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Abstract 
 
 
 

The dominant charged point defects in transition metal oxides can change with 

temperature (T) and oxygen partial pressure (PO2) to control the electrical properties of 

the materials. Thus it is important to understand how the defect formation energies (DFEs) 

of all the defects are changed with T and PO2, which is not easily measured 

experimentally. Density Functional Theory (DFT) is combined with thermodynamics to 

construct a new methodology to calculate the DFEs ab initio. Rutile TiO2 is chosen as a 

model material because it is a relatively simple binary system and there is a wealth of 

existing macroscopic experimental data, such as its dependence of the electrical 

conductivity on T and PO2, temperature dependent thermal expansion coefficient, etc.  

   Chapter 1 introduces the general method to calculate DFEs, which combines DFT 

with thermodynamics, including the supercell method to calculate the total energies of 

defective and pure supercells; the use of Bader analysis to analyze the real space charge 

distribution, which helps choose a potential alignment method to correct for the artificial 

interaction caused by periodic boundary conditions, and a thermodynamic approach to 

extrapolate DFEs to any T and PO2.  

    Chapter 2 discusses the temperature-dependent defect-induced phonon free energy 

in the harmonic approximation, which gives nontrivial contributions to the DFEs. The 
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temperature dependences of the defect-induced phonon free energies are different from 

the pure rutile structure, and more importantly they are different for differently charged 

defects. The physical origin is largely associated with the soft phonon mode at low 

frequencies for titanium interstitials, while for oxygen vacancies and titanium vacancies 

the differences in the phonon free energies are caused by the collective contribution from 

all phonon modes influenced by the introduction of the charged defects.  

Chapter 3 points out the necessity of considering the thermal expansion of the 

materials in the DFE calculation. The differences between harmonic and qusi-harmonic 

approximations for the phonon free energy and Gibbs free energy calculations are 

discussed. Defect phase diagrams are constructed in the PO2-T-Ef spaces to explain how 

the dominant defect types change with environmental conditions. 
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Chapter 1 
 
Background 
 
 

Charged point defects in TiO2 are largely responsible for its electrical properties, 

which have been measured experimentally by several groups [1-5]. Nonetheless, 

controversies remain about the dominant point defects responsible for the conductivity 

behavior in certain temperature (T) and oxygen partial pressure (PO2) ranges, as shown in 

Figure 1.1.  At temperatures above 1600 K and in the reduced PO2 regime (10-11-10-2atm) 

Baumard et al. [1] (Fig. 1.1a) and Blumenthal et al. [5] (Fig. 1.1b) find the measured 

electrical conductivity versus PO2 is best fit by a log-log slope of -1/5, which leads to 

their conclusions that fully charged titanium interstitials (Tii
4+ in Kröger-Vink notation) 

dominate in this region (Related mass action relation is in Appendix). However, neither 

study measures directly the impurity concentration in the sample or pays specific 

attention to thermal equilibrium, although the impurity level is estimated to be around 

30ppm in Baumard’s sample[6]. At intermediate temperatures, there are more 
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discrepancies in the data than the previous high temperatures. For example, Baumard et 

al. [1] measure the electrical conductivity versus PO2 between 1200K and 1600K in the 

PO2 range of 1 atm to 10-15 atm obtaining a log-log slope of -1/5, and concluding that 

fully charged Ti interstitials, Tii
4+, are dominant, while Blumenthal et al. [5] find there 

was a slope transition from -1/6 to -1/4 with decreasing PO2 and conclude that Tii
3+ 

dominates in the low PO2 range. In addition, Balachandran and Eror [7] find a slope of 

-1/6 between 1123K and 1323K in a PO2 range of 10-20 atm to 10-10 atm in the 

polycrystalline rutile TiO2 and conclude fully charged oxygen vacancies, VO
2+, to be 

dominant, while at intermediate PO2 ( 10-10 atm to 1 atm ) they speculate that impurities 

may play a role in their samples to give the slope of -1/4. More recent studies by Lee and 

Yoo [8] claim Tii
3+, Tii

4+,and VO
2+ successively dominate as PO2 increases from 10-15 atm 

to 1 atm between 1200K and 1400K, while Nowotny et al. [3] claim VO
2+ dominates at 

low PO2 (<10-10 atm), while at intermediate PO2 from 10-10 atm to 1 atm, both VO
2+ and 

VTi
4- dominate. Both of these latter groups pay specific attention to the defect 

redistribution thermal equilibrium with changing PO2 and T, and measure directly the 

impurity level in the samples. The impurity level is 32ppm in Nowotny et al.’s sample 

and less than 5ppm in Lee and Yoo’s sample. Considering that the intrinsic defect 

concentration can be as low as 10ppm between 10-10 atm and 1 atm in the intermediate 

temperature range in rutile TiO2 [6, 7, 9, 10], the extremely low impurity level in Lee and 

Yoo’s sample makes their data more representative of the intrinsic defect chemistry in 

rutile TiO2.  
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Figure 1.1 Electrical conductivity data from (a) Baumard et al. [1] (b) Blumenthal et 

al.[5] (c) Lee and Yoo[8] (e) Nowotny et al.[3] for single crystal rutile TiO2, and from (d) 

Balachandran and Eror [7]for polycrystalline rutile TiO2. 

 

 

Not only do the conflicting experimental data provide some confusion about the 

nature of the dominant defects, but, in addition, there may be more than one possible 
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dominant defect that can explain the conductivity behavior in certain T and PO2 ranges 

from the mass action analysis. For example, the measured slope of -1/4 in the 

ln(conductivity) vs. ln(PO2) behavior in TiO2 in the high-T (1400K) and low PO2 (< 10-10 

atm) regime can correspond to either Tii
3+ or VO

1+ [5, 8], so the dominant defect may not 

be unambiguously determined by these methods. There is therefore a need to understand 

point defect thermodynamics from a more fundamental, theoretical perspective.   

  To provide a predictive understanding of the point defect and electronic behavior of 

transition metal oxides, there have been considerable efforts to calculate charged point 

defect formation energies (DFEs) by Density Functional Theory (DFT) [11-16], since the 

magnitudes of the DFEs decide the charged defect concentrations through Boltzmann 

distributions and hence determine the electronic carrier concentrations through 

electroneutrality conditions. For rutile TiO2, Cho et al.[17] studied the electronic 

structures and charge distributions of neutral defects, which can give complementary 

information to the real space charge distribution analysis in charged defect structures 

discussed in Chapter 2. Iddir et al.[18] calculated the neutral titanium interstitial and 

oxygen vacancy in rutile TiO2 and paid specific attention to their migration energies and 

associated kinetic processes. He and Sinnott [19] calculated the formation energy of a 

Frenkel pair in rutile TiO2 by a 2x2x3 sized supercell, which shows the DFE of the pair 

increases with increasing distance between the interstitial and vacancy defects. This 

suggests for the DFE calculation of an individual charged point defect that large 

supercells are necessary to avoid interactions between neighboring defects in the periodic 
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supercells. He et al. [20] also calculated the DFEs of individual charged point defects in 

2x2x3 sized supercells. Unfortunately, the Makov-Payne correction [21], which corrects 

for the artificial electrostatic interaction between charged point defects by the periodic 

boundary condition implemented in the supercell approach, was applied in a wrong way 

as pointed out in ref. [13], which invalidates the presented energies and related analysis in 

this work[20]. Ma et al. [22] calculated charged point defects in a 2x2x2 supercell 

without applying any correction method for the above mentioned artificial interactions, 

making their results problematic. As explained in this thesis and presented in ref. [13], the 

Makov-Payne correction is, in fact not, an appropriate correction method for charged 

defect calculations in rutile TiO2, thus a better potential alignment correction method[23, 

24] was applied. The supercell size convergence test up to 3x3x5 unit cells was also done 

for all the charged defective supercells by ref. [13]. Most recently, Finazzi et al. [25] 

calculated the neutral Ti interstitial in a 2x2x3 sized supercell with a Hybrid functional in 

a spin-polarized calculation, and found the degree of localization of the extra electrons 

introduced by the defect ion is influenced by the ratio of the Hartree-Fock component in 

the hybrid functionals. However, the adjustment of this ratio is somewhat arbitrary. 

Furthermore, there was argument by Zheng et al.[12] that although the choice of different 

hybrid functionals may improve the calculated bandgap for transition metal oxides, the 

DFEs should not be affected by the bandgap correction.   

To calculate the DFEs at a certain T and PO2, the prior literature has typically used 

a combination of DFT with thermodynamics[11-16, 26]. However, most use only the two 
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thermodynamic limits to calculate the DFEs at the oxygen-rich and oxygen-poor 

boundaries, instead of predicting the specific DFEs over a range of T and PO2. The 

present work takes a more rigorous approach to calculate the chemical potential for O and 

Ti in rutile TiO2 at 0K based on a well-defined zero energy reference state of DFT 

calculation, upon which their values at any T and PO2 are decided and can be compared 

directly with DFT-calculated total energies of defective and pure supercells, which can 

give a definite value of DFE between the two thermodynamic boundaries[13, 20, 26, 27].  

  Furthermore, in most previous works [11-16, 26] the DFEs are approximated by 

the defect formation internal energy, U, which assumes that the temperature dependence 

of the Gibbs free energy is identical between the defective and pure structures. This thesis 

will show this is not true in rutile TiO2 system. By considering the temperature dependent 

defect-induced phonon free energies and Gibbs free energies, which were largely 

neglected in most previous works [11-16, 26], the calculated stability ranges for partially 

charged oxygen vacancies and titanium interstitials are expanded, explaining some 

experimental observations (e.g. the -1/4 slope in the high-T, low PO2 regime of TiO2 

discussed above)[8, 28]. Also, the contributions of the Gibbs free energies stabilize the 

titanium vacancy at high T in the p-type region, which matches better the n-p transition 

point from experiments[1, 3, 5, 6].   

All of the above discussed effects will be finally reflected in the defect phase 

diagrams constructed in the PO2-T-Ef spaces to help clarify the experimental 

discrepancies. 
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Chapter 2 
 

Defect Formation Energy Calculation[13] 
2.1 Formula System  

     From a DFT perspective, the rigorous definition of a DFE is: 

2( , )defect pure
fG G G qET POμΔ = − ± +                        (2.1) 

 where defectG  and pureG  are the Gibbs free energies of the defective and the pure 

structures, respectively. The atom chemical potential 2( , )T POμ  for the Ti or O atom is 

used to balance the number of atoms between the two systems, and depending on the 

defect type the sign in front of the term will be positive for a vacancy or negative for an 

interstitial defect. The electron chemical potential, fE , is used to balance the number of 

electrons between the structures, depending on the charge state, q, of the defect. However, 

in the practical calculations, the first two Gibbs energy terms in eq (2.1) are usually 

simplified to the total energy or internal energy terms defectU  and pureU  calculated from 

DFT at 0K, with the assumption that the temperature-dependant phonon free energies and 

the volume-dependant DFE changes can be neglected[11, 13, 20, 24, 29]. In this chapter 
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this widely used simplified formula (eq. (2.2)) is used initially to calculate the DFEs: 

 ΔU = U defect −U pure ± μ(T , PO2 ) + qE f  (2.2) 

There are different methods to calculate the atom chemical potential 
2

( , )OT Pμ  in the 

literature [11, 13, 20, 24, 29], with most using the chemical potential of the atom at the 

two thermodynamic boundaries of oxygen-poor ( n-type) and oxygen-rich ( p-type) status. 

Here a further step is taken to give the exact chemical potential of the Ti or O atom in 

rutile TiO2 at a given T and PO2 [13, 20]. The chemical potential term is thusly divided 

into several sub-terms that can be either calculated by ab initio methods or measured 

experimentally with specified T and PO2 dependence. For oxygen: 

 

2

2

2 2

0 0 1
2 0

0 0 0 0 1
, 2 0

( ) ln( )

1 ( ) ( ) ln( )
2

O
O O O B

O
TiO Ti f TiO O B

P
T k T

P
P

G T k T
P

μ μ μ

μ μ μ

= + Δ +

= − −Δ + Δ +
 (2.3) 

which was originally applied to the Al2O3 system by Finnis and coworkers [27, 30];  

and for titanium: 

 
2 2 2

0( , ) 2 ( , )Ti OO TiO OT P T Pμ μ μ= −  (2.4) 

In eq (2.3) and (2.4) the standard chemical potential of a Ti atom, 0
Tiμ , and rutile TiO2 

molecular unit, μTiO2

0 , are calculated by DFT calculations at 0K. The 

temperature-dependant part of the chemical potential of oxygen at standard pressure, 

ΔμO
0 (T) , and the standard formation energy, ΔGf ,TiO2

0 , are taken from the NIST 

thermodynamic experimental database [31]. As pointed out by Finnis et al. [32], the 

standard chemical potentials for TiO2 and Ti calculated at 0K by DFT are adequate 
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estimates for the standard temperature and pressure because rutile TiO2 and metallic Ti 

are solids. Thus in eq (2.3) the chemical potential of oxygen at 0 K, 0
Oμ , has a 

well-defined zero energy reference state of DFT calculation at 0K, which makes the 

chemical potential of O and Ti in the formula system valid to be directly compared with 

the calculated total energies of defective and pure structures, defectU  and pureU , by DFT.  

With this approach, the DFEs at high temperature, different oxygen partial pressure and 

Fermi level can be calculated on an ab initio basis.   

 

2.2 Density Functional Theory 

Instead of diagonalizing the wavefunctions for a many-electron system using the 

N-particle Schrodinger equation, DFT calculates the ground-state charge density of the 

whole system, which makes it computationally practical for real materials, and especially 

low-symmetry defective supercells. All properties of a quantum many-body system can 

be considered to be unique functionals of the ground state density[33], with the 

present-day method for treating condensed matter given by W. Kohn and L.J. Sham [34]. 

The method includes the kinetic energy of non-interacting electrons in terms of 

independent particle wavefunctions, with interaction terms explicitly treated in the 

exchange-correlation energy functional of the density Exc[n]. The accuracy of a practical 

calculation based on the Kohn-Sham approach is only limited by the approximations in 

Exc[n], which are usually approximated as a local or nearly local functional of the density. 

In the local density approximation (LDA) the exchange correlation energy density is 



 10

assumed to be the same as the homogeneous electron gas locally. The generalized 

gradient approximation (GGA), such as GGA-PBE[35], takes a further step by including 

the magnitude of the gradient of the density in the functional. The recent development of 

hybrid functionals, such as PBE0[36] or HSE06[37], which is a combination of 

orbital-dependent Hartree-Fock and an explicit density functional, may improve the 

bandgap calculations for the system with relatively high correlation [38].  

 

2.3  Supercell Size Convergence Test 

     The total energies of defective and pure structures, defectU  and pureU , in eq (2.2) 

are calculated from DFT with the supercell approximation [11, 13, 20, 24, 29]. DFT 

calculations are carried out using the Vienna Ab-initio Simulation Package (VASP) [39, 

40]. The calculations use the generalized gradient approximation 

Perdew-Burke-Ernzerhof (GGA-PBE) [35] exchange-correlation functionals to obtain the 

ground-state energies of the supercells. Projector augmented wave (PAW) 

pseudopotentials [40, 41] that explicitly calculate the 3s23p63d24s2 electrons for titanium 

and the 2s22p4 electrons for oxygen are used for all calculations. The cutoff-energy of 354 

eV and k-points sampling of 4x4x4 are determined after careful tests for convergence. 

The total-energy and residual-force convergence criteria are set to 10-4 eV and 0.01 eV/Å, 

respectively. The calculated lattice parameters of the defect-free unit cell are listed in 

Table 1, and these are then used to build the supercell. 
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a ê Þ c ê Þ
Experiment 4.59 2.96
GGA-PBE 4.65 2.97

+1.3% +0.3% 

Table 2.1. Lattice parameter of rutile TiO2 calculated from DFT compared with experiments. 

 

 Supercell size convergence is an important issue for charged point defect 

calculations with periodic boundary conditions. The finite-size effects arising from 

electrostatic interactions between a charged defect and its periodic images are accessed 

through the valence-band offset, or ΔV, correction [23] and the Makov-Payne approach 

[21, 42]. The defective supercells of various sizes from 2x2x2 to 3x3x5 TiO2 unit cells 

are examined to evaluate the convergence with increasing supercell size of the DFEs, 

charge density distribution, external pressure and correction energies. A protocol is finally 

adopted for obtaining accurate defect formation energies in the TiO2 system, namely to 

use as large a supercell as computationally feasible in a 30 days time frame for each 

defective supercell (in this case 3x3x5 unit cells) and to apply the VΔ  correction. The 

NSF-Teragrid clusters are used for the total energy calculations in this chapter and the 

phonon calculation in chapter 3 and 4.  

 

2.3.1 Charge localization and ionic displacement analysis 

The aim of this section is to give a quantitative procedure for defining the spatial 

distribution of the Kroger-Vink charge of a defect. This is very important because the 

lattice around the defect is discrete, strained and polarized, making it problematic simply 
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to integrate the charge over a region around the defect. For any defective supercell, such 

as Tii
q, the charge state q is not defined without a clear statement of the reference state. In 

most cases, including the Kroger-Vink convention, the reference background is the 

perfect supercell. Thus it is the charge density difference between the defective and the 

perfect supercells that defines the charge associated with point defect Tii
q. 

A point-by-point subtraction of the charge density of the perfect lattice from the 

charge density in the defective supercell will exhibit huge spatially dependent oscillations 

due to the displacements of the nuclear positions around the defect, which carry with 

them a proportion of the electron density. Instead, a course-graining, discretization 

procedure for the charge density is employed and mapped onto individual ions. All the 

electronic charges are allocated to individual ions according to the Bader prescription 

[43], for both the defective and the perfect crystals. In order to define excess charge the 

subtraction is then done not point by point in space but atom by atom, which gives the 

excess charge as a function of distance from the defect. 

The Bader volume of each ion is defined by the surface around it whose normal 

points along the direction in which the surrounding charge density has zero gradient.  

These volumes fill the space of the supercell seamlessly without empty space or overlap. 

The integrations of all the electrons inside each unit region defined by the Bader volumes 

in a perfect supercell give a value of 7.1 electrons around each oxygen ion and 9.8 

electrons around each titanium ion. In the perfect crystal this defines an ionic charge of 

-1.1 for the oxygen ion and +2.2 for the titanium ion, which agrees reasonably well with 
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the experimental analysis of the effective charge state of a titanium ion in rutile TiO2 [44], 

although we do not presume it to have any absolute physical meaning. They also agree 

well with the results of a simple analysis of the relationship between electronegativity 

and charge state [45], where the Pauling electronegativity difference between O of 3.5 

and Ti of 1.6 [44] predicts a charge state of -1.1 for the O ion in TiO2.  
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Figure 2.1 (b) 
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Fig 2.1. Average number of electron difference (dashed line) per (a) Ti ion and (b) O ion, 

or partial charge density difference on the atomic scale; and the average ion displacement 

(solid line) averaged over (a) Ti ion and (b) O ion inside each successive spherical shell 

within radius R and R+Δr from the Tii
4+ defect nucleus in the 3x3x5 supercell. 

 

The number of electrons that belong to each Ti or O ion in the defective and 

perfect supercells can be obtained by integrating over the respective Bader volumes, and 

their difference is then calculated. Figure 2.1 illustrates the average number of electron 

difference (dashed line) and average displacement (solid line) per Ti or O ion inside the 

successive spherical shells around the Ti interstitial nucleus as a function of distance R 

from the defect. The thickness Δr of each spherical shell is chosen by the criteria that the 
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distance between any two ions is always less than 0.5 Å within each shell. The choice of 

other values for the criteria should not influence our major conclusion. However, a too 

small value might introduce noise while a too large value might hide the useful details. It 

shows that the first nearest neighbor (1NN) O ions in Figure 2.1(b) and second nearest 

neighbor (2NN) Ti ions in Figure 2.1(a) of the Ti interstitials all have positive electron 

differences, which is due to the partial transfer of charge from these neighbors to the 

interstitial or farther regions. Beyond the 2NN shell, the charge transfer fluctuates all the 

way to the edge of the supercell. Comparison of Figures 2.1(a) and (b) indicates that for 

titanium ions the relaxations toward the titanium interstitial are mostly accompanied with 

a loss of electrons within their Bader volumes, and the relaxations away from the defect 

nucleus are associated with gain in local electron density; while for oxygen ions the 

opposite trend is implied. This is as one would expect if the relaxations are driven by the 

electrostatic interactions of the ions. The ionic displacements in the defective supercell 

are found to converge to the perfect crystal values more quickly with increasing distance 

from the defect site than the charge density. 
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Fig 2.2 (a) Average number of electron difference per ion, or total charge density 

difference on the atomic scale, averaged over all ions inside each successive spherical 

shell within radius R and R+ΔR from the defect nucleus for 223 and 335 sized differently 
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charged Tii
q supercells. (b) Accumulated number of electron difference within radius R 

around defect nucleus between Tii
q defective and perfect supercells. Dashed lines are for 

223 sized supercells and solid lines for 335 supercells. The charge states q of Tii
q for any 

group of curves are from 0 at the top to +4 at the bottom successively in both figures. 

 

 

 

The spatial extent of the defect charge density is now examined in more detail. 

Figure 2.2(a) shows the total charge density difference oscillation as a function of 

distance from the defect nucleus for differently charged Tii
q supercells at two different 

sizes. The excess charge on the nearest neighbors of the interstitial atom is surprisingly 

insensitive to the charge in the supercell. In the smaller supercell the average charge 

carried by the nearest neighbors varies in the range -0.1 to -0.03 while the charge in the 

supercell varies over the whole range from 0 to +4. In the larger supercell, where the 

excess charge has more room to spread, the variation in charge localized on the nearest 

neighbors is even less. The charge densities also oscillate with much higher amplitudes as 

a function of distance from the interstitial in 2x2x3 supercells compared with the 3x3x5 

supercells. By summing the electron difference within each discrete radius, the total 

electron difference around the defect nucleus can be plotted as a function of distance 

from the defect nucleus, as shown in Figure 2.2(b) for the same set of charged Tii
q 
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supercells of two different sizes. The values for the interstitial itself ( 0)eN RΔ =∑ are all 

close to 10 regardless of the charge of the overall supercell. A neutral interstitial would 

have a value 12tot
eNΔ = , which shows that the charge states within the Bader volumes of 

the titanium interstitial at R=0 are always around +2 for all differently charged Tii
q 

supercells, just as they are for Ti lattice sites in the perfect crystal. This result is 

consistent to the model about the charge self-regulation around a transition metal ion in 

semiconductors to make the local charge of the ion constant, no matter what the oxidation 

states of the supercells are[46] .  

For the Tii
1+ supercell illustrated in Figure 2.2(b) the excess charge has all been 

accommodated at the interstitial and its first and second neighbors, a region well within 

the faces of the supercell. In the other cases, it is clear that the size of the supercell is 

strongly affecting the charge distribution, because the excess charge density is varying 

right up to the faces of the supercell. In an infinitely large supercell the amplitude of the 

charge density oscillation would damp to zero at a certain distance. Within this range all 

the structural distortion and charge density difference oscillation are the intrinsic 

structures of the point defect, Tii
q, while from any viewpoint far beyond this range the 

charge state of this entity is always the nominal value q. However, our largest supercells 

are still too small to contain this range, except perhaps for the Tii
1+ charged supercell.  
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2.3.2 Influence of defect charge distribution on choice of correction method 

The intent of the Makov-Payne correction is to account for the artificial electrostatic 

interaction between the charged point defect images including the jellium background in 

the supercell because of the periodic boundary conditions [21]. Its first order correction is 

identical to Leslie and Gillan’s result [42], which was applied to charged defects in TiO2 

in an earlier publication [20]. Examination of the charge localization range by the method 

of real-space charge integration in the previous section indicates that for the rutile TiO2 

the charge delocalization around the defect invalidates the application of the 

Makov-Payne correction. Furthermore, as pointed out by Castleton et al. [47], the DFT 

dielectric constant may not be the same as the experimental value because the dielectric 

constant is an intrinsically macroscopic quantity arising from an ensemble of ions; its 

application at this microscopic level is potentially problematic. 

Promising new approaches have been very recently proposed by Freysoldt et al. [48] 

for correcting the electrostatic interactions between supercells that makes use of an 

analysis of electrostatics in dielectric media. However, here the simpler electrostatic 

potential alignment correction ( VΔ correction) is adequate for our rutile TiO2 system in 

that it converges the DFEs very quickly. The VΔ correction takes into account the fact 

that the valence band minimum (VBM) in the neighborhood of a charged defect is shifted 

with respect to the perfect crystal, which generates the energy used to exchange the 

electrons between VBM and the Fermi level. The value of the valence band shift is 

estimated by the difference between the average electrostatic potential at the edge of the 
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defective supercell and the perfect supercell [23, 24].  

Figure 2.3 presents the DFEs for Tii
4+ and VTi

4- as a function of supercell size with 

the two different corrections applied. The results indicate that the VΔ correction 

converges the total energies more rapidly with increasing supercell size than does the 

Makov-Payne correction. The corrected energies in Figure 2.3 do not include the 

chemical potential and Fermi level terms in eq (2.2), since these terms do not affect the 

convergence analysis. Table 2.2 lists the values for the different correction methods and 

the final DFEs for 2x2x3 and 3x3x5 supercells. It is clear that, even including both first 

and second order terms, the Makov-Payne correction scheme does not converge as 

quickly as the VΔ correction for this system. For these reasons the following results 

consider only the VΔ correction. 
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Fig 2.3. The energy of perfectE Eα − (solid line) for Tii
4+ (a) and VTi

4- (b) after 

Makov-Payne correction (dashed line) and VΔ  correction (dot-dashed line), 
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respectively, as a function of the supercell sizes. 

 

 

 

DE MPH1êL,qL MPH1êL3,qL q*DV DE+MPH1êL,1êL3,qL DE+q*DV

Tii4+_223 -31.87 0.251 0.099 0.808 -31.520 -31.062

Tii4+_335 -31.23 0.162 0.070 0.196 -30.998 -31.034

Tii2+_223 -20.78 0.063 0.019 0.454 -20.698 -20.326

Tii2+_335 -20.47 0.040 0.016 0.108 -20.414 -20.362

VTi
4-_223 33.84 0.251 0.099 0.848 34.190 34.688

VTi
4-_335 34.40 0.162 0.070 0.228 34.632 34.628

VTi
2-_223 27.65 0.063 0.019 0.400 27.732 28.050

VTi
2-_335 27.70 0.040 0.015 0.114 27.755 27.814  

 

Table 2.2: DFE after different correction methods. The two MP(q) terms are the 

Makov-Payne 1st and 2nd order corrections by defining the point charges with different 

radii around the defects between 0.7 to 2 A. 
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2.3.3 Artificial elastic energy interaction 

Although the correction methods mentioned above are widely used to correct for 

artificial electrostatic effects associated with the small system sizes, none explicitly 

includes a correction for the possible artificial elastic energy interactions inherent in the 

supercell approach. One possible scheme to account for this effect is to allow the 

supercell volume to relax in the DFT calculations such that the external pressure on the 

supercell after relaxation is close to zero; this simulates a physical scenario in which the 

physical defect concentration is the same as the (extremely high) defect concentration in 

the supercell. Another approach that is usually considered to be more appropriate for the 

dilute solution approximation, which is of interest here, is to fix the supercell volume at 

the relaxed volume of the pure cell during the relaxation, such that the elastic strain field 

interacts with the boundary of the supercell and leaves an external pressure on the relaxed 

supercell. 
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Fig 2.4. (a) The elastic strain energies calculated from the external pressures on the 

constant volume supercells as a function supercell sizes, using formula 
21

2p
P VPE
P Y

=  

(b) The comparison of the convergence between the constant volume ( perfectE Eα − ) and 

zero pressure method ( perfect PE E Eα − − ) after VΔ  correction for VTi
4-

 and VTi
1- 

supercells.  

 

 

The pressure on the supercells in the constant-volume method can be used to estimate 

its energy difference EP  from the corresponding zero pressure supercell by the classical 

formula of elastic strain energy 1
2

VP2

Y
 , where V is the volume of the supercell, P is the 

external pressure on the supercell using the constant volume method from DFT 

calculation and Y the experimental bulk modulus of bulk rutile TiO2 [49]. The calculated 

energy difference as a function of supercell size for five different defective supercells is 

shown in Figure 2.4(a). These values agree reasonably well with the energy differences 

taken directly from the DFT-calculated, zero-pressure supercell energies for several tested 

cases. The figure illustrates that the energy difference can be very large at small 

supercells: ~ 1 eV for the 2x2x3 VTi
4- supercell, while at 3x3x5 supercells the difference 

is ~ 0.1 eV. We can compare the convergence behavior of the two supercell boundary 

conditions by firstly calculating the DFEs in the constant volume approach, followed 

with the subtraction of the elastic strain energy term EP to get the DFEs in the zero 
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pressure approach. We find that the constant-volume method converges more quickly 

than the zero-pressure method for highly charged supercells, i.e. Tii
4+, Tii

3+, VTi
4-, VTi

3- 

and VO
2+.  For intermediately charged supercells, i.e. Tii

2+ ,VTi
2- and VO

1+ , both methods 

have very similar convergence behaviors, while for the supercells with low charge states, 

i.e. Tii
1+, Tii

0, VTi
1-, VTi

0 and VO
0, the zero-pressure method converges more quickly. 

Figure 2.4(b) shows the case for VTi
4- and VTi

1- to illustrate some of these trends.  

Although the convergence speed of the two methods varies with the charge state of the 

supercell, the differences are always within 0.1 eV for the 3x3x5 supercells as shown in 

Figure 2.4(a). Thus we use the constant volume method with 3x3x5 supercells for all the 

subsequent calculations. 
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2.4 Defect Energetics 

 

Fig 2.5. DFE as a function of Ef at different temperature and PO2. The gray areas are forbidden by the 
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charge neutrality condition. CBM is labeled for its experimental values at different temperatures, at 

300K it is at 3eV. The insets in plots (a-c) enlarge the transition regions for each type of defect, 

respectively, which shows that the transition levels are ordered. The transition regions of titanium 

vacancies are cut by the zero value of Fermi level or the valance band maximum, thus most of them 

are not seen except for VTi
3- and VTi

4-. 

 

Based on the computational approached discussed above, the defect formation 

energies as a function of the temperature, oxygen partial pressure and Fermi level 

calculated by eq (2.2) for the supercell size of 3x3x5 are presented in Figure 2.5. The 

calculated DFE of 3.6 eV for the fully charged Frenkel pair (Tii
4+ and VTi

4- ) is ~ 0.8 eV 

lower than the experimentally derived values of 4.4 eV at ~1500K [6].  Part of this 

difference might be due to intrinsic errors in the DFT/GGA approach or the exclusion of 

the vibrational free energy, which was estimated by molecular dynamic calculations to 

account for around 5% of the DFE at 700K in a Schottky defective supercell [20]. These 

temperature dependant effects will be discussed in detail in chapter 3 and 4 by 

computationally expensive phonon calculations, while in this chapter only the DFEs 

calculated from eq (2.2) are considered. Table 2.3 lists the DFEs of Frenkel pairs and 

Schottky defects calculated by summing the DFEs of single defects, as well as their 

comparison with the experimental values [6, 10]. It indicates that the fully charged pairs 

are most favorable energetically and have energies closest to the experimental values. 
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Table 2.3. The DFE of differently charged Frenkel and Schottky pairs compared with experimental 

values. The calculated pair energies are the direct summation of the individual DFEs calculated using 

eq (2.2) thus does not include the association energy between the individual defects, which agrees 

with the experimental condition of dilute solution in ref [2, 6, 9, 10]. 

 

 

 

By fixing T and PO2, the DFEs as a function of Fermi level can be considered, as 

illustrated in Figure 2.5, where the Fermi level is referenced relative to the VBM. The 

fully charged defects at nearly all T and PO2 combinations are more likely to occur, while 

the partially charged defects are rarely preferred. However, there is a sharp transition 

from the fully charged defects to the neutral defects at around 1.9 eV for the titanium 

interstitial and the oxygen vacancy, where all the defect transition levels shrink to a very 

narrow energy range, as shown in Table 2.4. The close total energy differences between 

any two supercells with successive charge states are a result of the fact that the 

differences in the charge distributions of the supercells are similar. In addition, when one 

electron is added to a Tii
q-1 supercell to form a Tii

q supercell, the way that the added 
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charge density distributes is insensitive to the original charge state, q-1. There is no direct 

evidence of switching of orders or the so-called negative-U effect [50] as the charge state 

varies. 

@aD q Ea êeV Ea
q-1-Ea

q êeV Ea
q-1-Ea

q-Evbm-DV êeV

Tii
4+ -2456.23 5.38 1.854

Tii
3+ -2450.85 5.38 1.858

Tii
2+ -2445.47 5.42 1.885

Tii
1+ -2440.05 5.44 1.907

Tii
0 -2434.61  

Table 2.4. Total energy differences between successive charge states of titanium 

interstitial defective supercells show the equal energy difference phenomenon. 

 

Further examination of Figure 2.5 reveals that regions where the dominant point 

defect has a negative DFE (the gray areas in the figure) are forbidden regions for pure 

rutile TiO2-x bulk material. This is because the PO2, T and Fermi level are not independent 

variables, but are constrained by the electroneutrality condition. At any given T and PO2, 

if the Fermi level were to be in the forbidden region, then the formation of a large 

concentration of the defect would change the Fermi level of the material drastically, 

which would then drag the Fermi level back to the allowed regions of Figure 2.5. It is 

important to note that this does not strictly apply to a doped material in which the Fermi 

energy can be adjusted by a suitable choice of dopant, but rather to the intrinsic regime in 

which the Fermi energy in principle, must be self-consistently determined by the intrinsic 

point defects that are in equilibrium at the given PO2 and T. 
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Examination of Figure 2.5 reveals several important trends. First, at high temperature 

and low PO2, such as in Figure 2.5(f), the allowed region for the Fermi level is close to 

the conduction band minimum (CBM), implying the stabilization of n-type TiO2. By 

contrast, at low T and high PO2, such as in Figure 2.5(a), the allowed region for the Fermi 

level is closer to the VBM, implying the stabilization of p-type TiO2. Additionally, 

Figures 2.5(i) and (l) correspond to a combination of T and PO2 for which rutile TiO2 is 

not stable because all the dominant point defects have negative formation energies for all 

possible Fermi levels within the band gap; thus the forbidden region extends across the 

entire band gap. This prediction is consistent with the experimental findings that at high T 

and low PO2 of the combination illustrated in Figure 2.5(i) rutile transforms into 

two-dimensional Magneli defect phases [1, 51]. Thus, in general, increasing T or 

decreasing PO2 will move the allowed region of the Fermi levels toward the CBM, while 

decreasing T or increasing PO2 has the opposite effect. Considering the experimental 

finding that at around 1700K Tii
4+is dominant [1, 5], one can conclude from Figure 2.5(g) 

that the Fermi level in the allowed region is slightly above 1 eV, while in Figure 2.5(h) it 

is slightly above 1.5 eV.  Taking into account the experimental CBM [6] it is clear that 

n-type TiO2 is predicted to be stable under these conditions.  
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Fig 2.6. Dominant point defect distribution in the 2D phase space . 

 

It is also natural to plot the two-dimensional dominant defect phase diagrams in the 

PO2-T or the Ef-PO2 phase spaces, as illustrated in Figure 2.6. In the allowed regions the 

fully charged defects always occupy the largest phase space. In chapter 3 and 4 it will be 

shown that it is caused by the neglect of the temperature dependent effects in eq (2.2) 

simplified from eq (2.1). Another evident trend is that when the Fermi level moves from 

the VBM to CBM the corresponding temperature of the allowed regions in these 2D 

phase diagrams increases and the stability range becomes narrower. 

It is important to note that these results are quantitatively and sometimes qualitatively 

different to those in a previous publication [20]. Most notably, with the improved ΔV 

correction scheme, the fully charged defects dominate over a significantly larger phase 
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space. Thus, as discussed in Section 2.3.2, the 2x2x3 supercells with the Leslie-Gillan or 

Makov-Payne correction in ref [20] were not adequately converged.  

As a final point, it should be emphasized that the point defect formations energies 

presented here are in the dilute solution approximation and do not account for any defect 

associations, which may certainly occur in real systems. Defect associations would be 

expected to change the formation energies of the defect pairs depending on different 

conditions.  
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Chapter 3  
 

Charged Point Defect related Phonon Free Energy Calculations 

 

 

3.1 Harmonic Calculation of Phonon Free Energy  

     The linear response approach[52, 53] or frozen phonon method[54-58] is widely 

used for the DFT based phonon calculation in the pure structures. In the former approach 

the dynamic matrix is calculated in a self-consistent way through the second derivative of 

energy to the atom displacements by the perturbation theory. While the latter approach, 

also called small displacement method, is more straightforward, with the force constants 

computed from the Hellmann-Feynman forces arising from the small displacements of all 

the atoms limited by symmetry in the supercell. Although the phonon calculations were 

widely performed for pure structures[52-58], the calculation of point defect related 

phonon behavior is very limited, with almost all the previous works focused on the 
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neutral defects in metals[59-61] or simple substances[62, 63], except for work on charged 

gallium vacancies in GaAs[64]. In the GaAs work, it was shown that different charge 

states of VGa can influence the temperature dependences of phonon free energies 

calculated from the harmonic approximation. However, this effect was largely neglected 

for the DFE calculation of charged point defects in oxides [11-16], based on the 

assumption that the temperature dependant phonon free energies in the defective and pure 

structures are identical and thus cancel. It will be shown in this chapter that this 

assumption fails at high temperatures for rutile TiO2 from the calculation of the 

temperature dependent phonon free energies with the harmonic approximation [65], 

harmonic
phF , for both defective and pure supercells at the fixed volume of relaxed pure rutile. 

The thermal expansion effect with in the quasi-harmonic approximation will be studied in 

Chapter 4.  

    The frozen phonon method is used in this chapter for the phonon calculation with 

fropho[66] and VASP. The essential part of the calculation is the construction of the force 

constant matrix, whose matrix element ( , )i jΦ  is the derivative of the force on atom i 

with respect to the displacement of atom j [65]. The quantities directly calculated from 

DFT are forces introduced by the small displacement of each atom in the supercell. In 

this work VASP was used to implement all DFT calculations. The energy convergence 

criteria in VASP was set to 10-8 eV and the force convergence criteria set to 10-5 eV/Å for 

the supercell at equilibrium without displacement. For each displaced supercells the 

energy convergence criteria was set to 10-8 eV. A k-mesh of 4x4x4 is used for all 
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supercells, with the cutoff energy set to 500eV. The projection operators were evaluated 

in the reciprocal space for precise force calculation. The total number of necessary 

displacements is limited by the symmetry of the structure; for the rutile structure with 

space group 42/mnm only three displacements are needed. However, if a titanium 

interstitial or oxygen vacancy is introduced into a supercell consisting of 2x2x3 unit cells 

the necessary displacements increase to 122 or 236, respectively, since the symmetry of 

the structure is decreased by the introduction of the defect ion. To ensure precise force 

calculation, each displacement is done for both positive and negative directions. Once the 

necessary displacements and resulting forces have been calculated, the force constant 

matrix of the structure can be constructed. The dynamical matrix element is then 

calculated from the sum of force constants multiplied by the phase factor over all unit 

cells in the supercell. The phase factor is the vector product of the phonon wave vector q 

and a vector between any two atoms of interest. Thus a corresponding dynamical matrix 

can be formed from the force constant matrix. Possible phonon modes, or frequencies, in 

a structure are given by the eigenvalues of the dynamical matrix. For rutile, there are 18 

different modes corresponding to the 18 degrees of freedom in the unit cell. Among these 

phonon modes three are acoustic and fifteen are optical. Thermodynamic properties can 

be calculated from the phonon spectra, which includes the phonon frequencies ( , )qω ν  

of all the possible modes ν  at each q-point on a q mesh, by the basic formula describing 

phonon free energy in statistical thermodynamics[67-69]: 



 37

, ,

ln
1 ( , ) ln[1 exp( ( , ) / )]
2

harmonic
ph B

B B
q q

F k T Z

q k T q k T
ν ν

ω ν ω ν

= −

= + − −∑ ∑  (3.1) 

where the summation is over all q-points in the reciprocal space and all he phonon 

modes v . 

 

3.2 Phonons in Pure Rutile TiO2 

     The 15 optical phonon modes at the Gamma point based on DFT calculation are 

shown in Table 3.1.  These calculations were preformed with four different 

exchange-correlation functionals: LDA (Ti: 3d24s2 explicitly treated), LDA (Ti: 

3p63d24s2), PBE (Ti: 3d24s2) and PBE (Ti: 3s23p63d24s2). In each case the same electrons 

were explicitly treated for oxygen (O: 2s22p4.) Comparing the calculated frequencies in 

Table 3.1 to the experimental results shows that the LDA functional more accurately 

describes the vibrational properties of rutile TiO2 than the gradient corrected functionals, 

which agrees with the conclusions of a previous work on pure rutile TiO2[70]. The small 

core pseudopotential LDA (Ti: 3p63d24s2), which is computationally more expensive, is 

not necessarily more accurate than the large core pseudopotential LDA (Ti: 3d24s2.) Thus, 

the large core pseudopotential LDA (Ti: 3d24s2 ) was chosen for all phonon calculations 

in subsequent calculations. 
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LDA Ti3d LDA Ti3p PBE Ti3d PBE Ti3s Exp Optical Exp Neutron
B1u 3.60993 3.84824 2.38051 0.0361576 - 3.39
B1g 4.1302 4.16949 2.46883 1.62142 4.29 4.25
Eu 5.155 5.31832 2.85436 2.4146 5.49 5.66
Eu 5.155 5.31832 2.85436 2.4146 5.49 5.66
A2u 5.2486 5.50109 4.38351 4.47904 5.01 5.18
Eu 11.789 11.7207 10.7057 10.7133 11.64 -

Eu 11.789 11.7207 10.7057 10.7133 11.64 -

B1u 12.462 12.2438 10.9774 10.7903 - 12.18
A2g 12.6931 12.7416 12.3226 12.5106 - -

Eg 13.9579 14.2645 13.0836 12.8896 13.41 13.34
Eg 13.9579 14.2645 13.0836 12.8896 13.41 13.34
Eu 15.0814 14.7416 14.3669 14.1134 15. 14.81
Eu 15.0814 14.7416 14.3669 14.1134 15. 14.81
A1g 18.3558 18.6846 17.3028 17.0734 18.36 18.3
B2g 24.3405 24.5986 23.4372 23.082 24.78 24.72  

 

Table 3.1  Calculated optical phonon frequencies at Gamma point (THz) from different 

exchange correlation potentials and different explicitly treated electrons, compared with 

experimental data from optical[71, 72] or neutron[73] scattering measurements. 

 

The calculated phonon dispersion curve was compared with neutron inelastic 

scattering[73] data, as shown in Figure 3.1. Good agreement was observed, which also 

supports the previous selection of the large core pseudopotential LDA 

exchange-correlation functional. The phonon spectrum or density of states (DOS) with a 

certain q-mesh can also be calculated, as shown in Figure 3.2, in good agreement with the 

neutron inelastic scattering measurement[73]. The heavy Ti ions contribute mostly to the 

low frequency part of DOS, while the light O ions contribute to high frequency part 

above 5 THz. Comparing Figure 3.1, Figure 3.2 and Table 3.1 shows the peak at 3 THz 
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corresponds to TA phonons, the strong peak at 14 THz are from LO phonons, the peak at 

16 and 21.5 THz correspond to TO phonons, in agreement with the previous calculation 

on pure rutile TiO2 [58] and experiments[71-73]. 

From the spectrum of phonon DOS the phonon free energy can be calculated with 

the harmonic approximation from eq (3.1) to be compared with the experimental 

chemical potential, as shown in Figure 3.3. Strictly speaking, the experimental chemical 

potential, or molar Gibbs free energy, also includes the effect of thermal expansion, 

which increases the internal energy and decreases the phonon free energy of the pure 

rutile. It will be discussed in chapter 4 that the good agreement in Figure 3.3 is simply a 

reflection of the fact that the two neglected effects related to thermal expansion happen to 

almost cancel each other, which makes the harmonic calculation a good approximation 

for pure rutile TiO2. It will be shown in Chapter 4 that the thermal expansion related 

effects can influence the calculated DFE in a non-trivial way. But in this chapter only the 

harmonic approximation is used in all the following calculations. 
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Figure 3.1 Calculated Phonon dispersion curves for pure rutile TiO2 compared with the 

neutron inelastic scattering  experiments [73]. 
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Figure 3.2 Phonon Density of States ( DOS) for pure rutile at the q-mesh of 8x8x8. The 

total DOS (TDOS) can be further decomposed into partial DOS ( PDOS ) of Ti and O, 

respectively. 
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Figure 3.3 Calculated phonon free energy for pure rutile TiO2 compared with the 

experimental data from NIST database[31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 42

3.3 Phonons in Defective Supercells 

 

     Phonon DOS of differently charged Tii
q defective supercells are shown in Figure 

3.4. From the comparison from Figure 3.4 (a) to (c) it can be observed the peaks of 

negative frequencies are strongly influenced by the charge state of the supercells. In 

neutral Tii
0 and low charge state Tii

1+ supercells, the phonon DOS is free of negative 

frequencies, while in highly charged Tii
2+, Tii

3+ and Tii
4+ supercells, the peaks of negative 

frequencies are strengthened by increasing charge state of the supercell. Further study of 

their phonon dispersion curves show these negative frequencies are only contributed from 

the three acoustic phonon modes at non-Gamma points, while at the Gamma point the 

frequencies are always zero as expected. In order to indentify whether it is caused by the 

artificial electrostatic interaction in the limited supercell size of 2x2x3, the phonon DOS 

in a 3x3x5 sized Tii
4+ defective supercell is calculated, which takes 1000 dedicated CPUs 

to finish within 30 days. Since the total number of phonon modes is proportional to the 

number of atoms in the supercell, all the peaks are magnified by this proportionality in 

3x3x5 sized supercell compared to 2x2x3 sized supercell, except the peak of negative 

frequencies, as shown in Figure 3.4(d). Thus, the invariable strength of this peak 

indicates it is not influenced by the increasing size of the supercell and is not caused by 

the artificial electrostatic interaction. Similar trend is found in charged VO supercells as 

shown in Figure 3.5(b), while Figure 3.5(a) shows most VTi supercells are free of 

negative frequencies, except the VTi
4- supercell with a slight amount of negative 
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frequencies. Further study of the energy profile versus displacement of these acoustic 

modes suggests the calculated acoustic phonon frequencies at non-Gamma points are not 

precise enough, since technically treating the defective supercells as new 1x1x1 sized 

unit structures in the frozen phonon calculation only guarantees the calculated 

frequencies at the Gamma point.  
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Figure 3.4 Phonon DOS of differently charged Ti interstitial defective supercells for (a) 

Tii
4+ and Tii

3+ at 2x2x3 sized supercells, (b) Tii
2+ and Tii

1+ at 2x2x3 sized supercells, (c) 

Tii
0 at 2x2x3 sized supercells (d) Tii

4+ at 2x2x3 sized and 3x3x5 sized supercells 
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Figure 3.5 Phonon DOS of differently charged (a) VTiq supercells and (b) VOq supercells 

at the supercell size of 2x2x3.  

 

Since only the three acoustic phonon modes contribute to the negative frequencies 

in the phonon DOS of defective supercells, the entire three acoustic modes were excluded 

from the calculation of the following phonon free energy differences to minimize the 

numerical error in the comparison. The exclusion of the acoustic phonon modes does not 

introduce any meaningful error in calculating the energy differences from a 

methodological point of view since, in principle, the three acoustic modes should be very 

similar among different supercells of a same material, including defective and pure cells, 

within the dilute solution approximation for the defects; while the optical phonon modes 

describe the most significant energy differences between these various structures[65, 74]. 

     Phonon free energies of defective supercells and their energy differences from the 

pure rutile can then be calculated from the phonon DOS with the harmonic 

approximation. Results from these calculations are shown in Figure 3.6 for titanium 

interstitials, in Figure 3.7 for titanium vacancies and in Figure 3.8 for oxygen vacancies.  
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Figure 3.6 Phonon free energy difference from all optical phonon modes between a 

2x2x3 supercell with a Tii
q+ defect and the perfect structure as a function of temperature.   
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Figure 3.7 Phonon free energy difference from all optical phonon modes between a 

2x2x3 supercell with a VTi
q- defect and the perfect structure as a function of temperature.   
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Figure 3.8 Phonon free energy difference from all optical phonon modes between a 

2x2x3 supercell with a VO
q+ defect and the perfect structure as a function of temperature.   

 

 

     Figures 3.6, 3.7 and 3.8 show fully charged Ti interstitial and O vacancy are 

stabilized by ph
harmonicF  at high T, while partially charged Ti vacancies are more stabilized 

by ph
harmonicF  at high T. Since the most possible dominant defects in rutile are Tii

4+, Tii
3+, 

VTi
4-, VTi

3-, VO
2+ and VO

1+, the following discussion will be focused on the phonon free 

energy of these defects. 
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3.3.1 Phonons in Ti interstitial defective supercells 

 

For 2x2x3 sized Ti interstitial defective supercell there are 213 optical phonon modes 

spreading from 0 THz up to around 25 THz. However, only those modes with relatively 

low frequencies contribute significantly to the phonon free energy at high T, as can be 

seen from eq (3.1). The differences between phonon frequencies of the two defect 

structures at the Gamma point for each phonon mode up to 12 THz (lowest 120 optical 

phonon modes) are shown in Figure 3.9. The first optical phonon mode, 1
O
stω , has the 

largest difference. And in general the phonon frequencies are lower in the supercell with 

the Tii
4+ defect. 

 

æ

æ

æ

æ
æææ

æ

æ

ææ

æ
æææ

æ

æ
ææ
æ

æ

æ

æ
ææ

æ

ææ
æææ

æææ
æ

æ

ææ

æ
ææ
æ

æ
æ
æ
ææ
ææ

æ

æ

ææ
æ

ææ

æææ

ææ
æææ

æ
æææææææ

æ
æææ

ææ

æ
æ
æ
æ
æ
æ
æ

æ
æ

ææ

æ

æ

æ
æ
æææ

ææ
ææ

æ
æ

ææ
æ
æ
ææ
æ

æ
æ
æ
æ

æ
æ
æ
ææææ

0 20 40 60 80 100 120
-1.5

-1.0

-0.5

0.0

optical phonon mode

w
G

HT
i i4+

L-
w

G
HT

i i3+
Lê

TH
z

 

 

Figure 3.9 Optical phonon frequency differences at the Gamma point for the lowest 
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120 modes between Tii
4+ and Tii

3+ defect structures in a 2x2x3 supercells. 

 

 

Phonon dispersion curves of the lowest 120 optical modes for the two defective 

supercells, shown in Figure 3.10, shows 1
O
stω  is lower for Tii

4+ in all symmetry directions. 

This softest mode of the Tii
4+ defect structure, as well as the contribution from all other 

modes, makes its phonon free energy much lower at high T than the energy of the Tii
3+ 

defect structure. If this mode is excluded in the phonon free energy calculation, as shown 

in Figure 3.11, the energy difference between the two structures can be reduced by more 

than 80% at high T as compared with the case where it is included (Figure 3.6) This trend 

is clear when the phonon free energy difference between the Tii
4+ and Tii

3+ structures is 

shown with and without the contribution from 1
O
stω  as shown in Figure 3.12. Thus the 

following discussion will be focused on the specific type of the oscillation, shown in 

Figure 3.13, associated with this phonon mode of the Tii
q+ interstitial defect structure.  

 

Figure 3.10 Phonon dispersion curves of Tii
4+ (left) and Tii

3+ (right) for the lowest 

120 optical modes.  
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Figure 3.11 Phonon free energy difference from all the optical phonon modes except for 

the lowest one between Tii
q+ defective 2x2x3 supercells and the perfect structure as a 

function of temperature. 
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Figure 3.12 Phonon free energy difference between Tii
4+ and Tii

4+ structures with and 
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without the 1st optical phonon mode.  

 

 

Figure 3.13 shows this oscillation mode is unique to Ti interstitial defective supercells. 

The oscillations of the ions involved in this mode are centered around, and strongly 

correlated with the movement of the defect ion. The defect ion oscillates back and forth 

along the open channel in the z-direction formed by four chains of Ti-O octahedra. The 

six 1NN oxygen ions around the interstitial defect form a Ti-O octahedron, which directly 

limits the amplitude of the defect oscillation. Four of the 1NN oxygen ions on a same 

plane, in which the Ti defect ion oscillates, involve in the oscillation mode actively. Their 

oscillation directions have three spatial components, while the other two O ions out of the 

plane are less actively involved and only oscillate oppositely to the movement of the Ti 

defect ion in the z direction. The nearest Ti ions around the defect ion are involved in the 

oscillation mode in a complex manner, among which the Ti ions with a non-zero velocity 

in the x or y component responding most actively to the movement of the defect ion. 
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Figure 3.13 The optical phonon mode, 1
O
stω  , that contributes most to the phonon free 

energy difference between Tii
4+ and Tii

3+ defect structures at high T. The Ti interstitial 

defect ion is labeled in green; other Ti ions are labeled in gray and oxygen ions are 

labeled in red. The arrows show the oscillation directions of the ions near the Ti 

interstitial defect ion. The viewing direction is along the x-axis for the main figure, while 

the inset is along the z-direction. Four out of the six O 1NNs of the defect ion are 

Z

Y 
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connected by the dashed lines, which forms a plane for the defect ion to oscillate in. 

 

As shown in Figure 3.9, the oscillation frequency of this 1
O
stω  mode for the Tii

4+ defect 

structure is about 1.4 THz lower than for the Tii
3+ at Gamma point, which indicates a 

lower stiffness constant for Tii
4+ defect ion oscillating along the z-direction. This is 

confirmed by the DFT calculation of the force on the defect ion induced by its 

displacement along the z direction in the open channel for both defective supercells. The 

origin of the difference in the stiffness constants can be understood by a microscopic 

analysis of the charge distributions and bond lengths in these structures. In Figure 3.14 

the difference in the number of electrons within the Bader volume of the corresponding 

ions between the two defective supercells are calculated by the same Bader analysis 

method as described in Chapter 2. As analyzed in Chapter 2, the additional unit charge in 

the Tii
3+ supercell is distributed throughout the whole supercell. Immediately around the 

defect ion, the charge difference is more significant, but Figure 3.14 shows only around 

10% of the one unit charge difference is involved in this area, while the other 90% is 

distributed throughout the supercell without any obvious localization. However, the ion 

relaxation profile in Figure 3.15 shows that the positions of the ions farther away from 

the defect ion can still relax very differently depending on the charge of the interstitial 

despite the relatively homogenous charge difference distribution in the region— see for 

example the four Ti ions in the Ti group 6 (from #54 to #57) or the two O ions in the O 

group 6 (#28 and #29). The six 1NN oxygen ions experience less electrostatic attraction 
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to the defect ion and are thus farther away from it in Tii
3+ supercell, since the decrease of 

positive charge state for the Ti defect ion is much larger than the increase of negative 

charge state for the six O 1NN ions. Two Ti ions in Ti group 1(#8 and #9) move much 

closer to the defect ion in the Tii
3+ supercell, as the positive charge states of all the three 

Ti ions involved in the interaction decrease, making the electrostatic repulsion forces 

smaller. The reason is the same for the farther Ti ions in the Ti group 6 (between # 54 and 

#57) to move toward the defect ion. It is in response to the movements of the these Ti 

ions that makes the two oxygen ions in the O group 6 (#28 and #29) become abnormally 

closer to the defect ion. Most of the other Ti and O ions reside at almost the same 

distances from the defect ion in the two defective supercells, which reflects the constraint 

of the fixed supercell volume relative to the relaxed pure structure. 
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Figure 3.14 The differences in the number of electrons within the Bader volume of each 
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ion, Ne, for all the corresponding ions between Tii
3+ and Tii

4+ defective supercells. The 

numbers on the x axis are sorted based on their distances, R, from the defect ion starting 

from the nearest one. Groups of the oxygen ions with equal distance from the defect ion 

are labeled with increasing numbers below the symbols, while titanium ion groups are 

labeled above.  
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Figure 3.15. The differences in the distance from the defect ion to each ion, R, for all the 

corresponding ions between the Tii
3+ and Tii

4+ defective supercells. The numbers on the x 

axis are sorted based on their distances, R, from the defect ion starting from the nearest 

one. Groups of the oxygen ions with equal distance from the defect ion are labeled with 

increasing numbers below the symbols, while titanium ion groups are labeled above. 
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      The charge distribution and ion position relaxation shown in Figure 3.14 and 3.15, 

respectively, can be further inserted into Coulomb interaction formula to help build a 

simplified model to analyze how a specific group of ions influences the stiffness constant 

of the defect ion oscillating in the z direction. The charge state of each ion is defined by 

the summation of negative Ne and its positive nuclear core charge state, as in Chapter 2. 

The position of each ion after relaxation is also known from the DFT calculation. The 

vector summation of the electrostatic forces from all the ions in the supercell to the defect 

ion can be calculated when the defect ion moves along the z direction in the open channel. 

However, the calculated total electrostatic force on the defect ion does not provide a 

restoring force for the defect to oscillate in the z direction. Instead, it is an anti-restoration 

force along the z direction. This is not surprising as the short range repulsion force was 

not included in the model. There are several available models can be used to describe this 

behavior, as reviewed by Finnis[75]. The major problem is indentified to be the neglect of 

the charge transfer effect among all the ions in the supercell associated with the 

displacement of the defect ion away from its equilibrium position. The charge transfer 

effect can be considered by analyzing the charge redistribution and the total force on the 

defect ion directly from the static DFT calculation when the defect ion is displaced along 

the z direction. The recalculated total force on the defect ion from this modified model 

gives the restoration forces as described below, with the one for the Tii
3+ defective 

supercell larger than that for the Tii
4+ defective supercell.  
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One advantage of the model is that the contribution to the total restoration force 

from different groups of ions in the supercell can be analyzed separately to help identify 

which group of ions dominates the effect. Figure 3.16 shows all the NN Ti ions (Ti group 

#1 and #2 ) provide the anti-restoration forces, while the 3rd Ti group is the only Ti group 

of ions that provides the restoration force. The four Ti ions in the 3rd Ti group are located 

in the same y coordinate as the defect ion, but have different z coordinate as shown in 

Figure 3.13. Figure 3.17 shows the two O NN ions in the 1st O group, which are located 

out of the plane labeled by the dashed lines formed by the other four NN O ions in the 2nd 

O group, provide the strongest restoration force among all groups. The four O ions in the 

2nd O group provide the largest difference in the restoration force between the Tii
3+  and 

Tii
4+ defective supercells, which can be more clearly seen in Figure 3.18.  
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Figure 3.16. Calculated forces on the defect ion along the z-direction from different 

groups of Ti ions in the two defective supercells. The numbers of groups correspond to 

the numbers labeled in Figure 3.14 and 3.15. The defect ion is displaced along the 

positive z direction by 0.02 Angstrom. 
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Figure 3.17. Calculated forces on the defect ion along the z-direction from different 

groups of O ions in the two defective supercells. The numbers of groups correspond to 

the numbers labeled in Figure 3.14 and 3.15. The defect ion is displaced along the 

positive z direction by 0.02 Angstrom. 
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Figure 3.18 Restoration force difference along the z-direction between the corresponding 

ion groups in the Tii
3+ and Tii

4+ defective supercells. The numbers of groups correspond 
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to the numbers labeled in Figure 3.14 and 3.15. The defect ion is displaced along the 

positive z direction by 0.02 Angstrom. 
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Figure 3.19 The Ne differences for all the corresponding ions before and after the 

displacement of the defect ion along positive z direction by 0.02 Angstrom, in the Tii
3+ 

and Tii
4+

 defective supercells, respectively. The numbers on the x axis are sorted based on 

their distances, R, from the defect ion starting from the nearest one. 

 

As mentioned earlier, the charge transfer effect among other ions caused by the 

displacement of the defect ion is important in providing the restoring force in this model. 

Figure 3.19 shows the largest charge transfer effect happens to the four NN O ions in the 

2nd O group. These four O ions are on the corners of the rectangle labeled by the dashed 

lines in Figure 3.13; the first two O ions (#3 and #4) are higher in the z direction. Figure 
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3.19 shows that when the defect ion is moved up in the z direction by 0.02 Angstrom, 

around 0.01e negative charges are transferred from the upper two O ions to the lower two 

ones in the 2nd O group in the Tii
4+ defective supercell, while around 0.013 charges are 

transferred in the Tii
3+ defective supercell. Obviously, this charge transfer strengthens the 

electrostatic attraction forces from the lower two O ions to the defect ion, with a 

weakening of the attractive forces from the upper two O ions in the 2nd O group. The net 

effect is a strengthening of the restoration force for the defect ion. The larger charge 

transfer in the Tii
3+ defective supercell among the O ions in the 2nd O group is the major 

reason for its larger restoration force to the defect ion. The origin of this charge transfer 

partly arises from the Pauli Exclusion Principle or the anti-symmetrical exchange relation 

of the fermions that applies to the overlapping electron clouds between the defect ion and 

the NN O ions associated with the movement of the defect. Compared with the 

corresponding ions in the Tii
4+ defective supercell, the 0.08 more negative charges on the 

Ti defect ion and 0.02 more negative charges on each of the four O ions in the 2nd O 

group are the major reason for the stronger charge transfer in the Tii
3+ defective supercell 

caused by the Pauli exclusion effect; without the additional charge transfer, the Ti-O bond 

length extension in the defect Ti-O octahedron of the Tii
3+ supercell is not big enough to 

fully balance the effect caused by the negative charge accumulation in this region when 

the defect ion moves. 

From Figure 3.19 it is also seen that there is a transfer of around 0.002 negative 

charges from the two lower Ti ions to the two upper ions along the z direction in the 2nd 
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Ti group when the defect is displaced upward along the z direction, which strengthens the 

anti-restoration force provided by the 2nd Ti group. This effect can be considered as a 

response of the negative charges to balance the upward movement of the positive Ti 

defect ion. However, it is a minor effect compared with the charge transfer among the O 

ions in the 2nd O group.  

 

 

3.3.2 Phonons in the vacancy defective supercells 

 

    Figure 3.20 and 3.21 show that neither the VTi nor VO defective supercells have an 

obvious single mode that accounts for most of the phonon free energy differences 

between different charge states shown in Figure 3.7 and 3.8. Instead, it is the collective 

contribution from all modes. The phonon modes of the VTi
4- supercells generally have 

higher frequencies than the partially charged supercells, which accounts for its higher 

phonon free energy. Conversely, the modes of the VO
2+

 supercell are generally lower in 

frequencies when compared with the modes of the partially charged defective supercell, 

which accounts for its lower phonon free energy. The trend depicted in Figure 3.20 and 

3.21 is consistent to the phonon density of states analysis, which includes all the q-points 

in the q-mesh. Thus the above argument is general and not limited to the Gamma point.  
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Figure 3.20 Optical phonon frequency differences at the Gamma point for the lowest 

150 modes between VTi
4- and VTi

3- defect structures at 2x2x3 supercells. 
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Figure 3.21 Optical phonon frequency differences at the Gamma point for the lowest 

150 modes between VO
2+ and VO

1+ defect structures at 2x2x3 supercells. 

 

 

3.3.3 Phonon PDOS and their correlations 

 

     By using the polarization vector, which is the eigenvector of the dynamical matrix, 

the partial phonon density of states (PDOS) can be calculated for each ion in the 

defective and pure supercells. The similarity of the PDOS between corresponding ions in 

the defective and pure supercells can be indicated by the correlation value of the two 

PDOS spectra. Two identical spectra have the correlation value of 1. In an infinitely large 

defective supercell, the PDOS of the ions far away from the defect ion should be very 

close to the corresponding PDOS in the pure supercell and thus have the correlation 
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values close to 1. The average correlation value around 0.7 between the ions close to the 

edge of the defective and pure supercells shown in Figure 3.22 may suggest that larger 

supercells than 2x2x3 are needed if one is interested in the absolute values of the phonon 

free energy difference between the defective and the pure supercell. But the phonon 

calculation in the larger 3x3x5 Ti interstitial supercell requires one thousand dedicated 

CPUs to finish within 30 days, which is beyond the usual computational resources 

available. However, Figure 3.22 shows the correlation values for the corresponding ions 

between the Tii
3+ and Tii

4+ defective supercells are very close to 1 with little fluctuation 

beyond 4 Angstrom, while the major difference is localized around the defect ion. 

Therefore, the phonon free energy differences between the 2x2x3 sized differently 

charged defective supercells should be much more precise than the phonon free energy 

difference between the 2x2x3 defective and the pure supercells.  
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Figure 3.22. Correlations of phonon PDOS between the corresponding ions in the 

defective and pure supercells at the size of 2x2x3 unit cells, sorted by their distances from 

the defect ion. The empty symbols are for O ions and filled symbols are for Ti ions.   
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Chapter 4 
 
Charged Point Defect related Gibbs Free Energy 
 

4.1 Quai-Harmonic Calculation of Gibbs Free Energy in Pure Rutile 

In Chapter 3 the phonon free energies and internal energies of the defective and 

pure structures were calculated with the harmonic approximation at the fixed volume of 

relaxed pure rutile. However, this calculation neglected the fact that both the phonon 

spectrum distribution and internal energy of the structure can change with temperature. 

More importantly, these effects can change in different ways depending on the defects 

present in the supercells. In this Chapter, the Quasi-Harmonic approximation is used to 

address the effect of temperature on the phonon free energy and Gibbs free energy in the 

pure rutile structure (Section 4.1) and in the defective structures (Section 4.2). The 

influence of this correction on the defect phase diagram will be discussed in Section 4.3.  

     The overall effect of temperature on the phonon spectrum distribution can be 

separated into pure-volume and pure-temperature components[76]. As T increases, the 

pure-volume effect, i.e. the thermal expansion of the material, tends to decrease most 

phonon frequencies in rutile TiO2 [70, 76]. At the same time the pure-temperature effect 

tends to increase the frequency of certain optical mode in rutile, such as the soft 

long-wavelength transverse-optical A2u mode[73]. Phonon mode A2u is a relative 

oscillation between the whole cation and the whole anion sublattices along the c-axis of 



 66

rutile. A previous work [70] has modeled this phonon mode by a combination of short 

range Buckingham-type potential and long range electrostatic potential, which found the 

long-range electrostatic interaction favors the ferroelectric phase whereas the short-range 

repulsive interaction favors the paraelectric phase related to the A2u mode. When the 

volume of the rutile unit cell expands in response to an increasing temperature, the 

short-range repulsive interaction decreases, softening the A2u mode, as has been predicted 

from the previous DFT works[70, 77] and the current calculation shown later. To counter 

this effect a pure-temperature effect, which can not be included in the DFT 

quasi-harmonic approximation, was proposed to cause an increase in the effective 

short-range interatomic repulsion with increasing temperature and reduces the long range 

electrostatic interaction to harden the A2u mode[70]. Since the pure-temperature effect 

dominates in this mode, the A2u mode makes rutile TiO2 an incipient ferroelectric 

observed experimentally[44, 73, 76]. This is an example of the anharmonic effect in the 

phonon mode with changing temperature. The possible anharmonic effects include 

thermal expansion, phonon-phonon interactions, where the atomic motions are beyond 

the harmonic range[65, 68]. Phonon-phonon interactions and thermal smearing, which 

largely belong to the pure-temperature effect, can be treated using the pseudoharmonic 

approximation or self-consistent harmonic approximation[74]. The quasi-harmonic 

approximation considers these anharmonicities in the pure-temperature contribution as 

weak effects [74]. There are some approaches to expanding the anharmonic part of the 

Helmholtz free energy in terms of powers of T to correct the quasi-harmonic 
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approximation, but the drawback is the introduction of many volume-dependent 

adjustable parameters [69, 78-80]. In this section, the part of the anharmonic effect of the 

phonons at high temperatures arising from thermal expansion is considered for both the 

defective and the pure structures using the quasi-harmonic approximation, while other 

anharmonic effects from the pure-temperature contribution are neglected in this approach. 

The validity of the choice of the quasi-harmonic approximation will be evaluated through 

the comparison of the calculated thermal expansion coefficient to the experimental one.  

     Gibbs free energy, G(T,P), can be transformed from Helmholtz free energy, F(V,T), 

through the Legendre transformation. This involves the evaluation of the minima of 

[F(V,T)+PV] with respect to the volume, as shown below: 

 
( , ) min[ ( , ) ]

min[ ( ) ( , ) ]
V

phV

G T P F V T PV

U V F V T PV

= +

= + +
 (4.1) 

     The internal energy U(V) in eq (4.1) is the total electronic energy calculated from 

DFT. Fph(V,T) is the phonon free energy calculated by the harmonic phonon calculations 

described in Chapter 3. The PV term is the work done by the system on the environment 

and can be neglected at ambient pressure. The thermal expansion can be evaluated by 

identifying the volume that minimizes the right hand side of eq (4.1) over a series of 

temperatures in the quasi-harmonic approximation. The energies and the phonon free 

energies of pure rutile are calculated for a series of 29 different volumes in a range of 

0.977V0 to 1.061V0, where V0 is the volume of relaxed pure rutile when the phonon 

energy is not considered.  
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    The calculated volume expansion and thermal expansion coefficient as a function of 

T are shown in Figures 4.1 and 4.2, respectively. The calculated thermal expansion 

coefficient is further compared with two sets of experiments in Figure 4.2 [81]. Saxena’s 

measurement correctly captures the trend that the thermal expansion coefficient vanishes 

as T approaches 0K [67], making it more reliable than Toulokian’s data. The calculated 

thermal expansion coefficient agrees reasonably well with Saxena’s measurement in the 

whole temperature range shown in Figure 4.2. Particularly, there is no obvious divergence 

from the experimental data at high T, which validates the choice of the quasi-harmonic 

approximation for the following analyses.  
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Figure 4.1 Calculated Vmin(T) as a function of T up to 1800K in the quasi-harmonic 

approximation. 
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Figure 4.2 Calculated volume thermal expansion coefficient compared with experimental 

data from two different groups up to 1800K. 

     

     Figure 4.3 compares the calculated molar Gibbs free energy of rutile with 

experimental chemical potential measurements up to 1800K. The molar phonon free 

energy and internal energy from the quasi-harmonic approximation are also shown in 

Figure 4.3. For pure rutile the internal energy increases with temperature, while the 

phonon free energy decreases with it. Their combined effect gives the calculated 

chemical potential, which agrees well with experimental results, shown in Figure 4.3. The 

good agreement between the phonon free energy calculated with the harmonic 

approximation and the experimental chemical potential shown in Figure 3.3 in the 

previous chapter reflected the fact that the influences of the thermal expansion to the 
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phonon free energy and the internal energy happened to cancel each other in pure rutile. 

However, these two effects in the quasi-harmonic approximation behave differently when 

the charged point defects are considered, which will be discussed in the next section.  
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Figure 4.3 Calculated molar Gibbs free energy, Calc

QHAμ , from the quasi-harmonic 

approximation; experimental chemical potential of rutile TiO2, Exptμ ; calculated molar 

phonon free energy from the quasi-harmonic approximation, Calc
QHAF ; and the calculated 

internal energy, Calc
QHAU , from the quasi-harmonic approximation as functions of 

temperature for rutile TiO2. 

 

The decrease in the phonon free energy with increasing volume expansion at a 
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certain T, as shown in Figure 4.4, suggests most of the phonon modes soften with 

increasing volume in rutile TiO2 in agreement with previous works[70, 76] and the basic 

argument from quantum mechanics and statistical physics that the energy levels are 

lowered by the volume expansion of the system[65, 69]. This phenomenon can also be 

understood from the charge transfer effect as discussed in the previous chapter that the 

expanded volume, in general, lowers the short-range repulsive forces caused by the local 

charge transfer. However, the sharp frequency drop of the A2u mode to negative values 

when the applied negative pressures exceed -40 kBar predicted in one previous work [70] 

can not be replicated. The ferroelectric transition is predicted by applying negative 

pressures until up to around -140 kBar in the present work tested by the 

exchange-correlation functionals of LDA (Ti:3d24s2, O:2s22p4) and LDA (Ti:3p63d24s2, 

O:2s22p4),  This difference may be due to the inadequate force convergence criteria of 

0.02 eV / Angstrom used in the previous work[70] for the phonon calculation, while the 

criteria in the present work is 10-5 eV /Angstrom. The current result agrees well with a 

recent work[77] with similar force convergence criteria. The B1g mode is the only mode 

with negative Gruneisen parameter in rutile, in agreement with previous works[70, 77], 

which was speculated to account for the pressure-induced phase transition of rutile to 

CaCl2 structure at around 26 kBar[76].  
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Figure 4.4 Calculated phonon modes with volume expansion in the unit cell of pure rutile 

TiO2.   
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4.2 Quai-Harmonic Calculation of Gibbs Free Energy in Defective 

Structures 

 

4.2.1 Ti interstitial defective supercells 

 

     To meet the dilute solution approximation, the volume of the defective supercell at 

a certain T for the quasi-harmonic calculation is set at the equilibrium volume of the pure 

structure corresponding to that T (See Figure 4.1.) The calculated phonon free energy 

differences between the 2x2x3 defective supercells with Tii
q+ defects and the 2x2x3 pure 

supercell are shown in Figure 4.5. For the supercell with the Tii
4+ defect, the energy 

difference slightly decreases with T below 600K and then increases with T quickly above 

600K. For the supercell with the Tii
3+ defect, it increases with T though the whole 

temperature range. These trends are opposite to the prediction of the harmonic 

approximation shown in Figure 3.6. The reason for the discrepancy is that the frequencies 

of most phonon modes in the Tii
q+ defective supercell decay more slowly than in the pure 

structure with volume expansion, as shown in Figure 4.6, which makes the phonon free 

energies of the Tii defective supercells larger than that of the pure supercell at high T. One 

noticeable exception is the first optical phonon mode, 1
O
stω , discussed in detail in Chapter 

3 for a supercell with volume V0, which drops very quickly to zero frequency and then to 

negative frequencies in the Tii
4+ supercell with increasing supercell volume. The quick 

softening of this mode below 600K, or 1.02V0, balances the effect of the slower 
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frequency drops of most other modes in the Tii
4+ supercell as compared to the pure 

supercell, accounting for its relatively flat temperature dependence of the phonon free 

energy difference below 600K in Figure 4.5. Above 600K, or 1.02V0, because the 

negative frequencies of this mode do not contribute to the calculated phonon free energy, 

the slower frequency decay of other phonon modes compared to the pure structure 

dominate, which accounts for the quick increase of the phonon free energy difference 

above 600K in Tii
4+ supercell. The negative frequency of the 1

O
stω  mode in the Tii

4+ 

supercell may suggest that Tii
4+ is not stable or energetically favorable at expanded 

volumes beyond 1.02V0. The detailed property change of this 1
O
stω  mode is discussed 

later. Also, the comparison of the phonon DOS in Figure 4.7 shows that the frequencies 

of most modes drop more slowly in the Tii
4+ supercell than in the Tii

3+ supercell with 

increasing volume, especially for high-frequency hard modes, making the phonon free 

energy higher in the Tii
4+ supercell than in the Tii

3+ supercell at high T, where the 

frequency of 1
O
stω  is negative in Tii

4+ supercell and thus does not dominate.  
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Figure 4.5 Calculated phonon free energy differences between Tii
q+ defective supercells 

and the pure supercell from the quasi-harmonic approximation.  

 

 

Figure 4.6 Lowest 30 optical phonon modes at Gamma point as a function of volume in 

Tii
4+, Tii

3+ and pure 2x2x3 sized supercells. The modes in the highly symmetric pure 

structure are mostly degenerate, while most modes in the defective supercells are 

non-degenerate. 
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Figure 4.7 Phonon DOS of Tii
3+ and Tii

4+ defective supercells at volume V0 ( left ) and 

1.05V0 (right).  

 

The above general trends of the frequency changes can be further understood from 

the change of strain energies in different structures with volume expansion. Fig. 4.8(a) 

presents the Helmholtz free energy of the Tii
4+ and Tii

3+ defective supercells in 

comparison to a pure supercell as a function of the normalized supercell volume at 0 K. 

In this figure the minima in energy for the charged Tii
q+ defects fall at smaller supercell 

volumes than the perfect crystal, indicative of the local lattice strain induced by the 

presence of the defect with a tendency to shrink the volume. ΔE is defined to be the 

energy difference between the minima in each curve and the energy at a normalized 

volume of 1 as outlined in Fig. 4.8(a), whose internal energy part ΔU is a measure of the 

local strain energy induced by the presence of the defect. The magnitude of ΔU depends 

on the defect charge, e.g. ΔU(Tii
4+) is almost twice that of ΔU(Tii

3+) at 0K as shown in 

Figure 4.8(b), which helps harden high frequency phonon modes in the defective Tii
4+ 

supercell as shown in Figure 4.7 at V0. But as discussed in Chapter 3 it is the 1
O
stω  mode 
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that dominates in the harmonic approximation, which makes the phonon free energy of 

Tii
4+ decay faster than the energy of Tii

3+ supercell shown in Figure 3.6. However, when 

the thermal expansion is considered with the quasi-harmonic approximation, the 

temperature dependence of the lattice strain energy in Figure 4.8(b) shows that ΔU(Tii
4+) 

increases much more quickly than ΔU(Tii
3+), especially above 600K, which hardens the 

modes in Tii
4+ supercell more than the modes in the Tii

3+ supercell to give the trends at 

expanded volumes shown in Figure 4.7 and at higher temperatures shown in Figure 4.5. 

Also, the higher local strains in both Tii
4+ and Tii

3+ supercells than in the pure supercell 

help harden their modes compared to the modes in the pure supercell, which explains the 

slower frequency drops of most modes compared to the pure supercell shown in Figure 

4.6 and the positive phonon free energy differences shown in Figure 4.5.  
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Figure 4.8 (a) The internal energy, U, plus phonon free energy Fph as a function of 

supercell volume for pure, Tii
3+ and Tii

4+ 2x2x3 sized supercells at 0K. Note all three 

curves are shifted in y direction to make them visible in the same energy scale, but this 

does not influence the definition of ΔE for each defect. (b) The difference between the 

ΔU of the Tii
q+ defective supercells and the ΔU of the pure supercell as a function of 

temperature, where ΔU is the internal energy part of the ΔE defined in (a).  

 

     The quick softening of the 1
O
stω  mode at the Gamma point in the Tii

4+ supercell 

shown in Figure 4.6 is of particular interest because of its large effect on the phonon free 

energy of the Tii
4+ defect below 600K. As discussed in Chapter 3, this 1

O
stω  mode is 

unique in the Tii
q+ defective supercell, which may account for its abnormal behavior here. 

The underlying charge distributions associated with the volume expansion among the 

defect ions and the NN Ti and O ions are shown in Figure 4.9. The continuous frequency 

drop of the 1
O
stω  mode with volume expansion until the volume of the supercell reaches 

1.02V0 in the Tii
4+ supercell may be caused by the almost unchanged charge state of the 
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defect ion and all other NN ions except the continuous increase of charge state of the two 

Ti ions in Ti ion group #2 below the volume of 1.02V0, which make the increasing 

anti-restoration force from the two Ti ions dominant. In contrast, for the Tii
3+ supercell in 

the full volume range the continuous and relatively large charge state increase of the 

defect ion with volume expansion increases the restoration force from the O ion group #1 

and #2, which balances the increase of the anti-restoration force from Ti ion group #2 and 

other groups. For the Tii
4+ supercell beyond 1.02V0, although the charge state of the 

defect ion increases with volume expansion, the increase is relatively slow compared to 

the Tii
3+ supercell. Thus the increase of the restoration force from its NN O ion groups 

may not be big enough to balance the increase of the anti-restoration force from the NN 

Ti ion groups.  
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Figure 4.9 Number of electrons within the Bader Volume of each ion (Ne) as a function of 
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volume expansion of the supercell, for (a) Ti ions in Tii
4+ supercell, (b) O ions in Tii

4+ 

supercell, (c) Ti ions in Tii
3+ supercell, (d) O ions in Tii

3+ supercell. The ion group 

numbers correspond to the ones defined in Figure 3.14 and 3.15. 

 

     The distances of these NN Ti and O ions from the defect ion with volume 

expansion are shown in Figure 4.10. Because of the quicker increase of the charge state 

on the defect ion, the Tii
3+ defect ion binds more tightly the two O ions in the O ion group 

#1 and repels the two Ti ions in the Ti ion group #1 more strongly with volume expansion. 

The combined effect of the charge distribution and bond length extension causes the 1
O
stω  

mode to soften more quickly in the Tii
4+ supercell than in the Tii

3+ supercell with 

increasing supercell volume. Interestingly, this combined effect also makes the mode 

unstable beyond a volume of 1.02V0 in the 2x2x3 sized Tii
4+ supercell. These behaviors 

of the charge distribution and bond length extension with volume expansion are tested by 

LDA (Ti:3p63d24s2, O:2s22p4) pseudopotential and at larger 3x3x5 supercells, which 

show analogous behavior and thus confirm it is not an artifact from the selection of 

pseudopotentials or the limited supercell sizes. However, it is worth noting that the 

current quasi-harmonic calculation does not include the pure-temperature contribution or 

other anharmonic effects to the phonon oscillation, which may help stabilize this mode in 

the Tii
4+ supercell at high temperatures. 
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Figure 4.10. Difference between the distances of the ions to the defect ion, R(V), at a 

certain volume V, and the distances at the volume V0, R(V0), in (a) Tii
4+ supercell for Ti 

ion groups, (b) Tii
3+ supercell for Ti ion groups, (c) Tii

4+ supercell for O ion groups, (d) 

Tii
3+ supercell for O ion groups. The ion group numbers correspond to the ones defined in 

Figure 3.14 and 3.15. 

 

     The Gibbs free energy differences can be calculated from the quasi-harmonic 

approximation by adding the volume-dependant internal energy changes shown in Figure 

4.11 to the phonon free energy differences shown in Figure 4.5. The result is shown in 

Figure 4.12.  Since the local strain tends to shrink the volume in the Tii
q+ defective 

supercells as shown in Figure 4.8, thermal expansion increases the internal energy of the 

defective supercells, making the Gibbs free energies calculated with the quasi-harmonic 
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approximation to trend strongly in the opposite direction with increasing temperature 

compared to the phonon free energy and Helmholtz free energy calculated with the 

harmonic approximation in the previous chapter. The internal energy of the Tii
4+ defect 

increases more quickly than the internal energy of the Tii
3+ defect with thermal expansion, 

which is consistent with its higher strain energy calculated in Figure 4.8. 
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Figure 4.11 Calculate ΔU differences between Tii
 defective supercells and the pure one 

from the quasi-harmonic approximation. ΔU is the internal energy change referenced to 

the energy at 0K. 
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Figure 4.12 Calculated Gibbs free energy differences between Tii
q+ defective supercells 

and the pure one from the quasi-harmonic approximation. 

 

 

 

 

4.2.2 Ti vacancy and O vacancy defective supercells 

        

     The calculated phonon free energy difference between VTi
4- defective supercells 

and pure supercells increases more quickly with T when calculated with the 

quasi-harmonic approximation than with the harmonic approximation. Figure 4.13 

indicates that most phonon modes decrease in frequency more slowly than the modes in 

the pure structure with volume expansion, which is confirmed by a similar analysis as the 

one presented in Figure 4.6. The reason is, like for the Tii
q+ supercells, from the higher 
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local strain in the VTi
4- defective supercell than in the pure supercell, which helps harden 

the modes in VTi
4- supercell. However, unlike the Tii

q+ supercells, the absolute value of 

the local strain drops with volume expansion for the VTi
4- supercell, which accounts for 

its relatively small phonon free energy difference at high T between the QHA and HA 

calculations when compared to the Tii
q+ supercells.  
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Figure 4.13 Phonon free energy difference between VTi
4- defective supercell and pure 

supercell calculated with the quasi-harmonic (QHA) and harmonic approximation (HA), 

respectively.  

 

 

     The calculated Gibbs free energy difference between the VTi
4- defective and pure 

supercells drops with volume expansion noticeably as shown in Figure 4.14. This 

substantial decrease is caused by the decrease of internal energy difference with volume 
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expansion as shown in Figure 4.15. Internal energy and strain energy trend in the same 

direction.  
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Figure 4.14 The Gibbs free energy difference between VTi
4- defective and pure supercells 

calculated with the quasi-harmonic approximation. 
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Figure 4.15 ΔU differences between VTi
4- defective supercell and the pure supercell 

calculated from the quasi-harmonic approximation. ΔU is the internal energy change 

referenced to the one at 0K. 
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      In the VO
2+ and VO

1+ defective supercells the phonon free energies still increase 

more quickly with volume expansion when calculated with the QHA than with the HA. 

The internal energy differences between the VO
q+ supercells and pure supercell increase 

with volume expansion, but the internal energy difference for the VO
2+ supercell increases 

more quickly.  

 

 

4.3 Defect Phase Diagrams 

 
Figure 4.16 Calculated 2-D defect phase diagrams for rutile TiO2 at 1300K based on (a) 

the Gibbs free energies G as defined in eq (2.1) and (b) the internal energies U as defined 

in eq (2.2). The calculated unique Fermi level (EF) from the electroneutrality condition as 

a function of PO2 at 1300K is labeled by red line.  
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     The calculated 2-D defect phase diagrams in Figure 4.16 show only the dominant 

defects (lowest energy) in each region in the Ef - PO2 space at 1300K. Results for the 

dominant defects vary depending on whether the full Gibbs free energies used, as in 

Figure 4.16(a), or if only the internal energies are used, as in Figure 4.16(b). The major 

difference is the dominant regions for the partially charged point defects of VO
1+ and Tii

3+ 

extend much more broadly when the Gibbs free energy is considered, which is due to the 

smaller increase of the Gibbs free energies with T for these partially charge defects 

compared to fully charged defects, as shown Figure 4.12. This gives the chance for the 

partially charged defects to be dominant in the low PO2 region, which is not observed if 

only the internal energies are considered.  

     The charged defects in rutile are governed by the electroneutrality condition: 

 0q N n pα α
α

− + =∑  (4.2) 

where qα  and Nα  are the charge state and concentration of defect α , respectively, n 

and p are the electron and hole concentrations, respectively. The point defect 

concentration is calculated by /G kT
siteN e−Δ where Nsite is the number of sites the particular 

defect can occupy, while the electron and hole concentrations are calculated by 

( )/g fE E kT
cN e− − and /fE kT

vN e− , respectively, with Nc  and Nv being the density of states for 

electrons and holes.   
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The bandgap, Eg, and electron and hole effective masses, mc and mν respectively, are all 

taken from experimental values[2, 6, 82, 83]. Thus, the only unknown quantity is Ef, 

which can be calculated from eq (4.2) at a given T and PO2.  The result for Ef is shown 

in Figure 4.16 as a function of PO2 at 1300K.    

   The positions of the unique Fermi levels in Figure 4.16 convey useful information. 

First, the calculation of the Fermi level with the Gibbs free energies in Figure 4.16(a) 

captures the n-p transition point of around 1 atm at 1300K correctly[1, 3, 5, 6], while the 

calculation with the internal energies in Figure 4.16(b) does not. This is mostly due to the 

decrease of the Gibbs free energy difference between VTi
4- and the pure supercell with T 

shown in Figure 4.14. Second, the calculation with Gibbs free energy suggests it is likely 

in the n-p transition region close to the atmospheric that the dominant defects are a 

combination of VTi
4- and VO

2+ [3]. At relatively reduced PO2 levels VO
2+ defects are 

dominant [3, 5, 8]. In the highly reduced PO2 region, the calculation indicates that either 

Tii
3+ [8, 84] or VO

1+ can be the dominant defect. Lee and Yoo [8] and Blumenthal et al.[5] 

suggest at this temperature range Tii
4+ may be dominant in a very narrow PO2 range 

around 10-10 atm from their measured log-log slope of -1/5. This may be alternatively 

explained by a transition region from dominant VO
2+ with slope -1/6 to dominant Tii

3+ or 

VO
1+ with slope -1/4 from our calculation. However, since the absolute values of the 

phonon free energies calculated in the 2x2x3 sized supercells are not fully converged 
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with respect to the supercell size as discussed in section 3.3.3, additional calculations of 

phonon free energy in larger supercells may extend the defect region of Tii
4+ into the 

lower PO2 region and allow it to overlap with the path of the unique Fermi level. Third, 

the calculation suggests it is not likely that Tii
4+ defects dominant in a whole PO2 range at 

this temperature, which disagrees with the analysis from Baumard[1, 6].   

With the calculated unique Fermi level and DFEs of all the intrinsic defects, the 

Brower diagram, which originally can only be schematically shown through the defect 

mass action analysis, can be further calculated at any given temperature as shown in 

Figure 4.17, to give all the defect and carrier concentrations. It is worth noting that these 

quasi-harmonic phonon calculations in the defective supercells are computationally 

expensive. Each type of the defect requires around 80K computational units, or 500 

dedicated CPUs to complete the calculation within seven days. Thus, the current 

calculation does not extend to higher temperatures than 1300K for the defective 

supercells. However, in principle the current methodology of DFE calculation built in this 

work can be applied to higher temperatures for most binary oxide systems as long as the 

structures are stable in the T and PO2 regions. The dominant defect phase diagram shown 

in Figure 4.16, together with the unique Fermi level, can be used to adjust and control the 

dominant intrinsic defect types in a certain material by environmental variables such as T 

and PO2 or the dopant levels, to further achieve the ideal electrical properties of any 

particular interest. 
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Figure 4.17 Calculated Brower diagram for rutile TiO2 at 1300K. 

 

     4.4 Conclusions 

     A methodology of calculating DFEs in the PO2-T-Ef spaces was built for rutile 

TiO2, which can be applied to similar binary oxide systems. The defect phonon free 

energies were calculated with both harmonic and quasi-harmonic approximations. The 

thermal expansion effect was shown to be able to change the phonon free energy and 

internal energy of the defect structure in a nontrivial way, which can stabilize the partially 

charged Tii
3+ and VO

1+ in the low PO2 region and fully charged VTi
4- in the n-p transition 

region. Finally, the unique Fermi level is calculated by applying the electroneutrality 

condition to give the defect concentration as a function of T and PO2 and the Brower 

diagrams.  
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4.5 Future Work 

   Because of the computational limitation, the current frozen phonon calculation only 

considers the defective supercells as 1x1x1 sized new unit structures, which is only 

precise for the frequencies at the Gamma point. To sample the whole Brillouin zone, at 

least 2x2x2 sized new structures with the current supercells as unit are necessary, which 

may become computationally applicable in a few years.  

    For the Tii
4+ defective supercell, the lowest optical phonon mode drops to negative 

frequencies very quickly with volume expansion, which may indicate a defect structure 

transition at high temperatures. More detailed studies of this particular phonon mode are 

necessary to explore whether a transition can happen.  

    Further calculation of the dielectric constant of certain defect structure with volume 

expansion may suggest some useful applications.  
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Appendix 
 
Defect Mass Action Relation 
 
For fully charged Ti interstitial: 

4
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              (A.1) 

 

For fully charged O vacancy: 
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For +1 charged O vacancy: 
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For +3 charged Ti interstitial: 
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