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Abstract

The original aim of dimension reduction is to find linear combinations of predictor X,
which contain all the regression information of Y versus X. Since the introduction of
the very first dimension reduction methods such as OLS and SIR, various dimension
reduction methods have been invented, such as SAVE and PHD. The invention of
central mean subspace enriched the context of dimension reduction and brought more
insight into existing dimension reduction methods. This idea is expanded later to
central kth moment space. However, those methods all require stringent conditions on
the joint distribution of the predictor. In this thesis, via the notion of central solution
space, we want to relax the elliptical distribution assumption required by central kth
moment space estimators. Central £&th moment solution space is introduced and its

estimators are compared with existing methods by simulation.
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Chapter

Introduction

In this chapter, we are going to give a brief introduction of the development of di-
mension reduction. The notion of central space and common estimators of central
space are introduced in the first two sections. In the following section, central mean
space is introduced and we get a deeper understanding of those dimension reduction
methods introduced earlier. The generalization of central mean space, central kth

moment space, is introduced in the last section.

1.1 Central space

1.1.1 Basic notations

Let X be a p-dimensional random vector representing the predictor, and Y be a
random variable representing the response. The goal of dimension reduction (K. C.
Li, 1991, 1992; Cook and Weisberg, 1991; Cook, 1998) is to seek 8 € RP*4(d < p),
such that

Y ILX|pTX.



For any d x d non-singular matrix A, ¥ I X|87X if and only if Y I X|(BA)TX.
Thus it is the column space of 3 that really matters and this leads to the following

definition of Dimension Reduction Space.

Definition 1.1.1. A dimension reduction space (DRS) for (X,Y) is the column space

of B3, where 3 satisfies Y I X|37 X.

We are not satisfied with just finding any dimension reduction space. In a certain
sense, we want to find a minimum dimension reduction space. Under very mild
conditions (Yin, Li, and Cook, 2007), the intersection of two dimension reduction
spaces is still a dimension reduction space itself. This leads to the following definition

of central space.

Definition 1.1.2. The central space (CS) for (X,Y) is the intersection of all dimen-

sion reduction spaces for (X,Y). This space is written as Sy|x.

In the literature, Sy|x is also called central subspace, sufficient dimension re-
duction (SDR) central space or effective dimension reduction (e.d.r.) central space.

Without ambiguity, we will just call Sy|x central space throughout this thesis.

1.1.2 Invariance law of central space

The following invariance law of central space has very important implications both

theoretically and in application.

Theorem 1.1.1. Let Sy|x be the central space for (X,Y). Let Z = AX + b, where

A is a p X p non-singular matrix and b € RP,. Then

Sy|Z = AiTSy‘X.



This invariance property guarantees that, instead of using the original predictors
at the X-scale for the purpose of dimension reduction, we can always use standardized
X, or the Z-scale predictor, by a simple transformation Z = E;(l/ ’[X — E(X)], where
Yx = Var(X) is the covariance matrix of X. Z-scale predictor satisfies F(Z) =
0,Var(Z) = I, and is much easier to dealt with in theoretical derivation. It has
also been shown by simulation that Z-scale predictor is more stable than the X-scale

predictors for computational purposes. We thus make the following assumption.

Assumption 1.1.1. We assume that for the Z-scale predictor, we have
E(Z)=0,Var(2) = I,.

Throughout this thesis, we will always deal with Z-scale predictor unless specified

otherwise.

1.2 Estimation of central space

1.2.1 Two common assumptions

Before we introduce various dimension reduction methods for the estimation of central
space, we first present the two most common assumptions in dimension reduction

literature. The first one is the linear conditional mean (LCM) assumption.

Assumption 1.2.1. Let 3 be a RP*? matriz whose columns form a basis in Sy|z.
We will assume that E(Z|37Z) is a linear function of BT Z; that is, the conditional

mean of Z giwen 37 is linear in BT Z.

It can be shown that when LCM assumption holds, E(Z|37Z) = PsZ, where

Ps = B(B8T3)"' 3" is the projection matrix onto the column space of 3. This actually



tells us that L-2 projection coincides with the Euclidean projection under LCM as-
sumption. Z must have elliptical distribution if LCM assumption is true for any [3.
This assumption seems to be stringent. However, due to the discovery of Hall and Li
(P. Hall and Li, 1993), we learn that LCM assumption is reasonable when p is large.

The second assumption is known as the constant conditional variance (CCV)

assumption.

Assumption 1.2.2. Let 3 be a RP*? matriz whose columns form a basis in Sy|z.

We assume that the conditional variance Var(Z|3 Z) is a non-random matriz.

Let Qs = I3 — P3 be the projection onto the orthogonal complement of span(f3).
The CCV assumption above then implies Var(Z|3%Z) = Qg . For classical dimension
reduction methods, CCV assumption is always used together with the LCM assump-

tion. Predictor Z has to be normally distributed when both assumptions hold for any

3.

1.2.2 Some classical dimension reduction methods

In this section, we are going to see some classical dimension reduction methods. Those
methods are the very first dimension reduction methods. They play a very important
role in the dimension reduction literature. We will focus on four methods, Ordinary
Least Squares (OLS; Li and Duan, 1989), Sliced Inverse Regression (SIR; Li, 1991),
Sliced Average Variance Estimator (SAVE; Cook and Weisberg, 1991) and Principle
Hessian Direction (PHD; Li, 1992 and Cook, 1998), which are directly related to the
main topic of this thesis.

When LCM assumption holds, OLS estimator is shown to fall in the central space.
Thus we can use (Y Z) as an estimator of central space Sy|z. This result is given

by the following theorem.



Theorem 1.2.1. (OLS) If Assumption 1.2.1 (LCM) holds, then

E(ZY) € Syiz.

PROOF. Let 3 be a p x d matrix whose columns form a basis in Sy|z. Note that

E(ZY) = E[E(ZY|Z)] = E|ZE(Y|Z)). (1.1)

However, because Y Il Z|3TZ, we have

E(Y|Z2)=E(Y|Z,8"2)=E(Y|p"Z).

Therefore, the right hand side of (1.1) is E[ZE(Y |37 Z)]. However, because condi-

tional expectation is a self-joint operator, we have

E(ZE(Y|8"Z)] = E[E(Z|5" Z)Y].

Now recall that, under LCM assumption, the L-2 projection E(Z|37 Z) coincides with

the Euclidean projection P3Z. Thus we have

E[E(Z|872)Y]| = E[(Ps2)Y] = PsE(ZY).

Thus
E(ZY) = PsE(ZY).

In other words, E(ZY") equals its projection onto span(3) = Sy|z. Therefore E(ZY) €

Sy‘z. O



SIR is a very important dimension reduction method. The next Theorem tells us
that under the LCM assumption, the inverse regression vector E(Z|Y = y) belongs

to the central space Sy|z.

Theorem 1.2.2. (SIR) If Assumption 1.2.1 (LCM) holds, then for any y, E(Z|Y =

y) € Sy|z.

PROOF. Let 3 be the p x d matrix whose columns form a basis in Sy|z. Then
B(Z|Y) = E[E(Z|Y. 3 2)|Y).
Because Y Il Z|3TZ, we have that
EE(Z|Y,5"Z)|Y] = E[E(Z|" 2)|Y].

The L-2 projection E(Z|37Z) is the same as the Euclidean projection Ps(Z) and
therefore,

E(Z|Y) = E(P;Z|Y) = PsE(Z]Y).
In other words E(Z|Y) belongs to span(/3), which is the central space. a

In practice, we will use the discretized version of the above result. Let Iy, ..., I} be

k intervals that partition T, the space of Y. Let Y be the discretized Y, defined by

Y =i, ifYeli=1,..k

Apply Theorem 1.2.2 to Y. We know E(Z|]Y = i) = PﬁE(Z|}7 = 7). Conse-
quently Var(Z|Y = i) = PsVar[E(Z|Y = i)]Ps. Thus we can use the column space

Var[E(Z|Y = i)] to estimate the central space Sy|z-



SAVE is another method of estimating the central subspace based on slicing the
response Y. Instead of calculating the mean within each slice as in SIR, this time we

compute the variance. SAVE requires both the LCM and the CCV assumptions.

Theorem 1.2.3. (SAVE) If Assumption 1.2.1 (LCM) and Assumption 1.2.2 (CCV)
hold, then for any value of y, the column space of the matriz I, — Var(Z|Y = y)
15 a subspace of the central space. Consequently, the column space of the matrix

E[I, — Var(Z]Y =y))? is a subspace of the central space Sy|z.

PROOF. Let 3 be the p x d matrix whose columns form a basis in Sy|z. The LCM
assumption implies that E(Z|87Z) = P3Z and the CCV assumption implies that

Var(Z|37Z) = Q. Thus we have

Var(Z|Y) =E[Var(Z|Y, 37 Z)|Y] + Var[E(Z|Y, 8T Z)|Y]
=E[Var(Z|T Z)|Y] + Var[E(Z |37 Z)|Y]

:Qﬁ + PﬁV&I‘(Z‘Y)PB

Hence I — Var(Z]Y) = Ps[l — Var(Z|Y)|Ps. The column space of the matrix
I, — Var(Z]Y') thus belongs to the range of the projection operator Pg, which is
Sy|z. Consequently, the column space of the matrix E[I, — Var(Z|Y)]* is a subspace

of the central space Sy|z. O

Again, in practice, we discretize Y to be Y as in SIR and use the sample estimate
of column space E[I, — Var(Z V)2 as the SAVE estimator for the central space Sy|z-
PHD is another dimension reduction method that requires both LCM and CCV
assumptions. Let a be the OLS vector E(ZY'). Let e be the residual from the simple
linear regression; that is e = Y —a® X. The matrix H; = E(Y ZZ7) is then called the

y-based Hessian matrix and the matrix Hy = F(eZZ7") is called the e-based Hessian



matrix.
As before, we work with the standardized Z-scale predictor. In addition, we can
always work with Y — E(Y') instead of the original ¥ and the central space will not

change: Sy|z = Syy_g(v))z. Thus we assume E(Y) = 0.

Theorem 1.2.4. (PHD; y-based) If Assumption 1.2.1 (LCM) and 1.2.2 (CCV) hold,

then the column space of Hy = E(YZZ") is a subspace of Sy|z.

PROOF. Let 8 be the p x d matrix whose columns form a basis in Sy|z. Then

EYZZ")=E|E(YZZ"|\Z)| = E[E(Y|2)ZZ")

—E[E(Y|8"2)22") = ElYE(ZZ" |5 2)).

By the LCM and CCV assumptions, we have

B(2Z7|5"Z) = V(2|67 Z) + E(Z|67 2)E(Z7 |87 Z)

=Qp + P3ZZ" Py

Thus

H, =E|YE(zZ"\3"7)]
=E[Y(Qs + PsZZ" Fp)]
=E(Y)Qs+ PsE(YZZ")Ps

—PyH, Ps.

This means the column space of H; = E(YZZT) is a subspace of the central space

Sy‘Z. (]



The same thing can be said about e-based PHD estimator Hy = E(eZZ"). The

proof is similar and thus omitted.

1.3 Central mean subspace

In many situations, regression analysis is mostly concerned about inferring the con-
ditional mean of the response given the predictors. In some cases, all the regression
information is actually contained in the conditional mean E(Y|X). Central mean
subspace (CMS; Cook and Li, 2002) is designed to address this problem. Parallel to
the development of dimension reduction space and central space, we have the follow-
ing definitions of mean dimension reduction subspace and central mean subspace. As

before, X is a p-dimensional predictor, and Y is the response.

Definition 1.3.1. If Y I E(Y|X)|a” X, then S(a) = span(«) is a mean dimension

reduction subspace for the regression of Y wversus X.

It follows from this definition that a dimension-reduction subspace is necessarily a
mean dimension reduction subspace, because Y Il X|a’ X implies Y Il E(Y|X)|a” X.
Central mean subspace is the smallest mean dimension reduction subspace and is

defined as follows.

Definition 1.3.2. Let Sgv|x) = NS, where the intersection is over all mean dimen-
sion reduction subspaces Sp,. If Sp(y|x) 18 itself a mean dimension reduction subspace,

1t 1s called the central mean subspace.

Since any dimension-reduction subspace is a mean dimension reduction subspace,
the central space must contain the central mean subspace. This is because the latter

is the intersection of at least the same, if not more, subspaces. In other words, we
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always have Sgyv|x) € Sy|x. The central mean subspace also has the invariance
property as does the central space.

Through the notion of central mean space, an apparent distinction among the
four methods introduced in the previous section is discovered. It can be shown that
OLS and PHD can only estimate the central mean space. On the other hand, SIR
and SAVE estimators are in the central space but not necessarily in the central mean
space. Those methods also require different set of assumptions. A summary is shown

in Table 1.1:

LCM | CCV
CMS | OLS | PHD
CS | SIR | SAVE

Table 1.1. Relationship between common CS and CMS estimators .

In a regression analysis, if we are mainly interested in the conditional mean and
not the conditional distribution itself, then CMS is the parameter of interest and

CS/CMS is the nuisance parameter.

1.4 Central kth moment DRS

Following the idea of the central mean space, central kth moment dimension reduction
space (CKMS; Yin and Cook, 2002) is designed to aim dimension reduction at re-
ducing the mean function, the variance function and up to the kth moment function,
leaving the rest of regression Y versus X as the nuisance parameter.

We first define M®) (Y |X) = E{[Y — E(Y|X)]F|X} for k > 2 and MV (Y|X) =
E(Y|X). Then we have the following set of definitions.
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Definition 1.4.1. If
Y IL{MWD(Y]X), ..., MP(Y|X)}n" X,

then S(n) = span(n) is a kth moment DRS for the regression of Y versus X.

Definition 1.4.2. Let S}(,k')X = NS®) | where the intersection is over all kth moment
DRSs SW . [f S)(/k’i)x 1s itself a kth moment DRS, it is called the central kth moment

DRS, or CKMS for short.

If £ =1 in the above definitions, they become exactly the same as the definitions
of mean dimension reduction subspace and central mean subspace. Thus CKMS is a
generalization of CMS.

We can also see from the definitions that a DRS is necessarily a kth moment DRS,
which must be an ¢th moment DRS for any ¢ < k. Just as CMS is always contained
in the central space, the CKMS is also contained in the central space, because the
former is the intersection of a larger collection of subspaces. These relationships can
be summarized as below,

(1) (k)
SY|X C--- QSY\X C--- QSY\X-

We can see that if the conditional distribution of Y given X depends only on up to

the kth moments of X, then Sy|x = S)(/kﬁx Furthermore, when the moment-generating

function of Y| X exists, we have Syx = limkﬂoo(Sggl)X).



Chapter

Central Solution Space

In this chapter, the notion of central solution space is introduced. It is designed to
loosen the linear conditional mean assumption, which is required by most existing
dimension reduction methods. We will first study a set of estimators in the central

kth moment space. These estimators will require LCM assumption to work properly.

2.1 Estimators in CKMS and their limitations

In this section, we are going to see how to find estimators in central kth moment
dimension reduction space. We notice that the central kth moment space Sl(,k‘)x has
invariance property, just like central space Sy|x and central mean space Sg(y|x). That

is, if W = AT X for some invertible matrix A, then S® = 418%™ Thus we can

YW Y|X*
always work with the Z-scale predictor and transform the estimated CKMS back to
the original X-scale predictor.

The next theorem has the same flavor of Theorem 1.2.1, and it provides estimators

comparable with OLS that falls in S)(/k')Z
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Theorem 2.1.1. If Assumption 1.2.1 (LCM) holds, then
E(ZY*) € Sy,

PrROOF. Let v be a basis for Si(,k‘)z Note that

E(ZY"®) = E[E(ZY*|2)] = E[ZE(Y"|2)].
The fact that v is a basis for S}(,k')z implies Y Il E(Y*|Z)|4TZ, which in turn implies

E(Y"Z)=E(XY*ZA~"2) = E(Y*Y' 2).
Hence

E(ZY*) = E[ZE(Y*|W' 2)] = E[E(Z|W' 2)Y*] = E[(P,Z)Y*] = P,E(ZY").
The third equation above holds because of the LCM assumption. Thus
E(ZY*) = P,E(ZY").

In other words, E(ZY"*) is the same as its projection onto span(y). Therefore

E(ZY*) € Sy}, O

The important role played by the LCM assumption is clear. This becomes the
major limitation lies for those estimators. LCM assumption can not be made when
we have non-elliptically distributed predictors, which are by no means uncommon in
practice. Reweighting (Cook and Setodji, 1994) or transforming techniques can be

used to counteract this limitation to a certain degree, but requires either intensive
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computation or only works on the marginal distribution of X. To cure this limitation
when nonlinearity in the conditional mean E(X |37 X) does exist, we need to use the
notion of central solution space (CSS; B. Li and Dong, 2008), which will be introduced

in the next section.

2.2 Central solution space for SIR

Central solution space is a rather general idea that can be combined extensively
with lots of existing dimension reduction methods. Instead of using the principal
components of kernel matrixes to estimate the central space, CSS methods circumvent
the linear conditional mean assumption by targeting directly at a set of solution
equations.

Classical SIR estimator targets at estimating the column space of Var[E(Z]Y)].

On the other hand, CSS-SIR method starts with the following SIR solution equation
E(Z|Y)=E[E(Z|fT2)]Y] as.. (2.1)

Note that if 3 € RP*4(d < p) solves this equation, then so does SA for any d x
d nonsingular matrix A. Thus span((), not [ itself, is the parameter of interest.
Span(() is a Solution Space if 3 satisfies the solution equation (2.1) above.

It is easy to see that if (J; satisfies (2.1) and [, is another matrix such that
span(f;) C span(f,), then 3, also satisfies (2.1). For maximum dimension reduction

we would like to seek (8 of the lowest rank. This leads to the following definition:

Definition 2.2.1. If the intersection of any two solution spaces of (2.1) is itself a
solution space of (2.1), then the intersection of all such spaces will be called the central

solution space for SIR, or CSS-SIR for short, and is written as Scss_sIR -
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If we denote the column space of Var[E(Z|Y)] by Sgr, then the next theorem
reveals the relationship between SIR estimator, CSS-SIR estimator and the central

space.
Theorem 2.2.1. Suppose that Y and the elements of Z are square integrable. Then

1. Scss—sir € Sy|z-
2. If, in addition, Assumption 1.2.1 (LCM) holds, then Ssir = Scss—sIR-

The proof of this Theorem will be skipped here. Later we are going to provide the
proof in a similar case for the central kth moment solution space (CKMSS) estimators.

The key improvement of CSS-SIR estimators over classical SIR estimators is that
the former does not require ellipticity of predictor X. Simulation has been done
to verify the supremacy of CSS-SIR over SIR with non-elliptically distributed X.
The same property holds for all other CSS based estimators. So far, first-moment
based CSS methods such as CSS-SIR, CSS-PIR (parametric inverse regression; Bura
and Cook, 2001) and CSS-KIR (kernel inverse regression; Zhu and Fang, 1996) has
already been studied and second-moment based CSS methods such as CSS-SAVE and
CSS-DR (directional regression; B. Li and Wang, 2007) are under development.

In the following chapters, I combine the idea of central solution space with the
notion of central k&th moment DRS. This will help cure the limitation of classical

CKMS estimators, or their requirement of the LCM assumption.



Chapter

Central kth Moment Solution Space

Let X be a p-dimensional predictor and Y be a 1-dimensional response. We aim
dimension reduction at obtaining information from the mean function, the variance
function and up to the k&th moment function. We also want to circumvent the limita-
tion of linear conditional mean assumption. Population derivation of the central kth
moment solution space (CKMSS) is provided in this chapter. Due to the invariance

property of CKMS, we will standardize X and work with the Z-scale predictor.

3.1 Central mean solution space

As we have seen in Chapter 1, central mean space is a special case for the central
kth moment space. In this section, we will first study a special case of central kth

moment solution space with & = 1, which is the central mean solution space.

Definition 3.1.1. A mean solution space for (Z,Y) is the column space of [3, where

0 satisfies the following mean solution equation

E(ZY)=E[E(Z|f*Z2)Y] a.s.. (3.1)
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If the intersection of any two mean solution spaces is itself a mean solution space,
then the intersection of all such spaces will be called the central mean solution space,

and is written as Scuss -

In the original paper about central solution space (B. Li and Dong, 2008), the
space above was defined to be Scss—ors. Actually, it was shown that Scumss € Sy
and it can be used to estimate the central space. In addition, if LCM assumption
holds, Scumss and the column space of OLS estimator E(ZY) are the same.

More precisely, both OLS estimator and CMSS (CSS-OLS) estimator fall in the

central mean space, or the central 1st moment space, Scmss € Sgyix) = Si(/1|)X'

3.2 Central kth moment solution space

3.2.1 Approach one: k separate solution equations

In this section, we are going to give k separate solution equations and base the

definition of central kth moment solution space on those solution equations.

Definition 3.2.1. The k-th order solution equation is defined to be
E(ZY*®) = E[E(Z|BL2)YY]  a.s. (3.2)

For any By that satisfies equation (3.2), we call its column space k-th order solution
space. Furthermore, if the intersection of any two k-th order solution spaces is itself
k-th order solution space, then the intersection of all such spaces will be called the
central k-th order solution space, and is denoted by O. The central kth moment
solution space is denoted by S((QMSS, and s the union of the first k central order

solution space, or 'Sg%v{ss =Ur,0;.
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In this definition, we first define the k-th order solution equation, whose solution
is the k-th order solution space. The intersection of such spaces is the central k-th
order solution space Oy. If we union Oy, Oy up to O, we will have the central kth
moment solution space.

For k£ = 1, the central 1-st order solution space and the central 1-st moment
solution space are the same, and they are both the central mean solution space defined
in the previous section.

Before we move on to the next section, we will state the following Lemma. This
Lemma is derived from Proposition 1 in the original CKMS (Yin and Cook, 2002)

paper.

k)

Lemma 3.2.1. If v is a basis for 53(/\27 then

EY’|Z)=EY'|W'Z) for j=1,...,k

PROOF. Remember that in Chapter 1, we have M*®(Y|2) = E{[Y — E(Y|2))*|Z}

for k> 2 and MY(Y|Z) = E(Y|Z). As a basis for S%

vz Y satisfies

Y L{MYY|2),..., MY |2} Z.

By Proposition 1 (Yin and Cook, 2002), this implies E(Y7|Z) is a function of 47 Z

for j=1,...,k. Thus E(Y|Z) = B(Y|Z,~TZ) = E(YI|5TZ) for j=1,...,k. O

3.2.2 Approach two: one solution equation for all

In the previous section, we have seen the first definition for the central k&th moment
solution space, which is based on k separate solution equations. In fact, we can define

CKMSS in a more compact fashion, using only one solution equation.
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Definition 3.2.2. If v satisfies
BIZfMY)] = EIE(ZW Z2)f*(Y)]  as.

for any fF(Y), where f*(Y) is at most kth degree polynomial of Y, then we call the
column space of v a k-th moment solution space. Furthermore, if the intersection of
any two k-th moment solution spaces is itself k-th moment solution space, then the
intersection of all such spaces will be called the central k-th moment solution space,

and is denoted by S((QMSS.

We now face the following question: Do Definition 3.2.2 above and Definition 3.2.1
from the previous Section 3.2.1 define the same central kth moment solution space?

We need the following lemma first. This is a simple fact and its proof is omitted.

Lemma 3.2.2. Let f*(Y) be any at most kth degree polynomial of Y and let Yy =
(Y, Y2 ..., YT then if v satisfies any one of the following two equations, then it

will also satisfy the other equation:
1. B[ZfHY)] = E[E(Z|y"Z) f*(Y)] for any f*(Y);
2. B(ZY\") = E[E(Z|W'Z) Y\ ).
Now we will start from a simple case with £ = 2 and introduce one more Lemma.

Lemma 3.2.3. The union of the central first order solution space Oy and the central
second order solution space Oy is the same as the central second moment solution

space defined by Definition 3.2.2.

PrROOF. We have the first order solution equation

E(ZY)=E[E(Z|3{ 2)Y] as.. (3.3)



20

O; = Nspan(f;), where the intersection is over all 3, that satisfies equation (3.3).

Similarly, we have the second order solution equation
E(ZY?) = E[E(Z|35 Z2)Y? as.. (3.4)

O, = Nspan(fy), where the intersection is over all 3, that satisfies equation (3.4).
By Definition 3.2.2 and Lemma 3.2.2, with Yo = (Y,Y?)?, we have the central
second moment solution space S@MSS, which is the intersection of span(vy) over all v

that satisfies
E(ZY") = E[E(ZW' 2)2Y,"] as.. (3.5)
Now we want to show

Nspan(y) = [Nspan(5y)] U [Nspan(3)].

On one hand, if 3, satisfies equation (3.3), then Nspan(f;) satisfies equation (3.3). In
addition, if (3, satisfies equation (3.4), then [Nspan((;)] U [, satisfies both equation
(3.3) and equation (3.4). In another word, [Nspan(f;)] U [y satisfies equation (3.5).

Thus

Nspan(y) C N{[Nspan(B;)] U B2} = [Nspan(Fy)] U [Nspan(Fz)].

The inclusion Nspan(y) € N{[Nspan(f;)] U B2} above is true because the latter is
an intersection of a smaller collection of spaces. The equation N{[Nspan(3;)]U 2} =
[Nspan(f;)] U [Nspan(/fz)] above is the distributive laws of intersection and union.

On the other hand, for any v which satisfies equation (3.5), it will satisfy equation

(3.3) and equation (3.4) separately. Thus Nspan(f;) C Nspan(vy) and Nspan(fBs) C
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Nspan(y), which will lead to [Nspan(5;)] U [Nspan(fz)] € Nspan(7y). O

From Lemma 3.2.3 and mathematical induction, we can easily show the equiva-
lence of two seemingly different versions of CKMSS from Definition 3.2.2 and Defini-

tion 3.2.1. This fact is stated in the following Theorem.

Theorem 3.2.1. (Equivalence) If v satisfies
B(ZJ*(Y)) = BIE(ZWT2) (V)] s (3.6)
for any f*(Y), where f5(Y) is at most kth degree polynomial of Y, then
Stuss = Nspan(y) = UL, 0,

where O; is the central i-th order solution space given in Definition 3.2.1.

PrROOF. By Lemma 3.2.2; we know whenever ~ satisfies equation (3.6), it will
equivalently satisfy E(ZYy ") = E[E(Z|7TZ)Y\"], with Yy = (Y, Y?,...,Y*)T and
vice versa.

From Lemma 3.2.3, we know when k = 2, S((le)(MSS = 0, UQO, is true.

By mathematical induction, we only need to show that if Sék}zMss = UF_,O; holds
for k, S, = U0, should hold for k + 1.

Let Y = (Y, Y2,...,Y*)T and set
B(ZY\T) = BIE(ZIFTZ2)YT] as.
which is parallel to equation (3.3). We also have

E(zZY*Y) = E[E(Z|8T Z2)Y*]  as.,
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which is parallel to equation (3.4).

Use exactly the same reasoning in Lemma 3.2.3, we have
Stiniss = [Nspan(61)] U [Nspan(5y))
By the assumption of the mathematical induction, we have
Nspan(f;) = Sék}%Mss = U, 0;.

By the definition of the central k-th order solution space, Nspan(y) = Ok41. Thus

k1
SéIjM)SS = (UF,0) U Opp1 = U O, O

So far we have seen the equivalence of two different versions of the central kth
moment solution space. The next theorem tells us that the central £th moment
solution space belongs to the central kth moment DRS, which in turn belongs to the

central space.

Theorem 3.2.2. (Inclusion)

(k (k
SCI%MSS < SY|)Z C Syiz-

ProOOF. The second part S}(,ki)z C Sy|z is already shown in Chapter 1. We want to
show that Sék}zMss c Sgcl)z

Let v be a basis for S}(,k‘)z, then by Lemma 3.2.1, we know E(Y7|Z) = E(Y|4T2Z)
for j =1,... k. Consequently, E[f*(Y)|Z] = E[f*(Y)|y* Z], where f*(Y) is any at

most kth degree polynomial of Y. Thus we have

E(f*(Y) 2] =E{E[f*(Y)Z]|Z}
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=B{E[f*(Y)|2)Z}
=B{E[f*(Y)""Z]Z}

=E[f*(Y)E(Z]h" 2)],

which means spanvy is a kth moment solution space by Definition 3.2.2.

Hence Sgiless = Nspany C SSC')Z O

In this chapter, we have two sets of definitions for CKMSS and show their equiv-
alency. The inclusion theorem shows that at the population level, the central k-th

moment solution space falls in the central space without the LCM assumption.



Chapter I

Sample Estimation of CKMSS

In this chapter, an existing estimation method (covariance subspace; Yin and Cook,
2002) of the central kth moment DRS is introduced first. We then show the population
relationships between this covariance subspace and the central kth moment solution
space. Parallel to the sample estimation algorithm of the covariance subspace, we

provide the sample estimation algorithm for the CKMSS in the last section.

4.1 Covariance subspace estimation

Let X be a p-dimensional predictor, and Y be a 1-dimensional response. In Chapter
2, we have seen that when LCM assumption holds, F(ZY"*) € S}(,k')z Thus E(ZY*)
can be used as an estimate for the central kth moment DRS. As in the original CKMS

(Yin and Cook, 2002) paper, we define the population kernel matrix

K= (E(ZY),...,E(ZY")).



25

The column space of this kernel matrix K is called the kth order covariance subspace:

S — span(K).

cov

Theorem 2.1.1 tells us that Sé(’f?) C S}(,k')z Thus we can use the subspace spanned by
the left singular vectors of K corresponding to its non-zero singular values to span an
estimator of Séﬁ)z

At the sample level, suppose that (Xi,Y1),..., (X,,Y,) is an iid sample of (X,Y).
X is the sample mean of the X vector. Sy is the sample covariance matrix estimate
of X . Let Z; = ﬁ}l/z(Xi — X) for i = 1,...,n. Then the sample estimate of the

kernel matrix corresponding to K is:

K= (%izm,...,%izmk).
=1 =1

Assume d = dim{span(K)} is known. Let 7, ..., 74 be the left singular vectors of
K corresponding to its d largest singular values 5\1, ceey Mg Then we have the estimate
of span(K): S(K) = span(#y, . ..,74). Thus we get the sample covariance subspace

estimates, which is also an estimate for SS?Z

4.2 Covariance subspace and CKMSS

In the original paper about central solution space (B. Li and Dong, 2008), it was
shown that when the linear conditional mean assumption holds, the classical OLS
estimator and the CSS-OLS estimator are the same. As a generalization with k > 2,
we can show that kth order covariance subspace and the central kth moment solution
space are the same when the LCM assumption holds.

First, we are going to present a lemma. Its proof is standard in central solution
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space literature.

Lemma 4.2.1. Suppose that Y and the elements of Z are square integrable and
Assumption 1.2.1 (LCM) holds. Then fori=1,... k, the central i-th order solution

space O; equals the column space of E(ZY?).

PROOF. On one hand, we want to show for i = 1,...,k, O; C span[E(ZY")]. Let (3

be a basis for span[E(ZY")]. Then we have

E(ZY") = PsE(ZY) = E[(Ps2)Y].

LCM assumption implies P3Z = E(Z|37Z). Thus [ satisfies

E(2Y") = B[E(Z|8" 2)Y),

which is the k-th order solution equation (3.2). Thus

O; C span(B) = span[E(ZY")].

On the other hand, we want to show for i = 1,...,k, span[E(ZY?)] C O,. Let 7 be

a basis for @;. Then we have

B(2Y") = E[E(ZI" 2)Y'),

which, in addition to the LCM assumption, leads to

E(ZY") = E(P,2)Y"] = P,E(ZY") = 1(4"7) 4" E(2Y").

This means 7 is a basis for span[E(ZY")]. Thus we have span[E(ZY")] C O;. O
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Theorem 4.2.1. (Equation) If Assumption 1.2.1 (LCM) holds, then

k
Sél%MSS = S%)

cov’

PRrROOF. Notice we have two sets of definitions for CKMSS. The Inclusion Theorem
3.2.2 is easier to prove by using Definition 3.2.2, where we have a single solution
equation. However, this Equation Theorem here is easier to prove by using Definition
3.2.1, where we have multiple solution equations.

Notice that Sl = span(K) is the column space of K = (E(ZY),..., E(ZY*))
and CKMSS is the union of the first k central order solution space SékIngs =Ur,0;.
By Lemma 4.2.1, we have span[E(ZY")] = O; for i = 1,...,k. Then we have

S = span(K) = 8%, 1« accordingly. O

4.3 Sample estimation of CKMSS

In this section, we will first introduce a population-level objective function whose

minimizer yields the solution to
E(ZY\") = EIE(Z|Y' Z)Y' ],

whereYy = (Y,Y? ..., Y*)T. Based on this objective function, we then provide a

sample estimation algorithm of CKMSS.
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4.3.1 Objective function

We will describe how to estimate the CKMSS with an iid sample of (X,Y). This
estimation method is based on minimizing an objective function, the rationale of

which is shown in the next theorem.

Theorem 4.3.1. Suppose that Sékless has dimension d < p and let 3 be a pxd matriz
whose columns form a basis in S((QMSS. Let Yy = (Y, Y2, ..., YT Let f(n"X)
be a square-integrable function such that, whenever span(n) = span(8), f(n?X) =
E(X|8TX), and whenever span(n) # span(f),

P{E[f(f" X)Y\"] # E[f(8" X)Yi"]} > 0. (4.1)
Let ng € RP*4 be the minimizer of
Lin) = B |[B{X — f ).} (4.2)

over RP*?. Then span(ng) = Sék}zMss-

PRrooOF. If span(n) = span(f3), then
E[f(n"X)Yy"] = E[E(X|6"X)Yy'] = B(XY") as.
Hence L(n) = 0. If span(n) # span((3), then by assumption (4.1),

E|B{[f(n"X) = f(B"X)]Yi" }H* > 0.
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In the meantime,

L(n) = EIE{[X — (8" X)IYi" }?
+ B E{[f(5"X) — f(n" X)Ya" }I*

+2E (B{[X — f(3" X) M E{[f(8"X) — f(n" X)Yi" }) -

Because span(3) = Sgngs? the last term is 0. Therefore

L(n) > EIIE{[f(8"X) — f(n" X)[Yi" }* > 0.

Hence the minimizer of L(n) must satisfy span(n) = span(5) = S((JlizMss- O

4.3.2 Sample estimation algorithm

Let fi,..., fi be functions from R? to R. We will assume that E(X|37X) lies in the
space spanned by f1(87X),..., fi(87X). That is, each component of E(X |37 X) is a
linear combination of fi(87X),..., fi(8TX). Under this assumption the conditional

expectation F(X|37X) can be expressed explicitly as

E(X|TX) =E[XGT(B"X)| {E [G(F"X)GT(657X)]} " G(BTX), where

G(B"X) = (L(B"X),.... L(B"X))".

Note that we are not assuming — and we do not need to assume — that E(X|n" X)
is a linear function of fi(n?X),..., filnT X) for any n in RP*¢. All we need is that

this holds at the true 5. We use the function

EXGT" X){E [G0" X)GT (" X))} G X) (4.3)
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as the f(nTX) in the definition (4.2) of the objective function L(n).
We now construct the sample estimate L, (n) of L(n). Suppose that we have an
iid sample of (X,Y): (X1,Y1),...,(X,,Ys). For a function r(X,Y), let E,r(X,Y)

denote the sample average n=!' Y7 | 7(X;, V).

1. Center Yi,...,Y, and X4,..., X, as

2. Select {f1,..., fi} that we deem sufficiently flexible to describe the conditional
mean E(X|37X). For example, based on our experience it often suffices to
include linear and quadratic functions of 47 X. In this case, the set {fi,..., fi}

includes the following d(d + 3)/2 + 1 functions
{Yu{n!X: izl,...,d}U{n;‘-FXnkTX: 1<j<k<d}
where 7y, ...,n4 are columns 7. Let
f"X) = B [XGT ()" X)HE[G(n" X)GT (" X)) ' G (" X).
3. Define L, () = E,||[X — f(n" X)]YT||2, where Yy = (Y, Y2, ... VKT

4. Find ny € RP*?, the minimizer of L, (n). Then span(ny) = Sg;%MSS is our sample

estimator of the central £th moment solution space.



Chapter

Simulation Study

In this chapter, simulation study is done to compare the CKMSS estimators pro-
posed in Chapter 4 and the existing covariance subspace estimators for CKMS. Two
models are used for our simulation. For each model, two different scenarios are con-
sidered. We either have elliptical distribution of predictor X or have non-elliptically
distributed X. Simulation results shows the supremacy of CKMSS estimators over

CKMS estimators when the LCM assumption fails.

5.1 Model description

We consider the following models. The first one is a 1-dimensional model favorable
for traditional OLS. The second model is borrowed from the CKMS (Yin and Cook,

2002) paper, where they show the effectiveness of CKMS on the population level.

Model I. Y = X;/4+ X5+,

Model IT: Y = X; + X1 X5 + 0.1€,
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Figure 5.1. Scatter plot matrix for the 4-dimensional nonelliptically distributed predictor
X.

where € ~ N(0,1) and € Il X. The sample size is taken to be n = 100. The dimensions
of X are chosen to be p =4,5,6.

For each model, we either set X to be jointly standard multivariate normal (when
LCM assumption is satisfied), or we introduce nonlinearity in the predictor as follows:

X1 ~ N(07 1), XQ ~ N(O, ].),

X3 =0.2X] + 0.2(X5 4+ 2)% 4 0.26,

X4 =0.1+0.1(X; + Xo) + 0.3(X; + 1.5)* + 0.24,
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where § 1L (X,Y) and 6 ~ N(0,1). When p = 5,6, X5 and Xg are taken to be
independent N(0,1), and to be independent of (Xi,...,X,). Figure 5.1 shows the
scatter plot matrix of Xi,..., X,. We introduce nonlinearity among predictors like
this according to the original CSS (B. Li and Dong, 2008) paper. Predictors of this

type are common in practice.

5.2 Simulation result and interpretation

For each model, we do 100 simulations to compare the performance of CKMS (covari-

ance subspace) estimators and the performance of CKMSS estimators we proposed.

Model I Method p=4 p=2>5 p=206
Elliptical CKMS | 0.985 (0.0013) | 0.984 (0.0010) | 0.977 (0.0015)
X CKMSS | 0.993 (0.0004) | 0.990 (0.0008) | 0.986 (0.0012)
Non-elliptical | CKMS | 0.965 (0.0020) | 0.964 (0.0017) | 0.964 (0.0017)
X CKMSS | 0.988 (0.0024) | 0.988 (0.0010) | 0.985 (0.0010)

Table 5.1. Model I: Relationship between CKMS and CKMSS estimators .

The simulation result of Model I is listed in Table 5.1. This is a 1-dimensional
model. In the case of Model I, Sy|x = 8}(,17)2 with £ = 1 and dim(S}(,}?Z) =1. We
measure the the estimation error by the absolute correlation coefficient between 37X
and BTX , where 3 is the basis for the central kth moment space and B is its estimate.
The closer this correlation is to 1, the better estimation we have got.

Each entry of Table 5.1 is formatted as a(b), where a is the average of the above
criterion across the 100 simulated samples, and b is the standard error of this av-
erage. From the table we see that in the absence of LCM assumption, or when we
have non-elliptically distributed X, the CSS-based methods are more accurate than

their classical counterparts across all 3 different values of p. Even when we do have
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elliptically distributed X and LCM assumption holds true, CKMSS estimators still
outperform CKMS estimators. The CKMSS estimators result in larger correlation
between @TX and 47X, and is more precise with smaller standard error.

CKMS in this case is actually the same as OLS, which is known to work well
when the underling relationship between response Y and predictor X is linear. The
simulation result of Model I shows the competency of CKMSS even when the model
is favorable for CKMS.

For Model II, we use the squared multiple correlation coefficient to assess the
accuracy of each method. Specifically, suppose U and V are d dimensional random
vectors, and Xy, Xy and Xy are the covariance matrix between U and V, the
covariance matrix of U, and the covariance matrix of V', respectively. Then the

square multiple correlation coefficient is defined by
p? = trace | 5" QZUVE{}EVUE‘W} — trace [2;1/ ZEVUE;EUVZ—W] NGRY

See reference paper (W. J. Hall and Mathiason, 1990). This measure takes maximum
value d if U and V' have a linear relation, and takes minimum value 0 if the components
of U and V' are uncorrelated. At the sample level, given an estimator B of 3, we use

the sample version of the above measure based on
(37X, BTX,} and {67X,..., 57X},

Note that the larger value of this criterion corresponds to a better dimension reduction
estimate.
The simulation result of Model II is listed in Table 5.2. This is a 2-dimensional

model. In this case, Sy|x = S*) with k = 1 and dz’m(S(k)

Y|z Y|Z) = 2. Thus the closer
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Model II | Method p=14 =5 —6
Elliptical | CKMS | 1.869 (0.0099) 1.808 (0.0129) 1.739 (0.0172)
X CKMSS | 1.932 (0.0082) | 1.902 (0.0096) | 1.869 (0.0129)
Non-elliptical | CKMS | 1.750 (0.0049) | 1.745 (0.0053) | 1.741(0.0053)
X CKMSS | 1.964 (0.0047) | 1.915(0.0092) | 1.822 (0.0174)

Table 5.2. Model II: Relationship between CKMS and CKMSS estimators .

the squared multiple correlation is to 2, the better estimation we have got. Again,
either in elliptical or non-elliptical predictor cases, compared with CKMS estimators,
CKMSS estimators result in larger correlation between 37X and $7X. Meanwhile,
the estimation standard errors of CKMSS estimators are comparable with CKMS
estimators.

There is an important feature in both Table 5.1 and Table 5.2: when the distribu-
tion of predictor X changes from being elliptical to being non-elliptical, the accuracy

of CKMS estimators degrades while the CKMSS estimators keep good performance.
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Conclusion

In this thesis, we have introduced the notion of central kth moment solution space.
This is a method that combines the idea of central kth moment DRS and the idea of
central solution space. It shares the properties of both CKMS and CSS estimators. It

provides an estimation of CKMS S (k)

YIx but it does not require ellipticity of predictor

X. A sample estimation algorithm is introduced based on minimization of a carefully
constructed objective function. Simulation has been done to show that CKMSS esti-
mators perform competitively with existing CKMSS (covariance subspace) estimators
for a variety of different models.

Throughout this thesis, the working dimension d of Sgcl)x is supposed to be already
known. In practice, we need a good estimate of d before we can use this CKMSS
estimation method. However, this is not an easy problem and is beyond the scope
of this thesis. Typically, asymptotic distribution of CKMSS estimators need to be
derived first. Then a sequence of hypothesis testing based on the known distribution

of certain statistics is used to determine the dimension d of Sy(/k|)x
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