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Abstract

We all witnessed the information explosion of the World WideWeb which has brought
us with continuously rapid growth of information and data. However, as the amount of
data grows day and night, the need for efficient and effectivemanagement of information
has also increased dramatically. As a result, using intelligent computerized algorithms
to discover new and useful information from existing data has become a hot-pursuit in
recent research of computer and information science.

This thesis addresses the issues of discovering useful information from textual con-
tent of the data, as well as efficient management and organization of the data. These
research issues are usually referred to as the task of text mining, which is a branch of
the broad area of information retrieval research that contains many interesting and chal-
lenging problems and applications. In this thesis, we mainly focus on four issues of text
mining: text classification (Chapter 2& 3), text retrieval (Chapter 4), text recommen-
dation (Chapter 5) and topic discovery (Chapter 6). Specifically, Chapter 2 proposes
dimension reduction and collaborative filtering techniques to improve the scalability of
text classification; Chapter 3 further addresses the performance issue of text classifica-
tion by introducing a new nearest neighbor classification method; Chapter 4 deals with
retrieving correct name entities from the web and textual documents where the names
are ambiguous; Chapter 5 deals with text recommendation forscientific documents and
webpages; Chapter 6 aims at discovering dynamic topic trends and correlations in sci-
entific documents; Chapter 7 concludes this thesis. We will also try to answer some
difficult research questions based on our study.
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Chapter 1
Introduction

The World Wide Web has been growing at a phenomenal rate sinceits emergence in

the last century. A recent study has shown that the Internet contains about 9.36 bil-

lion pages1. These pages contain rich information of images, videos, but most impor-

tantly, text contents. According to a recent study2, approximately 80 to 85% of all data

stored in databases are texts. Due to the heterogenous nature of the WWW, the text

contents in those pages are usually unstructured and thus hard to be discovered easily.

Consequently, leveraging computers to automatically discover useful information from

previously seen data becomes more and more desirable.

In this thesis, we address a research branch of the broad information management

research — text mining. Generally, it means the process of discovering useful patterns,

structures and other valuable information from unstructured natural language texts. Text

mining, sometimes referred to as data mining, contains manyinteresting and challenging

tasks. For examples, commercial search engines (e.g., Google and Yahoo!) highly

leverage text mining techniques to retrieve relevant documents according to user-input

queries, which is a way of showing the success of text mining for effective information

extraction from massive amount of unstructured data.

The aforementioned application is an example of the broad research area of text

mining, namely text retrieval. The research issues of text mining have been studied for

decades, by researchers from different research areas including applied mathematics,

statistics, machine learning, natural language processing and etc. Apparently, we are

1http://www.cs.uiowa.edu/∼asignori/web-size/
2http://www.edbt2006.de/edbt-share/IntroductionToTextMining.pdf
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unable to cover all sub areas of text mining and thus we will focus on four important

areas in this thesis: text classification, text retrieval, text recommendation and topic

discovery.

1.1 Text Classification

Text classification, which is sometimes called text categorization [126, 34, 118, 116],

refers to the process of automatic assignment of textual documents into one or more

predefined categories. This supervised learning approach consists of two major steps:

learning and prediction. During the learning step, a set of labeled training documents

is presented to the algorithm, where the labels are usually acquired by human-effort.

For efficiency, the documents are often represented by vectors where the elements in the

vectors correspond to specific words, and the values of the elements refer to the number

of appearances of the words in the documents. This representation is the most common

one in text analysis, namely the bag-of-words (BOW) model. After the algorithm learns

a classifier from the training documents, the classifier is then capable of categorizing

new unlabeled documents into the existing categories.

The benefit of performing text classification is multifold. Obviously, text classifica-

tion can reduce the cost and time of human-effort for labeling documents, which also

reduces the probability of making errors during labeling. Moreover, a classifier can also

act as a feature selection algorithm which selects the important word features and elim-

inates irrelevant ones [29, 40]. This helps reducing the dimensionality of the feature

space and consequently slashes the computational cost of the learning algorithm. Fi-

nally, text classification can also be leveraged as a pre-processing step to improve the

performance of other tasks. For example, classifying webpages into several topics (e.g.,

news, education and etc) can substantially improve the accuracy of text retrieval [28].

Text classification is arguably one of the most important research areas of text mining

and machine learning. Applications of text classification include many research fields,

such as query classification [63, 17], email spam filtering [68, 69], and micro-array

classification [48, 135] in biological sciences.
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1.2 Text Retrieval

Text retrieval, or document retrieval, aims at matching user-input keywords (or queries)

with a collection of text documents. It belongs to the broad research area of information

retrieval, which includes image retrieval, video retrieval and so on. Since the emergence

of search engines like Yahoo! and Google, text retrieval hasbeen widely applied in

all commercial search engines and digital libraries aroundthe world. Regardless of the

applications, the general process of text retrieval usually consists of two steps: (1) find

relevant documents based on the input; (2) sort the retrieved documents according to

their relevance to the query. These two steps therefore posetwo major challenges to the

retrieval tasks, i.e., efficiency and effectiveness.

To efficiently return the query results in real-time, most retrieval systems use an

index to speed up the lookup process [19]. When there is a match between the query

words and the document content, the document is then treatedas relevant and retrieved

by the system. On the other hand, many useful metrics have been introduced to measure

the rank or significance of documents / webpages to a specific query. Including the

traditional term frequency (tf), inverse document frequency (idf) [62] and more recently,

the pagerank score by Google [93].

1.3 Text Recommendation

Text recommendation is often used in recommender systems which suggest relevant

documents (or items) based on user queries. For example, when a user buys a book on

Amazon3, the system will then suggest other relevant books based on the content of the

book as well as the similarity between the user and others whoalso bought this book. A

classic technique used in the scenario is named collaborative filtering (CF) [15], which

calculates the similarity between users and recommends interesting items based on user

history.

More recently, text recommendation has been applied to social bookmarking sys-

tems like delicious4 and Flickr5. These social systems allow users to specify their own

keywords for their collection of webpages, images and videos, which greatly facilitates

3http://www.amazon.com
4http://delicious.com/
5http://www.flickr.com/
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the organization and sharing of resources among users. These user-defined keywords are

often called tags or social bookmarks. A recent hot researchissue aims at recommend-

ing relevant tags to a new resource or a new user [119, 117, 80]. Unlike the traditional

taxonomy, tags are not bounded by any pre-defined vocabulary. This issue thus becomes

more challenging than the traditional text recommendationtasks.

In general, text recommendation is very similar to the process of text retrieval, except

that the retrieved results may not contain the user-input atall, but still quite relevant to

the queries. Therefore, text recommendation is often more challenging than retrieval

since it requires richer information than standard retrieval tasks, e.g., user history and so

on.

1.4 Topic Discovery

Since Latent Semantic Analysis (LSA) was introduced to textmining in 1988 [31], topic

analysis has become a very popular research area that attracts many computer scientists

and statisticians. The simple idea behind topic analysis isthat a collection of documents

can be treated as a mixture of topics, where each topic contains many words that form

an unknown probabilistic distribution within the topic. which essentially reduces the

dimensionality of document representation from words intotopics. Therefore, topic

analysis can substantially reduce the effort to manage large and ever-growing collections

of documents.

Recently, probabilistic graphical topic models such as theprobabilistic LSA (PLSA)

[54] and latent Dirichlet allocation (LDA) [12], which improve the LSA model by in-

troducing statistical analysis, have become very useful tools for several crucial tasks in

text information retrieval [152, 2, 87].

Compared to the supervised text classification methods, topic models are unsuper-

vised learning approaches, which do not require any prior knowledge of the document

labels. Thus they are used more frequently than supervised classification methods.

1.5 Text Mining Metrics

Regardless of the application type, the measurement (or themetric) of the effectiveness

of a text mining algorithm is typically carried out by comparing the performance of the
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algorithm in the testing set of documents after a training set. Two most frequently used

metrics areprecisionandrecall (See Figure 1.1).

• Precision: The proportion of retrieved and relevant documents to all the docu-

ments retrieved. i.e., “How many documents are assumed to bein the category

truly belong to it”?

• Recall: The proportion of relevant documents that are retrieved, out of all relevant

documents in a system. i.e., “How many documents that belongs to the category

have been deemed as such”?

Ideally, one may want to achieve high precision and recall atthe same time (e.g., Fig-

ure 1.2(left)), shown in Figure. But sometimes the algorithms may compromise one for

the other as represented in Figure 1.2(middle)&(right). As a result, to measure the aver-

age performance of an algorithm,F1 score, defined as2·precision·recall/(precision+

recall), is also considered a popular and effective metric.

Figure 1.1. Illustration of precision and recall and their measurement. (From C. Lee Giles: IST
441, Information Retrieval and Search Engines.)
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Figure 1.2. Illustration of the performance of precision and recall. (Left) High precision and
high recall. (Middle) High precision with low recall. (Right) Low precision with high recall.
(From C. Lee Giles: IST 441, Information Retrieval and Search Engines.)

1.6 Challenges of Text Mining Tasks

Although text mining has been studied for decades, there still exists several challenges

and issues that should be addressed (and will be addressed inthis thesis):

• Performance. Ideally, for each category the algorithm is assumed to find every-

thing relevant in the system (high recall) and only retrievethose into that category

(high precision). The accuracy of the model depends largelyon how the docu-

ments are represented as well as the distribution of the documents. For example,

in document classification, the documents are usually in theform of vectors. Thus

the vector space is usually quite large and sparse, which is the main cause of the

“curse of dimensionality” phenomena. Achieving the best performance has been

the major measurement for almost all text mining tasks.

• Scalability. Efficiency is as crucial as performance for large-scale applications.

To achieve better performance, usually more training documents are preferable,

which could in turn causes prohibitively long model training time for the algo-

rithm. For example in most scenarios of text classification,the training time is

linear or quadratic to the number of training documents. e.g. the training time

for support vector machine classifiers (SVMs) [145, 60, 30] is usually quadratic

until a recent improvement which turns the training time to be linear [61]. Some

other simple classifiers, e.g., K-nearest neighbors classifier [116], logistic regres-

sion [146], their training cost is also decided by the numberof categories in the

training data.



7

• Adaptivity . An algorithm may perform well in one application (e.g., image cat-

egorization) but bad for another (e.g., text categorization). More commonly, a

classifier may have different performance on different datasets in the same appli-

cation. Thus building a universal algorithm that is both application-independent

and dataset-independent becomes quite desirable.

• Customization(Personalization). Retrieving relevant documents based on user

preferences has become a new research trend. For web users, the algorithms have

to deal with documents with diverse content and users with diverse interests.Thus

traditional algorithms (e.g., classifiers) that fix categories in advance obviously

cannot cater for all user interests.

For example, inpersonalized classification, the users are assumed to create their

own personalized categories. The classifiers will then be automatically trained for

classifying objects under such categories. Example applications include online

news classification, book recommendation (e.g., Amazon online store) and so on.

In the domain of text classification, personalized classification can be considered

as text filtering, where one or more set of features is first constructed with each

representing a different user interest domain. Based on thesemantic closeness

with the features, relevant documents are then retrieved from the corpus for differ-

ent users. This problem have been well-studied in the Text REtrieval Conference

(TREC) [1].

In general, two types of processes are employed for personalized classification,

namelyflat processandhierarchical process[124]. The flat process corresponds

to the case that the personalized categories are defined independently of each

other, while the hierarchical process refers to the situation that each personalized

category is defined within some general category.

1.7 Objective and Structure of This Thesis

The objective of this thesis is to answer the following research questions:

1. Can dimension reduction techniques boost the performance of text classifica-

tion?
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2. Is it possible to overcome the “curse of dimensionality” forthe K-nearest

neighbor classifier?

3. Are unsupervised learning algorithms comparable with supervised learning

methods for retrieving correct name entities (i.e., name disambiguation)?

4. Are computerized text recommendation algorithms suitablefor Web2.0 ap-

plications in recommending social bookmarks to users?

5. Instead of simply breaking a document collection into static topics, is it pos-

sible to model the dynamic change of topics within the document collection

during a range of time? Moreover, can we monitor the topic correlations

between several document collections dynamically?

In the remaining of this thesis, I will discuss the literature of this area as well as my

previous work on text mining. The rest of this thesis is organized into 7 chapters. Specif-

ically, Chapter 2 proposes dimension reduction and collaborative filtering techniques to

improve the scalability of text classification; Chapter 3 further addresses the perfor-

mance issue of text classification by introducing a new nearest neighbor classification

method; Chapter 4 deals with retrieving correct name entities from the web and textual

documents where the names are ambiguous; Chapter 5 deals with text recommendation

for scientific documents and webpages; Chapter 6 aims at discovering dynamic topic

trends and correlations in scientific documents; Chapter 7 concludes this thesis.



Chapter 2
Text Classification: Dimension

Reduction and Collaborative

Filtering

Mathematically speaking, text classification is the task ofapproximating the unknown

target functionΦ : D × C → {T, F} by means of a functionΨ : D × C → {T, F}
named theclassifier, such thatΦ can be approximated as much as possible byΨ. Here

C = {c1, ..., cm} ia a predefined fixed set of categories,D is a corpus of objects. In most

cases, the categoriesC are assumed to be numerical. i.e., there is no specific meaning

of a class label since it is not helpful in building a classifier.

Depending on the application, classification may be:

• Single label: In this case each object must be assigned with exactly one label. A

special case of this is whenm = 2, i.e., binary classification (labels are usually

{-1, +1} or {0, 1}).

• Multiple label: Each object may have one or more labels in this case. A special

case is document tagging (See Chapter 5 for details).

Meanwhile, classification may be required to perform differently depending on the

application:

• Hard classification: Based on our definition, it is to providea value in{T, F}
which indicates membership or non-membership ofdj in ci.
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• Soft classification: In this case, the classifier is only required to provide a value

between[0, 1] which indicates the degree of confidence of the membership ofdj

in ci.

Typically, a classifier forC can be built either manually or automatically. In the first

case, a set of type of rules are set by people with domain expertise to decide the label of

all objects. Nevertheless, due to the large-scale and ever-growing number of objects in

most situations nowadays, it has become labor-intensive that causes prohibitively long

time to finish the task, as well as other defect made by human-beings which makes this

approach error-prone and cost-ineffective.

As a result, the second approach, namely automatic classification, is usually prefer-

able. This process is generally carried out by supervised machine learning techniques,

which leverage a set oftraining objects that is pre-classified (i.e., labelled) inC, and

make automatic predictions of the labels for the new objects, which are usually referred

to astestingobjects. Generally, the representation of objects is in theform of vectors,

where the length of the vectors indicates the number offeaturesthat is included in at

least one training object. The value (or the weights) of eachfeature denotes the number

of occurrence in each object, which may be binary (indicating presence or absence of

the feature in the object) or non-binary.

In literature, numerous supervised learning techniques have been proposed for text

classification. Among all of them, successful algorithms include neural networks [104,

151, 94], decision tree [56, 86], probabilistic classifiers[58, 137, 91], nearest neighbors

[5, 50, 150] and etc. More recently, support vector machines[145, 60, 30] and boosting

algorithms [20, 92] are becoming more popular with generally better performance.

To overcome long training time for the classifier in large-scale applications, dimen-

sion reduction are often performed before the data is sent tothe classifier. Feature selec-

tion, feature extraction and re-parameterizations are themost common used methods. In

this chapter, I will focus on the issue of dimension reduction in unstructured document

classification.

2.1 Challenge of Unstructured Document Classification

Industry analysts suggest that over 80% of the content within the typical Global 2000

organization is unstructured — that is, content which does not fit neatly into the rows and
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columns of a relational database. The fact is, this unstructured content is key to many

business processes across the organization and throughoutthe business value chain, from

engineering drawings and specifications, to brand assets such as sales and marketing

collateral, legal documents, educational videos and tutorials, online product catalogs,

and customer service information.

However, experience with the CiteSeer Digital Library1 indicates that there still exist

several challenges in text classification for unstructureddata on the Web, particularly

when the number of classification labels is large.

In CiteSeer, several concept taxonomies exist for classifying academic materials, in-

cluding the taxonomy for computer science provided by the ACM. For the purposes of

this project, publication venues are used as classificationlabels under the assumption

that each publication venue encapsulates a distinguishable concept focus. Since Cite-

Seer (and most search engines) automatically crawls academic documents from venue

websites, author homepages and then extracts textual information from them to create

metadata, false labels are inevitably assigned to many documents. Due to the increas-

ing similarities between different venues (e.g.,SIGKDDandPKDD, ECMLandICML),

the effort needed to accurately classify a document into exactly one category becomes

greater. Moreover, lack of keyword fields, improperly defined terms, and other feature

deficiencies create unique challenges for text classification.
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0

500

1000

1500

2000

2500

Class Labels

# o
f S

am
ple

s

Figure 2.1. Distribution of documents w.r.t. classes in CiteSeer. In Practice, documents on the
Web are also unevenly distributed.

This problem is further exacerbated due to the imbalance of documents available for

1http://citeseer.ist.psu.edu/
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training in each class, i.e., the documents are unevenly distributed in different categories

on the Web (for example, CiteSeer has a collection of more than 3,000 documents for

INFOCOM, while for some other conferences, the cumulative numbers are no more than

200); Figure 2.1 gives an actual document distribution on one of the data sets used later

in the paper.

Traditionalbag-of-wordsapproach represents each document as a feature vector and

often leads to feature spaces that are sparse and large, highclassification accuracies are

thus hard to get. Contemporary approaches of text classification concentrate on extract-

ing more meaningful features from structured text, e.g., adding numeric features such

as timestamps [83], capturing features that share mutual information and are dependent

on each other [133], as well as seeking better methods to refine the classification model

based on the prediction errors from the training data sets [36, 82]. Several classifiers

have been introduced to text classification, e.g., Naive Bayes [95], maximum entropy

[90] and Boosting [20]. Support Vector Machines (SVMs) [14,147, 153], which fo-

cus on finding the hyperplane that maximizes the margin between positive and negative

classes, have typically been the most effective classifierswith regards to the classifica-

tion errors. Forming the feature space has become for many a crucial part of using SVMs

as text classifiers, since naturally there are hundreds of terms in each document and

thousands of documents in each class, which results in very high-dimensional feature

spaces. Yet it has been reported that SVMs can still achieve high accuracy in document

classification without feature selection [125].

Research on entity extraction spans the fields of linguistics and computer science.

Linguistic techniques can be employed to enhance feature selection from raw text by

grouping text into semantically meaningful chunks. Developments in entity extraction

technology have traditionally been concerned with the issue of computational complex-

ity as well as extraction accuracy and domain specificity. Methods for entity extraction

from unstructured data typically fall into two categories:pattern-based approaches and

model-based approaches. Pattern-based extractions require extensive manual labor for

detecting patterns and is generally not robust to variant data. On the other hand, model-

based approaches like hidden Markov models (HMMs) [111] andSVMs [71], while

requiring careful feature selection, have proved to be robust and flexible.

The major contributions of this chapter are: (1) dimension reduction by leveraging

entity extraction methods, (2) using collaborative filtering technique for refining mini-
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extraction and collaborative
filtering to boost the feature
space.

our attempt to unify entity
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Figure 2.2. Feature space augmentation by using CF algorithm.

mal, noisy feature spaces, and (3) a comparison of the performance of SVM versus Ad-

aBoost classifiers for the problem of categorizing academicdocuments by publication

venue. Collaborative filtering is employed to predict the value of missing features for

each class. Experimental evaluations on both real-world data set and benchmark corpus

show great improvement with regard to classification accuracy compared with classifi-

cation using the original feature space and the feature selection method — Information

Gain (IG). Figure 2.2 shows the structure of our approach.

2.2 Entity Extraction using SVM-decision-tree

Text documents are often treated as “bags of words” for machine learning tasks, repre-

sented only by each word as a feature along with an associatedfrequency count. Some

heuristic improvement that reduce the dimension of featurespaces include the removal

of stop words, link words and punctuation from the term list.However, the “bag of

words” approach does not help defining meaningful entities and results in a very large

feature space. Documents on the Web usually fall into many categories, e.g., in digi-

tal libraries, academic documents span many research areas, each of which may have

different meanings for the same words thus making the terms ambiguous. The feature

space may be reduced by chunking text into meaningful units and treating each chunk

as an individual feature. This process is known as entity extraction.

Entity extraction techniques typically fall into one of twocategories: named entity

recognition (NER) and phrase extraction. NER deals with identifying proper names text,

extracting paper titles and author names in on-line publications and so on. Phrases, or

meaningful entities, can be recognized assignaturethat best represent the main idea of

papers, most of which can be found in the titles, abstracts and keyword fields in a paper.
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However, only a few publication venues require keyword fields2.

Maximum Entropy (ME) is a feature reduction approach that works by choosing the

model with the most uniform probability distribution (the highest entropy), the model

is described asP (w|h) = 1
Z(h)
· e

P

i λifi(h,w), wherefi(h, w) denotes a binary feature

function that describes a certain term;λi is a parameter that indicates how important

featurefi is for the model. The disadvantage of ME is that it cannot automatically select

features from given feature sets thus relying on careful feature selection techniques.

Conditional random fields (CRFs) [73] is another NER technique that aims to label

and segment data into phrases. It works by defining a conditional probability distri-

bution over training data given a particular observation phrase. It usually works better

than HMM and avoids the label bias problem, however, the training time of CRFs is

prohibitively high.

To identify non-trivial noun phrases with semantic meanings in the documents, noun

phrases (NP) chunking is adopted for this purpose. Chunkinggroups together semanti-

cally related words into constituents, a step beyond POS (Part-Of-Speech) tagging; but

it does not identify the role of these constituents with respect to the sentence, nor their

inter-relationships. In our system, we revised and implemented a previous chunking

algorithm [70] as a simplified yet more efficient two-level SVM-based NP chunker.

The NP chunking problem is formalized as a three class classification problem,

which assigns each word with one of the labels: B (Beginning of NP), I (Inside NP),

O (Outside NP). A feature space is constructed, with dimensions representing the sur-

rounding words, the POS tags of those words, and the already tagged chunk tags. Three

SVM models (BI, IO, OB) are trained, each designed to tag a word in favor of one label

over the other, for example, the BI model provides a hyperplane to tag a word with label

B rather than label I.

We adopt the pairwise method that allows the SVM to classify multi-class problems.

Traditional methods have considered using three SVMs together at each time, i.e., in the

worst case, three comparisons need to be made in order to determine the label of a word.

However, we use a method that allows us to use two SVMs insteadof three, which in

turn accelerates the chunking time by one third. The hierarchy of the two-level decision

tree employed is shown in Figure 2.3. Furthermore, Table 2.1shows an example to

2From an investigation of ACM & DBLP metadata cross-referenced with CiteSeer data, 5% of venues
do not have an identifiable abstract field and more than 70% of venues lack a keyword field.
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OB Model IO Model

Label O Label B Label I Label O

BI Model

BI >= 0 BI < 0

OB >= 0 OB < 0 IO < 0IO >= 0

Figure 2.3. Two-level decision tree for tagging.

clarify the method we use.

Given a paragraph of unstructured text, the extraction goesthrough the steps of sen-

tence segmentation, POS tagging using Brill tagger3 and NP chunking. In this example,

collaborativeandfiltering are labeled as adjective and noun by Brill tagger, the chunk-

ing decision forcollaborativeis based on the results of the SVMs: the result of BI model

is 0.5 (in favor of label B), so the OB model is used which yields -0.6 (in favor of label

B), thus B-NP is chosen as the chunk tag for this word. Totally5 phrases are extracted

in the above example shown in Figure 3, by merging the chunking tags and discarding

general terms yields three meaningful entities:entity extraction, collaborative filtering

andfeature space.

2.2.1 Extract NP as Phrases

Various kinds of chunks are used innatural language processing(Noun Phrases, Verb

Phrases, Prepositional Phrases, Adjective Phrases and Adverb Phrases) for different pur-

poses including location extraction, noun phrase extraction and so on. However, for a

specific task of text processing, it is not necessary to use all chunks together. For ex-

ample, it is generally believed that in information retrieval, using only NPs and VPs in

a sentence can be enough. Our approach is similar to the DAG-SVM [98] approach in

essence, however, for the task of extracting meaningful entities from documents, only

NP tags are considered in our case. Oftensignaturesare recognized as some combina-

3http://research.microsoft.com/∼Ebrill/
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current word POS tag chunk tag
This DT B-NP
paper NN I-NP
describes VBZ O
our PRP B-NP
attempt NN I-NP
to TO O
unify VB O
entity NN B-NP
extraction NN I-NP
and CC O
collaborative JJ B-NP
filtering NN I-NP
to TO O
boost VBG O
the DT B-NP
feature NN I-NP
space NN I-NP
. . O

Table 2.1.Chunk representation example. Each word is first tagged withPOS tag, and POS tags
are then classified into B-NP, I-NP and O tags.

tion of noun phrases in documents, which in our case are mostly denoted as B-NPs and

I-NPs. As a result, instead of making use of all NP chunks for tagging, chunk labels

except B-NPs and I-NPs are masked under the label of O, which loses some information

during training, but significantly speeds up the training process as only three chunk-

ing tags are taken into account. Our program then simply combines B-NPs and I-NPs

between O tags and treated them assignaturesfor the documents.

To summarize, our proposedSVM-decision-treemethod finds an effective trade-off

between performance and cost for extracting phrases from unstructured data, which is

served as preliminary results for our final task of text classification. On one hand, we

know lessin the feature space which yields little impact on the precision of NP chunking,

testing results indicate that the performance is only reduced slightly by our approach4;

on the other hand, the algorithm slashes a lot of computational time that is required by

shallow parsing methods. In our experiments, our NP chunkerruns even faster than the

4On the Wall Street Journal data set, our model achieved precision of 90.2%, comparable with previous
results in [70].
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POS tagger, making it an highly efficient solution for large scale data.

2.3 Feature Space Refinement

Inspired by the analogy betweenuser behaviorsandvenue focuses(i.e., different users

may have similar preferences, different conferences/journals may focus on the same

research areas), we employ collaborative filtering (CF) to refine the feature space by

predicting missing values as well as reducing noise factorsfrom the feature space. Here

we propose two alternatives of the traditional CF algorithm. The first one is a refined

instance selection algorithm, while the second algorithm aims at clustering similar users

to user groups for better efficiency.

There are two major approaches of collaborative filtering, memory-based and model-

based. Memory-based algorithms store users ratings/preferences in storage, and give

recommendations based on known scores from existing users.Model-based algorithms

describe users preference by applying descriptive models to users and/or ratings; the

virtue being that once the model is established, little computation is required for pre-

diction. However, the training requirements of both modelsrequire trade-offs between

on-line and offline computation.

CF has the following issues - efficiency of the algorithms andquality of the rec-

ommendations. In general, the computational complexity ofmemory-based and model-

based algorithms areO(nm2) andO(nm), respectively, wherem denotes the number

of users andn denotes the number of items (e.g., movies) in the data sets where both

have an upper bound ofm × n. Currently, data sets from large on-line stores contain

millions of items as well as millions of registered users, which can be computationally

expensive.

The quality of the recommendation is problematic and is primarily due to the number

of items that users rated. Given the large number of items in the data sets, a single user

may want to buy or rate a very small portion of the items, resulting in most items in

the data sets unrated. For example, in the EachMovie5 database, a user rates 20 movies

on average, while the whole database contains more than 1,000 movies. Thus making

recommendations from very limited data can lead to unacceptable errors.

5http://www.grouplens.org/taxonomy/term/14
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2.3.1 Best Selection Algorithm (BS1) for Memory-Based CF

For the introduction to CF, we refer interested readers to the classic paper [15]. In this

section, we first give a formal definition of our memory-basedCF algorithm [113].

2.3.1.1 A Revised Inner Product-Based Weight Function

Given a vector spaceV ∈ Rmn and a field of scalarsK (which is either in the fieldR

of real numbers or the filedC of complex numbers), an inner product is defined as a

function< ., . >: V × V −→ K which satisfies the properties oflinearity, conjugate

symmetryandpositive definite. Generally, an inner product is a generalization of the dot

product. Usually in a vector space, the inner product is usedas a way to multiply vectors

together, with the result of this multiplication being a scalar. In the area of information

retrieval, inner product is used as a measurement of vector similarity that represents

how similar two or more queries/sentences are to each other.Based on these features,

we introduce our new weight function as follows:

W(a, i) =

∑n
j=0 〈〈min(Vaj , ǫa), min(Vij , ǫi)〉 , Sim(a, i, j)〉

min(|Ia|, |Ij|)
(2.1)

Where functionSimis defined as:

Sim(a, i, j) =
(S − |Vaj − Vij|)

S
(2.2)

Here in equation (2.1) and equation (2.2),Vij represents the rating of useri ∈ [1, m]

over itemj ∈ [1, n], |Ii| denotes the number of items (features) that useri rated,m

equals to the total number of items andS stands for the rating scale (e.g., [0-1], [0-5]

and etc). The vectorǫ = {ǫ1, ǫ2, ...ǫn} are some significant small coefficients that are a

little bit smaller than the lowest feature frequencies for each sample. Specifically,

ǫ(V ) = min
r 6=0

||V r||1
||r||1

(2.3)

where || · ||1 represents theL1 norm (i.e., ||f ||1 =
∑ |fi|). The reason that instead

of using the true value ofVij , we usemin(Vij , ǫi) in equation (2.2) for computing the

weight function is that we are only concerned about whether usersa andi have rated
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itemj or not. How close their ratings are related is decided by the functionSim(), which

computes the similarity between two ratings by calculatingthe difference between user

ratings divided by the rating scale resulting in vector distances (or similarity). It is

evident that the higher the similarity, the closer relationships users have to each other.

ObviouslySim(a, a, i) = 1 for all a’s andi’s, which implies that the similarity between

a user and itself is always the highest.

The multiple inner product [15] directly computes the vector similarity between

users which for some cases is similar to calculating the documents/queries similarity,

but is generally not a very strict estimate for defining the weight function with respect

to collaborative filtering. Given an extreme example, for three usersa, i, j, suppose

Va = (1, 1, 1), Vi = (5, 5, 5) andVj = (1, 1, 1). In this case that usera disliked all

three items and rated them all 1’s, useri likes all three items, and userj disliked all.

Intuitively, usera has more similarity to userj than useri. However, if we compute by

multiplying vectors directly (〈Va, Vi〉 = 15, 〈Va, Vj〉 = 3), the similarity between user

a and i would be much higher, which is in conflict. However, by applying ourSim

function, we end up having weights of valuesw(a, i) = 1/5 andw(a, j) = 1, showing

that usera andj have more similar profiles.

2.3.1.2 Algorithm and Analysis

Based on the weight function we computed previously, we propose our first algorithm

Best Selection (BS1).

In algorithm 1,a is the active user whose ratings we want to predict;m andn are

used to denote the number of users and the number of items, respectively. The idea

behind this algorithm is that instead of doing computation across the entire datasets

only for a single prediction, we choose totally⌈log m⌉ users that has thebestsimilarity

with the active usera for prediction. In other words, these candidates are the best ones to

represent usera’s ratings of the items in the same data set. To achieve the best result, the

algorithm is iterated⌈log m⌉ times, at each time⌈log m⌉ users are randomly picked, and

only thebestone that has the highest similarity (judged by the weight functionW(a, i))

with the active usera is selected and inserted into the candidates list.

Once we have the candidates list and the weight function, we can predict usera’s
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Algorithm 1 Best Selection Algorithm (BS1)
1: input: user-item matrixP ∈ Rm×n

2: weight matrixW ∈ Rm×m

3: output: candidates listC ∈ R⌈log m⌉×n

4: Initialize C ← ∅
5: for each active usera do
6: for i equals 0 to⌈log m⌉ do
7: randomly choose⌈log m⌉ usersU fromP
8: select the candidateµ that satisfies:
9: ∀ υ ∈ U and υ 6= µ,W(a, µ) >W(a, υ)

10: Ci ← Ci ∪ P(µ)
11: end
12: end

outputC

rating for itemj as follows (rememberC is the candidates list):

Q(a, j) =

⌈log m⌉
∑

c=0

W(a, c) ∗ P(c, j), c ∈ C (2.4)

Some previous memory-based approaches [15] predicted userratings by collecting rat-

ings from all users in the datasets. Two shortcomings are obvious here: first, lots of

noise factors were introduced to the prediction process. i.e., the ratings of those users

whom have very little similarities with the active usera are also added up to predict its

ratings, as long as the weights between these users anda a greater than 0. Secondly,

time are wasted to compute these useless ratings, which havevery minor effects to the

final prediction results.

By adopting instance selection, we minimize the noise factors by selecting the most

representative users from the data set. As a result, on establishing the candidates list,

we could get better prediction results by computing from a much smaller set, but def-

initely no less reliable, of related users, regardless of items. The running time is also

significantly reduced toO(n log2 m).

It has also been realized that by using random selection, we may get the optimal

result for each step, but we may not achieve the optimum solution globally. i.e., those

users that have the highest weights with the active user havechances of not being se-

lected as candidates. However, trying to find the absolute best candidates each time

would be labor-intensive and time-consuming. By mentioning besthere, we mean that
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our approach finds the best trade-off between computationalcomplexity and prediction

results. In other words, by selecting the best candidate foreach step and repeating the

same step⌈log m⌉ times, we have minimized the standard deviation of errors that could

cause mis-prediction.

2.3.2 Clustering Approach — Improved Best Selection Algorithm

(BS2)

In this section, we continue to propose the second selectionalgorithm that unifies in-

stance selection and feature selection techniques together, selected instances are further

clustered with selected features into several clusters based on user profiles.

2.3.2.1 Select Features from Candidates List

Generally, feature selection is different from instance selection regarding selection cri-

teria. i.e., instances are selected based on user similarities while features are chosen

according to the quantity of ratings provided by users. In algorithm 2, we want to se-

lect those features that have been rated most frequently by users. At the beginning of

BS2, a candidates list is retrieved by using BS1. Based on that, we count the number of

items that have been rated by the users in the candidates list, and select the first⌈log n⌉
features according to the descending order of the frequency.

The initialization part of algorithm 2 takesO(n log2 m) time with respect to the

number of usersm and number of featuresn. The first part of the algorithm computes

the number of times that the items have been rated by the selected candidates, taking

O(n log m) time to finish. The second part of the algorithm selects⌈log n⌉ features

from all the items, requiring no more thanO(logn) time. Considering in normal cases,

n 6≫ m andm 6≫ n, the running time of algorithm 2 is still bounded byO(n log2 m),

which makes BS2 as fast as BS1.

2.3.2.2 Clustering for Predicting User Ratings

After applied to BS2, the sample data collected have been optimized for prediction.

The prediction is then carried out by clustering the training data set based on the user

profiles. In practice, the size of the raw data sets varies a lot. As a result, how to
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Algorithm 2 Best Selection Algorithm (BS2)
1: program Best-Selection-Two
2: input: user-item matrixP ∈ Rm×n

3: output: instance-feature listF ∈ R⌈log m⌉×⌈log n⌉

4: Initialize C ← BS1(P), F ← ∅,I ← ∅
5: for i equals 0 ton do
6: for j equals 0 to⌈log m⌉ do
7: if C(j, i) > 0
8: I(i)← I(i) + 1
9: end

10: end
11: Append active usera to C : C ← P(a)
12: for i equals 0 to⌈log n⌉ do
13: select the featureκ from C that satisfies:
14: ∀ ξ ∈ C and ξ 6= κ,I(κ) > I(ξ)
15: Fi ← Fi ∪ C(κ)
16: C ← C − Cκ
17: end
18: outputF

dynamically choose the number of clusters that could lead the results of clustering to

the best prediction outcome becomes the key part of employing the classical clustering

algorithm.

Several approaches have been applied to cluster the data sets of user-item matrices,

which were mentioned in [33] as repeated clustering. In our approach, users who have

similar preferences of the same items are clustered together. To determine the quality

of clustering results, two metrics namely the average intra-class compactness and inter-

class looseness of clusters are employed:

Cp(K) =
1

K
K∑

i=1

Ni∑

j=1

(C(i)− U(i))2 (2.5)

Ls(K) =
1

K
K∑

i=1

K∑

j=1

(C(i)− C(j))2 (2.6)

In equation (2.5) and (2.6),U(i) ∈ F , whereF is the result from BS2 andF ∈
R⌈log m⌉×⌈log n⌉, K denotes the number of clusters,Ni represents the total number of

users in classi, andC(i) is the centroid of classi which is defined as:
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C(i) =
1

Ni

Ni∑

j=1

U(i) (2.7)

The purpose of clustering is to minimize the average intra-class compactness while

simultaneously maximizing inter-class looseness. In Algorithm 3, two initial thresholds

ǫ1, ǫ2 are chosen for intra-class compactness and inter-class looseness, respectively. The

number of clustersK are initialized to be half the number of instances selected from

BS1. Each time when the KMeans algorithm is called, we get thelabels for instancesι,

cluster centroidsc and the modified instance-feature listF ′ which appends the labels to

the last column ofF . After that, newρ̃ andτ̃ are computed by using the new labels. If

both conditions are satisfied, we take the clustering results and compute the prediction

value of the active usera. However, if the computed̃ρ is larger than the initial thresh-

old, we recognize that the current clusters are not compact enough, i.e., users that are

clustered in the same class may still exhibit different userprofiles, indicating that the

current clusters still need to be split.

In the third case, if the value of̃ρ is small enough, but̃τ is smaller than the threshold

(which means we have ”over-cluster” the users and clusters are not maximally sepa-

rated), then clusters are merged to get larger inter-class looseness values.

The running time of clustering, however, is still bounded byO(n log2 m), which is

equal to the running time of BS1. The worst situation happenswhen we need to try all

K’s from 2 to ⌈log m⌉, in which situation the selection of initial thresholdsǫ1 andǫ2

may not be optimal.

To summarize, choosing the right initial values for intra-class compactness and inter-

class looseness becomes crucial to both the program runningtime and clustering re-

sults. During the experiments, we found that for intra-class compactness,(⌈log m/2⌉)×
maxdist(F) would be an optimal choice, wheremaxdist(F) stands for the maximum

pairwise distances between instances in the instance-feature matrix. The value for inter-

class looseness, however, varies a lot due to the distances between centroids of clusters,

which are greatly dependent on the distribution of the selection matrix. In practice, we

figure out that the optimal value forLs is always aroundCp(⌈log m⌉) / ℜ, whereℜ is a

value between of (2, 4).



24

Algorithm 3 Clustering for Prediction
1: program Cluster-Prediction
2: input: instance-feature listF ∈ R⌈log m⌉×⌈log n⌉

3: output: rating-prediction listP ′ ∈ R⌈log m⌉

4: InitializeK ← ⌈log m/2⌉, ρ← ǫ1, τ ← ǫ2,
ι← ∅, c← ∅,P ′ ← ∅

5: while K > 2 andK < ⌈log m⌉ − 1 do
6: (ι, c,F ′)← KMeans(F ,K)
7: for i equals 1 toK do
8: for j equals 1 toNi do
9: ρ̃← Cp(F ′)

10: τ̃ ← Ls(F ′)
11: end
12: end
13: if ρ̃ < ρ andτ̃ > τ
14: break
15: else if ρ̃ > ρ
16: K ← K + 1
17: else if ρ̃ < ρ andτ̃ < τ
18: K ← K− 1
19: end while
20: for i equals 1 to⌈log m⌉ do
21: for j equals 1 ton do
22: if ιi = ι⌈log m⌉+1

23: P ′
j ← P ′

j +W(i, ⌈log m⌉+ 1)P(⌈log m⌉+ 1, j)
24: end
25: end
26: outputP ′

2.4 Classifiers for Text Classification

In this section, we continue to discuss the classifiers we employed for text classifica-

tion. We begin by first showing how we use SVM as a classifier, and then present the

algorithm AdaBoost.MH for multiclass classification.

2.4.1 SVM for Text Classification

Support Vector Machines (SVM) classify training examples by using the strategy that

maximizes the margin between critical examples and the separating hyperplane. Given

a set of training examplesS = 〈(x1, y1), ..., (xN , yN)〉, where each examplexi ∈ Rn

and each labelyi ∈ {+1,−1}. Our task is to find a hyperplane that optimally separates
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the positive and negative examples which can be interpretedasw · x + b = ±1 (w ∈
Rn, b ∈ R). By optimal we mean that the hyperplane maximizes the Euclidean distance

to the closest examples. In order to maximize the margin, we need to minimize||w||.
Generally, SVM is employed as a binary classifier. Nevertheless, two approaches

can be used to extend SVM for multi-class classification [42]. pairwise classification

trains SVMs for each pair of classes, thus totallyn(n−1)
2

SVMs need to be trained forn

classes, these SVMs are then arranged in trees where each node denotes an SVM. On the

other hand,one-against-allapproach only needs to trainn SVMs. The trick is to treat

only one class as a positive class (with label +1) at a time andall remaining as negative

classes (with label -1). Recently, multiclass SVMs have emerged to be an alternative

and reported to be more effective than the predecessors. In this paper, we employ [25]

as an implementation of multiclass SVM.

2.4.2 AdaBoost.MH

AdaBoost.MH (cf Algorithm 4) is used for multiclass multi-label text classification.

Given a sequence of training examplesS = 〈(x1, y1), ..., (xN , yN)〉 where each example

xi ∈ X and each labelyi ∈ Y , for Y ⊆ Y which is the set of labels assigned toxi, Y [ℓ]

(ℓ ∈ Y) is defined as 1 ifℓ ∈ Y and 0 otherwise.

In each round, the distributionDt(i) over all instances is dynamically maintained

and updated.D1(i) is initially set to be uniform. During thet-th round, the distribution

Dt(i) and the example sequenceS are sent to the weak learner which later returns a weak

hypothesisht that minimizes theHamming loss, i.e., to minimize the probability of the

number of examples(i, ℓ) whose sign off(xi, ℓ) differs from its observed signYi[ℓ].

As a result,Dt(i) is updated in the manner that more weight is given to the examples

that were misclassified byht during thet-th round. AfterT iterations or a termination

condition is met, the final hypothesisH(x, ℓ) is calculated. For each example, the label

can also be computed byL(x) = sign (H(x, ℓ)).

2.4.2.1 Weak Hypotheses for Text Classification

Boosting is well-suited as a general purpose method that canbe combined with any

classifier. The weak hypothesesh we use here is as simple as a one-level decision tree.

For example, a possible phrase could becomputer graphics, the corresponding predictor
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Algorithm 4 AdaBoost.MH for Multiclass Classification
1: procedure AdaBoost.MH
2: input: N labeled documents〈(x1, y1), ..., (xN , yN )〉
3: whereyi ∈ Y = {1, ..., k}
4: distributionD over theN documents
5: weak learning algorithmWeakLearn
6: number of iterationsT

7: Initialize D1(i, ℓ) = 1/(mk). /* uniform distribution*/
8: for t = 1, 2, ..., T do
9: 1. CallWeakLearn, providing with distributionDt

10: 2. Get back a weak hypothesisht : X × Y → R.
11: 3. Choose optimal update stepαt ∈ R

12: 4. Update the new distribution
13: 5. Set the new weights vector:

14: Dt+1(i, ℓ) = Dt(i,ℓ) exp(−αtYi[ℓ]ht(xi,ℓ))
Zt

15: for i = 1, ..., N, y ∈ Y − {yi}.
16: whereZt =

∑m
i=1

∑

ℓ∈YDt(i,ℓ) exp(−αtYi[ℓ]ht(xi,ℓ))

17: end
18: Output the hypothesis:H(x, ℓ) =

∑T
t=1 αtht(x, ℓ).

is “If computer graphicsappears in the document then predict that the document in the

classSIGGRAPHwith high confidence; predict that the document in the classICCV

with low confidence; and predict that it does not belong to anyother classes with low

confidence.” Formally, the weak hypothesesh can be defined as:

h(x, ℓ) =

{

c0ℓ if w 6∈ x;

c1ℓ if w ∈ x.

Wherew ∈ x denotes that a possible phrasew occurs in documentx, which was

categorized based on a binary feature forw: X0 = {x : w 6∈ x} andX1 = {x : w ∈ x}.
The process of constructing weak hypotheses is as follows: each round the weak

learners check all possible phrases, for each of which the valuescjℓ are selected with

respect to some criteria, and a score is given for the resulting weak hypothesis. When

the search of all phrases are done, the weak hypothesis with the lowest score is returned

by the weak learner.

To simplify the weak hypotheses, we choose discrete values for cjℓ, i.e., the value of
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cjℓ is either +1 or -1. Thus we set the predictioncjℓ = sign(W jℓ
+ −W jℓ

− )6. HereW jℓ
+ and

W jℓ
− are the weights of documents inXj that are labeled and not labeledℓ, respectively.

Each round they are updated as follows:

W jℓ
b =

m∑

i=1

Dt(i, ℓ) [xi ∈ Xj ∧ Yi[ℓ] = b], b ∈ {−1, +1}. (2.8)

To minimizeDt, the corresponding optimal parameter update is given by

αt =
1

2
ln

(
1 + rt

1− rt

)

, (2.9)

wherert is a weighted major vote over examples in blockXj, specified as:

rt =
∑

j∈{0,1}

∑

ℓ∈Y

|W jℓ
+ −W jℓ

− |

=
∑

ℓ∈Y

|W 0ℓ
+ −W 0ℓ

− |+ |W 1ℓ
+ −W 1ℓ

− |. (2.10)

Notice that whenαt is positive, the distributionDt is updated in the way that the

weight of misclassified example-label pairs always increases. With the normalization of

weight distribution in mind, this means that more weights are put to the samples that are

not correctly classified byh in t’s iteration.

2.5 Empirical Analysis of Collaborative Filtering Algo-

rithms

To evaluate our proposed CF algorithms, we evaluate the performance based on com-

putational complexity and prediction accuracy. In this section, we first introduce the

data sets used for experiments, then present the protocols and the metrics for evaluation.

Subsequently, we show the results of our experiments.

6The alternative is to use real values forcjℓ, where the predictioncjℓ = 1

2
ln

(
W

jℓ
+

W
jℓ
−

)
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2.5.1 Data Sets Preparation

We use both self generated data set and real data sets to perform a range of experiments.

For the self generated data, two random matrices are createdthat contain 200 rows and

500 columns, and intensionally prevent 0 from user ratings.The reason is to intension-

ally create very detailed user profiles regarding the items in the data sets, which can’t

be observed from the real data sets. In the same time, we also use two open data sets

from GroupLens, the first of which contains 943 users and 1,682 movies, with totally

100,000 ratings, about 6.3% of the entries in the matrix are non–empty. The second data

set consists of 6,040 users of MovieLens and approximately 3,900 movies, with totally

1,000,209 ratings. It is even sparser than the first data set —only 4.2% entries have

ratings. Table 2.2 summarizes the statistics.

2.5.2 Experiment Setup

To better visualize the outcome of our proposed algorithms,three representative algo-

rithms in three different categories are selected for comparison. The first one is from

Breese et al. [15], the classical memory-based CF algorithmthat applies vector simi-

larity as its weight function (VSIM); the second is Fast Correlation-Based Filter [148]

(FCBF) that uses feature selection technique; the last is Personality Diagnosis [97] (PD)

that unifies memory and model-based approaches.

Name Instances Features

Synthetic data 200 500
Movielen1 943 1,682
Movielen2 6,040 3,900

Table 2.2.Summary of benchmark datasets

Three protocols are employed:all but one, which simply chooses a random rating for

each user that is not equal to 0 and withhold it;given twoandgive ten, which withholds

all user ratings except the given number of ratings.

For evaluation metrics, we employ two classical metrics,MAEandRS, plus another

effective measurementMUG.

• MAE (Mean Absolute Error) – MAE represents how much the mean predicted



29

values deviate from the actual/observed values of all usersin the dataset.MAEa =
1

ma

∑

j∈Pa
|pa,j−oa,j |. Obviously, the lower the MAE is, the better the prediction.

• RS(Ranked Scoring) – RS multiplies the utility of an item by the likelihood that

the item may be rated by the user. It estimates the probability that an item will

be viewed by the user.RSa =
∑

j max(oa,j − d, 0) ∗ 1
2(j−1)/(α−1) . The higher RS

score is, the better the prediction is.

• MUG(Mean User Gain) – MUG computes the average quality of recommenda-

tions for the predicted values for users.MUGa = 1
na

∑

j∈Pa
UG(pa,j).

2.5.3 Results and Discussions

Table 2.4, Table 2.5 and Table 2.6 exhibit the experiment results with regard to MSE

scores, RS scores and MUG scores, respectively. BS1 and BS2 perform better than PD,

FCBF and VSIM in all three protocols for all test data sets. The average improvements

of BS1 and BS2 regarding MSE, RS and MUG scores are 12.7%, 20.4% and 13.5%, by

comparing to the average scores of the three algorithms. Figure 2.4 shows two results.

(We only pick one algorithm that performs best in that situation, for comparison to our

approach in each graph)

Datasets Running Time (in ms)

VSIM PD FCBF BS1 BS2
Synthetic 3765 2688 3211 2166 2238

MovieLen1 4833 3200 4587 2544 3517
MovieLen2 15669 5644 102384233 5291

Table 2.3.Algorithm Running Time.

Table 2.3 shows the running time of these five algorithms. BS1and BS2 require

significantly less time than the other three algorithms, especially for the large data sets.

Figure 3 depicts how running time changes as the data sets become larger, where incre-

ments for both BS1 and BS2 are small, which indicates that ouralgorithms are scalable

and the performance gain will be greater for larger data sets.

While BS1 and BS2 outperform others, it is necessary to make comparison between

these two. Table 2.7 summarizes the performance comparisonbetween BS1 and BS2.
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We use the measurement of how much can BS2 improve from BS1.

We notice that BS2 performs better for the metrics MSE and MUG, while BS1 still

have advantage on RS scores and running time. Since BS2 uses the results (candidate

lists) from BS1, it is then reasonable for BS2 to cost a littlebit more time than BS1.

The main cost of BS2 is the KMeans function. In BS2, we call KMeans several times

with different value ofK that equals to the number of clusters. During the experiment,

we find out that the number of iterations for the clustering algorithm is usually very

small, which results in a fast converge of the algorithm.

Datasets Algorithms Protcols

AllBut1 Given10 Given2
Synthetic PD 0.710 0.756 0.698

FCBF 0.875 0.924 0.933
VSIM 1.324 1.368 1.297
BS1 0.724 0.788 0.655
BS2 0.692 0.724 0.633

MovieLen1 PD 0.964 0.986 1.039
FCBF 0.999 1.069 1.296
VSIM 2.136 2.235 2.113
BS1 0.825 0.826 0.878
BS2 0.814 0.835 1.022

MovieLen2 PD 1.023 1.011 1.125
FCBF 1.001 1.068 1.265
VSIM 2.345 2.274 2.256
BS1 1.078 1.079 1.079
BS2 0.802 0.811 0.978

Table 2.4.MSE Scores

2.6 Text Classification Experiments and Discussions

In this experimental evaluation, we ran a series of experiments to compare our proposed

text classification approach with traditional methods on two data sets: CiteSeer Digital

Library and WebKB benchmark corpus[26]. Specifically, three kinds of experiments are

carried out:

First, we make comparison between entity extraction techniques in terms of the di-
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Figure 2.4. MSE scores and RS scores of PD, BS1 and BS2.

Datasets Algorithms RS Results

AllBut1 Given10 Given2
Synthetic PD 69.58 69.20 75.72

FCBF 76.81 71.17 59.70
VSIM 68.33 62.34 57.22
BS1 85.33 85.43 81.05
BS2 87.11 87.03 83.92

MovieLen1 PD 65.22 65.08 61.22
FCBF 73.45 70.23 59.27
VSIM 62.51 60.31 58.11
BS1 74.11 77.25 75.33
BS2 72.35 75.42 69.21

MovieLen2 PD 62.11 64.35 59.22
FCBF 65.33 68.24 62.77
VSIM 61.24 53.27 55.78
BS1 68.25 69.77 60.23
BS2 69.33 64.44 62.91

Table 2.5.RS Scores

mensionality of the feature space. We compare our proposedSVM-decision-treeap-

proach to thebag-of-wordsmethod with the standard TFIDF approach as an extension.

To be more convincing,Information Gain(IG) is applied to thebag-of-wordsapproach

as a feature selection criteria. A featurey is deemed useful if its expected IG exceeds

the threshold.7 Comparisons are also made between IG andSVM-decision-tree.

7Experimentally, the threshold is usually chosen to maximize the F-measure on a validation set.
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Datasets Algorithms MUG Results

AllBut1 Given10 Given2
Synthetic PD 0.62 0.68 0.12

FCBF 0.81 0.61 0.42
VSIM 0.34 0.32 0.08
BS1 0.83 0.72 0.32
BS2 0.89 0.87 0.55

MovieLen1 PD 0.58 0.54 0.09
FCBF 0.78 0.60 0.37
VSIM 0.35 0.37 0.11
BS1 0.81 0.75 0.68
BS2 0.78 0.62 0.60

MovieLen2 PD 0.49 0.45 0.11
FCBF 0.72 0.55 0.54
VSIM 0.31 0.30 0.07
BS1 0.75 0.65 0.69
BS2 0.72 0.60 0.55

Table 2.6.MUG Scores

Synthetic MovieLen1 MovieLen2 Overall

MSE 5.6% 4.7% 9.2% 6.5%
RS -2.4% -2.8% -1.9% -2.4%
MUG 6.5% 5.8% 6.3% 6.2%
Running Time -3.2% -29% -19.9%-17.4%

Table 2.7.Performance Improvement of BS2 over BS1.

Furthermore, to illustrate that the CF algorithm indeed boosts the feature space, we

compare the distribution of features in each class Before Collaborative Filtering (B-CF)

and After Collaborative Filtering (A-CF). To be more convincing, we also calculate the

distribution of features from prediction results by using the classic Inner Product ap-

proach (I-CF) proposed by Breese et al. in [15], where the weight function is calculated

asw(a, i) =
∑

j
va,j√

P

k∈Ia
v2

a,k

vi,j√
P

k∈Ii
v2

i,k

, and the prediction score is computed through

the whole data set.

Finally, we use multiclass SVM [25] and AdaBoost.MH [23] to classify the feature

space extracted by (1) not using CF (B-CF-SVM and B-CF-Boost), (2) using IG feature

selection (IG-SVM and IG-Boost), and (3) using CF (A-CF-SVMand A-CF-Boost).
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Figure 2.5. Comparison between algorithm running time. BS1 and BS2 require much less time
than other algorithms.

The Vector Similarity method (VSIM) is used as baseline for comparison. Addition-

ally, since it was shown that SVMs can perform well even without feature selection

[125](SVM-No), it is also compared in the experiment. We apply Precision, Recalland

F-measureas measures for our text classification.

2.6.1 Information Gain

Despite the existence of many successful feature selectionmethods, Information Gain

(IG) has been experimentally proved to be among the most popular approach for feature

ranking [39]. It is a measure based on Entropy. Formally, given the set of all training

examplesX = {x1, ..., xm} and the number of featuresY = {y1, ..., yn}, the IG of a

featurey is defined as:

IG(X, y) = H(X)−H(X|y)

= −
m∑

j=1

p(j) log2 p(j) + p(y)
m∑

j=1

p(xi|y) log p(xi|y) (2.11)

Given a training corpus, the IG of all features are computed after extracted bybag-

of-words approach(with TFIDF extension). A featurey is then deemed useful if its

expected IG exceeds the threshold. Experimentally, the threshold is usually chosen to

maximize the F-measure on a validation set.
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Figure 2.6. Features extracted bybag-of-words(BOW) andSVM-decision-tree(S-D) from the
summarizing parts of the documents in CiteSeer data set, where S-D creates a much smaller
feature space as a function of example size. The number of examples chosen by IG is decided
by maximizing the F-measure on the validation set.

2.6.2 CiteSeer Data Preparation

The data we used for experiments are from CiteSeer, one of thelargest digital libraries

which now holds about 747,588 documents primarily in the domain of computer science,

and the number is ever-growing. Several kinds of data formats are indexed concurrently

(txt, pdf, ps, archivesand so on), for the purpose of text extraction, we only make use of

plain text files or convert non-text formats into text formatby programming. As men-

tioned in Section 3, for the purpose of current experiments,we only consider extracting

entities from the summarizing parts of the documents, i.e.,the titles, abstracts and key-

word fields. Documents that do not contain either abstracts or keywords are not under

consideration.

Document class labels are obtained from thevenue impact page8 which lists 1,221

major venues whose titles are named according to DBLP9 format. For the purpose

of experiments, we only consider the top 200 publication venues listed in DBLP in

terms of impact rates, each of which was referred as a class label10. Furthermore, we

8http://citeseer.ist.psu.edu/impact.html
9http://dblp.uni-trier.de/

10We manually merged venues with the same names but different volumes, likeECCV(1), ECCV(2),
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number of examples 118,058
number of classes 193

number of examples per class 590
average file size 40KB

total file size 4728MB

Table 2.8.Statistics of CiteSeer data set.

examples VSIM SVM-No Before CF Info Gain After CF
SVM Boosting SVM Boosting SVM Boosting

P 10,000 24.31 62.17 46.44 65.74 53.77 56.29 80.25 85.24
25,031 25.17 85.77 68.33 82.33 85.63 87.21 91.01 94.08
50,000 25.24 86.02 70.47 82.53 86.31 88.24 92.53 93.22
118,05827.96 89.42 82.77 85.32 89.32 89.33 95.77 94.66

R 10,000 10.23 13.75 11.43 11.77 11.85 12.11 14.53 12.11
25,031 25.72 33.23 26.22 30.25 28.53 31.74 42.77 40.69
50,000 34.81 50.25 35.79 29.88 42.79 40.01 50.25 49.00
118,05872.38 84.88 74.25 77.91 83.99 72.53 85.27 73.00

F 10,000 14.40 22.52 18.34 17.73 20.11 18.35 24.61 25.21
25,031 25.44 47.90 37.89 44.24 38.29 48.32 58.19 56.81
50,000 29.26 63.25 47.47 43.88 56.77 60.11 64.13 64.24
118,05840.34 87.09 78.28 81.45 79.52 83.23 90.22 81.14

Table 2.9. Experimental results of CiteSeer data set in terms of Precision (P), Recall(R) and F-
measure(F), averaged over all classes. VSIM is compared as abaseline approach. Our approach
(A-CF) shows competitive results on both classifiers. IG chooses topk features to maximize the
F-measure of the validation set. For the entire data set (118,058),k is around 20,000.

intentionally filtered those classes that contain too few examples (i.e., less than 100

documents). Overall, the total number of documents we used for the experiments is up

to 118,058, divided into training set and testing set by doing 10-fold cross-validation.

Notably, we keep the imbalance of the classes, i.e., some classes have more training

examples than others. A few statistics are shown in Table 2.8. Table 2.10 shows the

number of documents in the top 20 classes.
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class samples class samples class samples
PLDI 1259 SOSP 816 SIGCOMM 1416

MICRO 812 POPL 1741 ICML 1924
HPCA 895 ICCV 1316 KDD 1236
VLDB 2431 AAAI 1268 INFOCOM 3366

MOBICOM 505 SIGGRAPH 1511 SIGIR 878
CVPR 1611 PODS 842 NIPS 3421

SIGMOD 1843 WWW 382

Table 2.10.Distribution of samples of top 20 classes in terms of sample numbers

2.6.3 Metrics Setup

We use three most widely used metrics in information retrieval as measures for our text

classification.

Precision =
number of relevant documents retrieved

number of documents retrieved

Recall =
number of relevant documents retrieved

number of relevant documents

F −measure =
2 · precision · recall

precision + recall

Notice that the generalF −measure is defined as(β2 + 1) ∗ p ∗ r/ ((β2 ∗ p) + r),

here we setβ = 1.

2.6.4 Classification Results on CiteSeer Data Set

Figure 2.6 presents the number of features extracted by the three techniques. We ran

the experiments with the number of documents,D, equal to 10,000, 25,031, 50,000

and 118,058. UsingSVM-decision-treeapproach yields a much lower-dimensional fea-

ture space compared with thebag-of-wordsmethod (with TFIDF), especially when the

number of examples are very large. Information Gain successfully reduces the feature

space to half the dimension ofbag-of-words, but when the training data size becomes

larger (118,058), it still creates a feature space of more than 20,000 features, while our

approach ends up with a feature space with a little more than 7,000 features. We also

notice that the dimension of feature space generated by our approach is almost linear in

so the total number of venues actually used for classification is 196.
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the number of examples, indicating nice scalability of our entity extraction technique.
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Figure 2.7. Feature distribution where B-CF denotes the feature space before applying CF, I-CF
the feature space augmented by Inner-Product method, and A-CF the feature space augmented
by our CF algorithm.

In Figure 2.7, we depict the distribution of features for three approaches that applied

to the feature space extracted bySVM-decision-treeapproach. Before applying CF al-

gorithm (B-CF), the features are unevenly distributed in each class due to the random

distribution of training examples in different categories. By using the Inner Product

algorithm (I-CF) it first computes the correlations betweeneach pair of examples, and

then predicts the feature frequencies from the knowledge ofall examples. As a result,

I-CF generates too many features for each class that inevitably causes overlapping in the

feature spaces, which leads to reduction of classification accuracy. Finally, by employ-

ing the CF algorithm we proposed (A-CF), the feature space isboosted to a reasonably

dense level that yields a nearly even distribution of features in each class. The virtue

of the boosted feature space is not only that it contains enough features within each

class which makes it easy to classify, but also results in very little overlapping of dif-

ferent classes in the feature space, which reduces the misclassification rate significantly

in comparison with I-CF. Figure 2.8 compares the feature spaces for 2 classes by ap-

plying I-CF and A-CF, respectively. We useSingular Value Decomposition(SVD) to

get the first 3principal componentsof the matrix and visualize in a 3-D graph. It is not

hard to see that I-CF leads to a much more overlapping space than our approach, which
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Figure 2.8. Visualization of SVD feature distribution of classes (SIGMOD, WWW). The left
figure shows features by the I-CF inner-product, the right figure the boosted feature space by our
A-CF algorithm.

generally separates two classes very well.

Table 2.9 summarizes experimental results for the three metrics averaged over all

classes. With regard toprecision, our approach achieves significant improvement on

both classifiers. When the number of examples is small (10,000), A-CF-SVM and A-

CF-Boost improve the precision over the VSIM baseline approach by nearly 4 times,

and nearly twice as much as the results of Information Gain (IG-SVM and IG-Boost).

When the whole data set is applied to the experiment (118,058), A-CF-SVM and A-

CF-Boost achieve the best results of 95.77% and 94.66% respectively, about 5% more

than IG. Meanwhile, without feature selection, SVM (SVM-No) shows almost the same

precision as IG-SVM, with a slightly better result when the number of examples is small.

In terms ofrecall, all methods have very close performances. Comparatively,SVM

performs slightly better than AdaBoost regardless of data size and entity extraction tech-

niques. Especially when the data size is large (118,058), the baseline approach achieves

recall of 72.38%, almost the same as A-CF Boost method (73.00%). However, both of

which are nearly 13% lower than A-CF-SVM approach. Both SVM-No and A-CF-SVM

achieve the best recall among all when the number of examplesequals 50,000.

Our approach outperforms IG for both classifiers in terms ofF-measure, with an

exception when the data size is 118,058, IG-Boost outperforms A-CF-Boost by 2%.

Both IG-Boost and A-CF-Boost are almost 10% less than that of A-CF-SVM method,

which shows the best performance of all. During the experiments, we also noticed that
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No. of pages BOW+TFIDF IG SVM-DT
1,000 2,413 1,533 977
2,000 4,987 2,422 1,777
4,000 7,400 5,324 3,599
8,282 10,322 6,891 5,111

Table 2.11. Number of features exacted by three techniques w.r.t. number of pages for the
WebKB data set. SVM-DT approach yields a much smaller feature space.

the training time of SVM and AdaBoost are almost the same withSVM slightly better

in some cases.

2.6.5 WebKB:World Wide Knowledge Base

The WebKB data set contains web pages collected from cs departments of many uni-

versities by the World Wide Knowledge Base project of the CMUtext learning group in

January 1997. For performance evaluation, we divide the data into training and testing

set with the proportion of 4:1. A series of experiments were performed with the number

of documents equal to 1,000, 2,000, 4,000 and 8,282. The number of iterationsT for

AdaBoost is set to 500.

Table 2.11 summarizes the number of features with regard to the training data size.

The SVM-decision-treeapproach creates a much smaller feature space thanbag-of-

wordsandInformation Gain—20% less than the IG and 50% less than the BOW when

the total WebKB collection is used.

Figure 2.9(a) shows the result of theMicro-F scores. When the number of training

pages is small, our approach has almost the same performanceas IG for both classifiers,

with less than 2% improvement. As the page size get larger, the performance improve-

ment of our approach becomes greater. When the whole collection is used, our approach

outperforms IG by more than 5%, but the performance decreases for both methods as

the best results are achieved when the page size is 4,000. Note that SVM-No has almost

the same performance as IG-SVM.

Macro-F scores are shown in Figure 2.9(b). Clearly, the baseline approach VSIM

performs the worst regardless of data size. SVM-No again performs nearly the same as

IG-SVM. Note that with the increase of pages, the macro-F scores increase as well for

all methods. Our approach generally outperforms IG, and theadvantage becomes larger
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Figure 2.9. Micro-F(a) and Macro-F(b) results for WebKB w.r.t. data size.

with the increase of data size. Our approach achieves a significant improvement by 8%

over IG for both classifiers when the whole WebKB collection is applied.

2.7 Related Work

Collaborative Filtering

Predicting user preferences and giving useful recommendations to users with lim-

ited information gained from the users has become a key challenge for E-commerce

companies. Collaborative filtering (CF) has been widely adopted as a technique for con-

structing recommender systems, but is also well-suited to handle research issues in areas

such as artificial intelligence (AI) and human computer interaction (HCI).

GroupLens [102] became the first open architecture for news-related collaborative

filtering. Users rated articles upon reading them and the news rating server of Grou-

pLens would use that information to automatically make recommendations to others.

Breese et al. [15] described various CF algorithms such as model-based Bayesian

algorithms, memory-based correlation coefficient algorithms, etc. Matrices such as

Mean Absolute Error (MAE) and Ranked Scoring (RS) were used for evaluation pur-

poses. Additionally, their data set EachMovie has become one of the most widely used

databases. Memory-based and model-based algorithms were combined together to form

a new algorithm, personality diagnosis (PD) [97]. Recent approaches include integrat-

ing collaborative filtering with content-based filtering algorithms [6], applying statistical

and mathematical methods such as feature selection, matrixfactorization and Gaussian
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processes for high dimensional data [148, 100, 120], and using clustering algorithms

(EM, Gibbs sampling) to group existing users in data sets into different clusters for

recommendations[130], as well as the determination of better weight functions for more

robust prediction [89].

Entity Extraction

Entity extraction techniques typically fall into one of twocategories: named entity

recognition (NER) and phrase extraction. NER deals with identifying proper names text,

extracting paper titles and author names in on-line publications and so on. Phrases, or

meaningful entities, can be recognized assignaturethat best represent the main idea of

papers, most of which can be found in the titles, abstracts and keyword fields in a paper.

However, only a few publication venues require keyword fields11.

Maximum Entropy (ME) is a feature reduction approach that works by choosing the

model with the most uniform probability distribution (the highest entropy), the model

is described asP (w|h) = 1
Z(h)
· e

P

i λifi(h,w), wherefi(h, w) denotes a binary feature

function that describes a certain term;λi is a parameter that indicates how important

featurefi is for the model. The disadvantage of ME is that it cannot automatically select

features from given feature sets thus relying on careful feature selection techniques.

Conditional random fields (CRFs) [73] is another NER technique that aims to label

and segment data into phrases. It works by defining a conditional probability distri-

bution over training data given a particular observation phrase. It usually works better

than HMM and avoids the label bias problem, however, the training time of CRFs is

prohibitively long.

Traditionalbag-of-wordsapproach represents each document as a feature vector and

often leads to feature spaces that are sparse and large, highclassification accuracies are

thus hard to get. Contemporary approaches of text classification concentrate on extract-

ing more meaningful features from structured text, e.g., adding numeric features such

as timestamps [83], capturing features that share mutual information and are dependent

on each other [133], as well as seeking better methods to refine the classification model

based on the prediction errors from the training data sets [36, 82]. Several classifiers

have been introduced to text classification, e.g., Naive Bayes [95], maximum entropy

[90] and Boosting [20]. Support Vector Machines (SVMs) [14,147, 153], which fo-

11From an investigation of ACM & DBLP metadata cross-referenced with CiteSeer data, 5% of venues
do not have an identifiable abstract field and more than 70% of venues lack a keyword field.
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cus on finding the hyperplane that maximizes the margin between positive and negative

classes, have typically been the most effective classifierswith regards to the classifi-

cation errors. Forming the feature space has become for manya crucial part of using

SVMs as text classifiers, since naturally there are hundredsof terms in each document

and thousands of documents in each class, which results in very high-dimensional fea-

ture spaces. Yet it has been reported that SVMs can still achieve high accuracies in

document classification without feature selection [125].

Research on entity extraction spans the fields of linguistics and computer science.

Linguistic techniques can be employed to enhance feature selection from raw text by

grouping text into semantically meaningful chunks. Developments in entity extraction

technology have traditionally been concerned with the issue of computational complex-

ity as well as extraction accuracy and domain specificity. Methods for entity extraction

from unstructured data typically fall into two categories:pattern-based approaches and

model-based approaches. Pattern-based extractions require extensive manual labor for

detecting patterns and is generally not robust to variant data. On the other hand, model-

based approaches like hidden Markov models (HMMs) [111] andSVMs [71], while

requiring careful feature selection, have proved to be robust and flexible.



Chapter 3
Informative KNN Classification

3.1 Pattern Recognition LeveragingK-nearest Neigh-

bor Algorithm

TheK-nearest neighbor (KNN) classifier has been both a work-horse and benchmark

classifier [24, 4, 3, 96, 150]. Given a query pointx0 and a set ofN labeled points

{xi, yi}N1 , KNN classifier tries to predict the class label ofx0 on the predefinedP classes

by finding theK nearest neighbors ofx0 and applying a majority vote to determine its

label. Without prior knowledge, the KNN classifier usually applies Euclidean distances

as the distance metric. Nevertheless, this simple method can usually yield competi-

tive results even compared to other sophisticated machine learning methods. It has been

well-used in applications include image categorization, face recognition, document clas-

sification and etc.

Since it is well known that by effectively using prior knowledge such as the distribu-

tion of the data and feature selection, the performance of KNN classifiers can be signif-

icantly improved, researchers have attempted to propose new approaches to improving

the performance of the KNN method, e.g., Discriminant Adaptive NN [53] (DANN),

Adaptive Metric NN [35] (ADAMENN), Weight Adjusted KNN [50](WAKNN), Large

Margin NN [140] (LMNN) and so on. Despite the success and rationale of these meth-

ods, most have several limitations in practice, including the effort to tune numerous

parameters (DANN introduces two new parameters,KM andǫ; ADAMENN has six in-

put parameters in total that could potentially cause overfitting), the required knowledge
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in other research fields (LMNN applies semidefinite programming for the optimization

problem), the dependency on specific applications (WAKNN isdesigned specifically for

text categorization) and so on. Additionally, choosing theproper value ofK is still a

crucial task for most KNN extensions, making it more compounded.

query point

7−NN boundary

query point query point most informative point

Figure 3.1. A toy classification problem.(Left) The original distribution of two classes.(Mid-
dle) Results of KNN (K = 7) method where the query point is misclassified.(Right) One of
our proposed methods LI-KNN uses one informative point for prediction.

Therefore, it is desirable to enhance the performance of KNNwithout compromising

its efficiency by introducing much overhead to this simple method. We thus propose two

KNN methods which are ubiquitous and the performances are insensitive to the change

of input parameters. Figure 3.1 gives an example that shows the motivation of our

approach, in which the traditional KNN method fails to predict the class label of the

query point withK = 7. Meanwhile, one of our methods (LI-KNN) finds the most

informativepoint (I = 1) for the query point with the sameK according to the new

distance metric, and makes a correct prediction.

3.1.1 Our Contribution

In this chapter, we propose two novel extensions to the KNN method, whose perfor-

mances are relatively insensitive to the change of parameters. Both of our methods

are inspired by the idea ofinformativeness. Generally, a point is treatedinformativeif

it is close to the query point and far away from the points with different class labels.

Specifically,

(1) We introduce a new concept named informativeness to measure the importance

of points, which can be used as a distance metric for classification. (2) Based on the new

distance metric, we propose an efficientlocally informativeKNN (LI-KNN) method. (3)



45

By learning a weight vector from the training data, we propose our second method that

finds theglobally informativepoints for KNN classification (GI-KNN). (4) We perform

a series of experiments on real world image data sets by comparing with several pop-

ular classifiers including KNN, DANN, LMNN, SVM and Boosting. (5) We discuss

the optimal choice of the input parameters (K andI) for LI-KNN and GI-KNN and

demonstrate that our methods are relatively insensitive tothe change of parameters.

3.2 Locally Informative KNN (LI-KNN)

Without prior knowledge, most KNN classifiers apply Euclidean distances as the mea-

surement of theclosenessbetween examples. Since it has been shown that treating the

neighbors that are of low relevance as the same importance asthose of high relevance

could possibly degrade the performance of KNN procedures [41], we believe it to be

beneficial to further explore the information exhibited by neighbors. In this section,

we first propose a new distance metric that assesses the informativeness of points given

a specific query point. We then proceed to use it to augment KNNclassification and

advocate our first method, LI-KNN.

3.2.1 Definition of Informativeness

We use the following naming conventions.Q denotes the query point,K indicates the

K nearest neighbors according to a distance metric, andI denotes informative points

based on equation 3.1.xi denotes pointi’s feature vector,xij its j-th feature andyi its

class label.N represents the number of training points, each of which hasP features.

Definition 1. Specify a set of training points{xi, yi}N1 with xi ∈ R
P andyi ∈ {1, ...m}.

For each query pointxi, the informativeness of each of the remaining N-1 points

{xj , yj}N1 (j = 1, ...N, j 6= i) is defined as:

I(xj |Q = xi) = − log(1− F(xj|Q = xi)) ∗ F(xj|Q = xi), (3.1)

whereF(xj|Q = xi) is the weight of pointxj (with respect toQ), and can be defined

as:
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F(xj|Q = xi) =
1

Zi






W(xj |Q = xi)

η

(
N∏

n=1

(
1− W(xj |Q = xn)I[yj 6=yn]

)

)1−η





(3.2)

The first termW(xj |Q = xi)
η in equation 3.2 can be interpreted as the likelihood

that pointxj is close to theQ, while the second part indicates the possibility thatxj is

far apart from dissimilar points. The indicatorI[·] equals to 1 if the condition is met

and 0 otherwise.Zi is a normalization factor andη is introduced as a balancing factor

that determines the emphasis of the first term. Intuitively,η is set to
Nxj

N
, whereNxj

represents the number of points in the same class of pointxj .

The rationale of informativeness is that two points are likely to share the same class

label when their distance is sufficiently small, assuming the points have a uniform dis-

tribution. This idea is the same as KNN classification. In addition to measuring the

pairwise distances between the query point and its neighbors, our metric also considers

that the informative points should have a large distance from dissimilar points. This

guarantees that the locations of the informative points areof the most density in the

same class.

Figure 3.2(left) provides a clarification, in which point 1 and point 2 (with the same

class label) both have the same distanced from Q, but point 1 is closer to the real class

boundary. Thus, point 1 is more likely to be closer to the points in other classes. As

such we claim that point 1 is less informative than point 2 forQ by Definition 1. Since

assuming the distribution over the concept location is uniform, it is more likely that

points (e.g., 3& 4) having the same label as points 1& 2 will more likely distribute

around point 2.

3.2.2 Informativeness Implementation

To defineW(xj |Q = xi) in equation 3.2, we can model the weight of an individual point

onQ as a function of the distance between them:

W(xj |Q = xi) = f(‖xi − xj‖p) (3.3)
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Figure 3.2. An illustration of 7-NN and the correspondingi informative points for the query
point. (Left) 7-NN classification and the real class boundary (in dash lines). (Right) i(i =
{1, 2, 3, 4}) informative points for the same query point.

where‖xi − xj‖p denotes thep-norm distance betweenxi andxj . To achieve higher

possibility when two points are close to each other, we require f(·) to be a function

inverse to the distance between two points. The generalizedEuclidean distance metric

satisfies this requirement. In this paper, we implement equation 3.3 as follows:

W(xj |Q = xi) = exp(−||xi − xj ||2
γ

) γ > 0 (3.4)

In practice, it is very likely that the features have different importance, making it

desirable to find the best weighting of the features. Specifically, we define||xi−xj ||2 =
∑

p wp(xip − xjp)
2, wherewp is a scaling factor that reflects the relative importance of

featurep. One way to specify the scaling factorwp is as follows:

wp =
1

m

m∑

k=1

wpk =
1

m

m∑

k=1

Varxk
(xpk) (3.5)

We obtainwp by averaging over all classes’ weightswpk, each of which is calculated

using the variance of all points in each classk at featurep, denoted byVarxk
(xpk).

The normalization factorZi in equation (3.2) ensures the well-defined probabilities

of neighbors for a given query pointxi. Specifically,Zi =
∑N

j=1 W(xj |Q = xi). In this

way the normalization is guaranteed, i.e.,
∑N

j=1F(xj|Q = xi) = 1.



48

Based on the implementation, we have the following proposition regarding the in-

formativeness metric:

Proposition 1. Given a queryx0, ∀ xi, xj that satisfies‖xi−x0‖2 = kd and‖xj−x0‖2 =

d with d ∈ R+, k > 1, xj is guaranteed to beexp((k − 1)d)η times more informative

thanxi, i.e.,I(xj |x0) > exp((k − 1)d)ηI(xi|x0).

Proof. For simplicity, we only consider the case thatxi andxj are in the same class,

i.e.,yi = yj. Without loss of generality, we letγ = 1 for equation 3.4. We have

F(xj|Q = x0)

P(xi|Q = x0)
=

W(xj |Q = x0)
ηH(xj)

1−η

W(xi|Q = x0)ηH(xi)1−η

=
exp(−d)ηH(xj)

1−η

exp(−kd)ηH(xi)1−η

= exp((k − 1)d)η H(xj)
1−η

H(xi)1−η
(3.6)

whereH(x) =
(
∏N

n=1

(
1− Pr(x|Q = xn)I[y6=yn]

))

. SinceH(·) is independent of the

query point, its expected value (taken overx and eachxn) can be defined as

E(H(x)) = E

(
N∏

n=1

(
1− W(x|Q = xn)I[y6=yn]

)

)

=

N∏

n=1

(
E
(
1− W(x|Q = xn)I[y6=yn]

))

=
N∏

n=1

(
E(1− exp(−‖x− xn‖2)I[y6=yn])

)

=
N∏

n=1

(
(1−E exp(−‖x− xn‖2)I[y6=yn])

)

Recall thatxi andxj are in the same class, thus the set of dissimilar points (say{x′
n, y

′
n}q1)

should be the same. The above equation can then be simplified by removing the indica-

tor variables:

E(H(x)) =

q
∏

n=1

(
(1− E exp(−‖x− x′

n‖2))
)
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=

q
∏

n=1

(

1−
∫ N

1

exp(−‖x− x′
n‖2)dx

)

with N → ∞, it is easy to verify thatE(H(xi)) = E(H(xj)). Applying the results to

equation (3.6), we have

F(xj |Q = x0)

F(xi|Q = x0)
= exp((k − 1)d)η > 1 (with k > 1) (3.7)

Applying equation (3.7) to equation (3.1), we finally have:

I(xj |Q = x0)

I(xi|Q = x0)
=

log(1− F(xj|Q = x0))

log(1− F(xi|Q = x0))
· exp((k − 1)d)η

= log(1−F(xi|Q=x0)) (1− F(xj|Q = x0)) · exp((k − 1)d)η

> exp((k − 1)d)η �

3.2.3 LI-KNN Classification

So far we have proposed to compute the informativeness of points in the entire data dis-

tribution for a specific queryQ. However, considering the large number of data points

with high dimensionality in practice, the computational cost could be prohibitively high.

We propose to make use of the new distance metric defined in equation 3.1 by restrict-

ing the computation between the nearest neighbors in an augmentedquery-basedKNN

classifier.

Algorithm 5 gives the pseudo-code of LI-KNN classification.Instead of finding the

informative points for eachxi by going over the entire data set, LI-KNN retrievesI

locally informative points by first getting theK nearest neighbors (we consider the Eu-

clidean distance here). It then applies equation (3.1 to theK local points and the major-

ity label between the firstI points are assigned toxi. Specifically, whenI = 1, LI-KNN

finds only the most informative point forxi, i.e., yi = arg maxyk,k∈{1,...,K} I(xk|Q =

xi). In this way the computational cost of finding the most informative points is reduced

to a local computation. Note that whenK equals toN , the locally informative points are

exactly the optimal informative points for the entire data distribution as in Definition 1.

Likewise, whenI equals toK, LI-KNN performs exactly the same as the KNN method.
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Algorithm 5 LI-KNN Classification
1: Input: (S,K, I)

target matrix:S = {xi, yi}N1
number of neighbors:K ∈ {1, ..., N − 1}
number of informative points:I ∈ {1, ...,K}

2: Initialize err ← 0
3: for each query pointxi (i = 1 to N ) do
4: find K nearest neighborsXK using Euclidean distance
5: find I most informative points among K neighbors (equation (1))
6: majority vote between theI points to determine the class label ofxi

7: if xi is misclassified
8: err← err + 1/N
9: end if

10: end for
11: Output: err

Although our LI-KNN method introduces one more parameterI for the KNN method,

it is not hard to figure out that LI-KNN is relatively insensitive to both parametersK and

I. (1) Regardless of the choice ofK, the points that are closest (in Euclidean distance)

to Q are always selected as neighbors, which by equation 3.2 havea high possibility to

be informative. (2) On the other hand, given a fixed number ofK, the informativeness

of the local points are fixed which insures that the most informative ones are always

chosen. For example, in Figure 3.2(left), point 2& 3 are selected as the neighbors forQ

with K increasing from 3 to 7. Meanwhile, whenK equals to 7 andI ranges from 1 to 3,

the informative sets (Figure 3.2(right)) are{2},{2, 3} and{2, 3, 1} respectively, which

include the most informative points in all cases that ensuresQ is classified correctly.

3.3 GI-KNN Classification

The LI-KNN algorithm classifies each individual query pointby learning informative

points separately, however, the informativeness of those neighbors are then discarded

without being utilized for other query points. Indeed, in most scenarios, different queries

may yield different informative points. However, it is possible that some points are more

informative than others, i.e., they could be informative neighbors for several different

points. Thus, it would seem reasonable to put more emphasis on globally informative

points. Since it has been shown that KNN classification [140]can be improved by
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learning a distance metric from the training examples, we enhance the power of the

informativeness metric and propose a boosting-like iterative method, namelyglobally

informativeKNN (GI-KNN).

3.3.1 Algorithm and Analysis

The goal of GI-KNN is to obtain an optimal weight vectorA from all training points

for classification of testing points. The algorithm iteratesM predefined steps to get the

weight vector, which was initially set to be uniform. In eachiteration, an individual

point is classified in the same way as LI-KNN by findingI informative neighbors, with

the only exception that in GI-KNN the distance metric is aweightedEuclidean distance

whose weight is determined byA (line 5 & 6 in Algorithm 6, whereD(xi,x) denotes

the Euclidean distance betweenxi and all the remaining training points, andDA(xi,x)

is the weighted distance).N i
m(r) denotes ther’s informative points forxi according

to the informativeness metric. We useǫi
m ∈ (0, 1) to denote theweightedexpected

weight loss ofxi’s informative neighbors during stepm. The cost functionCi
m is a

smooth function ofǫi
m, which guarantees to be in the range of (0,1) and positively related

with ǫi
m. Here we use a tangent function as the cost function, depicted in Figure 3.31.

The weight vectorA is updated in the manner that ifxi is classified incorrectly, the

weights of its informative neighbors which have different labels fromxi are decreased

exponentially to the value ofCi
m (line 9,e(xi, xℓ) = Ci

m if yi 6= yℓ; line 13,A(xℓ)←
A(xℓ) · exp(−e(xi, xℓ))). Meanwhile, the weights remain the same for neighbors in the

same class withxi even ifxi is misclassified (line 9,e(xi, xℓ) = 0 if yi = yℓ). Clearly,

the greater the weight the query point is, the higher the penalty of misclassification will

be for the selected neighbors.A is then normalized before the next iteration.

While GI-KNN has several parallels to Boosting such as the structure of the algo-

rithm, GI-KNN differs from Boosting in the way weights are updated. Specifically,

Boosting assigns high weights to points that are misclassified in the current step, so

that the weak learner can attempt to reduce the error in future iterations. For GI-KNN,

the objective is to find globally informative points, thus higher weights are given to the

points that seldom make wrong predictions. Notice that the weight of the query remains

unchanged.

1In practice, we did not find much difference in performance for differentτ . Therefore, we choose
τ = 1 for our implementation.
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Algorithm 6 GI-KNN Training
1: Input: (T,K, I,M )

training set:T = {x,y} ∈ R
N×P

number of neighbors:K ∈ {1, ..., N − 1}
number of informative points:I ∈ {1, ...,K}
number of iterations:M ∈ R

2: Initialization: A = {1, ..., 1} ∈ R
N×1 [the weight vector]

3: for m = 1 to M do
4: for each query pointxi (i = 1 to N ) do
5: DA(xi,x) = D(xi,x)

A [calculate the weighted distance]
6: N i

m ← I most informative points according toDA(xi,x)
7: ǫi

m = A(xi) · EA[N i
m] = A(xi) · 1

I

∑I
r=1 A(N i

m(r))
8: Ci

m = 1
2(1 + tanh(τ ∗ (ǫi

m − 1
2)))

9:

e(xi, xℓ) =

{
Ci

m if yi 6= yℓ;
0 if yi = yℓ.

10: if pointxi is classified incorrectly [update the neighbors weights]
11: errm ← errm + 1

N
12: for eachxℓ (ℓ ∈ Nm(xi)) do
13: A(xℓ)← A(xℓ) · exp(−e(xi, xℓ))
14: end for
15: renormalizesA so that

∑N
i=1 A(i) = N

16: end for
17: ξm ← errm − errm−1

18: end for
19: Output: the weight vectorA

3.3.2 Learning the Weight Vector

At completion, the learned vectorA can be used along with a distance metric (e.g.L2

distance metric) for KNN classification at each testing point t0. Specifically, given the

training setT = {xi, yi}N1 , the distance betweent0 and each training pointxi is defined

as

D(t0, xi) = ‖t0 − xi‖Ai
=

√

(t0 − xi)T (t0 − xi)

Ai
(3.8)

By adding weights to data points, GI-KNN in essence is similar to learning a Maha-

lanobis distance metricD(xi, xj) for k-nearest neighbor classification. i.e.,D(xi, xj) =

DA(xi, xj) = ‖xi − xj‖A =
√

(xi − xj)TA(xi − xj), whereA is a covariance matrix

that determines the similarity between features. In our case,A measures the importance

of each training point rather than their features.
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Figure 3.3. Cost function (C) used for GI-KNN.

3.4 Experiments

In this section, we present experimental results with both benchmark data and image

data to demonstrate the merits of LI-KNN and GI-KNN. We startby testing on 10 stan-

dard UCI data sets to assess the performance of the two algorithms. Then our proposed

methods are applied to image categorization by using three extensively bench-marked

data sets, namely ORL2, COIL-203 and MINST4.

For performance evaluation, several classifiers are used for comparison. The classic

KNN [24] classifier is used as the baseline algorithm. We implemented DANN [53]

as an extension of KNN5. To be more convincing, we also compare with one of the

newest KNN extensions – Large Margin Nearest Neighbor Classification (LMNN)6.

Two discriminant classifiers are also compared: a Support Vector Machine (SVM) and

a Boosting classifier. We use the AdaBoost.MH [106] and the Multi-class SVM [25]

software (K.Crammer et al.7) for multi-class classification.

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4http://yann.lecun.com/exdb/mnist/
5During the experiment, we set the parametersKM = max(N/5, 50) andǫ = 1 according to the

original paper.
6The code is available at http://www.seas.upenn.edu/∼kilianw/lmnn/
7See http://www.cis.upenn.edu/∼crammer/code-index.html
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Data N D C KNN DANN LMNN LI-KNN GI-KNN SVM Boosting
Iris 150 4 3 0.044 (9) 0.040 (5) 0.053 (3)0.013 (9, 5)0.010(25) 0.042 0.038 (45)
Wine 178 13 3 0.263 (3) 0.250 (7)0.031(5)0.137 (9, 1) 0.137 (13) 0.205 0.192 (135)
Glass 214 10 2 0.372 (5) 0.436 (5) 0.356 (3)0.178(7, 3) 0.198 (202)0.2220.178(304)
Iono 351 34 2 0.153 (5) 0.175 (7) 0.100 (5)0.127 (5, 3) 0.127 (8)0.090 0.092 (156)
Breast 699 9 2 0.185 (7) 0.120 (11)0.927 (5)0.080 (4, 1)0.045(48) 0.052 0.048 (657)
Heart 779 14 5 0.102 (3) 0.117 (5) 0.092 (5)0.078(7, 1) 0.078(192)0.078 0.080 (314)
Digit 2000 649 10 0.013 (3) 0.010 (3) 0.009 (3)0.005(19, 1)0.005(137)0.010 0.005(175)
Isolet 7797 617 26 0.078 (11)0.082 (11)0.053 (5)0.048 (13, 3)0.042(175)0.044 0.042(499)
Pen 10992 16 10 0.027 (3) 0.021 (5)0.020(3)0.020(9, 1) 0.020(42) 0.033 0.038 (482)
Letter 20000 16 10 0.050 (5) 0.045 (3) 0.042 (5)0.045 (5, 3) 0.040 (22)0.028 0.031 (562)

Table 3.1.Testing error rates for KNN, DANN, LMNN, SVM, Boosting, LI-KNN and GI-KNN
of 10 UCI Benchmark data sets.N,D andC denote the number of instances, dimensionality
and number of classes respectively. Numbers in the parentheses indicate the optimal neighbors
K for KNN, DANN and LMNN, (K, I) for LI-KNN, and number of iterationsM for GI-KNN
and Boosting.

3.4.1 UCI Benchmark Corpus

We evaluate our algorithms by using 10 representative data sets from UCI Machine

Learning Repository8. The size of the data sets ranges from 150 to 20,000 with dimen-

sionality between 4 and 649, including both two classes and multi-class data (C = 3, 26

etc). For evaluation, the data sets are split into training sets and testing sets with a fixed

proportion of 4:1. Table 3.1 reports the best testing error rates for these methods, aver-

aged over ten runs. Our methods on these data sets exhibit competitive results in most

scenarios.

Figure 3.4 shows the stability of LI-KNN on the testing errors rates of the Iris data

set. KNN always incurs higher error rates than our algorithms. The performance of

LI-KNN is depicted for four different values ofI. It is obvious that even with different

values ofI (given the sameK), the results are similar, indicating that the performanceof

LI-KNN does not degrade when the number of informative points changes. In addition,

with the change ofK, LI-KNN is relatively stable regarding the error rate. The variation

of LI-KNN is roughly 3%, meaning thatK does not have a large impact on the results

of LI-KNN.

Figure 3.5 compares Boosting and GI-KNN on the Breast Cancerdata for the first

1,000 iterations. Overall, GI-KNN incurs lower error rates. From 620 to about 780

8http://www.ics.uci.edu/∼mlearn/MLRepository.html
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iterations GI-KNN’s error rates are slightly higher than Boosting. However, the error

rates of Boosting fluctuate quite a bit from 0.048 to 0.153, while GI-KNN is relatively

stable as iterations increase and the performance varies only between (0.043, 0.058).

Moreover, our algorithm obtains the optimal results significantly earlier than Boosting.
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Figure 3.4. Results on Iris forK from 1 to 100. LI-KNN chooses the number of informative
points (I) to be 1, 3, 5 and 7.
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Figure 3.5. Results on Breast Cancer for AdaBoost.MH and GI-KNN (withK = 5 andI = 1).
The best result for GI-KNN is slightly better (0.045) than that of AdaBoost.MH (0.048).
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Figure 3.6. Results on ORL data set for randomly generated samples.(Top) Random samples.
(Bottom) LI-KNN results.

3.4.2 Face Recognition on ORL

The ORL Database of Faces consists of ten different images, each of which has 40

distinct faces. The dimension was reduced by subsampling examples to 23× 28 pixels.

Figure 3.6 shows the one nearest neighbor of LI-KNN for several randomly generated

samples. Clearly, each of them are from the same class as the random samples.

Figure 3.7 depicts the box plots of themacro-Ferror rates. The optimal parameters

are estimated by 4-fold cross-validation on the training set. It is evident that the spread

of the error distribution of our algorithms is very close to zero, which clearly indicates

that LI-KNN and GI-KNN obtain robust performance over different classes.
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Figure 3.7. Box plots of macro-F error rates on the ORL data set.

3.4.3 Object Recognition on COIL-20

We use the processed version of COIL-20 database for object recognition. The database

is made up with 20 gray-scale objects, each of which consists72 images with size 128
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Figure 3.8. Randomly generated images from each object in the COIL-20 database.

× 128. Figure 3.8 shows 20 sample images for each object.

We treat each object as one class, spliting the data into training and testing set with

the proportion of 3:1. Figure 3.9 shows the classification errors regarding the 5 algo-

rithms, whereK ranges from 1 to 11. GI-KNN and LI-KNN generally outperform

others with the best parameters, while both show stable results with the change ofK.

Figure 3.9. Results on COIL-20 with different number of neighbors.

3.4.4 MNIST Handwritten Digits

MNIST handwritten digits database has been used extensively to test various pattern

recognition methods. We use the preprocessed data9 that contains 8-bit grayscale im-

ages of0 through9; there are roughly 6,000 training examples of each class and1,000

test examples. We further reduce the dimension by subsampling examples to 16× 16

pixels. KNN (withL2 distance metric) and DANN incur4.2% and4.15% testing error

9Available at http://www.cs.toronto.edu/∼roweis/data.html
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Original Data

KNN results

LI-KNN results

Figure 3.10. Results on MNIST data set. Examples (top) are misclassified by 1-NN with Eu-
clidean distance (middle), while classified correctly by LI-KNN with I = 1 (bottom).

rates respectively, while LI-KNN with one informative neighbor yields2.1% error rate,

improving the performance by roughly 50%. LMNN in this case also has good perfor-

mance of incurring only2.5% error rate10. Figure 3.10 shows some examples that are

misclassified by KNN, while LI-KNN successfully classifies these points by finding the

most informative point (I = 1).

3.4.5 Discussion of Experimental Results

Although we did not prove optimal choices for eitherK or I, our empirical studies

with different values on several data sets permits rules of thumb. Basically, the value

of K should be reasonably large. The largerK is, the more information can be gath-

ered to estimate the distribution of neighborhood for the query point. However, asK

increases, the computational complexity of the informativeness of neighbors (equation

(3.2)) grows exponentially. In practice, the choice of a range of K ∈ (7, 19) gives

good trade-off regardless of data size. In contrast, a smaller I is preferable for the best

predictions. Experimental results indicate thatI = 1, 3 usually yield the best results.

What is the appropriate choice of the cost functionCi
m for GI-KNN training (line 8

in Algorithm 6)? Since GI-KNN has a different objective (to find the best weight vector)

than boosting and other machine learning algorithms (to minimize a smooth convex sur-

rogate of the 0-1 loss function), we did not compare the performance between different

loss functions like exponential loss, hinge loss, etc. We speculate that performance will

not be significantly improved for different loss functions.

10The authors reported an error rate of 1.3% in their paper [140] by using a different pre-processing
method.
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There are questions regarding the GI-KNN algorithm that arestill open for discus-

sion. Can the convergence of GI-KNN be proved, or is there an upper-bound given spe-

cific K andI? In practice, is it possible to specify an early stopping criteria? Since this

is a boosting-like algorithm, can we replace the 0-1 loss function with a smooth convex

cost function to improve the performance? Furthermore, it would be interesting to see

whether the definition of the informativeness metric can be applied to semi-supervised

learning or noisy data sets. And of course, other data sets remain to be explored.

3.5 Related Work

Nearest Neighbor Method and its Extentions

The idea of nearest neighbor pattern classification was firstintroduced by T. Cover

and P. Hart in [24], in which the decision rule is to assign an unclassified sample point

according to the labels ofK nearest points. The authors proved that when the amount

of data approaches infinity, the one nearest neighbor classification is bounded by twice

the asymptotic error rate as the Bayes rule, independent of the distance metric applied.

T. Hastie and R. Tibshirani [53] developed an adaptive method of nearest neigh-

bor classification (DANN) by using locally discriminative information to estimate a

subspace for global dimension reduction. They estimated the values of between (B)

and within (W ) the sum-of-squares matrices, and used them as a local metric such as
∑

= W−1BW−1. They showed that their work can be generalized by applying spe-

cialized distance measures
∑

for different problems.

K Weinberger et al. [140] learned a Mahanalobis distance metric for KNN classifi-

cation by using semidefinite programming, a method referredto as large margin nearest

neighbor (LMNN) classification. Their method seeks a large margin that separates ex-

amples from different classes, while keeping a close distance between nearest neighbors

that have the same class labels. LMNN is novel in the sense that the method does not

try to minimize the distance between all examples that sharethe same labels, but only to

those that are specified astarget neighbors. Experimental results exhibit great improve-

ment over KNN.

By learning locally relevant features from nearest neighbors, J. Friedman [41] in-

troduced a flexible metric that performs recursive partitioning to learn the local rele-

vance, which is defined asI2
i (z) = (E[f ] − E[f |xi = z])2, whereE[f ] denotes the



60

expected value over the joint probability densityp(x) of an arbitrary functionf(x).

The most informative feature is recognized as the one havingthe largest deviation from

P (x|xi = z).

E. Han et al. [50] proposed an application of KNN classification to text categoriza-

tion by using the adjusted weight of neighbors (WAKNN). WAKNN tries to learn the

best weight for vectors by measuring the cosine similarity between documents. Specif-

ically, cos(X, Y, W ) =
P

t∈T (Xt×Wt)×(Yt×Wt)√
P

t∈T (Xt×Wt)2×
√

P

t∈T (Yt×Wt)2
, whereX andY are two docu-

ments,W the weight vector andT the set of features (terms). Optimizations are also

performed to speed up WAKNN. The experiments on benchmark data sets indicate that

WAKNN consistently outperforms KNN, C4.5 and several otherclassifiers.



Chapter 4
A Text Retrieval Application:

People Name Disambiguation

With the emergence of major search engines such as Google andYahoo! that automate

the process of gathering web pages to facilitate searching,it has become increasingly

common for Internet users to search for their desired results to specific queries through

search engines, with name queries making up approximately 5-10% of all searchers.

Name queries are usually treated by search engines as normalkeyword searches without

attention to the ambiguity of particular names. For example, searching Google for “Yang

Song” results in more than 11,000,000 pages with the same person’s name, of which

even the first page shows five different people’s home pages. Table 4.1 lists the first

four results which correspond to four different people. Dueto this heterogeneous nature

of data on the Internet crawled by search engines, the issue of identity uncertainty or

name ambiguityhas attracted significant research attention. Beyond the problem of

sharing the same name among different people, name misspelling, name abbreviations

and other reference variations compound the challenge of name disambiguation.

The same issue also exists in most Digital Libraries (DL), hampering the perfor-

mance and quality of information retrieval and credit attribution. In DL such as DBLP1

and CiteSeer [43], textual information is stored in metadata records to speed up field

searching, including titles, venues, author names and other data. However, the exis-

tence of bothsynonymsandpolysemsas well as typographical errors makes the problem

of disambiguating author names in bibliographies (citations) non-trivial. In the case of

1http://www.informatik.uni-trier.de/∼ley/db/index.html
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Yang Song
Homepage ofYang Song, PhD candidate of Penn State
Department of Computer Sciences and Engineering.
http://www.cse.psu.edu/∼yasong/
Yang Song
Home page ofYang Song, CALTECH, Department of
Electrical Engineering...
http://www.vision.caltech.edu/yangs/
Yang Song’s Homepage
SONG, Yang, Department of Statistics,
UW-Madison Medical Science Center...
http://www.cs.wisc.edu/∼yangsong/
Song Yang the Cartoonist
Song Yangis certainly the most successful cartoonist
on the Mainland...
http://japanese.china.org.cn/english/NM-e/155786.htm

Table 4.1. First 4 search results of the query “Yang Song” from Google that refer to 4 different
people.

synonyms, an author may have multiple name variations/abbreviations in citations across

publications, e.g., the author name “C. Lee Giles” is sometimes written as “C. L. Giles”

in citations. Forpolysems, different authors may share the same name label in multiple

citations, e.g., both “Guangyu Chen” and “Guilin Chen” are used as “G. Chen” in their

citations. In addition to the issue of citations, authors may be inclined to use different

name variations even in the title pages of their publications due to a variety of reasons

(such as the change of their maiden names).

Existing approaches that address the issue of name disambiguation generally fall into

two categories: supervised learning and unsupervised learning methods. In the case of

supervised learning [51], the objective is to determine thename labelby leveraging the

related information (e.g., page contents and citation information). Careful labeling with

specific domain knowledge is usually required for supervised learning, which makes

it both error-prone and label intensive. Comparatively, unsupervised learning methods

[52, 8] do not require manual labeling but instead prudentlychoose features (e.g., so-

cial networks, link structures, co-authorship) to classify similar instances into groups

or clusters. A variety of clustering methods including K-means and spectral clustering

have been extensively utilized and compared for unsupervised name disambiguation.
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Nevertheless, choosing the right set of features often results in better performance than

exhaustively seeking the best clustering method. However,supervised learning methods

generally achieve better performance with the trade-off ofexpensive training time.

4.1 Our Contribution

The objective of this paper is to propose an approach of name disambiguation that in-

cludes the attractive properties of both supervised and unsupervised learning methods

while trying to avoid the respective limitations. Specifically, we explore the use of a

two-stage approach to address the problem of disambiguating person names in both

web appearances and scientific documents (including citations). During the first stage,

we present two noveltopic-basedmodels inspired by two generative models for docu-

ments: Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation

(LDA). Our models differ from the general methods by explicitly introducing a variable

for persons. After an initial model is built, person names are disambiguated by lever-

aging an unsupervised hierarchical agglomerative clustering method [18], which groups

similar instances together in a bottom-up fashion. We empirically study our models

by comparing against three other clustering methods on bothweb data and scientific

documents.

The underlying rationale for using generative models with latent variables is to har-

ness the unique topic distribution related to different persons. For example, the basket-

ball player “Michael Jordan” is more likely to appear in the topicsports, while Professor

“Michael Jordan” in Berkeley may have high probability of being associated with the

topic academics. Likewise, for the authors of scientific papers, one may havehis/her

own focus, e.g. Professor “Jia Li” in the math department of Alabama and Professor

“Jia Li” in the statistics department of Penn State. Moreover, even authors within the

same research field should be distinguishable by topics, e.g. two researchers named

“Amit Kumar” working separately at Cornell and Rice are bothinvolved in research on

networks, but with specific focus on network routing and wireless networks respectively.

As a result, topic distribution may be a usefulfeature setthat allows us to distinguish

people from each other in a principled and efficient way.

Although both PLSA and LDA have been extensively studied andapplied to vari-

ous applications, there has been relatively few comparisons between their performance
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in real-world studies except in [12]. Theoretically, PLSA does not need to make any

assumptions regarding the document distribution, thus it is more flexible when dealing

with abnormal data sets. Meanwhile, the LDA (Bayesian) approach is more robust on

sparse data. With a large feature space, LDA generally exhibits better performance than

PLSA as well as other probabilistic models.

4.2 Related Work

Generative Models for Documents

Using generative models for characterizing documents as well as images has become

a recent trend in machine learning research. The first well-known model was introduced

by Deerwester [31], namelyLatent Semantic Analysis(LSA). The key idea of LSA is

to map high-dimensional input data to a lower dimensional representation in alatent

semantic spacethat reflects semantic relations between words, the mappingwas done

by Singular Value Decomposition (SVD), and thus restrictedto be linear. LSA assumes

that there areK underlying latent topics, to which documents are generatedaccordingly.

Those latent topics are assumed to be approximately the sameas document classes,

resulting in a significant compression of data in large collections.

From a statistical point of view, Hofmann [54] presented an alternative to LSA, or

Probabilistic Latent Semantic Analysis/Indexing (PLSA/PLSI), which discovers sets of

latent variables with a more solid statistical foundation.The model is described as an

aspect modelthat is essentially a latent class statistical mixture model, assuming the

existence of hidden factors underlying the co-occurrencesamong two sets of objects.

Thus, a single word is generated from a single topic while different words may belong

to different topics within a document.Expectation-Maximization(EM) algorithm is

applied for the inference of parameters in this model that maximize the likelihood of

the data. An obvious problem of PLSA is that the model has a number of parameters

that grow linearly with the size of the document collection,yielding a large potential for

overfitting. Due to its efficiency and flexibility, PLSA has been widely used in many

research fields, including collaborative filtering [55], image categorization [112], and

web information retrieval [143, 59].

Blei et al. later introduced a Bayesian hierarchical model,Latent Dirichlet Alloca-

tion (LDA) [12], in which each document has its own topic distribution, drawn from a
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conjugate Dirichlet prior that remains the same for all documents in a collection. The

words within that document are then generated by choosing a topic from this distribu-

tion. A word is picked from that topic according to the posterior probability of the topic,

which is determined by another Dirichlet prior. Inference of parameters and model

learning are performed efficiently via variational EM algorithm, since exact inference

is intractable in LDA due to the coupling of parameters. Essentially, this model can

be statistically treated as a fully generative aspect model, which assumes an exchange-

ability for words and topics in documents. Experimental results indicate that LDA has

better generalization performance than PLSA and a mixture of unigrams model as well

as higher classification accuracies and better predictionsof user preferences in the task

of collaborative filtering. Successful applications and extensions of the LDA model in-

cludes unsupervised nature scene classification [123, 79],document retrieval [139] and

time series analysis [136].

Name Disambiguation

Prior name disambiguation research can be categorized intosupervised classification

and unsupervised clustering. In [51], different classification methods such as hybrid

Naive Bayes and Support Vector Machines (SVM) have been applied to a DBLP dataset.

In large-scale digital libraries, however, supervised classification is inappropriate due to

the unaffordable cost of human annotation for each name.

Different clustering methods have also been applied in the literature. Earlier ap-

proaches such as hierarchical clustering [85] suffered from the transitivity problem2.

Han et al [52] used a more sophisticated K-spectral clustering method to cluster author

appearances. While Han’s method could find an approximationof the global optimal

solution (in terms of a criteria function) for a sampled dataset, it is unsuitable for large-

scale digital libraries since K is not known a priori for an ever increasing digital library

and the computational complexityO(N2) is intractable for N=739,135 in CiteSeer. Lee

et al. [77] successfully addressed the scalability issue byusing a two level blocking

framework; however, this resulted in inconsistent labeling due to the transitivity problem

in such a solution. In [57], used a SVM-based distance function was used to calculate

the similarity of the metadata records of author appearances, and explicitly solved the

transitivity problem in labeling with the DBSCAN clustering method. [9] proposed an

2The transitivity problem refers to a name A that is co-referent with B, and B with C, while A is not
co-referent with C. C.f. [57] for more detailed discussions.
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LDA-based entity resolution method which is generative anddoes not require pair-wise

decisions.

The aforementioned work mainly tackled the name disambiguation problem using

the metadata records of the authors. This paper solves the name disambiguation problem

in a novel way, by accounting for the topic distribution of the authors and adopting

unsupervised methods. As such it yields an accurate and highly efficient solution to the

person name disambiguation problem.

4.3 Topic-based PLSA

We use the following notations in this paper.

• A documentd is a sequence ofN words denoted byw = {w1, w2, ..., wN}, where

wn denotes thenth word in a document, plus a sequence ofM name appearances

denoted bya = {a1, a2, ..., aM}, whereaj represents thejth name appearances

in the document. For web data, name appearances refer to the owners of their

homepages or the subject of the articles. For scientific documents, it means the

authors of the papers as well as the authors in the citations.

• A corpusis a collection ofT documents denoted byD = {d1, d2, ..., dT}.

• W = {w1, ..., wp} represents the number of unique words (i.e., vocabulary) ina

corpus with sizep. A = {a1, ..., aq} indicates the number of name appearances in

a corpus with sizeq.

• The relationships between documents, names and words are connected by a set of

latent variablesZ = {z1, ..., zK} with sizeK, each of which represents a latent

topic.

In our document-name-word scenario, an observation is treated as a triplet{d, a, w}
that represents an instance that a namea appears in documentd, which contains the word

w. The relationship inherent in the triplets is associated bya set of topicsZ. Our mix-

ture model has a conditional independence assumption of variables, i.e., the observed

objects are conditionally independent on the state of the related latent variables, which

are essentially treated as persons’ interests. Specifically, a documentd is potentially
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related to several topicsZ with different probabilities, and the latent variables conse-

quently generate a set of wordsw and name appearancesa that are closely related to a

specific topic. Figure 4.1 (a) shows the graphical illustration of the generative model.

z

w
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d

Nd

Ad

Dd

(a) The three-way aspect model

zw

d

a

Nd DdAd

(b) An alternative view of the aspect model

Figure 4.1. Graphical model representation. (a) The original document-name-word model,D
is the number of documents,Nd is the number of words in documentd andAd is the number
of name appearances in documentd. (b) The alternative view of the model. Shaded nodes are
observed variables.

4.3.1 The Aspect Model

The joint probability of the aspect model overd× a× w is defined as the mixture:

P (d, a, w) = P (d)P (a, w|d) (4.1)

P (a, w|d) =
∑

z∈Z

P (a, w|z)P (z|d) (4.2)
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The definition of the generative model can be described in thefollowing procedure:

1. pick a documentd from the corpusD with probabilityP (d),

2. select a latent classzk with probabilityP (zk|d),

3. generate a wordw with probabilityP (w|zk),

4. generate a namea with probabilityP (a|zk).

In this model, we introduce a set of latent variablesz that breaks the direct relation-

ships between documents, words and names, i.e., they are conditionally independent but

still associated through latent variables. Note that by reversing the arrow from docu-

ments and words to latent topics, an equivalent symmetric model as shown in Figure 4.1

(b) can be parameterized by

P (d, a, w) =
∑

z∈Z

P (z)P (d|z)P (w|z)P (a|z). (4.3)

This paper will focus on Figure 4.1 (a) for inference unless otherwise mentioned.

4.3.2 Model Fitting with the EM Algorithm

The goal of model fitting for PLSA is to estimate the parameters P (z), P (a|z), P (z|d)

andP (w|z), given a set of observations(d, a, w). The standard way to estimate the

probability values is the Expectation-Maximization (EM) algorithm [21], which alter-

nates two steps: (1) an expectation (E) step where posteriorprobabilities are estimated

for the latent variables, based on the current estimates of the parameters; and (2) a max-

imization (M) step where parameters are estimated again to maximize the expectation

of the complete data (log) likelihood. In the E-step, we compute

P (z|d, a, w) ∝ P (z)P (a|z)P (d|z)P (w|z)
∑

z′ P (z′)P (a|z′)P (d|z′)P (w|z′) . (4.4)

In the M-step, we aim at maximizing the expectation of the complete data likelihood,

the formulas are:

P (a|z) ∝
∑

d,w n(d, a, w)P (z|d, a, w)
∑

d,a′,w n(d, a′, w)P (z|d, a′, w)
(4.5)
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P (w|z) ∝
∑

a,d n(d, a, w)P (z|d, a, w)
∑

d,a,w′ n(d, a, w′)P (z|d, a, w′)
(4.6)

P (z|d) ∝
∑

a,w n(d, a, w)P (z|d, a, w)
∑

d′,a,w n(d′, a, w)P (z|d′, a, w)
(4.7)

wheren(d, a, w) denotes the number of occurrences of wordw in documentd with

namea. The EM algorithm stops on convergence, i.e., when the improvement of the

log-likelihood is significantly small:

L =

A∑

a=1

D∑

d=1

W∑

w=1

n(d, a, w) logP (d, a, w) (4.8)

4.3.3 Predicting New Name Appearances

Despite the effectiveness of PLSA for mapping the same document to several different

topics, it is still not a fully generative model at the level of documents, i.e., the number

of parameters that need to be estimated grows proportionally with the size of the train-

ing set. Additionally, there is no natural way to assign probability to new documents.

Therefore, to predict the topics of new documents (with potentially new names) after

training, the estimatedP (w|z) parameters are used to estimateP (a|z) for new names

a in test documentd through a “folding-in” process [54]. Specifically, the E-step is the

same as equation (4.4); however, the M-step maintains the original P (w|z) and only

updatesP (a|z) as well asP (z|d).

4.3.4 Probabilistic Inference

The PLSA model mentioned in the above section not only can derive relationships be-

tween documents, words and names, but by using probabilistic inference, it can also be

used to model the topic patterns for names. Specifically, givenP (a|z) the probability of

observing a name appearance given a certain topic, we can model the probability that a

certain topic is of interest to a given name by simply applying the Bayes rule:

P (z|a) ∝ P (a|z)P (z)
∑

z P (a|z)P (z)
. (4.9)
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In this way people that share similar topics can be modeled through the same pattern.

By applying unsupervised learning methods, we can further cluster names for the task

of name disambiguation.

4.4 Topic-Based LDA

In this section, we propose another topic-based Bayesian model. Our model is primarily

an extension of the Latent Dirichlet Allocation (LDA) modelproposed by Blei et al. in

2003 [12], which has quickly become regarded as one of the most efficient and effective

probabilistic modeling algorithm in statistical machine learning.

The major difference between PLSA and LDA is that in PLSA the latent variables

are dependent on each document, while in LDA the topic mixture is drawn from a con-

jugate Dirichlet prior which remains the same for all documents. Thus LDA is able to

overcome the over-fitting problem in PLSA while naturally generating new documents

with consistent generative semantics.

The generative process of our topic-based LDA model can be formalized as follows:

• Draw a multinomial distributionφz for each topicz from a Dirichlet distribution

with prior β;

• For each documentd, draw a multinomial distributionθd from a Dirichlet distri-

bution with priorα;

• For each wordwdi in documentd, draw a topiczdi from the multinomial distribu-

tion θd;

• Draw a wordwdi from the multinomial distributionφzdi
;

• Draw a nameadi from the multinomial distributionλzdi
.

Figure 4.2 (a) depicts our model. Regarding the generation of parameters,α andβ

are corpus-level parameters and only sampled once when creating the generative corpus;

θd are document-level variables, sampled once for each document; zdi, wdi andadi are

word-level variables and need to be sampled once for each word/name in the document.

Although there is resemblance between our proposed LDA model and the author-

topic model [103], there exists important differences in the relationship between name
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(a) Our proposed topic-based LDA model.
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(b) The author-topic model [103].

Figure 4.2. Graphical model representation of the LDA model. (a) Our topic-based model. (b).
The author-topic model.K is the number of topics,D is the total number of documents,Nd

is the number of tokens in documentd andAd represents the number of name appearances in
documentd.

appearances and words. In the author-topic model,x denotes an author who is responsi-

ble for a given word. In our model, however, names (authors) and words are not directly

related, i.e., each topic can generate a set of names and a setof words simultaneously

with different probabilities, allowing more freedom to themodel in parameter estima-

tion.
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4.4.1 Inference and Parameter Estimation

The inference problem in LDA is to compute the posterior of the (document-level) hid-

den variables given a documentd = (w, a) with parametersα andβ, i.e.,

p(θ, φ, z|w, a, α, β, λ),

p(θ, φ, z|w, a, α, β, λ) =
p(θ, φ, z,w, a|α, β, λ)

p(w, a|α, β, λ)
. (4.10)

Herep(w, a|α, β, λ) is usually referred to as the marginal distribution of document

d:

p(w, a|α, β, λ)

=

∫∫

p(θ|α)p(φ|β)

N∏

n=1

p(wn|θ, φ)

M∏

m=1

p(am|θ, λ) dθdφ

=

∫∫

p(θ|α)p(φ|β)

(
N∏

n=1

∑

zn

p(zn|θ)p(wn|zn, φ))

)

·
(

M∏

m=1

∑

zn

p(zn|θ)p(am|zn, λ))

)

dθdφ (4.11)

By marginalizing over the hidden variablez, the name distributionp(a|θ, λ) can be

represented as follows:

p(a|θ, λ) =
∑

z

p(a|z, λ)p(z|θ) (4.12)

As a result, the likelihood of a document collectionD could be calculated by taking

the product of the marginal probabilities of individual documents,

p(D|α, β, λ) =
∫∫ K∏

z=1

p(φz|β)
N∏

d=1

p(θd|α)

(
N∏

n=1

p(wn|θ, φ)

)

·
(

M∏

m=1

p(am|θ, λ)

)

dθdφ (4.13)

Unfortunately, inference cannot be performed exactly on this model due to the prob-

lematic coupling between parametersθ, φ andλ. Alternative methods have been widely
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developed to approximate the inference, including variational inference [12] and other

methods. In the following section, we apply the Gibbs sampling framework to get

around the intractability problem of parameter estimation.

4.4.1.1 Gibbs sampling for the LDA model

The Gibbs sampling algorithm was developed as a special caseof the Markov Chain

Monte Carlo (MCMC) algorithm, which estimates the complex joint probability distri-

bution of several variables by generating random samples from the observed data. Note

that the sampling algorithm is actually used to derive conditional probabilities for the

sampler. Specifically, we need to know the conditional probabilitiesp(θm|α, zm1, ..., zmN ),

p(zmn|θm, wmn, β), wherem = 1, ..., M andn = 1, ..., N .

We construct a Markov chain that converges to the posterior distribution onz and

then use the results to inferθ andφ, i.e.,p(z|w, a).

Based on the graphical representation in Figure 4.2, the posterior distribution can be

derived as follows:

p(zi = j|z i,w, a) ∝ p(zi = j|z i)p(wi|z,w i)p(ai|z, a i) (4.14)

Notations Explanations
W number of words (vocabulary)
K number of topics
D number of documents
A number of name appearances
zi = j the assignment of theith word in a

document to topicj
z i all topic assignments not including the

ith word, i.e.,{z1, ..., zi−1, zi+1, ..., zK}
HWT

mj number of times wordm assigned to topic
j, except the current instance

HDT
dj number of times documentd contains topic

j, except the current instance
φmj the probability of using wordm in topic j
θdj the probability of documentd contains

topic j

Table 4.2.Notations used for Gibbs sampling.
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∝
HDT

dj + α
∑

j′ H
DT
dj′ + Kα

HWT
mj + β

∑

m′ HWT
m′j + Wβ

, (4.15)

where the first two terms of Equation (15) is inferred by following the Dirichlet distri-

bution derivation.

Note that in our case, we do not estimate the parametersα, β andλ. For simplicity

and performance, they are fixed at50/K, 0.01 and 0.1 respectively.

Equation (13) is considered as the conditional probabilityof the random variablesθ

andφ. For any individual sample, we can estimate them from the latent variablez by

θ̂dj =
HDT

dj + α
∑

j′ H
DT
dj′ + Kα

, (4.16)

φ̂mj =
HWT

mj + β
∑

m′ HWT
m′j + Wβ

. (4.17)

4.5 People Name Disambiguation

Learning both the PLSA and LDA models is equivalent to learning the probability dis-

tribution of the topic-wordP (w|z) and the topic-nameP (a|z) matrices. However, the

topic-name matrix only reflects the relationships between names and topics, thus several

people may have very similar topic interests, especially those from the same research

group. For the purpose of name disambiguation, the topic-name matrix is processed

further with a hierarchical clustering method. We extend the original agglomerative

clustering method for our task, since it has been shown that the bottom-up clustering

method performs better than the K-means method as well as other top-down clustering

methods in terms of both computational cost and clustering accuracy, particularly when

the number of desired clusters is not significantly smaller than the number of points.

4.5.1 Agglomerative Clustering

To distinguish people that have similar topic interests butwith different names, we gen-

erate a name-name matrix that measures the pairwise similarity between names. Lev-

enshtein distance [78] (defined asLe(x, y)) is used as the measurement and as a result

the similarity between two namesx andy can be defined as follows (| · | represents the
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length of the string):

Sim(x, y) = 1− Le(x, y)

max(|x|, |y|) . (4.18)

Our modified agglomerative clustering method is shown in Algorithm 7, in which

each nameai is a vector of lengthK, aik reflects the probabilities of nameai being

in a specific topick, and satisfies
∑

k aik = 1. We apply Euclidean distance as our

point-level distance metric, i.e.,D(ai, aj) =
√∑

k (aik − ajk)2. Meanwhile, to measure

the distance between clusters, the complete-link metric [66] is used that considers the

maximum distance of all elements in two clusters3. Two additional parameters should

also be specified at the beginning of the algorithm,ǫ andθ, as the stopping criteria for

the entire program and the merge criteria for two names/nameclusters, respectively. In

practice, we setǫ = 0.05 andθ = 0.5.

4.6 Experiments

To evaluate the two proposed methods, we perform the experiments on two applica-

tions, i.e., disambiguation of people’s web appearances and author names in scientific

documents.

4.6.1 Evaluation Metrics

Instead of using a matching matrix (a.k.a. a confusion matrix in supervised learning)

as in [52] (since the number of clustersK needs to be specified explicitly in advance,

making it inappropriate for unsupervised learning), two sets of metrics are applied in our

experiments as in [141, 57], namelypair-level pairwise F1scoreF1P andcluster-level

pairwise F1 scoreF1C. F1P is defined as theharmonic mean4 of pairwise precision

pp andpairwise recall pr, wherepp is measured by the fraction of co-referent pairs

in the same cluster, andpr the fraction of co-referent pairs placed in the same cluster.

Likewise, F1C is the harmonic mean ofcluster precision cp and cluster recall cr,

wherecp is the fraction of totally correct clusters to the number of clusters acquired by

the algorithm, andcr is the fraction of true clusters to that of the algorithm.

3We also tried both single-link algorithm and wards method [138], the performance are almost equally
well.

4H(x1, x2) = 2x1x2

x1+x2
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Algorithm 7 Agglomerative Clustering
1: Input:

a1, ...aM : names to cluster
D(ai, aj): point-level distance metric
C(ci, cj): cluster-level distance metric
Sim(ai, aj): name-name similarity matrix
ǫ, θ: threshold parameter

2: Initialize
place each name in a singleton cluster,
calculate the pairwise distance between
names according toD,
setC ← D,

3: Clustering Procedure
4: Repeat

find two names (ai, aj) or name clusters (ci, cj) that
are closest according toD andC,
randomly choose a name to represent a cluster,
if Sim(ai, aj) is greater thanθ

merge the pair to form a new cluster,
else

find the next closest pair or quit if no pair satisfy
the criteria,

update the distance between clusters according toC,
5: Until the distance between the closest pair of any two clusters is greater thanǫ,
6: Output: Clustersc1, ...cτ .

As the baseline method, we extracted names from the contentsand formed aname-

word matrix, which was augmented by the standardtf-idf method, we then applied the

agglomerative clustering using inter-cluster closeness as the measure (Agglo). Our

methods are further compared with two unsupervised learning approaches, the k-way

spectral clustering (Spectral) [52] and the LASVM+DBSCAN approach (DBSCAN) as

described in [57].

The most influential parameter on the performance as well as the scalability of our

models is the number of topicsK. Following convention [54, 12], we chose the values

of K from the set{2, 5, 10, 20, 50, 100, 200}. For interests of space, only the best results

with optimalK are reported. Meanwhile, as mentioned above, the priorsα, β andλ for

the LDA model are chosen as50/K, 0.01 and 0.1 respectively.
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4.6.2 Web Appearances of Person Names

In this section, we consider the problem of automatic disambiguation of person names

on the web. To be specific, when users submit name queries like“Michael Jordan”

to search engines, we want to distinguish name results by thecontent of the retrieved

web pages. We utilize the public data set5 generated by Ron Bekkerman and Andrew

McCallum [8]. 12 person names including SRI employees and professors (e.g., “David

Israel” and “Andrew Ng”) are submitted as queries to the Google search engine, the first

100 pages are then retrieved for each query. Post-processing is performed to clean the

pages, resulting in a total of 1,085 web pages referring to 187 different people. All pages

are manually labeled in the title indicating the position ofthe person. Among these web

pages, 420 are found relevant to the 12 particular names. Some statistics can be found

in [8].

For our experiment, the data set is further processed. We first translate the titles into

labels with +1 indicating relevant and -1 otherwise. All URLs included in the pages are

removed as well as other trivial characters. We then use the rainbow6 tool to process the

remaining text to produce the term-document matrix. Stemming and stop words removal

are performed, words that appear less than twice are removedas well. Furthermore, to

eliminate the bias towards longer documents, only the first 200 words are used in each

example.

Table 4.3 summarizes the clustering results regarding the F1P and F1C scores. Over-

all, our topic-based models consistently outperform othermethods for both metrics, with

more than 90% on F1P score and75% on F1C score on average. For most of the peo-

ple, both PLSA and LDA achieve the best performance with 10 topics, which decrease

sharply with the increase of topic numbers. The highest F1P scores for both models are

achieved from the class “Leslie Pack Kaelbling”, since it only has two namesakes in that

class. For the “Tom Mitchell” class that has 37 namesakes, our methods are still able to

achieve85% and82.4% F1P scores respectively, with the trade-off of using more topics

(20) to disambiguate. Generally, the performance decreases and the number of topics

increases with more namesakes in the class. Regarding the cluster F1 scores, since no

credits will be given to clusters that arepartially correct (i.e., either having more or less

instances than the real clusters), the performance is commonly worse than the pair-wise

5http://www.cs.umass.edu/∼ronb
6http://www.cs.cmu.edu/∼mccallum/bow
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# Agglo Spectral DBSCAN PLSA+Agglo LDA+Agglo
pages F1P F1C F1P F1C F1P F1C F1P F1C F1P F1C

Cheyer 97 0.580 0.211 0.602 0.333 0.852 0.650 0.920 0.677 (10) 0.935 0.725 (20)
Cohen 88 0.515 0.208 0.500 0.210 0.742 0.520 0.888 0.625 (10) 0.850 0.625 (10)
Hardt 81 0.350 0.159 0.362 0.267 0.744 0.577 0.755 0.625 (5) 0.875 0.717 (10)
Israel 92 0.700 0.455 0.720 0.466 0.855 0.680 0.952 0.877 (20) 0.975 0.841 (20)
Kaelbling 89 0.825 0.425 0.825 0.425 0.875 0.739 0.972 0.757 (10) 0.955 0.767 (20)
Mark 94 0.396 0.208 0.475 0.340 0.575 0.500 0.855 0.717 (10) 0.871 0.704 (10)
McCallum 94 0.785 0.504 0.830 0.525 0.900 0.717 0.924 0.785 (5) 0.955 0.824 (10)
Mitchell 92 0.750 0.487 0.762 0.485 0.785 0.490 0.850 0.776 (20) 0.824 0.643 (20)
Mulford 94 0.555 0.322 0.573 0.305 0.853 0.727 0.911 0.826 (10) 0.926 0.833 (10)
Ng 87 0.750 0.542 0.785 0.575 0.915 0.845 0.951 0.925 (50) 0.953 0.911 (20)
Pereira 88 0.565 0.333 0.548 0.320 0.788 0.720 0.926 0.851 (5) 0.946 0.923 (5)
Voss 89 0.375 0.220 0.345 0.196 0.625 0.600 0.876 0.633 (10) 0.850 0.667 (10)
Mean 90 0.596 0.340 0.611 0.371 0.792 0.647 0.909 0.756 0.911 0.765

Table 4.3.Clustering results of the Web Appearances data set in terms of pair-level pairwise F1
Score(%) (F1P) and cluster-level pairwise F1 score(%) (F1C). Greedy Agglomerative Clustering
is compared as a baseline approach. Our approaches (PLSA andLDA) consistently show better
results than both spectral clustering and DBSCAN methods. The number of topicsK is chosen
from the set{2, 5, 10, 20, 50, 100, 200}. The best results with optimalK (given in parentheses)
are presented here.

metrics. The best F1C scores are achieved in the class “Andrew Ng” which has 29 name-

sakes, larger number of topics (50 and 20 for PLSA and LDA respectively) shows better

performance.

Figure 4.3 plots the result of the McCallum class for both models by projecting the

data matrix on the first three eigenvectors. We choose two clusters for visualization

here, one is “Andrew McCallum” from UMass and other people with the identical name

for the other cluster. It is evident that both models have very high clustering accuracies

and separate two clusters quite well. Specifically, PLSA only misclassified one positive

instance to be negative while LDA misclassified one negativeinstance to be positive.

4.6.3 Author Appearances in Scientific Docs

To disambiguate author appearances in the scientific documents, we collect data from

the CiteSeer Digital Library. CiteSeer is currently one of the largest digital libraries that

holds more than 750,000 documents, primarily in the domain of computer and informa-

tion science. CiteSeer indexes several kinds of data formats (txt, PDF, PS); however,

for our experiment, we convert non-text formats into text and only make use of plain
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Figure 4.3. 3D visualization of feature distribution of thename-topicmatrix in the web ap-
pearances data set. *’s indicate the positive class (i.e. “Andrew McCallum” from UMass) and·
represents negative classes.(a). PLSA result.(b). LDA result.

text files. For the purpose of efficiency, extraction is performed only from the summa-

rizing parts (title, author names, abstracts and keyword fields) and the first page of each

document.

We obtained the nine most ambiguous author names from the entire data set as shown

in Table 6.2, each of which has at least 20 name variations. Inthe worst case (C. Chen),

103 authors share the same name.

Two steps of pre-processing are performed before the experiments. First, author

names are extracted from individual documents, each of which contains the author meta-

data associated with a unique paper identifier. Second, author references are extracted

from citations by regular expressions and manual correction. Rainbow is then applied

to form the document-term and document-author matrices.

Figure 4.4 plots the results of the CiteSeer data set on F1P scores and F1C scores.

Clearly, our methods consistently outperform both greedy agglomerative clustering and

spectral clustering, and better than DBSCAN except for theM. Jonesclass. Overall,

PLSA and LDA achieve92.3% and 93.6% pair-wise F1 metric, respectively, which

shows a gain of more than40% and86.6% improvement over the spectral clustering and

greedy agglomerative clustering. DBSCAN also achieves a comparative result (89.3%)

in this case.

In terms of the cluster F1 metric, PLSA and LDA models have almost the same

performance, both achieve significantly better results (more than140%) than spectral

clustering and agglomerative clustering. The relatively high F1C scores of our methods
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Name Variations Records
A. Gupta 44 506
A. Kumar 36 143
C. Chen 103 536
D. Johnson 41 350
J. Robinson 30 115
J. Smith 86 743
K. Tanaka 20 53
M. Jones 53 352
M. Miller 34 230
Mean 49.7 336.4

Table 4.4. Summary of the 9 CiteSeer data sets of different author namesand the data size.
These names are most representative for the worst case scenario in author name appearances in
scientific documents.

indicate that the number of unique authors can be estimated with the number of achieved

clusters from the original data set.

Illustrative examples of these results are presented in Table 4.5, which summarizes

the results of the PLSA model by showing the 10 highest probability words along with

their corresponding conditional probabilities from 4 topics in the CiteSeer data set. Ad-

ditionally, we show 3 author name variations correspondingto the same person with

their probability for each topic. The appearance of new authors is handled by using

the “folding-in” process discussed in Section 3.3. Clearly, the selected 4 topics reveal

that the 3 name variations have very high probability to be the same author. The figure

beneath depicts the probability distributions over 50 topics, of which the three names

exhibit quite similar patterns.

Likewise, Table 4.6 lists the results from the LDA model. We depict several topics

that show the maximum differences in probabilities to disambiguate authors withexactly

the same name. As for the name “Yang Song”, one author has veryhigh probability of

topic 4 (0.2210) while the other are highly related with topic 11 (0.2682), thus showing

completely different patterns of their probability distributions over topics.

4.6.3.1 Scalability and comparison of the two models

Theoretical issue of scalability for large-scale data set has not yet been addressed for

either PLSA or LDA. As a result, we empirically tested our models for the entire Cite-
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Figure 4.4. Clustering results on the CiteSeer data set. 1:A. Gupta, 2:A. Kumar, 3:C. Chen, 4:D.
Johnson, 5:J. Robinson, 6:J. Smith, 7:K. Tanaka, 8:M. Jones, 9:M. Miller.

Seer data set with more than 750,000 documents. PLSA yields 418,500 unique authors

in 2,570 minutes, while LDA finishes in 4,390 minutes with 418,775 authors. Both are

quite consistent with previous results [57, 52]. Considering that our methods only make

use of a small portion of the text for each instance (metadataplus the first page), we

believe the framework can be efficient for large-scale data sets.

The results of the two models are quite close to each other in both metrics across

two data sets; however, they may have different generalization capabilities. In Figure

4.5, we show the comparison between PLSA and LDA in terms of the exponential of

the negative likelihood (a.k.a.perplexity), which is commonly used as a measure of the

generalization performance of probabilistic models. Generally, lower perplexity over a
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Figure 4.5. Exponential of the Negative Likelihood of the two models forthe CiteSeer data set.
X axis shows the number of topics. Here we show the results of using 20% training data.

set of held-out test data indicates better performance.

Figure 4.5 depicts the results for the 2 models being compared. Both models exhibit

the overfitting problem when the number of topicsK increases. Comparatively, LDA

is less sensitive to the change ofK. This probably explains why PLSA is not afully

generativemodel, since PLSA applies “folding-in” process to manage new documents.

This process assumes that documents in the testing set exhibit the same topic distribu-

tion (E-step of the EM algorithm) as those in the training set, which is not essentially

true in many cases. In LDA, by generating probability with predefined priors to test-

ing documents, all documents essentially exhibit the same topic distribution, thus no

assumption is required for new authors in the testing documents. Nevertheless, the best

performance for both models are quite close, achieved whenK is either 5 or 10.
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Topic 13 Topic 24
“Image Categorization” “Content Retrieval”

classifiers 0.0311 feature 0.0318
region 0.0285 learning 0.0216
image 0.0211 content 0.0138
indexing 0.0157 images 0.0130
photo 0.0152 clusters 0.0130
colors 0.0133 cluster 0.0130
color 0.0123 retrieval 0.0112
extract 0.0111 location 0.0112
aesthetics 0.0103 query 0.0064
light 0.0085 classifiers 0.0061
James Wang 0.2721 James Wang 0.1478
J. Z. Wang 0.2215 J. Z. Wang 0.1362
James Ze Wang 0.2533 James Ze Wang 0.1577
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James Ze Wang
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Content Retrieval Bioinformatics

Image Filtering

Table 4.5. An illustrative example of the author-topic relationshipsin the CiteSeer data set
extracted by the topic-based PLSA model. 10 most corresponding words are shown for each
topic. We summarize the titles of the topics to the best of ourunderstanding. Below each topic
shows the probabilities of authors with name variations. Inthis example three names refer to the
same person.
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Topic 4 Topic 11
“Text Classification” “Vision & Motion”

boosting 0.0473 position 0.0486
text 0.0473 motion 0.0411
classification 0.0473 perceive 0.0220
classifiers 0.0473 vision 0.0220
feature 0.0422 label 0.0162
document 0.0215 tracked 0.0162
corpora 0.0215 moving 0.0111
words 0.0116 actions 0.0111
vectors 0.0116 humans 0.0105
dimensionality 0.0116 visual 0.0105
Yang Song(PSU) 0.2210 Yang Song(PSU) 0.0320
Yang Song(Caltech) 0.0202 Yang Song(Caltech) 0.2682
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Table 4.6.LDA topic distributions of two authors with the same name “Yang Song”.



Chapter 5
Text Recommendation for Social

Bookmarking Systems

Tagging, or social bookmarking, refers to the action of associating a relevant keyword or

phrase with an entity (e.g. document, image, or video). Withthe recent proliferation of

Web 2.0 applications such as Del.icio.us1 and Flickr2 that support social bookmarking

on web pages and images respectively, tagging services havebecome red-hot popular3

among users and have drawn much attention from both academiaand industry. These

web sites allow users to specify keywords or tags for resources, which in turn facilitates

the organizing and sharing of these resources with other users. Since the amount of

tagged data potentially available is virtually free and unlimited, interest has emerged in

investigating the use of data mining and machine learning methods for automated tag

recommendation or both text and digital data on the web [7, 22, 45, 80].

5.0.4 The Problem

Tag recommendation refers to the automated process of suggesting useful and infor-

mative tags to an emerging object based on historical information. An example of the

recommendation by the Del.icio.us system is shown in Figure5.2, where the user is

bookmarking a webpage regarding data mapper and the system recommends relevant

1http://del.icio.us/
2http://www.flickr.com/
3Recent statistics indicated that del.icio.us gets roughly150,000 posts per day while Flickr gets

1,000,000 photos per day.
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tags as well as popular ones for annotation. While the objects to be tagged can be im-

ages, videos or documents, we will focus on documents in thispaper unless otherwise

mentioned. In general, a tagged document is usually associated with one or more tags,

as well as users who annotated the document by different tags. Thus, a tagging behav-

ior to a documentd performed by useru with tag t can be represented using a triplet

(u, d, t). Using a graph representation where each node is one of the elements in the

triplet, and edges between nodes being the degree of connection, it is obvious that both

the users and the documents are highly connected to the tags,while the relationship be-

tween tags themselves cannot be observed directly (shown inFigure 5.1). Consequently,

recommending relevant tags to new users or new documents canonly be done indirectly

from the user perspective or the document perspective.

���� ����
Figure 5.1. A connectivity graph of users, tags and documents. In the scenario of tagging, a
user annotates a document by creating a personal tag. As it can be observed, tags are not directly
connected to each other, but to the users and documents instead.

As it can be observed, tag recommendation can be addressed intwo different as-

pects. i.e., user-centered approaches and document-centered approaches. User-centered

approaches aim at modeling user interests based on their historical tagging behaviors,

and recommend tags to a user from similar users or user groups. On the other hand,

document-centered approaches focus on the document-levelanalysis by grouping doc-

uments into different topics. The documents within the sametopic are assumed to share

more common tags than documents across different topics. Theoretically, both models

can be learnt by using classic machine learning approaches.For example,collabo-

rative filtering (CF) techniques [15] can be applied to learn the user interests for the

user-centered approaches. For document-centered approaches, both unsupervised topic

models (e.g., LDA topic models [12]) and supervised classification models (e.g., SVM

[27]) are good candidates for categorizing document topic groups.

While both approaches seem to be plausible, it turns out thatthe user-centered ap-
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Figure 5.2. An example of recommended tags by the Del.icio.us recommender system.

proaches are not very effective due to several obvious reasons. First, according to re-

search in [37], the distribution of users vs. the number of tag applications follows a

long tail power law distribution, meaning that only a very small portion of the users

perform tagging extensively (see Figure 5.3 (a)). Additionally, researchers have also

shown that the reusability of tags are quite low, while the vocabulary of tags constantly

grows [37] (see Figure 5.3 (b)). With relatively few user information acquired, it makes

the user-centered approaches difficult to find a suitable model to perform effective tag

recommendation. While clustering users into interests groups can somewhat alleviate

the issue of sparseness, user-centered approaches are not very flexible in monitoring the

dynamic change of user interests over time.

Comparatively, the document-centered approaches are morerobust because of the

rich information contained in the documents. Moreover, theunderlying semantics within

tags and words create a potential link between topics and contents in the documents,

where tags can be treated as class labels for documents in thescenario of supervised

learning, or summarizations of documents as an unsupervised learning approach. This

makes it flexible to apply any sophisticated machine learning algorithms for the user-

centered tag recommendation approach.

Additionally, while botheffectivenessandefficiencyneed to be addressed for ensur-

ing the performance of the tagging services, most of the existing work has focused on
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Figure 5.3. Challenge of tag applications. (a) Number of users vs. number of tag applications.
Relatively few users generated most of the tag applications. (b) Frequency matrix of tags and
users, where X-axis indicates Tag ID and Y-axis is User ID, showing that the matrix is very
sparse.

effectiveness [7, 22, 45]. Efficiency, while not being totally ignored, has only been of

recent interest [80].

5.1 Our Contributions

In this thesis, we propose two frameworks for addressing automatic tag recommenda-

tion for social recommender systems. From a machine learning perspective of view, we

want our models to bereusablefor different applications and systems,scalableto large

web-scale applications, and the results areeffectivefor all of them. The first approach

we proposed is agraph-basedmethod, in which the relationship among documents,

tags, and words are represented in two bipartite graphs. A two-state framework is ad-

vocated for learning from previously seen data. During the offline learning stage, we

use the Lanczos algorithm forsymmetriclow rank approximation for the weighted ad-

jacency matrix for the bipartite graphs, and Spectral Recursive Embedding (SRE) [149]

to symmetrically partition the graphs into multi-class clusters. We propose a novel node

ranking algorithm to rank nodes (tags) within each cluster,and then apply a Poisson

mixture model [81] to learn the document distributions for each class.

During the online recommendation stage, given a document vector, its posterior

probabilities of classes are first calculated. Then based onthe joint probabilities of the

tags and the document, tags are recommended for this document. The two-way Pois-
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son mixture model (PMM) applied here is very efficient for classification. Comparing

to other classification methods, the two-way PMM has the advantage of modeling the

multivariate distribution of words in each class, so that itis capable of clustering words

simultaneously while classifying documents, which helps reducing the dimensionality

of the document-word matrix. The two-way PMM is flexible in choose component dis-

tribution for each topic class, i.e., different classes mayhave different number of com-

ponents. i.e., number of sub-topics. Moreover, this model performs asoftclassification

for new documents that allows tags to be recommended from different classes.

The second approach is aprototype-basedmethod. Instead of using the entire train-

ing data, this method aims at finding the most representativesubset within the training

data so as to reduce the learning complexity. This supervised learning approach clas-

sifies documents into a set of pre-defined categories, which are determined by the pop-

ularity of existing tags. Similar to the graph-based method, the tags are ranked within

each category and recommended to a new document based on their joint probabilities.

To achieve an online speed of recommendation while selecting the best prototypes, we

propose a novel sparse Gaussian processes (GP) framework for suggesting multiple tags

simultaneously. Specifically, a sparse multi-class GP framework is introduced by ap-

plying Laplace approximation for the posterior latent function distribution. Laplace

approximation [101] has been successfully proposed to address the intractability caused

by binary GP classification, and we are the first to give a close-form solution for the

sparseandmulti-classGP classification. To find the best portion of the training data ef-

ficiently, we suggest a prototype selection algorithm that is capable of locating the most

informative prototypes for each class within a few learningsteps.

While a lot of classifiers are good candidates for the classification of tagged doc-

uments, we advocate the use of GP for tag recommendation for acouple of reasons.

First, GP have become an important non-parametric tool for classification (and regres-

sion). Unlikegenerativeclassifiers such like Naive Bayes, GP make no assumption

on the form of class-conditional density of the data, which makes it immune to any

poor performance caused by a false model assumption. Another advantage of GP is

that the predicted result of the model yields a probabilistic interpretation, while tradi-

tionaldiscriminativeclassifiers such like Support Vector Machines (SVMs) [27] usually

do not consider the predictive variance of test cases4. For tag recommendation where

4Although Platt suggested an ad-hoc probabilistic SVM in [99], it does not consider the predictive
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the tagged data (e.g., web pages) usually does not contain any class labels, the user-

assigned tags can be used as labels. In this case, GP classifiers that inherit some level

of uncertainty can provide a probabilistic classification which tolerates the limitations

and possible errors caused by the tags. The predictive variance also offers flexibility of

making predictions to new instances.

As mentioned above, another characteristic of tagged data is the unbounded vocab-

ulary of the tagging systems [37]. Therefore, the tagged data sets used for empirical

analysis are usually of high-dimensionality and sparseness [119]. In this case, the effi-

ciency of the model training should also be considered in addition to the performance

issue. Nevertheless, massive training data often requireslarge memory and high com-

putational cost for most discriminative approaches including SVMs. Ad-hoc methods

have been developed to select subset for training but those approaches are somewhat

heuristic and often performed outside of the model itself. Instead, the sparse GP frame-

work we developed directly selects a subset of most informative documents from all

tagged data during training. The prototype selection algorithm we developed requires

no extra cost because it reuses the covariance function developed by the GP framework.

Consequently, the GP model shows a very promising performance when limited training

resources are available by comparing to SVMs [101].

5.2 Related Work

For the user-centered approaches, it has been observed thatby mining usage patterns

from current users,collaborative filtering(CF) can be applied to suggest tags from

users who share similar tagging behaviors [45, 7]. Specifically, during thecollabora-

tive step, users who share similar tagging behaviors with the user we want recommend

tags to are chosen based on the between-user similarities, which are calculated based

on the users’ tagging history. This step usually requires a pre-computed look-up table

for the between-user similarities, which is usually in the form of weighted symmetric

matrices. After that, thefiltering step selects the best tags from those similar users for

recommendation. As discussed above, the drawback of this approach is obvious: a new

user that does not have recorded history are unable to benefitfrom this approach at all

since the similarities with existing users cannot be calculated. Moreover, calculating

variance of the function.
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the between-user similarity matrix poses a quadratic computational cost to the number

of users. Unfortunately, the whole matrix needs to be re-calculated whenever a new

user pattern is injected into the system, making this approach infeasible for web-scale

applications.

Among various unsupervised learning methods, clustering technique is of particu-

lar popularity for the document-centered approaches. In [22], the authors suggested

a method named P-TAG for automatically generating personalized tags in a semantic

fashion. They paid particular attention to personalized annotations of web pages. In

their document-oriented approach, a web page is compared with a desktop document

using either cosine similarity or latent semantic analysis. Keywords are then extracted

from similar documents for recommendation. The second keyword-oriented approach

alternatively finds the co-occurrence of terms in differentdocuments and recommends

the remaining tags from similar desktop documents to the webpage. The third hybrid

approach combines the previous two methods. From a collaborative filtering point of

view, the first two methods can be interpreted as item-based CF with the item being

documents and keywords respectively. Their methods, however, do not investigate the

behaviors between different users for similar web pages.

A clustering-based approach was proposed in [7] to aggregate semantically related

user tags in to similar clusters. Tags are represented as graphs where each node is a

tag and the edge between two nodes corresponds to their co-occurrence in the same

documents. Tags in the same cluster were recommended to the users based on their

similarities. Similarly, an automatic annotation method for images was proposed in

[80]. A generative model is trained by exploiting the statistical relationships between

words and images. A discrete distribution (D2-) clusteringalgorithm was introduced for

prototype-based clustering of images and words, resultingin a very efficient model for

image tagging.

5.3 Approach 1: A Graph-based Method

The graph-based method we proposed consists of four steps: (1) represents the rela-

tionship among words, documents and tags into two bipartitegraphs, then cut the graph

into sub-graphs as topic clusters, (2) ranks the tags withineach topic based on their

frequency, (3) trains a two-way Poisson mixture model for documents and words, (4)
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performs a soft classification for a new document and recommend tags with the highest

probabilities.

5.3.1 Bipartite Graph Representation

We define a graphG = (V, E, W ) as a set of verticesV and their corresponding edges

E, with W denoting the weight of edges. e.g.,wij denotes the weight of the edge

between verticesi andj.

A graphG is bipartite if it contains two vertex classesX andY such thatV = X∪Y

andX ∩ Y = ∅, each edgeeij ∈ E has one endpoint (i) in X and the other endpoint (j)

in Y . In practice,X andY usually refer to different types of objects andE represents

the relationship between them. In the context of document representation,X represents

a set of documents whileY represents a set of terms, andwij denotes the number of

times termj appears in documenti. Note that the weighted adjacency matrixW for

a bipartite graph is always symmetric.For example, Figure 5.4 depicts an undirected

bipartite graph with 4 documents and 5 terms.

Figure 5.4. A bipartite graph ofX (documents) andY (terms). Dot line represents a potential
(best) cut of the graph.

5.3.2 Normalization and Approximation

Normalization is usually performed first for the weight matrix W to eliminate the bias.

The most straightforward way to normalizeW is row normalization, which does not take

into account the symmetry ofW . However, to consider the symmetry ofW , we propose

to use normalized graph Laplacian to approximateW . The normalized LaplacianL(W )



93

is defined as:

L(W )ij =







1− wij

di
if i = j,

− wij√
didj

if i andj are adjacent,

0 otherwise,

wheredi is the out degree of vertexi, i.e., di =
∑

wij, ∀j ∈ V . We can then define

a diagonal matrixD whereDii = di. Therefore, the normalized Laplacian can be

represented as

L(W ) = D(−1/2)WD(−1/2). (5.1)

For large-scale datasets such as the Web corpora and image collections, their feature

space usually consists of millions of vectors of very high dimensions (e.g.,x = 106, y =

107). Therefore, it is often desirable to find a low rank matrixW̃ to approximateL(W )

in order to lower the computation cost, to extract correlations, and remove noise. Tra-

ditional matrix decomposition methods, e.g., Singular Value Decomposition (SVD) and

eigenvalue decomposition (when the matrix is symmetric), require superlinear time for

matrix-vector multiplication so they usually do not scale to real-world applications.

For symmetric low rank approximation, we use the Lanczos algorithm [46] which

iteratively finds the eigenvalues and eigenvector of squarematrices. Given ann × n

sparse symmetric matrixA with eigenvalues:

λ1 ≥ ... ≥ λn > 0, (5.2)

the Lanczos algorithm computes ak × k symmetric tridiagonal matrixT , whose eigen-

values approximate the eigenvalues ofA, and the eigenvectors ofT can be used as the

approximations ofA’s eigenvectors, withk much smaller thann. In other words,T

satisfies:

‖A− T‖F ≤ ǫ‖A‖F , (5.3)

where‖ · ‖F denotes the Frobenius norm, withǫ as a controlled variable. For example,

to capture 95% variances ofA, ǫ is set to 0.05.

5.3.3 Bipartite Graph Partitioning

For multi-clustering on bipartite graphs, we apply the Spectral Recursive Embedding

(SRE) algorithm [149]. Traditional graph cutting algorithms aimed at minimizing the



94

cut loss that minimized the weighted mismatch of edges between partitions. Unfortu-

nately, those approaches often lead to unbalanced clusterswhich are not desirable. Thus,

SRE essentially constructs partitions by minimizing a normalized sum of edge weights

between unmatched pairs of vertices, i.e.,minΠ(A,B) Ncut(A, B), whereA andB are

matched pairs in one partition withAc andBc being the other. The normalized variant

of edge cutNcut(A, B) is defined as:

Ncut(A, B) =
cut(A, B)

W (A, Y ) + W (X, B)
+

cut(Ac, Bc)

W (Ac, Y ) + W (X, Bc)
, (5.4)

where

cut(A, B) = W (A, Bc) + W (Ac, B)

=
∑

i∈A,j∈Bc

wij +
∑

i∈Ac,j∈B

wij. (5.5)

The rationale ofNcut is not only to find a partition with a small edge cut, but also

partitions that are as dense as possible. This is useful for our application of tagging

documents, where the documents in each partition are ideally focused on one specific

topic. As a result, the denser a partition is, the better that relevant documents and tags

are grouped together.

5.3.4 Within Cluster Node Ranking

We define two new metricsN-PrecisionandN-Recallfor node ranking. N-Precision

of a nodei is the weighted sum of its edges that connect to the nodes within the same

cluster, divided by the total sum of edge weights in that cluster. Denote the cluster label

of i asC(i),

npi =

∑n
j=1 wijI[C(j) = C(i)]

∑n
j,k=1 wjkI[C(j) = C(k) = C(i)]

, j, k 6= i. (5.6)

where the indicator functionI[·] equals to one if the condition satisfies and 0 otherwise.

For the unweighted graph, the above equation equals to the number of edges associated

with nodei in clusterC(i), divided by the total number of edges in clusterC(i). Gener-

ally, N-precision measures the importance of a node to the cluster, in comparison with

other nodes. In the context of text documents, the cluster isa topic set of documents and
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the weight of the word nodes shows the frequency of the words appearing in that topic.

With the cluster determined, the denominator of equation (5.6) is constant, so that the

more weight the node has, the more important it is.

In contrast, N-recall is used to quantify the posterior probability of a nodei to a

given cluster and is the inverse fraction ofi’s edge associated with its cluster

nri =
|Ei|

|Ei| −
∑n

j=1 I[C(j) = C(i)]
, (5.7)

where|Ei| represents the total number of edges from nodei. It is evident that N-Recall

is always no less than 1. The larger N-Recall is, the more probable that a word is

associated with a specific topic.

Givennpi andnri, we can estimate the ranking ofi:

Ranki =







exp

(

− 1

r(i)2

)

r(i) 6= 0,

0 r(i) = 0,

where r(i) = (npi) ∗ log(nri). (5.8)

Depicted in Figure 5.5, our ranking function is a smoothed surrogate that is propor-

tional to both node precision and recall, guaranteed to be inthe range of(0, 1). An ex-

ample cluster is also shown in Figure 5.5 where the precisionof tagsnp1 = 0.75, np2 =

0.25, and the recallnr1 = 7, nr2 = 3. Thus the rank of tagt1 is higher thant2, i.e.,

t1 = 0.8, t2 = 0.1, indicating that tagt1 ranks higher in that topic cluster than tagt2.

Potential applications of the aforementioned bipartite graph node ranking method-

ology include interpreting the document-author relationship. i.e., determine the social

relations (e.g., “hub” and “authority”) of authors in the same research topic, and finding

the most representative documents in the topic. In what follows, we apply this frame-

work to tag recommendation by ranking nodes that represent tags in each cluster.

5.3.5 Online Tag Recommendation

A typical document of concern here consists of a set of words and several tags annotated

by users. The relationship among documents, words, and tagscan then be represented

by two bipartite graphs as shown in Figure 5.6.
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(right), with the numbers on the edges showing the frequencies of tags being annotated to specific
documents.

Figure 5.6. Two bipartite graphs of documents, words and tags.

The weighted graph can be written as

W =







0 A 0

AT 0 B

0 BT 0







, (5.9)

whereA andB denote the inter-relationship matrices between tags and docs, docs and

words, respectively.

Given the matrix representation, a straightforward approach to recommend tags is to

consider the similarity (e.g., cosine similarity) betweenthe query document and training

documents by their word features, then suggest the top-ranked tags from mostsimilar
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documents. This approach is usually referred to as collaborative filtering [15]. Never-

theless, this approach is not efficient for real-world scenarios. To take the advantage of

the proposed node ranking algorithm, we propose a Poisson mixture model that can ef-

ficiently determine the membership of a sample as well as clustering words with similar

meanings. We summarize our framework in Algorithm 8.

Algorithm 8 Poisson Mixture Model (PMM) Online Tag Recommendation
1: Input (D, S, T ), K,M,L

Document collection:D = {D1, ...,Dm}
Word vocabulary:S = {S1, ..., Sk}
Tag vocabulary:T = {T1, ..., Tn}
Number of clusters:K ∈ R

Number of components:M ∈ R

Number of word clusters:L ∈ R

Offline Computation
2: Represent the weighted adjacency matrixW as in eq. (5.9)
3: NormalizeW using the normalized Laplacian

L(W ) = D(−1/2)WD(−1/2) (eq. (5.1))
4: Compute a low rank approximation matrix using the Lanczos:

W̃ ≃ L(W ) = QkTkQ
T
k

5: PartitionW̃ into K clusters using SRE [149],
W̃ = {W̃1, ..., W̃K}

6: Assign labels to each documentDj, j ∈ {1, ...m}
C(Dj) ∈ {1, ...,K}

7: Compute the node rankRank(T ) for each tagTi,k in clusterk, i ∈ {1, ..., n}, k{1, ...,K}
(eq. (5.8))

8: Build a Poisson mixture model for(B̃, C(D)) with M components andL word clusters,
whereB̃ denotes the inter-relationship matrix of documents and words inW̃ (eq. (5.9))
Online Recommendation

9: For each test documentY, calculate its posterior probabilitiesP (C = k|D = Y) in each
clusterk, and denote the membership ofY asC(Y) = {c(Y, 1), ..., c(Y,K)} ((eq. (5.16)))

10: Recommend tags based on the rank of tags, i.e., the joint probability of tagsT and document
Y, R(T, Y) (eq. (5.17))

Intuitively, this two-stage framework can be interpreted as an unsupervised-supervised

learning procedure. During the offline learning stage, nodes are partitioned into clusters

using an unsupervised learning method, cluster labels are assigned to document nodes

as their “class labels”, and tag nodes are given ranks in eachcluster. A mixture model is

then built based on the distribution of document and word nodes. In the online recom-

mendation stage, a document is classified into predefined clusters acquired in the first

stage by naive Bayes so that tags can be recommended in the descending orders of their
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ranks. To avoid confusion, we will refer to the clusters determined by the partitioning

algorithm in the first stage asclassesin the next section.

5.3.6 Two-way Poisson Mixture Model

We propose to use Poisson mixture models to estimate the distribution of document vec-

tors, because they fit the data better than standard Poissonsby producing better estimates

of the data variance, and are relatively easy for parameter estimation. Although it takes

time to fit the training data, it is efficient to predict the class label of new documents once

the model is built. Because of the numerical stability of this statistical approach, the re-

sults are usually reliable. Since only probabilistic estimation is involved, it is capable

for real-time process.

Nevertheless, traditional unsupervised learning approaches of mixture models [38,

107] are not always capable of dealing with document classification. Considering the

sparseness and high-dimensionality of the document-word matrix where most entries

are zeros and ones, the model may fail to predict the true feature distribution (i.e. the

probability mass function) of different components. As a result, word clustering is a

necessary step before estimating the components in the model. In what follows, we

utilize the two-way Poisson mixture model [81] in order to simultaneously cluster word

features and classify documents.

Given a documentD = {D1, ..., Dp}, wherep is the dimension, the distribution

of the document vector in each class can be estimated by usinga parametric mixture

model. Let the class label beC = {1, 2, ..., K}, then

P (D = d|C = k) =
M∑

m=1

πmI(F (m) = k)

p
∏

j=1

φ(dj|λj,m), (5.10)

whereπm is the prior probability of componentm, with
∑M

m=1 πm = 1. I(F (m) = k)

is an indicator function, i.e., whether componentm belongs to classk, andφ denotes the

probability mass function (pmf) of a Poisson distribution,φ(dj|λj,m) = e−λj,mλj,m
dj/dj!.

In this way, each class is a mixture model with a multivariatedistribution having

variables that follow a Poisson distribution. Figure 5.7 shows the histogram of two

mixtures which can be regarded as the pmfs of two Poisson mixtures.

Our assumption is that within each class, words in differentdocuments have equal
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Figure 5.7. An example of two mixtures of the Poisson distribution in twoclusters.(Top) The
histograms of mixture components. (Bottom) Mixture model classification results. (a) Three-
component mixtures. (b) Two-component mixtures.

Poisson parameters, while for documents in different classes, words may follow dif-

ferent Poisson distributions. For simplicity, we also assume that all classes have the

same number of word clusters. Denotel = {1, , , , L} to be the word clusters, words in

the same word clusterm will have the same parameters, i.e.,λi,m = λj,m ≡ λ̃l,m, for

c(i, k) = c(j, k), wherec(i, k) denotes the cluster label of wordi in classk. Therefore,

Equation (5.10) can be simplified as follows (withL≪ p):

P (D = d|C = k) ∝
M∑

m=1

πmI(F (m) = k)

L∏

l=1

φ(dk,l|λ̃l,m). (5.11)

5.3.6.1 Parameter Estimation

With the classes determined, we apply EM algorithm [32] to estimate the Poisson pa-

rameters̃λl,m, l ∈ {1, ..., L}, m ∈ {1, ..., M}, the priors of mixture componentsπm, and

the word cluster indexc(k, j) ∈ {1, ..., L}, k ∈ {1, ..., K}, j ∈ {1, ..., p}.
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The E-step estimates the posterior probabilitypi,m:

pi,m ∝ π(t)
m I(C(i))

p
∏

j=1

θ(d(i, j)|λ̃(t)
m,i,j). (5.12)

The M-step usespi,m to maximize the objective function

L(π(t+1)
m , λ̃

(t+1)
m,l , c(t+1)(k, j)|π(t)

m , λ̃
(t)
m,l, c

(t)(k, j))

= max
n∑

i=1

M∑

m=1

pi,m log

(

π(t+1)
m I(C(i))

p
∏

j=1

θ(d(i, j)|λ̃(t+1)
m,i,j )

)

,

and update the parameters

π(t+1)
m =

∑n
i=1 pi,m

∑M
m′=1

∑n
i=1 pi,m′

, (5.13)

λ̃(t+1)
m =

∑n
i=1 pi,m

∑

j d(i, j)I(C(i))

|d(i, j)|∑n
i=1 pi,m

, (5.14)

where|d(i, j)| denotes the number ofj’s in componentl.

Onceλ̃
(t+1)
m is fixed, the word cluster indexc(t+1)(k, j) can be found by doing linear

search over all components:

c(t+1)(k, j) = arg max
l

n∑

i=1

∑

m∈Rk

log(d(i, j)|λ̃(t+1)
m,l ). (5.15)

5.3.7 Tag Recommendation for New Documents

Normally, the class labelC(dt) of a new documentdt is determined by the maximum

likelihoodĈ(x) = arg maxk P (C = k|D = dt). However in our case, we determine the

mixed membership of a document by calculating its posteriorprobabilities to classes,

with
∑K

k=1 P (C = k|D = dt) = 1. Applying equation (5.11) and the Bayes rule,

P (C = k|D = dt) =
P (D = dt|C = k)P (C = k)

P (D = dt)

=

∑M
m=1 πmI(F (m) = k)

∏L
l=1 φ(dk,l|λ̃l,m)P (C = k)

P (D = dt)
, (5.16)
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whereP (C = k) are the prior probabilities for classk and are set uniform. Finally, the

probability for each tagTi, i ∈ {1, ..., n} to be associated with the sample is

R(Ti, dt) = P (T = Ti|D = dt) = RankTi
∗ P (C = x|D = dt). (5.17)

By ranking the tags in descending order of their probabilities, the top ranked tags

are selected for recommendation.

5.4 Approach 2: A Prototype-based method

The second method we introduce here, a prototype-based method, is made up of three

main parts: (1) train a multi-class multi-label Gaussian processes classifier, (2) find the

most informative prototypes (i.e., representatives) for each class, (3) perform a multi-

label classification for a new document by assigning it to oneor more class, and recom-

mend the highest-ranked tags to the document.

5.4.1 Background of Gaussian Process Classification

A Gaussian process (GP) is astochasticprocess consists of a collection of random vari-

ablesx, which forms a multivariate Gaussian distribution specified by a mean function

µ(x) and covariance functionk(x,x′). For classification, the objective is to assign a

new observationx∗ to one or more predefined classes denoted byy∗ ∈ {1, ..., C}. GPs

can not be applied to the classification task directly because the values ofy are not con-

tinuous. Consequently, alatent functionf(x) is employed to infer the labels. The GP

prior is therefore placed overf(x). Fig 5.8 (a) illustrates an one-dimensional case of

the latent function with mean 0. To make a prediction given a new x∗, one first de-

termine the predictive distributionp(f∗|f), wheref is obtained from the training set,

f |Xtrain ∼ N (0,K), with K denoting the multivariate covariance matrix. The class

probabilityy∗ is then related to the latent functionf∗.

5.4.2 Traditional multi-class GP model

Denote a training data setD = {(xi, yi)|i = 1, ..., N} with N training pointsX =

{xi|i = 1, ..., N} drawn independent and identically distributed (i.i.d.) from an un-
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Figure 5.8. One-dimensional illustration of Gaussian process construction for classification. (a)
A latent functionf(X) drawn from Gaussian Process, wheref(xi) denotes the latent function
value of pointxi. (b) The class probability ofX after scalingf(X) into (0, 1) by a sigmoid
function Φ(fi) = 1 + exp(−fi)

−1, whereP (xi) denotes the class probability atxi. (c) An
example of two-dimensional input with an independent noise-free covariance function of each
input. For the output latent functionf , both dimensions are equally important.

known distribution, and the associated labelsy = {yi|i = 1, ..., N}, where each point

xi is aD dimensional feature vector,xi ∈ RD andyi ∈ {1, ..., C}. Following the con-

vention in [101], we introduce a vector of latent function values ofN training points for

C classes, which has lengthCN

f = (f 1
1 , ..., f 1

N , ..., f j
1 , ..., f

j
N , ..., fC

1 , ..., fC
N )T , (5.18)

wherexi hasC latent functionsfi = (f 1
i , ..., fC

i ). We further assume that the GP prior

overf has the formf |X ∼ N (0,K), whereK represents the covariance matrix which is

constructed from a pair-wise covariance functionK(xn,xn′)
△
= [KN ]nn′. Specifically,

K is block diagonal of sizeCN × CN in the matricesK1, ...,KC , where eachKj

represents the correlations of the latent function values within classj. A wide range

of covariance functions can be chosen for GP classification [101]. A commonly used

function in the classification case is thesquared exponentialfunction, defined as:

[KN ]nn′ = l exp




−1

2

∑D
d′=1

(

x
(d′)
n − x

(d′)
n′

)2

Σ2




 , (5.19)

whereθ = {l,Σ2} corresponds to thehyper-parameters.
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Given the training setD, we can compute the posterior of the latent function by

plugging in the Bayes’ rule,

p(f |X, y) =
p(f |x)p(y|f)

p(X, y)

i.i.d.
=
N (0, K)

p(X, y)

N∏

i=1

p(yi|fi), (5.20)

which is non-Gaussian. In eq.(5.20), the conditional probability p(y|f) has not been

decided yet. In the multi-class case,y is a vector of the lengthCN (which is the same

asf), which for eachi = 1, ..., N has an entry of 1 for the class which corresponds to

the label of the pointxi and 0 for the restC − 1 entries. One of the choices is asoftmax

function:

p(yc
i |fi) =

exp(f c
i )

∑

c′ exp(f c′
i )

. (5.21)

To proceed, we compute the predictive distribution of the class probability given a

newx∗ in two steps. First, compute the latent valuef∗ by integrating outf :

p(f∗|X, y,x∗) =

∫

p(f∗|f , X,x∗) p(f |X, y)
︸ ︷︷ ︸

eq.(5.20)

df , (5.22)

theny∗ can be computed by integrating outf∗:

p(y∗|X, y,x∗) =

∫

p(y∗|f∗) p(f∗|X, y,x∗)
︸ ︷︷ ︸

eq.(5.22)

df∗. (5.23)

This method takesO(N3) to train due to the inversion of the covariance matrixK.

A range ofsparseGP approximations have been proposed [74, 108]. Most of these

methods seek a subset ofM (M ≪ N) training points which areinformativeenough to

represent the entire training set. Consequently, the training cost is reduces toO(NM2)

and the corresponding test cost toO(M2). Next we discuss a sparse way to reduce the

computational cost in the multi-class case.

5.4.3 Our Multi-class Sparse GP Model

Our model involves several steps. First, we chooseM (M ≪ N) points (denote as

X̄ = {x̄m}Mm=1) from the training set. Then we generate their latent functions f̄ from

the prior. The correspondingf for the entire training set is thus drawn conditionally



104

from f̄ . See Figure 5.9 for details.

t

K

f y
D

M
N

θα

Figure 5.9. Graphical representation of our sparse multi-class GP model. θ is the hyper-
parameter that define the latent functionf . α denotes the extra parameter for placing a dis-
tribution overθ.

First, assume that theM points have already been chosen. Then place a GP prior

on X̄, which uses the same covariance function as shown in eq. (5.19), such that these

points have a similar distribution to the training data,

p(f̄ |X̄) = N (f̄ |0,KM). (5.24)

Given a newx∗, we utilizeM latent functions̄f for prediction. We compute the

latent valuesf∗ by integrating the likelihood with the posterior:

p(f∗|x∗, X,y, f̄ , X̄) =

∫

p(f∗|x∗, f̄ , X̄)
︸ ︷︷ ︸

A

p(f̄ |X,y, X̄)
︸ ︷︷ ︸

B

df̄ , (5.25)

whereA represents the single data likelihood by applying to the reduced set of points.

With f̄ determined, the likelihood can be treated as a bivariate normal distribution, which

follows a normal distribution:

f∗|x∗, f̄ , X̄ ∼ N (f∗|kT
x∗

K−1
M f̄ , Kx∗x∗

− kT
x∗

K−1
M kx∗

), (5.26)

wherekx∗
= K(x̄,x∗) and[KM ]ij = K(x̄i, x̄j).

Nevertheless, the problematic form of posteriorB does not follow a normal distri-

bution and has to be approximated.
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5.4.4 Laplace Approximation for the Posterior

Our method to approximateB in eq.(5.25) is based on the Laplace approximation, which

were used in [101] for binary classification. Using the Bayes’ rule,

p(f̄ |X,y, X̄) =
p(f̄ |X̄)p(y|f̄ , X, X̄)

p(y|X, X̄)

=
p(f̄ |X̄)

∫

C
︷ ︸︸ ︷

p(f |f̄ , X, X̄)p(y|f) df

p(y|X, X̄)
. (5.27)

Since the denominatorp(y|X, X̄) in eq.(5.27) is independent off , we only need to

concern the un-normalized posterior when making the inference. We notice that for part

C in the above equation,p(y|f) can be obtained from eq.(5.21) and is not Gaussian.

Taking the logarithm ofC in eq. (5.27), we have:

L(f)
△
= log p(f |f̄ , X, X̄)

︸ ︷︷ ︸

L1

+ log p(y|f)
︸ ︷︷ ︸

L2

, (5.28)

whereL1 corresponds to the complete data likelihood, which can be generated i.i.d.

given the inputs, i.e.,

p(f |f̄ , X, X̄) =

N∏

n=1

p(fn|xn, f̄ , X̄)
︸ ︷︷ ︸

eq.(5.26)

= N (f |KNMK−1
M f̄ ,Λ), (5.29)

with Λ = diag(λ), λn = Kn − kT
nK−1

M kn, [KNM ]nm = K(xn, x̄m). Combining

eq.(5.29)& (5.21), we can evaluate eq.(5.28) as follows:

L(f) =

(

−CN

2
log 2π − 1

2
log |Λ| − 1

2
(WTΛ−1W)

)

+

(

yT f −
N∑

i=1

log(
C∑

c=1

exp f c
i )

)

, (5.30)

whereW = f −KNMK−1
M f̄ . By differentiating eq.(5.30) w.r.t.f , we obtain

∇fL(f) = −Λ−1f + Λ−1KNMK−1
M f̄ + y−m, (5.31)
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wherem is a vector of the same length asy andmc
i = p(yc

i |fi). At the maximum, we

have the MAP value off :

f̂ = KNMK−1
M f̄ + Λ(y − m̂). (5.32)

Differentiating eq.(5.31) again, we obtain

∇∇fL(f) = −Λ−1 −M, M
△
= diag(m)−ΠΠT . (5.33)

According to [101],Π corresponds to a matrix of sizeCN × N , which can be ob-

tained by vertically stacking diag(mc). Using the Newton-Raphson formula, we obtain

the iterative update equation forf :

f ′ = f − (∇∇f )
−1∇f (5.34)

= (Λ−1 + M)−1(Mf + Λ−1KNMK−1
M f̄ + y −m).

Applying the Taylor Expansion, we obtain

L(f) = L(f̂)− 1

2
∇∇fL(f)(f − f̂)2. (5.35)

Thus the integral part in eq.(5.27) can be estimated analytically:

∫

(C)df =

∫

exp(L(f))df

=

∫

exp

(

L(f̂)− 1

2
∇∇fL(f)(f − f̂)2

)

df

= exp
(

L(f̂)
)∫

exp

(

−1

2
∇∇fL(f)(f − f̂)2

)

df

= exp
(

L(f̂)
)√

2π |∇∇fL(f)|−1 . (5.36)

Note that the above equation essentially forms a normal kernel for f̄ , where the only

part that contains̄f is 1
2
((f − KNMK−1

M f̄)TΛ−1(f − KNMK−1
M f̄)). Back to eq.(5.27),

asp(f̄ |X̄) follows a normal distribution according to eq.(5.24), the posterior also forms

a normal distribution. Consequently, we only need to calculate the mean and variance.
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After some matrix manipulation, we have

µp =
Q−1P

2
,Σp = Q−1,

whereQ = (KNMK−1
M )TΛ−1(KNMK−1

M ) + KM ,

P = f̂T Λ−1(KNMK−1
M ). (5.37)

In this way the Laplace approximation gives an estimated results p̃(f̄ |X,y, X̄) of the

posterior in eq.(5.27). We can thus compute the latent values of the newx∗ by plugging

the result into eq.(5.25). The estimated latent valuesp̃(f∗|·) now forms a Gaussian since

bothA andB in this equation are Gaussian. The only effect is to compute the mean and

covariance, which is given by

µ∗ ≃ µp, (5.38)

Σ∗ = KM + Σp. (5.39)

5.4.4.1 Determine the class label of test documents

The final step is to assign a class label to the observationx∗, given the predictive class

probabilities by integrating out the latent functionf∗:

p(y∗|x∗, X,y, f̄ , X̄) =

∫

p̃(f∗|x∗, X,y, f̄ , X̄)p(y∗|f∗)df∗, (5.40)

which again cannot be solved analytically. One way to approximate is to use cumulative

Gaussian likelihood. In [101], the authors estimated the mean prediction by drawing

S samples from the Gaussianp(f∗|y), softmax and averaging the results. Once the

predictive distribution of the class probability is determined, the final label ofx∗ can be

decided by choosing the maximum posterior (MAP):

t(x∗) = arg max
c

p(y(x∗)
c|·), c = 1, ..., C. (5.41)

5.4.5 Informative Points Selection

It remains to optimize the parametersΘ = {θ, X̄}, which contain the hyper-parameters

(l,Σ) for the covariance matrixK as well as finding the subset̄X of M points. Tradi-



108

tionally, they are optimized jointly by optimizing the marginal likelihood of the training

data. In our approach, we instead treat them individually.

5.4.5.1 Parameter Inference for the Covariance Matrix

The marginal likelihood ofy can be obtained by integrating outf̄ ,

p(y|X, X̄, Θ) =

∫

p(y|X, X̄, f̄)p(f̄ |X̄)df̄ =

∫

exp(L(f̄))df̄ . (5.42)

With a Taylor expansion ofL(f̄) around̂̄f we find

L(f̄) ≃ L(ˆ̄f) + (f̄ − ˆ̄f)∇f̄L(f̄)
︸ ︷︷ ︸

=0

+
1

2
(f̄ − ˆ̄f)T∇∇f̄L(f̄)(f̄ − ˆ̄f).

Therefore, the approximation of the marginal likelihood can be written as

p(y|X, X̄, Θ) =

exp(L(ˆ̄f))

∫

exp

(
1

2
(f̄ − ˆ̄f)T∇∇f̄L(f̄)(f̄ − ˆ̄f)

)

df̄ . (5.43)

The log marginal likelihood can be obtained by taking logarithm on both sizes of the

above equation,

log p(y|X, X̄, Θ) = L(ˆ̄f)− CN

2
log 2π − 1

2
log |∇∇f̄L(f̄)|, (5.44)

which can be maximized w.r.t. the parametersΘ to obtainl̂ andΣ̂. Note that eachΣc is

aD×D symmetric matrix, whereD is the number of dimensions. We assume that each

dimension is independent, thus simplifiesΣc to be a diagonal matrix. However, this

still yieldsDC parameters to estimate forΣ. Therefore, we further assume that within

each classc, the covariance of each dimension is the same, so that the total number of

parameters forΣc is reduced toC.

5.4.5.2 Prototype selection forX̄

The original gradient calculation in eq.(5.44) is very complicated. However, we can

simplify it with the assumption made on the covariance matrix. Since eachΣc is now
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independent of each other, we can estimate the locations of the active points regardless

of the choices ofl andΣ. We greedily find the locations of̄X by stochastic gradient

descent method. This is similar to finding the optimalprototypesfor each class, which

is a subset of points that contains enough information for each class. Our method for

optimal prototype search is parallel to [110], which is usedfor K-nearest neighbor clas-

sification. We select a set ofM prototypes by minimizing the misclassification rate of

the training set,

L(X, X̄) =
1

N

N∑

n=1

M∑

m=1

P (x̄m|xn)(1− I(ȳm = yn)), (5.45)

where the indicator functionI is 1 if the condition is hold and 0 otherwise.

The likelihoodP (x̄m|x) can be calculated by plugging in the normalized covariance:

P (x̄m|x) =
kx̄mx

∑M
m′=1 kx̄m′x

. (5.46)

We can further rewrite the loss function in eq.(5.45) by removing the indicator func-

tion:

L(X, X̄) =
1

N

∑

n

∑

{m:ȳm 6=yn}

P (x̄m|xn)

︸ ︷︷ ︸

lm

, (5.47)

wherelm indicates the individual cost of misclassification, which is continuous in

the interval(0, 1). Therefore, it can be minimized by gradient descent w.r.t.X̄,

x̄m(t + 1)

= x̄m(t)− α(t)∇x̄m lm(t)

= x̄m(t) + α(t)p(x̄m|x) (I(ȳm 6= yn)− lm(t))
δkx̄mx

δx̄m
.

= x̄m(t) +

{

lm(1− lm)P (x̄m|x)(x̄m − x) if ȳm 6= yn

−lm(1− lm)P (x̄m|x)(x̄m − x) otherwise

Here α(t) > 0 is a small enough number which specifies the step length of the

descent. The program stops when a stopping criterion is reached. We further notice

that only those points falling into a particular area of the input space can contribute to
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Figure 5.10. An example of prototype selection withM = 2. Left figure shows the original
distribution; right figure, contour-plots the results of descent where black dots are the starting
points.

the update of the prototypes. This fact is explained as thewindowrule in [67]. So we

can speed up the prototype updates by searching over those points only. Figure 5.10

shows an example of two prototypes. It can be seen that after three steps of descent, our

algorithm successfully finds informative points for each class.

For brevity we hyphenate our method as Sparse Gaussian process with Prototype

Selection (SGPS).

5.4.6 Discussion of the Computational Cost

The most influential part on the computational cost is the inversion of the covariance

matrixK which takesO(N3) time. In the sparse framework, however, it should be no-

ticed that only the covariance matrix for theM prototypes is required to be inverted,

which refers toKM in our case. To be exact,KM needs to be inverted when calculating

Λ in eq.(5.29),f ′ in eq.(5.35), as well asQ andP in eq.(5.37). For efficient inversion,

Cholesky decomposition is often employed [101], which ensures that forN training

points distributed inC classes, the training stage can be realized inO(M2NC) time

with M prototypes, likewiseO(M2C) per prediction. In practice, the Cholesky decom-

position is only required to be computed once for a training pass, which can then be

saved and used in other equations efficiently. So it almost costs linear time for training

a data set withN points.

As for the cost of prototype selection, since the updates re-uses covariance matrix in

eq.(5.46), no additional storage and computation are required. Therefore, eq.(5.48) can
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be efficiently updated in at mostO(NC) time.

5.4.7 Application to Multi-label Tag Suggestion

So far, we have only considered the case that the each observation is single-labeled,

i.e., belongs to only one class. In fact, many real-world problems are multi-labeled. In

the case of tagged data, each tag associated with a document may be treated as a label,

which may or may not refer to the same topic as other labels. Thus, the problem of

tag suggestion can be transformed into a multi-label classification problem where the

objective is to predict the probability of a document with all possible tags (labels) given

a fixed tag vocabulary and associated training documents.

The problem of multi-label classification (MLC) is arguablymore difficult than the

traditional single-label classification task, since the number of combinations for two

or more classes is exponential to the total number of classes. For N classes, the total

number of possible multi-labeled class is2N , making it unfeasible to expand from an

algorithm for single-label problems. Much research has been devoted to increasing the

performance of MLC and generalize the framework to single-label classification; see

related work for more information[129].

As pointed out in [16], multi-label classification can be treated as a special case of

label ranking, which can be realized if the classifiers provide real-valued confidence

scores or a posterior probability estimates for classification outcomes. Thus, the multi-

class SGPS model readily maps to this problem, since the output vectory∗ contains real-

valued scores of the posterior class probabilities. Specifically, in the multi-label case, we

assume that the class label of a training instancexi is no longer a binary value, but rather

d1 d2 d3 d4

xbox fun game cat puppy

documents

tags

category xbox game fun puppy

Figure 5.11. Example of document-tag graph. Each document is associatedwith multiple tags.
Tag with the highest frequency is treated as the category of that document (shown in bold line).
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Algorithm 9 Multi-label Multi-class Sparse GP Classification (MMSG) for Tag Rec-
ommendation
1: Input: training dataD : {(xi,yi)}N1 ,xi ∈ R

d,yi = {yi1, ..., yiK̃}
2: M : number of prototypes
3: k: covariance function
4: begin training procedure
5: for i = 1 : N
6: ci = max(s(yi)) //decide the category ofxi

7: end for
8: Train a GP classifier given{(xi, ci)

N
1 ,M,k}

9: Output : X̄, f̄
10: begin test procedure
11: Input: a test objectx∗

12: Decide its category probabilitiesc∗ givenX̄, f̄ (eq.(5.40))
13: for each categorym ∈ {1, ..., C}
14: for each labely(c)

ij ∈ {y
(c)
i1 , ..., y

(c)

iK̃
}

15: P (y
(c)
ij |x∗) = Rank

(c)
yij · cm(x∗)

16: end for
17: end for
18: Output : P (y∗,x∗)

a vectoryi of binary values where eachyij denotes the existence/absence ofxi in classj.

We further assume that these class probabilities can be ranked according to their values,

wheres(yim) > s(yin) indicates thatyim is preferred toyin. In the context of tags, the

value of a tag is defined as the number of times it has been used to annotate the specific

object. So if a documentd1 (cf Figure 5.11) is tagged 4 times withgame, 3 times with

funand 5 times withxbox, we can rearrange the labels in the descending order, yielding,

{ xbox(5), game(4), fun(3) }. Note that normalization is usually required to ensure

the well-defined class probability, thus the class probabilities of the above case become

{0.42, 0.33, 0.25}. Figure 5.11 shows an example of 4 documents and 5 tags with their

categories in bold lines.

In this way we can transform multi-class multi-label classification intomulti-category

single-labelclassification. Specifically, we first assign eachxi into a singlecategoryc

which corresponds to its top-ranked label (e.g., in the above case, the category isxbox).

Each category contains a set of labels that belong to the objects in that category. In-

tuitively, tags that belong to the same category are more semantically related than tags

in different categories, i.e., tags in the same category have a higher co-occurrence rate.

However, it should be noted that an individual tag could belong to multiple categories,
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e.g., in Figure 5.11,fun appears in two categories. The above two phenomenon can be

roughly explained by the behavior ofpolysemyandsynonymyin linguistics. Table 5.1

shows three ambiguous tags and their corresponding categories in one of our experi-

ments.

tags categories

apple
macapplecomputers osx technology IT
food healthapplenutrition fruit green

tiger
photos nature animaltiger cute animals

sports videotiger woods golf games

opera
music artopera culture design download
software browseropera web tools internet

Table 5.1.Example of ambiguous tags from del.icio.us.

Given a training set{(xi,yi)}N1 , the within-category scores of all possible labels are

defined as

Rank(c)
yi′

=
1

Z(c)

∑

i:xi∈c

∑

j

s(yij)I(yij = yi′), yi′ = {yi1, ..., yiK̃} (5.48)

whereZ(c) is a normalization factor for categoryc. We summarize this approach

in Algorithm 9, K̃ refers to the total number of possible labels. During the training

phase, we train an SGPS model forC categories, as well as calculating the within-

category scores for all labels. In the test phase, we use the model first to determine

the probabilistic distribution of the categories given a new test case. Then combine this

evidence with the within-category scores of tags in a multiplicative fashion to obtain the

final label distribution. The labels are sorted in descending order based on the estimated

likelihoods, the top-ranked tags are used for recommendation. Figure 5.12 illustrates

the process.

5.5 Experiments

To assess the performance of the two proposed frameworks, weempirically analyze

them using real-world data sets in this section. We will focus on the quality of the



114

........................

d1

d2

dN

SGPS train

.......

d1

d2

dN

t1

t2

tm

...t11 t1m

...

...

t21 t2m

tc1 tcm

.......................

category 1

category C

d∗

SGPS test

{P (c = 1|d∗), ..., P (c = C|d∗)}
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...t∗1 t∗m{ }
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suggested tags

training

trained

model

docs

Figure 5.12. The training and test processes of MMSG. Eachdi is a document and eachti is a
tag.

tagging results as well as the efficiency of the tagging algorithms5.

5.5.1 Evaluation Metrics

In addition to the standard precision, recall, F-score and Kendall τ rank correlation

metric [64] that measures the degree of correspondence between two ranked lists, we

also propose the following metrics to measure the effectiveness of tagging performance.

• Top-k accuracy:Percentage of documents correctly annotated byat leastone of

the topkth returned tags.

• Exact-k accuracy:Percentage of documents correctly annotated by thekth rec-

ommended tag.

• Tag-recall: Percentage of correctly recommended tags among all tags annotated

by the users.

• Tag-precision:Percentage of correctly recommended tags among all tags recom-

mended by the algorithm.

5Other experimental results such as the performance of the sparse Gaussian processes model and the
multi-class multi-label algorithm on bench-mark data setsare available in [117].
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5.5.2 Data Sets

For evaluation, we made an effort to acquire three data sets from several most popular

tagging websites.

CiteULikeis a website for researchers to share scientific references by allowing users

to specific their personal tags to the papers. We acquired thetagged data set from CiteU-

Like for over two years from November 15, 2004 to February 13,2007. We mapped the

data set to papers that are indexed in CiteSeer6 to extract the metadata. Each entry of the

CiteULike record contains four fields: user name, tag, key (the paper ID in CiteSeer),

and creation date. Overall, there are 32,242 entries, with 9,623 distinct papers and 6,527

distinct tags (tag vocabulary). The average number of tags per paper was 3.35.

Del.icio.usis one of the largest web2.0 web sites that provides servicesfor users to

share personal bookmarks of web pages. We subscribed to 20 popular tags in del.icio.us,

each of which is treated as a topic. For these topics, we retrieved 22,656 URLs from

March 3rd, 2007 to April 25, 2007. For each URL, we crawled del.icio.us to obtain the

most popular tags with their frequencies. We also harvestedthe HTML content of each

URL. We ended up with 215,088 tags, of which 28,457 are distinct (tag vocabulary),

averaging 9.5 tags per URL. The total size of the data set is slightly over 2GB.

BibSonomyis a newly developed web 2.0 site which provides the sharing of social

bookmarks for both web pages and scientific publications. Wecollected data from Bib-

Sonomy between Oct 15 2007 and Jan 10 2008. We randomly sampled 50 tags from the

tag lists. For each tag, we retrieved the content of bookmarks with related tags. Over-

all, the BibSonomy data set contains 14,200 unique items with 37,605 words. The total

number of tags is 6,321.

Table 5.2 shows top 10 tags for all three data sets7. For preprocessing, we considered

the temporal characteristics of tags and ordered the data bytime and used the earlier data

for training and tested on later data. We performed experiments with training data from

10% to 90%.
6http://citeseer.ist.psu.edu/
7All data sets are available upon request.
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CiteULike del.icio.us BibSonomy
Tag Name Frequency Tag Name Frequency Tag Name Frequency
clustering 245 internet 1743 tools 2459

p2p 220 technology 1543 computing 2294
logic 185 java 1522 software 1974

network 175 software 1473 blog 1717
learning 175 web 1429 internet 1647
haskell 166 photography 1375 web 1631

web 162 news 1328 analysis 1562
distributed 151 music 1291 data 1248
algorithm 142 business 1115 search 1196
algorithms 140 travel 1092 design 1117

Table 5.2. Top 10 most popular tags in CiteULike, del.icio.us and BibSonomy with respective
frequencies.

5.5.3 Comparison to Other Methods

We compare the performance of tag recommendation of our algorithm with three other

approaches.

The first unsupervised learning method we consider is the classic collaborative fil-

tering algorithm [15]. The Vector Similarity (VS) approachis used to calculate the

similarity between documents, which computes the cosine similarity between a query

Q and each training documentDi, Sim(Q, Di) =
P

i n(Q,j)n(i,j)√
P

j n(Q,j)2
√

P

i n(i,j)2
, wheren(i, j)

represents the count ofj’s word in documenti. The topt tags froms most similar docu-

ments are then considered. In our experiment, we set botht ands to be 3, resulting in 9

recommendations for each query document. To improve performance, we augment the

vector similarity approach by applying information-gain [72] (VS+IG) to select roughly

5% of the total features.

The second method we compare to is the famous topic model by Blei [12], namely

Latent Dirichlet Allocation (LDA). For tag recommendation, we first trained an-topic

LDA model [12], wheren is decided by the number of tag categories. The posterior

probability ofP (topic|doc) is then used to determine the similarity between a test docu-

ment and the training ones. Tags are therefore suggested to the new document from the

most similar training documents.

The last method we consider here is a variant of the supervised learning method
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Support Vector Machine (SVM). We choose SVM for comparison because it has been

shown that SVM usually outperforms other classifiers for text classification [27]. We

first use SVMstruct to train a multi-label SVM model for the training documents8, and

then use the same ranking function as in eq.(5.48) to return top ranked tags for recom-

mendation.

5.5.4 Quality of the Tagging Performance

Table 5.7 lists the top user tags for each of the top 8 papers, as well as the top tags

recommended by our algorithm. The bold fonts indicate an overlap. Generally, at least

one correct recommendation is made for each paper, and the first tag recommended

always matches one of the user tags. In addition, although some recommended tags do

not match the user tags literally, most of them are semantically relevant. e.g., “www”

is relevant to “web”; “communities” is often consisted in “social networks”; “page”

and “rank” together have the same meaning as “pagerank”. In the best scenario, 7 of 9

recommended tags match with the user tags for the paper “A Tutorial on Learning With

Bayesian Networks”, which has a Kendallτ rank of 0.78.
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Figure 5.13.Average tagging time on the CiteULike data set. Our models require the least time
for making recommendations.

We present a summary of the experimental results in Table 5.6. Overall, our models

PMM and MMSG exhibit better performance for all three data sets. On average, PMM

8http://www.cs.cornell.edu/People/tj/svmlight/svm struct.html
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Algorithm Precision Recall F-Score Kendallτ rank
CiteULike
VS+IG 25.88% 36.57% 30.18% 0.13
LDA 29.15% 43.33% 36.71% 0.19
SVMstruct 33.21% 50.17% 43.25% 0.29
PMM 39.17% 56.35% 49.96% 0.37
MMSG 40.27% 59.11% 51.08% 0.41
delicious
VS+IG 27.66% 39.05% 32.16% 0.09
LDA 32.71% 48.33% 42.95% 0.18
SVMstruct 40.21% 61.44% 50.63% 0.25
PMM 43.52% 62.31% 52.77% 0.37
MMSG 47.38% 66.16% 54.23% 0.44
BibSonomy
VS+IG 25.11% 40.05% 36.90% 0.13
LDA 31.75% 49.68% 42.17% 0.28
SVMstruct 33.45% 52.93% 45.56% 0.33
PMM 35.21% 55.72% 47.23% 0.37
MMSG 39.45% 57.01% 52.32% 0.39

Table 5.3.Tagging performance.

and MMSG performs 3.2 times better than VS+IG, 2.1 times better than LDA, and 1.3

times better than SVM. Note that for MMSG, the performance isefficiently achieved by

using only5% of the training instances.

In addition, we also examined the performance of individualtags by looking at the

top 10 suggested tags. We are interested in the difference inperformance between pop-

ular tags (e.g., web, network, clustering) and rare tags (e.g., asp.net, latex, 3d). For each

data set, we chose the top-5 most/least popular tags and averaged the suggesting results.

Figure 5.16 depicts the results. It can be observed that MMSGand PMM outperform

SVM and others in most cases. We notice that while SVM is comparable to MMSG

and PMM for popular tags, our algorithm shows a clear edge over SVM for rare tags,

with more than 18% and 15% improvement respectively. Since rare tags appear in fewer

documents, this result gives credibility to the claim that MMSG works well with very

few training instances.
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5.5.4.1 Model Selection for Tag Suggestion

Next we quantitatively show how the model selection reflectsthe performance of tag

suggestion. In the graph-based method, parameters includenumber of topic clusters

K, number of mixture model componentsM and number of word clustersL. In our

experimental setting, we select these parameters by performing cross validation on the

training set.

In the prototype-based framework, model selection involves the decision of (1) the

number of prototypes, (2) the covariance function and (3) the hyper-parameters. Since

the hyper-parameters are often associated with the covariance function and can be cho-

sen by optimizing the marginal likelihood of the training data, we then focus on how (1)

and (2) affect the performance. A common covariance function used for classification

is the squared exponential function (SE) in eq.(5.19). An alternative function takes the

form of neural network (NN):

K(x,x′) =
2

π
sin−1

(

2x̃T Σx̃′

√

(1 + 2x̃T Σx̃)(1 + 2x̃′T Σx̃′)

)

, (5.49)

with x̃ being the augmented vector of the inputx.

For brevity, we only use the Del.icio.us data set to illustrate the results of model

selection. We compare our results with SVM which uses the same two covariance func-

tions. Figure 5.14 demonstrates the results on the three methods. We set the number of

prototypesM to be5%, 10%, 20% and50% respectively. It can be observed that MMSG

generally outperforms SVM by roughly 10% at each point. With the number of proto-

types increases, the precision also soars up from 50% to 62% for MMSG. Meanwhile,

by using neural network as the covariance function, both SVMand MMSG gain about

2% precision at each point. It can also be observed that by usingthe optimal subset se-

lection, the PMM method (denoted as PMM-OPT) performs almost as good as MMSG

with SE kernel. Overall, MMSG-NN shows the best performance.

5.5.4.2 Optimal Prototype Selection for Tag Suggestion

To justify the use of the prototype selection (PS) algorithmfor the prototype-based

method, we compare with the criteria used in [109] which efficiently includes points

into the active set based on information gain (IG). We also include a random selection
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Figure 5.14. Comparison of tagging performance of SVM, PMM and MMSG. Two covariance
functions used: SE = squared exponential, NN = neural network.
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Figure 5.15.Tagging performance of three selection algorithms and PMM-OPT. RND = random
selection, IG = information gain, PS = prototype selection.

(RS) method as the baseline. Figure 5.15 presents the results on del.icio.us. Gener-

ally, prototype selection shows better precision than IG inall four cases. To be specific,

prototype selection gains more than 10% performance improvement comparing with

information gain whenM = 50%.
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5.5.5 Discussion of the Quality of Recommendation

It has been observed in our experiment that most algorithms performed better in the Ci-

teULike data set than the Del.icio.us data set, while the performance of the BibSonomy

data is sort of in between. Remember that the CiteULike data contains mostly scientific

documents, Del.icio.us has mostly web URLs with unstructured contents, while Bib-

Sonomy has both documents and web pages. We thus give two explanations for the

degraded performance on the web page tag recommendation task. First, we notice that

our algorithm usually fails when the content of a specific URLcontains little of the nec-

essary information, i.e., words in our case. As an example, for the topics “photography”

and “travel”, many pages only contain images and short descriptions, making it hard for

our model to determine the proper components for a test sample.

Second, unlike structured scientific documents with controlled vocabularies, the het-

erogeneous nature of web pages not only results in varied length (word count) of the html

pages, but also the distribution of the tag vocabulary. In fact, for PMM, thetag/docratio

for the CiteULike data is 0.68 (6,527 unique tags vs. 9,623 papers), compared with 1.26

(28,457 unique tags vs. 22,656 URLs) for del.icio.us. A previous study [45] has shown

that the tag vocabulary usually does not converge for a specific user, reflecting a con-

tinual growth of interests. Thus, we believe that a large tagvocabulary could possibly

compromise the recommendation performance for unstructured web pages. On average,

2.91 correct tags are recommended for each test sample.

5.5.6 Efficiency of Tag Recommendation Methods

To show that our model is capable of making real-time taggingfor large volumes of

documents, we evaluate our model in terms of the average tagging time for query docu-

ments. Different proportions of training documents (from 10% to 90%) are tested.

Figure 5.13 and Table 5.4 present the performance of CiteULike and del.icio.us data

respectively9. Our approaches exhibit stable performance on both data sets with very

small variance. On average, only 1.08 seconds is needed by MMSG for each test doc-

ument on CiteULike and 1.23 seconds for del.icio.us. While PMM shows a slightly

slower prediction speed, the time still scales linear to thenumber of training data. On

the other hand, the average tagging time for SimFusion and VS+IG is 6.4 and 16 seconds

9The experiment was performed on a 3.0GHZ sever
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respectively, expected to grow exponentially with the increase of the features.

% Train MMSG PMM SVM struct LDA VS+IG
10 0.35± 0.2 0.64± 0.4 2.5± 1.7 1.7± 0.5 17.3± 10.8
20 0.38± 0.2 0.69± 0.5 2.7± 1.6 1.9± 0.5 25.8± 10.9
30 0.43± 0.2 0.72± 0.5 2.9± 1.8 2.2± 0.6 33.3± 12.7
40 0.47± 0.3 0.77± 0.5 3.3± 1.9 2.5± 0.7 46.8± 12.9
50 0.53± 0.3 0.79± 0.6 3.3± 2.0 2.6± 0.7 53.2± 13.1
60 0.56± 0.3 0.83± 0.6 3.8± 2.5 2.9± 1.1 59.0± 14.1
70 0.60± 0.4 0.88± 0.8 4.1± 2.4 3.2± 1.2 86.8± 14.6
80 0.62± 0.6 0.93± 0.7 4.4± 2.6 3.6± 1.4 106.2± 19.8
90 0.65± 0.6 0.94± 0.8 4.8± 2.8 3.7± 1.5 117.2± 25.9

Average 0.51±0.34 0.80±0.60 3.53±2.15 2.70±0.91 60.62±14.98

Table 5.4.Average tagging time (seconds) for the three data sets.

5.6 Tag Recommendation for Rich Media Data

The amount of digital interactive media has been growing at aphenomenal rate since the

emergence of the Web 2.0. Web sites that populate rich media such like Flickr10 (image)

and Youtube11 (video) have attracted a significant amount of Internet traffic, as well as

millions of Internet users. These web sites also allow usersto specify keywords or tags

for resources which are of interest.

However, making tag suggestions to rich media data is not as straightforward as sug-

gesting tags for a collection of text data [49](e.g., del.icio.us12). The reason is multifold.

Tags are usually in the format of text while the content of theobjects is not. Therefore,

domain knowledge is often required for content-based object retrieval, which is not uni-

versally applicable for applications across domains. In addition, scalability needs to

be addressed when making tag suggestion, since storing/retrieval rich media data is not

cheap due to the size of the object (usually much larger than text data). In [80], the au-

thors proposed a real-time annotation method for images. A generative model is trained

by exploiting statistical relationships between words andimages. The model is capable

of annotating an individual image in approximately 2 seconds.

10http://www.flickr.com/
11http://youtube.com/
12http://del.icio.us/
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Nevertheless, the state-of-the-art for the training time for digital data leaves much to

be desired. In [80], the reported training time is roughly 16.6 hours for 599 categories

(classes), each of which contains 80 training images. The cost to re-train the model for

other data sets or domains is obviously substantial.

Therefore, we propose a universal framework for tag rich media data by using our

MMSG tagging algorithms. To be exact, we leverage the side (textual) information of

the data as features for training MMSG. We claim that our tagging approach is especially

suitable for large-scale digital data in the sense that:

• Our tagging algorithm only leverages the side information,meaning that only

textual information needs to be stored and retrieved, whichis usually cheaper

to store/retrieve than the digital data itself. Furthermore, the sparse framework

only requires a small portion of the training data maintained in main memory for

predicting new instances. Thus, the program could be easilyfit into real-world

systems and necessitates no out-of-core treatment. As new labeled instances be-

coming available, real-time updates or online learning should be possible as well.

• In general, tag suggestion is still a complex problem, whichcan be addressed in

many aspects. It should be noticed that our approach does notrely on the actual

content of the data, and thus could be considered as a potential complement of the

content-based method. In practice, our approach can serve as a component of a

large commercial system and boost performance.

5.6.1 Flickr and Youtube Data

Side information for an object
Flickr title, description, usercomments, category, additionalinformation

Youtube title, description, comments, category, nameof relatedvideos,
videosfrom sameperson

Table 5.5.Side information for training the model.

We consider an application of our MMSG algorithm on tag suggestion for real-world

rich media data. For this purpose, we collected data from Flickr and Youtube between

Sep 15 2007 and Oct 21 2007, using their image and video data respectively. We sub-

scribed to their RSS feeds of the top 30 most popular tags fromboth sites, including
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art, birthday, movie, people, traveland so on. An individual feed contains the basic

information of the data such liketitle, category, url, description, tagsand etc. We then

re-crawled each individual URL in the feeds to get the neededside information. Typical

side information of an image/video used in the experiment can be found in Table 5.5. We

further eliminate instances that contain too little side information from our experiment.

Stemming and stop-words removal were performed to reduce the dimensionality. Over-

all, the Flickr data contains 22,186 unique items with 68,215 words, whereas Youtube

has 2,489 items with 9,761 words. The total number unique tags is 10,341 and 6,724 for

Flickr and Youtube respectively.

Algorithm Precision Recall F-Score
Flickr
SimFusion 31.6% 56.2% 43.1%
MMSG 43.6% 68.4% 57.2%
Youtube
SimFusion 27.8% 48.0% 36.4%
MMSG 38.2% 54.9% 49.4%
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(a) Flickr data (b) Youtube data

Table 5.6. Results on Flickr and Youtube data. The accuracy corresponds to the percentage of
objects correctly tagged by theith tag.

For training, the data is organized into 30 classes using their top-ranked tags. Note

that due to the temporal characteristics of tags, we think itis more reasonable to order

the data chronically. As such we use the first half for training, and the second half for

testing. Overall, the training time is 98 minutes for Flickrand 24 minutes for Youtube.

During testing, the top-ranked tags are returned for evaluation against the ground-truth
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tags from users. Unfortunately, the previously used LIBSVMcannot handle this prob-

lem. Instead, we compared with a recently developed method SimFusion [142] which

outperforms other ranking algorithms in several data sets.In additional to the standard

metricsprecision, recallandF-score, we present the performance for the top-10 sug-

gested tags as suggested in [80].

Figure 5.17 lists several examples with good tagging results. We also present a

summary of the experimental results in Table 5.6. Overall, our model is able to boost

the tagging performance significantly by comparing with SimFusion. This is efficiently

achieved by using only5% of the training instances. For individual tags, the top-most

suggested tag for Flickr is able to achieve a 56.2% accuracy, compared with a 32.3%

accuracy for SimFusion. Likewise, the top-most tags have 48.2% accuracy for Youtube,

whereas the value is 27.9% for SimFusion. However, it costs less than one second for our

algorithm to make a prediction per case, where SimFusion takes more than 4 seconds.

5.6.2 Limitations of Our Approach

Since our algorithm for tag suggestion only leverages side (textual) information, the

limitation is evident. For an image/video without any supporting textual information,

our algorithm performs no better than a random guess. However, since textual infor-

mation is usually cheap and abundant, our algorithm can serve as a good complement

for the content-based approach, or an individual componentfor large-scale commercial

systems. In fact, many online image search systems still rely on the surrounding textual

information of the objects, including Google Image Search13.

13http://images.google.com/
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Figure 5.16. Tag suggestion results on popular and rare tags for CiteULike, Delicious and
BibSonomy.
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Paper Name Tags Top User Tags Our Matched Tags

The PageRank Citation google, pagerank, search, PMM: search, web,
Ranking: Bringing Order to 135 ranking, web, pagerank, ir
the Web (Larry Page et al.) networks, ir MMSG:google, ir

social-networks pagerank, ranking
web,

The Anatomy of a Large-Scale google, search, pagerank, PMM: search, web,
Hypertextual Web Search 94 web, engine, www, www,engine, ir
Engine (Sergey Brin et al.) web-search, ir, graphs MMSG:google, www

ir , web
ReferralWeb: Combining Social folksonomy, collaboration, PMM: networks,
Networks and Collaborative 88 social-networks, networks, filtering ,
Filtering (Henry Kautz et al.) filtering, recommender, tagging, social

tagging, social, MMSG:networks,
network social, recommender,

tagging,
A Tutorial on Learning With bayesian, networks, learning, PMM: bayesian,
Bayesian Networks 78 network, statistics, bayes, network, bayes,
(David Heckerman) modeling, graphs, algorithms modeling, graphical

tutorial, MMSG:network,
bayes, networks,
algorithms,

Maximizing the Spread of social, influence, network, PMM: network, social,
Influence through a Social 73 socialnetworks, diffusion, socialnetworks,
Network (David Kempe et al.) research, spread, networking MMSG:network

social,research,
Authoritative Sources in a ranking, hyperlink, web, PMM: web, search,
Hyperlinked Environment 47 www, ir, graphs, clustering, hyperlink ,
(Jon M. Kleinberg) hub, authority, hyperlinks MMSG: ir , web, www,

search ranking , search
Indexing by Latent Semantic lsi, indexing, ir, lsa, semantics,PMM: index,
Analysis 45 semantic, information-retrieval,MMSG: ir , indexing,
(Scott Deerwester et. al.) latent, language, index index
The Small-World Phenomenon: small-world, networks, PMM: networks, web,
An Algorithmic Perspective 43 web, social, webgraph, algorithm , graphs,
(Jon M. Kleinberg) ir, algorithm, graphs, graph ir ,network,

power-law, network MMSG:network, ir ,
web, algorithm ,
social, graph

Table 5.7. Top 8 most popular papers from CiteULike data. The top 9 recommended tags are
listed as “Our Tags”. Tags with bold font match one of the user-annotated tags.
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japan tokyo wood forrest birthday birthdaycakecakes flowertulip tulips red
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japan architecture tokyo scenebirthday cakes peopledinner flower flowers colors color
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newyork skycrapersusa sky dana wedding brideportrait fun cat lazy townsummer
americablue buildings glass roads ladywomanbeautiful kitty gattohot 2005
newyork usa bluewhite portrait woman people photosummer hot cat fun
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pictures scotland tour building coupe ford fun movie fun cartoon fight pet

Figure 5.17. Examples of good tag suggestions. The first row is the object (image/video).
The second row corresponds to the user tags. The third row is the recommended tags by our
algorithm.



Chapter 6
Topic Discovery: Dynamic Topic

Correlation Detection

Topic models have been powerful tools for statistical analysis of text documents [31, 54,

12]. As an example, the latent Dirichlet allocation (LDA) model [12] assumes that doc-

uments are mixtures of topics, and topics are probability distribution of words, where

topics are shared by all documents. The LDA model further assumes theexchangeabil-

ity of words, i.e., words from each document are drawn independently from a mixture

of multinomials. The model uses a Dirichlet prior to draw thetopic proportions, so that

each document may exhibit different topic distributions. LDA is capable of modeling

the semantic relations between words and topics, and using multiple topics to describe

document collections. Essentially, LDA, as well as other topic models, can be treated

as statistical dimension reduction techniques that reducethe original word representa-

tion of documents into topic representation, which is usually of much lower dimension.

Successful applications of topic models include discovering author-topic relations in

scientific papers [122], disambiguating author names in large collections of documents

[115], as well as extensions to image analysis [112].

Since most topic models aregenerative models, scalability is always an issue. With

a large number of model parameters, the time for the models toconverge is prohibitively

long. As one example, we applied LDA to over 700,000 full-text scientific documents.

The program took more than one week to finish for a 200-component model. Addition-

ally, these models inevitably suffer from the problem of overfitting. As stated in [88],

the variational inference for parameter estimation in LDA is problematic, which failed
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to achieve accurate inference for large data sets.

Moreover, since the LDA model treats words exchangeably, itis not suitable to cap-

ture the evolution of documents over time. LDA is also unableto model the topic cor-

relations since it assumes topics are drawn from unique priors. These two issues have

been addressed by two extensions of LDA, the dynamic topic models [11] and the corre-

lated topic models (CTM) [10], respectively. Nevertheless, neither of these two models

is immune to the aforementioned issues.

In this thesis, we present thedynamic correlated topic models(DCTM) for analyzing

document topics over time. Our model is inspired by the hierarchical Gaussian process

latent variable model (HGP-LVM) [76] which has been used forhuman motion capture.

Similar to HGP-LVM, DCTM maps the high-dimensional observed space (words) into

low-dimensional latent space (topics), which models the dynamic topic evolution within

a corpus. A document corpus considered here is either a conference proceedings or a

collection of journal articles. Furthermore, the topic latent space is mapped into a lower-

dimensional space which captures the correlations betweendocument corpora. The dy-

namics of the topics and correlations are captured by a temporal prior, which constructs

a hierarchy over the correlation latent space. Unlike generative models, DCTM makes

no assumption on word exchangebility. All variables (words, topics and correlations)

exhibit dynamics at different time point. Meanwhile, by marginalizing out the mapping

parameters rather than the latent variables, DCTM becomes anon-parametricmodel,

which shows a much faster model convergency rate than the generative processes. The

posterior inference of topic and correlation distributions in DCTM is helpful for dis-

covering the dynamic changes of topic-specific word probabilities, and predicting the

evolutions of topics and correlations. The reduced topic space is also helpful for im-

proving the performance of document classification.

6.1 Related Work

(Topic Models)The first well-known topic model was introduced by Deerwester in 1990

[31], theLatent Semantic Analysis(LSA). LSA maps high-dimensional data to a lower

dimensional representation in alatent semantic spacethat reflects semantic relations

between words. The model makes an assumption thatK underlying latent topics exist

for a specific data set, where the documents can be generated according to these topics
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based on probability distributions. Those latent topics are assumed to be approximately

the same as document categories, resulting in a significant compression of data in large

collections.

Hofmann [54] later presented an alternative to LSA from a statistical perspective,

namely Probabilistic Latent Semantic Analysis (PLSA). Themodel is capable of dis-

covering latent variables with a more solid statistical foundation. PLSA is described as

anaspect modelwhich can be viewed as a statistical mixture model for documents and

words, assuming the existence of hidden factors underlyingthe co-occurrences among

two sets of objects. Specifically, a single word is generatedfrom a single topic while dif-

ferent words may belong to different topics within a document. It is evident that PLSA

has a number of parameters that grow linearly with the size ofthe corpus, resulting a

potential for overfitting.

Another generative topic model was introduced by Blei et al.as a Bayesian hierar-

chical model, which is well-known as theLatent Dirichlet Allocation(LDA) [12]. In

LDA, each document has its own topic distribution, drawn from a conjugate Dirichlet

prior that remains the same for all documents in a collection. The words within that doc-

ument are then generated by choosing a topic from this distribution. A word is picked

from that topic according to the posterior probability of the topic, which is determined

by another Dirichlet prior. Inference of parameters and model learning are performed

efficiently via variational EM algorithm, since exact inference is intractable in LDA due

to the coupling of parameters. Experimental results indicate that LDA has better gener-

alization performance than PLSA. However, as pointed out byMinka [88], variational

inference can lead to serious bias and inaccurate learning especially when the data set is

large. Thus, Expectation-Propagation was proposed for better inference and learning.

(Correlated Topic Models) An evident limitation of the LDA model attributes to

the fact that the topics generated by the multinomial distribution are mutually exclusive.

This assumption can be seriously violated in practice. To address this issue, Blei pro-

posed a correlated topic model (CTM) [10], in which the topicproportions are correlated

through logistic normal distribution. Mean-field variational methods were employed for

parameter estimation. The model was empirically studied by16,351Sciencedocuments

over 10 years. A 100-topic CTM shows superior over the traditional LDA model in

terms of the complete data likelihood and the predictive perplexity.

(Dynamic Topic Models) For modeling topic trends over time, Blei developed a
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time series model, or the dynamic topic models [11], to capture the time evolution of

topics in document collections. Rather than using a Dirichlet prior, the dynamic topic

model uses a more reasonable Gaussian prior for the topic parametersβ, which can cap-

ture the evolutions of the topics over the time slices. The topic proportions are drawn

from a logistic normal distributionα whose mean values also follow a Gaussian distri-

bution. Two approximate inference methods are developed, namely variational Kalman

filtering and wavelet regression. Experiments were performed on a large collection of

30,000Sciencedocuments, ranging from 1881 to 1999.

6.2 Gaussian Processes

A Gaussian process (GP) is astochasticprocess that consists of a collection of random

variablesX, which forms a multivariate Gaussian distribution specified by a mean func-

tion µ(X) and covariance functionk(X,X′). GP models have been used as powerful

non-parametric tools for approximate Bayesian learning, with two successful applica-

tions onregressionandclassification[101]. In regression, the objective is to determine

the value ofY∗ for a new observationX∗. The GP prior is placed overy(X) of a train-

ing set. One first determine the predictive distributionp(Y∗|Y), whereY|Xtrain ∼
N (0,K), with K denoting the multivariate covariance matrix. The value ofY∗ is then

inferred by using Gaussian prediction methods. Figure 6.1 illustrates an 2-D exam-

ple of GP. With the uncertainty addressed, GP has shown better performance than other

learning methods in the context of classification, including the Support Vector Machines

(SVMs) and K-NN [101, 65, 44].

6.2.1 Gaussian Process Latent Variable Models

In Gaussian process latent variable models (GP-LVM), givena set ofn observationsY ∈
Rn×d, it seeks a probabilistic approach to non-linear dimensionreduction by introducing

the latent variablesX ∈ Rn×q, whereq ≪ d, via a parameterized function

Yij = f(Xi;W) + ǫi, (6.1)

whereYij corresponds to the entry from theith row andjth column of the matrixY, Xi

is theith row of X with the noiseǫi, andW is the matrix of parameters to be estimated.
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Figure 6.1. An example of two-dimensional input GP framework with an independent noise-free
covariance function of each input. For the output latent function f , both dimensions are equally
important.

Traditional non-linear probabilistic approach seeks to maximize the likelihood of the

model w.r.t. W by placing prior distributionp(X) over the latent variablesX [127].

Nevertheless, from the Bayesian perspective of view, the parametersW are trivial and

should be marginalized out. Therefore, in GP-LVM, a Gaussian prior is placed on the

parameters, i.e.,p(W) =
∏

ij p(wij) =
∏

ij N(wij |0, 1). The marginal likelihood can

then be optimized w.r.t. the latent variables (f being the latent functions)

p(Y|X) =

∫

p(Y|f)p(f |X)df . (6.2)

It has been shown [75] that this model leads to principal component analysis (PCA)

given alinear covariance function, or a probabilistic non-linear latentvariable model

given anon-linearcovariance function. Consequently, the optimized latent variablesX

are capable of reducing the original data into a much lower representation.

6.3 Dynamic Correlated Topic Models

Assume that a set ofn document corpora is given, i.e.,D = {D1, ...Dn}, in which each

corpusDi contains documents divided into several sets by their timestamps, e.g., the

year of publication for scientific documents. We assume thatall corpora in our setting

share the same timescale, denoted as[1, ..., T ], so that eachDi = {Di,1, ...Di,T}, where

Di,t denotes the set of documents appeared in corpusDi at timet. We further assume
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Notations Explanations
D a set of document corpora
Di a document corpus inD
Di,t documents appeared in corpusDi at timet

D
j,k
i,t original count of wordk in document corpusi

at timet of thej’s document
T number of time points
Y vector representation ofD
Yi,t word vectors for document corpusi at timet
Yk

i,t normalized count of wordk in document corpus
i at timet

X topic vectors
X̃ normalized topic vectors
C correlation matrix
K covariance matrix
{Θ, Φ, Ψ} parameters for the covariance matrices
Ni,t number of documents inDi during timet
n number of document corpora
d number of words (vocabulary)

Table 6.1.Notations used in this chapter.

that a controlled vocabulary with sized is shared across allDi over time, so that each

Di,t can be represented into a matrix,Di,t ∈ RNi,t×d, with Ni,t denoting the number

of document inDi at timet. Note that the value ofNi,t may vary for differenti andt.

Table 6.1 summarizes the notations used in this paper.

As in most topic models, we also assume that a set ofq underlying latent topics exist

for eachDi, where the number of topics remain the same over time. In order to model

the correlations of those topics over time, we need to first discover the latent topics at

time t for each corpusDi, and specify a proper function for calculating the correlations

between topics and corpora. Furthermore, we wish to capturethe dynamics of the latent

spaces. In what follows, we extend the hierarchical Gaussian process latent variable

model (HGP-LVM) [76] for dynamic topic correlation detection.

We first represent eachDi,t into a vector formYi,t ∈ Rd by aggregating the corre-
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(a) The DCTM model. (b) An example of two corpora over two timeframes.

Figure 6.2. Graphical representation of the DCTM model. Shaded nodes represent observed
values. Although looks alike, DCTM differs from generativeaspect models (e.g., LDA) funda-
mentally.

sponding features in all instances

Y k
i,t =

∑Ni,t

j=1(D
j,k
i,t −D

:,k
i,t )

var(D:,k
i,t )

, for k = 1, ..., d, (6.3)

whereY k
i,t is the summarized value of featurek in Di,t, Dj,k

i,t is the number of times

featurek occurred in thej’s document ofDi,t, D
:,k
i,t denotes the mean value of featurek

and the denominator computes the variance of featurek. In this way we summarize the

contributions of individual documents at a certain time andleave only the relationship

between words and time.

In the context of textual documents, eachYi = {Yi,1, ...,Yi,T} has the dimension-

ality of T × d, with eachY k
i,t corresponding to the latent position of wordk at timet

in Di, i.e., the position thatk appears most probably according to the maximum likeli-

hood estimation. To findq latent topics givenY = {Y1, ...,Yn}, we definen sets of

q-dimensional latent variables, withXi = {Xi,1, ...,Xi,T} ∈ RT×q, i = 1, ..., n. We use

GP-LVM to model the relations between each pair ofYi andXi,

P (Yi|Xi) =

d∏

j=1

N(Yj
i,:|0,K(i)

x ). (6.4)



136

EachY
j
i,: is a sizeT column vector ofYi, with each element representing the latent

position of wordj at different time point.K(i)
x is a kernel covariance matrix of size

T × T , where each element is defined by a kernel function,[K
(i)
x ]m,n = kx(Xi,m,Xi,n).

In this paper, we use the radial basis function (RBF) kernel

kx(Xi,m,Xi,n) = φ1 exp

(

−‖Xi,m −Xi,n‖2
2φ2

)

+ φ3δmn, (6.5)

with Φ = {φ1, φ2, φ3} being the kernel parameters, whereδmn is the delta function that

has the value 1 ifm = n and 0 otherwise. Our assumption is that given a topic, words

follow a zero-mean Gaussian distribution, where the highest probability occurs when a

word appears most in a topic. Note that this zero-mean assumption is valid here since

the mean values of word frequency have been extracted fromD during the initialization

in eq.(6.3). To ensure a well-defined probability distribution of topics at eacht, we seek

to transform the originalXi using the multiple logistic function

P (X̃i|Xi) =
exp(Xj

i,:)
∑

j′ exp(Xj′

i,:)
, so that

∑

j

P (X̃j
i,t) = 1. (6.6)

In this way the relations betweenYi and Xi can be rewritten as the product of

two probabilities:P (Yi|Xi) = P (Yi|X̃i)P (X̃i|Xi), with P (Yi|X̃i) computed using

eq.(6.4).

We then construct a hierarchy by placing a latent variableC overX, which captures

the correlation between each pair of topic setsXi andXj. A proper approach is the

Gaussian process where topics that are highly correlated are also close in geometrical

interpretation. One approach used in [76] is to construct the concatenation of latent

variables[Xi Xj ] and findC by principal component analysis (PCA). This method

works well for high-dimensional problems such as video tracking. An alternative is to

use singular value decomposition (SVD) where features (words) are usually of equal

importance such as in text analysis. In this paper, we chooseSVD for our algorithms,

which deal mainly with textual documents.

Furthermore, to capture the correlation dynamically, we place a temporal prior over

the element ofC,

P (C|t) =
n∏

i=1

N(c:,i|0,Kt), (6.7)
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Algorithm 10 Parameter Optimization for DCTM
1: Input: a set of document corporaD = {D1, ...,Dn}, number of estimated topicsq, number

of time framesT , the size of the vocabularyd, initial kernel parameters{Φ,Θ,Ψ}, number
of iterationsI.

2: Initialize eachYi ∈ R
T×d for the correspondingDi by eq.(6.3),

3: Initialize each latent topic variable setXi ∈ R
T×q through SVD from eachYi,

4: Initialize each latent correlation variable setC through SVD for each pair of[Xi Xj ].
5: for i = 1 to I
6: for j = 1 to n
7: optimize each{Xi,Φ,Θ} using gradient method
8: end for
9: for j = 1 to n

10: optimize{C,Ψ} using the optimizedX
11: end for
12: end for

whereKt is the covariance matrix fort = {1, ..., T}, which takes the exact form as

eq.(6.5) except for the input oft with a different parameter setΘ = {θ1, θ2, θ3}. Fig.6.2

shows the graphical representation of the general DCTM model.

The temporal prior can be combined with equations to marginalize out latent vari-

ablesY,X andC. The joint probability distribution of the hierarchy can bewritten

as

P (D1, ...,Dn|t) =

∫

P (D1|Y1)P (Y1|X̃1)P (X̃1|X1) · · ·

×
∫

P (Dn|Yn)P (Yn|X̃n)P (X̃n|Xn) · · ·

×
∫

P (X1, ...,Xn|C)P (C|t)

dCdX1 · · ·dXndX̃1 · · ·dX̃n.

However, this marginalization is intractable so that we instead attempt to use a max-

imum a posterior (MAP) approach to approximating the integration, i.e., to maximize

the aggregated Gaussian process log likelihoods [76]

L(D)

, log P (D1, ...,Dn|t)
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=
n∑

m=1

(log P (Dm|Ym) + log P (Ym|X̃m) +

log P (X̃m|Xm)) + log P (X1, ...,Xn|C) + log P (C|t)
(6.8)

w.r.t. eachXm andC. The solution of eq.(6.8) can be easily found by gradient search

methods.

Practically, when optimizing the latent variables and parameters, we seek a fast con-

verging algorithm which also avoids local minimum. To this point, we initialize each la-

tent variableXi andC by using LSA (which uses singular value decomposition (SVD))

as described in Alg.10. We then minimizeL by optimizing each set of latent variables

and their correlations alternatively. A maximum of 100 steps have been fixed in ad-

vanced for the optimization. The step of each gradient search was empirically set to be

10−6.

6.3.1 Smoothing

In eq.(6.8),L1 corresponds to the estimation of the learned latent positions, while all

terms inL2 sum up to the MAP estimation of the dynamic correlations. It can be ob-

served that unsmooth correlations usually result in high values which are not desirable.

However, due to the effect of summation ofL1 which involves a large number of in-

stances, the value ofL2 is usually underestimated in practice.

Therefore, to encourage smoothness ofL(D) by penalizing the correlations and the

positions on the same granularity, we seek to balance the contribution of both terms by

raising the dynamics density function to the ratio of their dimensions,i.e., π = d/q.

Thus the terms corresponding to the dynamics are rescaled ineq.(6.8) [131]:

π

(

q

2
log |Kc|+ log |Kt| −

1

2

q
∑

i=1

XT
:,iKcX:,i −

1

2
CT

:,iKtC:,i

)

, (6.9)

which leads to a simple and balanced learning function for the model. Empirically,

this has shown to be effective for Gaussian process-based 3Dpeople tracking [131].

However, the theoretical best choice of the scaling factor is still subject to future work.
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6.3.2 Inference and Predictions

(Posterior Inference) Since we made an assumption on the conditional distribution

of P (Yi|Xi) by eq.(6.4), the topic-specific word distributionsP (Yi|Xi) can not be

straightforwardly inferred from the model. Instead, we canmake inference on the word-

specific topic probabilities, to monitor the change of wordsover time. First, inference

can be made forP (Xi|Yi) by using the Bayes rule,

P (Xi|Yi) ∝ P (Yi|Xi)P (Xi), (6.10)

so that we can get the word-specific topic probabilities at a certain timet, Xi,t, by

marginalizing out all latent variablesXi except forXi,t (denoted asX−i,t):

P (Xi,t|Yi,t) =

∫

P (Xi|Yi,t)dX−i,t

∝
∫

P (Yi,t|Xi)P (Xi)dX−i,t, (6.11)

We use importance sampling [121] to estimate the integral.

(Document Classification)Meanwhile, remember that our model (as well as other

topic models) is essentially a method for dimensionality reduction, it would then be

interesting to observe how much performance gain/loss willbe fulfilled by using the

topic feature representation comparing to the original word features. One way to study

this is by analyzing the performance of document classification.

For traditional binary classification tasks, it is requiredto have a vector of features

representing each class. Here we treat each document corpusas one class. Since the

topic distributions are different at different time pointsfor a specific corpus (class), one

reasonable approach to summarizing topic features is by marginalizing out the temporal

prior,

p(Xk
i,:) =

T∑

t=1

p(Xk
i,t) ∗ p(t), for k = 1, ..., q. (6.12)

By assuming that the document-level observations are equally spaced, we are actually

taking the MAP values ofp(Xk
i,:) as the normalized features.

A more challenging classification task can also be carried out by classifying doc-

uments into a specific time point (e.g., year). Forn corpora withT timescales, this
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problem requires ann× T multi-class classification algorithm.

(Topic & Correlation Predictions) We show the predictive power of DCTM by

proposing two prediction methods, using regression analysis and Gaussian processes.

Besides between-topic correlations, the autocorrelations (AC) within each topic can

also be computed. Specifically, we can model the autocorrelations of a set of topic

distributions over timeXi = {Xi,1, ...,Xi,T} by

P (AC(l)|Xi) =

∑T−l
j=1(Xi,j − X̄i) ∗ (Xi,j+l − X̄i)

∑T
j=1(Xi,j − X̄i)2

,

for l = 1, ..., T − 1, (6.13)

whereAC(l) corresponds to the lag-l autocorrelation function and̄Xi takes the mean

value ofXi. A typical autocorrelation generally decreases with the increase of lag,

indicating that only the first few lags demonstrate significantly non-zero. The values

of the lags are often used to discover repeating patterns in the data such as the topic

distributions during a certain period of time. Mathematically, the values can be used as

the coefficient for the regression function.

Meanwhile, due to conjugation, the posterior probabilities of topics and correlations

are also Gaussian. We thus propose a simple Gaussian dynamicprediction model [11,

134] for the next time pointt + 1:

Xi,t+1|Xi,t ∼ N(µ(Xi,t), σ
2(Xi,t)I), where

µ(Xi,t) = K(Xi,Xi,t)
TK−1

X Xi,

σ2(Xi,t) = KX(Xi,Xi)−K(Xi,Xi,t)
T

K−1
X K(Xi,Xi,t). (6.14)

From a standard Gaussian process perspective, making predictions require averaging all

parameter values, with their associated posterior weights. However, this approach is

computationally demanding which involves expensive MonteCarlo sampling methods.

Thus, what we suggested here can be considered as a shortcut of achieving roughly the

same predictive power, with much less computational complexity.
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6.4 Experiments

We assess our model with both synthetic data and a real-worldlarge corpus. For the syn-

thetic data, we compare the correlations and the likelihoodwith a simple SVD method

to give a quick snapshot of the model. We then compare our model to LDA by using a

large-scale real-world data set.

6.4.1 Simulated Data

The simulated data set we created comprises of two groups(D1,D2) of 3-D data, di-

vided into 50 time frames. At each timet, we randomly create several points that follows

a normal distributionN(µ|Yit, σ
2I), for eachDi respectively. The vectorYi is a ran-

domly chosen polynomial function. The geometric distance betweenY1 andY2 reaches

the minimum and the maximum at the18th and50th time frame, respectively. As we

want to use a lower dimension to capture and visualize the correlation between these

two random variablesY, we choose the dimension ofX to be 2, e.g.,q = 2.

Figure 6.3 illustrates the results after 14 iterations, where (a) shows the original data

points as well as the polynomial functionsY1 andY2. It can be seen that the original

correlation is almost random after simple SVD. We expect to see a strong correlation

around the 18th time frame, which gradually decreases until the end. This was indeed

observed after the model converges. The correlation can well interpret the geometric

distance betweenY1 andY2. Meanwhile, DCTM reaches the optimal result quickly in

this case, where the log likelihood converges to -175.2326 after the just 14 iterations.

6.4.2 CiteSeer Scientific Documents

We further analyzed a subset of scientific documents from theCiteSeer1 digital library.

We crawled top 80 most prolific venues according to the CiteSeer impact factor, divided

them into 18 time frames by year from 1988 to 2005. The total number of documents

in our experiment is 268,231. For efficiency consideration,we used metadata (title, ab-

stract and keywords) and introductions as the document contents. The data set consists

of 6,530,000 unique words. We applied information gain to reduce the dimensionality

and resulted in top 24,351 words. We ran a series of experiments on different numbers

1http://citeseer.ist.psu.edu



142

0.1915
0.192

0.1925
0.193

0.1935

−0.03

−0.025

−0.02

7

8

9

10

x 10
−3

X
1

Simulated 3−D Data Y
1
 & Y

2

X
2

X
3

Y
1,1

Y
1,50

Y
2,1 Y

2,50

(a) Simulated Data.

0 10 20 30 40 50
0.485

0.49

0.495

0.5

Time Frame

C
o

rr
e

la
ti
o

n

Correlation Over Time

Initial
After Converge

0 2 4 6 8 10 12 14

−210

−200

−190

−180

−170

Iterations

L
o

g
 L

ik
e

lih
o

o
d

Convergency of Log Likelihood

(b) The change of the correlation. (c) The change of the log likelihood.

Figure 6.3. Simulated Results.

of topics from 10 to 200. Due to space consideration, we only show the result with 25

topics. To investigate the change of the log likelihood in eq.(6.8), we split the data into

90% for modeling (training), and use the rest 10% for testing the model with optimized

parameters. Figure 6.4 (b) demonstrates the log likelihoodof these two data sets. It

is clearly that DCTM shows better fit than LDA for documents across all years. Mean-

while, the smoothing method we used for DCTM (S-DCTM) does show a positive effect

on refining the model, by showing higher likelihood than DCTM. It can also be observed

that with the increased number of documents by year (Figure 6.4 (a)), LDA generally

shows worse performance with lower likelihood. However, this has minor effect on our

models, which supports our argument that DCTM does not suffer from overfitting of
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LDA DCTM S-DCTM
Training log likelihood (106) -2.6482 -1.8447 -1.5736
Held-out log likelihood (105) -1.9073 -0.9166 -0.8740

Table 6.2.Results of the CiteSeer data set.

1989 1991 1993 1995 1997 1999 2001 2003 2005
0

1

2

3

4
x 10

4

Year

# 
of

 D
oc

um
en

ts

(a) Number of documents per year.

1989 1991 1993 1995 1997 1999 2001 2003 2005

−4

−2

0

2

4
x 10

5

Year

L
o

g
 L

ik
e

lih
o

o
d

 

 

LDA Train
LDA heldout
DCTM Train
DCTM heldout
S−DCTM Train
S−DCTM heldout

0 10 20 30 40 50
−1.56

−1.54

−1.52

−1.5

−1.48

−1.46
x 10

9

Iterations

L
o

g
 L

ik
e

lih
o

o
d

 

 

S−DCTM

   DCTM

   SVD

(b) Training and held-out log likelihood. (c) Convergency of the log likelihood.

Figure 6.4. Results of log likelihood on the CiteSeer data set.

large data sets. It can also been seen from Figure 6.4 (c) thatthe convergency of DCTM

is fast. The log likelihood converges after merely 10 iterations(cf Table 6.2). By com-

parison, DCTM uses merely 4 hours to train and optimize the model, which takes LDA

more than four days to finish.

Figure 6.5 presents some results for the SIGMOD corpus. The top figure shows

the top 6 venues which have the highest correlations with SIGMOD for each year. It

can be observed from the list that most top-ranked venues from the posterior infer-
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ence are database-related venues, which share lots of interests with SIGMOD. Mean-

while, the research trends of SIGMOD can also be observed. While maintaining a

steady and strong correlations with traditional database-related venues like ICDE, PODS

and VLDB, the correlations of SIGMOD with application-oriented venues are decreas-

ing gradually, e.g., DEXA. Instead, SIGMOD correlates morewith data-mining and

information-retrieval venues like WWW, AAAI and ICDM (cf middle figure).

Furthermore, we can monitor the trends of specific keywords.Using eq.(6.11), we

further marginalize out all the topics at the same time frameto get a mean probability

of these keywords. The middle-right figure demonstrates several example keywords.

It can be discovered that topics likequeryandsecurityhave retained their popularity

during the last two decades. Meanwhile, database research has shifted its focus from

traditional topics likestorageand recoveryto more promising areas likemining and

relational databases.

The bottom figure depicts two highly-correlated topics in SIGMOD at three different

years. The words are sampled from the distribution with probabilities directly computed

from the prior. Based on our knowledge, the first topic focuses onalgebraandassocia-

tion rules, with mininggradually gets more attention. The second topic addressesusers

andprogramming, which has shifted towebapplications recently.

6.4.2.1 Classification Performance

We performed both binary and multi-class classifications ona subset of the CiteSeer

data. For binary classification, we use two venues, SIGIR andICML, as two classes.

For multi-class classification, we simply divide SIGIR into18 classes, according to the

publication timestamp by year (1988 – 2005). The topic features generated by DCTM

are compared with original word features for evaluation. The SIGIR venue contains a

total of 572 documents, while ICML contains 854 documents. The total vocabulary in

this case is 4,523. We trained a 40-topic model using DCTM, which reduces the feature

space by 99%. The original word features are processed using the TF-IDF representa-

tion and L-1 normalization. We employed the support vector machine (SVM)2 as our

classifier. The parameters are estimated by 10-fold cross validation. The linear kernel is

chosen. We evaluated the classification performance by using 10%, 20% and50% data

for training.

2SVMlight is used. http://svmlight.joachims.org/
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Figure 6.5. Results of SIGMOD corpus results. (Top) Top-ranked correlated venues with SIG-
MOD, from the year 1988 to 2005. (Middle left) The change of correlation as a function of
time of three example venues. (Middle right) The posterior probability of words as a function
of time by marginalizing out the topics. (Bottom) Two correlated topics with associated word
probabilities at different time. Note that 0 correlations are removed from this graph. The data of
ICDM is only available after 2001.

Figure 6.6 illustrates the classification performance. Clearly, topic features improve

the accuracy for both cases. Especially in the multi-class case, the features generated by

DCTM gain a 20% improvement over the word features when using50% training data.

6.4.2.2 Prediction Performance

Finally, we assessed the predictive powerful of our model. The objective is to predict the

correlations between SIGMOD and 10 other venues. We trainedour model using data

containing the first 16 years (1988–2003), and tested on the year of 2004 and 2005. Both

autocorrelation regression (ACR) and mean prediction (MP)are tested. Least square
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Figure 6.6. Classification performance on a subsect of 1,326 CiteSeer documents. S-DCTM
(topic features) outperforms TF-IDF (word features).

error is applied to measure the performance of the prediction. We also made a simple

comparison to the dynamic LDA models [11] by using the variational wavelet regression

(VWR). Table 6.3 lists the results. Both of our methods outperform VWR on all venues.

Meanwhile, the MP method clearly has an advantage over ACR inmost scenarios. As

an example of the correlation between SIGMOD and AAAI (blacksolid line) shown

in Fig. 6.7, MP shows the predictive distributions by a mean (blue solid line) and two

standard deviations (dash green lines), which can well fit into the dynamic correlations

and make reasonable predictions on the trends. Note that thestandard deviations of the

last two test points are slightly larger than previous ones,showing possible divergency

from the data.

6.4.3 Discussion

As it can be seen, the comparison of DCTM and LDA did not go throughperplexityas

well as other metrics. This is because these two models differ from each other funda-

mentally, it is difficult to find a common metric for evaluation. As explained, our model

is able to make inferences on corpus-level correlations, which is a clear advantage over

LDA. Nevertheless, DCTM aggregated the contributions of individual documents so

that the document-topic relationship can not be retrieved,which is achievable in LDA.

The inferences of our model and LDA are also quite different.In LDA, top-ranked

words for each topic can be discovered by the posterior inference of topic-specific word
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Venue Name ACR MP VWR
AAAI 13.203 10.557 15.625
DEXA 25.445 17.883 25.982
ICDM 24.892 20.186 28.005
ICDE 17.241 15.936 24.175
ICML 45.209 45.317 47.194
KDD 33.004 27.508 34.175

PKDD 20.705 18.335 23.825
PODS 27.854 24.692 34.215
SIGIR 27.252 28.406 34.112
VLDB 37.225 36.901 45.229
mean 27.203 24.572 31.254

Table 6.3. Correlation prediction results of the SIGMOD venue. Lower least square errors
indicate better performance.
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Figure 6.7. Example of prediction performance of the mean prediction method on the correla-
tions between SIGMOD and AAAI. Lower values indicate betterpredictive performance, shown
in darker colors.

probabilities. This is usually used fornamingtopics. However, this approach is very

subjective and often requires a good domain knowledge for judgment. Comparatively,

our model monitors topic probabilities given a specific word, by marginalizing out the

topics at the same time, we can directly observe the popularity of that word at a certain

time.

The most controversial part of our model is the initialization step. To minimize the

computational cost, we initialized our model by SVD, which is a linear dimensionality

reduction method. This method is known to have issues when applied to LSA [54],
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though it seems to work well for Gaussian-based models when applied to human motion

caption [76]. Besides, due to the restriction of matrix decomposition in SVD, monitoring

a large number of topics in a fixed timescale becomes unachievable. The model needs

to be re-trained once we change the number of topics.



Chapter 7
Conclusions

In this thesis we addressed four research topics in text mining, i.e., text classification,

text retrieval, text recommendation and topic discovery. We approached the research

issues within these topics by using both theoretical analysis as well as empirical studies.

For text classification, we proposed the use of entity extraction for reducing the

dimensionality of feature spaces. We used noun phrases as features rather than the tra-

ditional bag-of-words representation. We then introduceda novel use of collaborative

filtering technique for augmenting the feature spaces with relevant information. The

collaborative filtering algorithm successfully augmentedthe feature space for classifi-

cation, resulting in an accuracy improvement of the baseline, non-CF approach and the

Information Gain feature selection method.

Moreover, we also seek to improve the performance of the traditional K-Nearest

Neighbor classifier. We presented two approaches namely locally informative KNN

(LI-KNN) and globally informative KNN (GI-KNN) to extending KNN method. In-

formativeness was introduced as a new concept that is usefulas a query-based distance

metric. LI-KNN applied this to select the most informative points and predict the label

of a query point based on the most numerous class with the neighbors; GI-KNN found

the globally informative points by learning a weight vectorfrom the training points.

Experiments that compared the performance between our methods and KNN, DANN,

LMNN, SVM and Boosting indicated that our approaches were less sensitive to the

change of parameters than KNN and DANN, meanwhile yielded comparable results to

SVM and Boosting. Classification performance on UCI benchmark corpus, CiteSeer

text data, and images suggests that our algorithms were application-independent and
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could possibly be improved and extended to diverse machine learning areas.

For text retrieval, we aimed at accurately extracting namedentities from webpages

and scientific documents. We proposed a novel framework for unsupervised name

disambiguation by leveraging graphical Bayesian models and a hierarchical clustering

method. We presented an effective two-stage approach to disambiguate names. In the

first stage, two novel topic-based models are proposed by extending two hierarchical

Bayesian text models, namely Probabilistic Latent Semantic Analysis (PLSA) and La-

tent Dirichlet Allocation (LDA). Our models explicitly introduce a new variable for

persons and learn the distribution of topics with regard to persons and words. After

learning an initial model, the topic distributions are treated as feature sets and names

are disambiguated by leveraging a hierarchical agglomerative clustering method. Our

approach was demonstrated to be more effective than other unsupervised learning meth-

ods including spectral clustering and DBSCAN. A series of experiments were performed

that verified the advantages of our approach on both web data and scientific documents.

Although our primary focus of this framework is on person name disambiguation, our

general approach should be equally applicable to other entity disambiguation domains.

Potential applications include noun phrases disambiguation, e.g., “tiger” as an animal,

“tiger” as a golf player, “tiger” the baseball team, “tiger”the operating system or “tiger”

for the new Java version. And of course, it would be interesting to see whether our

framework can be applied to automatic image annotation and other fields.

On the text recommendation research, we mainly applied machine learning methods

for recommending tags to social bookmark websites. From ourempirical observation

of two large-scale data sets, we first argued that the user-centered approach for tag rec-

ommendation is not very effective in practice. Consequently, we proposed two novel

document-centered approaches that are capable of making effective and efficient tag rec-

ommendations in real scenarios. The first graph-based method represented the tagged

data into two bipartite graphs of (document, tag) and (document, word), then found doc-

ument topics by leveraging graph partitioning algorithms.The second prototype-based

method aimed at finding the most representative documents within the data collections

and advocates a sparse multi-class Gaussian process classifier for efficient document

classification. For both methods, tags were ranked within each topic cluster/class by

a novel ranking method. Recommendations were performed by first classifying a new

document into one or more topic clusters/classes, and then selecting the most relevant
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tags from those clusters/classes as machine-recommended tags. Experiments on real-

world data from Del.icio.us, CiteULike and BibSonomy examined the quality of tag

recommendation as well as the efficiency of our recommendation algorithms. The re-

sults suggested that our document-centered models can substantially improve the per-

formance of tag recommendations when compared to the user-centered methods, as well

as topic models LDA and SVM classifiers.

Finally, we performed topic discovery on scientific documents. We introduced dy-

namic correlated topic models (DCTM) for analyzing discrete data over time. This

model was inspired by the hierarchical Gaussian process latent variable models (GP-

LVM). DCTM is essentially a non-linear dimension reductiontechnique which is capa-

ble of (1) detecting topic evolution within a document corpus by associating the origi-

nal word feature space with a low-dimensional latent topic space, (2) discovering topic

correlations between document corpora by constructing a hierarchy over the latent topic

space and (3) monitoring topic and correlation trends dynamically by placing a temporal

prior over the correlations, where the inputs are discrete time frames. By marginalizing

model parameters rather than the latent variables, DCTM exhibited a non-parametric

characteristic which is often desirable for large-scale text data. Unlike generative as-

pect models such like LDA, DCTM demonstrated a much faster converging rate with

better model fitting to the data. We empirically assessed ourapproach using 268,231

scientific documents, from the year 1988 to 2005. Posterior inferences suggested that

DCTM is useful for capturing topic and correlation dynamics, predicting their trends,

and improving classification performance using the reducedfeature space.

As a conclusion of this thesis, we will now try to answer the research questions we

proposed in the first chapter:

1. Can dimension reduction techniques boost the performance of text classifica-

tion?

The short answer is:YES. Because unlike image or video classification, the fea-

ture space of text representation is usually very sparse. Many features, i.e., words,

only appear very few times in the corpus. Or, on the other hand, appear many

times in every single document. Statistically speaking, including these features

in the feature space will not gain more information for the classifier but increase

the computational cost instead. Moreover, different wordsin same documents

may have identical or similar meanings, e.g.,increaseandraise. Thus, including
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these redundant features is unlikely to increase the performance of the classifier

either. In statistics, dimension reduction usually involves transforming the fea-

ture space to a lower coordinate space according to the directions of the first few

principal components. However, for text classification, due to the extreme high

dimensionality, feature selection methods are often more preferable to principal

component analysis. Many empirical and theoretical analysis have shown that fea-

ture selection can greatly reduce the computational complexity while increase the

classification performance [47, 13]. Recent research also shows that document-

specific feature selection usually outperforms general feature selection methods

for specific classifiers [68, 69]. Therefore, we believe thatin general, dimension

reduction can boost the performance of text classification.

2. Is it possible to overcome the “curse of dimensionality” forthe K-nearest

neighbor classifier? The short answer is:YES. Because KNN is a local-search

classifier that only looks at its nearest neighbors, it then inevitably suffers from

the curse of dimensionality problem where in very high-dimensional space, all

features look the same. This is because most KNN classifiers use Euclidean dis-

tance as the distance metric which treats each dimension equally well. To address

this issue, dynamic programming and approximate search have been applied in

literature. We also proposed a new metric to measure the informativeness of the

neighbors [116], which selects the best candidates that areclose to the points

within the same class while far away from points in other classes. More recently,

the idea of learning a distance metric from a training set hasbeen introduced

[140], which aims at learning an optimal Mahanobolis distance that minimizes

the classification error of a training set. A similar idea is also incorporated into

our approach that learns the best weights of all neighbors byusing a boosting

like iterative learning algorithm [116]. Overall, the supervised approaches often

outperform unsupervised methods during KNN classification.

3. Are unsupervised learning algorithms comparable with supervised learning

methods for retrieving correct name entities (i.e., name disambiguation)?

Our answer is:DEFINITELY YES . The ambiguity of names is very common

on both webpages and scientific documents. Different persons may share the

same name (or name initials) while one person may be referredto by different
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name variants. Previous supervised learning approaches extract as features the

side-information besides the names themselves [57]. Theseside-information in-

cludes addresses, phone-numbers, affiliations, co-authorinformation and so on,

which often requires careful human-labeling and sophisticated extracting algo-

rithms. Unsupervised approaches, on the other hand, do not need these steps. In-

stead, they leverage the underlying relationships betweeneach person, or between

persons and documents. e.g., comparing the similarity between a person’s social

network [84], finding the topic distribution based on a person’s publication record

[114] and so on. These approaches, while successfully minimizing the cost and

error of human-labeling, do not always result in decreased performance. Surpris-

ingly, some of them even outperform the supervised approaches when leveraging

sophisticated clustering algorithms [115].

4. Are computerized text recommendation algorithms suitablefor Web2.0 ap-

plications in recommending social bookmarks to users?

Our experience is:YES. Though some still question the use of computer algo-

rithms to generate tags for social bookmarking services [49], a number of machine

learning frameworks have been proposed to address the problem of automatic tag

recommendation for both text and digital data on the web [22,7, 80, 119]. Recent

work has also shown the effectiveness of leveraging user tags to improve language

models [144]. Our research shows that users indeed re-use the tags generated by

other users while also takes the recommendations from computerized suggestions

[37]. It should be noted, however, text recommendation for social bookmarks is

more challenging than other applications. Since the user-generated tags are in-

volving while new tags generated every day, the algorithms are required to adjust

dynamically by learning new tags and user interests. Furthermore, with the in-

crease of the data everyday, efficiency should also be an important factor when

designing a recommendation algorithm for web-size applications.

5. Instead of simply breaking a document collection into static topics, is it pos-

sible to model the dynamic change of topics within the document collection

during a range of time? Moreover, can we monitor the topic correlations

between several document collections dynamically?

Two graphical topic models can solve this question. Dynamictopic model (DTM)
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[11] and Correlated topic model (CTM) [10]. Both models are extended from the

latent Dirichlet allocation (LDA) model that represents documents into a mixture

of topics. To model the topic trendsand the correlations together, we proposed

a dynamic correlated topic model (DCTM) which is extended from the hierarchi-

cal Gaussian process latent variable models (GP-LVM). However, since modeling

of trends and correlations is generally a hard task, the framework we proposed

also has flaws. Comparing to LDA, CTM and DTM, our model is unable to

make document-level inference at all, i.e., words are directly connected with top-

ics rather than documents. Thus, the prediction methods require optimization to

prevent overfitting from large-scale of data.

In my personal opinion, future work of text mining should mainly focus on the scal-

ability issue. The speed of the Internet growth is already beyond the control of human

beings. Concequently, the amount of text data that is potentially available for computers

to use is virtually unlimited and cost-free. A rule of thumb in machine learning is, the

more training data is presented, the better performance thealgorithm can achieve. A

naive Bayes model learnt from 10 million labeled training data will most likely outper-

form a support vector machine classifier built on 1 thousand training data, for the same

classification task. As a result, rather than searching for more sophisticated models for

text mining, researchers should really pay more attention on improving the scalability

of the learning algorithms during both training and prediction stages. Because a lot of

sophisticated models used by today’s researchers don’t really scale well enough. e.g.,

the LDA model [12] for topic discovery, the SVM [27] and Boosting [105] classifiers for

text classification, the conditional random fields (CRF) framework [73] for text segmen-

tation and so on. Fortunately, some researchers have already envisioned this situation so

that some promising methods have been recently introduced to the text mining field, to

particularly address the scalability issue [128, 61, 132].
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