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Abstract

We propose a general class of agreement coefficients for categorical and contin-
uous responses. An agreement coefficient is used to measure the interrater agreement.
Motivated by the traditional Cohen’s kappa, concordance correlation coefficient (CCC),
and the recent random marginal agreement coefficient (RMAC), we formulate this task
using a parameter a, which reflects the distance between marginal distributions. Our
approach generalizes Cohen’s kappa as the upper bound and RMAC as the lower bound
for categorical data, and generalizes Lin’s CCC as the upper bound and RMAC as the
lower bound for continuous data, in a class of appropriate measurements of interrater
agreement based on the discrepancy of marginal distributions. We study the large sam-
ple properties for the estimators of members of this class and conduct simulation studies
to assess and compare the accuracy and precision of the estimators. Some real data
examples are also discussed to demonstrate their use.
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Chapter 1

Literature Review

In medical and social science research, analysis of observer or interrater agreement

data is often used in research. Researchers are interested in the agreement between two

raters or two methods of measuring a response. Subjects are usually being classified more

than once, by more than one rater or at different time points, and outcomes are recorded

on a nominal, ordinal or continuous scale. This can be summarized into the following

three cases: (1) two observers evaluate the experimental units in a study, and it is of

interest to measure how well these observers agree. (2) in the biomedical sciences, it is of

interest to assess the amount of agreement between two distinct methods of measuring

the same response variable, or the same method measuring the variable at different time

points. (3) when a new assay or instrument is developed, question arises as to whether

the new assay or instrument can reproduce the results of a traditional gold-standard.

In this chapter, we review various approaches to the study of interrater agreement,

for which the relevant data comprise nominal, ordinal or continuous scales. These ap-

proaches are summarized into three structures: kappa agreement coefficient, concordance

correlation coefficient, and random marginal agreement coefficient.
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1.1 Kappa Agreement Coefficient

1.1.1 Cohen’s Kappa

Suppose that each of a sample of n subjects is rated independently into one of

C + 1 mutually exclusive and exhaustive nominal or ordinal categories, by the same

two raters. We will express these measures in terms of estimates of probabilities (i.e.

sample proportions), as they were originally proposed, throughout this section. Let p̂ij

be the proportion of subjects that were classified into (i, j) cell, i.e. classified into the ith

category by the first rater and into the jth category by the second rater, i, j = 0, 1, ..., C.

Further, let p̂i. =
∑C

j=0
p̂ij and p̂.j =

∑C

i=0
p̂ij .

The simplest and most primitive index of interrater agreement is the overall pro-

portion of agreement, say

p̂o =
C∑

i=0

p̂ii

This approach is not adequate, since it does not account for the fact that a certain

amount of agreement is to be expected by chance alone. Other early approaches to assess

agreement were a chi-square statistic (χ2) as a test statistic of the hypothesis of chance

agreement and a contingency coefficient (C) as a measure of degree of agreement [25].

Again, these measures are improperly used for measuring agreement. When applied to a

contingency table, chi-square and contingency coefficient (which is based on chi-square)

measure the degree of association, not agreement. Therefore, these measures will be

inflated quite impartially by any departure from chance association, either disagreement

or agreement [9].
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Considering nominal categories, Scott [35] proposed a chance-corrected agreement

measure,

π =
p̂o − p̂e

1− p̂e

where p̂e =
∑C

i=0
p̂i.p̂.i, which represents the proportion of agreement expected by chance.

This measure corrects for chance by removing chance agreement from consid-

eration. It is defined under the assumption that the distribution of proportions over

the categories for the population is known and is equal for the two raters. The former

assumption is reasonable in practice, but the latter assumption does not seem to be ap-

propriate in some circumstances, since disagreement is partially due to the discrepancy

in distributing raters’ judgements over the categories.

Cohen [9] extended Scott’s measure, and it is known as Cohen’s kappa,

κ̂ =
p̂o − p̂e

1− p̂e

It has the same form as Scott’s measure, except it does not assume the distribution

of proportions over the categories for the population is equal for the two raters. There-

fore, if the two raters are interchangeable, in the sense that the marginal distributions

are the same, then Cohen’s and Scott’s measures are equivalent.

Cohen’s kappa has desirable properties. If there is a complete agreement, then

κ̂ = +1. If observed agreement is greater than or equal to chance agreement, κ̂ ≥ 0, and

if observed agreement is less than or equal to chance agreement, −1 ≤ κ̂ ≤ 0.

For testing the hypothesis that κ is equal to zero, i.e. all the observed agreement

is due to chance, one could use the estimated large-sample standard error of kappa shown
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by Fleiss, Cohen and Everitt [17],

ŝe0(κ̂) =
1

(1− p̂e)
√

n

√√√√p̂e + p̂2

e
−

C∑
i=0

p̂i.p̂.i(p̂i. + p̂.i)

To test the hypothesis against the alternative that agreement is better than

chance, one could refer the quantity

z =
κ̂

ŝe(κ̂)

to the standard normal distribution and reject the hypothesis if z is sufficiently large.

To set confidence limit of kappa, one needs to use the estimated large-sample

standard error of kappa shown by Fleiss, Cohen and Everitt [17],

ŝe(κ̂) =
√

A + B − C

(1− p̂e)
√

n

where

A =
k∑

i=1

p̂ii[1− (p̂i. + p̂.i)(1− κ̂)]2

B = (1− κ̂)2
∑ ∑

i6=j
p̂ij(p̂.i + p̂j.)

2

C = [κ̂− p̂e(1− κ̂)]2

An approximate 100(1− α)% confidence interval for κ is

κ̂− zα/2ŝe(κ̂) ≤ κ ≤ κ̂ + zα/2ŝe(κ̂)
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Landis and Koch [29] have characterized different ranges of values for kappa with

respect to the degree of agreement they suggest. For most purposes, κ̂ ≥ 0.75 may be

taken to represent excellent agreement beyond chance; 0.4 < κ̂ < 0.75 may be taken to

represent fair to good agreement beyond chance; and κ̂ ≤ 0.4 may be taken to represent

poor agreement beyond chance.

However, many researchers have pointed out that Cohen’s kappa yields non-

intuitive results when the marginal distributions are very different. In particular, its

dependence on the marginal distributions makes it difficult to use and interpret under

certain circumstances.

For example, Feinstein and Cicchetti [15] identified two paradoxes associated with

kappa:

• Paradox 1: if pe is large, the chance correction process can convert a relatively high

value of po into a relatively low value of κ.

• Paradox 2: Unbalanced marginal totals produce higher values of κ than more

balanced totals.

Byrt et al. [7] discussed further issues about bias and prevalence that cause these

paradoxes. ”Bias” between the raters refers to the difference between two raters in their

assessment of the frequency of occurrence of a condition in a study group. When this

occurs the marginal distributions for the raters are unequal. ”Prevalence” is defined as

the proportions of cases of the various types in the population.

Researchers have pointed out the unsatisfactory features about kappa, which in-

cludes: (i) difficult interpretation and comparison of a single coefficient of agreement



6

reported, (ii) dependence on the marginal distributions and (iii) misleading result in

reporting kappa values alone when comparisons are made between agreement studies.

These suggest that no single omnibus index of agreement can be satisfactory for all

purposes.

In practice, as Zwick [39] recommended, rather than ignoring marginal disagree-

ment or attempting to correct for it, researchers should be studying it to determine

whether it reflects important rater differences or merely a random error. She pro-

posed that one should begin the assessment of rater agreement with the investigation of

marginal homogeneity, if there is no significant difference use Cohen’s kappa; otherwise

one can explain the degree of agreement between raters in terms of the discrepancies

between marginal distributions.

1.1.2 Weighted Kappa

The motivation of using weighted kappa is that some disagreements are of greater

importance than others. For example, as Cohen [10] provided in an assessment of the

reliability of psychiatric diagnosis in the categories personality disorder, neurosis and

psychosis, a clinician would likely consider a diagnostic disagreement between neurosis

and psychosis to be more serious than between neurosis and personality disorder. Cohen’s

kappa does not make such distinction, as it treats all disagreements equally seriously.

Cohen [10] proposed a weighted kappa to measure the proportion of weighted

agreement corrected by chance. Again, assume that each of a sample of n subjects is

rated independently into one of C + 1 mutually exclusive and exhaustive nominal or

ordinal categories, with p̂ij as the proportion of subjects that are classified into (i, j)
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cell. Agreement weights, say wij , i, j = 0, ..., C, are assigned to the (C + 1)2 cells. The

range of weights is 0 ≤ wij ≤ 1 such that wij = 1 for i = j, 0 ≤ wij < 1 for i 6= j and

wij = wji. The observed weighted proportion of agreement is defined to be

p̂o(w) =
C∑

i=0

C∑
j=0

wij p̂ij

and the chance-expected weighted proportion of agreement is defined to be

p̂e(w) =
C∑

i=0

C∑
j=0

wij p̂i.p̂.j

Weighted kappa is then given by

κ̂w =
p̂o(w) − p̂e(w)

1− p̂e(w)

Cohen’s kappa is a special case of weighted kappa, when wij = 0, for all i 6= j, as weighted

kappa is identical to Cohen’s kappa if all disagreements are assigned the same weight.

The interpretation of the magnitude of weighted kappa is like that of unweighted kappa.

In particular, suppose the (C + 1)2 categories are ordered. Weighted kappa is

capable of accounting for severity of discordance or size of the discrepancy. However, as

Maclure and Willett [33] pointed out, since the magnitude of weighted kappa is greatly

influenced by the relative magnitude of its weights, some standardization of weights

should be used so that the index of agreement is interpretable.
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Two commonly used weighting scheme are Fleiss-Cohen weights

wij = 1− (i− j)2

C2

and Cicchetti-Allison weights

wij = 1− |i− j|
C

The sampling distribution of weighted kappa was derived by Fleiss et al. [17] as

ŝe0(κ̂w) =
1

(1− p̂e(w))
√

n

√√√√ C∑
i=0

C∑
j=0

p̂i.p̂.j [wij − (w̄i. + w̄.j)]
2 − p̂2

e(w)

where w̄i. =
∑C

j=0
p̂.jwij and w̄.j =

∑C

i=0
p̂i.wij .

1.1.3 Intraclass Kappa

Bloch and Kraemer [5] introduced intraclass kappa in the context of agreement.

Context of agreement assumes that the responses of the m (m ≥ 2) ratings on a subject

are interchangeable (i.e. no rater bias), the raters are being asked the same question and

the ratings are said to be in agreement if and only if they are equal.

The intraclass kappa was introduced in the special case of independent blinded

dichotomous ratings (success and failure) on each subject by two fixed raters. Let Xij

denote the rating for the ith subject assigned by the jth rater, i = 1, 2, ..., n, j = 1, 2.

Then for each subject i, over ratings, let P (Xij = 1) = pi be the probability that the

rating for the ith subject is a success, and p
′
i
= 1− pi. Over the population of subjects,
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let E(pi) = P and V ar(pi) = σ
2

P
. Then the intraclass kappa is defined as

κI =
σ

2

P

PP ′

where P
′ = 1− P .

Bloch and Kraemer [5] recommended the use of intraclass kappa for any situation

in which subjects are independently rated using the same rating instrument in order to

assess the reliability or reproducibility of the instrument or its users.

The theoretical model for this case is shown in Table 1.1.

Table 1.1 Theoretical model for 2 × 2 data: model for agreement

Rater B
Rater A Success Failure Total
Success E(p2

i
) E(pip

′
i
) P

Failure E(pip
′
i
) E(p′2

i
) P

′

Total P P
′ 1

The probability of agreement between two raters is p
2

i
+ p

′2

i
. Over the population

of subjects, the expected agreement is

E(p2

i
+ p

′2
i
) = 2σ

2

P
+ P

2 + P
′2
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Agreement is random if the probability of agreement is P
2 +P

′2. Then the kappa

agreement coefficient defined as

Expected agreement-Random agreement
Maximum expected agreement-Random agreement

=
σ

2

P

PP ′

is equivalent to the intraclass kappa defined above.

In the context of agreement, Bloch and Kreamer [5] derived the maximum likeli-

hood estimator (MLE) of P and κI . Suppose that in a sample of n subjects, the observed

frequencies of responses are shown in Table 1.2.

Table 1.2 Frequencies of responses for 2 × 2 data

Rater B
Rater A Success Failure Total
Success n1 n2 n1 + n2
Failure n3 n4 n3 + n4
Total n1 + n3 n2 + n4 n

And the model given by Table 1.1 is equivalent to Table 1.3:

Table 1.3 Expected probability of joint responses for 2 × 2 data

Rater B
Rater A Success Failure Total
Success P

2 + κIPP
′

PP
′(1− κI) P

Failure PP
′(1− κI) P

′2 + κIPP
′

P
′

Total P P
′ 1
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Then the log-likelihood function is

lnL(P, κI |n1, n2, n3, n4)

= n1 ln(P 2 + κIPP
′) + (n2 + n3) ln[PP

′(1− κI)] + n4 ln(P ′2) + κIPP
′

Thus the MLEs of P and κI are

p̂ =
2n1 + n2 + n3

2n

κ̂I =
4(n1n4 − n2n3)− (n2 − n3)

2

(2n1 + n2 + n3)(2n4 + n2 + n3)
(1.1)

If p0 = (n1 + n4)/n, pc = p̂
2 + p̂

′2 and pmax = 1, then the right-hand side

of equation (1.1) is of the form (p0 − pc)/(pmax − pc). Therefore, the MLE of κI is

algebraically equivalent to the index of agreement proposed by Scott [35] as a measure

of agreement between two raters when their underlying marginal distributions are the

same.

By using the result due to Fisher [16], the asymptotic variance for κ̂I is given by

([5]):

lim
n→∞

nvar(κ̂I) = (1− κI)[(1− κI)(1− 2κI) +
κI(2− κI)

2PP ′ ]

A variance-stabilizing transformation for κ̂I , derived by Bloch and Kraemer [5],

provides improved accuracy for confidence interval calculation and power of tests.
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A jackknife estimator of κI , κ̂J , obtained by averaging the estimators κ̂−i, where

κ̂−i is the value of κ̂I obtained over all subjects except the ith, was also proposed ([5]).

It is verified that the asymptotic variances for κ̂I and κ̂J are equal.

However, as the authors pointed out, for small samples, the asymptotic normal

approximation may yield inaccurate results when P is near 0 or 1, and when κI is near

0 or 1, because of the occurrence of degenerate (κ̂I undefined) or extreme values of

κ̂I . Nonetheless, based on the simulation study, the authors recommended the use of

the jackknife estimator of κI for small samples for its smaller bias and more accurate

sampling variance.

Donner and Eliasziw [12] proposed an approach for constructing a confidence

interval that has more accurate coverage levels in samples of small sample size than the

methods discussed above. This approach is based on a chi-square goodness-of-fit test as

applied to a model frequently used for clustered binary data.

Suppose the model is shown in Table 1.2. A 100(1−α)% confidence interval about

κ̂I is (κ̂2

L
, κ̂

2

U
), where

κ̂L = (
1
9
y

2

3
− 1

3
y2)

1
2 [cos(

θ + 2π

3
) +

√
3 sin(

θ + 2π

3
)]− 1

3
y3

κ̂U = 2(
1
9
y

2

3
− 1

3
y2)

1
2 [cos(

θ + 5π

3
)]− 1

3
y3

where θ = arccos( V
W ); V = 1

27y
3

3
− 1

6(y2y3 − 3y1); W = (1
9y

2

3
− 1

3y2)
3
2 and
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y1 =
[n2 − 2np̂(1− p̂)]2 + 4n

2
p̂
2(1− p̂)2

4np̂2(1− p̂)2(χ2

1,1−α
+ n)

− 1

y2 =
n

2

2
− 4np̂(1− p̂)[1− 4p̂(1− p̂)]χ2

1,1−α

4np̂2(1− p̂)2(χ2

1,1−α
+ n)

− 1

y3 =
n2 + [1− 2p̂(1− p̂)]χ2

1,1−α

p̂(1− p̂)(χ2

1,1−α
+ n)

− 1

The simulation study showed that the goodness-of-fit procedure provides im-

proved coverage levels across almost all values of κI and P for samples as few as 25

subjects. This procedure can also be used for hypothesis testing and sample size calcu-

lation.

1.1.4 Multiple Ratings per Subject with Different Raters

Fleiss [18] proposed a generalization of Cohen’s kappa statistic for the case where

each of a sample of subjects is rated on a nominal scale by the same number of raters,

but where the raters rating one subject are not necessarily the same as those rating

another.

Suppose that a sample of N subjects has been studied, with n being the number

of ratings per subject and k being the number of categories into which assignments are

made. Let nij , i = 1, ..., N , j = 1, ..., k, be the number of raters who assigned the ith

subject to the jth category, and define

p̂j =
1

Nn

N∑
i=1

nij
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So p̂j is the proportion of all assignments which were to the jth category. Also,∑
j nij = n and

∑
j p̂j = 1.

The extent of agreement among the n raters for the ith subject is denoted by the

proportion of agreeing pairs out of all n(n− 1) possible pairs of assignments, Pi,

Pi =
1

n(n− 1)

k∑
j=1

nij(nij − 1)

=
1

n(n− 1)
(

k∑
j=1

n
2

ij
− n)

The overall extent of agreement is measured by the mean of the Pis, P̄ ,

P̄ =
1
N

N∑
i=1

Pi

=
1

Nn(n− 1)
(

N∑
i=1

k∑
j=1

n
2

ij
−Nn)

The extent of agreement expected by chance alone is

P̄e =
k∑

j=1

p̂
2

j

Then the measure of overall agreement beyond chance is

κ̂ =
P̄ − P̄e

1− P̄e
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Fleiss, Nee and Landis [19] derived the estimated large sample variance of κ, which

is appropriate for testing the hypothesis that the underlying value is zero,

Var(κ̂) =
2

Nn(n− 1)(
∑

p̂j q̂j)
2

× [(
∑

p̂j q̂j)
2 −

∑
p̂j q̂j(q̂j − p̂j)]

Fleiss and Cuzick [20] proposed a kappa statistic for unequal number of judges

per subject. Suppose that a sample of n subjects has been studied, with mi being the

number of ratings on the ith subject. The raters rating one subject are not assumed to

be the same as those rating another. Consider ratings consisting of classifications into

one of two categories. Let xi be the number of positive ratings on subject i. Define the

overall proportion of positive ratings to be

p̄ =

∑n

i=1
xi

nm̄

where

m̄ =

∑n

i=1
mi

n

the mean number of ratings per subject. If the number of subjects is greater than or

equal to 20, then the mean square between subjects (BMS) is approximately equal to

BMS =
1
n

n∑
i=1

(xi −mip̄)2

mi

and the mean square within subjects (WMS) is equal to
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WMS =
1

n(m̄− 1)

n∑
i=1

xi(mi − xi)
mi

Then the kappa statistic is

κ̂ =
BMS−WMS

BMS + (m̄− 1)WMS

= 1−
∑n

i=1

xi(mi−xi)
mi

n(m̄− 1)p̄q̄

where q̄ = 1− p̄. Fleiss and Cuzick [20] derived the estimated variance of κ̂

Var(κ̂) =
1

(m̄− 1)2nm̄H

× [2(m̄H − 1) +
(m̄− m̄H)(1− 4p̄q̄)

mp̄q̄
]

where

m̄H =
n∑n

i=1

1
mi

1.2 Concordance Correlation Coefficient

1.2.1 Lin’s Concordance Correlation Coefficient

Lin [31] proposed the concordance correlation coefficient (CCC) to evaluate the

agreement between two readings by measuring the variation from the 45◦ line through

the origin. It assumes that pairs of samples (Yi1, Yi2), i = 1, 2, ..., n, are independently
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selected from a bivariate population with means µ1 and µ2 and covariance matrix

 σ
2

1
σ12

σ12 σ
2

2


Then the CCC, ρc, is defined as

ρc = 1−
E[(Y1 − Y2)

2]
Eindependence[(Y1 − Y2)

2]

= 1−
E[(Y1 − Y2)

2]
σ2

1
+ σ2

2
+ (µ1 − µ2)

2

=
2σ12

σ2

1
+ σ2

2
+ (µ1 − µ2)

2

= ρCb

where

Cb = [(υ + 1/υ + u
2)/2]−1

υ = σ1/σ2 = scale shift

u = (µ1 − µ2)/
√

σ1σ2 = location shift relative to the scale

and ρ is Pearson correlation coefficient.

The CCC has the following properties ([31]):

(i) −1 ≤ −|ρ| ≤ ρc ≤ |ρ| ≤ 1.

(ii) ρc = 0 if and only if ρ = 0.
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(iii) ρc = ρ if and only if σ1 = σ2 and µ1 = µ2.

(iv) ρc = ±1 if and only if

(a) (µ1 − µ2)
2 + (σ1 − σ2)

2 + 2σ1σ2(1∓ ρ) = 0, or equivalently,

(b) ρ = ±1, σ1 = σ2, and µ1 = µ2, or equivalently,

(c) each pair of readings is in perfect agreement (1) or in perfect reversed agree-

ment (-1).

The CCC evaluates the degree to which pairs fall on the 45◦ line, where Cb

measures how far the best-fit line deviates from the 45◦ line (accuracy) and ρ measures

how far each observation deviates from the best-fit line (precision). If Cb = 1, then it

indicates that there is no deviation from the 45◦ line. Otherwise, the further Cb is from

1, the greater the deviation is from the 45◦ line.

If we assume paired samples from a bivariate normal distribution, then we define

the estimated CCC as

ρ̂c =
2S12

S2

1
+ S2

2
+ (Ȳ1 − Ȳ2)

2

where Ȳj = 1
n

∑n

i=1
Yij , S

2

j
= 1

n

∑n

i=1
(Yij − Ȳj)

2, j = 1, 2; and

S12 =
1
n

n∑
i=1

(Yi1 − Ȳ1)(Y12 − Ȳ2)

Lin [31] showed that ρ̂c is a consistent estimator of ρc. And by using the inverse

hyperbolic tangent transformation (or Z-transformation), the normal approximation of

ρ̂c can be improved

Ẑ = tanh−1(ρ̂c) =
1
2

ln
1 + ρ̂c

1− ρ̂c
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σ
2

Ẑ
=

1
n− 2

[
(1− ρ

2)ρ2

c

(1− ρ2

c
)ρ2 +

2ρ
3

c
(1− ρc)u

2

ρ(1− ρ2

c
)2

−
ρ
4

c
u

4

2ρ2(1− ρ2

c
)2

]

Then ρc is asymptotically normal with mean ρc and variance

(1− ρ
2

c
)2σ2

Ẑ

1.2.2 Generalized Concordance Correlation Coefficient

King and Chinchilli [27] proposed a generalization of the concordance correlation

coefficient because Lin’s [31] CCC is not robust when the underlying bivariate distribu-

tion is heavy-tailed.

Assume that observations (Xi, Yi), i = 1, 2, ..., n are independently selected from a

bivariate population with cumulative distribution function (CDF) FXY . Let FX and FY

be the marginal CDFs of X and Y , respectively. Further, let g(.) be a convex function

of distance defined on the real line and g(X − Y ) denote an integrable function with

respect to FXY . The generalized CCC is defined as

ρg =
[EFXFY

g(X − Y )− EFXFY
g(X + Y )]− [EFXY

g(X − Y )− EFXY
g(X + Y )]

EFXFY
g(X − Y )− EFXFY

g(X + Y ) + 1
2EFXY

[g(2X) + g(2Y )]

The estimator of ρg is

ρ̂g =
1
n

∑
i

∑
j [g(Xi − Yj)− g(Xi + Yj)]−

∑
i[g(Xi − Yi)− g(Xi + Yi)]

1
n

∑
i

∑
j [g(Xi − Yj)− g(Xi + Yj)] + 1

2

∑
i[g(2Xi) + g(2Yi)]
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King and Chinchilli [26] derived the asymptotic distribution of ρ̂g by expressing

this estimator in terms of U-statistics. They also showed that the normal approximation

of the U-statistic estimator of CCC can be improved by using Fisher’s Z-transformation

Ẑ = tanh−1(ρ̂g) =
1
2

ln
1 + ρ̂g

1− ρ̂g

They demonstrated that the generalized CCC can be used to reproduce Cohen’s

kappa, weighted kappa and stratified CCC and can be extended to evaluate agreement

among more than two raters or assays.

1.3 Random Marginal Agreement Coefficient

Fay [14] proposed the random marginal agreement coefficient (RMAC) to solve

the problem that many standard agreement coefficients (e.g. kappa, weighted kappa and

CCC) may yield larger agreement as the marginal distributions of the two raters become

more different.

The RMAC adjusts for chance by modeling two independent readings both from

the mixture distribution that averages the two marginal distributions. In other words,

the RMAC models disagreement by chance by first randomly choosing an instrument

and then randomly drawing from the marginal distribution of that instrument. Then

the RMAC cannot be inflated by the difference between the marginal distributions. The

RMAC can be used for both categorical responses and continuous responses.

For categorical responses, let (X,Y) denote a bivariate categorical response in

which X and Y can take on the values 0, 1, ..., C. Let pij = P (X = i, Y = j), i, j =
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0, 1, ..., C, denote the bivariate probabilities, and let pi. = P (X = i) and p.j = P (Y = j)

denote the marginal probabilities. The RMAC is defined as

κRMAC =
po −

∑C

i=0
(1
2pi. + 1

2p.i)
2

1−
∑C

i=0
(1
2pi. + 1

2p.i)
2

where po =
∑C

i=0
pii, pi. =

∑C

j=0
pij and p.i =

∑C

j=0
pji.

Fay [14] derived the asymptotic variance for κRMAC , which is

[1− κ
2

RMAC
]2V

where

V =
C∑

g=0

C∑
h=0

pgh(Dgh)2 − (
C∑

g=0

C∑
h=0

pghDgh)2

Dgh =
1

2(1 + Π0 − 2Πaz)
[I(g = h)− (pg. + p.h)− (ph. + p.g)] +

1
2(1−Π0)

I(g = h)

and Π0 =
∑C

i=0
pii,Πaz =

∑C

i=0
[12pi. + 1

2p.i]
2.

For continuous responses, the RMAC assumes that pairs of samples (Yi1, Yi2),

i = 1, 2, ..., n, are independently selected from a bivariate population with means µ1 and

µ2 and covariance matrix  σ
2

1
σ12

σ12 σ
2

2


If d(x, y) = (x− y)2, then the RMAC is

AR(d) =
2ρ− 1

2u
2

υ + 1/υ + 1
2u2
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where u, υ and ρ are as defined for the CCC [31].

Fay [14] also conducted a simulation study to evaluate the performance of the

RMAC, using the delta method and the bias-corrected and accelerated (BCa) method.

Both the delta method intervals and the BCa intervals gave reasonably adequate cover-

age.
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Chapter 2

A General Class of Agreement Coefficients

2.1 Motivation and General Form

We use a simple example to illustrate the use and limitations of Cohen’s kappa

and the RMAC. In Table 2.1, two observers classified 100 subjects into two categories,

and the marginal distributions are identical. Cohen’s kappa is κ̂ = 0.167, ŜE(κ̂) = 0.1,

whereas the RMAC is κ̂RMAC = 0.167, ŜE(κ̂RMAC) = 0.1. So in the presence of equal

underlying marginal distributions, Cohen’s kappa and the RMAC measure the same

parameter, and therefore in the presence of equal observed marginal distributions, they

yield the same estimates of agreement and standard error. Comparing to this table,

Table 2.2 has identical diagonal values but different marginal distributions. Cohen’s

kappa becomes κ̂ = 0.238, ŜE(κ̂) = 0.078, whereas the RMAC is κ̂RMAC = 0.167,

ŜE(κ̂RMAC) = 0.1. Cohen’s kappa shows better estimate of agreement for Table 2.2

over Table 2.1, and smaller SE than the one for RMAC for Table 2.2, despite the fact

that Table 2.2 has different marginal distributions and identical diagonal values (exact

matches) to Table 2.1.

From this example, we can see that, given fixed diagonal values, when the marginal

distributions are equal or approximately so, both Cohen’s kappa and the RMAC are

equivalent in terms of estimates of agreement and standard error; when the marginal

distributions are different, Cohen’s kappa yields a non-intuitive result whereas RMAC is
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Table 2.1 Original data

Observer A
Observer B Yes No Total

Yes 40 20 60
No 20 20 40

Total 60 40 100

Table 2.2 Modified data

Observer A
Observer B Yes No Total

Yes 40 35 75
No 5 20 25

Total 45 55 100

robust, but Cohen’s kappa has a smaller standard error than the RMAC. We would like to

use Cohen’s kappa or the RMAC when the marginal distributions are similar, and a mix-

ture of Cohen’s kappa and RMAC when the marginal distributions are very different to

balance between robustness and efficiency. The decision of choosing an appropriate mea-

sure should therefore depend on the difference between marginal distributions. We define

parameter a, which measures the difference between marginal distributions. The value of

a can be calculated using the Kolmogorov-Smirnov criterion, a = supz |FX(z)− FY (z)|,

or the square root of the average squared distance, a =
√

1
C+1

∑C

j=0
[FX(j)− FY (j)]2.

Let (X,Y) denote a bivariate categorical or continuous response, with cumulative

distribution function (CDF), FXY , and marginal CDFs of X and Y , FX and FY , re-

spectively. Define the cost of disagreement as c(x, y), which equals zero when x = y and

is non-negative otherwise, and c(x, y) = c(y, x) for all x, y. Then the general form of the

general class of agreement coefficients can be written as
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A(c) = 1−
EFXY

{c(X, Y )}
EFU1

EFU2
{c(X, Y )}

(2.1)

where U1 and U2 are independent random variables, having distributions FU1
= 0.5aFX+

(1− 0.5a)FY and FU2
= (1− 0.5a)FX + 0.5aFY .

The true value of parameter a can be obtained only if the true underlying bivariate

distribution of X and Y is known. However, this distribution is never known to us.

Alternatively, in practice, the value of a is determined according to the researcher’s

preference or estimated from sample proportions. In our scheme, a is viewed as either

fixed and known or a parameter estimate. Performances of the proposed agreement

coefficients are investigated under these two situations.

2.2 Nominal Data

2.2.1 Definition

For nominal data, we usually use nominal cost function, that is, c(x, y) = 0 if

x = y and 1 otherwise. Let (X,Y) denote a bivariate categorical response in which X

and Y can take on the values 0, 1, ..., C. Let pij = P (X = i, Y = j), i, j=0, 1, ..., C,

denote the bivariate probabilities, and let pi. = P (X = i) and p.j = P (Y = j) denote

the marginal probabilities. Equation (2.1) is reduced to the general class of agreement

coefficients for nominal data as

κ(a) =

∑C

i=0
pii −

∑C

i=0
[0.5api. + (1− 0.5a)p.i][(1− 0.5a)pi. + 0.5ap.i]

1−
∑C

i=0
[0.5api. + (1− 0.5a)p.i][(1− 0.5a)pi. + 0.5ap.i]
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A value of a = 0 yields Cohen’s kappa, a value of a = 1 yields the RMAC, and a

value of a between 0 and 1 yields mixtures of Cohen’s kappa and the RMAC.

2.2.2 Asymptotic Distribution

The multivariate delta method for a multinomial distribution with parameters n

and θ = (θ
1
, ..., θ

K
)
T
, where not all θ

i
= 0, states that

√
n(θ̂ − θ) d−→ N(0,Λ(θ))

where Λ(θ) = D
θ
−θθ

T
, D

θ
denotes the diagonal matrix based on θ such that Λ

ii
(θ) =

θ
i
− θ

2

i
and Λ

ij
(θ) = −θ

i
θ
j
, i 6= j.

Let f: <T −→ <, then if f(θ) 6= 0,

√
n(f(θ̂)− f(θ)) d−→ N(0,Σ

f
)

where

Σ
f

= ∇f(θ)
T
Λ(θ)∇f(θ)

= (
∂f

∂θ
1

...
∂f

∂θ
T

)Λ(θ)(
∂f

∂θ
1

...
∂f

∂θ
T

)
T

=
K∑

i=1

K∑
j=1

Λ
ii
(θ)(

∂f

∂θ
i

)(
∂f

∂θ
j

)

=
K∑

i=1

θ
i
(
∂f

∂θ
i

)
2
−

K∑
i=1

θ
i

2
(
∂f

∂θ
i

)
2
− 2

∑
i<j

θ
i
θ
j
(
∂f

∂θ
i

)(
∂f

∂θ
j

)

=
K∑

i=1

θ
i
(
∂f

∂θ
i

)
2
− [

K∑
i=1

θ
i
(
∂f

∂θ
i

)]
2

(2.2)



27

For κ(a) on categorical responses, let K = (C + 1)
2
, and let

θ = (p
00

, p
01

, ..., p
CC

)
T

denote the vector of probability parameters. We can work with equation (2.2) in the

simpler form of replacing each θ
i
with a value for p

gh

C∑
g=0

C∑
h=0

p
gh

(
∂f

∂p
gh

)
2
− [

C∑
g=0

C∑
h=0

p
gh

(
∂f

∂p
gh

)]
2

2.2.2.1 Fixed and Known a

Let

f(θ) = tanh
−1

[κ(a)]

=
1
2

log(
1 + κ(a)
1− κ(a)

)

=
1
2

log(
1 +

∑C

i=0
p

ii
− 2

∑C

i=0
[0.5ap

i.
+ (1− 0.5a)p

.i
][(1− 0.5a)p

i.
+ 0.5ap

.i
]

1−
∑C

i=0
p

ii

)

Then

f(θ̂) = tanh
−1

[κ̂(a)]

=
1
2

log(
1 + κ̂(a)
1− κ̂(a)

)

=
1
2

log(
1 +

∑C

i=0
p̂

ii
− 2

∑C

i=0
[0.5ap̂

i.
+ (1− 0.5a)p̂

.i
][(1− 0.5a)p̂

i.
+ 0.5ap̂

.i
]

1−
∑C

i=0
p̂

ii

)

where θ̂ = (p̂
00

, p̂
01

, ..., p̂
CC

)
T

denotes the vector of estimated probability parameters.
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Let Π
0

=
∑C

i=0
p

ii
,Π

az
=

∑C

i=0
[0.5ap

i.
+ (1− 0.5a)p

.i
][(1− 0.5a)p

i.
+ 0.5ap

.i
].

Then

D
gh

=
∂f

∂p
gh

=
1−Π

0

2(1 + Π
0
− 2Π

az
)
[

∂(Π0−2Πaz)
∂pgh

(1−Π
0
)− ∂(1−Π0)

∂pgh
(1 + Π

0
− 2Π

az
)

(1−Π
0
)2

]

=
1

2(1 + Π
0
− 2Π

az
)
(
∂Π

0

∂p
gh

− 2
∂Π

az

∂p
gh

) +
1

2(1−Π
0
)
(
∂Π

0

∂p
gh

)

Now

∂Π
0

∂p
gh

= I(g = h)

where I(g = h) is an indicator function such that I(g = h) = 1 if g = h and I(g = h) = 0

if g 6= h.

∂Π
az

∂p
gh

=
C∑

i=0

{[0.5ap
i.

+ (1− 0.5a)p
.i
]

∂

∂p
gh

[(1− 0.5a)p
i.

+ 0.5ap
.i
]

+ [(1− 0.5a)p
i.

+ 0.5ap
.i
]

∂

∂p
gh

[0.5ap
i.

+ (1− 0.5a)p
.i
]}

=
C∑

i=0

{[0.5ap
i.

+ (1− 0.5a)p
.i
][(1− 0.5a)I(g = i) + 0.5aI(h = i)]

+ [(1− 0.5a)p
i.

+ 0.5ap
.i
][0.5aI(g = i) + (1− 0.5a)I(h = i)]}

= 0.5a(1− 0.5a)p
g.

+ 0.25a
2
p

h.
+ (1− 0.5a)

2
p

.g
+ 0.5a(1− 0.5a)p

.h

+ 0.5a(1− 0.5a)p
g.

+ (1− 0.5a)
2
p

h.
+ 0.25a

2
p

.g
+ 0.5a(1− 0.5a)p

.h

= a(1− 0.5a)(p
g.

+ p
.h

) + (1− a + 0.5a
2
)(p

h.
+ p

.g
)
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Thus

D
gh

=
1

2(1 + Π
0
− 2Πaz)

[I(g = h)

− 2a(1− 0.5a)(p
g.

+ p
.h

)− 2(1− a + 0.5a
2
)(p

h.
+ p

.g
)] +

1
2(1−Π

0
)
I(g = h)

The asymptotic variance of
√

n(tanh
−1

(κ̂(a))− tanh
−1

(κ(a))) is

V =
C∑

g=0

C∑
h=0

p
gh

(D
gh

)
2
− (

C∑
g=0

C∑
h=0

p
gh

D
gh

)
2

The estimator of D
gh

, D̂
gh

, replaces all p
ij

with p̂
ij

(the sample proportions). So

the asymptotic variance estimate of
√

n(tanh
−1

(κ̂(a))− tanh
−1

(κ(a))) is

V̂ =
C∑

g=0

C∑
h=0

p̂
gh

(D̂
gh

)
2
− (

C∑
g=0

C∑
h=0

p̂
gh

D̂
gh

)
2

The asymptotic normality of κ̂(a) can be obtained by letting

κ̂(a) = tanh[f(p̂)] = g(f(p̂))
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Since g
′
(t) = ∂

∂t tanh(t) = 4e
2t

(1+e2t)2
and

√
n{tanh

−1
[f(θ̂)] − tanh

−1
[f(θ)]} d−→

N(0, V ),

g
′
(tanh

−1
[f(θ)]) =

4 exp(log 1+κ(a)
1−κ(a))

[1 + exp(log 1+κ(a)
1−κ(a))]

2

=
4[1 + κ(a)]
1− κ(a)

[1− κ(a)]
2

4

= 1− κ
2
(a)

Hence the asymptotic variance estimate for
√

n(κ̂(a)− κ(a)) is

[1− κ̂
2
(a)]

2
V̂

Now we show that when a = 0 and a = 1, the asymptotic variances of κ̂(a) are

equivalent to the ones of Cohen’s kappa and the RMAC, respectively. Recall that the

asymptotic variance for
√

n(κ̂(a)− κ(a)) is

[1− κ
2
(a)]

2
V

= [1− κ(a)]
2
[1 + κ(a)]

2
V

= (
1 + p

o
− 2p

e

1− p
e

)
2
[1− κ(a)]

2
[

C∑
g=0

C∑
h=0

p
gh

(D
gh

)
2
− (

C∑
g=0

C∑
h=0

p
gh

D
gh

)
2
]

= (
1 + p

o
− 2p

e

1− p
e

)
2
[1− κ(a)]

2
[

C∑
g=0

p
gg

(D
gg

)
2
+

∑ C∑
g 6=h

p
gh

(D
gh

)
2
− (

C∑
g=0

C∑
h=0

p
gh

D
gh

)
2
]

(2.3)

When a = 0,
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C∑
g=0

p
gg

(D
gg

)
2

=
C∑

g=0

p
gg
{ 1
2(1 + p

o
− 2p

e
)
[1− 2(p

g.
+ p

.g
)] +

1
2(1− p

o
)
}
2

=
C∑

g=0

p
gg

[
(1− p

e
)− (1− p

o
)(p

g.
+ p

.g
)

(1 + p
o
− 2p

e
)(1− p

o
)

]
2

=
C∑

g=0

p
gg

[
1− p

e
− (1− p

e
)(1− κ)(p

g.
+ p

.g
)

(1 + p
o
− 2p

e
)(1− p

e
)(1− κ)

]
2

=
C∑

g=0

p
gg

[
1− (1− κ)(p

g.
+ p

.g
)

(1 + p
o
− 2p

e
)(1− κ)

]
2

∑ ∑
g 6=h

p
gh

(D
gh

)
2

=
∑ ∑

g 6=h

p
gh
{ 1
2(1 + p

o
− 2p

e
)
[−2(p

h.
+ p

.g
)]}

2

=
1

(1 + p
o
− 2p

e
)2

∑ ∑
g 6=h

p
gh

(p
g.

+ p
.h

)
2
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(
C∑

g=0

C∑
h=0

p
gh

D
gh

)
2

= { 1
2(1 + p

o
− 2p

e
)
[p

o
− 2

C∑
g=0

C∑
h=0

p
gh

(p
h.

+ p
.g
)] +

p
o

2(1− p
o
)
}
2

= [
p

o
(1− p

e
)− (1− p

o
)(

∑C

g=0
p

.g

∑C

h=0
p

gh
+

∑C

h=0
p

h.

∑C

g=0
p

gh
)

(1 + p
o
− 2p

e
)(1− p

o
)

]
2

= [
[1− (1− p

e
)(1− κ)]− (1− κ)(2p

e
)

(1 + p
o
− 2p

e
)(1− κ)

]
2

= [
κ− p

e
(1− κ)

(1 + p
o
− 2p

e
)(1− κ)

]
2

Plug these terms in (2.3), we have

C∑
g=0

{
[1− (p

g.
+ p

.g
)(1− κ)]

2

(1− p
e
)2

}+
(1− κ)

2 ∑∑
g 6=h

p
gh

(p
g.

+ p
.h

)
2

(1− p
e
)2

−
κ− p

e
(1− κ)

(1− p
e
)2

Divide the above expression by n and use estimated probabilities p̂ instead of p,

it yields the same result as the one derived by Fleiss, Cohen and Everitt [17].

When a=1, our expression of D
gh

becomes

D
gh

=
1

2(1 + Π
0
− 2Πaz)

[I(g = h)− (p
g.

+ p
.h

)− (p
h.

+ p
.g
)] +

1
2(1−Π

0
)
I(g = h)

and the expression of ∂Πz
∂πgh

in the RMAC [14], with w
ij

= 1 when i = j and w
ij

= 0

when i 6= j, is
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C∑
i=0

1
4
[(π

i.
+ π

.i
){I(g = j) + I(h = j)}+ (π

j.
+ π

.j
){I(g = i) + I(h = i)}]

=
1
2
(π

g.
+ π

h.
+ π

.g
+ π

.h
)

So the expression of D
gh

in the RMAC is the same as our expression.

2.2.2.2 Estimated a

Let a be defined based on the square root of the average squared distance between

the marginal distributions, i.e.

a =

√√√√ 1
C + 1

C∑
j=0

[F
X

(j)− F
Y

(j)]2

=

√√√√ 1
C + 1

C∑
j=0

[
j∑

i=0

(p
i.
− p

.i
)]2

Here, a is a function of θ.

Again, let

θ = (p
00

, p
01

, ..., p
CC

)
T

denote the vector of probability parameters.
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Let

f(θ) = tanh
−1

[κ(a)]

=
1
2

log(
1 + κ(a)
1− κ(a)

)

=
1
2

log(
1 +

∑C

i=0
p

ii
− 2

∑C

i=0
[0.5ap

i.
+ (1− 0.5a)p

.i
][(1− 0.5a)p

i.
+ 0.5ap

.i
]

1−
∑C

i=0
p

ii

)

Then

f(θ̂) = tanh
−1

[κ̂(â)]

=
1
2

log(
1 + κ̂(â)
1− κ̂(â)

)

=
1
2

log(
1 +

∑C

i=0
p̂

ii
− 2

∑C

i=0
[0.5âp̂

i.
+ (1− 0.5â)p̂

.i
][(1− 0.5â)p̂

i.
+ 0.5âp̂

.i
]

1−
∑C

i=0
p̂

ii

)

where θ̂ = (p̂
00

, p̂
01

, ..., p̂
CC

)
T

denotes the vector of estimated probability parameters

and

â =

√√√√ 1
C + 1

C∑
j=0

[
j∑

i=0

(p̂
i.
− p̂

.i
)]2

That is, a is estimated from the observed proportions θ̂.

If a 6= 0, 1, we can work with equation (2.2) in the simpler form of replacing each

θ
i
with a value for p

gh

C∑
g=0

C∑
h=0

p
gh

(
∂f

∂p
gh

)
2
− [

C∑
g=0

C∑
h=0

p
gh

(
∂f

∂p
gh

)]
2

(2.4)

Let Π
0

=
∑C

i=0
p

ii
,Π

az
=

∑C

i=0
[0.5ap

i.
+ (1− 0.5a)p

.i
][(1− 0.5a)p

i.
+ 0.5ap

.i
].
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Then

D
gh

=
∂f

∂p
gh

=
1−Π

0

2(1 + Π
0
− 2Π

az
)
[

∂(Π0−2Πaz)
∂pgh

(1−Π
0
)− ∂(1−Π0)

∂pgh
(1 + Π

0
− 2Π

az
)

(1−Π
0
)2

]

=
1

2(1 + Π
0
− 2Π

az
)
(
∂Π

0

∂p
gh

− 2
∂Π

az

∂p
gh

) +
1

2(1−Π
0
)
(
∂Π

0

∂p
gh

) (2.5)

Now

∂Π
0

∂p
gh

= I(g = h)

∂Π
az

∂p
gh

=
C∑

i=0

{[0.5ap
i.

+ (1− 0.5a)p
.i
]

∂

∂p
gh

[(1− 0.5a)p
i.

+ 0.5ap
.i
]

+ [(1− 0.5a)p
i.

+ 0.5ap
.i
]

∂

∂p
gh

[0.5ap
i.

+ (1− 0.5a)p
.i
]}

=
C∑

i=0

{[0.5ap
i.

+ (1− 0.5a)p
.i
][−0.5p

i.
(

∂

∂p
gh

a) + (1− 0.5a)I(g = i)

+ 0.5p
.i
(

∂

∂p
gh

a) + 0.5aI(h = i)] + [(1− 0.5a)p
i.

+ 0.5ap
.i
]

[0.5p
i.
(

∂

∂p
gh

a) + 0.5aI(g = i)− 0.5p
.i
(

∂

∂p
gh

a) + (1− 0.5a)I(h = i)]}
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and

Σ
gh

=
∂

∂p
gh

a =
∂

∂p
gh

√√√√ 1
C + 1

C∑
j=0

[
j∑

i=0

(p
i.
− p

.i
)]2

=
1
2
{ 1
C + 1

C∑
j=0

[
j∑

i=0

(p
i.
− p

.i
)]

2
}
− 1

2 (
2

C + 1
)

C∑
j=0

{[
j∑

i=0

(p
i.
− p

.i
)]

[
j∑

i=0

(I(g = i)− I(h = i))]}

Calculate each of these terms and plug them into equation (2.5), then plug

equation (2.5) into equation (2.4). The asymptotic variance of
√

n(tanh
−1

(κ̂(â)) −

tanh
−1

(κ(a))) is

V =
C∑

g=0

C∑
h=0

p
gh

(D
gh

)
2
− (

C∑
g=0

C∑
h=0

p
gh

D
gh

)
2

If a = 0, κ(a) is reduced to Cohen’s kappa; if a = 1, κ(a) is reduced to the RMAC.

One can then use the asymptotic results of Cohen’s kappa and the RMAC, respectively.

If â 6= 0, 1, replacing all p
ij

with p̂
ij

, yields the estimated asymptotic variance of

√
n(tanh

−1
(κ̂(â))− tanh

−1
(κ(a)))

V̂ =
C∑

g=0

C∑
h=0

p̂
gh

(D̂
gh

)
2
− (

C∑
g=0

C∑
h=0

p̂
gh

D̂
gh

)
2

Hence the asymptotic variance estimate for
√

n(κ̂(â)− κ(a)) is

[1− κ̂
2
(â)]

2
V̂
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If â = 0, κ̂(â) is reduced to the estimate of Cohen’s kappa; if â = 1, κ̂(â) is reduced

to the estimate of the RMAC. One can then use the asymptotic variance estimate of the

estimate of Cohen’s kappa and the RMAC, respectively.

2.3 Ordinal Data

2.3.1 Definition

Since the idea of the general class of agreement coefficients was motivated by

Cohen’s kappa and the RMAC, and both of these measures have been extended to

incorporate weights for ordinal data, our proposed weighted κ(a) and κ(â) should have

a general form with weighted kappa and weighted RMAC being special cases.

Let (X,Y) denote a bivariate categorical response in which X and Y can take

on the values 0, 1, ..., C. Let p
ij

= P (X = i, Y = j), i, j = 0, 1, ..., C, denote the

bivariate probabilities, and let p
i.

= P (X = i) and p
.j

= P (Y = j) denote the marginal

probabilities. Agreement weights, say w
ij

, i, j = 0, ..., C, are assigned to the (C + 1)
2

cells. The range of weights is 0 ≤ w
ij
≤ 1 such that w

ij
= 1 for i = j, 0 ≤ w

ij
< 1 for

i 6= j and w
ij

= w
ji
. Assume arbitrary cost function, equation (2.1) is reduced to the

general class of agreement coefficients for ordinal data as

κ
w
(a) =

∑C

i=0

∑C

j=0
w

ij
p

ij
−

∑C

i=0

∑C

j=0
w

ij
[(1− 0.5a)p

i.
+ 0.5ap

.i
][0.5ap

j.
+ (1− 0.5a)p

.j
]

1−
∑C

i=0

∑C

j=0
w

ij
[(1− 0.5a)p

i.
+ 0.5ap

.i
][0.5ap

j.
+ (1− 0.5a)p

.j
]

A value of a = 0 yields weighted kappa, a value of a = 1 yields the RMAC, and a value

of a between 0 and 1 yields mixtures of weighted kappa and the RMAC.
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For ordinal data, better weights should be proportional to the distance (or its

square) between the two points i and j on the ordinal scale, in order to account for

severity of discordance or size of discrepancy. Two commonly used weights for ordinal

data are Cicchetti-Allison Weights, defined as w
ij

= 1− |i−j|
C , and Fleiss-Cohen Weights,

defined as w
ij

= 1− (i−j)
2

C2 .

2.3.2 Asymptotic Distribution

2.3.2.1 Fixed and Known a

For κ(a) on categorical responses, let K = (C + 1)
2
, and let

θ = (p
00

, p
01

, ..., p
CC

)
T

denote the vector of probability parameters. We can work with equation (2.2) in the

simpler form of replacing each θ
i
with a value for p

gh

C∑
g=0

C∑
h=0

p
gh

(
∂f

∂p
gh

)
2
− [

C∑
g=0

C∑
h=0

p
gh

(
∂f

∂p
gh

)]
2

(2.6)

Let

f(θ) = tanh
−1

[κ
w
(a)]

=
1
2

log(
1 + κ

w
(a)

1− κ
w
(a)

)

=
1
2

log(
1 +

∑C

i=0

∑C

j=0
w

ij
p

ij
− 2

∑C

i=0

∑C

j=0
w

ij
[0.5ap

i.
+ (1− 0.5a)p

.i
][(1− 0.5a)p

j.
+ 0.5ap

.j
]

1−
∑C

i=0

∑C

j=0
w

ij
p

ij

)
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Then

f(θ̂) = tanh
−1

[κ̂
w
(a)]

=
1
2

log(
1 + κ̂

w
(a)

1− κ̂
w
(a)

)

=
1
2

log(
1 +

∑C

i=0

∑C

j=0
w

ij
p̂

ij
− 2

∑C

i=0

∑C

j=0
w

ij
[0.5ap̂

i.
+ (1− 0.5a)p̂

.i
][(1− 0.5a)p̂

j.
+ 0.5ap̂

.j
]

1−
∑C

i=0

∑C

j=0
w

ij
p̂

ij

)

where θ̂ = (p̂
00

, p̂
01

, ..., p̂
CC

)
T

denotes the vector of estimated probability parameters.

Let Π
0

=
∑C

i=0

∑C

j=0
w

ij
p

ij
, Π

az
=

∑C

i=0

∑C

j=0
w

ij
[0.5ap

i.
+ (1 − 0.5a)p

.i
][(1 −

0.5a)p
j.

+ 0.5ap
.j
].

Then

D
gh

=
∂f

∂p
gh

=
1−Π

0

2(1 + Π
0
− 2Π

az
)
[

∂(Π0−2Πaz)
∂pgh

(1−Π
0
)− ∂(1−Π0)

∂pgh
(1 + Π

0
− 2Π

az
)

(1−Π
0
)2

]

=
1

2(1 + Π
0
− 2Π

az
)
(
∂Π

0

∂p
gh

− 2
∂Π

az

∂p
gh

) +
1

2(1−Π
0
)
(
∂Π

0

∂p
gh

) (2.7)

Now

∂Π
0

∂p
gh

= w
gh

(2.8)
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∂Π
az

∂p
gh

=
C∑

i=0

C∑
j=0

{w
ij
[0.5ap

i.
+ (1− 0.5a)p

.i
]

∂

∂p
gh

[(1− 0.5a)p
j.

+ 0.5ap
.j
]

+ w
ij
[(1− 0.5a)p

j.
+ 0.5ap

.j
]

∂

∂p
gh

[0.5ap
i.

+ (1− 0.5a)p
.i
]}

=
C∑

i=0

C∑
j=0

{w
ij
[0.5ap

i.
+ (1− 0.5a)p

.i
][(1− 0.5a)I(g = j) + 0.5aI(h = j)]

+ w
ij
[(1− 0.5a)p

j.
+ 0.5ap

.j
][0.5aI(g = i) + (1− 0.5a)I(h = i)]}

=
C∑

i=0

{w
ig

[0.5ap
i.

+ (1− 0.5a)p
.i
](1− 0.5a) + w

ih
[0.5ap

i.
+ (1− 0.5a)p

.i
](0.5a)}

+
C∑

j=0

{w
gj

[(1− 0.5a)p
j.

+ 0.5ap
.j
](0.5a) + w

hj
[(1− 0.5a)p

j.
+ 0.5ap

.j
](1− 0.5a)}

(2.9)

Plug (2.8) and (2.9) into (2.7), D
gh

can be calculated.

The asymptotic variance of
√

n(tanh
−1

(κ̂
w
(a))− tanh

−1
(κ

w
(a))) is

V =
C∑

g=0

C∑
h=0

p
gh

(D
gh

)
2
− (

C∑
g=0

C∑
h=0

p
gh

D
gh

)
2

The estimator of D
gh

, D̂
gh

replaces all p
ij

with p̂
ij

(the sample proportions). So

the asymptotic variance estimate of
√

n(tanh
−1

(κ̂
w
(a))− tanh

−1
(κ

w
(a))) is

V̂ =
C∑

g=0

C∑
h=0

p̂
gh

(D̂
gh

)
2
− (

C∑
g=0

C∑
h=0

p̂
gh

D̂
gh

)
2
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Finally, we use the delta method to transform back to get the asymptotic variance

estimate for
√

n(κ̂
w
(a)− κ

w
(a)), which is

[1− κ̂
2

w
(a)]

2
V̂

With tedious but straightforward algebra, we can show that when a = 0 and

a = 1, the asymptotic variances of κ̂
w
(a) are equivalent to the ones of weighted kappa

and the RMAC, respectively.

2.3.2.2 Estimated a

Let a be defined based on the square root of the average squared distance between

the marginal distributions

a ≡

√√√√ 1
C + 1

C∑
j=0

[F
X

(j)− F
Y

(j)]2

=

√√√√ 1
C + 1

C∑
j=0

[
j∑

i=0

(p
i.
− p

.i
)]2

Here, a is a function of θ.

Again, let

θ = (p
00

, p
01

, ..., p
CC

)
T

denote the vector of probability parameters.
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Let

f(θ) = tanh
−1

[κ
w
(a)]

=
1
2

log(
1 + κ

w
(a)

1− κ
w
(a)

)

=
1
2

log(
1 +

∑C

i=0

∑C

j=0
w

ij
p

ij
− 2

∑C

i=0

∑C

j=0
w

ij
[0.5ap

i.
+ (1− 0.5a)p

.i
][(1− 0.5a)p

j.
+ 0.5ap

.j
]

1−
∑C

i=0

∑C

j=0
w

ij
p

ij

)

Then

f(θ̂) = tanh
−1

[κ̂(â)]

=
1
2

log(
1 + κ̂

w
(â)

1− κ̂
w
(â)

)

=
1
2

log(
1 +

∑C

i=0

∑C

j=0
w

ij
p̂

ij
− 2

∑C

i=0

∑C

j=0
w

ij
[0.5âp̂

i.
+ (1− 0.5â)p̂

.i
][(1− 0.5â)p̂

j.
+ 0.5âp̂

.j
]

1−
∑C

i=0

∑C

j=0
w

ij
p̂

ij

)

where θ̂ = (p̂
00

, p̂
01

, ..., p̂
CC

)
T

denotes the vector of estimated probability parameters

and

â =

√√√√ 1
C + 1

C∑
j=0

[
j∑

i=0

(p̂
i.
− p̂

.i
)]2

That is, a is estimated from the observed proportions θ̂.

If a 6= 0, 1, we can work with equation (2.6).

Let Π
0

=
∑C

i=0

∑C

j=0
w

ij
p

ij
, Π

az
=

∑C

i=0

∑C

j=0
w

ij
[0.5ap

i.
+ (1 − 0.5a)p

.i
][(1 −

0.5a)p
j.

+ 0.5ap
.j
].

Then we have equation (2.7), and equation (2.8) holds as well.
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∂Π
az

∂p
gh

=
C∑

i=0

C∑
j=0

{w
ij
[0.5ap

i.
+ (1− 0.5a)p

.i
]

∂

∂p
gh

[(1− 0.5a)p
j.

+ 0.5ap
.j
]

+ w
ij
[(1− 0.5a)p

j.
+ 0.5ap

.j
]

∂

∂p
gh

[0.5ap
i.

+ (1− 0.5a)p
.i
]}

=
C∑

i=0

C∑
j=0

{w
ij
[0.5ap

i.
+ (1− 0.5a)p

.i
][−0.5p

j.
(

∂

∂p
gh

a) + (1− 0.5a)I(g = j)

+ 0.5p
.j
(

∂

∂p
gh

a) + 0.5aI(h = j)] + w
ij

[(1− 0.5a)p
j.

+ 0.5ap
.j
][0.5p

i.
(

∂

∂p
gh

a)

+ 0.5aI(g = i)− 0.5p
.i
(

∂

∂p
gh

a) + (1− 0.5a)I(h = i)]} (2.10)

where

Σ
gh

=
∂

∂p
gh

a =
∂

∂p
gh

√√√√ 1
C + 1

C∑
j=0

[
j∑

i=0

(p
i.
− p

.i
)]2

= 0.5{ 1
C + 1

C∑
j=0

[
j∑

i=0

(p
i.
− p

.i
)]

2
}
−0.5

(
2

C + 1
)

C∑
j=0

{[
j∑

i=0

(p
i.
− p

.i
)]

[
j∑

i=0

(I(g = i)− I(h = i))]}

Plug equations (2.8) and (2.10) into equation (2.7), then plug equation (2.7) into

equation (2.6). The asymptotic variance of
√

n(tanh
−1

(κ̂
w
(â))− tanh

−1
(κ

w
(a))) is

V =
C∑

g=0

C∑
h=0

p
gh

(D
gh

)
2
− (

C∑
g=0

C∑
h=0

p
gh

D
gh

)
2
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If a = 0, κ
w
(a) is reduced to Cohen’s weighted kappa; if a = 1, κ

w
(a) is reduced

to the weighted RMAC. One can then use the asymptotic results of Cohen’s weighted

kappa and the weighted RMAC, respectively.

If â 6= 0, 1, replacing all p
ij

with p̂
ij

, yields the estimated asymptotic variance of

√
n(tanh

−1
(κ̂

w
(â))− tanh

−1
(κ

w
(a)))

V̂ =
C∑

g=0

C∑
h=0

p̂
gh

(D̂
gh

)
2
− (

C∑
g=0

C∑
h=0

p̂
gh

D̂
gh

)
2

Hence the asymptotic variance estimate for
√

n(κ̂
w
(â)− κ

w
(a)) is

[1− κ̂
2

w
(â)]

2
V̂

If â = 0, κ̂
w
(â) is reduced to the estimate of Cohen’s weighted kappa; if â = 1,

κ̂
w
(â) is reduced to the estimate of the weighted RMAC. One can then use the asymptotic

variance estimate of the estimate of Cohen’s weighted kappa and the weighted RMAC,

respectively.

2.4 Continuous Data

2.4.1 Definition

Let (X,Y) denote a bivariate continuous response with means µ
X

and µ
Y

and

covariance matrix  σ
2

X
σ

XY

σ
XY

σ
2

Y


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with cumulative distribution function (CDF) F
XY

. In addition, let F
X

and F
Y

denote

the marginal CDFs of X and Y , respectively.

From equation (2.1) with squared difference cost function, c(x, y) = (x − y)
2
, it

follows that

E
FU1

E
FU2

(U
1
− U

2
)
2

= E
FU1

E
FU2

(U
2

1
− 2U

1
U

2
+ U

2

2
)

= E
U1

(U
2

1
)− 2µ

U1

µ
U2

+ E
U2

(U
2

2
)

= 0.5aE
X

(X
2
) + (1− 0.5a)E

Y
(Y

2
)− 2[0.5aµ

X
+ (1− 0.5a)µ

Y
][(1− 0.5a)µ

X
+

0.5aµ
Y

] + (1− 0.5a)E
X

(X
2
) + 0.5aE

Y
(Y

2
)

= σ
2

X
+ σ

2

Y
+ (0.5a

2
− a + 1)(µ

X
− µ

Y
)
2

Then the general class of agreement coefficients for continuous responses is

ρ(a) = 1−
σ

2

X
+ σ

2

Y
+ (µ

X
− µ

Y
)
2 − 2ρσ

X
σ

Y

σ2

X
+ σ2

Y
+ (0.5a2 − a + 1)(µ

X
− µ

Y
)2

=
2ρσ

X
σ

Y
+ a(0.5a− 1)(µ

X
− µ

Y
)
2

σ2

X
+ σ2

Y
+ (0.5a2 − a + 1)(µ

X
− µ

Y
)2

=
2σ

XY
+ a(0.5a− 1)(µ

X
− µ

Y
)
2

σ2

X
+ σ2

Y
+ (0.5a2 − a + 1)(µ

X
− µ

Y
)2

where ρ is Pearson correlation coefficient; and ρ(a) in terms of u, υ and ρ is

ρ(a) =
2ρ + a(0.5a− 1)u

2

υ + 1/υ + (0.5a2 − a + 1)u2
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where

υ = σ
X

/σ
Y

= scale shift

u = (µ
X
− µ

Y
)/

√
σ

X
σ

Y
= location shift relative to the scale

A value of a = 0 yields the CCC, a value of a = 1 yields the RMAC, and a value of a

between 0 and 1 yields mixtures of the CCC and the RMAC.

The true value of a is calculated as

a =

√∫ ∞

−∞
{F

n,X
(x)− F

n,Y
(x)}2dH(x) (2.11)

where H(x) = 0.5F
X

(x)+0.5F
Y

(x), F
n,X

(t) = 1
n

∑n

i=1
I(X

i
≤ t), F

n,Y
(t) = 1

n

∑n

i=1
I(Y

i
≤

t), and I(.) is an indicator function. This is analogous to the two-sample Cramer-von

Mises criterion [2]. In Anderson’s situation, H(x) is defined as H(x) = λF
X

(x) + (1 −

λ)F
Y

(x), where

λ = lim
n

X

n
X

+ n
Y

here n
X

and n
Y

are the sample sizes for X and Y, respectively. Because we have a

bivariate sampling case, λ = 0.5.

The Lebesgue-Stieltjes integral (2.11) is approximately equivalent to

â =

√√√√0.5{ 1
n

n∑
i=1

[F
n,X

(x
i
)− F

n,Y
(x

i
)]2 +

1
n

n∑
i=1

[F
n,X

(y
i
)− F

n,Y
(y

i
)]2} (2.12)

which means â can be used to estimate a.
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2.4.2 Asymptotic Distribution

2.4.2.1 Fixed and Known a

Let (X
1
, Y

1
), ..., (X

n
, Y

n
) be independent observations from a bivariate distri-

bution such that the fourth-order moments exist, i.e. EX
4

i
< ∞ and EY

4

i
< ∞. The

estimate of ρ(a) is

ρ̂(a) =
2S

XY
+ a(0.5a− 1)(X̄ − Ȳ )

2

S2

X
+ S2

Y
+ (0.5a2 − a + 1)(X̄ − Ȳ )2

where X̄ = 1
n

∑n

i=1
X

i
, Ȳ = 1

n

∑n

i=1
Y

i
, S

2

X
= 1

n

∑n

i=1
(X

i
− X̄)

2
, S

2

Y
= 1

n

∑n

i=1
(Y

i
− Ȳ )

2

and S
XY

= 1
n

∑n

i=1
(X

i
− X̄)(Y

i
− Ȳ ).

Let

θ = (E(X
1
), E(Y

1
), E(X

2

1
), E(Y

2

1
), E(X

1
Y

1
))

T

and

θ̂ = (
1
n

n∑
i=1

X
i
,
1
n

n∑
i=1

Y
i
,
1
n

n∑
i=1

X
2

i
,
1
n

n∑
i=1

Y
2

i
,
1
n

n∑
i=1

X
i
Y

i
)
T

By the Central Limit Theorem,

√
n(θ̂ − θ) d−→ N(0,Σ)
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where

Σ =



Var(X
1
) Cov(X

1
, Y

1
) Cov(X

1
, X

2

1
) Cov(X

1
, Y

2

1
) Cov(X

1
, X

1
Y

1
)

Cov(X
1
, Y

1
) Var(Y

1
) Cov(Y

1
, X

2

1
) Cov(Y

1
, Y

2

1
) Cov(Y

1
, X

1
Y

1
)

Cov(X
1
, X

2

1
) Cov(Y

1
, X

2

1
) Var(X

2

1
) Cov(X

2

1
, Y

2

1
) Cov(X

2

1
, X

1
Y

1
)

Cov(X
1
, Y

2

1
) Cov(Y

1
, Y

2

1
) Cov(X

2

1
, Y

2

1
) Var(Y

2

1
) Cov(Y

2

1
, X

1
Y

1
)

Cov(X
1
, X

1
Y

1
) Cov(Y

1
, X

1
Y

1
) Cov(X

2

1
, X

1
Y

1
) Cov(Y

2

1
, X

1
Y

1
) Var(X

1
Y

1
)



is the variance-covariance matrix for θ.

Let f : <5 −→ < be the Fisher’s Z-transformation on ρ(a)

f(θ) = tanh
−1

[(ρ(a)]

=
1
2

log(
1 + ρ(a)
1− ρ(a)

)

=
1
2

log(
σ

2

X1

+ σ
2

Y1

+ 2σ
X1Y1

+ (a− 1)
2
(µ

X1

− µ
Y1

)
2

σ2

X1

+ σ2

Y1

− 2σ
X1Y1

+ (µ
X1

− µ
Y1

)2
)

and hence

f(θ̂) = tanh
−1

[ρ̂(a)]

=
1
2

log(
1 + ρ̂(a)
1− ρ̂(a)

)

=
1
2

log(
S

2

X
+ S

2

Y
+ 2S

XY
+ (a− 1)

2
(X̄ − Ȳ )

2

S2

X
+ S2

Y
− 2S

XY
+ (X̄ − Ȳ )2

)

Then let θ
1
, ..., θ

5
denote the elements of θ. Note that σ

2

X1

= E(X
2

1
)−[E(X

1
)]

2
= θ

3
−θ

2

1
,

σ
2

Y1

= E(Y
2

1
)− [E(Y

1
)]

2
= θ

4
−θ

2

2
, σ

X1Y1

= E(X
1
Y

1
)−E(X

1
)E(Y

1
) = θ

5
−θ

1
θ
2
, µ

X1

= θ
1
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and µ
Y1

= θ
2
. Therefore,

f(θ) =
1
2

log(
θ
3
− θ

2

1
+ θ

4
− θ

2

2
+ 2(θ

5
− θ

1
θ
2
) + (a− 1)

2
(θ

1
− θ

2
)
2

θ
3
− θ2

1
+ θ

4
− θ2

2
− 2(θ

5
− θ

1
θ
2
) + (θ

1
− θ

2
)2

)

For simplicity, let

Π
1

= θ
3
− θ

2

1
+ θ

4
− θ

2

2
+ 2(θ

5
− θ

1
θ
2
) + (a− 1)

2
(θ

1
− θ

2
)
2

and

Π
2

= θ
3
− θ

2

1
+ θ

4
− θ

2

2
− 2(θ

5
− θ

1
θ
2
) + (θ

1
− θ

2
)
2

Then we have

∂Π
1

∂θ
1

= −2θ
1
− 2θ

2
+ 2(a− 1)

2
(θ

1
− θ

2
)

∂Π
2

∂θ
1

= −2θ
1
+ 2θ

2
+ 2(θ

1
− θ

2
) = 0

∂Π
1

∂θ
2

= −2θ
2
− 2θ

1
− 2(a− 1)

2
(θ

1
− θ

2
)

∂Π
2

∂θ
2

= −2θ
2
+ 2θ

1
− 2θ

1
+ 2θ

2
= 0

∂Π
1

∂θ
3

=
∂Π

2

∂θ
3

= 1

∂Π
1

∂θ
4

=
∂Π

2

∂θ
4

= 1

∂Π
1

∂θ
5

= 2
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and

∂Π
2

∂θ
5

= −2

So the gradient matrix of f , evaluated at θ is

∇f(θ) =
1
2
(
Π

2

Π
1

)



∂Π1
∂θ1

Π2−
∂Π2
∂θ1

Π1

Π2

2
∂Π1
∂θ2

Π2−
∂Π2
∂θ2

Π1

Π2

2
∂Π1
∂θ3

Π2−
∂Π2
∂θ3

Π1

Π2

2
∂Π1
∂θ4

Π2−
∂Π2
∂θ4

Π1

Π2

2
∂Π1
∂θ5

Π2−
∂Π2
∂θ5

Π1

Π2

2


Therefore, if we let

Σ
∗

= (∇f)
T
Σ(∇f)

then by the delta method,

√
n(f(θ̂)− f(θ)) d−→ N(0,Σ

∗
)

To find the asymptotic normality of ρ̂(a), we let

ρ(a) = tanh(f(θ))

By using the delta method one more time, we get

√
n(ρ̂(a)− ρ(a)) d−→ N(0, (1− ρ

2
(a))

2
Σ
∗
)
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The estimated asymptotic standard error of ρ̂(a), obtained by substituting sample coun-

terparts that are consistent estimates, is
√

1
n(1− ρ̂2(a))2Σ̂∗. By the Slutsky theorem,

the 100× (1− α)% asymptotic confidence interval for ρ(a) is

(ρ̂(a)− z
1−α

2

√
1
n

(1− ρ̂2(a))2Σ̂∗, ρ̂(a) + z
1−α

2

√
1
n

(1− ρ̂2(a))2Σ̂∗)

With tedious but straightforward algebra, we can show that when a = 0 and

a = 1, the asymptotic variances of ρ̂(a) are equivalent to the ones of Lin’s CCC and the

RMAC, respectively.

2.4.2.2 Estimated a

Let (X
1
, Y

1
), ..., (X

n
, Y

n
) be independent observations from a bivariate distri-

bution such that the fourth-order moments exist, i.e. EX
4

i
< ∞ and EY

4

i
< ∞. The

estimate of ρ(a) is

ρ̂(â) =
2S

XY
+ â(0.5â− 1)(X̄ − Ȳ )

2

S2

X
+ S2

Y
+ (0.5â2 − â + 1)(X̄ − Ȳ )2

where X̄ = 1
n

∑n

i=1
X

i
, Ȳ = 1

n

∑n

i=1
Y

i
, S

2

X
= 1

n

∑n

i=1
(X

i
− X̄)

2
, S

2

Y
= 1

n

∑n

i=1
(Y

i
− Ȳ )

2
,

S
XY

= 1
n

∑n

i=1
(X

i
− X̄)(Y

i
− Ȳ ), and

â =

√√√√0.5{ 1
n

n∑
i=1

[F
n,X

(x
i
)− F

n,Y
(x

i
)]2 +

1
n

n∑
i=1

[F
n,X

(y
i
)− F

n,Y
(y

i
)]2}

Define

U = [F
n,X

(X
1
)− F

n,Y
(X

1
)]

2
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u =
1
n

n∑
i=1

[F
n,X

(X
i
)− F

n,Y
(X

i
)]

2

V = [F
n,X

(Y
1
)− F

n,Y
(Y

1
)]

2

v =
1
n

n∑
i=1

[F
n,X

(Y
i
)− F

n,Y
(Y

i
)]

2

Let

δ = (E(X
1
), E(Y

1
), E(X

2

1
), E(Y

2

1
), E(X

1
Y

1
), E(U), E(V ))

T

and

δ̂ = (
1
n

n∑
i=1

X
i
,
1
n

n∑
i=1

Y
i
,
1
n

n∑
i=1

X
2

i
,
1
n

n∑
i=1

Y
2

i
,
1
n

n∑
i=1

X
i
Y

i
, u, v)

T

By the Central Limit Theorem,

√
n(δ̂ − δ) d−→ N(0,Ω)

Here

Ω =

 Σ Ψ
1

Ψ
T

1
Ψ

2


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is the variance-covariance matrix for δ, where Σ was defined in section 2.4.2.1 and

Ψ
1

=



Cov(X
1
, U) Cov(X

1
, V )

Cov(Y
1
, U) Cov(Y

1
, V )

Cov(X
2

1
, U) Cov(X

2

1
, V )

Cov(Y
2

1
, U) Cov(Y

2

1
, V )

Cov(X
1
Y

1
, U) Cov(X

1
Y

1
, V )



Ψ
2

=

 Var(U) Cov(U, V )

Cov(U, V ) Var(V )


Since

√
0.5[E(U) + E(V )] =

√
0.5

∫ ∞

−∞
[F

n,X
(x)− F

n,Y
(x)]2f

X
(x) + [F

n,X
(x)− F

n,Y
(x)]2f

Y
(x)

=

√
0.5

∫ ∞

−∞
{F

n,X
(x)− F

n,Y
(x)}2d(F

X
(x) + F

Y
(x))

=

√∫ ∞

−∞
{F

n,X
(x)− F

n,Y
(x)}2dH(x)

= a
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let g : <7 −→ < be the Fisher’s Z-transformation on ρ(a)

g(δ) = tanh
−1

[(ρ(a)]

=
1
2

log(
1 + ρ(a)
1− ρ(a)

)

=
1
2

log(
σ

2

X1

+ σ
2

Y1

+ 2σ
X1Y1

+ (a− 1)
2
(µ

X1

− µ
Y1

)
2

σ2

X1

+ σ2

Y1

− 2σ
X1Y1

+ (µ
X1

− µ
Y1

)2
)

and hence

g(δ̂) = tanh
−1

[ρ̂(â)]

=
1
2

log(
1 + ρ̂(â)
1− ρ̂(â)

)

=
1
2

log(
S

2

X
+ S

2

Y
+ 2S

XY
+ (â− 1)

2
(X̄ − Ȳ )

2

S2

X
+ S2

Y
− 2S

XY
+ (X̄ − Ȳ )2

)

Then let δ
1
, ..., δ

7
denote the elements of δ. Note that σ

2

X1

= E(X
2

1
)− [E(X

1
)]

2
=

θ
3
− θ

2

1
, σ

2

Y1

= E(Y
2

1
)− [E(Y

1
)]

2
= θ

4
− θ

2

2
, σ

X1Y1

= E(X
1
Y

1
)−E(X

1
)E(Y

1
) = θ

5
− θ

1
θ
2
,

µ
X1

= θ
1

and µ
Y1

= θ
2
. Therefore,

g(δ) =
1
2

log(
δ
3
− δ

2

1
+ δ

4
− δ

2

2
+ 2(δ

5
− δ

1
δ
2
) + (

√
0.5(δ

6
+ δ

7
)− 1)

2
(δ

1
− δ

2
)
2

δ
3
− δ2

1
+ δ

4
− δ2

2
− 2(δ

5
− δ

1
δ
2
) + (δ

1
− δ

2
)2

)

For simplicity, let

Λ
1

= δ
3
− δ

2

1
+ δ
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Then we have
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So the gradient matrix of g, evaluated at δ is

∇g(δ) =
1
2
(
Λ

2

Λ
1

)



∂Λ1
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

Therefore, if we let

Ω
∗

= (∇g)
T
Ω(∇g)

then by the delta method,

√
n(g(δ̂)− g(δ)) d−→ N(0,Ω

∗
)

To find the asymptotic normality of ρ̂(â), we let

ρ(a) = tanh(g(δ))

By using the delta method one more time, we get

√
n(ρ̂(â)− ρ(a)) d−→ N(0, (1− ρ

2
(a))

2
Ω
∗
)
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The estimated asymptotic standard error of ρ̂(â), obtained by substituting sample coun-

terparts that are consistent estimates, is
√

1
n(1− ρ̂2(â))2Ω̂∗. By the Slutsky theorem,

the 100× (1− α)% asymptotic confidence interval for ρ(a) is

(ρ̂(â)− z
1−α

2

√
1
n

(1− ρ̂2(â))2Ω̂∗, ρ̂(â) + z
1−α

2

√
1
n

(1− ρ̂2(â))2Ω̂∗)
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Chapter 3

Simulations

3.1 Simulation Study for Categorical Responses

We conducted analysis using simulated data to assess the accuracy and precision

of κ̂(a) and κ̂(â). Two cases were considered: a was fixed and known and a was esti-

mated from the sample proportions. For each case, we considered three distributions

with C = 1 and denoted by the vector θ = (p
11

, p
21

, p
12

, p
22

); these distributions are (i)

(0.6,0.1,0.1,0.2); (ii) (0.58,0.22,0.02,0.18) and (iii) (0.5,0.4,0,0.1). Further, we considered

the following distributions, (iv) the distribution with C = 2 formed by taking the prob-

abilities from Table 3.1; (v) the distribution with C = 3 formed by taking the sample

proportions from data from Westlund and Kurkland [37](Table 3.2) and (vi) the distri-

bution with C = 4 formed by taking the sample proportions from data from Brostoff, et

al [6](Table 3.3). For each distribution, we simulated 100000 data sets of size n=20, 50

and 100.

Table 3.1 The fourth distribution
Y

X 0 1 2 Total
0 0.25 0.01 0.24 0.5
1 0.02 0.28 0.1 0.4
2 0.03 0.01 0.06 0.1
Total 0.3 0.3 0.4 1

Case 1. Fixed and Known a:
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Table 3.2 The fifth distribution
Neurologist 2

Neurologist 1 1 2 3 4 Total
1 38 5 0 1 44
2 33 11 3 0 47
3 10 14 5 6 35
4 3 7 3 10 23
Total 84 37 11 17 149

Table 3.3 The sixth distribution
RAST

MAST Negative Weak Moderate High Very High Total
Negative 86 3 14 0 2 105
Weak 26 0 10 4 0 40
Moderate 20 2 22 4 1 49
High 11 1 37 16 14 79
Very High 3 0 15 24 48 90
Total 146 6 98 48 65 363

For each distribution, we used the square root of the average squared distance to

calculate a. Then we computed κ(a) using one or more weighting schemes and treated

it as the true parameter value for that weighting scheme. For each simulated data set

of a distribution, we used a=0,0.2,0.4,0.6,0.8 and 1 respectively as fixed and known

values of a, to compute κ̂(a), ŜE(κ̂(a)) and confidence interval. The series of values of

a reflected the uncertainty of selecting a a priori in practice and enabled us to compare

the performance of the estimators with different values of a. In particular, since a=0

yields Cohen’s kappa and a=1 yields the RMAC, we were able to assess the performance

of these two important measures as well.

The ”a” column contains the true values of a for the distributions. The ”κ(a)”

column contains the true values of κ(a). The ”Mean(std)” column contains the mean

values of κ̂(a), which were the averages of valid κ̂(a) computed from the simulated
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data sets of the distribution, and the standard deviations of valid κ̂(a) computed from

the simulated data sets of the distribution. The ”Relative Bias(%)” column contains

the relative bias of the agreement estimate, which is calculated by [(mean κ̂(a)-true

κ(a))/mean κ̂(a)]× 100. The ”SE(std)” column contains the mean values of ŜE(κ̂(a)),

which were the averages of valid ŜE(κ̂(a)) computed from the simulated data sets of the

distribution, and the standard deviations of valid ŜE(κ̂(a)) computed from the simulated

data sets of the distribution. Each confidence interval computed from the generated data

set was evaluated to determine whether the true parameter value was contained within

the confidence interval, and the coverage is contained in the ”Coverage of CI” column.

Case 2. Estimated a:

The simulation was conducted differently from Case 1 only in that, instead of

using a series of fixed and known a, we estimated a from each generated data set using

the square root of the average squared distance. As in Case 1, the true value of a was

calculated from the underlying distribution using the square root of the average squared

distance, so both cases share the same true value of a and true value of κ(a) for each

distribution. Same quantities were calculated as in Case 1.

Results:

The simulation results are listed in Table 3.4 - Table 3.10. For each of the distri-

butions with noticeable difference between marginal distributions and each sample size,

the selected value of a=0 yields the largest agreement and the selected value of a=1 yields

the smallest agreement, that is, the Cohen’s kappa and the RMAC form the upper and

lower bounds of the class of agreement. The larger the difference between two marginal
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distributions (i.e. the larger the value in ”a” column), the larger the difference between

the bounds, suggesting the impact of different marginal distributions on agreement.

For agreement estimation, if the selected a is less than true a, then κ̂(a) tends

to overestimate κ(a); if the selected a is greater than true a, then κ̂(a) tends to under-

estimate κ(a). An accurate estimate is obtained only if the selected a is very close to

true a. On the other hand, κ̂(â) always resembles the performance of the estimator with

selected a close to true a.

For standard error estimation, the estimates become smaller as sample size in-

creases. The estimated SE of κ̂(a) increases as the value of the selected a increases,

and the difference between the estimated SEs of κ̂(0) and κ̂(1) gets larger as the true a

gets larger. The estimated SE of κ̂(â) is slightly larger than the one of κ̂(a), which is

due to the fact that κ̂(a) tends to underestimate the variability because the variability

associated with choosing a is not taken into account, whereas κ̂(â) accounts for the esti-

mation of a and yields the correct level of precision. The difference between the average

of estimated SEs and the standard deviations of κ̂(a) and the difference between the

average of estimated SEs and the standard deviations of κ̂(â), which can be regarded

as the true values of the standard deviations of κ̂(a) and κ̂(â), are all less than one-half

standard deviation of the estimated SEs. This implies that the SE formulas proposed

are fairly accurate even for small sample sizes. We also notice that the SE is always

less than the true standard deviation. This may imply that the SE formulas proposed

slightly underestimate the true SE.

For coverage of confidence interval, the coverage improves as sample size increases.

For selected a, quite a few coverage probabilities are between 0.93 and 0.94, close to the



62

true probability 0.95, except for some selected values of a (e.g. selected a=0, 0.8 and 1);

whereas for estimated a, most coverage probabilities are between 0.93 and 0.94. This

implies that the proposed confidence interval formula for κ̂(â) works better than the one

for κ̂(a) when a is selected a priori, even for small sample sizes.

3.2 Simulation Study for Continuous Responses

We conducted analysis using simulated data to assess the accuracy and precision

of ρ̂(a) and ρ̂(â) for continuous responses. Two cases were considered: a was fixed and

known and a was estimated. For each case, we considered the following three bivariate

normal distributions, which were selected from those in Lin’s simulation study [31]:

Case 1. Mean (0, 0) and covariance matrix

 1 0.95

0.95 1


with no difference in location and scale parameters, and strong positive correlation.

Case 2. Mean (−
√

0.1
2 ,

√
0.1
2 ) and covariance matrix

 1.1
2

0.95× 1.1× 0.9

0.95× 1.1× 0.9 0.9
2


with slight difference in both location and scale parameters, and strong positive correla-

tion.
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Table 3.4 Simulation results for κ̂(0)
Distri- a w κ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
(i) 0 0-1 0.524 20 0.505(0.218) -3.8 0.198(0.038) 0.907

50 0.517(0.134) -1.4 0.129(0.015) 0.933
100 0.521(0.094) -0.6 0.092(0.007) 0.939

(ii) 0.2 0-1 0.445 20 0.442(0.198) -0.7 0.18(0.036) 0.885
50 0.450(0.122) 1.1 0.119(0.011) 0.924
100 0.453(0.086) 1.8 0.085(0.005) 0.937

(iii) 0.4 0-1 0.109 20 0.198(0.138) 44.9 0.118(0.054) 0.836
50 0.199(0.084) 45.2 0.081(0.018) 0.883
100 0.2(0.059) 45.5 0.058(0.009) 0.718

(iv) 0.216 0-1 0.394 20 0.397(0.14) 0.8 0.133(0.017) 0.929
50 0.402(0.088) 2 0.086(0.006) 0.942
100 0.404(0.062) 2.5 0.061(0.003) 0.945

C-A 0.24 20 0.26(0.159) 7.7 0.149(0.028) 0.924
50 0.26(0.1) 7.7 0.098(0.012) 0.941
100 0.261(0.071) 8 0.07(0.006) 0.939

F-C 0.084 20 0.119(0.2) 29.4 0.183(0.044) 0.924
50 0.117(0.125) 28.2 0.121(0.018) 0.938
100 0.116(0.088) 27.6 0.087(0.009) 0.933

(v) 0.161 0-1 0.199 20 0.201(0.137) 1 0.128(0.019) 0.918
50 0.205(0.087) 2.9 0.085(0.007) 0.938
100 0.207(0.062) 3.9 0.061(0.004) 0.943

C-A 0.371 20 0.364(0.142) -1.9 0.13(0.022) 0.893
50 0.374(0.089) 0.8 0.087(0.008) 0.93
100 0.376(0.063) 1.3 0.062(0.004) 0.939

F-C 0.517 20 0.503(0.167) -2.8 0.146(0.04) 0.86
50 0.517(0.105) 0 0.1(0.017) 0.913
100 0.52(0.074) 0.6 0.072(0.008) 0.93

(vi) 0.102 0-1 0.316 20 0.31(0.129) -1.9 0.123(0.012) 0.922
50 0.315(0.082) -0.3 0.08(0.004) 0.939
100 0.317(0.058) 0.3 0.057(0.002) 0.946

C-A 0.558 20 0.544(0.124) -2.6 0.117(0.021) 0.916
50 0.553(0.077) -0.9 0.076(0.008) 0.938
100 0.556(0.055) -0.4 0.054(0.004) 0.942

F-C 0.711 20 0.695(0.128) -2.3 0.114(0.042) 0.872
50 0.706(0.079) -0.7 0.075(0.018) 0.913
100 0.709(0.055) -0.3 0.054(0.009) 0.930
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Table 3.5 Simulation results for κ̂(0.2)
Distri- a w κ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
(i) 0 0-1 0.524 20 0.503(0.219) -4.2 0.2(0.038) 0.908

50 0.516(0.134) -1.6 0.13(0.015) 0.935
100 0.52(0.094) -0.8 0.093(0.007) 0.941

(ii) 0.2 0-1 0.445 20 0.428(0.208) -4 0.19(0.035) 0.887
50 0.438(0.128) -1.6 0.125(0.011) 0.932
100 0.442(0.091) -0.7 0.0892(0.005) 0.938

(iii) 0.4 0-1 0.109 20 0.142(0.162) 23.2 0.14(0.054) 0.84
50 0.148(0.101) 26.4 0.098(0.017) 0.925
100 0.15(0.072) 27.3 0.07(0.008) 0.927

(iv) 0.216 0-1 0.394 20 0.383(0.148) -2.9 0.141(0.014) 0.925
50 0.39(0.092) -1 0.091(0.005) 0.942
100 0.392(0.065) -0.5 0.065(0.002) 0.946

C-A 0.24 20 0.235(0.17) -2.1 0.16(0.023) 0.914
50 0.239(0.108) -0.4 0.105(0.009) 0.936
100 0.24(0.076) 0 0.075(0.004) 0.943

F-C 0.084 20 0.083(0.215) -1.1 0.198(0.038) 0.906
50 0.085(0.134) 0.8 0.131(0.015) 0.936
100 0.086(0.095) 2 0.094(0.008) 0.942

(v) 0.161 0-1 0.199 20 0.185(0.143) -7.6 0.135(0.018) 0.911
50 0.192(0.09) -3.6 0.089(0.007) 0.935
100 0.195(0.064) -2.1 0.063(0.003) 0.943

C-A 0.371 20 0.348(0.151) -6.6 0.139(0.021) 0.893
50 0.36(0.095) -3.1 0.092(0.008) 0.93
100 0.365(0.067) -1.6 0.066(0.004) 0.939

F-C 0.517 20 0.488(0.177) -5.9 0.155(0.041) 0.865
50 0.505(0.11) -2.4 0.105(0.017) 0.919
100 0.51(0.077) -1.4 0.076(0.009) 0.936

(vi) 0.102 0-1 0.316 20 0.301(0.133) -5 0.127(0.012) 0.92
50 0.309(0.084) -2.3 0.082(0.004) 0.938
100 0.312(0.059) -1.3 0.059(0.002) 0.943

C-A 0.558 20 0.54(0.127) -3.3 0.12(0.021) 0.918
50 0.551(0.079) -1.3 0.077(0.008) 0.938
100 0.554(0.055) -0.7 0.055(0.004) 0.945

F-C 0.711 20 0.693(0.13) -2.6 0.116(0.043) 0.877
50 0.705(0.08) -0.9 0.076(0.019) 0.915
100 0.707(0.056) -0.6 0.055(0.009) 0.93
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Table 3.6 Simulation results for κ̂(0.4)
Distri- a w κ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
(i) 0 0-1 0.524 20 0.5(0.221) -4.8 0.202(0.039) 0.913

50 0.516(0.134) -1.6 0.131(0.015) 0.935
100 0.519(0.094) -1 0.093(0.007) 0.942

(ii) 0.2 0-1 0.445 20 0.418(0.218) -6.5 0.199(0.035) 0.886
50 0.43(0.134) -3.5 0.13(0.011) 0.932
100 0.434(0.094) -2.5 0.093(0.005) 0.942

(iii) 0.4 0-1 0.109 20 0.095(0.187) -14.7 0.165(0.051) 0.833
50 0.103(0.118) -5.8 0.114(0.015) 0.917
100 0.106(0.083) -2.8 0.082(0.007) 0.936

(iv) 0.216 0-1 0.394 20 0.37(0.156) -6.5 0.149(0.012) 0.924
50 0.38(0.097) -3.7 0.095(0.004) 0.941
100 0.383(0.068) -2.9 0.068(0.002) 0.945

C-A 0.24 20 0.215(0.181) -11.6 0.172(0.018) 0.911
50 0.222(0.115) -8.1 0.112(0.007) 0.93
100 0.224(0.081) -7.1 0.08(0.003) 0.938

F-C 0.084 20 0.052(0.231) -61.5 0.213(0.033) 0.895
50 0.058(0.145) -44.8 0.141(0.012) 0.926
100 0.06(0.102) -40 0.101(0.006) 0.933

(v) 0.161 0-1 0.199 20 0.17(0.15) -17.1 0.141(0.017) 0.905
50 0.182(0.094) -9.3 0.092(0.006) 0.931
100 0.186(0.066) -7 0.066(0.003) 0.937

C-A 0.371 20 0.335(0.158) -10.7 0.146(0.022) 0.895
50 0.351(0.098) -5.7 0.096(0.008) 0.93
100 0.355(0.069) -4.5 0.068(0.004) 0.938

F-C 0.517 20 0.478(0.186) -8.2 0.162(0.042) 0.868
50 0.496(0.115) -4.2 0.109(0.018) 0.923
100 0.501(0.08) -3.2 0.079(0.009) 0.939

(vi) 0.102 0-1 0.316 20 0.295(0.136) -7.1 0.13(0.011) 0.92
50 0.304(0.085) -3.9 0.084(0.004) 0.937
100 0.308(0.06) -2.6 0.06(0.002) 0.943

C-A 0.558 20 0.537(0.129) -3.9 0.122(0.022) 0.919
50 0.548(0.079) -1.8 0.078(0.009) 0.939
100 0.552(0.056) -1.1 0.055(0.004) 0.945

F-C 0.711 20 0.691(0.132) -2.9 0.118(0.044) 0.878
50 0.703(0.081) -1.1 0.077(0.019) 0.917
100 0.707(0.057) -0.6 0.055(0.01) 0.933
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Table 3.7 Simulation results for κ̂(0.6)
Distri- a w κ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
(i) 0 0-1 0.524 20 0.499(0.221) -5 0.203(0.039) 0.913

50 0.515(0.134) -1.7 0.131(0.0145) 0.936
100 0.52(0.094) -0.8 0.093(0.007) 0.942

(ii) 0.2 0-1 0.445 20 0.407(0.225) -9.3 0.206(0.035) 0.885
50 0.424(0.138) -5 0.135(0.011) 0.932
100 0.429(0.097) -3.7 0.096(0.005) 0.942

(iii) 0.4 0-1 0.109 20 0.056(0.209) -94.6 0.186(0.048) 0.831
50 0.068(0.132) -60.3 0.127(0.013) 0.902
100 0.072(0.093) -51.4 0.092(0.005) 0.911

(iv) 0.216 0-1 0.394 20 0.361(0.161) -9.1 0.155(0.013) 0.926
50 0.372(0.1) -5.9 0.099(0.004) 0.94
100 0.376(0.071) -4.8 0.07(0.002) 0.940

C-A 0.24 20 0.2(0.191) -20 0.181(0.015) 0.908
50 0.208(0.12) -15.4 0.118(0.005) 0.928
100 0.211(0.085) -13.7 0.084(0.002) 0.929

F-C 0.084 20 0.029(0.244) -190 0.226(0.03) 0.89
50 0.037(0.153) -127 0.149(0.011) 0.918
100 0.039(0.108) -115.4 0.106(0.005) 0.919

(v) 0.161 0-1 0.199 20 0.162(0.153) -22.8 0.146(0.017) 0.906
50 0.174(0.096) -14.4 0.095(0.006) 0.928
100 0.179(0.068) -11.2 0.067(0.003) 0.930

C-A 0.371 20 0.326(0.164) -13.8 0.152(0.023) 0.897
50 0.343(0.102) -8.2 0.099(0.009) 0.928
100 0.349(0.071) -6.3 0.071(0.004) 0.937

F-C 0.517 20 0.469(0.194) -10.2 0.168(0.045) 0.869
50 0.489(0.119) -5.7 0.113(0.019) 0.924
100 0.496(0.083) -4.2 0.081(0.009) 0.939

(vi) 0.102 0-1 0.316 20 0.289(0.138) -9.3 0.133(0.01) 0.917
50 0.301(0.086) -5 0.085(0.003) 0.935
100 0.305(0.061) -3.6 0.06(0.002) 0.941

C-A 0.558 20 0.534(0.131) -4.5 0.124(0.022) 0.921
50 0.546(0.08) -2.2 0.079(0.009) 0.941
100 0.551(0.056) -1.3 0.056(0.004) 0.945

F-C 0.711 20 0.69(0.133) -3 0.12(0.045) 0.88
50 0.702(0.082) -1.3 0.078(0.019) 0.917
100 0.705(0.057) -0.9 0.056(0.01) 0.935



67

Table 3.8 Simulation results for κ̂(0.8)
Distri- a w κ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
(i) 0 0-1 0.524 20 0.498(0.222) -5.2 0.204(0.04) 0.914

50 0.514(0.135) -1.9 0.131(0.015) 0.935
100 0.519(0.094) -1 0.093(0.007) 0.942

(ii) 0.2 0-1 0.445 20 0.403(0.23) -10.4 0.211(0.036) 0.885
50 0.419(0.141) -6.2 0.137(0.012) 0.929
100 0.425(0.099) -4.7 0.097(0.006) 0.941

(iii) 0.4 0-1 0.109 20 0.029(0.222) -275.9 0.2(0.046) 0.832
50 0.045(0.141) -142.2 0.136(0.011) 0.886
100 0.05(0.1) -118 0.098(0.004) 0.891

(iv) 0.216 0-1 0.394 20 0.355(0.166) -11 0.159(0.014) 0.927
50 0.368(0.102) -7.1 0.101(0.005) 0.938
100 0.371(0.072) -6.2 0.071(0.002) 0.937

C-A 0.24 20 0.191(0.197) -25.7 0.187(0.014) 0.909
50 0.2(0.124) -20 0.121(0.005) 0.926
100 0.204(0.087) -17.6 0.086(0.002) 0.924

F-C 0.084 20 0.013(0.253) -546.2 0.235(0.029) 0.890
50 0.026(0.158) -223.1 0.154(0.01) 0.915
100 0.028(0.111) -200 0.11(0.005) 0.912

(v) 0.161 0-1 0.199 20 0.155(0.156) -28.4 0.149(0.017) 0.906
50 0.17(0.098) -17.1 0.096(0.006) 0.925
100 0.175(0.069) -13.7 0.068(0.003) 0.928

C-A 0.371 20 0.319(0.169) -16.3 0.156(0.023) 0.897
50 0.338(0.104) -9.8 0.101(0.009) 0.929
100 0.344(0.073) -7.8 0.072(0.004) 0.932

F-C 0.517 20 0.463(0.197) -11.7 0.173(0.046) 0.872
50 0.485(0.121) -6.6 0.115(0.02) 0.925
100 0.491(0.085) -5.3 0.083(0.01) 0.939

(vi) 0.102 0-1 0.316 20 0.286(0.139) -10.5 0.134(0.01) 0.917
50 0.299(0.087) -5.7 0.086(0.003) 0.934
100 0.303(0.061) -4.3 0.061(0.002) 0.939

C-A 0.558 20 0.532(0.132) -4.9 0.125(0.023) 0.92
50 0.546(0.081) -2.2 0.079(0.009) 0.941
100 0.55(0.057) -1.5 0.056(0.004) 0.945

F-C 0.711 20 0.688(0.134) -3.3 0.121(0.046) 0.879
50 0.701(0.082) -1.4 0.078(0.019) 0.918
100 0.705(0.057) -0.9 0.056(0.01) 0.934
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Table 3.9 Simulation results for κ̂(1)
Distri- a w κ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
(i) 0 0-1 0.524 20 0.497(0.223) -5.4 0.205(0.04) 0.914

50 0.515(0.135) -1.7 0.131(0.015) 0.934
100 0.519(0.094) -1 0.093(0.007) 0.941

(ii) 0.2 0-1 0.445 20 0.4(0.232) -11.3 0.212(0.036) 0.885
50 0.418(0.142) -6.5 0.138(0.012) 0.931
100 0.424(0.099) -5 0.098(0.006) 0.940

(iii) 0.4 0-1 0.109 20 0.02(0.227) -445 0.206(0.045) 0.835
50 0.037(0.144) -194.6 0.14(0.011) 0.883
100 0.042(0.102) -159.5 0.1(0.004) 0.873

(iv) 0.216 0-1 0.394 20 0.353(0.166) -11.6 0.16(0.014) 0.928
50 0.366(0.103) -7.7 0.101(0.005) 0.940
100 0.37(0.072) -6.5 0.072(0.002) 0.938

C-A 0.24 20 0.187(0.199) -28.3 0.19(0.014) 0.910
50 0.198(0.124) -21.2 0.122(0.005) 0.926
100 0.202(0.088) -18.8 0.087(0.002) 0.922

F-C 0.084 20 0.009(0.256) -833.3 0.238(0.028) 0.892
50 0.019(0.161) -342.1 0.156(0.01) 0.913
100 0.024(0.113) -250 0.112(0.005) 0.906

(v) 0.161 0-1 0.199 20 0.151(0.158) -31.8 0.15(0.017) 0.905
50 0.168(0.099) -18.5 0.097(0.006) 0.923
100 0.173(0.069) -15 0.069(0.003) 0.926

C-A 0.371 20 0.317(0.169) -17 0.157(0.024) 0.899
50 0.336(0.105) -10.4 0.102(0.009) 0.927
100 0.342(0.073) -8.5 0.072(0.004) 0.932

F-C 0.517 20 0.462(0.199) -11.9 0.174(0.047) 0.874
50 0.483(0.122) -7 0.116(0.02) 0.926
100 0.49(0.085) -5.5 0.083(0.01) 0.939

(vi) 0.102 0-1 0.316 20 0.285(0.14) -10.9 0.135(0.01) 0.918
50 0.299(0.087) -5.7 0.086(0.003) 0.935
100 0.302(0.061) -4.6 0.061(0.002) 0.938

C-A 0.558 20 0.532(0.132) -4.9 0.125(0.023) 0.923
50 0.545(0.081) -2.4 0.079(0.009) 0.941
100 0.549(0.057) -1.6 0.056(0.004) 0.946

F-C 0.711 20 0.688(0.135) -3.3 0.121(0.046) 0.88
50 0.701(0.082) -1.4 0.079(0.019) 0.919
100 0.705(0.057) -0.9 0.056(0.01) 0.935
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Table 3.10 Simulation results for κ̂(â)
Distri- a w κ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
(i) 0 0-1 0.524 20 0.502(0.22) -4.4 0.2(0.038) 0.908

50 0.516(0.134) -1.6 0.13(0.015) 0.934
100 0.52(0.094) -0.8 0.093(0.007) 0.94

(ii) 0.2 0-1 0.445 20 0.424(0.216) -5 0.197(0.033) 0.893
50 0.437(0.132) -1.8 0.128(0.01) 0.931
100 0.441(0.092) -0.9 0.091(0.005) 0.942

(iii) 0.4 0-1 0.109 20 0.083(0.208) -31.3 0.188(0.039) 0.84
50 0.099(0.131) -10.1 0.126(0.009) 0.928
100 0.104(0.091) -4.8 0.09(0.003) 0.938

(iv) 0.216 0-1 0.394 20 0.376(0.154) -4.8 0.148(0.012) 0.931
50 0.387(0.095) -1.8 0.094(0.004) 0.943
100 0.39(0.067) -1 0.066(0.002) 0.946

C-A 0.24 20 0.227(0.18) -5.7 0.171(0.015) 0.921
50 0.234(0.112) -2.6 0.11(0.005) 0.939
100 0.237(0.079) -1.3 0.078(0.003) 0.946

F-C 0.084 20 0.068(0.225) -23.5 0.21(0.028) 0.909
50 0.078(0.14) -7.7 0.137(0.011) 0.935
100 0.081(0.099) -3.7 0.097(0.005) 0.941

(v) 0.161 0-1 0.199 20 0.183(0.146) -8.7 0.138(0.016) 0.914
50 0.193(0.091) -3.1 0.09(0.006) 0.937
100 0.196(0.064) -1.5 0.064(0.003) 0.944

C-A 0.371 20 0.346(0.153) -7.2 0.142(0.021) 0.898
50 0.362(0.094) -2.5 0.093(0.008) 0.934
100 0.366(0.067) -1.4 0.066(0.004) 0.942

F-C 0.517 20 0.488(0.179) -5.9 0.157(0.0412) 0.868
50 0.506(0.11) -2.2 0.105(0.017) 0.922
100 0.511(0.078) -1.2 0.076(0.009) 0.935

(vi) 0.102 0-1 0.316 20 0.302(0.133) -4.6 0.127(0.011) 0.922
50 0.311(0.084) -1.6 0.082(0.004) 0.938
100 0.314(0.059) -0.6 0.058(0.002) 0.945

C-A 0.558 20 0.54(0.126) -3.3 0.12(0.021) 0.919
50 0.552(0.078) -1.1 0.077(0.008) 0.939
100 0.554(0.055) -0.7 0.055(0.004) 0.944

F-C 0.711 20 0.694(0.13) -2.4 0.116(0.044) 0.876
50 0.705(0.08) -0.9 0.076(0.019) 0.913
100 0.708(0.056) -0.4 0.055(0.009) 0.931
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Case 3. Mean (−
√

0.25
2 ,

√
0.25
2 ) and covariance matrix

 (4
3)

2
0.5× 4

3 ×
2
3

0.5× 4
3 ×

2
3 (2

3)
2


with large difference in both location and scale parameters, and weaker positive correla-

tion, with correlation coefficient 0.5.

The small sample properties of ρ̂(a) and ρ̂(â) for data from underlying normal

distributions with contaminations were also examined. Additional simulations were per-

formed with 90% of the data distributed as in Cases 1-3, and 10% of the data following

the same normal distribution but with three times the standard deviation of the data.

Data were also simulated from a log-normal distribution to evaluate the small sample

properties of the proposed measure when applied to non-normal data. Data were gener-

ated as described in Cases 1-3.

Case 1. Fixed and Known a:

For each distribution, we simulated 100000 data sets of size n=20, 50 and 100. For

each distribution, we also calculated ρ(a) and treated it as the true parameter value. For

each simulated data set of a distribution, we used a=0,0.2,0.4,0.6,0.8 and 1 respectively,

as fixed and known values of a, to compute agreement coefficients, SEs and confidence

intervals. As we stated in the simulation study for categorical responses, the series of

values of a reflected the uncertainty of selecting a a priori in practice and enabled us to

compare the performance of the estimators with different values of a. In particular, since

a=0 yields Lin’s CCC and a=1 yields the RMAC, we were able to assess the performance

of these two important measures as well.
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The ”a” column contains the true values of a for the distributions. Due to the

complexity of the formula involved in the evaluation of the integral (2.11), we approxi-

mate a by â calculated from a data set with sample size 10000 generated from underlying

distribution. The ”ρ(a)” column contains the true values of ρ(a). The ”Mean(std)” col-

umn contains the mean values of ρ̂(a), which were the averages of valid ρ̂(a) computed

from the simulated data sets of the distribution, and the standard deviations of valid ρ̂(a)

computed from the simulated data sets of the distribution. The ”Relative Bias(%)” col-

umn contains the relative bias of the agreement estimate, which is calculated by [(mean

ρ̂(a)-true ρ(a))/mean ρ̂(a)]× 100. The ”SE(std)” column contains the mean values of

ŜE(ρ̂(a)), which were the averages of valid ŜE(ρ̂(a)) computed from the simulated data

sets of the distribution, and the standard deviations of valid ŜE(ρ̂(a)) computed from

the simulated data sets of the distribution. Each confidence interval computed from the

generated data set was evaluated to determine whether the true parameter value was

contained within the confidence interval, and the coverage is contained in the ”Coverage

of CI” column.

Case 2. Estimated a:

The simulation was conducted differently from previous case only in that, instead

of using a series of fixed and known a, we estimated a from each generated data set

analogously to the Cramer-von Mises criterion, using (2.12). As in previous case, the true

value of a was calculated from the underlying distribution analogously to the Cramer-

von Mises criterion, so both cases share the same true value of a and true value of ρ(a)

for each distribution. Same quantities were calculated as in previous case.

Contaminated Normal Distribution:
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To calculate the true value of ρ(a) for the underlying contaminated normal dis-

tribution, we need to calculate the mean vector and the variance-covariance matrix of

the random vector with the distribution. Let

U =

 X

Y

 ∼ N(θ,Σ)

where θ = (µ
X

, µ
Y

)
T

and

Σ =

 σ
2

X
σ

XY

σ
XY

σ
2

Y


be the random vector with one of the distributions in Cases 1-3. Since the contaminated

normal random vector follows bivariate normal distribution 90% of the time and follows

a bivariate normal distribution with 9 times the variance 10% of the time, in addition

let

V =

 X
∗

Y
∗

 ∼ N(θ,Σ
∗
)

Σ
∗

=

 9σ
2

X
9σ

XY

9σ
XY

9σ
2

Y


and let I

0.9
= 1 with probability 0.9 and I

0.9
= 0 with probability 0.1, and assume that

U and I
0.9

are independent, V and I
0.9

are independent. Then

W = UI
0.9

+ V (1− I
0.9

)
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follows the desired distribution.

By independence,

E(W ) = E(U)E(I
0.9

) + E(V )E(1− I
0.9

)

= 0.9θ + 0.1θ

= θ

V ar(W ) = V ar[UI
0.9

+ V (1− I
0.9

)]

= V ar(UI
0.9

) + V ar[V (1− I
0.9

)] + 2Cov[UI
0.9

,V (1− I
0.9

)]

= E(I
2

0.9
UU

T
)− [E(UI

0.9
)][E(UI

0.9
)]

T
+ E[(1− I

0.9
)
2
V V

T
]

− {E[V (1− I
0.9

)]}{E[V (1− I
0.9

)]}
T

+ 2{E[I
0.9

(1− I
0.9

)UV
T
]

− E(UI
0.9

){E[V (1− I
0.9

)]}
T
}

where

E(I
2

0.9
UU

T
) = E(I

2

0.9
)E(UU

T
)

= 0.9{Σ + E(U)[E(U)]
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= 0.9
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XY
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µ
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σ
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+ µ
X

µ
Y

σ
2
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2
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[E(UI
0.9

)][E(UI
0.9
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T

= [E(I
0.9

)]
2
E(U)[E(U)]

T

= 0.81
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Therefore,

V ar(W ) = 1.8

 σ
2

X
σ

XY

σ
XY

σ
2

Y


Log-normal Distribution:

To calculate the true value of ρ(a) for the underlying log-normal distribution, we

need to calculate the mean vector and the variance-covariance matrix of the random

vector with the distribution. By definition, if

U =

 X

Y

 ∼ N(θ,Σ)

where θ = (µ
X

, µ
Y

)
T

and

Σ =

 σ
2

X
σ

XY

σ
XY

σ
2

Y


is the random vector with one of the distributions in Cases 1-3, then

U
∗

=

 e
X

e
Y
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follows log-normal distribution, where mean vector is θ
∗

= (exp(µ
X

+ σ
2

X
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Y
+

σ
2

Y
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T
and variance-covariance matrix is
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)− 1]


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Results:

The simulation results are listed in Table 3.11 - Table 3.17. For each of the

distributions with noticeable difference between marginal distributions and each sample

size, the selected value of a = 0 yields the largest agreement and the selected value of a =

1 yields the smallest agreement, that is, the Lin’s CCC and the RMAC form the upper

and lower bounds of the class of agreement coefficients. The larger the difference between

two marginal distributions, the larger the difference between the bounds, suggesting the

impact of different marginal distributions on agreement.

For agreement estimation, the estimates become closer to the true parameter value

as sample size increases for most cases. If the selected a is greater than the true a, then

ρ̂(a) tends to underestimate ρ(a) most of the time. If the selected a is less than the true

a, then ρ̂(a) tends to overestimate ρ(a) only for Case 3 of normal distributions. On the

other hand, ρ̂(â) always resembles the performance of the estimator with selected a close

to true a. The special case is Case 3 of log-normal distribution, where the agreement

estimates all overestimate the true parameter value, regardless of the selected value of

a.

For standard error estimation, the estimates become smaller as sample size in-

creases. If marginal distributions are different, then estimated SE becomes larger as

the selected a gets larger, indicating that the RMAC is less efficient in the presence of

different marginal distributions. On the other hand, ρ̂(â) accounts for the estimation

of a and yields a correct level of precision. The difference between the average of the

estimated SEs and the standard deviation of ρ̂(â) and ρ̂(a), which can be regarded as

the true value of the standard deviation of ρ̂(â) and ρ̂(a), is less than one-half standard
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deviation of the estimated SEs for all normal cases and contaminated normal cases with

n = 50 and 100. But the difference is larger for log-normal cases. This implies that

the SE formulas proposed are fairly accurate for normal distributions with small to large

sample sizes and contaminated normal distributions with moderate to large sample sizes.

We also notice that the SE is always less than the true standard deviation. This may

imply that the SE formulas proposed slightly underestimate the true SE.

For coverage of confidence interval, the coverage improves as sample size increases.

It shows that for both selected a and estimated a, quite a few coverage probabilities are

between 0.93 and 0.94, close to the true probability 0.95 for normal cases, but the

coverage probabilities are only between 0.85 and 0.9 for contaminated normal cases and

between 0.7 and 0.8 for log-normal cases. This implies that the proposed confidence

interval formula works better for normal underlying distributions.
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Table 3.11 Simulation results for ρ̂(0)
Distri- Case a ρ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
Normal 1 0 0.95 20 0.942(0.027) -0.8 0.024(0.012) 0.926

50 0.947(0.015) -0.3 0.014(0.004) 0.938
100 0.949(0.01) -0.1 0.01(0.002) 0.944

2 0.102 0.887 20 0.874(0.047) -1.5 0.042(0.016) 0.931
50 0.882(0.027) -0.5 0.026(0.006) 0.941
100 0.885(0.018) -0.2 0.018(0.003) 0.944

3 0.179 0.349 20 0.341(0.138) -2.4 0.127(0.033) 0.913
50 0.353(0.087) 1.1 0.083(0.014) 0.931
100 0.356(0.061) 2 0.056(0.007) 0.937

Conta- 1 0 0.95 20 0.937(0.043) -1.4 0.03(0.025) 0.856
minated 50 0.944(0.025) -0.6 0.02(0.012) 0.882
Normal 100 0.947(0.017) -0.3 0.015(0.006) 0.904

2 0.093 0.906 20 0.885(0.058) -2.4 0.042(0.025) 0.884
50 0.897(0.034) -1 0.028(0.012) 0.9
100 0.902(0.024) -0.5 0.021(0.006) 0.914

3 0.169 0.371 20 0.345(0.193) -7.3 0.143(0.057) 0.841
50 0.363(0.134) -2.1 0.111(0.037) 0.879
100 0.369(0.098) -0.4 0.087(0.024) 0.904

Log- 1 0.002 0.923 20 0.901(0.065) -2.4 0.037(0.025) 0.718
normal 50 0.912(0.046) -1.2 0.028(0.016) 0.755

100 0.916(0.037) -0.7 0.024(0.012) 0.796
2 0.1 0.889 20 0.878(0.074) -1.3 0.042(0.026) 0.701

50 0.891(0.054) 0.2 0.032(0.017) 0.717
100 0.894(0.046) 0.5 0.027(0.014) 0.733

3 0.179 0.177 20 0.282(0.193) 37.2 0.117(0.061) 0.69
50 0.265(0.142) 33.4 0.088(0.043) 0.692
100 0.248(0.112) 28.7 0.072(0.032) 0.708
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Table 3.12 Simulation results for ρ̂(0.2)
Distri- Case a ρ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
Normal 1 0 0.95 20 0.942(0.027) -0.8 0.024(0.012) 0.925

50 0.947(0.015) -0.3 0.014(0.004) 0.939
100 0.949(0.01) -0.2 0.01(0.002) 0.943

2 0.102 0.887 20 0.872(0.049) -1.7 0.043(0.017) 0.932
50 0.881(0.028) -0.7 0.026(0.007) 0.942
100 0.884(0.019) -0.3 0.018(0.003) 0.948

3 0.179 0.349 20 0.324(0.146) -7.5 0.135(0.033) 0.913
50 0.338(0.092) -3.1 0.088(0.014) 0.931
100 0.343(0.064) -1.6 0.063(0.007) 0.942

Conta- 1 0 0.95 20 0.936(0.044) -1.5 0.03(0.026) 0.857
minated 50 0.944(0.025) -0.6 0.02(0.012) 0.884
Normal 100 0.947(0.017) -0.3 0.015(0.006) 0.907

2 0.1 0.906 20 0.884(0.059) -2.5 0.043(0.026) 0.885
50 0.897(0.035) -1.1 0.029(0.012) 0.9
100 0.901(0.024) -0.5 0.021(0.007) 0.914

3 0.169 0.371 20 0.334(0.2) -11.1 0.148(0.057) 0.841
50 0.354(0.137) -4.9 0.114(0.038) 0.879
100 0.361(0.101) -2.7 0.09(0.024) 0.905

Log- 1 0.002 0.923 20 0.901(0.065) -2.4 0.037(0.026) 0.719
normal 50 0.912(0.046) -1.2 0.028(0.016) 0.755

100 0.916(0.037) -0.7 0.024(0.012) 0.794
2 0.1 0.889 20 0.878(0.075) -1.3 0.043(0.027) 0.705

50 0.891(0.055) 0.1 0.032(0.017) 0.718
100 0.894(0.046) 0.5 0.028(0.014) 0.734

3 0.179 0.177 20 0.275(0.195) 35.6 0.12(0.062) 0.7
50 0.263(0.143) 32.7 0.089(0.043) 0.701
100 0.246(0.113) 28.2 0.073(0.032) 0.714
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Table 3.13 Simulation results for ρ̂(0.4)
Distri- Case a ρ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
Normal 1 0 0.95 20 0.942(0.027) -0.8 0.024(0.012) 0.923

50 0.947(0.015) -0.3 0.014(0.004) 0.938
100 0.949(0.01) -0.2 0.01(0.002) 0.944

2 0.102 0.887 20 0.871(0.05) -1.8 0.044(0.018) 0.935
50 0.88(0.028) -0.7 0.027(0.007) 0.944
100 0.883(0.019) -0.4 0.019(0.003) 0.949

3 0.179 0.349 20 0.311(0.155) -12.2 0.142(0.035) 0.910
50 0.327(0.096) -6.6 0.092(0.015) 0.933
100 0.333(0.067) -4.8 0.066(0.008) 0.940

Conta- 1 0 0.95 20 0.936(0.044) -1.5 0.03(0.026) 0.857
minated 50 0.944(0.025) -0.6 0.02(0.011) 0.884
Normal 100 0.947(0.017) -0.3 0.015(0.006) 0.906

2 0.1 0.906 20 0.882(0.06) -2.7 0.044(0.026) 0.887
50 0.896(0.036) -1.1 0.029(0.012) 0.901
100 0.9(0.025) -0.6 0.022(0.007) 0.916

3 0.169 0.371 20 0.324(0.206) -14.6 0.154(0.058) 0.842
50 0.347(0.141) -6.8 0.117(0.038) 0.88
100 0.355(0.102) -4.5 0.092(0.024) 0.906

Log- 1 0.002 0.923 20 0.901(0.065) -2.5 0.037(0.026) 0.718
normal 50 0.912(0.046) -1.2 0.029(0.016) 0.757

100 0.916(0.037) -0.8 0.024(0.012) 0.796
2 0.1 0.889 20 0.877(0.076) -1.4 0.043(0.028) 0.704

50 0.891(0.055) 0.1 0.032(0.017) 0.717
100 0.894(0.046) 0.5 0.028(0.014) 0.734

3 0.179 0.177 20 0.271(0.199) 34.7 0.123(0.062) 0.71
50 0.26(0.143) 32 0.091(0.042) 0.711
100 0.245(0.114) 27.9 0.073(0.032) 0.716
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Table 3.14 Simulation results for ρ̂(0.6)
Distri- Case a ρ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
Normal 1 0 0.95 20 0.942(0.027) -0.9 0.024(0.012) 0.926

50 0.947(0.015) -0.3 0.014(0.004) 0.938
100 0.949(0.01) -0.2 0.01(0.002) 0.945

2 0.102 0.887 20 0.87(0.051) -1.9 0.045(0.019) 0.937
50 0.879(0.029) -0.9 0.027(0.007) 0.945
100 0.882(0.019) -0.5 0.019(0.003) 0.949

3 0.179 0.349 20 0.3(0.161) -16.3 0.148(0.037) 0.915
50 0.319(0.1) -9.3 0.096(0.016) 0.932
100 0.325(0.07) -7.3 0.068(0.008) 0.936

Conta- 1 0 0.95 20 0.936(0.044) -1.5 0.03(0.026) 0.856
minated 50 0.944(0.025) -0.6 0.02(0.012) 0.882
Normal 100 0.947(0.017) -0.3 0.015(0.006) 0.905

2 0.1 0.906 20 0.882(0.061) -2.7 0.044(0.027) 0.887
50 0.896(0.036) -1.2 0.029(0.012) 0.902
100 0.9(0.025) -0.6 0.022(0.007) 0.916

3 0.169 0.371 20 0.314(0.213) -17.9 0.159(0.06) 0.843
50 0.341(0.143) -8.8 0.119(0.039) 0.88
100 0.35(0.105) -5.9 0.093(0.025) 0.903

Log- 1 0.002 0.923 20 0.901(0.065) -2.4 0.037(0.026) 0.72
normal 50 0.912(0.046) -1.2 0.029(0.016) 0.757

100 0.916(0.037) -0.7 0.024(0.012) 0.796
2 0.1 0.889 20 0.877(0.076) -1.4 0.044(0.028) 0.708

50 0.89(0.055) 0.1 0.032(0.017) 0.719
100 0.894(0.047) 0.5 0.028(0.014) 0.736

3 0.179 0.177 20 0.267(0.2) 33.8 0.126(0.062) 0.716
50 0.259(0.143) 31.7 0.091(0.042) 0.713
100 0.244(0.114) 27.6 0.073(0.031) 0.719
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Table 3.15 Simulation results for ρ̂(0.8)
Distri- Case a ρ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
Normal 1 0 0.95 20 0.942(0.028) -0.9 0.024(0.012) 0.925

50 0.947(0.015) -0.3 0.014(0.004) 0.938
100 0.949(0.01) -0.1 0.001(0.002) 0.942

2 0.102 0.887 20 0.869(0.051) -2 0.046(0.019) 0.938
50 0.879(0.029) -0.9 0.027(0.007) 0.946
100 0.882(0.019) -0.5 0.019(0.003) 0.949

3 0.179 0.349 20 0.294(0.165) -18.7 0.153(0.039) 0.919
50 0.314(0.101) -11.2 0.098(0.017) 0.934
100 0.321(0.071) -8.8 0.07(0.008) 0.935

Conta- 1 0 0.95 20 0.936(0.043) -1.4 0.03(0.025) 0.857
minated 50 0.944(0.025) -0.6 0.02(0.012) 0.885
Normal 100 0.947(0.017) -0.3 0.015(0.006) 0.905

2 0.1 0.906 20 0.882(0.061) -2.8 0.045(0.027) 0.888
50 0.895(0.036) -1.2 0.029(0.012) 0.904
100 0.9(0.025) -0.6 0.022(0.007) 0.917

3 0.169 0.371 20 0.312(0.214) -19 0.162(0.061) 0.848
50 0.337(0.144) -9.9 0.121(0.039) 0.881
100 0.348(0.105) -6.7 0.094(0.025) 0.905

Log- 1 0.002 0.923 20 0.901(0.066) -2.5 0.037(0.026) 0.722
normal 50 0.912(0.046) -1.2 0.029(0.016) 0.759

100 0.916(0.037) -0.7 0.024(0.012) 0.796
2 0.1 0.889 20 0.877(0.076) -1.5 0.044(0.028) 0.711

50 0.89(0.055) 0.1 0.032(0.017) 0.717
100 0.894(0.046) 0.5 0.028(0.014) 0.734

3 0.179 0.177 20 0.264(0.201) 33.1 0.127(0.063) 0.723
50 0.258(0.144) 31.6 0.092(0.042) 0.714
100 0.244(0.114) 27.7 0.074(0.031) 0.72
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Table 3.16 Simulation results for ρ̂(1)
Distri- Case a ρ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
Normal 1 0 0.95 20 0.942(0.028) -0.9 0.024(0.012) 0.926

50 0.947(0.015) -0.3 0.014(0.004) 0.937
100 0.949(0.01) -0.2 0.01(0.002) 0.943

2 0.102 0.887 20 0.869(0.051) -2 0.046(0.019) 0.940
50 0.879(0.029) -0.9 0.027(0.007) 0.946
100 0.882(0.02) -0.6 0.019(0.003) 0.951

3 0.179 0.349 20 0.292(0.166) -19.7 0.154(0.039) 0.919
50 0.312(0.102) -11.8 0.099(0.017) 0.931
100 0.319(0.071) -9.5 0.07(0.009) 0.934

Conta- 1 0 0.95 20 0.936(0.044) -1.5 0.03(0.026) 0.858
minated 50 0.944(0.025) -0.6 0.02(0.012) 0.882
Normal 100 0.947(0.017) -0.3 0.015(0.006) 0.904

2 0.1 0.906 20 0.882(0.061) -2.8 0.045(0.027) 0.889
50 0.895(0.036) -1.2 0.029(0.012) 0.905
100 0.9(0.025) -0.7 0.022(0.007) 0.916

3 0.169 0.371 20 0.309(0.216) -20 0.163(0.061) 0.849
50 0.336(0.145) -10.3 0.121(0.039) 0.88
100 0.367(0.105) -6.9 0.094(0.025) 0.906

Log- 1 0.002 0.923 20 0.901(0.066) -2.4 0.037(0.026) 0.719
normal 50 0.912(0.046) -1.2 0.029(0.016) 0.758

100 0.916(0.037) -0.7 0.024(0.012) 0.796
2 0.1 0.889 20 0.876(0.077) -1.5 0.044(0.028) 0.71

50 0.89(0.055) 0.1 0.032(0.017) 0.72
100 0.894(0.046) 0.5 0.028(0.014) 0.737

3 0.179 0.177 20 0.265(0.2) 33.2 0.128(0.063) 0.724
50 0.259(0.144) 31.7 0.092(0.042) 0.713
100 0.244(0.114) 27.5 0.074(0.031) 0.721
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Table 3.17 Simulation results for ρ̂(â)
Distri- Case a ρ(a) n Mean(std) Relative SE(std) Coverage
bution Bias(%) of CI
Normal 1 0 0.95 20 0.942(0.028) -0.9 0.024(0.012) 0.924

50 0.947(0.015) -0.3 0.014(0.004) 0.937
100 0.949(0.01) -0.2 0.01(0.002) 0.944

2 0.102 0.887 20 0.872(0.049) -1.7 0.043(0.017) 0.932
50 0.881(0.027) -0.6 0.026(0.006) 0.941
100 0.884(0.019) -0.3 0.018(0.003) 0.946

3 0.179 0.349 20 0.321(0.15) -8.5 0.136(0.034) 0.911
50 0.338(0.092) -3 0.088(0.014) 0.932
100 0.343(0.065) -1.5 0.063(0.007) 0.939

Conta- 1 0 0.95 20 0.936(0.044) -1.5 0.03(0.026) 0.856
minated 50 0.944(0.025) -0.6 0.02(0.011) 0.885
Normal 100 0.947(0.017) -0.3 0.015(0.006) 0.905

2 0.1 0.906 20 0.884(0.059) -2.5 0.043(0.026) 0.885
50 0.897(0.035) -1.1 0.029(0.012) 0.901
100 0.901(0.024) -0.5 0.021(0.007) 0.912

3 0.169 0.371 20 0.331(0.203) -12 0.149(0.057) 0.837
50 0.354(0.138) -4.7 0.114(0.038) 0.877
100 0.362(0.1) -2.5 0.089(0.024) 0.904

Log- 1 0.002 0.923 20 0.901(0.065) -2.4 0.037(0.025) 0.719
normal 50 0.912(0.046) -1.2 0.029(0.016) 0.759

100 0.916(0.037) -0.7 0.024(0.012) 0.795
2 0.1 0.889 20 0.878(0.075) -1.3 0.043(0.027) 0.706

50 0.891(0.055) 0.2 0.032(0.017) 0.717
100 0.894(0.046) 0.5 0.027(0.014) 0.73

3 0.179 0.177 20 0.275(0.197) 35.7 0.12(0.062) 0.7
50 0.259(0.144) 31.7 0.092(0.042) 0.713
100 0.247(0.113) 28.5 0.073(0.032) 0.711
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Chapter 4

Applications to Real Data

Six examples with categorical or continuous responses are described here. In prac-

tice, the value of fixed and known a is usually dependent on the researcher’s preference.

Some researchers may use a specific value of a in every circumstance, others may use

different ones in different circumstances. We use a=0, 0.2, 0.4, 0.6, 0.8 and 1 in each of

these six examples to illustrate the results of different choices of a. The estimate of a,

â, is calculated from the sample proportions using the Cramer-von Mises criterion.

4.1 Coffee Data

This example is based on the data of subjects’ purchase choice of instant decaf-

feinated coffee at two times. The complete data set contains 4657 households that made

two purchases of one or more of the 11 brands during the 12-month period and was dis-

cussed by Grover and Srinivasan [24]. For illustration purpose, we take a subsample that

contains 541 observations and five categories. Note that the responses were recorded on

a nominal scale.

The data are displayed in Table 4.1. These frequencies demonstrate moderate

agreement between the purchase choices at two times, which is also reflected in the

estimates of agreement coefficient. For the case where a is fixed and known, the results
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are shown in Table 4.2. For the case where a is estimated, â = 0.038, κ̂(â) = 0.476,

ŜE = 0.028, and 95% asymptotic CI = (0.421, 0.531).

Table 4.1 541 subjects’ purchase choice of instant decaffeinated coffee at two times

Second Purchase
First Purchase High Point Taster’s Choice Sanka Nescafe Brim Total

High Point 93 17 44 7 10 171
Taster’s Choice 9 46 11 0 9 75

Sanka 17 11 155 9 12 204
Nescafe 6 4 9 15 2 36
Brim 10 4 12 2 27 55
Total 135 82 231 33 60 541

Table 4.2 Results of fixed and known a for example 1

a κ̂(a) ŜE CI
0 0.476 0.028 (0.421, 0.531)

0.2 0.476 0.028 (0.421, 0.531)
0.4 0.476 0.028 (0.42, 0.531)
0.6 0.476 0.028 (0.42, 0.531)
0.8 0.476 0.028 (0.42, 0.531)
1 0.475 0.028 (0.42, 0.531)

Since the marginal proportions are similar, proposed agreement coefficients, Co-

hen’s kappa and the RMAC produce very close estimates of agreement, estimates of

asymptotic standard error and confidence intervals.

4.2 Carotid Artery Locations Data

We consider another example in which researchers interpreted Magnetic Reso-

nance Images (MRIs) of 90 carotid artery locations and compared their findings with
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histopathologic examination. The researchers of study were interested in evaluating the

MRI technique and improving its accuracy, specificity and sensitivity. The data are from

Yuan et al. [38], and are displayed in Table 4.3. Note that the responses are binary.

The table shows that the MRIs and results from the histologic examination agreed

that 56 of 90 were positive and 22 were negative. For the case where a is fixed and known,

the results are displayed in Table 4.4. For the case where a is estimated, â = 0.089,

κ̂(â) = 0.691, ŜE = 0.081, and 95% asymptotic CI=(0.532, 0.85).

Table 4.3 Comparison between MRI and histology findings

Histology
MRI Positive Negative Total

Positive 56 2 58
Negative 10 22 32

Total 66 24 90

Table 4.4 Results of fixed and known a for example 2

a κ̂(a) ŜE CI
0 0.692 0.081 (0.534, 0.85)

0.2 0.691 0.081 (0.531, 0.85)
0.4 0.69 0.082 (0.529, 0.851)
0.6 0.689 0.083 (0.528, 0.851)
0.8 0.689 0.083 (0.527, 0.851)
1 0.689 0.083 (0.526, 0.851)
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Proposed agreement coefficients, Cohen’s kappa and the RMAC produce very

close estimates of agreement because the marginal proportions are similar. The agree-

ment is quite respectable. The RMAC has the largest estimate of SE, whereas Cohen’s

kappa has the smallest estimate of SE.

4.3 Allergy Data

In this example, a radioallergosorbent (RAST) test and a multi-RAST (MAST)

test on sera for specific IgE as a test of allergy in subjects for whom prick tests cannot

be used were compared. The MAST was a new, simpler and cheaper method. The data

are from Brostoff, et al. [6] and are displayed in Table 4.5. Note that the responses were

recorded on an ordinal scale.

Visual inspection shows there is considerable disagreement between the methods.

Since the categories are ordered, some weighting schemes are needed to account for sever-

ity of discordance or size of the discrepancy. For the case where a is fixed and known,

results are shown in Table 4.6 and Table 4.7, with Cicchetti-Allison weights and Fleiss-

Cohen weights, respectively. For the case where a is estimated, â = 0.102. When the

Cicchetti-Allison weights are used, κ̂
w
(â) = 0.558, ŜE = 0.029, and 95% asymptotic CI =

(0.501, 0.614); when the Fleiss-Cohen weights are used, κ̂
w
(â) = 0.711, ŜE = 0.029, and

95% asymptotic CI = (0.655, 0.768).

For each weighting scheme, since the marginal proportions are slightly different,

the estimates of agreement, estimates of asymptotic standard error and confidence inter-

vals for the agreement coefficients are slightly different. It is clear that weighted kappa
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Table 4.5 Comparison of RAST and MAST methods of testing serum for allergies

RAST
MAST Negative Weak Moderate High Very High Total

Negative 86 3 14 0 2 105
Weak 26 0 10 4 0 40

Moderate 20 2 22 4 1 49
High 11 1 37 16 14 79

Very High 3 0 15 24 48 90
Total 146 6 98 48 65 363

Table 4.6 Results of fixed and known a for example 3, with Cicchetti-Allison weights

a κ̂
w
(a) ŜE CI

0 0.559 0.029 (0.503, 0.615)
0.2 0.557 0.029 (0.5, 0.614)
0.4 0.556 0.029 (0.5, 0.613)
0.6 0.555 0.029 (0.497, 0.612)
0.8 0.554 0.029 (0.496, 0.612)
1 0.554 0.029 (0.496, 0.611)

Table 4.7 Results of fixed and known a for example 3, with Fleiss-Cohen weights

a κ̂
w
(a) ŜE CI

0 0.712 0.029 (0.656, 0.769)
0.2 0.711 0.029 (0.654, 0.768)
0.4 0.71 0.029 (0.652, 0.767)
0.6 0.709 0.03 (0.651, 0.767)
0.8 0.709 0.03 (0.65, 0.767)
1 0.708 0.03 (0.65, 0.767)
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and RMAC form the upper and lower bounds, whereas the proposed agreement coef-

ficients have values in between them. The estimates of agreement with Fleiss-Cohen

weights are much larger than the ones with Cicchetti-Allison weights, because Fleiss-

Cohen weights tend to weight disagreements more highly than Cicchetti-Allison weights.

4.4 Disease Diagnosis Data

In Table 4.8 we present a subset of the data from Westlund and Kurkland [37]. The

investigators were interested in comparing patient groups to study possible differences in

the geographical distributions of the disease. For illustration purpose, we only consider

the 149 patients in Winnipeg, Manitoba that were selected and were examined by a

neurologist in Winnipeg and a neurologist in New Orleans, Louisiana. Two neurologists

independently classified patients into four ordinal categories, 1=certain multiple sclerosis

(MS), 2=probable MS, 3=possible MS (50:50 odds), and 4=doubtful, unlikely, or defi-

nitely not MS. For the case where a is fixed and known, results are displayed in Table 4.9

and Table 4.10, with Cicchetti-Allison weights and Fleiss-Cohen weights, respectively.

For the case where a is estimated, â, is 0.161. When the Cicchetti-Allison weights are

used, κ̂
w
(â) = 0.371, ŜE = 0.055, and 95% asymptotic CI = (0.263, 0.477); when the

Fleiss-Cohen weights are used, κ̂
w
(â) = 0.517, ŜE = 0.062, and 95% asymptotic CI =

(0.394, 0.639).

Comparing with Example 3, the difference between marginal proportions in this

example is even larger. As a result, the estimate of weighted kappa gives the largest

agreement, whereas the estimate of RMAC gives the smallest agreement, and they are

significantly different. Weighted kappa possesses the smallest estimate of SE, whereas
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Table 4.8 Multiple sclerosis diagnosis

Neurologist 2
Neurologist 1 1 2 3 4 Total

1 38 5 0 1 44
2 33 11 3 0 47
3 10 14 5 6 35
4 3 7 3 10 23

Total 84 37 11 17 149

Table 4.9 Results of fixed and known a for example 4, with Cicchetti-Allison weights

a κ̂
w
(a) ŜE CI

0 0.38 0.052 (0.278, 0.481)
0.2 0.369 0.054 (0.262, 0.475)
0.4 0.36 0.056 (0.249, 0.471)
0.6 0.354 0.058 (0.24, 0.468)
0.8 0.35 0.059 (0.234, 0.466)
1 0.348 0.06 (0.232, 0.465)

Table 4.10 Results of fixed and known a for example 4, with Fleiss-Cohen weights

a κ̂
w
(a) ŜE CI

0 0.525 0.06 (0.407, 0.642)
0.2 0.515 0.063 (0.392, 0.638)
0.4 0.507 0.065 (0.379, 0.635)
0.6 0.502 0.067 (0.37, 0.633)
0.8 0.498 0.068 (0.364, 0.632)
1 0.497 0.069 (0.362, 0.632)
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the RMAC has the largest one. In contrast, κ̂(â) has moderate estimate of agreement

and estimate of SE.

4.5 Blood draw data

The data for this example came from a study conducted by the Asthma Clinical

Research Network (ACRN) entitled Dose of Inhaled Corticosteroids with Equisystemic

Effects (DICE) [34]. One hundred and fifty-six corticosteroid-naive patients with asthma

were recruited at six ACRN centers. Among them, one hundred and twenty-one patients

completed the trial. The major objective of this study was to investigate dose-response

relationships for six inhaled corticosteroids. After one week of treatment to evaluate drug

adherence, the subjects were required to stay at the center overnight, and hourly blood

sampling for cortisol was conducted between 8:00P.M. and 8:00A.M.. Plasma cortisol

area under the curve (AUC) was calculated from the trapezoidal rule over the 12-hour

period of the hourly blood draws. The actual time points of plasma sampling, rather than

the nominal hourly time points, were used for the calculation and standardized to a 12-

hour period. The secondary objective of this study was to assess the agreement between

plasma cortisol AUC calculated from measurements taken every hour and measurements

taken every 2 hours. The study involved repeated measures because plasma AUC data

were from five visits on each of the subjects. Here, I consider only the first time point

for each subject.

The scatter plot (Figure 4.1) shows the distribution of the 1- and 2-hour blood

draw data at the first visit of the DICE trial. For the case where a is fixed and known,

we use six values of a, 0, 0.2, 0.4, 0.6, 0.8 and 1, and the results are shown in Table 4.11.
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For the case where a is estimated, â = 0.018, ρ̂(â) = 0.95, ŜE = 0.011, and 95% CI is

(0.929,0.972). In this example, the agreement is fairly respectable. Since the observed

marginal distributions are nearly equal, both cases yield identical results.

Table 4.11 Results for blood draw data, where a is fixed and known

a ρ̂(a) ŜE 95% CI
0 0.95 0.011 (0.929,0.972)

0.2 0.95 0.011 (0.929,0.972)
0.4 0.95 0.011 (0.929,0.972)
0.6 0.95 0.011 (0.929,0.972)
0.8 0.95 0.011 (0.929,0.972)
1 0.95 0.011 (0.929,0.972)

4.6 Body fat data

The data are taken from the Penn State Young Women’s Health Study [32]. One

hundred and twelve adolescent girls were enrolled in 1990, and results were based on mea-

surements made on the eighty-two participants who remained in the study in 1996. The

objective of the study was to obtain simultaneous and longitudinal measures of several

growth parameters in the participants. In this example, among these growth parameters,

we focus on only percentage of body fat. Percentage of body fat was estimated from skin-

fold calipers and dual-energy x-ray absorptiometry (DEXA). The secondary objective of

the study is to find the agreement between the skinfold caliper and DEXA measurements

of percentage of body fat. Since measurements were taken every 6 months, I consider

only the first time point for each subject.
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Fig. 4.1 Scatter plot of blood draw data
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The scatter plot (Figure 4.2) shows the distribution of the DEXA and caliper body

fat data at the first visit. For the case where a is fixed and known, we use six values of a,

0, 0.2, 0.4, 0.6, 0.8 and 1, and the results are shown in Table 4.12. For the case where a

is estimated, â = 0.169, ρ̂(â) = 0.659, ŜE = 0.053, and 95% CI is (0.553,0.765). In this

example, the agreement is moderate. Since the marginal distributions are slightly differ-

ent, different values of fixed a yield slightly different estimates of agreement, standard

error and confidence intervals, with decreasing agreement, increasing standard error, and

confidence interval shifting to the left as a increases. On the other hand, the case where

a is estimated provides estimates of agreement, standard error and confidence interval

based on the difference between the marginal distributions, so the estimated agreement

is not as inflated as CCC, and the estimated standard error is not as large as the one for

RMAC.

Table 4.12 Results for body fat data, where a fixed and known

a ρ̂(a) ŜE 95% CI
0 0.667 0.051 (0.566,0.767)

0.2 0.658 0.054 (0.552,0.764)
0.4 0.651 0.056 (0.539,0.762)
0.6 0.646 0.058 (0.530,0.761)
0.8 0.643 0.059 (0.525,0.76)
1 0.641 0.06 (0.523,0.76)
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Fig. 4.2 Scatter plot of body fat data
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In summary, we have proposed a general class of agreement coefficients for cate-

gorical and continuous responses based on the difference between marginal distributions.

The difference, defined as a, is measured using Cramer-von Mises criterion. In practice,

we consider case of fixed and known a and case of estimated a. If we call Cohen’s kappa,

weighted kappa and Lin’s CCC the fixed marginal agreement coefficients (FMACs), then

when the observed marginal proportions are similar, the proposed agreement coefficient

produces similar estimates of agreement and asymptotic standard error, independent

of a; when the observed marginal proportions are different, the proposed agreement

coefficient with estimated a produces estimate of agreement and estimated asymptotic

standard error in between FMAC’s and RMAC’s. We demonstrate that estimating a

is preferred for most underlying distribution cases, for its better accuracy and precision

comparing to fixed and known a. In conclusion, the general class of agreement coeffi-

cients is appropriate for categorical and continuous data and provides a good balance

between efficiency and robustness.

In practice, the value of fixed and known a is chosen by the researcher. However,

selecting a a priori has the (1) risk of yielding an inaccurate agreement, e.g., the true

value of a might be very different from the value of a chosen by researcher; and (2) risk
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of underestimating the variability, because the variability associated with choosing a is

not taken into account. On the other hand, estimating a will account for the estimation

of a and yield the correct level of precision. Therefore, the case of estimated a is more

appealing and should be considered for use.

5.2 Future Work

The general class of agreement coefficients has some desired properties and the

potential to develop further. Future work would include:

(1) Extend the proposed method to handle multiple raters;

(2) Improve the performance of proposed agreement coefficients on non-normal data

(e.g. log-normal distribution).
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