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ABSTRACT 
 

Motivated by several contemporary problems existing in U.S. agriculture, this thesis 

investigates three particular issues concerning different aspects of agricultural contracting 

between growers and processors.  Specifically, the first essay investigates the relationship 

between the use of various types of hog contracts and the performance of the spot market 

when information asymmetries exist with regard to observability of product quality.  This 

essay contributes to the existing literature by embedding a principal-agent model of 

processor-producer behavior within a general equilibrium model of the hog market.  

Different from the results in most past studies, this essay concludes that contract supplies 

raise the expected spot market price and reduce the variance of spot market price under a 

formula-price contract.  Moreover, this essay finds that both a formula-price contract and 

a cost-plus contract offer a greater profit to processors and a greater expected utility to 

growers relative to fixed-price or market-price contacts.  The second essay discusses 

efficiency of broiler contracts out of concerns of growers’ dissatisfaction with the 

existing relative-performance contracts.  Specifically, this essay compares various 

relative-performance contracts with fixed-performance contracts in a dynamic setting, 

and discusses improvements of the static mixed-type relative-performance contract.  

Various theoretical specifications justify the superiority of relative-performance contracts 

both in a static setting and in a dynamic setting when common shocks dominate 

idiosyncratic shocks.  In addition, a static two-pooled-tournament relative-performance 

contract is shown to improve both the processor’s and the grower’s welfare relative to the 

static single-tournament relative-performance contract.  The third essay investigates the 

role of growers’ reputation when an agricultural processor designs optimal incentives for 
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better quality products in a two-period dynamic contract.  In a dynamic model with no 

commitment by both parties, reputation effects embodied in the processor’s posterior 

probability assessment of the grower’s types (using Bayes’ rule) reinforce the potential 

well-known ratchet effect.  Based on the optimal dynamic contract with no commitment, 

the processor offers a direct reputation reward to the grower contingent on his past 

performance.  This essay demonstrates that the optimal dynamic contract with a 

reputation reward would outperform contracts where no reputation reward is offered.    
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Background 

Use of contracting in agriculture has increased significantly over the past several 

decades.  A recent USDA survey find that contracting is common among all types of 

farms, accounting for 35 percent of total production, where over two-thirds of contract 

volume was marketing contracts and one-third was production contracts.  Among the 

animals or livestock sectors, over 95 percent of the poultry sector is under contract, while 

42.9 percent and 25.3 percent of the hog sector and cattle sectors are under contract.  

Another recent study on production contracts shows that 99 percent of broilers are 

produced under production contracts, while hogs and cattle are 33% and 14%, 

respectively (Hayenga et al. 2000).    

Contracting motives for agricultural producers and processors have been studied in 

broad agricultural settings.  Market assurances, product quality, and risk sharing are some 

of the major concerns in a contractual relationship (Hudson 2000).  The cyclical and 

seasonal patterns of some animal productions, such as hogs and cattle, make supply 

assurance important to processors because supply shortages increase short-term costs.  

On the growers’ side, growers may face the risk of not having a buyer when needed.  

Thus, acquisition of animals through contracting reduces exposure to the risk for both 

processors and growers.  In addition, for growers, selling their animals via contracting 

with processors reduces price risks to growers relative to selling to the cash market.  

Besides supply assurance, quality is another important factor to processors because 

high-quality animals can reduce processors’ costs by affecting processing time and labor 

costs as well as the quantity of high-value fresh meat cut per animal (Hayenga et al. 

2000).  Traditionally, livestock and broilers are sold based on live weight or carcass 
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weight without taking into account quality differentiation.  However, these pricing 

methods have been inadequate at sending appropriate signals to producers regarding 

quality attributes (Hayenga et al. 2000).  Thus, processors attempt to capture the highest 

quality animals via contracts and other marketing agreements.  Through marketing 

contracts or production contracts, processors can provide incentives for better quality 

characteristics wanted in the animals they purchase from growers.  In addition, under a 

production contract, processors are sometimes able to control the choice of genetic 

stocks, feeding programs, and management decisions on the production of contracted 

animals.   However, unobservability of animal quality before delivery may prevent 

processors from contracting upon explicit quality characteristics.  Instead, optimal 

incentives for better quality must be provided conditional on other observed variables, 

such as feed conversion ratio in the broiler industry, or lean yield in the hog industry.   

While processors and producers are motivated by similar factors to use contracts 

across most agricultural sectors, contracting in each sector has its own features due to the 

special characteristics borne in its production process or historical development.  In some 

specific sectors, for example, the increasing use of contracts between producers and 

packers has provoked controversy. As a result, processors and producers in each sector 

face different problems.  The following section summarizes some of the existing issues in 

agricultural contracting that need to be addressed.   

Effect of contracting on spot markets 

The transition to contracting away from a traditional cash markets, such as in the 

pork and beef industries and many other agricultural sectors, has brought new issues and 

problems.  Specifically, in the hog sector, the use by most large producers of formula 
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pricing contracts,1 which are based on a spot market price, has raised concerns that 

contracting makes the cash market thinner.  Hence, some observers argue that formula 

pricing contracts reduce spot market prices and raise cash price volatility (Hayenga et al. 

2000), although no empirical study has documented this concern in the hog sector.  

Similar effects may also take place in the cattle sector due to captive supplies of fed cattle 

through contracting and other types of marketing agreements.2   While various empirical 

studies attempt to assess impacts of contracting on the spot market price in the fed cattle 

sector, existing studies find mixed results due to different data or model specifications.  

In addition, most existing studies use reduced-form estimation technique and do not 

account for asymmetric information of unobservable quality or grower types.  Thus, 

results from these studies are likely to be incomplete or biased.   

Relative-performance contracts 

In contrast to the cattle and hog sectors, the broiler industry is free from problems 

concerning the spot market because the extensive use of contracting in this industry has 

led to the virtual disappearance of the spot market.   Instead of basing payment on a spot 

price, the payment structure of modern broiler contracts usually consists of a fixed base 

payment and a variable bonus payment dependent on a grower’s relative performance.  

The bonus payment is determined as a percentage of the difference between a grower’s 

individual performance and the average performance of the grower’s peers.  However, 

many growers have complained about a bonus system that compares their productivity to 

others.  Adopted in the early 1990s, various forms of legislation attempted to regulate 

                                                 
1 Formula price of hogs, for example, may be calculated using Iowa-Southern Minnesota weighted average 
price of 49-51% lean hogs (Hayenga et al. 2000). 
2 In February 2004, a federal jury found Tyson Fresh Meats guilty of using captive supplies to manipulate 
the spot price. Tyson’s lawyers said they would appeal the ruling (The New York Times, Feb. 18, 2004). 
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broiler contracts in Minnesota, Wisconsin, and Kansas.  Similarly, in North Carolina a 

bill was recently introduced that specifically prohibited payments to a grower based on 

his performance relative to other growers (Hayenga et al. 2000).   

Reputations and long-term contracts 

Specialized investments and contractual relationships often go hand in hand in a 

number of agricultural sectors, such as poultry, pork, egg, and processed or frozen fruits 

and vegetables, where agricultural producers must make long-term investments in 

specialized facilities and equipments.  For example, poultry producers invest in single-

use chicken houses that can not be readily converted to other uses on the expectation of 

continuing contracts.  Apple, grape, and often fruit growers invest in stands of trees or 

vines that might also be tailored to a single use.  In these cases, if the contractual 

relationship between grower and buyer is terminated, the grower may be left with 

liabilities that cannot be reimbursed.  This types of problem, often called a “hold-up” 

problem, and others associated with the existence of specific investments has motivated 

the use of long-term contract productions (Williamson 1989).  Large-scale processors 

extensively use long-term contracts with producers to expand their scale and this use is 

still expected to expand rapidly (Hayenga et al. 2000).   

Over time, in a dynamic contractual relationship, reputation may play an important 

role in maintaining the processor-producer relationship.  In a narrow sense, one’s 

reputation is the history of his previous actions or history of measured performance.  In 

line with Wilson (1985), a player’s current reputation affects others’ predictions of his 

current behavior and thereby affects their current actions, and the evolution of his 

reputation depends on the history of his actions.  Thus, his optimal strategy must optimize 
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the tradeoff between short-term consequences of his current action and long-term 

consequences due to the effect of his current action on his future reputation.  

Many studies have discussed the role of reputation effects in various settings.  For 

example, Wilson (1985) summarizes studies of reputation effects in various game-

theoretic and market models with dynamic features and informational asymmetries 

among the participants.  Goodhue (2000) tests hypotheses regarding relationships 

between long-term contracting and growers’ reputation of consistent high quality in the 

California winegrape industry.  Up to now, however, few studies have investigated the 

explicit effects of growers’ reputations on optimal incentives when one designs a long-

term dynamic contract.  

 

Objectives and Brief Outlines of Three Essays 

Given the diverse problems and issues existing in contemporary agricultural 

production, this thesis attempts to investigate three particular issues concerning different 

aspects of agricultural contracting.  It consists of three independent essays, with each 

essay dealing with one issue concerning agricultural contracting.   

Out of concerns that use of formula-price contracts reduces spot market prices and 

raises market volatility, the first essay investigates the relationship between contracting 

and the spot market in the hog sector.  More specifically, the essay develops a multi-

market equilibrium model and compares five different types of contracts in the hog 

industry, i.e., two fixed-price contracts, a market-price contract, a formula-price contract, 

and a cost-plus contract, in terms of their impacts on the spot market.  Market equilibrium 

conditions are derived under five different contracting scenarios after incorporating a 
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principal-agent model of individual producer-processor relationship into a market 

equilibrium model of contract and cash markets.  In addition, the principal-agent model 

accounts for asymmetric information in terms of unobservable quality while embedding 

an endogenously determined cash market price into an individual processor-producer 

relationship.  Based on the spot market-contract market equilibrium under each contract 

scenario, results are presented for a numerical example to simulate the impact of 

contracting on the hog spot market.  While the model is applied to the hog sector, the 

same methodology can be applied to other sectors such as the cattle sector. 

The second essay investigates efficiency of broiler contracts and compares 

performances of relative-performance contracts (RPC) and fixed-performance contracts 

(FPC) under both a static model and a two-period dynamic model.  Two scenarios of the 

two-period dynamic relative performance contracts are investigated: the current-period 

RPC and the previous-period RPC, where the current-period RPC rewards bonuses to 

growers using the group average performance calculated in the same period as a standard, 

while the previous-period RPC rewards each grower by comparing his performance with 

the previous period’s average performance of the same group of growers.   Last but not 

the least, the essay investigates a static model in which processors may split growers into 

two tournaments by offering two pooled contracts.  This portion of the essay allows the 

processor to respond to the hidden information of grower types.  Under each scenario 

described above, asymmetric information in terms of unobservable types of growers and 

unobservable production effort are introduced into the model.  The results and their 

policy implications are discussed in the final section of this essay.  
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The third essay studies the effects of growers’ reputation in a two-period dynamic 

processor-grower relationship.  Two scenarios of the two-period model are presented: a 

full-commitment model and a model with no commitment.  Specifically, the full 

commitment contract requires that both parties are committed to the contract and the 

contract cannot be breached or renegotiated during the contracting period.  The no-

commitment contract assumes that neither the processor nor the grower can commit to an 

intertemporal scheme: i.e., the processor can revise the contract in the second period 

conditional on the grower’s first period performance and the grower can quit the 

relationship at the end of each period.  Under the no-commitment dynamic contract, a 

fully separating equilibrium, a semi-separating equilibrium, and a pooling equilibrium are 

established.  In the no-commitment case, reputation effects reflect the existence of 

persistent asymmetric information and are embodied in the posterior probability 

assessment of the grower’s types by the processor at the end of the first period.  However, 

the analysis that follows in the third essay establishes that this type of reputation effect 

can only enhance incentives for deviation: i.e., imitating the behavior of the low-quality 

type yields future information rent to the high-quality grower type by sustaining the 

processor’s belief that the grower might be of low-quality type.  Based on the no-

commitment dynamic contract, a reputation reward is then introduced into the model.  In 

this case, one assumes that the grower’s reputation is summarized by his past measured 

performance.  Specifically, a reputation reward based on the grower’s past performance is 

remunerated to the grower in the second period if the processor observes good 

performance at the end of the first period.  To simplify the analysis further, the reputation 

reward is assumed to take the form of a lump sum payment.   Under these assumptions, 
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this essay attempts to demonstrate that the reputation reward contingent on the history of 

past performance provides incentives for the grower to invest effort in building a 

reputation for quality, and thereby, can improve both the processor and the grower’s 

welfare, and result in a dominant equilibrium.  

In each essay, the general framework of principal-agent models described in Mas-

Collel, Whinston, and Green (1995) is used while incorporating various forms of 

asymmetric information. However, each model varies depending on the type of the 

contract studied.   

 

Overview of Existing Literature  

Existing literature about contracting theory and agricultural contracting is very 

broad.  Mas-Collel, Whinston, and Green (1995) summarizes a basic contract design 

problem, which relies on principal-agent models to incorporate asymmetric information, 

including hidden action (moral hazard) and hidden information.  A number of extensions, 

such as multiple agents, multidimensional effort, multiple signals, and long-term agency 

relationship, of the basic model have been studied in the literature.  For example, 

Holmström (1982), Nalebuff and Stiglitz (1983), Green and Stokey (1983), and 

Malcomson (1986) examine cases in which multiple agents are hired.  Bernheim and 

Whinston (1986), on the other hand, examine settings in which a single agent is hired by 

several principals.  Radner (1985), Rogerson (1985), and Lambert (1983) examine 

situations in which the agency relationship is repeated over many periods.   Malcomson 

and Spinnewyn (1988), and Fudenberg, Holmstrom, and Milgrom (1990) study 

implementation of long-term contracts via a sequence of short-term contracts.  This list of 
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literature is hardly exhaustive, with other good reviews of contracting theory found in 

Hart and Holmström (1987) and Salanié (1997).  

On the other hand, most research in agricultural contracting has focused either on 

finding empirical evidence of contract efficiency or attempting theoretical approaches to 

investigate various contracting problems in agriculture.  Most papers deal with contracts 

in the meat industries, such as pork, beef, and broilers, due to the extensive use of 

contracting in those sectors.  For example, Azzam (1998), Elam (1992), Schroeder et al. 

(1993), and Ward, Koontz, and Schroeder (1998) investigate relationship between 

contracting and the cash market in the fed cattle industry and find mixed results.  These 

studies, which employ different empirical techniques, data, and model specifications, fall 

short of providing a definitive description of impacts of contracting on the cash prices.  

Reduced-form estimation techniques ignore the fact that contract supplies and the spot 

market are endogenously related.  Thus, the results from those studies are likely to be 

biased.  Moreover, despite evidence to the contrary, none of them incorporates 

asymmetric information into their models, especially imperfectly observed quality 

differences in the spot market and contract market.  Goodhue, Rausser, and Simon 

(1998), Knoeber and Thurman (1994), and Levy and Vukina (2001) examine efficiency 

of broiler contracts using empirical evidence, while Tsoulouhas and Vukina (2000) used 

a theoretical approach to compare a static relative performance contract and a fixed 

performance contract incorporating hidden actions by growers.  All these studies have 

shed some light on the efficiency of broiler contracts; however, they are hardly 

exhaustive.  A few studies have investigated reputation effects and long-term contracts in 

agriculture.  For example, Goodhue et al. (2000) test hypotheses regarding long-term 
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relationships between contracting and reputation of grape quality in the California 

winegrape industry.  However, none of the reputation effect studies has adopted a 

principal-agent framework. 

 

Contribution of the Thesis 

Based on past studies, this thesis investigates three issues of agricultural contracting 

in various agricultural sectors.  Because the three essays presented in this thesis are 

structurally independent, this thesis not only contributes to the general literature of 

agricultural contracting, but also provides a more thorough analysis on each specific 

topic.  Particularly, the various approaches presented in the thesis extend the general 

literature of agricultural contracting to issues concerning contract market-spot market 

equilibrium, multi-agent relationships, and intertemporal contractual schemes.  For each 

specific topic explored in the thesis, the analysis that follows presents plausible results 

that are generally consistent with what one observes in common practice, and thus, could 

be used to provide better policy guidelines.    

The major contributions of each essay are briefly summarized in the following 

section.  

(1) In the first essay, five different types of contracts are compared in terms of their 

diverse effects on the hog cash market.  The contributions of this essay are threefold:  

First, this essay not only investigates the relationship between hog contracting and the 

hog spot market in particular, but also provides a general methodology for this type of 

problem.  Different from most studies, this essay embeds a principal-agent model of 

processor-grower relationship within a general equilibrium market model in which the 
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endogenous relationship between contract supplies and the spot market is explicitly 

acknowledged.  More specifically, a grower’s participation constraint in a processor-

grower relationship is endogenized by linking the grower’s contracting decision to the 

general-equilibrium-determined spot price of hogs.  Second, this essay contributes to the 

existing literature by incorporating asymmetric information in terms of imperfectly 

observed hog qualities.  Third, the results established in this essay justify the dominant 

use of formula-price contracts in the hog sector and are consistent with what one observes 

in the real world.  

(2) The second essay discusses efficiency of broiler contracts out of concerns of 

growers’ dissatisfaction with existing relative-performance contracts.  This essay first 

contributes to the literature by providing a more thorough and comprehensive analysis of 

broiler contracts with incorporation of both moral hazard and adverse selection.  More 

specifically, no known study has investigated the mixed-type, multiple-pooled relative-

performance contract and the previous-period dynamic relative-performance contract in 

the broiler sector.  Second, this essay provides more definitive policy implications from 

the theoretical models.  This essay demonstrates that, under certain conditions, relative-

performance contracts perform better than fixed-performance contracts from the 

perspective of both growers’ and processors’ welfare.  Hence, the various theoretical 

models presented in this essay justify the superiority of relative-performance contracts 

relative to fixed-performance contracts.   

(3) The third essay investigates implications of growers’ reputation on optimal 

incentives in a long-term dynamic contract.  The results presented in this essay are 

generally consistent with the existing literature in dynamic contracts.  However, several 
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major differences arise: Firstly, past studies have found mixed results concerning the 

existence of a separating equilibrium in a dynamic contract.  In this essay, optimal 

conditions are explicitly derived for a separating equilibrium, a semi-separating 

equilibrium, and a pooling equilibrium under certain conditions.  Further, conditions for 

optimality of a “handicapped” separating equilibrium are also investigated, where a 

“handicapped” separating equilibrium offers a single contract only to high-quality 

growers.  Secondly, although many studies have discussed reputation effects in various 

settings, few studies have been known to explicitly investigate the effects on optimal 

incentives of a reputation reward contingent on past performance when one designs a 

long-term dynamic contract incorporating with asymmetric information among 

participating parties.  The analysis in this essay demonstrates that introduction of a 

reputation reward in a long-term dynamic contract could improve the performance of the 

contract by providing more effective incentives, and thus, result in a dominant 

equilibrium relative to the case where no reputation reward is available.   
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1.1 Introduction 

A major concern associated with the prevalence of contracting agricultural 

production is that increased livestock acquisitions under contracts or marketing 

agreements make the cash market thinner. While studies devoted to this issue show 

mixed results, several conclude that the increasing use of contracting in meat packing 

reduces spot market prices and makes cash prices more volatile.  However, these studies 

and most others fail to account for differentiated product quality because of 

methodological and data-driven constraints.  Different from most of the existing 

literature, this essay uses a structural model to analyze the impact of contracting on the 

spot market.  The essay first develops a model within the principal-agent framework for 

each individual processor-producer relationship assuming quality differentiation exists in 

the contract market.  Then the market equilibrium is derived via a general equilibrium 

model by aggregating individual processors’ demand and producers’ supply.  Further, a 

sensitivity analysis is conducted by modifying model parameters indicating the extent of 

contracting to investigate the impact of contracting on the spot market. 

 

1.2 Literature Review 

Past Studies 

Existing empirical studies concerning the impact of contracting in meat packing on 

spot prices find mixed results.  Elam (1992) conducts an empirical study and concludes 

that increases in forward contracting shipments reduce the national monthly average 

Agricultural Marketing Service price of fed cattle; however, impacts of contract 
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shipments on cash price within some states (Texas, Kansas, Colorado, and Nebraska) are 

mixed.   Barkley and Schroeder (1996) present an empirical model of the beef packing 

sector and find that cash price variability is positively associated with the level of captive 

supplies.  However, the impact of captive supplies on beef spot prices was not explicitly 

estimated in their empirical study.  Ward, Koontz, and Schroeder (1996) develop an 

empirical model and report a negative relationship between captive supplies delivered 

from marketing agreements and forward contracted cattle and cash prices; however, the 

effects of packer fed cattle on spot cattle prices are mixed.  In another study, Ward, 

Koontz, and Schroeder (1998) find that the effects of captive supplies on cash prices is 

ambiguous due to the shifts in both demand and supply in the spot market.  Schroeder, 

Jones, Mintert, and Barkley (1993) analyze the impact of forward contracting on fed 

cattle cash price and find significant negative effects.   

Theoretical studies that also investigate the impact of forward contracting on cash 

prices find similar mixed results.  Azzam (1998) develops an equilibrium replacement 

model of cattle procurement, but finds ambiguous effects of captive supplies.  He points 

out that negative effects of forward contracting on cash prices may not be plausible 

because comparative statics implied by the captive-supply-induced shifts in market 

demand and supply are not explicit.  Further, existing empirical results based on reduced-

form models without formal framework underlying the model are subject to criticism.  

Xia and Sexton (2004) analyze the implication of top-of-the-market clauses on cash 

prices using general equilibrium models and conclude that the marketing contracts with 

top-of-the-market (highest market price) clauses reduce cash market prices.   



 20

These studies, which employ different empirical techniques, data, and model 

specifications, fall short of providing a definitive description of impacts of contracting on 

the cash prices.  Moreover, despite evidence to the contrary, none of them incorporates 

asymmetric information into their models, especially imperfectly observed quality 

differences in the spot market and contract market.  Several studies summarized by 

Hayenga et al. (2000) report significant quality differences in hog quality sourced from 

contracts and cash market transaction.  In addition, reflecting quality differentials, 

average contract prices are consistently higher than spot market prices (Hayenga et al. 

2000, Buhr and Kunkel 1999). 

As implied by the above discussion, most existing studies investigating the about 

relationship between contracting and spot markets concern the cattle industry.  No study 

has been found to analyze the impact of contracting on the hog spot market.  In fact, 

“captive supply” is a particular terminology used for the cattle market.  However, the 

similarities in processing, producing, and the extent of contracting enable us to use 

methodologies used for the cattle market to analyze the hog market.   Therefore, this 

essay will not only investigate the relationship between hog contracting and the hog spot 

market in particular, but also provide a general methodology for this type of problem.    

Existing Marketing Contracts in the Hog Sector 

Buhr and Kunkel (1999) summarize types of marketing contracts available in the 

hog sector3.  The major types are formula-price, cost-plus, price-window, price-floor, 

fixed-basis, and fixed-price contracts.  Table 1.1 duplicates the results on the 12 largest 

pork packers’ procurement methods according to Grimes and Meyer’s January 2000 

                                                 
3 Similar description can also be found in Hayenga et al. (2000) 
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survey.  Since packer-fed supplies account for only a very small portion of pork packers’ 

procurement of hogs, it is excluded from this study.  In addition, marketing contracts 

related to the futures market are also excluded because it is beyond the interest of this 

paper. 

Table 1.1 Twelve largest U.S. pork packers’ procurement methods 

Pricing method Percent (100%) 

Formula (reported price plus some 
amount) 

47.2 

Fixed price tied to futures (i.e., a cash 
contract) 

8.5 

Fixed tied to feed prices, no ledger 3.3 

Fixed tied to feed prices, with ledger 
maintained 

9.0 

Window risk sharing, no ledger 3.8 

Window risk sharing, ledger 
maintained 

0.8 

Other (packer-owned) 1.7 

Spot market purchases 25.7 

Source: Based on Grimes and Meyer’s January 2000 survey. Also see Hayenga et al 
(2000), p38. 

Formula-price contracts are used as a mechanism to establish prices when large 

quantities of hogs are forward contracted with a packer.  Formula pricing, which is based 

on spot market prices plus a price premium or discount, accounts for 47.2% of all 

procurement types.   Formula prices, for example, may be calculated as the price for 

Iowa/S. Minnesota 47-49% lean hogs plus or minus a price differential and premium 

based on market differences such as location or quality of hogs.  Some have argued that 

formula price contracts do not provide price protections as they will fluctuate along with 

the market price on which they are based.   Therefore, statistical models have been used 

to test the hypothesis that formula price contracts reduce spot market prices and raise 
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price volatility in the spot market.  However, as discussed in the previous section, those 

results have been mixed depending on their data, estimation technique and model 

structure.   

Cost-plus contracts specify a price based on feed costs, which comprise the greatest 

single cost of production.  This price implicitly sets a minimum price level, so it provides 

risk protection in addition to quantity assurance and market access.  These contracts may 

have a balancing clause where payments are made to contractors/processors when market 

prices are below the contract prices and vice versa.   

Price-window contracts, in general, set a ceiling and floor price.  When the market 

price falls within the ceiling and the floor, the hogs are exchanged at the market price.  

When the market price falls above the ceiling or below the floor price, the packer and the 

producer split the difference between the two prices. 

Price-floor contracts set a minimum price.  To compensate the packer for this 

protection, the producer places a portion of the hog price above a predetermined ceiling 

price in an account to carry through the low price periods.  The performance of these 

contracts will resemble a long-term put option. 

If there is a balancing account clause in the contracts, as in price floor contracts and 

some cost-plus contracts, these contracts must be modeled in a multi-period setting.  

Without accounting for time preferences, the balancing account only reallocates or 

smoothes producers’ income over time to reduce income variability, but does not reduce 

any price risk.   Thus, on average, the contract prices under these contracts can be 

expected to have similar effects as market prices.   
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To understand the relationship between contract supply and the spot market, this 

essay will focus on the following four types of contracts: 1) fixed price contracts, 2)  

market price contracts, 3) formula price contracts with quality premium, and 4) cost plus 

contracts with quality premium.   

 

1.3 Objectives 

The objective of this study is to investigate the relationship between use of 

contracting and the spot market in the hog industry using a theoretical model.  To account 

for quality differentiation in the contract market, a principal-agent framework is used to 

model individual processor-producer relationships.  In addition, we assume asymmetric 

information concerning unobservable hog quality in the contract market.  For each type 

of contract, the market equilibrium is derived via a general equilibrium model by 

aggregating individual demand and supply.  Further, in order to analyze the impact of use 

of contracting on the hog spot market, a sensitivity analysis is performed by modifying 

the model parameters indicating the extent of contracting in the model. 

This essay contributes to the existing literature by embedding a principal-agent 

model of processor-producer equilibrium behavior within a general equilibrium model of 

the hog market.  In a related way, it also contributes by endogenizing the producers’ 

participation constraint by linking the producers’ contracting decision to the general-

equilibrium determined spot market price of hogs.  
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1.4 The Model 

The model contains three stages.  In stage I, packers compete for producers to 

whom they offer contracts, and each participating producer signs a contract with a 

packer.  In stage II, each producer independently determines how many hogs to produce 

and deliver to the cash market.  In stage III, when the cash market settles, each packer 

decides the quantity to purchase in the cash market and both the contract and cash 

markets clear.  The process can be illustrated by the following figure. 

 

 

|                                                              |                                                          | 

 

Figure 1.1 Timeline of the transaction 

 
There are N homogenous producers and M homogenous processors in the pork 

sector, with M<<N.   In the first stage, each producer decides either to sign a contract or 

not to sign a contract.  Suppose in stage I, jn1 producers sign a contract with packer j.  For 

simplicity, we assume jn1 is same for every packer j.  Without loss of generality, we 

employ Xia and Sexton’s (2004) assumption that each producer has a short-run supply 

function, ϖϖ == )(fq , where q is the quantity of hogs produced by a producer andϖ is 

the expected price the producer receives4.  Each contract producer i independently 

produces a quantity of hogs 0q based on the short-run supply function and sells a fixed 

proportion )1,0(∈β  of his hogs to a packer.  Specifying the parameterβ  in this fashion 

                                                 
4 Xia and Sexton (2004) studied market price clause and captive supplies in the beef, not hog sector.  

Participating 
producers sign a 
contract  

Date 0 Date 1 

Realization of 
production 

Date 2 

Execute the  
contracts and 
market clear 
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allows us to investigate the effect of captive supplies on the market equilibrium by 

modifying the value of the parameterβ  later on5.   Thus, each packer j obtains 

011 qnQ jj β=  hogs from the contract market.  On the other hand, those producers who do 

not participate in the contract independently decide to produce a quantity sq , again based 

on the short-run supply function.  Each packer converts procured hogs into a finished 

product according to a production function )|( zQgg = , where z denotes the quality of 

hogs procured and z is only observable to producers before delivery.  The production 

function is assumed to be concave in Q and z with 0)|( >zQgQ , 0)|( ≤zQgQQ  and 

0)|( >zQg z , 0)|( ≤zQg zz , 0)|( >zQg zQ .  Further, each packer incurs processing 

costs )|( zQhh = depending on the quality of hogs procured, with (.)h being convex in Q 

and with 0)|( >zQhQ , 0)|( >zQhQQ , and 0)|( <zQhz .   

Since the true hog quality is unobservable to packers before delivery, we assume 

that packers observe the market price of the finished products, such as fresh meat cuts, as 

an imperfect signal of the true quality of hogs delivered.  More specifically, assume that 

the market price of the finished product is random based on a PDF f(P| z) and a 

corresponding CDF F(P| z), where P lies in the support Ω .  It is assumed that the CDF 

F(P| z) satisfies first-order stochastic dominance.  In other words, if one supposes there 

are two quality levels },{ zz , then }|()|( zPFzPF > in the sense that the expected 

market price of the finished product is higher when the quality of hogs is high than that 

                                                 
5 The parameter β can be thought of as the hedge ratio of an individual producer.  Specifying the parameter 
β  in this fashion not only allows for investigating the effect of captive supplies on the market equilibrium, 
but also significantly simplifies the analysis.  In addition, specification ofβ  guarantees the existence of a 
spot market.  
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when the quality of hogs is low.  Note that there are some subtleties of timing or 

observational accuracy when one tries to interpret this variable P.   One interpretation is 

that quality revelation and payment occur after delivery, and after market clearance.  In 

this case, it may seem necessary to add a Date 3 in Figure 1 indicating the time of 

payment in the contract market.  However, another interpretation is that quality is 

imperfectly observed upon delivery, and each packer uses it as a criterion for bonuses at 

the time of market clearance.   This essay most closely follows this second interpretation 

by treating P as an imperfect signal that is closely related to the true quality of hogs 

delivered and is observable to packers upon delivery.  

Since each packer purchases hogs from the cash market based on live weight basis 

or carcass weight basis, different qualities are not distinguished as precisely as in the 

contract market.  To simplify the analysis, we assume that in the cash market only 

average quality if observed.  Therefore, Akerlof’s “lemons” argument applies and cash 

market prices would not provide sufficient incentives for hog producers to produce high-

quality hogs.  Hence, following the lemons argument, we assume that independent 

producers not participating in a contractual relationship will produce only low-quality 

hogs }{z , while contracted producers will produce either high-quality or low-quality hogs 

depending on the individual contract.  For simplicity, the quality of hogs available in the 

cash market is specified as the arithmetic mean of hog qualities sold by contracted 

producers and independent producers to the spot market6.   

                                                 
6 An alternative assumption is that the average market quality is the weighted average of hogs sold by 
contracted producers and independent producers to the spot market, however, it significantly complicates 
the analysis.  Therefore, we only use the arithmetic mean in this essay as an illustration. 
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The unobservability of quality also plays an important role in how payoffs are 

structured.  Since quality is only observable to producers, it cannot be explicitly 

contracted.  In addition, in order to procure high-quality hogs from the contract-

participating producers, processors must provide enough incentive to encourage high 

quality out of producers.  Therefore, the contract price paid to producers by a processor 

must depend on the market price of the finished product, i.e., )(Pw , which can be 

regarded as the imperfect quality signal. 

According to Hayenga et al. (2000, p36),  “… (Hog) quality affects processing time 

and labor costs as well as the quantity of high-value fresh meat cuts per hog.  For 

example, each hog with excessive fat required more trimming and produces less lean 

meat.  Conversely, a lean hog takes less time to process and produces a larger quantity of 

lean pork.” 

 To simplify the analysis further, we assume that the output function of each packer 

is a linear function tzt QzQg α=)|(  with zz αα <  indicating the fact that high-quality 

hogs yields more finished product than low-quality hogs.  The processing cost function 

for each packer takes a quadratic form 2)(
2
1)|( ttzt QzQh µγ +=  where tµ is a serially 

uncorrelated normally-distributed random variable with mean zero and variance 

2
µσ affecting the processing cost function at time t.  Additionally, it is assumed 

that zz γγ < reflecting the fact that low-quality hogs incur higher processing costs than 

high-quality hogs.   
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Contract producers have a time-invariant utility function ),()( 0qzvWu − , where 

00 )1()( qpqPwW s
tββ −+= represents the total revenue of each contract-participating 

producer from both the contract market and the cash market, and s
tp is the spot market 

price at time t.  However, for independent producers, the total revenue comes only from 

the spot market.  That is, s
s
t qpW = .  Additionally, it is assumed that u is strictly concave 

in W with 0)(' >Wu  and 0)('' <Wu .  Each producer incurs disutility according to the 

function 2
00 ),( qcqzv z=  with zz cc < .  Producers’ utility function is assumed to have the 

property of constant absolute risk aversion (CARA), )exp(1)( rWWu −−= , where r is the 

Arrow-Pratt coefficient of absolute risk aversion.  Then the expected utility )]([ WuE  is 

tantamount to  

(1.1) )var(
2
1 WrEW − , 

where )var(W denotes the variance of W.  

Given the assumptions made above, each packer maximizes its net profit: 

(1.2) 
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where  

1−tE = Mathematical expectation operator of spot market price conditional on information 

available at time t-1, 

011 qnQ jj
t β=  hogs to be procured by packer j from the contract market, 

=j
tq2 Hogs to be procured by packer j from the spot market, 

=z~ average quality of hogs sold in the cash market, 

=s
tp  Market price of hogs sold in the cash market at time t. 

The individual rationality constraint (1.3) requires that the expected payoff to each 

producer participating the contract should be no less than that when he sells all his hogs 

to the cash market.   Note that this cash market price will be determined by market 

equilibrium.  The incentive compatibility constraint (1.4) ensures that under 

compensation schedule w(P) the producer’s optimal quality choice is z.   

As we have discussed in the section 1.2, we will focus on the following four types 

of hog marketing contracts: 1) Fixed-price contracts, 2) market-price contracts, 3) 

formula-price contracts with quality premium, and 4) cost-plus contracts with quality 

premium.  
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1.4.1 Fixed-price Contracts  

First, suppose the processor optimally offers the producer a fixed price wPw =)(  

independent of P.  Consequently, only the low quality z can be implemented.  To see 

this, note that with this compensation scheme the producer’s payoff is not affected by the 

quality of hogs contracted to the processor, so the producer will choose the lowest 

possible quality level to incur the lowest disutility.  Therefore, the incentive compatibility 

constraint is satisfied.  In addition, the producer must earn exactly the reservation utility 

because, otherwise, the processor can always reduce the reward until it reaches the 

producers’ reservation utility level.  Hence, the participation constraint (1.3) binds as well 

under the fixed-price contract. 

Before we continue the analysis with the CARA utility function, we derive the 

market equilibrium with risk neutrality first.  

a) Producers are risk neutral 

Under risk neutrality, i.e., WWu =)( , the binding condition (1.3) becomes 

),(][),(])1([ 0010001 qzvqpEqzvqpqwE s
tt

s
tt −=−−+ −− ββ  from which we can solve the 

optimal contract price 

(1.5) s
tt pEw 1−= . 

Given the contract price and producers’ short-run supply function, each contract producer 

produces 

(1.6) s
tt

s
tt pEpEwq 110 )1( −− =−+= ββ .  

Similarly, independent producers choose to produce  
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(1.7) s
tts pEq 1−= . 

Hence, the packer’s profit maximization problem becomes: 
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Recall that 011 qnQ jj
t β= .  The first-order conditions to this problem are: 
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From the conditions (1.8) and (1.9), we can derive the quantity of hogs to be 

procured by packer j from the spot market, 
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and the number of producers contracted with each packer, 
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where zP denotes the expected market price for the finished product by packers given 

low-quality hogs procured from both markets.  Equation (1.10) shows that jq2  is 

positively related to zP  and negatively related to the spot market price of hogs s
tp .  Note 

that in this model each producer signs a fixed proportion of their hogs with each packer, 
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thus, packers can only adjust their demand for contract hogs by adjusting the number of 

producers contracted with each packer.  The condition (1.11) confirms that if the 

expected cash market price goes up, a smaller number of producers will contract their 

hogs with the packers. 

The market supply and demand in both the cash market and the contract market can 

be derived by aggregating individual demands and supplies.  The market equilibrium then 

requires that supply equals demand in both the contract market and the cash market.   

Further, we assume that the contract market supply is perfectly elastic; therefore, we only 

need to solve the equilibrium spot market price.  Specifically, the cash-market demand 

is )|()|( 21 22 zpMqzpqQ s
t

j
t

M

j s
j
td ==∑ =

.  Since 0qqs =  in this case, the cash-market 

supply takes the form )|( 11002 zpEnqMNqQ s
tt

j
s −−= β .  Hence, the spot market clearing 

condition requires  
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t

j
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Specifically, substituting (1.10) and (1.11) into the condition (1.12) yields 
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Further, substituting (1.7) into (1.14) yields 
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Applying the conditional expectations 1−tE to both sides of (1.15) and using the 

assumption that 01 =− ttE µ , we can compute the expected spot-market price: 
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Note that the expected spot-market price decreases as the ratio of the number of 

producers to the number of packers, 
M
N  , increases.  In the limit, the expected spot 

market prices will be the lowest when the packer is a monopsonist (M = 1).  

Hence, from (1.6), the optimal amount of hogs to be produced by the each producer 

equals to 

(1.17) 
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z
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tt γ
α
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Substituting (1.16) back into (1.15) solves for the spot market price: 
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z
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2
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from which we can compute the time-independent conditional variance of the spot market 

price7: 

(1.19) 224)var( µσγ z
s
tp = . 

                                                 
7 The time independence of the variance arises from the stationarity of tµ .  If, instead, tµ is non-stationary, 
the variance defined in (1.19) will change over time. 
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The number of hogs procured by packer j from the spot market, 
jq2 , can be solved 

by substituting (1.18) into (1.10): 
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Similarly, substituting (1.16) into (1.11) yields 
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In particular, if 0≡tµ , i.e., there is no uncertainty in packer’s cost function, (1.21) 

becomes 
M

Nn j

β21 = .  Thus, in order for the spot market to exist, the parameterβ  must 

be strictly greater than one half under expectation.  That is, under risk neutrality, each 

contract producer will contract at least half of their hogs with a packer, given the contract 

price equals the spot-market price.   

Under risk neutrality, it can also be verified that the producers are indifferent 

between selling their hogs to the contract market and selling to the cash market under 

expectation.  Specifically, given the conditions (1.10)-(1.12), 
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Since )|(22 zpMqQ s
t

j
td = , the market clearing condition (1.12) requires 
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(1.23) s
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from which we can obtain 
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Hence, taking expectation on both sides of (1.24) implies 
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Under this scheme, each packer obtains profit 
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from which we can compute the expected profit 

(1.26)  
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and the variance of the profit 
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Note that the packers’ profit is positively related to the ratio MN / .  It reaches 

maximum when M=1 and N>>0.  On the other hand, when there are a sufficiently large 

number of packers in the market to compete for a finite number of hog producers, the 

packers’ net profits approach zero.  In addition, under the scheme, the packers can 

perfectly eliminate the uncertainty in the profit by adjusting the demands from the 

contract market and the cash market.  

b) Producers are risk averse 
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Recall that with constant absolute risk aversion, the expected utility )]([ WuE  is 

tantamount to )var(
2
1 WrEW − .  Given the fixed contract price wPw =)(  and 

00 )1()( qpqPwW s
tββ −+= , we have 010 )1( qpEqwEW s

tt−−+= ββ , and 

)var()1()var( 2
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from which we can compute the contract price 
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01
s
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s
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Note that the constant contract price is positively related to the expected market 

price and is negatively related to the coefficient of risk aversion r and the variance of the 

market price.  In other words, if producers are risk averse, packers can depress the 

contract price and make the producers indifferent between the contract market and the 

spot market.  Moreover, the more volatile the spot market price is, the smaller the 

contract price can be offered by the packers.  

Given the contract price and producers’ short-run supply function, each contract 

producer produces 

(1.30)  
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from which 
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Similarly, independent producers choose to produce  
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Under these conditions, a packer maximizes its net profit: 
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The first-order conditions to this problem are: 
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From condition (1.33), we can derive the quantity of hogs procured by packer j 

from the spot market, 
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From condition (1.34), we can get the number of producers that each packer contracts 

with, 
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Further, substituting (1.31) into (1.36) yields 

(1.37)  

01

1

01

1

1

1

)var()2(
2
11

}
)var()2(

2
11

)var()1)(2(
2
11

{

)var()2(
2
11

)var()2(
2
11

)]var()2(
2
1[

q

pr

pE

pr

pr
pEP

q

pr

pE

pr

prpE
pEP

n

t

s
t

s
tt

z

s
t

s
t

s
tt

z
z

t

s
t

s
tt

z

s
t

s
t

s
tt

s
tt

z
z

j

β
µ

ββ
βγ

ββ

ββ
α

β
µ

ββ
βγ

ββ

β
α

−

−+

−+

−−+
−

=

−

−+

−+

−
+−

=

−

−

−

−

−

 

01

1 )]var()1)(2(
2
11[)]var()2(

2
11[

qpE

prpEprP
t

s
ttz

s
t

s
tt

s
t

z
z

β
µ

βγ

ββββα
−

−−+−−+
=

−

−
. 

To derive the market equilibrium, supply must equal demand in the spot market.  

Specifically, the spot market demand is  

(1.38) )|(22 zpMqQ s
t

j
td = , 

and the spot market supply is  
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j
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Hence, the cash market clearing condition requires 
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Substituting (1.31), (1.32), (1.35), and (1.37) into (1.40) yields 

(1.41) 

 ]
)var()2(

2
11

)1([][ 1
11

s
t

s
tts

tt
s
ttt

z

s
t

z
z

pr

pE
pEpNE

pP
M

ββ
βµ

γ
α

−+
−−−=−

−
−

−−  

}
)]var()1)(2(

2
11[)]var()2(

2
11[

{
01

1

qpE

prpEprP
M t

s
ttz

s
t

s
tt

s
t

z
z

β
µ

βγ

ββββα
−

−−+−−+

−

−
. 

Moving the expected spot price and spot market price to the left side yields 
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Taking expectation 1−tE on both sides of (1.42) and applying the 

assumption 01 =− ttE µ , (1.42) becomes 
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from which we can compute the expected spot market price 
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Substituting (1.44) into (1.42) solves the spot market price, 
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Hence, we can compute the time-invariant variance of the spot market price,  
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Hence, the variance of spot market prices can be solved explicitly for each set of 

parameter values.  Specifically, denote the variance )var( s
tp  as 2
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The explicit equilibrium spot market price can be solved by substituting (1.31) and 

(1.47) into (1.45): 
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Further, the quantity of hogs procured by packer j from the spot market, jq2 , and the 

number of producers that each packer contracts with, jn1 , can be solved.  Specifically, 

substituting (1.48) into (1.35) yields 
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Denote the expectation of jq2 as 
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Similarly, substituting (1.31), (1.44), and (1.47) into (1.37) yields 
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from which we can get the expected number of producers with which each packer signs a 

contract, 

(1.52)  
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Given the conditions (1.31), (1.49), and (1.52), each packer obtains net profit under 

this fixed price contract:   
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from which we can computer the expected net profit 
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and the variance of each packer’s profit 
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1.4.2 Market-price Contracts 

Under this contract, the contract price is set equal to the spot market price.  That 

is, s
tpPw =)( .  Recall that, to implement a certain level of quality, the participation 

constraint (1.3) and the incentive compatibility constraint (1.4) must be satisfied.  

Specifically,  
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Under this market price contract, however,  
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Condition (1.55) states that under the market-price contract, a producer is 

indifferent between signing a low-quality contract with a packer and selling to the spot 

market, while condition (1.56) states that a producer would strictly prefer producing low-

quality hogs to producing high-quality hogs.  That is, producing high-quality hogs is not 

incentive

 

compatible under the market-price

 

contract.  Combing the conditions (1.55) and  

(1.56) implies that under the market-price contract it is optimal for a producer to produce 

low-quality hogs only.  

The analysis of this contract is similar to that described in section 1.4.1.  Recall that 

with constant absolute risk aversion, the expected utility )]([ WuE  is tantamount to 

)var(
2
1 WrEW − .  Given the market-price contract s

tpPw =)(  and 
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000 )1( qpqpqpW s
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s
t =−+= ββ , we have 01 qpEEW s

tt−= , and )var()var( 2
0

s
tpqW = .  

Note that offering the market-price contract raises the variance of a producer’s revenue 

relative to the constant contract price in section 1.4.1.   

Given this contract, the packer maximizes his net profit: 
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The first order conditions to this problem are: 
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From condition (1.57), we can derive the quantity of hogs procured by packer j 

from the spot market, 
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z

s
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z
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q µ
γ

α
−

−
=2 . 

From condition (1.58), we can determine the number of producers with which each 

packer contracts, 
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= . 

Similar to the fixed-price contract under risk neutrality, under the market-price contract, 

each producer produces 
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(1.61) s
tts pEqq 10 −== .  

The spot market equilibrium price can be derived by equating spot market demand 

and spot market supply. Specifically, the cash market clearing condition requires 
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Moving the expected spot market price and spot market price to the right side, 

(1.62) becomes 
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Thus, taking expectation 1−tE on both sides of (1.63) and using the assumption 

01 =− ttE µ  solves the expected spot market price: 
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Substituting (1.64) back into (1.63), we can obtain the spot market price 
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2
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Hence, the time-independent variance of the spot market price is 

(1.66) 22)var( µσγ z
s
tp = . 
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Further, the number of hogs procured by packer j from the spot market, 
jq2 can be 

solved by substituting (1.65) into (1.59): 
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Substituting (1.65) into (1.60) yields 
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Under this scheme, each packer obtains net profit 
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from which we can compute  
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and  

(1.70) 0)var( *
3 =Π . 

Similar to the fixed-price contract under risk neutrality, a packer can eliminate all 

the risk in the net profit by purchasing fixed amounts of hogs from both the contract 

market and the spot market.  However, compared to the fixed-price contract under risk 

neutrality, a packer earns strictly less profit due to the uncertainty introduced by setting 

the contract price equal to the spot market price. 

 

1.4.3 Formula-price Contracts with Quality Premium 

From the previous sections, we have shown that a fixed-contract price or a market-

price contract can only induce producers to produce low-quality hogs.  However, under a 

formula-price contract with quality premium, packers can induce high-quality hogs from 

contract-participating producers.  

Recall that we assume independent producers provide only low-quality hogs to the 

cash market, while contracted producers offer their hogs of a certain quality according to 

the contract.  Thus, in this section, we assume that once a producer signs a formula-price 

contract with price premium, he will produce high-quality hogs only.  However, for 

computational purposes, we assume the average quality of hogs in the cash market will 

be an arithmetic average of high quality and low quality.  Specifically,  
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(1.71) 
2

~ zzz +
= . 

The output function of each packer is still a linear function tzt QzQg α=)|( .  

Additionally, we assume the marginal product of finished hogs acquired from the spot 

market is 
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Similarly, the packers’ processing cost still takes the form 
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To simplify the analysis further, we assume that the formula-price contract takes a 

linear form in terms of the market price of the finished product, P.  More specifically, the 

contract price is  

(1.74) bPapPw s
t ++=)(  

Given these assumptions, each packer maximizes its net profit subject to each 

producer’s participation constraint and incentive compatibility constraint.  That is,  
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subject to 
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Before deriving the first-order conditions, the parameters {a, b} in the contract 

price can be derived as follows.  Given the contract price specified in (1.74), conditions 

(1.75) and (1.76) must be

 

binding because, otherwise, the packer can always reduce the

 contract price until both of the

 

constraints become equalities.  Given each producer’s 

gross revenue, )()1()( 0000 bPaqqpqpbPapqW s
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s
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Thus, the condition (1.75) is equivalent to  

(1.77) 

 ),,()var(
2
1

),()|()]var(
2
1)([

0
2
001

0
2
0001

qzvprqqpE

qzvzPdFprqbPaqqpE

s
t

s
tt

P

s
t

s
tt

−−=

−−++

−

Ω∈
−∫ β

 

or, 

(1.78) ),(),(]|[ 0000 qzvqzvzPEqbqa −=β+β . 

Similarly, the condition (1.76) becomes 

(1.79)  
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Thus, the parameters {a, b} in the contract price can be computed by the conditions 

(1.78) and (1.80).  Precisely, 
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Substituting (1.81) and (1.82) into (1.74) yields the contract price 
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Note that the optimal contract price under the formula-price contract contains two 

parts: one part is the spot market price, which is used as a base price in the formula-price 

contract; the other part is the quality premium, which is positively related to the 

difference between the realized price of finished products and the expected price of low-

quality finished products.   

Furthermore, given 2
00 ),( qcqzv z= , the contract price can be written as 
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Moreover, given the contract price (1.84) and producers’ short-run supply function, each 

contract producer produces 
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Again, independent producers choose to produce  
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Now, the first-order optimality conditions to this problem are ready to be derived.   

First, the optimal quantity of hogs demanded from the spot market, j
tq2 , must satisfy 
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Second, the number of producers that each packer contracts with, jn1 , must satisfy 
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from which we can obtain 
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Given conditions (1.86), (1.87), (1.89), and (1.91), the spot market price can be 

obtained by setting market demand equal to market supply in the spot market.  That is, 
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or, precisely,  

(1.93)  

].[

]
)(1

)1([

)(1

)(1
)(

~

~
~

1
1

1

1

1

t
z

s
t

z
z

zz

s
tts

tt

zz

s
tt

z

tz
zz

s
ttzzs

t
z

z
s
tt

pP
M

cc
pE

pE

cc
pE

cc
pEcc

pP
MpNE

µ
γ

α

β
βγ

µγ
β

α

−
−

=

−−
−−

−−

−
−−

−
−−

− −
−

−

−

−

 

Moving the expected spot market price and the spot market price to the left side, (1.93) 

becomes 

(1.94)  
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Taking the expectation operator 1−tE on both sides of (1.94) and applying the assumption 

01 =− ttE µ , we can get the expected spot market price,  
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Substituting (1.95) back into (1.94) solves the spot market price,  
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Hence, the variance of the spot market price can be computed as 
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Substituting (1.96) into (1.89) yields the quantity of hogs demanded from the spot market 

by each packer,  
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Similarly, substituting (1.81), (1.82), (1.86), and (1.96) into (1.91) yields the 

number of producers with which each packer signs a contract, 
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Further, we can compute each packer’s profit under the formula-price contract, 
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Hence, the expected profit under the formula price contract is 

(1.100)  
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and variance of each processor’s profit is 
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1.4.4 Cost-plus Contracts with Quality Premium 

A cost-plus contract consists of the feed costs and some quality premium or 

discount.  These contracts may also have a balancing clause where payments are made to 

contractors/processors when market prices are below the contract prices and vice versa.  

However, the balancing clause is ignored in the following analysis.  In this section, the 

initial assumptions are that a processor wishes to implement high quality and the cost-

plus contract takes a linear form: 

(1.102) bPacPw z ++= ~)( , 

where it is assumed that  

(1.103) 
2

~
zz
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+
= , 

represents the market average feed cost per unit of hog. 

Thus, each packer solves the following problem: 
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Similar to the formula-price contract, the constraints (1.104) and (1.105) can be 

used to derive the parameters {a, b} in the contract price.  Again, given the price structure 

specified in (1.102), conditions (1.104) and (1.105) must be

 

binding because, otherwise, 

the processor could always reduce the contract price until both become equalities.  Given 

the utility function with constant

 

absolute risk aversion and 
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Similarly, the condition (1.105) becomes 
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from which we can obtain 

(1.109)
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 Thus, the parameters {a, b} in the contract price can be solved as 
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Substituting (1.110) and (1.111) into (1.102) yields the contract price 
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Similar to the formula-price contract, the cost-plus contract price contains a base 

payment, which is constant under this contract, and a price premium that is positively 

related to the difference between the observed signal and the expected lowest possible 

signal.  Note that the market average feed cost, zc ~ , is always cancelled out
 
in the contract

 

price if it is constant.  Interestingly, the base payment under this contract takes the 

exactly same form as that under the fixed-price contract with risk aversion.   

Given the contract price (1.112) and producers’ short-run supply function, each 

contract producer produces 
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Again, independent producers choose to produce  
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Turning to the first-order conditions to this problem, the optimal quantity of hogs 
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Substituting the contract price (1.112) into (1.119) yields 
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Given the conditions (1.114), (1.115), (1.117), and (1.120), the spot market 

clearance requires that 
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Substituting (1.114), (1.115), (1.117), and (1.120) into (1.121) and simplifying yields 
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Further, (1.122) can be written as  
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Moving the expected spot market price and the spot market price to the left side, 

(1.123) becomes 
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Applying the expectation operator 1−tE  on both sides of (1.124) and using the 

assumption, 01 =− ttE µ , the expected spot market price is computed as 
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Substituting (1.125) back into (1.124) solves the spot market price: 
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Hence, the time-invariant variance of the spot market price is 

(1.127) 222
~ )]var()2(

2
1)(

2[)var( µσβ
β

γ s
t

zz
z

s
t pr

cc
p −+

−
−= , 

from which we can solve the variance explicitly: 
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Further, substituting (1.128) into (1.125) and (1.126) solves the explicit expected spot 

market price and the spot market price, respectively. 

Given the spot market price, the quantity of hogs demanded from the spot market 
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Similarly, substituting (1.114), (1.125), and (1.128) into (1.120) yields the number 

of producers with which each packer signs a contract, 
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Further, given this contract, each processor can obtain profit 

(1.131)
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from which we can compute the expected profit 

(1.132)  
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and the variance of each packer’s profit 

(1.133) 
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1.5 A Numerical Example and Results 

Based on the structural model for each type of contract formulated in the previous 

section, a numerical example is provided here to the various contracts’ impacts on the 

spot market.  Specifically, the following impacts are investigated: a) impact of the 

contract supply on the spot market price under each contract, b) impact of contract supply 

on producers’ and packers’ welfare under each contract, and c) impact of market power 

in terms of 
M
N on the performance of each contract. 

For simplicity, we assume that the randomness associated with the market price of 

the finished product, P, is governed by an exponential distribution function 

(1.134) zPe
z

zPf /1)|( −= , ,0 ∞<≤ P  and 0>z . 

For the numerical example, the values of parameters 

},,,,,,,,,,,,{ 2
µσγγααβ NMrcczz zzzzzz  are described in Table 1.2. 

Table 1.2 Parameters used in the numerical example 

z  4 z  3 

β  60%-95% zc  0.1 

zα  0.5 M 10 

zα  0.4 N 20, 50, 100 

zγ  0.2 2
µσ  0.5 

zγ  0.3 r 0.1-2 

zc  0.3   

 

Given these parameters, Table 1.3, Table 1.4, and Table 1.5 show the equilibrium 

prices and quantities from the numerical example with N=20, 50, 100, respectively.  In 
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addition, although the numerical example is conducted with the risk aversion parameter 

in the range 0.1 to 2, only the results for r = 0.5 are presented in each table.  The results 

for other values of r are similar or exactly same under some contracts to those with r = 

0.5.  Moreover, the numbers shown in each table are expected values given those 

parameters.   

 

1.5.1 Captive Supply and Spot Market Price 

Since the term “captive supplies” is usually used in the beef sector, we use 

“contract supply” here to represent the total amount of hogs transacted through contracts.  

As we discussed in section 1.2, several empirical studies have reported a negative 

relationship between captive supplies delivered from marketing agreements and forward 

contracts (e.g., Elam 1992, Schroeder, Jones, Mintert, and Barkley 1993, Ward, Koontz, 

and Schroeder 1996); however, some have found ambiguous results (e.g., Azzam 1998, 

Ward, Koontz, and Schroeder 1998).  These mixed results are partly due to different 

estimation techniques, data, and model specifications.  More importantly, none of those 

empirical models has dealt with the endogeneity problem which arises from the mutual 

interaction between captive supplies and spot market prices.  Thus, those statistical 

results are possibly biased.  The results that follow are based on an equilibrium model 

that accounts for this endogeneity problem.  Because of this reason, perhaps, the results 

contradict some of the previous findings.   
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1) Fixed-price contracts 

a)  Fixed-price contracts under risk neutrality 

With risk neutrality, the contract price takes the form 

(1.135) s
tt pEw 1−=  

Under this contract, the expected spot market price is the lowest among all types of 

contracts except the market price contract.  Moreover, both the contract supplies and the 

expected spot market price stay constant.  Therefore, contract supplies do not have any 

causal effect on the expected spot market price.  In addition, captive supplies do not 

affect the variance of the spot market price.  Thus, by producing low-quality hogs, a risk-

neutral producer is always indifferent between signing a contract and selling to the spot 

market regardless of values ofβ .  Hence, for eachβ , a packer can minimize his risk by 

adjusting jn1 ,the number of producers to sign a contract with, such that his expected 

demand from the contract market always equals that from the spot market.  In other 

words, under this contract, each packer optimally acquires half of the hogs from the 

contract market and half from the spot market.  As a result, the spot market equilibrium 

supply constitutes half of the total supply under expectation.    

b)  Fixed- price contracts under risk aversion 

Under this contract, the contract price is specified as 

(1.136) )var()2(
2
1

01
s
t

s
tt prqpEw β−−= − , 

which varies according to the parameters r and β .   

Figure 1.2 shows that both contract supplies and expected spot market prices 

decrease asβ  increases.  Figure 1.3 demonstrates that contract supplies have a positive 
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relationship with the expected spot market prices and the variance of the spot market 

prices.  In addition, their relationship appears to be represented by a linear function.  This 

effect can be explained as follows:  As the parameter β  increases, the processors have 

the incentive to raise the contract price to make the risk-averse producers indifferent 

between signing a contract and selling to the spot market.  Increases in the contract price 

reduce the quantity demanded by each processor from the contract market and, hence, 
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Figure 1.2 Impact of Beta on contract supplies and expected spot market price 
under the fixed-price contract with risk aversion 

 
raise the quantity supplied to the spot market.  Consequently, the quantity supplied to the 

spot market exceeds the quantity demanded from the spot market and the expected spot 

market price decreases.  Therefore, as shown in Figure 1.3, contract supplies through the 

fixed price contract are positively related to the expected spot market price. 
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Figure 1.3 Contract supplies vs. expected spot market price and variance of spot 
market prices under the fixed-price contract with risk aversion 

2) Market-price contracts 

Similar to the fixed-price contract with risk neutrality, contract supplies through the 

market-price contract do not affect the expected spot market price and the variance of the 

spot market price.   Recall that under the market-price contract, a contract producer is 

indifferent both ex ante and ex post between signing a contract and selling to the spot 

market, and strictly prefers to produce low-quality hogs regardless of the parameterβ .  

Hence, given any value of β , a processor optimally purchases half of his hogs from the 

contract market and half from the spot market under expectation by adjusting jn1 , the 

number of producers to sign a contract with.   Consequently, contract supplies through 

the market-price contract do not affect the expected market price.  Further, similar to the 

fixed-price contract under risk neutrality, contract supplies do not affect the variance of 

the spot market price. However, the market-price contract causes a smaller variance of 

spot market price relative to that under the fixed-price contract under risk neutrality.   
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3) Formula-price contracts with premium 

Figure 1.4 shows that an increase inβ  raises both contract supplies and expected 

spot market prices. Figure 1.5 shows that contract supplies are positively related to the 

expected spot market price and are negatively related to the variance of the spot market 

price under the formula-price contract.   
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Figure 1.4 Impact of Beta on contract supplies and expected spot market price 
under the formula-price contract 

These effects can be explained as follows: working through the participation 

constraint and the incentive compatibility constraint, as the parameter β  increases, the 

packers reduce the contract price to make the contract producers indifferent between  
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Figure 1.5 Captive supplies vs. expected spot market price and variance of spot 
market prices under the formula-price contract 

 
signing a contract and selling to the spot market.  Decreases in the contract price raise the 

quantity demanded by each processor from the contract market and, hence, reduce the 

quantity supplied to the spot market.  As a result, the quantity demanded from the spot 

market exceeds the quantity supplied to the spot market and the expected spot market 

price increases.  Further, each producer produces more hogs due to the increase in the 

expected spot market price and, additionally, contract producers raise their production 

more than independent producers.  Hence, an increase inβ  raises the amount of total 

contract supply. 

Note also that the expected market price under the formula-price contract is greater 

than those under the fixed-price contract and the market-price contract due to quality 

differences between the contract market and the cash market.  Moreover, the formula-

price contract causes the smallest variability of spot market prices among all types of 

contracts. 



 77

Another important property of this contract is that it makes the spot market thinner 

than the fixed-price contract and the market-price contract.  Given the example shown in 

Table 1.3, spot market supply accounts for about 40.5%, on average, of total supply.  

Therefore, this effect of the formula-price contract is consistent with what has been 

observed in reality.  However, instead of reducing spot market prices and making cash 

prices more volatile as claimed in several studies, these results show that the increased 

use of formula-price contracts raises expected spot market prices and reduces the 

variability of spot market prices.   Thus, this result demonstrates that the endogeneity 

problem and asymmetric information concerning hog qualities that have not been taken 

into account in past studies play a critical role in determining the relationship between 

contracting and the spot market.    

4) Cost-plus contract with premium 

Similar to the formula-price contract, Figure 1.6 shows that both contract supply 

and expected spot market price increase asβ  increases.  Further, increases in contract 

supply through the cost-plus contract raises the expected spot market price as well 

(Figure 1.7).  However, unlike the formula-price contract, contract supplies under cost-

plus contracts raise the variance of spot market prices as well. 

Recall that in the section 1.4.4, the condition (1.112) implies that the parameter β  is 

negatively related to the contract price given the parameters specified in Table 1.2.   

Thus, the contract price decreases as β  increases.  Thus, each packer purchases more 

hogs from the contract market and, hence, the quantity supplied to the spot market 

decreases.  Consequently, the excess demand in the spot market drives up the equilibrium 

spot market price.  Moreover, an increase in the expected spot market price raises the 
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Figure 1.6 Impact of Beta on contract supplies and expected spot market price 
under the cost-plus contract 
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Figure 1.7 Contract supplies vs. expected spot market price and variance of spot 
market prices under the cost-plus contract 

 

production by each producer and contract producers offer more hogs than independent 

producers.  Thus, increases inβ  raise the total amount of contract supply as well.   
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Therefore, contract supplies through the cost-plus contract are positively related to the 

expected spot market price.   

Note that for each r and β , the expected spot market price under a cost-plus 

contract is the greatest among all types of contracts.  However, the variance of the spot 

market price is also greater than that under the formula-price contract and the market-

price contract.   Similar to the formula-price contract, the spot market becomes thinner 

under the cost plus contract.  In addition, the spot market is the thinnest under the cost-

plus contract among all types of contracts.  

 

1.5.2 Packers’ and Producers’ Welfare 

1) Fixed-price contract 

a) Fixed-price contract under risk neutrality 

Under the fixed-price contract, since changes in the parameter β  do not affect the 

spot market price and contract supplies, packers’ expected profit stays constant asβ  

increases.  For each r andβ , packers obtain a relatively greater profit than producers.  In 

addition, packers can eliminate all risk in their profit by adjusting the quantities 

demanded from the spot market and the contract market.   

On the other hand, changes in β  do not affect producers’ expected utility, and 

contract producers earn the same expected utility as independent producers.  However, 

changes inβ  have different effects on the variability of producers’ incomes.  Recall that 

a contract producer earns income 00 )1()( qpqPwW s
tββ −+= .  Thus, asβ increases, 

contract producers face a smaller variance of their income relative to independent 
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producers.  Therefore, under the fixed-price contract, a risk neutral contract producer 

prefers to contract more of his hogs with a packer.   

b) Fixed-price contract under risk aversion 

Figure 1.8 shows that increase in contract supplies not only raises packers’ expected 

profit, but also raises the variance of packers’ profit.  Thus, an increase in β causes a 

tradeoff between packers’ profit and its variance compared to the case under risk 

neutrality. 
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Figure 1.8 Contract supplies vs. packers’ expected profit and variance of packers’ 
profit under the fixed-price contract with risk aversion 

 

On the other hand, as each contract producer signs a greater proportion of his hogs 

with a packer, total contract supply decreases and both contract producers and 

independent producers obtain a smaller expected utility.  Hence, contract supply is 

positively related to producers’ expected utility, and each contract producer prefers a 

small proportion of contracting under this contract.  Further, since packers can depress 

the contract price as producers’ degree of risk aversion increases, packers capture more 
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surplus and, hence, contract producers earn a lower utility relative to independent 

producers under this contract.  In addition, increases in contract supply raise the variance 

of producers’ income.  However, since the contract price is fixed for each r andβ , 

contract producers face a relatively smaller variance of their income than independent 

producers.   Figure 1.9 shows these impacts of contract supplies on both contract 

producers’ and independent producers’ profit.   
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Figure 1.9 Contract supplies vs. producers’ expected profit and variance of 
producers’ income under the fixed-price contracts with risk aversion 

 

2) Market-price contract 

Similar to the fixed-price contract with risk neutrality, changes inβ  do not affect 

the amount of contract supplies, packers’ profit, and producers’ profit under the market-

price contract.  Additionally, asβ  increases, the variance of both contract producers’ and 

independent producers’ income stays constant.  Compared to the fixed-price contract with 

risk neutrality, however, contract producers face a larger variance of income relative to 

independent producers under the market-price contract.   Further, under the market-price 
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contract, both packers and producers obtain smaller profit or utility relative to those under 

the fixed-price contract with risk neutrality; and packers earn the smallest profit among 

all types of contracts.     

3) Formula-price contract with premium 

Figure 1.10 shows that both packers’ expected profit and variance of packers’ profit 

increase as contract supplies increase.  On the other hand, Figure 1.11 shows contract 

supply is positively related to producers’ expected utility and variance of producers’ 

income.  Compared with independent producers, contract producers obtain a greater 

expected utility, but also face a greater variance of their income.   
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Figure 1.10 Contract supplies vs. packers’ expected profit and variance of 
packers’ profit under the formula-price contract 
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Figure 1.11 Contract supplies vs. producers’ expected profit and variance of 
producers’ income under the formula-price contract 

 

Because packers can acquire high-quality hogs from the contract market, packers 

earn a greater profit than that under the fixed-price contract and the market-price contract 

due to greater profitability of high-quality hogs.  Similarly, although producers incur high 

production costs by providing high-quality hogs to the market, both contract producers 

and independent producers can obtain a greater utility from high spot market prices and 

high contract prices.  Risk-averse producers also benefit from low variance of spot 

market prices.  In addition, given the short-run supply function, both contract producers 

and independent producers offer more hogs to the contract market and the spot market. 

4) Cost-plus contract with premium 

The performance of the cost-plus contract is very similar to the formula price 

contract.  Figure 1.12 shows that increased contract supplies raise packers’ profit and 

variance of packers’ profit.  In addition, the variance of packers’ profit rises relatively  
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Figure 1.12 Contract supplies vs. packers’ expected profit and variance of 
packers’ profit under the cost-plus contract 

 

slower than packers’ expected profit as contract supplies increase.  The cost-plus contract 

offers the greatest profit to packers among all types of contracts.  Compared to the 

formula price contract, however, packers incur a greater variance of profit.   

Figure 1.13 shows that both contract producers’ and independent producers’ 

expected utilities increase as contract supplies increase.  However, increased contract 

supplies raise the variance of independent producers’ income, while they reduce the 

variance of contract producers’ income.   In addition, contract producers obtain a greater 

expected utility and a greater variance of income relative to independent producers for 

each level of contract supply.   Compared to the formula-price contract, for each value 

of β  and corresponding level of contract supply, contract producers earn a lower 

expected utility but face a smaller variance of income, while independent producers 

obtain a greater expected utility but face a greater variance of income.   
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Figure 1.13 Contract supplies vs. producers’ expected profit and variance of 
producers’ income under the cost-plus contract 

 

1.5.3 Impacts of Market Power  

To demonstrate the effects of market power on the performance of the five types of 

contracts, one can vary, N/M, the ratio between the number of producers and the number 

of packers, given the same set of parameters.  As N/M increases, packers gain more 

market power in the sense that they can manipulate the market equilibrium more 

significantly.  Without loss of generality, fix the number of packers M = 10 and set the 

number of producers N = 20, 50, 100, as shown in Table 1.3, 1.4, and 1.5.  Based on this 

example, the increase in packers’ market power has the following effects: 

1) Expected spot market prices 

As shown in the tables, for each value ofβ  under each type of contract, the 

expected spot market price is pushed down as N increases.  However, the variance of spot 

market price stays unchanged.  As a result, packers purchase more hogs from both the 
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contract market and the spot market due to the lower prices and, hence, both the contract 

market and the spot market expand.   

2) Packers’ and producers’ profit 

As N increases, packers gain market power as buyers; hence, more surplus is 

captured by packers through both the contract market and the spot market.  Thus, for each 

value of β  under each type of contract, packers obtain a greater profit as N increases.  

However, each packer incurs a greater variance of profit under each contract as N 

increases. On the other hand, each producer earns a smaller expected utility due to the 

reduced spot market price and the reduced amount of hogs produced by each producer.  

However, each producer faces a smaller variance of income as well.   

Based on the results from the sections 1.5.1 to 1.5.3, Table 1.6 summarizes the 

impacts of contract supplies on spot market price, packers’ profit, and producers’ utilities.   

 

1.6 Conclusion and Discussion 

This essay investigates the relationship between contracting and the spot market 

under four different types of contracts, including fixed-price contracts, market-price 

contracts, formula-price contracts, and cost-plus contracts.  In addition, asymmetric 

information concerning unobservable hog qualities is introduced into the model.  More 

precisely, it is assumed that producers have more information about the quality of their 

hogs than packers before delivery or slaughtering.  For each contract, a principal-agent 

framework is used to derive the optimal conditions and the market equilibrium is derived 

by equating market demand to market supply in the spot market.   



 87

Based on the structural model described in section 1.4 and the numerical example in 

section 1.5, the major findings are summarized as follows: 

First, different from the results in most past studies, this essay concludes that 

contract supplies raise the expected spot market price under the formula-price contract 

and reduce the variance of spot market price.   Therefore, the results in these past studies 

are likely biased due to the endogenous relationship between contract supplies and the 

spot market price.  In addition, contract supplies also have a positive relationship with the 

expected spot market price under the cost-plus contract; while contract supplies have no 

causal effect on the expected spot market price under the fixed-price contract and the 

market-price contract.  

Second, several studies have reported that producers complain about formula-price 

contracts because they do not provide price protection.  However, this essay finds that the 

formula-price contract offers the 2nd highest expected profit to packers, highest expected 

utility to contract producers, and the 2nd highest expected utility to independent producers 

relative to other contracts.  Both packers and producers prefer the formula-price contract 

to the fixed-price contract or the market-price contact if asymmetric information about 

hog quality is taken into account.   Compared to the cost-plus contract, the formula-price 

contract offers a smaller expected profit to packers and a lower expected utility to 

independent producers, but offers a greater expected utility to contract producers.  In fact, 

performances of the cost-plus contract and the formula-price contract are similar and both 

are better than the fixed price contract and the market price contract.   

Third, impacts of relative market power of packers and producers are simulated by 

varying the number of producers, N, in the market.  We find that increases of packers’ 
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market power by raising N depress the expected market price and producers’ expected 

utility, but raise packers’ expected profit.  However, the relative superiority of each 

contract is the same regardless of the relative market power of packers and producers.   

Compared to the past studies, the contributions of this essay are twofold.  First, this 

essay not only investigates the relationship between hog contracting and the hog spot 

market in particular, but also provides a general methodology for this type of problem.  

Methods in existing literatures dealing with this problem include various statistical 

models.  However, different from most studies, this essay embeds a principal-agent 

model of processor-producer behavior within a general equilibrium model of the hog 

market.  In the general equilibrium framework, this essay acknowledges the endogenous 

relationship between contract supplies and the spot market, which had been ignored, in 

general, in past studies.   Second, this essay contributes to the existing literature by 

incorporating asymmetric information concerning hog qualities into the equilibrium 

model.  Again, this has generally been ignored in past studies due to limitations of model 

structures.   However, the results established in this essay demonstrate that both the 

endogeneity problem and asymmetric information play a critical role in determining the 

relationship between contracting and the spot market.  In addition, the results found in 

this essay are consistent with what we observe in the real world and justify the dominant 

use of formula-price contracts in the hog sector.   

This essay uses a simple structural approach to examine the relationship between 

contracting and the spot market.  However, a few generalizations of the model could be 

made.  For example, under the formula-price contract and the cost-plus contract, the 

market average quality of hogs is computed as the arithmetic mean of high quality and 
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low quality.  Instead, a weighted-average quality of hogs sold by contract producers and 

independent producers to the spot market could be used.  Another generalization is that 

the quantity of hogs offered by each producer could be determined by maximizing each 

producer’s expected utility instead of using the short-run supply function.  However, any 

of these modifications would significantly complicate the analysis.  Thus, we will not 

discuss them in this essay. 
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Table 1.3 A numerical example of the model (r =0.5, N=20) 

r beta Ep Varp q0 qs q2 n1 
Contract 
supply 

Fixed price contracts with risk neutrality 
0 0.6 0.92308 0.18 0.92308 0.92308 0.92308 1.6667 9.2308
0 0.65 0.92308 0.18 0.92308 0.92308 0.92308 1.5385 9.2308
0 0.7 0.92308 0.18 0.92308 0.92308 0.92308 1.4286 9.2308
0 0.75 0.92308 0.18 0.92308 0.92308 0.92308 1.3333 9.2308
0 0.8 0.92308 0.18 0.92308 0.92308 0.92308 1.25 9.2308
0 0.85 0.92308 0.18 0.92308 0.92308 0.92308 1.1765 9.2308
0 0.9 0.92308 0.18 0.92308 0.92308 0.92308 1.1111 9.2308
0 0.95 0.92308 0.18 0.92308 0.92308 0.92308 1.0526 9.2308

Fixed price contracts with risk aversion 
0.5 0.6 0.95478 0.19232 0.91772 0.95478 0.81739 1.8584 10.233
0.5 0.65 0.95348 0.19184 0.91497 0.95348 0.82174 1.7137 10.192
0.5 0.7 0.95219 0.19137 0.91246 0.95219 0.82603 1.5894 10.152
0.5 0.75 0.95092 0.1909 0.9102 0.95092 0.83026 1.4814 10.113
0.5 0.8 0.94967 0.19043 0.90817 0.94967 0.83443 1.3865 10.074
0.5 0.85 0.94844 0.18996 0.90636 0.94844 0.83853 1.3026 10.035
0.5 0.9 0.94722 0.1895 0.90479 0.94722 0.84259 1.2277 9.9976
0.5 0.95 0.94602 0.18904 0.90343 0.94602 0.84659 1.1605 9.9603

Market price contracts 
0.5 0.6 0.92308 0.045 0.92308 0.92308 0.92308 1.6667 9.2308
0.5 0.65 0.92308 0.045 0.92308 0.92308 0.92308 1.5385 9.2308
0.5 0.7 0.92308 0.045 0.92308 0.92308 0.92308 1.4286 9.2308
0.5 0.75 0.92308 0.045 0.92308 0.92308 0.92308 1.3333 9.2308
0.5 0.8 0.92308 0.045 0.92308 0.92308 0.92308 1.25 9.2308
0.5 0.85 0.92308 0.045 0.92308 0.92308 0.92308 1.1765 9.2308
0.5 0.9 0.92308 0.045 0.92308 0.92308 0.92308 1.1111 9.2308
0.5 0.95 0.92308 0.045 0.92308 0.92308 0.92308 1.0526 9.2308

Formula price contracts 
0.5 0.6 1.2093 0.025826 1.5117 1.2093 1.4627 1.581 14.339
0.5 0.65 1.2252 0.02572 1.5315 1.2252 1.3993 1.525 15.181
0.5 0.7 1.2393 0.025632 1.5492 1.2393 1.3427 1.4665 15.903
0.5 0.75 1.252 0.025558 1.5651 1.252 1.2918 1.4083 16.531
0.5 0.8 1.2635 0.025494 1.5794 1.2635 1.2459 1.3519 17.082
0.5 0.85 1.2739 0.02544 1.5924 1.2739 1.2043 1.298 17.57
0.5 0.9 1.2834 0.025392 1.6042 1.2834 1.1664 1.247 18.005
0.5 0.95 1.2921 0.02535 1.6151 1.2921 1.1318 1.199 18.396

Cost plus contracts 
0.5 0.6 1.2324 0.090122 1.5049 1.2324 1.3705 1.7358 15.673
0.5 0.65 1.2491 0.092842 1.5226 1.2491 1.3037 1.6679 16.507
0.5 0.7 1.2638 0.095181 1.5381 1.2638 1.2447 1.5989 17.215
0.5 0.75 1.2769 0.097209 1.5519 1.2769 1.1926 1.5313 17.823
0.5 0.8 1.2884 0.098978 1.5641 1.2884 1.1462 1.4664 18.349
0.5 0.85 1.2988 0.10053 1.5751 1.2988 1.1049 1.4048 18.808
0.5 0.9 1.308 0.1019 1.585 1.308 1.068 1.3466 19.21
0.5 0.95 1.3163 0.10312 1.5941 1.3163 1.035 1.2919 19.565
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Table 1.3 (Cont.) 

r beta 
spot 

supply 
packer 
profit 

Varprof 
(packer) 

utility1 
(contract 
producer) varInc1 

utility2 
(indep. 

Producer) varInc2 
Fixed price contracts with risk neutrality 

0 0.6 9.2308 0.25562 0 0.76686 0.02454 0.76686 0.15337
0 0.65 9.2308 0.25562 0 0.76686 0.018788 0.76686 0.15337
0 0.7 9.2308 0.25562 0 0.76686 0.013804 0.76686 0.15337
0 0.75 9.2308 0.25562 0 0.76686 0.0095858 0.76686 0.15337
0 0.8 9.2308 0.25562 0 0.76686 0.0061349 0.76686 0.15337
0 0.85 9.2308 0.25562 0 0.76686 0.0034509 0.76686 0.15337
0 0.9 9.2308 0.25562 0 0.76686 0.0015337 0.76686 0.15337
0 0.95 9.2308 0.25562 0 0.76686 0.00038343 0.76686 0.15337

Fixed price contracts with risk aversion 
0.5 0.6 8.1739 0.26773 0.0010246 0.75151 0.025916 0.77662 0.17532
0.5 0.65 8.2174 0.26714 0.00093658 0.74853 0.019674 0.7746 0.17441
0.5 0.7 8.2603 0.26657 0.00085442 0.74575 0.01434 0.77262 0.17351
0.5 0.75 8.3026 0.26601 0.00077774 0.74314 0.0098845 0.77067 0.17262
0.5 0.8 8.3443 0.26547 0.00070619 0.74072 0.0062824 0.76875 0.17174
0.5 0.85 8.3853 0.26495 0.00063946 0.73847 0.0035112 0.76686 0.17088
0.5 0.9 8.4259 0.26444 0.00057727 0.73639 0.0015513 0.765 0.17003
0.5 0.95 8.4659 0.26395 0.00051934 0.73448 0.00038574 0.76317 0.16919

Market price contracts 
0.5 0.6 9.2308 0.10562 0 0.75728 0.038343 0.75728 0.038343
0.5 0.65 9.2308 0.10562 0 0.75728 0.038343 0.75728 0.038343
0.5 0.7 9.2308 0.10562 0 0.75728 0.038343 0.75728 0.038343
0.5 0.75 9.2308 0.10562 0 0.75728 0.038343 0.75728 0.038343
0.5 0.8 9.2308 0.10562 0 0.75728 0.038343 0.75728 0.038343
0.5 0.85 9.2308 0.10562 0 0.75728 0.038343 0.75728 0.038343
0.5 0.9 9.2308 0.10562 0 0.75728 0.038343 0.75728 0.038343
0.5 0.95 9.2308 0.10562 0 0.75728 0.038343 0.75728 0.038343

Formula price contracts 
0.5 0.6 14.627 0.362 1.72E-05 1.5848 0.059016 1.3068 0.03777
0.5 0.65 13.993 0.36417 3.39E-05 1.6267 0.060323 1.3413 0.038607
0.5 0.7 13.427 0.3672 5.35E-05 1.6645 0.061513 1.3725 0.039369
0.5 0.75 12.918 0.37079 7.48E-05 1.6989 0.062601 1.4008 0.040064
0.5 0.8 12.459 0.37474 9.71E-05 1.7303 0.063596 1.4267 0.040701
0.5 0.85 12.043 0.37889 0.00011991 1.7589 0.064509 1.4503 0.041285
0.5 0.9 11.664 0.38316 0.00014276 1.7852 0.065349 1.4719 0.041823
0.5 0.95 11.318 0.38745 0.00016541 1.8094 0.066124 1.4919 0.042319

Cost plus contracts 
0.5 0.6 13.705 0.51088 0.0027558 1.5771 0.032655 1.3327 0.13688
0.5 0.65 13.037 0.51765 0.0044452 1.6162 0.026366 1.368 0.14485
0.5 0.7 12.447 0.52474 0.0063165 1.651 0.020267 1.3995 0.15203
0.5 0.75 11.926 0.53188 0.0082892 1.6822 0.014632 1.4277 0.15849
0.5 0.8 11.462 0.53891 0.010303 1.7101 0.0096858 1.453 0.16431
0.5 0.85 11.049 0.5457 0.012313 1.7352 0.0056117 1.4757 0.16958
0.5 0.9 10.68 0.55219 0.014288 1.758 0.0025601 1.4962 0.17434
0.5 0.95 10.35 0.55835 0.016204 1.7786 0.00065509 1.5146 0.17866
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Table 1.4 A numerical example of the model (r =0.5, N=50) 

r beta Ep Varp q0 qs q2 n1 
Contract 
supply 

Fixed price contracts with risk neutrality 
0 0.6 0.6857 0.18 0.6857 0.6857 1.7143 4.1667 17.143
0 0.65 0.6857 0.18 0.6857 0.6857 1.7143 3.8462 17.143
0 0.7 0.6857 0.18 0.6857 0.6857 1.7143 3.5714 17.143
0 0.75 0.6857 0.18 0.6857 0.6857 1.7143 3.3333 17.143
0 0.8 0.6857 0.18 0.6857 0.6857 1.7143 3.125 17.143
0 0.85 0.6857 0.18 0.6857 0.6857 1.7143 2.9412 17.143
0 0.9 0.6857 0.18 0.6857 0.6857 1.7143 2.7778 17.143
0 0.95 0.6857 0.18 0.6857 0.6857 1.7143 2.6316 17.143

Fixed price contracts with risk aversion 
0.5 0.6 0.7092 0.19232 0.6816 0.7092 1.6362 4.3747 17.891
0.5 0.65 0.7082 0.19184 0.6796 0.7082 1.6393 4.0431 17.86
0.5 0.7 0.7073 0.19137 0.6778 0.7073 1.6425 3.7581 17.83
0.5 0.75 0.7063 0.1909 0.6761 0.7063 1.6455 3.5103 17.8
0.5 0.8 0.7054 0.19043 0.6746 0.7054 1.6486 3.2928 17.77
0.5 0.85 0.7045 0.18996 0.6733 0.7045 1.6516 3.1001 17.742
0.5 0.9 0.7036 0.1895 0.6721 0.7036 1.6546 2.9283 17.713
0.5 0.95 0.7028 0.18904 0.6711 0.7028 1.6575 2.7739 17.685

Market price contracts 
0.5 0.6 0.6857 0.045 0.6857 0.6857 1.7143 4.1667 17.143
0.5 0.65 0.6857 0.045 0.6857 0.6857 1.7143 3.8462 17.143
0.5 0.7 0.6857 0.045 0.6857 0.6857 1.7143 3.5714 17.143
0.5 0.75 0.6857 0.045 0.6857 0.6857 1.7143 3.3333 17.143
0.5 0.8 0.6857 0.045 0.6857 0.6857 1.7143 3.125 17.143
0.5 0.85 0.6857 0.045 0.6857 0.6857 1.7143 2.9412 17.143
0.5 0.9 0.6857 0.045 0.6857 0.6857 1.7143 2.7778 17.143
0.5 0.95 0.6857 0.045 0.6857 0.6857 1.7143 2.6316 17.143

Formula price contracts 
0.5 0.6 0.9449 0.0258 1.1812 0.9449 2.5202 4.6658 33.067
0.5 0.65 0.9587 0.0257 1.1984 0.9587 2.4653 4.3174 33.629
0.5 0.7 0.9708 0.0256 1.2135 0.9708 2.4167 4.017 34.123
0.5 0.75 0.9816 0.0256 1.2270 0.9816 2.3736 3.7555 34.56
0.5 0.8 0.9913 0.0255 1.2391 0.9913 2.335 3.5258 34.949
0.5 0.85 0.9999 0.0254 1.2499 0.9999 2.3003 3.3225 35.299
0.5 0.9 1.0078 0.0254 1.2597 1.0078 2.2689 3.1413 35.614
0.5 0.95 1.0149 0.0254 1.2686 1.0149 2.2403 2.9787 35.9

Cost plus contracts 
0.5 0.6 0.9640 0.0901 1.1772 0.9640 2.4438 4.8186 34.035
0.5 0.65 0.9783 0.0928 1.1925 0.9783 2.3869 4.465 34.609
0.5 0.7 0.9907 0.0952 1.2057 0.9907 2.3373 4.1595 35.106
0.5 0.75 1.0016 0.0972 1.2173 1.0016 2.2937 3.8927 35.539
0.5 0.8 1.0112 0.0990 1.2275 1.0112 2.2553 3.6577 35.919
0.5 0.85 1.0197 0.1005 1.2366 1.0197 2.2213 3.4491 36.254
0.5 0.9 1.0272 0.1019 1.2448 1.0272 2.191 3.2625 36.55
0.5 0.95 1.0340 0.1031 1.2522 1.0340 2.164 3.0945 36.813



 93

Table 1.4 (Cont.) 

r beta 
spot 

supply 
packer 
profit 

Varprof 
(packer) 

utility1 
(contract 
producer) varInc1 

utility2 
(indep. 

Producer) varInc2 
Fixed price contracts with risk neutrality 

0 0.6 17.143 0.88163 0 0.42318 1.354E-02 0.4232 0.0846
0 0.65 17.143 0.88163 0 0.42318 1.037E-02 0.4232 0.0846
0 0.7 17.143 0.88163 0 0.42318 7.617E-03 0.4232 0.0846
0 0.75 17.143 0.88163 0 0.42318 5.290E-03 0.4232 0.0846
0 0.8 17.143 0.88163 0 0.42318 3.386E-03 0.4232 0.0846
0 0.85 17.143 0.88163 0 0.42318 1.904E-03 0.4232 0.0846
0 0.9 17.143 0.88163 0 0.42318 8.464E-04 0.4232 0.0846
0 0.95 17.143 0.88163 0 0.42318 2.116E-04 0.4232 0.0846

Fixed price contracts with risk aversion 
0.5 0.6 16.362 0.89214 8.24E-05 0.41457 1.430E-02 0.4284 0.0967
0.5 0.65 16.393 0.89162 7.39E-05 0.41295 1.085E-02 0.4273 0.0962
0.5 0.7 16.425 0.89111 6.62E-05 0.41144 7.912E-03 0.4263 0.0957
0.5 0.75 16.455 0.89063 5.92E-05 0.41002 5.454E-03 0.4252 0.0952
0.5 0.8 16.486 0.89016 5.29E-05 0.40871 3.466E-03 0.4242 0.0948
0.5 0.85 16.516 0.88972 4.71E-05 0.40748 1.938E-03 0.4232 0.0943
0.5 0.9 16.546 0.88928 4.19E-05 0.40635 8.560E-04 0.4221 0.0938
0.5 0.95 16.575 0.88886 3.72E-05 0.4053 2.129E-04 0.4211 0.0934

Market price contracts 
0.5 0.6 17.143 0.73163 0 0.41789 0.021159 0.4179 0.0212
0.5 0.65 17.143 0.73163 0 0.41789 0.021159 0.4179 0.0212
0.5 0.7 17.143 0.73163 0 0.41789 0.021159 0.4179 0.0212
0.5 0.75 17.143 0.73163 0 0.41789 0.021159 0.4179 0.0212
0.5 0.8 17.143 0.73163 0 0.41789 0.021159 0.4179 0.0212
0.5 0.85 17.143 0.73163 0 0.41789 0.021159 0.4179 0.0212
0.5 0.9 17.143 0.73163 0 0.41789 0.021159 0.4179 0.0212
0.5 0.95 17.143 0.73163 0 0.41789 0.021159 0.4179 0.0212

Formula price contracts 
0.5 0.6 25.202 1.7763 5.413E-04 0.96761 0.036032 0.7979 0.0231
0.5 0.65 24.653 1.7796 5.431E-04 0.99601 0.036936 0.8213 0.0236
0.5 0.7 24.167 1.7834 5.491E-04 1.0214 0.037746 0.8422 0.0242
0.5 0.75 23.736 1.7876 5.577E-04 1.0443 0.038478 0.8610 0.0246
0.5 0.8 23.35 1.7919 5.678E-04 1.0649 0.03914 0.8781 0.0251
0.5 0.85 23.003 1.7963 5.789E-04 1.0837 0.039743 0.8935 0.0254
0.5 0.9 22.689 1.8008 5.905E-04 1.1008 0.040294 0.9076 0.0258
0.5 0.95 22.403 1.8051 6.023E-04 1.1164 0.040799 0.9205 0.0261

Cost plus contracts 
0.5 0.6 24.438 1.9354 0.0323 0.96506 1.998E-02 0.8155 0.0838
0.5 0.65 23.869 1.9427 0.0339 0.99136 1.617E-02 0.8391 0.0889
0.5 0.7 23.373 1.95 0.0356 1.0145 1.245E-02 0.8600 0.0934
0.5 0.75 22.937 1.9571 0.0372 1.035 9.003E-03 0.8785 0.0975
0.5 0.8 22.553 1.964 0.0389 1.0533 5.966E-03 0.8949 0.1012
0.5 0.85 22.213 1.9705 0.0404 1.0696 3.459E-03 0.9097 0.1045
0.5 0.9 21.91 1.9766 0.0419 1.0843 1.579E-03 0.9228 0.1075
0.5 0.95 21.64 1.9823 0.0434 1.0976 4.043E-04 0.9347 0.1103
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Table 1.5 A numerical example of the model (r =0.5, N=100) 

r beta Ep Varp q0 qs q2 n1 
Contract 
supply 

Fixed price contracts with risk neutrality 
0 0.6 0.48 0.18 0.48 0.48 2.4 8.3333 24
0 0.65 0.48 0.18 0.48 0.48 2.4 7.6923 24
0 0.7 0.48 0.18 0.48 0.48 2.4 7.1429 24
0 0.75 0.48 0.18 0.48 0.48 2.4 6.6667 24
0 0.8 0.48 0.18 0.48 0.48 2.4 6.25 24
0 0.85 0.48 0.18 0.48 0.48 2.4 5.8824 24
0 0.9 0.48 0.18 0.48 0.48 2.4 5.5556 24
0 0.95 0.48 0.18 0.48 0.48 2.4 5.2632 24

Fixed price contracts with risk aversion 
0.5 0.6 0.4963 0.1923 0.4771 0.4963 2.3456 8.5685 24.526
0.5 0.65 0.4957 0.1918 0.4757 0.4957 2.3477 7.9255 24.504
0.5 0.7 0.4950 0.1914 0.4744 0.4950 2.3499 7.3726 24.482
0.5 0.75 0.4944 0.1909 0.4732 0.4944 2.3520 6.8919 24.461
0.5 0.8 0.4938 0.1904 0.4722 0.4938 2.3541 6.4699 24.44
0.5 0.85 0.4932 0.1900 0.4713 0.4932 2.3562 6.0960 24.42
0.5 0.9 0.4925 0.1895 0.4705 0.4925 2.3582 5.7625 24.399
0.5 0.95 0.4919 0.1890 0.4698 0.4919 2.3603 5.4628 24.38

Market price contracts 
0.5 0.6 0.48 0.045 0.48 0.48 2.4 8.3333 24
0.5 0.65 0.48 0.045 0.48 0.48 2.4 7.6923 24
0.5 0.7 0.48 0.045 0.48 0.48 2.4 7.1429 24
0.5 0.75 0.48 0.045 0.48 0.48 2.4 6.6667 24
0.5 0.8 0.48 0.045 0.48 0.48 2.4 6.25 24
0.5 0.85 0.48 0.045 0.48 0.48 2.4 5.8824 24
0.5 0.9 0.48 0.045 0.48 0.48 2.4 5.5556 24
0.5 0.95 0.48 0.045 0.48 0.48 2.4 5.2632 24

Formula price contracts 
0.5 0.6 0.6926 0.0258 0.8657 0.6926 3.5297 9.8072 50.942
0.5 0.65 0.7036 0.0257 0.8795 0.7036 3.4855 8.9712 51.288
0.5 0.7 0.7133 0.0256 0.8916 0.7133 3.4469 8.2678 51.6
0.5 0.75 0.7218 0.0256 0.9022 0.7218 3.4129 7.6675 51.882
0.5 0.8 0.7293 0.0255 0.9116 0.7293 3.3827 7.1490 52.139
0.5 0.85 0.7361 0.0254 0.9201 0.7361 3.3557 6.6966 52.372
0.5 0.9 0.7421 0.0254 0.9277 0.7421 3.3314 6.2983 52.585
0.5 0.95 0.7476 0.0254 0.9346 0.7476 3.3095 5.9450 52.781

Cost plus contracts 
0.5 0.6 0.7073 0.0901 0.8637 0.7073 3.4706 9.9566 51.6
0.5 0.65 0.7186 0.0928 0.8760 0.7186 3.4256 9.1269 51.966
0.5 0.7 0.7283 0.0952 0.8864 0.7283 3.3866 8.4271 52.291
0.5 0.75 0.7368 0.0972 0.8955 0.7368 3.3527 7.8284 52.579
0.5 0.8 0.7443 0.0990 0.9035 0.7443 3.3230 7.3099 52.835
0.5 0.85 0.7508 0.1005 0.9105 0.7508 3.2968 6.8562 53.064
0.5 0.9 0.7566 0.1019 0.9168 0.7566 3.2736 6.4555 53.268
0.5 0.95 0.7618 0.1031 0.9225 0.7618 3.2530 6.0988 53.45
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Table 1.5 (Cont.) 

r beta 
spot 

supply 
packer 
profit 

Varprof 
(packer) 

utility1 
(contract 
producer) varInc1 

utility2 
(indep. 

Producer) varInc2 
Fixed price contracts with risk neutrality 

0 0.6 24 1.728 0 0.2074 6.636E-03 0.2074 0.04147
0 0.65 24 1.728 0 0.2074 5.080E-03 0.2074 0.04147
0 0.7 24 1.728 0 0.2074 3.733E-03 0.2074 0.04147
0 0.75 24 1.728 0 0.2074 2.592E-03 0.2074 0.04147
0 0.8 24 1.728 0 0.2074 1.659E-03 0.2074 0.04147
0 0.85 24 1.728 0 0.2074 9.331E-04 0.2074 0.04147
0 0.9 24 1.728 0 0.2074 4.147E-04 0.2074 0.04147
0 0.95 24 1.728 0 0.2074 1.037E-04 0.2074 0.04147

Fixed price contracts with risk aversion 
0.5 0.6 23.456 1.738 1.163E-04 0.2031 7.003E-03 0.2099 0.04738
0.5 0.65 23.477 1.7375 1.096E-04 0.2023 5.317E-03 0.2093 0.04714
0.5 0.7 23.499 1.737 1.028E-04 0.2016 3.876E-03 0.2088 0.04690
0.5 0.75 23.52 1.7365 9.608E-05 0.2009 2.672E-03 0.2083 0.04666
0.5 0.8 23.541 1.7361 8.938E-05 0.2002 1.698E-03 0.2078 0.04643
0.5 0.85 23.562 1.7356 8.277E-05 0.1997 9.493E-04 0.2073 0.04620
0.5 0.9 23.582 1.7352 7.627E-05 0.1991 4.194E-04 0.2068 0.04597
0.5 0.95 23.603 1.7348 6.992E-05 0.1986 1.043E-04 0.2064 0.04575
Market price contracts 
0.5 0.6 24 1.578 0 0.2048 1.037E-02 0.2048 0.01037
0.5 0.65 24 1.578 0 0.2048 1.037E-02 0.2048 0.01037
0.5 0.7 24 1.578 0 0.2048 1.037E-02 0.2048 0.01037
0.5 0.75 24 1.578 0 0.2048 1.037E-02 0.2048 0.01037
0.5 0.8 24 1.578 0 0.2048 1.037E-02 0.2048 0.01037
0.5 0.85 24 1.578 0 0.2048 1.037E-02 0.2048 0.01037
0.5 0.9 24 1.578 0 0.2048 1.037E-02 0.2048 0.01037
0.5 0.95 24 1.578 0 0.2048 1.037E-02 0.2048 0.01037
Formula price contracts 
0.5 0.6 35.297 4.0414 1.724E-03 0.5198 1.936E-02 0.4286 0.01239
0.5 0.65 34.855 4.038 1.603E-03 0.5365 1.990E-02 0.4424 0.01273
0.5 0.7 34.469 4.0367 1.513E-03 0.5514 2.038E-02 0.4546 0.01304
0.5 0.75 34.129 4.0367 1.444E-03 0.5646 2.080E-02 0.4655 0.01331
0.5 0.8 33.827 4.0377 1.389E-03 0.5765 2.119E-02 0.4753 0.01356
0.5 0.85 33.557 4.0394 1.346E-03 0.5872 2.154E-02 0.4842 0.01378
0.5 0.9 33.314 4.0414 1.311E-03 0.5970 2.185E-02 0.4922 0.01399
0.5 0.95 33.095 4.0438 1.282E-03 0.6058 2.214E-02 0.4995 0.01417
Cost plus contracts 
0.5 0.6 34.706 4.1987 9.082E-02 0.5195 1.076E-02 0.4390 0.04509
0.5 0.65 34.256 4.2 8.803E-02 0.5349 8.727E-03 0.4528 0.04794
0.5 0.7 33.866 4.2027 8.606E-02 0.5484 6.731E-03 0.4648 0.05049
0.5 0.75 33.527 4.2061 8.465E-02 0.5602 4.872E-03 0.4754 0.05278
0.5 0.8 33.23 4.2098 8.363E-02 0.5706 3.232E-03 0.4848 0.05483
0.5 0.85 32.968 4.2137 8.290E-02 0.5799 1.875E-03 0.4932 0.05667
0.5 0.9 32.736 4.2176 8.237E-02 0.5882 8.566E-04 0.5006 0.05833
0.5 0.95 32.53 4.2214 8.199E-02 0.5957 2.194E-04 0.5073 0.05984
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Table 1.6 Summary of impacts of contract supplies under each contract  
 Expected 

Spot 
market 
price 

Variance 
of spot 
price 

Packer 
profit 

Variance 
of 
packers’ 
profit 

Expected 
utility of 
contract 
producers 

Variance 
of 
contract 
producers’ 
income 

Expected 
utility of 
indep 
producers 

Variance 
of indep 
producers’ 
income 

Fixed-
price 
with risk 
neutrality 

No 
change 
and 
lowest 

No 
change  
2nd 
highest 

No 
change 
and 2nd 
lowest  

No 
change 
and 
lowest 

No 
change 
and 3rd 
lowest 

Decrease 
with beta 
and 
lowest 

No 
change 

No 
change  

Fixed-
price 
with risk 
aversion 

Positive 
and 2nd 
lowest 

Positive 
and  
highest 

Positive 
and  
3rd 
lowest 

Positive 
and 2nd 
lowest 

Positive 
and 
lowest 

Positive 
and 2nd 
lowest 

positive positive  

Market-
price 
contract 

No 
change 
and 
lowest 

No 
change 
2nd 
lowest 

No 
change 
and 
lowest 

No 
change 
and 
lowest 

No 
change 
and 2nd 
lowest 

No 
change 
and 2nd 
highest 

No 
change 
and 
lowest 

No 
change 
and 
lowest 

Formula-
price 
contract 

Positive  
2nd 
highest 

Negative 
and 
lowest 

Positive
2nd 
highest  

Positive 
2nd 
highest 

Positive 
and 
highest 

Positive 
and  
highest 

Positive 
and 2nd 
highest 

Positive 
and 2nd 
lowest 

Cost-plus 
contract 

Positive 
and 
highest 

Positive 
3rd 
lowest 

Positive 
and 
highest 

Positive 
and 
highest 

Positive 
and 2nd 
highest 

Negative 
and 3rd 
highest 

Positive 
and 
highest 

positive 

Notes: 

1.  “No change” indicates that contract supplies have no effect on the variable listed in 

the column heading.   “Positive” indicates that contract supplies have a positive 

relationship with that variable; “negative” indicates a negative relationship.  

2.  The order (ranking) is based on the relative magnitude of variable listed in the column 

heading for all five contract scenarios.  If no order is indicated, relative rankings are 

indeterminate. The shaded boxes reflect the two most preferred rankings.   
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ESSAY II 
 
 

STATIC AND DYNAMIC EFFICIENCY OF POOLED BROILER CONTRACTS: 
RELATIVE PERFORMANCE CONTRACTS VS. FIXED PERFORMANCE 

CONTRACTS 
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2.1 Introduction 

From modest beginnings prior to World War II, the U.S. broiler industry grew into 

one of the most integrated of all agricultural sectors.  Annual per capita consumption of 

broilers in the United States increased more than 100-fold from 0.7 pounds in 1935 to 72 

pounds in 1997 (Martinez 1999).  In 1950, 95 percent of broiler producers were 

independent.  Today, the U.S. broiler industry is one of several agricultural sectors that 

extensively employ contracts as a method of vertical coordination between processors 

and producers and more than 95 percent of chickens are grown under contract (Martinez 

1999).  Contracts and vertical integration played an important role in the adoption of new 

technology and the coordination of production with consumer preferences for quality and 

consistency.  In the 1950s, large capital requirements, coupled with declining, highly 

variable broiler prices, made broiler production a risky business.  Consequently, large 

feed companies established broiler production contracts with growers.  As the market for 

high-quality broilers grew, poultry processors replaced feed companies as integrators or 

contractors.  According to Perry, Banker, and Green (1999), product quality, 

standardization, product consistency, identification, and risk reduction and risk 

management in the production process are among the benefits from contracting that 

accrue directly to processors.  

Most major processors now control the vertical stages in the broiler industry, from 

breeders to market-ready products, through production contracts or vertical integration.  

These processor-integrators, such as Tyson Foods, Inc., breed the parent stock, produce 

hatching eggs, and hatch the eggs.  They then provide baby chicks, feed, and veterinary 

services to the contracted growers who raise the chicks.  Growers provide the chicken 
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houses and labor.  After the chickens grow to the market weight, the grown broilers are 

harvested, slaughtered, and dressed for market or processed further (Martinez 1999).  

A broiler production contract usually contains three types of compensation for 

grower service: a) a base payment, b) a performance payment, and c) a disaster payment 

(Perry, Banker, and Green 1999).  The base payment is a fixed fee per pound of live meat 

produced.  The performance payment is a bonus or punishment based on the difference 

between an individual grower’s settlement cost and either the average settlement costs of 

all contractor flocks or a fixed settlement cost.  Broiler contracts with average settlement 

costs are usually called relative-performance contracts (RPCs), while those with a fixed 

settlement cost are called fixed-performance contracts (FPCs).  Feed conversion ratio 

(feed used per pound of broiler produced) is often used as a proxy for settlement costs.  A 

high feed conversion ratio indicates low settlement costs and better grower performance.   

According to Knoeber and Thurman (1995), broiler production contracts changed in 1984 

to relative-performance contracts from rank-order tournaments in which growers were 

rewarded solely based on their ordinal ranking in a production tournament.   

While a majority of poultry contract growers may be satisfied with most aspects of 

their contractual arrangements, many are dissatisfied with at least one aspect of their 

contractual arrangements (Hayenga et al. 2000).  According to Hayenga et al., their 

complaints focus primarily on the system that bases their bonus on how their 

performance compares to other growers.  Many broiler growers complain that relative-

performance payments are biased and unfair and are generally opposed to a contract in 

which their payments depend on how their neighbors perform.  For example, consecutive 

flocks grown by the same grower, while having similar production costs, can receive 
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substantially different bonus payments depending on the performance of other growers in 

the settlement group. Growers have expressed exasperation over this form of 

remuneration since they have no way of anticipating how large their payments will be 

(Hayenga et al. 2000).  Therefore, some states, such as North Carolina, have considered 

legislation that prohibits the use of relative-performance contracts.  Various forms of 

legislation aimed at regulating broiler contracts were also passed in Minnesota, Kansas 

and Wisconsin (Tsoulouhas and Vukina, 2000).    

Thus, this essay attempts to compare the optimal incentives of relative-performance 

contracts and fixed-performance contracts in both a static model and a two-period 

dynamic model.   Asymmetric information in terms of both unobservable grower abilities 

and unobservable production effort is introduced into the model.   Further, the last part of 

the analysis investigates the case where a processor institutes two tournaments in a single 

period as a means to mitigate the adverse selection problem.  The final section of this 

essay discusses policy implications. 

 

2.2 Literature Review 
 
Broiler production and relative-performance contracts 

Broiler production is usually coordinated by processors or integrators.  Processors’ 

payments to the growers under contract are based on relative performance of each 

grower.  Following Levy and Vukina (2001, 2002), a typical payment function under a 

relative-performance contract can be constructed as follows: ]1[
1
∑
=

−+=
n

j
jii x

n
xw βα , 

where α  represents the base payment, β  represents the bonus payment, ix  is live output 
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of chickens produced by grower i, and iw is the payment received by grower i.  The term 

∑
=

n

j
jx

n 1

1  is the peer average performance.  In a few analytic papers, such as Roe and Wu 

(2003) and Tsoulouhas and Vukina (2000), grower i’s performance is excluded from the 

calculation of the peer average.  However, because results from past studies show that 

this assumption does not significantly affect the contract performance when the number 

of growers in the competition is large, the peer average will be based on all n growers 

throughout this essay.   If the average performance is replaced by a fixed number, the 

contract becomes a “fixed-performance contract”.  Relative-performance contracts 

assume that flocks in different farms within the same group are grown under relatively 

homogenous conditions.  Moreover, these contracts require that the calculation of the 

group average performance includes growers whose flocks where harvested at 

approximately the same time, so that they are all exposed to the same influence of 

common stochastic factors.  The essence of the contract settlement is the elimination of 

the common production risk from the responsibility of a grower through relative-

performance mechanism.  However, as indicated above, the reward to an individual 

grower will be substantially different when heterogeneous growers are in the same 

comparison group and the group composition continually changes.  Thus, unobservable 

grower heterogeneity introduces new risks (Goodhue 2000).   

 

Past Studies  

Several recent papers have studied relative-performance incentives or tournament 

contracts.  Goodhue (2000) models an adverse selection problem with two unobservable 

types in a broiler production setting.  She finds that in, the presence of unobservable 
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types of growers, the average performance is not a sufficient statistic8 for the vector of 

individual outputs, so the average output cannot be used to calculate an optimal sharing 

rule.  She also concludes that by controlling inputs a processor can reduce information 

rents it must pay to high productivity growers.  However, relative-performance incentives 

are not explicitly modeled in her paper.  Tsoulouhas and Vukina (2000) compare a 

relative-performance broiler contract with a fixed-performance contract in the presence of 

moral hazard.  Under the assumption that common production risk dominates group 

composition risk, they conclude that the enforcement of fixed-performance standards 

absent any regulations on the piece-rate bonus will result in less income insurance and 

welfare to the growers and reduce integrator welfare as well.  Further, social surplus is 

reduced because integrator welfare is reduced and grower welfare is unchanged.  In 

contrast, replacing relative-performance with fixed-performance contracts accompanied 

by a correctly specified piece-rate bonus can increase grower welfare and may or may not 

reduce social surplus.  However, integrator welfare is unambiguously reduced.   

Che and Yoo (2001) argue that, relative to joint performance evaluation in teams, 

the relative-performance evaluation scheme is not optimal in the repeated setting because 

it is susceptible to collusion.  As the authors indicate, joint performance evaluation 

performs better when workers work closely and the relationship among workers has a 

long life span.  On the other hand, relative-performance evaluation works better when 

workers have a short-term relationship.  In the context of the broiler industry, each 

grower is rewarded based on his relative-performance among a group of growers whose 

broilers are harvested approximately at the same time.  Timing issues, therefore, ensure 

that composition of the comparison group changes over time, and hence, makes growers’ 
                                                 
8 Further discussion can be found in Holmström (1982). 
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relationships very short.  Further, the lack of repeated interaction among a fixed group of 

growers naturally prevents them from colluding with each other. 

A recent paper by Roe and Wu (2003) compares relative-performance contracts and 

fixed-performance contract in a two-period dynamic model following steps similar to 

those described in Meyers and Vickers (1997).  Roe and Wu conclude that banning 

tournaments can increase total surplus by mitigating the well-known ratchet effect only in 

a dynamic model, while banning tournaments can never be welfare improving in a static 

setting.  In many ways, the model presented in this essay is a generalization of Roe and 

Wu (2003).  However, significant differences arise in the model specification and 

interpretation of fixed-performance contracts and relative-performance contracts.    

Several empirical studies have also tested the properties of broiler contracts.  

Knoeber and Thurman (1994) use a sample of 75 growers from 1,174 flocks under 

contract from November 1981 to December 1985 to test three predictions from the theory 

of tournaments: (1) changes in the level of prizes that leave prize differentials unchanged 

should not affect performance; (2) in mixed tournaments, more able players should 

choose less risky strategies; and (3) processors should attempt to handicap players of 

unequal ability or reduce mixing to avoid the disincentive effects of mixed tournaments.  

They find that the data are consistent with each of their predictions.  Knoeber and 

Thurman (1995) conduct another study to test the efficiency of broiler contracts using the 

same data set.  They compare the actual payment series under tournament contracts with 

the “contract without tournaments” and “no contracts” by calculating the ratio of 

simulated standard deviation to actual standard deviation.  They conclude that relative-

performance production contracts reduce grower’s risk and shift 97% of risks, including 
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price risk and common production risk, from growers to integrators.  Goodhue et al. 

(1998) find evidence to support the hypotheses that high-ability growers receive larger, 

more frequent, and more consistent flock assignments.  Hegde and Vukina (2002) use a 

sample of 1,366 growers and 8,041 flocks to compare welfare of the contracts with no 

market-price clause from June 1984 to December 1985 and contracts with a market-price 

clause from July 1995 to July 1997.  They find that contracts that include the market- 

price clause are welfare superior on a payment per-pound basis as compared to those 

without the market-price clause.  However, for total per-flock payments, their results 

depend on the grower attitude toward risk.  Levy and Vukina (2001) conduct a similar 

study to compare the league composition effects in broiler contracts.  By regressing 

growers’ production costs on grower dummy variables and time dummy variables, they 

find strong evidence of heterogeneity of grower types and existence of large common 

production shocks. Further, they compare the welfare of simple piece-rate contracts and 

relative-performance contracts with fixed leagues and random leagues in both a single 

tournament and a sequence of tournaments and conclude that RPC can outperform FPC 

only in a dynamic setting under certain conditions.   

An earlier group of studies analyze rank-order tournaments contracts.  As discussed 

above, rank-order tournament contracts are similar to relative-performance contracts 

since they both provide incentives for agents to compete among a group of agents.  

Therefore, the methodology used in those studies provides some insights into analysis of 

relative-performance contracts.  Lazear and Rosen (1981) analyze the efficiency of a 

rank-order contract for a finite contest of risk-neutral agents by considering a tournament 

contract in the labor market.  However, they consider only a special case of rank-order 
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contract rather than a whole class of such contracts.  Green and Stokey (1983) study the 

efficiency of a rank-order tournament contract with or without a common shock.  They 

find that for a finite number of agents, in the absence of common shocks, the use of 

tournaments is dominated by optimal independent contracts.  For a large group of agents 

or when the distribution of the common shock is very diffuse, a rank-order tournament 

dominates independent contracts.  Malcomson (1986) establishes, for any given piece-

rate contract, that there exists an equivalent rank-order contract with the same outcome.  

This finding implies that there exists a first-best rank-order contract for a contest among 

an infinite number of risk-neutral agents under dual information asymmetry.   A recent 

paper by Yun (1997) provides a more comprehensive analysis of rank-order contracts.  

Yun analyzes the efficiency of the rank-order contracts for a finite number of risk-neutral 

agents under both moral hazard and adverse selection and shows that the set of first-best 

rank-order contracts has the following properties: (i) the first-best contract of each type 

should penalize less than some critical fraction of contestants, where the fraction is never 

greater than one half; (ii) The critical fraction is smaller and penalty larger for the 

contests of higher ability types; and (iii) although both penalty-giving and prize-giving 

contracts work equally well as effort schemes, a penalty-giving contract is better than a 

prize-giving contract in inducing self-selection among different types of agents.   

 

2.3 Objectives 

The primary objectives of this essay are to investigate the efficiency of broiler-

industry-style relative-performance contracts in the presence of asymmetric information 

and to compare various relative-performance contracts with fixed-performance contracts.  
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Optimal incentives will be derived under relative-performance contracts and fixed-

performance contracts with both moral hazard and adverse selection.  The moral hazard 

reflects the fact that growers choose an unobservable effort level after the contract is 

signed, while the adverse selection reflects the fact that heterogeneous unobservable 

ability types of growers exist before the contract is signed.  This essay compares relative-

performance contracts with fixed-performance contracts with respect to their optimal 

incentives in both a static model and a two-period dynamic model.   Two specific 

scenarios of the two-period dynamic relative-performance contracts are investigated: the 

current-period RPC and the previous-period RPC.  More precisely, the current-period 

RPC rewards bonuses to growers using the group average performance in the current 

period as a standard, while the previous-period RPC rewards each grower by comparing 

his performance with the average performance of the same group of growers in the 

previous period. 

This essay’s contributions to the literature stem from its general methodology and 

its policy implications.  As discussed above, most existing literature on relative-

performance contracts assumes either moral hazard or adverse selection in a static setting.  

The only analysis of dynamic relative-performance contracts was presented by Roe and 

Wu (2003), which was based on Meyers and Vickers (1997).  However, Roe and Wu’s 

interpretation of fixed-performance contracts and relative-performance contracts has 

significant differences from broiler contracts being used in the real world.  This essay, 

which incorporates with both moral hazard and adverse selection, not only compares 

various relative-performance contracts with fixed-performance contracts in a dynamic 

setting, but also discusses improvements of the static mixed-type relative-performance 
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contract.  Thus, compared with existing literature, this essay provides a more thorough, 

more comprehensive, and more practical analysis of broiler contracts.  The second 

contribution of this paper lies in the policy implications of the theoretical results.  In spite 

of growers’ complaints about the contemporaneous relative-performance contracts used 

in the broiler industry, the various theoretical specifications in this essay largely justify 

the popularity and superiority of relative-performance contracts relative to fixed-

performance contracts.  This essay shows that, under certain conditions, relative-

performance contracts perform better than fixed-performance contracts from the 

perspective of growers’ and processors’ welfares.   

This essay develops a general model that is applied to three related cases:  The first 

case compares a static relative-performance contract and a fixed-performance contract.  

The second case extends the static model into a two-period full-commitment  model and a 

two-period dynamic model.  Two specific sub-cases of the two-period dynamic RPC are 

then investigated in detail: the current-period RPC and the previous-period RPC.  The 

third case investigates two pooled tournaments in a static setting.  Model results from all 

cases and their policy implications are discussed in the final section.   

  

2.4 The Model 

In general, a payment schedule of broiler contracts contains a base payment and a 

bonus or discount payment based on growers’ relative-performance.  In this essay, we 

will adopt the setup described in Roe and Wu (2003) with some simplifying 

modifications.  However, significant differences in the assumptions underlying the 
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payment schedules for the fixed-performance contract and the relative-performance 

contract lead to results that are substantially different to Roe and Wu’s.  

As described in the previous section, a typical payment function for grower i at time 

t under a relative-performance contract can be constructed as: 

(2.1) ]1[
1
∑
=

−+=
n

j
jtitit x

n
xw βα . 

The calculation of the group’s average performance includes all growers whose flocks 

were harvested at approximately the same time.  It is assumed that each grower produces 

only one flock in each period throughout the essay.  Further, it is assumed that the live 

output produced by each grower is given by ),,,( ittiitit uzaexx = , where ite  is grower i’s 

effort exerted in period t, ia  is grower i’s ability realized before the contract is signed, 

tz is the common shock borne by all growers in period t, and itu is grower i’s 

idiosyncratic risk in period t.  It is assumed that itu  is an i.i.d normally distributed 

random variable across growers and periods with mean zero and variance 2
uσ , while ia  is 

uniformly distributed in the range ],[ aa with ∞<<< aa0 .9 Additionally, for the 

moment, tz is an i.i.d normal random variable across periods with mean zero and 

variance 2
zσ .  A more complicated specification of tz will be discussed below in a two-

period dynamic model.   Recall that we assume both growers’ abilities and efforts are not 

                                                 
9 Note that there is significant difference between the interpretation of ability a in Roe and Wu (2003) and 
Meyers and Vickers (1997) and that in this essay.  More precisely, Roe and Wu (2003) and Meyers and 
Vickers (1997) treat a as a random variable drawn after the contract is offered.  Instead, this essay treats a 
as a random variable drawn before the contract is offered.  Thus, growers’ ability a, which is unobservable 
to the processor, is deterministic after the contract is offered and its distribution function is known to both 
the processor and the growers.  
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directly observable by the processor.  However, the distributions specified above are 

public information to both the processor and the growers.  

In particular, the following output structure is usually used in the existing literature 

(2.2) ittitiit uzeax +++= .    

Hence, the variance of itx  is 22)var( uzitx σσ +=  and the covariance between any itx and 

jtx  is 2),cov( zjtit xx σ= .10 

Note that effort only affects the mean of the output in this structure.  This 

significantly simplifies the analysis in the following sections.  However, a more 

complicated structure in which effort affects both the mean and the variance of the output 

could be used, but is not investigated in this essay due to length limitations.   In addition, 

each grower’s ability does not change over time.   

The processor is risk neutral and has a profit function, ∑ =
−=

n

i ititt wxwx
1

)(),(π , 

where itw  is specified in (2.1).  Each grower with ability ia  has a time-separable utility 

function ),()(),,( iititiititit aeCwuaewU −= , where the utility function is strictly concave and 

the disutility function takes the form 2

2
1),( it

i
iit e

a
aeC = .  Further, we adopt the commonly 

used assumption that growers’ utility function has the property of constant absolute risk 

aversion, )exp()( itit rwwu −−= , where r is the Arrow-Pratt coefficient of absolute risk 

aversion.  Thus the expected utility )]([ ⋅itt UE  is tantamount to  

(2.3) 2

2
1)var(

2
1)]([ it

i
itititt e

a
wrEwUE −−∝⋅ . 

                                                 
10 Due to the assumption that growers’ ability a is a random variable drawn before the contract is offered, 
the corresponding variances and covariances are different from those specified in Roe and Wu (2003). 
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Throughout the essay, we use tE  to represent the mathematical expectation operator 

conditional on information available at the beginning of period t.   

Note that, in this setup, growers differ in their disutilities of effort.  Lower ability 

types incur higher costs relative to higher ability types for a same level of effort.  In 

addition, marginal disutility of effort decreases with ability as well. 

 We adopt the notational convention of writing ),...,,...( 111 niii aaaa +−− =a , 

),( iia −= aa , ),...,,...( ,1,11 nttititit eeee +−− =e , ),( ititt e −= ee , and 

),..,,..,( ,1,121 nttitittit xxxxx +−− =x , ),( ititt x −= xx throughout the essay.    

 

2.4.1 A Static Model with One Tournament  

In this case, a processor signs a one-period contract with n growers.  The processor 

observes only the live output from each grower in the group and uses either a relative-

performance contract or a fixed-performance contract to reward the growers.  Thus, the 

contract offered to all growers specifies a payment schedule depending on },,{ xβα .  In 

the static model, the subscript t will be omitted for all variables.   

Given the assumptions described above, the processor maximizes its expected 

profits subjected to incentive-compatibility constraints and growers’ participation 

constraints.   Since only one contract is offered to all growers regardless of their abilities 

in one period, the processor must offer a pooling contract across all ability levels.   

Thus, the processor solves the problem: 

(2.4) })({max
1, ∑=

−
n

i iia EwExE
βα

 

subject to   
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(2.5) 0]
2
1)var(

2
1[][ 2 ≥−−= i

i
iiaia e

a
wrEwEEUE , 

(2.6) ie
a

wrEwe i
i

iii ∀−−∈ },
2
1)var(

2
1max{arg 2 . 

The participation condition (2.5) states that an average-ability grower obtains his 

reservation utility zero under the pooling contract offered by the processor, while the 

incentive-compatibility constraint (2.6) requires that each grower optimally chooses his 

effort by maximizing the expected utility.      

Standard results from contract theory11 require that the participation constraint (2.5) 

is always binding because otherwise, the processor can always reduce the payment to the 

growers until it reaches their reservation utility level.  Following Roe and Wu (2003) and 

Meyers and Vickers (1997), given the binding participation constraint, the processor’s 

objective can be transformed into maximizing the total welfare obtained by the processor 

and all growers.  Precisely, denote the expected total welfare obtained by the processor 

and all growers as 

(2.7)  

})
2
1)var(

2
1({

})
2
1)var(

2
1(({})({

1
2

1
2

1
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=

==
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e
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wrExE

e
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wrExEEwExEW
 

Thus, the optimal contract chosen by maximizing (2.7) will be Pareto optimal.  However, 

we should note that maximization of the total welfare W is equivalent to maximizing the 

processor’s expected profit only if the participation constraint is binding.  For cases 

                                                 
11 Good references on this topic include Mas-Collel, Whinston, and Green (1995) and Salanie (1997). 
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where the two concepts are not equivalent, later discussed in the section 2.4.3, we assume 

that the processor always maximizes his expected profit rather than total welfare.   

1)  Fixed-performance contract 

To first investigate the optimal incentives under a fixed-performance contract, 

denote the optimal contract as },{ FFFC βα= .  Assuming the fixed standard used in the 

contract is s, the payment to each grower (2.1) becomes  

(2.8) isxw iFFi ∀−+= ],[βα . 

Hence,    

(2.9) ][ seaEw iiFFi −++= βα , and 

(2.10) )()var()var( 2222
uzFiFi xw σσββ +== . 

Substituting (2.9) and (2.10) into the problem (2.4) - (2.6), the processor’s problem 

becomes 

(2.11)  

})
2
1)var(

2
1({max

1
2

, ∑=
−−=

n

i i
i

iiaF e
a

wrExEW
FF βα

, 

subject to  (2.12) 0]
2
1)(

2
1][[][ 2222 ≥−+−−++= i

i
uzFiiFFaia e

a
rseaEEUE σσββα ,  

(2.13) ]}
2
1)(

2
1][max{arg 2222

i
i

uzFiiFFi e
a

rseae −+−−++∈ σσββα , i∀ . 

First, from the incentive-compatibility constraint (2.13), each grower’s optimal effort 

must satisfy  

(2.14) Fii ae β=  
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Second, the participation constraint (2.12) must be binding because otherwise the 

processor can always reduce the base payment under it reaches each grower’s reservation 

utility level.   Hence, using (2.7), the processor’s problem is equivalent to  

(2.15)  

)}.
2
1)(

2
1({max

})
2
1)var(
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2222
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Since ia  is assumed to be uniformly distributed in the range ],[ aa with ∞<<< aa0 ,  

we denote the population mean of ia  as 
2

aaam
+

= .   Substituting (2.14) into (2.15) and 

taking expectation with respected to a yields 

(2.16) ∑ =
−+−+=

n

i F
m

uzFFmmF
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raaW
FF

1
2222

,
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2
)(

2
1(max βσσββ
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Taking the derivative with respect to Fβ yields 

(2.17) 0))(( 22 =−+−=
∂
∂

FmuzFm
F

F aranW βσσβ
β

, 

from which we can compute the optimal choice of Fβ , 

(2.18) 
)(1

1
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m

F

a
r σσ

β
++

=  

Several characteristics are apparent from examining the bonus payment Fβ .12  First, 

since only one contract is offered to all growers regardless of their abilities, the bonus 

payment Fβ is same for all possible levels of grower abilities.  Second, since growers 

bear all production uncertainty under the fixed-performance contract, both the common 
                                                 
12 The form of the bonus 

Fβ is also similar to results in Levy and Vukina (2002).  
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shock and the idiosyncratic shock affect the bonus payment.  Specifically, the bonus 

payment decreases with the variance of either of the random shocks.  Third, the bonus 

payment is positively related to the average ability level in the group and negatively 

related to growers’ risk aversion, however, the fixed standard s specified in the contract 

does not affect the bonus payment.     

From the binding participation constraint (2.12), the base payment can be solved as 

(2.19)  

][
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2
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While parameters affect the base payment in a complicated fashion, it is worth 

noting that the fixed standard s is positively related to the base payment due to the 

binding participation constraint.   

Further, the total welfare under the optimal fixed-performance contract can be 

computed, 

(2.20)  
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2)  Relative-performance contract 

Under a relative-performance contract, the processor uses the peer average 

performance as a standard to reward each grower.  Denote the optimal contract 

as },{ RRRC βα= .   Hence, the payment to each grower becomes  

(2.21) ][]1[
1

xxx
n

xw iRR
n

j jiRRi −+=−+= ∑ =
βαβα ,     i∀ . 

Hence,    
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Note that the variance of each grower payment depends only on the idiosyncratic 

shock without being affected by the common shock.   

Substituting (2.22) and (2.23) into the problem (2.4) - (2.6), the processor’s problem 

becomes 
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(2.26) }
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From the incentive-compatibility constraint (2.26), each grower chooses the optimal 

effort such that  

(2.27) Rii a
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Hence, substituting (2.27) into (2.7), the total welfare under the contract is  
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Taking derivative with respect to Rβ yields 
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from which  
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The most prominent feature of this bonus payment is that it is independent of the 

common shock.  As a matter of fact, this is one of the most critical reasons that 

researchers favor relative-performance contracts under certain circumstances discussed 

below. 

Further, the participation constraint (2.25) must be binding because otherwise the 

processor can always reduce the base payment until it reaches each grower’s reservation 

utility level.   Thus, the base payment can be computed as 
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(2.31) 
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Hence, we can compute the total welfare under the optimal relative-performance contract: 
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Comparing (2.20) and (2.32), the two welfare expressions, yields the following 

proposition: 
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 The proof is straightforward.  From (2.20) and (2.32), we can compute  
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Thus, it is equivalent to compare  
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This proposition is a standard result in the literature of relative-performance 

contracts and rank-tournament contracts and is consistent with the literature specific to 

broiler contracts (e.g., Levy and Vukina 2001).   Intuitively, the proposition states that the 

relative-performance contract performs better than the fixed-performance contract when 

the common shock dominates the idiosyncratic shock because comparing one grower’s 

performance with other growers approximately at the same time completely eliminates 

the common production shock borne by all growers.  On the other hand, the fixed-

performance contract is better when the idiosyncratic shock dominates the common 

shock because under this condition, comparing a grower’s performance to a fixed 

standard reduces his variance of income relative to that under the relative-performance 

contract.   

In addition, it is easy to verify that the optimal bonus has properties similar to total 

welfare.  The following corollary summarizes these properties without further proof.  

Corollary 1.1:  a) FR ββ >  if 22
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The corollary says that when the common shock dominates, not only does the static RPC 

improve total welfare relative to the static FPC, but also it offers a greater bonus than that 

under the static FPC.    

 

2.4.2 Two-period Models  

The static model is extended to include two time periods in this section.  In a 

dynamic context, ratchet effects might exist due to the presence of asymmetric 

information.13  Thus, the optimal contract provided by the processor must account for this 

potential effect and adjust the intertemporal incentives accordingly.  This section consists 

of three related parts.  The first part simply discusses the optimal two-period contracts 

under full-commitment by the processor and growers.  The second part investigates a 

current-period dynamic relative-performance contract and a fixed-performance contract 

where neither the processor nor growers can commit to an intertemporal scheme.  In this 

second part, the relative standard used in the contract is the peer average performance in 

the current period.  While the terms and payments schedules in actual contracts are much 

more complex than those specified in this part, the current-period dynamic relative-

performance contract has been widely used in the broiler industry14.  Therefore, readers 

should be aware that the model formulated here is highly stylized relative to actual 

broilers contracts.  The third part further extends the model and investigates a dynamic 

previous-period relative-performance contract and the fixed-performance contract.  Here, 

the term previous-period relative-performance contract is used to indicate that the relative 

                                                 
13 Freixas, Guesnerie, and Tirole (1985) states that ratchet effects induce firms to underproduce to avoid 
more demanding schedule in the future as the central planner revises the scheme over time to take into 
account information provided by the firm’s performance. 
14 Good examples of broilers contracts include Tyson Richmond broiler contract, Pilgrim Pride Contract, 
ConAgra broiler contract, MBA Broiler contract, etc.   
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standard used in the contract is the peer average performance in the previous period.   

Although this particular type of contract has not been explicitly used in the broiler 

industry, we examine this scenario here for the following two purposes: One is to 

correspond to the concept of all-period ban of relative-performance contracts as defined 

in Roe and Wu (2003) 15; the other is because it would be natural to assume that, if 

current-period tournaments were banned, producers may still use data on past 

performance to set a fixed standard.   

Further, it is assumed that the common shock takes the simple form of a stationary 

process in the dynamic context: 

(2.33) ttt zz εφ += −1 , 1|| <φ , where ),0(...~ 2
εσε Ndiit . 

With this specification, it is straightforward to verify ),0(~ 2
zt Nz σ , where 2

2
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=z , 

and 2

2

1 1
),cov(

φ
φσε

−
=−tt zz . Note that given the stationary process, the relationship 

between outputs in two periods is similar to that described in Roe and Wu (2003), except 

that we exclude the possibility of autocorrelation between abilities. 

 

2.4.2.1 Two-period Contracts Under Full Commitment  

Before we proceed to the dynamic model, we investigate the optimal two-period 

contracts under full-commitment .  Two conditions describe full-commitment : On one 

hand, the processor promises beforehand not to use information revealed in the first 

period to modify the contract in the second period.  On the other hand, growers promise 

                                                 
15 Roe and Wu (2003) define all-periods ban, in a two-period model, as disallowing the processor of using 
information concerning player j from any period to develop contract parameters for player i.  
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not to breach the contract during the contract period.  Under full-commitment , since the 

processor cannot apply information revealed in the first period to the contract in the 

second period, the optimal contracts in each of the two periods are independent and are 

exact replications of the static contract in each period.  Therefore, no dynamic effect 

exists in the case.   

Specifically, under the relative-performance contract, the processor offers the 

contract },{ RRRC βα=  in each period, with Rα  and Rβ  specified by (2.31) and (2.30), 

respectively.  Assuming both the processor and the growers discount their profit or utility 

by a factorδ , the total two-period welfare under the relative-performance contract is 

(2.34)  
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where the superscript F denotes full-commitment  and the subscript R denotes relative-

performance contract. 

Similarly, under the fixed-performance contract, the processor offers the contract 

},{ FFFC βα=  in each period, with Fα  and Fβ  specified by (2.19) and (2.18), 

respectively.  Hence, the total two-period welfare under the fixed-performance contract is 
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where the superscript F denotes full-commitment  and the subscript F denotes fixed-

performance contract.  Note that Proposition 1 applies to the full-commitment  two-

period contract as well.   
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2.4.2.2 Dynamic Fixed-performance Contract (FPC) and Relative-performance 

Contract (RPC)  

In this section, it is assumed that the processor is not fully committed in the second 

period.  Thus, the processor optimally adjusts the second-period incentives using 

information acquired at the end of the first period.  Two scenarios of relative-

performance contract will be investigated: current-period RPC and previous-period RPC.  

Under the current-period relative-performance contract, the relative standard is computed 

by averaging the performance of growers contracted in the same period; while under the 

previous-period RPC, the processor uses growers’ average performance in the previous 

period to reward each grower.  We still use the same fixed standard in both periods under 

the fixed-performance contract.  In addition, it is assumed that the same growers are 

under contract in both periods in a two-period model throughout this section.  

Given the output structure (2.2) and the distributions of the random shocks, the joint 

distribution of output x is 

(2.36) 
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Hence, we can compute the following expressions16: 

(2.37)  
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where 

221211 ,, ΣΣΣ  are partitions of the covariance matrix of the random vector 

( 121112 ,...,,, ni xxxx ), 

1x = a column random vector containing ( 12111 ,...,, nxxx ), 

                                                 
16 The formulas used in the following calculation can be found in Greene (2000), p.86-87. 
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'
1111 ),...( nµµ=µ  = a column vector containing the mean of the random vector 

( 12111 ,...,, nxxx ), and 
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Similarly, 
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where  

221211 ,, ΣΣΣ  are partitions of the covariance matrix of the random vector 

( 1211122 ,...,,,, nji xxxxx ). 

Hence, 
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2.4.2.2.1 A Dynamic Fixed-performance Contract  

Under the two-period dynamic fixed-performance contract without full-

commitment , the optimal incentives can be formulated backward using a dynamic 

programming approach.  Additionally, since growers’ outputs are correlated in the two 

periods under the assumption (2.33), the processor and growers take expectations of the 

second-period rewards and outputs conditional on the first period outputs.   

A) Second-period schemes 

Denote the second-period optimal contract as },{ 222 FFFC βα= .  Again, we assume 

the fixed standard used to reward growers is s in both periods.  Hence, the payment to 

each grower in the second period becomes  

(2.41) ][ 2222 sxw iFFi −+= βα ,     i∀ . 

Hence,    
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Similar to the static model, the processor solves the following problem 
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subject to   

(2.45)  



 128

.0]
2
1]

)1()2(
)1([

2
1

])(
)1()2(

)1([[][

2
2

2
22

2

1 1122222

≥−
−−−+

−
−−

−+
−−−+

−
+++= ∑ =

i
i

zF

n

j jiiFFaia

e
ann

nr

suz
nn

eaEUEE

ττ
τφτσβ

ττ
τφβα

 

Similarly, the incentive-compatibility constraint becomes 

(2.46) 

.},
2
1]

)1()2(
)1([

2
1

])(
)1()2(

)1([max{arg

2
2

2
22

2

1 112222

ie
ann

nr

suz
nn

eae

i
i

zF

n

j jiiFFi

∀−
−−−+

−
−−

−+
−−−+

−
+++∈ ∑ =

ττ
τφτσβ

ττ
τφβα

 

From the constraint (2.46), each grower chooses the optimal effort such that 

(2.47) 22 Fii ae β= . 

Thus, the total welfare in the second period conditional on outputs in the first period is 
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Differentiating (2.48) with respect to 2Fβ yields 
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From the binding participation constraint (2.45), we can obtain the optimal base payment, 

(2.51) 
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Further, the total welfare in the second period under the fixed-performance contract can 

be computed as: 

(2.52)  
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(B) First-period Schemes 

Denote the first-period optimal contract as },{ 111 FFFC βα= .   At the beginning of 

the first period, the processor chooses the optimal bonus and the base payment for the 
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first period by maximizing the total two-period welfare.  Similarly to the second-period 

reward, the first-period reward to each grower takes the form,  

(2.53) ][ 1111 sxw iFFi −+= βα ,     i∀ . 

Hence,    
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Let D

FW  denote the two-period total welfare under the dynamic fixed-performance 

contract and 1FW denote the first-period welfare.  The processor solves the following 

problem in the first period: 
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and the incentive-compatibility constraint,  
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From the constraint (2.58), the optimal effort in the first period must satisfy 

(2.59) 11 Fii ae β= . 

Substituting (2.59) into (2.56) yields, 
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Differentiating (2.60) with respect to 1Fβ yields the optimal condition for the bonus 

in the first-period contract, 
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The base payment can also be computed by plugging (2.62) into the binding 
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Note that we used the result 0][ 22 =ia UEE from the second-period scheme in the above 

calculation.  

Further, we can obtain the expected two-period total welfare under the dynamic 

fixed-performance contract, 

(2.64) 
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The following proposition compares the total welfare under the dynamic FPC with that 

under the full-commitment  FPC given by (2.35).  

Proposition 2:  The total welfare under the two-period dynamic FPC exceeds that under 

the full-commitment  FPC.  That is, F
F

D
F WW > . 

The proof is straightforward.  Recall that 12

22

>
+

=
z

uz

σ
σσ
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Intuitively, under the dynamic FPC, the processor can obtain more information from 

growers’ first-period performance and raise his expected profit by using the information 

to provide the second-period incentives.   

 

2.4.2.2.2 A Dynamic Current-period Relative-performance Contract  

We investigate a dynamic current-period relative-performance contract in this 

section.  More precisely, the relative standard specified in this contract is the average 

current-period performance of all contract growers.  The two-period dynamic relative-

performance contract can be solved in the similar fashion to that in the previous section.  

Since growers’ outputs are correlated in the two periods under the assumption (2.33), the 

processor and growers take expectations of the second-period rewards and outputs 

conditional on the first period outputs. 

 

A) Second-period schemes 

Denote the second-period optimal contract as },{ 222 RRRC βα= .   Each grower’s 

payment in the second period becomes  
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Note that the last equality results from 2
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= .  In addition, the variance of the 

second period payment depends only on the idiosyncratic shock without being affected 

by the common shock.   

Similar to the static model, the processor solves  
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Similarly, the incentive-compatibility constraint becomes 

(2.70) 
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 From the constraint (2.70), the optimal effort from each grower must satisfy 
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Differentiating (2.72) with respect to 2Rβ yields, 
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From the binding participation constraint (2.69), we can obtain the optimal base payment, 
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Further, the total welfare in the second period under the relative-performance contract 

can be computed as: 
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(B) First-period schemes 

    Denote the first-period optimal contract as },{ 111 RRRC βα= .   The first-period 

reward to each grower takes the form,  
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Similar to the dynamic fixed-performance contract, the processor chooses the first-

period optimal bonus and the base payment by maximizing the total two-period welfare.  

Specifically, let S
RW  denote the two-period total welfare under the current-period 

relative-performance contract, where the superscript S stands for current-period and the 

subscript R stands for relative-performance contract, and 1RW denote the first-period 

welfare.  The processor solves the following problem in the first period: 
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and the incentive-compatibility constraint,  
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 From the constraint (2.83), the optimal effort in the first period must satisfy 
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Differentiating (2.84) with respect to 1Rβ yields the optimal condition for the bonus 

in the first-period contract, 
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The base payment can also be computed by substituting (2.86) into the binding 

constraint (2.81), that is, 
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from which we can obtain 
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Note that we used the result 0)( 22 =ia UEE from the second-period scheme in the above 

calculation.  

Further, we can obtain the expected two-period total welfare, 

(2.88)

),...,|())1(
2
11

2
11( 11121

2
1

22
11 nRRmuRRmm

S
R xxWE

n
na

n
nra

n
nanW δβσββ +

−
−

−
−

−
+=  

))(
)1()2(

)1(]
)

1
1(2

11[()1
2
1(

1 11
2

11 ∑ =
+

−−−+
−

+

−
+

++
−

+=
n

j j

u
m

mRmm uz
nn

n

n
n

a
r

naEa
n

nan
ττ

τφ

σ
δβ

).
)

1
1(2

11()1(]
)

1
1(2

11[)
)

1
1(2

11(
222
u

m

m

u
m

m

u
m

m

n
n

a
r

na

n
n

a
r

na

n
n

a
r

na
σ

δ
σ

δ
σ

−
+

++=

−
+

++

−
+

+=

 

First, note that the two-period total welfare under this dynamic current-period RPC 

is exactly same as that under the full-commitment  RPC given by (2.34) and is exactly a 

repetition of the static RPC.  That is, the intertemporal relationship between the 

incentives in the two periods does not alter the optimal choice of rewards offered by the 

processor and the optimal efforts provided by growers.  Thus, under the dynamic current-
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period RPC, both the processor and growers are myopic.  This result is a special feature 

of the current-period relative-performance contract.      

Second, we can compare performance of the dynamic current-period RPC with the 

dynamic FPC.  However, it is not straightforward to show whether one is superior to the 

other under certain conditions.  We summarize some plausible results in the following 

proposition.  
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Thus, similar to Proposition 1, D
F

S
R WW <  if 22

1
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uz n
σσ

−
≤ . 

However, we could only provide some intuition for part b.  That is, only if the variance of 

common shocks is sufficiently greater than that of the idiosyncratic shocks would the 

dynamic RPC perform better than the dynamic FPC.   

Under the current-period relative-performance contract, comparing one grower’s 

performance to others’ completely eliminates the common uncertainty without being 

affected by their intertemporal relationship.  Consequently, the optimal dynamic current-

period RPC mimics a sequence of optimal static RPC although the second period 

incentives under this contract do account for the growers’ first-period information.  
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2.4.2.2.3 A Dynamic Previous-period Relative-performance Contract  

In this case, instead of using the average performance in current period as a 

standard, the previous-period relative-performance contract rewards each grower by 

comparing his performance with the previous-period average performance of the same 

group of growers.  As discussed above, this scenario corresponds to the concept of an all-

period ban defined in Roe and Wu (2003).  Later on, when the performance of the 

dynamic FPC is compared to the dynamic previous-period RPC, readers could think of 

the possibility of eliminating the dynamic previous-period RPC as an all-period ban of 

RPC.     Finally, to investigate the dynamic effects on the optimal incentives, it is 

necessary to assume that the processor signs a contract with the same group of growers in 

both periods.     

The previous-period dynamic relative-performance contract can be solved in the 

similar dynamic programming approach used in previous sections.   

 

A) Second-period schemes 

Denote the second-period optimal contract as },{ 222 LLLC βα= where the subscript 

denotes the last or previous period.   Using group average performance in the last period 

as a standard, the processor rewards each grower 
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n
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Note that the performance of grower i in the previous period is not excluded from the 

calculation of the group average.  

Hence,    
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Similar to the static model, the processor solves  
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The optimal effort must satisfy the incentive-compatibility constraint 
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The first order condition to the constraint (2.94) gives 

(2.95) 22 Lii ae β= . 

Thus, the second-period welfare conditional on outputs in the first period is 

(2.96)  
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Differentiating (2.96) with respect to 2Lβ yields, 
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The optimal base payment can be obtained from the binding participation constraint 

(2.93): 
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The second-period total welfare can also be obtained: 
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(B) First-period schemes 

    Denote the first-period optimal contract as },{ 111 LLLC βα= .   However, at the 

beginning of the first period, the processor does not have the information of growers’ 

performance in the previous period.  Thus, for simplicity, we assume that the same fixed 

standard s used in the fixed-performance contract will be adopted for the first-period 

contract of the dynamic previous-period RPC.   

Under this assumption, each grower receives a reward in the first period,  
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Let L
RW  denote the two-period total welfare under the previous-period RPC, where 

the superscript L stands for previous-period and the subscript R stands for relative-

performance contract, and 1LW denote the first-period welfare.  The processor chooses the 

first-period optimal incentives by maximizing the total two-period welfare.  Specifically,  

(2.104)  
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and the incentive-compatibility constraint,  
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Recall that in the above expression, 1111 jjjj uzeax +++=  , ],1[ nj∈∀ . 

Thus, incentive constraint (2.106) requires that the first-period optimal effort satisfy 
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Substituting (2.107) into (2.104) yields, 
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Differentiating (2.108) with respect to 1Lβ yields 

(2.109) 0))1()(( 21
22

1
1

=−−+−=
∂
∂

LLmuzLm
L

L
R

n
aranW δββσσβ

β
, 

from which, 

(2.110) 
)( 22

2
1

uzm

Lmm
L ra

naa
σσ

δβ
β

++
+

= . 

Hence, the binding participation constraint (2.105) can be written as 
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from which we can obtain the first-period base payment, 
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Note that we used the result 0],...|[ 11122 =nia xxUEE from the second-period scheme in 

the above calculation.  

Further, the expected two-period total welfare can be calculated: 
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The following proposition compares the total welfare under the dynamic previous-period 

RPC with that under the dynamic FPC. 

Proposition 4:  The total welfare under the dynamic FPC exceeds that under the dynamic 

previous-period RPC.  Precisely, L
R

D
F WW > . 

Proof: The proof is straightforward.   

Since the last term in (2.113), ]1)11[(
)]([2

)( 2
222

22

−+
++

+
L

uzm

uz
m nra

r
na δβ

σσ
σσ

, is always 

positive, comparing (2.113) with (2.64) concludes the proposition.  

This proposition and the results on which it is based, lead to two general comments 

about the dynamic previous-period contract:  First, under the previous-period dynamic 
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RPC, the optimal condition (2.107) indicates that growers tend to exert less effort in the 

first period when offered the same bonus as in a static RPC.  In turn, from (2.110), the 

processor has to offer a greater bonus in the first period to induce more effort from 

growers.  This result is the manifestation of the ratchet effect that discourages growers to 

provide efforts in the first period because they anticipate the processor would use their 

first-period performance as a standard for their second-period performance.  Second, it is 

assumed that the processor adopts a fixed-performance contract in the first period 

because no information is available about the growers’ performance before the first 

period.  This assumption contributes to Proposition 4.  However, if instead a current-

period RPC is used in the first period under this contract, the relative superiority of the 

dynamic FPC and the dynamic previous-period RPC will depend on the relative 

magnitude of 2
zσ , 2

uσ , and possibly other parameters.  

 

2.4.3 A Static Model with Two Pooled Tournaments  

Knoeber and Thurman (1994) indicate that there are efficiency costs to mixing 

growers of unequal ability under tournament contracts.  In this section, we assume that 

the processor constructs two tournaments in one period, and provides two separate 

contracts, with each contract targeted to a different group of growers based on their 

abilities.   

Recall that growers’ ability is uniformly distributed in the range ],[ aa .  Suppose 

the processor offers two contracts },{ GGGC βα=  and },{ BBBC βα= , where the contract 

GC is offered to high-ability growers type with ],ˆ[ aaai ∈  and the contract BC is offered 
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to low-quality growers type with ]ˆ,[ aaai ∈ .  Throughout this section, G denotes the 

high-ability group and B denotes the low-ability group.  

Hence, it can be easily verified that, for every grower i, 

(2.114) 
aa
aaaaaprobp i

B

−
−

=∈=
ˆ

])ˆ,[( , 

(2.115) 
aa
aaaaaprobp i

G

−
−

=∈=
ˆ

]),ˆ[( , 

(2.116) 
2

ˆ
])ˆ,[|( aaaaaaEa ii

B
m

+
=∈= , and 

(2.117)
2

ˆ
]),ˆ[|( aaaaaaEa ii

G
m

+
=∈= . 

The processor rewards each grower in the high-ability group, 

(2.118) ][ GG
iGG

G
i xxw −+= βα ,      

where we define 

(2.119) ∑=
G

G
jG

G x
n

x 1 , and 

(2.120) G
i

G np
aa
aanaaanprobn =

−
−

=∈=
ˆ

]),ˆ[( . 

Here we use∑G jx to denote the sum of outputs produced by the high-ability group. 

Hence,    

(2.121) ])(1[ ∑ +−++=
G

G
j

G
jG

G
i

G
iGG

G
i ea

n
eaEw βα , and 

(2.122)  
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Similarly, the payment to each grower in the low-ability group are given by 

(2.123) ][ BB
iBB

B
i xxw −+= βα ,      

where  

(2.124) ∑=
B

B
jB

B x
n

x 1 , and 
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i
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−
−

=∈=
ˆ
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Hence, we can compute 

(2.126) ])(1[ ∑ +−++=
B

B
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B
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B
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B
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B
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n
eaEw βα , and 

(2.127) 222 1)var()var( uB
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B
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B
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Thus, the processor solves the following problem 

(2.128)  

]]}ˆ,[|)([]],ˆ[|)([{max
ˆ,,,,

aaaEwExEaaaEwExEW iB
B
i

B
iaG i

G
i

G
iaaR

GGBB

∈−+∈−= ∑∑βαβα
 

However, in this case, maximization of the total welfare is different from maximizing the 

processor’s expected profit.  Thus, instead of maximizing the total welfare, we assume 

that the processor maximizes his expected profit.  
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The optimal contracts must satisfy the following set of constraints: First, the 

participation constraints must be satisfied: 

(2.129)  
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Second, the optimal effort of each grower in the high-ability group must satisfy the 

incentive-compatibility constraint, 

(2.131) 
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Similarly, for the low-ability group,  

(2.132) 
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In addition to the above constraints, the optimal contracts must satisfy another pair of 

incentive-compatibility constraints.  More specifically, under the optimal contracts, it 

must be optimal for each grower type to choose his own league rather than the other 

league.  Before formulating these constraints, additional notations must be defined.   
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Since each grower’s reward is associated with the difference between his 

performance with the group average performance, one grower’s deviation from choosing 

his own league would also affect the average performance of the group which he actually 

chooses.  Thus, if one high-ability grower i chooses the low-ability league, one defines 

the average performance of the low-ability group as  
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Thus, the deviating grower receives reward   
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Consequently, the expected payoff and variance of a deviating high-ability grower are 
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Hence, a deviating high-ability grower can obtain expected utility 

(2.137) 
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In addition, the deviating high-ability grower optimally chooses the optimal effort by 

maximizing (2.137).  That is, 
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On the other hand, if one low-ability grower i chooses the high-ability league, we 

define the average performance of the high-ability group as  
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Thus, the deviating low-ability grower receives reward   
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Similarly, we can compute the expected payoff and variance of a deviating grower, 
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Further, the deviating low-ability grower must optimally choose optimal effort by 

maximizing 

(2.144) 
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Now, the additional incentive-compatibility constraints can be formulated.  Since 

the processor offers a pooling contract for each of the two groups of growers, each 

incentive-compatibility constraint must be fulfilled under the expectation of 

corresponding grower abilities in that group.  In other words, under the optimal contracts, 

a grower of average ability in one group must prefer his own contract to that designed for 

the other group.  More precisely, for the high-ability group,  

(2.146)  
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Similarly, for the low-ability group, 
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Thus, the processor solves the problem (2.128) subject to the constraints (2.129)-(2.132) 

and (2.146)-(2.147). 

From the incentive-compatibility constraint (2.131) we can obtain the condition for 

optimal effort exerted by each grower in the high-ability group, 
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Similarly, for growers in the low-ability group,  
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Without loss of generality, we will adopt the standard results from contract theory (good 

references see footnote 1) for simplification of computations.   Specifically, we assume 

that the participation constraint (2.129) and the incentive constraint (2.147) are not 

binding.  

 Thus, from the binding participation constraint (2.130), we can obtain 
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From the binding incentive constraint (2.146),  

(2.151) 

]],ˆ[|)var(
2
1)(

2
1[ 2 aaawre
a

EwE i
G
i

G
iG

i

G
ia ∈−−

}1
2
1)(

2
1])(1[{ 222

uG

G

G
G
iG

i
G

G
j

G
jG

G
i

G
iGGa n

nre
a

ea
n

eaE σββα −
−−+−++= ∑  

}
12

1)(
2

1)])((
1

1[{ 222
uB

B

B
GD
iG

i
B

B
j

B
j

GD
i

G
iB

GD
i

G
iBBa n

nre
a

eaea
n

eaE σββα
+

−−+++
+

−++= ∑

}
12

1)(
2

1))((
1

1)(
1

{ 222
uB

B

B
GD
iG

i
B

B
j

B
jBB

GD
i

G
iB

B

BBa n
nre

a
ea

n
ea

n
nE σβββα

+
−−+

+
−+

+
+= ∑

222 1
2
1)(

2
1])(1[[ uB

B

B
B
iB

i
B

B
j

B
jB

B
i

B
iBBa n

nre
a

ea
n

eaE σββα −
−−+−++= ∑  

]
12

1)(
2

1))((
1

1)(
1

1
2
1)(

2
1])(1[

222

222

uB

B

B
GD
iG

i
B

B
j

B
jBB

GD
i

G
iB

B

B

uB

B

B
B
iB

i
B

B
j

B
jB

B
i

B
iB

n
nre

a
ea

n
ea

n
n

n
nre

a
ea

n
ea

σβββ

σββ

+
−−+

+
−+

+
+

−
+++−+−

∑

∑
  

]
12

11
2
1)(

2
1)(

2
1

)((
1

1)(1)()(
1

222222
uB

B

BuB

B

B
GD
iG

i

B
iB

i

B B
B
j

B
jBB

B
j

B
jBB

B
i

B
iB

GD
i

G
iB

B

B

n
nr

n
nre

a
e

a

ea
n

ea
n

eaea
n

n

σβσβ

ββββ

+
−

−
+−+

+
+

−+++−+
+

= ∑ ∑
 

222222

12
11

2
1)

1
(

2
1)1(

2
1

)1((
1

1)1(1

)1()
1

(
1

uB

B

BuB

B

BBB

B
G
mBB

B
B
m

B B B
B
mB

B
B
mBBB

B
mB

B
B
mBB

B
B
mB

B
B
mBB

G
mB

B
G
mB

B

B

n
nr

n
nr

n
na

n
na

a
n

na
n

a
n

na
n

a
n

naa
n

na
n

n

σβσβββ

ββββ

ββββ

+
−

−
+

+
−

−
+

−
+

+
−

−
++

−
+−

+
+

+
=

∑ ∑  

)1(
1

2
1])

1
()1([)(

2
1

)1(
1

1)]1()
1

(
1

[

22222

+
−

+
−

−
+

−
+

+
+

−
+−

+
+

+
=

BBuBB

B
G
mB

B
B
mB

B
B
mB

B
B
mBBB

B
mB

B
B
mB

G
mB

B
G
mB

B

B

nn
r

n
na

n
na

a
n

na
n

a
n

naa
n

na
n

n

σββ

βββββ
 

)1(
1

2
1])

1
()1([)(

2
1

)1(
1

)
1

(
1

22222

+
−

+
−

−
+

−
+

+
−

+
+

+
=

BBuBB

B
G
mB

B
B
mB

B
B
mB

B
B
mB

B

BB
G
mB

B
G
mB

B

B

nn
r

n
na

n
na

a
n

na
n

na
n

na
n

n

σββ

ββββ
 



 158

)1(
1

2
1)()

1
(

2
1)()1(

2
1

)(
1
1

1
)

1
(

1
222222

22

+
−

+
−

−
+

+
−

−
+

−
+

+
+

=

BBuBB
G
mB

B

B
B
mB

B

B
B
mB

B

B
B
mB

B

BB

B
G
mB

G
mB

B

nn
ra

n
na

n
n

a
n
na

n
n

n
naa

n
n

σβββ

ββββ
 

.
)1(

1
2
1]

)1(
1

)(
1)()

1
([)(

2
1)(

1
22

2

2
22

+
−

+
−+

−
+

+−
+

= BBuBB

B

B

B
B
mB

B
G
mB

B
m

G
mBB

B

nn
r

n
n

n
na

n
naaa

n
n σβββ

  
Thus, we can obtain 
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For simplicity, for large Bn , we can approximate the above expression as 
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The last term in the above expression is the information rent received by high-ability type 

growers.   

Substituting (2.150) and (2.153) into (2.128), the processor’s expected profit 

becomes, 
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Differentiating (2.154) with respect to Gβ  yields, 
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Similarly, differentiating (2.154) with respect to Bβ  yields, 
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In addition, the base payment in each contract can be solved using the participation 

constraints (2.130) and the incentive-compatibility constraints (2.146) or (2.153), 

respectively.  Specifically, for the low-ability group, the base payment is given by 

(2.159) 
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For the high-ability group, the base payment, for Bn  large, can be approximated by 

(2.160) 
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 Note that, in order to induce a separating equilibrium for the two groups of growers, the 

difference between the highest ability level a and the lowest ability level a  must be 

sufficiently large.  To see this, if aa − is small, then 
22

ˆ
2

ˆ aaaaaaaa B
m
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+
=−  is 

small.  Comparing (2.159) and (2.160) shows that the base payment for the high-ability 

group Gα  is close to that for the low-ability group Bα when n is large.  Similarly, from 

(2.156) and (2.158), the bonus for the high-ability group Gβ  is close to that for the low-

ability group Bβ  as well.  In addition, from (2.151), if aa − is small, the incentive-

compatibility constraint (2.146) for the high-ability group could be violated because the 

absolute value of the negative term in (2.151) could exceed sum of the positive terms.  In 
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other words, the high-ability type growers would prefer to choose the contract designed 

for the low-ability type growers rather than their own contract.  As a result, only a single 

pooling contract could be sustained if aa − is too small.     

Further, the processor can optimally choose a separating ability level â  by 

maximizing the expected profit (2.154).  However, we omit it here due to the tedious 

computation.  Instead, we assume that the processor assigns an arbitrary ability level to 

divide the growers into two groups.  As an illustration, suppose that the processor 

chooses 
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ˆ aaa +
= . 

Under this assumption, we can compute 
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Hence, assuming that n is sufficiently large, the optimal contract for the high-ability 

group can be written as, 
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Similarly, for the low-ability group, 
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It can be easily verified that GB ββ <  and GB αα < .17  In other words, the processor 

offers greater base payment and bonus to the high-ability group than those to the low-

ability group.  Consequently, growers belonging to the low-ability group would prefer 

their own contract BC  to the contract GC  because they would incur greater penalty if 

they would have joined the high-ability league.  On the other hand, high-ability growers 

would also prefer the contract GC  to the contract BC  because they would receive a 

smaller bonus if they would have joined the low-ability league.  At the optimum, the 

optimal contract for the high-ability group offers a positive information rent through the 

base payment Gα , which makes an average high-ability grower indifferent between 

choosing the contract GC  and choosing BC .  In addition, the optimal base payment to the 

high-ability group guarantees that it is sufficiently small such that an average low-ability 

grower would not deviate and choose the contract GC . 
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Given the assumption 
2

ˆ aaa +
=  and conditions (2.164)-(2.167), we can compute 

the processor’s expected profit under the two-tournament scheme.   

(2.168) 
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Further, we can compare the expected profit (2.168) under the two-tournament RPC 

scheme with that under the one-tournament RPC given by (2.32).   However, to compare 

these two schemes involves some manipulation.    

 First, we define the following function: 
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From this function, one can define the following: 
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Therefore, )(yf is strictly convex in y.  From properties of convexity, it must be true that 
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one, or equivalently, aa −  is sufficiently small.  However, recall that aa − cannot be too 

small because otherwise, only a single pooling contract could be sustained.   

Consequently, given
2

ˆ aaa +
= , if aa −  is not sufficiently small such that 

RR WW > , then the separating point â is not optimal for the processor.  Instead, the 
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processor should use a greater â as the separating point for the two groups.  By using a 

greater â , the processor reduces the total bonus paid to the high-ability group and hence, 

raises total expected profit.  To understand this, we should attribute the profit 

improvement to more information under the two-tournament scheme.  More precisely, 

relative to the one-tournament RPC, growers reveal more information concerning their 

abilities when two tournaments are offered in one period.  Thus, the processor can take 

advantage of the new information and exploit more profit from growers.  A numerical 

example will be necessary to find the explicit optimal separating point.  However, it is 

not discussed further in this essay due to length restrictions.     

 

2.5 Conclusion and Discussion 

Several papers have discussed broiler contracts out of concerns of growers’ 

dissatisfaction with the existing relative-performance contracts and have compared RPC 

with an alternative FPC either in the static setting or a dynamic setting.  However, these 

studies draw different conclusions about the relative superiority of RPC and FPC due to 

different assumptions, different model structure, or different data.  To better understand 

broiler contracts, this essay not only compares relative-performance contracts with fixed-

performance contracts in both a static setting and a dynamic setting, but it also discusses 

improvements of the static relative-performance contract.  More specifically, a static RPC 

and a FPC are formulated in the first part of the essay.  Based on the static model, a two-

period full-commitment model is constructed as well.  The second part of the model 

consists of three types of two-period dynamic contracts: a dynamic fixed-performance 

contract, a dynamic current-period relative-performance contract, and a dynamic 
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previous-period relative-performance contract.  Then the following comparisons are 

drawn: the dynamic FPC with the full-commitment  FPC; the dynamic current-period 

RPC with the dynamic FPC; and the dynamic previous-period RPC with the dynamic 

FPC.  The last part of the model develops a static two-tournament RPC and compares it 

with the static RPC.    

Comparisons between various scenarios of RPC and FPC are summarized in Table 

2.1.  Major findings include the following five general results: 

First, under the static RPC and FPC, the efficiency results depend on the relative 

magnitude of the common shocks and idiosyncratic shocks.  Specifically, the static RPC 

performs better if the common shock is sufficiently large, while the static FPC is better if 

the idiosyncratic shock dominates.  This result is consistent with most of the previous 

studies except Roe and Wu (2003), who find that banning RPC in a static model can 

never increase total surplus.   Their results are different because of their model 

specifications: in particular, the formulation and interpretation of the payment schedules 

and the assumptions of the random variables in the output structure contribute to their 

results. 

Since the full-commitment contracts are exactly a sequence of static contracts, the 

full-commitment RPC and the full-commitment FPC have the same properties as the 

static contracts.  

Second, the dynamic FPC performs better than the full-commitment FPC because 

under the dynamic FPC, the processor improves the second-period contract by taking 

advantage of the new information acquired at the end of the first period.  By providing a 
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greater bonus in the second period under the dynamic FPC, the processor induces more 

efforts from the growers, and hence, increases total welfare.  

Third, regardless of the autocorrelation of common shocks in the two periods, the 

dynamic current-period RPC eliminates the contemporary common shocks.  Thus, the 

dynamic RPC is exactly a repetition of the static RPC.  Comparing the dynamic current-

period RPC with the dynamic FPC indicates that the dynamic current-period RPC 

performs better than the dynamic FPC only if the common shock is sufficiently large, and 

vice versa.  However, Proposition 3 demonstrates that the FPC becomes more beneficial 

in the sense that the dynamic FPC is favored against relative-performance contracts under 

more circumstances relative to the static FPC.  In other words, in a dynamic setting, a 

FPC becomes more effective at gathering information and improving the efficiency of the 

incentives relative to the static case.   

Fourth, the dynamic FPC performs better than the dynamic previous-period RPC 

under any conditions.  In addition, under this contract, significant ratchet effects are 

present in the sense that growers exert less effort in the first period in anticipation of a 

higher standard in the second period based on their first-period performance.  In turn, at 

the equilibrium, the processor must offer a greater bonus in the first period to induce 

more effort.  However, readers should be reminded that the assumption of the first-period 

FPC under the dynamic previous-period RPC is critical to lead to the conclusion.  If, 

instead, a static RPC is adopted in the first period under the dynamic previous-period 

RPC, the efficiency results will depend on the stochastic shocks. In particular, if a static 

RPC is used, the dynamic previous-period RPC would perform better than the dynamic 

FPC if the common shock is sufficiently large.   



 168

Finally, the last part of the model contains a static two-tournament RPC.  Under this 

contract, the processor offers both a greater bonus and a greater base payment to high-

ability growers than to low-ability growers.  Intuitively, the large bonus for the high-

ability group prevents the low-ability group from shirking because it becomes a large 

penalty if a low-ability grower deviates.  On the other hand, a small bonus for the low-

ability group prevents the high-ability group from shirking because if a grower in the 

high-ability group deviates, not only would he make less direct profit, but he would lose 

the positive information rents paid to the high-ability group.   Further, the results suggest 

that the two-tournament RPC can improve the processor’s expected profit relative to the 

static RPC because the processor can provide more efficient incentives by differentiating 

growers of different abilities and, hence, extract a greater profit from high-ability 

growers.   

Compared to past studies, this essay provides a more thorough and comprehensive 

analysis of broiler contracts.  In particular, the dynamic previous-period RPC and the 

two-tournament static RPC have not been investigated in the existing literature.   

The results in this essay provide some important policy implications and practical 

guidelines.  First, except for the dynamic previous-period RPC, comparisons between 

relative-performance contracts and fixed-performance contracts under each scenario 

justify the superiority of relative-performance contracts both in a static setting and in a 

dynamic setting when common shocks dominate idiosyncratic shocks.  Roe and Wu 

(2003) corroborate this result.  As for the dynamic previous-period RPC, it could still 

perform better than the dynamic FPC if the first-period contract is specified with a 

current-period RPC.  However, unlike Roe and Wu (2003), this essay does not account 
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for the possibility of changing bargaining powers of growers in future periods as their 

abilities are revealed in previous periods.   Therefore, in the principal-agent framework, 

the results from this essay cannot demonstrate the favorability of one contract against the 

other from growers’ point of view because growers always receive their expected 

reservation utility under each type of contract.   In the real world, however, growers 

possibly have bargaining power due to competition among processors.  We have shown 

that relative-performance contracts improve total welfare when the common shock 

dominates and, thus, growers could capture a share of the surplus and still favor relative-

performance contracts against fixed-performance contracts.   

On the other hand, however, readers should know that the contracts derived in this 

essay are still highly stylized versions of actual broiler contracts.  For example, payments 

to growers in actual broiler contracts are usually based on the feed conversion ratio.  Here 

we use growers’ output as a substitute.  Second, in the real world, growers are different 

not only in terms of their ability, but also in terms of their production capacity, flock 

sizes, or number of flocks assigned in each period.  In addition, in this stylized model, it 

is necessary to assume a fixed league composition in the dynamic setting in order to 

investigate the ratchet effect.  An analysis of random league compositions, as happens in 

the real world, would seriously complicate the analysis.  However, all of these potential 

extensions are beyond the specific interests of this essay.   
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Table 2.1 Comparisons of fixed-performance contracts and relative-performance 
contracts  

Static FPC Static RPC Full 
Commitment 
FPC 

Full Commitment 
RPC 

 

Fα  Fβ FW Rα  Rβ  RW  Fα  Fβ  F
FW  Rα  Rβ  F

RW  

Fα     n/a   =   n/a   
Fβ      <*   =   <*  

Static FPC 

FW       <*      <* 

Rα        n/a   =   
Rβ         *>   =  

Static RPC 

RW              

Fα           n/a   
Fβ            <*  

Full 
Commitment 
FPC F

FW             <* 

Rα              
Rβ              

Full 
Commitment 
RPC F

RW              

1Fα              
1Fβ              
2Fα              
2Fβ              

Dynamic FPC 

D
FW              

1Rα              
1Rβ              
2Rα              
2Rβ              

Dynamic 
current-period 
RPC 

S
RW              
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Table 2.1 (Cont.) 
Dynamic FPC Dynamic current-period 

RPC 
Dynamic previous-
period RPC 

 

1Fα  1Fβ  2Fα 2Fβ D
FW 1Rα  1Rβ  2Rα  2Rβ  S

RW  1Lα  1Lβ  2Lα  2Lβ L
RW  

Fα  =  >   n/a  n/a   n/a  n/a   
Fβ   =  <   <*  <*   <  <  

Static FPC 

FW                 

Rα       =  =        
Rβ        =  =       

Static RPC 

RW                 

Fα  =  >             
Fβ   =  <            

Full 
Commitment 
FPC F

FW      <           

Rα       =  =        
Rβ        =  =       

Full 
Commitment 
RPC F

RW           =      

1Fα       n/a     n/a     
1Fβ        <**     <    
2Fα         n/a     n/a   
2Fβ          n/a     =  

Dynamic 
FPC 

D
FW           <**     > 

1Rα                 
1Rβ                 
2Rα                 
2Rβ                 

Dynamic 
current-
period RPC 

S
RW                 

 
Notes:  
a) Each cell in the table compares the corresponding parameter in the second column and 
the corresponding parameter in the second row.  For example, a “ < ” sign means that the 
corresponding parameter in the second column is less than that in the second row.  
b) The cells with one asterisk (*) depend on the relative magnitude of the common shock 
and the idiosyncratic shock.  The explicit conditions are derived in Proposition 1 and 
Corollary 1.1.  The cells with (**) depend on the condition derived in Proposition 3.  
c) The matrix in the table is symmetric except the last scenario, i.e., Dynamic previous-
period RPC.  Thus, only the upper triangle of the table is filled. 
d) We use the symbol “n/a” to indicate that these cells are indeterminate and use empty 
cells to indicate that these are irrelevant or not the interest of this paper.   
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3.1 Introduction  

This essay investigates the role of growers’ reputation when an agricultural 

processor designs optimal incentives for high quality products in a dynamic contracting 

context.  Due to the characteristics borne in agricultural production, agricultural contracts 

have special features different from those in other industries.  For example, agricultural 

producers often require large capital investments in land, agricultural stock, equipment, 

and facilities that make the processor-producer relationship specific.  As a result, large-

scale processors, such as those in the frozen or canned fruits and vegetables, extensively 

use long-term contracts with producers.  Many industry observers believe that reputation 

for quality plays an important role in maintaining the processor-producer relationship.  

For example, Caspers (2000) reports that pork contractors invest much effort in building 

up reputation capital in areas were contract production is widespread.  Goodhue et al. 

(2000) test hypotheses regarding long-term relationships between contracting and 

reputation of grape quality in the California winegrape industry.  They point out that a 

grower’s reputation for consistent grape quality is necessary for him to receive a high 

price for future harvests and that the grape grower may not recover his costs through 

resale if his farm’s reputation is harmed.  Despite these reports and observations, few 

studies have taken into account reputation effects when one designs a long-term 

agricultural contract.   

Wilson (1985) summarizes past studies of reputation effects in various contexts.  In 

game-theoretic and market models, one’s reputation is usually defined as the history of 

his previously observed actions or measured performance.  Operationally, it is usually 

summarized by a derived posterior probability assessment by his opponent, which is used 
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to predict the player’s future actions.  He indicates that “at least four ingredients are 

necessary to enable a role for reputations.  (1) There must be several players in the game, 

and (2) at least one player has some private information that persists over time. This 

player (3) is likely to take several actions in sequence, and (4) is unable to commit in 

advance to the sequence of actions he will take (Wilson, 1985, p.29).”  According to 

Wilson, a player’s optimal strategy in the presence of reputation effects must take into 

account the following chain of reasoning: his current reputation affects others’ 

predictions of his current behavior and thereby affects their current actions.  Thus, his 

optimal strategies must be not only the best choice in the current immediate decision, but 

also the best longer-run decision which takes into consideration of the effect of his 

current decision on his future reputation.  Further, others’ current actions will be affected 

as well anticipating the player’s long-term consequences.  Since the four necessary 

components are contained in a dynamic principal-agent problem with adverse selection, 

reputation effects could be sustained to provide more effective incentives in such a 

context.   

To address this issue, a two-period principal-agent model is used in this essay.    

Since commitment to the intertemporal contract terms is crucial to the optimal incentives, 

this essay is organized in the following manner.  The first section of the model derives 

properties of a long-term contract with full commitment by both parties.  The second 

section establishes a long-term dynamic contract with no commitment to the 

intertemporal schemes.  The third section introduces a reputation reward contingent on 

observation of high quality and investigates its effect on the dynamics of optimal 

incentives.  The final section concludes and discusses potential extensions of the model.   
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3.2 Literature Review 

Reputations effects in games and markets 

Wilson (1985) differentiates past studies of reputation effects in two groups, game-

theoretic models and market models.  Among all the game-theoretic models, the chain-

store game (Selten, 1978; Kreps and Wilson, 1982; Milgrom and Roberts, 1982), the 

sequential bargaining game (Fudenberg and Tirole, 1983), and the repeated prisoners’ 

dilemma game (Kreps et al. 1982) are among the most classic representations of 

reputation effects in repeated games.  In these studies, a player’s reputation is 

summarized in his opponent’s beliefs about his type.  The key ingredient of these studies 

is that players would be likely to incur short-term costs to build up reputation that yield 

favorable long-term consequences when he is patient and his planning horizon is long.  

However, none of these studies is formulated within the principal-agent framework. 

Another group of models examines the role of reputation effects in markets.  

Shapiro (1982) examines how a profit-maximizing firm chooses product quality in an 

environment where consumers, who cannot observe quality before purchase, use product 

reputation as a criterion for quality.  Since reputation adjustment can reward high quality 

production only with a lag, Shapiro shows that the firm will not find it profitable to 

provide as high a quality as under perfect information.  Shapiro (1983) derives an 

equilibrium price-quality schedule for markets in which product quality is unobservable 

to consumers before purchase.  He argues that high-quality products should be paid a 

price premium for compensating sellers for their investment in reputation.  Similarly, 

Allen (1984) studies the role of reputations in a competitive market where product quality 

is unobservable and finds that there exist equilibria where price is equal to average cost 
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but greater than marginal cost.  As Wilson (1985) indicates, however, most of these 

studies do not explicitly specify the source of the reputation effects; they simply assume 

that they are present.  

Several papers concerning reputation and quality are also found in an agricultural 

setting.  For example, Worth (1999) develops a model of how food firms determine the 

quality of their output in the presence of reputation of product quality.   Quagrainie, 

McCluskey, and Loureiro (2001) adopt a dynamic multiple-indicator model to test the 

relationship between reputation of quality and price premium for Washington apples and 

find that price premiums are good indicators of reputation. Goodhue et al. (2000) test 

hypotheses regarding long-term relationships between contracting and reputation of grape 

quality in the California winegrape industry.  A hedonic pricing study conducted by 

Schamel (2002) finds significant association between California wine prices and winery 

reputation indicators.  

 

Repeated agency problems 

Many papers have investigated dynamics of repeated agency models in the presence 

of asymmetric information.  One set of studies focuses on multi-period agency models 

with moral hazard in either a finite or an infinite horizon.  For example, Rubinstein and 

Yaari (1983) and Radner (1985) study an infinitely repeated problem in which neither 

principal nor agent discounts the future. They show that in this case there exists an 

optimal contract that yields both the principal and the agent the same expected utilities as 

they would have received in the first-best case. Thus, inefficiencies due to moral hazard 

that arise in static settings are completely overcome in this case.  Radner (1985) shows 
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that if the discount rates are close to one, the first-best solution is approximately 

achievable.  Lambert (1983) and Rogerson (1985) examine qualitative features of the 

optimal contract with discounting.  Lambert develops properties of the optimal contract 

in a finite horizon model using the first-order approach, while Rogerson (1985) examines 

the relationship between wages and effort for any two successive periods in a repeated 

problem with discounting.  Both papers show that history plays an essential role in a 

repeated relationship and the optimal contract in any period will depend on the entire 

previous history of the relationship.   

In contrast, another set of studies investigates multi-period contracts in the presence 

of adverse selection.  For example, Freixas, Guesnerie, and Tirole (1985) study the 

dynamics of a linear contract and demonstrate that ratchet effects exist in the presence of 

hidden information.  Laffont and Tirole (1988) study a two-period principal-agent model 

with unobservable agents’ abilities.  However, unlike Freixas, Guesnerie, and Tirole 

(1985), they demonstrate that with a continuum of types, for any first-period incentive 

schemes, there exists no fully separating continuation equilibrium.  Hosios and Peters 

(1989) examine a two-period insurance contract and show that, in the absence of 

discounting, no fully separating equilibrium can be sustained.   

A few other papers also investigate relationships between short-term contracts and 

long-term contracts.  Specifically, these papers deal with spot implementability of a long-

term contract via a sequence of short-term contracts.  For example, Fudenberg, 

Holmström, and Milgrom (1990) use a multiperiod principal-agent model to illustrate that 

an optimal long-term contract can be implemented by a sequence of short-term contracts 

under certain conditions.  Spear and Srivastava (1987) analyze an optimal contract in an 
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infinitely repeated agency model in which both principal and agent discount the future. 

They show that the multi-period problem can be reduced to a static variational problem 

and a simple stationary representation of the dynamic optimal contract exists.  

Malcomson and Spinnewyn (1988) also show that under certain conditions repeated 

short-term contracts implement long-term contracts and that linking payoffs in one period 

to outcomes in previous periods does not improve the tradeoff between incentives and 

risk sharing.  Rey and Salanié (1996) concluded that a sequence of short-term contracts 

could be as efficient as long-term renegotiation-proof contracts in the presence of adverse 

selection if renegotiation is always possible.  However, spot contracting will be efficient 

under much more restrictive assumptions.   

Although few studies have directly investigated reputation effects in the principal-

agent framework, those studies about repeated agency problems can shed some light on 

this type of problem.  In some sense, the analysis that follows in this essay is a synthesis 

of those studies with hidden information and yet incorporates with the notion of 

reputation effects in an agricultural context.     

 

3.3 Objectives 

This main objective of this essay is to investigate the role of growers’ reputation 

when an agricultural processor designs optimal incentives for better quality products in a 

two-period dynamic contract.  When the grower’s type, as reflected by product quality, is 

unobservable to the processor, adverse selection would be likely to occur in a processor-

producer relationship if no effective incentives are provided.  In addition, in the absence 

of commitment to intertemporal contract terms by both parties, the existence of hidden 
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information that persists over time and a grower’s sequential choices of actions enable a 

role for reputation effects in the two-period dynamic contract.  Thus, optimal incentives 

in such a contract must take into consideration not only the adverse consequences of 

hidden information in the short term, but also its intertemporal consequences in the 

longer term.   

The first section of the essay develops a two-period full-commitment model, which 

requires that both parties be committed to the contract terms and that the contract cannot 

be breached or renegotiated during the contracting period.  This model serves as a 

baseline.  Then a two-period dynamic model with no commitment is developed.  

Specifically, the no-commitment contract assumes that neither the processor nor the 

grower can commit to an intertemporal scheme.  In other words, the processor can revise 

the contract in the second period conditional on the grower’s first-period performance 

and the grower can quit the relationship at the end of each period.  Under this contract, 

optimal conditions for a fully separating equilibrium, a semi-separating equilibrium, and 

a pooling equilibrium are established.  In this case, reputation effects are embodied in the 

posterior probability assessment (Bayes’ rule) of the grower’s types by the processor at 

the end of the first period.  Anticipating the processor’s strategies, the high-quality 

grower type chooses to build up his reputation by either imitating the low-quality type or 

revealing his true type, whichever is favorable.  In fact, imitating the dominant behavior 

of a low-quality type yields future information rents to the high-quality type by sustaining 

the processor’s belief that the grower might be of low-quality type.   

Based on the no-commitment dynamic model, the third section incorporates a 

reputation reward contingent on the grower’s past performance into the model.  More 
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specifically, a reputation reward is remunerated to the grower in the second period if the 

processor observes good performance at the end of the first period.  To simplify the 

analysis further, the reputation reward is assumed to take the form of a lump sum 

payment.  Under these assumptions, this essay demonstrates that the reputation reward 

contingent on the grower’s history of performance provides incentives for the grower to 

invest effort in building a reputation for high quality and, thereby, could improve both the 

processor’s and the grower’s welfare and result in a dominant equilibrium.  The final 

section of the essay concludes and discusses potential policy implications. 

This essay contributes to the related literature in the following aspects: Firstly, in 

contrast with some of the past studies that rule out existence of a fully separating 

equilibrium in a dynamic contract, this essay establishes optimal conditions for a fully 

separating equilibrium, a semi-separating equilibrium, and a pooling equilibrium under 

certain conditions.  Moreover, conditions for optimality of a “handicapped” separating 

equilibrium, in which a single contract is offered to the high-quality grower type, are also 

investigated.  Secondly, although many studies have discussed reputation effects in 

various game-theoretic settings, few studies have explicitly investigated reputation effects 

in a principal-agent framework with asymmetric information, and virtually no study 

models reputation rewards contingent on past observed performance in a dynamic 

contract.   Thus, this essay addresses a question of both theoretical interest and practical 

importance.  
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3.4 The model  

For simplicity, it is assumed that there are only two time periods t=1, 2.  Although 

the following model is more like a short-term contract as defined in Rey and Salanie 

(1996), extending the model to a longer term is straightforward.  Growers are 

heterogeneous in terms of their capability to produce high-quality products.  For example, 

grower differences include, among others, production technology, management skills, 

and soil conditions that can be sustained over time as long as grower types are not fully 

revealed to the processor.  Let },{ θθθ =Θ∈ denote the two possible quality types of the 

growers with θθ < .  The processor cannot observeθ , but has some prior belief )(θf that 

the proportion of low-quality type θ  is 11 r−  and that of high-quality typeθ  is 1r .  At the 

beginning of each period t, the grower privately chooses an action, te , to improve the 

quality of his products, which is only observable to the grower.  For example, in the 

process of winegrape production, this action may include pruning, irrigating, and pest 

management, among other managerial actions.  Thus, the observed or realized quality 

tq of the grower’s products is determined by ),( ttt eqq θ= .  For simplicity, we assume 

that no uncertainty is involved in the production process.  In particular, the quality 

structure is governed by the following   

(3.1) tttt eeqP θθ == ),( . 

The processor can observe the realized quality of the finished products produced by the 

grower, but she cannot distinguish the effects of the grower’s typeθ and his effort te  on 

improving quality.  It is assumed that the processor can sell the product at price, tt qP = .  
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Recall that the grower’s quality typeθ  can be sustained over time as long as this 

information is not fully revealed, which is a necessary condition to incur reputational 

effects in a dynamic context.   Since the quality structure is deterministic, in each period 

each grower type can set a specific target of realized quality given an optimally chosen 

effort level.   

The processor is risk neutral and has a profit function, ttttt wPwP −=),(π , where tw  

is the reward to the grower at period t.  Each grower type θ  has a time-separable utility 

function ),()(),,( θθ ttttt egwuewU −= , where θθ /)(),( tt eveg = .  From (3.1), the utility 

function is equivalent to θθθ /)/()(),,( ttttt PvwuewU −= . It is assumed that u is strictly 

concave in tw  with 0)(' >twu  and 0)('' <twu ; and v is strictly convex in te : 

0,0 >> eee vv  and 0)0( =v .  Hence, we know that 0),( >θte eg , 0),( <θθ teg , and 

0),( <θθ te eg  . Note that in this setup growers differ in their disutility of effort and 

marginal contribution of effort to realized quality.  The low-quality type incurs higher 

costs relative to the high-quality type for a same level of effort.  In addition, the marginal 

disutility of efforts decreases with θ , i.e., decreases with grower abilities. 

 

3.4.1 Two-period Full-Commitment Contract 

In this case, since both parties are committed to a two-period contract, the contract 

cannot be breached or renegotiated during the contracting period.  An alternative 

interpretation of full commitment is that the processor promises at date one to an 

intertemporal incentive scheme and commits not to use the information revealed by the 

grower in the first period during the second period.  Hence, reputation has no effect on 
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the optimal incentives to revealing the grower’s private information.  In addition, in the 

absence of an intertemporal incentive problem, the reward in one period does not depend 

on outcomes occurred in the previous period.   

a) Optimal contract under perfect information 

Under perfect information, the processor can perfectly observe the grower’s type 

and the incentive problem is absent.  Since the two periods are independent, the processor 

would solve, in each period t, for each type },{ θθθ =Θ∈ , 

(3.2) tttttew
wewPZ −=−= θθθθ

θθ
)()()(max

)(),(
 

subject to 0/)()( uevwuU ttt ≥−= θ . 

The Lagrangian for this problem is  

),/)()(()(max 0,
uevwuweL ttttew tt

−−+−= θλθ  

and the first order conditions are 

(3.2) 0'1
=−=

∂
∂ v
e
L

t

λ
θ

θ , 

(3.3) 0'1 =+−=
∂
∂ u
w
L

t

λ , and 

(3.4) 0/)()( uevwu tt ≥− θ . 

From (3.3) and the concavity of )( twu , we know 

(3.5) 0'/1 >= uλ  ,  
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which confirms that the participation constraint (3.4) is binding.  Thus, from (3.4), the 

optimal reward to the grower is 

(3.6) )/)(()( *
0

1* θθ tt evuuw += − ,    },{ θθθ ∈ . 

Then, from (3.2) and (3.3), we can obtain the optimal level of effort for each grower 

type },{ θθθ ∈ , )(* θte : 

(3.7) )}(')('arg{ 2*
ttt wueve θ=∈ , or, 

(3.8) 2
*

*

)('
)('

θ=
t

t

wu
ev

. 

Thus, given the assumptions of the utility function and disutility of efforts, 

condition (3.8) states that the optimal level of effort for each type θ , )(* θe , increases 

with θ .   In other words, the optimal contract requires that less effort be demanded from 

the low-quality type.  In addition, from (3.6), the grower of each quality type obtains the 

reservation utility 0u in both periods.  

Let )(max)(
)(),(

* θθ
θθ tew

ZZ = .  Then in each period, the processor can obtain net profit 

)()()( *** θθθθ weZ −= from the grower typeθ  , and )()()( *** θθθθ weZ −=  

from the grower type θ .  In addition, it can be verified that )()( ** θθ ZZ > .  This 

relationship is illustrated in Figure 3.1. Note that since 0)( == eP θθ  when 0=e , the 

processor’s net profits for each },{ θθθ ∈  are exactly the distances from the origin O to 

the point A and point B on the vertical axis respectively.  Given strict concavity of u(w) 
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and convexity of v(e) and the processor’s profit function,  clearly, OB>OA, 

or, )()( ** θθ ZZ > . 

 

Figure 3.1  The optimal contract with perfect information 

Thus, in a full-commitment contract under perfect information, the optimal contract will 

mimic a sequence of optimal static contracts.  The static contract in every period is 

exactly same and independent over time.  For future reference, denote this perfect 

information contract },{ ***
HL CCC = , where )}(),({ *** θθ ewCL = and 

)}(),({ *** θθ ewCH = .   To simplify the notation further, let )(** θww = , )(** θee =  and 

)(** θww = , )(** θee = .  Thus, the optimal contract under perfect information can also 

be written as },{ *** ewCL = and },{ *** ewCH = .   

b) A full-commitment contract with asymmetric information 

w

e 

0/)()( =− θevwu
0/)()( =− θevwu

)(* θθ Zwe =−  

)(* θθ Zwe =−

*w  
*w

*e *e)(* θZ  

)(* θZ  

O

A

B
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With asymmetric information, incentive constraints must be imposed to have the 

grower’s type truthfully revealed.  Since the processor commits not to use the information 

revealed by the grower in the first period during the second period, the optimal contracts 

in two periods are independent.  Thus, in each period t, the processor maximizes its 

expected net profit subject to the participation constraint and the incentive constraints.  

Again, let )()()( θθθθ ttt weZ −= .  Thus, in each period t, the processor maximizes  

(3.9) )]()()[1()]()([)()1()( 1111 θθθθθθθθ ttttttt werwerZrZr −−+−=−+=Π . 

In each period, the grower earns at least the reservation utility 0u : 

(3.10) },{,/)()( 0 θθθθ =Θ∈∀≥−= uevwuU ttt . 

Given the two distinct types, the optimal contract requires that the grower typeθ  

produces at quality level, )()( θθθ eP =  (recall that market price is set equal to the 

observed quality) and receives )(θw , while the grower typeθ  produces at quality level 

)()( θθθ eP = and receives )(θw .  Denote this full-commitment contract with 

asymmetric information },{ F
H

F
L

F CCC = , where )}(),({ θθ FFF
L ewC = and 

)}(),({ θθ FFF
H ewC = .  To simplify the notations, let )(θFF ww = , )(θFF ee = , 

)(θFF ww = , )(θFF ee = , )(θFF PP = , and )(θFF PP = .  The superscript F is 

omitted in the following section. 

Thus, to prevent deviation, the following incentive constraints must be satisfied 

(3.11) θθθ /)/()(/)()( Pvwuevwu −≥− , 

(3.12) θθθ /)/()(/)()( Pvwuevwu −≥− . 
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This condition is equivalent to the following condition for each type },{ θθθ ∈ : 

(3.13) θθθθθθθθθ
θ

/)/)ˆ(ˆ())ˆ(()/)/ˆ())ˆ((suparg
ˆ

evwuPvwu −=−∈ . 

The above condition can be interpreted as follows: If each grower typeθ  is asked to 

report his type to the processor, the optimal incentives require that it is optimal for each 

grower to truthfully report his type.  This condition is consistent with the direct revelation 

principle.   

Thus, the processor would solve, in each period t, 

(3.9) ])[1(][)()1()(max 1111)(),( tttttttwe
werwerZrZr −−+−=−+=Π θθθθ

θθ
 

subject to 

(3.10) },{,/)()( 0 θθθθ =Θ∈∀≥−= uevwuU ttt  

(3.11) θθθ /)/()(/)()( Pvwuevwu −≥−  

(3.12) θθθ /)/()(/)()( Pvwuevwu −≥−  

To help solve the above problem, the following results are first derived to simplify the 

problem.  

Full-commitment result (1): An optimal contract must be such that (i) )(θP increases 

withθ  and (ii) )(θw increases withθ .   

The proof is straightforward.  Given the distinct growers types, θ  and θ , with 

θθ < , (3.11) and (3.12) are equivalent to: 

(3.11’) θθθθ /)/()(/)()( evwuevwu −≥− . 
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(3.12’) θθθθ /)/()(/)()( evwuevwu −≥− . 

Thus, summing up (3.11’) and (3.12’) implies: 

(3.13) θθθθθθθθ /)/(/)(/)(/)/( evevevev −≥− . 

Define the function θθθθ /)(/)/()( eveveg −= , thus, θθθθ /)(/)/()( eveveg −= , and 

θθθθ /)/(/)()/( PvevPg −= .   

From the convexity of v(e), it must be true that 

0]/)('/)/('[/)(')/(')(' 22
2 <−=−= θθθθθθ

θ
θθθ eveveveveg  since θθ < .  Hence, 

from (3.13), we know that )/()( θPgeg ≥ .  Therefore, given 0)(' <eg , it must be true 

that θ/Pe ≤ , that is, θθ ePeP =≤=  for θθ < .  In fact, P must be strictly greater 

than P  for θθ < for a separating equilibrium because, otherwise, it will be a pooling 

equilibrium.  Hence, from (3.12’), we have 0/)/(/)()()( >−≥− θθθθ evevwuwu , 

from which ww > .   

Recall that eP θ=  is the realized quality given the grower’s type and his effort choice.  

Result (1) states that the optimal choices of realized quality increase with θ .  As a result, 

the optimal rewards increase with θ  as well.  This condition makes separating 

equilibrium possible.   

Full-commitment result (2): The participation constraint for type θ (3.12) is not 

binding. 

To see this, (3.10) and (3.12) implies 
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0/)()(/)/()(/)()( uevwuPvwuevwu ≥−≥−≥− θθθθ  

because θθ ≥  and eP <θ/ . 

That is, the participation constraint for type θ  is satisfied.  Since the low-quality type, θ , 

earns at least the reservation utility, 0u , the participation constraint for typeθ does not 

affect the optimal solution to this problem. Hence, it is not binding.  Moreover, an 

optimal contract in this problem must have the participation constraint for typeθ  binding, 

i.e., 0/)()( uevwu =− θ .  Otherwise, the processor can always reduce the reward for this 

grower type until it reaches his reservation utility.  

Now, let us derive the optimal choice of effort exerted by each grower type.  

Ignoring the participation constraint for the high-quality type θ , let λ , Lµ , and 

Hµ denote the Lagrangian multipliers for (3.10), (3.11), and (3.12).  Then the Lagrangian 

for the above problem (3.9)-(3.12) is 

)/)/()(/)()((
)/)/()(/)()((

)/)()((][])[1( 011

θθθµ

θθθµ
θλθθ

Pvwuevwu
Pvwuevwu

uevwuwerwerL

H

L

−≥−+

+−−+

−−+−+−−=

 

The first order conditions to this problem are: 

(3.14) 0/)/(')/(/)('/)(')1( 1 =+−−−=
∂
∂ θθθθµθµθλθ Pvevevr

e
L

HL , 

(3.15) 0/)('/)/(')/(1 =−+=
∂
∂ θµθθθθµθ evPvr

e
L

HL , 

(3.16) 0)(')(')(')1( 1 =−++−−=
∂
∂ wuwuwur
w
L

HL µµλ , 
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(3.17) 0)(')('1 =+−−=
∂
∂ wuwur
w
L

HL µµ . 

From (3.17), we know that 0>Hµ since 01 >r  and 0'>u .  Hence, the incentive 

compatibility constraint (3.12) is binding.   

Further, since PP > , it is not possible for both incentive compatibility constraints 

to be binding.  To show that, one can assume the contrary.  If both constraints are 

binding, then from (3.11’) and (3.12’), we can get 

(3.18) θθθθθθθθ /)/(/)()()(/)(/)/( evevwuwuevev −=−=− . 

Since θθ < , and )/()()()/( θθθθ evevevev −≥−  due to strict convexity of )(ev , 

(3.18) is not possible.  Therefore, the incentive compatibility constraint (3.11) must be 

strict inequality, which implies 0=Lµ . 

Substituting 0=Lµ into (3.15) and (3.17) gives 

(3.19) )}(')('arg{ 2 evwue =∈ θ , 

which coincides with the optimal condition for typeθ  under perfect information 

(equation 3.7). 

Substituting 0=Lµ into (3.15) and (3.16) yields, respectively, 

(3.20) )('/2
1 evrH θµ =  , and 

(3.21) Hwu
r

µλ +
−

=
)('

1 1 . 
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Then the optimal effort choice for grower type θ  can be solved by substituting (3.20) and 

(3.21) into (3.14): 

}0/)/(')/(/)(']
)('

1
[)1( 1

1 =++
−

−− θθθθµθµθ Pvev
wu
r

r HH , which implies 

}0]/)('/)/(')/[(/)('
)('

1
)1( 1

1 =−+
−

−− θθθθθµθθ evPvev
wu
r

r H , or, 

0)](')/('[
)('

]
)('
)('1[)1( 221

21 =−+−− evPv
ev

r
wu

evr θθθ
θθ

θ . 

Hence, the optimal effort choice for grower type θ  is given by 

(3.22) }0)](')/('[
)('

]
)('
)('1[)1arg{( 221

21 =−+−−∈ evPv
ev

r
wu

evre θθθ
θθ

θ . 

Since 0)(')/(' 22 <− evPv θθθ , it must be true that 

1
)('
)('

2 <
θwu

ev , which implies *ee < , where *e is the optimal choice of effort for grower 

type θ  under perfect information.   

Further, since the participation constraint for the grower typeθ  is binding, he earns 

exactly the reservation utility 0u at the equilibrium, i.e., 

(3.23) 0/)()( uevwu =− θ  

from which we can solve the optimal reward to the grower type θ . 

Then from (3.12), 

(3.24) θθθθθθθ /)/(/)(/)()(/)/()(/)()( PvevevwuPvwuevwu −+−=−=−  
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θθθ /)/(/)(0 Pvevu −+=  

Since 0/)/(/)( >− θθθ Pvev , the grower typeθ  earns strictly positive 

information rents from the optimal contract under asymmetric information.  Thus, this 

optimal full commitment contract under asymmetric information can be written as 

},{ F
H

F
L

F CCC =  with },{ FFF
L ewC = and },{ FFF

H ewC = , where },{ FF ew is given by 

conditions (3.22) and (3.23), while },{ FF ew  is given by conditions (3.19) and (3.24).   

To summarize, if the processor commits itself in the first period not to use the 

information revealed by the grower in the following period, and the grower commits to 

the two-period contract and cannot breach the relationship, the optimal incentives with 

full commitment mimic the same static contract in both periods.  Further, commitment by 

the processor eliminates the possibility of incorporating reputation effects into the 

optimal incentives.  Therefore, under the assumption of full commitment, growers’ 

reputation of quality does not affect the dynamics of the optimal contract with 

asymmetric information.    

 

3.4.2 Two-period Dynamic Contracts with No Commitment 

In this case, it is assumed that neither the processor nor the grower can commit to 

an intertemporal incentive scheme.  Thus, the processor chooses the optimal incentive 

scheme in the second period conditional on the grower’s first-period performance.  The 

grower cannot commit to the two-period contract and can quit the relationship at the end 

of the first period.  We assume that the grower can obtain his reservation utility if he 

quits.   
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Recall that grower type θ  is the high-quality type and θ  is the low-quality type.  If 

the grower type θ  deviates and pretends to be the grower type θ , i.e., choose the target 

market price )(θP , he would earn relatively less profit in the first period and enjoy 

positive information rent in the second period.  In the following analysis, we exclude the 

possibility that the low-quality type would mimic the high-quality ability because this 

strategy always generates a loss to the low-quality type.   

Specifically, the processor’s strategy consists of incentives schemes 

)},,(),({ 121211 wPPwPw and the grower’s strategy is a sequence of decisions of the effort 

levels },,,(),,({ 121211 ewwewe θθ .  Denote the set of feasible contract as },{ 111 HL CCC =  

and },{ 222 HL CCC = where }{ 1,11 jjj ewC = and }{ 2,22 jjj ewC = for },{ HLj∈ .  These 

optimal strategies must form a perfect Bayesian equilibrium such that (i) 2e is optimal for 

the grower given 2w , (ii) 2w maximizes the processor’s expected profit given its belief 

about θ , ),|( 112 ewf θ , in the second period, (iii) 1e is optimal for the grower given 1w and 

the second-period incentive schemes, (iv) 1w  maximizes the processor’s expected profit 

given its belief about θ , )(1 θf , in the first period and the second-period strategies, and 

(v) the processor’s second-period belief ),|( 112 ewf θ is derived from the first-period 

belief )(1 θf and the grower’s first period strategy using Bayes’ rule. 

From the analysis described in the first case, an optimal static contract in each 

period requires each grower type has a fixed target quality level, i.e., )(θq and )(θq , 

which correspond to the market prices )(θP and )(θP , respectively.  Hence, three types 

of continuation equilibria could potentially be sustained: 
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(i) Separating equilibrium:  The high-quality grower type θ  chooses )(θP and the low-

quality grower type θ  chooses )(θP .  Then the processor’s second-period belief becomes 

1))(),(( 12 =θθ Pwr  and 0))(),(( 12 =θθ Pwr . 

(ii) Pooling equilibrium: Both grower types choose )(θP  in the first period.  The 

processor updates her second-period belief about grower types such that 

112 ))(),(( rPwr =θθ , and 1))(),(( 12 =θθ Pwr .  That is, if )(θP  is observed, the processor 

cannot obtain the grower’s true type by observing his first-period performance, so the 

Bayesian updating results in the exactly same distribution of grower types in the second 

period as in the first period.  If )(θP  is observed instead, then the processor updates its 

belief such that the grower type is of high-quality type.   

(iii) Semi-separating equilibrium: If the high-quality type randomizes over )(1 θP and 

)(1 θP , then the processor updates its belief using Bayes’ rule.  Let π be the probability 

that the grower type θ chooses the contract designed for the grower type θ .  Then, the 

processor’s second period belief becomes  

(3.25)  1
11

1
12 1

)),((ˆ r
rr

rPr <
−+

=
π

π
πθ  and 1)),(( 12 =πθPr . 

Thus, for a given belief of grower types in the second period, denote the processor’s 

second-period net profit as )( 22 rW and the first period net profit as ),,( 1111 HL CCrW .  

Similarly, define the grower’s second period utility as )|)(( 222 ii rCU θ and the first period 

utility )|( 11 iiCU θ , for },{ HLi∈ .  Note that we use θθ =L  and θθ =H  here.  From 

now on, these notations might be used interchangeably for notational simplification. 
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Now, let us take a close look at the second period incentives schemes. 

Second-period incentive schemes 

As have discussed in the previous section, the second period incentive schemes 

depend on the grower’s first-period performance and the processor’s second period belief 

about grower types.  The optimal incentives can be derived following the same procedure 

as described in the full commitment case.  In this case, without loss of generality, we 

normalize the reservation utility for all grower types 0u to be zero. 

Given the processor’s belief about the grower types 2r in the second period, the 

processor solves the following problem: 

])[1(][)()1()()(max 222222222222)(),( 22
LLHHwe

werwerZrZrrW −−+−=−+= θθθθ
θθ

 

subject to 

(3.26) },{,0/)()( 222 θθθθ =Θ∈∀≥−= evwuU . 

(3.27) θθθθ /)/()(/)()( 2222 HHLL evwuevwu −≥− . 

(3.28) θθθθ /)/()(/)()( 2222 LLHH evwuevwu −≥− . 

Following the procedure as in the full commitment case, we can derive the optimal 

contract for the second period contingent on the processor’s belief about 2r .  Specifically, 

there could exist three different types of equilibria given different values of 2r . 

(1) Separating: If the first period equilibrium is separating, i.e., 1))(),(( 12 =θθ Pwr  and 

0))(),(( 12 =θθ Pwr , then second-period equilibrium is exactly same as the optimal 

contract under perfect information. In other words, once the grower’s true type is 
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revealed in the first period, the grower’s private information concerning their quality 

becomes public.  Hence, the processor can offer a contract that provides the reservation 

utility to the grower of each type and extract all surplus from the grower.  Thus, in a 

dynamic two-period contract, if the first-period contract is separating, the optimal 

contract for the second period is },{ 222 HL CCC = , where ),( **
2 ewC L = and 

),( **
2 ewC H = as in the perfect information contract.  Recall that the optimal contract 2C  

requires 0)|()|( 2222 == HHLL CUCU θθ . 

(2)Pooling:  If both growers types pool in the first period and choose )(1 θP  , the 

processor adopts the same distribution of grower types as the prior distribution, 

i.e., 12 rr = .  As a result, the optimal contract for the second period is same as the full-

commitment contract.  That is,  },{ 222
P
H

P
L

P CCC = , where ),(2
FFP

L ewC = and 

),(2
FFp

H ewC = .  The superscript P stands for a pooling continuation equilibrium when 

the first-period contract is fully concealing.  

(3) Semi-separating: If the high-quality type randomizes over )(1 θP and )(1 θP  in the first 

period, then the processor updates its belief using Bayes’ rule and solves the second-

period problem given 2r  specified by (3.25). 

Given any value of 2r , the optimal contract can be solved using the similar 

procedure described in the full-commitment contract.  More precisely, the optimal 

contract must satisfy the following four conditions: 

(3.29) )}(')('arg{ 22
2

2 HHH evwue =∈ θ . 
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(3.30) }0)](')/('[
)('

]
)('
)('1[)1arg{( 2

2
2

2

2

2
2

2

2
22 =−+−−∈ LL

HL

L
L evev

ev
r

wu
evre θθθθ

θθ
θ . 

(3.31) 0/)()( 22 =− θLL evwu .   

(3.32) 

.0/)/(/)(
/)/(/)(/)()(/)/()(/)()(

22

22222222

>−=

−+−=−=−

θθθθ

θθθθθθθθθ

LL

LLLLLLHH

evev
evevevwuevwuevwu

 

Hence, if the grower type θ deviates in the first period and pools with the grower type θ  

or randomizes, he obtains positive information rents in the second period: 

(3.33) 0/)/(/)()( 2222 >−= θθθθ LLH evevrI . 

Note that the low-quality type always obtains his reservation utility in the second 

period independent of the processor’s belief of grower types.  Therefore, there is no 

incentive for the low-quality type to deviate in the first period.  In other words, the low-

quality type always chooses his own contract in the first period.  On the other hand, the 

high-quality grower obtains a greater payoff in the second period by mimicking a low-

quality type in the first period.  In addition, the more likely the processor believes that the 

grower is of low-quality type (smaller value of 2r ), the greater payoff the high-quality 

grower could obtain in the second period.  This result confirms the assumption that only 

the high-quality type has incentives to pool with the low-quality type or to randomize.  

This finding leads to the following lemma. 

Lemma 1: )()|)(( 22222 rIrCU HH =θ decreases in 2r . 

Proof:  Taking the derivative of (3.33) with respect to 2r , we have 
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2

2
2

2
2
2

2

22

2

22
2

2
2

2
22

2

]
)/(')('

[

)/(')('
/)/(/)()(

r
eevev

r
eev

r
eev

ev
r

ev
r

rI
r

LLL

LLLL
LLH

∂
∂

−=

∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

=
∂
∂

θ
θθ

θ
θ

θ
θ

θ
θθ

θ
θθθθ

 

Since θθ < and 0)('' >ev , it must be true that 0)/(')('
2

2
2
2 >−

θ
θθ

θ
LL evev .  Thus, the sign 

of 
2

2

r
e L

∂
∂  becomes the main issue. 

From (3.30), since 0)(')/(' 2
2

2
2 <− LL evev θθθθ , the greater 2r is,  the greater the 

expression 2
2

2

)('
)('1
θL

L

wu
ev

−  must be.  That is, the expression 2
2

2

)('
)('
θL

L

wu
ev  must be smaller.  

Hence, Le2 decrease in 2r , or 0
2

2 <
∂

∂

r

e L .  In addition, )()|)(( 22222 rIrCU HH =θ is 

maximized at 02 =r .  This lemma can be better understood in Figure 3.2.   
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Figure 3.2 Illustration of Effects of 2r on high-quality type’s information rents 

Since condition (3.28) is binding, that is, )|)(()|)(( 222222 θθ rCUrCU LH = , for 

any given 2r , the optimal contract for the high-quality type must be on the indifference 

curve that intersects with the indifference curve 0/)()()|( 22 =−= θθ evwuCU L  through 

point ))(),(( 2222 rerw LL . Since 0)0( =v , the information rent )( 22 rI H is exactly the 

distance from the origin to the point C on the vertical axis.  Hence, if 2r decreases, the 

contract for the low-quality type ))(),(( 2222 rerw LL moves along the indifference curve 

0/)()()|( 22 =−= θθ evwuCU L  toward point ),( ** ew , which represents the optimal 

contract for the low-quality type under perfect information.  That is, in the limit, when 

02 =r , the contract LC2  converges to the perfect information contract ),( *** ewCL = at 

w 

e*e)( 22 re L )( 22 re H

)( 22 rw L  

0/)()( =− θevwu
)(/)()( 22 rIevwu H=− θ  

*w  

)( 22 rw H  

O

A

B

C

)0(/)()( 2HIevwu =− θ
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which the information rent for the high-quality type is maximized.  Therefore, 

)()|)(( 22222 rIrCU HH =θ  decreases in 2r .  Intuitively, this lemma states that the 

information rent for the high-quality grower type increases as the processor believes that 

the grower is more likely to be a low-quality type.   

Since the processor’s second-period net profit depends on its belief about growers’ 

types in the second period, denote )()()( 22222 rwreZ HH −= θθ  

and )()()( 22222 rwreZ LL −= θθ .  Then )()1()()(max)( 222222)(),(2
*

2
22

θθ
θθ

ZrZrrWrW
we

−+==  

is the maximum second-period net profit contingent on 2r .  It can be shown that the 

processor’s second period net profit increases in 2r .  This result is demonstrated in the 

following Lemma.  

Lemma 2: )( 2
*

2 rW  increases in 2r  and is convex in 2r . 

Proof:  Using the Envelope theorem, )()()( 222
*

2
2

θθ ZZrW
dr
d

−= .  Thus, it is 

sufficient to show )()( 22 θθ ZZ > for any 2r . This can be illustrated in Figure 3.2.  As 

indicated above, the distance OA is the net profit the processor can obtain from the low-

quality grower under perfect information.  As 2r  decreases, the contract for the low-

quality type ))(),(( 2222 rerw LL moves along the indifference curve 0)|( 22 =θLCU  toward 

the point ),( ** ew .  Thus, for any 2r  ( 10 2 ≤≤ r ), the maximum profit the processor can 

obtain from the low-quality grower is )(* θZ  at the point ),( ** ew .  In other words, 

)()( 2
* θθ ZZ ≥ for any 2r  (equality for 02 =r ).  On the other hand, since (3.28) is binding 

and (3.27) is not binding, the indifference curve of the high-quality type must intersect 
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with the indifference curve 0)|( 22 =θLCU  through point ))(),(( 2222 rerw LL . As 2r  

decreases, in the limit, the indifference curve for the high-quality type must cut the curve 

0)|( 22 =θLCU  through the point ),( ** ew , where the high-quality type obtains 

maximum informational rents and the processor acquires the minimum net profit from the 

high-quality grower type.  Since the optimal contract },{ 222 HL CCC = requires that the 

high-quality type be indifferent between HC2  and LC2  and the low-quality type strictly 

prefer LC2  to HC2  (condition (3.27) and (3.28)), the optimal contract HC2  must be located 

in the region below the curve 0/)()( =− θevwu and above the curve (actually on the 

curve at the equilibrium) )0(/)()( 2HIevwu =− θ .  Since the slope of the processor’s iso-

profit line is greater for type θ than for type θ ,  thus, it must be true 

that )(max)()(min 2
*

2
22

θθθ ZZZ
rr

=> .  Thus, )()( 22 θθ ZZ > for any 2r  and )( 2
*

2 rW  

increases in 2r . 

To show that )( 2
*

2 rW  is convex in 2r , it is sufficient to prove 
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From condition (3.32) and Lemma 1, we know that 
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Since, from condition (3.29), )(')(' 22
2

HH evwu =θ , it must be true that 

0
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2 >
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−
∂
∂

r
w

r
e HHθ . 

Further, from condition (3.31),  
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From condition (3.30), we know that  
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In addition, we have shown in Lemma 1 that 0
2

2 <
∂
∂

r
e L and hence, 0

2

2 <
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w L , therefore, 

0
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r
w

r
e LLθ . 

Combining these conditions yields the result that )( 2
*

2 rW  is convex in 2r . 

Now, let us turn to the first-period incentive schemes. 

First-period incentive schemes 

In the first period, the processor maximizes its expected payoff subject to the 

grower’s participation constraints and incentive compatibility constraints.  Since the 

processor cannot commit not to use the first-period information revealed by the growers 

to revise the second-period contract, the incentive compatibility constraints must take into 

account the effect of first-period decisions on the second-period payoff.   

For any first-period contract, },{ 111 HL CCC = , let )|( 1 θHH CV denote the two-

period payoff to the grower type θ if )(1 θP is observed, i.e., if the high-quality grower 
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chooses his own contract HC1  in the first period.  Recall that if )(1 θP is observed, the 

processor updates its belief such that 1))(),(( 112 =θθ Pwr .  Thus, 

(3.34) )|()|()|()|( 11
*

2111 θθδθθ HHHHH CUCUCUCV =+= . 

Note that if the first-period contract is fully revealing, the second-period contract is same 

as the perfect information contract under which the high-quality grower obtains his 

reservation utility zero (i.e., 0)|( *
2 =θHCU ).    

Similarly, denote )|,( 1 θπLH CV as the two-period payoff to the grower typeθ if 

)(1 θP is observed and the high-quality grower type chooses the contract designed for the 

low-quality grower type with probabilityπ .  Thus, 

(3.35) )ˆ()|()|,( 22111 rICUCV HLLH δθθπ += , 

where, from (3.25), 
11

1
12 1

)),((ˆ
rr

rPr
−+

=
π

π
πθ .   

Now the grower’s equilibrium strategy π̂  must be optimal for him given the 

processor’s belief.  In other words, the grower must be indifferent between revealing his 

true type and mimicking the other type at the equilibrium given the optimal π̂ .  

Therefore, the equilibrium strategy must satisfy the following condition: 

(3.36) )|ˆ,()|( 11 θπθ LHHH CVCV = . 

Recall that in the full-commitment contract (also the static contract), the incentive 

constraint for the high-quality type must be binding, i.e., )|()|( 11 θθ F
L

F
H CUCU = .  

However, in the dynamic setting, the contract },{ F
H

F
L

F CCC = can only result in 

)|ˆ,()|( 11 θπθ LHHH CVCV <  because 0)ˆ( 22 >rI H  for 10 2 <≤ r .  That is, the high-quality 

type always gains from mimicking the low-quality type if the optimal static contract is 
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offered in the dynamic setting.  Therefore, the static contract FC cannot be an optimal 

separating equilibrium in a dynamic context.   

Given continuity of )|,( 1 θπLH CV inπ and condition (3.36), three types of 

equilibrium could be sustained: 

(3.37) Separating equilibrium if: )|0,()|( 11 θθ LHHH CVCV ≥ , 

(3.38) Pooling equilibrium if: )|1,()|( 11 θθ LHHH CVCV ≤ , and  

(3.39) Semi-separating equilibrium if )|ˆ,()|( 11 θπθ LHHH CVCV =  for some π̂ . 

From (3.35), )0()|()|0,( 2111 HLLH ICUCV δθθ += .  From Lemma 1 and Figure 3.2, 

we know that the information rent for the high-quality grower type )( 22 rI H  is maximized 

at 02 =r .  Thus,  

(3.40) θθθθ /)/(/)()0( **
2 evevI H −= .   

Condition (3.37) then requires that  

(3.41) )0()|()|( 21111 HLH ICUCU δθθ +≥ . 

Similarly, from (3.33) we can get  

(3.42) θθθθ /)/(/)()( 12
FF

H evevrI −= . 

Thus, condition (3.38) is equivalent to  

(3.43) )()|()|( 121111 rICUCU HLH δθθ +≤ . 

Note that, from Lemma 1, )0()ˆ()( 22212 HHH IrIrI << , therefore, conditions (3.37), 

(3.38), and (3.39) are mutually exclusive.   
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For each type of equilibrium, the processor maximizes its discounted expected two-

period payoff subject to the participation constraints and incentive compatibility 

constraints for both grower types.   

Letψ  denote the probability of a grower choosing contract LC1  given the contract 

},{ 111 HL CCC = .  Since only the high-quality type has incentive to deviate, then for any 

π , 111 1)( rCr −+= πψ .  Thus, the processor’s two-period net profit is 

(3.44) )]ˆ([)]1()[1(),,( 22112111111 rWweWweCCrW LLHHHL δθψδθψ +−++−−= . 

 

First-period separating equilibrium 

First, let us focus on the separating equilibrium.  In a separating equilibrium, the 

high-quality grower chooses his own contract with probability 1, or 0=π .  Thus, to 

induce a separating equilibrium, the processor solves the following problem: 

)]0()[1()]1([),,(max 211121111111,,, 1111

WwerWwerCCrW LLHHHLwewe LLHH

δθδθ +−−++−=  

subject to 

(3.45) },{,0/)()( 111 HLievwuU iii ∈∀≥−= θ  

(3.41) )0()|()|( 21111 HLH ICUCU δθθ +≥ , and 

(3.46) )|()|( 1111 θθ HL CUCU ≥ . 

Conditions (3.41) and (3.46) state that each grower type prefers his own contract to the 

contract designed for the other type.  Note that from (3.46) the low-quality quality type 

always chooses the contracts that he most prefers in the short run because if he mimics 

the high-quality type in the first period, the processor will only offer the contract *
HC  

under which the low-quality type makes loss.   
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Following the same procedure described in the previous sections, the optimal 

contract must satisfy the following conditions:  

(i) The participation constraint for the low-quality grower type must be binding, 

i.e., 0/)()( 11 =− θLL evwu , 

(ii) The incentive compatibility constraint for the high-quality type is binding, i.e., 

)0()|()|( 21111 HLH ICUCU δθθ += , and  

(iii) The low-quality type strictly prefers his own contract to the contract designed for the 

high-quality type, i.e.,  )|()|( 1111 θθ HL CUCU > .   

The feasible set of contracts can be demonstrated in Figure 3.3.  First, since the 

low-quality type always chooses his own contract and obtains the reservation utility, the 

feasible set of contracts for the low-quality type must be the segment from the origin to 

the point ),( ** ew on his indifference curve 0/)()( =− θevwu . Denote LS1 as this set.  

Given any contract for the low-quality type ),( 111 LLL ewC = in the set LS1 , properties of the 

optimal contract (i)-(iii) require that the feasible contract for the high-quality type must 

be in the region below the low-quality indifference curve 0/)()( =− θevwu  and above the 

high-quality indifference curve H2 in Figure 3.3.  More specifically, from condition (ii), 

the optimal contract for the high-quality type must be located on the indifference curve 

H2.  Note that the indifference curve H1 intersects with the low-quality indifference 

curve 0/)()( =− θevwu  through the point ),( 11 LL ew and the distance between H1 and H2 

is exactly )0(2HIδ .  Hence, for any given contract ),( 111 LLL ewC = , the contract for the 

high-quality type ),( 111 HHH ewC = always satisfies conditions (3.41), (3.45), (3.46) and 

properties (i)-(iii) at the equilibrium.  Thus, the problem boils down to solving the 
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optimal contract for the low-quality type.  Once the optimal contract for the low-quality 

type is determined, it is straightforward to find the optimal contract for the high-quality 

type.   

 

Figure 3.3 A first-period separating equilibrium 

The optimal first-period contract can be solved in the similar manner as in the 

previous sections.  Ignoring the participation constraint for the high-quality type and the 

incentive compatibility constraint (3.46), let λ and Hµ denote the Lagrangian multipliers 

for conditions (3.45) and (3.41) respectively, thus, the Lagrangian for the problem is: 

)]0(/)/()(/)()([
]/)()([)]0()[1()]1([

21111

1121112111

HLLHHH

LLLLHH

Ievwuevwu
evwuWwerWwerL

δθθθθµ

θλδθδθ

−+−−+

−++−−++−=
 

The first order conditions are: 

(3.47) 0/)(' 11
1

=−=
∂
∂ θµθ HH

H

evr
e
L , 

w 

eLe1ˆ

Lw1ˆ  

0/)()( =− θevwu

O
He1̂

Hw1ˆ  

B

H1 

H2 

C
)0(2HIδ
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(3.48) 0)(' 11
1

=+−=
∂
∂

HH
H

wur
w
L µ , 

(3.49) 0/)/(')/(/)(')1( 111
1

=+−−=
∂
∂ θθθθθµθλθ LHL

L

evevr
e
L , and 

(3.50) 0)(')(')1( 111
1

=−+−−=
∂
∂

LHL
L

wuwur
w
L µλ . 

Thus, the optimal contract }ˆ,ˆ{ˆ
111 HL CCC = is given by the following conditions:  

(3.51) )}(')('arg{ 11
2

1 HHH evwue =∈ θ , 

(3.52) }0)](')/('[
)('

]
)('
)('1[)1arg{( 1

2
1

2

1

1
2

1

1
11 =−+−−∈ LL

HL

L
L evev

ev
r

wu
evre θθθθ

θθ
θ , 

(3.53) 0/)()( 11 =− θLL evwu , and 

(3.54) 

.0)0(/)/(/)()0(/)/(/)(
/)()()0(/)/()(/)()(

211211

1121111

>+−=+−+

−=+−=−

HLLHLL

LLHLLHH

IevevIevev
evwuIevwuevwu
δθθθθδθθθθ

θδθθθθ
 

The optimal contract is demonstrated in Figure 3.3.  Denote this contract as 

}ˆ,ˆ{ˆ
111 HL CCC = where )ˆ,ˆ(ˆ

111 LLL ewC = and )ˆ,ˆ(ˆ
111 HHH ewC = .  Given the first order 

conditions (3.51)-(3.54), the contract )ˆ,ˆ(ˆ
111 LLL ewC =  and )ˆ,ˆ(ˆ

111 HHH ewC = illustrated in 

Figure 3.3 constitutes a separating equilibrium.  In fact, assuming that both grower types 

participate in the first period, the optimal separating equilibrium contract 

)ˆ,ˆ(ˆ
111 LLL ewC = and )ˆ,ˆ(ˆ

111 HHH ewC = is unique for a given prior belief 1r .  Given this 

contract, the low-quality type strictly prefers the contract )ˆ,ˆ(ˆ
111 LLL ewC =  to 

)ˆ,ˆ(ˆ
111 HHH ewC = both in a one-period static contract and in a two-period dynamic 
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contract, while the high-quality type strictly prefers the contract )ˆ,ˆ(ˆ
111 HHH ewC =  to 

)ˆ,ˆ(ˆ
111 LLL ewC = in the short run ( i.e., in a one-period contract) and is indifferent in the 

two-period dynamic context.  Thus, at the separating equilibrium, the low-quality type 

chooses his own contract )ˆ,ˆ(ˆ
111 LLL ewC = in the first period and will be offered 

),(ˆ **
2 ewC L = in the second period, and earns zero payoff in two periods. Similarly, the 

high-quality type chooses )ˆ,ˆ(ˆ
111 HHH ewC = in the first period and obtains positive payoff 

0)0(/)/ˆ(/)ˆ( 211 >+− HLL Ievev δθθθθ , and will be offered ),(ˆ **
2 ewC H = in the second 

period.  If the high-quality type deviates and chooses )ˆ,ˆ(ˆ
111 LLL ewC = in the first period, 

he will earn θθθθ /)/ˆ(/)ˆ( 11 LL evev − in the first period and earn information 

rent )0(2HI in the second period, which makes him indifferent between 

)ˆ,ˆ(ˆ
111 LLL ewC = and )ˆ,ˆ(ˆ

111 HHH ewC = .  Note that the contract )ˆ,ˆ(ˆ
111 HHH ewC = is the 

tangent point between the processor’s iso-profit line and the high-quality type’s 

indifference curve H2 in Figure 3.3, therefore, the optimal contract for the high-quality 

type is efficient.  Additionally, as in the full-commitment contract with asymmetric 

information, the processor offers the low-quality type a contract that is suboptimal in 

order to reduce the information rent paid to the high-quality type.    

However, besides this separating equilibrium, other separating equilibria might also 

exist.  In particular, define )0,0(),(0 == ewC as the null contract ( i.e., a grower type 

does not sign the contract at all if a null contract is offered).  The contract   

}~,{}~,~{~
1

0
111 HHL CCCCC == establishes another separating equilibrium, where 

)~,~(~
111 HHH ewC = in Figure 3.4 is the tangent point between the high-quality type’s 
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indifference curve H1 and the processor’s iso-profit line for the high-quality type.  This 

contract is actually the limit of the separating contract }ˆ,ˆ{ˆ
111 HL CCC = as 1r  approaches 1.  

Since the low-quality type will not participate in the first period given this contract, this 

outcome is called “handicapped separating equilibrium”.  More specifically, the contract 

)~,~(~
111 HHH ewC = must satisfy the following conditions: 

(3.55) )}~(')~('arg{~
11

2
1 HHH evwue =∈ θ , and  

(3.56) )0(/)~()~( 211 HHH Ievwu δθ =− . 

 

Figure 3.4  A handicapped separating equilibrium 

Under this contract, the low-quality type strictly prefers the null contract 0C  to the 

contract HC1
~  because he could make losses in both periods if he chooses HC1

~  in the first 

period.  Note that the low-quality type also strictly prefers 0C  to HC1
~  in a one-period static 

w 

e

0/)()( =− θevwu

O
He1

~

Hw1
~  

)0(2HIδ  

H0 

H1
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contract.  Similarly, by choosing HC1
~ in the first period, the two-period payoff to the 

high-quality type is )0()|~()|()|~( 211
*

211 HHHH ICUCUCU δθθδθ ==+ , while by 

choosing 0C , he obtains )0()|()|()|( 2
*

2
*

2
0

1 HLL ICUCUCU δθδθδθ ==+ .  Hence, the 

high-quality type is indifferent between the contract HC1
~  and 0C .  Therefore, 

}~,{}~,~{~
1

0
111 HHL CCCCC == constitutes another separating equilibrium.   

Given the two separating equilibria, the processor must offer the one that 

maximizes her net profit.  That is, the optimal contract maximizes the maximum of 

)ˆ,ˆ,( 1111 HL CCrW and )~,,( 1
0

11 HCCrW .  The results are summarized in the following 

proposition. 

Proposition 1: There exists two possible separating equilibria to the dynamic contract: 

}~,{~
1

0
1 HCCC =  and }ˆ,ˆ{ˆ

111 HL CCC = .  In addition, there exists a *
1r such that for *

11 rr < , 

the optimal separating equilibrium is }ˆ,ˆ{ˆ
111 HL CCC = , while for *

11 rr > , the optimal 

separating equilibrium is }~,{~
1

0
1 HCCC = .    

Proof:  If the contract }~,{~
1

0
1 HCCC = is offered, the processor obtains net profit 

(3.57) )]0()[1()]1(~~[)~,,( 2121111
0

1
*

1 WrWwerCCrW HHH δδθ −++−= .   

On the other hand, if the contract }ˆ,ˆ{ˆ
111 HL CCC = is offered, the processor earns 

(3.58) )]0(ˆˆ)[1()]1(ˆˆ[)ˆ,ˆ,( 21112111111
*

1 WwerWwerCCrW LLHHHL δθδθ +−−++−= .   

Note that as the contract )ˆ,ˆ( 11 LL ew moves toward to (0, 0) along the indifference 

curve 0/)()( =− θevwu , the high-quality type’s indifference curve shifts down 

accordingly.  Thus, the optimal condition (3.55) requires that the processor’s iso-profit 

line for the high-quality type shifts towards southeast until it is tangent to the high-quality 
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type’s indifference curve.  Therefore, the processor obtains greater profit from the high-

quality type as )ˆ,ˆ( 11 LL ew moves toward the origin (0, 0), precisely, 

HHHH wewe 1111 ˆˆ~~ −>− θθ . Hence, there must exist a *
1r such that 

)~,,()ˆ,ˆ,( 1
0*

1
*

111
*

1
*

1 HHL CCrWCCrW = .  Thus, for *
11 rr < , 

)~,,()ˆ,ˆ,( 1
0*

1
*

111
*

1
*

1 HHL CCrWCCrW > , the processor will offer the optimal separating 

equilibrium }ˆ,ˆ{ˆ
111 HL CCC = , while for *

11 rr > , )~,,()ˆ,ˆ,( 1
0*

1
*

111
*

1
*

1 HHL CCrWCCrW < and 

the optimal separating equilibrium is }~,{~
1

0
1 HCCC = . 

Intuitively, Proposition 1 states that the separating contract 1
~C  would dominate 1Ĉ   

when the processor believes that a large proportion of the growers are of high-quality 

type.  Thus, it is less costly for the processor if it only offers a contract to the high-quality 

type and handicaps the low-quality type.  On the contrary, if the processor believes that 

the proportion of high-quality type is sufficiently small, then it would be better off by 

offering the separating contract 1Ĉ .  In addition, we could show that the processor’s two-

period profit increases with the proportion of the high-quality type.  This result is 

summarized in the following corollary. 

Corollary 1.1:  In a separating equilibrium, ),,( 1111 HL CCrW  increases with 1r . 

When *
11 rr < , the optimal separating equilibrium }ˆ,ˆ{ˆ

111 HL CCC = dominates.  As 1r  

increases, the optimal contract LC1
ˆ  moves toward the origin (0,0) along the low-quality 

indifference curve 0/)()( =− θevwu , while the contract HC1
ˆ  shifts down toward the 

perfect information contract *
HC .  Thus, as 1r increases, the processor would acquire a 

greater profit from the high-quality type by paying less information rents, and obtain a 
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smaller profit from the low-quality type without changing the payoff to the low-quality 

grower type.  Since a change in )ˆ,ˆ( 11 LL ew along the low-quality type’s indifference curve 

would only incur a second-order effect on the processor’s profit, while a corresponding 

change in )ˆ,ˆ( 11 HH ew would have a first-order effect on the processor’s profit, the 

processor’s net profit increases as 1r increases.  That is, )ˆ,ˆ,( 1111 HL CCrW increases with 1r .   

Up to now, we have assumed that for any contract ),( Pw 18, it is always true that 

0≥− wP , i.e., on the right side of the 45 degree line in the ),( Pw space.  However, 

restricting positive profit reduces the set of feasible contracts.  Specifically, given the 

optimal contract LC1
ˆ , the separating contract )ˆ,ˆ(ˆ

111 HHH PwC =  in ),( Pw  space may 

become infeasible forδ sufficiently large because it would lie to the left side of the zero-

profit line Pw = .  A similar argument could be made for the handicapped separating 

equilibrium }~,{ 1
0

HCC .  An example of an infeasible separating contract is illustrated in 

Figure 3.5.  These arguments are provided in the following corollary without further 

proof. 

Corollary 1.2:  These exists a *δ such that for *δδ > , the separating equilibrium 

}ˆ,ˆ{ˆ
111 LH CCC = becomes infeasible.   

Although the value of *δ cannot be precisely determined, the intuition behind this 

corollary is that if growers are patient (i.e., δ large), it becomes too costly for the 

processor to induce a separating equilibrium in the first period.  When growers are 

patient, the processor is better off by providing a pooling contract or a semi-separating 

contract instead of a fully separating contract.  
                                                 
18 Here, we use the contract space ),( Pw instead of ),( ew .  Recall that eqP θ== .  From now on, we 
may use these two alternative spaces interchangeably.  
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Figure 3.5  Illustration of an infeasible separating equilibrium 

For the separating equilibrium to be stable, we need to check if these contracts 

would be dominated by other contracts. 

First, we consider the contract }~,{~
1

0
1 HCCC = , given *

11 rr > .   

Since the low-quality type always chooses the contract that he most prefers in the 

short run and earns exactly the reservation utility in each period, any pooling equilibrium 

must be located on the low-quality type’s zero-utility indifference curve.  Suppose there 

exists a pooling equilibrium },{ 11
pp CC on the low-quality type’s indifference 

curve 0/)/()( =− θθPvwu , where ),(1
ppp PwC = .  Here, we change the contract space 

into ),( Pw instead of using ),( ew to denote the pooling contract.  For a pooling contract, 

both growers produce at the same quality (equivalently, price) level, but each grower type 

incurs a different level of effort and disutility.  Under this contract, the processor obtains 

net profit  

(3.59) )(),,( 12111
*

1 rWwPCCrW pppp δ+−= . 

w 

P
LP1̂

Lw1ˆ  

0/)()( =− θevwu

O
HP1̂

Hw1ˆ  

B

H1 

H2 

C
)0(2HIδ  

w = P 



 218

From (3.57), )]0()[1()]1(~~[)~,,( 2121111
0

1
*

1 WrWwPrCCrW HHH δδ −++−= .  Since 

),(1
ppp PwC = lies on the low-quality type’s indifference curve 

0/)/()( =− θθPvwu and HC1
~ is located to the right side of that curve, it must be true that 

pp
HH wPwP −>− 11

~~ .  In addition, we know from Lemma 2 that, for any 1r , 10 1 << r , 

)0()1()1()( 212112 WrWrrW −+< due to convexity of )(2W . Thus, for 1r  sufficiently large, 

),,()~,,( 111
*

11
0

1
*

1
pp

H CCrWCCrW > .  Alternatively, for any given 1r , the difference 

)()~~(~
11

pp
HH

p
H wPwPZZ −−−=− must be sufficiently large for the handicapped 

separating equilibrium to be dominant.  In general, this requires that the difference 

between θ andθ  is sufficiently large.  For a givenθ , a larger value of θ would make the 

high-quality type’s indifference curves less steep everywhere.  Since the optimal contract 

for the high-quality type is the point where the processor’s iso-profit line is tangent to the 

high-quality type’s indifference curve, a flatter indifference curve of the high-quality type 

would make the processor’s iso-profit line cut the vertical axis at a point even farther 

away from the origin.  Recall that the distance from the origin to the intersection point is 

exactly the processor’s net profit.  Thus, the difference 

)()~~(~
11

pp
HH

p
H wPwPZZ −−−=− increases with the difference betweenθ andθ 19.  

Note that increases in the difference between θ andθ  would raise the high-quality type’s 

information rent )0(2HIδ as well.  However, it is straightforward to show that the net 

increase in the processor’s profit is always positive as the difference between θ andθ  

increases.  Briefly, fix aθ , as θ  increases, p
H ZZ −~ monotonically increases while the 

                                                 
19 The exact relationship between )()~~(~

11
pp

HH
p

H wPwPZZ −−−=− and difference betweenθ andθ  would 
depend on the functional forms of the grower’s utility function u( ) and the disutility function v( ).   
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information rent )0(2HI  approaches a constant θ/)( *ev .  Therefore, for a sufficiently 

largeθ , increases in p
H ZZ −~ exceed those in )0(2HI .  

A similar argument could be made for the separating contract }ˆ,ˆ{ˆ
111 HL CCC = for 1r  

small.  From (3.58), 

)]0(ˆˆ)[1()]1(ˆˆ[)ˆ,ˆ,( 21112111111
*

1 WwerWwerCCrW LLHHHL δθδθ +−−++−= .  For a pooling 

contract located on the low-quality type’s zero-utility indifference curve between the 

origin and the point )ˆ,ˆ(ˆ
111 LLL ewC = , it is straightforward to show that 

HHLL
pp wewewP 1111 ˆˆˆˆ −<−<− θθ .  In addition, from convexity of )(2W , for any 1r , 

10 1 << r , )0()1()1()( 212112 WrWrrW −+< .  Therefore, 

),,()ˆ,ˆ,( 111
*

1111
*

1
pp

HL CCrWCCrW > .  Similarly, for a pooling contract located on the low-

quality type’s zero-utility indifference curve between the point )ˆ,ˆ(ˆ
111 LLL ewC = and 

),( *** ewCL = , HH
pp

LL wewPwe 1111 ˆˆˆˆ −<−<− θθ .  Since the separating contract 

}ˆ,ˆ{ˆ
111 HL CCC = dominates the handicapped separating equilibrium only if 1r is sufficiently 

small, then, for the contract }ˆ,ˆ{ˆ
111 HL CCC = to be optimal, it must be true that the 

difference )()ˆˆ(~
11

pp
HH

p
H wPweZZ −−−=− θ is sufficiently large.  Following a similar 

argument used for the handicapped separating contract, the difference between θ andθ  

must be sufficiently large.  Combining these arguments and Corollary 1.2 yields the 

following corollary. 

Corollary 1.3:  When the difference between θ andθ  is sufficiently large andδ is 

sufficiently small, there exists a fully separating equilibrium.   
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The intuition behind this corollary is similar to that of corollary 1.2.  For large 

values ofδ (close to 1), the high-quality grower type is very patient and it is prohibitively 

costly for the processor to distinguish the grower types.  Forδ sufficiently small and the 

difference between θ andθ  sufficiently large, not only is it less costly for the processor 

to distinguish the grower type, but also the high-quality grower type would intend to 

distinguish himself from the low-quality type under the optimal contract.   

 

First-period semi-separating equilibrium 

Using similar procedures as described in the previous section, a semi-separating 

equilibrium could be established.  

Let },{ 111
s
H

s
L

s CCC =  be the semi-separating contract, where ),( 111
s
i

s
i

s
i ewC = for 

},{ HLi∈ .  Recall that for the contract to be semi-separating, the condition (3.39) must 

be satisfied.  Specifically, the condition (3.39) is equivalent to  

(3.60) )ˆ()|())|)ˆ(()|()|( 22112221111 rICUrCUCUCU H
s
H

s
H

s
L

s
H δθθδθθ +=+= ,  

where 
11

1
12 1

)),((ˆ
rr

rPr
−+

=
π

π
πθ , and π is the probability that the grower type θ chooses 

the contract designed for the grower type θ  in the first period.  In addition, the semi-

separating contract for the low-quality type must lie on his zero-utility indifference curve, 

0/)()( =− θevwu .  Thus, the processor solves the following problem: 

)]ˆ([)]1()[1(),,ˆ,(max 22112111111
, 11

rWweWweCCrW s
L

s
L

s
H

s
H

s
H

s
L

ew s
i

s
i

δθψδθψπ
π

+−++−−=  

subject to  

(3.60) )ˆ()|()|( 221111 rICUCU H
s
L

s
H δθθ += , and 
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(3.61) 0/)()( 11 =− θs
L

s
L evwu , 

where 11 1 rr −+= πψ . 

Let λ and Hµ  denote the Lagrangian multipliers for (3.61) and (3.60).  Then the 

Lagrangian for the problem above is 

)].ˆ(/)/()(/)()([)/)()((

)]ˆ([)]1()[1(

22111111

2211211

rIPvwuevwuevwu

rWweWweL

H
s
L

s
L

s
H

s
HH

s
L

s
L

s
L

s
L

s
H

s
H

δθθθµθλ

δθψδθψ

−+−−+−+

+−++−−=
 

The first order conditions are: 

(3.62) 0/)(')1( 1
1

=−−=
∂
∂ θµθψ s

HHs
H

ev
e
L . 

(3.63) 0)(')1( 1
1

=+−−=
∂
∂ s

HHs
H

wu
w
L µψ . 

(3.64) 0/)/(')/(/)(' 11
1

=+−=
∂
∂ θθθθµθλθψ s

LH
s
Ls

L

Pvev
e
L

. 

(3.65) 0)(')(' 11
1

=−+−=
∂
∂ s

LH
s
Ls

L

wuwu
w
L µλψ . 

(3.66) 

,0)ˆ(

)]ˆ()ˆ([ˆ)ˆ(][)]1([

2
'
2

2222
'

22211112111

=−

−++−++−−=
∂
∂

rI

rZrZrrWrwerWwerL

HH

LH
s
L

s
L

s
H

s
H

δµ

ψδδθδθ
π  

where in the condition (3.66), 

2
11

112'
2 )1(

)1(ˆˆ
rr

rrrr
−+
−

=
∂
∂

=
ππ

,  

)ˆ()ˆ()ˆ( 222222 rwrerZ HHH −= θ , and  
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)ˆ()ˆ()ˆ( 222222 rwrerZ LLL −= θ . 

From (3.62) and (3.63), we can derive the optimal level of effort for the high-quality 

type: 

(3.67) )}(')('arg{ 11
2

1
s
H

s
H

s
H evwue =∈ θ . 

From (3.65), we can get  

(3.68) Hs
Lwu

µψλ +=
)(' 1

, and  

from (3.62), we can get  

(3.69) 
)('

)1(

1

2

s
H

H ev
θψµ −

= . 

Substituting (3.68) and (3.69) into (3.64) yields: 

(3.70) }0)](')/('[
)('

1]
)('
)('1[arg{ 1

2
1

2

1
2

1

1
1 =−

−
+−∈ s

L
s
Ls

H
s
L

s
Ls

L evev
evwu

eve θθθ
θ

ψ
θ

θψ . 

Further, since the conditions (3.60) and (3.61) are always equalities, we have 

(3.71)  )ˆ(/)/(/)(/)()()|( 22111111 rIPvevevwuCU H
s
L

s
L

s
H

s
H

s
H δθθθθθ +−=−= , and  

(3.72) 0/)()()|( 1111 =−= θθ s
L

s
L

s
L evwuCU . 

Finally, substituting conditions (3.67), (3.70)-(3.72) into the condition (3.66) solves the 

optimal strategy π̂  for the high-quality grower type.   

This optimal semi-separating contract },{ 111
s
H

s
L

s CCC = is illustrated in Figure 3.6.   
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Figure 3.6 A first-period semi-separating equilibrium 

In Figure 3.6, H1-H4 are the high-quality type’s indifference curves, where the distances 

between the curve H1 and the curves H2, H3, and H4 are )( 12 rI Hδ , )ˆ( 22 rI Hδ , 

and )0(2HIδ , respectively and )0()ˆ()( 22212 HHH IrIrI δδδ << .  From conditions (3.37)-

(3.39), a semi-separating contract },{ 111
s
H

s
L

s CCC = must satisfy  

(3.73) )0()|()|()()|( 211121 H
s
L

s
HH

s
L ICUCUrICU δθθδθ +≤≤+ .   

Thus, given that the optimal contract s
LC1  is located on the low-quality type’s indifference 

curve 0/)()( 11 =− θs
L

s
L evwu , the optimal contract s

HC1  must lie on a indifference curve,  

with the curve H3 as an illustration, that is above the indifference curve H2 and below 

H4.  Therefore, there exists a π̂  such that )ˆ()|()|( 2211 rICUCU H
s
L

s
H δθθ += , i.e., a 

semi-separating equilibrium. 

In addition, the following remark establishes the relationship between 1r  and π̂ . 

Remark 1:  The optimal strategy π̂ in a semi-separating equilibrium increases with 1r .   

w 

es
Le1

s
Lw1  

0/)()( =− θevwu

O
s
He1

s
Hw1  

H1 

H4 

)ˆ( 22 rI Hδ  

H2 

H3 
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Recall that the exact relationship between 1r  and π̂ is governed by the conditions 

(3.66), (3.67), (3.70)-(3.72), especially the condition (3.66).  However, to determine their 

exact relationship is not a trivial task analytically.  The intuition behind this remark is as 

follows:  As 1r  increases, i.e., the processor believes that a larger proportion of growers is 

of high-quality type, the optimal contract s
HC1  would extract more surplus from the high-

quality grower type by rewarding less information rent.  In the limit, when 1r  is one, the 

processor would only offer the optimal contract ),( ** ew under which the high-quality 

grower type earns exactly his reservation utility zero.  Thus, as 1r  increases, the high-

quality type is better off mimicking the low-quality type in the first period and earns 

more information rent.  Therefore, in a semi-separating equilibrium, the high-quality 

grower type is more likely to choose the contract that is designed for the low-quality type, 

that is, π̂ increases as 1r  increases.  Similarly, in the other direction, as 1r decreases, the 

optimal contract the processor would offer becomes closer to the contract ),( ** ew .  In 

the limit, when 1r  approaches zero, the processor would offer the contract ),( ** ew  under 

which the high-quality grower type obtains the maximum information rent.  Thus, the 

high-quality type is less likely to mimic a low-quality type as 1r  decreases, i.e., 

π̂ decreases as 1r  decreases.  

To guarantee that the semi-separating equilibrium could be sustained, we also need 

to compare the semi-separating equilibrium with other potential equilibria.  However, it is 

not trivial to determine the relationship between the semi-separating equilibrium with 

other potential equilibria analytically without specifying the functional forms of u( ) and 

v( ).   
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Remark 2:  For 1r  sufficiently small, a semi-separating contract sC1  might dominate the 

fully separating contract 1Ĉ .   

Recall conditions (3.52) and (3.70), 

(3.52) }0)]ˆ(')/ˆ('[
)ˆ('

]
)ˆ('
)ˆ('1[)1arg{(ˆ 1

2
1

2

1

1
2

1

1
11 =−+−−∈ LL

HL

L
L evev

ev
r

wu
evre θθθθ

θθ
θ . 

(3.70) }0)](')/('[
)('

1]
)('
)('

1[arg{ 1
2

1
2

1
2

1

1
1 =−

−
+−∈ s

L
s
Ls

H
s
L

s
Ls

L evev
evwu

ev
e θθθ

θ
ψ

θ
θψ . 

Since 11 )1(1 rr ≤−=− πψ , the change from 1r  in the separating equilibrium 1Ĉ  to ψ−1  

in the semi-separating contract sC1  results in the similar consequences to that from 1r  

to ψ−1 in the separating equilibrium 1Ĉ .  Thus, given the contract LC1
ˆ  as the reference 

point, the contract s
LC1  is located closer to the perfect information contract ),( ** ew  on the 

low-quality type’s indifference curve 0/)()( =− θevwu .  Since ),( *** ewCL = maximizes 

the processor’s profit acquired from the low-quality grower type, the processor always 

obtains less profit from the low-quality type under LC1
ˆ than that under s

LC1 , or precisely, 

s
L

s
LLL wewe 1111 ˆˆ −<− θθ .  On the other hand, using Figure 3.7, since the optimal semi-

separating contract s
HC1  lies between the high-quality type’s indifference curves H2 and 

H4, the high-quality type obtains less information rent under s
HC1  than that under the 

contract HC1
ˆ .  Thus, the processor earns less profit under the separating contract HC1

ˆ  than 

that under s
HC1 , i.e., s

H
s
HHH wewe 1111 ˆˆ −<− θθ .    
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Figure 3.7 A semi-separating equilibrium dominates a separating equilibrium 

 

From the first-period separating contract, the maximum profit the processor obtains from 

the contract 1Ĉ  is 

)]0()[1()]1([)ˆ,ˆ,( 211121111111 WwerWwerCCrW LLHHHL δθδθ +−−++−= . 

From the first-period semi-separating contract, the maximum profit the processor 

obtains is 

)]ˆ()[ˆ1()]1()[ˆ1(),,ˆ,( 22111121111111 rWwerrWwerCCrW s
L

s
L

s
H

s
H

s
H

s
L δθπδθππ +−+−++−−=  

As 1r  decreases, the high-quality grower type is less likely to deviate, thus, the term π̂1r  

in ),,ˆ,( 1111
s
H

s
L CCrW π becomes negligible as 1r  becomes sufficiently small.  Therefore, 

for 1r  sufficiently small, it is possible that )ˆ,ˆ,(),,ˆ,( 11111111 HL
s
H

s
L CCrWCCrW >π , i.e., the 

semi-separating contract sC1  dominates the fully separating contract 1Ĉ .   

Further, similar arguments used for the separating equilibrium could also be applied 

to the semi-separating equilibrium.  Specifically,   

w 

es
Le1  

s
Lw1  

0/)()( =− θevwu  

O
s
He1

s
Hw1  

H1 

H4 

H2 

H3 

Le1ˆ  

Lw1ˆ  

He1̂

Hw1ˆ  
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Remark 3:   Forδ sufficiently large and the difference between θ and θ  sufficiently 

small, the fully separating equilibrium 1Ĉ  and the semi-separating equilibrium sC1  are 

dominated by a pooling equilibrium.   

Unfortunately, without making more assumptions, the exact nature of the 

relationship among these potential equilibria could not be explicitly determined.  The 

intuition behind this remark is that whenδ is sufficiently large and the difference between 

θ and θ  is sufficiently small, both the semi-separating contract and the fully separating 

contract would become infeasible and it would become too costly for the processor to 

distinguish the grower types by offering such contracts.  Under these conditions, the only 

possible equilibrium would be a pooling equilibrium.   

 

3.4.3 Reputation Rewards 

In the previous section, reputation effects are embodied in the posterior probability 

assessment (using Bayes’ rule) of the grower’s types by the processor at the end of the 

first period.  Anticipating the processor’s strategies, the high-quality grower type chooses 

to build up his reputation by either imitating the low-quality type or revealing his true 

type, whichever is favorable.  Under this scheme, however, imitating the dominant 

behavior of a low-quality type yields greater future information rents to the high-quality 

type.  Therefore, the reputation effect (updating beliefs about the grower type using 

Bayes’ rule) encourages the high-quality grower to conceal his type, that is, reinforces the 

potential ratchet effects.   

In this section, we assume that at the beginning of each period, a reputation, tR , of 

the grower is formed from his past observed performance.  Thus, the processor will not 



 228

only update its beliefs about the grower types by observing the grower’s past contract 

choice, but also can offer a direct reward to the grower contingent on the observed 

performance of the grower.  Accumulation of the grower’s reputation is assumed to be 

based on an exogenous rule 11 )1( −− −+= ttt RqR ββ  with 10 ≤≤ β , and the grower’s 

initial reputation is 0R .  To simplify the analysis further, a special case of the example 

1−= tt qR with 00 =R  is used to demonstrate the effects of the reputation reward on the 

dynamic contract.   

Accumulation of reputation can be interpreted differently given different values of 

β .  When β  is small, i.e., very close to zero, the latest period quality does not provide 

much contribution to the grower’s reputation.  This situation could occur under some 

circumstances such that the processor already has a long-term relationship before this 

contract and the grower’s reputation has almost converged to a constant by the latest 

period.  In this case, including reputation effects in the contract would not improve much 

on the optimal incentives.  On the other hand, when β is large, the latest period quality is 

crucial for the grower’s reputation in the current period.  Thus, stronger incentives can be 

provided by the processor when reputation of growers is incorporated into the contract.   

1−= tt qR  is a special case of this example when setting 1=β .   

Specifically, the processor offers the grower some extra reputation rewards, )( tt Rs , 

when it observes tR  from the previous periods.  If the processor observes )(θP  in the 

first period, the reward in the second period will be ))(( θPs , while if the processor 

observes )(θP  in the first period, the reward in the second period will be ))(( θPs .  
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Moreover, we assume that the reputational rewards take the form of lump-sum payments 

or constants.  In particular, the reward ))(( θPs  is normalized to be zero.   

Similar to the previous section, the processor maximizes its expected profit subject 

to the participation constraints and incentive compatibility constraints for both grower 

types in both periods.  However, to simplify the analysis, only a separating equilibrium 

will be discussed.  First, let us investigate the second-period incentive scheme.     

 

Second-period incentive schemes with reputation rewards 

The second-period incentive scheme stays the same as that in the previous section 

since the reputation rewards do not affect the grower’s participation constraints and 

incentive compatibility constraints in the second period.  In a separating equilibrium, the 

private information concerning the grower’s types becomes perfect information in the 

second period.  Let ))((22 θPss H = , then for each grower type, },{ θθθ =Θ∈ , the 

processor offers the contract },{ 222
R
H

R
L

R CCC = , where ),( **
2 ewC R

L = and 

),( *
22

*
2 HH
R
H eswC += .  In addition, the optimal contract R

HC2  satisfies 

)}(')('arg{ 2
*2

2
*
2 HHH swueve +=∈ θ . Note that the reputation reward changes the high-

quality type’s equilibrium behavior in the second period. 

Recall that in a separating equilibrium, if the high-quality grower type deviates in 

the first period, he obtains the information rent 0/)/(/)()0( **
2 >−= θθθθ evevI H  in 

the second period.  Similarly, if the low-quality grower type deviates and chooses the 

contract designed for the high-quality type in the first period, then he will make loss in 

the second period,  
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(3.74) 0/)/(/)(/)/()()1( ****
2 <−=−= θθθθθθθ evevevwuI L .20 

In addition, it can be shown that )1()0( 22 LH II −< .   

 

First-period incentive schemes with reputation rewards 

In the first period, the processor must maximize the two-period expected profit to 

find a separating equilibrium.  Then the processor maximizes the following: 

)]0()[1(])1([),,(max 2111221111111,,, 1111

WwersWwerCCrW LLHHHHLwewe LLHH

δθδδθ +−−+−+−=

The participation constraints take the following form: 

(3.75) },{,0/)()( 111 HLievwuU iii ∈∀≥−= θ . 

However, risk aversion brings about some complications in the formulation of incentive 

compatibility constraints.  To induce a separating equilibrium in the first period, the 

incentive compatibility constraints for the high-quality grower type must satisfy 

(3.76) )0()|()(ˆ)|( 211211 HLHH ICUsCU δθθδθ +≥+ . 

This constraint states that at the equilibrium, the high-quality grower type must 

prefer revealing his true type to mimicking the low-quality grower type.  Note that the 

extra reward Hs2  in the processor’s profit ),,( 1111 HL CCrW  is given in monetary units, 

while )(ˆ2 θHs is the equivalent amount in the units of the high-quality type’s utility.  More 

specifically, )()()(ˆ 2222 HHHH wuswus −+=θ .  If, instead, the growers are risk neutral, 

then HH ss 22 )(ˆ ≡θ . 

                                                 
20 In the previous section in the absence of reputation rewards, the possibility that the low-quality type 
mimics the high-quality type is excluded because the low-quality type would make loss if he does so.  
However, in the presence of reputation rewards, certain conditions, which will be elaborated later in the 
text, would be required to exclude this possibility. 
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Due to risk aversion, the same amount of monetary reward results in different utility 

measures for different grower type.  Thus, for the low-quality type, the incentive 

compatibility constraint must satisfy 

(3.77) )1()(ˆ)|()|( 221111 LHHL IsCUCU δθδθθ ++≥ . 

This constraint states that the low-quality type prefers revealing his true type than 

mimicking the high-quality type.  The term )(ˆ2 θHs represents the equivalent measure of 

the monetary reward in the units of the low-quality type’s utility, and )1(2LI denotes the 

loss the low-quality type would make if he mimics the high-quality type in the first 

period.  However, there is a little relaxation of the notations here because the two terms 

on the right hand side, )(ˆ2 θδ Hs and )1(2LIδ  cannot add together directly due to risk 

aversion.  For the moment, we use the current formulation because the condition (3.77) 

will be modified later.  

Recall that in the previous section the low-quality type always chooses the contract 

that he prefers in the short run because he always makes loss if he deviates.  From the 

condition (3.77), if )1(ˆ 22 LH Is δδ −< , or Hs2ˆ  is sufficiently small, then the low-quality type 

has no incentive to deviate in the first period.  In other words, only when the extra reward 

is sufficient large would the low-quality type deviate.  Therefore, for the moment, we 

assume )1(ˆ 22 LH Is δδ −< .  Thus, the incentive compatibility constraints (3.77) is equivalent 

to  

(3.78) )|()|( 1111 θθ HL CUCU ≥ .   

Hence, similarly to the previous section, ignoring the participation constraint for the 

high-quality type and the incentive condition (3.78), the Lagrangian for this problem is 
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(3.79)

)].0(/)/()()(ˆ/)()([]/)()([
)]0()[1(])1([

21121111

211122111

HLLHHHHLL

LLHHH

Ievwusevwuevwu
WwersWwerL

δθθθθδθµθλ

δθδδθ

−+−+−+−+

+−−+−+−=

 

Denote the optimal contract as },{ 111
R
H

R
L

R CCC = , where ),( 111
R
L

R
L

R
L ewC =  and 

),( 111
R
H

R
H

R
H ewC = .  Thus, the first order conditions are: 
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, 

(3.81) 0)(' 11
1

=+−=
∂
∂
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H
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w
L µ , 

(3.82) 0)/(')/(/)(')1( 1
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1
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∂ θθθθµθλθ LHL
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evevr
e
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(3.83) 0)(')(')1( 111
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=−+−−=
∂
∂

LHL
L

wuwur
w
L µλ . 

Following the similar procedures in the previous section, the optimal contract can 

be solved as the following: 

(3.84) )}(')('arg{ 1
2

11 HHH wueve θ=∈ , 

(3.85) }0)](')/('[
)('

]
)('

)('1[)1arg{( 1
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1

1

1
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1
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L evev

ev
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evre θθθθ

θθ
θ , 

(3.86) 0/)()( 11 =− θLL evwu , and  

(3.87) )(ˆ)0(/)/(/)(/)()( 221111 θδδθθθθθ HHLLHH sIevevevwu −+−=− . 

Note that the condition (3.85) implies that 1
)('

)('

1
2

1 <
L

L

wu
ev

θ
for 01 >r .  In words, the optimal 

effort choice of the grower type θ  is less than that under perfect information.   
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Comparing the optimal contract RC1 and the optimal contract 1Ĉ  in the previous 

section, the optimal contract RC1 simply requires that the processor takes a portion of the 

high-quality grower type’s wage from the first period and promises to pay the grower in 

the second period if high quality is actually observed.  However, due to risk aversion, the 

reputation reward also affects the optimal choices of efforts in the first period and hence 

the optimal contract.  

(i) Growers are risk neutral 

If the growers are risk neutral, i.e., wwu =)( , then HH ss 22 )(ˆ =θ . Thus, from 

condition (3.84), the change in Hw1  does not affect the optimal choice of effort for the 

high-quality grower type.  Hence, from condition (3.85), the optimal choice of effort for 

the low-quality grower type stays constant.  In summary, under the assumption of risk 

neutrality, the optimal contract RC1 only changes the high-quality type’s payoff given the 

reputation reward without affecting the optimal contract for low-quality grower type and 

the processor’s two-period expected profit.  Note that to guarantee that this contract is 

indeed fully revealing, the reputation rewards must satisfy (3.75) and (3.77), or in words, 

the reputation rewards must be sufficiently small such that the high-quality type 

participates in the first period and the low-quality type has no incentive to deviate given 

the reputation reward. 

(ii) Growers are risk averse 

If growers are risk averse, given any positive reputation reward Hs2 for observed 

high quality, decreases in the optimal wage Hw1  requires that the optimal effort He1  

increases from the condition (3.84).  Hence, from the conditions (3.85) and (3.86), both 
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the optimal effort Le1  and the optimal wage Lw1  for the low-quality type increase.  This 

effect is illustrated in Figure 3.8.  

 

Figure 3.8 Illustration of the effects of the reputation reward 

Note that the effect of increases in He1  on the optimal contract R
LC1  is similar to that 

of decreases in 1r .  Since the positive reputation reward reduces the optimal Hw1  and 

raises the corresponding optimal effort He1 , the optimal contract for the low-quality 

type, R
LC1 , must move upward along the low-quality type’s zero-utility indifference curve 

as illustrated in Figure 3.8.  The effects of the reputation rewards are summarized in the 

following proposition.  

Proposition 2: There exists some reputation reward, *
2Hs , such that the separating 

equilibrium RC1  would dominate the contract 1Ĉ .   

Proof: As discussed above, the introduction of the reputation reward for high quality 

reduces the optimal wage Hw1  and raises the optimal effort He1  for the high-quality 

grower type.  Hence, the processor can obtain more profit from the high-quality grower 
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type in the short run.   Since the optimal contract R
LC1  moves upward along the low-

quality indifference curve 0/)()( 11 =− θLL evwu , the processor makes more profit from 

the low-quality grower as well.  In addition, using the Envelope theorem, a small change 

in ),( 11 LL ew that keeps the low-quality type’s utility constant only has a second-order 

effect on the processor’s profit, while a small change in ),( 11 HH ew has a first-order effect 

on the processor’s profit.  In the second period, since the high-quality grower type adjusts 

his efforts according to the optimal contract R
HC2 , the processor obtains less profit in the 

second period.  In fact, the processor’s gain from the high-quality type in the first period 

completely offsets its loss in the second period because the processor simply takes Hs2δ  

from the high-quality type and rewards him Hs2  in the second period.  Therefore, using 

the optimal revealing contract HC1
ˆ  as a reference point, the processor is better off or at 

least as well off by offering the reputation reward in the two-period contract duration.   

On the other hand, from the grower’s perspective, the high-quality grower type also 

prefers the contract RC1 to 1Ĉ  for a sufficiently small Hs2 .  Again, using HC1
ˆ  as a 

reference point, since *
1ˆ ww H >  ( recall that the second-period separating equilibrium 

offers the high-quality grower type the perfect information contract *
HC ), for a 

sufficiently small reputation reward Hs2 , )()()ˆ()ˆ( *
2

*
211 wuswuswuwu HHHH −+<−− .  

In words, the high-quality grower type would value the reward more in the second period 

than in the first period due to risk aversion.  Thus, the high-quality grower type gains 

from the reputation reward, while the low-quality grower type is indifferent between the 

two contracts.  Therefore, there exists some reputation rewards such that the separating 
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equilibrium with direct reputation rewards contingent on observed performance, RC1 , 

dominates the separating contract in the absence of the reputation rewards, 1Ĉ .   

Note that Proposition 2 applies only when both the separating equilibrium 1Ĉ  and 

RC1 are feasible, and these contracts are feasible only when δ  is sufficiently small and the 

difference betweenθ and θ  is sufficiently large.  In addition, if 1r  is large, a 

“handicapped” separating equilibrium which only offers a contract to the high-quality 

grower type may become dominant.  While not included in this essay, a similar statement 

to Proposition 2 could be made for the “handicapped” separating equilibrium. 

Recall that the reputation reward must be sufficiently small such that the low-

quality grower type has no incentive to deviate.  If the reputation reward is large, not only 

would the high-quality grower type prefer to reveal his true type, but also the low-quality 

type would prefer to mimic the high-quality type.  Thus, large reputation rewards would 

bring another set of equilibria.  However, these potential cases are beyond the scope of 

this essay.   

Remark 4:  Effects of the direct reputational rewards would be more significant if the 

model is extended to a longer-term context.  In addition, both the grower and the 

processor would benefit more from the direct reputation rewards as the contract duration 

increases. 

Taking the fully separating equilibrium 1Ĉ  as a reference point, recall that to induce 

a separating equilibrium, the optimal payment to the high-quality type in the first period 

must include the information rent he would obtain in the second period if he deviates in 

the first period.  As the contract duration increases, the optimal payment to the high-
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quality type in the first period would become prohibitively large and the processor would 

be reluctant to pay the grower to have his true type revealed.   In contrast, with the 

reputation rewards contingent on the grower’s past performance, the potential large 

information rents in the first period under the contract 1Ĉ  could be broken down and be 

distributed into the remaining contract periods.  More precisely, as the number of contract 

periods approaches infinity, there would exist some reputation reward to the high-quality 

type such that the optimal first-period dynamic contract RC1  would converge to the 

optimal static contract FC  if the processor promises to pay the reputation reward every 

period in which good performance is observed.  In other words, if the processor promises 

to pay the reputation reward whenever good performance is observed and that promise is 

credible, the optimal incentive scheme in the static contract could result in a fully 

separating equilibrium in the dynamic context when the number of contract periods is 

large.  Following similar arguments used for the two-period case, for a sufficiently small 

reputation reward to the high-quality type, both the processor and the grower would be 

better off with the direct reputation reward in the long run. 

 

3.5 Conclusion and Discussion 

This essay investigates the implications of growers’ reputation when a processor 

designs a two-period dynamic contract with asymmetric information.  The optimal 

strategies of the processor and the grower form a perfect Bayesian equilibrium.   Under 

full commitment by both parties, growers’ reputation has no effect on the optimal 

incentives.  Hence, the optimal two-period contract mimics a sequence of optimal static 

contracts in the contract period.  However, with no commitment by both parties, the 
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optimal dynamic contract is rather complex.  Since grower types are assumed 

unobservable to the processor, a potential ratchet effect would occur in a dynamic context 

that would prevent the grower from revealing his true type in the first period.  In other 

words, the grower would tend to conceal his true type in the first period due to concerns 

that the processor would extract more of his surplus in the second period after his true 

type were revealed in the first period.  Thus, to induce the grower to reveal his true type, 

the optimal contract must specify a payment for the first period such that it consists of 

information rents the grower could obtain in both periods.  Moreover, the reputation 

effects embodied in the processor’s posterior probability assessment about grower types 

reinforce the potential ratchet effect when the processor updates its beliefs of the 

grower’s type based on the grower’s past performance using Bayes’ rule.   More 

precisely, if the high-quality grower type conceals his type or randomizes in the first 

period, the processor would believe that it is less likely that the grower is a high-quality 

type.  Consequently, the high-quality type obtains a greater payoff in the second period 

from deviating in the first period.  In the limit, the processor believes the grower is a low-

quality type and only offers a contract to the low-quality type under which the high-

quality type realizes the maximum information rent.   

Further, the optimal contract that could be sustained depends on growers’ time 

preferences and differences between the two grower types.  Proposition 1 establishes that 

a separating equilibrium could be sustained only if the discount factor is sufficiently 

small and the difference between the grower quality types is sufficiently large.  In 

addition, a “handicapped” separating equilibrium would dominate the fully separating 

equilibrium when probability of high-quality growers is large.  For a sufficiently large 
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discount factor (the grower is patient) and sufficiently small difference between the 

grower types, it would become too costly for the processor to have the growers’ private 

information revealed.  Hence, a pooling equilibrium would dominate the separating 

equilibrium.  Unfortunately, the exact nature of the relationship among the separating 

equilibrium, the pooling equilibrium, and the semi-separating equilibrium could be not 

explicitly determined without making further assumptions about functional forms of the 

grower’s utility function and disutility function.   

Based on the optimal dynamic contract with no commitment, the processor could 

offer a direct reputation reward to the grower in the second period if good performance 

(i.e., realized high quality) is observed at the end of the first period.  Proposition 2 

demonstrates that both the processor and the grower can gain from the direct reputation 

reward.  Thus, the optimal dynamic contract with the reputation reward would dominate 

contracts without reputation rewards.   Moreover, effects of the reputation reward would 

become more significant in the longer-term dynamic contract. 

The results presented in the essay are in general consistent with the existing 

literature in dynamic contracts.  However, several major differences exist:  Firstly, past 

studies have found mixed results about existence of a separating equilibrium under 

different assumptions.  For example, Hosios and Peters (1989) show that no fully 

separating equilibrium exists in a dynamic insurance contract with two types.  Laffont 

and Tirole (1988) conclude similar results with continuous agent types.  On the other 

hand, Freixas, Guesnerie, and Tirole (1985) derive optimal conditions for a separating 

equilibrium in a linear dynamic contract.  In this essay, we not only derive optimal 

conditions for a separating equilibrium, a semi-separating equilibrium, and a pooling 
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equilibrium, but also discuss the optimality of a “handicapped” separating equilibrium.  

Secondly, this essay introduces a direct reputation reward contingent on past performance 

that has not previously been analyzed in a dynamic principal-agent framework.  The 

analysis presented in the text demonstrates that introduction of a direct reputation reward 

would provide more effective incentive schemes, and thus result in a dominant dynamic 

contract relative to those contracts without the reputation reward. 

However, the analysis presented in this essay is far from exhaustive.  Several 

generalizations of the model would be interesting for future research.  First, the two-

period model could be extended to allow for more than two periods.  Extending the 

model to a longer term would make the effects of the reputation rewards more significant 

relative to the dynamic contract in the absence of reputation rewards.  Second, 

uncertainties of realized quality or the production process could be incorporated into the 

model. Recall that we assume a deterministic production function for each grower type.   

However, introduction of uncertainties would significantly complicate the updating 

process of the processor’s beliefs about grower types.   Third, more complicated 

structures of reputation accumulation could be used in the model.  We could expect that a 

different structure of the reputation rewards would have different impacts on the optimal 

dynamic contract. 
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THESIS SUMMARY 

 

 

This thesis studies three issues of agricultural contracting in various sectors.  

Specifically, the first essay deals with the relationship between contracting and the spot 

market in the hog sector due to hog producers’ complaints about the potentially distorting 

effects of hog marketing contracts.  The second essay investigates the efficiency of 

broiler contracts and compares performance of relative-performance contracts and fixed-

performance contracts because of growers’ concerns of unfairness of relative 

performance contracts.  The third essay studies the effects of growers’ reputation on the 

dynamics of optimal incentives with asymmetric information because of the importance 

of long-term contractual relationships in many agricultural settings.  Each of the three 

structurally independent essays not only contributes to the general literature of 

agricultural contracting, but also provides a more thorough and more practical analysis on 

each specific topic.  The following section briefly summarizes the major results of the 

three essays and discusses their contributions.  

Essay 1 investigates the relationship between contracting and the spot market under 

five different types of contracts, including two fixed-price contracts, a market-price 

contract, a formula-price contract, and a cost-plus contract.  In addition, asymmetric 

information concerning unobservable hog qualities is introduced into the model.  This 

essay contributes to the existing literature by embedding a principal-agent model of 

processor-producer equilibrium behavior within a general equilibrium model of the hog 

market.  In a related way, it also contributes by endogenizing the producers’ participation 
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constraint by linking the producers’ contracting decision to the general-equilibrium-

determined spot market price of hogs. 

Different from the results in most past studies, this essay concludes that increased 

contract supplies raise the expected spot market price under the formula-price contract 

and reduce the variance of spot market price.   Indeed, if differentiated quality is a feature 

of the hog market, and if the contract market is endogenously linked to the spot market, 

then existing empirical studies are likely to be biased.   Under these assumptions, this 

essay finds that both the formula-price contract and the cost-plus contract offer a greater 

profit to processors and a greater expected utility to growers relative to the fixed-price 

contract or the market-price contact. Both processors and producers prefer the formula-

price contract to the fixed-price contract or the market-price contact if asymmetric 

information about hog quality is taken into account.   Finally, increases in processors’ 

market power, simulated by raising the number of growers relative to the number of 

processors, depress the expected market price and growers’ expected utility, but raise 

processors’ expected profit.  However, the relative superiority of each contract is the 

same regardless of processors’ market power.   

Essay 2 discusses efficiency of broiler contracts out of concerns of growers’ 

dissatisfaction with the existing relative performance contracts (RPCs).  The primary 

objectives of this essay are to investigate the efficiency of broiler-industry-style relative-

performance contracts in the presence of asymmetric information and to compare various 

relative-performance contracts with fixed-performance contracts (FPCs).  This essay, 

which incorporates with both moral hazard and adverse selection, contributes to the 

literature by comparing various relative-performance contracts with fixed-performance 
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contracts in a dynamic setting and by analyzing improvements to a static mixed-type 

relative-performance contract.   

In spite of growers’ complaints about the contemporaneous relative-performance 

contracts used in the broiler industry, the various theoretical specifications in this essay 

largely justify the popularity and superiority of relative-performance contracts relative to 

fixed-performance contracts.  Some of the major findings are highlighted as follows: 

First, efficiency of the static RPC or FPC and efficiency of the full-commitment RPC or 

FPC depend on the relative magnitude of common shocks and idiosyncratic shocks.  

More specifically, the static RPC or the full-commitment RPC performs better if the 

common shock is sufficiently large, while the static FPC or the full commitment FPC is 

better if the idiosyncratic shock dominates.  This result is consistent with most previous 

studies.  Second, the dynamic current-period RPC eliminates the contemporary common 

shocks regardless of the autocorrelation of common shocks in two periods and performs 

better than the dynamic FPC if the common shock is sufficiently large.  Third, the 

dynamic FPC outperforms the dynamic previous-period RPC under the assumption that 

the dynamic previous-period RPC uses a fixed-performance contract in the first period.  

In addition, under the previous-period RPC, growers tend to exert less effort in the first 

period anticipating a higher standard in the second period, which is the well-known 

ratchet effect.  Finally, this essay demonstrates that a static two-pooled-tournament RPC 

could improve both the processor’s and the growers’ welfare relative to the static single-

tournament RPC.  

Compared with existing literature, this essay provides a more thorough, more 

comprehensive, and more practical analysis of broiler contracts.  Except for the dynamic 
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previous-period RPC, comparisons between relative-performance contracts and fixed-

performance contracts under each scenario justify the superiority of relative-performance 

contracts both in a static setting and in a dynamic setting when common shocks dominate 

idiosyncratic shocks.   

Essay 3 investigates the role of growers’ reputation when an agricultural processor 

designs optimal incentives for high quality products in a two-period dynamic contract.  

Due to unobservability of grower quality types and absence of commitment to 

intertemporal contract terms by both parties, reputation effects play a role in the dynamic 

contract.  Thus, optimal incentives in such a contract must take into consideration not 

only the adverse consequences of hidden information in the short term, but also its 

intertemporal consequences in the longer term. 

A two-period full-commitment contract, which requires that both parties be 

committed to the contract terms and the contract cannot be breached or renegotiated 

during the contracting period, is developed first as a baseline.  Under full commitment by 

both parties, the optimal two-period contract mimics a sequence of optimal static 

contracts during the contract period.  However, in a two-period dynamic model with no 

commitment, where neither the processor nor the grower could commit to an 

intertemporal scheme, three types of equilibria could potentially be sustained: a fully 

separating equilibrium, a semi-separating equilibrium, and a pooling equilibrium.  In 

these cases, grower reputations are embodied in the posterior probability assessment of 

the grower’s type by the processor at the end of the first period.  Anticipating the 

processor’s strategies, the high-quality grower type chooses to build up his reputation by 

either imitating the low-quality type or revealing his true type, whichever is favorable.  
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However, reputation effects reinforce the potential ratchet effect when the processor 

updates her beliefs of the grower’s type based on the grower’s past performance using 

Bayes’ rule.   More precisely, imitating the dominant behavior of a low-quality type 

yields future information rents to the high-quality type by sustaining the processor’s 

belief that the grower might be of low-quality type.  Thereby the reputation effects 

reflected in the posterior probability of grower types encourage deviation of the high-

quality grower type.  Further, the optimal contract that could be sustained depends on 

growers’ time preferences and differences between the two grower types.   In general, a 

separating equilibrium could be sustained only if the discount factor is sufficiently small 

and the difference between the grower quality types is sufficiently large.  For a 

sufficiently large discount factor (i.e., when the grower is patient) and sufficiently small 

difference between the grower types, a pooling equilibrium would dominate the 

separating equilibrium or the semi-separating equilibrium.   

Based on the optimal dynamic contract with no commitment, the processor offers a 

direct reputation reward to the grower in the second period if good performance is 

observed at the end of the first period.  This essay demonstrates that the optimal dynamic 

contract with the reputation reward would dominate similar contracts without a reputation 

reward.   Moreover, both the processor and the grower would increasingly benefit from 

the reputation reward the longer the contract duration is.   

The results presented in this essay are in general consistent with the existing 

literature in dynamic contracts.  However, several major differences exist.  Firstly, past 

studies have found mixed results about existence of a separating equilibrium under 

various assumptions.  In this essay, optimal conditions are derived for the following types 
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of potential equilibria: a separating equilibrium, a semi-separating equilibrium, a pooling 

equilibrium.  Secondly, this essay introduces a direct reputation reward contingent on 

past performance that has not been previously analyzed in a dynamic principal-agent 

framework.  The analysis presented in the text demonstrates that introduction of a direct 

reputation reward would provide more effective incentive schemes, and thus, result in a 

dominant dynamic contract relative to that without the reputation reward. 

As indicated, this thesis discusses three contracting issues in various agricultural 

sectors and provides a more thorough and more practical analysis on each topic.   Since 

these essays are structurally independent, their policy implications are, on one hand, 

sector- or industry-specific.  Specifically, in the first essay, the general equilibrium 

analysis of the relationship between contracting and spot market largely justifies the 

dominant use of formula-price contracts in the hog sector under certain conditions.  

Therefore, the distorting effects observed in the spot market, if they do exist, are likely 

from different sources such as hog processors’ monopsonistic or oligopolistic pricing 

mechanisms rather than simply because of large contract supplies.  In other words, if 

policy regulations could prevent hog processors as buyers from employing their market 

power, formula-price contracts could still benefit both processors and hog producers.  In 

the second essay, comparisons of various forms of relative-performance and fixed-

performance contracts demonstrate that relative-performance contracts perform better 

than fixed-performance contracts from the perspectives of both processors and growers if 

common productions shocks dominate idiosyncratic shocks.   Thus, regardless of 

growers’ complaints about relative-performance contracts, growers could be better off, on 

average, under relative-performance contracts relative to fixed-performance contracts.  
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The third essay demonstrates the practicality of a direct reputation reward in a long-term 

dynamic contract employed in various agricultural sectors such as processed vegetable 

and winegrape industries.    

On the other hand, each of these essays provides a general methodology that could 

be applied to other sectors in which a similar context exists.  For example, the analysis 

between contracting and the spot market could be applied as well to other sectors such as 

the cattle sector.  The analysis of relative performance contracts that are widely employed 

in the labor market could also be applied to any sectors where a single principal contracts 

with multiple agents with relatively uniform products.  Finally, the optimal dynamic 

contract with direct reputation rewards could be used in sectors in which processors and 

producers maintain long-term relationships.   

Nevertheless, the analysis presented in this thesis is hardly exhaustive.  Moreover, 

readers should realize that the various contracts analyzed in this thesis are still highly 

stylized and they only mimic the real world as closely as they could with the restriction of 

analytic tractability.  Despite its limitations and simplifications, the analysis presented in 

this thesis sheds light on contemporary policy-making issues in various agricultural 

sectors and provides some theoretical guidelines for designing effective agricultural 

contracts. 
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