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Abstract

Varying-coefficient Models: New Models, Inference Procedures and

Applications

Motivated by an empirical analysis of a data set collected in the field of ecology,

we proposed nonlinear varying-coefficient models, a new class of varying-coefficient models.

We further propose an estimation procedure for the nonlinear varying-coefficient models by

using local linear regression, study the asymptotic properties of the proposed procedures,

and establish the asymptotic normality of the resulting estimate. We also extend generalized

likelihood ratio-type test (Fan, Zhang and Zhang, 2001) for the nonlinear varying-coefficient

models for testing whether the coefficients really depend on a covariate. To assess the

finite sample performance of the proposed procedures, we conduct extensive Monte Carlo

simulation studies to assess the finite sample performance of the procedures. By Monte Carlo

simulation, we empirically show the Wilks’ phenomenon valid for the proposed generalized

likelihood ratio test. That is, we empirically show that the asymptotic null distribution

has a chi-square distribution with degrees of freedom which do not depend on the unknown

parameters presented in the model under the null hypothesis. As new applications of varying

coefficient models, we applied some existing procedures for some financial data sets. We

demonstrated the varying-coefficient models are superior to an ordinary linear regression

model, the commonly used model in finance research. We also apply the proposed estimation

and inference procedure on the empirical study in the field of ecology.
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Chapter 1

Introduction

As the most commonly used statistical technique, regression analysis has been uti-

lized to explore the association between dependent and independent variables and further

to identify how independent variables impact the dependent variable. A linear predictor is

assumed in both linear regression models and generalized linear regression models; however,

the assumption is restrictive and thus may produce biased estimation if the assumption

is violated. Many modeling techniques have been proposed in aim to relax the model as-

sumptions and widen the model applicability. These works include Hastie and Tibshirani

(1990), Green and Silverman (1994), Wand and Jones (1995) and Fan and Gijbels (1996),

and among others. For high dimensional covariates, it becomes very difficult to estimate the

mean regression function using fully nonparametric models in an efficient way due to “curse

of dimensionality”. Additive models (Breiman and Friedman, 1985; Hastie and Tibshirani,

1990) are among the powerful approaches available to avoid the “curse of dimensionality”.

Varying-coefficient models are a natural alternative to the additive model and have

greatly widened the scope of application by allowing the model coefficients to vary over

certain covariates, such as time and temperature. Among various useful nonparametric

regression models, varying coefficient models can be used to explore features in high dimen-

sional data. The varying-coefficient models have received much attention recently. Varying-

coefficient models and their variations, such as functional linear models, have been used

1
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in the analysis of longitudinal data, see, for example, Brumback and Rice (1998), Hoover,

Rice, Wu and Yang (1998), Wu, Chiang and Hoover (1998), Fan and Zhang (2000), Chiang,

Rice and Wu (2001), Huang, Wu and Zhou (2002) among others. Cai, Fan and Li (2000)

proposed an efficient estimation and inference procedure for generalized varying-coefficient

models with a known link function. Cai, Fan and Yao (2001) proposed an adaptive esti-

mation procedure for generalized varying-coefficient models with an unknown link function.

Time-dependent coefficient models have also been explored for nonlinear time series appli-

cations, see, for example, Chen and Tsay (1993), Cai, Fan and Yao (2000) and Cai, Yao

and Zhang (2001). In this dissertation, we shall propose a new class of varying coefficient

models. Let us introduce some motivation first.

This work was motivated by an empirical study in the field of ecology. This data set

was collected within the AmeriFlux network during summer growth seasons (from June 1 to

August 31) of years 1993 — 1995 at the Walker Branch Watershed Site in eastern Tennessee

(35.96oN, 84.29oW). Detailed analysis of this data set using the proposed procedures will be

given in Chapter 5. Here, we give only a brief introduction. It is known that sunlight intensity

affects the rate of photosynthesis in an ecosystem. Since leaves absorb carbon dioxide (CO2)

during the course of photosynthesis, the Net Ecosystem Exchange of CO2, denoted by NEE,

is used to measure the level of photosynthetic activity in a natural ecosystem. Photosynthetic

rate as measured by NEE is dependent on the amount of Photosynthetically Active Radiation

available to an ecosystem, denoted by PAR.

It is believed based on empirical studies that the relationship between NEE and PAR

is nonlinear (Montheith, 1972)and can be characterized by the following model

NEE = R − β1PAR

PAR + β2
+ ε, (1.1)

where ε is random error with zero mean, and R, β1 and β2 are unknown parameters with

physical interpretations. Specially, R is the dark respiration rate, β1 is the light-saturated
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Figure 1.1: Contour Plot Using 2-dimensional Kernel Regression

net photosynthetic rate, and β1/β2 is the apparent quantum yield. The empirical NEE-

PAR relationship in (1.1) has been applied widely to canopy levels to assess net primary

productivity (NPP) since remote sensing data became available (see, for instance, Montheith,

1972, and more recent work by Ruimy et al., 1999 and references therein). The model in (1.1)

was originally adopted because the data were collected from a laboratory in which climate

variables, such as temperature and moisture availability, can be well controlled. However, the

temperature for an ecosystem cannot be controlled, and the parameters R, β1 and β2 likely

depends on the temperature. To illustrate this, 2-dimensional kernel smoothing regression

is used to estimate the regression function of the NEE on the PAR and the temperature.

Figure 1.1 displays the contour plot of regression curve. From Figure 1.1, the parallel pattern

of the contour curves with low PAR values implies that there is little temperature effect on

NEE for low PAR, while the non-parallel pattern of the contour curves with high PAR values

indicates the strong temperature effects. Figure 1.2 (a) depicts the estimated regression
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Figure 1.3: The scatter plots of NEE vs PAR for temperatures 18.3oC, 25.7oC and 31.3oC,
which are the three sample quartiles of temperatures. The dash-dotted, solid and dashed lines
are plots of NEE vs PAR using nonparametric 2-d kernel regression, nonlinear regression,
and nonlinear varying-coefficient models for temperatures 18.3oC, 25.7oC and 31.3oC.
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function of NEE on PAR, given three different values of temperature. The pattern shown in

Figure 1.2 (a) implies that the parameters R, β1, and β2 depend on temperature. This leads

us to consider an alternative model:

NEE = R(T ) − β1(T )PAR

PAR + β2(T )
+ ε, (1.2)

where T stands for temperature. Model (1.2) is distinguished from model (1.1) in that

the unknown coefficients are allowed to depend on temperature. As a comparison, we fur-

ther applied model (1.1) for data subsets with temperature 18.3 ± 0.5oC, 25.7 ± 0.5oC and

31.3±0.5oC, respectively, the resulting three regression curves are depicted in Figure 1.2(b).

Figure 1.2(c) depicts the resulting regression curves using model (1.2) with the newly pro-

posed estimation procedures in Chapter 3. The patterns in Figure 1.2 (b) and (c) are similar,

while the regression curve for T = 31.3oC shows non-monotone decreasing pattern. To un-

derstand why the non-monotone decreasing pattern appears, we rearrange the regression

curve plots by temperature and add the scatter plot of data subsets for each temperature in

Figure 1.3. From Figure 1.3 (c), we can see that the non-monotone decreasing pattern for

2-dimensional kernel regression curve is due to data sparsity and a few influence data points.

Let y be a response variable and both u and x be covariates. In this dissertation, we

consider

y = f(x, β(u)) + ε, (1.3)

where β(·) is the unknown regression coefficient function, ε is a random error with zero mean

and finite variance. Model (1.3) includes many useful models as special cases. For instance,

model (1.2) can be written in the form of (1.3) with u being T . In the literature, a functional

linear model is defined by

y = xT β(u) + ε,

and a generalized varying coefficient model is defined by

g−1{E(y|u,x)} = xT β(u),
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where g is a known link function. In these two models, it is assumed that x and β(·)
have the same dimension. Both the functional linear model and the generalized varying-

coefficient model are special cases of model (1.3). We refer model (1.3) to as nonlinear

varying-coefficient model as we focus on the case in which f(·, β) is nonlinear function of β.

Varying-coefficient models have been existed in the literature long time ago. They become

popular in the statistical literature since the systematic introduction in Hastie and Tibshirani

(1993).

It is of importance to make a distinction between model (1.3), nonlinear varying-

coefficient model, and the following nonlinear model

y = g(x, u, β) + ε (1.4)

where g is a nonlinear function, y is a response variable and both u and x are covari-

ates, β are the unknown coefficients that take constant values, and ε is a random error with

zero mean and finite variance. Clearly, model (1.4) is a nonlinear regression model with u

and x forming the set of covariates. We can claim that model (1.3) is a more relaxed and

general form than model (1.4), in the sense that for any specific model from the family of

model (1.4), there is a corresponding model in the family of model (1.3) with a more relaxed

and general form. The following two examples illustrate this assertion.

For the first example, from the family of model (1.4) we choose the following statistical

model

y = xβ1 + uβ2 + ε (1.5)

then model (1.6) from the family of model (1.3)

y = xβ1 + β2(u) + ε (1.6)
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is clearly a more relaxed and general statistical model than (1.5). For another example, the

following nonlinear model (1.7) from the family of (1.4)

y =
u

x + β
+ ε (1.7)

is less relaxed than the nonlinear varying-coefficient model (1.8)

y =
β1(u)

x + β2
+ ε (1.8)

This thesis is organized as follows. Chapter 2 will provide a detailed and technical

review of varying-coefficient models and their applications. Some existing estimation proce-

dures are also reviewed in Section 2.2. Existing testing procedures will be summarized in

Section 2.3. In Chapter 3, we systematically study nonlinear varying-coefficient models. We

propose an estimation procedure for the nonlinear varying coefficient models by local linear

regression techniques. Unlike the “linear” varying-coefficient models, optimization of non-

linear regression model is more challenging than that for existing varying coefficient models

because there is no closed form for the resulting estimate and/or the objective function is

typically nonconvex. We discuss computational issues related to the proposed estimation

procedures. In practice, it is of interest to test whether some coefficient is invariant over the

covariate u. This type of hypothesis testing problem is different from traditional hypothesis

testing in that the parameter space under the alternative hypothesis is infinite. This poses

many challenges in dealing with such statistical hypotheses. We will extend the generalized

likelihood ratio test (Cai, Fan and Li, 2000 and Fan, Zhang and Zhang, 2001) for such hy-

potheses. We derive the asymptotic normality for nonlinear varying-coefficient models. In

Chapter 4, we conduct extensive Monte Carlo simulation studies to assess the finite sample

performance of the proposed procedures. We will also study the statistical sampling property

of the proposed generalized likelihood ratio test. Chapter 5 applies the proposed nonlinear
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varying-coefficient model estimation and generalized likelihood ratio testing (GLRT) proce-

dures to an empirical ecological data set. It is of scientific interest to test the hypothesis

whether the relationship between NEE and PAR really depends on temperature T . Chapter

6 presents a new application of varying-coefficient models in the field of finance research. In

this chapter, we apply existing estimation procedures for analysis of data sets collected from

a finance study. We proposed new prediction procedures to varying-coefficient models and

demonstrate varying-coefficient model are superior to the ordinary linear regression model

in terms of model fitting and model prediction.



Chapter 2

Literature Review

In this chapter, we briefly review the literature on varying-coefficient models, includ-

ing those proposed varying-coefficient models of various kinds, the fundamental statistical

techniques for estimation procedures to varying-coefficient models, the estimation proce-

dures for varying-coefficient models, and hypothesis testing. The aim for the chapter is to

outline the framework based upon which we propose the statistical inference procedures for

the newly proposed nonlinear varying-coefficient models (Model 1.3) in Chapter 1.

2.1 Varying-coefficient Models

Let Y be a response variable and X1, X2, ..., Xp be covariates, the ordinary linear regression

model is

Y = XT β + ε, (2.1)

where X = (X1, X2, X3, ..., Xp)
T with X1 ≡ 1 to include an intercept term, β = (β1, · · · , βp),

a dimensional unknown parameter vector. Furthermore, it is assumed that E(ε|X) = 0.

In model (2.1), the regression coefficient β is assumed to be constant. However, for

certain situations, this assumption may be too strong, and limit the application of linear

regression models. For example, in longitudinal studies, financial market studies, economics,

and some ecological studies, the regression coefficient β may possibly change with some

10
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underlying covariates; these covariates could be time, temperature, or geographical locations.

With the aim to increase the flexibility of linear regression models, to broaden the

application of linear regression, and to reduce modeling bias, varying coefficient models allow

the coefficients β to be smooth functions of some covariate u:

Y = β(u)TX + ε, (2.2)

where E(ε|X, u) = 0.

A more general form of varying-coefficient model can be presented as

Y = β1(u1)X1 + β2(u2)X2 + β3(u3)X3 + .... + βp(up)Xp + ε (2.3)

Model (2.3) further allows β1, β2 ,..., βp to be smooth and unspecified functions of different

covariates u1, u2,..., up, as compared to the case of depending on a common covariate u in

model (2.2).

As a multivariate extension, an even more general form of a varying-coefficient model

takes the form

Y = β1(u1)X1 + β2(u2)X2 + β3(u3)X3 + .... + βp(up)Xp + ε (2.4)

Model (2.4) says β1, β2,..., βp are smooth and unspecified functions of different multivariate

covariates u′
is, and ui = (ui1, ui2,..., uip)

T .

For all of the above varying-coefficient models, they imply a special interaction rela-

tionship between the covariate u1, u2,..., up, and the predictors X1, X2,..., Xp. Conditioning

on u1, u2,..., up, varying-coefficient models become linear regression models with constant

coefficients, and at different values of u1, u2,..., up, the relationship between the dependent

variable Y and predictors X1 , X2 ,..., Xp changes accordingly. Therefore, conditioning on

the covariates u, the coefficient functions can be interpreted as those in an ordinary linear

regression model.
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Model (2.2) is the most popular varying coefficient model in the literature and have

been well studied. It implies that all the coefficients β1, β2,..., βp depend on a common

covariate u. For example, in a time-varying-coefficient model, the covariate u is time; in

a temperature varying-coefficient model, the covariate u is temperature. See Hastie and

Tibshirani (1993) and Fan and Zhang (2000). For applications, Hoover, et al. (1998),

Brumback and Rice (1998) and Fan and Zhang (2000) applied varying-coefficient models to

longitudinal data and allow the model structure to change over time. Depending on the

nature of underlying covariates, model (2.2) can be extended to model (2.3) and (2.4). In

model (2.3), the coefficients β1, β2,..., βp may depend on different covariates u1, u2,..., up.

For example, temperature t and radiation r for two predictors X1 and X2, respectively. In

Model (2.4), the coefficients β1, β2,..., βp are allowed to depend on covariates ui = (ui1,

ui2,..., uip)
T , i = 1, 2, ..., p, which are multi-dimensions. An example would be the spatial or

geographical locations as the covariate for the varying-coefficient model.

In this chapter, we focus on model (2.2) in which covariate is univariate and the same

for all β1, β2,..., βp, since the extension to multivariate covariate is straightforward. However,

the implementation with multivariate covariate u may be very difficult due to the so-called

“curse of dimensionality’”.

2.1.1 Generalized Varying-coefficient Models

Generalized linear models (GLIM) were systematically studied by (Nelder and Wed-

derburn, 1972; McCullagh and Nelder, 1989) and assumes that the regression function

m(x) = E(Y |X = x) satisfies the following relation:

η(x) = g{m(x)} = xT β (2.5)

where g(·) is a known link function that transforms the mean response function m(x) into

linear predictor η(x) = xT β. Therefore, a generalized linear model (GLIM) is composed
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of three components: the random component Y |X = x; the link function g(·); and the

systematic component η(x) = xT β. In particular, GLIM allows that the random component

Y |X = x belongs to exponential family with density

fy(y; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}
, (2.6)

where a(·), b(·), c(·) are specific functions, and θ is referred to as canonical parameter and φ

is referred to as dispersion parameter. Since the mean function m(x) ≡ E(Y |X = x) = b′(θ)

is a function of θ alone, θ is the parameter of interest; φ is usually regarded as a nuisance.

A canonical link is defined to be g(·) = b′−1(·). With canonical link we have θ = η = xT β.

For linear models, the random component Y |X = x is assumed to be N(µ, σ2) and

the link function g(t) = t which is also the canonical link. For the response Y being bino-

mial response (including binary response) or count response, it can be fitted by binomial

distribution or Poisson distribution, respectively; the canonical link for logistic model and

Poisson log-linear model are g(µ) = log

(
µ

1 − µ

)
and g(µ) = log(µ), respectively.

A generalized varying-coefficient model(Cai, Fan and Li 2000) has the form

η(u,x) = g{m(u,x)} = xT β(u), (2.7)

where g(·) is a link function, x = (x0, x1 x2,..., xd−1)
T is the vector of independent variables,

and m(u,x) is the mean regression function of the response variable Y given that the co-

variates U = u and X = x. The link function g(·) transforms the mean regression function

m(u,x) into a linear predictor. Clearly, (2.7) is an extension of model (2.2).

Many existing models can be regarded as a special case of model (2.7). For instance,

when all regression coefficient functions are constant, then model (2.7) becomes a GLIM.

By allowing intercept function varying over u and other coefficient functions being constant

functions of u, model (2.7) reduces to a generalized partially linear model (Carroll, Fan,
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Gijbels, and Wand 1997). As a special case of generalized partially linear model, a partially

linear model is given

Y = α(u) + XT β+ε (2.8)

This model has been studied by Chen (1988), Green and Silverman(1994) and Speckman

(1988) and among others.

Thus, the generalized varying coefficient model greatly widens the applicability of

linear models, generalized linear models, partially linear models and generalized linear models

by relaxing the model assumptions. The generalized varying coefficient models have been

systematically studied in Cai, Fan and Li (2000).

2.1.2 Applications of Varying-coefficient Models in Sciences

Varying-coefficient models have been popular in longitudinal data and panel data

study. See Hoover (1998), Brumback and Rice (1998), Fan and Zhang (1998), and Fan and

Zhang (2000). In a longitudinal data study, suppose there are n subjects, and for the ith

subject, data {yi1(t), xi1(t), xi2(t),..., xi,p(t)} were collected at t = tij, j = 1, 2,.., nj . A

time-varying coefficient model is defined as

Yi(t) = β1(t)Xi1 + β2(t)Xi2 + β3(t)Xi3 + .... + βp(t)Xi,p + εi(t). (2.9)

The time-varying coefficient model has been used to explore the possible time-dependent

effects. The time-varying coefficient model has been extended to other research fields. Chen

and Tsay (1993) explored nonlinear time series applications, and Cai, Fan, and Yao (1998)

have provided statistical inferences on the functional-coefficient autoregressive models. Also

see Cai (2000) and Xia and Li (1999) for applications in functional-coefficient nonlinear time

series. Cai and Tiwari (2000) applied varying-coefficient models in enviromental study. Hong

and Lee (1999), Lee and Ullah (1999) studied the applications of varying-coefficient models
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in finace and econometrics. Cederman and Penubarti (1999) has applications of varying-

coefficient model in political sciences. Time-varying coefficient Cox model has been studied

by Cai and Sun (2003) and Tian, Zucker and Wei (2005).

2.2 Estimation procedures

2.2.1 Local Polynomial Regression

We first introduce the fundamental ideas of local polynomial regression. Suppose that we

have a random sample (x1, y1), ..., (xn, yn) from a nonparametric regression model

Y = m(X) + ε, (2.10)

where E(ε|X) = 0 and var(ε|X = x) = σ2(x). We call m(x) = E(Y |X = x) a regression

function, and m(x) is assumed to be smooth but not have a parametric form in the context

of nonparametric regression. Our goal is to find the estimate m̂(x) of m(x).

In the setting of local polynomial regression, we apply the Taylor expansion of m(z)

for z in a neighborhood of x:

m(z) ≈
p∑

j=0

m(j)(x)

j!
(z − x)j ≡

p∑

j=0

βj(z − x)j (2.11)

Therefore, for datum xi in a neighborhood of x, we have

m(xi) ≈
p∑

j=0

βj(xi − x)j ≡ xT
i β (2.12)

where xi = (1, (xi − x),..., (xi − x)p)T and β = (β0, β1,..., βp)
T . Intuitively, a datum point

closer to x carries more information of m(x); while a datum point remote from x carries less

information of the value of m(x). We therefore use a locally weighted polynomial regression

n∑

i=0

(yi − xT
i β)2Kh(xi − x) (2.13)
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where Kh(xi − x) ≡ h−1K(
xi − x

h
) and K(·) is called a kernel function satisfying with

∫
K(x) = 1 and h is a positive number, called a bandwidth or a smoothing parameter.

Commonly used kernel functions are Gaussian Kernel:

K(x) =
1√
2π

exp(−x2

2
),−∞ < x < ∞ (2.14)

and symmetric beta family

K(x) =
1

Beta(1/2, γ + 1)
(1 − x2)γ

+, γ = 0, 1, 2, ...,−1 ≤ x ≤ 1, (2.15)

where + denote the positive part that is taken before exponentiation, and Beta(·, ·) denotes

a Beta function and the support for Beta family type kernel functions have support of [−1, 1].

In addition, γ = 0, 1, 2 and 3 are referred to as the uniform, the Epanechnikov, the biweight

and the triweight kernel functions. As discussed in Marron and Nolan (1988), the kernel

function is uniquely determined up to a scale factor.

The local polynomial estimator β̂ = (β̂0, β̂1,..., β̂p)
T is

β̂ = arg min
β

n∑

i=0

(yi − xT
i β)2Kh(xi − x). (2.16)

Since, by definition, m(x) ≡ β0, the estimated regression function m̂(x) = β̂0(x).

Note that functional notation β̂0(x) is used here to emphasize that β̂0 is a function of x. In

addition, an estimator for the v-th order derivative of regression function m(x) at x is

m̂(v)(x) = v!β̂v(x). (2.17)

2.2.2 Definition of Kernel Regression and Local Linear Regression

Kernel regression and local linear regression are special cases for local polynomial

regression. When p = 0, the local polynomial regression is referred to as kernel regression.
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Table 2.1: Pointwise asymptotic bias and variance

Method Bias Variance

Nadaraya-Watson (m′′(x) + 2m′(x)f ′(x)
f(x)

)bn Vn

Gasser-Műller m′′(x)bn 1.5Vn

Local Linear m′′(x)bn Vn

Here, bn = 1
2

∫ ∞

−∞
u2K(u)du h2 and Vn = σ2(x)

f(x)nh

∫ ∞

−∞
K(u)du.

We can view kernel regression as a local constant fitting. However, kernel regression does

not estimate the derivatives of regression function m(x). The kernel regression estimator is

m̂h(x) =

∑n
i=1 Kh(Xi − x)Yi∑n
i=1 Kh(Xi − x)

. (2.18)

This estimator is referred to as Nadaraya-Watson kernel regression estimator. See

Nadaraya (1964) and Watson (1964).

Noteworthy is another well-known kernel type of estimator, Gasser-Műller kernel

estimator (Gasser and Műller 1979 and 1984).

m̂h(x) =

n∑

i=1

∫ si

si−1

Kh(u − x)duYi,

where si = (Xi + Xi+1)/2 assuming Xi < Xi−1, and X0 = 0 and Xn+1 = +∞.

For p = 1, the local polynomial regression is referred to as local linear regression.

Local linear regression not only estimates the regression function m(x), but also estimates

the first derivative m′(x) of regression function m(x).

Table 2.1, adapted from (Fan, 1992), summarizes the asymptotic behavior of the

Nadaraya-Watson estimator, Gasser-Müller estimator, and local linear estimator.
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The local linear fitting has several desirable properties, including high statistical

efficiency in an asymptotic minimax sense (Fan 1993), design adaption (Fan 1993), and nice

boundary behavior (Fan and Gijbels 1996; Ruppert and Wand 1994).

2.2.3 Estimation Procedure for Varying-coefficient Models

Suppose that the coefficients β1,..., βp are smooth functions of the covariate u. Let

(u1,x1, y1),..., (un,xn, yn) be a random sample from

Y = XTβ(u) + ε (2.19)

We apply the local linear regression technique to estimate the coefficient functions

βj(u), j = 1, 2,..., p, For a given u0, we locally, linearly approximate the coefficient functions

βj(u) , j = 1, 2,..., p

βj(u) ≈ βj(u0) + β
(1)
j (u0)(u − u0) ≡ aj + bj(u − u0), (2.20)

for j = 1, 2, ..., p and for u in a neighborhood of u0. This leads to a local least-squares

function, which can be used to find the local least-squares estimators for coefficient function

βj(·) at u = u0 for j = 1, 2, ..., p:

n∑

i=1

[Yi − XT (a + b(ui − u0))]
2 · Kh(ui − u0). (2.21)

Denote a = (a1,a2,a3,...,ap)
T , and b = (b1,b2,b3,...,bp)

T For each given u0, we find the

local least-squares estimate

(â, b̂)T ≡ (â1, â2, â3, ..., âp, b̂1, b̂2, b̂3, ..., b̂p)
T

≡ (β̂1(u0), β̂2(u0), ..., β̂p(u0), β̂
(1)
1 (u0), β̂

(1)
2 (u0), ..., β̂

(1)
p (u0))

T

Then the component

âT ≡ (â1, â2, ..., âp)
T ≡ (β̂1(u0), β̂2(u0), ..., β̂p(u0))

T .
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is the estimate for the coefficient function β(u0) ≡ (β1(u0), β2(u0), β2(u0),..., βp(u0))
T at

the given covariate point u0.

In this dissertation, the above procedure is referred to as a one-step estimation pro-

cedure, which is simple and useful. See Cleveland, Grosse and Shyu (1991). However, it

implicitly assumes that the coefficient functions βj(u), j = 1, ,..., p possess approximately

the same degree of smoothness. This assumption allows the coefficient functions to be esti-

mated equally well in the same interval of covariate u.

In real-world applications, the same degree of smoothness assumption is hardly sat-

isfied, and different coefficient functions usually possess different degrees of smoothness. A

two-step estimation procedure is therefore proposed to account for difference in smoothness

of different coefficient functions. See Fan and Zhang (1999).

In two-step estimation procedure, without loss of generality, assume that coefficient

function βp(u) is smoother than the rest of the coefficient functions, and assume that βp(u)

possesses a bounded fourth order derivative so that we can use a cubic function to approxi-

mate βp(u)

βp(u) ≈ βp(u0) + β(1)
p (u0)(u − u0) + β(2)

p (u0)(u − u0)
2 + β(3)

p (u0)(u − u0)
3

≡ ap + bp(u − u0) + cp(u − u0)
2 + dp(u − u0)

3 (2.22)

for u in a neighborhood of u0. This updates the local least-squares function into:

n∑

i=1

[Yi−
p−1∑

j=1

{aj+bj(ui−u0)}·Xij−{ap+bp(u−u0)+cp(u−u0)
2+dp(u−u0)

3}Xi,p]
2·Kh1

(ui−u0)

If we denote âj , b̂j , j = 1, 2, 3,..., p − 1 and âp, b̂p, ĉp, d̂p the minimizer of the above

local least-squares function, then the resulting estimator of β̂p,OS(u0) ≡ âp is called a one-

step estimator. The one-step estimator β̂p,OS(u0) has bias O(h2
1) and variance of O((nh1)

−1).

This shows that the optimal variance of O(n−8/9) is not achieved by one-step estimator.
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In a two-step procedure, we in the first step find initial estimates of coefficient func-

tions βj(u), j = 1, 2, ..., p by minimizing the local least-squares function

n∑

i=1

[Yi −
p∑

j=1

{aj + bj(ui − u0)} · Xji]
2 · Kh0

(ui − u0) (2.23)

for a given initial bandwidth h0 and kernel K . The estimates through the first step are

denoted by β̂1(u0), β̂2(u0),..., β̂p(u0).

In the second step, we substitute β̂1(·), β̂2(·),..., β̂p−1(·) and minimize

n∑

i=1

[Yi −
p−1∑

j=1

âj(u0) · Xij − {ap + bp(u − u0) + cp(u − u0)
2 + dp(u − u0)

3}Xi,p]
2 · Kh2

(ui − u0)

with respect to ap, bp, cp, dp. In the second step, bandwidth h2 is used. We can consider the

second step is to find the local least-squares cubic fit of β̂p(·), which leads to the two-step

estimator of β̂p,TS(u0) ≡ âp of βp(u0).

Now we summarize the two-step estimation procedure and present the formulas. De-

fine

Y = [ y1 y2 . . . . yn ]T ,

and

X0 =




X11 (U1 − u0)X11 X12 (U1 − u0)X12 ... X1,p (U1 − u0)X1,p

X21 (U2 − u0)X21 X22 (U2 − u0)X22 ... X2,p (U2 − u0)X2,p

. . . . ... . .

. . . . ... . .

Xn1 (Un − u0)Xn1 Xn2 (Un − u0)Xn2 ... Xn,p (Un − u0)Xn,p




,

W0=diag{Kh0
(u1 − u0), Kh0

(u2 − u0), ..., Kh0
(un − u0)}.

The solution to the local least-squares problem

n∑

i=1

[Yi −
d−1∑

j=0

{aj + bj(ui − u0)} · Xji]
2 · Kh0

(ui − u0)
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can be expressed as

β̂j,0(u0) = eT
2j−1,2(d−1)(X

T
0 ·W0 · X0)

−1
XT

0 ·W0·Y at u = u0, j = 0, 1, 2, ..., d− 1

where ek,m is the notation for the unit vector of length m with 1 at the kth position. The

solution to the problem

n∑

i=1

[Yi−
d−2∑

j=0

{aj+bj(ui−u0)}·Xij−{ad−1+bd−1(u−u0)+cd−1(u−u0)
2+dd−1(u−u0)

3}Xi,d−1]
2·Kh1

(ui−u0)

can be expressed as following. Define

X2 =




X1,p (U1 − u0)X1,p (U1 − u0)
2X1,p (U1 − u0)

3X1,p

X2,p (U2 − u0)X2,p (U2 − u0)
2X2,p (U2 − u0)

3X2,p

. . . .

. . . .

Xn,p (Un − u0)Xn,p (Un − u0)
2Xn,p (Un − u0)

3Xn,p




and

X3 =




X11 (U1 − u0)X11 X12 (U1 − u0)X12 ... X1,p−1 (U1 − u0)X1,p−1

X21 (U2 − u0)X21 X22 (U2 − u0)X22 ... X2,p−1 (U2 − u0)X2,p−1

. . . . ... . .

. . . . ... . .

Xn1 (Un − u0)Xn1 Xn2 (Un − u0)Xn2 ... Xn,p−1 (Un − u0)Xn,p−1




X1 = (X2,X3), and W1=diag{Kh1
(u1 − u0), Kh1

(u2 − u0), ..., Kh1
(un − u0)}.

Then the solution to the least-squares problem is

β̂d−1,1(u0) = eT
2d−2,2d(X

T
1 ·W1·X1)

−1
XT

1 ·W1·Y



22

at u = u0

Based on the above notation, the two-step estimator can be expressed as

β̂d−1,2(u0) = (1, 0, 0, 0)(XT
2 ·W2·X2)

−1
XT

2 ·W2·(Y − V)

at u = u0, where W2=diag{Kh2
(u1 − u0), Kh2

(u2 − u0), Kh2
(u3 − u0), ........, Kh2

(un − u0)}

and V = (V1, V2, ..., Vn)T with Vi =
d−2∑
j=1

β̂j,0(Ui)Xij

Note that the two-step estimator β̂d−1,2(·) is a linear estimator for the given bandwidth

h0 and h2, since it is still a weighted sum of Y1,Y2,...,Yn.

Local Likelihood Estimation Procedure For generalized varying-coefficient models, we

estimate the coefficient functions βj(·), j = 1, 2, ..., p through local likelihood approach. If

the likelihood function is not available, quasi-likelihood function can be used.

A generalized varying-coefficient model has the form

η(u,x) = g{m(u,x)} = xT β(u) (2.24)

where g(·) is a link function, x = (x0, x1, x2,..., xd−1)
T is the vector of independent variables,

and m(u,x) is the mean regression function of the response variable Y given that the co-

variates U = u and X = x. The link function g(·) transforms the mean regression function

m(u,x) into a linear predictor.

A local likelihood for generalized varying-coefficient model has the form

ℓn(a,b) =
1

n

n∑

i=1

ℓ[g−1{XT
i (a + b(ui − u0)), Yi]

2 · Kh(Ui − u0). (2.25)

Denote a = (a1,a2,...,ap)
T , and b = (b1,b2,...,bp)

T . We can write the local likelihood function

ln(a,b) using matrix notation

ℓn(a,b) =
1

n

n∑

i=1

l[g−1{X∗β∗}, Yi]
2 · Kh(Ui − u0) (2.26)
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where

X∗ =




X11 X12 ... X1,p (U1 − u0)X11 (U1 − u0)X12 ... (U1 − u0)X1,p

X21 X22 ... X2,p (U2 − u0)X21 (U2 − u0)X22 ... (U2 − u0)X2,p

. . ... .. . ... .

. . ... .. . ... .

Xn1 Xn2 ... Xn,p (Un − u0)Xn1 (Un − u0)Xn2 ... (Un − u0)Xn,p




and

β∗ = (a,b)T

≡ ( a1 a2 a3 ... ap b1 b2 b3 ... bp )T

≡ (β1(u0), β2(u0), ..., βp(u0), β
(1)
1 (u0), β

(1)
2 (u0), ..., β

(1)
p (u0))

T

For each given u0, we find the local likelihood estimator

(â, b̂)T ≡ ( â1 â2 â3 ... âp b̂1 b̂2 b̂3 ... b̂p )T

≡ (β̂1(u0), β̂2(u0), ..., β̂p(u0), β̂
(1)
1 (u0), β̂

(1)
2 (u0), ..., β̂

(1)
p (u0))

T

Then the component âT ≡ ( â1 â2 ... âp )T ≡ (β̂1(u0), β̂2(u0), ..., β̂p(u0))
T is the

estimate for u0 β(u0) ≡ (β1(u0), β2(u0),..., βp(u0)), the coefficient function at the given

covariate point.

Let ℓ
′

n(β∗) and ℓ
′′

n(β∗) denote the gradient and the Hessian matrix of the local log-

likelihood ln(β∗). Now given an initial estimator β̂∗
0(u0) = (â0, b̂0)

T , we can use iterative

algorithm to find the local maximum likelihood estimate (MLE). In practice, we usually use

the ordinary least-squares estimate for a0 as the initial value.

The iterative algorithm involved in estimating coefficient functions of generalized

varying-coefficient models rises the problem of high computational expenses. This is be-

cause in order to find the estimates for coefficient functions, we usually need to find the
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functional value β(u0) at hundreds of distinct points; that is, we need to solve hundreds

of local maximum likelihood problems. When cross-validation criterion is used to select a

bandwidth h, the computational burden becomes even more severe. Note that this compu-

tational problem does not arise in varying-coefficient, where local least-squares method is

used to find the estimate.

An efficient estimation of varying-coefficient models is proposed using one-step local

MLE in Cai, Fan and Li (2000). Given an initial estimator β̂∗
0(u0) = (â0, b̂0)

T , one-step of

Newton-Raphson algorithm produces the one-step estimator

β̂∗
OS = β̂∗

0 − {ℓ
′′

n(β̂∗
0)}−1ℓ

′

n(β̂∗
0)

It can be easily seen that the one-step estimator features the same computational

expediency of the local least-squares local polynomial fitting.

Note that ℓ
′′

n(β̂∗
0) can be a nearly singular matrix for some u0, due to the sparcity of

data in some region r when the bandwidth is chosen to be too small. Fan and Chen (1999)

and Seifert and Gasser (1996) studied how to deal with such difficulties using ridge regression

in a univariate setting.

Bandwidth Selection for Varying-coefficient Models

For nonparametric regression techniques, local polynomial approach requires to use band-

width h and the choice of bandwidth h is crucial in analysis. In the literature, there are

many proposals for selecting bandwidth; these include the cross-validation approach (Bow-

man 1984; Scott and Terrell 1987; Vieu 1991; Hall and Johnstone 1992; Fan 1996a) and the

plug-in approach (Woodroofe 1970; Sheather and Jones 1991; Jones 1996).

In local polynomial fitting of varying-coefficient models, the choice of bandwidth h is crucial

in the estimation. A multi-fold cross-validation method is used to select a bandwidth h.
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We first partition the data into Q groups, with the jth group consisting datum points with

indices

dj = {Qk + j, k = 1, 2, 3, ...}, j = 0, 1, 2, ..., Q− 1

We fit the model and obtain the jth estimate, using the remaining data after deleting the jth

group. Now, we denote by ŷ−dj
(ui,xi) the fitted value using the data with jth group deleted.

For varying-coefficient models, the cross-validation criterion has the form

CV (h) =

Q−1∑

j=0

∑

i∈dj

[yi − ŷ−dj
(ui,xi)]

2 (2.27)

We choose the bandwidth h that minimizes the CV (h); that is, we select the bandwidth h

that provide the model that best fits of the data.

For generalized varying-coefficient models, the goodness-of-fit criterion is determined by

deviance or the sum of squares of Pearson’s residuals. Then, it leads to two cross-validation

criteria

CV1(h) =

Q−1∑

j=0

∑

i∈dj

[yi log{ yi

ŷ−dj
(ui,xi)

} − {yi − ŷ−dj
(ui,xi)}] (2.28)

which is based on sum of deviance residuals. Here 0 log(0) = 0. and

CV2(h) =

Q−1∑

j=0

∑

i∈dj

{yi − ŷ−dj
(ui,xi)√

ŷ−dj
(ui,xi)

}2 (2.29)

where ŷ−dj
(ui,xi) is the fitted value obtained using data with jth group deleted. In practice,

Q is usually chosen to be 20. In general, the cross-validation is not very sensitive to way in

which data is partitioned (Cai, Fan and Li, 2000).

In Zhang and Lee (2000), a variable bandwidth selection method is proposed based on

local polynomial fitting of varying-coefficient models. It is discussed in the paper that a con-

stant bandwidth is sufficient if the unknown coefficient functions are spatial homogeneous;

while for estimating varying-coefficient models with more complex coefficient functions, vari-

able bandwidth is needed.



26

Hastie and Tibshirani (1993) proposed the use of a smoothing spline to estimate the

regression coefficient functions in varying-coefficient models. The smoothing spline approach

is to minimize the following penalized least squares function:

n∑

i=1

[Yi −
d∑

j=1

βj(u0) · Xij ]
2 +

d∑

j=1

λj

∫
{β ′′

j (u)}2du,

where λj , j = 1, 1, 2,..., d are smoothing parameters. The estimation of coefficient functions

βj(u0), j = 1, 1, 2,..., d through the smoothing spline approach may have some potential

problems. The first problem is that the choice of the p smoothing parameters is a difficult

task in practice. Second, the computational burden is significant and challenging, as is the

iterative procedure proposed in Hastie and Tibshirani (1993). Third, it is difficult to derive

the sampling properties.

2.3 Nonparametric Goodness-of-fit Tests

After the estimation procedure for varying-coefficient models, we naturally will be interested

to know whether the estimated unknown coefficient functions really depend on covariate u,

or whether any of the coefficient functions are significant in the fitted model. We therefore

need to consider the following hypothesis testing problems:

H0 : βj(u) ≡ βj0 versus H1 : βj(u) 6= βj0 for some u, j = 1, 2, ..., p (2.30)

or

H0 : βj(u) ≡ 0 versus H1 : βj(u) 6= 0 for some u, j = 1, 2, ..., p (2.31)

where βj0 is an unknown constant.

The statistical test can be conducted through a nonparametric likelihood ratio test. Denote

ℓ(H0): the log-likelihood under H0

ℓ(H1): the log-likelihood under H1



27

Define

T = {ℓ(H1) − ℓ(H0)}.

Intuitively, we expect T to be small under H0; while we expect T to be large under H1. For

generalized linear model (GLIM), the likelihood ratio test statistic follows asymptotically

a chi-square distribution with degree of freedom f − r, where f and r are dimensions of

parameter space under H1 and H0, respectively. However, for the nonparametric alternative

hypothesis, note that the parameter space is infinite dimensional, although the parameter

space under null hypothesis is finite dimensional. Thus, many traditional tests, such as

likelihood the ratio test, cannot be applied to the type of hypothesis testing proposed above.

Intuitively, under H0, there will be little difference between ℓ(H0) and ℓ(H1). However,

under the alternative hypothesis, ℓ(H1) should become systematically larger than ℓ(H0),

and hence the Generalized Likelihood Ratio(GLR) test statistic GLRT0 will tend to take

a large positive value. Hence, a large value of the Generalized Likelihood Ratio(GLR) test

statistic GLRT0 indicates that the null hypothesis should be rejected. Cai, Fan and Li (2000)

empirically demonstrated that rKT has an asymptotic chi-square distribution, where rK is a

constant depending on the kernel function. Fan, Zhang and Zhang (2001) provides a general

framework for generalized likelihood ratio tests.



Chapter 3

Statistical Inference Procedures for Nonlinear Varying

Coefficient Models

Suppose that {ui,xi, yi}, i = 1, · · · , n is a random sample from the nonlinear varying

coefficient model

y = f(x, β(u)) + ε, (3.1)

where β(·) is the unknown regression coefficient function, ε is a random error with zero mean

and finite variance. Denote the dimensions of x and β(·) by p and d, respectively.

3.1 Estimation Procedure

We first propose an estimation procedure for the nonlinear varying coefficient model

by using local linear regression techniques. We consider only the case in which u is univariate.

Extension to multivariate does not involve extra difficulty, but it may practically be useless

because of the curse of dimensionality.

Using Taylor’s expansion in a neighborhood of given u0, for j = 1, · · · , d,

βj(u) ≈ βj(u0) + βj(u0)(u − u0) ≡ aj + bj(u − u0).

Denote a = (a1, · · · , ad)
T and b = (b1, · · · , bd)

T . Thus, we obtain a local linear

28
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regression estimator (âT , b̂
T
)T by minimizing

ℓ(a,b) =
1

2

n∑

i=1

[yi − f{xi, a + b(ui − u0)}]2Kh(ui − u0) (3.2)

where Kh(t) = h−1K(t/h) and K(·) is a kernel density function. That is.

β̂(u0) = â

We next derive the asymptotic distributions of the local linear estimate â and b̂. For

simplicity of presentation, denote θ(u0) = (a1, · · · , ap, b1, · · · , bp)
T , and θ̂(u0) = (â(u0)

T , b̂(u0)
T )T .

Let c(u) denote the marginal density of U . Define µk =
∫

tkK(t) dt and νk =
∫

tkK2(t) dt

and H = diag{1, h} ⊗ Ip. Further denote

Γ1(u0) = E{f ′{x; β(u0)}[f ′{x; β(u0)}]T |U = u0}, (3.3)

and

Γ2(u0) = E{σ2(u0,x)f ′{x; β(u0)}[f ′{x; β(u0)}]T |U = u0}, (3.4)

where f ′(x; β) = ∂f(x, β)/∂β.

Theorem 1. Assume that Conditions A — G in Section 3.4 hold. We have the following

asymptotic normality for θ̂(u0).

√
n h


H

{
θ̂(u0) − θ(u0)

}
− h2

2(µ2 − µ2
1)




(µ2
2 − µ1 µ3) β′′(u0)

(µ3 − µ1 µ2) β′′(u0)


 + op(h

2)




D−→ N
(
0, ∆−1 Λ ∆−1

)
, (3.5)

where

∆ = c(u0)




1 µ1

µ1 µ2


 ⊗ Γ1(u0) and Λ = c(u0)




ν0 ν1

ν1 ν2


 ⊗ Γ2(u0). (3.6)
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with Γ1(u0) and Γ2(u0) given by (3.3) and (3.4), respectively. Furthermore, if K(·) is sym-

metric,

√
n h

[
â(u0) − β(u0) −

h2 µ2

2
β′′(u0) + op(h

2)

]
D−→ N (0, Σ(u0)) , (3.7)

where

Σ(u0) = ν0 Γ−1
1 (u0)Γ2(u0)Γ

−1
1 (u0)/c(u0). (3.8)

Proof of this theorem is given in Section 3.4.

3.2 Computation Issue

We will address the computation issue associated with the minimization of nonlinear

least squares function. For a given initial value (aT
0 ,bT

0 )T of (aT ,bT )T , we locally and linearly

approximate

f{x, a+b(u−u0)} ≈ f{x, a0+b0(u−u0)}+{(a−a0)+(b−b0)(u−u0)}T f ′{x, a0+b0(u−u0)},

where f ′(y, β) = ∂f(x, β)/∂β. With this approximation, we can use an iterated least squares

algorithm to search the solution of (3.2). Specifically, at the k-th step during the course of

iteration, the current value for a and b is a(k) and b(k). Denote

yi,k = yi − f{xi, a
(k) + b(k)(ui − u0)} + {a(k) + b(k)(ui − u0)}f ′{xi, a

(k) + b(k)(ui − u0)},

Fk =



 f ′{x1, a
(k) + b(k)(u1 − u0)}, · · · f ′{xn, a(k) + b(k)(un − u0)}

(u1 − u0)f
′{x1, a

(k) + b(k)(u1 − u0)}, · · · (un − u0)f
′{xn, a(k) + b(k)(un − u0)}T





and yk = (y1,k, · · · , yn,k)
T .

Then, we update (a,b)T by


a(k+1)

b(k+1)



 = (F T
k WFk)

−1F T
k Wyk,
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where W = diag{Kh(u1−u0), · · · , Kh(un−u0)}. When the algorithm converges, the solution

is satisfied with

ℓ′(a,b) = 0.

Denote the resulting estimate of (a,b)T by (â, b̂)T . Then

β̂(u0) = â, and β̂
′
(u0) = b̂.

Following conventional techniques, the standard error of (â, b̂)T using sandwich for-

mula. In other words, conditioning on (u1,x1), · · · , (un,xn),

ĉov{



â

b̂



} = (F T WF )−1F TWΣWF (F TWF )−1,

where F = Fk with a(k) = â and b(k) = b̂, and Σ = diag{e2
1, · · · , e2

n}, where ei = yi −

f{xi, β̂(zi)}.

We will test the accuracy of the proposed standard error formula in the simulation

study in next chapter.

3.3 Generalized likelihood ratio tests

Next we deal with nonparametric testing hypothesis problems. Consider the following

hypothesis testing problem:

H0 : βj(u) = βj0(u, γj), j = 1 · · · , p vs H1 : βj(u) 6= βj0(u, γj), j = 1 · · · , p, (3.9)

where βj0(u, γj) has a parametric form in which we are interested, and γj is a vector of

unknown parameters. For example, taking βj0(u, γj) = γj0, where γj0 is unknown constant,

the null hypothesis implies that the βj(u) is a constant.
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To gain more insights into the construction of nonparametric likelihood ratio type of

tests, assume, tentatively, that the random error ε is N(0, σ2). Then the likelihood function

of the data {ui,xi, yi}, i = 1, · · · , n, is proportional to

(σ2)−n/2 exp

{
− 1

2σ2

n∑

i=1

[yi − g(xi; β(ui))]
2

}
.

Let β̃(·) and β̂(·) be estimates of β(t) under H0 and H1, respectively. A generalized

likelihood ratio (GLR) test statistic is defined as

n

2
log(RSS(H0)/RSS(H1))

where

RSS(H0) =

n∑

i=1

{yi − g(xi; β̃(ui))}2

and

RSS(H1) =
n∑

i=1

{yi − g(xi; β̂(ui))}2

Under H0, the GLR test statistic is asymptotically equivalent to

T0 =
n

2

RSS(H0) − RSS(H1)

RSS(H1)
.

Note that β̂(·) is obtained by using a nonparametric estimator, rather than the maxi-

mum likelihood estimator under the alternative model. In fact, as argued in Fan, Zhang and

Zhang (2001), the nonparametric MLE usually does not exist, and, even if it does exists,

the resulting nonparametric maximum likelihood ratio test is not very powerful. This is the

motivation behind the generalized likelihood ratio test.

Intuitively, under H0, there will be little difference between RSS(H0) and RSS(H1).

However, under the alternative hypothesis, RSS(H0) should become systematically larger

than RSS(H1), and hence the test statistic T0 will tend to take a large positive value. Hence,

a large value of the test statistic T0 indicates that the null hypothesis should be rejected.
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In the nonparametric regression model and varying coefficient models, Fan, Zhang and

Zhang (2001) unveiled the following Wilks phenomenon: The asymptotic null distribution

of

T ≡ rKT0 (3.10)

is a chi-square distribution, where where rK = {K(0) − 0.5
∫

K2(u) du}/[
∫
{K(u) − 0.5K ∗

K(u)} du] and K(·) is the kernel function used to estimate the regression coefficients.

As pointed out by Fan, Zhang and Zhang (2001) that, unlike the parametric settings

in which, in general, the likelihood ratio test has a χ2-distribution, it needs to verify that the

GLR test has a chi-square limiting distribution for every specific nonparametric model. Here

we would conjecture the Wilks type of results to continue to hold for our current setting.

We will provide empirical justifications by Monte Carlo simulation. Similar to the proposal

of Cai, Fan and Li (2000), the null distribution of T can be estimated by using a bootstrap

procedure. This usually provides a better estimate than the asymptotic null distribution,

since, in the nonparametric situation, the degrees of freedom tends to infinite and the results

in Fan, Zhang and Zhang (2001) give only the main order of the degrees of freedom.

3.4 Proof of Theorem 1

We need the following regularity conditions for the proof of Theorem 1. These con-

ditions are not the weakest conditions, but they are imposed to facilitate the proofs.

Regularity Conditions

A. The sample {ui,xi, yi}, i = 1, · · · , n is independent and identically distributed to the

population (u,x, y). The εi are independent and identically distributed with mean

zero and finite variance σ2. The covariate u has a finite support U = [L, U ], where
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both L and U are finite. Furthermore, The support for x, denoted by X , is closed and

bounded of Rp.

B. The coefficient functions βj(u), j = 1, · · · , p has continuous second order derivative over

U .

C. Assume that f(x; β) is a continuous function on X × Theta1, where Θ1 = {β(u) : L ≤

u ≤ U}. The first and second partial derivative of f(x; β) with respect to β exist and

continuous. Furthermore, n−1
∑n

i=1 f ′(xi, β)f ′(xi, β)T converges to some matrix Ω(β)

uniformly in β for β ∈ Θ1. Also assume that Ω(β(u0)) is finite positive definite.

D. n−1
∑n

i=1[∂
2f(xi, β)/∂βr∂βs]

2 converges uniformly in β for β ∈ Θ1 (r, s = 1, · · · , p).

E. The kernel density function K(·) has finite support and satisfies

∫
K(t)dt = 1,

∫
|t|3K(t) dt < ∞,

∫
t2K2(t)dt < ∞.

Without loss of generality, it is assumed that the support K(·) is [−1, 1].

F. The marginal density function c(u) is continuous and positive for u ∈ U .

G. h = O(n−1/5).

Conditions A, B, C, D and G are adopted from the regularity conditions for nonlinear

least squares estimator. See, for example, Chapter 12 of Seber and Wild (1989).

Condition B implies that the parameter space for θ, namely, Θ1 is a closed and

bounded (i.e., compact) subset of R2d.

Let us start with the consistency of θ̂. Denote a0 = β(u0) and b0 = β′(u0). That is,

(aT
0 ,bT

0 ) is the true value of (aT ,bT ).
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Lemma 1. Under the regularity conditions A– G, with probability tending to one, there

exists a local minimizer {â, b̂} of ℓ(a,b) such that ‖â − a0‖ = OP (1/
√

nh) and ‖b̂ − b0‖ =

OP (1/(h
√

nh).

Proof. We want to show that for any given η > 0, there exists two large constant C1 and

C2 such that

P{ inf
‖w1‖=C1,‖w2‖=C2

ℓ{a0 + w1/
√

nh,b0 + w2/(h
√

nh)} > ℓ(a0,b0)} ≥ 1 − η.

This implies that with probability at least 1 − η that there exists a local minimum in the

region {a0 + w1/
√

nh : ‖w1‖ ≤ C1} × {b0 + w2/h
√

nh : ‖w2‖ ≤ C2}. Hence, there exists a

local minimizer such that ‖â− a0‖ = OP (1/
√

nh) and ‖b̂− b0‖ = OP (1/(h
√

nh).

Denote

Dn(w1,w2) =
1

n
ℓ(a0 + w1/

√
nh,b0 + w2/h

√
nh) − 1

n
ℓ(a0,b0)

Decompose Dn(w1,w2) as

Dn(w1,w2) = I1 + I2,

where

I1 =
1

n

n∑

i=1

[yi − f{xi, a0 + b0(ui − u0)}]

×[f{xi, a0 + b0(ui − u0)} − f{xi, a0 + w1/
√

nh + (b0 + w2/h
√

nh)(ui − u0)}]Kh(ui − u0)

I2 =
1

2n

n∑

i=1

[f{xi, a0 + b0(ui − u0)} − f{xi, a0 + w1/
√

nh + (b0 + w2/h
√

nh)(ui − u0)}]2Kh(ui − u0)
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Let us calculate the order of I1 first. Since

E(I1) = E[y − f{x, a0 + b0(ui − u0)}]

×[f{x, a0 + b0(u − u0)} − f{x, a0 + w1/
√

nh + (b0 + w2/h
√

nh)(u − u0)}]Kh(u − u0)

= E[f(x, β(u)) − f{x, a0 + b0(ui − u0)}]

×[f{x, a0 + b0(u − u0)} − f{x, a0 + w1/
√

nh + (b0 + w2/h
√

nh)(u − u0)}]Kh(u − u0).

= E

∫
[f(x, β(u0 + hv)) − f{x, a0 + b0hv}]

×[f{x, a0 + b0hv} − f{x, a0 + w1/
√

nh + (b0 + w2v/
√

nh)}]K(v)c(u0 + hv) dv.

By some straightforward calculation, it follows that

f(x, β(u0 + hv)) − f{x, a0 + b0hv} = Op(h
2),

and

f{x, a0 + b0hv} − f{x, a0 + w1/
√

nh + (b0 + w2v/
√

nh)

= −f ′(x, a0)
T (w1/

√
nh + w2v/

√
nh) + OP (1/(nh)). (3.11)

Thus, the order of leading term of I1 is OP (h2/
√

nh) = Op(n
−4/5) as h = O(n−1/5) using

Condition G. Now let us calculate the order of I2.

E(I2) =
1

2
E[f{x, a0+b0(u−u0)}−f{x, a0+w1/

√
nh+(b0+w2/h

√
nh)(u−u0)}]2Kh(u−u0)

Using (3.11), it can be shown that the order of the leading term of I2 is OP{1/(nh)} =

OP (n−4/5). Thus, the leading terms of I1 and I2 have the same order. Note that I2 is a

quadratic function of (w1,w2), while I1 is linear function of (w1,w2). Thus, I2 dominates

I1 by taking large enough C1 and C2 by Condition C. This completes the proof of Lemma 1.

Proof of Theorem 1. By a Taylor expansion and week consistency θ̂(u0)
P−→ θ(u0), we

have

0 = ℓθ(θ̂(u0)) = ℓθ(θ(u0)) + ℓ
θθ

T (θ(u0)){θ̂(u0) − θ(u0)} + OP (||θ̂(u0) − θ(u0)||2)

= ℓθ(θ(u0)) + {ℓ
θθ

T (θ(u0)) + oP (1)}{θ̂(u0) − θ(u0)}.
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Then,

θ̂(u0) − θ(u0) = −{ℓ
θθ

T (θ(u0)) + oP (1)}−1ℓθ(θ(u0))

Thus,

H
{
θ̂(u0) − θ(u0)

}
= −H{ℓ

θθ
T (θ(u0)) + oP (1)}−1HH−1ℓθ(θ(u0)) (3.12)

For the expectation of ℓθ(θ(u0)), we do a Taylor expansion around the true function

β(u) at u0

ℓθ(θ(u0)) =




∑n
i=1[yi − f{xi, a + b(ui − u0)}]f ′{xi, β(u0)}Kh(ui − u0)

∑n
i=1[yi − f{xi, a + b(ui − u0)}]f ′{xi, β(u0)}(ui − u0)Kh(ui − u0)




=




∑n
i=1[εi + f ′{xi, β(ui)}1

2
β′′(u∗)(ui − u0)

2}]f ′{xi, β(u0)}Kh(ui − u0)

∑n
i=1[εi + f ′{xi, β(ui)}1

2
β′′(u∗)(ui − u0)

2}]f ′{xi, β(u0)}(ui − u0)Kh(ui − u0)




where where u∗ is between ui and u0. Then it can be showed that

H−1ℓθ(θ(u0))
P−→ c(u0)

1

2
β′′(u0)h

2




µ2

µ3


 ⊗ Γ1(u0) + op(h

2) (3.13)

For the variance of ℓθ(θ(u0))

Eℓθ(θ(u0))[ℓθ(θ(u0))]
T =




E11 E11

E21 E22


 (3.14)
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where

E11 = E
n∑

i=1

[εi + f ′{xi, β(ui)}
1

2
β′′(u∗)(ui − u0)

2}]2

×f ′{xi, β(u0)}[f ′{xi, β(u0)}]T K2
h(ui − u0)

E12 = E21 = E

n∑

i=1

[εi + f ′{xi, β(ui)}
1

2
β′′(u∗)(ui − u0)

2}]2

×f ′{xi, β(u0)}[f ′{xi, β(u0)}]T (ui − u0)K
2
h(ui − u0)

E22 = E
n∑

i=1

[εi + f ′{xi, β(ui)}
1

2
β′′(u∗)(ui − u0)

2}]2

×f ′{xi, β(u0)}[f ′{xi, β(u0)}]T (ui − u0)
2K2

h(ui − u0)

Then it can be showed that

EH−1ℓθ(θ(u0))H
−1[ℓθ(θ(u0))]

T = c(u0)




ν0 ν1

ν1 ν2


 ⊗ Γ2(u0) + Op(h

2) (3.15)

Similarly, we can show

H−1ℓ
θθ

T (θ(u0))H
−1 P−→ −c(u0)




1 µ1

µ1 µ2


 ⊗ Γ1(u0) (3.16)

and note that



1 µ1

µ1 µ2




−1

×




µ2

µ3


 =

1

(µ2 − µ2
1)




µ2
2 − µ1 µ3

µ3 − µ1 µ2




The asymptotic result is proved by combining (3.13), (3.14), (3.15), and (3.16).

If K(u) is a symmetric kernel, then µ1 = µ3 = 0. (3.6) and (3.7) follows immediately.



Chapter 4

Numerical Studies

The purpose of this chapter is to study the finite sample performance of the proposed

statistical procedures in Chapter 3. To this end, we consider three typical nonlinear regres-

sion models in this chapter. For each model, we conduct extensive simulation studies to

assess the performance of the proposed estimation procedure, test the accuracy of proposed

standard error formula, and evaluate the proposed procedure of testing hypothesis, including

the investigation of the type I error rate of the proposed GLR test and calculating the power

under some specific alternative hypothesis.

In our simulation, the kernel function is taken to be Epanechnikov kernel, i.e., K(u) =

.75(1−u2)+. The grid points {uk, k = 1, ..., ngrid}, at which β̂j(·)′s are evaluated, are taken

to be evenly distributed over the range of u with ngrid = 200. The performance of estimator

β̂(·) is accessed by the square Root of Average Squared Error (RASE), defined by

RASE = {n−1
grid

p∑

j=1

ngrid∑

k=1

{βj(uk) − β̂j(uk)}2}1/2 (4.1)

For each simulation setting, we consider three bandwidths which represent a widely varying

degree of smoothness. Specifically, one bandwidth stands for under-smooth, one for over-

smooth and one for about right-smoothness. For each case, we conduct 400 simulations.

39
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4.1 Example 1

In this section, we conduct simulation studies based on the following model:

Y = exp(XT β(u)) + ε, (4.2)

where X = {1, X} and β(u) = {β1(u), β2(u)} with β1(u) = sin(π · u) and β2(u) = sin(4π ·
(u− 1/8), X is a standard normal random variable, and u is uniformly distributed on (0,1).

The random error ε follows a standard normal distribution N(0, 1). In our simulation, u, X,

ε are mutually independent. This model is referred to as exponential model. The coefficient

functions β1(u) and β2(u) are selected to represent typical functions, namely, β1(u) is a one-

mode function, and β2(u) is a two-mode function. See Figure 4.2 for the plots of β1(u) and

β2(u).

Before we present the simulation results, let us give some computation details. Using

Taylor’s expansion in a neighborhood of given u0, for j = 1, 2,

βj(u) ≈ βj(u0) + βj(u0)(u − u0) ≡ aj + bj(u − u0).

Denote a = (a1, a2)
T and b = (b1, b2)

T . Thus, we obtain a local linear regression estimator

(âT , b̂
T
)T by minimizing local nonlinear least squares function

ℓ(a,b) =
1

2

n∑

i=1

[yi − exp {xi
T (a + b(ui − u0))}]2Kh(ui − u0) (4.3)

where xi = {1, xi} and a = (a1, a2)
T and b = (b1, b2)

T .

Minimizing ℓ(a,b) yields an estimate for β(u0). For a given initial value (aT
0 ,bT

0 )T of

(aT ,bT )T , we locally and linearly approximate

f{x, a + b(u − u0)}

≈ f{x, a0 + b0(u − u0)} + {(a− a0) + (b− b0)(u − u0)}Tf ′{x, a0 + b0(u − u0)}

= exp {xT (a0 + b0(ui − u0))} +

{(a− a0) + (b− b0)(u − u0)}T{exp [xT (a0 + b0(ui − u0))] x}
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where f ′(x, β) = ∂f(x, β)/∂β. With this approximation, we can use an iterated least squares

algorithm to search the solution of (4.3). Specifically, at the k-th step during the course of

iteration, the current value for a and b is a(k) and b(k). Denote

yi,k = yi − f{xi, a
(k) + b(k)(ui − u0)} + {a(k) + b(k)(ui − u0)}f ′{xi, a

(k) + b(k)(ui − u0)}

= yi − exp {xT (a(k) + b(k)(ui − u0))} +

{(a− a(k)) + (b− b(k))(u − u0)}T{exp [xT (a(k) + b(k)(ui − u0))] x},

yk = (y1,k, · · · , yn,k)
T , and Fk is given by




f ′{x1,a
(k) + b(k)(u1 − u0)}, · · · f ′{xn,a(k) + b(k)(un − u0)}

(u1 − u0)f
′{x1,a

(k) + b(k)(u1 − u0)}, · · · (un − u0)f
′{xn,a(k) + b(k)(un − u0)}T




=




exp {xT
1 (a(k) + b(k)(ui − u0)) x}, · · · exp {xT

n (a(k) + b(k)(ui − u0)) x}

(u1 − u0) exp {xT
1 (a(k) + b(k)(ui − u0)) x}, · · · (un − u0) exp {xT

n (a(k) + b(k)(ui − u0)) x}




Then, we update (a,b)T by



a(k+1)

b(k+1)



 = (F T
k WFk)

−1F T
k Wyk,

where W = diag{Kh(u1−u0), · · · , Kh(un−u0)} When the algorithm converges, the solution

is satisfied with

ℓ′(a,b) = 0.

Denote the resulting estimate of (a,b)T by (â, b̂)T . Then

β̂(u0) = â, and β̂
′
(u0) = b̂.

In this example, we take sample size n=250, 500, and 1000. The value of bandwidth

h is essential to local modeling technique, so we select bandwidth three different bandwidths

for each sample size n, in order to compare the performance of proposed estimation procedure
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at a wide range of bandwidth. For n = 250, the bandwidth is taken to be 0.05, 0.10 and

0.20; for n = 500, h = 0.0375, 0.075 and 0.15; and h = 0.03, 0.06 and 0.12 for n = 1000.

Figure 4.1 depicts the boxplots for RASE values over 400 simulations for all sample

sizes and bandwidths. Figures 4.2, 4.3 and 4.4 depict the estimate of the coefficient functions

from a typical sample, whose RASE value corresponds the median of the RASE values over

400 simulations. Figures 4.2, 4.3 and 4.4 show that the proposed estimation procedure

achieves quite favorable results for a broad range of bandwidth choices.

The simulation results are summarized in Table 4.1. In Table 4.1, µ and σ denote the

mean and standard deviation of the RASE values in 400 simulations. For any fixed sample

size level, the RASE values generally achieve its minimal value at certain bandwidth h, the

so-called optimal bandwidth. The optimal bandwidth value is not shown here. The RASE

values increase as the bandwidth h increases or decreases from the optimal bandwidth. This

is because a larger bandwidth value implies a wider neighborhood and thus more local data,

which leads to a smoother estimated curve but at a loss of greater bias; a smaller bandwidth

implies a shorter neighborhood and thus less local points, which leads to a more fluctuated

estimated curve but at a gain of less bias. Either a smoother estimated curve or a more

fluctuated estimated curve, the RASE values will increase due to either more variance or

more bias. This can also be verified from the graphical comparisons of estimated coefficient

function at different bandwidth values at a fixed sample size level. In the plots, we observe

a pattern that a larger bandwidth h leads to a greater estimation bias.

However, the computation in estimation becomes difficult when bandwidth h is too

small. This is because when bandwidth h is too small, it implies not sufficient number of

local data involved in estimation. As shown in the estimation plots, a larger sample size

allows an even smaller bandwidth h for the density of data are higher and thus the number

of local data available is larger.
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Table 4.1: Summary of Simulation Output for Example 1

n h µ(RASE) σ(RASE)

0.05 0.3097 0.1303

250 0.10 0.2159 0.0645

0.20 0.3649 0.1204

0.0375 0.2009 0.0625

500 0.075 0.1461 0.0339

0.150 0.2237 0.0491

0.03 0.1353 0.0334

1000 0.06 0.1028 0.0321

0.12 0.1512 0.0334

h=0.05 h=0.1 h=0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a)

Performance comparison of bandwidth choices
n=250

h=0.0375 h=0.075 h=0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b)

Performance comparison of bandwidth choices
n=500

h=0.03 h=0.06 h=0.12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(c)

Performance comparison of bandwidth choices
n=1000

Figure 4.1: Boxplots of RASE values for Example 1. (a), (b) and (c) are boxplots of RASE values
for n = 250, 500, 1000, respectively. For n = 250, bandwidth h = 0.05, 0.10 and 0.20; for n = 500,
bandwidth h =0.0375, 0.075, and 0.150; for n=1000, bandwidth h =0.03, 0.06, and 0.12.
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Estimated coefficient function β
1
(u) with h=0.1
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(d)

Estimated coefficient function β
2
(u) with h=0.1
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(e)

Estimated coefficient function β
1
(u) with h=0.2
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(f)

Estimated coefficient function β
2
(u) with h=0.2

Figure 4.2: Estimated coefficients based on a typical example with n = 250. (a)-(b) are plots for
β1(u) and β2(u) using bandwidth h = 0.05; (c)-(d) are plots for h = 0.10 and (e)-(f) are plots for
h = 0.20. The fluctuated solid curves are estimated coefficient functions and the dotted curves
are pointwise 95% confidence intervals obtained using standard error formulas; the one-mode and
two-mode solid curves are the true coefficient functions.
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Estimated coefficient function β1(u) with h=0.0375
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Estimated coefficient function β2(u) with h=0.0375
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Estimated coefficient function β1(u) with h=0.075
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Estimated coefficient function β2(u) with h=0.075
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Estimated coefficient function β1(u) with h=0.15
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Estimated coefficient function β2(u) with h=0.15

Figure 4.3: Estimated coefficients based on a typical example with n = 500. Caption is similar to
Figure 4.2.
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Estimated coefficient function β2(u) with h=0.03
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Estimated coefficient function β1(u) with h=0.12
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Estimated coefficient function β2(u) with h=0.12

Figure 4.4: Estimated coefficients based on a typical example with n = 1000. Caption is similar
to Figure 4.2.
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We next test the accuracy of our proposed standard error formula, derived from a

sandwich formula: conditioning on (u1,x1), · · · , (un,xn),

ĉov{



â

b̂



} = (F T WF )−1F TWΣWF (F TWF )−1,

where F = Fk with a(k) = â and b(k) = b̂, and Σ = diag{e2
1, · · · , e2

n}, where ei = yi −
f{xi, β̂(ui)}.

In Table 4.2, the standard deviation of the 400 estimated β̂j(u0) for u0 = 0.1, 0.3, 0.5, 0.7, 0.9,

based on 400 simulations, is denoted by SD. We can regard SDs as the true standard errors.

We use SDa to denote the average of 400 estimated standard errors; and use SDstd to denote

the standard deviation of 400 estimated standard errors. Thus, SDa and SDstd summarize

the performance of the standard error formulas. The results summarized in Table 4.2 suggest

that our standard error formula somewhat underestimates the true standard error.

Table 4.2 suggests that the proposed standard error formula works well for most cases

since the difference in the standard error is still within two standard deviations of the Monte

Carlo errors. The bias becomes smaller for a larger value of nhn, which is consistent with

our asymptotic theory. For large bandwidth, such as h = 0.20 for n = 250, h = 0.15 for

n = 500 and h = 0.12 for n = 1000, some SD values are significantly greater than SDa. We

have further checked the individual SD values and found that there are some outliers of SD

values, which may caused due to the divergence of the proposed algorithm. We calculate

the robust estimate of standard deviation by using median of absolute deviation dividing

by a factor 0.6745. The robust estimate for the standard deviation is very close to the SDa

values. For example, when n = 250 and h = 0.20, the robust estimate for SD is 0.1381,

0.1232 and 0.1312 for u =0.3, 0.5 and 0.7, respectively, compared with its sample standard

deviation 0.2195, 0.2574 and 0.1919 in Tabl 4.2.

We now examine the performance of the proposed generalized likelihood ratio test.
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Table 4.2: Summary of Standard Deviations and Standard Errors for Example 1

bβ1(u) bβ2(u)

n h u SD SDa(SDstd) SD SDa(SDstd)

0.1 0.2604 0.1974 (0.1045) 0.2920 0.1787 (0.1180)
0.3 0.1295 0.1121 (0.0355) 0.1364 0.0937 (0.0516)

0.05 0.5 0.1145 0.0950 (0.0307) 0.1257 0.0795 (0.0458)
0.7 0.1328 0.1149 (0.0399) 0.1304 0.0934 (0.0488)
0.9 0.2350 0.1945 (0.0933) 0.2377 0.1748 (0.0942)

0.1 0.1368 0.1278 (0.0311) 0.1292 0.1047 (0.0404)
0.3 0.1031 0.0862 (0.0214) 0.1030 0.0706 (0.0263)

250 0.10 0.5 0.1329 0.0844 (0.0367) 0.1352 0.0717 (0.0288)
0.7 0.0994 0.0848 (0.0174) 0.1006 0.0690 (0.0237)
0.9 0.1459 0.1276 (0.0304) 0.1273 0.1011 (0.0357)

0.1 0.1211 0.1000 (0.0226) 0.1478 0.0903 (0.0349)
0.3 0.2195 0.1043 (0.0478) 0.2470 0.1111 (0.0430)

0.20 0.5 0.2574 0.0985 (0.0648) 0.2501 0.1115 (0.0424)
0.7 0.1919 0.0970 (0.0379) 0.2394 0.1063 (0.0379)
0.9 0.1163 0.0991 (0.0191) 0.1338 0.0844 (0.0297)

0.1 0.1675 0.1464 (0.0412) 0.1545 0.1272 (0.0506)
0.3 0.0992 0.0903 (0.0228) 0.0827 0.0671 (0.0293)

0.0375 0.5 0.0769 0.0721 (0.0167) 0.0643 0.0533 (0.0241)
0.7 0.0997 0.0896 (0.0217) 0.0867 0.0672 (0.0294)
0.9 0.1718 0.1510 (0.0505) 0.1649 0.1290 (0.0560)

0.1 0.1107 0.1022 (0.0184) 0.0939 0.0823 (0.0249)
0.3 0.0747 0.0648 (0.0106) 0.0655 0.0489 (0.0159)

500 0.075 0.5 0.0835 0.0585 (0.0111) 0.0844 0.0452 (0.0167)
0.7 0.0732 0.0642 (0.0099) 0.0698 0.0483 (0.0151)
0.9 0.1051 0.1018 (0.0185) 0.0961 0.0818 (0.0236)

0.1 0.0748 0.0745 (0.0098) 0.0714 0.0588 (0.0159)
0.3 0.1246 0.0682 (0.0223) 0.1425 0.0719 (0.0252)

0.15 0.5 0.1730 0.0790 (0.0436) 0.1730 0.0840 (0.0333)
0.7 0.1237 0.0695 (0.0247) 0.1395 0.0740 (0.0288)
0.9 0.0776 0.0747 (0.0098) 0.0689 0.0587 (0.0153)

0.1 0.1268 0.1136 (0.0243) 0.1146 0.0956 (0.0273)
0.3 0.0776 0.0711 (0.0145) 0.0577 0.0481 (0.0176)

0.03 0.5 0.0550 0.0550 (0.0107) 0.0434 0.0357 (0.0150)
0.7 0.0727 0.0690 (0.0131) 0.0537 0.0463 (0.0178)
0.9 0.1110 0.1111 (0.0219) 0.1048 0.0921 (0.0257)

0.1 0.0821 0.0795 (0.0113) 0.0712 0.0638 (0.0156)
0.3 0.0559 0.0500 (0.0064) 0.0453 0.0346 (0.0104)

1000 0.06 0.5 0.0607 0.0443 (0.0069) 0.0544 0.0316 (0.0112)
0.7 0.0538 0.0490 (0.0064) 0.0435 0.0337 (0.0104)
0.9 0.0776 0.0779 (0.0110) 0.0714 0.0618 (0.0130)

0.1 0.0621 0.0562 (0.0057) 0.0520 0.0432 (0.0097)
0.3 0.0810 0.0504 (0.0151) 0.0867 0.0520 (0.0184)

0.12 0.5 0.1327 0.0639 (0.0278) 0.1207 0.0631 (0.0229)
0.7 0.0828 0.0498 (0.0142) 0.0883 0.0508 (0.0176)
0.9 0.0578 0.0557 (0.0058) 0.0548 0.0425 (0.0092)
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After fitting a nonlinear model with varying-coefficients, a natural question is whether the

coefficients are really varying; and if any particular coefficient is constant, whether or not it

is significant in the model. As illustrations, we consider

H0 : βj(u) = γj0, j = 1 · · · , p versus H1 : βj(u) 6= γj0, for at least one j

where γj0 is unknown constant.

Here we will empirically demonstrate that the GLRT has a chi-square limiting distri-

bution for every specific nonparametric model, and the Wilks type of results continue to hold

for our setting. To this end, we conduct simulation study to evaluate whether the asymptotic

null distribution of the test statistic T depends on the values of {γj0} under H0, and whether

the limiting conditional null distributions are dependent on the covariate values.

For this purpose, we estimate the distribution of test statistic T under H0 using n = 1000

via 1000 Monte Carlo simulations. We provide empirical justifications by estimating the null

distribution of T for the five sets of covariate values by using a bootstrap procedure.

To obtain the null distribution, we consider both parametric bootstrap procedure

and nonparametric bootstrap procedure. However, we should give special attention to the

nonparametric bootstrap procedure, since it is the practical procedure for empirical setting

when we handle real data sets.

Parametric bootstrap procedure. For parametric bootstrap procedure, we generate

sample of size n = 1000, based on model

yi = exp (XT β(u)) + εi,

where X = {1, Xi} and εi is standard normal. We then compute the test statistic

T0 =
n

2

RSS(H0) − RSS(H1)

RSS(H1)
.
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We conduct 1000 simulations to generate 1000 T0 values, and then estimate the distribution

of the test statistic T0 based on the T0’s from 1000 simulations.

Nonparametric bootstrap procedure. For nonparametric bootstrap procedure, we rely

on only one data set to follow the practical situation when real data is available. As if we

have a real data set, we generate a sample of size n = 1000, based on model

yi = f(xi; β(ui)) + εi (4.4)

= exp (XT β(u)) + εi (4.5)

where X = {1, Xi} and εi is standard normal. However, as if in the empirical setting when

only one data set is available, we estimate the model coefficients under null hypothesis and

alternative hypothesis based on the sample of size n = 1000. We now use β̃(ui) to denote

the estimate of model coefficient under null hypothesis and β̂(ui) to denote the estimate of

model coefficient under alternative hypothesis. We then obtain residuals ei through

ei = yi − f(xi; β̃(ui)) (4.6)

We now generate data (y∗
i , xi, ui) of size n = 1000 using the model

y∗
i = f(xi; β̃(ui)) + e∗i (4.7)

where e∗i represents the residuals resampled from model (4.6). We then compute the test

statistic

T0 =
n

2

RSS(H0) − RSS(H1)

RSS(H1)
.

We conduct 1000 simulations to generate 1000 T0 values, and then estimate the distribution

of the test statistic T0 based on the T0’s from 1000 simulations.
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Figure 4.5: The estimated coefficient functions under null hypothesis. The fluctuated solid curves
are estimated coefficient functions for the exponential model; the dotted curves are pointwise 95%
confidence intervals obtained using standard error formulas; the solid lines are true coefficient
functions; the dashed lines are the true function coefficients.

Figure 4.5 illustrates the nonparametric estimated coefficient functions under null

hypothesis. The dashed lines are the true function coefficients. The solid lines are the

estimated function coefficients within the null space of constant coefficients; while the solid

curves are the nonparametric estimated coefficient functions within the alternative space of

varying-coefficients, with pointwise 95% confidence interval bands in dashed curves.

Figure 4.6 depicts the estimated null distribution of test statistic T ≡ rKT0 com-

pared to a Chi-squared distribution with degree of freedom by Wilks phenomenon. The null

distribution of test statistic T are estimated through both parametric bootstrap and non-

parametric bootstrap described above. From the figure it shows that under null hypothesis,

test statistic T has a Chi-squared distribution with degree of freedom 20.65.

We next further demonstrate that the null distribution of the GLRT does not depend

on the specific values of unknown regression coefficients. To address this, we use five different
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Figure 4.6: The estimated density of test statistic T by Monte Carlo Simulation. The dotted curve
is the estimated density of generalized likelihood ratio test statistic T ; the dash-dotted curve is the
estimated density of generalized F-test statistic T0. The solid curve is the density of Chi-squared
distribution with degrees of freedom 20.65.

sets of values {γj0}. The five sets of values are quite far apart. Namely,

{γj0} = { (β1, β2), (β1 − 2 · std(β̂1), β2), (β1 + 2 · std(β̂1), β2),

(β1, β2 − 2 · std(β̂2) ), (β1, β2 + 2 · std(β̂2) ) }

where βj = E{βj(u)} for j = 1, 2, and std(β̂j) is the standard deviation of β̂j for j = 1, 2.

Figure 4.7 depicts the estimated null distribution of test statistic T for five different

sets of covariate values to a Chi-squared distribution with degree of freedom 20.65. The

null distribution of test statistic T are estimated through both parametric bootstrap and

nonparametric bootstrap described above. This figure empirically justifies Wilks type of
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Figure 4.7: The estimated densities of test statistic T by Monte Carlo Simulation, using 5 different
coefficient values. The five dashed curves are estimated densities. The solid curve is Chi-squared
density with degree of freedom 20.65

results that the null distribution of test statistic T follows Chi-squared distribution and is

independent of the covariate values.

In what follows, we examine the power of the proposed hypothesis test procedure.

We will consider the null hypothesis

H0 : βj(u) = γj0, j = 1, 2

versus

H1 : βj(u) 6= γj0, for at least one j

Where γj0 are constants. We then evaluate the power functions of the proposed test under
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a sequence of alternative models that are indexed by δ,

H1 : βj(u, δ) = (1 − δ)γj0 + δβ0
j (u), j = 1, 2, (0 ≤ δ ≤ 0.8)

where β0
1(u) = sin(π·u) and β0

2(u) = sin(4π·(u−1/8)) as defined previously in the simulation

section for model estimation, and γj0 = E{β0
j (u)}.

The power functions are depicted in Figure 4.8. In Figure 4.8, we plot five power functions

at five different significance levels: 0.50, 0.25, 0.10, 0.05, and 0.01, based on 1000 simulations

for sample size n=1000. The alternative hypothesis is chosen such that when δ = 0, the

alternative collapses into the null hypothesis. In particular, the powers at δ = 0 for the five

significance levels are 0.505, 0.248, 0.105, 0.054, and 0.011. This shows that the nonpara-

metric bootstrap method provides the correct levels of test. Also, as δ = 0 value increases,

the signal of varying-coefficient carried in alternative hypothesis is amplified. Therefore, the

power should increase as the value of δ increases. The results shown in figure 4.8 exhibit

that the powers increase very rapidly as δ increases, which justifies that our proposed testing

procedures works well.

4.2 Example 2

In this section, we generate data from the following model

Y =
c · exp (xT β(u))

1 + exp (xT β(u))
+ ε. (4.8)

with c = 10. The coefficient β and the distribution of {x, u, ε} are the same as those in

Section 4.1. This model is referred to as logistic model

Let us begin with some computation details. The local least squares function is

ℓ(a,b) =
1

2

n∑

i=1

[ yi −
c · exp {xi

T (a + b(ui − u0))}
exp {xi

T (a + b(ui − u0))} + 1
]2Kh(ui − u0). (4.9)
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Figure 4.8: The simulated power functions at five different significance levels: 0.5, 0.25, 0.10, 0.05,
and 0.01.

We will use an iterated least squares algorithm to search the solution of (4.9). Specif-

ically, at the k-th step during the course of iteration, the current value for a and b is a(k)

and b(k). Denote

yi,k = yi −
c · exp {xT (a(k) + b(k)(ui − u0))}
exp {xT (a(k) + b(k)(ui − u0))} + 1

+

{(a − a(k)) + (b− b(k))(u − u0)}T c · exp {xT (a(k) + b(k)(ui − u0))} x

{exp {xT (a(k) + b(k)(ui − u0))} + 1}2

and yk = (y1,k, · · · , yn,k)
T . Furthermore, denote

Fk =



 f ′{x1, a
(k) + b(k)(u1 − u0)}, · · · f ′{xn, a(k) + b(k)(un − u0)}

(u1 − u0)f
′{x1, a

(k) + b(k)(u1 − u0)}, · · · (un − u0)f
′{xn, a(k) + b(k)(un − u0)}T




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with

f ′{xi, a
(k) + b(k)(ui − u0)} =

c · exp {xT
i (a(k) + b(k)(ui − u0))} xi

{exp {xT
i (a(k) + b(k)(ui − u0))} + 1}2

In the iterated least squares algorithm, we update (a,b)T by



a(k+1)

b(k+1)



 = (F T
k WFk)

−1F T
k Wyk.

When the algorithm converges, the solution is satisfied with

ℓ′(a,b) = 0.

Denote the resulting estimate of (a,b)T by (â, b̂)T . Then

β̂(u0) = â, and β̂
′
(u0) = b̂.

In this example, we take n =250, 500, and 1000, and for each sample size, three

bandwidths are chosen, corresponding under-smooth, about right-smooth and over-smooth.

Figure 4.9 depicts the boxplots, and Figures 4.10, 4.11 and 4.12 depict estimated coefficients

based on a typical sample, whose RASE value is the median of the RASE values over 400

simulated samples. The pattern in Figure 4.9 to 4.12 is similar to those for Example 1.
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Figure 4.9: Boxplots of RASE values of Example 2. (a), (b) and (c) are boxplots of RASE values
of the logistic model using sample size n=250, 500, 1000, respectively. For n=250, bandwidth
h=0.05, h=0.10, and h=0.20 are used and compared; for n=500, bandwidth h=0.0375, h=0.075,
and h=0.150 are used and compared; for n=1000, bandwidth h=0.03, h=0.06, and h=0.12 are used
and compared.
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Figure 4.10: Estimated coefficients for Example 2 when n = 250. (a)-(b) are plots for β1(u) and
β2(u) using bandwidth h = 0.05; (c)-(d) are for h = 0.10; (e)-(f) are h = 0.20. The fluctuated
solid curves are estimated coefficient functions; the dotted curves are pointwise 95% confidence
intervals obtained using standard error formulas; the one-mode and two-mode solid curves are the
true coefficient functions.
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Figure 4.11: Estimated coefficients for Example 2 when n = 500. Caption is similar to Figure 4.10
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Figure 4.12: Estimated coefficients for Example 2 when n = 500. Caption is similar to Figure 4.10
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Table 4.3: Summary of Simulation Output for Example 2

n h µ(RASE) σ(RASE)

0.05 0.2442 0.1209

250 0.10 0.1877 0.1300

0.20 0.3174 0.0732

0.0375 0.1835 0.1117

500 0.075 0.1308 0.1005

0.15 0.2116 0.0924

0.03 0.1308 0.0771

1000 0.06 0.0990 0.0757

0.12 0.1416 0.0163

The simulation results are summarized in Table 4.3, in which notation is the same

as that in Table 4.1. The patterns in Table 4.1 and 4.3 are the same. We further test the

accuracy of the proposed standard error formula. Table 4.4 displays the standard deviation

of the 400 estimated β̂j(u0) for u0 = 0.1, 0.3, 0.5, 0.7, 0.9, based on 400 simulations, and

the average of 400 estimated standard errors. It is expected that the pattern of Table 4.2

and 4.4 are the same.

In this example, we also examine the performance of the GLRT for hypothesis

H0 : βj(u) = γj0, j = 1 · · · , p

versus

H1 : βj(u) 6= βj0(u, γj), for at least one j

where γj0 is unknown constant. The null hypothesis implies that the βj(u) is a constant.

Similar to Example 1, we consider both parametric bootstrap and nonparametric bootstrap

to estimate the null distribution. Figure 4.13 illustrates the nonparametric estimated coef-
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Table 4.4: Standard Deviation and Standard Errors for Example 2

n h u SD SDa(SDstd) SD SDa(SDstd)

0.1 0.1483 0.0942 (0.0713) 0.1607 0.1005 (0.0697)
0.3 0.1361 0.1168 (0.0320) 0.1798 0.1326 (0.0494)

0.05 0.5 0.1742 0.1358 (0.0720) 0.2105 0.1523 (0.0923)
0.7 0.2164 0.1243 (0.1411) 0.2268 0.1419 (0.1423)
0.9 0.1319 0.0922 (0.0475) 0.3318 0.1091 (0.2072)

0.1 0.1335 0.0691 (0.0390) 0.2527 0.0799 (0.0849)
0.3 0.1283 0.0846 (0.0369) 0.1294 0.0961 (0.0311)

250 0.10 0.5 0.0988 0.0946 (0.0168) 0.1215 0.1067 (0.0233)
0.7 0.0854 0.0826 (0.0148) 0.1007 0.0963 (0.0212)
0.9 0.2633 0.0763 (0.1534) 0.3358 0.0858 (0.2009)

0.1 0.2040 0.0635 (0.0712) 0.2373 0.0736 (0.0759)
0.3 0.0670 0.0628 (0.0065) 0.0977 0.0811 (0.0123)

0.20 0.5 0.2574 0.0985 (0.0648) 0.2501 0.1115 (0.0424)
0.7 0.0617 0.0625 (0.0068) 0.0882 0.0813 (0.0132)
0.9 0.0670 0.0602 (0.0083) 0.0775 0.0692 (0.0147)

0.1 0.0817 0.0737 (0.0135) 0.0920 0.0764 (0.0215)
0.3 0.1027 0.0956 (0.0207) 0.1313 0.1091 (0.0307)

0.0375 0.5 0.1208 0.1107 (0.0237) 0.1387 0.1270 (0.0400)
0.7 0.1066 0.0949 (0.0186) 0.1252 0.1064 (0.0287)
0.9 0.0794 0.0747 (0.0139) 0.0945 0.0764 (0.0207)

0.1 0.1490 0.0583 (0.0819) 0.3492 0.0687 (0.2027)
0.3 0.0715 0.0681 (0.0100) 0.0863 0.0781 (0.0141)

500 0.075 0.5 0.0829 0.0771 (0.0109) 0.0931 0.0870 (0.0162)
0.7 0.0699 0.0674 (0.0090) 0.0827 0.0764 (0.0137)
0.9 0.0547 0.0542 (0.0067) 0.0668 0.0583 (0.0107)

0.1 0.0432 0.0436 (0.0044) 0.0519 0.0502 (0.0072)
0.3 0.0517 0.0490 (0.0049) 0.0623 0.0607 (0.0085)

0.15 0.5 0.0575 0.0540 (0.0054) 0.0718 0.0678 (0.0096)
0.7 0.0469 0.0484 (0.0045) 0.0641 0.0593 (0.0080)
0.9 0.0445 0.0436 (0.0043) 0.0550 0.0504 (0.0076)

0.1 0.0629 0.0589 (0.0080) 0.0708 0.0625 (0.0135)
0.3 0.0861 0.0775 (0.0131) 0.0997 0.0877 (0.0199)

0.03 0.5 0.0846 0.0885 (0.0155) 0.1023 0.1002 (0.0209)
0.7 0.0800 0.0766 (0.0120) 0.0988 0.0875 (0.0185)
0.9 0.0588 0.0588 (0.0080) 0.0665 0.0599 (0.0116)

0.1 0.0433 0.0425 (0.0042) 0.0479 0.0463 (0.0074)
0.3 0.0582 0.0545 (0.0063) 0.0669 0.0620 (0.0099)

1000 0.06 0.5 0.0591 0.0616 (0.0072) 0.0687 0.0698 (0.0098)
0.7 0.0548 0.0542 (0.0060) 0.0646 0.0622 (0.0091)
0.9 0.0418 0.0425 (0.0041) 0.0509 0.0450 (0.0063)

0.1 0.0324 0.0321 (0.0023) 0.0378 0.0370 (0.0044)
0.3 0.0375 0.0383 (0.0028) 0.0459 0.0457 (0.0048)

0.12 0.5 0.0402 0.0425 (0.0033) 0.0539 0.0502 (0.0052)
0.7 0.0387 0.0380 (0.0028) 0.0484 0.0457 (0.0048)
0.9 0.0313 0.0320 (0.0022) 0.0402 0.0362 (0.0039)
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Figure 4.13: The estimated coefficient functions under null hypothesis. The fluctuated solid curves
are estimated coefficient functions for Example 2; the dotted curves are pointwise 95% confidence
intervals obtained using standard error formulas; the solid lines are true coefficient functions; the
dashed lines are the true function coefficients.

ficient functions under null hypothesis. The dashed lines are the true function coefficients.

The solid lines are the estimated function coefficients within the null space of constant coef-

ficients; while the solid curves are the nonparametric estimated coefficient functions within

the alternative space of varying-coefficients, with pointwise 95% confidence interval bands

in dashed curves.

Figure 4.14 depicts the estimated null distribution of test statistic T ≡ rKT0 compared

to a Chi-squared distribution with degree of freedom 20.51. The null distribution of test

statistic T are estimated through both parametric bootstrap and nonparametric bootstrap

described above. From the figure it shows that under null hypothesis, test statistic T has a

Chi-squared distribution.

Figure 4.15 compares the estimated null distribution of test statistic T for five different
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Figure 4.14: The estimated density of test statistic T by Monte Carlo Simulation. The dotted curve
is the estimated density of generalized likelihood ratio test statistic T ; the dash-dotted curve is the
estimated density of generalized F-test statistic T0. The solid curve is the density of Chi-squared
distribution with degree of freedom 20.51.

sets

{γj0} = { (β1, β2), (β1 − 2 · std(β̂1), β2), (β1 + 2 · std(β̂1), β2),

(β1, β2 − 2 · std(β̂2) ), (β1, β2 + 2 · std(β̂2) ) }

where βj = E{βj(u)} for j = 1, 2, and std(β̂j) is the standard deviation of β̂j for j = 1, 2.

Again, Figure 4.15 shows that the null distribution does not depend on the specific value of

β.

To examine the power of the proposed hypothesis test procedure, we consider the



65

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

de
ns

ity

(a)

Estimated density of test statistic T
(Parametric bootstrap)

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

de
ns

ity

(b)

Estimated density of test statistic T
(Nonparametric bootstrap)

Figure 4.15: The estimated densities of test statistic T by Monte Carlo Simulation, using 5 different
coefficient values. The five dashed curves are estimated densities. The solid curve is Chi-squared
density with degree of freedom 20.51.

alternative hypothesis

H1 : βj(u, δ) = (1 − δ)γj0 + δβ0
j (u), j = 1, 2,

where β0
1(u) = sin(π ·u) and β0

2(u) = sin(4π ·(u−1/8)) as defined previously in the simulation

section for model estimation, and γj0 = E{β0
j (u)}. We then evaluate the power functions

of the proposed test under a sequence of alternative models that are indexed by δ, The

power functions are depicted in Figure 4.16. In Figure 4.16, we plot five power functions at

five different significance levels: 0.50, 0.25, 0.10, 0.05, and 0.01, based on 1000 simulations
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Figure 4.16: The power functions at five different significance levels: 0.5, 0.25, 0.10, 0.05, and
0.01.

for sample size n=1000. The alternative hypothesis is chosen such that when δ = 0, the

alternative collapses into the null hypothesis. In particular, the powers at δ = 0 for the five

significance levels are 0.505, 0.248, 0.105, 0.054, and 0.011. This shows that the nonpara-

metric bootstrap method provides the correct levels of test. Also, as δ = 0 value increases,

the signal of varying-coefficient carried in alternative hypothesis is amplified. Therefore, the

power should increase as the value of δ increases. The results shown in figure 4.16 exhibit

that the powers increase very rapidly as δ increases, which justifies that our proposed testing

procedures works well.
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4.3 Example 3

In this section, we consider the following model

Y = β1(u) − β2(u) x

x + β3(u)
+ ε (4.10)

where β(u) = {β1(u), β2(u), β3(u)} with β1(u) = 7+ exp(u− 1), β2(u) = 10+ sin(2πu) and

β3(u) = 9+4(u−0.5)2, X is a log-normal random variable, of which the logarithm is normal

with mean 2 and variance 32, and u is uniformly distributed on (0,1), independent of X.

The coefficient functions β1(u), β2(u) and β3(u) are selected to represent typical functions,

namely, β1(u) is a monotonic function, β2(u) is a one-mode function, and β3(u) is a two-mode

function. The random error ε follows N(0, 1). This model is referred to as ecology model. In

this example, we consider three sample sizes n = 500, 1000 and 2000.

The local least squares function is

ℓ(a,b) =
1

2

n∑

i=1

[ yi − {(a1 + b1(ui − u0)) +
(a2 + b2(ui − u0)) xi

xi + (a3 + b3(ui − u0))
} ]2Kh(ui − u0)

where x = {1, x} and a = (a1, a2, a3)
T and b = (b1, b2, b3)

T . For a given initial value

(aT
0 ,bT

0 )T of (aT ,bT )T , we locally and linearly approximate

f{x, a + b(u − u0)} ≈ {(a1 + b1(u − u0)) +
(a2 + b2(u − u0)) x

x + (a3 + b3(u − u0))
} +

{(a− a0) + (b− b0)(u − u0)}T




1

x

x + (a3 + b3(u − u0))

− (a2 + b2(u − u0)) x

{x + (a3 + b3(u − u0))}2




With this approximation, we can use an iterated least squares algorithm to search the solution

of (4.9). Specifically, at the k-th step during the course of iteration, the current value for a
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and b is a(k) and b(k). Denote

yi,k = yi − f{xi, a
(k) + b(k)(ui − u0)} + {a(k) + b(k)(ui − u0)}f ′{xi, a

(k) + b(k)(ui − u0)}

= yi − {(a(k)
1 + b

(k)
1 (ui − u0)) +

(a
(k)
2 + b

(k)
2 (ui − u0)) xi

xi + (a
(k)
3 + b

(k)
3 (ui − u0))

} +

{(a− a(k)) + (b− b(k))(u − u0)}T




1

xi

xi + (a
(k)
3 + b

(k)
3 (ui − u0))

− (a
(k)
2 + b

(k)
2 (ui − u0)) xi

{xi + (a
(k)
3 + b

(k)
3 (ui − u0))}2




,

yk = (y1,k, · · · , yn,k)
T , and

Fk =



 f ′{x1, a
(k) + b(k)(u1 − u0)}, · · · f ′{xn, a(k) + b(k)(un − u0)}

(u1 − u0)f
′{x1, a

(k) + b(k)(u1 − u0)}, · · · (un − u0)f
′{xn, a(k) + b(k)(un − u0)}T





where

f ′{xi, a
(k) + b(k)(ui − u0)} =




1

xi

xi + (a
(k)
3 + b

(k)
3 (ui − u0))

− (a
(k)
2 + b

(k)
2 (ui − u0)) xi

{xi + (a
(k)
3 + b

(k)
3 (ui − u0))}2




We iteratively update (a,b)T by



a(k+1)

b(k+1)



 = (F T
k WFk)

−1F T
k Wyk,
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Figure 4.17: Boxplots of RASE values for Example 3. For n = 500, bandwidth h = 0.10, 0.20,
and 0.40; for n = 1000, h = 0.075, 0.15, and 0.30; for n = 2000, h = 0.06, 0.12, and 0.25.

until it converges. When the algorithm converges, the solution is satisfied with

ℓ′(a,b) = 0.

Denote the resulting estimate of (a,b)T by (â, b̂)T . Then

β̂(u0) = â, and β̂
′
(u0) = b̂.

Figure 4.17(a) depicts the marginal distribution of the overall RASE values using

sample size n=500 for bandwidth h=0.10, 0.20, and 0.40. Figure 4.18(a) through 4.18(f)

show the estimate of the coefficient functions from a typical sample. The typical sample is

selected such that its RASE value is the median of the RASE values from 400 simulated

samples.

Similar to figure 4.17(a) and 4.18, figure 4.17(b) depicts the marginal distribution of

the overall RASE values using sample size n=1000 for bandwidth h=0.075, 0.15, and 0.30.

Figure 4.19(a) through 4.19(f) show the estimate of the coefficient functions from a typical
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Table 4.5: Summary of Simulation Output for Example 3

n h µ(RASE) σ(RASE)

0.10 1.4574 0.3543

500 0.20 1.0902 0.3454

0.40 0.9240 0.3116

0.075 1.1362 0.2335

1000 0.15 0.8454 0.2133

0.30 0.6891 0.1966

0.06 0.8696 0.1623

2000 0.12 0.6455 0.1632

0.25 0.5146 0.1554

sample. The typical sample is selected such that its RASE value is the median of the RASE

values from 400 simulated samples.

In the same fashion, figure 4.17(c) depicts the marginal distribution of the overall

RASE values using sample size n=2000 for bandwidth h=0.06, 0.12, and 0.25. Figure 4.20(a)

through 4.20(f) show the estimate of the coefficient functions from a typical sample. The

typical sample is selected such that its RASE value is the median of the RASE values from

400 simulated samples.

The simulation results are summarized in Table 4.5. In Table 4.5, µ and σ denote the

mean and standard deviation of the RASE values in 400 simulations. For any fixed sample

size level, the RASE values generally increase as the bandwidth h increases. This is because

a larger bandwidth value implies a wider neighborhood and thus more local data, which

causes a greater bias. This can also be verified from the graphical comparisons of estimated

coefficient function at different bandwidth values at a fixed sample size level. In the plots,

we observe a pattern that a larger bandwidth h leads to a greater estimation bias.
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Figure 4.18: Estimated Coefficients for Example 3 with n = 500. (a)-(b) are plots for bandwidth
h = 0.10; (c)-(d) are h = 0.20; (e)-(f) are plots for h = 0.40. The fluctuated solid curves are
estimated coefficient functions for the exponential model; the dotted curves are pointwise 95%
confidence intervals obtained using standard error formulas; the one-mode and two-mode solid
curves are the true coefficient functions.
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Figure 4.19: Estimated Coefficients for Example 3 with n = 1000. Caption is similar to that in
4.18
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Figure 4.20: Estimated Coefficients for Example 3 with n = 1000. Caption is similar to that in
4.18
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Figure 4.21: The estimated coefficient functions under null hypothesis. The fluctuated solid curves
are estimated coefficient functions for Example 3; the dotted curves are pointwise 95% confidence
intervals obtained using standard error formulas; the solid lines are true coefficient functions; the
dashed lines are the true function coefficients.

We have also tested the accuracy of the proposed standard error formula. The results

are summarized in Table 4.6, in which the notation is the same as that in Table 4.2. From

Table 4.6, the proposed standard error formula performs well.

We next demonstrate the GLRT for hypothesis:

H0 : βj(u) = γj0, j = 1 · · · , p

versus

H1 : βj(u) 6= γj0, for at least one j

where γj0 is unknown constant. The null hypothesis implies that the βj(u) is a constant. As

in Examples 1 and 2, the null distribution of the GLRT can be obtained by either parametric

bootstrap or nonparametric bootstrap. Here we estimate the distribution of test statistic T

under H0 using n = 1000 via 1000 Monte Carlo simulations.
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Table 4.6: Standard Deviation and Standard Error for Example 3

bβ1(u) bβ2(u) bβ2(u)

n h u SD SDa(SDstd) SD SDa(SDstd) SD SDa(SDstd)

0.1 0.2196 0.2178 (0.0371) 0.3120 0.2930 (0.0384) 1.3063 1.1676 (0.2260)
0.3 0.2374 0.2239 (0.0374) 0.3128 0.2981 (0.0374) 1.1592 1.0745 (0.2178)

0.10 0.5 0.2396 0.2258 (0.0409) 0.3132 0.2931 (0.0383) 1.2624 1.1384 (0.2294)
0.7 0.2286 0.2167 (0.0372) 0.3113 0.2898 (0.0359) 1.2979 1.2857 (0.2544)
0.9 0.2220 0.2162 (0.0380) 0.2939 0.2975 (0.0379) 1.3460 1.3053 (0.2597)

0.1 0.1870 0.1916 (0.0307) 0.2610 0.2569 (0.0306) 1.0997 1.0228 (0.1803)
0.3 0.1671 0.1595 (0.0182) 0.2144 0.2126 (0.0181) 0.8086 0.7647 (0.0992)

500 0.20 0.5 0.1663 0.1608 (0.0189) 0.2285 0.2100 (0.0178) 0.8481 0.8093 (0.1103)
0.7 0.1607 0.1566 (0.0182) 0.2185 0.2084 (0.0179) 0.8825 0.8973 (0.1239)
0.9 0.1950 0.1882 (0.0301) 0.2589 0.2595 (0.0297) 1.1655 1.1135 (0.2072)

0.1 0.1773 0.1878 (0.0283) 0.2537 0.2543 (0.0280) 1.0152 0.9808 (0.1496)
0.3 0.1186 0.1183 (0.0097) 0.1642 0.1616 (0.0098) 0.6486 0.5991 (0.0577)

0.40 0.5 0.1184 0.1129 (0.0086) 0.1638 0.1496 (0.0082) 0.5767 0.5814 (0.0511)
0.7 0.1185 0.1167 (0.0097) 0.1617 0.1594 (0.0095) 0.6575 0.6690 (0.0683)
0.9 0.1940 0.1841 (0.0275) 0.2531 0.2557 (0.0269) 1.1587 1.0850 (0.1835)
0.1 0.1908 0.1795 (0.0269) 0.2642 0.2417 (0.0265) 0.9936 0.9487 (0.1539)
0.3 0.1798 0.1844 (0.0267) 0.2426 0.2439 (0.0254) 0.8987 0.8661 (0.1292)

0.075 0.5 0.1908 0.1831 (0.0256) 0.2457 0.2432 (0.0255) 0.9711 0.9360 (0.1429)
0.7 0.1962 0.1812 (0.0254) 0.2563 0.2421 (0.0253) 1.1230 1.0478 (0.1753)
0.9 0.1870 0.1812 (0.0266) 0.2637 0.2429 (0.0269) 1.0663 1.0569 (0.1642)

0.1 0.1395 0.1382 (0.0160) 0.2009 0.1867 (0.0153) 0.7418 0.7360 (0.0913)
0.3 0.1295 0.1302 (0.0133) 0.1687 0.1728 (0.0124) 0.6340 0.6138 (0.0659)

1000 0.15 0.5 0.1342 0.1301 (0.0127) 0.1751 0.1727 (0.0122) 0.6905 0.6625 (0.0726)
0.7 0.1394 0.1295 (0.0123) 0.1867 0.1725 (0.0121) 0.7614 0.7378 (0.0815)
0.9 0.1485 0.1392 (0.0150) 0.1991 0.1870 (0.0151) 0.7986 0.8077 (0.0962)

0.1 0.1329 0.1341 (0.0155) 0.1931 0.1821 (0.0150) 0.6985 0.7089 (0.0816)
0.3 0.0918 0.0921 (0.0065) 0.1229 0.1240 (0.0061) 0.4615 0.4510 (0.0328)

0.30 0.5 0.0933 0.0922 (0.0064) 0.1228 0.1223 (0.0057) 0.4859 0.4722 (0.0362)
0.7 0.0978 0.0921 (0.0059) 0.1317 0.1238 (0.0058) 0.5339 0.5176 (0.0396)
0.9 0.1451 0.1349 (0.0147) 0.1900 0.1822 (0.0152) 0.7811 0.7807 (0.0955)
0.1 0.1443 0.1428 (0.0155) 0.1951 0.1923 (0.0147) 0.7639 0.7480 (0.0881)
0.3 0.1378 0.1442 (0.0157) 0.1979 0.1925 (0.0158) 0.6756 0.6892 (0.0797)

0.06 0.5 0.1535 0.1455 (0.0179) 0.1942 0.1921 (0.0162) 0.7310 0.7296 (0.0866)
0.7 0.1565 0.1443 (0.0160) 0.2036 0.1926 (0.0161) 0.8840 0.8315 (0.1101)
0.9 0.1434 0.1420 (0.0160) 0.1768 0.1904 (0.0153) 0.9075 0.8325 (0.1030)

0.1 0.0998 0.1034 (0.0077) 0.1362 0.1391 (0.0072) 0.5576 0.5437 (0.0466)
0.3 0.1018 0.1026 (0.0083) 0.1398 0.1366 (0.0077) 0.4913 0.4886 (0.0404)

2000 0.12 0.5 0.1092 0.1035 (0.0082) 0.1387 0.1362 (0.0078) 0.5195 0.5171 (0.0438)
0.7 0.1073 0.1026 (0.0083) 0.1441 0.1364 (0.0078) 0.6100 0.5817 (0.0519)
0.9 0.1018 0.1033 (0.0081) 0.1302 0.1382 (0.0078) 0.6147 0.6012 (0.0517)

0.1 0.0929 0.0955 (0.0071) 0.1248 0.1291 (0.0068) 0.5234 0.5064 (0.0423)
0.3 0.0661 0.0715 (0.0039) 0.0963 0.0954 (0.0034) 0.3259 0.3463 (0.0190)

0.25 0.5 0.0745 0.0717 (0.0036) 0.0938 0.0946 (0.0035) 0.3628 0.3626 (0.0208)
0.7 0.0739 0.0714 (0.0039) 0.0924 0.0952 (0.0036) 0.4190 0.3992 (0.0240)
0.9 0.0953 0.0956 (0.0074) 0.1230 0.1284 (0.0070) 0.5649 0.5539 (0.0487)
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Figure 4.22: The estimated density of test statistic T by Monte Carlo Simulation. The dotted curve
is the estimated density of generalized likelihood ratio test statistic T ; the dash-dotted curve is the
estimated density of generalized F-test statistic T0. The solid curve is the density of chi-squared
distribution with degree of freedom 15.90

Figure 4.21 illustrates the nonparametric estimated coefficient functions under null

hypothesis. The dashed lines are the true function coefficients. The solid lines are the

estimated function coefficients within the null space of constant coefficients; while the solid

curves are the nonparametric estimated coefficient functions within the alternative space of

varying-coefficients, with pointwise 95% confidence interval bands in dashed curves.

Figure 4.22 depicts the estimated null distribution of test statistic T ≡ rKT0 compared to a

Chi-squared distribution with degree of freedom by Wilks phenomenon. The null distribution

of test statistic T are estimated through both parametric bootstrap and nonparametric
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bootstrap described above. From the figure it shows that under null hypothesis, test statistic

T has a chi-squared distribution with degree of freedom 15.90.

Figure 4.23 compares the estimated null distribution of test statistic T for five different

sets

{γj0} = { (β1, β2, β3), (β1 − 2 · std(β̂1), β2, β3), (β1 + 2 · std(β̂1), β2, β3),

(β1, β2 − 2 · std(β̂2) , β3), (β1, β2 + 2 · std(β̂2) , β3),

(β1, β2 , β3 − 2 · std(β̂3) ), (β1, β2 , β3 + 2 · std(β̂2) )}

where βj = E{βj(u)} for j = 1, 2, 3, and std(β̂j) is the standard deviation of β̂j for j = 1, 2, 3.

The null distribution of test statistic T are estimated through both parametric bootstrap and

nonparametric bootstrap described above. Figure 4.23 provides us an empirical justification

for that the null distribution of test statistic T follows Chi-squared distribution with degree

of freedom and is independent of the specific values of β.
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Figure 4.23: The estimated densities of test statistic T by Monte Carlo Simulation, using 5 different
coefficient values. The five dashed curves are estimated densities. The solid curve is Chi-squared
density with degree of freedom 15.90.

To examine the power of the proposed hypothesis test procedure, we consider the

alternative hypothesis

H1 : βj(u, δ) = (1 − δ)γj0 + δβ0
j (u), j = 1, 2, (0 ≤ δ ≤ 0.8)

where β0
1(u) = 7 + exp(u − 1), β0

2 = 10 + sin(2 · π · u) and β0
3(u) = 9 + 4 · (u − 0.5)2 as

defined previously in the simulation section for model estimation, and γj0 = E{β0
j (u)}. The

power functions are depicted in Figure 4.24. In Figure 4.24, we plot five power functions at

five different significance levels: 0.50, 0.25, 0.10, 0.05, and 0.01, based on 1000 simulations

for sample size n=1000. The alternative hypothesis is chosen such that when δ = 0, the

alternative collapses into the null hypothesis. In particular, the powers at δ = 0 for the five

significance levels are 0.498, 0.258, 0.107, 0.053, and 0.011. This shows that the nonpara-
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Figure 4.24: The simulated power functions at five different significance levels: 0.5, 0.25, 0.10,
0.05, and 0.01.

metric bootstrap method provides the correct levels of test. Also, as δ = 0 value increases,

the signal of varying-coefficient carried in alternative hypothesis is amplified. Therefore, the

power should increase as the value of δ increases. The results shown in figure 4.24 exhibit

that the powers increase very rapidly as δ increases, which justifies that our proposed testing

procedures works well.



Chapter 5

Application to Ecological Data

In this chapter, we illustrate the proposed methodology by an analysis of a ecological data set,

briefly described in Chapter 1. Specifically, we first apply the proposed estimation procedures

for the data, and further conduct hypothesis testing whether the coefficient functions really

change over temperature.

5.1 Data and Model

As mentioned in Chapter 1, the data set was collected within the AmeriFlux network

during summer growth seasons (from June 1 to August 31) of years 1993 to 1995 at the

Walker Branch Watershed Site in eastern Tennessee (35.96oN, 84.29oW). It is known that

sunlight intensity affects the rate of photosynthesis in an ecosystem. Since leaves absorb

carbon dioxide (CO2) during the course of photosynthesis, the Net Ecosystem Exchange of

CO2, denoted by NEE, is used to measure the level of photosynthetic activity in a natu-

ral ecosystem. Photosynthetic rate as measured by NEE is dependent on the amount of

Photosynthetically Active Radiation available to an ecosystem, denoted by PAR.

Based on empirical studies, scientists believe that the relationship between NEE and

PAR is nonlinear and can be characterized by the following model

NEE = R − β1PAR

PAR + β2

+ ε, (5.1)

where ε is random error with zero mean, and R, β1 and β2 are unknown parameters. The

physical interpretation for the unknown parameters are as follows: R is the dark respiration
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Table 5.1: Percentiles for the Ecological Data

Percentiles NEE PAR Temp

0th -37.9000 0 5.00
10th -21.0000 103 14.80
30th -15.5000 324 18.00
50th -10.6000 683 20.30
70th -4.8000 1114 22.40
90th 0.5000 1551 25.40
100th 21.9000 1955 32.80

rate, β1 is the light-saturated net photosynthetic rate, and β1/β2 is the apparent quantum

yield. From the contour plot in Figure 1.1, we consider an alternative model that allows the

unknown model parameters changing over temperature and explore whether the alternative

model can better characterize the relationship between NEE and PAR. Thus, we fit the data

by a nonlinear varying-coefficient model

NEE = R(T ) − β1(T )PAR

PAR + β2(T )
+ ε, (5.2)

where T stands for temperature. This model takes into consideration of the dynamic feature

of variable temperature. For simplicity of notation, let y denote the response variable NEE,

u denote temperature and x denote PAR, then model (5.2) takes the form of

Y = β1(u) − β2(u) x

x + β3(u)
+ ε (5.3)

Let us begin with some exploratory data analysis for this data set. Table 5.1 displays

some percentiles of the ecological data, Figure 5.2 depicts the histogram of the data, and

Figure 5.1 depicts boxplots of the three variables by year. It appears that the distributions

of NEE, PAR and Temp are roughly similar across year 1993, 1994, and 1995. Thus, we will

use all three year data in our analysis.
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Figure 5.1: Poxplots for the Ecological Data of year 1993 through year 1995. (a) the boxplot for
variable NEE; (b) the boxplot for variable PAR; (c) the boxplot for temperature.

5.2 Estimation of Coefficient Functions

We have conducted simulation for model 5.3. Let us describe the estimation procedure

in details. Using Taylor’s expansion in a neighborhood of given u0, for j = 1, 2,

βj(u) ≈ βj(u0) + βj(u0)(u − u0) ≡ aj + bj(u − u0).

Denote a = (a1, a2)
T and b = (b1, b2)

T . Thus, we obtain a local linear regression estimator

(âT , b̂
T
)T by minimizing the following local least squares function:

ℓ(a,b) =
1

2

n∑

i=1

[ yi − {(a1 + b1(ui − u0)) +
(a2 + b2(ui − u0)) xi

xi + (a3 + b3(ui − u0))
} ]2Kh(ui − u0)
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Figure 5.2: Histograms for the Ecological Data Set. (a) the histogram for NEE; (b) the histogram
for PAR; (c) the histogram for temperature
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where x = {1, x} and a = (a1, a2, a3)
T and b = (b1, b2, b3)

T . To minimize the local least

squares function, we locally and linearly approximate f{x, a + b(u − u0)} by

{(a1 + b1(u − u0)) +
(a2 + b2(u − u0)) x

x + (a3 + b3(u − u0))
} +

{(a− a0) + (b− b0)(u − u0)}T




1

x

x + (a3 + b3(u − u0))

− (a2 + b2(u − u0)) x

{x + (a3 + b3(u − u0))}2




for a given initial value (aT
0 ,bT

0 )T of (aT ,bT )T , With this approximation, we can use the

proposed iterated least squares algorithm for the local least squares function. Specifically,

at the k-th step during the course of iteration, the current value for a and b is a(k) and b(k).

Denote

yi,k = yi − {(a(k)
1 + b

(k)
1 (ui − u0)) +

(a
(k)
2 + b

(k)
2 (ui − u0)) xi

xi + (a
(k)
3 + b

(k)
3 (ui − u0))

} +

{(a− a(k)) + (b− b(k))(u − u0)}T




1

xi

xi + (a
(k)
3 + b

(k)
3 (ui − u0))

− (a
(k)
2 + b

(k)
2 (ui − u0)) xi

{xi + (a
(k)
3 + b

(k)
3 (ui − u0))}2




and

Fk =



 f ′{x1, a
(k) + b(k)(u1 − u0)}, · · · f ′{xn, a(k) + b(k)(un − u0)}

(u1 − u0)f
′{x1, a

(k) + b(k)(u1 − u0)}, · · · (un − u0)f
′{xn, a(k) + b(k)(un − u0)}T




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where

f ′{xi, a
(k) + b(k)(ui − u0)} =




1

xi

xi + (a
(k)
3 + b

(k)
3 (ui − u0))

− (a
(k)
2 + b

(k)
2 (ui − u0)) xi

{xi + (a
(k)
3 + b

(k)
3 (ui − u0))}2




We iteratively update (a,b)T by


a(k+1)

b(k+1)



 = (F T
k WFk)

−1F T
k Wyk,

where yk = (y1,k, · · · , yn,k)
T and

W = diag{Kh(u1 − u0), · · · , Kh(un − u0)}

Denote the resulting estimate of (a,b)T by (â, b̂)T . Then

β̂(u0) = â, and β̂
′
(u0) = b̂.

To implement the proposed estimation procedures, we need to select a bandwidth. In

this analysis, we will employ multiple fold cross validation to select a bandwidth. Specifically,

we first partition the data into Q groups, with the jth group consisting datum points with

indices

dj = {Qk + j, k = 1, 2, 3, ...}, j = 0, 1, 2, ..., Q− 1

We fit the model and obtain the jth estimate, using data without including data in the jth

group. Now, we denote by ŷ−dj
(ui,xi) the fitted value using the data with jth group deleted.

Define the cross-validation score to be

CV (h) =

Q−1∑

j=0

∑

i∈dj

[yi − ŷ−dj
(ui,xi)]

2 (5.4)
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We choose the bandwidth h that minimizes the CV (h); that is, we select the bandwidth

h that provide the model that best fits of the data. In our analysis, we set Q = 20. The

selected bandwidth is h = 0.15.

Figure 5.3 depicts the estimated coefficient functions β1(u), β2(u), and β3(u), based on

a bandwidth of h = 0.15, which implies that we use about 15% of the data set for estimation

at a given u0. Figure 5.3 describes the extent to which the association of Net Ecosystem

Exchange (NEE) and Photosynthetically Active Radiation(PAR) over different temperature

level. It shows very clearly that the coefficient functions vary with temperature, suggesting

the NEE-PAR relationship depends on a covariate level, that is the temperature level. The

95% pointwise confidence interval is also depicted in Figure 5.3.

5.3 Testing Procedure

It is a scientific question whether the coefficient function really depends on tempera-

ture. To address this question, we employ the GLRT procedure for the following hypothesis.

H0 : βj(u) = γj0, j = 1, 2, 3 versus H1 : βj(u) 6= γj0, for at least one j

where γj0 is a constant.

Figure 5.4 illustrates the estimated coefficient functions β̃ under null hypothesis. The

solid lines are the estimated function coefficients within the null space, H0 of constant coef-

ficients; while the solid curves are the nonparametric estimated coefficient functions within

the alternative space, H1, of varying-coefficients, with pointwise 95% confidence interval

bands in dashed curves. Under the null hypothesis, β̃ = (5.2904, 32.2159, 537.0713) with

standard error (0.2229, 0.4056, 27.0715). We further calculate the GLRT, which equals

36.0414.

We now use nonparametric bootstrap procedure to obtain the null distribution. The

estimated density function of the test statistic T under H0 is depicted in Figure 5.5, based on
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Figure 5.3: Plots of estimated coefficient functions of nonlinear varying-coefficient model. The
solid curves are estimated coefficient functions, and the dotted curves are pointwise 95% confidence
intervals.
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Figure 5.4: Plots of estimated coefficient functions of nonlinear varying-coefficient model using
ecological data. The fluctuated solid curves are estimated coefficient functions for the exponential
model; the solid straight lines are estimated coefficient functions under null hypothesis; the dotted
curves are pointwise 95% confidence intervals obtained using standard error formulas.
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Figure 5.5: The estimated density of test statistic T by 1000 bootstrap samples. The dotted curve
is the estimated density of generalized likelihood ratio (GLR) test statistic T ; the dash-dotted
curve is the estimated density of generalized F-test statistic T0. The solid curve is the density of
Chi-squared distribution with 20.41 degree of freedom.

1000 bootstrap samples. The estimated null distribution of test statistic T is close to a Chi-

squared distribution with 20.41 degrees of freedom, and the GLRT has P-value of 0.0177,

which rejects the null hypothesis at level 0.05. The testing result concludes a nonlinear

varying-coefficient model yields a better fit to the data.



Chapter 6

New Application of Varying Coefficient Models to
Financial Data

In this chapter, we apply varying-coefficient models for a financial data set. We demonstrate

that varying-coefficient models are superior to ordinary linear regression models in terms of

modeling fitting and model prediction.

6.1 Introduction

In the finance academics, practitioners, and regulators, it has been a major area

of interest and concern to assess and manage credit risk of corporate bonds. See Caou-

ette, Altman, and Narayanan (1998), Saunders and Allen (2002), and Duffie and Singleton

(2003). Finding the significant factors that affect credit yield spreads of corporate bonds is

an important issue.

Huang and Kong (2003) analyzed the credit spread data set for nine Merrill Lynch

corporate bond indexes and investigated the important factors affecting credit yield spreads

of corporate bonds. Their study was on credit spread data set which is the option-adjusted

bond indexes from January 1997 through July 2002. In Huang and Kong (2003), it has

been found that Russell 2000 index historical return volatility and the Conference Board

composite leading and coincident economic indicators have significant power in explaining

credit spread changes. Using linear regression model, these three variables plus the interest

rate level, the historical interest rate volatility, the yield curve slope, the Russell 2000 index

90
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return, and a high-minus-low factor together explain more than 40% of credit spread changes.

Huang and Kong (2003) built a foundation for finding the important factors affecting

credit spread. Based on their study, our purpose is to extend the study on credit spreads

of corporate bonds by proposing new statistical modeling and testing techniques, in aim to

improve model fitting and to construct a novel forecasting technique and improve forecasting

accuracy. We will employ time-varying coefficient models(Hastie and Tibshrani, 1993). As

we discuss later, the new modeling procedure can enhance model fitting and forecasting

accuracy of future credit spread change, which is crucial to financial practitioners, researcher,

and policy makers.

The chapter is organized as follows. In section 2, we discuss previous findings and

describe the credit spread data set. In section 3, we conduct Chow’s structure change test,

and focus on motivations of utilizing the proposed time-varying-coefficient model. In section

4, we apply proposed modeling and testing procedure to credit spread data. Model fit-

ting is compared to that from linear regression model. A novel forecasting procedure using

time-varying-coefficient model is discussed and applied to the credit spread data. A modi-

fication of the forecasting procedure is proposed in which a weighted forecasting procedure

is studied. We compare both model fitting and forecasting accuracy between time-varying-

coefficient model and linear regression model. Generalized likelihood ratio test is applied to

determine whether some coefficient is invariant over covariate and whether some coefficient

is statistically insignificant. In section 5, we conduct extensive Monte Carlo simulations to

further assess the proposed modeling and testing procedure. Section 6 summarizes the study

and discusses future work.
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6.2 Discussion on previous work and description of the credit
spread data

6.2.1 Discussion on previous work

The credit spreads data set analyzed in this chapter has previously been analyzed

in Huang and Kong (2003), where the determinant of corporate bond credit spreads is

examined using monthly option-adjusted spreads for nine Merrill Lynch corporate bond

indexes from January 1997 through July 2002. In Huang and Kong (2003), there are nine

Merrill Lynch corporate bond indexes include six OAS series for investment-grade corporate

bonds: AA-AAA and BBB-A rated series with maturities of 1-10 years, 10-15 years, and

15+ years, also include three series for high-yield corporate bonds with ratings of BB, B, C.

Linear regression and ordinary-least-squares (OLS) estimation approach are used in Huang

and Kong (2003) to find the most powerful factors that affect the credit spreads, i.e. the

powerful factors that affect each of nine series of corporate bond indexes. To account for

model errors with serial correlation or heteroscedasticity of unknown form found through

preliminary analysis, Newly-West (1987) heteroscedasticity and autocorrelation-consistent

covariance matrix estimator is used in testing the estimators from ordinary-least-square

(OLS) estimation. Huang and Kong (2003) finds the Russell 2000 index historical return

volatility and the Conference Board composite leading and coincident economic indicators

have significant power in explaining credit spread changes, especially for high-yield indexes.

The three variables together with the interest rate level, the historical interest rate volatility,

the yield curve slope, the Russell 2000 index return, and a high-minus low factor together can

explain more than 40% of credit spread changes for five bond indexes. These eight variables

together can explain 67.68% and 60.82% of credit spread changes for the B and BB-rated

indexes. The analysis confirms that credit spread changes for high-yield bonds are more

closely related to equity market factors and also provides evidence in favor of incorporating

macroeconomic factors into credit risk models. Huang and Kong (2003) build a foundation

for finding important factors affecting change of credit spreads.
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6.2.2 Description of the credit spread data set

The available credit spread data are monthly option-adjusted spreads for nine Merrill

Lynch corporate bond indexes from January 1997 through August 2002 and contain 68

continuous observations in time. The data set contains August 2002 observation in addition

to the data set used in Huang and Kong (2003). Variables included in the data set are

option-adjusted spreads for nine Merrill Lynch corporate bond indexes, change in yield of

Merrill Lynch Treasury master Index denoted by ∆r, change in CBOE VIX denoted by ∆vix,

change in yield of Merrill Lynch 15+ years Treasury Index minus yield of Merrill Lynch 1-

3-year treasury Index denoted by ∆slope, change in Russell 2000 index return denoted by

∆rusrtn, and change in S&P index return denoted by ∆sprtn. Our goal is to model how

credit spreads are affected by other financial and macroeconomic factors, therefore, the nine

changes in credit spreads are considered response variables and the rest five variables, treated

as proxies of financial market and macroeconomic environment, are considered predictor

variables.

We will further assign notations Y1 through Y9 to the nine response variables and X0

through X5 to the five predictor variables, respectively. We summarize their correspondence

in Table 6.1 and Table 6.2, where Table 6.1 contains response variables, i.e. the nine Merrill

Lynch corporate bond indexes; Table 6.2 contains predictor variables, i.e. the financial

market and macroeconomic variables that may potential affect changes in credit spreads.

Using the above notations, the credit spreads data set can be expressed as

(Y j
i , Xi, ti) for i = 1, 2, 3 ,..., 68 and j = 1, 2, 3 ,..., 9

where the index j represent the nine Merrill Lynch corporate bond indexes, Xi = (1, X1,

X2, X3, X4, X5) are the set of predictor variables, and covariate ti, i = 1, 2, 3,......, 68 is

the underlying time variable that represent dates from January 30th, 1997 to August 30th,

2002 (1997.01.30 to 2002.08.30).
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Table 6.1: Response variables

Notation Description
Y1=∆hs AA-AAA 1-10 yrs
Y2=∆hi AA-AAA 10-15 yrs
Y3=∆hl AA-AAA 15+ yrs
Y4=∆ls BBB-A 1-10 yrs
Y5=∆li BBB-A 10-15 yrs
Y6=∆ll BBB-A 15+ yrs
Y7=∆bb BB
Y8=∆b B
Y9=∆c C

Table 6.2: Description of predictor variables

Notation Description
X0=1 Intercept for the Linear Regression Model
X1=∆r Changes in yield of Merrill Lynch Treasury Master Index
X2=∆slope Changes in yield of Merrill Lynch 15+ years Treasury In-

dex minus yield of Merrill lynch 1-3-year Treasury Index
X3=∆vix Change in CBOE VIX
X4=∆rusrtn Russell 2000 Index Return
X5=∆sprtn S&P 500 Index Return

Also note that since X4 (Russell 2000 Index Return) and X5 (S&P 500 Index Return)

preserve very high linear correlation, in future analysis X5 is extracted from the model to

avoid multi-collinearity.

6.3 Chow structure change test and motivation of time-varying-
coefficient model

We introduce the motivation for proposing time-varying-coefficient model, a new mod-

eling technique, and its model estimation procedure, to the financial study on credit spreads

data through discussion on Chow’s structure change test.

Empirical considerations According to Chow (1960), when a linear regression

is used to represent an economic relationship, the question often arises as to whether the
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relationship remains stable in two periods of time; quite often, there is no economic rationale

in assuming that two relationships are completely the same. It is natural to extend and

generalize the question to whether an economic relationship remains stable throughout the

subintervals of a time period; and under many circumstances, there is no economic rationale

to assume the relationships are completely the same.

In the credit spread data, we aim to find the significant factors that affect credit yield

spreads of corporate bonds and to identify the structures or relationships through which the

significant factors affect credit yield spreads. These relationships were represented by linear

regression functions in Huang and Kong (2003). Since the credit spread data are monthly and

weekly observations and span an extended period of time from January 1997 through August

2002, it is rational not to assume that the structures or relationships remain completely the

same throughout the time period during which credit spread data were collected and, of

particular importance to financial practitioners and regulators, the future time period for

which the prediction of future credit spread is of interest.

Statistical considerations As the most commonly used statistical technique,

regression analysis has been utilized to explore the association between response variables

and predictor variables and to identify how predictor variables may impact on response

variable. A linear predictor and constant model coefficients are assumed in linear regression

models. However, there exist potential problems when any of the model assumptions are

significantly violated. If the model structure changes significantly throughout the time period

under investigation and therefore the model coefficients do not remain constants, the ordinary

model estimators are no longer maintain some nice statistical properties: model estimators

are biased and the efficiency of linear regression estimators does not hold.
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6.3.1 Chow test for structural breaks

Chow test(Chow 1960) is an econometric test for structural or parameter stability of

the regression model, which tests to determine whether the coefficients in a regression are

the same in separate subsamples.

Chow test indeed is an application of the F-test. We consider regression function of

two time periods.

Y = XT β1st + ε, (6.1)

where β1st represent the model coefficient of the first period of time;

Y = XT β2nd + ε, (6.2)

where β2nd represent the model coefficient of the second period of time;

Y = XTβALL + ε, (6.3)

where βAll represent the model coefficient of the entire period of time.

Using Chow test, we test for the hypothesis that the model structures of the first

time period and the second time period are the same; that is the regression functions of the

first and second time periods have the same set of model coefficients, or say β1st and β2nd

are equal.

We will construct the F-statistic using the sum of squares of restricted and unre-

stricted regressions, and obtain the sum of squared residuals. Define

RSSR=RSSALL, the sum of squared residuals when we restrict two periods having equal

intercepts and slopes.
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RSSUR=RSS1 + RSS2, the sum of squared residuals when we allow each period having

its own intercepts and slopes.

The F-statistic to evaluate the structural change is

F ∗
k,T1+T2−2k =

(RSSR − RSSUR)/k

RSSUR/(T1 + T2 − 2k)
=

(RSSALL − (RSS1 + RSS2))/k

(RSS1 + RSS2)/(T1 + T2 − 2k)
, (6.4)

where k is the number of parameters included in the linear regression function, and T1 and

T2 are the number of observations in the first and second time period, respectively.

Now we conduct Chow test on the credit spread data to determine, during the time

period of January 1997 through August 2002, whether there exist any structural changes on

the linear relationship between the explanatory variables and the monthly option-adjusted

spreads of nine Merrill Lynch corporate bond indexes. Chow test is conducted for the spreads

of each of the nine Merrill Lynch corporate bond indexes. Note that for exploratory purposes,

for the spreads of each corporate bond indexes, we partition the entire time period into two

subsamples through three different ways by using three cut-off points: the 1st quartile, the

2nd quartile, and the 3rd quartile. The reason for this is that we expect certain structural

change in the regression model along the time period from January 1997 through August

2002; here we choose three typical cut-off points within the duration of the data, and test

the stability of the regression functions from the resulting two subsamples obtained in three

typical ways.

In Table 6.3, the exploratory Chow structural break test results for the spreads of

nine Merrill Lynch corporate bond indexes is shown. We use significance level of 0.10 to

test for the possible change in regression functions. Using the three typical partitions, we

find seven out of the nine spreads have significant structural changes during the time period

from January 1997 through August 2002. The Chow test results also show strong indication

of structural changes for the AA-AAA 10-15 yrs (p-value=0.0047 at break point 52 on 3rd
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Table 6.3: Chow Structural Break Test Results

Chow Structural Break Test (at 0.10 significance level)
Response Variable Y1

Break Point Num DF Dum DF F-Value Pr > F Significant Break Point(s)
18 5 57 2.15 0.0728 yes
34 5 57 2.16 0.0710 yes
52 5 57 0.62 0.6880

Response Variable Y2

Break Point Num DF Dum DF F-Value Pr > F Significant Break Point(s)
18 5 57 2.76 0.0265 yes
34 5 57 1.32 0.2687
52 5 57 3.83 0.0047 yes

Response Variable Y3

Break Point Num DF Dum DF F-Value Pr > F Significant Break Point(s)
18 5 57 1.48 0.2104
34 5 57 4.68 0.0012 yes
52 5 57 1.26 0.2955

Response Variable Y4

Break Point Num DF Dum DF F-Value Pr > F Significant Break Point(s)
18 5 57 0.90 0.4903
34 5 57 2.03 0.0875 yes
52 5 57 2.07 0.0828 yes

Response Variable Y5

Break Point Num DF Dum DF F-Value Pr > F Significant Break Point(s)
18 5 57 1.11 0.3628
34 5 57 2.15 0.0727 yes
52 5 57 3.54 0.0074 yes

Response Variable Y6

Break Point Num DF Dum DF F-Value Pr > F Significant Break Point(s)
18 5 57 1.67 0.1560
34 5 57 3.75 0.0052 yes
52 5 57 1.56 0.1870

Response Variable Y7

Break Point Num DF Dum DF F-Value Pr > F Significant Break Point(s)
18 5 57 0.82 0.5393
34 5 57 1.48 0.2117
52 5 57 4.51 0.0016 yes

Response Variable Y8

Break Point Num DF Dum DF F-Value Pr > F Significant Break Point(s)
18 5 57 0.96 0.4527
34 5 57 1.53 0.1961
52 5 57 1.02 0.4143

Response Variable Y9

Break Point Num DF Dum DF F-Value Pr > F Significant Break Point(s)
18 5 57 0.62 0.6849
34 5 57 0.69 0.6360
52 5 57 0.99 0.4346

∗ For Y8, highly significant break point found at 46 (p-value=00491);
for Y9, relatively large discrepancy or structural change found at point
55 (p-value=0.1578). and 57 (p-value=0.1790).
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quartile), AA-AAA 15+ yrs (p-value=0.0012 at break point 34 on 2nd quartile), BBB-A 10-

15 yrs (p-value=0.0074 at break point 52 on 3rd quartile), BBB-A 15+ yrs (p-value=0.0052

at break point 34on 2nd quartile), BB (p-value=0.0016 at break point 52 on 3rd quartile).

Although at the three chosen exploratory cut-off points, we do not find any significant

structural changes for the spreads of B and C corporate bond indexes, we can not conclude

there exist no structural changes for the two spreads. It is worthy of noting that, in fact,

a full exploration of the date shows that for spread of B corporate bond, we find highly

significant break point at 46 (p-value=00491), and for spread of C corporate bond, we find

a relatively large discrepancy or structural change at point 55 (p-value=0.1578). and 57

(p-value=0.1790).

The exploratory study by Chow test for structural changes has shown that there

exist strong to moderate structural changes of the regression functions during the time

period from January 1997 through August 2002. The results strongly suggest that it is not

appropriate to use constant coefficient regression models to describe the relationship between

the explanatory variables and the credit spreads for the nine Merrill Lynch corporate bond

indexes, which motivates us to search for alternative models.

6.4 Time-Varying coefficient models

When Chow’s test for structural changes shows that there exist strong to moderate

violation of constant coefficient assumption for linear regression model, we natural consider

alternative statistical models that have more flexible model assumptions. In this section,

we fit the data by using time-varying coefficient models. The estimation procedures and

generalized likelihood ratio test for time-varying coefficient models have been introduced in

Chapter 2.

Time-varying-coefficient model is a special case of varying-coefficient model, where

the underlying covariate is time and model coefficients vary as covariate time varies. We will
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apply this newly proposed model to our credit spread data set (Y j
i , Xi, ti) for i = 1, 2, 3

,..., 68 and j = 1, 2, 3 ,..., 9, where the index j represent the nine Merrill Lynch corporate

bond indexes, Xi = (X1, X2, X3, X4, X5) for X1 = 1 are the set of predictor variables, and

covariate ti, i = 1, 2, 3,......, 68 is the underlying time variable that represent dates from

January 30th, 1997 to August 30th, 2002 (1997.01.30 to 2002.08.30).

Based on financial studies, the variable Russell 2000 Index Return (X4) and S&P 500

Index Return (X5 =) preserve very high linear correlation, therefore, we extract X5 from

the model to avoid multi-collinearity. The time-varying-coefficient model takes the form of

Y = XT β(t) + ε, (6.5)

where

• ε is the error term with E(ε)=0 and Var(ε)=σ2 .

• β(t) = {β1(t), β2(t), β3(t), β4(t), β5(t)} are the time-varying-coefficient functions, and

are functions of time t. We also assume β1(t), β2(t), β3(t), β4(t), and β4(t) are smooth

nonparametric functions of t.

• Y is response variable notation, representing Y1 through Y9, whose interpretation have

been explained in Table 1 and Table 2 of section 2.

Model (6.5) is a special type of varying-coefficient model, and it is referred to as

time-varying coefficient model with covariate t for model coefficient functions. Time-varying

coefficient models assume that model coefficient functions vary as time t varies, and they

are used to explore the possible time-dependent effects. In financial studies, we expect data

are collected throughout a period of time, and therefore it is reasonable to consider possible

time-dependency into modeling procedures for financial data, which has been discussed in

details in section 3. At fixed time t, model (6.5) is a constant coefficient model; as time
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t moves along, we expect model structure (i.e. relationship between Y and X) changes in

financial study.

To identify the model structure (i.e. relationship between Y and X) at all time points,

we estimate the coefficient functions β(t) = {β1(t), β2(t), β3(t), β4(t), β5(t)} of model:

Y j = XT β(t) + ε, (6.6)

for j = 1, ..., 9 representing credit spread changes for nine Merrill Lynch corporate bond

indexes.

In this section, we present the estimated coefficient functions and their corresponding

pointwise confidence intervals through graphs. In order to demonstrate that varying coeffi-

cient models are superior to ordinary linear regression models in terms of model fitting, we

summarize the statistics obtained from the two models; to demonstrate this superiority in

terms of model prediction, we conduct in sample prediction and compare prediction sum of

squares of error of the two models in two different occasions.

6.4.1 Estimated Coefficient Functions

For the nine time-varying-coefficient models with dependent variables Y0, Y1, Y2, Y3,

Y4, Y5, Y6, Y7, Y8, and Y9, respectively, we estimate their nonparametric coefficient functions

β0(t), β1(t), β2(t), β3(t), and β4(t) for t=1, 2, 3, ......, 68, and present them in the following

graphs.

Note that in the graphs, the observations are monthly data with original indexes Jan

30th, 1997 to Aug. 30th, 2002 (1997.01.30 to 2002.08.30). These 68 observations of form

(Yi, Xi, ti) for i = 1, 2, 3 ,......, 68 and Xi = (1, X1, X2, X3, X4, X5) are then indexed

by time t using ti = i, i = 1, 2, 3, ...., 68.

Also note that for different dependent variables Y1 through Y9, the y−axes in x-y co-

ordinate systems have different limits, which adaptively accommodate the range of coefficient
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Figure 6.1: Plot of estimated coefficient functions for response variable Y1. Solid curve:
estimated coefficient functions (nonparametric); dotted curves: 95% pointwise confidence
intervals; solid line: ordinary least-squares estimates; solid line (in half): ordinary least-
squares estimates using first-half and second-half of the data, respectively.

functions βp(t), p = 0, 1, 2, 3, 4.

Summary from the plots In general, coefficient functions in models Y7, Y8, and

Y9 fluctuate more significantly than the coefficient functions in models Y1, Y2, Y3, Y4, Y5,

and Y6. Also, the coefficient functions β0(t), β3(t), and β5(t) tend to be more constant over

time than the coefficient functions for β1(t) and β2(t). That is to say, for each model the

coefficients of the intercept and Rusell 2000 Index Return are more stable over time than for

the coefficients of Change in the yield of Merill Lynch Index, Change in the yield of Merill

Lynch Slope, and Change in CBOE VIX.

6.4.2 Comparisons in terms of R-squars

In assessment of how well time-varying coefficient (TVC) model and linear regression

model fit the credit spread data by ordinary least squares (OLS) method, we compute the

R2 statistics for each of the nine models with dependent variables Y1, Y2, Y3, Y4, Y5, Y6, Y7,
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Figure 6.2: Plot of estimated coefficient functions for response variable Y2. Caption is the
same as Figure 6.1
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Figure 6.3: Plot of estimated coefficient functions for response variable Y3. Caption is the
same as Figure 6.1
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Figure 6.4: Plot of estimated coefficient functions for response variable Y4. Caption is the
same as Figure 6.1
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Figure 6.5: Plot of estimated coefficient functions for response variable Y5. Caption is the
same as Figure 6.1
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Figure 6.6: Plot of estimated coefficient functions for response variable Y6. Caption is the
same as Figure 6.1

0 20 40 60
−5

0

5

10

fu
nc

tio
n 

β0
(t)

Time t

Plot of function β0(t) (intercept)

0 20 40 60

−70

−60

−50

−40

−30

−20

−10

fu
nc

tio
n 

β1
(t)

Time t

Plot of function β1(t) (c−r)

0 20 40 60
0

20

40

60

80

fu
nc

tio
n 

β2
(t)

Time t

Plot of function β2(t) (c−slope)

0 20 40 60
−2

0

2

4

6

fu
nc

tio
n 

β3
(t)

Time t

Plot of function β3(t) (c−vix)

0 20 40 60

−7

−6

−5

−4

−3

−2

−1

0

fu
nc

tio
n 

β4
(t)

Time t

Plot of function β4(t) (c−rusrtn)

Figure 6.7: Plot of estimated coefficient functions for response variable Y7. Caption is the
same as Figure 6.1
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Figure 6.8: Plot of estimated coefficient functions for response variable Y8. Caption is the
same as Figure 6.1
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Figure 6.9: Plot of estimated coefficient functions for response variable Y9. Caption is the
same as Figure 6.1
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Table 6.4: Comparison of R2 statistics for TVC and OLS

Variable R2 for MSE for R2 for OLS estimated coefficients

TVC TVC OLS β̂= (β̂0,β̂1,β̂2,β̂3,β̂4)
T

Y1 0.5591 3.3146 0.2303 (0.0778,−3.9496,−4.6977, 0.0083,−0.3365)
Y2 0.6573 6.0335 0.4033 (0.0783, 8.6817,−20.6318, 0.7445,−0.3011)
Y3 0.4857 4.6422 0.2170 (0.1439,−6.2681,−5.8002, 0.1048,−0.3393)
Y4 0.5168 7.8716 0.3380 (2.2969,−14.6168, 1.2810,−0.1266,−0.9091)
Y5 0.6702 7.0354 0.2349 (1.0894,−3.6256,−3.7134, 0..0121,−0..9474)
Y6 0.5935 7.6779 0.3981 (0.9109,−11.3222,−5.9744, 0.2445,−0.9802)
Y7 0.6605 25.7282 0.5343 (3.8734,−82.0956, 28.2909, 0.5021,−3.2504)
Y8 0.6625 36.5587 0.5537 (6.9534,−100.5260, 56.3680, 0.7257,−5.0531)
Y9 0.4731 76.1791 0.4287 (15.7131,−158.0897, 74.2536,−0.8441,−8.3115)

Y8, and Y9 fitting to the two proposed models, and summarize them in Table 6.4

Note that the statistics for time-varying-coefficient model in the summary table are

based on a bandwidth h computed through the cross-validation criterion described in the

following section. Also, note that the proposed local linear modeling is referred to as a

one-step estimation procedure, which is simple and useful. See Cleveland, Grosse and Shyu

(1991). However, it implicitly assumes that the coefficient functions βj(u), j = 1, 2,..., p

possess approximately the same degree of smoothness. This assumption allows the coefficient

functions to be estimated equally well in the same interval of covariate u.

6.4.3 Comparison in terms of prediction

To evaluate the prediction power of time-varying coefficient (TVC) model for our

credit spread data set, it is natural to imagine the situation where we do not observe the

last m values for Y, the change of credit spread, and we predict these m values of Y using

models fitted from the first n-m observations, where n is the size of original data. Therefore,

by pretending not observing the last m values of Y, we can compare the prediction power

of the two candidate models. This is referred to as out-of-sample (OOS) prediction, and

the comparison criterion is prediction mean square errors (PMSE) obtained from the two
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candidate models.

The credit spread data include n = 68 observations indexed by time t. To conduct

out-of-sample (OOS) prediction, we fit the two candidate models using the first S (S < n)

observations and evaluate the prediction mean squared error (PMSE) of observation S + m,

for m = 1, 2, ..., n − S. For each of the nine models with dependent variables Y1, Y2, Y3, Y4,

Y5, Y6, Y7, Y8, and Y9, respectively, for illustration purpose, we leave out the last m(m =

3or5) observations of the data set; that is, we assume the last m(m = 3 or 5) observations

on time indices t = 66, 67, 68 or t = 64, 65, 66, 67, 68 are unknown. We then apply

the same estimation procedure on the rest of the observations and obtain estimated model

coefficient function for time-varying-coefficient model and coefficient estimates for ordinary

linear regression model. The last m (m=3 or 5) left-out observations are then predicted using

the estimated model coefficient functions for time-varying-coefficient (TVC) model and the

coefficient estimates for the ordinary linear regression (OLS) model, respectively. After we

obtain the predicted value for the last m left-out observations, predicted Y at t = 64, 65,

66, 67, 68 for the nine models, we obtain the prediction sum of square of errors (PSSE) and

then the prediction mean square errors (PMSE) using formulas:

PSSE =

68∑

i=64

(ypre
i − yi)

2 (6.7)

PMSE =

√√√√√
68∑

i=64

(ypre
i − yi)

2

m
(6.8)

where m = 3 or 5 is the number of predicted observations.

Demonstration of Prediction Procedure We illustrate by Figure (6.10) the

prediction procedure using time-varying models. In predicting new observations using time-

varying-coefficient model, we used the value of model coefficient β(S) at time t = S, to obtain

the predicted value for dependent variable Y; this is considered as leveling-out the estimated
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coefficient functional value at t = S, where S is the last observation used in estimating the

predictive model. Let us demonstrate of prediction procedure using time-varying models by

Ypred = β0(t
∗) · X0 + β1(t

∗) · X1 + β2(t
∗) · X2 + β3(t

∗) · X3 + β4(t
∗) · X4 + ε

where t∗ represent the last time point, and the predicted response is obtained using the

functional value of estimated coefficient functions at the last time point t∗.
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Figure 6.10: Demonstration plot for prediction procedures using time-varying models. Dotted-blue
curves: estimated coefficient functions from data set with last m observations left out; dotted-red
curves: predicted coefficient functions at the left-out time points; dotted-black curves: estimated
coefficient functions from the complete data set; solid-green lines: least-square constant coefficient
from data set with last m observations left out

To compare the prediction power of time varying-coefficient model and ordinary linear

regression model, we summarize their corresponding prediction mean square errors (PMSE)



110

Table 6.5: Comparison of PMSE for TVC and OLS

Variable TVC model OLS model PMSEOLS/PMSETV C

Left-out last m = 3 observations are predicted
Y1 10.4354 10.4213 0.9986
Y2 9.5689 11.1018 1.1602
Y3 5.3647 4.4651 0.8323
Y4 21.5439 24.2497 1.1256
Y5 30.4192 36.3741 1.1958
Y6 16.6999 18.4126 1.1026
Y7 89.5060 97.9869 1.0948
Y8 51.3387 73.0777 1.4234
Y9 127.2548 115.0377 0.9040

Left-out last m = 5 observations are predicted
Y1 8.5239 8.1475 0.9558
Y2 8.3525 10.3304 1.2368
Y3 4.6893 3.9674 0.8460
Y4 17.1070 18.9927 1.1102
Y5 25.9667 29.7612 1.1461
Y6 13.7520 15.3769 1.1182
Y7 69.3116 75.6464 1.0914
Y8 48.0922 58.5415 1.2173
Y9 107.4774 112.2471 1.0444

in Table 6.5.

In Table 6.5 when last 3 left-out observations are predicted, the PMSEOLS/PMSETV C

ratio shows that 7 out of 9 cases time-varying-coefficient model out-performs ordinary linear

regression model by at least around 10% to 40%, and the only two cases when time-varying-

coefficient model out-performs ordinary linear regression model, the different is not very

significant and probably due to the random error inherent in the data set. For the summary

table when last 5 left-out observations are predicted, the PMSEOLS/PMSETV C ratio shows

that 6 out of 9 cases time-varying-coefficient model out-performs ordinary linear regression

model by at least around 5% to 25%, and the only two cases when time-varying-coefficient

model out-performs ordinary linear regression model, the different is not very significant
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Table 6.6: Ratios of Prediction Mean Square Errors (PMSE)–OLS vs TVC models– for number
of left-out observations m = 1 to 8

Y m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8
Y 1 0.6510 1.0601 0.9986 0.9398 0.9558 0.9436 0.9741 0.9769
Y 2 15.2937 1.1889 1.1602 1.0534 1.2368 1.1985 1.1920 1.0930
Y 3 0.8079 0.7310 0.8323 0.8094 0.8460 0.9505 0.8772 0.8990
Y 4 2.2173 1.1345 1.1256 1.1277 1.1102 1.0928 1.0769 1.0638
Y 5 4.5951 1.3127 1.1958 1.1138 1.1461 1.1057 1.0655 1.0332
Y 6 2.4851 1.0726 1.1026 1.1359 1.1182 1.0970 1.0551 1.0370
Y 7 0.2825 1.8194 1.0948 1.0859 1.0914 1.0940 1.0785 1.0659
Y 8 17.0045 2.2915 1.4234 1.2312 1.2173 1.1589 1.1572 1.0498
Y 9 0.9052 0.7596 0.9040 0.9484 1.0444 1.0478 1.0375 1.0294

either and again probably due to the random error inherent in the data set.

In order to further evaluate the prediction performance of time-varying-coefficient

model versus ordinary least-squares model, we conduct the out-of-sample (OOS) prediction

using reduced data set, namely, we use data

(Yi, Xi, ti) where Xi = (1, X1, X2, X3, X4) and i = 1, 2, 3, ......, 68− R

and R is the number of observations trimmed off from the original data set.

One reason for conducting out-of-sample prediction using reduced data set is to make

full use the available limited data and to explore the prediction power of time-varying-

coefficient (TVC) under various situations. Another reason is that in practise of financial

prediction, the out-of-sample prediction is up to only a few or a couple of future values; while

the entire data set only provide us one such situation, namely, when the left-out observations

m is very small.

The following tables summarize the comparison of PMSE from time-varying-coefficient

and ordinary least-squares model using reduced data for R = 1, 2, 3, 4.

Note that all the summary statistics from time-varying-coefficient model in the com-

parison tables are based on an optimal bandwidth h computed through the cross-validation
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criterion described in the preceding section.

6.4.4 Testing for Time-delay Effect and Time Lag in Response

It is natural to further investigate whether the effect of factors affecting change of

credit spread is immediate or there exists certain pattern of time delay in such effect. So

the question arises if there is any time lag in the response variable. In order to study this

question, we fit a time-varying-coefficient model for each time lag τ using the data

(Yi+τ , Xi, ti) where Xi = (1, X1, X2, X3, X4) and i = 1, 2, 3, ......, 68.

We present the resulting residual sum of squares (RSS) for each of the time lag in

figure (6.11). The RSS versus time lag τ plot suggests, as τ gets larger, so the RSS of the

time-varying-model. This in turn implies that there exists n evidence for time delay effect

in the response variable.
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Figure 6.11: Testing whether there exists any time delay in the response variable
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Table 6.7: Ratios of Prediction Mean Square Errors (PMSE)–OLS vs TVC models– using reduced
model of size 67. For R=1, time-varying-coefficient model outperforms ordinary least-squares
regression model in 72.2% of the cases.

Y m=1 m=2 m=3 m=4 m=5 m=6
Y 1 1.0709 0.9812 0.9219 0.9348 0.9225 0.9508
Y 2 1.1328 1.1170 1.0109 1.2131 1.1886 1.2060
Y 3 0.6891 0.8401 0.7797 0.8249 0.9579 0.8438
Y 4 1.1064 1.1150 1.1439 1.1316 1.1140 1.0949
Y 5 1.1643 1.1177 1.0348 1.0946 1.0761 1.0381
Y 6 0.9996 1.0668 1.1553 1.1482 1.1406 1.1241
Y 7 2.7154 1.0951 1.0845 1.0897 1.0926 1.0772
Y 8 0.2233 1.1600 1.0822 1.1317 1.1145 1.1227
Y 9 0.3500 0.8643 0.9243 1.0374 1.0446 1.0349

Table 6.8: Ratios of Prediction Mean Square Errors (PMSE)–OLS vs TVC models– using reduced
model of size 66. For R=2, time-varying-coefficient model outperforms ordinary least-squares
regression model in 96.3% of the cases.

Y m=1 m=2 m=3 m=4 m=5 m=6
Y 1 1.1773 1.1186 1.1776 1.134 1.2153 1.1943
Y 2 1.9021 1.0806 2.7855 1.3264 1.2893 1.1337
Y 3 1.5114 1.3614 1.3844 1.6830 1.2759 1.2946
Y 4 1.4503 1.2247 1.2447 1.2444 1.2293 1.2042
Y 5 1.5992 1.3767 1.6930 1.4714 1.3390 1.2340
Y 6 1.7312 1.4327 1.4435 1.3738 1.2302 1.2083
Y 7 1.0576 1.0466 1.0600 1.0672 1.0580 1.0490
Y 8 1.1636 1.0982 1.1415 1.1201 1.1206 1.0661
Y 9 0.8898 0.9417 1.0504 1.0518 1.0401 1.0217
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Table 6.9: Ratios of Prediction Mean Square Errors (PMSE)–OLS vs TVC models– using reduced
model of size 65. For R=3, time-varying-coefficient model outperforms ordinary least-squares
regression model in 70.4% of the cases.

Y m=1 m=2 m=3 m=4 m=5 m=6
Y 1 1.0273 1.0409 0.7777 1.4811 1.3878 1.3312
Y 2 0.7771 2.8099 1.2984 1.2719 1.1203 1.0977
Y 3 1.3489 1.1234 1.7929 1.1276 1.1907 1.5744
Y 4 0.8903 0.8034 0.9122 0.9528 0.9409 0.9698
Y 5 0.4765 3.3772 2.7207 2.0239 1.6474 1.1646
Y 6 1.3035 1.2355 1.2037 1.0837 1.0586 1.0232
Y 7 0.4636 0.9590 1.2455 1.1653 1.14444 0.8076
Y 8 0.6739 1.2635 1.2699 1.2889 0.9240 0.8333
Y 9 1.5938 1.1322 1.0864 1.0570 0.9983 1.0127

Table 6.10: Ratios of Prediction Mean Square Errors (PMSE)–OLS vs TVC models– using re-
duced model of size 64. For R=4, time-varying-coefficient model outperforms ordinary least-squares
regression model in 68.5% of the cases.

Y m=1 m=2 m=3 m=4 m=5 m=6
Y 1 1.1646 0.6796 1.4825 1.3342 1.2552 1.2663
Y 2 39.5777 1.3291 1.2705 1.1144 1.0902 0.8778
Y 3 1.0200 1.9860 1.1255 1.1593 1.5040 1.1921
Y 4 0.1519 0.7959 0.8575 0.8717 0.9811 1.2656
Y 5 14.0794 3.2671 2.2445 1.7116 1.1612 1.0869
Y 6 0.4887 0.6685 0.9030 0.8877 0.8884 1.6315
Y 7 1.0096 1.2932 1.1787 1.1528 0.8138 1.1211
Y 8 2.4954 2.0093 1.6283 0.9490 0.8576 1.0018
Y 9 1.1227 1.0830 1.0547 0.9868 0.9939 1.0050



Chapter 7

Conclusions and Future Work

Motivated by a real data analysis of data in ecology, we proposed nonlinear varying-

coefficient models, a new class of varying-coefficient model. We developed the statistical

inference procedures for nonlinear varying-coefficient models. Specifically, we proposed an

estimation procedure to the nonlinear varying coefficient models by local linear regression

techniques, derived the asymptotic normality of the resulting estimate. We proposed a stan-

dard error estimate by the conventional sandwich formula. We further extend the generalized

likelihood ratio test for the nonlinear varying coefficient models to test whether the coef-

ficients really depend on a covariate. For nonlinear regression models, the optimization is

more challenging than that for existing varying coefficient models due to the fact that there

is no closed form for the resulting estimate and/or the objective function is typically non-

convex. The finite sample performance are empirically examined by Monte Carlo simulation

studies. From our simulation studies, the proposed procedures perform well.

In Chapter 5, we applied the proposed estimation and inference procedure for the

empirical analysis of an ecological data. By applying the generalized likelihood ratio test,

we showed that model coefficients for the nonlinear ecological model vary as temperature

varies and conclude the nonlinear relationship between NEE and PAR really depends on

temperature. As new applications of varying coefficient models, Chapter 6 deals with ap-

plying some existing procedures to some financial data sets. By comparing predictive mean

squared error (PMSE) values, it is demonstrated that varying-coefficient models are superior
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to an ordinary linear regression model, the commonly used model in finance research.

Some future research is needed in this topic.

1. The present work showed empirically through simulation studies that Wilks’ phe-

nomenon valid for the proposed generalized likelihood ratio test; however, it will be

meaningful to provide theoretical foundations of the result by proving, for nonlinear

varying-coefficient models, the asymptotic null distribution of Generalized Likelihood

Ratio test statistic has a chi-square distribution with degrees of freedom which do not

depend on the unknown parameters presented in the model under the null hypothesis.

2. The hypothesis testing problem concerned is to test whether there is at least one

coefficient varies as a covariate varies. To extend the testing problem, we will construct

hypothesis testing procedures on testing whether a subset of coefficients vary as a

covariate, with the aid of using backfitting algorithm.

3. The current work is concerned about the estimation of a known form of the nonlinear

model f . In the situation when the functional form f is unknown, we can establish

statistical procedures to identify this unknown functional form of f .

4. Our models consider varying-coefficients and independent error terms; however, when

dealing with panel data in economic or financial studies, error terms are in most cases

correlated instead being approximately independent. Therefore, it may be practical to

construct varying-coefficient models with time-series-like correlated error terms, and

develop the estimation and hypothesis testing procedures for the model to provide

superior predictive models.

5. It is of interest to apply the proposed nonlinear varying-coefficient model estimation

and hypothesis testing procedures to pharmacokenetic and pharmacodynamic models

widely used in pharmacology. Many pharmacological models are nonlinear in nature
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but overlook the underlying characteristics such as subject’s age, blood pressure, and

weight, etc.. Nonlinear varying-coefficient models with coefficient depending on these

underlying subject’s characteristics. We can apply our inference procedures in hoping

to improve modeling fitting and thus lower the expenses of pharmaceutical companies.
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