
the relationship between them. In the context of documearesentationX represents
a set of documents whil¥ represents a set of terms, amgl denotes the number of
times term; appears in documerit Note that the weighted adjacency matvix for
a bipartite graph is always symmetric.For example, Figufedgpicts an undirected
bipartite graph with 4 documents and 5 terms.

T T2 T3 / T4

/

Y1 Y2 Y3 Y4 Ys

Figure 5.4. A bipartite graph ofX (documents) and” (terms). Dot line represents a potential
(best) cut of the graph.

5.3.2 Normalization and Approximation

Normalization is usually performed first for the weight niatii” to eliminate the bias.
The most straightforward way to normali@é is row normalization, which does not take
into account the symmetry . However, to consider the symmetryldf, we propose
to use normalized graph Laplacian to approximi&teThe normalized Laplaciah(1V)
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is defined as:
1— 21 if = j,

d;
LW)ij =4 —

0 otherwise

if 7 andj are adjacent
d;d;

whered; is the out degree of vertexi.e.,d;, = > w;;,Vj € V. We can then define
a diagonal matrixD where D;; = d;. Therefore, the normalized Laplacian can be
represented as

L(W) = DEY2Ww D2, (5.1)

For large-scale datasets such as the Web corpora and imiégioas, their feature
space usually consists of millions of vectors of very higineinsions (e.gs = 10°%,y =
107). Therefore, it is often desirable to find a low rank matfixto approximate.(7V)
in order to lower the computation cost, to extract correlai and remove noise. Tra-
ditional matrix decomposition methods, e.g., SingulaueaDecomposition (SVD) and
eigenvalue decomposition (when the matrix is symmetrequire superlinear time for
matrix-vector multiplication so they usually do not scale¢al-world applications.

For symmetric low rank approximation, we use the Lanczosrélyn [46] which
iteratively finds the eigenvalues and eigenvector of squaagices. Given am x n
sparse symmetric matri® with eigenvalues:

A > >\, >0, (5.2)

the Lanczos algorithm computega< k£ symmetric tridiagonal matri¥’, whose eigen-
values approximate the eigenvalues/fand the eigenvectors @f can be used as the
approximations ofd’s eigenvectors, withk much smaller tham. In other words, T’
satisfies:

|A = Tlr < ellAll, (5.3)

where|| - || r denotes the Frobenius norm, witlas a controlled variable. For example,
to capture 9% variances of4, ¢ is set to 0.05.

5.3.3 Bipartite Graph Partitioning

For multi-clustering on bipartite graphs, we apply the $@¢dRecursive Embedding
(SRE) algorithm [149]. Traditional graph cutting algortks aimed at minimizing the
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cut loss that minimized the weighted mismatch of edges betvgartitions. Unfortu-
nately, those approaches often lead to unbalanced clugtérls are not desirable. Thus,
SRE essentially constructs partitions by minimizing a ralieed sum of edge weights
between unmatched pairs of vertices, iring 4 gy Ncut(A, B), whereA and B are
matched pairs in one partition with® and B¢ being the other. The normalized variant
of edge cutNcut(A, B) is defined as:

cut(A, B) N cut( A, B°)
W(AY)+ W(X,B)  W(A%Y) + W(X, B’

Ncut(A, B) = (5.4)

where

cut(A,B) = W(A, B°)+W(A°,B)

= Z w;j + Z W (5.5)
i€A,jEB® i€Ac,jEB
The rationale ofVcut is not only to find a partition with a small edge cut, but also
partitions that are as dense as possible. This is usefuluioapplication of tagging
documents, where the documents in each partition are ydfeslised on one specific
topic. As a result, the denser a partition is, the better that asfestlocuments and tags
are grouped together.

5.3.4 Within Cluster Node Ranking

We define two new metrichl-Precisionand N-Recallfor node ranking. N-Precision
of a nodei is the weighted sum of its edges that connect to the nodeswitia same
cluster, divided by the total sum of edge weights in thatteluenote the cluster label
of i asC(i),

np; — Z?;l win[C(j) = C(i)] .

> i wirl[C(f) = C(k) = C(i)]

where the indicator functiof-] equals to one if the condition satisfies and 0 otherwise.
For the unweighted graph, the above equation equals to tnéeuof edges associated
with nodes in clusterC'(7), divided by the total number of edges in clust&ti). Gener-
ally, N-precision measures the importance of a node to th&ted, in comparison with
other nodes. In the context of text documents, the clustetapic set of documents and

ik A (5.6)
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the weight of the word nodes shows the frequency of the wqugearing in that topic.
With the cluster determined, the denominator of equatio@) (& constant, so that the
more weight the node has, the more important it is.

In contrast, N-recall is used to quantify the posterior pitmbty of a node: to a
given cluster and is the inverse fractionitsfedge associated with its cluster

| Ei]
|Ei| =325, 1[C>) = C(0)]

nr;, =

(5.7)

where| F;| represents the total number of edges from nodeis evident that N-Recall
is always no less than 1. The larger N-Recall is, the more ghigbthat a word is
associated with a specific topic.

Givennp,; andnr;, we can estimate the ranking of

ew (=) 040

0 r(i) =0,
where r(i) = (np;) *log(nr;). (5.8)

Rank;, =

Depicted in Figure 5.5, our ranking function is a smoothedaglate that is propor-
tional to both node precision and recall, guaranteed to Itleemange of0, 1). An ex-
ample cluster is also shown in Figure 5.5 where the precidaigsnp,; = 0.75, np; =
0.25, and the recalhr; = 7,nry = 3. Thus the rank of tag, is higher than,, i.e.,
t; = 0.8, ¢, = 0.1, indicating that tag; ranks higher in that topic cluster than tag

Potential applications of the aforementioned biparti@drnode ranking method-
ology include interpreting the document-author relatiops i.e., determine the social
relations (e.g., “hub” and “authority”) of authors in thensaresearch topic, and finding
the most representative documents in the topic. In whaba) we apply this frame-
work to tag recommendation by ranking nodes that repreagstih each cluster.

5.3.5 Online Tag Recommendation

A typical document of concern here consists of a set of wondssaveral tags annotated
by users. The relationship among documents, words, ancctagthen be represented
by two bipartite graphs as shown in Figure 5.6.
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Figure 5.5. Smoothed Ranking Function (left) and an example of twotiagg-document cluster
(right), with the numbers on the edges showing the freqesrafitags being annotated to specific
documents.

Figure 5.6. Two bipartite graphs of documents, words and tags.

The weighted graph can be written as

0 A 0
w = 14" o B, (5.9)
0 BT 0

whereA and B denote the inter-relationship matrices between tags aosg, diocs and
words, respectively.

Given the matrix representation, a straightforward apghda recommend tags is to
consider the similarity (e.g., cosine similarity) betwelea query document and training
documents by their word features, then suggest the topetatdgs from mossimilar
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documents. This approach is usually referred to as coliiverfiltering [15]. Never-
theless, this approach is not efficient for real-world scesa To take the advantage of
the proposed node ranking algorithm, we propose a Poissdimimodel that can ef-
ficiently determine the membership of a sample as well aseging words with similar
meanings. We summarize our framework in Algorithm 8.

Algorithm 8 Poisson Mixture Model (PMM) Online Tag Recommerdation

1: Input (D, S,T), K, M, L

Document collectionD = {D;, ..., D,,}
Word vocabulary:S = {Si, ..., St}
Tag vocabularyT = {Ty, ..., T,,}
Number of clustersiK € R
Number of componentsi/ € R
Number of word clustersL € R
Offline Computation
2: Represent the weighted adjacency malfixas in eq. (5.9)
3: NormalizelV using the normalized Laplacian
L(W) = DEY2AWw D) (eq. (5.1))
4: Compute a low rank approximation matrix using the Lanczos:
W~ L(W) = QuThQF
5: Partition?V into K clusters using SRE [149],
W ={Wy,..,Wg}
6: Assign labels to each documeBt, j € {1,...m}
C(Dj) e{1,...K}

7: Compute the node rankKank(T’) for each tagl; ;. in clusterk, i € {1,...,n}, k{1,..., K}
(eq. (5.8)) )

8: Build a Poisson mixture model fdiB3, C' (D)) with M components and word clusters,
whereB denotes the inter-relationship matrix of documents andiworiv (eq. (5.9))
Online Recommendation

9: For each test documet, calculate its posterior probabilitie3(C' = k|D = Y) in each
clusterk, and denote the membershipblasC(Y) = {c¢(Y,1),...,c(Y, K)} ((eq. (5.16)))

10: Recommend tags based on the rank of tags, i.e., the joinapildp of tagsT and document
Y, R(T,Y) (eq. (5.17))

Intuitively, this two-stage framework can be interpreteéa unsupervised-supervifjed
learning procedure. During the offline learning stage, sade partitioned into clusters
using an unsupervised learning method, cluster labelsssigreed to document nodes
as their “class labels”, and tag nodes are given ranks in@aster. A mixture model is
then built based on the distribution of document and wordesodn the online recom-
mendation stage, a document is classified into predefinetiechiacquired in the first
stage by naive Bayes so that tags can be recommended in tendewy orders of their
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ranks. To avoid confusion, we will refer to the clusters deieed by the partitioning
algorithm in the first stage adassesn the next section.

5.3.6 Two-way Poisson Mixture Model

We propose to use Poisson mixture models to estimate thédisdn of document vec-
tors, because they fit the data better than standard Poisg@nsducing better estimates
of the data variance, and are relatively easy for paramstenation. Although it takes
time to fit the training data, it is efficient to predict thesddabel of new documents once
the model is built. Because of the numerical stability o tstiatistical approach, the re-
sults are usually reliable. Since only probabilistic estiion is involved, it is capable
for real-time process.

Nevertheless, traditional unsupervised learning appresof mixture models [38,
107] are not always capable of dealing with document classifin. Considering the
sparseness and high-dimensionality of the document-walixnwhere most entries
are zeros and ones, the model may fail to predict the truerealistribution (i.e. the
probability mass function) of different components. As autg word clustering is a
necessary step before estimating the components in thelmbdevhat follows, we
utilize the two-way Poisson mixture model [81] in order tmaitaneously cluster word
features and classify documents.

Given a documenD = {D,...,D,}, wherep is the dimension, the distribution
of the document vector in each class can be estimated by aggagametric mixture
model. Let the class label k¢ = {1,2, ..., K'}, then

M p

P(D=d|C=k)=> mul(F(m)=k)[] é(d;|\jm), (5.10)

m=1 j=1

wherer,, is the prior probability of componenmt, with - 7, = 1. I(F(m) = k)
is an indicator function, i.e., whether compongnbelongs to class, and¢ denotes the
probability mass function (pmf) of a Poisson distributiofy;|\; ) = e 7 \; % /d;! |}
In this way, each class is a mixture model with a multivaridistribution having
variables that follow a Poisson distribution. Figure 5.0k the histogram of two
mixtures which can be regarded as the pmfs of two Poissoruneist
Our assumption is that within each class, words in diffedaduments have equal
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(a) (b)
Figure 5.7. An example of two mixtures of the Poisson distribution in telosters.(Top) The

histograms of mixture components. (Bottom) Mixture modaksification results. (a) Three-
component mixtures. (b) Two-component mixtures.

Poisson parameters, while for documents in different elgswords may follow dif-
ferent Poisson distributions. For simplicity, we also aseuthat all classes have the
same number of word clusters. Denéte {1, ,,, L} to be the word clusters, words in
the same word cluster. will have the same parameters, i.8;,, = A, ,, = 5\l7m, for
c(i, k) = c(j, k), wherec(i, k) denotes the cluster label of wordh classk. Therefore,
Equation (5.10) can be simplified as follows (with< p):

P(D =d|C =k) o< Y mml(F(m) = k) [ ] ¢(diil Arm)- (5.11)
m=1 1=1

5.3.6.1 Parameter Estimation

With the classes determined, we apply EM algorithm [32] tineste the Poisson pa-
rametersil,m,l e{l,..,L},me{l,.., M}, the priors of mixture components,, and
the word cluster index(k, j) € {1,..., L}, k€ {1,.... K},j € {1,...,p}.
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The E-step estimates the posterior probabjlity;:

Pim X 7qu?l[(C(i))l_[ (d(i, 1) A ) (5.12)

The M-step uses; ,,, to maximize the objective function

L(x{tD 3D D (1, )|l A O (k, )

7ml7

—maXinzmlog< H9 (4, ] P\%b)

i=1 m=1

and update the parameters

it = A;:Zﬂp@m , (5.13)
2 =1 2=t Pim
5\(t+1) _ Z?zl DPim Zj d(la ])H(C(Z))
" ‘d(l,])‘ Z?:l Piim ’
where|d(i, 7)| denotes the number ¢gfs in component.
Once)'t™ is fixed, the word cluster index**V (k, j) can be found by doing linear
search over all components:

(5.14)

A (k, 5) = argmaxz Z log(d(i, ) \)\(Hl ). (5.15)

i=1 meERy

5.3.7 Tag Recommendation for New Documents

Normally, the class label'(d,) of a new documend, is determined by the maximum
likelihood C'(x) = arg max, P(C' = k|D = d,). However in our case, we determine the
mixed membership of a document by calculating its postgaiobabilities to classes,
with Z,ﬁil P(C =k|D = d;) = 1. Applying equation (5.11) and the Bayes rule,

P(D = d,|C = k)P(C = k)
P(D = d,)
>t Tl (F(m) = k) [T2, & (il Aim) P(C = k)

- D , (5.16)

P(C =k|D=d) =
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whereP(C' = k) are the prior probabilities for clagsand are set uniform. Finally, the
probability for each tag;, i € {1, ...,n} to be associated with the sample is

R(T;,dy) = P(T = T}|D = d;) = Ranky, * P(C = z|D = d). (5.17)

By ranking the tags in descending order of their probabditithe top ranked tags
are selected for recommendation.

5.4 Approach 2: A Prototype-based method

The second method we introduce here, a prototype-basedd)ashmade up of three

main parts: (1) train a multi-class multi-label Gaussiamcgisses classifier, (2) find the
most informative prototypes (i.e., representatives) fmheclass, (3) perform a multi-

label classification for a new document by assigning it to@n@ore class, and recom-
mend the highest-ranked tags to the document.

5.4.1 Background of Gaussian Process Classification

A Gaussian process (GP) istochastiqrocess consists of a collection of random vari-
ablesx, which forms a multivariate Gaussian distribution spedifig a mean function
u(x) and covariance functioh(x, x’). For classification, the objective is to assign a
new observatiox, to one or more predefined classes denoted.by {1,...,C'}. GPs
can not be applied to the classification task directly bez#us values of) are not con-
tinuous. Consequently,latent functionf(x) is employed to infer the labels. The GP
prior is therefore placed ovef(x). Fig 5.8 (a) illustrates an one-dimensional case of
the latent function with mean 0. To make a prediction giverew R, one first de-
termine the predictive distributiop(f, |f), wheref is obtained from the training set,
f| Xirain ~ N(0,K), with K denoting the multivariate covariance matrix. The class
probabilityy, is then related to the latent functidn

5.4.2 Traditional multi-class GP model

Denote a training data s& = {(x;,y;)|i = 1,..., N} with N training pointsX =
{x;]i = 1,..., N} drawn independent and identically distributed (i.i.d.prfr an un-
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Figure 5.8. One-dimensional illustration of Gaussian process coastm for classification. (a)
A latent functionf(X') drawn from Gaussian Process, wh¢ife;) denotes the latent function
value of pointz;. (b) The class probability ok after scalingf(X) into (0,1) by a sigmoid
function ®(f;) = 1+ exp(—fi)’l, where P(z;) denotes the class probability af. (c) An
example of two-dimensional input with an independent nfiise covariance function of each
input. For the output latent functiofy both dimensions are equally important.

known distribution, and the associated labels- {y;|i = 1,..., N}, where each point
x; is a D dimensional feature vectax; € R” andy; € {1,...,C}. Following the con-
vention in [101], we introduce a vector of latent functiotues of V training points for
C classes, which has lengthV

£ = (fl o far oo flooo flor oo £E o [T, (5.18)

wherex; hasC latent functions; = (f!, ..., f¢). We further assume that the GP prior
overf has the fornf| X ~ N (0, K), whereK represents the covariance matrix which is
constructed from a pair-wise covariance functi§(x,, x,,-) 2 K] Specifically,
K is block diagonal of siz&¥ N x C'N in the matricesK;, ..., K¢, where eaclK;

represents the correlations of the latent function valugisinvclass;j. A wide range
of covariance functions can be chosen for GP classificati®i]] A commonly used

function in the classification case is thguared exponentidlinction, defined as:

d )\ >
K z 1 X0 (o - ) 5.19
[ N]nn’ = LEXp _5 2 ) ( : )

whered = {I, 3?} corresponds to thieyper-parameters



103

Given the training seD, we can compute the posterior of the latent function by
plugging in the Bayes’ rule,

N

plelx.y) = PPt SCII T iy, (5.20)

which is non-Gaussian. In eq.(5.20), the conditional pbiitg p(y|f) has not been
decided yet. In the multi-class caseis a vector of the length’ N (which is the same
asf), which for eachv = 1, ..., NV has an entry of 1 for the class which corresponds to
the label of the poink; and O for the rest’ — 1 entries. One of the choices isaftmax
function:

M) = ey

To proceed, we compute the predictive distribution of tresslprobability given a

(5.21)

newx, in two steps. First, compute the latent vatudy integrating ouf:

P(EIX, g x.) = / P(EIE, X, x.) p(E|X, ) df, (5.22)
—_———

eq.(5.20)

theny, can be computed by integrating dit

p(y«| X, y,x.) = /p(y*|f*)p(f*|X,y,x*)df*. (5.23)
—_——

eq.(5.22)

This method take®(N?) to train due to the inversion of the covariance malfix
A range ofsparseGP approximations have been proposed [74, 108]. Most okthes
methods seek a subsetif (M < N) training points which areaformativeenough to
represent the entire training set. Consequently, theitigicost is reduces tO (N M?)
and the corresponding test cost@9)/?). Next we discuss a sparse way to reduce the
computational cost in the multi-class case.

5.4.3 Our Multi-class Sparse GP Model

Our model involves several steps. First, we chodsd)V < N) points (denote as
X = {x,}M_)) from the training set. Then we generate their latent fumstf from
the prior. The correspondinfyfor the entire training set is thus drawn conditionally
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from f. See Figure 5.9 for details.

@____{--»ﬁ—{‘G)_»@_N

Figure 5.9. Graphical representation of our sparse multi-class GP moéds the hyper-
parameter that define the latent functin o denotes the extra parameter for placing a dis-
tribution overd.

First, assume that th&/ points have already been chosen. Then place a GP prior
on X, which uses the same covariance function as shown in ec)(Such that these
points have a similar distribution to the training data,

p(F|X) = N(£|0, Ky). (5.24)

Given a newx,, we utilize M latent functionsf for prediction. We compute the
latent valued, by integrating the likelihood with the posterior:

p(f*|x*,X,y,f,)_() = /p(f*|x*,f,X)p(f|X,y,)_() df, (5.25)

A B

where A represents the single data likelihood by applying to theiced set of points.
With f determined, the likelihood can be treated as a bivariatmaldistribution, which
follows a normal distribution:

f.|x., £, X ~ N(£. kL K/ £, Keox. — kL Ky Ky, ), (5.26)

wherek,, = K(x,x,) and[K,/];; = K(x;,x;).
Nevertheless, the problematic form of posteriddoes not follow a normal distri-
bution and has to be approximated.
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5.4.4 Laplace Approximation for the Posterior

Our method to approximate in eq.(5.25) is based on the Laplace approximation, which
were used in [101] for binary classification. Using the Bayeke,

p(fX)p(ylf, X, X)
p(y|X; X)

p(f1X,y, X) =
g

p(£1X) [ p(E[E, X, X)p(y[£) df
p(y|X, X)

(5.27)

Since the denominater(y| X, X) in eq.(5.27) is independent 6f we only need to
concern the un-normalized posterior when making the infgge\We notice that for part
C'in the above equatiom(y|f) can be obtained from eq.(5.21) and is not Gaussian.
Taking the logarithm o€’ in eq. (5.27), we have:

L(£) 2 log p(fIf, X, X) +log p(y|f), (5.28)
ﬁ,—/ T

where £, corresponds to the complete data likelihood, which can meigeed i.i.d.
given the inputs, i.e.,

N
p(fIf, X, X) = [ [ p(falxn, £, X) = N (£|Ky i Ky £, A), (5.29)
—_————
n=1

eq.(5.26)

with A = diag\), \, = K, — k'K, /'k,, [Kyaem = K(x,,%,,). Combining
eg.(5.29)X (5.21), we can evaluate eq.(5.28) as follows:

L(f) = (—ﬂ log 2m — — log |A| — 1(WTA 1VV))

+ (Tf Zlog Zexpf ) (5.30)

whereW = f — Ky, K/ f. By differentiating eq.(5.30) w.r.£, we obtain

Vfﬁ(f) = —Ailf + AilKNJ\/jKX/[lf + Yy —1m, (531)
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wherem is a vector of the same length gsandm§ = p(y¢|f;). At the maximum, we
have the MAP value of:

f = Kyy K f 4+ Ay — ). (5.32)
Differentiating eq.(5.31) again, we obtain
VVeL(f) = —A~' =M, M 2 diagm) — 11117 (5.33)

According to [101],IT corresponds to a matrix of sizéN x N, which can be ob-
tained by vertically stacking didgn®). Using the Newton-Raphson formula, we obtain
the iterative update equation for

f = f—(VVy) Vg (5.34)
= (A M) (MF + A Ky Ky f +y — m).

Applying the Taylor Expansion, we obtain
L) = £(F) — %vaﬁ(f)(f e (5.35)

Thus the integral part in eq.(5.27) can be estimated acalii

/(C)df = /exp(ﬁ(f))df
= / exp <£(f) — %vaﬁ(f)(f - f)2) df
— exp (ﬁ(f)) / exp (—%vaﬁ(f)(f . f)?) df
— exp (E(f)) V21 VL) (5.36)

Note that the above equation essentially forms a normakkéonf, where the only
part that contain$ is 1((f — KynK,,/ f)TA™(f — KynK;/f)). Back to eq.(5.27),
asp(f| X) follows a normal distribution according to eq.(5.24), thesterior also forms
a normal distribution. Consequently, we only need to caleuthe mean and variance.
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After some matrix manipulation, we have

Q'P -
I’l’p = Ta Ep - Q 17
WhereQ = (KN]\/jKX/[l)TAil(KN]\/jKX/}) -+ KM,
P = A (KyuK;). (5.37)

In this way the Laplace approximation gives an estimatedtsg(f| X, y, X) of the
posterior in eq.(5.27). We can thus compute the latent gadfithe newx, by plugging
the result into eq.(5.25). The estimated latent vaji{€s-) now forms a Gaussian since
both A and B in this equation are Gaussian. The only effect is to comphéertean and
covariance, which is given by

Hosc > fhp, (5.38)
Y. =Ky +3,. (5.39)
5.4.4.1 Determine the class label of test documents

The final step is to assign a class label to the observatipgiven the predictive class
probabilities by integrating out the latent functign

D(yalx., X, v, £, X) = / B(E|x0 X, . F, X)p(y.|.)df.. (5.40)

which again cannot be solved analytically. One way to appnate is to use cumulative
Gaussian likelihood. In [101], the authors estimated thamy@rediction by drawing

S samples from the Gaussiautf,|y), softmax and averaging the results. Once the
predictive distribution of the class probability is detémed, the final label ok, can be
decided by choosing the maximum posterior (MAP):

t(x.) = argmax p(y(x,)°]), c¢=1,..,C. (5.41)

5.4.5 Informative Points Selection

It remains to optimize the parameteéds= {0, X}, which contain the hyper-parameters
(1, %) for the covariance matriK as well as finding the subsét of M points. Tradi-
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tionally, they are optimized jointly by optimizing the mangl likelihood of the training
data. In our approach, we instead treat them individually.

5.45.1 Parameter Inference for the Covariance Matrix

The marginal likelihood of can be obtained by integrating ot
Py, X.0) = [ pO1X X DAt = [ep(ear.  (6.42)

With a Taylor expansion of (f) aroundf we find

~ ~

L(F) = L) + (F — F)VEL(E) +=(F — H)TVVL(E)(E — ).
T 2

Therefore, the approximation of the marginal likelihood te written as

p(y|X,X,0) =

exp(L(f)) /exp (%(f — %)TVVfE(f)(f - f')) df. (5.43)

The log marginal likelihood can be obtained by taking lotiemi on both sizes of the
above equation,

_ N CN

log 27 — % og [VV:L(E),  (5.44)
which can be maximized w.r.t. the paramet®r® obtain/ andX. Note that eactx. is

aD x D symmetric matrix, wheré® is the number of dimensions. We assume that each
dimension is independent, thus simplifi€s to be a diagonal matrix. However, this
still yields DC parameters to estimate fér. Therefore, we further assume that within
each class, the covariance of each dimension is the same, so that thleniatnber of
parameters fok. is reduced ta’.

5.4.5.2 Prototype selection forX

The original gradient calculation in eq.(5.44) is very cdicgied. However, we can
simplify it with the assumption made on the covariance mat8ince eacl¥, is now
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independent of each other, we can estimate the locatiof®eddtive points regardless
of the choices of andX. We greedily find the locations of by stochastic gradient
descent method. This is similar to finding the optirpadtotypedor each class, which
is a subset of points that contains enough information fohedass. Our method for
optimal prototype search is parallel to [110], which is uwdi -nearest neighbor clas-
sification. We select a set @ff prototypes by minimizing the misclassification rate of
the training set,

N M

X X) = 1 37 3 Pllx) (1~ T = 92), (5.45)

n=1m=1

where the indicator functiohis 1 if the condition is hold and 0 otherwise.
The likelihoodP(x,,|x) can be calculated by plugging in the normalized covariance:

kimx
i .
Zm’:l kim/x

We can further rewrite the loss function in eq.(5.45) by remg the indicator func-

P(%|x) = (5.46)

tion:

Q(X,X):%Z > PRalx), (5.47)

n {m:gm#Ayn}

-~

J/

b

wherel,, indicates the individual cost of misclassification, whishcontinuous in
the interval(0, 1). Therefore, it can be minimized by gradient descent wAf,t.

Kot + 1)
= Xpu(t) — a(t)Vg,, ln(t)
= R (t) + AP ) (K 7 1) = b (8) S22,

x4 { (1= ) Pl ) G =) 1 i # 31
—lpn (1 = 1) P(Xp|x)(X,, —x) oOtherwise

Here a(t) > 0 is a small enough number which specifies the step length of the

descent. The program stops when a stopping criterion ihveeacWe further notice
that only those points falling into a particular area of thput space can contribute to
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Figure 5.10. An example of prototype selection withf = 2. Left figure shows the original
distribution; right figure, contour-plots the results osdent where black dots are the starting
points.

the update of the prototypes. This fact is explained asvinelowrule in [67]. So we
can speed up the prototype updates by searching over thass paly. Figure 5.10
shows an example of two prototypes. It can be seen that hfes steps of descent, our
algorithm successfully finds informative points for eacssl.

For brevity we hyphenate our method gsae @ussian process withrétotype
Selection (SGPS).

5.4.6 Discussion of the Computational Cost

The most influential part on the computational cost is thelision of the covariance
matrix K which takesO(N?) time. In the sparse framework, however, it should be no-
ticed that only the covariance matrix for thi¢ prototypes is required to be inverted,
which refers td<,, in our case. To be exadK ,; needs to be inverted when calculating
A ineq.(5.29)f in eq.(5.35), as well a§ andP in eq.(5.37). For efficient inversion,
Cholesky decomposition is often employed [101], which eesuhat forN training
points distributed inC' classes, the training stage can be realize® (/2 NC) time
with M prototypes, likewis® (M?2C') per prediction. In practice, the Cholesky decom-
position is only required to be computed once for a trainiagg which can then be
saved and used in other equations efficiently. So it almastsdmear time for training
a data set withV points.

As for the cost of prototype selection, since the updateses covariance matrix in
eg.(5.46), no additional storage and computation are reduirherefore, eq.(5.48) can
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be efficiently updated in at mo&i(NC') time.

5.4.7 Application to Multi-label Tag Suggestion

So far, we have only considered the case that the each obeariasingle-labeled,

i.e., belongs to only one class. In fact, many real-worlcbpgms are multi-labeled. In
the case of tagged data, each tag associated with a docuragitarreated as a label,
which may or may not refer to the same topic as other labelas;Tthe problem of

tag suggestion can be transformed into a multi-label diaason problem where the
objective is to predict the probability of a document withpadssible tags (labels) given
a fixed tag vocabulary and associated training documents.

The problem of multi-label classification (MLC) is argualohore difficult than the
traditional single-label classification task, since thenber of combinations for two
or more classes is exponential to the total number of cladsess/V classes, the total
number of possible multi-labeled class2i¥, making it unfeasible to expand from an
algorithm for single-label problems. Much research hasliEsoted to increasing the
performance of MLC and generalize the framework to singlel classification; see
related work for more information[129].

As pointed out in [16], multi-label classification can begatied as a special case of
label ranking, which can be realized if the classifiers ptevieal-valued confidence
scores or a posterior probability estimates for classiboabutcomes. Thus, the multi-
class SGPS model readily maps to this problem, since theibugptory, contains real-
valued scores of the posterior class probabilities. Spadlii in the multi-label case, we
assume that the class label of a training instanée no longer a binary value, but rather

xbox fun game cat puppy
tags

|
L v \
category xbox game fun  puppy

Figure 5.11. Example of document-tag graph. Each document is assoaciatieanultiple tags.
Tag with the highest frequency is treated as the categotyadftocument (shown in bold line).
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Algorithm 9 Multi-label Multi-class Sparse GP Classification (MMSGY) ftag Rec-
ommendation

. Input: training dataD : {(x;,y:) 1, x: € R y; = {yi, ., y; 2 }
: M: number of prototypes

: k: covariance function

: begin training procedure

cfori=1:N

¢; = max(s(y;)) //decide the category of;

: end for

. Train a GP classifier givef(x;, ¢;)Y, M, k}

: Output: X, f

: begin test procedure

. Input: a test objeck.

: Decide its category probabilities. given X, f (eq.(5.40))

: for each categoryn € {1,...,C}

for each Iabeyff) € {yz(f), ,yl(;()}

) = Rank:éf? O (Xx)
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: end for
: Output: P(y.,x.)

=
m\‘.. ..

a vectory; of binary values where eagfy denotes the existence/absence ah class;.
We further assume that these class probabilities can bedaadcording to their values,
wheres(y;n) > s(y:,) indicates thay;,, is preferred tay;,,. In the context of tags, the
value of a tag is defined as the number of times it has been asethbtate the specific
object. So if a documernt,; (cf Figure 5.11) is tagged 4 times wigame 3 times with
funand 5 times withkxbox we can rearrange the labels in the descending order, pegldi
{ xbox5), gameg4), fun(3) }. Note that normalization is usually required to ensure
the well-defined class probability, thus the class prolitédslof the above case become
{0.42,0.33,0.25}. Figure 5.11 shows an example of 4 documents and 5 tags veith th
categories in bold lines.

In this way we can transform multi-class multi-label cléissition intomulti-categorj]
single-labelclassification. Specifically, we first assign eachnto a singlecategoryc
which corresponds to its top-ranked label (e.g., in the aluase, the categoryx®oX).
Each category contains a set of labels that belong to thectshije that category. In-
tuitively, tags that belong to the same category are moresgaally related than tags
in different categories, i.e., tags in the same categorg laavigher co-occurrence rate.
However, it should be noted that an individual tag could bglto multiple categories,
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e.g., in Figure 5.11fun appears in two categories. The above two phenomenon can be
roughly explained by the behavior pblysemyandsynonymyn linguistics. Table 5.1
shows three ambiguous tags and their corresponding cé&egorone of our experi-

ments.
tags categories
apple macapple computers 0SX technology IT
food healthapple nutrition fruit green
tiger photos na_lture_ animaler cute animals
sports vidediger woods golf games
music artopera culture design download
opera :
software browseoperaweb tools internet

Table 5.1.Example of ambiguous tags from del.icio.us.

Given a training sef(x;, y;) }Y, the within-category scores of all possible labels are
defined as

1
70 Z Zs(yz'j)ﬂ(yzj =yi), Yy = {Yir, - Yigc (5.48)

©X;€C ]

Ranké‘? =

where Z(©) is a normalization factor for category We summarize this approach
in Algorithm 9, K refers to the total number of possible labels. During thining
phase, we train an SGPS model fOrcategories, as well as calculating the within-
category scores for all labels. In the test phase, we use tueinfirst to determine
the probabilistic distribution of the categories given avtest case. Then combine this
evidence with the within-category scores of tags in a miitipive fashion to obtain the
final label distribution. The labels are sorted in descegdimler based on the estimated
likelihoods, the top-ranked tags are used for recommemnlatFrigure 5.12 illustrates
the process.

5.5 Experiments

To assess the performance of the two proposed frameworkgnwparically analyze
them using real-world data sets in this section. We will ®ocun the quality of the
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training @ .
to
docs test doc @

SGPS test
(a)

{P(c=1|d,),..., P(c=Cld.)}

SGPS train 1
.................... category 1 X tag ranking

trained -
model d 2 - { }
e BT sort results suggested tags
category C

Figure 5.12. The training and test processes of MMSG. Edglis a document and eachis a
tag.

tagging results as well as the efficiency of the tagging dlgms’.

5.5.1 Evaluation Metrics

In addition to the standard precision, recall, F-score aedd&ll r rank correlation
metric [64] that measures the degree of correspondencesbetiwo ranked lists, we
also propose the following metrics to measure the effestigs of tagging performance.

e Top-k accuracyPercentage of documents correctly annotatedtdgastone of
the topkth returned tags.

e Exact-k accuracy:Percentage of documents correctly annotated by:theec-
ommended tag.

e Tag-recall: Percentage of correctly recommended tags among all taggatad
by the users.

e Tag-precision:Percentage of correctly recommended tags among all tagesrec
mended by the algorithm.

SOther experimental results such as the performance of tseGaussian processes model and the
multi-class multi-label algorithm on bench-mark data setsavailable in [117].
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5.5.2 Data Sets

For evaluation, we made an effort to acquire three data sats $everal most popular
tagging websites.

CiteULikeis a website for researchers to share scientific refererycaiédwing users
to specific their personal tags to the papers. We acquireagjged data set from CiteU-
Like for over two years from November 15, 2004 to February2l®)7. We mapped the
data set to papers that are indexed in CiteS@egxtract the metadata. Each entry of the
CiteULike record contains four fields: user name, tag, kbg (aper ID in CiteSeer),
and creation date. Overall, there are 32,242 entries, waA3®distinct papers and 6,527
distinct tags (tag vocabulary). The average number of tagpaper was 3.35.

Del.icio.usis one of the largest web2.0 web sites that provides serficassers to
share personal bookmarks of web pages. We subscribed tq20ptags in del.icio.us,
each of which is treated as a topic. For these topics, weeveli 22,656 URLS from
March 3rd, 2007 to April 25, 2007. For each URL, we crawledidel.us to obtain the
most popular tags with their frequencies. We also harvasietiTML content of each
URL. We ended up with 215,088 tags, of which 28,457 are dis{tag vocabulary),
averaging 9.5 tags per URL. The total size of the data seigistsi over 2GB.

BibSonomys a newly developed web 2.0 site which provides the sharirspoial
bookmarks for both web pages and scientific publicationsctllected data from Bib-
Sonomy between Oct 15 2007 and Jan 10 2008. We randomly séB(ptags from the
tag lists. For each tag, we retrieved the content of bookeaith related tags. Over-
all, the BibSonomy data set contains 14,200 unique items 3Wt605 words. The total
number of tags is 6,321.

Table 5.2 shows top 10 tags for all three data’sétsr preprocessing, we considered
the temporal characteristics of tags and ordered the ddtmbyand used the earlier data
for training and tested on later data. We performed experigwith training data from
10% to 90%.

Shttp://citeseer.ist.psu.edu/
All data sets are available upon request.
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CiteULike del.icio.us BibSonomy

Tag Name\ Frequency|| Tag Name \ Frequency || Tag Name\ Frequency
clustering 245 internet 1743 tools 2459
p2p 220 technology 1543 computingl 2294
logic 185 java 1522 software 1974
network 175 software 1473 blog 1717
learning 175 web 1429 internet 1647
haskell 166 photography 1375 web 1631
web 162 news 1328 analysis 1562
distributed 151 music 1291 data 1248
algorithm 142 business 1115 search 1196
algorithms 140 travel 1092 design 1117

Table 5.2. Top 10 most popular tags in CiteULike, del.icio.us and Bib&ay with respective
frequencies.

5.5.3 Comparison to Other Methods

We compare the performance of tag recommendation of ouritigowith three other
approaches.

The first unsupervised learning method we consider is tresidaollaborative fil-
tering algorithm [15]. The Vector Similarity (VS) approachused to calculate the
similarity between documents, which computes the cosimdagiity between a query
Q and each training document, Sim(Q, D;) = —=2=it@InEI)__ \wheren(i, j)

V@2 nling)
represents the count ¢ word in document. The topt tags froms most similar docu-

ments are then considered. In our experiment, we settantd s to be 3, resulting in 9
recommendations for each query document. To improve preoce, we augment the
vector similarity approach by applying information-gan2] (VS+IG) to select roughly
5% of the total features.

The second method we compare to is the famous topic modeldayHl], namely
Latent Dirichlet Allocation (LDA). For tag recommendationme first trained a:-topic
LDA model [12], wheren is decided by the number of tag categories. The posterior
probability of P(topic|doc) is then used to determine the similarity between a test docu-
ment and the training ones. Tags are therefore suggestkd tetv document from the
most similar training documents.

The last method we consider here is a variant of the supehnéesning method
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Support Vector Machine (SVM). We choose SVM for comparisenduse it has been
shown that SVM usually outperforms other classifiers fot t#assification [27]. We
first use SVM ! to train a multi-label SVM model for the training documéhtand
then use the same ranking function as in eq.(5.48) to retyrmanked tags for recom-
mendation.

5.5.4 Quality of the Tagging Performance

Table 5.7 lists the top user tags for each of the top 8 papersiedl as the top tags
recommended by our algorithm. The bold fonts indicate amlape Generally, at least
one correct recommendation is made for each paper, and #teayy recommended
always matches one of the user tags. In addition, althougte secommended tags do
not match the user tags literally, most of them are semdlyticgdevant. e.g., “www”
is relevant to “web”; “communities” is often consisted inotsal networks”; “page”
and “rank” together have the same meaning as “pagerankheibeést scenario, 7 of 9
recommended tags match with the user tags for the paper ‘@ialibn Learning With
Bayesian Networks”, which has a Kendaltank of 0.78.

Model Training Time
450 T T T T T T
HVMSG
Hrvm
-SVMstrucl
DA
300 [vBGP

IVM
250 O
[ Jvs+IG

4001

w

a

o
T

Training Time (seconds)

2% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Training Data

Figure 5.13. Average tagging time on the CiteULike data set. Our modejsire the least time
for making recommendations.

We present a summary of the experimental results in TableCa6rall, our models
PMM and MMSG exhibit better performance for all three dats.s©n average, PMM

8http://www.cs.cornell.edu/People/tj/svight/svm.struct.html
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Algorithm  Precision Recall F-Score Kendallr rank
CiteULike

VS+IG 25.880 36.57% 30.18% 0.13
LDA 29.15%  43.33% 36.71% 0.19
Svmstruet 3321 50.17% 43.25% 0.29
PMM 39.17%  56.390 49.96% 0.37
MMSG 40.270 59.11% 51.08% 0.41
delicious

VS+IG 27.6606  39.094 32.16% 0.09
LDA 32.71%  48.33% 42.99% 0.18
SVMstruet - 40.21%  61.44% 50.63% 0.25
PMM 4352 62.3% 52.7T% 0.37
MMSG 47.38, 66.16%0 54.23% 0.44
BibSonomy

VS+IG 25.1%  40.09% 36.90% 0.13
LDA 31.75%  49.68% 42.17% 0.28
SVMstruet 33,48 52.93% 45.56% 0.33
PMM 35.21%  55.72% 47.23% 0.37
MMSG 39.4%, 57.0%% 52.3%% 0.39

Table 5.3. Tagging performance.

and MMSG performs 3.2 times better than VS+IG, 2.1 timeseb¢itan LDA, and 1.3
times better than SVM. Note that for MMSG, the performandffisiently achieved by
using only5% of the training instances.

In addition, we also examined the performance of individagk by looking at the
top 10 suggested tags. We are interested in the differenoerfarmance between pop-
ular tags (e.g., web, network, clustering) and rare tags, @sp.net, latex, 3d). For each
data set, we chose the top-5 most/least popular tags amabaethe suggesting results.
Figure 5.16 depicts the results. It can be observed that MM&EGPMM outperform
SVM and others in most cases. We notice that while SVM is coaiga to MMSG
and PMM for popular tags, our algorithm shows a clear edge 8V for rare tags,
with more than 1& and 15% improvement respectively. Since rare tags appear in fewer
documents, this result gives credibility to the claim tha¥iBIG works well with very
few training instances.
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5.5.4.1 Model Selection for Tag Suggestion

Next we quantitatively show how the model selection refl¢laes performance of tag
suggestion. In the graph-based method, parameters inolwaéer of topic clusters
K, number of mixture model component$ and number of word clusters. In our
experimental setting, we select these parameters by parfgrcross validation on the
training set.

In the prototype-based framework, model selection inelne decision of (1) the
number of prototypes, (2) the covariance function and (8)nyper-parameters. Since
the hyper-parameters are often associated with the coxarfanction and can be cho-
sen by optimizing the marginal likelihood of the trainingalave then focus on how (1)
and (2) affect the performance. A common covariance funatiged for classification
is the squared exponential function (SE) in eq.(5.19). Aarahtive function takes the
form of neural network (NN):

K(x,x') = gsilf1 < = 25{?25{’ —— ) , (5.49)
V(1 +2xT8x)(1 + 2xTEx)

with x being the augmented vector of the input

For brevity, we only use the Del.icio.us data set to illugtrdne results of model
selection. We compare our results with SVM which uses theesara covariance func-
tions. Figure 5.14 demonstrates the results on the threleotiet We set the number of
prototypes\/ to be5%, 10%, 20% and50% respectively. It can be observed that MMSG
generally outperforms SVM by roughly %0at each point. With the number of proto-
types increases, the precision also soars up froth 8062% for MMSG. Meanwhile,
by using neural network as the covariance function, both S\d MMSG gain about
2% precision at each point. It can also be observed that by tangptimal subset se-
lection, the PMM method (denoted as PMM-OPT) performs atrasgjood as MMSG
with SE kernel. Overall, MMSG-NN shows the best performance

5.5.4.2 Optimal Prototype Selection for Tag Suggestion

To justify the use of the prototype selection (PS) algorittunthe prototype-based
method, we compare with the criteria used in [109] which &ffidy includes points
into the active set based on information gain (1G). We alstuithe a random selection
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Model Selection Performance
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Figure 5.14. Comparison of tagging performance of SVM, PMM and MMSG. Twwariance
functions used: SE = squared exponential, NN = neural né&twor
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Figure 5.15.Tagging performance of three selection algorithms and PEIRTF. RND = random
selection, IG = information gain, PS = prototype selection.

(RS) method as the baseline. Figure 5.15 presents thegeasuldlel.icio.us. Gener-

ally, prototype selection shows better precision than I@llifiour cases. To be specific,
prototype selection gains more than% @erformance improvement comparing with
information gain when/ = 50%.
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5.5.5 Discussion of the Quality of Recommendation

It has been observed in our experiment that most algoritherfened better in the Ci-
teULike data set than the Del.icio.us data set, while theopmiance of the BibSonomy
data is sort of in between. Remember that the CiteULike datiéatns mostly scientific
documents, Del.icio.us has mostly web URLs with unstredurontents, while Bib-
Sonomy has both documents and web pages. We thus give twanextioins for the
degraded performance on the web page tag recommendatiorFiest, we notice that
our algorithm usually fails when the content of a specific UiRintains little of the nec-
essary information, i.e., words in our case. As an examgighe topics “photography”
and “travel”, many pages only contain images and short gegmms, making it hard for
our model to determine the proper components for a test gampl

Second, unlike structured scientific documents with cdietlovocabularies, the het-
erogeneous nature of web pages not only results in varigtHéword count) of the html
pages, but also the distribution of the tag vocabulary. ¢t far PMM, thetag/docratio
for the CiteULike data is 0.68 (6,527 unique tags vs. 9,638ps), compared with 1.26
(28,457 unique tags vs. 22,656 URLS) for del.icio.us. A mes study [45] has shown
that the tag vocabulary usually does not converge for a Bpeser, reflecting a con-
tinual growth of interests. Thus, we believe that a largeviagabulary could possibly
compromise the recommendation performance for unstredtweb pages. On average,
2.91 correct tags are recommended for each test sample.

5.5.6 Efficiency of Tag Recommendation Methods

To show that our model is capable of making real-time tagdandarge volumes of
documents, we evaluate our model in terms of the averagentqatme for query docu-
ments. Different proportions of training documents (fro@¥:to 90 %) are tested.
Figure 5.13 and Table 5.4 present the performance of CitedJand del.icio.us data
respectively. Our approaches exhibit stable performance on both dasanstt very
small variance. On average, only 1.08 seconds is needed b®&1fdr each test doc-
ument on CiteULike and 1.23 seconds for del.icio.us. WhN&WPshows a slightly
slower prediction speed, the time still scales linear tortheber of training data. On
the other hand, the average tagging time for SimFusion ard®$ 6.4 and 16 seconds

9The experiment was performed on a 3.0GHZ sever
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respectively, expected to grow exponentially with the &ase of the features.

% Train  MMSG PMM  SVM struct LDA VS+HIG
10 0.35+0.2 0.64+£04 25+1.7 1.7+205 17.3+£10.8
20 0.38+0.2 0.69£05 2.7+£16 1.9+05 25.8+10.9
30 0.43+0.2 0.72£05 29+18 22+0.6 33.3t12.7
40 047+ 0.3 0.77=05 3.3+19 25+0.7 46.8+129
50 0.53+ 0.3 0.79+-0.6 3.3+-2.0 2.6+0.7 53.2+13.1
60 0.56+ 0.3 0.83+0.6 3.8+25 29+1.1 59.0+14.1
70 0.60+0.4 0.88+£0.8 4.1+24 32+1.2 86.8+14.6
80 0.62+ 0.6 0.93£0.7 44+26 3.6+x14 106.2+19.8
90 0.65+ 0.6 0.94+-0.8 4.8+42.8 3.7+15 117.2£25.9

Average 0.510.34 0.8@0.60 3.53t2.15 2.7@:0.91 60.6214.98

Table 5.4. Average tagging time (seconds) for the three data sets.

5.6 Tag Recommendation for Rich Media Data

The amount of digital interactive media has been growingadttemmomenal rate since the
emergence of the Web 2.0. Web sites that populate rich madralike Flickr'® (image)
and Youtubé' (video) have attracted a significant amount of Internefitrads well as
millions of Internet users. These web sites also allow utsespecify keywords or tags
for resources which are of interest.

However, making tag suggestions to rich media data is ndtagstforward as sug-
gesting tags for a collection of text data [49](e.g., d@&.igs'?). The reason is multifold.
Tags are usually in the format of text while the content ofdbgects is not. Therefore,
domain knowledge is often required for content-based obgtaeval, which is not uni-
versally applicable for applications across domains. Iditazh, scalability needs to
be addressed when making tag suggestion, since storimgyedtrich media data is not
cheap due to the size of the object (usually much larger tetrdata). In [80], the au-
thors proposed a real-time annotation method for imageene@tive model is trained
by exploiting statistical relationships between words endges. The model is capable
of annotating an individual image in approximately 2 sesond

Onhttp://www.flickr.com/
Uhttp:/lyoutube.com/
http://del.icio.us/
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Nevertheless, the state-of-the-art for the training tioredigital data leaves much to
be desired. In [80], the reported training time is roughly6liours for 599 categories
(classes), each of which contains 80 training images. Thetoae-train the model for
other data sets or domains is obviously substantial.

Therefore, we propose a universal framework for tag richienddta by using our
MMSG tagging algorithms. To be exact, we leverage the sidyal) information of
the data as features for training MMSG. We claim that ouritagggpproach is especially
suitable for large-scale digital data in the sense that:

e Our tagging algorithm only leverages the side informatioreaning that only
textual information needs to be stored and retrieved, wigchsually cheaper
to store/retrieve than the digital data itself. Furtherepdhe sparse framework
only requires a small portion of the training data mainteimemain memory for
predicting new instances. Thus, the program could be e#silyto real-world
systems and necessitates no out-of-core treatment. Asatmhed instances be-
coming available, real-time updates or online learninguthbe possible as well.

e In general, tag suggestion is still a complex problem, wiuigh be addressed in
many aspects. It should be noticed that our approach doeglgain the actual
content of the data, and thus could be considered as a pteotplement of the
content-based method. In practice, our approach can seraecamponent of a
large commercial system and boost performance.

5.6.1 Flickr and Youtube Data

Side information for an object

Flickr | title, description, usecomments, category, additionalformation
Youtube | title, description, comments, category, naofeelated videos,
videosfrom_sameperson

Table 5.5. Side information for training the model.

We consider an application of our MMSG algorithm on tag sstjge for real-world
rich media data. For this purpose, we collected data frockFand Youtube between
Sep 15 2007 and Oct 21 2007, using their image and video dgpactvely. We sub-
scribed to their RSS feeds of the top 30 most popular tags both sites, including
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art, birthday, movie, people, travalnd so on. An individual feed contains the basic
information of the data such likiitle, category, url, description, tagand etc. We then
re-crawled each individual URL in the feeds to get the neesilgelinformation. Typical
side information of an image/video used in the experimentesfound in Table 5.5. We
further eliminate instances that contain too little sidi@imation from our experiment.
Stemming and stop-words removal were performed to redwcdithensionality. Over-
all, the Flickr data contains 22,186 unique items with 68,@brds, whereas Youtube
has 2,489 items with 9,761 words. The total number uniqueitat0,341 and 6,724 for
Flickr and Youtube respectively.

Algorithm Precision Recall F-Score
Flickr
SimFusion 31.% 56.2% 43.1%
MMSG 43.6% 68.4% 57.2%
Youtube
SimFusion 27.% 48.0% 36.4%
MMSG 38.2% 54.9% 49.4%

60 50

501 MMSG 20+ MMSG
. SimFusion - SimFusion
X s
; \;30'
§ 30 g
320/
LA g

10 10

1 2 3 4 5 6 7 8 9 10 O 1 2734 5 6 7 8 9 10

Tag Rank Tag Rank
(a) Flickr data (b) Youtube data

Table 5.6. Results on Flickr and Youtube data. The accuracy corresptmthe percentage of
objects correctly tagged by thith tag.

For training, the data is organized into 30 classes using tibye-ranked tags. Note
that due to the temporal characteristics of tags, we thirkntore reasonable to order
the data chronically. As such we use the first half for tragniand the second half for
testing. Overall, the training time is 98 minutes for Fligkrd 24 minutes for Youtube.
During testing, the top-ranked tags are returned for ev@unagainst the ground-truth
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tags from users. Unfortunately, the previously used LIBS¥&hnot handle this prob-
lem. Instead, we compared with a recently developed metio&®ion [142] which
outperforms other ranking algorithms in several data datadditional to the standard
metricsprecision, recalland F-score we present the performance for the top-10 sug-
gested tags as suggested in [80].

Figure 5.17 lists several examples with good tagging reswle also present a
summary of the experimental results in Table 5.6. Overait,roodel is able to boost
the tagging performance significantly by comparing with Busion. This is efficiently
achieved by using onl§% of the training instances. For individual tags, the top-mos
suggested tag for Flickr is able to achieve a 56&ccuracy, compared with a 323
accuracy for SimFusion. Likewise, the top-most tags hav@’4&ccuracy for Youtube,
whereas the value is 27&or SimFusion. However, it costs less than one second for our
algorithm to make a prediction per case, where SimFusiagstatore than 4 seconds.

5.6.2 Limitations of Our Approach

Since our algorithm for tag suggestion only leverages dieetial) information, the
limitation is evident. For an image/video without any sugipg textual information,
our algorithm performs no better than a random guess. Hawsiree textual infor-
mation is usually cheap and abundant, our algorithm careses\a good complement
for the content-based approach, or an individual compoioehdrge-scale commercial
systems. In fact, many online image search systems stilbrethe surrounding textual
information of the objects, including Google Image Se&tch

Bhitp://images.google.com/
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Figure 5.16. Tag suggestion results on popular and rare tags for Cited)Lidelicious and
BibSonomy.



| Paper Name

[Tagg Top User Tags

| Our Matched Tags

The PageRank Citation
Ranking: Bringing Order to
the Web (Larry Page et al.)

135

google, pagerank, search,
ranking, web,

networks, ir
social-networks

PMM: search web,
pagerank, ir
MMSG:google ir
pagerank, ranking
web,

The Anatomy of a Large-Scal
Hypertextual Web Search
Engine (Sergey Brin et al.)

94

google, search, pagerank,
web, engine, www,
web-search, ir, graphs

PMM: search web,
www,enging ir
MMSG:google www
ir, web

(Jon M. Kleinberg)

ir, algorithm, graphs, graph
power-law, network

ReferralWeb: Combining Socjal | folksonomy, collaboration, | PMM: networks,

Networks and Collaborative | 88 | social-networks, networks, | filtering,

Filtering (Henry Kautz et al.) filtering, recommender, tagging, social
tagging, social, MMSG: networks,
network social recommender,

tagging,

A Tutorial on Learning With bayesian, networks, learning, PMM: bayesian

Bayesian Networks 78 | network, statistics, bayes, network, bayes

(David Heckerman) modeling, graphs, algorithms modeling, graphical
tutorial, MMSG: network,

bayes networks,
algorithms,

Maximizing the Spread of social, influence, network, | PMM: network, social

Influence through a Social 73 | socialnetworks, diffusion, socialnetworks

Network (David Kempe et al.) research, spread, networking MMSG: network

socialresearch

Authoritative Sources in a ranking, hyperlink, web, PMM: web, search

Hyperlinked Environment 47 | www, ir, graphs, clustering, | hyperlink,

(Jon M. Kleinberg) hub, authority, hyperlinks MMSG:ir, web, www,
search ranking, search

Indexing by Latent Semantic Isi, indexing, ir, Isa, semanticsPMM: index,

Analysis 45 | semantic, information-retrievWMSG:ir, indexing,

(Scott Deerwester et. al.) latent, language, index index

The Small-World Phenomengn: | small-world, networks, PMM: networks, web,

An Algorithmic Perspective | 43 | web, social, webgraph, algorithm, graphs,

ir ,network,

MMSG: network, ir,
web, algorithm,
social graph
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Table 5.7. Top 8 most popular papers from CiteULike data. The top 9 renended tags are
listed as “Our Tags”. Tags with bold font match one of the ws@rotated tags.
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Figure 5.17. Examples of good tag suggestions. The first row is the objewde/video).
The second row corresponds to the user tags. The third rolaeisecommended tags by our
algorithm.



Chapter

Topic Discovery: Dynamic Topic
Correlation Detection

Topic models have been powerful tools for statistical asialgf text documents [31, 54,
12]. As an example, the latent Dirichlet allocation (LDA) deb [12] assumes that doc-
uments are mixtures of topics, and topics are probabiligyrithution of words, where
topics are shared by all documents. The LDA model furthemrass theexchangeabil-
ity of words, i.e., words from each document are drawn indep#hdEom a mixture
of multinomials. The model uses a Dirichlet prior to draw thpic proportions, so that
each document may exhibit different topic distributionA_is capable of modeling
the semantic relations between words and topics, and usitigpie topics to describe
document collections. Essentially, LDA, as well as othgridanodels, can be treated
as statistical dimension reduction techniques that rethue®riginal word representa-
tion of documents into topic representation, which is uguzimuch lower dimension.
Successful applications of topic models include discaxgeauthor-topic relations in
scientific papers [122], disambiguating author names melaollections of documents
[115], as well as extensions to image analysis [112].

Since most topic models agenerative mode]scalability is always an issue. With
a large number of model parameters, the time for the modelsiteerge is prohibitively
long. As one example, we applied LDA to over 700,000 fullttsoientific documents.
The program took more than one week to finish for a 200-commtianedel. Addition-
ally, these models inevitably suffer from the problem of iiieng. As stated in [88],
the variational inference for parameter estimation in LBAroblematic, which failed
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to achieve accurate inference for large data sets.

Moreover, since the LDA model treats words exchangeahly riot suitable to cap-
ture the evolution of documents over time. LDA is also undblenodel the topic cor-
relations since it assumes topics are drawn from uniqueribhese two issues have
been addressed by two extensions of LDA, the dynamic topitatsd11] and the corre-
lated topic models (CTM) [10], respectively. Neverthe]essther of these two models
is immune to the aforementioned issues.

In this thesis, we present tilgnamic correlated topic modgl®CTM) for analyzing
document topics over time. Our model is inspired by the Ingttiaal Gaussian process
latent variable model (HGP-LVM) [76] which has been usedifieman motion capture.
Similar to HGP-LVM, DCTM maps the high-dimensional obsehspace (words) into
low-dimensional latent space (topics), which models theaayic topic evolution within
a corpus. A document corpus considered here is either aremfe proceedings or a
collection of journal articles. Furthermore, the topielattspace is mapped into a lower-
dimensional space which captures the correlations betdeemment corpora. The dy-
namics of the topics and correlations are captured by a teahpoor, which constructs
a hierarchy over the correlation latent space. Unlike ganer models, DCTM makes
no assumption on word exchangebility. All variables (woridgics and correlations)
exhibit dynamics at different time point. Meanwhile, by giaalizing out the mapping
parameters rather than the latent variables, DCTM beconmesgarametrianodel,
which shows a much faster model convergency rate than thergjitre processes. The
posterior inference of topic and correlation distribusan DCTM is helpful for dis-
covering the dynamic changes of topic-specific word prdiieds, and predicting the
evolutions of topics and correlations. The reduced toparsps also helpful for im-
proving the performance of document classification.

6.1 Related Work

(Topic Models) The first well-known topic model was introduced by Deerweist& 990
[31], theLatent Semantic Analys(ESA). LSA maps high-dimensional data to a lower
dimensional representation inlatent semantic spacehat reflects semantic relations
between words. The model makes an assumptionfthahderlying latent topics exist
for a specific data set, where the documents can be generaiediag to these topics
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based on probability distributions. Those latent topiesasumed to be approximately
the same as document categories, resulting in a significampiession of data in large
collections.

Hofmann [54] later presented an alternative to LSA from a&isteal perspective,
namely Probabilistic Latent Semantic Analysis (PLSA). Thedel is capable of dis-
covering latent variables with a more solid statisticalfdation. PLSA is described as
anaspect modelvhich can be viewed as a statistical mixture model for doaisand
words, assuming the existence of hidden factors underlyiago-occurrences among
two sets of objects. Specifically, a single word is generfitad a single topic while dif-
ferent words may belong to different topics within a docuiméns evident that PLSA
has a number of parameters that grow linearly with the siziefcorpus, resulting a
potential for overfitting.

Another generative topic model was introduced by Blei eala Bayesian hierar-
chical model, which is well-known as tHeatent Dirichlet Allocation(LDA) [12]. In
LDA, each document has its own topic distribution, drawnrfra conjugate Dirichlet
prior that remains the same for all documents in a collecfidre words within that doc-
ument are then generated by choosing a topic from this bligton. A word is picked
from that topic according to the posterior probability oé tflopic, which is determined
by another Dirichlet prior. Inference of parameters and ehéehrning are performed
efficiently via variational EM algorithm, since exact iné@ice is intractable in LDA due
to the coupling of parameters. Experimental results irtditaat LDA has better gener-
alization performance than PLSA. However, as pointed ou¥linka [88], variational
inference can lead to serious bias and inaccurate learsperc&lly when the data set is
large. Thus, Expectation-Propagation was proposed feehieference and learning.

(Correlated Topic Models) An evident limitation of the LDA model attributes to
the fact that the topics generated by the multinomial distion are mutually exclusive.
This assumption can be seriously violated in practice. Tresb this issue, Blei pro-
posed a correlated topic model (CTM) [10], in which the tqmiaportions are correlated
through logistic normal distribution. Mean-field variated methods were employed for
parameter estimation. The model was empirically studietidg51Sciencelocuments
over 10 years. A 100-topic CTM shows superior over the trawigti LDA model in
terms of the complete data likelihood and the predictivglesity.

(Dynamic Topic Models) For modeling topic trends over time, Blei developed a
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time series model, or the dynamic topic models [11], to cagpthe time evolution of
topics in document collections. Rather than using a Dietptior, the dynamic topic
model uses a more reasonable Gaussian prior for the toomederss, which can cap-
ture the evolutions of the topics over the time slices. Thmctproportions are drawn
from a logistic normal distribution. whose mean values also follow a Gaussian distri-
bution. Two approximate inference methods are developaugty variational Kalman
filtering and wavelet regression. Experiments were peréafion a large collection of
30,000Sciencedocuments, ranging from 1881 to 1999.

6.2 Gaussian Processes

A Gaussian process (GP) istochastigrocess that consists of a collection of random
variablesX, which forms a multivariate Gaussian distribution spedifig a mean func-
tion (X)) and covariance functioh(X, X’). GP models have been used as powerful
non-parametric tools for approximate Bayesian learninigh) two successful applica-
tions onregressiomndclassification101]. In regression, the objective is to determine
the value ofY, for a new observatioiX... The GP prior is placed ovef(X) of a train-
ing set. One first determine the predictive distributigy,|Y), where Y|X,,qin ~

N (0,K), with K denoting the multivariate covariance matrix. The valu&’ofs then
inferred by using Gaussian prediction methods. Figure lu&tiates an 2-D exam-
ple of GP. With the uncertainty addressed, GP has showr petittormance than other
learning methods in the context of classification, inclgdime Support Vector Machines
(SVMs) and K-NN [101, 65, 44].

6.2.1 Gaussian Process Latent Variable Models

In Gaussian process latent variable models (GP-LVM), gaveet ofn observationy” €
R™*? it seeks a probabilistic approach to non-linear dimenseduction by introducing
the latent variableX € R"*9, whereq < d, via a parameterized function

Yii=f(Xi; W) +¢, (6.1)

whereY;; corresponds to the entry from tié row and;** column of the matrixy’, X;
is thei* row of X with the noise;, andW is the matrix of parameters to be estimated.
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Figure 6.1. An example of two-dimensional input GP framework with andpdndent noise-free
covariance function of each input. For the output latentfiom f, both dimensions are equally
important.

Traditional non-linear probabilistic approach seeks toximée the likelihood of the
model w.r.t. W by placing prior distributiorp(X) over the latent variableX [127].
Nevertheless, from the Bayesian perspective of view, thampeatersw are trivial and
should be marginalized out. Therefore, in GP-LVM, a Gaussgidor is placed on the
parameters, i.ep(W) = [[; p(wi;) = [1;; N(wi;|0,1). The marginal likelihood can
then be optimized w.r.t. the latent variablédging the latent functions)

pYIX) = [ (YI0p(EIX)E 6.2)

It has been shown [75] that this model leads to principal comept analysis (PCA)
given alinear covariance function, or a probabilistic non-linear lateatiable model
given anon-linearcovariance function. Consequently, the optimized lataniablesX
are capable of reducing the original data into a much lowgresentation.

6.3 Dynamic Correlated Topic Models

Assume that a set of document corpora is given, i.®, = {D, ...D, }, in which each
corpusD; contains documents divided into several sets by their tiamegs, e.g., the
year of publication for scientific documents. We assume d@hatorpora in our setting
share the same timescale, denoteflas., 7, so that eacd; = {D,,,...D; r}, where
D, denotes the set of documents appeared in cafpust timet. We further assume
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Notations | Explanations

D a set of document corpora

D, a document corpus D

D, documents appeared in corpids at timet

Djf original count of wordk in document corpus
at timet of the j’'s document

T number of time points

Y vector representation @

Y. word vectors for document corpust timet

Y}, normalized count of word in document corpus
i at timet

X topic vectors

X normalized topic vectors

C correlation matrix

K covariance matrix

{6, ®, U} | parameters for the covariance matrices

Nt number of documents iB; during timet

n number of document corpora

d number of words (vocabulary)

Table 6.1.Notations used in this chapter.

that a controlled vocabulary with sizeis shared across dlD; over time, so that each
D, can be represented into a matrly, ; € RYi+*4 with N;; denoting the number
of document inD; at timet¢. Note that the value oV, , may vary for different andt.
Table 6.1 summarizes the notations used in this paper.

As in most topic models, we also assume that a seuoiderlying latent topics exist
for eachD;, where the number of topics remain the same over time. Inrdod@odel
the correlations of those topics over time, we need to fistalier the latent topics at
time ¢ for each corpu®;, and specify a proper function for calculating the corielzs
between topics and corpora. Furthermore, we wish to capiterdynamics of the latent
spaces. In what follows, we extend the hierarchical Gangsiacess latent variable
model (HGP-LVM) [76] for dynamic topic correlation deteamri.

We first represent eadD; ; into a vector formY;, € R¢ by aggregating the corre-



135

IS

i

~

506
=
&

7

|
Nl,l X d N271 X d Time' NLQ X d N272 X d
T1 T2

. J L )
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Figure 6.2. Graphical representation of the DCTM model. Shaded nodagsent observed
values. Although looks alike, DCTM differs from generat&spect models (e.g., LDA) funda-
mentally.

sponding features in all instances

N; ik ok
Y (DI~ Dy
Y;kt _ Z]—l( it — z,t)’for k= 1’ ...,d, (63)
’ var(D;})

whereY}, is the summarized value of featukein D;, fo is the number of times

featurek occurred in thg’s document oD, ,, D—Z’j denotes the mean value of feature
and the denominator computes the variance of fedtute this way we summarize the
contributions of individual documents at a certain time &ave only the relationship
between words and time.

In the context of textual documents, eah= {Y,1,..., Y;r} has the dimension-
ality of 7' x d, with eactht corresponding to the latent position of wakdat timet
in D;, i.e., the position that appears most probably according to the maximum likeli-
hood estimation. To fing latent topics giver¥ = {Y,...,Y,}, we definen sets of
¢-dimensional latent variables, witk; = {X; 1, ..., X; 7} € R7*4 i =1,....n. We use
GP-LVM to model the relations between each paigfandX,,

d
P(Yi|X;) = [[ N(Y7.|o, KD). (6.4)

j=1
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EachY{: is a sizeT' column vector ofY;, with each element representing the latent
position of word; at different time point.Kg) is a kernel covariance matrix of size
T x T, where each element is defined by a kernel functﬁ[ﬁﬁ)]m,n = ky(Xims Xin)-

In this paper, we use the radial basis function (RBF) kernel

||Xi,m - Xi,n||2
209

ko (Xim, Xin) = ¢1€xp (— ) + ¢30mn, (6.5)
with ® = {¢1, 9o, @3} being the kernel parameters, wheyg, is the delta function that
has the value 1 ifn = n and 0 otherwise. Our assumption is that given a topic, words
follow a zero-mean Gaussian distribution, where the higpesbability occurs when a
word appears most in a topic. Note that this zero-mean agsumip valid here since
the mean values of word frequency have been extractedaturing the initialization
in eq.(6.3). To ensure a well-defined probability distribntof topics at each, we seek
to transform the originaX; using the multiple logistic function

PR x) = K)o thaty" P(X7,) = 1. (6.6)

Zj/ eXp(Xi:) j ,

In this way the relations betwee¥i; and X; can be rewritten as the product of
two probabilities: P(Y;|X;) = P(Y;|X;)P(X;|X,), with P(Y,|X;) computed using
eq.(6.4).

We then construct a hierarchy by placing a latent vari@btver X, which captures
the correlation between each pair of topic sktsand X;. A proper approach is the
Gaussian process where topics that are highly correlatedlao close in geometrical
interpretation. One approach used in [76] is to construetdbncatenation of latent
variables[X; X,] and find C by principal component analysis (PCA). This method
works well for high-dimensional problems such as videokiag. An alternative is to
use singular value decomposition (SVD) where featuresdsjoare usually of equal
importance such as in text analysis. In this paper, we ch8&2 for our algorithms,
which deal mainly with textual documents.

Furthermore, to capture the correlation dynamically, vaeela temporal prior over
the element ofC,

P(Clt) = ﬁN(c:,i\O,Kt), (6.7)

i=1



137

Algorithm 10 Parameter Optimization for DCTM
1: Input: a set of document corpold = {Dy, ..., D,, }, number of estimated topigs number
of time framesT’, the size of the vocabula, initial kernel parameter§®, ©, U}, number
of iterations!.

2: Initialize eachY; € RT*4 for the correspondind; by eq.(6.3),
3: Initialize each latent topic variable s&i; € R7*¢ through SVD from eaclY;,
4: Initialize each latent correlation variable €etthrough SVD for each pair diX; X;].
5:fori=1to[]
6: forj=1ton
7. optimize eacH X;, ®, O} using gradient method
8: end for
9: forj=1ton
10:  optimize{C, ¥} using the optimizeX
11: end for
12: end for

whereK, is the covariance matrix for = {1,...,7'}, which takes the exact form as
eq.(6.5) except for the input efwith a different parameter sét = {6,, 0,,603}. Fig.6.2
shows the graphical representation of the general DCTM imode

The temporal prior can be combined with equations to maligmaut latent vari-
ablesY, X andC. The joint probability distribution of the hierarchy can teitten
as

PO D) = [ PODIY)PYIX)PG X))
X /P(Dn|Yn)P(Yn\Xn)P(Xn\Xn) .
X /P(Xl,...,Xn|C)P(C|t)

dCdX, - - -dX,dX; - - -dX,,.

However, this marginalization is intractable so that weéend attempt to use a max-
imum a posterior (MAP) approach to approximating the iraéign, i.e., to maximize
the aggregated Gaussian process log likelihoods [76]

L(D)
£ log P(Dy,...,D,|t)
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n

= Y (log P(Dy|Y) +log P(Y,|X,) +

m=1

log P(X | X)) + log P(Xi, ..., X, |C) + log P(C|t)
(6.8)

w.r.t. eachX,, andC. The solution of eq.(6.8) can be easily found by gradientctea
methods.

Practically, when optimizing the latent variables and paeters, we seek a fast con-
verging algorithm which also avoids local minimum. To thasng, we initialize each la-
tent variableX; andC by using LSA (which uses singular value decomposition (SVD)
as described in Alg.10. We then minimizZeby optimizing each set of latent variables
and their correlations alternatively. A maximum of 100 stéyave been fixed in ad-
vanced for the optimization. The step of each gradient beaeas empirically set to be
1076,

6.3.1 Smoothing

In eq.(6.8),L£, corresponds to the estimation of the learned latent positievhile all
terms inL, sum up to the MAP estimation of the dynamic correlations.ahl be ob-
served that unsmooth correlations usually result in highesawhich are not desirable.
However, due to the effect of summation 6f which involves a large number of in-
stances, the value df, is usually underestimated in practice.

Therefore, to encourage smoothnes£ @) by penalizing the correlations and the
positions on the same granularity, we seek to balance theilmotion of both terms by
raising the dynamics density function to the ratio of themensions;.c.,m = d/q.
Thus the terms corresponding to the dynamics are rescabsgl (6.8) [131]:

q
q 1 Z T L 7
™ (5 log |KC| + log |Kt| — 5 - X;JKCX:,i — §C;,iKtC:,i> s (69)
which leads to a simple and balanced learning function ferrttodel. Empirically,

this has shown to be effective for Gaussian process-basepe8ple tracking [131].
However, the theoretical best choice of the scaling fagatill subject to future work.
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6.3.2 Inference and Predictions

(Posterior Inference) Since we made an assumption on the conditional distribution
of P(Y;|X;) by eq.(6.4), the topic-specific word distributio®XY,|X;) can not be
straightforwardly inferred from the model. Instead, we o@ake inference on the word-
specific topic probabilities, to monitor the change of woogter time. First, inference
can be made foP(X;|Y;) by using the Bayes rule,

P(Xi[Y;) o< P(Y3|Xq) P(Xy), (6.10)

so that we can get the word-specific topic probabilities aeain timet, X, ;, by
marginalizing out all latent variables; except forX; ; (denoted aX_, ;):

P(Xiu[Ys)) = / PXA[Y,)dX s,
x / P(Y31X0) P(X:)dX i (6.11)

We use importance sampling [121] to estimate the integral.

(Document Classification)Meanwhile, remember that our model (as well as other
topic models) is essentially a method for dimensionaliguction, it would then be
interesting to observe how much performance gain/losshilfulfilled by using the
topic feature representation comparing to the originaldifeatures. One way to study
this is by analyzing the performance of document classifinat

For traditional binary classification tasks, it is requitechave a vector of features
representing each class. Here we treat each document caspuse class. Since the
topic distributions are different at different time poifbs a specific corpus (class), one
reasonable approach to summarizing topic features is bgineizing out the temporal

prior,
T

p(XE) = " p(XE) «p(t), fork=1,....q. (6.12)

t=1
By assuming that the document-level observations are lyog@ced, we are actually
taking the MAP values of(X?.) as the normalized features.
A more challenging classification task can also be carridgdogiclassifying doc-
uments into a specific time point (e.g., year). kocorpora with7T timescales, this
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problem requires an x 7" multi-class classification algorithm.
(Topic & Correlation Predictions) We show the predictive power of DCTM by
proposing two prediction methods, using regression aisa#ysl Gaussian processes.
Besides between-topic correlations, the autocorrela{d) within each topic can
also be computed. Specifically, we can model the autocoiwekof a set of topic
distributions over timé&; = {X, 1, ..., X; 7} by

T—1 < <
. XZ_XZ*XZ _Xi
pacux,) — ZmGw X)X . 3
Zj:l(XiJ - XZ)
fori = 1,...,T—1, (6.13)

where AC(l) corresponds to the lalgautocorrelation function anX; takes the mean
value of X;. A typical autocorrelation generally decreases with th@dase of lag,
indicating that only the first few lags demonstrate signifttanon-zero. The values
of the lags are often used to discover repeating patternseirdata such as the topic
distributions during a certain period of time. Mathemadticahe values can be used as
the coefficient for the regression function.

Meanwhile, due to conjugation, the posterior probabgitétopics and correlations
are also Gaussian. We thus propose a simple Gaussian dypsadiction model [11,
134] for the next time point + 1:

X1 Xie ~ N(uXiy),o*(X;)I), where
p(Xi) = K(Xiaxi,t)TK)_(lxia
*(Xi) = Kx(X;,X;) - K(X;, X"
K K(X;, Xi4). (6.14)

From a standard Gaussian process perspective, makingtoedirequire averaging all
parameter values, with their associated posterior weigHtswever, this approach is
computationally demanding which involves expensive Mdbéglo sampling methods.
Thus, what we suggested here can be considered as a shéchieving roughly the

same predictive power, with much less computational corityle
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6.4 Experiments

We assess our model with both synthetic data and a real-fawgd corpus. For the syn-
thetic data, we compare the correlations and the likeliheibll a simple SVD method
to give a quick snapshot of the model. We then compare our hiod€A by using a
large-scale real-world data set.

6.4.1 Simulated Data

The simulated data set we created comprises of two gradDpsD-) of 3-D data, di-
vided into 50 time frames. At each timewe randomly create several points that follows
a normal distributionV (u|Y ;;, 0%I), for eachD, respectively. The vectoy is a ran-
domly chosen polynomial function. The geometric distaret@kenY; andY, reaches
the minimum and the maximum at th&"* and 50t time frame, respectively. As we
want to use a lower dimension to capture and visualize theelation between these
two random variable¥ , we choose the dimension &f to be 2, e.g.qg = 2.

Figure 6.3 illustrates the results after 14 iterations, net{a) shows the original data
points as well as the polynomial functios andY,. It can be seen that the original
correlation is almost random after simple SVD. We expecte® & strong correlation
around the 18 time frame, which gradually decreases until the end. This wdeed
observed after the model converges. The correlation cahimtetpret the geometric
distance betweelr; andY,. Meanwhile, DCTM reaches the optimal result quickly in
this case, where the log likelihood converges to -175.23@6 tne just 14 iterations.

6.4.2 CiteSeer Scientific Documents

We further analyzed a subset of scientific documents fronCiteSeet digital library.
We crawled top 80 most prolific venues according to the Cite 8epact factor, divided
them into 18 time frames by year from 1988 to 2005. The totahlmer of documents
in our experiment is 268,231. For efficiency consideratwa used metadata (title, ab-
stract and keywords) and introductions as the documenentstThe data set consists
of 6,530,000 unique words. We applied information gain tuee the dimensionality
and resulted in top 24,351 words. We ran a series of expetsmendifferent numbers

http://citeseer.ist.psu.edu
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Figure 6.3. Simulated Results.

of topics from 10 to 200. Due to space consideration, we onbysthe result with 25
topics. To investigate the change of the log likelihood in@®&), we split the data into
90% for modeling (training), and use the rest’L@or testing the model with optimized
parameters. Figure 6.4 (b) demonstrates the log likelihafatiese two data sets. It
is clearly that DCTM shows better fit than LDA for documentsoss all years. Mean-
while, the smoothing method we used for DCTM (S-DCTM) doessh positive effect
on refining the model, by showing higher likelihood than DCTiivtan also be observed
that with the increased number of documents by year (Figur€aj), LDA generally
shows worse performance with lower likelihood. Howevels thas minor effect on our
models, which supports our argument that DCTM does not striden overfitting of
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LDA DCTM | S-DCTM
Training log likelihood (0°) | -2.6482 -1.8447|-1.5736
Held-out log likelihood (0°) | -1.9073 -0.9166/| -0.8740

Table 6.2.Results of the CiteSeer data set.
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Figure 6.4. Results of log likelihood on the CiteSeer data set.

large data sets. It can also been seen from Figure 6.4 (dheéhabnvergency of DCTM
is fast. The log likelihood converges after merely 10 itewsg(cf Table 6.2). By com-
parison, DCTM uses merely 4 hours to train and optimize thdehavhich takes LDA
more than four days to finish.

Figure 6.5 presents some results for the SIGMOD corpus. dpdigure shows
the top 6 venues which have the highest correlations withVB)G for each year. It
can be observed from the list that most top-ranked venues th® posterior infer-
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ence are database-related venues, which share lots afstderith SIGMOD. Mean-
while, the research trends of SIGMOD can also be observedileWtaintaining a
steady and strong correlations with traditional databvatsted venues like ICDE, PODS
and VLDB, the correlations of SIGMOD with application-anted venues are decreas-
ing gradually, e.g., DEXA. Instead, SIGMOD correlates matigh data-mining and
information-retrieval venues like WWW, AAAI and ICDM (cf mdle figure).

Furthermore, we can monitor the trends of specific keywottsng eq.(6.11), we
further marginalize out all the topics at the same time framget a mean probability
of these keywords. The middle-right figure demonstratesrs¢\example keywords.
It can be discovered that topics likpieryand securityhave retained their popularity
during the last two decades. Meanwhile, database reseaschHhifted its focus from
traditional topics likestorageand recoveryto more promising areas likenining and
relational databases

The bottom figure depicts two highly-correlated topics iGBIOD at three different
years. The words are sampled from the distribution with ahidlities directly computed
from the prior. Based on our knowledge, the first topic fosusealgebraandassocia-
tion rules with mininggradually gets more attention. The second topic addresses
andprogrammingwhich has shifted tavebapplications recently.

6.4.2.1 Classification Performance

We performed both binary and multi-class classificationsa®ubset of the CiteSeer
data. For binary classification, we use two venues, SIGIRI&ML, as two classes.
For multi-class classification, we simply divide SIGIR irit8 classes, according to the
publication timestamp by year (1988 — 2005). The topic festigenerated by DCTM
are compared with original word features for evaluatione BiGIR venue contains a
total of 572 documents, while ICML contains 854 documentse Total vocabulary in
this case is 4,523. We trained a 40-topic model using DCTMg¢wreduces the feature
space by 9%. The original word features are processed using the TF-HpFeisenta-
tion and L-1 normalization. We employed the support vectachine (SVM¥ as our
classifier. The parameters are estimated by 10-fold crdskatian. The linear kernel is
chosen. We evaluated the classification performance by usi, 20% and50% data
for training.

2SVMight s used. http://svmlight.joachims.org/



1988 1989 1990 1991 1992 1993 1994 1995
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DBSECO0.0. AAAI 0.0 ML 0.0 DBPL 0.0 SIGIR 0.0 DEXA 0.0 PODS 0.0 DBPL 0.0
AAAI 0.0 Dasfaa 0.0 Dasfaa 0.0. DBSECO0.0 ICDE 0.0 ML 0.0 AAAI 0.0 Dasfaa 0.0

2001 2000 1999 1998
PODS 0.0 EDBT 0.0 DBPL 0.0 ICDE 0.0%

2005 2004
PODS 0.0 VLDB 0.0:
VLDB 0.0! PODS 0.0
ICDM 0.0 KDD 0.0
SDM 0.0 ICDE 0.0
ICDE 0.0 ICDM 0.0:
WWW 0.0 WWW 0.0

VLDB 0.0 ICML 0.0 PODS 0.0 EDBT 0.0
KDD 0.0 VLDB 0.0 VLDB 0.0 VLDB 0.0
ICDE 0.0 PKDD 0.0: DEXA 0.0 DEXA 0.0
WWW 0.0 Dasfaa 0.0 ICDE 0.0 PODS 0.0
DEXA 0.0 ICDE 0.0 KDD 0.0 KDD 0.0
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Year year
1991 1998 2004
Topic 5 Topic 16 Topic 5 Topic 16 Topic 5 Topic 16
algebra 0,003 program  0.004 rule 0.004 processing 0,005 algorithm 0,004 interface 0,003
rule 0.003 | 0.05 | interface 0,004 association 0,004 | 0.06 | query 0.005 mining  0.004 | 0-04 | query 0.003
query 0.002 user 0.001 o algebra 0,003 object 0,003 o stream 0,003 web 0.003
optimize 0,002 object 0.001 mining 0.002 mining 0.003 matching  0.002 user 0.002
language 0.002 query 0.001 parallel  0.001 evaluation 0,001 query 0.002 structure 0,001

Figure 6.5. Results of SIGMOD corpus resultsTdp) Top-ranked correlated venues with SIG-
MOD, from the year 1988 to 2005. (Middle left) The change ofretation as a function of
time of three example venues. (Middle right) The posterimbpbility of words as a function
of time by marginalizing out the topics. (Bottom) Two coatd topics with associated word
probabilities at different time. Note that O correlatiome eemoved from this graph. The data of
ICDM is only available after 2001.

Figure 6.6 illustrates the classification performance a@jetopic features improve
the accuracy for both cases. Especially in the multi-clase cthe features generated by
DCTM gain a 205 improvement over the word features when usifg training data.

6.4.2.2 Prediction Performance

Finally, we assessed the predictive powerful of our modeé dbjective is to predict the
correlations between SIGMOD and 10 other venues. We tranednodel using data
containing the first 16 years (1988—-2003), and tested ongeof 2004 and 2005. Both
autocorrelation regression (ACR) and mean prediction (lsife)tested. Least square
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(a) Binary classification. (b) Multi-class classification.

Figure 6.6. Classification performance on a subsect of 1,326 CiteSemimdents. S-DCTM
(topic features) outperforms TF-IDF (word features).

error is applied to measure the performance of the predictile also made a simple
comparison to the dynamic LDA models [11] by using the vaoiad! wavelet regression
(VWR). Table 6.3 lists the results. Both of our methods orftpen VWR on all venues.
Meanwhile, the MP method clearly has an advantage over AGRast scenarios. As
an example of the correlation between SIGMOD and AAAI (blaockd line) shown
in Fig. 6.7, MP shows the predictive distributions by a mdalod solid line) and two
standard deviations (dash green lines), which can welltfit ine dynamic correlations
and make reasonable predictions on the trends. Note thatahdard deviations of the
last two test points are slightly larger than previous osbswing possible divergency
from the data.

6.4.3 Discussion

As it can be seen, the comparison of DCTM and LDA did not goughmperplexityas
well as other metrics. This is because these two models diiien each other funda-
mentally, it is difficult to find a common metric for evaluaticAs explained, our model
is able to make inferences on corpus-level correlationg;wis a clear advantage over
LDA. Nevertheless, DCTM aggregated the contributions d@fividual documents so
that the document-topic relationship can not be retriewdtich is achievable in LDA.
The inferences of our model and LDA are also quite differémi_DA, top-ranked
words for each topic can be discovered by the posteriorentss of topic-specific word
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Venue Namel ACR | MP VWR
AAAI 13.203] 10.557| 15.625
DEXA 25.445| 17.883| 25.982
ICDM 24.892 20.186| 28.005
ICDE 17.241 15.936| 24.175
ICML 45,209 45.317| 47.194
KDD 33.004| 27.508| 34.175
PKDD 20.705| 18.335| 23.825
PODS 27.854| 24.692| 34.215
SIGIR 27.252| 28.406| 34.112
VLDB 37.225/ 36.901| 45.229
mean 27.203 24.572| 31.254

Table 6.3. Correlation prediction results of the SIGMOD venue. Loweast square errors
indicate better performance.

~»

Year

Correlations

Figure 6.7. Example of prediction performance of the mean predictiothaa on the correla-
tions between SIGMOD and AAAI. Lower values indicate beptexdictive performance, shown
in darker colors.

probabilities. This is usually used foamingtopics. However, this approach is very
subjective and often requires a good domain knowledge figment. Comparatively,
our model monitors topic probabilities given a specific wdrgd marginalizing out the
topics at the same time, we can directly observe the popylairithat word at a certain
time.

The most controversial part of our model is the initialipatstep. To minimize the
computational cost, we initialized our model by SVD, whistailinear dimensionality
reduction method. This method is known to have issues whetieapto LSA [54],
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though it seems to work well for Gaussian-based models wpplnea to human motion
caption [76]. Besides, due to the restriction of matrix deposition in SVD, monitoring
a large number of topics in a fixed timescale becomes unaablievThe model needs
to be re-trained once we change the number of topics.



Chapter ;

Conclusions

In this thesis we addressed four research topics in textngjnie., text classification,
text retrieval, text recommendation and topic discoverye &gproached the research
issues within these topics by using both theoretical amafswell as empirical studies.

For text classification, we proposed the use of entity ektvador reducing the
dimensionality of feature spaces. We used noun phrases@asds rather than the tra-
ditional bag-of-words representation. We then introdugetbvel use of collaborative
filtering technique for augmenting the feature spaces vatbvant information. The
collaborative filtering algorithm successfully augmentied feature space for classifi-
cation, resulting in an accuracy improvement of the basehion-CF approach and the
Information Gain feature selection method.

Moreover, we also seek to improve the performance of thdtivadl K-Nearest
Neighbor classifier. We presented two approaches namedflyooformative KNN
(LI-KNN) and globally informative KNN (GI-KNN) to extendipg KNN method. In-
formativeness was introduced as a new concept that is usetuluery-based distance
metric. LI-KNN applied this to select the most informativaipts and predict the label
of a query point based on the most numerous class with thélbeig; GI-KNN found
the globally informative points by learning a weight vectaym the training points.
Experiments that compared the performance between ouroaetmnd KNN, DANN,
LMNN, SVM and Boosting indicated that our approaches wess lgensitive to the
change of parameters than KNN and DANN, meanwhile yieldedparable results to
SVM and Boosting. Classification performance on UCI benatkncarpus, CiteSeer
text data, and images suggests that our algorithms werécapph-independent and
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could possibly be improved and extended to diverse macharaing areas.

For text retrieval, we aimed at accurately extracting naewdies from webpages
and scientific documents. We proposed a novel framework f@upervised name
disambiguation by leveraging graphical Bayesian modetsaahierarchical clustering
method. We presented an effective two-stage approach am@liguate names. In the
first stage, two novel topic-based models are proposed l®ndixtg two hierarchical
Bayesian text models, namely Probabilistic Latent Sernaialysis (PLSA) and La-
tent Dirichlet Allocation (LDA). Our models explicitly inbduce a new variable for
persons and learn the distribution of topics with regarddospns and words. After
learning an initial model, the topic distributions are tezhas feature sets and names
are disambiguated by leveraging a hierarchical agglonveratustering method. Our
approach was demonstrated to be more effective than otkapervised learning meth-
ods including spectral clustering and DBSCAN. A series plegiments were performed
that verified the advantages of our approach on both web ddtaaentific documents.
Although our primary focus of this framework is on person easisambiguation, our
general approach should be equally applicable to othetyetitambiguation domains.
Potential applications include noun phrases disambigoaé.g., “tiger” as an animal,
“tiger” as a golf player, “tiger” the baseball team, “tige¢He operating system or “tiger”
for the new Java version. And of course, it would be intengsto see whether our
framework can be applied to automatic image annotation #mel dields.

On the text recommendation research, we mainly applied madarning methods
for recommending tags to social bookmark websites. Fromeauyirical observation
of two large-scale data sets, we first argued that the useersz approach for tag rec-
ommendation is not very effective in practice. Conseqyemie proposed two novel
document-centered approaches that are capable of makeogwes and efficient tag rec-
ommendations in real scenarios. The first graph-based mhedpwesented the tagged
data into two bipartite graphs of (document, tag) and (daminword), then found doc-
ument topics by leveraging graph partitioning algorithike second prototype-based
method aimed at finding the most representative documetitgwihe data collections
and advocates a sparse multi-class Gaussian procesdietassi efficient document
classification. For both methods, tags were ranked withah éapic cluster/class by
a novel ranking method. Recommendations were performeddiycfassifying a new
document into one or more topic clusters/classes, and #lentgg the most relevant
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tags from those clusters/classes as machine-recommeagied Experiments on real-
world data from Del.icio.us, CiteULike and BibSonomy exasd the quality of tag

recommendation as well as the efficiency of our recommeodatgorithms. The re-

sults suggested that our document-centered models catastially improve the per-

formance of tag recommendations when compared to the eséered methods, as well
as topic models LDA and SVM classifiers.

Finally, we performed topic discovery on scientific documser¥We introduced dy-
namic correlated topic models (DCTM) for analyzing diserdata over time. This
model was inspired by the hierarchical Gaussian processtlaariable models (GP-
LVM). DCTM is essentially a non-linear dimension reducttechnique which is capa-
ble of (1) detecting topic evolution within a document ca oy associating the origi-
nal word feature space with a low-dimensional latent topace, (2) discovering topic
correlations between document corpora by constructingratahy over the latent topic
space and (3) monitoring topic and correlation trends dyoalig by placing a temporal
prior over the correlations, where the inputs are disciate frames. By marginalizing
model parameters rather than the latent variables, DCTNbggd a non-parametric
characteristic which is often desirable for large-scale tlata. Unlike generative as-
pect models such like LDA, DCTM demonstrated a much fasteveaing rate with
better model fitting to the data. We empirically assessedapproach using 268,231
scientific documents, from the year 1988 to 2005. Posteni@rénces suggested that
DCTM is useful for capturing topic and correlation dynamipeedicting their trends,
and improving classification performance using the reddeatlire space.

As a conclusion of this thesis, we will now try to answer theei@ch questions we
proposed in the first chapter:

1. Can dimension reduction techniques boost the performancefdext classifica-
tion?

The short answer isYES. Because unlike image or video classification, the fea-
ture space of text representation is usually very sparseyN&atures, i.e., words,
only appear very few times in the corpus. Or, on the other hapgear many
times in every single document. Statistically speakingluding these features
in the feature space will not gain more information for thassifier but increase
the computational cost instead. Moreover, different wardsame documents
may have identical or similar meanings, eiggreaseandraise. Thus, including
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these redundant features is unlikely to increase the pedoce of the classifier
either. In statistics, dimension reduction usually inesransforming the fea-
ture space to a lower coordinate space according to thetidinswf the first few

principal components. However, for text classificatione do the extreme high
dimensionality, feature selection methods are often mogéepable to principal

component analysis. Many empirical and theoretical amaheve shown that fea-
ture selection can greatly reduce the computational coxitplehile increase the
classification performance [47, 13]. Recent research dews that document-
specific feature selection usually outperforms generdlfeaselection methods
for specific classifiers [68, 69]. Therefore, we believe thajeneral, dimension
reduction can boost the performance of text classification.

. Is it possible to overcome the “curse of dimensionality” forthe K-nearest
neighbor classifier? The short answer iSYES. Because KNN is a local-search
classifier that only looks at its nearest neighbors, it tavitably suffers from
the curse of dimensionality problem where in very high-disienal space, all
features look the same. This is because most KNN classifser&uclidean dis-
tance as the distance metric which treats each dimensiailggeell. To address
this issue, dynamic programming and approximate searcé bagn applied in
literature. We also proposed a new metric to measure thenativeness of the
neighbors [116], which selects the best candidates thatlase to the points
within the same class while far away from points in other s#&s More recently,
the idea of learning a distance metric from a training set tbeen introduced
[140], which aims at learning an optimal Mahanobolis diseathat minimizes
the classification error of a training set. A similar idea lsoancorporated into
our approach that learns the best weights of all neighborsdayy a boosting
like iterative learning algorithm [116]. Overall, the supieed approaches often
outperform unsupervised methods during KNN classification

. Are unsupervised learning algorithms comparable with supevised learning
methods for retrieving correct name entities (i.e., name diambiguation)?

Our answer is:DEFINITELY YES . The ambiguity of names is very common
on both webpages and scientific documents. Different persagly share the
same name (or name initials) while one person may be reféoréy different
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name variants. Previous supervised learning approactiezceas features the
side-information besides the names themselves [57]. Téidseinformation in-
cludes addresses, phone-numbers, affiliations, co-autfmmation and so on,
which often requires careful human-labeling and sophagtid extracting algo-
rithms. Unsupervised approaches, on the other hand, dceedtthese steps. In-
stead, they leverage the underlying relationships betwaeh person, or between
persons and documents. e.g., comparing the similaritydssiva person’s social
network [84], finding the topic distribution based on a petspublication record
[114] and so on. These approaches, while successfully namgthe cost and
error of human-labeling, do not always result in decreasgtbpmance. Surpris-
ingly, some of them even outperform the supervised appesaaien leveraging
sophisticated clustering algorithms [115].

. Are computerized text recommendation algorithms suitablefor Web2.0 ap-
plications in recommending social bookmarks to users?

Our experience isYES. Though some still question the use of computer algo-
rithms to generate tags for social bookmarking serviceg f8umber of machine
learning frameworks have been proposed to address thespnaiflautomatic tag
recommendation for both text and digital data on the webT280, 119]. Recent
work has also shown the effectiveness of leveraging ussittaighprove language
models [144]. Our research shows that users indeed re-agadh generated by
other users while also takes the recommendations from ctamped suggestions
[37]. It should be noted, however, text recommendation émiad bookmarks is
more challenging than other applications. Since the useegated tags are in-
volving while new tags generated every day, the algorithrasequired to adjust
dynamically by learning new tags and user interests. Furtbee, with the in-
crease of the data everyday, efficiency should also be anrtempdactor when
designing a recommendation algorithm for web-size apftina.

. Instead of simply breaking a document collection into statt topics, is it pos-
sible to model the dynamic change of topics within the docung collection
during a range of time? Moreover, can we monitor the topic corelations
between several document collections dynamically?

Two graphical topic models can solve this question. Dynd@ope model (DTM)
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[11] and Correlated topic model (CTM) [10]. Both models axéeaded from the
latent Dirichlet allocation (LDA) model that representdments into a mixture
of topics. To model the topic trendsdthe correlations together, we proposed
a dynamic correlated topic model (DCTM) which is extendeudfrfithe hierarchi-
cal Gaussian process latent variable models (GP-LVM). Hewsince modeling
of trends and correlations is generally a hard task, thedvemrnk we proposed
also has flaws. Comparing to LDA, CTM and DTM, our model is Uedb
make document-level inference at all, i.e., words are dir@onnected with top-
ics rather than documents. Thus, the prediction methodsreeqptimization to
prevent overfitting from large-scale of data.

In my personal opinion, future work of text mining should migifocus on the scal-
ability issue. The speed of the Internet growth is alreadyohd the control of human
beings. Concequently, the amount of text data that is palgnavailable for computers
to use is virtually unlimited and cost-free. A rule of thunmbmachine learning is, the
more training data is presented, the better performancalgoithm can achieve. A
naive Bayes model learnt from 10 million labeled trainingedaill most likely outper-
form a support vector machine classifier built on 1 thousaaiding data, for the same
classification task. As a result, rather than searching fanensophisticated models for
text mining, researchers should really pay more attentiomoroving the scalability
of the learning algorithms during both training and predittstages. Because a lot of
sophisticated models used by today’s researchers dotly seale well enough. e.g.,
the LDA model [12] for topic discovery, the SVM [27] and Bowsj [105] classifiers for
text classification, the conditional random fields (CRFirfeavork [73] for text segmen-
tation and so on. Fortunately, some researchers have akeasioned this situation so
that some promising methods have been recently introdwucttettext mining field, to
particularly address the scalability issue [128, 61, 132].
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