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ABSTRACT 

A phase envelope is a diagram which characterizes fluid behavior at different pressures 

and temperatures, and also shows the conditions at which liquid and vapor phases 

coexist. To be able to fully characterize this behavior, it is of utmost importance that we 

are able to trace the fluid’s critical point (location of the condition where liquid and vapor 

phases become indistinguishable), cricondentherm (corresponding value of the highest 

temperature of Liquid/Vapor coexistence) and cricondenbar (corresponding values of the 

highest pressure of Liquid/Vapor coexistence) located within its phase envelope. These 

three points are the most important ones in terms of defining the shape of the envelope. 

Thus, in order to be able to determine the shape of phase envelope, we should be able to 

accurately predict the location of the critical temperature and pressure along with the 

cricondentherm’s and cricondenbar’s temperature and pressure.   This, among others, will 

aid our understanding of the production characteristics of the hydrocarbons present in the 

reservoir. In this work, Artificial Neural Networks are used to aid in this prediction. This 

study presents an expert system which is capable of understanding the complexities of the 

relationship between the composition and the corresponding values of the key points on 

the phase envelope. The expert system is able to predict the most relevant input among 

the compositional data of the reservoir fluid. A four stage neural network was proposed 

and it was found that, when compared with other constituents that make up the 

hydrocarbon mixture, the most relevant and consistent of all the input compositional data 

used in the neural network prediction of the phase envelope, was the C7+  for all the 

stages examined. 
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Chapter 1 
 

Introduction 

Petroleum reservoir fluids contain a variety of substances of diverse chemical nature that 

include hydrocarbons and non-hydrocarbons. Hydrocarbons (carbon-hydrogen 

molecules) range from methane to asphalt. Non-hydrocarbons include substances such as 

nitrogen, carbon dioxide, and sulfur compounds. Hydrocarbons are the main constituents 

of petroleum reservoir fluids and they have a very complex chemistry. The behavior of 

hydrocarbon mixtures primarily depends on their chemical composition and the 

prevailing temperature and pressure at both the reservoir and the surface conditions. 

These hydrocarbons in most cases exist naturally in more than one phase - liquid, vapor 

and/or solid.  

 

While a phase diagram is a pictorial representation of the distinction between these 

phases, a phase envelope is a region on a phase diagram that is bounded by a line which 

encompasses where two phases can coexist. These lines on the phase envelope are known 

as the bubble point and the dew point lines. These two lines are joined together at a point 

known as the critical point. The point corresponding to the highest pressure value on the 

phase envelope is known as the cricondenbar while the point corresponding to the highest 

temperature is known as the cricondentherm. These three points help in defining the 

characteristics of the phase envelope of any particular reservoir fluid. Phase envelopes 

are very critical in our understanding of the reservoir fluids, their initial thermodynamic 
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state at conditions of discovery, and our ability to predict reservoir fluid changes as 

pressure and temperature conditions vary during the reservoir’s productive life. This 

knowledge is critical in properly and effectively designing best production practices for 

every type of reservoir fluid. In general, prediction of reservoir depletion behavior 

heavily relies on being able to account for the state at which the reservoir fluid is at any 

conditions of pressure and temperature.  

 

This study proposes a method for phase envelope prediction based on the estimation of 

key points associated with the fluid’s envelope. In order to achieve this, neural network 

technology is implemented in this study in order to understand the complexities of the 

relationship between the input variables and output variables associated with typical 

phase envelopes of natural gas reservoirs. These input variables are the compositions of 

natural gas which are: methane C1, ethane C2, propane C3, butane C4, pentane C5, hexane 

C6, heptanes C7+, hydrogen sulfide H2S, nitrogen N2, and carbon dioxide CO2. Other input 

variable include molecular weight of the C7+ (MW C7+) and specific gravity of C7+ (SG 

C7+). These would generate the corresponding temperature and pressure values of the 

critical point, cricondenbar and the cricondentherm of the phase envelope. This study also 

investigates which of the input variable is most relevant in determining the phase 

envelope's characteristics by using a relevancy analysis of the proposed network. 
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Chapter 2 
 

Background 

Multicomponent mixture characterizations of reservoir fluids which exist as complex 

hydrocarbons are important to petroleum processes in order to be able to provide accurate 

fluid description, present solutions to improve compositional analysis and aid in system 

design. It is also a basis for the economics of projects with accurate phase behavior 

predictions as a major objective.  

A phase is defined as a homogeneous and physically distinct part of a system which is 

separated from the other parts. The different phases which occur either naturally or 

induced is depicted by a phase diagram. A phase diagram is required to properly define 

these multicomponent mixtures of hydrocarbon. Phase behavior studies the different 

phase change (i.e. liquid, vapor and/or solid) which occur between these multicomponent 

mixtures of hydrocarbon as a function of temperature, pressure and composition. Each 

hydrocarbon system has its own phase diagram, which depends on the composition of the 

system. Hydrocarbon systems are mostly found during petroleum production in liquid 

phase as oil, distillate or condensate, as vapor or gas phase in form of natural gas. They 

can also be found in the solid phase as paraffin or other forms of deposit which occur in 

the tubing system or in the surface production facilities as gas hydrates due to the 

freezing and distortion in gas flow through the lines and sand as sediments from the 

reservoir rock particles. 

The subject of phase behavior focuses on when these phases are in equilibrium, at which 

no changes occur in the system with time (i.e. if the system is left at the same temperature 
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and pressure). At equilibrium, evaporation and condensation processes are exactly 

balanced and there is no net change in the mass of either phase.  This phase equilibrium 

state must also be satisfied by thermal, mechanical and chemical equilibrium conditions. 

In most petroleum engineering applications, the general assumption is that the fluids 

which exist in the reservoir are in equilibrium. Essentially phase equilibrium calculation 

is a very important aspect of the general difficulty of constructing a fluid behavior in 

terms of pressure-composition, pressure-temperature, composition-composition (ternary), 

temperature-composition and pressure-volume diagrams.  

 

A phase diagram of a multicomponent mixture has a region bounded by a line where two 

phases exists in equilibrium. This bounded region is known as a phase envelope, a 

saturation envelope or the two phase region. A phase envelope shows the boundaries 

between a single and the two phase region for a multicomponent mixture at equilibrium 

conditions. These lines are known as the bubble point line and the dew point line. They 

meet at the critical point of the mixtures on pressure (P) and temperature (T) plot. Fig 2.1 

shows a typical phase envelope for a reservoir fluid where the liquid is found to the left 

of the bubble line and the vapor region is found to the right of the dew point line. At the 

bubble point line where the mixture is found to be in liquid with incipient amount of gas, 

this liquid at this point is said to be saturated. On the other hand, on the dew point line 

where the mixture is found to be in vapor form with a slight amount of liquid, the gas at 

this stage is said to be saturated.  
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Figure 2-1:   Typical phase envelope of a reservoir fluid    

 

Phase envelopes are instrumental in the classification of reservoirs, classifying the 

naturally occurring hydrocarbon systems and also used to describe the characterizations 

of phase diagrams of the reservoir fluid. A reservoir classification is based on the relative 

location of the initial reservoir temperature (Ti) and pressure (Pi) with respect to the 

reservoir’s fluid phase envelope.  This groups reservoirs into two types of hydrocarbon 

reserves which are either a natural gas or oil reservoirs.  A reservoir is classified as a 

natural gas reservoir if its temperature is higher than the fluid critical temperature. While 

it is classified as an oil reservoir if its temperature is lower than the fluid critical 
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temperature. Due to the wide range of the physical and chemical properties associated 

with hydrocarbon reservoirs, oil reservoirs are further classified into three main types of 

reservoirs. These are: undersaturated oil reservoir, saturated oil reservoir and the gas-cap 

reservoir. Gas reservoirs on the other hand are grouped into four main classes namely, 

retrograde gas-condensate reservoir, near-critical gas condensate, wet gas reservoir and 

dry gas reservoir.  

 

Phase envelopes are also essential for identifying the various types of reservoir fluids. 

Reservoir fluids are classified into five main groups, namely: dry gas, wet gas, gas 

condensate, volatile oil and black oil. These are the most commonly identified petroleum 

reservoir fluids. A phase envelope comes as a very useful diagram when identifying 

which class a reservoir fluid belongs. The various types of reservoir fluids are 

distinguished by the relative location of the mixture’s critical temperature point to the 

reservoir initial temperature as shown in Fig 2.2. Reservoir fluids are also identified by 

conditions and locations of the critical temperature and the cricondentherm (highest 

temperature) on the phase envelope with the initial reservoir condition. The reservoir 

depletion paths are very important in further understanding the characteristics of these 

fluids i.e. when a reduction in the temperature and pressure conditions occurs due to 

production. For a dry gas the reduction in pressure and temperature conditions has no 

impact on the number of phases that will occur during the reservoir depletion path as well 

as surface depletion path. A wet gas also does not produce two phases during its 

depletion but is more likely to produce a liquid if the temperature and pressure conditions 

are reduced further. A gas condensate on the other hand will form a two phase with 
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decreasing pressure, this happens on the dew point branch. The presence of heavy 

hydrocarbons expands the phase envelope relative to a wet gas. The reservoir temperature 

lies between the critical point and the cricondentherm. Gas condensate reservoirs are also 

referred to as a retrograde condensate reservoir because of the anomalous behavior it 

exhibits. A retrograde condensate is when a liquid is formed by an isothermal decrease in 

pressure or isobaric increase in temperature which is used to characterize these types of 

reservoir fluid.  Both black and volatile oil will enter into a two phase at the bubble point 

line and the new phase formed will be gas if there is a substantial reduction in 

temperature and pressure. But the critical points differ in relative distance to the reservoir 

temperature condition which is shown by Fig 2.2 of the five types of reservoir fluid.  

 

 Figure 2-2:   Phase envelope of the various types of reservoir fluids (after Pedersen and 

Christensen).  
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Nichita (2008) described the construction of a phase envelope as a very important 

problem in phase equilibrium calculation. This is due to its many applications in chemical 

thermodynamics and hydrocarbon reservoir thermodynamics. The different classes of the 

reservoir fluid are essential information for the proper design of petroleum processes.  

Phase envelopes are very useful in the design of surface facilities (e.g. separators), 

primary production, gas injection processes, enhanced oil recovery and design of pipeline 

networks for transportation of natural gas by pipeline or in liquefied natural gas (LNG). It 

is also a very good foundation for further studies of the complex nature of hydrocarbon 

reservoir fluids. It also has applications in ethane plus recovery, refrigeration processes 

and operation near critical point or supercritical region. The amount of experimental and 

theoretical work which has gone into the study of phase envelope construction indicates 

its importance in trying to solve the phase equilibrium problems faced by petroleum and 

refinery engineers in the petroleum industry and the general engineering field today. 

             

2.1 Phase Envelope Calculations 

Phase equilibrium calculations started as far back as the late 1800’s and the early 1900’s 

with notable works by the likes of Gibbs and van der Waals who postulated the first 

equation of state in 1873. These two were among the first researchers to formulate the 

concepts and mathematical relationship in which a phase behavior of gases could be 

understood better. This relationship was very applicable to the petroleum industry which 

used traditional PVT correlations to analyze phase behavior of reservoir fluids.  
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In spite of the complexity of hydrocarbon fluids found in reservoir rocks, simple cubic 

equations of state have shown surprising performance in the phase behavior calculations 

for both the vapor-liquid and vapor-liquid-liquid equilibrium of these reservoir fluids. 

Equation of state is a thermodynamic equation which defines the state at which a given 

fluid or mixture is under given physical conditions, it also provides relationship between 

two or more state functions associated with the fluid.  Peng-Robinson EOS and Soave 

RK EOS are the two most widely used equations of state in phase equilibrium 

calculations. Their equations provide simplicity and also a reasonable amount of accuracy 

for phase equilibrium calculations when compared with experimental data. Both 

equations of state were making modifications to the Van der Waal’s earlier proposed 

equation While SRK proposed a generalized empirical expression in terms of the 

accentric factor which provided a better vapor-liquid equilibrium results, Peng-

Robinson’s modifications made a slightly improved description of the liquid densities. 

However, Peng-Robinson’s equation of state is more preferred in the oil and gas industry 

because it generates results which are in good agreement with experimental data for 

hydrocarbon mixtures.   

 

2.1.1 Phase Envelope Construction  

There are various ways in which a phase envelope is constructed. Phase envelopes are 

essentially constructed by the determination of the bubble point and dew point line of a 

given system that are plotted on a PT diagram. This could be on a constant composition 

or constant temperature line. One method in which the points of a phase envelope could 

be obtained, is to determine them through experimental methods in a laboratory. A 
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simple laboratory test that could be used to determine the bubble point and dew point of 

multicomponent mixtures is through the use of PVT cells. These PVT cells could be 

operated at the value of pressure and temperature which are of interest. The PVT cells 

consist of a mechanism in which pressure and temperature can be varied. Pressure could 

be varied by either mercury injection\withdrawal or by a mechanically driven piston. 

Temperature can be varied with an instrument known as a climatic air bath. The 

saturation points are being noted visually. The noting of the vapor phase or liquid phase 

is done through a special window. Samples of a fixed composition are loaded from a 

separate chamber or are prepared directly in the PVT cell. Once a homogeneous single 

phase is achieved, pressure depletion is carried out by taking note of the phase changes 

through the window. This phase changes could also be monitored by video recording 

machine. The procedure is then repeated for a new isotherm. This method of determining 

the bubble points and dew points is both time consuming and expensive. The 

experimental method is not always the best way to achieve a phase envelope. In many 

cases it is not always possible to obtain laboratory measurements.  

 

Another method for phase envelope construction is by using empirical correlations. 

Various empirical correlations have been generated from experimental results and field 

data which could also be used for estimating properties of reservoir fluids. Phase 

envelope could be constructed using correlations of the bubble points and dew points 

pressure. For bubble point pressure, some of the major correlations that are used are by 

Standing, Lasater, Vasquez-Beggs, Glaso and Maroun correlations. Standing (1947) 

developed the first accurate correlation which was from California oil. He proposed a 
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graphical correlation for determining the bubble point pressure and later expressed the 

graph by Eq. (2.1) shown below 

                    
 0.8318.2[( / ) (10) 1.41]a

b s gP R γ= −
 

(2.1)

where: 
 

a = 0.00091T - 0.0125(API) 

Pb = bubble point pressure, psia 

Rs= solution gas to oil ratio SCF/STB 

T =Temperature,oF 

                                  

Lasater (1953) used a different approach in which the mole fraction of solution gas was 

used as the main correlating parameter. In this approach the gas mole fraction is 

dependent mainly on solution gas/oil ratio. Lasater’s correlation is given by equation Eq. 

(2.1) shown below 

                                b
g

TP A
γ

=                                                                         (2.2) 

where the function A(yg) interpolated graphically and can be described by, 
 

1.17664 0.572460.83918 10 ; 0.6gy
g gA y= × ≤y

y

                                                        (2.2a) 

1.08000 0.311090.83918 10 ; 0.6gy
g gA y= × >                                                         (2.2b) 

1

0133,000( / )1g
s

My
R
γ

−
⎡ ⎤

= +⎢
⎣ ⎦

⎥                                                                          (2.2c) 

and, 
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Pb = bubble point pressure, psia 

Rs= solution gas to oil ratio SCF/STB 

T =Temperature, oR 

 

Glaso (1980) used Standing’s approach for North Sea oils, where he made a correction 

for the non-hydrocarbon content and stock tank paraffinity which at the time was not 

widely used, due to the unavailability of data. His correlation is shown in by Eq. (2.1)  

2log 1.7669 1.7447 log 0.30218(log )bp A= + − A

γ

                                           (2.3) 

where: 

0.816 0.172 0.989( / ) ( / )s g APIA R Tγ=                                                                         (2.3a) 

Pb = bubble point pressure, psia 

Rs= solution gas to oil ratio SCF/STB 

T =Temperature, oF 

 

There are fewer correlations for dew points compared to the bubble point. Amongst the 

few notable dew points correlations are the Nemeth and Kennedy (1967) in which a dew 

point pressure was proposed based on the composition of the C7+ and its properties. The 

Nemeth and Kennedy correlations is given by Eq. (2.1) shown below 

( )
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where:  

A1= -2.0623054, A2= 6.6259728, A3= -4.4670559 x 10-3, A4= 1.0448346 x 10-4, A5= 

3.2673714 x 10-2, A6= -3.6453277 x 10-3, A7= 7.4299951 x 10-5, A8= -1.1381195 x 10-1, 

A9= 6.2476497 x 10-4, A10= -1.0716866 x 10-6 and A11= 1.0746622 x 101. 

 

This correlation is applicable to dew points pressure between 1,000 and 10,000 psia and 

temperatures from 40 to 320oF with a wide range of reservoir compositions. The accuracy 

of the dew points pressure is between +/- 10%. This is because the experimental accuracy 

is determined with only +/- 5%. Other correlations used for dew points pressure are 

Organick and Golding (1952) and Kurata and Katz (1942), both of which were presented 

in graphical forms.  

 

Empirical correlations are developed for specific petroleum reservoir fluids originating 

from a specific geographical field. The correlations typically match the employed 

experimental data with a reasonable error percentage. Due to the peculiarity of empirical 

correlations, many of them have limited applicability and can produce large errors when 

applied to reservoir fluid samples from other geographical fields. These correlations all 

have various limitations in which their applications are successful. 

Equation of state has found reasonable success in phase envelope and phase equilibrium 

calculations.  Asselineau, Bogdanic and Vidal (1979) proposed an algorithm for the 

construction of a phase envelope in which they paid special attention to the applicability 

of the method in critical and high-pressure regions because of the trivial solutions which 

was attained with false unit of equilibrium constants. Their procedure was said to be 
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applicable to any analytical equation of state. Their method involves the simultaneous 

solution of 2n+ 4 equations for each point of the phase envelope (where n is the number 

of components in the system). The method proposed gives an initial guess of the 

unknowns and ensures a successful iterative procedure.  The derivative used was 

obtained as soon as equilibrium was attained since the Newton-Raphson is highly 

sensitive to the initial guess. This was made to diagnose the retrograde condensation 

process and provides a rapid stepwise calculation.  Michelsen’s (1980) proposition, 

which was later corroborated by Yau-Kun and Long (1982) in their review of phase 

envelope construction to be a very efficient algorithm for the phase envelope point’s 

calculations. Michelsen formulated the simultaneous solution of n+2 equations for each 

point calculations rather than the single solution of two simultaneous non linear equations 

as earlier proposed by Asselineau et al. In order to enhance the convergence, this 

algorithm selects internally the set of primary variables and the step size to the 

subsequent point on the diagram. The initial guess is obtained by extrapolation. He also 

suggests that Newton-Raphson scheme should be used in the critical region and the 

retrograde regions as a solution for the non-linear equations. With this, an automatic 

selection of the better convenient specification variable is obtained from the previous 

calculation for the saturation points. Yau-Kun and Nghiem (1982) developed a general 

phase envelope algorithm which was an extension of the work by Michelsen, in which 

the bubble point and dew point are traced in one pass. The method was extended to the 

generation of phase envelopes on pressure-composition, temperature-composition and 

composition-composition diagrams. Yau-Kun et al. (1982) highlighted the major 

difficulties which are associated with phase envelope generations as:  
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1. Tracing the dew point line is a tedious task. This is because of the presence of a 

lower dew point and upper dew point of mixtures. 

2. Near the critical region it is not clear which of the saturation line is to be iterated 

i.e. whether it is the bubble point or the dew point line.  

3. Also that the variable specification is done manually for example while 

constructing a pressure-temperature diagram in terms of the pressure and 

temperature values.  

  

Ziervogel and Poling (1983) made another attempt to improve on the method of 

calculation of phase envelopes points for multicomponent mixtures. In their work they 

proposed a simple method in which an initial guess was to be iterated while drawing the 

bubble point line and another guess for the dew point line. This method is easier than 

previous methods because the bubble point and dew point are determined by iterating on 

a single variable through the critical region. Their work used Soave’s modification of the 

Redlich-Kwong equation of state, which was used in the phase envelope point’s 

calculation by Michelsen (1980) and Asselineau et al (1979). They used the same method 

of calculating the dew and bubble points, which is by stepping around the phase envelope 

in small increments of pressure or temperature values. To generate the complete phase 

envelope the bubble points are first calculated. The calculation is started at low pressure 

up-to the critical point, after this the dew point curve is then generated. Their method’s 

success is primarily guessing on which iteration variable is to be used during either the 

dew point or the bubble point calculation. The method works because derivatives with 
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respect to only one variable are needed for convergence. And this depends on the success 

of selecting the right variable as the iteration parameter. When comparing the complexity 

of the calculations, it is an improvement to the earlier proposed methods. Although the 

emphases on the iteration method being correct for calculation of phase envelopes in 

choosing the iteration parameter was not tested for all cases of reservoir fluids. Also near 

the critical region, it is not clear whether a bubble point or dew point should be computed 

and the specifications of the variables to be iterated are done manually.  

 

Michelsen (1994) later used a method in which the phase envelope was to be calculated 

without the iterative determination of equilibrium phase compositions. The individual 

points on the phase envelopes were solved by using two equations, irrespective of the 

number of the components in the mixture. The requirement for the composition 

derivatives of the fugacity coefficient was developed. His method is not based on a full 

Newton-Rhapson procedure. The method is said to be simple because the rate of the 

convergence is not adversely affected in the critical region. One of the limitations of this 

method is that the solution at a given temperature and pressure cannot be obtained 

directly. Instead, it should be calculated or interpolated.  

 

Firoozabadi (2003) compared various calculations steps in characterizing the non linear 

equations which define the two phase flash calculations. The methods investigated were 

the successive substitution method, the Newton’s method, the dominant eigenvalue 

method and the global convergent Newton method. This work suggested the tangent 

plane distance for the equilibrium calculation’s initialization. Either the Newton’s method 
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or the successive substitution method combined with the tangent plane distance can 

greatly make the two phase calculations relatively easier according to the authors. But 

what was not investigated was how efficient the suggested algorithm was, compared to 

other algorithm for the two phase flash calculation for phase envelope points. Nitichita 

(2007) recently used a reduction method for phase equilibrium calculations in his work. 

In the method he replaced the traditional variables such as mole numbers, mole fractions, 

partition coefficient with some linear combinations of them. He took advantage of the 

Jacobian matrix extrapolation from the previous step calculations. This work had the 

robustness and efficiency for larger number natural hydrocarbons with as many as 24 

components. 

 

Another class of equation which could be used to calculate phase envelope points is 

known as the non cubic equation of state. Alfradique (2007) compared the performance 

of the one cubic equation to two other non cubic equations.  In his work he stated that the 

most widely accepted of the non cubic equation of states are the SAFT family and the 

modifications like PC-SAFT and SAFT-VR. It was noted that the non cubic equation of 

states error margin was much greater than the conventional cubic equation of state like 

Peng-Robinson EOS comparing it with at least 29 multicomponent hydrocarbon 

mixtures.  
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2.2 Critical, Cricondenbar and Cricondentherm Calculations. 

Three distinct points define the shape and location of a phase envelope. These three 

points are known as the critical point, cricondenbar and cricondentherm as illustrated in 

Fig 2-2. The cricondentherm is defined as the highest temperature at which a mixture can 

exist in both liquid and vapor phase together, while the cricondenbar is the highest 

pressure at which a mixture can exist in the two phase regions.  For a gas condensate 

reservoir the cricondentherm and cricondenbar are important from production, 

transportation and processing viewpoints. Lastly, the critical point is the point at which 

there is no distinct difference between the vapor and liquid phase. At this point, the two 

phases become indistinguishable.  The critical point could also be defined as the point at 

which the dew point line and the bubble point line meets. This critical point defines a 

unique state for vapor and liquid coexistence in a reservoir fluid. All three points can be 

determined experimentally. The cricondentherm and cricondenbar can both be 

extrapolated from a complete phase envelope construction but the critical point has to be 

determined either experimentally or through calculations which utilize either correlations 

or equations of state equilibrium flash algorithm. 

 

Due to the sensitivity related to the point for single and multicomponent hydrocarbons, 

there have been several methods used for calculating the critical points of natural gas 

mixtures. 
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Figure 2-3:  Phase envelope showing cricondentherm, cricondenbar and critical point. 

 

Attempts have been made at calculating the cricondentherm and cricondenbar of 

hydrocarbon fluid.  Etter (1961) came up with an empirical correlation for the calculation 

of critical, cricondentherm and cricondenbar’s pressure and temperature value of phase 

envelope for multicomponent mixtures of normal paraffins i.e. of hydrocarbon with 

relatively low molecular weight and light hydrocarbons. A set of equations to calculate 

the pressure and temperature value of the critical, cricondentherm and cricondenbar were 

generated from plotting the critical pressure and the average molecular weight and also 

from a plot of the temperature with the average molecular weight for binary mixtures. 

The reason for this limitation to the empirical equation proposed was that most of the 
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data available at this time were for these classes of hydrocarbon. Hence, the critical 

properties could be calculated with the equations below for the temperature and pressure:  

( ) ( , )
ic mix i c cd iP x P P= + Φ∑ ∑ i

x

x
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)
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                                                                    (2.5) 
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= + −∑ ∑                                                                   (2.6) 

for cricondentherm the pressure and temperature is given by: 

( ) ( , )
i ict mix i c ctd iP x P P= +∑ ∑                                                                        (2.7) 

( ) ( ) (
i ict mix W c ctd xL ctdT T T= +∑ ∑                                                                 (2.8) 

and cricondenbar pressure and temperature  is calculated with: 

( ) (
icb mix i c ctdP x P= + Φ∑ ∑                                                                         (2.9) 

For Φ < 0.5, ciW∑

1
( ) ( )
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−

= + −∑ ∑                                                                (2.10) 

While  > 0.5, ciW∑

( ) ( )
icb mix i c cbd iT WT T= +∑ ∑                                                                           (2.11) 

where  

 x = mole fraction, 

Φ= function of, 

 W= weight fraction, 

  L= lighter component, 

  i= any component. 
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P and T denote pressure (psia) and temperature (oR) respectively. The subscript c, ct and 

cb represent critical, cricondentherm and cricondenbar respectively. While the subscript 

cd, ctd and cbd represent the excess critical, excess cricondentherm and excess 

cricondenbar.  

 

The excess pressure and temperature is the critical temperature and pressure calculated as 

the product sum of the critical constant and the compositions of all the components, in 

which the lowest molecular weight component produces the greatest effect in proportion 

to the amount present.  These empirical calculations are specific to individual paraffin 

which requires constants which are not easily obtainable. Although it was shown that this 

method gives reasonable result with the normal paraffin investigated, Thodos and 

Silverman (1962) came up with an equation to solve for the temperature and pressure 

value of cricondenbar and cricondentherm. They used statistical techniques to develop a 

relationship between the characteristics of binary hydrocarbon and the temperature and 

pressure of the two points on the phase envelope. The equation formulated was highly 

inaccurate for methane systems Grieves and Thodos (1963). Grieves et al (1963) gave a 

similar correlation for calculating the cricondentherm and the cricondenbar temperature. 

He developed a correlation using graphical interpretation. His work was more general for 

reservoir fluid with higher error percentage, which was as high as 2.41 and low as 0.26 

for cricondentherm and was in the range of 0.12-4.27% for the cricondenbar temperature 

when compared with experimental data. To calculate the temperature for the 

cricondentherm and cricondenbar the information needed was the critical temperatures of 

the pure components, normal boiling points and approximate vapor pressures. For the 



22 

calculation of the temperature of the cricondentherm and cricondenbar he gave the 

equations below: 
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t c
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where, 

Tt= cricondentherm temperature, oR 

Tp= cricondenbar temperature, oR 

Tb= atmospheric boiling point of mixture, oR 

T’b= normal boiling point of ith component, oR  

T’c= pseudocritical, pseudocricondentherm, or psuedocricondenbar temperature of 

mixture (method of calculation depends on number of components), oR 

xl = mole fraction of low-boiling component. 

 

Grieves et al (1963) in a follow up work, made the same empirical correlations for the 

cricondenbar and cricondentherm pressures. Comparing with experimental data they had 

an error percentage as high as 13.98 and low as 0.88 for cricondentherm pressure. While 

for the cricondenbar pressure they had percentage errors from the range of 0.84-9.52. The 
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pressure values were more directly related to the plot of  versus . Which the 

cricondentherm pressure can be directly solved from. Also the cricondenbar pressure was 

extrapolated from the plot of  versus .   

/t pcP P ' /b bT T

/p pcP P ' /b bT T

Where: 

pP  = cricondenbar pressure of mixture, psia 

tP  = cricondentherm pressure of mixture, psia 

pcP = pseudocritical, pseudocricondentherm, or psuedocricondenbar pressure of mixture 

(method of calculation depends on number of components), psia  

 

Taraf, Behbahani and Moshfeghian (2008) generated a numerical algorithm for the direct 

calculation of the cricondentherm and cricondenbar pressure and temperature of natural 

gas of known composition which he based on Michelsen’s (1985) method. This method 

was based on the fact that the derivatives of the pressure with respect to the temperature 

at the cricondenbar are equal to zero and also the derivatives of the temperature with 

respect to pressure at the cricondentherm are equal to zero. Their method also utilizes the 

equality of fugacity for each component in both phases. They proposed that for the 

cricondentherm and cricondenbar calculation should be done by: 

 First make an initial guess for temperature and pressure  

 Calculate initial liquid mole fractions (xi), n using Eq. (2.16) to solve 

simultaneously with initial guesses of temperature and pressure 

gn = ln (zi) -  ln (xi) +  ln (Φi
v) - ln (Φi

l) = 0                                        (2.16) 
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where:  

zi   =  mole fraction of component in mixture 

xi   = component liquid phase mole fraction 

Φi
v = fugacity coefficient of component i in vapor phase  

Φi
l = fugacity coefficient of component i in liquid phase 

Q  =  modified tangent plane distance 

            
 

 With the values of xi and temperature solve for dQ/dT=0 for a new 

temperature for cricondenbar or dQ/dP for a new pressure for 

cricondentherm. 

 Perform Newton’s iteration using Eq. (2.16) and Eq. (2.17)  with the new 

pressure/temperature which was earlier calculated in the previous step 

                                                              

1
1

1 0n ig x+

n

= − =∑  
 

(2.17)

 

 

 
 
 
 
 
 
 

 If the temperature/pressure does not converge go back to the third step.  

 
They also investigated the ranges for the initial guesses. This was said to be of a value in 

the two phase region. The proposed algorithm was found to be in excellent agreement 

with experimental results and values from common simulation software for the cases 

tested.  

 

For the critical point calculations various methods have been proposed for the direct 

calculation. Due to the peculiarity of the critical point of multicomponent mixtures, 
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Firoozabadi (2006) explained that the composition changes which occur is so often in 

some applications that there is a need to calculate the critical point as many as 108 times.  

A major motivation of their work was that current method’s lack robustness and 

efficiency for the calculation of the critical point for multicomponent mixtures. Most of 

the current methods were based on decreasing the pressure in some increments and 

carrying out phase split calculations. These methods mostly require rigorous calculations 

with as much iteration, which are very time consuming and predictions are not 100% 

accurate because of errors associated with equilibrium calculations.  

 

A major correlation can be derived from the cricondentherm, cricondenbar and the 

critical point of a phase envelope with the composition of a reservoir fluid. If such a 

relationship can be established, it will capture and represent the equilibrium calculations 

for phase envelope construction which is associated with the complex nature of natural 

gas reservoirs. The principal challenge if this research therefore, is to try and establish the 

most effective neural network that can give the best results in making these predictions in 

terms of the temperature and pressure values; and to also determine which of the input 

parameter is most relevant in this relationship. It will be of paramount interest to be able 

to estimate the critical points, the cricondentherm (highest temperature) and the 

cricondenbar (highest pressure) through the help of an expert system. In doing this, a 

faster and more convenient way of constructing the phase envelope through the 

temperature and pressure of the key points will be presented.  

The importance of phase envelope to the petroleum industry cannot be over emphasized. 

The accuracy of being able to predict the location of the critical temperature and pressure 
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along with the cricondentherm and cricondenbar goes a long way in being able to get a 

better phase envelope and enhance our understanding of the fluid/gas in the reservoir. 

Artificial neural network (ANN) would eliminate the time for extensive phase 

equilibrium calculations needed for the prediction of the phase envelope through the 

generation of an expert system. This expert system is intended to understand the non 

linear relationship between various natural gas reservoir compositions of C1-C7+, specific 

gravity and the molecular weight of the C7+ with the critical points, the cricondentherm 

and cricondenbar pressure and temperature values for faster estimation of the shape of the 

phase envelope.  

 

2.3 Artificial Neural Network 

The complexity of how information is being analyzed by the brain has been the focus of 

research for the past decade. It has been known that the human brain utilizes 1011 neurons 

(biological) while trying to understand and facilitate reading, breathing, motion and 

thinking. Each of these biological neurons is a rich assembly of tissues that has the 

complexity, if not the speed, of a microprocessor. Part of this was formed at birth while 

the others were formed by experience. In the quest for better and faster solutions to the 

very complex engineering problems, the artificial neural network (ANN) was formed. 

This neural network was aimed at trying to mimic the behavior of the biological neurons 

Fausett (1994). 

Neural network has been described as a network of simple processing elements 

(neurons), which can exhibit complex global behavior, determined by the connections 

between the processing elements and the element parameters. The efficiency of the 
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artificial neural network can still not be compared with the biological neural but still, 

similarities exist that cannot be denied in their mode of achieving the task. These 

similarities are: 

1. The building blocks of both networks are through simple computational devices 

which are extremely interconnected. 

2.  Also, the connections between them determine how efficient the network is. 

 

Figure 2-4:  Neural network with three layers 

 

A typical example of an interconnected neural network architect is shown in Fig 2-4 

where the network utilizes a three layer system with four inputs and three outputs that are 

arranged in multiple layers. Every neural network possesses knowledge which is 

contained in the values of the connections weights. Stergiou C and Siganos D (2007) 
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explained that changing the knowledge stored in the network as a function of experience 

implies a learning rule for changing the values of the associated weights. For example 

each input parameter in Fig 2-4 has its own weight with it. Demuth and Beale (2003) 

stated that there are essentially two types of training which is utilized in training a neural 

network. These are known as the supervised and the unsupervised training. The 

supervised training applies an external boundary, so that each output unit is told what its 

desired response to input signals ought to be. During the learning process global 

information may be required. Examples of supervised learning include error-correction 

learning, reinforcement learning and stochastic learning. An important issue concerning 

supervised learning is the problem of error convergence, i.e. the minimization of error 

between the desired and computed unit values. The aim is to determine a set of weights 

which gives the least error. One well-known method, which is commonly used in many 

learning paradigms, is the least mean square (LMS) convergence. But the unsupervised 

learning uses no external boundary and is based upon only local information. This is also 

known as self-organization, in the sense that it re-organizes data presented to the network 

and detects their developing collective properties. An example of unsupervised learning 

is competitive learning. From human neurons to artificial neurons other aspect of learning 

concerns the distinction or otherwise of a separate phase, during which the network is 

trained, and a following operation phase. A neural network is said to learn off-line if the 

learning phase and the operation phase are distinct. A neural network learns on-line if it 

learns and operates at the same time. Usually, supervised learning is performed off-line, 

whereas unsupervised learning is performed on-line. 
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The performance of a neural network basically depends on the weight and the transfer 

functions (which are the input and output functions). These functions are basically 

categorized into three groups, namely: the sigmoid, linear and threshold. For the sigmoid 

the output varies continuously but not linearly as the input changes. Sigmoid units bear a 

greater resemblance to real neurons than do linear or threshold units, but all three must be 

considered rough approximations. In the linear transfer function, the output activity is 

proportional to the total weighted output. While for the threshold transfer function the 

output is set at one of two levels, depending on whether the total input is greater than or 

less than some threshold value (Neural Network Toolbox).  

Hagan, Demuth and Beale (1996) gave the general order to train a neural network to 

perform some task, in which the weights must be adjusted. This adjustment is such that 

the error between the desired output and the actual output is reduced. This process 

requires that the neural network compute the error derivative of the weights (EW). In 

other words, it must calculate how the error changes as each weight is increased or 

decreased slightly. The back propagation algorithm is the most widely used method for 

determining the error derivative of the weights. 

2.3.1 Backpropagation Learning  

Backpropagation is said to be the simplest neural networks algorithm in which the 

information flow is in one path (Neural Network Toolbox). This is an example of 

supervised learning in which  an input vector and the corresponding output (target) vector 

are used to train the network until it can approximate a function, associate input vectors 
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with specific output vectors, or define input vectors in an appropriate way as defined in 

the training algorithm.   In a more complex problem, information can flow in more than 

one direction. Conjugate gradient backpropagation uses traincgf as a network training 

function. The traincgf updates weight and bias values according to conjugate gradient 

backpropagation. The backpropagation learning type of learning algorithm was used in 

this work. Training stops when either one of the following stipulated condition is meet. 

The conditions are either: 

•  The specified maximum number of epochs (repetitions) is reached 

• The  maximum amount of time is exceeded( if specified)  

• The performance is minimized to the goal. 

• The total number of iterations is reached.  

 

The artificial neural network finds its uses in a variety of industries such as medicine, 

banking and finance, marketing, and also in the petroleum industry. Extensive research 

has been done on how applicable ANN is, especially to the oil and gas industry. In 

drilling engineering, artificial neural network as been useful to solve for optimum bit 

selection Yilmaz, Demircioglu and Akin (2002) and applied to predicting the operating 

conditions for optimum surface condensate recovery that yields the highest API gravity 

an aspect of petroleum production engineering Al-Farhan and Ayala (2006), furthermore 

in reservoir studies to understand the compositional behavior of gas cycling operations in 

gas condensate reservoirs Ayala and Ertekin (2007). ANN proves to be a powerful and 

viable tool in our industry today with further research being undertaken daily. 
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Mann (2007) used artificial neural network to generate an intelligent system for the 

design of natural gas storage facility. In his study, he utilized artificial neural network in 

two ways. First he used it to model the behavior of a gas storage facility, secondly he 

then used ANN for actual design optimization of a storage facility.  He proposed a 

network of ten input neurons and four output neurons connected by two hidden layers. 

These two hidden layers had fifty and twenty five neurons respectively.  

 

Briones et al (1994) also found ANN to be applicable in the prediction of reservoir 

hydrocarbon mixture composition using production data.  They used input parameters 

such as the GOR and API of two Venezuelan regions with marked differences in the fluid 

properties. With their target (output parameter) being the composition of C1, C2-C6, C7+ 

and CO2. Their network showed another applicability of how useful ANN is in the 

petroleum industry. With being able to predict accurately a system of fluid composition 

based on earlier production parameters.    

 

In utilizing ANN for equilibrium conditions predictions, Gonzalez, Barrufet and 

Startzman (2003) proposed an expert system to predict dewpoint pressure of retrograde 

gases which they achieved with an average error of 8.74% which is more reliable than the 

multiple regression techniques. Using an experimental data of the dew point pressure to 

train the network they were able to achieve their goal with one input layer with 13 

neurons and one hidden layer with 6 neurons and one output layer with one neuron. In 

comparing their results with the available correlations it was found that neural network is 

much more in agreement with the experimental data than the equations of state which is 
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the best empirical correlation in estimating phase equilibrium. Birang et al (2007) also 

used neural network model to predict the minimum miscibility pressure for hydro carbon 

gas injection processes, in which both the condensing and vaporizing mechanism of the 

gas flooding was going to be considered to produce a robust model which will be 

applicable to any composition no matter which mechanism is dominant in achieving 

miscibility. Moghadassi, Parvizian and Hosseini (2009) from experimental data, training 

with back propagation used a new method which was based on artificial neural network 

to solve for vapor-liquid equilibrium data for a binary system (nitrogen-n-pentane) for 

improving oil recovery for nitrogen injection into reservoirs. 

 

To estimate the pressure and temperature values for the construction of a phase envelope, 

neuro simulation study is carried out. ANN seems very plausible for training an expert 

system that would achieve these goals. Using FOTRAN© for the thermodynamic 

calculations coupled with soft computing tool MATLAB®.  The network will 

understand the relationship between the input parameter (natural gas compositions and 

properties) and the output parameter (pressure and temperature corresponding to the 

critical point, cricondentherm and cricondenbar) for this prediction to be possible. The 

expert system ANN should be able to predict this temperature and pressure values which 

would be used to predict the relative shape and position of a phase envelope. 



Chapter 3 
 

Problem Statement 

A proper analysis of many petroleum problems requires knowledge of at least a portion 

of the phase diagram. An accurate knowledge of natural gas phase behavior is of essential 

value for both industrial processes and optimum operating conditions. Calculation 

method for phase envelope points is classified into two main types. These are the 

equilibrium flash calculations and the Gibbs energy minimizations. These points could 

also be experimentally determined.  

 

Three points can be used to define the characteristics and shape on the phase envelope of 

natural gas. These points are known as critical point, the cricondentherm and the 

cricondenbar. If these three points can be predicted with good accuracy the entire phase 

envelope can be well approximated. Great importance is then attached to the 

cricondentherm, cricondenbar and the point of criticality of pressure and temperature 

values. These three points on the phase envelope will in great essence help in estimating 

the shape of a phase diagram of a reservoir fluid or gas which shows the region which the 

liquid and vapor will coexist.  

 

In the past, general empirical correlations and relationships have been proposed for the 

cricondentherm, cricondenbar and the critical point. This work considers the three points 

which defines the phase envelope to be estimated with relations to just the compositions 
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of natural gas, specific gravity of C7+, with the molecular weight of the C7+ as the input 

parameter. This research work with the aid of a neural network aims to help in point’s 

calculation which is particular to phase envelope construction. It also aims at giving a 

faster and reliable pressure and temperature values for the phase envelope estimation for 

a robust range of natural gas composition.  

 

This study presents an expert system that utilized the advantages of ANN in which speed, 

simplicity is used to learn the relationship between the input parameters (compositions of 

methane C1, ethane C2, propane C3, butane C4, pentane C5, hexane C6, heptanes C7+, 

hydrogen sulfide H2S, nitrogen N2, and carbon dioxide CO2 and also molecular weight of 

the C7+ (MW C7+) with the specific gravity of C7+ (SG C7+)) and the output parameters 

(corresponding pressure and temperature value of critical, cricondentherm and 

cricondenbar). The model will also be able to analyze which of the input parameter is 

most relevant in relation to the corresponding output for the critical point, cricondenbar, 

cricondentherm pressure and temperature.  Lastly, the network proposed will enable us to 

find the most relevant of the input to influence the entire phase envelope model 

(combining all three points pressure and temperature value). 
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Chapter 4 
 

ANN Model Development 

The state/phase in which a natural gas mixture exists is greatly sensitive to temperature 

and pressure conditions.  Different factors account for these pressure and temperature 

condition in which this multicomponent mixture of hydrocarbons exists as. This 

sensitivity can be captured by a phase diagram which consists of an envelope. The phase 

envelope shows the most complete, straightforward and visual representation of the 

behavior of the fluid in different phases with the corresponding temperature and pressure 

ranges. For this reason an improvement in the construction of the phase envelope is being 

focused on using the artificial neural network.  

This neural network utilizes the characteristics related to each natural gas composition’s 

phase envelope. These characteristics include the composition of the natural gas mixture 

(H2S, CO2, N2, C1, C2, C3, C4, C5, C6, C7+.) as well as the specific gravity and the 

molecular weight of the C7+. Characterization of the C7+ is an important aspect of the 

pressure-volume-temperature (PVT) predictions and phase envelope calculations.  

1840 different mixtures were generated for this work. Great deal of importance is placed 

on the data which is being used to train and establish the nonlinear relationship between 

the input and output variables. Thorough and careful selection process was utilized in the 

creation of the data set which was used to train the neural network for the phase 

envelope.  

The data were generated through the use of FORTRAN compiler. A program was written 

to generate different natural gas composition combination. So as to have wide range of 
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data set to train the network with. Hydrocarbons compositions used are methane C1, 

ethane C2, propane C3, butane C4, pentane C5, hexane C6, and heptanes C7+.  With non 

hydrocarbon present as hydrogen sulfide H2S, nitrogen N2, and carbon dioxide CO2. 

Lastly, the molecular weight of the C7+ (MW C7+) and specific gravity of C7+ (SG C7+) 

accounting for the C7+ hydrocarbons. The sum of all the composition of in the mixture 

must be equal to 1. Hence the equation total mixture composition is given as Eq. (4.1)  

 

Σ (Total  Component in the Mixture compositions) = 1 (4.1) 

 

To make sure that there was a good distinction of the data created. A plot showing the 

variation of the input data set used comparing the networks training and testing. As 

shown for C1 in Fig 4-1. This aimed at making sure that an even distribution of the 

natural gas compositions was created for the phase envelope points for both the training 

and the testing of the neural network model. C1 composition was generated using Eq. 4.2 

given below and bounded by Eq. 4.1 for all the possible combination of natural gas 

mixture which had a C1 composition of value greater than 0.403 or as specified.        

           C1= 1- [∑(CO2  + N2 +  H2S + C2 + C3 +  C4 +  C5 + C6 + C7+ )] (4.2)

The data selected for the artificial neural network was carefully selected to generate a 

have a wide range of the phase envelope point’s pressure and temperature values for the 

network proposed.  The possible natural gas combination with the ranges of inputs data 

given in Table 4-1 would obviously be infinite. The total mixture composition that was 

selected for the study was a true representative range of composition that would give the 
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largest pressure and temperature values of the cricondentherm, cricondenbar and the 

critical point from the entire data that was generated. 

The range of the input data that was generated is shown in Table 4-1 where the minimum 

and maximum values of the input data are highlighted. Table 4-2 displays the 

intermediate values utilized during the creation of the data set. 

Table 4-1: Phase envelope input data range 

 

Inputs  Minimum Maximum

Hydrogen Sulfide, H2S 0.0000 0.1500

Nitrogen, N2 0.0000 0.1500

Carbondioxide, CO2 0.0000 0.1500
Methane, C1 0.4030 0.9400
Ethane, C2 0.0100 0.2000

Propane, C3 0.0040 0.1300

Butane, C4 0.0050 0.1200

Pentane, C5 0.0050 0.1200

Hexane, C6 0.0050 0.1200
Hepatane-Plus, C7+ 0.0100 0.2000

Molecular Weight MW C7+ ( lb/lbmol) 100 260

Specific Gravity, SG C7+ 0.6000 0.8800

Table 4-2: Phase envelope possible actual values used for training 

 

Min  Max Units  Examples of values used for training 
H2S  0 0.15 fraction 0.00,0.01,0.02,0.05,0.037,0.15,0.112
N2  0 0.15 fraction 0.00,0.01,0.02,0.05,0.037,0.15,0.112
CO2 0 0.15 fraction 0.00,0.01,0.02,0.05,0.037,0.15,0.112
C1 0.404 0.94 fraction 0.404,0.454,0.51,0.62,0.74,0.83,0.94
C2 0.01 0.2 fraction 0.055,0.15,0.01,0.02,0.067,0.03,
C3 0.004 0.13 fraction 0.01,0.03,0.045,0.01,0.13,0.04,0.004
C4 0.005 0.12 fraction 0.033,0.093,0.01,0.05,0.08,0.12
C5 0.005 0.12 fraction 0.05,0.1,0.055,0.04,0.033,0.08,0.093
C6 0.01 0.1 fraction 0.04,0.03,0.085,0.053,0.01,0.066
C7+ 0.01 0.16 fraction 0.126,0.01,0.053,0.085,0.03,0.16

 MW C7+ 100 260 lb/lbmol 100,120,160, 180, 200, 220, 240,260
 SG C7+ 0.6 0.88 unitless 0.6,0.63.0.67,0.74,0.79,0.81,0.88



38 

 

Fig 4-1 displays the frequency of C1 – data employed for the creation of the testing and 

training data set.  This histogram shows the frequency of methane composition in the 

natural gas mixture used for training and testing of the networks. The figure shows that 

the variation of the methane (C1) which was used in the network training and testing data 

was larger for natural gas composition within the range of 0.45-0.55 methane.  

 

Figure 4-1: C1 Ranges for Training and Testing 

4.1   Phase Envelope Neural Network Data 

One of the most important factors in training an efficient neural network model is to 

choose the content and source of the data which will be used for training and testing the 

neural network carefully and accurately. This is why various methods in which we could 

acquire data were investigated and carefully screened.              
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In order to generate the data needed for the network a phase envelope algorithm had to be 

used. The algorithm which was used to generate the data for the phase envelope points is 

based on Gibbs tangent plane criterion, which establishes the thermodynamic stability of 

a phase. This method of phase calculation known as the Michelsen’s Stability or the 

tangent plane method. Michelsen (1982) proposed this method which initial estimates for 

the number of phases present at equilibrium or either for the equilibrium factors is not 

specified at the beginning of the calculation. The method finds whether a given 

composition has a lower energy remaining as a single phase which is also the stable 

phase or whether the mixture Gibbs energy will reduce by splitting the mixture into two 

or more phase which is the unstable region. Phase stability is whether a mixture at a 

given temperature and pressure can attain a lower energy by splitting into two or more 

phases. The Gibbs energy for a composition zi is given as Eq. (4.1)  

( )
1

N

z i z
I

G n iμ
=

=∑  (4.1) 

And if the mixture will split into two phase then Gz is greater than Gmix where Gmix is 

given as Eq. (4.2)  

( ) ( )
1

N

mix i i i iV L
i

G n nμ μ
=

= +∑  (4.2)

where:  

Gmix= Gibb’s energy of mixture  

ni       = no of components 

µi       = chemical potential of component i within a phase 
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The phase stability or the “Michelsen’s Stability” test allows us to predict the number of 

phases of the fluid. The phase stability comprises of formation of two hypothetical vapor 

and liquid like phases using the overall composition data provided. This data (phase 

stability) when combined with the entire algorithm helps to predict the fluid behavior at a 

higher level of intricacy thus increasing its precision. The tangent plane distance uses a 

tangent to the Gibbs minimum energy curve (which is plotted assuming a single phase 

exists) at the overall composition of the mixture (which is being tested for stability) for a 

particular temperature and pressure. Then a trial phase is created such that the tangent to 

the Gibbs minimum energy curve is parallel to the tangent drawn before. Now if the new 

tangent lies below the previous one then the mixture being tested then it is unstable and 

the phase split will occur otherwise single phase is stable. For our case single phase 

stability is tested only against two phase to obtain a phase envelope representing vapor 

liquid equilibrium. And once two phases is achieved a phase envelope data is extracted 

for the mixture which corresponds to the temperature and pressure point of the 

cricondentherm, cricondenbar and critical points. This then becomes the network’s output 

data. 

 

In order for the network’s data to be consistent with the degree of the input data and for 

better understanding of the networks result, the output’s pressure and temperature were 

normalized. The critical condition of methane was the reference point for normalizing the 

pressure and temperature values of the cricondentherm, cricondenbar and critical point 

which is calculated by the equations given below 

/NT T T= c                                                                                                       (4.5) 
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/NP P P= c                                                                                                      (4.6) 

where,  

TN = normalized temperature (TN) for the cricondenbar, cricondentherm and critical point  

PN = normalized pressure for the cricondenbar, cricondentherm and critical point 

T= Temperature (K) 

P= Pressure (Psia) 

Tc= Critical temperature of methane (190.45K) 

Pc= Critical pressure of methane (667.19 psia) 

4.1.1   Neural Network Model  

A neural network study is limited by how complex the relationship between the input and 

the output are, how fast the network architects learns this relationship, the learning 

algorithm being specified. Four neural networks was implemented study. The critical 

point, the cricondentherm, the cricondenbar, and the three coordinate network was 

proposed. This was used to first understand the ability of the neural network to 

understand the non linear relationship which exists between the natural gas compositions, 

specific gravity of the C7+ and its molecular weight with the output variable being each 

individual point’s reduced temperature and reduced pressure of the cricondenbar, 

cricondentherm and the critical. The three coordinate network was then proposed for the 

phase envelope construction. The phase envelope points (critical point, cricondentherm 

and cricondenbar) neural networks were also used to predict which of these points is 

closely related to the phase envelope network architects in terms of complexity of 
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neurons. Pressure and temperature value of the cricondenbar, cricondentherm and critical 

of a natural gas phase envelope is more in a scattered pattern within the ranges provided 

for each points as shown in Table 4-3, 4-4, 4-5,. This range is further elaborated on in 

Fig’s 4-3, 4-4, 4-5, which shows the testing and training data set for the cricondenbar, 

cricondentherm and critical normalized pressure and temperature values respectively. 

These plots were used to clarify that the networks proposed was being trained and giving 

results based on the network simulation rather than solving for the same points which is 

used for its training ( i.e. solving for the same points in both training and testing of the 

neural network). Showing this diversity a plot of various natural gas phase envelope’s 

cricondentherm, critical point and cricondenbar is given in the figure below, 
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Figure 4-2: Sample of various envelopes showing distribution of pressure and 
temperature values 
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The minimum and maximum value for the normalized temperature and pressure created 

for the phase envelope points is shown Table 4-3, 4-4,  4-5 for the critical points, 

cricondentherm and cricondenbar respectively, 

Table 4-3: PN and TN Range for Cricondenbar Neural Network  

 

Cricondenbar Minimum Maximum

Normalized Pressure (PN) 1.988 14.15

Normalized Temperature (TN) 1.389 2.529

 

Table 4-4: PN and TN Range for Cricondentherm Neural Network  

 

Cricondentherm Minimum Maximum

Normalized Pressure (PN) 0.5775 2.595

Normalized Temperature (TN) 1.679 3.783

 

Table 4-5: PN and TN Range for Critical Neural Network 

 

Critical Points Minimum Maximum

Normalized Pressure (PN) 0.898 11.32

Normalized Temperature (TN) 0.82 3.518

 

The total 1840 data that was used for this study was divided to 1440 was used for each 

proposed networks training, while 400 was used for testing the networks simulation.  So 

for each individual point of interest on the phase envelope the output points were also 

plotted so as to show the point distribution of the output values as shown in i.e. 

corresponding values of the temperature and pressure of the cricondenbar, 
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cricondentherm and the critical point as shown in Fig’s 4-3, 4-4, 4-5. This was done in 

order to validate the output (targets) of the network was actually learning the relationship 

as opposed to memorizing. And also to show that there was a distinct difference between 

the data that was used for training and testing of the network.     

Finally comparing the all three points and the areas in which the network proposed was 

applicable a plot showing this was used. This plots shows that the largest area was the 

critical points data which is also an indication of the disparity in the values for the 

network which closes relates to the complexity of the network which is being proposed as 

shown in Fig 4-6.  

 

Figure 4-3:  Testing and Training Data for Cricondenbar Network Model 
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Figure 4-4:  Testing and Training Targets Data for Cricondentherm Network Model 

 
Figure 4-5:  Testing and Training Targets Data for Critical Network Model   
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Figure 4-6:   Ranges for the Temperature-Pressure 3-Coordinate Network Model 

Thus the networks training and testing data set was created for inputs and output ranges. 

The four neural networks used the same ranges of the phase envelope characteristics for 

testing and training the respective neural networks. The networks proposed used the 

backpropagation with the newcf command. This was found to give the best result in 

building the network models. This created a cascade-forward network which consists of 

the input layer, hidden layer and the output layer. This cascade-forward network uses the 

weight function, input function, and the specified transfer function. The first hidden layer 

has weights coming from the input. Following each subsequent layer has weights coming 

from the input and all previous layers. All layers have biases. The last layer is which the 

output layer is corresponding to the targets. Also the sigmoid transfer functions were used 

in the training of the neural network. The two sigmoid functions used are tansig and 

logsig which were used in the hidden layers. While the linear transfer function (purelin 

transfer function) was used for the output layer.  
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With the data created, interchanging one of the following parameters,  

 The amount of neurons used 

 The number of hidden layers used  

 Transfer functions specific to each layer 

 Training algorithm used 

 The parameters set for training to be achieved (goals, time and maximum number 

of epoch). 

the most efficient neural network is proposed. 

 

 

 

 

 

 

 



48 

Chapter 5 
 

Results 

A neural network was trained to understand the non linear relationship between the input 

parameters and output parameters of an expert system whose goal was to be able to 

predict the pressure and temperature points of a phase envelope diagram. Composition of   

H2S, N2, CO2, C1, C2, C3, C4, C5, C6 and  C7+, with the molecular weight of the C7+ (MW 

C7+) and  specific gravity of C7+ (SG C7+) were the networks input parameters. The 

outputs were the normalized pressure and normalized temperature of the cricondenbar, 

cricondentherm and the critical point. The neural network architects were used in the 

development of the phase envelope ANN Model for this study. Four different neural 

networks were proposed in this work. This work was divided into two stages. In the first 

stage, three different networks were modeled to predict the pressure and temperature 

points corresponding to the cricondenbar, cricondentherm and the critical points. The 

second stage was the three point’s neural network in which all points corresponding to 

the phase envelope was utilized to be able to predict the corresponding envelope. 

To evaluate the performance of each of the network the percentage of errors were 

compared. This error was calculated by the comparing the predicted values of the ANN 

Model to the actual values generated through simulation. The percentage error is 

calculated as  

           % *100AA terror
t
−

=                                                                       (5.1) 

where AA is the value predicted by the network and  t in the actual input value generated 

by the simulation. 
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5.1 Stage One –Cricondenbar, Cricondentherm and Critical Points Network Models 
 

The first stage of the phase envelope neural network model study comprised of using 

artificial neural network to predict the pressure and temperature points corresponding of 

each of the points on the phase envelope which are the cricondenbar, cricondentherm and 

the critical points.   

Stage one was developed to account for the individual points that characterizes the phase 

envelope which are the cricondenbar, cricondentherm and the critical point’s pressure and 

temperature value’s. This stage compares the network proposed for the cricondenbar, the 

cricondentherm and the critical points to each other in terms of complexity and which is 

most related to the 3-coordinate network for the phase envelope. This stage is sub-divided 

into three sections for each of the phase envelope point’s neural network models. Using 

the composition of   H2S, N2, CO2, C1, C2, C3, C4, C5, C6 and  C7+, with the molecular 

weight of the C7+ (MW C7+) and  specific gravity of C7+ (SG C7+) as the networks input 

parameters. This was trained to understand each individual point’s normalized pressure 

and temperature outputs for each respective phase envelope point. The same set of data 

was used for both stage studies.  

The analysis and results of the respective neural networks in this stage are given in 

sections 5.1.1,  5.1.2 and 5.1.3 for the cricondendar, cricondentherm and critical point 

neural network respectively.  
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5.1.1 Cricondenbar Neural Network 
 

In training neural network for the cricondenbar’s pressure and temperature points, 

network of four layers was created. The MATLAB code created is given in Appendix A. 

The architect implemented 12 input neurons, and had two hidden layer with 15 neurons 

in each layer as shown in neural network architect in Fig 5-1. 

 

Figure 5-1:  Neural Network Architect for Cricondenbar’s Training and Testing 

 Fig 5-1  shows the input parameter were the composition of  H2S, N2, CO2, C1, C2, C3, 

C4, C5, C6 and  C7+, with the Molecular weight of the C7+ (MW C7+) and  specific gravity 

of C7+ (SG C7+). The normalized pressure and temperature of the cricondenbar was the 
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output layer for the network model. The total data used for this network was 1840 natural 

gas compositions. As earlier stated 1440 was used to train the network and 400 was used 

for testing the network model. The final result of the expert system is presented in Fig 5-2 

and Fig 5-3, 

 

Figure 5-2: Training (left) and Testing (right) Result Plots for the Normalized Pressure of 
Cricondenbar Points  
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Figure 5-3:    Training (left) and Testing (right) Result Plots for the Normalized Temperature of 
Cricondenbar  Points 
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It could be seen from Fig 5-2 and Fig 5-3 above that this network is capable of predicting 

the corresponding values of pressure and temperature with the average error less than +/-

4%, which is a good indication that of the strength of this network.  In analyzing this 

expert system three different plots were used. An error percentage, a histogram error plot 

and finally, a plot of the actual versus predicted whose values are supposed to be centered 

on the unit slope line (which is the crossplot). The percentage error plot was used in 

comparing the actual percentage of the error being calculated and which ranges the error 

being calculated were. The histogram is particularly useful in depicting what ratio the 

error percentage is being distributed.  The histogram shows the frequency of the error 

being calculated. Ideally, the highest frequency should be zero for an accurate expert 

system. Verifying the results further a cross plot is used. This is a plot of the predicted 

and the actual centered on a 45o slope line. This is used as a reference of the error 

deviation. A +/-10 % line was introduced to the crossplot which acts as a boundary line 

for the 45o slope line in comparing the errors of the final result. This was done in order to 

get a better approximation of the error calculated for the result as it was seen to be 

scattering above even the 10% for the some network prediction.  For a perfect trained 

network the points should be found on this line or as close as possible (45o slope line).  

It could be seen that with this model presented that the error results were indeed moderate 

for the normalized temperature and pressure corresponding to the cricondenbar. This 

network thus is a good predictive tool for the highest point of pressure value on a phase 

envelope plot i.e. cricondenbar points for pressure and temperature. This model is shown 

 



54 

to be applicable to the composition values within the ranges provided in Table 4-3. Also 

the relevancy of the input which is used for the training of this network was investigated. 

For this analysis the relevancy proposed by Belue and Bauer (1995) is used where the 

relevancy input is calculated by Eq. (5.2) given below,   

1
| |,

n

i i
j

S s
−

= j∑  (5.2) 

where Sij represents the weight of relevance of input I on neuron j of the first hidden  
 
layer and n is the number on neurons the relevancy of each input in the architect proposed  
 
for the cricondenbar is given in Fig 5-4. 
 

Figure 5-4: Relevancy for each input for Cricondenbar 
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It can be seen from the plots that the heavy fraction (C7+) composition and the properties 
 
had a large influence on the cricondenbar neural network’s prediction. Also the methane 

(C1) and the nitrogen (N2) which is an impurity had a considerable large influence on the 

neural network with approximately 11.3% and 11.7% respectively. The CO2 and H2S 

which are the other impurity present in this reservoir fluid had an influence which was 

less than 6%.  

Concluding from the results of the cricondenbar expert system, it is capable of predicting 

the temperature and pressure of natural gas composition. 

5.1.2 Cricondentherm Neural Network 
 

After analyzing the neural simulation study, a neural network which utilizes two hidden 

layer was found to be the best for the cricondentherm expert system. This neural network 

model for the cricondentherm pressure and temperature the network uses four layers. The 

architect used 12 input neurons for the input layer, and had two hidden layer with 10 

neurons in each layer followed by two output neurons. This architect used the logsig 

transfer function for the first two layers. The outer layer transfer function was purelin. 

This network’s combination of neurons and the transfer’s functions were found to be the 

best combinations for the temperature and pressure values prediction for the 

cricondentherm points. The proposed expert system’s architect is shown in Fig 5-5. 

The same set of plots that were used for the analysis of the cricondenbar neural network 

model was used here to analysis the proposed cricondentherm’s expert systems 

performance. The error percentage plot, the histogram plots and the cross plot. The three 
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different plots showing the variation of the error being obtained by the network architect. 

The results of the expert system are given in the subsequent Fig 5-6 and Fig 5-7. 

 

 

Figure 5-5: Neural Network Architect for Cricondentherm’s Training and Testing 

 

This neural network architect’s plot shown above produces error within an acceptable 

range of less than 3% for testing and training data range which was used. It can be seen 

that the expert systems histogram barely had error calculated other than zero which is a 

good indication of the accuracy of the network model. The range of the cricondentherm 

pressure and temperature value which this network is applicable is shown in Table 4-4.   
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Also obtained was the relevancy of the input of data set on the networks model which is 

given in Fig 5-8. 

 

 

 

Figure 5-6:   Training (left) and Testing (right) Result Plots for the Normalized Pressure of 
Cricondentherm Points    
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Figure 5-7:   Training (left) and Testing (right) Result Plots for the Normalized 
Temperature of Cricondentherm Points 
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Figure 5-8: Relevancy percentage for the Cricondentherm neural network 

 
It can be seen from the relevancy plot that the most predominant in the network model 

prediction was the composition (C7+). The methane C1 composition and the molecular 

weight of the (C7+) had a great influence on the models compared to other input 

parameter. The nitrogen did not have as much influence on the cricondentherm’s model 

as in the case of the cricondenbar neural network model. H2S had a similar influence 

which was approximately 5% but comparing the total impurities influence the 

cricondentherm neural network had a lesser influence on the model prediction than that 

of the cricondenbar neural network. 
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This expert system can be seen to predict the pressure and temperature within a very 

reasonable error percent ranges. The range for the error was well within [+2% -2%] for 

both the pressure and temperature value for the range of the natural gas composition used 

for this study.  

5.1.3 Critical Neural Network 

 

Figure 5-9: Architect for the Critical Neural Network  

A three hidden layer network as shown in the network architect in Fig 5-9 was most 

efficient for the critical point neural network. This gives the best results with the least  of 

the error calculation in prediction of the pressure and temperature value of the critical 

point’s, this was achieved after a series of  different types of transfer function and amount 
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of hidden layer to find which is most optimum combination. The network proposed 

utilizes 15 neurons in the first hidden layer and 19 neurons each in the second and third 

hidden layers. It was also found out that the tansig transfer function was best fit for the 

training and testing of this network of all the layers in the network. The results plots of 

the network model is given in Fig 5-10 and Fig 5-11,  

 
 

 

Figure 5-10:   Training (left) and Testing (right) Result Plots for the Normalized Pressure
Points of  Critical Points 
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Figure 5-11:   Training (left) and Testing (right) Result Plots for the Normalized 
Temperature of Critical  Points     
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The critical point was the most complex model comparing the three points of the neural 

network model points developed individually. This network utilized a three hidden layer 

network to understand this relationship. The tansig transfer function was used in the three 

hidden layer with the purelin at the output layer. It could be seen from the plot that the 

error predicted were still moderate even thou the results were not as good as the 

cricondentherm or the cricondenbar’s model. Also the relevancy which is given below in 

Fig 5-12,  shows that the highest still remain the heavies C7+ which is in the range of 

15.5% followed by the nitrogen N2 with a percentage of approximately 11%. The 

impurities had similar influence compared to the cricondenbar neural network.  

 

Figure 5-12:  Relevancy Percentage for the Critical Neural Network 
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5.2 Stage Two- 3-Coordinate Neural Network 

The 3-coordinate points which define the phase envelope neural network model is 

presented in the stage two of this ANN model study. Stage two consisted of finding a 

neural network which integrates all the three main points of the diagram in one model. 

This neural network should be able to predict the corresponding temperature and pressure 

value of the cricondenbar, cricondentherm and the critical point. The proposed network 

for this which gives the best results for the phase envelope points is given in Fig 5-13, 

 

Figure 5-13: Phase Envelope Neural Network Architect 
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As shown in Fig 5-13 the input parameter were the composition of  H2S, N2, CO2, C1, C2, 

C3, C4, C5, C6 and  C7+, with the Molecular weight of the C7+ (MW C7+) and  specific 

gravity of C7+ (SG C7+). And the output parameters being the normalized pressure and 

temperature of the cricondenbar, cricondentherm and critical point values were the 

networks output layer for the 3-coordinate neural network model.  

The phase envelope neural network utilizes a three hidden layer network. This network 

uses 20 neurons in the first and second hidden layer. The final hidden layer has 15 

neurons. This network used the tansig transfer function in the three hidden layer and a 

purelin transfer function in the output layer.  This was achieved using the ANN toolbox 

developed by MATLAB. Details about the MATLAB code can be found in Appendix B. 

The result analysis was similar to the set utilized in the stage one of this study. This uses 

the error percentage plot, histogram plot and the crossplot of the actual versus the 

predicted. The results analyzed each of the pressure and temperature points of the 

cricondenbar, cricondentherm and the critical point individually. These results are 

presented in Fig’s 5-14 to 5-19 below for each respective points of the three coordinate 

neural network proposed.  

A relevancy study was also used to determine the ratio of each of the input parameter to 

the 3-coordinate network model (phase envelope ANN) which is presented in Fig 5-20. 
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Figure 5-14: 3-Coordinate Cricondenbar Training (left) and Testing (right) Pressure Results 
Plots 
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Figure 5-15: 3-Coordinate Cricondenbar Training (left) and Testing (right) Temperature Results 
Plots 
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Figure 5-16: 3-Coordinate Cricondentherm Training (left) and Testing (right) Pressure 
Results Plots 
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Figure 5-17: 3-Coordinate Cricondentherm Training (left) and Testing (right) 
Temperature Result Plots 
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Figure 5-18: 3-Coordinate Critical Training (left) and Testing (right) Pressure Result 
Plots 
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Figure 5-19: 3-Coordinate Critical  Training (left) and Testing (right) Temperature Result 
Plots 
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Figure 5-20: Relevancy Plot for the Phase Envelope Input 

It can be seen from the results in this stage that the 3-coordinate neural network produced 

similar results to the ones in stage one. This network is able to predict the corresponding 

temperature and pressure of the cricondenbar and the cricondentherm and the critical 

point for the ranges of natural gas mixture which were used for this study.  Also,  all 

inputs parameter had a relevancy in the phase envelope prediction. The highest relevancy 

was the compositions of methane C1 and C7+ with 14%, while the specific gravity of the 

C7+ was approximately 13.7%. The impurities had a total of 17% on the network 

prediction.   



Chapter 6 
 

Summary and Conclusion 

 A powerful tool has been developed using artificial neural network which is capable of 

predicting key phase envelope points which are the cricondenbar, cricondentherm and 

critical point pressure and temperature of natural gas composition provided that the 

composition analysis data is available. Also developed is a tool which estimates the 

pressure and temperature value of the points which defines the phase envelope 

individually. The study examined in two stages. The first three neural networks were 

developed to investigate the ability of artificial neural network in prediction of these 

individual points on the phase envelope. A total of 1840 different mixture composition 

was used in training and testing each of the neural networks proposed. It can be seen 

from the plots that the best results was the cricondentherm pressure and temperature 

points and also the easiest which requires the least complex network architect. The 

histogram plot shows error calculate was between the range of [-2% +2%] for the 

cricondentherm pressure while cricondentherm temperature was between [-1% +1%] for 

both the testing and training results. The cricondenbar pressure on the other hand 

although needing a more complex network which utilized an extra layer of neuron more 

than the cricondentherm network model to achieve the desired results had similar 

network performance. The error range for the cricondenbar pressure training error was 

within [-4% +4%] and testing was [-3% +4%]. Cricondenbar temperature also had the 

same error range as the cricondentherm which was [-1% +1%] for both the testing and 
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training the network model. This shows that the neural network models for the natural 

gas mixtures can effectively predict the cricondentherm and cricondenbar point.  

For the critical point error results were slightly higher for both the temperature and 

pressure values. The temperature point were predicted with errors within +/- 5% for both 

testing and training, while the critical pressure prediction was in [-5% +10%] error 

margin.  

The second stage was developing a 3-coordinate neural network which represents the 

three points defining the shape of the phase envelope. Using the histogram plot for result 

analysis, the error calculated for the cricondenbar pressure training was in the range of [-

4% +4%] while the testing data was predicted with error calculated in the range of [-5% 

+4%]. The cricondenbar temperature error for testing and training were calculated within 

[-1% +1%]. The cricondentherm point had error less than the cricondenbar points 

predicted for the neural network proposed.  The cricondentherm pressure training was 

calculated error was in the range of [-3 +3%] while the cricondentherm temperature 

testing and training error was [-1% +1%]. The critical point value was predicted with a 

higher percentage error when compared to the other two points of the 3-coordinates 

network model. The critical points pressure training was in the range of [-10% +10%] 

and the testing was calculated in the range of [-10% +10%]. The critical point 

temperature values training was in the range [-4% +4] and testing error was [-2% +4%].   

The 3-coordinate network model was able to match the training and testing error 

percentage for the three points which defines the phase envelope when compared to the 

individual neural network model developed in the first stage.  
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It was also noticed that the temperature values for each of this points were predicted with 

lesser error than the pressure values of all points. The C7+ composition was consistent in 

the relevancy of both stages model proposed.  

The neural network proposed gives a fast and reliable way in which phase envelope could 

be estimated with minimum error for the points defining the shape. These model 

proposed network shows very promising result for further related work. The model could 

be improved by introducing additional data in which the model is trained with (i.e. 

experimental data). An infusion with experimental data in the data set would probably 

improve the result quality of the envelope prediction. This could probably improve the 

error percentage which is most synonymous with the critical point prediction.   
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Appendix A 
 

Stage 1 ANN MATLAB Code Cricondenbar 

close all; 
clear all; 
format long; 
%% 
%%%Load the Input files for the testing and training of the network for  
%%% and the Output data set....  
load INP.txt; 
  
load CriBar.txt; 
  
load TestnIn.txt; 
  
load CribTestOut.txt; 
%% 
%% Transpose the matrix into the appropriate format..  
P= INP; 
P = P'; 
T= CriBar; 
T= T'; 
p1 = TestnIn; 
p1 = p1'; 
t1 = CribTestOut; 
t1 = t1'; 
%% 
%%%Determine the size of the matrix in each data set...... 
[m1,n1] = size (p1); 
  
[m,n] = size (P);   
  
[mo,no] = size (T);   
%%              
%% 
%%% Normalizing the matrix in the proper intervals [-1, 1] 
[Pn,ps] = mapminmax(P,-1,1); 
[Tn,ts] = mapminmax(T,-1,1); 
pn=mapminmax('apply',p1,ps); 
tn=mapminmax('apply',t1,ts); 
%%              
%%% defining the into the format of the code 
trainP=Pn; 
trainT=Tn; 
testP=pn; 
testT=tn; 
  
%% 
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 %% training the neural network for the phase envelope values 
net = newcf (minmax(Pn), [15 15 mo], {'tansig' 'tansig' 'purelin'}, 
'traincgf','learngdm','mse') ; 
%% 
%% 
%%% Seting the Network parameters and goals  
%%% as best suited for each individual network 
net.trainParam.shows=5;       %%Epochs between displays 
net.trainParam.goal=0.00001;  %%Performance goal 
net.trainParam.epochs=6500;  %%Number of iterations for training 
net.trainParam.max_fail=100000;%%Maximum validation failures 
net.trainParam.mem_reduc=5;    %%Factor to use for memory/speed 
tradeoff 
net=init(net); 
%% 
% Start training network for both input trainP and output trainT 
  
[net,tr]= train(net,trainP,trainT); 
% simulating the input using the matrix pn 
AAA = sim (net,trainP); 
% denomalizing the input 
AA = mapminmax('reverse', AAA,ts); 
% denomalizing the targets  
BBB =sim(net,testP); 
BB =  mapminmax('reverse',BBB,ts); 
  
t=T; 
  
%%  
%%% plots which is given by the \ 
%%% the network prediction and training 
% Error calculation 
errortrainingA=((AA(1,:)-(t(1,:)))./t(1,:)).*100;   %Training error for 
Cricondenbar Reduced Pressure 
errortrainingB=((AA(2,:)-(t(2,:)))./t(2,:)).*100;   %Training error for 
Cricondenbar Reduced temperature 
  
errortestingA=((BB(1,:)-(t1(1,:)))./t1(1,:)).*100;  %Testing error for 
Cricondenbar Reduced Pressure 
errortestingB=((BB(2,:)-(t1(2,:)))./t1(2,:)).*100;  %Testing error for 
Cricondenbar Reduced temperature 
  
X=[1:1:n]; 
XX=[1:1:n1]; 
binmax=10; 
nbins=-binmax:binmax/10:binmax; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
%Plots of training datas 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
figure (2) 
filename = 'CriBar Pr training'; 
subplot (2,2,1, 'align'); 
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plot (X,t(1,:),'ko'); 
xlim ([0 n]); 
hold on 
grid on 
plot (X,AA(1,:),'-r*'); 
ylabel('Pr for Cricondenbar'); 
xlabel('Data set'); 
h =legend ('Actual', 'Ann values','location','NorthEast'); 
title (filename); 
xlim ([0 n]); 
ylim ([0 20]); 
  
subplot (2,2,2, 'align'); 
plot (XX,t1(1,:),'ro-'); 
grid on 
hold on 
plot (XX,BB(1,:),'b*--'); 
xlim([0 n1]); 
ylabel ('Pr testing for cricondenbar'); 
xlabel('data set'); 
h =legend ('Actual', 'Ann values','location','NorthEast'); 
xlim([0 n1]); 
ylim([0 20]); 
  
subplot (2,2,3, 'align'); 
plot (X,t(2,:),'ko'); 
hold on 
grid on 
plot (X,AA(2,:),'-r*'); 
ylabel('Tr for Cricondenbar'); 
xlabel('Data set'); 
legend ('Actual', 'Ann values','location','NorthEast'); 
% title (filename); 
xlim ([0 n]); 
ylim ([0 20]); 
  
subplot (2,2,4, 'align')  ;
plot (XX,t1(2,:),'ro-'); 
grid on 
hold on 
plot (XX,BB(2,:),'b*--'); 
xlim([0 n1]); 
ylabel ('Tr testing for cricondenbar'); 
xlabel('data set'); 
h =legend ('Actual', 'Ann values','location','NorthEast'); 
xlim([0 n1]); 
ylim([0 20]); 
  
figure(3) 
subplot (2,2,1, 'align'); 
plot (X,errortrainingA,'k+'); 
grid on 
hold on 
ylabel('error % TrainingPr for Cricondenbar'); 
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xlabel('Data set'); 
xlim ([0 n]); 
ylim ([0 20]); 
  
subplot (2,2,2, 'align'); 
plot (XX,errortestingA,'k+'); 
grid on 
hold on 
ylabel('error % TestingPr for Cricondenbar'); 
xlabel('Data set'); 
xlim ([0 n1]); 
ylim ([0 20]); 
  
  
subplot (2,2,3, 'align'); 
plot (X,errortrainingB,'k+'); 
grid on 
hold on 
ylabel('error % traingTr for Cricondenbar'); 
xlabel('Data set'); 
xlim ([0 n]); 
ylim ([0 20]); 
  
subplot (2,2,4, 'align'); 
plot (XX,errortestingB,'k+'); 
grid on 
hold on 
ylabel('error% testingTr for Cricondenbar'); 
xlabel('Data set'); 
xlim ([0 n1]); 
ylim ([0 20]); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Plots of histogram and cross plots 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %binmax=5; 
% nbins=-binmax:binmax/10:binmax; 
% errortestingA  
% % %plots 
figure (4) 
subplot(2,2,1) 
hist(errortrainingA,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Training Pr for CriB* Histogram') 
  
subplot(2,2,2) 
hist(errortestingA,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
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title('Testing Pr for CriB* Histogram') 
%%%%%%%%%%%%%%%%% 
  
subplot(2,2,3) 
hist(errortrainingB,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Training Tr for CriB* Histogram') 
  
subplot(2,2,4) 
hist(errortestingB,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Testing Tr for CriB* Histogram') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure (5) 
subplot(2,2,1) 
plot(t(1,:),AA(1,:),'bo') 
grid on 
hold on 
x = 0.55:1:14.0; 
y = x; 
plot(x,y,'-k') 
xlim([1.2 2.6]); 
ylim([1.2 2.6]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Training CriconB Pr* Crossplot') 
  
subplot(2,2,2) 
plot(t1(1,:),BB(1,:),'bo') 
grid on 
hold on 
x = -5.18:1:11.1; 
y = x; 
plot(x,y,'-k') 
xlim([1.4 2.4]); 
ylim([1.4 2.4]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Testing CriconB Pr* Crossplot') 
  
  
  
subplot(2,2,3) 
plot(t(2,:),AA(2,:),'bo') 
grid on 
hold on 
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x = 0.55:1:14.0; 
y = x; 
plot(x,y,'-k') 
xlim([2.0 10.0]); 
ylim([2.0 10.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Training CriconB Tr* Crossplot') 
  
subplot(2,2,4) 
plot(t1(2,:),BB(2,:),'bo') 
grid on 
hold on 
x = -5.18:1:11.1; 
y = x; 
plot(x,y,'-k') 
xlim([2.0 10.0]); 
ylim([2.0 10.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Testing CriconB Tr* Crossplot') 
  
figure (6) 
 plot (CribTestOut(:,1),CribTestOut(:,2),'ob'); 
 hold on 
plot (CriBar(:,1),CriBar(:,2),'or'); 
 
 
N:B Same program was used for the Cricondentherm and Critical Calculations only 
difference is the files which was loaded.  
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Appendix B 
 

Phase Envelope Code for MATLAB Stage Two 

%% 
close all; 
clear all; 
%% 
%%%Load the Input files for the testing and training of the network for  
%%% and the Output data set....  
load TrainIn.txt; 
load TrainOut.txt; 
load TestIn.txt; 
load TestOut.txt; 
%% 
%% Transpose the matrix into the appropriate format..  
P= TrainIn; 
P = P'; 
T= TrainOut; 
T= T'; 
p=TestIn; 
p=p'; 
t1=TestOut; 
t1=t1'; 
%% 
%%%Determine the size of the matrix in each data set...... 
[m,n] = size (P);   
[mo,no] = size (T);   
[m1,n1] = size (p); 
%% 
%%% Normalizing the matrix in the proper intervals [-1, 1] 
[Pn,ps] = mapminmax(P,-1,1); 
[Tn,ts] = mapminmax(T,-1,1); 
pn=mapminmax('apply',p,ps); 
  
trainP=Pn; 
trainT=Tn; 
testP=pn; 
testT=t1; 
  
 %% training the neural network for the phase envelope values 
net = newcf (minmax(Pn), [20 15 15 mo], {'tansig' 'tansig' 'tansig' 
'purelin'}, 'traincgf','learngdm','mse') ; 
%% 
%% 
%%% Seting the Network parameters and goals  
%%% as best suited for each individual iterations 
  
net.trainParam.shows=5;       %%Epochs between displays 
net.trainParam.goal=0.0001;  %%Performance goal 
net.trainParam.epochs=10000;  %%Number of iterations for training 
net.trainParam.max_fail=1000;%%Maximum validation failures 
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net.trainParam.mem_reduc=5;    %%Factor to use for memory/speed 
tradeoff 
net=init(net); 
  
  
  
%% training network Starts.  
  %% Training actual network with Just Input trainP and Output trainT 
[net,tr]= train(net,trainP,trainT); 
  
  
% plotperf(TR,goal,name,epoch) 
 plotperform(tr); 
AAA = sim (net,trainP); 
  
% denomalizing the input 
AA = mapminmax('reverse', AAA,ts); 
  
%  mapminmax 
BBB =sim(net,testP); 
BB =  mapminmax('reverse',BBB,ts); 
  
  
  
t=T; 
%% 
% Error calculation 
errortrainingA=((AA(1,:)-(t(1,:)))./t(1,:)).*100;   %Training error for 
Cricondenbar Normalized temperaturebuknow sa 
errortrainingB=((AA(2,:)-(t(2,:)))./t(2,:)).*100;   %Training error for 
Cricondenbar Normalized Pressure 
errortrainingC=((AA(3,:)-(t(3,:)))./t(3,:)).*100;   %Training error for 
Cricondentherm Normalized temperature 
errortrainingD=((AA(4,:)-(t(4,:)))./t(4,:)).*100;   %Training error for 
Cricondentherm Normalized Pressure 
errortrainingE=((AA(5,:)-(t(5,:)))./t(5,:)).*100;   %Training error for 
critical Point Normalized temperature 
errortrainingF=((AA(6,:)-(t(6,:)))./t(6,:)).*100;   %Training error for 
critical Point Normalized Pressure 
errortestingA=((BB(1,:)-(t1(1,:)))./t1(1,:)).*100;  %Testing error for 
Cricondenbar Normalized temperature 
errortestingB=((BB(2,:)-(t1(2,:)))./t1(2,:)).*100;  %Testing error for 
Cricondenbar Normalized Pressure 
errortestingC=((BB(3,:)-(t1(3,:)))./t1(3,:)).*100;  %Testing error for 
Cricondentherm Normalized temperature 
errortestingD=((BB(4,:)-(t1(4,:)))./t1(4,:)).*100;  %Testing error for 
Cricondentherm Normalized Pressure 
errortestingE=((BB(5,:)-(t1(5,:)))./t1(5,:)).*100;  %Testing error for 
Critical Point Normalized temperature 
errortestingF=((BB(6,:)-(t1(6,:)))./t1(6,:)).*100;  %Testing error for 
Critical Point Normalized Pressure 
  
X=[1:1:n]; 
XX=[1:1:n1]; 
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binmax=10; 
nbins=-binmax:binmax/10:binmax; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
%Plots of training datas 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
figure (2) 
subplot (3,2,1, 'align'); 
plot (X,errortrainingA,'k+'); 
grid on 
hold on 
ylabel('error % T for Cricondenbar'); 
xlabel('Data set'); 
xlim ([0 n]); 
ylim ([-10 20]); 
  
subplot (3,2,2, 'align'); 
plot (XX,errortestingA,'k+'); 
grid on 
hold on 
ylabel('error % TestingT for Cricondenbar'); 
xlabel('Data set'); 
xlim ([0 n1]); 
ylim ([-10 20]); 
  
subplot(3,2,3) 
hist(errortrainingA,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Training T for CriB* Histogram') 
  
subplot(3,2,4) 
hist(errortestingA,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Testing T for CriB* Histogram') 
%%%%%%%%%%%%%%%%% 
subplot(3,2,5) 
plot(t(1,:),AA(1,:),'bo') 
grid on 
hold on 
x = 0.55:1:14.0; 
y = x; 
plot(x,y,'-k') 
xlim([1.2 2.6]); 
ylim([1.2 2.6]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Training CriconB T* Crossplot') 
  
subplot(3,2,6) 



91 
plot(t1(1,:),BB(1,:),'bo') 
grid on 
hold on 
x = -5.18:1:11.1; 
y = x; 
plot(x,y,'-k') 
xlim([1.4 2.4]); 
ylim([1.4 2.4]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Testing CriconB T* Crossplot') 
  
%% 
%% 
figure(3) 
subplot (3,2,1, 'align'); 
plot (X,errortrainingB,'k+'); 
grid on 
hold on 
ylabel('error % P for Cricondenbar'); 
xlabel('Data set'); 
xlim ([0 n]); 
ylim ([-10 20]); 
  
subplot (3,2,2, 'align'); 
plot (XX,errortestingB,'k+'); 
grid on 
hold on 
ylabel('error% testingP for Cricondenbar'); 
xlabel('Data set'); 
xlim ([0 n1]); 
ylim ([-10 20]); 
  
subplot(3,2,3) 
hist(errortrainingB,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Training P for CriB* Histogram') 
  
subplot(3,2,4) 
hist(errortestingB,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Testing Pr for CriB* Histogram') 
  
subplot(3,2,5) 
plot(t(2,:),AA(2,:),'bo') 
grid on 
hold on 
x = 0.55:1:14.0; 
y = x; 
plot(x,y,'-k') 
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xlim([2.0 10.0]); 
ylim([2.0 10.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Training CriconB P* Crossplot') 
  
subplot(3,2,6) 
plot(t1(2,:),BB(2,:),'bo') 
grid on 
hold on 
x = -5.18:1:11.1; 
y = x; 
plot(x,y,'-k') 
xlim([2.0 10.0]); 
ylim([2.0 10.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Testing CriconB P* Crossplot') 
  
  
figure(4) 
subplot (3,2,1, 'align'); 
plot (X,errortrainingC,'k+'); 
grid on 
hold on 
ylabel('error % T for Critherm'); 
xlabel('Data set'); 
xlim ([0 n]); 
ylim ([-10 20]); 
  
subplot (3,2,2, 'align'); 
plot (XX,errortestingC,'k+'); 
grid on 
hold on 
ylabel('error % TestingT for Critherm'); 
xlabel('Data set'); 
xlim ([0 n1]); 
ylim ([-10 20]); 
  
subplot(3,2,3) 
hist(errortrainingC,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Training T for CriConTherm* Histogram') 
  
subplot(3,2,4) 
hist(errortestingC,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Testing T for CriTherm* Histogram') 
  
subplot(3,2,5) 
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plot(t(3,:),AA(3,:),'bo') 
grid on 
hold on 
x = 0.55:1:14.0; 
y = x; 
plot(x,y,'-k') 
xlim([1.50 3.0]); 
ylim([1.50 3.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Training CriConTherm T* Crossplot') 
  
subplot(3,2,6) 
plot(t1(3,:),BB(3,:),'bo') 
grid on 
hold on 
x = -5.18:1:11.1; 
y = x; 
plot(x,y,'-k') 
xlim([1.50 3.0]); 
ylim([1.50 3.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Testing CriConTherm T* Crossplot') 
  
figure (5) 
subplot (3,2,1, 'align'); 
plot (X,errortrainingD,'k+'); 
grid on 
hold on 
ylabel('error % P for Critherm'); 
xlabel('Data set'); 
xlim ([0 n]); 
ylim ([-10 20]); 
  
subplot (3,2,2, 'align'); 
plot (XX,errortestingD,'k+'); 
grid on 
hold on 
ylabel('error% testingP for Critherm'); 
xlabel('Data set'); 
xlim ([0 n1]); 
ylim ([-10 20]); 
  
  
subplot(3,2,3) 
hist(errortrainingD,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Training P for CriTherm* Histogram') 
  
subplot(3,2,4) 
hist(errortestingD,nbins) 



94 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Testing P for CriTherm* Histogram') 
  
subplot(3,2,5) 
plot(t(4,:),AA(4,:),'bo') 
grid on 
hold on 
x = 0.55:1:14.0; 
y = x; 
plot(x,y,'-k') 
xlim([0.55 3.0]); 
ylim([0.55 3.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Training CriConTherm P* Crossplot') 
  
subplot(3,2,6) 
plot(t1(4,:),BB(4,:),'bo') 
grid on 
hold on 
x = -5.18:1:11.1; 
y = x; 
plot(x,y,'-k') 
xlim([0.55 3.0]); 
ylim([0.55 3.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Testing CriConTherm P* Crossplot') 
  
  
figure (6) 
subplot (3,2,1, 'align'); 
plot (X,errortrainingE,'k+'); 
grid on 
hold on 
ylabel('error % T for Critical'); 
xlabel('Data set'); 
xlim ([0 n]); 
ylim ([-10 20]); 
  
subplot (3,2,2, 'align'); 
plot (XX,errortestingE,'k+'); 
grid on 
hold on 
ylabel('error % TestingT for Critical'); 
xlabel('Data set'); 
xlim ([0 n1]); 
ylim ([-10 10]); 
  
subplot(3,2,3) 
hist(errortrainingE,nbins) 
h = findobj(gca,'Type','patch'); 
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set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Training T for Cri* Histogram') 
  
subplot(3,2,4) 
hist(errortestingE,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Testing T for Cri* Histogram') 
  
subplot(3,2,5) 
plot(t(5,:),AA(5,:),'bo') 
grid on 
hold on 
x = 0.55:1:14.0; 
y = x; 
plot(x,y,'-k') 
xlim([0.55 3.0]); 
ylim([0.55 3.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Training Critical T_N* Crossplot') 
  
subplot(3,2,6) 
plot(t1(5,:),BB(5,:),'bo') 
grid on 
hold on 
x = -5.18:1:15.1; 
y = x; 
plot(x,y,'-k') 
xlim([0.55 3.0]); 
ylim([0.55 3.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Testing Critical T_N* Crossplot') 
  
%%%%%%%%%%%%%%%%% 
figure (7) 
subplot (3,2,1, 'align'); 
plot (X,errortrainingF,'k+'); 
grid on 
hold on 
ylabel('error % P for Critical'); 
xlabel('Data set'); 
xlim ([0 n]); 
ylim ([-10 20]); 
  
subplot (3,2,2, 'align'); 
plot (XX,errortestingF,'k+'); 
grid on 
hold on 
ylabel('error% testingP for Critical'); 
xlabel('Data set'); 
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xlim ([0 n1]); 
ylim ([-10 10]); 
%%%%%%%%%%%%%%%%% 
subplot(3,2,3) 
hist(errortrainingF,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Training P for Cri* Histogram') 
  
subplot(3,2,4) 
hist(errortestingF,nbins) 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','w') 
xlim([-binmax binmax]); 
title('Testing P for Cri* Histogram') 
  
subplot(3,2,5) 
plot(t(6,:),AA(6,:),'bo') 
grid on 
hold on 
x = 0.55:1:12.0; 
y = x; 
plot(x,y,'-k') 
xlim([0.55 12.0]); 
ylim([0.55 12.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Training Critical P_N* Crossplot') 
  
subplot(3,2,6) 
plot(t1(6,:),BB(6,:),'bo') 
grid on 
hold on 
x = -5.18:1:12.0; 
y = x; 
plot(x,y,'-k') 
xlim([0.55 12.0]); 
ylim([0.55 12.0]); 
xlabel('Actual') 
ylabel('Predicted') 
title('Testing Critical P_N* Crossplot') 
  
  
  
%======================================================================
======= 
  
%======================================================================
======= 
  
%%  Get relevancies 
%   num. of neurons in 1st (input) layer 
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    ni = net.layers{1}.size; 
  
%   num. of input elements 
  
    nj = net.inputs{1}.size; 
  
  
  
%   input weights MATRIX for 
  
%   ith layer, jth input source 
  
%   ANN.IW{i,j} 
  
%   assign absolute values of input weights 
  
%   for 1st (input) layer and 1st (this case only) input source 
  
  
  
    s = abs(net.IW{1,1}); 
  
     
  
    for j = 1:nj 
  
%   outer loop: over input elements         
  
        CS(j) = 0; 
  
        for i = 1:ni     
  
%       inner loop: over 1st (input) layer neuron weights 
  
            CS(j) = CS(j) + s(i,j); 
  
        end 
  
    end 
  
  
  
    sum = 0; 
  
    for k = 1:nj 
  
        sum = sum + CS(k); 
  
    end 
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    percentCS = CS./sum * 100; 
  
    
  
    save%('') 
  
     
  
%======================================================================
====     
  
%%  FIGURE: Relevancies         
  
%======================================================================
==== 
  
    figure(8); 
  
  
  
   name = ('Relevancies'); 
  
  
  
    barh(CS,0.2,'k');     
  
    title('Input Relevancies'); 
  
    xlabel('Relevancy'); 
  
  
  
    set(gca,'YTickLabel',{... 
  
        'Hydrogen Sulfide H2S';... 
  
        'Carbondioxide CO2';... 
  
        'Nitrogen N2';... 
  
        'Methane C1';... 
  
        'Ethane C2';... 
  
        'Propane C3';... 
         
        'Butane C4';... 
         
        'Pentane C5';... 
          
        'Hexane C6';... 
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        'Heptanes C7+';... 
     
        'Molecular Weight C7+';... 
         
        'Specific Gravity C7+';... 
         }) 
  
     
  
%    print ('-f','-dmeta',filename); 
  
%    print ('-f','-depsc','-tiff',filename);      
%  
%     print ('-f','-r300','-djpeg100',filename); 
%  
%     clf('reset') 
  
     
figure (9) 
  
  
    filename = ('Relevancies(percent)'); 
  
  
  
     
  
    barh(percentCS,0.2,'k')     
  
    title('Input Relevancies (%)'); 
  
    xlabel('Relevancy (%)'); 
  
  
  
    set(gca,'YTickLabel',{... 
  
        'Hydrogen Sulfide H2S';... 
  
        'Carbondioxide CO2';... 
  
        'Nitrogen N2';... 
  
        'Methane C1';... 
  
        'Ethane C2';... 
  
        'Propane C3';... 
         
        'Butane C4';... 
         
        'Pentane C5';... 



100 

          
        'Hexane C6';... 
                  
        'Heptanes C7+';... 
     
        'Molecular Weight C7+';... 
         
        'Specific Gravity C7+';... 
         }) 
     
  
%    print ('-f','-dmeta',filename);      
  
%    print ('-f','-depsc','-tiff',filename);  
  
%     print ('-f','-r300','-djpeg100',filename); 
%  
%     clf('reset')    
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