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ABSTRACT 

 

This thesis addresses the problem of model implementation at the Shale Hills 

experimental watershed using PIHM (Penn State Integrated Hydrologic Model). Ever 

since the 1970s, interdisciplinary teams have been working in Shale Hills watershed to 

study a wide range of earth science problems. However, a watershed model was not 

constructed until Qu and Duffy (2007) proposed the PIHM model. In recent years, the 

PIHM had a major update by Kumar and Bhatt where they added new flux components to 

the channel flow, implemented macropore effects, throughfall drainage, evaporation from 

ground and transpiration from the canopy. At the same time, PIHM was extended to 

include national databases which are referred to as A-priori data. This research was 

performed with NSF funding through the Susquehanna River Basin Project, the Critical 

zone Observatory project and the RTH_NET project. The focus of this thesis is to 

implement a new version of PIHM at Shale Hills using data sets recently acquired 

through the Critical Zone Observatory Project. These new data sets include: 3 meter 

digital elevation data, a new bedrock elevation coverage, the latest soil classification data 

from SSURGO with site specific extensions to SSURGO made by H. Lin’s group, and the 

National Land Cover Data distribution dataset. The updated model is calibrated through a 

trial and error process, using the 1974 artificial irrigation experiment by Lynch et al. The 

model successfully reproduces the runoff at the watershed outlet during a sequence of 6 

rainfall events. It shows that the Horton overland flow and subsurface storm flow are the 

main drive for the runoff peak in the channel. The model also simulates groundwater 
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levels, recharge, transpiration, etc. The model represents a preliminary calibration which 

will be implemented in real-time model with current data. Operating the model in real-

time will allow the continuous calibration using CZO experimental data and provide 

feedback to scientists. Finally, Bhatt and Kumar have implemented a GIS interface for 

PIHM and this was used at Shale Hills for setting up the model new data coverages. A 

tutorial for the PIHMgis and the PIHM model is included as part of this thesis.  
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Figure 6.1 Precipitation and Runoff at outlet in 1974.The red window is the 

model simulation perid for 31 days, which includes 6 events.  
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Figure 6.2 TIN network for the calculation, including 598 cells, 332 nodes, and 18 stream 
segments 
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Figure 6.3 Observed (red) verses model (blue) runoff at the outlet Shale Hills watershed 

for the artificial irrigation experiment in 1974. The simulation showed good prediction of 

the first five peaks and the base flow. However, the relaxation of the peak that is in the 

model is much quicker than the observed data. And for the last peak, the simulation failed 

to reach the peak value from the experimental data. 
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(a) 

 

(b) 

Figure 6.4 (a) Input components to streams from surface flow and subsurface flow. F1 is 

the flux from upstream element, F2 and F3 are overland flow from left and right bank, F4 

and F5 are subsurface flow from left and right bank, and F6 is the flow exchange between 

the stream flow and the stream bed. (b) The 4 location chosen to show the input 

components in Figure 6.5 
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Figure 6.5 Water input components to stream. Surface flow (blue) and subsurface 

flow(red) are marked in Figure 6.4(a).The 4 locations are displayed in Figure 6.4 (b).  
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Figure 6.6 Subsurface Flows 
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a) Groundwater head 
 

 

b) Unsaturated Zone soil moisture content 
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c) Recharge rate 

 

d) Runoff at the outlet 
Figure 6.7 Time transition of the spatially averaged groundwater head, unsaturated zone 
soil moisture content, recharge rate, runoff at the outlet during the 3rd event. The red 
triangular is the time when the irrigation begins. The 4 markers in each plot stand for 4 
identical time that will be plotted in Figure 6.8 
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Figure 6.8 Five day period showing the time varying spatial distributions of the 
groundwater heads during 3rd event. The 4 time is marked in Figure 6.7 as a comparison. 
a) the initial condition for the event, 6 hours before the peak value of the spatially 
averaged peak groundwater head. b) The groundwater head reaches peak value. c) 12 
hours after the peak, the groundwater has been redistributed, and the recharge from 
unsaturated zone ends. d) 112hours after the peak, when the relaxation of the flow peak 
has most of the water redistributed.  
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Figure 6.9 a) The experimental data showing the relationship between the saturated 
zone soil moisture content and the unsaturated zone soil moisture content (Qu and Duffy, 
2007). b) 5 location in the riparian area of the watershed chosen for the comparison in 
Figure 6.10. 
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Figure 6.10 Comparison of the soil moisture contents in saturated and unsaturated zone 

at 5 locations shown in Figure 6.9(b) 
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Figure 6.11 Averaged recharge rate. The above 6 figures shows the averaged recharge 

rate for 6 events, each is an average of the most intense recharge period of 10 

hours.(Units are in m/day) 
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Figure 6.12 Time averaged (31 days) recharge rate. The marker represents the location of 

comparison of all the vertical flows in Figure 6.15. 
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Figure 6.13 Time averaged (31 days) evaporation rate from the ground 
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Figure 6.14 Time averaged (31 days) transpiration rate 
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a) Up on the slope 
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b) Down near the river 
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Figure 6.15 Multiple vertical fluxes inside the model at 2 locations: a) up on the slope, b) 

on the valley floor. They are marked as red star in Figure 6.12. 
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Chapter 7 

Conclusions and Future Work 

 

 

The thesis presents the implementation of the PIHM model to the Shale Hills 

watershed. Compared to Qu and Duffy(2007) simulation of the Shale Hills watershed, the 

new model updated the A-priori data by the latest data collected by Dr. Henry Lin’s group, 

and made an initial guesses for the land cover classification within the watershed based 

on data from Dr. David Eissenstat’s group. Taking the advantage of the GIS interface that 

is newly integrated into the model, the thesis also detailed the steps of delineating the 

watershed, and prepared the input files for the PIHM model. The model successfully 

simulated the runoff at the outlet, and showed that, out of the several rainfall runoff 

generation mechanisms: (1) Horton overland flow; (2) Groundwater sustained base flow; 

(3) Subsurface storm flow; (4) Saturated Overland Flow; the Horton overland flow and 

the subsurface storm flow played an important part in creating the peak in the runoff 

water. On the other hand, the model also made predictions for the groundwater, the 

evaporation from ground, transpiration, recharge, etc. The results showed that these 

results are highly correlated to the complex terrain conditions in the watershed, and 

however, due to the complexity of the patterns, the results are hard to interpret. 
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In order to enhance the model, there are several aspects that can be considered in future 

work.  1) The present model applied a weighted average conductivity to integrate the 

macropore effect into the model. However, this approach ignore the different mechanism 

of conducting water in the macropores and soil matrix. Wierenga and Van Genuchten 

(1989) proposed the mobile-immobile transport theory, which assumed that the water 

flow in the macropores is the dominant flow while the matrix exchanges moisture with 

the macropores by diffusion. This will help the model get a more reasonable result of the 

groundwater and soil moisture distribution. And it will also emphasize the importance of 

the subsurface stormflow. 2) The current model handles the soil column as only 2 layers: 

the saturated layer and the unsaturated layer. And the soil properties are considered 

uniform from top to bottom. This however, overlooks the vertical variation of the vertical 

properties, such as conductivity, the porosity, the macropore distribution, etc. Multiple 

layers are expected in newer versions of PIHM to better resolve the soil moisture. 3) In 

the application of the PIHM model, the calibration process is tedious and time-consuming. 

A semi-automatic calibration system is suggested, which has solid criteria to help the user 

have a better experience of using the model. 4) Based on the work done in this thesis, and 

the development of RTH-NET, a real-time modeling system for Shale Hills watershed is 

ready to be established. 
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