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Abstract

In this thesis, we study analytical problems related to two models in the hydrodynamics
of complex fluids. The first is the general Ericksen-Leslie system, which models nematic
liquid crystal flow, while the latter is a diffuse-interface model for the mixture of two
incompressible fluids. Both models are based on a special coupling between the induced
elastic stress and transport property of microstructures. Both models can be derived in
the energetic variational framework which demonstrates the consistent exchange of the
kinetic energy of the fluid and internal energy due to elastic effects.

For the general Ericksen-Leslie system, in both the two and three dimensional cases,
we develop the existence theory for global classical solutions with various assumptions
on physical relations between viscosity coefficients. Meanwhile, we study the asymptotic
behavior of global bounded solutions as time goes to infinity and show that the asymptotic
limit is unique. More importantly, we reveal the various roles of physical relations on
corresponding analytical results. For the diffuse-interface model, within the study of
axisymmetric solutions, we construct perturbations to near infinite-energy solutions.
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Chapter 1
Introduction

This thesis is devoted to the study of analytical problems in hydrodynamics of complex
fluids. Our main study is of the general Ericksen-Leslie system (2.1.10)–(2.1.14), which
models nematic liquid crystal flow and a diffuse-interface model (5.1.1)-(5.1.3) for the
mixture of two incompressible fluids. From the energetic variational point of view, both
are models whose equations of conservation of momentum can be derived via a calculus
of variations. To have a better understanding of their importance and relations, we start
from the general system of equations in fluid mechanics.

1.1 Constitutive law

In the context of fluid mechanics, compressible fluids are described by the following
hydrodynamic system [1]: {

ρt + ∇ · (ρu) = 0,

ρ(ut + u · ∇u) = ∇ · σ.
(1.1.1)

Here ρ is the fluid density, u is the fluid velocity, and σ is the Cauchy stress tensor, all
of which are functions of time variable t and space variable x in Eulerian coordinates.
Throughout this thesis, the notation ∇ is used to represent the gradient with respect
to spatial variables. In the system (1.1.1), the first equation stands for conservation of
mass, which is also referred to as the continuity equation; the second equation represents
conservation of linear momentum. Analogously, the hydrodynamic system describing
incompressible fluids is (assuming the density before deformation is 1):

{
∇ · u = 0,

ut + u · ∇u = ∇ · σ.
(1.1.2)
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The stress tensor can be decomposed as σ = −pI + τ , where −pI is the normal part.
For incompressible fluids, p is the Lagrangian multiplier due to the incompressibility
condition, and τ is the tangential part. For simple fluids (inviscid case), the tangential
part of stress tensor is zero, hence σ = −pI. While for complex fluids (inviscid case), the
corresponding tangential part is nonzero, hence the system (1.1.2) can be written as

{
∇ · u = 0,

ut + u · ∇u + ∇p = ∇ · τ. (1.1.3)

From here on, we discuss the incompressible case only.
If the tangential part of the stress tensor is zero in (1.1.3) (inviscid simple fluid), we

get the following classical Eulerian system of equations:
{

∇ · u = 0,

ut + u · ∇u + ∇p = 0.
(1.1.4)

For viscous Newtonian fluids, τ depends on ∇u linearly:

τ = 2μD(u), (1.1.5)

where

D(u) =
∇u + ∇uT

2
is called Cauchy strain tensor and μ is the fluid viscosity coefficient (μ > 0). The relation
(1.1.5) that connects stress and strain is usually called the constitutive law. In this case,
(1.1.3) becomes {

∇ · u = 0,

ut + u · ∇u + ∇p = μΔu,
(1.1.6)

which is the well-known incompressible Navier-Stokes equations.
The complex fluids studied in the present thesis are non-Newtonian fluids that do not

satisfy the Newtonian Law (1.1.5). For such fluids there is no general constitutive law
to describe the dependence of the stress tensor on the strain or the deformation. Both
nematic liquid crystal flow and the mixture of two incompressible fluids studied in this
thesis exhibit certain elastic property and the induced elastic stress is contained in the
equation of conservation of linear momentum.

1.2 Energetic variational formulation

From the energetic point of view, there is special coupling between the induced elastic
stress and the transport property of nontrivial microstructures in complex fluids. The
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energetic variational principles used in this thesis combine the maximum dissipation
principle (for long time dynamics) and the least action principle, or equivalently, the
principle of virtual work (for intrinsic and short time dynamics) into a force balance law
that expands the law of conservation of momentum to include dissipation. This procedure
is a modern reworking of Rayleigh’s dissipation principle in [2] motivated by Onsager’s
treatment of dissipation (c.f. [3,4]). This procedure optimizes both the action functional
of classical mechanics and the dissipation functional. The least action principle gives us
the Hamiltonian (reversible) part of the system related to conservative forces, while the
maximal dissipation principle provides the dissipative (irreversible) part of the system
related to dissipative forces.

The energy variational treatment of complex fluids starts with the energy dissipative
law for the whole coupled system:

dEtotal

dt
= −D,

where Etotal is the total energy of the system and D is the dissipation function of Onsager,
which usually consists of a linear combination of the squares of various rate functions,
such as velocity and rate of strain, etc. (cf. [3–5]). In a classical Hamiltonian conservative
system, the energy Etotal = Ekinetic+Einternal is the sum of kinetic and internal energies.

In the context of hydrodynamics, the basic variable is the flow map (particle trajec-
tory), x(X, t). (X is the original labeling (the Lagrangian coordinate) of the particle,
which is also referred to as the material coordinate. x is the current (Eulerian) coordi-
nate, which is also called the reference coordinate.) For a given velocity field v(x, t), the
flow map is defined by the ODE:

xt = v(x(X, t), t), x(X, 0) = X.

The deformation tensor (strain) of the flow map is given by

F(x(X, t)) =
∂x(X, t)

∂X
,

which satisfies the following transport equation:

Ft + v · ∇F = ∇vF .

Here, F carries all information of microstructures and configurations. It is noted that
all evolutions are based on the above relations of the flow map between the reference
domain, Ω0, at time 0 and the current domain, Ωt, at time t.

We take a simple example in dealing with simple fluids to illustrate the main idea
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of the energetic variational approach. A simple fluid is described by the incompressible
Navier-Stokes equations given by (1.1.6) with suitable boundary and initial conditions.
One can directly arrive at the following dissipative energy law:

d

dt

∫
1
2
|u|2dx = −

∫
μ|∇u|2dx. (1.2.7)

Conversely, based on the dissipative energy law (1.2.7), we can derive the system (1.1.6)
through energetic variational approaches. It follows from (1.2.7) that the total energy
Etotal and the dissipation D are given by

Etotal =
∫

1
2
|u|2dx, D =

∫
μ|∇u|2dx, (1.2.8)

respectively.

We define the action functional A as

A =
∫ T

0

∫
Ωt

1
2
|u|2dxdt. (1.2.9)

After pulling back the current domain Ωt to the reference domain Ω0 through the flow
map and using the incompressibility condition, the action functional becomes

A(x) = A =
∫ T

0

∫
Ω0

1
2
|xt|2dXdt. (1.2.10)

We choose a family of volume preserving diffeomorphism, xε, such that the infinitesimal
generator is dxε

dε |ε=0 = y. It is noted that the volume preserving assumption implies ∇ ·
y=0. Then the variation with respect to x (least action principle), yields the Hamiltonian
part of the system. The least action principle tells

δA(x)
δx

= 0

⇒ dA(xε)
dε

∣∣∣
ε=0

= 0

⇒ 0 =
∫ T

0

∫
Ω0

(xt, yt)dXdt = −
∫ T

0

∫
Ωt

(ut + u · ∇u, y)dxdt,

where we used integration by parts and pushed forward from Ω0 to Ωt in the last step.
Since y is divergence-free, we need to add a pressure term as a Lagrange multiplier, thus
obtaining the Euler equation as the momentum equation

ut + u · ∇u + ∇p = 0,

∇ · u = 0. (1.2.11)
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On the other hand, consider the dissipation functional

D =
∫ T

0

∫
Ωt

μ

2
|∇u|2dxdt. (1.2.12)

Choose a family of rate functions uε = u + εv, with ∇ · v = 0. Then, the variation with
respect to the rate function (Onsager’s maximum dissipation law), gives the irreversible
part of the system.

δD
δu

= 0

⇒ 0 =
∫ T

0

∫
Ωt

(∇u,∇v)dxdt = −
∫ T

0

∫
Ωt

(Δu, v)dxdt.

As a result, we obtain Stokes equation:

μΔu = ∇p,

∇ · u = 0. (1.2.13)

Remark 1.2.1. One can infer from the derivations of (1.2.11) and (1.2.13) that the
term μΔu serves as dissipative force.

1.3 Summary of mathematical work

1.3.1 Liquid crystal model

The first model we consider is the general Ericksen-Leslie system (2.1.10)–(2.1.12). Physi-
cally, the general Ericksen-Leslie system is a coupled system used to model nematic liquid
crystal flows. It is a macroscopic continuum description of the time evolutions of these
materials influenced by both the flow field, v(x, t), and the microscopic orientational
configuration, d(x, t), which can be derived from the coarse graining of the directions of
rod-like liquid crystal molecules. The problem contains three variables: the velocity vec-
tor, v = (v1, v2, v3)T , the director vector, d = (d1, d2, d3)T , and the hydrostatic pressure
function P . There are generally two types of relations between these viscosity coefficients
in stress terms: Leslie’s relations and Parodi’s relation. The former are necessary condi-
tions for the liquid crystal system (c.f. [6,7]). While the latter, namely Parodi’s relation,
is derived directly from the Onsager reciprocal relation (cf. [8]) expressing the equality of
certain relations between flows and forces in thermodynamic systems out of equilibrium
(cf. [3]). However, Onsager’s relation has not been widely accepted.

Mathematically speaking, due to its complex mathematical structures, only some
simplified models or special cases have been studied (c.f. [9, 10] and references therein).
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The main contribution of our work, discussed in Chapters 2-4, is to study the well-
posedness of the general system with additional assumptions on coefficients, as well as
the asymptotic behavior of global solutions. More importantly, we reveal the various
roles played by physical relations on mathematical results. For instance, Parodi’s relation
serves as a stability condition in the liquid crystal system.

Our proof of the existence of global classical solutions relies on a modified Galerkin
method introduced in [9]. After generating a sequence of approximate solutions (vm, dm), m =
1, 2, · · · and denoting higher order energy terms Am(t) = ‖∇vm‖2 + ‖Δdm − f(dm)‖2,
one can get a uniform high-order energy estimate for the approximate system, under the
large viscosity assumption of one viscosity coefficient μ4.

Based on the uniform higher order energy control, we have shown uniform estimates
for Am(t). The uniform bound on Am(t) enables us to pass to the limit. Furthermore,
a weak solution together with high-order derivative estimates implies the existence of a
strong solution. Finally, a bootstrap argument leads to the existence of classical solutions.
The main result in shown in Theorem 2.3.2.

After establishing the existence of globally bounded solutions, the problem of whether
the solutions will converge to single equilibria as time tends to infinity becomes a problem
of interest. It is well known that the structure of the set of equilibria can be nontrivial
and may form a continuum for certain physically reasonable nonlinearities in higher
dimensional cases. In particular, under current periodic boundary conditions of the
liquid crystal system (2.1.10)-(2.1.12) in n dimensional space, one may expect that the
dimension of the set of equilibria is at least n. This is because a shift in each variable
should give another steady state (cf. also [11]), e.g., in our case, if d∗(·) is a steady state
solution, so is d∗(·+τei), 1 ≤ i ≤ n, τ ∈ Z

+. Moreover, we note that for our system, every
constant vector d with unit-length serves as an absolute minimizer of the elastic energy
functional. As a result, it is highly nontrivial to decide whether a given trajectory will
converge to a single equilibrium. To this end, we apply the so-called Łojasiewicz–Simon
approach to obtain our goal. Simon’s idea relies on a nontrivial generalization of the
Łojasiewicz inequality (cf. [12,13]) for analytic functions defined in the finite dimensional
space R

m to infinite dimensional spaces. We refer to [11,14–22] and the references therein
for applications to various evolution equations. In order to apply the Łojasiewicz–Simon
approach to our problem (2.1.10)–(2.1.14), we need to introduce a suitable Łojasiewicz–
Simon type inequality for vector functions with periodic boundary conditions. We prove
that, although different kinematic transports for the liquid crystal molecules will yield
different dynamics of the hydrodynamical system, the global solutions to the system
have uniform long-time behavior under different kinematic transports, i.e., convergence
to equilibrium with a uniform convergence rate. The main result is shown in Theorem
3.3.1.
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As mentioned previously, Parodi’s relation is a direct result of the Onsager reciprocal
relations, which are, nevertheless, independent of the second law of thermodynamics.
The thermodynamic basis of Onsager reciprocal relations have been criticized(c.f. [23]),
but it is admitted meanwhile that, there are certain physical hints indicating that for
particular materials, Onsager relations and their counterparts may serve as stability
conditions (c.f. [23, 24]). In this work, we provide a mathematical verification of this
physical hint for nematic liquid crystal material.

For the dissipative system, the internal energy functional is

E(d) =
1
2
‖∇d‖2 +

∫
Q

(|d|2 − 1)2

4
dx.

Suppose d∗ is a local energy minimizer of E(d). If the initial velocity, v0, is close to
zero and the initial orientational director, d0, is close to d∗, we prove that under Parodi’s
relation, the local energy minimizer, d∗, is Lyaponov stable.

1.3.2 Diffuse-interface model

The study of analytic results on the nematic liquid crystal model stems from the work
in [9], where the following highly simplified system was investigated:

vt + v · ∇v + ∇p = μΔv − λ∇ · (∇d ⊗∇d), (1.3.14)

∇ · v = 0, (1.3.15)

dt + v · ∇d = γ(Δd − f). (1.3.16)

If we replace the vector function, d, with a scalar function φ, then the system, (1.3.14)-
(1.3.14), becomes a coupled Navier-Stokes/Allen-Cahn system of equations in R

3, which
can be viewed as a phase-field model describing the motion of a mixture of two incom-
pressible viscous fluids (see [25]). In the past, there have been many studies of the
dynamic stability problem near zero or equilibrium. In contrast, the problems we are
interested in are for point-wise solutions with infinite energy. To this end, in [26] we are
concerned with the axisymmetric solutions only.

The consideration of axisymmetry makes it possible to reduce the three dimensional
(3D) problem to a 2D problem. Meanwhile, it should be noted that our system con-
tains the Navier-Stokes equations as a subsystem. By the well-known Caffarelli-Kohn-
Nirenberg theory in [27], the singularity set of any suitable weak solution of the 3D

Navier-Stokes equations has one-dimensional Hausdorff measure zero. Thus, in the case
of 3D axisymmetric equations, if there is any singularity, it must be along the symmetric
axis. This motivates focusing our work on a special study of the system near the z axis.

Differing from the method of asymptotic expansion in [28], we use a more natural



8

and straightforward method: separation of variables in the framework of axisymmetry-
namely, in the radial component r and the height z-to derive a 1D system of equations.
This 1D system of equations approximates the 3D system along the z axis. We also
establish the regularity of global solutions (u∗

1(z, t), ω∗
1(z, t), ψ∗

1(z, t), φ∗
0(z, t)) for the 1D

system. Based on the 1D solutions, we obtain exact solutions, (ru∗
1, rω

∗
1, rψ

∗
1, φ

∗
0), to our

3D coupled system, though they have infinite energy.
We make an improvement to the infinite energy solutions by adding a cut-off func-

tion χ(r) and perturbation terms (ru1, rω1, rψ1, φ1), which ensure that the solutions
constructed have finite energy:

ũ(r, z, t) = r(u∗
1(z, t)χ(r) + u1(r, z, t)), (1.3.17)

ω̃(r, z, t) = r(ω∗
1(z, t)χ(r) + ω1(r, z, t)), (1.3.18)

ψ̃(r, z, t) = r(ψ∗
1(z, t)χ(r) + ψ1(r, z, t)), (1.3.19)

φ̃(r, z, t) = φ∗
0(z, t)χ(r) + φ1(r, z, t). (1.3.20)

Since we are interested in smooth solutions only, one major concern here is the regularity
of the perturbation terms. To solve this, we introduce certain higher order energy terms
and prove their boundedness. The main mathematical difficulty lies in how to control
a series of weighted norms. We discuss it into two subcases, namely the large viscosity
case and small initial data case. And the main results are shown in Theorem 5.1.1 and
Theorem 5.1.2.

1.4 Some useful lemmas and inequalities

In this section we list some inequalities which are frequently used in the proofs throughout
this thesis.

Theorem 1.4.1. (Sobolev Imbedding Theorem) Assume that Ω is a bounded domain of
class Cm. Then we have
(1) If mp < n, then Wm,p(Ω) is continuously imbedded in Lq∗(Ω) with 1

q∗ = 1
p − m

n :

Wm,p(Ω) ↪→ Lq∗(Ω). (1.4.21)

Moreover, the imbedding operator is compact for any q, 1 ≤ q < q∗.
(2) If mp = n, then Wm,p(Ω) is continuously imbedded in Lq(Ω), ∀q, 1 ≤ q < ∞:

Wm,p(Ω) ↪→ Lq(Ω). (1.4.22)

In addition, the imbedding operator is compact for any q, 1 ≤ q < q∗. If p = 1,m = n,
then the above still holds for q = ∞.
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(3) If k < m − n
p < k + 1, k ∈ N , then writing m − n

p = k + α, k ∈ N , 0 < α < 1,
Wm,p(Ω) is continuously imbedded in Ck,α(Ω̄):

Wm,p(Ω) ↪→ Ck,α(Ω̄), (1.4.23)

where Ck,α(Ω̄) is the space of functions in Ck(Ω̄) whose derivative s of order k are Hölder
continuous with exponent α. In addition, if n = m − k − 1, and α = 1, p = 1, then
(1.4.23) holds for α = 1, and the imbedding operator is compact from Wm,p(Ω) to Ck,β(Ω̄),
∀0 ≤ β < α.

Theorem 1.4.2. (Gargliardo-Nirenberg inequality) Let j and m be integers satisfying
0 ≤ j < m, and let 1 ≤ q, r ≤ ∞ and p ∈ R, j

m ≤ a ≤ 1 such that

1
p
− j

n
= a(

1
r
− m

n
) + (1 − a)

1
q
. (1.4.24)

Then
(1) For any u ∈ Wm,r(Rn) ∩ Lq(Rn), there is a positive constant C depending only on
n,m, j, q, r, a such that the following inequality holds:

|Dju|p ≤ C|Dmu|ar |u|1−a
q (1.4.25)

with the following exception: if 1 < r < ∞ and m − j − n
r is a nonnegative integer, then

(1.4.25) holds only for a satisfying j
m ≤ a < 1.

(2) For any u ∈ Wm,r(Ω) ∩ Lq(Ω) where Ω is a bounded domain with smooth boundary,
there are two positive constants C1, C2 such that the following inequality holds:

|Dju|p,Ω ≤ C|Dmu|ar,Ω|u|1−a
q,Ω + C2|u|q,Ω. (1.4.26)

with the same exception as in (1).
In particular, for any u ∈ Wm,r

0 (Ω) ∩ Lq(Ω), the constant C2 in (1.4.26) can be taken as
zero.

Theorem 1.4.3. (Poincaré Inequality I)Let Ω be a bounded domain in R
n and u ∈

H1
0 (Ω). Then there is a positive constant C depending only on Ω and n such that

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω), ∀u ∈ H1
0 (Ω). (1.4.27)

Theorem 1.4.4. (Poincaré Inequality II)Let Ω be a bounded domain of C1 in R
n. There

is a positive constant C depending only on Ω, n such that for any u ∈ H1(Ω),

‖u‖L2(Ω) ≤ C

(
‖∇u‖L2(Ω) +

∣∣∣ ∫
Ω

udx
∣∣∣) . (1.4.28)
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Theorem 1.4.5. (Gronwall Inequality) Let η(t) be a nonnegative, absolutely continuous
function on [0, T ], which satisfies for a.e. t the differential inequality

η′(t) ≤ φ(t)η(t) + ψ(t),

where φ(t) and ψ(t) are nonnegative, summable functions on [0, T ]. Then

η(t) ≤ e
∫ t
0 φ(s)ds

[
η(0) +

∫ t

0
ψ(s)ds

]
(1.4.29)

for all 0 ≤ t ≤ T . In particular, if

η′ ≤ φη on [0, T ] and η(0) = 0,

then
η ≡ 0 on [0, T ]. (1.4.30)

The remaining part of the thesis is organized as follows:
Chapter 2 is devoted to the derivation of the liquid crystal model and the proof of

existence of global solutions in the general Ericksen-Leslie system. After the problem
setting in the first section, we make a formal physical derivation of the system based
on the basic energy law. Meanwhile, through various energetic variational approaches,
we distinguish the Hamiltonian and dissipative parts among induced elastic stress. In
the third section, we first show the existence of local solutions of an approximate system
using a modified Galerkin method, then we provide the proof of a higher order energy
inequality under the assumption of one large viscosity coefficients, say, μ4, which leads
to the existence of global classical solutions of the liquid crystal system.

In Chapter 3, we study the long time behavior of the global solution of the liquid crys-
tal system by virtue of a Łojaciewicz-Simon type inequality. In the first section we give
a brief discussion of the application of the Łojaciewicz inequality in finite-dimensional-
Euclidean space. In the second section, we prove that the global solution will converge to
single steady states as time goes to infinity, which implies the unique asymptotic limit of
the solution. It is an improvement of the result in [10], where only sequence convergence is
obtained. In the last section, by using suitable energy estimates and constructing proper
differential inequalities, we provide the estimates on convergence rate in both higher and
lower order norms.

In Chapter 4, we investigate the relation between Parodi’s relation and the stability
of the liquid crystal system, which shows Parodi’s relation serves as a stability condition
of the system. In the first section, we provide a suitable higher-order energy inequality,
which implies the local existence of strong solutions and the global existence provided
that the initial data is near equilibrium. In the second section, we prove that if Parodi’s
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relation is satisfied, if the initial velocity is close to zero, and if the initial molecule
director is sufficiently close to a local minimizer of the elastic energy, then the solution
will stay close to the minimizer for all time (Lyaponov stability).

In Chapter 5, we focus on the discussion of axisymmetric solutions to a diffuse-
interface model coupling the Navier-Stokes equations and Allen/Cahn equations in R

3,
where we construct smooth solutions, which can be considered as perturbations near
infinite-energy solutions. In section 1 we give the problem settings in the framework of
axisymmetry. Then a 1D system of equations is derived in section 2, which approximats
the 3D system along its symmetry axis. Some useful lemmas are given in section 3. Then
based on the solutions to the 1D system, by adding perturbation terms, we construct finite
energy solutions to the 3D system, and we study the global regularity of the constructed
solutions in both large viscosity and small initial data cases in section 4.



Chapter 2
Existence of Global Solutions to
the General Ericksen-Leslie
System

Liquid crystal is often viewed as the fourth state of the matter besides the gas, liquid
and solid, or as an intermediate state between liquid and solid. It possesses no or partial
positional order, while at the same time, displays an orientational order. The nematic
phase is the simplest of liquid crystal phases and is close to the liquid phase. The
molecules float around as in a liquid phase, but have the tendency of aligning along a
preferred direction due to their orientation. The hydrodynamic theory of liquid crystals
due to Ericken and Leslie was developed around 1960’s [6, 29, 30]. However, the first
rigorous mathematical analysis of the Ericksen-Leslie system was made recently [10] (see
[9, 31] for a simplified system which carried important mathematical difficulties of the
original Ericksen-Leslie system, except the kinematic transport of the director field). In
the following context, after the introduction of the problem setting and related results in
section 2.1, the formal physical derivation of the model is made via energetic variational
approaches in section 2.2. And the proof of wellposedness of the liquid crystal system
under large viscosity case is provided in section 2.3.

2.1 Problem settings and related results

A well established model for nematic liquid crystal flow is the Ericksen–Leslie system
consisting of the following equations (cf. [6, 7, 30,32,33]):

ρt + v · ∇ρ = 0, (2.1.1)
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ρv̇ = ρF + ∇ · σ̂, (2.1.2)

ρ1ω̇ = ρ1G + ĝ + ∇ · π. (2.1.3)

Equations (2.1.1)-(2.1.3) represent the conservation of mass, linear momentum, and an-
gular momentum respectively, with the anisotropic feature of liquid crystal materials
exhibited in (2.1.3) and its nonlinear coupling in (2.1.2) (cf. [6,10]). ρ is the fluid density,
ρ1 is a (positive) inertial constant. v = (v1, v2, v3)T is flow velocity and d = (d1, d2, d3)T

represents the director of molecules. ĝ is the intrinsic force associated with d and π is the
director stress. F and G are the external body force and external director body force.
The superposed dot denotes the material derivative. The notations

A =
1
2
(∇v + ∇T v), Ω =

1
2
(∇v −∇T v), ω = ḋ = dt + (v · ∇)d, N = ω − Ω d

denote the rate of strain tensor, skew-symmetric tensor, the material derivative of d, the
changing rate of the director relative to fluid, respectively. Here, we consider the flow of
an incompressible liquid, namely, ∇ · v = 0. We have the following constitutive relations
in the system (2.1.1)–(2.1.3) for σ̂, π and ĝ:

σ̂ij = −Pδij − ρ
∂W

∂dk,i
dk,j + σij , (2.1.4)

πij = βidj + ρ
∂W

∂dj,i
, (2.1.5)

ĝi = γdi − βjdi,j − ρ
∂W

∂di
+ gi. (2.1.6)

P is a scalar function representing the pressure. The vector β = (β1, β2, β3)T and the
scalar function γ (called director tension) are the Lagrangian multipliers for the constraint
on the length of director |d| = 1, with the Oseen-Frank energy functional W for the
equilibrium configuration of a unit director field:

W =
k1

2
(∇ · d)2 +

k2

2
|d × (∇× d)|2 +

k3

2
|d · (∇× d)|2

+(k2 + k4)[tr(∇d)2 − (∇ · d)2]. (2.1.7)

The kinematic transport of the director d (denoted by g) is given by:

gi = λ1Ni + λ2djAji, (2.1.8)

while the stress tensor σ has the following form:

σji = μ1dkdpAkpdidj + μ2djNi + μ3diNj + μ4Aij + μ5djdkAki + μ6didkAkj . (2.1.9)
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The (independent) coefficients μ1, ..., μ6 that may depend on material and temperature
are called Leslie coefficients, which are related to certain local correlations in the fluid
(cf. [33]).

In order to reduce the higher-order nonlinearities in the model (in the Lagrangian
multipliers β, γ for the nonlinear constraint |d| = 1), one frequently used method is to
introduce a proper penalty approximation, namely, we add the term F(d) = 1

4ε2 (|d|2−1)2

in W , which holds the information on the extensibility of the molecules. After the
discussions for each ε > 0, we then take the limit as ε → 0. This method is motivated by
the work on the gradient flow of harmonic maps into the sphere (cf. [34, 35]) and it has
been successfully used for other problems (cf. [9, 10, 31, 34]). The reformulated system
with penalty approximation also has natural physical interpretations. It is similar to that
proposed by Leslie in [7] for the flow of an anisotropic liquid with varying director length.
Mathematically, it is also quite similar to the system in [32] for nematic liquid crystals
with variable degree of orientation, despite some definite physical differences. We refer
to [9] for more discussions.

For the sake of simplicity, we set

W =
1
2
|∇d|2 +

1
4ε2

(|d|2 − 1)2.

The current choice of W corresponds to the elastically isotropic situation, i.e., k1 = k2 =
k3 = 1, k4 = 0. The case with more general Oseen-Frank energy (2.1.7) can be treated in
the same way, but the argument is more involved. Under the choice of penalized energy
W , we can remove the Lagrangian multipliers and set γ = βj = 0. Since the inertial
constant ρ1 is usually very small, we take ρ1 = 0. Moreover, we assume that the density
is constant and external forces vanish, namely, ρ = 1, F = 0, G = 0 (cf. [10]). Note that
F = 0 is equivalent to the assumption that the exterior forces are conservative (thus can
be absorbed into pressure).

Now the system (2.1.1)–(2.1.3) is reformulated to

vt + v · ∇v + ∇P = −∇ · (∇d �∇d) + ∇ · σ, (2.1.10)

∇ · v = 0, (2.1.11)

dt + (v · ∇)d − Ωd +
λ2

λ1
Ad = − 1

λ1
(Δd − f(d)) , (2.1.12)

where f(d) = F ′(d) = 1
ε2 (|d|2 − 1)d and σ is given by (2.1.9). We denote by ∇d � ∇d

the n × n-matrix (n = 2, 3) whose (i, j)-entry is ∇id · ∇jd, 1 ≤ i, j ≤ n. In the following
text, we just set ε = 1 and our results indeed hold for all ε > 0. We consider the system
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(2.1.10)–(2.1.12) subject to the periodic boundary conditions (i.e., in torus T
n, n = 2, 3):

v(x + ei, t) = v(x, t), d(x + ei, t) = d(x, t), for (x, t) ∈ ∂Q × R
+, (2.1.13)

and to the initial conditions

v|t=0 = v0(x), with ∇ · v0 = 0, d|t=0 = d0(x), for x ∈ Q, (2.1.14)

where Q is a unit square in R
n (n = 2, 3).

Due to Leslie coefficients’ temperature dependence, there are differences in behavior
between the various coefficients (cf. [33]): μ4, which does not involve the alignment
properties, is a rather smooth function of temperature; but all the other μ′s describe
couplings between orientation and flow, and are thus affected by a decrease in the nematic
order. The special role played by μ4 on the well-posedness of the liquid crystal system will
be shown in Theorems 2.3.2 and 3.3.1. In order to reduce the complexity of mathematical
analysis, we ignore the thermal effect in the subsequent sections so that μ′s are assumed
to be constants. Next, the following relations are introduced in the literature (cf. [7])

λ1 = μ2 − μ3, λ2 = μ5 − μ6, (2.1.15)

μ2 + μ3 = μ6 − μ5. (2.1.16)

(2.1.15) is achieved from the hydrodynamic point of view in order to guarantee the entropy
condition, that is, the second law of thermodynamics. (2.1.16) is called Parodi’s relation
(cf. [8]), which is derived from the Onsager reciprocal relations expressing the equality of
certain relations between flows and forces in thermodynamic systems out of equilibrium
(cf. [3]). Under the assumption of Parodi’s relation, we see that the dynamics of an
incompressible nematic liquid crystal flow involves five independent viscous coefficients.

Since the mathematical structure of E-L system is quite complicated, in the past there
were only some works on its simplified versions (cf. [9,31,36–38]). As far as the general E-L
system is concerned, the only known result in analysis is [10]. In particular, well-posedness
of the general E-L system (2.1.10)-(2.1.12) subject to Dirichlet boundary conditions was
proved under the special assumption λ2 = 0, which brings another extra constraint on the
Leslie coefficients. Although the physical meaning of this assumption is unclear, it brings
great convenience in mathematical analysis such that the maximum principle for |d| holds
(cf. [10, Theorem 3.1]). For the system (2.1.10)-(2.1.12), the maximum principle for |d|
fails when λ2 �= 0. This leads to extra difficulties in the study of well-posedness that we
are not able to handle those highly nonlinear stress terms as in [10]. Even in the 2D case,
one fails to obtain global existence of solutions without any further restriction on the
viscous coefficients. This is rather different from all the cases studied in the literature.
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On the other hand, we have to confine ourselves to the periodic boundary conditions,
because one cannot get rid of certain boundary terms when performing integration by
parts in the derivation of higher-order energy inequalities.

2.2 Derivation of model via energetic variational approaches

In the general case with λ2 �= 0, after imposing some additional constraints, we can still
formally establish the basic energy law which governs the dynamics of the general system
(2.1.10)–(2.1.12). Conversely, given the basic energy law, one can also recover the gen-
eral Ericksen–Leslie system by energetic variational approaches. Furthermore, through
different types of energetic methods, say, Onsager’s maximal dissipation principle and
Least Action Principle, we are able to distinguish the dissipative part and conservative
part among all stress terms.

2.2.1 Derivation of basic energy law

It has been pointed out [10] that the Ericksen–Leslie system (2.1.10)–(2.1.14) obeys cer-
tain dissipative energy law under proper assumptions on the physical coefficients, which
plays an important role in the study of hydrodynamical motions of liquid crystal flows
(cf. [9, 10]). Generally speaking, the physical singularities tracked by people are those
energetically admissible ones (cf. [36]). Denote the total energy of the system (2.1.10)–
(2.1.14) by

E(t) =
1
2
‖v‖2 +

1
2
‖∇d‖2 +

∫
Q
F(d)dx. (2.2.1)

By a direct (formal) calculation with smooth solutions (v, d) to the system (2.1.10)–
(2.1.14), we have

d

dt
E(t) = −

∫
Q

[
μ1|dT Ad|2 +

μ4

2
|∇v|2 + (μ5 + μ6)|Ad|2

]
dx

+λ1‖N‖2 + (λ2 − μ2 − μ3)(N, Ad). (2.2.2)

We note that the assumption (2.1.15) is sufficient to guarantee the existence of the
Lyapunov-type functional. However, the Parodi’s relation (2.1.16) is not necessary in
the derivation of (2.2.2). If (2.1.16) is supposed, we immediately arrive at the energy
inequality obtained in [10, Theorem 2.1]. Here and after, we always assume that

λ1 < 0, (2.2.3)

μ5 + μ6 ≥ 0, (2.2.4)

μ1 ≥ 0, μ4 > 0. (2.2.5)
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These assumptions are supposed in [7,39] to provide necessary conditions for the dissipa-
tion of the director field. If λ2 = 0, it follows from (2.2.2)–(2.2.5) that E(t) is decreasing
in time, which is exactly the case studied in [10].

Lemma 2.2.1. Suppose that (2.1.15), (2.1.16), (2.2.3), (2.2.4) and (2.2.5) are satisfied.
In addition, if we assume

(λ2)2

−λ1
≤ μ5 + μ6, (2.2.6)

then the total energy E(t) is decreasing in time such that

d

dt
E(t) = −

∫
Q

[
μ1|dT Ad|2 +

μ4

2
|∇v|2

]
dx +

1
λ1

‖Δd − f(d)‖2

−
(
μ5 + μ6 +

(λ2)2

λ1

)
‖Ad‖2 ≤ 0. (2.2.7)

Proof. By (2.1.16), i.e., λ2 = −(μ2 + μ3), we infer from the transport equation of d (cf.
(2.1.12)) that

λ1‖N‖2 + (λ2 − μ2 − μ3)(N, Ad) = (N, λ1N + λ2Ad) + λ2(N, Ad)

= (N,−Δd + f) + λ2(N, Ad) =
1
λ1

‖Δd − f(d)‖2 +
λ2

λ1
(Ad, Δd − f + λ1N)

=
1
λ1

‖Δd − f(d)‖2 − (λ2)2

λ1
‖Ad‖2. (2.2.8)

Inserting the above result into (2.2.2), we arrive at our conclusion.

On the contrary, if the Parodi’s relation (2.1.16) does not hold, alternative assump-
tions will be required to ensure the dissipation of the total energy.

Lemma 2.2.2. Suppose that (2.1.15), (2.2.3), (2.2.4) and (2.2.5) are satisfied. If we also
assume that

|λ2 − μ2 − μ3| ≤ 2
√
−λ1

√
μ5 + μ6, (2.2.9)

then the following energy inequality holds:

d

dt
E(t) ≤ −

∫
Q

[
μ1|dT Ad|2 +

μ4

2
|∇v|2

]
dx ≤ 0. (2.2.10)

Moreover, if
|λ2 − μ2 − μ3| < 2

√
−λ1

√
μ5 + μ6, (2.2.11)

then the dissipation in (2.2.10) will be stronger in the sense that there exists a small
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constant η > 0,

d

dt
E(t) ≤ −

∫
Q

[
μ1|dT Ad|2 +

μ4

2
|∇v|2

]
dx − η(‖Ad‖2 + ‖N‖2) ≤ 0. (2.2.12)

Proof. The conclusion easily follows from (2.2.2) and the Cauchy–Schwarz inequality.

2.2.2 Energetic variational approaches

From the energetic point of view, the system is the coupling between the transport of the
director d in the macroscopic velocity field v and the averaged microscopic effect in the
form of induced macroscopic elastic stress. This indicates some interesting hydrodynamic
and rheological properties of the liquid crystal flows. Based on the basic energy law in
Section 2, and due to the special feature of nematic liquid crystal flow such that the
molecular orientations are transported and deformed by the flow under parallel transport,
we develop a formal physical derivation of the induced elastic stress through energetic
variational approaches. This provides us with a better understanding of the competition
between hydrodynamic kinetic energy and internal elastic energy due to the presence of
the orientational field d.

In the context of hydrodynamics, the basic variable is the flow map (particle trajec-
tory) x(X, t). X is the original labeling (the Lagrangian coordinate) of the particle, which
is also referred to as the material coordinate. x is the current (Eulerian) coordinate, and
is also called the reference coordinate. For a given velocity field v(x, t), the flow map is
defined by the ODE:

xt = v(x(X, t), t), x(X, 0) = X.

We define the director field
d(x(X, t), t) = Ed0(X)

with d0(X) being the initial condition. For general ellipsoid shaped liquid crystal molecules,
the deformation E carries all the information of micro structures and configurations and
it satisfies (cf. [36,38,40])

Ė =
(
α∇v + (1 − α)(−∇T v)

)
E, (2.2.1)

which can also be reformulated into a combination of a symmetric part and a skew part:

Ė = ΩE + (2α − 1)AE, (2.2.2)

where 2α− 1 = r2−1
r2+1

∈ [−1, 1] and r ∈ R is the aspect ratio of the ellipsoids (cf. [38,40]).
In our present case, α = 1

2(1 − λ2
λ1

) and we deduce from either (2.2.1) or (2.2.2) that the



19

total (pure) transport equation of d is

dt + v · ∇d − α∇v d + (1 − α)(∇T v)d = dt + v · ∇d − Ωd +
λ2

λ1
Ad = 0. (2.2.3)

The energetic variational treatment of complex fluids starts with the energy dissipa-
tive law for the whole coupled system [41]:

dEtot

dt
= −D,

where Etot is the total energy of the system such that Etot = Ekinetic + Eint and D is
the dissipation function of Onsager, which usually consists of a linear combination of the
squares of various rate functions such as velocity and rate of strain etc. (cf. [3–5]). Our
dissipation functional (like in [42]) departs from Onsager’s-loosely defined between Eqs.
5.6 and 5.7 on p. 2227 in [4]-because we use variations with respect to two functions (cf.
[43,44]). The dissipative part uses a variation with respect to the rate function (velocity
v) while the conservative (Hamiltonian) part with respect to the domain (position x). In
what follows, we recover the system (2.1.10)–(2.1.12) from the basic energy law in the
case that (2.1.15) and the Parodi’s relation (2.1.16) are satisfied.

The kinetic energy and internal elastic energy of the system (2.1.10)–(2.1.12) are given
by

Ekinetic =
1
2
‖v‖2, Eint = E(d) =

1
2
‖∇d‖2 +

∫
Q
F(d)dx.

The Legendre transformation gives the action of the trajectories of the particles in terms
of the flow map x(X, t):

A =
∫ T

0
(Ekinetic − Eint)dt.

The least action principle optimizes the action A with respect to all trajectories x(X, t)
by setting its variation with respect to domain to zero, namely δxA = 0, with incom-
pressibility of flow and the pure transport equation of d (2.2.3). Then we obtain the
weak variational from of the conservative force balance equation of classical Hamiltonian
mechanics and recover the conservative (Hamiltonian) part of the full system (2.1.10)–
(2.1.12) (see appendix for the detailed calculations). We just formally write down the
strong form:

vt + v · ∇v + ∇P = −∇ · (∇d �∇d) + ∇ · σ̃,

where σ̃ = μ2N ⊗ d + μ3d ⊗ N + η5Ad ⊗ d + η6d ⊗ Ad,
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with constants

μ2 =
1
2
(λ1 − λ2), μ3 = −1

2
(λ1 + λ2), η5 =

λ2

2
− (λ2)2

2λ1
, η6 = −λ2

2
+

(λ2)2

2λ1
.

Here, we use ⊗ for the usual Kronecker multiplication, namely, (a ⊗ b)i,j = aibj for
a, b ∈ R

n, n = 2, 3 and 1 ≤ i, j ≤ n (cf. e.g., [9, 38]).

Taking the elastic dissipation into account in the transport equation (2.2.3), we get

dt + v · ∇d − Ω d +
λ2

λ1
Ad =

1
λ1

δE

δd
= − 1

λ1
(Δd − f(d)). (2.2.4)

The dissipation functional to the system (2.1.10)–(2.1.14) is in terms of the variables A

and N (cf. (2.2.2))

D = μ1‖dT Ad‖2 +
μ4

2
‖∇v‖2 + (μ5 + μ6)‖Ad‖2 + λ1‖N‖2 + (λ2 − μ2 − μ3)(N, Ad).

Moreover, under the Parodi’s relation, it can be transformed into the following form (cf.
(2.2.8)):

D = μ1‖dT Ad‖2 +
μ4

2
‖∇v‖2 − 1

λ1
‖Δd − f(d)‖2 +

(
μ5 + μ6 +

(λ2)2

λ1

)
‖Ad‖2. (2.2.5)

According to the maximum dissipation principle, we treat the dissipation functional by
performing a variation with respect to the velocity v in the Eulerian coordinates. Letting
δv(1

2D) = 0 with incompressibility of flow, we obtain a weak variational form of the dis-
sipative force balance law (see appendix for the detailed calculations). Then we formally
state its strong form:

∇ · (∇d �∇d) −∇ · σ + ∇P = 0, where (2.2.6)

σ = μ1(dT Ad)d ⊗ d + μ2N ⊗ d + μ3d ⊗ N + μ4A + μ5Ad ⊗ d + μ6d ⊗ Ad,

with constants
μ2 =

1
2
(λ1 − λ2), μ3 = −1

2
(λ1 + λ2).

We have thus derived the induced stress term in the momentum equation (2.1.10) and
recovered the dissipative part of (2.1.10).

The most surprising fact from the above derivation is that the induced stress terms

−∇ · (∇φ �∇φ) + μ2∇ · (N ⊗ d) + μ3∇ · (d ⊗ N) + η5∇ · (Ad ⊗ d) + η6∇ · (d ⊗ Ad)

can be derived either by the least action principle or the maximum dissipation principle.
Therefore, we are not able to specify them as either conservative forces or dissipative
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forces. However, the remaining part

μ1∇ · [(dT Ad)d ⊗ d] + μ4∇ · A + (μ5 − η5)∇ · (Ad ⊗ d) + (μ6 − η6)∇ · (d ⊗ Ad) (2.2.7)

can only be derived by the maximum dissipation principle. This indicates that it can be
identified as dissipative force.

2.3 Existence of global classical solutions in large viscosity
case

This section is devoted to the proof of existence of global classical solutions of the system
(2.1.10)–(2.1.12) under the assumption of large μ4. The main theorem in this section
also indicates that Parodi’s relation is not necessary in the wellposedness of the system
under large viscosity assumption.

2.3.1 Preliminary

First, we recall the well established functional setting for periodic problems (cf. [9, 45]):

Hm
p (Q) = {u ∈ Hm(Rn, R) | u(x + ei) = u(x)},

Ḣm
p (Q) = Hm

p (Q) ∩
{

u :
∫

Q
u(x)dx = 0

}
,

H = {v ∈ L2
p(Q), ∇ · v = 0}, where L2

p(Q) = H0
p(Q),

V = {v ∈ Ḣ
1
p(Q), ∇ · v = 0},

V ′ = the dual space of V.

For any Banach space X, we denote by X the space (X)r, r ∈ N, endowed with the
product norms. For the sake of simplicity, we denote the inner product on L2

p(Q) (or
L2

p(Q)) as well as H by (·, ·) and the associated norm by ‖ · ‖. The space Hm(Q) will be
shorthanded by Hm and the Hm-inner product (m ∈ N) can be given by 〈v, u〉Hm =∑m

|κ|=0(D
κv, Dκu), where κ = (κ1, ..., κn) is a multi-index of length |κ| =

∑n
i=1 κi

and Dκ = ∂κ1
x1

, , , ∂κn
xn

. We denote by C the genetic constant possibly depending on
λ′

is, μ
′
is, ν, Q, f and the initial data. Special dependence will be pointed out explicitly in

the text if necessary. Throughout our work, the Einstein summation convention will be
used.

As mentioned earlier, we are now using the Ginzburg–Landau approximation to re-
duce the order of nonlinearities caused by the constraint |d| = 1. We note that either for
the highly simplified liquid crystal model (cf. [9]), or for the general Ericksen–Leslie sys-
tem (2.1.10)–(2.1.14) with additional assumption λ2 = 0, the maximum principle holds
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for d-equation (cf. [9, 10]). In these case, one can deduce from the basic energy law that

v ∈ L2(0, T ; V ) ∩ L∞(0, T ; H), d ∈ L2(0, T ;H2) ∩ L∞(0, T ;H1), (2.3.1)

which is sufficient for the following formulation of weak solutions:

Definition 2.3.1. (v, d) is called a weak solution of (2.1.10)–(2.1.12) in QT = Q×(0, T )
if it satisfies (2.3.1) and for any smooth function ψ(t) with ψ(T ) = 0 and φ(x) ∈ H1

p ,
the following weak formulation together with the initial and boundary conditions (2.1.13)
and (2.1.14) hold:

−
∫ T

0
(v, ψtφ)dt +

∫ T

0
(v · ∇v, ψφ)dt

= −(v0, φ)ψ(0) +
∫ T

0
(∇d �∇d, ψ∇φ)dt −

∫ T

0
(σ, ψ∇φ)dt,

where σ is defined in (2.1.4), and

−
∫ T

0
(d, ψtφ)dt +

∫ T

0
(v · ∇d, ψφ)dt −

∫ T

0
(ωd, ψφ)dt

+
λ2

λ1

∫ T

0
(Ad, ψφ)dt = −(d0, φ)ψ(0) − 1

λ1

∫ T

0
(Δd − f(d), ψφ)dt.

Thanks to the maximum principle, one can also derive the existence of weak solutions
by applying a semi-Galerkin procedure (cf. [9,10]). However, as it has been pointed in [10],
although the artificial assumption λ2 �= 0 brings convenience in analysis, its physical
meaning is unclear. For the more general case considered in the present paper, we no
longer assume λ2 = 0, thus the kinetic transport includes the stretching effect that leads
to the loss of maximum principle for the molecule director d. As a result, the extra stress
term ∇·σ can not be well-defined in the weak formulation Definition 2.3.1. This suggests
the requirement for higher-order regularity of the solution, i.e., d ∈ L∞(0, T ;L∞).

2.3.2 Galerkin approximation

We shall apply the semi-Galerkin method (cf. [9, 10]) to prove the existence of solution
to system (2.1.10)–(2.1.14) .

In the periodic setting, one can define mapping S associated with the Stokes problem:

Su = −Δu, ∀ u ∈ D(S) = {u ∈ H, Su ∈ H} = Ḣ2
p ∩ H.

The operator S can be seen as an unbounded positive linear self-adjoint operator on H.
If D(S) is endowed with the norm induced by Ḣ0

p(Q), then S becomes an isomorphism
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from D(S) onto H. We take {φi}∞i=1 with ‖φi‖ = 1 be the eigenvectors of the Stokes
operator in the periodic case with zero mean,

−Δφi + ∇Pi = κiφi, ∇ · φi = 0 in Q,

∫
Q

φi(x) dx = 0,

where Pi ∈ L2(Q) and 0 < κ1 ≤ κ2 ≤ .... The eigenfunctions φi are smooth and {φi}∞i=1

forms an orthogonal basis of H (cf. [45]). Let Pm : H → Hm
.= span{φ1, · · · , φm},

m ∈ N.

We consider the following (variational) approximate problem: ∀ um ∈ Hm,

(∂tvm, um) + (vm · ∇vm, um) = (∇dm �∇dm,∇um) − (σm,∇um), (2.3.2)

Nm +
λ2

λ1
Am · dm = − 1

λ1
Δdm − f(dm), (2.3.3)

vm(x, 0) = Pmv0(x), dm(x, 0) = d0(x), (2.3.4)

vm(x + ei, t) = vm(x, t), dm(x + ei, t) = dm(x, t), (2.3.5)

where

Ωm =
∇vm −∇T vm

2
, Am =

∇vm + ∇T vm

2
, Nm = ∂tdm + vm · ∇dm + Ωm · dm

σm = μ1d
T
mAmdmdm ⊗ dm + μ2Nm ⊗ dm + μ3dm ⊗ Nm + μ4Am + μ5Amdm ⊗ dm

+μ6dm ⊗ Amdm.

Here and after, we assume that the initial data satisfy

v0 ∈ V, d0 ∈ H2(Q). (2.3.6)

For vm ∈ Hm, we have the expansion vm(x, t) =
∑m

i=1 gi
m(t)φi(x). Then, (2.3.2) can be

reduced to the following ODE system

d

dt
gi
m(t) =

1
2
μ4κig

i
m(t) + Ak(t)gk

m(t) + Bi
jkg

k
m(t)gj

m(t) + Di
m(t), i = 1, ..., m, (2.3.7)

subject to the initial conditions gi
m(0) = (v0, φi), where for j, k = 1, ..., m,

Ak(t) = −μ1

(
dT

m · ∇φk + ∇T φk

2
· dm, dT

m · ∇φi · dm

)
+

(λ2μ2

λ1
− μ5

)(∇φk + ∇T φk

2
, dm · ∇φi

)

+
(λ2μ2

λ1
− μ6

)(∇φk + ∇T φk

2
, dm · ∇T φi

)
,

Bi
jk = −(

φj · ∇φk, φi

)
,
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Di
m(t) =

(
∇dm,∇φi · ∇dm

)
dx +

μ2

λ1

∫
Q

(
Δdm − f(dm), dm · ∇φi

)
+

μ3

λ1

(
Δdm − f(dm), dm · ∇T φi

)
.

We have the following local existence result for the approximate problem.

Theorem 2.3.1. For any m > 0, v0 ∈ V and d0 ∈ H2, there is a T0 > 0 depending on v0,
d0, Q and m such that the approximate problem (2.3.2)–(2.3.5) admits a unique strong
solution (vm, dm) such that vm ∈ L∞(0, T0; V ) ∩ L2(0, T0;H2), dm ∈ L∞(0, T0;H2) ∩
L2(0, T0;H3), and (2.3.2)–(2.3.5) are satisfied a.e. in QT0 := Q × [0, T0]. Besides,
(vm, dm) is smooth in the interior of QT0 .

Proof. The local existence of weak solutions to (2.3.2)–(2.3.5) follows from the semi-
Galerkin procedure with a fixed point argument (cf. [9,10,38]). We just point the differ-
ence in the proof.

Step 1. For 0 < T ≤ 1, given u =
∑m

i=1 gi
m(t)φi(x) with gi

m(0) = (v0, φi) and∑m
i=1 |gi

m(t)|2 ≤ M = 2 + 2
∑m

i=1 |(v0, φi)|2 on [0, T ], we consider the parabolic equation
(2.3.3) for dm with vm = u and dm(0) = d0. The existence of dm easily follows from the
standard parabolic equation. Moreover, from the observation that u is smooth in space,
we have

d

dt

∫
Q

(
1
2
|∇dm|2 + F(dm)

)
dx − 1

2λ1
‖ − Δdm + f(dm)‖2

≤ C‖u‖2
L∞‖∇dm‖2 + C‖∇u‖2

L∞‖dm‖2 ≤ C

∫
Q

(
1
2
|∇dm|2 + F(dm)

)
dx + C,

where C depends on M , Q, m and coefficients of the system. By the Gronwall inequality,

‖dm(t)‖2
H1 ≤ C(‖d0‖H1)eC , ∀ t ∈ [0, T ]. (2.3.8)

Besides, apply Δ to (2.3.3) and test it by Δdm, we infer from the Sobolev embedding
theorem that

1
2

d

dt
‖Δdm‖2 − 1

λ1
‖∇Δdm‖2

≤ C‖∇Δdm‖(‖∇f(dm)‖ + ‖∇u‖L∞‖∇dm‖ + ‖u‖L∞‖Δdm‖ + ‖Δu‖L∞‖dm‖)
≤ − 1

2λ1
‖∇Δdm‖2 + C‖Δdm‖2 + C, (2.3.9)

where C depends on M , Q, m and coefficients of the system. The Gronwall inequality
together with (2.3.8) yields that holds

‖dm(t)‖2
H2 ≤ C(‖d0‖H2)eC , ∀ t ∈ [0, T ],
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which implies the L∞ estimate of dm:

‖dm(t)‖L∞ ≤ CeC , ∀ t ∈ [0, T ].

Step 2. We substitute dm into (2.3.2) and solve the ODE (2.3.7). By the above
estimates on dm, we see that the Ak,B

i
jk,D

i
m are all bounded by a constant that depends

on M , Q, m and coefficients of the system. Then we can see that (2.3.7) admits a unique
local solution g̃i

m(t) with g̃i
m(0) = (v0, φi).

Denote v =
∑m

i=1 g̃i
m(t)φi(x) with g̃i

m(0) = (v0, φi). Then we can argue exactly as
in [9, 38] that for sufficiently small T0, the mapping L : u �→ v admits a fixed point
in the space V (T0) = {v(x, t) =

∑m
i=1 gi

m(t)φ(x) :
∑m

i=1(g
i
m(t))2 ≤ M for 0 ≤ t ≤

T0, g
i
m(0) = (v0, φi)}, which completes the proof of existence. The regularity of solutions

in the interior of QT0 follows from the regularity theory for parabolic equations and a
bootstrap argument (cf. [46]). Then the uniqueness of smooth/regular solutions can be
proved in a standard way by Gronwall’s inequality.

2.3.3 Uniform a prior estimates

In order to prove the (global) existence of solutions to our original problem (2.1.10)–
(2.1.14), we have to derive some uniform (in time) estimates that are independent of
approximation parameter m and time T0. These uniform estimates enable us to (i) pass
to the limit as m → ∞ to obtain a solution to system (2.1.10)–(2.1.14) in proper Sobolev
spaces; (ii) extend the local solution to a global one on (0, +∞). Besides, the higher-order
estimates allow us to prove the uniqueness of the solution. We note that the advantage of
above mentioned semi-Galerkin scheme is that the approximate solutions satisfy the same
basic energy law and higher-order differential inequalities for smooth solutions to system
(2.1.10)–(2.1.14). For the sake of simplicity, the following calculations are carried out
formally for smooth solutions. However, they can be justified by using the approximate
solutions to (2.3.2)–(2.3.5) and then pass to limit.

The basic energy law plays an important role in the derivation of uniform estimates.
According to the discussions in Section 2.2, we shall consider two cases, in which the
basic energy law holds:

• Case I. with Parodi’s relation: λ2 �= 0, (2.1.15), (2.1.16), (2.2.3)–(2.2.6);

• Case II. without the Parodi’s relation: λ2 �= 0, (2.1.15), (2.2.3)–(2.2.5) and
(2.2.11).

We first consider Case I. It follows from Lemma 2.2.1 that

d

dt
E(t) ≤ −

∫
Ω

μ1(Akpdkdp)2dx − μ4

2
‖∇v‖2 +

1
λ1

‖Δd − f(d)‖2, ∀ t ≥ 0.
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This implies the uniform estimates

‖v‖ ≤ C, ‖d‖H1 ≤ C, t ≥ 0, (2.3.10)

∫ ∞

0

[∫
Q

μ1(Akpdkdp)2dx +
μ4

2
‖∇v‖2 − 1

λ1
‖Δd − f(d)‖2

]
dt ≤ C, (2.3.11)

where the constant C > 0 depends only on ‖v0‖ and ‖d0‖H1 .

Next, we try to derive a new type high-order energy inequality, which turns out to
be useful in the study of some (simplified) liquid crystal models on the global existence
of regular solutions as well as the long-time behavior (cf. [9, 10,38,47,48]). Define

A(t) = ‖∇v(t)‖2 + ‖Δd(t) − f(d(t))‖2. (2.3.12)

A direct calculation yields that

1
2

d

dt
A(t) = −(Δv, vt) + (Δd − f,Δdt − f ′(d)dt)

= (Δv, v · ∇v) + (Δv,∇dΔd) + (∇ · σ,−Δv) +
1
λ1

‖∇(Δd − f)‖2

−(
Δd − f,Δ(v · ∇d)

)
+

(
Δd − f,Δ(Ωd)

) − λ2

λ1

(
Δd − f,Δ(Ad)

)
+

(
Δd − f, f ′(d)

( 1
λ1

(Δd − f) + v · ∇d + Ωd +
λ2

λ1
Ad

))
. (2.3.13)

We expand the right-hand side of (2.3.13) term by term.

(∇ · σ,−Δv) = −
∫

Q

∇jσij∇l∇lvidx = −
∫

Q

∇lσij∇l∇jvidx

= −μ1

∫
Q

∇l(dkdpAkpdidj)∇l∇jvidx − μ4

∫
Q

∇l(Aij)∇l∇jvidx

−μ2

∫
Q

∇l(djNi)∇l∇jvidx − μ3

∫
Q

∇l(diNj)∇l∇jvidx

−μ5

∫
Q

∇l(djdkAki)∇l∇jvidx − μ6

∫
Q

∇l(didkAkj)∇l∇jvidx,

then we have

−μ1

∫
Q

∇l(dkdpAkpdidj)∇l∇jvidx

= −μ1

2

∫
Q

dkdp∇lAkpdidj∇l(∇jvi + ∇ivj)dx − 2μ1

∫
Q

Akp∇ldkdpdidj∇l∇jvidx

−2μ1

∫
Q

Akpdkdpdi∇ldj∇lAijdx

= −μ1

∫
Q

(dkdp∇lAkp)2dx − 2μ1

∫
Q

Akp∇ldkdpdidj∇l∇jvidx
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−2μ1

∫
Q

Akpdkdpdi∇ldj∇lAijdx. (2.3.14)

By the incompressibility condition, we see that

−μ4

∫
Q

∇l(Aij)∇l∇jvidx = −μ4

∫
Q

∇j(Aij)∇l∇lvidx = −μ4

2
‖Δv‖2, (2.3.15)

−μ2

∫
Q

∇l(djNi)∇l∇jvidx − μ3

∫
Q

∇l(diNj)∇l∇jvidx

= μ2

∫
Q

djNiΔ(Aij + Ωij)dx + μ3

∫
Q

diNjΔ(Aij + Ωij)dx

= (μ2 + μ3)
∫

Q

djNiΔ(Aij)dx − (μ2 − μ3)
∫

Q

diNj , Δ(Ωij)dx. (2.3.16)

−μ5

∫
Q

∇l(djdkAki)∇l∇jvidx − μ6

∫
Q

∇l(didkAkj)∇l∇jvidx,

= μ5

∫
Q

djdkAkiΔ(Aij + Ωij)dx + μ6

∫
Q

djdkAkiΔ(Aij − Ωij)dx,

= (μ5 + μ6)
∫

Q

djdkAkiΔAijdx + (μ5 − μ6)
∫

Q

djdkAkiΔΩijdx,

= −(μ5 + μ6)
∫

Q

∇lAkidk∇lAijdjdx − (μ5 + μ6)
∫

Q

Akidk∇ldj∇lAijdx

−(μ5 + μ6)
∫

Q

Aki∇ldkdj∇lAijdx + (μ5 − μ6)
(
Ad, ΔΩd

)
= −(μ5 + μ6)‖∇A · d‖2 − (μ5 + μ6)

∫
Q

Akidk∇ldj∇lAijdx

−(μ5 + μ6)
∫

Q

Aki∇ldkdj∇lAijdx + (μ5 − μ6)
(
Ad, ΔΩd

)
. (2.3.17)

We have

(Δd − f,Δ(Ω d))

= (Δd − f,ΔΩ d) + 2(Δd − f,∇Ω∇d) + (Δd − f,ΩΔd)

= −λ1

∫
Q

djNiΔΩij dx − λ2

(
Ad, ΔΩd

)
+ 2(Δd − f,∇Ω∇d) + (Δd − f,ΩΔd),

= −λ1

∫
Q

djNiΔΩij dx − λ2

(
Ad, ΔΩd

) − (∇(Δd − f), Ω∇d) + (Δd − f,∇Ω∇d),

(2.3.18)

and

−λ2

λ1

(
Δd − f,Δ(Ad)

)
= λ2

(
N, Δ(Ad)

)
+

(λ2)2

λ1

(
Ad, Δ(Ad)

)
= λ2

(
N, ΔAd

)
+ 2λ2(N,∇A∇d) + λ2(N, AΔd)
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−λ2
2

λ1

∫
Q

|∇A · d|2dx − λ2
2

λ1

∫
Q

|A · ∇d|2dx. (2.3.19)

By condition (2.1.15), the first term on the right-hand side of (2.3.18) cancels with the second
term of the right-hand side of (2.3.16) and the second term on the right-hand side of (2.3.18)
cancels with the fourth term of the right-hand side of (2.3.17). By (2.1.16), the first term of the
right-hand side of (2.3.19) cancels with the first term of the right-hand side of (2.3.16).

For the fifth term on the right-hand side of (2.3.13), we have

−(Δd − f,Δ(v · ∇d)) = −(Δd − f,Δv · ∇d) − 2(Δd − f,∇v · ∇2d) − (Δd − f, v · ∇Δd),

and due to the incompressibility of v,

−(Δd − f,Δv · ∇d) = −(Δv,∇dΔd) + (Δv,∇F(d))

= −(Δv,∇dΔd),

−2(Δv − f,∇v · ∇2d) = 2(∇(Δv − f),∇v · ∇d), (2.3.20)

−(Δd − f, v · ∇Δd) = −(Δd − f, v · ∇(Δd − f)) − (Δd − f, v · ∇f)

= −(Δd − f, v · ∇f).

Hence,

−(Δd − f,Δ(v · ∇d)) + (Δv,∇dΔd)

+
(

Δd − f, f ′(d)
(

1
λ1

(Δd − f) + v · ∇d − Ω d +
λ2

λ1
Ad

))

=
1
λ1

∫
Q

f ′(d)|Δd − f |2dx −
(

Δd − f, f ′(d)
(

Ω d − λ2

λ1
Ad

))
+2(∇(Δv − f),∇v · ∇d). (2.3.21)

Summing up, we infer from (2.3.14)–(2.3.21) that

1
2

d

dt
A(t) + μ1‖dT · ∇A · d‖2 +

μ4

2
‖Δv‖2 + (μ5 + μ6)‖∇A · d‖2 − 1

λ1
‖∇(Δd − f)‖2

= −2μ1

∫
Q

Akp∇ldpdkdidj∇lAijdx − 2μ1

∫
Q

Akpdpdkdi∇ldj∇lAijdx

−(μ5 + μ6)
∫

Q

Aikdk∇ldj∇lAijdx − (μ5 + μ6)
∫

Q

Aik∇ldkdj∇lAijdx

−(∇(Δd − f), Ω∇d) + (Δd − f,∇Ω∇d) + 2λ2(N,∇A∇d)

+λ2(N, AΔd) − (λ2)2

λ1

∫
Q

|∇A · d|2dx − (λ2)2

λ1

∫
Q

|A · ∇d|2dx + (Δv, v · ∇v)

+
1
λ1

∫
Q

f ′(d)|Δd − f |2dx −
(

Δd − f, f ′(d)
(

Ωd − λ2

λ1
Ad

))
+2(∇(Δv − f),∇v · ∇d)

� I1 + . . . + I14. (2.3.22)
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Lemma 2.3.1. Assume n = 2 or n = 3. Under assumption of Case I we have the following
inequality:

d

dt
A(t) ≤ −

(μ4

2
− C1μ4

1
2 Ã(t)

)
‖Δv‖2 −

(
1

−2λ1
− C2μ

− 1
4

4 Ã(t)
)
‖∇(Δd − f)‖2 + C3A(t),

(2.3.23)
where Ã(t) = A(t) + 1, Ci (i = 1, 2, 3) are constants depending on Q, f, ‖v0‖, ‖d0‖H1 , λ′s, and
μ′s but except μ4.

Proof. Without loss of generality, we assume μ4 ≥ 1. Our argument is valid for any μ4 ≥ μ > 0.
Below we only give the proof for n = 3, the proof for n = 2 can be done in a similar way with
minor modifications. We now estimate the right-hand side of (2.3.22) term by term.

I1 = −2μ1

∫
Q

Akp∇ldpdkdidj∇lAijdx ≤ μ1

4
‖dT · ∇A · d‖2 + C‖d‖2

L∞‖∇v‖2
L3‖∇d‖2

L6 .

By the lower-order estimate (2.3.10), we can apply the Agmon’s inequality that

‖d‖L∞ ≤ C(1 + ‖Δd‖ 1
2 ). (2.3.24)

Besides, from (2.3.10), the Gagliardo–Nirenberg inequality and (2.3.24), we obtain

‖∇v‖L3 ≤ ‖∇v‖ 1
2 ‖Δv‖ 1

2 , ‖∇v‖L4 ≤ ‖∇v‖ 1
4 ‖Δv‖ 3

4 , ‖∇d‖L6 ≤ C(‖Δd‖ + 1),

‖Δd‖ ≤ ‖Δd − f(d)‖ + ‖f(d)‖ ≤ ‖Δd − f(d)‖ + C,

‖∇Δd‖ ≤ ‖∇(Δd − f(d)‖ + ‖∇f(d)‖ ≤ ‖∇(Δd − f(d)‖ + ‖f ′(d)‖L∞‖∇d‖
≤ ‖∇(Δd − f(d)‖ + C(1 + ‖d‖2

L∞) ≤ ‖∇(Δd − f(d)‖ + C(1 + ‖Δd‖)
≤ ‖∇(Δd − f(d)‖ + C(1 + ‖∇Δd‖ 1

2 ‖∇d‖ 1
2 + ‖∇d‖)

≤ ‖∇(Δd − f(d)‖ +
1
2
‖∇Δd‖ + C. (2.3.25)

As a consequence,

‖d‖2
L∞‖∇v‖2

L3‖∇d‖2
L6 ≤ C‖∇v‖‖Δv‖(‖Δd − f‖3 + 1)

≤
(
μ

1
2
4 + μ

1
2
4 ‖Δd − f‖2

)
‖Δv‖2 + Cμ

− 1
2

4 ‖∇v‖2(1 + ‖Δd − f‖4)

≤ μ
1
2
4 Ã‖Δv‖2 + Cμ

− 1
2

4 ‖∇v‖2 + Cμ
− 1

2
4 ‖∇v‖2

(
‖∇Δd‖ 1

2 ‖∇d‖ 1
2 + ‖∇d‖ + C

)4

≤ μ
1
2
4 Ã‖Δv‖2 + Cμ

− 1
2

4 ‖∇v‖2 + Cμ
− 1

2
4 ‖∇v‖2(‖∇(Δd − f)‖2 + 1)

≤ μ
1
2
4 Ã‖Δv‖2 + Cμ

− 1
2

4 A‖∇(Δd − f)‖2 + CA. (2.3.26)

This implies that

I1 ≤ μ1

4
‖dT · ∇A · d‖2 + μ

1
2
4 Ã‖Δv‖2 + Cμ

− 1
2

4 A‖∇(Δd − f)‖2 + CA. (2.3.27)
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For I2, using integration by parts, we obtain

I2 = −2μ1

∫
Q

Akpdpdkdi∇ldj∇lAijdx

= 2μ1

∫
Q

∇lAkpdpdkdi∇ldjAijdx + 4μ1

∫
Q

Akpdp∇ldkAijdi∇ldjdx

+2μ1

∫
Q

Akpdk∇ldiAijdp∇ldjdx + 2μ1

∫
Q

AkpdpdkdiΔdjAijdx

≤ μ1

4
‖dT · ∇A · d‖2 + C‖d‖2

L∞‖∇v‖2
L3‖∇d‖2

L6 + C‖∇v‖2
L4‖Δd‖‖d‖3

L∞ ,

(2.3.28)

where

C‖∇v‖2
L4‖Δd‖‖d‖3

L∞ ≤ C‖∇v‖ 1
2 ‖Δv‖ 3

2 (‖Δd − f‖ 5
2 + 1)

≤ μ4
1
2 Ã‖Δv‖2 + Cμ4

− 3
2 ‖∇v‖2(1 + ‖Δd − f‖4), (2.3.29)

and now the right-hand side in (2.3.29) can be estimated exactly as (2.3.26). Therefore,

I2 ≤ μ1

4
‖dT · ∇A · d‖2 + μ

1
2
4 Ã‖Δv‖2 + Cμ

− 1
2

4 A‖∇(Δd − f)‖2 + CA. (2.3.30)

Using integration by parts, we deduce from (2.3.25) that (cf. the argument in (2.3.26))

I3 + I4 = −(μ5 + μ6)
∫

Q

Aikdk∇ldj∇lAijdx − (μ5 + μ6)
∫

Q

Aik∇ldkdj∇lAijdx

= (μ5 + μ6)
∫

Q

Aik∇ldk∇ldjAijdx + (μ5 + μ6)
∫

Q

AikdkΔdjAijdx

≤ C‖∇v‖2
L4‖∇d‖2

L4 + C‖∇v‖2
L4‖Δd‖‖d‖L∞

≤ C‖∇v‖ 1
2 ‖Δv‖ 3

2
(‖Δd − f‖ 3

2 + 1
)

≤ μ4
1
2 Ã‖Δv‖2 + Cμ4

− 3
2 ‖∇v‖2. (2.3.31)

Next,

I5 = −(∇(Δd − f), Ω∇d) ≤ C‖∇(Δd − f)‖‖∇v‖L3‖∇d‖L6

≤ C‖∇(Δd − f)‖‖∇v‖ 1
2 ‖Δv‖ 1

2 (‖Δd − f‖ + 1)

≤ μ
1
4
4 ‖∇v‖‖Δv‖ + Cμ

− 1
4

4 Ã‖∇(Δd − f)‖2

≤ μ
1
2
4 ‖Δv‖2 + Cμ

− 1
4

4 Ã‖∇(Δd − f)‖2 + C‖∇v‖2. (2.3.32)

I6 = (Δd − f,∇Ω∇d) ≤ ‖∇Ω‖‖Δd − f‖‖∇d‖L∞

≤ C‖Δv‖‖Δd − f‖(‖∇(Δd − f)‖ 3
4 + 1)

≤ μ
1
2
4 ‖Δv‖2 + Cμ

− 2
3

4 ‖Δd − f‖2‖∇(Δd − f)‖2 + C‖Δd − f‖2

≤ μ
1
2
4 ‖Δv‖2 + Cμ

− 2
3

4 A‖∇(Δd − f)‖2 + CA. (2.3.33)
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Using integration by parts and (2.1.12), we get

I7 + I8 + I9 = 2λ2(N,∇A∇d) + λ2(N, AΔd) − (λ2)2

λ1

∫
Q

|A∇d|2dx

= λ2(N,∇A∇d) − λ2(∇N, A∇d) − (λ2)2

λ1

∫
Q

|A∇d|2dx

= −λ2

λ1
(Δd − f,∇A∇d) − (λ2)2

λ1
(Ad,∇A∇d)

+
λ2

λ1

(∇(Δd − f), A∇d
)

+
(λ2)2

λ1
(∇Ad,A∇d). (2.3.34)

Then we estimate the four terms on the right-hand side of (2.3.34). Similar to (2.3.32) and
(2.3.33), we have

−λ2

λ1
(Δd − f,∇A∇d) +

λ2

λ1

(∇(Δd − f), A∇d
)

≤ C‖Δv‖‖Δd − f‖‖∇d‖L∞ + C‖∇(Δd − f)‖‖∇v‖L3‖∇d‖L6

≤ μ
1
2
4 ‖Δv‖2 + Cμ

− 1
4

4 A‖∇(Δd − f)‖2 + CA,

and a similar argument as in (2.3.31) yields

− (λ2)2

λ1
(Ad,∇A∇d) +

(λ2)2

λ1
(∇A d, A∇d) ≤ μ4

1
2 Ã‖Δv‖2 + Cμ4

− 3
2 ‖∇v‖2,

hence
I7 + I8 + I9 ≤ μ

1
2
4 Ã‖Δv‖2 + Cμ

− 1
4

4 A‖∇(Δd − f)‖2 + CA. (2.3.35)

(2.2.4) and (2.2.6) indicate that

I10 = − (λ2)2

λ1

∫
Q

|∇Ad|2dx ≤ (μ5 + μ6)
∫

Q

|∇Ad|2dx. (2.3.36)

Furthermore,

I11 = (Δv, v · ∇v) ≤ ‖v‖L4‖∇v‖L4‖Δv‖ ≤ C‖v‖ 1
4 ‖∇v‖ 3

4 ‖∇v‖ 1
4 ‖Δv‖ 3

4 ‖Δv‖
≤ μ4

1
2 ‖Δv‖2 + μ4

1
2 ‖∇v‖2‖Δv‖2 + Cμ4

− 7
2 ‖∇v‖2

≤ μ4
1
2 Ã‖Δv‖2 + CA. (2.3.37)

I12 =
1
λ1

∫
Q

f ′(d)|Δd − f |2dx ≤ C(‖d‖2
L6 + 1)‖Δd − f‖2

L3

≤ C
(
‖Δd − f‖‖∇(Δd − f)‖ + ‖Δd − f‖2

)
≤ − 1

2λ1
‖∇(Δd − f)‖2 + C‖Δd − f‖2. (2.3.38)

I13 = −
(

Δd − f, f ′(d)
(

Ω d − λ2

λ1
Ad

))
≤ C‖f ′(d)d‖‖Δd − f‖L3‖∇v‖L6

≤ C
(
‖∇(Δd − f)‖ + ‖Δd − f‖

)
‖∇v‖ 1

2 ‖Δv‖ 1
2
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≤ μ
1
2
4 ‖Δv‖2 + μ4

− 1
4 ‖∇(Δd − f)‖2 + CA. (2.3.39)

For I14, the estimate is exactly the same as (2.3.32) such that

I14 ≤ μ4
1
2 ‖Δv‖2 + Cμ

− 1
4

4 Ã‖∇(Δd − f)‖2 + C‖∇v‖2. (2.3.40)

Collecting all the above estimates together, we obtain (2.3.23).

Lemma 2.3.2. Under the assumption Case I, for any initial data (v0, d0) ∈ V ×H2(Q), if the
viscosity μ4 is properly large, i.e., μ4 ≥ μ0

4(μi, λ1, λ2, v0, d0), i = 1, 2, 3, 5, 6, we have

A(t) ≤ C, ∀t ≥ 0. (2.3.41)

The uniform bound C is a constant depending only on f,Q, ‖v0‖V , ‖d0‖H2 , μ′s, λ′s.

Proof. It follows from (2.3.23) that

d

dt
Ã(t)+

(μ4

2
− C1μ4

1
2 Ã(t)

)
‖Δv‖2 +

(
1

−2λ1
− C2μ

− 1
4

4 Ã(t)
)
‖∇(Δd−f)‖2 ≤ C3Ã(t). (2.3.42)

On the other hand, by (2.3.11), there exists a positive constant M depending only on μ′
is, λ

′
is,

‖v0‖, ‖d0‖H1 , such that

∫ t+1

t

Ã(τ)dτ ≤
∫ t+1

t

A(τ)dτ + 1 ≤ M, ∀t ≥ 0. (2.3.43)

Now we choose μ4 large enough satisfying

μ4
1
2 ≥ 2C1(Ã(0) + 4M + C3M) + 4λ2

1C
2
2 (Ã(0) + 4M + C3M)2 + 1. (2.3.44)

As a result, there must be some T0 > 0 such that

μ4

2
− C1μ4

1
2 Ã(t) ≥ 0, − 1

2λ1
− C2μ4

− 1
4 Ã(t) ≥ 0, for all t ∈ [0, T0].

Moreover, on [0, T0],
d

dt
Ã(t) ≤ C3Ã(t). (2.3.45)

Denote T∗ = sup T0. First we show that T∗ ≥ 1 by a contradiction argument.
If T∗ < 1, then

Ã(T∗) ≤ Ã(0) + C3

∫ 1

0

Ã(t)dt ≤ Ã(0) + C3M.

On the other hand, from the definition of T∗, we have for t = T∗

μ
1
2
4 < max{2C1Ã(T∗), 4λ2

1C
2
2 Ã2(T∗)}, (2.3.46)

which contradicts (2.3.44).
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Next, if T∗ < +∞, (2.3.43) implies that there is a t1 ∈ [T∗ − 1
2 , T∗] such that

Ã(t1) ≤ 4M.

As a result,

Ã(T∗) ≤ 4M + C3

∫ T∗

t1

Ã(τ)dτ ≤ 4M + C3M. (2.3.47)

Then from the definition of T∗, we again have (2.3.46), which together with (2.3.47) yields a
contradiction with (2.3.44). Hence, we have the uniform estimate

Ã(t) ≤ min

{
μ4

1
2

2C1
,

μ4
1
4

−2λ1C2

}
, ∀ t ≥ 0.

The proof is complete.

Next, we briefly discuss Case II.

Corollary 2.3.1. For n = 2, 3, under the assumption Case II, we still have inequality (2.3.23).

Proof. If Parodi’s relation (2.1.16) doesn’t hold, i.e., λ2 + (μ2 + μ3) �= 0, then in the proof of
Theorem 2.3.1, the first term of the right-hand side of (2.3.19) does not cancel with the first term
of the right-hand side of (2.3.16). Consequently, there is one extra term:

(λ2 + μ2 + μ3)
(
Nidj , Δ(Aij)

)
.

Besides, since we no longer have (2.2.6) in Case II, we have to redo the estimate for (2.3.36).
Using the d equation (2.1.12) and integration by parts, we get

(λ2 + μ2 + μ3)
(
Nidj , Δ(Aij)

)
=

λ2 + μ2 + μ3

λ1

(
∇(Δd − f)d, ∇A

)
+

λ2 + μ2 + μ3

λ1

(
(Δd − f)∇d, ∇A

)

+
λ2(λ2 + μ2 + μ3)

λ1

(∇Ad, ∇Ad
)

+
2λ2(λ2 + μ2 + μ3)

λ1

(
A∇d, ∇Ad

)
. (2.3.48)

We estimate the the right-hand side of (2.3.48). First, we notice that the second term can be
estimated as (2.3.33), while the fourth term of (2.3.48) is similar to (2.3.31). For the first term,
we have

λ2 + μ2 + μ3

λ1

(
∇(Δd − f)d, ∇A

)
≤ C‖d‖L∞‖∇(Δd − f)‖‖Δv‖ ≤ C(‖Δd − f‖ 1

2 + 1)‖∇(Δd − f)‖‖Δv‖
≤ μ4

1
4 (1 + ‖Δd − f‖)‖Δv‖2 +

C

μ4
1
4
‖∇(Δd − f)‖2

≤ μ4
1
2 Ã‖Δv‖2 + Cμ

− 1
4

4 ‖∇(Δd − f)‖2. (2.3.49)

Finally, concerning the third term in (2.3.48) and the two terms in (2.3.36), we infer from (2.1.15)
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and (2.2.11) that

λ2(λ2 + μ2 + μ3)
λ1

− (λ2)2

λ1
− (μ5 + μ6) = − 1

λ1
[λ1(μ5 + μ6) − λ2(μ2 + μ3)]

< − 1
λ1

[
−1

2
(λ2 − μ2 − μ3)2 − λ2(μ2 + μ3)

]
=

1
2λ1

[(λ2)2 + (μ2 + μ3)2] ≤ 0,

which yields [
λ2(λ2 + μ2 + μ3)

λ1
− (λ2)2

λ1
− (μ5 + μ6)

] ∫
Q

|∇Ad|2dx ≤ 0.

Combining the other estimates in the proof of Theorem 2.3.1, we obtain the inequality (2.3.23)
under assumption Case II.

Corollary 2.3.2. Under the assumption Case II, for any initial data (v0, d0) ∈ V ×H2(Q), if
the viscosity μ4 is properly large, i.e., μ4 ≥ μ0

4(μi, λ1, λ2, v0, d0), i = 1, 2, 3, 5, 6, we have A(t) ≤ C

for t ≥ 0 with C being a constant depending only on f , Q, ‖v0‖V , ‖d0‖H2 , μ′s, λ′s.

2.3.4 Existence and uniqueness of classical solutions

Under both Case I and Case II, the uniform estimates we have obtained are independent of the
approximation parameter m and time t. This indicates that for both cases, (vm, dm) is a global
solution to the approximate problem (2.3.2)–(2.3.4):

vm ∈ L∞(0, +∞; V ) ∩ L2
loc(0, +∞;H2), dm ∈ L∞(0, +∞;H2) ∩ L2

loc(0, +∞;H3), (2.3.50)

which further implies that

∂tvm ∈ L2
loc(0, +∞;L2), ∂tdm ∈ L2

loc(0, +∞;L2). (2.3.51)

The uniform estimates enable us to pass to the limit for (vm, dm) as m → ∞. By a similar
argument to [9, 38], we can show that there exist limit functions (v, d) satisfying

v ∈ L∞(0,∞; V ) ∩ L2
loc(0, +∞;H2), d ∈ L∞(0, +∞;H2) ∩ L2

loc(0, +∞;H3), (2.3.52)

such that (v, d) is a strong solution and system (2.1.10)–(2.1.12) are satisfied a.e. in QT for
arbitrary T > 0. A bootstrap argument based on Serrin’s result [49] and Sobolev embedding
theorems leads to the existence of classical solutions.

To prove the uniqueness of regular solutions to problem (2.1.10)–(2.1.14), we need the fol-
lowing continuous dependence on initial data. The proof is lengthy but quite standard, hence we
omit the proof here. The corresponding proof in a simplified case can be found in [48].

Lemma 2.3.3. Suppose that assumptions in Theorem 2.3.2 are satisfied. (vi,di) (i = 1, 2)
are global solutions to problem (2.1.10)–(2.1.14) corresponding to initial data (v0i, d0i) ∈ V ×
H2

p(Q) (i = 1, 2). Moreover, we assume that for any T > 0, the following estimate holds

‖vi(t)‖H1 + ‖di(t)‖H2 ≤ M, ∀ t ∈ [0, T ]. (2.3.53)
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Then for any t ∈ [0, T ], we have

‖(v1 − v2)(t)‖2 + ‖(d1 − d2)(t)‖2
H1

+
∫ t

0

(μ4

2
‖∇(v1 − v2)(τ)‖2 + ‖Δ(d1 − d2)(τ)‖2

)
dτ

≤ 2eCt(‖v01 − v02‖2 + ‖d01 − d02‖2
H1),

where C is a constant depending on ‖v0‖V , ‖d0‖H2 , μ′s, λ′s but not on t.

Corollary 2.3.3. The global solution (v, d) obtained in Lemma 2.3.2 or Corollary 2.3.2 is unique.

Proof. Since the global classical solution (v, d) to the problem (2.1.10)–(2.1.14) obtained in both
Lemma 2.3.2 and Corollary 2.3.2 is uniformly bounded in V × H2, it follows immediately from
Lemma 2.3.3 that the solution is unique.

Summing up, we have proved the following main theorem in this chapter.

Theorem 2.3.2. Let n = 2, 3. We assume that either the conditions in Case I or in Case
II are satisfied. For any (v0, d0) ∈ V × H2(Q), under the large viscosity assumption μ4 ≥
μ0

4(μi, λ1, λ2, v0, d0), i = 1, 2, 3, 5, 6, the problem (2.1.10)–(2.1.14) admits a unique global solution
in the sense that

v ∈ L∞(0,∞; V ) ∩ L2
loc(0, +∞;H2), d ∈ L∞(0, +∞;H2) ∩ L2

loc(0, +∞;H3). (2.3.54)

.

Remark 2.3.1. Due to the complexity of the system and the appearance of highly nonlinear
stress terms, we have to impose the large viscosity assumption even in 2D case, which is quite
different from all existing related results.

Remark 2.3.2. If in addition, the assumption (i) μ1 = 0, λ2 �= 0, or (ii) μ1 ≥ 0, λ2 = 0 is
supposed, the same result holds true in 2D without assuming the viscosity μ4 to be large. For (i),
we notice that the nonlinearity of the highest-order vanishes. In particular, this applies for the
rod-like system in [38], which is a simplified version of the general Ericksen–Leslie model. On the
other hand, for (ii), one can apply the maximum principle for d to obtain its L∞-bound, which
makes the proof much easier (cf. [10]).



Chapter 3
Long Time Behavior for Global
Solutions to the General
Ericksen-Leslie System

Generally speaking, the study of long behavior of solutions to nonlinear dissipative evolution
equations can be divided into two categories: In the first category, it is concerned with the long
behavior of a global solution (or a single orbit) for any given initial datum, i.e., whether the
global solution will converge to an equilibrium as time goes to infinity. In the second category,
it is concerned with the asymptotic behavior of a family of global solutions (or orbits) for initial
data starting from any bounded set in certain Sobolev space, i.e., whether the family of global
solutions will converge to a compact invariant set, namely, a global attractor. In this chapter for
the global solution to the liquid crystal system, we are concerned with the first category. With the
help of a suitable Łojaciewicz–Simon type inequality, we prove that although different kinematic
transports for the liquid crystal molecules will yield different dynamics of the hydrodynamical
system, we show that global solutions to our system have uniform long-time behavior under
different kinematic transports, i.e., convergence to equilibrium with a uniform convergence rate.
Section 3.1 is a brief discussion of the application of Łojasiewicz inequality in finite dimensional
Euclidean space. Section 3.2 is devoted to the proof of convergence of global solutions to single
equilibrium states as times goes to infinity, and Section 3.3 provides with the estimate on the
convergence rate.

3.1 Application of finite dimensional Łojasiewicz inequality

The key ingredient in this chapter is the application of the Łojasiewicz–Simon approach. Since
it is a generalization of the Łojasiewicz inequality in finite dimensional space R

m for analytic
functions, to understand it better, let us briefly recall the applications in the finite dimensional
case first.

In the 1960’s, Łojaciewicz proved the following fundamental inequality for gradient systems
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of analytic functions in finite dimensional Euclidean spaces [12,13].

Theorem 3.1.1 (Łojasiewicz inequality). Suppose that F : R
m → R is an analytic function

near its critical point a (i.e., ∇F (a) = 0). Then there is a positive constant σ and θ ∈ (0, 1
2 )

depending on a, such that when ‖x − a‖Rm ≤ σ,

|F (x) − F (a)|1−θ ≤ ‖∇F (x)‖Rm . (3.1.1)

The Łojasiewicz inequality is a powerful tool to study the asymptotic behavior of solutions
to gradient systems. To describe the idea, let us recall a simple example discussed in [19] (for
other applications on ODEs, cf. e.g. [50]).

Consider the ODE system
{

xt = −∇f(x), x ∈ R
N ,

x(0) = x0.
(3.1.2)

We assume that f is analytic in x, f ≥ 0. We also assume that the ODE system (3.1.2) admits
a bounded smooth solution x(t), defined for all t ≥ 0. For brevity we denote F (t) = f(x(t)),
t ≥ 0. Multiplying both sides of (3.1.2) with xt(t), we know

dF (t)
dt

= −‖∇f(x(t))‖2
RN = −‖xt(t)‖2

RN ≤ 0, ∀ t ≥ 0. (3.1.3)

Therefore, the nonnegative function F (t) is decreasing on [0, +∞) and serves as a Lyapunov
function for (3.1.2). Then integrating (3.1.3) from 0 to t, we have

F (t) +
∫ t

0

‖xt(τ)‖2
RN dτ = F (0). (3.1.4)

For the gradient system (3.1.2), we infer that the ω-limit set of x(t), is nonempty and consists
of equilibria (cf. [51]). Namely, there exists an increasing unbounded sequence {tn}n∈N and an
equilbrium x∞ ∈ R

N , such that

lim
tn→∞ ‖x(tn) − x∞‖RN = 0. (3.1.5)

Consequently, F (tn) ≥ f(x∞) and

lim
tn→∞F (tn) = F∞ = f(x∞) ≥ 0. (3.1.6)

Our goal is to prove
lim

tn→∞ ‖x(t) − x∞‖RN = 0. (3.1.7)

We can discuss in two subcases.

Case 1. If there exists some t0 ≥ 0, such that F (t0) = f(x∞), then we deduce from (3.1.3)
that ∀ t ≥ t0, x(t) ≡ x(t0).
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Case 2. If ∀ t > 0, F (t) > f(x∞), due to (3.1.3), (3.1.6), we have

lim
t→∞F (t) = f(x∞). (3.1.8)

Let ε = (σθ
4 )

1
θ , it follows from (3.1.5) and (3.1.8) that there exists an integer K such that for all

n > K.

‖x(tn) − x∞‖RN <
σ

4
, 0 < F (tn) − f(x∞) < ε. (3.1.9)

Define
t̄n = sup {t > tn

∣∣ ‖x(s) − x∞‖RN < σ, ∀ s ∈ [tn, t].}
In what follows, we recall the simple argument introduced in [14], which provides a convenient

way to apply the Łojasiewicz inequality.

Proposition 3.1.1. There exists n0 ≥ K, such that t̄n0 = +∞.

Proof. The proof follows from the contradiction argument in [14]. Suppose ∀n ≥ K, tn < t̄n <

+∞. We can apply Theorem 3.1.1 on interval [tn, t̄n]. As a consequence, the length of the
trajectory x(t) between [tn, t̄n] is

∫ t̄n

tn

‖xt(τ)‖RN dτ =
∫ t̄n

tn

1
‖∇f(x(τ))‖RN

(− d

dτ
F (τ))dτ

≤
∫ t̄n

tn

1
|F (τ) − f(x∞)|1−θ

(− d

dτ
F (τ))dτ

=
1
θ

[
(F (tn) − f(x∞))θ − (F (t̄n) − f(x∞))θ

]
<

1
θ
(F (tn) − f(x∞))θ <

1
θ

εθ <
σ

4
. (3.1.10)

Therefore,

‖x(t̄n) − x∞‖RN ≤ ‖x(t̄n) − x(tn)‖RN + ‖x(tn) − x∞‖RN

<

∫ t̄n

tn

‖xt(τ)‖RN dτ +
σ

4
<

σ

2
, (3.1.11)

which is a contradiction to the definition of t̄n.

Since ‖x(t) − x∞‖RN < σ, ∀ t ≥ tn0 , we infer that

∫ +∞

0

‖xt(τ)‖RN dτ < +∞.

Consequently,

‖x(t1) − x(t2)‖RN ≤
∫ t2

t1

‖xt(τ)‖RN dτ → 0, as t1, t2 → 0.

Hence, x(t) is uniformly convergent in R
N . Combined with (3.1.5), one arrives at our goal (3.1.7).
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Finally, let us study the convergence rate of x(t) to x∞. We only have to consider Case 2,
since Case 1 is trivial. We know from Theorem 3.1.1 that ∀ t ≥ tn0 ,

− d

dt
[F (t) − f(x∞)]θ = θ‖xt‖2

RN [F (t) − f(x∞)]θ−1 ≥ θ‖F (t) − f(x∞)‖1−θ
RN ,

which indicates (cf. [15, 22])

F (t) − f(x∞) ≤ C(1 + t)−
1

1−2θ , ∀ t ≥ tn0 . (3.1.12)

As a result,
∫ ∞

t

‖xt(τ)‖RN dτ ≤ −1
θ

∫ ∞

t

d

dτ
[F (t) − f(x∞)]θdτ ≤ C(1 + t)−

θ
1−2θ , ∀ t ≥ tn0 .

After choosing proper constant C, we can get

‖x(t) − x∞‖RN ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (3.1.13)

3.2 Convergence to Equilibrium

In this section we prove that the global bounded solution obtained in (2.3.2) will converge uni-
formly to a single equilibrium state solution as time goes to infinity, which implies the uniqueness
of the asymptotic limit of the system (2.1.10)–(2.1.14).

For brevity, we only discuss the situation in 2D case here, because the analysis in 3D can be
treated similarly.

For the system (2.1.10)-(2.1.14), we have the Lyapunov functional to the system

E(t) =
1
2
‖v(t)‖2 +

1
2
‖∇d(t)‖2 +

∫
Ω

F (d(t))dx (3.2.1)

satisfying the basic energy law (2.2.7), which immediately yields A(t) ∈ L1(0, +∞). Combined
with the uniform bounds of A(t) itself and the time derivative of A(t), provided by Lemma 2.3.2
and Corollary 2.3.2 respectively, we can easily prove

Lemma 3.2.1. For any t ≥ 0, in both 2D and 3D cases, under the large viscosity assumption
(2.3.44), for the unique global solution (v(t), d(t)), it holds

lim
t→+∞(‖v(t)‖H1 + ‖ − Δd(t) + f(d(t))‖) = 0. (3.2.2)

It follows immediately from Lemma 3.2.1 that the velocity v is uniformly convergent to 0 as
time goes to infinity. To prove the convergence of the director d, first let S be the set

S = {u | − Δu + f(u) = 0, in Q, u(x + ei) = u(x) on ∂Q}.

The ω-limit set of (v0, d0) ∈ V × H2
p (Q) ⊂ L2

p(Q) × H1
p (Q) is defined as follows:

ω(v0, d0) = {(v∞(x), d∞(x)) | there exists {tn} ↗ ∞ such that
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(v(tn), d(tn)) → (v∞, d∞) in L2(Q) × H1(Q), as tn → +∞}.

We infer from the uniform bound of (v(t), d(t)) and Lemma 3.2.1 that

Proposition 3.2.1. ω(v0, d0) is a nonempty bounded subset in H1
p (Q)×H2

p (Q), which is compact
in L2

p(Q) × H1
p (Q). Besides, all asymptotic limiting points (v∞, d∞) of the problem (2.1.10) -

(2.1.14) satisfy that v∞ = 0 and d∞ ∈ S.

Proposition 3.2.1 implies that there is an increasing unbounded sequence {tn}n∈N and a
function d∞ ∈ S such that

lim
tn→+∞ ‖d(tn) − d∞‖H1 = 0. (3.2.3)

Moreover, d∞ satisfies the equation

−Δd∞ + f(d∞) = 0, x ∈ Ω, d∞(x + ei) = d∞(x) on ∂Q. (3.2.4)

Let us look at the following elliptic periodic boundary value problem
{

−Δd + f(d) = 0, x ∈ Ω,

d(x + ei) = d(x), x on ∂Ω.
(3.2.5)

Define
E(d) :=

1
2
‖∇d‖2 +

∫
Q

F (d)dx. (3.2.6)

It is not difficult to see that the solution to (3.2.5) is a critical point of E(d) and conversely the
critical point of E(d) is a solution to (3.2.5).

In order to apply the Łojasiewicz–Simon approach to prove the convergence to equilibrium,
we shall introduce a suitable Łojasiewicz–Simon type inequality that is related to our problem.
In particular, we have (cf. [21])

Lemma 3.2.2. [Łojasiewicz–Simon inequality] Let ψ be a critical point of E(d). Then there
exist constants θ ∈ (0, 1

2 ) and β > 0 depending on ψ such that for any d ∈ H1
p (Q) satisfying

‖d − ψ‖H1
p(Q) < β, it holds

‖ − Δd + f(d)‖(H1
p(Q))′ ≥ |E(d) − E(ψ)|1−θ, (3.2.7)

where (H1
p (Q))′ is the dual space of H1

p (Q).

Remark 3.2.1. Lemma 3.2.2 can be viewed as an extended version of Simon’s result [52] for
scalar functions under the L2-norm.

We prove the convergence result following a simple argument first introduced in [14] in which
the key observation is that after a certain time t0, d(t) will fall into a certain small neighborhood
of d∞ and stay there forever.

From the basic energy law (2.2.7), we can see that E(t) is decreasing on [0,∞), and it has
a finite limit as time goes to infinity because it is nonegative. Therefore, it follows from (3.2.2)
and (3.2.3) that

lim
tn→+∞ E(tn) = E(d∞). (3.2.8)
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On the other hand, we can infer from (2.2.7) that E(t) ≥ E(d∞), for all t > 0, and the equal sign
holds if and only if, for all t > 0, v = 0 and d solves problem (3.2.4).

We now consider all possibilities.

Case 1. If there is a t0 > 0 such that E(t0) = E(d∞), then for all t > t0, we deduce from (2.2.7)
that

‖v‖ = ‖∇v‖ ≡ 0, ‖ − Δd + f(d)‖ ≡ 0. (3.2.9)

It follows from (2.1.12), (3.2.9) and the Sobolev embedding theorem that for t ≥ t0,

0 ≤ ‖dt‖ ≤ − 1
λ1

‖ − Δd + f(d)‖ + |λ2

λ1
|‖Ad‖ + ‖v · ∇d‖ + ‖Ωd‖

≤ ‖v‖L4‖∇d‖L4 + ‖Ω‖‖d‖L∞

≤ C‖∇v‖‖∇d‖L4 + C‖∇v‖ = 0. (3.2.10)

Namely, d is independent of time for all t ≥ t0. Due to (3.2.3), we conclude that d(t) ≡ d∞ for
t ≥ t0.

Case 2. For all t > 0, we suppose that E(t) > E(d∞). First we assume that the following claim
holds true.

Proposition 3.2.2. There is a t0 > 0 such that for all t ≥ t0, ‖d(t) − d∞‖H1 < β. Namely, for
all t ≥ t0, d(t) satisfies the condition in Lemma 3.2.2.

In this case, it follows from Lemma 3.2.2 that

|E(d) − E(d∞)|1−θ ≤ ‖ − Δd + f(d)‖(H1
p(Q))′ ≤ ‖ − Δd + f(d)‖, ∀ t ≥ t0. (3.2.11)

The fact θ ∈ (0, 1
2 ) implies that 0 < 1 − θ < 1, 2(1 − θ) > 1. Consequently,

‖v‖2(1−θ) = ‖v‖2(1−θ)−1‖v‖ ≤ C‖v‖.

Then we infer from the basic inequality

(a + b)1−θ ≤ a1−θ + b1−θ, ∀ a, b ≥ 0

that

(E(t) − E(d∞))1−θ ≤
(

1
2
‖v‖2 + |E(d) − E(d∞)|

)1−θ

≤
(

1
2
‖v‖2 + ‖ − Δd + f(d)‖ 1

1−θ

)1−θ

≤
(

1
2

)1−θ

‖v‖2(1−θ) + ‖ − Δd + f(d)‖
≤ C‖v‖ + ‖ − Δd + f(d)‖. (3.2.12)
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Therefore, a direct calculation yields that

− d

dt
(E(t) − E(d∞))θ = −θ(E(t) − E(d∞))θ−1 d

dt
E(t)

≥ Cθ(‖∇v‖ + ‖ − Δd + f(d)‖)2
C‖v‖ + ‖ − Δd + f(d)‖

≥ C1(‖∇v‖ + ‖ − Δd + f(d)‖), ∀ t ≥ t0, (3.2.13)

where C1 is a constant depending on μ4, λ1, v0, d0, Q, θ.
Integrating from t0 to t, we get

(E(t) − E(d∞))θ + C1

∫ t

t0

(‖∇v(τ)‖ + ‖ − Δd(τ) + f(d(τ))‖)dτ

≤ (E(t0) − E(d∞))θ < ∞, ∀ t ≥ t0. (3.2.14)

Since E(t) − E(d∞) ≥ 0, we conclude that

∫ ∞

t0

(‖∇v(τ)‖ + ‖ − Δd(τ) + f(d(τ))‖)dτ < ∞. (3.2.15)

On the other hand, it follows from equation (2.1.12) and Sobolev embedding theorems that

‖dt‖ ≤ ‖v · ∇d‖ + ‖Ωd‖ + |λ2

λ1
|‖Ad‖ − 1

λ1
‖ − Δd + f(d)‖

≤ ‖v‖L4‖∇d‖L4 + ‖d‖L∞‖Ω‖ + |λ2

λ1
|‖∇v‖‖d‖L∞ − 1

λ1
‖ − Δd + f(d)‖

≤ C‖∇v‖ + C‖ − Δd + f(d)‖. (3.2.16)

Hence, ∫ ∞

t0

‖dt(τ)‖dτ < +∞, (3.2.17)

which easily implies that as t → +∞, d(t) converges in L2(Q). This and (3.2.3) indicate that

lim
t→+∞ ‖d(t) − d∞‖ = 0. (3.2.18)

Since d(t) is uniformly bounded in H2(Q), by standard interpolation inequality we have

lim
t→+∞ ‖d(t) − d∞‖H1 = 0. (3.2.19)

On the other hand, the uniform bound of d in H2(Q) implies the weak convergence

d(t) ⇀ d∞, in H2(Q). (3.2.20)

However, the decay property of the quantity A(t) (cf. Lemma 3.2.1) could tell us more. Namely,
we could get strong convergence of d in H2. To see this, we keep in mind that

‖Δd − Δd∞‖ ≤ ‖Δd − Δd∞ − f(d) + f(d∞)‖ + ‖f(d) − f(d∞)‖
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≤ ‖Δd − f(d)‖ + ‖f ′(ξ)‖L4‖d − d∞‖L4

≤ ‖Δd − f(d)‖ + C‖d − d∞‖H1 . (3.2.21)

The above estimate together with (3.2.2) and (3.2.19) yields

lim
t→+∞ ‖d(t) − d∞‖H2 = 0. (3.2.22)

To finish the proof, it remains to show that Proposition 3.2.2 always holds true for the global
solution d(t) to the system (2.1.10)-(2.1.14). Define

t̄n = sup{ t > tn| ‖d(s) − d∞‖H1 < β, ∀ s ∈ [tn, t]}. (3.2.23)

It follows from (3.2.3) that for any ε ∈ (0, β), there exists an integer N such that when
n ≥ N ,

‖d(tn) − d∞‖H1 < ε, (3.2.24)
1
C1

(E(tn) − E(d∞))θ < ε. (3.2.25)

On the other hand, we know that the orbit of the classical solution d is continuous in H1. It follows
from the uniform bound of ‖d(t)‖H2 that d ∈ L2(t, t + 1; H2) for any t ≥ 0. The basic energy
law and (3.2.16) imply dt ∈ L2(t, t + 1; L2). Thus, for any t ≥ 0, it holds d ∈ C([t, t + 1];H1).
The continuity of the orbit of d in H1 and (3.2.24) yield that

t̄n > tn, for all n ≥ N. (3.2.26)

Then there are two possibilities:

(i). If there exists n0 ≥ N such that t̄n0 = +∞, then from the previous discussions in Case
1 and Case 2, the theorem is proved.

(ii) Otherwise, for all n ≥ N , we have tn < t̄n < +∞, and for all t ∈ [tn, t̄n], E(d∞) < E(t).
Then from (3.2.14) with t0 being replaced by tn, and t being replaced by t̄n, we obtain from
(3.2.25) that ∫ t̄n

tn

(‖∇v(τ)‖ + ‖ − Δd(τ) + f(d(τ))‖)dτ < ε. (3.2.27)

Thus, it follows that (cf. (3.2.16))

‖d(t̄n) − d∞‖ ≤ ‖d(tn) − d∞‖ + C

∫ t̄n

tn

‖dt(τ)‖dτ

≤ ‖d(tn) − d∞‖ + C

∫ t̄n

tn

(‖∇v(τ)‖ + ‖ − Δd(τ) + f(d(τ))‖)dτ

< Cε, (3.2.28)

which implies that limn→+∞ ‖d(t̄n) − d∞‖ = 0. Since d(t) is relatively compact in H1, there
exists a subsequence of {d(t̄n)}, still denoted by {d(t̄n)} converging to d∞ in H1, i.e., when n is
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sufficiently large,
‖d(t̄n) − d∞‖H1 < β,

which contradicts the definition of t̄n that ‖d(t̄n) − d∞‖H1 = β.
Summing up, we have considered all the possible cases and prove the conclusion that

lim
t→+∞(‖v(t)‖H1 + ‖d(t) − d∞‖H2) = 0, (3.2.29)

3.3 Convergence rate

Once we prove the convergence to an equilibrium, a natural question is the convergence rate. It
is well known that an estimate in certain lower–order norm can usually be obtained directly from
the Łojasiewicz–Simon approach (see, e.g., [15]). One can then in a straightforward way, obtain
estimates in higher–order norms by using interpolation inequalities (cf. [15]), and consequently,
the decay exponent deteriorates. We shall show that by using suitable energy estimates and
constructing proper differential inequalities, it is possible to obtain the same estimates on the
convergence rate in both higher and lower order norms. This procedure can be achieved by three
steps.
Step 1. As has been shown in the literature (cf. [15]), an estimate on the convergence rate
in certain lower–order norm could be obtained directly from the Łojasiewicz–Simon approach.
From Lemma 3.2.2 and (3.2.13), we have

d

dt
(E(t) − E(d∞)) + C1(E(t) − E(d∞))2(1−θ) ≤ 0, ∀ t ≥ t0, (3.3.1)

which implies
E(t) − E(d∞) ≤ C(1 + t)−

1
1−2θ , ∀ t ≥ t0. (3.3.2)

Integrating (3.2.13) on (t,∞), where t ≥ t0, it follows from (3.2.16) that

∫ ∞

t

‖dt(τ)‖dτ ≤
∫ ∞

t

C(‖∇v(τ)‖ + ‖ − Δd(τ) + f(d(τ))‖)dτ ≤ C(1 + t)−
θ

1−2θ . (3.3.3)

By adjusting the constant C properly, we obtain

‖d(t) − d∞‖ ≤ C(1 + t)−
θ

1−2θ , t ≥ 0. (3.3.4)

Step 2. The steady state corresponding to problem (2.1.10)-(2.1.14) satisfies the following
system:

∂v∞
∂t

+ v∞ · ∇v∞ + ∇P∞ = −∇ · (∇d∞ �∇d∞) + ∇ · σ∞,

(3.3.5)

∇ · v∞ = 0, (3.3.6)

−λ1

(
d∞t + v∞ · ∇d∞ − Ω∞d∞ +

λ2

λ1
A∞d∞

)
= Δd∞ − f(d∞), (3.3.7)

v∞(x + ei) = v∞(x), d∞(x + ei) = d∞(x). (3.3.8)
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where

A∞ =
∇v∞ + ∇T v∞

2
, Ω∞ =

∇v∞ −∇T v∞
2

,

N∞ =
∂d∞
∂t

+ v∞ · ∇d∞ − Ω∞d∞. (3.3.9)

σ∞ = μ1d
T
∞A∞d∞d∞ � d∞ + μ2N∞ � d∞ + μ3d∞ � N∞ + μ4A∞

+μ5A∞d∞ � d∞ + μ6d∞ � A∞d∞. (3.3.10)

Lemma 3.2.1 implies that all limiting points of system (2.1.10)-(2.1.14) satisfy v∞ = 0 and
d∞ ∈ S. As a result, system (3.3.5)–(3.3.8) can be reduced to

∇P∞ + ∇
( |∇d∞|2

2

)
= −∇d∞ · Δd∞, (3.3.11)

∇ · v∞ = 0, (3.3.12)

−Δd∞ + f(d∞) = 0, (3.3.13)

v∞(x + ei) = v(x), d∞(x + ei) = d(x), for x ∈ ∂Q (3.3.14)

In (3.3.11), we use the fact that

∇ · (∇d∞ �∇d∞) = ∇
( |∇d∞|2

2

)
+ ∇d∞ · Δd∞.

Subtracting the stationary problem (3.3.11)-(3.3.14) from the evolution problem (2.1.10)-(2.1.14),
we obtain that

vt + v · ∇v − νΔv + ∇(P − P∞) + ∇
( |∇d|2

2
− |∇d∞|2

2

)
= −∇d · Δd + ∇d∞ · Δd∞ + ∇ · σ, (3.3.15)

∇ · v = 0, (3.3.16)

−λ1(dt + v · ∇d − Ωd +
λ2

λ1
Ad) = Δ(d − d∞) − f(d) + f(d∞), (3.3.17)

v∞(x + ei) = v∞(x), d∞(x + ei) = d∞(x). (3.3.18)

Multiplying (3.3.15) by v and (3.3.17) by 1
λ1

(Δd − f) = 1
λ1

Δ(d − d∞) − 1
λ1

(f(d) − f(d∞)),
respectively, integrating over Q, and adding the results together, we have

d

dt

(
1
2
‖v‖2 +

1
2
‖∇d −∇d∞‖2 +

∫
Q

[F (d) − F (d∞) − f(d∞)(d − d∞)]dx

)

+
μ4

2
‖∇v‖2 − 1

λ1
‖Δd − f(d)‖2 + μ1‖dT ∇Ad‖2 +

(
μ5 + μ6 +

(λ2)2

λ1

)
‖Ad‖2

= (v,∇d∞ · Δd∞)

= (v,∇d∞ · (Δd∞ − f(d∞))) + (v · ∇d∞, f(d∞))

= 0. (3.3.19)
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Multiplying (3.3.17) by − 1
λ1

(d − d∞) and integrating in Q, we have

1
2

d

dt
‖d − d∞‖2 − 1

λ1
‖∇(d − d∞)‖2

= −(v · ∇d, d − d∞) + (Ωd, d − d∞) − λ2

λ1
(Ad, d − d∞) − 1

λ1
(f(d) − f(d∞), d − d∞)

:= I1. (3.3.20)

Using Sobolev embedding theorem, the right hand side can be estimated as follows

|I1| ≤ ‖v‖L4‖∇d‖L4‖d − d∞‖ + ‖Ω‖‖d‖L∞‖d − d∞‖ + |λ2

λ1
|‖A‖‖d‖L∞‖d − d∞‖

+‖f ′(ζ)‖L∞‖d − d∞‖2

≤ C‖∇v‖‖d − d∞‖ + C‖∇v‖‖d − d∞‖ + C‖d − d∞‖2

≤ ε1‖∇v‖2 + C‖d − d∞‖2. (3.3.21)

where ζ = ad + (1 − a)d∞ with a ∈ [0, 1].
Multiplying (3.3.20) by α > 0 and adding the resultant to (3.3.19), using (3.3.21), we get

d

dt

(
1
2
‖v‖2 +

1
2
‖∇d −∇d∞‖2 +

α

2
‖d − d∞‖2 +

∫
Ω

(F (d) − F (d∞))dx

−
∫

Ω

f(d∞)(d − d∞)dx

)
+ (

μ4

2
− αε1)‖∇v‖2 − 1

λ1
‖Δd − f(d)‖2

− α

λ1
‖∇(d − d∞)‖2 + μ1‖dT Ad‖2 +

(
μ5 + μ6 +

(λ2)2

λ1

)
‖Ad‖2

≤ Cα‖d − d∞‖2. (3.3.22)

On the other hand, by the Taylor’s expansion, we have

F (d) = F (d∞) + f(d∞)(d − d∞) + f ′(ξ)(d − d∞)2, (3.3.23)

where ξ = bd + (1 − b)d∞ with b ∈ [0, 1].
Then we deduce that∣∣∣∣

∫
Ω

[F (d) − F (d∞)dx − f(d∞)(d − d∞)]dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

f ′(ξ)(d − d∞)2dx

∣∣∣∣
≤ ‖f ′(ξ)‖L∞‖d − d∞‖2 ≤ C2‖d − d∞‖2. (3.3.24)

Let us define now, for t ≥ 0,

y(t) =
1
2
‖v(t)‖2 +

1
2
‖∇d(t) −∇d∞‖2 +

α

2
‖d(t) − d∞‖2 +

∫
Q

(F (d(t))dx − F (d∞))dx

−
∫

Ω

f(d∞)(d(t) − d∞)dx. (3.3.25)
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In (3.3.22) and (3.3.25), we choose

α ≥ 1 + 2C2 > 0, ε1 =
μ4

4α
. (3.3.26)

As a result,

y(t) + C2‖d − d∞‖2 ≥ 1
2
(‖v‖2 + ‖d − d∞‖2

H1). (3.3.27)

Furthermore, we infer from (3.3.27) that for certain constants C3, C4 > 0,

d

dt
y(t) + C3y(t) ≤ C4‖d − d∞‖2 ≤ C(1 + t)−

2θ
1−2θ . (3.3.28)

By Gronwall’s inequality, we have (cf. [17, 20])

y(t) ≤ C(1 + t)−
2θ

1−2θ , ∀ t ≥ 0, (3.3.29)

which together with (3.3.27) and (3.3.4) implies that

‖v(t)‖ + ‖d(t) − d∞‖H1 ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (3.3.30)

To sum up, we have proved the main theorem of this chapter:

Theorem 3.3.1. Under the assumption of Theorem 2.3.2, the global solution (v, d) satisfies

‖v(t)‖V + ‖d(t) − d∞‖H2 ≤ C(1 + t)−
θ

(1−2θ) , ∀ t ≥ 0, (3.3.31)

where d∞ is a solution to (3.2.5), C is a constant depending on v0, d0, f, Q, μ′
is, λ

′
is, d∞ and

θ ∈ (0, 1
2 ) depends on d∞.



Chapter 4
Parodi’s Relation and Stability in
the General Ericksen-Leslie
System

To derive the liquid crystal system the influence of spatial symmetry on the phenomenological
equations was considered. Later on the influence of the property of time reversal invariance of
the equations of motion of the individual particles was also taken into account. This property of
time reversal invariance expresses the fact that the mechanical equations of motion (classical as
well as quantum mechanical) of the particles are symmetric with respect to time. It implies that
the particles retrace their former paths if all velocities are reversed.

It is due to Onsager in [3] and [4] that a macroscopic theorem was concluded from this mi-
croscopic property, where the connection between the theory of irreversible processes and the
spontaneous fluctuations of thermodynamic variables of equilibrium systems was discussed. The
fluctuation theory was brought in to prove a theorem for irreversible processes, the reciprocal
relations: the symmetry of the matrix of coefficients of the set of linear equations relating ther-
modynamic "forces" and "fluxes". The connection was made by postulating that the decay of a
system from a given non-equilibrium state produced by a spontaneous fluctuation obeys, on the
average, the (empirical) law for the decay from the same state back to equilibrium. Consequently,
when Onsager’s reciprocal relations were applied to the liquid crystal model, one can get Parodi’s
relation (2.1.16) in a direct way (c.f. [8]). As a matter of fact, if (2.1.16) is accepted, then the
Ericksen-Leslie system is also referred to as the Ericksen-Leslie-Parodi system.

In this chapter we demonstrate that Parodi’s relation is a stability condition for the nematic
liquid crystal flow. In section 4.1 we provide the higher-order energy law under Parodi’s relation,
which implies the local existence of strong solutions and the global existence provided that the
initial data is near equilibrium. In section 4.2, we obtain some information on the stability of
local energy minimizers. From the mathematical point of view, the Parodi’s relation actually
serves as a stability condition.
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4.1 Higher-order energy inequality under Parodi’s relation

The results obtained in Chapter 2 indicate that in both Case I (with Parodi’s relation) and
Case II (without Parodi’s relation), the viscosity μ4 plays a crucial role. Recall Navier–Stokes
equation in 3D (with periodic boundary condition and v0 ∈ H), we can easily derive that

d

dt
‖∇v‖2 +

(
1
2
μ4 − C

μ4
‖∇v‖2

)
‖Δv‖2 ≤ 0,

which implies that the large viscosity assumption is equivalent to small initial data in H1-norm.
However, this is not the case for our complicated coupling system (2.1.10)–(2.1.14) (see e.g.
(2.3.44)). Actually, we do not have the large viscosity/small initial data alternative relation even
for the simplified liquid crystal systems [9, 38].

In this section, we shall see that the Parodi’s relation (2.1.16) does play an important role in
the well-posedness and stability of the system (2.1.10)–(2.1.14), if we do not suppose additional
requirement on the viscosity μ4. In particular, under assumptions in Case I, we are able to prove
a suitable higher-order energy inequality which implies the local existence of strong solutions and
the global existence provided that the initial data v0 is near zero and d0 is close to a local energy
minimizer d∗ of the elastic energy E(d).

First, we derive the higher-order energy inequality under assumptions in Case I:

Lemma 4.1.1. Let n = 2, 3. Suppose that the conditions in Case I are satisfied. Then the
following higher-order energy inequality holds:

d

dt
A(t) ≤ −μ1

2
‖dT · ∇A · d‖2 − μ4

8
‖Δv‖2 +

1
8λ1

‖∇(Δd − f)‖2 + C∗(A6(t) + A(t)), (4.1.1)

where C∗ is a constant that only depends on μ′s, λ′s, ‖v0‖ and ‖d0‖H1 .

Proof. We only give the proof in 3D case and the proof for 2D is similar. The basic energy law
(2.2.7) implies that

‖v(t)‖ + ‖d(t)‖H1 ≤ C, ∀ t ≥ 0. (4.1.2)

We re-estimate the right-hand side of differential equality (2.3.22) which was derived under
conditions in Case I. We note that estimates (2.3.24)–(2.3.25) are still valid.

I1 = −2μ1

∫
Q

(Akp∇ldpdk, didj∇lAij)dx

≤ μ1

4
‖dT · ∇A · d‖2 + C‖d‖2

L∞‖∇v‖2
L3‖∇d‖2

L6 .

≤ μ1

4
‖dT · ∇A · d‖2 + C(‖Δd − f‖3 + 1)‖∇v‖‖Δv‖

≤ μ1

4
‖dT · ∇A · d‖2 +

μ4

32
‖Δv‖2 + C(‖∇v‖2‖Δd − f‖6 + ‖∇v‖2)

≤ μ1

4
‖dT · ∇A · d‖2 +

μ4

32
‖Δv‖2 + CA4 + CA. (4.1.3)
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Corresponding to (2.3.28),

I2 = −2μ1

∫
Q

(Akpdpdkdi∇ldj ,∇lAij)dx

≤ μ1

4
‖dT · ∇A · d‖2 + C‖d‖2

L∞‖∇v‖2
L3‖∇d‖2

L6 + C‖d‖3
L∞‖∇v‖2

L4‖Δd‖

≤ μ1

4
‖dT · ∇A · d‖2 +

μ4

32
‖Δv‖2 + CA4 + CA + C(‖Δd − f‖ 5

2 + 1)‖∇v‖ 1
2 ‖Δv‖ 3

2

≤ μ1

4
‖dT · ∇A · d‖2 +

μ4

16
‖Δv‖2 + CA6 + CA. (4.1.4)

Concerning (2.3.31), we have

I3 + I4 ≤ C‖∇v‖2
L4‖∇d‖2

L4 + C‖d‖L∞‖∇v‖2
L4‖Δd‖ ≤ C‖∇v‖ 1

2 ‖Δv‖ 3
2 (‖Δd − f‖ 3

2 + 1)

≤ μ4

32
‖Δv‖2 + CA4 + CA. (4.1.5)

Next, by (2.3.32) and (2.3.33) respectively, we obtain

I5 = −
∫

Q

(∇(Δd − f), Ω∇d)dx ≤ C‖∇(Δd − f)‖‖∇v‖ 1
2 ‖Δv‖ 1

2 (‖Δd − f‖ + 1)

≤ μ4

32
‖Δv‖2 − 1

8λ1
‖∇(Δd − f)‖2 + C‖∇v‖2(‖Δd − f‖4 + 1)

≤ μ4

32
‖Δv‖2 − 1

8λ1
‖∇(Δd − f)‖2 + CA3 + CA, (4.1.6)

I6 =
∫

Q

(Δd − f,∇Ω∇d)dx ≤ C‖Δv‖‖Δd − f‖(‖(∇(Δd − f)‖ 3
4 + 1)

≤ μ4

32
‖Δv‖2 − 1

8λ1
‖∇(Δd − f)‖2 + CA4 + CA. (4.1.7)

Corresponding to (2.3.34), a similar argument to (4.1.5)–(4.1.7) yields

−λ2

λ1

∫
Q

(Δd − f,∇A · ∇d)dx ≤ μ4

32
‖Δv‖2 − 1

8λ1
‖∇(Δd − f)‖2 + CA4 + CA,

λ2

λ1

∫
Q

(∇(Δd − f), A · ∇d
)
dx ≤ μ4

32
‖Δv‖2 − 1

8λ1
‖∇(Δd − f)‖2 + CA3 + CA,

and

− (λ2)2

λ1

∫
Q

(Ad,∇A · ∇d)dx +
(λ2)2

λ1

∫
Q

(∇A · d,A · ∇d)dx

=
(λ2)2

λ1

∫
Q

(A · ∇d,A · ∇d)dx +
(λ2)2

λ1

∫
Q

(Ad,AΔd)dx

≤ μ4

32
‖Δv‖2 + CA4 + CA,

which implies that

I7 + I8 + I9 ≤ 3μ4

32
‖Δv‖2 − 1

4λ1
‖∇(Δd − f)‖2 + CA4 + CA.
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The remaining terms can be estimated in a straightforward way.

I10 = − (λ2)2

λ1

∫
Q

|∇Ad|2dx ≤ (μ5 + μ6)
∫

Q

|∇Ad|2dx,

I11 ≤ |(Δv, v · ∇v)| ≤ C‖Δv‖ 7
4 ‖∇v‖ ≤ μ4

32
‖Δv‖2 + C‖∇v‖8,

I12 ≤ 1
λ1

∫
Q

f ′(d)|Δd − f |2dx ≤ C(‖d‖2
L6 + 1)‖Δd − f‖2

L3

≤ C
(
‖Δd − f‖‖∇(Δd − f)‖ + ‖Δd − f‖2

)
≤ − 1

8λ1
‖∇(Δd − f)‖2 + CA,

I13 = −
∫

Q

f ′(d)
(
Δd − f,Ω d − λ2

λ1
Ad

)
dx ≤ C‖f ′(d)d‖‖Δd − f‖L6‖∇v‖L3

≤ C‖∇v‖ 1
2 ‖Δv‖ 1

2

(
‖∇(Δd − f)‖ + ‖Δd − f‖

)
≤ μ4

32
‖Δv‖2 − 1

8λ1
‖∇(Δd − f)‖2 + CA3 + CA,

Finally, the estimate of I14 is similar to (4.1.6):

I14 ≤ − 1
8λ1

‖∇(Δd − f)‖2 + CA3 + CA.

Collecting all the estimates above, we can conclude (4.1.1).

As a direct consequence, we have the local existence result:

Theorem 4.1.1. Let n = 2, 3. We suppose that the conditions in Case I are satisfied. For any
(v0, d0) ∈ V × H2(Q), there exists T > 0 such that problem (2.1.10)–(2.1.14) admits a unique
local solution satisfying v ∈ L∞(0, T ; V ) ∩ L2(0, T ;H2), d ∈ L∞(0, T ;H2) ∩ L2(0, T ;H3).

Remark 4.1.1. Unfortunately, we are not able to prove an corresponding local well-posedness
result under the conditions in Case II. This is because when the Parodi’s relation does not hold,
the higher-order energy inequality (4.1.1) is not available. One direct difficulty is that we lose
control of some higher-order nonlinearities which will vanish due to cancelation under Parodi’s
relation (see, e.g., (2.3.49)).

4.2 Close to local minimizers: well-posedness and stability

In this section, we obtain some information on the stability of local energy minimizers of E(d).
From the mathematical point of view, Parodi’s relation actually serves as a stability condition
for the Ericksen–Leslie system.

First we can deduce the following property based on the higher-order energy inequality.

Proposition 4.2.1. Suppose the assumptions in Case I are satisfied. For any (v0, d0) ∈ V ×
H2

p(Q), if
‖∇v‖2(0) + ‖Δd − f(d)‖2(0) ≤ R, (4.2.1)
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where R > 0 being a constant, there exists a positive constant ε0 depending on μ′s, λ′s, ‖v0‖,
‖d0‖H1 , f , Q and R, such that the following property holds: for the (unique) local strong solution
(v, d) of system (2.1.10)–(2.1.14) which exists on [0, T ∗], if E(t) ≥ E(0) − ε0, for any t ∈ [0, T ∗],
then the local strong solution (v, d) can be extended beyond T ∗.

Proof. Inspired by Lemma 4.1.1, we consider the following initial value problem of an ODE:

d

dt
Y (t) = C∗(Y (t)6 + Y (t)), Y (0) = R ≥ A(0). (4.2.2)

We denote by I = [0, Tmax) the maximal existence interval of Y (t) such that limt→T−
max

Y (t) =
+∞. On the other hand, it is easy to see from the comparison principle that for any t ∈ I,
0 ≤ A(t) ≤ Y (t). Consequently, A(t) exists on I. Moreover, Tmax is determined by Y (0) = R

and C∗ such that Tmax = Tmax(Y (0), C∗) is increasing when Y (0) ≥ 0 is decreasing. We can
take t0 = 3

4Tmax(R, C∗) > 0. Then it follows that

0 ≤ A(t) ≤ Y (t) ≤ K, ∀t ∈ [0, t0], (4.2.3)

where K is a constant that only depends on R, C∗, t0. This fact together our previous Galerkin
approximate scheme will imply the local existence of a unique strong solution of system (2.1.10)–
(2.1.14) at least on [0, t0]. (This also provides a proof of Theorem 4.1.1.)

The above argument suggests that T ∗ ≥ t0. Now if E(t) ≥ E(0) − ε0 for all t ∈ [0, T ∗], we
infer from Lemma 2.2.1 that

∫ T∗

0

∫
Q

(
μ4

2
|∇v(t)|2 − 1

λ1
|Δd(t) − f(d(t))|2

)
dxdt ≤ ε0, ∀ t ≥ 0.

Hence, there exists a t∗ ∈ [T ∗ − t0
3 , T ∗] such that

‖∇v(t∗)‖2 + ‖Δd(t∗) − f(d(t∗))‖2 ≤ max
{

2
μ4

,−λ1

}
3ε0

t0
.

Choosing ε0 > 0 such that

max
{

2
μ4

,−λ1

}
3ε0

t0
= R, (4.2.4)

we have A(t∗) ≤ R. Taking t∗ as the initial time in ODE (4.2.2), we infer from the above
argument that Y (t) (and thus A(t)) is uniformly bounded at least on [0, t∗ + t0] ⊃ [0, T ∗ + 2

3 t0].
Thus, we can extend the local unique strong solution (v, d) from [0, T ∗] to [0, T ∗ + 2

3 t0].

Remark 4.2.1. Proposition 4.2.1 implies that, for the (local) strong solution (v, d) of (2.1.10)–
(2.1.14), if E(t) does not drop too fast on its existence interval [0, T ], then it can be extended
beyond T . We note that stronger results have been obtained in [9, 10] for various simplified
Ericksen–Leslie systems. In those cases, the existence of weak solutions can be proved and the
associated total energy E(t) is well-defined on [0, +∞). Then one can show the alternative rela-
tion: either there exists a T < +∞ such that E(T ) < E(0) − ε0 or the system admits a (unique)
global strong solution.
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Concerning the elastic energy functional

E(d) =
1
2
‖∇d‖2 +

∫
Q

F(d)dx ≥ 0, (4.2.5)

it is easy to see that the above hypothesis on the changing rate of E(t) can be fulfilled if the initial
velocity v0 is close to zero and the initial molecule director d0 is sufficiently close to an absolute
minimizer of E(d). We refer to [9,10,47] for special simplified cases of the Ericksen–Leslie system.
Of course, the same result holds for our current general case if we make the same assumption.

The condition being closed to absolute minimizer can be greatly improved in the following
sense. Under the Parodi’s relation, we can show that if the initial velocity v0 is close to zero
and the initial molecule director d0 is sufficiently close to a local minimizer of E(d), then the
total energy E will never drop too much. Actually, we shall see that the global solution will
stay close to the minimizer for all time (Lyaponov stability) and E(t) will converge to the same
energy level of the local minimizer. This result applies to all the simplified systems considered
in [9, 10,38,47,48].

Definition 4.2.1. d∗ ∈ H1
p(Q) is called a local minimizer of E(d), if there exists σ > 0, such

that for any d ∈ H1
p(Q) satisfying ‖d − d∗‖H1 ≤ σ, it holds E(d) ≥ E(d∗).

Remark 4.2.2. Since any minimizer of E(d) is also a critical point of E(d), it satisfies the
Euler–Lagrange equation

−Δd + f(d) = 0, x ∈ Ω, d(x) = d(x + ei), x ∈ ∂Q. (4.2.6)

From the elliptic regularity theorem and bootstrap argument, we easily see that if the solution
d ∈ H1

p(Q), then d is smooth.

Now we state the main result of this Chapter:

Theorem 4.2.1. We suppose n = 2, 3 and the conditions in Case I are satisfied. Let d∗ ∈ H2
p(Q)

be a local minimizer of E(d). There exist positive constants σ1, σ2, which may depend on λ′
is,

μ′
is, Q, σ and d∗, such that for any initial data (v0, d0) ∈ V × H2

p(Q) satisfying ‖v0‖H1 ≤ 1,
‖d0 − d∗‖H2 ≤ 1 and ‖v0‖ ≤ σ1, ‖d0 − d∗‖H1 ≤ σ2, there holds

(i) problem (2.1.10)–(2.1.14) admits a unique global strong solution (v, d),
(ii) (v, d) enjoys the same long-time behavior as in Theorem 3.3.1. Moreover,

lim
t→+∞ E(t) = E(d∞) = E(d∗). (4.2.7)

Proof. Without loss of generality, we assume that the constant σ in Definition 4.2.1 satisfies
σ ≤ 1. Throughout the proof, Ci, i = 1, 2, · · · denote generic constants depending only on μ′

is,
λ′

is, σ and d∗. By our assumptions, we easily see that

‖v(t)‖ + ‖d(t)‖H1 ≤ C1, ∀ t ≥ 0, and A(0) = ‖∇v0‖2 + ‖Δd0 − f(d0)‖2 ≤ C2. (4.2.8)

Now we recall Proposition 4.2.1 and its proof. For our current case, we take R = C2 and the
constant C∗ in (4.2.2) can be fixed by C1 and μ′s, λ′s. Then we set t0 = 3

4Tmax(C2, C∗) and take
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T ∗ = t0. We see from (4.2.3) that A(t) is uniformly bounded on [0, t0], which implies

‖v(t)‖V + ‖d(t)‖H2 ≤ C3, ∀ t ∈ [0, t0]. (4.2.9)

Finally, the critical constant ε0 can be determined by (4.2.4).

Next, we extend the local strong solution not only beyond T ∗ = t0 but to infinity by using
the Łojasiewicz–Simon approach. Since the minimizer d∗ is a critical point of E(d), in the
Łojasiewicz–Simon inequality (cf. Lemma 3.2.2), we take ψ = d∗, then the constants β > 0, θ ∈
(0, 1

2 ) are determined by d∗ and (3.2.7) holds.

The proof consists of several steps.

Step 1. In order to apply Proposition 4.2.1 with T ∗ = t0, it suffices to show that

E(t) − E(0) ≥ −ε0, ∀t ∈ [0, t0]. (4.2.10)

Using (4.2.8) and Sobolev embedding theorem, we have |E(d0)−E(d∗)| ≤ C4‖d0 −d∗‖H1 , which
implies that

E(t) − E(0) =
1
2
‖v(t)‖2 − 1

2
‖v0‖2 + E(d(t)) − E(d0)

≥ −1
2
‖v0‖2 + E(d(t)) − E(d∗) + E(d∗) − E(d0)

≥ −1
2
‖v0‖2 − C4‖d0 − d∗‖H1 + E(d(t)) − E(d∗). (4.2.11)

If we take
σ1 ≤ min

{
ε

1
2
0 , 1

}
, σ2 ≤ min

{
ε0

2C4
, 1

}
, (4.2.12)

then by (4.2.11), (4.2.10) will be satisfied if we can prove

E(d(t)) − E(d∗) ≥ 0, ∀ t ∈ [0, t0]. (4.2.13)

By the definition of d∗, it reduces to prove that

‖d(t) − d∗‖H1 ≤ σ, ∀ t ∈ [0, t0]. (4.2.14)

Actually, we will prove a slightly stronger conclusion such that

‖d(t) − d∗‖H1 < ω :=
1
2

min{σ, β}, ∀ t ∈ [0, t0]. (4.2.15)

Let σ2 ≤ 1
4ω. If (4.2.15) is not true, then by the continuity of d that d ∈ C([0, t0];H1), there

exists a minimal time T0 ∈ (0, t0], such that ‖d(T0) − d∗‖H1 = ω. We observe that E(t) =
1
2‖v(t)‖2 + E(d(t)) ≥ E(d∗) for any 0 ≤ t ≤ T0. First, we consider the trivial case that if for
some T ≤ T0, E(T ) = E(d∗), then the definition of local minimizer indicates that for t ≥ T , E
cannot drop and will remain E(d∗). Thus, we infer from the basic energy law (2.2.7) that the
evolution will be stationary and the conclusion easily follows. So in the following, we just assume
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E(t) > E(d∗) for any 0 ≤ t ≤ T0. By Lemma 3.2.2 with ψ = d∗, we can compute

− d

dt
[E(t) − E(d∗)]θ = −θ[E(t) − E(d∗)]θ−1 d

dt
E(t) ≥

θ
(

μ4
2 ‖∇v‖2 − 1

λ1
‖Δd − f‖2

)
‖Δd − f‖

≥ C5(‖∇v‖ + ‖Δd − f‖).

On the other hand, it follows from (2.1.12) and (4.2.9) that

‖dt‖ ≤ ‖v · ∇d‖ + ‖Ωd‖ +
∣∣∣∣λ2

λ1

∣∣∣∣ ‖Ad‖ − 1
λ1

‖Δd − f‖
≤ C6(‖v‖L6‖∇d‖L3 + ‖∇v‖‖d‖L∞ + ‖Δd − f‖)
≤ C7(‖∇v‖ + ‖Δd − f‖), ∀t ∈ [0, t0]. (4.2.16)

As a consequence,

‖d(T0) − d0‖H1 ≤ C8‖d(T0) − d0‖ 1
2 ‖d(T0) − d0‖

1
2
H2

≤ C9

(∫ T0

0

‖dt‖dt

) 1
2

≤ C10[E(0) − E(d∗)]
θ
2

≤ C10

(
1
2
‖v0‖2 + C4‖d0 − d∗‖H1

) θ
2

≤ C11(‖v0‖θ + ‖d0 − d∗‖ θ
2
H1). (4.2.17)

Finally, choosing (also taking previous assumptions into account)

σ1 = min

{
ε

1
2
0 ,

(
ω

4C11

) 1
θ

, 1

}
, σ2 = min

{
ε0

2C4
,

(
ω

4C11

) 2
θ

,
ω

4
, 1

}
, (4.2.18)

we can see that

‖d(T0) − d∗‖H1 ≤ ‖d(T0) − d0‖H1 + ‖d0 − d∗‖H1 ≤ ω

4
+

ω

4
+

ω

4
< ω,

which leads to a contradiction with the definition of T0. Thus, (4.2.15) is true and so is (4.2.13),
which implies that (4.2.10) are satisfied.

As in the proof of Proposition 4.2.1, there exists t∗ ∈ [ 2t0
3 , t0], such that A(t∗) ≤ R. Then

we can conclude that A(t) is uniformly bounded on [0, t∗ + t0] ⊃
[
0, 5t0

3

]
(with the same bound

as on [0, t0]). This implies the important fact that the bound only depends on R, C∗, t0 but not
on the length of existence interval.

Step 2. We take T ∗ = 5
3 t0. By same argument as in Step 1, we can show that E(t) − E(0) ≥

−ε0, for t ∈ [0, T ∗]. Again, we can show that A(t) is uniformly bounded on
[
0, T ∗ + 2

3 t0

]
(with

the same bound as on [0, t0]).

By iteration, we can see that the local strong solution can be extended by a fixed length 2
3 t0

at each step and A(t) is uniformly bounded by a constant only depending on R, C∗, t0.
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As a consequence, we can show that (v, d) is indeed a global strong solution. Moreover,

‖v(t)‖H1 + ‖d(t)‖H2 ≤ K, ∀ t ≥ 0, (4.2.19)

where K depends on C1, R, C∗, t0. The conclusion (i) is proved.
Based on uniform estimate (4.2.19), a similar argument to Theorem 3.3.1 yields that there

exists a d∞ satisfying (3.2.5), such that

lim
t→+∞(‖v(t)‖V + ‖d(t) − d∞‖H2) = 0

with the convergence rate (3.3.31) (in (3.3.31), the Łojasiewicz exponent θ is determined by d∞,
which is different from the one we have used in Step 1).

By repeating the argument in Step 1, we are able to show that ‖d(t) − d∗‖H1 ≤ ω for all
t ≥ 0. Then for t sufficiently large, we have

‖d∞ − d∗‖H1 ≤ ‖d∞ − d(t)‖H1 + ‖d(t) − d∗‖H1 ≤ 3
2
ω < min{β, σ}. (4.2.20)

Applying Lemma 3.2.2 with d = d∞ and ψ = d∗, we obtain

|E(d∞) − E(d∗)|1−θ ≤ ‖ − Δd∗ + f(d∗)‖ = 0,

which together with (4.2.20) implies that d∞ is also a local minimizer of E(d).

Remark 4.2.3. We note that in the assumptions ‖v0‖H1 ≤ 1, ‖d0 − d∗‖H2 ≤ 1, the bound 1 is
not crucial and it can be replaced by any fixed positive constant M . Of course, the constants in
the proof of Theorem 4.2.1 will depend also on M .

Remark 4.2.4. Since ω in the proof of of Theorem 4.2.1 can be arbitrary small positive con-
stant satisfying ω ≤ 1

2 min{σ, β}, by our choice of σ1, σ2, we actually have shown that the local
minimizer d∗ is Lyapunov stable. Moreover, if d∗ is an isolated local minimizer, then d∞ = d∗

and d∗ is asymptotic stable.



Chapter 5
Axisymmetric Solutions to a
diffuse-interface Model

The hydrodynamic of mixture of different materials plays an important role in many scientific and
engineering applications. Among them, the interfacial dynamics is one of the fundamental issues
in hydrodynamics and rheology [53–55]. Conventionally, the model for the mixture consists of
separate hydrodynamic system of each component, together with the free interface that separates
them. In another point of view, the mixture can be treated as a special type of non-newtonian
fluids, whose rheology property reflects the competition between the kinetic energy and the
"elastic" mixing energy.

In classical approaches, the interface is usually considered to be a free surface that evolves
in time with the fluid. The hydrodynamic system describing the mixture of two Newtonian
fluids with a free interface will be the usual Navier-Stokes equations in each of the fluid domains
(possibly with different density and viscosity) together with the kinematic and force balance
(traction free) boundary conditions on the interface. From the statistical (phase field approach)
point of view, the interface represents a continuous, but steep change of the properties (density,
viscosity, etc.) of two fluids. Within this "thin" transition region, the fluid is mixed and has to
store certain amount of "mixing energy". In recent years, much work has been done in various
fluid environments using the phase field approach.

The diffuse-interface model studied in this chapter can be viewed as a physically motivated
level-set method. Instead of choosing an artificial smoothing function for the interface, the
diffuse-interface model describes the interface by a mixing energy, whose idea can be traced
back to [56]. The structure of the interface is determined by molecular forces: the tendencies
for mixing and demixing are balanced through the non local mixing energy. When the capillary
width approaches zero, the diffuse-interface model becomes identical to a sharp-interface level-set
formulation.

This chapter is organized as follows: In section 1 we provide the basic problem settings and
the statement of main results. In section 2 a system of 1D equations is derived by separation
of variables. In section 3, some useful lemmas and estimates are prepared, in order to prove the
regularity of perturbation terms later. In section 4, the proof of global regularity of the solutions
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to the 3D system in both large viscosity and small initial data cases is discussed.

5.1 Problem settings and main results

In this chapter, we shall study the following coupled Navier-Stokes/Allen-Cahn equations in
R

3 × (0, +∞) :

ut + (u · ∇)u = −∇p + νΔu − λ∇ · (∇φ ⊗∇φ), (5.1.1)

∇ · u = 0, (5.1.2)

φt + (u · ∇)φ = γ(Δφ − f(φ)). (5.1.3)

We assume u and ∇φ decay sufficiently fast in the infinity. Here u is a vector function, φ and
p are scalar functions, and f(φ) = 1

η2 (φ3 − φ), ν, λ, γ, η are positive constants. In addition,
∇φ ⊗∇φ is a tensor product–e.g., (∇φ ⊗∇φ)ij = (∇φ)i(∇φ)j , 1 ≤ i, j ≤ 3.

Multiplying (5.1.1) by u, (5.1.3) by λ(−Δφ + f(φ)), then adding them up, and using inte-
gration by parts combined with (5.1.2), we get the basic energy law

1
2

d

dt

(
‖u‖2 + λ‖∇φ‖2 +

λ

2η2
‖(φ2 − 1)‖2

)
= −(ν‖∇u‖2 + λγ‖Δφ − f(φ)‖2), (5.1.4)

where ‖ · ‖ denotes the L2 norm in 3D space (
∫

R3 | · |2dx)
1
2 .

The system (5.1.1)-(5.1.3) can be viewed as a phase field model describing the motion of a
mixture of two incompressible viscous fluids (see [25]). The fluids are separated by a thin interface
of width η. The velocity vector of the mixture is represented by u, the pressure by p, the fluid
kinetic viscosity by ν, and the phase of the fluid components by φ. The phase φ takes the value
1 in one bulk phase and −1 in the other. In the interfacial region, it undergoes rapid but smooth
variation. It is assumed that the interface possesses a free energy Eη =

∫
Ω

1
4η2 (φ2−1)2+ 1

2 |∇φ|2dx

caused by the mixing of fluids. Motion of the interface is caused by energy dissipation, which is
given by φt = −δEη/δφ. The term ∇φ ⊗ ∇φ in the momentum equation is the induced elastic
stress due to the mixing of fluids. Finally, λ corresponds to the surface tension and γ the elastic
relaxation time. We want to point out that this model is based on an energetic variational
formulation and interested reader can refer to [26] for more details.

In this chapter, we study only axisymmetric solutions to (5.1.1)-(5.1.3). There have been
some interesting developments in the study of axisymmetric solutions to the 3D Navier-Stokes
equations, see for example [57], [58], [59], and [60]. The 2D Boussinesq equations are closely
related to the 3D Navier-Stokes equations with swirl (away from the symmetry axis). Recently
in [57], [61], the authors have independently proved the existence of solutions to the 2D global
viscous Boussinesq equations with viscosity entering only in the fluid equation. And most inter-
estingly, in [28], the authors constructed a smooth solution to the Navier-Stokes equations, with
initial conditions u0 = u(r, z, 0) satisfying

‖u0‖L2(Ω) ≈ A√
M

, ‖∇u0‖L2(Ω) ≈ A
√

M,

where A and M are constants to be determined. Since ‖u0‖L2(Ω)‖∇u0‖L2(Ω) ≈ A2, by choosing
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A large enough, ‖u0‖L2(Ω)‖∇u0‖L2(Ω) can be made arbitrarily large. Thus, it violates the small-
ness condition that guarantees the existence of global classical solutions to 3D Navier-Stokes
equations.

Motivated by these results, it seems natural to study the properties of 3D axisymmetric
solutions to our system (5.1.1)-(5.1.3). For this system, we construct a family of global classical
solutions with finite energy, which can also be regarded as perturbations of near infinite-energy
solutions.

In contrast to the asymptotic expansion method in [28], we use the much more straightforward
method of separation of variables to derive a system of 1D equations. Then, based on the solutions
to these equations, using cutoff functions, we construct a family of finite energy solutions to the
3D system (5.1.1)-(5.1.3). After that, through a detailed study of weighted norm inequalities, we
prove the global regularity of the solutions we construct in the case of large viscosity and small
initial data.

5.1.1 Basic settings and 1D special configurations

Let

er = (
x

r
,
y

r
, 0), eθ = (−y

r
,
x

r
, 0), ez = (0, 0, 1) (5.1.5)

be three unit vectors, where r =
√

x2 + y2. We can decompose the velocity field as

u = vr(r, z, t)er + uθ(r, z, t)eθ + vz(r, z, t)ez.

The vorticity field is expressed similarly as

ω = −(uθ)z(r, z, t)er + ωθ(r, z, t)eθ +
1
r
(ruθ)r(r, z, t)ez,

where ωθ = (vr)z − (vz)r. To simplify our notation, we will use u and ω to denote uθ and ωθ in
the rest of our paper.

Throughout this chapter, ∇2, Δ, and ∇ will stand for the Laplace, modified Laplace, and
gradient operators, respectively in cylindrical coordinates,

∇2 =
∂2

∂r2
+

∂r

r
+

∂2

∂z2
, (5.1.6)

Δ =
∂2

∂r2
+

3∂r

r
+

∂2

∂z2
≡ Δr +

∂2

∂z2
, (5.1.7)

∇ = ∂rer + ∂zez. (5.1.8)

Rewriting (5.1.1)–(5.1.3) into cylindrical coordinates, we obtain the equivalent system

ut + vrur + vzuz = ν(∇2 − 1
r2

)u − 1
r
vru, (5.1.9)

ωt + vrωr + vzωz = ν(∇2 − 1
r2

)ω +
1
r
(u2)z − 1

r
vrω

+λ(φz∇2φr − φr∇2φz − 1
r2

φrφz), (5.1.10)
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−(∇2 − 1
r2

)ψ = ω, (5.1.11)

(vr)r +
vr

r
+ (vz)z = 0, (5.1.12)

φt + vrφr + vzφz = γ(∇2φ − 1
η2

φ3 +
1
η2

φ). (5.1.13)

Here u and ω stand for θ components of velocity u and vorticity ω respectively, and vr and vz

are the other two components of u. ψ is the angular stream function, which is related to vr and
vz as follows:

vr = −∂ψ

∂z
, vz =

1
r

∂

∂r
(rψ). (5.1.14)

One can alternatively derive the following 1D equations :

(u∗
1)t + 2ψ∗

1(u∗
1)z = ν(u∗

1)zz + 2(ψ∗
1)zu

∗
1, (5.1.15)

(ω∗
1)t + 2ψ∗

1(ω∗
1)z = ν(ω∗

1)zz + (u∗2
1 )z, (5.1.16)

−(ψ∗
1)zz = ω∗

1 , (5.1.17)

(φ∗
0)t + 2ψ∗

1(φ∗
0)z = γ(φ∗

0)zz − γ

η2
(φ∗

0)
3 +

γ

η2
φ∗

0. (5.1.18)

Here u∗
1, ω∗

1 , ψ∗
1 and φ∗

0 are functions of only z and t.
We will consider solutions with periodic boundary conditions in the z direction with period

1, hence in the rest of this chapter we set

Ω = [0,∞) × [0, 1], 0 ≤ r ≤ ∞, 0 ≤ z ≤ 1.

‖ · ‖ = ‖ · ‖L2(Ω) =
(∫ 1

0

∫ ∞

0

| · |2rdrdz

) 1
2

.

‖ · ‖L4 = ‖ · ‖L4(Ω) =
(∫ 1

0

∫ ∞

0

| · |4rdrdz

) 1
4

.

L∞(0,∞;X) =
{
x(t) ∈ X for a.e. t| supt∈(0,∞)‖x‖X

< ∞}
.

5.1.2 Construction of solutions to the 3D system and main results

By the 1D equations to (5.1.15)-(5.1.18), we can construct a family of exact solutions to the 3D

system. If (u∗
1, ω∗

1 , ψ∗
1 , φ∗

0) is a solution to the 1D equations, then (ru∗
1(z, t), rω∗

1(z, t), rψ∗
1(z, t),

φ∗
0(z, t)) is an exact solution to the 3D system. Therefore, it is reasonable to think that the

1D equations retain some essential nonlinear features of the 3D system. However, (ru∗
1(z, t),

rω∗
1(z, t), rψ∗

1(z, t), φ∗
0(z, t)) is an exact solution with infinite energy. Thus, we want to look for

global classical solutions to (5.1.9)-(5.1.13) with finite energy. To this end, we study solutions of
the following form :

ũ(r, z, t) = r(u∗
1(z, t)χ(r) + u1(r, z, t)), (5.1.19)

ω̃(r, z, t) = r(ω∗
1(z, t)χ(r) + ω1(r, z, t)), (5.1.20)

ψ̃(r, z, t) = r(ψ∗
1(z, t)χ(r) + ψ1(r, z, t)), (5.1.21)

φ̃(r, z, t) = φ∗
0(z, t)χ(r) + φ1(r, z, t), (5.1.22)
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where ũ(r, z, t), ω̃(r, z, t), ψ̃(r, z, t) are the θ components of velocity, vorticity and stream function,
respectively, and χ(r) is a cut-off function, which ensures the solution has finite energy. Here,
u1, ω1, ψ1 and φ1 are considered as perturbation terms.

Using a priori estimates of solutions to the 1D equations and delicate energy estimates, we
prove that if the viscosity ν is large enough, then there exists a family of global classical functions
u1(r, z, t), ω1(r, z, t), ψ1(r, z, t) and φ1(r, z, t) such that ũ, ω̃, ψ̃ and φ̃ are global classical solutions
to the 3D system.

Since our system contains the 3D axisymmetric Navier-Stokes equation as a sub-system, one
can not expect better results. In fact, we get theorems in both the large viscosity and small
initial data cases. Our main theorems are stated as follows.

Theorem 5.1.1. For the 3D system (5.1.1)-(5.1.3), assume u∗
1(z, 0), ψ∗

1(z, 0), ω∗
1(z, 0), and

φ∗
0(z, 0) are smooth functions which are periodic in z with period 1. Then there exists a global

classical solution in the form of (5.1.19)-(5.1.22), if initial conditions ũ0 � ũ(r, z, 0) ∈ H1(Ω),
φ̃0 � φ̃(r, z, 0) ∈ H2(Ω) and ν ≥ ν0(γ, λ, ũ0, φ̃0).

In addition, without the assumption of large viscosity ν, if we assume u∗
1(z, 0), ψ∗

1(z, 0),
ω∗

1(z, 0), φ∗
0(z, 0) are odd, periodic functions in the z direction with period 1, after some delicate

analysis, we can also get a global smooth solution, provided the initial data is small enough.

Theorem 5.1.2. Suppose the initial conditions for u1, ω1, ψ1, and φ1 are smooth functions
with compact support and odd in z. Moreover, assume that η > 1, and ‖ũ(0)‖2 + λ‖∇φ̃(0)‖2 +

λ
2η2 ‖φ̃(0)2 − 1‖2 ≤ C√

M
. For any given ν > 0, there exists C(ν) > 0, such that if M ≥ C(ν)

and H(0) ≤ 1 where H2(t) = ‖r∇u1‖2 + ‖r�ψ1‖2 + ‖∇2φ1‖2. Then, solutions to the 3D system
(5.1.1)-(5.1.3) in the form of (5.1.19)-(5.1.22) are globally smooth.

5.2 Derivation of the 1D system of equations

In this section, we use the method of separation of variables to derive the 1D equations. More-
over, the regularity of solutions to the 1D equations is investigated. In the end, we present a
key observation of the connection between solutions to the 1D equations and those to the 3D

axisymmetric system.
Assume

u(r, z, t) = ū(r)u∗
1(z, t),

vr(r, z, t) = v̄r(r)a(z, t),

vz(r, z, t) = v̄z(r)b(z, t),

ψ(r, z, t) = ψ̄r(r)ψ∗
1(z, t),

ω(r, z, t) = ω̄(r)ω∗
1(z, t),

φ(r, z, t) = φ∗
0(z, t).

Then (5.1.12) gives [
(v̄r)r +

v̄r

r

]
a(z, t) + v̄zb′(z, t) = 0,
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implying

a(z, t) = b′(z, t), (5.2.1)

(v̄r)r +
v̄r

r
+ v̄z = 0. (5.2.2)

Since vr = −ψz, vz = 1
r

∂
∂r (rψ) and ω = (vr)z − (vz)r, by (5.2.1) we get

ψ̄r(r) = v̄r(r), (5.2.3)

a(z, t) = −ψ∗
1z(z, t), (5.2.4)

b(z, t) = −ψ∗
1(z, t), (5.2.5)

w = −v̄rψ∗
1zz + (v̄z)rψ

∗
1 , (5.2.6)

then plugging (5.2.4) and (5.2.5) into (5.1.9) and (5.1.10), one arrives at

u∗
1t − νu∗

1zz = v̄zψ∗
1u∗

1z + ν

[
(ū)rr

ū
+

(ū)r

rū
− 1

r2

]
u∗

1 +
(

1
r

+
(ū)r

ū

)
v̄rψ∗

1zu
∗
1,

(5.2.7)

ω∗
1t − νω∗

1zz =
(

v̄r(ω̄)r

ω̄
− v̄r

r

)
ψ∗

1zω
∗
1 + v̄zψ∗

1ω∗
1z +

2
r

(ū)2

ω̄
u∗

1u
∗
1z

+ν

[
(ω̄)rr

ω̄
+

(ω̄)r

rω̄
− 1

r2

]
ω∗

1 . (5.2.8)

Comparing the r and z components in (5.2.8), we know immediately that v̄z is a constant. From
(5.2.6), we have

ω̄ = v̄r, ω∗
1 = −ψ∗

1zz,

Comparing the r and z components in (5.2.8) again, it follows that

v̄r(ω̄)r

ω̄
− v̄r

r
= (ω̄)r − ω̄r

r
,

2
r

(ū)2

ω̄
,

(ω̄)rr

ω̄
+

(ω̄)r

rω̄
− 1

r2

are all constants. As a result,
ω̄ = v̄r = ū = r,

together with (5.2.2) we obtain
v̄z = −2.

Consequently,

u(r, z, t) = ru∗
1(z, t), (5.2.9)

vr(r, z, t) = −rψ∗
1z(z, t), (5.2.10)

vz(r, z, t) = 2ψ∗
1(z, t), (5.2.11)

ψ(r, z, t) = rψ∗
1(z, t), (5.2.12)

ω(r, z, t) = rω∗
1(z, t). (5.2.13)

Plugging these into equations (5.1.9)-(5.1.13), one derives (5.1.15)-(5.1.18) of the 1D system.
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Let v∗1 = −(ψ∗
1)z. Integrating the ω∗

1 equation with respect to z and using −(ψ∗
1)zz = ω∗

1 , an
equation for v∗1 is derived,

(v∗1)t + 2ψ∗
1(v∗1)z = ν(v∗1)zz + u∗2

1 − v∗21 − c(t), (5.2.14)

where c(t) is an integration constant, which enforces that the mean value of v∗
1 be zero. For

instance, if ψ∗
1 is periodic with period 1 in z, then c(t) = 3

∫ 1

0
v∗21 dz − ∫ 1

0
u∗2

1 dz. We point out
that the equation for ω∗

1 is equivalent to that for v∗1 . Using (5.1.15), (5.2.14) and the result
in [28], we can get some regularity results for the 1D equations in the following lemmas.

Lemma 5.2.1. Assume u∗
1(z, 0), ψ∗

1(z, 0), ω∗
1(z, 0) are smooth and periodic functions with period

1, then ψ∗
1(z, t), ψ∗

1z(z, t), u∗
1(z, t), u∗

1z(z, t), and ω∗
1(z, t) are uniformly bounded.

Lemma 5.2.2. Assume φ∗(z, 0) is a smooth and periodic function with period 1, then φ∗
0(z, t)

and its derivatives are uniformly bounded.

Proof. Multiplying (5.1.18) by φ∗
0, then integrating with respect to z over [0, 1],

1
2

d

dt
‖φ∗

0‖2
L2(0,1) +

γ

η2

∫ 1

0

(φ∗
0)

4dz + γ ‖φ∗
0z‖2

L2(0,1)

= −2
∫ 1

0

ψ∗
1φ∗

0zφ
∗
0dz +

γ

η2
‖φ∗

0‖2
L2(0,1) ≤

γ

2
‖φ∗

0z‖2
L2(0,1) + (

C

γ
+

γ

η2
) ‖φ∗

0‖2
L2(0,1)

≤ γ

2
‖φ∗

0z‖2
L2(0,1) + (

C

γ
+

γ

η2
) ‖φ∗

0‖2
L4(0,1)

≤ γ

2
‖φ∗

0z‖2
L2(0,1) + (

C

γ
+

γ

2η2
)ε

∫ 1

0

(φ∗
0)

4dz + C(ε). (5.2.15)

Multiplying (5.1.18) by φ∗
0t, and integrating with respect to z over [0, 1], it follows that

‖φ∗
0t‖2

L2(0,1) +
d

dt

[
γ

2
‖φ∗

0z‖2
L2(0,1) +

1
4

∫ 1

0

(φ∗
0)

4dz − γ

2η2
‖φ∗

0‖2
L2(0,1)

]

= −2
∫ 1

0

ψ∗
1φ∗

0zφ
∗
0tdz ≤ ‖φ∗

0t‖2
L2(0,1) + C ‖φ∗

0z‖2
L2(0,1) . (5.2.16)

Multiplying (5.2.15) by a constant C̃, then summing up with (5.2.16), one arrives at

d

dt

[
γ

2
‖φ∗

0z‖2
L2(0,1) +

1
4

∫ 1

0

(φ∗
0)

4dz + (
C̃

2
− γ

2η2
) ‖φ∗

0‖2
L2(0,1)

]

+(
C̃γ

2
− C) ‖φ∗

0z‖2
L2(0,1) + C̃

[
γ

η2
− (

C

γ
+

γ

2η2
)ε

] ∫ 1

0

(φ∗
0)

4dz ≤ C̃C(ε). (5.2.17)

Choosing C̃ large enough and ε small enough that C̃γ
2 − C > 0, γ

η2 − (C
γ + γ

2η2 )ε > 0, we get

d

dt

[
‖φ∗

0‖2
H1(0,1) +

∫ 1

0

(φ∗
0)

4dz

]
+ ‖φ∗

0‖2
H1(0,1) +

∫ 1

0

(φ∗
0)

4dz ≤ C.
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Applying Gronwall’s lemma, we have that

φ∗
0(z, t) ∈ L∞ (

0,∞; H1(0, 1)
)
.

Theorem 5.2.1. Let u∗
1, ω∗

1 , ψ∗
1 , φ∗

0 be the solution to the 1D equations (5.1.15)-(5.1.18). Define

u(r, z, t) = ru∗
1(z, t),

ω(r, z, t) = rω∗
1(z, t),

ψ(r, z, t) = rψ∗
1(z, t),

φ(r, z, t) = φ∗
0(z, t). (5.2.18)

Then (u(r, z, t), ω(r, z, t), ψ(r, z, t), φ(r, z, t)) is an exact solution to the 3D system (5.1.1)-
(5.1.3).

Remark 5.2.1. The exact solution (u(r, z, t), ω(r, z, t), ψ(r, z, t), φ(r, z, t)) in Theorem 5.2.1
has infinite energy in R

3.

5.3 Some useful lemmas

In this section, using the solution to the 1D equations (5.1.15)-(5.1.18), we construct a global
classical solution to the 3D axisymmetric system with finite energy. To do this, some preliminary
work is necessary.

Denoting (u∗
1
(z,t), ω∗

1
(z,t), ψ∗

1
(z,t), φ∗

0
(z, t)) as the solution to the 1D equations, (ũ(r,z,t),

ω̃(r,z,t), ψ̃(r,z,t), φ̃(r, z, t)) as the solution to the 3D system. Further, we define

ũ1 =
ũ

r
, ω̃1 =

ω̃

r
, ψ̃1 =

ψ̃

r
.

Let χ(r) = χ0( r
R0

) be a smooth cut-off function, where χ0(r) = 1, if 0 ≤ r ≤ 1
2 , and χ0(r) = 0, if

r ≥ 1. Our idea is to construct a global classical function (ru1, rω1, rψ1, φ1), which is periodic
in z direction with periods 1, such that

ũ(r, z, t) = r(u∗
1(z, t)χ(r) + u1(r, z, t)) = ru∗

1χ + u, (5.3.1)

ω̃(r, z, t) = r(ω∗
1(z, t)χ(r) + ω1(r, z, t)) = rω∗

1χ + ω, (5.3.2)

ψ̃(r, z, t) = r(ψ∗
1(z, t)χ(r) + ψ1(r, z, t)) = rψ∗

1χ + ψ, (5.3.3)

φ̃(r, z, t) = φ∗
0(z, t)χ(r) + φ1(r, z, t), (5.3.4)

is a global classical solution to the 3D axisymmetric system. From (5.3.1)-(5.3.4), we also know

ṽr = −ψ̃z = −rψ∗
1zχ − rψ1z = −rψ∗

1zχ + vr, (5.3.5)

ṽz =
(rψ̃)r

r
= rψ∗

1χr + 2ψ∗
1χ + 2ψ1 + rψ1r = rψ∗

1χr + 2ψ∗
1χ + vz. (5.3.6)
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Here vr, vz are considered as perturbation terms of radial and z-axis velocity components re-
spectively.

From (5.1.15)-(5.1.18) of the 1D equations about (u∗
1, ω∗

1 , ψ∗
1 , φ∗

0), and equations (5.1.9)-
(5.1.13) of the 3D system on (ũ, ω̃, ψ̃, φ̃), one can derive the equations for (u1, ω1, ψ1, φ1) as
follows :

u1t + ṽru1r + ṽzu1z = νΔu1 + 2
(
ψ̃1zũ1 − χψ∗

1zu
∗
1

)
− ṽru∗

1χr

−χ ([rχr + 2(χ − 1)]ψ∗
1 + vz) u∗

1z + νu∗
1Δrχ, (5.3.7)

ω1t + ṽrω1r + ṽzω1z = νΔω1 +
[
(u∗

1χ + u1)2
]
z
− (u∗2

1 )zχ − ṽrω∗
1χr

−χ([rχr + 2(χ − 1)]ψ∗
1 + vz)ω∗

1z + νω∗
1Δrχ

+
λ

r
(φ∗

0zχ + φ1z)
[
(∇2(φ∗

0χ))r + (∇2φ1)r

]
−λ

r
(φ∗

0χr + φ1r)
[
(∇2(φ∗

0χ))z + (∇2φ1)z

]
, (5.3.8)

φ1t + ṽrφ1r + ṽzφ1z = γ∇2φ1 − γ

η2

(
φ3

1 + 3φ∗
0φ

2
1χ + 3φ∗2

0 φ1χ
2 − φ1

)
+γφ∗

0

(
χrr +

χr

r

)
− γ

η2
φ∗3

0

(
χ3 − χ

) − φ∗
0ṽ

rχr

+2ψ∗
1φ∗

0zχ − φ∗
0z ṽ

zχ. (5.3.9)

From the basic energy law (5.1.4), we know actually

u ∈ L∞(0,∞; L2(Ω)), φ1 ∈ L∞(0,∞; H1(Ω)). (5.3.10)

Therefore, from the result in [49] and standard bootstrap arguments, all we need is to prove

u ∈ L∞(0,∞; H1(Ω)), φ1 ∈ L∞(0,∞; H2(Ω)). (5.3.11)

We assume u and ∇φ̃ decay sufficiently fast in the infinity r = ∞, and has periodic boundary
conditions in z direction, with period 1, then so do the perturbation terms u1, ω1, ψ1 and φ1.
Due to the periodicity of our boundary conditions in z. Using the boundary conditions, we can
get the following useful lemmas.

Lemma 5.3.1.
‖u1‖ ≤ ‖ru1r‖.

Proof.

∫ 1

0

∫ ∞

0

(u1)2rdrdz =
∫ 1

0

∫ ∞

0

(u1)2d(
r2

2
)dz = −

∫ 1

0

∫ ∞

0

r2

2
2u1u1rdrdz

= −
∫ 1

0

∫ ∞

0

u1(u1rr)rdrdz ≤ ‖u1‖‖ru1r‖,

hence ‖u1‖ ≤ ‖ru1r‖.

Lemma 5.3.2.
‖r∇u1‖ ≤ ‖rΔu1‖.
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Proof.

−
∫ 1

0

∫ ∞

0

u1�u1r
2rdrdz = −

∫ 1

0

∫ ∞

0

u1u1rrr
2rdrdz − 3

∫ 1

0

∫ ∞

0

u1u1rr
2drdz

−
∫ 1

0

∫ ∞

0

u1u1zzr
2rdrdz

=
∫ 1

0

∫ ∞

0

(u1rr)2rdrdz +
∫ 1

0

∫ ∞

0

(u1zr)2rdrdz.

On the other hand,

−
∫ 1

0

∫ ∞

0

u1Δu1r
2rdrdz ≤ ‖ru1‖‖rΔu1‖,

hence
‖r∇u1‖2 ≤ ‖ru1‖‖rΔu1‖ ≤ ‖r∇u1‖‖rΔu1‖.

Lemma 5.3.3.
‖ru1zz‖ + ‖ru1zr‖ + ‖ru1rr‖ + 3‖u1r‖ ≤ ‖rΔu1‖.

Proof.

∫ 1

0

∫ ∞

0

Δu1u1zzr
2rdrdz = ‖ru1zz‖2 + 3

∫ 1

0

∫ ∞

0

u1ru1zzr
2drdz

+
∫ 1

0

∫ ∞

0

u1rru1zzr
2rdrdz

= ‖ru1zz‖2 − 3
∫ 1

0

∫ ∞

0

u1zru1zr
2drdz + ‖ru1zr‖2

+3
∫ 1

0

∫ ∞

0

u1zru1zr
2drdz

= ‖ru1zz‖2 + ‖ru1zr‖2.

On the other hand,

∫ 1

0

∫ ∞

0

Δu1u1zzr
2rdrdz ≤ ‖rΔu1‖‖ru1zz‖ ≤ 1

2
‖ru1zz‖2 +

1
2
‖rΔu1‖2,

hence
‖ru1zz‖2 + ‖ru1zr‖2 ≤ 1

2
‖ru1zz‖2 +

1
2
‖rΔu1‖2,

which implies
‖ru1zz‖2 + ‖ru1zr‖2 ≤ ‖rΔu1‖2.

Similarly,

∫ 1

0

∫ ∞

0

Δu1Δru1r
2rdrdz = ‖rΔru1‖2 +

∫ 1

0

∫ ∞

0

u1zzu1rrr
2rdrdz
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+3
∫ 1

0

∫ ∞

0

u1ru1zzr
2drdz

= ‖rΔru1‖2 + ‖ru1zr‖2,

therefore
‖Δru1r‖2 + ‖u1zrr‖2 ≤ ‖Δu1r‖‖Δru1r‖ ≤ 1

2
‖Δu1r‖2 +

1
2
‖Δru1r‖2,

which tells us
‖rΔru1‖2 + ‖ru1zr‖2 ≤ ‖rΔu1‖2.

Since

‖rΔru1‖2 =
∫ 1

0

∫ ∞

0

(Δru1)2r2rdrdz

= ‖ru1rr‖2 + 9
∫ 1

0

∫ ∞

0

(u1r)2rdrdz + 6
∫ 1

0

∫ ∞

0

u1rru1rr
2drdz

= ‖ru1rr‖2 + 3‖ru1r‖2 + 3
∫ 1

0

∫ ∞

0

[(ru1r)2]rdrdz

= ‖ru1rr‖2 + 3‖ru1r‖2,

we finish the proof.

Analogously, we can get

Lemma 5.3.4.

‖ψ1z‖ ≤ ‖rψ1zr‖, ‖ψ1r‖ ≤ ‖rψ1rr‖, ‖Δψ1‖ ≤ ‖r∇(Δψ1)‖.

Lemma 5.3.5.
‖rψ1zz‖ + ‖rψ1zr‖ + ‖rΔrψ1‖ ≤ 2‖rΔψ1‖.

Lemma 5.3.6.

‖rψ1rrz‖ + ‖ψ1rz‖ + ‖rψ1zzr‖ + ‖rψ1rrr‖ + ‖rψ1zzz‖ ≤ 3‖r∇(Δψ1)‖.

Lemma 5.3.7.
‖φ1zz‖ + ‖φ1zr‖ + ‖φ1rr‖ ≤ ‖∇2φ1‖.

Lemma 5.3.8.
‖φ1rrz‖ + ‖φ1zzr‖ + ‖φ1rrr‖ + ‖φ1zzz‖ ≤ 3‖∇(∇2φ1)‖.

In all, we conclude from the lemmas above, that to prove (5.3.11), it is sufficient to prove

r∇u1, rΔψ1,∇2φ1 ∈ L∞ (
0,∞, L2(Ω)

)
. (5.3.12)

5.4 Regularity of perturbation terms

In this section we are discussing the proofs of Theorem 5.1.1 and Theorem 5.1.2.
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5.4.1 Large viscosity case

Proof. We begin to do estimates term by term, where Hölder inequality and Sobolev interpolation
inequalities are used at times.

Multiplying (5.3.7) with −r2Δu1, then integrating over Ω, we have

1
2

d

dt

∫ [
(u1z)2 + (u1r)2

]
r2rdrdz

= −ν

∫
(Δu1)2r2rdrdz +

∫
ṽru1rΔu1r

2rdrdz +
∫

ṽzu1zΔu1r
2rdrdz

−2
∫

ṽru1Δu1r
2rdrdz − 2

∫
χu∗

1ψ1zΔu1r
2rdrdz − 2

∫
(χ2 − χ)ψ∗

1zu
∗
1Δu1r

2rdrdz

+
∫

ṽru∗
1χrΔu1r

2rdrdz +
∫

χ ([rχr + 2(χ − 1)]ψ∗
1 + vz) u∗

1zΔu1r
2rdrdz

−ν

∫
u∗

1ΔrχΔu1r
2rdrdz

≡ − ν

∫
(Δu1)2r2rdrdz + Ia + Ib + Ic + Id + Ie + If + Ig + Ih. (5.4.1)

Estimates for u1 equation
From (5.3.5), Lemma 5.2.1 and 5.3.2, we know

|Ia| =
∣∣∣∣
∫

(−rψ∗
1zχ − rψ1z) u1rΔu1r

2rdrdz

∣∣∣∣
≤ C ‖ψ∗

1z‖L∞ ‖ru1r‖‖rΔu1‖ +
∣∣∣∣
∫

ψ1zu1rΔu1r
3rdrdz

∣∣∣∣
≤ C‖rΔu1‖2 +

∣∣∣∣
∫

ψ1zu1rΔu1r
3rdrdz

∣∣∣∣ ,

where the second term∣∣∣∣
∫

ψ1zu1rΔu1r
3rdrdz

∣∣∣∣
≤ ‖rψ1z‖L4‖ru1r‖L4‖rΔu1‖ ≤ ‖rψ1z‖ 1

4 ‖∇(rψ1z)‖ 3
4 ‖ru1r‖ 1

4 ‖∇(ru1r)‖ 3
4 ‖rΔu1‖

≤ ‖rψ1z‖ 1
4 (‖rψ1zz‖ + ‖rψ1zr + ψ1z‖)

3
4 ‖ru1r‖ 1

4 (‖ru1rz‖ + ‖ru1rr + u1r‖)
3
4 ‖rΔu1‖

≤ C (‖rψ1zz‖ + ‖rψ1zr‖)
3
4 ‖ru1r‖ 1

4 (‖ru1rz‖ + ‖ru1rr‖)
3
4 ‖rΔu1‖

≤ C‖rΔψ1‖ 3
4 ‖ru1r‖ 1

4 ‖rΔu1‖ 7
4 ≤ C‖rΔψ1‖ 6

7 ‖rΔu1‖2 + C‖ru1r‖2

≤ C
(‖rΔψ1‖2 + 1

) ‖rΔu1‖2 + C‖ru1r‖2

≤ C
(‖rΔψ1‖2 + 1

) ‖rΔu1‖2,

here we used (5.3.10) and Lemma 5.3.2, Lemma 5.3.3, Lemma 5.3.5 and Young’s Inequality. As
a result,

|Ia| ≤ C
(‖rΔψ1‖2 + 1

) ‖rΔu1‖2. (5.4.2)
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Similar to Ia, we get

|Ib| =
∣∣∣∣
∫

ṽzu1zΔu1r
2rdrdz

∣∣∣∣ ≤ C
(‖rΔψ1‖2 + 1

) ‖rΔu1‖2. (5.4.3)

Due to (5.3.5), (5.3.10), we have

|Ic| = 2
∣∣∣∣
∫

ṽru1Δu1r
2rdrdz

∣∣∣∣ ≤ C
(‖rΔu1‖2 + 1

)
+ 2‖rψ1z‖L4‖ru1‖L4‖rΔu1‖,

Similar to Ia,

|Ic| ≤ C
(‖rΔψ1‖2 + 1

) ‖rΔu1‖2 + C. (5.4.4)

For estimates from Id to Ih, with the help of (5.3.5), (5.1.4), (5.3.10) and Lemma 5.2.1, we obtain

|Id| =
∣∣∣∣−2

∫
χu∗

1ψ1zΔu1r
2rdrdz

∣∣∣∣ ≤ 2‖u∗
1‖L∞‖rψ1z‖‖rΔu1‖ ≤ C‖rΔu1‖2 + C.

(5.4.5)

|Ie| =
∣∣∣∣−2

∫
(χ2 − χ)ψ∗

1zu
∗
1Δu1r

2rdrdz

∣∣∣∣ ≤ C‖ψ∗
1z‖L∞‖u∗

1‖L∞‖rΔu1‖

≤ C‖rΔu1‖2 + C. (5.4.6)

|If | =
∣∣∣∣
∫

ṽru∗
1χrΔu1r

2rdrdz

∣∣∣∣ ≤ C‖u∗
1‖L∞‖ṽr‖‖rΔu1‖ ≤ C‖rΔu1‖2 + C. (5.4.7)

|Ig| =
∣∣∣∣
∫

χ ([rχr + 2(χ − 1)]ψ∗
1 + vz) u∗

1zΔu1r
2rdrdz

∣∣∣∣
≤ C‖ψ∗

1‖L∞‖u∗
1z‖L∞‖rΔu1‖ + C‖u∗

1z‖L∞‖vz‖‖rΔu1‖
≤ C‖rΔu1‖2 + C. (5.4.8)

|Ih| =
∣∣∣∣−ν

∫
u∗

1ΔrχΔu1r
2rdrdz

∣∣∣∣ ≤ ν

2
‖rΔu1‖2 + C. (5.4.9)

Therefore,
1
2

d

dt
‖r∇u1‖2 ≤ −

[ν

2
− C

(‖rΔψ1‖2 + 1
)] ‖rΔu1‖2 + C. (5.4.10)

Multiplying (5.3.8) with −r2Δψ1, and integrating over Ω, since −ω1 = Δψ1 + (Δrφ)ψ∗
1 , by

(5.1.12), we know the fact that

−
∫

ṽr(Δψ1)rΔψ1r
2rdrdz −

∫
ṽz(Δψ1)zΔψ1r

2rdrdz

= − 1
2

∫
ṽr

[
(Δψ1)2

]
r
r3drdz − 1

2

∫
ṽz

[
(Δψ1)2

]
z
r3drdz

=
1
2

∫
(Δψ1)2

[(
r3ṽr

)
r

+ (r3ṽz)z

]
drdz

=
1
2

∫
(Δψ1)2 [(rṽr)z + (rṽz)z + 2ṽr] r2drdz

=
∫

(Δψ1)2ṽrr2drdz,
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consequently, one arrives at

1
2

d

dt

∫
(Δψ1)

2
r2rdrdz

= −ν

∫ [
((Δψ1)r)

2 + ((Δψ1)z)
2
]
r3drdz −

∫
Δrχψ∗

1tΔψ1r
3drdz +

∫
(Δψ1)2ṽrr2drdz

−
∫

ṽr(Δrχ)rψ
∗
1Δψ1r

3drdz −
∫

ṽzΔrχψ∗
1zΔψ1r

3drdz + ν

∫
Δ(Δrχψ∗

1) Δψ1r
3drdz

−2
∫ [

u∗
1u

∗
1z(χ

2 − χ) + u∗
1zχu1 + u∗

1χu1z

]
Δψ1r

3drdz − 2
∫

u1u1zΔψ1r
3drdz

+
∫

ṽrω∗
1χrΔψ1r

3drdz +
∫

χ ([rχr + 2(χ − 1)]ψ∗
1 + vz) ω∗

1zΔψ1r
3drdz

−ν

∫
ω∗

1ΔrχΔψ1r
3drdz − λ

∫
(φ∗

0zχ + φ1z)
[(∇2(φ∗

0χ)
)
r

+ (∇2φ1)r

]
Δψ1r

2drdz

+λ

∫
(φ∗

0χr + φ1r)
[(∇2(φ∗

0χ)
)
z

+ (∇2φ1)z

]
Δψ1r

2drdz

≡ −ν

∫
[∇(Δψ1)]

2
r3drdz + Ja + Jb + Jc + Jd + Je + Jf + Jg

+Jh + Ji + Jj + Jk + Jl. (5.4.11)

Estimates for ω1 equation
Equation (5.1.17) infers (ψ∗

1t)zz = −ω∗
1t. By (5.1.16) and Lemma 5.2.1, we conclude ‖ψ∗

1t‖L∞ ≤
C. As a result,

|Ja| =
∣∣∣∣
∫

Δrχψ∗
1tΔψ1r

3drdz

∣∣∣∣ ≤ C‖rΔψ1‖ ≤ C
(‖rΔψ1‖2 + 1

)
. (5.4.12)

By (5.3.5), Lemma 5.2.1, 5.3.4, 5.3.5, 5.3.6, and Young’s Inequality, it follows that

|Jb| =
∣∣∣∣
∫

(Δψ1)2ṽrr2drdz

∣∣∣∣
=

∣∣∣∣
∫

−ψ∗
1zχ(Δψ1)2r3drdz −

∫
ψ1z(Δψ1)2r3drdz

∣∣∣∣
≤ C‖rΔψ1‖2 + ‖ψ1z‖L4‖rΔψ1‖L4‖rΔψ1‖
≤ C‖rΔψ1‖2 + C‖ψ1z‖ 1

4 ‖∇ψ1z‖ 3
4 ‖rΔψ1‖ 1

4 ‖∇(rΔψ1)‖ 3
4 ‖rΔψ1‖

≤ C‖rΔψ1‖2 + C‖rψ1rz‖ 1
4 (‖rψ1zzr‖ + ‖rψ1rzz‖)

3
4 ‖rΔψ1‖ 5

4 ‖r∇(Δψ1)‖ 3
4

≤ C‖rΔψ1‖2 + C‖rΔψ1‖ 3
2 ‖r∇(Δψ1)‖ 3

2

≤ C‖rΔψ1‖2 + C‖rΔψ1‖‖r∇(Δψ1)‖2

≤ C‖rΔψ1‖2 + C
(‖rΔψ1‖2 + 1

) ‖r∇(Δψ1)‖2. (5.4.13)

Using basic energy law (5.1.4) and Lemma 5.2.1, 5.3.2, one can get estimates of Jc to Jf as

|Jc| =
∣∣∣∣−

∫
ṽr(Δrχ)rψ

∗
1Δψ1r

3drdz

∣∣∣∣ ≤ C‖ṽr‖‖rΔψ1‖ ≤ C
(‖rΔψ1‖2 + 1

)
. (5.4.14)

|Jd| =
∣∣∣∣−

∫
ṽzΔrχψ∗

1zΔψ1r
3drdz

∣∣∣∣ ≤ C‖ṽz‖‖rΔψ1‖ ≤ C
(‖rΔψ1‖2 + 1

)
. (5.4.15)
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|Je| =
∣∣∣∣ν

∫
Δ(Δrχψ∗

1)Δψ1r
3drdz

∣∣∣∣
≤ ν

∣∣∣∣
∫

[(Δrχψ∗
1)rr + (Δrχψ∗

1)zz] (Δψ1)r3drdz + 3
∫

(Δrχψ∗
1)r(Δψ1)r2drdz

∣∣∣∣
=

∣∣∣∣−ν

∫
Δrχψ∗

1z(Δψ1)zr
3drdz − ν

∫
(Δrχ)rψ

∗
1(Δψ1)rr

3drdz

∣∣∣∣
≤ ν(‖(r2Δrχ)ψ∗

1z‖L∞ + ‖r(Δrχ)rψ
∗
1‖L∞)‖r∇Δψ1‖

≤ ν

2
‖r∇Δψ1‖2 + C. (5.4.16)

|Jf | =
∣∣∣∣−2

∫ [
u∗

1u
∗
1z(χ

2 − χ) + u∗
1zχu1 + u∗

1χu1z

]
Δψ1r

3drdz

∣∣∣∣
≤ C‖rΔψ1‖ + C‖ru1‖‖rΔψ1‖ + C‖ru1z‖‖rΔψ1‖
≤ C‖ru1z‖2 + C‖rΔψ1‖2 + C

≤ C‖rΔu1‖2 + C‖rΔψ1‖2 + C. (5.4.17)

By Lemma 5.3.1, 5.3.2, 5.3.5, we have

|Jg| =
∣∣∣∣−2

∫
u1u1zΔψ1r

3drdz

∣∣∣∣
≤ C‖u1‖L4‖ru1z‖L4‖rΔψ1‖ ≤ C‖u1‖ 1

4 ‖∇u1‖ 3
4 ‖ru1z‖ 1

4 ‖∇(ru1z)‖ 3
4 ‖rΔψ1‖

≤ C‖ru1r‖ 1
4 (‖ru1rr‖ + ‖ru1zz‖)

3
4 ‖ru1z‖ 1

4 (‖ru1rz‖ + ‖ru1zz‖)
3
4 ‖rΔψ1‖

≤ C‖ru1r‖ 1
4 ‖ru1z‖ 1

4 ‖rΔu1‖ 3
2 ‖rΔψ1‖

≤ C‖ru1r‖ 1
2 ‖ru1z‖ 1

2 ‖rΔu1‖ + C‖rΔu1‖2‖rΔψ1‖2

≤ C
(‖ru1r‖2 + ‖ru1z‖2

)
+ C‖rΔu1‖2

(‖rΔψ1‖2 + 1
)

≤ C‖rΔu1‖2
(‖rΔψ1‖2 + 1

)
. (5.4.18)

Lemma 5.2.1 and basic energy law (5.1.4) tell us

|Jh| =
∣∣∣∣
∫

ṽrω∗
1χrΔψ1r

3drdz

∣∣∣∣ ≤ C‖ṽr‖‖rΔψ1‖ ≤ C‖rΔψ1‖2 + C. (5.4.19)

|Ji| =
∣∣∣∣
∫

χ ([rχr + 2(χ − 1)]ψ∗
1 + vz) ω∗

1zΔψ1r
3drdz

∣∣∣∣
≤

∣∣∣∣
∫

χ ([rχr + 2(χ − 1)]ψ∗
1 + vz

z) ω∗
1Δψ1r

3drdz

∣∣∣∣
+

∣∣∣∣
∫

χ ([rχr + 2(χ − 1)]ψ∗
1 + vz) ω∗

1(Δψ1)zr
3drdz

∣∣∣∣
≤ C‖rΔψ1‖ + C‖r∇(Δψ1)‖ +

∣∣∣∣
∫

χvz
zω∗

1Δψ1r
3drdz

∣∣∣∣ , (5.4.20)

where the estimate of the third term can be derived from (5.3.6) and Lemma 5.3.5.
∣∣∣∣
∫

χvz
zω∗

1Δψ1r
3drdz

∣∣∣∣ =
∣∣∣∣
∫

χ (2ψ1z + rψ1rz) ω∗
1Δψ1r

3drdz

∣∣∣∣
≤ C‖rΔψ1‖ + C‖rψ1rz‖‖rΔψ1‖ ≤ C‖rΔψ1‖ + C‖rΔψ1‖2,
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consequently,

|Ji| ≤ C‖rΔψ1‖2 + C‖r∇(Δψ1)‖2 + C. (5.4.21)

Lemma 5.2.1 infers that

|Jj | =
∣∣∣∣ν

∫
ω∗

1ΔrχΔψ1r
3drdz

∣∣∣∣ ≤ Cν‖rΔψ1‖ ≤ ν

2
‖rΔψ1‖2 + C. (5.4.22)

For the estimate of Jk, using basic energy law (5.1.4) and Lemma 5.2.2, one derives

|Jk| =
∣∣∣∣−λ

∫
(φ∗

0zχ + φ1z)
[(∇2(φ∗

0χ)
)
r

+ (∇2φ1)r

]
Δψ1r

2drdz

∣∣∣∣
≤ λ

∫
|φ∗

0zχ
(∇2(φ∗

0χ)
)
r
Δψ1|r2drdz + λ

∫
|φ1z

(∇2(φ∗
0χ)

)
r
Δψ1|r2drdz

+λ

∫
|φ∗

0zχ(∇2φ1)rΔψ1|r2drdz + λ

∫
|φ1z

(∇2φ1

)
r
Δψ1|r2drdz

≤ C
(
1 + ‖φ1z‖ + ‖(∇2φ1)r‖

) ‖rΔψ1‖ + C‖φ1z‖L4‖(∇2φ1)r‖‖rΔψ1‖L4

≤ C
(‖rΔψ1‖2 + 1

)
+ C‖φ1z‖L4‖(∇2φ1)r‖‖rΔψ1‖L4 ,

where the estimate of the second term is obtained by using (5.1.4), Lemma 5.3.6, 5.3.7, and
Young’s Inequality,

‖φ1z‖L4‖(∇2φ1)r‖‖rΔψ1‖L4

≤ C‖∇2φ1‖ 3
4 ‖∇(∇2φ1)‖‖rΔψ1‖ 1

4 ‖∇(rΔψ1)‖ 3
4

≤ C
(
ν

3
16 ‖∇2φ1‖ 3

4 ‖r∇(Δψ1)‖ 3
4

)(
ν

1
16 ‖rΔψ1‖ 1

4

) (
1

ν
1
4
‖∇(∇2φ1)‖

)

≤ Cν
1
2 ‖rΔψ1‖2 + Cν

1
2 ‖∇2φ1‖2‖r∇(Δψ1)‖2 +

C

ν
1
2
‖∇(∇2φ1)‖2,

therefore,

|Jk| ≤ Cν
1
2

(
1 + ‖∇2φ1‖2

) ‖r∇(Δψ1)‖2 +
C

ν
1
2
‖∇(∇2φ1)‖2 + C

(‖rΔψ1‖2 + 1
)
. (5.4.23)

Similarly, we have

|Jl| =
∣∣∣∣λ

∫
(φ∗

0χr + φ1r)
[(∇2(φ∗

0χ)
)
z

+ (∇2φ1)z

]
Δψ1r

2drdz

∣∣∣∣
≤ Cν

1
2 ‖∇2φ1‖2‖r∇(Δψ1)‖2 + Cν− 1

2 ‖∇2φ1‖2‖∇(∇2φ1)‖2

+ C
(‖rΔψ1‖2 + ‖∇(∇2φ1)‖2 + 1

)
. (5.4.24)

In sum,

1
2

d

dt
‖rΔψ1‖2 ≤ −

[ν

2
− ν

1
2 ‖∇2φ1‖2 − C

(‖rΔψ1‖2 + 1
)] ‖r∇(Δψ1)‖2

+ Cν− 1
2 ‖∇2φ1‖2‖∇(∇2φ1)‖2 + C

(‖rΔψ1‖2 + 1
) ‖rΔu1‖2
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+ C
(‖rΔψ1‖2 + ‖∇(∇2φ1)‖2 + ‖rΔu1‖2 + 1

)
. (5.4.25)

Multiplying (5.3.9) with ∇2(∇2φ1), then integrating over Ω, one arrives at

1
2

d

dt

∫
|∇2φ1|2rdrdz

= −γ

∫ [∇(∇2φ1)
]2

rdrdz −
∫

ṽrφ1r∇2(∇2φ1)rdrdz −
∫

ṽzφ1z∇2(∇2φ1)rdrdz

− γ

η2

∫ (
φ3

1 + 3φ∗
0φ

2
1χ + 3φ∗2

0 φ1χ
2 − φ1

)∇2(∇2φ1)rdrdz

+γ

∫
φ∗

0

(
χrr +

χr

r

)
∇2(∇2φ1)rdrdz −

∫
γ

η2
φ∗3

0

(
χ3 − χ

)∇2(∇2φ1)rdrdz

−
∫

φ∗
0ṽ

rχr∇2(∇2φ1)rdrdz + 2
∫

ψ∗
1φ∗

0zχ∇2(∇2φ1)rdrdz

−
∫

φ∗
0z ṽ

zχ∇2(∇2φ1)rdrdz.

≡ −γ

∫ [∇(∇2φ1)
]2

rdrdz + Ka + Kb + Kc + Kd + Ke + Kf + Kg + Kh. (5.4.26)

Estimates for φ1 equation

Ka =
∫ [

(ṽr)rφ1r(∇2φ1)r + ṽrφ1rr(∇2φ1)r + (ṽr)zφ1r(∇2φ1)z + ṽrφ1rz(∇2φ1)z

]
rdrdz

≡ a1 + b1 + c1 + d1,

where estimates of a1 to d1 can be derived through (5.3.5), basic energy law (5.1.4), Lemma
5.2.1, 5.3.4, 5.3.5, 5.3.7, 5.3.8, and Young’s Inequality.

|a1| =
∣∣∣∣
∫

(ṽr)rφ1r(∇2φ1)rrdrdz

∣∣∣∣
≤ C‖φ1r‖‖∇(∇2φ1)‖ + C‖ψ1z + rψ1rz‖L4‖φ1r‖L4‖∇(∇2φ1)‖
≤ C‖∇(∇2φ1)‖ + C‖ψ1z + rψ1rz‖ 1

4 ‖∇(ψ1z + rψ1rz)‖ 3
4 ‖φ1r‖ 1

4 ‖∇(φ1r)‖ 3
4 ‖∇(∇2φ1)‖

≤ C‖∇(∇2φ1)‖ + C‖rΔψ1‖ 1
4 ‖r∇(Δψ1)‖ 3

4 ‖∇2φ1‖ 3
4 ‖∇(∇2φ1)‖

≤ C‖∇(∇2φ1)‖ + C
(
ν

1
16 ‖rΔψ1‖ 1

4

)(
ν

3
16 ‖r∇(Δψ1)‖ 3

4 ‖∇2φ1‖ 3
4

) (
1

ν
1
4
‖∇(∇2φ1)‖

)

≤ C√
ν
‖∇(∇2φ1)‖2 +

√
ν‖r∇(Δψ1)‖2‖∇2φ1‖2 + C

(‖rΔψ1‖2 + 1
)
.

And

|b1| =
∣∣∣∣
∫

(ṽr)φ1rr(∇2φ1)rrdrdz

∣∣∣∣
≤ C‖φ1rr‖‖∇(∇2φ1)‖ + C‖rψ1z‖4‖φ1rr‖4‖(∇2φ1)r‖
≤ C‖∇2φ1‖‖∇(∇2φ1)‖ + C‖rψ1z‖ 1

4 ‖∇(rψ1z)‖ 3
4 ‖φ1rr‖ 1

4 ‖∇(φ1rr)‖ 3
4 ‖∇(∇2φ1)‖

≤ C‖∇2φ1‖‖∇(∇2φ1)‖ + C‖Δψ1‖ 3
4 ‖∇2φ1‖ 1

4 ‖∇(∇2φ1)‖ 7
4

≤ C√
ν

(‖rΔψ1‖2 + ‖∇2φ1‖2 + 1)‖∇(∇2φ1)‖2 + C.
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Similar to a1,

|c1| =
∣∣∣∣
∫

(ṽr)zφ1r(∇2φ1)zrdrdz

∣∣∣∣
≤ C√

ν
‖∇(∇2φ1)‖2 +

√
ν‖r∇(Δψ1)‖2‖∇2φ1‖2 + C

(‖rΔψ1‖2 + 1
)
.

Similar to b1,

|d1| =
∣∣∣∣
∫

(ṽr)φ1rz(∇2φ1)zrdrdz

∣∣∣∣ ≤ C√
ν

(‖rΔψ1‖2 + ‖∇2φ1‖2 + 1)‖∇(∇2φ1)‖2

≤ C√
ν

(‖rΔψ1‖2 + ‖∇2φ1‖2 + 1)‖∇(∇2φ1)‖2 + C.

To sum up, we conclude

|Ka| ≤ C√
ν

(‖rΔψ1‖2 + ‖∇2φ1‖2 + 1)‖∇(∇2φ1)‖2

+
√

ν‖r∇(Δψ1)‖2‖∇2φ1‖2 + C
(‖rΔψ1‖2 + 1

)
. (5.4.27)

For Kb, we can get the same estimate like Ka. After expanding Kc, we get

Kc = − γ

η2

∫ (
φ3

1 + 3φ∗
0φ

2
1χ + 3φ∗2

0 φ1χ
2 − φ1

)∇2(∇2φ1)rdrdz

=
γ

η2

∫
∇ (

φ3
1 + 3φ∗

0φ
2
1χ + 3φ∗2

0 φ1χ
2 − φ1

)∇(∇2φ1)rdrdz

=
3γ

η2

∫
(3φ2

1 − 1)∇φ1∇(∇2φ1)rdrdz +
3γ

η2

∫
φ2

1∇(φ∗
0χ)∇(∇2φ1)rdrdz

+
3γ

η2

∫
φ1∇(φ∗2

0 χ2)∇(∇2φ1)rdrdz +
6γ

η2

∫
φ∗

0χφ1∇φ1∇(∇2φ1)rdrdz

+
3γ

η2

∫
φ∗2

0 χ2∇φ1∇(∇2φ1) rdrdz,

using basic energy law (5.1.4) and Lemma 5.2.2, it is easy to obtain

|Kc| ≤ 1√
ν
‖∇(∇2φ1)‖2 + C. (5.4.28)

Similarly,

|Kd| ≤ 1√
ν
‖∇(∇2φ1)‖2 + C. (5.4.29)

|Ke| ≤ 1√
ν
‖∇(∇2φ1)‖2 + C. (5.4.30)

|Kg| ≤ 1√
ν
‖∇(∇2φ1)‖2 + C. (5.4.31)
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For Kf , we use (5.3.5) and Lemma 5.3.4, 5.3.5,

|Kf | =
∣∣∣∣−

∫
(φ∗

0ṽ
rχr)∇2(∇2φ1)rdrdz

∣∣∣∣
≤

∣∣∣∣
∫

ṽr∇(χrφ
∗
0) · ∇(∇2φ1)rdrdz

∣∣∣∣ +
∣∣∣∣
∫

φ∗
0χr∇(ṽr) · ∇(∇2φ1)rdrdz

∣∣∣∣
≤ C‖ṽr‖‖∇(∇2φ1)‖ + C‖∇(ṽr)‖‖∇(∇2φ1)‖
≤ C‖∇(∇2φ1)‖ + C‖∇(rψ1z)‖‖∇(∇2φ1)‖
≤ C‖∇(∇2φ1)‖ + C‖rΔψ1‖‖∇(∇2φ1)‖
≤ 1√

ν
‖∇(∇2φ1)‖2 +

1√
ν
‖rΔψ1‖2 + C. (5.4.32)

Similarly for Kh,

|Kh| ≤ 1√
ν
‖∇(∇2φ1)‖2 +

1√
ν
‖rΔψ1‖2 + C. (5.4.33)

Thus,

1
2

d

dt

∥∥∇2φ1

∥∥2 ≤ −
[
γ − C√

ν
(‖rΔψ1‖2 + ‖∇2φ1‖2 + 1)

]
‖∇(∇2φ1)‖2

+ Cν
1
2

(‖rΔψ1‖2 + ‖∇2φ1‖2
) ‖r∇(Δψ1)‖2 + C‖rΔψ1‖2 + C.(5.4.34)

Adding up estimates (5.4.10), (5.4.25) and (5.4.34), and denoting

H2(t) = ‖r∇u1‖2 + ‖rΔψ1‖2 + ‖∇2φ1‖2, (5.4.35)

E2(t) = ‖rΔu1‖2 + ‖r∇(Δψ1)‖2 + ‖∇(∇2φ1)‖2. (5.4.36)

Then we get

1
2

d

dt
H2(t) ≤ − [

ν − CH2(t) − C
] ‖rΔu1‖2

−
[
ν − ν

1
2 (H2(t) + C)

]
‖r∇(Δψ1)‖2

−
[
γ − C√

ν
H2(t) − C√

ν

]
‖∇(∇2φ1)‖2 + CH2(t) + C. (5.4.37)

Following the steps in [9], we can prove when ν is large enough, H(t) is uniformly bounded
for all t > 0. It follows that

u ∈ L∞(0,∞; H1(Ω)), φ ∈ L∞(0,∞; H2(Ω)),

which is actually a classical solution.

5.4.2 Discussion in the small initial data case

In this section we briefly discuss the proof of Theorem 5.1.2.
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We choose the initial data for the 1D system as:

ψ∗
1(z, 0) =

1
M2

ψ1(zM), u∗
1(z, 0) =

1
M

U1(zM),

ω∗
1(z, 0) = W1(zM), φ∗

0(z, 0) =
1

M3
φ(zM), (5.4.1)

where M is a positive constant to be determined, ψ1, U1, W1, φ are smooth, periodic functions in
y with period 1. Moreover, we assume ψ1, U1, φ are odd functions in y. By (5.1.17), W1=−ψ1zz,
hence it is also a smooth, periodic, and odd function in y. In particular, u∗

1(z, t), ψ∗
1(z, t), ω∗

1(z, t)
and φ∗

0(z, t) are periodic functions in z with period 1
M and odd in z within each period. Therefore,

a priori estimates for the solutions to the 1D equations are modified from Lemma 5.2.1 as follows

‖ψ∗
1‖L∞ ≤ C0

M2
, (5.4.2)

‖ψ∗
1z‖L∞ ≤ C0

M
, ‖u∗

1‖L∞ ≤ C0

M
, (5.4.3)

‖ω∗
1‖L∞ ≤ C0, ‖u∗

1z‖L∞ ≤ C0. (5.4.4)

Let R0=M
1
4 , from the above inequalities (5.4.3), (5.4.4), we know

‖ru∗
1‖ ≤ C√

M
, ‖∇(ru∗

1)‖ ≤ C
√

M, ‖rψ∗
1z‖ ≤ C√

M
. (5.4.5)

As long as η > η0 > 1, the right hand side of (5.2.15) can be refined as

1
2

d

dt
‖φ∗

0‖2 +
γ

η2

∫ 1

0

(φ∗
0)

4dz + γ ‖φ∗
0z‖2

= −2
∫ 1

0

ψ∗
1φ∗

0zφ
∗
0dz +

γ

η2
‖φ∗

0‖2

≤
(

1 − 1
η2
0

)
γ ‖φ∗

0z‖2 +
(

C(η0)
γM2

+
γ

η2

)
‖φ∗

0‖2

≤
(

γ − γ

η2
0

+
C

γM2
+

γ

η2

)
‖φ∗

0z‖2
. (5.4.6)

Also, the right hand side of (5.2.16) is refined as

‖φ∗
0t‖2 +

d

dt

[
γ

2
‖φ∗

0z‖2 +
1
4

∫ 1

0

(φ∗
0)

4dz − γ

2η2
‖φ∗

0‖2

]

= −2
∫ 1

0

ψ∗
1φ∗

0zφ
∗
0tdz

≤ ‖φ∗
0t‖2 +

C

M4
‖φ∗

0z‖2
. (5.4.7)

Multiplying (5.4.6) by γ
η2 , then adding the resultant with (5.4.7), it infers that

d

dt

[
γ

2
‖φ∗

0z‖2 +
1
4

∫ 1

0

(φ∗
0)

4dz

]



77

≤ −
[

γ2

η2η2
0

− γ2

η4
− C

η2M2
− C

M4

]
‖φ∗

0z‖2
. (5.4.8)

Since η > η0 > 1, if M is chosen large enough, it follows that

d

dt

[
‖φ∗

0z‖2 +
∫ 1

0

(φ∗
0)

4dz

]
+ ‖φ∗

0z‖2 ≤ 0. (5.4.9)

Hence we have the uniform bound

‖φ∗
0‖H1[0,1](t) ≤ ‖φ∗

0‖H1[0,1](0) ≤ C

M2
. (5.4.10)

Similarly, one can derive the uniform bound of φ∗
0z in H1 norm,

‖φ∗
0zz‖2

[0,1](t) ≤ ‖φ∗
0zz‖2

[0,1](0) ≤ C

M
. (5.4.11)

From (5.4.10), (5.4.11) and Morrey’s inequality, the uniform L∞ bounds for φ∗
0 are

‖φ∗
0‖L∞[0,1] ≤ ‖φ∗

0‖H1[0,1](t) ≤ C

M2
, ‖φ∗

0z‖L∞[0,1] ≤ ‖φ∗
0‖H2[0,1](t) ≤ C

M
. (5.4.12)

On the other hand, we assume the initial conditions of the 3D velocity vector ũ, and the phase
function φ as

‖ũ(0)‖2 + λ‖∇φ(0)‖2 +
λ

2η2
‖φ(0)2 − 1‖2 ≤ C√

M
. (5.4.13)

From the basic energy law (5.1.4),

‖ũ(t)‖ ≤ C√
M

, ‖∇φ(t)‖ ≤ C√
M

. (5.4.14)

By (5.4.5), (5.4.10) and (5.4.14), we get a priori bounds for the perturbed velocity and the phase
function in L2 norm :

‖ru1‖ ≤ C√
M

, ‖vr‖ ≤ C√
M

, ‖vz‖ ≤ C√
M

, ‖∇φ1‖ ≤ C√
M

. (5.4.15)

Now we give a sketch of proof for Theorem 5.1.2.

Proof. Under these conditions (5.4.2)-(5.4.4), (5.4.10)-(5.4.15), we shall refine all estimates in
the proof of Theorem 5.1.1 (c.f. [62] for details). By adding all the estimates about u1, ψ1 and
φ1 equations, we find except for dissipation terms, all other terms are bounded by

C

Mβ
E2 +

1
Mβ

g(H),

where g(H) is a polynomial of H with positive exponents and coefficients, and β denotes a
positive constant. Choose M large enough, then

d

dt
H2 ≤ −μ

2
E2 +

1
Mβ

g(H) ≤ −μ

2
H2 +

1
Mβ

g(H) (5.4.16)
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since H ≤ E, and here μ = min(ν, γ).
We can choose M large enough such that

−μ

2
+

1
Mβ

g(1) ≤ 0. (5.4.17)

Therefore, if the initial conditions are small so that H(0) ≤ 1, we will get the uniform bound of
H(t), such that

H(t) ≤ 1, for all t > 0. (5.4.18)

which indicates (5.3.12) holds, hence the proof is complete.



Appendix A
Detailed calculations for energetic
variational approaches

Here we provide some detailed computations in the previous sections.

A.1 Least action principle

The action functional takes the form

A(x) =
∫ T

0

∫
Ω0

[
1
2
|xt(X, t)|2 −

(
1
2
|F−T∇XEd0(X)|2 + F(Ed0(X))

)]
J dXdt, (A.1.1)

where Ω0 = Q is the original domain occupied by the material, E is the deformation tensor
satisfying (2.2.1) and the Jacobian J = detF = 1. The above expression includes all the kinematic
transport property of the molecular director d. With different kinematic transport relations, we
will obtain different action functionals, even though the energies may have the same expression
in the Eulerian coordinate.

We take any one-parameter family of volume preserving flow map xε(X, t) with x0 = x,
dxε

dε

∣∣
ε=0

= y and the volume-preserving constraint ∇x · y = 0 (or Jε = detFε = 1). Apply the

least action principle δA = 0, we have dA(xε)
dε

∣∣∣
ε=0

= 0 such that

0 =
∫ T

0

∫
Ω0

xt · ytdXdt −
∫ T

0

∫
Ω0

(
F
−T∇XEd0

)
:
[

d

dε

∣∣∣∣
ε=0

(∇xεd(xε, t))
]

dXdt

−
∫ T

0

∫
Ω0

f(Ed0) ·
(

dE
ε

dε

∣∣∣∣
ε=0

d0

)
dXdt := I1 + I2 + I3, (A.1.2)

where E
ε = E(xε(X, t), t).

Pushing forward to the Eulerian coordinate, we have

I1 = −
∫ T

0

∫
Ω0

xtt · ydXdt = −
∫ T

0

∫
Ωt

v̇ · ydxdt = −
∫ T

0

∫
Ωt

(vt + v · ∇v) · ydxdt, (A.1.3)
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where Ωt is the domain occupied by the material at time t. From the definition of E
ε, we have

dE
ε

dε

∣∣∣∣
ε=0

d0 =
(

1
2
(∇y −∇T y) − λ2

2λ1
(∇y + ∇T y)

)
Ed0, (A.1.4)

which implies that

I2 = −
∫ T

0

∫
Ω0

(
F
−T∇XEd0

)
:
[

d(Fε)−T

dε

∣∣∣∣
ε=0

∇XEd0 + F
−T∇X

(
dE

ε

dε

∣∣∣∣
ε=0

d0

)]
dXdt

= −
∫ T

0

∫
Ωt

∇d :
{
−∇T y∇d + ∇

[(
1
2
(∇y −∇T y) − λ2

2λ1
(∇y + ∇T y)

)
d

]}
dxdt

= −
∫ T

0

∫
Ωt

[∇ · (∇d �∇d)] · ydxdt +
1
2

(
1 − λ2

λ1

) ∫ T

0

∫
Ωt

[∇ · (Δd ⊗ d)] · ydxdt

−1
2

(
1 +

λ2

λ1

) ∫ T

0

∫
Ωt

[∇ · (d ⊗ Δd)] · ydxdt, (A.1.5)

I3 = −
∫ T

0

∫
Ω0

f(d) ·
[(

1
2
(∇y −∇T y) − λ2

2λ1
(∇y + ∇T y)

)
d

]
dXdt

=
∫ T

0

∫
Ωt

[
−1

2

(
1 − λ2

λ1

)
∇ · (f(d) ⊗ d) +

1
2

(
1 +

λ2

λ1

)
∇ · (d ⊗ f(d))

]
· y dxdt.

(A.1.6)

Inserting (A.1.3), (A.1.5) and (A.1.6) into (A.1.2), we arrive at

∫ T

0

∫
Ωt

(vt + v · ∇v + ∇ · (∇d �∇d) −∇ · σ̃) · ydxdt = 0, (A.1.7)

where
σ̃ = −1

2

(
1 − λ2

λ1

)
(Δd − f(d)) ⊗ d +

1
2

(
1 +

λ2

λ1

)
d ⊗ (Δd − f(d)). (A.1.8)

Since y is an arbitrary divergence free vector field, integration by parts we formally derive the
momentum equation (Hamiltonian/conservative part)

vt + v · ∇v + ∇P = −∇ · (∇d �∇d) + ∇ · σ̃, (A.1.9)

where the pressure P serves as a Lagrangian multiplier for the incompressibility of the fluid.

A.2 Maximum dissipation principle

Using the transport equation of d (2.2.4), we can manipulate the dissipation (2.2.5) in terms of
a rate in time

D =
∫

Q

μ1|Akpdkdp|2dx +
1
2

∫
Q

μ4|∇v|2dx − λ1

∫
Q

∣∣∣dt + v∇d − Ω d +
λ2

λ1
Ad

∣∣∣2dx
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+
(
μ5 + μ6 +

(λ2)2

λ1

) ∫
Q

|Ad|2dx. (A.2.1)

Let vε = v + εu, where u is an arbitrary regular function with ∇ · u = 0. Set
δ( 1

2D)
δv = 0. Then

we have

0 =
1
2

dD(vε)
dε

∣∣∣
ε=0

=
μ4

2

∫
Q

∇v : ∇udx + μ1

∫
Q

dkAkpdpdi
∇iuj + ∇jui

2
djdx

−λ1

∫
Q

(
dt + v∇d − Ω d +

λ2

λ1
Ad

)
·
(
u · ∇d − ∇u −∇T u

2
d +

λ2

λ1

∇u + ∇T u

2
d
)
dx

+
(
μ5 + μ6 +

(λ2)2

λ1

) ∫
Q

Aijdj
∇iuk + ∇kui

2
dkdx,

:= I1 + I2 + I3 + I4. (A.2.2)

Integration by parts, we get

I1 = −μ4

2
(Δv, u), (A.2.3)

I2 = −μ1

(∇ · [dT Ad(d ⊗ d)
]
, u

)
, (A.2.4)

I4 = −1
2

(
μ5 + μ6 +

(λ2)2

λ1

) ∫
Q

(
uk∇i(dkAijdj) + ui∇k(Aijdjdk)

)
dx,

= −1
2

(
μ5 + μ6 +

(λ2)2

λ1

) [(∇ · (d ⊗ Ad) , u
)

+
(∇ · (Ad ⊗ d) , u

)]
. (A.2.5)

Using the transport equation (2.2.4) of d and the incompressibility of u, we infer that

I3 =
(

Δd − f(d), u · ∇d − 1
2

(
1 − λ2

λ1

)
∇ud +

1
2

(
1 +

λ2

λ1

)
∇T ud

)

=
(
u,−∇F (d) + ∇ · (∇d �∇d) − 1

2
∇(|∇d|2)

)
+

(
1 − λ2

λ1

)(
u,∇ · [(Δd − f(d)) ⊗ d]

)
−

(
1 +

λ2

λ1

)(
u,∇ · [d ⊗ (Δd − f(d))]

)
=

(
u,∇ · (∇d �∇d)

) − μ2

(
u,∇ · (N ⊗ d)

) − μ3

(
u,∇ · (d ⊗ N)

)
−η5

(
u,∇ · (Ad ⊗ d)

) − η6

(
u,∇ · (d ⊗ Ad)

)
, (A.2.6)

with the coefficients

μ2 =
1
2
(λ1 − λ2), μ3 = −1

2
(λ1 + λ2), η5 =

λ2

2
− (λ2)2

2λ1
, η6 = −λ2

2
− (λ2)2

2λ1
. (A.2.7)

It follows from (A.2.3)–(A.2.7) that

0 =
1
2

dD
dε

∣∣∣
ε=0

=
(
u,∇ · (∇d �∇d)

) − (u,∇ · σ). (A.2.8)
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The stress tensor σ is given by

σ = μ1(dT Ad)d ⊗ d + μ2N ⊗ d + μ3d ⊗ N + μ4A + μ̃5Ad ⊗ d + μ̃6d ⊗ Ad,

with constants

μ2 =
1
2
(λ1 − λ2), μ3 = −1

2
(λ1 + λ2), μ̃5 =

1
2
(λ2 + μ5 + μ6), μ̃6 =

1
2
(−λ2 + μ5 + μ6).

Since u is an arbitrary function with ∇·u = 0, we arrive at the dissipative force balance equation

∇P = −∇ · (∇d �∇d) + ∇ · σ, (A.2.9)

where the pressure P serves as a Lagrangian multiplier for the incompressibility of the fluid.
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