
The Pennsylvania State University

The Graduate School

Department of Electrical Engineering

FEATURE SELECTION METHODS

FOR SUPPORT VECTOR MACHINES

FOR TWO OR MORE CLASSES,

WITH APPLICATIONS TO THE ANALYSIS OF

ALZHEIMER’S DISEASE AND ITS ONSET

WITH MRI BRAIN IMAGE PROCESSING

A Dissertation in

Electrical Engineering

by

Yaman Aksu

c© 2010 Yaman Aksu

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2010

The dissertation of Yaman Aksu was reviewed and approved* by the following:

Kenneth Jenkins
Professor of Electrical Engineering
Head of the Department of Electrical Engineering

David J. Miller
Professor of Electrical Engineering
Dissertation Co-Advisor
Co-Chair of Committee

Qing X. Yang
Professor of Radiology and Neurosurgery
Co-Chair of Committee

George Kesidis
Professor of Electrical Engineering
and Computer Science and Engineering
Dissertation Co-Advisor

Constantino M. Lagoa
Associate Professor of Electrical Engineering

James Wang
Professor of Information Sciences and Technology

*Signatures on file in the Graduate School.

iii

Abstract

Feature selection for classification in high-dimensional spaces can improve generalization,
reduce classifier complexity, and identify important, discriminating feature “markers”. For sup-
port vector machine (SVM) classification, a widely used technique is Recursive Feature Elim-
ination (RFE). We demonstrate RFE is not consistent with margin maximization, central to
the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE)
for SVMs and show both improved margin and improved generalization, compared with RFE.
Moreover, for the case of a nonlinear kernel, we show RFE assumes the squared weight vector
2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the
Gaussian kernel and, consequently, RFE may give poor results in this case. We show that MFE
for nonlinear kernels gives better margin and generalization. We also present an extension which
achieves further margin gains, by optimizing only two degrees of freedom – the hyperplane’s
intercept and its squared 2-norm – with the weight vector orientation fixed. We finally introduce
an extension that allows margin slackness. We compare against several alternatives, including
RFE and a linear programming method that embeds feature selection within the classifier design.
On high-dimensional gene microarray data sets, UC Irvine repository data sets, and Alzheimer’s
disease brain image data, MFE methods give promising results. We then develop several MFE-
based feature elimination methods for the case of more than two classes (the “multiclass” case).
We compare against RFE-based multiclass feature elimination and show that our MFE-based
methods again consistently achieve better generalization performance. In summary, we identify
some difficulties with the well-known RFE method, especially in the kernel case, develop novel,
margin-based feature selection methods for linear and kernel-based two-class and multiclass dis-
criminant functions for support vector machines (SVMs) addressing separable and nonseparable
contexts, and provide an objective experimental comparison of several feature selection methods,
which also evaluates consistency between a classifier’s margin and its generalization accuracy.

We then apply our SVM classification and MFE methods to the challenging problem of
predicting the onset of Alzheimer’s Disease (AD), focusing on predicting conversion from Mild
Cognitive Impairment (MCI) to AD using only a single, first-visit MRI for the person so as to aim
for early diagnosis. In addition, we apply MFE for selecting brain regions as disease “biomarkers”.
For these aims, for the pre-classification image data preparation step, we co-develop an MRI
brain image processing pipeline system named STAMPS, as well as develop a related system
with additional capabilities named STAMPYS. These systems utilize external standard MRI
brain image processing tools and generate output image types particularly suitable for detecting
(and encoding) brain atrophy for Alzheimer’s disease. We identify and remedy some basic MRI
image processing problems caused by some limitations of external tools used in STAMPS – i.e.
we introduce our basic fv (fill ventricle) algorithm for ventricle segmentation of cerebrospinal
fluid (CSF). For prediction of conversion to AD for MCI patients, we demonstrate that our early
diagnosis system achieves higher accuracy than similar recently published methods.

iv

Table of Contents

List of Tables . vi

List of Figures . vii

Acknowledgments . ix

Chapter 1. Introduction . 1
1.1 Statistical Learning Theory and learning machines 1
1.2 VC dimension and Structural Risk Minimization (SRM) 2
1.3 Brief review of Support Vector Machines (SVMs) 3
1.4 SVM and SRM . 5
1.5 Feature selection in classification . 6
1.6 Feature selection for SVMs . 9
1.7 Contributions of this thesis . 10

Chapter 2. Margin-maximizing feature selection methods for Support Vector Machines:
two-class case . 12

2.1 RFE and limitations of RFE . 12
2.1.1 RFE and limitations of RFE: linear kernel case 12
2.1.2 RFE and limitations of RFE: nonlinear kernel case 12

2.2 MFE: direct margin-based feature elimination 14
2.2.1 MFE for the linear kernel case . 14

2.2.1.1 MFE algorithm pseudocode for SVMs: linear kernel case . . 15
2.2.2 MFE for the nonlinear kernel case . 16
2.2.3 “Little Optimization” (LO): further increases in margin 18

2.3 MFE-slack: utilizing margin slackness . 20
2.3.1 MFE-slack algorithm pseudocode for linear and nonlinear kernel SVMs 22

2.4 Results . 22
2.4.1 Experimental procedure for the initial classifier training 22

2.4.1.1 Data pre-processing prior to initial classifier training 23
2.4.2 Experimental procedure for feature elimination 23

2.4.2.1 Stopping criteria . 24
2.4.3 Experiments on high-dimensional separable data 26
2.4.4 Experiments on low-dimensional separable data 28
2.4.5 Experiments on low-dimensional nonseparable data 30
2.4.6 High-dimensional feature space application: brain images 30

2.5 Conclusions . 33

Chapter 3. Margin-maximizing feature selection methods: “multiclass” case (k > 2) . . . 35
3.1 Introduction . 35
3.2 Brief summary of multiclass SVMs . 35
3.3 Multiclass RFE-based methods . 37
3.4 Multiclass MFE methods . 37

3.4.1 Pseudocode for algorithms MFE-k-G, MFE-k-SP, and MFE-k-SC, for
linear and nonlinear kernel-based multiclass SVMs 38

3.5 Multiclass MFE-slack: utilizing margin slackness 39
3.5.1 MFE-k-SP-slack . 39

v

3.5.1.1 MFE-k-SP-slack algorithm pseudocode for linear and nonlin-
ear kernel-based SVMs . 40

3.5.2 MFE-k-G-slack . 42
3.5.2.1 MFE-k-G-slack-s algorithm pseudocode for linear and non-

linear kernel-based SVMs . 42
3.5.2.2 MFE-k-G-slack-m algorithm pseudocode for linear and non-

linear kernel-based SVMs . 43
3.5.3 MFE-k-SC-slack . 43

3.5.3.1 MFE-k-SC-slack-s algorithm pseudocode for linear and non-
linear kernel-based SVMs . 44

3.5.3.2 MFE-k-SC-slack-m algorithm pseudocode for linear and non-
linear kernel-based SVMs . 45

3.6 MFE-k-Kesler . 45
3.6.1 Kesler construction . 45
3.6.2 MFE-k-Kesler . 46

3.7 Results . 46

Chapter 4. MRI brain image processing and analysis of Alzheimer’s disease and its onset 50
4.1 Introduction . 50
4.2 Brain MR image processing pipeline . 54
4.3 Results . 57

4.3.1 ADNI data . 57
4.3.2 ROI-based and voxel-based experiments 57
4.3.3 Procedure for initial classifier training for AD/MCI/Control data . . . 58
4.3.4 Classifier 1: Control-AD123 classifier 59

4.3.4.1 Classifier 1R: features are ROI-based 59
4.3.4.2 Classifier 1V: features are voxel-based 59

4.3.5 Classifier 2: MCIncc-MCIcc (nonconverters-by-CDR vs. converters-
by-CDR) . 64
4.3.5.1 Classifier 2R: features are ROI-based 64

4.3.6 Classifier 3: MCInct-MCIct (nonconverters-by-trajectory vs. converters-
by-trajectory) . 64
4.3.6.1 Classifier 3R: features are ROI-based 65
4.3.6.2 Classifier 3V: features are voxel-based 69

4.3.7 Comparison with statistical paired t-test using SPM5 69
4.4 Conclusions . 78
4.5 Acknowledgement . 79

Appendix A. Software we created . 80
A.1 SVMcatalyst software . 80
A.2 fv algorithm and tool for ventricle segmentation of CSF 80

A.2.1 fv algorithm . 80
A.2.2 fv tool . 82

A.3 STAMPS software . 83

Appendix B. 84
B.0.1 Exhaustive Subsampling Approach (ESA) and Hierarchical MFE (H-

MFE) . 84

Appendix C. HAMMER method . 85

Bibliography . 86

vi

List of Tables

4.1 Results for ROI-based Classifiers 1R and 2R. 60
4.2 Results for voxel-based Classifier 1V. 61
4.3 Results for voxel-based Classifier 1Vb. 62
4.4 Results for ROI-based Classifier 3R. Part 1 of 2. 67
4.5 Results for ROI-based Classifier 3R. Part 2 of 2. 68
4.6 Results for voxel-based Classifier 3V. 69

vii

List of Figures

2.1 Counterexample for RFE. 13
2.2 Results for the Gaussian kernel for MFE and RFE. 16
2.3 Training set margin, test set error rate, for comparing MFE and RFE. 17
2.4 Illustration for solution of the “little optimization (LO)” problem. 19
2.5 Illustrative example for MFE-slack. 21
2.6 Results with linear kernel for three high-dimensional (gene microarray) data sets. 25
2.7 Results with polynomial kernel for a high-dimensional (gene microarray) data set. 26
2.8 Comparison of single trials for MFE and NLPSVM. 29
2.9 Results for multiple kernel types for separable low-d data sets. 31
2.10 Results for multiple kernel types for nonseparable low-d data sets. 32
2.11 Initial illustrative MFE and RFE curves for brain image data. 33
2.12 Initial illustrative MFE and RFE results for brain image data. 34

3.1 Illustration of MFE-k and MFE-k-slack methods. 41
3.2 Results for linear kernel for multiclass MFE and MSVM-RFE-WW. 48
3.3 Results for MFE-k-Kesler. 49

4.1 Trajectory results for ROI-based Classifier 1R. 53
4.2 Regions found by MFE with Classifier 1V. 62
4.3 Trajectory results for voxel-based Classifier 1V. 63
4.4 Paired t-test results for AD/Control groups for gray matter: all p values (uncor-

rected). 71
4.5 Paired t-test results for AD/Control groups for gray matter: p < 0.0001 uncorrected 73
4.6 Paired t-test results for AD/Control groups for white matter: p < 0.0001 uncor-

rected . 74
4.7 Paired t-test results for AD/Control groups for gray matter: FDR-corrected . . . 76
4.8 Paired t-test results for AD/Control groups for gray matter: FDR-corrected (ortho) 77

A.1 Illustration of problematic scenario with ventricles partly mislabeled as CSF. . . 80

viii

Notation

R the set of real numbers
N the set of natural numbers
M number of features (pre-elimination)
N number of training samples
x training vector, aka training sample
X set {x1, . . . , xN} of training vectors
T number of support vectors
S set {1, . . . , T} of indexes for support vectors
s support vector ∈ X, e.g. sl is lth support vector with l ∈ S
k number of classes
y class label ∈ {±1} for two-class case
yn y of xn

yx y of x, e.g. ysl
is y of sl

p class label ∈ {1, . . . , k} for multiclass case
pn p of xn

p(·, ·) probability density function (pdf)
cn minimum-signed-distance class for sample xn in multiclass SVM
w weight vector
b offset, aka intercept, aka affine parameter
δ or ∆ delta, a quantity computed by the MFE method herein
〈· , ·〉 inner product
φ(·) mapping into feature space, possibly infinite-dimensional
K(·, ·) kernel function
F space induced by a kernel
f(·) discriminant function
ξ slackness variable
γ margin
λ Lagrange multiplier (uses same subscripting as y above)
ζn,p binary (indicator) variable; 1 if pn (the class of xn) is p, 0 otherwise.
Λ Lagrange coefficient, calculated from multiple Lagrange multipliers in multiclass SVMs
C regularization parameter for SVMs
X space of inputs for a learning machine
Y space of outputs for a learning machine
x input to a learning machine (x ∈ X), such as a training vector x
y output of a learning machine (y ∈ Y), such as a class label y
h VC dimension
L(·, ·) loss function
R(·) expected risk
Remp(·) empirical risk(
k
l

)
number of combinations (k-choose-l), aka binomial coefficient

ix

Acknowledgments

For all of their help and guidance, I am grateful to my thesis co-advisor and committee
co-chair Prof. David Miller, thesis co-advisor Prof. George Kesidis, and committee co-chair Prof.
Qing Yang, who were also my three supervisors. I am grateful to my committee members Prof.
Constantino Lagoa and Prof. James Wang. Many thanks to Dr. Don Bigler, for our collaboration
in creating and using the STAMPS software and for a number of useful discussions on MRI brain
images and their processing, and to everyone who helped me at PSU.

1

Chapter 1

Introduction

1.1 Statistical Learning Theory and learning machines

Statistical learning theory is concerned with producing a function f : X → Y that esti-
mates from an input x ∈ X an output y ∈ Y considered to be the “truth” associated with x.
For instance, x may be a vector x ∈ RM (M ∈ N) of observables and y the class y ∈ {±1} that
x belongs to. More precisely, a “learning machine” is defined by a family of possible mappings
x 7→ f(x,Θ) parameterized by Θ, with “learning” (aka training) being the step of employing a
“training set” X of input samples in order to choose a particular Θ value1 whereby one is simply
left with the desired mapping x 7→ f(x).

“Generalization” refers to the ability to estimate the “true” output for a previously un-
seen (“test”) x sample (which was not employed by the training). Related to generalization is
the notion of “capacity” of the learning machine, an abstract concept that simply refers to the
machine’s ability to learn any training set without error.2 For example, trained on data about
vehicles, such as images of vehicles, a machine that declares a bicycle is a car because it has wheels
is a machine whose capacity is too small, whereas a machine that declares that a two-door red
car with round headlights is not a car because of not being white with four doors and rectan-
gular headlights is a machine whose capacity is too large. By finding the right balance between
accuracy obtained on a particular training set and capacity, best generalization performance can
be achieved. Capacity is made concrete using a measure, a non-negative integer, called the VC
dimension (Vapnik Chervonenkis dimension) – the VC dimension is a property of a family of
functions and is discussed shortly.

When y values for the training samples are provided to the learning (as available ground-
truth), the learning is called “supervised” – otherwise it is called “unsupervised”. The general
assumption is that x and y are drawn from an unknown cumulative probability distribution
P (x,y). Based on the idea of a loss function L : Y ×Y → R, the loss (i.e. penalty) of making an
incorrect decision f(x, Θ) when the true output is ytrue is L(f(x,Θ),ytrue) – thus the expected
risk is stated as:

R(Θ) =
∫

X ,Y

L(f(x, Θ),y)dP (x,y). (1.1)

Four components (75) are needed for building a learning machine. The first component is
the domain, which is the learning problem with its associated loss function L(·, ·) – for example,
classification, regression (or regression estimation), and probability density estimation are differ-
ent problems of function estimation i.e. different learning problems. In classification, Y is a set
of k classes (categories), and L(u, v) is 1 if u = v, and is 0 otherwise – for example, if Y = {±1},
L(u, v) is 1

2 |v − u|. In regression, Y = R, and one can similarly use L(u, v) ≡ |v − u|. In density
estimation, L(f(x, Θ), p) ≡ − log(p(x)) can be used, where p is the density being estimated.

1
Θ is a set of parameters called “hyperparameters”. A Θ value is a set of hyperparameter values.

2
Caution: Terminology is not ideal – normally an excess of “ability” or “capacity”, such as in humans,

would not result in poor performance, whereas in the machine context too much capacity is essentially
associated with resulting poor performance e.g. in the form of data overfitting (a type of undesirable
“overlearning” of the data).

2

The second component needed for building a learning machine is an induction principle for
defining a decision rule. The optimal f in (1.1) is the one that minimizes the expected risk R(Θ).
As established by Bayesian decision theory, the Bayesian decision minimizes the expected risk
R(Θ) and is thus optimal (20). Thus, in the event one has complete knowledge of the probability
density function p(x,y) (and thus dP (x,y) which is p(x,y)dxdy), using the Bayesian approach
one would be able to infer the optimal f (20; 28). However, very often in practice p(x,y) is not
available, and even though one could compute its estimate p̂(x,y), this estimation is a difficult
step and will at best yield a suboptimal result limited by the richness of the training data (20; 28).
Requiring neither this estimation nor a priori knowledge about the probability distribution (e.g.
the analytic form of p(x,y)), statistical learning theory approaches the problem of analyzing the
expected risk via generating bounds for it. The bound analysis is an integral part of the main
induction principle in statistical learning theory, named Structural Risk Minimization (SRM),
discussed below in Sec. 1.2.

The final two of the four components for building a learning machine (75), which are 3) a
set of decision functions, and 4) an algorithm for implementing the first three components (1-3),
depend on the particular choice of learning formulation and thus our discussion of them will be
addressed throughout this thesis.

1.2 VC dimension and Structural Risk Minimization (SRM)

VC dimension is a property of a parameterized family of functions {f(Θ)} (discussed in
Sec. 1.1). Suppose there is a set of N observations X = {x1, . . . , xN} with associated “truth”
Y = {y1, . . . , yN}. Since in this thesis we focus on the classification problem, we now convey a
concrete definition for VC dimension by focusing on the two-class classification problem as an
example. Given a family of functions {f(Θ)}, if one can find, for each of the 2N possible ways of
labeling the N points, a family member able to correctly assign this particular labeling to the N
points, we say (using terminology of (6)) that this set of points is “shattered” by this family. The
VC dimension is defined as the maximum number of points that the family can shatter (6). The
VC dimension of the family being h does not mean that every set of h points can be shattered
by this family (6). The partitioning of the data space by a hyperplane into two half-spaces is
referred to as a “linear dichotomy”, and the VC dimension of a set of hyperplanes in RM is M +1
(6).

Suppose L(·, ·) only takes the values 0 and 1, and L(u, v) is 1
2 |v − u| as stated above, as

this thesis will focus on classification. Given the sets X and Y above, the bound (1.2) holds with
probability 1− η (where 0 ≤ η ≤ 1 can be chosen arbitrarily small) for a learning machine with
VC dimension h (69):

R(Θ) ≤ Remp(Θ) +

√
h(log(2N/h) + 1)− log(η/4)

N
. (1.2)

The second term on the right-hand side, which contains the VC dimension, is called the VC
confidence. Remp(Θ), given by (1.3), is the “empirical risk”, the mean error rate measured on
the training set.

Remp(Θ) =
1

2N

N∑
n=1

|yn − f(xn, Θ)| (1.3)

Since Remp(Θ) is a fixed number for a given choice of training set {xn, yn} and the Θ chosen by
the training, the right-hand side of (1.2), which is independent of P (x,y), can be calculated if
one knows h – the underlying assumption is that the training data and the test data are drawn
independently according to some P (x,y) (6). Thus, a principled way of choosing a learning
machine is to choose from among a set of candidates the one with the lowest value for the right-
hand side of (1.2). To minimize the right-hand side, there is a tradeoff between minimizing the

3

training error and the VC confidence depending on the complexity of the machine through the
machine capacity measure h. The induction principle Structured Risk Minimization (SRM) has
been defined so as to introduce a “structure” into the candidate set F cands by considering nested
subsets F1 ⊂ F2 ⊂ . . . ⊂ FZ (for some integer Z, with FZ ⊆ F cands) with associated known VC
dimensions h1 < h2 < . . . < hZ (or known bounds on the VC dimensions). In this way, for a given
subset Fi, the goal would be to minimize the empirical risk Remp among members of that subset.
Accordingly, upon training a number of machines across subsets (possibly as few as simply one
machine per subset), one can simply choose the machine with the least sum of empirical risk
Remp and VC confidence. The bound is guaranteed not tight when the VC confidence, which
monotonically increases with h, exceeds a threshold (which, clearly, would be relative to the
maximum value chosen for the loss function) – for example, for the 0-1 loss defined above, a
reasonable threshold is 1.3 Overall the bound (1.2) is simply a guide – among two machines
achieving zero empirical risk, it is possible for the one with the higher VC dimension to achieve
better generalization performance. The bound is not valid for infinite VC dimension, which, by
definition, refers to the ability to shatter an arbitrarily large number of points. Note, however,
that machines from a family of infinite VC dimension are not guaranteed to generalize poorly –
for example, the k-nearest-neighbor classifier, which classifies a sample by voting based on labels
of its k nearest neighbors. Along this line, (43; 44) introduced the NNSRM (nearest-neighbor-
SRM) classifier which focuses on combining the power of the SRM principle with the versatility
of the NN classifier – the classifier is proposed as a guaranteed-to-converge and computationally
less expensive alternative to the Support Vector Machine (SVM) which, to be discussed shortly,
is “one of the first practical learning procedures for which useful bounds on the VC dimension
could be obtained and hence the SRM program could be carried out” (39).

Additional examples on the VC dimension, including examples discussing it in the context
of a function family’s number of parameters, can be found in (6). Next, in Sec. 1.3, we give a brief
review of Support Vector Machines (SVMs), which will also serve to lead into our subsequent
discussion of the connection between SRM and SVM in Sec. 1.4.

1.3 Brief review of Support Vector Machines (SVMs)

Consider a labeled training set {(xn, yn), n = 1, . . . , N}, where yn ∈ {±1} is the class
label and xn = (xn,1, . . . , xn,M) ∈ RM is the n-th data sample. A hyperplane acting as a binary
(two-class) decision function in this M -dimensional space is defined by f(x) ≡ wTx + b = 0,
w ∈ RM , b ∈ R. Denoting g(xn) ≡ ynf(xn), the signed distance from a data point xn to the
decision boundary is g(xn)

||w|| . The decision boundary is a separating one if it satisfies g(xn) > 0

for all xn. The margin of the separating decision boundary is thus defined as γ ≡ minn g(xn)

||w|| .
A support vector machine (SVM) is a linear or generalized linear two-class classifier that learns
a separator for the training set with maximum margin. The “support vectors”, used to specify
the SVM solution, which we denote by {s1, ..., sT } (with index set S = {1, 2, ..., T}), are a
subset of the training points at margin distance to the decision boundary. In the linear case,
the SVM weight vector solution is w ≡ ∑

k∈S
λsk

ysk
sk, where λsk

are scalar (positive) Lagrange

multipliers. In the generalized linear (nonlinear) case, f(x) ≡ wTφ(x) + b = 0, w ∈ RL, b ∈ R,
φ(x) ≡ [φ1(x), φ2(x), . . . , φL(x)]T, with φi(x) nonlinear functions of the x coordinates. Of
particular interest is when inner products between φ(x) and φ(u) can be efficiently computed via
a positive definite kernel function, K(x, u) ≡ φT(x)φ(u). In this case, both φ(·) and w itself need

3
For example, for this case, (6) plotted the VC confidence versus h/N for N = 10, 000 and η = 0.05

as well as illustrated that the VC confidence exceeds 1 for h/N > 0.37.

4

not be explicitly defined since both the SVM discriminant function f(·) and the SVM weight
vector squared 2-norm can be expressed solely in terms of the kernel, i.e.:

f(x) =
∑

k∈S
λsk

ysk
K(sk, x) + b, (1.4)

||w||2 =
∑

k∈S

∑

l∈S
λsk

ysk
λsl

ysl
K(sk, sl). (1.5)

This approach (the “kernel trick”), where K(·, ·) is explicitly specified and provided to the SVM
training, is referred to as the “nonlinear kernel case”.

For both linear or nonlinear kernels, the basic SVM training problem is:

min
w,b

1
2
||w||2 s.t. ynf(xn) ≥ 1, n = 1, . . . , N (1.6)

Recall that f(xn) in the constraints in (1.6) simply stands for wTx + b in the linear case and
〈w, φ(x)〉+b in the nonlinear kernel case – that is, as (1.6) states the basic SVM training problem
conveniently for both cases, it is important to keep in mind w and b indeed appear in the
constraints. The relationship of (1.6) to margin maximization can be understood as follows (3).
Assuming we have a separator (i.e. the training data is separable), the margin is γ = minn g(xn)

||w||
and, further, note that g(·) ≡ yf(·) can be amplitude-scaled by an arbitrary nonzero constant ρ
without altering the decision boundary. In particular, if we form g̃ = ρg, where ρ = 1

minn g(xn) ,

then minn g(xn) = 1 consistent with the constraints and γ = minn g(xn)

||w|| = 1
||w|| . We thus see the

well-known result that, for this special choice of ρ maximizing margin is equivalent to minimizing
the squared weight vector 2-norm.

The SVM training problem can alternatively be posed as:

min
w,b,ξ

1
2
||w||2 + C

N∑
n=1

ξn s.t. ξn ≥ 0, ynf(xn) ≥ 1− ξn, n = 1, . . . , N (1.7)

so as to allow slackness (ξ) in the margin constraints; (1.7) allows some support vectors to
be practically closer than others to the hyperplane (by nonnegative slackness amounts ξn), thus
handling both margin violations (i.e., ξn > 0) and nonseparable data (a classification error occurs
for sample n if ξn > 1).4 For choosing the SVM training parameter C as well as other SVM
hyperparameters in the nonlinear kernel case, the standard practice of using a validation or cross-
validation procedure (20) can be employed. The relationship of (1.7) to margin maximization
can be understood as follows (3). If C is made sufficiently large, no margin slackness will be
tolerated and minimizing (1.7) reduces to minimizing the squared weight vector 2-norm and, thus,
to maximizing margin. We thus see that (1.7) is a generalization of strict margin maximization
that specializes to strict margin maximization when C is made sufficiently large.

Data dimensionality and separability: Cover’s linear dichotomy theorem (12) states
that the probability that a training set (with points in general position) is linearly separable is
very close to 1 if N ≤ M + 1. As an example, for the gene microarray domain, it is typical to
have e.g. M ≈ 7000 and N no larger than a few hundred patient samples; in this case, it is
highly probable that the training set will be separable while eliminating all the way down to a
few hundred features.

4
Again, recall from f(xn) in (1.7) that w and b indeed appear in the constraints in (1.7).

5

1.4 SVM and SRM

In Sec. 1.2, we discussed that good generalization performance can be achieved via the
SRM induction principle wherein one aims for an effective tradeoff between minimizing the train-
ing error and a “VC confidence” quantity that depends on the machine capacity measure h. In
Sec. 1.3, we discussed the Support Vector machine in particular, and that the SVM training
formulation does indeed achieve SVM’s objective of maximizing the margin. We have not, how-
ever, yet discussed why maximizing the margin is important, in the context of SRM, for good
generalization performance – in this section, we focus on this discussion.

As stated in (75), the following result is given in (69).
Theorem 1: Let R be the radius of the smallest ball BR(a) = {z ∈ F : |z − a| ≤ R},

a ∈ F , containing the points x1, . . . , xN , and let

fw,b = sign(w · x + b) (1.8)

be canonical hyperplane decision functions defined on these points. Then the set {fw,b : ||w|| ≤ A}
has a VC dimension h satisfying

h ≤ R2A2 + 1. (1.9)

As discussed in (75), first, these hyperplane decision functions being canonical is referring to the
fact that the minimum distance from some training data to the decision boundary is (normalized
to) 15, and second, for this set of functions the VC dimension can be bounded, due to the above
result, in order to implement the SRM principle. Note, however, that the ball around the data
points means that this approach to bounding the VC dimension depends on observed values of the
features – this is similarly noted by (39) as follows (p. 389): “The original argument for structural
risk minimization for SVMs is known to be flawed, since the structure there is determined by the
data (see (Vapnik, 1995), Section 5.11).” [(Vapnik, 1995) being referred to is (69).] Based on the
discussion above, for SVMs one can see that “in a strict sense, the VC complexity of the class
is not fixed a priori, before seeing the features”, as noted again by (39) (p. 389). It is, however,
possible to gain insight as to why maximizing the margin, the SVM objective, is considered
important for good generalization performance. To that end, (6) presents a family of SVM-like
classifiers named “gap tolerant classifiers” which are based around both the idea of putting balls
around data points and hyperplanes – the classifier is specified by the location of a ball (in RM)
and two parallel hyperplanes with parallel normal vectors (in RM), and the decision function
classifies points as one of two classes so long as these points lie inside the ball but not between the
hyperplanes (i.e., so long as the points are not members of the so-called “margin set” of points
that may lie between the hyperplanes). The VC dimension of such a family of classifiers can
be controlled by controlling both the maximum allowed ball diameter and the minimum allowed
perpendicular distance between the two hyperplanes (6) – subsequently discussing along this line
with examples, (6) argues that it seems very reasonable to conclude that SVMs too gain a similar
kind of capacity control from their training due to their training objectives being very similar to
gap tolerant classifiers’.

The discussion above suggests that although a rigorous explanation for why SVMs of-
ten achieve good generalization performance is not provided by SRM alone there is clearly a
theoretical connection between SVMs’ objective of margin maximization and SRM. SVMs have
become nearly a standard technique in many domains. There are a number of reasons. First,
as also discussed above, the SVM objective, maximizing the margin, has a theoretical basis tied
to achievement of good generalization accuracy (14). Second, there is a unique, globally optimal
solution to the SVM training problem. Third, there are improvements in representation power

5
Recall that Sec. 1.3 explained this particular normalization concept applicable to hyperplanes.

6

via nonlinear kernels, which map to a high or even infinite-dimensional feature space and, via the
“kernel trick”, do so without huge increase in decision-making and classifier training complexities.
Fourth, SVMs achieve good results on a variety of domains.

1.5 Feature selection in classification

In high-dimensional domains such as image and image sequence classification, text catego-
rization, and gene microarray classification, one often encounters problems where there are very
few labeled training samples, or at any rate few samples relative to the (high) dimensionality of
the feature measurements for each exemplar/sample. In biomedical imaging and bioinformatics
in particular, with training databases derived e.g. from clinical trials, there may be at most
several hundred (patient) samples, each represented by features such as voxels in the hundreds of
thousands or gene microarray or text features in the tens of thousands. In these domains, there
are compelling reasons for reducing feature dimensionality. First, many features may have at best
weak discrimination power. In (68), a type of “curse of dimensionality” (COD) was demonstrated
wherein, for fixed sample size, the generalization accuracy may degrade as feature dimensionality
is increased beyond a certain point. This phenomenon is related to the bias-variance dilemma in
statistics (39), which suggests that, for best generalization, model complexity should be matched
to available training data resources. More specifically, models with relatively higher complexity
(e.g. models with relatively larger number of free parameters) tend to achieve low bias (i.e. low
accuracy irrespective of the particular choice of training set) but increased variance (i.e. the
output of the learning (e.g. the decision boundary learned in classification) will vary widely
from one particular choice of training set to the next). In regression, the estimation error is
additive in bias and variance, whereas in (two-class) classification the interaction between bias
and variance can be highly nonlinear and multiplicative (20) – more specifically, variance has
a nonlinear effect on “boundary error” (deviation from correct estimation of optimal (Bayes)
boundary) and this effect depends on a “boundary bias” quantity (20). In classification, since it
is important to achieve good generalization accuracy, it is generally more important to achieve
low variance than low boundary bias (20). Even in domains where generalization accuracy tends
to monotonically improve with feature dimensionality, complexity of the classification operation
(both computation and memory storage for decision-making) may outweigh marginal gains in
accuracy achieved by using a large number of features. Finally, in some contexts, it is useful
to identify a small subset of features necessary for making good predictions – these “markers”,
e.g. anatomical markers in biomedical imaging or gene “biomarkers” in bioinformatics, may shed
light on the underlying disease mechanism. Decision-making based on a small set of features is
also highly interpretable, which is important for explaining how decisions are reached.

There are several approaches for avoiding model overfitting/COD. One is to fit the original
high-dimensional data (with M features) using simple models, e.g. naive Bayes models (20; 21).
Another is to limit the amount of model training, e.g. via regularization or early stopping (20).
SVMs attempt to avoid overfitting by finding a discriminant function that maximizes the margin,
i.e. the minimum distance of any sample point to the decision boundary. For a linear SVM,
the number of free parameters is upper-bounded by the number of training samples (a subset
of which are support vectors at margin distance to the hyperplane), rather than controlled by
the feature dimensionality. However, SVMs are not immune to the curse of dimensionality (39).
Thus, feature selection, wherein only a small subset of the original features are retained, or
feature compaction, wherein linear or nonlinear transformations map the original features to a
new, smaller coordinate space, are often essential for achieving good, generalizeable classification
accuracy.

Consider “backward” recursive feature elimination which starts from a full space (of
features) and removes features. For SVMs, for the particular case where φ(·) is either finite-
dimensional (e.g. as in the polynomial kernel case; as opposed to the Gaussian kernel case

7

where φ(·) is infinite-dimensional) or there is no φ(·) used (i.e. the SVM linear case), suppose
that the decision boundary (hyperplane) upon feature elimination is chosen to be simply the
pre-elimination boundary but with the eliminated coordinates removed (i.e. the boundary after
coordinate removal is not altered). In this case, in Theorem 1 (Sec. 1.4), relative to their pre-
elimination values R and A are guaranteed to not be larger, and will in fact be smaller (unless
the samples or weight vector had a value of 0 at eliminated coordinates), which means that the
post-elimination boundary will have a tighter bound (the new R2A2+1) for VC dimension h, and
thus quite possibly generalization performance not significantly degraded by feature elimination.
Thus, since SVMs (i.e. pre-elimination, trained SVM classifiers) are known to generalize well in a
variety of domains, for the task of feature elimination the use of SVMs in the above fashion would
be expected to achieve good generalization accuracy with the retained features (but perhaps only
up to a point, at which it no longer becomes possible to remove features without significantly
affecting the accuracy). In particular, one can simply aim for as small a post-elimination bound
A on ||w|| as possible (among canonical hyperplane candidates) – following our earlier discussion
(Sec. 1.3) on the relation between the basic SVM optimization formulation (1.6) and margin
maximization for canonical hyperplanes, it is easy to see, for SVMs, that eliminating to preserve
largest post-elimination margin is consistent with attempting to tighten the post-elimination
bound on h (so as to aim for good post-elimination generalization accuracy). In summary, not
only there is a clear theoretical connection between SRM and SVMs (as discussed in Sec. 1.4)
but also between SRM and margin-maximization-based feature selection with SVMs. The above
discussion segues into the statement of the problem that this thesis is concerned with solving
(stated below) – shortly afterwards we will elaborate on elimination by margin maximization.

The problem that this thesis is concerned with solving is the problem of finding the
minimum feature subset needed to achieve good generalization accuracy. This will be practically
addressed in this thesis via “backward” recursive feature elimination methods which start from
a full space (of features) and remove features, and the main contribution of this thesis is the
development of such methods with superior generalization accuracy compared to past methods
such as the widely used Recursive Feature Elimination (RFE) method (37), to be discussed in
Sec. 1.6.6 Feature elimination is clearly feature selection, as opposed to feature compaction
which this thesis does not focus on since it loses physical interpretation of the original features
(undesirable when aiming to identify feature “markers”). More specifically, in the MRI brain
image domain, for analysis of neurodegenerative diseases, in particular Alzheimer’s disease, the
thesis aims to find anatomical biomarkers (features that do possess a physical interpretation)
that achieve good generalization accuracy, as well as aims to aid early diagnosis both with and
without employing feature selection. Very significant as a first step in the search for a minimum
feature subset for good generalization accuracy is domain knowledge (when available) – as such,
the thesis has a substantial focus on choosing the original feature space judiciously, via identifying
and employing particular MRI brain image analysis methods (and associated MRI-based image
types) that produce feature spaces suitable for the problem. In our analysis of AD and its onset
in this thesis, in Ch. 4, the features that we utilize are features that are directly associated
with specific spatial locations in the brain and furthermore the class definitions involved in all of
our SVM classifiers are straightforward and easily interpretable, and thus the results of our AD
analyses are easily interpretable.

On the topic of simple rules aiding interpretability of a classifier’s solution for biomedical
or biological insight, one challenging domain is the domain of gene expression data – although
a classifier in this domain may provide good accuracy, interpreting the results for biological
insight may be difficult without readily interpretable rules extracted from the results. A notable
approach that addresses this challenge is the k-TSP (k-Top Scoring Pairs) classifier (34), an

6
A list of the main contributions of this thesis is given in Sec. 1.7

8

extension of TSP (33). It generates simple and easily interpretable rules, involving a small
number of gene-to-gene comparisons, that have been shown to be accurate (34) – in binary and
multiclass classification experiments, TSP and k-TSP have performed approximately the same
as SVM on 19 gene expression data sets involving human cancers (34).

There are different categories of feature selection methods, including the “backward” cat-
egory that our methods and the abovementioned RFE method (to be discussed in Sec. 1.6)
belong to. Given an initial set of M features, unfortunately there are 2M − 1 possible feature
subsets, with exhaustive search practically prohibited even for modest M , let alone M in the
thousands. Practical feature selection techniques are thus heuristic. There are a variety of meth-
ods, exercising a large range of tradeoffs between accuracy and complexity (38). “Front-end” (or
“filter”) methods select features prior to classifier training, based on evaluation of discrimination
power for individual features or small feature groups. “Wrapper” methods use classifier training
repeatedly to evaluate the classification accuracy of numerous candidate feature subsets. There
are also “embedded” methods, e.g. SVM training with a regularization penalty to suppress
irrelevant features.

Front-end methods: Eliminating features in this way, i.e. via discrimination power
measures prior to (and independent of) the subsequent step of learning with the retained features,
is robust to overfitting – however, it is well-established that the retained feature set may fail to
achieve sufficiently good generalization accuracy. As a first, basic example, a feature completely
useless by itself for class separation (i.e. having completely overlapping class conditional densities)
can significantly improve generalization accuracy when taken with other features, and two useless
features can be useful together, as discussed with examples in (38). As a similar, second example,
although the PCA (Principal Components Analysis) front-end method is generally successful in
reducing high-d data to a low-d data representation via SVD-based projection (which makes
the method useful e.g. in data compression), the method does not perform very well in data
classification, essentially because PCA solely focuses on finding directions in a lower-d subspace,
not on class separation. A different front-end approach is to eliminate features based on one or
more feature ranking criteria, such as:

1. the (estimate of) the signal-to-noise ratio SNRm ≡ µ̂m(−1)−µ̂m(+1)
σ̂m(−1)+σ̂m(+1)

7 for feature m, with
the two classes being +1 and −1, or

2. the (estimate of) the Pearson correlation coefficient e.g. between feature and class variable.
PCC can only capture linear dependencies between its two variables.

Feature ranking criteria that are able to capture nonlinear dependencies include:

1. the (estimate of) the Mutual-Information-based Im measure:

Im ≡ Î(X, Y) =
∑

n

∑

c∈{±1}
p̂X,Y (xn,m, c) log

p̂X,Y (xn,m, c)
p̂X(xn,m)p̂Y (c)

.8

Wrapper methods: For wrapper methods, there is greedy forward selection, with “in-
formative” features added, backward feature elimination, which starts from the full space and

7
For feature m, µ̂m(c) is the estimate 1

Nc

NcP
n=1

xn,m of the mean (for class c, where Nc is the number

of samples in class c), and σ̂m(c) is the estimate (1
Nc−1

NcP
n=1

(xn,m − µ̂m(c))
2
)
1/2

of the standard

deviation.
8
The estimates p̂X,Y (xn,m, c), p̂X (xn,m), and p̂Y (c) can be computed from frequency counts – for

the first two, the estimation is more difficult for continuous X.

9

removes features, and more complex bidirectional searches such as simulated annealing (38).
Backward search starts by assessing joint predictive power of all the features. In principle, one
would like to retrain the classifier in conjunction with each backward elimination step that re-
moves a feature subset (optimizing the classifier for the new feature space). However, considering
large M and assuming one feature eliminated per step, this requires either M classifier retrain-
ings (if retraining is done after a feature elimination) or M(M−1)

2 (if retraining is done after
trial-elimination of every remaining feature). For SVM-based classifier training, even with recent
advances that significantly reduce training time (42), (45), it may not be practically feasible to
retrain at each step for M in the tens or hundreds of thousands. Thus, for large M , retraining
may only be done periodically, after a “batch” of feature eliminations.

Embedded methods: Finally, before we discuss feature selection for SVMs in the
next section, examples for embedded methods in general include those that estimate how a
cost function (objective function) will change with movements in a feature subset space – often
performed in a greedy (backward or foreword) framework, nested subsets of features can be
attained in this way (38). In SVM classification in particular, some embedded methods involve
the use of the `1-norm (instead of the `2-norm, such as used in equation (1.7)) as well as the
“bet on sparsity” principle for high-d data (67) – according to this principle, if the number of
features is much larger than the number of samples and the true “weights” associated with the
features are Gaussian, neither `1 nor `2 will estimate the weights well, due to the data being too
little for estimating these nonzero weights due to COD, but solution sparsity can nevertheless be
encouraged via use of `1 (whereby numerous coordinates of the weight vector will be driven to
zero (or near zero) during the learning algorithm itself, a type of built-in feature selection).

In clustering, for “unsupervised” feature selection, the focus is solely on locality-based
separation of training samples (as opposed to separation of classes), and thus a main disadvantage
is that often there are multiple good ways to cluster the data but only one, unknown way that can
also achieve class-based separation (and good generalization accuracy). Irrelevant or redundant
features, especially in high-dimensional data (which are adversely affected by COD), give rise to
multiple good ways to cluster – as a toy example, while two well-formed clusters of single-feature
(1d) samples will remain separated upon introducing a second, irrelevant feature (with a wide
range of irrelevant values), the clusters that the clustering algorithm finds may be different from
the above two clusters, e.g. new clusters may have formed due to a gap in values of the irrelevant
(second) feature ((48) p.8).

As noted earlier, SVMs have become nearly a standard technique in many domains. There
are many reasons, a number of which were discussed in Sec. 1.4. For our aim of practically ad-
dressing the problem of finding the minimum feature subset needed to achieve good generalization
accuracy, we focus on SVMs and the wrapper setting. For further justification of our approach
to the problem, the next section discusses feature selection for SVMs in particular, and the
motivation for our methods based on margin maximization.

1.6 Feature selection for SVMs

Front-end feature selection, which, again, alone may fail to select features with sufficiently
good generalization accuracy, has been applied for SVMs in numerous prior works, e.g. (52),(53).
Wrapper-based selection, which, unlike front-end selection, employs a learning algorithm applied
(once or repeatedly), has also been applied for SVM-based learning in many prior works. (72)
reduced wrapper complexity by replacing the SVM training objective with an upper bound that
is less complex to optimize. A widely used method analyzed in this thesis, discussed shortly, is
Recursive Feature Elimination (RFE) (37), wherein at each step one removes the feature with
least weight magnitude in the SVM solution. This method is computationally very lightweight
and thus easily scales to large M . In (55), a wrapper approach was used, with SVM retraining
performed after RFE removed a batch of features.

10

Embedded feature selection methods for SVMs, e.g. (73) and (30), re-formulate SVM
training to encourage feature sparsity in the solution. Different norms and optimization ap-
proaches have been investigated, e.g. (78), (30), (49), (8). (8) is based on the same standard
SVM formulation used in this thesis but builds in feature selection by imposing an upper bound
on the number of non-zero weights as an additional constraint on the optimization problem. (78)
is based on the Lasso (67) and uses the `1 norm, instead of the `2 norm, which encourages feature
sparsity (i.e., the “bet on sparsity” principle mentioned in Sec. 1.5) . (30) is based on a hybrid
`1 − `2 norm minimization, solved by linear programming – this LP-SVM method, which uses
Newton-type iterations, is called NLPSVM.

In this thesis, we compare performance of our methods with a representative embedded
method – NLPSVM method from (30). Our main focus, however, is wrapper-based feature
elimination for linear and nonlinear kernel-based classifiers (including SVMs). In (37), the authors
essentially argue that the RFE objective for linear SVMs is consistent with the SVM objective of
margin maximization. They note that the SVM primal problem poses minimization of the squared
weight vector 2-norm subject to (margin-related) constraints on each training point. Eliminating
the feature with smallest weight magnitude has the least effect on the squared weight vector 2-
norm and, thus, (37) argues, on the SVM solution. In summary, RFE solely focuses on minimally
reducing the norm of the weight vector norm given that this is the weight vector that achieved
margin maximization pre-elimination. In this thesis, however, we show experimentally that RFE
is not in general in close agreement with margin maximization. The reason is that RFE ignores
the margin constraints, focusing solely on minimally reducing the squared weight vector 2-norm.
In this work, we first develop a method that explicitly performs margin-based backward feature
elimination (MFE) for linear SVMs. We then consider nonlinear kernels. We show that RFE
defined for the kernel case (37) assumes the squared weight vector 2-norm is strictly decreasing
as features are eliminated. We demonstrate experimentally that this assumption is not valid for
the Gaussian kernel and that, consequently, RFE may give poor results in this case. MFE for
the nonlinear kernel case experimentally gives both better margin and generalization accuracy.
We then present an MFE extension which stepwisely (greedily) achieves further gains in margin
at small additional computational cost. This extension solves an SVM optimization problem to
maximize the classifier’s margin at each feature elimination step, albeit in a very lightweight
fashion by optimizing only over a small set of parameters, very similar to a method suggested in
(31). Finally, we develop an MFE extension that allows margin slackness.

While embedded methods do give a potential alternative to our (wrapper-based) approach,
previous studies such as (49), (8), (78), (30) have not demonstrated superior performance com-
pared to wrapper approaches such as RFE. Here, we compare MFE with both RFE and the
embedded method proposed in (30).

Section 1.3 gave a brief review of SVMs. Section 2.1 discusses limitations of RFE. Sections
2.2 and 2.3 develop our methods, for the two-class problem. Section 2.4 gives experimental
comparisons. Section 2.5 gives the chapter conclusions. In Ch. 3, we extend our MFE-based
methods by formulating and evaluating them for the “multiclass” case (i.e., the case of more
than two classes), and show that they perform well, including in comparison with RFE-based
multiclass feature elimination. Lastly in Ch. 4, we apply SVM classification and MFE to the
analysis of Alzheimer’s disease (AD) and its onset, using MRI brain image processing.

1.7 Contributions of this thesis

The main contributions of this thesis are: i) identifying some difficulties with the well-
known RFE method, especially in the kernel case; ii) development of novel, margin-based feature
selection methods for linear and kernel-based discriminant functions for support vector machines
(SVMs) addressing separable and nonseparable contexts; iii) an objective experimental compar-
ison of several feature selection methods, which also evaluates consistency between a classifier’s

11

margin and its generalization accuracy; iv) extending our development of novel, margin-based
feature selection methods for linear and kernel-based discriminant functions from the two-class
case to the “multiclass” case (i.e., more than two classes); v) experimentally evaluating our sev-
eral multiclass MFE-based methods, including comparisons with multiclass RFE; vi) applying
SVM classification and MFE to MRI brain image data for the analysis of Alzheimer’s disease
(AD) and its onset, addressing both the diagnosis aim (based on data from a (previously unseen)
person’s single visit) and the aim of selecting brain regions as disease “biomarkers”; vii) selecting
and utilizing leading-edge MRI brain image processing tools in a pipeline fashion to generate
output image types particularly suitable for detecting (and encoding) atrophy for Alzheimer’s
disease; viii) identifying and remedying some basic MRI image processing problems caused by
some limitations of these external tools, e.g. introducing our basic fv (fill ventricle) algorithm
for ventricle segmentation of cerebrospinal fluid (CSF).

12

Chapter 2

Margin-maximizing feature selection methods

for Support Vector Machines: two-class case

2.1 RFE and limitations of RFE
2.1.1 RFE and limitations of RFE: linear kernel case

RFE is a stepwise (greedy), backward feature elimination technique for SVMs. Under
RFE (37), the index m∗ of the first feature to be eliminated is

m∗ = arg min
m∈{1,...,M}

|wm|, (2.1)

and, more generally, at step i, this same selection rule is applied to the M − i remaining features,
with SVM retraining (optionally) applied after a batch of features is eliminated in this way.
While (37) does suggest a close tie between the RFE choice and the SVM objective (margin
maximization), RFE is equivalent to margin-maximizing feature elimination if and only if (2.2)
below is always satisfied, with RFE’s margin on the right and the margin achieved by an approach
which explicitly eliminates the feature that preserves maximum margin on the left:

max
m

min
n

ynf(xn)− ynxn,mwm√
||w||2 − w2

m

= min
n

ynf(xn)− ynxn,m∗wm∗√
||w||2 − w2

m∗

. (2.2)

In Fig. 2.1, we prove via a simple 2-d counterexample that eliminating features according to
RFE is not equivalent to preserving maximum margin. In general, direct margin maximization,
achieved by the margin-based feature elimination method (MFE) we develop in Sec. 2.2, leads
to significant gains in margin and may also lead to improved generalization accuracy over RFE,
as we demonstrate in the sequel.

2.1.2 RFE and limitations of RFE: nonlinear kernel case

For the case of a nonlinear kernel, a natural extension of RFE was proposed in (37). Of
particular interest, for the discussion that follows, is the choice of the Gaussian kernel K(u, v) =
exp(−β||u − v||2), β > 0. In (37), it was proposed to evaluate the square of the weight vector
2-norm (1.5) both before and after a candidate feature elimination and, thus, at the i-th stage
of feature elimination, to remove the feature that minimizes the difference:

∆||w||2 = (||w||2)i−1,m
∗
i−1 − (||w||2)i,m

∗
i . (2.3)

This criterion is the natural extension of the linear RFE criterion and is consistent with the objec-
tive of reducing the square of the weight vector 2-norm the least, assuming that the square of the
weight vector 2-norm is in fact monotonically decreasing as the feature dimensionality is reduced.
For example, in the case of the polynomial kernel, K(u, v) = (1 + uTv)d, the kernel’s mapping
function maps an original feature vector u to a new, finite-dimensional feature vector φ(u) whose
coordinates φi(u) are products, raised to powers, of the original feature coordinates. Thus, it is
clear for the polynomial case that eliminating an original feature coordinate zeroes out one or
more coordinates of φ(u) while leaving all others unchanged. This effects zeroing (removing) the

13

(a) (b) (c)

Fig. 2.1. When an SVM is trained on the three points in Fig. 2.1(a) (x1 = (3, 4) in class 1, x2 =
(−7,−1) and x3 = (−3,−4) in class 2), the decision boundary is (w, b) = ((0.12, 0.16), 0) (line
shown through origin with slope − 3

4), with a margin of 5 (to all three points) – neither a vertical
separator line through the origin nor a horizontal separator line through 1.5 is the boundary since
these achieve only a margin of 3 and 2.5, respectively. Since w1 = 0.12 < 0.16 = w2, RFE will
eliminate the first feature and a threshold of the second feature at zero will become the boundary,
resulting in a margin of 1 (distance from x2,2 = −1 to zero). If instead the second feature is
eliminated, a (larger) margin of 3 (distance from x1,1 = 3 to the boundary at zero) would be
obtained. This proves that eliminating features according to RFE is not in general equivalent
to eliminating to preserve maximum margin. The latter choice is made by the margin-based
feature elimination (MFE) method proposed in this thesis. Fig. 2.1(b) and Fig. 2.1(c) also
respectively indicate for the two elimination options that, if a new SVM training were performed
in the resulting 1-d space, then the SVM trained after the MFE feature elimination step, rather
than RFE, would again have the larger margin (3 > 2.5).

14

associated scalar weights. Thus, the squared weight vector 2-norm is monotonically decreasing
as original features are eliminated. However, we have also considered the Gaussian kernel. Since
it is not so easy to analytically evaluate the Gaussian case (14), we have simply measured the
squared weight vector 2-norm experimentally and have found it is neither monotonically decreas-
ing nor monotonically increasing with feature eliminations. Consider the consequences for the
RFE objective (2.3): the RFE-optimal feature elimination (assuming some eliminations increase
the weight vector 2-norm) will in fact be the feature whose removal increases the squared weight
vector 2-norm the most – this is the choice that will decrease (2.3) as much as possible (only, in
this case, making ∆||w||2 negative).

In Fig. 2.2, on the UCI arrhythmia data set, for one “trial”1 using the Gaussian kernel, we
evaluated both RFE and a modified method we dub RFE-abs which eliminates the feature that
results in the smallest change (either decrease or increase) in the weight vector squared norm
(This method is based on (46)). Note that for standard RFE there is initially a significant rise in
the squared weight vector 2-norm as features are eliminated, over a range of feature eliminations
(i.e., from 225−279 features retained). Over this range, both the margin and test set error rate of
standard RFE are worse than those of RFE-abs. (We give results for RFE and RFE-abs for more
UCI data sets in Sec. 2.4.) We further note, however, that RFE-abs is itself quite suboptimal
with respect to classifier margin – standard RFE becomes nonseparable (with margin going to
zero) when 250 features remain, with RFE-abs becoming nonseparable soon afterwards, when
225 features remain. Also shown in Fig. 2.2 are results for a kernel-based version of the MFE
method, which achieves both greater margin and lower test set error rates, compared with the
RFE methods. This MFE approach is developed in the next section.

2.2 MFE: direct margin-based feature elimination

2.2.1 MFE for the linear kernel case

Since maximizing margin is the (theoretically motivated) goal of SVM training (14), it is
expected that eliminating features to preserve the largest (positive) margin should yield classifier
solutions that generalize better than solutions with smaller margin. The example in Fig. 2.1
illustrates both maximum margin-preserving feature elimination and the fact that RFE does not
in general achieve this elimination. Surprisingly, while there are some related approaches (46)2,
we had not seen direct, margin-based feature elimination (MFE) previously proposed. In recent
work (4; 5) we developed just such a technique.

Our MFE method works from a current classifier that is a separator of the training set
and, at each step, eliminates the feature mMFE that preserves the largest (positive) training set
margin (achieved by sample nMFE), i.e.

(mMFE , nMFE) = arg max
m∈S≡{m′|yn′f(xn′)−yn′xn′,m′wm′>0,∀n′}

min
n

ynf(xn)− ynxn,mwm√
||w||2 − w2

m

,

(2.4)

1
A “trial”, defined in Sec. 2.4.1 and summarized here, is a random 50− 50% split of the data set into

a held-out set and a non-heldout set. For the trial, we train the SVM on a random 90% subset of the
non-heldout set, and evaluate on the remaining 10% (validation set). SVM hyperparameters are then
chosen to minimize the average validation error, measured over five such training/validation splits. We
then train an SVM on the entire non-heldout set to obtain the initial classifier used both by our methods
and RFE. Feature elimination is then performed, with margin measured on this (non-heldout) set and
error rate measured on the held-out (test) set.

2
This reference eliminates features to maximize the average distance to the hyperplane, over all

training points, rather than to maximize margin.

15

with S the set of valid candidate features, whose single eliminations will preserve positive margin.
Elimination based on (2.4) is illustrated in the example in Fig. 2.1.

We emphasize that feature selection is most urgently needed when M is very high, and
that N can often be quite small, such as in medical imaging and bioinformatics (e.g. gene
microarray) contexts, and, citing (12) in Sec. 1.3, we conveyed it is highly probable separability
can be achieved by a linear classifier in such cases. Even for some intermediate-to-low dimensional
domains (e.g. UC Irvine data), we will demonstrate that the training set is both initially separable
and remains separable while a significant number of features are eliminated (with margin used
as the feature elimination criterion). Thus, we argue that the set S in (2.4) is non-empty in
many practical cases and, thus, using (positive) margin as the elimination criterion is feasible in
practice, especially for high-dimensional domains, where feature selection is also most urgently
needed.

On the other hand, to handle the case where the training set is nonseparable, we propose
(in Sec. 2.3) an extension of MFE that allows for margin slackness and nonseparability.

We next give pseudocode for our basic MFE method.

2.2.1.1 MFE algorithm pseudocode for SVMs: linear kernel case

Notation: qi,m ≡ quantity q at feature elimination step i upon elimination of feature m.

0. Preprocessing: Let M be the set of eliminated features, with M = ∅ initially. First
run SVM training on the full space to find a separating hyperplane f(x) = 0 (with f
parameterized by w, b), with weight norm-squared L−1,0 ≡ ||w||2, where i = −1 means
before eliminating any features and m−1 = 0 is a dummy placeholder index value. For each
feature m, compute δm

n
= ynxn,mwm ∀n. Recall that g(xn) ≡ ynf(xn) so that δm

n
is the

∆g quantity δj,m
n

≡ (gj−1,mj−1
n

− gj,m
n

) whose value is the same at every elimination step

for a given (m,n) pair. Compute g−1,0
n

= ynb +
M∑

m=1
δm
n
∀n. Set i ← 0. At elimination step

i, perform the following operations:

1. For each m 6∈ M, using recursion, compute gi,m
n

= gi−1,mi−1
n

− δm
n
∀n, determine N i,m =

min
n

gi,m
n

. Determine the candidate feature set S(i) = {m 6∈ M | N i,m ≥ 0}. Note that δm
n

need not be computed in this step if stored for all m and n during preprocessing (step 0).
If S(i) is empty (the data is nonseparable) then stop.

2. For m ∈ S(i), using recursion, compute Li,m = Li−1,mi−1 − w2
m

, determine γi,m =

max
m∈S(i)

N i,m

√
Li,m

.

3.1. Eliminate feature mi ≡ arg max
m∈S(i)

γi,m, i.e. M→M∪ {mi}.

3.2. Keep for the next iteration only the recursive quantities {gi,mi

n
∀n}, Li,mi , associated with

the eliminated feature.

3.3. i → i + 1 and go to step 1.

In Fig. 2.3(a), we demonstrate that MFE achieves both larger margins and better overall
generalization performance (test set error rate) than RFE on the gene microarray Leukemia data
set.3 For this data set, the average number of retained features at which separability was lost

3
The curves in Fig. 2.3(a) are the result of averaging over 10 “trials” – margin measured on a trial’s

non-heldout set and error rate measured on the trial’s held-out (test) set are averaged over 10 trials.

16

under MFE was 90, and thus the curves are shown for the range of 90-7129 features retained.
Similar results are achieved on other microarray data sets, as well as data sets from the UC Irvine
repository. More extensive evaluations are given in Sec. 2.4.

200 250 300
2275

2280

2285

2290

2295

number of features retained (starting at 279)

||w
||2

RFE
RFE−abs

(a) ||w||2
36 61 86 111 136 161 186 211 236 261 286
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

number of features retained (starting at 279)

m
ar

gi
n

RFE
RFE−abs
MFE

(b) margin

36 61 86 111 136 161 186 211 236 261 286
0

0.05

0.1

0.15

0.2

0.25

0.3

number of features retained (starting at 279)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
RFE−abs
MFE

(c) test error rate

Fig. 2.2. Results for the Gaussian kernel on the UCI arrhythmia data set with 279 features.

2.2.2 MFE for the nonlinear kernel case

To address the suboptimality of RFE (and RFE-abs) described in Sec. 2.1.2, similar to
the pseudocode in Sec. 2.2.1.1 we propose a recursively-implemented margin-optimizing feature
elimination (MFE) algorithm, now for kernel-based SVMs. In this case, the recursion is on the
kernel computation. For example, for the Gaussian kernel, denoting Ki,m

k,n
≡ K(si,m

k
, xi,m

n
) at

elimination step i, we have the recursion:

Ki,m
k,n

= Ki−1,mi−1
k,n exp(β(sk,m − xn,m)2), ∀k, ∀n (2.5)

Likewise, for the polynomial kernel K(u, v) = (βuTv + 1)d ≡ (H(u, v))d, and denoting
Hi,m

k,n
≡ H(si,m

k
, xi,m

n
) at elimination step i, we have the recursion:

Hi,m
k,n

= Hi−1,mi−1
k,n − βsk,mxn,m,∀k,∀n (2.6)

Ki,m
k,n

= (Hi,m
k,n

)d,∀k,∀n (2.7)

These recursively computed kernels, which are used to evaluate both the discriminant
function f(xn) via (1.4) and the weight vector norm via (1.5), form the basis for a kernel-
MFE algorithm whose pseudocode implementation is a simple modification of the linear SVM
pseudocode given in Sec. 2.2.1.1. Our MFE method works from a current classifier that is a
separator of the training set and, at each step i, eliminates the feature mMFE (below) that

17

2000 4000 6000 8000
0

1

2

3

4

5

6

number of features retained (starting at 7129)

m
ar

gi
n

RFE
MFE

2000 4000 6000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

number of features retained (starting at 7129)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
MFE

(a) Training set margin, test set error rate, for the Leukemia data set, with 7129 features.

14 16 18 20
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of features retained (starting at 19)

m
ar

gi
n

RFE
MFE
MFE−LO−Full

14 16 18 20
0

0.05

0.1

0.15

0.2

number of features retained (starting at 19)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
MFE
MFE−LO−Full

(b) Training set margin, test set error rate, for the UCI hepatitis data set, with 19 features.

Fig. 2.3.

18

preserves the largest (positive) training set margin:4

(mMFE , nMFE) = arg max
m∈S≡{m′|gi,m′

n′ >0,∀n′}
min

n

gi,m
n

||w||i,m . (2.8)

Figs. 2.2 (b) and 2.2 (c) demonstrate substantial increases in margin and generalization per-
formance (much lower error rate) achieved by MFE for the Gaussian case over both RFE and
RFE-abs on the UCI arrhythmia data set. The number of retained features at which separability
was lost under MFE was 36, and thus the margin and test set error rate curves are shown for the
range of 36-279 features retained – notice from the margin curves that the data remains separable
under MFE for much longer than under RFE or RFE-abs. Again, we give more extensive results
for these methods in Sec. 2.4.

2.2.3 “Little Optimization” (LO): further increases in margin

For large M , it may not be computationally practical to retrain the SVM in the reduced
feature space, in conjunction with each feature elimination step. However, a type of classifier
retraining at every step that is consistent with margin maximization and yet is exceptionally
modest computationally, compared to full SVM retraining, is still possible. The idea is to solve the
SVM problem but while optimizing drastically fewer parameters than the full complement of SVM
feature weights. Let (w−M, b) denote the linear SVM weight vector (and affine parameter) after
a set M of features are eliminated. Suppose we consider the new parameterized weight vector
(Aw−M, w0), where A and w0 are scalar parameters to be optimized, with w−M held fixed. That
is, we allow adjusting the squared weight vector 2-norm and the affine parameter, with the weight
vector orientation fixed. We thus pose the standard SVM training problem, but optimizing only
in this two-dimensional parameter space: min

A,w0

A2 s.t. yn(A(wTφ(xn)) + w0) ≥ 1, n = 1, . . . , N.

In the linear kernel case, this problem is given below by (2.9). In the nonlinear kernel case, it is
given by (2.10).

min
A,w0

A2 s.t. yn(A(w−M
T
x−M

n
) + w0) ≥ 1, n = 1, . . . , N (2.9)

min
A,w0

A2s.t. yn(A(
∑

k∈S
λsk

ysk
K(s−M

k
, x−M

n
)) + w0) ≥ 1, n = 1, . . . , N (2.10)

This problem was previously posed in (31), with the solution achieved by use of Newton iter-
ations. Next, we develop an alternative solution that is advantageous in that it is essentially
closed form, requiring very little computation. In particular, the feasible region of the problem
is defined by two cones in the (A,w0) plane (one such cone, C+, is shown in Fig. 2.4), with
the minimum squared weight vector 2-norm (A2) in each cone achieved at the cone’s tip, which
is easily found. Thus, the minimization is performed by identifying the tip of each cone and
choosing the one with smaller A2. Referring to Fig. 2.4, we prove this as follows. Denoting a
slope mn ≡ −w−M

T
x−M

n
in the SVM linear case (or mn ≡ − ∑

k∈S
λsk

ysk
K(s−M

k
, x−M

n
) in the

nonlinear kernel case), we rewrite the constraints (2.9) (or (2.10)) as two sets of inequalities (S1

for class 1 and S2 for class 2) in the (A,w0) plane: S1 = {w0 ≥ mnA+1 | yn = 1, n = 1, . . . , N},
S2 = {w0 ≤ mnA − 1 | yn = −1, n = 1, . . . , N}. In this plane, each inequality in S1 (one for
each data point in class 1) specifies a line. Let L1 be the set of these lines associated with S1.
Let L2 be defined similarly. Using the figure, we can show that the feasible region of (2.9) (or
(2.10)) in halfspace A > 0 is the cone C+ bounded by the line l+

2
with maximum slope in L2 and

the line l+
1

with minimum slope in L1, and that the (feasible) minimum A2 in C+ is at its tip,

4
(2.8) specializes to (2.4) for the case of a linear kernel.

19

Fig. 2.4. Illustration of C+, one of two cones used in the solution of the “little optimization
(LO)” problem.

P. Specifically, by their definitions, lines l+
1

and l+
2

are known. l+
1

intersects l+
2

at a lower point
(P) along l+

2
than any other l1 ∈ L1 (which all pass through (0, 1) and are oriented away from l+

1
in the counter-clockwise arrow direction shown – one such line l1 is shown as a thin solid line in
the figure). Similarly, l+

2
intersects l+

1
at a higher point along l+

1
than any other l2 ∈ L2 (which

all pass through (0,-1) – one such line l2 is shown as a thin dashed line). Thus, in the halfspace
A > 0 the feasible region is C+, and the (feasible) minimum A2 in C+ is at its tip, P. Similarly,
the minimum (feasible) A2 in the other halfspace A < 0 is at the tip of a corresponding cone C−
bounded by the line l−

1
with maximum slope in L1 and the line l−

2
with minimum slope in L2.

The intersection point P = (Ainter, w0inter
) is computed as follows: Ainter = 2

mmax−mmin

(where mmax is the slope of l+
2

and mmin is the slope of l+
1

) and w0inter
= mminAinter + 1.

Further, it takes N additional multiplications and additions to scale f(xn) − w0 (i.e. mn) by
Ainter and add w0inter

, creating gn, n = 1, . . . , N , for use at the next elimination step. This
“little optimization” (LO) thus takes only N + 2 multiplications and N + 2 additions at each
elimination step – it just requires first finding the tips of the cones C+ and C−, choosing the tip
with minimum A2, and then performing N multiplications (scalings) and adds (shifts).

Since LO requires so little computation, it can be performed in conjunction with each
(margin-optimizing) feature elimination step. This can take place after eliminating a feature
(LO-Lite), or can be embedded into the elimination decision (LO-Full)5. In both cases, at each
step, LO is guaranteed to increase the margin that would have been achieved by basic MFE during
that step. However, since feature elimination is performed within a greedy (stepwise-optimal)
framework, there is no theoretical guarantee that the margin curve for LO-Lite or LO-Full will
lie strictly above the margin curve for basic MFE – LO will in general alter the (greedily chosen)
sequence of margin-maximizing feature eliminations. This lack of guarantee in fact applies even
if full SVM retraining is coupled to the feature eliminations – we dub such a procedure “MFE-
Retrain”. In Fig. 2.3(b), we demonstrate a strict increase in margin (averaged over trials) for
MFE-LO over basic MFE on the UCI hepatitis data set, during the first 5 feature elimination
steps (when the data is still separable). In this case, MFE-LO also achieves a modest reduction
in average test set error at 14 retained features. We give more detailed results of these methods
in Sec. 2.4.

5
In LO-Full, we perform candidate elimination of each feature and then perform LO in the resulting

reduced space. We then pick the candidate elimination that leads to largest post-LO margin.

20

2.3 MFE-slack: utilizing margin slackness

Recall the two SVM training objectives given in Sec. 1.3, with (1.6) choosing the weight
vector to maximize margin while strictly enforcing margin constraints, and with (1.7) allowing for
some margin slackness (i.e., ξn > 0 in (1.7)), including possible misclassifications (i.e., ξn > 1).
Introducing slackness allows classifier design even when the data set is nonseparable. Moreover,
strictly satisfying the margin could potentially lead to overfitting when training samples at the
margin are outliers or even mislabeled samples. Optimizing the amount of slackness (by choosing
the parameter C), e.g. via cross validation, may yield classifiers with better generalization than
those based on strictly maximizing margin. All of these reasons motivate us in this section to
propose a feature elimination extension of MFE that allows for margin slackness.

Since the approach we propose uses (1.7) as the feature elimination objective, it is in-
structive to first discuss in more detail the objectives (1.6) and (1.7) and their relationship to
margin maximization – the discussion in this paragraph is partly a repetition from Sec. 1.3.
In particular, recall that, assuming we have a separator, the margin is γ = minn g(xn)

||w|| and, fur-
ther, note that g(·) ≡ yf(·) can be amplitude-scaled by an arbitrary nonzero constant ρ without
altering the decision boundary. In particular, if we form g̃ = ρg, where ρ = 1

minn g(xn) , then

γ = minn g(xn)

||w|| = 1
||w|| . We thus see the well-known result that, for this special choice of ρ, max-

imizing margin is equivalent to minimizing the squared weight vector 2-norm. Further, we can
define ξn = max(0, 1− g̃(xn)), i.e., consistent with the constraint ξn ≥ 0 in (1.7), zero slackness
for correctly classified samples at greater than margin distance and positive slackness for samples
at less than margin distance to the decision boundary (including possibly misclassified samples).
The latter samples will be referred to as “margin violators” in the sequel. Now consider the SVM
objective function in (1.7) – if C is made sufficiently large, no margin slackness will be tolerated
and minimizing (1.7) reduces to minimizing the squared weight vector 2-norm and, thus, to max-
imizing margin. We thus see that (1.7) is a generalization of strict margin maximization that
specializes to strict margin maximization when C is made sufficiently large.

Now let us relate this to feature elimination algorithms. In Sec. 2.2, at each elimination
step we chose the pair (mMFE , nMFE) to strictly maximize margin, with mMFE the eliminated
feature and nMFE the sample achieving the post-elimination margin. In this section, we will
choose the pair (mMFE−S , nMFE−S) to minimize the objective (1.7), with both the weight vector
2-norm and the slackness values evaluated post-feature-elimination. In this discrete optimization,
for each candidate feature for elimination, m, we must evaluate every (correctly classified) sample
ñ as the potential margin-defining sample associated with this elimination (We will dub such
margin-defining samples as “anchor” samples). To do so, as discussed above, we find the value ρñ

such that, post-elimination of feature m, ρñgñ = 1, and we measure the slackness values relative
to this anchor sample, i.e. ξn = max(0, 1 − ρñgn) ∀n, and we plug into the objective function
(1.7). Candidate anchor samples (and associated induced slackness values) are illustrated by
an example in Fig. 2.5. The pair (mMFE−S , nMFE−S) that, post-elimination, minimizes (1.7)
over all the discrete choices {(m,n)} is selected, which thus determines the eliminated feature,
mMFE−S .

From the discussion above on the objective functions (1.6) and (1.7), it should be clear
that, if C is made sufficiently large (and assuming the data is separable), nonzero slackness
values will again not be tolerated. In this case, choosing (mMFE−S , nMFE−S) to minimize (1.7)
precisely reduces to choosing the pair to maximize margin, i.e. the discrete optimization problem
minimizing (1.7) precisely reduces to the problem solved by the standard MFE algorithm from
Sec. 2.2. In summary, the method we propose in this section is a natural extension of MFE to
incorporate slackness that in fact precisely reduces to MFE for large enough C when the data is
separable. We next present pseudocode for this algorithm, which we will (justifiably) refer to as
“MFE-slack”.

21

Fig. 2.5. In (a), consider the line through the origin with slope − 3
4 as a decision boundary

obtained by training an SVM on a sample set that includes the four shown samples: x1 and x2

in class 1, x3 and x4 in class 2. x1 and x3 are located at a (violated) margin distance of 5 (shown
by dashed lines), with x2 the margin violator. For the case where mc is the second feature, the
new boundary is the origin and the candidate anchor xna

in (e)-(h), marked by a circle, is x1, x2,
x3, x4, respectively. The pseudocode in Sec. 2.3.1 will describe how MFE-slack performs scaling
by ρ on all samples to ensure ξna

= 0 (for anchor xna
). In (e)-(h), after scaling, 0 < ξn < 1

for samples marked by a square (i.e., samples closer to the boundary than xna
) – there are no

misclassified samples (i.e., no samples with ξn > 1). The case where mc is the first feature is
illustrated in (b)-(d). Here, again after scaling, misclassified samples (with ξn > 1) are marked
by a triangle. Notice there is no diagram with x4 as candidate anchor because we only consider
as anchors the points that are correctly classified – under elimination of feature 1, x4 becomes
misclassified.

22

2.3.1 MFE-slack algorithm pseudocode for linear and nonlinear kernel SVMs

Notation: qi,mc,na ≡ quantity q at elimination step i upon elimination of candidate feature
mc when the candidate anchor is xna

.

0. Preprocessing: Let M be the set of eliminated features, with M = ∅ initially. First run
SVM training on the full space to find the initial hyperplane f(x) = 0. The hyperplane need
not be a separating one; see Sec. 2.4 for our training procedure. Recalling that g(xn) ≡
ynf(xn), compute {g−1,0

n
∀n} and (||w||2)−1,0, where i = −1 means before eliminating any

features and mc = 0 is a dummy placeholder index value. Set i ← 0. At elimination step
i, perform the following operations:

1. For each mc 6∈ M, compute (||w||2)i,mc using recursion as in basic MFE; for each mc 6∈ M
and ∀n, compute gi,mc

n
using recursion as in basic MFE.6 For each candidate feature (mc)

elimination, we consider any data point to be a valid candidate anchor xna
if it is not

misclassified under that elimination (i.e. if gi,mc

na
≥ 0). For all such valid (xna

,mc) pairs
and all candidate features mc, perform steps 2 and 3.

2. To ensure ξi,mc,na

na
= 0 (for anchor point xna

) and to meet all the constraints in (1.7),
we perform scaling as follows. Compute g̃i,mc,na

n
= gi,mc

n
ρi,mc,na for all non-anchors xn

(n 6= na, n = 1, . . . , N), where ρi,mc,na = 1
gi,mc

na

. Also, set g̃i,mc,na

na
to 1.

3. Compute ξi,mc,na

n
= max(0, 1− g̃i,mc,na

n
), n = 1, . . . , N .

4.1 Perform the discrete double-minimization shown below in (2.11) to determine the feature
mi to be eliminated, and then eliminate it, i.e., M→M∪ {mi}.7

(mi, ni) = arg min
mc∈M̄

min
na∈{n|gi,mc

n
>0}

(
1
2
(||w||2)i,mc(ρi,mc,na)2 + C

N∑

n′=1

ξi,mc,na

n′) (2.11)

4.2 Since the scaling by ρ was only needed for the current elimination step, we do not carry
the scaled quantities g̃ to the next elimination step (i + 1).

4.3 i → i + 1 and go to step 1.

2.4 Results

We performed experiments to compare our methods with RFE and NLPSVM (30).

2.4.1 Experimental procedure for the initial classifier training

We used the following common experimental procedure both for training of the initial
classifier used by MFE and RFE and for training of the (final) NLPSVM classifier.

Step 1) The data set is randomly split 50-50% into a non-heldout (training) set X and a
heldout (test) set X̄. Each such split defines one “trial”. Steps 2-4 perform a bootstrap
validation procedure to select classifier hyperparameters for each trial, from amongst a
candidate set of hyperparameter values.

6
As a reminder, in the nonlinear kernel case, the recursion is on the kernel computation.

7
The simple default way to choose C in (2.11) is to set it to the C value used in (1.7) to train the

initial (pre-elimination) classifier; however, a different C value may be chosen for (2.11), e.g. based on a
cross-validation procedure applied after eliminating a batch of features.

23

Step 2) Perform five 90-10% random splits of X. For each such split, the large subset XL

will be used for training and the small subset XS will be used for validation.

Step 3) Perform the following for each candidate for the hyperparameter values: For each
bootstrap split, use XL to train a classifier and evaluate the performance on XS . Average
the validation error rate over the five bootstraps.

Step 4) Select the hyperparameter values, from amongst the set of candidates, that minimize
the average validation error rate. Then retrain the classifier for these hyperparameter values
using all of X.

To achieve fair comparisons, our methods, RFE, and NLPSVM all shared precisely the same data
– for every trial, the training set X, the test set X̄, and the multiple XL and XS sets (for the
trial’s bootstrap splits) were the same for all methods. Furthermore, for every trial, our methods
and RFE used the same initial classifier (defined by (1.7) and determined in Step 4), obtained
by training on all of X.

We emphasize that the above procedure is also used for NLPSVM training. Since for
NLPSVM the learned classifier is independent of the initial chosen parameters, use of the above
procedure for NLPSVM means that the NLPSVM hyperparameters were chosen to minimize the
validation error of the (final, trained) NLPSVM classifier. By contrast, for MFE and RFE the
hyperparameters were only chosen to minimize validation error of the initial (pre-elimination)
classifier (without accounting for subsequent feature eliminations). In this way, the procedure
is somewhat favorably biased toward NLPSVM. While it is possible to modify our procedure to
choose best hyperparameters consistent with subsequent feature eliminations for MFE and RFE,
we have not done this. Despite this disadvantage, we will show that our basic MFE method
typically achieved better or competitive generalization (lower test set error rate) compared with
NLPSVM (30), in our extensive experiments.

Our set of candidate hyperparameter values for the linear kernel case (i.e. our candidate set
for the C parameter) was {20, 21, . . . , 210}. We also used this set for NLPSVM’s first parameter
ν (30), a penalty parameter analogous to C in (1.7). For the second NLPSVM parameter δ
(30), which is added to the Hessian before matrix inversion (as part of the Newton direction
computation), we used the value set from (30): {10−3, 10−2, . . . , 103}. In this thesis, we compare
with NLPSVM for the linear kernel case only. In the nonlinear kernel case, our set of candidate
β parameter values was {2−30, 2−29, . . . , 210} and our C set was the same as in the linear kernel
case; thus our hyperparameter grid was of dimension 11× 41.

The SVM training (1.7) in all experiments was performed using the LIBSVM software
(9). For NLPSVM, we used the code provided in (30), and the following values used therein for
additional NLPSVM parameters: ε = 4× 10−4, α = 103, tol = 10−3, imax = 50.

2.4.1.1 Data pre-processing prior to initial classifier training

Categorical features Q whose values are elements of an unordered set of categories (e.g.
Q ∈ Q = {orange, yellow, red}) were mapped to card(Q) unit vector features, each indicating
one of the categories (e.g. [0 0 1]T for orange, [0 1 0]T for yellow, [1 0 0]T for red). As a second
step, we normalized all feature values to the [0,1] range (separately for X and X̄).

2.4.2 Experimental procedure for feature elimination

Even for high-dimensional domains, we may eliminate all the way down to a few features,
in which case at some point the data typically does become nonseparable. To continue the
elimination process after loss of separability, we define the “hybrid” MFE/MFE-slack method,
where, simply, MFE is used for the steps where the data is separable (including the initial step)
and MFE-slack is used for the other steps.

24

In the sequel, we have broken up our experimental comparisons into three categories: i)
high-dimensional data (Sec. 2.4.3 and 2.4.6), ii) low-to-intermediate dimensioned domains for
which the data is initially separable (Sec. 2.4.4), and iii) nonseparable domains (Sec. 2.4.5)
which require immediate use of our MFE-slack method. For a given (data set, kernel) pairing
(where the kernel is linear, polynomial (of degree 3), or Gaussian), if initial classifier separability
was obtained in at least 6 out of the 10 trials, we concluded that the pair most suitably fell into
the separable category (i.e., Sec. 2.4.3 or Sec. 2.4.4); otherwise the pair fell into the nonseparable
category (i.e., Sec. 2.4.5).

2.4.2.1 Stopping criteria

A criterion for stopping the feature elimination process should firstly have a classification
error rate at the stopping point not much higher than (and, desirably, lower than) the error rate
of the initial (pre-elimination) classifier. Second, in order to identify the important, class-defining
feature “markers”, it is desirable for the percentage of features eliminated (at the stopping point)
to be large8. We defined and evaluated the following stopping criterion:

Acceleration-based (accel): The criterion is a balance between margin (reward) and the
number of remaining features (cost). As we eliminate features, the reward-to-cost ratio increases
with the margin staying relatively flat, but at some point with few remaining features the ratio
will decrease (or error rate increase). Here we aim to stop. With such a stopping criterion goal,
MFE is a better iteratively greedy approach than RFE – MFE also gives better generalization
performance than RFE, as our results discussion will demonstrate. More specifically, to robustly
detect the “knee” in the validation-set error rate curve for MFE-based methods as features are
eliminated, we used the following algorithm to determine a stopping point.

1. On the error sequence e = {ei, i = 1, . . . , M}, where ei is the validation-set error rate after
eliminating i features, perform first-order autoregressive smoothing with parameter 1

2 .9

2. Compute associated velocity v and acceleration a sequences: vi = ei − ei−1 and ai =
vi − vi−1, i = 1, . . . , M . Compute the running average sequence â of a and the sequence d
of percent increases in consecutive âi values.

3. Set the percentage threshold t to 200%. Find the first point d̃i along the sequence d that
exceeds t – if such a point does not exist, lower t by 20% and try again. This high-to-
low approach avoids stopping before the “knee” in the curve (to avoid false-positive knee
detection). Then, to avoid overshooting the knee, based on the elimination sequence, restore
0.01M eliminated features.

For the NLPSVM method, we used the stopping criterion from (30): stop when either of two
conditions is satisfied: 1) ‖ui − ui+1‖ ≤ tol, where ui represents an (intermediate) solution for
the LP problem at the i-th iteration and tol is a user-selected tolerance value, specified in Sec.
2.4.1. 2) User-selected maximum number of iterations (imax, specified in Sec. 2.4.1) is reached.

25

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

number of features retained (starting at 7129)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
RFE−Retrain−Lite
MFE/MFE−slack
MFE−LO−Full
MFE−LO−Lite
MFE−Retrain−Lite
NLPSVM result
MFE/MFE−slack result

(a) Leukemia data set with 7129 features; lin-
ear kernel. The vertical line indicates where
the basic MFE method lost separability (on
average).

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of features retained (starting at 2000)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
RFE−Retrain−Lite
MFE/MFE−slack
MFE−slack
MFE−LO−Full
MFE−LO−Lite
MFE−Retrain−Lite
NLPSVM result
MFE/MFE−slack result

(b) Colon cancer data set with 2000 features; linear
kernel

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of features retained (starting at 7129)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
RFE−Retrain−Lite
MFE/MFE−slack
MFE−LO−Full
MFE−LO−Lite
MFE−Retrain−Lite
NLPSVM result
MFE/MFE−slack result

(c) Duke breast cancer data set with 7129 features;
linear kernel

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

number of features retained (starting at 7129)

m
ar

gi
n

RFE

RFE−Retrain−Lite

MFE/MFE−slack

MFE−LO−Full

MFE−LO−Lite

MFE−Retrain−Lite

(d) Leukemia data set with 7129 features; linear
kernel; margin

Fig. 2.6. Average linear SVM test set error rate curves for three gene microarray data sets
(Sec. 2.4.3). We truncated the curves from the right to zoom in on the most useful detail in the
concluding segment of the feature elimination process – we state the actual “starting number of
features” on the x-axis of the plot. In the initial segment (not shown), the curves stay mostly
flat, with little or no change in relative performance of the methods. Average training set margin
is shown for Leukemia in (d).

26

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5
x 10

4

number of features retained (starting at 2000)

m
ar

gi
n

RFE
MFE/MFE−slack
MFE−LO−Full
MFE−LO−Lite

(a) average training set margin

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of features retained (starting at 2000)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
MFE/MFE−slack
MFE−slack
MFE−LO−Full
MFE−LO−Lite

(b) average test set error rate

Fig. 2.7. Average training set margin and average test set error rate curves on the Colon cancer
gene microarray data set with 2000 features (Sec. 2.4.3) for the polynomial kernel.

2.4.3 Experiments on high-dimensional separable data

We used three high-d gene microarray data sets which we obtained from the LIBSVM
website (9): Leukemia, Duke breast cancer, Colon cancer, respectively with 38, 44, and 62 sam-
ples. For the case of the linear kernel, test set classification error rate curves for our methods and
RFE are shown in Fig. 2.6. Also shown is training set margin for one of the data sets. All curves
shown are averages over 10 trials (and for each trial, the initial SVM was a training set separa-
tor). The vertical line indicates the average number of retained features at which separability
was lost, over the 10 trials, under our “basic MFE” method. Note that, consistent with theory
(12), this is a small number, comparable to the number of training points. Thus, for Figs. 2.6(a)
and 2.6(c), on average MFE was able to eliminate from 7129 features down to approximately 100,
with MFE-slack applied thereon. For each data set for the linear kernel case, we see that basic
MFE achieved much larger training set margins (on average) than RFE and other MFE variants
and this was accompanied by much better generalization performance (lower test set error rate
curve).

On the 2000-feature Colon cancer data, we also eliminated features solely using MFE-
slack. For all MFE-slack experiments herein, the MFE-slack C value used (in (2.11)) for each
trial was chosen via the procedure given in Sec. 2.4.1 for initial (pre-elimination) classifier design.
For each trial, it turned out this C was large enough that there were no margin violations at

8
If a criterion allows no features to remain at the stopping point, this is obviously not a good criterion.

9
Since the error sequence e to be used here must not come from the held-out (test) set X̄, we

obtain it from the non-heldout set X in a separate experiment accompanying the main experiment –
after a training/validation (T/V) split (70-30%) of X, an SVM is trained on set T using the SVM
hyperparameters that were earlier selected via the procedure in Sec. 2.4.1 for the main experiment, and
the feature elimination order obtained subsequently from set T is applied to set V to obtain e.

27

any elimination steps; thus, the MFE/MFE-slack and MFE-slack elimination sequences were
identical. However, the two elimination sequences are not always the same in practice when C
is chosen using the Sec. 2.4.1 procedure – we will demonstrate this shortly for other data sets.

Several comments should be made at this point. First, although in Sec. 2.4.4 we showed
that our novel basic MFE achieved both larger margins and better generalization than RFE for
the low-d separable case, we caution that the theoretical connection between margin and error
rate pertains to an upper bound (39) and does not really tell us how our various methods (with
different degrees of margin optimization) will relatively perform (i.e., more margin leading to
better error rate may not be an accurate rule-of-thumb). Second, as discussed in Sec. 2.2.3, the
greedy (stepwise) nature of feature elimination by our MFE methods and RFE (including variants
performing periodic retraining) does not guarantee dominance of one method over another even
with respect to margin – it is theoretically possible basic MFE gives a solution sequence with
a larger margin curve than either MFE-LO or MFE-Retrain, even though these latter methods
adjust the weight vector to increase margin at each step.

Keeping these points in mind, in Fig. 2.6(d), MFE-LO (Full or Lite) did not achieve
a higher training set margin curve than basic MFE, unlike our earlier (separable) illustrative
example in Fig. 2.3 and unlike our upcoming (separable) example Fig. 2.9(d) for the UCI mfeat
data set. These examples emphatically illustrate our second point in the preceding paragraph.
Note further that RFE-Retrain achieves larger margin than MFE-Retrain. With respect to
generalization performance, in Fig. 6, basic MFE and MFE-slack outperformed MFE-LO, as
well as MFE-Retrain (the latter method did achieve a higher margin curve than basic MFE, as
shown).

The inconsistency between the degree of margin optimization and test error generalization
performance can perhaps be understood as a type of “overfitting”. This interpretation is also
consistent with the good performance of MFE and MFE-slack – the MFE-slack performance
will be demonstrated again in Sec. 2.4.4 and extensively in Sec. 2.4.5. We note also that
MFE and MFE-slack are the only two among our margin-based methods that, while eliminating
features, preserve the initially designed SVM weights. Thus, in this sense, the basic MFE and
MFE-slack methods do not “stray” as far from the original SVM solution, and this may have
bearing on their performance. Fig. 2.6 also illustrates that MFE-Retrain outperformed RFE-
Retrain in generalization in one of the three data sets (Colon cancer), and these two methods
were competitive for the other two data sets. Recall and notice again that both methods are
outperformed by the “basic” MFE method that does not retrain during the elimination steps.

For the case of a polynomial kernel of degree 3, average test set error rate curves for
our methods and RFE are shown in Fig. 2.7 for Colon cancer (representative of high-d data
sets). Also shown is average training set margin. We see that basic MFE again achieved much
larger training set margins (on average) than RFE and this was accompanied by much better
generalization performance (lower test set error rate curve). In this case, MFE/MFE-slack and
MFE-slack produced different elimination sequences; this is hardly discernable in Fig. 2.7, since
the generalization performance of the two methods differed only slightly. We also note that
basic MFE/MFE-slack and MFE-slack achieved the best generalization performance and were
significantly better than the other MFE variants. Comparing Fig. 2.7(b) and 2.6(b), we see that
better classification results were obtained for the linear kernel than the polynomial kernel.

Comparison with NLPSVM: Since basic MFE had the best generalization performance
for each data set above, we next compared this method to NLPSVM for the linear kernel case. For
each trial t, let Mt,NLPSV M denote the number of features selected by NLPSVM at its stopping
point, and let Et,NLPSV M be the associated test set error rate. For the same trial, let Mt,MFE be
the number of features selected by MFE/MFE-slack at its stopping point using our accel criterion
and let Et,MFE be the associated test set error rate. Let MNLPSV M be the average number of
features selected by NLPSVM across all trials and let ENLPSV M be the associated average test
set error rate, with MMFE and EMFE the corresponding quantities for MFE/MFE-slack. In Fig.

28

2.6, to compare the generalization performance of MFE/MFE-slack and NLPSVM, we plotted
(MMFE , EMFE) as a circle and (MNLPSV M , ENLPSV M) as a diamond. It is important to note
that generally Mt,MFE will vary across trials and thus the point (MMFE , EMFE), again depicted
as a circle, will not necessarily lie on the shown average MFE/MFE-slack curve. Observing these
points, notice that the MFE/MFE-slack test set error rate is much lower than the NLPSVM test
set error rate for each of the three data sets, albeit achieved with a larger set of selected features
than for NLPSVM based on its stopping criterion.

In Fig. 2.8, we illustrate the excursions that the NLPSVM method takes in practice during
its iterations (each computing a different decision boundary) towards a final decision boundary.
For a typical trial, the dotted path connects (number of features, test set error rate) points for
consecutive NLPSVM iterations from its initial iteration (which the “start” arrow points to) to
its final iteration (marked by “finish”).10 As demonstrated by the zig-zag movements on the
dotted path, the number of features is not monotonic with NLPSVM iterations and different
iterations may revisit the same number of features. As demonstrated jointly by the left-right
shifts (in number of features) and large up-down shifts (in test set error rate), a wide range
of test set error rates is achieved by NLPSVM as it performs consecutive iterations. On the
other hand, the MFE/MFE-slack test error rate curve trend is flat or decreasing with increasing
number of features (an illustrative MFE single trial is shown in Fig. 2.8(b)). Thus, even though
our heuristic stopping criterion is suboptimal11, if we restore eliminated features starting from
the MFE/MFE-slack stopping point we are likely to either improve the error rate or leave it
unchanged. As indicated by Fig. 2.8, this statement is not true for the NLPSVM method. If the
number of NLPSVM features is increased, there is no strong likelihood that the error rate will be
better, and going back several iterations from the NLPSVM stopping point gives no guarantee
of the same features being retained or of comparable error rate performance. That is, for the
NLPSVM method, there is much less predictability of generalization performance than for MFE,
in the vicinity of the method’s stopping point.

2.4.4 Experiments on low-dimensional separable data

For low-dimensional separable data, average test set error rate curves for three (data set,
kernel) pairings are shown in Fig. 2.9. Also shown are average training set margin curves for one
of the data sets. As previewed in Sec. 2.4.3, the curves in Fig. 2.9 show that our MFE/MFE-slack
method achieved better generalization performance than RFE, and also performed best among
all of our methods. These results, like those in the following subsection, are representative of a
more extensive study we have conducted involving more data sets and more (data set, kernel)
pairings.

We show the MFE-Retrain and RFE-Retrain generalization performances for the linear
kernel case for two data sets in Figs. 2.9(a) and 2.9(b), where we again find that MFE-Retrain
is either outperforming or performing competitively with RFE-Retrain. Again, both methods
are outperformed by “basic” MFE and MFE-slack (which do not retrain during the elimination
steps). As was the case for high-d data sets in Sec. 2.4.3, MFE/MFE-slack and MFE-slack
produced the same elimination sequence for one data set (hepatitis in Fig. 2.9(b)), whereas for
other data sets (dermatology in Fig. 2.9(a) and mfeat in Fig. 2.9(c)) the two methods produced
different sequences and their generalization performances differed very slightly. In Figs. 2.9(a)
and 2.9(b) (i.e. the linear kernel case), observing the MFE/MFE-slack and NLPSVM points
(circle and diamond, respectively), notice that the NLPSVM test set error rate is slightly higher

10
An iteration’s test set error rate is associated with its (iteration-specific) feature subset. These

features correspond to the coordinates not zeroed-out by NLPSVM in the iteration’s weight vector, w.
11

In Fig. 2.6, for the Duke breast cancer data set, for example, note that it may be better to stop basic
MFE at approximately 350 features.

29

0 20 40 60 80
0

0.2

0.4

0.6

0.8

number of features retained (starting at 2000)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

finish

start

(a) NLPSVM

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

number of features retained (starting at 2000)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

(b) MFE/MFE-slack

Fig. 2.8. Illustrative single trials for the 2000-feature Colon cancer data set.

30

than the MFE/MFE-slack test set error rate for these two data sets, and this is achieved with a
slightly smaller number of selected features than MFE/MFE-slack.

2.4.5 Experiments on low-dimensional nonseparable data

For low-dimensional nonseparable data, average test set error rate curves are shown in
Fig. 2.10 for six (data set, kernel) pairings. Excluding Fig. 2.10(d), the curves in Fig. 2.10 (for
5 data sets) are averages over 10, 10, 6, 6, 9 trials, respectively, which were the nonseparable
trials among the 10 trials generated. For Fig. 2.10(d), although the curves are averages over 9
separable trials among the 10 trials generated, notice from the location of the vertical line that
while this UCI car data set was initially separable, it immediately lost separability when feature
elimination commenced and thus we concluded it is more suitable for discussion in this section
than Sec. 2.4.4. The curves in Fig. 2.10 show that MFE-slack consistently achieved better
generalization performance than RFE and RFE-abs. Experiments (not shown) found this same
result for additional (UCI data set, kernel) pairings. We also note that for flag and ionosphere in
Fig. 2.10 (and e.g. Fig. 2.6(a)), for which we applied RFE retraining, this retraining did improve
performance over RFE without retraining. In Figs. 2.10(a) and 2.10(b) (i.e. the linear kernel
case), the NLPSVM test set error rate (diamond) is slightly lower than the MFE/MFE-slack test
set error rate (circle) albeit achieved with a slightly larger set of selected features.

2.4.6 High-dimensional feature space application: brain images

We processed 47 T1-weighted 3D MRI images (12 Alzheimer’s Disease (AD), 35 Control).
After segmentation and registration, a Gray Matter tissue density image called “RAVENS”
(17; 18; 35; 63) was generated for each by using the HAMMER software (62) and then smoothed
by a 5mm Gaussian filter. After identically cropping all (3D) RAVENS images to remove non-
brain background, we considered each voxel as a feature and performed SVM classification and
feature elimination experiments on a slice-by-slice basis, as follows. First, we split the 47 samples
into a training set (X , with 8 AD and 25 Control samples) and a test set (X̄ , with 4 AD and
10 Control samples). For each of the (approximately) 150 2D (151×186) slices comprising a
3D image, we trained a linear SVM, which perfectly classified all training samples as AD or
Control. Next, the RFE and basic MFE methods each eliminated one voxel at a step, generating
each method’s ordered set of discriminating voxels for that slice. Training set margins and
test set classification error rates were averaged over 55 (out of the 150) of these slice-specific
classifiers. Fig. 2.11 shows that MFE achieved larger margins and generalized better than
RFE. In Fig. 2.12, we show 12 slices that contain the hippocampus12, with a foreground of
overlaid colors. The background image commonly used for such an overlay is the average over
the (spatially registered) brain image population used in the experiment – thus, in this case,
it is the average of the RAVENS Gray Matter images. In Fig. 2.12(a), the orange regions are
those determined by MFE to be the most discriminating regions for AD, i.e. these contain the
retained voxels for MFE up until the point where the data became nonseparable. Likewise,
red indicates the regions found by RFE (with the same number of retained voxels as MFE),
and white indicates the regions found by both MFE and RFE. Thus, Fig. 2.12(a) indicates
that MFE is detecting the hippocampus, whereas RFE is not. Fig. 2.12(b) shows a confidence
ranking among the MFE regions that were displayed (in orange and white) in Fig. 2.12(a).
Higher rank for a voxel means it is more discriminating for AD. We indicate the ranking using
the following colormap: red=high, yellow=higher, white=highest. The ranking was based simply
on the feature elimination order. Notice almost all of the smallest clusters (among the retained
voxels which are shown in color) have received the lowest ranking – it is significant that MFE’s
most discriminating voxels are found in sizeable, spatially compact voxel clusters. It is also

12
A well-published “marker” brain structure for AD.

31

0 5 10 15
0

0.05

0.1

0.15

0.2

number of features retained (starting at 130)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
RFE−Retrain−Lite
MFE/MFE−slack
MFE−slack
MFE−LO−Full
MFE−LO−Lite
MFE−Retrain−Lite
NLPSVM result
MFE/MFE−slack result

(a) UCI dermatology data set with 130 fea-
tures; linear kernel

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

number of features retained (starting at 19)
te

st
 s

et
 c

la
ss

ifi
ca

tio
n

er
ro

r
ra

te

RFE
RFE−Retrain−Lite
MFE/MFE−slack
MFE−slack
MFE−LO−Full
MFE−LO−Lite
MFE−Retrain−Lite
NLPSVM result
MFE/MFE−slack result

(b) UCI hepatitis data set with 19 features; linear
kernel

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of features retained (starting at 216)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
MFE/MFE−slack
MFE−slack
MFE−LO−Full
MFE−LO−Lite

(c) UCI mfeat data set with 216 features; poly-
nomial kernel

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

number of features retained (starting at 216)

m
ar

gi
n

RFE
MFE/MFE−slack
MFE−LO−Full
MFE−LO−Lite

(d) UCI mfeat data set 216 features; polyno-
mial kernel; margin

Fig. 2.9. Average test set classification error rate, (a)-(c), for three separable low-dimensional
UC Irvine data sets (Sec. 2.4.4). We truncated the dermatology graph from the right to zoom in
on the most useful detail (see truncation description in Fig. 2.6). The vertical line indicates the
average number of retained features at which separability was lost. Average training set margin
is shown for one of the data sets in (d). Initial number of features is stated on the x-axis.

32

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of features retained (starting at 66)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
RFE−Retrain−Lite
MFE−slack
NLPSVM result
MFE−slack result

(a) UCI flag data set with 66 features; linear
kernel

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

number of features retained (starting at 34)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
RFE−Retrain−Lite
MFE−slack
NLPSVM result
MFE−slack result

(b) UCI ionosphere data set with 34 features;
linear kernel

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

number of features retained (starting at 279)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
MFE−slack

(c) UCI arrhythmia data set with 279 features;
polynomial kernel

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

number of features retained (starting at 21)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
MFE−slack

(d) UCI car data set with 21 features; polyno-
mial kernel

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

number of features retained (starting at 78)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
RFE−abs
MFE−slack

(e) UCI cylinder data set with 78 features;
Gaussian kernel

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of features retained (starting at 29)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
MFE−slack

(f) UCI wisconsin-diagnosis data set with 29
features; polynomial kernel

Fig. 2.10. Average test set classification error rate on 6 low-dimensional UC Irvine data sets
(Sec. 2.4.5). Initial number of features is stated on the x-axis.

33

significant that, among the retained voxels, those in the hippocampus have almost uniformly
received the “higher”-to-“highest” ranking.

0 0.5 1 1.5 2 2.5 3
x 104

0

5

10

15

20

25

30

35

40

number of features retained

m
ar

gi
n

 RFE
MFE

0 0.5 1 1.5 2 2.5 3
x 104

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

number of features retained

cl
as

si
fic

at
io

n
er

ro
r

ra
te

 RFE
MFE

Fig. 2.11. Feature elimination results for high-dimensional brain image data, for the linear SVM
case. The initial number of features is 28,086.

2.5 Conclusions

In this chapter, we presented margin-based feature elimination and several extensions,
applicable to SVMs and other linear and nonlinear, kernel-based discriminant functions. In the
nonlinear kernel case, we identified shortcomings of RFE and demonstrated improved margin
and accuracy achieved by kernel-based MFE. A second extension performs a lightweight SVM
training that adjusts the current solution in the reduced feature space to improve margin. In
a third approach, MFE-slack, we formulated a simple extension of MFE to incorporate margin
slackness. We evaluated on UCI data sets and gene microarray data sets, toward a comprehensive
evaluation of the generalization performances of MFE, RFE, and NLPSVM. We demonstrated
that MFE and MFE-slack provide better generalization than RFE, and better or competitive
generalization compared with NLPSVM. We found that basic MFE, which requires separable
data, was always suitable for high-dimensional data but was also applicable for several low-
dimensional UC Irvine data sets. We observed that methods which provide further increases in
margin beyond that of basic MFE did not necessarily lead to improved generalization. This was
attributed to overfitting and is consistent with the good performance achieved by MFE-slack,
which introduces margin slackness. Finally, we also gave illustrative results on brain image data.

34

(a)

(b)

Fig. 2.12. Retained voxels (i.e. discriminating regions) for Alzheimer’s Disease in color (Sec.
2.4.6).

35

Chapter 3

Margin-maximizing feature selection methods:

“multiclass” case (k > 2)

3.1 Introduction

Prior works introduced SVMs for the case of more than two classes (aka the “multiclass”
case) – we begin this chapter by giving a summary of multiclass SVMs in Sec. 3.2. In Sec. 3.3
we give an overview of RFE-based feature elimination methods for multiclass SVMs (77), where
we discuss that these methods have been derived from the suboptimal two-class RFE objective
and are thus again suboptimal, motivating us to develop multiclass “basic MFE”, i.e. MFE-k,
starting with Sec. 3.4. We introduce several MFE-k methods, corresponding to several ways
one can define “multiclass margin”, and for each method we again introduce a natural extension
that incorporates slackness. Lastly in this chapter, in Sec. 3.7, we experimentally evaluate the
relative performance of our multiclass MFE-based methods and show that MFE-k outperforms
the multiclass RFE-based methods.

3.2 Brief summary of multiclass SVMs

Consider a labeled training set {(xn, pn), n ∈ Ω ≡ {1, . . . , N}}, where xn = [xn,1, . . . , xn,M]T ∈
RM is the n-th data sample and pn ∈ P ≡ {1, . . . , k} is its class label. Denote p̄ ≡ P\p. Let

Np be the number of samples in class p ∈ P , so N =
K∑

p=1
Np. Ωp ≡ {n ∈ Ω|pn = p} denotes

the set of samples in class p; Ωp,q ≡ Ωp ∪ Ωq. A multiclass support vector machine (SVM) is
a linear or generalized linear classifier that achieves maximum margin, i.e. it maximizes the
minimum distance of any training sample to the decision boundary. SVM training learns the set
of discriminant functions {fp(·)}, with the decision function given by:

p∗ = arg max
p∈P

fp(x). (3.1)

The “support vectors”, used to specify the SVM solution, are a special subset of the training
points, identified below. Denote gn,q ≡ gq(xn) ≡ fpn

(xn) − fq(xn) for q ∈ p̄n, and Np,q ≡
min

n∈Ωp,q

gn,rn
where rn ≡ {p, q}\pn. Denote Ap ≡ {l ∈ Ωp|gl,t > 0 ∀t ∈ p̄}, the set of correctly

classified samples in class p, and A ≡
k⋃

p=1
Ap.

In the linear case, fp(x) ≡ wT
p
x + bp = 0, wp = [wp,1, . . . , wp,M]T ∈ RM , bp ∈ R, p ∈ P .

Denote Lp,q ≡ ||wp−wq||2, dn,q ≡ gn,q√
Lpn,q

(distance from sample xn to the class-pairwise decision

boundary between classes pn and q), and the class-pairwise margin γp,q ≡ γq,p ≡ min
n∈Ωp,q

dn,rn
,

rn = {p, q}\pn. For a sample xn, denote cn ≡ arg min
q∈p̄n

dn,q, interpreted as follows: if xn is a

correctly classified sample, cn is the class to which xn is closest to being misclassified; else, if
xn is a misclassified sample, considering all (class-pairwise) boundaries between class pn and

36

another class o that xn is on the o side of (due to being a misclassified sample), cn is the class
from which xn is furthest. In the linear case, gn,q = xT

n
(wpn

− wq) + (bpn
− bq) clearly, and

the weight vectors of the SVM solution are wp ≡
∑

n∈Ω

Λn,p xn, where Λn,p ≡ (ζn,pAn − λn,p),

0 ≤ λn,p ≤ C are scalar Lagrange multipliers, An ≡
k∑

p=1
λn,p, and ζn,p is 1 if pn = p or is 0

otherwise (74). In the generalized linear (nonlinear) case, fp(x) ≡ wT
p
φ(x) + bp = 0, wp ∈ RL,

bp ∈ R, φ(x) ≡ [φ1(x), φ2(x), . . . , φL(x)]T, with φi(x) nonlinear functions of the x coordinates.
Of particular interest is when inner products between φ(x) and φ(u) can be efficiently computed
via a positive definite kernel function, K(x, u) ≡ φT(x)φ(u). In this case, both φ(·) and wp itself
(for any p ∈ P) need not be explicitly defined since the SVM discriminant function fp(·) and the
SVM weight vector squared 2-norm ||wp||2 can be expressed solely in terms of the kernel, i.e.:

fp(x) =
∑

l∈Ω

Λl,pK(xl, x) + bp (3.2)

||wp||2 =
∑

n∈Ω

∑

l∈Ω

Λn,pΛl,pK(xn, xl) (3.3)

Thus, gn,q and Lp,q are also expressed solely in terms of the kernel, i.e.:

gn,q = (
∑

l∈Ω

Λl,pn
K(xl, xn) + bpn

)− (
∑

l∈Ω

Λl,qK(xl, xn) + bq) (3.4)

Lp,q ≡ ||wp−wq||2 ≡ ||wp||2+||wq||2−2wT
p
wq =

∑

n∈Ω

∑

l∈Ω

(Λn,pΛl,p+Λn,qΛl,q−2Λn,pΛl,q)K(xn, xl)

(3.5)
This approach (the “kernel trick”), where K(·, ·) is chosen and applied within the SVM training,
is referred to as the “nonlinear kernel case”.

Several distinct multiclass SVM training methods, each learning a multiclass discriminant
of the form (3.1), have been proposed in prior works, e.g., (74), (70), (40), (36), (13). Of particular
interest is the Weston and Watkins (WW) method (74) which uses an “all-together” design,
wherein discriminant functions for all classes are jointly learned to solve the single optimization
problem given below by (3.6) (70; 74).

min
w1,...,wk,b1,...,bk,ξ

1
2

k∑
p=1

||wp||2 + C

N∑
n=1

∑
q∈p̄n

ξn,q s.t. ξn,q ≥ 0, gn,q ≥ 2− ξn,q, n = 1, . . . , N, q ∈ p̄n

(3.6)
Recall that gn,q in the constraints in (3.6) (as well as in the constraints in (3.7) below) simply
stands for xT

n
(wpn

− wq) + (bpn
− bq) in the linear case and 〈φ(xn), (wpn

− wq)〉 + (bpn
− bq) in

the nonlinear kernel case – that is, as (3.6) states the training problem conveniently for both
cases, it is important to keep in mind that “w” (i.e. wpn

and wq) and “b” (i.e. bpn
and bq)

indeed appear in the constraints. The design (3.6) allows slackness in the margin constraints, in
particular allowing both margin violations (i.e., ξn,q > 0) and misclassifications (a classification
error occurs for sample n if ξn,q > 2 for any q ∈ p̄n).

The BSVM (biased SVM) training method (40), solving the problem given below in (3.7),

min
w1,...,wk,b1,...,bk,ξ

1
2

k∑
p=1

(||wp||2+b2
p
)+C

N∑
n=1

∑
q∈p̄n

ξn,q s.t. ξn,q ≥ 0, gn,q ≥ 2−ξn,q, n = 1, . . . , N, q ∈ p̄n

(3.7)

37

adds a bias term of b2
p

to ||wp||2 in the WW objective function in (3.6). Adding the bias term in
the objective function was proposed by Mangasarian for the two-class case (26; 50) who showed
that the original and the modified SVM training problems differ only slightly (27; 50). Adding the
bias term simplifies the corresponding dual problem and makes it faster to solve via decomposition
(26; 77), and solutions of the modified formulation mostly coincides with solutions of the original
formulation (26). Since BSVM differs only slightly from WW, we use BSVM for training of the
initial multiclass classifier in our experiments, as implemented by the BSVM2 tool in the STPR
toolkit (65). Moreover, as we will discuss in Sec. 3.6, in one of our multiclass MFE methods,
MFE-k-Kesler, we utilize the equivalence that exists via Kesler construction (20) between a
one-class SVM problem and the BSVM formulation (as opposed to the WW formulation).

For choosing the SVM training parameter C as well as other SVM hyperparameters in
the nonlinear kernel case, we apply the standard practice of using a (bootstrap-based) validation
procedure (20).

3.3 Multiclass RFE-based methods

Similar to two-class RFE’s feature elimination criteria (equations (2.1) and (2.3) for the

linear case and nonlinear case, respectively),
k∑

p=1
w2

p,m
was used by (77) as the ranking criterion

for multiclass RFE methods discussed therein. Based on this criterion, (77) introduced and
evaluated the feature elimination method MSVM-RFE-WW wherein the wp ∀p ∈ P are obtained
using WW (3.6).

3.4 Multiclass MFE methods

MFE performs margin-maximizing feature elimination (for linear and nonlinear kernel-
based binary (two-class) discriminant functions), and MFE-slack is a natural extension of MFE
for incorporating slackness and eliminating under nonseparability that reduces to MFE for large
enough C when the training data are separable. Aiming to improve on the RFE-based multi-
class methods (e.g. MSVM-RFE-WW), we propose margin-optimizing feature elimination for
multiclass SVMs, i.e. MFE-k. To develop our multiclass MFE approaches, we start by noting
that a training sample xn is classified as p∗

n
in (3.1) if and only if gn,q > 0 ∀q ∈ p̄∗

n
. Thus,

in the event that the training correctly classifies all training samples, the distances dn,q for all
training samples xn are positive for all q ∈ p̄n. Based on this observation, there are several ways
to define multiclass margin. First, we can define multiclass margin as γG, the global minimum
class-pairwise margin γp,q across all class pairs (p, q ∈ p̄) (there are

(
k
2

)
such pairs):

γG ≡ min
p,q∈p̄

γp,q (3.8)

Alternatively, as a second way, multiclass margin can be defined as γSP , the sum of all class-
pairwise margins γp,q:

γSP ≡
k∑

p=1

∑
q<p

γp,q (3.9)

Finally, multiclass margin can be defined as γSC , the sum of all k classwise (one-versus-rest)
margins, with classwise margin γp for class p defined as γp ≡ min

q∈p̄
γp,q:

γSC ≡
k∑

p=1

γp (3.10)

38

For an example separable data with three classes, Fig. 3.1(a) illustrates the
(
3
2

)
class-pairwise

margins γp,q and states the resulting γG, γSP , and γSC .
For separable training data, we propose the margin-maximizing feature elimination meth-

ods MFE-k-G, MFE-k-SP, and MFE-k-SC, which eliminate to preserve the largest γG, γSP ,
and γSC , respectively. These methods require dn,pn

for all training samples xn to remain posi-
tive upon elimination, i.e., mi, the feature eliminated at step i, must ensure gi,mi

n,q
> 01 for all

(n ∈ Ω, q ∈ p̄n) pairs, i.e., mi must belong to the candidate feature set S(i) =
⋂

p∈P, q∈p̄

Sp,q(i)

where Sp,q(i) ≡ {m 6∈ M | N i,m
p,q

> 0}. The pseudocode for these three methods differ only
slightly and are given in Sec. 3.4.1. In Sec. 3.5, we propose natural extensions of these three
methods, that allow incorporating slackness and eliminating under nonseparability, which, in the
event the data are separable reduce, for large enough C, to these three respective methods.

3.4.1 Pseudocode for algorithms MFE-k-G, MFE-k-SP, and MFE-k-SC, for linear
and nonlinear kernel-based multiclass SVMs

0. Preprocessing: Let M be the set of eliminated features, with M = ∅ initially. First run
SVM training on the full space to find a multiclass discriminant function set {fp(·), p =
1, . . . , k} that correctly classifies each training sample xn. As confirmation that the set
you found is correctly classifying each xn, note that all g−1,0

n,q
values you compute below

in the next sentence (for all (n ∈ Ω, q ∈ p̄n) pairs) must be positive. If linear kernel case,

∀(n ∈ Ω, q ∈ p̄n), compute δm
n,q

≡ xn,m(wpn,m−wq,m) ∀m, and g−1,0
n,q

= (bpn
−bq)+

M∑
m=1

δm
n,q

,

where i = −1 means before eliminating any features and m−1 = 0 is a dummy placeholder
index value; if nonlinear kernel case, compute g−1,0

n,q
∀(n ∈ Ω, q ∈ p̄n) using (3.4). Compute

L−1,0
p,q

= ||wp − wq||2 for all (p ∈ P, q ∈ p̄). Set i ← 0. At elimination step i, perform the
following operations:

1. For each m 6∈ M, using recursion, compute gi,m
n,q

for all (n ∈ Ω, q ∈ p̄n) pairs: if linear
kernel case, this computation is gi−1,mi−1

n,q
− δm

n,q
, where δm

n,q
need not be computed in this

step if stored during preprocessing (step 0); if nonlinear kernel case, compute gi,m
n,q

using
recursion on the kernel computation. Determine N i,m

p,q
= min

n∈Ωp,q

gi,m
n,rn

for all (p ∈ P, q ∈ p̄)

pairs. Determine Sp,q(i) = {m 6∈ M | N i,m
p,q

> 0} and the candidate feature set S(i) =⋂
p∈P, q∈p̄

Sp,q(i). If S(i) is empty (the data is nonseparable) then stop.2

2. For m ∈ S(i) and each class pair (p, q < p), using recursion compute Li,m
p,q

: if linear kernel
case, this computation is Li,m

p,q
= Li−1,mi−1

p,q
− (wp,m − wq,m)2; if nonlinear kernel case,

compute Li,m
p,q

using recursion on the kernel computation. Compute γi,m
p,q

=
N i,m

p,qq
Li,m

p,q

.

1
q
i,m ≡ quantity q at feature elimination step i upon elimination of feature m.

2
The set S(i) consists of the features at step i that, if singly eliminated, will preserve class-pairwise

positive margins. Margin will only be evaluated for features in the set S(i).

39

3.1. If using MFE-k-G, determine feature mi = arg max
m∈S(i)

min
p∈P,q<p

γi,m
p,q

; else if using MFE-k-SP,

determine feature mi = arg max
m∈S(i)

k∑
p=1

∑
q<p

γi,m
p,q

; else if using MFE-k-SC, determine feature

mi = arg max
m∈S(i)

k∑
p=1

min
q∈p̄

γi,m
p,q

. Eliminate feature mi, i.e. M→M∪ {mi}.

3.2. Keep for the next iteration only the recursive quantities associated with the eliminated
feature – they are {gi,mi

n,q
∀(n, q)} and {Li,mi

p,q
∀(p, q < p)} in the linear kernel case, whereas,

in the nonlinear kernel case, they are the quantities defined for the recursive kernel com-
putation (e.g., {Hi,mi

k,n
∀(k, n)}, {Ki,mi

k,n
∀(k, n)}).

3.3. i → i + 1 and go to step 1.

3.5 Multiclass MFE-slack: utilizing margin slackness

In MFE-slack for the two-class case, as developed in (3), for each candidate feature for
elimination, m, we evaluated every (correctly classified) training sample xn as the potential
margin-defining sample (dubbed “anchor” xna

) associated with this elimination, and we chose
the pair (mMFE−S , nMFE−S) to minimize (via discrete optimization) the same objective function
as used by the pre-elimination SVM training and meet its constraints, with quantities in the
objective and constraints, such as slackness ξ, evaluated post-feature-elimination. We showed
that, for large enough C (and assuming the data is separable), positive slackness values are not

tolerated and minimization of 1
2 ||w||2 + C

N∑
n=1

ξn (i.e., 1
2 (1/margin)2 + C

N∑
n=1

ξn, where margin

1/||w|| was set by the anchor via scaling by a ρ parameter) reduces to minimization of 1/margin.
Thus, MFE-slack reduces to strict margin-maximizing elimination (MFE) as a special case for
large enough C. In a corresponding fashion, in the multiclass case, based on any one of the
above three definitions of multiclass margin we can choose the discrete maximization objective
function as multiclass margin minus a (C-weighted) sum of slackness values. Similar to the
two-class case, maximizing this objective yields a slackness-based extension of multiclass MFE
that reduces to one of our (respective) strict-margin-achieving multiclass MFE methods for large
enough C. We next develop these slackness-based MFE-k extensions in subsections 3.5.1, 3.5.2,
3.5.3. We will again denote that qi,mc,na ≡ quantity q at elimination step i upon elimination of
candidate feature mc when the candidate anchor is xna

.

3.5.1 MFE-k-SP-slack

Based on the γSP definition, we choose the discrete maximization objective function for
MFE-k-SP-slack as:

γSP − C

k∑
p=1

∑
q<p

∑

n∈Ωp,q

ψn,rn
=

k∑
p=1

∑
q<p

(γp,q − C
∑

n∈Ωp,q

ψn,rn
) (3.11)

where rn ≡ {p, q}\pn (cf. Sec. 3.2) and meet the following slackness constraints upon choosing
a correctly classified (candidate) class-pairwise anchor nap,q

∈ Ap ∪ Aq for each class pair (p ∈
P, q ∈ p̄):

dn,rn
≥ dnap,q

,rnap,q

− ψn,rn
∀n ∈ Ωp,q, ∀(p ∈ P, q ∈ p̄), rn ≡ {p, q}\pn, ψn,rn

≥ 0 (3.12)

40

with slackness ψn,rn
for n ∈ Ωp,q defined as max(0, dnap,q

,rnap,q

− dn,rn
), where dnap,q

,rnap,q

(which is computed as
gnap,q

,rnap,q

||wp−wq||) sets the (possibly violated) class-pairwise margin γp,q in
(3.11). In this method, each class pair has its own anchor for a given candidate feature for
elimination. Thus, there are

(
k
2

)
anchors working collectively for each candidate, m. In the

three-class example illustrated by Fig. 3.1(d) for the scenario where two dimensions remain upon
candidate elimination of one of three features, the encircled samples 7, 3, and 15 represent one
particular choice of

(
3
2

)
anchors working collectively. These anchors are setting the class-pairwise

margins marked as γ1,3, γ2,1, γ2,3 (indicated by solid lines), relative to which the class-pairwise
(positive) slacknesses (indicated in matching color, using short dashed lines) are calculated. All
anchor-based computations will be specified in detail in Sec. 3.5.1.1 shortly. MFE-k-SP-slack
selects the pair (mSP−slack, {nSP−slack

ap,q
, q < p}) that, post-elimination, maximizes (3.11) over

all the discrete choices {(m, {nap,q
, q < p})}. MFE-k-SP-slack reduces to margin-maximizing

(γSP -maximizing) elimination for large enough C (assuming the data is separable).

3.5.1.1 MFE-k-SP-slack algorithm pseudocode for linear and nonlinear kernel-based
SVMs

0. Same as step 0 in Sec. 3.4.1, except the set of discriminating functions need not be a
separating one.

1. Using the recursive computation descriptions in steps 1 and 2 in Sec. 3.4.1, compute Li,m
p,q

for all (m 6∈ M, p ∈ P, q ∈ p̄), and compute gi,m
n,q

and di,m
n,q

=
g

i,m

n,qq
Li,m

p,q

for all (m 6∈ M, n ∈
Ω, q ∈ p̄n). We consider any data point to be a valid candidate anchor for feature elimination
candidate m if it is not misclassified under that elimination; for each (m 6∈ M, p ∈ P) pair,
determine Ai,m

p
= {l ∈ Ωp|gi,m

l,t
> 0 ∀t ∈ p̄} (the set of valid candidate anchors in class p)

and Ai,m =
k⋃

p=1
Ai,m

p
.

2. For each (m 6∈ M, p ∈ P, q ∈ p̄, nap,q
∈ Ai,m

p
∪ Ai,m

q
) 4-tuple, to ensure zero slackness for

the class-pairwise anchor nap,q
(i.e., ψ

i,m,nap,q
nap,q

,rnap,q

= 0) and to meet all the constraints in

(3.12), compute ψ
i,m,nap,q
n,rn

= max(0, di,m
nap,q

,rnap,q

− di,m
n,rn

) ∀n ∈ Ωp,q.

3.1 Determine the outcome (mi, {ni
ap,q

, p = 1, . . . , k, q < p}) of the discrete maximization shown

below in (3.13), and eliminate feature mi, i.e., M→M∪ {mi}.3

arg max
m∈M̄

k∑
p=1

∑
q<p

max
nap,q

∈Ai,m
p

∪Ai,m
q

(di,m
nap,q

,rnap,q

− C
∑

n∈Ωp,q

ψ
i,m,nap,q
n,rn

) (3.13)

3.2 i → i + 1 and go to step 1.

3
The simple default way to choose C in (3.13) is to set it to the C value used for the pre-elimination

SVM training; however, a different C value may be chosen for (3.13), e.g. based on a cross-validation
procedure applied after eliminating a batch of features.

41

(a) Illustration of γG, γSP , and γSC .

(b) MFE-k-G-slack-s (c) MFE-k-G-slack-m (d) MFE-k-SP-slack

(e) MFE-k-SC-slack-s (f) MFE-k-SC-slack-m

Fig. 3.1. Illustration of MFE-k and MFE-k-slack methods.

42

3.5.2 MFE-k-G-slack

We now choose the discrete maximization objective function for the elimination method
MFE-k-G-slack as γG (from (3.8)) minus a (C-weighted) sum of slackness values. For each
training sample xn, define a single slackness value ψn based on the sample’s proximity to the
class-pairwise boundary between the sample’s class pn and class cn, or alternatively, we can
define multiple slackness values ψn,q based on the sample’s proximity to each of the class-pairwise
boundaries between the sample’s class pn and the k − 1 other classes q 6= pn. For the first of
these two methods, MFE-k-G-slack-s, we choose the objective as:

γG − C
∑

n∈Ω

ψn (3.14)

and meet the following slackness constraints upon choosing a single, correctly classified (candi-
date) global anchor na ∈ A:

dn,cn
≥ dna,cna

− ψn, ψn ≥ 0, ∀n ∈ Ω (3.15)

with slackness ψn defined as max(0, dna,cna
− dn,cn

), where dna,cna
(which is computed as

gna,cna

||wpna
−wcna

||) sets the (possibly violated) multiclass margin γG in (3.14). In the three-class

example illustrated by Fig. 3.1(b) for the scenario where two dimensions remain upon candi-
date elimination of one of three features, the encircled sample 7 represents a particular choice
for the (single) anchor, which sets γG (marked γ2,1), relative to which the (positive) slacknesses
(indicated in matching color) are calculated. All anchor-based computations for this method will
be specified in detail, shortly. MFE-k-G-slack-s selects the pair (mG−slack−s, nG−slack−s

a
) below

that, post-elimination, maximizes (3.14) over all the discrete choices {(m,na)}. For the second
method, MFE-k-G-slack-m, we choose the objective as:

γG − C
∑

n∈Ω

∑
q∈p̄n

ψn,q (3.16)

and meet the following slackness constraints upon choosing the global anchor na ∈ A:

dn,q ≥ dna,cna
− ψn,q, ψn,q ≥ 0, ∀n ∈ Ω, ∀q ∈ p̄n (3.17)

with slackness ψn,q defined as max(0, dna,cna
− dn,q), where dna,cna

sets the (possibly violated)
multiclass margin γG in (3.16). Notice in Fig. 3.1(c) (which is for illustrating MFE-k-G-slack-m)
that this figure differs from the above-discussed Fig. 3.1(b) in that multiple (positive) slacknesses
are calculated for a sample for use by the algorithm (such as ψ13,1 and ψ13,2 for sample 13). All
anchor-based computations for this method will be specified in detail in Sec. 3.5.2.2 shortly.
MFE-k-G-slack-m selects the pair (mG−slack−m, nG−slack−m

a
) that, post-elimination, maximizes

(3.16) over all the discrete choices {(m,na)}. Notice that each of these two methods reduces to
margin-maximizing (γG-maximizing) elimination (i.e. MFE-k-G, Sec. 3.4) for large enough C
(assuming the data is separable).

3.5.2.1 MFE-k-G-slack-s algorithm pseudocode for linear and nonlinear kernel-
based SVMs

0-1. Same as steps 0-1 in Sec. 3.5.1.1.

43

2. For each (m 6∈ M, n ∈ Ω) pair, determine ci,m
n

= arg min
q∈p̄n

di,m
n,q

. For each (m 6∈ M, na ∈
Ai,m) pair, to ensure zero slackness for the global anchor na (i.e., ψi,m,na

na
= 0) and to meet

all the constraints in (3.15), compute ψi,m,na

n
= max(0, di,m

na,ci,m
na

− di,m
n,ci,m

n

) ∀n ∈ Ω.

3.1 Determine the outcome (mi, n
i
a
) of the discrete maximization shown below in (3.18), and

eliminate feature mi, i.e., M→M∪ {mi}.

arg max
m∈M̄

max
na∈Ai,m

(di,m
na,ci,m

na

− C
∑

n∈Ω

ψi,m,na

n
) (3.18)

3.2 i → i + 1 and go to step 1.

3.5.2.2 MFE-k-G-slack-m algorithm pseudocode for linear and nonlinear kernel-
based SVMs

This only differs from the pseudocode in 3.5.2.1 in steps 2 and 3.1.

2. For each (m 6∈ M, na ∈ Ai,m) pair, determine ci,m
na

= arg min
q∈p̄na

di,m
na,q

, and, to ensure zero

slackness for the anchor (i.e., ψi,m,na

na,ci,m
na

= 0) and to meet all the constraints in (3.17) compute

ψi,m,na

n,q
= max(0, di,m

na,ci,m
na

− di,m
n,q

) ∀n ∈ Ω ∀q ∈ p̄n.

3.1 Determine the outcome (mi, n
i
a
) of the discrete maximization shown below in (3.19), and

eliminate feature mi, i.e., M→M∪ {mi}.

arg max
m∈M̄

max
na∈Ai,m

(di,m
na,ci,m

na

− C
∑

n∈Ω

∑
q∈p̄n

ψi,m,na

n,q
) (3.19)

3.5.3 MFE-k-SC-slack

Next, choose the discrete maximization objective function for the elimination method
MFE-k-SC-slack as γSC minus a (C-weighted) sum of slackness values. For a given class p, for
each training sample xn in class p, we can define a single slackness value ψn only based on the
sample’s proximity to the class-pairwise boundary between the sample’s class p and class cn (cf.
Sec. 3.2), or alternatively, multiple slackness values ψn,q based on the sample’s proximity to each
of the class-pairwise boundaries between the sample’s class p and the k− 1 other classes q 6= pn.
For either of these two methods, with each class having its own anchor for a given candidate
feature for elimination, note that there are k anchors working collectively for each candidate, m.
For the first of the two methods, MFE-k-SC-slack-s, we choose the objective as:

γSC − C

k∑
p=1

(
∑

n∈Ωp

ψn,cn
+

∑

n∈Ωp̄

ψn,p) =
k∑

p=1

(γp − C(
∑

n∈Ωp

ψn,cn
+

∑

n∈Ωp̄

ψn,p)). (3.20)

Associated with this objective, we meet the following slackness constraints in choosing a correctly
classified (candidate) classwise (p-versus-rest) anchor nap

∈ A for each class p ∈ P (note: nap

need not be in Ap): define znap
for the anchor as znap

≡ cnap
if the anchor is in p, or znap

≡ p

otherwise.
dn,cn

≥ dnap
,znap

− ψn,cn
∀p ∈ P, ∀n ∈ Ωp, ψn,cn

≥ 0 (3.21)

dn,p ≥ dnap
,znap

− ψn,p ∀p ∈ P, ∀n ∈ Ωp̄, ψn,p ≥ 0 (3.22)

44

with slackness ψn,cn
for n ∈ Ωp defined as max(0, dnap

,znap

− dn,cn
) and ψn,p for n ∈ Ωp̄ defined

as max(0, dnap
,znap

− dn,p), where dnap
,znap

sets the (possibly violated) classwise (p-versus-rest)

margin γp in (3.20). In the three-class example illustrated by Fig. 3.1(e) for the scenario where
two dimensions remain upon candidate elimination of one of three features, the encircled samples
4, 7, and 16 represent a particular choice for the three anchors working collectively, which set the
three classwise margins (marked γ1, γ2, γ3, respectively), relative to which the (positive) slack-
nesses (indicated in matching color) are calculated – in this particular example there are no (pos-
itive) slacknesses relative to γ3. All anchor-based computations for this method will be specified
in detail in Sec. 3.5.3.1, shortly. MFE-k-SC-slack-s selects the pair (mSC−slack−s, nSC−slack−s

ap
)

that, post-elimination, maximizes (3.20) over all the discrete choices {(m, {nap
, p = 1, . . . , k})}.

For the second method, MFE-k-SC-slack-m, we choose the objective as:

γSC − C

k∑
p=1

(
∑

n∈Ωp

∑
q∈p̄

ψn,q +
∑

n∈Ωp̄

ψn,p), (3.23)

equivalent to
k∑

p=1

(γp − C(
∑

n∈Ωp

∑
q∈p̄

ψn,q +
∑

n∈Ωp̄

ψn,p)) (3.24)

and meet the following slackness constraints and (3.22) upon choosing the classwise (p-versus-
rest) anchor nap

∈ A for each class p ∈ P (note: again, nap
need not be in Ap):

dn,q ≥ dnap
,znap

− ψn,q ∀p ∈ P, ∀n ∈ Ωp, ∀q ∈ p̄, ψn,q ≥ 0 (3.25)

with slackness ψn,q for n ∈ Ωp defined as max(0, dnap
,znap

− dn,q), where dnap
,znap

sets the

(possibly violated) classwise margin γp in (3.24). Notice in Fig. 3.1(f) (which is for illustrating
MFE-k-SC-slack-m) that this figure differs from the above-discussed Fig. 3.1(e) in that multiple
(positive) slacknesses are calculated for a sample for use by the algorithm (such as ψ13,1 and ψ13,2

for sample 13) – in order to not crowd the figure, classwise margin and associated slacknesses are
being illustrated for class 3 only. All anchor-based computations for this method will be specified
in detail in Sec. 3.5.3.2 shortly. MFE-k-SC-slack-m selects the pair (mSC−slack−m, nSC−slack−m

ap
)

that, post-elimination, maximizes (3.24) over all the discrete choices {(m, {nap
, p = 1, . . . , k})}.

Notice that each of these two methods reduces to margin-maximizing (γSC-maximizing) elimi-
nation (i.e. MFE-k-SC, Sec. 3.4) for large enough C (assuming the data is separable).

3.5.3.1 MFE-k-SC-slack-s algorithm pseudocode for linear and nonlinear kernel-
based SVMs

0-1. Same as steps 0-1 in Sec. 3.5.1.1.

2. For each (m 6∈ M, p ∈ P, n ∈ Ωp) triplet, determine ci,m
n

= argmin
q∈p̄

di,m
n,q

. For each (m 6∈
M, p ∈ P, nap

∈ Ai,m) triplet: first, determine zi,m
nap

(which is ci,m
nap

if the anchor is in p or is p

otherwise); second, to ensure zero slackness for the anchor (i.e., ψ
i,m,nap

nap
,zi,m

nap

= 0) and to meet

all the constraints in (3.21) and (3.22), compute ψ
i,m,nap
n,cn

= max(0, di,m
nap

,zi,m
nap

−di,m
n,ci,m

n

) ∀n ∈

Ωp and ψ
i,m,nap
n,p

= max(0, di,m
nap

,zi,m
nap

− di,m
n,p

) ∀n ∈ Ωp̄.

45

3.1 Determine the outcome (mi, {ni
ap

, p = 1, . . . , k}) of the discrete maximization shown below
in (3.26), and eliminate feature mi, i.e., M→M∪ {mi}.

arg max
m∈M̄

k∑
p=1

max
nap

∈Ai,m
(di,m

nap
,zi,m

nap

− C(
∑

n∈Ωp

ψ
i,m,nap
n,cn

+
∑

n∈Ωp̄

ψ
i,m,nap
n,p

)) (3.26)

3.2 i → i + 1 and go to step 1.

3.5.3.2 MFE-k-SC-slack-m algorithm pseudocode for linear and nonlinear kernel-
based SVMs

This only differs from the pseudocode in 3.5.3.1 in steps 2 and 3.1.

2. For each (m 6∈ M, p ∈ P, na ∈ Ai,m) triplet: first, determine zi,m
nap

(which is ci,m
nap

if

the anchor is in p or is p otherwise), and, to ensure zero slackness for the anchor (i.e.,

ψ
i,m,nap

nap
,zi,m

nap

= 0) and to meet all the constraints in (3.25) and (3.22) compute ψ
i,m,nap
n,q

=

max(0, di,m
nap

,zi,m
nap

− di,m
n,q

) ∀n ∈ Ωp ∀q ∈ p̄ and ψ
i,m,nap
n,p

= max(0, di,m
nap

,zi,m
nap

− di,m
n,p

) ∀n ∈ Ωp̄.

3.1 Determine the outcome (mi, {ni
ap

, p = 1, . . . , k}) of the discrete maximization shown below
in (3.27), and eliminate feature mi, i.e., M→M∪ {mi}.

arg max
m∈M̄

k∑
p=1

max
nap

∈Ai,m
(di,m

nap
,zi,m

nap

− C(
∑

n∈Ωp

∑
q∈p̄

ψ
i,m,nap
n,q

+
∑

n∈Ωp̄

ψ
i,m,nap
n,p

)) (3.27)

3.6 MFE-k-Kesler

3.6.1 Kesler construction

The Kesler construction generates a set of higher-dimensional samples starting from the
samples of a multiclass classification problem (k > 2) so that the multiclass LDF problem can
be cast using a (higher-dimensioned) two-class LDF. We begin this section by stating the Kesler
construction – additional description can be found in other sources, e.g. (20). For each original
M×1 sample xn, k−1 Kesler samples zn

q
(with q ∈ p̄n) are constructed, each being a concatenation

of k vectors that are each (M + 1)-dimensional, with augmented vector an = [xT
n

1]T the pn-
th vector, −an the q-th vector, and each of the other k − 2 vectors given by an (M + 1)-
dimensional vector of zeroes. The total number of Kesler samples is thus (k − 1)N . Denote
zn

q
≡ [zn

1,q
, . . . , zn

k(M+1),q
]T (also just denoted zn

q
≡ [z1, . . . , zJ]T with J ≡ k(M + 1)). For

example, if k = 3, for each xn in class 2 the following two (i.e. k−1) Kesler samples z2
q
, q ∈ {1, 3}

are constructed: z2
1

= [−aT
n

aT
n

0T]T, z2
3

= [0T aT
n
− aT

n
]T.

As previously shown by e.g. (20), (26), the Kesler construction can be used to express the
multiclass problem as a one-class problem – in particular, form:

W = [W1, . . . , Wk(M+1)]
T ≡ [[wT

1
, b1], . . . , [w

T
k
, bk]]T. (3.28)

Thus let us denote a discriminant function example by F (z) ≡ WTz. Note first that the con-
straints in (3.7) are captured by WTzj ≥ 1 − ξj , j = 1, . . . , (k − 1)N . Second, note that
||W ||2 =

∑
p∈P

||wp||2 + b2
p
. Thus, it is easy to see that the multiclass SVM training problem in

46

(3.7) can be recast in terms of the augmented weight vector W and the Kesler samples via

min
W,ξ

1
2
||W ||2 + C

J∑

j=1

ξj s.t. ξj ≥ 0, F (zj) ≥ 1− ξj , j = 1, . . . , (k − 1)N. (3.29)

For a Kesler sample z, let Tm denote the Kesler feature subset {m,m + (M + 1), . . . , m +
(k−1)(M +1)} with values determined by the original feature m – only two of these k are actual
occurrences of original feature m in any given Kesler sample, as the remaining k−2 are 0. Thus,
denoting:

∆t
n,q

≡ zn
t,q

Wt, q ∈ p̄n, 4 (3.30)

∆̃m
n,q

≡
∑

t∈Tm

∆t
n,q

, q ∈ p̄n, (3.31)

it becomes obvious that
∆̃m

n,q
= δm

n,q
, q ∈ p̄n. (3.32)

3.6.2 MFE-k-Kesler

The idea of our MFE-k-Kesler feature elimination method for the multiclass case is to
construct Kesler samples z from the original samples x and utilize the equivalence between (3.7)
and (3.29). Specifically, (3.29) is a one-class SVM problem (all Kesler samples on the same side
of the hyperplane W). Accordingly, for feature elimination consistent with the optimization in
(3.29), we apply two-class MFE (cf. Ch. 2, (3)) on the one-class nature of Kesler samples z,
which is a valid approach because, the one-class problem is a two-class problem where all samples
(the Kesler samples) are in class +1 (and none in class −1) and lie on a side (the same side) of a
hyperplane (i.e. the Kesler hyperplane) W given by (3.28). At elimination step i, MFE-k-Kesler
eliminates the Kesler feature ti whose elimination yields the largest remaining (positive) Kesler
margin (i.e. minimum distance from the Kesler samples to W). After the elimination sequence
of Kesler features is obtained using this criterion, the elimination sequence of original features is
obtained from it as follows. An original feature m is eliminated when all t ∈ Tm are eliminated
– this generates a complete elimination sequence of original features.

3.7 Results

We performed experiments to compare our multiclass MFE-k methods with multiclass
RFE-based methods. For experimental procedure for the initial classifier training, and exper-
imental procedure for feature elimination, we followed the approach discussed earlier for the
two-class case (cf. Sec. 2.4.1 and 2.4.2). Also as in the two-class case, to continue the elim-
ination process after loss of separability, we define the “hybrid” MFE-k/MFE-k-slack methods
(such as MFE-k-G/MFE-k-G-slack-m), where, simply, MFE-k (such as MFE-k-G) is used for the
steps where the data is separable (including the initial step) and the corresponding MFE-k-slack
method (such as MFE-k-G-slack-m corresponding to MFE-k-G) is used for the other steps.

For the case of the linear kernel, test set classification error rate curves for our MFE-k
methods and the RFE-based MSVM-RFE-WW method are shown in Fig. 3.2 for two UC Irvine
data sets. All curves shown are averages over 10 trials – and for each trial, the initial SVM was a
training set separator. For our three MFE-k methods MFE-k-G, MFE-k-SP, and MFE-k-SC, we
show that the first two had a tie for best performance, under our “slack-m” approach for slackness

4
The product on the RHS contains also a multiplication by yzn

q
, not being shown as it is 1 ∀n.

47

(as opposed to the less rigorous “slack-s”) – notice in the figure that this is true for both the
hybrid method (e.g. MFE-k-G/MFE-k-G-slack-m) and the solely slackness-based method (e.g.
MFE-k-G-slack-m). We also show that our above three “basic MFE-k” methods achieved much
better generalization performance (lower test set error rate curve) than MSVM-RFE-WW. A
generalization performance comparison between these MFE-k methods and MFE-k-Kesler is not
available in this thesis and can be generated in future work – however, in Fig. 3.3(a), we show
that MFE-k-Kesler achieved much better generalization performance than MSVM-RFE-WW.

In conclusion, for feature elimination in the multiclass SVM case, our multiclass MFE
methods that we advocate are: MFE-k-G/MFE-k-G-slack-m, MFE-k-SP/MFE-k-SP-slack, as
well as MFE-k-Kesler. Our multiclass method that we advocate the most at this time is MFE-k-
G/MFE-k-G-slack-m, because e.g. 1) it requires less computation than MFE-k-SP/MFE-k-SP-
slack which had similar generalization performance, and 2) both the number of samples and the
number of features are increased approximately k-fold when MFE-k-Kesler is used.

48

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of features retained (starting at 216)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

MSVM−RFE−WW
MFE−k−G/MFE−k−G−slack−s
MFE−k−G/MFE−k−G−slack−m
MFE−k−SC/MFE−k−SC−slack−s
MFE−k−SC/MFE−k−SC−slack−m
MFE−k−SP/MFE−k−SP−slack
MFE−k−G−slack−s
MFE−k−G−slack−m
MFE−k−SC−slack−s
MFE−k−SC−slack−m
MFE−k−SP−slack

(a) UCI mfeat data set with 216 features; linear kernel

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of features retained (starting at 130)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

MSVM−RFE−WW
MFE−k−G/MFE−k−G−slack−s
MFE−k−G/MFE−k−G−slack−m
MFE−k−SC/MFE−k−SC−slack−s
MFE−k−SC/MFE−k−SC−slack−m
MFE−k−SP/MFE−k−SP−slack
MFE−k−G−slack−s
MFE−k−G−slack−m
MFE−k−SC−slack−s
MFE−k−SC−slack−m
MFE−k−SP−slack

(b) UCI dermatology data set with 130 features; linear kernel

Fig. 3.2. Average test set classification error rate, (a)-(b), for two separable low-to-intermediate
dimensional UC Irvine data sets (Sec. 3.7). Initial number of features is stated on the x-axis.

49

0 50 100 150 200 250 300

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of features retained

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

MSVM−RFE−WW
MFE−k−Kesler

(a) UCI arrhythmia data set; linear kernel

Fig. 3.3. Average test set classification error rate for the UCI arrhythmia data set; linear kernel
(Sec. 3.7).

50

Chapter 4

MRI brain image processing and

analysis of Alzheimer’s disease and its onset

Note for ADNI: The author, of this thesis chapter i.e. manuscript, is Yaman Aksu, for
the Alzheimer’s Disease Neuroimaging Initiative*.

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI). As such, the investiga-
tors within the ADNI contributed to the design and implementation of ADNI and/or provided
data but did not participate in analysis or writing of this report. A complete listing of ADNI
investigators can be found at:
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI Authorship list.pdf
The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National In-
stitute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-year
public-private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as well as lessen the time and cost of
clinical trials. The Principal Investigator of this initiative is Michael W. Weiner, M.D., VA
Medical Center and University of California - San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal of
ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research – approximately
200 cognitively normal older individuals to be followed for 3 years, 400 people with MCI to be
followed for 3 years, and 200 people with early AD to be followed for 2 years.

4.1 Introduction

The dementing illness Alzheimer’s disease (AD), and the state of transition between nor-
mal aging and AD referred to as mild cognitive impairment (MCI), continue to be widely studied.
MCI includes people with memory impairment without meeting dementia criteria. Annually an
estimated 10-15% of people with MCI are diagnosed with AD (54). Moreover, even prior to
clinical symptoms, larger increases in structural brain abnormality have been found in people
with MCI compared to normal (“Control group”) people, via retroactive evaluation of serial
(longitudinal) MRI scans (16). Furthermore, AD diagnosis is not considered definitive without
confirming AD-characteristic pathologies such as the debated amyloid deposits detectable at au-
topsy. Motivated by reasons such as the above, there has been much recent analysis of both AD
and MCI, to better understand the disease onset and progression to aid diagnosis and effective
treatment development. A substantial aim is to develop methods with promising clinical value,
which include 1) methods that can effectively aid diagnosis only based on a single (first) visit for
the person, 2) methods that can effectively predict which MCI individuals are likely to convert,

51

especially imminently, to AD, and 3) methods for treatment monitoring. Such methods can be
driven by seeking “biomarkers” – these include feature selection methods, as discussed in Ch. 1.
Alternatively, methods may attempt to diagnose without seeking biomarkers – these include the
use of SVM classification based on the full feature set (without feature selection). In Ch. 4, we
experiment with both of these approaches, using SVMs and MFE.

For all aims mentioned above, structural MRI analysis may prove useful as it addresses
many complexities of AD and MCI such as the following. First, even at an early, clinically
normal stage of AD or MCI, brain atrophy may exhibit complex patterns spatially distributed
to many brain regions (10; 23; 25) – due to cell loss there may be cortical thinning (47; 66) and
ventricle dilation and gaping (11; 59), volumetric and shape changes in the hippocampus and
entorhinal cortex (15; 19; 64), temporal lobe shrinkage (58), and other morphological changes.
Second, since atrophy patterns may be more subtle at the early disease stage (11; 16; 25) and may
change during disease progression, quantifying patterns early is a big challenge. Third, patterns
attributable to normal aging are a confounding factor in the search for patterns that characterize
disease (57).

Consider a population of AD/MCI/Control brain MR 3d images segmented into numerous
(e.g. 100) intricate regions defined by a brain anatomy atlas – such images would enable numer-
ous region-specific volumetric measurements, useful towards detecting brain atrophy typical for
AD/MCI subjects. A second useful image type would be 3d “volumetric density” images – one
for gray matter and one for white matter – where, this time we are referring to an image type
that both 1) has been considerably registered across the population (i.e. “spatial normalization”
into a single spatial frame of reference) and 2) has voxel values that represent how much “local
volume” for the corresponding tissue (e.g. gray matter) in the original (pre-registration) multi-
tissue image had to be dilated or contracted by the registration to fit into that density image
voxel. A possible advantage of such density images over the region-segmented image is the much
larger number of volumetric measurements (i.e., one per voxel) that it provides per brain. In
this thesis we are using the HAMMER registration method and software tool for generating such
tissue density images – a separate density image is generated for each of three “tissues” (gray
matter, white matter, ventricles), and as mentioned above the voxel values of this set of three
images by definition sum to the pre-registration brain volume. Typically, including the case of
this thesis, populations of such image types (e.g. region-segmented, or density) are not commonly
readily available and instead only the original images, which were generated by the MR scanner
itself (e.g. T1-weighted images), are available as image populations. In this thesis we use HAM-
MER for generating both of the above two useful image types – we elaborate on this method
and tool in Appendix C. Sec. 4.2 discusses our image processing pipeline that includes also non-
HAMMER components that are necessary for generating some types of intermediate images from
the original (T1-weighted) MR images, including “tissue-segmented” images. Tissue-segmented
images, which are a required HAMMER input, are images that consist of the following segments:
gray matter, white matter, ventricles, (non-ventricle) cerebrospinal fluid (CSF), (non-anatomy)
background.

As noted by a number of prior works e.g. (11), statistical and predictive power, and
validity, of an AD analysis method producing spatio-temporal “patterns” of brain regions, are
of much interest. In the domain of AD analysis using MRI, a number of prior works utilized
pattern recognition – those that utilized SVM classifiers in particular, as we do in this chapter,
include (16; 51; 71). These particular prior studies are significantly notable also because, in
order to capture interactions among effects in regions throughout the brain, without making a
priori assumptions about specific regions to be measured, each of these methods jointly analyzed
voxels (or regions) spanning the entire brain, whereas a number of other studies have focused on
specific regions of interest (ROIs), especially the regions mentioned above such as hippocampus
and ventricles.

52

The data used in the experiments in this chapter were obtained from the ADNI database
(2), for which three “ground-truth” clinical labels, assigned by clinicians, were available: AD,
MCI, Control. This label may be derived from multiple criteria, including CDR (Clinical De-
mentia Rating) whose possible values are: 0=none, 0.5=questionable, 1=mild, 2=moderate,
3=severe. ADNI aims to recruit and follow 800 research participants in the 55-90 age range:
approximately 200 elderly people to serve as Controls (Normal Controls), 400 people with MCI,
and 200 people with AD. The “ground-truth” label (AD, MCI, or Control) was assigned in ADNI
at first visit – however, at a later visit there is no stated conversion from one ground-truth label
to another, and thus, for example we do not know if or when (at which visit) a participant who
is non-AD at first visit converts to AD. On the other hand, available to us are visit-specific
numerical data, including structural MR (T1-weighted) images and non-image data such as CDR
score and age, enabling cross-sectional analysis (across a population) and/or longitudinal analysis
(across time).

In prior work on AD analysis with MRI data e.g. (51), for some classification experiments,
the MCI population was broken up into two subpopulations (classes), according to whether, over
time, an MCI participant’s CDR score of 0.5 stayed the same or increased. Herein we refer to this
subgrouping approach as the “conversion-by-CDR” approach1. The concept of conversion-by-
CDR should be considered with great caution because there is very significant AD-MCI overlap
with respect to the CDR value of 1 and even 0.5 – more specifically, considering the ADNI
database as an example (an example with a very large subject population), the majority of the
hundreds of AD participants start (at first visit) at 0.5 and stay at 0.5 at the later visits, while
at the same time all (or almost all) of the hundreds of MCI participants start at 0.5, with the
vast majority of these MCIs staying at 0.5 at the later visits. Very relevant to this overlap issue,
a significant contribution of this thesis is our following novel approach for detecting (possible)
conversion to AD, driven by image-based information, rather than by a single, non-image-based
measurement such as CDR. Upon building a Control-AD classifier (using only AD and Control
subjects), we use it to classify all available longitudinal 3d images2 of the training MCI subjects,
so as to utilize their distances to this single Control-AD boundary from one visit to the next. An
example illustration of these person-specific trajectories of longitudinal phenotype scores (positive
for Control-like and negative for AD-like) is given by Fig. 4.1(a) – phenotype score vs. age is
plotted, with each set of connected dots being a separate person. People who are converters-by-
CDR are shown in different color than people who are nonconverters-by-CDR. Also, solely for
clearer viewing, the subject population is further broken up in Fig. 4.1(a) into a top and bottom
graph, with the top showing people whose score was less for final visit than first visit, and vice
versa for the bottom graph – notice that there are many more people who become more AD-like
than Control-like over time. As illustrated by Fig. 4.1(b), we then fit a line (using least-squares)
on a person-by-person basis. Consider the following four fitted-score (fs) categories:

1. fs starts and ends positive.

2. fs starts and ends negative.

3. fs starts positive and ends negative.

1
While this term says “conversion”, note that it does not mean an actual conversion to AD which

requires assignment of the participant by a clinician to the AD label at the later visit – recall that
information is not available. We will refer to the two classes formed by the conversion-by-CDR approach
as “converters-by-CDR (cc)” and “nonconverters-by-CDR (ncc)”, e.g. the “MCIcc” and “MCIncc”
classes.

2
Here we are simply saying “image” to refer to our particular feature set for the image which is not

necessarily a set of voxel values, e.g. some experiments in this chapter use volumes of brain regions as
features.

53

55 60 65 70 75 80 85 90 95
−10

−5

0

5

10

55 60 65 70 75 80 85 90
−10

−5

0

5

converters−by−CDR
nonconverters−by−CDR

(a) Phenotype score vs. age, for MCI converters-by-CDR (MCIcc) and nonconverters-by-CDR
(MCIncc).

55 60 65 70 75 80 85 90 95
−10

−5

0

5

10

55 60 65 70 75 80 85 90
−10

−8

−6

−4

−2

0

2

4

converters−by−CDR
nonconverters−by−CDR

(b) Fitted phenotype score vs. age, for MCI converters-by-CDR (MCIcc) and nonconverters-by-CDR
(MCIncc).

Fig. 4.1. Trajectory results for ROI-based Classifier 1R.

54

4. fs starts negative and ends positive.

For all types of features in our experiments herein, we consistently found that at least 90− 95%
of our training MCI population fell into the first three of the above four fs categories. Since these
three represent almost the entirety of the MCI population, we can legitimately define categories
2 and 3 together as “the first of two classes of MCI subjects” and category 1 as “the second of the
two classes of MCI subjects”, based on which we can then build a new type of two-class classifier.
More specifically, since subjects in category 1 are more Control-like than AD-like throughout their
visits, we can declare they define (belong to) a “nonconverters-by-trajectory’ (MCInct) class, and
likewise, since subjects in category 2 and 3 are more AD-like than Control-like by the time of
their final visit, we declare they define (belong to) a “converters-by-trajectory” (MCIct) class.3

Note, very importantly, that when building this new classifier, each training sample would come
from the first visit alone, not from multiple visits. We shall refer to this approach as “conversion-
by-trajectory” – clearly, its strength is two-fold:

1. Previously unseen (test) patients would be classified (diagnosed) based on their first visit
alone, i.e. this is an early diagnosis approach.4

2. Unlike in the conversion-by-CDR approach, the two MCI subpopulations involved are being
defined using image-based information, without using CDR. This is an advantage because,
first, a rise in a person’s CDR from 0.5 to 1, utilized by the above alternative conversion-
by-CDR approach, may not be a strong indicator on which to define MCI subpopulations,
and second, assigned CDR values and their change over time may be considerably noisy.

Note that the legitimacy of the conversion-by-trajectory approach stems from the fact that the
test MCI subjects are not being used when building either of the above two in-tandem classi-
fiers. We will show experimentally that the conversion-by-trajectory approach outperforms the
conversion-by-CDR approach.

A second major novel aspect, and significant contribution, of the AD/MCI analysis in
this thesis is that MFE is used as the feature selection method, whereas prior works (16; 51)
(mentioned above) utilized RFE which was shown in this thesis (Ch. 2) to be consistently
outperformed by MFE in a comprehensive evaluation, i.e. for both separable and nonseparable
data, for a variety of data set examples for both linear and kernel-based classification.

A third notable aspect for this thesis is that the experiments are utilizing a much larger
population of ADNI subjects and their longitudinal images (≈ 2000 images in total) than we
have seen in prior works.

Sec. 4.2 discusses our image processing pipeline. Sec. 4.3 discusses our extensive set
of experiments and gives experimental results and comparisons. Sec. 4.4 gives the chapter
conclusions.

4.2 Brain MR image processing pipeline

For the image processing pipeline used by this thesis, let us begin by giving a short
overview of the pipeline steps. The input (3d) image is a T1-weighted MR image of the head.
As first step, this image is coarsely aligned with a reference atlas (aka Atlas1) using rigid-body

3
Since category 2 by definition starts and ends more AD-like than Control-like, there is no “conversion”

taking place for it per se, but we do include this category together with category 3 in our conveniently
named “converters”-by-trajectory class because they end AD-like just as category 3 does.

4
As a reminder, note that the person to be diagnosed must be excluded from the population used

to construct (train) the classifier(s) to be used for the diagnosis – this is a pattern classification design
requirement.

55

registration, whereby the AC (Anterior Commisure) landmark in the brain also becomes placed
at the origin. Then, non-brain anatomy is removed from the aligned head images. The resulting
brain-only 3d image is tissue-segmented into the five segments required by HAMMER: white
matter (WM), gray matter (GM), ventricles, (non-ventricle) CSF, (non-anatomy) background.
Lastly, a second atlas (aka Atlas2, an atlas by MNI (Montreal Neurological Institute) distributed
with HAMMER), serving as the reference atlas to be used by HAMMER registration, is input
into HAMMER along with the five-segment image, to generate the above-mentioned density
3d image (RAVENS map) and the 3d region-segmented image – a separate RAVENS map is
generated for each of three “tissues”: GM, WM, ventricles. The sum of voxel values across these
three RAVENS images (cf. Sec. 4.1) is on the order of 106 and varies across people – to remove
person-specific brain volume as a bias, the set of three RAVENS images is normalized such that
each person would have the same volume. As elaborated at the end of this section, the normalized
RAVENS images are then smoothed spatially using a 5mm FWHM Gaussian filter.

For Atlas1, we used the MNI/ICBM (International Consortium for Brain Mapping) atlas,
resampled to 1mm isotropic voxel dimensions. The alignment to Atlas1 is performed using FSL’s
linear image registration tool FLIRT (41). The subsequent non-brain removal is performed
using FSL’s brain extraction tool BET (60). The subsequent tissue-segmentation step consists
of three substeps. The first substep is the commonly used approach of tissue segmentation
into four (of the above-mentioned five) segments, with ventricles and CSF together labeled as
CSF. This segmentation is performed using FSL FAST (76). The second substep is the use
of the labelVN tool in HAMMER for (automatically) segmenting CSF into ventricles and (non-
ventricle) CSF. The third and final substep is to process the resulting five-segment 3d image with
our fv (fill ventricles) algorithm whose purpose is to automatically remedy the problem where
the above ventricle segmentation by HAMMER (which is a deformation process for matching to
the ventricles of Atlas2) is often incomplete as a consequence of a subject’s anatomy being too
different from the atlas. This problem is a common scenario as AD/MCI patients often have very
enlarged and distorted ventricles due to atrophy. We describe fv in Appendix A.2 – its underlying
assumption is that the ventricles that HAMMER does find, which we viewed in numerous brains,
are reliable despite being incomplete.5

HAMMER generates the RAVENS maps by performing a deformation between the sub-
ject’s tissue-segmented (five-segment, 3d) image and the corresponding tissue-segmented (five-
segment, 3d) Atlas2 image6. Also available in the Atlas2 image set is the already region-
segmented version of this atlas with approximately 100 anatomical regions. This availability is a
main reason we are using this particular atlas - using this atlas (i.e., both its region-segmented
and five-segment versions) and HAMMER, the pipeline is able to produce a region-segmented
image from an individual’s five-segment image.

In our above pipeline steps used in this thesis, as a matter of fact the use of the MNI/ICBM
atlas (for the initial linear registration), our fv algorithm, and the RAVENS normalization and
smoothing are the only steps that were not included in our original pipeline which was developed
and delivered by us to PSU Hershey CNMRR in 2006 and 2007 which gave rise to our collabora-
tion with Dr. D. Bigler at CNMRR for co-developing a pipeline improved with new capabilities
named STAMPS (7) which is discussed in Appendix A.3 – notice in the Appendix that several of
the types of output images that STAMPS can readily generate are not used by this thesis. For our
above-mentioned pipeline steps in this thesis, we created and used a new and customized version

5
A known HAMMER property is that it conservatively adjusts the amount of deformation depending

on the task so as to control the amount of noise in the result.
6
Since the region-segmented atlas distributed with HAMMER (Atlas2) had much better segmentation

quality than the tissue-segmented (five-segment) atlas distributed with HAMMER (Atlas2), the former
was used, by Dr. D. Bigler, to create a replacement for the latter by simply forming region unions. The
tissue-segmented Atlas2 that we used was this replacement image.

56

of STAMP/STAMPS, which we shall simply refer to as “STAMPY/STAMPYS”. The differences
between STAMPS and STAMPYS can be understood via comparing our above description of
our processing steps with STAMPS steps described in (7). In understanding these differences,
it is also important to understand that STAMPYS stemmed from the fact that STAMPS has
several major limitations. We have met these critical challenges – note some example differences
between STAMPS and STAMPYS described below:

1. STAMPS’ interface to the cluster (i.e., supercomputer), described in (7), is both complex
and assumes that the user has much system administration control, at will, over how the
job processes are to be distributed to the cluster nodes. This approach was designed by our
pipeline collaborator Dr. D. Bigler specifically with the PSU Hershey CNMRR cluster in
mind, and overrode the interface approach of our above-mentioned pre-STAMPS pipeline
which is simple so as to make it functional on the PSU UP HPC clusters (on which we
do not have system administration control). The UP HPC clusters, together providing at
least ten times the processing power of the CNMRR cluster alone, have been essential to
our work because, as anticipated, it has been necessary to process more than a thousand
ADNI 3d images – not just a single time but rather at will, with each image taking several
hours to process. Here, a big challenge was the need to process this many images and to
do so in a timely manner (again, not once but as many times as the need arises). While
more than a thousand samples is of course not necessary for a classification experiment,
processing 1000 − 2000 images with the pipeline has been necessary, as follows. As Sec.
4.3 will demonstrate concretely, the actual number of samples per class that 1000 − 2000
images provide us can often be as low as 100, or even 50, because the thousand is a union
that accounts for i) three subject categories (AD, MCI, Control), ii) up-to-6 visits (i.e.
up-to-6 images) per subject7, and iii) a wide age range whereas we often require 1-to-1
age-matching (cf. Sec. 4.3.3) across classes in our classification experiments herein for AD
analysis.

2. As stated in (7), a hard-coded STAMPS step that precedes the rigid-body registration
thresholds the input T1-weighted image. While (7) essentially suggests this hard-coded
step is innocuous so long as T1-weighted images have sufficient signal-to-noise ratio, we
have discovered that this step often destroys ventricle voxels by setting them to 0, causing
subsequent pipeline images (such as the region-segmented image and the RAVENS ventricle
map) to be incorrectly generated. Thus, in our pipeline in this thesis (STAMPY), the
thresholding step is removed.

3. While (7) essentially declares that STAMPS has a functioning FSL-based segmentation
option apart from its SPM/VBM-based segmentation option, as it turned out FSL-based
segmentation was actually not fully implemented into STAMPS even though it was in-
deed implemented into our original pre-STAMPS pipeline. As we discussed above (Sec.
4.2), STAMPYS implements and uses FSL-based segmentation – this is mainly because
SPM/VBM segmentation in the STAMPS design (or a third segmentation option different
from SPM/VBM and FSL) was not made feasible on the PSU UP HPC clusters. The in-
feasibility was due to the fact that it was required in STAMPS to assign the segmentation
task to distributed Matlab computing despite the incompatibility of this approach with
the restrictions in the UP HPC configuration, such as HPC’s dmatlab (restrictive, custom,
front-end component for controlling distributed Matlab computing) and HPC’s particular
method of distributing Matlab licenses.

7
Sec. 4.3 will describe that our diagnosis procedure utilizes training data from up-to-6 visits (i.e.

up-to-6 images) per subject (rather than relying on a simpler classification experiment procedure) so as
to aim for sufficient specificity and sensitivity towards diagnosis.

57

4. The automated pipeline STAMPYS contains our abovementioned fv tool which enables
it to remedy the abovementioned ventricle segmentation problem in an automated way,
whereas the automated pipeline STAMPS does not contain a similar (automated) tool, as
mentioned by footnote 6 in (7). This is a very significant limitation in STAMPS when the
image population that needs to be processed is large.

We now elaborate on the RAVENS smoothing mentioned above. The focus of RAVENS
is to preserve volume on a tissue-by-tissue basis through the registration process. When creating
RAVENS, HAMMER relaxes the amount of warping to combat noise inherent in the nonlinear
registration so as to properly detect (and encode) brain atrophy. Consequently, there is consid-
erable inter-person variability in RAVENS images, which is commonly mitigated by smoothing
the RAVENS (or the normalized RAVENS) images. Since RAVENS smoothing is not yet made
a part of the pipeline (in STAMPS or STAMPYS), we performed the smoothing afterwards, in
an automated way.

4.3 Results

4.3.1 ADNI data

Herein we only use “processed” images present in the ADNI database, i.e. images that
have undergone ADNI’s image correction which is described at the ADNI website.8 The number
of Control, MCI, and AD participants used in our analysis were approximately 180, 300, and 120,
respectively. For each Control we used, we only used the participant’s initial visit with CDR=0
– the reason is that after the initial visit approximately 10% of these Control participants have
CDR=0.5 (just as some MCI and even AD participants do) and thus, these non-initial visits for
Controls, if used, would have introduced a confounding effect into the analysis which we choose
to simply avoid in this particular case since 180 Control images is sufficient. For MCI and AD
participants, from the discussion in Sec. 4.1 on our methods it should be clear that we used
multiple visits.

4.3.2 ROI-based and voxel-based experiments

We performed two types of experiments: ROI-based (R) and voxel-based (V). In the R
case, the features are 101 normalized region volumes obtained from the region-segmented images,
wherein a region’s volume is normalized by dividing it by the total volume of all regions. In the
V case, which is much higher dimensional with more than 20,000 features, the features are the
voxel intensities of a smoothed RAVENS map. As a reminder from Sec. 4.1, while each of
these two types of features is volumetric information, V may produce, as this thesis will explore,
more accurate generalization due to both the number and finer granularity of its volumetric
measurements (i.e., one feature per voxel) that it provides per brain. For both experiment types,
we will build several SVM classifiers (named Classifier 1, Classifier 2, etc.) that differ solely by
class design (i.e., how the particular population for the classifier is constructed or defined) – we
will refer to the ROI-based and voxel-based instances of Classifier 1 as Classifier 1R and Classifier
1V, respectively. For the V case only, we will additionally perform a statistical paired t-test for
comparison, using the same sample set as the SVM classifier we are comparing it with.

8
See www.loni.ucla.edu/ADNI/Data/ADNI Data.shtml. ADNI image correction steps include Grad-

warp, N3, and scaling for gradient drift. As suggested by the above ADNI website, we sought image files
having “N3” and “scaled” in the file name.

58

4.3.3 Procedure for initial classifier training for AD/MCI/Control data

For AD/MCI/Control data, for training of the initial SVM classifier (i.e., the classifier prior
to potentially subsequently applying feature selection on it), we used the experimental procedure
specified below – notice that fundamentally it is an extension of our standard procedure (Sec.
2.4.1) so as to incorporate new aspects appropriate for this data, such as the treatment of age as
a confounding variable. For a given participant, image data may be available for multiple visits
– however, note that the procedure is restrictive in that every “sample” (exemplar) input for
training the SVM classifier shall not combine data from multiple visits (for a given participant)
– consequently each sample does only have a single age associated with it. Also note that the
procedure does ensure that a given participant contributes a sample (or samples) to either the
training set or the test set but not both – there is a set of training participants, from which the
set of training images (samples) are obtained, and likewise there is a set of test participants, from
which the set of test images (samples) are obtained.

Let Pc be the set of participants in class c ∈ C ≡ {1, . . . , k} where k is the number of
classes.9

Step 1. Prepare training set and test set: For each c ∈ C, Pc is randomly split 90%-10%
into a non-heldout (training) set Pc,nh and a heldout (test) set Pc,h.

Step 2 (optional). Age-match: As per the single-age-per-sample restriction stated above, we
produce subsets Pc,nh,a ⊂ Pc,nh ∀c ∈ C such that each sample in Pc,nh,a is “age-matched”
(i.e. age-separated by no more than one whole year) to a unique sample in each of the other
(i.e. C\c) classes. Establishing this tight age correspondence between classes in the training
set contributes to mitigating the confounding effect of age (with a second contributor being
our “adjust feature values for age” step discussed below), as well as makes the training
data readily suitable for a statistical paired t-test (with which we compare our methods).
Upon matching, to utilize any non-matched (leftover) samples of the non-heldout set, we
move them to the heldout set. Subsequently, as in Ch. 2 (and in (3)), let X and X̄ denote
the non-heldout (training) and heldout (test) set of samples (as opposed to participants)
respectively.

Step 3. Remove constant features: Features constant across the non-heldout samples (in
X) are removed from all (non-heldout and heldout) samples.

Step 4. Adjust feature values for age: This step uses a basic approach that aims to remove
the confounding effect of age from the data, prior to classification. For each feature m,
first, model the feature value as a function of age a by computing the least-squares-fit line
lm(a) ≡ α1a + α2 through the points (ai, xi,m) where the index i traverses the non-heldout
samples, and for ith such sample (with age ai) the value of feature m is xi,m. Next, using
this line (i.e., α1 and α2 computed for feature m), for each (heldout or non-heldout) sample
adjust xj,m (with j denoting the sample index) by subtracting lm(aj) ≡ α1aj + α2.

Step 5. Normalize: For each feature m, compute the minimum value minnh and the
maximum value maxnh for the feature across non-heldout samples, and normalize the
feature’s value vj for every (heldout and non-heldout) sample j by setting it to (vj −
minnh)/(maxnh−minnh). This normalizes the non-heldout set’s feature values to the [0,1]
range, and the heldout set’s feature values to the [0,1] range.

Step 6. Train a classifier as described by Steps 2-4 of our “Experimental Procedure for the
Initial Classifier Training” in Ch. 2 (and in (3)).

9
While we are stating the procedure for suitability with any number of classes, note that set C is

{±1} for our experiments herein.

59

4.3.4 Classifier 1: Control-AD123 classifier

Using the “initial classifier training procedure” (cf. Sec. 4.3.3), we build the Control-AD
classifier discussed in Sec. 4.1, herein referred to as Classifier 1, using only a single, CDR=0
image for Control subjects and all available CDR≥ 1 images for “AD123” subjects (who are, by
definition, the AD subjects with at least one visit having a CDR of 1, 2, or 3). Note that AD
subjects who start and stay at CDR=0.5, and thus are perhaps too MCI-like throughout their
visits, are excluded from this Control-AD classifier. Recall from Sec. 4.3.2 that we will refer
to distinct classifiers “Classifier 1R” and “Classifier 1V”, corresponding to the ROI-based and
voxel-based cases for Classifier 1 respectively.

Since all MCI participants in our analyses herein have a CDR of 0.5 at initial visit, one
interesting question for early diagnosis of AD is as follows.

Q1: Using (classifying) an MCI participant’s initial visit alone, how well does Classifier 1
predict whether this MCI participant will experience a rise in CDR (i.e. a “conversion-by-CDR”,
suggesting possible conversion to AD)? In our experiments below, this is one of the questions we
will address.

4.3.4.1 Classifier 1R: features are ROI-based

Several results are shown for Classifier 1R in Table 4.1. With the test set being somewhat
class-balanced with respect to the number of samples (76 Controls, 57 ADs), and the two class-
specific test set misclassification rates being close to each other (0.07 for Controls, 0.12 for ADs),
in this particular experiment the overall test set misclassification rate is a fairly good indicator
for this entire test population – note that this rate (0.09) is low, and thus we can say Classifier 1R
performs quite well and confidently proceed to characterizing our MCI data with this classifier
throughout this chapter.

Note that answering Q1, for Classifier 1R, involves a special classification – an AD-Control
classifier that was trained without using people with MCI is used to classify people with MCI.
Accordingly, for this special classifier, we can define “misprediction” intuitively as an MCIncc
person classified as AD or an MCIcc person classified as Control. Then, for Classifier 1R, the
answer to Q1 is: not well at all. Table 4.1 states that the “misprediction” rate for 252 MCI
participants (209 MCIncc, 43 MCIcc) is high (0.36), and thus a better early diagnosis system is
needed than 1R alone.

Since 1R gave high accuracy for Control and AD data, we now highlight the brain regions
that MFE selected based on this classifier. Listed under 1R in Table 4.1, the circle on the MFE
test set error graph indicates that ten out of 101 brain regions were selected using MFE, listed
above the graph (in order of elimination). Entorhinal cortex and hippocampus, which are well-
published biomarkers for AD, were found by MFE to be the 4th and 5th most discriminating for
the disease among the 101 brain regions. As in Ch. 2 (and (3)), the graphs show MFE performed
well: the MFE/MFE-slack test set error curve trend is again flat; a large percentage of features is
eliminated without a big change in classification accuracy relative to the initial (pre-elimination)
classifier; and MFE again outperformed RFE.

4.3.4.2 Classifier 1V: features are voxel-based

Recall that the features used by our voxel-based SVM classifiers herein, including this
first voxel-based classifier named Classifier 1V, are the voxel intensities of the three types of
smoothed and subsampled RAVENS maps (GM, WM, ventricles). For such classifiers, we created
the RAVENS subsample via skipping five RAVENS voxels along each of the three axes – as
described in Appendix B.0.1, with the (I, J,K) associated with skips of five being equal to
(6, 6, 6), each RAVENS map is exhaustively broken up into 216 subsamples. In conjunction
with the exhaustive subsampling approach, in Appendix B.0.1 we introduced the “hierarchical

60

CLASSIFIER 1R CLASSIFIER 2Ra CLASSIFIER 2Rb
Control-AD123 MCIncc-MCIcc MCIncc-MCIcc

features 101 101 101
·training 204 (102,102) 273 (228,45) 88 (44,44)

·age-matching yes no yes
·test (71|5 0.07, 7|50 0.12) (24|1 0.04, 2|3 0.4) (140|69 0.33, 3|3 0.5)
·error 0.09 0.13 0.33

MCI (ncc,cc) (209,43) 0.36 - -
MFE

regions
middle frontal gyrus R

lateral front-orbital gyrus R
medial frontal gyrus L

lingual gyrus L
postcentral gyrus L
entorhinal cortex L

hippocampal formation L
thalamus L
amygdala L
amygdala R

margin 0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

number of features retained (starting at 101)

m
ar

gi
n

RFE
MFE/MFE−slack

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

number of features retained (starting at 101)

m
ar

gi
n

RFE
MFE/MFE−slack

error 0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

number of features retained (starting at 101)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
MFE/MFE−slack

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of features retained (starting at 101)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

RFE
MFE/MFE−slack

Table 4.1. Results for ROI-based Classifiers 1R and 2R.

61

MFE (H-MFE)” feature elimination procedure that is simply a series of steps where each step
simply re-groups multiple feature subsets provided by the previous step (and then applies MFE
on each resulting group), with the initial step’s feature subsets being the subsamples’ individual
MFE-selected feature sets. However, herein we do not give results for H-MFE, i.e. the Classifier
1V results we will discuss are only based on a single one subsample among the 216. Several
1V results are shown in Table 4.2. First, the test set misclassification rate (0.08) of the initial
(pre-elimination) classifier is low, and very close to the rate found above for the ROI-based case
(0.09, cf. Sec. 4.3.4.1), and thus, as in the ROI-based case we are able to confidently proceed
to characterizing our MCI data with this Control-AD classifier (1V) throughout this chapter.
Second, the graphs (Table 4.2) show MFE again performed well: the MFE/MFE-slack test set
error curve trend is again flat; a large percentage of features is eliminated without a big drop from
the accuracy of the initial classifier. In addition, a slow drop in training set margin during MFE
is observed. Third, Fig. 4.2 shows the brain regions selected by MFE (i.e. regions discriminating
between AD and Control).

CLASSIFIER 1V
Control-AD123

features 21,633
·training 144 (72,72)

·age-matching yes
·test (105|4 0.04, 7|20 0.26)
·error 0.08

MCI (ncc,cc) (168|62 0.27, 27|22 0.55) 0.32

margin 0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

number of features retained (starting at 21633)

m
ar

gi
n

MFE/MFE−slack

error 0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of features retained (starting at 21633)

te
st

 s
et

 c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

MFE/MFE−slack

Table 4.2. Results for voxel-based Classifier 1V.

Next, we built Classifier 1Vb whose results are shown in Table 4.3. Classifier 1Vb differs
from Classifier 1V in that 1Vb only used the gray matter RAVENS image and a single subsample
among a total of eight (resulting in 84,627 features) whereas 1V had used all three RAVENS im-
ages and a single subsample among a total of 216 (resulting in 21,633 features). As shown by the
1Vb results in Table 4.3, in this particular experiment instance the use of a smaller subsampling
factor (producing a larger number of features) did not lower the test set misclassification rate.

62

Fig. 4.2. Regions found by MFE with Classifier 1V.

CLASSIFIER 1Vb
Control-AD123

features 84,627
·training 144 (72,72)

·age-matching yes
·test (108|1, 10|17)
·error 0.08

Table 4.3. Results for voxel-based Classifier 1Vb.

63

55 60 65 70 75 80 85 90
−2

−1.5

−1

−0.5

0

0.5

1

1.5

55 60 65 70 75 80 85 90 95
−1.5

−1

−0.5

0

0.5

1

1.5

converters−by−CDR
nonconverters−by−CDR

(a) Phenotype score vs. age, for MCI converters-by-CDR (MCIcc) and nonconverters-by-CDR
(MCIncc).

55 60 65 70 75 80 85 90
−2

−1.5

−1

−0.5

0

0.5

1

1.5

55 60 65 70 75 80 85 90 95
−1.5

−1

−0.5

0

0.5

1

1.5

converters−by−CDR
nonconverters−by−CDR

(b) Fitted phenotype score vs. age, for MCI converters-by-CDR (MCIcc) and nonconverters-by-CDR
(MCIncc).

Fig. 4.3. Trajectory results for voxel-based Classifier 1V.

64

4.3.5 Classifier 2: MCIncc-MCIcc (nonconverters-by-CDR vs. converters-by-CDR)

Sec. 4.3.4 showed that Classifier 1 alone is not sufficient for predicting (possible) conversion
from MCI to AD in the conversion-by-CDR sense using an MCI participant’s initial visit alone.
However, recall that Classifier 1 did give high accuracy (91% for ROI-based, 92% for voxel-
based) for Control and AD data, and thus the poor prediction performance of Sec. 4.3.4 for
MCI resulting from CDR-driven categorization is attributable to: a) the CDR values being noisy
and/or b) a switch for an MCI participant from 0.5 to 1 obviously not necessarily meaning an
actual conversion from MCI to AD. Recall that in fact half of all participants clinically labeled as
AD at initial visit have a CDR of 0.5 at that visit, just as all MCI participants do at their initial
visit, which, again, stresses the inherent complexity of the AD/MCI/Control classification (and
diagnosis) problem. Consequently, to more closely investigate the classification problem for MCI
participants in particular, and the role of CDR for that task, as well as to evaluate our MFE
method for this particular case, first we built an MCI-specific classifier using the conversion-by-
CDR approach (cf. 4.1 of prior works such as (16; 51; 71), which we refer to as Classifier 2 –
recall that this classifier is a stand-alone classifier not built in-tandem with results from another
classifier such as Classifier 1. After evaluating Classifier 2 in this section, in the next section
we will build Classifier 3, our novel classifier which, unlike Classifier 2, is built in-tandem with
Classifier 1 so as to utilize the concept of conversion-by-trajectory.

4.3.5.1 Classifier 2R: features are ROI-based

As shown in Table 4.1, Classifiers 2Ra and 2Rb were built, without and with age-matching
respectively. With age-matching, notice from the figure that the training set for 2Rb is class-
balanced but only 44 training subjects per class were available (which is less than half the number
used for Classifier 1R), whereas, without age-matching for 2Ra the number of available class 1
subjects (MCI “nonconverters-by-CDR”) rises to 228 – notice from the figure that the training
set for 2Ra is thus very class-imbalanced. Test misclassification rate was quite high for both of
these classifiers – for Classifier 2Rb it was high for both classes, whereas in 2Ra it was high only
for class 2 (MCI “converters-by-CDR”). Since the features used in Classifier 2R are the same ones
used in Classifier 1R which did give high accuracy in that case (for Control and AD participants),
the fundamental weakness of Classifier 2R is perhaps not the quality of the features but rather
that Classifier 2R is driven by an MCI categorization based on CDR measurements which may
be noisy. To address these open questions, and the fact that these results show that Classifier
2R alone, just like Classifier 1R alone, is not sufficient for predicting conversion from MCI to
AD using an MCI participant’s initial visit alone, we are motivated to proceed to our above-
mentioned diagnosis approach wherein, again, we will use Classifier 1R to obtain trajectories to
be used to build Classifier 3R (which will thus serve in-tandem with Classifier 1R).

4.3.6 Classifier 3: MCInct-MCIct (nonconverters-by-trajectory vs. converters-by-
trajectory)

We would like to only use a single visit for a test MCI individual in order to diagnose
whether or not the individual will convert to AD. Note that this aim is very closely related to
Question 1. Based on Sec. 4.1, our procedure for this particular type of diagnosis is as follows:

Step 1. Build Classifier 1 using the procedure in Sec. 4.3.3.

Step 2. Generate two MCI subgroups: Use Classifier 1 to calculate a phenotype score for
each of the available longitudinal images of the population of training MCI subjects, and
break up this population into the MCIct and MCInct subgroups as described by Sec. 4.1.

Step 3. Build Classifier 3: Again using the training procedure of Sec. 4.3.3, build the
MCInct-MCIct classifier, herein referred to as Classifier 3.

65

Step 4. To diagnose a test individual, classify him/her using Classifier 3. If he/she is
classified as MCIct, the diagnosis is that he/she will convert to AD; otherwise the diagnosis
is that he/she will not convert to AD.

Although this particular diagnosis procedure is clearly suitable for MCI individuals, let us now
discuss whether it is also suitable for any individual. For people with AD and healthy people,
clearly all that the procedure can really declare is whether the person is (a) more like MCI people
who will convert to AD or (b) more like MCI people who will not convert to AD. Therefore, clearly
it is not a complete procedure for declaring whether a person will convert to AD (or has AD).
However, the procedure is useful for also a healthy (non-MCI) person because clearly one should
certainly expect almost all healthy people to be classified as MCInct rather than MCIct. On the
other hand, it is not reasonable to expect almost all people with AD to be classified as MCIct by
this procedure. One reason is, as discussed in Sec. 4.1 a very large percentage of all AD and MCI
subjects (half of all AD and big majority of all MCI) do exhibit similar characteristics over time
such as a non-varying CDR of 0.5 over time. Nevertheless, in Sec. 4.3.6.1 and Sec. 4.3.6.2 we
will evaluate the above diagnosis procedure for people with AD (in addition to MCI and healthy
people).

Note again that the above diagnosis procedure essentially serves to predict whether a
person will be AD in the future. To diagnose whether a person has AD at present, recall that
Classifier 1 can be used but it is, again, by design clearly more reliable for people with AD and
healthy people than people with MCI. For an improved diagnosis procedure to address this issue,
an additional component can be introduced into our above diagnosis procedure. The component
would employ a new classifier, which would be similar to Classifier 3 in that it would be based on
the trajectories, but dissimilar in that this time it would produce the two MCI subgroups based
on a new criterion that takes into account also the trajectories of the training individuals with
AD. The new procedure’s AD diagnosis can then be combined with the AD diagnosis of Classifier
1 (which classifies an individual as Control or AD) – for this, basic voting or a more sophisticated
ensemble learning approach can be employed. Alternatively, more than two subgroups can be
produced, to then build a multiclass classifier.

4.3.6.1 Classifier 3R: features are ROI-based

Notice from Table 4.4 that we have built Classifiers 3Rc and 3Rd to correspond to Classi-
fiers 2Ra and 2Rb we discussed above in Sec. 4.3.5, using the same features – that is, notice that
Classifier 3Rd was trained under age-matching using 44 samples per class (just as in Classifier
2Rb), and Classifier 3Rc due to no age-matching was trained with several times as many class 1
samples as the 45 class 2 samples (just as in Classifier 2Ra). Comparing test set misclassification
rates on a class-by-class basis, we see that Classifier 3Rd’s rates were 0.28 for class 1 and 0.29
for class 2, whereas the rates of its counterpart Classifier 2Rb were much higher: 0.33 for class
1 and 0.5 for class 2. Similarly comparing Classifier 3Rc to 2Ra, we see that the rates 0.08 and
0.25 of Classifier 3Rc are overall better than the rates of 0.04 and 0.4 of Classifier 2Ra. Thus
we can perhaps conclude that our novel in-tandem classification approach, involving two classi-
fiers (1R and 3R), has successfully introduced an improvement towards solving the problem of
predicting conversion from MCI to AD using an MCI participant’s initial visit alone. In fact, to
see that the magnitude of the improvement is perhaps bigger than implied by the above rates
alone, let us now consider our Classifiers 3Ra and 3Rb also shown in Table 4.4. These two
classifiers, with larger training set sizes than 3Rc and 3Rd, were generated for our in-tandem
classification procedure – more specifically: 1) to obtain the 44 age-matched sample pairs with

66

which to build 3Rd, we simply omitted 54 of the 98 age-matched pairs of 3Rb (cf. Table 4.4)10,
and 2) to obtain the 118 class 1 samples and the 45 class 2 samples with which to build 3Rc,
we simply took all 118 class 1 samples of 3Ra (cf. Table 4.4) and omitted 99 of the 144 class 2
samples of 3Ra (cf. Table 4.4). With that said, notice in Table 4.4 that our approach is able to
achieve a test classification accuracy of 80%. (51) reported this same number for their methods
– this is a remarkable comparison between their methods and our method because their method
is actually based on a more sophisticated pre-classification image preparation procedure wherein
special features are extracted from RAVENS maps. In other words, while our features may be
less powerful, the above-demonstrated strength of our novel in-tandem classification procedure is
one way we are overcoming that limitation. Moreover, additionally using MFE, we may achieve
further improvements – for example, the test set error graphs for both our Classifiers 3a and 3b
show that the error rate drops below 0.2 under MFE/MFE-slack elimination.

In Table 4.4, the “test Control” row indicates that the big majority of Control subjects
were consistently classified as MCInct rather than MCIct, as anticipated by the above discussion
in Sec. 4.3.6. The “test AD123” row indicates that the big majority of AD123 subjects were
consistently classified as MCIct rather than MCInct – an expected result because recall that
these particular AD subjects have high CDR throughout their visits. Within the group of AD
subjects who had a CDR of 0.5 at first visit, the majority was classified the same as the ADs
above who had come in with a high CDR (i.e. the majority was classified as the MCI class that
is eventually on the AD side of the Control-AD boundary). Within this group of AD subjects,
some had gone to a higher CDR at a subsequent visit (i.e. the “test ADcc” row) whereas others
had stayed at 0.5 (i.e. the “test ADncc” row). Those with a subsequently high CDR resembled,
at first visit, those who had started with a high CDR more than did those who stayed at 0.5,
with respect to the above classification. In one experimental example (Classifier 3Ra) considering
those who had stayed at 0.5, while 72% were classified as the converting MCI class (a relatively
small number, perhaps due to it being difficult to discriminate between ADs and MCIs staying
at 0.5), the percentage is higher for AD subjects who either start at a high CDR (e.g. 94%) or
eventually increase to a high CDR (e.g. 77%).

10
After sorting the 98 age-matched sample pairs by age, first we omitted every other pair and then we

omitted 5 additional pairs so that 44 pairs would remain, so as to maintain the uniformity of the age
distribution of the remaining pairs.

67

C
L
A

S
S
IF

IE
R

3R
a

C
L
A

S
S
IF

IE
R

3R
b

C
L
A

S
S
IF

IE
R

3R
c

C
L
A

S
S
IF

IE
R

3R
d

M
C

In
ct

-M
C

Ic
t

M
C

In
ct

-M
C

Ic
t

M
C

In
ct

-M
C

Ic
t

M
C

In
ct

-M
C

Ic
t

fe
a
tu

re
s

10
1

10
1

10
1

10
1

·tr
a
in

in
g

26
2

(1
18

,1
44

)
19

6
(9

8,
98

)
16

3
(1

18
,4

5)
88

(4
4,

44
)

·a
g
e
-m

a
tc

h
in

g
no

ye
s

no
ye

s
·te

st
(9
|4

0.
3,

2|1
4

0.
13

)
(1

0|3
0.

23
,
4|1

2
0.

25
)

(1
2|1

0.
08

,
4|1

2
0.

25
)

(4
8|1

9
0.

28
,
20
|50

0.
29

)
·er

ro
r

0.
2

0.
24

0.
17

0.
28

te
st

A
D

n
c
c

11
|29

11
|29

18
|22

15
|25

te
st

A
D

1
2
3

1|1
5

2|1
4

3|1
3

3|1
3

te
st

A
D

c
c

3|1
0

4|9
6|7

4|9
te

st
C

o
n
tr

o
l

59
|17

61
|15

68
|8

62
|14

m
ar

gi
n

0
20

40
60

80
10

0
12

0
0

0.
00

5

0.
01

0.
01

5

0.
02

0.
02

5

0.
03

0.
03

5

nu
m

be
r

of
 fe

at
ur

es
 r

et
ai

ne
d

(s
ta

rt
in

g
at

 1
01

)

margin

R
F

E
M

F
E

/M
F

E
−

sl
ac

k

0
20

40
60

80
10

0
12

0
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

nu
m

be
r

of
 fe

at
ur

es
 r

et
ai

ne
d

(s
ta

rt
in

g
at

 1
01

)
margin

R
F

E
M

F
E

/M
F

E
−

sl
ac

k

0
20

40
60

80
10

0
12

0
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

nu
m

be
r

of
 fe

at
ur

es
 r

et
ai

ne
d

(s
ta

rt
in

g
at

 1
01

)

margin

R
F

E
M

F
E

/M
F

E
−

sl
ac

k

0
20

40
60

80
10

0
12

0
0

0.
02

0.
04

0.
06

0.
080.
1

0.
12

0.
14

0.
16

nu
m

be
r

of
 fe

at
ur

es
 r

et
ai

ne
d

(s
ta

rt
in

g
at

 1
01

)

margin

R
F

E
M

F
E

/M
F

E
−

sl
ac

k

er
ro

r
0

20
40

60
80

10
0

12
0

0

0.
050.

1

0.
150.

2

0.
250.

3

0.
350.

4

0.
45

nu
m

be
r

of
 fe

at
ur

es
 r

et
ai

ne
d

(s
ta

rt
in

g
at

 1
01

)

test set classification error rate

R
F

E
M

F
E

/M
F

E
−

sl
ac

k

0
20

40
60

80
10

0
12

0
0

0.
050.

1

0.
150.

2

0.
250.

3

0.
350.

4

0.
45

nu
m

be
r

of
 fe

at
ur

es
 r

et
ai

ne
d

(s
ta

rt
in

g
at

 1
01

)

test set classification error rate

R
F

E
M

F
E

/M
F

E
−

sl
ac

k

0
20

40
60

80
10

0
12

0
0

0.
050.

1

0.
150.

2

0.
250.

3

0.
350.

4

0.
45

nu
m

be
r

of
 fe

at
ur

es
 r

et
ai

ne
d

(s
ta

rt
in

g
at

 1
01

)

test set classification error rate

R
F

E
M

F
E

/M
F

E
−

sl
ac

k

0
20

40
60

80
10

0
12

0
0

0.
1

0.
2

0.
3

0.
4

0.
5

nu
m

be
r

of
 fe

at
ur

es
 r

et
ai

ne
d

(s
ta

rt
in

g
at

 1
01

)

test set classification error rate

R
F

E
M

F
E

/M
F

E
−

sl
ac

k

T
ab

le
4.

4.
R

es
ul

ts
fo

r
R

O
I-

ba
se

d
C

la
ss

ifi
er

3R
.
P
ar

t
1

of
2

–
se

e
T
ab

le
4.

5
fo

r
pa

rt
2.

68

C
L
A

S
S
IF

IE
R

3R
a

C
L
A

S
S
IF

IE
R

3R
b

C
L
A

S
S
IF

IE
R

3R
c

C
L
A

S
S
IF

IE
R

3R
d

M
C

In
ct

-M
C

Ic
t

M
C

In
ct

-M
C

Ic
t

M
C

In
ct

-M
C

Ic
t

M
C

In
ct

-M
C

Ic
t

M
F
E

re
gi

on
s

la
te

ra
l
v
en

tr
ic

le
L

p
re

ce
n
tr

a
l
g
y
ru

s
R

g
lo

b
u
s

p
a
ll
a
d
u
s

L
m

id
d
le

fr
o
n
ta

l
g
y
ru

s
R

g
lo

b
u
s

p
a
ll
a
d
u
s

L
fr

o
n
ta

l
lo

b
e

W
M

R
p
u
ta

m
en

R
su

p
er

io
r

fr
o
n
ta

l
g
y
ru

s
R

su
p
er

io
r

fr
o
n
ta

l
g
y
ru

s
L

su
b
th

a
la

m
ic

n
u
cl

eu
s

L
b
ra

in
st

em
ca

u
d
a
te

n
u
cl

eu
s

R
m

ed
ia

l
fr

o
n
t-

o
rb

it
a
l
g
y
ru

s
L

p
o
st

er
io

r
li
m

b
o
f
in

te
rn

a
l
ca

p
su

le
*

su
b
th

a
la

m
ic

n
u
cl

eu
s

L
p
o
st

ce
n
tr

a
l
g
y
ru

s
R

p
o
st

ce
n
tr

a
l
g
y
ru

s
R

h
ip

p
o
ca

m
p
a
l
fo

rm
a
ti

o
n

L
p
o
st

er
io

r
li
m

b
o
f
in

te
rn

a
l
ca

p
su

le
*

a
m

y
g
d
a
la

L
a
m

y
g
d
a
la

R
p
o
st

ce
n
tr

a
l
g
y
ru

s
R

m
id

d
le

fr
o
n
ta

l
g
y
ru

s
L

a
m

y
g
d
a
la

R
m

ed
ia

l
o
cc

ip
it

o
te

m
p
o
ra

l
g
y
ru

s
L

in
fe

ri
o
r

fr
o
n
ta

l
g
y
ru

s
R

a
n
g
u
la

r
g
y
ru

s
L

co
rp

u
s

ca
ll
o
su

m
m

ed
ia

l
fr

o
n
t-

o
rb

it
a
l
g
y
ru

s
L

fo
rn

ix
R

a
m

y
g
d
a
la

R
su

p
er

io
r

o
cc

ip
it

a
l
g
y
ru

s
L

su
p
er

io
r

te
m

p
o
ra

l
g
y
ru

s
R

h
ip

p
o
ca

m
p
a
l
fo

rm
a
ti

o
n

L
a
n
g
u
la

r
g
y
ru

s
L

li
n
g
u
a
l
g
y
ru

s
R

*
in

c.
ce

re
b
ra

l
p
ed

u
n
cl

e
R

m
ed

ia
l
fr

o
n
ta

l
g
y
ru

s
R

m
ed

ia
l
o
cc

ip
it

o
te

m
p
o
ra

l
g
y
ru

s
L

a
n
te

ri
o
r

li
m

b
o
f
in

te
rn

a
l
ca

p
su

le
R

co
rp

u
s

ca
ll
o
su

m
a
m

y
g
d
a
la

R
cu

n
eu

s
R

*
in

c.
ce

re
b
ra

l
p
ed

u
n
cl

e
L

T
ab

le
4.

5.
R

es
ul

ts
fo

r
R

O
I-

ba
se

d
C

la
ss

ifi
er

3R
.
P
ar

t
2

of
2

–
se

e
T
ab

le
4.

4
fo

r
pa

rt
1.

69

4.3.6.2 Classifier 3V: features are voxel-based

We built Classifier 3Vb (with tens of thousands of voxel-based features) which is similar to
the above Classifier 3Rb (with 101 ROI-based features) in that both classifiers were built with a
similarly sized training set of age-matched pairs (95 pairs (Table 4.6) and 98 pairs, respectively).
As shown in Table 4.6, the voxel-based classifier has achieved a much lower test set misclassifi-
cation rate (0.13) than its ROI-based counterpart (0.2). Note that 0.13 is lower than also the
MFE-achieved less-than-0.2 rate of the ROI-based case discussed above in Sec. 4.3.6.1. Thus,
the use of voxel-based features along with our trajectory-based approach (i.e. Classifier 3Vb) has
successfully introduced further improvements (beyond the improvements in Sec. 4.3.6.1) towards
solving the problem of predicting conversion from MCI to AD using an MCI participant’s initial
visit alone. Moreover, one or both of the following two ways may further reduce 0.13: 1) use of
MFE on 3Vb, 2) recall that 3Vb used a single subsample among the 216 RAVENS subsamples
we created, and thus, based on our past experimental experience with H-MFE we expect that the
utilization of all 216 subsamples via the use of H-MFE (cf. Appendix B.0.1) to either maintain
the error rate or lower it further. In this way, the biomarkers would be obtained through a
consideration of all available brain voxel intensities (i.e. RAVENS voxel-based features).

By contrast, recall that the alternative “conversion-by-CDR” approach for prediction for
MCI patients (cf. 4.1), proposed by prior works e.g. (51), is a relatively simplistic approach
that considers the group of MCI participants as two subgroups based only on whether CDR stays
as 0.5 over time or increases. For prediction for MCI patients based on the conversion-by-CDR
approach, (51) reported a maximum accuracy of 81.5%, with accuracy fluctuating in the 75−80%
range, whereas, for prediction for MCI patients (i.e. the same aim) our system (Classifier 3Vb)
achieved 87% accuracy with voxel-based features (and earlier our Classifier 3R achieved 80%
accuracy with ROI-based features, which increased to 83% using MFE (cf. Sec. 4.3.6.1 and
Table 4.4)).

CLASSIFIER 3Vb
MCInct-MCIct

features 22,063
·training 190 (95,95)

·age-matching yes
·test (15|2 0.12, 2|12 0.14)
·error 0.13

test ADncc 19|28
test AD123 0|5
test ADcc 5|8

test Control 94|15

Table 4.6. Results for voxel-based Classifier 3V.

As indicated by the results in the “test AD” and “test Control” rows in Table 4.6, our
earlier comments for such rows (cf. Sec. 4.3.6.1) again apply.

4.3.7 Comparison with statistical paired t-test using SPM5

Given two populations (groups) with members (samples) paired with each other, a sta-
tistical paired t-test is useful for finding significant statistical differences between (the means
of) the two groups. While statistical tests such as the paired t-test are useful for finding group

70

differences, pattern classification methods, such as SVMs herein, have the additional benefit of
attempting to help diagnose a particular individual. One way that a statistical test can be com-
pared with SVM-based classification is with respect to prediction performance on a test set. One
approach would be to build an SVM classifier, say Classifier 4, using the brain voxels (features)
that were selected as significant by the paired t-test. Using the same training and test popula-
tions for both this t-test and one of our earlier SVM classifiers (in the above sections), the test
set misclassification rate of Classifier 4 can be compared with that of (a) one of our classifiers
(given in a previous section above) and/or (b) one of our MFE results (given in a previous sec-
tion above). To that end, we performed a paired t-test on the population of 72 age-matched
Control-AD pairs of Table 4.2. Below we will compare this t-test’s results with our above pre-
and post-elimination results for Classifier 1V. We will perform the voxelwise paired t-test on
the entirety of the smoothed RAVENS map without subsampling, whereas recall that our above
voxel-based results for our methods were based on a single subsample of the smoothed RAVENS
maps. In this way, the comparison is somewhat favorably biased towards the t-test.

71

F
ig

.
4.

4.
P
ai

re
d

t-
te

st
re

su
lt

s
fo

r
A

D
/C

on
tr

ol
gr

ou
ps

fo
r

gr
ay

m
at

te
r:

al
l
p

va
lu

es
(u

nc
or

re
ct

ed
).

72

The p-values found by the t-test are illustrated by Fig. 4.4. As the colorbar indicates,
the voxels with statistical significance level p< 0.05 are the purple and black voxels – there
are numerous such voxels. Although a significance level as high as 0.05 is an accepted level in
general (for generic data), for spatial data it is common practice to assess significance via applying
additional, stringent measures based on the spatial nature of the data, such that the results for the
voxel set as a whole (a 3d brain in this case) can be taken into account. We now briefly overview
three ways to do so – these approaches are employed by the widely used SPM5 (Statistical
Parametric Mapping) method and software which we used for generating our statistical test
results: 1) The first approach is to simply declare as significant only the voxels that have a much
lower p-value than 0.05, such as p< 0.001. Note that no actual spatial processing/correction
of p-values is employed in this case, simply the threshold is lowered – herein we refer to this
approach as the “uncorrected p-values” approach. 2) A second approach is based on asking a
question about a family of voxelwise statistics and the risk of error that we are prepared to accept
referred to as the familywise error (FWE) which is the likelihood that the family of voxels could
have arisen by chance. For this approach, to control FWE, SPM5 uses random field theory –
i.e. the probability of ever reporting a false positive is controlled. 3) A third approach is to
control the false discovery rate (FDR) which is the expected proportion of false positives among
those voxels that are declared positive. Note that FDR does not control the probability of ever
reporting a false positive (brain) voxel, and false positives will be detected – they are simply
controlled so that they do not make up more than a percentage of the discoveries (positives).

Let us now consider the first approach above. Figures 4.5 and 4.6 illustrate in red the voxels
with p < 0.0001 (uncorrected) for the smoothed RAVENS gray matter maps and the smoothed
RAVENS white matter maps, respectively. The background image shown is the above-mentioned
segmented Atlas2. We then built an SVM classifier only using as features all of these GM and
WM red voxels combined – more specifically, to achieve lower feature dimensionality for this
SVM experiment, we only used one of eight subsamples – in this way, the number of features
was 34,090. For this classifier, 4 of 109 Control and 7 of 27 AD test samples (images) were
misclassified, i.e. the misclassification rate was 0.08, same as achieved by SVM and MFE in
previous sections on the same training population.

73

F
ig

.
4.

5.
P
ai

re
d

t-
te

st
re

su
lt

s
fo

r
A

D
/C

on
tr

ol
gr

ou
ps

fo
r

gr
ay

m
at

te
r:

p
<

0.
00

01
un

co
rr

ec
te

d

74

F
ig

.
4.

6.
P
ai

re
d

t-
te

st
re

su
lt

s
fo

r
A

D
/C

on
tr

ol
gr

ou
ps

fo
r

w
hi

te
m

at
te

r:
p

<
0.

00
01

un
co

rr
ec

te
d

75

For the third, FDR-based inference approach above, Fig. 4.7 illustrates the voxels for 1)
an FDR-corrected p-level of 0.05 and for 2) a voxel extent (i.e. input to FDR for cluster size)
of k = 5 for the FDR analysis, for the smoothed RAVENS gray matter maps. Yellow indicates
higher significance than red - an ortho view of the result is shown in Fig. 4.8. For the AD and
Control groups, we thus see that for this particular data (i.e. smoothed RAVENS gray matter
maps) the FDR-corrected 0.05-level regions (Fig. 4.7) do not differ much from the purple and
black uncorrected 0.05-level regions shown in Fig. 4.4. In comparison, Fig. 4.5, which, due
to no use of correction, properly illustrated the case of a much lower p-threshold than 0.05, is
showing fewer brain regions as significant, suggesting that the first inference approach may be
more suitable than the third in this case.

As mentioned earlier, it is desirable to perform H-MFE experiments with our voxel-based
RAVENS features because classification (or more precisely, a series of classifications and MFE
invocations) based on all available voxel intensities (rather than a single subsample) would provide
a tighter (and thus a more fair) comparison between our methods and other methods that use all
voxels. Again, our comparison herein with a statistical test (SPM5) (which, unlike our methods,
here is using all voxels) is favorably biased towards the statistical test as described above. Note,
however, that our methods have a clear general advantage due to the fact that our SVM training
(cf. Ch. 4) spans the entire brain, thus capturing voxel correlations throughout the brain at
initial analysis (i.e. initial SVM classification prior to potential subsequent feature elimination),
whereas the initial step of voxelwise statistical tests is to analyze the voxels individually without
capturing their correlations. Perhaps this advantage explains partly the fact that our methods
were able to achieve the same classification accuracy as SPM5 despite using many fewer voxels
overall.

76

F
ig

.
4.

7.
P
ai

re
d

t-
te

st
re

su
lt

s
fo

r
A

D
/C

on
tr

ol
gr

ou
ps

fo
r

gr
ay

m
at

te
r:

F
D

R
-c

or
re

ct
ed

77

F
ig

.
4.

8.
P
ai

re
d

t-
te

st
re

su
lt

s
fo

r
A

D
/C

on
tr

ol
gr

ou
ps

fo
r

gr
ay

m
at

te
r:

F
D

R
-c

or
re

ct
ed

(o
rt

ho
)

78

4.4 Conclusions

Given T1-weighted MRI brain images for up-to-6 visits of a population of approximately
600 participants clinically labeled as Alzheimer’s Disease (AD), Mild Cognitive Impairment
(MCI), or neither (i.e. Normal Controls), we have generated region-segmented images and tissue-
specific volumetric density images (RAVENS images), which are morphometrically powerful 3d
images suitable for analyzing AD and MCI which cause atrophy in potentially numerous regions
of the brain. The use of density image voxel intensities as features provided a high-dimensional
feature space, and the use of normalized volumes of the brain-atlas-defined regions in the region-
segmented image provided a much lower-dimensional feature space. For the case of each space,
building a Control-AD SVM classifier, we showed that a previously unseen (“test”) AD or Control
participant can be correctly classified with 91-92% accuracy. This accuracy is essentially similar
to the accuracy reported by prior works for this particular classification task – in the subsequent
step (where features are eliminated for AD biomarker selection), clearly we do have one advan-
tage because prior works e.g. (16; 51) selected AD biomarkers based on the RFE method which
we showed is outperformed by our MFE method (cf. Ch. 2, Ch. 4, and (3)). For both of our
feature categories (i.e. ROI-based and voxel-based), using MFE we were able to eliminate the
vast majority of features without significantly lowering the accuracy, thereby identifying brain
regions as AD biomarkers with high accuracy. Moreover, we noted that several of the regions we
found are well-published biomarkers of the disease.

Next, we designed a novel diagnosis system, suitable mainly for MCI patients, that is able
to only use the first-visit MRI of the patient for diagnosing with high accuracy whether he/she
will convert to AD. This system utilized a novel “conversion-by-trajectory” concept, introduced
by this thesis, which is based on the movement, over time, of training MCI subjects in relation to
a (single, fixed) Control-AD classification decision boundary trained on MRI-based image data.
By contrast, the alternative “conversion-by-CDR” approach (cf. 4.1), proposed by prior works
e.g. (51), is a relatively simplistic approach that considers the group of MCI participants as
two subgroups based only on whether CDR stayed as 0.5 over time or increased. For the above
aim of early diagnosis at first visit for MCI patients, we generated results for both our system
and the alternative conversion-by-CDR approach. For prediction for MCI patients based on
the conversion-by-CDR approach, (51) reported a maximum accuracy of 81.5%, with accuracy
fluctuating in the 75− 80% range, whereas, for prediction for MCI patients (i.e. the same aim)
our system achieved 87% accuracy with voxel-based features (and 80% accuracy with ROI-based
features, which increased to 83% using MFE). We additionally evaluated the diagnosis capability
of our system on (the first-visit images of) AD and Control test participants and found expected
results: (1) the vast majority of these first-visit images of Control subjects were classified as
the MCI class that stays more Control-like than AD-like over time, (2) the vast majority of the
first-visit images of overall high-CDR AD subjects (i.e. AD subjects with a CDR of 1, 2, or 3
even at first visit) were classified as the MCI class that becomes more AD-like than Control-like
over time, and (3) within the group of AD subjects who had a CDR of 0.5 at first visit, the
majority was classified the same as the ADs above who had come in with a high CDR (i.e. the
majority was classified as the MCI class that is eventually on the AD side of the Control-AD
boundary). Within this group of AD subjects who initially had a CDR of 0.5, some went to a
higher CDR at a subsequent visit whereas others stayed at 0.5. Those with a subsequently high
CDR resembled, at first visit, those who had started with a high CDR more than did those who
stayed at 0.5, with respect to the above classification. In one example experiment considering
those who had stayed at 0.5, while 72% were classified as the converting MCI class (a relatively
small number, perhaps due to it being difficult to discriminate between ADs and MCIs staying
at 0.5), the percentage is higher for AD subjects who either start at a high CDR (e.g. 94%) or
eventually increase to a high CDR (e.g. 77%).

79

Lastly, we also made some performance comparisons between our methods and the widely
used voxelwise statistical testing approach (i.e., the SPM5 paired t-test herein), noting that our
methods have a clear general advantage due to the fact that our SVM training (cf. Ch. 4.3.2)
spans the entire brain, thus capturing correlations throughout the brain at initial analysis (i.e.
initial SVM classification prior to potential subsequent feature elimination), whereas the initial
step of voxelwise statistical tests is to analyze the voxels individually without capturing their
correlations.

4.5 Acknowledgement

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is
funded by the National Institute on Aging, the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB,
Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Cor-
poration, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli
Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La
Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer’s Association
and Alzheimer’s Drug Discovery Foundation, with participation from the U.S. Food and Drug
Administration. Private sector contributions to ADNI are facilitated by the Foundation for the
National Institutes of Health (www.fnih.org). The grantee organization is the Northern California
Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease
Cooperative Study at the University of California, San Diego. ADNI data are disseminated by
the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research
was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation.

80

Appendix A

Software we created

A.1 SVMcatalyst software

SVMcatalyst is our software tool for carrying out SVM classification and SVM-based
feature selection experiments that additionally provides the user with several types of convenient
and versatile functionality for/during the task of reading, interpreting, and organizing/managing
the image data of a large (or small) population of people who may both have multiple images
acquired over time (i.e. longitudinally) and multiple image types.

A.2 fv algorithm and tool for ventricle segmentation of CSF

A.2.1 fv algorithm

Illustrated by a single 2d slice in Fig. A.1(a), consider the problematic scenario where a 3d
brain image has been segmented into gray matter (green), white matter (brown), CSF (purple),
ventricles (blue), and background (black) but with a considerable number of true ventricle voxels
mislabeled as CSF.1

(a) Before. (b) After.

Fig. A.1. (a) Illustration of problematic scenario with ventricles partly mislabeled as CSF. (b)
Result of the fv algorithm for the problem.

1
As discussed in Sec. 4.2, this problematic scenario often arises as a result of using HAMMER to

segment CSF into ventricles and non-ventricle CSF.

81

To remedy this problem (so as to achieve a result as illustrated in Fig. A.1(b)), assuming
the voxels labeled as ventricle (denoted by set VI) have been labeled reliably, we have designed an
algorithm based simply on determining which voxels labeled as CSF (denoted by set CI) should
be instead labeled as ventricle – with Valg denoting this set, the fv (fill ventricle) algorithm
segments CI into Valg and a second set CF , and declares the true ventricles as VF = VI ∪ Valg

and the true CSF as CF . Since VI is assumed reliable, fv utilizes detection theory (hypothesis
testing) to detect the CI voxels that exhibit stronger VI characteristics than CI characteristics.
VI serves as the sample set for calculating parameter estimates for the multivariate Gaussian
probability density function f1(·) (associated with the hypothesis H1 that a voxel labeled as
CSF is actually a true ventricle voxel) – CI similarly serves for calculating parameter estimates
for f0(·) (associated with the competing hypothesis H0 that a voxel labeled as CSF is indeed
a true CSF voxel). Herein, we assumed the variates are uncorrelated with each other, i.e., the
covariance matrix is diagonal.

As illustrated by the figure, CSF roughly consists of three regions: 1) rw: CSF within
the cortex (i.e., union of ventricles (rw1

) and non-ventricle CSF (rw2
)), 2) rb: CSF below the

(lower-brain) cortex, 3) ra: CSF above (and surrounding) the cortex. rw is the most enclosed (by
gray and/or white matter, i.e. “GW”), rb is somewhat enclosed, and ra is (almost completely)
not enclosed. On this highly topological nature we base our sample value construction for the
two voxel populations (population 0 and 1) as follows. For a CI or VI voxel, the set of 26 rays
outward from the voxel can be partitioned, in the following anatomy- and topology-driven way,
into subsets R1, R2, R3, R4, R5 (in that order): before exiting the 3d image, 1) ray does not
encounter GW but encounters ventricle, 2) encounters neither, 3) encounters both but with the
restriction that the ventricle encounter precedes the GW encounter, 4) encounters GW but not
ventricle, 5) encounters both GW and ventricle but with the restriction that the GW encounter
precedes the ventricle encounter2. The number of rays in R2 (attribute a1) can help distinguish
rw and ra – we need additional attributes to distinguish rw1

(which we seek) from rb and rw2
.

Since we expect no VI voxels in rw2
whereas many in rw1

and potentially some in rb, the number
of rays in R1 ∪ R3, n1,3, has discrimination power, based on which we designed two attributes
(a2 and a3) as follows.

First, with a2, in addition to the use of n1,3 we aim to capture how far our sought true
ventricle voxels are from their enclosing GW – capturing this combination can be achieved, in
different ways for population 0 and 1, as follows. For “distance”, we simply use the average of the
distances from the voxel to its surrounding GW (note that only rays in R3∪R4 contribute to this
average), with the following constraint. Since VI is our model herein for true ventricle (as per
the reliability assumption), we expect a population 1 sample (voxel) to be already surrounded
by both other VI voxels (i.e., n1,3 is positive) and GW. Thus, note that the average distance (to
GW) for that voxel already achieves the combination, without imposing a special constraint. By
contrast, for a population 0 voxel, n1,3 is not likely to be positive, so we implement the constraint
that we shall artificially set the voxel’s average distance (to GW) to 0 in the event that the voxel’s
n1,3 is 0 – the idea is that a CI voxel v not being surrounded by any VI (ventricle) voxel is an
indicator that v should not contribute an actual positive distance to the average because this
number may then have a confounding effect during the hypothesis testing.

Second, with a3, we aim to capture that many rays through a true ventricle voxel will
encounter not only VI (ventricle) at one end but also GW at the other end. That is, while a2 was
based on distance (to GW) calculated in the same direction the ventricle (VI) was encountered,
a3 is based on distance (to GW) calculated in the direction opposite to the direction the ventricle
(VI) was encountered. The average distance is used.

2
Our sole reason for defining R5 is to make the partitioning exhaustive – we do not utilize R5 in the

algorithm.

82

For each voxel v ∈ CI , using the attribute vector x = [a1 a2 a3]
T for the voxel the

algorithm computes f0(x) and f1(x), and puts the voxel into Valg if f1(x) > f0(x), otherwise
puts the voxel into CF .

A.2.2 fv tool

The fv tool fv is a binary executable with usage given below. It can be compiled on
multiple platforms – for this thesis, it was only compiled and invoked on Linux.

Apart from the core fv algorithm described in Sec. A.2.1, the fv tool contains basic 3d
connected-components functionality as a user option, whereby the user may remove from the core
fv algorithm’s output ventricles (which is the set VF in Sec. A.2.1) any connected component no
larger than a user-specified threshold (in units of “number of voxels”) – see -r and -b below.

fv - fill ventricles
When a tissue-segmented image (with white matter=250, gray matter=150, ventricles=50,

CSF=10, background=0) is problematic due to some of its ventricular voxels having been set to
10 instead of 50, this program attempts to automatically remedy the problem. An output image
file will be created - the input image file will not be modified.

To see program usage info, invoke the program name by itself (without its arguments).
usage:

fv [-r threshold] [-b] [-v] [-f] [-c preextension name of comparison image file] <number of slices>
<number of rows> <number of columns> <directory> <pre extension name of input image file>

• Returns 0 if successful, 1 otherwise.

• User inputs that are optional (indicated above with square brackets []) must precede the
user inputs that are required (indicated above with < >). Enter required inputs in the order
shown.

• Your input image file needs to be in the directory you are specifying. The image must be
unsigned 8-bit integer.

• Your output image file will be written to that directory - its filename preextension will have
a trailing “ fv” appended to the one you are specifying for the input image. Output image
will be unsigned 8-bit integer.

• Use the -r option if you want to remove from the final ventricles any blob no larger than a
size (threshold, in units of “number of voxels”) you specify. Irrespective of the -r option,
use the -b option if you want to create an output image file in which the blobs that make
up the ventricles are enumerated starting at 1, prior to any blob removal.

• Use the -v option if you want to create an output image file only indicating the final ven-
tricles (set to 50).

• Use the -f option if you want an output image file to be created wherein the CSF voxels
switched by this program to become ventricle will be 100 in that image - that is, such image
(with “ beforeafter” in its filename) conveys the image appearance before and after.

• Use the -c option if you want to provide a reference segmented image (such as your manually
segmented image) to this program for a comparison of the program’s algorithm’s results
with this reference image, which is useful for algorithm validation. Requirements for your
reference image: 1) Each ventricle voxel value must be 50. 2) The reference image must
be unsigned 8-bit integer and in the same orientation as your input image. The following
numbers, separated by a single space, will be printed (to stdout) by the program in this order:

83

– B = Number of voxels that are ventricle in both your reference image and the program’s
output image.

– O = Number of voxels that are ventricle in the program’s output image but not in your
reference image.

– R = Number of voxels that are ventricle in your reference image but not in the pro-
gram’s output image.

– Sensitivity = B/(B+R).

A.3 STAMPS software

We created this software in collaboration with Dr. D. Bigler and published (7) which
describes STAMP, a software tool for automated MRI post-processing, and STAMPS, a soft-
ware tool for running STAMP on a supercomputer for drastically higher overall computational
efficiency, especially for a large population of subjects and their MR image data.

84

Appendix B

B.0.1 Exhaustive Subsampling Approach (ESA) and Hierarchical MFE (H-MFE)

ESA: Given a 3d array X, one subsample Si,j,k of X can be obtained as follows (using
Matlab syntax): Si,j,k = X((i + 1) : I : end, (j + 1) : J : end, (k + 1) : K : end) where:

- positive integers I − 1, J − 1, K − 1 are respectively the chosen number of skips for first,
second, third dimension (i.e. number of X elements skipped along a dimension for obtaining
consecutive elements of subsample S).1

- nonnegative integers i, j, k are respectively the chosen offsets from which point the
skipping will commence for first, second, third dimension.

The number of mutually exclusive subsamples Si,j,k that one would need to create to
exhaustively partition X into such subsamples is I · J ·K. The order in which ESA creates this
many subsamples is given by:

for i=0 to I-1
for j=0 to J-1
for k=0 to K-1
create Si,j,k

end
end
end

H-MFE: The first step of H-MFE is to perform MFE on each subsample, producing
feature subsets F

1

l
, l ∈ S

1 ≡ {1, . . . , I ·J ·K}, with the superscript denoting the step index. At the

second H-MFE step, based on a user-specified number (K) for exhaustively partitioning S
1 into

mutually exclusive subsets L1 ⊂ S
1
, . . . , LK ⊂ S

1, K new sets F
2

k
=

⋃
l∈Lk⊂S1

F
1

l
, k = 1, . . . , K

are formed, on which to perform MFE. The user may choose K such that each MFE instance
at the second step would eliminate from roughly as many features as each MFE instance in the
first step did, i.e. K may be chosen such that each F

2

k
set (to be automatically formed) would

have roughly as many features as each F
1

k
set did. H-MFE simply continues in this iterative

fashion until, at some step n, a single F
n

k
to be formed for the step (rather than the forming of

multiple such sets for the step) suffices in that the number of not-yet-eliminated features during
the overall H-MFE process (i.e. the number of features in F

n

k
) has now become small enough for

a single MFE instance to eliminate from, so as to not employ an additional (subsequent) H-MFE
step.

1
Note that I, J , K need not be equal, because the 3d array need not be a cube and may be a cuboid.

85

Appendix C

HAMMER method

For morphometric analysis of a population of brain MRIs, due to intra- and inter-person
anatomic variations a nonlinear method of image registration, rather than a linear (affine)
method, is considered essential. Thus, in our study of AD and MCI using brain MRIs, we
utilize the HAMMER nonlinear registration method (62), which we chose for several additional
reasons: First, for nonlinear spatial normalization (registration) of each individual to one refer-
ence image (3D brain atlas), the HAMMER tool is a freely available method designed for high
accuracy in anatomic correspondence. In this method, which is a hierarchical (coarse-to-fine)
matching algorithm, the objective function (in the optimization algorithm) is successively ap-
proximated by lower-dimensional smooth functions constructed to have significantly fewer local
minima. The method constructs them based on selecting driving anatomical features, represented
as distinct “attribute” vectors, for the “matching”. The aim is to highly reduce ambiguity in
finding correspondence. Second, HAMMER registered our data well and was stable and reason-
ably fast as a rigorous nonlinear method. (i.e. approximately 2 h per 3D image). Third, using a
fixed reference 3d brain atlas image that has been intricately pre-segmented into numerous (e.g.
100) anatomical regions, HAMMER is able to segment a subject’s MRI brain image into these
regions, via HAMMER registration – this enables region-specific volumetric measurements useful
for detecting brain atrophy typical for AD/MCI subjects. Fourth, for the brain MRI population
in our study, via the nonlinear registration the HAMMER software generates for each individual
a volumetric density map (a 3D image generated separately for each of three “tissues”: 1. gray
matter, 2. white matter, 3. ventricles), named “RAVENS tissue density map”, which is suitable
for overall morphometric analysis (such as atrophy detection for AD/MCI), more specifically as
follows. The RAVENS voxel value is a measurement of regional brain volume density describing
the individual’s original (pre-registration) 3D image, in the sense that a sum of an individual’s
RAVENS voxels in a given region is equivalent to the actual volume one would obtain for that
region (by counting the region’s pixels) in the individual’s pre-registration image. Of particular
interest, by adjusting the (volumetric) density of a tissue whenever the underlying nonlinear reg-
istration expands or contracts the brain geometry, the RAVENS map preserves the total amount
of tissue in any defined brain region, which sets it apart from volumetric density maps of other
methods. For example, a brighter RAVENS corpus colossum for person A than B means A
has a larger corpus colossum. The RAVENS approach (17; 18; 35; 63) has been validated for
voxel-based analysis (17) and applied to various studies e.g. (24). Of particular interest, (17)
supported that voxel-based SPM statistical analysis, which we perform herein for comparison
with our methods, can be performed on RAVENS maps.

86

Bibliography

[1] Alzheimer’s Disease Neuroimaging Initiative (ADNI), www.adni-info.org

[2] ADNI database, www.loni.ucla.edu/ADNI

[3] Y. Aksu, D. J. Miller, G. Kesidis, and Q. X .Yang, “Margin-Maximizing Feature Elimination
Methods for Linear and Nonlinear Kernel-Based Discriminant Functions”, IEEE Transactions
on Neural Networks, vol. 25, no.10, pp. 701-717, 2010.

[4] Y. Aksu, D. J. Miller, and G. Kesidis, “Margin-based feature selection techniques for support
vector machine classification,” in Proc. IAPR Workshop Cogn. Inf. Process., pp. 176-181,
2008.

[5] Y. Aksu, G. Kesidis, and D. J. Miller, “Scalable, efficient, stepwise-optimal feature elimination
in support vector machines,” in Proc. IEEE Workshop Mach. Learn. Signal Process., pp.75-
80, 2007.

[6] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data
Mining Knowledge Discovery 2 (2) pp.121-167, 1998.

[7] D. C. Bigler, Y. Aksu, D. J. Miller, Q. X. Yang, “STAMPS: Software Tool for Automated
MRI Post-processing on a supercomputer”, Computer Methods and Programs in Biomedicine
95, pp.146-157, 2009.

[8] A. B. Chan, N. Vasconcelos, and G. R. Lanckriet, “Direct convex relaxations of sparse SVM,”
in Proc. Int. Conf. Machine Learning, 2007.

[9] C. Chang and C. Lin, “LIBSVM : a library for support vector machines,” software available
at http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2001.

[10] G. Chetelat, B. Desgranges, V. de la Sayette, F. Viader, F. Eustache, J-C. Baron, “Mapping
gray matter loss with voxel-based morphometry in mild cognitive impairment”, NeuroReport
vol.13. no.15, 28 October 2002.

[11] Y-Y. Chou, N. Lepore, C. Avedissian, S. K. Madsen, X. Hua, C. R. Jack Jr., M. W. Weiner,
A. W. Toga, P. M. Thompson, and the Alzheimer’s Disease Neuroimaging Initiative, “Map-
ping Ventricular Expansion and its Clinical Correlates in Alzheimer’s Disease and Mild Cog-
nitive Impairment using Multi-Atlas Fluid Image Alignment”, Proc. SPIE, vol.7259, 725930,
2009.

[12] T. M. Cover, “Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition,” IEEE Transactions on Electronic Computers, EC-
14(3):326–334, June 1965.

[13] K. Crammer, Y. Singer, “On the algorithmic implementation of multiclass kernel-based
vector machines”, J. Mach. Learn. Res., 2, pp. 265-292, 2001.

[14] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines. Cambridge
University Press, 2000.

[15] J. G. Csernansky, L. Wang, J. Swank, J. P. Miller, M. Gado, D. McKeel, M. I. Miller, J. C.
Morris, “Preclinical detection of Alzheimer’s disease: hippocampal shape and volume predict
dementia onset in the elderly”, NeuroImage 25, issue 3, 783-792, 2005.

87

[16] C. Davatzikos, Y. Fan, X. Wu, D. Shen, S. M. Resnick, “Detection of prodromal Alzheimer’s
disease via pattern classification of magnetic resonance imaging”, Neurobiology of Aging 29,
pp.514-523, 2008.

[17] C. Davatzikos, A. Genc, D. Xu, and S. M. Resnick, “Voxel-Based Morphometry Using the
RAVENS Maps: Methods and Validation Using Simulated Longitudinal Atrophy,” NeuroIm-
age 14, pp.1361-1369, 2001.

[18] C. Davatzikos, “Mapping image data to stereotaxic spaces: Applications to brain mapping,”
Hum. Brain Mapp., 6:334-338, 1998.

[19] M. J. de Leon, S. DeSanti, R. Zinkowski, P. D. Mehta, D. Pratico, S. Segal, H. Rusinek, J.
Li, W. Tsui, L. A. Saint Louis, C. M. Clark, C. Tarshish, Y. Li, L. Lair, E. Javier, K. Rich, P.
Lesbre, L. Mosconi, B. Reisberg, M. Sadowski, J. F. DeBernadis, D. J. Kerkman, H. Hampel,
L. -O. Wahlund, P. Davies, “Longitudinal CSF and MRI biomarkers improve the diagnosis
of mild cognitive impairment,” Neurobiology of Aging 27, pp. 394-401, 2006.

[20] R. Duda, P. Hart, and G. Stork, Pattern Classification. Second Edition, John Wiley and
Sons, New York, 2001.

[21] S. Dumais, J. Platt, D. Heckerman, and M. Sahami, “Inductive learning algorithms and
representations for text categorization,” in Proc. of the Conf. on Info. and Knowl. Manag.,
1998.

[22] Y. Fan, D. Shen, C. Davatzikos, “Classification of structural images via high-dimensional
image warping, robust feature extraction, and SVM”, J. Duncan and G. Gerig (Eds): MICCAI
2005, LNCS 3749, pp. 1-8, 2005.

[23] Y. Fan, N. Batmanghelich, C. M. Clark, C. Davatzikos, “Spatial patterns of brain atrophy
in MCI patients, identified via high-dimensional pattern classification, predict subsequent
cognitive decline”, NeuroImage 39, pp.1731-1743, 2008.

[24] Y. Fan, D. Shen, R. C. Gur, R. E. Gur, C. Davatzikos, “COMPARE: Classification of
Morphological Patterns Using Adaptive Regional Elements”, IEEE Transactions on Medical
Imaging, vol. 26, no. 1, pp.93-105, 2007.

[25] C. Fennema-Notestine, D. J. Hagler Jr., L. K. McEvoy, A. S. Fleischer, E. H. Wu, D.
S. Karow, A. M. Dale, the Alzheimer’s Disease Neuroimaging Initiative, “Structural MRI
biomarkers for preclinical and mild Alzheimer’s disease”, Human Brain Mapping, vol.30,
issue 10, pp.3238-3253.

[26] V. Franc, V. Hlavac, “Multi-class Support Vector Machine”, in ICPR 02: Proceedings 16th
International Conference on Pattern Recognition, vol. 2, pp. 236-239, 2002.

[27] V. Franc, V. Hlavac, “Multi-class Support Vector Machines”, presentation, Center for Ma-
chine Perception, Czech Technical University, Prague.

[28] V. Franc, “Optimization Algorithms for Kernel Methods” Ph.D. thesis, Czech Technical
University, July 29, 2005.

[29] FSL (FMRIB Software Library), http://www.fmrib.ox.ac.uk/fsl

[30] G. Fung, O. L. Mangasarian, “A feature selection Newton method for support vector ma-
chine classification,” Computational Optimization and Applications, vol. 28, no.2:185-202,
July 2004.

88

[31] G. Fung, O. L. Mangasarian, “Multicategory Proximal Support Vector Machine Classifiers,”
Machine Learning, 59:77-97, 2005.

[32] T. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler, “Sup-
port vector machine classification and validation of cancer tissue samples using microarray
expression data,” Bioinformatics, vol. 16, no. 10, pp. 906-914, 2000.

[33] D. Geman, C. d’Avignon, D. Q. Naiman, Raimond L. Winslow, “Classifying gene expression
profiles from pairwise mRNA comparisons,” Stat. Appl. Geneti. Mol. Biol. 3, Article 19, 2004.

[34] A. C. Tan, D. Q. Naiman, L. Xu, R. L. Winslow and D. Geman, “Simple decision rules
for classifying human cancers from gene expression profiles”, Bioinformatics vol. 21, no. 20,
pp.3896-3904, 2005.

[35] A. F. Goldszal, C. Davatzikos, D. L. Pham, M. X. H. Yan, R. N. Bryan, S. M. Resnick,
“An Image-Processing System for Qualitative and Quantitative Volumetric Analysis of Brain
Images,” J. Comput. Assist. Tomogr., 22:827-837, 1998.

[36] Y. Guermeur. “Combining Discriminant Models with New Multi-class SVMs”, Pattern Anal-
ysis and Applications, (2002)5:168-179

[37] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification
using support vector machines,” Machine Learning, 46(1):389-422, 2002.

[38] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach.
Learn. Res., vol. 3, pp. 1157-1182, 2003.

[39] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, New York:
Springer, 2001.

[40] C.-W. Hsu, C.-J. Lin. “A comparison of methods for multi-class support vector machines”,
IEEE Transactions on Neural Networks, 13(2002), 415-425.

[41] M. Jenkinson and S.M. Smith, “A global optimisation method for robust affine registration
of brain images,” Med. Image Anal., 5(2):143-156, 2001.

[42] T. Joachims, “Training linear SVMs in linear time,” KDD ’06: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217-226,
2006.

[43] B. Karacali, H. Krim, “Fast Minimization of Structural Risk by Nearest Neighbor Rule,
IEEE Transactions on Neural Networks, vol.14, no.1, 2003.

[44] B. Karacali, R. Ramanath, W. E. Snyder, “A comparative analysis of structural risk mini-
mization by support vector machines and nearest neighbor rule”, Pattern Recognition Letters,
vol. 25, issue 1, pp.63-71, 2004.

[45] S. S. Keerthi, D. DeCoste, “A Modified Finite Newton Method for Fast Solution of Large
Scale Linear SVMs,” J. Mach. Learn. Res., vol. 6, pp. 341-361, 2005.

[46] M. Kugler, K. Aoki, S. Kuroyanagi, A. Iwata, and A. S. Nugroho, “Feature subset selection
for support vector machines using confident margin,” Proc. IJCNN, pp. 907-912, 2005.

[47] J. P. Lerch, A. C. Evans, “Cortical thickness analysis examined through power analysis and
a population simulation”, NeuroImage 24, pp.163-173, 2005.

89

[48] Computational Methods of Feature Selection, edited by H. Liu and H. Motoda,Chapman &
Hall/CRC, 2008.

[49] O. L. Mangasarian, “Exact 1-norm support vector machines via unconstrained convex dif-
ferentiable minimization,” J. Mach. Learn. Res., vol. 7, pp. 1517-1530, 2006.

[50] O. L. Mangasarian, D. R. Musicant, “Successive overrelaxation for support vector machines,”
IEEE Transactions on Neural Networks, 10(5), 1999.

[51] C. Misra, Y. Fan, C. Davatzikos, “Baseline and longitudinal patterns of brain atrophy in MCI
patients, and their use in prediction of short-term conversion to AD: Results from ADNI”,
NeuroImage 44, pp.1415-1422, 2009.

[52] D. Mladenić, J. Brank, M. Grobelnik, N. Milic-Frayling, “Feature selection using linear
classifier weights: interaction with classification models,” Proc. ACM SIGIR Conf. on R&D
in Info. Retrieval, pp. 234-241, 2004.

[53] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information: criteria of
max-dependency, max-relevance, and min-redundancy,” IEEE Trans. PAMI, vol. 27, no. 8,
pp. 1226-1238, Aug. 2005.

[54] R. C. Petersen, Mild cognitive impairment: aging to Alzheimer’s Disease, Oxford University
Press, 2004.

[55] S. Ramaswamy et al, “Multiclass cancer diagnosis using tumor gene expression signatures,”
Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no.
26, 15149-15154, Dec. 2001.

[56] M. A. Fischler, R. C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting
with Applications to Image Analysis and Automated Cartography”, Comm. of the ACM 24:
381-395, June 1981.

[57] S. M. Resnick, A. Goldszal, C. Davatzikos, S. Golski, M. A. Kraut, E. J. Metter, R. N.
Bryan, A. B. Zonderman, “One-year age changes in MRI brain volumes in older adults”,
Cereb. Cortex 10, 464-472, 2000.

[58] H. Rusinek, Y. Endo, S. De Santi, D. Frid, W.-H. Tsui, S. Segal, A. Convit, “Atrophy rate
in medial temporal lobe during progression of Alzheimer’s disease”, Neurology, vol.63, issue
12, 2354-2359, 2004.

[59] J. M. Schott, S.L. Price, C. Frost, J. L. Whitwell, et al, “Measuring atrophy on Alzheimer
disease - A serial MRI study over 6 and 12 months,” Neurology, 65(1),:119-124, 2005.

[60] S. M. Smith, “Fast robust automated brain extraction,” Human Brain Mapping, 17(3):143-
155, 2002.

[61] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge Uni-
versity Press, 2004.

[62] D. Shen and C. Davatzikos, “HAMMER: hierarchical attribute matching mechanism for
elastic registration,” IEEE Trans. Medical Imaging, 21(11):1421-1439, 2002.

[63] D. Shen, C. Davatzikos, “Very High-resolution Morphometry Using Mass-preserving Defor-
mations and HAMMER Elastic Registration,” NeuroImage 18, pp.28-41, 2003.

90

[64] T. R. Stoub, M. Bulgakova, S. Leurgans, D. A. Bennett, D. Fleischman, D. A. Turner, L.
deToledo-Morrell, “MRI predictors of risk of incident Alzheimer disease,” Neurology 64, pp.
1520-1524, 2005.

[65] Statistical Pattern Recognition Toolbox, cmp.felk.cvut.cz/cmp/software/stprtool

[66] P. M. Thompson, K. M. Hayashi, G. de Zubicaray, A. L. Janke, S. E. Rose, et al, “Dynamics
of gray matter loss in Alzheimer’s disease”, J. Neurosci. 23, pp.994-1005, 2003.

[67] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Royal Statistical Society,
Series B (Methodological), vol. 58, no. 1, pp. 267-288, 1996.

[68] G. V. Trunk, “A problem of dimensionality: A simple example,” IEEE Trans. PAMI, vol.
1, issue 3, pp. 306-307, July 1979.

[69] V. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

[70] V. Vapnik, Statistical Learning Theory. John Wiley & Sons, 1998.

[71] P. Vemuri, J. L. Gunter, M. L. Senjem, J. L. Whitwell, K. Kantarci, D. S. Knopman, B. F.
Boeve, R. C. Petersen, C. R. Jack Jr., “Alzheimer’s disease diagnosis in individual subjects
using structural MR images: Validation studies”, NeuroImage 39, issue 3, 1186-1197.

[72] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, “Feature selection
for SVMs,” NIPS 13, MIT Press, 2001.

[73] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, “Use of the zero norm with linear
models and kernel methods,” J. Mach. Learn. Res., vol. 3, pp. 1439-1461, Mar. 2003.

[74] J. Weston, C. Watkins, “Support vector machines for multiclass pattern recognition”, In
Proceedings of the Seventh European Symposium On Artificial Neural Networks, 1999.

[75] J. Weston, “Extensions to the Support Vector Method,” Ph.D. thesis, University of London,
October 1999.

[76] Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images through a hidden
Markov random field model and the expectation maximization algorithm,” IEEE Trans.
Medical Imaging, 20(1):45-57, 2001.

[77] X. Zhou, D.P. Tuck, “MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on
DNA microarray data,” Bioinformatics, vol. 23, no. 9, pp. 1106-1114, 2007.

[78] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani, “1-norm support vector machines,” NIPS,
2003.

Vita
Yaman Aksu

Education
The Pennsylvania State University, University Park, PA 2004–present

Ph.D. in Electrical Engineering, expected Summer 2010.
The Johns Hopkins University, Baltimore, MD 1993–1996

M.S.E. in Electrical and Computer Engineering.
Washington University, St.Louis, MO 1992–1993

B.S.E. in Electrical Engineering, Summa Cum Laude.
Franklin and Marshall College, Lancaster, PA 1989–1992

B.A. in Physics, Magna Cum Laude.
Extensive Experience with Biomed. Imaging and Machine Learning Software

BrainWave (GEMS), DIAS, DICOM toolkits, FSL, HAMMER, LibSVM, Matlab, MEDx, NLPSVM
(Newton-based Linear Programming SVM), PGPDT (parallel SVM), SPM5 (incl. scripting), SPM99,
STAMPS, SVMcatalyst (my software for SVM incl. biomedical image analysis), VolView, etc.

Journal Articles
• Y.Aksu, D.J.Miller, G.Kesidis, Q.X.Yang, “Margin-maximizing feature elimination methods for linear
and nonlinear kernel-based discriminant functions”, IEEE Trans. on Neural Networks, vol.25, no.10,
pp.701-717, 2010.
•D.C.Bigler, Y.Aksu, D.J.Miller, Q.X.Yang, “STAMPS: software tool for automated MRI post-processing
on a supercomputer”, Comp. Meth. and Prog. in Biomed. 95, pp.146-157, 2009.
• G.S.Adkins, Y.M.Aksu, M.H.T.Bui, “Calculation of the two-photon-annihilation contribution to the

positronium hyperfine interval at order mα
6
”, Physical Review A 47, pp. 2640-2652, 1993.

Conference Papers
• Y.Aksu, D.J.Miller, G.Kesidis, “Margin-based feature selection techniques for support vector machine
classification,” Proc. IAPR Workshop Cogn. Inf. Process., pp.176-181, 2008.
• Y.Aksu, G.Kesidis, D.J.Miller, “Scalable, efficient, stepwise-optimal feature elimination in support
vector machines,” Proc. IEEE Workshop Mach. Learn. Signal Process., pp.75-80, 2007.
• Y.Zhang, Y.Aksu, G.Kesidis, D.J.Miller, Y.Wang, “SVM margin-based feature elimination applied to
high-dimensional microarray gene expression data,” Proc. IEEE Workshop Mach. Learn. Signal Pro-
cess., 2008.

Refereed Abstracts (One-page ISMRM Conference Papers)
• D. C. Bigler, C. Flaherty-Craig, Y. Aksu, B-Y. Lee, K. R. Scott, H. E. Stephens, J. J. Vesek, J. Wang,
M. L. Shaffer, P. J. Eslinger, Z. Simmons, Q. X. Yang. “Cross-sectional and Longitudinal Voxel-Based
Relaxometry Study in ALS,” Proc. Intl. Soc. Mag. Reson. Med. 18 p.1968, 2010.
• D. C. Bigler, Y. Aksu, H. E. Stephens, J. Vesek, K. R. Scott, C. Flaherty-Craig, J. Wang, P. J.
Eslinger, Z. Simmons, Q. X. Yang, ”High-resolution Longitudinal Voxel-Based Morphometric Study in
ALS,” Proc. Intl. Soc. Mag. Reson. Med. 17, p.1113, 2009.

Awards and Honors
• University Graduate Fellowship, Penn State University 2004-2005
• College of Engineering Supplemental Fellowship, Penn State University 2004-2007
• Electrical Engineering Dept. Supplemental Fellowship, Penn State University 2007-2008
• Phi Beta Kappa, and Sigma Pi Sigma National Physics Honor Society 1992
• Rensselaer Polytechnic Institute Engineering and Science Award for Excellence 1992
• John Kershner Award in Physics 1992
• National Dean’s List 1991, 1992
• Hackman undergraduate scholar in telerobotics research 1991
• Successful Participant in the COMAP Mathematical Contest in Modeling 1990-1991

Selected Attended Conferences in Biomedical Image Analysis
• NLM ITK Consortium Meeting 2003, NIH, Bethesda, MD.
• fMRI Experience 2002, NIH, Bethesda, MD.
• SPIE Medical Imaging 2000, 2001, San Diego, CA.
• RSNA 1997, 1999, Chicago, IL.

Extensive Industry Experience
In my full-time employment during 1996-2004, serving first as Systems Engineer (Medical Imaging) and
subsequently Senior Systems Engineer (Medical Imaging) and Director of DICOM and Database Op-
erations, made significant contributions to major biomedical imaging systems/software developed at
Sensor Systems, Inc. and its subsidiary Medical Numerics, such as MEDx (used by over 300 research
labs worldwide), BrainWave (FDA-cleared fMRI system on GE Medical Systems MRI scanners), and
DIAS/MARS/LARS (Digital Image Archive System at the NIH, for which I was the principal architect).

Other service to the medical imaging community
Contributing member of DICOM Standards Committee Working Group 16 for the Enhanced MR Object,
Rosslyn, VA, 1998-2003. Resulting Supplement 49: ftp://medical.nema.org/medical/dicom/final/sup49 ft.pdf

Teaching Assistantships
PSU (Computer Vision, Image Processing) 2006-08, JHU (Signals/Systems, Circuits) 1993-95.

