
The Pennsylvania State University

The Graduate School

COMPROMISE-RESILIENT ANTI-JAMMING COMMUNICATION IN

WIRELESS SENSOR NETWORKS

A Thesis in

Computer Science and Engineering

by

Xuan Jiang

c⃝ 2011 Xuan Jiang

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

August 2011

The thesis of Xuan Jiang was reviewed and approved∗ by the following:

Guohong Cao
Professor of Computer Science and Engineering
Thesis Advisor

Sencun Zhu
Associate Professor of Computer Science and Engineering

Jose A. Ventura
Professor of Industrial Engineering

Raj Acharya
Department Head and Professor of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

Jamming is a kind of Denial-of-Service (DoS) attack in which an adversary purposefully emits
radio frequency signals to corrupt the wireless transmissions among normal nodes. Some research
has been conducted on countering jamming attacks for wireless networks. Few works consider
jamming attacks launched by insiders, where an attacker first compromises some legitimate sensor
nodes to acquire the common cryptographic information of the sensor network and then jams the
network through those compromised nodes. In this paper, we first retrospect research works for
wireless networks from its feasibility to countermeasures. Then, we address the insider jamming
problem in wireless sensor networks. In our proposed solutions, the physical communication
channel of a sensor network is determined by the group key shared by all the sensor nodes. When
insider jamming happens, the network will generate a new group key to be shared only by the non-
compromised nodes. After that, the insider jammers are revoked and will not be able to predict
the future communication channels used by the non-compromised nodes. Specifically, we propose
two compromise-resilient anti-jamming schemes: the split-pairing scheme which deals with a
single insider jammer, and the key-tree-based scheme which copes with multiple colluding insider
jammers. We implement and evaluate the proposed solutions using Mica2 Motes. Experimental
results show that our solutions have low recovery latency and low communication overhead, and
hence they are suitable for resource constrained sensor networks.

iii

Table of Contents

List of Figures vi

Acknowledgments vii

Chapter 1
Introduction 1

Chapter 2
System Model and Design Goal 8
2.1 Network Model and Assumptions . 8
2.2 Attacker Model . 9
2.3 Design Goal . 9

Chapter 3
Compromised Node Identification 11
3.1 Phase I: Direct Attestation . 11
3.2 Phase II: Result Sharing and Compromise Identification 12

Chapter 4
The Split-Pairing Scheme for A Single Jammer 15
4.1 Phase I: Channel Splitting . 15
4.2 Phase II: Jamming and Key Propagation within A Group 16
4.3 Phase III: Key Propagation between Groups . 18

Chapter 5
Tree-Based Scheme for Multiple Colluding Jammers 21
5.1 Motivations and Overview . 21
5.2 The Protocol . 22
5.3 Performance Analysis . 25

Chapter 6
Performance Evaluations 26
6.1 Testbed Configurations . 26

6.1.1 The Implementation of Channel Switching 26

iv

6.1.2 Implementation of the Jammer . 26
6.1.2.1 Implementation of the Software-based Attestation 27

6.1.3 Performance Metrics . 27
6.2 Channel Switching Latency . 28
6.3 The Performance of the Identification Phase . 28

6.3.1 The Impact of Network Size . 29
6.3.2 The Impact of Number of Jammers . 30
6.3.3 The Impact of Jamming Duration . 31

6.4 The Performance of the Split-Pairing Scheme . 32
6.4.1 The Impact of Jamming Probability . 32
6.4.2 The Impact of Jamming Duration . 34

6.5 The Performance of the Tree-based Scheme . 36
6.5.1 Impact of the Jamming Duration . 36
6.5.2 The Impact of the Network Size . 36

Chapter 7
Discussions and Conclusions 39
7.1 Discussions . 39
7.2 Conclusions and Future Work . 39

Bibliography 41

v

List of Figures

3.1 Attestation process for a network of 7 nodes . 13

4.1 Network topology. 16
4.2 The illustration of channel switch for key reestablishment. 16
4.3 Pairing for key propagation between groups . 19

5.1 Key tree example. 22
5.2 An example for our tree-based scheme. 23

6.1 Three Mica2 motes are used for measuring the channel switching latency. 28
6.2 The channel switching latency for the three Mica2 motes. 29
6.3 The average number of retransmissions for each node during one round for different

network size. 30
6.4 The average number of retransmissions for each node during one round for different

jammers. 30
6.5 The average number of retransmissions for each node during one round under

different number of jammers for different jamming durations. 31
6.6 A network with 16 legitimate nodes and one jammer. 32
6.7 The recovery latency of the splitting phase (Phase I and II) for a single group. . 33
6.8 The recovery latency of the splitting phase (Phase I and II) which is the minimum

latency of both groups. 33
6.9 The recovery latency of the splitting phase (Phase I and II) under different jam-

ming duration (Jamming probability=0.5, Network size=16 nodes). 34
6.10 Recovery latency for the split-pairing scheme (including all 3 phases) under dif-

ferent jamming duration (Jamming probability=0.5, Network size=16 nodes). . . 35
6.11 A network with 8 nodes and 3 jammers. 37
6.12 Recovery latency of the tree based scheme under different jamming packet size. . 37
6.13 The recovery latency under different network size. 38

vi

Acknowledgments

First and foremost I want to thank my advisor Dr. Cao Guohong. It has been an honor to be
his Master student. He has taught me, both consciously and unconsciously, how good research
is done. I appreciate all his contributions of time, ideas, and funding to make me productive and
stimulating. The joy and enthusiasm he has for his research was contagious and motivational for
me.

I would also like to thank Dr. Zhu Sencun. This thesis would not have been possible without
the guidance and the help of him. His suggestion and guidance improves the quality of this thesis.
Without his idea, I would hardly imagine how this work would be excellent.

Prof. Ventura deserves a special thanks as my thesis committee member. His insights to
optimization is second to none. Besides, he sets an example of a world-class researcher for his
rigor and passion on research.

The members of the Dr. Cao’s group have contributed immensely to my personal and profes-
sional time. The group has been a source of friendships as well as good advice and collaboration.
I am especially grateful for the fun group of members who stuck it out in graduate school with
me. I would like to acknowledge group member Wenhui Hu who contributes a great deal of time
to help me in the experiment. We worked together day and night on the Mica 2 platform, and I
very much appreciated his enthusiasm, intensity, willingness to do frequent changes and numerus
measurements to ensure the work is persuasive and convincing.

Lastly, I would like to thank my family for all their love and encouragement. For my parents
who raised me with a love of science and supported me in all my pursuits. Thank you all.

vii

Chapter 1
Introduction

The broadcast nature of wireless radio transmission makes it vulnerable to jamming-based Denial-

of-Service (DoS) attacks in which an attacker purposefully launches signals to corrupt wireless

communications. Wireless Sensor Networks (WSNs) are especially susceptible to jamming attacks

since normal sensors have limited resources in computation, communication, storage and energy,

and do not have complicated transceivers against the jammers.

Jamming models have been widely studied, classified and evaluated. For example, jammers

can be classified in terms of capabilities (broadband or narrowband). In order to study the

different attack philosophies, the authors classifies the jamming strategies based on its behaviors

such as constant, deceptive, random, reactive in [1]. For a constant jammer, it continually emits a

radio signal. Two typical implementations are a waveform generator which continuously sends a

radio signal and a normal wireless device such as a Mica 2 Mote. For the second type, the constant

jammer violates the underlying MAC protocol. It does not wait for the channel to become idle

before transmitting so that it can prevent legitimate traffic sources from getting hold of channel

and sending packets. Instead of sending out random bits, a deceptive jammer injects regular

packets to the channel without any gap between subsequent packet transmissions. A normal

communicator is then deceived to believe that the legitimate communication is ongoing and it

keeps remaining in the receive state. For example, if a deceptive jammer sends a continuous

stream of preamble bits (0xAA in TinyOS), the legitimate nodes will be deceived and keep

in receive state even if the nodes have packets to send. For a random jammer, it switches

between sleeping and jamming. During jamming, it can either behave like a constant jammer or

a deceptive jammer. This jamming model takes the energy conservation into account which is

important for those jammers that do not have unlimited power supply. The above three models

are all active jammers which means that they try to interrupt communication without considering

the ongoing traffic pattern. Active jammers are usually effective because they keep the channel

busy all the time. However, they are easier to be detected. Compared with active jammers, the

reactive jammer is more difficult to identify. The reactive jammers stay quiet when the channel is

2

idle but starts transmitting a radio signal as soon as it senses ongoing communication. A reactive

jammer aims to block the reception of a message. As a result, it is harder to detect. In addition

to study the attack philosophies, [1, 2, 3, 4, 5, 6] study the working mechanism and categorize

based on their protocol layers. Physical layer jammers directly emit energy on communication

channels to interfere the reception of legitimate transmissions. MAC layer jammers can insert

dummy packets or preambles to deceive the receivers. For cross-layer jammers, each layer can be

decomposed into several manageable design problems related to jamming and sensing functions.

For the design of a cross-layered attacker for the Transport/Network layer, by sensing the packet

type and timing in physical layer, protocols introduce highly predictable timing that can be

exploited. The limited information of packet size, timing, and sequence is therefore enough to

accurately predict packet types. Using a combination of offline historical analysis of sequence

to provide training data for the online models, a packet classifier was developed that adapts to

variations across networks. As a result, wireless TCP/IP is significantly vulnerable.

Jamming cannot be adequately addressed by common security mechanisms such as confi-

dentiality, authentication, and integrity, because jamming targets at the basic transmission and

reception capabilities of the physical devices. Moreover, none of the cryptographic constructions

such as encryption/decryption can be directly adopted to solve the problem. Thus, we have to

seek new solutions to deal with this severe attack.

Most physical layer countermeasures rely on the spread spectrum technique [7, 8]. The idea of

spread spectrum system is to transmit signal by spreading it over a wide frequency band, much

wider than the minimum bandwidth required to transmit the signal. For instance, a spread

spectrum system takes a narrow band signal with a bandwidth of a few kiloHertz and distributes

it over a wide band that is many megaHertz by modulating it with a special sequential of noise-

like signal structure, a pseudorandom sequence. To retrieve the original information signal, the

receiver demodulates the received signals using the same sequence. As the result of spreading

and de-spreading operation, the signal-to-nose ratio on the channel is enhanced and the effect of

jamming is reduced. This is because the desponding is accomplished by correlating the received

spread spectrum with e same sequence. When the two signals are matched, the desired signal

collapses to its original bandwidth before spreading, whereas any unmatched input (the jamming

signal) is spread to the wideband. A filter then rejects all but the desired narrow band signal.

The enhanced signal-to-noise ratio on the channel is called process gain.

Depend on the methods that spread the narrow band signal, spread spectrum techniques

can be divided into the following varieties: frequency-hopping spread spectrum (FHSS), direct-

sequence spread spectrum (DSSS), time-hopping spread spectrum(THSS), chirp spread spectrum

(CSS), and combinations of these techniques. Among them, FHSS, DSSS, and the combination

those two provide jamming resistance.

Frequency-hopping spread spectrum (FHSS). Frequency hopping systems rapidly hop its car-

rier frequency among thousands of frequencies. The specific order of hopping frequencies is a

pseudorandom sequence known to both sender and receiver. The rate of frequency hopping is

a function of the information rate, the amount of redundance used, and the distance to nearest

3

potential jammer. The challenge of FHSS is to synchronize the hopping sequence to both the

sender and receiver. FHSS is robust to the narrowband jamming attack since the jamming signal

will be effective only when the legitimate communication happens to hop to jammed frequency.

Direct-sequence spread spectrum (DSSS). Direct-sequence spread spectrum systems multiply

the narrowband signal to be transmitted by a “noise” signal. This noise signal is a pseudorandom

sequence of 1 and -1 values, at a frequency much higher than that of the original signal, thereby

spreading the energy of the original signal into a much wider band. The modulated signal is

like white noise. However, this noise-like signal can be used to exactly reconstruct the original

data at the receiving end, by multiplying it by the same pseudorandom (PN) sequence. This

process, known as “despreading”, mathematically constitutes a correlation of the transmitted

PN sequence with the PN sequence that the receiver believes the transmitted is using. For

despreading to work correctly, the transmitted and received sequences must be synchronized.

This requires the receiver to synchronize its sequence with the transmitter’s sequence via some

sort of timing search process. The despreading mechanism reduces the jamming signal power

and makes the DSSS technique resistance to many types of jamming attacks. However, DSSS

can only defense certain jamming attacks. A jammer that transmit continuous signals can defeat

the DSSS system by increasing its jamming power high enough to overcome the processing gain

in the receiver end. Alternatively, a jammer can emit pulse signals with the peak power much

higher than the constant power, and adopt a 33% duty cycle pulse which is adequate for effective

jamming.

Time-hopping spread spectrum (THSS). Time hopping systems use the pseudorandom se-

quence to control the transmitter on and off. This form of spread spectrum modulation is mainly

applied in combination with frequency hopping. Typically, this sort of system is not effective in

coping with jamming. It usually combines with FHSS to prevent single frequency jamming from

causing significant communication interruption.

Chirp spread spectrum (CSS). A chirp is a sinusoidal-wave signal whose frequency increases

or decreases with time. It is also known as sweep signal as its frequency scan through a prede-

termined frequency band. Modulating the narrowband signal with a chirp will spread the signal

over a wider frequency band. Similar to frequency hopping technique, chirp spread spectrum can

only reduce the narrowband jamming attack, since such jammer can only affect the chirp receiver

for a small percentage of the time. Additionally, if the jammer can determine the tuning slope of

the chirp frequency, it can effectively disable the chirp receiver by sweeping the frequency band

at the same pace as the chirp. Since the chirp system requires both sender and receiver knows the

chirp beforehand and chirp modulation in digital system is not flexible, modern communication

systems rarely use CSS.

In modern physical layer countermeasures of jamming attacks, FHSS and DSSS are mostly

used in which the sender and receiver share the same secret sequence. The secret sequence is

usually determined and generated by a key and a pseudorandom function so that both sender

and receiver can hop among channels or use the spreading sequence to evade the jamming attack.

However, to successfully communicate under jamming attack, both sender and receiver need to

4

know the same hopping or spreading sequence beforehand and keep it secret. [9, 10, 11, 12]

studied the problem of key establishment without pre-shared secret under jamming. In [9],

the uncoordinated frequency hopping (UFHSS) recovery scheme is proposed which enables the

jamming-resistant one-to-one communication in the presence of a jammer without a pre-shared

secret sequence. In the scheme, each message is broken into multiple segments and then sent out

on random hopping frequencies chosen from a fixed frequency band. Like coordinated frequency

hopping, UFHSS is based on the assumption that the attacker cannot jam all frequency channels

on which the nodes communicate at the same time so that the sender and the receiver can still

communicate through the remaining jam-free channels. However, in UFHSS, the sender and the

receiver do not agree on a secret channel sequence but instead transmit and listen on randomly

selected channels. The fundamental observation is that, with sufficient transmission attempts,

the sender and receiver can send and listen on the same channels in a number of time slots,

even if they did not agree on them beforehand. For example, given 500 channels and a sender

hopping among the channels at a high rate 1500 Hz and a receiver hopping at a low rate 100

Hz, the receiver will be listening on the frequency where the sender is transmitting in average

1500/500 = 3 times per second. Based on this observation, the UFHSS scheme is highly resistant

to packet losses and active jamming attacks. It can be applied in settings where two nodes

wish to establish an unanticipated and spontaneous communication without pre-shared secret

sequence, which was so far not feasible using coordinated frequency hopping. Unfortunately, the

UFHSS scheme deals with one-to-one communication and does not provide an efficient solution

for broadcast communication. To fix this problem and support group communication, UDSSS [11]

has been proposed for broadcast communication. In UDSSS, a public set of spreading sequences

is stored and used by the sender and the receivers. The set is public and may be known to

the attacker. To transmit a message, the sender randomly selects a spreading sequence from

the set and spreads the message with this sequence. The receivers record the signal on the

channel and despread the message by applying sequences from the set using a trial-and-error

method. The receivers using UDSSS are not time-synchronized to the sender with respect to

the spread signal. In order to compensate for this, the sender sends the message repeatedly and

the receivers apply a sliding window approach to synchronize to the transmission. The efficiency

of UDSSS is therefore determined by factors. One is that the time when the receivers need

to find the right spreading code and its synchronization. The other is the probability of the

attackers jamming success. Given that, the receivers need to search through the set and adjust

the synchronization windows in order to despread the received message. UDSSS enables anti-

jamming communication between nodes that are within each others transmission ranges without

pre-share a secret sequence. Moreover, UDSSS supports broadcast anti-jamming communication

for dynamic groups of untrusted receivers. However, as the cost of UDSSS, it requires the

receivers to store the sequence set. It also requires the time to search the set and find the

correct despreading sequence which defines the latency of the communication. From the above,

we see that UFHSS, UDSSS and most of the physical layer anti-jamming approaches require

sophisticated processing unit and storage device which are not applicable to sensor nodes. For

5

example, Mica2 Mote does not support Direct-Sequence Spread Spectrum (DSSS).

Researchers studied jamming attacks on a broadcast control channel in [13, 14]. [13] consid-

ered an insider attacker in a centralized network with a cluster head who can compromise nodes

to obtain the cryptographic information such as hopping sequences. A cluster head generates

hopping sequences for each member in which some positions of the sequences share the same

frequency bands for the control channel. The compromised node is identified by metrics such as

the expected hamming distance. The cluster head then updates and redistributes the hopping

sequence. To deal with a similar problem, [14] proposes a framework to control the channel

access, using the random assignment of cryptographic keys to hide the location of the control

channels. Both schemes, however, are centralized with the help of either cluster heads or trusted

authorities.

For broadcast channel with insider receivers, tree-based and group-based schemes [15, 16, 17]

have been proposed. [15] uses a balanced binary tree to allocate spectrum sequences. In this

scheme, each node of the tree corresponds to a spread spectrum seqence. Each user in the

broadcast group is assigned a leaf and can access to the sequences corresponding to that leaf and

all its ancestors. The system transmits on a set of sequences such that all users can demodulate

using exactly one sequence; such set is referred to as a disjoint cover. Besides transmitting

on the disjoint cover, the system also transmits on a set of test sequences. A sequence in the

disjoint cover is a detectable sequence if it is the ancestor of any of the test sequences. If any

user receives message on a test sequence but not on the corresponding detectable sequence, then

that user reports jamming on the detectable sequence, and the system responds by removing the

detectable sequence from the cover and inserting its two children sequences in its place. In [16],

group-based schemes have been proposed to combat insider jammers in broadcast systems. In

the scheme, multiple receivers are organized into multiple broadcast groups and different groups

use different channels. This ensures that a compromised receiver can only affect the members

in the same group. A divide-and-conquer strategy is then used to isolate malicious receivers.

However, the scheme requires the sender to send a separate copy of each broadcast message to

every group, causing a lot of communication overhead. To deal with t compromised receiver, the

sender needs to send at least 2t extra copies of messages for each broadcast. To compensate the

communication overhead, [17] proposes a partial channel sharing solution. Instead of sending

messages using one channel, the channel is divided into multiple smaller ones and let different

groups partially share their channels. In this way, the data sent over the shared channels can

reach more than one groups, saving substantial communication cost. In the performance analysis

sections in [16, 17], we see that these schemes require a large number of available channels so

that the attacks have low probability to jam the group-used communication channel. Otherwise,

the compromised nodes could coordinate to jam all channels in a group which renders recovery

failure for group-based schemes.

For WSNs, Xu et al. proposed to use channel surfing [2] to deal with a narrow-band and in-

termittent jammer. In this scheme, the jammed nodes immediately switch to another orthogonal

channel and wait for opportunities to reconnect to the rest of the network. After the jammed

6

nodes lose connectivity, their neighbors, the boundary nodes, will discover the disappearance

of their jammed neighbor nodes and temporally switch to the new channel to search for them.

If the lost neighbors are found on the new channel, the boundary nodes will participate in re-

building the connectivity of the entire network. Specifically, the scheme consists of two different

techniques for the boundary nodes to repair network connectivity. The first technique is called

coordinated channel switching, in which the boundary nodes participate in switching the entire

network to the new channel to rebuild total network connectivity on the new channel. The other

technique is call spectral multiplexing, where boundary nodes multiplex between the old channel

and the new channel, serving as a bridge that connects nodes operating on different channels.

However, to avoid the jammer to predict the next channel, the channel selection uses a keyed

pseudorandom generator. For example, in the coordinated channel switching, all nodes switch to

a different channel C(n+1) = FK(C(n)) to evade jamming after jamming is detected, where K is

a group key shared by all nodes, F is a pseudorandom function and C(n) is the original channel

used before jamming. However, this technique is limited to outsider attacks and it does not

work under node compromises since an insider attacker knows the group key K and the function

F . Additionally, Xu et al. propose the timing channel scheme for WSNs. The scheme is built

as a low-rate physical layer overlay on top of the traditional physical/link-layers. The timing

channel uses the detection and timing of failed packet receptions at the receiver, which we have

shown is possible by time stamping CRC failures or by monitoring the signal strength. Then,

the inter-arrival codes for building a single-sender, single-receiver timing channel is constructed.

To address the multiple-sender, single-receiver cases, an asynchronous code and a decoding pro-

cedure that employs a bank of parallel correlators is constructed. To complete the scheme, an

overlay data link layer, which provides framing, error detection/correction, and authentication,

is proposed. However, the timing channel can only resume communications in a low data rate

and the existing protocol should be modified or updated.

In this paper, we address the insider jamming problem in WSNs. Our solution includes two

phases: the identification of malicious insiders and the recovery from the insider jamming. For

the identification, our goals is to identify the malicious insider by all nodes. Specially, we split

the network into two groups equally. Two nodes in different groups rotationally pair and verify

each other by software attestation. In the recovery scheme, the physical communication channel

is determined by the group key shared by all nodes. When recovery scheme starts, the network

will generate a new group key to be shared only by the non-compromised nodes. After that, the

insider jammers are revoked and will not be able to predict future communication channels used

by the non-compromised nodes. To realize this idea, we address the following research challenges:

First, how can the non-compromised nodes agree on a new group key in a fully distributed way?

Second, how do they distribute the new group key under the presence of one or multiple jammers.

Specifically, we propose two compromise-resilient anti-jamming schemes. The first scheme, called

split-pairing, deals with a single insider jammer. Due to the channel switch delay, the insider

jammer cannot jam two channels at the same time. By actively splitting non-compromised

nodes into two or multiple groups using multiple channels, nodes communicating in jamming-

7

free channels can first reestablish a new common group key, and then propagate this key to other

non-compromised nodes. We further propose a key-tree-based scheme to cope with multiple

colluding insider jammers. Our goal is to construct a logical key tree in a bottom-up manner

under jamming so that all jammed nodes can finally share the root key to derive a common secret

channel. Then, they can propagate the shared key to other non-compromised nodes.

We have implemented and evaluated the proposed solutions using Mica2 Motes. Experimental

results show that our solutions have low recovery latency and low communication overhead, and

hence they are suitable for resource constrained sensor networks.

The rest of this paper is organized as follows. Chapter 2 describes the system model and the

design goal. The identification is addressed in chapter 3. The details of our recovery schemes

are presented in Chapter 4 and Chapter 5. In Chapter 6, we present the performance evaluation

results of our proposed schemes. Last, Chapter 7 concludes the paper.

Chapter 2
System Model and Design Goal

2.1 Network Model and Assumptions

We assume each node in the network has multiple channels and can switch to different channels.

For example, the Mica2 mote has 32 effective channels for radio transmission [18]. As our first

step towards addressing the insider jamming problem, in this paper, we focus on a one-hop

network in which each node can directly communicate with all other nodes. This model has been

widely used and studied in recent works [9, 10, 11, 13, 14, 19].

For security purpose, we assume every pair of nodes share a pairwise key. For a static

network, keying materials could be stored or hard-coded in non-volatile memory such as Flash

memory. For a dynamic network, the issue of establishing pairwise keys has been well studied

in wireless sensor networks. Many pairwise key establishment schemes [20, 21, 22] allow two

nodes to establish a pairwise key on the fly as long as they know each other’s id. In our work,

we choose the Blundo scheme [23] since it provides clear security guarantee and simplifies our

presentation. In the Blundo scheme, a bivariate symmetric polynomial f(x, y) with degree of t

is chosen in advance and f(i, y) is preloaded on sensor i. The pairwise key with node j on i can

be generated by evaluating the function f(i, j). The scheme provides unconditional secrecy if no

more than t nodes collude. For the storage cost, a node needs to store a univariate polynomial

represented by t+1 coefficients. The size of a coefficient is the same as that of a symmetric key.

For example, if a sensor network wants to tolerate the compromises of tens of nodes, it needs to

store tens of coefficients. The size of a typical key is 8 or 16 bytes [24]; hence, each node needs

to store hundreds of bytes of keying material. This storage overhead is affordable for low-end

sensor motes with 4KB RAM.

Last, we admit that jammer localization and identification for WSNs are still open issues. In

this paper, we assume the software-based attestation technique [25, 26, 27, 28, 29, 30, 31, 32, 33]

can identify node compromises although some challenges remain [29]. Basically, the attestation

procedure applies a challenge-response exchange between two nodes. A verifier node sends a

9

randomly-generated number as the challenge to an interrogated node. Based on this challenge, the

interrogated node traverses its memory in a pseudorandom fashion while recursively computing

a cryptographic checksum over traversed locations. It responds to the verifier with the final

checksum. The verifier can validate the response since it knows the expected unchanged memory

image and can locally precompute the correct checksum. The traversal algorithm is designed in a

way that the compromised node responses with a wrong answer or returns the response too late.

There are many other way to identify the compromised sensors. For example, RF fingerprinting

for sensor nodes [34] and jammer localization [35].

2.2 Attacker Model

We assume that the attacker can compromise a few nodes to obtain confidential information such

as group key which is used to derive the channel used by all the sensor nodes. We also assume

that the attacker launches jamming through the compromised sensors. That is, the jammer has

the same physical capability in terms of power and frequency band as the normal sensor. There

are two reasons for this assumption. First, it is obvious that if the jammer is a high-power,

broadband capable device, it is impossible to construct a jamming-resilient sensor network with

the low-end sensors. Second, powerful jammers can be easily detected by defenders since they

violate the normal communication rules. However, insider jamming is supposed to be more

stealthy. Nevertheless, we assume the compromised sensors launch signals as strong as possible

to maximize the attacker’s damage.

In our attack model, the attacker has the following parameters:

• Jamming Probability: The attacker can jam up to n channels with probability pi(1 ≤ i ≤ n)

for channel i.

• Channel Switch Latency (tl): The attacker needs time tl(tl > 0) to switch from one channel

to another. From our experiment in Chapter 6, the typical latency is 34 ms for Mica2 mote.

For MicaZ mote [36], tl is 132 us. For 802.11 WiFi [37], the measurement result of tl for

the Atheros chipset is 7.6ms.

• Sensing and Jamming Duration: We consider two types of jammers: active and reactive.

For active jammers, attackers launch jamming signal immediately without sensing. We

denote the jamming duration as tj . For reactive attackers, attackers sense the traffic before

jamming. Active attackers do not sense, so they may jam some channels that have no

traffic. As such, active attacks have shorter response time but are not energy efficient; on

the contrary, reactive attacks have longer response time but are more energy efficient.

2.3 Design Goal

Our goal is to design security mechanisms to minimize the damages caused by the insider jam-

mer(s). More specifically, we consider a scenario where normal nodes could be compromised and

10

deceived as malicious insider jammers. The attacker could use any cryptographic information

known by the normal nodes to facilitate the jamming attack. For example, the jammer could

always predict the next channel used for communication and launch jamming signals to block

the eligible network traffic. In addition, we consider a more complicated case in which multiple

nodes launch jamming attacks in a coordinated way. The goal of our proposed security mech-

anisms is to identify the compromised nodes, construct and propagate a new group key to all

non-compromised nodes under the presence of one or even multiple jammers so that the new key

can be used to establish a keyed secret channel which cannot be predicted by the insider attacks,

thus excluding them from the network.

Chapter 3
Compromised Node Identification

In this chapter, we present techniques to identify all the compromised insiders. We first split

the network into two equal-size groups and two nodes in different groups rotationally pair and

mutually attest each other via software-based attestation. Normal (i.e., good) nodes finally

identifies the insiders by majority voting. The entire procedure includes two phases. Phase I is

designed to ensure that the normal node could attest every node and identify any insiders in the

opposite group by network splitting, node pairing and direct attestation. Phase II is designed to

identify the insider in its own group by exchanging the attestation results between groups and

majority voting.

3.1 Phase I: Direct Attestation

Suppose some nodes are compromised and begin to jam. After jamming is detected (e.g. based

on [1]) , all N nodes will be aware of it. Without loss of generality, let us denote the nodes’ ids

as 1, · · · , N . Our scheme starts with equally splitting the network into two groups with lower ids

{1, · · · , ⌊N
2 ⌋} and higher ids {⌊N

2 ⌋+ 1, · · · , N}. Since the pairwise secret between normal nodes

in different groups is unknown to the attacker, we pair those two nodes and use their pairwise

key to derive a keyed secret channel. Specifically, we pair the two nodes with lowest ids in each

group, the second lowest and so on. The paired parties i ∈ {1, · · · , ⌊N
2 ⌋} and i+ ⌊N

2 ⌋ switch to

the keyed channel Ci,i+⌊N
2 ⌋ = H(Ki,i+⌊N

2 ⌋|0) where H is a secure hash function preloaded into

the sensor nodes. Since the attacker is unaware of the channel Ci,i+⌊N
2 ⌋, the best it can do is

to scan all possible channels and jam those with traffic. We apply two techniques to avoid this

scan-and-jam problem. First, we try to design short messages so that traffic is less likely to be

detected or corrupted by jamming. Second, if the communication is jammed, the paired nodes i

and i + ⌊N
2 ⌋ will switch to another secret channel C ′

i,i+⌊N
2 ⌋ = H(Ki,i+⌊N

2 ⌋|1) which renders the

attacker to rescan all channels again.

Next, the paired nodes mutually attest each other to verify its code integrity. We first assign

12

node i as the verifier and i+⌊N
2 ⌋ as the interrogated node and i sends a 16-bit randomly-generated

challenge to its paired party i+ ⌊N
2 ⌋ by

M1 = i+ ⌊N
2
⌋||EK

i,i+⌊N
2

⌋
(T |i+ ⌊N

2
⌋|challengei+⌊N

2 ⌋)

where T is a 8-bit timestamp to prevent the replay attack and challengei+⌊N
2 ⌋ is the challenge for

node i+ ⌊N
2 ⌋. Upon successfully receiving and decrypting the challenge, sensor i+ ⌊N

2 ⌋ traverses
its memory to compute the 8-bit checksum. Then it replies the response, switches its role to be

a verifier and sends its challenge to node i by

M2 = i||EK
i,i+⌊N

2
⌋
(T |i|checksumi+⌊N

2 ⌋|challengei).

The verifier i then compares the checksum with its precomputed version. A malicious insider is

identified if the two checksums are not equal or M2 could not be returned timely. Last, node i

switches its role to be interrogated, computes and replies the response by

M3 = i+ ⌊N
2
⌋||EK

i,i+⌊N
2

⌋
(T |i+ ⌊N

2
⌋|checksumi)

After receiving M3, node i+ ⌊N
2 ⌋ verifies node i similarly.

If node i is malicious, it may not initiate M1 to avoid the attestation. Then, node i + ⌊N
2 ⌋

will switch to be a verifier and launch M1 after a timeout occurs. Note that a compromised

node does not have to launch jamming to be detected. It can hide, for example, to steal any

cryptographic information. However, the software attestation works as well since the code of this

hidden insider is different from the normal sensor’s.

In TinyOS 2.0.1, the MAC frame includes a data payload of 28bytes, a header of 10 bytes and

a CRC of 2 bytes. Given the typical node ID of 1 byte, the challenge of 2 bytes, the checksum of

1 byte and the transmission rate of 19.2Kbps for Mica2, the transmission time for messages M1,

M2 and M3 are approximately 7.08ms, 7.5ms and 6.67ms. Since all these message exchanging

times are less than tl=34ms for Mica2, it makes the scan-and-jamming attack difficult.

After this initial mutual attestation, node i pairs with the next node i + 1 + ⌊N
2 ⌋ in the

opposite group, and they two mutually attest each other again. After ⌈N
2 ⌉ attestations, each

node can meet and verify all nodes in the opposite group. Figure 3.1 illustrates the attestation

phase for a network of 7 nodes.

3.2 Phase II: Result Sharing and Compromise Identifica-

tion

In Phase I, normal nodes can meet and directly attest each node in the opposite group and

therefore the insiders in their opposite group could be identified. It is possible that a node can

attest all others in order to identify all the insiders. However, we noticed that the software-

13

1

7

4
C14=H(K14|0)

2 5
C25=H(K25|0)

3 6
C36=H(K36|0)

1

4

5
C15=H(K15|0)

2 6
C26=H(K26|0)

3 7
C37=H(K37|0)

1

6

7
C17=H(K17|0)

2 4
C24=H(K24|0)

3 5
C35=H(K35|0)

1

5

6
C16=H(K16|0)

2 7
C27=H(K27|0)

3 4
C34=H(K34|0)

Figure 3.1. Attestation process for a network of 7 nodes

based attestation is both time and power consuming procedure. To avoid the attestation and

still identify all insiders for every normal sensor, we design protocol in this phase to exchange

those attestation results to identify any insiders in their own group. To achieve that, each node

first requests the attestation results of its own group from the opposite. Then, it identifies the

malicious insiders based on those results by majority voting.

Specifically, we apply the similar pairing scheme between two groups. The node i pairs the

node i+ ⌊N
2 ⌋ and sends its encrypted results by

M4 = i+ ⌊N
2
⌋||EK

i,i+⌊N
2

⌋
(T |i+ ⌊N

2
⌋|resultsi)

where resultsi is the attestation results on node i. As a confirmation, node i+ ⌊N
2 ⌋ returns its

own results by M5

M5 = i||EK
i,i+⌊N

2
⌋
(T |i|resultsi+⌊N

2 ⌋)

Last, node i replies a confirmation M6

M6 = i+ ⌊N
2
⌋||EK

i,i+⌊N
2

⌋
(T |i+ ⌊N

2
⌋)

and pairs the next node in the opposite group.

For a network of 16 nodes with each group of 8 nodes, the attestation results could be encoded

into 1 byte in which each bit represents one node. The transmission time for M4, M5 and M6

are approximately 6.67ms, 6.67ms and 6.25ms for Mica2. The entire communication duration

for one exchange is 19.59ms, which is smaller than tl for Mica2. Similarly, this makes the scan-

and-jamming attack difficult.

Last, if every node can honestly report its results, the identification can stop and finish herein.

Unfortunately, the attacker can forge the results. To tolerate those misleading information, each

node applies the majority voting policy for the identification of malicious insiders. That is, each

node identifies a malicious insider residing in its own group if more than half of the nodes in the

opposite group accuse that node.

Theorem 3.2.1. If the number of the compromised node is less than ⌊N
2 ⌋/2, our identification

scheme can guarantee to detect all of them.

14

Proof. In order to identify any insider in one’s own group, the majority voting requires the

number of normal nodes should be large than half of the group size for both two groups. Here,

we consider the worst case in which all the insiders are split into one group. We further consider

this group is the lower id group since it has fewer nodes when the network size is odd. To work

with this worst case, we need more than half of the nodes in this group to be normal (> ⌊N
2 ⌋/2).

In other words, less than ⌊N
2 ⌋/2 nodes could be the compromised insiders. So, our identification

scheme could tolerate up to ⌊N
2 ⌋/2− 1 compromised nodes.

The above identification scheme needs about N rounds to complete. However, fast identifi-

cation and low communication may be required for a dense network. In this case, the “mutual

suicide” idea [38] could be applied here. Basically, we can pair and mutually attest paired parties

only once. Then, the attestation results are exchanged in a similar way. Since the malicious

insiders could accuse good nodes, a fast revocation mechanism is to mark both the accusor and

the accused nodes as malicious when an accusation happens. In the other case, if paired nodes

are both compromised, they may simply claim their peer as a normal sensor, leading to false

negative. To deal with this issue, we can shift the order of pairing for attestation if jamming

recurs. In this approach, we can greatly reduce the computation and communication overhead

but at the cost of sacrificing the equal number of good sensors. We expect that the above solution

is still affordable for dense networks.

Chapter 4
The Split-Pairing Scheme for A

Single Jammer

The basic idea of our scheme is to split the jammed nodes into two groups, each of which works

on a different channel. At any given time the attacker can jam only one channel, or cannot jam

any channel when it is switching channel. Since there is only one jammer, there must be a group

which is free of jamming at any time, and nodes in this group can propagate a new group key.

The scheme consists of three phases. Phase I deals with how to split the network into two groups

and assign communication channels to them. Then, we design a protocol for intra-group key

propagation in phase II to ensure that all nodes in one of the two groups will share the new key

at the end of this phase. In phase III, nodes in two groups are paired to propagate the new key

from one group to the other.

4.1 Phase I: Channel Splitting

Suppose all nodes work on channel C0 originally and r channels available to switch. Starting from

time t0, one node is compromised and it starts to jam channel C0. After the jammer has been

detected and identified, all N non-compromised nodes will be aware of it. They will switch to

new channels in a distributed way. Without loss of generality, let us denote their ids as 1, · · · , N .

In this phase, nodes with lower ids {1, · · · , ⌊N
2 ⌋} switch to channel C1 = H(C0|0), and nodes

with higher ids {⌊N
2 ⌋ + 1, · · · , N} switch to channel C2 = H(C0|1), where H is a secure hash

function preloaded in the sensor nodes and maps to one of r channels.

The channel switching and splitting process is illustrated in Figure 4.1 and Figure 4.2. When

node A is identified as a compromised node, nodes with lower ids, i.e., nodes 1, 2 and 3, switch

to channel C1 = H(C0|0) and nodes in higher ids, i.e., nodes 4, 5, 6 and 7, switch to channel

C2 = H(C0|1).

166 7 3 52 14 A
Figure 4.1. Network topology.

C0
C2=H(C0|1)
C1=H(C0|0)

Node 1-3

Node 4-7

t

Figure 4.2. The illustration of channel switch for key reestablishment.

4.2 Phase II: Jamming and Key Propagation within A

Group

Once channel splitting finishes, the node with the smallest id in each group acts as the group

leader to generate a new group key, which is then propagated within each group. That is, node

1 is the group leader of the first group, and node ⌊N
2 ⌋ + 1 is the group leader of the second

group. Then, the new group key K is generated based on the pairwise key K1,⌊N
2 ⌋+1 shared

between two leaders by applying K = F(K
1,⌊N

2
⌋+1

)(0), where F is a pseudorandom function. The

desirable advantage is that the new group key is generated without any communication and thus

17

the jammer cannot interfere it. Since the key K1,⌊N
2 ⌋+1 is unknown to the attacker, it cannot

predict the new group key although the pseudorandom function F is publicly known.

Once the group leaders have generated the same new key, they will only need to propagate

the new key to all their group members. Clearly, the new key has to be encrypted to preclude

the compromised attacker from eavesdropping. To propagate K, the simple solution is to let the

group leader unicast the key to each group member. To save communication cost, we use reliable

broadcast. Specifically, the group leader broadcasts the key to all group members and gets the

acknowledgements (acks) from each of them. The group leader will retry if any acks are missing.

Specifically, in the broadcast message M1, the new key K is encrypted by different pairwise

keys shared between the leader and each member. For group 1, node 1 broadcasts M1 and starts

a timer

M1 = Mapping||EK1,2(T |2|K)||...||EK
1,⌊N

2
⌋
(T |⌊N

2
⌋|K).

where T is the timestamp to prevent replay attacks. After successfully receiving and decrypting

M1, node i sends back a confirmation message to the group leader 1 or ⌊N
2 ⌋ + 1. For group 1,

node i sends back

M2 = EK1,i(T |i|K)||i.

If any confirmations are missing due to jamming or collision, a new key propagation message M1

is reconstructed and sent out after timeout. Only unconfirmed nodes are required to send back

confirmations to reduce the traffic and collision. This procedure continues until all confirmations

are received by the leader.

In TinyOS 2.0.1, the MAC layer frame structure has a data payload of 28bytes. Given a

typical key size of 8 bytes [24], one frame can include at most 3 encryptions of a group key. Also,

node ID is 1 byte and encryption id is 1byte. For Mica2 with transmission rate of 19.2Kbps, the

transmission time for M1 with three encryptions (i.e., the subgroup size is 4 counting the leader)

is τ1 ≈ (8Bytes·3)+1Byte)
19.2Kbps = 10.42ms and for M2 is τ2 ≈ (8+1)Bytes

19.2Kbps = 3.75ms, the one-round

communication time will be τ0 = τ1 + 3 · τ2 = 21.67ms. It is worth noting that the one-round

time τ0 < tl, where tl=34ms for Mica2. That is, for a group of size 4, a keying message can

be transmitted successfully before the jammer can switch to another channel which includes the

following time: switching to another channel, jamming a minimal packet, and returning. If the

group size is larger than 4, we have to embed multiple encryptions into two or more broadcast

messages. Suppose that the key propagation time in one group without jamming is Tkr. Given

the number of nodes in each group and the packet loss rate, we can compute the expected message

transmission round E[Y] based on [39]. Hence, Tkr = τ0E[Y].

Unfortunately, in practice the key propagation messages M1 and M2 can be corrupted by

jamming and the actual key propagation needs more time. In order to estimate this time,

we consider the optimal jamming strategies in which the attacker can maximize the total key

propagation time for this phase. Since the hash function H and the original channel C0 are

publicly known, the attacker knows channels C1 and C2 by computing the same hash values.

However, the attacker has only one wireless interface and thus at any given time it can jam only

18

one channel or neither of them when it is switching channel. This means that at least one of two

groups are free of jamming at any time, and this group can execute the above key propagation

protocol. In other words, the attacker cannot simultaneously prevent the key reestablishment for

both groups and the best it can do is to prolong the key propagation time of phase II.

Theorem 4.2.1. The optimal jamming strategy for a single jammer is to actively jam two

channels with an equal probability.

Proof. We denote Tj as the overall jamming duration in phase II. The total key propagation time

for Phase II is T . In our system model, pi is the probability for the attacker to launch jamming on

channel i. For group i, the time it is free of jamming is Ti = T − Tjpi. In order to maximize the

key propagation time, an optimal attacker would minimize the maximum free-of-jamming time

for all groups. Here we consider the case of two groups i = 1, 2. We formalize the optimization

problem as follows:

min
p1,p2

max
p1,p2

(T − Tjp1, T − Tjp2)

s.t.p1 + p2 = 1

p1,2 ≥ 0

(4.1)

If T − Tjp1 ≥ T − Tjp2, we have p1 ≤ p2. Then, the problem is simplified to:

min
p1≥0,p1≤p2,p1+p2=1

(T − Tjp1) (4.2)

The solution is p1 = p2 = 0.5. Similarly, we have the same result when T −Tjp2 ≥ T −Tjp1.

To estimate the key propagation time T in one group, we consider a typical optimal case for

the attacker where the attacker alternates between two channels and jams each channel for a

period of tj . If it starts with group 1, group 2 will be able to complete key propagation ahead of

group one or at the same time as group one. We consider the worst case in which each jam leads

to a retransmission. The number of retransmissions for one group due to jamming is T
2(tj+tl)

and

the time for retransmission is Tjr ≈ T
2(tj+tl)

τ0. The finish time T is

T ≈ Tkr + Tjr =
2(tj + tl)

2(tj + tl)− τ0
Tkr. (4.3)

4.3 Phase III: Key Propagation between Groups

After one group finishes the key propagation, this group excludes the attacker by the keyed secret

channel. It is possible that the attacker chooses to jam group 2 all the way so that few nodes in

group 2 can obtain the new group key. If so, nodes in group 1 can propagate the group key to

nodes in group 2 by pairing one node in group 1 with another node in group 2. For simplicity,

we pair the two nodes with the lowest ids in two groups, the second lowest and so on. If N is

19

Figure 4.3. Pairing for key propagation between groups

odd, group 2 will have one more node left. We pair it to node 1 since the two lowest id nodes, 1

and ⌊N
2 ⌋+1, are group leaders they do not need to communicate in this phase. Therefore, node

1 is actually only responsible for that extra node. That is better than pairing this extra node to

any other node in group 1, which is already paired. In Figure 4.1, we pair node 1, 4; 2, 5; 3, 6

and 1, 7, as shown in Figure 4.3.

In order to safely propagate the new group key from one group to the other, paired parties

in different groups communicate in a keyed secret channel based on their pairwise key. Suppose

node i(1 ≤ i ≤ ⌊N
2 ⌋) and j(⌊N

2 ⌋ + 1 ≤ j ≤ N) are paired and they share a pairwise key Kij .

Then, they switch to channel Cij = H(Kij |0). In some rare cases, two or more pairs are hashed

to the same channel due to the limited channel resource. We use random back-off mechanism to

avoid collision.

After channel switching, all nodes that have received the new group key switch to the reception

mode and wait for a request from their paired parties. For the key propagation, since phase II

can guarantee that nodes in one group have correctly received the new group key, two cases may

occur for the pair i and j. First both i and j have correctly received the new group key. Then,

i and j do not communicate to save energy and avoid unnecessary traffic and collision. Second,

either i or j has received the new group key. Without loss of generality, we assume that i has

received the new key but j has not. Then, j initiates key reestablishment by sending a message

M1 to node i:

M1 = T ||j||MACKij (T |j).

where T is a timestamp and MAC is a message authentication algorithm. Node i replies to j

with message M2:

M2 = EKij (T |i|K).

20

node j decrypts M2 to obtain K. Note that M2 does not include a separate MAC because

the knowledge of T and i serves as a way of (weak) authentication. At last, node j returns a

confirmation message M3 to i:

M3 = EKij
(T |j|K).

Given a typical size of 4-byte MAC [24] all three messages are short and the time for this exchange

for the Mica2 mote is τ3 < 8Bytes·3
19.2Kbps = 10ms, which can be completed within tl. In other words,

as long as the attacker is jamming a channel other than Cij at the beginning of this phase, inter-

group communication of pair ij can complete without jamming. To deal with some rare case that

the attacker has chances to jam the communication on pair ij, paired nodes maintain a timer

and the timeout can be set to τ3 or a bit more to tolerate lost time synchronization. Since nodes

can detect failed packet [19], if any exchange message is detected to be failed, paired parties stop

the exchange protocol and wait for a timeout. When a timeout occurs, they switch to another

channel C ′
ij = H(Kij |1), set timer and retry until one party can successfully propagate the new

group key to the other.

After all nodes obtain the new group key K, they can start the legitimate communication on

the secret channel Cnew = H(K|0). The attacker may compromise another node to obtain K.

The above 3-phase procedure repeats to reestablish a new key and restore the network. Note

that a revoked attacker may scan all the channels to discover and jam the new channel like an

outsider jammer. In this case, all the nodes can switch to Cnew = H(K|1) (then Cnew = H(K|2)
if it happens again). No group rekeying is necessary.

Chapter 5
Tree-Based Scheme for Multiple

Colluding Jammers

In this section, we describe our tree-based recovery scheme which can be used to deal with

multiple colluding jammers.

5.1 Motivations and Overview

We consider m malicious insiders where m ≥ 2. Under a single jammer, the split-pairing scheme

derives a new group key from a pairwise secret between two group leaders. In the multiple-

jammer case, the split-pairing scheme can work successfully only if the network can be split into

at least m+1 groups to ensure that one or more group(s) are free of jamming. Moreover, group

leaders need to agree on the same group key without communication or interaction. This can

be achieved if each node is preloaded with a m-variate symmetric polynomial [23]. However,

each m-variate symmetric polynomial with a degree of t ≥ m has
(
t+m
m

)
monomials; thus, the

storage cost is
(
t+m
m

)
·8 bytes. For the case of 6 jammers, we need to split the network into at

least 7 groups and each node should be preloaded with a 6-variate symmetric polynomial and

the storage cost is at least 7KB, which is quite high to current sensors. In addition, the multiple

jammers may coordinate together to jam multiple channels simultaneously, which makes it more

difficult to recover.

Because of the above concerns, we propose a tree-based scheme to deal with multiple jammers.

The tree-based scheme is more adaptive and can tolerate multiple colluding attackers without

increasing the storage overhead. It borrows the idea from the logical key tree construction [40, 41]

as in Figure 5.1. The root key located at level 0 is shared by all nodes and the lowest leaves

are nodes at level l = 3. In our scheme, we use the binary key tree since establishing pairwise

keys does not generate extra storage overhead and can be easily achieved by the Blundo scheme.

Our goal is to construct the logical key tree in a bottom-up manner under jamming so that all

22

Figure 5.1. Key tree example.

jammed nodes can finally share the root key to derive a common secret channel. To achieve this,

we first divide the network into subgroups, each of which consists of two nodes. Subgroup leaders

generate subgroup keys and propagate them to their members on secret channels determined by

the pairwise keys shared between the leaders and members. Then, two sibling subgroups are

merged into a larger subgroup of four nodes and new keys are derived and propagated within

each subgroup again. With the progress of this scheme, all nodes share a common key (root key)

and work on the same secret channel. Although our scheme looks similar to to the one proposed

for wired networks [40], there are two key differences. First, we do not assume the existence of

secure channels between each pair of nodes; rather, we construct such channels based on pairwise

keys that can be efficiently established. Second, since no secure channels exist between subgroups

in advance, in our case subgroup leaders must derive subgroup keys individually without any

communication or interaction.

5.2 The Protocol

To better understand the tree-based scheme, we first show an example for a network of 8 nodes

as in Figure 5.2. To simplify our presentation, we define two terms.

• Subgroup Key: A key shared by subgroup members. We denote Ki−j as a subgroup key

shared by nodes whose ids are between i and j. For generality, we may use the subgroup

key notation Ki−(i+1) to denote a pairwise key Ki,i+1.

• Channel Key: A key used to derive a secret channel. If a channel key is a pairwise key Kij ,

the channel between node i and j is Cij = H(Kij |0). If the channel key is a subgroup key

Ki−j , the channel shared among nodes i to j is Ci−j = H(Ki−j |0) with H being a secure

hash function for channel derivation.

23

K1-4=F(K13|0)

on C12=H(K12|0)

K1-4

on C34=H(K34|0)

K5-8=F(K57|0)

on C56=H(K56|0)

K5-8

on C78=H(K78|0)

1 2 3 4

K1-8=F(K15|0)

on C1-4=H(K1-4|0)

K1-8=F(K15|0)

on C5-8=H(K5-8|0)

1 2 3 4

Round 1

Round 2

5 6 7 8

5 6 7 8

Figure 5.2. An example for our tree-based scheme.

Suppose all nodes are identified with ids 1, · · · , N (N = 8 in our example) as before and a

set of channels {C1, C2, · · · , Cr} are available to switch. Figure 5.2 shows how our tree-based

scheme works and the details are as follows.

1. Members 1 and 2 agree on secret channel C12 by channel key K12.

Members 3 and 4 agree on secret channel C34 by channel key K34.

Members 5 and 6 agree on secret channel C56 by channel key K56.

Members 7 and 8 agree on secret channel C78 by channel key K78.

2. Members 1 and 3 derive subgroup key K1−4 = FK1,3
(0) and distribute it to subgroup mem-

ber 2 and 4, respectively.

Members 5 and 7 derive subgroup key K5−8 = FK5,7(0) and distribute it to subgroup mem-

ber 6 and 8 respectively.

3. Members 1,2,3,4 agree on secret channel C1−4 by channel key K1−4.

Members 5,6,7,8 agree on secret channel C5−8 by channel key K5−8.

4. Members 1 and 5 derive subgroup key K1−8 = FK1,5
(0) and distribute it to subgroup mem-

24

bers 2,3,4 and 6,7,8 respectively.

5. Members 1,2,3,4,5,6,7,8 agree on secret channel C1−8 by channel key K1−8.

Algorithm 1 Key-Tree based Scheme
Input: a set nodes numbered 1, ..., N and their pairwise secret keys;
Procedure:

1: k = 1;
2: repeat
3: Select Channel Key = K(2k·i+1)−(2k·(i+1)) for

i = 0, 1, ..., ⌊ N
2k

⌋;
4: Switch to Channel C(2k·i+1)−(2k·(i+1));

5: For node 2k · i+ 1, generate subgroup key
K(2k+1·i+1)−(2k+1·(i+1))=FK

2k+1·i+1,2k·(2i+1)+1
(0);

6: For node 2k · i+ 1, propagates new subgroup key to nodes 2k · i+ 2 to 2k · (i+ 1);
7: k++;
8: until k == ⌈log2 N⌉

The generation of all subgroup keys are offline (i.e., without interactions or communication

between leaders). The details of our tree-based scheme are shown in Algorithm 1. The input

includes all jammed nodes 1, · · · , N , the pairwise key Kij for i, j ∈ {1, · · · , N} and a set of

channels C = {C1, C2, · · · , Cr}. For round k, all nodes switch to channel C(2k·i+1)−(2k·(i+1)) by

using channel key K(2k·i+1)−(2k·(i+1)). Then, the node with id 2k · i+ 1 generates the subgroup

key and broadcasts it to all members. This procedure ends when all nodes receive the root key

in the logical key tree as the new group key. In case N ̸= 2j for some j = 1, 2, ..., some node may

not have the channel key and it does not need to propagate the key in that round. For example,

if N = 9, we need 3 rounds. Node 9 will not do channel switching or key propagation in all 3

rounds. It only generates root key at the last round by FK1,9(0).

For key propagation, we apply a similar protocol as our split-pairing scheme. For the kth

round, node 2k · i+ 1, i = 0, 1..., ⌊N
2k
⌋ initiates key reestablishment by broadcasting message M1

to members 2k · i+ 2 to 2k · (i+ 1) on channel C(2k·i+1)−(2k·(i+1)):

M1 = Mapping||EK
(2k·i+1)−(2k·(i+1))

(T |K(2k+1·i+1)−(2k+1·(i+1))).

Group members i ∈ {2k · i+ 2, · · · , 2k · (i+ 1)} reply to group leader 2k · i + 1 with confir-

mation message M2:

M2 = EK
(2k·i+1)−(2k·(i+1))

(T |i|K(2k+1·i+1)−(2k+1·(i+1))).

The group leader 2k · i+1 decrypts message M2 to check which member has correctly received

M1. If some confirmation is not correctly received by the leader, the leader retransmits the

subgroup key.

25

Finally, the subgroup key needs to be replaced if some member joins or leaves. We can apply

the same approach used in [40]. Since the number of nodes in a one-hop network is not that

large, based on the analysis of overhead below, the cost of rerunning our scheme is still affordable.

In practice, we do not expect node compromise is a frequent event. By simply rerunning the

scheme, some complicated problems such as tree rebalancing could be avoided.

5.3 Performance Analysis

• Computation Cost. We consider two computations, computing hashes H and executing

pseudorandom function F . For hashing, all nodes compute hash function H for channel

selection at most once in each round. The scheme can finish in ⌊logN⌋ round. The overall

computation cost for hashing is Chash = O(N logN)CH where CH is the computation

overhead for hashing once. For the pseudorandom function, approximately ⌈N
2k
⌉ nodes

involve the subgroup key generation in the kth round. The overall computation cost for

F is CPRF = O(2⌈log2 N⌉)CF≈ O(N)CF , where CF is the computation cost for executing

the pseudorandom function once. Hence, the overall computation cost is Chash + CPRF =

O(N logN)CH + O(N)CF . Note that in our schemes, we implement the pseudorandom

function with CBC MAC.

• Communication Cost. We denote Cbroadcast as the cost of the subgroup broadcast. In the

tree-based scheme, the number of broadcasts is approximately the number of parent nodes

in the logical key tree. Hence, the communication cost is O(N)Cbroadcast.

• Storage Overhead. A regular sensor only needs to store its univariate polynomial with

degree of t, i.e. (t + 1) coefficients. In addition, each node stores all ids in the network.

Even for a dense network with tens of sensors within one-hop range, one byte is enough to

represent an id. Hence, the storage overhead is the same as the split-pairing scheme.

Compared with the split-pairing scheme, it is worth noting that the tree-based scheme can

tolerate multiple colluding insider attackers. Since channel keys are based on the secure pairwise

keys or newly reestablished subgroup keys, colluding insider attackers cannot predict those keyed

channels. Additionally, since the number of channels required in the tree-based scheme is ⌊N
2 ⌋ at

most, our scheme can tolerate up to r−⌊N
2 ⌋ attackers to launch jamming simultaneously with r

being the number of channels available. If multiple access techniques are used, we expect to use

less channels and tolerate more attackers.

Chapter 6
Performance Evaluations

In this section, we first describe our testbed, and then present the evaluation results of the

identification scheme and the recovery scheme.

6.1 Testbed Configurations

The testbed consists of 19 Mica2 sensor motes [18] deployed at fixed locations in an indoor

laboratory. Each sensor mote has a 902-928MHz Chipcon CC1000 radio [42], which is divided

into 32 800KHz channels. Each mote is within the communication range of other motes and the

data transmission rate is 19.2Kbps. All motes run TinyOS version 2.0.1 [43].

6.1.1 The Implementation of Channel Switching

In TinyOS 2.0.1, the module CC1000ControlP provides interface CC1000Control and command

tuneManual() to control channel switching. Since Chipcon CC1000 uses a digital frequency

synthesizer, a programmable register can be used to change frequency.

6.1.2 Implementation of the Jammer

In TinyOS 2.0.1, the implementation of the mote-to-mote communication depends on the radio

chip. For Chipcon CC1000, the communication is implemented in two modules: CC1000CsmaP

and CC1000SendReceiveP under directory tinyos-2.x/tos/chips/cc1000. CC1000CsmaP provides

CSMA and low-power sensing logic, whereas CC1000SendReceiveP provides the send-and-receive

logic for CC1000 radio. The send-and-receive logic includes Request-to-Send (RTS) and Clear-to-

Send (CTS) commands. A node starts data transmission after receiving CTS. CSMA provides

two mechanisms for media access control: random backoff and carrier sensing. The random

backoff mechanism is used to reduce further collisions where the backoff delay is randomly set

to [1,32] bytes initially. The sensing mechanism is used to determine if there is any ongoing

27

communication on the channel. It requires the air interface to read received signal strength

indication (RSSI) every 80 microseconds up to 5 readings. If all 5 readings are above a threshold,

the backoff mechanism is activated. After each RSSI reading, the threshold is updated and thus

it is is adaptively changed with the current channel condition.

Although a jammer can be a regular sensor mote, we have to make some changes in the

implementation so that it can jam the communication channel. We disable the random backoff

and the sensing mechanisms so that the jammer can send out packets arbitrarily to jam the

channel. Specifically, we use command disableCca() provided by the CsmaControl interface in

module CC1000CsmaP to bypass the media access control. We let the jammer’s air interface

stay in the transmission mode by using enterTXState(). We change the send-and-receive logic

so that the jammer always receives CTS after sending a RTS.

In order to explore the impact of jamming duration, we bypass the MAC layer and directly

use the command writeByte() provided by the interface HplCC1000Spi. In this way, the shortest

jamming time can be as low as one byte (tj ≈ 0.42ms). For longer jamming duration, we have

to increase the maximum message size defined in message.h, so that the jamming signal can last

as long as 100ms.

6.1.2.1 Implementation of the Software-based Attestation

To implement the software-based attestation, we need to randomly access the non-volatile storage

for a Mica2 Mote. In TinyOS 2.0.1, the implementation depends on the flash chip. For Mica2

mote, it uses AT45DB chip and the corresponding read-and-write operations are implemented in

the component At45dbC under the directory tinyos-2.x/tos/chips/at45db. For memory traversals,

we randomly generate two numbers, one as a page number and the other as a page offset, by

using the challenge as the seed. Then, we use the command read() provided by the interface

At45db to access the memory and compute the 8-bit checksum by XOR operation.

6.1.3 Performance Metrics

Since we assume that the physical device has channel switching latency, we first measure the

switching latency for Mica2 motes. For the identification phase, we focus on average number of

retransmissions. To compare the performance under different cases, we measure the number of

retransmissions for each node during one round. That is, we collect that overall retransmissions

after the identification phase finished and average this number by nodes and rounds. For the

recovery schemes, we measure the recovery latency instead. One reason we use different metrics is

that recovery latency may not show the impact of jammer(s) since we need time synchronization

in the identification phase. Another reason is that jamming different messages in recovery phase

may result different number of retransmissions which will mislead our evaluation.

28

Figure 6.1. Three Mica2 motes are used for measuring the channel switching latency.

6.2 Channel Switching Latency

In our recovery scheme, we assume that the physical device has channel switching latency; thus,

we first measure the switching latency for Mica2 motes.

In order to jam a communication channel, the attacker has to switch to that communication

channel and send out at least a packet of 1 byte for the CC1000 chip. There is a minimum channel

switching latency due to the limitations of the physical device. Three Mica2 motes as shown in

Figure 6.1 are selected to measure this channel switching latency. We consider two switching

modes: sequential switching and random switching. In the sequential switching mode, motes

switch to one channel and send one minimum packet, then they switch to the next adjacent

channel until all 32 channels are used. We consider two cases, ascendant and descendent. In

the ascendant case, motes start from the lowest frequency channel to the highest, while the

descendent case uses the reverse order. By running both cases 1000 times, we get the average

and divide it by 32 to get the switching latency between two adjacent channels. In the random

switching mode, motes randomly select the next channel. Similar to the sequential mode, we run

the test 1000 times to get the switching latency between two arbitrary channels. As shown in

Figure 6.2, the switching latency is independent of the channel switching mode, and it is around

34ms for all three motes.

6.3 The Performance of the Identification Phase

We conduct experiments to study the effectiveness of the identification phase described in Sec-

tion 3. For the malicious insiders, they can either follow launch the jamming attack to corrupt

the communication or follow the protocol to falsify the identification. In our implementation, we

consider more advanced insiders in which each insider can both follow the protocol and jamming.

29

Device 1 Device 2 Device 3
0

10

20

30

40

50

C
ha

nn
el

 S
w

itc
hi

ng
 L

at
en

cy
 (

m
s)

Random
Ascendent
Descendent

Figure 6.2. The channel switching latency for the three Mica2 motes.

We keep the most of normal sensor’s code unchanged but only modify the code to exchange the

forged results to falsify the identification. In addition, we put the same number of malicious

insiders in the network dedicated for jamming. For example, for a network of 13 normal nodes

and 3 malicious insiders. We put total 19 nodes in the network with 13 normal sensors, 3 insiders

to falsify the identification and 3 dedicated jammers. We measure the impact of the following

three parameters: the size of network, the number of jammers and the jamming duration.

6.3.1 The Impact of Network Size

We deploy 9, 13 and 17 nodes, in which one is selected to falsify the identification and one is

the jammer, to simulate the network size of 8, 12 and 16 nodes. Since communication channels

cannot be predicted, the duplicated jammer can only randomly jam one of 32 available channels

at a time. We set the retransmission timeout to be 600ms since 100,000 times of memory access

and the corresponding checksum response should be finished within this period [25]. Also, for

the time synchronization purpose, we set the timeout for pairing once to be 4s so that the pair

has a chance for three tries. For different network size, we measure the metrics by running and

averaging 20 times.

For all runs, the identification rate is 100%, which indicates 100,000 times of memory access

is enough for random memory traversal. As figure 6.3 shows, the average retransmission in all

cases is less than one since the attacker cannot predict legitimate channels. However, the average

retransmission increases with the network size since the jammer is more likely to successfully jam

a legitimate communication when more nodes are involved. In addition, two or more pairs of

nodes may switch to the same channel and the traffic collision occurs due to the limited number

of channels. This is more severe with more sensors included when we notice the larger increase

30

8 12 16
0

0.05

0.1

0.15

0.2

0.25

Number of Total Nodes (Network Size)

A
ve

ra
ge

 R
et

ra
ns

m
is

si
on

 T
im

es

Figure 6.3. The average number of retransmissions for each node during one round for different network
size.

1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Jammers

A
ve

ra
ge

 R
et

ra
ns

m
is

si
on

 T
im

es

Figure 6.4. The average number of retransmissions for each node during one round for different jammers.

from size of 12 to 16 than 8 to 12.

6.3.2 The Impact of Number of Jammers

To evaluate the impact of different number of jammers, we deploy 16 to 19 nodes with one to

three insiders and corresponding jammers to simulate a network of 16 nodes with 1 to 3 insiders.

For one jammer, it sends a packet with one byte payload and then randomly selects and jams

one of possible 32 channels. The jammer repeats this process until the identification completes.

For the two or three colluding jammers, each is responsible for 1
2 or approximately 1

3 of the 32

31

0 50 100 150 200 250
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Jamming Packet Payload Size (byte)

A
ve

ra
ge

 R
et

ra
ns

m
is

si
on

 T
im

es

3 Jammers
2 Jammers
1 Jammer

Figure 6.5. The average number of retransmissions for each node during one round under different
number of jammers for different jamming durations.

channels. For example, for three jammers, jammer one, two and three are responsible for channel

1-11, 12-22, and 23-32 respectively.

For all runs, we find the identification rate is 100%. This is because the jamming does not

influence the memory traversal and the forged results could be corrected by majority voting.

Figure 6.4 shows the average number of retransmission under different number of jammers. We

see the average retransmission is less than one even with 3 colluding jammers. The average

retransmission increases with number of jammers and this trend becomes more intense when more

jammers are involved. The reason is that the multiple colluding jammers can attack multiple

channel simultaneously and more messages could be corrupted. Thus, more retransmissions are

required to recover the jammed messages. Moreover, the collision of hashed channels needs the

retransmission and the media access control mechanism to recover especially when the network

size is large.

6.3.3 The Impact of Jamming Duration

To construct the different jamming durations, we add 1, 15, 45, 75, 135, and 215 bytes to the

jamming packet. Similarly, we deploy 16 to 19 nodes with 1 to 3 jammers to simulate a network

of 16 nodes with 1 to 3 insiders. For different number of jammers and jamming packet sizes, we

measure the average retransmission 20 times and average them and show in Figure 6.5.

Since the jamming duration only impact the communication, we similarly find the 100%

identification rate. In the Figure 6.5, the average retransmission becomes less when jamming

duration increases. The major reason is the attacker can jam less channels if it resides in one

channel more. This is more significant when more jammers are involved. In addition, we design

our protocol to use short messages which reduces the probability of being jammed.

32

Figure 6.6. A network with 16 legitimate nodes and one jammer.

6.4 The Performance of the Split-Pairing Scheme

In this subsection, we conduct experiments to study the effectiveness of the split-pairing scheme

described in Chapter 4, in which we consider a single jammer and the network is split into

two groups. We measure the impact of the following two parameters: jamming probability and

jamming duration.

6.4.1 The Impact of Jamming Probability

Since the jammer can only jam one channel at a time, it selects one of the two channels used

for intra-group communication with some probability (the jamming probability) and sends a

minimum size packet, then it repeats this process. We measure how the jamming probability

affects the recovery latency.

We deploy 8, 12 and 16 nodes in the network and manually place a jammer in the center of the

network to ensure that it can jam all the nodes. Legitimate nodes are split into two groups of 4, 6

and 8 nodes respectively. The network with 16 nodes and one jammer is shown in Figure 6.6. We

set the retransmission timeout to be 250ms since one round of communication should be finished

within 250ms. For different network size, we measure the recovery latency of the splitting phase

for both groups by running our scheme 20 times and compute their average.

Figure 6.7 shows the average recovery latency of one group. As can be seen, the average

latency increases with the jamming probability since nodes have to retransmit after the data is

jammed. For a group of 4 nodes (the 8-node line in the figure considering there are two groups),

the recovery latency does not change too much as the jamming probability increases from 0.1

to 0.3. This is because all versions of the group key can be embedded into one message which

makes the key propagation message (M1) less vulnerable of being jammed. However, when the

group size increases to 6 or 8 nodes, different versions of the group key have to be split into

33

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

Jamming Probability

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(m

s)

8 nodes
12 nodes
16 nodes

Figure 6.7. The recovery latency of the splitting phase (Phase I and II) for a single group.

0 0.2 0.4 0.6 0.8 1
200

300

400

500

600

700

800

900

Jamming Probability for Group 1

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(m

s)

8 nodes
12 nodes
16 nodes

Figure 6.8. The recovery latency of the splitting phase (Phase I and II) which is the minimum latency
of both groups.

two messages, and either one being jammed will lead to a retransmission, thus increasing the

recovery latency. Moreover, as the network size increases, more confirmation messages (M2)

are required for key propagation and are more likely to be jammed, thus further increasing the

recovery latency.

Figure 6.8 shows the recovery latency of the splitting phase in our scheme, which is the

minimum of both groups. Since the jammer cannot jam two groups simultaneously, jamming

one group always means free of jamming in the other group. After the jamming probability of

group 1 is larger than 0.5, the minimum recovery latency should be the latency of group 2. This

34

0 50 100 150 200
0

200

400

600

800

1000

Jamming Packet Payload Size (Bytes)

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(m

s)

Figure 6.9. The recovery latency of the splitting phase (Phase I and II) under different jamming
duration (Jamming probability=0.5, Network size=16 nodes).

explains why the recovery latency starts to decrease after the jamming probability is larger than

0.5. When the jamming probability is 0.5, the recovery latency reaches the highest point, which

is consistent with our results on optimal jammer.

6.4.2 The Impact of Jamming Duration

In this subsection, we evaluate the impact of the jamming duration. We deploy a network of 16

nodes and fix the jamming probability to be 0.5. The retransmission time is set to be 250ms in

Phase II and 70ms in Phase III. We add 0, 50, 100, 150 and 200 bytes to the jamming packet to

construct different jamming durations.

Figure 6.9 shows the average recovery latency of the splitting phase by running our scheme

20 times. As can be seen, the recovery latency increases when the packet size increases from

0 to 100 bytes, and then decreases when the packet size increases from 100 bytes to 200 bytes.

When the packet size increases from 0 to 100 bytes, the recovery latency is longer since the

channel is jammed longer, and ongoing messages are more likely to be jammed and retransmitted.

However, when the jammer stays in one group longer (100-200 bytes), the other group has larger

chance to finish its intra-group communication. Since the recovery latency is the minimum key

propagation time of both groups, the splitting phase completes as long as one group finishes the

key propagation. Thus, jamming in one group longer gives the opportunity for the other group

to finish earlier without any interruption, thus reducing the recovery latency.

Figure 6.10 shows the recovery latency of the split-pairing scheme including all three phases.

Let Ts denote the switching time from phase II to phase III. We consider two cases Ts = 1000ms

and Ts = 1200ms due to the following reason. The splitting phase can be finished between 4

to 5 broadcast rounds. Since the retransmission timeout is 250 ms, the splitting phase should

35

0 50 100 150 200
800

900

1000

1100

1200

1300

1400

1500

Jamming Packet Payload Size (Bytes)

O
ve

ra
ll

R
ec

ov
er

y
La

te
nc

y
(m

s)

Switch Time Ts=1000 ms
Switch Time Ts=1200 ms

Figure 6.10. Recovery latency for the split-pairing scheme (including all 3 phases) under different
jamming duration (Jamming probability=0.5, Network size=16 nodes).

be finished between time 250*4=1000 ms to 1250 ms. If we set Ts smaller than 1000 ms, the

splitting phase may not complete. If we set Ts larger than 1250ms, both groups may have finished

the key propagation and the pairing phase (Phase III) is not required any more. By setting the

channel switching time to be 1000 ms and 1200 ms, we can investigate the impact of the jamming

duration for both splitting phase (Phase II) and pairing phase (Phase III). For each jamming

duration and switch time, we record the overall latency, and repeat the experiment 20 times. We

also compute the mean and the 95% confidence interval shown as vertical bar in Figure 6.10.

For Ts = 1200ms, the latency does not change too much compared with the case of Ts =

1000ms. Given Figure 6.9, both groups have adequate time to finish the key propagation and

therefore less communication is needed in the pairing phase. However, when the jamming dura-

tion increases, the latency slightly increases and the variability becomes larger. This is because

the recovery difference between two groups in the splitting phase becomes more significant with

longer jamming duration, thus more communications are needed in the pairing phase. This trend

becomes more obvious with ts = 1000ms. With Ts = 1000ms, the latency increases significantly

between 100-150Bytes and declines between 150-200 Bytes. Since pairing in phase III needs

more communication when the jamming duration increases, the random scan of the jammer in

the pairing phase may have more chances to corrupt the communication and more messages are

needed to be retransmitted. Therefore, the latency becomes larger. However, when the jamming

duration increases, the jammer can scan less number of channels for a given period of time which

reduces the chance of packets being jammed, thus the overall recovery latency becomes smaller.

36

6.5 The Performance of the Tree-based Scheme

The tree-based scheme can be used to deal with multiple colluding jammers. In our experiment,

the number of jammers is between one and three. Since the jammers cannot predict the secret

channels, they randomly select a channel and jam it. For one jammer, it is responsible for all

32 channels. For two or three jammers, each is responsible for 1
2 or approximately 1

3 of the 32

channels. For example, in the case of three jammers, one jammer is responsible for channels

1-11, the second jammer is responsible for channel 12-22, and the third jammer is responsible for

channel 23-32.

6.5.1 Impact of the Jamming Duration

We conduct an experiment to study the impact of the jamming duration. In the experiment,

we add 1, 16, 46, 76, 136, and 216 bytes to the jamming packet to construct different jamming

durations. The number of legitimate nodes in the network is 8 as shown in Figure 6.11. For

different numbers of jammers and jamming packet sizes, we measure the finish time 100 times

and average them as the recovery latency shown in Figure 6.12.

The figure shows that the recovery latency is below one second in most cases. When the

jamming packet size increases from 1 to 16 bytes, the recovery latency decreases quickly, but

stops decreasing when the jamming packet size increases from 16 to 76 bytes. This is because

the legitimate nodes have more delay since the channel is more likely to be occupied by the

jamming signal, and more ongoing messages for the key propagation are corrupted by jammers

and have to be retransmitted. However, beyond 76 bytes, the recovery latency begins to increase

rapidly. The major reason is that legitimate nodes cannot transmit during jamming since each

node always reads high signal strength. They can not seize the channel which results in longer

recovery latency. From the figure, we can also see that the recovery latency increases with the

number of jammers since more jammers can jam more channels.

6.5.2 The Impact of the Network Size

We set up another experiment to explore the impact of network size. In the experiment, the

number of legitimate nodes in the network are 4, 8 and 16. One jammer is placed in the network

with the jamming packet size of 150 bytes. The results are shown in Figure 6.13.

In the tree-based scheme, if groups on the same level of the tree can work in parallel, the

recovery latency is proportional to the height of tree log(n). However, in Figure 6.13, the recovery

latency grows faster than log(n). There are two explanations. First, more legitimate nodes require

more channels at the beginning of the recovery. For instance, 8 nodes need 4 channels and 16

nodes need 8 channels. Therefore, the attacker are more likely to successfully jam legitimate

packets which leads to more retransmissions. The second reason is related to collisions. For a

large network, the probability of different nodes using the same channel is higher than a network

with less number of nodes. When collision occurs during recovery, more retransmissions are

37

Figure 6.11. A network with 8 nodes and 3 jammers.

0 50 100 150 200
700

800

900

1000

1100

Jamming Packet Payload Size (byte)

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(m

s)

3 Jammers
2 Jammers
1 Jammer

Figure 6.12. Recovery latency of the tree based scheme under different jamming packet size.

needed and the recovery latency is increased.

38

4 8 16

400

600

800

1000

1200

1400

Number of Legitimate Nodes (Network Size)

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(m

s)

Figure 6.13. The recovery latency under different network size.

Chapter 7
Discussions and Conclusions

7.1 Discussions

In this paper, we have focused on the Mica2 mote platform, but our scheme can also be applied to

some other platforms. For example, Atheros 802.11 WiFi chipset has channel switching latency

of 7.6ms. Given the transmission rate of WiFi 54Mb/s and a key size of 256 bits, more than

1500 keys can be transmitted within one channel switching. Thus, our scheme works much more

effectively for the WiFi platform.

For the MicaZ sensor, the channel switching latency is 132 us and the minimum time for key

propagation communication is 424 us [36]. It consists of the time for the jammer to leave the

key propagation channel, send a minimum packet and then return. Given the transmission rate

of 250 Kbps, only about 13 bytes could be transmitted. Considering the MAC frame header and

key size, 13 bytes are not enough to transmit one key. To deal with this problem, we can apply

the chained hash fragmentation technique [9]. The basic idea is to divide a large frame into small

fragments. By hashing cyclically, fragments can be linked to reconstruct the original frame after

receiving all of them.

7.2 Conclusions and Future Work

Wireless communication is susceptible to jamming attacks. Although some research has been

conducted on countering jamming attacks, few works consider jamming attacks launched by

insiders. In this paper, we proposed two schemes to address the insider jamming problem. In

the split-pairing scheme, we exploit the fact that a single jammer can only jam one channel

for any given time and nodes in other channels will be free of jamming and hence can start

the recovery process. We further consider multiple colluding jammers in the tree-based scheme.

Since attackers cannot compromise all pairwise keys, we use non-compromised pairwise keys at

the beginning for deriving secret channels and propagating new keys. The new keys can be

40

used to select channels and encrypt new keys again. This procedure continues until all non-

compromised nodes share a common new key. Based on experimental results on Mica2 motes,

we found that the split-pairing scheme is more efficient, but it can only deal with a single insider

jammer. The tree-based scheme can cope with multiple colluding jammers, but it has higher

message complexity and longer recovery time. As future work, we will focus on more advanced

attacker models and we will extend our research to multi-hop networks.

Bibliography

[1] Xu, W., W. Trappe, Y. Zhang, and T. Wood (2005) “The Feasibility of Launching and
Detecting Jamming Attacks in Wireless Networks,” in ACM Mobihoc.

[2] Xu, W., W. Trappe, and Y. Zhang (2007) “Channel Surfing: Defending Wireless Sensor
Networks from Jamming and Interference,” in ACM IPSN.

[3] Li, M., I. Koutsopoulos, and R. Poovendran (2007) “Optimal Jamming Attacks and
Network Defense Policies in Wireless Sensor Networks,” in IEEE Infocom.

[4] Wood, A. D., J. A. Stankovic, and S. H. Son (2003) “JAM: A Jammed-Area Mapping
Service for Sensor Networks,” in RTSS ’03: Proceedings of the 24th IEEE International
Real-Time Systems Symposium.

[5] Poisel, R. (2006) “Modern Communications Jamming Principles and Techniques,” in
Artech House Publisher.

[6] Brown, T., J. James, and A. Sethi (2006) “Jamming and sensing of encrypted wireless
ad hoc networks,” in ACM Mobihoc.

[7] Proakis, J. G. (2000) “Digital Communications, 4th edition,” McGraw-Hill.

[8] Schleher, C. (1999) “Electronic Warfare in the Information Age,” in MArtech House.

[9] Strasser, M., C. Popper, S. Capkun, and M. Cagalj (2008) “Jamming-resistant Key
Establishment using Uncoordinated Frequency Hopping,” in IEEE Symposium on Security
and Privacy, pp. 64–78.

[10] Strasser, M., C. Popper, and S. Capkun (2009) “Efficient Uncoordinated FHSS Anti-
Jamming Communication,” in ACM Mobihoc.

[11] Popper, C., M. Strasser, and S. Capkun (2009) “Jamming-resistant Broadcast Com-
munication without Shared Keys,” in USENIX Security Symposium.

[12] Wang, Q., P. Xu, K. Ren, and X.-Y. Li (2011) “Delay-bounded Adaptive UFH-based
Anti-jamming Wireless Communication,” in IEEE INFOCOM.

[13] Lazos, L., S. Liu, and M. Krunz (2009) “Mitigating Control-Channel Jamming Attacks
in Multi-Channel Ad Hoc Networks,” in ACM WiSec.

[14] Tague, P., M. Li, and R. Poovendran (2009) “Mitigation of Control Channel Jamming
under Node Capture Attacks,” IEEE Transactions on Mobile Computing.

42

[15] Chiang, J. T. and Y.-C. Hu (2008) “Dynamic jamming mitigation for wireless broadcast
networks,” in IEEE INFOCOM.

[16] Dong, Q., D. Liu, and P. Ning (2008) “Pre-authentication filters: Providing DoS resis-
tance for signature-based broadcast authentication in wireless sensor networks,” in ACM
Conference on Wireless Network Security (WiSec), 2008.

[17] Dong, Q. andD. Liu (2010) “Adaptive Jamming-Resistant Broadcast Systems with Partial
Channel Sharing,” in International Conference on Distributed Computing Systems (ICDCS).

[18] Datasheet, C. “Chipcon CC1000 Radio’s Datasheet,” http://www.chipcon.com.

[19] Xu, W., W. Trappe, and Y. Zhang (2008) “Anti-Jamming Timing Channels for Wireless
Networks,” in ACM WiSec.

[20] Chan, H., A. Perrig, and D. Song (2003) “Random Key Predistribution Schemes for
Sensor Networks,” in IEEE Security and Privacy Symposim.

[21] Liu, D., P. Ning, and R. Li (2003) “Establishing Pairwise Keys in Distributed Sensor
Networks,” in ACM CCS.

[22] Zhu, S., S. Setia, and S. Jajodia (2006) “LEAP+: Efficient Security Mechanisms for
Large-scale Distributed Sensor Networks,” in ACM TOSN.

[23] Blundo, C., A. D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung
(1993) “Perfectly-secure key distribution for dynamic conferences,” in Advances in Cryptol-
ogy, Proceedings of CRYPTO92, pp. 471–486.

[24] Karlof, C., N. Sastry, and D. Wagner (2004) “TinySec: A Link Layer Security Archi-
tecture for Wireless Sensor Networks,” in ACM SenSys.

[25] Seshadri, A., A. Perrig, L. van Doorn, and P. Khosla (2004) “SWATT: SoftWare-
based ATTestation for Embedded Devices,” in IEEE Symposium on Security and Privacy.

[26] Shaneck, M., K. Mahadevan, V. Kher, and Y. Kim (2005) “Remote software-based
attestation for wireless sensors,” in ESAS.

[27] Park, T. and K. G. Shin (2005) “Soft tamper-proofing via program integrity verification
in wireless sensor networks,” in IEEE Transactions on Mobile Computing.

[28] Yang, Y., X. Wang, S. Zhu, and G. Cao (2007) “Distributed software-based attestation
for node compromise detection in sensor networks,” in IEEE SRDS.

[29] Castelluccia, C., A. Francillon, D. Perito, and C. Soriente (2009) “On the diffi-
culty of software-based attestation of embedded devices,” in ACM CCS.

[30] Seshadri, A., A. Perrig, L. van Doorn, and P. Khosla (2004) “Swatt: Software-based
attestation for embedded devices,” in IEEE Symposium on Security and Privacy.

[31] Shaneck, M., K. Mahadevan, V. Kher, and Y. Kim (2005) “Remote software-based
attestation for wireless sensors,” in ESAS.

[32] Park, T. and K. G. Shin (2005) “Soft tamper-proofing via program integrity verification
in wireless sensor networks,” in IEEE Transactions on Mobile Computing.

[33] Yang, Y., X. Wang, S. Zhu, and G. Cao (2007) “Distributed software-based attestation
for node compromise detection in sensor networks,” in IEEE SRDS.

43

[34] Danev, B. and S. Capkun (2009) “Transient-based identification of wireless sensor nodes,”
in ACM/IEEE IPSN.

[35] Sun, Y. and X. Wang (2009) “Jammer localization in wireless sensor networks,” in Proc.
of the 5th International Conference on Wireless communications, networking and mobile
computing.

[36] Wood, A., J. Stankovic, and G. Zhou (2007) “DEEJAM: Defeating Energy-Efficient
Jamming in IEEE 802.15.4-based Wireless Networks,” in IEEE SECON.

[37] Navda, V., A. Bohra, S. Ganguly, and D. Rubenstein (2007) “Using Channel Hopping
to Increase 802.11 Resilience to Jamming Attacks,” in IEEE Infocom.

[38] Reidt, S., M. Srivatsa, and S. Balfe (2009) “The fable of the bees: incentivizing robust
revocation decision making in ad hoc networks,” in ACM CCS.

[39] Towsley, D., J. Kurose, and S. Pingali (1997) “A Comparison of Sender-Initiated
and Receiver-Initiated Reliable Multicast Protocols,” in IEEE Journal on Selected Areas in
Communications (JSAC).

[40] Rodeh, O., K. Birman, and D. Dolev (2000) “Optimized Group Rekey for Group Com-
munication Systems,” in Network and Distributed System Security Symposium (NDSS).

[41] Kim, Y., A. Perrig, and G. Tsudik (2004) “Tree-based Group Key Agreement,” ACM
TISSEC, 7(1), pp. 60–96.

[42] Chipcon “CC1000 Single Chip Very Low Power RF Transceiver,” http://focus.ti.com/.

[43] “Tinyos homepage,” http://webs.cs.berkeley.edu/tos/.

