
The Pennsylvania State University

The Graduate School

Department of Industrial Engineering

Market-based Dynamic Resource Control of

Distributed Multiple Projects

A Thesis in

Industrial Engineering

by

Yong-Han Lee

c© 2002 Yong-Han Lee

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August, 2002

We approve the thesis of Yong-Han Lee.

Date of Signature

Soundar R. Tirupatikumara
Professor of Industrial Engineering
Thesis Adviser
Chair of Committee

Kalyan Chatterjee
Distinguished Professor of Management Science and Economics

Natarajan Gautam
Assistant Professor of Industrial Engineering

Timothy W. Simpson
Assistant Professor of Industrial Engineering

Richard J. Koubek
Professor of Industrial Engineering
Head of the Department of Industrial Engineering

iii

Abstract

Project oriented workflow is common in modern industry. Recently, the prolif-

eration of Internet technology and globalization of business environment give rise to

the advent of dynamic virtual alliances among complementary companies, thereby form-

ing an extended virtual enterprise. Resource scheduling and rescheduling of multiple

projects carried out in this situation cannot be effectively supported by existing central-

ized project scheduling approaches, mainly due to its dynamic and decentralized nature.

The need for supporting such organizationally, geographically, and computationally dis-

tributed multiple projects (DMP) calls for a novel solution approach, which is distributed,

collaborative, and flexible. In this research we have developed a market-based approach

to address the DMP problem.

In the market-based DMP scheduling approach, the agents - representing project

managers, tasks, resource managers, and resources - constitute a dynamic virtual econ-

omy, where multiple local markets are established and cleared over time. Like any

other resource-constrained scheduling problem, the DMP scheduling problem also has to

handle precedence constraints and resource constraints. In each local market, resource

time slots are evaluated throughout by a combinatorial auction mechanism, generat-

ing resource-feasible local schedules for each resource. Meanwhile, in order to generate

precedence-feasible schedules for each project, a tâtonnement type procedure is applied

to the temporary economy, which is a set of local markets. This iterative mechanism,

called P-Tâto, generates convergent and globally efficient DMP schedules. P-Tâto is

run in a multiagent based information system infrastructure. We design and implement

the multiagent system (MAS) for the DMP control economy. The MAS design and im-

plementation issues - including individual agent model, agent communication, and DMP

control ontology - are thoroughly discussed. The solution qualities are verified through

an intensive empirical analysis. The analysis results support the high levels of solution

quality and computational efficiency of the mechanism.

iv

Our approach can be directly applied to many project-oriented, decentralized

scheduling problems. In addition, our problem formulation can also be considered as

a decentralized extension of general resource allocation or scheduling problems. Ap-

plication of our problem-solving model to other decentralized resource allocation and

scheduling applications, including military logistics, supply chain management, and sur-

vivability analysis of networks are potential areas of future research.

v

Table of Contents

List of Tables . ix

List of Figures . xi

Acknowledgments . xvi

Chapter 1. Introduction . 1

1.1 Drawbacks of Traditional Approaches 2

1.2 Problem Discussion . 4

1.2.1 A DMP Example . 4

1.2.2 Dynamic Resource Control of DMP 6

1.3 Market / Multiagent based Solution Approach to DMP Problem . . 7

1.4 Research Objectives . 8

1.5 Organization of the Thesis . 8

Chapter 2. DMP Resource Control Problem . 11

2.1 Problem Specification . 13

2.1.1 DMP environment . 13

2.1.2 Deviation Cost Function and Project Weight Distribution . . 14

2.1.3 Project schedules . 15

2.1.4 DMP Resource Control . 16

2.2 Integer Programming Formulation 16

2.3 Solution Quality of a DMP Schedule 18

Chapter 3. Related Work . 19

3.1 Market-based Distributed Resource Allocation 20

3.2 Market Configuration . 21

3.2.1 Task Structure: Hierarchical vs. Procedural 21

3.2.2 Commodity: Bid for Tasks vs. Bid for Resources 22

vi

3.2.3 Participants and their Organization 22

3.3 Market-based Task / Resource Scheduling 23

3.3.1 Market-based Contract Net 23

3.3.2 Market-based Distributed Scheduling 24

3.3.3 Market-based Project Scheduling 25

3.4 Other Related Work . 26

3.4.1 Decomposition Methods . 26

3.4.2 DAI/MAS for Distributed Project Planning and Control . . . 27

3.4.3 MAS for Design Projects . 27

Chapter 4. Market-based DMP Resource Control 29

4.1 Mechanism Design Overview . 30

4.1.1 Structure of Computational Economy 30

4.1.2 Mechanism Design Strategy 31

4.1.3 Precedence Tâtonnement vs. Resource Tâtonnement 32

4.2 Multiagent Architecture . 34

4.2.1 The Agents . 34

4.2.2 Organization of Markets . 36

4.3 Precedence Cost Tâtonnement (P-Tâto) Mechanism 38

4.3.1 Overall Control Procedure . 38

4.3.2 Local Market Evaluation . 40

4.4 Utility Function . 43

4.4.1 Task Duration Time . 43

4.4.2 Deviation Cost Function . 44

4.4.3 Estimated Deviation Cost Function 45

4.4.4 Precedence Cost . 48

4.4.5 Precedence Cost Adjustment Methods 49

4.5 Local Market Evaluation Mechanism 53

4.5.1 Initial Sequencing . 54

4.5.2 Optimal Allocation in a Given Sequence 55

4.5.3 Exchanging and Stopping Rule 56

vii

4.6 Summary . 60

Chapter 5. Multiagent-based Information Infrastructure 62

5.1 Architectures for Software Agents . 63

5.1.1 Logic-based Architectures . 64

5.1.2 Reactive Architectures . 64

5.1.3 Belief-Desire-Intension Architectures 65

5.1.4 Layered Architectures . 67

5.1.5 Collaborative Architectures 68

5.2 Agent Model for DMP Economy . 70

5.2.1 Agents and Platform . 71

5.2.1.1 The Agent class . 72

5.2.2 Agent Roles and Behaviors 72

5.2.3 Behavior Model and Notations 73

5.3 Agent Communication . 74

5.3.1 Agent Communication Language: FIPA-ACL 74

5.3.2 Content Language: FIPA-SL0 76

5.4 Protocols: Agent Interactions . 76

5.4.1 Temporary Economy Protocol 77

5.4.2 Local Market Evaluation Protocol 79

5.5 DMP Resource Control Ontology . 82

5.5.1 Grammar . 82

5.5.2 Ontology of Actions . 84

5.6 Behaviors for the P-Tâto Mechanism 90

5.6.1 TemporaryEconomyInitiatorBehavior 90

5.6.2 TemporaryEconomyCoordinatorBehavior 91

5.6.3 LocalMarketAuctioneerBehavior 91

5.6.4 LocalMarketBidderBehavior 93

5.6.5 Other Behaviors . 94

5.7 Implementation . 95

5.8 Summary . 96

viii

Chapter 6. Empirical Analysis . 99

6.1 Experimental Setup . 100

6.1.1 Simulation Programs: PtatoSim 100

6.1.2 Simulation Data Sets . 102

6.1.3 ProGen Parameters . 102

6.2 Performance of Local Market Evaluation Mechanism 105

6.3 Performance of Temporary Economy Mechanism 107

6.4 Effects of DMP Configuration: Scalability 111

6.4.1 Effect of Scheduling Horizon 112

6.4.2 Effect of Project Network Complexity 113

6.4.3 Effect of Number of Projects, Resources, and Tasks 119

6.4.3.1 Effect of Number of Projects 120

6.4.3.2 Effect of Resource Availability and the Number of

Tasks Per Project 121

6.5 Controllability . 124

6.6 Convergence . 127

6.7 Summary . 131

Chapter 7. Conclusions and Future Research . 133

7.1 Contributions . 134

7.2 Future Research . 135

7.2.1 Multi-Mode Scheduling - Double Auction Mechanism 135

7.2.2 Full Self-Interestedness - Incentive Compatible Mechanism De-

sign . 136

7.2.3 Loosely-Coupled Organization - Coalition Formation 137

Appendix A. An Example Problem of P-Tâto Mechanism 138

Appendix B. FIPA SL0 . 145

References . 147

ix

List of Tables

2.1 Notations for the IP formulation . 17

5.1 ACL messages in the temporary economy protocol (sequence diagram) . 80

5.2 ACL messages in the local market evaluation protocol 81

5.3 Ontology of action establish-te . 84

5.4 Ontology of action establish-lm . 85

5.5 Ontology of action select . 86

5.6 Ontology of action attend . 87

5.7 Ontology of action register . 88

5.8 Ontology of action clear-lm . 89

6.1 Controllable ProGen Parameters for DMP problems with example values. 104

6.2 Experimental results of local market allocation algorithm. 107

6.3 Experimental results of testing the effect of varying scheduling horizons

(†: infeasible allocation happened in Resource-1). 113

6.4 Data sets and simulation results on the effect of number of projects

(scheduling horizon = 80, network complexity = 1.2). 120

6.5 Data sets and simulation results on the effect of resources availability

and the number of tasks per project (scheduling horizon = 80, network

complexity = 1.2). 122

6.6 Experimental design (number of DMP instances) for testing the effect of

α values on the convergence of P-Tâto mechanism (CONV1: 4× 4× 6,

CONV2: 4 × 4 × 12, CONV3: 4 × 4 × 18, where (N of projects)×(N of

resources)×(N of jobs per project); c̄I = 5). 127

6.7 Simulation result (the number of iterations): effect of α on convergence

(∗: not convergent in 500 iterations, but obtained the best feasible solu-

tion at this iteration; †: neither converged nor obtained a feasible solution

in 500 iterations). 129

x

6.8 Simulation result (weighted deviation cost): effect of α on convergence

(−: neither converged nor obtained a feasible solution in 500 iterations). 130

A.1 An example projects (from 3X3 Random job shop example (Kutanoglu

and Wu, 1997), converted to a project environment): Each project has

three tasks and they are in a row. 138

A.2 (Example-1) after critical path analysis. 139

A.3 Precedence cost vectors after critical path analysis. 140

A.4 Estimated deviation cost vectors after critical path analysis. 140

A.5 Each task agent’s bids for resources in the first iteration: Each cell holds

the utility of task Ti,k for the bundle Bl−δi,k+1,l of resource Rj , where

δi,k is the duration time for Ti,k. 140

A.6 The allocation in the first iteration: Each cell holds the project index i

for the project Pi. Wj denotes the welfare value of the resource Rj . . . 141

A.7 Second iteration summary of P3. 141

A.8 Third iteration summary of P3. 142

A.9 Fourth iteration summary of P3. 143

A.10 Fifth iteration summary of P3. 143

xi

List of Figures

1.1 An example DMP organization . 5

1.2 Research road map and thesis organization 10

2.1 A simplified DMP resource control problem: (a) project view, (b) re-

source view . 12

2.2 A deviation cost function . 14

3.1 Taxonomy of resource allocation mechanisms (Chatterjee, 2002). 20

3.2 The market-driven contract net manufacturing computer-control archi-

tecture (Baker, 1996). 24

3.3 A factory scheduling economy. Lines connecting the agents to the time

slots represent one feasible allocation(Walsh et al., 1998). 25

4.1 The structure of a DMP resource control economy 30

4.2 Comparison of overall procedures of (a) resource tâtonnement and (b)

precedence tâtonement . 32

4.3 A MAS organization: There are three projects (Project-A to -C) and

three resource divisions (Resource division-1 to -3). Project-A has

four task agents, and resource division-1 has three resource agents.

The market coordinator is a persistent agent that coordinates the virtual

marketplace. 37

4.4 A local market: An resource agent in a resource division (division-1)

establishes a local market that consists of three task agents, which belong

to each of three project groups. 37

4.5 Overall control procedure of P-Tâto mechanism: The shaded steps (3 -

5) constitute the local market evaluation process, where multiple simul-

taneous local market evaluation processes are accomplished. 38

xii

4.6 An example of a local market: Two task agent TAa and TAb compete

for the time slots [1, 9] of resource Ri, which is managed by the resource

agent RAi. 42

4.7 Deviation cost functions: (a) linear function, (b) exponential function; g̃

is the nominal target completion time. 44

4.8 Cases in precedence constraints: (a) one-to-one precedence; (b) many-

to-one precedence; and (c) one-to-many precedence. 46

4.9 One-to-one precedence case with deterministic duration times: (a) the

successor task’s estimated deviation cost function; (b) the predecessor

tasks’s estimated deviation cost function when the successor is scheduled

to start at t′
s
; (c) the predecessor tasks’s estimated deviation cost function

when the successor is scheduled to start at t′′
s
. 47

4.10 One-to-two precedence case with deterministic duration times: (a) the

first successor task’s estimated deviation cost function. This task is

scheduled to start at t1
s
; (b) the second successor task’s estimated de-

viation cost function. This task is scheduled to start at t2
s
; (c) the pre-

decessor task’s estimated deviation cost function. 48

4.11 A precedence adjustment rule based on standard tâtonnement: (a) before

adjustment; (b) after adjustment in the case of a overlapped schedule;

(c) after adjustment in the case of a separated schedule. 50

4.12 P-Tâto’s precedence adjustment rule: (a) before adjustment; (b) after

adjustment in the case of a overlapped schedule; (c) after adjustment in

the case of a separated schedule. 51

4.13 Dynamics of bid profile: an example (Data set: 35J81, Task (2,5)) . . . 52

4.14 The relationship among Pareto efficiency, Walrasian equilibrium, and

welfare maximum. 54

4.15 An example of bid profiles for a resource: The duration time for Task1,

Task2 and Task3 are 3, 2 and 2, respectively. 55

4.16 An example of bid profiles for each resource (Data Set: 35J81, at the last

(11th) iteration). 58

xiii

4.17 Final schedule based on the bid profiles in Figure 4.16 (the diamond

symbols represent the due dates of each project). 59

4.18 Two different multiagent organization for a trading situation: (a) market-

oriented organization for DMP resource control problem, (b) master-slave

model for a procurement problem by Satapathy (1999). 60

5.1 Subsumption architecture (Brooks, 1986) 65

5.2 A practical BDI architecture . 66

5.3 Information and control flows in three types of layered agent architecture

(Müller et al., 1995). 68

5.4 State diagrams for internal decision making processes of a manager agent

and a potential contractor agent. 69

5.5 Reference architecture of a FIPA Agent Platform (FIPA, 1998) 71

5.6 Class diagram of agents . 72

5.7 Class diagram of agent and behavior . 73

5.8 Cases of transition . 74

5.9 An example ACL message . 76

5.10 ACL interactions in the temporary economy protocol 78

5.11 ACL interactions in the local market evaluation protocol (sequence dia-

gram) . 81

5.12 TemporaryEconomyInitiatorBehavior (state diagram) 90

5.13 TemporaryEconomyCoordinatorBehavior (state diagram) 92

5.14 LocalMarketAuctioneerBehavior (state diagram) 93

5.15 LocalMarketBidderBehavior (state diagram) 94

5.16 Simple response behavior (state diagram) 95

5.17 Components of the dmp package . 97

6.1 Overview of PtatoSim . 100

6.2 An example of LINDO input file, which is automatically generated by

PtatoSim (DMP instance: OTEST3-1.DAT, which has 3 projects, 4 re-

sources and 6 jobs per project with time horizon = 25). 101

xiv

6.3 Snapshots of ProGen input file, execution window, and output file (The

sample project has 3 projects, 3 resources and 4 jobs per projects). . . . 103

6.4 Sample DMP network generated by ProGen (See previous table for the

parameters) (a) project-1 (due: 28, weight: 2); (b) project-2 (due: 29,

weight: 5); (c) project-3 (due: 30, weight: 7). The two numbers below

each node denote resource identifiers and duration times, respectively.

The nodes S and s are super-sink and super-source respectively. 106

6.5 Experimental performance of local market optimal allocation algorithm

(Data set: 35J81 � 35J810, total 410 instances used): (a) average num-

bers of examined sequences; (b) average search efficiency; (c) optimality. 108

6.6 Optimality of P-Tâto for small examples (Data set: OTEST3). Each of

ten DMP instances has 3 projects, 4 resources and 6 activities per project. 109

6.7 Computation time comparison P-Tâto vs. IP formulation (using PtatoSim

and LINDO respectively). 110

6.8 Deviation cost plot of a same DMP instances varying time horizon (The

1st instances of the data set: C12H50, C12H80, C12H100; the thick lines

are aggregate deviation costs, while the other lines are deviation costs of

individual projects). (a) horizon = 50, (b) horizon = 80, (c) horizon =

100. 114

6.9 Effect of the scheduling horizon on computation time (second). 114

6.10 The initial project networks with complexity = 2.15 (Data Set: P3R3J10-

28) . 116

6.11 DMP instances with different levels of project network complexity: (a)

1.85, (b) 1.54, (c) 1.23, (d) 1.08. 117

6.12 Dynamic behaviors of the DMP instance according to the different levels

of network complexity (complexity levels: (a) 2.15 (b) 1.85, (c) 1.54, (d)

1.23, (e) 1.08). 118

6.13 Computational measures (computation time and number of iterations)

of the DMP instances with different levels of project network complexity. 119

xv

6.14 Effect of the number of projects on computational load. 121

6.15 Effect of resource availability and number of tasks per project on com-

putational load. (Note: The scales of the domain axes are not linear.

Hence the steepness in the range of 12 to 18 is inflated.) 123

6.16 Effect of resource availability and number of tasks per project on com-

putational load: (a) effect of the number of tasks per projects, (b) effect

of resource availability. 123

6.17 Time series of tardiness with different tardiness costs (W): (a) CONT-02,

(b) CONT-04, (c) CONT-05, each of which has 4 projects, 4 resources,

10 jobs per project, network complexity 1.5, due date factor 0.0. 125

6.18 Correlation between tardiness cost weight and resultant tardiness of

projects (�: normalized tardiness cost weights; �: normalized resultant

tardiness values of projects). 126

6.19 Effect of α values: (a) on the convergence performance, (b) on the solu-

tion quality. 128

6.20 Effect of α values on convergence (in 500 iterations) : (a) percentages of

convergent DMP instances, (b) average percentages of convergent DMP

instances (CASE-1: including feasible/non-convergent cases; CASE-2:

excluding feasible/non-convergent cases). 128

A.1 Final schedule generated by P-Tâto. 144

xvi

Acknowledgments

I would like to express my gratitude to my advisor Dr. Soundar Kumara for

his support and encouragement throughout my Ph.D. study at the Pennsylvania State

University. He is an enthusiastic researcher, a patient teacher, and most of all a warm-

hearted person. I have tried to learn all of his virtues for the last four years since I started

working with him. I would also like to thank my committee members Dr. Kalyan

Chatterjee, Dr. Natarajan Gautam and Dr. Timothy Simpson, for their invaluable

guidance and suggestions during my research.

In finishing my “Ph.D.” study, I would like to give special thanks to three “Ph.D.’s”

who deeply influenced me in many ways. They are Dr. Byoung-Kyu Choi (at KAIST),

Dr. Woo-Jong Lee (in Daewoo Motor), and the late Dr. Inyong Ham (at Penn State).

When I got troubles during my Ph.D. study, I used to imagine myself one of them and

think what to do. Most of the cases, I could get confident answers. Although they

have not given me a word of advise on my Ph.D. research, they indeed made a great

contribution toward my finishing Ph.D. study.

I am indebted to my wife Sunghee and daughter Hayeon for their patience. They

had to sacrifice many aspects of their lives due to my Ph.D. study in the U.S. They

would never know how much I feel sorry and how much I love them. Finally, I would like

to thank my parents and parents in law, from the bottom of my heart, for their prayers

and confidence in me. I am really proud of them all.

1

Chapter 1

Introduction

The rapid change in both technology and the marketplace in recent years has

called for a new paradigm for managing large distributed projects. Globalized product

development projects fall into this category. In order to compete in the highly competi-

tive marketplace, modern enterprises are forced to compress their product development

lead time. In addition, projects have become more and more distributed due to economic

reasons, and project fulfillment processes overlap. Therefore project management has

become more difficult. In these situations, traditional project management techniques

cannot provide the required functionality to react effectively to the changes and to sup-

port collaborative project management processes in dispersed project environments. For

the sake of clarity of problem definition, we wish to characterize a representative project

environment in modern enterprises, called Distributed Multiple Projects (DMP). As the

name implies, DMP type enterprises run multiple projects, product-development projects

for example, simultaneously by using distributed functional divisions. The unique char-

acteristics of DMP environments are as follows:

1. Frequent Change Inevitability : Due to the dynamic changes in the market situation

and a company’s marketing strategy, product designs and product launch schedules

frequently change. As a result, original plans, which are based on estimation, are

never accomplished as planned and daily re-planning becomes a routine managerial

activity rather than an exception.

2. Tightly Coupled Tasks: The DMP type of projects usually have tight resource con-

straints, unlike other process or task centered projects such as R&D projects, con-

struction projects and ship building projects. Due to these resource constraints along

2

with precedence constraints in individual projects, the task schedules are tightly cou-

pled, meaning that any change in a task can cause the needs to change other tasks.

3. Disciplinary Self-interestedness: A project goal is achieved throughout a series of

functional divisions - they can be either internal divisions or contract based external

organizations. Usually the divisions have their own self-interests, for example, all

project-oriented divisions1 want their products or component parts to be scheduled

and finished on time; resource-oriented divisions2 are more interested in efficient

resource utilization and work load leveling. As a result, a great deal of coordination

is required to solve conflicts between self-interested divisions. According to Petrie

(1998), a result from a survey at Boeing showed that 60% of the labor is devoted to

operational task coordination.

4. Information/control Distribution: As divisions get distributed organizationally, geo-

graphically and/or computationally, local divisions maintain local information - not

only factual data but also process and planning knowledge. In addition, as the scale

of a project grows, more and more decisions are made by local organizations. The

local organizations can obviously make more beneficial decisions for their local goals

because they have up-to-date and precise information on their local situations (al-

though their decisions can conflict with others’).

1.1 Drawbacks of Traditional Approaches

Existing project management tools fall short of supporting the management of

DMP. Following are some significant functional deficiencies of the current project man-

agement tools for supporting DMP environments.

1The functional divisions that are dedicated to specific projects.
2The functional divisions that are shared by different projects by supporting specific func-

tionality using their resources.

3

1. Lack of Distributed Management Support : Most of the current project support tools

(software + algorithms) work only over a local area network and they cannot sup-

port globally distributed project environments. Even though some of the project

management tools support a distributed environment through the network, they are

still based on a single-user model of planning and control and are not capable of

supporting distributed decision makers (Drabble, 1995; Petriea et al., 1999).

2. Lack of Coordination Support : Because of the self-interestedness of the organizations,

a great deal of coordination (or negotiation when conflicts occur) effort is required in

DMP planning and control. In this coordination problem, criticality of a task and the

resulting global benefit of assigning higher priority to the task must be balanced. This

kind of quantitative analysis, however, is often missed during the negotiation process

because current project management tools do not support negotiation mechanisms

and do not provide for sufficient level of what-if analysis. Thus, the coordination

processes usually rely on human interactions without any computational support.

3. Lack of Task Level Control : Most project management systems consider a project as

a set of activities to achieve a goal within the precedence and resource constraints,

maintaining a single huge project network. However, as the size and number of

projects increase, the traditional project management tools can hardly support the

detailed task level control due to the huge number of tasks. As a result, they group

the tasks to reduce the number of elementary activities in a project. This aggregate

project management will work for the initial/master plan, but not for operational

resource control. In addition, these aggregate-based project management system

causes another significant problem - the lack of interoperability. Namely, they can

hardly be integrated with other information systems such as work flow management

and product data management, due to different levels of information and aggregation.

4. Lack of Planning and Control Knowledge Maintenance Support : The efficiency of

the DMP planning and control, which is very labor intensive and time consuming,

depends on the human planner’s knowledge, which is gathered from experience. This

is because project management tools do not maintain the planning and controlling

4

rationale (or more fundamentally these tools do not plan by themselves). As a result,

the enterprise-level objectives can hardly be applied to everyday operational decision

making in a consistent way.

Due to these drawbacks, the existing project management tools support the DMP

management problem only in limited ways such as: (i) supporting just a single user

who is in charge of project planning and control, causing the system to be used as

a personal assistant by planners, rather than as a cooperative management tool; (ii)

managing projects in an aggregate manner, thereby, losing detailed task level control;

(iii) not being able to maintain consistent project management rationale and (iv) relying

on face-to-face conflict resolution, even for daily operational re-planning decisions. The

above discussion points to the need for developing approaches for supporting effective

management of DMP.

1.2 Problem Discussion

In this thesis we will address the problem of dynamic resource allocation in the

DMP execution mode. We will denote this problem as DMP resource control3. Though

this can be thought of as rescheduling of distributed projects, we make a clear distinction

in the sense that short-term rescheduling in DMP environment is more like execution

control. In our context, control is more a frequent and routine activity compared to

occasional rescheduling. The formal problem specification is given in Chapter 2. In the

following sections of this chapter, we illustrate the planning and control problem of DMP

by means of an example and present our research objectives.

1.2.1 A DMP Example

Globalized automotive manufacturing is a classic example of a DMP type of enter-

prise. Consider an automotive manufacturing company having four technical centers in

Korea, Italy, England and Germany, say TCK, TCI, TCE and TCG respectively. Every

technical center has multiple resource divisions internally and the functionality of each

3We often use DMP control rather than DMP resource control for convenience in this thesis.

5

technical center is not mutually exclusive among the four technical centers, meaning that

their resource types overlap. Figure 1.1 shows an example of the DMP organizational

structure. On the basis of the company’s platform line-up, four basic car programs are

being carried out simultaneously (projects a, b, c and d). Each car platform has major-

change projects once every four years and minor-change projects in between, meaning

that a new project starts every six months, and the project periods significantly overlap.

project-a project-b project-c project-d

body
design

chassis
design

powertrain
design

electric
design

prototyping
department

CAE
department

testing
department

tooling
department

project groups

resource-oriented divisions

project-
oriented
divisions

Fig. 1.1. An example DMP organization

• Planning for new projects: At the initial stage of each project, the top management

decides two basic goals from resource allocation problem’s point of view - numbers

of milestones and the assignment of divisions in an aggregate manner. On the ba-

sis of these fundamental goals and constraints, the project group, which consists

of a project manager, planning staff and other project oriented divisions such as

chassis design or body design divisions, starts planning the project. At this point,

the resource-oriented divisions, who have already been supporting ongoing project(s),

6

start to schedule and/or reschedule their resources to support the new project. These

decisions are made mostly by a fewer number of planning staff by taking estimations

and strategic/operational restrictions into account.

• Control of ongoing projects: Other than the new project planning situation, the

project groups and resource oriented divisions keep facing changes with respect to

the plans and have to adapt their plans to these changes. For example, a project’s

milestones may be changed for some strategic reason, a part must be redesigned due

to the failure in a test, or a prototyping process may take far more time than expected

because of a machine failure. Sometimes just a few adjustments may be enough, but

it may generate more complicated situations that affect other projects’ schedules.

1.2.2 Dynamic Resource Control of DMP

The DMP resource control problem, which this thesis mainly addresses, is an

NP-hard4 problem, as far as optimality of the control procedure is concerned. The

main difficulty of the problem arises from the tight coupling between elementary tasks

via precedence and resource constraints. Hence, in practice, relying on face-to-face ne-

gotiation, decisions are made based on: (1) the bounded (local) information about the

resultant effect of the re-allocation and (2) inconsistent allocation rules. In addition,

decision making requires coordination efforts and time delays.

The control problem arises due to the self-interests of divisions conflicting with

each other, no matter whether they are project-oriented or resource-oriented. Namely,

each project group tries to secure enough resources to achieve their goals with a higher

probability. However, due to resource restrictions we can rarely obtain a solution satis-

fying every group. In addition, it is even unclear which choice (in every day operational

decision making) is better than the others from the enterprise’s perspective. The problem

is how to fairly and consistently reschedule the tasks at the operational level.

4DMP resource control problem, which is formally specified in Chapter 2, is a resource-
constrained project schedule problem (RCPSP), which is known as NP-hard (Kolisch and Pad-
man, 2001).

7

From the top management’s perspective the relative importance or urgency of

each project (ultimately those of each task) could clearly be determined. The problem

is how such an overall priority can be deployed in a consistent way all the way down to

the task level operational scheduling and rescheduling activities.

Now think about how one can handle such a dynamic resource control problem

in such an uncertain situation? In order to solve the DMP resource control problem, a

distributed, collaborative, and adaptive resource control approach, which guarantees the

fairness with respect to the global objectives is required.

1.3 Market / Multiagent based Solution Approach to DMP Problem

Due to the nature of the DMP resource control problem as discussed in the pre-

vious section, it is very natural to model this problem as a negotiation process between

competitive participants who need to acquire some resources to achieve their individual

goals. In such situations, the value (or price) of the commodities must be determined

based on the market principle - the higher the demand, the higher the price. In other

words, the DMP resource control problem can be formulated as a market-based resource

allocation problem. In order to facilitate the market based approach it is necessary to

have a computational architecture. The DMP can be facilitated through a multiagent

system (MAS). The important observations regarding these two approaches are:

• Market-base mechanisms and multiagent systems are inherently distributed in na-

ture, so the DMP decision makers and decision making process can be naturally

implemented by these approaches.

• Each project group and resource-oriented division can easily be modeled as a self-

interested autonomous decision maker, who try to maximize its own objective.

• The simple mechanism based on bidding and auction can reduce the communica-

tion burden in this distributed negotiation environment and increase the system

robustness.

8

• The modularity and adaptability of the market-based and multiagent approach

reduces the implementation and maintenance efforts in the frequently changing

DMP environment.

1.4 Research Objectives

The research objectives in the proposed research are: (1) development of a multiagent-

based information system model, and (2) development of market-based DMP resource

control mechanism, which works within the information system infrastructure.

1. The development of a multiagent-based information system model includes:

• An organizational model such as the role definition of individual agents in the

DMP resource control system;

• Design of an individual agent’s architecture, which is adequate for DMP re-

source control problem solution model; and

• Agent communication including the definitions of agent-agent interactions and

DMP project resource control ontology.

2. Development of a market-based DMP resource control mechanism involves:

• A virtual economy model for resource allocation, which includes the definitions

of goods, buyers and sellers;

• An utility function that incorporates the relative value of a good from the

individual project’s or task’s perspective; and

• Detailed market protocols consisting of an auction mechanism and bidding

policies.

1.5 Organization of the Thesis

In Chapter 2, the DMP resource control problem is formally defined. In Chapter 3,

we briefly review the background literature on the distributed resource allocation in the

context of project management and market-based mechanism. A market-based planning

9

and control mechanism for DMP are presented in Chapter 4 in detail. A multiagent-

based information system model is presented in Chapter 5. Chapter 6 deals with testing

and verification of the proposed approach for solving the DMP resource control prob-

lem. Chapter 7 concludes the research followed by future research recommendations.

Figure 1.2 summarizes the road map of research and this thesis.

10

Basic Market-based
Approach Build-up

 Market structure
 Agent organization model
 Search in temp. economy
 Optimal local market

Section 4.1-4.2

Local Market Model

 Utility function
 Bid generation
 Optimal allocation
 Payment rule

Section 4.4-4.5

MAS-based Information
System Model

 Individual agent model
 Protocol specification
 Ontology definition
 Implementation

Chap. 5

Market Mechanism
Approach

(P-TÂTO Mechanism)

 Precedence cost vector
adjustment

Section 4.3

Experimental Setup

 Simulator: PtatoSim
 Data Sets: ProGen

project instance generator

Chap 6.1

Empirical Evaluation

 Optimality / Efficiency
 Scalability
 Controllability

Convergence

Section 6.3-6.6

Conclusion

 Conclusions
 Contributions
 Future research

Chap. 7

Literature Survey

 Market-based resource
allocation
 Market-based task /

resource scheduling

Chap.3

DMP Resource Control
Problem Specification

 Dynamic / collaborative
resource re-allocation
over control window

Chap.1-2

Fig. 1.2. Research road map and thesis organization

11

Chapter 2

DMP Resource Control Problem

In Chapter 1 we roughly discussed the background and objectives in DMP re-

source control problem. Figure 2.1 illustrates the overall structure of the DMP resource

control problem. From the project groups’ view points (Figure 2.1(a)), we have multiple

simultaneous projects, which consist of hundreds or thousands interrelated project ac-

tivities (or tasks) organized by a project activity network. There are informational and

managerial barrier among projects and precedence constraints among individual tasks

(defined by the project activity network). Meanwhile, the resources are to be shared

by the tasks as shown in Figure 2.1(b). The resource time over the given (moving)

control window must be dynamically re-allocated throughout the DMP resource control

process. As shown in the figure, the continuous resource time is divided into equilength

time slots, which is a common practice both in resource scheduling literature and in real

practice in industry. The typical time-slot size is one hour in an operational manufac-

turing scheduling situation. In the following sections of this chapter we formally define

fundamental terms, and ultimately the difinitoin of DMP resource control problem. In

addition, a centralized Integer Programming formulation is explained, which is used for

the purpose of solution optimality comparison. At the end of this chapter, we discuss

solution performance measures of the DMP resource control problem formulation.

12

Control Window

Information barrier

Information barrier

i (current time slot) i + h

Information barrier

Resource 2

Resource 3

Resource 1

time slots

Project 1
Project 2
Project 3

(a)

(b)

Control Window

Information barrier

Information barrier

i (current time slot) i + h

Information barrier

Project 2

Project 3

Project 1

time slots

Task
Milestone
Event

Fig. 2.1. A simplified DMP resource control problem: (a) project view, (b) resource
view

13

2.1 Problem Specification

2.1.1 DMP environment

We define two components that constitute a DMP problem environment: (a) a

set of projects and (b) a set of resource divisions. First, we define a project as a set of

tasks, milestones and precedence constraints in the following definition. As shown in the

definition, a project Pi may have multiple milestones or goals, Gi = {Gi1, Gi2, ..., Gi|Gi|},

including the target project completion date Gi1. For the sake of simplicity |Gi| = 1 ∀i

is assumed in this thesis. The precedence constraints can be defined by task pairs

(predecessor, successor), i.e., Ni = {(Tij, Tik) : j �= k, Tij, Tik ∈ Ti}.

Definition 2.1. (project) A project Pi is a 3-tuple 〈Gi, Ti,Ni〉, where Gi is a set of

milestones, Ti is a set of all tasks to be processed in the project, and Ni is the set of the

precedence constraints defined on Ti. �

On the other hand, we have multiple resource divisions, which have resources

under their control as defined in the following definition. As shown in the definition,

each resource Rjk has a capability to perform a specific task type q ∈ Q, where Q is the

universal set of task types.

Definition 2.2. (resource division) A resource division, Dj , is an organizational unit

that comprises a set of resources, Rj = {Rj1, Rj2, ..., Rj|Rj |}. All Rjk in Dj are located

at a common physical place and under a common control exclusively, i.e., every Dj has

its own manager or control. �

Based on these two definitions, a DMP environment can be defined as a combined

set of multiple projects and multiple resource groups as follows.

Definition 2.3. (distributed multiple project) A Distributed Multiple Projects (DMP)

environment, Π, is defined by a set of projects, P = {Pi}, and a set of resource divisions,

D = {Dj}, i.e., Π = 〈P,D〉. �

14

2.1.2 Deviation Cost Function and Project Weight Distribution

In order to define the concept of a project schedule, we need to define beforehand a

measure that decides on the superiority of one project schedule with respect to another.

For this purpose, we define a solution quality measure of a project schedule, called

deviation cost function, which is a generalization of project tardiness cost functions.

Definition 2.4. (deviation cost function) A deviation cost function, φi : R → R+,

of a project Pi is a function in the time domain, representing the penalty cost due to the

deviation of the project completion time from the original completion target, Gi1. �

Obviously a smaller value is preferable to a bigger value in this function, i.e., if the

completion times of two project schedules (see Definition 2.9) E′
i

and E′′
i

for a project Pi

are t(E′
i
) and t(E′′

i
) respectively, E′

i

 E′′

i
if and only if φi(t(E

′
i
)−Gi1) < φi(t(E

′′
i
)−Gi1),

i.e., project schedule E′
i

is preferable to E′′
i
. Many different forms of deviation cost

functions can be designed. In general, project scheduling models take into account the

following three criteria: (1) earliness, (2) tardiness and (3) risk of failure. These three can

be easily incorporated in a deviation cost function, as shown in Figure 2.2 for example.

earliness
cost region

tardiness
cost region

failure
cost region

goal

0

Fig. 2.2. A deviation cost function

As mentioned in Section 1.2.2, the relative importance or urgency of each project

is determined and given to each project by the top management, and this weight dis-

tribution must be consistently applied to the resource control process. Following is the

formal definition of a project weight and the project weight distribution.

15

Definition 2.5. (project weight distribution) A project weight, wi, of a project

Pi defines the relative importance or urgency of the project. So, for a DMP resource

control problem, the relative weights of the projects are given in the form of project

weight distribution, W = {wi}, where
∑

i wi = 1. �

2.1.3 Project schedules

Before defining project schedules, we need to define control window, which is a

time-window in which the resources are to be rescheduled when significant changes hap-

pen in the DMP environment. As explained at the beginning of this chapter, the resource

time is divided into equilength time slots for scheduling purposes; hence, the control win-

dow is also defined by time slots as follows:

Definition 2.6. (control window) A control window, h = [h1, h2], of a DMP resource

control problem is a set of consecutive time slots between two time slots h1 and h2

inclusively, where h1 ≤ h2. �

The following three definitions define an engagement, a project schedule and a

DMP schedule, which are the outcomes of the resource control mechanism.

Definition 2.7. (engagement) An engagement, eil = (j, k,Ω) is a commitment of a

resource Rjk to allocate its resource-time period Ω to the task Til in Pi, where Ω =

[ω1, ω2] defines the time window between the time-slots ω1 and ω2, over which the task

is to be allocated. �

Definition 2.8. (project schedule) A project schedule of Pi, denoted by Ei, is a set of

engagements that cover all the tasks in Pi, i.e., Ei = {ei1, ei2, ..., ei|Ti|}, and precedence-

conflict free, i.e., ∀(Tij , Tik) ∈ Ni, ωj2
< ωk1

where eij = (∗, ∗, Ωj), eik = (∗, ∗, Ωk),

Ωj = [ωj1
, ωj2

] and Ωj = [ωk1
, ωk2

]. �

Definition 2.9. (DMP schedule) A DMP schedule, denoted by A = 〈E , h〉, is a

set of project schedules within the DMP control window, i.e., E = {Ei}, h = [h1, h2],

and resource-conflict free, i.e., ∀ (k, l, Ωi), (k, l, Ωj) ∈ E where i �= j, 1 ≤ l ≤ |Rj |,

1 ≤ k ≤ |D|, Ωi = [ωi1
, ωi2

] ⊆ h and Ωj = [ωj1
, ωj2

] ⊆ h, ωi2
< ωj1

or ωi1
> ωj2

. �

16

2.1.4 DMP Resource Control

Now we define the DMP resource control problem, which is the problem we try

to solve. As mentioned in Section 1.2, the planning procedure is carried out every time

a new project starts; control is a persistent procedure for maintaining the projects as

planned. As just defined, a valid DMP schedule is a set of resource and precedence

conflict-free engagements over a given control window. Associating this concept of DMP

schedule, we define the DMP resource control problem as follows:

Definition 2.10. (DMP resource control) Given DMP environment Π, control win-

dow h, and project weight distribution W, DMP resource control problem Ψ is a persis-

tent procedure to maintain a DMP schedule, A, valid1 all the time, i.e., Ψ : (Π, h,W) →

A, where A = 〈E , h〉 is a valid DMP schedule. �

2.2 Integer Programming Formulation

There have been many different Integer Programming (IP) models for project

scheduling problems. We formulate the multiple project scheduling problem for mini-

mizing weighted tardiness based on Drexl (1991). We assume that the deviation cost

function is a simple linear function, φ(t) = t. As shown in the following formulation,

the number of variables increase rapidly according to the increase of scheduling hori-

zon, the number of tasks, and the number of resources. This formulation is basically

a centralized formulation, and it cannot be directly applied to DMP resource control

problems. Instead this formulation is used for comparison purposes, especially to com-

pare the P-Tâto
2-generated DMP schedule to an optimal schedule when the problem is

solved in a centralized way. In the IP formulation, constraint (2.1) ensures that any task

is assigned only once, (2.2) ensures precedence relations, and (2.3) ensures no resource

is allocated to more than one task at a time. Table 2.1 summarizes the notation for the

IP formulation.

1Validity of a DMP schedule means satisfaction of both precedence and resource constraints.
2
P-Tâto mechanism is our proposed market-based mechanism explained in Chapter 4.

17

xi,j,t =

1 : task j of project i is finished by resource rij in time slot t

0 : otherwise

minimize
I∑

i=1
Wi

T∑
t=1

t · xiJit

subject to

wij∑
t=wij+δij−1

xijt = 1 ∀i, j (2.1)

wih∑
t=wih+δih−1

t · xiht ≤
wij∑

t=wij+δij−1
(t − δij) · xijt ∀i, j , h ∈ Pij (2.2)

Ji∑
i,j:rij=k

t+δij−1∑
q=t

xijq ≤ 1 ∀k, t (2.3)

Table 2.1. Notations for the IP formulation

notation description

I total number of projects
Ji number of tasks in i-th project
Tij j-th of i-th project, i = 1, . . . , I and j = 1, . . . , Ji

δij time duration of Tij

rij resource index for task Tij

K number of resources
Pij set of the predecessors of Tij

T time horizon, t ∈ 1, . . . T

Wi priority (weight) of project i

wij earliest start time (ES) of task Tij

wij latest finish time (LF) of task Tij

18

2.3 Solution Quality of a DMP Schedule

In this chapter we formally defined a DMP schedule and the DMP resource control

problem. As seen in the Definition 2.9, a DMP schedule is defined in the level of feasibility

(both in resource and precedence). When developing a DMP resource control mechanism,

we need a definition of the DMP schedule quality (i.e., the definition of “good” DMP

schedule), so that we can evaluate the DMP resource control system with respect to the

quality of the output DMP schedules. The following are solution quality measures which

DMP resource control mechanisms try to achieve:

• Efficiency: For each resource, the resource schedule is efficient if the engagements

cannot be updated in a way that any of the task utility can be increased without

decrease of any other task’s utility. If all the resource schedule is efficient, the

DMP schedule is also efficient.

• Optimality: For each resource, the resource schedule is optimal if the engagements

maximize the aggregate utility values of the corresponding tasks. If all the resource

schedules in the DMP schedule (which is already feasible by definition) is optimal,

then the DMP schedule is said optimal3. If a local resource schedule or a DMP

schedule is optimal, they are efficient too.

• Reflectiveness: If the DMP schedule more clearly reflects the project weight

distribution, the DMP schedule is more desirable. This property is directly related

to the controllability (see Section 6.5) of a mechanism.

3This is corresponding the equilibrium state of the DMP economy explained in Section 4.1.1

19

Chapter 3

Related Work

In this chapter, we review background literature related to the DMP resource con-

trol problem. As explained, the DMP resource control problem is a short-term scheduling

problem. Instead of discussing the scheduling literature, however, we mainly discuss dis-

tributed resource allocation literature. General notion of resource allocation denotes a

one-shot resource distribution to multiple agents (, processes, or tasks). However, we

map the DMP resource control problem to a distributed resource allocation problem by

converting the continuous resource time to discrete time slots. By allocating discrete

commodities (resource time slots in our case), the scheduling problem is solved. In Sec-

tion 3.1 a general notion of market-based distributed resource allocation literature is

briefly reviewed, and they are elaborated with respect to the market configuration-based

classification in Section 3.2. In Sections 3.3 and 3.4, we discuss some problems which

have closely related-problem domains and methodologies.

20

3.1 Market-based Distributed Resource Allocation

Market-based automated negotiation, or more commonly market-based control,

is a paradigm for controlling complex system that would otherwise be very difficult to

handle, by taking advantage of some desirable features of a market (especially a free

market) including decentralization, interacting agents, and some notion of resources

that need to be allocated (Clearwater, 1996). This approach has been applied to a wide

range of fields such as dynamic computer resource allocation (Ferguson et al., 1988;

Waldspurger et al., 1992), supply chain management (Hinkkanen et al., 1997; Sauter

et al., 1999), vehicle routing (Sandholm, 1993), workflow management (Jennings and

Vulkan, 2000), manufacturing scheduling (Tilley, 1996; Baker, 1996)(Kutanoglu and Wu,

1997; Walsh et al., 1998), project planning and control (Qian, 1998; Lee and Kumara,

2000), and process control (Jose and Ungar, 1998). Depending on the situation that the

problems deal with, solution methodologies can be classified as shown in Figure 3.1.

(Non-Cooperative)
Multiple FirmsSingle Firm

Centralized, All
Information

available at t=0

Information
Dispersed,

Dynamic Flow of
Information 1 Seller,

1 Buyer

BargainingAuction

Team
Objective

Distributed Computing,
Auctions and Markets for

Scheduling Tasks and
Allocating Resources

Coalition
Formation

Market DesignIncentives
Mechanism

Design

1 Seller, Many
Buyer or Vice-versa

Self-interested
Individual Agents

Fig. 3.1. Taxonomy of resource allocation mechanisms (Chatterjee, 2002).

21

The DMP resource control problem domain and our proposed mechanism (ex-

plained in Chapter 4) can be classified into the case of distributed resource alloca-

tion having a team objective in Figure 3.1. However, our virtual market model and

multiagent-based information infrastructure (explained in Chapters 4 and 5) can incor-

porate the cases requiring an incentive mechanism design.

Fundamental notions of resource allocation and scheduling are different in the

sense that the scheduling problem has to handle an extra dimension - time- while re-

source allocation usually deals with a one-shot resource distribution. However, scheduling

problem can be transformed into a one-shot resource allocation problem by converting

the continuous time into countable discrete time-slots, which are allocated to the pro-

cesses or tasks. In this case, we can utilize a variety of study (especially in economics

literature) on distributed resource allocation in order to solve distributed scheduling

problems, including the DMP resource control problem. Also by defining the time-slots

as commodities that are bought and sold, the scheduling problem can be converted into a

market-based resource allocation problem. However, none of the distribute resource allo-

cation mechanisms in economics literature can be directly applied to the DMP resource

control problem, mainly because of the DMP problem’s tasks structure - specifically,

precedence constraints among tasks.

3.2 Market Configuration

Market-based control is a metaphoric approach, meaning that the original problem

is mapped into a virtual market place where buyers and sellers trade commodities until

an equilibrium state is reached. Hence, we can classify market-based problem-solving

models with respect to the structures of (or internal relationship among) the market

components: task structure, commodity, and market organization.

3.2.1 Task Structure: Hierarchical vs. Procedural

In a distributed resource allocation problem, the set of tasks (which requires re-

sources) have some structure in general. Typical task structures are hierarchical and

22

procedural structures. SPAWN (Waldspurger et al., 1992) is one of the earliest market-

based control systems for dynamic resource allocation in a network of distributed com-

puter workstations. This system assumes a hierarchical task structure of tasks. The

concept of funding works well with such a task structure to control the priority among

tasks. Task allocation problem addressed in (Walsh and Wellman, 1998) has also a hi-

erarchical task structure; however, many other practical problems have procedural task

structure. Manufacturing scheduling/control (Tilley, 1996; Baker, 1996; Kutanoglu and

Wu, 1997; Walsh et al., 1998) or workflow coordination problems (Jennings and Vulkan,

2000) usually have simpler, having fewer operations and precedence relations, while a

project scheduling/control problem (Qian, 1998; Lee and Kumara, 2000) has a compli-

cated large activity network so that more coordination effort is required.

3.2.2 Commodity: Bid for Tasks vs. Bid for Resources

Many task allocation problems assume no resource boundedness, or do not con-

cern themselves with resource utilization. Instead they are more concerned about out-

puts or service quality. Many workflow coordination problems and military logistics

problems fall into this category. On the other hand many resource allocation problems

are involved in bounded (or scarce) resources. In some cases, the resources (or resource

organizations) have their own interest, for example their own utilization maximization.

Such resource boundedness is a major criterion for one of the most fundamental market

mechanism-design decisions: bid for task or bid for resource. In a more resource-bounded

situation, bid-for-resource is more a natural approach than bid-for-task. For example,

the market-based contract nets (see Section 3.3.1) by Baker (1996) or Tilley (1996) are

the typical cases of bid-for-task approach, and the market-based distributed scheduling

(see Section 3.3.2) by Walsh et al. (1998) is of bid-for-resource approach.

3.2.3 Participants and their Organization

The individual units of a distributed organization (including a DMP environment)

make decisions using local information and knowledge due to information barriers and

boundedness, which are caused by their generic organizational structure. So depending

23

on the structure of the mixture of private information and common information, quite

different solution mechanisms can be designed. The private information in a compet-

itive situation is not revealed due to strategic reasons, while local information is held

locally for saving communication burdens and expediting decision making processes. In-

formation boundedness directly points to information exchange between the participants

(i.e., agents). On one hand, all information (e.g., about resources needed by a partic-

ipant) could be posted to a common bulletin board visible to all participants. On the

other extreme, information is exchanged purely between pairs of participants. Tan and

Harker (1999) analyzed workflow efficiency of coordination problems by comparing the

two organizational structures: hierarchical organization and (market-based) decentral-

ized organization, and proposed some decision rules for adapting market-based approach.

3.3 Market-based Task / Resource Scheduling

As mentioned previously, market-based control has been applied to a wide range

of fields such as computer resource allocation, network bandwidth control, power grid

control, and shop-floor or project scheduling. In this section, we review some of literature

in manufacturing and project scheduling area, because of the similarity between these

problems and the DMP resource control problem in problem domain and methodology.

3.3.1 Market-based Contract Net

Baker (1996) and Tilley (1996) showed that market-based control is very appli-

cable to real-time factory scheduling problem in a heterachical situation. In their mod-

els, as shown in Figure 3.2, each agent controls one or more manufacturing resources

such as machines, material handling systems, inventory storage, and manual operations.

Responding to the arrivals of new orders, the machine agents recursively bid for the

remaining tasks in a quite straightforward way. Hence their research can be seen as a

market-based extension of contract net1. The limitation of their problem formulations

is that they did not seriously take into account the fundamental scheduling constraints

1Baker actually called his proposed architecture market-driven contract net and Tilly called
manufacturing contract net (MCN).

24

Fig. 3.2. The market-driven contract net manufacturing computer-control architecture
(Baker, 1996).

such as strict due dates or resource constraints. In order to incorporate such resource

constraints in the market model, it is natural to model the resource as a good, which

is bought/sold. They, however, use tasks rather than resource time or machine time as

goods. In this sense, the following research may be more appropriate for the resource

allocation problem.

3.3.2 Market-based Distributed Scheduling

Walsh et al. (1998) modeled the factory scheduling problem as a discrete alloca-

tion problem by seeing the resource’s time slots as discrete resources2. In their factory

scheduling economy, the time slots of a factory (as a single machine) are bought by and

sold to the agents, who need the factory for a given period of time, through a sim-

ple auction mechanisms as shown in Figure 3.3. Their theoretical analysis of auction

mechanisms give good theoretical insights. They investigated aspects of two auction

2This is very common scheduling formulation approach in operations research. It is usually
formulated as an integer program as explained in Section 2.2.

25

Time Span = 1 day

Reserve Price = $3/hr

Agent 4
value = $14.5
length = 4hr
deadline = 16:00

Agent 2
value = $16
length = 2hr
deadline = 11:00

Agent 1
value = $10
length = 2hr
deadline = 12:00

Agent 3
value = $6
length = 1hr
deadline = 11:00

$6.25 9:00

$6.25 10:00

$6.25 11:00

$3.25 12:00

$3.25 13:00

$3.25 14:00

$3.25 15:00

$3.25 16:00

Factory

Fig. 3.3. A factory scheduling economy. Lines connecting the agents to the time slots
represent one feasible allocation(Walsh et al., 1998).

mechanisms for the factory scheduling economy - a simple ascending auction and a gen-

eralized Vickrey auction(GVA) (MacKie-Mason and Varian, 1994), for the single unit

allocation problem and multiple unit allocation problem, respectively.

3.3.3 Market-based Project Scheduling

Qian (1998) suggested the possibility of market-based software development proje-

ct scheduling. In the project scheduling economy, he introduced two types of goods: (i)

resource time slots, which represent the employee’s working time just like Walsh et al.

(1998) did, and (ii) project time slots, which represent the precedence relation between

consecutive tasks. The task agents bid for the both types of time slots, and the price of

each slot is adjusted every bidding iteration based on the number of bids to the slot. The

choice of goods in this research might be still applicable to DMP planning and control

problem, but this market-based model has a few critical limitations, which are applicable

to the DMP case as follows:

1. The pricing system did not incorporate each project groups’ interest; instead, a simple

price adjustment mechanism, which is directly proportional to the number of bids

in the slot, was used in the algorithm. His model is enough to generate a feasible

26

solution, but it is not guaranteed to achieve good solution quality in the sense of

tardiness, earliness, or risk management.

2. His model was a centralized static scheduling formulation for a traditional determin-

istic project network, meaning that although the economic metaphor was used in his

algorithm, it was more like a heuristic search algorithm to find a feasible solution

rather than a market-based coordination or negotiation mechanism, by which global

objectives are achieved as an emergent property.

3. The computational performance - both of computation time and solution quality - was

too poor to be applied to any practical size problems. The high computational com-

plexity basically arises from the combinatorial property of the multiple unit resource

allocation problem and inefficiency of the price adjustment process. The results of

the simulation-based computational experiment showed this algorithm may not work

in any practical size problems.

3.4 Other Related Work

3.4.1 Decomposition Methods

Resource constrained project scheduling problems are a generalization of the NP-

hard job-shop scheduling problems, where the computational requirements for obtaining

an optimal solution grow exponentially as the problem size increases. Hence, major ef-

forts to solve this problem in operations research (OR) have concentrated on developing

heuristic procedures to obtain near-optimal solutions. For some specific types of project

scheduling problems, efficient solution procedures can be designated by taking full ad-

vantage of their desirable features. Luh et al. (1999) and Liu et al. (1998) formulated

the scheduling problem of multiple distributed design projects as an integer programming

(IP) model, and proposed an efficient solution procedure based on Lagrangian relaxation

(LR) along with a stochastic dynamic programming method and some heuristics. They

assume that the subprojects are de-coupled in the process-centered project configuration.

This assumption makes the problem formulation separable so that LR can be successfully

applied; however, this assumption cannot be made in the DMP resource control problem.

27

3.4.2 DAI/MAS for Distributed Project Planning and Control

The distributed Artificial Intelligence (DAI) community has also addressed the

distributed project planning and control problem. Chang et al. (1993) modeled the dis-

tributed project planning problem as a set of distributed assumption-based truth mainte-

nance system (ATMS). Although each ATMS, as a decision support system (DSS), helps

a distributed planner to maintain the local plan consistently, conflict resolution among

the participants’ plans still is based on face-to-face negotiations. Petriea et al. (1999)

investigated the project management problem from the viewpoint of process coordination

and pointed out the importance of change propagation in distributed project environ-

ment. His research is concentrated on modeling the dependency among the elementary

project activities rather than resource planning and control. So, this approach will be

a complimentary part of DMP resource control research for supporting overall DMP

management. Drabble (1995) pointed out that the desirable framework for intelligent

project planning and control tool in wide area project management problem would be

based on a multiagent framework.

3.4.3 MAS for Design Projects

Although MAS-based project planning and control research can hardly be found,

MAS applications for design process coordination have been frequently reported. Multi-

agent design system (MADS) is a design applications that incorporates multiple software

agents (Lander, 1997). Some researchers demonstrated that MADS can be successfully

applied in the large-scale, distributed design environments by integrating human engi-

neers and a set of application software using multiagent framework (Cutkosky et al., 1993;

Frost and Cutkosky, 1996; Lander and Corkill, 1996; Jin and Lu, 1998). Although these

studies tried to solve design problems, there is some similarity between their approaches

and our DMP resource control mechanism because of their main theoretical thrust on

coordination mechanisms or dynamic conflict resolution. Representative approaches in

this area include: (i) narrowing search space (Parunak, 1999), (ii) modeling design space

as a market (Wellman, 1995; Parunak, 1999), (iii) tracking constraints to ensure Pareto

28

optimality (Petrie et al., 1995) and (iv) sharing information through explicit common

storage such as blackboard (Lander and Corkill, 1996; Tan et al., 1996).

We have explained the background, problem definition and related literature in

the first three chapters. In the following three chapters, we discuss the details of the

proposed market-based control mechanism called P-Tâto (Chapter 4), the multiagent-

based information system design (Chapter 5), and experimental analysis results (Chap-

ter 6).

29

Chapter 4

Market-based DMP Resource Control

In a DMP environment, each project group and resource division are to some ex-

tent self-interested, and there are information barriers among project groups and among

resource divisions. Project groups compete for shared resources (e.g., resource time

slots) while trying to minimize the estimated deviation cost by re-scheduling their tasks

within the current control window, say [t + 1, t + n] where t is the current time slot

index and n is the control window size. On the other hand, each resource tries to max-

imize its resource utilization, which is a sum of the utilities for allocated tasks within

the control window. There are two types of constraints that restrict the objective of

each participant: precedence constraints1 and resource constraints2. In this chapter, a

market-based negotiation mechanism called P-Tâto is presented, which solves the re-

source constraints in an optimal way and searches for a precedence conflict-free solution

throughout a tâtonement type procedure. In order to elaborate the proposed approach,

the computational economy of the DMP resource control environment is first defined.

1Precedence constraints are defined by project-wise project network
2Resource constraint means that any resource time slot cannot be allocated to more than two

tasks

30

4.1 Mechanism Design Overview

4.1.1 Structure of Computational Economy

The DMP resource control environment is modeled as a computational economy,

where multiple autonomous software agents buy and sell resource time slots. The overall

DMP resource control economy is a dynamic economy in the sense that multiple markets

are dynamically established and cleared over time. This dynamic economy, as a whole,

is called a DMP economy. As shown in Figure 4.1, the DMP economy e is an infinite

sequence of temporary economies, et’s, each of which is a set of uncleared resource time-

slot markets at a specific time t. We call this individual time-slot market local market,

denoted by mj , which corresponds to the resource Rj .

DMP economy
(a dynamic economy)

Temporary economy

Local market
(a time-slot market)

sequence of

set of

et

mj

e
multiple markets

over time

multiple local
markets at time t

single resource Rj

allocation market

Fig. 4.1. The structure of a DMP resource control economy

If every market in an economy has been cleared at time t, the economy is stable

(or in an equilibrium state) at time t. The DMP resource control problem manages the

stability within the control window, or the stability of a temporary economy. As time

progresses, either precedence or resource conflicts are detected within the control window

at time t, comprising multiple coupled local markets mj ’s, where each of mj is to sell

the time slots of the Rj within the control window.

31

4.1.2 Mechanism Design Strategy

As explained, the DMP economy is just a sequence of temporary economies.

Hence our major mechanism-design concern is an effective design of a temporary economy

establishing and clearing mechanism. A temporary economy consists of multiple inter-

dependent (by precedence and resource constraints) local markets.

1. At the temporary economy level, an overall market clearing mechanism needs to

be established. We propose an iterative market mechanism called Precedence Cost

Tâtonnement (P-Tâto) mechanism. One of core parts of this mechanism is local

market evaluation mechanism.

2. For the local market evaluation, a combinatorial auction mechanism that allocates

the resource time slots to tasks in an optimal way with respect to a welfare function

(see Section 4.5) needs to be implemented.

In such a computational economy, a local market clearing mechanism guarantees

the feasibility and optimality of the resource allocation of the local market, but it does not

guarantee the precedence feasibility between the allocated tasks. Local markets hence

need to be evaluated repeatedly without physical market clearing until the temporary

economy level coordination achieves precedence feasibility. Our market-based resource

control approach can be summarized as follows. The details of P-Tâto mechanism are

explained in Section 4.3.1.

• sellers: resource agents (RA), each of which is in charge of a resource.

• buyers: task agents (TA), each of which is in charge of a task.

• commodity: discrete time slots

• resolving resource constraints: combinatorial (bundle) auction mechanism

• resolving precedence constraints: price tâtonnement process on precedence

cost vector of each tasks (P-Tâto).

• bidding: bid for resources using combinatorial bids

32

4.1.3 Precedence Tâtonnement vs. Resource Tâtonnement

The one of the core ideas of our mechanism is precedence cost tâtonnement at

the temporary economy level along with resource-wise optimization in the local economy

level. Figure 4.2 shows conceptual differences between precedence cost tâtonnement

and resource price tâtonnement (we call them precedence tâtonnement and resource

tâtonnement3, respectively in short) when they are applied to DMP resource control

problems.

1. Solve each local project optimization

2. Submit each project’s bundle bid

4. Stop condition fulfilled?
no

yes

5. Allocate the time slots

3. Update Resource price pj = pj + ∆pj

(a)

1. Submit each task’s bundle bid

2. Solve each local resource allocation

4. Stop condition fulfilled?
no

yes

5. Allocate the time slots

3. Update Precedence cost ck = ck + ∆ck

(b)

0. Initialize 0. Initialize

Fig. 4.2. Comparison of overall procedures of (a) resource tâtonnement and (b) prece-
dence tâtonement

The rationale of using the precedence tâtonnement approach can be explained as

follows:

• The numbers of projects and resources: In DMP environments, the number of shared

resources are a lot greater than the number of projects. That means searching

3Most of market-based resource allocation approaches including Kutanoglu and Wu (1997)’s
falls into this category

33

for resource-feasible allocation for all resources is a lot harder than searching for

precedence-feasible allocation for all projects.

• Commitment window4: Commitment windows compress the search space for the

precedence conflict resolution, meaning that precedence tâtonnement process con-

verges faster than resource tâtonnement.

• Scarce resources: Compared to many task allocation problems, resource allocation

problems are defined in the situation of scarce resources, meaning that resource time

slot domains are crowded with tasks so that the feasible resource allocation could not

easily obtained through an iterative search process due to the tight coupling.

• Local optimization burden: We can generate much more efficient local resource schedul-

ing algorithm compared to the local project scheduling problem, because a very good

initial resource schedule, which is critical for the local optimal allocation heuristics,

can be easily generated based on the critical path analysis. An efficient local mar-

ket clearing algorithm is proposed, which guarantees high level of optimality (see

Section 4.5 for details).

• Resource utilization maximization: In the resource tâtonnement mechanism, the re-

source divisions’s self-interestedness cannot be realized, while the precedence tâtonnement

mechanism maximizes both of the resource utilization and the project groups’ utili-

ties.

• Information barrier : In a highly distributed (or decentralized) environment, task

agents have only bounded local information, such as information on neighbor task

agents. This means that project groups cannot solve the project-wise optimization

problems, which is a core part of a resource tâtonnement approach.

In Section 4.2, the proposed multiagent architecture for implementing the com-

putational economy model in a conceptual level is presented. In Section 4.3 the details

4Commitment window is a time window where a task can be assigned, which can be defined
by two time slots [ES,LF], where ES denotes earliest start time and LF denotes latest finish time.
This window can be generated based on the critical path analysis on the project network in the
project planning phase.

34

on the market mechanism (P-Tâto) is presented. In Section 4.4 we describe the issues

on how each TA generates its bid, namely on the individual TA’s utility on time slot

bundles. In Section 4.5 we present the local market-evaluation mechanism, which is a

core element of the whole P-tâto mechanism.

4.2 Multiagent Architecture

Cognitive limitations and resource boundedness of individual agents naturally call

for agent organization, thereby, forming multiagent system (MAS) (Carley and Gasser,

1999). In early MASs, individual agents were designed to have the same social abili-

ties. In this case, however, it may be expensive for each agent to duplicate so-called

matchmaking activities - an agent’s activities for finding appropriate agents with which

to interact. In order to overcome this problem, federated agent architecture5 was desig-

nated to reducing the matchmaking burdens on task-specific agents. Corkill and Lander

(1998), however, pointed out that more specialization over the simple federated architec-

ture is required for the long-lasting and large-scale agent-based systems6. According to

their argument, the DMP resource control system requires an organizational structure.

We discuss the agent organization in this section.

4.2.1 The Agents

The core issue in a multiagent organizational design problem is to define the

individual agent roles within the organization, which is obviously dependent on the

agent encapsulation decision, namely, the decision on what represent agents. Many

different encapsulation approaches can be considered in different situations, but most of

them fall into two major categories: (i) function-oriented approaches, where agents are

used to encapsulate some functions such as order acquisition, planning, material handling

5A relatively simple MAS architecture where special agents, called matchmaker, broker, or
facilitator, handle the agent matching problem.

6In the paper, they listed the cases where the organizational design is more important, includ-
ing the agent systems with (i) larger number of agents, (ii) longer duration of agent activities, (iii)
more repetitive activities, (iv) more activities requiring shared resources, (v) more collaborative
activities, (vi) more specialized agents, (vii) less capable agents and (viii) less slack resources
available.

35

and product distribution; (ii) physical entity-oriented approaches, where agents represent

physical entities such as managers, workers, machines and components (Shen and Norrie,

1999). The second approach naturally defines distinct sets of state variables that can

be managed efficiently by individual agents with limited interactions. Therefore, the

second approach is more appropriate for modeling manufacturing environments, where

more physical entities are involved compared to transaction-oriented information system

domains. The first approach, however, is still useful for specific services even if the overall

MAS design follows the second approach.

Besides the general notion of encapsulation, we need to take into account a DMP

specific requirement when designing an agent organization model. The project resource

control processes require, in general, more strict application of responsibility and author-

ity for every single task. It means that the DMP planning and control system cannot be

a fully autonomous system that does not require any human intervention. Instead, the

agent organization simulates the physical DMP organization to some extent, in order

to incorporate the responsibility and authority structure in physical organizations. On

the basis of these arguments, five main agent classes are defined: project manager (PM),

task agent (TA), resource manager (RM), resource agent (RA) and a market coordinator

(CO). The following are the fundamental roles of these agents and the key information

entities they maintain.

1. Project Manager (PM): a PM class agent is in charge of successful accomplishment

of a project by coordinating the individual task agents, defined below. Each PM

agent maintains the project’s milestones (Gi), project network like PERT/CPM chart

(< Ti,Ni >), and each task’s resource allocation information (or project plan Ai).

2. Task Agent (TA): a TA class agent is in charge of its own single task (Tik). Each TA

maintains the information on resource allocation of the task such as required resource

types, task duration, current commitment window and the current schedule.

3. Resource Manager (RM): an RM class agent is in charge of coordinating a set of

resource agents, and interacts with other RMs and the CO for temporary economy

36

initiation and clearing. Each RM maintains the information on resource (Rj) includ-

ing capability types and current schedules.

4. Resource Agent (RA): an RA class agent is in charge of a single resource such as a

machine, a worker or a tier of computer software. An RA, as a seller interacts with

TAs (as buyers) in a local market. Each RA maintains its own schedule.

5. Market Coordinator Agent (CO): The CO is in charge of coordinating multiple local

markets in the computational economy. The CO is a persistent agent, while other

agents are dismissed from service after their goals are achieved.

The first four agent types embody physical DMP organizations approximately, while the

CO agent is a virtual entity for market mechanism’s purposes.

4.2.2 Organization of Markets

According to the role definitions of each agent class, an MAS implements a com-

putational economy. Figure 4.3 shows an example of the MAS organization consisting of

the different types of agents. In the virtual marketplace shown in the figure temporary

economies (each of which is a set of multiple simultaneous local markets) are established

and cleared over time.

A local market is established for every resource within the control window, mean-

ing that every RA will be an auctioneer (and seller) for selling the bundles of resource

time slots to TAs - the bidders (or buyers). Hence RAs and TAs conduct a key role

in the market-based mechanism, while other types of agents support them. Figure 4.4

shows a simple example of a resource time slot market, where three TAs participate for

time slots of a resource in division-1.

37

^ ^
RM

Resource division-3

Goal
s

^ ^
PM

^ ^
PM

^ ^
TA

^ ^
TA

^ ^
TA

^ ^
TA

Project-A

Project-C

Project-B

^ ^
PM

^ ^
RM

Resource division-2

^ ^
RA

^ ^
RA

^ ^
RA

Resource division-1

Virtual
Marketplace

^ ^
CO

^ ^
RM

Fig. 4.3. A MAS organization: There are three projects (Project-A to -C) and three
resource divisions (Resource division-1 to -3). Project-A has four task agents, and
resource division-1 has three resource agents. The market coordinator is a persistent
agent that coordinates the virtual marketplace.

An example resource time slot market (New)

^ ^
TA

^ ^
TA

^ ^
TA

^ ^
TA

^ ^
TA

^ ^
TA

^ ^

^ ^
TA

^ ^
TA

^ ^
TA

^ ^
TA

^ ^
PM

^ ^
RM

^ ^
RA

^ ^
RA

^ ^
RA

Resource division-1

local market protocol

agents out of the market^ ^

agents in the market^ ^

Project-C

Project-B

Project-A

^ ^
TA

^ ^
Resource division-2

Fig. 4.4. A local market: An resource agent in a resource division (division-1)
establishes a local market that consists of three task agents, which belong to each of
three project groups.

38

4.3 Precedence Cost Tâtonnement (P-Tâto) Mechanism

4.3.1 Overall Control Procedure

Figure 4.5 shows the overall control procedure of the P-Tâto mechanism. As

shown in the figure, this control loop is an infinitely repeating loop as DMP economy

is defined over an infinite time domain. Each outer iteration (from Step 1 to Step 8)

represents the establishment and clearance of a temporary economy, while each internal

iteration (from Step 3 to Step 7) represents a cycle of local markets evaluation process.

Following are brief explanations of each of the step in Figure 4.5.

2. Initiate a temporary economy et

3. Request for bids

5. Calculate optimal local allocations

6. Update cost vectors ck = ck + ∆ck

1. Detect changes

7. ∑∆ck < ρ

detected

no
change

no

t = t + 1

yes

8. Clear the local markets

4. Bid for the resources

Fig. 4.5. Overall control procedure of P-Tâto mechanism: The shaded steps (3 - 5)
constitute the local market evaluation process, where multiple simultaneous local market
evaluation processes are accomplished.

39

1. Detect changes: As time goes, the moving control window focuses the new set of

tasks and their resource allocations. RAs detect any changes in task schedules, which

can affect another schedule of tasks, generating conflicts in schedule.

2. Initiate a temporary economy: The detected changes are reported to the RM,

and the RM informs this to other RMs, initiating a temporary economy. Every RM

reports the CO of the information on RAs and TAs within the control window. The

CO takes over the temporary economy.

3. Request for bids: The CO asks each RA in the temporary economy to establish

a local market. Each RA who received the request message sends a request for bid

(RFB) messages to the TAs whose tasks are currently allocated to the resource within

the control window (see Section 4.3.2).

4. Bid for the resources: Each TA, Mk, generates a bid for resource time slot bun-

dles. The set of bidding bundles are generated within the current commitment win-

dow. The utility uk(B) for a bundle, B, is calculated by combining the estimated

deviation cost θ̂k(B) and the aggregate precedence cost ck(B) (see Section 4.4).

5. Calculate optimal local allocations: Each RA calculates the winning bids of

the combinatorial auction. The resource allocation based on the winning bids is

optimal with respect to the utility functions of the each bidder (TA). The RA informs

the winning bidders of the new task schedule. The local markets are not cleared at

this moment (see Section 4.3.2 and Section 4.5).

6. Update precedence cost vector: New task schedules are forwarded to TAs so that

they can check precedence conflicts between tasks. Each TA updates the precedence

cost vector ck by adding penalties to the overlapped slots, and subtracting the cost

from the under-loaded time slots (see Section 4.4.5 for details).

7. Check the clearing condition: If the sum of precedence cost changes (
∑

∆ckl)

are less than a given tolerance ρ, the current schedule is feasible with respect to

40

precedence constraints and will not be changed in the subsequent iterations. Non-

null vector ∆ck means that either the task k is still overlapped with other task(s) or

the task has some room to be compressed.

8. Clear the local markets: If the clearing condition is satisfied, the CO announces

the temporary market clearance, and accordingly local markets clearance. The RAs

fix the schedule based on the current winning bids, and TAs also fix their schedules.

4.3.2 Local Market Evaluation

As shown in Figure 4.5, in every internal iteration local markets within a tem-

porary economy are evaluated, meaning that the local markets are not cleared through

this process. In addition, as mentioned earlier, the resource scheduling problem is trans-

formed into the resource allocation problem by considering discrete time-slots as a re-

sources to be allocated.

There are three major approaches for solving the market-based discrete resource

allocation problems: (i) iterative price-adjustment mechanisms for generating general-

ized equilibrium7 solutions, including Walras’ original tâtonnement algorithm8 (Walras,

1954) and its distributed implementation - Walras algorithm (Cheng and Wellman,

1998), (ii) simple ascending auction mechanisms for generating competitive equilibrium

in an efficient and simple way (see (Walsh et al., 1998) and (Ausubel, 1997)), and (iii)

combinatorial auction mechanisms for maximizing revenue for bundles of discrete re-

sources. In a discrete resource time scheduling formulation, the value of each time slot

cannot be evaluated independently each other. The first two approaches can not handle

this complementarity between individual time slots9. Hence, the combinatorial auction

7A solution for a market where (i) supply meets demand, (ii) consumers maximize their pref-
erences within their budget, and producers maximize profits within their production capabilities
(Weiss, 1999).

8An iterative search algorithm for finding a general equilibrium. At every iteration, the
auctioneer increases the price of goods that were over-demanded, and decrease the price of goods
that were under-demanded (Weiss, 1999).

9We assume that the time slots in a feasible bundle must be consecutive with each other.
However, this assumption might be relaxed in some practical situations by allowing preemption.

41

is the obvious choice for formulating the resource time slot market (i.e., a local market)

in the DMP resource control problem.

Before presenting the detailed issues of the auction mechanism in the following

sections, we formulate a local market as a special type of combinatorial auction. Suppose

that we have m TAs, and n consecutive time slots to be allocated in a resource time

slot market. Let X = {i : i = 1, ..., n} be the set of time slots, where the time slots are

ordered in chronological order. We allow combined bids for any set of consecutive time

slots (bundle), Bi,j = {x ∈ X : i ≤ x ≤ j}, which can be interpreted as a time interval.

Let B be the set of all possible bundles so that B = {Bi,j : 1 ≤ i ≤ j ≤ n}. The winning

bundles in the auction must be disjointed because no time slot can be allocated twice.

An allocation is any S ⊂ B such that B ∩ B′ = ∅ for every B, B′ ∈ S.

Let us assume the goal of the RA is to maximize her/his revenue, for example,

the sum of winning bids (more general argument on this issue will be presented in

Section 4.5). Let ui(B) be the bid (exactly speaking, the utility of the bid) submitted

by a task agent, Mi. Let w(B) = maxi{vi(B) : Mi bids forB}. If no bid is submitted

for B, set w(B) = 0. Using this notation, we can define the goal of the RA, finding an

optimal allocation S∗ with respect to bidder’s utility, such as:

S∗ = arg max
S

∑
B∈S

w(B). (4.1)

Example 4.1: (A Local Market: Auction Mechanism) Assume that there is a

local market, where the resource agent RAi and two task agents TAa and TAb, which

are in charge of taska and taskb respectively as shown in Figure 4.6. The control

window h = [1, 9], meaning that 9 time slots are to be sold in the market. The fixed

duration time for taska and taskb are 4 and 3, and the commitment windows are

[1, 5] and [3, 7] respectively10. TAa and TAb send their bids as shown in the Figure 4.6,

10We can imagine the following situation. Before the failure of Ri, the taska’s commitment
window was [−2, 5], and it was scheduled on [−1, 2] for example. However, due to the resource
Ri’s failure, the commitment window was shrunk to [1, 5]

42

^ ^
TAb

^ ^
TAa

TaskbTaska

^ ^
RAi

h=[1,9]

B ua(B)

{1,2,3,4} : 6 *
{2,3,4,5} : 4
{3,4,5,6} : 2
{4,5,6,7} : 0
{5,6,7,8} : 0
{6,7,8,9} : 0

B ub(B)

{1,2,3} : 0
{2,3,4} : 0
{3,4,5} : 3
{4,5,6} : 4
{5,6,7} : 5 *
{6,7,8} : 4
{7,8,9} : 2

:

:

3
4
5
6
7
8
9

2
1

duration = 3
c/window = [3,9]

duration = 4
c/window = [1,5]

Fig. 4.6. An example of a local market: Two task agent TAa and TAb compete for the
time slots [1, 9] of resource Ri, which is managed by the resource agent RAi.

and RAi decides the optimal allocation using Equation (4.1). The optimal allocation is

S∗ = {{1, 2, 3, 4}, {5, 6, 7}} with the aggregate utility w(S∗) = 6 + 5 = 11.

Recall the optimal allocation S∗ is an optimal choice for the single time slot

auction market. However, it does not mean that the allocation is optimal or efficient from

the global DMP resource control perspective. The following three are key components

of an auction mechanism design. By designing these three components carefully, we can

control the overall mechanism in a desirable way. The details of the auction mechanism

are explained in Section 4.5

• Bidding police for individual task agents: This is simply defined by the utility func-

tion u(•), which represents the project group’s preference on a specific bundle (see

Section 4.4).

• Allocation rule: This represents the resource division’s preference on bundles. In the

example in Figure 4.6, S∗ calculating function is an example of allocation rule defined

by Equation (4.1) (see Section 4.5).

• Payment rule: This controls the incentive for bidders to attend the auction in a

desirable manner.

43

4.4 Utility Function

When a TA, Mi, receives a request for bid (RFB) message from an RA, Mi has

to prepare a bid, denoted by Xi. The RFB message contains the information on the

re-scheduling horizon (or control window) h = [t + 1, t + n], within which the tasks will

be re-scheduled. Within the control window, Mi generates the bid, which is a set of

bundle-utility pairs, i.e., Xi = {(Bj,k, ui(Bj,k)) : t + 1 ≤ j ≤ k = j + di − 1 ≤ t + n},

where the control window h = [t + 1, t + n], and di is the duration of the task i. The

utility function ui(Bj,k) is the measure that RAs use to determine an optimal allocation.

In the approach, the utility function, ui(Bj,k), is defined by two terms:

ui(Bj,k) = vi(Bj,k) − ci(Bj,k) (4.2)

The first term, vi(Bj,k), is the valuation of the bundle Bj,k for Mi and it is the

negative value of estimated deviation cost θ̂, i.e., vi(Bj,k) = −θ̂. Hence this value is the

one that Mi wants to maximize. The second term, ci(Bj,k), is the aggregate precedence

cost, or penalty. Larger values of ci(Bj,k) mean Bj,k is less valuable for Mi due to

precedence constraints with adjacent tasks. ci(Bj,k) is the sum of precedence costs of

individual time slots in h, which is addressed in Section 4.4.4 in detail. In this section,

we discuss details on how the bids (in the form of bundle-utility pair) are generated and

updated throughout the control loop iteration.

4.4.1 Task Duration Time

In order to define the estimated deviation cost, we need to define the task duration

time model. One simple model is to assume deterministic duration times for each task.

Two major stochastic duration time models are to use a uniform distribution and a

beta distribution. Let δ depict a random variable representing time duration of a task.

Equation (4.3) and Equation (4.4) define the probability density function (pdf) of the

uniform and the beta distribution, respectively.

44

f(δ) = 1
b−a ; a ≤ δ ≤ b

= 0; otherwise.
(4.3)

f(δ) = Γ(α+β)
Γ(α)Γ(β) ·

1
(b−a)α+β−1 · (δ − a)α−1(b − δ)β−1;

for a ≤ δ ≤ b and α > 0, β > 0

(4.4)

4.4.2 Deviation Cost Function

We defined the concept of deviation cost function, denoted by θ(t) , of a project

in Chapter 2. Now we define two specific deviation cost function, a linear and an expo-

nential function, as shown in Figure 4.7. These two functions satisfy the requirements

of the deviation cost function: (1) increasing and convex with respect to time delay,

and (2) no negative cost for the earliness. They are representative deviation cost func-

tions in the sense that the linear function can be applied to cases where project cost is

just proportional to tardiness, and the exponential function is good for the cases where

the marginal cost of the project is increasing as the tardiness of the project increases.

Equations (4.5) and (4.6) represent these functions formally.

Time

1

α

(a)

Time

(b)

Fig. 4.7. Deviation cost functions: (a) linear function, (b) exponential function; g̃ is
the nominal target completion time.

θ(t) = max{α(t − g̃), 0}; for −∞ ≤ t ≤ ∞ and α > 0. (4.5)

45

θ(t) = max{eα(t−g̃) − 1, 0}; for −∞ ≤ t ≤ ∞ and α > 0. (4.6)

The deviation cost function is a function of project completion time. Based on

the assumption of task level decentralization, each task agent bids for resources inde-

pendently. In order to do so, each task agent must be able to evaluate time slot bundles

based on the bounded information. We can easily assume that task agents can be able

to get utility of the successor task agents, which is the minimum level of information

exchange among task agents. Each agent calculates an estimated value of the deviation

cost function based on the successor’s deviation cost function and current schedule. We

call this estimated deviation cost function, denoted by θ̂i(t) where t is the completion

time of the task i.

4.4.3 Estimated Deviation Cost Function

Consider two adjacent tasks Tp and Ts in a project. Tp is the only predecessor of

Ts (see Figure 4.8(a)). The random variable δs denotes Ts’s time duration, and it follows

a pdf fs(•), which is defined over [δs, δs]. The commitment window of Tp is [tp, tp]. For

convenience, assume the continuous time domain rather than time slot based discrete

time domain. Then θ̂p(t), the estimated deviation cost function of Tp, can be calculated

as follows:

θ̂p(t) =
∫ δs

δs

θ̂s(t + δs)fs(δs)dδs (4.7)

In the case of multiple tasks joining into a task as shown in Figure 4.8(b)), exact

bundle evaluation cannot be achieved because of the complementarity among the bids

of the agents. Hence, Equation (4.7) is used for this case, ignoring the complementarity

among the multiple predecessor tasks. In the case of the task that has multiple successor

tasks, as shown in Figure 4.8(c), the equation must be modified slightly. In this case, the

θ̂p(t) must be define based on the worst case, or the highest estimated deviation cost, as

shown in Equation (4.8). This equation is a general form of Equation (4.7), because it

46

is working for case (a) and (b) as well. In Equation 4.8, θ̂j
s
(t) is the estimated deviation

cost function of the j-th successor task Tj
s
, where j ∈ S = {1, ..., |S|}.

pT sT

1
pT

sTi
pT

1
sT

pT j
sT

(a) (c)(b)

… …

… …
||P

pT ||S
sT

Fig. 4.8. Cases in precedence constraints: (a) one-to-one precedence; (b) many-to-one
precedence; and (c) one-to-many precedence.

θ̂p(t) = max
j∈S

∫ δ
j
s

δj
s

θ̂j
s
(t + δj

s
)fj

s
(δj

s
)dδj

s
(4.8)

Assume that the task duration times follow the uniform distribution defined in

Equation (4.3). If Equation (4.8) is rewritten as θ̂p(t) = maxj∈S{θ̂
j
p
}, then θ̂j

p
can be

calculated using Equations (4.9) and (4.10) for the linear and exponential deviation cost

function cases, respectively. As shown in the equations, we can easily define the recursive

formula to generate a estimated deviation cost of the predecessor task from the ones of

the successor tasks, by updating the parameters of the pdf’s. These recursive equations,

however, can only be used when the project network is in the form of a sequence of tasks,

because the “max()” function makes the θ̂p(t) not to be the original pdf form anymore.

θ̂j
s

= α′(t − g̃′)

where α′ = α
b−a and g̃′ = g̃ − a+b

2 .

(4.9)

θ̂j
s

= eα(t−g̃′) − 1

where g̃′ = g̃ − ln
(

eb−ea
α(b−a)

) 1
α

.

(4.10)

47

sδ

pδ

pδ

st′ st ′′
sθ̂ sθ̂

pθ′ˆ

pθ ′′ˆ

pθ′ˆ

pθ ′′ˆ

(a)

(b)

(c)

Fig. 4.9. One-to-one precedence case with deterministic duration times: (a) the suc-
cessor task’s estimated deviation cost function; (b) the predecessor tasks’s estimated
deviation cost function when the successor is scheduled to start at t′

s
; (c) the predecessor

tasks’s estimated deviation cost function when the successor is scheduled to start at t′′
s
.

In addition to the above recursive relationship between θ̂p(t) and θ̂s(t), in the

temporary economy clearing mechanism we need to take into account the effect of inter-

mediate schedules in an iteration. Namely, each iteration θ̂•(t)’s must be re-evaluated

based on the new resource allocation resulted by local market evaluations. Consider one-

to-one and many-to-one precedence relations (see Figure 4.8(a),(b)). Figure 4.9 shows

how the predecessor’s deviation cost function (θ̂p(t)) can be determined based on the

successor’s deviation cost function along with the current schedule (i.e., starting time t′
s

or t′′
s
). This relationship is described by Equation (4.11). In the figure, θ̂s denotes the

estimated deviation cost function of task s when it starts at time t11.

θ̂p(t) = θ̂s(t + δs); t > ts

= 0; t ≤ ts

(4.11)

11Remember that θ̂s(t) is the estimated deviation cost function of task s when it finishes at
time t.

48

1
sδ

2
sδ

1
st

1ˆ
sθ

1
ŝθ(a)

(b)

(c)

2
st

pθ̂ }ˆ,ˆmax{ˆ 21

ssp θθθ =

2ˆ
sθ

2
ŝθ

Fig. 4.10. One-to-two precedence case with deterministic duration times: (a) the first
successor task’s estimated deviation cost function. This task is scheduled to start at t1

s
;

(b) the second successor task’s estimated deviation cost function. This task is scheduled
to start at t2

s
; (c) the predecessor task’s estimated deviation cost function.

In one-to-many case (see Figure 4.8(c)), the predecessor task’s estimated devia-

tion cost function θ̂p(t) must be calculated by successor tasks’ estimated deviation cost

functions θ̂j
s
(t) according to the following Equation (4.12), which is a general form of

Equation (4.11). Figure 4.10 illustrates this relationship.

θ̂p(t) = max
j∈S

θ̃j
s
(t) (4.12)

where:

θ̃j
s
(t) = θ̂j

s
(t + δj

s
); t > tj

s

= 0; t ≤ tj
s

(4.13)

4.4.4 Precedence Cost

The precedence cost vector, denoted by ci,k = (c1
i,k

, ..., cl
i,k

, ..., cn
i,k

)T , is defined

over the commitment window [1, n] for each task Ti,k. Namely, each element cl
i,k

in the

vector is the cost caused by overlapping with preceding tasks, of the corresponding time

slot l in the control window. This vector is to be updated in each iteration after new

49

local optimal allocations are revealed in the way that the cost of the overlapped slots are

increased and the cost of non-overlapped slots are decreased. The simplest precedence

cost vector updating rule is to increase or decrease the cost of each vector element by a

given fixed amount c̄ as shown in Equation (4.14). The details on precedence adjustment

are addressed in the following section.

cl
i,k

= cl
i,k

+ c̄I ; if slot l is overlapped

= max(cl
i,k

− c̄D, 0); if slot l is not occupied

= cl
i,k

; otherwise.

(4.14)

The sum of individual cost cl
i,k

for a given time slot bundle is called the aggregate

precedence cost of the bundle, denoted by ci,k(Bb1,b2
) where Bb1,b2

represents the time

slot bundle [b1, b2].

ci,k(Bb1,b2
) =

b2∑
l=b1

cl
i,k

. (4.15)

This value ci(Bb1,b2
) is added to the estimated deviation cost for generating the

total utility of the task for the given bundle Bb1,b2
as shown in Equation (4.2). If there

is no change in the precedence cost vector for all the tasks within the control window,

the temporary market will be cleared by clearing the individual local markets.

4.4.5 Precedence Cost Adjustment Methods

Precedence cost is used for discouraging allocations that cause precedence conflict

between tasks. Unlike resource pricing, which is used to discourage multiple allocations

on a single resource time slot, precedence cost adjustment has a clear “direction” for

discouraging precedence violating allocations. The standard tâtonnement (see Equa-

tion (4.14)) has been used for resource price adjustment in literature. Indirection of this

type of rule is one of the major factors in a market approach’s undesirable properties,

such as cycling and ill-convergence. Figures 4.11 and 4.12 illustrate the standard price

50

adjustment rule for precedence conflict and the proposed precedence cost adjustment

rule, respectively.

(a) (b)

Tp

Ts

(c)

Tp

Ts

cp

cs

new
schedule

new
schedule

Fig. 4.11. A precedence adjustment rule based on standard tâtonnement: (a) before ad-
justment; (b) after adjustment in the case of a overlapped schedule; (c) after adjustment
in the case of a separated schedule.

Assume that in a project we have a task Ts and its predecessor tasks Th’s, h ∈ H:

set of predecessor task indices. Then P-Tâto’s precedence adjustment rule for a task

Ts, as a successor, can be represented by the following rule.

For all h ∈ H do:

If ts ≤ t̄h ; where t̄h = th + δh − 1

For l := 1 to t̄h do:

cl
s

:= cl
s

+ c̄I

For l = maxh(t̄h) to ts − 1 do:

cl
s

:= max(cl
s
− c̄D, 0)

For l = ts + δs to n do:

cl
s

:= max(cl
s
− c̄D, 0)

51

(a) (b)

Tp

Ts

(c)

Tp

Ts

cp

cs

new
schedule

new
schedule

Fig. 4.12. P-Tâto’s precedence adjustment rule: (a) before adjustment; (b) after
adjustment in the case of a overlapped schedule; (c) after adjustment in the case of a
separated schedule.

In this rule, ti and δ denote the starting time and the duration of the task Ti,

respectively. n is the size of the control window. Using c̄I �= c̄D, we can prevent

possible cycling problem. We use c̄D = αc̄I , 0 < α < 1 in P-Tâto implementation.

0.4 ≤ α ≤ 0.8 works reasonably well from the viewpoint of convergence speed and final

solution quality. Detailed analysis on the effect of α on convergence speed is given in

Section 6.6.

Now task agents’ bids for resource time slot bundles can be generated and updated

by these methods. Based on these methods, the utilities for set of time-slot bundles (or

bid profile) of a task agent for a resource are dynamically changed over the iterations.

Figure 4.13 illustrates the dynamic change of a bid profile.

52

iteration-1 ~ -4

20

30

40

50

1 6 11 16 21 26

iteration-5

20

30

40

50

1 6 11 16 21 26

iteration-6

20

30

40

50

1 6 11 16 21 26

iteration-7

20

30

40

50

1 6 11 16 21 26

iteration-8

20

30

40

50

1 6 11 16 21 26

iteration-9

20

30

40

50

1 6 11 16 21 26

iteration-10

20

30

40

50

1 6 11 16 21 26

iteration-11

20

30

40

50

1 6 11 16 21 26

Fig. 4.13. Dynamics of bid profile: an example (Data set: 35J81, Task (2,5))

53

4.5 Local Market Evaluation Mechanism

Suppose an RA determined the list of TAs M = {Mi} and a scheduling horizon

h = [1, n], and sent RFBs to all Mi ∈ M, thereby, forming a local market. Using the

formulation explained in Section 4.3.2, the auction mechanism can be summarized as

follows.

(1) Each task agent Mi ∈ M generates a bid Xi = {(Bj,k, ui(Bj,k) : 1 ≤ j ≤ k ≤ n},

using Equation (4.2).

(2) The RA computes the optimal allocation:

S∗ = arg max
S⊂B

{W (S;X) : B ∩ B′ = ∅ for every B, B′ ∈ S}. (4.16)

(3) Inform the winning bid information to each of the tasks.

The bid generation step was already explained in the previous section. Equa-

tion (4.16) generalizes Equation (4.1) by introducing a function W (S;X). The function

W (S;X) defines the preference of the RA. The most desirable goal of the resource divi-

sion is to maximize an aggregate utility, which can be defined as a function that maps

the set of bidders’ individual utilities to a single real-valued social utility. We call this

function, W (S;X), a welfare function. If we choose the welfare function as an increasing

function with respect to the individual utilities, the welfare maximizing allocation S∗

is Pareto efficient. Figure 4.14 depicts conditions and relationships among Pareto effi-

ciency, Walrasian (or general) equilibrium, and social welfare maximum (Varian, 1984;

Campbell, 1987). Our approach is to maximize the social welfare, which also guarantees

Pareto efficiency by defining W (S;X) as a positive weighted sum of the utilities of bun-

dles. The weights can be easily given in the way that each project has its own weight

depending on its importance or urgency, which can be dynamically assigned by the top

management depending on the situation.

54

Walrasian equilibrium
allocation

Social welfare
maximizing allocation

Pareto efficient
allocation

2nd theorem of
welfare economics

Increasing W()

1st theorem of
welfare economics

Shafer-sonnenschein’s
existence condition

Concave, continuous,
and monotonic vi()s

Fig. 4.14. The relationship among Pareto efficiency, Walrasian equilibrium, and welfare
maximum.

Now let us discuss an efficient algorithm for optimal allocation determination.

In a general combinatorial auction problem, the optimization problem to calculate the

optimal allocation S∗ is NP-complete12. Our problem is not a general combinatorial

auction problem. Instead, it is corresponding to a single-machine scheduling problem with

general utility function. This problem still cannot be solved in a polynomial algorithm.

We developed an efficient heuristic algorithm to calculate local market winning bids. The

procedure consists of three steps: (1) initial sequencing based on utility distribution, (2)

calculate the optimal allocation in the given sequence, (3) repeat pair-wise exchange and

Step (2) until no more improvement is made.

4.5.1 Initial Sequencing

Initial sequencing heuristics can be explained as follows:

(1) Get the task-wise best schedule (bundle) independently.

(2) Sort the task list with respect to the best utility values.

(3) Fix the sequence one by one according to the sequence generated by Item (2).

If a task cannot be scheduled on the best-utility bundle just put it at the end

of the current sequence.

12This problem, selecting the winning set of bids, can be formulated as an Integer Program.
This formulation is an instance of the set packing problem, which is NP-complete (Vries and
Vohra, 2000).

55

Assume that we have a resource, for which three tasks (Task1, Task2 and Task3)

bid. The duration times for each task are 3, 2 and 2. Figure 4.15 shows the bid profiles

of each task for resource bundles. Remember that the x-axis in the figure denotes the

finish time of the tasks, meaning that each y value in the figure is a utility value for

the bundle ending with the slot indexed by the x value. In the example, after the first

step we get the task-wise best bundles: B1,3 for Task1 with u(B1,3) = 10, B5,6 for

Task2 with u(B5,6) = 8, and B4,5 for Task3 with u(B4,5) = 7. Then the tasks are

sequenced according to the best utility values: Task1 → Task2 → Task3. The tasks

are to be sequenced one by one according to the previous order. First, Task1 is located

at the bundle B1,3. Second, Task2 is located at the bundle B5,6 without any conflict

with already allocated bundles. Lastly, the best utility bundle of Tasks3 conflicts with

Task2’s allocated bundle. Hence simply add the task bundle at the end of the sequence.

The initial sequence is, therefore, Task1 → Task2 → Task3.

0 0

10

8

6

4

2

0 00 0 0

2

4

8

6

4

22 2 2
3

7
6

5
4

3

-1

1

3

5

7

9

11

1 2 3 4 5 6 7 8 9

Finish Time of Tasks

B
id

s
fo

r
B

un
dl

es

Task1 (d=3)

Task2 (d=2)

Task3 (d=2)

Fig. 4.15. An example of bid profiles for a resource: The duration time for Task1, Task2
and Task3 are 3, 2 and 2, respectively.

4.5.2 Optimal Allocation in a Given Sequence

Given a task sequence, optimal local schedule determination problem can be

formulated by Dynamic Programming (DP). Assume that we have a task sequence

{T1, ..., Tm} to be scheduled on a single resource over a time horizon [1, n]. Each Ti

56

takes δi time slots. Then our problem can be solved using the following DP formula-

tion. The final solution is the task sequence corresponding to the optimal welfare value

S(1, ES1), where ES1 is the earliest start time of T1. During the recursive DP problem

solution procedure, the intermediate S(i, t)’s are stored in a hash table, in order to avoid

redundant subproblem solving.

OVFa: S(i, t) = Maximum welfare value for the task set {Ti, ..., Tm}

over the scheduling horizon [t, n].

ARGb: (i, t) = i is the index of the first task to be scheduled;

t is the index of the starting time slot.

OPFc: P (i, t) = the gap between the starting times of Ti and Ti+1.

RRd: S(i, t) = max
δi≤P (i,t)≤LSi+1−t)

(
S(i + 1, t + P (i, t)) + u(Ti, t + δi − 1)

)

where LSi+1 is the latest starting time of Ti+1

BCe: S(m, k) = u(Tm, k), which is Tm’s utility for the bundle [k − δm + 1, k].

ANSf = S(1, ES1).

(4.17)
aOptimal value function, which assigns the optimal value to each subproblem.
bArguments of OVF, which are symbols that designates a particular subproblem.
cOptimal policy function, which associates the best decision with each subproblem.
dRecurrence relation, which is the relations among various values of OVF obtained after

applying the principle of optimality.
eBoundary conditions, which are obvious values of OVF for certain argument values ob-

tained from the statement of the problem.
fAnswer, which is the optimal value and decision for the value of the arguments that

represent the whole problem.

4.5.3 Exchanging and Stopping Rule

Suppose n tasks are to be scheduled for a resource. Let currTL and optiTL denote

lists of tasks. optiTL and W are an optimal task list and its welfare value, respectively.

57

The function exchange(currTL, i, i + 1) exchanges the i-th task and i + 1-th task in the

currTL, and return the new task list. The function getOptimalSchedule(currTL) finds

the optimal schedule within the given sequence currTL and returns the welfare value.

The resultant optiTL is a task sequence in which no possible pair-wise exchange can

improve the welfare value.

improved := true

W := −BigNumber

While (improved) do:

For i := 1 to n − 1 do:

currTL := exchange(currTL, i, i + 1)

w := getOptimalSchedule(currTL)

improved := (w > W)

If (improved) do:

W := w

optiTL := currTL

break out of For-loop

Enddo

Enddo

Enddo

The proposed search heuristics dramatically reduce the search space, yet generate

a high level of optimality. In an experimental analysis, it is shown that the search space

of the algorithm increases linearly according to the increase of the number of tasks, and

the optimality ranges between 0.998 to 1.0. Details are explained in Section 6.2.

58

Figure 4.16 shows an example of bid profiles for each resource in a DMP sample,

which is investigated previously. Based on this bid profiles local optimal allocation is

determined as shown in Figure 4.17

(a) Resource 0 (R0)

(b) Resource 1 (R1)

(c) Resource 2 (R2)

(d) Resource 3 (R3)

(e) Resource 4 (R4)

15

25

35

45

55

1 4 7 10 13 16 19 22 25 28
Finish Time of Tasks

B
id

s
fo

r
B

un
dl

es

B(0,2)

B(0,4)

B(2,0)

15

25

35

45

55

1 4 7 10 13 16 19 22 25 28

Finish Time of Tasks

B
id

s
fo

r
B

un
dl

es B(0,5)

B(0,7)

B(2,1)

B(2,3)

B(2,6)

B(2,7)

15

25

35

45

55

1 4 7 10 13 16 19 22 25 28

Finish Time of Tasks

B
id

s
fo

r
B

un
dl

es

B(0,1)

B(0,3)

B(0,6)

B(1,6)

15

25

35

45

55

1 4 7 10 13 16 19 22 25 28

Finish Time of Tasks

B
id

s
fo

r
B

un
dl

es

B(1,0)

B(1,2)

B(2,2)

B(2,4)

B(2,5)

15

25

35

45

55

1 4 7 10 13 16 19 22 25 28

Finish Time of Tasks

B
id

s
fo

r
B

un
dl

es B(0,0)

B(1,1)

B(1,3)

B(1,4)

B(1,5)

B(1,7)

Fig. 4.16. An example of bid profiles for each resource (Data Set: 35J81, at the last
(11th) iteration).

59

Fig. 4.17. Final schedule based on the bid profiles in Figure 4.16 (the diamond symbols
represent the due dates of each project).

60

4.6 Summary

In this chapter a market mechanism (P-Tâto) for DMP resource control problem

is presented. Because of the distributed and decentralized nature of the DMP resource

control problem, the control mechanism must be designed and implemented on top of

a distributed infrastructure, in which multiple decision makers collaborate with each

other. In this sense, we first defined the MAS based virtual market model in a conceptual

level. We proposed a novel virtual economy model, which incorporates both the dynamic

and the distributed nature of the DMP resource control problem by organizing the

market in three different levels: (1) DMP economy, (2) temporary economy and (3) local

market levels. This virtual economy model is embodied by multiple decision makers

whose roles are producers, consumers, and mediators in a market situation, thereby

constituting a multiagent system. The market-based control approach is a bottom-up

approach, which minimizes the direct and/or hierarchical control of a “big brother”. So,

the proposed multiagent organization involves more direct interactions among end-buyers

and end-sellers, compared to the master-slave organization model, which was proposed

by Satapathy (1999) for a procurement problem (see Figure 4.18).

trading place

trading place

(a) (b)

Fig. 4.18. Two different multiagent organization for a trading situation: (a) market-
oriented organization for DMP resource control problem, (b) master-slave model for a
procurement problem by Satapathy (1999).

61

In tackling two major constrains - precedence constrains and resource constrains

- in DMP resource control problem, the P-Tâto mechanism resolves the resource con-

strains in an optimal way in each local market and resolves the precedence constrains

throughout a tâtonnement type process in the temporary economy level. The local mar-

ket evaluation mechanism is formulated as a combinatorial auction mechanism. The

major drawback of a combinatorial auction mechanism is the computational complex-

ity of determining the winning bids. We developed an efficient dynamic programming

based heuristic algorithm. In the local markets, each buyer’s bid (and ultimately utility

values on each time-slot bundles) is generated based on estimated deviation costs and

precedence cost vectors. By combining these two factors, the overall mechanism can

tackle both resource and precedence constrains simultaneously. In preparing the bids,

each bidder (task agent) exchanges the minimum level of information, which is the utility

profile of the successor task agents, so that the whole mechanism takes full advantages of

a decentralized mechanism. In the temporary economy level precedence cost adjustment

procedure, we applied the tâtonnement type process on the precedence cost (or penalty)

rather than resource prices, which is the basic idea of the original tâtonnement process.

The clear direction of improvement of the solution, which is gained from the precedence

tâtonnement, results in a high level of solution quality and convergency, which will be

examined in Chapter 6. In Chapter 5 we present the virtual market model and the

P-Tâto mechanism more rigorously from the information system’s viewpoint.

62

Chapter 5

Multiagent-based Information Infrastructure

In this chapter, we present the details of the multiagent-based computational

model of the DMP economy and implementation of the P-Tâto mechanism. The

conceptual-level design of the virtual economy model was already explained in Chapter 4.

Hence, we discuss directly the detailed model of individual DMP economy agents, their

behaviors, and how the behaviors implement the overall P-Tâto mechanism, followed

by a review of representative agent architectures in the literature. The architecture of an

individual DMP economy agent is a hybrid architecture, which incorporates some aspects

of existing agent architectures including collaborative architectures (see Section 5.1.5),

layered architectures (see Section 5.1.4), and reactive architectures (see Section 5.1.2).

The three major characteristics of the DMP economy agents are its behavior-oriented,

state-based, and message-driven nature.

63

5.1 Architectures for Software Agents

The question what is an agent? is one of the most fundamental yet controversial

questions in the agent-based computing community. A common way to define the term

agent is to denote an agent using its necessary properties or agency. An agent denotes a

software1 component that has the following properties (Wooldridge and Jennings, 1995;

Jennings et al., 1998):

• autonomy : Agents should be able to act without the direct intervention of humans

or their agent peers;

• social ability : agents should be able to interact with humans or other agent peers

to carry out specific roles or to achieve some goals;

• responsiveness: agents should be able to perceive their environment and respond

in a timely manner to changes that occur in the environment; and

• pro-activeness: agents should be able to exhibit opportunistic, goal-directed be-

havior and take initiative when appropriate.

These four characteristics are usually referred to as a weak notion of agency. Other

researchers add more rigorous mentalistic notions, which have been commonly discussed

in AI (Artificial Intelligence) literature: knowledge, belief, intention and obligation (for

further reading, see (Wooldridge and Jennings, 1995)). Due to the diverse definitions of

agency, the computational model or architecture of agents are also very much diverse.

Nevertheless, a definition of agency and a corresponding architecture must be situated

in specific problem domains. Namely, different problem domains require different levels

of agency and different designs of internal architecture. In the literature, various archi-

tectures of software agents have been reported. In this section we discuss some of the

representative architectures in the literature before discussing the agent architecture for

the DMP economy, which is eventually a combination of the desirable component of the

representative architectures, in Section 5.2.

1We restrict the scope of agents to software agents, excluding physical agents such as robots.

64

5.1.1 Logic-based Architectures

Although agent research has an interdisciplinary aspect, the AI community con-

tributes one of major roles in the foundation of agent research. In this sense, it seems

natural for some of the earlier agent architectures to follow the tradition of symbolic

AI 2, and one of these traditions is to use logical formulae as the symbolic representa-

tion, and accordingly make decisions throughout logical deduction (or theory proving).

Well-known examples of pure logic-based architecture include the CONGOLOG system

(Lespérance et al., 1996), and the MetateM and Concurrent MetateM programming

languages (Fisher, 1994). Despite their neat logical semantics, logic-based approaches

have a critical disadvantage: the inherent computational complexity of theorem prov-

ing. Hence, it is very questionable whether such an agent can operate effectively in a

time-constrained and dynamic environment such as the DMP resource control problem

domain.

5.1.2 Reactive Architectures

Some researchers have proposed a totally different approach, which does not rely

on symbolic representation of knowledge/information and symbolic reasoning. They are

usually referred to as behavioral (since a common theme is that of developing and combin-

ing individual behaviors), situated (since a common theme is that of agents are actually

situated in some environment, rather than being disembodied from it), and finally reac-

tive (because such systems are often understood as simple reacting to an environment,

without reasoning about it) architecture. One of the earliest reactive architectures is

Brooks’ subsumption architecture (1986). The subsumption architecture involves a hi-

erarchy of activation, inhibition, and responses to the external world. This architecture

has a layered structure, in which higher level layers “subsume” the roles of lower level

layers when they wish to take control (see Figure 5.1). In addition, multiple behaviors

associated with a specific level (or layer) of activities compete to win control over the

2Symbolic AI suggests that intelligent behaviors can be generated in a system by giving the
system a symbolic representation of its environment and desired behaviors, and by syntactically
manipulating this representation (Weiss, 1999).

65

activities. The subsumption architecture has been implemented in a variety of physical

robots with different abilities, including relatively simple robotic agents such as AGV

(Automated Guided Vehicle) in agent-based manufacturing systems.

Sensors

Layer 3

Layer 2

Layer 1

Layer 0 Actuators

Fig. 5.1. Subsumption architecture (Brooks, 1986)

5.1.3 Belief-Desire-Intension Architectures

Other researchs model a software agent as an intentional system (Donnett, 1987),

meaning that an agent’s behavior can be represented and reasoned by the attribution

of attitudes such as belief, knowledge, desire, intention, commitment, and choice. The

two main research issues in this approach are: (i) logically consistent definitions on in-

teractions between the attitudes, and (ii) ideal combinations of the attitudes required

for agent characterization (Wooldridge and Jennings, 1995). So far, various models have

been suggested including Levesques’ belief and awareness (Levesque, 1984), Koniology’s

the induction model (Konolgie, 1986), a few number of metra-language formalism (Haas,

1986)(Morgenstern, 1987)(Davies, 1993), Cohen and Leverage’s model of intention (Co-

hen and Levesque, 1990), Rad and Georgian’s belief, desire, intention architecture (Rao

and Georgeff, 1991a,b, 1993), Singh’s family of logics for some attitudes in a branch-

time framework (Singh, 1994), and Worldwide’s formalization of multiagent systems

(Wooldridge, 1992).

Among all of them, the most popular and influential architecture might be the

Rad and Georgian’s belief, desire and intention (BDI) model, which is characterized by

66

a mental state with the three components - belief, desire and intention. Beliefs describe

the states of the world that the agent works on; desires represent options available to the

agent - different possible states of affairs to which the agent may choose to commit; and

intentions represent states of affairs that the agent has chosen and has committed to. A

number of BDI agent systems have been implemented, and the best-known is the Pro-

cedural Reasoning System (PRS) (Georgeff and Lansky, 1987; SRI International, 1999)

and its variants (Lee et al., 1994). Figure 5.2 depicts a practical BDI agent architecture,

which is a simplified version of PRS. This architecture consists of (i) current beliefs or

facts about the world, (ii) a set of goals3, (iii) a set of plans describing how sequences of

actions4 may be performed to achieve certain goals or to react to particular situations,

and (iv) intentions containing those plans that have been chosen for execution. Inter-

preter manipulates these components, selecting appropriate plans for execution based on

the system’s beliefs and goals, creating the corresponding intentions, and then executing

them.

World

Goals Plan Library

Beliefs Intentions

Interpreter

Plan Editor

executionsensing

Fig. 5.2. A practical BDI architecture

3Goals are defined as mutually consistent desires. In most practical systems desires in BDI
formalism can be restricted to goals.

4This is a fundamental argument about human knowledge in PRS. Namely, it is assumed
that much of human knowledge about how to achieve specific goals is procedural or sequential in
nature.

67

The BDI model is attractive for several reasons. First, it is intuitive - we all

recognize the processes of deciding what to do and then how to do it, and we all have an

informal understanding of the notions of belief, desire and intension5. Second, it gives

us a clear functional decomposition, which indicates what sort of subsystems might be

required to build an agent. But the main difficulty is about how to efficiently implement

these functions. Also for relatively well-defined collaboration mechanisms (for example,

Contract-Net style protocols as discussed in Section 5.1.5) or more dynamic environment

requiring immediate reactions, the BDI architecture is a luxurious and/or complicated

model.

5.1.4 Layered Architectures

Needs for both reactive response and intensional behavior lead researches to de-

velopment of layered architectures, which are organized with components or layers for

different levels of decision making (from direct perception to complicated reasoning).

For example, the perception feeds the reasoning subsystem, which governs the actions,

including deciding what to perceive next (Huhns and Singh, 1998). We classify this type

of architectures into two types in control flow within the layered architecture (Müller

et al., 1995):

• Horizontal layering : In this architecture, each layer is directly connected to the

sensory input and action output. Each layer itself acts like an independent decision

maker although it can share common beliefs with other layers (see Figure 5.3(a)).

• Vertical layering : In this architecture, each sensory input and action output is dealt

with by a specific layer. Vertically layered architectures can be further divided into

one pass architectures (Figure 5.3(b)) and two pass architectures (Figure 5.3(c)).

There is no pure layered architecture, which can be excluded from other ap-

proaches. Instead, the design of each layer or interaction among each layer calls for some

kind of hybrid architecture by incorporating other approaches.

5In this sense, BDI model is categorized as practical reasoning architecture.

68

Layer n

…

Layer 2

Layer 1

perceptual
input

action
output

Layer n

…

Layer 2

Layer 1

perceptual
input

action
output

Layer n

…

Layer 2

Layer 1

perceptual
input

action
output

(a) Horizontal layering (b) Vertical layering
- one pass control

(c) Vertical layering
- two pass control

Fig. 5.3. Information and control flows in three types of layered agent architecture
(Müller et al., 1995).

The great advantage of horizontally layered architectures is their conceptual sim-

plicity and flexibility: if we need an agent to exhibit n different types of behaviors, then

we can implement them in different layers. Hence, if an application domain requires an

agent to have multiple roles within a MAS, this architecture can be easily applied.

5.1.5 Collaborative Architectures

Collaborative agents or social agents work together to solve specific problems

through interaction among the agents; hence, communication between agents is an im-

portant element. Although each individual agent still acts autonomously, it is the synergy

resulting from their cooperation that makes collaborative agents interesting and useful.

Internal architecture of collaborative agents can be any other architecture explained

previously. Collaborative attitudes are incorporated in such agent systems to facilitate

interaction, communication, task decomposition, distribution, cooperation, and negotia-

tion (Shen and Norrie, 1999). Agents using the Contract Net (Smith, 1980) as the basis

for their inter-agent negotiation protocol is a typical example of collaborative agents.

Although collaborative agents can have any of the architectures explained previously,

their behaviors can be thought of as a component part of an overall multiagent system’s

69

governing mechanism. Hence their internal architecture is typically based on relatively

simple processes, which are activated by incoming messages and generate outgoing mes-

sages from/to other agents.

Consider agents using the Contract Net protocol. The Contract Net provides a

solution for so-called connection problems: finding an appropriate agent to work on a

given task. The basic steps in the Contract Net can be explained as follows:

1. A manager, who wants to solve a task, announces the existence of tasks via a

(possibly selective) multicast to potential contractors, who might be able to solve

the tasks of the manager.

2. Potential contractors evaluate the announcement. Some of them submit bids.

3. The manager awards a contract to the most appropriate contractor.

Figure 5.4 shows the internal decision making mechanisms in a manager agent

and a potential contractor agent. As shown in the figure, if the collaboration mechanism

is clearly defined, the internal decision making process is also well defined by multiple

steps including message passing functionalities.

Call for bids

Receive
new bid

[no more bid]
Send an award

Wait for Bids

Initiate a Task

Evaluate Bid

compare with the
best bid

Send a
bid

Wait for ReplyCompute a bid

Receive call-
for-bids

Process Award

Modify local plan

Process Reject

Restore local
plan

award reject

(a) Manager agent (b) Potential contractor agent

Fig. 5.4. State diagrams for internal decision making processes of a manager agent and
a potential contractor agent.

70

5.2 Agent Model for DMP Economy

The individual agent architecture for the DMP economy adopts some of the de-

sirable aspects of different architectures explained in Section 5.1. The three major char-

acteristics of the individual DMP economy agent model are:

1) Behavior-Oriented: As shown in the cases of subsumption architectures or hori-

zontally layered architectures, the overall role of an agent is reactively carried out by

independent behaviors. As mentioned, an agent having multiple (quite independent)

roles, which is defined under an overall control mechanism or protocol, and/or oper-

ates in a dynamic and time-constrained situations, can be effectively implemented by

a behavior-oriented architecture. The proposed DMP agent architecture relies more

on the idea of horizontally layered architectures. The relationship between agents

and behaviors is explained in Section 5.2.1

2) State-Based: Each behavior within an agent cannot be a single-flow process. In-

stead it must be defined by inter-agent interactions or protocols. This means the

behavior must explicitly maintain the state within a cycle of the protocol, so that

the behavior can be proceeded from the state when the behavior is called next time.

So, each behavior is modelled as an augmented finite state machine, which will be

explained in Section 5.2.3.

3) Message-Driven: Each behavior as an augmented finite state machine has a set of

states and transitions. Here, the only external source of events, which causes any

transition, is an incoming message6 from behaviors of other agents. On the other

hand, the only way to cause any transition within other behaviors is by sending a

message to the agent along with a proper message header.

6Here, the message means explicit form of data/information. We use ACL (Agent Communi-
cation Language) as the vehicle of the message.

71

5.2.1 Agents and Platform

We followed FIPA (Foundation for Intelligent Physical Agents) agent manage-

ment specification (FIPA, 1998) as a platform for the proposed MAS and used a JADE

(Bellifemine et al., 1999) to implement our DMP economy. Agents reside on an agent

platform by registering themselves to the platform (exactly speaking to the agent man-

agement system within the agent platform). Figure 5.5 shows a simplified view of the

agent management reference model.

Agent Platform

Message Transport System

AgentAgentAgent
Agent

Management
System

Directory
Facilitator

Fig. 5.5. Reference architecture of a FIPA Agent Platform (FIPA, 1998)

• Agents: An agent is the basic actor on an agent platform, which has multiple ser-

vice capability (i.e., behaviors in a DMP environment) including access to external

software, human users and communications facilities.

• Agent Management System: It is an agent that is in charge of supervisory control

of an agent platform, including creation, deletion, suspension, resumption authenti-

cation and migration of agents on the agent platform, and provide a “white pages”

directory service for all agents on an agent platform.

• Directory Facilitator: It is an agent that provides a “yellow pages” directory

service for the agents. It stores descriptions of the agents and the services they offer.

• Message Transport System: It is the software component that controls all the

exchange of messages within the platform, including messages from/to other agent

platforms.

72

The details on FIPA agent management specification can be found in (FIPA,

1998) and (Bellifemine et al., 1999).

5.2.1.1 The Agent class

The Agent class is a common base class for other function-specific agents, meaning

that they inherit (1) features to accomplish basic interactions with the other agents

from this Agent class, and (2) a basic set of methods that can be called to implement

the custom behavior of the agents such as sending/receiving messages. For the DMP

resource control system, five agent classes constitute a DMP economy as explained in

Chapter 4. Each agent class inherits from the general class Agent (see Figure 5.6). Each

agent has different behaviors depending on its role in the market protocols.

Agent

Project
Manager

Resource
Manager

Resource
Agent

Task
Agent

Coordinator
Agent

Fig. 5.6. Class diagram of agents

5.2.2 Agent Roles and Behaviors

Figure 5.7 shows the relationship between Agent class and Behavior class. An

agent can have multiple behaviors with a strong ownership (or composite aggregation),

meaning that a behavior must be created within an agent and destroyed when the agent

is destroyed. An agent’s role in a mechanism is implemented by a behavior. That means

that we can easily add new functionality or a role to an agent by adding a new behavior

object.

73

Agent Behavior
1 *

Fig. 5.7. Class diagram of agent and behavior

5.2.3 Behavior Model and Notations

As mentioned, the proposed behavior model is based on states, which is an effec-

tive approach for collaborative agents. Formal definition of the proposed behavior model

as an augmented finite state machine (or finite automaton) is as follows:

Definition 5.1. (Behavior) A behavior F is a 8-tuple 〈Q, Q̃, Σi, Σo, q0, δm, δp, µ〉,

where:

Q is a finite set of states.

Q̃ ⊆ Q is a finite set of action states, which involve specific actions.

Σi is a finite set of input message types.

Σo is a finite set of output message types.

q0 ∈ Q (the initial state).

δm is a function from (Q − Q̃) × Σi to Q (message-driven transition function).

δp is a function from Q̃ to Q (procedure-driven transition function).

µ is a function from Q̃ to Σo (messaging function).

For any element q of waiting states (Q − Q̃) and any input message type σ ∈ Σi, we

interpret a transition δm(q, σ) as the new state to which the behavior’s current state q

moves, if it is in state q and receives a message of type σ. For any element q of action

state (Q̃), we interpret a transition δp(q) as the new state to which the behavior’s current

state q moves if actions defined in q are finished. In the same way, the messaging function

µ(q) is an outgoing message, which is generated as actions defined in q are carried out.

�

State transition may involve some action (or internal process) including message

handling (for both incoming and outgoing messages). One of effective representation

74

tool for the proposed behavior model is UML (Unified Modeling Language) state dia-

gram (Eriksson and Penker, 1998). Figure 5.8 shows typical transition cases using state

diagram notation. In case (a), q1 is to be a waiting state (i.e., q1 ∈ (Q− Q̃)). If a newly

arrived message m1 is of a specific message type σ1 the transition is fired, and some

actions follow. The actions could include a message-sending action. The state q2 can

be any state, i.e., q2 ∈ Q. In case (b), q3 is to be an action state (i.e., q3 ∈ Q̃). If the

actions are finished, the transition is fired immediately. In this case, as a result of the

action in q3, the outgoing message m2 is sent. The following state q4 can be any type

of state. Case (c) is another typical case. Once the actions in the action state q5 are

done, the behavior changes the state to q6 immediately. Although this transition neither

handles any messages nor performs any actions, state change itself has meaning in some

cases, for example, other behavior sharing beliefs within an agent can utilize this state of

the behavior for some kind of coordination or synchronization purposes. Core behaviors

for P-Tâto are explained in Section 5.6.

q1 q2
receive (m1) [m1∈ σ1] / actions

q3 q4
/ send (m2)

q5 q6

(a)

(b)

(c)

q1 ∈ (Q − Q)

q2 ∈ Q

q3 ∈ Q

q4 ∈ Q

q5 ∈ Q

q6 ∈ Q

~

~

~

Fig. 5.8. Cases of transition

5.3 Agent Communication

5.3.1 Agent Communication Language: FIPA-ACL

In a MAS, including the DMP resource control system, agents exchange infor-

mation and knowledge by means of an Agent Communication Language (ACL). ACLs

are differentiated from the level of abstraction over other information exchange methods

75

such as RMI (Remote Method Invocation) and CORBA (Common Object Request Bro-

ker Architecture) in that they provide the agents with the means of exchanging more

complex objects like shared plans, goals and/or strategies. The Knowledge Query and

Manipulation Language (KQML), which was a part of the Knowledge Sharing Effort7,

has been the de facto standard ACL since its original proposal in 1993. Another ACL

developed by the Foundation for Intelligent Physical Agents (FIPA), often called FIPA-

ACL (FIPA, 1998), is becoming popular in recent times. However, the main idea and

even a big portion of the technical part of FIPA-ACL were inherited from KQML.

An ACL message consists of three layers: (i) the content layer contains the actual

content of the message, (ii) the communication layer encodes message features which

describe low-level communication parameters, and (iii) the message layer determines

the “kind” of interactions one can have with a ACL-speaking agent (Labrou et al., 1999;

Finin and Weber, 1993). Figure 5.9 shows an example ACL message, by which the

task agent TA001 inquires about the price of the time slot bundle F033000T040200 to

the resource agent RA036 using Knowledge Interchange Format (KIF)8 and an ontology

called DMP ECONOMY. The value of the :content keyword is the content layer; the values

of the :sender, :receiver and :reply-with keywords form the communication layer; and

the performative9 name ask-one with the :language and :ontology keywords form the

message layer. In FIPA-ACL, performatives are called communicative acts (CA).

The CA type in the message layer is the core part of the ACL-based communica-

tion protocol because it decides the way of conversation10 between agents. However, the

semantics of the CAs may vary depending on applications, meaning that agent designers

can decide the preconditions, postconditions and completion conditions for a specific CA

7A consortium sponsored by the Advanced Research Projects Agency (ARPA) to develop
methodology and software for the sharing and reuse of knowledge.

8A computer oriented language for the interchange of knowledge among disparate programs.
It is part of the Knowledge Sharing Effort (Genesereth and Fikes, 1992).

9In speech act theory, the term performative is used to identify the illocutionary force of
this special class of utterance (Weiss, 1999). In KQML, however, it means simply any KQML
messages (Finin and Weber, 1993).

10A series of communications among different agents, typically following a protocol and with
some purpose (Weiss, 1999).

76

(ask-one
:sender TA001
:content (PRICE F033000T040200 ?price)
:receiver RA036
:reply-with price f033000t040200
:language KIF
:ontology DMP ECONOMY)

Fig. 5.9. An example ACL message

by themselves (Labrou and Finin, 1997). Furthermore, the set of CAs itself may be

extended if required.

For the DMP resource control economy, we have defined the interactions (in Sec-

tion 5.6) taking place between agents, which eventually form the market mechanism

described in Chapter 4. We map each interaction to an appropriate reserved CA types.

For the DMP resource control control economy, only a small number of CA types are

used for the core mechanism, including request, agree and inform.

5.3.2 Content Language: FIPA-SL0

Although the CA types define the illocutionary force of the specific messages, the

detailed semantics or “contents”, are not defined by the ACL. Instead, we need a content

language (or inner language) for detailed description of logics, objects, and actions. FIPA

SL (Semantic Language) is the formal language used to define the semantics of the FIPA-

ACL. FIPA SL is a general representation formalism that is suitable for use in a number

of different agents. FIPA-SL0 is a minimal subset of FIPA SL, and we use FIPA-SL0 as

a content language for DMP agent communication. The FIPA-SL0 grammar is given in

Appendix B (FIPA, 2000).

5.4 Protocols: Agent Interactions

The P-Tâto mechanism consists of two different levels of protocols: (1) the

temporary economy protocol and (2) the local market evaluation protocol. Within a

protocol, interactions between agents must be clearly defined by ACL message passing.

The overall sequence of interactions is defined using UML sequence diagrams as shown

77

in Figure 5.10 and Figure 5.11. Also the contents of the messages are briefly explained

by types of messages (ACL communicative acts) and contents of the ACL message using

FIPA-SL0 as an content language. In this section, the agent interactions, which eventu-

ally constitute the P-Tâto mechanism, are explained focusing on the workflows rather

than the detailed meaning of the messages. The detailed ontology of the contents (of

ACL messages) is explained in Section 5.5 using ACL and FIPA-SL0.

5.4.1 Temporary Economy Protocol

The temporary economy protocol contains the local market evaluation protocol as

a component as shown in Figure 5.10. As explained in Section 4.3.1, a temporary econ-

omy can be initiated in many different situations, which are basically significant changes

happening in a DMP environment. Whatever the cases are, the RMs are informed of the

resource rescheduling needs, and notice the temporary economy-establishment needs to

the CO. Temporary economy level interactions (as shown in Figure 5.10) are summarized

in Table 5.1 and explained as follows:

• Interaction a1-a2: An RM initiates a temporary economy by sending a request

message a1 to the CO. This request message asks the CO to establish a temporary

economy (establish-te action). The CO reviews the temporary economy estab-

lishment request, and sends back an agree message a2 to the RM. The CO can

refuse the request by sending a refuse11 message a2′ to the RM. The contents of

the refuse message are exactly same to the agree message.

• Interaction b1-b2: The CO establishes a temporary economy by sending a request

message b1 to the PMs. This message asks the PM to select TAs for the tempo-

rary economy. Each PM reviews the request and sends the agree message b2 or

refuse message b2′ back to the CO.

11The communicative act type refuse denotes the action of refusing to perform a given action
and explaining the reason for the refusal.

78

Temporary Economy Protocol

TATATACO

(a1) request
(b1) request

(b2) agree

RM

(a0) inform

PMPM

(c1) request

(e1) request

(a2) agree

RARARA

Local Market Protocol

(d4) request (e3) request

(d5) agree (e4) agree

(d1) request

(d3) inform

[∑∆ck ≥ ρ]

[∑∆ck < ρ]

(c2) agree

(d2) agree

(e2) agree

Fig. 5.10. ACL interactions in the temporary economy protocol

• Interaction c1-c2-e1-e2: Each PM selects the participants to the temporary econ-

omy from its TAs based on the temporary economy information (such as Control-

Window information), which was enclosed within the request message b1. The

selected TAs get informed via the request messages c1, which ask the TAs to

attend the temporary economy. Each of the TAs send an agree message c2 or a

refuse message c2′ back to the PM. In addition, each of the TAs sends the CO a

request message e1 to ask register to the temporary economy. The CO replies

with an agree message e2 or refuse message e2′ to the TAs.

• Interaction d1-d2-d3: The CO identifies the RAs who must attend the temporary

economy based on the TAs’ request message e1. The CO sends each of the RAs a

request message d1 to ask them to establish local markets (establish-lm action).

Each RA sends an agree message d2 or refuse message d2′ back to the CO. After

one iterations of local market mechanism, each of the RA reports the aggregate

deviation cost vector (AggDevCostVector) to the CO via an inform message d3.

79

The CO collects all aggregate deviation cost vectors from the RAs, adds up the

vectors, and compares the added-up aggregate deviation cost vector
∑

∆ck to the

given tolerance vector ρ to determine the clearance of the temporary economy.

• Interaction d4-d5,e3-e4: If the vector falls into the predefined tolerance level, the

CO sends request messages d1 and d2 to the RAs and TAs, respectively. These

request messages ask the RAs and TAs to clear the markets (clear-lm action),

meaning that they fix the new schedules of the tasks using the current results of

local market evaluation mechanism. The RAs and TAs send agree messages d5

and e4 or refuse messages d5′ and e4′ back to the CO.

5.4.2 Local Market Evaluation Protocol

The local market evaluation protocol is an combinatorial auction mechanism as

explained in Section 4.3.1. A local market is established by the CO sending an RA

a request-type ACL message for local market initiation as shown in Figure 5.11. In-

teractions for a local market evaluation are summarized in Table 5.2 and explained as

follows:

• Interaction f1-c3-c4-f2: In each local market, the RA sends a request message

f1 to the TAs asking them to bid for the resource time slots. A TA (for example,

TAp) who received the request prepares the bid. In order to prepare the bid (one

component of which is utility for each time-slot bundle), the TA (TAp) sends a

request message c3 to its successor TAs (for example, TAs), asking estimated

deviation cost information. Upon receipt of the message, the successor TAs (TAs)

send an inform message c4 back to TAp. Using this information, TAp finishes the

bid preparation and sends the bid to the RA via an inform message f2.

• Interaction f3-c5-c6-f4: After collecting the bids from TAs for a pre-defined time

duration t∗, the TR starts calculating the winning bids (the details are explained

in Section 4.3.2). The winning bid information (in other words, local optimal

schedule with respect to the bid profiles) is sent to the TAs via an inform message

80

Table 5.1. ACL messages in the temporary economy protocol (sequence diagram)

Msg
No.

Sender Receiver CA type Content of the message in FIPA-SL0

a1 RM CO request action AgentName (establish-te TE-description)
a2 CO RM agree establish-te TE-description
a2′ CO RM refuse establish-te TE-description
b1 CO PM request action AgentName (select TE-description)
b2 PM CO agree select TE-description
b2′ PM CO refuse select TE-description
c1 PM TA request action AgentName (attend TE-description)
c2 TA PM agree attend TE-description
c2′ TA PM refuse attend TE-description
d1 CO RA request action AgentName (establish-lm LM-description)
d2 RA CO agree establish-lm LM-description
d2′ RA CO refuse establish-lm LM-description
d3 RA CO inform AggDevCostVector
d4 CO RA request action AgentName (clear-lm)
d5 RA CO agree clear-lm

d5′ RA CO refuse clear-lm

e1 TA CO request action AgentName (register TA-description)
e2 CO TA agree register TA-description
e2′ CO TA refuse register TA-description
e3 CO TA request action AgentName (clear-lm)
e4 TA CO agree clear-lm

e4′ TA CO refuse clear-lm

81

TATA

Local Market Protocol

RA TAp

(f1) request
(c3) request

PMTAs

(c4) inform

(f2) inform

(f3) inform

(f4) inform

(d1) request

t1

t2

{t2−t1<t*}

(c5) request

(c6) inform

(d3) inform

winning bids
determination

update ck

(d2) agree

prepare bid

PMTAn

Fig. 5.11. ACL interactions in the local market evaluation protocol (sequence diagram)

Table 5.2. ACL messages in the local market evaluation protocol

Msg
No.

Sender Receiver CA type Content of the message in FIPA-SL0

f1 RA TA request action AgentName (inform bid)
f2 TA RA inform Bid
f3 RA TA inform WinningBid
f4 TA RA inform DevCostVector
c3 TAp TAs request action AgentName (inform utility-profile)
c4 TAs TAp inform Utility-profile
c5 TAp TAn request action AgentName (inform task-schedule)
c6 TAn TAp inform TaskSchedule

82

f3. The TAs update their precedence cost vector. In order to do that, the TAs

exchange their new schedule information with their neighbor TAs12 via request

message c5 and inform message c6. The RA adds up the deviation cost vectors

of all the TAs and reports the added-up deviation cost vector to the CO via the

inform message d3. The CO determines the clearance of the temporary market

based on this information as explained previously.

5.5 DMP Resource Control Ontology

An ontology is a specification of the objects, concepts, and relationships in a

specific domain. Regarding the MAS, all agents that share the same ontology for knowl-

edge representation can understand the content layer of the ACL messages. Although

we already defined some fundamental terminology in Chapter 2 for the formal problem

definition, they are not the complete set required for proper operation of P-Tâto mech-

anism. In this section, the market-based DMP resource control ontology is defined more

precisely.

5.5.1 Grammar

The contents of the ACL messages of the DMP economy consist of two types of

components: actions and objects, as shown in Tables 5.1 and 5.2. The CA request and

agree contain an action within the ACL message, while CA inform is an object. We

define the representation scheme of the actions and objects using BNF style grammar as

follows:

Description of Actions:

PtatoAgentAction = "(" "establish-te" TE-description ")"

| "(" "establish-lm" LM-description ")"

| "(" "select" TE-description ")"

| "(" "attend" TE-description ")"

12A pair of neighbored TAs are the TAs whose tasks are directly coupled by a precedence
constraint.

83

| "(" "clear-lm" ")"

| "(" "register" TA-description ")"

Description of Objects:

TE-description = "(" ":te-description" TE-description-items + ")"

LM-description = "(" ":lm-description" LM-description-items + ")"

TA-description = "(" ":ta-description" TA-description-items + ")"

TE-description-item = ControlWindow

| "(" ":slot-size" NumericalConstant ")"

| "(" ":sellers" AgentName + ")"

| "(" ":buyers" AgentName + ")"

LM-description-item = ControlWindow

| "(" ":slot-size" NumericalConstant ")"

| "(" ":auctioneer" AgentName ")"

| "(" ":bidders" AgentName + ")"

| "(" ":available-slots" Interval + ")"

TA-description-item = "(" ":agent-id" AgentName ")"

| "(" ":resource-agents" AgentName + ")"

| "(" ":duration" Integer ")"

ControlWindow = "(" ":control-window" DateTime DateTime ")"

Bid = "(" ":bid" BidItem + ")"

BidItem = "(" Bundle Utility ")"

WinningBid = "(" ":winning-bid" BidItem + ")"

Bundle = Interval

Interval = "(" Integer Integer ")"

TaskSchedule = "(" ":task-schedule" Interval ")"

UtilityProfile = "(" ":utility-profile" Utility + ")"

DevCostVector = "(" ":dev-cost-vector" DevCost + ")"

AggDevCostVector = "(" ":agg-dev-cost-vector" DevCost + ")"

DevCost = Float

84

Utility = Float

5.5.2 Ontology of Actions

Although the syntectic representation of actions were defined in the previous sec-

tion, we need to define the meaning and usage of the action contents further. The follow-

ing tables describe the ontology of the actions including establish-te, establish-lm,

select, attend, clear-lm, and register.

Table 5.3. Ontology of action establish-te

Description establish-te action involves a new temporary economy establishment.
The expected rational effect of establish-te action request is activa-
tion of the actor’s TemporaryEconomyCoordinatorBehavior behavior.

Content TE-description (see Section 5.5.1)
Requester Resource Manager (RM)
Actor Coordinator Agent (CO)
Protocol temporary-economy

Example (request

:sender rm1-agent@lb233a.ie.psu.edu:1090

:receiver co-agent@lb233f.ie.psu.edu:1090

:content

(action co-agent@lb233a.ie.psu.edu:1090

(establish-te

:te-description

(:control-window 2400 2480)

(:slot-size 1)))

:language SL0

:protocol temporary-economy

:ontology dmp-resource-control)

85

Table 5.4. Ontology of action establish-lm

Description establish-lm action involves a new local market evaluation. The ex-
pected rational effect of establish-lm action request is activation of
the actor’s LocalMarketAuctioneerBehavior behavior.

Content LM-description (see Section 5.5.1)
Requester Coordinator Agent (CO)
Actor Resource Agent (RA)
Protocol temporary-economy

Example (request

:sender co-agent@lb233f.ie.psu.edu:1090

:receiver ra1-agent@lb233a.ie.psu.edu:1090

:content

(action ra1-agent@lb233a.ie.psu.edu:1090

(establish-lm

:lm-description

(:control-window 2400 2480)

(:slot-size 1)

(:auctioneer ra1-agent@lb233a.ie.psu.edu:1090)

(:bidders ta1-agent@lb233c.ie.psu.edu:1090

ta2-agent@lb233d.ie.psu.edu:1090

ta3-agent@lb233e.ie.psu.edu:1090)))

:language SL0

:protocol temporary-economy

:ontology dmp-resource-control)

86

Table 5.5. Ontology of action select

Description select action involves a new temporary economy establishment by se-
lecting adequate TAs who are supposed to be affected by resource re-
scheduling. The expected rational effect of the select action request
is to make the actor send request messages to the selected TAs asking
them to register for the temporary economy.

Content TE-description (see Section 5.5.1)
Requester Coordinator Agent (CO)
Actor Project Manager (PM)
Protocol temporary-economy

Example (request

:sender co-agent@lb233f.ie.psu.edu:1090

:receiver pm1-agent@lb233b.ie.psu.edu:1090

:content

(action pm1-agent@lb233b.ie.psu.edu:1090

(select

:te-description

(:control-window 2400 2480)

(:slot-size 1)))

:language SL0

:protocol temporary-economy

:ontology dmp-resource-control)

87

Table 5.6. Ontology of action attend

Description attend action involves a new temporary economy establishment by ask-
ing adequate TAs to register for the temporary economy. The expected
rational effect of attend action request is registration of the actor to
the temporary economy as a buyer of resource time-slots.

Content TE-description (see Section 5.5.1)
Requester Project Manager (PM)
Actor Task Agent (TA)
Protocol temporary-economy

Example (request

:sender pm1-agent@lb233b.ie.psu.edu:1090

:receiver ta1-agent@lb233c.ie.psu.edu:1090

ta2-agent@lb233d.ie.psu.edu:1090

ta3-agent@lb233e.ie.psu.edu:1090

:content

(action co-agent@lb233a.ie.psu.edu:1090

(attend

:te-description

(:control-window 2400 2480)

(:slot-size 1)))

:language SL0

:protocol temporary-economy

:ontology dmp-resource-control)

88

Table 5.7. Ontology of action register

Description register action involves a new temporary economy establishment. The
expected rational effects of register action request are (1) to allow the
requester to participate in the temporary economy as buyers of the
resource time-slots, and (2) to let the actor informed of the possible
sellers (RAs) based on the message contents (TA-description).

Content TA-description (see Section 5.5.1)
Requester Task Agent (TA)
Actor Coordinator Agent (CO)
Protocol temporary-economy

Example (request

:sender ta1-agent@lb233c.ie.psu.edu:1090

:receiver co-agent@lb233f.ie.psu.edu:1090

:content

(action co-agent@lb233f.ie.psu.edu:1090

(register

:ta-description

(:agent-id ta1-agent@lb233c.ie.psu.edu:1090)

(:resource-agent ra1-agent@lb233a.ie.psu.edu:1090)

(:duration 8)))

:language SL0

:protocol temporary-economy

:ontology dmp-resource-control)

89

Table 5.8. Ontology of action clear-lm

Description clear-lm action involves a clearance of a local market. The expected
rational effect of clear-lm action request is finalization of the resource
and task schedule using the current schedule updated during the recent
local market evaluation.

Content None
Requester Coordinator Agent (CO)
Actor Resource Agent (RA) and Task Agent (TA)
Protocol temporary-economy

Example (request

:sender co-agent@lb233f.ie.psu.edu:1090

:receiver ra1-agent@lb233a.ie.psu.edu:1090

:content

(action ra1-agent@lb233a.ie.psu.edu:1090

(clear-lm))

:language SL0

:protocol temporary-economy

:ontology dmp-resource-control)

90

5.6 Behaviors for the P-Tâto Mechanism

As mentioned in Section 5.2, an agent can have multiple behaviors and a set of

interrelated behaviors held by multiple collaborative agents constitutes a decentralized

mechanism like P-Tâto. In this section, we present the details of the core behaviors

defined in P-Tâto mechanism. As an augmented finite automaton, the behaviors can

be clearly defined by state diagrams as explained in Section 5.2.3.

5.6.1 TemporaryEconomyInitiatorBehavior

The behavior TemporaryEconomyInitiatorBehavior (see Figure 5.12) is held by

Resource Manager (RM) agents. The states q1, q2 and q3 are all waiting state (i.e.,

{q1, q2, q3} ⊂ Q̃). State q1 (“waiting change reports”) is the initial state of the behavior.

If a message of a specific type (i.e., σ1, which is a significant change inform message)

is received from a reliable sender, the behavior sends a request message (m2) to the

CO asking temporary economy establishment and changes the state to q2 (“waiting a

response”). If an agree message is received from the CO, the state is changed to q3

(“waiting market clearance”) and waiting the market-clearance inform message (m7 ∈

σ3) from the CO later on. However, if the request is refused (via m5 ∈ σ3) or not replied

for a given maximum waiting time, the state is changed back to q1. While the behavior is

in the states of q2 and q3, another new message of type σ1 cannot be processed, thereby

being replied via a refuse message.

q1

receive (m1) [m1∈ σ1] / send (m2)
q2

q3

receive (m3) [m3∈ σ1] / send (refuse)

receive (m6) [m6∈ σ1] / send (refuse)

receive (m4) [m4∈ σ2]

receive (m7) [m7∈ σ3]

receive (m5) [m5∉ σ2]

∨ [time-out]

Fig. 5.12. TemporaryEconomyInitiatorBehavior (state diagram)

91

5.6.2 TemporaryEconomyCoordinatorBehavior

This behavior is a coordinator agent (CO)’s behavior, which coordinates the over-

all workflow of P-Tâto mechanism. In the initial state q1 (“waiting temporary economy

initiation”), if the behavior receives temporary economy establishment request message

(m1), the behavior sends an agree message (m2) back to the sender (an RM) and sends

a request message (m3) to the PMs asking them to make adequate TAs to attend the

temporary economy. Then, the behavior changes its state to q2 (“waiting registration

request”) and starts receiving registration request messages (m4) from TAs. When a

new registration request message received, an agree message (m5) is sent back to the

TA. After a given period of waiting time, the behavior changes the state to q3 (“prepar-

ing temporary economy”). In the action state, the behavior finalizes the list of RAs

and TAs, who participate in the temporary economy, then sends local market evaluation

request messages (m6) to the RAs and changes the state to q4 (“waiting local market

evaluation”). When all the RAs finish the local market evaluation and send the prece-

dence cost change information, the state is changed to another action state q5 in which

the behavior decides if the market must be cleared or not. Depending on the decision,

the state is changed back to the initial state q1 or to q4 for another iteration of local

market evaluation.

5.6.3 LocalMarketAuctioneerBehavior

This behavior is held by a resource agent (RA). As shown in Figure 5.14 this

behavior has 4 states, among which q3 is an action state (q3 ∈ Q̃) and others are all

waiting states. This behavior starts from q1 (“waiting local market-evaluation request”).

If a local market evaluation request message (m1 ∈ σ1) is received from the CO, request-

for-bid messages (m2) are sent to TAs, who are listed in the LM-description enclosed in

the message m1, and the state is changed to q2 (“waiting bids”) immediately. In state q2,

the behavior collects bids from the TAs until all the TAs bid or time elapses a predefined

waiting time. In both cases, the state is changed to q3 (“calculating winning bids”), in

which the time-consuming winning bids calculation is carried out. Upon completion of

the process, winning-bids information is sent to the TAs via message m4, and the state

92

receive (m1) [m1∈ σ1]
/ send (m2) to RMs, send(m3) to PMs

receive (m4)
[m4∈ σ2] / send (m5)

[time-out]

/ send (m6) to n RAs

receive (m7)
[m7∈ σ3 ∧ received<n]

[Σ∆ck < ρ]

/ send (m8) to RAs and TAs

q1

q2

q5

q3

receive (m7) [m7∈ σ3 ∧ received=n]

q4

[Σ∆ck ≥ ρ]

/ send (m6) to RAs

Fig. 5.13. TemporaryEconomyCoordinatorBehavior (state diagram)

93

is changed to q4 (“waiting precedence cost vector information”) immediately. In q4 the

behavior collects the updated precedence cost vectors from TAs, until all the TAs reply

to the request or time is over. The behavior then adds up the vectors and sends it to

the CO (via message m6), and changes the state back to q1, the initial state.

receive (m1) [m1∈ σ1]
/ send (m2) to n TAs

receive (m3)
[m3∈ σ2 ∧ received<n]

receive (m3)
[m3∈ σ2 ∧ received=n]

∨ [time-out]

/ send (m4)

receive (m5)
[m5∈ σ3 ∧ received<n]

receive (m5) [m5∈ σ3 ∧ received=n]
∨ [time-out]
/ add-up(), send(m6)

q1

q2

q3

q4

Fig. 5.14. LocalMarketAuctioneerBehavior (state diagram)

5.6.4 LocalMarketBidderBehavior

This behavior, which is held by a task agent (TA), starts from q1 (“waiting

request-for-bid”) as shown in Figure 5.15. If received a request-for-bid message mes-

sage (m1 ∈ σ1) from an RA, this behavior inquires utility profile information from its

successor TAs (TAs’s) via message m2, and changes the state to q2 (“waiting bid profile

information”) immediately. In state q2, the behavior collects the successor TAs’ utility

profiles until all the TAs’s reply or time elapses a predefined waiting time. In both cases,

the state is changed to q3 (“preparing bid”), in which the bid is prepared based on the

current precedence cost vector and the successor TAs’ utility profiles. Upon completion

of the process, the behavior sends the bid to the RA via message m4, changes the state

to q4 (“waiting winning bids information”), and waits until the winning bid information

94

is available from the RA (via message m5). When the winning bid information is re-

ceived, the behavior sends second inquiry message (m6) to the neighbor TAs (TAn’s)

asking up-to-date task schedule information (TaskSchedule). The behavior uses the col-

lected information to update the precedence cost vector (see Section 4.4.5), sends the

precedence cost vector to the RA, and changes the state back to the initial state q1.

receive (m1) [m1∈ σ1]
/ send (m2) to n1 TAs’s

receive (m3)
[m3∈ σ2 ∧ received<n1]

receive (m3)
[m3∈ σ2 ∧ received=n1]

∨ [time-out]

/ send (m4) to RA

receive (m7)
[m7∈ σ4 ∧ received<n2]

receive (m7) [m7∈ σ4 ∧ received=n2]
∨ [time-out]
/ add-up(), send(m8)

q1

q2

q5

q3

receive (m5) [m5∈ σ3]
/ send (m6) to n2 TAm's

q4

Fig. 5.15. LocalMarketBidderBehavior (state diagram)

5.6.5 Other Behaviors

Other than the core behaviors explained above, some simple behaviors are re-

quired for completeness of the mechanism. An example is LocalMarketClearingBehavior,

which is to clear a local market (just by finalizing the current resource/task schedule)

based upon a market clearing request from the CO. This behavior is held by both of

TAs and RAs, but with different implementations of internal actions. Another example

is InquiryResponseBehavior, which is to respond to some information inquiries, such

95

as the messages m2 and m6 in LocalMarketBidderBehavior explained in Section 5.6.4.

Such simple behaviors are typically in the form of the state diagram in Figure 5.16.

receive (m1) [m1∈ σ1] / action(), send (m2)

q1

Fig. 5.16. Simple response behavior (state diagram)

5.7 Implementation

The programming language of choice is Java because of its powerful object ori-

ented programming features in distributed heterogeneous computing environments, in-

cluding object serialization, multi-threading, reflection API and remote method invo-

cation (RMI). There are many publicly available open-source Java packages for agent

developers to use; however, due to the diversity of designs in reasoning system in various

agent application areas, these Java packages generally support for developing communi-

cating agents, meaning that the intelligence should be coded by developers themselves.

We use JADE (Java Agent DEvelopment Framework), which follows FIPA agent man-

agement specification and FIPA-ACL compliant. It was developed using Java and easily

integrated with the JESS (Java Expert System Shell)(Friedman-Hill, 2000), so that a

rule-based reasoning system can be integrated in a relatively easy way (Bellifemine et al.,

1999). Some other well-known open-source Java packages are as follows:

• Java Agent Template, Lite (JATLite) is a package of Java programs, de-

veloped at Stanford University, that allow users to create communicating agents

quickly. Each agent runs as an applet launched from a Web browser. All agents

communicate through a message router facilitator (Jeon et al., 2000).

• Java-based Agent Framework for Multiagent Systems (JAFMAS) is a

set of Java classes that supports implementing communicating agents, developed at

96

the University of Cincinnati. It supports directed (point-to-point) communication

as well as subject-based, broadcast communications (Chauhan and Baker, 1998).

• Jackal is another Java package that allows Java applications to communicate via

KQML (Cost et al., 1998), developed at University of Maryland, Baltimore County.

It is currently used in the CIIMPLEX project (Peng et al., 1998), a project that

involves planning and scheduling for manufacturing.

• Zeus is a Java toolkit for the rapid development of collaborative agent applications

using GUI-based development environment, developed at British Telecommunica-

tion Laboratories (BT labs). It is FIPA-ACL compliant and has been used to

implement several major applications (Nwana et al., 1998).

Figure 5.17 shows the major components of the dmp package and relationships

with the components in jade.core package.

5.8 Summary

In this chapter we presented detailed design of the individual DMP agent model

and implementation of the market mechanism within the agent model. Many differ-

ent agent architectures have been introduced in the agent research literature; however,

there is no perfect architecture, which is suitable for all situations. Instead, different

problem domains require different levels of agency and different design of internal archi-

tectures. We reviewed several representative architecture model to identify the desirable

architecture of DMP agents. Basically DMP agents are categorized into collaborative

agent (explained in Section 5.1.5) with reactive behaviors. Three major characteristics of

DMP agents are behavior-oriented, state-based, and message-driven. Agent communica-

tion and management of DMP multiagent system follows the FIPA agent communication

and management specification. The behavior model is clearly specified as an augmented

finite automaton, which has two distinctive state types: waiting state and action state.

The possible transitions among states in different situations were identified, and corre-

sponding UML state diagram notations were proposed.

97

dmp package

dmp-temporary-economy protocol

dmp-local-market protocol

jade.core.behaviors packagejade.core package

Agent

Agent

SimpleBehaviour
Has

1 0..*

Has

1 1

LocalMarketBidderBehavior

Has

1 1

TemporaryEconomyInitiatorBehavior
Has

1 1

LocalMarketAuctioneerBehavior

TemporaryEconomyCoordinatorBehavior
Has

1 1

ResourceManager

CoordinatorAgent

ProjectManager

TaskAgent

ResourceAgent

Fig. 5.17. Components of the dmp package

98

In addition to the agent model, the P-Tâto mechanism was clearly defined from

the multiagent information-systems’ viewpoint. A distributed mechanism can be em-

bodied within multiple agents in the form of behaviors. The mechanism was thoroughly

defined using UML sequence diagrams. Also, using the FIPA-ACL (as an agent com-

munication language), FIPA-SL0 (as a content language), and DMP resource control

ontology, the detailed interactions among agents were explained. Finally, the core be-

haviors were clearly defined using state diagrams.

99

Chapter 6

Empirical Analysis

Experimental analysis and verification of the proposed approach is one of the

most important parts of this research. However, it is very difficult to test and verify

the proposed approach in real DMP environments due to their huge scale and variety

of organization and project characteristics. Hence, intensive testing and analysis is con-

ducted in an experimental setting using a wide range of DMP instances generated by a

project instance generator called ProGen. We developed a simulation software, which

emulate the P-Tâto mechanism to conduct the experimental analysis. In this chap-

ter, we present the experimental analysis results followed by the experimental setup and

DMP instance generation issues. The experimental analysis results demonstrate a high

level of solution quality and computational efficiency.

100

6.1 Experimental Setup

6.1.1 Simulation Programs: PtatoSim

We develop and use a simulation program, called PtatoSim, for an extensive exper-

imental analysis of the P-Tâto mechanism. This program uses DMP instances (*.dat)

generated by ProGen (explained in the following subsection) as an input, carries out the

simulation, and generates simulation outputs: log file (*.out), final schedule (*.sch),

and LINDO input model (*.ltx) as shown Figure 6.1. The file *.bas is the input file

for ProGen, which defines the different configuration parameters for project instances to

be generated. The output of ProGen (*.dat files) are randomly (yet controlled by the

input parameters) generated project scheduling problem instances. Each *.dat file fully

defines a project scheduling problem in a ProGen-genuine format. The simulation log

file (*.out) contains detailed simulation log including each agents utility profiles, bid-

ding information, winning bid determination process and results, and precedence cost

vector for every iteration of P-Tâto mechanism. The final schedule file (*.sch) con-

tains a resultant schedule of each resource, which can be used for drawing Gantt charts

automatically by PtatoSim. Finally, the *.ltx file contains an IP formulation of the

DMP instance in a LINDO input model format, which is based on the centralized IP

formulation explained in Section 2.2. This LINDO input model is used for generating

optimal solutions to be compared to P-Tâto solutions (see Section 6.3). Figure 6.2

shows an example of LINDO input generated from a small DMP instance.

PtatoSimProGen *.dat*.bas *.out

*.sch

*.ltx

Fig. 6.1. Overview of PtatoSim

101

MIN 4 X05_12 + 8 X05_13 + 12 X05_14 + 16 X05_15 + 20 X05_16 + 24 X05_17 + 28 X05_18 + 32 X05_19 + 2 X15_14 + 4 X15_15 + 6 X15_16 + 8 X15_17 + 10 X15_18 + 12 X15_19 + 1 X25_10 + 2 X25_11 + 3 X25_12 + 4 X25_13 + 5 X25_14
+ 6 X25_15 + 7 X25_16 + 8 X25_17 + 9 X25_18 + 10 X25_19

SUBJECT TO
1:0) X00_0 + X00_1 + X00_2 + X00_3 + X00_4 + X00_5 + X00_6 + X00_7 + X00_8 + X00_9 = 1
1:1) X01_3 + X01_4 + X01_5 + X01_6 + X01_7 + X01_8 + X01_9 + X01_10 + X01_11 + X01_12 + X01_13 + X01_14 + X01_15 + X01_16 + X01_17 = 1
1:2) X02_2 + X02_3 + X02_4 + X02_5 + X02_6 + X02_7 + X02_8 + X02_9 + X02_10 + X02_11 = 1
1:3) X03_5 + X03_6 + X03_7 + X03_8 + X03_9 + X03_10 + X03_11 + X03_12 + X03_13 + X03_14 = 1
1:4) X04_8 + X04_9 + X04_10 + X04_11 + X04_12 + X04_13 + X04_14 + X04_15 + X04_16 + X04_17 = 1
1:5) X05_10 + X05_11 + X05_12 + X05_13 + X05_14 + X05_15 + X05_16 + X05_17 + X05_18 + X05_19 = 1
1:6) X10_0 + X10_1 + X10_2 + X10_3 + X10_4 + X10_5 + X10_6 + X10_7 = 1
1:7) X11_4 + X11_5 + X11_6 + X11_7 + X11_8 + X11_9 + X11_10 + X11_11 = 1
1:8) X12_7 + X12_8 + X12_9 + X12_10 + X12_11 + X12_12 + X12_13 + X12_14 = 1
1:9) X13_6 + X13_7 + X13_8 + X13_9 + X13_10 + X13_11 + X13_12 + X13_13 + X13_14 = 1
1:10) X14_9 + X14_10 + X14_11 + X14_12 + X14_13 + X14_14 + X14_15 + X14_16 = 1
1:11) X15_12 + X15_13 + X15_14 + X15_15 + X15_16 + X15_17 + X15_18 + X15_19 = 1
1:12) X20_3 + X20_4 + X20_5 + X20_6 + X20_7 + X20_8 + X20_9 + X20_10 + X20_11 + X20_12 + X20_13 + X20_14 = 1
1:13) X21_4 + X21_5 + X21_6 + X21_7 + X21_8 + X21_9 + X21_10 + X21_11 + X21_12 + X21_13 + X21_14 + X21_15 = 1
1:14) X22_5 + X22_6 + X22_7 + X22_8 + X22_9 + X22_10 + X22_11 + X22_12 + X22_13 + X22_14 + X22_15 + X22_16 = 1
1:15) X23_7 + X23_8 + X23_9 + X23_10 + X23_11 + X23_12 + X23_13 + X23_14 + X23_15 + X23_16 + X23_17 + X23_18 = 1
1:16) X24_7 + X24_8 + X24_9 + X24_10 + X24_11 + X24_12 + X24_13 + X24_14 + X24_15 + X24_16 + X24_17 + X24_18 = 1
1:17) X25_8 + X25_9 + X25_10 + X25_11 + X25_12 + X25_13 + X25_14 + X25_15 + X25_16 + X25_17 + X25_18 + X25_19 = 1
2:0) 0 X00_0 + 1 X00_1 + 2 X00_2 + 3 X00_3 + 4 X00_4 + 5 X00_5 + 6 X00_6 + 7 X00_7 + 8 X00_8 + 9 X00_9 - 0 X01_3 - 1 X01_4 - 2 X01_5 - 3 X01_6 - 4 X01_7 - 5 X01_8 - 6 X01_9 - 7 X01_10 - 8 X01_11 - 9 X01_12 - 10 X01_13 - 11
X01_14 - 12 X01_15 - 13 X01_16 - 14 X01_17 <= 0
2:1) 0 X00_0 + 1 X00_1 + 2 X00_2 + 3 X00_3 + 4 X00_4 + 5 X00_5 + 6 X00_6 + 7 X00_7 + 8 X00_8 + 9 X00_9 - 0 X02_2 - 1 X02_3 - 2 X02_4 - 3 X02_5 - 4 X02_6 - 5 X02_7 - 6 X02_8 - 7 X02_9 - 8 X02_10 - 9 X02_11 <= 0
2:2) 2 X02_2 + 3 X02_3 + 4 X02_4 + 5 X02_5 + 6 X02_6 + 7 X02_7 + 8 X02_8 + 9 X02_9 + 10 X02_10 + 11 X02_11 - 2 X03_5 - 3 X03_6 - 4 X03_7 - 5 X03_8 - 6 X03_9 - 7 X03_10 - 8 X03_11 - 9 X03_12 - 10 X03_13 - 11 X03_14 <= 0
2:3) 5 X03_5 + 6 X03_6 + 7 X03_7 + 8 X03_8 + 9 X03_9 + 10 X03_10 + 11 X03_11 + 12 X03_12 + 13 X03_13 + 14 X03_14 - 5 X04_8 - 6 X04_9 - 7 X04_10 - 8 X04_11 - 9 X04_12 - 10 X04_13 - 11 X04_14 - 12 X04_15 - 13 X04_16 - 14
X04_17 <= 0
2:4) 3 X01_3 + 4 X01_4 + 5 X01_5 + 6 X01_6 + 7 X01_7 + 8 X01_8 + 9 X01_9 + 10 X01_10 + 11 X01_11 + 12 X01_12 + 13 X01_13 + 14 X01_14 + 15 X01_15 + 16 X01_16 + 17 X01_17 - 8 X05_10 - 9 X05_11 - 10 X05_12 - 11 X05_13
- 12 X05_14 - 13 X05_15 - 14 X05_16 - 15 X05_17 - 16 X05_18 - 17 X05_19 <= 0
2:5) 8 X04_8 + 9 X04_9 + 10 X04_10 + 11 X04_11 + 12 X04_12 + 13 X04_13 + 14 X04_14 + 15 X04_15 + 16 X04_16 + 17 X04_17 - 8 X05_10 - 9 X05_11 - 10 X05_12 - 11 X05_13 - 12 X05_14 - 13 X05_15 - 14 X05_16 - 15 X05_17 - 16
X05_18 - 17 X05_19 <= 0
2:6) 0 X10_0 + 1 X10_1 + 2 X10_2 + 3 X10_3 + 4 X10_4 + 5 X10_5 + 6 X10_6 + 7 X10_7 - 0 X11_4 - 1 X11_5 - 2 X11_6 - 3 X11_7 - 4 X11_8 - 5 X11_9 - 6 X11_10 - 7 X11_11 <= 0
2:7) 4 X11_4 + 5 X11_5 + 6 X11_6 + 7 X11_7 + 8 X11_8 + 9 X11_9 + 10 X11_10 + 11 X11_11 - 4 X12_7 - 5 X12_8 - 6 X12_9 - 7 X12_10 - 8 X12_11 - 9 X12_12 - 10 X12_13 - 11 X12_14 <= 0
2:8) 4 X11_4 + 5 X11_5 + 6 X11_6 + 7 X11_7 + 8 X11_8 + 9 X11_9 + 10 X11_10 + 11 X11_11 - 4 X13_6 - 5 X13_7 - 6 X13_8 - 7 X13_9 - 8 X13_10 - 9 X13_11 - 10 X13_12 - 11 X13_13 - 12 X13_14 <= 0
2:9) 7 X12_7 + 8 X12_8 + 9 X12_9 + 10 X12_10 + 11 X12_11 + 12 X12_12 + 13 X12_13 + 14 X12_14 - 7 X14_9 - 8 X14_10 - 9 X14_11 - 10 X14_12 - 11 X14_13 - 12 X14_14 - 13 X14_15 - 14 X14_16 <= 0
2:10) 6 X13_6 + 7 X13_7 + 8 X13_8 + 9 X13_9 + 10 X13_10 + 11 X13_11 + 12 X13_12 + 13 X13_13 + 14 X13_14 - 7 X14_9 - 8 X14_10 - 9 X14_11 - 10 X14_12 - 11 X14_13 - 12 X14_14 - 13 X14_15 - 14 X14_16 <= 0
2:11) 9 X14_9 + 10 X14_10 + 11 X14_11 + 12 X14_12 + 13 X14_13 + 14 X14_14 + 15 X14_15 + 16 X14_16 - 9 X15_12 - 10 X15_13 - 11 X15_14 - 12 X15_15 - 13 X15_16 - 14 X15_17 - 15 X15_18 - 16 X15_19 <= 0
2:12) 3 X20_3 + 4 X20_4 + 5 X20_5 + 6 X20_6 + 7 X20_7 + 8 X20_8 + 9 X20_9 + 10 X20_10 + 11 X20_11 + 12 X20_12 + 13 X20_13 + 14 X20_14 - 3 X21_4 - 4 X21_5 - 5 X21_6 - 6 X21_7 - 7 X21_8 - 8 X21_9 - 9 X21_10 - 10 X21_11
- 11 X21_12 - 12 X21_13 - 13 X21_14 - 14 X21_15 <= 0
2:13) 4 X21_4 + 5 X21_5 + 6 X21_6 + 7 X21_7 + 8 X21_8 + 9 X21_9 + 10 X21_10 + 11 X21_11 + 12 X21_12 + 13 X21_13 + 14 X21_14 + 15 X21_15 - 4 X22_5 - 5 X22_6 - 6 X22_7 - 7 X22_8 - 8 X22_9 - 9 X22_10 - 10 X22_11 - 11 X22_12
- 12 X22_13 - 13 X22_14 - 14 X22_15 - 15 X22_16 <= 0
2:14) 3 X20_3 + 4 X20_4 + 5 X20_5 + 6 X20_6 + 7 X20_7 + 8 X20_8 + 9 X20_9 + 10 X20_10 + 11 X20_11 + 12 X20_12 + 13 X20_13 + 14 X20_14 - 3 X23_7 - 4 X23_8 - 5 X23_9 - 6 X23_10 - 7 X23_11 - 8 X23_12 - 9 X23_13 - 10 X23_14
- 11 X23_15 - 12 X23_16 - 13 X23_17 - 14 X23_18 <= 0
2:15) 5 X22_5 + 6 X22_6 + 7 X22_7 + 8 X22_8 + 9 X22_9 + 10 X22_10 + 11 X22_11 + 12 X22_12 + 13 X22_13 + 14 X22_14 + 15 X22_15 + 16 X22_16 - 5 X24_7 - 6 X24_8 - 7 X24_9 - 8 X24_10 - 9 X24_11 - 10 X24_12 - 11 X24_13 - 12
X24_14 - 13 X24_15 - 14 X24_16 - 15 X24_17 - 16 X24_18 <= 0
2:16) 7 X23_7 + 8 X23_8 + 9 X23_9 + 10 X23_10 + 11 X23_11 + 12 X23_12 + 13 X23_13 + 14 X23_14 + 15 X23_15 + 16 X23_16 + 17 X23_17 + 18 X23_18 - 7 X25_8 - 8 X25_9 - 9 X25_10 - 10 X25_11 - 11 X25_12 - 12 X25_13 - 13
X25_14 - 14 X25_15 - 15 X25_16 - 16 X25_17 - 17 X25_18 - 18 X25_19 <= 0
2:17) 7 X24_7 + 8 X24_8 + 9 X24_9 + 10 X24_10 + 11 X24_11 + 12 X24_12 + 13 X24_13 + 14 X24_14 + 15 X24_15 + 16 X24_16 + 17 X24_17 + 18 X24_18 - 7 X25_8 - 8 X25_9 - 9 X25_10 - 10 X25_11 - 11 X25_12 - 12 X25_13 - 13
X25_14 - 14 X25_15 - 15 X25_16 - 16 X25_17 - 17 X25_18 - 18 X25_19 <= 0
R0:t0) X10_0 <= 1
R0:t1) X01_3 + X10_1 <= 1
R0:t2) X01_3 + X01_4 + X10_2 <= 1
R0:t3) X01_3 + X01_4 + X01_5 + X03_5 + X10_3 <= 1
R0:t4) X01_4 + X01_5 + X01_6 + X03_5 + X03_6 + X10_4 <= 1
R0:t5) X01_5 + X01_6 + X01_7 + X03_5 + X03_6 + X03_7 + X10_5 <= 1
R0:t6) X01_6 + X01_7 + X01_8 + X03_6 + X03_7 + X03_8 + X04_8 + X10_6 <= 1
R0:t7) X01_7 + X01_8 + X01_9 + X03_7 + X03_8 + X03_9 + X04_8 + X04_9 + X10_7 <= 1
R0:t8) X01_8 + X01_9 + X01_10 + X03_8 + X03_9 + X03_10 + X04_8 + X04_9 + X04_10 + X14_9 <= 1
R0:t9) X01_9 + X01_10 + X01_11 + X03_9 + X03_10 + X03_11 + X04_9 + X04_10 + X04_11 + X14_9 + X14_10 <= 1
R0:t10) X01_10 + X01_11 + X01_12 + X03_10 + X03_11 + X03_12 + X04_10 + X04_11 + X04_12 + X14_10 + X14_11 <= 1
R0:t11) X01_11 + X01_12 + X01_13 + X03_11 + X03_12 + X03_13 + X04_11 + X04_12 + X04_13 + X14_11 + X14_12 <= 1
R0:t12) X01_12 + X01_13 + X01_14 + X03_12 + X03_13 + X03_14 + X04_12 + X04_13 + X04_14 + X14_12 + X14_13 <= 1
R0:t13) X01_13 + X01_14 + X01_15 + X03_13 + X03_14 + X04_13 + X04_14 + X04_15 + X14_13 + X14_14 <= 1
R0:t14) X01_14 + X01_15 + X01_16 + X03_14 + X04_14 + X04_15 + X04_16 + X14_14 + X14_15 <= 1
R0:t15) X01_15 + X01_16 + X01_17 + X04_15 + X04_16 + X04_17 + X14_15 + X14_16 <= 1
R0:t16) X01_16 + X01_17 + X04_16 + X04_17 + X14_16 <= 1
R0:t17) X01_17 + X04_17 <= 1
R1:t0) X20_3 <= 1
R1:t1) X20_3 + X20_4 <= 1
R1:t2) X20_3 + X20_4 + X20_5 <= 1
R1:t3) X20_3 + X20_4 + X20_5 + X20_6 <= 1
R1:t4) X20_4 + X20_5 + X20_6 + X20_7 <= 1
R1:t5) X20_5 + X20_6 + X20_7 + X20_8 + X22_5 <= 1
R1:t6) X20_6 + X20_7 + X20_8 + X20_9 + X22_6 <= 1
R1:t7) X20_7 + X20_8 + X20_9 + X20_10 + X22_7 <= 1
R1:t8) X20_8 + X20_9 + X20_10 + X20_11 + X22_8 <= 1
R1:t9) X20_9 + X20_10 + X20_11 + X20_12 + X22_9 <= 1
R1:t10) X20_10 + X20_11 + X20_12 + X20_13 + X22_10 <= 1
R1:t11) X20_11 + X20_12 + X20_13 + X20_14 + X22_11 <= 1
R1:t12) X20_12 + X20_13 + X20_14 + X22_12 <= 1
R1:t13) X20_13 + X20_14 + X22_13 <= 1
R1:t14) X20_14 + X22_14 <= 1
R1:t15) X22_15 <= 1
R1:t16) X22_16 <= 1
R2:t0) X00_0 <= 1
R2:t1) X00_1 + X02_2 + X11_4 <= 1
R2:t2) X00_2 + X02_2 + X02_3 + X11_4 + X11_5 <= 1
R2:t3) X00_3 + X02_3 + X02_4 + X11_4 + X11_5 + X11_6 <= 1
R2:t4) X00_4 + X02_4 + X02_5 + X11_4 + X11_5 + X11_6 + X11_7 + X21_4 <= 1
R2:t5) X00_5 + X02_5 + X02_6 + X11_5 + X11_6 + X11_7 + X11_8 + X12_7 + X13_6 + X21_5 <= 1
R2:t6) X00_6 + X02_6 + X02_7 + X11_6 + X11_7 + X11_8 + X11_9 + X12_7 + X12_8 + X13_6 + X13_7 + X21_6 + X24_7 <= 1
R2:t7) X00_7 + X02_7 + X02_8 + X11_7 + X11_8 + X11_9 + X11_10 + X12_7 + X12_8 + X12_9 + X13_7 + X13_8 + X21_7 + X24_7 + X24_8 <= 1
R2:t8) X00_8 + X02_8 + X02_9 + X11_8 + X11_9 + X11_10 + X11_11 + X12_8 + X12_9 + X12_10 + X13_8 + X13_9 + X21_8 + X24_8 + X24_9 + X25_8 <= 1
R2:t9) X00_9 + X02_9 + X02_10 + X11_9 + X11_10 + X11_11 + X12_9 + X12_10 + X12_11 + X13_9 + X13_10 + X21_9 + X24_9 + X24_10 + X25_9 <= 1
R2:t10) X02_10 + X02_11 + X11_10 + X11_11 + X12_10 + X12_11 + X12_12 + X13_10 + X13_11 + X21_10 + X24_10 + X24_11 + X25_10 <= 1
R2:t11) X02_11 + X11_11 + X12_11 + X12_12 + X12_13 + X13_11 + X13_12 + X21_11 + X24_11 + X24_12 + X25_11 <= 1
R2:t12) X12_12 + X12_13 + X12_14 + X13_12 + X13_13 + X21_12 + X24_12 + X24_13 + X25_12 <= 1
R2:t13) X12_13 + X12_14 + X13_13 + X13_14 + X21_13 + X24_13 + X24_14 + X25_13 <= 1
R2:t14) X12_14 + X13_14 + X21_14 + X24_14 + X24_15 + X25_14 <= 1
R2:t15) X21_15 + X24_15 + X24_16 + X25_15 <= 1
R2:t16) X24_16 + X24_17 + X25_16 <= 1
R2:t17) X24_17 + X24_18 + X25_17 <= 1
R2:t18) X24_18 + X25_18 <= 1
R2:t19) X25_19 <= 1
R3:t4) X23_7 <= 1
R3:t5) X23_7 + X23_8 <= 1
R3:t6) X23_7 + X23_8 + X23_9 <= 1
R3:t7) X23_7 + X23_8 + X23_9 + X23_10 <= 1
R3:t8) X23_8 + X23_9 + X23_10 + X23_11 <= 1
R3:t9) X05_10 + X23_9 + X23_10 + X23_11 + X23_12 <= 1
R3:t10) X05_10 + X05_11 + X15_12 + X23_10 + X23_11 + X23_12 + X23_13 <= 1
R3:t11) X05_11 + X05_12 + X15_12 + X15_13 + X23_11 + X23_12 + X23_13 + X23_14 <= 1
R3:t12) X05_12 + X05_13 + X15_12 + X15_13 + X15_14 + X23_12 + X23_13 + X23_14 + X23_15 <= 1
R3:t13) X05_13 + X05_14 + X15_13 + X15_14 + X15_15 + X23_13 + X23_14 + X23_15 + X23_16 <= 1
R3:t14) X05_14 + X05_15 + X15_14 + X15_15 + X15_16 + X23_14 + X23_15 + X23_16 + X23_17 <= 1
R3:t15) X05_15 + X05_16 + X15_15 + X15_16 + X15_17 + X23_15 + X23_16 + X23_17 + X23_18 <= 1
R3:t16) X05_16 + X05_17 + X15_16 + X15_17 + X15_18 + X23_16 + X23_17 + X23_18 <= 1
R3:t17) X05_17 + X05_18 + X15_17 + X15_18 + X15_19 + X23_17 + X23_18 <= 1
R3:t18) X05_18 + X05_19 + X15_18 + X15_19 + X23_18 <= 1
R3:t19) X05_19 + X15_19 <= 1
END
INTE 186

Fig. 6.2. An example of LINDO input file, which is automatically generated by PtatoSim
(DMP instance: OTEST3-1.DAT, which has 3 projects, 4 resources and 6 jobs per project
with time horizon = 25).

102

6.1.2 Simulation Data Sets

Some of the most frequently referred project scheduling problem sets in litera-

ture are Patterson’s data (Patterson, 1984) and PSPLIB (Kolisch and Sprecher, 1996).

Both of them are basically dedicated to single project scheduling problems, while our

DMP problem domain is a distributed multiple projects environment. PSPLIB, which is

more frequently referred to recently, was generated by a general purpose project schedul-

ing problem-instance generator called ProGen (Kolisch et al., 1992), which can generate

multi-project instances. Therefore, we use ProGen to generate a variety of different prob-

lem instances for simulating and testing many different aspects of P-Tâto mechanism.

Figure 6.3 shows snapshots of the ProGen input file, execution, and output file.

6.1.3 ProGen Parameters

About fifty parameters can be defined in the input file by users to generate project

scheduling-problem instances (which have different configurations) using ProGen. In this

case, which is single mode, renewable resource only, and multiple project scheduling, only

part of the parameters can be altered. Table 6.1 summaries the important parameters to

be controlled for generating DMP problem instances. The detailed and comprehensive

description on the parameters can be found in (Kolisch et al., 1992) and (Kolisch and

Sprecher, 1996).

Among the parameters list in Table 6.1, the following three parameters need to

be explained in a little bit more:

• DueDateFactor, denoted by δfac, is used for generating the target dates (Gi1)

of each project i. Gi1 = trunc(EFi + δfac(T̄ − EFi)), where EFi is the earliest

finish time1 of project Pi and T̄ is the time horizon, which is the sum of duration

times for all jobs through out the projects.

1This is automatically calculated without any consideration of resource constraints based on
the critical path analysis.

103

Fig. 6.3. Snapshots of ProGen input file, execution window, and output file (The sample
project has 3 projects, 3 resources and 4 jobs per projects).

104

Table 6.1. Controllable ProGen Parameters for DMP problems with example values.

Categories Parameters Description Example

Projects NrOfPro number of projects 3
MinJob minimal number of jobs per projects 10
MaxJob maximal number of jobs per projects 10
DueDateFactor maximal due date 0.0

Modes MinDur minimal duration of tasks 1
MaxDur maximal duration of tasks 10

Network MinOutSource minimal number of start activities per project 1
MaxOutSource maximal number of start activities per project 1
MaxOut maximal number of successor per activity 3
MinInSink minimal number of end activities per project 1
MaxInSink maximal number of end activities per project 1
MaxIn maximal number of predecessors per activity 3
Complexity complexity of network 1.2

Resources Rmin minimal number of renewable resources 4
Rmax maximal number of renewable resources 4
RF resource factor 0.25

105

• Complexity, denoted by C, is the average number of arcs per node2 (in activity-

in-node representation). So, this complexity measure can be understood in the

way that for a fixed number of jobs a higher complexity results in a greater inter-

connectedness of the network.

• Resource Factor, denoted by RF , is the average portion of resources requested

per job. If RF = 1, then each job requests all resources. RF = 0 indicates that no

job requests any resources, thus we obtain the unconstrained case. In our case, we

fix Rmin = Rmix and RF = 1
Rmin because a job occupies a single resource type

(i.e., single mode and single resource unit).

Figure 6.4 shows a project scheduling instance, which was generated by ProGen

using the input parameters listed in Table 6.1. An actual ProGen-generated project

instance file (*.dat) includes two additional (dummy) nodes, called super-source and

super-sink, constituting a single big project network. These super-nodes are eliminated

to get separate multiple project networks by PtatoSim internally.

6.2 Performance of Local Market Evaluation Mechanism

The optimality and efficiency of the local market evaluation mechanism are critical

factors for those of the temporary economy clearing mechanism (namely, whole P-Tâto

mechanism). Especially the optimality and efficiency of the winning bid determination

step (explained in Section 4.5) is the dominant factors for those of the local market eval-

uation mechanism. In order to evaluate the optimality and efficiency of the local market

evaluation heuristic algorithm, we investigate 10 randomly generated DMP instances

(data set 35J81 � 35J810), each of which has 3 projects, 5 resources and 8 tasks per

project. P-Tâto converged in 11, 3, 10, 3, 7, 20, 12, 8, 4 and 4 iterations for these

DMP instances respectively. Because every resource agent solves its own local market

combinatorial auction in every iteration, we can gather a total of 410 (= 82 × 5) local

2Here, the super-node and super-sink are also taken into account.

106

0

(3,4)

1

(2,2)

4

(3,6)

8

(2,2)

2

(0,8)

3

(0,7)

6

(2,5)

7

(2,7)

5

(3,6)

9

(0,2)

0

(3,5)

4

(0,7)

8

(0,6)

2

(1,3)

3

(0,6)

6

(3,8)

7

(3,3)

5

(0,2)

9

(1,1)

1

(3,1)

3

1

2

4

5

7

8

90

(0,9)

(3,1)

(0,7)

(0,6)

(1,3)

(0,6)

(3,8)

(3,3)

(0,2)

(1,1)

6

Ss

(a)

(b)

(c)

Fig. 6.4. Sample DMP network generated by ProGen (See previous table for the param-
eters) (a) project-1 (due: 28, weight: 2); (b) project-2 (due: 29, weight: 5); (c) project-3
(due: 30, weight: 7). The two numbers below each node denote resource identifiers
and duration times, respectively. The nodes S and s are super-sink and super-source
respectively.

107

market evaluation instances, whose numbers of tasks ranges from 2 to 83. They were

compared to the optimal local schedules, which were found by total enumeration4. The

results are summarized in Table 6.2 and Figure 6.5. As shown in Figure 6.5(a), the search

space (the number of examined sequences) increases almost linearly as the number of

tasks in a resource increases, while the total search space (which is a set of all possible

task sequences) increase in a factorial way. As a result, search efficiency - the number

of examined sequences divided by the number of all possible sequences - converges to

0 quickly as the number of tasks increases (as shown in Figure 6.5(c)). However, the

optimality of the solution is still very high, ranging from 99.8% to 100% of the optimal

solution, which generated by total enumeration (as shown in Figure 6.5(c)).

Table 6.2. Experimental results of local market allocation algorithm.

No. of tasks per resource (N) 2 3 4 5 6 7 8

Total number of possible se-
quences (N !)

2 6 24 120 720 5040 40320

Average number of examined
sequences (n)

2 3.3 4.2 5.8 9.3 8.4 10.3

Average search efficiency
(n/N !) (full search = 1.0)

1.0 0.56 0.175 0.046 0.013 0.002 3E-4

Average optimality (optimal =
1.0)

1.0 1.0 1.0 1.0 0.999 0.998 0.999

6.3 Performance of Temporary Economy Mechanism

In order to test the solution optimality of temporary economy, we tested 10 ran-

domly generated small-size DMP instances. Each of these DMP instances has 3 projects,

4 resources and 6 jobs per project5. The target dates are set to the earliest completion

3Because ProGen generates project instances in a random way, the numbers of tasks assigned
per resource are not always same for each resource.

4In order to study the optimality of the local market evaluation algorithm using PtatoSim,
the user can choose if either the heuristic algorithm or the total enumeration is used for the local
market evaluation.

5For bigger problems, for example more than 6 jobs per project, the number of variables in
the IP formulation easily exceeds 800, which is the maximum number of integer variables of the
standard LINDO solver.

108

0

2

4

6

8

10

12

2 3 4 5 6 7 8

No. of tasks in a Resource

N
o.

of
E

xa
m

in
ed

S
eq

ue
nc

es

1.00

0.56

0.17

0.05 0.01 0.00 0.00

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8

No. of Tasks in a Resource

S
ea

rc
h

S
pa

ce
R

at
io

1.000 1.000 1.000 1.000 0.999 0.998 0.999

0.95

0.96

0.97

0.98

0.99

1

2 3 4 5 6 7 8

No. of tasks in a Resource

O
pt

im
al

ity
(1

.0
m

ea
ns

O
pt

im
al

)

(a)

(b)

(c)

Fig. 6.5. Experimental performance of local market optimal allocation algorithm (Data
set: 35J81 � 35J810, total 410 instances used): (a) average numbers of examined se-
quences; (b) average search efficiency; (c) optimality.

109

date based on the project-wise critical path analysis (δfac = 0), meaning that all DMP

instances are supposed to generate positive weighted deviation cost values due to the re-

source constraints. This setting is too tight of a condition for real practice, because they

cannot finish the projects earlier than the given target dates by any means. However,

in the experimental situation, we can see the solution quality of different solution ap-

proaches clearly based on this setting. The DMP instances were also solved by LINDO,

based on the IP formulation explained in Chapter 2. The LINDO input models are au-

tomatically generated by PtatoSim using Export to LINDO menu. Figure 6.6 shows the

weighted deviation costs of the sample data sets. The weights (or unit tardiness costs)

are assigned to each project, ranging from 1.0 to 5.0, which means the the results (of

weighted sum of deviation costs) are 1 to 5 times bigger than the real delay (in dates

or hours, for example). As shown in the figure, 6 out of 10 instances generate optimal

solution with the average excessive weighted deviation cost = 11%.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Data Sets

W
ei

gh
te

d
S

um
of

D
ev

ia
tio

n
C

os
ts P-Tato

Optimal

108% 100%

160%

100%

133%

115%

100%

100%

100%

100%

Fig. 6.6. Optimality of P-Tâto for small examples (Data set: OTEST3). Each of ten
DMP instances has 3 projects, 4 resources and 6 activities per project.

110

Figure 6.7 illustrates the computational time comparison between PtatoSim and

LINDO for the same DMP instances of Figure 6.6. The average computation time is

about 12% of the LINDO solution. The computation time for both approaches are

seriously dependent on the length of the time horizon (see Section 6.4.1). Especially

for the IP formulation, the number of integer variables increases rapidly with the time

horizon. We run the PtatoSim first using enough time horizon for the algorithm, and

based on the schedule generated by the PtatoSim, we set the minimum number of time

slots in the horizon for the IP formulation. Hence, the computational time of the IP

formulation in the experiments might be longer than the results if we compare them in

a same condition. In addition, the gap between computational efficiencies of P-Tâto

and the IP formulation will get bigger when the P-Tâto mechanism is implemented in

a multiagent system, where the most-time-consuming local market evaluation is to be

carried out by each resource agent simultaneously in distributed local computers.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

Data Sets

C
om

pu
ta

tio
n

T
im

e
(L

og
m

ili
se

c.
)

P-Tato

Optimal5.7%

1.1%

11.0%

20.5%

3.6%

27.1%10.0%26.0 %

11.6%
4.8%

Fig. 6.7. Computation time comparison P-Tâto vs. IP formulation (using PtatoSim
and LINDO respectively).

111

6.4 Effects of DMP Configuration: Scalability

Scalability is defined as the ability of a system or algorithm to continue to function

well as either the system or the assigned task is changed in size or volume. Hence, the

measure of scalability must be closely related to the concept of efficiency, which is the

ability to do a task within certain constraints. In order to study the scalability of the

P-Tâto mechanism, it must be examined for changes in computational performance as

some of problem parameters - including number of projects, number of resources, number

of tasks, and scheduling horizon - increases. We examine the overall performance of

the P-Tâto as the DMP configuration varies accordingly. We investigate many DMP

instances of difference configuration using the following metrics:

• Convergence : The convergence is measured by the number of iterations until

the P-Tâto mechanism is completed or stops. The condition for stopping is

controlled in PtatoSim by two user-defined parameters: (1) maximum number of

iteration (Imax), (2) precedence cost change6 tolerance (ρ). We set the maximum

number of iteration 400, and set ρ = 0 in most cases.7

• Computational efficiency : We measure the computation time in PtatoSim. We

are not only interested in the total time until the P-Tâto mechanism converges but

also the local computation time for each project and resource, because the whole

P-Tâto mechanism will be carried out in a distributed computing environment in

practice.

• Dynamic behavior : As a complimentary information for convergence of the P-

Tâto mechanism, we also check changes of intermediate output values including

deviation costs of the projects in each iterations. This additional information is

useful to understand the speed of convergence.

6Precedence cost change is defined as the sum of absolute values of precedence cost adjustment
(∆ckl, where k is a task index and l is a slot index.) in a given iteration.

7If deviation cost change at the Imax-th iteration is still bigger than ρ, PtatoSim returns the
best feasible solution during the iterations. If there is no feasible solution until then, the solution
at the last iteration is to be returned although it is not a feasible solution.

112

In the remainder of this section, we investigate the effects of some characteris-

tic factors of the DMP configuration on the above performance measures of P-Tâto.

Investigated characteristic factors of a DMP configuration include:

• Scheduling horizon: The scheduling horizon defines the number of time slots,

which are the commodities to be bought and sold. So, this parameter affects the

performance of the local market evaluation mechanism, and ultimately the overall

P-Tâto mechanism.

• Complexity of project networks: The more precedence relations between tasks

in a project means more tasks are coupled in generating feasible schedules. We use

the average number of arcs from a node as the measure of the complexity of project

networks.

• Number of Projects, Resources and Tasks: These three factors define the

overall size and the resource availability of a DMP configuration. We examine the

effects of the number of projects, resource availability, and the number of tasks per

project.

6.4.1 Effect of Scheduling Horizon

The time horizon of a project scheduling problem significantly affects the per-

formance of the IP solution procedure. How about P-Tâto mechanism? In order to

evaluate the effect of the scheduling horizon on the performance of P-Tâto mechanism,

we investigate 3 randomly generated sets of DMP instances thoroughly. Each DMP in-

stances in these 3 sets has 3 projects, 4 resources and 10 tasks per each project. Each set

has 5 DMP instances, and the corresponding three instances across the sets are exactly

the same instances except for the scheduling time horizon. The levels of time horizon

are 50, 80, and 100.

The experimental results are summarized in Table 6.3. As shown in the table, the

overall performance (e.g., convergence, solution quality, etc.) are not different from each

other. Even the dynamic behaviors during the P-Tâto mechanism exactly the same as

shown in Figure 6.8. The computational load increases as the time horizon increases (see

113

Figure 6.9), because the complexity of the local market evaluation algorithm increases

according to the length of scheduling horizon. However, the computational complexity

seems to increase almost linearly, rather than exponentially, as the horizon increases for

the tested horizon range (50 - 100) as shown in the figure.

Table 6.3. Experimental results of testing the effect of varying scheduling horizons (†:
infeasible allocation happened in Resource-1).

time number of latest aggregate computation time
horizon iterations completion deviation cost total (sec) per iteration

1 140 36 76 81 0.58
2 22 38 18 6 0.27

50 3† - 40 - - -
4 16 42 47 4 0.25
5 9 34 56 3 0.33
1 140 36 76 360 2.57
2 22 38 18 36 1.64

80 3 23 40 16 30 1.30
4 16 42 47 41 2.56
5 9 34 56 21 2.33
1 140 36 76 765 5.46
2 22 38 18 71 3.23

100 3 23 40 16 66 2.87
4 16 42 47 88 5.50
5 9 34 56 40 4.44

6.4.2 Effect of Project Network Complexity

P-Tâto is the first convergent market-based mechanism applied to (multiple)

“project” resource scheduling environment. That means the complexity of the project

network can be a source of significant computational burden, which has never been re-

ported in the literature. In order to analyze the effect of project network complexity

on the computational efficiency, we need project networks having different levels of net-

work complexity with other characteristics remaining the same. We define the network

114

0

20

40

60

80

100

120

140

160

1 14 27 40 53 66 79 92 10
5

11
8

13
1

iterations

0

20

40

60

80

100

120

140

160

1 14 27 40 53 66 79 92 10
5

11
8

13
1

iterations

de
vi

at
io

n
co

st
s

0

20

40

60

80

100

120

140

160

1 14 27 40 53 66 79 92 10
5

11
8

13
1

iterations

(a) (b) (c)

Fig. 6.8. Deviation cost plot of a same DMP instances varying time horizon (The 1st
instances of the data set: C12H50, C12H80, C12H100; the thick lines are aggregate
deviation costs, while the other lines are deviation costs of individual projects). (a)
horizon = 50, (b) horizon = 80, (c) horizon = 100.

0

1

2

3

4

5

6

40 50 60 70 80 90 100 110

horizon length

co
m

pu
ta

tio
n

tim
e

/i
te

ra
tio

n

DMP-1

DMP-2

DMP-3

DMP-4

DMP-5

Fig. 6.9. Effect of the scheduling horizon on computation time (second).

115

complexity, which is a measure of coupling among tasks within a project based on the

precedence relationship, as follows.

Definition 6.1. (Project Network Complexity) The project network complexity of

a project is the average number of outgoing arcs of each node excluding the first and the

last nodes (i.e., super-source and super-sink nodes as explained in Section 6.1.3), where

the project network uses activity-in-node representation scheme. �

We generate DMP instances with 3 projects, 3 resources and 15 jobs per projects

using ProGen. The initial project networks are shown in Figure 6.10 and consist of 28

arcs per project excluding the arcs from the starting nodes. Hence, the project network

complexity is 2.15. We decrease the complexity of the project networks in multiple steps

by removing arcs randomly as shown in Figure 6.11. The complexity levels of the project

networks are 1.85, 1.54, 1.23 and 1.08. For exact comparison, we use the same length

of scheduling horizon for all instances. We investigate the dynamic behavior of each

project’s deviation costs over iterations and computation complexity (using convergence

and computation time).

• Dynamic behavior of each DMP instance varies according to the difference levels

of complexity as shown in Figure 6.12. We can hardly find any trend on dynamic

behavior for the different levels of network complexity.

• The computation time and the number of iterations do not increase according to the

increase of complexity as shown in Figure 6.13, and in some regions (1.08 ≤ project

network complexity ≤ 1.54), the measures even decrease as the network complexity

increases, meaning that the computational complexity of P-Tâto mechanism is

also indifferent to (or positively affected by) the complexity of project networks.

116

0

1

2

3

5

4

7

8

9

6 10

11

12

13

14

0

1

2

3

4

5

7

8

6

9

10

11

12

13

14

0

1

2

3

45

7

8

9

6 10

11

12

13

14

Fig. 6.10. The initial project networks with complexity = 2.15 (Data Set: P3R3J10-28)

117

0

1

2

3

45

7

8

9

6 10

11

12

13

14

0

1

2

3

5

4

7

8

9

6 10

11

12

13

14

0

1

2

3

4

5

7

8

6

9

10

11

12

13

14

(b)

0

1

2

3

45

7

8

9

6 10

11

12

13

14

0

1

2

3

5

4

7

8

9

6 10

11

12

13

14

0

1

2

3

4

5

7

8

6

9

10

11

12

13

14

(a)

0

1

2

3

45

7

8

9

6 10

11

12

13

14

0

1

2

3

5

4

7

8

9

6 10

11

12

13

14

0

1

2

3

4

5

7

8

6

9

10

11

12

13

14

(c)

0

1

2

3

45

7

8

9

6 10

11

12

13

14

0

1

2

3

5

4

7

8

9

6 10

11

12

13

14

0

1

2

3

4

5

7

8

6

9

10

11

12

13

14

(d)

Fig. 6.11. DMP instances with different levels of project network complexity: (a) 1.85,
(b) 1.54, (c) 1.23, (d) 1.08.

118

0

50

100

150

200

1 9 17 25 33 41 49 57 65 73 81

0

50

100

150

200

1 9 17 25 33 41 49 57 65 73 81

0

50

100

150

200

1 6 11 16 21 26 31 36 41 46

0

50

100

150

200

1 8 15 22 29 36 43 50 57 64 71

0

50

100

150

200

1 8 15 22 29 36 43 50 57 64

Iterations

D
ev

ia
tio

n
C

os
ts

Project-1

Project-2

Project-3

Aggregate

(a)

(d)

(c)(b)

(e)

Fig. 6.12. Dynamic behaviors of the DMP instance according to the different levels of
network complexity (complexity levels: (a) 2.15 (b) 1.85, (c) 1.54, (d) 1.23, (e) 1.08).

119

107.7

73.7

40.7

52.4

42.1

86 83

50

72 70

20

40

60

80

100

120

1.00 1.20 1.40 1.60 1.80 2.00 2.20

Project netw ork complexity

C
om

pu
ta

tio
n

tim
e

(s
ec

.)
;

N
of

ite
ra

tio
ns

Computation Time

N of Iteration

Fig. 6.13. Computational measures (computation time and number of iterations) of the
DMP instances with different levels of project network complexity.

6.4.3 Effect of Number of Projects, Resources, and Tasks

The number of projects, resources and tasks determines the size of the DMP

configuration. In the P-Tâto mechanism, two main conflict resolution interactions take

place (a) between task agents and resource agents in each local market and (b) among

task agents within a project. Hence, the relative availability of resources with respect to

the number of tasks is more influential than the number of resources itself. In the same

sense, the number of tasks per project is a more direct factor to computational efficiency

compare to the total number of tasks. We define the resource availability as follows:

Definition 6.2. (Resource Availability) The resource availability of a DMP instance

is the ratio of the number of available resources over the total number of tasks which

require the resources. �

We first examine the effect of the number of projects by fixing the resource avail-

ability and the number of tasks per project, then investigate the effect of resource avail-

ability and the number of tasks per project.

120

6.4.3.1 Effect of Number of Projects

In order to examine the effect of the number of projects on the computational

efficiency of P-Tâto mechanism, we randomly generate 160 DMP instances, each with 2

to 5 projects as shown in Table 6.4. The 16 data sets are grouped according to 4 different

levels of resource availability and the number of tasks per project. Figure 6.14 shows the

simulation results. As shown in the figure, the effect of the number of projects is not

significant as far as resource availability, and the number of tasks per project remains

the same.

Table 6.4. Data sets and simulation results on the effect of number of projects (schedul-
ing horizon = 80, network complexity = 1.2).

No. of tasks / No. of resource No. of DMP data set average
projects project resources availability instances name iterations

6 2 6 10 P2J6R2 10.3
2 8 2 8 10 P2J8R2 13.4

10 2 10 10 P2J10R2 23.6
12 2 12 10 P2J12R2 39.4
6 3 6 10 P3J6R3 9.9

3 8 3 8 10 P3J8R3 16.8
10 3 10 10 P3J10R3 27.2
12 3 12 10 P3J12R3 30.9
6 4 6 10 P4J6R4 11

4 8 4 8 10 P4J8R4 24.2
10 4 10 10 P4J10R4 38.2
12 4 12 10 P4J12R4 49
6 5 6 10 P5J6R5 12

5 8 5 8 10 P5J8R5 17.6
10 5 10 10 P5J10R5 25.2
12 5 12 10 P5J12R5 48.5

total instances 160

121

0

20

40

60

80

1 2 3 4 5 6

No. of Projects

N
o.

of
Ite

ra
tio

ns

T/R=T/P=6

T/R=T/P=8

T/R=T/P=10

T/R=T/P=12

Fig. 6.14. Effect of the number of projects on computational load.

6.4.3.2 Effect of Resource Availability and the Number of Tasks Per Project

In order to examine both resource availability and the number of tasks per project,

we simulate 350 DMP instances as summarized in Table 6.5. As shown in the table, the

data sets have different levels of resource availability (levels are 2, 3, 4, 6, 8, 9, 12, and

18) and number of tasks per project (levels are 4, 6, 8, 9, 12, and 18). The simulation

results show an overall trend of increasing number of iterations according to both of the

inverse resource availability and the number of tasks per project as shown in Figure 6.15.

Here the inverse resource availability is the average number of tasks to be assigned per

resource. Note that the scales of the domain axes (both of resource availability and the

number of tasks per project) are not linear.

Figure 6.16 shows the effect of the resource availability and the number of tasks

per project separately. As shown in the figure, according to the increase in the number

of tasks per project, the convergence speed increases almost linearly (see Figure 6.16(a)).

A similar result is shown for the effect of resource availability (Figure 6.16(b)). That

means P-Tâto mechanism is scalable or applicable to a practical size of the problems,

because the computational time per each iteration varies from a few seconds to 1 minute

in extreme cases. Also this time must be divided by the number of local markets (i.e.,

number of resources), which can be evaluated simultaneously on separate computers.

122

Table 6.5. Data sets and simulation results on the effect of resources availability and
the number of tasks per project (scheduling horizon = 80, network complexity = 1.2).

No. of tasks / No. of resource No. of DMP data set average
projects project resources availability instances name iterations

8 4 4 10 P2J8R4 4.2
9 6 3 10 P2J9R6 3.8
12 6 4 10 P2J12R6 5.2

2 12 8 3 10 P2J12R8 4.7
18 6 6 10 P2J18R6 21.0
18 9 4 10 P2J18R9 7.8
18 12 3 10 P2J18R12 8.9
4 2 8 10 P4J4R2 6.2
6 4 6 10 P4J6R4 9.9
6 6 4 10 P4J6R6 6.1
6 8 3 10 P4J6R8 4.0
12 4 12 10 P4J12R4 66.6

4 12 6 8 10 P4J12R6 30.2
12 8 6 10 P4J12R8 18.9
18 4 18 10 P4J18R4 123.7
18 6 12 10 P4J18R6 78.6
18 8 9 10 P6J18R8 39.2
4 2 12 10 P6J4R2 14.0
4 4 6 10 P6J4R4 6.3
4 6 4 10 P6J4R6 3.9
4 8 3 10 P6J4R8 3.9
6 2 18 10 P6J6R2 33.0

6 8 4 12 10 P6J8R4 30.4
8 6 8 10 P6J8R6 21.9
8 8 6 10 P6J8R8 13.3
12 4 18 10 P6J12R4 70.8
12 6 12 10 P6J12R6 46.6
12 8 9 10 P6J12R8 43.2
6 4 12 10 P8J6R4 22.3
6 6 8 10 P8J6R6 18.3

8 6 8 6 10 P8J6R8 12.3
9 4 18 10 P8J9R4 49.1
9 6 12 10 P8J9R6 36.7
9 8 9 10 P8J9R8 22.9

9 4 2 18 10 P9J4R2 21.0
total instances 350

123

4
6

8.5
12

18
3

4

6

8~9

12
18

0

20

40

60

80

100

120

140 N iterations

N of Tasks / Project

1
(R-Avail)

120-140

100-120

80-100

60-80

40-60

20-40

0-20

Fig. 6.15. Effect of resource availability and number of tasks per project on computa-
tional load. (Note: The scales of the domain axes are not linear. Hence the steepness in
the range of 12 to 18 is inflated.)

0

20

40

60

80

100

120

140

3 5 7 9 11 13 15 17 19

N of Tasks / Project

N
of

ite
ra

tio
ns

3

4

6

8~9

12

18

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16 18

1 / Resource Availability

N
of

ite
ra

tio
ns

T/P = 4

T/P = 6

T/P = 8.5

T/P = 12

T/P = 18

(a) (b)

Fig. 6.16. Effect of resource availability and number of tasks per project on com-
putational load: (a) effect of the number of tasks per projects, (b) effect of resource
availability.

124

6.5 Controllability

Each project can have a unique deviation cost function in the proposed problem

solving model. Consider a linear deviation cost function, which has a unit tardiness cost

as the slops of the function. This unit tardiness cost can apparently be interpreted as the

level of urgency or importance (simply a weight) of the project. We can give different

weights to different projects, and the weights can be changed over time depending on

the DMP situation. Whatever the cases are, different levels of the weight must affect the

resultant deviation costs of the projects after the temporary economy clearance using

the P-Tâto mechanism. In order to examine the correlations clearly, we transform the

weight (wi’s) and resultant deviation cost (di’s) of each project to generate a normalize

weight (w̃i’s) and a normalized deviation cost (d̃i’s) where i denotes the project index

as follows:

w̃i = (wi − mini(wi))/(maxi(wi) − mini(wi)) (6.1)

d̃i = 1 − (di − mini(di))/(maxi(di) − mini(di)) (6.2)

The controllability measure can be defined using these values as follows:

Definition 6.3. (Controllability) The controllability is the correlation coefficient be-

tween normalized weight distribution and the resultant deviation cost distribution (gen-

erated by P-Tâto mechanism). �

In order to verify the controllability of P-Tâto mechanism, we conducted ex-

perimental analysis using 20 randomly generated DMP instances, each of which has 4

projects, 4 resources, 10 jobs per project, network complexity = 1.5, and due date factor

= 0.0. For three sample DMP instances from the data set, we plot the deviation costs

of individual projects over iterations. As shown in Figure 6.17, in the early stage there

is no clear differentiation in resultant deviation costs according to the given weights dis-

tribution, but soon the deviation costs are ordered clearly according to the given weight

distribution.

125

(b)

(a)

0

10

20

30

40

50
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Iterations

T
ar

di
ne

ss

W=5

W=8

W=3

W=2

0

10

20

30

40

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Iterations

T
ar

di
ne

ss

W=2

W=1

W=9

W=4

0

10

20

30

40

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

Iterations

T
ar

di
ne

ss

W=3

W=1

W=5

W=4

(c)

Fig. 6.17. Time series of tardiness with different tardiness costs (W): (a) CONT-02, (b)
CONT-04, (c) CONT-05, each of which has 4 projects, 4 resources, 10 jobs per project,
network complexity 1.5, due date factor 0.0.

126

Figure 6.18 shows the normalized correlation between the normalized project

weight (w̃i’s) distribution and resultant deviation cost (d̃i’s) distribution. As shown

in figure, most of the instances show the strong correlation between the tardiness cost

weights and resultant tardiness values, and the calculated controllability is 0.89, saying

that there is strong correlation between the given weights and the resultant weights. The

dynamic behavior and the correlation coefficient show that we can relate the importance

of the project and the resultant cost deviation.

(a) (b) (c) (e)(d)

(f) (g) (h) (j)(i)

(k) (l) (m) (o)(n)

(p) (q) (r) (t)(s)

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

-0.5

0.0

0.5

1.0

1.5

1 2 3 4

Fig. 6.18. Correlation between tardiness cost weight and resultant tardiness of projects
(�: normalized tardiness cost weights; �: normalized resultant tardiness values of
projects).

127

6.6 Convergence

In the precedence cost adjustment rule (see Section 4.4.5), c̄I can be interpreted as

a strength of the force to enable precedence-feasible schedules, while c̄D as a strength of

the force to compress the schedule. Hence the ratio α between these two parameters (=

c̄I/c̄D) can affect the convergence performance of P-Tâto significantly. We examined

60 DMP instances in three different size classes (as summarized in Table 6.6), by applying

different α levels and measuring the number of iterations until the mechanism stops (as

a measure of convergence speed).

As expected, the number of iterations until convergence varies greatly depending

on the different levels of α, while we could not find any significant difference in solution

quality for different levels of α. As shown in Figure 6.19 (a), α = 0.4 to 0.8 reveals good

convergence speeds. Obviously, for α ≥ 1.0 we found ill-convergence for all three classes

because the precedence costs will keep increasing over iterations. For α = 1.0, 1.2 and

1.4, 18%, 77% and 82% of the DMP instances failed to converge without any feasible

solutions generated in 500 iterations as shown in Figure 6.20. The average number of

iterations for α = 0.2 to 0.8 are 12.6, 71.5, and 119.0 for the three classes, respectively.

Table 6.6. Experimental design (number of DMP instances) for testing the effect of α
values on the convergence of P-Tâto mechanism (CONV1: 4×4×6, CONV2: 4×4×12,
CONV3: 4 × 4 × 18, where (N of projects)×(N of resources)×(N of jobs per project);
c̄I = 5).

α data set-1 data set-2 data set-3
levels (CLASS-1) (CLASS-2) (CLASS-3)

0.2 20 20 20
0.4 20 20 20
0.6 20 20 20
0.8 20 20 20
1.0 20 20 20
1.2 20 20 20
1.4 20 20 20

128

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2

Alpha levels

A
ve

ra
ge

Ite
ra

tio
ns

(E
xc

lu
di

ng
N

on
-c

on
ve

rg
en

tc
as

es
)

CLASS-1

CLASS-2

CLASS-3

39.6 37.5 38.0 38.0

111.8 111.2 112.2 104.7

165.4 169.5 166.6 171.0

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

Alpha levels
A

ve
ra

ge
W

ei
gh

te
d

S
um

of
D

ev
ia

tio
n

C
os

t

α levels α levels
(a) (b)

Fig. 6.19. Effect of α values: (a) on the convergence performance, (b) on the solution
quality.

10
0

10
0

10
0

10
0

10
0

75

55

95 95

10
0

10
0

75

5

0

95 95

90

10
0

70

0 0

0

20

40

60

80

100

0.2 0.4 0.6 0.8 1 1.2 1.4

Alpha levels

%
of

C
on

ve
rg

en
tD

M
P

in
st

an
ce

s

CLASS-1

CLASS-2

CLASS-3

10
0

10
0

10
0

10
0

82

27

18

97 97 97 10
0

82

27

18

0

20

40

60

80

100

0.2 0.4 0.6 0.8 1 1.2 1.4

Alpha levels

%
of

co
nv

er
ge

nt
D

M
P

in
st

an
ce

s

CASE-1

CASE-2

α levels α levels
(a) (b)

Fig. 6.20. Effect of α values on convergence (in 500 iterations) : (a) percentages of con-
vergent DMP instances, (b) average percentages of convergent DMP instances (CASE-
1: including feasible/non-convergent cases; CASE-2: excluding feasible/non-convergent
cases).

129

Table 6.7. Simulation result (the number of iterations): effect of α on convergence (∗:
not convergent in 500 iterations, but obtained the best feasible solution at this iteration;
†: neither converged nor obtained a feasible solution in 500 iterations).

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0 α = 1.2 α = 1.4

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

1 33 36 438 15 19 56 11 16 106 9 25 95 8 38 226 9 † † † † †
2 5 208 89 3 86 78 4 145 55 4 129 82 5 † † 5 † † 6 † †
3 25 87 155 17 52 67 9 70 69 9 167 96 28 † 387 † † † † † †
4 19 102 133 13 33 72 15 31 52 14 51 75 25 195 † 27 † † 20 † †
5 20 67 231 8 49 48 8 51 30 7 72 59 8 52 190 10 † † 8 † †
6 21 335 369 10 78 90 9 55 86 8 19 152 9 72 † 12 † † † † †
7 30 70 316 23 14 167 22 15 136 19 12 160 36 25 † † † † † † †
8 2 159∗ 195 2 45∗ 75∗ 2 43 116 2 36 80 4 95 476 4 † † 4 † †
9 39 190 165 21 164 88 14 124 69 10 230 186 13 † 143 28 † † † † †
10 4 67 121 4 29 81 6 37 104 6 19 132 7 51 † 7 126 † 7 † †
11 6 112 216 6 49 93 6 23 27 6 26 44 7 62 166 6 † † 8 † †
12 46 128 162 21 37 136 14 53 175∗ 19 113 73 40 60 † † † † † † †
13 17 82 105 10 39 33 8 35 126 7 30 58 7 60 448 † † † † † †
14 32 190 138 14 88 64 7 65 46 7 157 95 5 269 287 10 † † 6 † †
15 7 94 295∗ 9 29 79 11 26 98 16 41 133 63 103 145 † † † † † †
16 4 107 276 3 59 146 3 39 70∗ 3 65 62 3 235 0 7 † † 7 † †
17 40 43 114 15 21 214 10 39 64 9 74 117 13 331 250 26 † † † † †
18 38 89 215 18 62 101 13 53 58 15 56 52 17 † 148 21 † † 23 † †
19 7 83 242 6 32 84 5 53 36 5 95 99 9 † 112 13 † † 29 † †
20 19 68 184 10 28 146 8 17 125 9 20 74 5 37 463 5 † † 5 † †

130

Table 6.8. Simulation result (weighted deviation cost): effect of α on convergence (−:
neither converged nor obtained a feasible solution in 500 iterations).

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0 α = 1.2 α = 1.4

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

1 21 48 186 21 48 190 21 48 165 21 48 187 21 38 181 21 - - - - -

2 17 181 139 8 195 132 8 163 131 8 170 132 8 - - 8 - - 8 - -

3 30 108 222 30 108 246 30 108 246 30 101 246 30 - 177 - - - - - -

4 59 115 166 59 115 166 59 131 166 59 125 167 52 141 - 52 - - 59 - -

5 90 136 137 90 136 187 90 136 181 90 136 169 90 140 113 90 - - 90 - -

6 71 70 196 38 67 190 49 67 196 49 70 214 38 78 - 38 - - - - -

7 71 72 201 71 82 173 71 82 173 71 56 191 55 53 - - - - - - -

8 3 109 209 3 109 219 3 92 206 3 110 209 3 71 209 3 - - 3 - -

9 50 151 184 50 168 115 50 165 115 50 172 222 50 - 143 50 - - - - -

10 23 47 210 23 42 204 23 103 263 23 37 227 23 56 - 23 56 - 23 - -

11 45 116 88 45 118 102 45 122 116 45 116 121 45 115 99 45 - - 45 - -

12 33 151 179 33 165 108 33 185 158 33 151 125 43 39 - - - - - - -

13 41 115 152 41 115 155 41 94 110 41 50 133 41 77 100 - - - - - -

14 28 148 163 28 148 170 28 148 181 28 131 187 28 107 122 28 - - 28 - -

15 63 89 176 63 94 231 63 89 228 63 98 180 63 93 157 - - - - - -

16 6 155 126 6 128 150 6 136 164 6 136 105 6 128 6 - - 6 - -

17 57 164 167 57 124 165 57 112 159 57 124 155 70 110 77 70 - - - - -

18 52 83 144 52 83 162 52 76 133 52 76 176 52 - 126 52 - - 52 - -

19 22 138 109 22 138 126 22 138 112 22 138 126 31 - 95 31 - - 31 - -

20 9 40 153 9 41 198 9 49 129 9 49 147 9 28 111 9 - - 9 - -

131

6.7 Summary

In this chapter, the results of the experimental analysis are presented. In order to

simulate the P-Tâto mechanism, we developed and utilized a P-Tâto simulator program

- PtatoSim. The sample DMP instances for the simulation study were generated by a

general purpose project-instance generator - ProGen. Using the ProGen we generated

a variety of project instances for verifying specific aspects of P-Tâto mechanism. The

simulation results support a high level of solution quality and computational efficiency

of the mechanism. The analysis results are summarized as follows:

• The local market evaluation mechanism shows a high level of computational effi-

ciency and near-optimal solution quality. As the number of tasks increases in a

local market, the computational load in the local market evaluation mechanism

increases almost linearly, while the optimality of the solution remains at a very

high level (see Section 6.2).

• At the temporary economy level, the average computation time of P-âto is less

than 12% of the result of LINDO, while the average deviation costs are closed to

the optimal values (deviating less than 11% for a extreme case). More importantly,

LINDO reaches the limit of solvable problem size quickly according to the increase

of the scheduling horizon, but not in P-Tâto (see Section 6.3).

• The overall performance (e.g., convergence, solution quality, etc.) are not much

different for different levels of scheduling time horizons in P-Tâto. The dynamic

behavior of the intermediate deviation costs are exactly the same, even though

the computational load seems to increase according to the increase in scheduling

horizon, but almost linearly (see Section 6.4.1).

• The effect of a DMP size (the number of projects, resource availability, and the

number of tasks per project) is not a significant factor in computational efficiency

of the P-Tâto mechanism. Although the number of iterations (i.e., convergence

speed) increases with the resource availability−1 and the number of tasks per

project, the increasing rate is almost linear (see Section 6.4.3).

132

• The dynamic behavior (e.g., converging pattern), the computation time and the

number of iterations are quite indifferent to the complexity of project networks.

Even more precedence constraints seem helpful for better convergence speed. This

property is very desirable, because the proposed mechanism deals with project

environments, which is differentiated from other types of scheduling problems by

the project activity network structure (see Section 6.4.2).

• Regardless of the initial solution, the resultant DMP schedule clearly reflects the

order and magnitude of the given project weight distribution. That means we

can relate each project’s importance/urgency and the resultant deviation costs

throughout the P-Tâto mechanism (see Section 6.5).

• The number of iterations until convergence varies greatly depending on the α level,

without any significant variations in the solution quality. α = 0.4 to 0.8 shows a

good convergence speed for different sizes of DMP instances (see Section 6.6).

133

Chapter 7

Conclusions and Future Research

In distributed multiple projects (DMP) environments, effective resource control

is an important issue because operational management effort for everyday face-to-face

resource rescheduling (resource control) is significant. In addition, the results of face-to-

face negotiations for resource rescheduling fall far short from the enterprise-level opti-

mality with respect to the relative importance or urgency of each project. That means

we need an automated approach to apply the project weight distribution at the low-level

everyday resource control process in a consistent manner. However, this problem is

not easy to solve. The difficulty of the problem arises from the dynamic, distributed,

tightly-coupled, and decentralized nature of DMP resource control problem as explained

in Chapter 1. We solve this problem through a market-based control approach operating

in a multiagent information infrastructure. First, we clearly define the DMP resource

control problem in Chapter 2 and propose a virtual economy model and a detailed de-

sign of market mechanism called P-Tâto, along with multiagent information system

to embody the mechanism and the virtual economy model in Chapters 4 and 5. The

simulation results shown in Chapter 6 demonstrate that the proposed approach works

effectively for the DMP resource control problem. In the following sections, we review

the major contributions from this research, and suggest future research that is needed.

134

7.1 Contributions

The results of the proposed economy model and market mechanism were already

summarized in Section 6.7. Instead, we discuss the major contributions from this research

work as follows:

1. This research is the first to deal with the distributed multiple projects (DMP)

resource control problem. This research sets a direction for DMP problem solving.

We identified the importance and difficulty of DMP resource control problem, and

formally specified the DMP resource control problem in Chapters 1 and 2. Also

we suggested and examined the important performance measures of DMP resource

control solution approaches. All of them contribute toward the future research on

the DMP resource control problem.

2. We successfully combine a market-based approach, operations research methodol-

ogy, and multiagent information systems for the DMP resource control problem.

The market-based control mechanism and the multiagent-based information infras-

tructure effectively support the distributed and decentralized nature of the DMP

environment. In addition, by applying time-slot based scheduling formulation from

the operations research literature, we transform the short-term scheduling prob-

lem into general resource allocation problem so that the market-based resource

allocation approach can be directly applied.

3. The proposed virtual economy model is a novel approach that effectively incorpo-

rates the dynamic, coupled and distributed nature of the DMP resource control

problem. The three-layered virtual market model (i.e., DMP economy, tempo-

rary economy, and local market) is effective to tackle resource constraints and

precedence constraints separately. Distributed local markets solve the resource

conflicts within each resource schedule, while in the the temporary economy level

precedence conflicts among the tasks within each project are resolved using the

precedence tâtonnement process.

135

4. The local market evaluation mechanism, which is a core part of the P-Tâto mech-

anism, is formulated as a combinatorial auction. The winning bid determination

problem in a combinatorial auction is a NP-complete problem. We developed an

effective local market winning bid determination algorithm, based on the proposed

problem structure and dynamic programming (DP) based heuristics. Simulation

results show the computational demand increases linearly according to the increase

in the number of tasks to be allocated to a resource.

5. The individual DMP agent model proposed in this research is an effective com-

bination of previous models. A behavior-based, state-based and message-driven

architecture was formalized using an augmented finite automaton, which repre-

sents the behavior of a DMP agent. Also it was shown that the P-Tâto can be

effectively embodied by several core behaviors of each agent.

6. Using the general purpose project generator, we tested many different aspects of

the virtual economy model and control mechanism. Our simulation analysis proce-

dure using the DMP instances can give a good guidelines for solution performance

analysis of DMP resource control solving models.

7.2 Future Research

Although this research suggested a clear problem definition for the DMP resource

control problem, and a thorough problem solving model including virtual economy model,

market mechanism and information infrastructure, some extensions are available for

more general problem situations. Followings are three major possible extensions of the

proposed solution method.

7.2.1 Multi-Mode Scheduling - Double Auction Mechanism

In this research we restrict the resource scheduling problem to the single-mode

case, meaning that each task can be processed by only one resource type. If we allowed

multiple modes, the local market evaluation mechanism must be modified to a double

auction mechanism, where multiple sellers and multiple buyers bid for the exchange of

136

a designated commodity. Two possible double auction mechanisms can be considered

(Wurman et al., 1998): (1) continuous double auction (CDA), which matches buyers

and sellers immediately on detection of compatible bids; and (2) call market (or clear-

inghouse), which is a periodic version of the double auction, which clears the market at

the expiration of a specified bidding interval.

7.2.2 Full Self-Interestedness - Incentive Compatible Mechanism Design

If the DMP environment is extended to the situation of totally self-interested

decision makers, the local market evaluation mechanism requires modification to satisfy

two feasibility conditions of the auction mechanism: individual rationality and incen-

tive compatible. Individual rationality means that each agent in a market benefits by

participating in the allocation mechanism. In other words, every rational agents will

attend the bidding if they are rational. The payment rule must be carefully designed for

individual rationality requirement. A mechanism is called incentive compatible if truth

revelation is each bidder’s dominant strategy which should be adopted. For example, if

the DMP resource control system allows human access to the utility function, the auction

mechanism needs to have a device to make the bidders honest. Otherwise, every bidder

will bid with the maximum utility value on desirable time-slot bundles in every auction,

causing chaos. Hence, incentive compatibility is a crucial property of the mechanisms

for coordinating distributed self-interested agents.

Vickrey (Vickrey, 1961) suggested an incentive compatible auction mechanism

that asks the participants to bid on a good and awards the good to the highest bidder at

the second highest price1. The original form of the Vickrey auction has been generalized

by several researchers including MacKie-Mason and Varian (1994), Krishna and Perry

(1998), Cramton and Ausubel (1999); Ausubel (1999). With some exceptions, most

of them were generalized in the sense that they allow multiple units for a bidder and

complementarity among the goods. GVAs (Generalized Vickrey Auctions) provide a

good starting point to design an incentive compatible version of P-Tâto mechanism,

but it is not directly applicable. One simple reason is that the task agents do not

1So, it is often called second-price sealed bid auction.

137

actually care about the winning price because the bids are submitted with an abstract

utility value rather than real money.

For both of the individual rationality and incentive compatible mechanism de-

signs, one possible approach is to introduce the concept of a budget. The basic idea

is that every project starts with a specific amount of virtual money or budget, which

can be used for buying resource time slots. However, this kind of simple limited budget

model requires complicated decision making procedure for software agents, who are in

charge of most decision making in the proposed system. In other words, a project can be

bankrupt before finishing the project if the project manager fails to manage the budget

effectively.

7.2.3 Loosely-Coupled Organization - Coalition Formation

We assumed that task agents or project agents are assigned to pre-defined resource

agents, and these assignments between the resource agents and task agents are fixed.

However, if the DMP resource control problem is extended to more loosely-coupled virtual

extended enterprises, where the organization of the DMP itself can dynamically changed

based on changing market needs. In such a situation, the task agents have to search

for resource agents, or vice versa, or the temporary economy cannot be easily be broken

down into local markets. In this case, finding the appropriate resources for each task

could be thought of as coalition formation (Bhargava et al., 2002). This is not considered

in this research, but it is a possible area in which future research may be useful because

the virtual extended enterprise will be common in the future. In addition, we can

find another possible extension to coalition formation within the local market evaluation

process. Suppose in the proposed formulation that the task agents are motivated to form

a coalition because the combined bid for Bi,k has a better chance to get the required

time-slot bundles, Bi,j and Bj+1,k. In such a case the DMP resource control problem

can be extended to address coalition formation. This offers an important benefit in the

DMP situation if an efficient coalition formation search mechanism can be found. The

overall convergence of the mechanism and communication burden will be reduced, since

during the coalition search process infeasible sets of bids will be ruled out.

138

Appendix A

An Example Problem of P-Tâto Mechanism

In order to verify our approach, we apply the P-Tâto protocol to an example

from (Kutanoglu and Wu, 1997) as shown in Table A.1. This example is a simple random

job shop scheduling problem. We converted the notations to those of project environment

and added the latest project completion date, which define the project failure. This date

is used for calculating latest finish time wi,j of each task. Some assumptions for this

example are:

• Deterministic task duration time as shown in the Table A.1.

• Linear deviation cost function. Project Pi’s deviation cost function θi(t) = max{(t−

g̃i), 0}, meaning that the cost is just as mush as the project tardiness (see Fig-

ure 4.7(a)).

• Fixed change rate of precedence costs. Namely, c̄ = 1 in the precedence cost

adjustment rule in Section 4.4.5.

Table A.1. An example projects (from 3X3 Random job shop example (Kutanoglu and
Wu, 1997), converted to a project environment): Each project has three tasks and they
are in a row.

Project Weight Target Date Failure Date Resource (Duration Time)
1 4 10 21 1(3), 2(1), 3(6)
2 6 10 21 3(3), 1(7), 2(1)
3 2 12 21 1(2), 3(4), 2(4)

Using the critical path analysis1, we get the commitment windows [wi,j ,wi,j] of

each tasks as shown in Table A.2. The commitment window information allows for saving

1The commitment windows are calculated using minimal task duration in general. In this
example the minimal task duration is the given task duration itself because we assume the
deterministic duration time.

139

communication and computation effort. However, we do not use this information from

the second iteration for simplicity.

Table A.2. (Example-1) after critical path analysis.

Project (Pi) Task (Ti,j) Resource (Rk) Duration (δi,j) wi,j wi,j

T1,1 R1 3 1 13
P1 T1,2 R2 1 4 14

T1,3 R3 6 5 20
T2,1 R3 3 1 12

P2 T2,2 R1 7 4 19
T2,3 R2 1 11 20
T3,1 R1 2 1 12

P3 T3,2 R3 4 3 16
T3,3 R2 4 7 20

The initial precedence cost vectors ci,j and estimated deviation cost vectors θ̂i,j

of individual tasks are as shown in Table A.3 and A.4. All elements in ci,j are set to zero

because no precedence violation was detected so far. The elements of θ̂i,j are calculated

by Equation (4.11). Because there is no initial allocation (or schedule), no ”truncated”

deviation cost (see Figure 4.9(c)) shows up in the table. Each task agent’s bid (bundle-

utility pairs) for resources are generated based on the Equation 4.2, summarized in

Table A.5. In the table the column numbers mean the completion time slot index of

the bundles. Because the precedence cost vectors are all zero, the bidding values of the

bundles are exactly same to the elements of the −θ̂i,j ’s in Table A.4. For the convenience,

we add 10 to each utility value to make it positive.

Based on the bids, each resource agent solves the local market clearing problem

using the algorithm explained in Section 4.5.2. The results are as shown in Table A.6.

In the table, Wj is the welfare function, which is basically the weighted sum of the

utility values of winning bids. As shown in Table A.6, two projects, P1 and P2, already

got an feasible project schedule, meaning that no precedence cost will be adjusted for

these two projects. The precedence cost c3,k’s are calculated as follows using the rule in

Section 4.4.5.

140

Table A.3. Precedence cost vectors after critical path analysis.

Pi ci,j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c1,1 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - -
P1 c1,2 - - - 0 0 0 0 0 0 0 0 0 0 0 - - - - - -

c1,3 - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c2,1 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - -

P2 c2,2 - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
c2,3 - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0
c3,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - -

P3 c3,2 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - -
c3,3 - - - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.4. Estimated deviation cost vectors after critical path analysis.

Pi θ̂i,j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

θ̂1,1 - - 0 1 2 3 4 5 6 7 8 9 10 - - - - - - -
P1 θ̂1,2 - - - 0 1 2 3 4 5 6 7 8 9 10 - - - - - -

θ̂1,3 - - - - - - - - - 0 1 2 3 4 5 6 7 8 9 10
θ̂2,1 - - 1 2 3 4 5 6 7 8 9 10 - - - - - - - -

P2 θ̂2,2 - - - - - - - - - 1 2 3 4 5 6 7 8 9 10 -
θ̂2,3 - - - - - - - - - - 1 2 3 4 5 6 7 8 9 10
θ̂3,1 - 0 0 0 1 2 3 4 5 6 7 8 9 10 - - - - - -

P3 θ̂3,2 - - - - - 0 0 0 1 2 3 4 5 6 7 8 - - - -
θ̂3,3 - - - - - - - - - 0 0 0 1 2 3 4 5 6 7 8

Table A.5. Each task agent’s bids for resources in the first iteration: Each cell holds the
utility of task Ti,k for the bundle Bl−δi,k+1,l of resource Rj , where δi,k is the duration
time for Ti,k.

Pi Ti,k Rj l = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T1,1 R1 - - 10 9 8 7 6 5 4 3 2 1 0 - - - - - - -
P1 T1,2 R2 - - - 10 9 8 7 6 5 4 3 2 1 0 - - - - - -

T1,3 R3 - - - - - - - - - 10 9 8 7 6 5 4 3 2 1 0
T2,1 R3 - - 9 8 7 6 5 4 3 2 1 0 - - - - - - - -

P2 T2,2 R1 - - - - - - - - - 9 8 7 6 5 4 3 2 1 0 -
T2,3 R2 - - - - - - - - - - 9 8 7 6 5 4 3 2 1 0
T3,1 R1 - 10 10 10 9 8 7 6 5 4 3 2 1 0 - - - - - -

P3 T3,2 R3 - - - - - 10 10 10 9 8 7 6 5 4 3 2 - - - -
T3,3 R2 - - - - - - - - - 10 10 10 9 8 7 6 5 4 3 2

141

Table A.6. The allocation in the first iteration: Each cell holds the project index i for
the project Pi. Wj denotes the welfare value of the resource Rj .

Rj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Wj

R1 1 1 1 2 2 2 2 2 2 2 3 3 98
R2 1 2 3 3 3 3 108
R3 2 2 2 1 1 1 1 1 1 3 3 3 3 104

c3,1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

c3,2 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T

c3,3 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)T

(A.1)

From the second iteration, changes happen only in P3, because (1) P1 and P2

already get feasible solutions, meaning that no precedence cost will change and (2) from

the resources viewpoints any possible bids from P3 cannot change the current allocation

of T1,k’s and T2,k’s due to the weight distribution. Hence, just updating tables regarding

P3 is enough for the later iterations. Table A.7 to A.10 summarize the results of following

iterations. Here we do not take into account the commitment windows for simplicity. In

the tables, boldfaced slots denote the optimal allocations of each local market. As shown

in Table A.10, project groups get a feasible solution and P-Tâto procedure stops. The

generated schedule is optimal with respect to weighted sum of deviation costs.

Table A.7. Second iteration summary of P3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
c3,1 0
c3,2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
c3,3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

c3,1(B) 0
c3,2(B) 0 2 3 4 4 4 4 4 4 4 4 4 3 2 1 0 0 0 0 0
c3,3(B) 0 2 3 4 4 4 4 4 4 4 4 4 4 4 3 2 1 0 0 0

θ̂3,1 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
θ̂3,2 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12
θ̂3,3 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8

u3,1(B) 10 10 10 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6
u3,2(B) - 8 7 6 6 6 6 6 5 4 3 2 2 2 2 2 1 0 -1 -2
u3,3(B) - 8 7 6 6 6 6 6 6 6 6 6 5 4 4 4 4 4 3 2

142

Table A.8. Third iteration summary of P3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
c3,1 0
c3,2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0
c3,3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0

c3,1(B) 0
c3,2(B) - 4 6 8 8 8 8 8 8 8 8 8 6 4 2 0 0 0 0 0
c3,3(B) - 4 6 8 8 8 8 8 8 8 8 8 8 8 6 4 2 0 0 0

θ̂3,1 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
θ̂3,2 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12
θ̂3,3 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8

u3,1(B) 10 10 10 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6
u3,2(B) - 6 4 2 2 2 2 2 1 0 -1 -2 -

1
0 1 2 1 0 -1 -2

u3,3(B) - 6 4 2 2 2 2 2 2 2 2 2 1 0 1 2 3 4 3 2

143

Table A.9. Fourth iteration summary of P3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
c3,1 0
c3,2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0
c3,3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 0 0 0 0

c3,1(B) 0
c3,2(B) - 4 6 8 8 8 8 8 8 8 8 8 6 4 2 0 0 0 0 0
c3,3(B) - 6 9 12 12 12 12 12 12 12 12 12 12 12 10 8 5 2 1 0

θ̂3,1 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
θ̂3,2 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12
θ̂3,3 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8

u3,1(B) 10 10 10 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6
u3,2(B) - 6 4 2 2 2 2 2 1 0 -1 -2 -

1
0 1 2 1 0 -1 -2

u3,3(B) - 4 1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -4 -
3

-
2

0 2 2 2

Table A.10. Fifth iteration summary of P3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
c3,1 0
c3,2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0
c3,3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 0 0 0 0

c3,1(B) 0
c3,2(B) - 4 6 8 8 8 8 8 8 8 8 8 6 4 2 0 0 0 0 0
c3,3(B) - 8 12 16 16 16 16 16 16 16 16 16 16 16 14 12 8 4 2 0

θ̂3,1 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
θ̂3,2 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12
θ̂3,3 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8

u3,1(B) 10 10 10 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6
u3,2(B) - 6 4 2 2 2 2 2 1 0 -1 -2 -

1
0 1 2 1 0 -1 -2

u3,3(B) - 2 -2 -6 -6 -6 -6 -6 -6 -6 -6 -6 -7 -8 -7 -6 -
3

0 1 2

144

T1,1

R1 T2,2

T3,1

T1,2

R2 T2,3

T3,3

T1,3

R3 T2,1

T3,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. A.1. Final schedule generated by P-Tâto.

145

Appendix B

FIPA SL0

The FIPA SL (Semantic Language) is a very expressive language, but for some

agent communication tasks it is unnecessarily powerful. This expressive power has an

implementation cost to the agent and introduces problems of the decidability of modal

logic. To allow simpler agents, or agents performing simple tasks, to do so with minimal

computational burden, FIPA introduced semantic and syntactic subsets of the full FIPA

SL content language for use by the agent when it is appropriate or desirable to do so.

They are FIPA-SL0, FIPA-SL1 and FIPA-SL2. FIPA SL0 is the minimal subset of FIPA

SL, denoted by the normative constant FIPA-SL0 in the :language parameter of an ACL

message. It allows the representation of actions, the determination of the result a term

representing a computation, the completion of an action and simple binary propositions.

The following defines the FIPA SL0 grammar (Details can be found in (FIPA, 2000)):

Content = "(" ContentExpression+ ")".

ContentExpression = ActionExpression

| Proposition.

Proposition = Wff.

Wff = AtomicFormula

| "(" ActionOp ActionExpression ")".

AtomicFormula = PropositionSymbol

| "(" "result" Term Term ")"

| "(" PredicateSymbol Term+ ")"

| "true"

| "false".

ActionOp = "done".

Term = Constant

146

| Set

| Sequence

| FunctionalTerm

| ActionExpression.

ActionExpression = "(" "action" Agent Term ")".

FunctionalTerm = "(" FunctionSymbol Term* ")"

| "(" FunctionSymbol Parameter* ")".

Parameter = ParameterName ParameterValue.

ParameterValue = Term.

Agent = Term.

FunctionSymbol = String.

PropositionSymbol = String.

PredicateSymbol = String.

Constant = NumericalConstant

| String

| DateTime.

Set = "(" "set" Term* ")".

Sequence = "(" "sequence" Term* ")".

NumericalConstant = Integer

| Float. �

147

Bibliography

Laurence M. Ausubel. An effective ascending-bid auction for multiple objects. Working

Paper No. 97-06, Department of Economics, University of Maryland, College Park,

MD, College Park, MD, 1997.

Laurence M. Ausubel. A generalized Vickrey auction. Working paper, Department of

Economics, University of Maryland, College Park, MD, College Park, MD, 1999.

Albert D. Baker. Metaphor or reality: A case study where agents bid with actual

costs to schedule a factory. In Scott H. Clearwater, editor, Market-Based Control

- A Paradigm for Distributed Resource Allocation, chapter 8, pages 184–223. World

Scientific, Singapore, 1996.

Fabio Bellifemine, Agostino Poggi, and Giovanni Rimanssa. JADE - a FIPA-compliant

agent framework. Internal technical report, CSELT S.p.A, 1999.

Hemant Bhargava, Kalyan Chatterjee, Soundar Kumara, and Yong-Han Lee. Dynamic

coalition formation and search, with applications to distibuted resource allocation: A

selective survey. Management Science, Special Issue on eBusiness and OR/MS, 2002.

to appear.

Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation, 2(1):14–23, April 1986.

Donald E. Campbell. Resource Allocation Mechanisms. Cambridge University Press,

New York, NY, 1987.

Kathleen M. Carley and Les Gasser. Computational organization theory. In Gerhard

Weiss, editor, Multiagent Systems - A Modern Approach to Distributed Artificial In-

telligence, chapter 7, pages 299–330. The MIT Press, Cambridge, MA, 1999.

148

Ai-Mei Chang, Andrew D. Bailey, and Andrew B. Whinston. A distributed knowledge-

based approach for planning and controlling projects. IEEE Transactions of Systems,

Man, and Cybernetics, 23(6):1537–1550, November 1993.

Kalyan Chatterjee. Taxonomy of resource allocation mechansims. Manuscript, Depart-

ment of Economics, The Pennsylvania State University, University Park, PA, February

2002.

Deepika Chauhan and Albert D. Baker. JAFMAS: A multiagent application development

system. In Michael Wooldridge and Tim Finin, editors, Proceedings of Second ACM

Conference on Autonomous Agents, St. Paul, Minnepolis, 1998. ACM Press.

John Q. Cheng and Michael P. Wellman. The WALRAS algorithm: A convergent dis-

tributed implementation of general equilibrium outcomes. Computational Economics,

12(1):1–24, 1998.

Scott H. Clearwater, editor. Market-Based Control - A Paradigm for Distributed Resource

Allocation. World Scientific, Singapore, 1996.

Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial

Intelligence, 42(2-3):213–261, 1990.

Danial D. Corkill and Susan E. Lander. Diversity in agent organization. Technical paper,

Blackboard Technology, 1998.

R. Scott Cost, Tim Finin, Yannis Labrou, Xiaochang Luan, Yun Peng, Ian Soboroff,

James Mayfield, and Akram Boughannam. Jackal: A Java-based tool for agent devel-

opment. In AAAI-98 Workshop on Software Tools for Developing Agents, Madison,

WI, 1998. AAAI Press.

Peter Cramton and Laurence M. Ausubel. Vickrey auctions with reserve pricing. Working

paper, Department of Economics, University of Maryland, College Park, MD, College

Park, MD, 1999. Preliminary version.

149

Mark R. Cutkosky, Robert S. Engelmore, Richard E. Fikes, Michael R. Genesereth,

and Thomas R. Gruber. PACT: An experiment in integrating concurrent engineering

systems. IEEE Computer, 26(1):28–38, January 1993.

Neil J. Davies. Truth, Modality, and Action. PhD thesis, Department of Computer

Science, University of Essex, Colchester, UK, 1993.

Daniel C. Donnett. The Intentional Stance. The MIT Press, Cambridge, MA, 1987.

Brian Drabble. Artificial intelligence for project planning. In Proceedings of the Collo-

quium on Future Developments in Project Management Systems, pages 3/1–3/5, Savoy

Place, London, UK, 1995. IEE.

Andreas Drexl. Scheduling of project networks by job assignment. Management Science,

37(12):1590–1602, 1991.

Hans-Erik Eriksson and Magnus Penker. UML Toolkit. John & Sons, Inc, New York,

NY, 1998.

Donald Ferguson, Yechiam Yemini, and Christos Nikolaou. Microeconomic algorithms

for load balancing in distributed computer systems. In The Eighth International Con-

ference on Distributed Computing Systems, pages 491–499, 1988.

Tim Finin and Jay Weber. Specification of the KQML - agent-communication lan-

guage. Draft specification, The DARPA Knowledge Sharing Initiative External Inter-

face Working Group, 1993.

FIPA. FIPA 97 specification, version 2.0, part 2, Agent Communication Language.

Specification, Foundation for Intelligent Physical Agents, October 1998.

FIPA. FIPA sl content language specification. Specification, Foundation for Intelligent

Physical Agents, September 2000.

Michael Fisher. A survey of Concurrent MetateM - the language and its applications.

In D. M. Gabbay and H. J. Ohlbach, editors, Proceedings of the First International

Conference on Temporal Logic (LNAI Volume 827), pages 480–505. Springer-Verlag,

Berlin, Germany, 1994.

150

Ernest J. Friedman-Hill. Jess, The Java Expert System Shell. Sandia National Labora-

tories, Livermore, CA, January 2000. Version 5.0.

Robert H. Frost and Mark R. Cutkosky. Design for manufacturability via agent interac-

tion. In Design for Manufacturing Conference, pages 18–22, Irvine, CA, August 1996.

ASME.

Michael R. Genesereth and Richard E. Fikes. Knowledge interchange format version 3.0

reference manual. Draft specification, The Interlingua Working Group of the DARPA

Knowledge Sharing Effort, 1992.

Michael P. Georgeff and Amy L. Lansky. Reactive reasoning and planning. In Proceedings

of the Sixth National Conference on Artificial Intelligence (AAAI-87), pages 677–682,

Seattle,WA, 1987.

Andrew Haas. A syntactic theory of belief and knowledge. Artificial Intelligence, 28(3):

245–292, 1986.

Aimo Hinkkanen, Ravi Kalakota, P. Saengcharoenrat, J. Stallaert, and A. B. Whinston.

Distributed decision support systems for real-time supply chain management using

agent technologies. In Ravi Kalakota and Andrew B Winston, editors, Readings in

Electronic Commerce, chapter 12. AW Computer and Engineering Publishing Group,

1997.

Michael N. Huhns and Munindar P. Singh. All agents are not created equal. IEEE

Internet Computing, 2(3):94–96, 1998.

Nick Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent research and

development. Autonomous Agents and Multi-Agent Systems, 1(1):7–38, 1998.

Nick Jennings and Nir Vulkan. Efficient mechanisms for the supply of services in multi-

agent environments. International Journal of Decision Support Systems, 28(1-2):5–19,

2000.

151

Heecheol Jeon, Charles J. Petrie, and Mark R. Cutkosky. JATLite: A Java agent infras-

tructure with message routing. IEEE Internet Computing, pages 87–96, March/April

2000.

Yan Jin and Stephen C.-Y. Lu. An agent-supported approach to collaborative design.

Annals of the CIRP, 47(1):107–110, 1998.

Rinaldo A. Jose and Lyle H. Ungar. Auction-driven coordination for plantwide optimiza-

tion. In Proceedings of Foundations of Computer-Aided Process Operation (FOCAPO),

Snowbird, UT, 1998.

Rainer Kolisch and Rema Padman. An integrated survey of deterministic project schedul-

ingz. Omega - International Journal of Management Science, 29(3):249–272, 2001.

Rainer Kolisch and Arno Sprecher. PSPLIB- a project scheduling problem library. Tech-

nical Report 396, Institut für Betriebswirtschaftslehre der Universität Kiel, Germany,

1996.

Rainer Kolisch, Arno Sprecher, and Andreas Drexl. Characterization and generation of

a general class of resource-constrained project scheduling problems. Technical Report

301, Institut für Betriebswirtschaftslehre der Universität Kiel, Germany, 1992.

Kurt Konolgie. A Deduction Model of Belief. London and Morgan Kaufmann, San

Mateo, CA, 1986.

Vijay Krishna and Motty Perry. Efficient mechanism design. Working paper, Department

of Economics, The Pennsylvania State University, University Park, PA, April 1998.

Erhan Kutanoglu and S. David Wu. On combinatorial auction and lagrangean relax-

ation for distributed resource scheduling. Technical Report 97T-012, Department of

Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, 1997.

Yannis Labrou and Tim Finin. Semantics and conversations for an agent communication

language. In Michael N. Huhns and Munindar P. Singh, editors, Readings in Agents,

pages 235–242. Morgan Kaufmann, San Fransisco, CA, 1997.

152

Yannis Labrou, Tim Finin, and Yun Peng. Agent communication languages: The current

landscape. IEEE Intelligent Systems, 14(2):45–52, 1999.

Susan E. Lander. Issues in multiagent design systems. IEEE Expert, 12(2):18–26, March-

April 1997.

Susan E. Lander and Danial D. Corkill. Design integrated engineering environment:

Blackboard-based integration of design and analysis tools. Concurrent Engineering, 4

(1):59–71, March 1996.

Jaeho Lee, Marcus J. Huber, Edmund H. Durfee, and Patrick G. Kenny. UM-PRS: an

implementation of the procedural reasoning system for multirobot applications. In

Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS

’94), Houston, TX, March 1994.

Yong-Han Lee and Soundar R.T. Kumara. Market-based collaborative control of dis-

tributed multiple product development projects. In Nina M. Berry, editor, Proceedings

of SPIE Vol. 4208, pages 73–83, 2000.

Yves Lespérance, Hector J. Levesque, Fangzhen Lin, Daniel Marcu, Raymond Reiter,

and Richard B. Scherl. Foundations of a logical approach to agent programming. In

Michael Wooldridge, Jörg P. Müller, and Milind Tambe, editors, Intelligent Agents II

(LNAI Volume 1937), pages 331–346. Springer-Verlag, Berlin, Germany, 1996.

Hector J. Levesque. A logic of implicit and explicit belief. In Proceedings of the Fourth

National Conference on Artificial Intelligence (AAAI-84), pages 198–202, Austin,TX,

1984.

Feng Liu, Peter B. Luh, and Bryan Moser. Scheduling and coordination of distributed

design projects. Annals of the CIRP, 47(1):111–114, 1998.

Peter B. Luh, Feng Liu, and Bryan Moser. Scheduling of design projects with uncertain

number of iterations. European Journal of Operational Research, 113:575–592, 1999.

Jeffrey K. MacKie-Mason and Hal R. Varian. Generalized Vickrey auctions. Working

paper, Department of Economics, University of Michigan, Ann Arbor, MI, 1994.

153

Leora Morgenstern. Knowledge preconditions for actions and plans. In Proceedings of the

Tenth International Conference on Artificial Intelligence (IJCAI-87), pages 867–874,

Milan, Italy, 1987.

Jörg P. Müller, Markus Pische, and Michael Thiel. Modelling reactive behaviour in

vertically layered agent architectures. In Michael Wooldridge and Nick R. Jennings,

editors, Intelligent Agents: Theorys, Architectures, and Languages (LNAI Volume

890), pages 261–276. Springer-Verlag, Berlin, Germany, 1995.

Hyachinth S. Nwana, Divine T. Ndumu, and Lyndon C. Lee. ZEUS: An advanced

tool-kit for engineering distributed multi-agent systems. In Proceedings of the Third

International Conference and Exhibition on The Practical Application of Intelligent

Agent and Multi-Agents, pages 377–391, London, U.K., 1998.

H. Van Dyke Parunak. Industrial and practical applications of DAI. In Gerhard Weiss,

editor, Multiagent Systems - A Modern Approach to Distributed Artificial Intelligence,

chapter 9, pages 377–421. The MIT Press, Cambridge, MA, 1999.

James H. Patterson. A comparison of exact approaches for solving the multiple con-

strained resource, project scheduling problem. Management Science, 30(7):854–867,

1984.

Yun Peng, Tim W. Finin, Bill Chu, J. Long, Bill Tolone, and Akram Boughannam.

Multi-agent system for enterprise integration. In Proceedings of the 3rd international

Conference on Practical Applications of Intelligent Agents and Multi-Agents (PAAM),

pages 533–548, London, UK, 1998.

Charles J. Petrie. Process coordination. URL http://cdr.stanford.edu/

ProcessLink/papers/white-dpm.html. a white paper, 1998.

Charles J. Petrie, Teresa A. Webster, and Mark R. Cutkosky. Using Pareto optimality

to coordinate distributed agents. AI for Engineering Design, Analysis and Manufac-

turing, 9(4):269–282, 1995. Special issue on conflict management in design.

154

Charles J. Petriea, Sigrid Goldmann, and Andreas Raquet. Agent-based project man-

agement. In Michael Wooldridge and Manuela Veloso, editors, Artificial intelligence

today : recent trends and developments (LNAI Volume 1600). Springer-Verlag, Berlin,

Germany, 1999.

Jie Qian. Algorithms for software project scheduling. Master’s thesis, Department of

Industrial Engineering, The Pennsylvania State University, University Park, PA, 1998.

Anand S. Rao and Michael P. Georgeff. Asymmetry thesis and side-effect problems

in linear time and branching time intention logics. In Proceedings of the Twelfth

International Conference on Artificial Intelligence (IJCAI-91), pages 498–504, Sydney,

Australia, 1991a.

Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a BDI-

architecture. In R. Fikes and E. Sandewall, editors, Proceedings of Knowledge Repre-

sentation and Readings (KR&R-91), pages 473–484, 1991b.

Anand S. Rao and Michael P. Georgeff. A model-theoretic approach to the verification of

situated reasoning systems. In Proceedings of the Thirteenth International Conference

on Artificial Intelligence (IJCAI-93), pages 318–324, Chambéry, France, 1993.

Tuomas Sandholm. An implementation of Contract Net Protocol based on marginal

cost calculations. In Proceedings of the Eleventh National Conference on Artificial

Intelligence, Washington, D.C., 1993. The MIT Press.

Goutam Satapathy. Distrubuted and collaborative logistics planning and replanning un-

der uncertainty: a multiagent based approach. PhD thesis, The Pennsylvania State

Univeristy, University Park, PA, 1999.

John A. Sauter, H. Van Dyke Parunak, and John Goic. ANTS in the supply chain. In

Workshop on Agent for Electronic Commerce at Agents ’99, pages 1–5, Seattle, WA,

May 1999.

155

Weiming Shen and Douglas H. Norrie. Agent-based systems for intelligent manufac-

turing: State-of-the-art survey. International Journal of Knowledge and Information

Systems, 1(2):129–156, 1999.

Munindar P. Singh. Multiagent Systems: A Theoretical Framework for Intentions, Know-

How, and Communications. LNAI Volume 799. Springer-Verlag, Heidelberg, Germany,

1994.

Reid G. Smith. The contact net protocol: high-level communication and control in a

distrubuted problem solver. IEEE Transaction on Computers, 29(12):1104–1113, 1980.

SRI International. Procedural Reasoning System - User’s Manual. Artificial Intelligence

Center, SRI International, March 1999. Version 1.96.

Gek Woo Tan, Caroline C. Hayes, and Michael Shaw. An intelligent-agent framework for

concurrent product design and planning. IEEE Trans. on Engineering Management,

43(3):297–306, August 1996.

Jui Chiew Tan and Patrick T. Harker. Designing workflow coordination: Centralized

versus market-based mechanisms. Information Systems Research, 10(4):328–342, 1999.

Kevin J. Tilley. Machining task allocation in discrete manufacturing systems. In Scott H.

Clearwater, editor, Market-Based Control - A Paradigm for Distributed Resource Al-

location, chapter 9, pages 224–251. World Scientific, Singapore, 1996.

Hal R. Varian. Microeconomic Analysis. W. W. Norton & Company, New York, NY,

1984.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal

of Finance, 16(1):8–37, 1961.

Sven de Vries and Rakesh Vohra. Combinatorial auctions: A brief survey (draft). Work-

ing paper, Department of Managerial Economics and Decision Sciences, Northwestern

University, Evanston, IL, January 2000.

156

Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O. Kephart, and

W. Scott Stornetta. Spawn: A distributed compuational economy. IEEE Transac-

tions on Software Engineering, 18(2):103–117, 1992.

Léon Walras. Elements of Pure Economics. Allen and Unwin, London, UK, 1954.

William E. Walsh, Michael P. Wellman, Peter R. Wurman, and Jeffrey K. MacKie-

Mason. Some economics of market-based distributed scheduling. In The Eighteenth

International Conference on Distributed Computing Systems, pages 612–621, Amster-

dam, The Netherlands, May 1998.

Wlliam E. Walsh and Michael P. Wellman. A market protocol for decentralized task

allocation. In The Third International Conference on Multi-Agent Systems, pages

325–332, Seattle, WA, 1998.

Gerhard Weiss, editor. Multiagent Systems - A Modern Approach to Distributed Artificial

Intelligence. The MIT Press, Cambridge, MA, 1999.

Michael P. Wellman. A computational market model for distributed configuration design.

AI for Engineering Design, Analysis and Manufacturing, 9:125–133, 1995.

Michael Wooldridge. The Logical Modelling of Computational Multi-Agent Systems. PhD

thesis, UMIST, Manchester, UK, 1992.

Michael Wooldridge and Nick R. Jennings. Intelligent agents: Theory and practice. The

Knowledge Engineering Review, 10(2):115–152, 1995.

Peter R. Wurman, William E. Walsh, and Michael P. Wellman. Flexible double auctions

for electronic commerce: Theory and implementation. Decision Support Systems, 24

(1):17–27, 1998.

Vita

Yong-Han Lee was born in Korea in 1965. He received his B.S. and M.S. degrees

in Industrial Engineering from Seoul National University and Korea Advanced Institute

of Science and Technology (KAIST) in 1988 and 1990 respectively. During his B.S. and

M.S. study his major research interest was in the area of computer aided design and

manufacturing. After he finished his M.S. study he joined Daewoo Motor Co., Inchon,

Korea. For 6.5 years in the Tech Center of the company, he mostly worked in computer

aided design and manufacturing, computer integrated manufacturing and rapid proto-

typing areas. In 1997 fall, he enrolled in the Ph.D. program in Industrial Engineering

at the Pennsylvania State University. During his Ph.D. study he was employed as a re-

search assistant in the department of Industrial Engineering, participating in two major

research projects: (1) “National Infrastructure Emergency Warning System” funded by

Army Research Office and (2) “Simulation Framework for Evaluating Order-to-Delivery

Systems and Processes” funded by General Motors Research and Development Center,

under the supervision of Dr. Soundar Kumara. Based on the achievement in the projects,

he received a certificate of achievement from US Army War College, Carlisle, PA and a

graduate research fellowship from General Motors, Warren, MI. He also taught senior

level information systems analysis and design course in the department of Management

Science and Information Systems in Smeal College of Business Administration at the

Pennsylvania State University as a part-time instructor for two semesters in Fall 2001

and Spring 2002. His current research interests include multiagent based information

systems theory and application, decentralized resource allocation using market mecha-

nisms, and automated negotiation based on economic and computational models, all in

the context of e-Business and e-Manufacturing.

