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Abstract

This dissertation concentrates on recent results on probabilistic robust controller design.

In contrast to approaches taken in classical robustness theory, probabilistic robust controller de-

sign allows for a small risk of performance violation. This results, in many cases, in a significant

reduction of the computational complexity of the controller design cycle and/or a significant

reduction of the controller complexity even for a low level of risk of performance violation.

In contrast to several of the probabilistic approaches in the control literature, we explore the

problems’ structure, i.e., convexity, to design more efficient algorithms. For a class of design

problems which are convex in controller parameters, we introduce stochastic optimization meth-

ods to solve them. For a large class of non-convex problems, we provide a new approach which

is shown to converge to the desired robust controller. This is accomplished by choosing an

appropriate set of intermediate optimization variables at each iteration. Most of the results pro-

vided address the problem of designing robust output feedback controllers, where one directly

determines the transfer function of the controller. Preliminary results are also presented on the

design of robust static linear state feedback controllers.
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Chapter 1

Introduction

The design of robust control systems has long been considered one of the more important

problems in the control systems area. Well known approaches to address this problem include,

among others, H∞ theory and the structured singular value; e.g., see [47]. However, results

to date are only applicable to specific uncertainty structures and/or can be conservative. To

overcome these difficulties, recently a new approach, referred to as probabilistic robust design,

has been developed to address the problem of robustness analysis and robust controller design

within a probabilistic framework. In this dissertation, some preliminary results obtained by us

in this area are presented.

1.1 Classical Versus Probabilistic Robust Controller Design

Consider a plant P(4) which is subject to uncertainty 4, where 4 ∈ ∆ and ∆ is the

admissible uncertainty set. Let PCL(4) be the corresponding closed loop system and P denote

a performance specification regarding PCL(4); e.g., stability, bounds on overshoot, bounds on

rise time. It can also represent a combination of several specifications. The objective of classical

robustness theory is to design a controller such that the closed loop system PCL(4) satisfies

property P for all uncertainty 4∈ ∆.

In this thesis, as in probabilistic robustness theory, we take a different point of view. One

starts by assuming that the uncertain parameters 4∈∆ are random variables. Then, the objective

of probabilistic robust design is to design a controller such that

Prob {PCL(4) satisfies Property P} ≥ 1− ε

where ε > 0 is the risk level. The rationale behind this design approach is Borel’s Law [9]: Phe-

nomena with very small probabilities do not occur. Put it into our scenario: if ε is small enough,

the end user will not be able to differentiate between the performance of a robust controller (if

there exists one) and the performance of a probabilistic robust controller.

Note that the distribution of the uncertain parameters might not have a physical meaning.

If one has information about the distribution, one should use it. However, in many algorithms
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in this thesis, a priori knowledge on the distribution is not necessary. The main requirement to

carry out probabilistic robust design is that uncertainty samples with a given distribution can be

generated. Actually, this is a rather mild assumption. Efficient algorithms have been developed

for generating both random samples of static uncertain parameters (e.g., see [14, 17, 23]) as well

as dynamic uncertain parameters; see [16, 40, 37].

1.2 Why Consider Probabilistic Robust Design

The relaxation of the robust design problem described above might seem arbitrary, but

there are very compelling reasons why one should consider it.

1.2.1 Conservatism

By definition, classical robustness theory concentrates on the worst case scenario. This

inevitably results in conservatism. Take the case of classical robustness margin as an example.

Assume that the admissible set for the uncertain real parameters 4 = (41,42, . . . ,4l) is a

hyper-rectangle ∆r with a fixed shape and radius r > 0, i.e., given a box ∆ ⊆ Rl

∆r
.
= r∆ .

= {r4∈ Rl : 4∈ ∆}.

Define the classical robustness margin

rmax
.
= sup{r : Property P is satisfied for all 4∈ ∆r}.

In many cases, one can go well above the margin rmax and only incur a very small risk of perfor-

mance violation. This phenomenon has been studied by Ray and Stengel [55] [58]. Let ∆good

represent the set of uncertainties for which property P is satisfied and let ∆bad represent its com-

plement. In many cases, especially when the dimension of 4 is high, the set ∆bad behaves as if

it is a union of “icicles”. We provide a representation of this phenomenon in Figure 1.1. In this

case, for uncertainty radius r, one has such a small volume of 4bad that it may make sense to

operate the system well above rmax.

1.2.2 Computational Complexity

Another limitation of classical robustness theory is computational complexity. In many

situations, the number of elementary computer operations needed to perform analysis and/or
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Fig. 1.1. ”Icicle” Phenomenon

design a control system increases exponentially with the dimension l of the uncertainty vector.

This leads to a prohibitive computational cost even for relatively low dimension of the uncer-

tainty vector 4. The computation of the structured singular value µ illustrates this point. It

has been shown that determining µ is a so-called NP-hard problem [13], which is an inherent

property of the problem itself, not of any specific algorithm. This raises the necessity of prop-

erly modifying the original problem such that it is possible to develop computationally efficient

algorithms. If one considers a probabilistic robust approach to system analysis, one sees that the

number of elementary computations grows moderately with the problem size. More precisely, a

Monte Carlo approach to this problem leads to a needed number of samples which is indepen-

dent of the problem size [31, 62]. In this case, the computation growth is only due to the problem

of checking the satisfaction of Property P for each sample. On the synthesis side, it has been

proven that in solving a class of parameter-dependent LMI, to achieve an ε level probabilistic

solution with confidence level δ , the number of iterations needed is independent of the dimen-

sion of the uncertainty vector [50]. Thus by changing our point of view to a probabilistic one,

we can circumvent the “curse of dimensionality” discussed above.

The considerations above provide the motivation for the approach taken in this thesis.
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1.3 Current State of the Art

The study of the application of probability to system analysis was pioneered in the work

by Stengel, Ray and Marrison in [45, 55, 58]. Subsequent work can be found in [2, 18, 20, 31,

44, 62, 69, 71]. In these early works, it was shown that classical robustness margins can be very

conservative.

Compared with probabilistic robust analysis, controller synthesis is still in its early stage.

Two different approaches have been taken to address the problem of controller design within

a probabilistic framework: The first class originates from statistical learning theory [64]. In

[19, 55, 58, 70], random search algorithms are employed in robust controller design. To obtain

the controller, a random sampling approach is used to search for the controller parameters. For

a given risk level ε and a confidence level δ , the sample size can be determined a priori and

shown to be independent of the dimension of uncertainty [65]. This work has also shown that

classical robustness theory can be very conservative; i.e., one can greatly reduce the order of

the controller and/or enlarge the admissible set of uncertainties and still have a very low risk

of performance violation. Moreover, these methods are very general and applicable regardless

of the convexity of the problem, the structure of the uncertainty, as long as random uncertainty

samples can be generated. However, the sample size estimation can be very conservative and

thus not very helpful in practice. Also the statement on quality of final controller is usually very

weak due to randomization over the controller parameters.

The results in [1, 35, 36] indicate that some probabilistic robust design problems are

indeed convex. Thus, it is potentially beneficial to investigate the problems’ structure. More re-

cently, a new algorithm based on the stochastic gradient method has been proposed to overcome

the limitations of these early methods. The new approach has been applied to the solution of

robust LMIs [15], design of state feedback controllers [49, 53] and LPV controllers [25]. Our

algorithms are aligned along this line of research. As the current state of the art, some aspects of

this class of algorithms have not been addressed:

1. Some control design problems are not convex in controller C but can be reformulated as

a convex problem in some intermediate variables. For example, the closed loop transfer

function PCL is not convex in controller C. However, for a given controller C0 and a sample

of uncertainty 40, it is possible to find a Youla parameter, QC0,40 , such that PCL can be

expressed as an affine function in QC0,40 . Thus if the performance index itself is convex,

the design problem still possesses a convex structure during each iterations.
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2. Most algorithms are carried out in finite-dimensional space while in some cases it is more

desirable to work in infinite-dimensional space such that we can obtain the controller’s

transfer function directly.

3. Most current probabilistic algorithms only deal with the case where the constraints are

deterministic. Many problems lead to probabilistic constraints. For such cases, traditional

methods do not work and new approaches have to be developed..

1.4 Organization of the Thesis

In this report, we have considered several probabilistic robust control design problems:

In Chapter 2, the Probabilistically Constrained Linear Program (PCLP), a counterpart of

the classical linear program, is studied. It is shown that, for a wide class of distributions, the

PCLP is a convex program. A deterministic equivalent of the PCLP is presented which provides

insight on numerical implementation. The so-called super stability and probabilistic robust pole

placement are considered within the framework of the PCLP. The examples presented suggest

that one can greatly reduce the order of the controller if one is willing to accept a small well

defined risk level of performance violation.

Chapter 3 concentrates on a probabilistic robust version of the well known quadratic sta-

bilization problem for uncertain linear systems. For a wide class of probability density functions,

we provide stochastic approximation algorithms which converge to its optimal performance. It

is demonstrated that for small values of the risk ε , the controller gains which are required can be

much smaller than their counterparts obtained via classical robust theory.

In Chapter 4, we investigate the application of stochastic optimization algorithm in reced-

ing horizon control for Linear Parameter Varying systems (LPV). To address the computational

complexity problem, the receding horizon control was recast into a probabilistic framework by

Sznaier [61]. We proposed two algorithms to solve this problem and proved the convergence to

optimal solutions.

The focal point of Chapter 5 is the design of robust output feedback controllers for linear

time-invariant uncertain systems. Given bounds on performance (defined by a convex perfor-

mance evaluator), the algorithm provided converges to a controller that robustly satisfies the

specifications. It is proven that the probability of performance violation tends to zero asymptoti-

cally faster than 1/k, where k is the iteration step. Moreover, this algorithm can be applied to any

uncertain plant, independently of the uncertainty structure. This algorithm is further modified
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to address the so-called multi-disk design problem; i.e., design a robustly stabilizing controller

with guaranteed performance in a subset of the admissible uncertainty volumes.

The algorithms in Chapter 5 mentioned above are essentially suboptimal algorithms.

They try to make sure that the system performance is below some given performance level.

In Chapter 6, we drop the requirement of a priori knowledge of an achievable performance

level. More precisely, we propose algorithms to minimize the expectation of the performance

and simultaneously stabilize the closed loop systems. For the first algorithm, the assumption

on achievable performance level is dropped. The second algorithm drops the assumption on the

existence of a robustly stabilizing controller and optimizes performance while minimizing the

set of uncertainties for which the closed loop system is unstable.

Chapter 7 deals with the robust stabilization problem within the probabilistic framework.

Comparing with probabilistic robust quadratic stabilization in Chapter 3, we do not assume

that the same Lyapunov function “works” for all values of the uncertainty. However, once one

drops the assumption on a common Lyapunov function, the problem of static state feedback

is no longer a convex problem. This problem is solved by choosing the “proper” intermediate

optimization variables and solved using stochastic approximation algorithms.

Basically, we address several types of probabilistic robust controller design problems:

probabilistic objective function with deterministic constraints, e.g., Chapter 3, 5, 6 and 7; de-

terministic objective function with probabilistic constraints, e.g., Chapter 2 and probabilistic

objective function with probabilistic constraints, e.g., Chapter 4. Results obtained show that, if

a small risk of performance violation is acceptable, one can solve problems for which there is

no solution using classical robustness methods. Moreover, examples have been provided that

illustrate the fact that even if the classical robust problem is solvable, the allowance of a small

risk of performance violation can greatly reduce the complexity of the control system.
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Chapter 2

Probabilistically Constrained Linear Program

In this chapter, we provide some results aimed at designing probabilistic robust con-

trollers by using the so-called Probabilistically Constrained Linear Program (PCLP). We extend

the class of probabilistic robust design problems which are known to be convex. More precisely,

we extend the results in [36] and show how they can be used in a control system design context.

Most of the work in this chapter has also been reported in [38].

This chapter is organized as follows: We provide the definition of Probabilistically Con-

strained Linear Program in Section 2.1. Section 2.2 is dedicated to the definition of the class

of admissible distributions for the uncertain parameters: log-concave symmetric distributions.

The main result is presented in Section 2.3 which states that the PCLP is a convex program. In

Section 2.5, we provide some insights on a numerical implementation of the PCLP. Section 2.6

is dedicated to the application of the results in the context of control system design. Finally, in

Section 3.8, some concluding remarks are presented.

2.1 Probabilistically Constrained Linear Program

The main result of this chapter addresses the convexity of PCLP, i.e., for a large class

of probability distributions, the probabilistic version of the classical linear program is convex.

The class of distributions being considered is the class of log-concave symmetric distributions.

This class includes many of the “typical” distributions used to date in the area of probabilistic

robustness, e.g., uniform distribution over convex, symmetric sets and normal distributions are

members of this class. Furthermore, we show how the PCLP can be applied in a controller design

context.

Indeed, consider the “classical” linear program described by

mincT x

subject to

xT ai ≤ bi; i = 1,2, . . . ,k
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where c,x,ai ∈ R` and bi ∈ R, i = 1,2, . . . ,k. In the PCLP framework, the constraint vectors ai

and b above are treated as random and the deterministic constraints are replaced by probabilistic

constraints. There are a number of versions of the PCLP problem and the one that is used in this

chapter is the same that is used in [36].

2.1.1 PCLP

Given acceptable risk levels 0 ≤ εi ≤ 1, i = 1,2, . . . ,k, find

mincT x

subject to

Prob{xT ai ≤ bi} ≥ 1− εi; i = 1,2, . . . ,k

where c,x ∈ R` and ai,b are random vectors of appropriate dimensions.

2.1.2 Convexity of the Feasible Set

A fundamental question about the PCLP is the following: Is the PCLP a convex program?

In other words, is the feasible set

Xε
.
= {x ∈ R` : Prob{xT ai ≤ bi} ≥ 1− εi, i = 1, . . . ,k}

convex? It turns out that without additional conditions on the distribution of the pair (ai,bi), one

can easily generate examples where the answer is “no.”

2.1.3 Example

Suppose a, b ∈ {−1,0,1} with equal probability at each point and x ∈ R. Take ε = 1/3,

then

Xε = {x ∈ R : Prob{ax ≤ b} ≥ 2/3}

= {−1} ∪ {0} ∪ {1}.

In this case, Xε is not a convex set.

In Appendix A, we prove that the PCLP is a convex program when the distribution of the

random parameters is log-concave and symmetric; see Section 2.2 for a precise definition of this
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class of distributions. Convexity results are available for other kinds of distributions: In [22], it is

proven that Xε is convex when 0 ≤ εi ≤ 1/2 and bi and the components of the ai are independent

and normally distributed. This result was later extended for the case when ai and bi have stable

distributions; e.g., see [63]. Finally, the work in [36] shows that, for 0 ≤ εi ≤ 1/2, the PCLP

is convex if the uncertain parameters are uniformly distributed over a convex symmetric set. In

this chapter we extend the results in [36]. We prove that for a large class of distributions (which

includes uniform distributions over convex symmetric sets), the PCLP is a convex program.

Also, we show how to apply it in a controller design context.

2.2 Preliminaries: Log-concavity

Before presenting the main result in this chapter, we need to elaborate on what proba-

bility density functions are admissible for the uncertain parameters. To this end, we require the

definition of log-concave functions; see [54].

DEFINITION 2.2.1. A function f : R` → [0,∞) is said to be log-concave if the following condi-

tion holds: Given any x0,x1 ∈ R` and λ ∈ [0,1],

f ((1−λ )x0 +λx1) ≥ [ f (x0)]1−λ [ f (x1)]λ .

In the sequel, let F denote the class of log-concave symmetric probability density functions.

Without loss of generality, one can assume that the center of symmetry is the origin; i.e., if f ∈F

then for any x∈R`, we have f (x)= f (−x). In this chapter, we assume that the probability density

function f of the vector of uncertain parameters is log-concave and symmetric; i.e., f ∈ F. It

is important to note that the class F is quite rich. Most “common” probability density functions

(such as uniform or normal) are readily shown to be log-concave and symmetric. Hence, the

main result to follow applies to typical density functions used in the probabilistic robustness

literature to date.

2.3 Convexity of the PCLP

In this section, we study some of the properties of the PCLP. More precisely, Theorem

2.3.1 to follow indicates that, if the distribution of the uncertain parameters is log-concave and

symmetric and for risk levels satisfying 0 ≤ εi ≤ 1/2, the PCLP is a convex program. Although

the result below only involves the convexity of a PCLP with one constraint, the extension to the
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case with an arbitrary number of constraints is immediate. This extension is a consequence of

the fact that an intersection of convex sets is still convex. Throughout this chapter, we write ai =

ai
0 +4ai; i = 1,2, . . . ,k and b = b0 +4b and assume that the pair (4ai,4bi) has a log-concave

symmetric distribution function. For simplicity, it is assumed that the vector b is deterministic;

i.e., b = b0. However, it is noted that the formulation and the results presented can be easily

generalized for the case when b is random.

THEOREM 2.3.1. Let a0 ∈ R`, b ∈ R and the risk level 0 ≤ ε ≤ 1/2 be given. Also, let the

random vector 4a have a log-concave symmetric distribution. Then, the set

Xε
.
= {x ∈ R` : Prob{xT (a0 +4a) ≤ b} ≥ 1− ε}

is convex.

Proof: See Appendix A.

2.4 Remarks

In this section, we will show that some conditions in Theorem 2.3.1 are necessary, i.e.,

the distribution of 4a must be symmetric and the theorem only holds for the case of a single

inequality. In general, if these conditions are not met, one can obtain optimization problems

which are not convex. Two examples are provided below.

2.4.1 Asymmetric Log-concave Probability Distribution Case

For 0 ≤ ε ≤ 1/2, our focus now is on

χε
.
= {x ∈ Rl : Prob{xT (a0 +4a) ≤ b} ≥ 1− ε}.

Below, we provide an example that shows if the distribution of 4a is not symmetric, χε is not

necessarily a convex set.

In the example, we take x ∈ R2, a0 = (0 0)′ and (4a1 4a2)
′ uniformly distributed over

the set

{(4a1 4a2) | 4a2
1 +4a2

2 ≤ 1, 4a1 ≥ 0, 4a2 ≥ 0}.
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Take b = 0.45, ε = 0.45, x1 = (1 0)′, x2 = (0 1)′ and x3 = (0.5 0.5)′. One can prove that

x1 ∈ χ0.45, x2 ∈ χ0.45

while

Prob{xT
3 (a0 +4a) ≤ b} = 0.52.

Thus x3 which is a convex combination of x1 and x2 does not belong to χ0.45. Hence, χ0.45 is not

a convex set.

2.4.2 Joint Inequalities Case

For 0 ≤ ε ≤ 1/2, our focus now is on

χε
.
= {x ∈ Rl : Prob{xT (a0 +4a) ≤ b and xT (c0 +4c) ≤ d} ≥ 1− ε}.

We now present an example that shows, in this case, χε is not necessarily a convex set.

In the example, we take x ∈ R2, a0 = (0 0)′, c0 = (0 0)′, (4c1 4c2)
′ = (0 4a2)

′ and

(4a1 4a2)
′ uniformly distributed over the set

{(4a14a2) | 4a1| ≤ 1, |4a2| ≤ 1}.

We now take b = d = 0.15, ε = 0.45, x1 = (1 0)′, x2 = (0 1)′ and x3 = (0.5 0.5)′. It can be shown

that

x1 ∈ χ0.45, x2 ∈ χ0.45

while

Prob{xT
3 (a0 +4a) ≤ b and xT

3 (c0 +4c) ≤ d} = 0.53.

Hence, x3 which is a convex combination of x1 and x2 does not belong to χ0.45. Therefore, χ0.45

is not a convex set.

2.5 Deterministic Equivalent of the PCLP

The result in the previous section indicates that the PCLP is a convex program. However,

it does not provide any indication on how to solve the resulting optimization problem. In this
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section, we present the concept of floating body which provides some insights on how one can

solve the PCLP.

2.5.1 Floating Body

Central to the results presented in this chapter is the concept of floating body of a proba-

bility measure. Given 0 < ε < 1/2, the floating body Kε of a probability distribution is a convex

symmetric set for which each supporting hyper-plane “cuts-off” a set of probability ε . More pre-

cisely, given 0 < ε < 1/2 and u ∈ R`, ‖u‖2 = 1, let H(u,ε) be the supporting hyper-plane of Kε

normal to u. Also, let H+(u,ε) be the half-space defined by H(u,ε) which does not contain the

origin. Then, Kε is a floating body of the given probability measure if

Prob(H+(u,ε)) = ε.

for all ‖u‖2 = 1. Not every probability measure has a floating body. However, the results in [48]

indicate that every probability distribution in the class f ∈ F does have a floating body Kε for

any 0 < ε < 1/2.

2.5.2 Additional Notation

Let ‖ · ‖ be a norm in R`. We define the dual norm as

‖x‖∗ .
= max{xT y : ‖y‖ ≤ 1}.

Now, recalling that the probability distribution of ∆a is log-concave and symmetric, define the

norm associated with its floating body Kε as

‖4a‖ε
.
= inf

{

ρ ∈ R+ : 4a ∈ ρKε
}

and let ‖ · ‖ε,∗ denote its dual norm as defined above.

2.5.3 Deterministic Equivalent of the PCLP: Since

{4a ∈ R` : xT (a0 +4a) ≤ b}
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is an half-space, the definition of the floating body presented in Section 2.5.1 indicates that

requiring

Prob{xT (a0 +4a) ≤ b} ≥ 1− ε

for 0 < ε < 1/2 is equivalent to requiring

xT (a0 +4a) ≤ b

for all 4a ∈ Kε , where Kε is the floating body of the probability distribution of 4a as defined in

Section 2.5.1. Now, given the definition of dual norm above, this is equivalent to

‖x‖ε,∗ ≤ b− xT a0.

Therefore, the probabilistic constraints of the PCLP can be replaced by deterministic ones of the

form above. Hence, if the quantity ‖x‖ε,∗ can be easily determined, this leads to an immediate

numerical implementation for solving the PCLP.

2.5.4 Elliptical Log-concave Distributions: It turns out that there are cases where ‖x‖ε,∗ is

easily determined. An example is the case where the probability distribution of the uncertain

parameters is an elliptical log-concave distribution. An elliptical log-concave distribution is a

distribution whose probability density function is of the form

f (y) = g(yTWy)

where g : R+
0 → R+

0 is a log-concave non-increasing function and W is a positive definite matrix.

Examples of such distributions are multivariable normal distributions and uniform distributions

over balls. For such probability distributions it is easy to prove that the convex floating body is

an ellipsoid with the same aspect ratio as the ellipsoid

E
.
= {4a ∈ R` : 4aTW4a ≤ 1}.

The actual “radius” of the ellipsoid Kε can be determined analytically for some probability dis-

tributions. If one cannot determine this radius analytically, an easy one line search optimization

problem can be setup to numerically obtain this value. Therefore, for such probability distribu-

tions, the PCLP reduces to a convex quadratic optimization problem. More precisely, consider an

elliptical log-concave probability density function of the form above. Then, for any 0 < ε < 1/2,
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the floating body Kε is of the form

Kε = {4a ∈ R` : 4aTW4a ≤ r2(ε)}

for some r(ε) > 0. It can be easily shown that requiring

xT (a0 +4a) ≤ b

for all 4a ∈ Kε is equivalent to requiring

‖r(ε)W−1/2x‖2 ≤ b− xT a0

which is a convex quadratic constraint on x.

2.6 Application to Control Systems Design

We now show how the PCLP can be used in the context of controller design. First, we

apply the PCLP to the design of super stable systems. A second example shows how the theory

in this chapter can be applied to robust pole assignment.

2.6.1 Super Stability: In contrast to the concept of stability, where only asymptotic behavior

is considered, super stability allows for computing the worst-case value of the `∞ norm of the

output due to `∞ bounded disturbances and initial conditions. It also provides an upper bound on

the `∞ induced norm of the system (which is exact for FIR systems). We now briefly review some

of the properties of super stable systems; see [8] and [52] for proofs and additional properties.

Consider a discrete-time linear time invariant system

y(z) = G(z)w(z), G(z) = b(z)/(1+a(z))

where w are exogenous disturbances, y is the output, z is the delay operator: zx[k] = x[k−1] and

where the polynomial a(z) does not have a constant term, i.e.

a(z) = a1z+a2z2 + · · ·+anzn;
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Defining ‖a‖1 = ∑n
i=1 |ai|, a system is said to be super stable if ‖a‖1 < 1. Moreover, in [8], it is

shown that in this case the `∞ induced norm of the system is bounded by

‖G(q)‖`∞→`∞ ≤ ‖b‖1

1−‖a‖1

This property was exploited in [8] to synthesize low order `1 controllers. Synthesizing a con-

troller such that the `1 norm of the closed–loop system is less than or equal to a given µ reduces

to finding the parameters of the controller transfer function such that

µ‖dcl‖1 +‖ncl‖1 ≤ µ.

where dcl and ncl are the coefficients of the denominator and numerator of the closed loop trans-

fer function. This problem can be easily recast in an LP format. Moreover, as noted in [8],

this approach can also address the problem of fragility exhibited by some optimal control design

methods [30]. Assume that the plant is subject to parametric uncertainty of the form

G(z) =
b(z)

1+a(z)
=

∑m
i=0(b0,i +4bi)zi

1+∑n
j=1(a0, j +4a j)z j

where b0,i and a0,i are the nominal values of the coefficients and 4bi and 4ai represent the

uncertainty. Also, consider a controller of the form1

Gc(z) =
bc(z)

1+ac(z)
.

In this case robust performance is achieved if

µ‖dcl‖1 +‖ncl‖1 ≤ µ

holds for all admissible values of the uncertainty, a problem that can be easily recast as finding

a feasible point of a set of linear inequalities on the coefficients of the controller. However,

there is a major difference between the nominal and robust performance case: while it can be

1For notational simplicity, here we assume that the controller is not subject to uncertainty, but the
proposed procedure can be easily modified to take controller uncertainty into account.
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shown that the former always admits a solution if the controller order is chosen to be at least

equal to the order of the plant, the later may not have a solution even for high order controllers.

On the other hand, as we illustrate next with a simple example, it might be possible to find low

order risk–adjusted controllers, even for very small values of ε , the probability of violating the

constraints. These controllers can be found by solving the risk-adjusted counterpart of the LP

problem described in [8], which is easily seen to be a PCLP.

2.6.2 Numerical Example: We now consider the example in [8]. The discrete time system

presented has nominal transfer function

P(z) =
n(z)
d(z)

=
z−2.5z2 +1.501z3

1−2.7z+23.5z2 −4.6z3

and we assume that all coefficients are subject to uncertainty. Moreover, we assume that the

uncertainty vector is uniformly distributed on a hyper-sphere with radius 0.05. We assume that

the controller has the form

Gc(z) =
bc(z)

1+ac(z)
=

bc,0 +bc,1z+ . . .+bc,mcz
mc

1+ac,1z+ . . .+ac,ncznc
.

We first tried to design a controller that will result in a robustly super stable closed loop system.

We tried controllers up until order mc = nc = 6 and were not able to find one. Then, we allowed

for a risk of ε = 1.25×10−4. We were then able to find the following risk-adjusted controller

C(z) =
4.5819−17.7802z−1.0245z2 +0.8795z3

1−1.8819z+0.6538z2 +0.287z3

which has order 3. Having these results, a Monte Carlo simulation was performed to compute the

risk of violating super stability (recall that ε is the risk of violating each inequality). The num-

ber of samples used was 107 and the estimated probability of violating super stability obtained

is 0.78%, showing that one can obtain a low order controller even for small risk levels.

2.6.3 Robust Pole Assignment: We now describe how one can apply the results of PCLP to

the problem of robust pole assignment. We start with a continuous uncertain open loop plant

described by the following transfer function

G(s) =
(b0,0 +4b0)+(b0,1 +4b1)s+ · · ·+(b0,m +4bm)sm

(a0,0 +4a0)+(a0,1 +4a1)s+ · · ·+(a0,n +4an)sn
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where b0,i and a0,i are the nominal values of the coefficients of the numerator and denominator

respectively and 4bi and 4ai represent the uncertainty. Now, since uncertainty is present, one

cannot determine a controller that will assign the closed loop poles to a specific location. As

in [29], one instead aims at designing a controller such that the closed loop poles lead to the sat-

isfaction of the desired specifications. In other words, each of the coefficients of the closed loop

characteristic polynomial should belong to a given interval. More precisely, given a controller

of the form

Gc(s) =
bc,0 +bc,1s+ · · ·+bc,mcs

mc

ac,0 +ac,1s+ · · ·+ac,ncsnc

one aims at finding the coefficients of the controller such that the closed loop characteristic

polynomial belongs to the family of polynomials

sncl +[δ−
ncl−1,δ

+
ncl−1]s

ncl−1 + · · ·+[δ−
1 ,δ+

1 ]s+[δ−
0 ,δ+

0 ]

for all admissible uncertainty values, where ncl = nc + n is the degree of the closed loop char-

acteristic polynomial. Therefore, the search for the coefficients of the controller reduces to

finding a feasible solution to a set of linear inequalities to be satisfied for all admissible val-

ues of 4a0, . . . ,4an and 4b0, . . . ,4bm. For most common types of uncertainties, the problem

above is easily proven to be convex. However, the designing of a robust controller can result

in controllers which are complex. Therefore, we take a risk-adjusted approach; i.e., instead of

requiring that each inequality is satisfied for all admissible values of the uncertain parameters,

we require that the risk of violating each of the inequalities is less than or equal to a prescribed

risk level ε . In other words, we solve a PCLP version of the problem above.

2.6.4 Numerical Example: The example presented here is a modification of one of the examples

in [29]. Consider an uncertain plant with transfer function

G(s) =
(0.75+4b1)s+1.25+4b0

s2 +(0.75+44a1)s+4a0

where the uncertain parameter vector is uniformly distributed over the hyper-sphere of radius 0.25.

We now aim at designing a controller such that the closed loop polynomial belongs to the family

∆T (s) = s2 +[1,3]s+[1,3].
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Therefore, the controller transfer function is constant Gc(s) = b0. We tried to find a robust con-

troller for the system above. In this case, this was not possible. Then, a risk of ε = 0.02 was

allowed in the PCLP version of the problem above. In this case a risk-adjusted constant con-

troller exists and has the form Gs(s) = 1.555. The pole cluster distributions of the desired sys-

tem and the actual closed loop system are shown in Figure 2.1. A Monte Carlo simulation was
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Fig. 2.1. Desired pole location “o” and actual one “+”.

performed to estimate the actual risk of violating the specifications. The estimated value of the

risk is approximately 3.6%, showing that, even for low risk values, one can obtain risk-adjusted

controllers in cases where a robust controller does not exist. Furthermore, in this case, we obtain

robust stability as an added benefit; see Figure 2.1.

2.7 Concluding Remarks

In this chapter, we extended the results in [36] and showed that the probabilistically

constrained linear program is a convex optimization problem for any log-concave symmetric

distribution. Also, a deterministic equivalent was provided which can be easily implemented in

the case of elliptical distributions, such as normal or uniform over balls. Finally, this result was

applied in the systems design context, showing that, even for very low levels of risk, one can

obtain controllers that are substantially less complex than their robust counterparts.
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Chapter 3

Probabilistic Quadratic Stabilization

In Chapter 2, with the aid of the concept of floating body, a probabilistic constrained

optimization problem is converted into a deterministic one which can, in principle, be solved

by well known algorithms. The key is to determine the floating body. At this time, this is only

computationally doable for a limited class of distributions with special geometry structures, i.e.,

uniform or normal distribution over balls. From this chapter on, we develop algorithms based on

stochastic optimization methods which are applicable to any probabilistic distributions, as long

as one can generate samples with the given distribution.

The focal point of this chapter is the controller design for quadratic stability within a

probabilistic framework. That is, we concentrate on a probabilistic version of the classical design

problem involving the selection of a state feedback controller and associated quadratic Lyapunov

function to guarantee stability of an uncertain system; e.g., see [41] for the pioneering research

involving matching conditions or [3], [21] and [27] for variations, extensions and generalizations

on this theme. Most of the work in this chapter has been presented in [42].

3.1 Introduction

Consistent with early literature, we consider a system with uncertain parameters

4 = (41,42, . . . ,4`),

4∈ ∆, where ∆ is the admissible uncertainty set. We assume that the system is described by a

state space model described by the pair

(A0 +4A0,B) ∈ Rn×n ×Rm×n

having nominal (A0,B) which is assumed to be controllable and uncertainty structure of the form

4A0 = 41A1 +42A2 + · · ·+4`A`

with the Ai above being known n×n matrices.
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As in Chapter 2, the uncertain parameters 4i are treated as random variables. The objec-

tive here is to design a controller leading to the maximal probability of quadratic stability, given

constraints on the gain matrix. In contrast to the results in Chapter 2, where probabilistic con-

straints were utilized, here we aim at minimizing the risk of performance violation. Stochastic

approximation algorithms are provided which maximize the probability of quadratic stability for

a wide class of uncertainty probability distributions. Convergence to the optimal performance is

shown.

3.2 Preliminaries

Before proceeding to the main result, we need to look at what probability density func-

tions are admissible for the vector of uncertain parameters 4. As in Chapter 2, we focus on the

log-concave functions; see Section 2.2. In this chapter, we assume that the probability density

function f for the vector of uncertain parameters 4 is log-concave. Furthermore, we assume

that its support is finite; i.e., there exits a γ > 0 such that f (4) = 0 for all ‖4‖ > γ .

We now present a classical result by Prekopa on log-concave functions which plays a

crucial role on approaches developed in this chapter.

LEMMA 3.2.1. (see [54] for proof): Assume that f (x,y) is a log-concave function of (x,y) ∈
Rn1+n2 . Then, it follows that the function

g(y) =
∫

Rn1
f (x,y)dx

is a log-concave function of y ∈ Rn2 .

3.3 Probabilistic Quadratic Stability

In this section, we provide a precise definition of the problem addressed in this chapter.

To this end, we first briefly review the concept of robust quadratic stability.

3.3.1 Robust Quadratic Stability

Consider the system

ẋ = (A0 +4A0)x+Bu
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with n-dimensional state x and m-dimensional control u. Assume that the nominal matrix A0 is

stable and that, as mentioned before, the uncertainty has the form

4A0 = 41A1 +42A2 + . . .+4lAl. (3.1)

Now, let P be a nominally determined Lyapunov matrix; i.e., provided Q = QT > 0, let P = PT >

0 be the solution of Lyapunov equation

AT
0 P+PA0 = −Q.

Given this, we say that the system above is robustly quadratically stabilizable if there exists a

state feedback matrix K ∈ Rm×n such that

LK(4)
.
= −Q+P4A0 +4AT

0 P+KT BT P+PBK < 0 (3.2)

for all admissible 4. In other words, the feedback control law

u = Kx

results in a quadratically stable system for all admissible values of the uncertainty. Hence, we

can define the feasible set for the problem above

KQS
.
= {K ∈ Rm×n : LK(4) < 0 for all admissible 4}.

3.3.2 Probabilistic Quadratic Stability

Finding a quadratically stabilizing controller is, in general, a computationally complex

problem. For example, if the admissible set ∆ for the uncertain vector 4 is a polytope, finding

the gain matrix K requires a sweep of the vertices of ∆. Moreover, in many cases, the resulting

matrix K has very large entries, which is often undesirable. Therefore in this chapter (as in [1])

we take a different approach. Instead of trying to find a robust controller, we search for a con-

troller gain matrix which maximizes the probability of quadratic stability. More precisely, given

a compact convex set of admissible gain matrices Ω, we aim at finding

K∗ .
= argmax

K∈Ω
P(K) = argmax

K∈Ω
Prob{LK(4) < 0}.
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3.4 Numerical Algorithms for Probabilistic Quadratic Stability

The numerical algorithms proposed here are based on the well known theory of stochastic

approximation; e.g. see [32] and [56]. These algorithms require the computation of the so-called

stochastic gradient at each step. However, if one looks closely at the objective function P(K), it

is immediately seen to have the form

P(K) = Prob{LK(4) < 0} =
∫

∆
I{LK(4)<0}(4) f (4)d4, (3.3)

where IA(4) is the indicator function of the set A and f (4) is the probability density function

of the uncertainty vector 4. It can be proven that P(K) is a log-concave function of K [12].

However, as it can be easily seen, the gradient with respect to K of I{LK(4)<0}(4) is zero for

almost all 4. Therefore, traditional stochastic approximation methods cannot be directly applied

to the problem at hand.

Instead of maximizing the true probability, we optimize the following approximate prob-

ability of quadratic stability

G(K)
.
=
∫

∆
g(λmax(LK(4)) f (4)d4

where λmax(L) is the maximum eigenvalue of a symmetric matrix L and g(·) is a log-concave

non-increasing function satisfying g(x) = 1 if x ≤ 0 and g(x) > 0 for all x. For clarity of presen-

tation, in the remainder of this chapter, we assume

g(z) =

{

1 if z < 0

e−β z if z ≥ 0,
(3.4)

where

z(K,4)
.
= λmax(LK(4)), (3.5)

and β is a free design parameter. However, any function satisfying the conditions above will be

a suitable “pseudo-indicator” function. Also note that for the particular g(.) above we have

lim
β→∞

G(K) = P(K)
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and therefore it can provide a good approximation of the true probability of quadratic stability.

Note that the log-concavity of g(.) ensures that we still have a convex optimization problem; i.e.

as stated in [3], the objective function is still log-concave. We now formally present this result.

LEMMA 3.4.1. Suppose f (4) is a log-concave probability density function, the objective func-

tion

G(K) =
∫

∆
g(λmax(LK(4))) f (4)d4 ,

is log-concave in K ∈ Rn, where g(.) is a non-increasing log-concave function.

Proof:

By Lemma 3.2.1, we only need to consider the integrated

ψ(K,4)
.
= f (4)g(λmax(LK(4))).

It is well known that λmax(LK(4)) is a convex function of K and 4. Since logg(z) is a non-

increasing concave function in z, composition rules indicate that logg(z) = logg(λmax(LK(4)))

is a concave function of K and 4. Thus g(λmax(LK(4))) is log-concave in K and 4. Since

log-concavity is closed under multiplication,

ψ(K,4) = f (4)g(λmax(LK(4)))

is log-concave in K and 4. Applying Lemma 3.2.1, we conclude that

∫

∆
ψ(K,4)d4 =

∫

∆
g(λmax(LK(4))) f (4)d4

is a log-concave function in K. This completes the proof.

3.5 Stochastic Approximation

We are now ready to present the stochastic approximation algorithms used to solve the

probabilistic quadratic stability problem. Two different algorithms are proposed.
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Fig. 3.1. Approximation for indicator function

The first one is related to the Robbins-Monro algorithm [56], which requires the compu-

tation of the stochastic gradient of the objective function; i.e., we consider

K(n+1) = πΩ [K(n)+a(n)ξ (n,K(n),4)] , n = 1,2, . . . (3.6)

where

ξ (n) =
∂g(λmax(LK(4)))

∂K
. (3.7)

The second one, based on the Kiefer-Wolforwitz method [32], does not require the com-

putation of the above gradient. More precisely, the quantity ξ (n) is given by

ξ (n) =
g(K(n)+ r(n)+ c(n),4)−g(K(n)+ r(n),4′)

c(n)
(3.8)

Comparing with the original presentation of the Kiefer-Wolforwitz approach, we introduce the

perturbation r(n), which is uniformly distributed on [−h(n)/2,h(n)/2] and limn→∞ h(n) = 0.

This can provide better convergence results [24]. In both of the algorithms above, πΩ represents

the projection into the admissible compact convex set Ω for the design parameter K; i.e.,

πΩ(y) .
= argmin{‖y− x‖2

2 : x ∈ Ω}
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3.6 Convergence of the Stochastic Approximation Algorithm

We are now ready to present the stochastic approximation algorithms used to solve the

probabilistic quadratic stability problem. These algorithms are straight-forward generalizations

of two different algorithms; i.e., for approximate probability function of quadratic stability:

G(K)
.
=
∫

∆
g(λmax(LK(4)) f (4)d4,

we consider

K(n+1) = πΩ [K(n)+a(n)ξ (n,K(n),4)] , n = 1,2, . . . (3.9)

where

ξ (n) =
∂g(λmax(LK(4)))

∂K
(3.10)

for the Robbins-Monro algorithm and

ξ (n) =
g(K(n)+ r(n)+ c(n),4)−g(K(n)+ r(n),4′)

c(n)
(3.11)

for the Kiefer-Wolforwitz algorithm and

πΩ(y) .
= argmin{‖y− x‖2

2 : x ∈ Ω}

Let

E{ξ (n)|K(0),K(1), . . . ,K(n)} .
= GK(K(n))+b(n). (3.12)

and

γ(n)
.
= −〈b(n),K∗−K(n)〉. (3.13)

The following conditions regarding step sizes are assumed:

1. a(n) ≥ 0, ∑∞
n=0 a(n) = ∞, and ∑∞

n=0 a2(n) < ∞;

2. r(n) is uniformly distributed on [−h(n)/2,h(n)/2] and limn→∞ h(n) = 0;

3. c(n) ≥ 0;

4. ∑∞
n=0 a(n) c(n)

h(n) < ∞.
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According to [24], if G(K) is locally Lipschitz, we have

‖b(n)‖ ≤C
c(n)

h(n)

and C > 0 is a constant. This will be used in the proof of convergence.

To prove the convergence of the algorithm, we extend a lemma from [24] to the case

of log-concave objective functions. The proof is similar to that in [24] and is presented in Ap-

pendix C.

LEMMA 3.6.1. Assume that:

1. G(K) is a log-concave function;

2. During iterations, G(K(n)) =
∫

∆ g(λmax(LK(n)(4))) f (4) d4 ≥ p > 0, where p is a con-

stant;

3.

a(n) ≥ 0,
∞

∑
n=0

a(n) = ∞,
∞

∑
n=0

E{a(n)|γ(n)|+a2(n)‖ξ (n)‖2} < ∞.

Then, given a sequence K(n) obtained using algorithm (3.9), we have

lim
n→∞

G(K(n)) = G(K∗)

with probability 1, where K∗ ∈ K∗.

We now present the main result:

THEOREM 3.6.1. Take the processes (3.9) (3.10) and (3.9) (3.11) and let a(n) = 1
n , c(n) = 1

n1/3 ,

h(n) = 1
n1/6 . Assume f (.), g(.) meet the conditions in Lemma 3.4.1, then

lim
n→∞

G(K(n)) = G(K∗)

with probability 1, where K∗ ∈ K∗.

Proof: By Lemma 3.4.1, we know the objective function G(K) is log-concave in K. So condition

1 of Lemma 3.6.1 is met. Furthermore, the form of “pseudo-indicator” function g(.) and finite-

ness of K(n) lead to immediate satisfaction of condition 2 of Lemma 3.6.1. As for condition 3,
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since a(n) = 1
n , we have

a(n) ≥ 0,
∞

∑
n=0

a(n) = ∞

We first concentrate on algorithm (3.9) (3.10). In this case,

ξ (n) =
∂g(λmax(LK(4)))

∂K

and, hence,

E{ξ (n)|K(0),K(1), . . . ,K(n)} = E{ξ (n)|K(n)}

=
∫

∆

∂g(K,4)

∂K
f (4)d4

= GK(K(n))

Moreover, by (3.12), we have b(n) = 0. Thus, γ(n) = −〈b(n),K∗−K(n)〉 = 0. On the other

hand, we have

ξ (n) =
∂g(λmax(LK(4)))

∂K

=

{

0 if z ≤ δ
−βe−β z ∂ z(K,4)

∂K if z > δ ,

where z(K,4) = λmax(LK(4)) and by the results in Appendix B,

∂ z(K,4)

∂Ki
= y∗T LKi(4)y∗,

where y∗ is an eigenvector of Euclidean norm 1 associated with maximum eigenvalue of LK(4).

Since each entry in LK(4) is finite, ∂ z(K,4)
∂K is finite and so is ξ (n). Let ξ (n) ≤ M for some 0 <

M < ∞. Now given our choice of a(n), we have

∞

∑
n=0

E{a(n)|γ(n)|+a2(n)‖ξ (n)‖2} =
∞

∑
n=0

E{a2(n)‖ξ (n)‖2}

≤
∞

∑
n=0

M
n2

< ∞
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and condition (3) is satisfied. Since all conditions of Lemma 3.6.1 are met, we conclude that for

algorithm (3.9) (3.10), with probability 1

G(K(n)) → G(K∗).

For algorithm (3.9)(3.11), we only need to be concerned with the last condition as well

(the reasoning above still applies for conditions 1 and 2). Since G(K) is locally Lipschitz, by

[24], we have

‖b(n)‖ ≤ M1
c(n)

h(n)

where M1 is a constant, c(n) = 1
n1/3 and h(n) = 1

n1/6 . Since the projection is carried out in the

optimization process, ‖K∗−K(n)‖ is bounded. Therefore,

|γ(n)| = |〈b(n),K∗−K(n)〉|

≤ ‖b(n)‖‖K∗−K(n)‖

≤ M′
1

n1/6

Again, since G(K) is locally Lipschitz, there exists a M2 > 0 such that ‖ξ (n)‖ ≤ M2. Hence, we

have

∞

∑
n=0

E{a(n)|γ(n)|+a2(n)‖ξ (n)‖2} ≤
∞

∑
n=0

E{a(n)|γ(n)|}+
∞

∑
n=0

E{a2(n)‖ξ (n)‖2}

≤
∞

∑
n=0

M′
1

n7/6 +
∞

∑
n=0

M2
2

n2

< ∞,

Hence, all conditions of Lemma 3.6.1 are met and we have the same convergence result as for

Robbins-Monro algorithm.

3.7 Simulation Results

We now present two examples which illustrate the concepts put forward in this chapter.
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3.7.1 Example 1

Consider a system

A0 =









0 1 0

0 0 1

−1.25 −1.5 −2.15









and

B = ( 0 0 1 )′

where we have uncertainty in each entry of the last row of A. The uncertainty is assumed to

be uniformly distributed over [−1,1]. First, we take Ω = {K : |K(i)| ≤ 105}, which makes

the original optimization problem an approximately unconstrained one. The results obtained are

presented in Tab. 3.1. We used the LMI toolbox to solve the robust quadratic stability problem.

For the stochastic approximation simulation, we use β = 30 and performed 10000 iterations.

We take a(n) = 1/n, c(n) = 1/n
1
2 and h(n) = 10−6/n

1
3 .

approach K risk

LMI [ -1.2713 -5.7110 -3.2954 ] 0

RM [ -0.5237 -2.0187 -1.1497 ] 0.37%

KW [ -0.5195 -2.0228 -1.0743 ] 0.44%

Table 3.1. Example 1: Feasible Case

Tab. 3.1 indicates that we can greatly reduce the gain of the controller with a very small

risk of instability. In Tab. 3.2 we show the case where “harsh” constraints are put on the gains of

the controller. More precisely, we assumed that |K(i)| ≤ 2. The robust quadratical stabilization
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approach K risk

LMI infeasible /

RM [-0.3751 -2.0000 -1.3321] 0.64%

KW [ -0.5535 -1.9861 -1.0815] 0.69%

Table 3.2. Example 1: Infeasible Case

problem is infeasible in this case. However, we were able to find gains that keep the risk of

instability less than 0.7%.

3.7.2 Example 2

The system is

A0 =





































0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−5.0625 −20.25 −54.125 −121.5 −140.0625 −101.25 −44.25 −10.5





































and

B = (0 0 0 0 0 0 0 1)′

Uncertainty enters into the system in the same manner as previous example. We take a(n) = 1/n,

c(n) = 1/n
1
2 and h(n) = 10−9/n

1
3 . First we determined the state feedback gain using “very

loose” constraints; i.e. |K(i)| ≤ 106. The results obtained are shown in Tab. 3.3: Again, the

example shows that we can obtain a controller with very small risk of instability and with much

smaller gains than the robust controller. Next, we consider the case |K(i)| ≤ 21. The results are
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approach K risk

LMI [ -0.4299 -10.2780 -36.0871 -46.8103 -36.6329 -17.5467 -4.9345 -0.6772 ] 0

RM [-0.1970 -5.2541 -18.2222 -23.6793 -18.4798 -8.8363 -2.4995 -0.4327] 1.29%

KW [ -0.2991 -5.0299 -17.4843 -22.7072 -17.7386 -8.5683 -2.4667 -0.3618 ] 2.08%

Table 3.3. Example 2: Feasible Case

presented in Tab. 3.4: The LMI toolbox could not find a solution if the gains were constrained

to |K(i)| ≤ 42. Again we were able to find controllers with very small risk of instability. Both

algorithms are able to find gains leading to a risk of instability less than 6%.

3.7.3 Remark

As the dimension of the gain matrix K increases, we observed that speed of convergence

can be very slow. This can be circumvented by first taking small β to speed up the iteration and

later increasing its value to better approximating the indicator function.

3.8 Concluding Remarks

In this chapter, the probabilistic quadratic stability design was introduced. Instead of de-

signing a “traditional robust” controller, we provided algorithms which maximize the probability

of quadratic stability. This enables us to put “harsh” restrictions on the gains of the controller and

still be able to design a low risk controller even if a robust controller does not exist. Examples

provided show that we can greatly reduce the gains of the controller and still have a very small

risk of instability.



32

approach K risk

LMI infeasible /

RM [-0.1196 -4.6077 -16.2038 -20.9997 -16.4535 -7.8822 -2.1859 -0.3027 ] 3.95%

KW [-0.2219 -4.7625 -16.2999 -20.9998 -16.6144 -7.9602 -2.2924 -0.4787 ] 5.43%

Table 3.4. Example 2: Infeasible Case
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Chapter 4

Stochastic Optimization Algorithms for
Receding Horizon Control of LPV systems

In this chapter, we aim to apply stochastic optimization algorithms to receding horizon

control for Linear Parameter Varying (LPV) systems. It has been shown that, by searching over

a set of strategies, this problem can be reduced to finding a solution to a finite set of Linear

Matrix Inequalities (LMIs) [61]. Finding the exact solution to this problem has computational

complexity that grows exponentially with the horizon length. To circumvent this difficulty, a

risk–adjusted receding horizon algorithm is also presented in [61] which is essentially a stochas-

tic optimization problem. Based on these results, we propose two stochastic gradient algorithms

to solve this problem in this chapter. Both algorithms are guaranteed to converge to the solu-

tion with probability one. Moreover, computational complexity grows only polynomially with

system size.

4.1 Introduction

Comparing with the time invariant counterparts, there are relatively few controller design

methods available for LPV systems. A popular approach is the receding horizon control [28,

46, 59, 60]. As originally shown in [59], the control strategy can be obtained by solving an

optimization problem constrained by a sequence of LMIs over a moving horizon. The resulting

controller is guaranteed to internally stabilize the plant and to outperform a controller designed

solely on the basis of the Control Lyapunov Function (CLF), or equivalently, the solution to the

set of functional Affine Matrix Inequalities (AMIs). However, the online computation burden

associated with solving LMIs is a great impediment for practical application. Thus, this approach

does not address the computational complexity of the problem.

In [5], a randomized algorithm is proposed in the context of Receding Horizon for the

first time. In this chapter, in order to relieve the computation cost, we also apply the stochastic

optimization algorithms to solving the Receding Horizon control for LPV systems. This is a

direct application of stochastic gradient algorithm within the framework of the risk–adjusted

receding horizon control proposed in [61]. Compared with [5], the algorithm in [61] consider the

case of LPV dynamics and obtain a controller that minimizes the worst case performance, rather
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than its expected value, over all trajectories compatible with the current parameter value. Two

gradient algorithms are introduced to solve this constrained stochastic optimization algorithms:

One is based on the estimation of gradient and function value [26]; the other is a Min–Max

algorithm [34].

4.2 Preliminaries

4.2.1 The Quadratic Regulator Problem for Constrained LPV Systems

Consider the following class of LPV systems:

x(t +1) = A[4(t)]x(t)+B2[4(t)]u(t)

z(t) = C1[4(t)]x(t)+D12[4(t)]u(t)
(4.1)

where x ∈ Rnx ,u ∈ Su ⊆ Rnu , and z ∈ Rmz represent the state, control, and regulated variables

respectively, Su is a convex set containing the origin in its interior, 4 denotes a vector of time–

varying random variables that can be measured in real time, and where all matrices involved are

continuous functions of 4. Further, assume that the set of admissible parameter trajectories is

of the form:

FΘ = {4 : 4(t +1) ∈ Θ [4(t)] , t = 0,1, . . .} (4.2)

where P ⊂ Rn4 is a compact set and Θ : P → P is a given set valued map1. The goal is, given an

initial condition xo, and an initial value of the parameter 4o, to find an admissible parameter de-

pendent state–feedback control law u[x(t),4(t)] ∈ Su that minimizes the following performance

index:

J(xo,4o,u) = sup
4∈FΘ,4(0)=4o

∞

∑
k=0

zT (k)z(k), x(0) = xo (4.3)

In the sequel, for simplicity, we make the following standard assumptions:

DT
12D12 = I, CT

1 D12 = 0 (4.4)

In addition, the explicit dependence of matrices on 4 will be omitted, when it is clear from the

context.

1This is a generalization of the usual rate bounds ν i ≤ 4̇i ≤ ν i that allows for considering for instance
discrete parameter values and parameter variations with memory [57].
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DEFINITION 4.2.1. A function Ψ : Rnx ×P → R+ that satisfies the following condition:

max
4∈P

{

min
u∈Su

{

max
θ∈Θ(4)

Ψ[A(4)x+B2(4)u,θ ]−Ψ(x,4)

}}

< 0 (4.5)

is said to be a parameter dependent Control Lyapunov Function (CLF) for system (4.1).

The following result characterizes a family of CLFs in terms of the solution to a (func-

tional) Affine Matrix Inequality [61].

LEMMA 4.2.1. Assume that the pair {A(.),C(.)} is observable for all parameter trajectories.

If there exist a continuous matrix function Y (4) > 0 such that for all 4∈ P, we have:

sup
θ∈Θ(4)









−Y (4)+B2(4)BT
2 (4) Y (4)AT (4)−B2(4)BT

2 (4) Y (4)CT
1 (4)

A(4)Y (4)−B2(4)BT
2 (4) −Y (θ) 0

C1(4)Y (4) 0 −I









≤ 0,

(4.6)

then V (x,4) = xTY−1(4)x is a parameter dependent CLF for system (4.1), with associated

control action given by

u(x,4) = −BT
2 (4)Y−1(4)x (4.7)

Moreover, the corresponding trajectory satisfies the following bound:

sup
4∈FΘ,4(0)=4o

∞

∑
k=0

zT (k)z(k) ≤ xT
o Y−1(4o)xo (4.8)

4.2.2 Risk Adjusted Receding Horizon

In this section, we provide a brief review of results in [61] which constitutes the corner-

stones for algorithms in this chapter. Let Ψ : Rnx ×P → R+ be a CLF for system (4.1) such that

it satisfies the additional condition:

max
4∈P

{

min
u∈Su

{

max
θ∈Θ(4)

Ψ[A(4)x+B2(4)u,θ ]+ zT z−Ψ(x,4)

}}

≤ 0 (4.9)
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and, given a horizon N, define (recursively) the following function J(x,4,n,N):

J(x,4,N,N) = Ψ(x,4)

J(x,4, i,N) = min
u∈Su

{

zT (i)z(i)+ max
θ∈Θ(4)

J[A(4)x+B(4)u,θ , i+1,N]

}

, i < N
(4.10)

Let x(t),4(t) denote the present state and parameter values, and consider the following Receding

Horizon control law:

uRH [x(t),4(t)] = argmin
u∈Su

J[x(t),4(t), t, t +N] (4.11)

Define

Mn(i)
.
=







−X(n+ i)+B2[4(n+ i)]BT
2 [4(n+ i)] X(n+ i)AT [4(n+ i)]−B2[4(n+ i)]BT

2 [4(n+ i)] X(n+ i)CT
1 [4(n+ i)]

A[4(n+ i)]X(n+ i)−B2[4(n+ i)]BT
2 [4(n+ i)] −X(n+ i+1) 0

C1[4(n+ i)]X(n+ i) 0 −I







(4.12)

where i = 0,1, . . . ,N − 1, the following receding horizon type control algorithm is proposed in

[61]:

ALGORITHM 4.2.1. 0.- Data: A horizon N, a CLF Y (4) that satisfies (4.6).

1.- Let 4(n) denote the measured value of the parameter at time n and solve the following

LMI optimization problem in X ∈ XN:

min
X∈XN

γ (4.13)

subject to:
[

−γ xT (n)

x(n) −X(n)

]

≤ 0

max
4(n+i+1)∈Θ[4(n+i)]

Mn(i) ≤ 0
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i=0,1,. . . ,N-1 with boundary condition X(n+N) = Y [4(n+N)], and where, with a slight

notational abuse, we denote X [4(t), t] simply as X(t).

2.- At time n use as control action

u[4(n),x(n),N] = −BT
2 [4(n)]X−1[4(n),n]x(n) (4.14)

3.- Set n = n+1 and go to step 1.

It has been proven that the receding horizon control law (4.14) outperforms the AMI–

based control (4.7). However, its computational complexity is comparable (or worse), since it

requires finding both a feasible solution to (4.6) and to the set of LMIs (4.13). To reduce the

computational complexity of solving the set of LMIs(4.13, a risk–adjusted point of view is taken

in [61]. Assume a probability distribution for the vector 4̂ = [4(n + 1)4(n + 2) · · ·4(n + N)]

whose probability density is nonzero for all admissible values of the scheduling variable. The

results that follow in the sequel, hold for any such distribution. Then, the LMI optimization

problem presented above is equivalent to

minE [γ ]

subject to:

E

[

g̃

(

λmax

([

−γ xT (n)

x(n) −X(n)

] )) ]

≤ 0

E [g̃(λmax (Mn(i) )) ] ≤ 0

i = 0,1, . . . ,N −1

(4.15)

with boundary condition X [4(n+N)] = Y [4(n+N)], where E [ ] denotes expectation and given

ζ > 0,

g̃(x) =
eζ x −1

ζ
. (4.16)

(4.15) is a constrained stochastic optimization problem. We provide two algorithms to

solve this problem in next two sections.
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4.3 Stochastic Approximation I

The optimization problem (4.13) is infinite dimensional, since the optimization is carried

out over all continuous matrix functions that causally map N–length parameter trajectories to

sequences of positive definite matrices. In principle, the problem can be (approximately) con-

verted to a finite dimensional optimization by using a finite expansion X(4, t)= ∑m
i=1 Xi(t) fi(4),

where fi(.) are known continuous functions. Let xn be a vector containing all of the optimization

variables; i.e., xn contains γ and the entries of Xi(t), i = 0,1, . . . ,m; t = n, . . . ,n+N. Now define

the following functions

f0(xn,4(n),4̂)
.
= γ; (4.17)

f1(xn,4(n),4̂)
.
= g̃

(

λmax

([

−γ xT (n)

x(n) −X(n)

] ))

and

fi+2(xn,4(n),4̂)
.
= g̃(λmax (Mn(i) )) ; i = 0,1, . . . ,N −1

We can now define the approximate optimization problem

minE
[

f0(xn,4(n),4̂)
]

subject to:

E
[

fl(xn,4(n),4̂)
]

≤ 0; l = 1,2, . . . ,N +1

(4.18)

One can easily see that the solution of problem (4.18) tends to the solution of problem

(4.15) as ζ → ∞. We are now ready to provide an algorithm for solving the approximate problem

(4.18). Note that the function g̃(λmax(P)) is convex in matrix P, so the optimization problem

above is convex. For technical reasons, in the sequel we will assume that the solution to this

problem is known to belong to a given compact convex set X (where the matrices X(n+ i) have

bounded entries and are positive definite). Let π(·) denote the projection onto X; i.e.,

π(x) = arg min
x̃∈X

‖x− x̃‖2.

and consider the following algorithm:
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ALGORITHM 4.3.1.

1.- Generate a feasible solution Y (4) to (4.6), using for instance the procedure proposed in

[25].

2.- Initialization: Determine x0
n, y0

i ; i = 0,1,2, . . . ,N +1 and z0
j; j = 1,2, . . . ,N +1. Let k = 0.

3.- Generate a sample 4̂k = [4k(n+1), . . . ,4k(n+N −1)]

4.- Let j∗ be such that zk
j∗ = max

j
zk

j. If zk
j∗ ≤−τ0/kτ then

xk+1
n = π

[

xk
n −bkyk

0

]

.

Otherwise,

xk+1
n = π

[

xk
n −bkyk

j∗

]

.

5.- Let2

yk+1
i = yk

i +ak





∂ fi(xn,4(n),4̂k)

∂xn

∣

∣

∣

∣

∣

xn=xk
n

− yk
i



 ; i = 0,1,2, . . . ,N +1

and

zk+1
j = zk

j +ak

(

f j(xn,4(n),4̂k)− zk
j

)

; j = 1,2, . . . ,N +1.

6.- If max j zl
j < 0 for l = k−Ngood +1, . . . ,k+1 and |τk−1−τk|< ε stop. Otherwise, let k = k+1

and go to step 3.

THEOREM 4.3.1. Let

ak =
α0

kα ; bk =
β0

kβ

where α0, α , β0 and β are positive constants. Furthermore, assume that τ0 and τ are also

positive. Then, if
∞

∑
k=0

ak =
∞

∑
k=0

bk = ∞;
∞

∑
k=0

a2
k < ∞; lim

k→∞

bk

ak
= 0

2For the computation of the subgradient of λmax (M ) see Appendix B
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and

2β −α −2τ > 1

then, the sequence xk
n converges with probability one to the solution of the problem (4.18).

Proof Direct application of Theorem 1 in [26]

4.4 Stochastic Approximation II

In this section, we will address another kind of stochastic approximation which was

developed by Kushner and Sanvicente [34]. It is essentially a min–max algorithm for constrained

stochastic optimization problems. For the approximate problem described in (4.18), we have the

following Lagrangian function for the optimization problem at time instant n:

L(xn,λn) = E
[

f0(xn,4(n),4̂)
]

+
N+1

∑
i=1

λniE
[

fi(xn,4(n),4̂)
]

(4.19)

Also for the convenience of notation, we define

l(xn,λn) = f0(xn,4(n),4̂)+
N+1

∑
i=1

λni fi(xn,4(n),4̂), (4.20)

which is a noisy estimate of L(xn,λn). Assume there exists a pair (x,λ ), such that

L(x,λ ) ≤ L(x,λ ) ≤ L(x,λ )

and there is some known A, 0 < A < ∞, so that

|xi| < A, 0 ≤ λ i < A.

We will construct an iteration process which simultaneously maximizes L(xn,λn) with respect to

λn and minimizes it with respect to xn.

ALGORITHM 4.4.1.

1.- Generate a feasible solution Y (4) to (4.6), using for instance the procedure proposed in

[25].
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2.- Initialization: Determine x0
n, λ 0

ni and maximal number of iterations Nn; i = 1,2, . . . ,N +1.

3.- Generate a sample 4̂k = [4k(n+1), . . . ,4k(n+N −1)]

4.- Carry out the following iterations

x̃k+1
n = xk

n − ak (
∂ f0

∂xn
|xk

n
+

N+1

∑
i=1

∂ fi

∂xn
|xk

n
).

and

λ̃ k+1
n = max[ 0, λ k

n + ak

N+1

∑
i=1

fi(xk
n,4(n),4̂k)].

5.- Projection:

xk+1
n =















x̃k+1
n if |x̃k+1

n | ≤ A

A if x̃k+1
n > A

−A if x̃k+1
n < −A,

λ k+1
n =

{

λ̃ k+1
n if λ̃ k+1

n ≤ A

A if λ̃ k+1
n > A,

6.- If Nn is achieved, stop. Otherwise, let k = k +1 and go to step 3.

Algorithm 4.4.1 is very similar to the one in [34]. But since the gradients of the integrands

in formulation (4.19) can be computed efficiently, the Robbins-Monro algorithm can be applied

directly.

THEOREM 4.4.1. Let
∞

∑
k=1

ak = ∞,
∞

∑
k=1

a2
k < ∞, ak > 0

and assume

1. f0(.) is strictly convex and fi(.), i = 1,2, . . . ,N +1 are convex.

2. fi(.), i = 1,2, . . . ,N +1 are continuously differentiable
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3. The set C .
= {x : E [ fi(.) ] ≤ 0, i = 1,2, . . . ,N +1} contains a nonempty interior.

4. There is a saddle point (xn,λ n) of L(xn,λn) such that

|xn(i)| < A, 0 ≤ λ n(i) < A.

Then, Algorithm 4.5.1 produces a sequence xk
n which converges to the optimal solution xn as

k → ∞ with probability one.

Proof: Let (xn,λ n) be the saddle point for L(xn,λn) and xn < A, 0 ≤ λ n < A. By Algo-

rithm 4.4.1, we have

|λ̃ k+1
n −λ n|2 ≤ |λ k

n −λ n|2 +2ak(λ k
n −λ n)

′lλn(x
k
n,λ k

n )+a2
k |lλn(x

k
n,λ k

n )|2 (4.21)

and

|x̃k+1
n − xn|2 ≤ |xk

n − xn|2 −2ak(xk
n − xn)

′lxn(x
k
n,λ k

n )+a2
k |lxn(x

k
n,λ k

n )|2. (4.22)

Let Bnk denote the smallest σ -algebra generated by x̃1
n, . . . , x̃

k
n, λ̃ 1

n , . . . , λ̃ k
n . According to (4.19)

and (4.20), let

lλn(x
k
n,λ k

n ) = Lλn(x
k
n,λ k

n )+νλn(x
k
n,λ k

n )

and

lxn(x
k
n,λ k

n ) = Lxn(x
k
n,λ k

n )+νxn(x
k
n,λ k

n ),

where E[νλn(x
k
n,λ k

n )|Bnk] = E[νxn(x
k
n,λ k

n )|Bnk] = 0. Take expectations conditioned on Bnk on

both sides of (4.21) and (4.22), we get

E[|λ̃ k+1
n −λ n|2|Bnk] ≤ |λ k

n −λ n|2 +2ak(λ k
n −λ n)

′Lλn(x
k
n,λ k

n )+a2
kE[|lλn(x

k
n,λ k

n )|2|Bnk]

and

E[|x̃k+1
n − xn|2|Bnk] ≤ |xk

n − xn|2 −2ak(xk
n − xn)

′Lxn(x
k
n,λ k

n )+a2
kE[|lxn(x

k
n,λ k

n )|2|Bnk].

Define

|Zk
n −Zn|2 .

= |xk
n − xn|2 + |λ k

n −λ n|2.

and

Q(xk
n,λ k

n )
.
= (xk

n − xn)
′Lxn(x

k
n,λ k

n )− (λ k
n −λ n)

′Lλn(x
k
n,λ k

n )
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where

Q(xk
n,λ k

n ) ≥ [L(xk
n,λ k

n )−L(xn,λ k
n )]− [L(xk

n,λ k
n )−L(xk

n,λ n)]

≥ 0.

By carrying out the projection as stated in Algorithm 4.4.1, we have

|xn| ≤ A and 0 ≤ λn ≤ A.

The entries in the matrix as defined in (4.12) and (4.15) are all finite, and so are the eigenvalues

which are the arguments of fi(.) as described in (4.17), i = 1,2, . . . ,N + 1. Since fi(.) are all

continuous by Assumption 1 in Theorem 4.4.1, there exists A2 > 0 such that

| fi| < A2, i = 1,2, . . . ,N +1.

Similarly, by Assumption 2 in Theorem 4.4.1, it is easy to see

∣

∣

∣

∣

∂ fi

∂xn

∣

∣

∣

∣

< A1, i = 0,1, . . . ,N +1,

where A1 is a positive constant. By assumption 4, the point (xk+1
n ,λ k+1

n ) is no farther from

(xn,λ n) than is the point (x̃k+1
n , λ̃ k+1

n ) and therefore

E[|Zk+1
n −Zn|2|Bnk]−|Zk

n −Zn|2 ≤ E[|Z̃k+1
n −Zn|2|Bnk]−|Zk

n −Zn|2

≤ −2akQ(xk
n,λ k

n )+a2
k(E[|lλn(x

k
n,λ k

n )|2|Bnk]

+E[|lxn(x
k
n,λ k

n )|2|Bnk])

≤ a2
k(E[|lλn(x

k
n,λ k

n )|2|Bnk]+E[|lxn(x
k
n,λ k

n )|2|Bnk])

≤ a2
k [NA2A2

2 +(1+NA2)A2
1].

According to the definition in Appendix C, the series {Zk
n} is a stochastic quasi-feyer sequence.

By Lemma C.0.1 in Appendix C, the sequence |Zk
n −Zn|2 converges with probability 1 for any
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Zk
n, such that E[|Zk

n −Zn|2] < C < ∞. Define the sets

Nε = {x : |x− xn| ≤ ε}

C3ε = {x : 2ε ≤ |x− xn| ≤ 3ε}

N3ε = {x : |x− xn| ≤ 3ε}

Since f0(.) is strictly convex and fi(.), i = 1,2, . . . ,N1 are convex,

Q(xk
n,λ k

n ) > 0 ∀xk
n 6= xn.

Thus, for each ε > 0, there is a δε > 0 such that

Q(xk
n,λ k

n ) ≥ δε if |xk
n − xn| ≥ ε.

Take expectations on both sides of the above inequality, we get

E[|Zk
n −Zn|2|]−E[|Z0

n −Zn|2] ≤ −2E
k−1

∑
i=0

aiQ(xi
n,λ i

n)+E
k−1

∑
i=0

a2
i (|lλn(x

i
n,λ i

n)|2 + |lxn(x
i
n,λ i

n)|2)

By conditions on ai as stated in the theorem, for any given ε > 0, we at least have xi
n ∈ Nε in-

finitely often with probability 1 or ∑k−1
i=0 aiQ(xi

n,λ i
n) → ∞ on some non-null set. Next, following

exactly the same logic in [34], we can prove

1. Asymptotically, xk
n cannot leave N3ε from Nε without going through C3ε .

2. C3ε can only be entered finite number of times w.p.1..

Since ε is arbitrary, we can prove the convergence. Q.E.D.

4.4.1 Remarks

1. Comparing to (4.17), to make the objective function to be strictly convex, one can use

f0 = γ2 instead of f0 = γ . Since E2[γ] ≤ E[γ2], we actually minimize the upper-bound of

the original objective function .

2. The choice of g̃ as expressed in (4.16) results in an immediate satisfaction of Assumption

2 of Theorem 4.4.1.
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4.5 Illustrative Example

Consider a discrete time LPV system with the following state space realization

A(4(t)) =

[

1 0.1

0 1−0.14(k)

]

B2(4(t)) =
[

0 0.0787
]′

C1(4(t)) =

[

1 0

−1 0

]

D12(4(t)) =
1√
2

[

1 1
]′

with admissible parameter set

FΘ = {4(t) : 4(t +1) ∈ [−1,1], t = 0,1, . . .} . (4.23)

As a first step, we computed a CLF for the system above. It can be verified that the following

matrix function Y (4) satisfies the required AMIs (4.6)

Y (4k) = Y0 +Y14k +Y242
k

Y0 =

[

0.0296 −0.0196

−0.0196 0.0290

]

Y1 =

[

0.0003 −0.0016

−0.0016 0.0044

]

Y2 = 10−3

[

−0.0691 0.0302

0.0302 0.2542

]

and, hence, V (x,4) = xTY−1(4)x is a parameter dependent CLF for the plant.

Algorithms 4.3.1 and 4.4.1 were then applied to compute the control action. More pre-

cisely, the initial condition chosen was x0 = [0.1 0.1]′ and a control action of the form (4.14)
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was used where, at each time instant, X(n) was computed using Algorithm 4.3.1 and Algorithm

4.4.1 respectively. The values chosen for the parameters were horizon N = 10, ζ = 20. For

Algorithm 4.3.1: α = 0.6, α0 = 1, β = 1, β0 = 10−3, τ = 0.15 and τ0 = 10−6. For Algorithm

4.4.1: ak = 1/k. Furthermore, the parameterization used was

X(4k,k) = X0(k)+X1(k)4k +X2(k)4k
2.

Finally, we used a uniform distribution for 4. At each time instant, we ran 1000 iterations of the

stochastic optimization algorithm. The results obtained are depicted in Figures 4.1(a) and 4.1(b)

where we compare the state trajectories of the proposed probabilistic robust controllers with the

state trajectory obtained using the AMI-based controller (4.7). In Figure 4.2, we compare the

time history of the performance index. The probabilistic robust receding horizon controllers

yield costs J1 = 1.0980 for Algorithm 4.3.1 and J2 = 1.1369 for Algorithm 4.4.1 versus a cost

of J = 1.3191 for the AMI-based controller; i.e., the risk adjusted controllers yield roughly 18%

and 17% improvement on the performance.
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Fig. 4.1. Trajectory of States
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Fig. 4.2. Trajectory of the Performance Index.

4.6 Conclusions

The computational complexity in control of LPV systems is an issue which has not been

fully addressed. Many existed algorithms involve on–line solution of a set of functional LMIs

which scales exponentially with system size [31]. To relieve the computation cost, the concept

of risk-adjusted receding horizon control was proposed in [61] where it showed the receding

horizon control synthesis can be formulated as a stochastic optimization problem. In this chapter,

we applied two stochastic gradient algorithms to solve this problem and proved the convergence

to optimal solutions.

These results were illustrated with a simple example where probabilistic robust receding

horizon controllers were used to control a second order LPV plant. As shown, the proposed

probabilistic robust receding horizon controllers improve performance vis-a-vis a conventional

LPV controller, while substantially reducing the computational effort required by a comparable

Receding Horizon controller.
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Chapter 5

Probabilistic Robust Suboptimal Output Feedback

Convexity plays a very important role in the field of optimization. In the previous three

chapters, all the design problems considered can be formulated as an optimization problem

which is convex in the design parameters, e.g., the coefficients of controller’s transfer functions,

the state feedback gain, etc. The same statement cannot be made about large classes of controller

design problems. In the remainder of this thesis, we focus on some of these non-convex design

problems. By carefully choosing the intermediate optimization variables, we develop algorithms

that are proven to solve the non-convex design problems considered in this thesis. In this chap-

ter, we address the problem of robust output feedback controller design for linear systems with

arbitrary dependence on the uncertain parameters.

5.1 Introduction

Consider an uncertain plant G(z,4), where 4∈ ∆ represents uncertainty and ∆ is the un-

certainty support set. The uncertainty can be either static or dynamic and no assumption is made

on the way G(z,4) depends on 4. The only assumption is that one can generate random samples

4∈ ∆. Throughout this chapter, we focus on the closed loop system in Figure 5.1, whose closed

loop transfer function is denoted by TCL(z,4,C). Given a convex objective function g(.) whose

subgradient can be computed and a performance level γ , the objective is to design a controller

C∗(z) such that

g [TCL(z,4,C∗)] ≤ γ

for all 4 ∈ ∆. It should be noted that g can represent both a single specification or a set of

specifications. If one wants gi [TCL(z,4,C)] ≤ γi for i = 1,2, . . . ,n, just take

g [TCL(z,4,C)] = max
i

gi [TCL(z,4,C)]

γi

and γ = 1. Given the probability measure underlying the random samples generation, the algo-

rithm provided in this chapter produces a sequence of controllers Ck(z) having the property that
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Fig. 5.1. Closed Loop System

the risk of violating the performance specifications

Pk
.
= Prob{g [TCL(z,4,Ck)] > γ}

tends to zero as k → ∞. Moreover, a bound on the decay rate is given. More precisely, it is

proven that
∞

∑
k=0

Pk < ∞.

Hence, Pk tends to zero asymptotically faster than 1/k.

The general nature of the algorithm provided, enables one to address many problems in

robust controller design. In particular, these procedure can be used to solve the open problem

of robust H2 controller design in the presence of causal uncertainty. An example illustrating

this particular instance of our algorithm is also provided. Most results in this chapter are also

presented in [37] and [39].

This chapter is organized as follows: In Section 5.2, the notation used is introduced and

some ancillary results are provided. The problem formulation and the algorithm itself are pre-

sented in Section 5.3. The main result concerning the convergence of the algorithm is provided

and proven in Section 5.4. As an extension, a multidisk design algorithm is developed in Sec-

tion 5.5. These algorithms are applied to the design of robust H2 controllers in Section 5.6 and

concluding remarks are presented in Section 5.7.
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5.2 Notation and Preliminaries

We now state the notation used throughout this chapter as well as some standard results

needed for the presentation of our results.

5.2.1 Notation

Let Hn×m
2 denote the Hilbert space of functions H : C → Cn×m analytic in the set {z ∈

C : |z| ≥ 1}, equipped with the inner product

〈H,T 〉 =
1

2π

∫ 2π

0
Re{Trace[H(e jθ )∗T (e jθ )]}dθ

where Re denotes the real part, Trace(A) is the trace of the matrix A and A∗ denotes the conjugate

transpose of A. Hence, the H2 space has norm

‖T‖2 =

(

1
2π

∫ 2π

0
Re{Trace[T (e jθ )∗T (e jθ )]}dθ

)
1
2

Also, let RH2 denote the subspace of all rational functions in H2 analytic in {z ∈ C : |z| ≥ 1}.

Moreover, define the space G as the space of rational functions G : C → Cn×m that can

be represented as

G(z) = Gs(z)+Gu(z).

where Gs(z) is analytic in the set {z ∈ C : |z| ≥ α} and Gu(z) is strictly proper and analytic in

the the set {z ∈ C : |z| < α} and 0 < β < α < 1. Now, given two functions G,H ∈ G, define the

distance function d as

d(G,H)
.
=
(

‖Gs(z)−Hs(z)‖2
2 +‖Gu(β/z)−Hu(β/z)‖2

2)
)

1
2 .

The results later in this chapter that make use of this distance function are similar for any value

of α and β . However, α is usually taken to be very close to 1. Finally, define the projection

πs : G → H2

πs(G)
.
= Gs.
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5.2.2 Convex Functions and Subgradients

Consider a convex function g : H2 →R. Then, given any G0 ∈H2, there exists a ∂Gg(G0)∈
H2 such that

g(G)−g(G0) ≥ 〈∂gG(G0),G−G0〉. (5.1)

for all G∈H2. The quantity ∂Gg(G0) is said to be a subgradient of g at the point G0. For example

if g(G) = ‖G‖2 and m = n = 1; i.e.,

g(G) =

(

1
2π

∫ 2π

0
|G(e jθ )|2dθ

)1/2

then the results in [10] indicate that

∂Gg(G) =
1

2π‖G‖2
G. (5.2)

5.2.3 Closed Loop Transfer Function Parametrization

Central to the results presented here is the parametrization of all closed loop transfer

functions. Consider the closed loop plant in Figure 5.1 with uncertain parameters 4 ∈ ∆. The

uncertainty 4 can include static uncertainty, uncertain transfer function matrices or a combi-

nation of both. The Youla parametrization (e.g., see [47]) indicates that, given 4 ∈ ∆ and a

stabilizing controller C ∈ G, the closed loop transfer function can be represented as

TCL(z,4,C) = T 1
4(z)+T 2

4(z)Q4,C(z)T 3
4(z), (5.3)

where T 1
4,T 2

4,T 3
4 ∈ RH2 are determined by the plant G(z,4) (and, hence, they also depend

on the uncertainty 4) and Q4,C ∈ RH2 depends on both the open loop plant G(z,4) and the

controller C(z). Also, given any Q4,C(s) ∈ RH2, there exists a controller C ∈ G such that the

equality above is satisfied.

This parametrization also holds for all closed loop transfer functions, stable and unstable.

Using a frequency scaling reasoning one can prove the following result: Given 4 ∈ ∆ and a

controller C ∈ G, the closed loop transfer function can be represented as

TCL(z,4,C) = T 1
4(z)+T 2

4(z)Q4,C(z)T 3
4(z), (5.4)
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where T 1
4,T 2

4,T 3
4 ∈ RH2 are the same as above and Q4,C(s) ∈ G. Furthermore, given any

Q4,C(s) ∈ G there exists a controller C ∈ G such that the equality above is satisfied.

To see this, let G(z,4) = Nr(z)Dr(z)−1 = Dl(z)−1Nl(z) be right and left coprime fac-

torization of G(z,∆) with Nr(z),Dr(z),Dl(z) and Nl(z) being transfer function matrices in RH∞.

Note, that the transfer functions T 1
4,T 2

4 and T 3
4 can be determined using these coprime factor-

ization; e.g., see [47]. Now, consider the problem of finding all realizable rational closed loop

transfer function matrices analytic in the set

Cρ
.
= {z ∈ C : |z| ≥ ρ}

with ρ > 1. Note this is equivalent to finding all achievable stable rational closed loop transfer

functions when the open loop plant is G(z/ρ,4). Given the fact that Nr(z/ρ),Dr(z/ρ),Dl(z/ρ)

and Nl(z/ρ) are coprime factorizations of G(z/ρ,4), then all achievable stable rational closed

loop transfer functions for the modified problem are given by

T 1
4(z/ρ)+T 2

4(z/ρ)Q(z)T 3
4(z/ρ)

where Q(z) is any stable transfer function matrix of appropriate dimension. Now, this means that

T 1
4(z)+T 2

4(z)Q(ρz)T 3
4(z)

parameterizes all achievable rational closed loop transfer function matrices which are analytic in

Cρ . Since Q(z) was taken to be any stable transfer function matrix, Q(ρz) is any transfer function

matrix analytic in Cρ . Hence, the “traditional” Youla parametrization also parameterizes all

achievable rational closed loop transfer functions that are analytic in Cρ if instead of using stable

transfer function matrices Q, we use transfer function matrices that are analytic in Cρ . Since this

reasoning holds for any ρ > 1, then all achievable rational closed loop transfer functions are of

the form

T 1
4(z)+T 2

4(z)Q(z)T 3
4(z)

with Q ∈ G.
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5.3 Controller Design Algorithm

Before providing the controller design algorithm, we first provide a precise definition of

the problem to be solved and the assumptions that are made.

5.3.1 Problem Statement

Consider the closed-loop system in Figure 5.1 and a convex objective function g : H2 →
R. Given a performance level γ , we aim at designing a controller C∗(z) such that the closed loop

system TCL(z,∆,C∗) is stable for all admissible values of the uncertainty and satisfies

g [TCL(z,4,C∗)] ≤ γ

for all 4∈ ∆. Throughout this chapter, we will assume that the problem above is feasible. More

precisely, the following assumption is made:

ASSUMPTION 5.3.1. There exists a controller C∗ and an ε > 0 such that

d(Q4,C∗ ,Q) < ε ⇒ g
[

T 1
4(z)+T 2

4(z)Q(z)T 3
4(z)

]

≤ γ

for all 4∈ ∆.

5.3.2 Controller Design Algorithm

We now state the proposed robust controller design algorithm. This algorithm has a free

parameter η that has to be specified. This parameter can be arbitrarily chosen from the interval

(0,2).

Controller Design Algorithm

Step 0. Let k = 0. Pick a controller C0(z).

Step 1. Draw sample 4k. Given G(z,4K), compute T 1
4k(z), T 2

4k(z), T 3
4k(z) as described in [47].

Step 2. Let Qk(z) be such that the closed loop transfer function using controller Ck(z) is

TCL(z,4k, Ck) = T 1
4k(z)+T 2

4k(z)Qk(z)T 3
4k(z)



54

Step 3. Do the stabilizing projection1

Qk,s(z) = πs(Qk(z)).

Step 4. Perform update

Qk→k+1(z) = Qk,s(z)−αk(Qk,z,4k)(z)∂Qg(TCL(z,4k,Q))|Qk,s (5.5)

where

αk(Qk,4) =







η g(TCL(z,4,Qk))−γ+ε ‖∂Qg(TCL(z,4,Q))|Qk‖2

‖∂Qg(TCL(z,4,Q))|Qk‖
2
2

if g(TCL(z,4,Qk)) > γ

0 otherwise,
.

(5.6)

Step 5. Determine the controller Ck+1(z) so that

Q4k,Ck+1
= Qk→k+1.

Step 6. Let k = k +1. Go to Step 1.

5.3.3 Remark

In the algorithm above we assume knowledge of the quantity ε . If the value of ε is not

available, one can instead use a decreasing sequence εk > 0 whose limit is zero and

∞

∑
k=1

ε2
k = ∞.

The results presented in this chapter can be easily altered to allow for this modification. However,

if the value of ε is available, one should use it since the introduction of the sequence εk reduces

the speed of convergence.

1Note that, since Ck is not guaranteed to be a robustly stabilizing controller, Qk might not be stable.
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5.3.4 Stopping Criterion

In a practical implementation of the algorithm above, a possible stopping criterion is the

following: Periodically perform a Monte Carlo simulation to estimate the risk of performance

violation and stop if the risk is below a given threshold.

5.4 Main Result

We now present the main result of this chapter; i.e., the algorithm described in the previ-

ous section converges to a controller that robustly satisfies the performance specifications. The

exact statement is given below.

THEOREM 5.4.1. Let g : H2 → R be a convex function with subgradient ∂g ∈ RH2 and let γ > 0

be given. Define the risk of performance violation as

Pk
.
= Prob{g(TCL(z,4,Ck)) > γ}.

Then, if Assumption 5.3.1 holds, the algorithm described in section 5.3.2 generates a sequence

of controllers Ck for which the risk of performance violation satisfies

∞

∑
k=1

Pk < ∞

and

lim
k→∞

Pk = 0.

Hence, risk tends to zero as k → ∞.

5.4.1 Remark

For simplicity, in the sequel, we only consider the case where the subgradient of the

objective function is rational. However, the result above can be modified to the case of non-

rational ∂g ∈ H2 that can be arbitrarily approximated by a rational function; i.e., the result above

can be extended to the case where the subgradient belongs to the closure of RH2.

Before the proof of Theorem 5.4.1 is presented, we introduce the concept of robust con-

troller gap.
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5.4.2 Robust Controller Gap

In order to prove the result above, one needs a measure of how far a controller is from

the optimal. Hence, the concept of robust controller gap is introduced. This “distance” measure

uses the difference between closed loop transfer functions as an indication of how far are the

controllers.

Let f be the probability density function used to generate the samples in the controller

design algorithm. Then, given two controllers C1 and C2, the robust gap is

rgap(C1,C2) =
∫

∆
d2(Q4,C1 ,Q4,C2) f (4)d4.

Hence, given three controllers C1, C2 and C∗, we have

d2(Q4,C1 ,Q4,C∗)−d2(Q4,C2 ,Q4,C∗) = rgap(C1,C∗)− rgap(C2,C∗)+V

with

E[V |C1,C2,C∗] = 0.

where E[X |Y ] denotes the conditional expectation of X given Y .

We are now ready to present the proof.

5.4.3 Proof of Theorem 5.4.1

The first part of the proof is similar to the one in [15]. Let C∗ be a controller which

achieves the robust performance specification. Given a sample 4 ∈ ∆, let Q∗
4 ∈ H2 be the

corresponding Youla parameter. Define

Q4k
.
= Q∗

4k +
ε

‖∂Qg(T4k,Q(z))|Qk,s‖2
∂Qg(T4k,Q(z))|Qk,s . (5.7)

By Assumption 5.3.1, Q4k satisfies the performance specifications; i.e.,

g(T∆,Q4k
(z)) ≤ γ, ∀∆ ∈ ∆

Equation (5.5) indicates that

d(Qk→k+1,Q∗
4k)

2 = d(Qk,z −αk(Qk,z,4k)∂Qg(TCL(4k,Q)|Qk,z ,Q
∗
4k)

2.
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Now, given the fact that g is a convex functional on H2, ∂g ∈ H2 exists and (5.1) is satisfied.

Thus,

Qk→k+1(z) = Qk,s(z)−αk(Qk,s,4k)∂Qg(TCL(z,4k,Q))|Qk,s

belongs to H2. For simplicity, denote TCL(z,4k,C) as T4k,C. Hence, we have

d(Qk→k+1,Q∗
4k)

2 = ‖Qk,s −αk(Qk,s,4k)∂Qg(T4k,Q)|Qk,s −Q∗
4k‖2

2

= ‖Qk,s −Q∗
4k‖2

2 +α2
k ‖∂Qg(T4k,Q)|Qk,s‖2

2 −2αk〈Qk,s −Q4k ,∂Qg(T4k,Q)|Qk,s〉

−2αk〈Q4k −Q∗
4k ,∂Qg(T4k,Q)|Qk,s〉

Since g(T∆,Q(z)) = ‖T∆,Q(z)‖2 is convex in Q, the following inequality holds

〈Qk,s −Q4k ,∂Qg(T4k,Q)|Qk,s〉 ≥ g(T4k,Qk,s
)−g(T4k,Q4k

) ≥ g(T4k,Qk,s
)− γ.

On the other hand, equation (5.7) can be used to obtain

〈Q4k −Q∗
4k ,∂Qg(T4k,Q)|Qk,s〉 = ε‖∂Qg(T4k,Q(s))|Qk,s‖2

Hence,

d(Qk→k+1,Q∗
4k)

2 ≤ ‖Qk,s −Q∗
4k‖2

2 +α2
k ‖∂Qg(T4k,Q)|Qk,s‖2

2

−2αk(g(T4k,Qk,s
)− γ + ε‖∂Qg(T4k,Q)|Qk,s‖2).

If g(T4k,Qk
) > γ , we get

d(Qk→k+1,Q∗
4k)

2 ≤ − η(2−η)

‖∂Qg(T4k,Q)|Qk,s‖2
2
(g(T∆,Qk,s)− γ + ε ‖∂Qg(T∆,Q(s))|Qk,s‖2)

2

+‖Qk,s −Q∗
4k‖2

2

≤ ‖Qk,s −Q∗
4k‖2

2 − ε2η(2−η)

Now, define the indicator function

I{g(T4k ,Qk,s
)>γ}

.
=

{

1 if g(T4k,Qk,s
) > γ

0 otherwise,
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and obtain the following inequality

d(Qk→k+1,Q∗
4k)

2 ≤ ‖Qk,s −Q∗
4k‖2

2 − ε2η(2−η)I{g(T4k ,Qk,s
)>γ}.

Since

‖Qk,s −Q∗
4k‖2

2 ≤ d(Qk,Q∗
4k)

2,

we have

d(Qk→k+1,Q∗
4k)

2 ≤ d(Qk,Q∗
4k)

2 − ε2η(2−η)I{g(T4k ,Qk,s
)>γ}.

Given the definition of robust gap, provided in the previous section, the equation above can be

rewritten in the following form

rgap(Ck+1,C∗) ≤ rgap(Ck,C∗)− ε2η(2−η)I{g(T4k ,Qk,s
)>γ} +Vk

where

E[Vk|Ck+1,Ck,C∗] = 0.

Now let Fk = σ(rgap(C1,C∗), . . . ,rgap(Ck,C∗)) be the σ -algebra generated by rgap(C1,C∗), rgap(C2,C∗),

. . ., rgap(Ck,C∗). Now, take the expectation conditioned on Fk. By the tower property of condi-

tional expectation; i.e., if Z is a function of Y , then E[E(X |Y )|Z] = E(X |Z), we get

E[Vk|Fk] = E[E(Vk|C1, . . . ,Ck,C∗)|Fk]

= E[E(E(Vk|C1, . . . ,Ck,Ck+1,C∗)|C1, . . . ,Ck,C∗)|Fk]

= 0.

Then,

E[rgap(Ck+1,C∗)|Fk] ≤ rgap(Ck,C∗)− ε2η(2−η)Pk, (5.8)

where 0 < η < 2. Now, note that rgap(Ck,C∗) ≥ 0. Furthermore, one can easily prove that

E[rgap(C0,C∗)] < ∞. Hence, the process {rgap(Ck,C∗), k ≥ 1} is a supermartingale and it is

bounded in L1. Therefore, rgap(Ck,C∗) converges to a finite value with probability one; e.g.,

see [68]. Hence, its expectation also converges to a finite value. Now, compute the expected

value of both sides of (5.8) and get

E[rgap(Ck+1,C∗)] ≤ E[rgap(Ck,C∗)]− ε2η(2−η)Pk
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Hence,

E[rgap(Ck+1,C∗)] ≤ rgap(C0,C∗)− ε2η(2−η)
k

∑
i=0

Pi

Given the fact that E[rgap(Ck+1,C∗)] converges to a finite value, we have to have

∞

∑
k=0

Pk < ∞.

Thus

lim
k→∞

Pk = 0

Q.E.D.

If we define Ak as the event when g(TCL(z,∆,Ck)) > γ happens, we have the following:

COROLLARY 5.4.1. Suppose all conditions hold as in Theorem 5.4.1, only finitely many of the

events Ak can occur (w.p.1).

Proof: By Theorem 5.4.1, we have

∞

∑
k=1

Prob{Ak} < ∞ w.p.1

By the Borel-Cantelli Lemma [43], we have

Prob{Aki.o.} = 0.

Thus Ak can only happen a finite number of times w.p.1. Q.E.D.

5.4.4 Remark

By Corollary 5.4.1, for any given uncertainty sample 4 ∈ ∆, we are almost sure that it

will only satisfy a finite number of the Aks. This actually provides another perspective on robust

control problems. Let admissible uncertainty set ∆ and controller solution set C∗ be two sides

of a game and the nominal plant be the ”battlefield”. The design goal is to find C∗ ∈ C∗ such

that C∗ can ”defeat” any 4∈ ∆ for traditional robust design or most of the 4s for probabilistic

robust design. From the point of view of uncertainty, if the designer can find a controller solution

set such that any 4 ∈ ∆ will be ”defeated” by all or almost all elements in the solution set, the

design objective can also be deemed to be achieved.
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5.5 Multi-Disk Design

In this section, we extend the work presented in previous sections to the problem of

multi-disk design. The goal is to design a robustly stabilizing controller that results in guaranteed

performance in a subset of the uncertainty support set. Before presenting the controller design

algorithm, we first provide a precise formulation of the problem and the assumptions that are

made.

5.5.1 Problem Statement

Consider the closed-loop system in Figure 5.1 and a convex objective function g1: H2 →
R. Given a performance value γ1 and uncertainty radii r2 > r1 > 0, we aim at designing a

controller C∗(z) such that the closed loop system TCL(z,4,C∗) is stable for all ‖4‖∞ ≤ r2 and

satisfies

g1[TCL(z,4,C∗)] ≤ γ1

for all ‖4‖∞ ≤ r1. Similarly to the results presented in the previous sections, we assume that the

following holds:

ASSUMPTION 5.5.1. There exists a controller C∗ and an ε > 0 such that

d(Q4,C∗ ,Q) < ε ⇒ g1
[

T 1
4(z)+T 2

4(z)Q(z)T 3
4(z)

]

≤ γ1

for all ‖4‖∞ ≤ r1 and there exists a γ2 (sufficiently large) such that

d(Q4,C∗ ,Q) < ε ⇒ g2
[

T 1
4(z)+T 2

4(z)Q(z)T 3
4(z)

] .
= ‖T 1

4(z)+T 2
4(z)Q(z)T 3

4(z)‖ ≤ γ2

for all ‖4‖∞ ≤ r2.

5.5.2 Remark

Even though the above is a slightly stronger requirement than robust stability, the ex-

istence of a large constant γ2 satisfying the second condition above can be considered to be

equivalent to robust stability from a practical point of view.
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5.5.3 Multi-Disk Controller Design Algorithm

We now state the proposed robust controller design algorithm. This algorithm also has a

free parameter η that has to be specified and can be arbitrarily chosen from the interval (0,2).

Multi-Disk Controller Design Algorithm

Step 0. Let k = 0. Pick a controller C0(z).

Step 1. Generate sample ik with equal probability of being 1 or 2.

Step 2. Draw sample 4k over ∆(rik). Given G(z,4k), compute T 1
4k(z), T 2

4k(z), T 3
4k(z) as de-

scribed in [47].

Step 3. Let Qk(z) be such that the closed loop transfer function using controller Ck(s) is

TCL(z,4k, Ck) = T 1
4k(z)+T 2

4k(z)Qk(z)T 3
4k(z)

Step 4. Do the stabilizing projection2

Qk,s(z) = πs(Qk(z)).

Step 5. Perform update

Qk→k+1(z) = Qk,s(z)−αk(Qk,z,4k)(z)∂Qgik(TCL(z,4k,Q))|Qk,s (5.9)

where

αk(Qk,4) =







η gik (TCL(z,4,Qk))−γik +ε ‖∂Qgik (TCL(z,4,Q))|Qk‖2

‖∂Qg(TCL(z,4,Q))|Qk‖
2
2

if gik(TCL(z,4,Qk)) > γik

0 otherwise,
.

(5.10)

Step 6. Determine the controller Ck+1(z) so that

Q4k,Ck+1
= Qk→k+1.

2Note that, since Ck is not guaranteed to be a robustly stabilizing controller, Qk might not be stable.
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Step 7. Let k = k +1. Go to Step 1.

It can be proven that the algorithm described above indeed converges to a controller that

robustly satisfies the performance specifications. The exact statement is given below. The proof

follows the same line of reasoning of the proof of Theorem 5.4.1.

THEOREM 5.5.2. Let g1 : H2 → R be a convex function with subgradient ∂g1 ∈ RH2 and let

γ1 > 0 be given. Also let g2(H) = ‖H‖2. Define

Pk,1
.
= Prob{g1(TCL(z,4,Ck)) > γ1}

with 4 having the distribution over ∆(r1) used in the algorithm. Similarly take

Pk,2
.
= Prob{g2(TCL(z,4,Ck)) > γ2}

with 4 having the distribution over ∆(r2) used in the algorithm. Given this, define

Pk
.
=

1
2

Pk,1 +
1
2

Pk,2.

Then, if Assumption 5.5.1 holds, the algorithm described above generates a sequence of con-

trollers Ck for which the risk of performance violation satisfies

lim
k→∞

Pk = 0.

Hence, risk tends to zero as k → ∞.

5.6 Example: Robust H2 Design

We now turn our attention to the case of robust weighted H2 controller design. We start

by indicating how a subgradient of the objective functional is computed. This section is then

followed by numerical examples.

5.6.1 Computing the Subgradient of Weighted H2 Norm

For simplicity of exposition, we are going to consider the single input/single output case.

A straightforward extension can be done to the case of multiple inputs and/or outputs. Given
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W ∈ RH2, consider the weighted H2 norm defined as

g(G) =

(

1
2π

∫ 2π

0
|W (e jθ )G(e jθ )|2dθ

)1/2

.

Now, since we are considering the case of a single input/ single output system, given a controller

C and an uncertainty value 4 ∈ ∆, the closed loop transfer function can be represented in the

form

TCL(z,4,C) = T 1
4(z)+T 2

4(z)Q4,C(z).

Now, the results in [10] indicate that, in this case, the subgradient with respect to Q of the

objective function is given by

∂Qg(TCL(z,4k,C))(Q) =
1

2π‖TCL(z,4,Q)‖2
TCL(z,4,C) T 2

4(z)W (z).

5.6.2 Numerical Example: Single Objective

A simplified model of a DC armature-controlled servomotor is

P(s,4) =
ω2

s(s+2δω)

where both ω and δ can be estimated through experiments. We assume that these parameters

are uncertain; i.e.,

ω = ω0 +4ω, δ = δ0 +4δ .

In simulations, we take ω0 = 6, δ0 = 0.3 and 4ω,4δ are uniformly distributed on [−r,r] and

[−εr,εr] respectively. In our example, we take r = 1, ε = 0.1 and set γ = 0.15. To facilitate the

control of the motor by a digital microprocessor, we need to consider the H2 control problem in

discrete time. Given γ > 0 and weighting function,

W (z) =
0.03333z+0.04536

z−0.6065
.

we aim at finding C(z) such that

‖W (z)(1+C(z)P(z,4))−1‖2 ≤ γ
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for all admissible 4. The sample period is 0.5s. The configuration of the system is shown in

Figure 5.2:

C(z)
  Zero Order

Holder
 G(s)


      +


Fig. 5.2. DC Servomotor Control System

As the first step, an optimal nominal controller is designed using the Matlab function

dh2lqg. We get

Cnom(z) =
0.3034z2 −0.3536z+0.05016

z3 +1.291z2 −0.4047z−0.4527

leading to a nominal optimal performance of ‖TC(z)‖2 = 0.0759.

Next, we apply Algorithm in Section 5.3.2. After 30000 iterations, the following con-

troller was obtained

C1(z) =
0.3043z3 −0.4643z2 +0.2114z−0.0102

z4 +0.6533z3 −0.9549z2 +0.002239z+0.413

To assess the performance of this controller, a Monte Carlo simulation with 100,000 samples

was performed and the estimated risk of performance violation was found to be 0. When C1(z)

is replaced by Cnom(z), the risk rises to around 10.6%. We also estimated the risk of performance

violation as a function of the iteration number. These estimates were obtained through Monte

Carlo simulation with 3,000 samples for each controller and the results obtained are shown in

Fig. 5.3. As it can be seen, the risk decreases rapidly to very low level. At the 7000th iteration,

the risk is approximately zero.
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Fig. 5.3. DC Motor: Risk History

5.6.3 Numerical Example: Multidisk design

Consider the uncertain system

P(z,4) = P0(z,4)+4(z),

with nominal plant

P0(z,4) =
0.006135z2 +0.01227z+0.006135

z2 −1.497z+0.5706

and stable causal dynamic uncertainty 4. The objective is to find a controller C(z) such that, for

all ‖4‖∞ ≤ r1 = 1,

‖W (z)(1+C(z)P(z,4))−1‖2 ≤ γ1 = 0.089

where

W (z) =
0.0582z2 +0.06349z+0.005291

z2 +0.2381z−0.6032
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and the closed loop system is stable for ‖4‖∞ ≤ r2 = 2. The random samples of causal, linear

time-invariant uncertain transfer functions were generated according to [37]. Considering the

nominal plant only, we determined the H2 optimal controller using the Matlab function dh2lqg

whose transfer function is

Cnom(z) =
138.2z3 −93.78z2 −90.4z+64.5

z4 +2.238z3 +0.8729z2 −0.9682z−0.6031

and ‖Tcl(z)‖2 = 0.0583. However, it does not robustly stabilizes the closed loop system for all

‖∆‖ ≤ r2. We next set γ1 = 0.089 and γ2 = 109 and apply Algorithm 5.5.3. After 1500 iterations,

the following controller was obtained

C1(z) =
−0.003808z14 −0.01977z13

z14 −0.1778z13 +0.6376z12 +0.09269z11 +0.2469z10

−0.002939z12

+0.06291z9 +0.08426z8 +0.0433z7 +0.07403z6 +0.0004446z5

+0.04627z11

−0.1107z4 −0.07454z3 −0.08156z2 −0.05994z+0.01213

As in Section 5.5, define

Pk,1
.
= Prob{‖W (z)−W (z)P(z,4)Qk(z)‖2 > γ1}

with ‖4P(z)‖∞ ≤ r1 and

Pk,2
.
= Prob{‖W (z)−W (z)P(z,4)Qk(z)‖2 > γ2}

with ‖4P(z)‖∞ ≤ r2.

Next, we investigate the asymptotic characteristics of Pk,1 and Pk,2 as the optimization

process goes on. We run Monte Carlo simulations to estimate Pk,1 and Pk,2 for each controller

Ck(z) at each iteration of the algorithm. The results obtained are shown in Figure 5.4(a) Figure

5.4(b) and Figure 5.5(a) Figure 5.5(b) show the asymptotic behavior of maximal magnitude of

closed loop poles.
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It can be easily seen from the figures that Pk,1 and Pk,2 tend to zero as expected. Fig-

ure 5.5(b) also shows that the estimated risk of instability is approximately zero after just 200

iterations of the algorithm..
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Fig. 5.4. MC Simulations 1: Multi-disk Design

5.7 Concluding Remarks

In this chapter, we addressed the problem of robust controller design for linear time in-

variant systems with arbitrary uncertainty structure. Given bounds on a convex performance

function, the proposed algorithm converges to an output feedback controller that robustly satis-

fies the specifications. Moreover, it is proven that this stochastic gradient like procedure produces

a sequence of controllers with a risk of performance violation that decreases to zero asymptoti-

cally faster than 1/k, where k is the number of iterations. Moreover, a multidisk design approach

was proposed to obtain a robustly stabilizing controller with guaranteed performance on a sub-

set of the uncertainty support set. As an example, the problem of robust H2 performance was

considered and numerical examples were provided.
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Chapter 6

Probabilistic Robust Optimal Output Feedback

In this chapter, we further study the problem of robust output feedback design for linear

time invariant systems with arbitrary uncertainty structures, which was first addressed in the

previous chapter. The algorithms in Chapter 5 are suboptimal in the following sense: For a

given threshold value γ , the algorithms try to push the performance level below γ . They do

not further optimize the performance. If the given performance level is robustly achievable,

the algorithms in the previous chapter provide a sequence of controllers whose probability of

performance violation converges to zero under the assumption that there exists a ”ball” around

the optimal solution within which the performance requirement is met. However this assumption

might not be easy to verify in practice. In this chapter, we propose two algorithms to overcome

these limitations of the preliminary results. More precisely, we provide two algorithms which

do not require a priori knowledge of an achievable performance level.

6.1 Preliminaries

Similar to Section 5.2, define the space G as the space of rational functions G : C→Cn×m

that can be represented as

G(z) = Gs(z)+Gus(z). (6.1)

where Gs is analytic in the set {z ∈ C : |z| ≥ α} and Gus is strictly proper and analytic in the set

{z ∈ C : |z| < α} and 0 < α < 1. Given two transfer functions G, H ∈ G and 0 < β < α , we

have the ”distance” between G and H as

d2(G,H)
.
= ‖Gs(z)−Hs(z)‖2

2 +‖Gus(β/z)−Hus(β/z)‖2
2. (6.2)

Defining

‖Gus(z)‖ .
= ‖Gus(β/z)‖2, (6.3)

one has

‖G(z)‖2 .
= ‖Gs(z)‖2

2 +‖Gus(z)‖2. (6.4)
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Given θ > 0 and ϑ > 0, define the projection πs : G → H2:

πs(G)
.
= Gs,

and the projection ψϑ : G → G:

ψϑ (G)
.
= Gϑ = Gϑ ,s +Gϑ ,us

where

Gϑ ,s
.
=







Gs ‖Gs‖2 ≤ ϑ ,

Gs
ϑ

‖Gs‖2
otherwise

and

Gϑ ,us
.
=







Gus ‖Gus‖ ≤ ϑ ,

Gus
ϑ

‖Gus‖ otherwise

The definition of ‖Gus‖ is given in (6.3). Furthermore, define

πs,θ (G)
.
= Gs,θ

.
=







Gs ‖Gs‖2 ≤ θ ,

Gs
θ

‖Gs‖2
otherwise

6.2 Controller Design Algorithm I – Projection Algorithm

In this section, we provide an algorithm for controller design for the case where it is

known a priori that the system is robustly stabilizable.

6.2.1 Problem Statement

Given θ > 0, let Aθ
.
= {C ∈ G : ‖QC,s‖2 ≤ θ , ∀4 ∈ ∆}. Consider the discrete-time

closed loop linear time invariant system depicted in Figure 5.1 where 4 ∈ ∆ represents the

uncertainty. As before, given an uncertainty value 4∈ ∆ and a controller C(z), let TCL(z,4,C)

be the corresponding closed loop transfer function matrix. Given a convex function g : H2 → R

and a probability distribution for the uncertainty 4, we aim at finding a robustly stabilizing

controller C∗(z) ∈ Aθ that minimizes the expect performance of the closed loop system; i.e., we
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aim at finding

C∗ .
= argminC∈Aθ

E4{g [TCL(z,4,QC,s)]}.

To simplify the notation, we will omit z as the transfer function’s argument wherever it

will not cause confusion. For the algorithm in this section, the following assumption is made:

ASSUMPTION 6.2.1. There exist τ > θ > 0, δ > 0 and ζ > 0 such that:

1. There exists a robustly stabilizing optimal controller C∗ ∈ Aθ such that for any robustly

stabilizing controller C, we have

E∆{g [TCL(4,QC∗)]} ≤ E∆{g [TCL(4,QC,s)]}.

Furthermore, for any controller C having 0 < E∆{‖QC,us‖} ≤ δ , one has

E∆{g [TCL(4,QC∗)]}+ζ ≤ E∆{g [TCL(4,QC,s)]} (6.5)

2. For any controller C, if there is a 40 ∈ ∆ such that ‖QC,40,s‖2 ≤ θ , we have

‖QC,4,s‖2 ≤ τ for all 4∈ ∆.

3. There exists a constant N > 0 such that if ‖Q‖2 ≤ τ ,

‖∂Qg(TCL(4,Q))‖2 < N for all 4∈ ∆.

Remark: Note that assumption 1 above is a rather mild one since for many common performance

measures, the value of g will increase as one gets ”closer” to instability. Assumption 3 has its

root in the finite-dimensional space case where it has been proven that subgradients of a convex

function are bounded on any bounded set [51].

6.2.2 Design Algorithm I

We now present an algorithm that converges to a solution of the problem described above.



72

ALGORITHM 6.2.1.

Step 0. Let k = 0. Pick a controller C0(z) and θ > 0.

Step 1. Draw sample 4k. Given G(z,4K), compute T 1
4k(z), T 2

4k(z), T 3
4k(z) as described in [47].

Step 2. Let Qk(z) be such that the closed loop transfer function using controller Ck(z) is

TCL(4k, Ck) = T 1
4k +T 2

4k QkT 3
4k

Step 3. Do the stabilizing projection

Qk,s(z) = πs(Qk(z)).

Step 4. Perform update

Qk+1 = ψθ ( Qk,s − εk∂Qg(TCL(4k,Q))|Qk,s). (6.6)

Step 5. Determine the controller Ck+1(z) so that

Q4k,Ck+1
= Qk+1.

Step 6. Let k = k +1. Go to Step 1.

6.2.3 Convergence Theorem

We now prove convergence of the algorithm above; i.e., we prove that the algorithm

described in the previous section converges to a robustly stabilizing controller that minimizes

the expected performance specifications. The exact statement is given below.

THEOREM 6.2.1. Let g : H2 → R+
0 be a convex function with subgradient ∂g ∈ RH2 and let C∗

be the robustly stabilizing optimal controller. Then, if Assumption 6.2.1 holds and

εk > 0,
∞

∑
k=1

εk = ∞,
∞

∑
k=1

ε2
k = β < ∞
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algorithm 6.2.1 generates a sequence of controllers Ck for which with probability 1

E∆{g [TCL(4,QCk,s)]}→ E∆{g [TCL(4,QC∗)]}

and there exists a step k′ such that ∀k ≥ k′,

E∆{‖QCk,us‖} = 0.

Proof: We start by introducing an auxiliary objective function Faux(Ck) as

Faux(Ck)
.
= E∆{g [TCL(4,QCk,s)]}+MkE∆{‖QCk,us‖2}

where

Mk
.
=







E∆{g[TCL(QC∗ )]}+η
E∆{‖QCk ,us‖2} E{‖QCk,us‖} > δ

0 otherwise

and η is a given positive constant. By Jensen’s Inequality [7], for the first case of Mk,

E∆{‖QCk,us‖2} ≥ E2{‖QCk,us‖} > δ 2.

By definition,

Faux(C∗) = E∆{g [TCL(∆,QC∗)]}.

Now consider the following modified version of the design algorithm:

Step 0. Let k = 0. Pick a controller C0(z) and a large value θ .

Step 1. Draw sample 4k. Given G(z,4k), compute T 1
4k(z), T 2

4k(z), T 3
4k(z) as described in [47].

Step 2. Let Qk(z) be such that the closed loop transfer function using controller Ck(z) is

TCL(4k, Ck) = T 1
4k +T 2

4k QkT 3
4k .

Step 3. Perform update

Qk+1 = πs,θ [Qk − εkMk∂Q‖Q‖2
2|Qk,us − εk∂Qg(TCL(4k,Q))|Qk,s ]. (6.7)
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Step 4. Determine the controller Ck+1(z) so that

Q4k,Ck+1
= Qk+1.

Step 5. Let k = k +1. Go to Step 1.

Since

∂Q‖Q‖2
2|Qk,us =

Qk,us

π

is unstable and is eliminated after the stabilization projection in Equation (6.7), the above algo-

rithm is equivalent to the one proposed in Section 6.2.2. Define

Qk+1
.
= Qk − εk∂Qg(TCL(4k,Q))|Qk,s − εkMk∂Q‖Q‖2

2|Qk,us .

With the structure of (6.1) in mind, let

Qk+1,s
.
= Qk,s − εk∂Qg(TCL(4k,Q))|Qk,s

Qk+1,us
.
= Qk,us − εkMk∂Q‖Q‖2

2|Qk,us .

For simplicity, TCL(4,Q) will be denoted as T4,Q in the following deduction. Now we have

d2(Qk+1,Q
∗
4k)

= ‖Qk+1,s −Q∗
4k‖2

2 +‖Qk+1,us‖2

= ‖Qk,s −Q∗
4k‖2

2 + ε2
k ‖∂Qg[T4k,Q]|Qk,s‖2

2 −2εk〈Qk,s −Q∗
4k ,∂Qg[T4k,Q]|Qk,s〉+‖Qk,us‖2

+ε2
k M2

k ‖∂Q‖Q‖2
2|Qk,us‖2 −2εkMk〈Qk,us,∂Q‖Q‖2

2|Qk,us〉

≤ d2(Qk,Q∗
4k)+ ε2

k (‖∂Qg(T4k,Q)|Qk,s‖2
2 +M2

k ‖∂Q‖Q‖2
2|Qk,us‖2)−2εk(g(T4k,Qk,s

)

+Mk‖Qk,us‖2 −g(T4k,Q∗)).

Since d2(Qk+1,Q∗
4k) ≤ d2(Qk+1,Q∗

4k), we get

d2(Qk+1,Q∗
4k) ≤ d2(Qk,Q∗

4k)−2εk(g(T4k,Qk,s
)+Mk‖Qk,us‖2 −g(T4k,Q∗))

+ε2
k (‖∂Qg(T4k,Q)|Qk,s‖2

2 +M2
k ‖∂Q‖Q‖2

2|Qk,us‖2).
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Consider the definition of robust controller gap provided in Section 5.4.2. Then, the equation

above implies that

rgap(Ck+1,C∗) ≤ rgap(Ck,C∗)−2εk(g(T4k,Qk,s
)+Mk‖Qk,us‖2 −g(T4k,Q∗))

+ε2
k (‖∂Qg(T4k,Q)|Qk,s‖2

2 +M2
k ‖∂Q‖Q‖2

2|Qk,us‖2)+Vk.

where

E[Vk|Ck+1,Ck,C∗] = 0.

Now let Fk = σ(rgap(C1,C∗), . . . ,rgap(Ck,C∗)) be the σ -algebra generated by rgap(C1,C∗), rgap(C2,C∗),

. . ., rgap(Ck,C∗). Take the expectation conditioned on Fk, then,

E{rgap(Ck+1,C∗)|Fk}

≤ rgap(Ck,C∗)+ ε2
k (E{‖∂Qg(T4k,Q)|Qk,s‖2

2}+M2
k E{‖∂Q‖Q‖2

2|Qk,us‖2})

+2εk(E{g(T4k,Q∗)}−E{g(T4k,Qk,s
)}−MkE{‖Qk,us‖2})

≤ rgap(Ck,C∗)−2εk(Faux(Ck)−Faux(C∗))

+ε2
k (E{‖∂Qg(T4k,Q)|Qk,s‖2

2}+M2
k E{‖∂Q‖Q‖2

2|Qk,us‖2}). (6.8)

When E{‖QCk,us‖} > δ , one gets

Faux(Ck)−Faux(C∗) = E{g(T4k,Qk,s
)}+MkE{‖Qk,us‖2}−E{g(T4k,Q∗)}

= E{g(T4k,Qk,s
)}+E∆{g(T4k,Q∗)}+η −E{g(T4k,Q∗)}

> 0

On the other hand, we have ‖Qk,s‖2 ≤ τ , for all k ≥ 2. Thus, by (3) of Assumption 6.2.1,

E{‖∂Qg(T4k,Q)|Qk,s‖2
2}+M2

k E{‖∂Q‖Q‖2|Qk,us‖2}

≤ N2 +
(E∆{g

[

T4,QC∗
]

}+η)2

π2E∆{‖QCk,us,θ‖2}

< N2 +
(E∆{g

[

T4,QC∗
]

}+η)2

π2δ 2
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which is finite. For the case when E{‖QCk,us‖} ≤ δ , (1) of assumption 6.2.1 implies that

Faux(Ck)−Faux(C∗) = E{g(T4k,Qk,s
)}−E{g(T4k,Q∗)}

≥ 0.

and

E{‖∂Qg(T4k,Q)|Qk,s‖2
2}+M2

k E{‖∂Q‖Q‖2
2|Qk,us‖2}

= E{‖∂Qg(T4k,Q)|Qk,s‖2
2}

≤ N2.

Hence, rgap(Ck,C∗) satisfies the conditions in Lemma D.0.1 and we get

∞

∑
k=1

εk(Faux(Ck)−Faux(C∗)) < ∞ w.p.1.

Since ∑∞
k=1 εk = ∞, we must have

Faux(Ck)−Faux(C∗) → 0 w.p.1.

Thus, with probability 1,

E∆{g
[

T4,QCk ,s

]

}→ E∆{g
[

T4,QC∗
]

} (6.9)

and

MkE∆{‖QCk,us‖2}→ 0.

Now by (6.5), there exists k′ ≥ 0 such that

E{QCk,us} = 0, ∀k ≥ k′

or it will contradict (6.9). Q.E.D.
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6.3 Controller Design Algorithm 2 – Decomposition Algorithm

In this section, we present another design approach where there is no assumption on the

existence of a robustly stabilizing controller. Therefore, a controller is designed by penalizing

the ”size” of the unstable region.

6.3.1 Problem Statement

Given ϑ > 0, let

Bϑ
.
= {C ∈ G : ‖QC,s‖2 ≤ ϑ and ‖QC,us‖ ≤ ϑ , ∀4 ∈ ∆}.

Consider the discrete-time closed loop linear time invariant system depicted in Figure 5.1. Given

an uncertainty value 4 ∈ ∆ and a controller C(z), let T4,C(z) be the corresponding closed loop

transfer function matrix. We aim at designing a controller C∗(z) ∈ Bϑ minimizing the following

objective function:

U(C)
.
= E∆[g(T4,QC,s)]+ µE∆[‖QC,us‖], (6.10)

where g : H2 → R is a convex function and µ > 0 denotes the penalty on the norm of an unstable

transfer function as defined in (6.3).

We make the following assumption on the problem being considered in this section:

ASSUMPTION 6.3.1. There exist η > ϑ > 0 such that

1. For any controller C, if there is a 40 ∈ ∆ such that max{‖QC,40,s‖2,‖QC,40,us‖} ≤ ϑ , we

have

max{‖QC,4,s‖2,‖QC,4,us‖} ≤ η , ∀4 ∈ ∆.

If C ∈ Bη , we have

U(C∗) ≤U(C). (6.11)

where

C∗ .
= argminC∈Bϑ

U(C).

2. Also, we assume that there is a constant N > 0 such that if ‖Q‖2 ≤ η

‖∂Qg(T4,Q)‖2 < N, ∀4 ∈ ∆.
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6.3.2 Design Algorithm II

We now present an algorithm that converges to a solution of the problem described above.

ALGORITHM 6.3.1.

Step 0. Let k = 0. Pick a controller C0(z) and a large value ϑ .

Step 1. Draw sample 4k. Given G(z,4k), compute T 1
4k(z), T 2

4k(z), T 3
4k(z) as described in [47].

Step 2. Let Qk(z) be such that the closed loop transfer function using controller Ck(z) is

TCL(4k, Ck) = T 1
4k +T 2

4k QkT 3
4k

Step 3. Do the decomposition

Qk(z) = Qk,s(z)+ Qk,us(z),

Step 4. Perform update

Q̄k+1 = Qk − εk

[∂g(T4k,Q)

∂Q
|Qk,s + µ

∂‖Q‖2

∂Q
|Qk,us

]

.

Step 5. Determine the controller Ck+1(z) so that

Q4k,Ck+1
= ψϑ (Q̄k+1).

Step 6. Let k = k +1. Go to Step 1.

6.3.3 Convergence Theorem

We now establish the convergence of Algorithm 6.3.1.

THEOREM 6.3.1. Let g : H2 → R+
0 be a convex function with subgradient ∂g ∈ RH2 and let

C∗ ∈ Bϑ be the optimal controller of (6.10). Then, if Assumption 6.3.1 holds and

εk > 0,
∞

∑
k=1

εk = ∞,
∞

∑
k=1

ε2
k = β < ∞
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Algorithm 6.3.1 generates a sequence of controllers Ck for which with probability 1

U(Ck) → U(C∗).

Proof: Given Algorithm 6.3.1, we have

d2(Qk+1,QC∗,4k)

≤ d2(Q̄k+1,QC∗,4k)

= ‖Qk −QC∗,4k − εk[
∂g(T4k,Q)

∂Q
|Qk,s + µ

∂‖Q‖2

∂Q
|Qk,us ]‖2

≤ d2(Qk,QC∗,4k)+ µ2ε2
k ‖

∂‖Q‖2

∂Q
|Qk,us‖2 + ε2

k ‖
∂g(T4k,Q)

∂Q
|Qk,s‖2

2

−2εk(Qk −QC∗,4k)′[
∂g(T4k,Q)

∂Q
|Qk,s + µ

∂‖Q‖2

∂Q
|Qk,us ]

≤ ε2
k (N2 +

µ2

4π2 )−2εk(Qk,s −QC∗,4k,s)
′ ∂g(T4k,Q)

∂Q
|Qk,s

−2µεk(Qk,us −QC∗,4k,us)
′ ∂‖Q‖2

∂Q
|Qk,us +d2(Qk,QC∗,4k)

< d2(Qk,QC∗,4k)−2εk[g(T4k,Qk,s
)−g(T4k,QC∗ ,4k ,s

)+ µ(‖Qk,us‖−‖QC∗,4k,us‖)]

+ε2
k (N2 +

µ2

4π2 )

With the aid of robust controller gap as defined in Section 5.4.2, we have

rgap(Ck+1,C∗)

< rgap(Ck,C∗)−2εk[g(T4k,Qk,s
)−g(T (4k,QC∗,4k,s))

+µ‖Qk,us‖−µ‖QC∗,4k,us‖+
εk

2
(N2 +

µ2

4π2 )]+Vk.

Let Fk be the smallest σ -algebra generated by rgap(C1,C∗), . . . ,rgap(Ck,C∗). Take expectations

conditioned on Fk and obtain

E[rgap(Ck+1,C∗)|Fk]

≤ rgap(Ck,C∗)+ ε2
k (N2 +

µ2

4π2 )−2εk[U(Ck)−U(C∗)].
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From 1 in Assumption 6.3.1, we have

U(Ck)−U(C∗) ≥ 0.

Hence, by Lemma D.0.1, we have

∞

∑
k=2

εk[U(Ck)−U(C∗)] < ∞ w.p.1.

Thus,

U(Ck) → U(C∗) w.p.1. (6.12)

Q.E.D.

6.4 Numerical Examples

We again consider a DC armature-controlled servomotor whose transfer function is

P(s,4) =
ω2

s(s+2δω)
.

To facilitate the control of the motor by a digital microprocessor, we consider the H2 control

problem in discrete time. Given the weighting function

W (z) =
0.06667z+0.01333

z−0.6
,

we aim at finding a robustly stabilizing controller C(z) that minimizes

E‖W (z)(1+C(z)P(z,4))−1‖2

The sample time T is 0.5s.

We assume both ω and δ are uncertain parameters; i.e.,

ω = ω0 +4ω, δ = δ0 +4δ .
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(b) Risk of Instability

Fig. 6.1. MC Simulations: DC Motor Optimal Design

In simulations, we take ω0 = 6, δ0 = 0.3 and 4ω,4δ are uniformly distributed on [−r,r] and

[−εr,εr] respectively. In our example, we take r = 1, ε = 0.1. Using Matlab function dh2lqg,

we obtain the following nominal controller

Cnom(z) =
0.6754z2 −0.7109z+0.03555
z3 +1.4z2 −0.2001z−0.5999

which results in a nominal weighted H2 performance to be 0.0667. After 5000 iterations, the

following controllers were obtained by Algorithm 6.2.1 and Algorithm 6.3.1 respectively

C1(z) =
0.2326z3 −0.1748z2 +0.0225z−0.0008

z4 +1.049z3 +0.0552z2 −0.0958z−0.0023

C2(z) =
0.0195z3 +0.0441z2 −0.0075z+0.0004

z3 +0.6706z2 +0.1536z+0.003

Monte Carlo simulations were performed to estimate the risk of instability. The number

of samples used was 5000. The estimated risk of instability for controllers C1(z) and C2(z) is

zero. As a comparison, the estimated risk of instability when using controller Cnom is about

37.36%.
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Fig. 6.2. Maximal magnitude of closed loop poles

Next, we investigate the asymptotic characteristics of the risk of performance violation.

We run Monte Carlo simulation for each controller obtained during the optimization process.

The asymptotic behavior of estimated performance expectation, estimated instability probabil-

ity and estimated maximal magnitude of closed loop poles are shown in Figure 6.1(a), Figure

6.1(b) and Figure 6.2, respectively. Based on the simulation results, we can conclude that both

Algorithm 6.2.1 and Algorithm 6.3.1 can minimize their respective objective functions and, a

controller with an estimated risk of instability of zero is obtained by both algorithms.

6.5 Concluding Remarks

In this chapter, we addressed the problem of optimal robust controller design for arbitrary

uncertainty structures. Two algorithms were presented. In contrast to the suboptimal algorithms

in Chapter 5, the two algorithms presented do not need a priori knowledge of an achievable

performance level. Almost sure convergence of these algorithms was shown.
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Chapter 7

Probabilistic Robust Stabilization

In Chapter 3, probabilistic quadratic stabilization was discussed. However, it has been

shown that quadratic stability can be very conservative since it requires one Lyapunov function to

work for the whole plant family [33]. Moreover, it is well known that there are systems which are

stable but not quadratic stabilizable [11]. This provides the motivation for the problem addressed

in this chapter: robust stabilization via static linear state feedback. The main obstacle to solving

this problem is the fact that the problem is, again, a non-convex design problem. In this chapter,

as in the rest of the thesis, we address the robust stabilizing controller design problem within a

probabilistic framework.

7.1 Introduction

Consider a system with uncertain parameters

4 = (41,42, . . . ,4`),

4 ∈ ∆, where ∆ is the admissible uncertainty set. In this chapter, the system is subjected to

static parametric uncertainty. More precisely, we assume that the system is described by the

state space model

ẋ = A(4)x+B(4)u

where the pair (A(4),B(4)) is assumed to be controllable for all admissible values of uncer-

tainty 4∈ ∆.

As before, the uncertain parameters 4i are treated as random variables and the objective

is to design a controller of the form u = Kx leading to robust stability. We provide an algorithm

based on classical stochastic approximation which solves the robust stabilization problem. Con-

vergence to an optimal state feedback gain is shown; i.e., gain minimizing a given nonnegative

objective function which is zero if the risk of instability is zero.
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A lot of effort has been put into the subject of robust stability and many important results

have been obtained; e.g., see [66, 67]. In this chapter, we address the problem of probabilistic

robust stabilization which, by definition, is less restrictive than quadratic stability design. We

provide an iterative design algorithm which is similar to that in Chapter 5 in structure. In contrast

to the results in Chapter 3, we do not require any assumptions on the uncertainty structure of

A(4), distribution of 4 or stability of nominal system A0. For simplicity of presentation, we

assume that B is not subjected to uncertainty. However, our algorithm can also handle the case

where A and B are both uncertain.

7.2 Probabilistic Robust Stability

In this section, we provide a precise definition of the problem addressed in this chapter.

To this end, we first briefly review the concept of robust stability.

7.2.1 Robust Stability

Consider the system

ẋ = A(4)x+Bu

with n-dimensional state x and m-dimensional control u. Now the system above is robustly

stabilizable via linear static state feedback if and only if there exists a state feedback matrix K ∈
Rm×n such that for any admissible 4 there is a matrix P(4) > 0,

LK,P(4)
.
= (A(4)+BK)P(4)+P(4)(A(4)+BK)T = −I, (7.1)

where I is an identity matrix with compatible dimensions. In other words, the feedback control

law

u = Kx.

Hence, we can define the feasible set for the problem above

KS
.
= {K ∈ Rm×n : ∀ admissible 4∈ ∆, ∃P(4) ∈ Rn×n such that LK,P(4) = −I}.
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7.2.2 Probabilistic Robust Stability

Finding a robust stabilizing controller is, in general, a computationally complex prob-

lem. Therefore, in this chapter, we take a different approach. Using the well known change of

variables W (4)
.
= KP(4), (7.1) can be expressed as

A(4)P(4)+P(4)AT (4)+BW (4)+W (4)T BT = −I, (7.2)

which is a linear matrix equality in P(4) and W (4). Thus our problem can be formulated as

finding K∗ such that

K∗ = argmin EH(PK(4))
.
= argmin E[max{0, λmax(−PK(4))}], (7.3)

subject to (7.2) and W (4) = KP(4). By [12], the objective function H(PK(4)) is a convex

function in PK(4).

7.3 Numerical Algorithms for Probabilistic Robust Stability

The following lemma provides the condition for uniqueness of P(4) in (7.1) for a given

K and 4 [4]:

LEMMA 7.3.1. For A ∈ Rm×m, B ∈ Rn×n and C ∈ Rm×n, the matrix equation

AX +XB = C

has a unique solution if and only if the eigenvalues α1,α2, . . . ,αm of A and β1,β2, . . . ,βn of B

satisfy

αi +β j 6= 0 ( i = 1,2, . . . ,m; j = 1,2, . . . ,n).

In our case, in order to test the uniqueness of P(4), we just need to check if A(4)+ BK has

any eigenvalue on the imaginary axis or any pair of eigenvalues symmetric to the imaginary axis.

We are now ready to present a design algorithm which solves the problem described

above:
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ALGORITHM 7.3.1.

Step 0. Let i = 0. Pick a state feedback gain K0 and a maximal iteration number Nmax.

Step 1. Draw sample 4i. Compute Pi
4i according to

(A(4i)+BKi)Pi
4i +Pi

4i(A(4i)+BKi)T = −I (7.4)

Step 2. Do the transformation W i = KiPi where Pi = [Pi
1 Pi

2 . . . Pi
n] and W i = [W i

1 W i
2 . . . W i

n].

Thus (7.4) can be expressed as

A(4i)Pi +PiAT (4i)+BW i +W iT BT = −I (7.5)

Step 3. Let X i
4i = [Pi

1 Pi
2 . . . Pi

n W i
1 W i

2 . . . W i
n]
′ and rewrite (7.5) in the form of

GiX i
4i = g. (7.6)

Step 4. Let F i be the orthonormal basis of the null space of Gi, i.e., N(Gi). Then,

Zi
4i = F iT (X i

4i −X i0) (7.7)

where X i0 is any vector on hyperplane (7.6). For example, we can take X i0 = X i
4i .

Step 5. Perform the following update

Zi+1
4i =







Zi
4i if λmax(−Pi) < 0

Zi
4i − εi

∂λmax(−Pi)
∂Zi |Zi

4i
if λmax(−Pi) ≥ 0,

(7.8)

where ∂λmax(−Pi)
∂Zi can be computed according to Appendix B.

Step 6. Compute X i+1
4i = F iZi+1

4i +X i0 and get Pi+1, W i+1 thus Ki+1.

Step 7. If i+1 ≥ Nmax, stop. Or let i = i+1. Go to Step 1.
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7.4 Convergence of the Stochastic Approximation Algorithm

We now present the main result in this chapter which provides the conditions under which

Algorithm 7.3.1 converges:

THEOREM 7.4.1. Consider

ẋ = A(4)x+Bu,

where A ∈ Rn×n, x ∈ Rn×1, B ∈ Rn×m, u ∈ Rm×1 and 4 is a bounded random variable with a

given probabilistic distribution. Suppose there exists a set K∗, such that for any K∗ ∈ K∗ and

u = K∗x,

K∗ = argmin E H(PK(4))
.
= argmin E[max{0, λmax(−PK(4))}]

where

(A(4)+BK∗)P(4)+P(4)(A(4)+BK∗)T = −I.

Also define K′ .
= {K /∈K∗ : Prob[λmax(−PK)≥ 0] = 0}. Assume the condition leading to multiple

solutions in Lemma 7.3.1 happens with probability 0. Let

εi > 0,
∞

∑
i=1

εi = ∞,
∞

∑
i=1

ε2
i = β < ∞.

Then, Algorithm 7.3.1 provides a sequence of {K i} that, with probability 1 satisfies

E[H(PKi)] → E[H(PK∗)]

or there exists an instant i0 > 0 such that K i ∈ K′ for all i ≥ i0.

In order to prove the result above, one needs a measure of how far a state feedback gain

is from the optimal. Similar to the definition of robust controller gap in Section 5.4, let f be the

probability density function used to generate the samples in the design algorithm. Then, given

two state feedback gains K1 and K2, the robust gain gap is

rgap(K1,K2) =
∫

∆
‖Z4,K1 −Z4,K2‖2 f (4)d4.

where Z4,K can be computed according to Algorithm 7.3.1.
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Remarks

1. Since in most of our design applications, we sample the uncertainty over a continuous

interval. the assumption in Theorem 7.4.1 on almost sure uniqueness of P(4) is a very

mild one.

2. As long as the eigenvalues of A + BK satisfy the conditions stated in Lemma 7.3.1, for

a given uncertainty sample 4 ∈ ∆, there is a unique P(4) corresponding to a given K.

Thus Z4,K can also be uniquely determined. Also, due to the subtraction structure in the

integrand in the definition of robust gain gap, the choice of X i0 during each iteration has

no effect on the ”distance” between two state feedback strategies.

3. Given three gains K1, K2 and K∗, we have

‖Z4,K1 −Z4,K∗‖2 −‖Z4,K2 −Z4,K∗‖2

= rgap(K1,K∗)− rgap(K2,K∗)+V

with

E[V |K1,K2,K∗] = 0.

where, E[X |P] denotes the conditional expectation of X given P.

Proof: First, according to the assumption in the theorem, the uniqueness condition for P(4)

holds with probability 1. From now on, we only consider the case when given state feedback K

and uncertainty sample 4, P(4) as a solution for (7.9) can be uniquely determined. The robust

stabilization problem is formulated as finding K minimizing

EH(PK(4))
.
= E[max{0, λmax(PK(4))}]

subject to

A(4)P(4)+P(4)AT (4)+BW (4)+W (4)T BT = −I,∀4 ∈ ∆,

where W (4) = KP(4) and

(A(4)+BK)P(4)+P(4)(A(4)+BK)T = −I,∀4 ∈ ∆. (7.9)
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As in the algorithm, denoting X i
4i = [Pi

1 Pi
2 . . . Pi

n W i
1 W i

2 . . . W i
n]
′, (7.5) can be expressed in

the form of GiX i
4i = g which is a hyperplane in Rn×n+m×n. Let F i be the orthonormal basis of

the null space of Gi, i.e., N(Gi), F iZ + X i characterizes all vectors in this hyperplane [12]. If

Ki′ ∈ K′ as defined in the theorem, then with probability 1, K i′ remains in K′. More specifically,

Ki = Ki′ , ∀i ≥ i′ w.p.1.

From now on, we focus on the case when K i /∈ K′. Thus, from this point on, we only consider

the case Prob{λmax(−PK(4)) ≥ 0 : K 6= K∗} > 0. As can be seen in expression (7.8), we only

update the gain if it does not stabilize the system for the given uncertainty sample. Hence, in the

reasoning below we only consider the case when λmax(−Pi) ≥ 0. In this case, we have

‖Zi+1
4i −Z∗

4i‖2

= ‖Zi
4i − εi

∂λmax(−Pi)

∂Zi |Zi
4i
−Z∗

4i‖2

= ‖Zi
4i −Z∗

4i‖2 + ε2
i ‖

∂λmax(−Pi)

∂Zi |Zi
4i
‖2 −2εi〈Zi

4i −Z∗
4i ,

∂λmax(−Pi)

∂Zi |Zi
4i
〉

Since there is an affine relationship between entries in P(4) and those in Z as governed in (7.7),

λmax(−P(4)) is a convex function not only in each entry of P(4) but also in those of Z. We

have

‖Zi+1
4i −Z∗

4i‖2

≤ ‖Zi
4i −Z∗

4i‖2 + ε2
i ‖

∂λmax(−Pi)

∂Zi |Zi
4i
‖2 −2εi(λmax(−Pi)−λmax(−P∗))

≤ ‖Zi
4i −Z∗

4i‖2 + ε2
i ‖

∂λmax(−Pi)

∂Zi |Zi
4i
‖2 −2εi(max{0,λmax(−Pi)}−max{0,λmax(−P∗)})

The last inequality comes from the fact that λmax(−Pi) ≥ 0. Given the definition of robust gain

gap, the inequality above can be rewritten in the following form

rgap(Ki+1,K∗)

≤ rgap(Ki,K∗)+ε2
i ‖

∂λmax(−Pi)

∂Zi |Zi
4i
‖2−2εi(max{0,λmax(−Pi)}−max{0,λmax(−P∗)})+Vi.
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where

E[Vi|Ki+1,Ki,K∗] = 0.

Now let Fi = σ(rgap(K1,K∗), . . . ,rgap(Ki,K∗)) be the σ -algebra generated by rgap(K1,K∗),

rgap(K2,K∗), . . ., rgap(Ki,K∗). Take expectation conditioned on Fi, then,

E{rgap(Ki+1,K∗)|Fi}

≤ rgap(Ki,K∗)+ ε2
i E‖∂λmax(−Pi)

∂Zi |Zi
4i
‖2 −2εi(E[H(PKi)]−E[H(PK∗)]). (7.10)

There is an affine relationship between the entires of Z i and Pi as given by (7.7). Since all

columns of F i are orthonormal, the affine relationship is norm bounded. According to Appendix

B, ‖ ∂λmin(Pi)
∂Zi ‖ is also uniformly bounded, since one uses the eigenvectors of norm one to com-

pute it. Thus ∑∞
i=0 ε2

i E‖ ∂λmin(Pi)
∂Zi ‖2 < ∞. Also, by definition, E[H(PK∗)] ≥ E[H(PKi)]. By the

Supermartingale Convergence Theorem in Appendix D, we have

∞

∑
i=1

εi(E[H(PK∗)]−E[H(PKi)]) < ∞ w.p.1.

On the other hand,
∞

∑
i=1

εi = ∞.

Hence, with probability 1, we get

E[H(PKi)] → E[H(PK∗)].

Q. E. D.

7.5 Numerical Examples

7.5.1 Example 1

We again consider the uncertain system first presented in Section 3.7.2
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A0 =





































0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−5.0625 −20.25 −64.125 −121.5 −140.0625 −101.25 −44.25 −10.5





































and

B = (0 0 0 0 0 0 0 1)′

A(8, i) = A0(8, i)+4i, i = 1, . . . ,8, where 4i, i = 1, . . . ,8 are uniformly distributed over [−2,2].

In the simulations, we take Nmax = 1000, X i0 = X i
4i and εi = 10/i. After 1000 iterations, we get

KNmax = [2.3009−1.5555−4.6995−3.6160−8.4840−2.2165−8.0852−0.6429].

After running a 10000 sample Monte Carlo simulation on the closed loop system with KNmax as

the state feedback, we get the maximal real part of closed loop poles is −0.0305, the mean value

is −0.0943, the minimal real part of eigenvalues of P(4) is 0.0397 and the mean value is 0.0478.

This shows that the closed loop system is robustly stable with high probability. Furthermore, we

run a 5000 sample Monte Carlo simulation for each gain K i obtained during the iterations. The

results obtained are depicted in Figure 7.1 where the characteristics of the successive closed loop

systems are presented.

We can see that the estimated risk of instability becomes 0 after about 400 steps. Com-

pared with the example in Section 3.7.2, the state feedback by our algorithm works well even

with a larger size of uncertainty set. We also simulated Algorithm 7.3.1 with the step size pro-

posed by Calafiore and Polyak [15] as given in (5.10). It can be proven that this also results in

a convergent algorithm and the simulations show that it results on faster convergence. However,

it requires an assumption similar to Assumption 5.3.1 which is hard to verify in practice and is

waived in our algorithm.
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Fig. 7.1. MC Simulations: Our Algorithm

7.5.2 Example 2

This example is based on the example provided in [11] which is proven not to be quadrat-

ically stabilizable. It was modified so that the original family of plants is not robustly stable.

Consider the system

ẋ = A(4)x+Bu

where

A(4) = 4A1 +(1−4)A2, B = [0 1]T ,

and

A1 =

(

−100 0

0 −1

)

,

A2 =

(

8 −9

120 −180

)

.



93

0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Iterations

Estimation of Maximal Real Part of Closed Loop Poles

maximal value 

mean value 

(a) Maximal Real Part of Poles

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Estimation of Probability of Instability

Number of Iterations

(b) Risk of Instability

Fig. 7.2. MC Simulations: Calafiore-Polyak’s Stepsize

4 is uniformly distributed over [0 1]. MatLab function quadstab shows this system is not

quadratically stabilizable. Now, take Nmax = 2000, X i0 = X i
4i and εi = 100/i. Using the stochas-

tic subgradient algorithm, after 2000 iterations, we get

K = [134.5345 −12.9282].

After running a 10000 sample Monte Carlo simulation, we get the maximal real part of closed

loop poles is −4.1356, the mean value is −44.831, the minimal real part of eigenvalues of P(4)

is 0.0027 and the mean value is 0.0037. As in Example 1, we run a 5000 sample Monte Carlo

simulation to get the Figure 7.3 describing the characteristics of closed loop poles with maximal

real part and probability of instability as a function of iteration numbers. Also, simulations with

Calafiore-Polyak’s step size are presented in Figure 7.4 for comparison.

7.6 Concluding Remarks

In this chapter, we provided a new algorithm for the design of robust linear static state

feedback controllers. This algorithm circumvents the conservatism of classical approaches since

it does not require the existence of a single Lyapunov function that “works” for all values of the
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uncertainty. It also does not require a parametrization of the so-called Lyapunov matrix. The use-

fulness of the approach presented in this chapter is illustrated via two numerical examples, one

of which is known not to be quadratically stabilizable and, hence, one cannot apply commonly

available tools to design a static state feedback controller.
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Chapter 8

Conclusion and Directions for Further Research

In this chapter, we provide some final thoughts on the results presented and, based on

that, suggest some future research directions.

8.1 Concluding Remarks

Convexity plays an important role in this thesis and divides it into two parts:

In the first part, the controller synthesis problem can be formulated as an optimization

problem which is convex in the design parameters. In Chapter 2, we addressed the probabilis-

tically constrained linear program (PCLP), the counterpart of the classical linear program. We

proved that for log-concave and symmetric distributions, PCLP is convex. Moreover, it is shown

that PCLP is a convex quadratic optimization problem for elliptical distributions. Chapter 3

concentrates on a probabilistic version of the well known robust quadratic stabilization problem

which is approximated by a log-concave function of the state feedback gain. This allows for

the use of stochastic approximation algorithms to solve for the optima feedback gain; i.e., the

gain that maximizes the probability of quadratic stability. Controller design for linear parame-

ter varying (LPV) systems is studied in Chapter 4. A probabilistic version of receding horizon

design was proposed which is essentially a stochastic optimization problem with probabilistic

constraints.

Many control problems are not convex in the controller. In the second part, we addressed

some of these non-convex design problems. The main idea is that, given a sample of the uncer-

tainty, we can exploit an appropriate convex parameterization of all the achievable closed loop

systems (valid only for that specific value of the uncertainty) to develop a stochastic approxi-

mation algorithm which converges to the desired controller. The focal point of Chapter 5 was

the robust output feedback controller design for linear time-invariant uncertain systems. Given

achievable bounds on performance (defined by a convex performance indicator), the proposed

algorithm converges to an output feedback controller that robustly satisfies the specifications.

For a given uncertainty sample 4, through Youla parametrization, there is a unique Youla pa-

rameter Q corresponding to a given controller C while the closed loop transfer function can be

expressed as an affine function of Q. In Chapter 6, we directly worked on the optimal design for
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probabilistic output feedback design. We proved that the expectation of the convex performance

function can be minimized. In this chapter, Youla parametrization is still employed to set up

the one-to-one relationship between controller C and intermediate variable Q. In Chapter 7, a

probabilistic robust stability design was discussed. A parameter dependent Lyapunov equation

was used as the bridge between the state feedback gain K and the intermediate parameters.

As a whole, this thesis deals with robust controller design problems within a probabilistic

framework. Our goal was to relieve the conservatism and prohibitive computational cost which

are inherent to classical robust control theory. Except for Chapter 2, which converts a proba-

bilistic optimization problem into a deterministic one, we worked with stochastic optimization

algorithms (more specifically, stochastic approximation) directly. Some novel features of our

algorithms are:

1. In the second part, i. e., in Chapter 5, Chapter 6 and Chapter 7, we addressed some of the

non-convex controller design problems by parametrization.

2. In Chapter 5 and Chapter 6, the probabilistic output feedback design was accomplished in

the infinite-dimensional space.

3. In Chapter 4, the optimization problem with both probabilistic objective and constraints

was solved by stochastic min-max algorithms. In Chapter 2, with the aid of the concept

floating body, the probabilistically constrained linear program was tackled by converting

it to a deterministic convex quadratic optimization problem.

8.2 Directions for Further Research

The results to date suggest several directions for further research.

8.2.1 Numerical Tools for PCLP

The numerical implementation is a very important aspect of PCLP. In our work, the con-

struction of the floating body is limited to the case of elliptical distributions. How to characterize

the floating body for non elliptical probability distributions is still an open problem. We believe

that effort should be put in the development of numerical tools for solving the PCLP when the

distribution is other than elliptical. Also, it seems that the “ratio” between the complexity of

a robust controller and the complexity of the probabilistic robust controller increases with the

dimension of the uncertainty vector. Therefore, it would be of interest to quantify how does

complexity depend on the uncertainty dimension.
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8.2.2 Probabilistic Design for general LMIs

In Chapters 3 and 7, instead of designing a “traditional robust” controller, we provide

algorithms which maximize the probability of quadratic stability or robust stability. Examples

provided show that we can greatly reduce the gains of the controller and still have a very small

risk of instability. The work presented here is just a first step toward probabilistic controller

design. Possible directions for future work involve the development of algorithms for general

Linear Matrix Inequalities, not just for the the particular case of quadratic stability or robust

stability.

8.2.3 More Applicable Stochastic Subgradient Algorithms

We address the problem of robust controller design for linear time invariant systems with

arbitrary uncertainty structure in Chapters 5, 6 and 7 where algorithms are provided which are

proven to converge to the optimal solution with probability one. However, these kind of conver-

gence results are only of an asymptotic nature. It would be very desirable to design an iterative

process which stops after a finite number of steps within a neighborhood of the optimal solution,

where the size of the neighborhood can be predetermined. Also of interest is the problem of

order of the controller. Since there are no restrictions on the order of the controllers designed

using some of the algorithm presented in this report, it would be of interest to modify it so that

it would take the maximum order of the controller as one of the specifications. Furthermore,

the procedures presented do not assure that, at each iteration, one has a controller that robustly

stabilizes the system. In many cases, this is a “hard” constraint in the sense that the final design

should lead to a robustly stable system. Hence, we believe that effort should be put in the study

of this problem.
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Appendix A

Proof of Lemma 2.3.1

The proof is identical to the one presented in [36] and it is presented here for the sake of

completeness. For a given 0 ≤ ε ≤ 1/2, note that proving the convexity of the set

Xε
.
= {x ∈ R` : Prob{xT (a0 +∆a) ≤ b} ≥ 1− ε}

is equivalent to proving the quasi-concavity of the function

ϕ(x) .
= Prob{xT (a0 +∆a) ≤ b}

on the set

D
.
= {x ∈ R` : Prob{xT (a0 +∆a) ≤ b} ≥ 1/2}.

Hence given x0,x1 ∈ D, we must prove that

ϕ((1−λ )x0 +λx1) ≥ min{ϕ(x0),ϕ(x1)}

for all 0 ≤ λ ≤ 1. Notice that the definition above only makes sense if the set D is convex.

Proceeding by contradiction and assume that the set D is not convex. Given the fact that ϕ(x)

is continuous, non convexity of D implies the existence of x0,x1 ∈ R` and 0 < λ < 1 such that

ϕ(x0) = ϕ(x1) = 1/2 and ϕ((1−λ )x0 +λx1) < 1/2. Now, defining

Qgood(x) = {∆a ∈ R` : xT (a0 +∆a) ≤ b},

the symmetry of the distribution of ∆a and the assumptions on x0, x1 and λ imply that

0 ∈ Qgood(x0)∩Qgood(x1); 0 /∈ Qgood((1−λ )x0 +λx1).

However, it can be easily shown that

Qgood(x0)∩Qgood(x1) ⊆ Qgood((1−λ )x0 +λx1).
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This contradicts 0 /∈ Qgood((1− λ )x0 + λx1). Therefore, the set D is convex. We now pro-

ceed with the proof of quasi-concavity of ϕ(x). Proceeding by contradiction, assume there

exist x0,x1 ∈ D and 0 < λ < 1 such that

ϕ((1−λ )x0 +λx1) < min{ϕ(x0),ϕ(x1)}.

Without loss of generality, we assume that ϕ(x0) ≤ ϕ(x1) and recall that ϕ(x) is a continuous

function of x. Therefore, there exists a λ < λ ∗ ≤ 1 such that

ϕ((1−λ ∗)x0 +λ ∗x1) = ϕ(x0).

Note that λ ∗ is strictly greater than λ since we assumed that ϕ((1−λ )x0 +λx1) < ϕ(x0). Let-

ting y0 = x0, y1 = (1−λ ∗)x0 +λ ∗x1 and ζ = λ/λ ∗, we obtain

(1−λ )x0 +λx1 = (1−ζ )y0 +ζ y1.

Hence, we have

ϕ((1−ζ )y0 +ζ y1) < ϕ(y0) = ϕ(y1).

Now, define yζ .
= (1−ζ )y0 +ζ y1. Then

Prob(Qgood(yζ )) < Prob(Qgood(y0)) = Prob(Qgood(y1)).

Let γ = 1− Prob(Qgood(y0)). Since y0 ∈ D, then 0 ≤ γ ≤ 1/2. To establish quasi-concavity

of ϕ(x) for x ∈ D we consider several cases. In the case of γ = 0 or γ = 1/2, a contradiction is

reached since the robust linear program (risk γ = 0) is a convex program and the set D is convex.

For the intermediate case when 0 < γ < 1/2, since ∆a has a log-concave symmetric distribution,

Proposition 2 in [48] indicate that for this range of values of γ , the floating body Kγ exists and is

a convex symmetric set. Therefore,

Kγ ⊆ Qgood(y0)∩Qgood(y1).

Now, given that Qgood(y0)∩Qgood(y1) ⊆ Qgood(yζ ), we have Kγ ⊆ Qgood(yζ ). Recall that

Prob(Qgood(yζ )) < 1− γ ⇒ Prob(Qc
good(y

ζ )) > γ.
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However, given the definition of Kγ , we have

Kγ ∩Qc
good(y

ζ ) 6= /0

and we reach a contradiction. Since we reached a contradiction in all of the cases above, we

conclude that the function ϕ(x) is quasi-concave for all x ∈ D.
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Appendix B

Appendix: Computing Gradient of g(λmax(LK(q)))

In this section we describe how to compute gradient of g(λmax(LK(q))).

∂g(λmax(LK(q)))

∂K

=

{

0 if z ≤ δ
−βe−β z ∂ z(K,q)

∂K if z > δ ,

where small value δ > 0 is a user determined small value and z = λmax(LK(q)). Note that, given

K̃,

λmax (LK̃ ) = max
‖y‖2=1

yT LK̃y = y∗T LK̃y∗

where y∗ is an eigenvector of euclidean norm one associated with maximum eigenvalue of LK(x̃).

Given that the maximum above is achieved by y∗ then

∂λmax (LK )

∂K

∣

∣

∣

∣

K=K̃
=

∂y∗T LKy∗

∂K

∣

∣

∣

∣

K=K̃
.

This can be easily computed since, in the case addressed in (3.2), LK is an affine function of each

entry in K.
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Appendix C

Proof of Lemma 3.6.1

We first provide the definition of stochastic quasi-Feyer sequence and results regarding

this sequence [24].

DEFINITION C.0.1. A sequence of random vectors {zn}∞
n=0 defined on a probability space (q,ℜ,µ)

is a stochastic quasi-Feyer sequence for a set Z ⊆ Rn, if E‖z0‖2 < ∞, and for any z ∈ Z

E{‖z− zn+1‖2|z0, . . . ,zn} ≤ ‖z− zn‖2 +dn, n = 0,1 . . .

dn ≥ 0,
∞

∑
n=0

Edn < ∞

LEMMA C.0.1. If {zn} is a stochastic quasi-Feyer sequence for a set Z, then:

1) the sequence ‖z− zn‖2, n = 0,1, . . . converges with probability 1 for any z ∈ Z, E‖z− zn‖2 <

C < ∞;

2) the set of accumulation points of zn(q) is not empty for almost all q;

3) if z′(q),z′′(q) are two distinct accumulation points of the sequence {zn(q)} which do not

belong to the set Z, then Z lies on the hyper-plane equidistant from the points z′(q), and z′′(q).

We can now proceed to prove Lemma 3.6.1.

Proof of Lemma 3.6.1:

By Lemma 3.4.1, we know

G(K(n)) =
∫

g(λmax(LK(n)(q))) f (q) dq

is log-concave. So if we define auxiliary function

Gaux(K(n)) = − logG(K(n)), (C.1)
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it is convex. Due to the monotonicity of logarithm function, maximizing G(K) is equivalent to

minimizing G′(K). Let K∗ ∈ K∗ is one of the optimal points. Then we have

Gaux(K∗)−Gaux(K(n))

≥ 〈Gaux
K (K(n)),K∗−K(n)〉

≥ −〈 1
G(K(n))

GK(K(n)),K∗−K(n)〉

≥ −〈 1
G(K(n)

E{ξ (n)|K(0), . . . ,K(n)},K∗−K(n)〉+ 〈 1
G(K(n))

b(n),K∗−K(n)〉

≥ −〈 1
G(K(n)

E{ξ (n)|K(0), . . . ,K(n)},K∗−K(n)〉− 1
G(K(n))

γ(n),

Since Gaux(K∗)−Gaux(K(n)) ≤ 0 and G(K(n)) > 0, we have

γ(n) ≥ −〈E{ξ (n)|K(0), . . . ,K(n)},K∗−K(n)〉

By ( 3.9), we have

E{‖K∗−K(n+1)‖2|K(0), . . . ,K(n)}

≤ ‖K∗−K(n)‖2 +a(n)2E{‖ξ (n)‖2|K(0), . . . ,K(n)}−2a(n)〈E{ξ (n)|K(0), . . . ,K(n)},K∗−K(n)〉

≤ ‖K∗−K(n)‖2 +a(n)2E{‖ξ (n)‖2|K(0), . . . ,K(n)}+2a(n)|γ(n)|.

By Assumption (3) in Lemma 3.6.1,

∞

∑
n=0

E[a(n)2E{‖ξ (n)‖2|K(0), . . . ,K(n)}+2a(n)|γ(n)|]

=
∞

∑
n=0

E[a(n)2‖ξ (n)‖2 +2a(n)|γ(n)|]

< ∞.
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Hence {K(n)} is a stochastic quasi-Feyer sequence for set K∗. Thus, the sequence ‖K∗−K(n)‖2

converges with probability 1 for any K∗. Furthermore,

E{‖K∗−K(n+1)‖2|K(0), . . . ,K(n)}

≤ ‖K∗−K(n)‖2 +a(n)2E{‖ξ (n)‖2|K(0), . . . ,K(n)}

−2a(n)〈E{ξ (n)|K(0), . . . ,K(n)},K∗−K(n)〉

Take expectations on both sides, we have

E{‖K∗−K(n+1)‖2}

≤ E{‖K∗−K(n)‖2}−2E{a(n)〈E{ξ (n)|K(0), . . . ,K(n)},K∗−K(n)〉}+a(n)2E{‖ξ (n)‖2}

≤ E‖K∗−K(0)‖2 −2E
n

∑
i=0

a(i)〈E{ξ (i)|K(0), . . . ,K(i)},K∗−K(i)〉+
n

∑
i=0

a(i)2E{‖ξ (i)‖2}

≤ E‖K∗−K(0)‖2 +2E
n

∑
i=0

a(i)〈G(K(i))Gaux
K (K(i))−b(i),K∗−K(i)〉+

n

∑
i=0

a(i)2E{‖ξ (i)‖2}

≤ E‖K∗−K(0)‖2 +2E
n

∑
i=0

a(i)G(K(i))(Gaux(K∗)−Gaux(K(i)))+C
n

∑
i=0

E{a(i)|γ(n)|+a(i)2‖ξ (i)‖2}

Thus,

E
∞

∑
i=0

a(i)G(K(i))(Gaux(K∗)−Gaux(K(n))) > −∞

Since ∑∞
i=0 a(i) = ∞ and G(K(i)) >= p , ∀ i, we have

∞

∑
i=0

a(i)G(K(i)) ≥ p
∞

∑
i=0

a(i) = ∞.

Moreover,

Gaux(K∗)−Gaux(K(i)) ≤ 0.

Hence

G(K∗)−G(K(i)) → 0.

So we have

lim
n→∞

G(K(n)) = G(K∗)

where K∗ ∈ K∗. Q.E.D.
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Appendix D

Supermartingale Convergence Theorem

The following lemma as stated in [6] was used to prove the convergence of the algorithms

provided in this thesis.

LEMMA D.0.1. Let Yk, Zk and Wk, k = 1,2, . . ., be three sequences of random variables and Fk,

k = 1,2, . . ., be sets of random variables such that Fk ⊂ Fk+1 for all k. Suppose that:

1. The random variables Yk, Zk and Wk are nonnegative, and are functions of random vari-

ables in Fk.

2. For each k, we have E{Yk+1|Fk} ≤ Yk −Zk +Wk.

3. There holds ∑∞
k=0Wk < ∞

Then, we have ∑∞
k=0 Zk < ∞, and the sequences Yk converges to a nonnegative random variable

Y , with probability 1.
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