TABLESEER: AUTOMATIC TABLE EXTRACTION,
SEARCH, AND UNDERSTANDING

A Dissertation in
Information Sciences and Technology
by
Ying Liu

© 2009 Ying Liu

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

December 2009
The dissertation of Ying Liu was reviewed and approved\(^1\) by the following:

C. Lee Giles
Professor of Information Sciences and Technology
Dissertation Co-Adviser
Co-Chair of Committee

Prasenjit Mitra
Assistant Professor of Information Sciences and Technology
Dissertation Co-Adviser
Co-Chair of Committee

Dean R. Snow
Professor of Anthropology

Tracy Mullen
Assistant Professor of Information Sciences and Technology

Henry C. Foley
Professor of Chemical Engineering
Dean, College of Information Sciences and Technology

\(^1\)Signatures on file in the Graduate School.
Abstract

Tables are ubiquitous with a history that pre-dates that of sentential text. Authors often report a summary of their most important findings using tabular structure in documents. For example, scientists widely use tables to present the latest experimental results or statistical data in a condensed fashion. Along with the explosive development of the digital library and internet, tables have become a valuable information source for information seeking and data analysis.

Interest in and use of table data necessitates table indexing and search. However, current search engines do not support table search. The difficulty of automatically extracting tables from un-tagged documents, the lack of a universal table metadata specification, and the limitation of the existing ranking schemes make the table search problem challenging. Effectively and efficiently searching table data becomes an urgent demand.

In this dissertation, we present an automatic table extraction and search engine, TableSeer. TableSeer crawls the web and digital libraries, detects tables from documents using heuristic-based and machine-learning based methods, represents tables using an extensive set of medium-independent table metadata that other people can reuse, indexes table metadata files, ranks tables, and provides a user-friendly search interface. To improve the performance of the table boundary detection, a novel page-box-cutting method and a sparse-line detection method are proposed. Given a keyword-based table search query, TableSeer ranks the matched tables and returns the most relevant tables.
with a novel table ranking algorithm – TableRank. TableRank tailors the classic vector space model and adopts an innovative term weighting scheme by aggregating multiple features from three levels: the term, table and document levels.

Although tables are widely used, there is no standard on the table structure designing. Many issues that go into the design of tables and will impair the table data readability, accessibility, and reusability are ignored. In order to have a deep understanding on the table characterization and to improve the table extraction and search performance, we also implement the first large-scale table quantitative study on table natures in digital libraries.

We demonstrate the value of TableSeer with empirical studies on scientific documents. The experimental results show that our table search engine outperforms existing search engines on table search. Overall, TableSeer eliminates the burden of manually extracting table data from digital libraries and enables users to automatically examine tables. TableSeer is successfully deployed and in current use in several scientific digital libraries, for example CiteSeerx.
Table of Contents

List of Tables ... x

List of Figures .. xii

Chapter 1. Introduction .. 1

Chapter 2. Related work .. 7

 2.1 Related Work on Search Engines .. 7

 2.2 Related Work on Table Definition 9

 2.3 Related Work on Table Extraction 11

 2.3.1 Table detection from image documents 13

 2.3.2 Table detection from HTML documents 17

 2.3.3 Table detection from plain text documents 19

 2.3.4 Table detection from PDF documents 20

 2.3.5 The methodologies used in the table detection field 22

 2.4 Related Work on Table Representation 25

 2.5 Related Work on Table Ranking ... 27

 2.6 Related works on table analysis with machine learning approaches 29

 2.7 Related Works on Table Classification 30

Chapter 3. Topic I: The architecture of the TableSeer 33

 3.1 System Overview ... 33
3.2 The Table Crawler ... 33
3.3 The Table Metadata Extractor 35

Chapter 4. Topic II: Table Metadata 37

Chapter 5. Topic III: The Table Ranking Algorithm – TableRank 42
5.1 Problem Statement .. 43
5.2 Similarity Measurement with a Tailored Vector Space Model 45
5.3 Term Weighting .. 46
5.3.1 Table Level Boosting (TLB) 49
5.3.2 Document Level Boosting (DLB) 51

Chapter 6. Topic IV: Table Boundary Detection 54
6.1 Table Boundary Detection with Box-Cutting Method 54
6.2 Heuristical-based Sparse-line Detection 58
6.3 Machine learning based Sparse Lines Detection 61
6.3.1 Support Vector Machines 61
6.3.2 Conditional Random Fields 62
6.3.3 Line Labels .. 64
6.3.4 Feature sets ... 65
 6.3.4.1 Orthographic features 66
 6.3.4.2 Lexical features 66
 6.3.4.3 Layout features 66
 6.3.4.4 Conjunction features 67
6.4 Line Construction in PDFs .. 68
6.5 Detecting the table boundary based on the keywords 74

Chapter 7. Topic V: Table Structure Decomposition 75
7.1 The text Fixing the Sequence Error of the Sparse Lines 75
7.1.1 The text sequence problem 76
7.1.2 Text sequence recovering algorithms 79
7.1.2.1 Algorithm 1: Considering the document column in-
formation .. 80
7.1.2.2 Algorithm 2: Without considering the document col-
umn information .. 82
7.1.2.3 Detecting the Table Boundary based on the sorted
sparse lines ... 82
7.2 Table Structure Analyzer ... 84

Chapter 8. Interface Designing ... 86

Chapter 9. Quantitative Study .. 90
9.1 Introduction .. 90
9.2 Table Characterization .. 92
9.2.1 Table Terminology .. 92
9.2.2 Perspectives ... 93
9.2.3 Layout Design Guidelines 106
9.3 Experiment Results of Quantitative study 107
11.8 Other sources of error .. 142

Chapter 12. Conclusion ... 146

Bibliography .. 148
List of Tables

5.1 The Vector Space Model for rating \(<\text{Query}, \text{Table}>\) pairs 46

6.1 Heuristic Rules for Table Box Dictions .. 56

6.2 The main document layout features in our experiment 67

6.3 The parameter thresholds we adopted for word reconstruction 69

9.1 The typical headings of document sections ... 94

9.2 The percentage of the wide table in RSC repository 110

9.3 The percentage of the top table caption location in RSC repository 111

9.4 The frame and separator lines of several RSC journals in different ages 111

9.5 The data separators of several RSC journals in different ages 112

9.6 The percentage of the nesting/spanning cells over multiple columns in RSC tables .. 115

9.7 The percentage of the nesting/spanning cells over multiple rows in RSC tables .. 115

9.8 The percentage of the empty cells in RSC tables 116

9.9 The results of other important parameters in RSC and CiteSeer repositories 118

10.1 The testing set for table detection ... 122

10.2 Table Metadata Extraction Performance .. 124

10.3 The Basic Ranking Results on the Manually Created Document Sets 127

10.4 Results for Individual Impact Factor in TableRank Algorithm 128
10.5 The Ablation Experiment to Learn the Real Contribution of Each Factor of TableRank Algorithm .. 129
10.6 The performance evaluation of two text sequence resorting algorithms . 130
10.7 The metadata weights in TableRank algorithm 133
10.8 An Example of The Importance of Conference/Journal 134
List of Figures

2.1 A web table example (a) and a scientific table example (b) 12

3.1 The Architecture of TableSeer 34

3.2 An Example of a PDF Document Segment and the Corresponding Document Content File 36

3.3 Table Data Storage and Sharing ways 36

4.1 An Example of the Table Metadata File 41

5.1 An Example of the Citation Network 52

6.1 An Example of the Page Box-Cutting Approach 55

6.2 The sparse lines in a PDF page 60

6.3 Composition of a PDF page with line types 64

6.4 The coordinates of a character in a PDF document page. 70

6.5 The coordinates of the example cases of the character pairs 71

6.6 The merged words in a table after the character → word phase 72

6.7 The merged lines in a table 73

7.1 Two examples of the text sequence errors 77

7.2 A document page with a cross-column table (left) and its sparse lines (right) 78

7.3 A document page with two parallel tables (left) and its sparse lines (right) 79
11.4 Another example table with the missing column 143

11.5 An example table with large row gap . 144

11.6 An example table that is difficult to identify the column headings and
the row headings . 145
Chapter 1

Introduction

Most prior work on information extraction has focused on extracting information from texts in digital documents. Often, however, most important information being reported in an article is presented in tabular form. Tables are ubiquitous in scientific publications, web pages, financial reports, news papers, magazine articles, etc. More and more researchers in chemistry, biology, and finance fields adopt tables to display the latest experimental results as well as the statistical information in a concise layout.

In the traditional media, tables have a history that pre-dates that of sentential text [40]. Tables present structural data and relational information in a two-dimensional format and in a condensed fashion. Researchers always use tables to concisely display their latest experimental results, to list the statistical data, and to show the financial activities of a business, etc. Other researchers, who are conducting the empirical studies in the same topic, can quickly obtain valuable insights by examining these tables. For example, a bio-chemist may want to search tables containing experimental results about “mutant genes” or an economist may look for the tables about “the GDP growth of USA in 2000-2007.” In the table processing literatures, tables are usually analyzed from the following five perspectives: graphical, physical, structural, functional, and semantic [70]. The works in this dissertation mainly focus on the first four perspectives.
With the rise of the World Wide Web to the biggest pool of information, tables have gradually accumulated a significant amount of valuable information. Along with the rapid expansion of digital libraries, tables become an important data source for information retrieval. The demand for searching table is increasing. In order to unlock the information in tables, table search is a highly desirable feature for the Web search. If the data reported in tables can be extracted and stored in a database, the data can be queried and joined with other data using database management systems. However, due to the huge volume, seeking a relevant table is more difficult than finding a needle in the haystack. Unfortunately, current search engines are deficit in helping the end-users to find satisfactory table results. Existing search engines do not support table search. When applying a table search query to the popular search engines, we observe that a flood of unwanted and sometimes unsolicited results will be returned. Moreover, we also notice that within the top n returned results, the ranking order does not precisely reflect the relevance to the queries. The ranking schemes embedded in the existing search engines are inadequate and are not designed for table search.

Automatic table extraction is critical to the success of table search. However, current search engines do not support it. The difficulty of automatic table extraction, especially from un-tagged documents, makes automatic table extraction and table search problems challenging. Automatic table extraction is important because there exists no table markup language that scientists and other users have adopted for representing table information in documents. There is not yet a universal metadata specification for tables. Scientists and scholars who now want to extract data from tables in published papers have to do it manually, establishing there on metadata formats. In order to eliminate the
burden and enable users to automatically examine these tables, we design TableSeer, a system to automatically extract table metadata and search tables in digital libraries.

To get and share table data, we have to finish the following steps: 1) table boundary detection: identifying tables in documents; 2) table structure decomposition and table data extraction; 3) table data storage and representation for better accessibility and reusability; 4) Table analysis and understanding. The table structure/layout nature is very important for the performance of these steps.

Automatic table extraction and searching in digital libraries is a challenging problem for several reasons. First, although considerable research has been done to extract tables from HTML or Image documents, extracting un-tagged tables (e.g. in PDF format) in digital libraries is difficult. Limited attention has focused on this problem. Second, tables present unique challenges to information retrieval (IR) systems because of diverse media, different press layouts, cell types, affiliate table elements, etc. Along with the increasing demands of information sharing, an extensive and universal table metadata specification is needed to facilitate the table information processing, extracting, and reusing. Additionally, such a standard representation can heavily reduce the workload of table information extraction and increase the accuracy of the table indexing and searching. Third, the ranking schemes of current search engines are inadequate and not designed for table search.

The performance of a ranking scheme is also crucial to the success of a search engine. In the literature, most approaches primarily focus on the similarity of a query and a page, as well as the overall page quality using the vector space mechanism to calculate the relevant score and use the ordinary TFIDF [27] technique to determine the
weight of each term in the vector space. There are several other methods to calculate the similarity score between a document and the query. For example, the vector space model with pivoted document length normalization [5], the language modeling approach (LM) [71], the Okapi BM25 formula [77], etc. PageRank is another popularly-used ranking technique designed by Brin and Page [81]. With increasing popularity of search engines, many works focus on how to improve the rankings by tailoring the PageRank algorithm, e.g., incorporating implicit feedback (i.e., the actions users take when interacting with the search engine) [6], using historical data [25], overcoming the drawback of the random walk model [24], optimizing scoring functions and indexes for proximity search in type-annotated corpora [15], re-ranking using links induced by language models [53], using annotations in enterprise search [22], etc.

In this thesis, we also explore the issue about how tables should be ranked. We propose TableRank, a table ranking algorithm to facilitate our table search engine TableSeer to bring orders to the relevant tables. TableRank considers multiple features of a table and the document it appears in, and aggregates these features to determine the final ranking of the table with respect to a query. In order to evaluate the performance of TableRank, we compare TableSeer with several popular web search engines. Because the popular web search engines make no effort at treating tables specially, we propose two methods to set up the common test-beds. Our experiments on scientific documents show that TableRank can significantly improve the ordering of the top results in table search by incorporating features from different levels.

Our thesis has the following contributions: a table search engine TableSeer, a set of universal medium-independent metadata specification for tables, an automatic table
detector and table metadata extractor with a novel page box-cutting method, and an innovative table ranking algorithm TableRank, an improved table boundary detection method with the innovative sparse-line definition using machine learning concepts, the first large-scales table quantitative study for better table understanding, the first PDF table groundtruth dataset.

TableSeer crawls scientific documents from digital libraries, identifies documents with tables, extracts tables from documents, represents each table with a unique table metadata file, indexes tables and provides an interface to enable the end-users to search for tables. TableRank considers multiple features of a table and the document it appears in, and aggregates these features to determine the final ranking of each table with respect to an user query. Overall, the work in my thesis tries to achieve the following goal: detecting tables, extracting tables, enabling search function on tables, and providing a novel ranking algorithm to improve the displaying of the matched tables for a given search keyword. In this thesis, we focus on PDF documents for two reasons. First, PDF gains popularity in digital libraries due to the compatibility of output on a variety of devices. Second, PDF documents are overlooked in table extraction field. Please note that TableSeer can easily be extended to deal with documents in other media, e.g., PPT, HTML, Word, PDF, Image, etc.

Extensive experimental studies have been conducted to provide support for the table metadata extraction and the table ranking function. We evaluate the performance of our TableRank schema by comparing it with popular web search engines because no table search engine and table ranking algorithm exist. We propose two methods to set up
the common test-beds (see Section 4.4). Empirical results show that TableSeer achieves encouraging results compared to Google Scholar1 and CiteSeer2.

The remainder of the thesis proposal is organized as follows. Chapter 2 is the related work. Chapter 3, 4, 5, 6, 7 present five main proposal topics respectively: the architecture of TableSeer, the set of medium-independent table metadata, the table ranking algorithm TableRank, table boundary detection, and table structure decomposition. Chapter 8 shows the interface of the implemented TableSeer system. Chapter 9 elaborates the table quantitative study we implemented. The detailed parameter settings and the experimental results are discussed in Chapter 10. Chapter 11 presents an error analysis on the table metadata extraction algorithm. The final section lists all the references.

1http://www.google.com/
2http://citeseer.ist.psu.edu/
Chapter 2

Related work

2.1 Related Work on Search Engines

A search engine is an information retrieval system designed to help finding information [2]. Most commonly search engines are Web search engine, which searches for information on the public Web. For example, Google, Yahoo! search, Microsoft MSN Search, ASK.com, Bing.com etc. Other kinds of search engine are enterprize search engines, which search on intranets, personal search engines, and mobile search engines. Different selection and relevance criteria may apply in different environments, or for different uses. More recently, more and more lights are shed on specialty search engines.

Some of them support search on various kinds of documents (e.g., map search \(^1\), video search \(^2\), image search \(^3\) \(^4\), patent search \(^5\) etc.), as well as on document components (e.g., citation search \(^6\), acknowledgement search \(^7\), caption search \(^8\) etc).

With the development of the internet and digital library, the accumulated digital documents become a valuable data repository. Table search has not gained enough

\(^{1}\)http://maps.google.com/maps
\(^{2}\)http://www.youtube.com/
\(^{3}\)http://images.google.com/
\(^{4}\)http://photo.net/gallery/caption-search/
\(^{5}\)http://www.google.com/patents
\(^{6}\)http://citeseerx.ist.psu.edu/
\(^{7}\)http://citeseer.ist.psu.edu/
\(^{8}\)http://biosearch.berkeley.edu/
attention in the information retrieval field. There is no specialized search engine and ranking algorithm to retrieve and rank tables in response to an user query.

Although table-related research has recently received considerable attention, most of the research focuses on the table extraction. Some researchers try to associate the table extraction with question answering (QA) or information retrieval. For example, Pyreddy and Croft [73] design a character alignment graph (CAG) to extract tables for information retrieval. TINTIN [73] is a system that incorporates indexing and searching concepts into the table detection field. However, it only roughly divided the information of a table into two parts: table captions or table entries. Hu [88] designs a system that extracts table-related information, stores them in databases, and generates a man-machine dialog to access the table data via a spoken language interface. None of above provide a real web search engine to tables. Recently, several online systems – Illustrara [80], BioText [63], and Telemarkus ⁹ – have provided either direct access to additional document components or incorporated these components into the information extraction and processing systems. Among these tools, only BioText provides the similar table search function as the TableSeer system provides. Although the performance of figure extraction and figure search in BioText system is very good, BioText can not handle tables very well. For example, BioText always displays a single table multiple times instead of returning all the tables in a documents because of unknown reasons. In addition, we checked all the published papers about BioText, unfortunately we can not find any information about table detection and table metadata extraction.

⁹http://www.telemakus.net/
To the best of our knowledge, TableSeer is the first table search engine, which not only supports the automatic table metadata extraction and table search, but also detects tables and extracts table metadata from PDF documents directly. Given a search query, the matched tables can be ordered by date, relevance, and citation.

2.2 Related Work on Table Definition

People are very familiar with tables. Everyone can design tables and read tables easily. Although there are numerous papers about the table processing, most of them start with the detailed analysis without providing the table definition. It seems that the authors assume the audiences holding the same concept on the tables in their papers. However, careful study reveals that the question “what constitutes a table?” is indeed difficult to answer [61].

Free online dictionary\(^{10}\) defines a table as \textit{an orderly arrangement of data, especially one in which the data are arranged in columns and rows in an essentially rectangular form}. The Oxford English Dictionary defines a table as “An arrangement of numbers, word or items of any kind, in a definite and compact form, so as to exhibit some set of facts or relations in a distinct and comprehensive way, for convenience of study, reference, or calculation.” This definition summarizes the characteristics of a table using three different aspects: content, form and function. In Edward Tufte’s book “Envisioning Information” [7], he refers to tables as a form of “small multiples”, in which the same design structure is applied across a set of information. Because of the diverse

\(^{10}\)http://www.thefreedictionary.com/table
table structure layouts and the people backgrounds, different people have different intuitive understanding of what a table is. For example, chemistry researchers will view the Periodic Table of the Elements as a table.

Among those papers that give out the definition, the definitions usually are far from general enough. The authors usually only define a type of tables or only emphasize the properties that are important in their specific domains. For example, the papers in the document image understanding area describe the table in terms of lines and non-analyzed text blocks [30]. In the lower level, a table is a set of cells located on a two-dimensional grid, or a structure laid out in an X-Y tree. In the higher level, a table is modeled as a set of categories (of strings) which are combined in some way to provide a mapping to a data domain. These definitions do not provide a theoretical basis from which to work.

Several researchers have provided definitions. Hurst defines a theory of tables in [40] that views the table as a presentation of a set of relations holding between organized hierarchical concepts (categories).

Long et al. define the tables in plain text document. In such documents, a table is a superstructure imposed on a character-level grid [60].

Peterman et al. [67] state that “table have a regular repetitive structure along one axis so that the data type is determined either by the horizontal or vertical indices”.

Some papers do not separate the tables with other common representations for structure data (e.g., a form, a tabular structure, or a list). Some tables are similar to ruled forms. Many papers were published for form processing [94]. The main difference between the table processing and the form processing is that tables usually have an
unknown format and forms usually have a pre-defined template. The authors construct templates from empty forms and correlate with filled-in forms.

In HTML pages, people use the `<table>` tag not only for relational information display, but also to create multiple-column layout to facilitate easy viewing. Wang et al. define *genuine* table and *non-genuine* table to separate them from each other [92]. The *genuine* table refers to the document entities where a two dimensional grid is semantically significant in conveying the logical relations among the cells. In my thesis, all the tables we are processing are *genuine* tables.

In this dissertation, we focus on the tables in scientific documents. Comparing with the tables in the web, we call them as scientific tables and web tables. Figure 2.1 shows the examples. We add an additional restriction on the definition of tables in scientific documents: each table has a caption that starts with a keyword (e.g., “Table” or “TABLE”). With this restriction, the tables can be understood as genuine tables [96]. The table boundary includes all the parts in the Wang’s model [89]. Both table caption and footnote are not included.

2.3 Related Work on Table Extraction

In the last 15 years, over two hundreds papers have been published on table recognition field [23]. Zanibbi [75] provides a survey with detailed description of existing approaches and systems. A detailed bibliography on table segmentation and extraction can be found here\(^\text{11}\). To extract the data from tables, we should fulfill two separate tasks: detecting the table boundary from the document and extracting the table cells as well

\(^{11}\)http://www.visionbib.com/bibliography/char969.html
Table 1. EXAFS Single-Scattering Fits\(^a\) of a (=SiO)Cr(=O)\(_2\) Model with Refined and Fixed Coordination Numbers against Data of Cr(VI) Xerogel Sample, Recorded at 15 K

<table>
<thead>
<tr>
<th>path</th>
<th>N</th>
<th>(R/\text{Å})</th>
<th>(\sigma^2/\text{Å}^2)</th>
<th>(\Delta E_0/\text{eV})</th>
<th>N</th>
<th>(R/\text{Å})</th>
<th>(\sigma^2/\text{Å}^2)</th>
<th>(\Delta E_0/\text{eV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr—O</td>
<td>2.14</td>
<td>1.60</td>
<td>0.00293</td>
<td>-2.13</td>
<td>2</td>
<td>1.60</td>
<td>0.00456</td>
<td>-0.51</td>
</tr>
<tr>
<td>Cr—O</td>
<td>1.83</td>
<td>1.79</td>
<td>0.00742</td>
<td>-2.13</td>
<td>2</td>
<td>1.80</td>
<td>0.00785</td>
<td>-0.51</td>
</tr>
</tbody>
</table>

\(^a\) Errors for first-shell scattering fits calculated against EXAFS data, in the absence of systematic fitting uncertainties, are generally to be accepted as follows: bond lengths \(\pm 0.02\ \text{Å}\), \(\sigma^2 \pm 20\%\), \(E_0 \pm 20\%\).\(^b\) \(S_0^2 = 0.84\), residual = 16.37 for this model optimization. \(^c\) \(S_0^2 = 0.83\), residual = 18.18 for this model optimization.

(a)

(b)

Fig. 2.1. A web table example (a) and a scientific table example (b)
as other table-related information. Researchers in the automatic table extraction field largely focus on analyzing the table in a specific document media. Most works focus on three main document types: *image-oriented*, *HTML-oriented*, and the *plain text-oriented*. Although many approaches and systems are available for these document types, there are few methods that are proposed to deal with PDF tables. Different media needs different table boundary detection and table decomposition methods. Although they are not new research topics, very few published papers provide algorithms to extract tables from PDF documents. Because of the numerous literatures and the similarity among some of them, we discuss those representative papers in the follow.

2.3.1 Table detection from image documents

Tables have been the focus of a large volume of research in the document image analysis field. Many approaches try to extract tables from image documents. They mainly focus on layout components (table boundaries, cell boundaries, etc.) to detect and decompose tables. Usually, they detect the potential table areas from the whole documents and isolate the table cells by analyzing the space information. Most research in this area focuses on analyzing the raster image. Some later works adopt the optical character recognition (OCR) technique to extract the text from the segmented parts. However, the performance of the OCR tool is not satisfying. The X-Y cut [43] algorithm is widely used by many papers in this field to cut the whole page into small pieces, then use bottom-up methods to group the pieces according to the pure geometric features. Most papers follow three basic steps: image pre-processing (e.g., the skew correction and
the noisy border removal), horizontal and vertical line detection, and table detection. The performance of the line detection is very crucial to the quality of the table detection.

Tupaj and colleagues [87] follow these steps and use OCR software to preserve the layout of tabular data by means of white space. They evaluate their method using two kinds of tables: technical tables and financial tables. The results show that they gain different results for these two kinds (the results on the scientific journals are much better than the results on the financial tables). However, their test size is too small (only 120 tables totally).

Goto et. al [28] is also a typical paper in this field. They focus on the detection of both vertical and horizontal lines as well as their intersection. No table structure decomposition is mentioned.

Shin and Guerette [47] proposed a table recognition algorithm based on Kieninger’s work [51]. They use region growing to locate bounding boxes around text, and cluster them into columns by examining spatial relationships between bounding boxes and their vertical neighbors. Then, post-processing steps are needed to form tables. They only test the algorithm on 20 document images. The error types are large and the distribution frequencies of the error cases are high.

Mandal et al. [78] [62] rely on the spatial characteristics to separate tables and math-zones from image documents. Based on their observation, tables have distinct columns which imply that gaps between the fields are substantially larger than the gaps between the words in text lines. The main limitation of their algorithm is the simplicity.

In the scanned image documents, most researches detect tables based on some ruling lines. For example, Hirayama [33] uses ruling lines and the analysis of the presence
of characters as initial evidence of a table. However, many printed tables do not have such lines. Such method will miss many tables. There is a brief allusion in [34] to a system for semi-automatically identifying lines in tables as header, title, records, etc. No details of the algorithms are given. Other similar works are [55], [16], [42], etc.

Many of them believe that a key component of table structure recognition is column segmentation and the most common algorithms for table column segmentation without ruling lines are the vertical projection profile based method [76]. Cesarini et al. [14] label the table location in image documents where the presence of a table is hypothesized by searching parallel lines in the modified X-Y tree of the page. The problem with such vertical projection method is that when the columns are not perfectly aligned, or when the gaps between columns are slanted, the resulting histogram suffers from spurious peaks or flattened or completely smeared peaks, causing the results to be unreliable.

Zheng [103] proposed a frame line detection algorithm based on the Directional Single-Connected Chain (DSCC). Each extracted DSCC represents a line segment and multiple non-overlapped DSCCs are merged to compose a line based on rules.

Different from most systems that recognize tables by grouping layout information, Tersteegen [95] designs a system named SCANTAB to recognize tables using predefined information. However, such predefined domain information restricts the system usage. They only tested on scanned German business letters. Similar to our TableSeer, they predefined a table keyword dictionary to locate the potential tables quickly. An interesting idea of this paper is the graphical user interface that enables users to provide the table knowledge. These knowledge can facilitate the table detection on the same field. Some
predefined information is arbitrary, such as "table headers consist of a maximum of three text lines". This paper also contains a common shortcoming: the test bed is too small. They only trained on twenty-four documents and tested on fourty-four documents.

Shamilian et al. report the similar research in [83]. The read machine-printed documents in known predefined tabular-data layout styles (e.g., bills). In such documents, tables often do not rely on line-art to delimit fields. The main contributions of this paper contain the identifying and segmenting algorithm and graphical user interface (GUI) for defining new layouts. Until the published date, they collected more than 400 distinct tabular layouts. How to automatically verify the format of the incoming document is a big problem.

Zuyev [105] proposes an algorithm for table image segmentation. He introduces a concept of table grid that can assistant the further table structure analysis. A layer of terminal symbols for the table is provided. He tests the algorithm in FineReader OCR product. The author only publishes this paper and there is no any further research. Tsuruoka et al. [86] also describe a system of region segmentation and conversion into an HTML file for an unknown machine-printed table image. First, the system segments a table by means of the ruled lines into some regions. Secondly, these segmented regions are further segmented into cells by the omitted ruled lines that are indicators (such as numerals and characters). They convert a table of unknown complex structure into an HTML file.
2.3.2 Table detection from HTML documents

Detecting tables from HTML documents is not difficult. The tables rows and cells are delineated by the HTML markups such as `<TABLE>` `<TABLE>`. Based on the tags, researchers usually convert the HTML table structure into a tree-shape, which the children of each node are the next lower level of table elements. Most HTML table detection rely on heuristic rules and their test bed is small. In addition, they are highly domain specific. For example, Chen et. al. [17] test their algorithm based on heuristic rules and cell similarities on 918 HTML tables from airline information web pages. Their F-measure is 86.50%.

Some researchers work on the classification of HTML tables because HTML tables are often used to format documents instead of presenting data. To decide whether a table is worthy of further process, we should combine language and layout information for a better content judgement. The drawback of the inconsistent HTML markups tags incurs the difficulty of the further identification on many table components, e.g., header lines.

Wang and Hu concentrate on the HTML table detection in [90] [92]. They classify HTML tables into two types: genuine tables and non-genuine tables, according to whether a two dimensional grid is semantically significant in conveying the logical relations among the cells. They introduce 16 features which reflect the layout as well as content characteristics of tables. These features are trained on thousands of examples, which are used to build a large table ground truth database. The experimental results show heavily improvement comparing with their previous rule-based system [26] (the
F-value is improved from 61.93% to 87.63%). No comparison is finished with other researchers’ results. Both publications have a restriction that interesting tables can only be found in leaf table elements, which are \(< \text{TABLE} >\) nodes that do not contain any other nested \(< \text{TABLE} >\) nodes.

Yoshida et. al. [100] integrate HTML tables according to the object category. Their test data set contains 75 web pages and the F-measure is 88.05%. Shih and Karger [84] use table layout to improve the web-page classification task such as content recommendation and ad blocking.

Hurst talks about a Naive Bayes classifier algorithm but there is no detail about the algorithm and the experiment [39]. They firstly mention [20] the idea of rendering HTML code in order to use the results for detecting relational information in web tables. Although they do not actually render documents in a browser, they can infer relative positional information of table nodes in an abstract table model.

Different from the traditional method, Kuprl et. al. [9] use the visual rendition from the Open Source Mozilla browser rather than the HTML tags to detect the web tables. Their bottom-up clustering algorithm [52] groups visualized words into large groups and uses a set of heuristics to detect tables unsupervised. The reported performance is about 70%. In addition, there are several limitations: only those table types that are known in advance are supported by their algorithm. If there is a vertical gap in table cells, the algorithm currently does not deliver correct results. Also, the process is relatively slow, because it has to wait for Mozilla to render a page.

Gatterbauer and Bohunsky [29] provide an innovative approach to deal with the table extraction problem from web pages by analyzing CSS2 visual box model. CSS
represents textual HTML document elements by rectangular boxes, and a double topographical grid is adopted to manage all these visual boxes. A recursive spatial reasoning algorithm named VENTrec is proposed. VENTrec uses keywords as input, and tries to expand from any possible HyperBox on the grid into all directions until no possible expansion. The authors rely upon the positional and metadata information of visualized DOM element nodes in a browser. They believe that the individual steps of table understanding become easier by taking advantage of visual cues of the web.

WebTable \(^{12}\) extracts tables from a web page file. The resulting tables can be imported into a spreadsheet or database program.

2.3.3 Table detection from plain text documents

Comparing with the HTML tables and image tables, there are few papers on the table detection from plain text documents. These documents may generated in ASCII form directly, or converted from a richer documents (e.g., save a HTML page into the pure text). Usually, there is no ruling lines in such documents. We can only analyze the cell contents based on the 2-D layout information. In plain text, writers often use special symbols, e.g., tabs, blanks, dashes, etc., to make tables.

Hu et. al \([45]\) propose a dynamic programming table recognition algorithm to detect tables based on computing an optimal partitioning of a document into some number of tables. Because it is American Standard Code for Information Interchange (ASCII) text based, it cannot fully make use of document image information. They also propose a table structure recognition algorithm in \([46]\). Initially, hierarchical clustering

\(^{12}\)http://windowsutilities.com/webtable.html
was used to identify columns. Then spatial and lexical criteria were used to classify headers. All of the existing algorithms were evaluated on their in-house data set. Its assumption of using single text column as input is relatively restrictive.

Kieninger [51] [85] proposed a bottom-up table recognition system, T-Rec System, where vertically overlapping words are grouping into blocks to identify tabular structure. He parses tables in ASCII or paper documents that do not rely on ruling lines. This method relies on complex heuristics which were based on local analysis to split or merge the blocks into proposed columns. However, he starts from the detected table regions and focus on the table structure decomposition, without considering the table detection. Because of its pure bottom-up nature and the fact that the heuristics are based on very local analysis as well, the method suffers when there is disruption to the normal structure of the columns (e.g., the present of a comment line spanning multiple columns, or two cells from different columns accidentally overlapping with each other), or when there is a gap within a column. The author has discarded this topic and the code package died for years.

2.3.4 Table detection from PDF documents

Comparing with our TableSeer, the most related work is pdf2table [72], which also extracts tables from PDF files. Instead of the tools PDF2TET 13, PDFBOX 14, and Text Extraction Toolkit (TET) 15 we tried, they use the pdf2html 16 developed by Gueorgui Ovtcharov and Rainer Dorsch to get all text elements (i.e., strings) with their absolute

\[http://www.pdf2txt.com/ \]
\[http://www.pdfbox.org/ \]
\[http://www.pdflib.com/products/tet/ \]
\[http://pdftohtml.sourceforge.net \]
coordinates in the original file. All the returned texts are saved in a structured data format (XML file). Comparing with our methods, they have similar preprocessing steps: sorting texts by the coordinates to avoid the order uncertainty brought by the document creator (we detect the table boundary first, then only sort the small area), merging text elements into lines, and combing lines into blocks (in our thesis, we define them as boxes).

Although they also use heuristic-based approach to detect and decompose tables, their methods are very limited because of the following reasons. First, they only process the single-column PDF documents and the performance is only good for the lucid tables. However, most scientific documents contain more than one column. Second, the adopted heuristics are also rough. Each of them will incur a lot of noisy results. For example, the definition of the multi-line will treat a lot of actual single lines as the multi-lines. Third, to merge the multi-line block, they use five self-defined threshold values. Based on our experience, these thresholds are very important to the final performance and it is impossible to deal with all the tables with a single fixed threshold value. However, they do not provide any explanation on the value setting. Fourth, treating each multi-line block as a table and allowing up to five single-line objects within a table will incur many false positive tables and table lines. Fifty, according to their table decomposition method, the detected table column number is usually larger than the actual value. Sixty, they do not work on the vertical tables. Seventy, only the table itself is processed without other important table-related data, such as the table footnote and the table-referenced text. In addition, the accuracy of pdf2html is also not good enough. We processed their paper [72] with their released package, both precision and recall value are less then 50%.

To remedy the deficiency of the tool, the authors implemented a graphical user interface,
which enables the user to make adjustments on the extracted data. There is no further work on this topic after 2005.

Wasserman et al. [93] design an algorithm to detect potential table regions in the PDF document, and to analyze the table structure. First, they convert 100 scientific documents in PDF format into TIFF image format, then treat a set of word boxes as the input of the algorithm and use the word segmentation technique in [91]. They yield a set of potential table-region bounding boxes through the processing of a set of modules: word-box consolidation and text-line elimination module, vertical-range module, horizontal-range module, and table-region extraction module. The main shortcoming of this paper is the lack of the details. Although they realize the importance of the precise definition of table, there is no definition for all the terms. In addition, there is no experiment and evaluation.

Tamir Hassan and Robert Baumgratner [32] also use PDFBox to extract texts from PDF files and try to recognize tables. AIDAS system, which extracts the logical document structure from PDF documents [7], uses shallow grammars to detect the logical elements as the authors admitted, and no result and evaluation is presented.

2.3.5 The methodologies used in the table detection field

From the methodology perspective, all the methods can be divided into three categories: pre-defined layout based [49], heuristics based [36][48][51][85], and statistical based [98]. Pre-defined layout based algorithms usually work well for one domain, but is difficult to extend because of its reliance on hand-crafted rules. Heuristics based methods need a complex post-processing and the performance relies largely on
the choice of features and the quality of training data. Most approaches described so far utilize purely geometric features (e.g. pixel distribution, line-art, white streams) to determine the logical structure of the table, and different document mediums require different process methodologies: OCR [21], X-Y cut [43], tag classification and keyword searching [9][18][96] etc. Most of them use trial-and-error methods and no general table ground-truth data set is publicly available to train and test these algorithms [97].

[50] is a typical work based on predefined table layout structure while [51] is a typical work relying on complex heuristics that were based on local analysis. Almost all the table-structure-extraction algorithms were developed using trial-and-error methods. No general table ground truth data set is publicly available to train and test these algorithms [97].

Pinto and colleagues [69] think that the traditional language modeling techniques are not good enough to deal with the rich combination of formatting and content present in tables. They presented a model that utilizes both content and layout of tables by using conditional random fields (CRFs), and compares them with hidden Markov models (HMMs). CRFs are undirected graph models that can be used to calculate conditional probability of values on designated input nodes. At the beginning, they label each line of a document with a tag, such as non-extraction label, header label, data row label, caption label. They also describe features [68] to identify a narrower range of line types: white space features, text features, separator features. A threshold is set for each percentage feature. After a training phase, they test on documents from a crawl of www.FedStats.gov performed in June 2001. They focus on the text tables in the web pages (text tables are human formatted using white space and fixed font to
align columns). The experimental results show that tables are located with 92% F1, and their constituent lines are classified into 12 table-related categories with 94% accuracy. However, the current state of their model can only locate labels and tag lines but knows nothing about the columns and cannot distinguish between data cells and header cells. Moreover, their work starts from the detected table areas without elaborating how to detect the table boundary. Even they can label a line as the table line, if there are several continuous tables, it is impossible to separate them from each other.

Ng, et al. [36] proposed a machine learning based method for both table detection and column/row segmentation. They designed purely text features and trained classifiers on Wall Street Journal news articles. The performance of these classifiers relies largely on the choice of features and the quality of training data. The authors selected the features based on typical table layouts in their test files. It is not clear whether the proposed features can generalize to documents in other domains.

Hu, et al., proposed a hierarchical clustering to recognizing the structure of a detected table region by identifying columns and spatial and lexical criteria to classify headers [44]. They also experimented with Wall Street Journal (WSJ) pages. Wang formulated the table structure-understanding problem in the whole page segmentation framework using optimization methods [98]. No single algorithm works well on all types of documents.

For a table search query, the matched tables may be contained in diverse media, which require different methods to extract. It is inconvenient to divide the documents into different groups and apply the corresponding algorithms. Thus, good table representation schemes are needed.
2.4 Related Work on Table Representation

The well-known table representation schemes are designed by the World Wide Web Consortium (W3C) in the specification of XHTML (The Extensible HyperText Markup Language) and by the Organization for the Advancement of Structured Information Standards (OASIS). However, users have to have a long learning curve and may learn many useless attributes for their purposes.

Wang [89] proposed a table model to show the table layout. The model consists of two components: a finite set of labeled domains (or categories), and a mapping from the tree paths labels to the possible values. This model is widely adopted by many researchers. As Wang admitted himself, the greatest shortcoming of the model is the neglect of the external table information, such as the table footnote. Embley et al. [23] illustrate the transition from a single table recognition method to a system with some web table examples. They show that the Wang model is adequate for some useful tasks. Another valuable point of this paper is the proposed components that should be included in any table ontology.

Akira Amano [4] proposes a representation of table form document based on XML. Wang [97] [98] develops a software tool to generate documents that include similar table elements based on the given table ground truth.

Matthew Hurst et. al. [37] design a model to break tabular text into blocks, then determines what the blocks representation using generative language models in both stages. His paper [40] provides a framework for representing tables at both the semantic and structural levels. He views the table as a presentation of a set of relations...
holding between organized hierarchical concepts (*categories*). In order to provide a conceptualization couched in basic terms that will assist research into table processing system, he tries to indicate the framework to represent categories, the interaction between the syntactic structure of the string content of the table, the logic structures they present, and the structure of the table. The author wants to use the theory to classify tables into classes, to evaluate table processing methods, to understand the distribution of table classes, etc.

However, all of them seldom cover table structure and layout information, as well as the table-related information and the document background. Our table metadata tries to provide a universal metadata specification to represent the information and all the necessary facts of a table in any document medium for the table searching purpose. Comparing with the above representation schemes, *TableSeer* also reduces the extraneous metadata to improve the retrieval performance.

The Dublin Core is a set of metadata elements to describe the resources in the Internet. It is proposed by Online Computer Library Center (OCLC) \(^\text{17}\) and National Center for Supercomputing Applications (NCSA) \(^\text{18}\) on March 1995. The goal of DC is to provide standardization for cross-domain information resource description. With the Dublin core metadata, researchers aim to describe online resources in ways that are much easier to understand and search. The semantics of Dublin Core were established and are maintained by an organization - The Dublin Core Metadata Initiative (DCMI) \(^\text{19}\). The advantages of the Dublin Core include: easy to create, easy to understand,
across sections and subject domains, low cost, universally understandable descriptions common across disciplines, etc. The simple Dublin Core standard comprises only fifteen elements to describe many types of digital materials such as video, sound, image, text, and composite media such as web pages. To the best of our knowledge, no researchers incorporate the table data with the Dublin Core, which is our ongoing task.

2.5 Related Work on Table Ranking

Ranking search results is a fundamental problem in information retrieval. Most common approaches primarily focus on the similarity of a query and a page, as well as the overall page quality. There are several methods to calculate the similarity score between a document and the query. For example, the vector space model with pivoted document length normalization [5], the language modeling approach (LM) [71], the Okapi BM25 formula [77], etc. PageRank is a popularly-used ranking technique designed by Brin and Page [81]. With increasing popularity of search engines, many works focus on how to improve the rankings by tailoring the PageRank algorithm, e.g., incorporating implicit feedback (i.e., the actions users take when interacting with the search engine) [6], using historical data [25], overcoming the drawback of the random walk model [24], optimizing scoring functions and indexes for proximity search in type-annotated corpora [15], re-ranking using links induced by language models [53], Using annotations in enterprise search [22], etc. Most of these ranking approaches use the vector space mechanism to calculate the relevant score and use the ordinary TFIDF [27] technique to determine the weight of each term in the vector space.
More recently, many researchers shed light on designing novel ranking algorithms to satisfy their specific search purposes, for example, XRANK [31] to rank XML elements using the link structure of the database, ObjectRank [41] for authority-based search on databases, and PopRank [66], a domain-independent object-level link analysis model to rank the objects within a specific domain instead of web pages, SemRank [8] to rank complex relationship search results on the semantic web, etc.

Unfortunately, to search tables, all the above will introduce a high false positive rate and unwanted results in which the query keywords appear in other areas instead of within or related to the tables. After checking the results returned by these popular search engines, we find that current search engines as well as their ranking algorithms are very limited in dealing with the table searching problem. They introduce a high false positive rate and unwanted results in which the query keywords appear in other document sections instead of within or related to the tables. There are two main reasons. First, current ranking algorithm treat all the terms in a document equally without the capability of recognizing which terms are related to tables. Second, they overlook several important factors (e.g., the term location, the reference text of a table, the document quality, etc), which play important roles to determine the ranking score of each table.

We build on existing table search engine – TableSeer [56] – to develop a novel table ranking algorithm for the real web search. Instead of treating each document as a whole unit, we automatically extract tables and calculate their relevant scores by aggregating impact features from multiple levels. In order to detect tables in un-tagged documents (e.g., Portable Document Format (PDF)), We design a novel page box-cutting method
To the best of our knowledge, we are the first to do a comprehensive study on the research of table search and table ranking.

2.6 Related works on table analysis with machine learning approaches

Several machine learning approaches are applied in the table analysis field, e.g., decision tree [79], Naive Bayes classifier [104], Support Vector Machine (SVM) [12], Conditional random fields (CRF) [54] etc. Hurst mentioned in [38] that a Naive Bayes classifier algorithm produced adequate results but no detailed algorithm and experimental information was provided. Wang et. al. tried both the decision tree classifier and SVM to classify each given table entity as either genuine or non-genuine table based on features from layout, content type, and word group perspectives. Decision tree learning is one of the most widely used and practical methods for inductive inference. It is a method for approximating discrete-valued functions that is robust to noisy data. Comparing with our work, they started with the detected tables and all features are related to the table itself (e.g., the number of columns). How to detect these tables, the key problem of our paper, is missing in their work.

Conditional random fields (CRFs) is initially introduced by Lafferty et al. [54] in 2001 as a framework for building probabilistic models to segment and label sequence data. Afterwards, CRF is applied in bio-informatics, computational linguistics and speech recognition fields. Conditional Random Fields (CRF) have been shown to be useful in part-of-speech tagging [54], shallow parsing [82], named entity recognition for newswire data [64], as well as table detection [21]. To the best of our knowledge, Pinto et al. [21] did the most related work as we did. Comparing with our work, the difference
spans the following areas: 1) they extract table from a more specific document type – plain-text government statistical reports; 2) because of the specific document nature, they adopted several special labels and corresponding features (e.g., BLANKLINE label and SEPARATOR features), which are not applicable for other document types; 3) their features focus on white space, text, and separator instead of the coordinate features, which are important for the table structure decomposition; 4) although they claimed that their paper concentrated on locating the table and identifying the row positions and types, they did provide the detail about the table locating. In order to improve the performance table data extraction, we zoom in the table boundary detection problem and elaborate the feature selection in our paper. Moreover, we consider the coordinate features, which not only play a crucial role in the table boundary field, but also are unavoidable in the later cell segmentation phase. Different from most CRF applications, the input data is a document line instead of a word.

2.7 Related Works on Table Classification

Although there are more than two hundred of published papers on table analysis, almost all of them focus on how to locate table boundary and/or how to de-compose table structures in documents. Only a few researchers analyze tables further after the extraction [96] [35] [19] [1] [70] [102]. In order to have a better table understanding and usage, a decent table classification from different perspectives is needed. However, some do not state a clear definition for various tables and most of them only classify HTML tables according to the usage of table element in HTML files:
Wang and Hu [96] classified each given HTML table entity as either genuine or non-genuine. According to their definition, genuine tables are document entities where a two dimensional grid is semantically significant in conveying the logical relations among the cells. Conversely, non-genuine tables are "document entities where \(<\text{TABLE}>\) tags are used as a mechanism for grouping contents into clusters for easy viewing only". Different from their work, we focus on genuine tables in this paper because almost all the tables in the scientific repository are genuine tables.

Similarly, Wang et. al. [19] also classify HTML tables into two categories: data tables and layout tables. In data tables, the content in cells is clearly correlated. oppositely, layout tables are only considered to be tables by virtue of their appearance once rendered by a suitable browser.

Hurst [1] distinguished two types of tables in HTML documents. type 1 has some clear relationship with an instance of the TABLE tag in the HTML document; type 2 tables are only considered to be tables by virtue of their appearance once rendered by a suitable browser.

Pivk et. al. [70] identified three major table classes according to the layout: 1-Dimensional (1D), 2-Dimensional (2D), and Complex tables. According to their definition, 1-Dimensional table has at least one row of A(ttribute)-cells above the rows of I(nstance)-cells. 2-Dimensional table has a rectangular area of I(nstance)-cells appearing within columns. Complex table might have the following features: partition data labels, over-expanded labels, and combination.

Yoshida et. al. [102] categories tables into nine types according to the table structures and the relative locations of attribute string and value strings: type 0, type
1-h, type 1-v, type 2-h, type 3-h, type 4-h, type 2-v, type 3-v, and type 4-v. Please refer the original papers for the details.
Chapter 3

Topic I: The architecture of the TableSeer

3.1 System Overview

Figure 3.1 shows the architecture of TableSeer, which consists of a number of important components: 1) a table crawler, 2) a table metadata extractor, 3) a table metadata indexer, 4) a table ranking algorithm, and 5) a table searching query interface. In summary, TableSeer crawls scientific documents from the digital libraries, identifies the documents with tables, detects each table using a novel document page box-cutting method, extracts the metadata for each identified table, ranks the matched tables against the end-user’s query with the TableRank algorithm, and displays the ordered results in a user-friendly interface.

3.2 The Table Crawler

TableSeer harvests online scientific documents by crawling open-access digital libraries and scientists’ webpages. The crawler supports a number of document media, such as PDF, HTML, WORD, PowerPoint, etc. TableSeer is designed to be able to handle all the document media listed above. In this paper, the table crawlers pay attention to the scientific documents in the PDF format because they gain more and more popularity in digital libraries. In addition, comparing to other document media that have been extensively studied in the table detection field, PDF documents have been
Fig. 3.1. The Architecture of TableSeer
overlooked. Our table crawlers use a depth-first crawling policy with a maximum depth of five (from the seed URLs).

3.3 The Table Metadata Extractor

The table metadata extractor comprises of three key parts: 1) a text information stripper \((TIS)\), 2) a table boundary detector with the \textit{page box-cutting} method, and 3) a table metadata extractor from both the document level and the table level. The details for the second and third parts can be found in Chapter 6 and 7.

Initially, for each PDF document, \textit{TIS} strips out the text information from the original PDF source file word by word through analyzing the \textit{text operators} and the related glyph information\(^1\). \textit{TableSeer} reconstructs these words into lines with the aid of their position information and saves the lines into a \textit{Document Content File} in the \textit{TXT} format. For each document page, \textit{TableSeer} analyzes the text information and merges them into different physical component levels (lines, paragraphs, boxes, pages) according to their font and position information. Figure 3.2 shows an example segment of a PDF document and its corresponding \textit{Document Content File}. The text file also records the coordinates of the left-most word \((X_0, Y_0)\), the line width \(W\), the line height \(H\), the font size \(F\), as well as the text content of each line. All the lines are ordered in the same sequence as shown in the PDF document.

With the extracted table metadata, we can manipulate the table data freely.

\(^1\)PDF Reference Fifth Edition, Version 1.6
Concluding Remarks

Due to increasing interest in the heme sensor proteins, we carried out a series of studies investigating their sensing mechanisms. We examined the structures, func-

Fig. 3.2. An Example of a PDF Document Segment and the Corresponding Document Content File

Fig. 3.3. Table Data Storage and Sharing ways
Chapter 4

Topic II: Table Metadata

Tables present a unique challenge to an information extraction system. Extracting sharable table metadata from documents no matter what document formats they are in is a challenging problem for several reasons: 1) Tables are shown in documents with diverse medium types, like HTML, PDF, etc; Different media use different schemes to save table information and present tables in different layouts; 2) Different press categories (e.g. journals or conference proceedings, scientific papers as well as financial reports) may have their own requirements for the table layout. For example, different from computer science fields (e.g. JCDL proceedings), most chemistry/biology journals only require vertical lines to separate table with paper context. Within the table body, some journals display rows one by one without any separators while some others alternatively change the background color for a better visual effect; 3) Table cells are so diverse that different content elements can be stored in one cell; 4) Some tables have affiliated elements; 5) No formal rules/standards on table designing; 6) Different applications and purposes have different requirements on the table metadata extraction;

Regarding the physical layout, the simplest tables are regular matrices of cells: all the cells of a line have the same height and all the cells of a column have the same width. The borders of all the cells are marked by graphic lines. However, very few tables follow such a strict prescription. Many tables can be much more complex. We often
notice some over-expanded tables that the presence of cells extend over several rows or columns, or only a few of the borders are marked by graphic lines. Not all the cells are filled and some partitioned tables can be treated as a combination of several tables as a multi-dimensional structure.

What metadata can be summarized from tables no matter what media they are located in? Which metadata is essential if we only want to search the contents of a table? If we want to exchange a table with others who have not seen it, which metadata are required to explicitly describe it, with/without layout information? Can a table reconstructed to their original visualization layout and structures as well as all the cells with the original contents if we get its metadata? If we create a database to enable users to search tables in a digital library, which metadata are indispensable? Given a table in a document in any medium, can the table metadata be extracted automatically? In other words, our research purposes are generating table metadata that can be used to facilitate the table indexing, searching, and exchanging, and designing an automatic metadata extractor on electronic documents. The metadata not only include the information related to the table itself, but also the accessorial information ignored by current researchers, such as table footnote, document background, referenced annotation etc. We propose a set of medium-independent table metadata and building up the metadata foundation for table representation and description, table searching and exchanging. Some characteristics of our table metadata extraction are: 1) The table metadata should have meaningful names. 2) They should be easily stored for indexing and searching. 3) They can be combined differently according to the users’ purposes. For example, only sharing the text or displaying the original layout.
In order to be able to characterize tables occurring in very diverse composite documents, we have designed a rich and flexible representation scheme for table metadata that describes tables in digital documents. We classify the table metadata into six mutually exclusive categories: 1) table environment/geography (Document-level), 2) table-frame metadata, 3) table affiliated metadata, 4) table-layout metadata, 5) table cell-content metadata, 6) and table-type metadata. Figure 4.1 shows a segment of a table metadata file.

Table Environment/Geography Metadata. The *table environment/geography metadata* includes the information of the document where a table is located, such as *Document Medium Type* (HTML, PDF, image, PS, text, email, etc), *Document Page Number* of the table (the index number of the page where the table is located), *Document Title* (the paper title shown in the journal or conference proceedings, usually in a large font size), *Document Author*, *Document Origination* (the name of the journal or conference), *Document Age*, *Table Starting Position* (the X and Y-axis coordinates of the starting place of the table), etc. This metadata can facilitate the table searching if users only know pieces of the document information or wish to restrict the search to certain types of documents.

Table-Frame Metadata. The Table Frame metadata records whether there are frames in the four sides around a table. The values can be left, right, top, bottom, all, none, top and bottom, left and right.

Table Affiliated Metadata. A table has several affiliated elements. *Table Caption* is the caption sentence(s) that appears along with the table, e.g., “*Table 1. Molecular Properties of Tested Polymers*”. *Table Caption Position* is the position of the
caption with relation to the body of the table: above or below. *Table Footnote* is text that explains the information in the table and usually appears below the table body. *Table Reference Text* is the text in the document body that refers to the table and discusses the content of the table.

Table Layout Metadata helps to capture the visualization of the original table. It is composed of *Table Width* (the width of the table boundary), *Table Length* (the length of the table boundary), *Number of Columns, Number of Rows, Stub Separator* (vertical ruling), *Boxhead Separator* (horizontal ruling), and *Column Width, Row Length, Column Headers, Row Headers, and Horizontal Alignment* (the values can be left, right, and central).

Table Cell Content Data refers to the values in each cell of a table, and enables people to search tables based on the contents of their cells. Content in $\text{Cell}[i, j]$ is the content in the cell that is located in the i^{th} row and the j^{th} column of a table.

Table Cell Type Metadata records the type of a table based on the type of its cells: *Numerical* and/or *Symbolic*. If the table contains cells with numeric information, it gets a type *Numerical*, if it has symbols, like, text, equations, etc., then it is marked *Symbolic*. Numerical tables can also be further divided into number tables, mathematical equation tables, percentage tables, and so on. Symbolical tables include character tables, image tables, formula tables, and so on. A table can have both numerical and symbolic cells.
<table-metadata>
 <property>
 <name>Table Caption</name>
 <value>Table 2. Comparison of crystalline and amorphous albite dissolution rates</value>
 </property>
 <property>
 <name>Table Column Head</name>
 <value>Type of experiment Initial pH Final pH Temperature</value>
 </property>
 <description>......</description>
</table-metadata>

Fig. 4.1. An Example of the Table Metadata File
Chapter 5

Topic III:
The Table Ranking Algorithm – TableRank

One key question in information retrieval is how to rank matched results based on their relevance to a query. However, the existing ranking schemes are inadequate and are not designed for table search. Our TableSeer search engine has an innovative table ranking algorithm – TableRank. Given a user query, TableRank returns the matched tables in a descendant order according to their relevance scores. Different from the popular web search engines, our TableRank rates the <query, table> pairs instead of the <query, document> pairs.

TableRank tailors the traditional vector space model to rate the <query, table> pair by replacing the document vectors with the table vectors. As shown in Table 1, each row is a query or a table vector. To determine the weight for each term in the vector space, we design an innovative term weighting scheme: Table Term Frequency - Inverse Table Term Frequency (TTF-ITTF), a tailored TF-IDF [27] weighting scheme. Compared with TF-IDF, TTF-ITTF demonstrates two major advantages. First, it calculates the term frequency in the table metadata file instead of the whole document, which prevents the false positive results. Second, it calculates the weight of a term with a comprehensive view.

We divide the features we consider into two groups: query-dependent features and query-independent features. Query-dependent features include the traditional features
of a document (e.g., the document title, the author/affiliation, the abstract, etc) and the structural features of a table (e.g., the table caption, the table column header, etc). Query-independent features include the document citation, the document freshness, and the document origination, etc. We consider the query-independent features because when several similar tables match the end-user’s query, intuitively, the end-user is most interested in the tables in newly published articles (document freshness) with the high quality, such as a top conference (document origination) or with a large number of citations (document citation). They are the tables that the user probably has not seen before and is seeking. Overall, TableRank considers features at three levels: 1) the term level, 2) the table level, and 3) the document level to determine the final ranking score of a table.

TableRank algorithm first applies each impact feature to weight the terms in the vector space, then aggregates all these features to determine the final weight values. Cosine measure is used to determine the similarity between the query vectors and the table vectors.

5.1 Problem Statement

We formalize the notations of the table ranking problem used throughout this paper. We represent the set of crawled and extracted tables as $T = \{ \cup \, tb_j, j \in [1, b] \}$, where b is the total number of tables in a set of documents, $D = \{ \cup d_\alpha, \alpha \in [1, N] \}$, where N is the total number of documents. $F(T, D)$ is the mapping function from $T \rightarrow D$. $\forall tb_j \in T, \exists d_\alpha \in D$ where the table tb_j comes from the document d_α. Also, $\forall tb_j \in T, \exists$
\[TM_j = \{ \bigcup m_k, k \in [1, d] \} \], where, \(m_k \) is the metadata proposed in [59] to represent table \(tb_j \), and \(d \) is the number of metadata used to describe each table.

A term \(t_i \) may repeatedly appear in different table metadata \(m_k \) (e.g., table caption, table column/row header, table reference text, even the document title). In particular, terms reflecting the core idea usually appear more frequently and broadly. We believe that different \(m_k \) have different influences on the results and each \(m_k \) has an assigned weight \(MW_k \) (the details of weight setting is discussed in Section xxx). The same terms appearing in different \(m_k \) should be treated separately. Likewise, the same terms appearing in the same \(m_k \) should be treated equally.

Let \(\text{sim}(tb_j, Q) \) denote the similarity between the table \(tb_j \) and the query \(Q \). Both of the table and the query can be represented as a vector. Each vector is composed of a set of alphabetically ordered terms. All the table vectors and query vectors construct a vector matrix as shown in Table 5.1. Each row in the matrix represents the vector of a table \(tb_j \) (\(j \in [1, b] \)) or the query \(Q \). Each table \(tb_j \) has \(k \) metadata elements describing it. The size \(s \) of the vector matrix is defined as the total number of terms appearing in the table collection \(T \) and the given query \(Q \). For example, in Table 5.1, \(s = (x+y+...+z) \).

\(w_{i,j,k} \) is the term weight of the \(i^{th} \) term in the \(k^{th} \) metadata of the table \(tb_j \) and \(w_{i,q,k} \) refers the term weight of the \(i^{th} \) query term in the \(k^{th} \) metadata. If the \(i^{th} \) term does not occur in the metadata \(m_k \) of the table \(tb_j \), \(w_{i,j,k} = 0 \). Otherwise, \(w_{i,j,k} > 0 \). The term weight \(w_{i,q,k} \) follows the same rule. As discussed, a term \(t_i \) may repeatedly appear in multiple metadata \(m_i \) (e.g., table caption, table column/row header, table reference text, etc). The importance of different table metadata varies. We assign each metadata \(m_i \) a metadata weight \(MW_i \). For example, the metadata “Table Column Header” should
get more credits than the metadata “Table Footnote.” The details can be found in section “Parameter Settings”. In addition, if the user specifies the query term location, e.g. find the tables with term “gene” in the metadata “Table Caption”, the term “gene” should only be filled in the metadata “Table Caption” columns in Table 5.1, and the MW of “Table Caption” should be set higher. Otherwise, the term “gene” should also be filled in the metadata columns where the term occurs.

5.2 Similarity Measurement with a Tailored Vector Space Model

TableRank constructs the vector matrix and measures the similarity between the query and each table by computing the cosine of the angle between these two vectors (the equation is shown in Equation 5.1).

$$sim(tbj, Q) = cos(tbj, Q) = \frac{\sum_{i=1}^{s} w_{i,j,k}w_{i,q,k}}{|tbj||Q|} \quad (5.1)$$

where, the final weight $w_{i,j,k}$ of the i^{th} term in the k^{th} metadata of the table tb_j is computed by Equation 5.2. The weighting scheme is also applicable to the query term $w_{i,q,k}$.

Most existing text retrieval techniques rely on indexing keywords. Unfortunately, keywords or index terms alone cannot adequately capture the document contents, resulting in poor retrieval performance. In TableSeer, we eliminates this risk by indexing table metadata files, which concentrates the table-related information into a small-size file. TableSeer uses the Lucene Index Toolbox [3] to index tables. A “document” is created where the table metadata fill the “fields”. TableSeer rates the <query, table> pairs
instead of the <query, document> pairs by tailoring the classical vector space model [10] to index each table metadata file instead of the whole document.

5.3 Term Weighting

Equation 5.2 shows that the final weight of a term \(w_{i,j,k}\) comes from three levels: the term-level weight \(w_{i,j,k}^{TermLevel}\), the table-level weight boost \(TLB_{i,j}\), and the document-level weight boost \(DLB_j\), which are described in Sections 3.2.1 – 3.2.3 respectively.

\[
w_{i,j,k} = w_{i,j,k}^{TermLevel} \times TLB_{i,j} \times DLB_j
\]

The term-level weight contributes a great proportion to the final weight of a term using an innovative weighting scheme: Table Term Frequency - Inverse Table Term Frequency (TTF-ITTF). \(TTF - ITTF\) is adapted from the TF-IDF[27] weighting scheme, a widely used weighting method for free-text documents. However, it is not suitable for table ranking because it only considers the term frequency and inverse document frequency and ignores many other important impact factors, e.g, term position. In contrast
to TF-IDF, TTF-ITTF demonstrates two major differences. First, TTF-ITTF calculates term frequency in a table metadata file instead of the whole document. Second, the position of a term in the table and the document is considered. Therefore, we have

\[
w_{i,j,k}^{TermLevel} = TTF_{i,j,k}^{ITTF} = TTF_{i,j,k} \ast ITTF_{i,j,k}
\]

(5.3)

where \(TTF_{i,j,k}\) is the term frequency of the table term \(t_i\) in the metadata \(m_k\) of the table \(tb_j\) and \(ITTF_{i,j,k}\) is the inverse table term frequency. Like in the case of inverse document frequency, the idea behind using the \(ITTF_{i,j,k}\) is that a term that occurs in a few tables is likely to be a better discriminator than a term that appears in most or all tables.

The importance of different table metadata elements varies. Each metadata \(m_k\) has an assigned metadata weight \(MW_k\). For example, if a matched term comes from the metadata “Table Column Header,” it should get more credits to the term weight than those that hit in the metadata “Table Footnote.” In particular, if the user specifies the table metadata in the query by an advanced search (e.g. Find the tables with term “gene” in table caption), the \(MW\) of the metadata “Table Caption” should be set higher. The details of establishing metadata weight are addressed in Section 4.1.

A longer document has a greater possibility of having more hits than a short document. Tables follow this rule as well. To avoid the bias of long documents, we normalize the term frequency by dividing the total term frequency \(tf_{j,k}\). \(tf_{j,k}\) refers to the total occurrence times of all the terms in the metadata \(m_k\) of the table \(tb_j\). For free-text document retrieval, \(f_{i,j,k} / tf_{j,k}\) is widely used to calculate the TF (Term Frequency),
where \(f_{i,j,k} \) denotes the occurrence times of the term \(t_i \) in the metadata \(m_k \) of the table \(tb_j \). However, this fraction is not suitable for the table texts because the table metadata has a different text distribution from the text distribution in the free texts. Based on the observation of hundreds of table metadata files, we notice that we should treat the texts of the table metadata files as semi-structured texts instead of the the free texts. Essentially, the semi-structured text is typically a short summary of an object, rarely more than a few words long. Table metadata files, search queries, and document abstract are, many times, similar in nature: all of them tend not to be complete sentences. They are a few words long and express a summary of a subject that the user is interested in.

According to [27], which proposes the term weighting scheme for semi-structured texts, we have the following Equation 5.4 to compute the TTF.

\[
TTF_{i,j,k} = (p + (1 - p) \times \frac{f_{i,j,k}}{f_{j,k}}) \times MW_k
\]

(5.4)

where \(p \) is a parameter between 0 and 1. To weight terms in the table and query, \(p \) is set to be 0.5 according to [27]. \(ITTF_{i,j,k} \) is computed by Equation 5.5

\[
ITTF_{i,j,k} = \log_2(\frac{b}{IDF_{i,j,k}}) + 1
\]

(5.5)

where \(b \) is the number of tables in \(T \). \(IDF_{i,j,k} \) denotes the number of tables that term \(t_i \) occurs in the metadata \(m_k \).
5.3.1 Table Level Boosting (TLB)

Intuitively, a table itself is also important and influences the weight of terms in it. Besides the term-level features, TableRank also considers table-level features like: 1) the table frequency, 2) the length of the text that elaborates the table content in the document (namely the table reference text), and 3) the table position. These factors are embodied in the Table Level Boosting (TLB) factor as follows:

\[
TLB_{i,j} = B_{tbf} + B_{trt} + (r \times B_{tp})
\]

(5.6)

where \(B_{tbf}\) is the boost value of the table frequency, \(B_{trt}\) is the boost value of the table reference text, \(B_{tp}\) is the boost value of the table position, and \(r\) is a constant \(\in [0,1]\). If users specify the table position in the query, \(r = 1\), otherwise \(r = 0\). The principle behind the Equation 5.6 is that if the query terms appear in several tables of the same document, then these tables from the document have a high relevance potential. Thus, more credits should go to the terms appearing in these tables. Section 4 displays some experimental results to show the effects with and without these boosts.

In order to calculate \(B_{tbf}\), we propose another weighting scheme – TBF-ITBF (TaBle Frequency Inverse TaBle Frequency). Both TBF-ITBF and TTF-ITTF derive from TFIDF. The former works on the table level while the later works on the table term level.

\[
B_{tbf} = TBF_{i,j} \times ITBF_{i} = \frac{tbf_{i,j}}{tbf_j} \times (log_b \frac{b_i}{b_j} + 1)
\]

(5.7)
where $tbf_{i,j}$ denotes the number of tables that include the term t_i in the document d_j, and tbf_j denotes the total number of tables in the document d_j. b is the total number of identified tables in the table collection T, and b_i denotes the number of tables in T in which the term i appears.

If the query terms appear in a table with a long table reference text or the size of the table itself is large, users may have a great possibility for achieving their desired results. nlr_j denotes the normalized total length of the table size and the reference text of tb_j over the entire document length.

$$B_{trt} = nlr_j$$ \hspace{1cm} (5.8)

Tables usually appear in the document sections named “Experiment”, “Evaluation”, and “Result Analysis”, etc. Sometimes, tables appear in “Related Work” or “Architecture” or “System Designing” sections. This factor is not considered unless users specify the table position in the query because we can not make a conclusion about the priority of different sections. For those tables in the specified document section, terms should also have a table position boosting value B_{tp}. Combing these factors, we have:

$$TLB_{i,j} = \begin{cases} \frac{tbf_{i,j}}{tbf_j} \ast (\log_2 \frac{b}{b_i} + 1) + nlr_j + B_{tp} & \text{if } r = 1 \\ \frac{tbf_{i,j}}{tbf_j} \ast (\log_2 \frac{b}{b_i} + 1) + nlr_j & \text{if } r = 0 \end{cases}$$ \hspace{1cm} (5.9)
5.3.2 Document Level Boosting (DLB)

Unlike the TTF-ITTF and TLB, Document Level Boosting (DLB) is a query-independent (static) ranking. DLB indicates the overall importance of a document where a table appears. For a high quality document, its tables are also inclined to be important. The terms should receive a high document-level boosting. The DLB effectively complements the dynamic table ranking algorithm.

Given a document d_j, IV_j denotes its document Importance Value (IV). Setting the document importance value IV_j for the document d_j considers three factors: 1) the inherited citation value (IC_j) from the ones who cite the document, 2) the document origin value(DO_j), and 3) the document freshness(DF_j). Suppose there are x documents ($d_1, d_2, ..., d_x$) that cite the document d_j, then IV_j is defined using the following recursive equation:

$$DLB_j = IV_j = IC_j \cdot DO_j \cdot DF_j = (\sum_{v=1}^{x} \frac{IV_v}{x}) \cdot DO_j \cdot DF_j$$ (5.10)

The inherited citation value (IC) relies on the nature of the scientific document itself by using its crucial citation link structure as a major indicator. In essence, a citation link from one document D_α to another document D_β can be seen as an endorsement of D_α. We represent it as $D_\alpha \rightarrow D_\beta$ and the document D_β is considered older than the document D_α. By this way, academic documents construct a citation network which is a DAG (Directed Acyclic Graph) as shown in Figure 5.1. The number of times D_α is cited and the quality of the ones that cite D_α are indicative of the importance of D_α. Our algorithm computes the document importance of each document using this citation network. Each node in the DAG highlights the fact that the importance of a node is
essentially obtained as a weighted sum of contribution coming from every path entering into the node.

Fig. 5.1. An Example of the Citation Network

Similar to the PageRank approach [11], ∀d_j ∈ D, IC_j is defined recursively based on all the “incoming links” – the documents that cite d_j. The influence of a document may be repeatedly considered because of the nature of the citation structure. For example, d_6 in Figure 5 inherits IV from d_3 and d_1 but d_1 also affects d_3. An exponential decay can be useful to deal with the impact of the propagated importance. In this paper, we calculate the IV with a simplified way to avoid the computationally expensive recursions: for each node in the diagram, we calculate the IV from the nodes in the previous hierarchical level. Another important difference is that the inherited IV should
not divided by the number of the outbound links. We belief that IV of a document should not be decreased as the number of references increase. For example, suppose we have a small universe consisting of six documents $D = \{d_1, d_2, d_3, d_4, d_5, d_6\}$. For each document in the set D, the initial IC of these six documents is $1/6 = 0.167$. In Figure 5.1, both document d_1 and document d_2 link to the document d_3, each of them contributes $IC = 0.167$ to d_3 although d_1 also links to d_4 and d_6.

The document origination DO_j can be set based on the journal/conference ranking while DF_j is set according to the publication date of the document. More recent documents are preferred. The details of the parameter settings is addressed in Section 4. The IC will be impacted by the publisher/Journal/Proceeding quality of the documents that cite it. Citation cast by documents that are themselves “important” weigh more heavily and help to make other document “important”. Those terms in a document with a high IV should receive more credits.

We define the combination as the feature aggregation. Each table can have an accurate relevance measure because feature aggregation can prevent the tables from an intentional manipulation for a high rank. For example, by increasing the keyword frequency in a number of places or cutting a large tables into several smaller ones.
Chapter 6

Topic IV: Table Boundary Detection

Tables present structural data and relational information in a two-dimensional format and in a condensed fashion. Scientific researchers always use tables to concisely display their latest experimental results or statistical data. Other researchers can quickly obtain valuable insights by examining and citing tables. Tables have become an important information source for information retrieval. The demand for locating such information (table search) is increasing. Automatic table metadata extraction includes two tasks: table detection and metadata extraction. To successfully get the table data from a PDF document, detecting the boundary of the table is a crucial phase. To effectively detect tables, we design two methods: a novel page box-cutting method and a sparse-line detection method.

6.1 Table Boundary Detection with Box-Cutting Method

The input of the box-cutting method is a Document Content File shown in Figure 3.2. We define a page box as a rectangle of adjacently connected lines with a uniform font size in the same document page. Whether two lines merge into a same page box is decided by two factors: the font size and the position. We treat a line \(l_\eta \) in a Document Content File as the seed line \(l_{\text{seed}} \) of a box \(b_\theta \). Initially, \(\eta = 1, \theta = 1, \) and \(l_\eta \) is the only line in \(b_\theta \). If the next line \(l_{\eta+1} \) in the same Document Content File satisfies the following
three conditions, we combine \(l_{\eta+1} \) into \(b_\theta \) and set \(l_{\eta+1} \) as the new \(l_{\text{seed}} \). Otherwise, \(l_{\eta+1} \) will be the \(l_{\text{seed}} \) of a new box \(b_{\theta+1} \). C1) \(\text{Font}(l_{\eta+1}) = \text{Font}(l_{\text{seed}}) \); C2) \(l_{\eta+1} \) is adjacent to \(l_{\text{seed}} \); C3) \(l_{\eta+1} \) is close enough to \(l_{\text{seed}} \).

TableSeer defines "adjacent" as no other lines exist between \(l_{\eta+1} \) and \(l_{\text{seed}} \). Different definitions of the "close enough" may generate different box cutting results. We define the "close enough" as: \(Y_0(l_{\eta+1}) - (Y_0(l_{\text{seed}}) + H(l_{\text{seed}})) \leq \delta^l \). \(\delta^l \) is the maximal space between two adjacent lines in a same paragraph. Figure 6.1 displays an example of a PDF document page together with the boxes segmented by our page box-cutting method.

For all the segmented boxes in a document, TableSeer classifies them into three categories: small-font boxes \(B^{SF} \), large-font boxes \(B^{LF} \), and regular-font boxes \(B^{RF} \).
whose font sizes are smaller than, larger than, or equal to the font size of the *document body text* F_b. Based on the observation and statistical study on the proceeding/journal templates, we summarize a set of heuristic rules (see Table 1), which are crucial for mapping boxes to different logical components (*titles, authors, affiliations, abstract, references, etc.*) and specific physical components (*tables, figures, etc.*).

Table 6.1. Heuristic Rules for Table Box Dictions

<table>
<thead>
<tr>
<th>Rules</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Document title, author, affiliation, heading $\in B^{LF}$.</td>
</tr>
<tr>
<td>2</td>
<td>Document title, author, affiliation, abstract \in Page 1, in a fixed order.</td>
</tr>
<tr>
<td>3</td>
<td>Figure caption, table caption, table body, footnote, Reference usually $\in B^{SF}$.</td>
</tr>
<tr>
<td>5</td>
<td>\forall Figure and table have captions.</td>
</tr>
<tr>
<td>6</td>
<td>\forall Figure captions are beneath the figure; \forall table captions are above the table.</td>
</tr>
<tr>
<td>7</td>
<td>Table captions start with keywords “Table” or “TABLE” while Figure captions start with “Figure” or “FIGURE”.</td>
</tr>
</tbody>
</table>

TableSeer detects tables in at most three iterations. In each iteration, we use a *keyword matching* method and a whitespace checking method to examine one box category. We create a predefined *keyword list* K^t that records all the possible starting keywords of the table captions in scientific documents, such as ”Table”, ”TABLE”, ”table”, ”Form”, ”form”, ”FORM”, ”Figure”, ”FIGURE”, etc. In the first iteration, we process all B^{SF} in the whole document page by page. If we find a B^{SF} that starts with a keyword listed in the K^t, we treat this box as a potential table candidate. Once we detect the tabular structure from its white space information, we confirm this B^{SF} as a
Algorithm 1: Table Detection using the Page Box-cutting Method

begin
\[\eta \leftarrow 1, \theta \leftarrow 1, l_s \leftarrow l_\eta, \text{found} \leftarrow 0; \]

for \[l_\eta \in l \] do

if \[l_{\eta+1} \text{ does not satisfy } C_{1-3} \] then

\begin{align*}
\text{compare } b_\theta \text{.fontsize} & \text{ with } F_b; \\
\text{classify } b_\theta & \text{ into one of } B^{SF}, B^{LF}, B^{RF}; \\
\theta & \leftarrow \theta + 1; \\
l_{\eta+1} & \leftarrow b_\theta, l_{\text{seed}} \leftarrow l_{\eta+1}, l_\eta \leftarrow l_{\eta+1};
\end{align*}

while \[\neg \text{found} \] do

for \[b \in B^{(SF,RF,LF)} \] do

if \[\exists b[\text{StartWord}] \in K^l \] then

if \[\text{there is tabular structure in } b \text{ or its neighbor boxes} \] then

get \[F_{\text{table}}; \text{found} \leftarrow 1; \text{break}; \]

foreach \[b \text{ with } b\text{.fontsize}() = F_{\text{table}} \] do

if \[\exists b[\text{StartWord}] \in K^l \text{ and has a tabular structure} \] then

\[b \text{ is a table}; \]

end

end

real table. Once we get the font size of a table in a document, the font size of all tables in this document are fixed. We can ignore all the other boxes in different font sizes. If we do not find any table candidates, we start the second iteration on all \(B^{RF} \) because there still is a percentage of documents that contain tables displayed in \(F_b \). If fails again, we start the third iteration to check all the \(B^{LF} \). Usually we only have to do the first iteration.

Sometimes, the table caption and the table body may be displayed in two boxes because of the sparse layout or the trivial font difference. \textit{TableSeer} deals with such cases as well. When we detects a box started with words in the \(K^l \) without tabular structures, we check the white space information in the neighbor boxes in both directions.

For example, \(F_b \) is 9.23 in Figure 3. Boxes 1, 2, 3, 4, 6, 11 are \(B^{LF} \), boxes 5, 10, 8, 12, 13, 14, 15 are \(B^{SF} \), and boxes 7, 9 are \(B^{RF} \). In the first iteration, we detect the keyword ”\textit{Table}” in box 12 without tabular structures. We check its neighbor – Box 13
with the same font size and confirm it as a real table. With the fixed table font size 8.76, to detect all the other tables in the same document, we only have to check the boxes with font size 8.76. With this method, TableSeer easily exclude more than (93.6%) document areas since the very beginning, which impressively increases the efficiency and accuracy of the table detection.

6.2 Heuristical-based Sparse-line Detection

Based on the observation, we notice that different lines in the same document page have different widths, text densities, and the sizes of the internal spaces between words. A document page contains at least one column. Many journals/conferences require two (e.g., ACM and IEEE templates) or three even four columns. In a document, some lines have the same length as the width of the document column, some are longer (e.g., cross over multiple document columns) or shorter (e.g., the short heading in paper with multiple document columns) than a column. From the internal space perspective, the majority of the lines contain normal space sizes between adjacent words while some lines have large spaces. In this paper, we define the sparse line as follows.

Definition 1. Sparse Line: A document line is a sparse line if either of the following conditions is satisfied: 1). The minimum space gap between a pair of consecutive words within the line is larger than a threshold \(s_g \). 2). The length of the line is much shorter than a threshold \(l_l \);

Since the majority of the lines in a document belong to the non-sparse category, separating the document lines into sparse/non-sparse categories according to the text
internal space/density and then getting rid of the non-sparse category become a fruitful preprocessing step for the table boundary detection. Such a method has two advantages: 1) the sparse lines cover nearly the entire table content lines; 2) Narrowing down the table boundary to the sparse lines at the early stage can save substantial time and effort to analyze noise lines.

There are tables whose cells can cross over multiple table columns. In order to collect all such cells, method proposed in [99] sets up constraints on the number of such long cells within a table boundary. However, determining a reasonable value is difficult. For example, if the value is set up too tight, part of a table could be missed out. If the value is loose, noise lines will be included into the table boundary. Unlike the approach in [99], our method treats the long cells as non-sparse lines and remove temporally. To decide whether a sparse line should be included into the same table boundary, we only need to check the vertical space gaps between this sparse line and its previous neighbor sparse line. Once we merge these two sparse lines into the same table boundary, the previously temporally removed long lines (if exists any) between those two sparse lines should be retrieved back.

Different definitions of the “much shorter than” may generate different sparse line labeling results. We define it as the half of the document column width. We show a snapshot of a PDF document page in Figure 6.2 as an example. We highlight the sparse lines with red rectangles. Apparently, the table body content lines are labeled as sparse lines. Ten sparse lines are not located within the table boundary: two heading lines, one footer line, three caption lines, and four short lines that are the last line in a paragraph. We label them as sparse lines because they satisfy the second condition. Since such
short-length lines also happen in some table rows with only one filled cell, we consider them as sparse lines to avoid missing out the potential table lines. Such noise non-table sparse lines are very few because they usually only exist at the headings or the last line of a paragraph. In addition, the short length restriction also reduce the frequency. We can easily get rid of them based on the coordinate information later.

![Red rectangle: Sparse lines](image1)

![Outside rectangle: Non-sparse lines](image2)

![Line label: Heads](image3)

![Line label: Captions](image4)

![Sparse lines without label: OTHERSPARSE](image5)

Fig. 6.2. The sparse lines in a PDF page
6.3 Machine learning based Sparse Lines Detection

6.3.1 Support Vector Machines

SVM [12] is a binary classification method which finds an optimal separating hyperplane $x : wx + b = 0$ to maximize the margin between two classes of training samples, which is the distance between the plus-plane $x : wx + b = 1$ and the minus-plane $x : wx + b = -1$. Thus, for separable noiseless data, maximizing the margin equals minimizing the objective function $||w||^2$ subject to $\forall i, wy_i(x_i + b) \geq 1$. In the noiseless case, only the so-called support vectors, vectors closest to the optimal separating hyperplane, are useful to determine the optimal separating hyperplane. Unlike classification methods where minimizing loss functions on wrongly classified samples are affected seriously by imbalanced data, the decision hyperplane in SVM is not affected much. However, for inseparable noisy data, SVM minimizes the objective function: $||w||^2 + C \sum_{i=1}^{n} \varepsilon_i$ subject to $\forall i, wy_i(x_i + b) \geq 1 - \varepsilon_i$, and $\varepsilon_i \geq 0$, where ε_i is the slack variable, which measures the degree of misclassification of a sample x_i. This noisy objective function has included a loss function that is affected by imbalanced data.

In order to increase the importance of recall in SVM, a cut-off classification threshold value $t < 0$ should be selected. In methods with outputs of class probability $[0, 1]$, then a threshold value $t < 0.5$ should be chosen. As noted before, for noiseless data, SVM is stable, but for noisy data, SVM is affected much by imbalanced support vectors. In our work, the latter approach is applied for SVM, i.e., when $t < 0$, recall is to be improved but precision decreases. When $t > 0$, a reverse change is expected.
6.3.2 Conditional Random Fields

Conditional Random Fields (CRFs) are undirected statistical graphical models, which are well suited to sequence analysis. The primary advantage of CRFs over Hidden Markov Models (HMM) is their conditional nature, resulting in the relaxation of the independence assumptions required by HMMs in order to ensure tractable inference. Additionally, CRFs avoid the label bias problem, a weakness exhibited by Maximum Entropy Markov Models (MEMMs) and other conditional Markov models based on directed graphical models. Let \(\mathbf{o} = \langle o_1, o_2, ..., o_n \rangle \) be an sequence of observed input data sequence, for example in our case as a sequence of input lines of text in a PDF document page. Let \(\mathbf{S} \) be a set of states in a finite state machine, each corresponding to a label \(l \in L \) (e.g., sparse line, non-sparse line, heading line, etc.) Let \(\mathbf{s} = \langle s_1, s_2, ..., s_n \rangle \) be the sequence of states in \(\mathbf{S} \) that correspond to the labels assigned to the lines in the input sequence \(\mathbf{o} \). Linear-chain CRFs define the conditional probability of a state sequence given an input sequence to be:

\[
P(\mathbf{s} | \mathbf{o}) = \frac{1}{Z_\mathbf{o}} \exp \left(\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_j f_j(s_{i-1}, s_i, \mathbf{o}, i) \right) \tag{6.1}
\]

where \(Z_\mathbf{o} \) is a normalization factor of all state sequences, the sum of the "scores" of all possible state sequences. \(f_j(s_{i-1}, s_i, \mathbf{o}, i) \) is one arbitrary feature function of \(m \) functions that describes a feature over its arguments, and \(\lambda_j \) is a learned weight for each such feature function.

\[
Z_\mathbf{o} = \sum_{\mathbf{s} \in \mathbf{S}} \exp \left(\sum_{i=1}^{n} \sum_{j} \lambda_j f_j(s_{i-1}, s_i, \mathbf{o}, i) \right) \tag{6.2}
\]
Intuitively, the learned feature weight λ_j for each feature f_j should be positive for features that are correlated with the target label, negative for features that anti-correlated with the label, and near zero for relatively uninformative features. These weights set to maximize the conditional log likelihood of labeled sequences in a training set $D = <o,1>_1, ..., <o,1>_n$:

$$LL(D) = \sum_{i=1}^{n} \log(P(l_i|o_i(i))) - \sum_{j=1}^{m} \frac{\lambda_j^2}{2\sigma^2} \quad (6.3)$$

When the training state sequence are fully labeled and unambiguous, the objective function is convex, thus the model is guaranteed to find the optimal weight settings in terms of $LL(D)$. Once these settings are found, the labeling for a new, unlabeled sequence can be done using a modified Viterbi algorithm.

We use a weight parameter θ to boost features corresponding to the true class during the testing process. Similar to the classification threshold t in SVM, θ can tune the trade-off between recall and precision, and may be able to improve the overall performance, since the probability of the true class increases. During the testing process, the sequence of labels s is determined by maximizing the probability model $P(s|o) = \frac{1}{Z_o} \exp(\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_j f_j(s_{i-1}, s_i, o, i, \theta_s)))$, where $f_j(s_{i-1}, s_i, o, i, \theta_s) = \sum_{i=1}^{m} o_i t_j(s_{i-1}, s_i, o, i)$, θ_s is a vector with $\theta_{s_i} = \theta$ when $s_i = true$, or $\theta_{s_i} = 1$ when $s_i = false$, and λ_j is the parameters learned while training.
6.3.3 Line Labels

Different from the traditional table boundary detection works, we use an exclusive method to label all the potential table lines. Figure 6.3 shows the inclusion-relation of the line types in a document page. The size of each block does not represent the ratio of a line type in the page. Each line type corresponds to a label in the machine learning methods.

Fig. 6.3. Composition of a PDF page with line types

We design a set of labels by examining a large number of lines in scientific PDF documents. Each line will be initially labeled as either SPARSE or NONSPARSE. A line labeled as NONSPARSE satisfies neither of the conditions in Section 3. NONSPARSE lines usually cover the following document components: document title, abstract, paragraphs, etc. SPARSE lines cover other specific document components entirely/partially:
tables, mathematical formulas, texts in figures, short headings, affiliations, document headers and footers, and references, etc.

Even though sparse lines cover almost all table lines, a few non-table lines mingle in. Removing these noise lines can facilitate the table boundary detection efficiently. Therefore, for the labeled SPARSE lines, we label them as the following six categories: CAPTIONSPARSE, HEADINGSPARSE, FOOTNOTESPARSE, REFERENCESPARSE, HEADERFOOTERSPARSE, and OTHERSPARSE. CAPTIONSPARSE refers to a line that is the first line of a table caption or a figure caption. HEADINGSPARSE marks short document headings. Usually the lines labeled with the HEADINGSPARSE or the CAPTIONSPARSE, or FOOTNOTESPARSE only satisfy the second condition mentioned in Section 3. To label a line with these labels, additional features should be considered. For HEADINGSPARSE lines, the font size and type are the key features. For CAPTIONSPARSE lines, we should examine whether the line starts with the defined keywords or not (e.g., Table or Figure). For FOOTNOTESPARSE lines, the specific starting symbol is the most important factor. To identify the HEADERFOOTERSPARSE lines, checking the Y-axis coordinate is key. Although a large part of lines with these labels also exist in non-sparse line group, we can easily zoom in the table boundary into the last category OTHERSPARSE by removing such lines from sparse line set with this method.

6.3.4 Feature sets

Wise choice of features is always vital to the final results. The feature based statistical model CRFs reduce the problems to finding an appropriate feature set. This
section outlines the main features used in these experiments. Overall, our features can be classified into three categories: the orthographic features, the lexical features, and the document layout features. Instead of the features about white space and separators in [21], we emphasize the layout features.

6.3.4.1 Orthographic features

Most related works treat the vocabulary as the simplest and most obvious feature set. Such features define how these input data appear (e.g., capitalization etc), based on regular expressions as well as prefixes and suffixes. Because the line layout is much more important than their appearance for our line labeling problem, we do not have to consider so many orthographic features as they did. Our orthographic features include: InitialCaptical, AllCaptical, FontSize, FontType, BoldOrNot, HasDot, HasDigital, AllDigital, etc.

6.3.4.2 Lexical features

The lexical features includes: TableKwdBeginning, FigureKwdBeginning, ReferenceKwdBeginning, AbstractKwdBeginning, SpecialCharBeginning, DigitalBeginning, SuperscriptBeginning, SubscriptBeginning, LineItself.

6.3.4.3 Layout features

Our crucial features come from the layout perspective. The layout features include: LineNumFromDocTop, LineNum-ToDocBottom, NumOfTextPieces, LineWidth,
CharacterDensity, LargestSpaceInLine, LeftX, rightX, MiddleX, DisToPrevLine, DisToNextLine. Table 1 lists the detailed description for every layout feature.

<table>
<thead>
<tr>
<th>Document Layout Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LineNumFromDocTop</td>
<td>Index number from the page top</td>
</tr>
<tr>
<td>LineNumToDocBottom</td>
<td>Index number to the page bottom</td>
</tr>
<tr>
<td>NumOfTextPieces</td>
<td>Number of text pieces</td>
</tr>
<tr>
<td>LineWidth</td>
<td>Width of the line</td>
</tr>
<tr>
<td>CharacterDensity</td>
<td>LineWidth/Number of characters</td>
</tr>
<tr>
<td>LargestSpaceInLine</td>
<td>Largest space within the line</td>
</tr>
<tr>
<td>LeftX</td>
<td>X-axis value of leftmost line end</td>
</tr>
<tr>
<td>EndX</td>
<td>X-axis value of rightmost line end</td>
</tr>
<tr>
<td>MiddleX</td>
<td>X-axis value of middle point</td>
</tr>
<tr>
<td>TheDisToPrevLine</td>
<td>Vertical gap to the previous line</td>
</tr>
<tr>
<td>TheDisToNextLine</td>
<td>Vertical gap to the next line</td>
</tr>
</tbody>
</table>

6.3.4.4 Conjunction features

So far all the previous features are described over a single predicate. In order to capture relationships that a linear combination of features cannot capture, we look at the conjunction of features. CRFs provide the function to determine the label of a line by taking into account information from another line. In our work, we set the window size of features as -1, 0, 1 to conjunct the current line with the previous line and the following file. In order to avoid the overflowed memory and exacerbated overfitting generated by the all possible conjunctions and only generate those feature conjunctions with significant improvement functions, we turn to feature induction as described in [65]. We start with no feature and choose new features interactively. In each iteration, we evaluate some sets of candidates using the Gaussian prior, and add the best ones into the model.
6.4 Line Construction in PDFs

Different from most CRF applications, the unit of our problem is a document line, instead of a single word. Before classifying the document lines, we have to construct the lines first. To construct the document lines, we deal with the PDF source file character by character as well as the related glyph information through analyzing the text operators1. Adobe’s Acrobat word-finder provides the coordinate of the four corners of the quad(s) of the word. The PDFlib Text Extraction Toolkit (TET) also provides the function to extract the text in the different levels (character, word, line, paragraph, etc.). However, it only provides the content instead of other style information in all the levels except the character level. If we want to do some further work, content itself is usually not enough. We have to calculate the corresponding coordinates for the higher levels by merging the characters. Similar to Xpdf library, we adopt a bottom-up approach to reconstruct these characters into words then lines with the aid of their position information and saves the results. To convert characters into words then lines, we adopt some heuristics based on the distance between characters/words. For each document page, we construct lines according to their internal word relative position information and width. Within a same word, different characters have the same font properties. However, within a same line, font diversity may exist among different words (e.g., the superscript, the subscript, or mathematical symbols). The main unique place of our method is that we only analyze the coordinate information. Font information, the frequently adopted parameter, is not used in our method as the rule to decide whether merge the next word into the same line.

1PDF Reference Fifth Edition, Version 1.6
or not. Therefore, the font information does not affect the performance of the sparse line detection.

Table 6.3. The parameter thresholds we adopted for word reconstruction

<table>
<thead>
<tr>
<th>P</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>the vertical distance between two top Y-axis values: (\alpha = Y_{i+1} - Y_i)</td>
</tr>
<tr>
<td>β</td>
<td>the vertical distance between two bottom Y-axis values: (\beta = Y'_{i+1} - Y'_i)</td>
</tr>
<tr>
<td>γ</td>
<td>the horizontal distance between these two characters: (\gamma = X_{i+1} - X'_i)</td>
</tr>
<tr>
<td>δ</td>
<td>the vertical distance of two characters</td>
</tr>
<tr>
<td>θ</td>
<td>the maximal width of the space with a word</td>
</tr>
<tr>
<td>η</td>
<td>the maximum vertical distance between two characters in a same line</td>
</tr>
</tbody>
</table>

Formally, we define a document as a set of pages \(D = \bigcup_{k=1}^n (P_k) \), where \(n \) is the total page number. Each page \(P_k \), can be denoted as an aggregation of characters \(C \in \{ \text{Character} \} \). \(c_i \) and \(c_{i+1} \) are a pair adjacent (no other character exists between them) characters. Initially, we get the coordinate of the first character \(c_0 \) in a document page. All the characters in \(C \) share a common set of attributes \(\{(X, X'), [Y, Y'], W, H, F, T)\} \), where \([X, Y] \) is the pair of coordinators of the upper-left corner of the character while \([X', Y'] \) is the coordinates of the bottom-right corner of the character. The original point of the X-Y axes is the left-bottom corner of a document page. \(W/H \) denotes the width/height of the component, \(F \) is the font size, and \(T \) is the text. Figure 6.4 shows the coordinates of an example character. not use the font size because in many journals and archives, the font information (the font type and the font size) is not so standard.
as we imaged. Considering such unreliable information will incur more error to the final results.

Fig. 6.4. The coordinates of a character in a PDF document page.

Since the character C is the fundamental component of a document, other components can be constructed recursively from it. For example, a document page P_k can be denoted as an aggregation of words $W = \{w_j \mid w_j = ([X_{w_j}, Y_{w_j}]), ([X'_{w_j}, Y'_{w_j}]), W_{w_j}, H_{w_j}, F_{w_j}, T_{w_j}\}$. A document word w_j is equal to $\cup_{i=1}^{m} c_i$, where m is the total number of characters in the word w_j. Figure 6.5 enumerates all the relative positions of a pair of adjacent characters c_i and c_{i+1}. Their coordinates are $([X_i, X'_i], [Y_i, Y'_i])$ and $([X_{i+1}, X'_{i+1}], [Y_{i+1}, Y'_{i+1}])$ respectively. For the word reconstruction, we define several parameters and thresholds, which are listed in Table 2:

Figure 6.5 (a) presents a common character pair in the same line. $Y_{i+1} = Y_i(\alpha = 0)$ and $Y'_{i+1} = Y'_i(\beta = 0)$. If γ is smaller than a given threshold θ, the second character
c_{i+1} can merge with c_i into a same word. Otherwise, we treat c_i as the last character of the current word and c_{i+1} as the starting character of a new word.

Figure 6.5 (b) – (e) display several examples of the same-line character neighbors with partial vertical overlaps. Superscript is a typical case of Figure 6.5 (b) while subscript is a typical case of Figure 6.5 (c). Figure 6.5 (d) and (e) show the font size changing within a document line. All these character pairs are also same-line characters. Every case has to satisfy some fixed conditions as follows: \(Y_{i+1} \geq Y_i \geq Y'_{i+1} \geq Y'_i \) (Figure 6.5 (b)), \(Y_i \geq Y_{i+1} \geq Y'_i \geq Y'_{i+1} \) (Figure 6.5 (c)), \(Y_{i+1} \geq Y_i \geq Y'_i \geq Y'_{i+1} \) (Figure 6.5 (d)), and \(Y_i \geq Y_{i+1} \geq Y'_i \geq Y'_{i+1} \) (Figure 6.5 (e)). For these cases, we decide whether \(c_i \) and \(c_{i+1} \) go into the same word or not, by comparing \(\gamma \) with the same threshold \(\theta \).

To analyze the character pairs in Figure 6.5 (f) – (h), we introduce another threshold \(\eta \): the maximum vertical distance between two characters in a same document line.
In 6.5(f), the fixed constraint is $\delta = (Y'_{i+1} - Y_i) > 0$. In Figure 6.5(g) and (h), the fixed constraint is $\delta = (Y'_i - Y_{i+1}) > 0$. If $\delta > \eta$, C_i and C_{i+1} will belong to different lines. Otherwise, we treat them as the character neighbors in a same line and decide whether they go to the a same word. Starting a new document column in a page is a typical example with large γ for case f, and starting the next line is a typical example with large but minus γ for case h. Using the Table 1 in Figure 6.2 as the example, we show the merged words in Figure 6.6. Each red rectangle refers an independent word.

<table>
<thead>
<tr>
<th>Table 1: Quantitative performance of the proposed method for the determination of binary mixtures of DDAS and NAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured parameter</td>
</tr>
<tr>
<td>$\Delta A - (C M / C_0)$</td>
</tr>
<tr>
<td>ΔA</td>
</tr>
</tbody>
</table>

Fig. 6.6. The merged words in a table after the character \to word phase

Now a document page p_k can be denoted as an aggregation of words W. Similar to the characters, we can also treat words as rectangle objects in a document page. The coordinate nature of characters in the previous section is also applicable to the words. For a pair of word neighbors, w_i and w_{i+1}, the possible relative locations are same of the cases listed in Figure 6.5. Using the concept in Section 5.1, we should treat the word here as the character there and treat the text piece here as the word there. We believe that in the non-sparse lines, all the words can be merged into one piece. The parameters
and the thresholds in Table 2 can be reused with only the value resets of γ and θ. Still using the Table 1 in Figure 6.2 as the example, we show the merged lines in Figure 6.7.

After the combination, we check the number of text pieces in each line along the Y-axis sequence, if the number is larger than one, we label this line as the sparse line. If the number is one but it satisfy the first condition in Section 3, we also treat it as a sparse line. Still using the Table 1 in Figure 6.2 as the example, we show the merged lines in Figure 6.7. For all the eight lines, the number of text pieces are $1, 1, 1, 1, 5, 5, 4, 1$ respectively. We treat line 5, 6, and 7 are sparse lines because they contain more than one text piece. We also treat the line 3 and 4 as sparse lines because of the small width.

<table>
<thead>
<tr>
<th>Measured parameter</th>
<th>β_1 or $\beta_3 \pm \delta$</th>
<th>$\beta_2 \pm \delta$</th>
<th>r^a</th>
<th>$s_{y/x}^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 - (C_M/C_i)$</td>
<td>0.253 \pm 0.007</td>
<td>0.173 \pm 0.004</td>
<td>0.997</td>
<td>1.1 \times 10$^{-2}$</td>
</tr>
<tr>
<td>ΔA</td>
<td>0.059 \pm 0.001</td>
<td>0.998</td>
<td>1.6 \times 10$^{-3}$</td>
<td></td>
</tr>
</tbody>
</table>

aCorrelation coefficient ($n = 20$). b Standard deviation of residuals.

Fig. 6.7. The merged lines in a table
6.5 Detecting the table boundary based on the keywords

After the sparse line detection and noisy line removal, we can easily detect the table boundary by combining the lines labeled as *OTHERSPARSE* with the table keywords. Here we define the main table content rows as the table boundary, which does not have to include the table caption and the footnote. In order to enhance the performance of the table starting location detection, we consider the keyword information. We can directly detect the table boundary by detecting the tabular structure within the sparse line areas.

In our method, we define a keyword list, which lists all the possible starting keywords of table captions, such as “Table, TABLE, Form, FORM,” etc. Most tables have one of these keywords in their captions. If more than one tables are displayed together, the keyword is very useful to separate the tables from one another. Once we detect a line (not only the sparse line) starting with a keyword, we treat it as a table caption candidate. Then we check other lines that are located around the caption and merge them into a sparse area according to the vertical distances between adjacent lines. Such sparse-line areas are the detected table boundary. The vertical distance is the key feature to filter out most remaining noise lines. Because the texts within the detected table boundary will be analyzed carefully in the later table structure decomposition phase, we treat *recall* more important than *precision* here. Once we locate the table boundary, we check this area and try to retrieve the long table lines that are labeled as non-sparse lines to improve the *recall*.
Chapter 7

Topic V: Table Structure Decomposition

7.1 The text Fixing the Sequence Error of the Sparse Lines

Tables, as a specific document component, are ubiquitous. To thoroughly analyzing the table content, locating the table boundary in a document is the first and crucial step for consequent applications (e.g., the table search). Because most of the tables in scientific documents are text-based tables, solely analyzing the text objects in a PDF file can achieve good performance in terms of saving efforts on other objects. However, existing text extraction tools face a common problem: the extracted text pieces follow a different sequence from its original appearance in PDF files. Although the wrong sequence does not affect the PDF documents displaying for browsing purpose, it can severely interfere the document content analyzing works that rely on the information of the relative location and sequence among the text pieces. Table boundary detection is a typical example. In order to improve the accuracy of the table boundary detection, we need to recover the extracted text sequences to the orders that comply with the human's reading habit. The sequence errors can be classified into two types: within-table errors and beyond-table errors. In this paper, we propose two text sequence recovering algorithms to fix them. Our algorithms start with the detected sparse lines in each PDF page and detect the table boundaries by analyzing the sparse areas and the caption information. If interested, the details can be found in [57] and [58].
7.1.1 The text sequence problem

Given a PDF document page, the human reading sequence is usually top-down, left-to-right, and line by line, column by column. Particularly, some document components in the page may cross multiple document columns, such as the document title, the affiliation, some wide tables and figures. Although the text extraction tools can extract all the text information from a PDF page, the sequence of the exported texts may not reflect the human reading ordering. The text sequence error is a common problem shared by existing text extraction tools (e.g., PDF2TEXT, PDFBOX, TET, PDFTextStream). Such text sequence error happens frequently in the table contents, which may generates serious wrong results during the table detection, such as segmenting a table into several pieces, wrong column/row information, and omitting cells/whole tables etc. Some of the errors can be fixed with complex post-processing while others can not. According to the scope of the text sequence errors, we category them into two classes: **inside-table** text sequence error and **beyond-table** text sequence error.

Figure 7.1a provides an example of the **inside-table** text sequence error. The text extraction tools export 33 sparse lines in such a sequence: “Content (% m/m)”, “Proposed method”, “Peak Peak”, “Sample Element height area”, “Low melt Ag 43.9 44.1”, “0.5 2.4”, “Cu 15.6 15.2”, “2.7 1.8”, “Sample No.318+ Ag 25.7 25.2”, “Cu 34.4 33.7”, “2.3 1.3”, “2.1 2.1”, “Reference”, “Flame value”, “AAS (%m/m)”, “45.1 44.46”, “15.3 14-16”, “25.7≈25”, “34.8≈35”, “1.1”, “2.5”, “1.4”, “2.5”. The sequence is: the first four columns, then the last two columns. Moreover, within the same column, the ordering of rows does not exactly follow the top-down manner. In this type, the errors
Fig. 7.1. Two examples of the text sequence errors
In beyond-table text sequence error, the table lines are partitioned into at least two parts by non-table lines. The text extraction tools usually export a part of the table content first, jump to another document area and process it, and then come back to finish the rest of the table sections. Such alternation happens at least once. Figure 7.1b shows an example: the text extraction tools output the table caption first on the second document column, then jump to the first document column on the left and process some scattered texts in the figures. After telling the figure caption, they come back to the table area. Sometimes, the tools extract several table columns then jump to other areas (e.g., the following regular document contents) to finish several lines or paragraphs, then return to the table data again. With such beyond-table text sequence errors, collecting all the table cells is a challenging task because it is difficult to predict how far the distances are among different table parts.
In order to accurately collect the table cells from a page and recover the sequence, resorting the texts in the page is one approach. B. Yildiz et al. mentioned the similar idea in [99] but without any detail about the methodology and the performance. Other proposed approaches [13] exploit geometric or typographic features of the page objects, and go further in exploiting the content of object. X-Y cut approach is a representing method. However, its performance is not satisfying. Moreover, these proposed works need to process both sparse lines and non-sparse lines. The more non-sparse lines involve, the higher possibility errors incur.

7.1.2 Text sequence recovering algorithms

To fix the text sequence error problem, we propose two methods to resort the detected sparse lines within a given area. For the inside-table text sequence errors, the area is the table itself. For the beyond-table text sequence errors, the area is the whole page. Some pages have multiple document columns, whether considering such
information or not may generate different results for different cases. In this paper, we try both of them and analyze their advantages/disadvantages.

7.1.2.1 Algorithm 1: Considering the document column information

The recovering procedure includes two parts: the cross-column resorting, and the within-column resorting. Here the column refers to the document column instead of the table column. How to get the document column information is out of scope of this paper. We adopt an easy but effective method by calculating the average length of the non-sparse lines then comparing with the document width. For the inside-table text sequence disordering, we only implement the within-column resorting. For the beyond-table text sequence disordering, we have to implement both resorting ways.

In the cross-column resorting, \(SL \) denotes the set of all the sparse lines in a document page: \(SL = \bigcup_{i=1}^{m} \{ l_i \} \). For a document column \(CO_k \), its beginning and ending X-axes values are \(X_{co_k} \) and \(X'_{co_k} \). Each column has a vector \(v \) to store its sparse lines. Initially, the vector is empty. For each sparse line, we compare its X-axis coordinates with document columns and append it in the matched vector \(v \), if applicable. Some sparse lines may cross several document columns. Such lines usually are lines in cross-column tables/figures or long document titles or affiliations, etc. We record such lines in another vector \(v_{cc} \).

In the within-column resorting part, the inputs include the filled vector \(V \) and \(V_{cc} \). The output is a new vector \(V_{sorted} \), which stores all sorted sparse lines. For each document column \(CO_k \), we get all the Y-axis values from the sparse lines in vector \(v_k \). Among these Y-axis values, we identify all the non-duplicated values and sort them, and
Algorithm 2: Sorting sparse lines across the document columns

Input: All sparse lines $SL = \bigcup_{i=1}^{m} s_{li}$ in a page
Input: the information of Document columns $CO = \bigcup_{k=1}^{p} c_{ok}$. The sparse lines that are located in the column c_{ok} will be stored in the corresponding vector v_k
Input: a vector V_{cc} to store the cross-column sparse lines. $V_{cc} = \emptyset$

1. begin
 2. foreach $sl_i \in SL$ do
 3. $x_{sl_i} \leftarrow$ the starting X-axis of sl_i;
 4. $x_{sl_i}' \leftarrow$ the ending X-axis of sl_i;
 5. while the next document column c_{ok} exists do
 6. $x_{co_k} \leftarrow$ the starting X-axis of c_{ok};
 7. $x_{co_k}' \leftarrow$ the ending X-axis of c_{ok};
 8. if $(x_{co_k} \leq x_{sl_i} < x_{sl_i}' \leq x_{co_k}')$ then
 9. $v_k = v_k + s_{li}$;
 10. break;
 11. if sl_i fits no document column then
 12. $v_{cc} = v_{cc} + s_{li}$;
13. end

store them in a new vector V_y. With these Y-axis values, we sort all sparse lines in vector v_k accordingly. This method works well for the tables that are located within one document column (e.g., the table in Figure 7.1b). However, for the wide tables that cross more than one document column (see Figure 7.2a), this algorithm may generate errors because it is difficult to know which lines should cross the document columns in advance.

If there are overlaps between the table column spaces and the document column spaces, this method will segment a whole table into at least two parts. Although some table lines may block the document column space, it is difficult to identify the last line of the table.
7.1.2.2 Algorithm 2: Without considering the document column information

To deal with the above special cases, we propose another text sorting algorithm without considering the document column information at the beginning. The algorithm has four steps: 1) obtaining all the non-duplicated Y-axis values of the sparse lines within an area; 2) sorting these Y-axis values from the top to the bottom; 3) ordering all the sparse lines in the area according to the sorted Y-axis values; 4) exporting the sparse lines in the area orderly. For the inside-table text sequence error problem, the area is the table itself. For the beyond-table text sequence error problem, this algorithm works better for the wide tables because the area refers to the whole page. All the sparse lines of cross-column tables will be exported out uninterruptedly. The high-risk case of this algorithm is the parallel tables. Parallel tables mean two tables that are located within two adjacent document columns and both tables have overlap Y-axis areas (see Figure 7.3a). Such cases happen very infrequently. In addition, they can be fixed easily by considering the width and the location of table captions.

7.1.2.3 Detecting the Table Boundary based on the sorted sparse lines

With the sorted sparse lines, we detect the table boundary by combining the table caption information. We define a keyword list, which lists all the possible starting keywords of table captions, such as “Table, TABLE, Form, FORM,” etc. Each table caption starts with a keyword. If more than one table is displayed together, the keyword is very useful to separate the tables from each other. At the beginning, we check all the lines (not only the sparse line) in a page. Once we detect a line starting with a keyword,
Algorithm 3: Sorting sparse lines within a document column

Input: \(V, V_{cc}, V_y, V_{sorted} \)

1. \(\text{foreach } v_k \in CO_k \text{ do} \)
2. \(V_y \leftarrow \text{all the Y-axis values in } v_k; \)
3. \(V_y \leftarrow \text{all the non-duplicated objects in } V_y; \)
4. \(V_y = V_y - V_{cc}; \)
5. \(\text{sorted}(V_y) \text{ ascendingly;} \)
6. \(\text{foreach } Y_q \in V_y \text{ do} \)
7. \(\text{foreach } sl_i \in V_k \text{ do} \)
8. \(\text{if } Y_{sl_i} == Y_q \text{ then} \)
9. \(V_{sorted} += sl_i; \)
10. \(V_k -= sl_i; \)

11. sort lines in \(V_{cc} \) according to Y-axis;
12. insert \(V_{cc} \) into \(V_{sorted} \) according to Y-axis;

we treat it as a table caption candidate. Then we check the subsequent sorted sparse lines and merge them into a sparse area, according to the vertical distance between the lines. Different table captions provide different hints and restraints on whether we include the cross-column sparse lines or not.

If a table caption starts in the second document column (e.g., the right table in Figure 7.3a), the table boundary can not span the first column. If a table caption satisfies one of the following conditions, it is a cross-column table: 1) the width of the table caption is larger than the document column width; 2) the starting X-axis value of the caption is on the right of the midpoint of the first document column. Once we confirm a table as a cross-column table, we treat each Y-axis value as a table row. Otherwise, every table row can only include the sparse lines within the current document column. Because we will zoom in and analyze the detected table boundary carefully in the later table structure decomposition phase, we treat recall more importantly than precision by accepting false positive table boundary contents.
If a table caption is shorter than the document column width, and its beginning position aligns with that of the first document column (see the table caption in Figure 7.2), it is difficult to judge whether this table a cross-column table or not. For such a case, we assume it as a single-column table initially, after figure out the document column where the caption belongs to, we check the same Y-axis area in the next document column. If this area is also a sparse area, we merge the new area into the table boundary and treat this table as a cross-column table. Once we find a new table caption in the new area, it indicates the existing of parallel tables.

7.2 Table Structure Analyzer

The input of the table structure analyzer is the detected table boundary with starting position of a table candidate. The text sequence error problems have already fixed by the methods in [ICDAR2009]. Existing text extraction tools face a common problem: the extracted text pieces follow a different sequence from its original appearance in PDF files. Although the wrong sequence does not affect the PDF documents displaying for browsing purpose, it can severely interfere the document content analyzing works that rely on the information of the relative location and sequence among the text pieces. Table boundary detection is a typical example. In order to improve the accuracy of the table boundary detection, we proposed recover the extracted text sequences to the orders that comply with the human’s reading habit. We analyze each text piece in the table boundary. From the layout position perspective, each line must satisfy one of the following five cases:
• Case 1: Current row, the next column;

• Case 2: The next row, the first column;

• Case 3: The next line in the current cell;

• Case 4: The line of table caption;

• Case 5: The line of table footnote;

For Case 1 and Case 2, we further divide them into the following three different types according to the cell alignment: Type a: Normal cell; Type b: Nested cell; Type c: Spanned cell; Figure 7.4 shows an example table with all the cells and their corresponding scenarios.

![Table 3](image)

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
<th>Case 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 1a</td>
<td>C 1a</td>
<td>C 1a</td>
<td>C 1a</td>
<td>C 1a</td>
</tr>
<tr>
<td>C 1c</td>
<td>C 1b</td>
<td>C 1b</td>
<td>C 1c</td>
<td>C 1b</td>
</tr>
<tr>
<td>C 1a</td>
<td>C 1a</td>
<td>C 1a</td>
<td>C 1a</td>
<td>C 1c</td>
</tr>
</tbody>
</table>

Note: Table 3 (Case 5)

Fig. 7.4. An example table with all the cell scenarios

Our table structure analyzer proves/denies each table candidate box by recognizing the table structure and matching each text piece in table candidate box into one of above cases. The detailed table structure decomposition is not a main topic of this paper. Actually, the extracted table metadata is the input of our table classification.
Chapter 8

Interface Designing

In order to facilitate the browsing of results, TableSeer provides a user-friendly interface to present the sorted results. Figure 8.1 shows a screen shot of the search result interface generated by the TableSeer. For each matched table, we list the table-related information (e.g., table caption, table column heading), the basic document information (e.g., the document title, author, and affiliation), as well as the table location information in the document. We also highlight the referenced text to the table in the document. Users are enabled to view the snapshot of the matched tables. Once clicked, table information is enlarged for better visualization. If they want to read the whole document further, they can open the original whole PDF document. The users can specify a fielded query via the query interface of TableSeer (See Figure 8.1). For example, for a given query Q (e.g., “water sample” in Figure 8.1), if the user specifies the query term location, e.g., the metadata “Table Caption,” the query term will only be filled in the metadata “Table Caption” columns.

TableSeer offers two levels of searches: basic searches and advanced searches. A basic search allows a search with simple keywords and then the matched results are returned in ranked order. For advanced searching, users can set more complex queries (see Figure 8.2). Unlike the current search engines that index and check whole documents, TableSeer indexes and checks only the table metadata files.
Fig. 8.1. The Query Interface of TableSeer system based on RSC repository
Fig. 8.2. An Example of the Advanced Search Interface
Fig. 8.3. The Query Interface of TableSeer system in CiteSeerx
Chapter 9

Quantitative Study

9.1 Introduction

Although tables are widely used, there is not a standard on the table structure design. There are many issues that go into the design of tables and will impair the table data readability, accessibility, and reusability. Unfortunately, most issues are ignored. Designers often feel that they have carte blanche to use tables as they will to layout web pages and document pages. The main reason can be traced back to the beginning of the table appearance. At that time, people adopts tables just for a concise information presentation and a better data readability. How to facilitate an accurate table structure decomposition and an efficient table data sharing is out of consideration at that moment.

Most publishers do give guidelines on the table format, e.g., the “Figures and Tables” section in the IEEE Paper style file. However, such guidelines usually only give suggestion on the table caption location and the text font size (e.g., IEEE defines that “Tables must be numbered using uppercase Roman numerals. Table captions must be centered and in 8 pt regular font with small caps. Every word in a table caption must be capitalized except for short minor words. Captions with table numbers must be placed before their associated tables”). No guideline is given on the table structure and layout. Authors can design the tables as a go-as-you-please job. Different people may design different table structures.
We processed more than two million scientific documents in digital libraries from several fields, such as computer science, chemistry, archeology, etc. After processing these documents and extracted approximately one million PDF tables from the English documents in three fields: CiteSeer repository in computer science field, RSC repository in chemistry, and archeology journals, we noticed that the table diversity is a very important but easily ignored phenomenon. In order to have a better table extraction performance, we have to have a deep understanding on the nature of tables in digital libraries. To the best of our knowledge, no table characterization is implemented.

This section has the following contributions: 1) we processed the largest scientific table collection in scientific PDF format, which is an overlooked document format in table analysis field; 2) we implemented the largest quantitative study on tables in scientific digital libraries, from not only the table layout and structure but also the document background and table location perspectives. 3) Based on the results of table quantitative study, we evaluate the performance of our TableSeer system as well as each part (e.g., table boundary detection, table structure decomposition, etc). 4) Combining the results of table quantitative study and the TableSeer performance evaluation, we try to classify tables in the structure level. According to a set of features, we defined well-designed tables and bad-designed tables.
9.2 Table Characterization

9.2.1 Table Terminology

Before elaborating the table characterization and the quantitative study, we first introduce the common table terminologies, which will be used in this section.

The famous Wang’s model is shown in Figure 9.1. He defined the terminology for the parts of a table (such as Stub/box head, Stub header, Boxhead, Column, Row, Cell, Box, Stub separator, and Boxhead separator) represented as a row column structure. Most terminologies are inherited from The Chicago Manual of Style except the Stub header and block.

Fig. 9.1. The terminology of row-column structure presentational structure of tables of Xinxin Wang
Because many tables have irregular structures generating by the nesting cells or missing boundary lines. People may have different opinions on the definition of cells. Two definitions are proposed: virtual cells and real cells. Virtual cells refer to the smallest rectangles obtained by extending all the borders between real cells up to the bounding box of the entire tables. Real cells are composed of one or several virtual cells and are not necessarily rectangles.

The simplest tables are regular matrices of cells: all the cells of a row have the same height and all the cells of a column have the same width. The borders of all the cells are marked by graphic lines. However, very few tables follow such a strict prescription. Many tables can be much more complex, such as: 1) Regarding the physical layout, we can often notice some over-expanded tables: the presence of cells extending over several rows or columns (see Figure 9.2 d); 2) only a few of the borders are marked by graphic lines (see examples in Figure 9.4); 3) Not all the cells are filled (Figure 9.6); 4) A partitioned table: the table with a multi-dimensional structure can be treated as a combination of several tables (Fig. xxxxx); 5) Huge tables with extremely large width/length; 6) tables with specific cell types, e.g., figures, formulas, etc (please see Figure 9.2 b). To better understanding tables, we analyze them from the following perspectives.

9.2.2 Perspectives

Table Location: we define the table location as the first place where authors introduce the table in the document. In order to evaluate all the table locations with
consistent terms, we take advantage of the basic section headings in most scientific documents. Comparing with the IMRAD\(^1\) (Introduction, Materials and Methods, Results, and Discussion) model, we combine “Results” and “Discussion” together and add two additional sections: “Background” and “Conclusion” because some authors may use tables to compare the related works. Table 9.1 shows examples of typical section headings for each section.

<table>
<thead>
<tr>
<th>Background</th>
<th>Introduction/ Motivation/ Background/ Scenario/Related work/ Related approach/ Previous work/ The state of the art/ ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Approach/ Framework/ Model/ System overview/ Methodology/ Concept/ Algorithm/ Proposed method/...</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>Performance evaluation/ Experiments/ Experimental result/ Dataset/ Analysis/...</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Summary/Conclusion/ Future work/...</td>
</tr>
</tbody>
</table>

Table Sizes: we classify table size into two categories: Cross-column vs. Single-column tables. Figure 9.2 shows several table examples with diverse sizes. A table is a cross-column table if it satisfies both the following two requirements: 1) the width of table is larger than the half of the document width; 2) the table spans at least one space between two document columns (e.g., Figure 9.2 d). Otherwise, this table is a single-column table. We can also call them as wide table and narrow table. In this study, we concern more about the table size for better table displaying and representation. If a table is a cross-column table with a very large width, we should consider whether we

\(^1\)http://www.infotech.oulu.fi/GraduateSchool/ICourses/2006/phd/structure.pdf
need to modify such a page-width table to a single-column width table for the PDA displaying purpose.

Table Caption Location: According to the location of the table caption, there are two types: *top caption* and *bottom caption*. Although most guidelines suggest authors to put table caption above the table body, there are still many tables that the caption is below the table body. Different tables may have different caption locations even within a same document (see Table 5 and 6 in *Figure 9.3 a*). Such inconsistent caption locations heavily impair the performance of the table boundary detection. In addition, some tables have no caption (see *Figure 9.3 c*) or wrong captions (see *Figure 9.3 e*) at all.

Table Caption Size: A meaningful table caption is very important for future table understanding and semantic analysis. *Figure 9.3* shows several table examples with diverse caption sizes. If a caption is very simple (e.g., “Table 1: Experimental results.”), it can not provide readers with any quick idea about the table content. On the other hand, some tables have extremely large captions, which even span more than a whole document page (see *Figure 9.3 d*). We also dislike such large captions because they will bring difficulty to the table caption detection. We have to judge whether it is a real table caption or a regular document paragraph.

Frames and separator lines: *Figure 9.4* shows the typical examples with different frames and separator lines. From the table structure decomposition perspective, we welcome tables with complete frames and separator lines for each cell (e.g., *Figure 9.4 a*). However, most tables miss a part of the lines. For example, some journals/proceedings have their specific requirements (e.g., most journals in chemistry field only require horizontal lines, see *Figure 9.4 c, d, e*). *Figure 9.4 b* only uses vertical
membrane NCAMs lend themselves to facile storage and regeneration.

0.118 M Na₂SO₄, 0.68 M 37% formaldehyde in water, and 0.007 M Oromerse gold solution, part B. The membranes were

Table 1: Names and sequences of modified oligonucleotides used

HS-(7)TET-Dy	5′-Cy5-ACCTCATTAGGAAGATGTGCCTTTT-3′
Dy-(7)TET-F1	5′-Fluorescin-ACTCACTTATAGGAAGATGTGCCTTTT-3′
(7)TETSuc-cy5	5′-Cy5-ACCTCATTAGGAAGATGTGCCTTTT-3′
(7)TETSuc-Alexa546	5′-Alexa546-ACTCACTTATAGGAAGATGTGCCTTTT-3′

Table 2: Conditions for the in situ derivatization of different alkyl halo samples

- Primary alkyl iodide
- Primary alkyl bromide
- Primary alkyl chloride
- Secondary alkyl halide

Reflex with excess of thios in N HCl of 89% ethanol for 90 min.

Reflex with excess of thios in N HCl of 89% ethanol for 90 min.

Reflex with iodine for 90 min.

Primary alkyl bromide

Reflex with excess of thios in N HCl of 89% ethanol for 90 min.

Primary alkyl chloride

Reflex with ethyl iodine for 90 min.

Secondary alkyl halide

Reflex with excess of thios in N HCl of 89% ethanol for 90 min.

Table 3: Identifiers and ordering of the “perfect” clusters.

- 1: DT determiners
- 2: NP proper nouns
- 3: V verbs
- 4: N nouns

Table 4: Compressed Base Table: After star reduction.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
<td>1</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c2</td>
<td>d2</td>
<td>2</td>
</tr>
</tbody>
</table>
Fig. 9.3. Table examples with different captions

Table 3 shows the image compositing results.

<table>
<thead>
<tr>
<th></th>
<th>im-off</th>
<th>xr-on</th>
<th>xr-off</th>
<th>gl-on</th>
<th>gl-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>over</td>
<td>3.809</td>
<td>3.870</td>
<td>3.850</td>
<td>0.109</td>
<td>0.107</td>
</tr>
<tr>
<td>scale</td>
<td>16.444</td>
<td>85.504</td>
<td>86.924</td>
<td>0.126</td>
<td>0.132</td>
</tr>
<tr>
<td>blend</td>
<td>4.349</td>
<td>73.222</td>
<td>69.613</td>
<td>0.264</td>
<td>0.263</td>
</tr>
<tr>
<td>blur</td>
<td>26.499</td>
<td>-</td>
<td>-</td>
<td>3.087</td>
<td>3.078</td>
</tr>
</tbody>
</table>

Table 3: Seconds to complete composite test (lower is better)

(a)

(b)

(c)

(d)

(e)

1. Polynomials with real random coefficients, of degrees 10000 and 10000.
2. Polynomials with complex random coefficients, of degree 10000, 100000 and 100000.
3. Exponential polynomials $\sum_{i=0}^{n} a_i x^i$ for some degrees of 101, 150, 100.

where d is the degree of the polynomial and a_i the starting value for the iterate, A is the number of iterations to compute one result. N is the total time of the computation. These experimentations have been performed on a Dec workstation with 4MB of local memory.

![Table examples with different captions](image-url)
lines to separate columns. Figure 9.4 i only has lines outside the table boundary as well as Figure 9.4 f only has lines within the table boundary. Figure 9.4 g does not have any frame and separator line at all.

Cell Alignments: this attribute specifies the alignment of data and the justification of text in a cell. It includes *horizontal alignment* and *vertical alignment*. For the table structure decomposition goal, *horizontal alignment* is much more important than *vertical alignment*. Figure 9.5 displays several examples.

For the horizontal alignment, the possible values are: left (Left-flush data/Left-justify text, See Figure 9.5 a), center (Center data/Center-justify text, such as Figure 9.5 d), right (Right-flush data/Right-justify text, see the last column in Figure 9.5 d), justify (double-justify text), and character (align text around a specific character, e.g., the dot character of numerical cells or the operators of the mathematical formula, see the numerical cells in Figure 9.5 b). Left is the default value for table data and right is the default value for table headers.

Vertical alignment specifies the vertical position of the data within a cell. The typical values are: top (cell data is flush with the top of the cell), middle (cell data is centered vertically within the cell), bottom (cell data is flush with the bottom of the cell), etc. Middle is the default value.

Cell Types: Table cells can record different objects. From the structure view, table cells can be divided into *atomic cells* and *composite cells*. A *composite* cell is composed by several *atomic* cells. We call it *cross-column* or *cross-row* cells (please see examples in Figure 9.7). Besides those typical objects, such as texts and numerical data, some specific object types may also appear in table cells. For example, in the
Table 3: Mean Collection Statistics Across All Indices

<table>
<thead>
<tr>
<th></th>
<th>num docs</th>
<th>num rates</th>
<th>num meta</th>
<th>num (all)</th>
<th>words</th>
<th>phrases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>1795443</td>
<td>40094218</td>
<td>14.4</td>
<td>0.79</td>
<td>682743</td>
<td>1416733</td>
</tr>
<tr>
<td>Min</td>
<td>1631680</td>
<td>377033920</td>
<td>14.31</td>
<td>0.7</td>
<td>5380000</td>
<td>1479404</td>
</tr>
<tr>
<td>Mean</td>
<td>1743419</td>
<td>359951502</td>
<td>14.37</td>
<td>0.74</td>
<td>6339645</td>
<td>1633945</td>
</tr>
<tr>
<td>Max+Min</td>
<td>1838003</td>
<td>20000286</td>
<td>0.1</td>
<td>0.09</td>
<td>1104394</td>
<td>337349</td>
</tr>
<tr>
<td>Std Dev</td>
<td>83463</td>
<td>7822208</td>
<td>0</td>
<td>0</td>
<td>340962</td>
<td>123541</td>
</tr>
</tbody>
</table>

Table 4: Different effects of 10x10-1 and 10x10-2 cyanides on hydrogen peroxide (H2O2)-induced chloramines in house and carbonate buffer

<table>
<thead>
<tr>
<th>Buffer</th>
<th>pH</th>
<th>[H2O2] (mM)</th>
<th>[H2O2] (mM)</th>
<th>[H2O2] (mM)</th>
<th>[H2O2] (mM)</th>
<th>[H2O2] (mM)</th>
<th>[H2O2] (mM)</th>
<th>SEM</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>House</td>
<td>10</td>
<td>9.0 x 10-4</td>
<td>1.0 x 10-8</td>
<td>1.0 x 10-8</td>
<td>1.0 x 10-8</td>
<td>6.090</td>
<td>0.6600</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Carabatic</td>
<td>10</td>
<td>1.0 x 10-8</td>
<td>1.0 x 10-8</td>
<td>1.0 x 10-8</td>
<td>1.0 x 10-8</td>
<td>2.454</td>
<td>0.1799</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 6: Conditions for the in situ denitrification of different alkyl halide samples

- Primary alkyl halide: 1-Iodohexane, 1-Bromobutan, 1-Bromobenzene
- Primary alkyl chloro: 1-Chlorobutan, 1-Chlorobenzene
- Secondary alkyl halide: 2-Iodoethane, 2-Bromobutane

Table 1: Run time comparison for ILP+BDD approach

Table 2: Sources of Nitrogen and Phosphorus in the Potomac River Basin, 1990

<table>
<thead>
<tr>
<th>Source of Nutrient Pollution</th>
<th>Percentage of Nutrient Loading (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>Atmospheric Depletion</td>
<td>32</td>
</tr>
<tr>
<td>Municipal and Industrial Wastewater Discharges</td>
<td>22</td>
</tr>
<tr>
<td>Septic System</td>
<td><1</td>
</tr>
<tr>
<td>Animal Manure</td>
<td>26</td>
</tr>
<tr>
<td>Commercial Fertilizer</td>
<td>26</td>
</tr>
</tbody>
</table>

Source: Anon et al. 1990

Table 1: A comparison of different search routines on a 15.6MB text.

<table>
<thead>
<tr>
<th># of patterns</th>
<th>cgrep</th>
<th>fgrep</th>
<th>GNU-cgrep</th>
<th>grep</th>
<th>agrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6.54</td>
<td>13.57</td>
<td>2.83</td>
<td>5.66</td>
<td>2.22</td>
</tr>
<tr>
<td>50</td>
<td>8.22</td>
<td>12.95</td>
<td>5.63</td>
<td>9.67</td>
<td>2.93</td>
</tr>
<tr>
<td>100</td>
<td>16.69</td>
<td>13.27</td>
<td>6.69</td>
<td>11.88</td>
<td>3.31</td>
</tr>
<tr>
<td>200</td>
<td>42.62</td>
<td>13.51</td>
<td>8.12</td>
<td>14.38</td>
<td>3.87</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>12.18</td>
<td>23.14</td>
<td>5.79</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>-</td>
<td>15.80</td>
<td>28.36</td>
<td>7.44</td>
</tr>
<tr>
<td>5000</td>
<td>-</td>
<td>-</td>
<td>21.82</td>
<td>38.09</td>
<td>11.61</td>
</tr>
</tbody>
</table>

Fig. 9.4. Table examples with different boundary lines
Table 5. Nitrogen detection limits for various materials, irradiated in vacuum, and counted for 36 h. Detection limits were calculated using the nitrogen 10 MeV gamma-ray peaks and equations given by Currie.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Detectable N mass fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological (SRM 1573a, tomato leaves, 300 mg sample)</td>
<td>0.13</td>
</tr>
<tr>
<td>Soil (SRM 2710, Montana soil, 500 mg sample)</td>
<td>0.05</td>
</tr>
<tr>
<td>Rock (UNS GSP-1, 500 mg sample)</td>
<td>0.12</td>
</tr>
<tr>
<td>Titanium (SRM 354, unalloyed, 200 mg)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

(a)

Fig. 9.5. Table examples with different aligned cells

Table 2. Terms of the original Arabic query, and the result of the FM method.

<table>
<thead>
<tr>
<th>Original Arabic Term</th>
<th>First Match Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصباح</td>
<td>light</td>
</tr>
<tr>
<td>روشن</td>
<td>brightness</td>
</tr>
<tr>
<td>وضوح</td>
<td>glowing</td>
</tr>
</tbody>
</table>

For English-Arabic CILR, Table 3 illustrates an example of the Arabic terms retained by the FM method.

<table>
<thead>
<tr>
<th>Original English query</th>
<th>First Match Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td>BD</td>
</tr>
<tr>
<td>Technology</td>
<td>BD</td>
</tr>
<tr>
<td>Arab</td>
<td>BD</td>
</tr>
<tr>
<td>World</td>
<td>BD</td>
</tr>
</tbody>
</table>

Table 3. English query terms and their translations using FM method.

Table 1. Calibration equations (results from least squares regression), limit of detection (LOD), limit of quantification (LOQ), standard deviation (SD) and relative standard deviation (RSD) for levofloxacin determination by fluorescence and fluorescence methods.

<table>
<thead>
<tr>
<th></th>
<th>Luminiscence method</th>
<th>Fluorescence method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration range (μg ml⁻¹)</td>
<td>0.008 – 0.600</td>
<td>0.020 – 0.600</td>
</tr>
<tr>
<td>Intercept on ordinate (a)</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>SD of the intercept on ordinate (s_a)</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Slope (β)</td>
<td>388</td>
<td>204</td>
</tr>
<tr>
<td>SD of slope (s_β)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of points (n)</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>Coefficient of correlation (r)</td>
<td>0.990</td>
<td>0.000</td>
</tr>
<tr>
<td>LOD (μg ml⁻¹)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>LOQ (μg ml⁻¹)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>RSD (% (n = 10))</td>
<td>1.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

(b)
statistics/mathematics papers, the table cells can be percentages or mathematical equations. In chemistry tables, the objects can be chemical formulas or molecular structures. It is not surprising to see images cells, in art or image-processing documents. Sometimes, people just leave cells blank if no value is applicable. Please see examples in Figure 9.6.

Although we process the tables in scientific PDF documents and almost all of them are genuine tables according to the previous definition, a part of them are not well-structured tables from the layout/structure perspective. We classify tables in the structure level. We process more than two million scientific documents in digital libraries from several fields, such as computer science, chemistry, archeology, etc. We extracted approximately one million PDF tables from the English documents in three fields: CiteSeer repository in computer science field, RSC repository in chemistry, and archeology. Based on our observation, we concluded that most well-defined tables are similar to each other as well as different poorly-defined tables have different problems. Classifying and labeling tables as well-structured or poorly-structured tables has the following advantages:

1) Detecting the poorly-designed tables is beneficial to later improvement for table analysis by changing the content, the topological arrangement, or the typographic style of the table.

2) we can remove unnecessary information and use shorter texts to make a large table smaller, or replace abbreviations with their complete forms to make a narrow column wider, to transpose a fat and short table or remove some texts from row headers to the column headers.
Table 1. Number of participants per track and total number of distinct participants in each TREC

<table>
<thead>
<tr>
<th>Track</th>
<th>TREC-8</th>
<th>TREC-9</th>
<th>TREC-10</th>
<th>TREC-11</th>
<th>TREC-12</th>
<th>TREC-13</th>
<th>TREC-14</th>
<th>TREC-15</th>
<th>TREC-16</th>
<th>TREC-17</th>
<th>TREC-18</th>
<th>TREC-19</th>
<th>TREC-20</th>
<th>TREC-21</th>
<th>TREC-22</th>
<th>TREC-23</th>
<th>TREC-24</th>
<th>TREC-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading</td>
<td>18</td>
<td>23</td>
<td>23</td>
<td>12</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>NLP</td>
<td>3</td>
<td>11</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Speaking</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Environment</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>21</td>
<td>22</td>
<td>20</td>
<td>20</td>
<td>21</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 6: Overview of the results (1): traces against properties

<table>
<thead>
<tr>
<th>Property</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>training data</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>testing</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Relational Table for Evaluation. \(A_j \) denotes the \(j \)th attribute and the "?" denotes an unknown value, a piece of confidential datum, or a previously modified value.

<table>
<thead>
<tr>
<th>Property</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>training data</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>testing</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Classification of UMTS operators according to their functionality

<table>
<thead>
<tr>
<th>Property</th>
<th>UMTS</th>
<th>CPN Class A</th>
<th>CPN Class B</th>
<th>CPN Class C</th>
<th>CPN Class D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>Any public</td>
<td>UMTS generator</td>
<td>BCPh</td>
<td>Small BCPh</td>
<td>BCPh</td>
</tr>
<tr>
<td>User Control</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Call Control</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Mobility Control</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Data Management</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
</tbody>
</table>

Fig. 9.6. Table examples with missing cells
Fig. 9.7. Table examples with nesting cells
Table 1: Main dimensions of the nebulizers and FAAS experimental conditions used

Nebulizers:
- PCN: Gas outlet section area: 3.1×10^{-3} mm²
- SBHPN: Outlet section area: 6.6×10^{-3} mm²

FAAS operating conditions:
- Nebulizer gas (air) flow: 1 mm⁻¹
- Sample uptake rate: 0.9 ml min⁻¹
- Gas flow rate: 1.2 ml min⁻¹
- Acetylene: 1.5
- Air: 12.0
- Viewing height mm: 15
- Total measurement time: 80

Wavelengths, slit-widths and lamp intensities:

<table>
<thead>
<tr>
<th>Element</th>
<th>Wavelength (nm)</th>
<th>Slit-width (mm)</th>
<th>Intensity (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>337.3</td>
<td>0.2</td>
<td>4</td>
</tr>
<tr>
<td>Cu</td>
<td>324.8</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>Fe</td>
<td>248.3</td>
<td>0.2</td>
<td>4</td>
</tr>
<tr>
<td>Mn</td>
<td>279.5</td>
<td>0.2</td>
<td>4</td>
</tr>
<tr>
<td>Na</td>
<td>232.0</td>
<td>0.2</td>
<td>4</td>
</tr>
<tr>
<td>Pb</td>
<td>217.0</td>
<td>1.0</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 3: Information stored in an entry of the AOL

<table>
<thead>
<tr>
<th>Operator Identity</th>
<th>Frequency Identity</th>
<th>Priority</th>
<th>Access Flag (Y/N)</th>
</tr>
</thead>
</table>

(a)

(b)

(c)

(d)

(e)

Fig. 9.8. Examples of true/false tables
3) We can also adjust the font sizes, the white space between columns and rows, or change the sizes of columns and rows to fix unpleasant proportions.

4) With detected *well-structured* tables, we can provide good examples of table designing and summarize valuable guidelines for further table authors.

5) Such classification has widely usage for many applications such as web mining, knowledge management, web content summarization, etc.

It may not be easy to define a *poorly-structured* table, however, some researchers gave requirements on a *well-structured* table: simple structure (easy to construct by authors, users to quickly learn the structure, economy of space, better visualization, consistent design structure allows for comparisons by highlighting the difference in the information). In Xingxing Wang’s dissertation [89], he stated that a *well-designed* table should be “organized in such a way that the underlying logical structure is made obvious and tabular items are located and interpreted easily”. According to the definition of *free dictionary*\(^2\) a table should:

- has headers for better data accessibility;
- has caption (summary);
- Avoid nesting where ever possible;
- has suitable table width;
- Avoid vertical/rotated tables;

\(^2\)http://www.thefreedictionary.com/table
Combing with other researchers’ opinions, we notice that different people with different backgrounds and goals differ widely on some opinions. The spanned cell is an example: some researchers believe that by presenting the common value once the spanned cells can simplify the table contents, enable an easy table comprehension, and even reduce the table size if the common items occur very frequently. Many others do not encourage spanning cells because they impair the data accessibility. They argued that “If someone is using a text reader, each time someone is moving from cell to cell, the interpreter will make a sound to indicate a cell change. What happens to someone who is using a text reader on a page that is full of nested tables and row-span and column-span attributes? They are faced with a confusing series of beeps that do not in any way pertain to a textual interpretation of the page.”

9.2.3 Layout Design Guidelines

Although there is no strict definition on the table structure and layout designing, there are many recommendation for the good table design from the researchers/publisher as followings:

- Avoiding source/English tables that “just fit” the depth of the page, if you want to maintain the same page breaks in your target language.

- If you want to maintain the same page breaks, keep about 30% of the body column free (or white space) below the table.

- Avoiding use of ALL CAPS in table header cells because the tables may be translated into another language, where language expansion may occur.
• Avoiding “rotated” (e.g. counterclockwise/vertically oriented) text in header rows.

• Avoiding nested, indented lists, even if table cells have been straddled to provide more width. Use wider cell margins in English (source) which can be reduced for target languages. For example, left/right table cells of 6 pts may be reduced to as little as 2 pts in German and Italian.

• Some of the major WYSIWYG development software uses tables for exact positioning of elements on the page to the extent that every element in the page will be in its own table, nested inside other tables. This is not immediately apparent on a normal computer screen, but can cause problems for some users.

9.3 Experiment Results of Quantitative study

9.3.1 The Datasets

We focus on tables presented in scientific documents with PDF format. Although Wang [97] introduced a general table ground truth database where he focused on the web tables in HTML format, no benchmark dataset exists for PDF table analysis. To generate a PDF table benchmark dataset in our work, we directly extract tables from PDF documents instead of converting them to HTML or Image files based on the following three arguments: 1) extracting tables from PDF documents provides us essential information about a table, eg., table caption position. 2) converting PDF documents to HTML does not provide any additional help because detecting/analyzing the table is the foundation of all subsequences. 3) external tools (eg., OCR) can introduce unwanted errors and low performance of table analysis.
To create diversity in the PDF table benchmark, we extracted tables from a variety of scientific document digital libraries to evaluate the different classification methods described above. As our first data set we collected tables from Citeseer\(^3\), the digital library for scientific and academic papers, primarily in the fields of computer and information science and engineering. This corpus contains about more than 20,000 articles evenly distributed among 20 different conference proceedings. After extracting and preprocessing the collected documents, we included 30,000 tables in our benchmark set. We also extract 10,000 and 5,000 tables, respectively, from the chemical scientific digital libraries (Royal Chemistry Society\(^4\)), and archeology journal\(^5\). All the documents span years 1950 to 2008.

The quantitative study is finished in two methods: manually and automatically. Although the sample size for the former way can not be very large (we randomly selected 100 PDF scientific documents from each repository), we can guarantee 100% accurate results. The performance of the automatically quantitative study is determined by the quality of the extracted table metadata files. Although there is some inaccuracy in some sense, the inaccuracy can cancel out each other and the experiments show that the results of both methods are consistent with each other. In some sense, the second method (automatically) is used to prove the result reliability of the manual method.

\(^3\)http://citeseer.ist.psu.edu/
\(^4\)http://www.rsc.org/
\(^5\)http://www.saa.org/publications/AmAntiq/AmAntiq.html
9.3.2 The Experiment Results

Table Location: Document section headings are of vital importance to the detection of the table location. It is easy to identify and understand the section headings in the documents in computer science field because most of documents still adopt these popular headings. However, we may need additional domain knowledge to understand them in some other fields, (e.g., the section heading “Ashing of Materials” in the ANALYST journal in RSC\(^6\)).

Old papers usually talk about the experiments from the beginning of the documents and overlook the introduction and related work sections comparing with recent papers. Also, no section heading keyword exists at all for many papers in the old publications. We can only identify them by analyzing the text location and font size information. For the CiteSeer repository, our manual experiment shows that the ratio of table location distribution over three main sections (Backgrounds vs. Methods vs. Results) is 13% : 39% : 48%. Similarly, the result of the automatical part is 11.82% : 41.94% : 46.24%. For Chemistry field, the corresponding ratio of manual experiment is 0.0% : 11% : 89%.

Table Sizes: For the CiteSeer repository, our manual experiment shows that the ratio of Cross-column vs. Single-column tables: is 72% : 28%. Similarly, the result of the automatical part is 68.37% : 31.63%. In addition, we manually examined the VLDB journal\(^7\) and DAS\(^8\) proceeding, the percentage of cross-column are 21.7% and 21.05% respectively. Although many journals in RSC repository have double-column layout, the ratio of wide tables is 71.33% because of large experiment results. The reason for the

\(^6\)http://www.rsc.org/
\(^7\)http://www.vldb.org/archives/public/
\(^8\)http://www.informatik.uni-trier.de/ley/db/conf/das/index.html
large tables is that for the documents with a single column, all the tables should be cross-column tables. For documents with multiple columns, there are still large tables that span several document columns.

In document level, the ratio of documents with wide tables / the documents with tables is 82.93%. the ratio of documents with wide tables / the total documents is 63.55%. Table 9.2 shows the detailed information of the wide tables in RSC repository.

<table>
<thead>
<tr>
<th>Journal Names</th>
<th>TableLevel</th>
<th>DocLevelWithTables</th>
<th>DocLevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR(1950-1970)</td>
<td>100.00%</td>
<td>100.00%</td>
<td>72.00%</td>
</tr>
<tr>
<td>P1(1975-2000)</td>
<td>42.86%</td>
<td>50.00%</td>
<td>30.33%</td>
</tr>
<tr>
<td>DT(1975-2005)</td>
<td>56.59%</td>
<td>83.87%</td>
<td>74.29%</td>
</tr>
<tr>
<td>AN(1950–1970)</td>
<td>100.00%</td>
<td>100.00%</td>
<td>88.23%</td>
</tr>
<tr>
<td>RSC Average</td>
<td>71.33%</td>
<td>82.93%</td>
<td>63.55%</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>72%</td>
<td>61.54%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Table Caption: Almost all the table locations in the documents of RSC repository are top. The main reason for the non-100% is that there is no table caption in the early documents. However, many below table captions in CS field exist. The percentage of tables with top caption in DAS is 84.21%. For VLDB proceedings, the percentages along each years are 18.35% (1985: 15.38%, 1990: 17.65%, 1995: 21.43%; 2000: 0%; 2005: 35.71%). Table 9.4 shows the detailed information of the top table caption in RSC repository. The average caption size in term of lines is 1.93 lines/table.

Frame and separators: We classify the frame and separator lines into four categories: *Complete* vs. *Vertical only* vs. *Horizontal only* vs. *None*. In CiteSeer repository the ratio of the four categories are 58.06% vs 0% vs 41.94% vs 0%. In RSC
Table 9.3. The percentage of the top table caption location in RSC repository

<table>
<thead>
<tr>
<th>Journal Names</th>
<th>TableLevel</th>
<th>DocLevelWithTables</th>
<th>DocLevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR (1950-1970)</td>
<td>92.11%</td>
<td>94.44%</td>
<td>68.00%</td>
</tr>
<tr>
<td>P1 (1975-2000)</td>
<td>95.24%</td>
<td>88.89%</td>
<td>53.33%</td>
</tr>
<tr>
<td>DT (1975-2005)</td>
<td>92.22%</td>
<td>100.00%</td>
<td>88.57%</td>
</tr>
<tr>
<td>AN (1950-1970)</td>
<td>100.00%</td>
<td>100.00%</td>
<td>88.24%</td>
</tr>
<tr>
<td>Average</td>
<td>96.77%</td>
<td>96.34%</td>
<td>73.83%</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>53.76%</td>
<td>46.24%</td>
<td>25.5%</td>
</tr>
</tbody>
</table>

repository, no vertical lines between data rows exists in any time. Several journals have different requirements on frame and separators along different ages, Table 9.4 shows some example results.

Table 9.4. The frame and separator lines of several RSC journals in different ages

<table>
<thead>
<tr>
<th>Journal Names</th>
<th>The information of the table frame and separator lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR</td>
<td>1950–1955: complete (no vertical line between data rows), Between 1960-1970: none</td>
</tr>
<tr>
<td>P1</td>
<td>1970–1985: none, 1990–: horizontal only</td>
</tr>
<tr>
<td>DT</td>
<td>1975–1995: none; 2000–: horizontal only</td>
</tr>
<tr>
<td>AN</td>
<td>before 1985: none; 1985–: horizontal only</td>
</tr>
</tbody>
</table>

Among the frame and separator lines, the stub separator and the boxhead separator (See Figure 9.1) are extremely important because they divide a table into four main regions: the stub, the boxhead, the stub head, and the body. “The stub is the lower left region that contain the row headings. The boxhead is the upper right region that contains the column headings. The stub head is the upper left region that contains the categories in the stub. The body is the region to the right of the sub and below the boxhead that contains the entries”. According to the completeness of these separators, we classify them into four types: Complete vs. Boxhead separator only vs. Stub separator
only vs None. Our experimental results on CiteSeer repository is 56.99% vs. 32.26% vs. 2.15% vs. 8.6% respectively.

Data Separators: In order to get an accurate row/column structure information in a table, the data separators are very important. We classify them into four types also: Complete vs. Vertical only vs. Horizontal only vs. None. The percentages of each categories in the CiteSeer repository are: 46.24% vs. 8.6% vs. 8.6% vs. 36.56%. RSC journals also have different requirements on data separators along different ages, Table 9.5 shows some example results. Because many tables do not have separators, space between texts and text alignment information are very important for structure decomposition.

<table>
<thead>
<tr>
<th>Journal Names</th>
<th>The information of the data separators</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR</td>
<td>before 1960: Complete but no horizontal data separator; 1965 --: none</td>
</tr>
<tr>
<td>P1</td>
<td>P1: before 1990: none; 1990--: boxhead separator</td>
</tr>
<tr>
<td>DT</td>
<td>before 2000: none; 2000--: boxhead separator</td>
</tr>
<tr>
<td>AN</td>
<td>before 1985: none; 1985--: boxhead separator</td>
</tr>
</tbody>
</table>

Alignments: We checked the vertical alignment and table cells manually. The column alignment is very important to the column structure decomposition. We noticed that different cell types have different alignment values. For CiteSeer tables, the distribution among Left/Central/Right-aligned texts is 54.84% : 23.66% : 3.2%. Because almost all the cells in RSC tables are numerical data, most of them are aligned by the characters (e.g., dot).
Cell Types: We classify the table cells into three types according to the content types: *Numerical* vs. *Text* vs. *Both*. In CiteSeer repository, 70.97% tables have numerical cells, 54.84% tables have text cells and 25.81% tables have both of them. We zoom in the DAS proceedings, 92.11% tables have numerical cells, 15.79% tables have text cells and 14.26% tables have both types. For VLDB proceedings, 76.67% tables have numerical cells, 70% tables have text cells, and 32.71% have both types. In RSC repository, 90.33% tables have numerical data. In the document level, among all the documents with tables, 97.56% have tables with numerical cells. Among all the documents, 74.77% of them have tables with numerical cells. 78.81% tables have text cells. In the document level, among all the documents with tables, 91.46% have tables with text cells. Among all the documents, 70.09% of them have tables with text cells. We also examined other unusual cell types such as units, chemical formulas or images. Among all the tables in RSC, 5.38% tables contain *units* and among all the tables in VLDB proceedings 5.4% tables contain *units*.

In RSC repository, 65.80% tables have chemical formula cells and 31.07% tables have chemical formula images. In the document level, among all the documents with tables, 70.73% have tables with chemical formula cells and 28.77% have tables with chemical structure images. Among all the documents, 54.21% of them have tables with chemical formula and 22.83% of them have tables with chemical structure images.

Nesting/Spanning cells over columns: we measure the tables with physical nesting/spanning cells, as defined in Section 9.2.2. The nesting/spanning cells can be divided into two types: *Over columns* and *Over rows*. In RSC repository, early PDF documents use *braces* to annotate the nesting/spanning cells (see Figure 9.9). Within
Fig. 9.9. A table example in RSC repository with braces all the tables 36.20% of them contain nesting/spanning cells. Within the documents with tables, 54.55% documents have tables with nesting/spanning cells. Among all the documents, 44.86% of them contain such cells. Within all the tables in CiteSeer repository, 37.6% tables contain nesting/spanning cells. Within the documents with tables, 46.15% documents have such cells. Among all the documents, 24% documents have tables with nesting/spanning cells.

We observed the documents in RSC repository in the chemistry field. The documents span from 1950 to 2005. Table 9.6 shows the detailed statistical results based on several RSC journals and CiteSeer repository. Overall, among documents with tables, more than half (54.55%) of the documents contain cross-column nesting cells. Among all documents, almost half (44.86%) of them contain cross-column nesting cells.

Nesting/Spanning cells over rows: the detailed quantitative results of nesting/spanning cells over rows are displayed in Table 9.7.

We also calculate all the nesting cells in RSC repository. In the table level, 67.7% tables contain nesting cells over either rows or columns. In the document level, 63.41% documents with tables contain such cells and 50.98% documents contain such cells.
Table 9.6. The percentage of the nesting/spanning cells over multiple columns in RSC tables

<table>
<thead>
<tr>
<th>Journal Names</th>
<th>TableLevel</th>
<th>DocLevelWithTables</th>
<th>DocLevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR (1950-1970)</td>
<td>18.42%</td>
<td>29.17%</td>
<td>28.00%</td>
</tr>
<tr>
<td>P1 (1975-2000)</td>
<td>35.71%</td>
<td>44.40%</td>
<td>26.67%</td>
</tr>
<tr>
<td>DT (1975-2005)</td>
<td>41.09%</td>
<td>74.19%</td>
<td>65.71%</td>
</tr>
<tr>
<td>AN (1950–1970)</td>
<td>59.38%</td>
<td>67.70%</td>
<td>58.82%</td>
</tr>
<tr>
<td>Average</td>
<td>36.20%</td>
<td>54.55%</td>
<td>44.86%</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>37.6%</td>
<td>46.15%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Table 9.7. The percentage of the nesting/spanning cells over multiple rows in RSC tables

<table>
<thead>
<tr>
<th>Journal Names</th>
<th>TableLevel</th>
<th>DocLevelWithTables</th>
<th>DocLevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR (1950-1970)</td>
<td>18.42%</td>
<td>25.00%</td>
<td>24.00%</td>
</tr>
<tr>
<td>P1 (1975-2000)</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>DT (1975-2005)</td>
<td>2.33%</td>
<td>3.23%</td>
<td>2.86%</td>
</tr>
<tr>
<td>AN (1950–1970)</td>
<td>12.50%</td>
<td>13.30%</td>
<td>11.76%</td>
</tr>
<tr>
<td>Average</td>
<td>7.53%</td>
<td>10.23%</td>
<td>8.41%</td>
</tr>
</tbody>
</table>

Missing/Empty cells: In RSC repository, about one third (32.97%) tables have missing cells. In the document level, almost half (42.05%) documents with tables and one third (34.58%) documents have such cells. In CiteSeer repository, similar ratios exist: (35.48% table have missing cells. 34.62% documents with tables have missing cells; 18% documents have tables with missing cells). The detailed results based on multiple RSC journals can be found in Table 9.8. We notice that the journal ANALYST does not contain lots of missing cells as well as P1 (J. Chem. Soc., Perkin Trans.) is the journal with lot of missing cells.

Basic tables vs Composite tables: We adopt the same definition in [70]. Please see the example in Figure 9.10. Different people may have different definition on
Table 9.8. The percentage of the empty cells in RSC tables

<table>
<thead>
<tr>
<th>Journal Names</th>
<th>TableLevel</th>
<th>DocLevelWithTables</th>
<th>DocLevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR(1950-1970)</td>
<td>31.58%</td>
<td>29.17%</td>
<td>28.00%</td>
</tr>
<tr>
<td>P1(1975-2000)</td>
<td>47.62%</td>
<td>61.10%</td>
<td>36.61%</td>
</tr>
<tr>
<td>DT(1975-2005)</td>
<td>34.88%</td>
<td>54.84%</td>
<td>48.57%</td>
</tr>
<tr>
<td>AN(1950-1970)</td>
<td>9.38%</td>
<td>13.30%</td>
<td>11.76%</td>
</tr>
<tr>
<td>Average</td>
<td>32.97%</td>
<td>42.03%</td>
<td>34.58%</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>35.48%</td>
<td>34.62%</td>
<td>18%</td>
</tr>
</tbody>
</table>

1-D table and 2-D table. Please see Figure 9.11. DAS has 7.9% composite tables and VLDB has 14.68% composite tables;

Other Results: all the other important results are listed in Table 9.9. The standard table refers the non-rotated table that does not have nesting cells, missing cells.

Based on the observation on our table repositories, we notice that the most frequent table structure is 4 rows * 6 columns or 6 rows * 4 columns.

Fig. 9.10. Examples of 1D, 2D, and Composite Tables in [70]

Summarization based on RSC repository After implementing such a huge table quantitative study and comparing the results among different field repositories, we
Suffix h: the attribute words are arranged horizontally.
Suffix v: the attribute words are arranged vertically.

Fig. 9.11. 9 table types in [101]
Table 9.9. The results of other important parameters in RSC and CiteSeer repositories

<table>
<thead>
<tr>
<th>Journal Names</th>
<th>Perspectives</th>
<th>TableLevel</th>
<th>DocLevelWithTables</th>
<th>DocLevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CiteSeer</td>
<td>Super Row Label</td>
<td>34.41%</td>
<td>42.31%</td>
<td>22.00%</td>
</tr>
<tr>
<td>RSC</td>
<td>Super Row Label</td>
<td>23.73%</td>
<td>44.45%</td>
<td>29.09%</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>Multi-dimension Tables</td>
<td>1.08%</td>
<td>3.85%</td>
<td>2.01%</td>
</tr>
<tr>
<td>RSC</td>
<td>Multi-Dimension Tables</td>
<td>32.30%</td>
<td>23.17%</td>
<td>18.63%</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>Composite Tables</td>
<td>12.9%</td>
<td>10.2%</td>
<td>6.48%</td>
</tr>
<tr>
<td>RSC</td>
<td>Composite Tables</td>
<td>8.68%</td>
<td>9.23%</td>
<td>4.34%</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>Rotated Tables</td>
<td>1.08%</td>
<td>3.85%</td>
<td>2.01%</td>
</tr>
<tr>
<td>RSC</td>
<td>Rotated Tables</td>
<td>4.35%</td>
<td>4.88%</td>
<td>3.92%</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>Standard Tables</td>
<td>73.29%</td>
<td>61.54%</td>
<td>32.00%</td>
</tr>
<tr>
<td>RSC</td>
<td>Standard Tables</td>
<td>6.83%</td>
<td>26.83%</td>
<td>21.47%</td>
</tr>
</tbody>
</table>

have the following observations and summarizations, which are beneficial for our table understanding.

- In early time, there is no clean document structure or sections;

- In RSC repository, there are many two-dimension or three-dimension tables, especially in the early journals;

- There are many miss-labeled tables in early RSC repository. Such phenomenon also happens frequently in current CiteSeer repository.

- There are many tables that have keywords but do not have caption content;

- Many early journals use dotted lines to separate the columns;

- Most tables have clear column structures, but unclear row structures, especially in Chemistry field;

- Semantic analysis is needed to identify whether a text piece in a table is a nested cell over multiple rows or multiple cells in the same column over multiple rows;
• For survey/review papers, some tables are located in the beginning of the document;

• If we find a table in a document, this document has a very large possibility of having multiple tables;

• Many table footnotes do not start with the special symbols, especially in CS field.

• Some tables are so large that span over several pages; Such tables always contain multiple parts. We suggest to segment these tables into several small parts;

• In early chemistry publications, many authors put the Results and Discussion section ahead of the Experiment section;

• Some tables in chemistry put chemical formula structure figures between the table caption and the column headers. It is difficult to know whether they belong to the caption or the column headers;

• In order to save the space, they usually put all the footnotes together into a paragraph instead of several separate lines (see example in Figure 9.12);

• Some tables use index numbers to facilitate the row identification;
Table 1 Determination of drugs in pharmaceutical preparations

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Commercial formulation</th>
<th>Drugs nominal value</th>
<th>Drugs found (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen</td>
<td>Neobufen (effervescant granules)</td>
<td>92.7 mg g⁻¹</td>
<td>93.1 (0.4) mg g⁻¹</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>Voltarín Retard (tablets)</td>
<td>314 mg g⁻¹</td>
<td>314 (1) mg g⁻¹</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>Inacid (suppositories)</td>
<td>60 mg g⁻¹</td>
<td>60 (1) mg g⁻¹</td>
</tr>
<tr>
<td>Carbenoxolone</td>
<td>Sanodin (gel)</td>
<td>20 mg g⁻¹</td>
<td>20.1 (0.4) mg g⁻¹</td>
</tr>
<tr>
<td>Diflunisal</td>
<td>Dolobid (tablets)</td>
<td>590 mg g⁻¹</td>
<td>590 (7) mg g⁻¹</td>
</tr>
<tr>
<td>Firoxicam</td>
<td>Feldene (blisters)</td>
<td>20 g l⁻¹</td>
<td>20 (0.2) g l⁻¹</td>
</tr>
<tr>
<td>Phenylbutazone</td>
<td>Butazektina (suppositories)</td>
<td>125.4 mg g⁻¹</td>
<td>125.3 (0.7) mg g⁻¹</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>Fortecortin (tablets)</td>
<td>10.05 mg g⁻¹</td>
<td>10.1 (0.1) mg g⁻¹</td>
</tr>
</tbody>
</table>

* Composition of commercial formulations: Neobufen (Abbott Laboratories, Spain): saccharose, 51.45% (w/w) and others excipients (sodium carbonate, cellulose, sodium croscarmellose, malic acid, povidone, sodium hydrogen carbonate, orange essence, sodium dodecyl sulfate and sodium saccharin), 39.28% (w/w). Voltarín Retard (Novartis Pharmaceutica, Spain): saccharose, 40.16% (w/w) and others excipients (colloidal anhydrous silica, cetyl alcohol, magnesium stearate, povidone, hypromellose, red iron oxide, polyethylene glycol 8000, talc, titanium IV oxide and polyethylene glycol), 26.08% (w/w). Inacid (Merck Sharp & Dohme, Spain): excipients (baryta hydroxyanisol and baryta hydroxytoluene), 93.9% (w/w), Sanodin (Alana Pharma, Spain): excipients (karaya gum, vaseline oil and polyethylene), 99% (w/w). Dolobid (Proset Laboratories, Spain): excipients (sodium croscarmellose, hydroxypropyl methylcellulose, starch, propylene glycol, sodium stearyl fumarate, and titanium dioxide), 41% (w/w). Feldene (Nefo Pharma, Spain): ethanol, 12.8% (v/v) and others excipients (benzilic alcohol, sodium phosphate, nicotinamide, 1,2 propanediol, sodium hydroxide, hydrochloric acid and water), 85.2% (v/v). Butazektina (Padó Laboratory, Spain): excipients (triglycerides), 87.45% (w/w). Fortecortin (Merck Pharma and Chemistry, Spain): excipients (lactose, starch, talc and magnesium stearate), 98.99% (w/w). * s denotes standard deviation (n = 6).
Chapter 10

Experimental Results

10.1 Document Collection

Although TableSeer can be used to search for tables contained in documents of varying formats and media types, in this work, we focus on tables in scientific documents in Portable Document Format (PDF). The document collection comes from three sources: 1) scientific digital libraries (Royal Chemistry Society), 2) the web pages of research scientists in chemistry departments in universities, e.g., UCLA\(^1\) lists numerous addresses of academic institutions in the field of chemistry, which are set as seeds for the table crawler, and 3) the CiteSeer archive. The crawler uses a depth-first crawling policy with a maximum depth of five (from the seed URLs). The total number of collected PDF documents is approximately 10,000. These documents belong to more than 50 journals and conferences in a variety of research fields, e.g., chemistry, biology, computer science, etc. All the documents span the years 1990 to 2006. A random selection of 100 documents indicates that 78\% of them have at least one table and most of them have more than one.

\(^{1}\)http://www.chem.ucla.edu/VL/Academic.html
10.2 Experimental Results of Table Detection

We performed a five-user study to evaluate the quality of the table detection and the table metadata extraction separately. Each user randomly checked 20 documents and all the corresponding table metadata files. The evaluation metrics are precision and recall. The experiment on table detection was conducted on a document set with 200 randomly selected PDF documents, which were from journal/conference categories of Chemistry, Biology, and Computer Science from RSC and CiteSeer. Given the number of true tables extracted by TableSeer A, the number of true positive tables but overlooked B, and the number of true negative tables that is misidentified as tables C, the Precision is $\frac{A}{A+C}$, and the Recall is $\frac{A}{A+B}$. Within the 200 documents, 397 tables exist (see Table 10.1). TableSeer recognizes 371 tables and all of them are real tables, which means the number of true negative tables is 0. Based on these limited experimental results, the precision value is 100% and the recall value is 93.5%.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Documents</th>
<th>Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>100</td>
<td>245</td>
</tr>
<tr>
<td>Biology</td>
<td>50</td>
<td>84</td>
</tr>
<tr>
<td>Computer Science</td>
<td>50</td>
<td>68</td>
</tr>
</tbody>
</table>

10.3 Experimental Results of Table Metadata Extraction

We evaluated the table metadata extractor of TableSeer using the 371 recognized tables from the document set. Precision and recall remain the measurement functions. A is the number of true positive metadata extracted by our algorithms and labeled with
the correct metadata labels, \(B \) is the number of true positive metadata but overlooked by \textit{TableSeer}, and \(C \) is the number of true negative metadata that are misidentified as another metadata.

Table 10.2 demonstrates the performance of the metadata extraction over the test set. Apparently, \textit{TableSeer} has good performance on table metadata extraction. The main reasons for inaccuracy of the recall are: First, some journal names and volume information were mislabeled as “Document Title” metadata. Most journals put the journal names and the publication information in the page header or footer. However, some of the documents display the journal/volume information in the ordinary position where the document title is. This problem can be solved by adding heuristic rules that look for patterns to identify journal/volume information. Second, some documents omit the keyword “Abstract” when they start the abstract section using the same font size as the size of the author/affiliation section. This can be fixed by restricting the size of the author/affiliation section and by looking for text similarity. The abstract usually has similar keywords as in the main text, whereas the author/affiliation will have distinct words than the main text. Third, some table footnotes, especially short ones, are recognized as a row of the table because some tables have such cross-column rows.

In order to obtain the table reference text metadata, a “keyword matching” method is used to collect all the sentences where the table keywords appear. Some explanations also exist around without the keywords. However, it is extremely difficult to separate them from other texts. Furthermore, for those tables that use a cross-line to separate different parts, we only recognize the first part because of the difficulty in
Table 10.2. Table Metadata Extraction Performance

<table>
<thead>
<tr>
<th>Table Metadata</th>
<th>Precision(P %)</th>
<th>Recall(R %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Type</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Document Page Number</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>The page number of table</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Document Title</td>
<td>95.65</td>
<td>95.65</td>
</tr>
<tr>
<td>Document Author</td>
<td>92.58</td>
<td>92.58</td>
</tr>
<tr>
<td>Table Caption</td>
<td>95.96</td>
<td>95.96</td>
</tr>
<tr>
<td>Table Column Header</td>
<td>93.79</td>
<td>93.79</td>
</tr>
<tr>
<td>Table Content</td>
<td>90.15</td>
<td>90.15</td>
</tr>
<tr>
<td>Table Caption Position</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Table Footnote</td>
<td>82.77</td>
<td>82.77</td>
</tr>
<tr>
<td>Table Reference text</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

telling whether the cross-line belongs to the table or the body text of the document.

This can be solved by using the font-size difference, existence of cells, and the indication of the white spaces.

10.4 Experimental Results of Table Ranking Results

We compared different ranking schemes and show their results. We also measure the differences and correlations among these ranking schemes using the Kendall or Spearman distance[74]. However, this computation is not sufficient for determining which ranking scheme is better. Comparison of ranking methods is complicated for two main reasons. First, it is difficult to find a common test-bed for different search engines. Although Google Co-op\(^2\) can enable the comparison between TableRank and Google by harnessing the power of Google search technology, the dynamic web and continued crawlers imply that the two sets of documents may not be the same. Second, even with a

\(^2\)http://www.google.com/coop/
common test-bed, no universally recognized measurement of quality for a table ranking scheme exists.

10.4.1 Comparative Retrieval Effectiveness of TableRank

In order to set up a well-accepted measurement, we established a “golden standard” to define the “correct” ranking based on human judgement. A survey of six experienced testers, who frequently use search functions of different search engines, generated the “golden standard” of each document set in the test-bed. For each issued query, the testers determine how many results, among the returned hits, the testers order the relevant lists.

For each ranking scheme, we applied pairwise accuracy to evaluate the ranking quality. If H_R is the ranking decided by human judgement and T_R is ranking decided by the search engines, the pairwise accuracy can be defined as the fraction of times that search engines and human judges agree on the ordering of tables:

$$ \text{pairwise accuracy} = \frac{|H_R \cap T_R|}{|H_R|}.$$

In this section, we provide quantitative comparisons between TableRank and other popular web search engines based on experimental results. The average ranks of the six human testers is obtained and the results are ranked using this average to obtain H_R. We will use a distance based measure among the ranked orders in the future.

Before evaluating the performance of the table ranking, we identified the returned true hits because most search engines can not identify documents with tables. Among their returned results, a large part do not have table or do not match the query, we call these results as false tables. We should filter out all the false tables and only compare the ranking on these real tables. We randomly selected 100 terms from the Popular
Term List as mentioned in Section 4.1, such as “gene”, “protein”, “query,”, and used each term as a query in TableSeer. In addition, we also selected 20 terms beyond the Popular Term List because users may pose free queries with any possible terms, such as “result”, “document”, etc. For the other two search engines: Google Scholar and CiteSeer, the query was set as the term together with an additional keyword “Table.” An example is applying “Alkaline” to TableSeer and applying the combination of the term ”alkaline” and “Table” to Google Scholar. The combination includes “alkaline, Table”, “alkaline Table”, “Table, alkaline”, “Table alkaline”, etc. Because it is not easy to know the total number of tables in the test-bed, we used the precision value as the measurement. Another reason is that with the growing size of the Web collections, users are now primarily interested in high accuracy, defined as high precision. High precision is very important because users typically look at very few results and mostly look at the top N items of the returned results from the search engines. Recognizing this trend, we manually examined the first 20 results returned by both each search engine. Comparing with the precision value of our TableSeer (100%), the precision value of Google Scholar is 73.4% and the precision value of CiteSeer is 76.7%. Thus, it can be seen that TableSeer outperforms the other two search engines.

The remaining question is which search engine has the best ranking scheme? We adopted two methods to set up the common test-bed: the manually “bottom-up” method and the custom search engine method. The manually “bottom-up” method constructs a test-bed using the following two steps: 1) applying a query (e.g., DNA) together the keyword “Table” to an existing search engine, e.g., CiteSeer; 2) from the numerous returned results, we pick out a set of “real” hits in PDF format together with
their ranking orders. We set these PDF documents as the common test-bed for both TableRank and other search engines. In the second custom search engine method, we set up a common test bed for TableRank and Google using the Google Custom Search engine API. We registered a Google account and used the Google custom search engine API\(^6\) to build a customized search engine. We set the seed URLs (e.g., a chemistry journal website\(^3\)) as one or several websites where TableSeer crawls. All the documents in the seed URLs construct the common test-bed. For all the documents in the common test-beds, TableSeer extracts and indexes the metadata file for each table. We tried 20 randomly selected search queries on both TableSeer and the Google custom search engine to compare their search results. We collected 20 document sets for 20 random queries. Table 10.3 displays the average pairwise accuracy results made by six users.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>The Method to set-up the test-bed</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>Custom search engine</td>
<td>51.8</td>
</tr>
<tr>
<td>Google Scholar</td>
<td>bottom-up method</td>
<td>52.72</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>bottom-up method</td>
<td>55.35</td>
</tr>
<tr>
<td>TableSeer</td>
<td>Both methods</td>
<td>69.61</td>
</tr>
</tbody>
</table>

\(^3\)http://www.rsc.orgdelivery_ArticleLinking DisplayArticleForFree.cfm?doi=b2*
10.4.2 Factor Influence in TableRank

The TableRank algorithm decides the relevance score for each result by comprehensively considering multiple impact factors from different perspectives. No absolutely correct parameter setting exists. In order to find out how well each impact factor performs and how heavily each of them influence the final ranking, we implemented TableRank algorithm on each impact factor, independently, and applied varied combination of the impact factors by gradually adding one new factor at a time. Such implementation can not only reveal how sensitive TableRank is to each impact factor, but also show how to adjust the parameters for better results.

<table>
<thead>
<tr>
<th>Impact Factors</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFIDF</td>
<td>50.19</td>
</tr>
<tr>
<td>TTFITTF without MW</td>
<td>61.46</td>
</tr>
<tr>
<td>TTFITTF with MW</td>
<td>63.55</td>
</tr>
<tr>
<td>TLB</td>
<td>29.60</td>
</tr>
<tr>
<td>DLB</td>
<td>40.33</td>
</tr>
<tr>
<td>All factors</td>
<td>69.61</td>
</tr>
</tbody>
</table>

The results for individual impact factors are shown in Table 10.4, which shows the application of a single factor each time. The first run with the applied traditional TFIDF weighting scheme on the whole document shows the accuracy rate compared with the “golden standard”. On the second and the third runs, we updated the TFIDF to the TTFITTF weighting scheme without/with the metadata weighting scheme. Next, the TLB factors are tried, and in the last run, the DLB factors are tested.
TTFITTF with/without metadata weight contributes heavily to the final ranking quality, and *TLB* and *DLB* do not perform well in isolation. Even Table 10.4 shows the effectiveness of each individual factor.

Table 10.5. The Ablation Experiment to Learn the Real Contribution of Each Factor of TableRank Algorithm

<table>
<thead>
<tr>
<th>Without Factor</th>
<th>Accuracy (%)</th>
<th>Decrease in Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLB</td>
<td>68.50</td>
<td>1.11</td>
</tr>
<tr>
<td>TLB</td>
<td>69.46</td>
<td>0.15</td>
</tr>
<tr>
<td>MW</td>
<td>68.19</td>
<td>1.42</td>
</tr>
<tr>
<td>TTFITTF, MW</td>
<td>58.05</td>
<td>9.56</td>
</tr>
</tbody>
</table>

In order to have a better measurement of the contribution of each factor, in the context of all the other factors, we performed an ablation experiment. The basic idea was to compare the ranking results based on all the factors except the studied ones with the ranking results generated by *TableRank* with all the factors. The detailed results are shown in Table 10.5. The results in Table 10.4 are consistent with the results of the ablation experiment in Table 10.5. Table 10.5 reconfirms the vital role of the *TTFITTF* weighting scheme.

From above experimental results, we can say that our *TableRank* largely outperforms other web search engines in the table searching and ranking field. Within the *TableRank* algorithm, *TTFITTF* acts as the most important impact factor, and the second and the third in importance are metadata weight and *DLB* respectively.

10.5 Experimental Results of Text Sequence Fixing Algorithms

Our experiments can be divided into two parts: the evaluation of the text sequence recovering and the table boundary detection. A five-user study is implemented.
Each user checked the sequence of the resorted sparse lines in 20 selected PDF pages. Half of them have within-table sequence errors and the other half have beyond-table sequence errors. The evaluation metric is pairwise accuracy. If \(H_R \) is the sequence decided by human judgement and \(A_R \) is the sequence decided by the algorithms, the pairwise accuracy can be defined as the fraction of times that our algorithms and human judges agree on the sequence: \(\text{pairwise accuracy} = \frac{|H_R \cap A_R|}{H_R} \). For algorithm 1, the correct sequence of human judge is column by column. For algorithm 2, humans treat each page as a single-column page. Comparing such “golden standard”, the pairwise accuracy of both algorithms are 100%. Still using the Figure 7.1a as the example, with our algorithms, the 13 non-duplicated Y-axis values after the sorting step are: 625.47974, 643.07983, 651.9796, 660.68005, 669.5801, 681.4798, 690.27966, 699.0797, 707.7796, 716.3797, 725.1799, 734.0797, 744.37976. Because the text sequence error always starts with the left columns first, we do not need to sort the text pieces with the same Y-axis values according to the X-axis coordinate. After the sorting, the new sequence of these sparse lines are: “Content (% m/m)”, “Proposed method”, “Reference”, “Peak Peak Flame value”, “Sample Element height area AAS (%m/m)”, “Low melt Ag 43.9 44.1 45.1 44.46”, “0.5 2.4 1.1”, “Cu 15.6 15.2 15.3 14-16”, “2.7 1.8 2.5”, “Sample No.318+ Ag 25.7 25.2 25.7 ≈25”, “2.1 2.1 1.4”, “Cu 34.4 33.7 34.8 ≈35”, “2.3 1.3 2.5”.

Table 10.6. The performance evaluation of two text sequence resorting algorithms

<table>
<thead>
<tr>
<th></th>
<th>Algo1(P)</th>
<th>Algo1(R)</th>
<th>Algo2(P)</th>
<th>Algo2(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-column tables</td>
<td>95.7%</td>
<td>49.8%</td>
<td>100%</td>
<td>99.6%</td>
</tr>
<tr>
<td>Single-column tables</td>
<td>96%</td>
<td>94.8%</td>
<td>94.5%</td>
<td>99.8%</td>
</tr>
</tbody>
</table>
The evaluation metrics for the table boundary detection are precision P and recall R. Given the number of true table lines in our detected table boundary A, the number of overlooked true positive table lines B, and the number of misidentified true negative non-table lines C, $P=\frac{A}{A+C}$, and $R=\frac{A}{A+B}$. The performance of two algorithms are listed in Table 1. The reason for C are some non-table sparse lines surrounding the table boundary. They usually also belong to the table data (e.g., the short lines of the table caption and footnote). For single-column tables, Algorithm 2 may have more C because of the possible sparse lines with similar Y-axis values in the next document column. Because the widths of cells in single-column table can not be large and the noise lines in table boundary can be easily removed in later table structure decomposition step, we prefer high recall values. For cross-column tables, algorithm 1 will cut each table into at least two parts. A merge postprocessing is required. Algorithm 2 achieves better performance on such tables. In summary, in the real application when we can not know the table type in advance, algorithm 2 works better than algorithm 1. For tables with within-table sequence errors, our recovering algorithms do not fulfill much performance improvement on both P and R because all the lines belong to the table boundary come together without interruption. However, for the tables with beyond-table sequence errors, the performance is much worse without our algorithms: with the same test PDFs, the R is only 63.5% without our algorithms because a table will be segmented into several parts and some of them are filtered out because of the small scope.
10.6 Parameter Settings

Before analyzing the experimental results, we discuss the settings of important parameters in TableRank algorithm.

10.6.1 Parameter Setting of the Metadata Weight

Intuitively, the weight of a metadata MW_k is proportional to the occurrence frequency of the meaningful words in the metadata. Meaningful words refer to those representative terms which reflect the end users’ query interests. In the experiments, the determination of each metadata’s weight MW is based on a study of the keyword distribution over different metadata. First, we randomly select a series sets of sample tables from different research fields, e.g., chemistry, computer science, etc. For each table tb_j, a Term Dictionary is generated. After deleting the stop list words, the Term Dictionary is created in a descendant order according to term-occurrence frequency. The top φ meaningful terms from the ordered Term Dictionary are identified manually to construct a Popular Term List. All the selected terms have maximum likelihood for use to construct queries for searching these sample tables. Although different tables have different Popular Term Lists, we tried 10 different sample table sets, the term occurrence distributions over the metadata are similar to each other.

A term may appear in multiple table metadata. For example, in a randomly select table, term ”Microcystins” appear in three metadata: table caption, document title, and the column heading while the term ”dye” from another table appear in four metadata: table caption, table column heading, table footnote, and the referenced text.
For each metadata, calculate the summation of the term-occurrence frequency of all the terms in the *Popular Term List*. A large summation means that this metadata has larger possibility to contain the terms, which are candidates to construct good queries to search these tables. We should give high weight to this metadata.

In our experiment, to determine the metadata weights, 100 tables were randomly selected as the sample set. Half of them come from the field of chemistry and the other half come from the field of computer science. For each table, φ is set to 10 and the term-occurrence frequency of the top 10 keywords within each metadata is calculated. The empirical results of the term distribution over each table metadata is shown in Figure 10.1. The X-axis lists seven main text-based table metadata, ordered by the weights we given to them. The Y-axis shows the percentage of the term occurrence frequency of each metadata over all the metadata. From Figure 10.1, we can see that the metadata "Document Title", "Table Column Heading", and "Table Caption" are the top three metadata and should get the highest metadata weight.

Based on that, an approximate metadata weights MW_k is set as described in Table 10.7. We keep the metadata with the lowest percentage ("Table Footnote" and "Author" in Figure 10.1) intact by assigning their MW as 1. All the other MWs are calculated according to their ratio comparing with those lowest MW.

Table 10.7. The metadata weights in TableRank algorithm

<table>
<thead>
<tr>
<th>Metadata Names</th>
<th>Metadata Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title</td>
<td>4.60</td>
</tr>
<tr>
<td>Table Column Heading</td>
<td>4.40</td>
</tr>
<tr>
<td>Table Caption</td>
<td>4.00</td>
</tr>
<tr>
<td>Table Reference Text</td>
<td>1.75</td>
</tr>
<tr>
<td>Table Cells</td>
<td>1.25</td>
</tr>
<tr>
<td>Author</td>
<td>1.00</td>
</tr>
<tr>
<td>Table Footnote</td>
<td>1.00</td>
</tr>
</tbody>
</table>
10.6.2 Parameters for Document Origination

In each research field, scholarly journals or conferences are scored and ranked based on the opinions of field experts. *CiteSeer* gives an estimation of the impact ranking for the computer science publications and *Wikipedia*⁴ estimates for chemistry papers. A comprehensive journal impact factor list spanning the years 2002-2004 for all the fields can be found in *CNCSIS⁵*. Different schemes have different score ranges from [0, 3.31] to [0, 53.055]. We normalized the different ranges into the same range [1, 10]. For those journals or conferences that appear in both *Wikipedia* and *CNCSIS*, we normalize them respectively, then take the average value as the final score. Table 10.8 lists examples of the document originations with the corresponding importance scores.

Table 10.8. An Example of The Importance of Conference/Journal

<table>
<thead>
<tr>
<th>Conference/Journal</th>
<th>Field</th>
<th>Importance Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW</td>
<td>CS</td>
<td>7.9</td>
</tr>
<tr>
<td>Analytical Chem</td>
<td>Chemistry</td>
<td>7.5</td>
</tr>
<tr>
<td>Nature</td>
<td>Biology</td>
<td>9.8</td>
</tr>
</tbody>
</table>

⁴http://en.wikipedia.org/wiki/List_of_scientific_journals_in_chemistry/
10.6.3 Parameter Setting of Document Freshness

Document freshness (DF) refers to the age of a document. TableRank assigns more weight to fresher documents for two reasons: 1) Researchers usually are inclined to search for the more recently published documents because these documents typically reflect the latest research trends and results. 2) There is a need to eliminate “The Rich Get Richer” phenomenon which is begot by the boosting value of the citation frequency (the more citation, the higher boosting is). The documents with high citation counts are inclined to be cited again because they are more likely to be found. However, newly published documents are unlikely to attract attention and be cited within a short period of time. Considering these two reasons, we boost the rankings of recent documents. The more recent the document, the greater the boost value is. We define DF as the length of the gap between the year when the document is published and the current year. Because of the high-speed of information propagation and the convenient source sharing (e.g., DBLP bibliography\(^6\)), in our TableRank, we apply the DF boost to brand-new documents, which are published within two years.

\(^6\)http://www.informatik.uni-trier.de/ley/db/
Chapter 11

Error analysis

Because text parser tools (PDFBOX or TET) are used to get all the textual information from the corresponding PDF document, the correctness of the textual information directly affects the performance of the table metadata extraction results. For example, missing characters and space insertions are the two typical errors inherited from text parser tools, which tamper our work. In addition, both of them may generate the errors of the coordination system, which seriously harms the performance of later steps, such as the table column detection. PDFlib TET, as a newly released commercial software package, has much less such errors than the open-source package, PDFBOX. However, such errors inevitably exist.

Because the performance of the table metadata extraction is crucial to the performance of the later table ranking and searching, in this chapter, we address the typical errors we have encountered and analyze the reasons of these errors.

Our table metadata extraction follows these steps:

- Table keyword detection;
- Table caption detection;
- Table boundary detection;
- Table footnote detection;
• Table column analysis;

• Table column heading detection;

• Table row analysis;

Our error analysis follows the same order as the table metadata extraction. We discuss the errors one by one in the following sections.

11.1 Error analysis on the table keyword detection

We define a keyword list to start the detection of the table candidates. This predefined keyword list contains all the possible starting keywords of the table captions, such as “Table, TABLE, Form, FORM,” etc. Statistically, most tables have one of these keywords in their captions. However, we encountered many cases that the text extraction tools parse the crucial keyword “Table” to “Lable”, “able”, “a ble”, “ble”, or even worse by missing the whole keyword. This problem is orthogonal to our work and beyond my control to solve. We hope that these problems will be addressed independently by the designers of the text extraction tools.

An alternative solution to such problems is that, for these returned words “Lable”, “able”, “a ble”, and “ble”, we can still treat them as the starting places of the potential tables. If the whole keyword is missed, we are not able to detect the tables. An alternative solution to such cases is that we can analyze the structure of the entire page using the same methods as applied in the image table detection domain. However, to process detect such infrequent cases (3 over 123 testing tables) is costly.
Moreover, some tables are labeled using other keywords, especially in the documents from computer science field. The authors in this domain usually name a table as “Figure.”. This confuses with the real figures. To avoid real figures and to keep high efficiency, TableSeer overlooks such “wrongly” labeled tables in the current stage. However, this problem can be overcome by heuristic rules that identify the grid-structure cells by white-space analysis.

11.2 Error analysis on the table caption detection

After we identify the table keyword, we need to decide which sentences constitute the table caption. For each text piece next to the keyword, we have to judge whether it belongs to the table caption or not according to a rule: the distance between the current line and the previous line should be no more than a threshold. At the current stage, we set this threshold to the average line gap size of the whole document. Because of the diverse document layouts and the publisher requirements, it is unavoidable to have some special cases. Among the 123 testing tables, there are five tables that omit the last short line of the caption. Figure 11.1 shows an example that does not include the line $c_{\text{flame}} \times 100$ into the table caption. This type of errors should be fixed by combining the line gap information.

11.3 Error analysis on the table boundary detection

After we fix the table caption, the next task is to decide the table boundary. Currently, we use a loose rule to detect the stop line of a table. Because the disordered
Fig. 11.1. An example table omitting a piece of the table caption text sequence exported by the PDFBOX and the TET heavily disturbs the later metadata extraction, we prefer to have a larger table boundary in order to not miss a table candidate. Otherwise, it is very often to only detect a part of the table boundary. For the larger table boundary, we can filter out those non-table text lines later. The loose rule is that if the width of the next line is shorter than a threshold, or if this line starts with some specific characters (e.g., the footnote line), we treat this line within the table boundary. We set the threshold of the line width as the width of the document column. Currently, TableSeer does not work on those tables with one super-wide column because such columns can be the document columns.

Once we detect a long line that is not the footnote, we treat it as the stop place of this table. However, such condition may cause us miss a part of the table contents (long cross-column table cells). To deal with this problem, in the next step, we plan to allow at most two continuous long lines within a table boundary.
11.4 Error analysis of the table footnote detection

There are two error types on the table footnote detection: treating a short table footnote as the table content line, and treating a table footnote line as the document body text line.

Currently, we use a simple but workable method to detect the table footnote: if a line starts with one of the predefined specific characters (e.g., \texttt{*, or $}), we treat it as the starting place of the table footnote. All the lines within the detected table boundary after this line are also treated as the footnote lines. Because of the disorder of the text pieces parsed by the PDFBOX and the TET, many footnote lines are located in the middle of the parsed text sequence among whole boundary. To avoid treating all the later lines as the table footnote, we sort all the lines with the detected table boundary according to their Y-axis values. Also, the performance of the table boundary detection impacts the performance of the table footnote detection. Among 123 testing tables, 12 of them have minor footnote errors. Hopefully, after the improvement of the table boundary detection, we can also improve the footnote detection.

11.5 Error analysis of the table column detection

After the detection of the table boundary and the table footnote, we treat all the other lines as the table body. To detect the table column information, the location (X-Y coordination) and the width information of each text piece are two important parameters. We have tried three different methods to detect the table column: 1) analyzing the relative positions among the text pieces which follow the original sequence, 2) projecting
all the texts into the X-axis to detect the space between columns, and 3) counting
the maximum text pieces in each line. After comparing the performance of all these
three methods, we find that the last one outperforms the other two. However, for some
unknown reasons, the text parsing tools always cut a text piece into several small ones.
In order to get the accurate text pieces, we need to check each line and do some text
merging if needed. Currently, the main reason for the errors in this step is the width
error inherited from PDFBOX and TET. Among 123 tables, 7 of them have minor errors.

11.6 Error analysis of the table heading detection

After we get the number of the table column, we treat the first line in the detected
table boundary as the beginning of the table heading until the first line that all the
columns are occupied. Such method may incur errors. For example in Figure 11.2, we
will stop at the first row because all the columns are occupied. However, the second line
still belongs to the column heading. Although with some semantic knowledge, we can
fix a part of them, it is difficult to fix it all. Among 123 tables, 7 of them have such
minor errors.

11.7 Error analysis of the row detection

Because there is no ruling lines to help us to detect separate the rows from each
other, and there is no much distance difference between the rows and the lines within
a cell, to detect the row information, we use this rule: after we detect all the table
columns, we count the number of rows in the first column. We treat this number as the
row number.
Table 7 Effect of EDTA on nitrate reduction at a copper electrode (all potentials versus SCE). Scan speed, 10 mV s⁻¹; results are the average of three scans

<table>
<thead>
<tr>
<th>[EDTA]/mg l⁻¹</th>
<th>Peak potential/V</th>
<th>Peak current/μA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>-0.48</td>
<td>175</td>
</tr>
<tr>
<td>4.95</td>
<td>-0.57</td>
<td>186</td>
</tr>
<tr>
<td>9.80</td>
<td>-0.57</td>
<td>190</td>
</tr>
<tr>
<td>19.2</td>
<td>-0.58</td>
<td>186</td>
</tr>
</tbody>
</table>

Fig. 11.2. An example table with minor column heading error

11.8 Other sources of error

In some PDF documents, tables or some table columns are created as embedded images. In the current state, *TableSeer* only processes the text-based tables and simply filters out the image tables. For the image tables, we can detect the table caption, but no table content. For the tables with some image columns, we can still detect all the other text metadata. In Figure 11.3, all the contents in the first column are missing, therefore, *TableSeer* can think the column number is 2. Figure 11.4 is another example, however, because all the column headings are text-based, *TableSeer* still can get the correct column number information.

Some documents have severe sequence disorder in the text lines among not only the table boundary, but also the whole document page. The text parsing tools may extract a small part of the table lines then jump out to continue some other figures, or finish a whole document column first. After that, the text parsing tools may go back and continue the text parse of the remaining table texts, or omit the rest of the table texts.
Table 1 Influence of concomitant ions on the peak current of copper(II). Accumulation on a CPE containing 2% DQDS at −0.05 V for 5 min in 0.1 mol dm$^{-3}$ acetate buffer (pH 4.5) containing 4×10^{-7} mol dm$^{-3}$ copper(II)

<table>
<thead>
<tr>
<th>Ion</th>
<th>Concentration of concomitant ion/μmol dm$^{-3}$</th>
<th>Signal ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgI</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>99</td>
</tr>
<tr>
<td>BiIII</td>
<td>20</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>89</td>
</tr>
<tr>
<td>CoII</td>
<td>20</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>99</td>
</tr>
<tr>
<td>FeIII</td>
<td>20</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>101</td>
</tr>
<tr>
<td>HgII</td>
<td>20</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>99</td>
</tr>
<tr>
<td>PtIV</td>
<td>20</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>97</td>
</tr>
<tr>
<td>RuIII</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>SbIII</td>
<td>20</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>102</td>
</tr>
<tr>
<td>SeIV</td>
<td>20</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>98</td>
</tr>
<tr>
<td>ZnII</td>
<td>20</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. 11.3. An example table with the missing column

Table 2 Effect of humic acid on the determination of iron(III)

<table>
<thead>
<tr>
<th>Amount of iron(III)/μg</th>
<th>Humic acid added*/μg</th>
<th>Iron found/μg</th>
<th>Number of experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.2</td>
<td>2.06</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>42.6</td>
<td>2.00</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>71.0</td>
<td>2.08</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mean 2.05</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SD ± 0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.2</td>
<td>5.10</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>42.6</td>
<td>5.11</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>71.0</td>
<td>5.02</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mean 5.08</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>SD 0.09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Humic acid from Wako.
† SD = standard deviation.

Fig. 11.4. Another example table with the missing column
Some large tables are rotated as the vertical tables. After checking the detailed parsed texts and the coordinate values for each text pieces, we notice that there are many location errors. Many of the width values of texts are less than zero. Among 123 testing tables, one table is the vertical table.

Some tables have huge distance between rows (see Figure 11.5). If the distance value is larger than the defined threshold, we may stop in the middle of the table. If we do not keep such a tight threshold, many noise lines will be included into the table boundary. Among 123 testing tables, 6 of them have such problem.

![Table 1 Compound structures](image)

Fig. 11.5. An example table with large row gap

For some tables, it is difficult to identify the column headings and the row headings, even with the human judgement. Please see Figure 11.6.
Table 2 Conditions for the in situ derivatization of different alkyl halide samples

<table>
<thead>
<tr>
<th>Primary alkyl iodide</th>
<th>1-iodobutane</th>
<th>Reflux with excess of thiourea in 30 ml of 95% ethanol for 90 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary alkyl bromide</td>
<td>1-Bromobutane</td>
<td>Reflux with excess of thiourea in 30 ml of 95% ethanol for 150 min</td>
</tr>
<tr>
<td>Primary alkyl chloride</td>
<td>1-Chlorobutane</td>
<td>Reflux with 3 equiv. of NaI in 40 ml of 95% ethanol for 24 h, then reflux with excess of thiourea for 150 min</td>
</tr>
<tr>
<td>Secondary alkyl bromide</td>
<td>2-Bromobutane</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11.6. An example table that is difficult to identify the column headings and the row headings
Chapter 12

Conclusion

To facilitate table extracting and searching, we have devised a novel but efficient table-specific search engine, *TableSeer*. An extensive set of table metadata is proposed to precisely represent a table. Because the traditional TF-IDF approach is no longer suitable for table search, we also study how to calculate the ranking scores of tables contained in scientific documents based on multiple ranking factors from three levels: the term level, the table level, and the document level. We propose a novel table ranking algorithm, *TableRank*, which combines the query-dependent features with the query-independent features of a document to rank tables and their containing documents in response to an end-users query. Experimental results demonstrate that *TableSeer* outperforms the widely used search engine, e.g. *Google Scholar* on searching information contained in tables.

Comparing with the previous works on table extraction, we propose two new methods: the box-cutting method and the sparse-line based method to improve the table boundary detection, which is the vital step for the performance of the table metadata extraction and table structure decomposition. We implement both heuristic- and machine learning based methods. We also analyze a typical problem shared by the PDF text extraction tools: the text sequence error. We propose two algorithms to recover the sequence of extracted sparse lines, which improve the table content collection. The
experimental results not only compare the performance of both algorithms, but also demonstrate the effectiveness of text sequence recovering for the table boundary detection. The results show that the second algorithm achieves better results for both single-column table and cross-column table. It is proved that the text sequence recovering work plays a crucial role in the table boundary detection field. In order to have a better table understanding, we implement the first large-scaled table quantitative study on the table characterization. The detailed table distribution in multiple perspectives is observed.

Scientific documents are the focus of our current work. However, there are a large numbers of tables in documents in other areas. Current parameter settings are based on empirical results and further work is needed to establish optimal settings for ranking and searching. Future user studies will indicate the validity of the ranking methods. There are several future works I want to continue: 1) table classification semantically; 2) table similarity analysis and table distance measurement; 3) Designing table recommendation systems; 4) Applying tables into document summarization, classification, and clustering; 5) improving the performance of the table metadata extraction and ranking algorithm; 6) Extending the table work to other document components, such as Mathematical equations, biomedical and health information, chemistry formula, figures, etc.
Bibliography

[69] David Pinto, Andrew McCallum, Xing Wei, and W. Bruce Croft. Table extraction using conditional random fields. In DG.O, 2003.

[94] Toyohide Watanabe, Qin Luo, and Noboru Sugie. Layout recognition of multi-kinds of

[95] Claudia Wenzel and Wolfgang Tersteegen. Precise table recognition by making use of

[97] R. Haralick Y. Wang, I.T. Philips. Automatic table ground truth generation and a
background-analysis-based table structure extraction method. In *In Proc. of the 6th Int'l

from pdf files. *IICAI05*, (Pune, India), 2005.

[102] Minoru Yoshida and Kentaro Torisawa. A method to integrate tables of the world wide

[103] Yefeng Zheng, Changsong Liu, Xiaoqing Ding, and Shiyan Pan. Form frame line detection

Vita

Ying Liu

Education

The Pennsylvania State University State College, Pennsylvania 2005–Present
Ph.D. in Information Sciences and Technology, expected in Dec. 2009
Area of Specialization: Information Retrieval

University of Alberta Edmonton, Alberta, Canada 2001–2005
M.S. in Computer Science
Area of Specialization: Software Engineering

Hefei University of Technology Hefei, Anhui, P. R. China 1994–1998
B.S. in Computer Science

Research Experience

Doctoral Research The Pennsylvania State University 2005–Present
Thesis Advisor: Prof. C. Lee Giles, Prasenjit Mitra

Graduate Research The University of Alberta, Canada 2001–2005
Research Advisor: Prof. Eleni Stroulia, Kenny Wong

Teaching Experience

Teaching Assistant The Pennsylvania State University 2005, 2006
I taught labs and graded assignments and exams.

Teaching Assistant University of Alberta, Canada 2001–2004
I taught programming courses and software engineering courses.