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ABSTRACT 

 

This thesis presents the development of BIOGEOCHEM, a numerical model to 

simulate biochemical and geochemical reactions in a batch system and 

HYDROBIOGEOCHEM, a numerical model to simulate HYDROlogic transport and 

BIOchemical and GEOCHEMical reactions under nonisothermal multiphase systems in 

2-dimensions and 3-dimensions. 

HYDROBIOGEOCHEM is a coupled hydrologic transport and biogeochemical 

reaction code, reaction module of which is BIOGEOCHEM, to predict the spatio-

temporal distributions of all the important chemical species.  The formulation of 

BIOGEOCHEM and HYDROBIOGEOCHEM is new in that it is based on a general 

paradigm which uses the well accepted diagonalizetion-decomposition procedure. The 

unique features of the general paradigm are that it can simultaneously (1) facilitate the 

segregation (isolation) of linearly independent kinetic reactions and, thus, enable the 

formulation and parameterization of individual rates one reaction by one reaction when 

linearly dependent kinetic reactions are absent; (2) enable the inclusion of virtually any 

type of equilibrium expressions and kinetic rates users want to specify; (3) reduce 

problem stiffness by eliminating all fast reactions from the set of ordinary differential 

equations governing the evolution of kinetic variables; (4) perform systematic operations 

to remove redundant fast reactions and irrelevant kinetic reactions; (5) systematically 

define chemical components and explicitly enforce mass conservation; (6) accomplish 

automation in decoupling fast reactions from slow reactions; and (7) increase the 
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robustness of numerical integration of the governing equations with species switching 

schemes.  

The new formulation in HYDROBIOGEOCHEM uses Gauss-Jordan 

decomposition to diagonalize the governing matrix equations for hydrologic transport to 

reduce primary dependent variables (PDVs), resulting in mobile components and mobile 

kinetic variables as PDVs.  Methods for coupling biogeochemical reaction and 

hydrologic transport, such as the sequential iteration approach (SIA) and predictor 

corrector approach are incorporated into the code to make the model versatile.  

The governing transport equation can be written in conservative form and 

nonconservative form. Five different numerical schemes based on the two forms of 

equations are incorporated in HYDROBIOGEOCHEM to better understand different 

physical processes. They are (1) FEM on advective form of equation, (2) FEM on 

conservative form of equation, (3) Hybrid Lagrangian-Eulerian FEM for interior 

elements + FEM on advective form of equation for boundary elements, (4) hybrid 

Lagrangian-Eulerian FEM, and (5) Hybrid Lagrangian-Eulerian FEM for interior 

elements + FEM on conservative form of equation for boundary elements.  

 Heat transfer is considered in HYDROBIOGEOCHEM to account for the 

temperature variations that may impact hydrologic transport by affecting the hydrologic 

and chemical conditions in the subsurface system.  Weak coupling will be applied to 

solve a system of chemical transport and heat transfer to save computing resources. 

HYDROBIOGEOCHEM is designed to assess migration of subsurface 

contamination and help design remediation technologies. The prospective field 

application of the model is demonstrated by examples.  
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CHAPTER 1.  
INTRODUCTION 

 

 This thesis presents the numerical modeling of biochemical and geochemical 

reactions in batch systems and non-isothermal reactive chemical transport under 

multiphase systems. Included in the transport model, HYDROBIOGEOCHEM, (a 

numerical model to simulate HYDROlogic transport and BIOchemical and 

GEOCHEMical reactions under nonisothermal multiphase systems) are transport 

processes including advection, dispersion, and molecular diffusion, and chemical 

processes including aqueous complexation, adsorption-desorption, ion-exchange, 

oxidation-reduction, precipitation-dissolution, acid-base reactions, and microbial 

mediated reactions. Chemical processes are modeled with BIOGEOCHEM, a batch 

numerical speciation model. Reaction rates considered in the BIOGEOCHEM is the most 

comprehensive so far. Because of this broad modeling scope, HYDROBIOGEOCHEM 

has a prospective to be applied to a wide range of subsurface contamination problems, 

and to provide a powerful tool for mechanistically understanding biogechemical 

processes under transport in natural systems and proper designing of remediation 

technologies.  

 

1.1 BACKGROUND AND LITERATURE REVIEW 

 

Increasing human activities have induced potential adverse effect on the 

environment, particularly the contamination of the groundwater. General sources of 

groundwater contamination include accidental spills and leaks, mining, salt intrusion and 
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others (Chareneau, 2000). Once the contaminants are introduced into the subsurface, they 

will pose a potential threat to large volumes of groundwater flowing through porous 

media under the surface of the earth.  

Typical porous medium contains solid phase, water phase and gas phase, and 

there may be a number of natural chemical species in each phase. In the case of 

contamination, the medium also contains foreign chemicals – contaminants, which can 

end up in different phases during their migration processes as the result of the complex 

interplay among hydrological, physical, geochemical, and biochemical processes in the 

subsurface environment. 

Once in contact with soil, a contaminant composed of several chemical species 

enters the soil and migrates downward through the unsaturated zone under gravity. In 

some circumstances, the contaminant may be dissolved as a portion of the aqueous phase. 

When the source of contaminant is associated with leaking underground tanks, it will be 

in the form of nonaqueous phase liquid (NAPL) because the majority of these tanks store 

petroleum products with low solubility in water. Ttrichloroethylene (TCE), for example, 

has a solubility of 1100 ppm in water at 20oC (Pinder and Abriola, 1986). In addition, 

light components of the contaminant may vaporize into the soil air. Some contaminant 

will be trapped in the matrix of the porous media, while others will eventually reach the 

water table and migrate as part of the groundwater. 

The migration of a chemical contaminant in the subsurface is a very complex 

process since its release to the subsurface environment. It will be controlled by 

hydrological processes, transport processes such as advection and dispersion, and 

biogeochemical processes such as precipitation-dissolution, adsorption, and aqueous 



 

 
 

3 

speciation reactions (Viswanathan et al., 1998). Therefore, the assessment of subsurface 

contamination and proper design of remediation technologies requires accurate model of 

the transport of contaminants in subsurface system. 

A fundamental question to the transport of the chemical species under the 

multiphase system is how the concentrations of each chemical species within different 

phases relate to each other, the understanding of which is known as reactive chemical 

transport (Cheng, 1995, and reference therein). The simplest and most common approach 

is the local equilibrium assumption (Charbeneau, 2000). This approach assumes that the 

rate of mass transport through the porous media within a phase is slow compared to the 

rate of mass transfer between phases in contact locally, i.e., the species in different phases 

are in thermodynamic equilibrium. However, experimental evidence has shown that this 

assumption is not always tenable (Friedly and Rubin, 1992, and references therein).  

Various ways have been attempted by researchers to solve the reactive transport 

problems. Hunter et al. (1998) classified and reviewed models of reactive transport 

developed till 1996 in subsurface environments. Most of these biogeochemical models 

are based on local equilibrium assumption due to computational limitations and the lack 

of database in kinetic rate constants. This assumption may provide a good approximation 

for many homogeneous speciation, acid-base and adsorption reactions; however, it may 

not reflect realistic spatio-temporal distributions of chemical species in subsurface 

systems when dealing with slow reactions, such as mineral dissolution/precipitation and 

oxidation/reduction (Hunter et al., 1998).  

In the past few years, there have been considerable efforts to deal with the 

kinetically controlled, multi-component transport in the development of reactive chemical 
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transport in the subsurface systems. We have witnessed the rapid evolution of models for 

the analysis of reactive chemical transport with the growing thermodynamic and kinetic 

databases. These models include PHREEQC (Parhurst, 1995), an ion-association aqueous 

model designed for low-temperature aqueous geochemical calculations; RAFT 

(Chilakapati, 1995; Chilakapati et al. 2000), a tool for arbitrarily complex coupled 

kinetic-equilibrium heterogeneous reaction networks; OS3D (Steefel and Yabusaki, 

1996), a 3D model designed for multicomponent, multispecies chemistry, considering 

multiscale heterogeneities; HYDROGEOCHEM (Cheng and Yeh, 1998), a model 

designed for the simulation of reactive multispecies-multicomponent chemical transport 

through saturated-unsaturated media under non-isothermal conditions; BIORXNTRN 

(Hunter et al., 1998), a model focusing on the comprehensive kinetic reaction network for 

the multi-component biogeochemical dynamics of groundwater systems; BIOKEMOD 

(Salvage and Yeh, 1998), a model designed for simulating any mixture of geochemical 

and mocriobiological reactions in subsurface systems; TRANQUI (Xu, 1999), a 2D 

model dealing with thermo-hydro-geochemical problems for single phase saturated-

unsaturated porous media flow systems; LEHGC2.0 (Yeh et. al, 2001a), a model for 

coupled fluid flow and reactive chemical transport; and some others. There were several 

articles on the application and development of reactive chemical transport models in a 

special issue of Journal of Hydroloy (Volume 209). 

Even though there is a large reservoir of numerical models available as mentioned 

above, numerical efficiency for modeling reactive chemical transport is still of major 

concern because of the complex nature of transport and reaction processes and their 

interactions.  Usually, flow and transport can be treated in separate steps. However, from 



 

 
 

5 

a physical point of view, the chemicals contained in the subsystem affect the solution 

density and induce changes in the flow field, which becomes dependent not only on the 

hydrogeologic parameters of the system, but also on the chemical concentration. This 

interdependence produces a coupling between the flow and transport equations. 

Secondly, as the chemical part of reactive transport models becomes more complex 

(considering mixed equilibrium and kinetic reactions), a challenge is posed on numerical 

formulations that can solve the resulting governing equations efficiently.  

Method to couple chemistry codes to transport models varies according to the 

particular codes.  Some chemical codes have been extended to include solute transport, 

for example, the geochemical code PHREEQE has been expanded to account for one-

dimensional advection, and equilibrium code MINTEQ2 has been coupled with the two-

dimensional advective-dispersive transport code PLUME2D, as summarized by Hunter et 

al. (1998). Some chemical codes are iteratively coupled with transport codes, such as 

HYDROGEOCHEM (Yeh and Tripathi, 1991). 

Yeh and Tripathi (1989) reviewed and discussed a number of approaches used in 

different transport models and compared the computation effort of each approach with 

regard to the formulation of governing equations and the types of reactions considered.  

Steefel and MacQuarrie (1996) also reviewed several approaches for accuracy and 

computational efficiency.  However, the comparison of different approaches is still an 

active topic in the literature (for example, Saaltink et al., 2001). In the meantime, there 

are new techniques being proposed other than the three general categories: operator 

splitting, the global implicit method and sequential iteration methods, such as ‘selective 

coupling method’ in FEHM (Robinson et al., 2000).  
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While reactive chemical transport in a single flow system is still a subject of 

intensive research, some researchers have already initiated investigations in multiphase 

systems (for example, Lichtner and Seth, 1996; Viswanathan et al., 1998; Xu and Pruess, 

2001). Limits of applicability of some of the models were addressed by Wu and Pruess 

(2000), for example, the assumption of isothermal system in the models. However, 

temperature variations may impact transport by affecting the hydrologic and chemical 

conditions. Therefore, heat transfer should be considered in the models to account for the 

temperature effect.  

Of all the models cited above, most have the limitation of assuming that all 

biogeochemical reactions can be easily written in basic (canonical) forms, which is not 

obvious when there are many parallel kinetic reactions (Yeh et al., 2000; Yeh et al., 

2001b).  And this limitation will certainly affect the generality of these models. On the 

other hand, the rate formulation for biogeochemical reactions is a primary challenge in 

biogeochemical modeling. Ad hoc approach dominates in current literature. It is not able 

to capture key features of a natural system via several measurable parameters. Therefore, 

a reaction-based formulation, though difficult to attain, is in need to alleviate the 

problem.  

 

1.2 OBJECTIVE AND FORMAT 

 

This thesis is to develop a non-isothermal, reactive chemical transport model on a 

reaction-based formulation under the multiphase system. The ultimate goal is to develop 

the capability of the model to calculate the spatio-temporal distributions of all the 
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important chemical species, reaction rates in the system. The organization of the thesis is 

as follows: A theoretical description of the batch model BIOGEOCHEM will be 

presented first. Followed by the derivation of the governing equations for reactive 

transport based on a new formulation and heat transfer under multiphase system, the 

techniques involved in transport calculations will be discussed. The thesis is made up of 

three journal articles. Chapter 2 presents the development, and application of the batch 

biogeochemical reaction model BIOGEOCHEM; this paper has been accepted for 

publication by Water Resources Research.  Chapter 3 presents the formulation and 

different numerical schemes of HYDROBIOGEOCHEM, a reactive transport model; this 

paper is intended for submission to Water Resources Research.  Chapter 4 presents the 

formulation of a three dimensional non-isothermal reactive transport model, 

3DHYDROBIOGEOCHEM; this paper is intended for submission to the Journal of 

Hydrology. Chapter 5 summarizes the work presented in this thesis and outlines the limits 

of the study. 

  

 

 

 

 

 

 

 

 



 

 
 

8 

 

REFERENCES 

Charbeneau, R.J., 2000. Groundwater Hydraulics and Pollutant Transport. Prentice Hall, 

New Jersey. 

Cheng, H.P., 1995. Development and application of a three-dimensional finite element 

model of subsurface flow, heat transfer, and reactive chemical transport. 

Dissertation, The Pennsylvania State University. 

Cheng, H.P. and Yeh, G.T., 1998. Development and demonstrative application of a 3-D 

numerical model of subsurface flow, heat transfer, and reactive chemical 

transport: 3DHYDROGEOCHEM. J. Contami. Hydrol. 34, 47-83.  

Chilakapati, A., 1995. RAFT: A simulator for ReActive Flow and Transport of 

groundwater contaminants. PNL Report 10636, Pacific Northwest Laboratory, 

Richland, WA.  

Chilakapati, A., Yabusaki, S., Szecsody, J. and MacEvoy, W., 2000. Groundwater flow, 

multicomponent transport and biogeochemistry: development and application of a 

coupled process model. J. Contami. Hydrol. 43, 303-325.  

Friedly, J.C., Rubin, J., 1992. Solute transport with multiple equilibrium-controlled or 

kinetically controlled chemical reactions. Water Resources Research, 28, 1935-

1953. 

Hunter, K.S., Wang, Y., and Frind, E.O., 1998. Modeling the effect of chemical 

heterogeneity on acidification and solute leaching in overburden mine spoils. J. 

Hydrol. 209, 166-185.  



 

 
 

9 

Lichtner, P.C., Seth, M., 1996. Multiphase-multicomponent nonisothermal reactive 

transport in partially saturated porous media. In: Proceedings of the International 

Conference on Deep Geological Disposal of Radioactive Waste, Canadian 

Nuclear Society, September 16-19, Winnnipeg, Manitoba, Canada, 3-133-42pp. 

Parkhurst, D.L., 1995. User’s guide to PHREEQC – a computer program for speciation, 

reaction-path, advective transport, and inverse geochemical calculations. US 

Geological Survey Water Resources Investigations Report 95-4227.  

Pinder, G.F. and Abriola, L.M., 1986. On the simulation of nonaqueous phase organic 

compounds in the subsurface. Water Resour. Res. 22, 109S-119S. 

Robinson, B.A., Viswanathan, H.S. and Valocchi, A.J., 2000. Efficient numerical 

techniques for modeling multicomponent ground-water transport based upon 

simultaneous solution of strongly coupled subsets of chemical components. 

Advances in Water Resources. 23, 307-324.  

Saaltink, M.W., Carrera, J. and Ayora, C., 2001. On the behavior of approaches to 

simulate reactive transport. J. Contami. Hydrol. 48, 213-235.  

Salvage, K., Yeh, G.T., 1998. Development and application of a numerical model of 

kinetic and equilibrium microbiological and geochemical reactions 

(BIOKEMOD). J. Hydrol. 209, 27-52.  

Steefel, C.I., MacQuarrie, K.T., 1996. Approaches to modeling reactive transport in 

porous media. In: Lichtner, P.C., Steefel, C.T., Oelkers, E.H. (Eds), Reactive 

Transport in Porous Media, Reviews in Mineralology 34. Mineral. Soc. Am. 83, 

83-129.  

Steefel, C.I., Yabusaki, S.B., 1996. OS3D/GIMRT, Software for modeling multi-



 

 
 

10 

component-multidimensional reactive transport, user’s manual and programmer’s 

guide. PNL-11166, Pacific Northwest Lagoratory, Richland, WA. 

Viswanathan, H.S., Robinson, B.A., Valocchi, A.J., and Triay, I.R., 1998. A reactive 

transport model of neptunium migration from the potential repository at Yucca 

Mountain. J. Hydrol. 209, 251-280. 

Wu, Y.S. and Pruess, K., 2000. Numerical simulation of non-isothermal multiphase tracer 

transport in heterogeneous fractured porous media. Advances in Water Resour. 

23, 699-723. 

Xu, T., Samper, J., Ayora C., Manzano, M. and Custodio, E., 1999. Modeling of non-

isothermal multi-component reactive transport in field scale porous media flow 

systems. J. Hydro. 214, 144-164.  

Xu, T. and Pruess, K., 2001. Modeling multiphase non-isothermal fluid flow and reactive 

transport in variably saturated fractured rocks: 1. methodology. American journal 

of science, Vol. 301(1), 16-33. 

Yeh, G.T., Tripathi, V.S., 1989. A critical evaluation o frecent developments of 

hydrogeochemical transport models of reactive multichemical components.  

Water Resour. Res. 25(1), 93-108.   

Yeh, G.T., Tripathi, V.S., 1991. HYDROGEOCHEM: A coupled model of hydrologic 

transport and geochemical equilibrium in reactive multicomponent systems. 

ORNL-6371, Oak Ridge National Laboratory, Environmental Sciences Division.  

Yeh, G.T., Burgos W.D., Fang, Y. and Zachara J.M., 2000.  Modeling biogeochemical 

kinetics: issues and data needs.  XIII International Conference on Computational 

Methods in Water resources, 2000. 



 

 
 

11 

Yeh, G.T., Siegel, M.D. and Li, M.H., 2001a. Numerical modeling of coupled variably 

saturated fluid flow and reactive transport with fast and slow chemical reactions. 

J. Contami. Hydrol. 47, 379-390.  

Yeh, G.T., Burgos, W.D., and Zachara, J.M., 2001b. Modeling and measuring 

biogeochemical reactions: system consistency, data needs, and rate formulation. 

Advances in Environmental Research. 5, 219-237.   

 

 



 

 
 

12 

CHAPTER 2.  
A GENERAL PARADIGM TO MODEL REACTION-BASED 
 BIOGEOCHEMICAL PROCESSES IN BATCH SYSTEMS 

 
 

Yilin Fang1 , Gour-Tsyh Yeh2* and William D. Burgos1  
 

 
1Department of Civil and Environmental Engineering 
The Pennsylvania State University 
University Park, PA 16802 
 
2Department of Civil and Environmental Engineering 
University of Central Florida 
Orlando, FL 32816-2450 
 

 
 

 
ABSTRACT 
 

This paper presents the development and illustration of a numerical model of 

reaction-based geochemical and biochemical processes with mixed equilibrium and 

kinetic reactions.  The objective is to provide a general paradigm for modeling reactive 

chemicals in batch systems, with expectations that it is applicable to reactive chemical 

transport problems.  The unique aspects of the paradigm are to simultaneously (1) 

facilitate the segregation (isolation) of linearly independent kinetic reactions and, thus, 

enable the formulation and parameterization of individual rates one reaction by one 

reaction when linearly dependent kinetic reactions are absent; (2) enable the inclusion of 

virtually any type of equilibrium expressions and kinetic rates users want to specify; (3) 

reduce problem stiffness by eliminating all fast reactions from the set of ordinary 

differential equations governing the evolution of kinetic variables; (4) perform systematic 

operations to remove redundant fast reactions and irrelevant kinetic reactions; (5) 

systematically define chemical components and explicitly enforce mass conservation; (6) 

accomplish automation in decoupling fast reactions from slow reactions; and (7) increase 
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the robustness of numerical integration of the governing equations with species switching 

schemes.  None of the existing models to our knowledge has included these scopes 

simultaneously.  This model (BIOGEOCHEM) is a general computer code to simulate 

biogeochemical processes in batch systems from a reaction-based mechanistic standpoint, 

and is designed to be easily coupled with transport models.  To make the model 

applicable to a wide range of problems, programmed reaction types include aqueous 

complexation, adsorption-desorption, ion-exchange, oxidation-reduction, precipitation-

dissolution, acid-base reactions, and microbial mediated reactions.  In addition, users-

specified reaction types can be programmed into the model.  Any reaction can be treated 

as fast/equilibrium or slow/kinetic reaction.  An equilibrium reaction is modeled with an 

infinite rate governed by a mass-action equilibrium equation or by a users-specified 

algebraic equation.  Programmed kinetic reaction rates include multiple Monod kinetics, 

n-th order empirical, and elementary formulations.  In addition, users-specified rate 

formulations can be programmed into the model.  No existing models to our knowledge 

offer these simultaneous features.   Furthermore, most available reaction-based models 

assume chemical components a priori so that reactions can be written in basic (canonical) 

forms, and implicitly assume that fast equilibrium reactions occur only for homogeneous 

reactions.  The decoupling of fast reactions from slow reactions lessens the stiffness 

typical of these systems. The explicit enforcement of mass conservation overcomes the 

mass conservation error due to numerical integration errors.  The removal of redundant 

fast reactions alleviates the problem of singularity.  The exclusion of irrelevant slow 

reactions eliminates the issue of exporting their problematic rate formulations/parameter 

estimations to different environment conditions.  Taking the advantage of the non-

uniqueness of components, a dynamic basis-species switching strategy is employed to 
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make the model numerically robust.  Backward basis switching allows components to 

freely change in the simulation of the chemistry module, while being recovered for 

transport simulation.  Three example problems were selected to demonstrate the 

versatility and robustness of the model. 

Keywords: Geochemical Modeling; Biochemical Modeling; Reaction Network; Matrix 

Decomposition; Basis Species Switching; Batch Systems. 
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2.1 INTRODUCTION 

 

While the coupling of hydrologic transport and chemical reaction models is an 

active area of research, the development of chemical reaction batch models has received 

much less attention.  Chemical reactions can be divided into two classes (Rubin, 1983): 

(1) those that are sufficiently fast and reversible, so that local equilibrium may be 

assumed and (2) those that are insufficiently fast and/or irreversible, where the local 

equilibrium formulation is inappropriate.  The modeling of equilibrium chemistry has 

been well established.  Some models for equilibrium chemistry have come into wide use, 

such as WATEQ (Truesdell and Jones, 1974), MINEQL (Westall et al., 1976), 

PHREEQE (Parkhurst et al., 1980), EQ3/6 and their derivatives (see Wolery, 1992 and 

references therein).  However, more complex types of biochemical and geochemical 

reactions exist in the subsurface or surface waters that cannot be described by equilibrium 

chemistry alone (see Friedly and Rubin, 1992; and references therein).  Therefore, the 

modeling of equilibrium chemistry coupled with the kinetic chemistry has become a 

necessity.  There are quite a few models, either stand-alone or being embedded in 

transport codes, that can model mixed kinetic and equilibrium reactions (e.g., model 

name unknown [Lin and Benjamin, 1990]; KEMOD [Yeh et al., 1995]; OS3D [Steefel 

and Yabusaki, 1996]; BIOKEMOD [Salvage and Yeh, 1998]; RAFT [Chilakapati, 1995; 

Chilakapati et al., 2000]).  All of these chemistry modules have had varied scopes, and 

most have limited capabilities in terms of rate equations for kinetic reactions and reaction 

types for equilibrium reactions. 

A generic chemistry module to describe geochemical and biochemical processes 

in batch systems is needed to improve reactive transport models.  Since qualitative 
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geochemical and biochemical processes must be conceptualized quantitatively as a 

reaction network (Yeh et al., 2001a), a reaction-based biogeochemical model is 

conceivably the most generic approach to modeling these processes.  This paper presents 

the development and verification of a generic numerical model (BIOGEOCHEM) using 

demonstrative examples.  The objective is to provide a general paradigm for modeling 

reactive chemicals in batch systems, with the expectation that this paradigm is applicable 

to reactive transport systems. 

To make the model applicable to as wide a range of problems as possible, 

BIOGEOCHEM embodies a complete suite of reactions including aqueous complexation, 

adsorption-desorption, ion-exchange, redox, precipitation-dissolution, acid-base 

reactions, and microbial mediated reactions.  Any reaction can be treated as 

fast/equilibrium or slow/kinetic reaction.  An equilibrium reaction is modeled with an 

infinite rate governed by a mass-action equilibrium equation or by a users-specified 

algebraic equation.  A kinetic reaction is modeled with a finite rate with microbial 

mediated enzymatic kinetics, an elementary rate, or a users-specified rate equation.  None 

of the existing models has encompassed this wide array of scopes. 

To make the model numerically robust, a dynamic basis-species switching 

strategy is employed taking the advantage of the non-uniqueness of components.  

Components are free to change in the simulation of the chemistry module, while being 

recovered for transport simulation by backward basis switching. 

BIOGEOCHEM can be coupled with any hydrologic transport model in the same 

way that PHREEQ or MINTEQ can be coupled to transport models (Lin and Benjamin, 

1990, Steefel and Yabusaki, 1996].  A subsequent paper will present a reactive 

biogeochemical transport model (HYDROBIOGEOCHEM) based on the same paradigm 
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described in this paper.  Instead of performing the matrix decomposition on species 

balance equations, one performs the decomposition on species transport equations in 

transport systems.  It is expected that this matrix decomposition approach can be used by 

others to modify their reactive transport models to improve the design capabilities.  For 

this reason, we will first review some existing reactive transport models that could have 

taken advantage of this generic paradigm before we outline what will be included in this 

paper. 

Reactive chemical transport models have had varied scopes.  Conventional solute 

transport models often ignore chemical speciation in the aqueous phase.  Much attention 

has been given to heterogeneous reactions with partitioning between aqueous and sorbed 

chemicals represented by linear (Kd approach) or nonlinear (Freundlich and/or Langmuir) 

isotherms (Yeh and Tripathi, 1991; Davis et al., 2000).  Most models cannot account for 

the complete set of biogeochemical processes (biogeochemical processes are coupled 

organic and inorganic reaction processes [Brun and Engesgaard, 2002]) and they cannot 

be easily extended to include mixed equilibrium/kinetic reactions or mixed 

chemical/microbial reactions using mechanistic rate formulations.  From a geochemical 

point of view, approaches that use empirical partitioning reactions can be considered as 

reactive chemical transport because they are dealing with adsorption/desorption 

phenomena.  However, from a modeling point of view, we hesitate to classify such 

models as reactive transport because a true reactive chemical transport models should be 

based on the principles of thermodynamics (for fast/equilibrium reactions) and chemical 

kinetics (for slow/kinetic reactions).  Many conventional transport models  (e.g., van der 

Zee and Riemsdijk, 1987; Bosma and van der Zee, 1993;  Tompson, 1993; Toride, et al., 

1993; Brusseau, 1994) that have been proclaimed to be reactive transport models perhaps 
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should not be categorized as such. 

A true reactive chemical transport models have been extensively documented.   

Many models couple simulation of transport with equilibrium geochemistry (e.g. Miller 

and Benson, 1983; Cederberg et al., 1985; Hostetler and Erikson, 1989; Narasimhan et 

al., 1986; Liu and Narasimhan, 1989a, 1989b; Griffioen, 1993; Yeh and Tripathi, 1991; 

Cheng, 1995; Parkhurst, 1995; Parkhurst and Appelo, 1999).  Some models couple 

transport with kinetic geochemistry for certain geochemical processes like precipitation-

dissolution (e.g. Lichtner, 1996; Steefel and Yabusaki, 1996; Suarez and Simunek, 1996), 

adsorption (e.g. Theis et al., 1982, Szecsody et al., 1998), redox (Lensing et al., 1994; 

Saiers et al., 2000), or biodegradation (MacQuarrie et al., 1990; Chen et al., 1992; Chang, 

et al., 1993; Cheng and Yeh, 1994; Wood et al., 1994).  

Models coupling transport with mixed equilibrium/ kinetic reactions have 

appeared since the mid-1990s  (e.g., Steefel and Lagasa, 1994; McNab and Narasimhan, 

1994, 1995; Salvage et al., 1996; Yeh et al., 1996; Abrams et al., 1998; Chilakapati et al., 

1998; Tebes-Stevens et al., 1998; Yeh and Salvage, 1998; Yeh et al., 2001b; Brun and 

Engesgaard, 2002). For most models chemical components must be selected a prior such 

that only limited reaction network can be considered (e.g., Parkurst, 1995; Parkhurst and 

Appelo, 1999).  Most models have implicitly assumed that equilibrium reactions occur 

only among aqueous species so that transport of components can be manually decoupled 

from fast reactions (Steefel and Lasaga, 1994; Lichtner, 1996; Tebes-Stevens et al., 1998; 

Parkhurst and Appelo, 1999).  However, in a complicated reactive system, the 

identification of component species may not be so easy when there are many parallel 

kinetic reactions (Friedly and Rubin, 1992; Chilakapati et al., 1998; Yeh et al., 2000).  

Under such circumstances, matrix methods may be better employed to define component 
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species and derive governing equations to model mixed equilibrium /kinetic reactions.  

There appears to be few general purpose transport models that can simulate a generic 

reaction including both biochemical and geochemical reactions, and mixed equilibrium 

/kinetic reactions (Fang and Yeh, 2002).  Instead, recent reactive biogeochemical 

transport models either add geochemical reactions to biodegradation transport models or 

add simple biodegradation reactions to geochemical transport models (Brun and 

Engesgaard, 2002). 

2.1.1 OUTLINE 

This paper is organized as follows. In section 2.2.2, a reaction network used to 

represent a biogeochemical system is defined with a simple example.  Possible 

difficulties in using primitive or DAE (mixed Differential/Algebraic Equation) 

approaches to modeling complex systems are heuristically exposed.  In section 2.2.3, a 

formal decomposition of the reaction network, which results in a new numerical approach 

to setting up and integrating differential equations, will be presented using two sets of 

results (one from a geochemist’s point view of components, the other with a totally 

different designation of components).  Advantages of using this generic paradigm are 

discussed.  In section 2.2.4, reaction rate formulations for kinetic reactions are discussed.  

In section 2.2.5, the numerical solution of the governing equations is outlined. In section 

2.2.6, the general application of BIOGEOCHEM is presented using three demonstrative 

examples.  In section 2.2.7, conclusions and discussions from the current research are 

summarized. 

 

2.2 REACTION NETWORK 
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2.2.1  Definition 

Reactive systems are completely defined by specifying reaction networks (Yeh et 

al., 2001a). From a mathematical point of view, a system of M ordinary differential 

equations can be written for M chemical species in a reactive, well-mixed batch system 

as 

M  i  , |r = 
dt

dC
Ni

i ∈  (1) 

where Ci is the concentration of the i-th chemical species, t is time, and ri|N is the 

production-consumption rate of the i-th species due to N biogeochemical reactions.  The 

determination of ri|N and associated parameters is a primary challenge in biogeochemical 

modeling.  There are two general models to formulate ri|N: ad hoc and reaction-based 

models, distinctions between which have been discussed extensively (Yeh et al, 2001a).  

It should be noted that Eq. (1) can be easily extended to transport systems by replacing 

the ordinary differential equation with a transport equation: |r = )CL( + 
t

C
Nii

i

∂
∂  where L is 

the advection-dispersion/diffusion operator.  Thus, the framework provided in this paper 

is also applicable to transport systems except that, instead of Eq. (1), one employs the set 

of transport equations.  A subsequent paper will present the development of a 

biogeochemical transport model (HYDROBIOGEOCHEM) using the same paradigm 

described here (Fang and Yeh, 2002). 

In an ad hoc model, the production-consumption rate of a species is described 

with an empirical function 

,...)p,p;C,...,C,C(f = |r = 
dt
Cd

21M21iNi
i  (2) 

where fi is the empirical function for the i-th species and p1, p2, ...are rate parameters used 
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to fit experimental data.  The ad hoc formulations and their associated fitting parameters 

may be applicable only to the specific experiment tested, because in these ad hoc 

approaches, the contribution of all geochemical and biochemical processes is lumped and 

the contribution from individual reactions is not explicitly modeled.  Many widely used 

models (e.g., WASP [Ambrose et al., 1988] and QUAL2E [Barnwell and Brown, 1987], 

and all WASP-based and QUAL2E-based water quality modeling) have taken this 

approach.  It is not difficult to see that calibrated rate parameters using the ad hoc 

approach are only applicable to the environmental condition under study because the 

contribution from individual reactions are not segregated.  As a result, new calibrations 

have to be performed for every study under different environmental conditions when a 

different set of reactions is the contributing chemical processes. 

In a reaction-based model, the production-consumption rates of M species are described 

by  

 M  i  , R) - ( = |r = 
dt
Cd

kikik

N

1=k
Ni

i ∈µν∑  (3) 

where, vik is the reaction stoichiometry of the i-th species in the k-th reaction associated 

with the products, µik is the reaction stoichiometry of the i-th species in the k-th reaction 

associated with the reactants, and Rk is the rate of the k-th reaction.  Equation (3) is a 

statement of mass balance for any species i in a batch system.  It simply states that the 

rate of change of mass of any species is due to all reactions that produce or consume that 

species.  This formulation can be extended to transport systems by replacing the ordinary 

differential equation with the transport equation: R) - ( = |r = )CL( + 
t

C
kikik

N

1=k
Nii

i µν
∂
∂ ∑ .  

This partial differential equation is then a statement of mass balance for any species at a 

point in a transport system.  It simply states that the rate of change of mass of any 
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chemical species at any point is due to the net transport to or from the point and due to all 

chemical reactions occurring at the point. 

In a reaction-based approach, the contribution from all individual reactions is 

explicitly modeled.  Thus, a properly formulated and parameterized rate equation may 

still find its application to a wide range of environmental conditions.  This is so because 

rate equations are description of reactions and because under a different environmental 

condition, only the reaction-rate equations (not the lumped rate equations) associated 

with the reactions that are operative under the conditions are used.  Thus, a reaction-

based approach is superior to an ad hoc approach.  A reaction based approach using 

mechanistic rate formulations would be the ultimate goal of biogeochemical modeling, 

though it would be difficult to obtain. 

2.2.2 Example  

Let us consider a simple system with the following reaction network for 

nitrotriacetic acid (NTA), cobalt(II), and microbial biomass, B (simplified from the one 

modeled in Yeh et al., 1998): 

(R1) H + NTA ↔ HNTA, an equilibrium reaction with R1 = ∞; 

(R2) CoNTA ↔ Co + NTA, an equilibrium reaction with R2 = ∞; 

(R3) CoNTA + H ↔ Co + HNTA, a kinetic reaction, with its rate R3 that must be 

formulated; 

(R4) HNTA + H → B, irreversible microbial degradation reaction with its rate R4 that 

must be formulated. 

where R1, R2, R3, and R4 denote the reaction number in the system and R1, R2, R3, and 

R4 denote the corresponding rates of reaction. This notation is used throughout the paper.  

It is noted that we have considered the rate of an equilibrium reaction infinity as in R1 
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and R2. 

The concept that the rate of an equilibrium reaction is infinity (not indeterminate) 

is very important.  All reactions in reality are kinetics and take time, however small, to 

reach equilibrium.  In the limit, it takes zero time to reach equilibrium (the zero time is, 

of course, a mathematical abstraction).  With this abstraction, one uses the 

thermodynamic approach to model a fast reaction resulting in the concept of infinite rate, 

rather than uses the chemical kinetic approach to model a fast reaction resulting in the 

concept of indeterminate rate.  Consider a simple system of three species subject to one 

fast reaction as follows: A + B ↔ C. Using the reaction-based approach, we can write the 

following three ordinary differential equations (ODEs) governing the evolution of three 

species- concentrations for this reactive system: R;- = 
dt

d[A]  R;- = 
dt

d[B]  and R = 
dt

d[C]  

where [A], [B], and [C] are the concentrations of species A, B, and C, respectively, and R 

is the reaction rate.  From a kinetic point of view, when the reaction is fast and quickly 

achieves to equilibrium, we can formulate R as the asymptotic approximation of the 

elementary rate with the backward rate constant approaching infinity.  With this 

asymptotic formulation, the three ODEs become: ( );[A][B]K -[C] k = 
dt

d[A] eb  

( );[A][B]K -[C] k = 
dt

d[B] eb and ( )   ,[A][B]K -[C] k- = 
dt

d[C] eb where kb and Ke are the 

very large (in the limit infinity) backward rate constant and the fixed equilibrium 

constant, respectively.  Theoretically, one can solve these three ODEs to yield the 

equilibrium concentrations, [A]e, [B]e, and [C]e, given the initial concentrations, [A]o, 

[B]o, and [C]o.  [At equilibrium, the rate computed 

with ( )][B ][AK - ][Ck lim - = R ee
e

e
b

 kb ∞⇒
 is indeterminate.]  In practice, this asymptotic 
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approach is extremely difficult to solve numerically because the system is very stiff or 

infinitely stiff in the limit.  Alternatively, from a thermodynamic point of view, we do not 

have to formulate the reaction rate R.  Instead, we simply postulate that a fast reaction 

reaches equilibrium instantaneously.  The reaction is then described with a 

thermodynamically consistent expression, for example: [B][A] K =[C]      = R e∃∞  (or 

other thermodynamically consistent algebraic expressions). [Note: this expression is not 

the same as to formulating R as ( )][B ][AK - ][Ck lim - = R ee
e

e
b

 kb ∞⇒
 a priori].  R = ∞ is a 

mathematical abstraction. 

An important question is then: is it an appropriate abstraction?  To answer this 

question, we need to find out: whether R is infinity or not (i.e, R =?  ∞) assuming that the 

reaction reaches equilibrium instantaneously?  Now one of the system equations is 

[B].[A] K =[C] e  The other two equations can be derived with algebraic manipulations 

of the three ODEs to yield two component equations: ][C + ][A =[C]  +[A] oo  and 

.][C + ][B =[C]  +[B] oo  Given the initial concentrations, [A]o, [B]o, and [C]o, we solve 

these three algebraic equations to yield three concentrations at equilibrium, [A]e, [B]e, 

and [C]e.  The reaction rate is finally computed with ∞
=

 = 
0∆t

][C - ][C
 = 

dt
d[C] = R oe  (keep 

in mind that the reaction reaches equilibrium instantaneously, so ∆t = 0), not 

with ( )][B ][AK - ][Ck lim - = R ee
e

e
b

 kb ∞⇒
 that has never entered into the picture in the 

thermodynamic approach.  Indeed, the reaction rate for an equilibrium reaction is infinity, 

and the mathematical abstraction is an appropriate one.  In other words, when we model a 

fast reaction with a thermodynamic expression, the rate corresponding to this reaction is 

infinity when it is used in reaction-based mass balance equations.  This mathematical 



 

 
 

25 

abstraction of treating a fast rate as infinity is also valid and consistent for a system with 

mixed equilibrium and kinetic reactions as shall be addressed in the subsequent sections.  

As we shall see later, the abstraction of an infinite rate is equivalent to saying that the 

concentration of an equilibrium variable (the definition of the equilibrium variable under 

mixed kinetic and equilibrium reactions will be given later) reaches its equilibrium value 

instantaneously at any time.  The conceptualization of a fast reaction as having a rate of 

infinity, when this rate is used in chemical kinetic equations, is thus justified. 

In contrast, it has been argued by many authors (e.g., Lichtner, 1996) that the rate 

for an equilibrium reaction is indeterminate.  This argument has resulted from the 

calculation of R using ( )][B ][AK - ][Ck lim - = R ee
e

e
b

 kb ∞⇒
.  This argument is logical if a 

fast reaction is modeled with the chemical kinetic approach using the asymptotic 

approximation of an elementary rate.  However, the argument is incorrect when the fast 

reaction is modeled with the thermodynamic approach.  Since the rate R has not been 

formulated a priori when a consistent thermodynamic expression is directly used to 

model the fast reaction, the rate cannot be computed with 

( )][B ][AK - ][Ck lim - = R ee
e

e
b

 kb ∞⇒
 but must be computed 

with ∞ = 
0 = ∆t

][C - ][C
 = 

dt
d[C] = R oe .  Therefore, the argument that the rate of an 

equilibrium reaction is indeterminate is flawed when a thermodynamic approach is used 

to model the reaction. 

To distinguish the conceptual difference between kinetic modeling and 

thermodynamic modeling of a fast reaction, the equation, 

( )][B ][AK - ][Ck lim - = R ee
e

e
b

 kb ∞⇒
 is called a mass-action kinetic equation while the 
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equation, [B] ,[A] K =[C]      = R e∃∞  is called a mass-action equilibrium equation 

throughout this paper.   The concept of infinite rates for equilibrium reactions is used to 

facilitate the discussion on the difficulties encountered in solving a set of ODEs involving 

mixed fast/slow reactions in the following section. 

The species charges of the reactions R1 through R4 are not included for simplicity 

of presentation.  In this system, the total number of species M = 6, and the total number 

of reactions N = 4.  From Equation (3), the mass balance equations for the reaction 

network R1 through R4 can be written as: 

R - R - R - = 
dt

d[H]
431  (4.1) 

R + R - = 
dt

d[NTA]
21  (4.2) 

R - R + R = 
dt

d[HNTA]
431  (4.3) 

R + R = 
dt

d[Co]
32  (4.4) 

R - R - = 
dt

d[CoNTA]
32  (4.5) 

R = 
dt

d[B]
4  (4.6) 

 
2.2.3 Difficulties in Solving Eqs. (4.1) through (4.6) 

An analytical solution of Eqs. (4.1) through (4.6) is generally impossible, which 

makes numerical integration attractive.  The majority of existing reactive chemical 

models has taken either a primitive approach (i.e., integrate Eq. (3) directly) or a mixed 

differential and algebraic equations (DAEs) approach.  In a DAE approach, most models, 

with a few exception (e.g., Friedly and Rubin, 1992; Chilakapati et. al, 1998), do not have 
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the capability to automate the setup of DAEs based on Eqs. (4.1) through (4.6).  Instead, 

the set of DAEs is manually and directly obtained based on the reactive system (e.g., Liu 

et al., 2001).  For the reactive network R1 through R4, one can easily set up two mass-

action equilibrium equations governing the fast reactions [refer to Eqs. (6.1) and (6.2)], 

an ordinary differential equation governing the slow/kinetic reaction [refer to Eq. (6.3)], 

and three component equations governing three mass conservation of TOTH, TOTCo, and 

TOTNTA [refer to Eqs. (6.4), (6.5), and (6.6)].  This system of DAEs is then numerically 

integrated simultaneously.  The manual and direct setup of mass-action equilibrium 

equations, ordinary differential equations, and mass conservation equations is easy for 

this simple system.   For a generic system, with many fast and slow reactions including 

parallel reactions, a manual setup will be difficult even for experienced modelers and/or 

chemists.  Under such circumstances, a better way is to automate the generation of a new 

but equivalent governing set of equations (Friedly and Rubin, 1992; Chilakapati et al., 

1998; Yeh et al., 2001a).  Another problem is that when fast reactions are not written in 

basic form [a reaction is defined as basic in this paper when all reactants are component 

species and includes only one product species], they are not easy to decouple from slow 

reactions.  Clearly, a systematic approach is needed to achieve the mission of decoupling 

(i.e., eliminating fast reactions from simultaneous solution). 

In a primitive approach, direct numerical integration of the system of ODEs is 

performed using very large backward and forward rate constants (with their ratio defining 

the equilibrium constant) to mimic the rates of fast/equilibrium reactions.  Several 

numerical difficulties can be encountered in this approach.  First, the reaction rates of N 

reactions can, in general, range over several orders of magnitude.  The time-step size 

used in numerical integration is dictated by the largest reaction rate among N reactions.  
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If at least one of the reactions is fast/equilibrium, its rate is infinitely large.  As a result, 

the time-step size must be infinitely small, which makes integration impractical.  For 

example, in Eqs. (4.1) through (4.5), R1 and R2 are infinitely large, which dictates the use 

of an infinitely small time step for numerical integration.  Second, physics dictates that 

the number of linearly independent reactions must be less than the number of species.  

This implies that there must be one or more chemical components whose mass must be 

conserved during the reactions.  For example, there are three linearly independent 

reactions in the above reaction network.  Thus, there must be three components (NC = M - 

NI).  If Co, H, and NTA are selected (at the discretion of a user) as the three chemical 

components, then the TOTCo, TOTH, and TOTNTA, defined in next section, must be 

invariant. The direct numerical integration of Eqs. (4.1) through (4.6) yields the solution 

of all six species assuming one can afford the use of an infinitely small time step size.  

Because of numerical errors, there are no assurances that TOTCo, TOTH, and TOTNTA, as 

defined in Eqs. (6.4) through (6.6), respectively, are invariant when the primitive set of 

equations are integrated directly.  Similarly, in case of transport systems, even without 

spatial discretization errors, there are no assurances that TOTCo, TOTH, and TOTNTA 

obtained from solving the system of primitive PDEs (Partial Differential Equations) will 

satisfy the component transport equations. 

Third,  if more than one equilibrium reactions are involved, there is no way to 

define the subtraction or addition of infinity.  For example, in Eq. (4.2), both R1 and R2 

are infinitely large, so how can one interpret (-R1 + R2)?  Fourth, redundant 

fast/equilibrium reactions must be removed from consideration, otherwise the system 

would become singular or over-constrained.  Redundant reactions can easily be detected 

and excluded from consideration manually when the system is simple and components 
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are chosen a priori.  When there are many fast/slow reactions, redundancies are not easy 

to detect and a systematic way must be employed to detect them.  Fifth, the inclusion of 

these irrelevant reactions makes their rate formulations and parameter determinations 

meaningless because they are insensitive to the system.  Because of their insensitivity, 

any rate formulation and parameter estimate are as good as any others.  As a result, their 

rate formulations and parameter estimates are not true descriptions of these rates.  Hence, 

these rate formulations and parameters are not portable to other conditions, when they are 

relevant, unless one is lucky enough to have coincidently come up with true rate 

formulations and parameters.  Therefore, it is desirable to exclude these irrelevant 

reactions with a systematic approach. 

Sixth, which is the most important difficulty, even if all reactions are 

slow/kinetic, their rates are coupled via the concentration-versus-time curves of all 

species.  They cannot be formulated and parameterized one reaction by one reaction 

independently of each other. 

While a DAE approach can overcome the first difficulty of system stiffness, it 

greatly increases the computational burdens when there are numerous fast reactions or if 

the model is coupled with transport when hundreds or thousands of DAE problems must 

be solved.  A DAE approach is definitely able to alleviate the second difficulty of mass 

balance error as it also explicitly enforces mass conservation.  The problem is that the 

number of species that must be included in a component equation is not obvious and may 

be specified incorrectly when many parallel reactions are involved.  The issues related to 

the third, fourth, and fifth difficulties are eliminated from a DAE approach only if all 

reactions are written in basic form.  For a realistic system it would be difficult to write all 

reactions in basic form, thus the DAE approach will be demanding to address these 
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issues.  Finally, a DAE approach definitely cannot resolve the sixth difficulty related to 

kinetic rate coupling. 

In spite of the difficulties outlined above, the majority of literature has taken the 

primitive approach of directly integrating the system of ODEs (e.g., McNab and 

Narasimhan, 1993, 1994; Chilakapati, 1995;  Saiers et al., 2000) or the DAE approach 

(e.g., Miller, et al., 1983; Chilakapati et al., 1998; Liu et al., 2001).  Neither the primitive 

nor the DAE approaches will pose computational burdens when the system is small, for 

example, when modeling laboratory experiments (e.g., Lin and Benjamin, 1990;  

Szecsody et al., 1994, 1998).  However, for large problems or when the reactive chemical 

model is intended to couple with hydrologic transport, a systematic approach that can 

overcome the above difficulties is needed.  This paper presents the development of such a 

model using the well-known Gauss-Jordan matrix decomposition. 

 

2.3 DECOMPOSITION OF REACTION NETWORK 

 

Eqs. (4.1) through (4.6) govern the evolution of six species and contain both fast 

and slow reactions on the right hand sides.  Obviously, the above system of equations is 

very stiff if fast reactions are modeled with mass-action kinetic equations because the rate 

constants are very large and infinity in the limit.  To reduce the stiffness of the system, a 

direct thermodynamic approach may be employed to model the two fast reactions; then 

two of the above ODEs may be replaced by two thermodynamically consistent 

equilibrium expressions (mass-action equilibrium equations or users- specified algebraic 

equations).  But difficulties still exist.  First, we do not know which two ODEs should be 

replaced (i.e., we do not know how to define the subtraction or addition of infinity).  
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Second, even if we know which two to replace, the remaining ODEs still contain fast 

reactions and the system is still stiff.  Therefore, a systematic way must be provided to 

reduce the system of equations such that (i) no more than one fast reaction is allowed in 

any reduced ODE and (ii) any fast reaction is not allowed to appear in more than one 

reduced ODE.  These two constraints can be met if and only if all fast reactions are 

linearly independent.  The use of Gauss-Jordan reduction on the matrix made up of only 

fast reactions can determine if all fast reactions are linearly independent.  During 

reduction process, any reaction detected to be dependent reaction must be removed and 

the constraints can be satisfied.  With these constraints, the number of reduced ODEs that 

contain fast rates will be equal to the number of non-removed fast reactions after the 

reduction.  Any reduced ODE that contains one and the only one linearly independent 

fast reaction may still contain other slow reactions that are linearly dependent on this fast 

reaction.  However, because the rates of all slow reactions are conceptualized infinitely 

small compared to the rate of the fast reaction, these rates can be discarded and the 

reduced ODE can be replaced by the corresponding equilibrium expression.  This 

resolves the problem of not knowing which equation is to be replaced.  The replacement 

can be done for every reduced ODE in which the number of fast reactions is only one.  

After the completion of the replacement, the remaining ODEs will no longer contain any 

fast reactions, and the problem of stiffness is resolved.  The reduction can be achieved via 

the Gauss-Jordan decomposition of the reaction matrix which will be presented in the 

following sections. 

2.3.1 Description of reaction network decomposition 

As stated in section 2.2.2, to make possible the formulation of rate equations one 

reaction by one reaction and to enable robust and efficient numerical integration of Eq. 
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(3), a systematic approach rather than the primitive or DAE approaches is necessary.  The 

approach can be achieved with a diagonalization of Eq. (3).  Eq. (3) written in matrix 

form can be decomposed based on the type of biogeochemical reactions via Gauss-Jordan 

column reduction of the reaction matrix (Chilakapati, 1995; Steefel and MacQuarrie, 

1996; Yeh et al., 2001a).  Each column of the reaction matrix is made up of reaction 

stoichiometries of a reaction.  To perform column reduction is to determine a pivot 

element, and use a matrix row operation to convert the column containing the pivot 

element into a unit column.  The example from section 2.2.2 is used to illustrate the 

decomposition and demonstrate how the difficulties presented earlier can be overcome.  

The system of Eqs. (4.1) through (4.6) written in matrix form is 
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The decomposition of Eq. (5) is not unique.  Step-by-step decomposition procedures for 

this simple example are given in Appendix 2.A.  For complex systems, the decomposition 

procedures are provided within the BIOGEOCHEM preprocessor (description in section 

2.2.3.2).  Two different decompositions are described and compared below. 

2.3.1.1 Decomposition I  

One possible decomposition, when choosing Co, H, and NTA as chemical 

components, results in the following set of 6 equations for the 6 species (Appendix 2.A):   
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[NTA] [H] K = [HNTA]    

  = R  
dt

[B]) + d([HNTA]  :R + R = 
dt

[B]) + d([HNTA]

e
1

131

∃

∞≈
 (6.1) 

[CoNTA] K = [NTA] [Co]     

  - = R -  
dt

d[CoNTA]  :R - R - = 
dt

d[CoNTA]

e
2

232

∃

∞≈
 (6.2) 

R = 
dt

d[B]
4  (6.3) 

const = 2[B] + [HNTA] + [H] = TOT   0 = 
dt

2[B]) + [HNTA] + d([H]
H⇒  (6.4) 

const = [B] + [CoNTA] + [HNTA] + [NTA] = TOT               

                  0 = 
dt

[B]) + [CoNTA] + [HNTA] + d([NTA]

NTA⇒
 (6.5) 

const = [CoNTA] + [Co] = TOT    0 = 
dt
[CoNTA]) + d([Co]

Co⇒  (6.6) 

The two variables ([HNTA] + [B]) and [CoNTA] in the differential operator in Eqs. (6.1) 

and (6.2) are defined as equilibrium variables.  The variable [B] in Eq. (6.3) is defined as 

the kinetic variable.  The three variables, ([H] + [HNTA] + 2[B]), ([NTA] + [HNTA] + 

[CoNTA] + [B]), and ([Co] + [CoNTA]), in Eqs. (6.4) through (6.6) are defined as 

component variables.  It should be noted that R3 appears in both Eqs. (6.1) and (6.2) 

because R3 is linearly dependent on R1 and R2. 

This first decomposition yields the above set of equations which, one may argue, 

can be easily set up manually from a geochemist’s point of view.  However, it may be 

easy to miss species B in defining the total H and total NTA even for this simple system.  

For complex systems, it may not be obvious to generate such a system manually, and a 

systematic approach using the matrix decomposition will accomplish this task. 

Now let us discuss how the diagonalization procedure (i.e., decomposition of 
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reaction matrix) overcomes the difficulties stated in section 2.2.2.  First, it is noted that 

either none or one and only one fast reaction appears in any of the above six ODEs.  

Since the rate of a fast reaction is infinitely large, R3 is small compared to R1 = ∞ in Eq. 

(6.1), the ODE is reduced to . = R  
dt

[B]) +d([HNTA] 
1 ∞≈   The infinity rate is interpreted 

as a reaction that can reach equilibrium instantly.  Thus, 

  = R  
dt

[B]) +d([HNTA] 
1 ∞≈ states the use of thermodynamics (not chemical kinetics) to 

model R1, which results in the last equation in Eq. (6.1), and the equilibrium variable,  

([HNTA] + [B]), reaches its equilibrium value instantaneously at any time.  It is clear that 

the equilibrium variable  ([HNTA] + [B]) for this system of mixed fast and slow reactions 

is analogous to the variable [C] in the simple system described in the second paragraph in 

Section 2.2.2.2.  Similarly, R2 = ∞ results in the last equation in Eq. (6.2).  With the 

decomposition of reaction networks and the modeling of fast reactions with 

thermodynamically consistent expressions, no more ODEs involve infinite rates, and the 

simulation time step size is dictated only by slow kinetic rates, which makes the system 

much less stiff than in the primitive approach.  These reductions cannot be applied to the 

primitive approach using Eqs. (4.1) through (4.6) since either more than one infinite rate 

appears in one equation [e.g., R1 and R2 in Eq. (4.2)] or one infinite rate appears in more 

than one equation [e.g., R1 in Eqs. (4.1), (4.2), and (4.3) or R2 in Eqs. (4,2), (4,4), and 

(4.5)]. 

Second, there is no reaction rate appearing in  Eqs. (6.4), (6.5), and (6.6).  This 

signifies that there are three components, which naturally results from the fact that the 

rank of the reaction matrix is three. [The rank of a reaction matrix is equal to the number 

of linearly independent reactions, NI.  The number of components, NC, is equal to the 
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number of species, M, minus the number of linearly independent reactions (i.e, NC = M - 

NI = 6 - 3 = 3)].  Again, the components are determined systematically, and the question 

of how many species are used to define a component is automated.  The solution of the 

diagonalized set of Eqs. (6.1) through (6.6) explicitly enforces the mass conservation of 

the components Co, H, and NTA.  Third, because none or one and only one infinite rate 

appears in each equation, the issue of subtraction or addition of infinite rates is moot. 

Fourth, R3 appears in both Eqs. (6.1) and (6.2).  This indicates that this reaction 

is linearly dependent on R1 and R2.   If this reaction were also assumed to be a fast 

reaction, it must be removed from consideration because two infinite rates are not 

allowed to appear in any ODE in a diagonalized system.  If R3 is not removed, than three 

infinite rates state three mass-action equilibrium equations, but the mass-action 

equilibrium equation for R3 is a combination of those for R1 and R2.  If all three mass-

action equilibrium equations were used, the system would become singular or over-

constrained, which would necessitate the removal of the dependent fast reaction R3.  This 

automatic removal of fast reactions that are linearly dependent on other fast reactions 

circumvents the problem of singularity in the system.  Fifth, if R3 is a slow reaction as 

assumed in this case, since R3 is linearly dependent on only two fast reactions R1 and 

R2, its rate appears only in the equations where rates R1 and R2 appear after 

decomposition.  Because R3 is small compared to R1 and R2, it disappears from Eqs. (6.1) 

and (6.2).  Also, it never appeared in any of the other four equations after decomposition.  

Thus, R3 does not appear in any of the final six governing equations and hence is 

irrelevant to the system, and is automatically removed from the system by the 

BIOGEOCHEM preprocessor.  Five difficulties presented in Section 2.2.2 have now been 

resolved; thus the advantages of the diagonalization-decomposition approach over the 
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primitive approach should become clear. 

Finally, the mass-action equilibrium equations, the last equations in Eqs. (6.1) and 

(6.2), can be decoupled from Eqs. (6.3) through (6.6) by eliminating [HNTA] and 

[CoNTA] (the procedure of elimination is given in section 2.3.2.2 and a simple example 

is given in Section 2.A.3 in Appendix 2.A).  In other words, after the substitution of the 

last equations of Eqs. (6.1) and (6.2) into Eqs. (6.3) through (6.6), [H], [Co], [NTA], and 

[B] can be obtained by solving three linear algebraic equations [Eqs. (6.4) through (6.6)] 

and one ODE [Eq. (6.3)].  Then [HNTA] and [CoNTA] can be simply calculated using 

the last equations of Eqs. (6.1) and (6.2), respectively.  In general, equilibrium reactions 

are decoupled from kinetic reactions.  This offers great advantages over DAE approaches 

when the system involves a large number of fast/equilibrium reactions. 

2.3.1.2 Decomposition II 

A second decomposition, when NTA, CoNTA, and B are chosen as the 

components, yields the following six equations (Appendix 2.A). 

[NTA] [H] K = [HNTA]     

 - = R -  
dt

[Co]) - d([NTA]  :R - R - = 
dt

[Co]) - d([NTA]

e
1

131

∃

∞≈
 (7.1) 

[CoNTA] K = [NTA] [Co]     

  = R  
dt

d[Co]  :R + R = 
dt

d[Co]

e
2

232

∃

∞≈
 (7.2) 

R - = 
dt

[Co]) + [NTA] - d([H]
4  (7.3) 

const = 2[Co] - [HNTA] + 2[NTA] + [HNTA] = Tot          

0 = 
dt

2[Co]) - [HNTA] + 2[NTA] + d(-[H]

HNTA⇒
 (7.4) 
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const = [Co] + [CoNTA] = Tot    0  = 
dt
[CoNTA]) + d([Co]

CoNTA⇒  (7.5) 

const = [NTA] - [H] + [Co] + [B] = Tot   

0 = 
dt

[Co]) + [NTA] - [H] + d([B]

B⇒
 (7.6) 

While the mass conservation of Co, NTA, and H may be intuitive to geochemists, 

the mass conservation of HNTA, CoNTA, and B may be a surprise.  These alternative 

mass conservation equations are nonetheless mathematically as correct as the mass 

conservation of Co, NTA, and H.  This is beside the point.  The question then becomes 

why bother with the second decomposition?  In the first intuitive decomposition, the 

reaction rate R4 is measured by the evolution of the [B]-versus-time curve [Eq. (6.3)].  If 

the concentration of microbial biomass, [B], is difficult to measure, the second 

decomposition may offer a way to determine the reaction rate R4 by measuring the ([H]-

[NTA]+[Co])-versus-time curve if the concentration of H (or pH), NTA, and Co can be 

measured easier.  Under such circumstances, the second decomposition offers an 

attractive way of formulating reaction rate R4.  In any event, the non-uniqueness of the 

matrix decomposition may allow employment of appropriate governing equations for 

easier formulations of rate equations (Burgos, et al., 2002a, 2002b) and/or for robust 

numerical computation.  The variable that can be used to measure a kinetic reaction is 

defined as a kinetic variable.  A kinetic variable may consist of just one species [e.g., Eq. 

(6.3)] or a combination of species [e.g., Eq. (7.3)] depending on the reaction matrix 

decomposition. 

Recall that in Decomposition I, the mass-action equilibrium equations, Eqs. (6.1) 

and (6.2), were decoupled from Eqs. (6.3) through (6.6) by eliminating [HNTA] and 

[CoNTA].  In this alternative decomposition, since HNTA and CoNTA are chosen as the 
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component species, they are not eligible species for elimination. Instead, the decoupling 

of Eqs. (7.1) and (7.2) from Eqs. (7.3) through (7.6) is achieved by eliminating two 

species (e.g., [NTA] and [Co], or [Co] and [H]) out of the three product species ([H], 

[NTA], and [Co]).  While the elimination of [HNTA] and [CoNTA] in Decomposition I 

is straightforward, the elimination of [NTA] and [Co], for example, is not as 

straightforward.  The detailed procedure of decoupling mass action equilibrium equations 

from kinetic-variable and component equations by eliminating a subset of product species 

is given in section 2.3.2.2. 

2.3.1.3  Other Advantages of Decomposition 

An even more significant advantage is that the decomposition decouples all 

kinetic rates such that rate formulations/parameters can be determined one reaction at a 

time, independent of all other kinetic reactions (when parallel kinetic reactions are not 

present).  For example, in Eqs. (6.3) or (7.3), there is only one kinetic rate on its right 

hand side.  Thus, the slope of [B]-versus-time or ([H] - [NTA] + [Co])-versus-time 

defines the reaction rate R4.  For the former case, the kinetic variable is a single species B 

while for the latter case, the kinetic variable consists of three species.  Conceptually, Eq. 

(4.6) and (6.3) are quite different.  In Eq. (4.6), [B] denotes the concentration of the 

species B due to all reactions (in this case just R3) while in Eq. (6.3), [B] denotes the 

concentration of a kinetic variable (in this case just B) that is measured by a linearly 

independent kinetic reaction and possibly other linearly dependent kinetic reactions (none 

in this case).  In general, a kinetic variable may consist of more than one species 

depending on the complexity of the system.  The rate of a linearly independent kinetic 

reaction is measured by a kinetic variable not by a single species.  The rate of a kinetic 

reaction is measured by a single species only when it is the only contributing reaction to 
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the production/consumption of the species.  The distinction between kinetic variables and 

time-variant species concentrations must always be borne in mind when one models 

geochemical and biochemical processes with this new paradigm. 

2.3.2  BIOGEOCHEM Preprocessor 
 
2.3.2.1 Determines the Number of Linearly Independent Reactions 
 

Let us start with a reaction network that consists of Ne equilibrium and Nk kinetic 

reactions.  For a complex system, it will not be obvious to know if all Ne reactions are 

linearly independent.  Nor is it obvious to know if any of the Nk kinetic reaction is 

linearly dependent on only fast reactions.  Thus, from the above discussion, the first step 

in the decomposition is to determine the rank, i.e., the number of linearly independent 

reactions, of the matrix whose columns are made of the stoichiometric coefficients of Ne 

equilibrium reactions.  The rank of a matrix can be determined with column reduction 

using any standard matrix operation package (Press et al., 1992).  The reduction is carried 

out column by column.  If no pivot element can be found for a column, the equilibrium 

reaction corresponding to this column is considered a dependent reaction and is 

redundant.  Suppose the rank of the matrix is NE, which should be less than or equal to 

Ne, we choose the first NE columns in which a pivot element can be found as the NE 

linearly independent reactions.  The remaining (Ne - NE) equilibrium reactions are 

discarded from further consideration in the reaction network.  It does not matter which NE 

equations are chosen when all fast reactions are modeled with thermodynamically 

consistent equilibrium expressions.  Second, we determine which of the Nk kinetic 

reactions is linearly dependent on only the chosen NE equilibrium reactions.  To do this, 

we check the rank of the NE+1 matrix (defined as the matrix whose columns are made of 

the stoichiometric coefficients of NE equilibrium reactions and one kinetic reaction).  
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When the rank of this matrix is equal to NE, i.e., no pivot element can be found in the 

(NE+1)-th column, the kinetic reaction in the matrix is linearly dependent on only NE 

equilibrium reactions, and this kinetic reaction is removed from the reaction network.  

Continuing this process one by one for all Nk kinetic reactions, we are left with NK 

kinetic reactions, which is less than or equal to Nk. 

Starting with Ne fast reactions and Nk slow reactions, we end up with NE linearly 

independent equilibrium reactions and NK kinetic reactions.  Among those NK kinetic 

reactions, some are linearly independent reactions while some may be linearly dependent 

on at least one other kinetic reaction.  Under such circumstances, only linearly 

independent kinetic reactions can be segregated.  In other words, a subset of the NK 

kinetic reactions (referred to as NKI) consists of linearly independent kinetic reactions 

while the remaining reactions (referred to as NKD where, NK-NKI = NKD) are linearly 

dependent kinetic reactions.  Of course, the selection of NKI linearly independent kinetic 

reactions is not unique.  Let us denote NI as the number of linearly independent reactions, 

i.e., NI = NE + NKI.  The remaining task for the BIOGEOCHEM preprocessor is to 

formally decompose the reaction matrix which is made of NE linearly independent 

equilibrium reactions and NK kinetic reactions. 

All reactions are initially indexed with 0 in the BIOGEOCHEM preprocessor.  

During the reduction process, the index of every linearly dependent reaction is 

overwritten with a non-zero value.  A redundant reaction is indexed with 1, an irrelevant 

reaction with 2, and all other relevant linearly dependent reactions with 3.  The indexing 

array is used to determine which linearly independent reactions the dependent reactions 

depend on, and is also used to indicate if the dependent is redundant, irrelevant, or 

relevant.  For example, in Eq. (A4.3), R3 depends on R1 (keep in mind, R1 has been 
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already chosen an independent reaction) because R3 and R1 show up in the same 

equation.  Similarly, R3 depends on R2 because both R3 and R2 show up in Eq. (A4.5).  

Thus, R3 depend on both R1 and R2.  Because R2 is a slow reaction and it depends on 

only fast reactions, it is irrelevant and the preprocessor will give us the index of 2 for this 

reaction. 

The decomposition of the reaction matrix is not unique (Westall et al., 1976; Yeh 

et al., 2000, 2001a).  In order to obtain a decomposition that contains intuitively obvious 

or recognizable quantities, we observe in the Gauss-Jordan column decomposition that 

(1) when a row is chosen as a pivot element, its corresponding species is a product 

species, (2) the species corresponding to the row that has never been chosen as a pivot 

element is a component species so that one can exert control of components based on 

one’s understanding of the problem, and (3) a linearly dependent reaction will appear 

only in the rows that contain the linearly independent reaction (each row has one) that 

this reaction depends on after completion of the decomposition.  Based on observations 

(1) and (2), we choose the row that contains the least number of non-zero entries as the 

pivot element in any column reduction.  Based on observation (3) and because all NE 

equilibrium reactions are linearly independent, an equilibrium reaction appears in only 

one row and any row will not have more than one equilibrium reaction, if  the reduction 

is performed firstly for NE columns corresponding to the NE reactions.  In this NE set, 

each reduced ODE (not the original ODE) that has one and only one equilibrium reaction 

is simplified by discarding slow kinetic rates in the equation.  The simplified ODE is then 

replaced by the corresponding mass-action equilibrium equation or a users-specified 

algebraic equation.  The number of ODEs replaced is thus equal to NE.  The remaining 

ODEs will not have any fast reaction rates in them. 
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2.3.2.2 Selects Master and Secondary Species 

 Before decomposition, users can judiciously select a set of components.  After 

decomposition, the BIOGEOCHEM preprocessor will automatically rectify illegitimate 

components that a user may have wrongfully selected, and return a complete set of 

components (NC = M - NI).  This automatic procedure is performed by removing an 

incorrectly selected component during a column reduction step.  If a pivot element can be 

found from rows other than those corresponding to users-selected components, then all 

selected components are still legitimate up to this point.  Otherwise, a row corresponding 

to the selected-component must be chosen as the pivot element and this selected-

component must be de-listed from the set of components.  All species that have been 

chosen as the pivot elements form the set of product species (the number of product 

species is equal to NI).  The remaining species make up the set of component species.  

After completion of the decomposition, the BIOGEOCHEM preprocessor will keep those 

users-selected components that are legitimate and remove those that are illegitimate.  The 

component species are classified as master species (term used in PHREEQE) or basis 

species (term used in MINEQL).  A product species can be classified as a master or a 

secondary species.  In order to minimize the number of simultaneous equations in 

biogeochemical modeling, all fast reactions that are modeled with mass-action 

equilibrium equations should be decoupled from the kinetic reactions.  In other words, 

each fast reaction modeled with the mass-action equilibrium equation can be used to 

eliminate one product species from simultaneous consideration.  An eliminated product 

species is termed a secondary species.  Since there are NE linearly independent 

equilibrium reactions, there may be up to NE secondary species [Note: the number of 

secondary species will be equal to NE if and only if all NE reactions are modeled with the 
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mass-action equilibrium equations.  If some fast reactions are modeled with users-

specified algebraic equations or some fast reactions are ion-exchange reactions or 

precipitation-dissolution reactions, then the number of secondary species is less than NE 

because these algebraic equations and the mass-action equilibrium equations for ion-

exchange and precipitation-dissolution reactions are not eliminated.]  The choice of the 

set of secondary species among NI product species is not unique when at least one of the 

fast reactions involves more than one product species.  

To obtain a suitable set of secondary species, we perform Gauss-Jordan row 

decomposition of the matrix whose rows are made up of reaction stoichiometries of those 

fast reactions that are modeled with mass-action equilibrium equations.   The fast 

reactions that are modeled with users-specified algebraic equations should not be 

included in the matrix decomposition for the selection of secondary species, because the 

inclusion of these reactions will not allow the linear combination of the log Ke values of 

fast reactions.  Users must specify one species as a master species for this reaction. 

The BIOGEOCHEM preprocessor performs the final step of finding and 

eliminating the secondary species after the components and kinetic variables are defined 

and after the redundant equilibrium reactions and irrelevant kinetic reactions are 

removed. The procedure is achieved by diagonalizing the matrix whose rows are made of 

the reaction stoichiometries of fast reactions (excluding those fast reactions that are 

modeled with users-specified algebraic equations).  The species that will be used to 

eliminate a mass-action equilibrium equation is chosen as a pivot element.  Any species 

in a fast reaction can be chosen as a pivot element except the component species, the 

species that have been reserved in users-specified algebraic equations, and the species 

that have already been found as pivot elements.  The procedure of choosing a pivot 
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element is automated in the BIOGEOCHEM preprocessor.  In the automation, either the 

first eligible column or the eligible column that contains the least number of non-zero 

entries is chosen as the pivot element in any row reduction.  If a product species that is 

chosen as a pivot element is not a precipitated species or an ion-exchanged species, it will 

be eliminated from simultaneous consideration and thus is a secondary species; 

otherwise, the species will not be eliminated and remains as a master species and the 

corresponding mass-action equilibrium equation (used to model precipitation-dissolution 

or ion-exchanged reaction) is not eliminated.  Those product species that have not been 

chosen as pivot elements are master species.  The element in the diagonalized matrix that 

corresponds to the pivoting species is normalized so that its activity can be expressed 

explicitly as the function of the activities of component species and other non-pivoting 

species.  Meanwhile, the log equilibrium constant of each pivoting species (secondary 

species) can be determined as the linear combination of the log equilibrium constants of 

all the original independent equilibrium reactions.  The detail of these procedures is given 

in appendix 2.A using a simple example. 

Careful decisions must be made as to which equilibrium reactions are to be 

treated as dependent reactions (keep in mind that when some reactions are dependent on 

each other, the selection of independent reactions versus dependent reactions is not 

unique) and hence as redundant reactions.  When all fast reactions are modeled with 

mass-action equilibrium equations, it does not matter which fast reaction is removed.  

However, when at least one fast reaction is formulated with a users-specified algebraic 

equation, one must consider the importance of each fast reaction and remove the least 

important one.    If one wants to exclude certain reactions from the list of candidate 

eliminations, one simply arranges these among the first NE reactions.  This is the point 
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that a user must be aware of and guard against. 

2.3.2.3 Generates Three Subsets of Governing Equations  

With the above discussion, Eq. (3) is decomposed into the following equation via 

the Gauss-Jordan elimination (Chilakapati, 1995; Steefel and MacQuarrie, 1996; Yeh et 

al., 2001a) 

R 
00

KD
 = C B

21









dt
d  (8) 

where B is the reduced unit  matrix, D is the diagonal matrix representing a submatrix of 

the reduced reaction-matrix with size of NI x NI reflecting the effects of NI linearly 

independent reactions on the production-consumption rate of all kinetic-variables, K is a 

submatrix of the reduced reaction-matrix with size of NI x NKD reflecting the effects of 

NKD dependent kinetic reactions, 01 is a zero matrix representing a submatrix of the 

reduced reaction-matrix with size NC x NI, and  02 is a zero matrix representing a 

submatrix of the reduced reaction-matrix with size NC x NKD.  An example illustrating 

this form of the equation is given for Decomposition I in Appendix 2.A. 

The decomposition of Eq. (3) to Eq. (8) effectively reduces a set of M 

simultaneous ODEs into three subsets of equations: the first contains NE infinite-rate 

equations, each represents an equilibrium reaction that can be formulated with either a 

mass-action equilibrium equation or a users-specified algebraic equation (cf. Section 2.4); 

the second contains (NI - NE) simultaneous ODEs representing the rate of change of the 

kinetic variables;  and, the third contains NC linear algebraic equations representing mass 

conservation of the chemical components.  These equation subsets are defined as 

Infinite-Rate Equations for NE Equilibrium Reactions  - 
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equation consistentamically  thermodyna     
 

  = R  
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(9) 

Governing Equations for (NI - NE) Kinetic Variables – 

 M  i  ,N k   , RD + R D = 
dt
Ed

KIjij

N  j
kkk

i

KD(k)

∈∈∑
∈

 (10) 

and Mass Conservation Equations for NC Chemical Components – 

M  i  ,N  j  ,E = T denoting   ; 0 = 
dt
Ed

Cij
i ∈∈  (11) 

where Ei is the linear combination of species concentration resulting from the matrix 

decomposition and NKD(k) is the subset of linearly dependent kinetic reactions, which 

depends on the k-th linearly independent reaction.  For this generic system, the variable, 

Ei, in Eq. (9) is called an equilibrium variable, the variable Ei in Eq. (10) is called a 

kinetic variable, and the variable Ei in Eq. (11) is called a component variable and is 

normally denoted with Tj.  It should be emphasized here that only linearly independent 

reactions can be segregated, not all reactions. 

The unique feature of the diagonalization is that there is only one linearly 

independent kinetic reaction appearing on the right-hand side of Eq. (10) when parallel 

kinetic reactions are not present.  The significance of this unique feature is that all 

linearly independent kinetic reactions are segregated, thus it enables the formulation and 

parameterization of linearly independent reaction rates one reaction at a time, 

independent of all other kinetic reactions; if linearly dependent kinetic reactions are not 

present in the system.  When an experiment is conducted to study kinetics, it must be 

controlled such that NKD(k) = 0.  Otherwise, kinetic reactions cannot be completely 

segregated (Yeh et al., 2000a) and the independent formulation of kinetic reaction rates 
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cannot be achieved (Burgos et al., 2002a, 2002b).  Without a careful design of 

experiments to exclude linearly dependent kinetic reactions, only lumped kinetic rates 

can be formulated and characterized  (Burgos et al., 2002a, 2002b).  

 

2.4. REACTINO RATE FORMULATIONS 

 

A rate equation must be specified in order to quantitatively describe a general 

biogeochemical reaction.  A general reaction can be written as 

N k   ,G     G iik

M

1=i
iik

M

1=i
∈ν∑⇔µ∑  (12) 

where Gi is the chemical formula of the i-th species involved in k reactions.  For an 

elementary kinetic reaction the rate law is given by collision theory (Smith, 1981; Atkins, 

1986) as 

 N k    , )C(k  )C(k = R Ki

M

1=i

b
ki
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1=i
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kk

ikik ∈
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in which 

)(K = k  and  )(K = k ikik
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1=i
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f
k

f
k

νµ γ∏γ∏  (14) 

where Rk is the reaction rate, kk
f is the concentration-based forward rate constant, and kk

b 

is the concentration-based backward rate constant of the k-th kinetic reaction, Ci is the 

concentration of the i-th species, Kk
f is the activity-based forward rate constant, γi is the 

activity coefficient of the i-th species, and Kk
b is the activity-based backward rate 

constant.  When a kinetic reaction cannot be modeled with an elementary rate, it may be 

formulated based on either empirical or mechanistic approaches (Steefel and van 

Cappellen, 1998, Yeh et al. , 2001a).  To make BIOGEOCHEM completely general, for 

any non-elementary kinetic reaction, its rate may be users-specified as follows: 
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,...)k,k ;C,...,C,C(R = R 21M21kk  (15) 

where Rk is the prescribed rate law by the user written as a function of the concentrations 

of species participating in the reaction and a number of parameters; Ci is the 

concentration of the i-th species and k1, k2,… are rate parameters used to fit experimental 

data.  Equation (15) looks like Eq. (2) at first glance, but they render different meanings.  

In an ad hoc approach, Eq. (2) represents the empirical rate of change of a species due to 

all reactions.  In a reaction-based approach, Eq. (15) represents the empirical rate (if one 

cannot come up with a pathway) or mechanistically derived rate (if one can come up with 

a pathway, for example enzymatic kinetics) of a single reaction.  Hence, for a reaction-

based model, even when an empirical rate formulation is used, the formulation is 

theoretically descriptive of the specific chemical reaction and, therefore, may be 

applicable to a wider range of environmental conditions.  Only when the rate of a species 

is due to only one reaction are Equations  (2) and (15) conceptually the same. 

If the reaction is a fast reaction, it is assumed that the reaction instantaneously 

reaches equilibrium and its rate is mathematically abstracted as infinity stating a 

thermodynamically consistent expression, for example, the mass-action equilibrium 

equation as 



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where Kk
e is the equilibrium constant of the k-th reaction and Ai is the activity of the i-th 

species.  For precipitation/dissolution reactions, the activity of solid species is assumed to 

be constant and equal to unity.  The mass-action equilibrium equation can be simply 

treated as a thermodynamic hypothesis (Goldberg, 1991).  It does not have to be 
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conceived as the kinetic rate expression that follows mass action kinetics as described 

with the following equation  

constant fixed = 
K
K = K  ; )A(K - )A(K lim - = R b

k

f
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 (17) 

Conceptually, the use of Eqs. (16) and (17) to describe an equilibrium reaction are 

quite different. Equation (16) states that the rate of a fast reaction is infinity as a 

mathematical abstraction (Recall: this is justified in the paragraph under Section 2.2) and 

its reactants and products satisfy the mass-action equilibrium equation instantaneously.  

The last equation in Eq. (16) is not a rate formulation because the concept of infinite rate 

does not exist in thermodynamics.  On the other hand, Equation (17) states that the rate of 

a fast reaction is formulated as an asymptote of the mass-action kinetics (a kinetic 

reaction modeled with an elementary rate expression with both forward and backward 

rate constants infinitely large while keeping their ratio at a fixed value, i.e. the 

equilibrium constant).  [Keep in mind, Equation (16) is called mass-action equilibrium 

equation while Equation (17) is called mass-action kinetic equation.]   The rate of the fast 

kinetic reaction is indeterminate since its reactants and products satisfy the mass-action 

equilibrium equation, Eq. (16), at equilibrium.  Even at the slightest deviation from the 

equilibrium, the rate as defined by Eq. (17) is infinity.  This is precisely the reason that 

the fast reaction rate should not be formulated as the asymptotic approximation of a 

mass-action kinetics because it would make the set of ODEs [Eqs. (4.1) to (4.6) for the 

example given in Section 2.2] infinitely stiff.  Rather, it is better to consider the rate of a 

fast reaction infinity as a mathematical abstraction [i.e. Eq. (16)]. The mathematical 

abstraction serves a dual function.  First, it facilitates the comparison of the magnitude of 

various reaction rates appearing in the reduced set of ODEs.  Second, it states that the 

thermodynamic approach is taken to model the equilibrium reactions using either a mass-
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action equilibrium equation or a users-specified algebraic equation. 

To make BIOGEOCHEM completely general, a users-specified algebraic 

equation can be used to describe a fast reaction when it cannot be modeled with a mass-

action equilibrium equation 

0 = ,...)p,p ;C,...,C,C(F     = RD  
dt
Ed 

: M  i ,N k  , RD + R D = 
dt
Ed

21M21kkkk
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∈  (18) 

where Fk is an implicit function of species concentrations with a number of parameters.  

For example, the linear (Kd approach) and nonlinear (Freundlich) isotherms describing 

heterogeneous reactions with partitioning between aqueous and adsorbed chemicals fall 

into this category. 

 

2.5 NUMERICAL SOLUTION 

 

After the reaction matrix is decomposed in BIOGEOCHEM, equations of the type 

of Eq. (16) are manipulated so that only one secondary species can appear in any of 

mass-action equilibrium equation to facilitate computation (i.e., equations of the type of 

Eq. (16) can be easily eliminated).   On the other hand, users-appointed species in 

equations of the type of Eq. (18) cannot be easily eliminated in general.  Thus, for 

computational efficiency in the Newton-Raphson technique (Westall et al., 1976; Yeh et 

al.,1995), the numbers of equations are kept to a minimum in BIOGEOCHEM, involving 

one set of linear algebraic equations (mass conservation equations), one set of nonlinear 

ordinary differential equations (for kinetic variable), one set of users-specified algebraic 

equations (for the fast reactions that cannot be modeled with mass-action equilibrium 
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equations), one set of nonlinear algebraic equations for equilibrium ion-exchanged 

reaction, and one set of nonlinear algebraic equations for equilibrium precipitation 

reactions.  Full pivoting is used to solve the matrix equation resulting from the Newton-

Raphson iteration (Yeh et al.,1998). 

The governing set of linear algebraic equations, nonlinear algebraic equations, 

and nonlinear ODEs are solved with a significantly modified version of the code 

BIOKEMOD (Salvage and Yeh, 1998).  An iteration loop of basis switching is 

incorporated within a Newton-Raphson iteration loop to improve the robustness and 

efficiency of computation.  The idea of basis switching can be found in Westall et al. 

(1976) and Steefel and MacQuarrie (1996). 

Since the concentration of some species may be several orders of magnitude 

smaller than others in a component equation, mass non-balance or non-convergence may 

occur for the component. In other words, the computed species concentrations that 

compose the mole balance equation cannot add up to the given total component 

concentration to within the error tolerance.  This normally occurs when the concentration 

of a component species is very low and the concentration of a secondary species that is a 

member of the component is very high.  The component species is explicitly included in 

solving the mass balance equation.  Because of its low concentration, it may still satisfy 

the mass balance to within the error tolerance even though its percentage error may not 

be very small.  On the other hand, the concentration of the secondary species is calculated 

using the simulated component species (and possibly other master species) 

concentrations.  When the reduced log K value of the secondary species is large and the 

percentage error in the concentration of the component species is not that small, the 

calculated concentration of the secondary species may have a significant absolute error 
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that is much larger than the concentrations of the component species and other master 

species consisting of the component.  This error naturally causes a significant mass 

balance error.  To resolve this problem, basis switching is used to the swap low-

concentration component species with the high-concentration secondary species  (i.e., the 

component species become a new secondary species and the secondary species becomes 

a new component species).  With this species switching, the concentrations of the new 

component species can be expected to be much higher than that of the new secondary 

species.  As a result, the contribution to the mass balance is mainly due to the new 

component species.  Since the new component species concentration is simulated to 

explicitly satisfy the mass balance equation, it will not cause much mass balance error.  

The mass balance error is due mainly to the new secondary species.  However, because 

the concentration of the new secondary species is much smaller than that of the new 

component species, even a large percentage error in its concentration will not cause much 

mass balance error.   Therefore, the mass balance is likely satisfied with the new 

component and secondary species.  

The mathematical algorithm of basis switching is summarized as follows.  From 

mass-action equilibrium equations, we have 

c  = x a
j

j
ii

ij∏α  (19) 

where cj is the concentration of the j-th component or species, xi is the concentration of 

the i-th secondary species, aij is the stoichiometric coefficient of the j-th species in the i-th 

mass-action equilibrium equation and αi given by 
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is the modified stability constant. 

Suppose cm is the component to be switched with xk , then from Eq. (19), for i = k 
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from which we can obtain 
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Substituting Eq. (22) into Eq. (19) for i ≠ k, we have 

km

im

km

imkj
ij

km

im
a
a

k
mj

a

aa
a

j
a
a

iii xcx ∏αα=
≠

−−

 (23) 

Eqs. (22) and (23) can be described in a general form as 
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for i ≠ k: 

( )

m = j  if  x = c   and   aa = 
a
a = a = a 

 ; m  j  if  cc  and   aa + a = 
a

a a - a = a

 ;  =   =    ; x = x

kjkmim
km

im
imij

jjkjimij
km

imkj
ijij

a
ki

a
a

kiiii
imkm

im

′′′′

≠=′′′

α′αααα′′
−

 (26) 

 
After basis switching, the same calculation is carried out with the new 
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components and secondary species.  Although the choice of component species is not 

unique, any choice is equivalent; thus results for the system will not be changed after 

basis switching.  By switching one species at each time, BIOGEOCHEM can switch as 

many times as needed.  In order to keep the system consistent, BIOGEOCHEM performs 

forward and backward basis switching.  After backward basis switching, the components 

are the same as the original ones.  Because the components must be consistent in 

hydrologic transport (i.e., once the set of components is chosen, the same set must be 

used throughout transport simulations), the backward basis switching is necessary when 

the reaction chemical module is coupled with a hydrologic transport model. 

 

2.6 EXAMPLE SIMULATIONS 

 

A total of three example problems are employed to demonstrate the application of 

BIOGEOCHEM.  The first example is used to partially verify the model using a 

comprehensive reactive-chemical and biodegradation problem that was modeled by 

others (Chilakapati et al., 1998).  In addition, this problem involves nonlinear Monod 

kinetics as well as nonlinear elementary kinetics.  A successful simulation of this problem 

would demonstrate the capability of the model to address various types of nonlinear 

cases.  The second example is used to demonstrate the capability of BIOGEOCHEM to 

simulate generic reactive chemical problems involving mixed fast/equilibrium and 

slow/kinetic reactions of simultaneous geochemical processes including aqueous 

complexation, adsorption-desorption, ion-exchange, and precipitation-dissolution.  The 

third problem is used to exemplify the need for basis species switching to deal with 

problems that are difficult to converge. 
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2.6.1 Mixed Microbiological and Chemical Kinetics 

This case has been studied by Chilakapati et al. [1998].  The main purpose of the 

case was to study biogeochemical reactions that affect the transformation of Co(II) 

ethylenediaminetetraacetic acid (EDTA) complexes. The reaction network is listed in 

Table 2.1. It was simplified by Chilakapati et al. [1998] from the full reaction network of 

over 64 reactions studied by Szecsody et al. [1994].  Reactions R1-R5 are fast 

adsorption/desorption reactions.  R6 and R7 represent iron dissolution as a two-step 

ligand promoted process.  R8 is an oxidation reaction.  R9 and R10 are biodegradation 

reactions, where Fe(III) EDTA and EDTA are the electron donors and O2 is the terminal 

electron acceptor.  Some of the reactants and products are not included in reactions R7 

and R8 because these species are not the contributing factors in the simulation. 

 
Table 2.1. Reaction network for the example problem in Section 2.6.1 

 (after Chilakapati et al. [1998]) 
 

 
Reaction  

 
# 

 
Reaction constants 

 
Co(II)(aq) + Sneg  ↔ Sneg-Co 

 
(R1) 

 
K1

e = 12.0 
 
Co(II)EDTA(aq) + Spos ↔ Spos-Co(II)EDTA 

 
(R2) 

 
K2

e = 25.0 
 
Fe(III)EDTA(aq) + Spos ↔ Spos-Fe(III)EDTA 

 
(R3) 

 
K3

e = 9.0 
 
EDTA(aq) + Spos ↔ Spos-EDTA 

 
(R4) 

 
K4

e = 25.0 
 
Co(III)EDTA(aq) + Spos ↔ Spos-Co(III)EDTA 

 
(R5) 

 
K5

e = 2.5 
 
Spos-Co(II)EDTA ↔ Co(II)(aq) + Spos-EDTA 

 
(R6) 

 
k6

f = 1.0 h-1, k6
b =1.0 × 10-3 L mM-1h-1 

 
Spos-EDTA ↔ Fe(III)EDTA(aq) + Spos 

 
(R7) 

 
k7

f = 2.5 h-1, k7
b =0.0 L mM-1h-1 

 
Co(II)EDTA(aq) ↔ Co(III)EDTA(aq) 

 
(R8) 

 
k8

f =1.0 × 10-3 h-1, k8
b =0.0 h-1 

 
Fe(III)EDTA(aq) + 6O2 → 3CO2 + Biomass 

 
(R9) 

 
user specified reaction rate as expressed by R9 in 
Eq. (B1.9) in Table 2.B.1, where µ1 = 2.5 × 10-4 
h-1,k11  = 1.0 × 10-5 mM L-1, and k21 = 1.0×10-5 
mM L-1 

 
EDTA(aq) + 6O2 → 3CO2 + Biomass 

 
(R10) 

 
user specified reaction rate as expressed by R10 
in Eq. (B1.9) in Table 2.B.1, where µ2 = 0.025 h-

1, k12  = 1.0 × 10-5 mM L-1, and k22 = 1.0 × 10-5 
mM L-1 
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Included in this simulation are a total of 15 species (M = 15), 5 equilibrium 

reactions (Ne = 5) and 5 kinetic reactions (Nk = 5).  According to Chilakapati et al. 

[1998], species initially present in the system are Co(II)EDTA (0.032 mM), dissolved O2 

(0.256 mM), microorganisms (0.02 mM), the charged surface site Spos (0.016 mM) and 

Sneg (0.0011 mM).  If we suppose all the reactions are linearly independent, then there 

must be 5 components.  However, the BIOGEOCHEM preprocessor determined there are 

6 components.  In other words, there are only 9 linearly independent reactions, i.e., the 

rank of the reaction matrix turned out to be 9.  Because all five equilibrium reactions are 

linearly independent, none of these fast reactions is redundant.  The decomposition 

indicated that none of the five slow reactions depends on only fast reactions, thus all 

kinetic reactions are relevant to the system.  The decomposition also revealed that one of 

the three kinetic reactions (R7, R9, and R10) can be considered linearly dependent on the 

other two and possibly other fast reactions. Without loss of generality, we consider R10 a 

linearly dependent reaction.  The decomposition revealed that R10 depends on R4 (a fast 

reaction), R7 and R9.  R10 is relevant because it depends on at least one of the kinetic 

reactions (two in this case).  Had R10 depended on only fast reactions, it would be 

irrelevant.  An example of matrix decomposition of the reaction network is shown in 

Table 2.B.1 in Appendix 2.B.  

Comparison of  the simulation results obtained with the present study (solid line) 

and with Chilakapati et al. [1998]  for the steady disappearance of Co(II)EDTA, the 

production/consumption of EDTA and Fe(III)EDTA, and the growth of microorganisms 

are shown in Figure 2.1.  These results demonstrate that the simulations calculated using 

BIOGEOCHEM were essentially identical to the simulation calculated by Chilakapati et 
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al.  [1998]. Identical model simulations serve to partially verify the performance and 

accuracy of BIOGEOCHEMl.  For description and discussion of the experimental data 

see Chilakapati et al. [1998]. 

 

 

Figure 2.1.  Solution of the reaction network in table 2.1: Comparison of this study with 
results of Chilakapati et al.[1998]. (C0 and C1 are the initial concentrations of 

Co(II)EDTA(aq) and microorganisms, respectively) 
 
2.6.2 Complexation, Adsorption, Ion-exchange, and Dissolution in a System of 

Mixed Equilibrium and Kinetic Reactions 
 

This example demonstrates the generic flexibility of BIOGEOCHEM.  It is a 

fictitious system involving aqueous complexation, adsorption, ion-exchange, and mineral 

dissolution reactions.  Each type of reaction includes both fast/equilibrium and 

slow/kinetic reactions.  Table 2.2 lists the conceptualized reaction network.  Initially, 

species C3 (an organic complex) is in contact with mineral M, which is a metal-

hydroxide.  Through dissolution a portion of the mineral becomes solubilized (Reaction 

R1 in Table 2.2); the dissolution is assumed to be an irreversible reaction.  Adsorbing 

sites are formed on the surface of the mineral M (R2).  The surface site commonly 
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undergoes ionization reactions upon contact with water (R25 and R26).  Species C3 

dissociates into C4 and C5 (R3 in Table 2.2).  Species C4, C5, C6 and dissolved species C1 

react to form various complexed species  (R4 through R23).  In turn, some of these 

complexed species are adsorbed onto the surface of the mineral M (R27 through R31).  

The system also includes an ion-exchange site and three ions (C6, C29 and C30) compete 

for the site (R32 and R33).  The chemical system is quite complex, although some of the 

reactions are made up in order to demonstrate the generality of BIOGEOCHEM.  For 

example, R2 (partition between bulk and surface metal ions) is used to reflect the mass 

balance of surface sites.  Some of the reaction constants are obtained from Szecsody, et 

al. (1994) and Yeh et al.(1995). 

 
Table 2.2  Reaction network for the example problem in Section 2.6.2 

 
 
Reaction  

 
# 

 
Reaction constants 

 
Mineral Dissolution and Surface Site Formation Reactions 

 
M  ↔ C1 - 3C2 

 
(R1) 

 
k1

f = 0.05 
 
M  ↔ S1 

 
(R2) 

 
User specified partition between bulk and surface 
metal ions as expressed by equation (B2.1) in the 
Appendix 2.B. 

 
Aqueous Complexation Reactions 

 
C3  ↔  C4 + C5 

 
(R3) 

 
Log k3

f = 2.03, Log k3
b = 20.00 

C6  +  C5   ↔ C7 
 
(R4) 

 
Log K4

e
 = 12.32 

 
C2  + C5  + C6   ↔ C8 

 
(R5) 

 
Log K5

e = 15.93 
 
C6  ↔   C2  + C9 

 
(R6) 

 
Log K6

e = -12.60 
 
C1  + C5   ↔ C10 

 
(R7) 

 
Log k7

f
 = 25.00, Log k7

b = -2.57 
 
C1 + C2 + C5   ↔ C11 

 
(R8) 

 
Log K8

e = 29.08 
 
C1  + C5  ↔   C2  + C12 

 
(R9) 

 
Log K9

e = 19.65 
 
C1 + C5   ↔ 2C2 + C13 

 
(R10) 

 
Log K10

e = -36.30 
 
C1  ↔ C2 + C14 

 
(R11) 

 
Log K11

e = -2.19 
 
C1  ↔ 2C2 + C15 

 
(R12) 

 
Log K12

e = -5.67 
   



 

 
 

59 

C1  ↔ 3C2 + C16 (R13) Log K13
e = -13.60 

 
C1   ↔ 4C2 + C17 

 
(R14) 

 
Log K14

e = -21.60 
 
2C1  ↔ 2C2 + C18 

 
(R15) 

 
Log K15

e = -2.95 
 
C2 + C4 + C5  ↔ C19 

 
(R16) 

 
Log K16

e = 21.40 
 
C4  ↔ C2 + C20 

 
(R17) 

 
Log K17

e = -9.67 
 
C4  ↔ 2C2 + C21 

 
(R18) 

 
Log K18

e = -18.76 
 
C4   ↔ 3C2 + C22 

 
(R19) 

 
Log K19

e = -32.23 
 
C2 + C5  ↔ C23 

 
(R20) 

 
Log K20

e = 11.03 
 
2C2 + C5  ↔ C24 

 
(R21) 

 
Log K21

e = 17.78 
 
3C2  + C5  ↔ C25 

 
(R22) 

 
Log K22

e = 20.89 
 
4C2 + C5  ↔ C26 

 
(R23) 

 
Log K23

e = 23.10 
 
C2 + C27  ↔C28 

 
(R24) 

 
Log K24

e = 14.00 
 

Adsorption-Desorption Reactions 
 
S1   ↔ S2 + C2 

 
(R25) 

 
Log K25

e = -11.60 
 
S1  + C2   ↔ S3 

 
(R26) 

 
Log K26

e = 5.60 
 
S1 + 3C2 + C5   ↔ S4 

 
(R27) 

 
Log K27

e = 30.48 
 
S1 + C1 + C2 + C5   ↔ S5 

 
(R28) 

 
Log k28

f = 40.00, Log k28
b = 2.37 

 
S1 + C2 +  C4 + C5   ↔ S6 

 
(R29) 

 
Log k29

f = 30.00, Log k29
b = 1.51 

 
S1 - C2 + C4    ↔ S7 

 
(R30) 

 
Log k30

f = -0.99, Log k30
b = 1.70 

S1 + C2 + C5 + C6  ↔ S8 
 

(R31) 
 
Log k31

b = 1.19, Log k31
f = 25.0 

 
Ion-Exchange Reactions 

 
C29 + 2 site-C30  ↔ site-C29 + 2C30 

 
(R32) 

 
Log k32

b = -0.5, Log k32
f = -0.75 

 
C6 + 2 site-C30  ↔ site-C6 + 2C30 

 
(R33) 

 
Log k33

e = 0.6 
 

The slow reactions were assumed to be the dissolution of the mineral, and the 

adsorption of C5-complexes and C4 (R1 and R28-31, respectively).  Sorbed species were 

modeled using simple surface complexation approaches built into BIOGEOCHEM.  To 

further demonstrate the capability of BIOGEOCHEM to model kinetic aqueous 

complexation and ion-exchange reactions, R3, R7 and R32 are treated as kinetic 

reactions. 
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From the above conceptualization of the reaction network, this simulation 

includes a total of 41 species (M = 41), excluding the species C28 because its activity is 

assumed 1.0, 25 equilibrium reactions (Ne = 25) and 8 kinetic reactions (Nk = 8).  Initial 

concentrations of C6, M, C3, and C30 are 2×10-3 M, 2.36×10-5 M, 8.51×10-6 M, and 0.1552 

M, respectively; and initial concentrations of site-C30, site-C29, and site-C6 are 0.0651 M, 

0.1463 M, and 0.1562 M, respectively.  All other species are initially 0.0 M except for 

C2, whose concentration is fixed at 3.16×10-5 M.  The BIOGEOCHEM preprocessor 

indicated that all reactions in this system are linearly independent, i.e., NI = 33, NE = Ne = 

25, NKI = NK = Nk = 8.  In other words, none of the 25 equilibrium reactions nor any of 

the 8 kinetic reactions are removed from consideration.   Thus, a formal matrix 

decomposition of the reaction network should yield 24 mass-action equilibrium equations 

and one users-specified algebraic equation (25 total), 8 kinetic variable equations, and 8 

mass conservation equations (NC = M - NI = 41 - 33).  An example of one decomposition 

of the reaction matrix presented in Table 2.2 is shown in Table 2.B.2 in Appendix 2.B. 

 The 24 mass-action equilibrium equations are decoupled from the other 17 

equations (8 mass conservation, 8 kinetic-variable, and one users-specified algebraic 

equation).  In other words, 24 equations are substituted into 17 equations to eliminate 24 

secondary variables (C7, C8, C9, C11 through C27, S2, S3, S4, and site-C30).  The resulting 

17 equations are then solved simultaneously for 17 master variables (C1 through C6, C10, 

C28, C29, C30, S1, S5 through S8, M, and site-C29). 

The time-variant dissolution of the mineral is described by the concentration 

variations of six species (Figs. 2.2 and 2.3).  C3, C16 and M in Fig. 2.2 represent the 

species that are directly involved in the dissolution according to the reaction network. 

The formation of species C10 dominates the aqueous speciation in the system and is 
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ultimately the driving force for mineral dissolution.  The last two species in Fig. 2.3 

represent the two main adsorbed species in the system.  The simulation of the interaction 

of these six species demonstrates the ability of BIOGEOCHEM to model a complex 

(multiple reaction types) mixed (equilibrium and kinetic) reaction system. 

 

Figure 2.2. Concentration curves for major species directly involving in the mineral 
dissolution. 

 
 

 
 

Figure 2.3. Concentration curves for main complexed and adsorbed species 

For the first 10 hours, there is a decline in the mineral concentration (Fig. 2.2) 

which corresponds to an equivalent increase in the concentration of C10 (Fig. 2.2).  

Dissolved species C1 quickly combines with C5 to form the complexed species.  This 
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continues until C10 begins to reach its equilibrium value (at around 15 h) due to the 

limiting of total concentration of C5 (Fig. 2.2).  At this time, the aqueous species C1 and 

C16 that are formed no longer combine directly into the complexed species but remain 

free and increase to their approximate equilibrium values (Fig. 2.2).   

The two main sorbed species, S3 and S5, also undergo considerable changes 

during the first 20 h.  Initially S5 is the main adsorbed species (Fig. 2.3).  But when the 

production of C10 begins to be limited by the available free C5, its high production rate 

drives its continued formation by scavenging other sources of C5 species.  As a result, the 

adsorbed species (S5) begins to decrease to form the aqueous complexed species (C10) 

after ca. 12 h.  S3 increases as a result for approximately the next 3 h.  After that time, 

both species concentrations decrease because the available sites decrease due to the 

continuous dissolution of M.  Given sufficient time, M will completely dissolve as 

indicated in Figure 2.2 because of the assumption that it is an irreversible reaction. 

 

Figure 2.4. Concentration curves for ion-exchanged species 
 

Reactions R32 and R33 are weakly coupled to the rest of the system because the 

amounts of C6 and its complexed species are insignificant.  About 10% of site-C6 was 

exchanged immediately into the solution because of the equilibrium reaction R33.  There 
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are significant amounts of site-C29 and C30 in the system, R32 proceeds from right to left 

till it reaches equilibrium as shown in Fig. 2.4. 

2.6.3 Basis switching 

This example demonstrates the need for basis switching when component 

concentrations become very low and cause mass balance errors.  The problem is defined 

by 20 aqueous  

complexation reactions and four precipitation-dissolution reactions involving 27 aqueous 

species and 4 precipitated species (reaction network presented in Table 2.3). 

Based on this reaction network there are a total of 31 species (M = 31), excluding 

the species H2O(l) because its activity is assumed 1.0, and 24 equilibrium reactions (Ne = 

24).  The BIOGEOCHEM preprocessor indicated that all 24 equilibrium reactions in this 

system are linearly independent, i.e., NE = Ne = 24.  Hence, a formal matrix 

decomposition of the reaction network should yield 24 mass-action equilibrium equations 

and 7 mass conservation equations (NC = M - NI = 31 - 24). 

Without basis switching, the simulation stopped while checking mass balances. 

BIOGEOCHEM displayed information in the output file that mass balance of the third 

component, i.e., Al3+, was not maintained.  A false convergence was reached due to the 

low concentration of Al3+.  The absolute error of Al(OH)4
-1 concentration computed 

based on that of Al3+ was too large.  When this concentration was substituted into the 

mass balance equation for the component Al3+, it resulted in a large mass balance error.  

Hence the converged Al3+ concentration is a false value, and the simulation stopped.  The 

input concentration for TOT Al3+ was 4.263 × 10-5 M while the calculated TOT Al3+ is 

3.684 × 10-4 M; thus it is seen that there is a large error in mass balance.  The simulated 

concentration of species Al3+ is 3.015 × 10-22 M, which is close to 0, while the calculated 
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concentration of Al(OH)4
- is 3.680 × 10-4 M,  which is relatively very large compared to 

other species in the mass balance equation.  Thus, the species Al(OH)4
- is the major 

contributor to the calculated TOT Al3+. 

When the basis switching was enabled, Al(OH)4
-, which was the most abundant 

species in the mass balance equation for Al3+, was selected automatically by 

BIOGEOCHEM to replace Al3+ as the master species for aluminum.  Simulation results 

are shown in Table 2.4, with 3 of the 4 possible precipitated species actually formed 

within the system. The simulated concentration of Al(OH)4
- is 5.64 × 10-8 M, while the 

calculated concentration of Al3+ is 2.80 × 10-10 M.   It is seen, from Table 2.4, that the 

species Al(OH)4
-,  that has been chosen as the component species by BIOGEOCHEM, 

has  the largest concentration among all species composing the component Al3+.  Thus, 

the contribution to mass balance is mainly from the species Al(OH)4
-; however, the mass 

balance error due to the species Al(OH)4
- is small, because the concentration of species 

Al(OH)4
- is directly simulated to satisfy the mass balance equation.  The contribution to 

mass balance error by species Al3+ is small because its concentration (which is indirectly 

calculated based on the concentrations of component species) is relatively small 

compared to that of the component species Al(OH)4
-. 
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Table 2.3. Reaction network for the example problem in Section 2.6.3. 
 

 
Reaction  

 
# 

 
Reaction constants 

 
H2O( l )   ↔   H+  +  OH- 

 
(R1) 

 
Log K1

e = -14.0 
 
Fe3+ + H2O( l )   ↔   FeOH2+ + H+ 

 
(R2) 

 
Log K2

e = -2.19 
 
Fe3+ + 2H2O( l )   ↔   Fe(OH)2

+ + 2H+ 
 
(R3) 

 
Log K3

e = -5.67 
 
Fe3+ + 3H2O( l )   ↔   Fe(OH)3(aq) + 3H+ 

 
(R4) 

 
Log K4

e = -12.56 
 
Fe3+ + 4H2O( l )   ↔   Fe(OH)4

- + 4H+ 
 
(R5) 

 
Log K5

e = -21.6 
 
Al3+ + H2O( l )   ↔   AlOH2+ + H+ 

 
(R6) 

 
Log K6

e = -5.00  
 
Al3+ + 2H2O( l )   ↔   Al(OH)2

+ + 2H+ 
 
(R7) 

 
Log K7

e = -10.20 
 
Al3+ + 4H2O( l )   ↔  Al(OH)4

- + 4H+ 
 
(R8) 

 
Log K8

e = -23.00 
 
Al3+ + 3H2O( l )   ↔  Al(OH)3(aq) + 3H+ 

 
(R9) 

 
Log K9

e = -17.20 
 
H+ + CO3

2-  ↔   HCO3
- 

 
(R10) 

 
Log K10

e = 10.33 
2H+ + CO3

2-  ↔  H2CO3 (R11) Log K11
e = 16.68 

 
Ca2+ + CO3

2-   ↔   CaCO3(aq) 
 
(R12) 

 
Log K12

e = 3.22 
 
Ca2+ + H+ + CO3

2-   ↔   CaHCO3
+ 

 
(R13) 

 
Log K13

e = 11.44 
 
H+ + SO4

2-   ↔    HSO4
- 

 
(R14) 

 
Log K14

e = 1.99 
 
Ca2+ + SO4

2-   ↔  CaSO4(aq) 
 
(R15) 

 
Log K15

e = 2.30 
 
Al3+ + SO4

2-   ↔  AlSO4
+ 

 
(R16) 

 
Log K16

e = 3.50 
 
Al3+ + 2SO4

2-   ↔   Al(SO4)2- 
 
(R17) 

 
Log K17

e = 5.00 

Fe3+ + SO4
2-   ↔   FeSO4

+ 
 
(R18) 

 
Log K18

e = 4.04 
 
Fe3+ + 2SO4

2-   ↔   Fe(SO4)2
- 

 
(R19) 

 
Log K19

e = 5.42 
 
Na+ + SO4

2-   ↔    NaSO4
- 

 
(R20) 

 
Log K20

e = 0.07 
 
Ca2+ + CO3

2-    ↔   CaCO3(s) 
 
(R21) 

 
Log K21

e = 8.48 
 
Al3+ + 3H2O( l )   ↔  Al(OH)3(s) + 3H+ 

 
(R22) 

 
Log K22

e = -9.11 
 
Fe3+ + 3H2O( l )   ↔    Fe(OH)3(s) + 3H+ 

 
(R23) 

 
Log K23

e = -4.89 
 
Ca2+ + SO4

2-    ↔    CaSO4(s) 
 
(R24) 

 
Log K24

e = 4.58 
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Table 2.4. Initial and simulated species concentration 
 

 
Species 

 
C 0 (M) 

 
Log(C eq ) 
 

 
Species 

 
C 0 (M) 

 
Log(C eq ) 
 

 
Ca2+ 

 
6.335×10-1 

 
-2.160 

 
HCO3

-  
 
0.000 

 
-2.000 

 
CO32- 

 
6.365×10-1 

 
-5.478 

 
H2CO3 

 
0.000 

 
-2.292 

 
Al3+ 

 
4.263×10-5 

 
-9.553 

 
CaCO3  

 
0.000 

 
-5.260 

 
SO42- 

 
3.177×10-2 

 
-1.582 

 
CaHCO3

+ 
 
0.000 

 
-3.471 

 
H+ 

 
2.056×10-2 

 
-6.536 

 
HSO4

- 
 
0.000 

 
-6.443 

 
Fe3+ 

 
1.234×10-5 

 
-13.77 

 
CaSO4  

 
0.000 

 
-2.283 

 
Na+  

 
3.043×10-5 

 
-1.522 

 
AlSO4

+ 
 
0.000 

 
-8.896 

 
OH-  

 
0.000 

 
-7.359 

 
Al(SO4)2

- 
 
0.000 

 
-9.398 

 
FeOH2+ 

 
0.000 

 
-9.952 

 
FeSO4

+ 
 
0.000 

 
-12.576 

 
Fe(OH)2

+ 
 
0.000 

 
-7.211 

 
Fe(SO4)2

- 
 
0.000 

 
-13.198 

 
Fe(OH)3  

 
0.000 

 
-7.670 

 
NaSO4

- 
 
0.000 

 
-3.454 

 
Fe(OH)4

- 
 
0.000 

 
-10.069 

 
CaCO3 (s) 

 
0.000 

 
-0.207 

 
Al(OH)2+ 

 
0.000 

 
-8.542 

 
Al(OH)3 (s) 

 
0.000 

 
-4.371 

 
Al(OH)2

+ 
 
0.000 

 
-7.521 

 
Fe(OH)3 (s) 

 
0.000 

 
-4.912 

 
Al(OH)4

- 
 
0.000 

 
-7.249 

 
CaSO4 (s) 

 
0.000 

 
-∝ 

 
Al(OH)3   

 
0.000 

 
-8.090 

 
 

 
 

 
 

 

2.7 CONCLUSION AND DISCUSSION 

This paper proposed a generic framework to model biogeochemical processes. To 

use this generic paradigm for modeling reactive chemicals, the system must be translated 

mathematically into a reaction network.  A computer model was developed to diagonalize 

the reaction network and numerically solve the diagonalized system of kinetic-variable 

equations, mass-conservation equations, and a subset of nonlinear algebraic equations 

(governing fast ion-exchange and precipitation-dissolution reactions, and some fast 
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reactions that are modeled with users-specified algebraic equations).  The model is 

designed to have the most generic capability for modeling biogeochemical processes.  It 

can simulate both equilibrium and kinetic reactions involving aqueous complexation, 

adsorption, ion-exchange, precipitation/dissolution, oxidation-reduction, acid-base 

reactions, and microbial-mediated reactions.  Any fast reaction can be modeled with an 

infinite rate governed by a mass-action equilibrium equation or by a users-specified 

algebraic equation.  Any slow reaction can be modeled with microbial-mediated 

enzymatic kinetics, empirical n-th order rates, an elementary rate, or a users-specified 

rate equation.  The conceptualization of reaction networks and the specification of rate 

formulations and parameters should be carried out iteratively in collaboration with 

modelers and experimentalists who understand the system (Burgos et al., 2002a, 2002b). 

The selection of chemical components and kinetic variables are automated within 

the BIOGEOCHEM preprocessor.  In order to facilitate numerical integration, the set of 

ordinary differential equations governing the production/consumption of all species are 

decomposed into three subsets: mass-action equilibrium equations representing fast 

equilibrium reactions, kinetic-variable equations representing slow kinetic reactions, and 

mass conservation equations representing chemical components.  Basis switching is 

included to enhance the robustness of the model. 

The general paradigm addresses all the questions and difficulties arising from 

primitive or DAE approaches.  This paradigm is new only in concept as the use of the 

diagonalization-decomposition procedure from mathematical and numerical perspectives 

is well accepted.   This procedure facilitates the elimination of fast/equilibrium reactions 

from slow/kinetic reactions to reduce the number of unknowns that must be solved 

simultaneously, explicitly enforces mass conservation, removes redundant 
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fast/equilibrium reactions, and excludes irrelevant slow/kinetic reactions in the reaction 

network.  The decoupling of fast reactions from kinetic reactions alleviates the stiffness 

of the system.  The explicit enforcement of mass conservation overcomes the mass 

conservation error due to numerical integration errors.  The removal of redundant 

reactions circumvents the problem of singularity.  The exclusion of irrelevant 

slow/kinetic reactions greatly improves computational efficiency and avoids problematic 

export of meaningless rate formulations and parameter estimations to other system in 

which these reactions are relevant.  Finally and most importantly, the diagonalization of 

slow/kinetic reactions allows the formulation and parameterization of individual rate 

equations rather than the optimization of rate formulation/parameters for all reactions 

simultaneously (Yeh el al., 2001a).  The individual rate formulation/parameterization is 

more descriptive of geochemical and biochemical reactions (Burgos et al., 2002a, 2002b).  

To make the model numerically robust, a dynamic basis-species switching 

strategy due to the non-uniqueness of components is employed.  Backward basis 

switching allows components to freely change in the simulation of chemistry module, 

while being recovered for transport simulation.  Three example problems were selected to 

demonstrate the versatility and robustness of the model. 

BIOGEOCHEM is a stand-alone batch model, which can also be coupled with a 

hydrologic transport model (Fang and Yeh, 2002).  It can apply to systems of high 

complexity and can serve as a tool for the planning of batch experiments, assessing 

system consistency and minimum data needs for reaction based modeling (Yeh et al., 

2001a).  The model described was tested with over 15 examples (Yeh and Fang, 2002), 

although only 3 problems are demonstrated in this paper to illustrate the versatility and 

flexibility of the model. 
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APPENDIX 2.A 

2.A.1  Decomposition I 

Let’s start with the following matrix, which is a repeat of Eq. (5) 















































































































R 

R 

R 

R 

    

1000

01-1-0

0110

1-101

0011-

1-1-01-

 = 

dt/d[B]

dt/d[CoNTA]

dt/d[Co]

dt/d[HNTA]

dt/d[NTA]

dt/d[H]

  

100000

010000

001000

000100

000010

000001

4

3

2

1

 (5) 

First, choose suspected component species.  From a geochemist’s point of view, let’s 

choose H, NTA, and Co as component species, i.e., species that have the low priority to 

be chosen as pivot elements. The remaining species can therefore have higher priority to 

be chosen as pivot elements. 

In the first column of the reaction matrix in Eq. (5), there are three non-zero rows 

(first, second, and third rows, respectively).  The first and second rows are on the low 

priority list for choosing pivot elements because their corresponding species, H and NTA, 

respectively, have been selected as components.  Therefore, the third row (corresponding 

to HNTA) is chosen as a pivot element.  Pivoting on Row 3 (HNTA) gives 















































































































R 

R 

R 

R 

    

1000

01-1-0

0110

1-101

1-110

2-000

 = 

dt/d[B]

dt/d[CoNTA]

dt/d[Co]

dt/d[HNTA]

dt/d[NTA]

dt/d[H]

  

100000

010000

001000

000100

000110

000101

4

3

2

1

 (A1) 

In the second column of the Column 1-reduced reaction matrix in Eq. (A1), there 



 

 
 

70 

are three non-zero rows (second, fourth, and fifth rows, respectively).  The second and 

fourth rows (corresponding to NTA and Co, respectively) are on the low priority list for 

the selection of pivot elements because NTA and Co have been selected as components.  

[If the third row were not zero, it could not be chosen as a pivot element because it had 

already been chosen as the pivot element in the reduction of first column.] Therefore, 

chose the fifth row as the pivot element.  Pivoting on Row 5 (CoNTA) gives 















































































































R 

R 

R 

R 

    

1000

01-1-0

0000

1-101

1-000

2-000

 = 

dt/d[B]

dt/d[CoNTA]

dt/d[Co]

dt/d[HNTA]

dt/d[NTA]

dt/d[H]

  

100000

010000

011000

000100

010110

000101

4

3

2

1

 (A2) 

If the fifth row in Column 2 of the Column 1-reduced reaction matrix in (A1) were 0, 

then one would have to choose either Row 2 or Row 4 as the pivot element.  This would 

signify that the user had selected incorrect components.  Under such circumstances, the 

preprocessor would have chosen either NTA (Row 2) or Co (Row 4) as the pivot element 

and removed it from the users-selected component list and treated it as a product species. 

There are only two no-zero rows (Rows 3 and 5) in the third column in the 

Column 2-reduced reaction in Eq. (A2).   However, these two rows (corresponding to 

HNTA and CoNTA) have already been chosen as the pivot elements in Column 1 and 

Column 2 reductions, respectively.  They cannot be chosen as pivoting elements, hence 

no row can be found as the pivot element for this third column.  This signifies that the 

third reaction is a linearly dependent reaction and it depends on the first and second 

reactions, i.e., R3 is linearly dependent on R1 and R2. 

In the fourth column of the reduced reaction matrix in Eq. (A2) there are four 
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non-zero rows (Rows 1, 2, 3, and 6).  Row 3 is not eligible as a pivoting element because 

it has already been chosen in the first column reduction.  Rows 1 and 2 are on the low 

priority list.  Therefore chose Row 6 as the pivot element.  Pivoting on Row 6 (B) gives 




















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
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
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
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





















R 

R 

R 

R 

    

1000

01-1-0

0000

0101

0000

0000

 = 

dt/d[B]

dt/d[CoNTA]

dt/d[Co]

dt/d[HNTA]

dt/d[NTA]

dt/d[H]

  

100000

010000

011000

100100

110110

200101

4

3

2

1

 (A3) 

The above procedure completes the reduction of the reaction matrix and the 

decomposition of the unit matrix. 

Expand the matrix in Eq. (A3) and the following equations are obtained: 

0 = 
dt

d[B]2 + 
dt

d[HNTA] + 
dt

d[H]  (A4.1) 

0 = 
dt

d[B] + 
dt

d[CoNTA] + 
dt

d[HNTA] + 
dt

d[NTA]  (A4.2) 

R+ R = 
dt

d[B] + 
dt

d[HNTA]
31  (A4.3) 

0 = 
dt

d[CoNTA] + 
dt

d[Co]  (A4.4) 

R - R - = 
dt

d[CoNTA]
32  (A4.5) 

R = 
dt

d[B]
4  (A4.6) 

 
Equations (A4.1), (A4.2) and (A4.4) define Total H, Total NTA, and Total Co, 

respectively.  Since the total amount of H, NTA, and Co are reaction invariant, they are 
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defined as component species.  Equations (A4.3) and (A4.5) each contains one 

equilibrium reaction.  They are replaced by the mass-action equilibrium equations as 

shown in the last equation of Eqs. (6.1) and (6.2) in section 2.3. 

Eq. (A3) is re-arranged so that it can be written in the form of Eq. (8) in section 

2.3.2.3 as 

































































































−
















−





























































R 

R 

R 

R 

    

0
0
0

000
000
000

0
1

1

100
010
001

 = 

dt/d[B]

dt/d[CoNTA]

dt/d[Co]

dt/d[HNTA]

dt/d[NTA]

dt/d[H]

  

011000

110110

200101

100000

010000

100100

3

4

2

1

 (A5) 

Comparing Eq. (A5) and Eq. (8) which is repeated for the convenience of direct 

comparison, 

R 
00

KD
 = C B

21








dt
d  (8) 

 

 
we can easily see that  
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 =R     ;  = C  ;  = B and  (A5.1) 

 
 
 
and 
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2.A.2  Decomposition II 

An alternative diagonalization is to choose HNTA, CoNTA, and B as 

components.  Again  repeat Eq. (5) 
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The reduction and decomposition procedure is similar to Decomposition I as follows.   In 

the first column in Eq. (5), pivoting on H (row 1) gives 
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 (A6) 

In the second column in Eq. (A6), pivoting on NTA (row 2) gives 
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No pivot element can be found in the third column.  This signifies that R3 is linearly 

dependent on R1 and R2.  In the fourth column in (A7), pivoting on Co (row 4) gives 
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 (A8) 

Expand the matrix and the following equations can be obtained:  

R - R- = 
dt

d[Co] - 
dt

d[NTA]
31  (A9.1) 

R + R = 
dt

d[Co]
32  (A9.2) 

0 = 
dt

d[Co]2 - 
dt

d[HNTA] + 
dt

d[NTA]2 + 
dt

d[H]-  (A9.3) 

R- = 
dt

d[Co] + 
dt

d[NTA] - 
dt

d[H]
4  (A9.4) 

0 = 
dt

d[CoNTA] + 
dt

d[Co]  (A9.5) 

0 = 
dt

d[B] + 
dt

d[Co] + 
dt

d[NTA] - 
dt

d[H]  (A9.6) 
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Equations (A9.3), (A9.5) and (A9.6) define Total HNTA, Total CoNTA, and 

Total B, respectively.  Equations (A9.1) and (A9.2) contain equilibrium reactions, they 

are replaced by the mass-action equilibrium equations as shown in the last equation of 

Eqs. (7.1) and (7.2) in section 2.3. 

2.A.3 Elimination of Secondary Species 

To illustrate the procedure of eliminating secondary species, consider the 

following reaction network with two fast reactions: 

(RA1):  A + C ↔ 3D, with equilibrium constant K1
e 

(RA2):   A + 2B ↔ 2C, with equilibrium K2
e 

Let us assume that A and B have been chosen as the component via column reduction of 

the reaction matrix.  Reactions RA1 and RA2 are two linearly independent reactions, two 

species can be eliminated from simultaneous consideration. To illustrate the procedure of 

elimination, a matrix made up of these two reactions is first generated as 
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 (A10) 

In the first row in Eq. (A10), since A and B are component species, the first and 

second columns corresponding to species A and B, respectively, cannot be chosen as the 

pivoting element.  The third and fourth columns corresponding to species C and D are the 

potential candidates.  Because the fourth column (Species D) has fewer non-zero rows, it 

is chosen as the pivot element for the first row reduction.  Pivoting on species D gives 
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 (A11) 

It is noted that Eq. (A11) is identical to Eq. (10) for this case. This is so because all rows 

in column 4 (corresponding to species D, the chosen pivot) are zeros, hence pivoting on 

species D has not changed the matrix. 

In the second row in Eq. (A11), the first and second columns corresponding to 

Spaces A and B cannot be chosen as the pivot element as in the first row reduction.  

Column 4 corresponding to Species D has already been pivoted.  The third column 

corresponding to Species C is the only candidate for pivoting.  Pivoting on Species C 

(Column 3) gives 
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The next step is to normalize the finally reduced matrix with respect to the pivot 

elements [column 4 of the first row and column 3 of the second row in Eq. A(12)].  After 

the normalization, we have 
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 (A13) 

Expanding Eq. (A13), we have 
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)(B )(A )K( )K( = (D) 3
1

2
1

6
1

e
23

1
e
1  (A14) 

and 

(B) )(A )K( = (C) 2
1

2
1

e
2  (A15) 

The elimination of Species D and C using Eq. (A14) and (A15) is as easy as eating rice 

(Chinese proverb). 
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APPENDIX 2.B 

The decomposed set of equations for Examples 1 and 2, respectively, are given in 

Table 2.B.1 and 2.B.2, respectively. 

Table 2.B.1.  Matrix decomposition for the reaction network of the transformation of 
EDTA 

 
 

Mass-action Equilibrium Equations 
 
 

)S(
Co)-S(  

K
1 = ))(Co(II)(aq

neg

neg
e
1

                                                                                              (B1.1) 

 
)S(  EDTA(aq))(Co(II)  K = EDTA)Co(II)-S( pos

e
2pos                                                                (B1.2) 

 
EDTA(aq)))(Fe(III)S(  K = EDTA)Fe(III)-S( pos

e
3pos                                                                 (B1.3) 

EDTA)-S(
)S(

K
1 = (EDTA(aq))

pos

pos
e
4

                                                                                         (B1.4) 

 

)S(
EDTA)Co(III)-S(

K
1 = EDTA(aq)(Co(III)

pos

pos
e
5

                                                                      (B1.5) 

 
Kinetic-Variable Equations 

 
( )

EDTA]-S[ )][Co(II)(aq k - EDTA]Co(II)-S[ k = R ;R = 
dt

Co]-S[  +  )][Co(II)(aqd
pos

b
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f
666

neg          (B1.6) 
 

( )

( )]O[+k( )[EDTA(aq)]+k
[Biomass]  ]O[  [EDTA(aq)]  

 = R EDTA(aq)],-[Fe(III) ]S[ k - EDTA]-S[ k = R

R-R- = 
dt

Co]-S[  +  )][Co(II)(aq  -  EDTA)-S[  +  [EDTA]d

22212

22
10pos

b
7pos

f
77

107
negpos

µ
           (B1.7) 

 
( )

EDTA(aq)][Co(III) k - EDTA(aq)][Co(II) k = R ;R = 
dt

EDTA]Co(III)-S[ + EDTA(aq)][Co(III)d b
8

f
888

pos  

                                                                                                                                     (B1.8) 
 

( ) ( )]O[+k([ )[EDTA(aq)]+k
[Biomass]  ]O[  [EDTA(aq)]  

 = R ,
]O[+k( EDTA(aq)])[Fe(III)+k

[Biomass]  ]O[  EDTA(aq)][Fe(III)  
 = R

R 3 + R 3 = 
dt

]CO[ d

22212

22
10

22111

21
9

109
2

µµ
                     (B1.9) 

 
Mass Conservation Equations 

 
TOT Initial = Co]-S[ + ]S[ = TOT SnegnegS negneg

                                                                       (B1.10) 
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TOT Initial = EDTA]Co(III)-S[ + EDTA(aq)][Co(III) +  
 

EDTA]Co(II)-S[ + EDTA(aq)][Co(II) + Co]-]S[ + )][Co(II)(aq = TOT

EDTACo(II)pos

posnegEDTACo(II)

                   (B1.11) 

TOT Initial = 
 

EDTA]Co(III)-S[ + EDTA]-S[ + EDTA]Fe(III)-S[ + EDTA]Co(II)-S[ + ]S[ = TOT

S

posposposposposS

pos

pos

 

                                                                                                                                   (B1.12) 
 

TOT Initial = ]CO[ 3/1 + EDTA]-S[ + 
 

[EDTA(aq)] + EDTA]Fe(III)-S[ + EDTA(aq)][Fe(III) + Co]-S[ - ]Co(II)(aq)[- = TOT

EDTAFe(III)2pos

posnegEDTAFe(III)

    

                                                                                                                                   (B1.13) 
 

TOT Initial = ]CO[ 2 + ]O[ = TOT O22O 22
                                                                              (B1.14) 

 
TOT Initial = ]CO[ 3/1 - [Biomass] = TOT Biomass2Biomass                                                             (B1.15) 

 
Note: 1.  A species inside a parenthesis in Table 2.B.1 denotes the activity of the 

species. 
2.  A species inside a bracket in Table 2.B.1 denotes the concentration of the 

species. 
3.   Activity = activity coefficient × concentration  
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Table 2.B.2.  Matrix decomposition for the complex (multiple reaction types) 
mixed (equilibrium and kinetic) reaction system 

 
 

 
Users-Specified Algebraic Equations 

 
]S[  +  ]S[  +  ]S[  +  ]S[  +  ]S[  +  ]S[ + ]S[ + ]S[ = [M]M

N
NS

87654321mineral
A

sA                                   (B2.1) 

This users’ specified  equation is modified from Stumm and Morgan, 1996, in which 
SA is the unit surface area (m2 g-1) of mineral, NS is the surface site density (mol sites 
m-2), NA is Avogadro’s number (mol sites mol-1), Mmineral is the molecular weight of 
mineral (g mol-1). 
 

Mass-action Equilibrium Equations 
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e
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)C(
)C(  K = )C(

2

6e
69                                      (B2.4) 
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Mass Conservation Equations 
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Note: 1.  A species inside a parenthesis in Table 2.B.2 denotes the activity of the 
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species. 
2.  A species inside a bracket in Table 2.B.2 denotes the concentration of the 

species. 
3.   Activity = activity coefficient × concentration  
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Yilin Fang1 , Gour-Tsyh Yeh2* and William D. Burgos1  
 
 

1Department of Civil and Environmental Engineering 
The Pennsylvania State University 
University Park, PA 16802 
 
2Department of Civil and Environmental Engineering 
University of Central Florida 
Orlando, FL 32816-2450 
 
 
 
ABSTRACT 

This paper presents the development of a numerical model, 

HYDROBIOGEOCHEM, modeling reactive transport processes in the subsurface system 

composed of three fluid phases (gas, aqueous, and NAPL if present) and the solid soil 

matrix. The formulation of this model is based on the general paradigm for modeling 

reactive chemicals in batch systems described in model BIOGEOCHEM, so that 

BIOGEOCHEM can be easily coupled with HYDROBIOGEOCHEM. The uniqueness of 

the general paradigm lies in that it can (1) facilitate the segregation of kinetic reactions 

and, thus, enable the formulation and paramertization of individual rates one reaction by 

one reaction; (2) enable the inclusion of as many types of reactions as possible; (3) 

accomplish automation in decoupling fast reactions from slow reactions; (4) perform 

systematic operations to remove redundant fast reactions and irrelevant kinetic reactions; 

(5) achieve the reduction of problem stiffness as much as possible; (6) increase the 

robustness of numerical integration of the governing equations; and (7) systematically 

define chemical components and explicitly enforce mass conservation. Based on the 

conservative form and advective form of the governing equations, five different 

numerical schemes were used to solve the governing transport equations. They are: (1) 

FEM on advective form of equation; (2) FEM on conservative form of equation; (3) 
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Hybrid Lagrangian-Eulerian FEM for interior elements + FEM on advective form of 

equation for boundary elements; (4) hybrid Lagrangian-Eulerian FEM; and (5) Hybrid 

Lagrangian-Eulerian FEM for interior elements + FEM on conservative form of equation 

for boundary elements. The advantages, drawbacks of these schemes, and the application 

of HYDROBIOGEOCHEM are illustrated by four examples. 

Keywords: Biogeochemical Modeling; Reaction Network; Matrix Decomposition; 

Reactive Chemical Transport; Multiphase System; Conservative Form; Advective Form. 
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3.1 INTRODUCTION 

 

3.1.1 Background 

Reactive chemical transport models have had varied scopes.  Conventional solute 

transport models often ignore chemical speciation in the aqueous phase.  Much attention 

has been given to heterogeneous reactions with partitioning between aqueous and sorbed 

chemicals represented by linear (Kd approach) or nonlinear (Freundlich and/or Langmuir) 

isotherms (Yeh and Tripathi, 1991; Davis et al., 2000).  Most models cannot account for 

the complete set of biogeochemical processes (biogeochemical processes are “coupled 

organic and inorganic reaction processes” [Brun and Engesgaard, 2002]) and they cannot 

be easily extended to include mixed equilibrium/kinetic reactions or mixed 

chemical/microbial reactions using mechanistic rate formulations.  From a geochemical 

point of view, approaches that use empirical partitioning reactions can be considered as 

reactive chemical transport because they are dealing with adsorption/desorption 

phenomena.  However, from a modeling point of view, we hesitate to classify such 

models as reactive transport because a “true” reactive chemical transport models should 

be based on the principles of thermodynamics (for fast/equilibrium reactions) and 

chemical kinetics (for slow/kinetic reactions).  Many conventional transport models  

(e.g., van der Zee and Riemsdijk, 1987; Bosma and van der Zee, 1993;  Tompson, 1993; 

Toride, et al., 1993; Brusseau, 1994) that have been proclaimed to be reactive transport 

models perhaps should not be categorized as such. The insufficiency of these models to 

describe the complex biogeochemical reactions in subsurface environments was itemized 

in Zhu et al. (2001). 

“True” reactive chemical transport models have been extensively documented.   

Many models couple simulation of transport with equilibrium geochemistry (e.g. Miller 

and Benson, 1983; Cederberg et al., 1985; Hostetler and Erikson, 1989; Narasimhan et 

al., 1986; Liu and Narasimhan, 1989a, 1989b; Griffioen, 1993; Yeh and Tripathi, 1991; 
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Cheng, 1995; Parkhurst, 1995; Parkhurst and Appelo, 1999).  Some models couple 

transport with kinetic geochemistry for certain geochemical processes like precipitation-

dissolution (e.g. Lichtner, 1996; Steefel and Yabusaki, 1996; Suarez and Simunek, 1996), 

adsorption (e.g. Theis et al., 1982, Szecsody et al., 1998), redox (Lensing et al., 1994; 

Saiers et al., 2000 ), or biodegradation (MacQuarrie et al., 1990; Chen et al., 1992; 

Chang, et al., 1993; Cheng and Yeh, 1994; Wood et al., 1994).  

Models coupling transport with mixed equilibrium/ kinetic reactions have 

appeared since the  mid-1990s  (e.g., Steefel and Lagasa, 1994; McNab and Narasimhan, 

1994, 1995; Salvage et al., 1996; Yeh et al., 1996; Abrams et al., 1998; Chilakapati et al., 

1998; Tebes-Stevens et al., 1998; Yeh and Salvage, 1998; Yeh et al., 2001a; Brun and 

Engesgaard, 2002).  For most models chemical components must be selected a prior such 

that only limited reaction network can be considered (e.g., Parkurst, 1995; Parkhurst and 

Appelo, 1999).  Most models have implicitly assumed that equilibrium reactions occur 

only among aqueous species so that transport of components can be manually decoupled 

from fast reactions (Steefel and Lasaga, 1994; Lichtner, 1996; Tebes-Stevens et al., 1998; 

Parkhurst and Appelo, 1999).  However, in a complicated reactive system, the 

identification of component species may not be so easy when there are many parallel 

kinetic reactions (Friedly and Rubin, 1992; Chilakapati et al., 1998; Yeh et al., 2000).  

Under such circumstances, matrix methods may be better employed to define component 

species and derive governing equations to model mixed equilibrium /kinetic reactions.  

There appears to be few general purpose transport models that can simulate a generic 

reaction including both biochemical and geochemical reactions, and mixed equilibrium 

/kinetic reactions (Fang and Yeh, 2002).  Instead, recent reactive biogeochemical 

transport models either add geochemical reactions to biodegradation transport models or 

add simple biodegradation reactions to geochemical transport models (Brun and 

Engesgaard, 2002).   

Most of past modeling focus was on the chemical processes between groundwater 
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and the solid matrix in the subsurface system. For the few multiphase reactive transport 

models, such as models in Lichtner and Seth (1996), Viswanathan et al. (1998), Xu and 

Pruess (2001), their formulation are limited to that of water phase reactive transport only. 

In this study, a numerical model, HYDROBIOGEOCHEM, based on a new 

formulation is presented. A comprehensive suite of reaction types and reaction rates are 

incorporated into the model. Reaction types include aqueous complexation, adsorption-

desorption, ion-exchange, oxidation-reduction, precipitation-dissolution, acid-base 

reactions, and microbial mediated reactions. Phase transfer and decay of species will not 

be separately considered in hydrologic transport equations, instead, they are treated as 

reactions in HYDROBIOGEOCHEM. An equilibrium reaction is modeled with an 

infinite rate governed by a mass-action equilibrium equation or by a users-specified 

algebraic equation.  Programmed kinetic reaction rates include multiple Monod kinetics, 

n-th order empirical, and elementary formulations.   

3.1.2 Outline 

This paper is organized in the following order. In section 3.2, the general 

paradigm for model BIOGEOCHEM is briefly reviewed. Conservative form of the 

governing equations for hydrologic transport is derived in section 3.3.1. Section 3.3.2 

derives the non-conservative form or advective form of the governing transport 

equations. Boundary conditions for the two forms of transport equations are given in 

section 3.3.3, followed by the options of different numerical implementations in section 

3.3.4. Section 3.4 presents examples used to verify the model HYDROBIOGEOCHEM 

and show its potential application. 

 

3.2 PARADIGM REVIEW 

 

Before deriving the governing equations for hydrologic transport, the general 

paradigm for modeling reactive chemicals in batch systems described in Fang et al. 
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(2003) will be briefly reviewed in the following. 

The conceptualization of reaction network is a prerequisite to modeling 

geochemical and biochemical processes. A reaction network is defined by specifying 

chemical species and biogeochemical reactions that produce them (Yeh et al., 2001a). 

From a mathematical point of view, a system of Ms ordinary differential equations can be 

written for Ms chemical species in a reactive, well-mixed batch system as 

M  i  , |r = 
dt

dC
sNi

i ∈  (1) 

 
where Ci is the concentration of the i-th chemical species, t is time, and riN is the 

production-consumption rate of the i-th species due to N biogeochemical reactions.  The 

determination of riN and associated parameters is a primary challenge in biogeochemical 

modeling.  There are two general models to formulate riN: ad hoc and reaction-based 

models, distinctions between which have been discussed extensively (Yeh et al, 2001b).  

In a reaction-based model, the production-consumption rates of Ms species are 

described by  

 M  i  , R) - ( = |r = 
dt
Cd

skikik

N

1=k
Ni

i ∈∑ µν  (2) 

 
where, vik is the reaction stoichiometry of the i-th species in the k-th reaction associated 

with the products, µik is the reaction stoichiometry of the i-th species in the k-th reaction 

associated with the reactants, and Rk is the rate of the k-th reaction.  Equation (2) is a 

statement of mass balance for any species i in a batch system.  It simply states that the 

rate of change of mass of any species is due to all reactions that produce or consume that 

species.  This formulation can be extended to transport systems by replacing the ordinary 

differential equation with the transport equation: R) - ( = |r = )CL( + 
t

C
kikik

N

1=k
Nii

i µν∑∂
∂ .  

This partial differential equation is then a statement of mass balance for any species at a 
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point in a transport system.  It simply states that the rate of change of mass of any 

chemical species at any point is due to the net transport to or from the point and due to all 

chemical reactions occurring at the point. 

 In a reaction-based approach, the contribution from all individual reactions is 

explicitly modeled.  Thus, a properly formulated and parameterized rate equation may 

still find its application to a wide range of environmental conditions.  This is so because 

rate equations are description of reactions and because under a different environmental 

condition, only the reaction-rate equations (not the lumped rate equations) associated 

with the reactions that are operative under the conditions are used.  Thus, a reaction-

based approach is superior to an ad hoc approach.  A reaction based approach using 

mechanistic rate formulations would be the ultimate goal of biogeochemical modeling, 

though it would be difficult to obtain. 

With the above discussion, Eq. (2) is decomposed into the following equation via 

the Gauss-Jordan elimination (Chilakapati, 1995; Steefel and MacQuarrie, 1996; Yeh et 

al., 2001b) 

R  = 
dt
dC 

21









00

KD
B  (3) 

 
where B is the reduced unit  matrix, D is the diagonal matrix representing a submatrix of 

the reduced reaction-matrix with size of NI x NI reflecting the effects of NI linearly 

independent reactions on the production-consumption rate of all kinetic-variables, K is a 

submatrix of the reduced reaction-matrix with size of NI x NKD reflecting the effects of 

NKD dependent kinetic reactions, 01 is a zero matrix representing a submatrix of the 

reduced reaction-matrix with size NC x NI, and  02 is a zero matrix representing a 

submatrix of the reduced reaction-matrix with size NC x NKD.   

The decomposition of Eq. (2) to Eq. (3) effectively reduces a set of M 

simultaneous ODEs into three subsets of equations: the first contains NE infinite-rate 
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equations, each represents an equilibrium reaction that can be formulated with either a 

mass-action equilibrium equation or a users-specified algebraic equation; the second 

contains (NI - NE) simultaneous ODEs representing the rate of change of the kinetic 

variables; and, the third contains NC linear algebraic equations representing mass 

conservation of the chemical components.  These equation subsets are defined as 

Infinite-Rate Equations for NE Equilibrium Reactions  - 
 

equation consistentamically  thermodyna     
 

  = R  
D
E

dt
d  : M  i  , N k   , RD + R D = 

dt
Ed

k
kk

i
sEjij

N  j
kkk

i

KD(k)

∃

∞≈




∈∈∑

∈

 
(4) 

Governing Equations for (NI - NE) Kinetic Variables – 
 

 M  i  ,N k   , RD + R D = 
dt
Ed

sKIjij
N  j

kkk
i

KD(k)

∈∈∑
∈

 (5) 

 
and Mass Conservation Equations for NC Chemical Components – 
 

M  i  ,N  j  ,E = T denoting   ; 0 = 
dt
Ed

sCij
i ∈∈  (6) 

 
where Ei is the linear combination of species concentration resulting from the matrix 

decomposition and NKD(k) is the subset of linearly dependent kinetic reactions, which 

depends on the k-th linearly independent reaction.  The variable, Ei, in Eq. (4) is called an 

equilibrium variable, the variable Ei in Eq. (5) is called a kinetic variable, and the 

variable Ei in Eq. (6) is called a component variable and is normally denoted with Tj.  

The formulation of the model HYDROBIOGEOCHEM in the present study is 

based on  the general paradigm for modeling reactive chemicals in batch systems 

described in model BIOGEOCHEM, so that BIOGEOCHEM can be easily coupled with 

HYDROBIOGEOCHEM. The uniqueness of the general paradigm lies in that it can (1) 

facilitate the segregation of kinetic reactions and, thus, enable the formulation and 

paramertization of individual rates one reaction by one reaction; (2) enable the inclusion 
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of as many types of reactions as possible; (3) accomplish automation in decoupling fast 

reactions from slow reactions; (4) perform systematic operations to remove redundant 

fast reactions and irrelevant kinetic reactions; (5) achieve the reduction of problem 

stiffness as much as possible; (6) increase the robustness of numerical integration of the 

governing equations; and (7) systematically define chemical components and explicitly 

enforce mass conservation.  

 

3.3 GOVERNING EQUATIONS FOR TRANSPORT 

 

According to custom definition, species in each fluid phase is considered to be 

mobile and every solid or solid associated species is considered to be immobile.  In the 

present model, each mobile species (including aqueous-phase species, mobile NAPL 

phase species, and air-phase species) concentration has the unit of moles per mass of 

fluid, while immobile species has the unit of moles per unit mass of rock matrix, 

excluding precipitated species concentration, which has a unit of moles per bulk volume.  

With the concentration unit defined, governing equation for transport of mobile chemical 

species can be derived from the principle of mass balance as  

dνmα
i

ν
 + dνri

ν
 + dΓα

i  
Γ
 - )dΓ αfs, cαiθαρα( n 

Γ
- = νdcαiθαρα

νDt
D

∫∫•∫•∫∫ JnV  (7) 

 
where ν  is the material volume containing constant amount of media (L3); Γ  is the 

surface enclosing the material volumeν  (L2); n is the outward unit vector normal to the 

surface Γ ; ρα  is the fluid density of phase α, α denoting water, gas or oil, (M/L3); θα  is 

the volume fraction of fluid α within the representative elementary volume (REV), 

(L3/L3), S  = αα φθ ; φ  is the effective porosity;Sα  is the  fluid saturation; ci
α  is the 

concentration of the i-th chemical species in fluid phase α (M/M of fluid); α
iJ  is the  

surface flux of the i-th chemical species with respect to the velocity of fluid α [(M/T)/L2]; 
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and )-( c = f,i,i
α
i VVJ αα

α
ααθρ ;  V αi,  is the local velocity of the i-th chemical species in 

phase α (L/T); V αf,  is  the local fluid velocity of phase α (L/T); VVV sfs,f,  +  = αα ; V αfs,  is 

the fluid velocity of phase α relative to the solid surface (L/T); Vs  is the solid velocity 

(L/T); mi
α  is the external source/sink rate of the i-th species in phase α per unit bulk 

volume [(M/L3)/T]; ri
α  is the production/consumption rate of the i-th species in phase α 

due to all chemical reactions (decay of the i-th species is also considered as a 

reaction)[(M/ L3 bulk volume)/T] and it can be expressed by 

R )µ - ν( = r kikik

N

1=k
i ∑  (8) 

whereν ik  is the stoichiometric coefficient of the i-th species in the k-th reaction as a 

product; µ ik  is the stoichiometric coefficient of the i-th species in the k-th reaction as a 

reactant. 

By the Reynolds transport theorem (Owczarek, 1964) and Gaussian divergence 

theorem, neglecting the deformation of the porous media, the following equation is 

obtained: 

m + R )µ - ν(  =    + )cρ(   + 
t

cθρ α
ikikik

N

1=k

α
iα

α
iα

α
iαα ∑•∇•∇

∂
∂

JV  (9) 

The surface flux can be expressed in terms of the gradient of α
ic (Nguyen et al., 1982):  

c  θρ - = α
iααα

α 
i ∇•DJ  (10) 

and the dispersion tensor Dα of phase α, according to Millington and Quirk (1961) (from 

Gerke et al., 1998), can be given in the standard form as 

δτθa + | |/)a - a( + δ| |a = θ ααmααααTLαTαα VVVVD  (11) 

where Dα  is the dispersion coefficient tensor of phase i, (L2/T); aT  is the transverse 

disffusivity (L); aL  is the longitudinal diffusion coefficient (L2/T); amα  is the molecular 
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diffusion coefficient in pure phase α (L2/T);τ α  is the tortuosity factor of the medium for 

fluid phase α;δ  is the Kronecker delta tensor; and Vα  is the Darcy velocity of phase α 

(L/T), it is related with fluid velocity by θααα VV f, = . 

m + R )µ - ν(  = )c  θρ(   - )cρ(   + 
t

cθρ α
ikikik

N

1=k

α
iαααα

α
iα

α
iαα ∑∇••∇•∇

∂
∂

DV  (12) 

Immobile species are not subject to hydrological transport, the mass balance 

equation for these species can be obtained from Eq. (12) by dropping advection, 

dispersion/diffusion, and external source/sink terms and replacing )c( α
ααθρ i  with )c( iρ′  

:  

R )µ - ν( = 
t
c

kikik

N

1=k

i ∑∂
′∂ρ  (13) 

where ρ′ = 1.0 for precipitated species and ρ′ = the bulk density for other immobile 

species. 

3.3.1 Governing Equations for Primary Dependent Variables (PDVs) 

It is noted that Eq. (1) can be easily extended to transport systems by replacing the 

ordinary differentiation equation with a transport equation: |r = )CL( + 
t

C
Nii

i

∂
∂  where L is 

the advection-dispersion/diffusion operator.  Thus, the framework provided Fang et al. 

(2003) is also applicable to transport systems except that, instead of Eq. (1), one employs 

the set of transport equations.  

Decompose the matrix equation made up of the transport equations of mobile 

species and the mass balance of immobile species, the following set of governing 

equations are obtained: 

· Transport Equation for Mobile Components – 

Nj  ,M = 
θρ

T θρ - 
θρ

T
θρ + 

t
T

mj
αα

α
j

ααα

3

1=ααα

α
j

αf,αα

3

1=α

j ∈

















∇•∇





•∇

∂
∂ ∑∑ DV  (14) 



 

 
 

104 

 
· Transport Equation for Mobile Kinetic Variables – 

M  j  ,N k   , RD + R D + M = 
 

θρ
E

θρ - 
θρ

E θρ + 
t
E

mKIjij
N  j

kkkj

αα

α
j

ααα

3

1=ααα

α
j

αf,αα

3

1=α

j

KD(k)

∈∈


















∇••∇





•∇

∂
∂

∑

∑∑

∈

DV

 (15) 

 
· Infinite-Rate Equations for NE Equilibrium Reactions  - 
 

equation consistentamically  thermodyna    
 

 = R  
D
E

dt
d  : , N k   , RD + R D + M = 

 
θρ

E
θρ - 

θρ
E θρ + 

dt
Ed

k
kk

j
Ejij

N  j
kkkj

αα

α
j

ααα

3

1=ααα

α
j

αf,αα

3

1=α

j

KD(k)

∃

∞≈



∈


















∇••∇





•∇

∑

∑∑

∈

DV

 
(16) 

 
where Tj is the total concentration of the j-th component, Tj

α is the concentration of the j-

th component j in phase α; Ej is the total concentration of the j-th kinetic-variable; Ej
α is 

the concentration of the j-th kinetic variable in fluid phase α;  Nm is the number of mobile 

components, Mm is the number of mobile kinetic variables; and Mim is the number of 

immobile kinetic variables. The number of immobile components is N - N = N mCim ; the 

number of immobile kinetic variable is mim MMM −= . 

Governing equations for immobile components and kinetic variables are in the 

same form as Eqs. (14) and (15) by dropping advection, dispersion/diffusion, and 

external source/sink terms  in Eqs. (14) and (15). 

For the convenience of presentation, Eqs. (14) and (15) will be expressed by the 

following equation in a general form: 

RR + M = 
θρ

T θρ - 
θρ

T
θρ + 

t
T

jj
αα

α
j

ααα

3

1=ααα

α
j

αf,αα

3

1=α

j


















∇•∇





•∇

∂
∂ ∑∑ DV  (17) 
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where 0 = RR j for components, and RD + R D = RR jij

N  j
kkkj

KD(k)

∑
∈

 for kinetic variables. 

To solve Eq. (17) numerically,  Tj
α is expressed in terms of Tj  to make Tj s as 

PDVs and the following equation is obtained: 

RR+ M =

 )T
Tθρ

T(  θρ  - Tθρ
Tθρ

T   + 
t
T

jj

j
jαα

α
j

ααα

3

1=α
jαf,αα

jαα

α
j

3

1=α

j







∇••∇





•∇

∂
∂ ∑∑ DV

 (18) 

which is conservative form of the transport equations. 

3.3.2 Conversion to advective Form 

Differential Eq. (18) is the conservative or primitive form of the governing 

equations for hydrologic transport. They are derived from the law of mass conservation.  

They can also be converted to the non-conservative or advective form by expanding the 

second term of Eq. (18), i.e., divergence of advection flux. Though conservative form and 

advective form are mathematically equivalent, the numerical solutions for them have 

different characteristics. The conservative form offers advantages in preserving 

conservative properties in numerical implementations. On the other hand, the advective 

form offers some advantages in preserving the transport property in numerical 

implementations by the finite element method (FEM) (Huyakorn et al., 1985), and 

facilitates the implementation of Lagrangian-Eulerian approach.  

 However, for FEM in advective form, mass conservation property cannot be 

satisfied, while for Lagrangian–Eulerian methods, (1) mass conservative property cannot 

be satisfied, (2) boundary conditions are not easy to implement. We shall see later on the 

different features of the numerical implementation for these two forms.  

Eq. (18) is used for illustration in the following derivation.  Expanding the second 

term of Eq. (18) yields 
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( )

RR + M = 
θρ

T  θρ   -  

θρ
T θρ + θρ   

θρ
T + 

t
T
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D

VV
 (19) 

Express Tj
α  in terms of Tj  to make Tj s as PDVs: 

( )

RR + M = T 
Tθρ

T  θρ   -  

T 
Tθρ

T θρ + θρ   T 
Tθρ

T + 
t
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Expanding the third term on the left hand side of Eq. (20), we obtain 
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Expanding the fourth term on the right hand side of Eq. (20), we obtain 
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Substituting Eqs. (21), (22) into Eq. (20) and combining similar terms, the following 

equation is obtained 
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Combining Eq. (23) and the continuity equation of flow 

( ) oilor  gas  water,= α  , Qρ + θρ   - = 
t
θρ

α
*
ααf,αα

αα V•∇
∂

∂
 (24) 

 
yields the following equation 
 

RR + M = T 
Tθρ
TQρ

 + KT + )TL( + 
t
T
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where ρ*

i  is the density of source/sink fluid, (M of liquid/L3 of liquid), equal to ρ i if 

sink/withdrawal (negative Q) or ρ ini,  if source/injection (positive Q); Q is the source or 

sink due to artificial injection or withdrawal of water, unit of volume of liquid per volume 

of porous media per time (L3/L3 T). K is a first order term and L( ) is an advection-

dispersion operator: 
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ααα
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j
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1=i
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N  j  , ] T    [   - T   = )TL( mjejej ∈∇••∇∇• DV  (27) 

where Ve  and De  are effective velocity and effective dispersion coefficient respectively, 

and they are given by 
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
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





∑ Tθρ

T
θρ = 

jαα

α
j

ααα

3

1=α
e DD  (29) 

 
The source/sink term can be defined by 

( )QTρ = M *α
j

*
α

3

1=i
j ∑  (30) 

where T *
j
α  is the total concentration of the j-th component in the α-th source/sink liquid 

(M/M of liquid), and 
θρ αα

α T = T
i
j*

j  in the case of sink/withdrawl, or T = T inj,
*

j
αα -- input 

concentration in the case of source/injection. 

3.3.3 Initial and Boundary Conditions 

Initially, the concentration of each chemical species must be given throughout the 

region of interest: 

M  i  0, =at t  C = cθρ s0iiαα ∈  (31) 

where 0iC  is the initial concentration of the i-th chemical species, unit of mass of 

chemical species  per volume of porous media (M/L3). 

For all species that are subject to hydrological transport, boundary conditions are 

specified. Types of boundary conditions incorporated are: Dirichlet, Neumann, Cauchy, 

or variable.  

A Dirichlet condition is used to deal with a prescribed concentration as:  

M  i , Bon    C = cθρ sDiDiαα ∈  (32) 

Where CiD is the prescribed Dirichlet concentration for the i-th chemical species, unit of 

mass of chemical species per volume of porous media (M/L3). 

A boundary is often treated as a Neumann boundary when the flux due to the 
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gradient of species concentration is known, or as a Cauchy boundary when the total flux 

is given: 

M  i , B on   q = )c  θρ(   - sNαiN,iααα ∈∇•• Dn  (33) 

M  i , B on   q = )c  θρ - cρ(  sCαiC,iαααiαα ∈∇•• DVn  (34) 

where qiN  is the normal Neumann flux, unit of mass of the i-th chemical species per unit 

area of porous media per time (M/L2/T), qiC  is the normal Cauchy flux, unit of mass of 

the i-th chemical species  per unit area of porous media per time(M/L2/T), n is an 

outward unit vector normal to the boundary. 

A flow-through boundary is normally the soil-air interface or soil-water interface, 

and the appropriate condition is variable depending on the direction of transport across 

the boundary.  For this type of boundary, a variable-type boundary is imposed.  When the 

flow is directed out of the region, the boundary is depicted by the Neumann condition 

with zero gradient flux; when the flow is directed into the region, the boundary is 

depicted by the Cauchy condition with given total flux. Therefore, the variable boundary 

condition can be written as 

M  i , B on 0 <    if   q = )c  θρ - cρ(  
M  i , B on 0 >    if   0 = q = )c  θρ(   -

sVααiV,iαααiαα

sVααiV,iααα

∈•∇••
∈•∇••

nVDVn
nVDn

 (35) 

 
Expressed in the form of total phase concentration, Eqs. (31) to (35) can be written as:  

M) + N(  j , 0 =at t    T = T c0jj ∈  (36) 
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)M + N(  j , B on 0 >    if   0 = q = 
θρ

T  θρ   - mmVααjV,
αα

α
j

ααα ∈•





∇•• nVDn  (39) 

)M + N(  j , B on 0 <    if   q = 
θρ

T  θρ - 
θρ

Tρ  mmVααjV,
αα

α
j

ααα
αα

α
j

αα ∈•





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When applying FEM to the advective form of the governing equations, boundary 

conditions should be reformulated to be consistent with Eq.(25) (regarding to the 

effective velocity and effective dispersion tensor). 

Express Eq. (37) in terms of Tj, we obtain 

  qT
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Add j
j

j
f T

T
T

αα

α

ααα θρ
θρ ,V to both sides of Eq. (37), we obtain 
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Similarly, express Eq. (38) in terms of Tj, we obtain 

   q = T
Tθρ
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Expand the second term on the left hand side of Eq. (43) as in Eq. (41) and combine 

similar terms, the following equation is obtained 
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Eq. (39) and (40) are special case of Eqs. (37) and (38), respectively, and they can be 

easily written out as  
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(46) 

 

3.3.4 Numerical Implementation 

Finite element method (FEM) is used to solve the transport equations. There are 

five numerical schemes included in HYDROBIOGEOCHEM, based on the conservative 

form and advective form of the governing equations. They are: scheme 1, FEM on 

advective form of equation with upstream weighting; scheme 2, FEM on conservative 

form of equation with upstream weighting; scheme 3, Hybrid Lagrangian-Eulerian FEM 

for interior elements + FEM on advective form of equation for boundary elements; 

scheme 4,  hybrid Lagrangian-Eulerian FEM; and scheme 5, Hybrid Lagrangian-Eulerian 

FEM for interior elements + FEM on conservative form of equation for boundary 

elements. Scheme 4 is different from traditional hybrid Lagrangian-Eulerian FEM in that 

it first approximates the time derivative term with finite difference method and multiplies 

both sides of the governing equation with the time interval. The Galerkin FEM is then 

applied to the resulted residual equation and we’ll obtain the linearized equation as Eq. 
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(A.18) in appendix 3.A, where the numerical solutions of the transport equation by FEM 

for all five schemes are presented. We call the traditional Lagrangian-Eulerian FEM 

method as scheme 6 in the example simulation section.   

Three approaches for solving coupled hydrologic transport and biogeochemical 

reaction problems are included in HYDROBIOGEOCHEM. These approaches are fully 

implicit sequential iteration approach, operator splitting approach, and predictor-corrector 

approach. In all three approaches, only the mobile PDVs are solved in the transport 

module.  The immobile PDVs are solved in the chemistry module.   For the simplicity of 

presentation, without losing generality, the transport equation can be expressed as 

R(T)L(T)
t
T +=

∂
∂  (47) 

where L( ) is an advective-dispersive transport operator and R( ) is a reaction operator. 

For the fully implicit sequential iteration approach, Eq. (47) becomes: 

)R(T)L(T
∆t

TT 1r1,n1r1,n
n1r1,n

++++
++

+=−  (48) 

and the reaction term will be linearized by a Taylor series approximation: 
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R)R(T)R(T  (49) 

Where n = time step level, and r = iteration step.  

In the fully implicit approach, the biogeochemical reaction subsystem of 

equations and the hydrologic transport subsystem of equations are solved sequentially 

and iteratively.  The concentrations of all immobile PDVs are computed in the 

biogeochemical subsystem using all species concentrations from the prior iteration.  The 

concentrations of the mobile PDVs are not solved in the reaction subsystem.  They are 

determined in the hydrologic module using the species concentrations and the reaction 

term evaluated from species concentrations of the current iteration. These concentrations 

then passed to the reaction module as given constants.  
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 In the operator splitting approach, the concentrations of mobile PDVs are solved 

for in both subsystems of equations.  The mobile PDVs are first subjected to transport 

without considering the reaction term to yield an intermediate value of their 

concentrations.  These transported concentrations are then subjected to the 

biogeochemical reactions, yielding final values of the concentrations for the current time 

step.  In this approach, Eq. (47) is solved in two steps: 

)L(T
∆t

TT 2/1n
n2/1n

+
+

=−  (50) 

)R(T
∆t

TT 1n
1/2n1n

+
++

=−  (51) 

where the superscripts (n), (n+1/2), and (n+1) denote the values at the prior time, at an 

intermediate point in the current computation, and at the new time, respectively. 

 In the predictor-corrector approach the concentrations of mobile PDVs are also 

solved for in both subsystems of equations.  The only difference of this approach from 

the operator splitting approach lies in whether reaction terms be considered in the 

transport equation. In this approach, Eq.(47) is solved in the following two steps: 

)R(T)L(T
∆t

TT n2/1n
n2/1n

+=− +
+

 (52) 

)R(T)R(T
∆t

TT n1n
1/2n1n

−=− +
++

 (53) 

where the superscripts (n), (n+1/2), and (n+1) denote the values at the prior time, at an 

intermediate point in the current computation, and at the new time, respectively. 

 In the operator splitting approach and the predictor-corrector approach, the 

coefficients in the L( ) operator are determined from previous iterate. No iteration 

between the transport subsystem and the reaction subsystem is implemented. However, 

when the PDVs have immobile components, these coefficients in the L( ) operator are 

dependent on the PDVs to be simulated. This implementation will give a less accurate 

solution.  
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Compared to the fully implicit approach, the operator splitting approach and 

predictor-corrector approach are less computationally intensive and more robust, but they 

sacrifice the accuracy of the solution (Salvage, 1998).  

 

3.4 Example Simulations 

 

3.4.1 1-D Solute Transport Verification 

The numerical schemes have been compared with analytical solutions for simple 

cases with one adsorption reaction. This example solves the transient simulation of 

chemical transport in a horizontal beam. The domain of interest has a size of 150 cm × 1 

cm. The flow beam contains water (Sw = 1) with an initial concentration of chemical C(x 

,0) = 0 mmol/cm3 of bulk volume. It also contains soil with a bulk density of 1.5 g/cm3 

and sorbed chemical S, initial concentration of which is S(x,0) = 0 mmol/cm3 of bulk 

volume. A steady flow field is assumed with a constant Darcy velocity V = 1 cm/day and 

an effective moisture content of 0.2. The molecular diffusion coefficient is 0 cm2 /day. 

The boundary condition at x = 0 is flow in boundary condition and the incoming 

concentration of chemical C is 5.0mmol/cm3. At x = 150 cm is natural boundary 

condition. The domain is discretized with 100 equal size elements (1.5 cm × 1 cm each). 

A constant time step size of 0.1 day is used for the simulation. The simple equilibrium 

reaction considered is 
 

C ↔ S, Kd = 0.1333 (54) 

where Kd is partition coefficient.  

 Five schemes presented in this paper are simulated separately and are compared 

with analytical solution given by Lindstrom and Freed (1967) in figure 3.1 and table 3.1 

for concentration profile of chemical C given after 8 days. Scheme 6 is the traditional 

form of Lagrangian Eulerian FEM. 



 

 
 

115 

 The grid Peclet number (
LL

x
V
xV

D
xVPe

αα
∆∆∆ === ) in the simulation corresponds to 

the three dispersivity, αL = 0.1 cm, αL = 10 cm, and αL = 50 cm are Pe = 15, Pe = 0.15, 

and Pe = 0.03, respectively. Grid Courant number is less than 1. Differences of the 

different schemes are apparent from Figure 3.1.  

 It is seen from table 3.1 that for large Peclet number, scheme 4 gives more 

accurate result even though it shows some amount of numerical dispersion. However, for 

small Peclet number, accuracy of scheme 4 and 6 are bad because of the inaccurate 

treatment of boundary fluxes in the Lagrangian step of these two schemes. Although 

schemes 1 and 2 present high accuracy, they are susceptible to numerical dispersion, and 

limitations on the size of the Courant number. Therefore, for dispersion dominant 

problems with flux boundary conditions, we recommend  scheme 3 and 5. For 

advection dominant problem, scheme 3 and 5 are also recommended because they ensure 

mass conservation.  

 

 

Table 3.1. R2 values based on the analytical and calculated results for different values of 

dispersivity. 

 
 

 
Scheme 1 

 
Scheme 2 

 
Scheme 3 

 
Scheme 4 

 
Scheme 5 

 
Scheme 6 

 
Pe =  0.1 

 
0.9660 

 
0.9660 

 
0.9752 

 
0.9756 

 
0.9752 

 
0.9355 

 
Pe = 10 

 
0.9995 

 
0.9995 

 
0.9995 

 
0.9542 

 
0.9995 

 
0.8286 

 
Pe = 50 

 
0.9999 

 
0.9999 

 
0.9998 

 
0.4030 

 
0.9998 

 
-1.3554 
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(a) 

 

 

 

(b) 
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(c)  

 

Figure 3.1 Concentration profile of chemical C at t = 8 days: (a) αL = 0.1 cm, 

(b) αL = 10 cm, (c) αL = 50 cm. 

 

3.4.2 1-D Transport: Chemical Decay and Productoin 

 The problem domain is the same as example 3.4.1.  The boundary condition is the 

Dirichlet boundary condition, which involves a constant total concentration of 1.0 mol/L 

at x = 0, corresponding to constant concentration of c = 2.5 mol/kg of water. Processes 

considered in this problem are listed in table 3.2. Simulation parameters are given in table 

3.3. A constant time step size of 0.05 day is used for the simulation. Analytical solution 

of the problem is given by van Genuchten and Alves (1982). The concentration profiles 

of species with different schemes are given and compared with the analytical solutions at 

selected times in figure 3.2 and table 3.4. They all show good agreement with the 

analytical solutions before the change of boundary conditions (t = 4 d). But after the 

change of boundary condition, scheme 4 shows the best accuracy, scheme 3 and 5 are 

next. This is due to the big concentration gradient generated after 4 days. Decreasing time 
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steps around 4 days, scheme 3 and 5 may give better results.  

 

Table 3.2. Processes considered in problem 3.4.2. 

 
Process 

 
# 

 
Type 

 
c ↔ s 

 
(R1) 

 
Equilibrium reaction described by linear isotherm ck  = s  

Decay of c (R2) First-order kinetics, rate c - = w2 µR  

Decay of s (R3) First-order kinetics, rate s - = s3 µR  

Production of c (R4) Zero-order kinetics, rate γ w4  = R  

Production of s (R5) Zero-order kinetics, rate γ s5  = R  

 

 
 

Figure 3.2. Concentration profile for problem 3.4.2. 
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Table 3.3. Physical and Chemical Parameters and values for Problem 3.4.2. 

 
Parameters 

 
Value 

 
Effective porosity 

 
φ = 0.2 

 
Bulk density 

 
ρb = 1.5 g/L 

 
Longitudinal dispersivity 

 
αL = 10.0 cm 

 
Vertical dispersivity 

 
αT = 0.0 cm 

 
Tortuosity 

 
τ = 1.0 

 
Aqueous diffusion coefficient 

 
amw = 0.0 cm2/d 

 
Darcy velocity 

 
V = 1.0 cm/d 

 
Boundary condition 

 
c = constant at x = 0 (0 < t < 4 d) 

 
Initial species concentration 

 
0.0 of bulk volume 

 
Partition coefficient 

 
k = 0.1333 

 
first-order decay constant in water phase 

 
µw = 4.0 ×10-3  g/cm3 d 

 
first-order decay constant in solid phase 

 
µs = 2.25 ×10-4 g/cm3 d 

 
zero-order production rate constant in water phase 

 
γw = 2.0 ×10-3 mol/cm3 d 

 
zero-order production rate constant in solid phase 

 
γs = 3.0 ×10-3 mol/cm3 d 

 
 
Table 3.4. R2 values based on the analytical and calculated results for selected time steps 
 
 

 
 
Scheme 1 

 
Scheme 2 

 
Scheme 3 

 
Scheme 4 

 
Scheme 5 

 
Scheme6 

 
t = 3 d 

 
0.9987 

 
0.9987 

 
0.9989 

 
0.9983 

 
0.9989 

 
0.9965 

 
t = 8 d 

 
0.9741 

 
0.9892 

 
0.9867 

 
0.9915 

 
0.9867 

 
0.8945 
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3.4.3 1-D Diffusive Transport: Gas-Liquid Reaction 

 This problem is to verify the applicability of HYDROBIOGEOCHEM in 

multiphase system.  Transport of hydrocarbon in the unsaturated zone due to phase 

partitioning is simulated and compared with analytical solution. Problem domain is 

identical to problem 3.4.1. Initial species concentration and boundary conditions are 

given in table 3.5.  

 

Table 3.5 Physical and Chemical Parameters and values for Problem 3.4.3. 

 
Parameters 

 
Value 

 
Effective porosity 

 
φ = 0.37 

 
Bulk density 

 
ρb = 1.5 g/L 

 
water volumetric content 

 
θw = 0.10 

 
air volumetric content  

 
θw = 0.27 

 
Longitudinal dispersivity 

 
αL = 0.0 cm 

 
Transverse dispersivity 

 
αT = 0.0 cm 

 
Tortuosity 

 
τ = 0.34 

 
Aqueous diffusion coefficient 

 
amw = 8.64 × 10-3 cm2/d 

 
Gaseous diffusion coefficient 

 
ama = 86.4 cm2/d 

 
Boundary condition 

 
G = constant at x = 0 

 
Initial species concentration 

 
0.0 mole per bulk volume 

 

Processes included are: 
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· partitioning between the water and air phases for the hydrocarbon 

G ↔ C, H = 1.05 (55) 

 
· adsorption 

C ↔ S,  Kd= 0.3 (56) 

where H is the Henry’s law coefficient. G is in gaseous phase, C is in aqueous phase, and 

S is sorbed species.   

 Parameters used for this problem is shown in table 3.5. Most of the values are 

from Barhr (1987). A constant time step size of 1.0 day is used for the simulation. 

 Simulated results for gaseous species concentration with scheme 5 for selected 

times are compared with the analytical solution given in Baehr (1987) in Figure 3 and 

they show very good agreement. Other schemes are not compared for this example 

because for Dirichlet boundary conditions, there is not much difference among different 

numerical schemes as has already shown in problem 3.4.2. 

 
 

Figure 3.3 Gaseous species concentration at selected times 
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3.4.4 2-D Transport: Biodegradation of Hydrocarbon 

 The problem domain consists of two zones and is described in Figure 3.4. Zone 1 

is unsaturated, zone 2 is saturated. The properties of these two zones are listed in Table 

3.6.  Parameters for this example are mainly from Borden and Bedient (1986). 

Groundwater flow was assumed to be uniform and horizontal. Boundary conditions are 

variable boundary condition on the upstream, influent concentrations given in table 3.6, 

and no flux boundary condition on the downstream. At the soil surface, partial pressure of 

oxygen is fixed (table 3.6). Initial species concentrations are given in table 3.6. Only 

diffusion is considered in the gas phase.  

 

 
 

Figure 3.4 Problem domain 
 

 

Monod kinetics for biodegradation is described by the following function 













O + K
O

H + K
HYk  M = 

dt
dM

oh

 (57) 

and the microbial decay is represented by the first order decay rate 

M b - = 
dt

dM
t  (58) 

where 

H hydrocarbon concentration; 


