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ABSTRACT

Motivated by several contemporary problems existing in U.S. agriculture, this thesis
investigates three particular issues concerning different aspects of agricultural contracting
between growers and processors. Specifically, the first essay investigates the relationship
between the use of various types of hog contracts and the performance of the spot market
when information asymmetries exist with regard to observability of product quality. This
essay contributes to the existing literature by embedding a principal-agent model of
processor-producer behavior within a general equilibrium model of the hog market.
Different from the results in most past studies, this essay concludes that contract supplies
raise the expected spot market price and reduce the variance of spot market price under a
formula-price contract. Moreover, this essay finds that both a formula-price contract and
a cost-plus contract offer a greater profit to processors and a greater expected utility to
growers relative to fixed-price or market-price contacts. The second essay discusses
efficiency of broiler contracts out of concerns of growers’ dissatisfaction with the
existing relative-performance contracts. Specifically, this essay compares various
relative-performance contracts with fixed-performance contracts in a dynamic setting,
and discusses improvements of the static mixed-type relative-performance contract.
Various theoretical specifications justify the superiority of relative-performance contracts
both in a static setting and in a dynamic setting when common shocks dominate
idiosyncratic shocks. In addition, a static two-pooled-tournament relative-performance
contract is shown to improve both the processor’s and the grower’s welfare relative to the
static single-tournament relative-performance contract. The third essay investigates the

role of growers’ reputation when an agricultural processor designs optimal incentives for



v
better quality products in a two-period dynamic contract. In a dynamic model with no
commitment by both parties, reputation effects embodied in the processor’s posterior
probability assessment of the grower’s types (using Bayes’ rule) reinforce the potential
well-known ratchet effect. Based on the optimal dynamic contract with no commitment,
the processor offers a direct reputation reward to the grower contingent on his past
performance. This essay demonstrates that the optimal dynamic contract with a

reputation reward would outperform contracts where no reputation reward is offered.
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INTRODUCTION



Background

Use of contracting in agriculture has increased significantly over the past several
decades. A recent USDA survey find that contracting is common among all types of
farms, accounting for 35 percent of total production, where over two-thirds of contract
volume was marketing contracts and one-third was production contracts. Among the
animals or livestock sectors, over 95 percent of the poultry sector is under contract, while
42.9 percent and 25.3 percent of the hog sector and cattle sectors are under contract.
Another recent study on production contracts shows that 99 percent of broilers are
produced under production contracts, while hogs and cattle are 33% and 14%,
respectively (Hayenga et al. 2000).

Contracting motives for agricultural producers and processors have been studied in
broad agricultural settings. Market assurances, product quality, and risk sharing are some
of the major concerns in a contractual relationship (Hudson 2000). The cyclical and
seasonal patterns of some animal productions, such as hogs and cattle, make supply
assurance important to processors because supply shortages increase short-term costs.
On the growers’ side, growers may face the risk of not having a buyer when needed.
Thus, acquisition of animals through contracting reduces exposure to the risk for both
processors and growers. In addition, for growers, selling their animals via contracting
with processors reduces price risks to growers relative to selling to the cash market.

Besides supply assurance, quality is another important factor to processors because
high-quality animals can reduce processors’ costs by affecting processing time and labor
costs as well as the quantity of high-value fresh meat cut per animal (Hayenga et al.

2000). Traditionally, livestock and broilers are sold based on live weight or carcass



weight without taking into account quality differentiation. However, these pricing
methods have been inadequate at sending appropriate signals to producers regarding
quality attributes (Hayenga et al. 2000). Thus, processors attempt to capture the highest
quality animals via contracts and other marketing agreements. Through marketing
contracts or production contracts, processors can provide incentives for better quality
characteristics wanted in the animals they purchase from growers. In addition, under a
production contract, processors are sometimes able to control the choice of genetic
stocks, feeding programs, and management decisions on the production of contracted
animals. However, unobservability of animal quality before delivery may prevent
processors from contracting upon explicit quality characteristics. Instead, optimal
incentives for better quality must be provided conditional on other observed variables,
such as feed conversion ratio in the broiler industry, or lean yield in the hog industry.

While processors and producers are motivated by similar factors to use contracts
across most agricultural sectors, contracting in each sector has its own features due to the
special characteristics borne in its production process or historical development. In some
specific sectors, for example, the increasing use of contracts between producers and
packers has provoked controversy. As a result, processors and producers in each sector
face different problems. The following section summarizes some of the existing issues in
agricultural contracting that need to be addressed.
Effect of contracting on spot markets

The transition to contracting away from a traditional cash markets, such as in the
pork and beef industries and many other agricultural sectors, has brought new issues and

problems. Specifically, in the hog sector, the use by most large producers of formula



pricing contracts,' which are based on a spot market price, has raised concerns that
contracting makes the cash market thinner. Hence, some observers argue that formula
pricing contracts reduce spot market prices and raise cash price volatility (Hayenga et al.
2000), although no empirical study has documented this concern in the hog sector.
Similar effects may also take place in the cattle sector due to captive supplies of fed cattle
through contracting and other types of marketing agreements.” While various empirical
studies attempt to assess impacts of contracting on the spot market price in the fed cattle
sector, existing studies find mixed results due to different data or model specifications.
In addition, most existing studies use reduced-form estimation technique and do not
account for asymmetric information of unobservable quality or grower types. Thus,
results from these studies are likely to be incomplete or biased.
Relative-performance contracts

In contrast to the cattle and hog sectors, the broiler industry is free from problems
concerning the spot market because the extensive use of contracting in this industry has
led to the virtual disappearance of the spot market. Instead of basing payment on a spot
price, the payment structure of modern broiler contracts usually consists of a fixed base
payment and a variable bonus payment dependent on a grower’s relative performance.
The bonus payment is determined as a percentage of the difference between a grower’s
individual performance and the average performance of the grower’s peers. However,
many growers have complained about a bonus system that compares their productivity to

others. Adopted in the early 1990s, various forms of legislation attempted to regulate

! Formula price of hogs, for example, may be calculated using lowa-Southern Minnesota weighted average
price of 49-51% lean hogs (Hayenga et al. 2000).

? In February 2004, a federal jury found Tyson Fresh Meats guilty of using captive supplies to manipulate
the spot price. Tyson’s lawyers said they would appeal the ruling (The New York Times, Feb. 18, 2004).



broiler contracts in Minnesota, Wisconsin, and Kansas. Similarly, in North Carolina a
bill was recently introduced that specifically prohibited payments to a grower based on
his performance relative to other growers (Hayenga et al. 2000).

Reputations and long-term contracts

Specialized investments and contractual relationships often go hand in hand in a
number of agricultural sectors, such as poultry, pork, egg, and processed or frozen fruits
and vegetables, where agricultural producers must make long-term investments in
specialized facilities and equipments. For example, poultry producers invest in single-
use chicken houses that can not be readily converted to other uses on the expectation of
continuing contracts. Apple, grape, and often fruit growers invest in stands of trees or
vines that might also be tailored to a single use. In these cases, if the contractual
relationship between grower and buyer is terminated, the grower may be left with
liabilities that cannot be reimbursed. This types of problem, often called a “hold-up”
problem, and others associated with the existence of specific investments has motivated
the use of long-term contract productions (Williamson 1989). Large-scale processors
extensively use long-term contracts with producers to expand their scale and this use is
still expected to expand rapidly (Hayenga et al. 2000).

Over time, in a dynamic contractual relationship, reputation may play an important
role in maintaining the processor-producer relationship. In a narrow sense, one’s
reputation is the history of his previous actions or history of measured performance. In
line with Wilson (1985), a player’s current reputation affects others’ predictions of his
current behavior and thereby affects their current actions, and the evolution of his

reputation depends on the history of his actions. Thus, his optimal strategy must optimize



the tradeoff between short-term consequences of his current action and long-term
consequences due to the effect of his current action on his future reputation.

Many studies have discussed the role of reputation effects in various settings. For
example, Wilson (1985) summarizes studies of reputation effects in various game-
theoretic and market models with dynamic features and informational asymmetries
among the participants. Goodhue (2000) tests hypotheses regarding relationships
between long-term contracting and growers’ reputation of consistent high quality in the
California winegrape industry. Up to now, however, few studies have investigated the
explicit effects of growers’ reputations on optimal incentives when one designs a long-

term dynamic contract.

Objectives and Brief Outlines of Three Essays

Given the diverse problems and issues existing in contemporary agricultural
production, this thesis attempts to investigate three particular issues concerning different
aspects of agricultural contracting. It consists of three independent essays, with each

essay dealing with one issue concerning agricultural contracting.

Out of concerns that use of formula-price contracts reduces spot market prices and
raises market volatility, the first essay investigates the relationship between contracting
and the spot market in the hog sector. More specifically, the essay develops a multi-
market equilibrium model and compares five different types of contracts in the hog
industry, i.e., two fixed-price contracts, a market-price contract, a formula-price contract,
and a cost-plus contract, in terms of their impacts on the spot market. Market equilibrium

conditions are derived under five different contracting scenarios after incorporating a



principal-agent model of individual producer-processor relationship into a market
equilibrium model of contract and cash markets. In addition, the principal-agent model
accounts for asymmetric information in terms of unobservable quality while embedding
an endogenously determined cash market price into an individual processor-producer
relationship. Based on the spot market-contract market equilibrium under each contract
scenario, results are presented for a numerical example to simulate the impact of
contracting on the hog spot market. While the model is applied to the hog sector, the

same methodology can be applied to other sectors such as the cattle sector.

The second essay investigates efficiency of broiler contracts and compares
performances of relative-performance contracts (RPC) and fixed-performance contracts
(FPC) under both a static model and a two-period dynamic model. Two scenarios of the
two-period dynamic relative performance contracts are investigated: the current-period
RPC and the previous-period RPC, where the current-period RPC rewards bonuses to
growers using the group average performance calculated in the same period as a standard,
while the previous-period RPC rewards each grower by comparing his performance with
the previous period’s average performance of the same group of growers. Last but not
the least, the essay investigates a static model in which processors may split growers into
two tournaments by offering two pooled contracts. This portion of the essay allows the
processor to respond to the hidden information of grower types. Under each scenario
described above, asymmetric information in terms of unobservable types of growers and
unobservable production effort are introduced into the model. The results and their

policy implications are discussed in the final section of this essay.



The third essay studies the effects of growers’ reputation in a two-period dynamic
processor-grower relationship. Two scenarios of the two-period model are presented: a
full-commitment model and a model with no commitment. Specifically, the full
commitment contract requires that both parties are committed to the contract and the
contract cannot be breached or renegotiated during the contracting period. The no-
commitment contract assumes that neither the processor nor the grower can commit to an
intertemporal scheme: i.e., the processor can revise the contract in the second period
conditional on the grower’s first period performance and the grower can quit the
relationship at the end of each period. Under the no-commitment dynamic contract, a
fully separating equilibrium, a semi-separating equilibrium, and a pooling equilibrium are
established. In the no-commitment case, reputation effects reflect the existence of
persistent asymmetric information and are embodied in the posterior probability
assessment of the grower’s types by the processor at the end of the first period. However,
the analysis that follows in the third essay establishes that this type of reputation effect
can only enhance incentives for deviation: i.e., imitating the behavior of the low-quality
type yields future information rent to the high-quality grower type by sustaining the
processor’s belief that the grower might be of low-quality type. Based on the no-
commitment dynamic contract, a reputation reward is then introduced into the model. In
this case, one assumes that the grower’s reputation is summarized by his past measured
performance. Specifically, a reputation reward based on the grower’s past performance is
remunerated to the grower in the second period if the processor observes good
performance at the end of the first period. To simplify the analysis further, the reputation

reward is assumed to take the form of a lump sum payment. Under these assumptions,
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this essay attempts to demonstrate that the reputation reward contingent on the history of
past performance provides incentives for the grower to invest effort in building a
reputation for quality, and thereby, can improve both the processor and the grower’s

welfare, and result in a dominant equilibrium.

In each essay, the general framework of principal-agent models described in Mas-
Collel, Whinston, and Green (1995) is used while incorporating various forms of
asymmetric information. However, each model varies depending on the type of the

contract studied.

Overview of Existing Literature

Existing literature about contracting theory and agricultural contracting is very
broad. Mas-Collel, Whinston, and Green (1995) summarizes a basic contract design
problem, which relies on principal-agent models to incorporate asymmetric information,
including hidden action (moral hazard) and hidden information. A number of extensions,
such as multiple agents, multidimensional effort, multiple signals, and long-term agency
relationship, of the basic model have been studied in the literature. For example,
Holmstrém (1982), Nalebuff and Stiglitz (1983), Green and Stokey (1983), and
Malcomson (1986) examine cases in which multiple agents are hired. Bernheim and
Whinston (1986), on the other hand, examine settings in which a single agent is hired by
several principals. Radner (1985), Rogerson (1985), and Lambert (1983) examine
situations in which the agency relationship is repeated over many periods. Malcomson
and Spinnewyn (1988), and Fudenberg, Holmstrom, and Milgrom (1990) study

implementation of long-term contracts via a sequence of short-term contracts. This list of



10
literature is hardly exhaustive, with other good reviews of contracting theory found in
Hart and Holmstrom (1987) and Salanié (1997).

On the other hand, most research in agricultural contracting has focused either on
finding empirical evidence of contract efficiency or attempting theoretical approaches to
investigate various contracting problems in agriculture. Most papers deal with contracts
in the meat industries, such as pork, beef, and broilers, due to the extensive use of
contracting in those sectors. For example, Azzam (1998), Elam (1992), Schroeder et al.
(1993), and Ward, Koontz, and Schroeder (1998) investigate relationship between
contracting and the cash market in the fed cattle industry and find mixed results. These
studies, which employ different empirical techniques, data, and model specifications, fall
short of providing a definitive description of impacts of contracting on the cash prices.
Reduced-form estimation techniques ignore the fact that contract supplies and the spot
market are endogenously related. Thus, the results from those studies are likely to be
biased. Moreover, despite evidence to the contrary, none of them incorporates
asymmetric information into their models, especially imperfectly observed quality
differences in the spot market and contract market. Goodhue, Rausser, and Simon
(1998), Knoeber and Thurman (1994), and Levy and Vukina (2001) examine efficiency
of broiler contracts using empirical evidence, while Tsoulouhas and Vukina (2000) used
a theoretical approach to compare a static relative performance contract and a fixed
performance contract incorporating hidden actions by growers. All these studies have
shed some light on the efficiency of broiler contracts; however, they are hardly
exhaustive. A few studies have investigated reputation effects and long-term contracts in

agriculture. For example, Goodhue et al. (2000) test hypotheses regarding long-term



11
relationships between contracting and reputation of grape quality in the California
winegrape industry. However, none of the reputation effect studies has adopted a

principal-agent framework.

Contribution of the Thesis

Based on past studies, this thesis investigates three issues of agricultural contracting
in various agricultural sectors. Because the three essays presented in this thesis are
structurally independent, this thesis not only contributes to the general literature of
agricultural contracting, but also provides a more thorough analysis on each specific
topic. Particularly, the various approaches presented in the thesis extend the general
literature of agricultural contracting to issues concerning contract market-spot market
equilibrium, multi-agent relationships, and intertemporal contractual schemes. For each
specific topic explored in the thesis, the analysis that follows presents plausible results
that are generally consistent with what one observes in common practice, and thus, could
be used to provide better policy guidelines.

The major contributions of each essay are briefly summarized in the following
section.

(1) In the first essay, five different types of contracts are compared in terms of their
diverse effects on the hog cash market. The contributions of this essay are threefold:
First, this essay not only investigates the relationship between hog contracting and the
hog spot market in particular, but also provides a general methodology for this type of
problem. Different from most studies, this essay embeds a principal-agent model of

processor-grower relationship within a general equilibrium market model in which the
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endogenous relationship between contract supplies and the spot market is explicitly
acknowledged. More specifically, a grower’s participation constraint in a processor-
grower relationship is endogenized by linking the grower’s contracting decision to the
general-equilibrium-determined spot price of hogs. Second, this essay contributes to the
existing literature by incorporating asymmetric information in terms of imperfectly
observed hog qualities. Third, the results established in this essay justify the dominant
use of formula-price contracts in the hog sector and are consistent with what one observes

in the real world.

(2) The second essay discusses efficiency of broiler contracts out of concerns of
growers’ dissatisfaction with existing relative-performance contracts. This essay first
contributes to the literature by providing a more thorough and comprehensive analysis of
broiler contracts with incorporation of both moral hazard and adverse selection. More
specifically, no known study has investigated the mixed-type, multiple-pooled relative-
performance contract and the previous-period dynamic relative-performance contract in
the broiler sector. Second, this essay provides more definitive policy implications from
the theoretical models. This essay demonstrates that, under certain conditions, relative-
performance contracts perform better than fixed-performance contracts from the
perspective of both growers’ and processors’ welfare. Hence, the various theoretical
models presented in this essay justify the superiority of relative-performance contracts
relative to fixed-performance contracts.

(3) The third essay investigates implications of growers’ reputation on optimal
incentives in a long-term dynamic contract. The results presented in this essay are

generally consistent with the existing literature in dynamic contracts. However, several
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major differences arise: Firstly, past studies have found mixed results concerning the
existence of a separating equilibrium in a dynamic contract. In this essay, optimal
conditions are explicitly derived for a separating equilibrium, a semi-separating
equilibrium, and a pooling equilibrium under certain conditions. Further, conditions for
optimality of a “handicapped” separating equilibrium are also investigated, where a
“handicapped” separating equilibrium offers a single contract only to high-quality
growers. Secondly, although many studies have discussed reputation effects in various
settings, few studies have been known to explicitly investigate the effects on optimal
incentives of a reputation reward contingent on past performance when one designs a
long-term dynamic contract incorporating with asymmetric information among
participating parties. The analysis in this essay demonstrates that introduction of a
reputation reward in a long-term dynamic contract could improve the performance of the
contract by providing more effective incentives, and thus, result in a dominant

equilibrium relative to the case where no reputation reward is available.
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SIMULATING THE IMPACTS OF CONTRACT SUPPLIES IN A SPOT
MARKET-CONTRACT MARKET EQUILIBRIUM SETTING
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1.1 Introduction

A major concern associated with the prevalence of contracting agricultural
production is that increased livestock acquisitions under contracts or marketing
agreements make the cash market thinner. While studies devoted to this issue show
mixed results, several conclude that the increasing use of contracting in meat packing
reduces spot market prices and makes cash prices more volatile. However, these studies
and most others fail to account for differentiated product quality because of
methodological and data-driven constraints. Different from most of the existing
literature, this essay uses a structural model to analyze the impact of contracting on the
spot market. The essay first develops a model within the principal-agent framework for
each individual processor-producer relationship assuming quality differentiation exists in
the contract market. Then the market equilibrium is derived via a general equilibrium
model by aggregating individual processors’ demand and producers’ supply. Further, a
sensitivity analysis is conducted by modifying model parameters indicating the extent of

contracting to investigate the impact of contracting on the spot market.

1.2 Literature Review

Past Studies

Existing empirical studies concerning the impact of contracting in meat packing on
spot prices find mixed results. Elam (1992) conducts an empirical study and concludes
that increases in forward contracting shipments reduce the national monthly average

Agricultural Marketing Service price of fed cattle; however, impacts of contract
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shipments on cash price within some states (Texas, Kansas, Colorado, and Nebraska) are
mixed. Barkley and Schroeder (1996) present an empirical model of the beef packing
sector and find that cash price variability is positively associated with the level of captive
supplies. However, the impact of captive supplies on beef spot prices was not explicitly
estimated in their empirical study. Ward, Koontz, and Schroeder (1996) develop an
empirical model and report a negative relationship between captive supplies delivered
from marketing agreements and forward contracted cattle and cash prices; however, the
effects of packer fed cattle on spot cattle prices are mixed. In another study, Ward,
Koontz, and Schroeder (1998) find that the effects of captive supplies on cash prices is
ambiguous due to the shifts in both demand and supply in the spot market. Schroeder,
Jones, Mintert, and Barkley (1993) analyze the impact of forward contracting on fed

cattle cash price and find significant negative effects.

Theoretical studies that also investigate the impact of forward contracting on cash
prices find similar mixed results. Azzam (1998) develops an equilibrium replacement
model of cattle procurement, but finds ambiguous effects of captive supplies. He points
out that negative effects of forward contracting on cash prices may not be plausible
because comparative statics implied by the captive-supply-induced shifts in market
demand and supply are not explicit. Further, existing empirical results based on reduced-
form models without formal framework underlying the model are subject to criticism.
Xia and Sexton (2004) analyze the implication of top-of-the-market clauses on cash
prices using general equilibrium models and conclude that the marketing contracts with

top-of-the-market (highest market price) clauses reduce cash market prices.
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These studies, which employ different empirical techniques, data, and model
specifications, fall short of providing a definitive description of impacts of contracting on
the cash prices. Moreover, despite evidence to the contrary, none of them incorporates
asymmetric information into their models, especially imperfectly observed quality
differences in the spot market and contract market. Several studies summarized by
Hayenga et al. (2000) report significant quality differences in hog quality sourced from
contracts and cash market transaction. In addition, reflecting quality differentials,

average contract prices are consistently higher than spot market prices (Hayenga et al.

2000, Buhr and Kunkel 1999).

As implied by the above discussion, most existing studies investigating the about
relationship between contracting and spot markets concern the cattle industry. No study
has been found to analyze the impact of contracting on the hog spot market. In fact,
“captive supply” is a particular terminology used for the cattle market. However, the
similarities in processing, producing, and the extent of contracting enable us to use
methodologies used for the cattle market to analyze the hog market. Therefore, this
essay will not only investigate the relationship between hog contracting and the hog spot

market in particular, but also provide a general methodology for this type of problem.
Existing Marketing Contracts in the Hog Sector

Buhr and Kunkel (1999) summarize types of marketing contracts available in the
hog sector’. The major types are formula-price, cost-plus, price-window, price-floor,
fixed-basis, and fixed-price contracts. Table 1.1 duplicates the results on the 12 largest

pork packers’ procurement methods according to Grimes and Meyer’s January 2000

? Similar description can also be found in Hayenga et al. (2000)



21

survey. Since packer-fed supplies account for only a very small portion of pork packers’
procurement of hogs, it is excluded from this study. In addition, marketing contracts

related to the futures market are also excluded because it is beyond the interest of this
paper.

Table 1.1 Twelve largest U.S. pork packers’ procurement methods

Pricing method Percent (100%)
Formula (reported price plus some 47.2
amount)

Fixed price tied to futures (i.e., a cash 8.5
contract)

Fixed tied to feed prices, no ledger 33
Fixed tied to feed prices, with ledger 9.0
maintained

Window risk sharing, no ledger 3.8
Window risk sharing, ledger 0.8
maintained

Other (packer-owned) 1.7
Spot market purchases 25.7

Source: Based on Grimes and Meyer’s January 2000 survey. Also see Hayenga et al
(2000), p38.

Formula-price contracts are used as a mechanism to establish prices when large
quantities of hogs are forward contracted with a packer. Formula pricing, which is based
on spot market prices plus a price premium or discount, accounts for 47.2% of all
procurement types. Formula prices, for example, may be calculated as the price for
Iowa/S. Minnesota 47-49% lean hogs plus or minus a price differential and premium
based on market differences such as location or quality of hogs. Some have argued that
formula price contracts do not provide price protections as they will fluctuate along with
the market price on which they are based. Therefore, statistical models have been used

to test the hypothesis that formula price contracts reduce spot market prices and raise
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price volatility in the spot market. However, as discussed in the previous section, those
results have been mixed depending on their data, estimation technique and model

structure.

Cost-plus contracts specify a price based on feed costs, which comprise the greatest
single cost of production. This price implicitly sets a minimum price level, so it provides
risk protection in addition to quantity assurance and market access. These contracts may
have a balancing clause where payments are made to contractors/processors when market

prices are below the contract prices and vice versa.

Price-window contracts, in general, set a ceiling and floor price. When the market
price falls within the ceiling and the floor, the hogs are exchanged at the market price.
When the market price falls above the ceiling or below the floor price, the packer and the

producer split the difference between the two prices.

Price-floor contracts set a minimum price. To compensate the packer for this
protection, the producer places a portion of the hog price above a predetermined ceiling
price in an account to carry through the low price periods. The performance of these

contracts will resemble a long-term put option.

If there is a balancing account clause in the contracts, as in price floor contracts and
some cost-plus contracts, these contracts must be modeled in a multi-period setting.
Without accounting for time preferences, the balancing account only reallocates or
smoothes producers’ income over time to reduce income variability, but does not reduce
any price risk. Thus, on average, the contract prices under these contracts can be

expected to have similar effects as market prices.
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To understand the relationship between contract supply and the spot market, this
essay will focus on the following four types of contracts: 1) fixed price contracts, 2)
market price contracts, 3) formula price contracts with quality premium, and 4) cost plus

contracts with quality premium.

1.3 Objectives

The objective of this study is to investigate the relationship between use of
contracting and the spot market in the hog industry using a theoretical model. To account
for quality differentiation in the contract market, a principal-agent framework is used to
model individual processor-producer relationships. In addition, we assume asymmetric
information concerning unobservable hog quality in the contract market. For each type
of contract, the market equilibrium is derived via a general equilibrium model by
aggregating individual demand and supply. Further, in order to analyze the impact of use
of contracting on the hog spot market, a sensitivity analysis is performed by modifying

the model parameters indicating the extent of contracting in the model.

This essay contributes to the existing literature by embedding a principal-agent
model of processor-producer equilibrium behavior within a general equilibrium model of
the hog market. In a related way, it also contributes by endogenizing the producers’
participation constraint by linking the producers’ contracting decision to the general-

equilibrium determined spot market price of hogs.
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1.4 The Model

The model contains three stages. In stage I, packers compete for producers to
whom they offer contracts, and each participating producer signs a contract with a
packer. In stage II, each producer independently determines how many hogs to produce
and deliver to the cash market. In stage III, when the cash market settles, each packer
decides the quantity to purchase in the cash market and both the contract and cash

markets clear. The process can be illustrated by the following figure.

Participating o Execute the
producers sign a Reahza‘gon of contracts and
contract production market clear
| 1 1
Date 0 Date 1 Date 2

Figure 1.1 Timeline of the transaction
There are N homogenous producers and M homogenous processors in the pork
sector, with M<<N. In the first stage, each producer decides either to sign a contract or

not to sign a contract. Suppose in stage I, n; producers sign a contract with packer j. For

simplicity, we assume 7/ is same for every packer j. Without loss of generality, we

employ Xia and Sexton’s (2004) assumption that each producer has a short-run supply

function, ¢ = f(@) = @ , where q is the quantity of hogs produced by a producer and @ is
the expected price the producer receives®. Each contract producer i independently

produces a quantity of hogs g, based on the short-run supply function and sells a fixed

proportion S € (0,1) of his hogs to a packer. Specifying the parameter £ in this fashion

* Xia and Sexton (2004) studied market price clause and captive supplies in the beef, not hog sector.
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allows us to investigate the effect of captive supplies on the market equilibrium by

modifying the value of the parameter 3 later on”. Thus, each packer j obtains

/ =n/ fq, hogs from the contract market. On the other hand, those producers who do
not participate in the contract independently decide to produce a quantity ¢, again based
on the short-run supply function. Each packer converts procured hogs into a finished
product according to a production function g = g(Q | z) , where z denotes the quality of
hogs procured and z is only observable to producers before delivery. The production

function is assumed to be concave in Q and z with g,(Q|2) >0, g,,(Q|2z) <0 and
g.(012)>0, g..(0]2)<0, g.,(0Q] z) > 0. Further, each packer incurs processing
costs & = h(Q | z) depending on the quality of hogs procured, with 4(.) being convex in O

and with h,(Q|2)>0, h,,(Q|z)>0,and h_ (Q]z)<O0.

Since the true hog quality is unobservable to packers before delivery, we assume
that packers observe the market price of the finished products, such as fresh meat cuts, as
an imperfect signal of the true quality of hogs delivered. More specifically, assume that
the market price of the finished product is random based on a PDF f(P| z) and a
corresponding CDF F(P| z), where P lies in the support Q. It is assumed that the CDF
F(P| z) satisfies first-order stochastic dominance. In other words, if one supposes there

are two quality levels {z,z}, then F(P|z)> F(P|z}in the sense that the expected

market price of the finished product is higher when the quality of hogs is high than that

> The parameter /3 can be thought of as the hedge ratio of an individual producer. Specifying the parameter
[ in this fashion not only allows for investigating the effect of captive supplies on the market equilibrium,

but also significantly simplifies the analysis. In addition, specification of # guarantees the existence of a
spot market.
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when the quality of hogs is low. Note that there are some subtleties of timing or
observational accuracy when one tries to interpret this variable P. One interpretation is
that quality revelation and payment occur after delivery, and after market clearance. In
this case, it may seem necessary to add a Date 3 in Figure 1 indicating the time of
payment in the contract market. However, another interpretation is that quality is
imperfectly observed upon delivery, and each packer uses it as a criterion for bonuses at
the time of market clearance. This essay most closely follows this second interpretation
by treating P as an imperfect signal that is closely related to the true quality of hogs

delivered and is observable to packers upon delivery.

Since each packer purchases hogs from the cash market based on live weight basis
or carcass weight basis, different qualities are not distinguished as precisely as in the
contract market. To simplify the analysis, we assume that in the cash market only
average quality if observed. Therefore, Akerlof’s “lemons” argument applies and cash
market prices would not provide sufficient incentives for hog producers to produce high-
quality hogs. Hence, following the lemons argument, we assume that independent
producers not participating in a contractual relationship will produce only low-quality

hogs {z}, while contracted producers will produce either high-quality or low-quality hogs

depending on the individual contract. For simplicity, the quality of hogs available in the
cash market is specified as the arithmetic mean of hog qualities sold by contracted

producers and independent producers to the spot market®.

® An alternative assumption is that the average market quality is the weighted average of hogs sold by
contracted producers and independent producers to the spot market, however, it significantly complicates
the analysis. Therefore, we only use the arithmetic mean in this essay as an illustration.
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The unobservability of quality also plays an important role in how payoffs are
structured. Since quality is only observable to producers, it cannot be explicitly
contracted. In addition, in order to procure high-quality hogs from the contract-
participating producers, processors must provide enough incentive to encourage high
quality out of producers. Therefore, the contract price paid to producers by a processor

must depend on the market price of the finished product, i.e., w(P), which can be

regarded as the imperfect quality signal.

According to Hayenga et al. (2000, p36), “... (Hog) quality affects processing time
and labor costs as well as the quantity of high-value fresh meat cuts per hog. For
example, each hog with excessive fat required more trimming and produces less lean
meat. Conversely, a lean hog takes less time to process and produces a larger quantity of

lean pork.”

To simplify the analysis further, we assume that the output function of each packer

is a linear function g(Q, | z) = @.Q, with a_ <« indicating the fact that high-quality

hogs yields more finished product than low-quality hogs. The processing cost function
for each packer takes a quadratic form A(Q, | z) = % 7.(Q, + u,)* where u, is a serially

uncorrelated normally-distributed random variable with mean zero and variance
O'i affecting the processing cost function at time ¢#. Additionally, it is assumed
that . < y_reflecting the fact that low-quality hogs incur higher processing costs than

high-quality hogs.
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Contract producers have a time-invariant utility function u(W)—v(z,q,), where
W = pw(P)q, +(1— p)p; q, represents the total revenue of each contract-participating

producer from both the contract market and the cash market, and p; is the spot market
price at time z. However, for independent producers, the total revenue comes only from
the spot market. That is, W = p’q . Additionally, it is assumed that u is strictly concave
in Wwith ' (W)>0 and u (W) < 0. Each producer incurs disutility according to the
function v(z,q,) = c.q; with ¢, <c;. Producers’ utility function is assumed to have the

property of constant absolute risk aversion (CARA), u(W) =1-exp(—rW), where r is the
Arrow-Pratt coefficient of absolute risk aversion. Then the expected utility E[u(W)] is

tantamount to
1
(1.1) EW—Ervar(W) ,

where var(WW) denotes the variance of W.

Given the assumptions made above, each packer maximizes its net profit:

(1.2)
max [1= [[Pg(O] |2)~h(Q]) |2) = w(P)O] JdF(P| 2)
A3 PeQ
+ [[Pga}, 12)~h(gl, |2) - p}a}, JdF (P|Z)
PeQ)
subject to

(1.3)
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IEH [u(P(P)q, + (A= B)p;q,)1dF (P|z) = v(z.q9,) 2 E, ,[u(p;4,)] = V(2.9,), Vz €{z,Z}

PeQ)

(1.4) z € arg max jEtfl[u(ﬁW(P)qo +(=B)p q)dF (P|2)=v(Z,q,), Vze{zz}

Z PeQ

where

E, ,=Mathematical expectation operator of spot market price conditional on information

available at time ¢-1,

O/ = n{ Bq, hogs to be procured by packer j from the contract market,

g, =Hogs to be procured by packer j from the spot market,
Z =average quality of hogs sold in the cash market,

p,; = Market price of hogs sold in the cash market at time .

The individual rationality constraint (1.3) requires that the expected payoff to each
producer participating the contract should be no less than that when he sells all his hogs
to the cash market. Note that this cash market price will be determined by market
equilibrium. The incentive compatibility constraint (1.4) ensures that under

compensation schedule w(P) the producer’s optimal quality choice is z.

As we have discussed in the section 1.2, we will focus on the following four types
of hog marketing contracts: 1) Fixed-price contracts, 2) market-price contracts, 3)

formula-price contracts with quality premium, and 4) cost-plus contracts with quality

premium.
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1.4.1 Fixed-price Contracts
First, suppose the processor optimally offers the producer a fixed price w(P) = w
independent of P. Consequently, only the low quality z can be implemented. To see

this, note that with this compensation scheme the producer’s payoft is not affected by the
quality of hogs contracted to the processor, so the producer will choose the lowest
possible quality level to incur the lowest disutility. Therefore, the incentive compatibility
constraint is satisfied. In addition, the producer must earn exactly the reservation utility
because, otherwise, the processor can always reduce the reward until it reaches the
producers’ reservation utility level. Hence, the participation constraint (1.3) binds as well

under the fixed-price contract.

Before we continue the analysis with the CARA utility function, we derive the

market equilibrium with risk neutrality first.
a) Producers are risk neutral
Under risk neutrality, i.e., u(W) =W , the binding condition (1.3) becomes
E [pwg, +(-P)p'q,]1-v(z,9,)=E, [P/ q,]—v(z,q,) from which we can solve the
optimal contract price

(1.5) w=E,_p,.

Given the contract price and producers’ short-run supply function, each contract producer

produces

(16) qo = ﬁﬂ"'(l_ﬂ)EHptS =E . p/ .

Similarly, independent producers choose to produce
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(L7) ¢, =E_p;-

Hence, the packer’s profit maximization problem becomes:

maxIT= [[Pg(Q; |2)~h(Q; |2)~E, ,p; O/ 1F(P| )+

a2 PeQ

[[Pe(qd, | 2~ h(gs, | 2)~ pi g3, )AF (P 2)

PeQ

Recall that O/ = n/ Bq,. The first-order conditions to this problem are:

ol ‘ 9
(1.8 2 7= [1Pa, = y.(q}, +u)= p1dF(P|2) =0 ,and
2t PeQ

(19) 5 = [1Pa. 7.0 + 1)~ E,,p!JF(P|2)=0.

1 PeQ

From the conditions (1.8) and (1.9), we can derive the quantity of hogs to be

procured by packer j from the spot market,

a [PFP|D=p e
z t

(1.10) qéjt =+ ¥ —H y—_ﬂt’

and the number of producers contracted with each packer,

a. [PdF(P|z)~E, \p; 7.4,
i : B : a P* _Ez— zs_ My
(1.11) n/ =—2£<=2 =2 P T
¥-P, y-P,

b

where P*denotes the expected market price for the finished product by packers given

low-quality hogs procured from both markets. Equation (1.10) shows that g is
positively related to P* and negatively related to the spot market price of hogs p; . Note

that in this model each producer signs a fixed proportion of their hogs with each packer,
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thus, packers can only adjust their demand for contract hogs by adjusting the number of
producers contracted with each packer. The condition (1.11) confirms that if the
expected cash market price goes up, a smaller number of producers will contract their

hogs with the packers.

The market supply and demand in both the cash market and the contract market can
be derived by aggregating individual demands and supplies. The market equilibrium then
requires that supply equals demand in both the contract market and the cash market.
Further, we assume that the contract market supply is perfectly elastic; therefore, we only

need to solve the equilibrium spot market price. Specifically, the cash-market demand

isQ,, = jil qi(p, | z)=Mqj,(p; | z). Since g, = q, in this case, the cash-market

supply takes the form Q,, = Ng, —Mpq,n/ (E, p. |z). Hence, the spot market clearing

condition requires

(1.12) Q,, = O, :ngz (p; |2) = Ng, _MIBqulj(Et—lp; | z).

Specifically, substituting (1.10) and (1.11) into the condition (1.12) yields

a P:—p’ aPZ_E_ s g
(1.13) ML 1= Ny, - Mpg, [ DT
7/2 j/gﬂqo

1,

or,

M., . 2Ma,P*
(1.14) —[p; +E_pl=—"—r
7/2 7/Z

_Nqo _2M/ut .

Further, substituting (1.7) into (1.14) yields
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M_ .. 2Ma_P* .
(1.15) 7—[pt +E,_1pt]:y—*—NEt_1p, —2My, .

Applying the conditional expectations E, , to both sides of (1.15) and using the

assumption that £, , 4, =0, we can compute the expected spot-market price:

. 2Ma_P* 2M o P? 2. P*M
(1.16) £,,p, = - —+N)=—"—=7"7- :
7 7 12N My N
2 M

Note that the expected spot-market price decreases as the ratio of the number of

N . -
producers to the number of packers, w increases. In the limit, the expected spot

market prices will be the lowest when the packer is a monopsonist (M = 1).

Hence, from (1.6), the optimal amount of hogs to be produced by the each producer

equals to

200 P*M
1.17 =FE S .
( )QO -1 P 2M+7/£N

Substituting (1.16) back into (1.15) solves for the spot market price:

20 P*M

1.18) pl =———— -2y 1,
(L.18) p, 2M 17N VM,

from which we can compute the time-independent conditional variance of the spot market

price’:

(1.19) var(p;)=4y’o,.

7 The time independence of the variance arises from the stationarity of M, . 1f, instead, (¢, is non-stationary,

the variance defined in (1.19) will change over time.
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The number of hogs procured by packer j from the spot market, ¢, can be solved

by substituting (1.18) into (1.10):

(1.20) ‘ a’ZPE -p/ agPEN
. QZz_ ,UI_2M+}/£N

z

+ U, .

Similarly, substituting (1.16) into (1.11) yields

. a.PF—-E_p’ -
(121) l’llj= z 1P }/yut_ N M,

v C2BM fg,

In particular, if 4, =0, i.e., there is no uncertainty in packer’s cost function, (1.21)

; N . .
becomes n/ = ——. Thus, in order for the spot market to exist, the parameter £ must

2 M
be strictly greater than one half under expectation. That is, under risk neutrality, each

contract producer will contract at least half of their hogs with a packer, given the contract

price equals the spot-market price.

Under risk neutrality, it can also be verified that the producers are indifferent
between selling their hogs to the contract market and selling to the cash market under

expectation. Specifically, given the conditions (1.10)-(1.12),

; . a.P*—E_p —r.4
(1.22) Q,, = Ng, —Mpq,n{ (E,_p, | z) = Ng, — Mfq,[— v Ba —]
z 0

a.P”—E.p s E_p -p

=Ng,—-M

Since Q,, = Mg}, (p; | z), the market clearing condition (1.12) requires



. s ) s E_pS _pS
(1.23) Q,, =Mq;,(p, | z) = Ng, —Mq;,(p, | z) + M %=st,

z

from which we can obtain

N E S _ S
(1.24) de = 2% +M i Z P :st-

2y,

Hence, taking expectation on both sides of (1.24) implies

Ng,
5

(1.25) E,,Q,, =E,,O,, = E_,Q, =E,_ O, =
Under this scheme, each packer obtains profit

M = [[Pg(Q) | 2)- Q) | 2)~E, ,p;O}JdF (P | 2)

PeQ

+ [[Pe(ad, | 2~ I(g, | 2)- P} gl JAF (P 2)

PeQ

1 . o S B o
=[agP7QIJt _Eyg(Qljt +:ut)2 _Et—lpt Qljt]+[agpfqzjt __7;(qzjt +/ut)2 _thth]

2

o . 1 4 o
= [azpinJt _EJ/E(QIJZ‘)Z _57/5/’!1‘2 - ]/EQIJtﬂt - El‘—lpt Qljt]

. 1 . 1 . s
+[azp,qzjt _Eyg(qzjt)z _Ej/yutz —7£q5;,ut _ptq;t]
J z K 1 JN2 1 2 J z
= Qlt[a;P7 _7/glut _Et—lpt ]_Eyg(Qlt) _Eyglut +q2t[a£P7 _7£ﬂt

1 J 2 1 2
2}/£(q2t) 27/5/1[

. o o . o 4 1
=0/l7.0)1- Eyz(Qli)z - 57;/42 +q,[7.99,1- Eyg(qz’t)z - Enﬂf

1 4 1 11
= [575(&1{%)2 —Eyguf]ﬂyg(q{t)z —Eulf]

- P

]
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1 2, N AN 2 1 a PN » 1 2
[275(&10) (ZﬁM ﬁqo) 27;/1,] [275(2M+y5N 4,) 27;#;]
1 , N, 17.9,N 1 a,P°N  a Py N
=[= —) ==, |+ = +—— ,
[875%(M) 2 M # [275(2M+7/5N 2M+7/£N'ut]

from which we can compute the expected profit

(1.26)
* 1 2 N 2 1 azPEN 2 1 N 2 aZPE 2 1 aZPEN 2
ETI, =— ) toro ) = v~ ) MmN
RGO G
2M
a,P°N
el G
2M+7/ZN

and the variance of the profit

2

aP’y.N 1y.49N_, _aPyN aPyN
LTVN 17 ot o &N Py N
2M+y,N 2 M ~ " 2M+y N 2M+y N “

(1.27) Var(I1,) =

Note that the packers’ profit is positively related to the ratio N/ M . It reaches
maximum when M=1 and N>>0. On the other hand, when there are a sufficiently large
number of packers in the market to compete for a finite number of hog producers, the
packers’ net profits approach zero. In addition, under the scheme, the packers can
perfectly eliminate the uncertainty in the profit by adjusting the demands from the

contract market and the cash market.

b) Producers are risk averse
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Recall that with constant absolute risk aversion, the expected utility E[u(W)] is

tantamount to EW — %r var(//) . Given the fixed contract price w(P) = w and

W = pw(P)q, +(1-B)p;q,, we have EW = fwq, +(1-p)E,_ p/q,,and

var(W) = (1- B)* q; var(p’). Hence, the binding constraint (1.3) becomes

(1.28)

[ [(Bwg, +(1-DE, ,pia,) - %r(l ~ )’ 43 var(p) JdF (P | 2) ~ W(z2.,)

PeQ

S 1 N
=Eapido— rq; var(p; ) —v(z,q,),

from which we can compute the contract price
N 1 N
(1.29) w=E, ,p; =574,(2=f)var(p,).

Note that the constant contract price is positively related to the expected market
price and is negatively related to the coefficient of risk aversion » and the variance of the
market price. In other words, if producers are risk averse, packers can depress the
contract price and make the producers indifferent between the contract market and the
spot market. Moreover, the more volatile the spot market price is, the smaller the

contract price can be offered by the packers.

Given the contract price and producers’ short-run supply function, each contract

producer produces

(1.30)



qo = pw+ (1= P)E,_\p; = BLE \p; - %%(2 = pyvar(p)l+ (A= BE, \p;

s 1 s
=E_p - Erqoﬂ(Z - B)var(p;),

from which

(131) ¢, = E.p .
1+ Erﬁ(2 = B)var(p,)

Similarly, independent producers choose to produce
(1.32) ¢, = E,,p; -

Under these conditions, a packer maximizes its net profit:

max1 = [ [Pg(Q)2)~hO} |2~ (B! —74,(2 = A)var(p DO IdF (P 2) +

i
a2 PeQ

[[Pe(gd, | 2)-h(ai 12) - pqd,JAF (P | 2)

PeQ

The first-order conditions to this problem are:

(139) 2 = [(Pa.~7.(q} + 1)~ pI1AF(P| =0 and

d>  peo

(139) £ 7= [ [Pa, =7.(0) + ) ~(E,p! =574, = ) var(p) WdF(P| 2)=0.

1 PeQ

From condition (1.33), we can derive the quantity of hogs procured by packer j

from the spot market,

a, [PdF(P|2)-p;

(1.35) qf =—"= > M e

38



From condition (1.34), we can get the number of producers that each packer contracts

with,

z N 1 N
a P —E _p, +5rq0(2—ﬂ)var(pt )=V,

(1.36) n/ =
‘ v.B4,

Further, substituting (1.31) into (1.36) yields

(1.37)
E, \p; [; 2~ B)var(p?)]
OKEPE -E p + I
L 1+5rﬂ(2—,6’)var(pf) o
1 E B
J/Eﬂ 1 t—lpt ,BQO
1+ 5 rf(2 - p)var(p;)
1+ L AY(B-Tvar(p))
P -E p{—* }
_ 1+Erﬂ(2—,6’) var(p,) o
E S
VZﬁ -1P; ﬂ%

1+;rﬂ(2—ﬂ> var(p?)

@ P+ P2 Hvar(p)]- E, p[1+ 2= )B D var(p) )]

H, .
7/gﬂEt—lpts bq,

To derive the market equilibrium, supply must equal demand in the spot market.

Specifically, the spot market demand is
(1.38) 0y, =Ma;,(p; | 2),

and the spot market supply is

39



(1.39)0,, = (N = Mn])q, + M(1- )gn/ (E,,p, | 2).
Hence, the cash market clearing condition requires

(1.40)

0,y =0y, :M‘]{t (p; 12)= (N_Mnlj)qs +M(1_ﬁ)%”lj (E_p;|2)
= Nq, —Mn/(E,,p, | 2)lgq, — (1~ p)g,]

Substituting (1.31), (1.32), (1.35), and (1.37) into (1.40) yields

(1.41)
ZPg_ ts N Etfl ts
M[u_ﬂt]:NEt—lpt [ t— lpt (l ﬁ) 1 P ]
£ L+ rpQ = B)var(p))
@ P+ 2= f)var(p) )= B pill+ = B -Dvar(p))]
M _
7;:BEHP; 54,

Moving the expected spot price and spot market price to the left side yields

(1.42)

a,P*—p; s E_p,
M[;]_NEt—lpt [ 1]9; (1 ﬂ) L

7. 1+;rﬂ<2—ﬂ> var(p})

]

@ P[4 T2~ ) varp) - E,pi+ 1@ ) 1) var(p))
7;:8Ez—1p;

M

= Mu {1+ [E_p ~(1-p) Eap, 7).
fa, L B2 p)var(p)

40



Taking expectation £, , on both sides of (1.42) and applying the

assumption £, 1, =0, (1.42) becomes

(1.43)

1 .
z s s 1+—r(2- ) var(p’
ol E.p. NE.p, . 2 @=p)var(p;)

[
. 7. M 1+;rﬁ(2 _ Byvar(p))

]

@ P[4 rp2 = fyvarp)] - E,pl [+ r2= Y- Dvar(p))]

Yz

1
: s s : 1+—r(2- var(p’
_ a.p- _E_p, NE_p, N a P 2 (2-P)var(p,)

7. 7. M 4

1 [+ P2 = f)var(p) )]
SR © 1+ fvar(p))

1
s —r(2-pB)var(p’)+1
B O

7. 1+;rﬂ<z—ﬂ>var<pf )

][l+%r(2—ﬂ)(ﬁ—l) var(p;)] = 0,

from which we can compute the expected spot market price

(1.44)

E_p, =

1 ;
a, P a.P* 1+5r(2 - p)var(p;)

+ [
v. 7 1+;rﬁ(2—ﬂ)var(Pf)

10+ ; rBQ — ) var(p))]

LN L ][1+;r(2—ﬂ)(ﬁ—1)var(pf)]
£ 75 LB pyvar(p))

41
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aZPZ[; r(2—p)var(p)+2]

1 ;
y.N 5r(2—ﬂ)var(p,‘)+l
I+55—+]

L+ B ) var(p))

][1+;r(2—ﬂ)<ﬂ—1>var<p:>]

Substituting (1.44) into (1.42) solves the spot market price,

1 E.p:
(1.45) p; =E_\p] —y.l+——[E,_p; —(1-p) P B, .
B4, L+ (2= B var(p))

Hence, we can compute the time-invariant variance of the spot market price,

(1.46)
E s
var(p)) = 1+ (B, ) ~(1= )P0
P L+ rf(2 = B var(p))
1
s —r(2=p)var(p))+1
=y {1+ Epip 2 1o |substituting (1.31)

9o 1+;rﬂ(2 — B)var(p’)

1
=y {2+ 572=h) var(p; )} o, -
Hence, the variance of spot market prices can be solved explicitly for each set of
parameter values. Specifically, denote the variance var(p, ) as ai , we can solve it as

(1.47)

var(p;) =0, =0,(7..7.f,0,,)
1-27200r2= B)=\1-27200r2= B)) —4rioir’ (2~ B)’

1
575202"2(2—,3)2
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The explicit equilibrium spot market price can be solved by substituting (1.31) and

(1.47) into (1.45):

a, P* [; r(2- ﬂ)oﬁ +2]

(148) s = 1 241 poiin
SN rC-pEiEl 2
1+ v +[ I ][1+5’”(2—ﬂ)(ﬁ—1)0'p]

1+ 5 rB2-po

Further, the quantity of hogs procured by packer j from the spot market, g7, and the

number of producers that each packer contracts with, 7/, can be solved. Specifically,

substituting (1.48) into (1.35) yields

(1.49)
J azPZ_p:
4> =— M
7-
a, P* [l r2-p)o, +2] 1
a.P - — 7,241 Poin
1+ 4] . +—r2-B(B-No]
M L+ rB2-po; 2
= —H,
7
1 >
a_P? [5’”(2—,3)0',,+2] ]
== (- 1 }+[l+§r(2—,3)0127],ut.
€ yN Er(2—,6’)0';+1

+ I
1+5rﬂ(2— Ji)log

Denote the expectation of ¢ as

]D+;r@—ﬂXﬂ—D0ﬂ



s [ 7= f)o?+2)
(1.50) Eq] =—=—{1- 1 b
€ yN 5r(2—ﬂ)a;+1 |
1+ ; +[ I ][1+5r(2—ﬂ)(,3—1)0,2,]
1+ 5 rp(2 - ,B)O'f)
Similarly, substituting (1.31), (1.44), and (1.47) into (1.37) yields
(1.51)
@ P PR prvap)l- B pil @ B - Dvarp)]
"o ¥ PE D " pas

@l Pl I r-pB-Do)

7.PE \p/ 7.8 Pa,

: y N ;r(2—ﬂ)a§ +1 {
[1+5rﬁ(2—ﬂ)0§]{1+ " +[ I ][1+5r(2—ﬂ)(ﬂ—1)0§]}
1+ 5r/;’(z - p)o;

nﬁ[; 2 - f)o’ +2]

PN,
v.P B,

b

from which we can get the expected number of producers with which each packer signs a

contract,

(1.52)
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1 y.N ;r(2—,6’)0'12,+1
[1+—rBQ2-p)o. {1+ —=—+] ;
2 M L+ 2= p)o;

][1+;r(2—ﬂ)(ﬂ—1)0§]}

En/ = I
7Pl r2- Bo, +2]

14+ 1= pXF-10%]
7.3 '

Given the conditions (1.31), (1.49), and (1.52), each packer obtains net profit under

this fixed price contract:

I, = I [Pg(Q;, | 2)-h(Q; | 2)—(E .. p; —%Nlo (2= p)var(p))Q;,dF (P | z)

PeQ

+ [[Peq}, 12)-h(ai |2)- pq},JdF(P|2)

PeQ

~ (0. P70) 7. (0, + ) = (.} — 14,2 = fyvar p )07 )

. 1 . o
+[a,Pq), —575(% +u,) = plqd]

L g Lo o
—[275(Q1t) 275u,]+[2@(q2,) 275%]
1 )
1 i y.N 5r(2—ﬂ)0p+1 1 .
[1+5rﬂ(2—ﬂ)0p]{1+ " +[ I ][1+5r(2—ﬂ)(ﬂ—l)0p]}
1 1+—rp2- ﬂ)af,
=[57-(Ba)’( 2

nﬁ[; 2 - p)o? +2]

1 2
_[1+57‘(2_ﬂ)(ﬁ_1)01’]_ H, )2_17/ /JZ]
7?3 Bq, 27
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1 >
| ap [,r2-p)o;+2]

1
: )+(1+=r2-Po)u ]’
27 La-por+i 2
+ 2 I

1+ 5 rBQ2-B)o,

][1+;r(2—ﬂ)(ﬁ—1)o-f,]

_1 2 2 _ i M
—27/5(ﬂ%)) [(En{)" —2En; A ]

90

1 A 1 . 1
+57Z[(E%’)2+(1+5”(2—ﬂ)0,27)2ﬂ,2 +2E‘H(1+5F(2—ﬂ)0ﬁ)ﬂ,]—57@ﬂf,

from which we can computer the expected net profit

(1.53)

. o1 . 1 1
ETT, =575(,5’610)2(En1")2 +57£[(E¢1§)2 +(1+5r(2—ﬁ)0ﬁ)26i]—57£62,

and the variance of each packer’s profit

. ; 1 :
(1.54) Var(Il,) =[y.Eq; (1+ 57’(2 -Po,)-r.PaEnlT o,

1.4.2 Market-price Contracts
Under this contract, the contract price is set equal to the spot market price. That
is, w(P) = p, . Recall that, to implement a certain level of quality, the participation

constraint (1.3) and the incentive compatibility constraint (1.4) must be satisfied.

Specifically,
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(1.3) J.EH [u(P(P)qy + (1= B)p,q)dF (P | z) = v(z,q,) 2 E_[u(p;4,)]1- (2,4, ), and

PeQ)

(14)z cargmax [ E, ,[u(Bw(P)q, + (1~ B)piq)ldF (P | 2)~v(Z, q,) ¥z € {22} -

PeQ)

Under this market price contract, however,

(1.55) JAEt—l[u(ﬂptSQO +(1=B)p;q)1AF (P | z) =v(z,q,) = E,_[u(p; q,)]1-v(2,4,),

PeQ
and

(1.56)

J.Ez—l[”(ﬂpzs% +(1=-B)p/q))dF (P |z)—v(z,q,) = E, \[u(p;q,)]-v(Z,q,)

PeQ
< Et—l [u(ptsqo)] - V(g, qO) .

Condition (1.55) states that under the market-price contract, a producer is
indifferent between signing a low-quality contract with a packer and selling to the spot
market, while condition (1.56) states that a producer would strictly prefer producing low-
quality hogs to producing high-quality hogs. That is, producing high-quality hogs is not
incentive compatible under the market-price contract. Combing the conditions (1.55) and
(1.56) implies that under the market-price contract it is optimal for a producer to produce

low-quality hogs only.

The analysis of this contract is similar to that described in section 1.4.1. Recall that

with constant absolute risk aversion, the expected utility E[u(/)] is tantamount to

1 . .
EW - 5 rvar(W) . Given the market-price contract w(P) = p; and
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W=ppiq,+01-P)p.q, = pq,, we have EW = E,_ p/q,, and var(W) = q; var(p;).
Note that offering the market-price contract raises the variance of a producer’s revenue

relative to the constant contract price in section 1.4.1.

Given this contract, the packer maximizes his net profit:

maxTT = [[Pg(Q] |2)~ Q] | 2)- p;QJdF(P| 2)

LERL PeQ

+ [[Pg(al, | 2~ (g, | 2) = piahdF (P | 2)

PeQ

The first order conditions to this problem are:

J
d>  peo

(157 2 = [[Pa.~7.(qh + )= pIdF(P| D=0

(159 £ 1= [[Pa, ~7.(0] +u) - p]WF(P| =0

1 PeQ

From condition (1.57), we can derive the quantity of hogs procured by packer j

from the spot market,

. a. P -p;
(159) ¢ =—————pu,.

z

From condition (1.58), we can determine the number of producers with which each
packer contracts,

ang _p; _j/zﬂt

(1.60) n/ =
l 7;5%

Similar to the fixed-price contract under risk neutrality, under the market-price contract,

each producer produces



49

(1.61) q,=9,=E_p;-
The spot market equilibrium price can be derived by equating spot market demand

and spot market supply. Specifically, the cash market clearing condition requires

a P —p] a. P —p) —y.u
(1.62) M[——— u,1= Nq, — MBq,— ——
7§ﬂq0

z

Moving the expected spot market price and spot market price to the right side,
(1.62) becomes

20{ng N ) 2ps
(1.63) R _2/Jz :EEt—lp; + -

z

z

Thus, taking expectation E, , on both sides of (1.63) and using the assumption

E, ,u, =0 solves the expected spot market price:

20, P*
A 20.P*M
(1.64) E_ p, —lJri = Y N+2M
M 7.

Substituting (1.64) back into (1.63), we can obtain the spot market price

s 20 P°M
(L. )p’_yN+2M

z

_7gll'lt'

Hence, the time-independent variance of the spot market price is

(1.66) var(p;) = yjafl.



Further, the number of hogs procured by packer j from the spot market, ¢4 can be

solved by substituting (1.65) into (1.59):

(167) ¢! a.P*—p; a PN
. 92 = ﬂt_zM-i-}/zN.

z

Substituting (1.65) into (1.60) yields

- a.Pr-p’ -
(1.68) ni = 2 TP TV N

v. 54, 28M

Under this scheme, each packer obtains net profit

I = [[Pg(Q)]2)~hQ] | 2) - p}O)dF(P | z)

PeQ

+ [[Pg(al, | 2~ k(g | 2) = a4 )dF (P | 2)

PeQ

Lo 1 ) oo L 1
= [agprljt __7§(Qljt + :ut)2 - D, Qljt]+[a£P7Qth -

2

| | | o,
= [Eyg(ﬂn{qo)z —Enﬂf]ﬂgn(%)z —575/1?]

1 1 1 a PN

2L2__ 2 -
—[Eﬂg(ﬁ@o)(zﬁm4) YA

agPZN

A T Lo
Vet 27§ 2M +y.N

Sy 2R
2 amry N T2

a PN
=y, (7

2 2
: 2M+7/5N) V2O

from which we can compute

]/E(Q{Z‘ +ﬂt)2 _ptsqgt]

2M +y N
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4

(1.69) EMT) =y (22N o o
. =y (——) —7.0,,
Y e

and
(1.70) var(I1;) =0.

Similar to the fixed-price contract under risk neutrality, a packer can eliminate all
the risk in the net profit by purchasing fixed amounts of hogs from both the contract
market and the spot market. However, compared to the fixed-price contract under risk
neutrality, a packer earns strictly less profit due to the uncertainty introduced by setting

the contract price equal to the spot market price.

1.4.3 Formula-price Contracts with Quality Premium

From the previous sections, we have shown that a fixed-contract price or a market-
price contract can only induce producers to produce low-quality hogs. However, under a
formula-price contract with quality premium, packers can induce high-quality hogs from

contract-participating producers.

Recall that we assume independent producers provide only low-quality hogs to the
cash market, while contracted producers offer their hogs of a certain quality according to
the contract. Thus, in this section, we assume that once a producer signs a formula-price
contract with price premium, he will produce high-quality hogs only. However, for
computational purposes, we assume the average quality of hogs in the cash market will

be an arithmetic average of high quality and low quality. Specifically,
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zZ+z

(1.71) % =

The output function of each packer is still a linear functiong(Q, | z) = 2.0, .
Additionally, we assume the marginal product of finished hogs acquired from the spot

market is

_+
(1.72) a. = 2 . &

Similarly, the packers’ processing cost still takes the form

hQ,|z)= %72 (O, +u,)* with y. <y. < 7., where y; is defined by

]/E+]/g

1.73) y. =
(1.73) y. >

To simplify the analysis further, we assume that the formula-price contract takes a
linear form in terms of the market price of the finished product, P. More specifically, the

contract price is
(1.74) w(P) = p; +a+bP

Given these assumptions, each packer maximizes its net profit subject to each

producer’s participation constraint and incentive compatibility constraint. That is,

max TT= [[Pg(Q/ |2)~h(Q} |2)~[p; +a+bPIO]1dF(P| %)

a’b’qé ’nlj PeQ
+ [[Pe(al, |2)~hai, |2) - ¢}, JAF (P| %)
PeQ

subject to
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(1.75)

.[Et—l [u(Bg, (p, +a+bP)+(1=P)p;q)IdF(P|2)=w(Z,q,) 2 E,_ [u(p; 4,)] - V(2.4,)

PeQ

(1.76) 7 € arg max IEH [u(Bq,(p; +a+bP)+ (= B)p/q,)]dF (P|2)—v(Z, q,)

Z PeQ

Before deriving the first-order conditions, the parameters {a, b} in the contract
price can be derived as follows. Given the contract price specified in (1.74), conditions
(1.75) and (1.76) must be binding because, otherwise, the packer can always reduce the

contract price until both of the constraints become equalities. Given each producer’s

gross revenue, W =Bq,(p; +a+bP)+(1-B)p’q, = p,q, +Bq,(a +bP), for any P we

have EW =E,  p’q, +Bq,(a+bP),and var(W) = q; var(p}).

Thus, the condition (1.75) is equivalent to

(1.77)

s 1 s _ _
[ TE1pigy + Pagta+bP) = rq; var(p)IAF (P| 2) = v(Z,4,)

PeQ

N ]' N
=E,_pq,— 5%15 var(p; ) —v(z,q,),

or,
(1.78) aPq, +bBq,E[P | z] = v(Z,q,) — V(2. 4,) -
Similarly, the condition (1.76) becomes

(1.79)
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s 1 ; _ _
[ [E.ipiay + Bay(a+bP) = —rq; var( p))JdF (P| )= v(Z, q,)

PeQ

s 1 s
= | LEpido+ fao(a+bP) = —rgg va(p))JdF (P| 2) = W(z. q),

PeQ

or,
(1.80) pq,bE[P | Z]1- Bq,bE[P | z] = v(Z, q,) — v(z, 4,).

Thus, the parameters {a, b} in the contract price can be computed by the conditions
(1.78) and (1.80). Precisely,

(1.81) ¢ = vz, q0)—v(z, gIELP | z] _ [v(Z, ¢,) —v(z, ¢,)]1P"

= _ , and
Pq,(E[P|z]-E[P]|z]) Pq,(P° —P*)

(182) b V(E’ qO) B "(Za qo) _ V(E’ qo) - V(E’ qo) .

 Bq (E[P|Z]1-E[P|z])  Bgq,(P* - P?)

Substituting (1.81) and (1.82) into (1.74) yields the contract price

(1.83)
W(P):p;_[V(Z q0) ~ vz 9)IP*  V(Z, 90) — V(2. 90)
Ba,(P™ = P%) By (P™ = P%)
s, 35 q0) ~v(z g,)] :
= - P-P?).
P oy T

Note that the optimal contract price under the formula-price contract contains two
parts: one part is the spot market price, which is used as a base price in the formula-price
contract; the other part is the quality premium, which is positively related to the
difference between the realized price of finished products and the expected price of low-

quality finished products.

Furthermore, given v(z, q,) = c.q, , the contract price can be written as
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(1.84)

Y= p* M _ p=
(P—P)—pt+ﬂ(P2_P£)(P P).

2 2
Cz4y —C.4,

w(P)=p; + B, (P —P7)

Moreover, given the contract price (1.84) and producers’ short-run supply function, each
contract producer produces
(1.85)

(cz —¢.)q,

9, = PEIw(P) | z]1+ (1= B)E _,p, = PElp, +W

(P=P)[Z]+(A=P)E_ p,

=FE, ,p +(c:— cg)QO'

Hence,

E_ p’
1.86 e )V b S
(1804, I—(c.—c.)

Again, independent producers choose to produce
(1.87) g, = E, ,p;.
Now, the first-order optimality conditions to this problem are ready to be derived.

First, the optimal quantity of hogs demanded from the spot market, ¢J,, must satisfy

oIl ; s ~
(1.88) — = [[Paz. —y.(q}, + 1)~ p;JAF(P|Z) =0,

2t PeQ

from which

_o:P" —p;
(1.89) q¢5, =———u,.

z

Second, the number of producers that each packer contracts with, n/ , must satisfy



oL
1. —=
(1.90)) ol

I[Pazﬂlo _VEﬂ%(Qli +u,)— A, (p; +a+bP)dF(P|z)=0,

from which we can obtain

a.P° —p; —a—bE[P|Z]-y.u,

(1.91) n/ =
1 7-Pa,

Given conditions (1.86), (1.87), (1.89), and (1.91), the spot market price can be

obtained by setting market demand equal to market supply in the spot market. That is,

(1.92)

0,, =0, = (N_M”{)qs +M(1_,B)%n1j(Et—1ptS | 2)
= Ng, —Mn/(E_,p; | 2)lq, —(1- B)q,]1=Mq;,(p; | Z),

or, precisely,

(1.93)
z s (CE _cz) E_ pS
a.P*—p; - R £ ) v
s ’B 1_(05 _CZ) s Et—lp;
NE p; —M ; [E p, —(1-p)——]
]Aﬂ Et—lpt 1_(CE _CE)
’ 1_(05 _CE)
a;PZ _p_s
:M[ : _;th]'

Moving the expected spot market price and the spot market price to the left side, (1.93)

becomes

(1.94)

56



57

N s p (e:—c)E_p; p;

—E, \p, T Tz TR o

Yy Ay P L A

P aPlpe)] | [fe=e)]
Vs 7B t B "

Taking the expectation operator £, | on both sides of (1.94) and applying the assumption

E.  u, =0, we can get the expected spot market price,

(1.95)
a, P* . o P [f—(c; —c,)]
; Yz 7:P
E — V4 z
-1P; i 1 (CE _cz)

1B ~(c: —c.)]

N
—+—+[ + 5
My v BB [1_(05_05)]

a:P a.P[f—(c.—c,)]
Yz v:P _
N 1 1 (=pe.~c)

— 4= 5
My ys B [1_(02_0;)]

Substituting (1.95) back into (1.94) solves the spot market price,

(1.96)
a.P? P [f—(c.—c,)] B—(c:—c,)
+ 1+ =7
_ Yz y:P _ B p
N1 1 (-pe-e) - foleme) 1T
My oy VEﬁz[l_(Cg_cg)] =P 7z
a.P® +%P2[ﬂ—(05 —c,)]
_ V= VP B y:v:[28—(c;: —c,)] p
N 1 1 (=Be:—c.)’ | B=+r)-r:(c:—c) "
o R ]

My oy 7/2ﬂ2[1_(02_05)]
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Hence, the variance of the spot market price can be computed as

7/27/2[2ﬂ_(cz _CE)] }2 2

1.97 Y) = .
) = G e e

Substituting (1.96) into (1.89) yields the quantity of hogs demanded from the spot market

by each packer,
(1.98)
a, P* . a.P[f—(c.—c,)]
o :aEPE _L[ 7/3 7.B v:v:[28—(c: —c,)] w1
o N, I (-Be.—c.)  Bo.+r)-rle.—c)

M 7/2 [7/2 7ﬂ2[1—(c2—c§)]

a. P’ +0!;P5[ﬂ—(cz —c.)]
a:P” 1 7 7-p (7: =7:)Me: —¢, =)
7= 7= N 1 1 (1=p)e:-c)’ "B -rie e

My 7 72;32[1_(02_05)]

Similarly, substituting (1.81), (1.82), (1.86), and (1.96) into (1.91) yields the

number of producers with which each packer signs a contract,

z s (CE - cg )qO

s = a:P" —p, - —V:H
(199) CXP pt_a_bE[P|Z]_7/Elth: ,B !
V=P 7:P4,
(c7 —C )Lp;
z s 7/27/2[2/3 (Ci_c )] : £ 1_(CE—C§)
aEP _Ez—lpz + - ey
_ Blyz+r:)-r:(c: —c) Vi
v.B E_p

’ 1_(CE_CE)
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_ [1—(c: _Cg)](ang —E_p)B-(c: _cg)Et—lptS 4 (7 =yl —=(c: _c;)]

y-BE, \p; G- +7)—7-(co—c)lE pi
_ ﬂ[l—(cg—cg)]ang _ﬂ+(1—ﬂ)(05—05)+ (7: =y —(c: —c,)] B
v-BE_p; v B [B(r-+7-)—r:(c: —c)E_p] "

Further, we can compute each packer’s profit under the formula-price contract,

I, = [[Pg(Q)12)~hQ; |2)~(p; +a+bPYQ]1dF(P|7)

PeQ

+ [[Pe(g |2)~h(g}, |2)~ p}g}, JdF (P| )

PeQ

1 i 2 1 2 1 i \2 1 2
=[=y.(pn/ —— v 1+ [=r-(ql) —=y-
[Zyz(ﬂlqo) Zma] [272(%,) 272”’]

1 ) ﬂ[l—(cz—cz)]aEPE B+(1=p)c; —c,) (7: =7l =(c: —¢.)]
=—7:(Pg,)°[ 2 s B 2 + s
2 7:B°E._p, 7:B [B(yr=+7:)—7r:(c: _cg)]Et—lpt
_17/7#24_1}/{&3])2 —LE o (72_72)(02_cz_ﬂ) ,Ll]z—ljh,uz
277 2T e e T Bty (e )t 20T
pl=(c; —¢,)]a. P* _BAA=P)e:—c) i (7z =7 —(c: —c.)ly,
VEIBZEHP; 7/2132 [B(r: +7:)—r:(c. _cg)]Ez—lpts
P pr-pe—e)  Guopli-(e el

v:BE p; y: 5 [B(r=+y:)—r:(c: —c)IE P,

u 1’

1 5 2
—57;(,3%) {[ ]

I

1 1 a.P* 1 . (7 —7:)e: —¢c, = )
——y:u] +=7: Al -—E_p’T+] -

H,
2 2 Yz Yz ﬂ(75+7§)_73(02_05)
a.P” 1 (7z =7:)ez —c. = )

1
+2—=———-—E,_p1 w1 ==yl
v ve U By ) —y(e—e) T 20

]2

Hence, the expected profit under the formula price contract is

(1.100)
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1 Al—(c; - B+1=P)e —c)
E(L,)=— (M, 2
() 27(ﬂq){[ v:-PE.\p; an
o (7= —r)l—(c. —¢)] o)
[B(r: +72)—r:(c. —)E_p,
1 aF 1 (7 =7)e. —c. = p) Po? 1

1
o, A ——E.pT + -~ 7.0,
20772 € 1 By=+r)-r(c.—c) oo

and variance of each processor’s profit is

(1.101)
,3[1 (c. -l p+1-P)c.—c) 7z =y )ll=(c. —¢)]
Ve - ]
)= o) v.BE.D B [B(r- +7.)=r-(c. = )E.,p]
wPZ 1 (7/2 yz)(c _cz _ﬂ) 2
+yl————E. Al - ] 0',2,
e T 75(02—6;)}
o Eap o Si-medaPt (72 —y )~ (e, =]
{[1—(02—05)][ E_p; pri=pe cé)][[ﬂ(n+7;)—7;(cg—cg)]E,_1pf :
0!~PZ 1 ; (72_7/2)(02_Cz_ﬂ)
A——-—F 1 : - 7
il Yz Vz tip][ﬂ(?’f"‘?/z)_?’z(cz_cg)
. BaP(ypa-y)  Eap (G y)IB+- e —c)]
ﬂ(72+72)_75(cz_cg) 1_(02_05) [15(724'72)_72(02_05)]
+CZEPZ[ (]/3—73)(C5—C5—ﬂ) ]_Et_lp:[ (72_72)(02_05_15) 2
13(72"'7/2)_7/2(02_0;) ﬂ(7§+72)_72(cz_cg)

_ ﬂazpfo/z_?/z) +0{~P?[ (72_72)(ci_cg_ﬂ)
Bly=+yr)—y:(c:—c.) = Byz+y)-r:(c:~c.)
E _.p/ (72_72)[2(02_05)_(02_05)2] 2 2

- Vo,
1_(02_05) [ﬂ(72+72)_73(cz_cz)]
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1.4.4 Cost-plus Contracts with Quality Premium

A cost-plus contract consists of the feed costs and some quality premium or
discount. These contracts may also have a balancing clause where payments are made to
contractors/processors when market prices are below the contract prices and vice versa.
However, the balancing clause is ignored in the following analysis. In this section, the
initial assumptions are that a processor wishes to implement high quality and the cost-

plus contract takes a linear form:

(1.102) w(P) =c. +a+bP,

where it is assumed that

c.+c-
(1.103) c. = Ez -,

represents the market average feed cost per unit of hog.

Thus, each packer solves the following problem:

max M= [[Pe(Q] |5)~hQ} |2)~[c. +a+bPIO}JdF(P| %)
ab.g3.nf PeQ

+ [[Pe(q}, 12)~h(gs, |2) - p} g} JdF(P|Z)

PeQ)
subject to
(1.104)

_|.EH [u(fq,(c: +a+bP)+(1=B)p,q,)1dF(P|2)=w(z.q,) 2 E,,[u(p,q,)]-(2,4,) ,

PeQ

and

(1.105)7 e argmax [ E, \[u(Bgy(c: +a+bP)+ (1= B)p;q)IdF (P| )= v(Z, q,) -

z PeQ
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Similar to the formula-price contract, the constraints (1.104) and (1.105) can be
used to derive the parameters {a, b} in the contract price. Again, given the price structure
specified in (1.102), conditions (1.104) and (1.105) must be binding because, otherwise,
the processor could always reduce the contract price until both become equalities. Given

the utility function with constant absolute risk aversion and

W = pq,(c; +a+bP)+(1-p)p/q,, for any P we have

EW = Bq,(c; +a+bP)+(1- B)E, p;q,,and var(W)=(1- B)zqg var(p,) .
Thus, the condition (1.104) is equivalent to

(1.106)

[ Upao(e. +a+bP)+(1- BE, piq, —%r(l ~ B4} var(p) JF (P | 2)~v(Z,q,)

PeQ

) 1 N
= Et—lp; 9 _Erqg Var(pt ) - V(g, qo)

or,

(1.107) (c. +a+bP*)=E,_ p! —%”(2—/7’)% var(p') + V(z,qo)ﬂ— M(z:40)
q,

Similarly, the condition (1.105) becomes

(1.108)

J Waoe +a+bP)+ (1= PE, pig, =5 r(1= f)} g} vas(p)IF (P | D)= v(z. 4,)

PeQ

= [ e +a+bP)+(1= HE,pigy — 1= g var(p) NaF (P 2)-V(z, 4,),

PeQ)
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from which we can obtain
(1109) bﬁqo[PZ _Pz] =v(z, qO)_V(Za ‘Io)-

Thus, the parameters {a, b} in the contract price can be solved as

_[E.90) ~(z.90)]P*
B[ P* —P*]

S 1 S
(1.110) a = E,_, p; —Er(z—ﬂ)qo var(p;)—c; , and

(1.111) p = Y 90) =2 40) |
Bq,(P° —P*)

Substituting (1.110) and (1.111) into (1.102) yields the contract price

(1.112)

_ N o (Z,90) —v(z,9)IP* Wz, q,) - V(z, q,)
w(P)=E,_p, 21”(2 B, var(p,) [P — P°] + Ba, (P* — P) P

— B} = r(2= g, var(p)) + [V(Z’q‘fﬁ; i(j;f]o)] (P—P?).

Similar to the formula-price contract, the cost-plus contract price contains a base
payment, which is constant under this contract, and a price premium that is positively

related to the difference between the observed signal and the expected lowest possible

signal. Note that the market average feed cost. ¢ » is always cancelled out in the contract

price if it is constant. Interestingly, the base payment under this contract takes the

exactly same form as that under the fixed-price contract with risk aversion.

Given the contract price (1.112) and producers’ short-run supply function, each

contract producer produces



64

(1.113)

90 = PEIW(P) | Z]1+ (1= B)E, ,p;

= PELE. P, - %r(2 ~ B)gq, var( p*) + LE240) ~V(2:40)]

ﬂqO[PE - P7]

S 1 N
=E_p, —Erﬂ(2—ﬂ)qo var(p; ) +(c; —¢,)q,.

(P=P)[Z]+(=-P)E_ p;

Hence,

E, p/

(1.114) ¢, = 1 .
1= (c; —cg)+5rﬂ(2 = p)var(p,)

Again, independent producers choose to produce
(1.115) ¢, =E, ,p; .

Turning to the first-order conditions to this problem, the optimal quantity of hogs

demanded from the spot market, ¢J,, must satisfy

oL - s ~
(1.116) = [[Pa —v.(q} +1) - JF(P|) =0 ,

q2t PeQ

from which
. a -~ z ’
(1117) g4, =22—F— .

The number of producers that each packer contracts with, #/ , must satisfy

a

(1118) = 7= [tPec. g, — 7O, + 1)~ Bty e +a+bPAF(P| 2) =0,

from which
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a.P’—c.—a-bP* -y p,

(1.119) n/ =
: 754,

Substituting the contract price (1.112) into (1.119) yields

5 s 1 s (CE _cz)q
aPT = Ep oy r2= g varp)) = Sy
(1.120) n/ =

754,

Given the conditions (1.114), (1.115), (1.117), and (1.120), the spot market

clearance requires that

(1.121)
0y, =05y = Ng, ~Mn{(E_,p; | D)lg, — (1= B)g,]1=Mq;,(p; | %)
Substituting (1.114), (1.115), (1.117), and (1.120) into (1.121) and simplifying yields

(1.122)

, ;rﬁ(Z — pyvar(p})E, . p! —(c. —c.)E, !
a.P"—E p + I 1=7:1,
v Pl (c. —c.)+ - rpQ - pyvar(p?)]
—E —1p}Y - 2
M 7:PE._\p;

- (c. —cz)+;rﬂ(2—ﬁ)var(pf)

1
B—(c: —c.)+_rB2—p)var(p,) pr_ s
XEt—lptS[ 12 ] = aZP —H, .
I=(e; =)+ rpQ = B)var(p)) vz

Further, (1.122) can be written as

(1.123)
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L rpe-pyvarg) (.~ )E, . p;

o 1 \
[P —E_p' + 2 | 7 ]lB~(e; —c.)+ 1= varp))]
Al—(c. —Cg)+5 12— varp;)]
72:8
N . a.P” - p’
+ _Et— p; - - H,
M : 7z

Moving the expected spot market price and the spot market price to the left side,

(1.123) becomes

(1.124)
[ B2 fvar)~(c. ~c.)] 1
E pll 1 1[8—(c: _Cg)"'i rB2-p)varp; )]
Al=(c; —c,)+_ rB2-p)varp;)] s
B 2 +l7t : E lps
7P e o
. 1 .
z P [f—(c. —c,)+_rp2-p)varp;)] o
i 2 p e, 1 12— P)varp!)u
7z 7P B 2

Applying the expectation operator E, ; on both sides of (1.124) and using the

assumption, £, , 1, = 0, the expected spot market price is computed as

(1.125)
P aP [1—(65 ), 1 H2—p)varp’)]
E p = Vz vz B 2 .
Lo v e) e e B pvarg))]
—+—+( )

C M Aime ey - pvarg)] 2

Substituting (1.125) back into (1.124) solves the spot market price:
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(1.126)

s s (CE _cz)
P =E_p, —73[2—7

+§r(2 — Byvar(p! i,

Hence, the time-invariant variance of the spot market price is

(c: _cz)

(1.127) var(p})=y2[2 - +%r(2—ﬂ)var(pf)]zof,,

from which we can solve the variance explicitly:

(1.128) var(p;) =0, =0, (y:,c..c.. for,T,).

Further, substituting (1.128) into (1.125) and (1.126) solves the explicit expected spot
market price and the spot market price, respectively.

Given the spot market price, the quantity of hogs demanded from the spot market

by each processor can be obtained by substituting (1.126) into (1.117):

. aEPE -p; asz -E _p; (c:—-c,) 1
(1.129) g =22 ~P ) P 2= B)ou,.
7z 7z B 2

Similarly, substituting (1.114), (1.125), and (1.128) into (1.120) yields the number
of producers with which each packer signs a contract,
(1.130)

(¢: =c.)E p;
B

- me) B PPt Epl 42 Pyl -
n) =

7:PE,_\p;

[1-(c: =)+ B2 P)o]
ﬂEt—lptS

Hy -
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Further, given this contract, each processor can obtain profit

(1.131)

I, = [[PLO;|2)- 10} 2)~(c. +a+bPQIMFP|2)+ [[Pe(q) |2)~hql, |12)~ pig) JAF(P|2)

1 . | 1 A
= [Eyg(ﬂn{qo)z —575/1;2“[57; (q3,)° —Ey;uf]

1 [1-(c;=¢) +;rﬁ<2 - B, lla.P —E,.p; +;r(z ~pgor)- e D

_Y ey B
27 (Ago)t v-PE_p;
1
[I—(c. —c.)+— B2~ P’ ] ; s _
) el 1 aP -E,p (c.—c) 1 ) 1
: uY i -yl +(1 +—r2-Poul — 7
&.p 2 MZ 2 Vz B 2 2 MZ
1 2 z s 1 2 (CE _cg )Etflp:
1 [1-(c. —05)+Erﬂ(2—ﬂ)0,,][azp -E_p, +E”(2—/3)%0p]—T
:_72(ﬁq0)2{[ R ]2
2 V:PE._\p,
[1-(c. ~e)+ 1P Po]
+[ T
BE, P, #

: 7z El zs
[1-(c. —cz)+;rﬂ(2—ﬂ)0f,][04Pz —E_p] +;r(2—ﬂ)qooﬁ]—w [-(c. —cz)—i—;r[)’(?_— B’

_ B
A vPELD; I BE_p, “lb
1 aP —E.p o _(CE —¢) 1., 2 P -E.p _(CE —¢) 1,

+273{[ . I+a 5 12 Boul +2 . (1 5 512 A

LIV TR
5 VM, ) VM s

from which we can compute the expected profit

(1.132)
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1 (. —c )+2rﬁ(2 AP E.p+, Le-pa,ci1- (C;E‘p’
HI 2572(:&]0) {[ 7’5&;_1]7, ]
1
[1—(c —cg)+frﬁ(2—ﬁ)o‘2 P E
4 2 ]OJ}_,N+ L &P Earp g - )+1r(2 ﬁ)ol)fol}—f%
ﬂE;‘—lpt 7/3 ﬂ
1 2 s B 2 (Cz_cz)Et—lpt 2
(l1-(c. ~e.)+  rpQ- P )P ~E.,p) +5r(2—ﬂ>qoap]—fT}

27.[1-(c. —CZ)+;",3(2 o F

1 a.P*—E _p’ 2, (ea-c)

1 1
+5F(2—ﬂ)0§)]20/2,}—57’;0f,

{01-(c. ~c)+ 2 AP P +;r<2—ﬁ)qoa;]—Etlpf[1+1‘f(cz —e )+ 1By

2.[1-(c. ~c.) +;rﬂ(2—ﬂ)0,§]z

e

2 V=
(P71 - (c. —cz>+;rﬂ(2—ﬂ)a§]—Ellpf[1+ =7

(c. —cz)+;r(ﬂ—1)(2—ﬂ)0f,]}2

2p.[1-(c. —c.) +;rﬁ(2—ﬂ)a;]2

1 a.P°—E_p', (c.—c,) Po? 1
VR | -l 0 ¥ o Sy Y =+ — r2 O' R
272{[ - I+ ; (2-Po,l'o,}- 27z p

z

and the variance of each packer’s profit

(1.133)

1 (c: —c.)E_p,
[1—(02—05)4'57,3(2—,3)0 lle. P -E, 1P,+ V(2 Ba,o,1- —,5
Ve H; =/ ?
ar(Tls) = {=7.(5g,)°[ v, ]
1
[1—(c. —c.)+_ B2~ P)o,] _
2 r a.P*—E p; ., (c.—¢c.) 1 2132 2
[ GE, I+7= , [1- 7 +2r(2 Po, 1} o

={(e:P" ~E_p))l- S ’;CZ)+%V(2—ﬂ)G] a.P +E.p] —lf’(2—ﬂ)qoffﬁ+

(CE - CE )qO 2 2
B
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1.5 A Numerical Example and Results

Based on the structural model for each type of contract formulated in the previous
section, a numerical example is provided here to the various contracts’ impacts on the
spot market. Specifically, the following impacts are investigated: a) impact of the
contract supply on the spot market price under each contract, b) impact of contract supply

on producers’ and packers’ welfare under each contract, and c) impact of market power

: N
in terms of I on the performance of each contract.

For simplicity, we assume that the randomness associated with the market price of

the finished product, P, is governed by an exponential distribution function
(1.134) f(P| 2) :le*“, 0<P<o,and z>0.
z

For the numerical example, the values of parameters

{E,g,ﬂ,ag,aé,}/g,yg,cg,cg,r,M,N,O';} are described in Table 1.2.

Table 1.2 Parameters used in the numerical example

z 4 z 3

p 60%-95% c, 0.1

a. 0.5 M 10

a, 0.4 N 20, 50, 100
Vs 0.2 gfl 0.5

7. 0.3 r 0.1-2

C- 0.3

Given these parameters, Table 1.3, Table 1.4, and Table 1.5 show the equilibrium

prices and quantities from the numerical example with N=20, 50, 100, respectively. In
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addition, although the numerical example is conducted with the risk aversion parameter
in the range 0.1 to 2, only the results for » = 0.5 are presented in each table. The results
for other values of r are similar or exactly same under some contracts to those with r =
0.5. Moreover, the numbers shown in each table are expected values given those

parameters.

1.5.1 Captive Supply and Spot Market Price

Since the term “captive supplies” is usually used in the beef sector, we use
“contract supply” here to represent the total amount of hogs transacted through contracts.
As we discussed in section 1.2, several empirical studies have reported a negative
relationship between captive supplies delivered from marketing agreements and forward
contracts (e.g., Elam 1992, Schroeder, Jones, Mintert, and Barkley 1993, Ward, Koontz,
and Schroeder 1996); however, some have found ambiguous results (e.g., Azzam 1998,
Ward, Koontz, and Schroeder 1998). These mixed results are partly due to different
estimation techniques, data, and model specifications. More importantly, none of those
empirical models has dealt with the endogeneity problem which arises from the mutual
interaction between captive supplies and spot market prices. Thus, those statistical
results are possibly biased. The results that follow are based on an equilibrium model
that accounts for this endogeneity problem. Because of this reason, perhaps, the results

contradict some of the previous findings.
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1) Fixed-price contracts
a) Fixed-price contracts under risk neutrality

With risk neutrality, the contract price takes the form
(1.135) w=E,_,p/

Under this contract, the expected spot market price is the lowest among all types of
contracts except the market price contract. Moreover, both the contract supplies and the
expected spot market price stay constant. Therefore, contract supplies do not have any
causal effect on the expected spot market price. In addition, captive supplies do not
affect the variance of the spot market price. Thus, by producing low-quality hogs, a risk-
neutral producer is always indifferent between signing a contract and selling to the spot

market regardless of values of . Hence, for each £, a packer can minimize his risk by

adjusting n/ ,the number of producers to sign a contract with, such that his expected
demand from the contract market always equals that from the spot market. In other
words, under this contract, each packer optimally acquires half of the hogs from the
contract market and half from the spot market. As a result, the spot market equilibrium
supply constitutes half of the total supply under expectation.

b) Fixed- price contracts under risk aversion

Under this contract, the contract price is specified as
s 1 )
(1.136) w=E,_,p/ =2rq,2=F)var(p,),

which varies according to the parameters » and £.

Figure 1.2 shows that both contract supplies and expected spot market prices

decrease as f increases. Figure 1.3 demonstrates that contract supplies have a positive
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relationship with the expected spot market prices and the variance of the spot market
prices. In addition, their relationship appears to be represented by a linear function. This
effect can be explained as follows: As the parameter £ increases, the processors have
the incentive to raise the contract price to make the risk-averse producers indifferent
between signing a contract and selling to the spot market. Increases in the contract price

reduce the quantity demanded by each processor from the contract market and, hence,

17.95 0.71
= 179 1 10799 S
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S 1771 £
8 . 10703 &
—e— contract
17 .65 ; ‘ : ‘ 0.702 supply
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Figure 1.2 Impact of Beta on contract supplies and expected spot market price
under the fixed-price contract with risk aversion

raise the quantity supplied to the spot market. Consequently, the quantity supplied to the
spot market exceeds the quantity demanded from the spot market and the expected spot
market price decreases. Therefore, as shown in Figure 1.3, contract supplies through the

fixed price contract are positively related to the expected spot market price.
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Figure 1.3 Contract supplies vs. expected spot market price and variance of spot
market prices under the fixed-price contract with risk aversion

2) Market-price contracts

Similar to the fixed-price contract with risk neutrality, contract supplies through the
market-price contract do not affect the expected spot market price and the variance of the
spot market price. Recall that under the market-price contract, a contract producer is
indifferent both ex ante and ex post between signing a contract and selling to the spot

market, and strictly prefers to produce low-quality hogs regardless of the parameter .

Hence, given any value of £, a processor optimally purchases half of his hogs from the

contract market and half from the spot market under expectation by adjustingn; , the

number of producers to sign a contract with. Consequently, contract supplies through
the market-price contract do not affect the expected market price. Further, similar to the
fixed-price contract under risk neutrality, contract supplies do not affect the variance of
the spot market price. However, the market-price contract causes a smaller variance of

spot market price relative to that under the fixed-price contract under risk neutrality.



3) Formula-price contracts with premium

Figure 1.4 shows that an increase in £ raises both contract supplies and expected

spot market prices. Figure 1.5 shows that contract supplies are positively related to the

expected spot market price and are negatively related to the variance of the spot market

price under the formula-price contract.
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Figure 1.4 Impact of Beta on contract supplies and expected spot market price
under the formula-price contract

These effects can be explained as follows: working through the participation

constraint and the incentive compatibility constraint, as the parameter £ increases, the

packers reduce the contract price to make the contract producers indifferent between
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Figure 1.5 Captive supplies vs. expected spot market price and variance of spot
market prices under the formula-price contract

signing a contract and selling to the spot market. Decreases in the contract price raise the
quantity demanded by each processor from the contract market and, hence, reduce the
quantity supplied to the spot market. As a result, the quantity demanded from the spot
market exceeds the quantity supplied to the spot market and the expected spot market
price increases. Further, each producer produces more hogs due to the increase in the
expected spot market price and, additionally, contract producers raise their production

more than independent producers. Hence, an increase in £ raises the amount of total

contract supply.

Note also that the expected market price under the formula-price contract is greater
than those under the fixed-price contract and the market-price contract due to quality
differences between the contract market and the cash market. Moreover, the formula-
price contract causes the smallest variability of spot market prices among all types of

contracts.
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Another important property of this contract is that it makes the spot market thinner
than the fixed-price contract and the market-price contract. Given the example shown in
Table 1.3, spot market supply accounts for about 40.5%, on average, of total supply.
Therefore, this effect of the formula-price contract is consistent with what has been
observed in reality. However, instead of reducing spot market prices and making cash
prices more volatile as claimed in several studies, these results show that the increased
use of formula-price contracts raises expected spot market prices and reduces the
variability of spot market prices. Thus, this result demonstrates that the endogeneity
problem and asymmetric information concerning hog qualities that have not been taken
into account in past studies play a critical role in determining the relationship between
contracting and the spot market.
4) Cost-plus contract with premium

Similar to the formula-price contract, Figure 1.6 shows that both contract supply
and expected spot market price increase as £ increases. Further, increases in contract
supply through the cost-plus contract raises the expected spot market price as well
(Figure 1.7). However, unlike the formula-price contract, contract supplies under cost-
plus contracts raise the variance of spot market prices as well.

Recall that in the section 1.4.4, the condition (1.112) implies that the parameter £ is
negatively related to the contract price given the parameters specified in Table 1.2.
Thus, the contract price decreases as £ increases. Thus, each packer purchases more
hogs from the contract market and, hence, the quantity supplied to the spot market
decreases. Consequently, the excess demand in the spot market drives up the equilibrium

spot market price. Moreover, an increase in the expected spot market price raises the
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Figure 1.6 Impact of Beta on contract supplies and expected spot market price
under the cost-plus contract
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Figure 1.7 Contract supplies vs. expected spot market price and variance of spot
market prices under the cost-plus contract

production by each producer and contract producers offer more hogs than independent

producers. Thus, increases in £ raise the total amount of contract supply as well.
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Therefore, contract supplies through the cost-plus contract are positively related to the
expected spot market price.

Note that for each  and £, the expected spot market price under a cost-plus
contract is the greatest among all types of contracts. However, the variance of the spot
market price is also greater than that under the formula-price contract and the market-
price contract. Similar to the formula-price contract, the spot market becomes thinner
under the cost plus contract. In addition, the spot market is the thinnest under the cost-

plus contract among all types of contracts.

1.5.2 Packers’ and Producers’ Welfare
1) Fixed-price contract
a) Fixed-price contract under risk neutrality

Under the fixed-price contract, since changes in the parameter £ do not affect the
spot market price and contract supplies, packers’ expected profit stays constant as
increases. For each r and /3, packers obtain a relatively greater profit than producers. In

addition, packers can eliminate all risk in their profit by adjusting the quantities
demanded from the spot market and the contract market.

On the other hand, changes in £ do not affect producers’ expected utility, and

contract producers earn the same expected utility as independent producers. However,

changes in £ have different effects on the variability of producers’ incomes. Recall that
a contract producer earns income W = fw(P)q, +(1-B)p,q,. Thus, as S increases,

contract producers face a smaller variance of their income relative to independent
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producers. Therefore, under the fixed-price contract, a risk neutral contract producer
prefers to contract more of his hogs with a packer.

b) Fixed-price contract under risk aversion
Figure 1.8 shows that increase in contract supplies not only raises packers’ expected

profit, but also raises the variance of packers’ profit. Thus, an increase in /£ causes a

tradeoff between packers’ profit and its variance compared to the case under risk

neutrality.
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Figure 1.8 Contract supplies vs. packers’ expected profit and variance of packers’
profit under the fixed-price contract with risk aversion

On the other hand, as each contract producer signs a greater proportion of his hogs
with a packer, total contract supply decreases and both contract producers and
independent producers obtain a smaller expected utility. Hence, contract supply is
positively related to producers’ expected utility, and each contract producer prefers a
small proportion of contracting under this contract. Further, since packers can depress

the contract price as producers’ degree of risk aversion increases, packers capture more
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surplus and, hence, contract producers earn a lower utility relative to independent
producers under this contract. In addition, increases in contract supply raise the variance
of producers’ income. However, since the contract price is fixed for each r and £,
contract producers face a relatively smaller variance of their income than independent
producers. Figure 1.9 shows these impacts of contract supplies on both contract

producers’ and independent producers’ profit.
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Figure 1.9 Contract supplies vs. producers’ expected profit and variance of
producers’ income under the fixed-price contracts with risk aversion

2) Market-price contract

Similar to the fixed-price contract with risk neutrality, changes in 4 do not affect
the amount of contract supplies, packers’ profit, and producers’ profit under the market-
price contract. Additionally, as / increases, the variance of both contract producers’ and
independent producers’ income stays constant. Compared to the fixed-price contract with
risk neutrality, however, contract producers face a larger variance of income relative to

independent producers under the market-price contract. Further, under the market-price
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contract, both packers and producers obtain smaller profit or utility relative to those under
the fixed-price contract with risk neutrality; and packers earn the smallest profit among
all types of contracts.

3) Formula-price contract with premium

Figure 1.10 shows that both packers’ expected profit and variance of packers’ profit
increase as contract supplies increase. On the other hand, Figure 1.11 shows contract
supply is positively related to producers’ expected utility and variance of producers’
income. Compared with independent producers, contract producers obtain a greater

expected utility, but also face a greater variance of their income.
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Figure 1.10 Contract supplies vs. packers’ expected profit and variance of
packers’ profit under the formula-price contract
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Figure 1.11 Contract supplies vs. producers’ expected profit and variance of
producers’ income under the formula-price contract

Because packers can acquire high-quality hogs from the contract market, packers
earn a greater profit than that under the fixed-price contract and the market-price contract
due to greater profitability of high-quality hogs. Similarly, although producers incur high
production costs by providing high-quality hogs to the market, both contract producers
and independent producers can obtain a greater utility from high spot market prices and
high contract prices. Risk-averse producers also benefit from low variance of spot
market prices. In addition, given the short-run supply function, both contract producers
and independent producers offer more hogs to the contract market and the spot market.

4) Cost-plus contract with premium

The performance of the cost-plus contract is very similar to the formula price

contract. Figure 1.12 shows that increased contract supplies raise packers’ profit and

variance of packers’ profit. In addition, the variance of packers’ profit rises relatively
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Figure 1.12 Contract supplies vs. packers’ expected profit and variance of
packers’ profit under the cost-plus contract

slower than packers’ expected profit as contract supplies increase. The cost-plus contract
offers the greatest profit to packers among all types of contracts. Compared to the
formula price contract, however, packers incur a greater variance of profit.

Figure 1.13 shows that both contract producers’ and independent producers’
expected utilities increase as contract supplies increase. However, increased contract
supplies raise the variance of independent producers’ income, while they reduce the
variance of contract producers’ income. In addition, contract producers obtain a greater
expected utility and a greater variance of income relative to independent producers for
each level of contract supply. Compared to the formula-price contract, for each value

of f and corresponding level of contract supply, contract producers earn a lower

expected utility but face a smaller variance of income, while independent producers

obtain a greater expected utility but face a greater variance of income.
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Figure 1.13 Contract supplies vs. producers’ expected profit and variance of
producers’ income under the cost-plus contract

1.5.3 Impacts of Market Power

To demonstrate the effects of market power on the performance of the five types of
contracts, one can vary, N/M, the ratio between the number of producers and the number
of packers, given the same set of parameters. As N/M increases, packers gain more
market power in the sense that they can manipulate the market equilibrium more
significantly. Without loss of generality, fix the number of packers M = 10 and set the
number of producers N = 20, 50, 100, as shown in Table 1.3, 1.4, and 1.5. Based on this
example, the increase in packers’ market power has the following effects:
1) Expected spot market prices

As shown in the tables, for each value of # under each type of contract, the

expected spot market price is pushed down as N increases. However, the variance of spot

market price stays unchanged. As a result, packers purchase more hogs from both the
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contract market and the spot market due to the lower prices and, hence, both the contract
market and the spot market expand.

2) Packers’ and producers’ profit
As N increases, packers gain market power as buyers; hence, more surplus is
captured by packers through both the contract market and the spot market. Thus, for each

value of £ under each type of contract, packers obtain a greater profit as N increases.

However, each packer incurs a greater variance of profit under each contract as N
increases. On the other hand, each producer earns a smaller expected utility due to the
reduced spot market price and the reduced amount of hogs produced by each producer.
However, each producer faces a smaller variance of income as well.

Based on the results from the sections 1.5.1 to 1.5.3, Table 1.6 summarizes the

impacts of contract supplies on spot market price, packers’ profit, and producers’ utilities.

1.6 Conclusion and Discussion

This essay investigates the relationship between contracting and the spot market
under four different types of contracts, including fixed-price contracts, market-price
contracts, formula-price contracts, and cost-plus contracts. In addition, asymmetric
information concerning unobservable hog qualities is introduced into the model. More
precisely, it is assumed that producers have more information about the quality of their
hogs than packers before delivery or slaughtering. For each contract, a principal-agent
framework is used to derive the optimal conditions and the market equilibrium is derived

by equating market demand to market supply in the spot market.



87

Based on the structural model described in section 1.4 and the numerical example in

section 1.5, the major findings are summarized as follows:

First, different from the results in most past studies, this essay concludes that
contract supplies raise the expected spot market price under the formula-price contract
and reduce the variance of spot market price. Therefore, the results in these past studies
are likely biased due to the endogenous relationship between contract supplies and the
spot market price. In addition, contract supplies also have a positive relationship with the
expected spot market price under the cost-plus contract; while contract supplies have no
causal effect on the expected spot market price under the fixed-price contract and the

market-price contract.

Second, several studies have reported that producers complain about formula-price
contracts because they do not provide price protection. However, this essay finds that the
formula-price contract offers the 2™ highest expected profit to packers, highest expected
utility to contract producers, and the 2™ highest expected utility to independent producers
relative to other contracts. Both packers and producers prefer the formula-price contract
to the fixed-price contract or the market-price contact if asymmetric information about
hog quality is taken into account. Compared to the cost-plus contract, the formula-price
contract offers a smaller expected profit to packers and a lower expected utility to
independent producers, but offers a greater expected utility to contract producers. In fact,
performances of the cost-plus contract and the formula-price contract are similar and both

are better than the fixed price contract and the market price contract.

Third, impacts of relative market power of packers and producers are simulated by

varying the number of producers, N, in the market. We find that increases of packers’
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market power by raising N depress the expected market price and producers’ expected
utility, but raise packers’ expected profit. However, the relative superiority of each
contract is the same regardless of the relative market power of packers and producers.

Compared to the past studies, the contributions of this essay are twofold. First, this
essay not only investigates the relationship between hog contracting and the hog spot
market in particular, but also provides a general methodology for this type of problem.
Methods in existing literatures dealing with this problem include various statistical
models. However, different from most studies, this essay embeds a principal-agent
model of processor-producer behavior within a general equilibrium model of the hog
market. In the general equilibrium framework, this essay acknowledges the endogenous
relationship between contract supplies and the spot market, which had been ignored, in
general, in past studies. Second, this essay contributes to the existing literature by
incorporating asymmetric information concerning hog qualities into the equilibrium
model. Again, this has generally been ignored in past studies due to limitations of model
structures. However, the results established in this essay demonstrate that both the
endogeneity problem and asymmetric information play a critical role in determining the
relationship between contracting and the spot market. In addition, the results found in
this essay are consistent with what we observe in the real world and justify the dominant

use of formula-price contracts in the hog sector.

This essay uses a simple structural approach to examine the relationship between
contracting and the spot market. However, a few generalizations of the model could be
made. For example, under the formula-price contract and the cost-plus contract, the

market average quality of hogs is computed as the arithmetic mean of high quality and
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low quality. Instead, a weighted-average quality of hogs sold by contract producers and
independent producers to the spot market could be used. Another generalization is that
the quantity of hogs offered by each producer could be determined by maximizing each
producer’s expected utility instead of using the short-run supply function. However, any
of these modifications would significantly complicate the analysis. Thus, we will not

discuss them in this essay.



Table 1.3 A numerical example of the model (r =0.5, N=20)
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Contract
r beta Ep Varp Jo s () n; supply
Fixed price contracts with risk neutrality
0 0.6  0.92308 0.18 0.92308 0.92308 0.92308 1.6667 9.2308
0 0.65  0.92308 0.18 0.92308 0.92308 0.92308 1.5385 9.2308
0 0.7  0.92308 0.18 0.92308 0.92308 0.92308 1.4286 9.2308
0 0.75  0.92308 0.18 0.92308 0.92308 0.92308 1.3333 9.2308
0 0.8  0.92308 0.18 0.92308 0.92308  0.92308 1.25 9.2308
0 0.85 0.92308 0.18 0.92308 0.92308 0.92308 1.1765 9.2308
0 0.9  0.92308 0.18 0.92308 0.92308 0.92308 1.1111 9.2308
0 0.95  0.92308 0.18 0.92308 0.92308 0.92308 1.0526 9.2308
Fixed price contracts with risk aversion
0.5 0.6 095478  0.19232 091772 0.95478 0.81739 1.8584 10.233
0.5 0.65 0.95348  0.19184 0.91497 0.95348 0.82174 1.7137 10.192
0.5 0.7 095219 0.19137 0.91246 0.95219 0.82603 1.5894 10.152
0.5 0.75  0.95092 0.1909  0.9102 0.95092 0.83026 1.4814 10.113
0.5 0.8 094967  0.19043 0.90817 0.94967 0.83443  1.3865 10.074
0.5 0.85 0.94844  0.18996 0.90636 0.94844 0.83853 1.3026 10.035
0.5 0.9 0.94722 0.1895 0.90479 0.94722  0.84259 1.2277 9.9976
0.5 0.95 0.94602  0.18904 0.90343 0.94602 0.84659 1.1605 9.9603
Market price contracts
0.5 0.6  0.92308 0.045 0.92308 0.92308 0.92308 1.6667 9.2308
0.5 0.65  0.92308 0.045 0.92308 0.92308 0.92308 1.5385 9.2308
0.5 0.7  0.92308 0.045 0.92308 0.92308 0.92308 1.4286 9.2308
0.5 0.75  0.92308 0.045 0.92308 0.92308 0.92308 1.3333 9.2308
0.5 0.8  0.92308 0.045 0.92308 0.92308  0.92308 1.25 9.2308
0.5 0.85 0.92308 0.045 0.92308 0.92308 0.92308 1.1765 9.2308
0.5 0.9  0.92308 0.045 0.92308 0.92308 0.92308 1.1111 9.2308
0.5 0.95  0.92308 0.045 0.92308 0.92308 0.92308 1.0526 9.2308
Formula price contracts
0.5 0.6 1.2093  0.025826 1.5117 1.2093 1.4627 1.581 14.339
0.5 0.65 1.2252  0.02572 1.5315 1.2252 1.3993 1.525 15.181
0.5 0.7 1.2393  0.025632 1.5492 1.2393 1.3427 14665 15.903
0.5 0.75 1.252  0.025558 1.5651 1.252 1.2918 1.4083 16.531
0.5 0.8 1.2635 0.025494 1.5794 1.2635 1.2459 1.3519 17.082
0.5 0.85 1.2739  0.02544 1.5924 1.2739 1.2043 1.298 17.57
0.5 0.9 1.2834 0.025392 1.6042 1.2834 1.1664 1.247 18.005
0.5 0.95 1.2921 0.02535 1.6151 1.2921 1.1318 1.199 18.396
Cost plus contracts
0.5 0.6 1.2324 0.090122 1.5049 1.2324 1.3705 1.7358 15.673
0.5 0.65 1.2491 0.092842 1.5226 1.2491 1.3037 1.6679 16.507
0.5 0.7 1.2638 0.095181 1.5381 1.2638 1.2447  1.5989 17.215
0.5 0.75 1.2769  0.097209 1.5519 1.2769 1.1926  1.5313 17.823
0.5 0.8 1.2884  0.098978 1.5641 1.2884 1.1462 1.4664 18.349
0.5 0.85 1.2988  0.10053 1.5751 1.2988 1.1049  1.4048 18.808
0.5 0.9 1.308 0.1019 1.585 1.308 1.068 1.3466 19.21
0.5 0.95 1.3163  0.10312 1.5941 1.3163 1.035 1.2919 19.565
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utilityl utility2
spot  packer Varprof (contract (indep.
r beta supply profit (packer)  producer) varlncl Producer) varlnc2
Fixed price contracts with risk neutrality
0 0.6 9.2308 0.25562 0 0.76686 0.02454  0.76686  0.15337
0 0.65 9.2308 0.25562 0 0.76686 0.018788  0.76686  0.15337
0 0.7 9.2308 0.25562 0 0.76686 0.013804  0.76686  0.15337
0 0.75 9.2308 0.25562 0 0.76686  0.0095858  0.76686  0.15337
0 0.8 9.2308 0.25562 0 0.76686 0.0061349  0.76686  0.15337
0 0.85 9.2308 0.25562 0 0.76686  0.0034509  0.76686  0.15337
0 0.9 9.2308 0.25562 0 0.76686 0.0015337  0.76686  0.15337
0 0.95 9.2308 0.25562 0 0.76686 0.00038343  0.76686  0.15337
Fixed price contracts with risk aversion
0.5 0.6 8.1739 0.26773 0.0010246  0.75151 0.025916  0.77662  0.17532
0.5 0.65 82174 0.26714 0.00093658  0.74853 0.019674 0.7746  0.17441
0.5 0.7 8.2603 0.26657 0.00085442  0.74575 0.01434  0.77262  0.17351
0.5 0.75 8.3026 0.26601 0.00077774  0.74314  0.0098845  0.77067  0.17262
0.5 0.8 8.3443 0.26547 0.00070619  0.74072  0.0062824  0.76875 0.17174
0.5 0.85 83853 0.26495 0.00063946  0.73847 0.0035112  0.76686  0.17088
0.5 0.9 8.4259 0.26444 0.00057727  0.73639  0.0015513 0.765  0.17003
0.5 0.95 8.4659 0.26395 0.00051934  0.73448 0.00038574  0.76317 0.16919
Market price contracts
0.5 0.6 9.2308 0.10562 0 0.75728 0.038343  0.75728 0.038343
0.5 0.65 9.2308 0.10562 0 0.75728 0.038343  0.75728 0.038343
0.5 0.7 9.2308 0.10562 0 0.75728 0.038343  0.75728 0.038343
0.5 0.75 9.2308 0.10562 0 0.75728 0.038343  0.75728 0.038343
0.5 0.8 9.2308 0.10562 0 0.75728 0.038343  0.75728 0.038343
0.5 0.85 9.2308 0.10562 0 0.75728 0.038343  0.75728 0.038343
0.5 0.9 9.2308 0.10562 0 0.75728 0.038343  0.75728 0.038343
0.5 095 9.2308 0.10562 0 0.75728 0.038343  0.75728 0.038343
Formula price contracts
0.5 0.6 14.627 0.362 1.72E-05 1.5848 0.059016 1.3068  0.03777
0.5 0.65 13.993 0.36417 3.39E-05 1.6267 0.060323 1.3413 0.038607
0.5 0.7 13.427 0.3672 5.35E-05 1.6645 0.061513 1.3725 0.039369
0.5 0.75 12918 0.37079 7.48E-05 1.6989 0.062601 1.4008 0.040064
0.5 0.8 12.459 0.37474 9.71E-05 1.7303 0.063596 1.4267 0.040701
0.5 0.85 12.043 0.37889 0.00011991 1.7589 0.064509 1.4503 0.041285
0.5 0.9 11.664 0.38316 0.00014276 1.7852 0.065349 1.4719 0.041823
0.5 095 11318 0.38745 0.00016541 1.8094 0.066124 1.4919 0.042319
Cost plus contracts
0.5 0.6 13.705 0.51088 0.0027558 1.5771 0.032655 1.3327  0.13688
0.5 0.65 13.037 0.51765 0.0044452 1.6162 0.026366 1.368  0.14485
0.5 0.7 12.447 0.52474  0.0063165 1.651 0.020267 1.3995  0.15203
0.5 0.75 11.926 0.53188  0.0082892 1.6822 0.014632 1.4277  0.15849
0.5 0.8 11.462 0.53891 0.010303 1.7101  0.0096858 1.453  0.16431
0.5 0.85 11.049 0.5457 0.012313 1.7352  0.0056117 1.4757  0.16958
0.5 09 10.68 0.55219 0.014288 1.758  0.0025601 1.4962  0.17434
0.5 095 10.35 0.55835 0.016204 1.7786 0.00065509 1.5146  0.17866
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Table 1.4 A numerical example of the model (r =0.5, N=50)

Contract
r beta Ep Varp Jo Js Q2 n; supply
Fixed price contracts with risk neutrality
0 0.6  0.6857 0.18  0.6857  0.6857 1.7143  4.1667 17.143
0 0.65  0.6857 0.18  0.6857  0.6857 1.7143 3.8462 17.143
0 0.7  0.6857 0.18  0.6857  0.6857 1.7143 3.5714  17.143
0 0.75  0.6857 0.18  0.6857  0.6857 1.7143 3.3333 17.143
0 0.8  0.6857 0.18  0.6857  0.6857 1.7143 3.125 17.143
0 0.85  0.6857 0.18  0.6857  0.6857 1.7143  2.9412 17.143
0 0.9  0.6857 0.18  0.6857  0.6857 1.7143  2.7778 17.143
0 0.95  0.6857 0.18 0.6857  0.6857 1.7143  2.6316 17.143
Fixed price contracts with risk aversion
0.5 0.6 0.7092 0.19232  0.6816  0.7092 1.6362  4.3747 17.891
0.5 0.65 0.7082 0.19184  0.6796  0.7082 1.6393  4.0431 17.86
0.5 0.7 0.7073 0.19137  0.6778  0.7073 1.6425  3.7581 17.83
0.5 0.75  0.7063 0.1909  0.6761 0.7063 1.6455  3.5103 17.8
0.5 0.8  0.7054 0.19043 0.6746  0.7054 1.6486  3.2928 17.77
0.5 0.85 0.7045 0.18996  0.6733  0.7045 1.6516  3.1001 17.742
0.5 0.9 07036  0.1895  0.6721 0.7036 1.6546  2.9283 17.713
0.5 0.95 0.7028 0.18904  0.6711 0.7028 1.6575  2.7739 17.685
Market price contracts
0.5 0.6  0.6857 0.045  0.6857  0.6857 1.7143  4.1667 17.143
0.5 0.65  0.6857 0.045  0.6857  0.6857 1.7143 3.8462 17.143
0.5 0.7  0.6857 0.045  0.6857  0.6857 1.7143 3.5714 17.143
0.5 0.75  0.6857 0.045  0.6857  0.6857 1.7143 3.3333 17.143
0.5 0.8  0.6857 0.045  0.6857  0.6857 1.7143 3.125 17.143
0.5 0.85  0.6857 0.045  0.6857  0.6857 1.7143  2.9412 17.143
0.5 0.9  0.6857 0.045  0.6857  0.6857 1.7143  2.7778 17.143
0.5 0.95  0.6857 0.045  0.6857  0.6857 1.7143  2.6316  17.143
Formula price contracts
0.5 0.6 0.9449  0.0258 1.1812  0.9449  2.5202  4.6658  33.067
0.5 0.65 09587  0.0257 1.1984  0.9587  2.4653 43174  33.629
0.5 0.7 0.9708  0.0256 1.2135 09708  2.4167 4.017  34.123
0.5 0.75 09816  0.0256 1.2270 09816 23736  3.7555 34.56
0.5 0.8  0.9913 0.0255 1.2391 0.9913 2.335  3.5258  34.949
0.5 0.85 09999  0.0254 1.2499  0.9999  2.3003 3.3225  35.299
0.5 0.9 1.0078  0.0254 1.2597 1.0078  2.2689  3.1413  35.614
0.5 0.95 1.0149  0.0254 1.2686 1.0149  2.2403  2.9787 35.9
Cost plus contracts
0.5 0.6 09640  0.0901 1.1772  0.9640  2.4438  4.8186  34.035
0.5 0.65 0.9783 0.0928 1.1925 09783  2.3869 4.465  34.609
0.5 0.7 09907  0.0952 1.2057  0.9907 23373  4.1595 35.106
0.5 0.75 1.0016  0.0972 1.2173 1.0016 ~ 2.2937  3.8927  35.539
0.5 0.8 1.0112  0.0990 1.2275 1.0112  2.2553 3.6577 35919
0.5 0.85 1.0197  0.1005 1.2366 1.0197  2.2213 3.4491 36.254
0.5 0.9 1.0272  0.1019 1.2448 1.0272 2.191 3.2625 36.55

0.5 0.95 1.0340  0.1031 1.2522  1.0340 2.164  3.0945  36.813
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utilityl utility2
spot packer Varprof  (contract (indep.
r beta  supply  profit (packer) producer) varlncl  Producer) wvarlnc2
Fixed price contracts with risk neutrality
0 0.6 17.143 0.88163 0 042318 1.354E-02 0.4232  0.0846
0 0.65 17.143 0.88163 0 0.42318 1.037E-02 0.4232  0.0846
0 0.7 17.143 0.88163 0 0.42318 7.617E-03 0.4232  0.0846
0 0.75 17.143 0.88163 0 0.42318 5.290E-03 0.4232  0.0846
0 0.8 17.143 0.88163 0 0.42318 3.386E-03 0.4232  0.0846
0 0.85 17.143 0.88163 0 0.42318 1.904E-03 0.4232  0.0846
0 0.9 17.143 0.88163 0 042318 8.464E-04 0.4232  0.0846
0 0.95 17.143 0.88163 0 042318 2.116E-04 0.4232  0.0846
Fixed price contracts with risk aversion
0.5 0.6 16362 0.89214  8.24E-05 0.41457 1.430E-02 0.4284  0.0967
0.5 0.65 16.393 0.89162  7.39E-05 0.41295 1.085E-02 0.4273  0.0962
0.5 0.7 16425 0.89111  6.62E-05 0.41144 7.912E-03 0.4263  0.0957
0.5 0.75 16.455 0.89063  5.92E-05 0.41002 5.454E-03 0.4252  0.0952
0.5 0.8 16.486 0.89016 5.29E-05 0.40871 3.466E-03 0.4242  0.0948
0.5 0.85 16.516 0.88972  4.71E-05 0.40748 1.938E-03 0.4232  0.0943
0.5 0.9 16.546 0.88928  4.19E-05 0.40635 8.560E-04 0.4221 0.0938
0.5 0.95 16.575 0.88886  3.72E-05 0.4053 2.129E-04 0.4211  0.0934
Market price contracts
0.5 0.6 17.143 0.73163 0 041789 0.021159 0.4179  0.0212
0.5 0.65 17.143 0.73163 0 041789 0.021159 0.4179  0.0212
0.5 0.7 17.143 0.73163 0 041789 0.021159 0.4179  0.0212
0.5 0.75 17.143 0.73163 0 041789 0.021159 0.4179  0.0212
0.5 0.8 17.143 0.73163 0 041789 0.021159 0.4179  0.0212
0.5 0.85 17.143 0.73163 0 041789 0.021159 0.4179  0.0212
0.5 0.9 17.143 0.73163 0 041789 0.021159 04179  0.0212
0.5 0.95 17.143 0.73163 0 041789 0.021159 0.4179  0.0212
Formula price contracts
0.5 0.6 25202 1.7763 5413E-04 096761  0.036032 0.7979  0.0231
0.5 0.65 24.653 1.7796 5431E-04 0.99601  0.036936 0.8213  0.0236
0.5 0.7 24.167 1.7834 5.491E-04 1.0214  0.037746 0.8422  0.0242
0.5 0.75 23736  1.7876 5.577E-04 1.0443  0.038478 0.8610  0.0246
0.5 0.8 2335 1.7919 5.678E-04 1.0649 0.03914 0.8781  0.0251
0.5 0.85 23.003 1.7963 5.789E-04 1.0837  0.039743 0.8935 0.0254
0.5 0.9 22.689 1.8008 5.905E-04 1.1008  0.040294 0.9076  0.0258
0.5 0.95 22.403 1.8051 6.023E-04 1.1164  0.040799 0.9205  0.0261
Cost plus contracts
0.5 0.6 24438 1.9354 0.0323  0.96506 1.998E-02 0.8155  0.0838
0.5 0.65 23.869  1.9427 0.0339  0.99136 1.617E-02 0.8391  0.0889
0.5 0.7 23.373 1.95 0.0356 1.0145 1.245E-02 0.8600  0.0934
0.5 0.75 22937 1.9571 0.0372 1.035 9.003E-03 0.8785  0.0975
0.5 0.8 22.553 1.964 0.0389 1.0533 5.966E-03 0.8949  0.1012
0.5 0.85 22213 1.9705 0.0404 1.0696 3.459E-03 0.9097  0.1045
0.5 0.9 2191 1.9766 0.0419 1.0843 1.579E-03 0.9228  0.1075
0.5 095 21.64 1.9823 0.0434 1.0976  4.043E-04 0.9347  0.1103
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Table 1.5 A numerical example of the model (r =0.5, N=100)

Contract
r beta Ep Varp Jo s Q@ n; supply
Fixed price contracts with risk neutrality
0 0.6 0.48 0.18 0.48 0.48 24  8.3333 24
0 0.65 0.48 0.18 0.48 0.48 24 7.6923 24
0 0.7 0.48 0.18 0.48 0.48 24  7.1429 24
0 0.75 0.48 0.18 0.48 0.48 24  6.6667 24
0 0.8 0.48 0.18 0.48 0.48 2.4 6.25 24
0 0.85 0.48 0.18 0.48 0.48 24 58824 24
0 0.9 0.48 0.18 0.48 0.48 24  5.5556 24
0 0.95 0.48 0.18 0.48 0.48 24  5.2632 24
Fixed price contracts with risk aversion
0.5 0.6 0.4963 0.1923 04771 0.4963 2.3456  8.5685 24.526
0.5 0.65 0.4957 0.1918 04757 0.4957 2.3477  7.9255 24.504
0.5 0.7 0.4950 0.1914 0.4744 0.4950 2.3499  7.3726 24.482
0.5 0.75 0.4944  0.1909 0.4732 0.4944 23520 6.8919 24.461
0.5 0.8 0.4938 0.1904 0.4722 0.4938 2.3541 6.4699 24.44
0.5 0.85 0.4932  0.1900 0.4713 0.4932 23562  6.0960 24.42
0.5 0.9 0.4925 0.1895 0.4705 0.4925 23582 5.7625 24.399
0.5 0.95 0.4919 0.1890 0.4698 0.4919 2.3603 5.4628 24.38
Market price contracts
0.5 0.6 0.48 0.045 0.48 0.48 24  8.3333 24
0.5 0.65 0.48 0.045 0.48 0.48 24  7.6923 24
0.5 0.7 0.48 0.045 0.48 0.48 24 7.1429 24
0.5 0.75 0.48 0.045 0.48 0.48 24  6.6667 24
0.5 0.8 0.48 0.045 0.48 0.48 2.4 6.25 24
0.5 0.85 0.48 0.045 0.48 0.48 24 58824 24
0.5 0.9 0.48 0.045 0.48 0.48 24  5.5556 24
0.5 0.95 0.48 0.045 0.48 0.48 24 5.2632 24
Formula price contracts
0.5 0.6 0.6926  0.0258  0.8657 0.6926  3.5297 9.8072 50.942
0.5 0.65 0.7036  0.0257 0.8795 0.7036  3.4855 8.9712 51.288
0.5 0.7 0.7133  0.0256 0.8916 0.7133  3.4469 8.2678 51.6
0.5 0.75 0.7218  0.0256  0.9022 0.7218 3.4129  7.6675 51.882
0.5 0.8 0.7293  0.0255 009116 0.7293  3.3827 7.1490 52.139
0.5 0.85 0.7361  0.0254  0.9201 0.7361  3.3557  6.6966 52.372
0.5 0.9 0.7421  0.0254  0.9277 0.7421 3.3314 6.2983 52.585
0.5 0.95 0.7476  0.0254  0.9346 0.7476  3.3095  5.9450 52.781
Cost plus contracts
0.5 0.6 0.7073  0.0901  0.8637 0.7073  3.4706  9.9566 51.6
0.5 0.65 0.7186  0.0928 0.8760 0.7186  3.4256  9.1269 51.966
0.5 0.7 0.7283  0.0952  0.8864 0.7283  3.3866 8.4271 52.291
0.5 0.75 0.7368  0.0972  0.8955 0.7368  3.3527  7.8284 52.579
0.5 0.8 0.7443  0.0990 0.9035 0.7443  3.3230 7.3099 52.835
0.5 0.85 0.7508  0.1005 0.9105 0.7508  3.2968  6.8562 53.064
0.5 0.9 0.7566  0.1019  0.9168 0.7566  3.2736  6.4555 53.268

0.5 0.95 0.7618 0.1031  0.9225 0.7618  3.2530  6.0988 53.45
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utilityl utility2
spot packer Varprof (contract (indep.

r beta supply profit (packer) producer) varlncl Producer)  varlnc2
Fixed price contracts with risk neutrality

0 0.6 24 1.728 0 0.2074  6.636E-03 0.2074  0.04147

0 0.65 24 1.728 0 0.2074  5.080E-03 0.2074  0.04147

0 0.7 24 1.728 0 0.2074  3.733E-03 0.2074  0.04147

0 075 24 1.728 0 0.2074  2.592E-03 0.2074 0.04147

0 0.8 24 1.728 0 0.2074  1.659E-03 0.2074  0.04147

0 0.85 24 1.728 0 0.2074  9.331E-04 0.2074  0.04147

0 0.9 24 1.728 0 0.2074  4.147E-04 0.2074  0.04147

0 095 24 1.728 0 0.2074  1.037E-04 0.2074  0.04147
Fixed price contracts with risk aversion
0.5 0.6 23.456 1.738  1.163E-04 0.2031  7.003E-03 0.2099  0.04738
0.5 0.65 23477 1.7375 1.096E-04 0.2023  5.317E-03 0.2093  0.04714
0.5 0.7 23.499 1.737  1.028E-04 0.2016  3.876E-03 0.2088  0.04690
0.5 0.75 23.52  1.7365 9.608E-05 0.2009  2.672E-03 0.2083  0.04666
0.5 0.8 23.541 1.7361  8.938E-05 0.2002  1.698E-03 0.2078  0.04643
0.5 085 23562 1.7356 8.277E-05 0.1997  9.493E-04 0.2073  0.04620
0.5 0.9 23.582 1.7352  7.627E-05 0.1991  4.194E-04 0.2068  0.04597
0.5 095 23.603 1.7348 6.992E-05 0.1986  1.043E-04 0.2064  0.04575
Market price contracts
0.5 0.6 24 1.578 0 0.2048  1.037E-02 0.2048  0.01037
0.5 0.65 24 1.578 0 0.2048  1.037E-02 0.2048 0.01037
0.5 0.7 24 1.578 0 0.2048  1.037E-02 0.2048 0.01037
0.5 0.75 24 1.578 0 0.2048  1.037E-02 0.2048  0.01037
0.5 0.8 24 1.578 0 0.2048  1.037E-02 0.2048  0.01037
0.5 0.85 24 1.578 0 0.2048  1.037E-02 0.2048 0.01037
0.5 0.9 24 1.578 0 0.2048  1.037E-02 0.2048  0.01037
0.5 0.95 24 1.578 0 0.2048  1.037E-02 0.2048  0.01037
Formula price contracts
0.5 0.6 35297 4.0414 1.724E-03 0.5198  1.936E-02 0.4286 0.01239
0.5 0.65 34.855 4.038 1.603E-03 0.5365  1.990E-02 0.4424 0.01273
0.5 0.7 34469 4.0367 1.513E-03 0.5514  2.038E-02 0.4546  0.01304
0.5 0.75 34.129 4.0367 1.444E-03 0.5646  2.080E-02 0.4655 0.01331
0.5 0.8 33.827 4.0377 1.389E-03 0.5765  2.119E-02 0.4753 0.01356
0.5 0.85 33.557 4.0394 1.346E-03 0.5872  2.154E-02 0.4842  0.01378
0.5 0.9 33314 4.0414 1.311E-03 0.5970  2.185E-02 0.4922  0.01399
0.5 095 33.095 4.0438 1.282E-03 0.6058 2.214E-02 0.4995 0.01417
Cost plus contracts
0.5 0.6 34.706 4.1987 9.082E-02 0.5195 1.076E-02 0.4390  0.04509
0.5 0.65 34.256 4.2  8.803E-02 0.5349  8.727E-03 0.4528 0.04794
0.5 0.7 33.866 4.2027 8.606E-02 0.5484  6.731E-03 0.4648 0.05049
0.5 0.75 33.527 4.2061 8.465E-02 0.5602  4.872E-03 0.4754  0.05278
0.5 0.8 33.23  4.2098  8.363E-02 0.5706  3.232E-03 0.4848  0.05483
0.5 0.85 32968 4.2137 8.290E-02 0.5799  1.875E-03 0.4932  0.05667
0.5 0.9 32.736 4.2176 8.237E-02 0.5882  8.566E-04 0.5006  0.05833
0.5 0.95 32.53 4.2214 8.199E-02 0.5957  2.194E-04 0.5073  0.05984
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Expected | Variance | Packer | Variance | Expected | Variance | Expected | Variance
Spot of spot profit of utility of | of utility of | of indep
market price packers’ | contract contract indep producers’
price profit producers | producers’ | producers | income
income
Fixed- No No No No No Decrease | No No
price change change change | change change with beta | change change
with risk | and 2 and 2" | and and 3" | and
neutrality | lowest highest | lowest | lowest lowest lowest
Fixed- Positive | Positive | Positive | Positive | Positive Positive positive positive
price and 2" and and and 2" | and and 2"
with risk | lowest highest | 3" lowest lowest lowest
aversion lowest
Market- | No No No No No No No No
price change change change | change change change change change
contract | and 2 and and and 2" and 2" and and
lowest lowest lowest | lowest lowest highest lowest lowest
Formula- | Positive | Negative | Positive | Positive | Positive | Positive Positive | Positive
price 2 and 2 2 and and and 2" | and 2"
contract | highest lowest highest | highest | highest highest highest lowest
Cost-plus | Positive | Positive | Positive | Positive | Positive Negative Positive | positive
contract | and 3 and and and 2" and 3" and
highest lowest highest | highest | highest highest highest
Notes:

1. “No change” indicates that contract supplies have no effect on the variable listed in

the column heading. “Positive” indicates that contract supplies have a positive

relationship with that variable; “negative” indicates a negative relationship.

2. The order (ranking) is based on the relative magnitude of variable listed in the column

heading for all five contract scenarios. If no order is indicated, relative rankings are

indeterminate. The shaded boxes reflect the two most preferred rankings.
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ESSAY II

STATIC AND DYNAMIC EFFICIENCY OF POOLED BROILER CONTRACTS:
RELATIVE PERFORMANCE CONTRACTS VS. FIXED PERFORMANCE
CONTRACTS
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2.1 Introduction

From modest beginnings prior to World War II, the U.S. broiler industry grew into
one of the most integrated of all agricultural sectors. Annual per capita consumption of
broilers in the United States increased more than 100-fold from 0.7 pounds in 1935 to 72
pounds in 1997 (Martinez 1999). In 1950, 95 percent of broiler producers were
independent. Today, the U.S. broiler industry is one of several agricultural sectors that
extensively employ contracts as a method of vertical coordination between processors
and producers and more than 95 percent of chickens are grown under contract (Martinez
1999). Contracts and vertical integration played an important role in the adoption of new
technology and the coordination of production with consumer preferences for quality and
consistency. In the 1950s, large capital requirements, coupled with declining, highly
variable broiler prices, made broiler production a risky business. Consequently, large
feed companies established broiler production contracts with growers. As the market for
high-quality broilers grew, poultry processors replaced feed companies as integrators or
contractors. According to Perry, Banker, and Green (1999), product quality,
standardization, product consistency, identification, and risk reduction and risk
management in the production process are among the benefits from contracting that
accrue directly to processors.

Most major processors now control the vertical stages in the broiler industry, from
breeders to market-ready products, through production contracts or vertical integration.
These processor-integrators, such as Tyson Foods, Inc., breed the parent stock, produce
hatching eggs, and hatch the eggs. They then provide baby chicks, feed, and veterinary

services to the contracted growers who raise the chicks. Growers provide the chicken
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houses and labor. After the chickens grow to the market weight, the grown broilers are
harvested, slaughtered, and dressed for market or processed further (Martinez 1999).

A broiler production contract usually contains three types of compensation for
grower service: a) a base payment, b) a performance payment, and c) a disaster payment
(Perry, Banker, and Green 1999). The base payment is a fixed fee per pound of live meat
produced. The performance payment is a bonus or punishment based on the difference
between an individual grower’s settlement cost and either the average settlement costs of
all contractor flocks or a fixed settlement cost. Broiler contracts with average settlement
costs are usually called relative-performance contracts (RPCs), while those with a fixed
settlement cost are called fixed-performance contracts (FPCs). Feed conversion ratio
(feed used per pound of broiler produced) is often used as a proxy for settlement costs. A
high feed conversion ratio indicates low settlement costs and better grower performance.
According to Knoeber and Thurman (1995), broiler production contracts changed in 1984
to relative-performance contracts from rank-order tournaments in which growers were

rewarded solely based on their ordinal ranking in a production tournament.

While a majority of poultry contract growers may be satisfied with most aspects of
their contractual arrangements, many are dissatisfied with at least one aspect of their
contractual arrangements (Hayenga et al. 2000). According to Hayenga et al., their
complaints focus primarily on the system that bases their bonus on how their
performance compares to other growers. Many broiler growers complain that relative-
performance payments are biased and unfair and are generally opposed to a contract in
which their payments depend on how their neighbors perform. For example, consecutive

flocks grown by the same grower, while having similar production costs, can receive
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substantially different bonus payments depending on the performance of other growers in
the settlement group. Growers have expressed exasperation over this form of
remuneration since they have no way of anticipating how large their payments will be
(Hayenga et al. 2000). Therefore, some states, such as North Carolina, have considered
legislation that prohibits the use of relative-performance contracts. Various forms of
legislation aimed at regulating broiler contracts were also passed in Minnesota, Kansas
and Wisconsin (Tsoulouhas and Vukina, 2000).

Thus, this essay attempts to compare the optimal incentives of relative-performance
contracts and fixed-performance contracts in both a static model and a two-period
dynamic model. Asymmetric information in terms of both unobservable grower abilities
and unobservable production effort is introduced into the model. Further, the last part of
the analysis investigates the case where a processor institutes two tournaments in a single
period as a means to mitigate the adverse selection problem. The final section of this

essay discusses policy implications.

2.2 Literature Review
Broiler production and relative-performance contracts

Broiler production is usually coordinated by processors or integrators. Processors’
payments to the growers under contract are based on relative performance of each

grower. Following Levy and Vukina (2001, 2002), a typical payment function under a

. 1 n
relative-performance contract can be constructed as follows: w, = a + f[x, — —Z x;1,
n j=1

where o represents the base payment, S represents the bonus payment, x; is live output
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of chickens produced by grower i, and w,is the payment received by grower i. The term

IR . .
—Zx ; 18 the peer average performance. In a few analytic papers, such as Roe and Wu
n «

Jj=1

(2003) and Tsoulouhas and Vukina (2000), grower i’s performance is excluded from the
calculation of the peer average. However, because results from past studies show that
this assumption does not significantly affect the contract performance when the number
of growers in the competition is large, the peer average will be based on all n growers
throughout this essay. If the average performance is replaced by a fixed number, the
contract becomes a “fixed-performance contract”. Relative-performance contracts
assume that flocks in different farms within the same group are grown under relatively
homogenous conditions. Moreover, these contracts require that the calculation of the
group average performance includes growers whose flocks where harvested at
approximately the same time, so that they are all exposed to the same influence of
common stochastic factors. The essence of the contract settlement is the elimination of
the common production risk from the responsibility of a grower through relative-
performance mechanism. However, as indicated above, the reward to an individual
grower will be substantially different when heterogeneous growers are in the same

comparison group and the group composition continually changes. Thus, unobservable

grower heterogeneity introduces new risks (Goodhue 2000).

Past Studies
Several recent papers have studied relative-performance incentives or tournament
contracts. Goodhue (2000) models an adverse selection problem with two unobservable

types in a broiler production setting. She finds that in, the presence of unobservable
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types of growers, the average performance is not a sufficient statistic® for the vector of
individual outputs, so the average output cannot be used to calculate an optimal sharing
rule. She also concludes that by controlling inputs a processor can reduce information
rents it must pay to high productivity growers. However, relative-performance incentives
are not explicitly modeled in her paper. Tsoulouhas and Vukina (2000) compare a
relative-performance broiler contract with a fixed-performance contract in the presence of
moral hazard. Under the assumption that common production risk dominates group
composition risk, they conclude that the enforcement of fixed-performance standards
absent any regulations on the piece-rate bonus will result in less income insurance and
welfare to the growers and reduce integrator welfare as well. Further, social surplus is
reduced because integrator welfare is reduced and grower welfare is unchanged. In
contrast, replacing relative-performance with fixed-performance contracts accompanied
by a correctly specified piece-rate bonus can increase grower welfare and may or may not
reduce social surplus. However, integrator welfare is unambiguously reduced.

Che and Yoo (2001) argue that, relative to joint performance evaluation in teams,
the relative-performance evaluation scheme is not optimal in the repeated setting because
it is susceptible to collusion. As the authors indicate, joint performance evaluation
performs better when workers work closely and the relationship among workers has a
long life span. On the other hand, relative-performance evaluation works better when
workers have a short-term relationship. In the context of the broiler industry, each
grower is rewarded based on his relative-performance among a group of growers whose
broilers are harvested approximately at the same time. Timing issues, therefore, ensure

that composition of the comparison group changes over time, and hence, makes growers’

¥ Further discussion can be found in Holmstrém (1982).
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relationships very short. Further, the lack of repeated interaction among a fixed group of
growers naturally prevents them from colluding with each other.

A recent paper by Roe and Wu (2003) compares relative-performance contracts and
fixed-performance contract in a two-period dynamic model following steps similar to
those described in Meyers and Vickers (1997). Roe and Wu conclude that banning
tournaments can increase total surplus by mitigating the well-known ratchet effect only in
a dynamic model, while banning tournaments can never be welfare improving in a static
setting. In many ways, the model presented in this essay is a generalization of Roe and
Wu (2003). However, significant differences arise in the model specification and
interpretation of fixed-performance contracts and relative-performance contracts.

Several empirical studies have also tested the properties of broiler contracts.
Knoeber and Thurman (1994) use a sample of 75 growers from 1,174 flocks under
contract from November 1981 to December 1985 to test three predictions from the theory
of tournaments: (1) changes in the level of prizes that leave prize differentials unchanged
should not affect performance; (2) in mixed tournaments, more able players should
choose less risky strategies; and (3) processors should attempt to handicap players of
unequal ability or reduce mixing to avoid the disincentive effects of mixed tournaments.
They find that the data are consistent with each of their predictions. Knoeber and
Thurman (1995) conduct another study to test the efficiency of broiler contracts using the
same data set. They compare the actual payment series under tournament contracts with
the “contract without tournaments™ and “no contracts” by calculating the ratio of
simulated standard deviation to actual standard deviation. They conclude that relative-

performance production contracts reduce grower’s risk and shift 97% of risks, including
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price risk and common production risk, from growers to integrators. Goodhue et al.
(1998) find evidence to support the hypotheses that high-ability growers receive larger,
more frequent, and more consistent flock assignments. Hegde and Vukina (2002) use a
sample of 1,366 growers and 8,041 flocks to compare welfare of the contracts with no
market-price clause from June 1984 to December 1985 and contracts with a market-price
clause from July 1995 to July 1997. They find that contracts that include the market-
price clause are welfare superior on a payment per-pound basis as compared to those
without the market-price clause. However, for total per-flock payments, their results
depend on the grower attitude toward risk. Levy and Vukina (2001) conduct a similar
study to compare the league composition effects in broiler contracts. By regressing
growers’ production costs on grower dummy variables and time dummy variables, they
find strong evidence of heterogeneity of grower types and existence of large common
production shocks. Further, they compare the welfare of simple piece-rate contracts and
relative-performance contracts with fixed leagues and random leagues in both a single
tournament and a sequence of tournaments and conclude that RPC can outperform FPC
only in a dynamic setting under certain conditions.

An earlier group of studies analyze rank-order tournaments contracts. As discussed
above, rank-order tournament contracts are similar to relative-performance contracts
since they both provide incentives for agents to compete among a group of agents.
Therefore, the methodology used in those studies provides some insights into analysis of
relative-performance contracts. Lazear and Rosen (1981) analyze the efficiency of a
rank-order contract for a finite contest of risk-neutral agents by considering a tournament

contract in the labor market. However, they consider only a special case of rank-order
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contract rather than a whole class of such contracts. Green and Stokey (1983) study the
efficiency of a rank-order tournament contract with or without a common shock. They
find that for a finite number of agents, in the absence of common shocks, the use of
tournaments is dominated by optimal independent contracts. For a large group of agents
or when the distribution of the common shock is very diffuse, a rank-order tournament
dominates independent contracts. Malcomson (1986) establishes, for any given piece-
rate contract, that there exists an equivalent rank-order contract with the same outcome.
This finding implies that there exists a first-best rank-order contract for a contest among
an infinite number of risk-neutral agents under dual information asymmetry. A recent
paper by Yun (1997) provides a more comprehensive analysis of rank-order contracts.
Yun analyzes the efficiency of the rank-order contracts for a finite number of risk-neutral
agents under both moral hazard and adverse selection and shows that the set of first-best
rank-order contracts has the following properties: (i) the first-best contract of each type
should penalize less than some critical fraction of contestants, where the fraction is never
greater than one half; (i) The critical fraction is smaller and penalty larger for the
contests of higher ability types; and (iii) although both penalty-giving and prize-giving
contracts work equally well as effort schemes, a penalty-giving contract is better than a

prize-giving contract in inducing self-selection among different types of agents.

2.3 Objectives
The primary objectives of this essay are to investigate the efficiency of broiler-
industry-style relative-performance contracts in the presence of asymmetric information

and to compare various relative-performance contracts with fixed-performance contracts.
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Optimal incentives will be derived under relative-performance contracts and fixed-
performance contracts with both moral hazard and adverse selection. The moral hazard
reflects the fact that growers choose an unobservable effort level after the contract is
signed, while the adverse selection reflects the fact that heterogeneous unobservable
ability types of growers exist before the contract is signed. This essay compares relative-
performance contracts with fixed-performance contracts with respect to their optimal
incentives in both a static model and a two-period dynamic model. Two specific
scenarios of the two-period dynamic relative-performance contracts are investigated: the
current-period RPC and the previous-period RPC. More precisely, the current-period
RPC rewards bonuses to growers using the group average performance in the current
period as a standard, while the previous-period RPC rewards each grower by comparing
his performance with the average performance of the same group of growers in the
previous period.

This essay’s contributions to the literature stem from its general methodology and
its policy implications. As discussed above, most existing literature on relative-
performance contracts assumes either moral hazard or adverse selection in a static setting.
The only analysis of dynamic relative-performance contracts was presented by Roe and
Wu (2003), which was based on Meyers and Vickers (1997). However, Roe and Wu’s
interpretation of fixed-performance contracts and relative-performance contracts has
significant differences from broiler contracts being used in the real world. This essay,
which incorporates with both moral hazard and adverse selection, not only compares
various relative-performance contracts with fixed-performance contracts in a dynamic

setting, but also discusses improvements of the static mixed-type relative-performance
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contract. Thus, compared with existing literature, this essay provides a more thorough,
more comprehensive, and more practical analysis of broiler contracts. The second
contribution of this paper lies in the policy implications of the theoretical results. In spite
of growers’ complaints about the contemporaneous relative-performance contracts used
in the broiler industry, the various theoretical specifications in this essay largely justify
the popularity and superiority of relative-performance contracts relative to fixed-
performance contracts. This essay shows that, under certain conditions, relative-
performance contracts perform better than fixed-performance contracts from the
perspective of growers’ and processors’ welfares.

This essay develops a general model that is applied to three related cases: The first
case compares a static relative-performance contract and a fixed-performance contract.
The second case extends the static model into a two-period full-commitment model and a
two-period dynamic model. Two specific sub-cases of the two-period dynamic RPC are
then investigated in detail: the current-period RPC and the previous-period RPC. The
third case investigates two pooled tournaments in a static setting. Model results from all

cases and their policy implications are discussed in the final section.

2.4 The Model

In general, a payment schedule of broiler contracts contains a base payment and a
bonus or discount payment based on growers’ relative-performance. In this essay, we
will adopt the setup described in Roe and Wu (2003) with some simplifying

modifications. However, significant differences in the assumptions underlying the
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payment schedules for the fixed-performance contract and the relative-performance
contract lead to results that are substantially different to Roe and Wu’s.
As described in the previous section, a typical payment function for grower i at time

¢ under a relative-performance contract can be constructed as:
1 n
2.1) w, =a+ fBlx, —;ij,] :
Jj=1

The calculation of the group’s average performance includes all growers whose flocks
were harvested at approximately the same time. It is assumed that each grower produces
only one flock in each period throughout the essay. Further, it is assumed that the live
output produced by each grower is given by x, = x(e,,a,,z,,u, ), where e, is grower i’s
effort exerted in period 7, a, is grower i’s ability realized before the contract is signed,
z,1s the common shock borne by all growers in period ¢, and u, is grower i’s
idiosyncratic risk in period ¢. It is assumed that u, is an i.1.d normally distributed
random variable across growers and periods with mean zero and variance o, while a, is
uniformly distributed in the range [a,a] with 0 <a <a < 2 Additionally, for the
moment, z, is an i.1.d normal random variable across periods with mean zero and
variance o. . A more complicated specification of z, will be discussed below in a two-

period dynamic model. Recall that we assume both growers’ abilities and efforts are not

? Note that there is significant difference between the interpretation of ability @ in Roe and Wu (2003) and
Meyers and Vickers (1997) and that in this essay. More precisely, Roe and Wu (2003) and Meyers and
Vickers (1997) treat a as a random variable drawn after the contract is offered. Instead, this essay treats a
as a random variable drawn before the contract is offered. Thus, growers’ ability a, which is unobservable
to the processor, is deterministic after the contract is offered and its distribution function is known to both
the processor and the growers.
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directly observable by the processor. However, the distributions specified above are
public information to both the processor and the growers.
In particular, the following output structure is usually used in the existing literature

22)x,=a,+e,+z, +u,.

Hence, the variance of x, is var(x,) =0 +o, and the covariance between any x, and

2 10

z .

x; s cov(x,,x,)=0

Note that effort only affects the mean of the output in this structure. This
significantly simplifies the analysis in the following sections. However, a more
complicated structure in which effort affects both the mean and the variance of the output
could be used, but is not investigated in this essay due to length limitations. In addition,

each grower’s ability does not change over time.

The processor is risk neutral and has a profit function, 7, (x, w) = z:; (= w,),

where w,, is specified in (2.1). Each grower with ability g, has a time-separable utility

function U, (w,, e

it> it

a;) =u(w,) = C(e,

it?

a,), where the utility function is strictly concave and

1
the disutility function takes the form C(e,,a,) = 2—e[2t. Further, we adopt the commonly
a

used assumption that growers’ utility function has the property of constant absolute risk

aversion, u(w, ) =—exp(—rw, ), where r is the Arrow-Pratt coefficient of absolute risk

aversion. Thus the expected utility £, [U,(-)] is tantamount to

(23) E,[U, ()]oc Ew, —rvar(w,)———e?
2 2a

i

' Duye to the assumption that growers’ ability a is a random variable drawn before the contract is offered,
the corresponding variances and covariances are different from those specified in Roe and Wu (2003).
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Throughout the essay, we use E, to represent the mathematical expectation operator

conditional on information available at the beginning of period z.

Note that, in this setup, growers differ in their disutilities of effort. Lower ability
types incur higher costs relative to higher ability types for a same level of effort. In
addition, marginal disutility of effort decreases with ability as well.

We adopt the notational convention of writinga ; = (q,,...a, ,,a,,,...a,),

a=(a,,a_), e, =(e,,.e.,e e,),e =(e, e ), and

CiLeo i

Xy, = (X, X550 X, 5 X x,), X, =(x,,x_,)throughout the essay.

i+1,t9°" —it
2.4.1 A Static Model with One Tournament

In this case, a processor signs a one-period contract with n growers. The processor
observes only the live output from each grower in the group and uses either a relative-

performance contract or a fixed-performance contract to reward the growers. Thus, the

contract offered to all growers specifies a payment schedule depending on {«, £,x}. In

the static model, the subscript # will be omitted for all variables.

Given the assumptions described above, the processor maximizes its expected
profits subjected to incentive-compatibility constraints and growers’ participation
constraints. Since only one contract is offered to all growers regardless of their abilities
in one period, the processor must offer a pooling contract across all ability levels.

Thus, the processor solves the problem:

(2:4) max E, {3 (Ex, ~ Ew,)}

subject to
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(2.5) E,[EU,]=E [Ew, —%rvar(w,.)—zief]zo,
a.

1

1

(2.6) e, eargmax{Ew, —%rvar(wi) —%e.z}, Vi.
a

The participation condition (2.5) states that an average-ability grower obtains his
reservation utility zero under the pooling contract offered by the processor, while the
incentive-compatibility constraint (2.6) requires that each grower optimally chooses his
effort by maximizing the expected utility.

Standard results from contract theory'" require that the participation constraint (2.5)
is always binding because otherwise, the processor can always reduce the payment to the
growers until it reaches their reservation utility level. Following Roe and Wu (2003) and
Meyers and Vickers (1997), given the binding participation constraint, the processor’s
objective can be transformed into maximizing the total welfare obtained by the processor
and all growers. Precisely, denote the expected total welfare obtained by the processor

and all growers as

2.7)

W = E X (B~ B} = EA S (B~ rvartn) + )}
: : »

1

n 1 1 2
=F Ex. ——rvarlw,) ——e;
A (Ex, ~rvar(w) 20!

Thus, the optimal contract chosen by maximizing (2.7) will be Pareto optimal. However,
we should note that maximization of the total welfare I is equivalent to maximizing the

processor’s expected profit only if the participation constraint is binding. For cases

1 Good references on this topic include Mas-Collel, Whinston, and Green (1995) and Salanie (1997).
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where the two concepts are not equivalent, later discussed in the section 2.4.3, we assume
that the processor always maximizes his expected profit rather than total welfare.

1) Fixed-performance contract
To first investigate the optimal incentives under a fixed-performance contract,

denote the optimal contract asC,. = {&,, S} . Assuming the fixed standard used in the
contract is s, the payment to each grower (2.1) becomes

28) w, =a, + Be[x, —s],Vi.

Hence,

(2.9) Ew, =a, + B.la, +e, —s], and

(2.10) var(w,) = B; var(x,) = fr(c. +0.).

Substituting (2.9) and (2.10) into the problem (2.4) - (2.6), the processor’s problem

becomes

2.11)

n 1 1,
W,.=max E Ex ——rvar(w,)———e’)},
F ar By a{Z[=l( i 2 ( 1) Za. l)}

1

subject to (2.12) E,[EU,1=E [a, + B.[a; +e, —s]—%rﬂf(oﬁ +aj)—2Lel.2]20,
a.

1

(2.13) e, eargmaxia, + f:[a; +e, —s]—%rﬂﬁ(azz%—af)—%e[z]}, Vi.
a,

1

First, from the incentive-compatibility constraint (2.13), each grower’s optimal effort

must satisfy

(2.14) e, = a,B,
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Second, the participation constraint (2.12) must be binding because otherwise the
processor can always reduce the base payment under it reaches each grower’s reservation
utility level. Hence, using (2.7), the processor’s problem is equivalent to

(2.15)

n 1 1
W.=max E Ex. ——rvar(w,) —— e’
F apfr H{ZiZI( i 2 ( z) 2a- z)}

1

n 1 2 2 2 1 2
=max £ E a +e ——rfP-(c.+0°)——e)}.
aF’ﬁF a{ i:1( i i 2 F( z u) 2a‘ z)}

1

Since a; is assumed to be uniformly distributed in the range [a,a]with 0 <a <a < o,

a+a

we denote the population mean of g, as a,, = Substituting (2.14) into (2.15) and

taking expectation with respected to a yields
n 1 a,
Q16) Wy =max Y1 (a, +a,f; - rfi(0? +00) =2 f})

Taking the derivative with respect to £, yields

oW,
P

(2.17) =n(am—r[3’F(0'22+0'f)—am Br)=0,

from which we can compute the optimal choice of S,

1

(2.18) B, =
1+ (o2+0))

m

Several characteristics are apparent from examining the bonus payment £,. 2 First,
since only one contract is offered to all growers regardless of their abilities, the bonus

payment £, is same for all possible levels of grower abilities. Second, since growers

bear all production uncertainty under the fixed-performance contract, both the common

2 The form of the bonus B, 1s also similar to results in Levy and Vukina (2002).
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shock and the idiosyncratic shock affect the bonus payment. Specifically, the bonus
payment decreases with the variance of either of the random shocks. Third, the bonus
payment is positively related to the average ability level in the group and negatively
related to growers’ risk aversion, however, the fixed standard s specified in the contract
does not affect the bonus payment.

From the binding participation constraint (2.12), the base payment can be solved as
(2.19)
@y =i 40D b a, B~ fila, +a, By -]

=%ﬂ£[r(0'22+O'3)—Clm]+ﬂF[S_am]

2 2
[r(o-z+o-u)_am] + S_am

) A+ (ol +0])] 1+ (0 +0)) |
a, a,

While parameters affect the base payment in a complicated fashion, it is worth
noting that the fixed standard s is positively related to the base payment due to the
binding participation constraint.

Further, the total welfare under the optimal fixed-performance contract can be

computed,

(2.20)

n 1 a,
We =20, +a, B =Bl (ol +0]) == )

- n(a, +a, b, —%amﬂi 1+ (o2 +2))

m

=n(am+amﬂF_lamﬂF)znam(l—‘rlﬂF)=nam[1+ 1 ]
? ? 21+ (o2 +07)
a

m
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2) Relative-performance contract
Under a relative-performance contract, the processor uses the peer average
performance as a standard to reward each grower. Denote the optimal contract

asC, ={a;,,Pr}. Hence, the payment to each grower becomes

| _ .
Q2D w,=ap+ folx, =3 x 1= an+ flx, =X, Vi

Hence,

1 n
(2.22) Ew, = a, + Bila, +e, —;Zj:l(aj +e,)], and

(2.23)
2 1 n Y n—1 1 n
Var(wi) - IBR Var(xi _;Z‘/’:I xj]) - IBR Var( " X _;Zj:l’j#ixj])
2
= ,B,f[(n 21) var(x,) +n—2lvar(xj) —2” ll(n —1)cov(x,,x;)
n n n
1 (n-1
+ 2? 5 cov(xj#i,xk#)]
2 2
e By L
n n n n n

Note that the variance of each grower payment depends only on the idiosyncratic
shock without being affected by the common shock.
Substituting (2.22) and (2.23) into the problem (2.4) - (2.6), the processor’s problem

becomes

n 1 1
224) W, = E Ex, —— )——o2¢’
( ) R Ic-zr:,aﬂ)lf a {Zizl( xl 2 r Var(wl) 26[. el )}

subject to

) I on-1 , 1
(a, +e_,)]—5r/3,§"703 ——¢?120

j=l,

(225)E,[EU, )= E,[ay + ful " (a, +6) -~
n n
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(2.26) e, eargmax{aR+ﬂR[ (a +e)—12’;1 #,(aj+ej)]—%r ;”—_laj—zief}, Vi
J=hH n a;

From the incentive-compatibility constraint (2.26), each grower chooses the optimal

effort such that
n—1
(2.27) e, =——a,p; .
n

Hence, substituting (2.27) into (2.7), the total welfare under the contract is
(2.28)

,n—1 , 1
—o0, ——e€;
7 )}

1

W, maxE {z (Ex, —%rvar(w)——e W=E {z (a,+e ——rﬂ

" n—1 1 n—1 1 n-1
=Z:i:1(am+ amﬁR__r 1? O-j__( )Zamﬂ]?)
2 n 2 n

Taking derivative with respect to 3, yields

ow, n— n—1 n-— 1
(2.29) P R:”( a _rﬂR Uuz ( ﬂR) 0,
B n n
from which
(2.30) B =——=
—a +r0
n

The most prominent feature of this bonus payment is that it is independent of the
common shock. As a matter of fact, this is one of the most critical reasons that
researchers favor relative-performance contracts under certain circumstances discussed
below.

Further, the participation constraint (2.25) must be binding because otherwise the
processor can always reduce the base payment until it reaches each grower’s reservation

utility level. Thus, the base payment can be computed as
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2.31)
_1 21’[—1 2 1 l’l—l 2
X EFIBRTO-u +E(T) a,, Br = Pela, +2= le( a wBr)]
B e (g = 2<m§+”‘lam>=
L & L L M+ 62
a n—

Hence, we can compute the total welfare under the optimal relative-performance contract:

(2.32)
Wy =" (a,+2=" aﬂR— ”71 2—1(” Yea, p2)
—n[a + a ﬂR _ln_lﬁR( ,+;lam)]
n
<nla, + " p L g, L0
20 o2y
n
=na,[l1+ ! ].

21+ 52
a -1

Comparing (2.20) and (2.32), the two welfare expressions, yields the following

proposition:

ol,b) W, <W, if 2 <
n— n-—

Proposition 1: a) W, >W, if o> >

O-uzac) Wy =W

if o = o’ andd) W, >W,if n > .

n f—
The proof is straightforward. From (2.20) and (2.32), we can compute

Wy =W, =na,[l+ ! ]—na,[l+ ! ]
20+ 52) 21+ (02 +02))
a, n—1 a

m

1 1
= na,| - ]
2(1+ 7—10) 2(1+—(0 +02))

a

m m
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Thus, it is equivalent to compare

n 2 r 2 1 2
o, =—1/ 0. ———o,].
n—1 a, n—1

r r
Wy =W, c—(cl+0,)~—
a a

m m

Therefore, a) W, > W, if o’ >L10'5, b) W, <W, if 67 < ! 10'5, c) Wy =W, if

n— n—

1 . .
ol = o’. Similarly, if n — 0, W, -W, ocL[O-ZZ_ 1 o]

Sl \r0'22>0.
n-1 a n—1 a

m m

This proposition is a standard result in the literature of relative-performance
contracts and rank-tournament contracts and is consistent with the literature specific to
broiler contracts (e.g., Levy and Vukina 2001). Intuitively, the proposition states that the
relative-performance contract performs better than the fixed-performance contract when
the common shock dominates the idiosyncratic shock because comparing one grower’s
performance with other growers approximately at the same time completely eliminates
the common production shock borne by all growers. On the other hand, the fixed-
performance contract is better when the idiosyncratic shock dominates the common
shock because under this condition, comparing a grower’s performance to a fixed
standard reduces his variance of income relative to that under the relative-performance
contract.

In addition, it is easy to verify that the optimal bonus has properties similar to total

welfare. The following corollary summarizes these properties without further proof.

Corollary 1.1: a) B, > 5, if &7 >L10'f,b) B < B if o7 <L10'3, ) By = B if
n— n—

afz%of,andd) Bp > P if n— .
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The corollary says that when the common shock dominates, not only does the static RPC
improve total welfare relative to the static FPC, but also it offers a greater bonus than that

under the static FPC.

2.4.2 Two-period Models

The static model is extended to include two time periods in this section. In a
dynamic context, ratchet effects might exist due to the presence of asymmetric
information.”® Thus, the optimal contract provided by the processor must account for this
potential effect and adjust the intertemporal incentives accordingly. This section consists
of three related parts. The first part simply discusses the optimal two-period contracts
under full-commitment by the processor and growers. The second part investigates a
current-period dynamic relative-performance contract and a fixed-performance contract
where neither the processor nor growers can commit to an intertemporal scheme. In this
second part, the relative standard used in the contract is the peer average performance in
the current period. While the terms and payments schedules in actual contracts are much
more complex than those specified in this part, the current-period dynamic relative-
performance contract has been widely used in the broiler industry'. Therefore, readers
should be aware that the model formulated here is highly stylized relative to actual
broilers contracts. The third part further extends the model and investigates a dynamic
previous-period relative-performance contract and the fixed-performance contract. Here,

the term previous-period relative-performance contract is used to indicate that the relative

" Freixas, Guesnerie, and Tirole (1985) states that ratchet effects induce firms to underproduce to avoid
more demanding schedule in the future as the central planner revises the scheme over time to take into
account information provided by the firm’s performance.

'* Good examples of broilers contracts include Tyson Richmond broiler contract, Pilgrim Pride Contract,
ConAgra broiler contract, MBA Broiler contract, etc.
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standard used in the contract is the peer average performance in the previous period.
Although this particular type of contract has not been explicitly used in the broiler
industry, we examine this scenario here for the following two purposes: One is to
correspond to the concept of all-period ban of relative-performance contracts as defined
in Roe and Wu (2003) '%; the other is because it would be natural to assume that, if
current-period tournaments were banned, producers may still use data on past
performance to set a fixed standard.

Further, it is assumed that the common shock takes the simple form of a stationary
process in the dynamic context:
(233) z,=¢z, , +¢&,, | p|<1, where ¢, ~iid.N(0,07).

2
O

&
2 b

With this specification, it is straightforward to verify z, ~ N(0,57), where o =

2
¢o,

> -

and cov(z,,z, ) = " Note that given the stationary process, the relationship

between outputs in two periods is similar to that described in Roe and Wu (2003), except

that we exclude the possibility of autocorrelation between abilities.

2.4.2.1 Two-period Contracts Under Full Commitment

Before we proceed to the dynamic model, we investigate the optimal two-period
contracts under full-commitment . Two conditions describe full-commitment : On one
hand, the processor promises beforehand not to use information revealed in the first

period to modify the contract in the second period. On the other hand, growers promise

" Roe and Wu (2003) define all-periods ban, in a two-period model, as disallowing the processor of using
information concerning player j from any period to develop contract parameters for player i.
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not to breach the contract during the contract period. Under full-commitment , since the
processor cannot apply information revealed in the first period to the contract in the
second period, the optimal contracts in each of the two periods are independent and are
exact replications of the static contract in each period. Therefore, no dynamic effect
exists in the case.

Specifically, under the relative-performance contract, the processor offers the

contract C, ={a,, S} 1n each period, with a, and S, specified by (2.31) and (2.30),

respectively. Assuming both the processor and the growers discount their profit or utility
by a factor &, the total two-period welfare under the relative-performance contract is
(2.34)

WRF =(1+9d)na,[l+ I 1,
20+ " 62
a, n—1

where the superscript F denotes full-commitment and the subscript R denotes relative-
performance contract.

Similarly, under the fixed-performance contract, the processor offers the contract
C, ={a,,p,} ineach period, with ¢, and S, specified by (2.19) and (2.18),
respectively. Hence, the total two-period welfare under the fixed-performance contract is

(2.35) W =(1+S)na, [1+ ! 1.

21+ (o7 +02))
a

m

where the superscript F' denotes full-commitment and the subscript F denotes fixed-
performance contract. Note that Proposition 1 applies to the full-commitment two-

period contract as well.
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2.4.2.2 Dynamic Fixed-performance Contract (FPC) and Relative-performance
Contract (RPC)

In this section, it is assumed that the processor is not fully committed in the second
period. Thus, the processor optimally adjusts the second-period incentives using
information acquired at the end of the first period. Two scenarios of relative-
performance contract will be investigated: current-period RPC and previous-period RPC.
Under the current-period relative-performance contract, the relative standard is computed
by averaging the performance of growers contracted in the same period; while under the
previous-period RPC, the processor uses growers’ average performance in the previous
period to reward each grower. We still use the same fixed standard in both periods under
the fixed-performance contract. In addition, it is assumed that the same growers are
under contract in both periods in a two-period model throughout this section.

Given the output structure (2.2) and the distributions of the random shocks, the joint

distribution of output x is

i r 1 1 ¢ ¢ #)]

i a, + ey, L'z 1 ¢ ¢ ¢
+ 1 1 -
(236) X = xnl - N an enl ,O_ZZ T ¢ ¢ ¢ ,

X2 a, +ep o6 ¢ - ¢ v 1 - 1
: : $ ¢ - @ T 1
X,, a,+e, : 1

| o ¢ o 1 1 7))




. . 16
Hence, we can compute the following expressions  :

(2.37)
Elx; [ %)),%)5X, ] = a, + e, +Z:122;21 (x,—p))

-1

z 1 - 1
1 X~ Hn
=a; te;, +(4,9,....9) . :
1 1 y X — Hp
T—l n
=a;+e,+ #« ) ijl(le _/ujl)

(r+n-2)—(n-1)

) #(z 1) .
ST t(r+n-2)—(n-1) 21:1(21 Fup),

(2.38)

2 -1
var[x, | X, %, 50X, | =02 [2) = 2,252, ]

1
5 1 7 - 1 ¢
=0 [t—(9,,....,0) Co all
11 - 7 /

(e D)
(t+n—-2)—(n—-1)

)

where

2,,2,,2,, are partitions of the covariance matrix of the random vector

(xizaxlla-xz]’-"a‘xnl )5

X, = a column random vector containing ( x,,,X,,,..., X, ),

'8 The formulas used in the following calculation can be found in Greene (2000), p.86-87.

125
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n, = (4,,....4,,) = acolumn vector containing the mean of the random vector

(X1, Xy;5e05 X, ), and

-1

r 1 -1 T+n-2 -1 -1

I = - 1 3 1 -1 T+n—-2 - -1

: Ct(t+n-2)—(n-1) : :

L1 .-z -1 -1 e T+n-=2)
Similarly,
(2.39)

2 1
var[x;,, X, [ X, X500 X, ] = 07[2), —ZpE0E,) ]

T 1
(7 1 @ o1 7 1 ¢¢
=il |« ). 1)
) ¢ ¢
1 1 - 1 $ 9

nxn

S o R
o t(t+n-2)—(n-1) (t+n-2)—(n-1)

S Tt ) N 5 Gl
t(t+n—-2)—(n-1) (t+n-2)—(n—-1)

2

where

2,2,,2,, are partitions of the covariance matrix of the random vector
(X125 X35 X115 Xopseees X1 )-

Hence,

__ n$’(z-)
r(t+n-2)—(n-1)

)

(2.40) cov[x;y, X 5 | X)), Xy 500X, ] = ol(l
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2.4.2.2.1 A Dynamic Fixed-performance Contract

Under the two-period dynamic fixed-performance contract without full-
commitment , the optimal incentives can be formulated backward using a dynamic
programming approach. Additionally, since growers’ outputs are correlated in the two
periods under the assumption (2.33), the processor and growers take expectations of the
second-period rewards and outputs conditional on the first period outputs.
A) Second-period schemes

Denote the second-period optimal contract asC,., ={a,,,,}. Again, we assume
the fixed standard used to reward growers is s in both periods. Hence, the payment to
each grower in the second period becomes
(2.41) w, = oy, + Brolx, —s], Vi
Hence,

¢(z - 1)

(t+n-2)—(n—

(2.42) E\[wyy | X)) 5ees Xy 1 = Gy + Brola; +e, +

1) z;zl(zl +uj1) _S]’
and

2 2
(2.43) var(w,, | X,y 5ees X)) = Bry Var(x,, =8| X, ,ee0s X,1) = Bry Var(x,, | X;;,ee0s X))

ng’(z —1)
(t+n-2)—(n-1)

:ﬂéz[r_ ].

Similar to the static model, the processor solves the following problem

; 1 1
(2.44) max E {Y " (E,x, —Ervar(wiz)—gefz) | X)X, ) s

apy:Prr i

subject to

(2.45)
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_ ¢z -1
Ea[EzUiz]—Ea[anJrﬂFz[a[+e[2+z_(r+n_2)_(n 2 ru,)=s]

b o ng’(r—1) 1,
2P Ty Ty 2a, 1

Similarly, the incentive-compatibility constraint becomes

(2.46)

d(r-1) n B
e, eargmax{a,, + Byla, +e, + t(c+n—2)—(n-1) zj:1(21 +”_,'1) s]
LoD Loy

2 T fc+n-2)—(n- 1) " 2a

From the constraint (2.46), each grower chooses the optimal effort such that
(247) e, =a,fp,-
Thus, the total welfare in the second period conditional on outputs in the first period is

(2.48)

1 1
W., = max E {z (E,x;, — 2rvar(wl.z)—z—ef2 | X 5o X 0 }
a

Ap2>PF2

e #c-1) e
_Ea{zle(ai+ei2+T(z_+n_2)_(n_1)Zj1( 1 ’"ﬂm [z T(T+n—2)—(n—1)] 24 €s)}

i

_ A1) ) _ ng’ (1) 1 2
—Z;(am"'amﬂz«"z qT+n—2)—(n— 1)2_1(1 uy)— ZVIBHO—ZZ[T T(T+n—2)—(n—l)] zamﬂpz)'

Differentiating (2.48) with respect to ., yields

ow,, b nge-h) _
(2.49) —— B, —n(a —rPpo[r Z'(T+n—2)—(n—1)] a, Br)=0,
from which
(2.50) B, = T -
a, +ro’[r—- ng (z=D) ]

(r+n-2)—(n-1)
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From the binding participation constraint (2.45), we can obtain the optimal base payment,

(2.51)

Hr—-1)
(t+n-2)—(n-1)
e 1
r(r+n=-2)—(n-1" 2 """

_ d(r—1) "y B
= ﬁFz[am+amIBF2+T(T+n_2)_(n_1)zj:l( 1+”j1) s]
ng’(r—1) V+a ]
T(r+n—2)—(n—1)
¢z -

(t+n-— 2) (n

Apy =—Prla, +a, P +

Zr;:l(zl +u,)—s]

1
+5’"ﬂ§2022[7_

1
+ Eﬂézo_zz [r(z -

=—ppla, +a,br, + Z/ I(Z +”,1) s+ — amIBFZ

1 B ¢(z - ~
2amﬂF2 a,Brr = Pral (c+n— 2) (n l)zll(l jl) s].

Further, the total welfare in the second period under the fixed-performance contract can

be computed as:

(2.52)

_\ Pz -1 n
We, _zizl (a, +a,Bp,+ t(c+n—2)—(n-1) zj:l( 1

ng’(r 1) I e
ran—D—(non 24P

1 2 2
——7 oO_|T—
2 IBFz z[

_ g(z—1) 1
=n(a, +T(T+n—2)—(n—1)z’ 1( 1 11)‘*‘ a,pPr,)

B a, ng(r —1) "y
=na,,[l+ g (r=1) )]]+T(T+n—2)—(n—1)zf=l( )

2a, +ro’(r—
(r+n-2)—(n-1)

(B) First-period Schemes

Denote the first-period optimal contract asC,., ={a,,3;,}. At the beginning of

the first period, the processor chooses the optimal bonus and the base payment for the
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first period by maximizing the total two-period welfare. Similarly to the second-period
reward, the first-period reward to each grower takes the form,

(2.53) w, =ap + frlx, —s], Vi.
Hence,

(2.54) E\[w,]1=ap, + Brla; +e, —s],and

(2.55) var(w, ) = ﬁf‘l var(x, —s) = ﬂ;‘l var(x,,) = ﬂ;l (Gzz + Gf)

Let W denote the two-period total welfare under the dynamic fixed-performance
contract and ., denote the first-period welfare. The processor solves the following

problem in the first period:

(2.56)

WFD =max {W, +E Wy, | X, 5sX,)}

ar15PF1

n 1 1
= max {Ea[zizl(Elxil _Ervar(wil)_geizl)]—l_éEl Wy [ X115 X))

apy,Pr i

n 1 1
= max {Ea[zl-:l(ai e _Erﬂﬁ%l (o2 +O—5)_gei21)]+5El(WF2 | X110 X))

ap,Pr i

subject to

(2.57)

1 1
E[EU, +0E (E,U,))]=E [Ew, _Ervar(wil) _Zeizl [+0E\[E,(EU,,)]

1

=E [ap + B la +e, _S]_%rﬂfil(o-zz +G;)_iei21]+5El[Ea(E2Ui2)] 20,

and the incentive-compatibility constraint,

(2.58)

1 1
e, eargmaxi{a,, + B, [a, +e, _S]_Erﬂél(o}z +O—5)_gei21 +OE\[EU, 1}, Vi.

1
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From the constraint (2.58), the optimal effort in the first period must satisfy
(2.59) e, =a.p,,.
Substituting (2.59) into (2.56) yields,

(2.60)

apy,Pr

n 1 1
W, = max {Ea[zizl (a; +e¢, _Erﬂﬁl (o2 +63)_gei21)]+5E1(WF2 | X5 X))

1 1
= Jnaﬂx {n(a, +a,pfr _Erﬂlgl (ol +0,) _Eamﬁﬁl)"' OB Wy | Xy15ees X))}
Differentiating (2.60) with respect to £, yields the optimal condition for the bonus

in the first-period contract,

D
@.61) W

2 2
:n(am_rﬂFl(O-z +O_u)_amﬂFl):O’
F1

or, more precisely,

a

2.62 = - .
( ) ﬂFl am +r(622 +O—5)

The base payment can also be computed by plugging (2.62) into the binding

constraint (2.57), that is,
1 1
ap + Brila, +a,Br —s]- E’”ﬂé (O-zz + O-uz) - E‘%ﬂél +OE|[E, (E,U,,)]=0,

from which we can solve

(2.63)

1 1
Apy =—Prla, +a,pBr _S]+5rﬂ[§l(0z2 +O—j)+5amﬂ;1

1 1
=-Prla, +a,Br —s]+ 5 a,Br =SPr — amﬂfil - 5 a, P -
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Note that we used the result £, [E,U,,]= 0 from the second-period scheme in the above

calculation.
Further, we can obtain the expected two-period total welfare under the dynamic
fixed-performance contract,

(2.64)

1 1
Wy =n(a, +a,pBp _Erﬂl‘%l(o-zz +O_5)_Eamﬂ1721)+5E1(WF2 | Xp15ees X 1)

1 a
=na, (1+ - fp)+JE [na, (1+ — )
2 Aa, +ro?(c——— "0 E=D )
(t+n-2)—(n-1)
nd(z —1) ]
+T(Z’+n—2)—(n—1)zf:l(zl+uﬂ)]
=na, (1+ )+ na, (1+ I ).
2[a, +r(c. +0,)] Aa, +ro(c - ng-(r—1) il

(t+n-2)—(n-1)
The following proposition compares the total welfare under the dynamic FPC with that
under the full-commitment FPC given by (2.35).
Proposition 2: The total welfare under the two-period dynamic FPC exceeds that under

the full-commitment FPC. Thatis, W/ > W/} .

2 2

The proof is straightforward. Recall that 7 = az—f” > 1, hence, the following term in
O-Z
(2.64) has the property:
2 2 2
_ -1
O'ZZ(T ng“(r-1) y=c? +0° ong’(r-1) <o+l

Ct(c+n-2)—(n-1) " fz+n-2)—(n-1 "
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a a
WP =na (1+ L +ona_(1+
r n 2la, +r(c’ +o; )]) n

] ng’(r -1 :

(t+n—-2)—-(n—-1)

)]

2Aa, +ro’(r—

a
>0+ 0na. (1+ m =wr.
(1+0)na,( 2[am+r(a§+a,f)]) :

Intuitively, under the dynamic FPC, the processor can obtain more information from
growers’ first-period performance and raise his expected profit by using the information

to provide the second-period incentives.

2.4.2.2.2 A Dynamic Current-period Relative-performance Contract

We investigate a dynamic current-period relative-performance contract in this
section. More precisely, the relative standard specified in this contract is the average
current-period performance of all contract growers. The two-period dynamic relative-
performance contract can be solved in the similar fashion to that in the previous section.
Since growers’ outputs are correlated in the two periods under the assumption (2.33), the
processor and growers take expectations of the second-period rewards and outputs

conditional on the first period outputs.

A) Second-period schemes

Denote the second-period optimal contract as Cp, = {&,,,B,}. Each grower’s

payment in the second period becomes

n

1 .
(2.65) w,, =y, + Prylx;, —;Zj:lxﬂ] , Vi

Hence,
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1 o
(2.66) E,[Wyy | X, 5o X, ] = Gy + Brola; +e5 —;ijl(aj +e;,)], and

(2.67)

 [—
2
var(wW,, | X, X,;) = Pr, var(x,, —;ZFI X | X100 X,1)

2 n— 1 n
R U ST A L

( )2 -1 n—-11

—/Bkz var(x;, [ X, .., n1)+ i Var(sz|x11: X)) = 27;(” I)COV(xlzaxfz X 15eees X))
1 n—l
+ 2? 2 COV(xjﬂ,Z’xk#,z | X1 15000 X))

, n—1 n—1
= Bl n_Var(‘xi2|xll""’xnl)_ . COV(‘xﬂ’ij|x11""’xnl)]

_ -l o, ng’(r-1) e ng’(z -1
SRy o1z T(r+n—2)—(n—1)) S r(r+n—2)—(n—1))]
-1 n—1
= B0l (t-1)= 0.
n

2

. +0
Note that the last equality results fromz = 9. 72
o

z

. In addition, the variance of the

second period payment depends only on the idiosyncratic shock without being affected
by the common shock.

Similar to the static model, the processor solves

Ar2:Pra

1 1
(2.68) max E {z (E,x,, — 2rvar(wi2)—gel.22)\xn,...xnl}

subject to
(2.69)
Pz —1) "
E[E, Uy, [ X)X, 1= E, [, + Brola; +e, + (c+n—-2)—(n-1) Zj:l(zl + ”/1)
1 n ¢(T 1 2 l’l _1 2 1 2
g YRR e e VAR ﬂ”]‘z” B g, )
n 1
=E, [ag, + Prla, +e, _;Z‘/:l(aj +e_,'z)] ﬂ O' _Ee »120.
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Similarly, the incentive-compatibility constraint becomes
(2.70)

1 n 1 2 n_l 2 1 2
e, €argmaxia,, + fpla; +e, _;Z_/:l (aj +ej2)]_§r R2 70-14 S €n

_ n— 1 1 n 1 2 n— 1 2 1 2 .
=y, +ﬂR2[T(ai +e;,) —;zjzl,j#(aj +e,)] —Er I Tau —geiz, Vi.
From the constraint (2.70), the optimal effort from each grower must satisfy

n—1
(271) €i2 zTai,BRz .

Thus, the second-period welfare conditional on outputs in the first period is

(2.72)

1 1
Wey = maX E {Z (Eyx;, — erar(wiz)_z_eizz | X115 }
a

ARy :Pr2

n ¢(T—1) n 1 2 n— 1 1
=F +e, - -
a{Zi:I(al+ezZ+T(T+n_2)_(n_l)zj:1(zl+ujl) 27‘ n O- 2(1,- ezz)}
2 7l 2_1n L #(r—1) ]
( mIBRZ (T+}’l—2)—(l’l—1)zj:1(21

Zl 1( m amﬁRZ +uy)).

Differentiating (2.72) with respect to [, yields,

oWy, n-— 1

2.73 =n -r =0,
(2.73) 5 ﬁ’m ( » ﬂRz )
from which

a
274) pry=—7F"——

n—1 )
a, +ro,
n

From the binding participation constraint (2.69), we can obtain the optimal base payment,

(2.75)
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1 n—1 1 n-1 1 n-1 n—1
257 _Er 1%2 70-3 +5( . )2 a, :3132 :ETﬂéz[”o—j +7am]
_ln_l (am)2 _ am
2on r0'3+n_1am 2[1+L & o]
n a, n—1

Further, the total welfare in the second period under the relative-performance contract
can be computed as:
(2.76)

n n—1 1 n—1 1 n-1
Wa =Z[=1(am+7“mﬁm _Er 1?270_5 _5( "

#(z —1) ; > ()

(t+n-2)—(n—

2 2
) a,Br

=n(a,, +lam n_lﬂm + ) Z:::l(z1 +u))

2 n (t+n-2)—(n-1)
~ 1 ng(r ~1) "
=na,[1+ 2(1+rn02)]+ e n—2) (1) Dz ).
a n-

(B) First-period schemes

Denote the first-period optimal contract as Cp, = {&,, B +. The first-period

reward to each grower takes the form,

n

lejl] , Vi.

1
(2.77) wyy =g + Brlx, _;Z
Hence,
1 n
(2.78) E,[w, 1= + fula; +e, —;zj:l(aj +e,)],and

(2.79)

1 n n— 1 1 n

2 2

var(w,) = By var(x, == ' x;) = g var——x, == " x,)
n J n n J=LJ
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(n) 1

n—11 n—1
jl)—27;(n—1)c0v(xl.,,xj1)+2n—2 5 COV(X 1 15Xy 1))

= ﬁRl

var(x,

n-—1
= ﬂm[ Var( X)) = TCOV(xn 5 le]

ey n-1_,
= Pri (o; +
n

Similar to the dynamic fixed-performance contract, the processor chooses the first-
period optimal bonus and the base payment by maximizing the total two-period welfare.
Specifically, let W, denote the two-period total welfare under the current-period
relative-performance contract, where the superscript S stands for current-period and the
subscript R stands for relative-performance contract, and W, denote the first-period
welfare. The processor solves the following problem in the first period:

(2.80)

W = max Wiy +OE, Wiy | X115, X,0)}

ag>Pri

1 1
= maX {E, [Z (Eix; — 2’"V3r(wi1)_ge§)]+éE1(WR2 | X1 15mees X0 }

1 n—1 1
_gab);{E [Z (a;, +e, —2 2170-5 _2_61[81%)]+6E1(WR2 | X150 X1 )
subject to
(2.81)

1 1
E[EU, +E (E,U,)]=E, [EWw, _Ervar(wil ) _geizl [+ E\[E,(EU,,)]

 [— 1 n—1 1
=Ea[aRl+ﬂRl[ai+eil__zjzl(aj+ejl)]_5 2 . Gz_gezl]—'_gE[E (E,U,)]

1

2 I’l—l

1 n
E[am"'ﬂm " (a +te,)—— Z ~~(aj+ejl)]_5r RlTo-uZ_geizl]

j=1,j#i

+ OB, [E, (E,U,,)] 20,

and the incentive-compatibility constraint,
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(2.82)

1 1 n—1 1
€, €argmax i, +/BR1 " (a +e,)— " Zizlﬂj#(aj +ej1)]_5r 1?1 70-3 _geizl +OE[EU,, 1}
, Vi.
From the constraint (2.83), the optimal effort in the first period must satisfy

n—1
(2.83) € ZTai/BRl'

Substituting (2.82) into (2.80) yields,

(2.84)
WP = max E [z (a, +e, —l zln—_lof —Lei)]+§El(WR2 | X100 X))
a1 -Bri 2 n 2a,
= max B[ (0, + Sy B0 =0 B 0O (P | %)
- max n(a, +"La, fy - 21”7‘103—%am(”T‘lﬂmf)wEl(Wm|xn,...,x,,1).

Differentiating (2.84) with respect to /3, yields the optimal condition for the bonus
in the first-period contract,

S
2.85) M _ = L —rp, =1
OB n

)=0,
or, more precisely,

e

761 +I”O'
n

The base payment can also be computed by substituting (2.86) into the binding

constraint (2.81), that is,

E[aRl+IBR1 " (a +e,)— izn ..(61~‘i‘€j1)]—l (72——611]

by 2 n 2a

+OE\[E,(E,U,,)]
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1 n—1 1 n—1
Qg r 1?1 3__am (_ﬂm)z +OE|[E,(EU,,)]
n 2 n
2
o, 1n-1 a,;n_1 _o,
2 e T
n

from which we can obtain
(2.87)

a

m

Op = .
A+ 62
a, n—1

Note that we used the result £ (E,U.,) =0 from the second-period scheme in the above

calculation.
Further, we can obtain the expected two-period total welfare,
(2.88)

n—1 1 n—1 1 n-1
W, =n(a, +Tamﬂm _Er F o, _Eam (TﬁR1)2)+5E1(WR2 | X115000 X1

— -1
& lamﬂR1)+5El(nam[1+ 1 " ng(r —1)
210+ 52) t(c+n-2)—(n-
am n_l
1 1 .

1
=n(a, +—
( m 2

) Zj:1(21 +u;))

=na, (1+ )+ ona,, [1+ 1=1+9)na, (1+

21+ 62 20+ 5?) 20+
a, n—1 a, n—1 a, n—1

First, note that the two-period total welfare under this dynamic current-period RPC
is exactly same as that under the full-commitment RPC given by (2.34) and is exactly a
repetition of the static RPC. That is, the intertemporal relationship between the
incentives in the two periods does not alter the optimal choice of rewards offered by the

processor and the optimal efforts provided by growers. Thus, under the dynamic current-
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period RPC, both the processor and growers are myopic. This result is a special feature
of the current-period relative-performance contract.

Second, we can compare performance of the dynamic current-period RPC with the
dynamic FPC. However, it is not straightforward to show whether one is superior to the
other under certain conditions. We summarize some plausible results in the following

proposition.

Proposition 3: a) W, <W/} ifo’ S%af, by w; >wpP if o2 >> 1 laj.
n— n—

Proof: Part a is straightforward. From (2.64),

a a
WP =na,(l1+ “ )+ ona, (1+ = )
m 2 2 2 m 2 _
[am + r(o-z + O-u )] 2[am + 7"022 (T _ n¢ (T 1) )]
(t+n—-2)—(n-1)
a

>+ 0d)na, (1+ = .

e Sy o v o)
Thus, similar to Proposition 1, W, <W} ifc? < 10'5.

n —

However, we could only provide some intuition for part . That is, only if the variance of
common shocks is sufficiently greater than that of the idiosyncratic shocks would the
dynamic RPC perform better than the dynamic FPC.

Under the current-period relative-performance contract, comparing one grower’s
performance to others’ completely eliminates the common uncertainty without being
affected by their intertemporal relationship. Consequently, the optimal dynamic current-
period RPC mimics a sequence of optimal static RPC although the second period

incentives under this contract do account for the growers’ first-period information.
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2.4.2.2.3 A Dynamic Previous-period Relative-performance Contract

In this case, instead of using the average performance in current period as a
standard, the previous-period relative-performance contract rewards each grower by
comparing his performance with the previous-period average performance of the same
group of growers. As discussed above, this scenario corresponds to the concept of an all-
period ban defined in Roe and Wu (2003). Later on, when the performance of the
dynamic FPC is compared to the dynamic previous-period RPC, readers could think of
the possibility of eliminating the dynamic previous-period RPC as an all-period ban of
RPC. Finally, to investigate the dynamic effects on the optimal incentives, it is
necessary to assume that the processor signs a contract with the same group of growers in
both periods.

The previous-period dynamic relative-performance contract can be solved in the

similar dynamic programming approach used in previous sections.

A) Second-period schemes

Denote the second-period optimal contract asC,, = {«,,, 3,,} where the subscript

denotes the last or previous period. Using group average performance in the last period

as a standard, the processor rewards each grower

n

1 .
(2.89) w, =a,, + B,,[x, —;ZFI x,l, Vi

Note that the performance of grower i in the previous period is not excluded from the
calculation of the group average.

Hence,
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(2.90)

T—l n 1 n
E\[wy, | X5 X, 1=y + Brola, + e, + (r+ :55 2) —)(n ) Zj:1(21 +ujl) _;ijlle],
and
(2.91)

n

1
2 2
var(w, [ X,5.,%,,) = B, var(x,, _;ijlle | X, p5ees X,0) = By Var(x,, | X5 X,,))

_ ng’(z-1)
(t+n-2)—(n—-1)

= ,6’220'22 [T

].
Similar to the static model, the processor solves

n 1 1
(2.92) max Ea{zi:l (Eyx;, _Ervar(wiz) _Zez‘zz) | Xppee X )

A12-PL2 i

subject to

(2.93)

¢z 1)

(t+n-2)—(n—

n 1 n
E[EU, |x,-x,1=Ea, + Bla, +e, + ) ZH (z,+ ujl) - ;ijl le]

ng’(r —1) ) 1 2120,
(t+n-2)—-(n-1) 2a,

1
Bl

The optimal effort must satisfy the incentive-compatibility constraint

(2.94)
o(r—1) n I <
e, €argmaxia,, + f,[a, +e, + (c+n-2)—(n—1) Zj:1(21 +”_;1)_;Z‘/:lx_/1]
1 ng’(r -1 1 _
—phete-— D Ly
2 (t+n-2)—(n-1) 2a,

The first order condition to the constraint (2.94) gives
(2.95) e, =a,B,.
Thus, the second-period welfare conditional on outputs in the first period is

(2.96)
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n 1 1
W,=max E, {zi:I (Eyx;, _Ervar(wiz)_geizz | X050 X }

_ n Pz -1 n _l 2 2. I’l¢2(2'—1) _L 2
—Ea{zi:,(ai+ei2+T(z_+n_2)_(n_1)zj:,(zl+”j1) ZrﬂLZO-z(T z’(r+n—2)—(n—1)) 2. e,)}
_\" Ar-1) _l 2 2 ng’ (z-1) _l 2
—Z:l (@, +a,p, +r(z'+n—2)—(n—1) 2:1 (z)+u;) ZrﬂLZGZ (z r(r+n—2)—(n—l)) 2am Br2)-

Differentiating (2.96) with respect to f3,, yields,

(3W_L2_ B 2 ng*(r—1) B _
(2.97) 5,6’L2 =nla,, rﬂRZGZ (r 2'(2'+n—2)—(n—1)) a, ﬂL2] 0,
from which
2.98) B, = In .

(2.98) B (1) :

a, +ro’(r—
(t+n-2)—(n-1)

The optimal base payment can be obtained from the binding participation constraint
(2.93):
(2.99)

17

B M=) 1
x, = ﬂLz[am+amﬂL2+T(T+n_2)_(n_l)zj:1(zl'H/‘jl) nzjzlle]

i) 1
r(r+n—2)—(n—1)]+2amﬂu

1
+ErﬁL220-zz[T_

_ ¢(T_1) n _l n
=-p.la, +a,B,,+ (c+n-2)—(n—1) zj=1(zl +uj1) an-:lle]

ng"(z =) )+a,l
(t+n-2)—(n-1)

1
+EﬂL220-zz[V(T -

__ Pz 1) " o 1
= ﬁLZ[am+amﬁL2+T(T+n_2)_(n_1)zj:1(zl+uj1) nzj:lx‘jl]+2amﬂm

1 2 _1 n 1 n
=_EamﬂL2_amﬂL2_ﬂL2[ # D) _l)zj=1(zl+uj1)_;Zj=1le].

(t+n-2)—(n

The second-period total welfare can also be obtained:
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(2.100)
i o Pz -1) "
W, _Zi=1(am +a,pp,+ w(c+n—2)—(n-1) ijl(zl +u)
_l 2 o ng’(r-1) _l 2
zrﬂLZO-z[T T(Z‘+n—2)—(n—1)] 2amﬂL2)
3 #(r-1) n 1
=n(a, + e tn-2)—(] 2zt + 5 @nPra)
B a, ng(r—1) n
=nay,ll+ Py e A ey MR

)]

2a, +ro’ (-
(t+n-2)—(n—-1)

(B) First-period schemes

Denote the first-period optimal contract asC,, ={«,,,5,,} . However, at the
beginning of the first period, the processor does not have the information of growers’
performance in the previous period. Thus, for simplicity, we assume that the same fixed
standard s used in the fixed-performance contract will be adopted for the first-period
contract of the dynamic previous-period RPC.

Under this assumption, each grower receives a reward in the first period,

2.10) w,, =a,, + B, [x,—s], Vi.
Hence,

(2.102) E\[w,]1=«a,, + B, la, + e, —s], and
(2.103) var(w,) = Bl var(x; —s) = B var(x; ) = Bh(o? + O-uz) .
Let W, denote the two-period total welfare under the previous-period RPC, where

the superscript L stands for previous-period and the subscript R stands for relative-

performance contract, and ), denote the first-period welfare. The processor chooses the

first-period optimal incentives by maximizing the total two-period welfare. Specifically,

(2.104)
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W _maX{WL1+éE(WL2|x]1’ X))

arBn

1 1
= maX {E, [z (E\x; — zrvar(wil)_gei)]"'é‘El Wia | X150 X))}

ap,Pu .
1

1 1
= max{E, [Z (a; +e —Erﬂfl(of+O'5)—gei)]+5El(WL2 | Xy e X0 )5

ap:Pr i

subject to

(2.105)

1
E [EU, +0E (E, U, | x)5..00x,)]= E, [ Ew, — 27”V3.1‘(W1)— ezl +0E,(E,U,,)]

l

1 1
=E {a, +pB,la; +e, —S]—Erﬂfl(df +O—uz)_gei21 +oE[a,, + B;,(a; +e,

i

¢(T_1) n _l n
(t+n-2)—(n-1) zj:l(ZI i) nzf:lle)

LA il B S TR
(t+n-2)—(n-1) 2aq,

1
—Erﬂfﬁf (r-

and the incentive-compatibility constraint,

(2.106)

1 2 2 2 1 2
e, €argmax{a,, + f, [a; +e, _S]_ErﬁLl(Gz + O-”)_Ze“ +0E [a,, + B,,(a; +e,

¢(z-1) 2 2, l’l¢2(‘[—l) _L s
T(T+n—2)—(n—1)zf S Z X)) = rﬂLZGz(T T(T+n—2)—(n—l)) 2a e}
, Vi.

i

Recall that in the above expression, x,, =a; +e, +z +u, , Vje[l,n].
Thus, incentive constraint (2.106) requires that the first-period optimal effort satisfy
1
(2.107) e, = a,(B,, —;6,8“) .
Substituting (2.107) into (2.104) yields,

1
(2.108) W = maX{E [Z (a,+e, r,BLzl(O'ZZ+O'j)—gefl)]+5El(WL2 [ X 5ees X))

ary, Ll .
1
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_ n 1, 5 2 |
= g,lz‘lﬁ)f,{E“[z#l (a; + e, _Erﬂu(o'z +O—u)_geil)]+

1

a, N ng(r —1)
ng’(r—1) ] (t+n-2)—-(n-1
(t+n-2)—-(n-1)
= max 1, +, (B =~ 0F,) =70 D) = a, (B —-50) ) +

ap,pPr

OE\[na, (1+

)ijl(zl +”j1)]}

2a, +ro’(r—

ona, (1+ n > )}
2a, +rol(r— ng”(z =1) )]
(t+n—-2)—(n-1)

Differentiating (2.108) with respect to 5, yields

oW}

(2.109) =n(a, —rB, (ol +0,)—a, (B, —%5&2)) =0,

L1

from which,

am -i_amé‘ﬂLZ/I/Z
a, —i—r(O'Z2 +af)

(2.110) B, =

Hence, the binding participation constraint (2.105) can be written as

(2.111)

1 1 1 1
a, +p,la, +a, (B, _;5/8&)_3]_3’”,821(0}2 +O—j)_5am(ﬂLl _;5@2)2 +0E [ E,(E,U,)]=0,

from which we can obtain the first-period base payment,
(2.112)
a, =-pula,+a, (B, e Op,,)—sl+ 5 (o +o,)+ 5 a, (B _;5ﬁL2) —OE[E,(E,U,,)]

1 1 1 1
=-p,la, +a,(B, _;5ﬂL2)_S]+5rﬂLzl(o-zz +O_3)+Eam(ﬂu _;éﬁm)z-

Note that we used the result £, [E,U, | x,,,...x,, ] = 0 from the second-period scheme in

the above calculation.

Further, the expected two-period total welfare can be calculated:
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(2.113)

1 1 1 1
WRL =nla, +a, (B, _;5ﬁL2)_ErﬂL21(Gzz +Guz)_5am(ﬂl,l _;513“)2]4_
a

m"l(ﬁz(f—l)
(r+n-2)—(n-1)

1 1 1 1 1
=nla, +a,pB, _;am5ﬂLz _EFIBLZI(O-ZZ +63)_Eam (ﬂLzl +(;5ﬂL2)2 _2;5ﬂLIIBL2)]+

ona, (1+ )

2Aa, +ro’(r—

)]

a

] ng*(z-1)
(t+n-2)—(n-1)

1 1 1 1 1
=nla, +a,pB, _;amaﬂLZ _EIBL21[’”(UZZ +O_142)+am]_5am (;éﬁm)z +;am5ﬁLllBL2]+

ona, (1+

)

2[a, + I”O'ZZ (r—

)]

ona, (1+ i 26D )
2 _ I’l T -
A tro 1)
| | | 11 , 1
=nla, +a,pB,, ——a,op,-—=la, +—a,op,,18, ——<a,(—=0B,,) +—a,opB,B,,]1+
n 2 n 2 n n
ona, (1+ D 5 )
da, +ro’(c— ngt=h )

t(t+n-2)—(n-1)

=nla, +lamﬂ[,l _lam5ﬂLz +Lam5ﬁLlﬁL2 _lam (15'3“)2]
2 n 2n 2 n
am
ng’(r -1
(t+n-2)—(n-1)
1 a,+a,of,/n 1 1 a,+a,of,/n 1

11
— na [1+~ LY ~SB,, ——(~5B,,)
ul 2a,+r(cl+0)) n Pz 2a,+r(cl+o)n P 2(n Pra)]

)

+ona,, (1+

)

2Aa, +ro’(r—

)]

am
ng’(z —1)
(r+n-2)—(n-1)
a 1 a 1

=na,[1+ = +— = —
"t 2a, +r(cl+o))] 2a,+r(cl+ol)n

+ona,, (1+

2a, +ro’(r -

)]

1 1 a
oB,, ——0f,, +— ’"
P n P 2a,+ r(O'Z2 + 0'5)

1 1 11 a
1 _§L2_5L2___5L22 5’7»11 = 2
(+n B )n 2 2(n B,)" 1+ ona (+2[a o d (e 1) )])
" : t(t+n-2)—(n-1)
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a a 1 1
= 1+ - + = —O0f,, ——Of,, +
e 2a, +r(c’+c))] a,+r(c:+o)n Pra n Pz
1 a 1 11 a
I +r(6m2+02)(;5ﬂL2)2_5(;5ﬂL2)2]+5nam(1+ = nd (=) )
" : u 2[a,, +7'622 (r— )]

(rt+n-2)—(n-1)

a 1 r(o?+o?) 11 ,. r(o’+0o?)
— 1+ m =5 z u ——(=5 z u
na, | 2a, +r(c’+oc.)] n ﬂ“[am +r(o? -‘r-O'Z)] 2(n 2 [am +r(cl+0))
a
+ona,, (1+ — )
2a, +rol(r— ng”(z 1) )]
(t+n-2)—(n-1)
= na, [1+ Lo Lrtoira) lsg vialap
" a, +r(cl+02)] 2a,+r(ci+o’) n n "
a
+ona,, (1+ — )
da, +rote—— D,
(t+n-2)—(n-1)
=na, [1+ s +8(1+ ! )]

ng’(r-1)
(r+n-2)—(n-1)

2 2
2[am + r(o-z + o-u )] 2[am + r622 (T _

]

r(c? +0?) 1 )
- = ‘ — 0 +1)" —1].
nam 2[am +r(0_22 +O_uz)] [(}’l IBLZ ) ]

The following proposition compares the total welfare under the dynamic previous-period
RPC with that under the dynamic FPC.

Proposition 4: The total welfare under the dynamic FPC exceeds that under the dynamic
previous-period RPC. Precisely, W, > W, .
Proof: The proof is straightforward.

2 2
ro. +o,)

1
-8B, +1)* —1], is always
2]a, + r(O'Z2 + (75)] [(n Pz 1) | Y

Since the last term in (2.113), na,,
positive, comparing (2.113) with (2.64) concludes the proposition.

This proposition and the results on which it is based, lead to two general comments

about the dynamic previous-period contract: First, under the previous-period dynamic
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RPC, the optimal condition (2.107) indicates that growers tend to exert less effort in the
first period when offered the same bonus as in a static RPC. In turn, from (2.110), the
processor has to offer a greater bonus in the first period to induce more effort from
growers. This result is the manifestation of the ratchet effect that discourages growers to
provide efforts in the first period because they anticipate the processor would use their
first-period performance as a standard for their second-period performance. Second, it is
assumed that the processor adopts a fixed-performance contract in the first period
because no information is available about the growers’ performance before the first
period. This assumption contributes to Proposition 4. However, if instead a current-
period RPC is used in the first period under this contract, the relative superiority of the

dynamic FPC and the dynamic previous-period RPC will depend on the relative

magnitude of o2, 0., and possibly other parameters.

2.4.3 A Static Model with Two Pooled Tournaments

Knoeber and Thurman (1994) indicate that there are efficiency costs to mixing
growers of unequal ability under tournament contracts. In this section, we assume that
the processor constructs two tournaments in one period, and provides two separate
contracts, with each contract targeted to a different group of growers based on their
abilities.

Recall that growers’ ability is uniformly distributed in the range [a,a]. Suppose

the processor offers two contracts C; ={a,B;} and C, = {a,, B,;}, where the contract

C, is offered to high-ability growers type with a, €[a,a] and the contract C, is offered



to low-quality growers type with a, €[a,a]. Throughout this section, G denotes the

high-ability group and B denotes the low-ability group.

Hence, it can be easily verified that, for every grower i,

>

(2.114) p® = prob(a, €[a,d)) = _:i ,
(2.115) p° = prob(a, €[a,a)) = Cz:i ,
2.116) @’ = E(a, | a, €[a,a]) = *=%  and
2.117)a’ = E(a, | a, €[4,@]) = 5‘;5

The processor rewards each grower in the high-ability group,
Q2.118) W =, + fo[xC 5],

where we define
(2.119)x¢ =%2fo , and
n

(2.120)n% = nprob(a, €[a,al)=n c_z—a =np©.
a-a

Here we use ZG x; to denote the sum of outputs produced by the high-ability group.

Hence,
(2.121) Ew® = a, + B,[a’ +e° —HLGZG(af +e7)], and

(2.122)
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G
G 2 G =G 2 n’ -1 ¢ 1 G
var(w,”) = B var(x;” —x") = B var( e X, _n_GZG,j# x;)

G G G
2 n _1 2 G n _1 G n _1 1 G G G
= B:I( G )” var(x; )+(nG)2 var(x;)—2 e n—G(n —Deov(x;”,x})

1 (n°-1)(n%-2)
(n)? 2

n’ -1 n’ -1

=Pel(=57) g

+2

COV('X/C‘;:' 4 xl?;ti )]

G G G G

2 2 n" =1, , (" =-Dnr"-2) , n’ =1
)(O-z +O_u)_2( I’ZG ) o, + (I’ZG)2 O-z]: G nG C,-
Similarly, the payment to each grower in the low-ability group are given by

(2.123) wf =a, + B, [xf -7,

where

(2.124) %" = - _x?and
n

B

&_a B
——=np .
a-a

(2.125)n” = nprob(a, [a,a])=n

Hence, we can compute
(2.126) Ew’ = a, + Byla’ +e” —niBzB (a} +e})], and

B
n _1 2

(2.127) var(w’) = B; var(x! —x")= B; ——0_.

B u
n

Thus, the processor solves the following problem

(2.128)

W, = G _ G o B B A
o= max  (E[Y (Ex] ~Ew))|a, €[d.all+ B[} (Ex] ~ Ew])| a e[a.a]l}
However, in this case, maximization of the total welfare is different from maximizing the

processor’s expected profit. Thus, instead of maximizing the total welfare, we assume

that the processor maximizes his expected profit.
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The optimal contracts must satisfy the following set of constraints: First, the
participation constraints must be satisfied:
(2.129)

A 1 1 A
Eaun7f|a[e[a¢d]=fz[Euf-—5—gweff-—Ervamwf)|aieuuan

i

:Ea[aG+ﬁG[aiG+eiG Z ( te; )]_210 (el.G)2 —%r én l0' |a, e[a,al]>0,
a; n®

(2.130)

A 1 1 .
Ea[EU[B | ai € [Q’a]] = Ea[EwiB _2_3(61‘3)2 _Ervar(wiB) | ai € [Q:a]]

i

3|%e@ﬁnzu

=E [a, + Bsla’ +e ——Z (a] +e))]-

Second, the optimal effort of each grower in the high-ability group must satisfy the
incentive-compatibility constraint,

2.131)
el eargmax{a, + fB;[a’ +e’ —LGZG(af+ef)]— ( N /5‘ 0 1 VieG.
i jTe

Similarly, for the low-ability group,

(2.132)

e/ eargmaxia, + B,[a’ +e ——Z (a] +e))]- _ a} Vie B

In addition to the above constraints, the optimal contracts must satisfy another pair of
incentive-compatibility constraints. More specifically, under the optimal contracts, it
must be optimal for each grower type to choose his own league rather than the other

league. Before formulating these constraints, additional notations must be defined.
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Since each grower’s reward is associated with the difference between his
performance with the group average performance, one grower’s deviation from choosing
his own league would also affect the average performance of the group which he actually
chooses. Thus, if one high-ability grower i chooses the low-ability league, one defines

the average performance of the low-ability group as
—BG _ 1 G B
(2.133)x%¢ = m(xi +> %0

Thus, the deviating grower receives reward
(2.134) W = a, + B,[x7 —x"].

Consequently, the expected payoff and variance of a deviating high-ability grower are

1
(2135) Ew” =a, + Bylaf’ +ef ———(af +ef + 3 (a +¢))], and
(2.136)
n® 1
GD\ _ p2 G _3BG\_ p2 G _ B
var(w,") = f; var(x;” =x"7) = f; Var(n3+1x’ nB+IZBx")
= B2[( n” )2 var(x©) + n’ var(x%) -2 n’ _w cov(x?,x%)
o0 1 : (n® +1)° / n® +1n® +1 P
1 I’ZB(I’ZB—l) B B
cov(x’;,x
(n® +1)* 2 (- x0)]
B B B B B B
2 n 2 n 2 2 n 2 o o n(n"=1) , 2 N 2
= + o-+0)-2(—) 0o +——0’]= o’
ﬁB[((}’lB-‘rl) (I’ZB+1)2)( z u) (l’lB+1) z (I’IB“FI)Z z] IBB I’lB+1 u

Hence, a deviating high-ability grower can obtain expected utility

(2.137)
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LG(eI.GD)2 —%rvar(wl@)

i

EUP = Ew®P —

1 1 1 I’ZB
G GD G GD § B B GD\2 2 2
= +6 a. +e. - a. +e. + a. te; ——F\€; ——7"6 —O0, .
B B[ i i B 1( i i B( i i ))] 2 G(l ) 2 B I’IB 1 u

In addition, the deviating high-ability grower optimally chooses the optimal effort by
maximizing (2.137). That is,
(2.138)

1
n® +1

1
G, GD B, B GD 2
(a; +e +ZB(ai te; ))]_Za_.G(ei )

1

e’ eargmaxia, + B,la’ +e” —

B
n 2

o,}
nf 1"

1
—5’”,3,;

from which

B
n
(2.139) e = n3+1aiG,BB.

On the other hand, if one low-ability grower i chooses the high-ability league, we

define the average performance of the high-ability group as
—GB _ 1 B G

(2.140)x% = (x +>.x7).

Thus, the deviating low-ability grower receives reward

2.141) W’ =a, + B.[x} -x"].

Similarly, we can compute the expected payoff and variance of a deviating grower,

1

G
n

(2142) Bw” =ag + fglal + ¢ ———(a/ + e + D@’ +e))], and
+

G

_ n 1
(2.143) var(w™”) = B2 var(x’ -x") = f3; Var(mxf T ZG x7)
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G G G G
2 n 2 B G n B _G
= var(x; )+ ———var(x;)—-2 cov(x: ,x;
ﬂG[(nG+l) ) (n° +1) 05 n’+1n°+1 (- x;)
1 n’((n° -1 6 G
cov(x’,x
n+1)°* 2 (73]
G G G G G G
2 n 2 n 2 2 n 2 o on(m’ =1 L 2
= + o, +0,)-2(——) o, +———-0.]= c?l.
ﬂG[((I’ZG-i-l) (}’ZG+1)2)( z u) (I’ZG+1) z (l’lG+1)2 z] G I’ZG+1 u
Further, the deviating low-ability grower must optimally choose optimal effort by
maximizing
(2.144)
e’ eargmax{a, + B [a’ +e’’ — Gl (a’ +e” +Z (a’ +eiG))]——lB (e’’)?
n’ +1 ¢ a;
. from
1 ., n 2
—=r o},
2 Po n +1 )
which
G
2.145) & = a’p..
( ) i I’ZG+1 zIBG

Now, the additional incentive-compatibility constraints can be formulated. Since
the processor offers a pooling contract for each of the two groups of growers, each
incentive-compatibility constraint must be fulfilled under the expectation of
corresponding grower abilities in that group. In other words, under the optimal contracts,
a grower of average ability in one group must prefer his own contract to that designed for
the other group. More precisely, for the high-ability group,

(2.146)
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1 1 1 n% -1
E + O pel —— Y 4e9) - i R 21>
G{aG ﬁG[az ez I’lG Zc(aj ej )] ZalG (ez ) 2rﬁG I’lG O_u}

G GD G GD B B 1 6oy 1 oo n’ 2
EG{aB+ﬂB[ai +ei _I’ZB +1(ai +ei +ZB(aj +ej ))]_ﬁ(ei ) _ErﬂB n3+10-u}-
Similarly, for the low-ability group,

(2.147)

E {a, + B,la’ +e’ —LZ (a® +e?)]- ! (e’)? —lrﬁz n” _10'2}>
B B BL™i i nB B J J ZaIB i 2 B I’lB 728

E {a; + B la’ +e’” — ! (a.B+e.BD+z (a +e.G))]—L(e.BD)2 —lrﬁz n° o’}
B G G LY i I’lG ] i i G\ J 2(13 i 2 G nG +1 ult:

1

Thus, the processor solves the problem (2.128) subject to the constraints (2.129)-(2.132)
and (2.146)-(2.147).
From the incentive-compatibility constraint (2.131) we can obtain the condition for

optimal effort exerted by each grower in the high-ability group,

G

@.148) =" "Lyop vieG.
n

Similarly, for growers in the low-ability group,
B —

(2.149) ¢* =”n—31afﬂ3, VieB.

Without loss of generality, we will adopt the standard results from contract theory (good
references see footnote 1) for simplification of computations. Specifically, we assume
that the participation constraint (2.129) and the incentive constraint (2.147) are not
binding.

Thus, from the binding participation constraint (2.130), we can obtain

1

(2.150) E [Ew’ | a. e[g,&]]zEa[2 5
ai

(e’)’ +%rvar(WiB) |a; €[a,a]].
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(2.151)
Ea[EwiG— (e ) — rvar(w )| a, ela,al]
=E {a; + fsla’ +e ——Z (a +ef )]— ( 2}
—E {a, + G 4 oGP _ 1 G 4 oGP B, B 1 apy2 1 , n’ 2
=E {a,+ Byla; +e n3+1(ai ¢ +Za(a.i te; ))]_251_.G(ei ) _ErﬂBmo-“}
=E {a,+f n” (@’ +e™y-p et ))— (GD) —lrﬂziaz}
a B Bn3+1 i i B l 2 Bn3+1 u
B
:Ea[aB+ﬂB[aiB+eiB —LBZB(af—lref)]— py2 _ 1 zn—BlO'u2
n 2 n
—B,la’ +e’ —LZ (a? +e'?)]+L(eA’B)2 L, ;ﬁoj
1 1 nB B J J zaB i 2 nB u
B B
n G GD o2 1 0 om 2
+ a. te. — —_— ——7r O
IBBnB 1(1 i ) ﬂB l ( ) 2IBBnB+l u]
::BB (aiG—i_eiGD)_IBB(aiB—I—eiB)—I—IBB Z (a te; ) ﬂB (Z (a te,; )
Gpy2 1 2”13_1 2 2 n® 2
+—rf,——o ——r o
Zai 245 ) 27 T 2 'BBnBJrl 2
nB B n® -1
G G
=B n3+1(am+ amlBB)_ﬂB(af;-’_ nE arfﬂB)
1 -1
+ By n_BZB(af'_'_ :BB) :BB (Z ( aﬁﬂs)
1 n® -1 n® -1 1 n®
*3 5(—3/33)2—— zn—BUf—Erﬂéme
nB G B nB_l B
:ﬁg[m(am a ﬂB) (a + a ﬂB)]+ﬁB 1 (a, + B a,fBs)
1 2r B nB_l 2 G 2 1
+= a —a o, ———F—
2(ﬂB) [ m( I’ZB ) m I’ZB(I’ZB+1)
B B B B
n n n n” -1
::BB n3+1(a2+ B+1argﬂ3)_ﬂ3 n3+1(a£+ nb aflﬂB)

1

1 2 2
G S —
n®(n® +1)

+ (ﬂB) a,( nB_ )’ —a,
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B B B B

a0y Al ) al By - ak ()
+%(”i§ )za,i(ﬂgf—%(n;’ilfaj(mf—%rﬂéaim
(af ~a” )+%(ﬂ3)2[a3(nf—;)2 —al ("’;f)jl (n :) 1ol m
Thus, we can obtain
(2.152)
E [EwC |a, ela,al]=E [2 G(e ) 4= rvar(w )| a, ela,al]+
(a -l )+5(ﬂ3)2[a3(nf—;)2 B et s

. . . B . .
For simplicity, for large n”, we can approximate the above expression as

(2.153)

E [EwS |a, e[a,a]] o lage [ (e ) 4+ = rvar(w )l a, €la,a]]
+ (@l —al )iy +5 ()]

The last term in the above expression is the information rent received by high-ability type
growers.

Substituting (2.150) and (2.153) into (2.128), the processor’s expected profit
becomes,

(2.154)

Wy= max {(E[> (Ex{—Ew)|a, eld,all+E,[Y (Ex} —Ew)|a; e[a,a]]}

ag.Pp.ac.Pc.a

=B (B 5 )" =y rvartd) = (al ~aDlfy 45 (B D], <Id.a)

+E, [, (Ex/

%rvar(wfy ) la; €la,all
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=Ea[ZG(a?+” ;lafﬂg—lam Loy~ B ol |, elaal

IS+ g ety

~n%(a$ ~ a2y +5 ;)]
:nG(a,f+”26_1a,§ﬂ6—%aZ(L;lﬂG)Z—lrﬁéLG_laf)
e 3% ol = @ —al)B, +5 (5]

Differentiating (2.154) with respect to f,; yields,

ow. n’ -1 n% -1
2.155) —L& =p° G —rfB.———0c2)=0,
( )aﬂG ( I’lG m ﬂG nG u)
from which
G

(2.156) B, = ———= - !

aGn _1+r(72 n’ -1 Laz

m I’lG u I’lG aG u

Similarly, differentiating (2.154) with respect to S, yields,

2.157)
_ 5 B 5
et el el (" T B, el < el el ] =0
B h "
from which
a’ - " (a, —a,)
(2.158) 3, = ) N
nB—l n°
P yrol + (a —a )

n
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In addition, the base payment in each contract can be solved using the participation
constraints (2.130) and the incentive-compatibility constraints (2.146) or (2.153),

respectively. Specifically, for the low-ability group, the base payment is given by

(2.159)
n® — s n’—1 1 n® -1
ay =—Pla n— z (a, a, ;)] n—3ﬂ8)2+5r ;n—gaj
G
B n G B
a’ — a
1n” -1 , 1n” -1 " (nB—l)( ")
2 n® b 2 n® n® -1 .
a’ +ro’ + (a,f—ai)
n® n® -1

For the high-ability group, the base payment, for n” large, can be approximated by

(2.160)

g =3l B+ o (@ —alify + 5 (6,)°]
lnG—l 4O 5 1 X

_2 ﬂG+(am _am)[ﬁg"'z(ﬂz;) ]

Note that, in order to induce a separating equilibrium for the two groups of growers, the

difference between the highest ability level a and the lowest ability levela must be

. o a+a a+a a-a .
sufficiently large. To see this, if @ —a is small, then a® —a” = Ty Ty s

small. Comparing (2.159) and (2.160) shows that the base payment for the high-ability

group a, is close to that for the low-ability group ¢, when n is large. Similarly, from
(2.156) and (2.158), the bonus for the high-ability group S, is close to that for the low-

ability group S, as well. In addition, from (2.151), if @ — a is small, the incentive-

compatibility constraint (2.146) for the high-ability group could be violated because the

absolute value of the negative term in (2.151) could exceed sum of the positive terms. In
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other words, the high-ability type growers would prefer to choose the contract designed
for the low-ability type growers rather than their own contract. As a result, only a single

pooling contract could be sustained if @ — a is too small.

Further, the processor can optimally choose a separating ability level a by
maximizing the expected profit (2.154). However, we omit it here due to the tedious
computation. Instead, we assume that the processor assigns an arbitrary ability level to
divide the growers into two groups. As an illustration, suppose that the processor

a+a

chooses a =

Under this assumption, we can compute

(2.161) n° =n” :%n,

3_ 1
(2.162) a® = ~a + —a, and
4 4

(2.163) a® =

Hence, assuming that » is sufficiently large, the optimal contract for the high-ability

group can be written as,

1 a; 1
2.164) B, = = T ,and
( ) B n% —1 o, a,ff +”(7u2 | 4r =
nG as " 3C7+Q “
(2.165)
1 I’lG _1 G G B 1 2
aGZE nG amﬂG+(am_am)[ﬂB+E(ﬂB) ]

I ,_ a—-a 1 )
§(3a +a)f; +T[IB3 +E(ﬁ3) ]

~
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Similarly, for the low-ability group,

G

B n G B
a, — (a, —a,) s G _
(n® -1) _2a, —a, Sa—a
(2.166) B, = T c == = -, and
n" -1 4 , R ¢ s\ a,+ro, 3a+a+dro,
5 a, tro, +———(a, —a,)
n n” -1
1n® =1 5, 1 _
(2.167) o, :En—BamﬂB :§(3g+a)ﬁ’3.

It can be easily verified that 5, < 8, and a, <a,."” In other words, the processor
offers greater base payment and bonus to the high-ability group than those to the low-
ability group. Consequently, growers belonging to the low-ability group would prefer
their own contract C, to the contract C because they would incur greater penalty if
they would have joined the high-ability league. On the other hand, high-ability growers
would also prefer the contract C,;, to the contract C, because they would receive a
smaller bonus if they would have joined the low-ability league. At the optimum, the
optimal contract for the high-ability group offers a positive information rent through the
base payment «. , which makes an average high-ability grower indifferent between
choosing the contract C; and choosingC, . In addition, the optimal base payment to the

high-ability group guarantees that it is sufficiently small such that an average low-ability

grower would not deviate and choose the contractC, .

B ~
" To show g, <Ps-letpg — D - 1 . Then B, > f3,. Since a’ <a’,
B
n? -1 , , nP-1 r
B a, +}"O-u B 730-14
n n a,
~ 1 1
By =— <fo=—: . Therefore, 5, < B.. Hence, o, < a as well.
n —1+ ro, n —1+ r o2
- 70' [
n®  a " n® ay
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Given the assumption a = a ;—g and conditions (2.164)-(2.167), we can compute

the processor’s expected profit under the two-tournament scheme.

(2.168)
— 1 1 nt—
Wy =n(a, +—anfﬂc ay (—— e ﬂc D)
n 2
B
+n3(a;§+n laliﬂB _laj(n—BﬂB : B B ul m +l(ﬂ3)2]
2 n 2 n 2

1 1
=n’(a, +5a2ﬂe)+n3{a,§ +a,By—(a, —a,)ps —Eﬁg[a +ro; +(a, —a,)l}
= n (@S 42 alfe)+n (el +2al —aS) B, 5 Filal + ol

= n(aS 2 alf) +n'lal + 2al —al)p,]

3a+a 1 da+a 1 S5a—a Sa—
=—n( 2 =)(1+ ) )+ —n( )1+ 2(3 )3z 2
A+ ra,f] a+a 3a+a+ rO'
(Ba+a)
3a+a 1 3a+a Sa—a 1
e ; e e —
A +——ro?] er4 i+ ——ro?]
(Ba+a) 3a+a

Further, we can compare the expected profit (2.168) under the two-tournament RPC
scheme with that under the one-tournament RPC given by (2.32). However, to compare
these two schemes involves some manipulation.

First, we define the following function:

(2.169) £(3) = (14— ) fory e[a.a].
T
A+ ro?]
y

From this function, one can define the following:
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2

2

2n[1+lmj]+ny%mj [l + 7%
f(=n+ ) 0 b4 =n+ yz >0, and
A1+ rol]? o1+ "y
y y
4 2 2 2 2
e "[1 OUE anl 4 S8 (RS I .
: y: y y y |y n(ro,
S = — = —>0.
4[1+ yu ]4 u]3

Therefore, f(y) is strictly convex in y. From properties of convexity, it must be true that

(1= ) f(3)+ A (1) = fI(1— A)y, + A,] for 0< A<1. Thus, deﬁne/1=%,

3a+a 3a+a .
= ,and y, = T , we can obtain
(2.170)
—. 1 3a+a 1 1 1
WR:EH( 4_)(1 1 )+2n( —4 )(1+ ) >

21+ ro; ] Al +——roc?]
(Ba+a) 3a+a

ns 4 [1+ ; 1=w,.

2+ o)

a
However, since >a _C_l = a+2a-a) =1- 2Aa-d) <1, it is easy to verify that
3a+a SQ +a 3a+a
a+a

=, W, >W,only if Sg_iis close to
3a+a

W, >W,. Therefore, given the assumption a =
one, or equivalently, a —a is sufficiently small. However, recall that a — a cannot be too
small because otherwise, only a single pooling contract could be sustained.

ata .._ . .
=, if @ —a is not sufficiently small such that

Consequently, givena =

W, > W, , then the separating point @ is not optimal for the processor. Instead, the
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processor should use a greater a as the separating point for the two groups. By using a
greater a , the processor reduces the total bonus paid to the high-ability group and hence,
raises total expected profit. To understand this, we should attribute the profit
improvement to more information under the two-tournament scheme. More precisely,
relative to the one-tournament RPC, growers reveal more information concerning their
abilities when two tournaments are offered in one period. Thus, the processor can take
advantage of the new information and exploit more profit from growers. A numerical
example will be necessary to find the explicit optimal separating point. However, it is

not discussed further in this essay due to length restrictions.

2.5 Conclusion and Discussion

Several papers have discussed broiler contracts out of concerns of growers’
dissatisfaction with the existing relative-performance contracts and have compared RPC
with an alternative FPC either in the static setting or a dynamic setting. However, these
studies draw different conclusions about the relative superiority of RPC and FPC due to
different assumptions, different model structure, or different data. To better understand
broiler contracts, this essay not only compares relative-performance contracts with fixed-
performance contracts in both a static setting and a dynamic setting, but it also discusses
improvements of the static relative-performance contract. More specifically, a static RPC
and a FPC are formulated in the first part of the essay. Based on the static model, a two-
period full-commitment model is constructed as well. The second part of the model
consists of three types of two-period dynamic contracts: a dynamic fixed-performance

contract, a dynamic current-period relative-performance contract, and a dynamic
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previous-period relative-performance contract. Then the following comparisons are
drawn: the dynamic FPC with the full-commitment FPC; the dynamic current-period
RPC with the dynamic FPC; and the dynamic previous-period RPC with the dynamic
FPC. The last part of the model develops a static two-tournament RPC and compares it
with the static RPC.

Comparisons between various scenarios of RPC and FPC are summarized in Table
2.1. Major findings include the following five general results:

First, under the static RPC and FPC, the efficiency results depend on the relative
magnitude of the common shocks and idiosyncratic shocks. Specifically, the static RPC
performs better if the common shock is sufficiently large, while the static FPC is better if
the idiosyncratic shock dominates. This result is consistent with most of the previous
studies except Roe and Wu (2003), who find that banning RPC in a static model can
never increase total surplus. Their results are different because of their model
specifications: in particular, the formulation and interpretation of the payment schedules
and the assumptions of the random variables in the output structure contribute to their
results.

Since the full-commitment contracts are exactly a sequence of static contracts, the
full-commitment RPC and the full-commitment FPC have the same properties as the
static contracts.

Second, the dynamic FPC performs better than the full-commitment FPC because
under the dynamic FPC, the processor improves the second-period contract by taking

advantage of the new information acquired at the end of the first period. By providing a
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greater bonus in the second period under the dynamic FPC, the processor induces more
efforts from the growers, and hence, increases total welfare.

Third, regardless of the autocorrelation of common shocks in the two periods, the
dynamic current-period RPC eliminates the contemporary common shocks. Thus, the
dynamic RPC is exactly a repetition of the static RPC. Comparing the dynamic current-
period RPC with the dynamic FPC indicates that the dynamic current-period RPC
performs better than the dynamic FPC only if the common shock is sufficiently large, and
vice versa. However, Proposition 3 demonstrates that the FPC becomes more beneficial
in the sense that the dynamic FPC is favored against relative-performance contracts under
more circumstances relative to the static FPC. In other words, in a dynamic setting, a
FPC becomes more effective at gathering information and improving the efficiency of the
incentives relative to the static case.

Fourth, the dynamic FPC performs better than the dynamic previous-period RPC
under any conditions. In addition, under this contract, significant ratchet effects are
present in the sense that growers exert less effort in the first period in anticipation of a
higher standard in the second period based on their first-period performance. In turn, at
the equilibrium, the processor must offer a greater bonus in the first period to induce
more effort. However, readers should be reminded that the assumption of the first-period
FPC under the dynamic previous-period RPC is critical to lead to the conclusion. If,
instead, a static RPC is adopted in the first period under the dynamic previous-period
RPC, the efficiency results will depend on the stochastic shocks. In particular, if a static
RPC is used, the dynamic previous-period RPC would perform better than the dynamic

FPC if the common shock is sufficiently large.
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Finally, the last part of the model contains a static two-tournament RPC. Under this
contract, the processor offers both a greater bonus and a greater base payment to high-
ability growers than to low-ability growers. Intuitively, the large bonus for the high-
ability group prevents the low-ability group from shirking because it becomes a large
penalty if a low-ability grower deviates. On the other hand, a small bonus for the low-
ability group prevents the high-ability group from shirking because if a grower in the
high-ability group deviates, not only would he make less direct profit, but he would lose
the positive information rents paid to the high-ability group. Further, the results suggest
that the two-tournament RPC can improve the processor’s expected profit relative to the
static RPC because the processor can provide more efficient incentives by differentiating
growers of different abilities and, hence, extract a greater profit from high-ability
growers.

Compared to past studies, this essay provides a more thorough and comprehensive
analysis of broiler contracts. In particular, the dynamic previous-period RPC and the
two-tournament static RPC have not been investigated in the existing literature.

The results in this essay provide some important policy implications and practical
guidelines. First, except for the dynamic previous-period RPC, comparisons between
relative-performance contracts and fixed-performance contracts under each scenario
justify the superiority of relative-performance contracts both in a static setting and in a
dynamic setting when common shocks dominate idiosyncratic shocks. Roe and Wu
(2003) corroborate this result. As for the dynamic previous-period RPC, it could still
perform better than the dynamic FPC if the first-period contract is specified with a

current-period RPC. However, unlike Roe and Wu (2003), this essay does not account
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for the possibility of changing bargaining powers of growers in future periods as their
abilities are revealed in previous periods. Therefore, in the principal-agent framework,
the results from this essay cannot demonstrate the favorability of one contract against the
other from growers’ point of view because growers always receive their expected
reservation utility under each type of contract. In the real world, however, growers
possibly have bargaining power due to competition among processors. We have shown
that relative-performance contracts improve total welfare when the common shock
dominates and, thus, growers could capture a share of the surplus and still favor relative-
performance contracts against fixed-performance contracts.

On the other hand, however, readers should know that the contracts derived in this
essay are still highly stylized versions of actual broiler contracts. For example, payments
to growers in actual broiler contracts are usually based on the feed conversion ratio. Here
we use growers’ output as a substitute. Second, in the real world, growers are different
not only in terms of their ability, but also in terms of their production capacity, flock
sizes, or number of flocks assigned in each period. In addition, in this stylized model, it
is necessary to assume a fixed league composition in the dynamic setting in order to
investigate the ratchet effect. An analysis of random league compositions, as happens in
the real world, would seriously complicate the analysis. However, all of these potential

extensions are beyond the specific interests of this essay.
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Table 2.1 Comparisons of fixed-performance contracts and relative-performance
contracts

Static FPC | Static RPC Full Full Commitment
Commitment RPC
FPC
ap |Be |We Uy B Wy (253 B WFF Up B WRF
Static FPC a. n/a = n/a
ﬂF <* _ <*
WF <* <*
Static RPC a, n/a =
B > =
WR
Full ap n/a
Commitment B, <
FPC Wr <
F
Full a,
Commitment B
RPC W
R
Dynamic FPC ap
ﬂ F1
aF 2
B
Wy
Dynamic A
current-period B
RPC
aRZ
IB R2
W
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Table 2.1 (Cont.)

Dynamic FPC Dynamic current-period Dynamic previous-
RPC period RPC
aFl IBFI aFZ IBFZ WFD aRl IBRI aRZ ﬂRZ WRS aLl ﬂLl aLZ ﬁLZ WRL
Static FPC a, | = > n/a n/a n/a n/a
B - < < < < <
WF
Static RPC a, = =
P = =
WR
Full a. | = >
Commitment B = <
FPC W <
F
Full a = =
Commitment | g = =
RPC W F =]
R
Dynamic Ay n/a n/a
FPC B <7 <
s n/a n/a
ﬂFZ n/a =
WP <7 >
Dynamic Qg
current- B
period RPC
R2
ﬁRZ
wy
Notes:

a) Each cell in the table compares the corresponding parameter in the second column and
the corresponding parameter in the second row. For example, a “ < sign means that the
corresponding parameter in the second column is less than that in the second row.

b) The cells with one asterisk (*) depend on the relative magnitude of the common shock
and the idiosyncratic shock. The explicit conditions are derived in Proposition 1 and
Corollary 1.1. The cells with (**) depend on the condition derived in Proposition 3.

c¢) The matrix in the table is symmetric except the last scenario, i.e., Dynamic previous-
period RPC. Thus, only the upper triangle of the table is filled.

d) We use the symbol “n/a” to indicate that these cells are indeterminate and use empty
cells to indicate that these are irrelevant or not the interest of this paper.
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ESSAY III

DYNAMIC CONTRACTS WITH ADVERSE SELECTION: INCORPORATING
GROWER REPUTATION INTO CONTRACT DESIGN
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3.1 Introduction

This essay investigates the role of growers’ reputation when an agricultural
processor designs optimal incentives for high quality products in a dynamic contracting
context. Due to the characteristics borne in agricultural production, agricultural contracts
have special features different from those in other industries. For example, agricultural
producers often require large capital investments in land, agricultural stock, equipment,
and facilities that make the processor-producer relationship specific. As a result, large-
scale processors, such as those in the frozen or canned fruits and vegetables, extensively
use long-term contracts with producers. Many industry observers believe that reputation
for quality plays an important role in maintaining the processor-producer relationship.
For example, Caspers (2000) reports that pork contractors invest much effort in building
up reputation capital in areas were contract production is widespread. Goodhue et al.
(2000) test hypotheses regarding long-term relationships between contracting and
reputation of grape quality in the California winegrape industry. They point out that a
grower’s reputation for consistent grape quality is necessary for him to receive a high
price for future harvests and that the grape grower may not recover his costs through
resale if his farm’s reputation is harmed. Despite these reports and observations, few
studies have taken into account reputation effects when one designs a long-term

agricultural contract.

Wilson (1985) summarizes past studies of reputation effects in various contexts. In
game-theoretic and market models, one’s reputation is usually defined as the history of
his previously observed actions or measured performance. Operationally, it is usually

summarized by a derived posterior probability assessment by his opponent, which is used
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to predict the player’s future actions. He indicates that “at least four ingredients are
necessary to enable a role for reputations. (1) There must be several players in the game,
and (2) at least one player has some private information that persists over time. This
player (3) is likely to take several actions in sequence, and (4) is unable to commit in
advance to the sequence of actions he will take (Wilson, 1985, p.29).” According to
Wilson, a player’s optimal strategy in the presence of reputation effects must take into
account the following chain of reasoning: his current reputation affects others’
predictions of his current behavior and thereby affects their current actions. Thus, his
optimal strategies must be not only the best choice in the current immediate decision, but
also the best longer-run decision which takes into consideration of the effect of his
current decision on his future reputation. Further, others’ current actions will be affected
as well anticipating the player’s long-term consequences. Since the four necessary
components are contained in a dynamic principal-agent problem with adverse selection,
reputation effects could be sustained to provide more effective incentives in such a

context.

To address this issue, a two-period principal-agent model is used in this essay.
Since commitment to the intertemporal contract terms is crucial to the optimal incentives,
this essay is organized in the following manner. The first section of the model derives
properties of a long-term contract with full commitment by both parties. The second
section establishes a long-term dynamic contract with no commitment to the
intertemporal schemes. The third section introduces a reputation reward contingent on
observation of high quality and investigates its effect on the dynamics of optimal

incentives. The final section concludes and discusses potential extensions of the model.
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3.2 Literature Review
Reputations effects in games and markets

Wilson (1985) differentiates past studies of reputation effects in two groups, game-
theoretic models and market models. Among all the game-theoretic models, the chain-
store game (Selten, 1978; Kreps and Wilson, 1982; Milgrom and Roberts, 1982), the
sequential bargaining game (Fudenberg and Tirole, 1983), and the repeated prisoners’
dilemma game (Kreps et al. 1982) are among the most classic representations of
reputation effects in repeated games. In these studies, a player’s reputation is
summarized in his opponent’s beliefs about his type. The key ingredient of these studies
is that players would be likely to incur short-term costs to build up reputation that yield
favorable long-term consequences when he is patient and his planning horizon is long.
However, none of these studies is formulated within the principal-agent framework.

Another group of models examines the role of reputation effects in markets.
Shapiro (1982) examines how a profit-maximizing firm chooses product quality in an
environment where consumers, who cannot observe quality before purchase, use product
reputation as a criterion for quality. Since reputation adjustment can reward high quality
production only with a lag, Shapiro shows that the firm will not find it profitable to
provide as high a quality as under perfect information. Shapiro (1983) derives an
equilibrium price-quality schedule for markets in which product quality is unobservable
to consumers before purchase. He argues that high-quality products should be paid a
price premium for compensating sellers for their investment in reputation. Similarly,
Allen (1984) studies the role of reputations in a competitive market where product quality

is unobservable and finds that there exist equilibria where price is equal to average cost



179
but greater than marginal cost. As Wilson (1985) indicates, however, most of these
studies do not explicitly specify the source of the reputation effects; they simply assume

that they are present.

Several papers concerning reputation and quality are also found in an agricultural
setting. For example, Worth (1999) develops a model of how food firms determine the
quality of their output in the presence of reputation of product quality. Quagrainie,
McCluskey, and Loureiro (2001) adopt a dynamic multiple-indicator model to test the
relationship between reputation of quality and price premium for Washington apples and
find that price premiums are good indicators of reputation. Goodhue et al. (2000) test
hypotheses regarding long-term relationships between contracting and reputation of grape
quality in the California winegrape industry. A hedonic pricing study conducted by
Schamel (2002) finds significant association between California wine prices and winery

reputation indicators.

Repeated agency problems

Many papers have investigated dynamics of repeated agency models in the presence
of asymmetric information. One set of studies focuses on multi-period agency models
with moral hazard in either a finite or an infinite horizon. For example, Rubinstein and
Yaari (1983) and Radner (1985) study an infinitely repeated problem in which neither
principal nor agent discounts the future. They show that in this case there exists an
optimal contract that yields both the principal and the agent the same expected utilities as
they would have received in the first-best case. Thus, inefficiencies due to moral hazard

that arise in static settings are completely overcome in this case. Radner (1985) shows
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that if the discount rates are close to one, the first-best solution is approximately
achievable. Lambert (1983) and Rogerson (1985) examine qualitative features of the
optimal contract with discounting. Lambert develops properties of the optimal contract
in a finite horizon model using the first-order approach, while Rogerson (1985) examines
the relationship between wages and effort for any two successive periods in a repeated
problem with discounting. Both papers show that history plays an essential role in a
repeated relationship and the optimal contract in any period will depend on the entire
previous history of the relationship.

In contrast, another set of studies investigates multi-period contracts in the presence
of adverse selection. For example, Freixas, Guesnerie, and Tirole (1985) study the
dynamics of a linear contract and demonstrate that ratchet effects exist in the presence of
hidden information. Laffont and Tirole (1988) study a two-period principal-agent model
with unobservable agents’ abilities. However, unlike Freixas, Guesnerie, and Tirole
(1985), they demonstrate that with a continuum of types, for any first-period incentive
schemes, there exists no fully separating continuation equilibrium. Hosios and Peters
(1989) examine a two-period insurance contract and show that, in the absence of
discounting, no fully separating equilibrium can be sustained.

A few other papers also investigate relationships between short-term contracts and
long-term contracts. Specifically, these papers deal with spot implementability of a long-
term contract via a sequence of short-term contracts. For example, Fudenberg,
Holmstrém, and Milgrom (1990) use a multiperiod principal-agent model to illustrate that
an optimal long-term contract can be implemented by a sequence of short-term contracts

under certain conditions. Spear and Srivastava (1987) analyze an optimal contract in an
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infinitely repeated agency model in which both principal and agent discount the future.
They show that the multi-period problem can be reduced to a static variational problem
and a simple stationary representation of the dynamic optimal contract exists.
Malcomson and Spinnewyn (1988) also show that under certain conditions repeated
short-term contracts implement long-term contracts and that linking payoffs in one period
to outcomes in previous periods does not improve the tradeoff between incentives and
risk sharing. Rey and Salani¢ (1996) concluded that a sequence of short-term contracts
could be as efficient as long-term renegotiation-proof contracts in the presence of adverse
selection if renegotiation is always possible. However, spot contracting will be efficient
under much more restrictive assumptions.

Although few studies have directly investigated reputation effects in the principal-
agent framework, those studies about repeated agency problems can shed some light on
this type of problem. In some sense, the analysis that follows in this essay is a synthesis
of those studies with hidden information and yet incorporates with the notion of

reputation effects in an agricultural context.

3.3 Objectives

This main objective of this essay is to investigate the role of growers’ reputation
when an agricultural processor designs optimal incentives for better quality products in a
two-period dynamic contract. When the grower’s type, as reflected by product quality, is
unobservable to the processor, adverse selection would be likely to occur in a processor-
producer relationship if no effective incentives are provided. In addition, in the absence

of commitment to intertemporal contract terms by both parties, the existence of hidden
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information that persists over time and a grower’s sequential choices of actions enable a
role for reputation effects in the two-period dynamic contract. Thus, optimal incentives
in such a contract must take into consideration not only the adverse consequences of
hidden information in the short term, but also its intertemporal consequences in the
longer term.

The first section of the essay develops a two-period full-commitment model, which
requires that both parties be committed to the contract terms and that the contract cannot
be breached or renegotiated during the contracting period. This model serves as a
baseline. Then a two-period dynamic model with no commitment is developed.
Specifically, the no-commitment contract assumes that neither the processor nor the
grower can commit to an intertemporal scheme. In other words, the processor can revise
the contract in the second period conditional on the grower’s first-period performance
and the grower can quit the relationship at the end of each period. Under this contract,
optimal conditions for a fully separating equilibrium, a semi-separating equilibrium, and
a pooling equilibrium are established. In this case, reputation effects are embodied in the
posterior probability assessment (Bayes’ rule) of the grower’s types by the processor at
the end of the first period. Anticipating the processor’s strategies, the high-quality
grower type chooses to build up his reputation by either imitating the low-quality type or
revealing his true type, whichever is favorable. In fact, imitating the dominant behavior
of a low-quality type yields future information rents to the high-quality type by sustaining
the processor’s belief that the grower might be of low-quality type.

Based on the no-commitment dynamic model, the third section incorporates a

reputation reward contingent on the grower’s past performance into the model. More
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specifically, a reputation reward is remunerated to the grower in the second period if the
processor observes good performance at the end of the first period. To simplify the
analysis further, the reputation reward is assumed to take the form of a lump sum
payment. Under these assumptions, this essay demonstrates that the reputation reward
contingent on the grower’s history of performance provides incentives for the grower to
invest effort in building a reputation for high quality and, thereby, could improve both the
processor’s and the grower’s welfare and result in a dominant equilibrium. The final

section of the essay concludes and discusses potential policy implications.

This essay contributes to the related literature in the following aspects: Firstly, in
contrast with some of the past studies that rule out existence of a fully separating
equilibrium in a dynamic contract, this essay establishes optimal conditions for a fully
separating equilibrium, a semi-separating equilibrium, and a pooling equilibrium under
certain conditions. Moreover, conditions for optimality of a “handicapped” separating
equilibrium, in which a single contract is offered to the high-quality grower type, are also
investigated. Secondly, although many studies have discussed reputation effects in
various game-theoretic settings, few studies have explicitly investigated reputation effects
in a principal-agent framework with asymmetric information, and virtually no study
models reputation rewards contingent on past observed performance in a dynamic
contract. Thus, this essay addresses a question of both theoretical interest and practical

importance.
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3.4 The model
For simplicity, it is assumed that there are only two time periods t=1, 2. Although
the following model is more like a short-term contract as defined in Rey and Salanie
(1996), extending the model to a longer term is straightforward. Growers are
heterogeneous in terms of their capability to produce high-quality products. For example,
grower differences include, among others, production technology, management skills,

and soil conditions that can be sustained over time as long as grower types are not fully

revealed to the processor. Let 6 € ©® = {#,8} denote the two possible quality types of the
growers with @ < 0 . The processor cannot observe &, but has some prior belief f(6)that
the proportion of low-quality type @ is 1—7, and that of high-quality type & is 7;. At the
beginning of each period ¢, the grower privately chooses an action, e, , to improve the

quality of his products, which is only observable to the grower. For example, in the
process of winegrape production, this action may include pruning, irrigating, and pest

management, among other managerial actions. Thus, the observed or realized quality
q, of the grower’s products is determined by g, = ¢,(8,e,) . For simplicity, we assume
that no uncertainty is involved in the production process. In particular, the quality
structure is governed by the following

B.1)P. =q,(0,e,)=0e,.

The processor can observe the realized quality of the finished products produced by the

grower, but she cannot distinguish the effects of the grower’s type @ and his effort e, on

improving quality. It is assumed that the processor can sell the product at price, P, =g, .
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Recall that the grower’s quality type & can be sustained over time as long as this
information is not fully revealed, which is a necessary condition to incur reputational
effects in a dynamic context. Since the quality structure is deterministic, in each period
each grower type can set a specific target of realized quality given an optimally chosen

effort level.

The processor is risk neutral and has a profit function, z,(P,,w,)=P, —w,, where w,
is the reward to the grower at period ¢. Each grower type € has a time-separable utility
function U, (w,,e,,0) =u(w,)—g(e,,0), where g(e,,0)=v(e,)/ 0. From (3.1), the utility
function is equivalent to U,(w,, e, 0) =u(w,)—v(P/6)/ 6. It is assumed that u is strictly
concave in w, with u' (w,) >0 and u (w,) <0 ; and v is strictly convex in e, :

v, >0,v,, >0 andv(0) =0. Hence, we know that g,(e,,0)>0,g,(e,,0) <0, and

ee

g.,(e,,0)<0 . Note that in this setup growers differ in their disutility of effort and

marginal contribution of effort to realized quality. The low-quality type incurs higher
costs relative to the high-quality type for a same level of effort. In addition, the marginal

disutility of efforts decreases with @, i.e., decreases with grower abilities.

3.4.1 Two-period Full-Commitment Contract

In this case, since both parties are committed to a two-period contract, the contract
cannot be breached or renegotiated during the contracting period. An alternative
interpretation of full commitment is that the processor promises at date one to an
intertemporal incentive scheme and commits not to use the information revealed by the

grower in the first period during the second period. Hence, reputation has no effect on
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the optimal incentives to revealing the grower’s private information. In addition, in the
absence of an intertemporal incentive problem, the reward in one period does not depend

on outcomes occurred in the previous period.
a) Optimal contract under perfect information

Under perfect information, the processor can perfectly observe the grower’s type

and the incentive problem is absent. Since the two periods are independent, the processor

would solve, in each period ¢, for each type @ € ® = {6,6},

. Z,(0)=P,(6)—w,(0) = Ge, -
(3.2) max Z,(0)=1F,(0)—w,(0)=te, —w,

subjectto U, =u(w,) —v(e,)/0>u,.
The Lagrangian for this problem is

max L = (6, —w,)+ A(u(w,)—v(e,)/ 0 —-u,),

Wi»€

and the first order conditions are

(3.2)5—L=9—l/1v'=0,
P 0

t

(3.3)6—L =—1+Au'=0, and
ow

t

B ADu(w,)—v(e, )/ 0=>u,.
From (3.3) and the concavity of u(w,), we know

(B5A=1/u'>0,
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which confirms that the participation constraint (3.4) is binding. Thus, from (3.4), the

optimal reward to the grower is
B.O)w, (@) =u'(u, +v(e])/0), 0e{6,6}.

Then, from (3.2) and (3.3), we can obtain the optimal level of effort for each grower

type 0 € (0,8}, ¢ (0):

(3.7) e earg{'(e,) = 0%u'(w,)}, or,

Vi(e,)
(3.8) oS = 0.

Thus, given the assumptions of the utility function and disutility of efforts,
condition (3.8) states that the optimal level of effort for each type @, e (), increases

with €. In other words, the optimal contract requires that less effort be demanded from
the low-quality type. In addition, from (3.6), the grower of each quality type obtains the

reservation utility u,in both periods.

Let Z"(6)= max Z,(0). Then in each period, the processor can obtain net profit
w(0),e(0)

Z"(0)=0¢e (0)—w () from the grower typed , and Z" () = fe” (6) —w" (0)
from the grower type @. In addition, it can be verified that Z"(0) > Z"(€). This

relationship is illustrated in Figure 3.1. Note that since P(€) = 6e =0 when e =0, the

processor’s net profits for each 6 € {#,0} are exactly the distances from the origin O to

the point A and point B on the vertical axis respectively. Given strict concavity of u(w)
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and convexity of v(e) and the processor’s profit function, clearly, OB>0A,

or,Z (0)>Z2"(0).

W J—
u(w)—v(e)/0=0 u(w)—v(e)/6 =0
be-w=Z"(6)
wl
woTTTTTTTTT .
0 ;
[ . * .
Z(elL . -~
A
7@ ) )
‘B

Figure 3.1 The optimal contract with perfect information

Thus, in a full-commitment contract under perfect information, the optimal contract will
mimic a sequence of optimal static contracts. The static contract in every period is

exactly same and independent over time. For future reference, denote this perfect
information contract C* ={C;,C,,}, where C, ={w"(6),e (8)}and

C,, ={w'(0),e"(0)}. To simplify the notation further, let w =w" (), e =e (6) and

JE—

w =w'(@),e" =e'(0). Thus, the optimal contract under perfect information can also

—k 3k

be written as C, ={w ,e }and C, ={w,e}.

b) 4 full-commitment contract with asymmetric information
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With asymmetric information, incentive constraints must be imposed to have the
grower’s type truthfully revealed. Since the processor commits not to use the information
revealed by the grower in the first period during the second period, the optimal contracts
in two periods are independent. Thus, in each period ¢, the processor maximizes its

expected net profit subject to the participation constraint and the incentive constraints.

Again, let Z,(0) =6, (6)—w,(0). Thus, in each period ¢, the processor maximizes
(3.9) I, =1Z,(0) +(1-1)Z,(6) = 1;[8e,(8) ~ w, ()] + (1~ 1,)[be,(8) — w,(0)].

In each period, the grower earns at least the reservation utility u,:
(3.10) U, =u(w,)—v(e,)/0>u,, VO0ecO®={0,0}.

Given the two distinct types, the optimal contract requires that the grower type &
produces at quality level, P(€) = Be(60) (recall that market price is set equal to the
observed quality) and receives w(&), while the grower type @ produces at quality level
P(6) = 0e(0) and receives w(@). Denote this full-commitment contract with
asymmetric information C* ={C; ,C};}, where C; ={w" (8),e" (6)}and
Ch={w"(0),e" (0)}. To simplify the notations, let w* =w’ (8), e" =e’ (0),

w' =w"(0), e" =e"(0), P" =P"(0),and P" =P"(#). The superscript F is
omitted in the following section.

Thus, to prevent deviation, the following incentive constraints must be satisfied
(3.11) u(w) —v(e)/ 0 > u(W)—v(P6)/ 8,

(3.12) u(w)—we)/ 6 >u(w)—v(P/0)/0 .



190

This condition is equivalent to the following condition for each type & € {6,0} :

(3.13) @ eargsupu(w(d)) — v(P/0)/ 0) = u(w(0)) — v(6e(0)/ 6)/ 6.

The above condition can be interpreted as follows: If each grower type @ is asked to
report his type to the processor, the optimal incentives require that it is optimal for each
grower to truthfully report his type. This condition is consistent with the direct revelation

principle.
Thus, the processor would solve, in each period ¢,

(3.9) max II, =nZ,(0)+(1~1)Z,(0) = r[0e, ~w, 1+ (1~1)[0e, ~w,]

(O)m(0)
subject to

(.10) U, =u(w,)-w(e,)/ 0 2u,, YO0cO=1{0,0}
(3.11) u(w) —v(e)/ 8> u(w) —v(P/6)/8

(3.12) u(w)—we)/ 0 >u(w)—v(P/0)/6

To help solve the above problem, the following results are first derived to simplify the

problem.

Full-commitment result (1): An optimal contract must be such that (i) P(8) increases

with @ and (ii) w(0) increases with & .

The proof is straightforward. Given the distinct growers types, € and 0 , with

0<0 ,(3.11) and (3.12) are equivalent to:

(3.11°) u(w) —v(e)/ 8> u(w)—v(eb /6)/86.
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(3.12°) u(w)—we)/ 0 >u(w)—v(eb/6)/8 .
Thus, summing up (3.11°) and (3.12’) implies:

(3.13)W(ef/6)/0 —v(e)/ =v(e)/ 0 —(eb 16)/6.

Define the function g(e)=v(0e/6)/0 —v(e)/ 8, thus, g(e)=v(0e/0)/ 6 —v(e)/ 0, and

g(P/0)=v(e)/0 -v(P/6)/8.
From the convexity of v(e), it must be true that

g'(e)zv'(ge/é)giiz—v'(e)/gzg[v'(ge/e_)/é2 —v'(e)/9*]1<0 since @ <6 . Hence,

from (3.13), we know that g(e)>g(P/6). Therefore, given g'(e) <0, it must be true
that e<P /@, thatis, P=e@<P =0 for < 0 . In fact, P must be strictly greater
than P for @ < 0 for a separating equilibrium because, otherwise, it will be a pooling
equilibrium. Hence, from (3.12”), we have u(w) —u(w)>v(e)/0 —v(ed/6)/60 >0,
from which w > w.

Recall that P = @e is the realized quality given the grower’s type and his effort choice.
Result (1) states that the optimal choices of realized quality increase with €. As a result,

the optimal rewards increase with € as well. This condition makes separating

equilibrium possible.

Full-commitment result (2): The participation constraint for type & (3.12) is not

binding.

To see this, (3.10) and (3.12) implies
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u(w) —v(@)/ 0 >u(w)—w(P/86)/ 6 >u(w)—v(e)/ 8 >u,
because @ >6 and P/ <e.

That is, the participation constraint for type @ is satisfied. Since the low-quality type, &,
earns at least the reservation utility, u,, the participation constraint for type & does not

affect the optimal solution to this problem. Hence, it is not binding. Moreover, an

optimal contract in this problem must have the participation constraint for type € binding,
i.e.,u(w)—v(e)/@=u,. Otherwise, the processor can always reduce the reward for this
grower type until it reaches his reservation utility.

Now, let us derive the optimal choice of effort exerted by each grower type.
Ignoring the participation constraint for the high-quality type 0,let 4, M, ,and

M, denote the Lagrangian multipliers for (3.10), (3.11), and (3.12). Then the Lagrangian

for the above problem (3.9)-(3.12) is

L=(1-r)[ed~wl+n[ed —w]+Auw)~v(e)/8~u,)
+ g1, (u(w) = v(e)/ @ ~u(w) + (P /8)/ 0)
+ 1y (W) = (@) / 8 2 u(w)~v(P/0)/0)

The first order conditions to this problem are:

(3.14) %= (1=1)8~'(e)/ 8~ p,v'(e)/ 0+ p, (/O (P16)/8 =0,

(3.15)2—2: 16+, (016 (P/6)6—u,'(€)/6 =0,

(3116) 25 = ~(1=7) + 20 (W) 1 ()~ () =,
w
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oL _ —
BA7) —=—n —pu' W)+ pyu'(w)=0.
ow
From (3.17), we know that z,, >0since r; >0 and u'> 0. Hence, the incentive
compatibility constraint (3.12) is binding.

Further, since P > P, it is not possible for both incentive compatibility constraints

to be binding. To show that, one can assume the contrary. If both constraints are

binding, then from (3.11°) and (3.12”), we can get
(3.18) w(e6 /0)/ 0 —v(e)/ 0 =u(w)—u(w)=v(e)/0 —v(eb/0)/0 .
Since @< 6, andv(@8 / 0) — v(e) = v(e) — v(ef /&) due to strict convexity of v(e),

(3.18) is not possible. Therefore, the incentive compatibility constraint (3.11) must be

strict inequality, which implies ¢, =0.
Substituting x, =01into (3.15) and (3.17) gives
(3.19) e carg{f u' (W) =V'(€)},

which coincides with the optimal condition for type @ under perfect information

(equation 3.7).

Substituting 4, =01into (3.15) and (3.16) yields, respectively,

(3.20) p,, =1,0° /v'(€) , and

1

Gan A=l
w)
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Then the optimal effort choice for grower type @ can be solved by substituting (3.20) and

(3.21) into (3.14):

1-n

1-r)8—[ +u, ' (e)/ 0+ 1, (8/0)W (P/6)/6 =0}, which implies

u'(w)

0/ 0+ 1, (010 (P18)) 8 —v'(e)/ 01= 0}, or,
u'(w)

(1-r)8~

_ _ v'(g) " 2.5 0\ _ 02, —
(1-r)oll u'(v_v)Q2]+Qv'(E)[Q VI(P/0)-07V'(e)]=0.

Hence, the optimal effort choice for grower type @ is given by

(3.22) e c arg{(1-7)6]1 - utv_ij)g I+ G [0V (BID) =0 (@)= 0},

Since 8°V'(P/0)—-60V'(e) <0, it must be true that

v'(e)

Y <1, which implies e < g*, where g* is the optimal choice of effort for grower
u'(w

type @ under perfect information.

Further, since the participation constraint for the grower type @ is binding, he earns

exactly the reservation utility u, at the equilibrium, i.e.,

(3.23) u(w) —v(e)/ 0 =u,

from which we can solve the optimal reward to the grower type 6.
Then from (3.12),

(3.24) u(w)—v(@)/0 =u(w)—v(P/0)/0 =u(w)—v(e)/0+v(e)/0—v(P/0)/0
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=u, +v(e)/-v(P/6)/0

Since v(e)/8—v(P/6)/0 >0, the grower type @ earns strictly positive
information rents from the optimal contract under asymmetric information. Thus, this

optimal full commitment contract under asymmetric information can be written as
C* ={Cy,Cl} with CF ={w",e" }and C}, = {w",e"}, where {w",e’}is given by

conditions (3.22) and (3.23), while {w",&”} is given by conditions (3.19) and (3.24).

To summarize, if the processor commits itself in the first period not to use the
information revealed by the grower in the following period, and the grower commits to
the two-period contract and cannot breach the relationship, the optimal incentives with
full commitment mimic the same static contract in both periods. Further, commitment by
the processor eliminates the possibility of incorporating reputation effects into the
optimal incentives. Therefore, under the assumption of full commitment, growers’
reputation of quality does not affect the dynamics of the optimal contract with

asymmetric information.

3.4.2 Two-period Dynamic Contracts with No Commitment

In this case, it is assumed that neither the processor nor the grower can commit to
an intertemporal incentive scheme. Thus, the processor chooses the optimal incentive
scheme in the second period conditional on the grower’s first-period performance. The
grower cannot commit to the two-period contract and can quit the relationship at the end
of the first period. We assume that the grower can obtain his reservation utility if he

quits.
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Recall that grower type 0 is the high-quality type and @ is the low-quality type. If

the grower type 0 deviates and pretends to be the grower type &, i.e., choose the target
market price P(&), he would earn relatively less profit in the first period and enjoy

positive information rent in the second period. In the following analysis, we exclude the
possibility that the low-quality type would mimic the high-quality ability because this

strategy always generates a loss to the low-quality type.

Specifically, the processor’s strategy consists of incentives schemes

{w,(P,),w,(P,P,,w,)} and the grower’s strategy is a sequence of decisions of the effort
levels {e, (w,,0),e,(w,,w,,0,¢,} . Denote the set of feasible contract as C;, ={C,;,C,, }
andC, ={C,,,C,, } where C,, ={w,; ¢;;}and C,, ={w,; e, }for je{L,H}. These
optimal strategies must form a perfect Bayesian equilibrium such that (i) e, is optimal for
the grower given w, , (ii) w, maximizes the processor’s expected profit given its belief
about 6, f,(0|w,,e,), in the second period, (iii) e, is optimal for the grower given w, and
the second-period incentive schemes, (iv) w, maximizes the processor’s expected profit
given its belief about &, f,(0), in the first period and the second-period strategies, and
(v) the processor’s second-period belief f, (6| w,,e,)is derived from the first-period

belief f,(6) and the grower’s first period strategy using Bayes’ rule.
From the analysis described in the first case, an optimal static contract in each
period requires each grower type has a fixed target quality level, i.e., q(0) and q(0),

which correspond to the market prices P(f)and P(0), respectively. Hence, three types

of continuation equilibria could potentially be sustained:
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(i) Separating equilibrium: The high-quality grower type 6 chooses P(6)and the low-

quality grower type @ chooses P(6). Then the processor’s second-period belief becomes

r,(w,(0),P(@)) =1 and r,(w,(0), P(0)) = 0.

(i1) Pooling equilibrium: Both grower types choose P(€) in the first period. The
processor updates her second-period belief about grower types such that

r,(w,(6),P(0)) =1, and r,(w, (0),P(0))=1. Thatis, if P(0) is observed, the processor
cannot obtain the grower’s true type by observing his first-period performance, so the

Bayesian updating results in the exactly same distribution of grower types in the second
period as in the first period. If P(6) is observed instead, then the processor updates its

belief such that the grower type is of high-quality type.

(iii) Semi-separating equilibrium: If the high-quality type randomizes over P,(€)and
B (@), then the processor updates its belief using Bayes’ rule. Let 7 be the probability
that the grower type 0 chooses the contract designed for the grower type €. Then, the

processor’s second period belief becomes

(3.25) A(P(O).71)=—"—— <1, and r,(P,(O),7)=1.

nr+l-n
Thus, for a given belief of grower types in the second period, denote the processor’s
second-period net profit as W, (r, ) and the first period net profit as W, (r;,C,,,C,;,).
Similarly, define the grower’s second period utility as U,(C,,(%,) | 6,) and the first period
utility U,(C,, | ,), for i € {L,H}. Note that we use #, =6 and @, = 0 here. From

now on, these notations might be used interchangeably for notational simplification.
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Now, let us take a close look at the second period incentives schemes.
Second-period incentive schemes

As have discussed in the previous section, the second period incentive schemes
depend on the grower’s first-period performance and the processor’s second period belief
about grower types. The optimal incentives can be derived following the same procedure

as described in the full commitment case. In this case, without loss of generality, we

normalize the reservation utility for all grower types u, to be zero.

Given the processor’s belief about the grower types r, in the second period, the

processor solves the following problem:

max W, (r,) =r222(§)+(1—r2)22(g) :rz[gezﬂ =Wy, 1+ (=1,)[0e,, —w,,]

€,(0),w,(0)

subject to

(326) U, =u(w,)—v(e,)/0>0, VOc®=1{0,6}.
(3.27) u(wy, ) —vle,, )/ 0 > u(w,, ) —v(e,,0/6)/80.
(3.28) u(w,, ) —v(ey, )/ 0 = u(w,,)—ve,, 0/6)/0 .

Following the procedure as in the full commitment case, we can derive the optimal

contract for the second period contingent on the processor’s belief about 7,. Specifically,

there could exist three different types of equilibria given different values of 7, .

(1) Separating: 1f the first period equilibrium is separating, i.e., 7, (W, 0),P(0))=1 and
r, (w,(8), P(8)) = 0, then second-period equilibrium is exactly same as the optimal

contract under perfect information. In other words, once the grower’s true type is
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revealed in the first period, the grower’s private information concerning their quality
becomes public. Hence, the processor can offer a contract that provides the reservation
utility to the grower of each type and extract all surplus from the grower. Thus, in a

dynamic two-period contract, if the first-period contract is separating, the optimal
contract for the second period is C, ={C,,,C,, }, where C,, = (v_v*,g*) and
C,, =(w',e")as in the perfect information contract. Recall that the optimal contract C,

requires U, (C,, |0,) =U,(C,, [0,)=0.

(2)Pooling: 1f both growers types pool in the first period and choose A, (8) , the
processor adopts the same distribution of grower types as the prior distribution,
i.e,r, =r. Asaresult, the optimal contract for the second period is same as the full-
commitment contract. Thatis, Cs ={C.,,Cr,}, where C;, =(w",e" )and

Cl, =(w",e"). The superscript P stands for a pooling continuation equilibrium when

the first-period contract is fully concealing.

(3) Semi-separating: If the high-quality type randomizes over F,(€)and P, (@) in the first
period, then the processor updates its belief using Bayes’ rule and solves the second-

period problem given r, specified by (3.25).

Given any value of r,, the optimal contract can be solved using the similar
procedure described in the full-commitment contract. More precisely, the optimal

contract  must satisfy the following four conditions:

(3.29) e, eargid u'(w,;) =V'(ey;)}.
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(3.30) e, € arg{(l—l’z)g[l— V‘(ezL) 2]+ r,

M'(WZL)Q vi(ezH)[Q v'(eZLQ/e)_H V(eZL)]:O}_

(3.31) u(w,,)—v(e,, )/ 8=0.

(3.32)

u(WZH)_V(eZH)/g = u(WZL)_v(eZLQ/g)/g :u(WzL)_V(eu)/Q"‘V(eu)/g_v(eug/g)/g
=v(e,,)/0—v(e,, 0/6)/60 >0.

Hence, if the grower type 6 deviates in the first period and pools with the grower type &

or randomizes, he obtains positive information rents in the second period:

(3.33) L, () =v(ey, )/ 0—W(e,,0/6)/0 >0

Note that the low-quality type always obtains his reservation utility in the second
period independent of the processor’s belief of grower types. Therefore, there is no
incentive for the low-quality type to deviate in the first period. In other words, the low-
quality type always chooses his own contract in the first period. On the other hand, the
high-quality grower obtains a greater payoff in the second period by mimicking a low-
quality type in the first period. In addition, the more likely the processor believes that the

grower is of low-quality type (smaller value of r,), the greater payoff the high-quality

grower could obtain in the second period. This result confirms the assumption that only
the high-quality type has incentives to pool with the low-quality type or to randomize.

This finding leads to the following lemma.

Lemma 1: U,(C,, (r,)|0) = 1,,(r,) decreases in 7, .

Proof: Taking the derivative of (3.33) with respect to 7,, we have
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i]w(rz) Ziv(eu)/ﬁ—iv(eug/g)/g _V'(ey) Oy, _V'(e,,0/0) Oey, O
or, or, or, g or 0 or, 0
_aVi(ey) V'(e,,0/8). ey,
_Q[ 2 N2 ]

[ 0 or,

vi(ey) V'(eZLQ/g)
5 L

02

> 0. Thus, the sign

Since 8 <0 and v''(e) > 0, it must be true that

Oe .
of —2L becomes the main issue.
2
2

From (3.30), since sz'(ezLQ/g) -0 (e,;) <0, the greater r,is, the greater the

V(e ) ) V'(e
ACT must be. That is, the expression V&) must be smaller.

expression 1—
u'(wy, )QZ u'(w,, )QZ

Oe —
Hence, e,, decrease in r,, or 5 2L < 0. Inaddition, U,(C,, (r)]0)=1,,(r,)is
"

maximized at , = 0. This lemma can be better understood in Figure 3.2.
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Figure 3.2 Illustration of Effects of 7, on high-quality type’s information rents

Since condition (3.28) is binding, that is, U,(C,,, (r,)|0) =U,(C,, (r,)| ), for
any given r, , the optimal contract for the high-quality type must be on the indifference
curve that intersects with the indifference curve U, (C,, | @) =u(w)—v(e)/ 8 =0 through
point (w,, (r,),e,, (,)). Since v(0) =0, the information rent 7, (r,)1is exactly the
distance from the origin to the point C on the vertical axis. Hence, if 7, decreases, the
contract for the low-quality type (w,, (,),e,, (r,)) moves along the indifference curve
U,(C,, |8)=u(w)—v(e)/8 =0 toward point (w',e), which represents the optimal
contract for the low-quality type under perfect information. That is, in the limit, when

r, =0, the contract C,, converges to the perfect information contract C, = (v_v*,g*) at
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which the information rent for the high-quality type is maximized. Therefore,
U,(C,, (r,)|0)=1,,(r,) decreases in r,. Intuitively, this lemma states that the
information rent for the high-quality grower type increases as the processor believes that
the grower is more likely to be a low-quality type.
Since the processor’s second-period net profit depends on its belief about growers’

types in the second period, denote Z, @)= gez a (1) =w,, (1)

and Z, (0) = Ge,, (r,) —w,, (r,). Then W;(rz)z max Wz(rz)=r222(§)+(1—r2)Z2(Q)

e (0),(0)
1s the maximum second-period net profit contingent on 7,. It can be shown that the
processor’s second period net profit increases in 7,. This result is demonstrated in the

following Lemma.

Lemma 2: ¥, (r,) increases in 7, and is convex inr, .

Proof: Using the Envelope theorem, a’iW; (r,) =2, @)- Z,(0). Thus,itis
r

2
sufficient to show Z, ©@)>7 ,(0) for any 7, . This can be illustrated in Figure 3.2. As
indicated above, the distance OA is the net profit the processor can obtain from the low-

quality grower under perfect information. As 7, decreases, the contract for the low-
quality type (w,, (r,),e,, (r,)) moves along the indifference curve U, (C,, | 8) =0 toward
the point(w ,e ). Thus, for any r, (0<r, <I), the maximum profit the processor can
obtain from the low-quality grower is Z" () at the point (w', g*) . In other words,

Z°(0) > Z,(0) for any r, (equality for 7, =0). On the other hand, since (3.28) is binding

and (3.27) is not binding, the indifference curve of the high-quality type must intersect
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with the indifference curve U, (C,, | @) =0 through point(w,, (7,),e,, (,)). As r,
decreases, in the limit, the indifference curve for the high-quality type must cut the curve
U,(C,, | 6) =0 through the point (w",e"), where the high-quality type obtains
maximum informational rents and the processor acquires the minimum net profit from the

high-quality grower type. Since the optimal contract C, = {C,,,C,,, } requires that the
high-quality type be indifferent between C,,, and C,, and the low-quality type strictly
prefer C,, toC,, (condition (3.27) and (3.28)), the optimal contractC,,, must be located
in the region below the curve u(w)—v(e)/ @ = 0 and above the curve (actually on the
curve at the equilibrium)u(w) —v(e)/ @ = I,,,(0). Since the slope of the processor’s iso-
profit line is greater for type & than for type @, thus, it must be true

thatmin Z, (8) > Z"(0) = max Z, (). Thus, Z,(0) > Z,(0) for any r, and W, (r,)
increases inv, .

To show that W, (r,) is convex in r,, it is sufficient to prove

asz*(rz) _ 522(5) _ oZ,(0) _ (5 Oeyy _ W,y )= (8 ey, _ Wy, )>0
ory or, or, or, or, ~or, Or .

From condition (3.32) and Lemma 1, we know that

ol,, (r,) ow, e =2 oW, el
—= 2 =y"(w —V'(e O-u'(w —v'(e,, )0
arz ( ZH) 6}”2 ( ZH) 87‘2 0 2 [ ( 2H) 81/‘2 ( ZH) 8r2

Since, from condition (3.29), 8 u'(w,,, ) =V'(e,, ), it must be true that

] Oeyy _ W,y
or, or,

>0.

Further, from condition (3.31),
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ow,,

u'(w,,) _V'(ezL)aaei/Q:O,

&) r

Oe,, 0

or, Qzu'(wu )% —Vv'(e,, )0
or, 7,

From condition (3.30), we know that

ow,, Qaeu _ ;"(ezL) <1
or, or,  Qu'(w,)

.. ) Oe ow
In addition, we have shown in Lemma 1 that —2& < 0 and hence, —2= < 0, therefore,
r )

Combining these conditions yields the result that ¥, (r,) is convex in 7.

Now, let us turn to the first-period incentive schemes.
First-period incentive schemes

In the first period, the processor maximizes its expected payoff subject to the
grower’s participation constraints and incentive compatibility constraints. Since the
processor cannot commit not to use the first-period information revealed by the growers
to revise the second-period contract, the incentive compatibility constraints must take into

account the effect of first-period decisions on the second-period payoft.

For any first-period contract, C, = {C,,,C,,}, let ¥,,(C,,, | @) denote the two-

period payoff to the grower type @ if P.(8)is observed, i.e., if the high-quality grower
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chooses his own contract C,,, in the first period. Recall that if P, (&) is observed, the
processor updates its belief such that 7, (w, @), P, (0))=1. Thus,

(334) V4 (C,y 10) =U,(C,yy | 8)+ U, (Cy |8)=U,(C,, 18).
Note that if the first-period contract is fully revealing, the second-period contract is same
as the perfect information contract under which the high-quality grower obtains his
reservation utility zero (i.e., U,(C}, |0)=0).

Similarly, denote V,, (C,,, 7 | @) as the two-period payoff to the grower type & if
P, (8)is observed and the high-quality grower type chooses the contract designed for the
low-quality grower type with probability 7. Thus,
(3.35) ¥,y (C,p.m | 0) =U,(C,, |0) + 3L, (),

where, from (3.25), 7, (P, (8),7) = S L—
nr+l-r

Now the grower’s equilibrium strategy 7 must be optimal for him given the
processor’s belief. In other words, the grower must be indifferent between revealing his
true type and mimicking the other type at the equilibrium given the optimal 7.

Therefore, the equilibrium strategy must satisfy the following condition:
(3.36) V4 (Cyy 10) =V, (C,,, 71 0).

Recall that in the full-commitment contract (also the static contract), the incentive
constraint for the high-quality type must be binding, i.e., U,(C}, |8) =U,(C} | 9).
However, in the dynamic setting, the contract C* = {C, ,C},} can only result in
V,(Cy |0)<V,(C,,7|0) becausel,, (#,) >0 for 0<r, <1. That is, the high-quality

type always gains from mimicking the low-quality type if the optimal static contract is
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offered in the dynamic setting. Therefore, the static contract C* cannot be an optimal
separating equilibrium in a dynamic context.

Given continuity of ¥,,(C,,,7| @) inz and condition (3.36), three types of
equilibrium could be sustained:

(3.37) Separating equilibrium if: V,, (C,,, | 0)> V,(C,,,0] 0),
(3.38) Pooling equilibrium if: ¥, (C,, |0) <V, (C,,,1|0), and
(3.39) Semi-separating equilibrium if V,,(C,, | @) =V,,(C,,,7 | ) for some 7.

From (3.35), V,,(C,,,0|8)=U,(C,, | 8)+61,,,(0). From Lemma 1 and Figure 3.2,
we know that the information rent for the high-quality grower type /,,, (7,) is maximized
at r, =0. Thus,

(3.40)1,,(0)=v(e')/0—-v(e' 0/6)/6 .

Condition (3.37) then requires that
(3.41) U,(C,; |10)2U,(C,; |0)+,,(0).

Similarly, from (3.33) we can get
(342 L,y (r) =we")/0-v(e"810)/6 .

Thus, condition (3.38) is equivalent to
(3.43) U,(C; |0)<U,(C,, |0)+ 6L, ().
Note that, from Lemma 1, 1,,,(r,) < 1,,,(7,) < 1,,,(0), therefore, conditions (3.37),

(3.38), and (3.39) are mutually exclusive.
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For each type of equilibrium, the processor maximizes its discounted expected two-
period payoff subject to the participation constraints and incentive compatibility
constraints for both grower types.

Lety denote the probability of a grower choosing contract C,, given the contract
C, ={C,,,C,,}. Since only the high-quality type has incentive to deviate, then for any
7,y =n7(C)+1—-r. Thus, the processor’s two-period net profit is

(3.44) W, (r,,C,,,C ) = (1_‘//)[5911{ — Wy + W, (D] +w[Oe,, —w,, +W,(7,)].

First-period separating equilibrium
First, let us focus on the separating equilibrium. In a separating equilibrium, the
high-quality grower chooses his own contract with probability 1, or 7 =0. Thus, to

induce a separating equilibrium, the processor solves the following problem:

max W, (n,C,,C)= rl[gelH —wyy +W,(D]+A—-n)[0e, —w, +W,(0)]

subject to

B45) U, =u(w,)—v(e,)/0, 20, Vie{l,H}

BA4HU(Cy, | 5) >U,(C, | §)+672H (0), and

(3.46) U\(C,, [9)2U,(C; | 9).

Conditions (3.41) and (3.46) state that each grower type prefers his own contract to the

contract designed for the other type. Note that from (3.46) the low-quality quality type

always chooses the contracts that he most prefers in the short run because if he mimics
the high-quality type in the first period, the processor will only offer the contract C},

under which the low-quality type makes loss.
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Following the same procedure described in the previous sections, the optimal
contract must satisfy the following conditions:
(1) The participation constraint for the low-quality grower type must be binding,
ie,u(w,)—v(e,)/8=0,
(i1) The incentive compatibility constraint for the high-quality type is binding, i.e.,
U, (Cy, 10)=U,(C,; |0)+d,,(0), and
(ii1) The low-quality type strictly prefers his own contract to the contract designed for the
high-quality type, i.e., U, (C,, |8)>U,(C,, | 0).

The feasible set of contracts can be demonstrated in Figure 3.3. First, since the

low-quality type always chooses his own contract and obtains the reservation utility, the

feasible set of contracts for the low-quality type must be the segment from the origin to
the point (w ,e ) on his indifference curve u(w)—v(e)/6 =0. Denote S, as this set.
Given any contract for the low-quality type C,, = (w,,,e,, ) in the set §,,, properties of the
optimal contract (i)-(iii) require that the feasible contract for the high-quality type must
be in the region below the low-quality indifference curve u(w)—w(e)/8 =0 and above the

high-quality indifference curve H2 in Figure 3.3. More specifically, from condition (ii),
the optimal contract for the high-quality type must be located on the indifference curve

H2. Note that the indifference curve H1 intersects with the low-quality indifference
curve u(w)—v(e)/ @ =0 through the point (w,, ,e,, ) and the distance between H1 and H2
is exactly d1,,,(0). Hence, for any given contract C,, =(w,;,e,, ), the contract for the
high-quality type C,,, = (w,,,e,, ) always satisfies conditions (3.41), (3.45), (3.46) and

properties (1)-(ii1) at the equilibrium. Thus, the problem boils down to solving the
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optimal contract for the low-quality type. Once the optimal contract for the low-quality

type is determined, it is straightforward to find the optimal contract for the high-quality

type.
wa  u(w)—v(e)/8=0 H2
N\
Y Y !
E KHI

e |
ol (0>{W1L _______ |
B Z i

0 - 1 - 1 :

€ €y €

Figure 3.3 A first-period separating equilibrium

The optimal first-period contract can be solved in the similar manner as in the

previous sections. Ignoring the participation constraint for the high-quality type and the
incentive compatibility constraint (3.46), let Aand £, denote the Lagrangian multipliers
for conditions (3.45) and (3.41) respectively, thus, the Lagrangian for the problem is:

L= ’”1[58111 —w,; +W,(D]+ (1 —r)[le,, —w,, +W,(0)]+ Alu(w,,)—Vv(e,;)/b]
+/uH[u(WlH)_V(elH)/g_u(WlL)+V(eILQ/§)/§_512H (0)]

The first order conditions are:

oL

(3.47) =10 —u,V'(e,) 60 =0,

€in
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oL
(3.48) =—1+uyu'(w,)=0,
Wig
oL — — =
(3.49) =(1-rn)f-W'(e, )/ 0+ u, (8/0)W e, 0/0) 0 =0,and
€L
oL . .
(3.50) =—(1-r)+Au'(w,)—puyu'(w,)=0.
ow,,

Thus, the optimal contract él = {él s él 4 + 18 given by the following conditions:
(3.51) ey € arg{§2u'(wm) =V'(ey)},

"

v'(e,) 1+

(92 ew ol = o oten)

[0°V'(e,,0/0)—07V'(e,,)] =0},

(3.53) u(w,;)—v(e;;)/0=0,and

(3.54)

u(le)_v(elH)/g = u(WlL)_V(elLQ/g)/g"'éYzH(O) =u(w,)—v(e,)/ 0
+v(elL)/Q_v(elLQ/g)/g+é]2H(O) :v(elL)/Q_v(elLQ/g)/g+672H(0) > 0.

The optimal contract is demonstrated in Figure 3.3. Denote this contract as

Iy

C, ={C,,C,, whereC,, =(W,,é,)and C,, =(W,,,é,,). Given the first order

conditions (3.51)-(3.54), the contractC,, = (W,,,é,,) and C,,, = (W,,,é,,, ) illustrated in

Figure 3.3 constitutes a separating equilibrium. In fact, assuming that both grower types

participate in the first period, the optimal separating equilibrium contract

Iy

C,, =0w,,e,)and C,, =(W,,é,)is unique for a given prior belief 7;. Given this

contract, the low-quality type strictly prefers the contract él , =W,,e,) to

A

C,,; = (W, ,€,,)both in a one-period static contract and in a two-period dynamic
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contract, while the high-quality type strictly prefers the contract é’l g =0Wy.€,) to

A

C,, =(W,;,e,;)in the short run ( i.e., in a one-period contract) and is indifferent in the
two-period dynamic context. Thus, at the separating equilibrium, the low-quality type

chooses his own contract é’l ; =(W,,,é,,)in the first period and will be offered

Iy

C, = (v_v* , g*) in the second period, and earns zero payoff in two periods. Similarly, the
high-quality type chooses él = (W ,é,,,)in the first period and obtains positive payoff

v(é,)/0-v(é,0/8)/8 +6l,,(0)>0, and will be offered C,,, =(w",&")in the second

A

period. If the high-quality type deviates and chooses C,, = (W, ,¢,;) in the first period,
he will earn v(é,,)/ @ —v(é,,8/0)/0 in the first period and earn information

rent /,,, (0) in the second period, which makes him indifferent between

A

C,, =(w,.e,)and é'lH = (W, ,€,,;). Note that the contract élH = (W, .6, )1s the
tangent point between the processor’s iso-profit line and the high-quality type’s
indifference curve H2 in Figure 3.3, therefore, the optimal contract for the high-quality
type is efficient. Additionally, as in the full-commitment contract with asymmetric
information, the processor offers the low-quality type a contract that is suboptimal in
order to reduce the information rent paid to the high-quality type.

However, besides this separating equilibrium, other separating equilibria might also
exist. In particular, define C° = (w,e) = (0,0) as the null contract ( i.e., a grower type
does not sign the contract at all if a null contract is offered). The contract

C, ={C,,C,,}=1{C",C,, } establishes another separating equilibrium, where

51 ;= (W€, )in Figure 3.4 is the tangent point between the high-quality type’s
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indifference curve H1 and the processor’s iso-profit line for the high-quality type. This

contract is actually the limit of the separating contract él = {é 11-C,y tas r; approaches 1.

Since the low-quality type will not participate in the first period given this contract, this

outcome is called “handicapped separating equilibrium”. More specifically, the contract

C,, = (W2, ) must satisfy the following conditions:
(3.55) € € arg{gzu'(ﬁim) =V'(€;)}, and

(3.56) u(W,;) — (@) 0 =l (0).

WA
u(w)—wve)/8=0 H
\1 HO

811 (0

v

en

Figure 3.4 A handicapped separating equilibrium

Under this contract, the low-quality type strictly prefers the null contract C° to the

contract C ,y because he could make losses in both periods if he chooses C \p 1n the first

period. Note that the low-quality type also strictly prefers C° to 51 , 1n a one-period static
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contract. Similarly, by choosing 51 ,, 1n the first period, the two-period payoff to the
high-quality type is U,(C,,, | 8)+8U,(C, |8)=U,(C,,, |0) = dl,,,(0), while by
choosing C°, he obtains U,(C" | 8)+ 6U,(C, | 8) = 6U,(C, | 8) = dl,,,(0) . Hence, the
high-quality type is indifferent between the contract 51 , and C". Therefore,

C = {5 Lo 51 Lr=1C°, 51 » + constitutes another separating equilibrium.

Given the two separating equilibria, the processor must offer the one that

maximizes her net profit. That is, the optimal contract maximizes the maximum of
W (r, C 1Ls C )and W, (r,,C°, C 1) - The results are summarized in the following
proposition.

Proposition 1: There exists two possible separating equilibria to the dynamic contract:
C, ={C",C,,} and C’l = {élL,élH} . In addition, there exists a #, such that for 7, <7, ,
the optimal separating equilibrium is C | = {C’l I C 4}, while for 7, > 7", the optimal
separating equilibrium is 51 ={C 0,51 -

Proof: If the contract C . =1{C"°, C i + 1s offered, the processor obtains net profit
(3.57) W, (1,C",Coy) = 108, =y + W, D]+ (1= 1)L, (O)].

On the other hand, if the contract él = {é 1L é’l , +1s offered, the processor earns
(3.58) W, (1.C,,.Copy) = 1[0y, =y, + W, (D]+ (1= 1,)[08,, — Wy, + W, (0)].

Note that as the contract(w,, ,é,, ) moves toward to (0, 0) along the indifference
curve u(w)—v(e)/ 8 =0, the high-quality type’s indifference curve shifts down

accordingly. Thus, the optimal condition (3.55) requires that the processor’s iso-profit

line for the high-quality type shifts towards southeast until it is tangent to the high-quality
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type’s indifference curve. Therefore, the processor obtains greater profit from the high-

quality type as (w,,,¢,, ) moves toward the origin (0, 0), precisely,

ge,, —w,, > 0é,, —Ww,, . Hence, there must exist a 7, such that

W (1, CpuCo) =W, (,C°,C,yy) . Thus, for r, <7y,

W@, élL , ém) >W. (1 ,C°, ém ), the processor will offer the optimal separating
equilibriurnCA'l = {élL9élH} , while for , > 1", W,'(r",C,,,C,,,) <W, (+,C°,C,,)and
the optimal separating equilibrium is 51 ={C"’, 51 nt-

Intuitively, Proposition 1 states that the separating contract 51 would dominate él
when the processor believes that a large proportion of the growers are of high-quality
type. Thus, it is less costly for the processor if it only offers a contract to the high-quality
type and handicaps the low-quality type. On the contrary, if the processor believes that
the proportion of high-quality type is sufficiently small, then it would be better off by
offering the separating contract é‘l . In addition, we could show that the processor’s two-
period profit increases with the proportion of the high-quality type. This result is
summarized in the following corollary.

Corollary 1.1: In a separating equilibrium, W, (7;,C,,,C,, ) increases with 7.
When r, <, the optimal separating equilibrium C | = {C’l s C i + dominates. As
increases, the optimal contract C’l ;, moves toward the origin (0,0) along the low-quality

indifference curve u(w)—v(e)/ @ =0, while the contract él ,; shifts down toward the

perfect information contract C,,. Thus, asr increases, the processor would acquire a

greater profit from the high-quality type by paying less information rents, and obtain a
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smaller profit from the low-quality type without changing the payoff to the low-quality
grower type. Since a change in(W,,,¢,, ) along the low-quality type’s indifference curve
would only incur a second-order effect on the processor’s profit, while a corresponding

change in(W,;,€,;, ) would have a first-order effect on the processor’s profit, the

processor’s net profit increases as 7 increases. That is, W, (r,, é’l s é’l ) increases with 7.
Up to now, we have assumed that for any contract (w, P)'®, it is always true that
P—w2>0,1i.e., on the right side of the 45 degree line in the (w, P)space. However,
restricting positive profit reduces the set of feasible contracts. Specifically, given the
optimal contract él , » the separating contract él ., = (W, P,,) in(w,P) space may
become infeasible for o sufficiently large because it would lie to the left side of the zero-
profit linew = P . A similar argument could be made for the handicapped separating
equilibrium {C°, 51 .+ - An example of an infeasible separating contract is illustrated in

Figure 3.5. These arguments are provided in the following corollary without further

proof.

Corollary 1.2: These exists a 0 such that for & > ", the separating equilibrium

Iy

C = {élH ,CIL}becomes infeasible.

Although the value of & cannot be precisely determined, the intuition behind this
corollary is that if growers are patient (i.e., o large), it becomes too costly for the
processor to induce a separating equilibrium in the first period. When growers are
patient, the processor is better off by providing a pooling contract or a semi-separating

contract instead of a fully separating contract.

' Here, we use the contract space (W, P) instead of (w,e) . Recall that P = ¢ = fe. From now on, we
may use these two alternative spaces interchangeably.
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Figure 3.5 Illustration of an infeasible separating equilibrium

For the separating equilibrium to be stable, we need to check if these contracts
would be dominated by other contracts.

First, we consider the contract 51 ={C 0,51 L), given 1, >

Since the low-quality type always chooses the contract that he most prefers in the

short run and earns exactly the reservation utility in each period, any pooling equilibrium

must be located on the low-quality type’s zero-utility indifference curve. Suppose there
exists a pooling equilibrium {C/,C/ } on the low-quality type’s indifference
curveu(w)—v(P/0)/6 =0, where C/ = (w”,P”). Here, we change the contract space
into (w, P) instead of using (w, e) to denote the pooling contract. For a pooling contract,

both growers produce at the same quality (equivalently, price) level, but each grower type
incurs a different level of effort and disutility. Under this contract, the processor obtains

net profit

(3.59) W, (1,,C},CP )= PP —w” + W, (1}) .
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From (3.57), W, (r,, CO,GIH) =r[B, — W, +W,()]+(1—r)[6W,(0)]. Since

C? =(w",P?)lies on the low-quality type’s indifference curve
u(w)—v(P/6)/6 =0and 51 ., 1s located to the right side of that curve, it must be true that
B, — W, >P”—w”. Inaddition, we know from Lemma 2 that, for any 7, 0 <r, <1,
W,(r,) <rW,1)+1-r)W,(0)due to convexity of W, (). Thus, for 7 sufficiently large,
W (r,C",C,,)>W, (r,,CI,CP). Alternatively, for any givenr,, the difference
Z,-2"=(P, —#,)—(P” —w")must be sufficiently large for the handicapped
separating equilibrium to be dominant. In general, this requires that the difference

between 6 and @ is sufficiently large. For a given@, a larger value of @ would make the

high-quality type’s indifference curves less steep everywhere. Since the optimal contract
for the high-quality type is the point where the processor’s iso-profit line is tangent to the
high-quality type’s indifference curve, a flatter indifference curve of the high-quality type
would make the processor’s iso-profit line cut the vertical axis at a point even farther
away from the origin. Recall that the distance from the origin to the intersection point is

exactly the processor’s net profit. Thus, the difference

Z, 7" =(B, —#,)— (P’ —w") increases with the difference between @ and 6.
Note that increases in the difference between 6 and @ would raise the high-quality type’s
information rentdl,,, (0) as well. However, it is straightforward to show that the net
increase in the processor’s profit is always positive as the difference between 6 and @

increases. Briefly, fix a@, as @ increases, Z,, —Z” monotonically increases while the

1 The exact relationship between Z, =27 =(B, —,)— (P’ —w") and difference between 5 and Q would
depend on the functional forms of the grower’s utility function u( ) and the disutility function v( ).
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information rent 7, (0) approaches a constant v(e )/ . Therefore, for a sufficiently
large @ , increases in Z,, — Z” exceed those in 1, (0).

A similar argument could be made for the separating contract é’l ={C 1L é‘l 4+ forr,
small. From (3.58),
W, (r,,C,,,Cry) = 1[08,, — Wiy +W,(D)]+(1—1,)[6é,, — W, +W,(0)]. Fora pooling
contract located on the low-quality type’s zero-utility indifference curve between the
origin and the point C,, = (W,,,¢,, ), it is straightforward to show that
P? —w’ < 6é, —W,, <6é,, —W,, . Inaddition, from convexity of W, (), for any 7,
0<rn <1, W,(r,)<rW,()+(1—-r)W,(0). Therefore,
W) (r, él s él u) > W (r,,CF,C?P). Similarly, for a pooling contract located on the low-
quality type’s zero-utility indifference curve between the point él , =0, ,é,)and

* * A A A ~ . .
C,=(w,e), 8, —w, <P’"—w" <8¢, —W, . Since the separating contract

Iy Iy

C = {él ,»C,, } dominates the handicapped separating equilibrium only if7 is sufficiently
small, then, for the contract él = {él s él & + to be optimal, it must be true that the
difference Z,, — Z” = (6é,,, —W,,;) — (P? —w”)is sufficiently large. Following a similar
argument used for the handicapped separating contract, the difference between 6 and @

must be sufficiently large. Combining these arguments and Corollary 1.2 yields the

following corollary.
Corollary 1.3: When the difference between @ and @ is sufficiently large and ¢ is

sufficiently small, there exists a fully separating equilibrium.
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The intuition behind this corollary is similar to that of corollary 1.2. For large
values of 6 (close to 1), the high-quality grower type is very patient and it is prohibitively

costly for the processor to distinguish the grower types. For o sufficiently small and the
difference between 6 and @ sufficiently large, not only is it less costly for the processor

to distinguish the grower type, but also the high-quality grower type would intend to

distinguish himself from the low-quality type under the optimal contract.

First-period semi-separating equilibrium
Using similar procedures as described in the previous section, a semi-separating

equilibrium could be established.

Let C; ={C,,,C,,} be the semi-separating contract, where C,, = (w;,,e,,) for
ie{L,H}. Recall that for the contract to be semi-separating, the condition (3.39) must
be satisfied. Specifically, the condition (3.39) is equivalent to

(3.60) U,(Cyyy 10) =U,(C}, | 0)+8U,(C3 (7,)10)) =U,(Cryy | )+, (),

where 7, (P, (0),7) = %, and 7 is the probability that the grower type @ chooses
nr+l-rn

the contract designed for the grower type € in the first period. In addition, the semi-
separating contract for the low-quality type must lie on his zero-utility indifference curve,

u(w)—v(e)/8 =0. Thus, the processor solves the following problem:

max W, (r,,7,C;,,Cry ) = (1- l//)[gelsH —wiy + oW, (D] +wlble, —w;, +W,(7,)]

Wi e
subject to

(3.60) U1 (CISH | 5) = U1 (CISL | 5) +éY2H (fz), and



(3.61) u(w,)~v(e;,)/ =0,
where y =rnz+1-r,.
Let Aand u,, denote the Lagrangian multipliers for (3.61) and (3.60). Then the

Lagrangian for the problem above is

L=(1- l//)[gelsH - WiYH + 5W2 D]+ ‘//[QelsL - WiYL + 5W2 (fz )]
+ Au(w,) =v(€),)] 0) + p, [u(w, ) —v(el, ) 0 —u(w!, )+ V(P 10)/8 =L, (7)].

The first order conditions are:

oL — s A
(3.62) ——=(1-yw)0 —u,v'(e,;)/ 0 =0.
a 1H
oL s
(3.63) —— = —(1=y) + ' (wiy ) = 0.
oW,y

(:64) =y 0= 2v(eiy) 0+ 1, 01O (B 1918 =0.

1L

6L S [ N
(3.65) P =-y+Au'(wy,)— puu'(w,)=0.

s
1L

(3.66)

oL
or
— 1,61, (7)) =0,

= _’ﬁ[geiYH —wiy + W, ()] +1[Oe, _WiYL]+’"15W2(’a2)+‘//&;2’[ZzH ()= 2Z,,(7,)]

where in the condition (3.66),

oo r(l-n)
oo (nm+l-r)?’

Zyy (7)) :geZH(”;Z)_WZH(PZ)a and

221
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Z,, (7)) =0e, (7)) —w,, (7).

From (3.62) and (3.63), we can derive the optimal level of effort for the high-quality

type:
(3.67) e, €arg {gzu'(wa) =v'(e/y)}-

From (3.65), we can get

(3.68) 1=—7 s and

' N
1L

from (3.62), we can get

(3.69) u,, _(1-p)o*

v'(ery)

Substituting (3.68) and (3.69) into (3.64) yields:

Yew) 3o LV 1poer, 18) -7 (e )= 0}

(3.70) e, € arg{w [l - ——[0
" u' (w8’ Ov'(ely)

Further, since the conditions (3.60) and (3.61) are always equalities, we have
(3.71) U (Cy | 0)= u(wlsH)_v(elSH)/g =v(e), )/ 0—-v(h; 16)/6 + dl,, (), and
(3.72) U,(Cy, | 9) = u(wy,) —v(e,)/€=0.

Finally, substituting conditions (3.67), (3.70)-(3.72) into the condition (3.66) solves the

optimal strategy 7 for the high-quality grower type.

N

This optimal semi-separating contract C, ={C},,C,}, } is illustrated in Figure 3.6.
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Figure 3.6 A first-period semi-separating equilibrium
In Figure 3.6, H1-H4 are the high-quality type’s indifference curves, where the distances
between the curve H1 and the curves H2, H3, and H4 are dl,, (1,) , 0l ,, (7,) ,
and ol ,,, (0), respectively and oI, (1) < 9l ,, (,) < I, (0). From conditions (3.37)-

N

(3.39), a semi-separating contract C; = {C},,C,, } must satisfy
B.73)U(C, | 0)+ A, (n) <UC), | 0) < uc, | 0)+ o1, (0).

Thus, given that the optimal contract C, is located on the low-quality type’s indifference
curve u(w;,; )—v(e;; )/ @ =0, the optimal contract C;,, must lie on a indifference curve,
with the curve H3 as an illustration, that is above the indifference curve H2 and below
H4. Therefore, there exists a 7 such that U(C, |0)=U(C:, |0)+dl,, (%), ie., a
semi-separating equilibrium.

In addition, the following remark establishes the relationship between 7, and 7.

Remark 1: The optimal strategy 7 in a semi-separating equilibrium increases with 7.
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Recall that the exact relationship betweenr, and 7 is governed by the conditions
(3.66), (3.67), (3.70)-(3.72), especially the condition (3.66). However, to determine their
exact relationship is not a trivial task analytically. The intuition behind this remark is as
follows: As 7, increases, i.e., the processor believes that a larger proportion of growers is
of high-quality type, the optimal contract C,,, would extract more surplus from the high-
quality grower type by rewarding less information rent. In the limit, when 7, is one, the
processor would only offer the optimal contract (w™,e" )under which the high-quality
grower type earns exactly his reservation utility zero. Thus, as#, increases, the high-

quality type is better off mimicking the low-quality type in the first period and earns
more information rent. Therefore, in a semi-separating equilibrium, the high-quality
grower type is more likely to choose the contract that is designed for the low-quality type,

that is, 77 increases as 7, increases. Similarly, in the other direction, as 7, decreases, the
optimal contract the processor would offer becomes closer to the contract (v_v* , g*) . In

the limit, when 7, approaches zero, the processor would offer the contract (v_v* , g*) under
which the high-quality grower type obtains the maximum information rent. Thus, the
high-quality type is less likely to mimic a low-quality type as r, decreases, i.e.,
7 decreases as r, decreases.

To guarantee that the semi-separating equilibrium could be sustained, we also need
to compare the semi-separating equilibrium with other potential equilibria. However, it is

not trivial to determine the relationship between the semi-separating equilibrium with

other potential equilibria analytically without specifying the functional forms of u( ) and

v().
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Remark 2: Forr, sufficiently small, a semi-separating contract C; might dominate the

fully separating contract él .
Recall conditions (3.52) and (3.70),

h

(3.52) &, carg{(1— ol -— ) 1,

0 v'(e 0/0)-82v'(6 )] =0,
i g e L Y ! =0 @ ]=0

s V'(es ) l_l// 2 s n n2 s
(3.70) e, carg{yO[l - L2+ [0V (e, /10)—07V' (e, )]=0}.
1L g ' (w, )QZ o' (el) (e, /0) (e,) }

Since 1 -y =r,(1-7x) <, the change from 7 in the separating equilibrium él to 1-w
in the semi-separating contract C; results in the similar consequences to that from 7

tol —y in the separating equilibrium C ,. Thus, given the contract C ., as the reference
point, the contract C;, is located closer to the perfect information contract (w',e ) on the
low-quality type’s indifference curve u(w)—v(e)/8 =0. Since C; = (v_v* , g*) maximizes
the processor’s profit acquired from the low-quality grower type, the processor always

obtains less profit from the low-quality type under C ., than that under C;, , or precisely,
Ge,, —w,, <8e;, —wy,. On the other hand, using Figure 3.7, since the optimal semi-
separating contract C,,, lies between the high-quality type’s indifference curves H2 and
H4, the high-quality type obtains less information rent under C,,, than that under the
contract C . - Thus, the processor earns less profit under the separating contract C .y than

s A « s s
that underC,;,, , i.e., @e,,, —w,, <Be/, —w/, .



226

wa u(w)—v(e)/0=0 H4
A H3
Wl =] &

P b
Wik 4 H2

(i H1

Wil : E
Wi poes iR E

() - 1 | - | 1 :

e, e, ey ey e

Figure 3.7 A semi-separating equilibrium dominates a separating equilibrium

From the first-period separating contract, the maximum profit the processor obtains from
the contract é‘l is
W,(,C11. Coy) = 1110eyy, — Wiy + W, (D] + (1= 1,)[Be,, —wy, + W, (0)].

From the first-period semi-separating contract, the maximum profit the processor
obtains is
W, (1, 7,C, Cly) = (L= D)[ery = wiy + W, (D]+ (=1, + 1) Geiy —wy, + W, (7,)]
As r, decreases, the high-quality grower type is less likely to deviate, thus, the term 7,7
in W,(n,7,C;,,C,,, ) becomes negligible as r, becomes sufficiently small. Therefore,
forr, sufficiently small, it is possible that W, (r,, #,C?,,C2) > W, (r,C,,,C,py) , i.e., the
semi-separating contract C; dominates the fully separating contract él .

Further, similar arguments used for the separating equilibrium could also be applied

to the semi-separating equilibrium. Specifically,
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Remark 3: For ¢ sufficiently large and the difference between 6 and @ sufficiently

small, the fully separating equilibrium é‘l and the semi-separating equilibrium C; are
dominated by a pooling equilibrium.

Unfortunately, without making more assumptions, the exact nature of the
relationship among these potential equilibria could not be explicitly determined. The

intuition behind this remark is that when ¢ is sufficiently large and the difference between
0 and @ is sufficiently small, both the semi-separating contract and the fully separating

contract would become infeasible and it would become too costly for the processor to
distinguish the grower types by offering such contracts. Under these conditions, the only

possible equilibrium would be a pooling equilibrium.

3.4.3 Reputation Rewards

In the previous section, reputation effects are embodied in the posterior probability
assessment (using Bayes’ rule) of the grower’s types by the processor at the end of the
first period. Anticipating the processor’s strategies, the high-quality grower type chooses
to build up his reputation by either imitating the low-quality type or revealing his true
type, whichever is favorable. Under this scheme, however, imitating the dominant
behavior of a low-quality type yields greater future information rents to the high-quality
type. Therefore, the reputation effect (updating beliefs about the grower type using
Bayes’ rule) encourages the high-quality grower to conceal his type, that is, reinforces the
potential ratchet effects.

In this section, we assume that at the beginning of each period, a reputation, R, , of

the grower is formed from his past observed performance. Thus, the processor will not
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only update its beliefs about the grower types by observing the grower’s past contract
choice, but also can offer a direct reward to the grower contingent on the observed

performance of the grower. Accumulation of the grower’s reputation is assumed to be

based on an exogenous rule R, = fg, , +(1- )R, with 0 < £ <1, and the grower’s
initial reputation is R,,. To simplify the analysis further, a special case of the example

R, =q, ,withR, =0 is used to demonstrate the effects of the reputation reward on the

dynamic contract.
Accumulation of reputation can be interpreted differently given different values of

f. When £ is small, i.e., very close to zero, the latest period quality does not provide

much contribution to the grower’s reputation. This situation could occur under some
circumstances such that the processor already has a long-term relationship before this
contract and the grower’s reputation has almost converged to a constant by the latest
period. In this case, including reputation effects in the contract would not improve much

on the optimal incentives. On the other hand, when £ is large, the latest period quality is

crucial for the grower’s reputation in the current period. Thus, stronger incentives can be

provided by the processor when reputation of growers is incorporated into the contract.

R, =g, is a special case of this example when setting S =1.
Specifically, the processor offers the grower some extra reputation rewards, s, (R, ),
when it observes R, from the previous periods. If the processor observes P(6) in the

first period, the reward in the second period will be s(P(0)), while if the processor

observes P(#) in the first period, the reward in the second period will be s(P(6)).
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Moreover, we assume that the reputational rewards take the form of lump-sum payments
or constants. In particular, the reward s(P(8)) is normalized to be zero.
Similar to the previous section, the processor maximizes its expected profit subject
to the participation constraints and incentive compatibility constraints for both grower
types in both periods. However, to simplify the analysis, only a separating equilibrium

will be discussed. First, let us investigate the second-period incentive scheme.

Second-period incentive schemes with reputation rewards

The second-period incentive scheme stays the same as that in the previous section
since the reputation rewards do not affect the grower’s participation constraints and
incentive compatibility constraints in the second period. In a separating equilibrium, the

private information concerning the grower’s types becomes perfect information in the

second period. Let s,, =s,(P(0)), then for each grower type, 8 € © = {6, 0}, the
processor offers the contract Cx = {Cy ,Cx.}, where Cs = (w',e )and
CX, =(W +s5,,,e,). Inaddition, the optimal contract C,, satisfies

e, €arg{'(e,,) = 0 u'(w" + S, )} - Note that the reputation reward changes the high-
quality type’s equilibrium behavior in the second period.

Recall that in a separating equilibrium, if the high-quality grower type deviates in
the first period, he obtains the information rent /,,, (0) = v(g*)/ 60— v(g* 6/6)/6 >0 in

the second period. Similarly, if the low-quality grower type deviates and chooses the
contract designed for the high-quality type in the first period, then he will make loss in

the second period,
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(3.74) I, ) =u(w’)-v(E'0/0)/6=vEe")/ 0 -vEe0/6)/0<0.

In addition, it can be shown that 7, (0) <—/,,(1).

First-period incentive schemes with reputation rewards
In the first period, the processor must maximize the two-period expected profit to

find a separating equilibrium. Then the processor maximizes the following:

max W, (r,C,,,C,)= ’ﬁ[gem —wyy + W, (1) =65, 1+ (1 —r)[0e, —w,, +W,(0)]

CH sWiH LWL

The participation constraints take the following form:

B.75) U, =u(w,)—v(e,)/0. 20, Vie{l,H}.

However, risk aversion brings about some complications in the formulation of incentive
compatibility constraints. To induce a separating equilibrium in the first period, the

incentive compatibility constraints for the high-quality grower type must satisfy
(3.76) Uy(Gyy | 0)+ 8y, (0)2U, (G, |0)+,(0).

This constraint states that at the equilibrium, the high-quality grower type must
prefer revealing his true type to mimicking the low-quality grower type. Note that the

extra reward s,, in the processor’s profit W,(7,,C,,,C,, ) 1s given in monetary units,
while §,,, (@) is the equivalent amount in the units of the high-quality type’s utility. More
specifically, §,,,(0) = u(w,,, +s,,)—u(w,,). If, instead, the growers are risk neutral,

then §,,,(0)=s,,, .

20 In the previous section in the absence of reputation rewards, the possibility that the low-quality type
mimics the high-quality type is excluded because the low-quality type would make loss if he does so.
However, in the presence of reputation rewards, certain conditions, which will be elaborated later in the
text, would be required to exclude this possibility.
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Due to risk aversion, the same amount of monetary reward results in different utility
measures for different grower type. Thus, for the low-quality type, the incentive

compatibility constraint must satisfy

(B.77) U(C |9 2U,(Cy | )+, (O)+d,, ().

This constraint states that the low-quality type prefers revealing his true type than
mimicking the high-quality type. The term s,,, (@) represents the equivalent measure of
the monetary reward in the units of the low-quality type’s utility, and /,, (1) denotes the

loss the low-quality type would make if he mimics the high-quality type in the first
period. However, there is a little relaxation of the notations here because the two terms

on the right hand side, o5,, (€)and oI,, (1) cannot add together directly due to risk

aversion. For the moment, we use the current formulation because the condition (3.77)

will be modified later.

Recall that in the previous section the low-quality type always chooses the contract

that he prefers in the short run because he always makes loss if he deviates. From the
condition (3.77), if &,,, <—d,, (1), or §,,, is sufficiently small, then the low-quality type

has no incentive to deviate in the first period. In other words, only when the extra reward

is sufficient large would the low-quality type deviate. Therefore, for the moment, we
assume &,,, <—d,, (1). Thus, the incentive compatibility constraints (3.77) is equivalent
to

(3.78) U\(C, 192U, (Cy | O).

Hence, similarly to the previous section, ignoring the participation constraint for the

high-quality type and the incentive condition (3.78), the Lagrangian for this problem is
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(3.79)

L= ”1[58111 — Wiy +W,(1) =8, 1+ (1 —n)[@e, —w,, +W,(0)]
+ﬂ“[u(W1L)_V(elL)/Q]"'ﬂH[u(WlH)_V(elH)/§+§§2H (5)_’/‘(W1L)+V(31LQ/§)/§_572H 0)].

Denote the optimal contract asC; = {C\ ,C[,}, where C} = (w] ,e') and

CE =, ,el)). Thus, the first order conditions are:

(3.80) 22 = 10 - 1,V (e,)/ @ =0,
Cn
oL
(3.81) =—1+pyu'(wy,)=0,
Win
oL — —
(3.82) =(1=n)8-'(e,,)/ 0+ p, (0/0°)'(e,0/0)=0,and
L
oL , .
(3.83) " =—(1=r)+Au'(w) = pyu'(w,;,)=0.
1L

Following the similar procedures in the previous section, the optimal contract can

be solved as the following:

(3.84) ¢, eargd'(e,) = gzu'(wm)},

(3.85) e, cargi(l—r)dl - Qf:,?;i)]+ GOV @,010) -0 (e, )1=0)

(3.86) u(w;;)—v(e,;)/0=0,and
(3.87) u(M}lH)_V(elH)/é:V(elL)/Q_V(elLQ/é)/é+&2H(0)_£2H(§)'

V'(e
Note that the condition (3.85) implies that %”)) <lIfor r, > 0. In words, the optimal
g uw,

effort choice of the grower type @ is less than that under perfect information.
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Comparing the optimal contract C,® and the optimal contract él in the previous

section, the optimal contract C;" simply requires that the processor takes a portion of the

high-quality grower type’s wage from the first period and promises to pay the grower in
the second period if high quality is actually observed. However, due to risk aversion, the
reputation reward also affects the optimal choices of efforts in the first period and hence
the optimal contract.

(1) Growers are risk neutral

If the growers are risk neutral, i.e., u(w) = w, then §,, () = s,,,. Thus, from

condition (3.84), the change in w,,, does not affect the optimal choice of effort for the

high-quality grower type. Hence, from condition (3.85), the optimal choice of effort for
the low-quality grower type stays constant. In summary, under the assumption of risk
neutrality, the optimal contract C* only changes the high-quality type’s payoff given the
reputation reward without affecting the optimal contract for low-quality grower type and
the processor’s two-period expected profit. Note that to guarantee that this contract is
indeed fully revealing, the reputation rewards must satisfy (3.75) and (3.77), or in words,
the reputation rewards must be sufficiently small such that the high-quality type
participates in the first period and the low-quality type has no incentive to deviate given
the reputation reward.

(11) Growers are risk averse

If growers are risk averse, given any positive reputation reward s,,, for observed
high quality, decreases in the optimal wage w,,, requires that the optimal effort e,

increases from the condition (3.84). Hence, from the conditions (3.85) and (3.86), both
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the optimal effort e, and the optimal wage w,, for the low-quality type increase. This

effect is illustrated in Figure 3.8.

wa  u(w)-w(e)/60=0 H4

HI

AR
€y ey

v

Figure 3.8 Illustration of the effects of the reputation reward

Note that the effect of increases in e,,, on the optimal contract C/; is similar to that

of decreases in 7;. Since the positive reputation reward reduces the optimal w,,, and

raises the corresponding optimal effort e,,,, the optimal contract for the low-quality

type, C\ , must move upward along the low-quality type’s zero-utility indifference curve

as illustrated in Figure 3.8. The effects of the reputation rewards are summarized in the

following proposition.

Proposition 2: There exists some reputation reward, s,,, , such that the separating

equilibrium C* would dominate the contract él.

Proof: As discussed above, the introduction of the reputation reward for high quality

reduces the optimal wage w,,, and raises the optimal effort e,,, for the high-quality

grower type. Hence, the processor can obtain more profit from the high-quality grower
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type in the short run. Since the optimal contract C;: moves upward along the low-
quality indifference curve u(w,; ) —v(e,; )/ 6 =0 , the processor makes more profit from
the low-quality grower as well. In addition, using the Envelope theorem, a small change
in (w,,,e,; ) that keeps the low-quality type’s utility constant only has a second-order
effect on the processor’s profit, while a small change in (w,,,,e,,,) has a first-order effect
on the processor’s profit. In the second period, since the high-quality grower type adjusts
his efforts according to the optimal contract Cs,,, the processor obtains less profit in the
second period. In fact, the processor’s gain from the high-quality type in the first period
completely offsets its loss in the second period because the processor simply takes o, ,,

from the high-quality type and rewards hims,,, in the second period. Therefore, using

the optimal revealing contract é‘l ,; as areference point, the processor is better off or at

least as well off by offering the reputation reward in the two-period contract duration.

On the other hand, from the grower’s perspective, the high-quality grower type also
prefers the contract C}* to él for a sufficiently smalls,,, . Again, using él , asa

reference point, since W,,, >w_ ( recall that the second-period separating equilibrium

offers the high-quality grower type the perfect information contract C,), for a
sufficiently small reputation rewards, ,, , u(W,,, ) —u(W,, —,,) <u(w +5,,)—u(W").
In words, the high-quality grower type would value the reward more in the second period
than in the first period due to risk aversion. Thus, the high-quality grower type gains

from the reputation reward, while the low-quality grower type is indifferent between the

two contracts. Therefore, there exists some reputation rewards such that the separating
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equilibrium with direct reputation rewards contingent on observed performance, C,,
dominates the separating contract in the absence of the reputation rewards, C -
Note that Proposition 2 applies only when both the separating equilibrium él and
C /" are feasible, and these contracts are feasible only when ¢ is sufficiently small and the

difference between & and @ is sufficiently large. In addition, if 7 is large, a

“handicapped” separating equilibrium which only offers a contract to the high-quality
grower type may become dominant. While not included in this essay, a similar statement
to Proposition 2 could be made for the “handicapped” separating equilibrium.

Recall that the reputation reward must be sufficiently small such that the low-
quality grower type has no incentive to deviate. If the reputation reward is large, not only
would the high-quality grower type prefer to reveal his true type, but also the low-quality
type would prefer to mimic the high-quality type. Thus, large reputation rewards would
bring another set of equilibria. However, these potential cases are beyond the scope of
this essay.

Remark 4: Effects of the direct reputational rewards would be more significant if the
model is extended to a longer-term context. In addition, both the grower and the
processor would benefit more from the direct reputation rewards as the contract duration

increases.
Taking the fully separating equilibrium él as a reference point, recall that to induce

a separating equilibrium, the optimal payment to the high-quality type in the first period
must include the information rent he would obtain in the second period if he deviates in

the first period. As the contract duration increases, the optimal payment to the high-
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quality type in the first period would become prohibitively large and the processor would
be reluctant to pay the grower to have his true type revealed. In contrast, with the

reputation rewards contingent on the grower’s past performance, the potential large
information rents in the first period under the contract él could be broken down and be

distributed into the remaining contract periods. More precisely, as the number of contract

periods approaches infinity, there would exist some reputation reward to the high-quality

type such that the optimal first-period dynamic contract C;* would converge to the

optimal static contract C” if the processor promises to pay the reputation reward every
period in which good performance is observed. In other words, if the processor promises
to pay the reputation reward whenever good performance is observed and that promise is
credible, the optimal incentive scheme in the static contract could result in a fully
separating equilibrium in the dynamic context when the number of contract periods is
large. Following similar arguments used for the two-period case, for a sufficiently small
reputation reward to the high-quality type, both the processor and the grower would be

better off with the direct reputation reward in the long run.

3.5 Conclusion and Discussion

This essay investigates the implications of growers’ reputation when a processor
designs a two-period dynamic contract with asymmetric information. The optimal
strategies of the processor and the grower form a perfect Bayesian equilibrium. Under
full commitment by both parties, growers’ reputation has no effect on the optimal
incentives. Hence, the optimal two-period contract mimics a sequence of optimal static

contracts in the contract period. However, with no commitment by both parties, the
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optimal dynamic contract is rather complex. Since grower types are assumed
unobservable to the processor, a potential ratchet effect would occur in a dynamic context
that would prevent the grower from revealing his true type in the first period. In other
words, the grower would tend to conceal his true type in the first period due to concerns
that the processor would extract more of his surplus in the second period after his true
type were revealed in the first period. Thus, to induce the grower to reveal his true type,
the optimal contract must specify a payment for the first period such that it consists of
information rents the grower could obtain in both periods. Moreover, the reputation
effects embodied in the processor’s posterior probability assessment about grower types
reinforce the potential ratchet effect when the processor updates its beliefs of the
grower’s type based on the grower’s past performance using Bayes’ rule. More
precisely, if the high-quality grower type conceals his type or randomizes in the first
period, the processor would believe that it is less likely that the grower is a high-quality
type. Consequently, the high-quality type obtains a greater payoff in the second period
from deviating in the first period. In the limit, the processor believes the grower is a low-
quality type and only offers a contract to the low-quality type under which the high-
quality type realizes the maximum information rent.

Further, the optimal contract that could be sustained depends on growers’ time
preferences and differences between the two grower types. Proposition 1 establishes that
a separating equilibrium could be sustained only if the discount factor is sufficiently
small and the difference between the grower quality types is sufficiently large. In
addition, a “handicapped” separating equilibrium would dominate the fully separating

equilibrium when probability of high-quality growers is large. For a sufficiently large
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discount factor (the grower is patient) and sufficiently small difference between the
grower types, it would become too costly for the processor to have the growers’ private
information revealed. Hence, a pooling equilibrium would dominate the separating
equilibrium. Unfortunately, the exact nature of the relationship among the separating
equilibrium, the pooling equilibrium, and the semi-separating equilibrium could be not
explicitly determined without making further assumptions about functional forms of the
grower’s utility function and disutility function.

Based on the optimal dynamic contract with no commitment, the processor could
offer a direct reputation reward to the grower in the second period if good performance
(i.e., realized high quality) is observed at the end of the first period. Proposition 2
demonstrates that both the processor and the grower can gain from the direct reputation
reward. Thus, the optimal dynamic contract with the reputation reward would dominate
contracts without reputation rewards. Moreover, effects of the reputation reward would
become more significant in the longer-term dynamic contract.

The results presented in the essay are in general consistent with the existing
literature in dynamic contracts. However, several major differences exist: Firstly, past
studies have found mixed results about existence of a separating equilibrium under
different assumptions. For example, Hosios and Peters (1989) show that no fully
separating equilibrium exists in a dynamic insurance contract with two types. Laffont
and Tirole (1988) conclude similar results with continuous agent types. On the other
hand, Freixas, Guesnerie, and Tirole (1985) derive optimal conditions for a separating
equilibrium in a linear dynamic contract. In this essay, we not only derive optimal

conditions for a separating equilibrium, a semi-separating equilibrium, and a pooling
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equilibrium, but also discuss the optimality of a “handicapped” separating equilibrium.
Secondly, this essay introduces a direct reputation reward contingent on past performance
that has not previously been analyzed in a dynamic principal-agent framework. The
analysis presented in the text demonstrates that introduction of a direct reputation reward
would provide more effective incentive schemes, and thus result in a dominant dynamic
contract relative to those contracts without the reputation reward.

However, the analysis presented in this essay is far from exhaustive. Several
generalizations of the model would be interesting for future research. First, the two-
period model could be extended to allow for more than two periods. Extending the
model to a longer term would make the effects of the reputation rewards more significant
relative to the dynamic contract in the absence of reputation rewards. Second,
uncertainties of realized quality or the production process could be incorporated into the
model. Recall that we assume a deterministic production function for each grower type.
However, introduction of uncertainties would significantly complicate the updating
process of the processor’s beliefs about grower types. Third, more complicated
structures of reputation accumulation could be used in the model. We could expect that a
different structure of the reputation rewards would have different impacts on the optimal

dynamic contract.
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THESIS SUMMARY

This thesis studies three issues of agricultural contracting in various sectors.
Specifically, the first essay deals with the relationship between contracting and the spot
market in the hog sector due to hog producers’ complaints about the potentially distorting
effects of hog marketing contracts. The second essay investigates the efficiency of
broiler contracts and compares performance of relative-performance contracts and fixed-
performance contracts because of growers’ concerns of unfairness of relative
performance contracts. The third essay studies the effects of growers’ reputation on the
dynamics of optimal incentives with asymmetric information because of the importance
of long-term contractual relationships in many agricultural settings. Each of the three
structurally independent essays not only contributes to the general literature of
agricultural contracting, but also provides a more thorough and more practical analysis on
each specific topic. The following section briefly summarizes the major results of the
three essays and discusses their contributions.

Essay 1 investigates the relationship between contracting and the spot market under
five different types of contracts, including two fixed-price contracts, a market-price
contract, a formula-price contract, and a cost-plus contract. In addition, asymmetric
information concerning unobservable hog qualities is introduced into the model. This
essay contributes to the existing literature by embedding a principal-agent model of
processor-producer equilibrium behavior within a general equilibrium model of the hog

market. In a related ways, it also contributes by endogenizing the producers’ participation
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constraint by linking the producers’ contracting decision to the general-equilibrium-
determined spot market price of hogs.

Different from the results in most past studies, this essay concludes that increased
contract supplies raise the expected spot market price under the formula-price contract
and reduce the variance of spot market price. Indeed, if differentiated quality is a feature
of the hog market, and if the contract market is endogenously linked to the spot market,
then existing empirical studies are likely to be biased. Under these assumptions, this
essay finds that both the formula-price contract and the cost-plus contract offer a greater
profit to processors and a greater expected utility to growers relative to the fixed-price
contract or the market-price contact. Both processors and producers prefer the formula-
price contract to the fixed-price contract or the market-price contact if asymmetric
information about hog quality is taken into account. Finally, increases in processors’
market power, simulated by raising the number of growers relative to the number of
processors, depress the expected market price and growers’ expected utility, but raise
processors’ expected profit. However, the relative superiority of each contract is the
same regardless of processors’ market power.

Essay 2 discusses efficiency of broiler contracts out of concerns of growers’
dissatisfaction with the existing relative performance contracts (RPCs). The primary
objectives of this essay are to investigate the efficiency of broiler-industry-style relative-
performance contracts in the presence of asymmetric information and to compare various
relative-performance contracts with fixed-performance contracts (FPCs). This essay,
which incorporates with both moral hazard and adverse selection, contributes to the

literature by comparing various relative-performance contracts with fixed-performance
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contracts in a dynamic setting and by analyzing improvements to a static mixed-type
relative-performance contract.

In spite of growers’ complaints about the contemporaneous relative-performance
contracts used in the broiler industry, the various theoretical specifications in this essay
largely justify the popularity and superiority of relative-performance contracts relative to
fixed-performance contracts. Some of the major findings are highlighted as follows:
First, efficiency of the static RPC or FPC and efficiency of the full-commitment RPC or
FPC depend on the relative magnitude of common shocks and idiosyncratic shocks.
More specifically, the static RPC or the full-commitment RPC performs better if the
common shock is sufficiently large, while the static FPC or the full commitment FPC is
better if the idiosyncratic shock dominates. This result is consistent with most previous
studies. Second, the dynamic current-period RPC eliminates the contemporary common
shocks regardless of the autocorrelation of common shocks in two periods and performs
better than the dynamic FPC if the common shock is sufficiently large. Third, the
dynamic FPC outperforms the dynamic previous-period RPC under the assumption that
the dynamic previous-period RPC uses a fixed-performance contract in the first period.
In addition, under the previous-period RPC, growers tend to exert less effort in the first
period anticipating a higher standard in the second period, which is the well-known
ratchet effect. Finally, this essay demonstrates that a static two-pooled-tournament RPC
could improve both the processor’s and the growers’ welfare relative to the static single-
tournament RPC.

Compared with existing literature, this essay provides a more thorough, more

comprehensive, and more practical analysis of broiler contracts. Except for the dynamic
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previous-period RPC, comparisons between relative-performance contracts and fixed-
performance contracts under each scenario justify the superiority of relative-performance
contracts both in a static setting and in a dynamic setting when common shocks dominate
idiosyncratic shocks.

Essay 3 investigates the role of growers’ reputation when an agricultural processor
designs optimal incentives for high quality products in a two-period dynamic contract.
Due to unobservability of grower quality types and absence of commitment to
intertemporal contract terms by both parties, reputation effects play a role in the dynamic
contract. Thus, optimal incentives in such a contract must take into consideration not
only the adverse consequences of hidden information in the short term, but also its
intertemporal consequences in the longer term.

A two-period full-commitment contract, which requires that both parties be
committed to the contract terms and the contract cannot be breached or renegotiated
during the contracting period, is developed first as a baseline. Under full commitment by
both parties, the optimal two-period contract mimics a sequence of optimal static
contracts during the contract period. However, in a two-period dynamic model with no
commitment, where neither the processor nor the grower could commit to an
intertemporal scheme, three types of equilibria could potentially be sustained: a fully
separating equilibrium, a semi-separating equilibrium, and a pooling equilibrium. In
these cases, grower reputations are embodied in the posterior probability assessment of
the grower’s type by the processor at the end of the first period. Anticipating the
processor’s strategies, the high-quality grower type chooses to build up his reputation by

either imitating the low-quality type or revealing his true type, whichever is favorable.
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However, reputation effects reinforce the potential ratchet effect when the processor
updates her beliefs of the grower’s type based on the grower’s past performance using
Bayes’ rule. More precisely, imitating the dominant behavior of a low-quality type
yields future information rents to the high-quality type by sustaining the processor’s
belief that the grower might be of low-quality type. Thereby the reputation effects
reflected in the posterior probability of grower types encourage deviation of the high-
quality grower type. Further, the optimal contract that could be sustained depends on
growers’ time preferences and differences between the two grower types. In general, a
separating equilibrium could be sustained only if the discount factor is sufficiently small
and the difference between the grower quality types is sufficiently large. For a
sufficiently large discount factor (i.e., when the grower is patient) and sufficiently small
difference between the grower types, a pooling equilibrium would dominate the
separating equilibrium or the semi-separating equilibrium.

Based on the optimal dynamic contract with no commitment, the processor offers a
direct reputation reward to the grower in the second period if good performance is
observed at the end of the first period. This essay demonstrates that the optimal dynamic
contract with the reputation reward would dominate similar contracts without a reputation
reward. Moreover, both the processor and the grower would increasingly benefit from
the reputation reward the longer the contract duration is.

The results presented in this essay are in general consistent with the existing
literature in dynamic contracts. However, several major differences exist. Firstly, past
studies have found mixed results about existence of a separating equilibrium under

various assumptions. In this essay, optimal conditions are derived for the following types
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of potential equilibria: a separating equilibrium, a semi-separating equilibrium, a pooling
equilibrium. Secondly, this essay introduces a direct reputation reward contingent on
past performance that has not been previously analyzed in a dynamic principal-agent
framework. The analysis presented in the text demonstrates that introduction of a direct
reputation reward would provide more effective incentive schemes, and thus, result in a
dominant dynamic contract relative to that without the reputation reward.

As indicated, this thesis discusses three contracting issues in various agricultural
sectors and provides a more thorough and more practical analysis on each topic. Since
these essays are structurally independent, their policy implications are, on one hand,
sector- or industry-specific. Specifically, in the first essay, the general equilibrium
analysis of the relationship between contracting and spot market largely justifies the
dominant use of formula-price contracts in the hog sector under certain conditions.
Therefore, the distorting effects observed in the spot market, if they do exist, are likely
from different sources such as hog processors’ monopsonistic or oligopolistic pricing
mechanisms rather than simply because of large contract supplies. In other words, if
policy regulations could prevent hog processors as buyers from employing their market
power, formula-price contracts could still benefit both processors and hog producers. In
the second essay, comparisons of various forms of relative-performance and fixed-
performance contracts demonstrate that relative-performance contracts perform better
than fixed-performance contracts from the perspectives of both processors and growers if
common productions shocks dominate idiosyncratic shocks. Thus, regardless of
growers’ complaints about relative-performance contracts, growers could be better off, on

average, under relative-performance contracts relative to fixed-performance contracts.
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The third essay demonstrates the practicality of a direct reputation reward in a long-term
dynamic contract employed in various agricultural sectors such as processed vegetable
and winegrape industries.

On the other hand, each of these essays provides a general methodology that could
be applied to other sectors in which a similar context exists. For example, the analysis
between contracting and the spot market could be applied as well to other sectors such as
the cattle sector. The analysis of relative performance contracts that are widely employed
in the labor market could also be applied to any sectors where a single principal contracts
with multiple agents with relatively uniform products. Finally, the optimal dynamic
contract with direct reputation rewards could be used in sectors in which processors and
producers maintain long-term relationships.

Nevertheless, the analysis presented in this thesis is hardly exhaustive. Moreover,
readers should realize that the various contracts analyzed in this thesis are still highly
stylized and they only mimic the real world as closely as they could with the restriction of
analytic tractability. Despite its limitations and simplifications, the analysis presented in
this thesis sheds light on contemporary policy-making issues in various agricultural
sectors and provides some theoretical guidelines for designing effective agricultural

contracts.



VITA

YANGUO WANG

Date of Birth: Oct. 10, 1973. P.R. China

Education:

Ph.D. Department of Agricultural Economics and Rural Sociology. Ph.D. Dual Title
Degree in Operations Research. The Penn State University. U.S.A. 2004.
Specialization: Agricultural Food Systems and Environmental Economics and

Operations Research.

M.S. School of Forest Resources. The Penn State University. U.S.A. 2000.
Specialization: Forest Economics and Management

M. Agr. Department of Forest Economics and Management. Beijing Forestry University.
P.R. China. 1998.

B. Agr. Department of Forest Economics and Management. Hebei Agricultural
University. P.R. China. 1995.

Employment:

Research Assistant. Department of Agricultural Economics and Rural Sociology. The
Penn State University. 2000-2004.

Research Assistant. School of Forest Resources. The Penn State University. 1998-2000.

Research Work
Abdalla, C. and Y.G. Wang. 2001. Factors Affecting Community Receptivity to Large-
Scale Animal Agriculture in Pennsylvania. Paper presented at NAREA annual

meeting. Maine.

Wang, Y.G. 2000. A General Equilibrium Analysis of Forest Taxation (Unpublished
manuscript).

Affiliations:
Gamma Sigma Delta. Honor Society of Agricultural Science. Penn State Chapter.

American Agricultural Economics Association.



