
 
The Pennsylvania State University 

 
The Graduate School 

 
Department of Electrical Engineering 

AN INTELLIGENT CONTROL SYSTEM FOR A HYBRID FUEL CELL WITH 

GAS TURBINE POWER PLANT 

A Dissertation in 
 

Electrical Engineering 
 

by 
 

Wenli Yang 

© 2009 Wenli Yang 

Submitted in Partial Fulfillment 
of the Requirements 

for the Degree of 

Doctor of Philosophy 
 
 

December 2009 
 
 



 

 ii

 
The dissertation of Wenli Yang was reviewed and approved* by the following: 

 
Kwang Y. Lee 
Professor Emeritus of Electrical Engineering 
Dissertation Co-Advisor 
Co-Chair of Committee 

 
W. Kenneth Jenkins 
Department Head of Electrical Engineering 
Professor of Electrical Engineering 
Dissertation Co-Advisor 
Co-Chair of Committee 

 
Jeffrey S. Mayer  
Associate Professor of Electrical Engineering 

 
Robert M. Edwards  
Professor of Nuclear Engineering 

 
*Signatures are on file in the Graduate School 

 

 



 

 iii

ABSTRACT 

Fuel cell power plant is a novel, clean and efficient energy source in distributed 

generation, and received extensive attentions from researchers, developers, and 

governments in recent decades. As one of the most advanced fuel cell technologies, 

hybrid fuel cell power plant has shown its potential for applications and is already under 

commercialization. A hybrid fuel cell with gas turbine power plant was envisioned as a 

base-load power source for distributed generation. As an emerging technique, the need of 

advanced control systems, which are essential components that guarantee reliable and 

efficient operations for the power plant, has motivated this investigation. 

This dissertation seeks to develop an intelligent control system to improve the 

energy conversion efficiency and the reliability of the hybrid fuel cell power plant. 

Toward this goal, an intelligent overall control system is established in the dissertation by 

developing and integrating a hybrid plant model, an optimal reference governor, and a 

fault diagnosis and accommodation system in the comprehensive control system. The 

hybrid plant model provides a novel modeling method that combines a mathematical 

model and a neural network model, which can identify plant parameters and uncertainties 

from operational data and can considerably improve the model accuracy for the following 

and future analysis and research work. The optimal reference governor is achieved by 

particle swarm optimization algorithms and a neural network state estimator to generate 

optimal setpoints and feedforward controls to improve plant efficiency. A nonlinear 

multi-objective optimization framework is developed by integrating heuristic 

optimization and artificial neural network technologies. Meanwhile, a fault diagnosis and 
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accommodation system is implemented with fuzzy logic to detect and regulate system 

faults, preventing instabilities and damages to the power plant during system failures. The 

capability of the fuzzy theory in detecting and regulating system faults is demonstrated. 

The individual control systems are finally integrated into a comprehensive system 

that provides overall management for the hybrid power plant. With the integrated control 

system, the power plant can have high energy conversion efficiency in normal operations 

and can be well regulated during system failures. As a result, an intelligent autonomous 

control system is achieved to perform high quality plant-wide control, by which both 

efficiency and reliability can be guaranteed. Moreover, the presented intelligent control 

system and its design approach are not only valid for the hybrid fuel cell power plant, but 

also capable of other types of power plants, where efficiency and reliability need to be 

improved and guaranteed.  
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Chapter 1 
 

Introduction 

1.1 Background and Motivation 

This dissertation continues the work of developing an overall control system for a 

hybrid fuel cell power plant through the use of intelligent control techniques. The work is 

motivated by three major aspects. First, as a clean and safe energy source, fuel cell power 

plant becomes one of the most competitive energy sources for distributed generation. 

However, it is still a relatively new technology and should continue to be analyzed and 

improved. Second, the hybrid structure of fuel cells combined with gas turbine is one of 

the most advanced technologies in alternative energy and power generation. This hybrid 

power plant is still under commercialization, where a reliable operating and control 

system is indispensable. Third, since the fuel cell power plant will serve as a base load in 

the power system, the energy efficiency and system reliability are two major issues must 

be solved by control systems. The intelligent control system proposed in this work 

performs both optimal control and fault detection to the power plant to guarantee its 

efficiency and reliability. 

1.1.1 Energy sources for distributed generation 

Distributed generation (DG), which refers to any modular generation located at or 

near the load center, has significant positive impacts to power systems, including 
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improved power quality, diversification of power sources, reduction in transmission/ 

distribution losses, and improved reliability. The small, decentralized power plants in DG 

are categorized as photovoltaic, biomass, wind and fuel-based systems [1]. However, 

wind and biomass are constrained by the availability of wind and land, and photovoltaics 

are limited by the high cost and weather conditions. Compared with these DG and 

traditional generation technologies, fuel cell power plants do not have limitations of 

weather and land, but have many advantages:  

• High conversion efficiency 

• Very low emissions 

• Quiet operation 

• Flexible siting and scalability 

• Fuel flexibility 

Fuel cells generate electricity through an electrochemical process, where the 

chemical energy stored in the fuels is converted into direct current (DC) electricity 

without combustion. Through this smooth and continuous process, the fuels can be 

utilized efficiently with the only by-productions of water and carbon dioxide. Thus, the 

fuel cell power plant can achieve extremely clean, quiet and efficient operations. 

Meanwhile, the fuel cell system can utilize a variety of fuels. It can produce electricity 

and heat from hydrogen, natural gas, petroleum fuels or gases derived from coal and 

biomass. Therefore, with the high operational performance and flexible application 

capabilities, fuel cell power plant becomes a major source of distributed generation and 

possesses the ability of wide commercial applications. 
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Because of these advantages, fuel cell received extensive attentions and become 

an important part of U.S. distributed generation program, US smart grid program, and 

American Recovery and Reinvestment Act [2-4]. The first-generation of fuel cells for 

stationary power applications entered the commercial market in 1995. This type of fuel 

cell was used to generate very high-quality electricity and heat with negligible emissions 

in commercial and industrial settings. The second generation of stationary fuel cells is 

currently in the demonstration and commercialization phase. This type of fuel cell is 

expected to achieve higher efficiency at lower cost when used in distributed generation 

systems [5]. To reach this goal, fuel cell and its supporting facilities, including the control 

system, need further analysis and improvement before widely applied in the commercial 

market. 

1.1.2 Hybrid fuel cell power plant 

The integration of a fuel cell with a gas turbine has become a convincing 

technology that can greatly enhance the overall efficiency of the power plant. Based on 

this hybrid structure, a fuel cell and gas turbine hybrid system has been developed as a 

base-load power source for DG by FuelCell Energy, Inc. and the overall efficiency is 

expected to approach 75%. The major feature of this structure is a high integration level 

of fuel cells and a turbine system, which is incorporated to the fuel cell system through 

the interactions in gas and heat flows [6]. The gas turbine-compressor-generator system 

will produce electric power simultaneously with fuel cells. The DC power and 
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asynchronous AC power will be converted into synchronized AC power by a power 

conditioning system (PCS) [7] before feeding into the grid. 

The direct fuel-cell with gas turbine (DFC/T) power plant in Figure 1-1 is 

developed based on a 250kW Molten Carbonate Fuel Cell (MCFC), whose electrolyte is 

molten carbonate salt with the operating temperature of 600°C - 650°C, and a 60kW 

Capstone MicroTurbine®. MCFC is a kind of high-temperature fuel cell where the fuel 

can be internally reformed to hydrogen without any additional reforming devices, so that 

the MCFC system is named as Direct Fuel-Cell (DFC). Compared with other available 

fuel cell techniques [2], such as phosphoric acid fuel cell (PAFC), solid oxide fuel cell 

(SOFC) and proton exchange membrane fuel cell (PEMFC), MCFC has the best 

performance-cost ratio that high capability and efficiency can be achieved at a relatively 

low price. 

 

Figure 1-1 The 300kW DFC/T® power plant during factory alpha test [6]. 
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1.1.3 Recent research and achievements 

Before the DFC/T hybrid power plant was first established, the individual Direct 

FuelCell®, which is the basis of DFC/T plant, was the primary technology of fuel cell 

power generations. Since dynamic modeling and simulation have been proved to be 

powerful tools for the study of transient and global behaviors of the power generation 

systems [8], extensive research work has been done for the DFC power plant. A nonlinear 

mathematical model of an internal reforming molten carbonate fuel cell stack was first 

developed by Lukas et al. based on the principles of components and energy balances and 

thermochemical properties [8]. By simplifying the original stack model, a reduced-order 

dynamic model was developed for the study of grid transient, where the slower dynamics 

can be neglected [9]. Then, the plant-wide model of the entire direct fuel cell power plant, 

including fuel cell stack, heat exchangers, and oxidation devices, was built and simulated 

[10]. Based on this model, a local operation and control scheme was presented in [11], 

including flow, temperature, and pressure control.  

The mathematical model of the hybrid DFC/T plant [12, 13] was obtained by 

integrating a gas turbine into the Direct FuelCell model and modularizing the computer 

simulation. However, the mathematical model of DFC/T was built on several 

assumptions and approximations, such as constant gas pressure and uniform temperature 

distribution, which made the model simpler but introduced model errors. These errors 

become significant when the simulation results are compared with the operational data of 

experiments. Before applying advanced intelligent control algorithm, the model accuracy 

must be improved. 
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Meanwhile, the dynamic model provides a platform for investigating advanced 

control algorithms and dynamic optimization methods during the design phase. To 

increase the efficiency of the power plant, an optimal off-line trajectory planning 

algorithm was designed in [14]. The optimal trajectories generated by this algorithm are 

then learnt by a neural network supervisor (NNS) [15], which provides on-line optimal 

setpoints for plant operations. The off-line optimization method is computationally 

expensive and is precluded in generating optimal solutions in real-time. While, the neural 

network supervisor may provide inordinate results if the operational patterns are not 

learned in the training phase. Therefore, an on-line updatable optimization algorithm 

needs to be developed for real-time operations. 

In addition, one important issue that has not been involved in the previous 

research is the reliability of the hybrid power plant, especially during system failures. If 

faults occur in the power plant, the system behaviors may become completely different 

from normal situations. Under the operations of the local controllers, which were 

designed only for normal conditions and have only limited information of the entire plant, 

the system may be degraded, enter critical operational regions, or even become unstable. 

To perform effective and reliable control to the power plant during system failures, a 

special control scheme must be designed aiming fault situations. 

1.1.4 Efficiency and reliability 

The DFC/T hybrid power plant was designed for the base-load generation, and 

will be kept running at full load all through the year, except in the cases of repairs or 
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scheduled maintenance. The power plant will be working at a steady or smooth power 

load for a considerably long period of time. Thus, even a small improvement in efficiency 

will produce significant economic and environmental benefits in the long run. Meanwhile, 

highly reliable operations can guarantee the power quality, system stability, and minimize 

the average off-line time for scheduled maintenance or unexpected plant faults. Therefore, 

the primary objectives of its control and operation system are efficiency and reliability, 

rather than the fast responses for peak-load demand or backup power generations. 

Although the theoretical efficiency of the DFC/T system can reach 75%, it still 

needs to be operated practically at an optimal status to achieve high efficiency. Because 

of the integration of the gas turbine, the entire system becomes more complicated than 

the individual fuel cell or gas turbine power plants. For such a multi-inputs multi-outputs 

(MIMO) and highly coupled system, the optimization is extremely difficult, especially 

for real-time operations. Hence, an intelligent control system with advanced optimization 

algorithm needs to be developed for the DFC/T system. 

As a modern autonomous system, less and less human efforts are required during 

plant operations. To improve the reliability of the power plant, it is a necessity for the 

control system to monitor any possible faults in the system and to regulate the system to 

avoid critical operational regions before the faults are fixed manually. The control system 

also needs to have the ability to identify the type and the approximate location of the fault, 

so that the service time could be greatly reduced. As a part of the intelligent control 

system, a fault diagnosis and accommodation system is developed in the dissertation. 



 

 8

1.2 Statement of Propose 

This dissertation will focus on three major issues on the analysis and operation of 

the DFC/T power plant. The first issue is mathematical model enhancement, which will 

improve the accuracy of the dynamic model for the following analysis and research work. 

The second issue is the optimization of plant operations to increase fuel efficiency. The 

third issue is the plant reliability, including system fault detection and accommodation, 

which will identify possible internal faults and regulate the system during system failures. 

The major research items are listed as follows: 

• Mathematical model enhancement 

 Supplementary analytical model of internal energy dynamics 

 Parameter identification based on experimental data 

 Development of neural network model augmenters 

• Optimization of plant operations 

 Investigations on multi-objective optimization algorithms 

 Development of optimization framework based on Particle Swarm 

Optimization (PSO) and other heuristic optimization algorithms 

 Neural network combined model as a plant state estimator 

• Fault detection and accommodation 

 Fuzzy fault diagnosis system for fault identification and localization 

 Fuzzy fault accommodation system for fault regulation 
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The work of this dissertation will involve three issues regarding the methodology 

of intelligent control systems. These issues include modeling, optimization and fault 

diagnosis methods: 

• Provide novel modeling methods: hybrid mathematical and neural network 

model, and combined neural network model. 

• Develop an optimization framework with an on-line state estimator. 

• Provide a framework of using fuzzy logic for fault detection and regulation. 

1.3 Organization of the Dissertation 

The fuel cell technologies, including basic mechanisms and recent 

commercializing techniques, are introduced in Chapter 2. The system process flows, 

chemical reactions, and a mathematical dynamic model of the DFC/T power plant are 

also investigated. 

In Chapter 3, the mathematical model of the DFC/T power plant is enhanced by 

two methods to improve the model accuracy. An analytical method with least-squares 

and gradient descent approaches and a numerical method with neural network approach 

are applied for model augmentations. 

For the optimization of the power plant, heuristic multi-objective optimizations 

and their variations are surveyed in Chapter 4, and a PSO-based optimal reference 

governor is developed in Chapter 5 to provide optimal setpoints and feedforward controls 

for plant operations. A neural network combined model is established as an estimator for 

the optimization framework. 
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In Chapter 6, fuzzy fault diagnosis and accommodation system is developed to 

improve the reliability of the hybrid power plant. Fuzzy fault patterns are defined. 

Membership functions and fuzzy rules are designed for fault detections and regulations. 

Multiple control methods are investigated and compared. 

Finally, the hybrid mathematical model, optimal reference governor, fault 

diagnosis and accommodation system are integrated as an overall intelligent control 

system in Chapter 7. Conclusions are drawn and future works are anticipated in Chapter 8. 
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Chapter 2 
 

The Hybrid Fuel Cell/Gas Turbine Power Plant 

2.1 The Fuel Cells 

A fuel cell is similar to a battery that converts chemical potentials to electric 

power through electrochemical reactions. The main difference between fuel cells and 

batteries is that batteries carry a limited amount of fuel internally, as an electrolytic 

solution and solid materials, but fuel cells consume reactants from an external source, 

which can be constantly replenished. In a fuel cell, the fuel on the anode side and the 

oxidant on the cathode side react in the presence of an electrolyte. The reactants flow into 

the cell, and the products flow out of it, while the electrolyte remains within it. Hence, 

fuel cells can operate continuously without replacement as long as the necessary 

maintenance is performed. 

A battery is an energy storage device, but a fuel cell is an energy conversion 

device. The maximum available energy in a battery is determined by the amount of 

chemical reactant stored in it. The battery will stop producing energy when the chemical 

reactants are consumed. In contrast, the reactants in a fuel cell are replenished from an 

external source. Thus, a fuel cell theoretically has the capability of producing electrical 

energy as long as fuel and oxidant are supplied to the electrodes. In reality, degradation, 

primarily corrosion, or malfunction of components limits the practical operating life of 

fuel cells. 
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Fuel cells generate electricity through an electrochemical reaction process, in 

which the energy stored in fuel is converted into direct current (DC) electricity. Because 

fuel cells generate electric energy without combustion, they have many advantages as an 

energy conversion device: 

• High energy conversion efficiency 

• Very low emissions 

• Low noise 

• Fuel flexibility 

• Modular design  

2.1.1 A typical fuel cell 

In a typical fuel cell as shown in Figure 2-1, a gaseous fuel (i.e., hydrogen) is fed 

continuously to the anode, an oxidant (i.e., oxygen) is fed continuously to the cathode. 

The electrochemical reactions take place at the electrodes to produce electric currents. 

The overall chemical reaction can be described by the following equitation: 

 electrochemical
2 2 2reactions

1 Power
2

H O H O+ ⎯⎯⎯⎯⎯→ +  (2.1) 

Outside the fuel cell, electrons are released from the anode, and return to the cathode 

through a load, where the current turns into electric power. Inside the fuel cell, positive 

ions move from anode to cathode, or negative ions move from cathode to anode in the 

electrolyte to recruit the electrons at the electrodes. The type of the electrolyte and ion 

species can be various in different fuel cells. Meanwhile, the electrode material should be 
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catalytic as well as conductive, porous rather than solid. The catalytic function of 

electrodes is more important in lower temperature fuel cells and less so in high 

temperature fuel cells because ionization rates increase with temperature. 

 

Figure 2-1 The concept and a prototype of a fuel cell. 

2.1.2 Types of fuel cells 

There are four main types of fuel cells currently being developed. They include 

Phosphoric Acid Fuel Cells (PAFC), Molten Carbonate Fuel Cells (MCFC), Solid Oxide 

Fuel Cells (SOFC), and Proton Exchange Membrane Fuel Cells (PEMFC). 

Phosphoric Acid Fuel Cells (PAFC) are the most commercially developed type of 

fuel cell. They range in size from 50 kW to 500 kW, and both stationary and vehicle 

applications are possible. This type of fuel cell operates at 190˚C, and the peak current 

density ranges around 200mA/cm2. It generates electric power at more than 40% 
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efficiency, and the startup time is 1 to 4 hours. The PAFCs are being widely used in 

commercial buildings, airports, and utility power plants [16].  

Molten Carbonate Fuel Cells (MCFC) have promised high fuel-to-electricity 

efficiencies of 50-60%. They operate at 600˚C to 650˚C, so that the fuel can be reformed 

directly into hydrogen. The MCFCs range in size from 250 kW to 5 MW with peak 

current density about 160mA/cm2, and need a startup time up to 10 hours. The high 

efficiency and high operating temperature of MCFC units makes them most attractive for 

base-load power generation, either in electric-only or cogeneration modes [16]. 

Solid Oxide Fuel Cells (SOFC) can be scaled from kW-size units to MW-size 

units for large high-power applications, including industrial and large-scale central 

electricity generating stations. The high operating temperature of 1000˚C makes it 

possible to reform fuels to hydrogen internally. Power generating efficiencies in SOFCs 

could reach 60%, and 80% in co-generation applications [16]. 

Proton Exchange Membrane Fuel Cells (PEMFC) operate at relatively low 

temperatures about 80˚C, having high power density up to 700mA/cm2, and able to vary 

output power quickly. The PEMFCs range in size from sub-kW to 500 kW. Because of 

their high power density and fast response, the most attractive applications are in the 

automotive industry and portable devices. However, the costs for the proton exchange 

membranes are relatively high [16]. 
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2.2 The Direct FuelCell Power Plant 

Because of the promising fuel efficiency and the commercializing ability of 

MCFC, a direct reforming MCFC (under the trade name of Direct FuelCell® or DFC®) 

was developed by FuelCell Energy, Inc. Different form the conventional fuel conversion 

technologies, where fuel turns into a hydrogen-rich gas in an external fuel processor, the 

DFC reforms natural gas internally in the anode compartment with a reforming catalyst 

directly placed in the anode of the fuel cell [17]. The chemical reactions of fuel reforming 

and water-gas shift partially convert the methane and water into hydrogen, the effective 

reactant of the electrochemical reactions at the anode, and carbon dioxide as the 

following equations. The internal fuel reformation results in a simpler plant configuration 

and improved efficiency.  

 reforming
4 2 23CH H O CO H+ ⎯⎯⎯⎯→ +  (2.2) 

 water-gass shift
2 2 2CO H O CO H+ ⎯⎯⎯⎯⎯→ +  (2.3) 

Moreover, a single fuel cell can only produce a voltage less than one volt with a 

low current capability. Thus, to produce electric power in practicable voltage and current 

ranges, fuel cells are connected both in parallel and in series, composing a "fuel cell 

stack". Heat recuperators are placed prior to the fuel cell stack to prepare the fuel to an 

appropriate temperature with the recycled heat from the depleted gas. 

A demonstration project of the DFC technology was established in Santa Clara, 

California, 1997. A 2 Mega-Watt DFC power plant was set up and connected to the 
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utility grid. The MCFC technology, plant reliability, performance, fuel efficiency, and its 

commercializing potential are verified in the project [18]. 

2.3 The Hybrid DFC/T Power Plant 

The integration of fuel cells with a gas turbine has become a convincing 

technology that can greatly enhance the overall efficiency of the power plant. Based on 

this hybrid structure, the fuel cell and turbine system (under the trade names: Direct 

FuelCell/Turbine® and MicroTurbineTM) has been developed by FuelCell Energy, Inc. 

and expected to be a base-load power source in distributed generation. The major feature 

of this structure is a high integration level of fuel cells, gas turbine, and heat recuperators 

[6]. Figure 2-2 shows the simplified system diagram of the hybrid power plant, where a 

gas turbine is integrated to the Direct FuelCell system both mechanically and thermo-

dynamically. The fuel cell and the generator propelled by the gas turbine generate electric 

power simultaneously. The DC power from the fuel cell stack and the asynchronous AC 

power from the generator will be converted to synchronized AC power by a power 

conditioning system (PCS) [7] before connecting to the utility grid. 

The significance of the integration of the gas turbine is the highly improved fuel 

efficiency. Because the gas turbine is deeply integrated to the fuel cell system, it can 

utilize the fuel energy (heat) more efficiently than simply using the exhaust heat for co-

generation, so that the overall fuel utilization can be considerably improved [19]. In 

Figure 2-3, the efficiencies of different power generation techniques are plotted against 

their size ranges. An individual gas turbine can only reach the efficiency of 40%; while, 
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an individual DFC system has 50% to 55% efficiency. However, the hybrid DFC/T plant 

can achieve a much higher efficiency up to 75%. With most traditional technologies, 

economies of scale are critical to obtaining efficient power generation. However, the 

DFC/T is not dependent on economies of scale to achieve high efficiency. 

 

 

Figure 2-2 The integrated Direct FuelCell and gas turbine [6]. 

The combination of the MCFC and gas turbine improves the plant efficiency, but 

at the same time, it increases the system complexity. The gas turbine introduces air into 

the fuel cell and uses the excessive fuel and heat to generate extra power. The gas turbine 

and fuel cell are highly coupled both in gas flows and in heat flows, both mechanically 

and thermo-dynamically. Therefore, advanced operating and control systems need to be 

developed for this hybrid structure. Further analysis and improvement are necessary in 

the testing and the commercializing phase. 
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Figure 2-3 Fuel efficiency of power generation technologies [6]. 

2.4 Process Description 

The detailed process flow diagram is shown in Figure 2-4. The fuel (i.e., methane 

and water) is introduced to the plant through a Humidifying Heat Exchanger (HumiHex 

or HH), where the methane is humidified and heated. Then, a Fuel Pre-heater (FP) heats 

the fuel again to a constant temperature determined by the characteristic of the catalyzer 

in the Pre-fuel Converter (PC), in which the fuel is partially reformed to hydrogen. The 

fuel is finally heated in a Super Heater (SH) to an appropriate temperature prior to 

entering the fuel cell anode.  

On the other side of the plant, cold air in ambient temperature is compressed and 

introduced to the system by an air compressor, which is driven by the gas turbine. The 

compressed air is heated by a Low Temperature Recuperator (LTR), a Second Start-up 
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Heater (SSH), and a High Temperature Recuperator (HTR), subsequently. The high 

pressure air with high temperature then expands in the gas turbine to drive the air 

compressor and a permanent magnet generator (PMG) to produce electric power. The 

exhausted air form the turbine and the depleted fuel from the anode are mixed and burnt 

in an Anode Gas Oxidizer (AGO), producing high temperature oxidative gas. The 

excessive heat from the AGO is transferred to the incoming air via HTR to impel the 

turbine. The cooled AGO off gas enters the cathode as the oxidizer for the fuel cells. 

Finally, the heat from the cathode off gas is recycled to heat the fresh fuel and air through 

SP, FP, LTR, and HH [12]. 

 

Figure 2-4 The process flow diagram of the DFC/T power plant. 

In addition, when the DFC/T power plant is in the starting-up process, only a 

small amount of fuel is supplied, from which the plant cannot produce sufficient heat to 

warm up itself. Thus, the SSH, an electric heater, will provide extra heat to the system, 

and the PMG will work as an electric motor to drive the air compressor [6]. 
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2.4.1 Chemical reactions 

Although there are a number of subunits in the DFC/T power plant, chemical 

reactions take place only in three of them [12], i.e., the PC, the fuel cell stack, and the 

AGO. Fuel reforming and water-gas shift reactions, as in (2.2) and (2.3), take place in 

both PC and the anode of the fuel cell stack. Electrochemical reactions take place in the 

anode and cathode of the fuel cell stack as follows: 

Anode: 2 3 2 2 2H CO CO H O e= −+ → + +  (2.4) 

Cathode: 2 2 3
1 2
2

CO O e CO− =+ + →  (2.5) 

The overall chemical reactions can be concluded as: 

 2 2 2 2 2
1 Heat Power
2

anode cathode cathode anode anodeH CO O CO H O+ + → + + +  (2.6) 

The excessive fuel from the anode is burnt and fully oxidized in the AGO. The chemical 

reactions include [10]: 

 4 2 2 22 2 HeatCH O CO H O+ → + +  (2.7) 

 2 2 2
1 Heat
2

H O H O+ → +  (2.8) 

 2 2
1 Heat
2

CO O CO+ → +  (2.9) 

Thus, the AGO prepares carbon dioxide for the cathode reactions, and heat for the turbine 

and generator. 
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2.4.2 Electrical power flows 

To feed the electrical power to utility grid, the DC power from the fuel-cell stack 

and the asynchronous AC power from the permanent magnet generator (PMG) must be 

synchronized in frequency and phase angle by a power conditioning system (PCS) [7] as 

Figure 2-5. The fuel cells usually generate DC power in a low voltage range, which 

should be boosted to a higher voltage for DC bus by DC-DC converters before inverted 

to synchronized AC power. The AC power from the PMG is rectified into DC power and 

then boosted to the voltage of the DC bus. A DC-AC inverter is used to convert the DC 

power to synchronized AC power, which can be connected to utility grid. Super 

capacitors and power filters may be applied to eliminate or reduce the undesired 

harmonics introduced by the switching components of the inverter [7]. 

 

Figure 2-5 Power conditioning system based interface to utility grid. 
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2.4.3 Control schemes 

The operational states of the plant, such as power, temperature, and rotational 

speed, must be controlled to generate desired power with smooth and reliable processes. 

For the DFC/T power plant, the output power is determined by the amount of the fuel fed 

into the system and the current drawn from the fuel-cell stack, and are regulated by 

feedforward controls. Since the temperature of the fuel cell stack is dominated by the 

cathode inlet gas and the output DC power, the stack temperature is maintained by the 

feedback controls of the SSH, LTR, and AGO through split valves according to the 

setpoint of cathode inlet temperature, which is a function of the stack power and is 

specified by the plant manufacturer. The turbine speed is controlled by the PMG, a speed 

controller, and a DC-DC converter according to the speed setpoint. By modifying the 

armature current of the equivalent DC generator [14], the torque can be regulated, and 

consequently, the shaft speed can be controlled. The detailed generator dynamics and 

control scheme can be found in Section 2.5.4 and Section 3.4.2. Moreover, the plant is 

operating at constant pressures regulated by two pressure controllers with constant 

setpoints [11]. Because of the complexity and importance in plant operations, the 

temperature controls are the primary control scheme to be investigated in this dissertation. 

2.5 A Mathematical Model of Direct FuelCell and Gas Turbine 

A plant wide dynamic simulation model was developed in [8, 10, 12] based on 

mass and energy conservation rules and the relationships of chemical reactions. A 
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nonlinear mathematical model of the internal reforming molten carbonate fuel cell stack 

was firstly developed in [8]. Based on the principles of energy and mass component 

balances and thermochemical properties, ordinary differential equations were built for 

cathode component balance, anode component balance, and stack energy balance, 

respectively. Based on this stack model, the plant-wide direct fuel cell simulation model 

and the DFC/T model were built in [10] and [12]. 

2.5.1 Cathode component balance 

Since there are only seven chemical components in the whole system, for 

convenience, the set of all gas species is first identified as: 

 { }2 4 2 2 2 2H CH CO CO H O N O=S  (2.10) 

where the ordering is used to refer to individual gas species (e.g., 3x  is the mole fraction 

of 2H O ). Define the reaction rate of the electrochemical reaction as Sr  in mole/s, and 

then the changing rates of each component due to the cathode reaction can be derived 

from to the coefficients of the reaction equation (2.5) as: 

 1[0 0 0 1 0 0]'
2C Sr= − −R  (2.11) 

Dynamic equations can be built based on mole changing rates of cathode gas components: 

 ( )C C
C C C C C

d N
N N

dt
= = +

x
n x x   (2.12) 

 
7

( )

1

in out i
C C C C

i
N N N R

=

= − +∑  (2.13) 
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 C C
C

S

P VN
RT

=  (2.14) 

where 

Cn  vector of mole amount of gas components stored in the cathode [mole]; 

CN  total mole number of the gas mixture stored in the cathode [mole]; 

Cx  mole fractions of gas components in the cathode; 

in
Cx  mole fractions of the inlet stream of the cathode; 

in
CN / out

CN  gas inlet/outlet mole flow rate for the cathode [mole/s]; 

( )i
CR  the i-th element of the vector CR  [mole/s]; 

CP  cathode gas pressure [kg/(m2·s)]; 

CV  cathode compartment volume [m3]. 

ST  fuel-cell stack temperature [K]; 

R  universal gas constant [J/(mole·K)]. 

At the same time, Cn  can also be expressed by the inlet and outlet gas flow rates 

at the cathode side as: 

 in in out
C C C C C CN N= − +n x x R  (2.15) 

Combining (2.12)-(2.15), the following equation can be obtained and simplified [20]. 

This equation is used as the component balance equation for the cathode. 

 ( )
7

( )

1

in in iS
C C C C C C C

iC C

RT N R
P V =

⎡ ⎤= − − +⎢ ⎥⎣ ⎦
∑x x x x R  (2.16) 
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2.5.2 Anode component balance 

Different from the cathode, where only one chemical reaction takes place, three 

reactions (i.e., anode electrochemical reaction (2.4), reforming reaction (2.2), and water-

gas shift (2.3)) present to the anode. The rate of the electrochemical reaction is Sr . Define 

the reaction rates of reforming and water-gas shift are REFr  and WGSr , respectively. Then 

the changing rates of each component due to these reactions are: 

 [ 1 0 0 1 1 0 0]'A Sr= −R  (2.17) 

 [3 1 1 0 1 0 0]'REF REFr= − −R  (2.18) 

 [1 0 1 1 1 0 0]'WGS WGSr= − −R  (2.19) 

Dynamic equations can be built based on mole changing rates of the gas components 

stored in the anode: 

 ( )A A
A A A A A

d N
N N

dt
= = +

x
n x x  (2.20) 

 

7 7 7
( ) ( ) ( )

1 1 1
7

( )

1
2

in out i i i
A A A A REF WGS

i i i

in out i
A A A REF

i

N N N R R R

N N R r

= = =

=

= − + + +

= − + +

∑ ∑ ∑

∑
 (2.21) 

 A A
A

S

P VN
RT

=  (2.22) 

where the symbols are defined coordinately to the cathode equations with a subscript of 

"A" denoting the variables are defined for the anode side.  

At the same time, An  can also be expressed by the gas flow rates of the anode: 
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 in in out
A A A A A A REF WGSN N= − + + +n x x R R R  (2.23) 

Combining (2.20)-(2.23), the following equation can be obtained and simplified. This 

equation is used as the component balance equation for the anode. 

 ( )
7

( )

1

( 2 )in in iS
A A A A A REF A A REF WGS

iA A

RT N R r
P V =

⎡ ⎤= − − + + + +⎢ ⎥⎣ ⎦
∑x x x x R R R  (2.24) 

Moreover, the reaction rate Sr  is calculated according to a nonlinear relationship 

of electrochemical reactions. The reaction rates REFr  and WGSr  are determined based on 

the equilibrium point of reforming and water-gas shift reactions [20]. 

2.5.3 Stack energy balance 

The energy balance equation was built for the entire stack. Let E  denotes the 

total energy stored in the fuel cell stack. Then, E  is the energy changing rate of the stack, 

which can be expressed either by the temperature changing rate, or by the inlet and outlet 

flows of the stack: 

 in in out out in in out out
S S C C C C A A A A S lossE C T N H N H N H N H P Q= = − + − − −  (2.25)  

where  

SC    the specific heat capacity of the stack and stored gas [J/K]; 

( )
in
C AH   inflow mole enthalpy of the cathode (or anode) [J/mole]; 

( )
out
C AH   outflow mole enthalpy of the cathode (or anode) [J/mole]; 

SP   the electric power provided by the stack [J/s]; 
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lossQ   power loss of the stack due to heat loss. 

The mole enthalpy of any gas flow "X" can be calculated from a forth-order polynomial: 

 ( )
7

( ) 2 3 4

1

k
X X k X k X k X k X

k
H x A T B T C T D T

=

= + + +∑  (2.26) 

where ( )k
Xx  is the mole fraction of the k-th component, XT  is the temperature of the 

stream "X", and kA , kB , kC , and kD  are the polynomial coefficients derived from the 

integration of the specific heat capacity of the k-th component in the mixture. Meanwhile, 

the outlet flow rates can be given as:  

 
7

( )

1

out in i
C C C

i

N N R
=

= +∑  (2.27) 

 

7 7 7
( ) ( ) ( )

1 1 1
7

( )

1
2

out in i i i
A A A REF WGS

i i i

in i
A A REF

i

N N R R R

N R r

= = =

=

= + + +

= + +

∑ ∑ ∑

∑
 (2.28) 

By combining (2.25), (2.27), and (2.28), the following equation can be concluded. 

This equation is used as the energy balance equation for the fuel cell stack. 

 

( )

( )

7
( )

1

7
( )

1

1 2

in in out out i
C C C C C

i

in in out out i
S A A A A A REF

iS

S loss

N H H H R

T N H H H R r
C

P Q

=

=

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞

= + − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥− −⎣ ⎦

∑

∑  (2.29) 

The first term in (2.29) gives the energy increasing rate at the anode side, and the second 

term represents the energy increasing rate at the cathode side. The third term is the energy 

decrement, including the electric power SP , and the heat loss lossQ . 
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2.5.4 Model of the gas turbine system 

The gas turbine system is composed of a permanent magnet generator (PGM), a 

compressor, and a turbine linked mechanically to a common shaft and 

thermodynamically to the fuel cell process. The shaft is modeled by Newton’s second law 

for rotation: 

 T C G
dJ
dt
ω τ τ τ= − −  (2.30) 

where J  is the moment of inertia of the linked mechanical system; ω  is the angular 

speed of the rotation; and Tτ , Cτ , and Gτ  are the torques of turbine, compressor, and 

generator, respectively. The torques of turbine and compressor are calculated from the 

energy balances: 

 , , ,
,

out in
T C T C T C

T C

n H H
τ

ω

⎡ ⎤−⎣ ⎦=  (2.31) 

where ,T Cn  is the mole air flow rate through the turbine and compressor, and is obtained 

from proprietary operating maps. Here, ,
out
T CH  and ,

in
T CH  are mole enthalpies of the outlet 

and inlet flows of the turbine and compressor, and are functions of temperature as (2.26). 

The outlet temperatures are obtained from the following equations with the definitions of 

the isentropic efficiencies η  computed from the operating maps [14] for compression and 

expansion: 

 ( )
( )1 1/

1
1

out in
C K

out in

T T
p p

η −

−
=

−
 (2.32) 
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 ( )
( )

1 1/ 1
1

K
out in

T
out in

p p
T T

η
− −

=
−

 (2.33) 

Since the PMG and rectifier can be approximated as a DC generator [14], the 

torque and the output voltage of the equivalent DC generator can be approximated as: 

 G m GK Iτ =  (2.34) 

 G ev K ω=  (2.35) 

where mK  and eK  are the armature and motor constants; GI  and Gv  are the DC current 

and voltage of the equivalent DC generator. GI  can be controlled by the DC-DC 

converter. Thus, the generator torque can be regulated according to (2.34), and 

consequently, the rotational speed  ω  can be controlled. 
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Chapter 3 
 

Model Augmentation for the DFC/T Power Plant 

A mathematical model provides a platform and a powerful tool for investigating 

advanced control theories and technologies to improve the reliability and efficiency of the 

hybrid DFC/T power plant. Thus, extensive studies have been invested into the dynamic 

mathematical model and autonomous control systems for DFC and DFC/T power plant. 

A nonlinear mathematical model of an internal reforming molten carbonate fuel cell stack 

was first developed by Lukas, et al. based on the principles of energy and mass 

components balances and thermochemical properties as described in Section 2.5 [8, 20]. 

Then, a plant-wide model of the overall direct fuel cell power plant was built and 

simulated [10]. On the basis of the DFC model, a local operation and control scheme was 

then presented in [11]. The theoretical model of the hybrid DFC/T plant is obtained with 

the integration of a gas turbine model and the plant-wide DFC model [12, 13]. 

However, due to the assumptions of the mathematical model and the uncertainties 

of the actual DFC/T plant, the errors between the simulation results and the experimental 

data are non-negligible. Thus, controllers or control algorithms designed based on this 

mathematical model may become degraded or invalid to the actual plant. Therefore, the 

accuracy of the mathematical model needs to be improved. In this chapter, a 

supplementary mathematical model is firstly introduced, and then an analytical method 

and a numerical method are proposed for model augmentation. Finally, pressure dynamic 

models are developed and results are demonstrated by simulations. 
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3.1 An Analytical Augmentation Approach 

To verify the performance and accuracy of the original mathematical model in 

Section 2.5, a simulation was executed with the exactly same input conditions as in an 

experiment conducted for forty-two days from standby mode to a full power load. Taking 

the fuel-cell stack for example, in Figure 3-1, the simulation result is compared with the 

experimental data, where the actual temperatures of the anode and the cathode are not 

equal. However, because the energy model was built regarding the entire stack, identical 

temperatures are given for both electrodes. Thus, the original mathematical model cannot 

express the complete energy dynamics of the fuel-cell stack.  
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Figure 3-1 Fuel cell stack temperature of the original model and experiment. 
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Meanwhile, from Figure 3-1, the errors between the simulation result and the 

experimental data illustrate that the original stack model has significant errors at low 

power loads. In this case, advanced control algorithms developed on the plant model may 

become degraded or even unstable. Therefore, the energy model of the fuel-cell stack 

needs to be improved. 

3.1.1 The internal dynamics of the stack 

To model the energy dynamics more precisely, in this section, the stack 

temperature is split into the anode temperature and the cathode temperature. Energy 

balance equations are built for the chemical reactions on each side individually. 

Meanwhile, the mutual reactions between the anode and the cathode are also modeled, 

including mass transfer, heat transfer, and heat loss. The dynamic equations are presented 

as follows, where aorgE  and corgE  are the energy flow rate calculated by the original stack 

model without internal dynamics for anode and cathode, respectively, and aaugE  and 

caugE  represent the corresponding improved energy flow rates. 

 a
aaug aorg mass trans lossE E E E E= + − −  (3.1) 

 c
caug corg mass trans lossE E E E E= − + −  (3.2) 

Here, massE  is the energy transfer rate due to the mass transfer between the electrodes and 

is in proportion to the electrochemical reaction rate R , since the mass (i.e., 3CO= ) 

transfer rate equals to the electrochemical reaction rate; transE  is the energy transfer rate 
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due to the heat transfer and is in proportion to their temperature difference [21]; and a
lossE  

and c
lossE  are the anode or cathode energy loss rates due to heat loss and in proportion to 

the temperature difference between anode or cathode temperature and the ambient 

temperature. These relationships are presented in (3.3) to (3.6), with the positive 

directions defined in Figure 3-2 by waved arrows: 

 mass massE K R=  (3.3) 

 2trans trans a cE K T= ∆ , where 2a c anode cathodeT T T∆ = −  (3.4) 

 2
a a
loss loss a ambE K T= ∆ , where 2a amb anode ambientT T T∆ = −  (3.5) 

 2
c c
loss loss c ambE K T= ∆ , where 2c amb cathode ambientT T T∆ = −  (3.6) 

Here, the coefficients massK , transK , a
lossK , and c

lossK  are four constant parameters to be 

determined for the internal energy dynamics; Kmass is the energy contained in each mole 

of 3CO= , which is always in a form of chemical compounds, and whose enthalpy cannot 

be directly measured; Ktrans is determined by the heat conductance of the electrolyte 

located between the electrodes; and a
lossK  and c

lossK  are determined by heat characteristics 

of the fuel-cell stack shell. The last three parameters should be positive; otherwise 

positive feedback will be introduced to the model and will cause instabilities.  

These parameters can be established by theoretical analysis or offline experiments. 

However, the analysis needs design details and is not accurate, while the offline 

experiments are not always applicable. Thus, in this dissertation, the parameters are 
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identified by two system identification methods based on online operating data, in case 

the design details are unavailable or offline experiments are not applicable. 

    

Figure 3-2 The simplified MCFC stack with internal energy dynamics. 

3.1.2 A least-squares approach 

The equations above suggest that the parameters to be determined are linear to the 

energy changing rates. Thus, these parameters can be estimated by a linear least squares 

approach [22].  

The objective function 

A objective function is defined below on energy errors, where a
expE  and c

expE  are 

the energy changing rates [8] calculated from experimental data by (3.8), and the 

superscript ( )i  indicates the i-th element in the sampled data set: 
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 ( ) ( )2 2( ) ( ) ( ) ( )

1

N
a i a i c i c i

e exp aug exp aug
i

F E E E E
=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑  (3.7) 

 ( )
7

( ) ( ) ( ) ( )2 ( )3 ( )4

1

i i i i i i
k k k k k

k

E N x A T B T C T D T
=

= + + +∑  (3.8) 

In the energy calculation of a gas mixture, a fourth-order polynomial on 

temperature ( )iT  is used in (3.8), where kx  is the fraction of the k-th component in the gas 

mixture consisting of  2H , 4CH , CO , 2CO , 2H O , 2N , and 2O  in order; kA , kB , kC , 

and kD  are the polynomial coefficients acquired by the integration of the specific heat 

capacity [8] of the k-th component in the mixture; and ( )iN  is the total mole flow rate of 

the gas mixture. Since the composition fractions can be obtained from simulation, the 

actual and simulated energy flow rates of the electrodes can be calculated from the 

experimental and simulation temperatures, respectively. 

Solution of the least squares problem 

According to the least squares approach, when the objective function is 

minimized, all partial derivatives of eF  to the parameters will be zeros, and the following 

conditions will be satisfied: 

 
T

e e e e e
a c

mass trans loss loss

dF F F F F
d K K K K

⎡ ⎤∂ ∂ ∂ ∂
= =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

0
K

 (3.9) 

where 

 
Ta c

mass trans loss lossK K K K⎡ ⎤= ⎣ ⎦K  (3.10) 
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By substituting eF  in (3.9) with (3.1) to (3.6), and simplifying the expressions 

into matrix form, the following equation can be concluded [22]: 

 T TF FK = F Y  (3.11) 

where 

 2 2

2 2
2 4

a c a amb

a c c amb
N×

−∆ −∆⎡ ⎤
= ⎢ ⎥− ∆ −∆⎣ ⎦

R T T 0
F

R T 0 T
 (3.12) 

 

2 1

a a
exp org
c c
exp org

N×

⎡ ⎤−
= ⎢ ⎥−⎢ ⎥⎣ ⎦

E E
Y

E E
 (3.13) 

Here, each element in F  and Y  is a 1N ×  vector containing N sample points of the 

corresponding experimental and/or simulation data, which are already known. The 

elements in the energy difference vector Y  are calculated by [22]. Since the experiment 

and the simulation are conducted from the standby mode to full power mode, it can be 

guaranteed that TF F  is a 4 4×  nonsingular matrix. Therefore, the parameter vector K  

can be solved from (3.11). 

Simulation and augmentation results 

The supplementary internal dynamic model of the fuel-cell stack and the 

estimated parameter K  are applied to the mathematical model. The simulation result on 

the augmented model with the least-squares approach is plotted and compared with the 

experimental data in Figure 3-3. It shows that the energy dynamics of the stack model has 

been augmented by calculating the anode and cathode energy separately. Contrasted with 
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Figure 3-1, the maximum anode temperature error is reduced from 50°C to 20°C; while 

the maximum cathode temperature error is reduced from 30°C to 10°C. 
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Figure 3-3 The augmentation result with a least-squares approach compared with the 
experimental result. 

However, since the temperature is non-linear to energy or enthalpy, minimizing 

energy errors does not minimize temperature errors accordingly. Meanwhile, chemical 

balances of methane reforming and water/gas shifting [8] exist in the anode reactions, and 

are highly coupled with energy dynamics. The modifications to energy will affect the 

anode temperature, and consequently change the equilibrium point of the chemical 

reactions. Additional heat will be released or absorbed by these extra reactions, and 

finally fed back to the energy dynamic balances. As a result, the simulated temperature 

for the anode does not minimize, although reduces, the error as designed by using the 

least squares approach. Noticeable errors still exist between the simulation result and the 



 

 38

experimental data for the anode. Thus, the parameter vector K  has to be further 

improved by minimizing the temperature errors directly. 

3.1.3 A gradient descent approach 

Although the parameter vector K  is linear to energy flow rates, it is non-linear to 

the output temperatures, which are actually used to evaluate the accuracy of the 

mathematical model. To minimize the simulation errors on the output temperatures, a 

non-linear iterative optimization approach: the gradient descent method is applied.  

The objective function 

The objective function is defined below on temperature errors, where a
expT , c

expT , 

a
simT , and c

simT  represent the electrode temperatures obtained by experiment and simulation, 

respectively, and the superscript ( )i  indicates the i-th data: 

 ( ) ( )( ) ( )( )2 2( ) ( ) ( ) ( )

1

N
a i a i c i c i

e k exp sim k exp sim k
i

F T T T T
=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑K K K  (3.14) 

where a
simT  and c

simT  are the temperature given by the mathematical model using the 

parameter vector kK  in simulation. Thus, the scalar eF  is a function of the variable 

vector kK . The subscript k indicates that the parameter vector is at the k-th iteration of 

the gradient descent algorithm, which is applied for searching the optimal K  to minimize 

the objective function. 
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The gradient descent method 

The gradient descent method is one of the most fundamental minimization 

methods for nonlinear optimization. It uses the negative gradient as its descent direction 

and finds the optimal step length to achieve the steepest descent. The algorithms are 

described as follows [23]: 

Step 1: Set initial conditions for 0K  and 0k = . 

Step 2: Calculate the gradient of ( )e kF K , 

 ( ) ( )e
k e k k

FF ∂
= ∇ =

∂
g K K

K
 (3.15) 

Step 3: If k ε≤g , then stop, otherwise set k k= −d g . 

Step 4: Find scalar kα  such that 

 ( ) ( )
0

mine k k k e k kF F
α

α α
>

+ = +K d K d  (3.16) 

Step 5: Set 1k k i kα+ = +K K d , 1k k= + , and go to Step 2. 

In Step 2, the cost function eF  does not have an explicit expression on the 

parameter vector. Hence the gradient should be calculated by the following numerical 

differential method:  

 ( ) ( ) ( )
( )

e k i e ke
ki

F FF
K

δ
δ

+ −∂
=

∂
K u K

K  (3.17) 

where ( )iK  is the i-th element of the parameter vector; iu  is the i-th unit vector; and δ  is 

a small positive scalar. Thus, the partial differentials on each parameter will compose the 

gradient vector of the objective function eF  at the position kK .  
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In Step 3, ε  is a positive scalar that defines the stop condition for the searching 

iterations. If the norm of the gradient vector is smaller than ε , it suggests that the surface 

of the objective function is flat at the point kK  and a minimum value has been reached. 

Otherwise, the negative gradient will be chosen as the descent direction kd .  

The optimal step length 

After the descent direction is determined, the minimum value of the objective 

function on this direction should be found. This task is accomplished in Step 4 of the 

gradient descent algorithm, where kK  and kd  are fixed, and the cost eF  becomes a 

function of the scalar α , which is the descent step length. To find the optimal kα  to 

satisfy (3.16), the Golden Section Line Search Method [23] is used. The procedures are 

described below: 

Step 1: Define a searching interval [ , ]j ja b  and set 0j = , 0 0a = , 0 0b β= > . 

Define a scalar function on α : 

 ( )( ) e k kFφ α α= +K d  (3.18) 

Step 2: If the interval length j jb a ε− < , then stop, and take ( ) 2k j ja bα = + . 

Otherwise go to Step 3. 

Step 3: At the iteration j , take two observations jλ  and jµ  in the searching 

interval [ , ]j ja b , such that 

 0.382( )j j j ja b aλ = + −  (3.19) 
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 0.618( )j j j ja b aµ = + −  (3.20) 

Step 4: Evaluate ( )jφ λ  and ( )jφ µ . 

 If ( ) ( )j jφ λ φ µ≤ , set 1j ja a+ = , 1j jb µ+ = , 1i iµ λ+ = ; 

 If ( ) ( )j jφ λ φ µ> , set 1j ja λ+ = , 1j jb b+ = , 1i iλ µ+ = . 

 Set 1j j= + , and go to Step 2. 

Since the parameter vector kK  and the descent direction kd  are both determined, 

for convenience in the expression, the objective function on the scalar α  is represented 

as ( )φ α  in (3.18). The parameters ja  and jb , with the initial conditions 0 and a constant 

β , define the searching interval for α  in the j-th iteration. In each iteration, two 

observations jλ  and jµ  will be taken at the golden section points of the interval [ , ]j ja b , 

and the interval will be shrunk by the ratio of 0.618 according to the conditions defined in 

Step 4. If the width of the interval is smaller than ε , then the optimal step length can be 

selected as the mean value of ja  and jb , otherwise the iteration will continue.  

Initial conditions and convergences 

To guarantee the stability and convergence of the gradient descent iterations, the 

initial position of 0K  should be selected close to the optimal solution K̂ . Nevertheless, 

the parameter vector K  obtained in Section 3.1.2 by the least squares approach is a 

quasi-optimal solution that can be applied as an ideal candidate for 0K . Meanwhile, the 

algorithms require that the objective function ( )e kF K  has to be continuously 
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differentiable near kK , which is satisfied naturally since the dynamic equations are 

established based on a physical system.  

There are no standard rules in choosing the initial value of β  for the line search 

method. However, if β  is too large, it will need more iterations in line search to find the 

optimal kα ; on the other hand, if β  is too small, the optimal kα  may not be included in 

the searching interval, so that more iterations are required for the gradient descent method. 

Finally, the convergences of the gradient descent method and the golden section line 

search method have been proved in [23].  

Simulation and augmentation results 

By executing the algorithms presented above, the parameters are further improved. 

The objective function defined on temperature errors is minimized. The simulation result 

with the improved parameters in Figure 3-4 shows that the error of the anode temperature 

between the experimental data and simulation result is reduced considerably. In most of 

the simulation time, the errors are bounded in 5°C; while in the low power load, the 

errors are also limited under 15°C. Therefore, it can be concluded that the fuel-cell stack 

model has been augmented by developing an internal energy dynamic model and 

identifying model parameters with the lease squares approach and the gradient descent 

approach. 
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Figure 3-4 The augmentation result with a gradient descent approach compared with the 
experimental result. 

3.2 A Numerical Augmentation Approach 

Due to the assumptions of the mathematical model and the uncertainties of the 

DFC/T plant, the residuals still exist between the experimental data and the analytically 

augmented simulation result in Section 3.1. However, removing these assumptions may 

greatly increase the complexity of the fundamental model, and modeling uncertainties 

analytically is highly difficult. Thus, a numerical approach is applied to compensate these 

residuals and to further improve the dynamic model of the DFC/T plant. 

As an advanced computational strategy, Artificial Neural Network (ANN) has 

shown its potential in nonlinear system modeling and controls [24]. With an ANN, a 

numerical model can be built based on only the input and output data of the actual system. 
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Because of these advantages, ANN is employed as an augmentation approach in this 

dissertation to enhance the accuracy of the plant model. 

3.2.1 The augmentation algorithm 

In the proposed model augmentation approach, ANN is used to estimate the 

residuals between the analytical model and the actual plant instead of modeling the entire 

dynamics of the power plant, which requires more complicated network structures and 

higher computational complexities. To minimize the size of the ANN, the whole plant is 

divided into 10 subunits, which is listed in Figure 2-4, besides the fuel-cell stack and the 

gas turbine. The augmentation algorithm with ANN in Figure 3-5 is implemented for 

each subunit, where y is the outputs of a particular subunit of the actual plant, and ŷ  is 

the corresponding outputs of the analytical model, which is simulated under the same 

inputs as the experiment. 

   

Figure 3-5 The structure of the neural network augmenter. 

In the training mode, the residuals e between y and ŷ  are calculated and used to 

train the ANN. The neural network augmenter learns the error patterns regarding the 
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inputs of the subunit and the outputs of the mathematical model. In the running mode, the 

neural network augmenter will estimate the error e  based on the inputs and the 

simulation results, and compensates ŷ  to reduce the residuals. 

The relationship presented in Figure 3-5 can be concluded by the equations below. 

During the training process, the output of the augmenter e  approaches to the simulation 

error e, as in (3.21). Meanwhile, in the running mode, the augmenter estimates the model 

error e  of the mathematical model and compensates the nominal output ŷ  to 

approximate the actual output y  of the DFC/T plant. 

 ˆtraininge e y y⎯⎯⎯→ = −  (3.21) 

 ˆ ˆ ˆestimatingy y e y y y y= + ⎯⎯⎯⎯→ + − =  (3.22) 

3.2.2 Type of the ANN 

The feedforward network with two layers (i.e., one hidden layer and one output 

layer) is applied in the neural network augmenters. Tangent sigmoid functions are used 

for activation functions in the hidden layer, and linear activation functions are used for 

the output layer. The number of hidden neurons is selected slightly higher than twice of 

the number of inputs to keep complexity low and ensure accuracy.  

Since most dynamics of the system have been modeled analytically by the 

mathematical model, this simple structure not only is adequate for the residual estimating, 

but also benefits the neural network augmenters. First, the feedforward structure with a 

reasonable size of hidden layers has a small number of parameters to be adjusted. Thus, 
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the training process can be kept in low computational complexity, and is applicable for 

online updating algorithms. Second, based on this simple neural network structure, the 

augmenters can only learn the major patterns of the model error and have low 

sensitivities to measurement noises. Therefore, the feedforward neural network is one of 

the best candidates for the model augmenters. 

3.2.3 Training for neural networks 

As described in Section 3.2.1, the neural networks are trained with the residuals 

between the experiment data and the simulation results. Thus, the capability of the 

training data set is limited by the availability of the experimental data. Forty-two days of 

the operational data on the DFC/T plant is provided, covering operational conditions 

from standby mode to full power mode. 70% of the data is used for training, while 30% is 

used to validate the performance of the ANNs. 

The back-propagation method, which is highly efficient for feedforward networks 

and one of the most fundamental ANN training algorithms, is applied to the training 

process of the neural networks. Hence, the augmenter trained by this method can achieve 

high convergence rate with low computational complexity, and is capable for online 

updating, where high computational efficiency is required. 

3.2.4 Simulation and augmentation results 

To compare the performance of the numerical approach with the analytical 

approach and the original model, the simulation result is provided in Figure 3-6, where 
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the simulation data is too close to the experimental data to be clearly distinguished. Thus, 

the residuals between the simulation and the experiment are presented in Figure 3-7. It 

can be observed that the error of the augmented anode temperature is bounded in 1°C , 

while the error of the cathode temperature is reduced to 2°C with some brief instance of 

3°C to 4°C.  
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Figure 3-6 The augmentation result with a neural network approach compared with the 
experimental result. 

Distinct from the previous figures of simulation errors, no evident patterns can be 

observed in Figure 3-7. The characteristic of the residuals is a zero-mean white noise, 

which implies that the error patterns of the mathematical model have been learned and 

compensated by the neural network augmenters. As a result, the accuracy of the DFC/T 

stack model is considerably improved by the numerical augmentation approach. 
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Figure 3-7 Stack temperature errors between the experimental data and augmentation result 
with artificial neural networks. 

3.3 Augmentation Results on Other Subunits 

To demonstrate the performance of the models enhanced by the various 

approaches introduced in Sections 3.1 and 3.2, the residuals of the augmented results for 

each subunit are calculated by 

 
( )

 ( )
k (k)

sim i exp ik
i (k)

exp i

y y
res

y
−

=  (3.23) 

 (1) (2) ( )

1 1 1 2
100%M

N N N
E MN

× × ×
⎡ ⎤= ×⎣ ⎦res res res  (3.24) 

and compared with the original model in Table 3-1. 
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Equation (3.23) shows the i-th sampled relative error of the k-th output for a 

specific subunit, and ( )
 

k
sim iy  and (k)

exp iy  are the corresponding sample values of the 

simulation and experimental outputs. Kilo-Watt [kW] is used for the output power, and 

Kelvin [K] is used as the unit for the output temperatures, as the absolute temperature are 

actually used in the model simulations. A 2-norm is applied in (3.24) to evaluate the 

overall accuracy of the output vectors, where M residual vectors ( )kres  with N elements 

each are combined to a long vector, M is the number of the outputs of a specific subunit, 

and N is the length of the sample data. The 2-norm is finally unified by the square root of 

M times N, which is the total number of the sample points. Thus, the relative errors listed 

in Table 3-1 are comparable to each other since they are in the same unified unit. 

Table 3-1 Relative errors of the original and augmented model.  

Subunits Original 
Model [%] 

Analytical 
Approach [%] 

ANN 
Approach [%] 

Stack 3.683  0.633  0.176  
Turbine 12.929  4.809  0.891  

HH 1.767  0.648  0.240  
LTR 4.331  2.061  0.310  
FP 1.318  0.906  0.078  
PC 1.808  0.598  0.352  
SP 1.280  0.302  0.064  

SSH 8.371  3.995  0.676  
HTR 2.956  0.461  0.111  
AGO 2.728  1.603  0.707  

 

Both the analytical augmentation approach and the numerical approach are 

applied to the 10 subunits of the DFC/T model. The unified residuals for the original 

fundamental model, the analytical augmentation approach, and the ANN augmentation 

approach are computed by (3.24) and listed in Table 3-1 in percentage. From comparison, 
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it can be observed that the errors of all subunits are decreased to less than 5% by the 

analytical approach, and further reduced to less than 1% by the ANN approach. Therefore, 

both the analytical approach and the numerical approach can effectively improve the 

accuracy of the mathematical model and are valid for all subunits. 

3.4 The Model of Pressure Dynamics 

The mathematical model of the DFC/T power plant was built with an assumption 

that the plant is operating with static pressures. The inlet and outlet pressures of all 

subunits are set to be constant to reduce the complexity of the model. However, gas 

pressure is one essential operational state of the dynamic system, and needs to be 

investigated with a mathematical model. In this section, a pressure model of the power 

plant is developed as a complement for the original mathematical plant model. 

3.4.1 Pressure loss in pipelines 

Due to the frictions and vortexes, the gas loses energy while traveling through a 

pipe. The energy loss is represented as pressure loss, which can be derived from fluid 

dynamic equations [25]: 

 
2

22loss
R Mn TP
A p

ξ=  (3.25) 

where 

ξ  pressure loss coefficient; 
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R  universal gas constant; 

A  cross section of the pipeline; 

M  mole weight of the mixed gas; 

n  mole flow rate of the gas; 

T  gas temperature; 

p  average pressure of the gas through the pipe. 

The coefficient ξ  depends on the viscosity of the fluid, the length and roughness of the 

pipeline. For most instance, A , M , T , and p  are nearly constant, and the pressure loss 

is mainly determined by the square of the mole flow rate n . 

Furthermore, for a certain pipeline or subunit, the pressure is calculated backward: 

the inlet pressure is determined by the outlet pressure and the pressure loss, which is 

opposite to the calculations for temperatures and component flow rates: 

 in out lossP P P= +  (3.26) 

3.4.2 Pressure control scheme 

The DFC/T power plant has two major pressure controllers: anode back pressure 

controller and stack differential pressure controller [11], as shown in Figure 3-8. The first 

controller (PC1) regulates the anode pressure according to a constant setpoint of 1.1 bar 

(16 PSI) through a controllable valve. The second controller (PC2) maintains the 

differential pressure between the electrodes to 48 10−×  bar (0.012 PSI) with an electric 

blower, which boosts the cathode pressure to enhance mass transfer in the electrolyte. 

These two controllers compose the pressure control scheme of the direct fuel cell. 
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Figure 3-8 Pressure control scheme of the DFC/T power plant. 

Anode back pressure control 

The model of the anode back pressure control valve is shown in Figure 3-9, and 

represented by the following differential equations: 

 

   

Figure 3-9 Simplified model of anode back pressure control valve. 

 out in
out

P PN u−
= ×

Ω
 (3.27) 

 in outn N N= −  (3.28) 

 in
nRTP
V

=  (3.29) 
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where inN  and outN  are inlet and outlet flow rates; u  is the control input limited from 0 

to 1; V  is the equivalent volume of the subunits prior to the pressure control valve; n  is 

the mole number of the gas stored in the equivalent volume. Ω  is the gas flow resistance: 

 22
R MT
A p

ξΩ =  (3.30) 

Moreover, by combining (3.25)-(3.27) and (3.30), it can be concluded that: 

 0outN N u= ×  (3.31) 

where 0N  is the gas flow rate without any control constrains (i.e., u=1). Actually, the 

input u  controls the opening ratio of the valve, modifying the equivalent gas flow 

resistance of the valve, changing the gas flow rate, and consequently controls the anode 

back pressure. 

Stack differential pressure control 

The stack differential pressure control is realized by an electric blower driven by a 

variable frequency drive (VFD). The simplified model is shown in Figure 3-10. The only 

difference between the blower and the pressure control valve is that the gas outlet flow 

rate is directly determined by the control input u . The pressure model can be obtained by 

replacing (3.27) with: 

 outN u=  (3.32) 

It should be noticed that the actual model of an electric blower is an air compressor 

driven by an induction motor and a VFD, of which the gas flow rate is determined by the 
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rotational speed of the shaft. However, to reduce the complexity of the pressure model, 

the gas flow rate is assumed to be directly controlled. The compressor speed can be 

obtained from an nonlinear map of the gas flow rate and I/O pressures. 

   

Figure 3-10 Simplified model of the blower for stack differential pressure control. 

3.4.3 Pressure dynamics of the compressor-turbine system 

In the original mathematical model of the hybrid power plant, the operating 

pressure of the air compressor and turbine are given by constants. However, pressure 

interactions and dynamics exist between the compressor and turbine. A simplified 

pressure model is shown in Figure 3-11, where _ ( _ )C in T outP  is the compressor inlet (turbine 

outlet) pressure; _ ( _ )C in T outN  is the compressor inlet (turbine outlet) air flow rate. opP  is 

the pressure of the air stored in the equivalent volume V  and is called the operating 

pressure, which is both the compressor outlet pressure and the turbine inlet pressure. Here, 

_C inP  equals the ambient air pressure, which can be considered as a constant, and _T outP  is 

determined by the DFC pressure control scheme, which can be also assumed as a 

constant. Thus, opP  is the only pressure need to be investigated. 
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Figure 3-11 Simplified pressure model of the air compressor and air turbine. 

The pressure dynamics of the stored air in the equivalent volume can be model as: 

 _ _C in T outn N N= −  (3.33) 

 op
nRTP
V

=  (3.34) 

The mole changing rate of the stored air is determined by the difference between the inlet 

and outlet air flow rates, and the operating pressure is in proportion to the mole number 

of the stored air when the temperature is constant or changing slowly.  

Meanwhile, based on the compressor and turbine model in Section 2.5.4, the air 

flow rates of the compressor and turbine can be obtained from their inlet and outlet 

pressures, temperatures, and the rotational speed. Hence, by changing the operating 

pressure and the rotational speed under a constant temperature, two series of operating 

curves are obtained in Figure 3-12. The intersections of the compressor curves and the 

turbine curves are all located at the pressure of 3.7 bar, indicating that the compressor-

turbine system will be operating at a constant pressure under the ideal conditions. With a 

low pressure, the inlet flow rate will be higher than the outlet flow rate, and the pressure 

will be built up according to (3.33) and  (3.34). On the other hand, if the operating 
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pressure is higher than the steady pressure, the inlet flow rate will be lower than the outlet 

flow rate, and then the excessive air will be released to relief the operating pressure. 

Furthermore, under a constant operating temperature, changing the rotational 

speed can only modify the air flow rate and will not affect the operating pressure. But 

actually, changing the speed will affect the operating temperature, and subsequently 

modifies the operating pressure in a certain range. 
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Figure 3-12 The operating curves of the compressor-turbine system. 

The simulation results of the pressure control scheme and the pressure dynamics 

of the compressor-turbine system is shown in Figure 3-13. The plant operating status 

covers from the standby mode to the full power load, and the turbine rotational speed 

varies from 82 kRPM to 94 kRPM. The anode back pressure and the stack differential 

pressure are regulated according to constant setpoints with minor disturbances. The 

compressor inlet flow rate changes in proportion to the turbine rotational speed, and the 
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turbine operating pressure varies slightly around 3.7 bar. Hence, the pressure dynamic 

models are validated by the simulation results. 
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Figure 3-13 Simulation results of the pressure dynamic model. 
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Chapter 4 
 

Modern Heuristic Optimization Techniques 

Before developing the optimization framework for the DFC/T power plant, the  

optimization techniques should be firstly investigated. Because of the complexity of the 

hybrid power plant, the two classical optimization methods, i.e., the least square approach 

and the gradient descent approach, used in Section 3.1 are no longer capable for the plant 

wide optimization problem. Thus, the modern heuristic optimizations, which are efficient 

for large scale nonlinear optimization problems, have to be studied.  

Among a variety of heuristic optimization methods, Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO) are two fundamental algorithms that have been 

proven to be effective and are widely applied in the area of power and control 

systems[26]. GA and PSO, as well as multiple-objective optimization and other 

techniques will be reviewed in this chapter. 

4.1 Genetic Algorithms 

Genetic algorithm is a search algorithm based on the conjecture of natural 

selection and genetics. It operates on a population of individuals. Each individual is a 

potential solution to the given problem and is typically encoded a s a fixed-length binary 

string, which is an analogy with an actual chromosome. After an initial population is 

randomly or heuristically generated, the algorithm evolves the population through 
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sequential and iterative application of three operators: selection, crossover, and mutation. 

The execution of  a GA iteration is basically a two-stage process. It starts with the current 

population. Selection is applied to create an intermediate population. Then, crossover and 

mutation are applied to the intermediate population to create the next generation of 

potential solutions [26]. The basic GA algorithm can be concluded as follows: 

Step 1 - Initialization: Randomly generate an initial population of N chromosomes  

as ix ∈S , i=1,2,...N, and S  is the solution space of the optimization problem. 

Step 2 - Fitness: Evaluate the fitness f(xi) of each chromosome xi in the population. 

Step 3 - New population: Create a new population by repeating following steps 

until the new population is complete: 

 Selection: Select two parent chromosomes from a population according to 

their fitness. Usually, the better fitness, the bigger chance to be selected. 

 Crossover: With a crossover probability cross over the parents to form a 

new offspring (children). If no crossover was performed, offspring is an 

exact copy of parents. 

 Mutation: With a mutation probability mutate new offspring at each 

position in chromosome. 

 Accepting: Place new offspring in a new population. 

Step 4 - Replace: Use new generated population as the current population. 

Step 5 - Stop: If the stop condition is satisfied, then stop and return the best 

solution in the population as the optimal solution for the problem. 

Step 6 - Loop: Go to Step 2. 
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4.1.1 Encoding 

In order to apply a GA to a given problem, the fist decision is the kind of 

genotype that the problem needs. That means how the parameters of the problem will be 

mapped into a finite string of symbols, known as genes, which encode a possible solution 

in the solution space. The issue of selecting an appropriate representation is crucial for 

the search. A binary alphabet, whose length is constant during the evolutionary process, 

is commonly used. In binary encoding, every chromosome is a string of bits, 0 or 1. All 

the parameters decode to the same range of values and are allocated the same number of 

bits for the genes in the string. [26] 

4.1.2 Fitness function 

Each string will be evaluated and assigned a fitness value after the creation of an 

initial population. The fitness function used by GA is distinct from the objective function. 

The objective function provides a measure of performance with respect to a particular set 

of gene values, independently of any other string. The fitness function transforms that 

measure of performance into an allocation of reproductive opportunities. The fitness of a 

string is defined with respect to other members of the current population. After decoding 

the chromosomes, each string is assigned a fitness value. 

The fitness function is a black box for the GA. Internally, this may be achieved by 

a mathematical function, a simulator program, or a human expert that decides the quality 

of a string. At the beginning of the iterative search, the fitness function values for the 

population members are usually randomly distributed and widespread over the problem 



 

 61

domain. As the chromosome evolves, particular values for each gene begin to dominate, 

and the search will gradually converge to particular chromosomes. [26] 

4.1.3 Basic operators 

Selection 

After a population is created and the fitness functions are evaluated, chromosomes 

should be selected from the current population as parents to generate new offspring for 

the next population. According to Darwin’s evolution theory, high-fitness individuals 

have a better chance of reproducing, whereas low-fitness ones are more likely to 

disappear. The convergence rate of a GA is determined primarily by the magnitude of the 

selection pressure, which is the degree that the best individuals are favored [27]. Higher 

selection pressures imply higher convergence rates. If the selection pressure is too low, 

the convergence rate will be slow, and the GA will unnecessarily take longer to find a 

high-quality solution. If the selection pressure is too high, it is very probable that the GA 

will converge prematurely to a bad solution. A number of selection methods are 

concluded and investigated in [26, 28, 29], and will not be recited here. 

Crossover 

Crossover is a basic genetic operator that used to create new chromosomes from 

one generation to the next. It is analogous to reproduction and biological crossover. The 

type and implementation of crossover depends on the encoding method and the nature of 

the problem. For binary encoding, three crossover methods, i.e., single point crossover, 
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two-point crossover, and uniform crossover, are commonly applied. In single point 

crossover, only one crossover point is selected. The binary string from the beginning of 

the chromosome to the crossover point is copied from one parent, and the rest is copied 

from the second parent. In two-point crossover, two crossover point are selected on both 

parents. The binary string from the beginning of the chromosome to the first crossover 

point is copied from one parent; the part between the two crossover points are copied 

from the second parent, and the rest is copied from the first parent. Uniform crossover is 

another recombination mechanism. Offspring is created by randomly picking each bit 

from either of the two parent strings. This means that each bit is inherited independently 

from any other bit [26, 30]. 

Mutation 

Mutation is another basic genetic operator used to maintain genetic diversity from 

one generation to the next. It is analogous to biological mutation. In the case of binary 

encoding, mutation is carried out by flipping bits at random, with some small probability. 

For real-valued encoding, the mutation operator can be implemented by random 

replacement. Another possibility is to add/subtract a random amount [26]. The purpose of 

mutation is to allow the algorithm to avoid local minimum by preventing the population 

of chromosomes from becoming too similar to each other, thus slowing or even stopping 

evolution. This reasoning also explains the fact that most GAs usually take a random 

selection with a weighting. 
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4.2 Particle Swarm Optimization 

PSO is another fundamental heuristic optimization technique firstly introduced by 

Kennedy and Eberhart in 1995 [31]. During recent decades, extensive investigations has 

been done to improve the performance of the PSO algorithm [32-34], and to expend it to 

solve multi-objective problems [35, 36]. The PSO-based algorithms were applied in 

many areas that need evolutionary computations, and are proven to be effective tools in 

solving large-scale nonlinear optimization problems in power systems engineering [37-

39]. In this section, the formulation of the optimization problem is presented, and several 

PSO-based optimization algorithms are discussed. 

4.2.1 The basic PSO algorithm 

The PSO was originally developed through the simulation of bird flocks in a two-

dimensional space, and then extended to a hyperspace. Each bird (called particle) is 

trying to find the best position that minimize a certain scalar objective function. The 

position of a particle is represented by a point in the hyperspace, and the velocity of the 

particle is similarly defined. These particles fly through hyperspace and have two 

essential reasoning capabilities: their memory of their own best position and knowledge 

of the global best. In a minimization problem, "best" simply means the position with the 

smallest objective value. The particles adjust their own positions and velocities based on 

these memories to find the best position. This is an analogy of the personal experience of 

a particle. A particle knows the situation and history of itself and how other particles have 
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performed. Each particle tries to modify its position using the concept of velocity to 

minimize the objective function and find the best position. 

Assume there are N particles in an m-dimensional hyperspace, and an objective 

function defined on the space as : mf →R R .  Each of the particles is associated with a 

position k
ix  and a velocity k

iv : 

 ( ),1 ,2 ,, ,k k k k m
i i i i mx x x= ∈x R  (4.1) 

 ( ),1 ,2 ,, ,k k k k m
i i i i mv v v= ∈v R  (4.2) 

where i=1,…,N, k is the iteration number. 

The new position of each particle for the next iteration is calculated according to 

the concept of velocity, where the new position is obtained by adding the current velocity 

to the current position. 

 1k k k
i i i
+ = +x x v  (4.3) 

The velocities for the next iteration can be updated as: 

 ( ) ( )1 * *
1 1 2 2

k k k k k k k k
i i i i iw c c+ = + − + −v v r x x r x x  (4.4) 

where w is a weighting factor, an analogy of the inertia of a particle, keeping the particle 

flying at its original velocity; c1 and c2 are two weighting factors that determine the 

updating speed for velocities; and 1
kr  and 2

kr  are two m-dimensional random vectors 

following uniform distribution, and introduce random factors to the search algorithm. The 

operator " " indicates element-by-element product, and *kx  and *k
ix  are the global best 
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and the local best, respectively. The global best is the best position achieved by any 

particles so far at the k-th iteration. The local best is the best position achieved only by 

the i-th particle so far at the k-th iteration. They are defined as:  

 ( ) ( )* *

1,2,
: mink k j

i i ij k
f f

=
=x x x  (4.5) 

 ( ) ( )* * *

1, ,
: mink k k

ii N
f f

=
=x x x  (4.6) 

The basic AGO algorithm can be summarized in the following steps: 

Step 1: Initialize 1
ix  and 1

iv  for all i. Usually take 1
, ,  i j j jx U a b⎡ ⎤∈ ⎣ ⎦ , where aj and 

bj are the lower and upper limits of the search space/operating window 

of each dimension. 

Step 2: Let the local best * 1k
i i=x x , and the global best * 1

1, ,
aug min ( )k

ii N
f

=
=x x . 

Step 3: For each particle, do 

 Create random vectors 1
kr  and 2

kr , by taking 1, 2,, [0,1]j jr r U∈ . 

 Update the particle velocities according to (4.4). 

 Update the particle positions according to (4.3). 

 Update the local best: If 1 *( ) ( )k k
i if f+ <x x , * 1 1k k

i i
+ +=x x ; otherwise 

* 1 *k k
i i
+ =x x . 

 Update the global best: If 1 *( ) ( )k k
if f+ <x x , * 1 1k k

i
+ +=x x . 

Step 4: If converged, stop iteration, and *kx  is the optimal solution of the problem. 

Otherwise, k=k+1, go to step 3. 
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4.2.2 The modified PSO algorithm 

Hybrid PSO (HPSO) 

The HPSO [32] utilizes the basic mechanism of the PSO and the natural selection 

mechanism. Since the search procedure by the PSO depends strongly on the global best 

and the local best, the search area would be limited by them. On the other hand, by 

introducing a natural selection mechanism, the effects of the global best and local best are 

weakened and the search area will be broader. Particle positions with poor performance 

are replaced by those with better performance in the selected particles. The information 

of local best of each particle is still maintained. Therefore, both intensive searches in an 

effective area and the dependence on the past high performance positions are realized at 

the same time. 

Evolutionary self-adapting PSO (EPSO) 

The major differences between EPSO [33] and the basic PSO are a selection 

procedure and self-adapting properties for its parameters. Instead of moving the particles 

to find an optimal solution in the solution space, EPSO reproduces the particles with the 

movement rule and the mutation rule of Evolutionary Strategy (ES). Then, the best 

particles are selected stochastically through the evaluation. The general scheme of EPSO 

is replication, mutation, and reproduction with movement rule, evaluation, and selection. 

Furthermore, EPSO can also be classified as a self-adaptive algorithm, because it relies 

on the mutation and selection of strategic parameters. However, EPSO has a drawback of 

requiring 2 evaluations per particle per iteration. 
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Constriction factor approach (CFA) 

The CFA [34] applies the velocity of the constriction factor approach in the basic 

PSO as follows: 

 ( ) ( )1 * *
1 1 2 2

k k k k k k k k
i i i i iK w c c+ ⎡ ⎤= + − + −⎣ ⎦v v r x x r x x  (4.7) 

 
2

2

2 4
K

ϕ ϕ ϕ
=

− − −
, where 1 2c cϕ = + , 4ϕ >  (4.8) 

The factor K is smaller than 1, and constrict the velocities of particles. The constriction 

factor considers the dynamic behavior of each particle and the effect of the interaction 

among particles. The CFA ensures the convergence of the search procedure. Thus, it can 

generate higher quality solutions than the conventional PSO approach. 

4.3 Multiple-Objective Optimization Algorithms 

The previous algorithms all focus on the single-objective optimization problem, in 

which the objective function is a scalar : mf →R R . However, most engineering 

problems have more than one criteria need to be optimized and considered coordinatively. 

The multiple-objective functions can be represented as a vector function : m nf →R R , 

where n is the number of criteria/objective functions. To conduct the these problems, 

different multiple-objective (MO) optimization algorithms were developed [35, 36, 40-

46]. Compared with single-objective (SO) problems, which have a unique solution, the 

solution to MO problems consists of sets of trade-offs between objectives. 
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4.3.1 The weighted aggregation approach 

The weighted aggregation is the most common approach, where all objectives are 

converted into a SO function. The objectives are summed to a weighted combination: 

 
1

( )
n

i i
i

F w F
=

=∑ X  (4.9) 

where wi, i=1,2,…,n, are non-negative weights. Usually, the sum of the weights equals 1. 

These weights can be either fixed or dynamically adapted during the optimization. 

If the weights are fixed, then it is called Conventional Weighted Aggregation 

(CWA). Using this approach, all optimization algorithms for SO problems can be used, 

and only one optimal solution will be obtained each time. Extra knowledge is required to 

choose the appropriate weights. If a number of candidate solutions are desired, the search 

has to be repeated several times, which is time consuming and computationally expensive. 

If the weights are changing continuously during the optimization, it is called 

Dynamic Weighted Aggregation (DWA). The slow change of the weights forces the 

optimizer to keep looking for new optimal candidates. The collection of the global bests 

during the optimization process provides a set of optimal candidates for the MO problem. 

The performance of DWA for 2-dimensional cases was verified in [36, 42], but the 

weight functions are hard to design for the problems with higher dimensions. 

4.3.2 The Pareto dominance approach 

An alternative to the weighted aggregation approach is a MO algorithm using the 

concept of Pareto dominance, by which the term "better" is redefined. With a scalar 
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objective : mf →R R , A is better than B simply means f (A) < f (B). In contrast, under a 

MO function : m nf →R R , A is better than B, or A dominates B, if each element of f (A) 

is no greater than the corresponding element of f (B), and at least one element of f (A) is 

strictly smaller than the element of f (B). This relationship can be formulated as: 

 
1, ,  that ( ) ( ),  and
1, ,  that ( ) ( )

i i

j j

i n f A f B
j n f A f B

∀ = ≤
∃ = <

 (4.10) 

As a two-dimensional example in Figure 4-1, A is better than B, because 

f1(A)<f1(B) and f2(A)<f2(B), and B is called "dominated by A." However, C is 

nondominated by A, since f1(C)<f1(A). Meanwhile, A is nondominated by C, since 

f2(A)<f2(C). Furthermore, there exists a set of particles that are nondominated by any 

presenting particles in the plane. This set of particles is named Pareto Frontier. The goal 

of the MO algorithm is to find a Pareto Frontier for the optimization problem. 

 

  

Figure 4-1 A two-dimensional example of Pareto frontier. 
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Taking MOPSO as an example [35], the global best is replaced by a global 

repository containing the Pareto Frontier, a set of nondominated particles, obtained so far. 

After each flying cycle, the particles neither dominated by the peer particles, nor 

dominated by any particles in the repository will be added to the repository. Any stored 

particles that are dominated by the newly entered particles will be removed from the 

repository. The global repository is used as a guide of the PSO search process [35]. 

The Pareto dominance approach can be summarized as the following steps: 

Step 1: Initialize 1
ix  and 1

iv  for all i=1,…,N.  

Step 2: Evaluate each of the particles, store the positions of all nondominated 

particles in the repository REP. 

Step 3: Initialize the local best: * 1k
i i=x x  

Step 4: For each particle, do 

 Create random vectors 1
kr  and 2

kr , by taking 1, 2,, [0,1]j jr r U∈ . 

 Update the particle velocities according to (4.4). The global best *kx  is 

randomly selected from REP. 

 Update the particle positions according to (4.3). 

 Evaluate each of the particles. 

 Update the local best: If *k
ix  is dominated by 1k

i
+x , * 1 1k k

i i
+ +=x x ; if 1k

i
+x  is 

dominated by *k
ix , * 1 *k k

i i
+ =x x . If 1k

i
+x  and *k

ix  are nondominated by each 

other, choose one of them randomly as the local best. 
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 Update the repository: If 1k
i
+x  is nondominated by any k

jx , j=1,…,N, j i≠ , 

and any x∈REP, add 1k
i
+x  to REP. Then, if any x∈REP is dominated by 

1k
i
+x , remove x from REP. 

Step 5: If maximum iteration number reached, stop algorithm, the particles in 

REP are the candidate solutions for the problem. Otherwise, set k=k+1, 

go to step 4. 

4.4 Other Heuristic Optimization Techniques 

4.4.1 Evolution strategies and evolutionary programming 

Evolution strategies (ES) employ real-coded variables and originally relied on 

mutation as the search operator with a population size of one. Then, it has evolved to 

share many features with the GA. Both of they maintain populations of potential 

solutions and use a selection mechanism for choosing the best individuals from the 

population. The main differences are ES operates directly on floating-point vectors, 

whereas classic GAs operate on binary strings. GAs rely mainly on recombination to 

explore the search space, whereas ES uses mutation as the dominant operator. 

Evolutionary programming (EP) is a stochastic optimization strategy similar to a 

GA that places emphasis on the behavioral linkage between parents and their offspring. 

EP is similar to ES, although the two approaches developed independently. EP is a useful 

method of optimization when other techniques such as gradient descent or direct 

analytical discovery are not possible [26]. 
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4.4.2 Simulated annealing 

The name simulated annealing (SA) originates from the analogy with the physical 

process of solids. The analogy between physical system and simulated annealing is that 

the cost function and the solution in the optimization process correspond with the energy 

function and the state of statistical physics, respectively. In a large combinatorial 

optimization problem, an appropriate perturbation mechanism, cost function, solution 

space, and cooling schedule are required in order to find an optimal solution. 

In the simulated annealing method, each point in the search space is analogous to 

a state of some physical system, and the objective function to be minimized is analogous 

to the internal energy of the system in that state. The goal is to bring the system, from an 

arbitrary initial state, to a state with the minimum possible energy. At each step, the SA 

heuristically considers some neighbors of the current state, and probabilistically decides 

between moving the system to the new state or staying in the current state. The 

probabilities are chosen so that the system ultimately tends to move to states with lower 

energy. Typically this step is repeated until the stop conditions are satisfied. 

 

Because of the implementation simplicity, high performance, and low 

computational complexity, PSO algorithms, including both SOPSO and MOPSO 

methods, are finally selected as the core algorithms for the optimization framework for 

the DFC/T power plant. These PSO algorithms will be implemented and investigated in 

the next chapter. 
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Chapter 5 
 

Online Optimal Reference Governor 

Because of high energy conversion efficiency and long startup time [16], the 

DFC/T power plant is more suitable for a base-load power source, which keeps running 

at full load throughout the year, than for a peak-load source that requires fast responses. 

Thus, even a small improvement in fuel efficiency will provide significant economic 

benefits in the long run. However, the power plant cannot reach high efficiency without a 

proper control system. For example, excessive fuel in the system will generate heat 

instead of electric power, and will consequently decrease the plant efficiency. Therefore, 

optimal control is an essential issue for the proposed intelligent control system. In this 

chapter, an Optimal Reference Governor (ORG) is developed for the DFC/T power plant 

to improve the energy conversion efficiency from the perspective of control systems. 

Extensive optimization research has been conducted for the hybrid power plant by 

researchers and investigators. The optimal off-line trajectory planning algorithm was 

introduced in [14], where Radau collection and large scale nonlinear programming 

solvers were used to solve the optimal control solutions. Since the nonlinear 

programming algorithm is computationally expensive, a Neural Network Supervisor 

(NNS) [15] was developed to estimate the optimal trajectories based on given load 

profiles. Diagonal recurrent neural networks (DRNN) [47] were trained by the dynamic 

back-propagation method and the data obtained from the off-line optimization results in 

[14]. The NNS provides optimal setpoints and feedforward controls with less 



 

 74

computational complexity. However, the computational time needed by the nonlinear 

programming algorithm makes it incapable of real-time applications. The neural network 

supervisor may give invalid results if the operational patterns were not learned during the 

training phase. Thus, a fast approach for online optimization is necessary for the 

intelligent control system of the hybrid power plant. 

5.1 The Structure of the Optimal Reference Governor (ORG) 

The objective of the optimal reference governor (ORG) is to find appropriate 

feedforward controls and setpoints that guarantee the efficient and reliable operations of 

the power plant. Toward this goal, an ORG is developed as in Figure 5-1, where the 

optimized setpoints and feedforward controls, including current density (I2), methane 

flow rate (n_CH4), turbine speed (RPM), power of the second-startup heater (q_SSH), 

LTR control move (u_LTR), and AGO control move (u_AGO), are generated based on a 

given load demand.  

The core of the ORG is a Multi-objective Optimization Module (MOM) that 

generates the optimal setpoints and feedforward controls. The particle swarm 

optimization (PSO) [31, 48], which is a stochastic, population-based heuristic 

optimization algorithm, has been proven to be a powerful tool for solving large scale 

optimization problems in power systems [37-39]. Thus, PSO is utilized as the main 

algorithm for the ORG. The objective functions for the optimization problem include fuel 

efficiency and tracking errors representing how the output power or temperature follows 

the power demand or setpoints. The operating window provides possible operational 
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ranges for the load-dependent setpoints, serving as the solution space or search space for 

the multi-objective optimization algorithm. 

 

Figure 5-1  Block diagram of the optimal reference governor. 

There are three possible phases, i.e., search mode, run mode, and model updating 

mode, during the operations of the ORG. In the search mode, the candidate setpoints 

provided by the MOM will be tested by the online state estimator, which is realized by 

neural networks and estimates the outputs of the power plant under the given setpoints. 

Then, the objective functions will be evaluated based on these estimated outputs, and 

used by the MOM to refine the setpoints. After several search iterations, the ORG will 

switch to the run mode, where the optimized setpoints will be given to the local 

controllers as the references for plant operations. Then, the outputs of the actual plant are 

compared with the estimated outputs of the online state estimator. If significant errors are 

detected in the estimated outputs, the ORG will enter the model updating mode, where 

the online state estimator will be retrained with the newly obtained operating data. After 

the estimator is updated, the searching process will be executed again to ensure the 
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validity of the optimization results. With this structure, the optimal setpoints and 

feedforward controls can be determined for the optimal control of the power plant, and 

the plant estimator can be updated as required. 

5.2 The Online State Estimator 

The MOM needs to work with a plant model that estimates the steady-state 

outputs of the system under given setpoints. The original mathematical model is a 

"series" model, where the system states must change continuously, and only one set of 

setpoints can be tested at a single time. Thus, the mathematical model is not suitable for 

the heuristic population based algorithms, such as particle swarm optimization, which 

requires that the model can process multiple sets of setpoints in "parallel". Therefore, a 

special "parallel" model has to be developed to cooperate with the MOM. 

The online state estimator is realized by artificial neural networks (ANN) as a 

simplified plant model that fulfills the requirements of the MOM and the ORG 

framework. The ANNs are non-linear statistical modeling tools, and have become an 

important role for system modeling and control system design in the area of power 

systems [49, 50]. Because the neural network model depends only on the input and output 

data, not the structure of the system, it is flexible and can easily be adapted to different 

types of power plants and control systems. In this section, neural network models are 

developed and trained for each subsystem of the power plant, and then a neural network 

combined model (NNCM) [49] is obtained as the online state estimator by integrating the 

models of the subsystems. 
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5.2.1 Definition of subsystems and streams 

The DFC/T power plant is a nonlinear multi-input multi-output (MIMO) system, 

which is highly complicated that can hardly be modeled with a single neural network. 

The system inputs consist of 6 series of setpoints and feedforward controls, and the 

outputs include gas components, temperatures, and power of each subunit. To reduce the 

complexity of the state estimator, the whole system is divided into 7 subsystems, for each 

of whom, a neural network model will be built. As marked by the shadowed blocks in 

Figure 5-2, these 7 subsystems are: 

• Humidifying Heat Exchanger (HH) 

• Low Temperature Recuperator (LTR) + Second Startup Heater (SSH) 

• Fuel PreHeater (FP) + Pre-Converter + Super Heater (SP) 

• Fuel Cell Stack (Anode + Cathode) 

• Gas Turbine (Compressor + Turbine) 

• High Temperature Recuperator (HTR) 

• Anode Gas Oxidizer (AGO) 

  

Figure 5-2 Definition of subsystems for the DFC/T power plant. 



 

 78

According to the definitions above, each subsystem has a common input/output 

representation described in Figure 5-3, where the inputs include two inlet streams and one 

control input (optional), and the outputs include two outlet streams and the generated or 

consumed power (optional). The characteristics of the inlet/outlet streams are described 

by the mole flow rates (xN) of each stream component , the stream temperature (T), and 

the stream pressure (P). With this common structure, one NN framework will be 

applicable to all the 7 subsystems, so that the complexity of the state estimator can be 

reduced. Meanwhile, the subunits connected in a row (e.g., FP, Pre-Conv, and SH), are 

combined into one subsystem to reduce the number of the neural networks. 

  

Figure 5-3 Common input/output representation of each subsystem. 

To clarify the input/output relationships between the subsystems, the system 

streams are identified by the numbers in brackets in Figure 5-4. The dotted arrows 

without numbers indicate internal streams that are modeled within specific subsystems 

and are not considered as independent system streams. These assigned numbers are used 

to recall the system streams in the neural network models and the state estimator. The 

output of the state estimator can be arbitrarily selected from these streams. These 16 

system streams are: 

 
A 
 

Typical 
 

Subsystem

Inlet stream 1: 
xN, T, P 

Control input 
(optional) 

Outlet stream 1: 
xN, T, P 

Power 
(optional) 

Inlet stream 2: 
xN, T, P 

Outlet stream 2: 
xN, T, P 
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Stream #1: HH fuel inlet – raw fuel (methane and water) 

Stream #2: HH cold outlet, FP cold inlet – pre-heated fuel 

Stream #3: SP cold outlet, Anode inlet – prepared fuel 

Stream #4: Cathode outlet, SP hot inlet – cathode off gas 

Stream #5: FP hot outlet, LTR hot inlet – reused cathode off gas 

Stream #6: LTR hot outlet, HH hot inlet – reused cathode off gas 

Stream #7: HH hot outlet – exhaust gas to the environment 

Stream #8: Compressor inlet air – fresh air 

Stream #9: Compressor outlet air, LTR cold inlet air – compressed cool air 

Stream #10: SSH outlet air, HTR cold inlet air – pre-heated compressed air 

Stream #11: HTR cold outlet air, turbine inlet air – hot compressed air 

Stream #12: turbine outlet air, AGO air inlet – turbine exhaust air 

Stream #13: Anode outlet gas, AGO fuel inlet – anode off gas 

Stream #14: AGO outlet gas, HTR hot inlet – oxidized hot gas 

Stream #15: HTR hot outlet, AGO mixer inlet – reused hot gas 

Stream #16: AGO mixer outlet, Cathode inlet – oxidizer for fuel cells 

  

Figure 5-4 Definition of system streams of the state estimator. 
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5.2.2 Preparation of training data 

The neural network model for each subsystem needs to be trained with either 

operational data or simulation data containing the dynamic behaviors of the power plant. 

In this study, due to the limitation of the operational data, the neural network models are 

trained with the data generated by the mathematical model. The data used for NN training 

should possess as much system characteristics as possible, so that the NN model would 

learn more information and operational patterns to achieve better performance. Hence, 

the inputs of the simulation should be carefully designed for NN training. 

The designed inputs for simulation are shown in Figure 5-5, which covers the 

operational status from full load to half load. The current density setpoint I2 steps from 

140 down to 60 mA/cm2 with 10 mA/cm2 decrements. The CH4 setpoint and the turbine 

speed setpoint vibrate repeatedly according to different current density levels, and try to 

cover most operational regions. The AGO temperature setpoint keeps constant, in which 

case the AGO control move will have a broad operational range because of the closed-

loop PI controller and the variations of other setpoints. Meanwhile, the setpoint changing 

rates are limited to avoid operational or computational difficulties. 

Moreover, a set of testing data for verification purpose is generated with the 

inputs shown in Figure 5-6. The testing data also covers the status from full load to half 

load, but the patterns are different from the training data. Both the training data and the 

testing data are generated in Simulink 6.5 with the proposed mathematical model. 
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Figure 5-5 Setpoints in the simulation to generate the NN training data. 
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Figure 5-6 Setpoints in the simulation to generate the NN testing data. 
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5.2.3 Neural networks design and training 

Neural network models are built for the 7 subsystems defined in Section 5.2.1. 

Since most subsystems are static heat exchangers, the feedforward neural networks (FNN) 

are used for these subsystems, except for the fuel-cell stack, AGO, and gas turbine, which 

contain dynamic behaviors and need diagonal recurrent neural networks (DRNN) [47, 49]. 

The FNN realizes a static mapping with a simple structure, which is capable of modeling 

static systems, but it cannot represent a dynamic response in the time domain. 

Nevertheless, the DRNN can naturally represent dynamic systems and needs fewer 

weights and neurons than the fully-connected recurrent neural network (FRNN). Hence, 

the static subsystems are modeled with FNN, while the dynamic subsystems are modeled 

with DRNN. With this assignment, the state estimator can both preserve the dynamic 

characteristics of the system, and can keep a low complexity. 

The neural network applied here has a simple structure of two layers: a hidden 

layer and an output layer. The input/output specifications of a neural network are the 

same as the corresponding subsystem. The numbers of hidden neurons are assigned to 

twice of the number of inputs plus one. In order to guarantee the modeling accuracy, 

some subsystems have slightly higher numbers of hidden neurons. The neural networks 

are trained by the backpropagation method with the Levenberg-Marquardt algorithm [51, 

52], which needs fewer training iterations and less time of convergence. The parameters 

of the neural networks and the training/testing results are listed in Table 5-1, where it can 

be seen that the neural networks models can estimates the outputs of the power plant 

accurately with the designed structure, training data, and training algorithm. 
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Table 5-1 Parameters and performance of the neural network models. 

Subsystem # of 
inputs 

# of 
outputs 

# of hidden 
neurons 

Training 
Epochs 

MSE 
training 

MSE 
Testing 

HH 7 2 15 55 1.1×10-4 1.6×10-4 
LTR+SSH 9 2 24 60 4.6×10-3 2.0×10-3 
FP+PC+SP 8 6 17 11 8.7×10-3 4.5×10-3 

Stack 11 12 25 30 5.8×10-4 1.6×10-3 
Turbine 7 6 18 45 7.8×10-3 1.4×10-3 

HTR 7 2 15 35 8.9×10-4 7.5×10-4 
AGO 7 5 15 28 2.4×10-4 1.6×10-4 

5.2.4 The neural network combined model (NNCM) 

Once the NN models for each subsystem are successfully trained, they will be 

combined to compose a NN-based combined model (NNCM) [49]. In the NNCM, the 

individual NN models are connected in series, in parallel, or in loops. The outputs of a 

specific NN model may be the inputs of other NN models, or be part of the outputs of the 

combined model. The 7 neural network models trained in the previous section are 

connected according to the input/output relationships in Figure 5-4, and then an overall 

plant model can be achieved. Because of the structure of the power plant, several 

subsystems are connected in loops, which will cause computational difficulties due to the 

algebraic loops formed by interconnecting the subsystems. 

The algebraic loops 

After the separate neural networks are joined into a combined model, six basic 

algebraic loops are developed as in Figure 5-7. An algebraic loop is a computational 

problem in simulation that the input of a system is determined by the output of itself. For 

instance, in the LOOP 2 of Figure 5-7, stream #3 and stream #4 are the input and output 
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of the "stack", respectively. Stream #3 is required to calculate the values of stream #4. On 

the other side of the loop, stream #3 and stream #4 are the output and input of the 

subsystem of "FP+PC+SP", respectively. Thus, to calculate stream #3, stream #4 is 

required. As a result, stream #4 is needed to calculate the values of itself. Thus, an 

algebraic loop is formed between the "stack" and the subsystem of "FP+PC+SP". Same 

logic exists in the other 5 algebraic loops.  

These algebraic loops will create computational difficulties in simulation. First, 

the stream values are hard to determine because they are self-dependent. Second, the 

simulation errors will propagate and accumulate through the loops during simulation.  

 

Figure 5-7 The algebraic loops of the neural network combined model. 

The unit delays and NN starters 

These algebraic loops must be eliminated to start the simulation. The normal 

technique is adding a small delay as a memory in the loop. Since the neural network 

models are discrete, unit delays (i.e., Z-1) are added. These unit delays should remove all 

the loops from the system, and should be as few as possible to minimize the complexity 
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of the combined model. In addition, one algebraic loop should only contain one unit 

delay, otherwise convergence would be slow. One possible solution is shown in Figure 

5-8, where 4 unit delays are applied to the combined model. 

  

Figure 5-8 The block diagram of the NN combined model with unit delays. 

The unit delay at stream #2 breaks LOOP 1; the unit delay at stream #4 breaks 

LOOP 2 and LOOP 3; the unit delay at stream #12 breaks LOOP 4 and LOOP 5; the unit 

delay at stream #13 breaks LOOP 6. With these 4 unit delays, the 6 algebraic loops can 

be eliminated, and the simulation can be started. 

Moreover, the initial values for these delay units are also required to start the 

simulation. At the step of k=1, the outputs of the unit delays are needed, but are unknown 

in the combined model. To determine the initial values, two neural network starters are 

developed to estimate the initial conditions based on the given setpoints. One NN starter 

estimates the initial values of stream #4 and #13, which are the outputs of the fuel cell 

stack. The other NN starter initializes stream #2 and #12. With these unit delays and 

neural network starters, the simulation of the combined model can be started and 

processed successfully. 
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Error propagation 

Although the NN combined model with unit delays and NN starters can be 

simulated smoothly, the simulation result may be invalid due to the algebraic loops, 

where the small errors of the single neural networks may propagate and accumulate to a 

significant error. To overcome this problem, all the sources of error need to be identified. 

Then, for each error source, the neural network needs to be re-constructed and retrained, 

until the closed-loop error reaches an acceptable level. 

Simulation results 

With the properly trained neural networks, the unit delays, and the neural network 

starters, the NNCM can estimate the outputs of the DFC/T power plant successfully and 

accurately. The simulation results of the NNCM with the training data and the testing 

data are shown in Figure 5-9 and Figure 5-10, respectively. For the training data, the 

simulation results of the NNCM are very close to the results of the original mathematical 

model. Based on the testing results, the NNCM can also approximate the outputs of the 

original model with acceptable errors. 

Moreover, the inlet/outlet temperature of the electrodes, fuel cell DC power, and 

turbine AC power are selected and plotted in the figures, because these variables are 

important system states that can reflect the operating status of the whole power plant. 
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Figure 5-9 Simulation results of the NNCM on the training data set. 
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Figure 5-10 Simulation results of the NNCM on the testing data set. 
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Because the system modeling capability of a single neural network is limited, a  

combined neural network model is developed in this section to expand the capacities of 

single neural networks. Algebraic loops are formed in the combined model and are solved 

by the unit delays and neural network starters. The NNCM can estimate the outputs of the 

DCF/T power plant with low complexity and high accuracy. The validity of the NNCM is 

verified by comparing the NNCM simulation with the result of the original model. 

5.3 The Operating Windows 

Given a certain power load demand, there are many combinations of setpoints that 

can satisfy the power demand, but each setpoint should be bounded in a particular range, 

which is called an operating window. The operating windows for these setpoints need to 

be determined as the solution space for the MOM. Operating windows are physically 

realizable operating ranges, constrained by physical limitations such as actuator limits, 

power limits, temperature limits, etc. Some limitations are easy to determine, such as the 

split ratios of control valves and the maximum power of electric heaters, but others need 

to be found from the plant operational data. 

The training data generated in Section 5.2.2 is used to find the appropriate 

operating windows. In Figure 5-11, the simulation data is sorted and plotted in grey 

against the net output power. The special patterns in the simulation data are caused by the 

pre-defined input for the simulation. It can be seen that, for a particular output power, all 

setpoints are bounded in certain ranges and the envelops of the operational data are 

selected as the operating windows, which define the search space for the MOM. 
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Figure 5-11 The operating windows of the Optimal Reference Governor. 
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5.4 Problem Formulation 

The problem of the optimal control for the DFC/T power plant can be formulated 

with a multi-objective nonlinear optimization problem, which can be solved by the 

optimization algorithms discussed in Chapter 4. The problem is described as:  

Find the 6 setpoints: the stack current density (I2), methane flow rate (n_CH4), 

turbine speed (RPM), power of the second-startup heater (q_SSH), LTR control move 

(u_LTR), and AGO control move (u_AGO), that minimize the 3 objective functions: 

 { }1 2 3min ,  ,  F F F  (5.1) 

where 

 ( )2
1

1

N

load net
i

F P P
=

= −∑   (5.2) 

 ( )2
2

1

N

set act
i

F TCI TCI
=

= −∑  (5.3) 

 3
1

N
csm

i net

PF
P=

= ∑  (5.4) 

The first objective function is defined on the power load, where Pload is the power 

load demand, and Pnet is the net out power of the power plant. This objective function 

forces the generated power to follow the demanded power. The second objective function 

is defined on the cathode inlet temperature, an important control variable for plant 

operation to maintain the temperature of the fuel-cell stack. The cathode inlet temperature 

setpoint, TCIset, is determined by the current density according to the manufacturer’s 

requirement, while TCIact is the actual cathode inlet temperature. The third objective 
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function is defined on efficiency, where Pcsm is the total consumed power by the power 

plant, including the chemical potential contained in the fuels and the power used by the 

electrical heater. Minimizing this objective function will maximize the plant efficiency. 

The constrains of the optimization problem is described in (5.5), where X can be 

any one of the 6 setpoints. Each setpoint searched by the MOM must belong to its 

operating window given in Figure 5-11. 

 Setpoint( ) Operating Window( )X X∈  (5.5) 

Moreover, the variables used in the objective functions are estimated by the NN 

combined model in Section 5.2.4. The NNCM can be represented as a nonlinear function 

(5.6) that maps the 6 setpoints to the plant outputs or states of interest. In the optimization 

problem, the stack DC power (PDFC), turbine AC power (PTurb), and cathode inlet 

temperature (TCIact) are selected as the outputs of the NNCM. The objective functions 

will be calculated from the 3 system outputs and the 6 given setpoints. 

( )2
4[ ] ,  _ ,  ,  _ ,  _ ,  _DFC Turb act NNCMP P TCI f I n CH RPM q SSH u LTR u AGO=  (5.6) 

5.5 Optimization Results 

A variety of advanced heuristic optimization algorithms introduced in Chapter 4 

are implemented in the MOM for the ORG. The MOPSO algorithm with the Pareto 

dominance approach is firstly investigated with the NNCM and the operating windows to 

perform the tasks of the ORG. For a given power load demand, a set of optimal 

candidates will be provided. 
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Figure 5-12 is an example of the Pareto frontier obtained by the ORG under the 

power load of 250kW. Twelve candidate particles were collected during the MOPSO 

search process. Since each particle has three criteria, the candidates can be plotted in a 3-

D space as the lower right chart in Figure 5-12. The projections of these particles on 2-D 

planes (i.e.,  F1 - F2  plane, F1 – F3 plane, and F2 – F3 plane), are plotted in the upper left, 

upper right, and lower left quarters, respectively. Here, since the Pareto frontier is a 

surface in a 3-D space, its projections on any 2-D planes may not shape as a 2-D Pareto 

frontier. For convenience, each particle is associated with a distinct grey scale, so that it 

can be easily identified from the 3-D plot and its projections. Each particle in Figure 5-12 

provides a pair of setpoints for the optimal control of the power plant. Different particles 

take different weights on different objectives. Thus, the final optimal control policy can 

be selected from them according to specific operating requirements. 
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Figure 5-12 An example of the Pareto Frontier and its projections by the MOPSO. 
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5.5.1 ORG result before model updating 

To select the "best" optimal solution, constant weights are assigned to the three 

objective functions as the weighted aggregation approach: 

 1 2 30.4 0.4 0.2F F F F= + +  (5.7) 

The power load tracking (F1) and cathode inlet temperature tracking (F2) take more 

weight than the fuel efficiency (F3), so that the power and temperature tracking will have 

higher priority than the efficiency. 

The optimal control setpoints are generated by the ORG in Figure 5-13 for the 

power loads from 150kW to 300kW with 5kW increments. The sample points are marked 

with asterisk. The current density and methane flow rate increase monotonically with the 

power demand. Irregular variations can be observed in the turbine speed, while the LTR 

control move keeps constant for most instances. The SSH power and AGO control move 

have different patterns below 170kW compared with the result under higher power loads. 

To verify the optimization results of the ORG and the validity of the NNCM, the 

optimal setpoints in Figure 5-13 are applied both to the NNCM and the original 

mathematical model. The two sets of simulation results are compared in Figure 5-14. The 

estimated outputs of the NNCM indicate ideal operational conditions and high fuel 

efficiency. However, it can be seen from the comparison that the NNCM has significant 

errors in turbine AC power when the power load runs below 170kW. The original model 

gives negative turbine power, but the estimated power is positive. As a consequence, the 

net output power and the plant efficiency of the NNCM also differ from the mathematical 

model. Meanwhile, considerable errors can be found in the anode inlet temperature and 
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the cathode inlet temperature. The deviations between the NNCM and the original model 

are caused by the new operational patterns, which have never been learned by the neural 

network models. Therefore, the NNCM needs to be updated with the new operating data. 
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Figure 5-13 Optimal setpoints obtained by the PSO-based ORG. 
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Figure 5-14 The simulation results of NNCM versus the original plant model. 
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5.5.2 ORG result after model updating 

Once, the errors between the NNCM and the actual plant are identified, the ORG 

will enter the model updating mode as shown by the dotted line in Figure 5-1, where the 

actual power plant is replaced by the mathematical model in this study due to the 

limitation of the experimental data. With the new operational data, the neural networks of 

the NNCM are retrained and tested with the given setpoints. The results are presented in 

Figure 5-15. The estimation errors of the updated NNCM are considerably reduced and 

become acceptable for the ORG framework. However, based on the current optimal 

setpoints, the output power cannot follow the power demand below 170kW. The cathode 

inlet temperature cannot be controlled according to the specifications, and the fuel 

efficiency below 170kW is considerably low. Hence, the optimal solution of the ORG 

expires after the estimator is updated. The searching process should be executed again to 

update the optimization results. 

The new solution of the optimization problem is shown in Figure 5-16. The 

current density and methane flow rate increase monotonically with the power load. The 

turbine speed keeps at the lowest speed to introduce less cold air to the system. The SSH 

power decreases and stays at zero when the power load reaches a certain level. The LTR 

control stays at the highest value to maximize heat recuperation. The AGO control goes 

around zero to transfer more heat to the turbine, and increases at high power load to 

maintain the cathode inlet temperature.  
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Figure 5-15 The outputs of the updated NNCM compared with the original model. 
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Figure 5-16 Optimal setpoints generated by the ORG with updated NN estimator. 
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Figure 5-17 The simulation results with the updated optimal setpoints. 
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The simulation results with the updated optimal setpoints are shown and 

compared in Figure 5-17. The net output power generated by the DFC/T power can 

follow the power demand well, and the cathode inlet temperature is correctly controlled 

according to the temperature setpoint. Based on the simulation result, the DFC/T 

efficiency is rising with the power load, until it reaches the maximum efficiency of 55% 

at 270kW. Then, the efficiency slightly drops if the power goes higher. The optimized 

efficiency is compared with the actual operating data in Figure 5-18, where the 

experiment was conducted without the ORG and is plotted in dashed line. It can be seen 

that the simulation result with the optimized setpoints and feedforward controls shows 

higher fuel efficiency than the operation data without the ORG. Thus, the optimization 

results provided by the ORG are valid for the optimal operations of the DFC/T to 

improve fuel efficiency.  
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Figure 5-18 Overall plant efficiency of simulation and experiment. 
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Chapter 6 
 

Fault Diagnosis and Accommodation and the Integrated Intelligent  
Control System 

With the augmented mathematical model and the optimal reference governor, the 

plant control system can maintain good performance during normal operations. However, 

this alone is not sufficient for an intelligent control system with advanced technologies. 

Since local controllers have only limited information regarding the entire plant, incorrect 

control behaviors may be taken due to system failures. These abnormalities may 

consequently trigger performance degradation or even instability. Therefore, when fault 

occurs, the control system should detect the fault at an early stage and take appropriate 

reactions to avoid damages or degradations. As a part of the intelligent control scheme, a 

fault diagnosis and accommodation (FDA) system is introduced and the integrated 

intelligent control system is presented with simulations for various possible scenarios. 

6.1 Fuzzy Fault Diagnosis 

6.1.1 Definition of fuzzy faults 

Power plant faults can occur anywhere in the plant at any time. However, it is 

impossible and unnecessary for a control system to identify the exact locations of all 

minor faults. On the other hand, the ability of locating faults at a subunit level is 

sufficient for control system design. Meanwhile, temperature control scheme is more 
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complicated and important than other control schemes, because the temperature 

exchangers and controllers are the major balance-of-plant equipments that determine the 

energy distribution of the entire system and guarantee smooth and reliable operations. 

The DFC/T power plant is operating under constant pressures and only two pressure 

controllers exist in the system. The fuel mass flow rate does not change along pipes or 

heat exchangers. Thus, the fault in pressure or mass/mole flow can be easily determined 

directly from the measurement data. However, the temperatures are highly coupled 

throughout the system and make the temperature faults not easy to diagnosis and isolate. 

In this chapter, only six fault patterns are defined on temperature control failures at the 

six major heat exchangers in the fault diagnosis system. These fault patterns are: 

• Humidifier/Heat exchanger (HH) fault 

• Fuel Pre-Heater (FP) fault 

• Low Temperature Recuperator (LTR) fault 

• High Temperature Recuperator (HTR) fault 

• Anode Gas Oxidizer (AGO) fault 

• Second Start-up Heater (SSH) fault 

To provide more information about the temperature failures, two fault styles are 

defined for each fault pattern according to fault symptoms:  

• The first style is "P-fault", which represents the case that actual output 

temperature of a subunit is higher than expected. This is usually caused by the 

failure of the control valve, such that heat will be fully exchanged between 

two streams without control. 
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• In contrast, the second style is "N-fault", which represents the case that actual 

output temperature of a subunit is lower than expected. This is usually caused 

by the fault position of the control valve, such that heat cannot be transferred 

between two streams. 

Although these fault styles are described by the faulty positions of control valves, 

they can also represent a series of faults having similar symptoms, such as failures in 

sensors, actuators, and other parts of control loops or gas flows. Even though some 

subunits such as HH and HTR are not controlled, faults with similar symptoms may be 

caused by other reasons, such as fouling, eroding, or electrical problems. Thus, the 

defined fault styles are also applicable for temperature faults in these subunits. Once the 

fault pattern and style are determined by the fault diagnosis system, human operators will 

use this information to identify the detailed reason for the fault. 

6.1.2 Diagnosis algorithm 

Extensive research and investigations on FDA algorithms have been done in 

recent decades by researchers [53-64]. Instead of hardware redundancy, where redundant 

physical subsystems are constructed, most of the current research in FDA is based on 

analytical redundancy, in which sensory measurements are processed analytically to 

compute the value of a desired variable. Using this method, Polycarpou and Helmicki [55] 

and Farrel et al. [56] provided a framework of the FDA architecture and a general 

learning methodology for detecting and regulating system failures. Meanwhile, intelligent 

control theories are found to be powerful tools in FDA in recent years. These intelligent 
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approaches mainly include neural networks [57, 58], fuzzy systems [59, 60], and neuro-

fuzzy systems [61]. However, most of these approaches assume that the system, either 

linear or nonlinear, is fully measurable or observable, which is not always true in real 

engineering problems, especially for large-scale complex plants such as the DFC/T plant. 

The fault diagnosis algorithm usually includes two steps: residual generation and 

decision making [53, 58, 62]. The analytical redundancy method generates residuals by 

comparing the outputs of a plant with a mathematical model, either analytical or 

numerical [53]. In this work, the augmented hybrid model of the DFC/T in Chapter 2 is 

applied as a reference of normal operations without any fault. The outputs of the power 

plant (power, temperature, pressure, etc.) are compared with the estimated outputs of the 

model. The diversities between the plant and model serve as the residuals used for 

decision making. 

Since the DFC/T power plant is highly coupled and complex, the model outputs 

for each subunit are estimated separately. For the i-th subunit, the output yi is a function 

of the states xi, the inputs yk of this subunit (or the outputs of the subunits connected to it), 

and the control input ui, as shown in (6.1). Meanwhile, the estimated output iy  of the i-th 

subunit is a function of the estimated states ix , and the inputs yk and ui of the actual 

subunit, as shown in (6.2). The dynamic equations are defined in the plant model [8, 12] 

and have the same initial conditions as in the real plant. The residual is thus calculated by 

(6.3) as following: 

 ( ), ,i i k iy f x y u=  (6.1) 

 ( ), ,i i k iy f x y u=  (6.2) 
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 i i ires y y= −  (6.3) 

When the plant is devoid of faults, the residuals of all subunits will be small. However, if 

a fault occurs in the plant, the residuals for one or several subunits will be noticeable and 

detectable. 

A number of decision making methodologies have been investigated [55-61]. In 

this work, fuzzy logic is used to determine fault conditions, because fuzzy theory is an 

effective tool in processing the ambiguous relationships of fuzzy faults due to the limited 

information of the system. The structure of the fault diagnosis system is shown in Figure 

6-1. While the residual only reflects the state of the plant at a particular time instant, its 

integral contains much more information about the time history [65] of the plant status, 

which is more important for fault diagnosis than only the residual. For instance, small and 

persistent residuals will be accumulated by integration and become noticeable. In contrast, 

a brief disturbance may have a much smaller weight in decision making. Therefore, the 

integral of the residual between the actual plant and the nominal model is assigned as the 

primary input of the FDA system. 

Moreover, the integrals cannot provide sufficient information about faults, since 

either a large residual or a small residual can be accumulated to the same integral values 

as time elapses. However, the causes of the residuals may be completely different. The 

small residual could be caused by the inaccuracy of the model but not the system fault, 

and false alarm might be trigged if monitoring only the integrals. Hence the values of 

residuals for each subunit are used by the diagnosis system as the secondary input 

variable in determining the causes for the disturbances. 
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Figure 6-1 Block diagram of the fault diagnosis system. 

6.1.3 Selection of variables 

According to the algorithm indicated in Figure 6-1, the variable yi and the 

corresponding estimated variable iy  should be selected from all process variables for 

each subunit, on which the fault patterns are defined. The variables need to possess the 

ability of presenting the fundamental operational status of the subunits, and must be 

easily measured or calculated from the actual plant so that the diagnosis can be made 

practical. 

In this section, the diagnosis system will be focused on the failures of temperature 

control, where the fault patterns are defined on heaters or heat exchangers. The energy 

increment of the stream from inlet to outlet at the cold side is a prime candidate that 

represents the amount of heat transferred by a heat exchanger and indicates the working 

status of the subunit. The energy increase can be calculated as follows: 

 out out in in
i i i i i iy E N H N H= ∆ = −  (6.4) 

 ( )
7

( ) 2 3 4

1

k
i i k i k i k i k i

k
H x A T B T C T D T

=

= + + +∑  (6.5) 
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where /out in
iN  and /out in

iH  are the outlet/inlet mole flow rate and mole enthalpy of the i-th 

subunit, respectively. The mole flow rate can either be measured from the actual plant, or 

be estimated by the mathematical model. The mole enthalpy of the gas mixture can be 

obtained from (6.5), where ( )k
ix  is the mole fraction of the k-th component of the gas 

mixture, which is not measurable but can be approximated by the plant model; Ti is the 

measured temperature of a particular gas flow; Ak, Bk, Ck, and Dk are the coefficients 

obtained from the integration of the specific heat capacity of the k-th element of the gas 

mixture [8]. The reference variable iE∆  is calculated similarly, but using the simulated 

variables from the model: 

 out out in in
i i i i i iy E N H N H= ∆ = −  (6.6) 

 ( )
7

( ) 2 3 4

1

k
i i k i k i k i k i

k
H x A T B T C T D T

=

= + + +∑  (6.7) 

Taking the HTR as an example, the variable HTRE∆  is the energy transfer rate of 

the HTR based on measurements and represents its operational status. The reference 

HTRE∆  is calculated from the mathematical model. The residual for HTR fault diagnosis 

is the difference between HTRE∆  and HTRE∆ :  

 HTR HTR HTRres E E= ∆ −∆  (6.8) 

6.1.4 Membership functions and fuzzy rules 

Three membership functions for fuzzy sets, i.e., positive (P), negative (N), and 

zero (Z) in Figure 6-2, are defined for P-fault, N-fault, and fault-free status, respectively. 
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The likelihood of the existence of a fault is expressed by the membership values that it 

belongs to a particular fuzzy set. Due to the nature of faults and the limited information 

about failures, there does not exist clear boundaries distinguishing the different faulty 

situations. Thus, the overlapping membership functions are useful tools in expressing 

such fuzzy relationships. Meanwhile, the primary and secondary inputs are represented in 

terms of fuzzy logic by the membership functions in Figure 6-2. These functions map the 

normalized input variables to the membership values, which will be processed by fuzzy 

rules. 

  

Figure 6-2 Fuzzy membership functions for HTR fault diagnosis. 

After the inputs are converted into the membership values, the fuzzy rules will be 

launched to compute the likelihood of a fault belonging to different fuzzy sets. Three 

major rules are defined for each fault pattern as: 

After the input variables are converted into degrees of truthfulness, the fuzzy rules 

will be launched to compute the truthfulness of a particular fault, which is the degree of 
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antecedent of the rules. Three common major rules are defined for each fault pattern. 

These rules are: 

• If ( ){ }ires E∆∫  is zero, then no fault exists. 

• If ( ){ }ires E∆∫  is positive and ( ){ }ires E∆ is positive, then "P-fault" exists. 

• If ( ){ }ires E∆∫  is negative and ( ){ }ires E∆ is negative, then "N-fault" exists. 

Here, iE∆  is the input variable for the i-th subunit and res indicates the residual of the 

variable. As in the first rule, if the integral is zero, non-fault situation can be determined 

based on the previous analysis. The second rule defines the condition for the "P-fault", 

where the temperature difference is significantly higher then expected. The third rule 

defines the condition for the "N-fault" that the temperature difference is negative, which 

indicates heat cannot be transferred through the heat exchanger. 

Finally, for convenience, the membership values for each fuzzy set are 

defuzzified to a scalar value, likelihood index, indicating the likelihood of each fault style. 

A positive value indicates a "P-fault", while a negative value suggests an "N-fault". The 

higher the absolute value is, the more likely that the particular fault style happens. Thus, a 

6×1 vector can be obtained as the diagnosis result, suggesting the existence of the six 

defined fault patterns. 

6.2 Fuzzy Fault Accommodation 

Detecting faults alone is not sufficient, though it is necessary for an intelligent 

control system. When a fault occurs, the plant needs to be regulated to prevent from 
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entering critical or even unstable operating regions before the fault is cleared or human 

takes over the control system. Due to the high complexity of the DFC/T power plant and 

the random nature of faults, it is difficult to design specific and detailed regulators to 

accommodate the system with very limited information on the causes and consequences 

of the faults. Nevertheless, fuzzy logic, as a qualitative scenario, is a powerful tool that 

has low complexity and less difficulty in designing the fault accommodation system. 

6.2.1 Accommodation strategies 

The core of the DFC/T power plant is the fuel-cell stack, where chemical potential 

is converted into electric power. Thus, maintaining the electrochemical reactions smooth 

and stable is the primary goal of the control system either under normal situations or 

during system failures. To achieve this goal, the temperature of the fuel-cell stack should 

be maintained within a certain range determined by the characteristics of the catalysts and 

the operating conditions. After the temperature is regulated, the power plant needs to 

track the power load demand assigned to it. Therefore, the objective of the 

accommodation system is to regulate the temperature of the fuel-cell stack and recover 

the output power during system failures. 

Under normal operations, the stack temperature is dominated by the cathode inlet 

temperature TCI, which is controlled by the LTR and SSH controllers on the basis of the 

setpoints TCISP. The stack power is controlled by the methane flow rate NCH4 and the stack 

current density I2. The unreacted methane is then burned in the AGO, and the excessive 

heat is used by the turbine to generate additional power [11, 12]. However, during system 
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failures, the temperature and power control scheme may become weak, not functional or 

even broken. On the other hand, from the viewpoint of the overall power plant, the stack 

temperature is determined by the energy contained in the methane flow that injected to 

the system. Meanwhile, the cold air takes heat off the plant and transfer the excessive 

heat to the gas turbine for power generation. Thus, even though the local control scheme 

may not be fully functional, the stack temperature still can be maintained by adjusting the 

amount of the fuel and the fresh air, and the output power can be regulated by adjusting 

the stack current density.  

Therefore, the control strategies can be described as follows: 

• If the stack temperature is higher / lower than normal, then decrease / 

increase the fuel flow rate NCH4 and introduce more / less air by increasing / 

decreasing the compressor speed RRPM; 

• If the output power is higher / lower than demand, then decrease / increase 

the current density I2 of the stack..  

However, all strategies should be executed within the operating region of the 

DFC/T power plant. The ratios of fuel to current and fuel to air need to be maintained 

within a certain range to satisfy the requirement of chemical reactions; otherwise, the 

plant may become unstable or damaged. Moreover, the strategies are built based on an 

assumption that the DFC/T power plant is connected to a utility grid so that the power 

disturbance caused by faults and accommodating actions can be compensated. 
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6.2.2 Accommodation structure 

According to the compensation strategies, the control scheme in Figure 6-3 is 

implemented in the FDA system. The input signals are the residuals of the two variables 

that need to be regulated, i.e., the stack temperature Tstk and the net output power Pnet of 

the plant. Both the residuals and their integrals are introduced to the fault accommodation 

controller for the same reason as in the diagnosis system. The outputs of the controller are 

setpoints modifications, which will compensate the original setpoints to take effect. The 

modified setpoints are restricted to the operational limitations to prevent instability and 

damages. 

  

Figure 6-3 Block diagram of fuzzy fault accommodation system. 

6.2.3 Controller design and tuning 

Since the inputs of the fault regulator are the residuals (errors) and their integrals, 

it is a P-I type controller that can be tuned by a number of classic PID tuning methods [66, 

67]. In this research, the membership functions of the fuzzy controller are triangle 

functions evenly placed in the interval of [-1 1]. To determine the gains of proportional 

and integral controls, the actual system is approximated as a first-order plus time delay 
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system, and the minimum ITSE (integral of time weighted square error) controller tuning 

rules [66] are applied to optimize the accommodation controller. Due to the random 

nature of faults, the dynamic of the post-failure system is hard to determine in real-time. 

Thus, the fault controller is tuned according to the average parameters of the normal 

system from half-load mode to full-load mode. For example, the step response of the 

stack temperature of the healthy system is plotted in Figure 6-4, where a step of the 

methane flow rate NCH4 at 0.05 mole/s is injected at t=0s. Because the DFC/T plant is a 

nonlinear system, the temperature responses are not identical under different load profiles. 

Hence, the average time delay, time constant, and gain are used for controller tuning. 
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Figure 6-4 Temperature step response of stack under different power loads. 

Although the fuzzy accommodation controller is tuned with the PID tuning 

method, it is different from the traditional PI controller. With the membership functions 

and fuzzy rules described in Section 6.2.1, the fuzzy logic is capable of realizing 

nonlinear relationship between the proportional and integral controls, rather than the 
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simple aggregation for PI controller. This nonlinear relationship may achieve faster 

response time and lower overshoot. 

6.2.4 Fuzzy-neural networks 

Another intelligent system approach for fault regulation is the fuzzy-neural 

networks, which possess the learning ability while regulating the system [61, 68]. The 

fuzzy-neural networks method is also investigated in this paper and compared with other 

approaches. 

A classic structure of the five-layer neural network, as Figure 6-5, is used for fault 

accommodation. The first layer maps the inputs to the membership values for each fuzzy 

set by membership functions defined in the previous section. The second layer performs 

the fuzzy "and" operation with multiplication. The third layer is the normalization layer, 

which normalizes the weight of each rule by the sum of the weights of all rules. The forth 

layer is the consequent layer that calculates the implication from the decision wi for each 

rule. The final layer is the aggregation layer, adding the implications of each rule to a 

scalar, which is the output of the fuzzy-neural controller [61]. In the training algorithm, 

the decision wi (i=1,…,9) are the parameters need to be optimized. The objective function 

is defined on the ITSE index as: 

 2 2( ) ( )
t

stk neto
E res T res P dτ τ⎡ ⎤= +⎣ ⎦∫  (6.9) 

The negative gradient direction is selected as the steepest descent direction for parameter 

updating [61]. 
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Figure 6-5 The structure of the fuzzy-neural network controller. 

Because of the learning algorithm, the fuzzy-neural controller can update its 

parameters adaptively while regulating the system failures. This ability makes it a 

powerful fault regulation with better performance than the traditional PI controller and 

the fuzzy controller, which can be seen from the simulation results in the next section. 

6.3 Integrated Intelligent Control System 

6.3.1 Structure of the integrated system 

The presented control systems not only can work individually, but also can be 

integrated as a comprehensive intelligent control system, where the individual systems 

collaborate with each other to perform overall management for the DFC/T power plant. 

The block diagram of the integrated control system is shown in Figure 6-6, where the 
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rounded blocks with shadows are the intelligent systems developed in this dissertation 

and the rectangle blocks come from previous work. 

  

Figure 6-6 Block diagram of the integrated intelligent control system. 

The hybrid plant model, which is achieved by the nominal mathematical model 

and the neural network augmenters, provides a reference of the normal operations for the 

FDA system. The fuzzy fault accommodation system will be activated by the diagnosis 

system and modifies the optimal setpoints generated by the optimal reference governor. 

The modified setpoints serve as the references for the local controllers of the power plant. 

The neural network models of the NN augmenter and the NN estimator in the ORG will 

be updated as suggested by the diagnosis system. 

6.3.2 System behaviors during normal operations and fault conditions 

During normal operations (i.e., no fault presents in the system), the residual res 

between the power plant output y and the simulation result y  of the hybrid model are 
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sufficiently small that no fault signals are presented by the fault diagnosis system. Thus, 

the power plant will be supervised by the local controllers according to the setpoints 

provided by the optimal reference governor without modifications. Hence, the power 

plant can achieve high energy conversion efficiency. 

On the other hand, if fault occurs in the system, the residual res will no longer be 

small. The fault diagnosis system will generate fault signals activating the fault 

accommodation system, which will modify the setpoints provided by the ORG and 

regulates the system during system failures. Although the modified setpoints may not be 

optimal in efficiency, they can keep the plant from critical operating regions and prevent 

damages or degradations. Thus, the plant reliability can be improved. 

6.3.3 Model updating 

An additional capability because of the integration of the control system is the 

model updating scheme plotted in the dotted lines in Figure 6-6. In case of a consistent 

and gradually increasing residual res, the fault diagnosis system will provide a model 

updating signal indicating the mathematical model is expired and needs to be updated. 

This situation usually happens when the power plant is operating under a new pattern that 

the neural networks have never learned or the parameters of the power plant keep 

changing slowly with time elapsing. 

In the model updating phase, the neural networks are retrained with the newly 

collected operational data. The NN augmenters are trained with the error e between the 

plant output y and the model output ŷ , while the NN estimator of the ORG is trained 
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with the new operational data y. After the models are updated, the integrals in the FDA 

system will be reset to erase the memory of the previous operational information. 

The integrated system in Figure 6-6 shows a comprehensive plant-wide control 

system, where the local controllers, optimizer, fault detector, and hybrid plant model are 

working in parallel and collaboratively. The integrated control system can operate the 

power plant with high fuel efficiency in normal operations, and can protect the plant from 

damages during system failures. Meanwhile, the model updating scheme guarantees the 

validity of the whole system in providing effective managements for the hybrid power 

plant. Hence, an intelligent autonomous control system is finally achieved to perform 

efficient and reliable control for the DFC/T power plant.   

6.4 Simulation results 

To evaluate the performance of the overall intelligent control scheme and 

different fault accommodation algorithms, an SSH-N fault and an LTR-P fault are 

simulated under power demands of 150kW and 300kW, respectively. 

6.4.1 SSH-N fault at 150 kW 

When running at 150kW, the plant cannot generate sufficient heat with a small 

amount of fuel. Thus, the SSH serves as an electric heater to provide additional heat to 

maintain the temperature of the fuel-cell stack. The turbine can not provide enough 

torque to drive the air compressor, so that the generator works as an electric motor to 
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provide additional torque. As a possible failure mode, an SSH-N fault is simulated at t = 

0s, such that no additional heat is provided to the system. 

Figure 6-7 shows the vector of the diagnosis result, where each element of the 

vector provides the likelihood index for the existence of each fault pattern. The solid lines 

indicate the result without measurement noise. The SSH result steps to -0.8 within 3 

seconds suggesting the existence of an SSH-N fault, while other outputs remain at zero. 

The dotted lines show the diagnosis result with Gaussian White Noises ( 0µ = , 5σ = °C 

for temperature, 0.1σ = mole/s for gas flow rate) in the measurement data. Although the 

results are disturbed by the noise, the SSH fault can still be distinguished from others 

because of its magnitude and response time. Thus, the fuzzy diagnosis system is 

insensitive to measurement noises. 
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Figure 6-7 Fuzzy fault diagnosis results during SSH-N fault @ 150 kW. 

The simulation results of the accommodation system are shown in Figure 6-8. The 

dash-dot lines denote the system response without fault accommodation. Although the 

output power drops by only 4kW, the stack temperature drops by 20°C to 570°C, which 
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is cold enough to stop all electrochemical reactions. Once the plant is shut down, it may 

take days to restart and may cause significant offline time. 
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Figure 6-8 DFC/T responses during SSH-N fault @ 150 kW. 
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When the FDA system is applied, the fault regulation algorithm is activated after 

the fault occurs. The fault control strategies reduce the speed of the compressor to 

introduce less cold air; increase the amount of fuel by raising the methane flow rate and 

decrease the stack current density, so that more excessive fuel will be used to generate 

heat to warm up the fuel-cell stack. The excessive methane will boost the cell voltage [8], 

but with the reduced current density, the output power can still be maintained. 

Three control methods, i.e., PI controller (in dotted lines), fuzzy controller (in 

solid lines), and fuzzy-neural network (in dashed lines), are implemented with the fault 

accommodation strategies and framework in Figure 6-8. All of the three controllers are 

able to regulate the fault and drive the system to a steady working status in 300 seconds 

with a maximum temperature drop of 10°C. The fuzzy controller has less overshoot and 

the fuzzy-neural network is faster than the traditional PI controller in regulating the stack 

temperature. The three controllers have comparable disturbances of 10kW in power 

control, but the fuzzy controller has slightly more oscillations as time elapses. 

6.4.2 LTR-P fault at 300 kW 

An LTR-P fault at t = 0s is simulated in Figure 6-9 and Figure 6-10. When the 

plant is running at an output power of 300kW, the LTR fails in a faulty position so that 

heat is fully transferred without control. Thus, the compressed air is overheated by the 

LTR, and finally heats up the fuel-cell stack. Without the FDA system, the stack 

temperature (dash-dot lines in Figure 6-10) will rise up to 635°C, which is the upper limit 

of the safe operational region and may consequently damage the device or the catalyst. 
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The diagnosis results in Figure 6-9 presents the likelihood index for each fault 

pattern, where the LTR-P fault can be identified from others by its magnitude and 

response time, either without measurement noises, or with the similar Gaussian White 

Noises as in the previous case. 
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Figure 6-9 Fuzzy fault diagnosis results during LTR-P fault @ 300 kW. 

Once the accommodation system is activated, it increases the compressor speed to 

blow more air into the system; decreases the amount of fuel by reducing the methane 

flow rate; and slightly increases the current density to compensate the power drop. 

However, the plant cannot recover to its previous output power due to the reduced 

amount of fuel and the ratio limitation between current density and methane flow rate. 

The three controllers are investigated with the LTR-P fault. In Figure 6-10, the 

controllers regulate the fault and drive the system to a stable working status in 300 

seconds with a temperature disturbance of 10°C and a lower output power of 290kW, 

which is 3.3% less the demand power. The fuzzy and fuzzy-neural controllers have 

smaller temperature disturbance than the PI controller, but the fuzzy controller converges 
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slower than the others. For the power control, the fuzzy controller gives less overshoot 

but lower convergence rate. 
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Figure 6-10 DFC/T responses during LTR-P fault @ 300 kW. 
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Chapter 7 
 

Conclusion and Future Work 

7.1 Conclusions 

Because of high energy conversion efficiency and extra low emissions, fuel cells 

have shown their remarkable application potentials in distributed generation. As one of 

the most advanced fuel cell technologies, the DFC/T power plant received extensive 

attentions from researchers, developers, and governments. Significant research efforts 

were invested into system modeling and intelligent control system development for the 

power plant, providing the foundations for this dissertation, which intends to solve the 

problems of model accuracy, fuel efficiency, and plant reliability. 

In this dissertation, to improve the accuracy of the mathematical model of the 

power plant and to provide a valid platform for the following and further research, an 

supplementary energy dynamic model, whose parameters are identified from online 

operational data, is developed to augment the original mathematical model. Furthermore, 

artificial neural networks are applied to compensate for the errors that cannot be modeled 

analytically, and to further improve the model accuracy. The hybrid model presented in 

this dissertation is an advanced dynamic system modeling method that both model 

parameters and uncertainties can be identified from operational data. The update ability 

of the hybrid model can keep itself valid while dynamics are changing in the actual plant. 

This hybrid modeling method is not only effective for the DFC/T power plant, but also 
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can be extended to most dynamic physical systems to provide a reliable platform for 

research, studies, and analyses. 

Also in this dissertation, a multi-objective nonlinear optimization framework is 

developed for the DFC/T power plant working as a base-load power source, for which the 

fuel efficiency is a primary issue of plant operations. The particle swarm optimization 

and neural network combined model are implemented as the core optimization algorithm 

and the state estimator, respectively. The presented optimization framework is an 

extension and combination of heuristic optimizations and artificial neural network 

technologies. The framework is validated by the simulation on the DFC/T plant model, 

and in addition, it can also be applied to and will be effective for the optimization 

problems of the power plants with different types or configurations. 

Meanwhile, the fault diagnosis and accommodation system is a successful 

application of fuzzy theories. The fuzzy FDA system can identify the fault correctly and 

promptly, and can effectively prevent the power plant from entering abnormal or even 

unsafe operating regions. The work in this dissertation demonstrates the capability of the 

fuzzy theory in detecting and regulating local failures for large-scale power plant systems. 

Moreover, the integrated system provides a prototype of a comprehensive plant-

wide control system, where local controllers, optimizer, fault detector, and plant models 

are working simultaneously and collaboratively. The overall control system is not a 

simple combination of the individual control systems, but an integrated system that each 

part cooperates with each other. With the intelligent control system, the efficiency and 

reliability of the DFC/T power plant are considerably improved, and the performance of 
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the entire control system can be upgraded. An intelligent autonomous control system is 

finally achieved for the hybrid power plant to perform high quality plant-wide 

management, by which accuracy, efficiency and reliability can be guaranteed. 

7.2 Future Work 

Future improvements of the intelligent control system are possible by 

investigating the overall control system on the actual DFC/T power plant and collecting 

more operational data for system improvement. Parameters of the pressure model can be 

refined if the operational data of pressure is available. Further analysis of plant 

optimization will suggest the bottleneck of the power plant against higher efficiency. 

Then, the plant configuration, structure, or the hardware can be improved to approach the 

expected fuel efficiency. For the FDA system, more types of membership functions and 

different control algorithms or controllers can be investigated and the transient of the 

accommodation actions will be further studied. 

Regarding the DFC/T power plant, its interfaces and control algorithms to the 

utility grid is another important aspect of the control system. The DFC stack generates 

DC power while the turbine generator produces AC power at a variable frequency. 

Before connecting to the utility grid, the asynchronous AC power needs to be rectified 

and fed into a DC bus. Then the combined DC power is inverted to AC power with 

synchronized frequency and phase through a grid-tie power inverter. Additional power 

electronics units may be also required to eliminate or reduce the harmful harmonics 
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generated by the switching devices. The structure, control algorithms, and optimizations 

of the power electronics interface need additional studies and developments. 

Moreover, the fuel-cell power plant may have various potential applications 

besides distributed generation. Since the fuel-cell power plant generates DC power 

directly, it should be highly attractive in the applications where high quality high 

capability DC power is required, such as electrolysis of copper and aluminum. Utilizing 

fuel-cell power plants, the product may be upgraded and the efficiency can be improved. 

Future research and case studies are possible regarding these specific applications. 
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