
The Pennsylvania State University

The Graduate School

The Harold and Inge Marcus Department of Industrial and

Manufacturing Engineering

DETECTION & EVALUATION OF COMMUNITY STRUCTURES

IN SOCIAL NETWORKS

A Thesis in

Industrial Engineering and Operations Research

by

Akshay Dattatraya Ghurye

c© 2011 Akshay Dattatraya Ghurye

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

December 2011

The thesis of Akshay Dattatraya Ghurye was reviewed and approved∗ by the fol-

lowing:

Soundar R.T. Kumara

Allen E. Pearce/Allen M. Pearce Professor of Industrial Engineering

Thesis Advisor

Arvind Rangaswamy

Anchel Professor of Marketing

Paul Griffin

Professor of Industrial Engineering

Peter & Angela Dal Pezzo Department Head of Industrial Engineering

∗Signatures are on file in the Graduate School.

Abstract

In today’s world, social media networks capture interactions among peo-
ple through comments on blogs, posts and feeds. The public availability of these
networks has allowed researchers and businesses alike to delve more into these pref-
erences so as to extract communities which clearly define their formation. In social
networks, people tend to have more than one preference over different products
which makes it difficult to put them in a single community. Although community
detection has been well applied to social networks, not much work has been done
in detecting overlapping communities within these networks. In this paper we de-
scribe an algorithm which applies a game theoretic approach to graph clustering
to determine overlapping communities within complex networks and show how a
parallel implementation of the algorithm can be used to detect communities in
lesser time than its previous implementations. Further we run the algorithm on
various social networks to detect overlapping communities and propose a method
to analyze them once they are determined. Finally we conclude by providing im-
petus on the running time of this algorithm and expressing the need for faster
algorithms to detect and analyze social media networks.

iii

Table of Contents

List of Figures vii

List of Tables ix

Acknowledgments x

Chapter 1
Introduction 1
1.1 Motivation . 1
1.2 Problem Discussion . 3

1.2.1 Social Media Tracking . 4
1.2.2 Social Media Software: ListenLogic and Radian6 5

1.3 Methodology . 6
1.4 Contributions . 8
1.5 Thesis Organization . 8

Chapter 2
Problem Discussion & Definition 10
2.1 Network Science . 10
2.2 Real World Networks . 12
2.3 Emergence of Social Media . 13
2.4 Social Networks . 14
2.5 Community Detection . 17
2.6 Problem Definition . 18

Chapter 3
Literature Review 19
3.1 Community Detection . 19

iv

3.2 Definition of a Community . 20
3.3 Community Detection Algorithms 22
3.4 Community Detection in Social Media 24
3.5 Overlapping Community Detection in Social Networks 27

Chapter 4
Methodology 29
4.1 Introduction . 29
4.2 Game-Theoretic Algorithms . 30

4.2.1 Sequential Best Response (SEBR) 31
4.2.2 Best Response Calculation 32
4.2.3 Simultaneous Best Response (SMBR) 32

4.3 Parallel Programming . 33
4.3.1 Introduction . 34
4.3.2 SEBR v/s SMBR . 34
4.3.3 Parallelization of SMBR 35
4.3.4 Parallel Computing Framework 36

4.4 Computational Complexity . 38
4.5 Measuring Parallelization . 39

Chapter 5
Analysis 43
5.1 Experimental Design . 43

5.1.1 Detecting Overlapping Communities 44
5.1.2 Parallel Implementation 44
5.1.3 Analyzing Communities 45

5.2 Data Description . 46
5.3 Clustering Analysis . 47

5.3.1 Ranking Attributes . 49
5.4 Comparing Running Times . 50
5.5 Results . 53

Chapter 6
Conclusions 55
6.1 Contributions . 55
6.2 Summary . 57
6.3 Future Work . 58

v

Appendix A
University Details 59
A.1 Sample Dataset . 59

Appendix B
Algorithm Codes 61
B.1 Main Class . 61
B.2 SEBR Algorithm Class . 64
B.3 SMBR Algorithm Class . 67
B.4 ParallelSMBR Algorithm Class 71
B.5 Cluster Class . 75
B.6 Vertex Class . 76
B.7 Dummy Object Class . 80

Bibliography 82

vi

List of Figures

1.1 The blue trendline is Facebook, yellow is YouTube and red is Ya-
hoo. The rapidly growing popularity of YouTube and Facebook is
characteristic of the way in which new products, technologies, or
innovations rise to prominence, through feedback effects in the be-
havior of many individuals across a population. The plot depicts
the number of Google queries for YouTube and Facebook over time.
The image comes from the site Google Trends; by design, the units
on the y-axis are suppressed in the output from this site. 3

1.2 Gatorade Mission Control Center Dashboard 5
1.3 Caltech’s Facebook network, part of the Facebook100 dataset . . 7

2.1 Researchers created a map linking different diseases, represented by
circles, to the genes they have in common, represented by squares. 11

2.2 LinkedIn Social Network for Akshay Ghurye 15
2.3 Zachary’s Karate Club. Figure taken from [1] 17

3.1 Examples of tag communities discovered by the local method of
Papadopoulos et al. [2]. The presented communities were created
using computers, history, music, science, film and animals as seed
nodes. 24

3.2 An example of a users contacts in Facebook R©, involving three dif-
ferent relations: friends met at ASU, undergraduate classmates at
Fudan University, and some high school friends at Sanzhong [3]. . 26

4.1 (a) SMP Parallel Computer (b) SMP Parallel Program. Figures
taken from [4] . 36

4.2 (a) Cluster Parallel Computer (b) Cluster Parallel Program. Fig-
ures taken from [4] . 37

4.3 (a) Hybrid Parallel Computer (b) Hybrid Parallel Program. Figures
taken from [4] . 42

vii

5.1 (a) The variation in the number of communities detected using
SEBR Algorithm v/s number of edges (b) The variation in the num-
ber of communities detected using SMBR Algorithm v/s number of
edges (c) The variation in the number of communities detected us-
ing SEBR Algorithm v/s number of nodes (d) The variation in the
number of communities detected using SMBR Algorithm v/s num-
ber of nodes. 47

5.2 (a) The variation in the number of best responses computed using
SEBR Algorithm v/s number of edges (b) The variation in the num-
ber of best responses detected using SMBR Algorithm v/s number
of edges (c) The variation in the number of best responses detected
using SEBR Algorithm v/s number of nodes (d) The variation in
the number of best responses detected using SMBR Algorithm v/s
number of nodes . 48

5.3 Percentage of times a given attribute accounted for least uncertainty
within a given community. 50

5.4 (a)This Log-Log plot compares the running time with the number
of nodes in the network (b)This Log-Log plot shows the variation
in speedup v/s number of nodes in the network for SMBR Algorithm 52

5.5 This Log-Log plot shows the variation in speedup v/s number of
nodes in the network for SEBR Algorithm 53

5.6 (a)The speedup is plotted against the number of nodes for each
core. (b) The efficiency is plotted against the number of nodesn for
each core. 54

viii

List of Tables

2.1 Various Forms of Social Media . 13
2.2 Top 20 Websites in the US . 14

A.1 University Details . 60

ix

Acknowledgments

I thank my advisor Dr. Soundar Kumara for his continuous support during the
Masters program. He has been a mentor, grooming me to scientific writing and
presentations, and encouraging a quantitative approach to problem solving. I
express my gratitude to my thesis reader Dr. Arvind Rangaswamy for helping
me complete my thesis in time. I am grateful to my peers in the Laboratory of
Intelligent Systems and Quality (LISQ) research group, especially Mr. Supreet
Reddy Mandala (PhD Candidate), who patiently helped me formalize my thesis
problem over repeated meetings. I am deeply indebted to my parents who were a
source of motivation and strength thought my career. I am grateful to my friends
for standing by me through the best and worst of times, and to the Almighty for
aligning the turn of events in my good fortune.

x

Dedication

To my parents

xi

Chapter 1
Introduction

1.1 Motivation

The proliferation of Internet and on-line marketing has changed the way companies

market their products and services. The past paradigm of make and sell to a market

segment has changed. Today, IT provides the universal access and reach to help

market to a customer size of one. Customers have become an integral part of the

company’s marketing effort.

Over the years because of increasing competition, acquiring, retaining and sup-

porting customers has become more challenging for businesses of all sizes. Com-

panies these days are more concerned about the whats than the whos of customer

base. In other words companies were focused on selling as many products and

services as possible without much knowledge about their customer base. In the

current age, marketing teams must plan and develop an increasing number of so-

phisticated campaigns, and deliver them through multiple mediums. Sales reps

must follow-up on hundreds of new leads, while juggling existing sales cycles. Sup-

port staff must rapidly resolve a growing volume of customer problems and issues.

And, management must oversee customer-facing operations across all departments,

and ensure that all client interactions are handled in a responsive and professional

manner.

Customer relationship management (CRM) systems has emerged as a way for

businesses to streamline customer-related processes across functional areas, in-

crease the efficiency and effectiveness of customer transactions at all levels, and

2

optimize service quality at each touch-point. Within the CRM world, there are

many types of solutions, each having their own flavor, and each meeting differ-

ent business needs. CRM is the infrastructure that enables the delineation of an

increase in customer value, and the correct means by which to motivate valuable

customers to remain loyal. At the same time companies are trying to leverage

this customer satisfaction by trying to market products to these customers which

relate to their wants/needs as opposed to using traditional marketing techniques.

As a result companies are investing in various media through which they can gain

more knowledge about their existing customers so as to be more specific in their

marketing approaches.

With the advent of Facebook, Twitter, YouTube, people/users have started ex-

pressing their views and thoughts on various issues and products. These thoughts

or views, which were not present previously are now readily available on-line and at

the click of a button. As a result of this ubiquity , user rich content is easily avail-

able to companies which they can use to solidify their marketing campaigns and

CRM approaches. Social Media Marketing is the current trend. Informally, An-

dreas Kaplan and Michael Haenlein [5] define social media as ”a group of Internet-

based applications that build on the ideological and technological foundations of

Web 2.0, and that allow the creation and exchange of user-generated content.”

Thus, social media marketing is a multifaceted, orchestrated marketing and adver-

tising practice organizations follow to connect with their target markets. Various

modes of social media marketing involve but are not restricted to advertising, per-

sonal selling, public relations, publicity, direct marketing and sales promotion [6].

Recently, social media has become a platform that is easily accessible to anyone

with Internet access. Increased communication for organizations fosters brand

awareness and often, improved customer service. Additionally, social media serves

as a relatively inexpensive platform for organizations to implement marketing cam-

paigns.

As the competition among firms intensifies, social media is gaining more and

more importance and efforts are being made to utilize this data in an effective

manner so as to achieve targets which were previously not feasible. Social net-

works form a part of social media which represent real life friendships or ties that

exist amongst individuals and detecting extracting communities with similar be-

3

liefs inherent within such networks is a non trivial problem. This thesis aims at

looking at various ways in which one can leverage a given social network to solve

problems related to CRM, social media marketing and other aspects where user

data is used such as supply chain management and retail analytics.

1.2 Problem Discussion

The emergence of smart-phones, tablets, and other portable electronics has allowed

users to access the Internet more frequently than ever. With incoming technolo-

gies like 3G and 4G browsing speed has increased tremendously as opposed to

the previous GPRS technology which was a major turn-down for many to even

buy a smart phone. At the same time Facebook, Twitter and Flickr along with

Wikipedia, Youtube has also grown tremendously. For example Figure 1.1 shows

how the trend for conventional sites such as Yahoo, although constant, has lowered

in comparison to that of social media sites, namely Facebook and Twitter. Just

Figure 1.1. The blue trendline is Facebook, yellow is YouTube and red is Yahoo. The
rapidly growing popularity of YouTube and Facebook is characteristic of the way in
which new products, technologies, or innovations rise to prominence, through feedback
effects in the behavior of many individuals across a population. The plot depicts the
number of Google queries for YouTube and Facebook over time. The image comes from
the site Google Trends; by design, the units on the y-axis are suppressed in the output
from this site.

to give a perspective on the emergence of social media we dig out a few statistics

as noted by Kaplan in his research [5]. As of January 2009, the on-line social net-

4

working application Facebook registered more than 175 million active users which

is only slightly less than the population of Brazil (190 million) and over twice the

population of Germany (80 million). At the same time, every minute, 10 hours

of content were uploaded to the video sharing platform YouTube. And, the im-

age hosting site Flickr provided access to over 3 billion photographs, making the

world-famous Louvre Museums collection of 300,000 objects seem tiny in compar-

ison. According to Forrester Research, 75% of Internet surfers used Social Media

in the second quarter of 2008 by joining social networks, reading blogs, or con-

tributing reviews to shopping sites; this represents a significant rise from 56% in

2007.

The advent of Social Media has opened new possibilities in the field of social

network analysis by making very large repositories of data available to researchers.

Blog posts, news feeds and user preferences as well as phone calls, electronic com-

munication via email, and scientific publication co-authorship records are now

stored in a centralized, relatively easily-accessible locations. In addition, many so-

cial networking services and blog providers have emerged as important forums for

individual expression and discourse. This allows businesses and researchers alike

with rich and publicly observable data to use in the analysis of social interactions

to aid either themselves or the community. The following subsection titled Social

Media Tracking shows how leading companies are tracking the reviews about their

companies from social media websites.

1.2.1 Social Media Tracking

The Gatorade Mission Control Center is a room that sits in the middle of the

marketing department and could best be thought of as a war room for monitoring

the brand in real-time across social media. This team tracks the discussions and

blogs of their marketing campaigns & products which are released in the market.

The monitor shown in Figure 1.2 is a visualization of tweets that are relevant to

Gatorade; the company is tracking terms relating to its brand, including competi-

tors, as well as its athletes and sports nutrition-related topics. Another monitor

measures blog conversations across a variety of topics and shows how hot those

conversations are across the blogosphere. The company also runs detailed senti-

5

ment analysis around key topics and product and campaign launches. The system

has built the Social Media Tracking software through a joint collaboration with

Radian 6 and IBM.

Figure 1.2. Gatorade Mission Control Center Dashboard

1.2.2 Social Media Software: ListenLogic and Radian6

ListenLogic and Radian6 are Social Media Tracking software which track the web

of information for blogs, posts, tweets and mentions about any given keyword

or company product or a campaign. Some of the key notes which the software

manages are listed below.

• Gain greater insight into the customer’s attributes & perceptions about the

brand name of a company.

• Identify threats and opportunities to manage reputation.

• Immediately flag, assign and engage customers into discussion and product

buying.

Some functionalities offered by such software include tracking the number of men-

tions per day ; i.e. look into all possible social networking websites and try to

6

find all the places where the word is mentioned. They then provide visualizations

which include both geographic (people/state) and demographic segmentations (age

group/female) so that regional managers get a better view of the areas under their

purview as opposed to the performance across the entire nation.

As Goldberg notes in [7], many social networks contain pairs of communities

that overlap while not containing each other as a sub-community. Individuals

often associate across many different social circles, such as those focused around

the workplace, family unit, religious group, or social club. In this case, assuming

the hierarchical social structure of the network would lead to missing important

information about members attachment to the numerous social circles with which

they concurrently interact. Another important issue is that of performing the above

mentioned analysis in real-time. For example, as the number of users joining social

media sites keep on increasing exponentially, analyzing these networks in real time

is becoming all the more difficult. Thus in this thesis, we shall describe a method

for detecting overlapping communities in social media networks and how they can

be analyzed so to draw inferences from them. Also, we shall show an example of

how these communities can be detected in real time by introducing concurrency in

the method.

1.3 Methodology

As discussed in the previous section, there are three major issues with social media

networks namely membership, scalability and evaluation. We shall be dealing with

each of the three issues individually. Membership pertains to node membership

in a network, namely either the community or set of communities of which the

node is a member. In the literature (as will be further explained in chapter 3)

most of the work pertaining to multiple node membership, that is, overlapping

communities, has been done post 2009 [8]. Another analogy comes from the fact

that Social Media has gained relevance starting post 2007. Keeping in mind the

overlapping nature of social networks, we shall use a game theoretic approach to

graph clustering method for community detection proposed by Mandala et al. [9].

The uniqueness of this method is that it can be used to detect overlapping as well

as distinct communities. To test this algorithm we use a Facebook100 dataset used

7

by Traud et al.in [10, 11]. This dataset presents the social network of 100 Universi-

ties in the United States. Once these communities are detected, we propose a novel

Figure 1.3. Caltech’s Facebook network, part of the Facebook100 dataset

approach to evaluate these communities to find commonality of attributes between

communities. This tackles the evaluation issue. Finally we tackle the scalability

issue by successfully testing a fast implementation of the above mentioned algo-

rithm using parallel programming. This shows how a parallel implementation of

an algorithm can work wonders in terms of computational complexity as opposed

to its sequential implementation.

8

1.4 Contributions

A mentioned in the previous section, we aim at tackling three main problems in

community detection in social media namely membership, scalability and evalua-

tion. We provide the following contributions tackling each of the above mentioned

issues.

1. Provide a comprehensive literature review covering applications of commu-

nity detection algorithms in social networks covering disjoint as well as over-

lapping communities.

2. Fast and efficient implementation of a community detection algorithm using

parallel programming concepts.

3. Define an entropy-based method to evaluate the commonality of attributes

within communities.

4. Provide topics for further research.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 gives an overview the

emergence of network science, social media and how it can be used to analyze

various inherent communities. It explains how network science has evolved over

the years and has had an impact on social media by providing some perceivable

real world networks. Finally, we give an overview about community detection and

its use in social media and conclude the chapter by providing a formal definition

to the thesis.

Chapter 3 is dedicated to background research work. It gives an overview of

community detection without any specific application. It explains the need for

overlapping community detection as opposed to disjoint communities and provides

literature related to detecting overlapping communities in social networks. In

chapter 4 we give the importance of finding overlapping communities in networks

by giving a brief description of various algorithms dedicated to the same already

present in the literature. We then explain in detail two algorithms which we shall

9

be using for community detection in our analysis. Concluding sections deal with

computational aspects i.e. the running time of the algorithms and how it can be

used using sophisticated techniques such as parallel programming.

Chapter 5 is dedicated towards analyzing social media networks in general

Facebook R©networks of 100 U.S. universities consisting of students, faculty and

staff as individuals. It mainly explains how the experiments are designed for our

analysis and the data. The chapter concludes with a summary of results. Chapter

6 discusses the summary of results, contributions and topics for further research.

Chapter 2
Problem Discussion & Definition

Social scientists have been studying social networks to understand the underlying

behavior behind formation of communities and preferential attachments amongst

people. Social scientists define a community to be “A group of people who form

relationships over time by interacting regularly around shared experiences, which

are of interest to all of them for varying individual reasons” [12]. The emergence

of social media from a technological perspective has allowed scientists from many

disciplines to study these networks from different perspectives including the math-

ematical foundations behind the dynamics of social networks. In this chapter we

shall briefly explain the need to use network science to analyze social networks

and then describe the importance of detecting underlying communities in these

networks. Finally building on the discussions from the previous sections we con-

clude this chapter by providing a concrete definition to the problem as discussed

earlier.

2.1 Network Science

A network is defined as an interconnected system of things or people. Network

Science is the study of systems mainly using their network structure or topol-

ogy. Networks are represented by a graph of the form G(N,E) where N represents

the number of nodes and E represents the number of edges or arcs in the network.

Network science is a new and emerging scientific discipline that examines the inter-

connections among diverse physical or engineered networks, information networks,

11

Figure 2.1. Researchers created a map linking different diseases, represented by circles,
to the genes they have in common, represented by squares.

biological networks, cognitive and semantic networks, and social networks. This

field of science seeks to discover the common principles, algorithms and tools that

govern network behavior. The National Research Council defines Network Science

as “the study of network representations of physical, biological, and social phe-

nomena leading to predictive models of these phenomena.”1.Most of the complex

structures observed in day to day life can be modeled as networks to study their

properties and behavior. There are various types of networks in this world starting

from a micro level cellular networks to a macro level social networks. Networks can

be classified into two major categories; namely Natural Networks and Engineered

Networks.

1www.wikipedia.org

12

2.2 Real World Networks

Real world networks are a representation of a system or a phenomenon which has

occurred in nature and has evolved over a period of time without any artificial

disturbance. These include networks such as:

1. The Internet It is a network of computers and routers connected by wired

and wireless links. The study takes place namely at the router level and the

autonomous level. The number of nodes at the router and domain level were

150000 in 2000 and 4000 in 1999[13].

2. WWW In this network a web-page represents a node and a hyper-link con-

necting two web pages is an edge. A recent study estimated the size to be

11.5 billion in January 2005[13]. With a large amount of data transferred

and collected everyday by satellites and other sensors, retrieval from WWW

is an interesting research topic. Further details can be found algorithms such

as Page Rank [14] or those proposed by Kleinberg [15].

3. Cellular Networks Molecules of a cell are represented as nodes and bio-

chemical interactions or regulatory relationships between the molecules are

represented as edges [13, 16].

4. Neural Networks Nodes are represented as neurons and an existing chem-

ical or electrical synapse represents an edge. Neural Network study is used

to understand the functioning of the brain, mainly its capacity to store and

process information [17].

5. Scientific co-authorship Scientists act as nodes and an edge exists between

two scientists if they have worked on the same paper together. The Erdos

Number project is used to study the co-authorship structures of successful

scientists[18, 19].

6. Movie actor collaborations In this network, movie actors are nodes and

edges represent the appearance of pairs of actors in the same movie. Research

interests include the study of combination of actors that makes a successful

movie [20].

13

Types Examples
Blog Wordpress, Blogspot, LiveJournal, BlogCatalog

Forum Yahoo answers, Epinions
Media Sharing Flickr, You Tube, Justin.tv, Ustream, Scribd
Microblogging Twitter, foursqare, Google buzz

Social Networking Facebook, MySpace, LinkedIn, Orkut, PatientsLikeMe
Social News Digg, Reddit

Social Bookmarking Del.icio.us, StumbleUpon, Diigo
Wikis Wikipedia, Scholarpedia, ganfyd, AskDrWiki

Table 2.1. Various Forms of Social Media

2.3 Emergence of Social Media

Over the past decade we have witnessed the emergence of Web and social media,

thus bringing people, devices and ideas closer in many new ways. Millions of users

are playing, tagging, working, and socializing on-line, demonstrating new forms of

collaboration, communication, and intelligence that were hardly imaginable just a

short time ago. A number of web applications and social networking sites have been

cropping up, drawing people together and empowering them with new forms of

collaboration and communication. Traditionally, media such as TV, radio, movies,

and newspapers had a selected number of broadcasters who used to decide upon

which information to be produced and how it should be distributed to the masses.

The majority of users are consumers who are separated from the production and

broadcasting process. The communication pattern in the traditional media is one-

way traffic, from a centralized producer to widespread consumers. A user of social

media, however, can be both a consumer and a producer. With hundreds of millions

of users active on various social media sites, everyone could be a media outlet.

Table 2.1 shows a list of various social media websites that are currently present

in the market. Although they are classified into different types, the underlying

factors of freedom to broadcast information remain the same amongst all.

During the recent uprising in Egypt, the outrage, animosity and antagonism

against the current regime of Hosni Mubarak was best followed real-time at #Cairo

and #Egypt on Twitter. The influence of mass effervescence, the conviction that

the protesters display and its myriad manifestations is translating into what is be-

ing seen and reported on the streets of Egypt. Thus, social media namely Twitter,

14

Rank Site Rank Site
1 google.com 11 blogger.com
2 facebook.com 12 msn.com
3 yahoo.com 13 myspace.com
4 youtube.com 14 go.com
5 amazon.com 15 bing.com
6 wikipedia.org 16 aol.com
7 craigslist.org 17 linkedin.com
8 twitter.com 18 cnn.com
9 ebay.com 19 espn.go.com
10 live.com 20 wordpress.com

Table 2.2. Top 20 Websites in the US

Facebook and YouTube brought forth a revolution which had a consequential role

to play in Egypt.The success of social media relies on the participation of users.

More user interaction encourages more user participation, and vice versa. For

example, Facebook claims to have more than 600 million active users2 as of Au-

gust, 2011. The user participation is a key element to the success of social media,

and it has helped push eight social media sites to be among the top 20 websites

as shown in Table 2.2(Internet traffic by Alexa on August 3, 2010). Users are

connected though their interactions from which networks of users emerge. Novel

opportunities arise for us to study human interaction and collective behavior on

an unprecedented scale and many computational challenges ensue, urging the de-

velopment of advanced computational techniques and algorithms.

2.4 Social Networks

A network constructed using the interactions between people is termed as a social

network. Usually a social network consists of People as nodes and some form

of previous interaction between them serves as an edge between two people in

the network. This interaction could range from one person knowing another to

two people sharing the same interest. More formally, a social network is a social

structure made of nodes (individuals or organizations) and edges that connect

2http://www.facebook.com/press/info.php?statistics

15

Figure 2.2. LinkedIn Social Network for Akshay Ghurye

nodes in various relationships like friendship and kinship. Thus in a generic sense,

a social network can be constructed as based on the requirement specifications

of the analysis. The network structure and topology changes from user to user

based on what or how one wants to extract or utilize the social interactions within

the network. Thus, we can say that Social Networks are a part or subset of a

larger set of networks which form the Social Media. Millions of users are playing,

working, and socializing on-line. This flood of data allows for an unprecedented

large-scale social network analysis millions of actors or even more in one net- work.

Examples include email communication networks [21], instant messaging networks

[22], mobile call networks [23], friendship networks [24]. The next question that

needs to be answered is how should one use this rich interaction data which captures

users’ sentiment which is otherwise hard to tap into? As these large-scale networks

combined with unique characteristics of social media provides a unique opportunity

for researchers and practitioners alike to extract meaningful insights which are

otherwise not possible by using sophisticated techniques such as data mining and

machine learning. We now some properties of social networks [3].

• Scalability Facebook itself has 600 million users with more than 10 billion

connections between them. Thus, the sheer size of these networks impedes

the use of existing network science techniques.

16

• Heterogeneity Multiple types of entities can be involved in one network.

For many social bookmarking and media sharing sites, users, tags and content

are intertwined with each other, leading to heterogeneous entities in one

network. Analysis of these heterogeneous networks involving heterogeneous

entities or interactions requires new concepts.

• Evolution People update their status, profile and express thoughts and

views in a regular and a timely manner thus making these networks temporal.

For example, in content sharing sites and blogosphere, people quickly lose

their interest in most shared contents and blog posts. New users join in, new

connections establish between existing members, and senior users become

dormant or simply leave. Capturing these dynamics requires the network to

behave in a temporal fashion thus calling for temporal network analysis [25].

• Collective Intelligence In social media, people tend to share their con-

nections. The wisdom of crowds, in the form of tags, comments, reviews, and

ratings, is often accessible. The meta information, in conjunction with user

interactions, might be useful for many applications. It remains a challenge to

effectively employ social connectivity information and collective intelligence

to build social computing applications.

• Evaluation Privacy and lack of ground truth are a few frequently encoun-

tered problems for many social computing tasks, which further hinders some

comparative study of different works. Thus evaluation of results following

social network analysis is usually the most challenging part.

Social networks of various kinds demonstrate a strong community effect. That

is, actors in a network tend to form closely-knit groups which interact more fre-

quently with members within the group than those outside the group. Detecting

cohesive groups in a social network (i.e., community detection) remains a core

problem in social network analysis. The importance and necessity of the same is

described in the following section and will be the main theme of this thesis.

17

Figure 2.3. Zachary’s Karate Club. Figure taken from [1]

2.5 Community Detection

Communities as introduced above are groups also called clusters, factions, cohesive

subgroups or modules in different contexts of nodes or individuals who tend to

interact with each other on a regular basis. Traditionally, “the founders of sociology

claimed that the causes of social phenomena were to be found by studying groups

rather than individuals” [26, 3]. The concept of community detection has been

present in the network science literature for a long time. One of the oldest known

example of community detection in social networks is that of Zachary’s karate

club [27]. On applying certain community detection algorithms, it was found that

the group was divided into two factions where the central or highly influential

people in the groups were the karate club master and his student. On evaluating

the result with the ground truth it was revealed that there was a conflict between

the master and his student which led the group to be split into two communities.

Thus from the social network of friendships we can find clues to the latent schism

that eventually splits the network into separate groups as shown in Figure 2.3.

Community detection is a very handy tool and is being used by a lot of com-

panies to better understand their customers. For example, grouping customers

with similar interests in social media renders efficient recommendations that ex-

18

pose customers to a wide range of relevant items to promote sales and improve

revenues. Communities can also be used to visualize a large network, in terms of

groups thus enabling problem solving at group level, instead of node level. In this

thesis, we shall delve more into the concepts of community detection by looking

into sophisticated ways of detecting inherent groups.

Thus by taking into perspective the concepts explained in this chapter, the

following section formally defines the thesis.

2.6 Problem Definition

The emergence of social media has resulted in collection and storage of large

amounts of data capturing people’s sentiments, beliefs, attributes, actions and

preferences. Due to the enormity of data, using mathematical tools for analysis in-

volves extreme computational complexity thus making these tasks more difficult to

perform. In this thesis we specifically consider the problem of community detection

within social networks and propose a fast algorithm using game theoretic approach

to graph clustering based on the one proposed by Mandala et al. [9]. In order to re-

duce the computational complexity we deploy parallel programming using threads

in the above mentioned algorithm. Once the communities are detected we propose

an entropy based approach to find commonalities amongst nodes in a given com-

munity and thus across communities. This approach in general can be extended to

analyze any community once it has been detected provided the nodes have network

independent attributes. Eventually we evaluate these two algorithms on Facebook

social networks from 100 universities to determine the consistency among internal

communities spanning across different universities.

Chapter 3
Literature Review

Community detection has proven to be valuable in a series of domains such as

web search, biology, bibliometrics and because of the emergence of social media,

its application in the field of social network analysis is gaining importance day by

day. In this chapter, we shall first explain a few concepts which are present in the

social network literature and then give a comprehensive summary of the literature

currently present in the field of community detection applied to social media. In

this thesis, we have used the words “social networks” and “social media networks”

interchangeably. Social networks are a part of social media networks and can hence

be abstracted from them.

3.1 Community Detection

Social media networks provide an elegant representation of social media data con-

taining on-line objects as their vertices and the relationships/interactions among

them as edges. The vertices of these networks can represent different types of

objects such as user profiles, content items (e.g. blog posts, photos, videos) and

even metadata items such as topics, categories, tags. The edges of a social media

network can be different types such as simple, weighted and directed. Due to the

abundance of related works and the variety of adopted perspectives, there is no

unique and widely accepted definition of a community. Community definitions

are formulated with reference to the network structure of the system under study

and are commonly bound to some property either of some set of vertices or of the

20

entire network. Also, one must define a community with respect to the domain

under observation. In this thesis, we have restricted ourselves to the domain of

social media networks. Social media networks consist of millions of vertices and

edgesand share some common patterns such as scale-free distributions, the small

world-effect, and strong community structure [3]. At the most abstract level, given

a network G = (V,E) a social community can be defined as a subgraph VC ⊆ V of

the network comprising of a set of entities that are associated with a common ele-

ment of interest. These entities can be varied as a real-world person, topic, a place

or an activity. For example, in a blogging network, the set of all bloggers articles,

tags and comments related to a specific topic constitutes to a community. These

communities can be explicit or implicit [28]. Explicit communities are created as

a result of human decision and acquire members based on human consent. Exam-

ples of explicit social communities are Facebook R© and Flickr R© groups. Implicit

communities on the other hand are assumed to exist in the system but need to

be discovered. Implicit communities enable the study of emerging phenomenon

within social systems and hence are studied more extensively than explicit com-

munities. Social media networks include networks formed using blogs, tweets and

feeds that users post on social media sites such as Twitter R© whereas social net-

works are those formed by connecting user profiles on social networking sites such

as Facebook R©. Although the literature review has been done pertaining to so-

cial media networks, in this thesis we shall focus on finding implicit communities

present within social networks.

3.2 Definition of a Community

Over the years, researchers have tried to define the essence of a community based

on the network structure but till date no concrete definition has been established

for the same [9]. We shall now provide some of the globally adopted definitions.

The most established notion of community-ness within a network is based on the

principle that some sets of vertices are more densely connected to each other than

to the rest of the network. Communities are classified according to the network

structure as local (connected subset of vertices) or global (the entire network). In

this thesis we shall summarize the various definitions as presented in [28] but more

21

detailed definitions are presented in [29]. Definitions of local communities emerged

from social studies focusing on the concepts of subgroup cohesiveness and mutu-

ality. Some of these definitions are cliques, n-cliques, n-clubs, n-clans, k-plexes,

k-cores, LS and Lambda Sets as shown in [30, 31, 32]. Most of these definitions are

strict in its own sense and hence have very limited application in social networks.

Based on a node level, the internal degree and external degrees of subgraphs have

been used to define a community. The internal degree of a node is the number

of edges that connect it to vertices of the same community. The external degree

is defined as the number of edges that connect it to the vertices outside the com-

munity. Other such local definitions include local and relative density [33], local

modularity [34] and subgraph modularity [35]. Moving onto global definitions of

communities, these relate to the communities within the network as a whole as

opposed to a set of nodes in the network. At the outset, we want communities

to be of the form that the number of edges between nodes in a given community

are comparatively more than those between nodes of different communities. On

these lines, calculating the actual number of inter-community edges is complex,

normalized measures such as normalized cut [36] and conductance [37] have been

used for quantifying the amount of separation between communities. The concept

of modularity as explained by Newmann and Girvan in [38] relates to a global com-

munity structure as opposed to individual communities. It quantifies the extent

to which a given partition of a network into communities deviated from a random

network with the same degree distribution. Another global community definition

is based on a similarity measure between nodes in a network. Examples of these

include embedding nodes in n-dimensional Euclidean space and then use a dis-

tance measure such as Manhattan distance or Euclidean distance to cluster nodes

which are closer to each other. One measure is to compute the Pearson correlation

between the rows of adjacency matrix or random-walk based similarities [28, 39]

another one being the overlap between the neighborhoods of two vertices given

by structural equivalence [40]. The above mentioned methods relate to defining a

community after they are found. An alternative means of defining a community

is by considering some community formation process taking place on the network

under study. This is given by the clique percolation method [41] which considers a

k -clique template that adds on in a network thus forming a community consisting

22

of the union of all k -cliques that are adjacent to each other. Having given an

overview of a community, we now proceed to review some community detection

algorithms found in the literature.

3.3 Community Detection Algorithms

Community detection algorithms have been in existence since the foundations of

Graph Theory. Traditionally algorithms used for graph partitioning were used

for community detection mainly because of the underlying similarity in finding

disconnected subgraphs. Community detection is different from graph partition-

ing mainly because neither the number of subgraphs nor their sizes are required

as an input and the resulting communities may not be a partition (overlapping

communities). On the other hand graph clustering is another aspect which draws

similarity to community detection and has been used interchangeably with com-

munity detection with the only distinction being the number of communities need

not be an input in community detection. The immense scale and evolving nature

of social media makes it impossible apriori to estimate the number of communities

in a social network. Although the number of community definitions are large, the

number of methods for detecting communities are even larger. We now present a

brief summary of existing community detection methods in the literature based on

a classification schema as presented in [28].These are namely (a) cohesive subgraph

discovery, (b) vertex clustering, (c) community quality optimization, (d) divisive,

and (e) model-based. Although a large number of algorithms can be conveniently

classified under each of these groups, only a few algorithms have been reviewed in

this chapter.

1. Cohesive Subgraph Discovery As the name suggests, the communities de-

tected by these methods must satisfy certain structural property constraints

to be considered as valid communities. The structural properties a commu-

nity should satisfy include k -cliques, weak/strong communities. The clique

percolation method [41] falls under this class.

2. Vertex Clustering The types of methods in this class are related to tra-

ditional clustering methods such as k -means clustering and hierarchical ag-

23

glomerative clustering. Nodes in the network are assumed to be vectors in

space where pair wise distances between vertices can be calculated. An ex-

ample of this class is the spectral graph clustering method presented in [42]

which uses the spectrum of the graph for mapping graph vertices to points

in a low-dimensional space where the cluster structure is much simpler to

evaluate.

3. Community Quality Optimization The methods in this class work on

the concept of optimizing some graph based measure of community quality.

The definition of modularity as described in [38] is an example of a graph

based measure of community quality. Approximate modularity maximization

algorithms such as extremal optimization [43], simulated annealing [44] and

spectral optimization [45] are examples of community quality optimization

algorithms.

4. Divisive These methods rely on identification and removal of network ele-

ments such as edges and vertices that are positioned between communities.

Edge betweeness is a property which describes the importance of an edge

(i.e. its importance in connecting two communities such that removing the

edge will result in separate subgraphs) in the network. Divisive algorithms

aim at removing edges with high betweeness values. The first algorithm was

proposed by Girvan and Newman [46] which progressively removes the edges

of a network based on edge betweeness measure until communities emerge as

disconnected components of the graph.

5. Model-based This is a broad category of methods that either considers a

dynamic process taking place on the network which reveals its communities

or an underlying model of statistical nature that can generate the division of

the network into communities. The label propagation algorithm by Raghavan

et al., [19] generates communities by grouping together nodes with similar

labels, thus extracting communities by allowing nodes to take on labels or

join communities which most of its neighbors belong to.

24

Figure 3.1. Examples of tag communities discovered by the local method of Papadopou-
los et al. [2]. The presented communities were created using computers, history, music,
science, film and animals as seed nodes.

3.4 Community Detection in Social Media

The large amount of tags attached to online content by users of Social Media

applications creates the need for imposing organization on the flat tag spaces of

collaborative tagging applications. This can be achieved by grouping tags based on

the topic they are associated with. Recently Papadopoulos et al., [2] in their work

defined an efficient community detection scheme that could discover the commu-

25

nity around a seed tag. Figure 3.1 presents several examples of tag communities

discovered on a tag network created from LYCOS iQ community question an-

swering application. The domain of personalized search and recommendation is

growing day by day with search engines trying to provide as detailed and specific

information as possible to a given user. More specifically, community detection

can aid personalized search with clusters of tags acting as effective proxies of

user’s interests. Tsatsou et al [47] integrate the results of tag community detection

in a personalized ad recommendation system and compared against conventional

nearest-neighbour tag expansion schemes [28]. Events constitute an important

unit of organization for social media content since a large part of user contributed

content revolves around real-world events. Community detection has found ap-

plications in the detection and tracking of events from social text streams. The

framework provided by Zhao et al. [48] incorporates textual, social and temporal

aspects of blog feeds with the goal of tracking events. The N -cut graph parti-

tioning method of Shi and Malik [36] is used twice in this framework: once to

cluster a graph of blog posts connected by their textual similarity into topics, and

at a second level, to cluster a graph of temporal activity profiles among users into

communities that correspond to real world events. The heterogeneity present in

network connections can hinder the success of collective inference. People can con-

nect to their relatives, colleagues,college classmates, or some online friends. These

relations play different roles in helping determine targeted behaviors. For instance,

the Facebook R© contacts of the first author in [3] can be seen in three key groups,

as shown in Figure 3.2 friends at Arizona State University (ASU), undergraduate

classmates at Fudan University, and some high-school friends in Sanzhong [3]. For

example, it is reasonable to infer that his friends at ASU are presumably inter-

ested to know if Lei (first author) is watching an ASU football game, while his

other friends at Fudan and Sanzhong are probably indifferent to his excitement.

In other words, users can be involved in different relations, or a social network

can consist of heterogeneous relations. Therefore, it is not appropriate to directly

apply collective inference to this kind of networks as it does not differentiate these

heterogeneous relations. It is recommended to differentiate relations for collective

classification. In [10, 11] the authors study the structure of social networks of

students by examining the graphs of Facebook R© friendships at five American uni-

26

Figure 3.2. An example of a users contacts in Facebook R©, involving three different
relations: friends met at ASU, undergraduate classmates at Fudan University, and some
high school friends at Sanzhong [3].

versities at a single point in time. They investigate each single-institution networks

community structure and employ graphical and quantitative tools, including stan-

dardized pair-counting methods, to measure the correlations between the network

communities and a set of self-identified user characteristics (residence, class year,

major, and high school).Their study illustrates how to examine different instances

of social networks constructed in similar environments and emphasizes on the fact

that the array of social forces that combine to form communities, leads to compar-

ative observations about online social lives that can be used to infer comparisons

about offline social structures.

27

3.5 Overlapping Community Detection in Social

Networks

We now discuss some background work which is done in detecting overlapping

communities in social networks. In [49] the authors propose an algorithm to find

overlapping communities by aggregating the community perspectives of friendship

groups derived from egonets. One plus point about their algorithm is that once the

overlapping communities are found, one can also identify key nodes which bind the

communities together. Nguyen et al. [50] propose a DOCA algorithm which is very

imited parameter dependent and only requires local knowledge about the network

topology. The communities that it detects is deterministic i.e. there is no fuzzi-

ness involved in the overlap. They demonstrate the performance on a few social

networks and their results suggest that overlapped nodes tend to be active users

who participate in multiple communities at the same time. A similar algorithm is

proposed by Padrol-Sureda et al. in [51] to find overlapping communities faster.

Pizzuti in [52] proposes a genetic algorithm which optimizes a fitness function

to identify densely connected groups of nodes by employing it on the line graph

corresponding to the network. Goldberg et al. take a different perspective at com-

munity detection in their paper [53]. They gather a set of axioms from previously

published literature to define overlapping communities and modify a previously

existing algorithm Iterative Scan [54] to satisfy these constraints. Moving away

from a social network perspective, Sawardecker et al. in [55] apply three group

identification methods namely modularity maximization, k-clique percolation and

modularity-landscape surveying to a set of network ensembles. They find that

modularity landscape surveying method detects the heterogeneity in node mem-

berships better than the other two. A game theoretic framework for overlapping

communities is provided by Chen et al. in [56]. Using the concept of risk, reward

and utility, nodes act as players and try to maximize their own utility function by

either joining or leaving communities untill an equilibrium is reached. Psorakis et

al. [57] use a Bayesian nonnegative matrix factorization (NMF) model to detect

overlapping communities. Recently, a comprehensive survey done by Xie et al. [58]

presents a list of most community detection algorithms present in the literature.

They also propose a framework to evaluate an algorithm’s ability to assess the

28

extent of detection. That is once communities are formed, they assess percentage

of nodes which belong to multiple communities and how many communities does

each node belong to. Their results on various networks suggest that less than 30%

of nodes are present in overlap and most of them belong to 2 or maximum 3 com-

munities. Finally Gregory proposes a two-phase method for detecting overlapping

communities [59]. In the first phase the network is transformed by splitting vertices

and then using a disjoint community detection algorithm already present in litera-

ture to detect communities. This allows algorithms which provide hard clustering

to be used to find overlapping communities within networks. In chapter 4 we will

focus on the fast model based community detection by Mandala et al [9]. Most of

the discussion in social networks need to be taken in real time, thus necessitating

a faster real-time algorithm.

Chapter 4
Methodology

Community detection in social networks is gaining importance day by day. Having

described various algorithms and methods present in the literature in the previous

chapter, this chapter goes on to extensively describe another algorithm which can

be used to find overlapping clusters. We first explain the importance and unique-

ness of the algorithm followed by the algorithm and finally the computational

complexity aspects of the same.

4.1 Introduction

As explained in the previous chapters, we have seen the gaining importance of

social media analytics and how community detection can be used to extract previ-

ously unknown details existing within network interactions. All of the algorithms

described in the previous chapter were used to detect strict clusters i.e. a particu-

lar node can belong to only one community or cluster depending on the algorithm

being used. But in today’s social networks, people tend to belong to various groups

simultaneously. For example, in a friendship network between various individuals,

an individual may belong to more than one community simultaneously namely,

his college network, his school network and may be his work place network. Thus

overlapping communities allows us to see nodes which act as bridges between two

or more communities. There have been several algorithms to detect overlapping

clusters. One of the most popular technique for detecting overlapping clusters is

the Clique Percolation Method (CPM)[41]. Their algorithm starts by enumerating

30

all k-cliques which are cliques of size k. Then, a cluster is defined as a collection of

adjacent k-cliques. Any two k-cliques are adjacent if they share k − 1 vertices. Li

et al [60] propose a two-phase algorithm to cluster named entities - people, organi-

zations, etc. The first phase is similar to CPM (with k = 3). In the second phase,

any remaining cliques are combined based on the content. Another interesting

approach based on seed expansions is proposed by Wei et al [61]. The main idea

is to compute initial non-overlapping clusters using existing spectral modularity

optimization techniques. Then each of seed clusters are expanded in a locally op-

timal sense leading to overlapping clusters. Although both these methods do give

us overlapping communities, they are computationally taxing. For our analysis we

and use the algorithm proposed by Mandala et al. [9] which utilizes a game the-

oretic approach to graph clustering where nodes act as players and the algorithm

converges to a Nash Equilibria. The reason we choose this algorithm is because it

is computationally more efficient and can be altered to find overlapping as well as

strict communities. We now discuss the algorithm in detail.

4.2 Game-Theoretic Algorithms

The game theoretic approach to graph clustering algorithm presented by Mandala

et al. [9] has two forms namely Sequential Best Response (SEBR) and Simultaneous

Best Response (SMBR). The general outline of both the algorithms is as follows.

One provides network parameters as the input. The nodes of the network act as

players and try to compute their best response by calculating their utility based on

a certain cost and reward. The reward is based on joining a particular community

by taking up the community label and the cost is based on how many players from

the entire network have joined the community. The reward function is given by

rv(l; a−v) =
∑
w∈Nv

|l ∩ aw| − ρ
∑

w∈V−v

|l ∩ aw| (4.1)

The first term in the summation equals the vertex taking up a neighbouring label

and the second term maintains the cluster density as the vertex adds labels. The

31

cost function cv(av) is given as follows

cv(av) =
1

2
λv|av|(|av| − 1)

which is the total number of vertices which have the corresponding candidate

labels. The utility of vertex v, Uv, is obtained by combining reward and cost as

shown in Equation 4.2.

Uv(av; a−v) =
∑
l∈av

rv(l; a−v)− cv(av) (4.2)

4.2.1 Sequential Best Response (SEBR)

As mentioned we first assign all the nodes with unique labels. Then we start

with the node labeled 1 and calculate the best response for node 1. If the node

changes its label based on the best response then we say that a node has updated

its label else it keeps its original label. Once node 1 has updated its labels based

on its utility, node 2 calculates its best response taking into consideration label 1’s

updated label. After all the labels compute their best response and new labels,

we calculate the number of nodes that have updated their label from their original

label. If the number of updates is more than zero then we recompute the best

responses for all the nodes based on the new labels. We compute this process till

no more updates are possible. The pseudo code for the algorithm is described in

Algorithm 1

Algorithm 1 SEBR: Sequential Best Response [9]

Input: G = (V,E), ρ, λv, vertex ordering rule
Output: a∗v ∀v ∈ V
set av = {lv} ∀v ∈ V
All vertices are ordered according to vertex ordering rule
loop

Each ordered vertex computes its best response aBRv and updates its action
av ← aBRv
If there are no updates then Exit the loop

end loop
return a∗v = av

32

4.2.2 Best Response Calculation

The best response here relates to a node taking up a label which gives the best

reward. The node keeps on accepting labels till the utility function no longer

provides a positive return. The best response is a set of labels for a given node is a

set of labels which give a positive reward. The algorithm converges when no more

best responses are possible for all the nodes or alternatively no node will give up

his label. Algorithm {Algo:OBR details the steps required to compute the best

response, where the input to the algorithm is a node, a set of potential labels that

it can take along with a few network parameters the details of which are listed

in [9]. The node keeps on adding nodes till the utility is positive.

Algorithm 2 Optimal Best Response [9]

Input: a−v, ρ, λv
Output: aBRv
Compute rv(l; a−v) ∀l ∈ L
Sort labels in the descending order of rewards using any deterministic tie break-
ing rule
Set aBRv = φ
for i = 1 : |L| do

if rv(li; a−v) < λv(i− 1) then
break

end if
aBRv ← aBRv ∪ {li}

end for

4.2.3 Simultaneous Best Response (SMBR)

Similar to SEBR algorithm, we first assign all the nodes with unique labels. Then

we start with the node labeled 1 and calculate the best response for node 1. Node

2 calculates its best response without taking into consideration label 1’s updated

label and so on and so forth. That is, every node’s best response is independent

of the other nodes current round’s best response. Similarly, each node need not

update its label. We continue this till the number of nodes that update their labels

is zero. The pseudo code for the algorithm is described in Algorithm 3.

33

Algorithm 3 SMBR: Simultaneous Best Response [9]

Input: G = (V,E), ρ, λv, ε
Output: a∗v ∀v ∈ V
set T = b 1

1−εc
set av = {lv} ∀v ∈ V
loop

Set Vactive (active vertices) by randomly selecting vertices from V with prob-
ability 1− ε
All active vertices compute their best responses aBRv simultaneously (this op-
eration can be parallelized)
All active vertices update their actions av ← aBRv
if no updates for T consecutive rounds and a ∈ SNE then

Exit the loop
end if

end loop
return a∗v = av

4.3 Parallel Programming

In today’s world, taking into consideration the amount of time people spend on

the Internet, the amount of data being collected every second is enormous. Social

networking website, Facebook R© has 600 million registered users and almost one

third of those are active on a daily basis. Thus, in-order to perform analysis on

this graph of 600 million nodes and almost 10 billion edges, it would take years

for sophisticated algorithms to analyze it. Another example would be Y outube R©

which has daily uploads of almost 20 GB per minute, which results in a large

number of videos. Thus building a tagging graph from these would produce a

graph of almost a billion nodes and few billion edges. Thus, given the scale of

these social media networks, one cannot depend on a single computer to perform

network based analysis. We would therefore require parallelized algorithms. In

this section we explain the basic parallel programming framework and how it can

be applied to the above mentioned algorithms so as to reduce the overall execution

time as well as address scalability.

34

4.3.1 Introduction

Many scientific computations require a considerable amount of computing time.

This computing time can be reduced by distributing a problem over several pro-

cessors. Multiprocessor computers used to be quite expensive, and not everybody

had access to them. Since 2005, x86-compatible CPUs designed for desktop com-

puters are available with two cores, which essentially makes them dual processor

systems. This cheap extra computing power has to be used efficiently, which re-

quires parallel programming. Parallel programming is the simultaneous use of

multiple resources to solve a computational problem. While parallel programming

is much more feasible, it isn’t necessarily any easier. Writing complex and correct

multi-threaded programs is hard. There are many details of concurrency - thread

management, data consistency, and synchronization to name a few - that must be

considered while writing a parallel code. Programming mistakes can lead to subtle

and difficult-to-find errors. Because there is no “one-size-fits-all” solution to paral-

lelism, at times one might find himself focusing more on developing a concurrency

framework and less on solving the original problem.

4.3.2 SEBR v/s SMBR

The Sequential Best Response (SEBR) algorithm takes each vertex from the vertex

list and calculates the best response for that particular vertex. After calculating

the best response for a given vertex i , the vertex i updates its action based on the

optimal best response. Now when we shall calculate the best response for vertex

i+ 1, the updated label of vertex i will be taken into account. That is the vertices

sequentially update their actions once their corresponding best response strategy is

calculated. On the other hand the Simultaneous Best Response (SMBR) algorithm

works in a slightly different manner. As opposed to SEBR, after calculating the

best response for a given vertex i, the vertex i stores its optimal best response but

does not update its actions. Thus, while calculating the best response for node i+1,

the non-updated action of vertex i+1 will be taken into account. Once all the best

response strategies are calculated for a given game, all the vertices simultaneously

update their actions based on their stored optimal best responses. In SMBR, we

can see that calculation of the best response for each vertex will be independent of

35

the other vertex calculation. The property of independent calculations allows us to

parallelize this part of the algorithm. Also, one can see from the analysis presented

in [1] that the number of Best Response calculations will be more in SMBR than

in SEBR thus the computational time, although marginally, is more for SMBR

than SEBR. But as the number of vertices increases linearly the computational

time will also increase. Hence, by parallelizing the above mentioned part of the

algorithm we can decrease the total computational time of the SMBR algorithm.

4.3.3 Parallelization of SMBR

As explained above the computation of best response for each vertex in SMBR is

independent of that of other vertices in the network. Thus we can see that this

part can be parallelized and run on distributed cores or systems to reduce the

computational time on the system. Since we have coded the algorithm in Java

for efficient computation, we exploit Java parallelization as opposed to other well

known approaches such as MPI, OpenMPI, CUDA,etc. There are multiple ways of

performing Java parallelization, namely Fork/Join: Divide-and-Conquer, Pervasive

DataRush: Dataflow Programming, Terracotta: JVM Clustering and Hadoop:

Distributed MapReduce. Below we present a naive approach for parallelizing the

SMBR using threads. A thread of execution is the smallest unit of processing that

can be scheduled by an operating system. Usually a thread exists in a process and

a process can have multiple threads. Usually threads are used to split a process

into parts such that each part is executed separately. Every process runs on a

processor. A processor can have multiple cores. Cores are the central processing

units of a computer. If a computer has multiple cores then as many threads can

be run simultaneously on each core such that the total time is reduced. These

threads need to be created/invoked and certain libraries can invoke these threads.

Threading is very easy if there is a single motherboard with multiple cores on it

but when one uses shared memory and cores from different motherboards then

it becomes more difficult to handle the synchronization between these threads.

Usually this is done using a framework called message parsing interface. Since,

implementation of MPI requires exquisite programming skills as well as knowledge

about parallel programming we will not be discussing its implementation in this

36

(a) (b)

Figure 4.1. (a) SMP Parallel Computer (b) SMP Parallel Program. Figures taken
from [4]

thesis.

4.3.4 Parallel Computing Framework

In general, parallel programming can be performed on any of the following settings

1. Shared Memory Parallel Computers(SMP) relate to a single CPU with

multiple cores and a single memory shared by all the processors as shown

in Figure 4.1(a) These are particularly useful when there is a lot of mutual

communication between the nodes. A parallel program running on SMP

computer consists of one process with multiple threads, one thread executing

on each processor. The process’s program and data reside in the shared main

memory. Because all threads are in the same process, all threads are part

of the same address space, so all threads access the same program and data.

Each thread performs its portion of the computation and stores its results in

the shared data structures. If the threads need to communicate or coordinate

with each other, they do so by reading and writing vales in the shared data

structures [4]. This is shown in Figure 4.1(b). Suited for small scale programs

because as the number of threads increase, the memory requirements increase

exponentially.

2. Cluster Parallel Computers relate to multiple CPUs with a single core

and an independent memory per CPU. These are particularly useful when

37

(a)

(b)

Figure 4.2. (a) Cluster Parallel Computer (b) Cluster Parallel Program. Figures taken
from [4]

there is not much communication between nodes during computation. Usu-

ally a cluster parallel computer consists of multiple interconnected processor

nodes as shown in Figure 4.2(a). There are several back-end processors that

carry out parallel computations. There is also typically a separate front-end

processor; users log into the front-end to compile and run their programs.

There may be a shared file server. Each back-end has its own CPU, a cache,

main memory and peripherals, such as a local disk drive. Each processor is

also connected to the others through a dedicated high-speed back-end net-

work. Unlike an SMP parallel computer, there is no global shared memory;

38

each back-end can access only its local memory. Thus, a cluster computer

is said to have a distributed memory. A parallel program on a cluster par-

allel computer consists of multiple processes, one process executing on each

back-end processor. Each process has its own, seperate address space. All

processes execute the same program, a copy of which resides in each pro-

cess’s address space in each back-end’s main memory [4]. This frame work

uses a concept called Message Parsing where messages are passed to com-

municate between independent CPUs as shown in Figure 4.2(b). They are

mostly useful for large scale programs with minimal communication between

nodes. Although initially the running time decreases, as the number of nodes

increase, the overhead memory and computation time required for message

passing between the nodes also increases exponentially.

3. Hybrid Parallel Computers refer to a combination of the SMP and cluster

parallel computers which include multiple CPUs with many cores and each

CPU has multiple shared memory. This is shown in Figure 4.3(a). In general,

a hybrid parallel computer is a cluster in which each back-end processor is an

SMP machine. It has both shared and distributed memory. A hybrid parallel

computer is programmed using a combination of cluster and SMP parallel

programming techniques. Like a cluster parallel computer, each back-end

runs a seperate process with its own address space. Each process executes a

copy of the same program and each process has a portion of the data [4]. The

usual program runs in the way it is shown in Figure 4.3(b). These computers

are usually used for solving very large problems and the only drawback is

that they cost a lot of money.

4.4 Computational Complexity

To parallelize SMBR, we need to have either a cluster parallel computer or hybrid

parallel computer because, the best response calculation for each node is indepen-

dent of other nodes in the network. We now explain the reduction in running time

for the SMBR algorithm when running in parallel as opposed to its sequential

implementation. In order to analyze the computational complexity of both the

39

algorithms, we need to know (a) complexity of computing a best response and (b)

number of best responses computed. The former can be analyzed easily as there

are three main operations in Algorithm 2. Firstly, note that only labels adopted

by neighbors need to be considered as all other labels will carry negative reward.

In order to compute the reward, we need to total the number of neighboring ver-

tices and total the number of vertices who have chosen a given label. The former

requires O(|Nv|) operations while the latter is constant time if we maintain and

update an label frequency distribution. Secondly, sorting can also be done in lin-

ear time, O(|Nv|). Thirdly, O(ov) computations are required to choose the right

number of labels. Therefore, the total complexity of vertex v to compute a best

response is O(2|Nv|+ov). On an average, BR computation requires O(d̄+ ō) where

d̄, ō are the average degree and overlap of the graph respectively.

We find that the number of best responses required by SMBR is always greater

than that for SEBR. Moreover, the difference increases as the network size grows.

Our conjecture is that the number of best responses required vary as O(|V |log|V |)
and O(|V |log|V |2) for SEBR and SMBR respectively. It follows that the overall

complexity is nearly linear in number of edges as d̄|V | = 2|E|. Thus, we see that the

total number of best response calculations vary as O(|V |log|V |) and O(|V |log|V |2)
for SEBR and SMBR respectively. If we implement the SMBR algorithm in parallel

then the best response calculations would reduce to O(log|V |2) that is assuming

O(|V |) threads are running simultaneously. This implies |V | computations per

iterations are performed simultaneously as opposed to being computed sequentially

as before. The computational aspect of community detection will be demonstrated

using an example in the next chapter.

4.5 Measuring Parallelization

A program’s problem size, N , is the number of computations the program performs

to solve that problem. The particular problem’s algorithmic structure and input

dataset determines how the problem size is measured. The problem size also

relates to the computational complexity of the problem at hand. In general, the

problem size is defined so that the amount of computation is proportional to N .

A program’s running time, T is the amount of time the program takes to compute

40

the answer to a problem. Many factors influence T . The computer’s hardware

characteristics– such as CPU clock speed, memory speed, caches and so on–affect

T ; the faster the computer, the shorter the running time. T depends on the

problem size; the larger the problem, the longer the running time. Furthermore,

the algorithm used to solve the problem determines how quickly T increases as N

increases; an O(NlogN) algorithm’s running time will not grow nearly as quickly

as O(N2) algorithm’s. T also depends on how the program is implemented; the

same algorithm can sometimes run faster when coded differently. T depends on

the number of processors K; adding more processors reduces the running time.

Thus according to [4] we use the notation T (N,K) to emphasize that the running

time is a function of the problem size and the number of processors. We use the

terminology Tseq(N,K) to represent a sequential implementation of the code and

Tpar(N,K). A program’s speed S, is the rate at which program runs can be done.

Speed is the reciprocal of running time is given by

S(N,K) =
1

T (N,K)
(4.3)

where T is measured in seconds per program run, S is measured in program runs

per second. A programs speedup is the speed of the parallel version running on K

processors relative to the speed of the sequential version running on one processor

for a given problem size N .

Speedup(N,K) =
Spar(N,K)

Sseq(N, 1)
(4.4)

Thus on substituting Equation 4.3 in equation 4.4 we get the following equation.

Speedup(N,K) =

1
Tpar(N,K)

1
Tseq(N,1)

=
Tseq(N, 1)

Tpar(N,K)
(4.5)

Ideally a parallel program should run 2 times faster on 2 processors and 4 times

faster on 4 processors. Thus the speedup should equal K. This is the ideal case

which in reality may not happen. This is measured by a metric known as efficiency

41

which captures how well the program runs as compared to an ideal case.

Efficiency(N,K) =
Speedup(N,K)

K
(4.6)

We will be using speedup and efficiency to check how well our program runs when

implemented in parallel.

42

(a)

(b)

Figure 4.3. (a) Hybrid Parallel Computer (b) Hybrid Parallel Program. Figures taken
from [4]

Chapter 5
Analysis

In the previous chapters we have developed a basic understanding of community

detection methods and how it has been applied in social media applications. We

also described the algorithm which we shall be using for our analysis. In this

chapter we focus on implementation of the method to analyze social networks

from various universities. We start off by explaining the experiments and analysis

that we shall perform followed by the data description. We then implement the

algorithm on the data and this chapter concludes with the.

5.1 Experimental Design

Though a number of methods have been described in the literature for identifying

communities within a network, not many deal with analyzing the information once

the communities have been discovered. Usually every node in a network has a set

of attributes which describe its uniqueness. For example, a Facebook R© profile of

an individual usually represents his characteristics outside the network. So once a

community is detected inorder to learn more about the nodes in the community

one should look into the attributes of all the nodes in the network. Ideally, the

way networks are formed are decided by the way these individual communities

shape up within the networks. Thus, analyzing these communities is as important

as their detection. We present a unique way of analyzing the pattern within a

community once they are formed. Further, overlapping communities tend to give

a different perspective as opposed to disjoint communities. Thus analyzing them

44

becomes all the more difficult. In the literature, a lot of work has been done in

understanding mixing patterns within disjoint communities. Whereas in the case

of overlapping structures some work has been done in comparing the community

structure to the ground truth but no work has been done in finding ways to look

at these communities when the ground truth is unavailable. As in most real world

social networks, ground truth is rarely available thus making the task of community

detection a data mining task as opposed to a machine learning one. The lack of

ground truth makes analyzing these communities more interesting because the

analysis from one algorithm may lead to communities which are different than

those found using another. As a result the conclusions drawn though relavant are

slightly different than the other ones. Below we propose a way to analyze these

overlapping communities so as to draw relevant and potentially useful conlcusions.

5.1.1 Detecting Overlapping Communities

Inorder to find the overlapping communities we use the SEBR algorithm described

in chapter 4. The input to the algorithm is a graph in edge list format along with

a few parameters and the output is a set of communities with each community

consisting of a set of nodes along with their properties. The input is in text format

and the output is also in text format with each community being a seperate text

file. This output format allows us to easily analyze individual communities after

they have been detected so that we can derive useful conclusions from the same.

For all our experiments the parameters of density and loss in fitness of a node by

belonging to an additional cluster are set as follows ρ = 0.1, λv = 1.8. ρ refers to

the cluster density and is set to one because most real world networks exhibit this

density [9]. The value of lambdav refers to the cost a node has to pay to join a

cluster. The reason for choosing this value is detailed in [9]. We also compute and

store other details such as running time, number of communities, number of best

responses and the number of rounds until the algorithm converges.

5.1.2 Parallel Implementation

As described in section 4.5 the SMBR algorithm can be parallelized on a multicore

processor so as to improve the overall computation time. In this experiment we

45

write a code to run the SMBR algorithm in parallel with other algorithms and

compare the results in section 5.4. For the parallel implementation we use a Java

library called Parallel Java [4] which enables us to implement the code on multiple

cores depending on the type of system that we use. We compare the running time

of the SMBR algorithm when run in parallel and otherwise and see the apparent

difference in implementing these algorithms alternatively.

5.1.3 Analyzing Communities

As discussed earlier, inorder to derive inference from the communities, we need

to analyze these communities individually. We develop a novel way to anaylze

the communities. The objective is to find the attribute that is most common or

best describes the behaviour of the community. Let xi be a node in a derived

community. Then Ai = A1
i , A

2
i , A

3
i , . . . , A

k
i represents the attribute set for a node

xi where Aki represents an attribute k of node xi. Once we have the attribute

set for all the nodes in the community we shall compute the uncertainty that

each of these attributes bring to the community. In order to do that we use the

concept of entropy as explained by Shannon in his ground breaking paper titled “A

Mathematical Theory of Communication” [62]. The formula for entropy is given

as:

H = −K
n∑
i=1

pi log pi

where K is a positive constant and pi in the probability of a label i occuring in the

dataset. In our case the above equation can be generalized for each attribue Ai to

compute its uncertainty.

H(Aj) = −K
n∑
i=1

p(Aj = i) log p(Aj = i)

where H(Aj) is the uncertainty within attribute Aj for a given community set.

Once we compute the uncertainty for all the attributes within a community set,

we rank them in the order of increasing entropy. Since entropy refers to the uncer-

tainty, higher the value more the uncertainty hence the attribute is hard to guess.

In order to rank them, we give a score of n among n attributes to the one that

46

ranked the highest and 1 to the lowest. Thus if there are n attributes, all of them

get ranked accordingly. So if there are m communities we get m such rankings

from all the communities. Let Sm be the number of nodes in a given community.

Thus, we now do a weighted average for each attribute across all communities.

Avg(Ak) =

∑m
i=1Rank(Aki)Si∑m

i=1 Si

where Avg(Ak) is the weighted average score of a given attribute and takes a value

between 0 and 1. After getting the scores for all the attributes, we again rank them

and find the one that is most highly ranked. That attribute is the most dominant

one averaged across all communities. Results are presented in Section 5.3.

5.2 Data Description

We used the Facebook100 dataset which contains the facebook details of students

from 100 US Universities as of September 2005 [10, 11]. The dataset consists of

two files namely the edge set and the node set. The edge set is represented in

the form of an adjacency matrix amongst the people in a particular university.

The node set on the other hand represents the detials about each person in the

university. The node set is represented in the form as shown below:

<node id><second major><gender><major index><year><dorm>

<high school><student fac>

All the student attributes are annonymized; hence it is difficult to decrypt them

but some of them attributes can be decrypted such as

• <gender>: {1=male;2=female}

• <student fac>: {1=undergratuate student ;2=graduate student}

The data has been presented in .mat file or MATLAB files. We have converted

those files to simple text files representing an edge list and a node list. The graph

details of a sample set of universities is presented in Appendix A. Now that we

have discussed the experimental design and the data, we shall show the results of

our experiments. First we shall discuss the results for individual communities in

47

(a) (b)

(c) (d)

Figure 5.1. (a) The variation in the number of communities detected using SEBR Al-
gorithm v/s number of edges (b) The variation in the number of communities detected
using SMBR Algorithm v/s number of edges (c) The variation in the number of com-
munities detected using SEBR Algorithm v/s number of nodes (d) The variation in the
number of communities detected using SMBR Algorithm v/s number of nodes.

section 5.3. Then, we compare the running time and computational complexity

for the SMBR algorithm vs SEBR algorithm in section 5.4.

5.3 Clustering Analysis

Having described the experimental setup, we ran the algorithm mentioned in chap-

ter 4 over the datasets as described in section 5.2. The number of nodes that we

ran the algorithm on ranged from 769 for Caltech to 41554 for Pennsylvania State

University. While the number of edges ranged from for 16556 of Caltech to 1590655

of University of Texas. Note that we have used two algorithms for our analysis.

One is Sequential Best Response (SEBR) and the other one is Simultaneous Best

Response (SMBR). We plot the graph of number of rounds where the players play

a game v/s the number of nodes and edges. These are shown in the Figures 5.1(a)

48

(a) (b)

(c) (d)

Figure 5.2. (a) The variation in the number of best responses computed using SEBR
Algorithm v/s number of edges (b) The variation in the number of best responses de-
tected using SMBR Algorithm v/s number of edges (c) The variation in the number of
best responses detected using SEBR Algorithm v/s number of nodes (d) The variation
in the number of best responses detected using SMBR Algorithm v/s number of nodes

and 5.1(b) and Figures 5.1(c) and 5.1(d). From these figures we can see that the

number of clusters tend to increase with the increase in number of edges both in

the case of SMBR as as well as SEBR algorithm. This suggests that the choice of

the algorithm does not impact the formation of the clusters. Keeping this in mind

we shall now see the variaion in number of Rounds (Best response calculations

) done by both the algorithms. This is shown in Figures 5.2(a) and 5.2(b) and

Figures 5.2(c) and 5.2(d). One thing that can be seen is the number of best

response calculations for SMBR is much higher than SEBR. This suggests that

SMBR requries more computations to reach Nash Equilibria becasue the updates

take place globally as opposed to locally. Thus for nodes to update their labels,

they have to wait till all the other nodes have finished updating their labels. This

increases the overall number of rounds but there is not enough increase in the

computation time as compared to SEBR algorithm. The reason for this being, we

49

only allow a fraction of players to participate in a game of nodes every time it is

played. For these experiments, we found that the number of rounds increase with

the percentage of players playing the game. In this case we allow 10% to play

the game in every round in the SMBR algorithm. We shall explain more about

computational complexity in the next section.Next we analyze the mixing patterns

in the clusters found above.

5.3.1 Ranking Attributes

Mixing patterns relate to how attributes of nodes are distributed across communi-

ties/clusters. In our case a node relates to a person in a University and they have

characteristics as described in section 5.2. Keeping these in mind, once the commu-

nities are detected, we use the analysis method which we described in section 5.1.3.

Once the communities are detected for a given network, we compute H(Aj) for

each attribute in a given community. We then rank the attributes based on in-

creasing order of H(Aj) and then assign a score of 7 (Since there are 7 attributes,

we give the highest score to the lowest H(Aj)) for the 1st ranked attribute and

1 to the last ranked attribute. Then we do a weighted average for all attributes,

across all ranks in a community to compute Avg(Ak). Thus, we first aggregate

the results over all the communities in a given university and then we aggregate

over all the universities. The Avg(Ak) values for all the attributes indicate the

percentage of time a given attribute was the most common attribute within the

communities. That is, it gives the attribute which was most certain across most

communities detected in the network.

Since mixing patterns of all the universities are difficult to show for all the

universities, in this case we just present an aggregate over all the universities. This

is shown in Figure 5.3.1. From this we can see that the Designation of a person

in the university was most common attribute in 25% of all the communities, this

is quite intuitive taking into consideration the ratio of the number of students to

the number of faculty and staff combined in any university. The next attribute

in the list is the Gender of the person. It was seen that the number of males

compared to females was quite high in the university, thus in a community, the

number of males or females does not vary much. With this we mean that since the

50

Figure 5.3. Percentage of times a given attribute accounted for least uncertainty within
a given community.

network represents a friendship network, a community with many females would

have less males and vice versa because of the way friends are made. Next the year

plays a major role in creating friends and in general students tend to be friends

with those students who entered in the same year. Also, after the year in which

they entered, the Dorm in which they reside also accounts for the next level in

friendship. Eventually, the first major and second major tends to be reason for

mixing between close communities and finally the high school from where they have

come. The high school of a student in a university accounts for the least certainty

because, there are very few communities which have people from the same high

school going to the same university and since we are looking for students from all

the universities across the U.S., people tend to disperse to other places.

In the following section we shall discuss the running time of a sequential imple-

mentation of the SEBR algorithm against the parallel implementation of SMBR

algorithm explained in chapter 4.

5.4 Comparing Running Times

We have discussed the need for faster implementation of algorithms to take into

consideration the amount of social media data that is being collected in real time

in Chapter 4 and section 5.1.2. Having explained parallelization of algorithms in

51

Chapter 4, we now go to show an actual implementation of the same. SMBR

algorithm can be parallelized using any parallel programming technique. We use

the Parallel Java library to parallelize the SMBR algorithm (ParallelSMBR). We

ran the parallelized algorithm ; lets call it ParallelSMBR and compared the running

time against SEBR algorithm (See Figure 5.4(a)). As we see that the number of

communities found and the running time of both the algorithms are the same, a

parallel implementation of the same will definitely be much faster than a sequential

implementation. In this experiment we compare the running time of SEBR and

ParallelSMBR algorithms to the number of nodes and number of edges of the

networks. This is shown in Figure 5.4(a). From this we see that initially there is

not much difference between the running times of both the algorithms when the

number of nodes are less. This is explained by the fact that more time is spent

in creating the threads than actual computation. But as the number of nodes

increase, the difference in running time also increases exponentially. Thus, we can

see that parallelization may be computationally expensive for less number of nodes

but as the number of nodes increase exponentially, the running time also increases

exponentially. This is shown by plotting the speedup against the number of nodes

in a log-log plot as seen in Figure 5.6(a). This clearly depicts that there is not

speed up initially buy as the number of nodes increase, the speedup also increases

exponentially. This can be explained by the fact that for small networks (those

with number of nodes <5000), more time is spent in creating and executing threads

as opposed to bigger networks (number of nodes >5000) where there is a tradeoff

between number of threads created and running time. In comparison, for SEBR

algorithm when run on multiple cores and a single core does not affect the running

time and the speedup which can be seen from the Figure 5.4.

We mentioned in Chapter 4 about two metrics to measure the effect of par-

allelization of an algorithm. They were Speedup and Efficiency. We measured

the two metrics by running the 100 networks in 3 different settings. A single core

machine, a 4-core machine and an 8-core machine. Figure 5.6(a) shows the vaira-

tion in Speedup and Figure 5.6(b). As we can see the average speedup is 2.21 for

4-core processor and 2.73 for 8-cores where as the ideal speedup should have been

4 and 8. This is explained by the fact that the overall speedup depends on a lot

of factors which are usually beyond our control. These are explained in chapter 4.

52

(a)

(b)

Figure 5.4. (a)This Log-Log plot compares the running time with the number of nodes
in the network (b)This Log-Log plot shows the variation in speedup v/s number of nodes
in the network for SMBR Algorithm

53

Figure 5.5. This Log-Log plot shows the variation in speedup v/s number of nodes in
the network for SEBR Algorithm

Similarly you can see from Figure 5.6(b) that the average efficiency reduces as the

number of cores increased. Although the efficiency decreases, the overall running

time is reduced nonetheless.

5.5 Results

This chapter mainly dealt with implementing the methods which we described in

the previous chapters. We first explained our experimental setup and further went

on to propose a framework to analyze overlapping communities with nodes having

network independent attributes. We first used the SEBR and SMBR community

detection algorithms explained in chapter 4. Once the communities were detected

we used our proposed method in section 5.1.3 method to find the most common

attribute in each community. On analyzing these communities from all the univer-

sities, we found that the order of significance of attributes inherent within these

communities is {Designation, Gender, Year, Dorm, Second Major, First Major,

High School} as explained in section 5.3.1. These results were explained in more

detail in section 5.3. Finally we showed how parallelizing an alogrithm can reduce

54

(a)

(b)

Figure 5.6. (a)The speedup is plotted against the number of nodes for each core. (b)
The efficiency is plotted against the number of nodesn for each core.

the running time tremendously. We found that initially the running time increases

but as the number of nodes increase exponentially, the running time decreases ex-

ponentially. In the next chapter we will explain the significance of these results

and their practical applications.

Chapter 6
Conclusions

Chapter 2, motivated the problem of community detection in social media and

then defined the scope of the thesis. In Chapter 3 we gave a comprehensive re-

view about various methods and definitions aiding community detection in social

networks including both overlapping and disjoint communities. Chapter 4 delved

into explaining an algorithm proposed by Mandala et al. [9] and then showing how

one can parallelize it for improved efficiency and performance. Chapter 5 dealt

more into running the algorithm on a dataset of Facebook R© social networks and

then developing a method to analyze communities once they have been detected.

We also computed the speedup and efficiency of the algorithm. In this chapter

we summarize our findings from the previous chapters by providing inferences and

topics for further research.

6.1 Contributions

The main purpose of this thesis was to show a successful implementation of a com-

munity detection algorithm on online social networks. We approached the problem

by first reviewing the literature in detecting disjoint and overlapping communities

in networks. Through this research we realized that most of the work is done

post 2009 which means more and more researchers are trying to develop methods

to delve more into social networks. This also helped us reach to the conclusion

that detecting overlapping communities as opposed to disjoint communities makes

more sense in online social networks because people tend to be associated with more

56

than one community. Thus, it is our suggestion that those interested in working

on the problem of community detection in social networks should work from an

overlapping community detection perspective as opposed to disjoint communities.

Overlapping communities helps us to identify nodes in the network which act as

bridges between adjoining communities. These nodes of high influence hold the

key to transition from one community to another. Targeting these nodes usually

enables better information flow in networks. Thus our first contribution from this

thesis is:

• Provide a comprehensive literature review covering applications of commu-

nity detection algorithms in social networks covering disjoint as well as over-

lapping communities. Detecting overlapping communities in online social

networks will capture more information in terms of user behaviour as op-

posed to detecting disjoint communities.

Next, based on the size of online social networks, there is an increasing demand

for local density-based methods and iterative approximation schemes as opposed

to the currently established global optimization algorithms. Keeping this in mind

we selected a game theoretic approach based algorithm proposed by [9] to detect

overlapping communities. The novelty of this algorithm is the fact that by changing

the network parameters, we can detect overlapping as well as disjoint communities.

Also, due to the volume and dynamics of online social networks, communities need

to be detected in near linear time. With numerous blogs, feeds and posts increasing

day by day, faster and efficient implementation of algorithms is needed as opposed

to slow and optimal ones. On these lines our second contribution is:

• Fast and efficient implementation of a community detection algorithm using

parallel programming concepts.

In most of the community detection methods reviewed in the literature, we found

that after communities are detected not much work has been done in evaluating

these communities. In this thesis, we proposed an entropy based method to rank

the attributes on their relevance of occurence in the communities. This leads to

our final conclusion:

• Define an entropy based method to evaluate the commonality of attributes

within communities.

57

6.2 Summary

We now provide a brief summary containing the scope and flow of the thesis. We

started off by explaining how companies are trying to retain customers by provid-

ing products and services which tender to an individual customer rather than a

group of customers that is mass customization to a customer size of 1 [63]. We

followed up by explaining how companies are using social media tracking softwares

to shape their products and improve their services to cope up with the current

competition and to better serve the consumers (Chapter 1). Based on this intro-

duction we went on to motivate and finally define our problem statement. First by

explaining the basic concepts of complex networks and then by describing a few

real world networks we laid the ground work for our analysis. We then explained

the emergence of social media networks and what impact it has had in recent

times. Using these two concepts we defined our problem statement elaborating

the detection and evaluation of communities in social networks. The definition

focused on implementation of a fast community detection algorithm using paral-

lel programming and proposing a method to evaluate communities once they are

found (Chapter 2). Before going into the details of our algorithm, we first had to

review the available literature focusing on community detection, overlapping com-

munities and community detection in social media. While reviewing the available

literature, we found that most of the research in the field of detecting overlapping

communities is done post 2009. Also, most of the work is applied to detecting

overlapping communities in social networks than in any other field. This strength-

ens our problem statement is within the current scope of research. Based on that

we selected a game theory based algorithm developed by Mandala et al. [9]. The

reason for this choice of algorithm is because nodes tend to behave like players

and try to form communities, just like humans try to make friends with other

humans and form communities in the real world. (Chapter 3). After selecting the

algorithm, we explain how the algorithm works using a pseudo code and explained

the two versions of the same, namely, Simultaneous Best Response (SMBR) and

Sequential Best Response (SEBR). We then explained the parallel programming

framework required for the fast implementation of the algorithm (Chapter 4). Fol-

lowing the explanation of the theory behind the SEBR and SMBR algorithm, we

58

explain the design of our experiments. We then propose an entropy based method

to evaluate communities once they have been found, i.e. find the attribute which

best describes a given community. Then we tested our parallelized algorithm on

Facebook R© social networks from 100 universities across the United States. From

our analysis we found that there is no speed up when the parallelized algorithm is

run on smaller networks, but as the network size increases exponentially, the run-

ning time also decreases exponentially. After analyzing the detected communities,

we realized that most of the communities had the “Designation” of the person as

the dominant attribute followed by “Gender”, “Graduation Year” and “Dorms” in

which they live (Chapter 5). We conclude by explaining our contributions from the

thesis followed by this summary and finally topics for further research (Chapter

6).

6.3 Future Work

In this section, we provide topics for future research based on our findings and

contributions. From our analysis we found that there are many papers published

in detecting overlapping communities in social networks but none of them focus on

their evaluation once they are detected. Only a few methods exist in the literature,

namely Normalized Mutual Information (NMI) and Omega index but the existence

of ground truth is required for using them. Since there is a lack of ground truth

incase of social networks, other methods need to be developed which provides

estimates based on expectations rather than ground truth. Further, since the

scale of these online social networks is enormous, community detection algorithms

should consider this fact and try to develop local schemas which focus on parts of

the network as opposed to the entire network itself. A major problem with online

social network data is the missing data problem. Usually people either estimate

the missing data using some local methods or simply neglect them from their

analysis. Since communities tend to find similarity between people in a group,

estimating missing data after communities have been formed is another topic of

further research.

Appendix A
University Details

A.1 Sample Dataset

This appendix lists the names of all universities networks used in our analysis

from the Facebook100 dataset released by Traud et al, [10, 11]. This data has

been downloaded from [64].

60

Table A.1. University Details
University Number Edges Vertices Max Degree

Harvard 1 824617 15126 1183
Columbia 2 444333 11770 3375
Stanford 3 568330 11621 1172

Yale 4 405450 8578 2517
Cornell 5 790777 18660 3156

Dartmouth 6 304076 7694 948
UPenn 7 686501 14916 1602
MIT 8 251252 6440 708
NYU 9 715715 21679 2315
BU 10 637528 19700 1819

Brown 11 384526 8600 1075
Princeton 12 293320 6596 628
Berkeley 13 852444 22937 3434

Duke 14 506442 9895 1887
Georgetown 15 425638 9414 1235

UVA 16 789321 17196 3182
BC 17 486967 11509 1377

Tufts 18 249728 6682 827
Northeastern 19 381934 13882 968

UIllinios 20 1264428 30809 4632
UF 21 1465660 35123 8246

Wellesley 22 94899 2970 746

Appendix B
Algorithm Codes

This chaper lists all the codes that have been written for community detection and

their analysis.

B.1 Main Class

1 import java . i o . ∗ ;

import java . i o . BufferedReader ;

import java . i o . Buf feredWriter ;

import java . i o . FileNotFoundException ;

import java . i o . Fi leReader ;

6 import java . i o . F i l eWr i t e r ;

import java . i o . IOException ;

import java . u t i l . ArrayList ;

import java . u t i l . S t r ingToken i ze r ;

11 public class MainClass {

/∗∗
∗ @param args

∗/
16 public stat ic int Proce s so r s = 8 ;

public stat ic void main (St r ing [] a rgs)throws FileNotFoundException ,

IOException , Exception {

St r ing [] [] numbers = new St r ing [1 0 1] [6] ;

62

BufferedReader bufRdr = new BufferedReader (new Fi leReader (” univ . csv

”)) ;

21 St r ing l i n e = null ;

int row = 0 ;

int c o l = 0 ;

// read each l i n e o f t e x t f i l e

while (((l i n e = bufRdr . readLine ()) != null))

26 {
Str ingToken i ze r s t = new Str ingToken i ze r (l i n e , ” , ”) ;

while (s t . hasMoreTokens ())

{
// ge t next token and s t o r e i t in the array

31 numbers [row] [c o l] = s t . nextToken () ;

c o l++;

}
c o l = 0 ;

row++;

36 }

// c l o s e the f i l e

bufRdr . c l o s e () ;

F i l eWr i t e r f s t ream = new Fi l eWr i t e r (”Summary . txt ”) ;

41 Buf feredWriter out1 = new Buf feredWriter (f s t ream) ;

out1 . wr i t e (”Name Nodes Edges Rounds C lu s t e r s Time”) ;

out1 . newLine () ;

ArrayList<Integer> Elements = new ArrayList<Integer >() ;

// i n t [] myArray = new in t []{7 ,11 ,27 ,32 ,39 ,64 ,65 ,69 ,70 ,88 ,89 ,100} ;
46 // i n t [] myArray = new in t []{100} ;

int [] myArray = new int [] { I n t e g e r . pa r s e In t (args [0]) } ;

Elements = i n i t A r r a y L i s t (myArray) ;

for (int i = 1 ; i <=100; i++){
// TODO Auto−generated method s tub

51 i f (Elements . conta in s (i +1) != true) {
continue ;

}
System . out . p r i n t (i) ;

S t r ing f i l ename = numbers [i] [1] ;

56 int cur rent nodes = I n t e g e r . pa r s e In t (numbers [i] [3]) ;

int cu r r en t edge s = I n t e g e r . pa r s e In t (numbers [i] [2]) ;

//System . out . p r i n t l n (” F i l e Name ”+f i l ename) ;

63

//System . out . p r i n t l n () ;

out1 . wr i t e (f i l ename+ ” ”) ;

61 out1 . wr i t e (cur r ent nodes+” ”) ;

out1 . wr i t e (cu r r en t edge s+” ”) ;

S t r ing s t r D i r e c t o r y = ”// gp f s //work// adg181 // Univers i tyDataSets //”+

f i l ename+”//” ;

SimultaneousGame cg=new SimultaneousGame (0 . 1 , 1 . 8 , 0 . 1 0 , current nodes

, s t r D i r e c t o r y+f i l ename+” . txt ”) ;

//ClusteringGame cg=new ClusteringGame (0 . 1 , 1 . 8 , current nodes ,

s t rD i r e c t o r y+f i l ename+”. t x t ”) ;

66 double time=System . cur rentT imeMi l l i s () ;

// F i l e F1 = new F i l e (s t rD i r e c t o r y+”C lu s t e r s ”) ;

// boo lean f a i l = F1 . d e l e t e () ;

//System . out . p r i n t l n (f a i l) ;

F i l e F2 = new F i l e (s t r D i r e c t o r y+” Clu s t e r s ”) ;

71 boolean s u c c e s s = F2 . mkdir () ;

//System . out . p r i n t l n (succe s s) ;

cg . s t a r t () ;

time=System . cur rentT imeMi l l i s ()−time ;

out1 . wr i t e ((time /1000)+” ”) ;

76 System . out . p r i n t l n (time /1000) ;

S t r ing [] n o d e l i s t = new St r ing [cur r ent nodes +1] ;

S t r ing f i l ename1 = ”// gp f s //work// adg181 // Univers i tyDataSets //”+

f i l ename+”//”+f i l ename ;

BufferedReader rd = new BufferedReader (new Fi leReader (f i l ename1

+ ” . n o d e l i s t ”)) ;

//BufferedReader rd = new BufferedReader (new Fi leReader (

f i l ename1 + ”1. n o d e l i s t ”)) ;

81 int n o d e l i s t c o u n t e r = 0 ;

while (true) {
l i n e = rd . readLine () ;

i f (l i n e==null) {
break ;

86 }
n o d e l i s t [n o d e l i s t c o u n t e r] = l i n e ;

n o d e l i s t c o u n t e r ++;

}
cg . w r i t e c l u s t e r s (s t rD i r e c to ry , f i l ename , n o d e l i s t , 2 0 , out1) ;

91 out1 . newLine () ;}
out1 . c l o s e () ;

64

}

public stat ic ArrayList<Integer> i n i t A r r a y L i s t (int [] a) {
96 ArrayList<Integer> l i s t = new ArrayList<Integer >() ;

for (int i : a) {
l i s t . add (i) ;

} // c l o s e f o r loop

return l i s t ;

101 } // c l o s e i n i tA r r ayL i s t method

}

Listing B.1. Main Class Java Code

B.2 SEBR Algorithm Class

import java . i o . BufferedReader ;

2 import java . i o . Buf feredWriter ;

import java . i o . Fi leReader ;

import java . i o . F i l eWr i t e r ;

import java . u t i l . I t e r a t o r ;

import java . i o . IOException ;

7 import java . i o . FileNotFoundException ;

public class ClusteringGame {

Vertex [] v e r t i c e s ;

12 Clus te r [] c l u s t e r s ;

int rounds =0;

public ClusteringGame (double rho , double lambda , int num vert ices ,

S t r ing fname) {
Vertex . g l o b a l l a b e l c o u n t=new int [num vert i ces] ;

Vertex . u p d a t e d g l o b a l l a b e l c o u n t=new int [num vert i ces] ;

17 Vertex . num vert i ces=num vert i ces ;

Vertex . rho=rho ;

Vertex . lambda=lambda ;

Vertex . num updates=1;

22 v e r t i c e s = new Vertex [num vert i ces] ;

65

c l u s t e r s = new Clus te r [num vert i ces] ;

for (int i =0; i<num vert i ces ; i++){
v e r t i c e s [i] = new Vertex (i) ;

27 }
read graph (fname) ;

}

public void read graph (St r ing fname) {
32 BufferedReader in ;

S t r ing s t r ; S t r ing [] s p l i t s t r ;

int i , j , num edges=0;

try{
in = new BufferedReader (new Fi leReader (fname)) ;

37 while ((s t r = in . readLine ()) != null) {
s p l i t s t r=s t r . s p l i t (” ”) ;

i=I n t e g e r . pa r s e In t (s p l i t s t r [0]) ;

j=I n t e g e r . pa r s e In t (s p l i t s t r [1]) ;

i f (v e r t i c e s [i −1] . ne ighbors . conta in s (v e r t i c e s [j −1]) | | v e r t i c e s [j −1] .

ne ighbors . conta in s (v e r t i c e s [i −1]))

42 {
continue ;

}
else {

v e r t i c e s [i −1] . add neighbor (v e r t i c e s [j −1]) ;

47 v e r t i c e s [j −1] . add neighbor (v e r t i c e s [i −1]) ;

num edges++;}
}
in . c l o s e () ;

}
52 catch (Exception e) {

System . out . p r i n t l n (e) ;}
// System . out . p r i n t l n (”Number o f Ver t i c e s : ”+Vertex . num ver t i ces) ;

// System . out . p r i n t l n (”Number o f Edges : ”+num edges) ;

}
57

public void s t a r t () {
while (Vertex . num updates>0){

Vertex . num updates=0;

for (int i =0; i<Vertex . num vert i ces ; i++){

66

62 v e r t i c e s [i] . compute best re sponse () ;

}
rounds++;

// System . out . p r i n t l n (”End o f round ”+rounds) ;

}
67 // d i s p l a y () ;

p o p u l a t e c l u s t e r s () ;

//System . out . p r i n t l n (” Tota l Number o f rounds :”+rounds) ;

}

72 public void p o p u l a t e c l u s t e r s () {
I t e r a t o r i t ;

int tmp labe l ;

for (int i =0; i<Vertex . num vert i ces ; i++){
i t=v e r t i c e s [i] . l a b e l s . i t e r a t o r () ;

77 while (i t . hasNext ()) {
tmp labe l=(I n t e g e r) i t . next () ;

i f (c l u s t e r s [tmp labe l]==null) {
c l u s t e r s [tmp labe l]=new Clus te r () ;

}
82 c l u s t e r s [tmp labe l] . members . add (v e r t i c e s [i]) ;

}
}
}

87 public void d i s p l a y () {
System . out . p r i n t l n (” C lu s t e r s : ”) ;

for (int i =0; i<Vertex . num vert i ces ; i++){
v e r t i c e s [i] . d i s p l a y () ;

}
92

}

public void d i s p l a y c l u s t e r s (int thresh) {
for (int i =0; i<Vertex . num vert i ces ; i++){

97 i f (c l u s t e r s [i] != null && c l u s t e r s [i] . members . s i z e ()>=thresh) {
c l u s t e r s [i] . d i s p l a y () ;

}
}

67

102 }
public void w r i t e c l u s t e r s (S t r ing s t rD i r e c to ry , S t r ing f i l ename ,

S t r ing [] n o d e l i s t , int thresh , Buf feredWriter out1) throws

FileNotFoundException , IOException{
St r ing f i l ename1 = s t r D i r e c t o r y+”// C lu s t e r s // SEDetai l s ” ;

F i l eWr i t e r f s t ream = new Fi l eWr i t e r (f i l ename1 +” . txt ”) ;

Buf feredWriter out = new Buf feredWriter (f s t ream) ;

107 int c l u s t e r n o d e c o u n t = 0 ;

int n u m b e r o f c l u s t e r s = 0 ;

for (int i =0; i<Vertex . num vert i ces ; i++){
i f (c l u s t e r s [i] != null && c l u s t e r s [i] . members . s i z e ()>=thresh) {

c l u s t e r n o d e c o u n t = c l u s t e r s [i] . wr i t e (i +1, f i l ename , s t rD i r e c to ry ,

n o d e l i s t) ;

112 out . wr i t e ((i +1)+” ”+c l u s t e r n o d e c o u n t) ;

out . newLine () ;

n u m b e r o f c l u s t e r s++;

}
c l u s t e r n o d e c o u n t = 0 ;

117 }
out1 . wr i t e (rounds+” ”) ;

out1 . wr i t e (n u m b e r o f c l u s t e r s+” ”) ;

out . c l o s e () ;

}
122 }

Listing B.2. SEBR Algorithm Java Code

B.3 SMBR Algorithm Class

import java . i o . BufferedReader ;

import java . i o . Buf feredWriter ;

3 import java . i o . Fi leReader ;

import java . u t i l . ∗ ;

import java . i o . F i l eWr i t e r ;

import java . u t i l . I t e r a t o r ;

import java . i o . IOException ;

8 import java . i o . FileNotFoundException ;

public class SimultaneousGame {

68

Vertex [] v e r t i c e s ;

C lus t e r [] c l u s t e r s ;

13 int rounds = 0 ;

public SimultaneousGame (double rho , double lambda , double probab i l i t y

, int num vert ices , S t r ing fname) {
Vertex . g l o b a l l a b e l c o u n t=new int [num vert i ces] ;

Vertex . u p d a t e d g l o b a l l a b e l c o u n t = new int [num vert i ces] ;

18 Vertex . num vert i ces=num vert i ces ;

Vertex . rho=rho ;

Vertex . lambda=lambda ;

Vertex . num updates=1;

Vertex . p r o b a b i l i t y = p r o b a b i l i t y ;

23

v e r t i c e s = new Vertex [num vert i ces] ;

c l u s t e r s = new Clus te r [num vert i ces] ;

for (int i =0; i<num vert i ces ; i++){
28 v e r t i c e s [i] = new Vertex (i) ;

v e r t i c e s [i] . o l d l a b e l s . add (i) ;

}
read graph (fname) ;

}
33

public void read graph (St r ing fname) {
BufferedReader in ;

S t r ing s t r ; S t r ing [] s p l i t s t r ;

int i , j , num edges=0;

38 try{
in = new BufferedReader (new Fi leReader (fname)) ;

while ((s t r = in . readLine ()) != null) {
s p l i t s t r=s t r . s p l i t (” ”) ;

i=I n t e g e r . pa r s e In t (s p l i t s t r [0]) ;

43 j=I n t e g e r . pa r s e In t (s p l i t s t r [1]) ;

v e r t i c e s [i −1] . add neighbor (v e r t i c e s [j −1]) ;

v e r t i c e s [j −1] . add neighbor (v e r t i c e s [i −1]) ;

num edges++;

}
48 in . c l o s e () ;

}

69

catch (Exception e) {}
System . out . p r i n t l n (”Number o f V e r t i c e s : ”+Vertex . num vert i ces) ;

System . out . p r i n t l n (”Number o f Edges : ”+num edges) ;

53 }

public void s t a r t () throws Exception {
Random generator = new Random() ;

while (Vertex . num updates>0){
58 f ina l ArrayList<Integer> p lay ing nodes = new ArrayList<Integer

>() ;

Vertex . num updates=0;

for (int i =0; i<Vertex . num vert i ces ; i++){
f loat randomIndex = genera tor . nextFloat () ;

i f (randomIndex<Vertex . p r o b a b i l i t y) {
63 p lay ing nodes . add (i) ;

}}
for (int i =0; i<p lay ing nodes . s i z e () ; i++){

v e r t i c e s [p lay ing nodes . get (i)] . s im u l t a ne ou s be s t r e sp on s e () ;

}
68 Vertex . g l o b a l l a b e l c o u n t = Vertex . u p d a t e d g l o b a l l a b e l c o u n t ;

for (int i =0; i<p lay ing nodes . s i z e () ; i++){
v e r t i c e s [p lay ing nodes . get (i)] . o l d l a b e l s . c l e a r () ;

v e r t i c e s [p lay ing nodes . get (i)] . o l d l a b e l s . addAll (v e r t i c e s [

p lay ing nodes . get (i)] . l a b e l s) ;

}
73 rounds++;

//System . out . p r i n t l n (”End o f round ”+rounds) ;

//System . out . p r i n t l n (”Number o f Updates ”+Vertex . num updates) ;

}
// d i s p l a y () ;

78 p o p u l a t e c l u s t e r s () ;

}

public void p o p u l a t e c l u s t e r s () {
I t e r a t o r i t ;

83 int tmp labe l ;

for (int i =0; i<Vertex . num vert i ces ; i++){
i t=v e r t i c e s [i] . l a b e l s . i t e r a t o r () ;

while (i t . hasNext ()) {
tmp labe l=(I n t e g e r) i t . next () ;

70

88 i f (c l u s t e r s [tmp labe l]==null) {
c l u s t e r s [tmp labe l]=new Clus te r () ;

}
c l u s t e r s [tmp labe l] . members . add (v e r t i c e s [i]) ;

}
93 }

}

public void d i s p l a y () {
System . out . p r i n t l n (” C lu s t e r s : ”) ;

98 for (int i =0; i<Vertex . num vert i ces ; i++){
v e r t i c e s [i] . d i s p l a y () ;

}

}
103

public void d i s p l a y c l u s t e r s (int thresh) {
for (int i =0; i<Vertex . num vert i ces ; i++){
i f (c l u s t e r s [i] != null && c l u s t e r s [i] . members . s i z e ()>=thresh) {

c l u s t e r s [i] . d i s p l a y () ;

108 }
}

}

113

public void w r i t e c l u s t e r s (S t r ing s t rD i r e c to ry , S t r ing f i l ename ,

S t r ing [] n o d e l i s t , int thresh , Buf feredWriter out1) throws

FileNotFoundException , IOException{
St r ing f i l ename1 = s t r D i r e c t o r y+”// C lu s t e r s // SMDetails ” ;

F i l eWr i t e r f s t ream = new Fi l eWr i t e r (f i l ename1 +” . txt ”) ;

Buf feredWriter out = new Buf feredWriter (f s t ream) ;

118 int c l u s t e r n o d e c o u n t = 0 ;

int n u m b e r o f c l u s t e r s = 0 ;

for (int i =0; i<Vertex . num vert i ces ; i++){
i f (c l u s t e r s [i] != null && c l u s t e r s [i] . members . s i z e ()>=thresh) {

c l u s t e r n o d e c o u n t = c l u s t e r s [i] . wr i t e (i +1, f i l ename , s t rD i r e c to ry ,

n o d e l i s t) ;

123 out . wr i t e ((i +1)+” ”+c l u s t e r n o d e c o u n t) ;

out . newLine () ;

71

n u m b e r o f c l u s t e r s++;

}
c l u s t e r n o d e c o u n t = 0 ;

128 }
out1 . wr i t e (rounds+” ”) ;

out1 . wr i t e (n u m b e r o f c l u s t e r s+” ”) ;

out . c l o s e () ;

}
133 }

Listing B.3. SMBR Algorithm Java Code

B.4 ParallelSMBR Algorithm Class

import java . i o . BufferedReader ;

2 import java . i o . Buf feredWriter ;

import java . i o . Fi leReader ;

import java . u t i l . ∗ ;

import java . i o . F i l eWr i t e r ;

import java . u t i l . I t e r a t o r ;

7 import java . i o . IOException ;

import java . i o . FileNotFoundException ;

import edu . r i t . p j . IntegerForLoop ;

import edu . r i t . p j . Pa ra l l e lReg i on ;

import edu . r i t . p j . Paral le lTeam ;

12 public class SimultaneousGame {

Vertex [] v e r t i c e s ;

C lus t e r [] c l u s t e r s ;

int rounds = 0 ;

17

public SimultaneousGame (double rho , double lambda , double probab i l i t y

, int num vert ices , S t r ing fname) {
Vertex . g l o b a l l a b e l c o u n t=new int [num vert i ces] ;

Vertex . u p d a t e d g l o b a l l a b e l c o u n t = new int [num vert i ces] ;

Vertex . num vert i ces=num vert i ces ;

22 Vertex . rho=rho ;

Vertex . lambda=lambda ;

Vertex . num updates=1;

72

Vertex . p r o b a b i l i t y = p r o b a b i l i t y ;

27 v e r t i c e s = new Vertex [num vert i ces] ;

c l u s t e r s = new Clus te r [num vert i ces] ;

for (int i =0; i<num vert i ces ; i++){
v e r t i c e s [i] = new Vertex (i) ;

32 v e r t i c e s [i] . o l d l a b e l s . add (i) ;

}
read graph (fname) ;

}

37 public void read graph (St r ing fname) {
BufferedReader in ;

S t r ing s t r ; S t r ing [] s p l i t s t r ;

int i , j , num edges=0;

try{
42 in = new BufferedReader (new Fi leReader (fname)) ;

while ((s t r = in . readLine ()) != null) {
s p l i t s t r=s t r . s p l i t (” ”) ;

i=I n t e g e r . pa r s e In t (s p l i t s t r [0]) ;

j=I n t e g e r . pa r s e In t (s p l i t s t r [1]) ;

47 v e r t i c e s [i −1] . add neighbor (v e r t i c e s [j −1]) ;

v e r t i c e s [j −1] . add neighbor (v e r t i c e s [i −1]) ;

num edges++;

}
in . c l o s e () ;

52 }
catch (Exception e) {}
System . out . p r i n t l n (”Number o f V e r t i c e s : ”+Vertex . num vert i ces) ;

System . out . p r i n t l n (”Number o f Edges : ”+num edges) ;

}
57

public void s t a r t () throws Exception {
Random generator = new Random() ;

while (Vertex . num updates>0){
f ina l ArrayList<Integer> p lay ing nodes = new ArrayList<Integer

>() ;

62 Vertex . num updates=0;

for (int i =0; i<Vertex . num vert i ces ; i++){

73

f loat randomIndex = genera tor . nextFloat () ;

i f (randomIndex<Vertex . p r o b a b i l i t y) {
p lay ing nodes . add (i) ;

67 }}

new Paral le lTeam (MainClass . Proce s so r s) . execute (new Para l l e lReg i on

() {
@Override

public void run () throws Exception {
72 execute (0 , p lay ing nodes . s i z e ()−1,new IntegerForLoop () {

public void run (int f i r s t , int l a s t) throws Exception {
for (int i=f i r s t ; i<l a s t ;++ i) {

v e r t i c e s [p lay ing nodes . get (i)] . s i mu l t a ne ou s be s t r e sp on s e () ;

77 }
}
}) ;

}
}) ;

82 Vertex . g l o b a l l a b e l c o u n t = Vertex . u p d a t e d g l o b a l l a b e l c o u n t ;

for (int i =0; i<p lay ing nodes . s i z e () ; i++){
v e r t i c e s [p lay ing nodes . get (i)] . o l d l a b e l s . c l e a r () ;

v e r t i c e s [p lay ing nodes . get (i)] . o l d l a b e l s . addAll (v e r t i c e s [

p lay ing nodes . get (i)] . l a b e l s) ;

}
87 rounds++;

//System . out . p r i n t l n (”End o f round ”+rounds) ;

//System . out . p r i n t l n (”Number o f Updates ”+Vertex . num updates) ;

}
// d i s p l a y () ;

92 p o p u l a t e c l u s t e r s () ;

}

public void p o p u l a t e c l u s t e r s () {
I t e r a t o r i t ;

97 int tmp labe l ;

for (int i =0; i<Vertex . num vert i ces ; i++){
i t=v e r t i c e s [i] . l a b e l s . i t e r a t o r () ;

while (i t . hasNext ()) {
tmp labe l=(I n t e g e r) i t . next () ;

74

102 i f (c l u s t e r s [tmp labe l]==null) {
c l u s t e r s [tmp labe l]=new Clus te r () ;

}
c l u s t e r s [tmp labe l] . members . add (v e r t i c e s [i]) ;

}
107 }

}

public void d i s p l a y () {
System . out . p r i n t l n (” C lu s t e r s : ”) ;

112 for (int i =0; i<Vertex . num vert i ces ; i++){
v e r t i c e s [i] . d i s p l a y () ;

}

}
117

public void d i s p l a y c l u s t e r s (int thresh) {
for (int i =0; i<Vertex . num vert i ces ; i++){
i f (c l u s t e r s [i] != null && c l u s t e r s [i] . members . s i z e ()>=thresh) {

c l u s t e r s [i] . d i s p l a y () ;

122 }
}

}

127

public void w r i t e c l u s t e r s (S t r ing s t rD i r e c to ry , S t r ing f i l ename ,

S t r ing [] n o d e l i s t , int thresh , Buf feredWriter out1) throws

FileNotFoundException , IOException{
St r ing f i l ename1 = s t r D i r e c t o r y+”// C lu s t e r s // SMDetails ” ;

F i l eWr i t e r f s t ream = new Fi l eWr i t e r (f i l ename1 +” . txt ”) ;

Buf feredWriter out = new Buf feredWriter (f s t ream) ;

132 int c l u s t e r n o d e c o u n t = 0 ;

int n u m b e r o f c l u s t e r s = 0 ;

for (int i =0; i<Vertex . num vert i ces ; i++){
i f (c l u s t e r s [i] != null && c l u s t e r s [i] . members . s i z e ()>=thresh) {

c l u s t e r n o d e c o u n t = c l u s t e r s [i] . wr i t e (i +1, f i l ename , s t rD i r e c to ry ,

n o d e l i s t) ;

137 out . wr i t e ((i +1)+” ”+c l u s t e r n o d e c o u n t) ;

out . newLine () ;

75

n u m b e r o f c l u s t e r s++;

}
c l u s t e r n o d e c o u n t = 0 ;

142 }
out1 . wr i t e (rounds+” ”) ;

out1 . wr i t e (n u m b e r o f c l u s t e r s+” ”) ;

out . c l o s e () ;

}
147 }

Listing B.4. Parallel SMBR Algorithm Java Code

B.5 Cluster Class

import java . u t i l . ArrayList ;

import java . u t i l . I t e r a t o r ;

3 import java . i o . BufferedReader ;

import java . i o . Buf feredWriter ;

import java . i o . Fi leReader ;

import java . i o . F i l eWr i t e r ;

import java . i o . IOException ;

8 import java . i o . FileNotFoundException ;

public class Clus te r {
ArrayList<Vertex> members ;

13 public Clus te r () {
members = new ArrayList<Vertex >() ;

}
public void d i s p l a y () {

I t e r a t o r i t=members . i t e r a t o r () ;

18 Vertex v ;

while (i t . hasNext ()) {
v=(Vertex) i t . next () ;

System . out . p r i n t ((v . ID+1)+” ”) ;

}
23 System . out . p r i n t l n () ;

}

76

public int wr i t e (int i , S t r ing f i l ename , S t r ing s t rD i r e c to ry , S t r ing []

n o d e l i s t) throws FileNotFoundException , IOException{
I t e r a t o r i t=members . i t e r a t o r () ;

Vertex v ;

28 int n o d e s i n c l u s t e r = 0 ;

S t r ing f i l ename2 = s t r D i r e c t o r y+”// C lu s t e r s //”+i ;

F i l eWr i t e r f s tream2 = new Fi l eWr i t e r (f i l ename2 +” . txt ”) ;

Buf feredWriter out2 = new Buf feredWriter (f s t ream2) ;

out2 . wr i t e (n o d e l i s t [0]) ;

33 out2 . newLine () ;

while (i t . hasNext ()) {
v=(Vertex) i t . next () ;

out2 . wr i t e (n o d e l i s t [v . ID+1]) ;

out2 . newLine () ;

38 n o d e s i n c l u s t e r ++;

}
out2 . c l o s e () ;

return n o d e s i n c l u s t e r ;

}
43 }

Listing B.5. Cluster Class Java Code

B.6 Vertex Class

import java . u t i l . ArrayList ;

2 import java . u t i l . Arrays ;

import java . u t i l . HashSet ;

import java . u t i l . I t e r a t o r ;

public class Vertex {
7

public stat ic int [] g l o b a l l a b e l c o u n t ;

public stat ic int [] u p d a t e d g l o b a l l a b e l c o u n t ;

public stat ic double rho ;

public stat ic double lambda ;

12 public stat ic int num vert i ces ;

public stat ic int num updates ;

public stat ic double p r o b a b i l i t y ;

77

ArrayList<Vertex> ne ighbors ;

17 HashSet<Integer> l a b e l s , o l d l a b e l s ;

int degree , ID ;

private int [] l o c a l l a b e l c o u n t ;

boolean updated ;

22 public Vertex (int id) {
ID=id ;

degree =0;

ne ighbors=new ArrayList<Vertex >() ;

l a b e l s=new HashSet<Integer >() ;

27 o l d l a b e l s=new HashSet<Integer >() ;

l a b e l s . add (ID) ;

g l o b a l l a b e l c o u n t [ID]++;

u p d a t e d g l o b a l l a b e l c o u n t [ID]++;

}
32

public void add neighbor (Vertex v) {
ne ighbors . add (v) ;

degree++;

}
37

public void compute best re sponse () {

I t e r a t o r i t=l a b e l s . i t e r a t o r () ;

while (i t . hasNext ()) {
42 g l o b a l l a b e l c o u n t [(I n t e g e r) i t . next ()]−−;

}
o l d l a b e l s . c l e a r () ;

o l d l a b e l s . addAll (l a b e l s) ;

l a b e l s . c l e a r () ;

47

l o c a l l a b e l c o u n t=new int [num vert i ces] ;

Vertex neighbor ;

HashSet<Integer> n e i g h b o r l a b e l s ;

HashSet<Integer> u n i q u e n e i g h b o r l a b e l s=new HashSet<Integer >() ;

52 int tmp labe l ;

int num unique ne ighbor labe l s =0;

78

for (int i =0; i<degree ; i++){
neighbor=ne ighbors . get (i) ;

57 n e i g h b o r l a b e l s=neighbor . l a b e l s ;

i t=n e i g h b o r l a b e l s . i t e r a t o r () ;

while (i t . hasNext ()) {
tmp labe l=(I n t e g e r) i t . next () ;

l o c a l l a b e l c o u n t [tmp labe l]++;

62 u n i q u e n e i g h b o r l a b e l s . add (tmp labe l) ;

}
}

num unique ne ighbor labe l s=u n i q u e n e i g h b o r l a b e l s . s i z e () ;

67 Dummy Object [] dummy objs=new Dummy Object [

num unique ne ighbor labe l s] ;

int u n i q u e l a b e l ;

i t=u n i q u e n e i g h b o r l a b e l s . i t e r a t o r () ;

int counter =0;

while (i t . hasNext ()) {
72 u n i q u e l a b e l =(I n t e g e r) i t . next () ;

dummy objs [counter]=new Dummy Object (un ique l abe l ,

l o c a l l a b e l c o u n t [u n i q u e l a b e l]− rho∗ g l o b a l l a b e l c o u n t [

u n i q u e l a b e l]) ;

counter++;

}

77 l o c a l l a b e l c o u n t=null ;

Arrays . s o r t (dummy objs) ;

Dummy Object cur dummy obj ;

for (int i =0; i<num unique ne ighbor labe l s ; i++){
82 cur dummy obj=dummy objs [i] ;

i f (cur dummy obj . reward>(lambda∗ i)) {
l a b e l s . add (cur dummy obj . label) ;

g l o b a l l a b e l c o u n t [cur dummy obj . label]++;

}
87 }

i f (! l a b e l s . equa l s (o l d l a b e l s))

79

92 num updates++;

}

public void s imu l t an eo u s be s t r e sp on s e () {

97 I t e r a t o r i t=o l d l a b e l s . i t e r a t o r () ;

l a b e l s . c l e a r () ;

while (i t . hasNext ()) {
u p d a t e d g l o b a l l a b e l c o u n t [(I n t e g e r) i t . next ()]−−;

}
102 l o c a l l a b e l c o u n t=new int [num vert i ces] ;

Vertex neighbor ;

HashSet<Integer> n e i g h b o r l a b e l s ;

HashSet<Integer> u n i q u e n e i g h b o r l a b e l s=new HashSet<Integer >() ;

int tmp labe l ;

107 int num unique ne ighbor labe l s =0;

for (int i =0; i<degree ; i++){
neighbor=ne ighbors . get (i) ;

n e i g h b o r l a b e l s=neighbor . o l d l a b e l s ;

112 i t=n e i g h b o r l a b e l s . i t e r a t o r () ;

while (i t . hasNext ()) {
tmp labe l=(I n t e g e r) i t . next () ;

l o c a l l a b e l c o u n t [tmp labe l]++;

u n i q u e n e i g h b o r l a b e l s . add (tmp labe l) ;

117 }
}

num unique ne ighbor labe l s=u n i q u e n e i g h b o r l a b e l s . s i z e () ;

Dummy Object [] dummy objs=new Dummy Object [

num unique ne ighbor labe l s] ;

122 int u n i q u e l a b e l ;

i t=u n i q u e n e i g h b o r l a b e l s . i t e r a t o r () ;

int counter =0;

while (i t . hasNext ()) {
u n i q u e l a b e l =(I n t e g e r) i t . next () ;

127 dummy objs [counter]=new Dummy Object (un ique l abe l ,

l o c a l l a b e l c o u n t [u n i q u e l a b e l]− rho∗ g l o b a l l a b e l c o u n t [

u n i q u e l a b e l]) ;

counter++;

80

}

l o c a l l a b e l c o u n t=null ;

132 Arrays . s o r t (dummy objs) ;

Dummy Object cur dummy obj ;

for (int i =0; i<num unique ne ighbor labe l s ; i++){
cur dummy obj=dummy objs [i] ;

137 i f (cur dummy obj . reward>(lambda∗ i)) {
l a b e l s . add (cur dummy obj . label) ;

u p d a t e d g l o b a l l a b e l c o u n t [cur dummy obj . label]++;

}
}

142

i f (! l a b e l s . equa l s (o l d l a b e l s))

num updates++;

}

147 public void d i s p l a y () {
I t e r a t o r i t=l a b e l s . i t e r a t o r () ;

System . out . p r i n t (” Vertex ”+ID+” : ”) ;

while (i t . hasNext ()) {
System . out . p r i n t ((I n t e g e r) i t . next ()+” ”) ;

152 }
System . out . p r i n t l n () ;

}

157 }

Listing B.6. Vertex Class Java Code

B.7 Dummy Object Class

public class Dummy Object implements Comparable{
3

int label ;

double reward ;

81

public Dummy Object (int l , double r) {
8 this . label=l ;

this . reward=r ;

}

public int compareTo (Object obj) {
13 Dummy Object o t h e r o b j =(Dummy Object) obj ;

i f (o t h e r o b j . reward>this . reward)

return 1 ;

else

return −1;

18 }

}

Listing B.7. Dummy Object Java Code

Bibliography

[1] Easley, D. and J. Kleinberg (2010) Networks, Crowds, and Markets,
Cambridge Books, Cambridge University Press.

[2] Papadopoulos, S., A. Skusa, A. Vakali, Y. Kompatsiaris, and
N. Wagner (2009) “Bridge Bounding: A Local Approach for Efficient Com-
munity Discovery in Complex Networks,” ArXiv e-prints, 0902.0871.

[3] Tang, L. and H. Liu (2010) Community Detection and Mining in Social
Media, Morgan & Claypool Publishers.

[4] Kaminsky, A. (2009) Building Parallel Programs: SMPs, Clusters and Java,
International Edition, Cengage South-Western.

[5] Kaplan, A. M. and M. Haenlein (2010) “Users of the world, unite! The
challenges and opportunities of Social Media,” Business Horizons, 53(1), pp.
59 – 68.

[6] (2009) “Social media: The new hybrid element of the promotion mix,” Busi-
ness Horizons, 52(4), pp. 357 – 365.

[7] Goldberg, M., S. Kelley, M. Magdon-ismail, K. Mertsalov, and
A. Wallace (2009), “Finding Overlapping Communities in Social Net-
works,” .

[8] Xie, J., S. Kelley, and B. K. Szymanski (2011) “Overlapping Community
Detection in Networks: the State of the Art and Comparative Study,” CoRR,
abs/1110.5813.

[9] Mandala, S., S. Kumara, and K. Chatterjee (2011) A Game Theoretic
Approach to Graph Clustering, Tech. rep., Department of Industrial Engineer-
ing,The Pennsylvania State University, University Park, Pennsylvania.

83

[10] Traud, A. L., E. D. Kelsic, P. J. Mucha, and M. A. Porter (2008)
“Comparing Community Structure to Characteristics in Online Collegiate So-
cial Networks,” ArXiv e-prints, 0809.0690.

[11] Traud, A. L., P. J. Mucha, and M. A. Porter (2011) “Social Structure
of Facebook Networks,” ArXiv e-prints, 1102.2166.

[12] McKee, J. (2006), “Community Guy,” .
URL http://moblogsmoproblems.blogspot.com/2006/10/

[13] Thadakamalla, H. P., R. Albert, and S. R. T. Kumara (2006) “Com-
plexity and Large-scale Networks,” in Operations Research and Management
Science Handbook, CRC Press, p. chap 11.

[14] Brin, S. and L. Page (1998) “The anatomy of a large-scale hypertextual
Web search engine,” Computer Networks and ISDN Systems, 30(1-7), pp.
107 – 117, ¡ce:title¿Proceedings of the Seventh International World Wide Web
Conference¡/ce:title¿.

[15] Kleinberg, J. M. (1999) “Authoritative sources in a hyperlinked environ-
ment,” J. ACM, 46, pp. 604–632.

[16] Albert, R. and A.-L. Barabási (2002) “Statistical mechanics of complex
networks,” Rev. Mod. Phys., 74, pp. 47–97.

[17] Haykin, S. (1994) Neural Networks: A Comprehensive Foundation, 1st ed.,
Prentice Hall PTR, Upper Saddle River, NJ, USA.

[18] Grossman, J., P. Ion, and R. Castro (2008), “Erdos Number Project,” .
URL http://www.oakland.edu/enp/

[19] Raghavan, U. N., R. Albert, and S. Kumara (2007) “Near linear time
algorithm to detect community structures in large-scale networks,” Phys. Rev.
E, 76, p. 036106.

[20] Barabsi, A.-L. and R. Albert (1999) “Emergence of Scaling in Random
Networks,” Science, 286(5439), pp. 509–512.

[21] Diesner, J., T. Frantz, and K. Carley (2005) “Communication Net-
works from the Enron Email Corpus It’s Always About the People. Enron is
no Different,” Computational & Mathematical Organization Theory, 11, pp.
201–228.

[22] Leskovec, J. and E. Horvitz (2008) “Planetary-scale views on a large
instant-messaging network,” in Proceeding of the 17th international conference
on World Wide Web, WWW ’08, ACM, New York, NY, USA, pp. 915–924.

84

[23] Nanavati, A. A., S. Gurumurthy, G. Das, D. Chakraborty, K. Das-
gupta, S. Mukherjea, and A. Joshi (2006) “On the structural properties
of massive telecom call graphs: findings and implications,” in Proceedings of
the 15th ACM international conference on Information and knowledge man-
agement, CIKM ’06, pp. 435–444.

[24] Mislove, A., M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee (2007) “Measurement and analysis of online social networks,” in
Proceedings of the 7th ACM SIGCOMM conference on Internet measurement,
IMC ’07, pp. 29–42.

[25] Palla, G., A.-L. Barabási, and T. Vicsek (2007) “Quantifying social
group evolution,” Nature, 446, pp. 664–667.

[26] Hechter, M. (1988) Principles of Group Solidarity, California Series on
Social Choice and Political Economy, University of California Press.

[27] Zachary, W. W. (1977) “An Information Flow Model for Conflict and Fis-
sion in Small Groups,” Journal of Anthropological Research, 33(4).

[28] Papadopoulos, S., Y. Kompatsiaris, A. Vakali, and P. Spyridonos
“Community detection in Social Media,” Data Mining and Knowledge Dis-
covery, pp. 1–40.

[29] Kovacs, I. A., R. Palotai, M. S. Szalay, and P. Csermely (2010)
“Community Landscapes: An Integrative Approach to Determine Overlap-
ping Network Module Hierarchy, Identify Key Nodes and Predict Network
Dynamics,” PLoS ONE, 5(9), p. e12528.

[30] Wasserman, S. and K. Faust (1994) Social network analysis: methods and
applications, Structural analysis in the social sciences, Cambridge University
Press.

[31] Scott, J. (2000) Social network analysis: a handbook, SAGE Publications.

[32] Borgatti, S. P., M. G. Everett, and P. R. Shirey (1990) “LS sets,
lambda sets and other cohesive subsets,” Social Networks, 12(4), pp. 337 –
357.

[33] ma, J. and S. Schaeffer (2006) “On the NP-Completeness of Some Graph
Cluster Measures,” in SOFSEM 2006: Theory and Practice of Computer Sci-
ence (J. Wiedermann, G. Tel, J. Pokorn, M. Bielikov, and J. tuller, eds.), vol.
3831 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp.
530–537, 10.1007/11611257 51.

85

[34] Clauset, A., M. E. J. Newman, and C. Moore (2004) “Finding commu-
nity structure in very large networks,” Phys. Rev. E, 70, p. 066111.

[35] Luo, F., J. Wang, and E. Promislow (2006) “Exploring Local Com-
munity Structures in Large Networks,” in Web Intelligence, 2006. WI 2006.
IEEE/WIC/ACM International Conference on, pp. 233 –239.

[36] Shi, J. and J. Malik (2000) “Normalized Cuts and Image Segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., 22, pp. 888–905.

[37] Kannan, R., S. Vempala, and A. Vetta (2004) “On clusterings: Good,
bad and spectral,” J. ACM, 51, pp. 497–515.

[38] Newman, M. E. J. and M. Girvan (2004) “Finding and evaluating com-
munity structure in networks,” Phys. Rev. E, 69, p. 026113.

[39] Pons, P. and M. Latapy (2005) “Computing Communities in Large Net-
works Using Random Walks,” in Computer and Information Sciences - ISCIS
2005 (p. Yolum, T. Gngr, F. Grgen, and C. zturan, eds.), vol. 3733 of Lec-
ture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 284–293,
10.1007/11569596 31.

[40] Lorrain, F. and H. C. White (1971) “Structural equivalence of individuals
in social networks,” The Journal of Mathematical Sociology, 1(1), pp. 49–80.

[41] Palla, G., I. Derenyi, I. Farkas, and T. Vicsek (2005) “Uncovering the
overlapping community structure of complex networks in nature and society,”
Nature, 435(7043), pp. 814–818.

[42] von Luxburg, U. (2007) “A tutorial on spectral clustering,” Statistics and
Computing, 17, pp. 395–416, 10.1007/s11222-007-9033-z.

[43] Duch, J. and A. Arenas (2005) “Community detection in complex networks
using extremal optimization,” Phys. Rev. E, 72, p. 027104.

[44] Massen, C. P. and J. P. K. Doye (2005) “Identifying communities within
energy landscapes,” Phys. Rev. E, 71, p. 046101.

[45] Newman, M. E. J. (2006) “Finding community structure in networks using
the eigenvectors of matrices,” Phys. Rev. E, 74, p. 036104.

[46] Girvan, M. and M. E. J. Newman (2002) “Community structure in social
and biological networks,” Proceedings of the National Academy of Sciences,
99(12), pp. 7821–7826.

86

[47] Tsatsou, D., S. Papadopoulos, I. Kompatsiaris, and P. C. Davis
(2011) “Distributed Technologies for Personalized Advertisement Delivery.”
in Online Multimedia Advertising: Techniques and Technologies (X.-S. Hua,
T. Mei, and A. Hanjalic, eds.), Hershey: IGI Global, pp. 233–261.

[48] Zhao, Q., P. Mitra, and B. Chen (2007) “Temporal and information flow
based event detection from social text streams,” in Proceedings of the 22nd
national conference on Artificial intelligence - Volume 2, AAAI Press, pp.
1501–1506.

[49] Rees, B. S. and K. B. Gallagher (2010) “Overlapping Community Detec-
tion by Collective Friendship Group Inference,” in 2010 International Confer-
ence on Advances in Social Networks Analysis and Mining, IEEE, pp. 375–379.

[50] Nguyen, N. P., T. N. Dinh, D. T. Nguyen, and M. T. Thai (2011)
“Overlapping Community Structures and Their Detection on Social Net-
works,” in 3rd IEEE International Conference on Social Computing (SO-
CIALCOM).

[51] Padrol-Sureda, A., G. Perarnau-Llobet, J. Pfeifle, and
V. Muntes-Mulero (2010) “Overlapping Community Search for social net-
works,” Data Engineering, International Conference on, 0, pp. 992–995.

[52] Pizzuti, C. (2009) “Overlapped community detection in complex networks,”
in Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, GECCO ’09.

[53] Goldberg, M., S. Kelley, M. Magdon-Ismail, K. Mertsalov, and
A. Wallace (2010) “Finding Overlapping Communities in Social Networks,”
in Proceedings of the 2010 IEEE Second International Conference on Social
Computing, SOCIALCOM ’10, IEEE Computer Society, Washington, DC,
USA, pp. 104–113.

[54] Baumes, J., M. Goldberg, M. Krishnamoorthy, M. Magdon-Ismail,
and N. Preston (2005) Finding communities by clustering a graph into over-
lapping subgraphs, pp. 97–104.

[55] Sawardecker, E. N., M. Sales-Pardo, and L. A. Amaral (2009) “De-
tection of node group membership in networks with group overlap,” The Eu-
ropean Physical Journal B - Condensed Matter and Complex Systems, 67, pp.
277–284.

[56] Chen, W., Z. Liu, X. Sun, and Y. Wang (2010) “A game-theoretic frame-
work to identify overlapping communities in social networks,” Data Mining
and Knowledge Discovery, 21, pp. 224–240.

87

[57] Psorakis, I., S. Roberts, M. Ebden, and B. Sheldon (2011) “Overlap-
ping community detection using Bayesian non-negative matrix factorization,”
Phys. Rev. E, 83, p. 066114.

[58] Xie, J., S. Kelley, and B. K. Szymanski (2011) “Overlapping Community
Detection in Networks: the State of the Art and Comparative Study,” .

[59] Gregory, S. (2009) “Finding Overlapping Communities Using Disjoint
Community Detection Algorithms,” Complex Networks, 207, p. 4761.

[60] Li, X., B. Liu, and P. Yu (2006) “Discovering Overlapping Communi-
ties of Named Entities,” in Knowledge Discovery in Databases: PKDD 2006
(J. Frnkranz, T. Scheffer, and M. Spiliopoulou, eds.), vol. 4213 of Lec-
ture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 593–600,
10.1007/11871637 60.

[61] Wei, F., C. Wang, L. Ma, and A. Zhou (2008) “Detecting Overlapping
Community Structures in Networks with Global Partition and Local Expan-
sion,” in Progress in WWW Research and Development (Y. Zhang, G. Yu,
E. Bertino, and G. Xu, eds.), vol. 4976 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 43–55, 10.1007/978-3-540-78849-2 7.

[62] Shannon, C. E. (2001) “A mathematical theory of communication,” SIG-
MOBILE Mob. Comput. Commun. Rev., 5, pp. 3–55.

[63] Balakrishnan, A., S. R. T. Kumara, and S. Sundaresan (1999) “Man-
ufacturing in the Digital Age: Exploiting Information Technologies for Prod-
uct Realization,” Information Systems Frontiers, 1, pp. 25–50.

[64] Lee, C. (2011), “The Sociograph,” .
URL http://sociograph.blogspot.com/2011/03/

