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ABSTRACT 

Considerable skin friction drag on the hull limits the speed that traditional 

underwater vehicles are capable of achieving. However, it is possible to design a vehicle 

such that the front of it, the cavitator, can induce and maintain a single gaseous cavity, 

referred to as Supercavitation. The cavity can envelop most of the vehicle so that only the 

cavitator and the partial rear control fins are in contact with the water. And, such a design, 

can thereby dramatically reduce the skin friction drag acting on the vehicle. Vehicles with 

this feature are called High-Speed Supercavitating Vehicles (HSSVs) and can achieve 

high speeds of up to 300 m/s compared with 40 m/s of traditional vehicles in water. 

One of the biggest challenges for control designs comes from the nonlinearity in 

the modeling of the planing force, which forms during planing condition that occurs 

when the vehicle's tail penetrates the cavity. Though planing force can be used to 

counteract the force of gravity when there are no other actuators such as the cavitator and 

fins available, it could also cause limit cycle of the vehicle, that is, substantial oscillation 

of the vehicle can happen. In this dissertation, we consider the supercavitating vehicles 

that are equipped with cavitator and fins, and the objective of our control designs is to 

eliminate the undesirable planing force for the purpose of drag reduction, stabilize the 

vehicle and further achieve satisfactory tracking performance.  

Besides nonlinearity, another research challenge caused by the planing force 

comes from its strong memory effect because supercavitation involves complicated 

physics in the cavity-vehicle interaction. Yet, it is difficult to accurately model the 

hydrodynamic forces of the control surfaces (cavitator and fins) in supercavitation. 
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Additionally, the planing force exhibits strong memory effect because the computation of 

the planing force depends on the cavity shape, which is a function of the vehicle’s motion 

history. In the past few years, many important advances have been made in the modeling 

and control designs for supercavitating vehicles. However, very few studies have 

explicitly addressed how to handle the uncertainties in the system parameters, the 

hydrodynamic coefficients, and the size of the time-delay. In this dissertation, the author 

focuses on handling these uncertainties by exploring advanced robust control design 

methodologies. 

This dissertation considers the pitch-plane motion control of a high-speed 

supercavitating vehicle. Control designs are based on two major nonlinear approaches: 

the sliding-model control and the Quasi-Linear-Parameter-Varying control (Quasi-LPV). 

The sliding-mode controller emphasizes robustness with respect to the uncertainties in 

the system parameters and the hydrodynamic coefficients. The proposed Quasi-LPV 

formulation of the nonlinear supercavitating vehicle and the resulting H∞  control provide 

performance optimization and also address the time delay due to the cavity-vehicle 

iteration. Simulations of different model-controller configurations provide insight into the 

robustness capabilities of the controllers. 

In order to better understand the benefits that accrue from including the planing 

force memory effect into the control design, two delay-dependent Quasi-LPV controllers 

are compared with a Quasi-LPV controller based on a simplified non-time-delay model. 

Insight is thereby gained especially by comparing pitch-angle tracking performance using 

constrained control inputs. 
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Given that only a partial set of state variables are measurable, a high-gain 

observer is designed to estimate the state variable that is not directly available for 

feedback. The high-gain observer is selected because it is robust to uncertainties in 

modeling the nonlinear functions. In addition, each controller is also evaluated in terms 

of the impact of sensor measurement noise on closed-loop system performance. 
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Chapter 1 
 

Introduction 

1.1 Introduction to Supercavitating Vehicles 

 It is highly desirable for many applications, underwater transportation and 

torpedoes among them, that underwater vehicles are capable of traveling at a very high 

speed. However, limited by the considerable drag due to skin friction on the hull, 

traditional underwater vehicles can travel at up to 40 m/s only and thus cannot meet 

performance requirements of these applications. Water produces up to 1,000 times more 

friction drag than air does [3]. Therefore, streamlining the hull, improving the propulsion 

system, or taking both these steps, will not render a vehicle capable of achieving 

significantly higher speed.  

 However, when a vehicle moves through water at a sufficiently high speed, as the 

fluid pressure drops locally below a level that can sustain the liquid state, cavitation 

bubbles appear at the trailing edges of the body’s sharp corners [1, 3, 4]. If the speed 

increases, bubbles gather and form a single low-density gaseous cavity that envelops the 

entire vehicle. This hydrodynamic process in which an undersea body becomes entirely 

contained in a layer of gas is called supercavitation. Therefore, when supercavitation is 

applied to the design and control of underwater vehicles (known as supercavitating 

vehicles), they achieve extremely low drag and are thus able to reach a very high speed [1, 

3, 4]. 
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 Fig. 1-1 shows a schematic diagram of a supercavitating vehicle. When a 

supercavitating vehicle travels through water above a certain speed limit, the cavitator at 

the vehicle’s nose induces a gaseous cavity, known as a supercavity. This supercavity 

contains the vehicle’s body, with the exception of the control surfaces such as the 

cavitator and the small outer portion of the fins and it separates from the surrounding 

water. As a result, the skin friction drag is substantially reduced to be almost negligible, 

which allows the supercavitating vehicle to achieve high-speed performance. 

 

 

 Several supercavitating high-speed bodies have already been developed, e.g., the 

Rapid Airborne Mine Clearance System (RAMICS), the Adaptable High-speed Undersea 

Munitions (AHSUM) and the Russian Shkval [10]. The first two are uncontrolled small-

range supercavitating projectiles. The RAMICS targets near-surface mines and is fired 

from a gun carried by a helicopter and travels in both air and water. The AHSUM, which 

targets incoming torpedoes, is fired from a submerged gun carried by ships and 

submarines and travels underwater at extremely high speed (~1500 m/s) [16]. The Shkval, 

developed in 1977, is considered the foremost example of supercavitating torpedo design, 

 

Fins CavitatorSupercavity

V

Fins CavitatorSupercavity

V

Fins CavitatorSupercavity

V

Fig. 1-1: Schematic diagram of a supercavitating vehicle. 
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and has been reported to attain underwater speeds in the order of 100 m/s. However, the 

Shkval lacks control surfaces, which are desirable for balance and control. 

1.2 Planing Force due to Cavity-vehicle Interaction 

 As shown in Fig. 1-1, the aft end of the vehicle may be forced into contact with 

water by the weight of the vehicle or by initial perturbations in the vehicle’s velocity. 

When contact happens, a large restoring force will bounce the aft end back into the cavity 

in a very short time, due to the large velocity difference between the vehicle and the 

surrounding water. The restoring force is always referred to as the planing force. This 

cavity-vehicle interaction can be described according to two basic modes: tail-slap and 

planing. During tail-slap conditions, the vehicle undergoes an oscillatory motion with 

periodic impacts with the cavity, whereas during planing the vehicle comes into contact 

with the lower internal surface of the cavity [16]. In the planing mode, the planing force 

may replace the fins in order to balance the vehicle. By doing so the planing force 

supports the vehicle’s aft end and thus improves maneuverability for which the fins might 

not be needed. However, the planing force also leads to undesired increased drag and 

even stable nonlinear oscillations (limit cycles) under certain conditions [1].  

 The planing force shows a strong memory effect. Note that the cavity is formed 

by numerous small bubbles induced at the trailing edge of the cavitator so that the cavity 

shape is a function of the vehicle’s motion history [18]. The magnitude of the planing 

force depends on the cavity shape, as the cavity shape impacts both the immersion depth 
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of the aft end and the planing angle of attack. More detailed description and modeling of 

the memory effect of the planing force will be given in Chapter 2. 

1.3 Related Research 

Research on supercavitating vehicles can be traced back as early as 1900s. Early 

stages of research mainly focused on the modeling and dynamic analysis for 

supercavitation and supercavitating vehicles. In the past several years, considerable 

research effort has been dedicated to developing control design methodologies, and 

guidance and control strategies for supercavitating vehicles.  

1.3.1 Modeling 

A. Cavity-vehicle Interaction 

 Reference 9 presents extensive experimental data to characterize hydrodynamic 

forces corresponding to different shapes of supercavitating vehicles, where lift and drag 

coefficients are plotted using table lookup values for shapes like disks, cones, ogives and 

wedges. The forces on the cavitators and fins of the supercavitating vehicle are also 

available in a CFD database provided in [2, 60]. This database contains values for 

coefficients of lift and drag for conical cavitators and wedge-shaped fins. 

Based on the assumption that each cavity section expands independently of 

adjacent sections without viscous effects (or Logvinovich independence principle), the 

cavity radius and radial expansion rate are formulated in [59]. Moreover, the prediction 
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of cavity shape is conducted through modified forms of this formulation based on the 

experimental data in [59]. For the modeling of the planing force, the solution for a 

circular profile immersed in a plane and circular fluid surface can be found in [56] based 

on the inviscid flow theory. This solution is further extended by adding the skin friction 

force induced by fluid viscosity in [61]. Forces and centers of pressure are calculated in 

[61] for two special cases: circular cylinder planing on a flat surface, and circular 

cylinder planing on a curved surface.  

Recently, two main methods have been widely used in the literature, 

Computational Fluid Dynamics (CFD) and the Boundary Element Method (BEM). The 

CFD approach requires a higher computation time; however, it is capable of capturing 

cavitation behavior more accurately than the BEM approach [51, 52]. The BEM approach 

has been improved to a level such that it can capture the overall cavity behavior at a 

much lower computational cost than the CFD approach, and it has been used to predict 

the behavior of supercavitating vehicles in various maneuvering conditions [2, 4, 50]. 

 

B. Control-oriented Modeling 

Most of the research on control-oriented models has been focused on developing 

rigid body models to characterize the complex interactions between the vehicle and the 

surrounding cavity. 

Dynamic behavior with tail-slaps is investigated in [5, 10] using a simplified 

model to describe the motion of the vehicle with respect to a horizontal cavity. However, 

this model does not account for the gravity of the vehicle and assumes that the vehicle 
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rotates about the nose. The results indicate that the tail-slap leads to a harmonic motion at 

frequencies that depend mostly on the vehicle’s velocity in the considered configuration. 

A benchmark control problem for a supercavitating torpedo is formulated in [1]. 

The authors also develop a simplified pitch-plane dynamical model for a torpedo. The 

model is linear when the planing force is not induced (or when the vehicle is not in 

contact with the cavity). Based on the solution for a circular profile immersed in a plane 

and circular fluid surface in [56], a formula to calculate the planing force is also proposed 

in [1]. The formula is based on the assumption that the centerline of the cavity is always 

along the velocity direction of the cavitator instead of being dependent on the vehicles’ 

motion history. Thus, this model offers a time-independent approximation form of the 

planing force.  

A more sophisticated model of the fins is used in [4], such that the hydrodynamic 

forces and moments acting on the fins are functions of dimensionless fin immersion and 

the angle of attack. This is unlike the model in [1], which assumes the relative 

effectiveness of the fins to be a constant value. In [4], the fin functions are nonlinear and 

their values are available in lookup tables, which are computed based on a fully three-

dimensional BEM analysis supplemented with a viscous drag correction for a specific 

wedge-shaped fin. For the planing force, the authors emphasize the impact of the memory 

effect on system behavior but do not give a mathematical model to describe the memory 

effect explicitly. 

As discussed in [12, 16, 17], neglecting the cavity-vehicle memory effect could 

substantially degrade the control performance of a supercavitating vehicle. As an 

extension to [1], the model proposed in [12, 18] redefines the planing condition and 
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offers a delay-dependent model that takes into account the memory effect of the cavity-

vehicle interaction. In these two references, the vehicle model is described as a switched, 

bimodal system in which the cavity boundary, as the switching surface, is delay-

dependent.  

1.3.2 Control Design Methodologies and Simulations 

 A state feedback controller that uses only cavitator feedback is presented in [1]. 

Because the weight of the aft part of the body is not supported, gravity forces the body 

outside the cavity so that the response rapidly stabilizes to a limit cycle. A feedback 

linearization controller that uses both cavitator and fins feedback is also designed in [1], 

which removes the oscillation in the vertical speed. However, in general, feedback 

linearization is not robust with respect to system uncertainties.  

 In [4], a Linear Quadratic Regulator (LQR) based feedforward-feedback control is 

designed for a straight and level flight and a bank-to-turn maneuvering. Trajectory 

stability and dynamic behavior is investigated. The results show that the system 

eigenvalues strongly depend on the type of afterbody support (fins or planing force), and 

the proposed controller eliminates the most undesirable behavior in either case. 

 A switching controller that switches between two LQR controllers is presented in 

[11]. One of the LQR controllers is designed for a linear model with the planing force, 

and the other is for a linear model without the planing force. As a follow-up to [11], the 

same authors presented in [12, 13] another switching control law between feedback 
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linearization controllers; this law is designed for models with and without planing force 

and is based on the delay-dependent planing force model proposed in [12, 18]. 

 In [14], several inner-loop controllers that provide absolute stability for the 

nominal supercavitating system are designed by modeling the planing force as sector-

bounded uncertainties. The study offers a comparison between a switching feedback 

control and a backstepping controller in terms of the achieved region of attraction and 

magnitude of the needed control effort. 

 Based on a strong assumption that the cavity is fixed and the vehicle is situated 

symmetrically in the cavity, the authors in [15] designed an LQR controller for a 

linearized model to achieve pitch rate and roll rate controls without considering the 

planing force. The robustness analysis of the LQR controller is carried out by calculating 

the gain and phase margins. 

 In [12] and [18], the delay-dependent model is used in control designs to take into 

account the memory effect of the cavity-vehicle interaction. The design controllers 

consist of a dynamic-inversion controller and a pole-placement or model-predictive-

control outer-loop controller. Since the control designs are based on the assumption that 

the delay in the equations of motion can be directly cancelled, the control performance is 

sensitive to the imperfect knowledge of the delay, i.e., the system becomes unstable at 

error levels of approximately 15-20% in the time delay.  
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1.3.3 Trajectory Planning, Guidance and Control 

Trajectory optimization computes maneuvers based on a set of requirements. 

Computing a maneuver is to determine the time histories of controls and the associated 

time histories of the states. The controls are optimized to minimize some cost function 

and yet satisfy a number of path and boundary conditions. There are essentially two 

alternative strategies used in the field of trajectory optimization: indirect methods and 

direct methods. The indirect methods give extremely accurate results but require a lot of 

effort to incorporate changes of a problem to existing solutions; in contrast, with direct 

methods, suboptimal solutions can be achieved without additional work for complicated 

mathematical analysis of each individual problem [3].  

So far a few studies have been conducted on the trajectory optimization for the 

supercavitating vehicle. In [3], in-plane dive maneuvers and turn maneuvers are 

optimized with direct methods for two different types of objective functions, one 

involving minimization of control effort, and the other involving minimization of control 

velocity. The physical and operational requirements for the supercavitating vehicle are 

translated to constraints and bounds on the states and controls. In a developed simulator, 

the maneuverability of the vehicle is also studied by investigating its ability to avoid an 

infinitely long cylindrical obstacle. 

A framework for the optimization of trajectories of supercavitating vehicles is 

presented in [57]. The general framework could be applied to a variety of other complex 

scenarios. Configuration parameters could be cast as design variables to be optimized 

together with the maneuvers. Representative three dimensional maneuvers involving 
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dives, turns and target-tracking were investigated with direct methods. It should be noted 

that the memory effect from cavity-vehicle interaction is not considered. 

Featuring time delays on the states of the system, a mathematical model governed 

by a particular class of delay differential equations is formulated in [58]. The optimal 

control problem is solved using a novel direct multiple shooting approach which properly 

handles conditions dictated by the delay differential equation formulation. Dive 

maneuvers and turn maneuvers are used to demonstrate the effectiveness of the proposed 

methodology. The results are also compared with those in [57] to highlight the difference 

and demonstrate the need for its formulation. 

1.4 Motivations and Objectives 

Supercavitation involves complicated physics in the cavity-vehicle interaction. 

And, the hydrodynamic forces of control surfaces (cavitator and fins) in supercavitation 

are hard to model accurately. Additionally, the planing force exhibits strong memory 

effects, as the computation of the planing force depends on the cavity shape, which is a 

function of the vehicle’s motion history. In the past few years, many important advances 

have been made in modeling and control designs for supercavitating vehicles. However, 

few studies of control designs explicitly handle uncertainties in terms of system 

parameters, hydrodynamic coefficients, or the size of the time delay. The objective of this 

dissertation is to establish a way to handle these uncertainties by exploring advanced 

robust control design methodologies. 
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Following most of the control design literature, the dissertation considers the 

pitch-plane motion control of a high-speed supercavitating vehicle. Although the planing 

force can be used to counteract the force of gravity and improve maneuverability, in this 

dissertation, we consider that the control actuators such as cavitator and fins are available, 

the objective of control designs herein is to remove the planing force as possible for the 

purpose of drag reduction, stabilize the vehicle, and further achieve satisfactory tracking 

performance in the presence of uncertainties.  

The main contributions of the dissertation are as follows: 

• Control designs based on two major nonlinear approaches are developed in this 

dissertation: the sliding-model control and the Quasi-Linear-Parameter-Varying 

control (Quasi-LPV). The sliding-mode controller emphasizes robustness with 

respect to the uncertainties in the system parameters and hydrodynamic 

coefficients. The proposed Quasi-LPV formulation of the nonlinear 

supercavitating vehicle and the resulting H∞  control optimizes performance and 

also addresses the time delay due to the cavity-vehicle iteration. Simulations of 

different model-controller configurations provide insight into the robustness 

capabilities of the controllers. 

• To better understand the benefits that accrue from including planing force 

memory effect in the control design, the dissertation compares two delay-

dependent Quasi-LPV controllers with a Quasi-LPV controller that is designed 

based on a simplified non-time-delay model. Significant insight is thereby gained 
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especially by comparing pitch-angle tracking performance using constrained 

control inputs. 

• Since only a partial set of state variables are measurable, the dissertation offers a 

high-gain observer designed to estimate the state variable that is not directly 

available for feedback. The high-gain observer is selected, as it is robust to 

uncertainties in modeling nonlinear functions. In addition, each controller is 

evaluated in regard to the impact of sensor measurement noise on closed-loop 

system performance. 

1.5 Organization of the Dissertation 

 Following this introductory chapter, Chapter 2 presents the equations that govern 

the pitch-plane dynamic behavior of a supercavitating vehicle, and introduces the two 

major models used for control designs in this dissertation: the Benchmark Model and the 

Time-Delay Benchmark Model. The difference between these two models lies in the 

characterization of the planing force between the vehicle and the cavity: the Time-Delay 

Benchmark Model takes into the memory effect of the cavity-vehicle interaction. 

 Chapter 3 describes a sliding-mode control design based on the Benchmark 

Model, in which stabilization and tracking problems are solved by designing sliding 

manifolds that take tracking trajectories into account. Since the structured uncertainties of 

the model are taken into account in designing the sliding-mode controller, the closed-loop 

systems implemented with the controller have provable robust stability subject to the 

assumed uncertainties in the system parameters and hydrodynamic coefficients. The 
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sliding-model controller is further evaluated by using the Time-Delay Benchmark Model. 

As one state variable may not be directly measurable for feedback control in practice, a 

high-gain observer is designed to estimate the particular state in terms of output 

measurement. Chapter 3 presents a detailed description of the high-gain observer design.  

 In Chapter 4, we reformulate the Benchmark Model into a Quasi-LPV form, and 

then design an LPV H∞  controller. Note that the planing force is the only nonlinear 

function in the Benchmark Model. We recast the expression of the planing force as an 

affine function of a scheduling variable, which is defined as a function of part of the state 

variables of the supercavitating vehicle model. This leads to the reformulation of the 

Benchmark Model into a Quasi-LPV system. The resulting LPV H∞  controller is 

designed by solving a set of linear matrix inequalities (LMIs) that are derived to optimize 

quadratic H∞  performance. 

 By extending the widely cited Benchmark Model for the pitch-plane dynamics of 

a supercavitating vehicle, references [12] and [18] propose the Time-Delay Benchmark 

Model, which includes the delay-dependent interaction of the supercavitating vehicle and 

the cavity. Based on this new model, in Chapter 5, we develop delay-dependent 

controllers that explicitly address the cavity memory effect of the supercavitating vehicle 

dynamics. The pitch-plane dynamics of the supercavitating vehicle are first reformulated 

as a time-delay Quasi-LPV system, and then delay-dependent H∞  controllers are 

developed. Simulations have been conducted for both initial and tracking responses to 

evaluate the performance and robustness of the proposed delay-dependent controllers. 
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The simulation results in this chapter are compared with those in Chapter 4 to highlight 

the benefits by handling the memory effect explicitly. 

 It is a well-known concern regarding the performance of high-gain observers in 

the presence of measurement noise. At the end of Chapters 3, 4 and 5, we present 

simulations that show how the high-gain observer behaves for each designed controller 

under the sensor measurement noise. In general, letting the eigenvalues of the dynamic 

matrix of estimation error go farther left on the left half plane will reduce the state 

estimation error in the absence of noise, but it will also amplify the noise. Therefore, an 

appropriate set of eigenvalues is needed to achieve the balance between minimizing the 

state estimation error and minimizing the error bound due to the measurement noise. 

 Finally, Chapter 6 presents concluding remarks and recommendations for future 

research. 



 

Chapter 2 
 

Modeling of Supercavitating Vehicles 

 The current literature on the control of supercavitating vehicles offers three main 

models [1, 4, 18] to compute the forces and moments of the cavitator and fins, as well as 

the planing force and moment. For convenience, models from [1], [18], and [4] will be 

referred to as the Benchmark Model, the Time-Delay Benchmark Model, and the High-

Fidelity Model, respectively. 

The Benchmark Model is a two degrees-of-freedom (DOF) longitudinal axis 

model that is linear when the planing force is not induced (or when the vehicle is not in 

contact with the cavity). Based on the solution for a circular profile immersed in a plane 

and circular fluid surface in [56], reference [1] proposes a formula to calculate the 

planing force. The assumption of the formula is that the centerline of the cavity is always 

along the velocity direction of the cavitator instead of being dependent on the vehicle’s 

motion history. Thus, a time-independent approximation form of the planing force is used 

in the Benchmark Model. The Time-Delay Benchmark Model from [18] is relatively new, 

and the only difference from the Benchmark Model lies in the planing force. The Time-

Delay Benchmark Model redefines the planing condition by taking into account the 

memory effect of the cavity-vehicle interaction. In keeping with most of the recent work, 

e.g., [1, 3, 6-8, 14, 15], the control designs given in Chapters 3 and 4 are based on the 

Benchmark Model from [1]. We further address the memory effect explicitly in the 

control designs given in Chapter 5, based on the Time-Delay Benchmark Model. 
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In this chapter, the Benchmark Model will be introduced first, and then the Time-

Delay Benchmark Model with delay-dependent planing force will be presented. At the 

end of the chapter, the High-Fidelity Model will be briefly introduced through a 

comparison with the Benchmark Model. In addition, other effort dedicated to the 

structural modeling and buckling analysis of the supercavitating vehicle body is also 

briefly introduced. 

2.1 Benchmark Model 

 As shown in Fig. 2-1, the Benchmark Model considers the longitudinal dynamics 

of a supercavitating vehicle expressed in a body-fixed reference frame (the same as that 

used in [1]). This frame originates at the cavitator’s center of pressure, with the x-axis 

pointing forward along the vehicle axis of symmetry, y-axis to the starboard and z-axis 

pointing down. It is assumed that the vehicle body studied in [1] consists of a cylindrical 

section of length 2 / 3L  and a conical section of length / 3L , which approximates the 

shape of an actual HSSV, where L  denotes the entire vehicle length.  

 

 

Fig. 2-1: Schematic diagram of the model showing reference frame and symbols [1]. 
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2.1.1 Equations of Motion 

Assuming that the body-axis forward speed V  is constant, the equations of 

motion are given as follows: 

 

 

where gx q  in the force equation and ( )v gm x w qV−  in the moment equation are due to 

the origin of the reference frame specified at the cavitator’s center of pressure. The 

dynamic equations can be rewritten in the following compact form: 

 

 

The kinematic equations in the inertial coordinates are given as, 

 

 

with small angle approximations for trigonometric functions, and  
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The system parameters in Eqs. 2.1-2.5 are given as follows:  

 

 

In Eq. 2.3, the body-axis force in the z-direction, bzF , consists of z-components 

of the body-axis gravity force gravF , the force of the elevator fin finF , the cavitator force 

cavF , and the planing force planeF ; i.e., 

 

 

where zF∗  denotes the z-component of force ∗ . The body-axis pitching moment M  

consists of moments due to the gravity force gravM , the elevator fin finM , and the planing 

force planeM ; i.e., 
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Each individual force and moment is described in the following sections.  

2.1.2 Gravity Force and Moment 

In the body-fixed reference frame, the z-component of the gravity force is 

 

 

and the corresponding pitching moment (with respect to the center of pressure of the 

cavitator) due to gravity is, 

 

grav fin planeM M M M= + +  2.10

cosz
grav vF m g θ=  2.11

cos ( )grav v gM m g xθ= ⋅ −  2.12
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2.1.3 Cavitator Force and Moment 

 

Considering a disk cavitator in this dissertation, the lift and drag forces acting on 

the cavitator are illustrated in Fig. 2-2. They are computed as follows: 

 

 

 

with the angle of attack cα  calculated as (note that cδ  is defined as positive in the 

counter-clockwise),  
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Figure 2-2: Hydrodynamic forces acting on the cavitator, where n


 denotes normal 
vector of the cavitator plane. 
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Then, the body-axis z-component of the cavitator force is 

 

 

where 2 2
0

1
(1 )

2cav n xC V R Cρ π σ= +  is referred to as the cavitator effectiveness in [1]. With 

respect to the center of pressure of the cavitator, the pitching moment due to the cavitator 

force equals zero.  

 

 Remark 2.1.1: It should be noted that the cavitator force in Eq. 2.16 is slightly 

different from that calculated in [1], where ( / )z
cav L cav c cav cF F C C w Vα δ≈ ≈ = + . The 

formula proposed here is based on experimental results from [9], p. 2-24, Fig. 2-36, 

which are also referred to in [10]. The observation of experimental results for a disk 

cavitator is given as follows. For small angles of attack cα , the force due to the fluid 

acting on the cavitator is directed along the cavitator’s body axis, which is given by n


. If 
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should be along the direction of n


, which suggests that the lift force component along the 

z-axis of the body-fixed axes should be zero. 

2.1.4 Planing Force and Moment 

As in [1], it is assumed that the planing force depends entirely on the vertical 

velocity. The normal pressure force at the transom of a supercavitating vehicle is 

computed as, 

 

 

 

where the cavity radius cR  and its contraction rate cR , as well as the parameters h′ , R′ , 

and planeα  are defined in the following. First define 
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Then, the cavity radius at the planing location and its contraction rate can be expressed as 

 

 

 

The parameters h′  and R′  in Eq. 2.17 are defined as, 

 

 

 

Note that cR  is not the derivative of cR ; instead, cR  is used to calculate the 

increase of the angle of attack due to the cavity radius contraction at the planing location. 

The angle of attack at the planing location is computed as,  
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2.1.5 Fin Force and Moment 

 

 A simplified linear fin model is adopted in the Benchmark Model. Given that the 

cavitator force is defined in terms of the cavitator effectiveness cavC , a parameter n , as 

defined in [1], denotes the effectiveness of fins relative to the cavitator, where 

effectiveness of fins represents the change of the z-component force in the body axis due 

to the unit change of the fin’s angle of attack. Then, the z-component fin force shown in 

Fig. 2-3 and the fin-induced pitching moment are computed as, 
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Figure 2-3: The z-component of the hydrodynamic force acting on the fins. 
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where fα  and fδ  denote the fin angle of attack and fin deflection angle, respectively. 

The fin angle of attack fα  can be calculated as, 

 

2.1.6 Final Equations of Motion 

 Plug all the forces and moments into Eqs. 2.3-2.5, and the final dynamic 

equations are given as follows, 
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The dynamic equations can also be written in the following compact form for 

easy reference later in the dissertation. 
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7

9
17

36

gravF g

L

Λ

 
 

=  
 
  

 

2

z
plane

plane

F
F

mR Lπρ
Λ =   

2 2
0

1 1
( ) (1 )( )

2 2
n n

x x

R R
C C C

R R
σ= = +  

2.30

1f
I I I grav plane

c

z w V

q

w w
M A B F F

q q L

θ
θ

δ
δ

Λ Λ

= −

=

      = + + +      
      









 
2.31

2 2

7 17

9 36
17 11 133

36 60 405

I

L
M

L R L

 
 

=  
 +  

,  

7
0

9
17

0
36

I

n n

mL mA CV V
n nL

L
m m

− −   
   

= +   
− −   

      

 

2

1

0
I

n

mL mLB CV
n

m

− 
 

=  
− 

  

 

2.32



27 

Remark 2.1.2: When the planing force is not induced, Eq. 2.31 becomes a linear 

system after canceling out the gravity force part. Based on the vehicle configuration 

parameters as in Appendix D, the eigenvalues of the state matrix can be shown to be 

 

 

where the Jordan block for 0λ =  is of dimension 2, which means the open-loop system 

is unstable. 

2.2 Time-Delay Benchmark Model 

The planing force exhibits strong memory effects [4, 12], as the planing force 

computation depends on the cavity shape, which is a function of the vehicle’s motion 

history. As discussed in [12, 16, 17], neglecting this cavity-vehicle memory effect could 

substantially degrade the control performance of a supercavitating vehicle. As a 

modification to the Benchmark Model, [12] and [18] redefined the planing condition and 

proposed a new planing force model that takes into account the memory effect of the 

cavity-vehicle interaction.  

 Due to the memory effect of the cavity-vehicle interaction, the immersion depth 

h′  and planing angle planeα  are functions of both instant and delayed state variables, and 

they are remodeled as follows: 
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with the following planing conditions, 

 

 where /L Vτ =  represents the size of the time delay, and cR  denotes the contraction rate 

of the cavity at the planing location, as indicated in Eq. 2.22. With the new definition of 

h′  and planeα , the time-delayed planing force can be calculated using the same formula 

defined in Eq. 2.17. 

2.3 Other Modeling Work 

The High-Fidelity Model developed in [4] and related references [3, 11] is a 
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nonlinear six-DOF model, and shares the same modeling for the cavitator and planing 

force as the Benchmark Model. The major difference between the two models lies in the 

calculation of fin force finF . In the High-Fidelity Model, the hydrodynamic forces and 

moments acting on the fins are functions of dimensionless fin immersion and the angle of 

attack. This is different from the Benchmark Model that models the fin force as a linear 

function with respect to the angle of attack and assumes the fin effectiveness parameter as 

a constant. Based on a fully three-dimensional Boundary Element Method (BEM) 

analysis and supplemented with a viscous drag correction for a specific wedge-shaped fin, 

the nonlinear fin forces in [4] is computed and tabulated in lookup tables for various 

values of fin immersion and angle of attack. 

When the drag force acts on the cavitator axially compresses the supercavitating 

vehicle body and increases approximately with the square of the vehicle’s speed, the drag 

force may become very high and cause the body to buckle. The buckling condition has 

been identified as one of the limiting factors for the operating speed of supercavitating 

vehicles [54]. Hence, extensive work has been dedicated to the structural modeling and 

buckling analysis of the vehicle body [53, 54], in order to assess the structural safety 

limits and further extend the vehicles’ operating range. Using a simple beam model to 

represent a supercavitating vehicle and larger diameter sections to represent stiffening 

rings in the structure, A Finite Element Model in [53] demonstrats how various 

configurations of these larger diameter sections affect cavity-vehicle interactions. A high-

fidelity finite element model in [54] is created by making use of a cylinder model 

composed of shell elements to perform buckling analysis. The results in [54] indicate the 

effectiveness of the periodically placed circumferential stiffening rings in extending the 
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range of stable operating conditions by increasing the critical static buckling loads and 

reducing the extension of the regions corresponding to dynamic instability.  



 

Chapter 3 
 

Sliding-Mode Control for the Benchmark Model of Supercavitating Vehicles 

3.1 Introduction 

 It is generally recognized that models are imprecise in practice and that this can 

have strong adverse effects on nonlinear control systems. The imprecision may come 

from unknown plant parameters or from a simplified representation of the system’s 

dynamics. From a control point of view, modeling inaccuracies can be classified into two 

major kinds: structured (or parametric) uncertainties and unstructured uncertainties (or 

unmodeled dynamics) [21, 49]. The first kind often corresponds to insufficient 

knowledge of the terms actually included in the model, whereas the second kind often 

corresponds to purposefully underestimating the system order (such as model order 

reduction or linearization), which is convenient for dynamics analysis and control design. 

Robust controllers are designed to maintain stability and/or performance in the presence 

of uncertainties. For nonlinear systems, a robust controller typically comprises a nominal 

part called equivalent control, similar to feedback linearization or an inverse control law, 

and additional terms aimed at addressing model uncertainty [49]. 

Sliding-mode control is an important methodology for the robust control of 

nonlinear systems. It provides a systematic approach to maintaining stability and 

consistent performance in the presence of modeling imprecision, including structured and 

unstructured uncertainties. The methodology is based on the idea of picking up a sliding 
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manifold (or a well-behaved function of the tracking error), s , and then selecting a 

control law, such that 2s  remains a Lyapunov-like function of the closed-loop system, 

despite the presence of model inaccuracies and of disturbances [49]. Given the initial 

conditions, the problem of tracking is equivalent to that of satisfying the Lyapunov-like 

function (or sliding conditions); that is, by satisfying the Lyapunov-like function, the 

sliding manifold is guaranteed to be an attractive and invariant set. Furthermore, the 

sliding manifold will be reached in a finite time if initial conditions are off-reference 

signals. Once on the manifold, the tracking error tends exponentially to zero according to 

the manifold’s definition. Thus, a typical motion under the sliding-mode control consists 

of (1) a reaching phase, during which trajectories start off the sliding manifold, moving 

toward it and reach it in finite time, followed by (2) a sliding phase, during which the 

motion is confined to the manifold. The dynamics of this system are represented by a 

reduced-order model [21]. If the control effort has no limit, arbitrary large disturbances or 

dynamic uncertainties can be tolerated in principle. Such a performance, however, is 

obtained at the price of extremely high control activity, e.g., the control laws contain a 

discontinuous switching part across the desired sliding manifolds. Due to imperfections 

in switching devices and delays, the discontinuous switching control could lead to the 

practical issue of chattering. Though this control chattering is acceptable in some specific 

applications, it is typically at odds with the presence of high-frequency unstructured 

dynamics, which the high-control activity may excite [49]. One approach to eliminating 

chattering is to use a continuous approximation of the discontinuous signum nonlinearity 

in switching control to achieve an effective trade-off between control bandwidth and 

tracking precision. 
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The sliding-mode control has been successfully applied to various applications 

such as robot manipulators, underwater vehicles, automotive transmissions and engines, 

high-performance electric motors, and power systems [49]. The success of these 

applications motivates us to apply the sliding-mode control to the supercavitating vehicle 

model with uncertainties.  

In this chapter, we design a sliding-mode control for stabilization and tracking 

control based on the Benchmark Model. We will also address robustness with respect to 

parametric uncertainties in the system parameters and hydrodynamic coefficients. We 

start with the assumption that all state variables ( , , , )z w qθ  are available for state 

feedback. Later, we design a high-gain observer for the state variables that are not 

directly available via measurement. Simulation results for the combination of the sliding-

mode controller with the high-gain observer will be shown. We first design the controller 

for stabilization and then for tracking, where tracking is transformed into a stabilization 

problem by redefining state variables and sliding manifolds. At the end of the chapter, we 

also evaluate our sliding-mode controller using the Time-Delay Benchmark Model, 

although the sliding-mode controller is not designed to deal with the memory effect of the 

cavity-vehicle interaction. 

3.2 Stabilization 

Define 
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then Eq. 2.29 becomes, 
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Noting that in Eq. 3.3, both ( , )f ξ η  and ( , )g ξ η  could be uncertain due to 

, ,
z w

q
η ξ

θ
   = =   
   

 and f

c

u
δ
δ
 

=  
 

 3.1

A Bη η ξ= +  3.2

( , ) ( , )f g uξ ξ η ξ η= +  3.3

0

0 0

V
A

− =  
 

, 
1 0

0 1
B

 =  
 

 3.4

1 1
( , ) ( )I I grav plane

w
f M A F F

q L
ξ η − Λ Λ   = ⋅ + +   

   
 3.5

1( , ) I Ig M Bξ η −= ⋅  3.6



35 

variations in mass and modeling errors in hydrodynamic coefficients. Thus by separating 

the nominal and uncertain parts of ( , )f ξ η  and ( , )g ξ η , we have 

 

 

 

where ∗


 and ∗  denote the nominal and uncertain parts respectively. Then Eq. 3.3 

becomes 

 

 

For the η  dynamics in Eq. 3.2, the ξ  can be viewed as a virtual control, and we 

can design this virtual control ( )ξ φ η=  to stabilize the η  dynamics; one easy choice for 

the ( )φ η  is a state feedback Kη  where the 2 2×  design parameter K  satisfies that 

( )A BK+  is asymptotically stable. Consequently, we specify the sliding manifold as 

s Kξ η= − . Note that if 0s→ , Kξ η→ , and then ( )A BKξ ξ= + , which gives 0ξ →  

asymptotically and 0η →  asymptotically. Next, we only need to consider the dynamics 

of the sliding manifold s . 

Taking the derivative of the sliding manifold, we have 

 

ˆ( , ) ( , ) ( , )f f fξ η ξ η ξ η= +   3.7

ˆ( , ) ( , ) ( , )g g gξ η ξ η ξ η= +   3.8

ˆ ˆ( , ) ( , ) ( , ) ( , )f f g u g uξ ξ η ξ η ξ η ξ η= + + +    3.9



36 

 

Define the control u as 

 

 

where v is the new control input vector. Then the sliding manifold dynamics satisfy  
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then the ith element of the uncertainty Δ  satisfies, 

 

 

Define the new control input [ ]1 2

T
v v v=  as follows, 
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Following the proof for a general sliding-mode controller in [21] and using Eq. 3.19, it 

can be shown that it takes finite time to reach the sliding manifold 0is = , and then by the 

arguments behind the definition of the sliding manifold, we have 0ξ →  and 0η →  

asymptotically. For implementation, we replace sgn( )is  in Eq. 3.17 with the continuous 

function 12
tan ( )ik s

π
− ⋅  with sufficiently large k , in order to reduce the chattering due to 

the discontinuous sign function. The specific values of the design parameters used in the 

simulations are given in Section 3.5.  

3.3 Tracking 

For a given reference signal ( )r t , assuming that ( )r t , ( )r t  and ( )r t  are bounded 

and available online, we design a sliding-mode controller for the supercavitating vehicle 

to track ( )r t . Let rz  and rθ  denote reference signals for states z  and θ  respectively. 

Note that once rz  and rθ  are determined, reference signals for w  and q  are also 

determined through the first two dynamic equations of Eq. 2.29. Define four new states, 
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Therefore, the sliding manifold is redesigned to stabilize the new state variables 

T
z w qθ  

   . Following the design of the sliding manifold in the stabilization 

problem, we define 

 

 

where K  is defined as in Eq. 3.10 s.t. ( )A BK+  is asymptotically stable. Then the 

dynamics for the new sliding manifold satisfy 
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where the design parameter β  can be designed in a similar way as that in the 

stabilization problem. 

3.4 High-Gain Observer Design 

 As stated in [1] and [4], the vertical velocity w  of a supercavitating vehicle might 

be difficult to measure, and thus it is often not available for feedback directly. Since the 

planing force depends on the vertical velocity as shown in Eq. 2.17, it is important to 

design an observer to estimate the vertical velocity w. In this section, a high-gain 

observer is designed to estimate the vertical velocity w  based on the measurement of the 

vehicle depth z , assuming that the measurements of other state variables such as the 

pitch angle θ  and pitch rate q  are accurate and available for feedback. Other interesting 

observer design and state estimation results can be found in [19] and [20].  

 High-gain observers work for a wide class of nonlinear systems and guarantee 

that the output feedback controller recovers the performance of the state feedback 

controller when the observer gain is sufficiently high [21]. A high gain observer is 

selected in the dissertation since it is robust to uncertainties in a nonlinear system.  
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Assuming that state variables θ  and q  are directly available without any 

measurement error, we define the following notations in terms of Eq. 2.3,  

 

 

 

 

where 

 

 

Note that the state-feedback control u  in 2A  is defined in terms of the direct 
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consider the subsystem consisting of the state variable [ ]Tz w  and output variable 

y z= . A simple observability analysis for this linearized subsystem shows that the 

observability matrix [ ]1 0;* *Ο =  has full rank, where * represents nonzero element. 

That is, the linearized subsystem is observable, and thus we specify the observer for 

( , )z w  as follows, 

 

 

 

 

where y z=  denotes the measurement of the depth z , and 1h , 2h  denote the observer 

gains to be designed. Define the error variables as  

 

 

then we have the error dynamics as, 
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with 2 2
ˆˆˆ( , , , ) [1] [1]z w z w A Aο = − . By specifying the observer gain as, 

 

 

where 1 0ε >  and 2 0ε > , the high-gain observer dynamic matrix becomes 
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the left-half complex plane for all cos 0θ > . A commonly-seen and convenient choice of 

the design parameters for a high-gain observer is to set 1 2ε ε ε= = , where 0 1ε< << , and 

then the eigenvalues become 
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− ± − ; for the special case cos 1θ = , the 

eigenvalues are placed at 1/ε− . In addition, the transfer function from ˆˆ( , , , )o z w z w  to e , 
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goes to zero when 0ε → . Consequently, Eq. 3.29 and Eq. 3.30 define a high gain 

observer for estimating ( , )z w  in terms of the measurements of z ,θ  and q . 
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Remark 3.4.1: It is a well-known concern regarding the performance of a high-

gain observer in the presence of measurement noise. In [22], related analysis work has 

been conducted on the effect of choosing different ε  on minimizing the state estimation 

error bound. It was shown in [22] that although letting 0ε →  will reduce the state 

estimation error in the absence of noise, 0ε →  will also amplify the noise. Therefore an 

appropriate ε  is needed to achieve the balance between minimizing the state estimation 

error due to ˆˆ( , , , )o z w z w  and minimizing the error bound due to the measurement noise. 

3.5 Simulation Results 

In this section, we present simulation results for the sliding-mode controller 

(SMC). First, we will show the results when the high-gain observer is not included in 

simulations. Then we will present the simulation results for the nonlinear partial output-

feedback controller, which combine the sliding-mode controller (SMC) with the high-

gain observer.  

In order to offer results that are comparable with those presented in [1] and [4], 

we first show the initial responses, where the initial condition is given by 

0z = , 0θ = , 3 /w m sec= , and 0.2 /q rad sec= . Additional tracking responses are also 

simulated to further evaluate the controllers’ performance. The numerical example used 

in the following simulations is based on parameter values in Appendix D that are the 

same as those used in [1].  

A similar first-order actuator model as in [18], with transfer function 
300

300s +
, is 
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used for both the cavitator and fin control in the simulations presented in this section. In 

addition, we assume that the actuators are subject to amplitude limits of 25cδ ≤  deg  

and 25fδ ≤  deg , and a rate limit of 100 /rad sec  [18], noting that fδ  over a high 

angle may compromise control effectiveness.  

 Note that small-angle approximation is used to derive the equations of motion. Eq. 

2.29 is valid only when the deflection angles of the cavitator and fins are not too large. It 

is well known that actuator saturation could have a detrimental effect on control 

performance, and it may even cause instability, especially for multiple-input multiple-

output systems [23]. In the literature, there are many compensation designs to handle 

control input saturation [23 - 27]. From Eq. 2.29, we can see that fδ  and cδ  play very 

similar roles in controlling w  and q . Thus, if one actuator, either fδ  or cδ , becomes 

saturated due to physical limitation, while the other one still has plenty of room before 

becoming saturated, it is possible to reallocate the control between fδ  and cδ  such that 

the same control performance can be achieved without exceeding the physical limitation 

of either fδ  or cδ . In Appendix C, we describe in details a control-reallocation-based 

saturation compensation, which is applied in simulations in this dissertation when needed. 

We have observed that without this saturation compensation, closed-loop systems may 

become unstable if control inputs are forced to stay within their physical limitations. On 

the other hand, we can imagine that if the required control actuation is so large that both 

fδ  and cδ  will get saturated even after control reallocation, then additional saturation 
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compensation techniques, e.g., anti-windup based saturation compensation, maybe 

needed. However, this is not the case for the simulations in this dissertation. 

In the rest of this section, we let saturation compensation (SC) denote the 

simulations with the above-referenced actuator model and actuation limits (but 

augmented by the saturation compensation once the amplitude limit is touched). We also 

let unlimited control (UC) represent the simulations with actuators of no limitation on 

either amplitude or rate.  

For the sliding-mode controller (SMC), as shown in Tab. 3-1, the feedback gain 

matrix K is designed using an LQ  regulator with 2 2Q I ×= , 2 25R I ×= ; the design 

parameter k  in approximating the discontinuous sign function is set to be 100; ( , )β ξ η  in 

Eq. 3.18 is set to be a constant 50. According to Eq. 3.18, as ( , )β ξ η  becomes larger, the 

closed loop system becomes capable of achieving better robustness, although the 

controller becomes more conservative. We consider uncertainties in system parameters 

that include variations in the parameters xC

m
 and n. Later in this chapter, we also evaluate 

the performance of the sliding-mode controller (SMC) using the Time-Delay Benchmark 

Model even though the controller is not designed to deal with the memory effect of the 

cavity-vehicle interaction. 
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3.5.1 Simulation Results without the High-gain Observer 

A. Nominal performance 

Fig. 3-1 plots the initial-response time histories of the state, control, and planing 

force for the nominal closed-loop system, to which the sliding-mode controller (SMC) 

with unlimited control (UC) and the saturation compensation (SC) is applied respectively. 

This initial response is conducted using the Benchmark Model without including the 

memory effect of cavity-vehicle interaction. States have more obvious oscillation in the 

SC case than in the UC case, since both the amplitude and rate limits of fδ  are touched 

in the former, and thus the amplitude of cδ  is adjusted by the saturation compensation to 

coordinate the two controls and so maintain system stability. We have learned from our 

simulations that if actuation amplitude limits are imposed but no saturation compensation 

is implemented, the closed-loop system will become unstable.  

Fig. 3-2 plots the initial-response time histories of state, control, and planing 

force for the nominal closed-loop system, where the sliding-mode controller (SMC) with 

saturation compensation (SC) is applied. In this figure, we show both simulations with 

Table 3-1: Design parameters for the sliding-mode controller (SMC) 

Parameter Value 

K 
0.0487 0.4446

0.4446 8.1661

− 
 − 

 

( , )β ξ η  50 
k  100  
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and without the memory effect of the cavity-vehicle interaction. The planing force model 

without memory effect is described in Eq. 2.17, Eq. 2.24 and Eq. 2.25; the model with the 

memory effect is given in Eq. 2.17, Eq. 2.34 and Eq. 2.35, where the delay time /L Vτ =  

caused by the memory effect is calculated as 0.024τ =  in terms of the vehicle 

configuration parameters in Appendix D. Fig. 3-2 shows that the sliding-mode controller 

(SMC) can stabilize the nominal system even in the presence of the memory effect. It is 

worth pointing out that in Fig. 3-2, the rate limit for fδ  is touched in the simulation, but 

by imposing a hard constraint of 100 /rad sec  on the rate limit, the system is still 

stabilized without degrading performance very much. Also, if actuation amplitude limits 

are imposed without saturation compensation, the closed-loop system will become 

unstable.  

The tracking performance of the sliding-mode controller (SMC) for the nominal 

system is shown in Fig. 3-3 and Fig. 3-4. Here, we consider two tracking reference 

signals: a unit-step input for the depth z is used as the reference signal in Fig. 3-3, and 

the w-tracking response is shown in Fig. 3-4, where the reference signal is 

 

 

According to the Time-Delay Benchmark Model, the small magnitude of the 

vertical velocity w in the simulation shown in Fig. 3-3 would not induce any planing 

force. For the w-tracking response in Fig. 3-4, though, planing force does occur; 

2sin(2 )rw tπ= , rz =0, r

w

V
θ = , and r rq θ=   3.36
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therefore, the memory effect in the planing force model is included in the simulation. 

Fig. 3-3 shows that the z-step response has a settling time of less than one second. 

Fig. 3-4 also shows very good tracking performance, though the rate limit of the fin 

surface deflection fδ  has been reached. 

 

B. Robustness Evaluation 

A close observation of the system equations (i.e. Eq. 2.32) shows that if the 

forward speed V and the vehicle length L  are assumed to be a known constant, the 

possible uncertainties in the system matrices IA  and IB  could be considered to come 

from 
Cn

m
 and 

C

m
. By Eq. 2.30, we see that if the vehicle and cavitator configuration 

parameters R  and nR  are fixed, the ratio of the cavitator’s radius and the cylindrical 

section radius of the vehicle remain constant. Then, the possible parametric uncertainty in 

IA  and IB  is basically associated with xC n

m
 and xC

m
. Hence, we consider xC

m
 and n  to 

be the uncertain parameters used in robust control that essentially cover variations in 

control-effective coefficients and variation in the density ratio of the vehicle and 

fluid/water.  

To illustrate the robustness of the sliding-mode controller (SMC), Figs. 3-5 and 

3-6 plot the stochastic envelopes of the state, control, and planing force histories based on 

100 Monte Carlo simulations of the tracking responses (z-step response and w-tracking 

response). The memory effect is included in the planing force model used in the 

simulations. The uncertainties used in the Monte Carlo simulations include ± 5% 
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variations in the parameters xC

m
 and n. The random samples are generated using normal 

distributions, which have zero mean and 0.05 std, and are then truncated within ±5% 

variation of the nominal values. The stochastic envelopes consist of maximum, mean, and 

minimum values at each time instance. Figs. 3-5 and 3-6 show that the sliding-mode 

controller (SMC) is robust to system parameter uncertainties and the planing force 

memory effect, although the latter is not included in the control design. 
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Figure 3-1: Initial responses for nominal systems implemented with the sliding-mode 
controller (SMC) with UC and SC, without consideration of cavity memory effect. 
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Figure 3-2: Initial responses for nominal systems implemented with the sliding-mode 
controller (SMC) with SC, with and without consideration of cavity memory effect. 
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Figure 3-3: z-step response for the nominal system, implemented with the sliding-mode 
controller (SMC) with SC, with consideration of cavity memory effect. The planing force
remains zero. 
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Figure 3-4: w -tracking response for the nominal system, implemented with the sliding-
mode controller (SMC) with SC, with consideration of cavity memory effect. 



55 

 
 

 

0 0.5 1 1.5 2
0

0.5

1

1.5

z 
(m

)

Time (sec)
0 0.5 1 1.5 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

θ 
(d

e
g
)

Time (sec)

 

 

Max
Mean
Min

0 0.5 1 1.5 2
-0.02

0

0.02

0.04

0.06

0.08

w
 (
m

/s
e
c)

Time (sec)
0 0.5 1 1.5 2

-40

-30

-20

-10

0

10

q
 (
d
e
g/

se
c)

Time (sec)

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

0

10

δ c
 (

de
g
)

Time (sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-25

0

25

δ f
 (

de
g
)

Time (sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

P
la

n
in

g
 F

o
rc

e
 (

N
)

Time (sec)

 

Figure 3-5: Stochastic envelopes of the z-step tracking responses for the uncertain 
system, implemented with the sliding-mode controller (SMC) with SC. 
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Figure 3-6: Stochastic envelopes of the w -tracking responses for the uncertain system, 
implemented with the sliding-mode controller (SMC) with SC. 
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3.5.2 Simulation Results with the High-gain Observer 

In this section, we repeat all the simulations shown in the last section for the 

output feedback controllers. The only difference is that here we include the designed 

high-gain observer in our consideration when an observer is necessary. The high-gain 

observer parameter is set as ε  = 0.00015. For all initial responses, the initial conditions 

of the high-gain observer are specified as ˆˆ 0, 0z w= = ; i.e., the estimated initial ŵ  is 

away from its true value. 

The results of the simulations shown in Figs. 3-7 - 3-12 correspond with those 

shown in Figs. 3-1 - 3-6 respectively. It is clear that the closed-loop systems with the 

high-gain observer can achieve almost the same performance as the closed-loop systems 

without the observer, in both the nominal performance and the robustness testing 

simulations.  

 To further explore the performance of the observer, Fig. 3-13 shows the time 

histories of the estimation errors ze  and we  (as defined in Eq. 3.32) when the observer is 

implemented with the sliding-mode controller (SMC) in initial responses for which the 

high-gain observer parameter is set as ε  = 0.00015. Recall that the initial conditions for 

the high-gain observer are specified as ˆˆ 0, 0z w= = ; i.e., the estimated initial ŵ  is away 

from its true value 3 /w m sec= . We can see that the state estimation errors converge to 

zero quickly despite the uncertain nonlinear aspect ˆˆ( , , , )z w z wο  of Eq. 3.33. This is 

because the transfer function from ˆˆ( , , , )z w z wο  to the estimation errors is almost zero due 

to the high gain of the observer.  
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Here, we also use simulations to show how the high-gain observer behaves under 

sensor measurement noise. In the presence of the sensor measurement noise of z, Fig. 3-

14 plots the initial responses corresponding to the sliding-mode controller (SMC) 

combined with a high-gain observer. The sensor measurement noise used in the 

simulations in Fig. 3-14 is white noise with a power of 810−  and a sample time of 0.001 

sec. Following the discussions in [28], we reset the high-gain observer design parameter 

0.00001ε =  for the sliding-mode controller. Note that the ε  value is fine-tuned for the 

sliding-mode controller (SMC) in order to balance the minimization of the state 

estimation errors against the amplification of the sensor noise. It is observed that the 

controller is still able to stabilize the system, even though the sensor noise causes 

oscillations in the control inputs cδ  and fδ . It is also noted that the rate limit for cδ  is 

reached, as shown in Fig. 3-14.  
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Figure 3-7: Initial responses for nominal systems implemented with the sliding-mode 
controller (SMC) with UC and SC, without consideration of cavity memory effect. The
high-gain observer is also included in the simulations. 
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Figure 3-8: Initial responses for nominal systems implemented with the sliding-mode 
controller (SMC) with SC, with and without consideration of cavity memory effect. The 
high-gain observer is also included in the simulations. 
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Figure 3-9: z-step response for the nominal system, implemented with the sliding-mode 
controller (SMC) with SC, with consideration of cavity memory effect. The high-gain 
observer is also included in the simulations. The planing force remains zero. 
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Figure 3-10: w -tracking response for the nominal system, implemented with the
sliding-mode controller (SMC) with SC, with consideration of cavity memory effect. The 
high-gain observer is also included in the simulations. 
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Figure 3-11: Stochastic envelopes of the z-step tracking responses for the uncertain 
system, implemented with the sliding-mode controller (SMC) with SC. The high-gain 
observer is also included in the simulations. 
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Figure 3-12: Stochastic envelopes of the w -tracking responses for the uncertain system, 
implemented with the sliding-mode controller (SMC) with SC. The high-gain observer is 
also included in the simulations. 
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Figure 3-13: Performance of the high-gain observer in closed-loop systems implemented 
with the sliding-mode controller (SMC). No measurement noise is considered. 
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Figure 3-14: Sensitivity of initial response to measurement noise in z, under the sliding-
mode controller (SMC) with SC and the high-gain observer.  



 

Chapter 4 
 

Quasi-LPV Control for the Benchmark Model of Supercavitating Vehicles 

4.1 Introduction 

 The Linear-Parameter-Varying (LPV) method can be applied to a nonlinear 

system by reformulating that system into a Quasi-Linear-Parameter-Varying (Quasi-LPV) 

representation, ( ( )) ( ( ))x A x x B x uκ κ= + , in which κ  is a parameter depending on the 

state. Hence, the nonlinear dynamics become the linear parameterization of dynamics 

through the scheduling parameter κ , such that a Quasi-LPV controller can be designed. 

Note that a Quasi-LPV form can be formulated in many possible ways. For example, for 

any ( ( ))l xκ  satisfying ( ( )) 0l x xκ = , the Quasi-LPV system ( ( )) ( ( ))x A x x B x uκ κ= +  is 

equivalent to ( ( ( )) ( ( ))) ( ( ))x A x l x x B x uκ κ κ= + + . The definition of ( ( ))A xκ  would 

affect the conservativeness of the control analysis and design.  

 The Quasi-LPV control has been shown to be a powerful nonlinear design tool. In 

[29], a Quasi-LPV H∞  controller is designed for an aircraft model in which a single 

quadratic Lyapunov function is used and the Quasi-LPV control allows arbitrarily fast 

parameter variations. An induced L2-norm control for a Quasi-LPV system is given in [30] 

and applied to different applications [31], where a parameter-dependent Lyapunov 

function is utilized for a class of LPV systems that have bounded parameter variation 

rates.  
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 First, we will introduce the definitions of Polytopic LPV systems and Quadratic 

H∞  performance as originally stated in [29]. 

 

Definition 4.1.1 [29] (Polytopic LPV systems.)  An LPV system  

 

 

is called polytopic when it can be represented by state-space matrices ( )A κ , ( )B κ , 

( )C κ  and ( )D κ , where the dependence of (.)A , (.)B , (.)C  and (.)D  on κ  is affine, and 

the parameter vector κ  ranges over a fixed polytope as shown below, 

 

 

Definition 4.1.2 [29] (Quadratic H∞  performance.)  The LPV system in Eq. 4.1 

has quadratic H∞  performance γ  if the 2L  gain of the input/output map is bounded by γ . 

That is, 
2 2

y uγ<  along all possible parameter trajectories κ . The LPV system has 

quadratic H∞  performance γ  if and only if there exists a single matrix 0X >  such that 

 

( ) ( )

( ) ( )

x A x B u

y C x D u

κ κ
κ κ

= +
= +


 4.1

1 1

1 1

( ) ( )( ) ( )
: 0, 1

( ) ( )( ) ( )

: 0, 1

r r
i i

i i i
i ii i

r r

i i i i
i i

A BA B

C DC D

κ κκ κ
λ λ λ

κ κκ κ

κ λκ λ λ

= =

= =

    = ≥ =   
    

 ∈Ω = ≥ = 
 

 

 
 4.2



69 

 

for all admissible values of the parameter vector κ .                                                        □ 

 

The definition for the Quadratic H∞  performance is a straightforward extension of 

the bounded real lemma for linear-time invariant systems. The Lyapunov function 

( ) TV x x Xx=  establishes global asymptotic stability, and the 2L  gain of the input/output 

map is bounded by γ . For a polytopic LPV system, using convexity, it is easily shown 

that Eq. 4.3 is equivalent to [ ], , , ( , ) 0A B C D X γℜ < , which holds at the vertices 

( ( ), ( ), ( ), ( ))i i i iA B C Dκ κ κ κ  for 1,...,i r= . While for a LPV system which is not polytopic, 

the parameter-dependent LMI in Eq. 4.3 is often solved by gridding the space of 

scheduling parameters. However, when the dimension of the scheduling parameters 

increases, the computational complexity will increase. 

  For a polytopic LPV system, an output feedback LPV controller can then be 

designed to achieve the Quadratic H∞  performance. The state-space matrices of the 

controller are convex combination of vertex controller matrices; i.e., the LPV controller 

has the following state matrices ( ( ), ( ), ( ), ( ))c c c cA B C Dκ κ κ κ : 

 

[ ], , ,

( ) ( ) ( ) ( )

( , ) : ( ) ( ) 0

( ) ( )

T T

T T
A B C D

A X XA XB C

X B X I D

C D I

κ κ κ κ
γ κ γ κ

κ κ γ

 +
 ℜ = − < 
 − 

 4.3

1

( ) ( )

( ) ( )

r
c c ci ci

i
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λ

κ κ =

   
=   

   
  4.4



70 

where the vertex controller ( , , , )ci ci ci ciA B C D  is an LTI H∞  controller for the LPV 

system at the ith vertex of the parameter polytope, and can be calculated after computing 

a common Lyapunov function. The Lyapunov function is used for H∞  control design at 

all vertices and can be calculated in terms of the solutions to a set of LMIs [29]. Though 

the vertex controllers can be computed offline, the LPV controller matrices 

( , , , )ci ci ci ciA B C D  must be updated in real time based on the measurement κ .  

 Quadratic H∞  performance is a strong notion of H∞  performance in the sense 

that it holds for arbitrarily fast variation along the parameter trajectories. In [30] and [48], 

based on parameter-dependent Lyapunov functions, the Quadratic H∞  performance 

notion is generalized to an induced 2L  norm performance measure for LPV systems with 

bounded parameter variation rate. A sufficient condition to test if the induced 2L  norm of 

an LPV system is less than some γ >0 is also formulated. By incorporating the known 

bounds on the rate of parameter variation into analysis and design, the parameter-

dependent Lyapunov functions could reduce the conservativeness in control analysis and 

design. An example which can not be stabilized based on parameter-independent 

Lyapunov functions but otherwise is possible by using parameter-dependent Lyapunov 

functions is presented in [48]. However, a parameter-dependent Lyapunov function leads 

to local stability rather than global stability in the sense that it can guarantee stability only 

if the rate of parameter variation is within certain bounds. If the bounds on the rate of 

parameter variation are unknown, the parameter-dependent Lyapunov functions are not 

applicable. 
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4.2 Formulating the Benchmark Model into a Quasi-LPV System 

 In this chapter, we first reformulate the Benchmark model into a Quasi-LPV 

system, and then design a LPV H∞  controller. Essentially we model the nonlinear 

planing force into a Quasi-LPV form by including the vertical speed w  in the scheduling 

variable. Note that in the dive-plane model of the Benchmark Model in Eq. 2.31, the 

planing force and moment are the only nonlinear terms, and it is assumed that the planing 

force depends entirely on the vertical velocity w. We recast the dive-plane dynamics as a 

Quasi-LPV system in which a function of the vertical velocity w  is specified as the time-

varying scheduling parameter. Note that we will adopt the LPV control from [29], which 

is applicable to Quasi-LPV systems with arbitrarily fast parameter variations rather than 

the LPV control from [30, 48], which uses parameter variation rates. We do this because 

we do not have access to the variation rate of the vertical velocity w. However, if the 

variation rate w is available, the Quasi-LPV control from [30, 48] can be used to reduce 

the conservativeness of the control.  

 Eq. 2.17 shows that the planing force depends entirely on the vertical speed w  

once the model configuration has been determined. A normalized planing force 

2

z
plane

plane

F
F

mR Lπρ
Λ =  is plotted in Fig. 4-1, where system parameters from Appendix D are 

used. We rewrite planeF Λ  as, ( )planeF w wκΛ = ⋅ , ( , )w∈ −∞ ∞ , 1 1( ) :w R Rκ → . As shown in 

the second subfigure of Fig. 4-1, ( )wκ  is bounded for all vertical velocity w ; i.e., 

( ) [ , ]wκ κ κ∈  for certain bounds κ  and κ . With the system parameters from Appendix 

D, Fig. 4-1 shows that ( ) ( 25,0]wκ ∈ − .  
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 By ( )planeF w wκΛ = ⋅ , Eq. 2.31 can be rewritten in the following form: 
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Figure 4-1: Normalized planing force planeF Λ  (m/sec2) and planeF Λ / w . 
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where , ,I I IM A B  and gravF Λ  are defined in Eq. 2.30 and Eq. 2.32. Define 

1 ( ) 0
( ( )) ( )

( ) 0I I

w
H w M A

w L

κ
κ

κ
−  = +  ⋅ 

, 1
I IE M B−= , 0 1

0

f
I grav

c

B F
δ
δ

− Λ 
= − ⋅ 

 
, and then Eq. 4.5 

can be further written as, 

 

 

where 0

0

f f f

c c c

v
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δ δ

     
= −     

     
, and ijH  and ijE  ( , 1,2i j = ) are elements of H  and E , 

respectively. 

 The system in Eq. 4.6 is a Quasi-LPV system, as the dynamic matrix ( ( ))A wκ  is 

a function of the state w . Note that by specifying ( )wκ  as the scheduling parameter, we 

make elements of ( ( ))A wκ  linearly dependent on the parameter ( )wκ . 
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4.3 Constant-Gain State Feedback Controller 

 We first design a constant-gain state feedback controller for the Quasi-LPV model. 

Define the control input [ ]Tf

c

v
K z w q

v
θ 

= 
 

, 2 4K R ×∈ , then the closed-loop system 

becomes, 

 

 

If there exists a constant positive definite matrix P  that satisfies, 

 

 

then the closed-loop system is stable. Since ( ) [ , ]wκ κ κ∈  and ( ( ))A w BKκ +  is an affine 

function of ( )wκ , it suffices to find a 0P >  that satisfies the following [32], 

 

 

 Pre-multiply and post-multiply Eq. 4.9 by 1Q P−= , and define J KQ= , we have 

 

[ ]( ( ( )) )
T T

z w q A w GK z w qθ κ θ  = + 
    4.7

( ( ( )) ) ( ( ( )) ) 0,TA w GK P P A w GKκ κ+ + + <    ( ) [ , ]wκ κ κ∀ ∈  4.8
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( ( ) ) ( ( ) ) 0

T

T

A GK P P A GK

A GK P P A GK

κ κ
κ κ
+ + + <

+ + + <
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which are LMIs in terms of Q  and J . Using the system parameters from Appendix D 

and Matlab LMI toolbox, one feasible solution is given as, 

 

 

and the controller is 

 

4.4 Quasi-LPV H∞  Controller 

 Considering the dive-plane dynamics in Eq. 4.6, ( ( ))A wκ  is affine dependent on 

the scheduling parameter ( )wκ , and thus we apply the algorithm from [29] to design the 

Quasi-LPV H∞  controllers for Eq. 4.6. Since the algorithm from [29] has been coded in 

the MATLAB toolbox and thus in this chapter, we use the MATLAB toolbox directly and 
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omit the algorithm details here. The only design parameters for the delay-independent 

Quasi-LPV H∞  controller design required by the MATLAB toolbox are the weighting 

functions. 

 

 

Fig. 4-2 shows the block diagram of the Quasi-LPV H∞  controller, where the 

block G represents the plant of the supercavitating vehicle, the block K  represents the 

Quasi-LPV H∞  controller, and r denotes the reference signal. The performance-tracking 

weighting function eW  and the control-input weighting function uW  are designed as 

follows: 

 

 

where 2 2I ×  denotes the 2 2× identity matrix. 1W , 2W  and 3W  are listed in Tab. 4-1.  
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Figure 4-2: Control structure in the Quasi-LPV H∞  controller design. 

1 1 2 2 3 2 2{ , , , },e uW diag W W W W W W I ×= =  4.13
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The tracking-performance weights 1

1500

2
W

s
=
+

 and 2 150W =  are designed to emphasize 

low-frequency tracking and minimize steady-state error. The actuator weight 

3

200

250

s
W

s
=
+

 is designed to penalize high-frequency noise under the consideration of the 

actuator bandwidth. Note that for the simulations conducted in [18], same first-order 

actuator models were used for both the cavitator and fin control. In this chapter, we apply 

a similar actuator model of transfer function 
300

300s +
 in our simulations later in the 

chapter. Hence the weights for the cavitator and fin control inputs are chosen to be the 

same. However, if actuator models with different bandwidth are considered for the 

cavitator and fin control, different control weights should be designed for the cavitator 

and fin.  

4.5 Simulation Results 

In this section, we present simulation results for the Quasi-LPV H∞  controller 

(QLPVHC). First, we will present the results of the simulations that do not include the 

Table 4-1: Weighting functions for the Quasi-LPV H∞  controller (QLPVHC) 

Weighting Function Value 

1W  
1500

2s +
 

2W  150 

3W  
200

250

s

s +
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high-gain observer. Note that the Quasi-LPV H∞  controller (QLPVHC) is an output 

feedback controller as mentioned before [29-31, 48]. However, the high-gain observer is 

needed to provide the w  value for updating the LPV controller, which is scheduled by a 

function of w . Then, we will present the simulation results for the controller combineing 

the Quasi-LPV H∞  controller (QLPVHC) with the high-gain observer. 

In order to achieve results that can be compared with the results from [1] and [4], 

initial responses are simulated under the initial conditions of 0z = , 0θ = , 3 /w m sec= , 

and 0.2 /q rad sec= . Additional tracking responses are also simulated to further evaluate 

the controllers’ performance. The numerical example used in the following simulations is 

based on the parameter values in Appendix D from [1].  

The first-order actuator model of the transfer function 
300

300s +
 is used for both 

the cavitator and the fin control in the simulations presented in this section. In addition, 

we assume that the actuators are subject to amplitude limits of 25cδ ≤  deg  and 

25fδ ≤  deg , and a rate limit of 100 /rad sec  [18]. We note that fδ  over a high angle 

may compromise control effectiveness. In the rest of this section, we let saturation 

compensation (SC) denote the simulations with the above-mentioned actuator model and 

actuation limits (but augmented by the saturation compensation once the amplitude limit 

has been touched). We let unlimited control (UC) represent the simulations with ideal 

actuators.  

As in Chapter 3, we evaluate the robustness of the Quasi-LPV H∞  controller 
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(QLPVHC) to uncertainties such as variations in the parameters xC

m
 and n. The same 

variation range as in Chapter 3 is used. We also use the Time-Delay Benchmark Model to 

evaluate the system performance, although the memory effect of the cavity-vehicle 

interaction is not included in the Benchmark Model used for the control design.  

4.5.1 Simulation Results without the High-gain Observer 

A. Nominal performance 

Fig. 4-3 plots the initial-response time histories of the state, control, and planing 

force for the nominal closed-loop systems in which the Quasi-LPV H∞  controller 

(QLPVHC) with either the unlimited control (UC) or the saturation compensation (SC) is 

applied. In this initial response, the Benchmark Model without the cavity memory effect 

is used. The state in the SC case oscillates more obviously than does the state in the UC 

case. This is because in the former both the amplitude and rate limits of fδ  and cδ  are 

touched, and thus the saturation compensation coordinates the two controls to maintain 

the system’s stability. We have learned from our simulations that if actuation amplitude 

limits are imposed but no saturation compensation is implemented, the closed-loop 

system will become unstable.  

Fig. 4-4 plots the initial-response time histories of the state, control, and planing 

force for the nominal closed-loop systems in which the Quasi-LPV H∞  controller 

(QLPVHC) controller with saturation compensation (SC) is applied. In this figure, we 

show both simulations with and without memory effect due to the cavity-vehicle 
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interaction. The planing force model without memory effect is described in Eqs. 2.17, 

2.24, and 2.25. The model with the memory effect is given in Eqs. 2.17, 2.34, and 2.35 

in which the delay time /L Vτ =  caused by the memory effect is calculated as 0.024τ =  

in terms of the vehicle configuration parameters in Appendix D. Fig. 4-4 shows that the 

Quasi-LPV H∞  controller (QLPVHC) can stabilize the nominal system in the presence of 

the memory effect, though with worse transient performance. It is worth pointing out that 

in Fig. 4-4, the rate limits for both fδ  and cδ  are touched in the simulation. However, by 

imposing a hard constraint of 100 /rad sec  on the rate limit, the system is still stabilized. 

In addition, if actuation amplitude limits are imposed but no saturation compensation is 

implemented, the closed-loop system will become unstable.  

The tracking performance of the Quasi-LPV H∞  controller (QLPVHC) for the 

nominal system is shown in Figs. 4-5 and 4-6. Here, we consider two tracking reference 

signals: a unit-step input for depth z is used as the reference signal in Fig. 4-5, and the w-

tracking response is shown in Fig. 4-6, where the reference signal is 

 

 

According to the Time-Delay Benchmark Model, the small magnitude of the 

vertical velocity w in the simulation shown in Fig. 4-5 would not induce any planing 

force; while for the w-tracking response in Fig. 4-6, planing force occurs and the 

memory effect in the planing force model has been included in the simulation. Fig. 4-5 

2sin(2 )rw tπ= , rz =0, r

w

V
θ = , and r rq θ=   4.14
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shows that the z-step response has settling time less than one sec. Fig. 4-6 shows that in 

the presence of cavity memory effect, though the LPV H∞  
controller designed with the 

Benchmark Model can track the reference rw , the reference trajectory rθ  is not well 

followed. 

 

B. Robustness Evaluation 

To evaluate the robustness of the Quasi-LPV H∞  controller (QLPVHC), Figs. 4-

7 and 4-8 plot the stochastic envelopes of the state, control and planing force histories 

based on 100 Monte Carlo simulations of the tracking responses (z-step response and w-

tracking response). The planing force is not induced in z-step response simulations. 

Memory effect is considered in w-tracking response simulations. The uncertainties used 

in the Monte Carlo simulations include ±5% variations in the parameters xC

m
 and n. 

The random samples are generated using normal distributions, which have zero mean and 

0.05 std, and are then truncated within ±5% variation of the nominal values. The 

stochastic envelopes consist of maximum, mean and minimum values at each time 

instance. In z-step response and w-tracking response simulations, Figs. 4-7 and 4-8 show 

that the Quasi-LPV H∞  controller (QLPVHC) is robust to system parameter uncertainties, 

as well as the planing force memory effect, which is not included in the control design. 

However, we learn that it is very difficult to further let the closed-loop system track pitch 

angle reference signals satisfactorily by designing suitable weighting functions. In 

Chapter 5, it will be shown that the Quasi-LPV H∞  controller (QLPVHC) is not able to 



82 

perform pitch angle tracking satisfactorily if the Time-Delay Benchmark Model is used. 

These observations motivate us to exploit time-delay LPV control techniques to address 

memory effect explicitly in Chapter 5. 
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Figure 4-3: Initial responses for nominal systems implemented with the Quasi-LPV H∞

controller (QLPVHC) with UC and SC, without consideration of cavity memory effect. 
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Figure 4-4: Initial responses for nominal systems implemented with the Quasi-LPV H∞

controller (QLPVHC) with SC, with and without consideration of cavity memory effect.
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Figure 4-5: z-step response for the nominal system, implemented with the Quasi-LPV 
H∞  controller (QLPVHC) with SC. Note no planing force is induced based on either the

Benchmark Model or the Time-Delay Benchmark Model. 
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Figure 4-6: w -tracking response for the nominal system, implemented with the Quasi-
LPV H∞  controller (QLPVHC) with SC, with consideration of cavity memory effect. 
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Figure 4-7: Stochastic envelopes of the z-step tracking responses for the uncertain 
system, implemented with the Quasi-LPV H∞  controller (QLPVHC) with SC. Note no 

planing force is induced based on either the Benchmark Model or the Time-Delay 
Benchmark Model. 
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Figure 4-8: Stochastic envelopes of the w -tracking responses for the uncertain system, 
implemented with the Quasi-LPV H∞  controller (QLPVHC) with SC, with consideration 

of cavity memory effect.  
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4.5.2 Simulation Results with the High-gain Observer 

In this section, we repeat all the simulations shown in the last section for the 

output feedback controllers. The only difference is that here we include the designed 

high-gain observer by assuming that the vertical velocity w  is not available via direct 

measurement. The high-gain observer parameter is set as ε  = 0.00015. For all initial 

responses, the initial conditions of the high-gain observer are specified as ˆˆ 0, 0z w= = , 

i.e., the estimated initial ŵ  is away from its true value. 

The simulation results shown in Figs. 4-9 - 4-14 correspond with those shown in 

Figs. 4-3 - 4-8, respectively. It is clear that the closed-loop systems with the high-gain 

observer can achieve almost the same performance as the output feedback closed-loop 

systems without the observer, in both nominal performance and the robustness-testing 

simulations.  

 To further explore the performance of the observer, Fig. 4-15 shows the time 

histories of the estimation errors ze  and we  (as defined in Eq. 3.32). Specifically, the 

figure shows the errors when the observer is implemented with the Quasi-LPV H∞  

controller (QLPVHC) in the initial responses in which the high-gain observer parameter 

is set as ε  = 0.00015. Recall that the initial conditions of the high-gain observer are 

specified as ˆˆ 0, 0z w= = ; i.e., the estimated initial ŵ  is away from its true value of 

3 /w m sec= . We can see that the state estimation errors converge to zero quickly despite 

the uncertain nonlinear part ˆˆ( , , , )z w z wο  of Eq. 3.33. This is because the transfer 



90 

function from ˆˆ( , , , )z w z wο  to the estimation errors is almost zero due to the high gain of 

the observer.  

Here, we also use simulations to show how the high-gain observer behaves under 

sensor noise conditions. In the presence of the sensor measurement noise of z, Fig. 4-16 

plots the initial responses corresponding to the Quasi-LPV H∞  controller (QLPVHC) 

combined with a high-gain observer. The sensor measurement noise used in the 

simulations in Fig. 4-16 is white noise with a power of 810−  and a sample time of 0.001 

sec. Following the discussions in [28], we reset the high-gain observer design parameter 

0.002ε =  for the Quasi-LPV H∞  controller (QLPVHC). Note that the ε  value is fine-

tuned for the Quasi-LPV H∞  controller (QLPVHC) to balance the minimization of state 

estimation errors against amplification of sensor noise. It is observed that the controller is 

still able to stabilize the system, even though there are oscillations in control inputs cδ  

and fδ . It is also noted that the rate limit for both fδ  and cδ  is reached, as shown in 

Fig. 4-16.  
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Figure 4-9: Initial responses for nominal systems implemented with the Quasi-LPV H∞

controller (QLPVHC) with UC and SC, without consideration of cavity memory effect. 
The high-gain observer is also included in the simulations. 
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Figure 4-10: Initial responses for nominal systems implemented with the Quasi-LPV 
H∞  controller (QLPVHC) with SC, with and without consideration of cavity memory 

effect. The high-gain observer is also included in the simulations. 
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Figure 4-11: z-step response for the nominal system, implemented with the Quasi-LPV 
H∞  controller (QLPVHC) with SC, with consideration of cavity memory effect. The

high-gain observer is also included in the simulations. Note no planing force is induced
based on either the Benchmark Model or the Time-Delay Benchmark Model. 
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Figure 4-12: w -tracking response for the nominal system, implemented with the Quasi-
LPV H∞  controller (QLPVHC) with SC, with consideration of cavity memory effect. 

The high-gain observer is also included in the simulations. 



95 

 

0 0.5 1 1.5 2
0

0.5

1

1.5

z 
(m

)

Time (sec)
0 0.5 1 1.5 2

-4

-2

0

2

θ 
(d

e
g

)

Time (sec)

 

 
Max
Mean
Min

0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

w
 (

m
/s

e
c)

Time (sec)
0 0.5 1 1.5 2

-60

-40

-20

0

20

40

60

q
 (

d
e

g/
se

c)

Time (sec)
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

0

10

δ c
 (

de
g

)

Time (sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-25

0

25

δ f
 (

de
g

)

Time (sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

P
la

n
in

g
 F

o
rc

e
 (

N
)

Time (sec)

 

Figure 4-13: Stochastic envelopes of the z-step tracking responses for the uncertain 
system, implemented with the Quasi-LPV H∞  controller (QLPVHC) with SC. The high-

gain observer is also included in the simulations. Note no planing force is induced based 
on either the Benchmark Model or the Time-Delay Benchmark Model. 
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Figure 4-14: Stochastic envelopes of the w -tracking responses for the uncertain system, 
implemented with the Quasi-LPV H∞  controller (QLPVHC) with SC, with consideration 

of cavity memory effect. The high-gain observer is also included in the simulations. 
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Figure 4-15: Performance of the high-gain observer in closed-loop systems 
implemented with the Quasi-LPV H∞  controller (QLPVHC). No measurement noise is 

considered. 
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Figure 4-16: Sensitivity of initial response to measurement noise in z, under the Quasi-
LPV H∞  controller (QLPVHC) with SC and the high-gain observer. 
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4.6 Compared with the Sliding-Mode Controller 

 Note that the sliding-mode controller (SMC) designed in Chapter 3 and the Quasi-

LPV H∞  controller (QLPVHC) are designed to meet different objectives: the former 

emphasizes robustness with respect to the uncertainties of the system parameters, the 

hydrodynamic coefficients, and the planing force, whereas the latter optimizes the H∞  

norm of the performance. Based on our simulations, we consider that the Quasi-LPV H∞  

controller (QLPVHC) handles the nonlinear planing force less conservatively than the 

sliding-mode controller (SMC). In addition, if the variation rate of the vertical velocity w 

is known, we can further reduce the design conservativeness. The sliding-mode controller 

(SMC) can handle the uncertainties explicitly once the bounds of the uncertainties have 

been estimated; further, the sliding-mode controller (SMC) can deal with large 

uncertainties by using the switching control signal. However, obtaining a very tight 

bound β on the uncertain nonlinear term can be difficult, and thus could lead to a 

conservative design. Generally speaking, it is a bit unfair to compare two controllers only 

in terms of several sets of simulation results, especially if both controllers involve tuning 

design parameters. Nevertheless, we still include the evaluation of both controller designs 

using the same set of simulations, i.e., the sliding-mode controller (SMC) in Figs. 3-5 - 

3-6 and the Quasi-LPV H∞  controller (QLPVHC) in Figs. 4-7 - 4-8 are evaluated 

against the same set of uncertainty samples in the Monte Carlo simulations. We offer the 

following observations: compared to the Quasi-LPV H∞  controller (QLPVHC), the 

sliding-mode controller (SMC) achieved more precise w-tracking (compare Fig. 3-6 with 
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Fig. 4-8); however, the latter may lead to larger control inputs by explicitly taking into 

account uncertainties in the control design. It is interesting to see that the Quasi-LPV H∞  

controller (QLPVHC) is able to maintain satisfactory performance in the presence of 

parameter uncertainties that are not considered in the control design. The Quasi-LPV H∞  

controller (QLPVHC) also shows more oscillations in control surface deflections for 

reference tracking.  

 The memory effect has considerable impact on the transient performance of the 

initial responses for both the sliding-mode controller (SMC) and the Quasi-LPV H∞  

controller (QLPVHC), as shown in Figs. 3-2 and 4-4. This observation motivates us to 

design controllers directly based on the Time-Delay Benchmark Model, as we will show 

in Chapter 5. 

  



 

Chapter 5 
 

Delay-dependent Quasi-LPV Control for the Time-Delay Benchmark Model 

5.1 Introduction 

 Existing control designs either neglect the memory effect of the cavity-vehicle 

interaction [1, 3, 6-8, 14, 15] or assume that the delay can be directly cancelled [12, 18]. 

As discussed in [12, 16, 17], neglecting this cavity-vehicle memory effect could 

substantially degrade the control performance of a supercavitating vehicle. Figs. 3-2 

and 4-4 show that the memory effect has degraded the transient performance of the 

initial responses for both the sliding-mode controller (SMC) and the Quasi-LPV H∞  

controller (QLPVHC). Fig. 4-6 shows that the QLPVHC controller cannot track the pitch 

angle command well. Note that these two controllers are designed based on the 

Benchmark Model, which does not take into account the memory effect of the cavity-

vehicle interaction. In this chapter, we will treat the supercavitating vehicle with a time-

delay planing force model (as described in the Time-Delay Benchmark Model in Chapter 

2) as a delay-dependent system. We will apply a Lyapunov-Krasovskii-based control 

technique instead of directly canceling the delay-dependent terms.  

 In recent years, various (robust) H∞  control approaches have been proposed for 

linear (uncertain) time-delay systems. These can be categorized into two main groups: 

delay-independent (e.g., [33, 34]) and delay-dependent (e.g., [35-39]). The delay-
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independent approaches aim to design a stabilizing control that works for any constant 

delay irrespective of size. The delay-dependent approaches explicitly take into account 

the size of the time delay in the control design and usually work out an upper bound for 

the time delay, so that the closed-loop system remains stable under any delay less than 

the upper bound. In general, delay-dependent approaches are less conservative than 

delay-independent ones. Analysis and control designs for time-delay Linear-Parameter-

Varying (LPV) systems were also conducted in several papers, e.g., a set of delay-

independent and delay-dependent stability conditions are derived in [40], analysis and 

state-feedback control for LPV systems with state-delay and parameter-varying time 

delays are given in [41, 42], and variation rate of time-delay is taken into account in 

deriving the stability conditions in [43]. In this dissertation, based on the Time-Delay 

Benchmark Model proposed in [18], we reformulate the pitch-plane dynamics of the 

supercavitating vehicle as a time-delay Quasi-Linear-Parameter-Varying (Quasi-LPV) 

system to address the delay-dependent nonlinear planing force. Since the variation rates 

of the scheduling variables in the Quasi-LPV supercavitating vehicle model, as well as 

the variation rate of the time delay are not available for design, we do not directly apply 

the time-delay LPV control results from the above-mentioned references [41, 42, 43]. 

Instead, we extend the delay-dependent (robust) H∞  control for linear (uncertain) time-

delay systems in [37, 44] to polytopic LPV systems and then apply the results to the 

Quasi-LPV supercavitating vehicle model. The reasons why we are interested in the 

results from [37, 44] lie that they propose a less conservative Lyapunov-Krasovskii 

functional and the bounded real lemma derived by the descriptor system approach is 

considered the most efficient criterion for systems with delays in existing literature. 
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5.2 A Time-delay Quasi-LPV Model 

 In this section, we reformulate the nonlinear Time-Delay Benchmark Model given 

in Section 2.2 into a time-delay Quasi-LPV model. We first define the function 

2
1

1
( ) ( )[1 ( ) ]

1 2

h R
h

h h R
λ ′ ′+′ = −

′ ′ ′+ +
. By definition, h′ (normalized immersion depth) is 

nonnegative and R′ (normalized difference between cavity and body diameter) is constant 

once the configuration parameters of a supercavitating vehicle (e.g., L , R , nR  and σ ) 

are determined. Also note that '
1( )hλ  is a strict concave function of h′ . It achieves the 

maximum value at ' 1.7942h =  based on the parameter values in Appendix D. A 

parametric plot of 1λ  in terms of h′  is given in Fig. 5-1.  

 We further define  
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 If planing occurs, i.e., there is bottom contact or top contact, by the definitions of 

1λ , 2λ , 3λ , 1π  and 2π , we can express the planeF ∧  in Eq. 2.31 into the following form, 
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Figure 5-1: Relationship between 1λ  and h′ . 
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By definition, we note that for a fixed set of vehicle parameters, cR (contraction 

rate of the cavity at the planing location) is constant and particularly, 0cR <  

corresponding to the cavitation number σ  given in Appendix D. By Eq. 2.36, and 

Eqs. 5.1 - 5.3, if planing occurs, 2λ  and 3λ  always have the same sign. When they are 

both positive (corresponding to bottom contact), 2λ  is constant since cR  is constant, and 

3λ  is lower bounded by ( )cR R− . When they are both negative (top contact), 2λ  is 

constant and 3λ−  is lower bounded by ( )cR R− . Hence, 2 3/λ λ  is always positive and 

upper bounded. In summary, if planing occurs, we have 

 

 

Also note that by the concavity of 1λ  with respect to h′ , 1π  is positive and upper 

bounded. Hence, by Eq. 5.3, planeF Λ  is a bilinear function of 1π  and 2π , with 1π  and 2π  

both positive and upper bounded. We further define 3 1 2π π π= . Then the time-delay 

model for planeF Λ  in Eq. 5.3 can be written as, 
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which has affine dependence on 1π  and 3π . Corresponding to the parameter values given 

in Appendix D, we have 10 0.554λ≤ ≤ , 3.2965cR = − , and thus 10 865.625π≤ ≤  and 

30 966.73π≤ ≤ . When the vehicle is inside the cavity, h′= 0 and thus 1 0λ = . This leads 

to 1 0π = , 3 0π =  and thus planeF Λ  = 0, so Eq. 5.5 still holds.  

 Note that IM  and IB  are nonsingular matrices in Eq. 2.32. Substitute Eq. 5.5 

into Eq. 2.31 and define, 

 

 

then the supercavitating vehicle model can be expressed as, 
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If assume that 1π and 3π  are independent, the delay-dependent supercavitating 

vehicle model in Eq. 5.7 - Eq. 5.9 becomes a time-delay Quasi-LPV system that has 

affine dependence on the scheduling parameters 1π  and 3π . It is worth pointing out that 

though conservativeness could be introduced by treating 1π  and 3π  independently, it 

allows us to apply LPV control with affine dependence on scheduling variables to the 

supercavitating vehicle model (rather than resorting to bilinear dependence on scheduling 

variables). Additionally, we would like to point out that the derivation of the model 

(Eq. 5.7 - Eq. 5.9) is one of many possible ways in deriving a Quasi-LPV model from the 

original nonlinear system, i.e. Eq. 2.31. The advantages of this Quasi-LPV model lie that 

it has simple dependence on scheduling parameters, the scheduling variables are positive, 

and their upper bounds can be easily computed once the vehicle configuration parameters 

are determined. 
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5.3 H∞  Control of Time-delay LPV Systems 

 In Section 5.3.1, a delay-dependent bounded real lemma for a class of linear time-

delay systems from [37] is introduced, based on which we derive H∞  ( 2L -gain) tracking 

control for the linear time-delay systems and then derive the robust H∞  tracking control 

for the time-delay linear uncertain systems. In Section 5.3.2, we extend the results to 

time-delay LPV systems with affine dependence on scheduling parameters, where we 

derive matrix inequalities for both nominal and robust H∞  tracking control for the time-

delay LPV systems. In Section 5.4, the extended results/theorems in Section 5.3.2 will be 

applied to control designs for the Quasi-LPV supercavitating vehicle model.  

5.3.1 H∞  Tracking Control of Time-delay Linear Systems 

 A delay-dependent bounded real lemma from [37] is given as follows: 

 Lemma 5.3.1 [37]  Consider a class of linear state-delay systems described by, 

 

 

where ( ) nx t R∈ is the state; ( ) mw t R∈ is the disturbance input that belongs to 2[0, )L ∞ ; 

( ) lo t R∈ is the controlled output. The time delay τ τ≤ . The matrices A , dA , wB , C , 
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wD , and 1C  are known real constant matrices of appropriate dimensions. For a prescribed 

0γ >  and 0τ ≥ , assume that there exist 1 0P > , 2P , 3P , Q , 11X , 12X , 22X , 1Y , 2Y , and 

0Z >  such that the following Eq. 5.11 and Eq. 5.12 hold, 

 

   

 

where 

 

   

and *' s  in Eq. 5.11 and Eq. 5.12 represent symmetric entries in a matrix. Then the 

system in Eq. 5.10 is stable and satisfies the H∞ ( 2L -gain) performance 
2 2

( ) ( )o t w tγ<  

for all nonzero 2( ) [0, )w t L∈ ∞  and any constant time-delay τ  satisfying 0 τ τ≤ ≤ .  
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 Next we consider a tracking problem, where we consider a time-delay linear 

system as follows: 

 

 

 The objective is to design a state-feedback control 1 ( ( ) ( )) ( )u K r t x t Ke t= − ≡ , 

where ( )r t denotes the reference signal and ( )e t  denotes the tracking error signal, such 

that for a prescribed 0γ >  and 0τ ≥ , the H∞ ( 2L -gain) performance 
2 2

( ) ( )o t r tγ<  is 

satisfied corresponding to the controlled output [ ]1( )
T

o t e u= , for all nonzero 

2( ) [0, )r t L∈ ∞  and any constant time-delay τ  satisfying 0 τ τ≤ ≤ .  

 Insert 1 ( ( ) ( ))u K r t x t= −  into Eq. 5.14, and then we have  

 

 

Also, the controlled output variable ( )o t  becomes 
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where I  denotes the identity matrix of appropriate dimension. By applying Lemma 5.3.1 

to the system in Eq. 5.15 and Eq. 5.16, we have the following theorem. 

 

 Theorem 5.3.1  Consider a class of linear time-delay systems described by, 

 

 

Define a tracking controller 1 ( ( ) ( )) ( )u K r t x t Ke t= − ≡ , where ( )r t  represents the 

reference signal. For a prescribed 0γ >  and 0τ ≥ , assume that there exist 1 0L > , 2L , 

3L , W , 11M , 12M , 22M , 1N , 2N , 0S >  and U  that satisfy the inequalities in Eq. 5.18 

and Eq. 5.19. Then for the controlled output ( )o t  defined in Eq. 5.17 and 1
1K UL−= , the 

closed-loop system is stable and satisfies the H∞  performance 
2 2

( ) ( )o t r tγ<  for all 

nonzero 2( ) [0, )r t L∈ ∞  and any constant time-delay τ  satisfying 0 τ τ≤ ≤ . 
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with a bit abuse of notations on 11Γ , 12Γ , and 22Γ , 

 

 

and *' s  representing symmetric entries in a matrix.  

 

 The proof is given in Appendix A, and part of the proof follows a similar line as 

the proof of Theorem 5.3.1 in [37]. Note that the conditions in Eq. 5.18 and Eq. 5.19 are 

not Linear Matrix Inequalities (LMI) conditions due to the terms 2
1L  and 1

1 1L S L− . We 

apply a cone complementarity linearization algorithm, which has been used in multiple 

papers (e.g., [45, 37]), to handle these two terms. Details of the algorithm are given in 

Appendix B.  

 Next Theorem 5.3.1 is extended to robust H∞  tracking for time-delay linear 

uncertain systems in the following theorem. 
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 Theorem 5.3.2  Consider a class of time-delay linear uncertain systems described 

by, 

 

 

where notations are defined in the same way as in Theorem 5.3.1. Assume that 

uncertainties in A , dA and B , which are denoted by AΔ , dAΔ  and BΔ , respectively, are 

time-varying matrices given in the following form, 

 

 

where F , E , dE  and bE  are constant matrices. The matrix ( )tΔ  denotes time-varying 

uncertainty and it is assumed to be in a diagonal form, i.e., 1( ) { ( ), , ( )}t diag t tνΔ = Δ Δ , 

with ( ) i ip q
i t R ×Δ ∈ , 1, ,i ν=  , satisfying ( ) ( )T

i it t IΔ Δ ≤ , 0t∀ ≥ . Define a state-feedback 

tracking controller 1( ) ( ( ) ( ))u t K r t x t= − , where ( )r t  represents the reference signal. For 

a prescribed 0γ >  and 0τ ≥ , assume that there exist 1 0L > , 2L , 3L , W , 11M , 12M , 

22M , 1N , 2N , 0S > , U  and 1{ , , } 0diag I Iνλ λΛ = >  that satisfy the inequalities in 

Eq. 5.19 and Eq. 5.23. Then for the controlled output ( )o t  defined in Eq. 5.16 and 

controller 1 ( ( ) ( ))u K r t x t= −  with 1
1K UL−= , the closed-loop system is stable and 
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satisfies the H∞  performance 
2 2

( ) ( )o t r tγ<  for all nonzero 2( ) [0, )r t L∈ ∞  and any 

constant time-delay τ satisfying 0 τ τ≤ ≤ .  

 

 

with 

 

 

The proof of Theorem 5.3.2 is given in Appendix A. Part of the proof follows a 

similar line as the proof of Theorem 5.1 in [37].  
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5.3.2 H∞  Tracking Control of Time-delay Linear-Parameter-Varying Systems 

 In this section, we extend the results in Section 5.3.1 to state-feedback control of 

time-delay Linear-Parameter-Varying systems with affine dependence on scheduling 

variables.  

 Lemma 5.3.2  Consider a class of state-delay Linear-Parameter-Varying systems 

described by, 

 

 

 With a bit abuse of notation, we assume that ( )Aψ , ( )dA ψ  and ( )wB ψ  have 

affine dependence on a time-varying scheduling parameter vector ψ  that varies in a 

polytope of vertices 1 2, ,..., rμ μ μ , i.e. 
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with ( )iA A μ→ , ( )d d iA A μ→ , and ( )w w iB B μ→  for each iμ , 1, ,i r=  . Then the 

system in Eq. 5.25 is stable and satisfies the quadratic performance 
2 2

( ) ( )o t w tγ<  for 

all nonzero 2( ) [0, )w t L∈ ∞  and any constant time-delay τ  satisfying 0 τ τ≤ ≤ . 

 Proof of Lemma 5.3.2 is given in the Appendix A. 

 By Lemma 5.3.2, we extend the H∞  tracking control results in Theorem 5.3.1 and 

Theorem 5.3.2 to LPV systems as follows, 

 

 Theorem 5.3.3  Consider a class of time-delay Linear-Parameter-Varying 

systems described by, 

 

 

where ( )Aψ  and ( )dA ψ , which depend on a time-varying scheduling parameter vector 

ψ , satisfy Eq. 5.26. The matrix B  is constant. Assume that ( ( ), )A Bψ  is quadratically 

stabilizable. Define a state-feedback tracking controller 1( ) ( ( ) ( ))u t K r t x t= − , where ( )r t  
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satisfy the inequalities in Eq. 5.19 and Eq. 5.28 for each iμ , 1,...,i r= . Then for the 

controlled output ( )o t  defined in Eq. 5.16 and state-feedback controller 1( )u t =  
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closed-loop system is stable and satisfies the H∞  performance 
2 2

( ) ( )o t r tγ<  for all 

nonzero 2( ) [0, )r t L∈ ∞  and any constant time-delay τ  satisfying 0 τ τ≤ ≤ . 

 

 

with 

 

 

 Proof: The proof is straightforward by applying Lemma 5.3.2, Theorem 5.3.1 and 

its proof.  
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where notations are defined in the same way as in Theorem 5.3.3. Assume that AΔ , dAΔ  

and BΔ  are time-varying uncertainties in ( )Aψ , ( )dA ψ  and B , respectively, and they 

are given in the following form, 

 

 

where F , E , dE  and bE  are constant matrices. ( )tΔ  denotes time-varying uncertainty 

and it is assumed to be in a diagonal form, i.e., 1( ) { ( ), , ( )}t diag t tνΔ = Δ Δ , with 

( ) i ip q
i t R ×Δ ∈ , 1, ,i ν=  , satisfying ( ) ( )T

i it t IΔ Δ ≤ , 0t∀ ≥ , and I  denotes the identity 

matrix of appropriate dimension. Define a state-feedback tracking controller 

1( ) ( ( ) ( ))u t K r t x t= − , where ( )r t  represents the reference signal. For a prescribed 0γ >  
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with 

 

 

 The proof is straightforward by applying Lemma 5.3.2 and Theorem 5.3.2.  

5.4 Delay-dependent Controller Design for the Supercavitating Vehicle 

 In this section, we apply the nominal and robust LPV control from Section 5.3.2 

to the delay-dependent model of the supercavitating vehicle. Fig. 5-2 shows the controller 

structure, where G  represents the delay-dependent supercavitating vehicle model, which 

has control input ( )u t  and state variable ( )x t . The reference signal is denoted by ( )r t and 

the error signal between the reference and the state is denoted by ( )e t . We define 

[ ]Tr r r re r x z z w w q qθ θ= − = − − − − . The control input ( )u t consists of two parts: 
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the feed-forward 0u  is defined in Eq. 5.6 to cancel out the gravity term gravF Λ , and a state-

feedback 1( )u t  is defined as 1( ) ( ( ) ( ))u t K r t x t= − . We assume that all state variables are 

measurable and available for feedback control. 

 

 

 Considering the open-loop supercavitating model in Eq. 5.7 and 

1( ) ( ( ) ( ))u t K r t x t= − , the closed-loop system is expressed as, 

 

 

which takes the same form as Eq. 5.15. The matrices A  and dA  are affinely dependent 

on the scheduling parameters 1π  and 3π  as shown in Eqs. 5.8 - 5.9. We are interested in 

optimizing the H∞ ( 2L -gain) performance from the reference signal r  to [ ]1 T
e u . Hence 

we define the control output as, 

 

 

− K G

e
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+
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Figure 5-2: Block diagram of the feedback control. 
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where 4 4I ×  represents a 4 4×  Identity matrix. 

First we design a nominal H∞  controller based on Theorem 5.3.3 in Section 5.3.2. 

In terms of system parameters given in Appendix D, the time delay /L Vτ = in the 

supercavitating vehicle model (i.e., Eqs. 2.34 - 2.35) is calculated as / 0.024L V sτ = = . 

Recall from Section 5.2 that the two scheduling parameters satisfy 10 865.625π≤ ≤  and 

30 966.73π≤ ≤  corresponding to the vehicle configuration parameters given in 

Appendix D. Hence the four vertices of 1 2[ , ]ψ π π=  for the polytopic LPV system are,  

 

 

By solving the inequalities in Eq. 5.19 and Eq. 5.28, we obtain the control 

 

 

where 
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and the parameters iη  can be calculated as, 

 

 

with 1β  and 2β  defined as follows, 

 

 

Next we consider robust control of the delay-dependent LPV model of the 

supercavitating vehicle. As discussed in Chapter 4, we consider xC

m
 and n  to be the 

uncertain parameters used in robust control, which essentially cover variations in control 

effective coefficients and variation in density ratio of the vehicle and fluid/water.  
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Based on the parameter values given in Appendix D, the norm of the nominal 

state matrix and input matrix can be calculated as 0 2
80.2A =  and 0 2

1245.3B = . In 

terms of Eq. 5.8 and Eq. 5.9, corresponding to ±3% variation in system parameters xC

m
 

and n , the bounds of the uncertain state matrix, delayed-state matrix and input matrix are 

estimated as 
2

AΔ ≤ 0.5414, 
2

0dAΔ =  (since dA  does not depend on xC

m
 and n ) and 

2
BΔ ≤ 42.0347. Then, the matrices F , E , dE  and bE in Theorem 5.3.4 are defined as 

follows, 

 

 

where I and 0  denote identity and zero matrices. We consider the bound of time delay τ  

to be 20% longer than the nominal time delay given by /L Vτ = , i.e., 1.2τ τ= . By 

solving inequalities in Eq. 5.19 and Eq. 5.32 corresponding to the vertex set of the 

scheduling variables in Eq. 5.36, we obtain the control 
4

1
1

( ) i
i

i

u K r x K eη
=

= − = , where 

iη 's are given in Eq. 5.39 and  
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 Higher percentage values of variations in system parameters xC

m
 and n  have also 

been examined, but no feasible solutions could be found for the inequalities in Eq. 5.19 

and Eq. 5.32 to guarantee robust stability. This implies the conservativeness of the results 

in Theorem 5.3.4, particularly when it is applied to the parametric uncertainty problem as 

we consider here (uncertain parameters xC

m
 and n ). Nevertheless, simulation results in 

next section show that the resulting controller can tolerate a much higher percentage of 

variation in uncertain parameters than guaranteed by Theorem 5.3.4.  

5.5 Simulation Results 

In this section, we present simulation results for the two QLPV controllers 

designed in this chapter. For the rest of the chapter, we refer them as the Delay-

dependent Nominal LPV- H∞  Controller (DNHC) and the Delay-dependent Robust LPV-

H∞  Controller (DRHC), respectively. Further we will compare the two controllers with 
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4
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the Quasi-LPV H∞  controller (QLPVHC) designed in Chapter 4. In order to offer results 

that are comparable with those presented in [1] and [4], initial responses are simulated. 

Additional tracking responses are also simulated to further evaluate controllers’ 

performance. Robustness to variations in xC

m
 and n  are also evaluated.  

In terms of the system parameter values given in Appendix D, the time delay 

/ 0.024L V sτ = =  is used in the simulation. An actuator model with transfer function of 

300 /( 300)s + , subject to an amplitude limit of 25 degree and a rate limit of 100 /rad s  

[18], is used for both cavitator and fin control. Different actuator models can be applied 

for the cavitator and fins if they are needed. In all simulations, planing force memory 

effect from the Time-Delay Benchmark Model is included, and if one of the control 

actuators (either the cavitator or the fin but not both) exceeds its amplitude limit, the 

actuator amplitude compensation designed in Chapter 3 is applied to re-distribute the 

control effort between the cavitator and the fins. 

5.5.1 Simulation Results without the High-gain Observer 

A. Nominal performance 

In this subsection, we evaluate the nominal performance of the Delay-dependent 

Nominal LPV- H∞  Controller (DNHC) and the Delay-dependent Robust LPV- H∞  

Controller (DRHC) via initial responses and tracking responses ( z  and w  tracking), In 

the initial response simulation, initial conditions are chosen as 0z = , 0θ = , 3 /w m s= , 
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and 0.2 /q rad s= . Then a unit z -step input tracking and w  tracking are simulated to 

further evaluate the controller performance, and the w -tracking reference signal is 

 

 

Fig. 5-3 shows initial responses of the DNHC and the DRHC controllers. Their 

corresponding planing force time histories are also given in Fig. 5-3. We can see that the 

DNHC and DRHC controllers have much better transient performance than the Quasi-

LPV H∞  controller (QLPVHC) designed in Chapter 4 (compare Fig. 5-3 with Fig. 4-4), 

i.e., faster convergence speed and smaller transient deviations from the origin. It is noted 

that the assumed actuator rate limit is touched in the two responses shown in Fig. 5-3.  

Fig. 5-4 shows simulation results corresponding to a unit z -step input tracking 

response with zero initial conditions and 0r r rw qθ = = = . Both the DNHC and the 

DRHC controllers can track the step input signal satisfactorily, though the z-step 

responses do not have overshoot. Note that neither the DRHC nor the QLPVHC 

controller induces planing force in the unit z -step input tracking response. Fig. 5-5 shows 

the w  tracking responses, where the reference signals are given in Eq. 5.43. The closed-

loop system implemented with either the DNHC or the DRHC controller achieves better 

performance in terms of smaller tracking errors than the one for the QLPVHC controller 

(compare Fig. 5-5 with Fig. 4-6).  

2sin(2 )rw tπ= , rz =0, r

w

V
θ = , and r rq θ=   5.43
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 In summary, nominal performance illustrates that either the DNHC or the DRHC 

controller has achieved better initial and tracking performance than the QLPVHC 

controller since the former two controllers are designed based on the Time-Delay 

Benchmark Model, which explicitly takes time-delay into account. 

 

B. Robustness Evaluation 

In this subsection, we evaluate the robustness of the DNHC and the DRHC 

controller with respect to parameter uncertainties using the unit z -step tracking and w  

tracking simulations. The reference trajectory used in the w  tracking responses is given 

in Eq. 5.43. In all tracking responses shown in this subsection, + 20% variation (i.e., 4.8 

ms variation) in the time delay τ  (with nominal value / 0.024L V sτ = = ) is used. One 

hundred Monte Carlo simulations are conducted for each tracking response to evaluate 

the robustness of the control system with respect to variations in the parameters xC

m
 and 

n. In the Monte Carlo simulations of the unit z -step tracking responses as shown in 

Figs. 5-6 - 5-7, a set of random samples of xC

m
 and n is generated using normal 

distributions with zero mean and 0.4 std, being truncated within ±40% of the nominal 

values of xC

m
 and n, respectively. Figs. 5-6 - 5-7 show the stochastic envelopes 

(maximum, mean and minimum) of the 100 Monte Carlo simulations corresponding to 

the DRHC and the DRHC controller, respectively. To further compare the robustness of 

the closed-loop systems implemented with the two controllers, another set of random 
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samples of xC

m
 and n is used for w  tracking simulations. The new set is generated using 

normal distributions with zero mean and 0.5 std, being truncated within ±50% of the 

nominal values of xC

m
 and n, respectively. Fig. 5-9 shows the stochastic envelopes 

corresponding to the w  tracking response corresponding to the DRHC controller. We can 

see that the DRHC controller is able to achieve satisfactory tracking performance in the 

presence of uncertainty, even though the design is derived with the guarantee of 

robustness to ±3% variations of xC

m
 and n . Same w  tracking simulations are also 

conducted for the DNHC controller and the resulting stochastic envelopes of Monte 

Carlo simulations are shown in Fig. 5-8. It is noted that the DNHC controller has much 

worse w -tracking performance than the DRHC controller with the same parameter 

uncertainty. 
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Figure 5-3: Initial response simulations for the nominal system implemented with the
Delay-dependent Nominal LPV- H∞  Controller (DNHC) and the Delay-dependent 

Robust LPV- H∞  Controller (DRHC), respectively. 
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Figure 5-4: z -step responses for the nominal system implemented with the Delay-
dependent Nominal LPV- H∞  Controller (DNHC) and the Delay-dependent Robust LPV-

H∞  Controller (DRHC), respectively. 
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Figure 5-5: w -tracking responses for the nominal system implemented with the Delay-
dependent Nominal LPV- H∞  Controller (DNHC) and the Delay-dependent Robust LPV-

H∞  Controller (DRHC), respectively. 
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Figure 5-6: Stochastic envelopes of z -step tracking responses, with the Delay-
dependent Nominal LPV- H∞  Controller (DNHC). 
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Figure 5-7: Stochastic envelopes of z -step tracking responses, with the Delay-
dependent Robust LPV- H∞  Controller (DRHC). 
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Figure 5-8: Stochastic envelopes of w -tracking responses, with the Delay-dependent 
Nominal LPV- H∞  Controller (DNHC). 
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Figure 5-9: Stochastic envelopes of w -tracking responses, with the Delay-dependent 
Robust LPV- H∞  Controller (DRHC). 
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5.5.2 Simulation Results with the High-gain Observer 

In this section, we repeat all the simulations shown in the last section for the 

output feedback controllers. The only difference is that here we include the designed 

high-gain observer in our consideration assuming an observer is necessary. The high-gain 

observer parameter is set as ε  = 0.00015. For all initial responses, the initial conditions 

of the high-gain observer are specified as ˆˆ 0, 0z w= = , i.e., the estimated initial ŵ  is 

away from its true value. 

The simulation results shown in Figs. 5-10 - 5-16 correspond with those shown in 

Figs. 5-3 - 5-9 respectively. It is clear to see that the closed-loop systems with the high-

gain observer can achieve almost the same performance as the closed-loop systems 

without the observer, in both the nominal performance and the robustness testing 

simulations.  

 To further explore the performance of the observer, Fig. 5-17 shows the time 

histories of the estimation errors ze  and we  (as defined in Eq. 3.32) when the observer is 

implemented with the Delay-dependent Nominal LPV- H∞  Controller (DNHC) or the 

Delay-dependent Robust LPV- H∞  Controller (DRHC) controller in initial response, 

respectively. The high-gain observer parameter is set as ε  = 0.00015. Recall that initial 

conditions of the high-gain observer are specified as ˆˆ 0, 0z w= = ; i.e., the estimated 

initial ŵ  is away from its true value 3 /w m sec= . We can see that the state estimation 

errors converge to zero quickly despite the uncertain nonlinear part ˆˆ( , , , )z w z wο  in 
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Eq. 3.33. This is because the transfer function from ˆˆ( , , , )z w z wο  to the estimation errors 

is almost zero due to the high gain of the observer.  

Here we also use simulations to show how the high-gain observer behaves under 

sensor measurement noise. In the presence of the sensor measurement noise of z, Figs. 5-

18 and 5-19 plot the initial responses corresponding to the DNHC and the DRHC 

combined with a high-gain observer, respectively. The sensor measurement noise used in 

the simulations is white noise with a power of 810−  and sample time 0.001 sec. Following 

the discussions in [28], we reset the high-gain observer design parameter 0.00001ε =  for 

the DNHC controller and 0.002ε =  for the DRHC controller. Note that the ε  value is 

fine tuned for the each controller in order to balance the minimization of state estimation 

errors against amplification of the sensor measurement noise. It is observed that the 

controller is still able to stabilize the system, even though the sensor noise causes 

oscillations in the control inputs cδ  and fδ . It is also noted that the rate limit for both fδ  

and cδ  is reached in both simulations. 

Remark 5.5.1: According to the discrete-time and sampled-data implementation of 

general high-gain observers, addressed in [46] and [47] respectively, the sampling period 

T  could be chosen as T α ε= ∗  and the parameter α ∈ [2, 5]. Thus, for 0.002ε =  used 

for the Quasi-LPV H∞  controller (QLPVHC) designed in Chapter 4 and the Delay-

dependent Robust LPV- H∞  Controller (DRHC), the sample rate is around 100 Hz to 250 

Hz; while it seems difficult to implement the observer corresponding to 0.00001ε =  used 

for the sliding-mode controller (SMC) designed in Chapter 3 and the Delay-dependent 

Nominal LPV- H∞  Controller (DNHC).  
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Figure 5-10: Initial response simulations for the nominal system implemented with the 
Delay-dependent Nominal LPV- H∞  Controller (DNHC) and the Delay-dependent 

Robust LPV- H∞  Controller (DRHC), respectively. The high-gain observer is included. 



139 
 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

z 
(m

)

Time (sec)
0 0.5 1 1.5 2

-5

-4

-3

-2

-1

0

1

θ 
(d

e
g
)

Time (sec)

 

 
DNHC with SC & Memory Effect
DRHC with SC & Memory Effect

0 0.5 1 1.5 2
-2

-1

0

1

2

3

w
 (
m

/s
e
c)

Time (sec)
0 0.5 1 1.5 2

-150

-100

-50

0

50

q
 (
d
e
g/

se
c)

Time (sec)

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-25

0

25

δ c
 (

de
g
)

Time (sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-25

0

25

δ f
 (

de
g
)

Time (sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

P
la

n
in

g
 fo

rc
e 

(N
)

Time (sec)

 

Figure 5-11: z -step responses for the nominal system implemented with the Delay-
dependent Nominal LPV- H∞  Controller (DNHC) and the Delay-dependent Robust LPV-

H∞  Controller (DRHC), respectively. The high-gain observer is included. 
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Figure 5-12: w -tracking responses for the nominal system implemented with the
Delay-dependent Nominal LPV- H∞  Controller (DNHC) and the Delay-dependent 

Robust LPV- H∞  Controller (DRHC), respectively. The high-gain observer is included. 
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Figure 5-13: Stochastic envelopes of z -step tracking responses, with the Delay-
dependent Nominal LPV- H∞  Controller (DNHC). The high-gain observer is included. 
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Figure 5-14: Stochastic envelopes of z -step tracking responses, with the Delay-
dependent Robust LPV- H∞  Controller (DRHC). The high-gain observer is included. 



143 

 

 

0 0.5 1 1.5 2
-0.4

-0.3

-0.2

-0.1

0

0.1

z 
(m

)

Time (sec)
0 0.5 1 1.5 2

-2

-1

0

1

2

3

4

θ 
(d

e
g
)

Time (sec)

 

 
Max
Mean
Min

0 0.5 1 1.5 2
-3

-2

-1

0

1

2

3

w
 (
m

/s
e
c)

Time (sec)
0 0.5 1 1.5 2

-60

-40

-20

0

20

40

q
 (
d
e
g/

se
c)

Time (sec)

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-10

0

15

δ c
 (

de
g
)

Time (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-25

0

25

δ f
 (

de
g
)

Time (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5000

0

5000

P
la

n
in

g
 F

o
rc

e
 (

N
)

Time (sec)

 

Figure 5-15: Stochastic envelopes of w -tracking responses, with the Delay-dependent 
Nominal LPV- H∞  Controller (DNHC). The high-gain observer is included. 
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Figure 5-16: Stochastic envelopes of w -tracking responses, with the Delay-dependent 
Robust LPV- H∞  Controller (DRHC). The high-gain observer is included. 
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Figure 5-17: Performance of the high-gain observer in closed-loop systems 
implemented with the Delay-dependent Nominal LPV- H∞  Controller (DNHC) and the 

Delay-dependent Robust LPV- H∞  Controller (DRHC), respectively. No measurement 

noise is considered. 



146 

 

0 0.5 1 1.5 2
-0.02

0

0.02

0.04

0.06

0.08

z 
(m

)

Time (sec)
0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

θ 
(d

e
g
)

Time (sec)

 

 

DRHC with noise

0 0.5 1 1.5 2
-1

0

1

2

3

4

w
 (
m

/s
e
c)

Time (sec)
0 0.5 1 1.5 2

-20

0

20

40

60

80

100

q
 (
d
e
g/

se
c)

Time (sec)

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-25

0

25

δ c
 (

de
g
)

Time (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-25

0

25

δ f
 (

de
g
)

Time (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-10000

-5000

0

P
la

n
in

g
 fo

rc
e 

(N
)

Time (sec)

 

Figure 5-18: Sensitivity of initial response to measurement noise in z , with the Delay-
dependent Nominal LPV- H∞  Controller (DNHC) and the high-gain observer with 

0.00001ε = . 
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Figure 5-19: Sensitivity of initial response to measurement noise in z, with the Delay-
dependent Robust LPV- H∞  Controller (DRHC) and the high-gain observer with 

0.002ε = . 
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Figure 5-20: Pitch angle tracking responses for the nominal system implemented with
the Delay-dependent Nominal LPV- H∞  Controller (DNHC), the Delay-dependent 

Robust LPV- H∞  Controller (DRHC), and the Quasi-LPV H∞  controller (QLPVHC)

respectively. 
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5.5.3 Compared with the Quasi-LPV H∞  Controller Designed Based on the 

Benchmark Model 

To further explore the difference between the Delay-dependent Nominal LPV-

H∞  Controller (DNHC), the Delay-dependent Robust LPV- H∞  Controller (DRHC) and 

the Quasi-LPV H∞  controller (QLPVHC) designed in Chapter 4, pitch-angle tracking 

simulation results are presented in Fig. 5-20. The reference signals for the pitch-angle 

tracking are ( ) 0rw t =  and 
1

r rz
V

θ = −  , where the reference signal for z is defined as 

follows, 

 

   

and by system dynamics, the reference pitch rate rq  is calculated as r rq θ=  . 

Fig. 5-20 shows that both the DNHC and DRHC can track the pitch-angle 

reference signal satisfactorily, while the QLPVHC is not able to achieve satisfactory 

tracking performance. One possible reason could due to that the QLPVHC is designed 

based on the Benchmark Model which ignores the memory effect of the cavity-vehicle 

interaction. 

5
1.25 1.25sin( )

2 2rz t
π π= + −  5.44



 

Chapter 6 
 

Conclusions and Future Work 

6.1 Conclusions 

This dissertation focuses on control designs for two pitch-plane-dynamics models 

of a supercavitating vehicle: the Benchmark Model, which does not take into account the 

memory effect of the planing force, and the Time-Delay Benchmark Model, which is a 

state-delay model that includes the cavity memory effect. Based on the Benchmark 

Model, a sliding-mode controller (SMC) and a Quasi-LPV H∞  controller (QLPVHC) are 

designed to achieve stability and tracking performance of the closed-loop systems. 

Nominal performance and robustness evaluations of the two controllers are also 

conducted with the Time-Delay Benchmark Model. The corresponding simulation results 

show that the performance of the two controllers, though designed based on the non-time-

delay Benchmark Model, is satisfactory for unit z -step input tracking and w  tracking 

(though in which the desired rθ  is not well followed). However, the QLPVHC controller 

designed based on the Benchmark Model has poor performance in the pitch-angle 

tracking response. This is consistent with the observations of several other papers that 

ignoring the cavity-vehicle memory in the modeling could hurt the controller 

performance substantially. Consequently, based on the Time-Delay Benchmark Model, a 

Delay-dependent Nominal Quasi-LPV H∞  Controller (DNHC) and a Delay-dependent 

Robust Quasi-LPV H∞  Controller (DRHC) are designed. Compared with the QLPVHC, 
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the DNHC and DRHC show better transient performance and much better tracking 

performance, especially in the pitch-angle tracking response. When there is uncertainty 

associated with hydrodynamic coefficients, the designed robust controller DRHC has 

much better performance in robustness compared with the nominal controller DNHC. 

Considering that it is difficult to measure the vertical speed of a supercavitating 

vehicle for feedback control, a high-gain observer is designed based on the measurement 

of vehicle depth. The observer shows good nominal estimation performance when the 

sensor measurement noise is not included. In practice when the sensor measurement 

noise model is available, different observer gains must be selected to balance estimation 

performance against noise amplification due to the high gain. The observer gains that are 

selected will depend on which controller the observer output is fed to. Additionally, the 

physical amplitude limits of actuators lead us to design a saturation compensation to 

coordinate the control inputs to actuators of the cavitator and fins. It is observed that, 

without the compensation, actuator amplitude saturation will result in instability in most 

simulations. We also show that all closed-loop systems with saturation compensation are 

stable, although the rate limit of actuators is also touched in most cases. 

6.2 Future Work 

In the Time-Delay Benchmark Model, the fin effectiveness ratio, i.e. n , is 

assumed constant. This might be a significant disadvantage of the model. A higher 

fidelity fin force model would improve the model significantly and be beneficial for 

control design. The (Time-Delay) Benchmark Models and the corresponding controllers 
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only address longitudinal dynamics. Modeling and control designs for the full six-DOF 

supercavitating vehicle will enable more complicated maneuvers. 

As shown in Chapter 5, the delay-dependent robust LPV- H∞  control design is 

conservative; no feasible solutions could be found for uncertainties higher than 3% in the 

system parameters and the hydrodynamic coefficients to guarantee robust stability; 

however, 40% uncertainties can be tolerated in tracking simulations. It is possible to 

reduce the conservativeness of the control design by constructing a parameter-dependent 

Lyapunov-Krasovskii functional for the time-delay LPV system. 

 In addition, the work done so far assumes the reference signals are commanded to 

a supercavitating vehicle at steady trim velocity. It would be interesting to see the 

tracking performance when a reference signal is commanded to a vehicle right after 

launch. As velocity increase and cavity grows, the more complicated cavity-vehicle 

interaction might make a significant difference in tracking performance. 
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Appendix A 
 

Proofs of Theorems in Chapter 5 

 In order to prove the Theorems in Chapter 5, equivalent conditions to Eq. 5.11 are 

utilized. By [37], Eq. 5.11 is equivalent to 0Ξ <  as follows: 
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11 12 13

1 1
2

0 0T

T
w w

Q C C

I D D

ϕ ϕ ϕ

γ

 
 Ξ = ∗ − + < 
∗ ∗ − +  

 A.1

11 12
11

22

1 1 2

1
12

2

13

0 0

0

0

0

T

T

T T T

T

d

T
T w

w

X XI I
P P

XA I A I

Q C C Y Y Y

Z

Y
P

A Y

C D
P

B

ϕ τ

τ

ϕ

ϕ

    = + +      ∗− −     
 + + +
+  ∗ 

   = −   
  
  

= +   
   

 A.2



162 

 By comparing the new system (Eqs. 5.15 - 5.16) to the system (Eq. 5.10) in 

Lemma 5.3.1, we have ( )A A BK→ − , d dA A→ , wB BK→ , 
I

C
K

 → −  
 

, w

I
D

K

 →  
 

, 

and 1 0C → . Accordingly, Eq. A.1 and Eq. A.2 become 
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 Pre-multiply Ξ  by 4 1{ }Tdiag L L I  and post-multiply Ξ  by 4 1{ }diag L L I , 

and then followed by algebraic reductions including Schur complement, Eq. A.3 and 

Eq. A.4 are reduced to, 
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  As 1 0L > , pre- and post-multiply Eq. A.6 by 1{ , , , , , , }Diag I I I L I I I , then Eq. A.6 

becomes Eq. 5.18.                                                                                                             □ 

                                                                                                                                                                

 Lemma 5.3.3 ([37])  Let F , E  and Δ  be real matrices of appropriate dimensions 

with 1( ) { ( ), , ( )}t diag t tνΔ = Δ Δ , ( ) ( )T
i it t IΔ Δ ≤ , 1, ,i ν=  . Then, for any real matrix 

1{ , , } 0diag I Iνλ λΛ = > , the following inequality holds: 

 

 

  By Lemma 5.3.3 and Theorem 5.3.1, the proof of Theorem 5.3.2 is given as 

follows: 

  Let Ψ  denote the left hand side of the inequality in Eq. 5.18. Then substitute 

matrices ( )A F t E+ Δ , ( )d dA F t E+ Δ  and ( ) bB F t E+ Δ  for matrices A , dA  and B  

respectively in Eq. 5.18. It suffices to prove Theorem 5.3.2 if the inequality in Eq. 5.18 

still holds after the substitution. After substituting ( )A F t E+ Δ , ( )d dA F t E+ Δ  and 

( ) bB F t E+ Δ , the inequality in Eq. 5.18 becomes, 

 

1T T T T TF E E F F F E E−Δ + Δ ≤ Λ + Λ  A.7
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where  
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  According to Lemma 5.3.3, Eq. A.8 holds if there exists 

1{ , , } 0diag I Iνλ λΛ = >  such that 

 

 

  By Schur complement, Eq. A.9 is equivalent to Eq. 5.23.                                     □                         

 

Proof of Lemma 5.3.2:  

 Note that ( )Aψ , ( )dA ψ  and ( )wB ψ  have affine dependence on scheduling 

parameters ψ . Also note that the matrix inequalities in Eqs. 5.11 - 5.13 have affine 

dependence on A , dA  and wB . Then with ( )A Aψ→ , ( )d dA A ψ→  and ( )w wB B ψ→ , 

inequalities in Eqs. 5.11 - 5.12 are convex combinations of the vertex inequalities, which 

are defined in terms of ( ( ), ( ), ( ))i d i w iA A Bμ μ μ  corresponding to all vertex values 

0T T TF E E FΨ + Δ + Δ <  A.8

1 0T TF F E E−Ψ + Λ + Λ <  A.9
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( , 1,..., )i i rμ = of the parameter vector ψ . Consequently if Eqs. 5.11 - 5.13 hold for every 

( ( ), ( ), ( ))i d i w iA A Bμ μ μ , 1,...,i r= , they will hold for all ( )Aψ , ( )dA ψ  and ( )wB ψ  with 

ψ  varying in the polytope of vertices 1 2, ,..., rμ μ μ . In addition, following the proof in 

reference ([37, 44]), if inequalities in Eqs. 5.11 - 5.12 hold for all possible ( )Aψ , ( )dA ψ  

and ( )wB ψ  for any ψ  as has been noted, there exists a common (scheduling-parameter-

independent) Lyapunov-Krasovskii functional ( ( ))V x t  such that ( ( )) 0V x t <  and 

2 2
( ) ( )o t w tγ< . This implies that the closed-loop system is asymptotically stable and 

the H∞  performance is satisfied.                                                                                       □ 



 

Appendix B 
 

Apply Cone Complementarity Linearization Method to Solve Matrix Inequalities in 
Chapter 5 

Following a cone complementarity linearization method used in references ([45, 

37]), the nonconvex feasibility problem characterized by the matrix inequalities in 

Eqs. 5.18 - 5.19, which include two forms of nonlinearity 2
1L  and 1

1 1L S L− , is converted to 

the following minimization problem subject to Linear Matrix Inequalities:  

 Minimize 1 1 1( )Trace DT L J SH D T+ + +  subject to 

 

 

 

1 0L > , 0D > , 1 0D > , 
11 12 1

22 2 0

M M N

M N

D

 
 ∗ ≥ 
∗ ∗  

 B.1

0
T J

J H

  > 
 

, 0
D I

I T

  ≥ 
 

, 1 0
L I

I J

  ≥ 
 

, 

0
S I

I H

  ≥ 
 

, 1 0
T J

J I

  > 
 

, 1

1

0
D I

I T

 
≥ 

 
 

B.2

111 12 1 2

1 2 322

2
11

0

0*

0 0 0* * 0

0* * *

0* * * *

* * * * *

T T

T
d

T

L UN L

A L N LBU

W

L UD

I

S

τ
τ

γ

τ

  − −Γ Γ −   
−Γ 

 −  <
  −   
 −
 

− 

 B.3



168 

 Then an iterative algorithm given below is used to find a feasible solution to the 

matrix inequalities in Eqs. 5.18 - 5.19, from which a suboptimal maximum of τ  (and a 

suboptimal minimum of γ ) can also be obtained. Iterative Algorithm is given as follows: 

i) Choose a sufficiently small initial 0τ >  (and choose a sufficiently large initial 

0γ > ) such that there exists a feasible solution to Eqs. B.1 - B.3. Set 0sτ τ= (set 0sγ γ= ). 

ii) Find a feasible set ( 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 11 12 22 1 2, , , , , , , , , , , , , ,L L L M M M N N W S U D T J  

0 0 0
1 1, ,H D T ) satisfying Eqs. B.1 - B.3. Set 0k = . 

iii) Solve 1 2 3 11 12 22 1 2 1 1( , , , , , , , , , , , , , , , , )L L L M M M N N W S U D T J H D T  for the 

following LMI problem, 

Minimze (subject to Eqs. B.1 - B.3)  

1 1 1 1 1 1( )k k k k k k k kTrace D T T D L J J L S H H S D T T D+ + + + + + +   

Set 1 1 1 1 1 1 1 1
1 1 1 1 1 1, , , , , , ,k k k k k k k kD D T T L L J J S S H H D D T T+ + + + + + + += = = = = = = =  

iv) If conditions in Eqs. 5.18 - 5.19 are satisfied, then set 0sτ τ= (set 0sγ γ= ) and 

return to Step ii) after increasing τ  (decreasing γ ). If conditions in Eqs. 5.18 - 5.19 are 

not satisfied within a specified number of iterations, say maxk , then exit. Otherwise, set 

1k k= +  and go to Step iii). 

 For the inequalities in Eq. 5.23, we can find a feasible solution by applying a 

similar procedure. 



 

Appendix C 
 

Actuator Amplitude Saturation Compensation Design 

 In the following, we describe in details this control-reallocation-based saturation 

compensation, which is applied in simulations when needed. We have observed that 

without this saturation compensation, closed-loop systems may become unstable if 

control inputs are forced to stay within their physical amplitude limitations. On the other 

hand, we can imagine that if the required control actuation is so large that both fδ  and cδ  

will get saturated even after control reallocation, then additional saturation compensation 

techniques, e.g., anti-windup based saturation compensation, may be needed; but this is 

not the case in the dissertation.  

 Let dw  and dq  denote the w  and q  values achieved by fδ  and cδ  if no actuation 

limitation exists. When either fδ  or cδ  gets saturated, we derive the updated (reallocated) 

fδ  and cδ  by minimizing the following metric, 

 

 

 From Eq. C.1, we can see that when the metric D  is minimized, w  and q  will 

approach dw  and dq  respectively, i.e., the controlled variables, w  & q , and hence w & q 

will recover to the values when there is no actuation limitation. Consequently, there will 

( )2 2( )d dD w w q q= − + −     C.1
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be no or minimal performance degradation due to control saturation by reallocating the 

control effort between fδ  and cδ  to minimize the metric in Eq. C.1.  

 For the simplicity of explanation, we rewrite the dynamic equations of w  and q  

into a compact form as follows, 

 

 

where, according to Eq. 2.27 and Eq. 2.30, 

 

 

 

Now suppose fδ  gets saturated first at the limit value fδ , we design the 

compensation to adjust cδ , i.e., reallocate control cδ  to minimize the metric D  in 

Eq. C.1, which is achieved by solving cδ  from 0
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which gives, 

 

 

If cδ  gets saturated first, the updated value of fδ  can be derived in a similar way 

as shown below, 

 

 

In the special case, when both cδ  and fδ  get saturated at the same time, we 

determine to keep cδ  at the limit value while adjusting fδ  to approximate desired state 

derivative values to the most extent. The compensation algorithm proves effective as 

shown in simulations of the dissertation. 
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Appendix D 
 

System Parameters for Numerical Simulations 

The table below lists the system parameter values used for numerical simulations 

in this dissertation. The table is originally from [1]. 

Parameter Description Value and Units 
g Gravitational acceleration 9.81 ms 2−  
m  Density ratio 2 
n  Fin effectiveness ratio 0.5 

nR  Cavitator radius 0.0191 m 

R  Vehicle radius 0.0508 m 
L  Length 1.8 m 
V  Velocity 75ms 1−  
σ  Cavitation number 0.03 

0xC  Lift coefficient 0.82 
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