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Abstract

Computer network traffic engineering aims at providing algorithms supporting

Traffic Engineering (TE) for resource optimization (multi-path load balancing), Quality

of Service (QoS), and Fast Failure Recovery (FFR) (dealing with link/node failures).

This dissertation addresses two computer network traffic engineering problems: the

multi-domain traffic engineering problem, and the overlay network traffic engineering

problem. The solutions provided have their basis on nonlinear control theory. More

precisely, they use concepts from sliding mode theory.

The motivation for the study of the multi-domain traffic engineering problem

comes from the increasing demand for the Internet to provide rich service quality features

in support of sophisticated applications at a global scale, including TE, QoS, and FFR.

We believe that, to be deployable at a global scale and to be integrated into the basic

Internet architecture, a successful solution for a multi-domain environment must be

distributed by design and in line with the distributed, two-level routing structure, and

hop-by-hop forwarding paradigm of today’s Internet. In this dissertation, as a first

but critical step toward finding such a solution, we develop a well-grounded theoretical

underpinning for it. This family of control laws proposed for a multi-domain environment

enables QoS-based TE and FFR features by performing per-hop edge-to-edge based

traffic control at two levels (i.e., inter-domain and intra-domain), in alignment with the

two-level routing structure and hop-by-hop forwarding paradigm of the Internet.

Besides the multi-domain traffic engineering problem, we also address the over-

lay traffic engineering problem. Again, the approach used in the development of the

control laws is based on the sliding mode theory. An overlay network, built at network

application layer, is another prominent approach to provide QoS feature in the current

best-effort Internet infrastructure. Given an overlay network, the goal of overlay net-

work traffic engineering problems is to distribute traffic among available overlay paths

in order to optimize the use of time-varying network resources. Due to the presence of

time-varying network resources (link capacity), as well as the feasible set and the set
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of optimal solutions being time-varying, the problem is fundamentally a time-varying

optimization problem and different from the problems previously addressed in the liter-

ature. And in this dissertation, we are able to find a new family of control laws, which

addresses the time-varying problem. The family of control laws presented in this disser-

tation is shown to converge to the optimal (time-varying) traffic allocation and uses only

the number of congested links in a forwarding path as feedback for the control, making

it an ideal traffic control solution for the overlay network.

Since the overlay network traffic engineering problem is a time-varying optimiza-

tion problem, we also extend our research to more general time-varying optimization

problems. For the problem with a twice differentiable strictly convex objective function,

a Continuous First Order Algorithm (CFoA) is proposed. Moreover, in order to achieve

“smoother” behavior than the CFoA, a Continuous Second Order Algorithm (CSoA) is

also proposed. Both the CFoA and CSoA are shown to converge to and track the time-

varying optimum. For a subclass of strictly convex objective functions having derivatives

with “linear” discontinuity, a Sliding Algorithm (SA) is proposed, which is shown to con-

verge to an arbitrarily small neighborhood of the time-varying optimum. Moreover, the

SA is applied to solve time-varying linearly constrained optimization problems, and suf-

ficient conditions for asymptotical convergence of the SA are provided.
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Chapter 1

Introduction

Traffic Engineering aims at providing Quality-of-Service (QoS) in the current

best-effort Internet. In this dissertation, by using the sliding mode control, we address

two traffic engineering problems: the multi-domain traffic engineering problem, and the

overlay network traffic engineering problem. Moreover, we extend these results to more

general time-varying optimization problems. We now briefly review the related work,

our work about the traffic engineering problems addressed in this dissertation, and time-

varying optimization problems, respectively.

1.1 Traffic Engineering Problem

The Internet has quickly evolved into a very critical communications infrastruc-

ture, supporting significant economic, educational, and social activities. Simultaneously,

the delivery of Internet communication services has become very competitive, and there

has been an increasing demand for the Internet to provide rich service quality features in

support of sophisticated applications at a global scale. However, despite the great effort

made in the past decades, today’s Internet, for a large part, can only provide a single

Best Effort (BE) service and there has been no large-scale deployment of better-than-BE

service quality features to date.

Traffic Engineering [3] has been considered as one of the vital components of an

autonomous system required to achieve both high resource utilization and high quality

of service for both real time and non real-time applications. The basic idea is to split the

traffic flows among multiple paths or steer the traffic away from a shortest path found by

the interior gateway protocols, so that the congestion is avoided and network resource

utilization is maximized.
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In this dissertation, we address two traffic engineering problems: the multi-domain

traffic engineering problem, and the overlay network traffic engineering problem, by

using an optimization-based method. We first review the pricing and fairness issue in

Traffic Engineering, and the optimization-based methods to address traffic engineering

problems, then introduce the multi-domain traffic engineering problem in Section 1.1.3,

and the overlay network traffic engineering problem in Section 1.1.4, respectively.

1.1.1 Pricing and Fairness in Computer Network

In this dissertation, we will use an optimization-based approach to design data

rate control algorithms for the multi-domain traffic engineering problem, and the overlay

traffic engineering problem. It has been widely acknowledged that economic problems,

such as pricing and fairness, play an important role in such a computer network traffic

engineering problem. Though these issues are beyond the scope of our research, a short

introduction is helpful for understanding the problem formulation in the later chapters.

If the available resource, in this case bandwidth, far exceeds the demand, there is

little role for pricing mechanisms. However, this is not the case in the current networks.

When the demand exceeds the available resources, pricing network services become an

important issue, due to the fact that the network behavior depends on the aggregated

traffic load of the network – the result of many users’ individual decisions on how to

use the network, and these decisions are affected by prices users face [30]. Pricing

mechanisms provide incentives and penalties which prompt users to choose their service

requirement while considering the price. Hence, pricing mechanism is an effective way to

alleviate congestion, and additionally, it will automatically generate appropriate amount

of revenue to finance capacity expansion [23].

The concept of fairness as seen by the users’ point of view, has been widely used

in optimization-based Traffic Engineering, as a reference for the design of objective func-

tions that measure the efficiency of the network resources utilization. We now introduce

some notions of fairness that are commonly used in most related works. Assume a net-

work in which there exist several source nodes, each connected to a destination node.

Each source–destination pair establishes a flow that is assigned a transmission rate xi,
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for i ∈ S
.
= {1, 2, ..., S}. Furthermore, let x be the vector containing all these rates. The

objective of the rate adaptation algorithm is to determine the rate vector x that maxi-

mizes a given optimality criterion. However, this optimal allocation should be “fair” in

some sense. Three standard fairness criteria that are widely used in the field of computer

network are presented below [26].

A rate vector x is min-max fair if it is feasible (i.e., satisfies all the constraints of

the optimization problem) and for each i ∈ S, xi cannot be increased without decreas-

ing xj for some j 6= i with a lower rate; i.e., xj ≤ xi. This concept of fairness prioritizes

smaller flows; i.e., if xj ≤ xi then no increase in xi can compensate for a decrease in xj .

On the other hand, a rate vector x is proportionally fair if it is feasible and given

any other feasible x̂ the aggregate of proportional changes is not positive

∑

i∈S

x̂i − xi
xi

≤ 0. (1.1)

If the concept of price per unit time wi that the user at source i is willing to

pay is introduced, then the proportional fairness concept can be slightly modified. A

rate vector x provides proportionally fair rates per unit charge if instead of (1.1) the

following inequality is satisfied under the same assumptions of proportional fairness

∑

i∈S

wi
x̂i − xi
xi

≤ 0.

Given the considerations above, in this dissertation we will address the problem of

maximizing a given utility function subject to both resource and Class-of-Service (CoS)

constraints. Although not explicitly mentioned in the remainder of this dissertation, it is

assumed that the utility function to be maximized is related to the economic and fairness

issues discussed above.

1.1.2 Traffic Engineering and Optimization-based Distributed Method

The general approach taken to address the optimization-based, distributed traffic

control problem is to formulate it as an optimization problem based on a fluid-flow model,
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taking into account link bandwidth constraints. The objective function represents desired

pricing policies. The aim is to find distributed traffic control laws which, by working

independently of one another, will drive the network to an operation point where the

given utility function of flow rates is maximized. Since different flows share the link

resources which are constrained, the key challenge in the design of distributed control

laws is the high degree of interaction between different flows.

A significant amount of work has been done on adaptive rate allocation algo-

rithms. In this section, we focus exclusively on surveying some of the literature relevant

to the work presented in this dissertation, i.e., optimization-based, multipath-enabled,

distributed traffic control schemes.

The first approach (e.g. [6, 9]) is to incorporate link congestion costs into the over-

all utility function in order to convert a constrained problem into a non-constrained prob-

lem. The optimization problem is then solved using a gradient type of algorithm. Itera-

tive algorithms have been proposed where individual sources periodically adjust/balance

their flow sending rates to multiple paths based on the congestion cost information fed

back from the (congested) links along each path.

The second approach (e.g., [11, 15, 16]) is to solve a relaxation of the original

problem, by incorporating a price function into the overall utility function. Distributed

control laws have been found, proven to be locally stable in the presence of variable

feedback delays. Working independently at a source, a control law adjusts/balances

its flow sending rates to multiple paths based on periodical, cumulative price feedbacks

from the destination node. Each component price is collected from the intermediate

links along the forwarding path.

The third approach is to solve the original problem directly (e.g., [19, 20, 24,

25, 35]). Using a duality model, an algorithm was provided [35]. Similar to the second

approach, this solution requires a cumulative price to be conveyed to the source peri-

odically. In [19, 20, 24, 25], the authors have tackled this problem using a technique

based on the sliding mode theory. Both end-to-end [19, 20, 25] and hop-by-hop [24]

optimal control laws have been found. These algorithms allow multipath forwarding,

enable multiple CoSes, and require minimum information feedback for the control.
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Motivated by the third approach reviewed in this section, which is based on

the sliding mode theory, in this dissertation we use the same approach to address the

multi-domain traffic engineering problem and the overlay traffic engineering problem,

and propose data rate control algorithms for them. In the next sections, we give the

motivation to study these two problems.

1.1.3 Multi-domain Traffic Engineering Problem

As the Internet has evolved into a global commercial infrastructure, there has

been an increasing demand for it to provide rich service quality features in support of

sophisticated applications at a global scale, including Quality-of-Service (QoS), Traffic

Engineering (TE), and Fast Failure Recovery (FFR). However, despite great effort made

over the past decades, today’s Internet can only provide a single BE service and there

has been no large-scale deployment of better-than-BE service quality features to date.

The root cause of this status quo has much to do with the existing design approaches

taken to enable better features, which are at odds with the design approach that has

made the Internet a success in terms of global reachability. The central idea of the

existing design approaches is to try to embed reliable end-to-end path (with protection)

over an unreliable, connectionless, multi-domain Internet, such as Multi-Protocol Label

Switching (MPLS). Such design approaches are complex and significantly deviate from

the one that has made the current Internet highly scalable. They require adding a

connection-oriented forwarding paradigm and hence, strong coordination among domains

over a connectionless, loosely-coordinated-multi-domain Internet. As a result, they are

expensive; cannot be implemented at large-scale; and are difficult to integrate into the

basic Internet architecture.

Given the size of the Internet, a solution for providing service-quality features

must be distributed by design. Moreover, it must be able to allow quick response to net-

work congestions and link/node failures. Therefore, we now focus on reviewing literature

about dynamic, distributed traffic control.

First, most previous literature on the existing online distributed traffic control

approaches at the the IP layer has focused on work about a single domain. In particular,
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a large number of optimization-based intra-domain TE and/or FFR mechanisms have

been proposed (e.g., [6, 9, 13, 14, 15, 18, 22]). These mechanisms can only deal with

rate-adaptive traffic and hence cannot provide QoS features. In another series of papers

[19, 20, 24, 25], the authors have found large families of optimization-based, distributed

controllers that provide QoS, TE, and FFR features simultaneously.

Second, although TE has been an extensively studied subject at the inter-domain

level, most studies have been carried out in the context of BGP route selections (e.g.,

[4, 7, 34, 36]). Some of the solutions of this kind complement the solution proposed in

this dissertation by providing it with well-engineered inter-domain multiple routes (e.g.,

[4, 36]). To date, there has been no TE solution which jointly optimizes inter-domain

and intra-domain routing. Most multi-domain-based QoS solutions are provisioning

based and generally involve policy servers or bandwidth brokers to coordinate resource

provisioning within and between domains (e.g., [12, 27]). In particular, [12] provides

algorithms for joint inter-domain-and-intra-domain QoS provisioning. Again, these solu-

tions complement the solution proposed in this dissertation by providing it with resource

guarantee for QoS-based flows or lossless failure recovery.

To the best of our knowledge, there has been no existing online, distributed traf-

fic control mechanism that can jointly optimize inter-domain and intra-domain traffic

allocation. We believe that to be deployable at a global scale and to be integrated into

the basic Internet architecture, a successful solution must be distributed by design and

in line with the distributed two-level routing structure and the hop-by-hop forwarding

paradigm of today’s Internet. As a first but critical step toward finding such a solution,

we develop a well-grounded theoretical underpinning for it. More specifically, based

on a fluid-flow model, we find a large family of optimization-based control laws. This

family of control laws enables CoS-based TE and FFR features by performing per-hop,

edge-to-edge based traffic control at two levels (i.e., inter-domain and intra-domain),

in alignment with the two-level routing structure and hop-by-hop forwarding paradigm

of the Internet. To the best of our knowledge, the family of control laws presented in

this dissertation is the only optimization-based, distributed, multi-domain traffic control

algorithm being found to date.
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1.1.4 Overlay Network Traffic Engineering Problem

An overlay network is an alternative approach to support QoS-sensitive applica-

tions, which is formed by a subset of nodes of underlying physical nodes. The connections

between the overlay nodes are provided by overlay links, each of which is usually com-

prised of one or more physical links [21]. Based on the overlay node types, overlay

networks can be classified into two categories: end-user centric and network centric. In

an end-user centric overlay network, the overlay nodes are end-hosts, which are linked

together through network layer to form an overlay network. In a network centric overlay

network, the overlay nodes are pre-selected network layer nodes/servers, which are con-

nected by overlay links. Since overlay applications are usually built at the application

layer, they can effectively use the underlying best-effort network layer as a lower-level

infrastructure to provide high-level services to end users while retaining the protocols of

network layer.

Some literature documents the emergence of several service-based overlay archi-

tectures, e.g., [1, 2, 5, 11, 21, 32], aimed at providing service quality features largely

unattainable in today’s best-effort Internet. Resilient Overlay Network (RON) [2] is an

overlay architecture which allows distributed Internet applications to detect and recover

from path outages and degraded performance periods quickly, providing better rout-

ing. Service Overlay Network [5] is a logical end-to-end service delivery infrastructure

addressing end-to-end QoS problem. QoS-aware routing protocols for overlay networks

(QRON) [21] provide QoS-satisfied overlay paths and balance the overlay traffic.

However, because the resource availability and topology of underlying network

layer are largely hidden from the overlay network, these overlay architectures require a

proprietary functionality support, such as static or dynamic resource isolation or active

probing/discovery. As a result, the approaches taken in solving QoS issues are quite

diversified and strongly dependent on the actual techniques in use. Moreover, each of

these architectures solves just part of the overall service quality issues. These problems

make the adoption of any one or any combination of these architectures for addressing

the overall service quality issues more difficult. Hence, from a fundamental viewpoint, in
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order to facilitate the support for existing and new overlay architectures, it is desirable

to provide a unified mathematical framework which enables TE, QoS, and FFR.

However, due to the presence of time-varying network resources (link capacity),

as well as the feasible set and the set of optimal solutions being time-varying, the existing

optimization-based, distributed traffic control approaches reviewed in Section 1.1.2 can

not handle the time-varying link capacity. The novelty of our work in this dissertation

lies in the fact that, motivated by [19, 20], we are able to find a new family of control

laws, which supports TE, QoS, and FFR. The family of control laws is shown to converge

to the optimal (time-varying) traffic allocation and uses only the number of congested

links in a forwarding path as feedback for the control, making it an ideal traffic control

solution for the overlay. This is the case since each upstream overlay node can detect

whether its downstream overlay link is congested, through a source inferred congestion

detection mechanism, and then pass this information to the source. Hence, this approach

allows both underlying network topology and resources to be hidden from the overlay

network.

1.2 Time-varying Optimization Problem

The overlay traffic engineering problem reviewed in Section 1.1.4 is a resource al-

location problem with time-varying resources. Hence, it is fundamentally a time-varying

optimization problem, for which we design an optimization-based rate control algorithm.

Having this as a starting point, we extend these results to more general time-varying op-

timization problems. We now briefly review the literature on time-varying optimization

problems.

Many problems in engineering, economics, and management, such as optimal

control, system identification, and optimal resource allocation, can be formulated as time-

varying optimization problems. A Time-varying problem involves an objective function

and/or constraints which depend on time.

The optimal solution of a time-varying optimization problem, xopt(t), is a function

of time t. In the literature on parametric optimization, one can find sensitivity analysis
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results that provide the dynamics of the time-varying optimum of unconstrained prob-

lems [28] and constrained problems [10], under the condition that the optimum xopt(t) is

differentiable with respect to the parameter t. If at some time t0, one starts at the opti-

mum xopt(t0), then the dynamics of the optimum of t > t0 can be calculated. However,

sensitivity analysis is mainly of theoretical significance, since xopt(t0) cannot, usually, be

calculated analytically.

In our opinion, to address this problem in a practical setting, an algorithm should

have the following two properties: convergence to the time-varying optimum and the

ability to track it. From this viewpoint, we now review the literature on algorithms for

time-varying optimization problems. To the best of our knowledge, there are only limited

results in this area. In [29], it was proven that the gradient method is able to converge

to an arbitrarily small neighborhood of the optimum xopt(t) for a twice differentiable

strictly convex objective function. An algorithm was proposed in [38], which is able to

converge, in the sense that limt→∞ ∂U(x, t)/∂x = 0, if the objective function U(x, t) is

twice differentiable with respect to x for all t.

In this dissertation, we focus on a class of time-varying optimization problems

with objective functions having “linear” discontinuous derivatives (the computer network

traffic engineering problem with time-varying link capacity [15, 31] is an example of such

problems), and use the smallest norm of gradient/subgradient as a descent function

to design algorithms. These algorithms only require local information of the objective

function.

First, for the time-varying optimization problem with a twice differentiable strictly

convex/concave objective function, a Continuous First Order Algorithm (CFoA) is pro-

posed. And in order to achieve “smoother” dynamics than the CFoA, a Continuous

Second Order Algorithm (CSoA) is proposed. Both the CFoA and CSoA are shown to

converge to and track the time-varying optimum. These results serve as a step stone

for the algorithm design for a class of time-varying optimization problems with strictly

convex/concave objective functions having derivatives with “linear” discontinuity. Then,

for strictly convex/concave objective functions having derivatives with “linear” disconti-

nuity, a Sliding Algorithm (SA) is proposed, which is shown to converge to an arbitrarily
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small neighborhood of the time-varying optimum. Moreover, the SA can be applied

to solve time-varying linearly constrained strictly convex optimization problems, and

sufficient conditions for asymptotic convergence are presented.

1.3 The Sequel

The remainder of this dissertation is organized as follows. Chapter 2 introduces

sliding mode theory which is the basic tool used to design control algorithms throughout

this dissertation. Chapter 3 and Chapter 4 present our data rate control algorithms for

the multi-domain traffic engineering problem and the overlay network traffic engineering

problem, respectively. Chapter 5 presents our results for more general time-varying

optimization problems. Chapter 6 gives concluding remarks. And finally, the proofs of

the results in this dissertation are given in the Appendices.
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Chapter 2

Sliding Modes in Mathematical Programming

In this chapter, we introduce the sliding mode control and its application in

mathematical programming. The sliding mode theory is the basic tool used to design

our algorithms throughout this dissertation.

2.1 Sliding Modes

The concept of sliding modes arises from the need to describe a number of systems

which are characterized by the fact that the right hand sides of the differential equa-

tions describing their dynamics feature discontinuity with respect to the current process

state [33]. In this dissertation, we consider systems of the general form

ẋ = f(x, u, t), (2.1)

where x ∈ R
n
is the state variable, t ∈ R is time, u ∈ R

M
is the control vector defined

as

ui(x, t) =















u
+

i
(x, t) if si(x) > 0,

u
−

i
(x, t) if si(x) < 0,

i = 1, 2, ...,M, (2.2)

where si(x) = 0, i = 1, 2, ...,M define discontinuity surfaces. The signals u
+

i
(x, t)

and u
−

i
(x, t) are assumed to be continuous.

When the set of discontinuity points has a nonzero measure in time, the trajectory

given by any combination of continuous controls u
+

i
(x, t) and u

−

i
(x, t) differs from the

system trajectories [33]. Sliding modes is an accepted term for the motion on disconti-

nuity surfaces. Sliding mode does exist on a discontinuity surface whenever the following



12

conditions are satisfied

lim
s→−0

ṡ > 0 and lim
s→+0

ṡ < 0.

2.2 Equivalent Control Method

The mathematical description of sliding modes is quite challenging, because the

classical theory of differential equations can not adequately describe the behavior of

systems on the discontinuity surfaces. The equivalent control method is one way to solve

this problem. It reduces the original problem to a form which has a solution close, in

a sense, to the solution of the original problem, enabling one to use classical analysis

techniques [33].

For the system defined by equations (2.1) and (2.2), assume that sliding mode

exists on the discontinuity surfaces s(x) =
[

s1(x), s2(x), ..., sm(x)
]T

= 0, the equivalent

control method provides a way of determining the motion of the system by finding a

continuous control such that ṡ = 0, for any x satisfying s(x) = 0. More precisely, find u

such that:

ṡ = Gf(x, u, t) = 0, (2.3)

where G =
[

∇s1 ∇s2 ... ∇sm

]T
. Assume that at least one solution of equation (2.3)

with respect to u ∈ R
m
exists, such a solution is referred to as the equivalent control

ueq, substitute it into equation (2.1) to get

ẋ = f(x, ueq, t). (2.4)

Obviously, such a motion, starting from x0 satisfying s(x0) = 0, will keep satisfy-

ing s(x) = 0, and it can be used as one of the ways of describing the motion on the

intersection of discontinuity surfaces s(x) = 0. The above procedure is referred to as the

equivalent control method.
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From the geometric view, illustrated by Fig. 2.1, the equivalent control method

replaces the discontinuous control with a continuous control which directs the velocity

vector along the discontinuity surfaces intersection [33].

Fig. 2.1. Equivalent control method

2.3 Sliding Mode Algorithms in Mathematical Programming

An application of sliding mode theory of particular interest to the problems ad-

dressed in this dissertation is its use in nonlinear programming. In this section,we briefly

introduce the sliding modes theory for solution of nonlinear optimization problem [33].

2.3.1 Convex Optimization Problem

A convex optimization problem is one of the form

minimize U(x),

subject to si(x) ≤ 0, i = 1, 2, ...,m,

si(x) = 0, i = m+ 1,m+ 2, ...,m+ l,

where the objective function U(x) : R
n
→ R is convex, the inequality constraints si(x) ≤

0, si(x) : R
n
→ R, i = 1, 2, ...,m are convex, and the equality constraints si(x) = 0,

si(x) : R
n
→R, i = m+1,m+2, ...,m+ l are affine. For convex optimization problems,
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every local minimum is a global minimum, and in addition if U(x) is strict convex, this

problem has a unique global minimum.

The following conditions are called Karush-Kuhn-Tucker (KKT) conditions

∇U(x) +
m
∑

i=1

λi∇si(x) +
m+l
∑

i=m

νi∇si(x) = 0,

si(x) ≤ 0, i = 1, 2, ...,m,

λi ≥ 0, i = 1, 2, ...,m,

λisi(x) = 0, i = 1, 2, ...,m,

si(x) = 0, i = m+ 1,m+ 2, ...,m+ l,

For convex optimization problems, the KKT condition is a sufficient condition for x

to be an optimal point. Moreover, if a convex optimization problem only has linear

constraints, the KKT condition is also a necessary condition. This is the case for the

problems addressed in this dissertation.

2.3.2 Sliding Mode Algorithms in Mathematical Programming

For the convex optimization problem defined in Section 2.3.1, consider a piecewise

continuous penalty function defined as

P (x) = s
T
(x)u, (2.5)

where

s(x) =
[

s1(x), s2(x), ..., sm+l(x)
]T
,

u =
[

u1, u2, ..., um+l

]T
,

ui =















λi if si(x) > 0,

0 if si(x) < 0,

i = 1, 2, ...,m,
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ui =















λi if si(x) > 0,

−λi if si(x) < 0,

i = m+ 1,m+ 2, ...,m+ l,

λi > 0, λi = constant, i = 1, 2, ...,m+ l.

The penalty function P (x) is constructed in the way that: it is zero for any feasible

point, and positive for any non-feasible point.

Define the auxiliary function F (x) = U(x) + P (x), where U(x) is the objective

function. It was proven by Zangwill [37] that: there exists a positive constant λ0 such

that, if for all i = 1, 2, ...,m+ l,

λi ≥ λ0, (2.6)

a minimum of F (x) coincides with a solution of the original convex problem defined in

Section 2.3.1 [33].

Outside si(x) = 0, i = 1, 2, ...,m+ l, the gradient of F (x) is well defined, hence a

possible gradient procedure to find the minimum of F (x) is

ẋ = −∇U −G
T
u, (2.7)

where G =
[

∇s1 ∇s2 ... ∇sm+l

]T
. On surfaces si(x) = 0,∀i = 1, 2, ...,m+ l, which

are referred to as the discontinuity surfaces, the gradient of F (x) is discontinuous, and

sliding mode may occur on intersection of discontinuity surfaces.

Assume sliding mode occurs on the intersection of some discontinuity surfaces

(this condition is equivalent to the condition given by equation (2.6)), and let X
∗

F
,

defined as the set of all minimum points x
∗

F
of F (x), be bounded, by using the equivalent

control method introduced in Section 2.2 to analyze the system defined by equation (2.7),

convergence of this system to minimum point of F (x) can be established in the following

sense [33]

lim
t→∞

min
x∗

F
∈X∗

F

‖x− x
∗

F
‖ = 0.
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Chapter 3

Multi-domain Traffic Engineering Problem

In the last chapter, we provided a review of the concept of sliding modes and its

application to convex optimization. This is the basic tool used to address the multi-

domain traffic engineering problem which is studied in this chapter. More precisely, a

family of control laws is developed, which supports TE, QoS, and FFR in a multi-domain

environment. This family of control laws is optimization-based, distributed by design,

and in line with the distributed, two-level routing structure, and hop-by-hop forwarding

paradigm of today’s Internet. Hence, it is deployable at a global scale.

This chapter is organized as follows. First, a high-level view of the multi-domain

control structure is provided. Second, some additional notation, assumptions, and a

precise problem statement are given. Next, the optimal control laws and an alternative

algorithm are presented. Finally, the simulations of the proposed algorithms are given.

The proofs of the main results in this chapter are provided in the Appendix.

3.1 Multi-domain Control Structure

Before presenting the precise mathematical problem formulation of the multi-

domain traffic engineering problem and the mathematical details of the proposed family

of control laws, in this section, we provide a high-level view of the multi-domain control

structure based on the family of control laws.

As shown in Fig. 3.1, the Internet backbone is composed of multiple Internet

Service Provider (ISP) domains, known as autonomous systems (AS). Internet routing

is performed at two levels, intra-domain and inter-domain. In line with this distributed

routing structure, the proposed solution works at two levels, intra-domain and inter-

domain, based on three types of control laws - class A, class B, and class C. These
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control laws perform fully distributed, per-hop control of class-of-service (CoS)-and-IP-

prefix based flow aggregates at the Internet access points (Class A) and domain edge

nodes (Class B at the inter-domain level and Class C at the intra-domain level) to enable

FFR, QoS, and TE features simultaneously. These features are achieved through CoS-

based, multi-next-hop dynamic load balancing and/or rate adaptation among edge nodes

in response to congestions/failures. More specifically:

• Class A control laws running at the access/aggregation points perform one-hop

control of one or multiple, CoS-aware flows sent to an edge node of an ISP domain.
1

• At the inter-domain level, the Class B controller sitting at a domain edge node

performs single-hop, dynamic load balancing and/or rate adaptation for a CoS-

and-IP-prefix-based flow aggregate in response to congestion/failures.

• At the intra-domain level, the Class C controller running at an AS domain edge

node performs domain edge-to-edge, dynamic multi-path load balancing and/or

rate adaptation for a CoS-and-IP-prefix-based flow aggregate.
2
Since the Class C

control law performs edge-to-edge control without having to involve any core nodes

for the control (i.e., no need for path pinning), such edge-to-edge, per-hop control

allows the flexibility to support both connection-oriented and connectionless ser-

vices in the domain.

In our solution, the distributed combination of A, B, and C controllers enable

scalable and adaptive per-hop control/forwarding across the Internet.

Since this solution allows next-hop edge nodes and related link resource alloca-

tion to be determined purely locally, it can work properly under the constraints imposed

by the local policies. Moreover, due to its “per-hop” control among edge nodes at the

intra-domain level, which can be locally engineered to cater to the specific conditions

1If load balancing at an access point is desirable, e.g., through multi-homing, Class A con-
trollers can be pushed towards end-hosts and the access points are treated as edge nodes, running
Class B and Class C controllers.

2Multi-path can be connection-oriented, e.g., built by MPLS, or connectionless, e.g., based on
a set of shortest paths found by an IP routing protocol. In the case of a connectionless IP network,
since a given destination network or IP prefix may be reachable through multiple egress edge
nodes, the multi-path control may involve multiple egress edge nodes, or point-to-multi-point
multi-path.
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of the domain without sacrificing the global convergence properties, the proposed solu-

tion can address heterogeneity and edge diversity of the Internet domains. For example,

customized Class B controllers can be developed for a wireless network for performance

enhancement. The implementation of these controllers requires minimum software up-

grades in domain edge routers with programmable interfaces as explained in [24].

Here we note that the proposed architecture enables basic QoS, TE, and FFR

features in a highly distributed, scalable fashion. The end-to-end service qualities can

still be affected by other factors. For instance, since a multi-path in an ISP domain

may be created by various mechanisms, such as MPLS and IP routing protocols, the

multi-path quality may vary. However, this topic is beyond the scope of this dissertation

(which focuses mainly on higher level algorithms), and its detailed study will be the

focus of future work.

Fig. 3.1. Multi-domain control structure

3.2 Problem Statement

We now provide a precise problem statement of the optimal traffic engineering

problem in a multi-domain environment addressed in this chapter. To better explain

the proposed approach, we introduce some of the notations in Table 3.1, and use a
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four domain internet as given in Fig. 3.2, Fig. 3.3 and Fig. 3.4 to guide the discussion.

Throughout this chapter, traffic flows in a multi-domain environment are assumed to

be described by a fluid flow model and the only resource considered is link bandwidth.

Consider a multi-domain internet with access points attached to various internet domain

edge nodes, serving as traffic source and sink nodes. For example, S and D nodes in

Fig. 3.2 are access points. Note that each edge node may have multiple access points

connected to it (only one is given in Fig. 3.2). Define a flow of given type xi, i = 1, 2, ..., η,

as a Class-of-Service (CoS)-based flow aggregate between a source access point and a

sink access point. The objective is to find the allocation of traffic that leads to the

maximization of the sum of individual flow utility functions Ui(xi)

η
∑

i=1

Ui(xi),

subject to the network resource constraints and CoS requirements. The functions Ui(xi),

i = 1, ..., η, are assumed to be differentiable concave functions and increasing in their

arguments.

For simplicity of exposition, only two CoSs are considered: Flows of type i, for

i = 1, 2, . . . , η1, are assumed, without loss of generality, to be of the Assured Forwarding

CoS category with a fixed target rate (AF); On the other hand, flows of type i, for

i = η1 + 1, η1 + 2, . . . , η, are assumed to be of the Best Effort CoS category (BE). Other

CoS categories such as service with minimum rate guarantee, upper bounded rate, and/or

service with both minimum and upper bounded rate can also be easily incorporated [31].

The proposed control laws, class A, B and C run at both access points and domain

edge nodes. They perform inter-domain and intra-domain traffic controls. At the inter-

domain level, the class A running at access points and class B running at domain edge

nodes, perform load balancing/rate adaptation among multiple next-hop nodes. At the

intra-domain level, the class C running at domain edge nodes perform load balancing/rate

adaptation among multiple paths. In what follows, such an edge-to-edge multi-path is

called a virtual link. Hence, logically, one can view this approach as a hop-by-hop
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distributed traffic control scheme among edge nodes interconnected by both non-virtual

and virtual links.

Fig. 3.2. Network topology

Each virtual link l connecting an ingress-egress node pair consists of one or more

paths. For example, in Fig. 3.2, we may define three virtual uni-directional virtual

links l4, l5, and l6, which one may see in Fig. 3.4, corresponding to the following multi-

paths, respectively: the virtual link l4 has one path: b5− e2− e4− b6; the virtual link l5

has two paths: b4− e3− e4− b7, and b4− e2− e4− b7; and the virtual link l6 has three

paths: b4− e1− b6, b4− e3− e4− b6, and b4− e2− e4− b6.

Let x be an n× 1 vector consisting of (see Table 3.1)

xi for each i,

x
out

i,b,l
for each b, i ∈ Ib, and l ∈ Lb,

x
out

i,b,l(j)
for each b, i ∈ Ib, virtual link l ∈ Lb and each l(j),

x
in

i,b,l
for each b, i ∈ Ib, and l ∈ Lb,

x
in

i,b,l(j)
for each b, i ∈ Ib, virtual link l ∈ Lb and each l(j).
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Table 3.1. Notation
domain d domain d

set D set of all domains d

node b node at the inter-domain level

set B set of all nodes b

link l link (non-virtual or virtual) at the inter-domain level

non-virtual link l link connecting an egress-ingress node pair

example: l1 connecting b2 and b4

virtual link l link connecting an ingress-egress node pair,

and consisting of one of more paths

example: l6 connecting b4 and b6

set Lb set of all links l connected to node b

path l(j) path j of virtual link l

node e node at the intra-domain level except edge nodes

physical link g physical link at the intra-domain level

interconnecting b− e and e− e node pairs

set G
d

set of all physical links g in domain d

set Gi,l(j) set of all physical links g taken by x
out

i,b,l(j)

type i type i of flows

set Ib set of all types i of flows visiting node b

set Lb,i set of all outgoing links l the flows of type i use

node ς(b, l) next hop from node b through link l

xi data rate of flows of type i

x
out

i,b,l
(x
in

i,b,l
) data rate of flows of type i arriving at (departing

from) node b through link l

x
out

i,b,l(j)
(x
in

i,b,l(j)
) data rate of flows of type i arriving at (departing

from) node b through path l(j) of virtual link l
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Fig. 3.3. Inter-domain

Fig. 3.4. Example of Class A,B and C
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Furthermore, we assume that all the data rates are bounded; i.e., there exists an ι ∈ R

such that x always belongs to the set

X
.
=

{

x ∈ R
n
: xi, x

out

i,b,l
, x

out

i,b,l(j)
, x

in

i,b,l
, x

in

i,b,l(j)
≤ ι; for each i, b, l, and l(j)

}

.

Moreover, assume that at the optimal traffic allocation each congested link has

at least one non-binding class of service or a BE flow with a nonzero data rate, and that

the components of the gradient of the utility function ∇U , are bounded.

Given the assumptions and requirements above, the problem of optimal traffic

allocation can be formulated as the following optimization problem

max
x

U(x) =

η
∑

i=1

Ui(xi),

subject to: inter-domain level link capacity constraints: for each non-virtual link l, and

each b ∈ B

∑

i,l∈Lb

x
in

i,b,l
+ x

out

i,b,l
≤ cl,

intra-domain level link capacity constraints: for each domain d ∈ D, and each physical

link g ∈ G
d

∑

i,l(j):g∈Gi,l(j)

x
out

i,b,l(j)
+ x

in

i,b,l(j)
≤ c

g
,

flow conservation constraints: for each node b ∈ B, and each i ∈ Ib

∑

l∈Lb

x
out

i,b,l
−

∑

l∈Lb

x
in

i,b,l
= 0,
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where

x
out

i,b,l
=

∑

l(j)

x
out

i,b,l(j)
, if l is virtual link,

x
in

i,b,l
=

∑

l(j)

x
in

i,b,l(j)
, if l is virtual link,

flow conservation constraints for non-virtual links: for each node b ∈ B, each non-virtual

link l ∈ Lb, and each type i ∈ Ib

x
out

i,b,l
− x

in

i,ς(b,l),l
= 0,

flow conservation constraints for virtual links: for each node b ∈ B, each virtual link l ∈

Lb, each path l(j), and each type i ∈ Ib

x
out

i,b,l(j)
− x

in

i,ς(b,l),l(j)
= 0,

Assured Forwarding (AF) requirements

xi − Λi = 0, i = 1, 2, . . . , η1,

and non-negativity of all the data rates, x ≥ 0. Note that the decision variable x

contains xi, x
out

i,b,l
, and x

out

i,b,l(j)
, but the objective function only depends on xi.

3.3 Optimization-based Distributed Control Laws

This section presents a family of adaptation control laws, class A, B and C, that

converge to the optimal solution of the optimization problem formulated in Section 3.2.

Moreover, this family of control laws only needs binary feedback information from the

network, which can be inferred from the edge nodes without any assistance from the core

nodes. Our approach has its basis in nonlinear control theory. More precisely, we use

results from the sliding mode theory [33].
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3.3.1 Additional Notation

Let function hi(xi) be defined as

hi(xi) = (1− e
−∂U/∂xi).

A non-virtual link l is said to be congested if the aggregated data rates using the link

reaches its capacity cl. If l is a non-virtual link, define cg(l)

cg(l) =















1, if link l is congested,

0, otherwise.

If l is a virtual link, it contains multipaths l(j). A path l(j) contained in virtual link l

is said to be congested if any physical link g of path l(j) is congested. We define cg[l(j)]

cg[l(j)] =















1, if path l(j) is congested,

0, otherwise.

Moreover, define cg(l) and cg[l(j)] as the logical negations of cg(l) and cg[l(j)]; i.e.,

cg(l) =















1, if cg(l) = 0,

0, if cg(l) = 1,

cg[l(j)] =















1, if cg[l(j)] = 0,

0, if cg[l(j)] = 1.

The proposed control laws and examples of Class A, B and C are given in the following

sections. Note that in this family of control laws, wi(t, xi, cg(l), r
out

i
),

wi,b(t, x
out

i,b,l
, cg(l), r

in

i,b
, r
out

i,b,l
), wi,b(t, x

out

i,b,l(j)
, cg[l(j)], r

in

i,b
, r
out

i,b,l
), r

CoS

min
, r

CoS

max
, rmin, and rmax

are design parameters that have to be determined to achieve convergence and provide

an acceptable transient behavior.
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3.3.2 Class A Control Laws

Class A control laws run at access points. At each access point bsi, the class A

control laws are

ẋi = wi(t, xi, cg(l), r
out

i
)
[

hi(xi)− (1− cg(l)rir
out

i
)
]

,

where

if i is AS flow, ri =















r
CoS

min
< 1, if xi > Λi,

r
CoS

max
> 1, if xi < Λi,

if i is BE flow, ri = 1,

(3.1)

and

r
out

i
=































rmin < 1, if xi >
∑

l̃∈Lς(bsi,l)

x
out

i,ς(bsi,l),l̃
,

rmax > 1, if xi <
∑

l̃∈Lς(bsi,l)

x
out

i,ς(bsi,l),l̃
.

(3.2)

Remark: The term r
out

i
is used to enforce the flow conservation constraint at ς(bsi, l)

(the downstream node of access point bsi), if the total data rates arriving at ς(bsi, l), which

is exactly xi, is greater (less) than the total data rates departing from ς(bsi, l), then r
out

i

will be assigned a value strictly less than 1 (strictly greater than 1). The term ri is used

to enforce the CoS requirement xi − Λi = 0. Here is an example of the Class A control

laws. The data rate running through the non-virtual link l10 in Fig. 3.4 is controlled by

the following class A control laws

ẋ1 = w1(t, x1, cg(l10), r
out

1
)
[

h1(x1)− (1− cg(l10)r1r
out

1
)
]

,
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where

r1 =















r
CoS

min
, if x1 > Λ1,

r
CoS

max
, if x1 < Λ1,

and

r
out

1
=















rmin, if x1 >x
out

1,b1,l8(j1)
+ x

out

1,b1,l8(j2)
+ x

out

1,b1,l9(j1)
+ x

out

1,b1,l9(j2)
,

rmax, if x1 <x
out

1,b1,l8(j1)
+ x

out

1,b1,l8(j2)
+ x

out

1,b1,l9(j1)
+ x

out

1,b1,l9(j2)
.

3.3.3 Class B Control Laws

Class B control laws running at domain edge egress nodes perform load balanc-

ing/rate adaptation among multiple next-hop nodes. At each domain edge egress node b,

for each non-virtual link l ∈ Lb, and each type i ∈ Ib, the class B control laws are

ẋ
out

i,b,l
= wi,b(t, x

out

i,b,l
, cg(l), r

in

i,b
, r
out

i,b,l
)
[

−1 + cg(l)r
in

i,b
r
out

i,b,l

]

,

where

r
in

i,b
=



























rmax > 1, if
∑

l∈Lb

x
in

i,b,l
>

∑

l∈Lb

x
out

i,b,l
,

rmin < 1, if
∑

l∈Lb

x
in

i,b,l
<

∑

l∈Lb

x
out

i,b,l
,

(3.3)

and

r
out

i,b,l
=































rmin < 1, if
∑

l̃∈Lς(b,l)

x
in

i,ς(b,l),l̃
>

∑

l̃∈Lς(b,l)

x
out

i,ς(b,l),l̃
,

rmax > 1, if
∑

l̃∈Lς(b,l)

x
in

i,ς(b,l),l̃
<

∑

l̃∈Lς(b,l)

x
out

i,ς(b,l),l̃
.

(3.4)

Remark: The term r
in

i,b
is used to enforce the flow conservation constraint at node

b, if the total data rates arriving at b is greater (less) than the total data rates departing



28

from b, then r
in

i,b
will be assigned a value strictly larger than 1 (strictly less than 1).

Similarly, the term r
out

i,b,l
is used to enforce the flow conservation constraint at node ς(b, l)

(downstream node of node b through link l). Here is an example of the Class B control

laws. The data rate running through the non-virtual link l1 in Fig. 3.4 is controlled by

the following class B control laws

ẋ
out

i,b2,l1
= wi,b2(t, x

out

i,b2,l1
, cg(l1), r

in

i,b2
, r
out

i,b2,l1
)
[

−1 + cg(l1)r
in

i,b2
r
out

i,b2,l1

]

,

where

r
in

i,b2
=















rmax, if x
in

i,b2,l8(j1)
+ x

in

i,b2,l8(j2)
> x

out

i,b2,l1
+ x

out

i,b2,l3
,

rmin, if x
in

i,b2,l8(j1)
+ x

in

i,b2,l8(j2)
< x

out

i,b2,l1
+ x

out

i,b2,l3
,

and

r
out

i,b2,l1
=























































rmin, if x
in

i,b4,l1
+ x

in

i,b4,l2
> x

out

i,b4,l5(j1)
+ x

out

i,b4,l5(j2)

+x
out

i,b4,l6(j1)
+ x

out

i,b4,l6(j2)
+ x

out

i,b4,l6(j3)
,

rmax, if x
in

i,b4,l1
+ x

in

i,b4,l2
< x

out

i,b4,l5(j1)
+ x

out

i,b4,l5(j2)

+x
out

i,b4,l6(j1)
+ x

out

i,b4,l6(j2)
+ x

out

i,b4,l6(j3)
.

3.3.4 Class C Control Laws

Class C control laws running at domain edge ingress nodes perform load balanc-

ing/rate adaptation among multiple paths. At each domain edge ingress node b, for each

virtual link l ∈ Lb, each l(j), and each type i ∈ Ib, the class C control laws are

ẋ
out

i,b,l(j)
= wi,b(t, x

out

i,b,l(j)
, cg[l(j)], r

in

i,b
, r
out

i,b,l
)
[

−1 + cg[l(j)]r
in

i,b
r
out

i,b,l

]

,

where r
in

i,b
and r

out

i,b,l
are defined by (3.3) and (3.4). Here is an example of the Class C

control laws. The three data rates running through the virtual link l6 in Fig. 3.4 are
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controlled by the following class C control laws

ẋ
out

i,b4,l6(j1)
=wi,b4(t, x

out

i,b4,l6(j1)
, cg[l6(j1)], r

in

i,b4
, r
out

i,b4,l6
)
[

−1 + cg[l6(j1)]r
in

i,b4
r
out

i,b4,l6

]

,

ẋ
out

i,b4,l6(j2)
=wi,b4(t, x

out

i,b4,l6(j2)
, cg[l6(j2)], r

in

i,b4
, r
out

i,b4,l6
)
[

−1 + cg[l6(j2)]r
in

i,b4
r
out

i,b4,l6

]

,

ẋ
out

i,b4,l6(j3)
=wi,b4(t, x

out

i,b4,l6(j3)
, cg[l6(j3)], r

in

i,b4
, r
out

i,b4,l6
)
[

−1 + cg[l6(j3)]r
in

i,b4
r
out

i,b4,l6

]

,

where

r
in

i,b4
=























































rmin, if x
in

i,b4,l1
+ x

in

i,b4,l2
> x

out

i,b4,l5(j1)
+ x

out

i,b4,l5(j2)

+x
out

i,b4,l6(j1)
+ x

out

i,b4,l6(j2)
+ x

out

i,b4,l6(j3)
,

rmax, if x
in

i,b4,l1
+ x

in

i,b4,l2
< x

out

i,b4,l5(j1)
+ x

out

i,b4,l5(j2)

+x
out

i,b4,l6(j1)
+ x

out

i,b4,l6(j2)
+ x

out

i,b4,l6(j3)
,

and

r
out

i,b4,l6
=















rmin, if x
in

i,b6,l6(j1)
+ x

in

i,b6,l6(j2)
+ x

out

i,b4,l6(j3)
+ x

in

i,b6,l4(j1)
> x

out

i,b6,l7
,

rmax, if x
in

i,b6,l6(j1)
+ x

in

i,b6,l6(j2)
+ x

out

i,b4,l6(j3)
+ x

in

i,b6,l4(j1)
< x

out

i,b6,l7
.

Given the control laws above, the data rates are then forced to be greater than

or equal to zero. More precisely, if any of the data rates above is zero, then the cor-

responding derivative is taken as the maximum between zero and the expression given

above.

Note that the above control laws are indeed distributed in the sense that control

laws controlling different flows are independent of each other. The coupling effect among

different flows is reflected through cg(l), cg[l(j)], r
in

i,b
, and r

out

i,b,l
only.

Note that in this family of control laws, wi(t, xi, cg(l), r
out

i
),

wi,b(t, x
out

i,b,l
, cg(l), r

in

i,b
, r
out

i,b,l
), wi,b(t, x

out

i,b,l(j)
, cg[l(j)], r

in

i,b
, r
out

i,b,l
), r

CoS

min
, r

CoS

max
, rmin, and rmax
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are design parameters that have to be determined to achieve convergence and provide

an acceptable transient behavior.

The following theorem states that the control laws converge to optimal traffic

allocation.

Theorem 3.1. Let ζ > 0 be a given (arbitrarily small) constant. Also, let wi(t, xi, cg(l), r
out

i
),

wi,b(t, x
out

i,b,l
, cg(l), r

in

i,b
, r
out

i,b,l
), and wi,b(t, x

out

i,b,l(j)
, cg[l(j)], r

in

i,b
, r
out

i,b,l
) be scalar functions con-

tinuous in t, satisfying

wi(t, xi, cg(l), r
out

i
), wi,b(t, x

out

i,b,l
, cg(l), r

in

i,b
, r
out

i,b,l
), wi,b(t, x

out

i,b,l(j)
, cg[l(j)], r

in

i,b
, r
out

i,b,l
) > ζ,

for all t > 0. Furthermore, let

0 < rmin < rlower < 1 < rupper < rmax,

0 < r
CoS

min
< r

CoS

lower
< 1 < r

CoS

upper
< r

CoS

max
,

where

rlower = e
−Cgα

∗

, rupper = e
Cgα

∗

, r
CoS

lower
= e

−α
∗

, r
CoS

upper
= e

α
∗

, α
∗
= max

i
|
dUi
dxi

|xi=0
,

and Cg is the maximum possible number of congested links in path l(j) taken by x
out

i,b,l(j)
;

i.e., the path length. Then the control law presented above converges to optimal traffic

allocation.

The proof of Theorem 3.1 is given in Appendix A.2. Finally, note that the family of

control laws presented in this chapter reduces to the the family of control laws found

in [25] when the control laws at the access points run end-to-end. Moreover, it reduces

to the family of control laws found in [24] when a virtual link degenerates to a physical

link.
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3.4 Percentage Adaptation

Although distributed, the family of control laws proposed in Section 3.3 requires

that each edge node keeps track of and runs a separate control law for each and every

flow xi that traverses the node. This is not only un-scalable but also infeasible because

a domain edge node may not be able to identify individual flows running between access

points. To address this issue, the family of control laws is simplified to allow the control

of flows destined to the same destination network as a whole using one control law. This

control law controls the percentage of rates sent to different paths/next-hops and there

is no need to measure and control the flow rates.

Define pi,b,l and pi,b,l(j) as the percentage of incoming traffic of type i at node b

that is routed along each available outgoing non-virtual link l and each path j of virtual

link l.

x
out

i,b,l
= pi,b,l

∑

l̃∈Lb

l̃ /∈Lb,i

x
in

i,b,l̃
, b ∈ B, l ∈ Lb,i, l is non-virtual link,

x
out

i,b,l(j)
= pi,b,l(j)

∑

l̃∈Lb

l̃ /∈Lb,i

x
in

i,b,l̃
, b ∈ B, l ∈ Lb,i, l is virtual link.

The following percentage adaptation laws are proposed for each edge node:

• if l is a non-virtual link, the class B control laws are

ṗi,b,l =wi,b(t, x
out

i,b,l
, cg(l), r

in

i,b
, r
out

i
)
(

ẋ
out

i,b,l

∑

l̃∈Lb,i;l̃ 6=l

pi,b,l̃ − pi,b,l

∑

l̃∈Lb,i;l̃ 6=l

ẋ
out

i,b,l̃

)

,

• if l is a virtual link, the class C control laws are

ṗi,b,l(j) =wi,b(t, x
out

i,b,l(j)
, cg[l(j)], r

in

i,b
, r
out

i
)

(

ẋ
out

i,b,l(j)
(
∑

l̃∈Lb,i

pi,b,l̃ − pi,b,l(j))− pi,b,l(j)(
∑

l̃∈Lb,i

ẋ
out

i,b,l̃
− ẋ

out

i,b,l(j)
)
)

,
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where

x
out

i,b,l
=

∑

l(j)

x
out

i,b,l(j)
, if l is virtual link,

pi,b,l =
∑

l(j)

pi,b,l(j), if l is virtual link,

ẋ
out

i,b,l
=

[

−1 + cg(l)r
in

i,b
r
out

i,b,l

]

, l is non-virtual link,

ẋ
out

i,b,l(j)
= [−1 + cg[l(j)]r

in

i,b
r
out

i,b,l
], l is virtual link,

cg(l) and cg[l(j)] are defined in Section 3.2, and r
in

i,b
, r

out

i,b,l
are given by (3.3) and (3.4)

respectively. These laws are derived directly from the control laws for the data rates

presented in Section 3.3.

Remark: Note that the laws above do not require the measurement of the data

rates if the values of r
in

i,b
and r

out

i,b,l
are available by some other means. The practical

computation of r
in

i,b
and r

out

i,b,l
is discussed in Section 3.4.1.

The following theorem states that under some conditions these laws are indeed

optimal.

Theorem 3.2. Assume the conditions in Theorem 3.1 hold. Moreover, assume that the

total incoming traffic is always strictly positive; i.e., there exists ε > 0 such that, for each

node b ∈ B, each type i ∈ Ib and all t ≥ 0

∑

l̃∈Lb

l̃ /∈Lb,i

x
in

i,b,l̃
(t) > ε. (3.5)

Then the percentage adaptation laws converge to optimal traffic allocation.

The proof of Theorem 3.2 is given in Appendix A.3.

Remark: The percentage control laws perform CoS-based, multi-path-multi-next-

hop dynamic load balancing by controlling the percentage of rates sent to different

paths/next-hops. From practical point of view, if the total data rate of flow of type i
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arriving at node b is less than ε ( where ε is very small compared to link capacities ),

then one can “freeze” the adaptation of the percentage allocation and keep it fixed until

the data rate arriving at the node is larger than ε. Since ε is “very small”, the traffic

allocation obtained by such a procedure is very close to the optimal one. Additionally, as

it is mentioned in Section 3.4.1, when one uses the percentage adaptation laws, the flow

conservation constraints are implicitly satisfied. The quantities r
in

i,b
and r

out

i,b,l
are, in this

case, just a useful tool for conveying congestion information. Moreover, the comments

in Section 3.4.2 show that the computational burden can be further reduced, and the

condition that the total data rate is strictly lower bounded away from zero can be further

relaxed.

3.4.1 Practical Computation of r
in

i,b
and r

out

i,b,l

Although optimal, the laws in Section 3.3 require access to data rate information

for the computation of r
in

i,b
and r

out

i,b,l
. Hence, an alternative (empirical) way to compute

this information is presented.

Note that when implementing percentage adaptation, the aggregate incoming data

rate is always larger than or equal to the aggregate outgoing rate; i.e.,

∑

l∈Lb

x
in

i,b,l
≥

∑

l∈Lb,i

x
out

i,b,l
. (3.6)

Hence, it is not necessary for r
in

i,b
in (3.3) to assume the value rmin; i.e., in this case

only r
in

i,b
= rmax or 1 is needed. Similarly, only r

out

i,b,l
= rmin or 1 is needed. Note also

only when there is some type of congestion, either in the connected links or further

downstream, (3.6) is a strict inequality, hence r
in

i,b
= rmax. When there is available net-

work resource, (3.6) is equality, r
in

i,b
= 1. This prompts the following computation for r

in

i,b
:
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• if ς(b, l) is the destination of flow i, then there is no r
out

i,b,l
, and

r
in

i,b
=































1, if l is a non-virtual link, and cg(l) = 0,

1, if l is a virtual link, and any path l(j), cg[l(j)] = 0,

rmax > 1, otherwise.

• if ς(b, l) is not the destination of flow i, then

r
in

i,b
=



































1, if any l ∈ Lb,i is a non-virtual link, and cg(l) = 0, r
out

b,l
= 1,

1, if any l ∈ Lb,i is a virtual link, and any path l(j), cg[l(j)] = 0, r
out

b,l
= 1,

rmax > 1, otherwise.

The quantity r
out

i,b,l
is received from the downstream node ς(b, l), and is given by

r
out

i,b,l
=















rmin, if r
in

i,ς(b,l)
= rmax,

1, if r
in

i,ς(b,l)
= 1,

for each link l ∈ Lb,i. With this expression, r
in

i,b
will only be rmax if all the available paths

are congested and 1 otherwise.

In general, if any optimal data rate is zero, the percentages obtained by these

means might exceed one or become negative, although they will always add up to one.

This issue is addressed by means of a normalization procedure that is explained in

Section 3.5, along with the problem of discretization of the continuous-time adaptation

laws. These optimal adaptation laws, together with the empirical expression for the

computation of r
in

i,b
and r

out

i,b,l
, lead to a tractable control law that will approximately

mimic the behavior of the optimal ones, and keep the optimality.
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3.4.2 Destination-based Aggregate Flow Control

By carefully looking at the way r
in

i,b
and r

out

i,b,l
are computed in the previous section,

it can be seen that the computational burden at each node can be further reduced.

Indeed, consider a node b and two types of flows i1 and i2 arriving at b which match

the same destination network address or IP prefix. Now, the formulas proposed in the

previous section imply that

r
in

i1,b
= r

in

i2,b
,

r
out

i1,b,l
= r

out

i2,b,l
, if l is non-virtual link.

Hence, if the initial conditions are the same, then

pi1,b,l(t) = pi2,b,l(t), if l is non-virtual link,

pi1,b,l(j)(t) = pi2,b,l(j)(t), if l is virtual link,

and, as a consequence, there is no need to independently adapt the percentages for these

two flow types.

Therefore, the same percentages can be used for all the flows matching the same

route prefix. More precisely, given a node b let the set of next hops for flows with

destinationD, L
D

b
, replace the set of next hops per type Lb,i. Similarly, let per destination

percentages p
D

b,l
take the place of per type percentages pi,b,l. Then, node b needs only to

adapt per destination percentages p
D

b,l
, l ∈ L

D

b
; i.e., per type information no longer needs

to be maintained. Note that per destination or per route prefix information is readily

available in the routing table. Moreover, condition (3.5) can be relaxed to the condition

that the total data rate with destination D is strictly lower bounded away from zero. An

approach to efficiently implement such control laws in a high-speed router is presented

in [24].



36

3.4.3 Robustness with respect to Failures

A salient feature of the proposed control laws is that, once implemented, the

resulting network will be robust with respect to link/node failures. In other words, after

a small modification discussed below, the control laws will automatically reroute traffic

away from the nodes/links that fail. The distributed nature of the laws allows for traffic

rerouting to be done by the nodes adjacent to the failure and without any change of the

control law parameters.

Indeed, this can be accomplished by the following procedure: Upon detection

of a link or node failure in an adjacent node or a connected link, each node performs

an update of the set L
D

b
; i.e., it updates the set of available next-hops for flows with

destination D. Once the update is performed, given the distributed nature of the laws,

it can be seen that the control laws are optimal for the “new” network configuration and

will provide the desired traffic allocation; i.e., traffic is rerouted away from the failed

components and a new optimal steady state allocation will be achieved [24]. Since the

rerouting is done locally, these control laws enable optimal FFR features.

Finally, we note that the proposed approach can address tussles between domains

for the following reason. Since the decision on the selection of next-hop nodes at the

inter-domain level is purely a local matter, it can be selected based on policies or service

level agreement between domains. The proposed control framework can also be extended

(the work is underway) to allow destination-based, CoS-aware policy control between

domains. This extension will allow the current framework to be seamlessly integrated

with a DiffServ-like per-hop QoS architecture to enable sophisticated QoS, TE, and

FFR.

3.5 Numerical Examples

In this section, simulation results are presented which exemplify the behavior of

the algorithms proposed.
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3.5.1 Implementation Considerations

The implementation of the algorithms in a real network has to be performed in

discrete time. In the simulations to follow, this is accomplished by obtaining a difference

equation using the forward rule approximation as follows

x
d
[(k + 1)td] = x

d
[ktd] + tdẋ

d
[(k + 1)td],

for k = 0, 1, 2, ..., where td is the integration step.

The following proposition establishes under what conditions this approach will

lead to a successful realization of the discrete-time version of the proposed algorithms.

Proposition 1. Let x(t) be the trajectory obtained using the algorithms in Section 3.3

and 3.4, and let x
d
(t) be the corresponding discrete-time trajectory obtained using the

discretization algorithm above. Given any time interval [t0, t1] and constant ε > 0,

there exists a ξ > 0 such that if tdwi,b < ξ, tdwi < ξ, for all t > 0 and x ∈ X , then

‖x(t)− x
d
(t)‖ < ε, for all t ∈ [t0, t1].

3.5.2 Simulation Setup

Based on the above Proposition, the discretization for the percentage adaptation

laws is performed following way. Taking a non-virtual link as an example:

p̂
d

i,b,l

[

(k + 1)td
]

= p̂
d

i,b,l
[ktd] + td

dp̂i,b,l(ktd)

dt
.

Moreover, the following normalization forces all the percentages to add up to one and to

lie in [0, 1]. Taking a virtual link as an example:

p̂i,b,l(j) = max
{

min{p̂
d

i,b,l(j)
, 1}, 0

}

, p̂i,b,l(j) =
p̂i,b,l(j)
∑

l∈Lb

p̂d
i,b,l

.

The above discretization and the existence of congestion feedback delays result in a non-

ideal behavior of the system. Due to this fact, an adaptation reduction scheme [20] is

used to mitigate this phenomenon.
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The network topology used in the simulation is given in Fig. 3.2, where all the

links’ bandwidths, as well as source and destination nodes are shown. The inter-domain

delay is set as 10ms, and intra-domain delay 5ms. We assume that each flow has multiple

paths, shown in Fig. 3.5. Flows 1 and 2 are of AF type Λ1 = Λ2 = 1Mb/s, and flows 3

and 4 are of BE type. The following utility function is assumed

U(x) =
∑

i

log(xi + 0.5), i = 1, 2, ..., 4.

As a first step, the control laws were tested in almost ideal conditions by setting

network delays to 0 and sampling time to 1ms. The design parameters are chosen as

rmin = 1/10, rmax = 10, r
CoS

min
= 1/15, r

CoS

max
= 15, and wi(t) = wi,b(t) = 5. It can be seen

in the left column of Fig. 3.6 that, under these conditions, the network converges to an

optimal traffic allocation. Furthermore, the network resources are fully utilized, and the

AS requirements are satisfied.

The right column of Fig. 3.6 shows the network behavior with the delays and

sampling time 1ms. The design parameters are the same as above. Except that for

oscillation reduction, with T = 3s, the wi,b(t) is [20]:

wi,b(t) = ν(t− t0), t0 ≤ t ≤ t0 + T,

ν(t) = 4(0.25 + 0.65
t
).

Here one observes the expected oscillation caused by delays. The data rates, after a

transient period, converge to a point “close” to the optimal traffic allocation.

3.5.3 Link Failure

This section shows the simulation results in the presence of link failure. The same

utility function given in the last section is assumed, and at t = 15s, the link between

nodes b5 and e2 fails.
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Fig. 3.5. Multi-path for each source-destination pair
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The Fig. 3.7 shows the network behavior with delays given in Fig. 3.2. The design

parameters are the same as above. The simulation shows that the proposed control laws

can also handle link failure.
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Fig. 3.7. Simulation with link failure and delay

3.6 Conclusion

In this chapter, based on the sliding mode control, a family of adaptation control

laws for optimal rate adaptation and load balancing in a multi-domain internet is pro-

posed. Moreover, the so-called percentage adaptation laws are presented which enables

one to further improve the scalability of the control laws. The control laws run at the

access points and domain edge nodes only, and can work properly with locally inferrable

information only (e.g., through exchange of information with its next-hop node only). As

a result, the proposed control approach is highly scalable. Simulation results presented

demonstrate that the proposed approach can provide good QoS, TE, and FFR features

in a multi-domain environment.
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Chapter 4

Overlay Network Traffic Engineering Problem

In the last chapter, we proposed a family of control laws which converges to an

optimal traffic allocation in a multi-domain environment. The main mathematical tool

used is sliding mode theory. In this chapter, we use an approach based on the same

mathematical concepts to address the traffic engineering problem in overlay networks.

The family of control laws presented in this chapter is shown to converge to the opti-

mal (time-varying) traffic allocation and uses only the number of congested links in a

forwarding path as feedback for the control, making it an ideal traffic control solution

for the overlay networks. This chapter is organized as follows. First, a precise problem

statement and some additional assumptions are provided; next, the optimal distributed

algorithm is presented; finally, some simulation results are given. A proof of the main

result in this chapter is provided in the Appendix.

4.1 Notation

Throughout this chapter, traffic flows in the overlay network are assumed to be

described by a fluid flow model and the only resource considered is link bandwidth.

Consider an overlay network where flows with different service requirements are

present. Divide these flows into types. Types are aggregates of flows that can be treated

as a unit; i.e., a type is an aggregate of flows with the same ingress and egress nodes.

Moreover, service requirements are to be applied to the aggregate, not individual flows.

Note that one can have flow types with just one flow. Assume that each flow type has

several overlay paths available. The objective is to find an allocation of traffic that

leads to the maximization of a given utility function subject to the network resource

constraints and Class of Service (CoS) requirements.
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More precisely, consider an overlay network whose set of overlay links is denoted

by L, with cardinality card(L) equal to its number of links. Let cl(t) be the capacity of

a link l ∈ L. Due to the fact that overlay link resource uncertainty cl(t) is time-varying,

define a constant ċmax such that, for all t

− ċmax < min
l∈L

ċl(t) < max
l∈L

ċl(t) < ċmax.

Let xi,j be the data rate of flows of type i taking path j, ni be the number of

available paths for type i, and η be the number of types of flows. Let Li,j be the set of

links used by flows of type i taking path j. Also, let

xi
.
=

[

xi,1, xi,2, ..., xi,ni

]T
∈ R

ni ,

denote the vector containing the data rates allocated to the different paths by flows of

type i, and

x
.
=

[

x
T

1
,x

T

2
, ...,x

T

η

]

T

∈ R
n
,

denote the vector containing all the data rates allocated to different types and respective

paths, where n = n1 + n2 + · · ·+ nη.

A link l ∈ L is said to be congested if the aggregated data rate of the flows

using the link is larger than or equal to cl(t). Given this, define bi,j(x) as the number

of congested links along the j-th path of type i. Moreover, let Bi,j be the number of

links used by flows of type i taking path j. Finally, let µ(x) be the unit step function;

i.e., µ(x) = 1 if x ≥ 0 and µ(x) = 0 otherwise.

4.2 Problem Statement

In this chapter, we assume that some of the types of calls have service require-

ments. Flows of type i, i = 1, ..., η1, are assumed to be Minimum Rate Guaranteed and

Upper Bounded Rate Service (MRGUBS) category; i.e., there exist θi > 0, Θi > 0 such
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that

θi ≤
∑

j=1,...,ni

xi,j ≤ Θi.

Flows of type i, i = η1+1, ..., η, are assumed to be Best Effort (BE) category, type xi of

this class does not have any further service requirements. Note that one may have other

classes of service, like Assured Forwarding Service (AF) (a target rate to be guaranteed),

Minimum Rate Guaranteed Service (MRGS), and Upper Bounded Rate Service (UBRS).

These are straightforward modification of MRGUBS CoS by appropriately choosing θi

and Θi.

Assume that all data rates are bounded; i.e., there exists an ι ∈ R such that x

always belongs to the set

X
.
=

{

x ∈ R
n
: xi,j ≤ ι; j = 1, 2, . . . , ni; i = 1, 2, . . . , η

}

.

Let U(x) be a given utility function representing the desired policy for assigning resources

in the network

U(x) =
∑

i=1,...,η

Ui(xi),

where each Ui(·) is a differentiable strictly concave function in domain R
ni , and is in-

creasing in each of its arguments in X . Hence, the Hessian matrixH of U(x) is invertible.

Given this, the problem of optimizing utilization of the network resources can be formu-

lated as

max
x

U(x),

subject to network capacity constraints

∑

i,j:l∈Li,j

xi,j − cl(t) ≤ 0, l ∈ L,
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CoS requirement constraints

θi ≤
∑

j=1,...,ni

xi,j ≤ Θi, i = 1, ..., η1,

and nonnegativity of all data rates

xi,j ≥ 0, i = 1, ..., η, j = 1, ..., ni.

One can write this optimization problem in a matrix form

max
x

U(x), subject to constraints S(x, c) ≤ 0,

where S(x, c) = Gx − c(t), G is the gradient of S(x, c) with respect to x, and is an

M × n constant matrix; i.e. there are M constraints.

Clearly this is a time-varying parametric convex optimization problem since the

link capacities cl(t), for all l ∈ L, are allowed to be time-varying. This problem is not a

traditional optimization problem since the feasible set is time-varying. Correspondingly,

the optimal solution of this problem, referred to as xopt(t), is a function of t.

4.2.1 Additional Notation and Assumption

Assume that at the optimal traffic allocation each congested link has at least one

non-binding class of service or a BE flow with a nonzero data rate.

Given any boundary point x0, one has an active constraint set

s
x0
(x) =

[

s1(x) ... sm(x)
]T
,

where si(x0) = 0. Without loss of generality, assume that the rows of the gradient G
x0

are linearly independent, where

G
x0
=
ds

x0
(x)

dx
.
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Define a set of boundary points as

Xsm = {x0 : (Gx0
H
−1
(x0)G

T

x0

)
−1
G

x0
H
−1
(x0)∇U(x0) > 0},

where H is the Hessian matrix. Assume that for all x ∈ Xsm, each element of the

vector (G
x
H
−1
(x)G

T

x
)
−1
G

x
H
−1
(x)∇U(x) is lower bounded, i.e., there exists a positive

constant ϕ,

inf
x∈Xsm

((G
x
H
−1
(x)G

T

x
)
−1
G

x
H
−1
(x)∇U(x)) > ϕ > 0. (4.1)

Define constants Ψ > 0 and Φ > 0, such that

max
x feasible

‖(G
x
H
−1
(x)G

T

x
)
−1
‖ < Ψ,

max
x feasible

‖(G
x
H
−1
(x)G

T

x
)‖ < Φ.

(4.2)

Remarks: 1) Though condition (4.1) looks abstract, it has very intuitive meaning.

From the optimization problem point of view, it means that the unconstrained optimal

solution is outside the feasible set. In other words, if there is no link capacity constraints,

the data rates will keep increasing. This condition holds true in computer networks, due

to the fact that one will try to achieve a higher utility function value if the network has

more resources (i.e., link capacity).

2) Condition (4.2) guarantees that for x ∈ Xsm, with appropriately chosen control

parameters, the state variable x is able to “catch” and track the optimal solution; i.e.,

the senders can increase the data rate fast enough to reach and keep following the optimal

traffic allocation.

Moreover, the following conditions are assumed to be met throughout this chapter

• the function cl(t) > 0, for all l ∈ L and for all t, and cl(t) is upper bounded by,

e.g., the physical link capacity.

• the constant ċmax > 0 is finite.
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4.3 Optimal Control Laws

We propose the following distributed family of control laws:

for MRGUBS flows

ẋi = −ζH
−1

i
[
dUi
dxi

− αbi(x) + β
m

i
r
m

i
(xi)− β

M

i
r
M

i
(xi) +$iµi(−xi)],

for BE flows

ẋi = −ζH
−1

i
[
dUi
dxi

− αbi(x) +$iµi(−xi)],

where H
−1

i
is the i-th block of the inverse of the Hessian matrix H (which is block

diagonal), bi(x), µi(−xi), r
m

i
(xi) and r

M

i
(xi) are ni × 1 vectors

bi(x) =
[

bi,1(x) bi,2(x) ... bi,ni
(x)

]T
,

µi(−xi) =
[

µ(−xi,1) µ(−xi,2) ... µ(−xi,ni
)
]T
,

r
m

i
(xi) =



























[

0 0 ... 0
]T
, if

∑

j=1,...,ni

xi,j > θi,

[

1 1 ... 1
]T
, if

∑

j=1,...,ni

xi,j < θi,

r
M

i
(xi) =



























[

1 1 ... 1
]T
, if

∑

j=1,...,ni

xi,j > Θi,

[

0 0 ... 0
]T
, if

∑

j=1,...,ni

xi,j < Θi,

ζ, α, βi, β
m

i
, β

M

i
and $i are design parameters. Note that the control laws are distributed

in the sense that flows are controlled independently and the only interactions among

flows is through bi,j , the number of congested links in a forwarding path j for flow i. In

an overlay environment, each path is composed of multiple intermediate overlay nodes

interconnected through overlay links. Overlay link congestion information can be easily

inferred by the overlay nodes themselves through per-hop probing. This information is
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then fed back from each intermediate overlay nodes to the source nodes. Hence, this

approach does not require the exposure of the underlying resources and topology to the

overlay.

As mentioned before, the approach presented in this section can be extended

to other classes of service, such as Assured Forwarding Service (AF), Minimum Rate

Guaranteed Service (MRGS), and Upper Bounded Rate Service (UBRS).

We now show that the control laws converge to the optimal traffic allocation.

Theorem 4.1. If all the conditions in Section 4.2 hold, there exists a constant α
∗
(ċmax) >

0 such that if for all x ∈ X , i = 1, 2, . . . , η, j = 1, 2, . . . , ni, the parameters ζ, α, βi, β
m

i
,

β
M

i
, $i, and ċmax satisfy

ζ > ρ =
ċmaxn

1/2
Ψ

ϕ
; α > α

∗
; βi, β

m

i
, β

M

i
≥ α

∗
max
i,j

Bi,j ; $i ≥ 2α
∗
max
i,j

Bi,j ; (4.3)

the family of control laws above converges to the optimal traffic allocation; i.e.,

lim
t→∞

‖x(t)− xopt(t)‖ = 0.

Remark: If the Hessian H is diagonal (not just block diagonal), α
∗
can be calcu-

lated as follows

α
∗
= max

x∈X
(∇U) +

ċmax
ρminx∈X (−H

−1)
, (4.4)

where min(−H
−1
) is the smallest diagonal element of −H

−1
. Intuitively, α should be

set large enough so that when a link is congested, and the link capacity is decreasing,

the control laws can “push” state variable x back to feasible set.

4.4 Numerical Examples

In this section, some simulation results are presented, which exemplify the behav-

ior of the algorithms proposed. Note that, similarly to the simulation given in Section 3.5,
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the implementation of the proposed algorithm in a real network is performed in discrete

time as well.

4.4.1 Simulation Setup

The model of the network used in the simulation is based on the one in [20]

and is shown in Fig. 4.1, where all the links’ bandwidths and delays, as well as source

and destination nodes are shown. We assume that one has multiple paths and multiple

CoSs. More precisely, there exist a total of η = 8 types of flows corresponding to 8

different combinations of source/destination nodes. The paths available for each pair of

ingress/egress nodes are described in Table 4.1. Flows of type 3 and 5 are assumed to

be of AF type with target rates θ3 = Θ3 = 1Mb/s, θ5 = Θ5 = 0.8Mb/s, flows of other

types are assumed to be BE type.

10Mb/s 10Mb/s

10Mb/s
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10Mb/s
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1.5Mb/s

1.5Mb/s 1.2Mb/s 2.8Mb/s
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Fig. 4.1. Network topology
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Table 4.1. Paths available for each type of calls.
type 1 x1,1: e2b2b8b4e4 type 5 x5,1: e3b3b8b7b6e6
n1 = 4 x1,2: e2b2b8b3b4e4 n5 = 2 x5,2: e3b3b4b8b5b7b6e6

x1,3: e2b2b7b8b3b4e4
x1,4: e2b2b7b8b4e4

type 2 x2,1: e2b2b8b5e5 type 6 x6,1: e2b2b1b7b6e6
n2 = 3 x2,2: e2b2b7b5e5 n6 = 3 x6,2: e2b2b8b7b6e6

x2,3: e2b2b1b7b5e5 x6,3: e2b2b7b6e6
type 3 x3,1: e1b1b7b8b4e4 type 7 x7,1: e1b1b2e2
n3 = 2 x3,2: e1b1b2b8b4e4 n7 = 3 x7,2: e1b1b7b2e2

x7,3: e1b1b7b8b2e2
type 4 x4,1: e1b1b7b5e5 type 8 x8,1: e3b3b4e4
n4 = 4 x4,2: e1b1b7b8b5e5 n8 = 2 x8,2: e3b3b8b4e4

x4,3: e1b1b2b7b5e5
x4,4: e1b1b2b8b5e5

The capacity of the link between node b2 and node b7 is assumed to be time-

varying. More precisely, we have

c(t) = 1.2− cos(0.5t).

Since the term involving $i,j can lead to large oscillation, when implementing

the control laws, we take ẋi,j = 0, if xi,j ≤ 0 and ẋi,j < 0. This is equivalent to

setting $i = +∞ in the original control laws.

The following utility function is assumed

U(x) =
∑

log(xi,j + 3), i = 1, ..., 8, j = 1, ..., ni.

As a first step, the control laws were tested in almost ideal conditions by setting network

delays to 0 and sampling time to 0.1ms. The design parameters are chosen as α = 3,

βi, β
m

i
, β

M

i
= β = 3α, and ζ = 1. It can be seen in the left column of Fig. 4.2 that, under

these conditions, the network converges to an optimal operation point, and keeps being

optimal. Furthermore, the backbone links are fully utilized, and the AF requirements

are satisfied.
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The right column of Fig. 4.2 shows the network behavior with the delays given

in Fig. 4.1 and sampling time 0.5ms. The design parameters are chosen as α = 0.5,

βi, β
m

i
, β

M

i
= β = 3α, and ζ = 1. Here one observes the expected oscillations caused by

delays. The data rates, after a transient period, converge to a point close to the optimal

point and the optimal traffic allocation is closely followed.

4.4.2 Link Failure

This section shows the simulation of link failure(which is equivalent to discontin-

uous jumps in the capacity). The same utility function is assumed, and at t = 8s, the

link capacity of the link between node b2 and b8 becomes 0.

The left column of Fig. 4.3 shows the network behavior without delay. The design

parameters are chosen as α = 3, βi, β
m

i
, β

M

i
= β = 3α, and ζ = 1. The right column of

Fig. 4.3 shows the network behavior with delays given in Fig. 4.1. The design parameters

are chosen as α = 0.5, βi, β
m

i
, β

M

i
= β = 3α, and ζ = 1. The simulation shows that the

proposed control laws can also handle link uncertainty/failure.

4.5 Conclusion

In this chapter, an optimization-based distributed algorithm for an overlay net-

work is developed, under the assumption that the utility function is strictly concave.

This algorithm converges to and tracks the time-varying optimal solution. The simula-

tion results show that the proposed algorithm leads to rather high performance in terms

of resource utilization, as measured by utility function.
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Chapter 5

Time-varying Optimization Problem

The overlay traffic engineering problem presented in Chapter 4 has time-varying

link capacities. Hence, it is fundamentally a time-varying optimization problem. We ad-

dressed this problem and designed data rate control algorithm for it, by using optimization-

based methods. In this chapter, we extend our research to more general time-varying

optimization problems. Our work focuses on a class of time-varying objective functions

having derivatives with “linear” discontinuity, and proposes an algorithm that converges

to an arbitrarily small neighborhood of the time-varying optimum. Moreover, such an

algorithm is applied to time-varying linearly constrained strictly convex optimization

problems, and sufficient conditions for asymptotic convergence are presented.

This chapter presents our results about time-varying optimization problems, and

is organized as follows. In Section 5.1, we provide some notation and definitions used

throughout this chapter. In Section 5.2, a Continuous First Order Algorithm (CFoA)

is proposed for unconstrained optimization problems having twice differentiable strictly

convex/concave objective functions. Moreover, in order to achieve “smoother” behavior

than the CFoA, a Continuous Second Order Algorithm (CSoA) is also provided. Assum-

ing knowledge of ∂
2
U(x, t)/∂x∂t, both of these algorithms are shown to converge to and

track the time-varying optimum. The results in Section 5.2 serve as a stepping stone for

the results in the following sections. Section 5.3 addresses a class of time-varying objec-

tive functions having derivatives with “linear” discontinuity, and a so-called Sliding Algo-

rithm (SA) is proposed. The SA does not require any “global” time-varying information,

and it is shown to converge to an arbitrarily small neighborhood of the time-varying op-

timum. Section 5.4 focuses on time-varying linearly constrained optimization problems.

Sufficient conditions for asymptotic convergence of the SA are provided. Simulations are

presented in Section 5.5 to exemplify the behavior of the algorithms proposed in previous

sections. The proofs of the results in this chapter are given in the Appendices.
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5.1 Notation and Definitions

In this section, we provide the notation and definitions which are used throughout

the chapter. For a general time-varying function U(x, t), U(x, t) is said to be convex

(concave) if U(x, t) is a convex (concave) function of x for fixed t. Moreover, U(x, t) is

said to be (not to be) differentiable if U(x, t) is (is not) differentiable with respect to x

for fixed t.

For a given x0, the set of subgradients of U(x, t) with respect to x at x0 is denoted

by

∂
x
U(x0, t).

Moreover, if U(x, t) is differentiable with respect to x, the following notation is used

∇U(x0, t) =
∂U(x, t)

∂x

∣

∣

∣

∣

x=x0

.

Also, if U(x, t) is twice differentiable with respect to x for fixed t, let H(x0, t) denote

the Hessian matrix of U(x, t) with respect to x at x = x0 and time t. Moreover, taking

the quantity H(x, t) as example, if the trajectory x(t) is given, one has the function

H[x(t), t] = H(x, t)|
x=x(t).

Note that H(x, t) depends on x and t, while H[x(t), t] depends only on t. Moreover, we

use H(t) or just H to denote H[x(t), t] when clear. One should note that this convention

applies to other quantities as well.

Let v ∈ R
n
be a vector, and a be a scalar. Then v > a means that vi > a,

i = 1, ..., n. The matrix I denotes the identity matrix. Unless otherwise specified, the

vector norm used throughout this chapter is the 2-norm, and the matrix norm is the
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induced 2-norm. Also define the function T (ζ, ε, a) as

T (ζ, ε, a) =















1

ζ
ln
a+ ε

ε
, a ≥ 0,

0, a < 0,

(5.1)

where ζ, ε > 0 are scalars.

Finally, for a general time-varying function U(x, t), we define the following con-

dition which we refer to as the Basic Condition:

Condition 1. For a general time-varying function U(x, t), the Basic Condition holds,

if

• for all x and t, U(x, t) is twice differentiable with respect to x,

• for all x and t, there exist positive constants p and P , such that

pI < −H(x, t) < PI, and pI < −H
−1
(x, t) < PI,

• for all x and t, ∇U(x, t) is differentiable with respect to t, and there exists a positive

constant Q, such that

∥

∥

∥

∥

∂∇U(x, t)

∂t

∥

∥

∥

∥

< Q <∞.

5.2 Time-varying Optimization Problem with Continuous Derivative

This section focuses on time-varying unconstrained convex optimization problems

with twice differentiable objective functions. For such a problem, a first algorithm,

referred to as the Continuous First Order Algorithm (CFoA), is proposed in Section 5.2.1.

Then, a few comments on how to use the CFoA in a constrained problem context are

given. This specific application provides the motivation for the development of another

algorithm, referred to as the Continuous Second Order Algorithm (CSoA), which has

less oscillations than the CFoA, in the case when one has a “rapidly” changing gradient.
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The results in this section serve as a stepping stone for results in the next section, which

focus on a class of time-varying problems; i.e., the objective function is strictly concave

but its derivative is discontinuous.

5.2.1 First Order Algorithm

Consider the following time-varying unconstrained convex optimization problem

max
x

U(x, t), (5.2)

where function U(x, t) satisfies Condition 1. It can be shown that the time-varying

optimum is unique and a continuous function of t.

Given an n×n matrix function K(x), we propose the following algorithm to solve

problem (5.2), which we refer to as the Continuous First Order Algorithm (CFoA)

ẋ =−K[x(t)]H[x(t), t]∇U [x(t), t]−H
−1
[x(t), t]

∂∇U [x(t), t]

∂t
. (5.3)

We now provide a result that establishes the convergence of the algorithm above.

Its proof is given in Appendix C.1, and simulation results are given in Section 5.5.1.

Theorem 5.1. If there exists a constant z > 0, such that K(x) > zI for all x, and K(x)

is continuous with respect to x, algorithm (5.3) converges; i.e.,

lim
t→∞

‖∇U [x(t), t]‖ = 0.

Remark: For example, if one takes K(x) = ζH
−2
(x) with ζ > 0, then the

following algorithm (proposed in [38]) is a special case of CFoA (5.3)

ẋ =−H
−1
[x(t), t]

[

ζ∇U [x(t), t] +
∂∇U [x(t), t]

∂t

]

. (5.4)
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5.2.2 A Few Remarks on Constrained Optimization Problems

The CFoA can also be used to approximate the solution of a time-varying con-

strained optimization problem. Consider a general time-varying constrained convex op-

timization problem

max
x

U(x, t), subject to s
i
(x, t) ≤ 0, i = 1, ...,M. (5.5)

Assume that the objective function U(x, t) satisfies Condition 1, and that the func-

tions s
i
(x, t), i = 1, ...,M , are twice differentiable convex functions which satisfy

∥

∥

∥

∥

∥

∂s
i
(x, t)

∂t

∥

∥

∥

∥

∥

<∞, and

∥

∥

∥

∥

∥

∂∇s
i
(x, t)

∂t

∥

∥

∥

∥

∥

<∞, ∀(x, t). (5.6)

Hence problem (5.5) is a convex optimization problem for any t, and the optimal solu-

tion x
opt
(t) of problem (5.5) is unique and a continuous function of t.

Given problem (5.5), define the following unconstrained problem

max
x

Ũ(x, t) = U(x, t)−
∑

i=1,...,M

u
i
s
i
(x, t), (5.7)

where

u
i
=















α
i
, if s

i
> 0,

0, if s
i
< 0.

Let x̃
opt
(t) be the optimal solution of problem (5.7). For any given t

0
, it is well known

that problem (5.5) and problem (5.7) have the same solution for large enough α
i
, i =

1, ...,M [33]; i.e., there exists a constant α
∗
(t
0
) > 0, if the constants α

i
of prob-

lem (5.7), i = 1, ...,M , satisfy α
i
> α

∗
(t
0
) > 0, then x̃

opt
(t
0
) = x

opt
(t
0
). Moreover,

if there exists a constant α
∗
which satisfies α

∗
= sup

t
α
∗
(t) < ∞, and α

i
> α

∗
> 0,

then x̃
opt
(t) = x

opt
(t).

In problem (5.7), although Ũ(x, t) is not differentiable everywhere, due to the

fact that U(x, t) satisfies Condition 1 and the functions s
i
(x, t) satisfy condition (5.6),
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one may use a function Ū(x, t) which satisfies Condition 1 to approximate Ũ(x, t). This

means one may apply the CFoA to solve the following problem

max
x

Ū(x, t). (5.8)

Denote the optimal solution of the problem above by x̄
opt
(t). If Ū(x, t) is very “close”

to Ũ(x, t), then x̄
opt
(t) will be very “close” to x̃

opt
(t). More precisely, given any ε > 0,

there exists ξ > 0, such that, if for all t

‖Ũ(x, t)− Ū(x, t)‖
∞
< ξ,

then

‖x̃
opt
(t)− x̄

opt
(t)‖ < ε.

Hence, one can apply CFoA (5.3) to solve problem (5.8), and therefore, provide

an approximate solution of the constrained time-varying optimization problem (5.5).

5.2.3 Second Order Algorithm

In the approximation problem (5.8) provided in the last section, the derivative

may change “fast” near the boundary of the feasible set of the constrained optimization

problem (5.5) (i.e., s
i
is “close” to zero for some i). In such a case, a direct imple-

mentation of CFoA (5.3) might lead to high frequency oscillations. A simulation of this

situation is given in Section 5.5.1. This motivates the study of the so-called Continuous

Second Order Algorithm (CSoA) for problem (5.2), which is presented below



















ẋ = −H
−1
[x(t), t]

[

K[x(t)]y(t) +
∂∇U [x(t), t]

∂t

]

,

ẏ = K[x(t)]∇U [x(t), t]− q[y(t)].

(5.9)
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where K(x) is a given n × n matrix function of x. The vector q(y) = [...q
i
(y
i
)...]

T
,

where q
i
(y
i
), i = 1, ..., n, are continuous functions of y

i
, satisfying

q
i
(0) = 0,

y
i
q
i
(y
i
) > 0, for y

i
6= 0.

We now provide a result that establishes the convergence of the Continuous Second

Order Algorithm (5.9). Its proof is given in Appendix C.2, and simulation results are

provided in Section 5.5.1.

Theorem 5.2. If there exists a constant z > 0, such that K(x) > zI for all x, and

K(x) is continuous with respect to x, then for any bounded initial condition y(0), algo-

rithm (5.9) converges; i.e.,

lim
t→∞

‖∇U [x(t), t]‖ = 0.

5.3 Time-varying Optimization Problem with Discontinuous Deriva-

tive

The discussion in Section 5.2 shows that, by using the approximation prob-

lem (5.8), CFoA (5.3) and CSoA (5.9) both converge to an arbitrarily small neighborhood

of the optimal solution of the constrained problem (5.7). However, to determine the true

optimal solution, we need address optimization problems with objective functions having

discontinuous derivatives.

In this section, we only consider time-varying optimization problems having deriva-

tives with “linear” discontinuity; i.e., optimization problems of the following form

max
x

Ũ(x, t) = U(x, t)−
∑

i=1,...,M

u
i
s
i
(x, t) = U(x, t)−

∑

f
i
(s
i
), (5.10)

where

s
i
(x, t) = g

T

i
x− c

i
(t), i = 1, ...,M,
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u
i
=















α
i
> 0, if s

i
> 0,

0, if s
i
< 0.

Without loss of generality, it is assumed that

‖g
i
‖ = 1, i = 1, ...,M.

Moreover assume that U(x, t) satisfies Condition 1, and that functions s
i
(x, t), i =

1, ...,M , are linear. Hence for any t, Ũ(x, t) is strictly concave with respect to x.

It is also assumed that there exists a positive constant ċ
max

, such that

− ċ
max

< inf
i,t
ċ
i
(t) < sup

i,t
ċ
i
(t) < ċ

max
, (5.11)

with ċ
max

< ∞. Since problem (5.10) is strictly concave and ċ
max

is bounded, it can

be proved that the time-varying optimal solution of problem (5.10) is unique and a

continuous function of t.

The gradient of Ũ(x, t) is given by

∇Ũ(x, t) = ∇U(x, t)− G
T
u, if at x, s

i
(x, t) 6= 0 for all i,

where the ith column of G
T
is g

i
, and the ith entry of the vector u is u

i
. The Hessian

matrix H̃(x, t) of Ũ(x, t) is given by

H̃(x, t) = H(x, t), if at x, s
i
(x, t) 6= 0 for all i.

Note that due to the structure of Ũ(x, t), ∇Ũ(x, t) and H̃(x, t) are not defined at (x, t),

if for some i, s
i
(x, t) = 0. But for any given t, ∇Ũ(x, t) and H̃(x, t) are defined almost

everywhere.
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To solve the time-varying optimization problem (5.10), we propose the following

algorithm, which we refer to as the Sliding Algorithm (SA)

ẋ =− H̃
−1
[x(t), t]

[

ζ∇Ũ [x(t), t] +
∂∇Ũ [x(t), t]

∂t

]

=−H
−1
[x(t), t]

[

ζ∇U [x(t), t] +
∂∇U [x(t), t]

∂t
− ζG

T
u

]

,

(5.12)

where ζ > 0 is a constant.
1

5.3.1 Descent Function

We now define the descent function used throughout this chapter, for time-varying

problems with objective functions having discontinuous derivatives. Given an objective

function Ũ(x, t), define L(x, t) as

L(x, t) =



















‖∇Ũ(x, t)‖, if at x, Ũ(x, t) is differentiable,

min
v∈∂

x
Ũ(x,t)

‖v‖, if at x, Ũ(x, t) is not differentiable.

(5.13)

Recall that ∂
x
Ũ(x, t) is the set of subgradients of Ũ(x, t) at x.

5.3.2 Convergence of Sliding Algorithm

The following result states that with Sliding Algorithm (5.12), the descent func-

tion L[x(t), t] of problem (5.10) converges to an arbitrarily small neighborhood of zero.

Its proof is given in Appendix C.3 and simulation results are provided in Section 5.5.2.

Theorem 5.3. The Sliding Algorithm (5.12) tracks the time-varying optimal solution

of problem (5.10) in the following sense

lim sup
t→∞

L[x(t), t] ≤
Mċ

max

ζp
+
MQ

ζ
, (5.14)

1The algorithm is not defined at (x, t), if, for some i, si(x, t) = 0. However, the behavior is
completely defined by the behaviors at si(x, t) > 0 and si(x, t) < 0.
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where the constants ċ
max

, Q, and p are defined in (5.11) and in Condition 1. Moreover,

for any given ε > 0, and initial condition L[x(t
0
), t

0
], let

T̂ = T (ζ, ε, L[x(t
0
), t

0
]− ε) +MT (ζ, ε,

ċ
max

ζp
+
Q

ζ
),

where the function T (ζ, ε, a) is given by (5.1). Then,

L[x(t), t] ≤
Mċ

max

ζp
+
MQ

ζ
+ ε, for all t ≥ T̂ .

Remark 1: Recall that T (ζ, ε, a) is defined by (5.1) in Section 5.1, hence, T̂

decreases with respect to the parameters ζ, ε, p, and increases with respect to M ,

L[x(t
0
), t

0
], ċ

max
, and Q. Therefore, with a large enough ζ, L(t) will converge to an

arbitrarily small neighborhood of zero.

Remark 2: There are cases for which L(t) will converge to zero with a finite ζ.

A precise definition of such situations is only given and used in the proof (see Ap-

pendix C.3.2), due to the fact that it is hard to check it in real implementation. In the

next section sufficient conditions for asymptotic convergence of the SA with a finite ζ

are provided.

5.4 Asymptotic Convergence for Optimization Problem with Time-

varying Linear Constraints

As seen in Theorem 5.3, as the algorithm parameter ζ goes to infinity, one has

lim
ζ→∞

(lim sup
t→∞

L[x(t), t]) ≤ lim
ζ→∞

Mċ
max

ζp
+
MQ

ζ
= 0.

In this section, we will focus on the following question: under which conditions, there

exists a finite ζ, such that

lim
t→∞

L[x(t), t] = 0.
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Consider the following time-varying linear constrained problem

maxU(x), subject to s
i
(x, t) ≤ 0, i = 1, ...,M. (5.15)

Again, U(x) is assumed to be twice differentiable and strictly concave with respect to x.

Moreover, assume that there exist positive constants p and P , such that for all x

pI < −H(x) < PI, and pI < −H
−1
(x) < PI. (5.16)

All constraints s
i
(x, t) = g

T

i
x− c

i
(t) ≤ 0, i = 1, ...,M , are linear inequality constraints.

Without loss of generality, it is also assumed that

‖g
i
‖ = 1, i = 1, ...,M.

Recall that ċ
max

is defined by (5.11) in Section 5.3, and as before, it is assumed that

ċ
max

<∞. (5.17)

A point x being feasible at time t means that s
i
(x, t) ≤ 0 for all i = 1, 2, ...,M .

Due to the fact that c
i
(t) depends on t, the feasible set depends on time t. We assume

that there exists a bounded closed set X ⊂ R
n
, such that for any t, the feasible set is

contained in X ; i.e., for any t

{x : s
i
(x, t) ≤ 0, i = 1, ...,M} ⊂ X . (5.18)

The optimal solution of problem (5.15), x
opt
(t), is unique, bounded, and a contin-

uous function of t. Given the optimal solution x
opt
(t), let G

opt
(t) be the matrix such that,

the columns of G
T

opt
(t) are the gradients of the constraints which satisfy s

i
[x
opt
(t), t] = 0.

If G
opt
(t) has linear dependent rows, the Lagrangian multiplier is not unique.

In such a case, let G
opt,LI

(t) be any matrix with linear independent rows, such that:

(i) if g
T
is a row of G

opt,LI
(t), then it is also a row of G

opt
(t); (ii) the column space
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of G
T

opt,LI
(t) equals the column space of G

T

opt
(t). Then there exists a unique Lagrangian

multiplier λ
opt,LI

(t) > 0, such that ∇U [x
opt
(t), t] = G

T

opt,LI
(t)λ

opt,LI
(t).

It is also assumed that there exist positive constants λ and λ̄, such that for any t,

and any G
opt,LI

(t), the following condition holds

0 < λ < λ
opt,LI

(t) < λ̄ <∞. (5.19)

For simplicity, from now on, without loss of generality, we only consider the case G
opt
(t)

has linear independent rows for any t, and there is a unique Lagrangian multiplier vec-

tor λ(t).

The constrained problem (5.15) can be written as the following unconstrained

problem

max
x

Ũ(x, t) = U(x)−
∑

i=1,...,M

u
i
s
i
(x, t), (5.20)

where

s
i
(x, t) = g

T

i
x− c

i
(t), i = 1, ...,M,

u
i
=















α
i
, if s

i
> 0,

0, if s
i
< 0.

Note that, since U(x) only depends on x, the optimization problem above is a special

case of problem (5.10). Assume the following condition holds

α
i
≥ λ̄, i = 1, ...,M, (5.21)
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The above unconstrained form (5.20) is equivalent to the constrained problem (5.15), in

the sense that: for all t

x̃
opt
(t) = x

opt
(t)

where x̃
opt
(t) is the optimum of the unconstrained problem (5.20), and x

opt
(t) is the

optimal solution of problem (5.15).

To solve the unconstrained problem, we apply Sliding Algorithm (5.12). Note

that, for this special case, Sliding Algorithm (5.12) has the following special form

ẋ =−H
−1
(x)

[

ζ∇U(x)− ζG
T
u
]

. (5.22)

The following theorem establishes the convergence of algorithm (5.22). The proof

is given in Appendix C.4, and simulation results are provided in Section 5.5.3.

Theorem 5.4. Assume all the conditions (5.16, 5.17, 5.18, 5.19, 5.21) hold. Then there

exist ζ
∗
> 0 and α

∗
≥ λ̄ such that if ζ > ζ

∗
, and α

i
> α

∗
, i = 1, ...M , algorithm (5.22)

converges; i.e.,

lim
t→∞

x(t) = x
opt
(t), and lim

t→∞
L[x(t), t] = 0.

5.5 Numerical Examples

In this section, some simulation results are presented, which exemplify the behav-

ior of the algorithms proposed. Note that, similarly to the simulation given in Section 3.5,

the implementation of the proposed algorithm is performed in discrete time as well.

5.5.1 Continuous Derivative

We now exemplify the convergence of CFoA (5.3) and CSoA (5.9) with a first

example of problem (5.2). The objective function U(x, t) used in this example is

U(x, t) = −
1

2

1

10
(tx

(1)
− 6)

2
−
1

2
x
2

(2)
.
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It can be proven that this objective function satisfies Condition 1. Fig. 5.1 shows the

behavior of CFoA. The parameters of the optimization algorithm CFoA are: K(x) =

ζH
−2
(x), sampling time 1ms, x|

t=1
=

[

2 0.2
]T
, and ζ = 5. Fig. 5.2 shows the behavior

of CSoA. The parameters of the optimization algorithm CSoA are: K(x) = ζI, sampling

time 1ms, x|
t=1

=
[

2 0.2
]T
, ζ = 5, q

i
(y
i
) = 10y

i
, and y|

t=1
=

[

0 0
]T
. The simulation

results show that both of CFoA and CSoA converge to the time-varying optimum.

x(1)

x
(2

)

trajectory x(t)

0 1 2 3 4 5 6 7
-0.05

0

0.05

0.1

0.15

0.2

time -s

L
2
(t)

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

Fig. 5.1. First example of continuous derivative problem: CFoA

As mentioned in Section 5.2.3, the motivation for the study of CSoA is that if the

gradient of an objective function changes fast, an implementation of CFoA may have high

frequency oscillations. We now provide another example to exemplify this phenomenon

and compare the behavior of CFoA and CSoA. Fig. 5.3 shows the simulation results.
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Fig. 5.2. First example of continuous derivative problem: CSoA

The objective function used in this example is

U(x, t) = −
1

2

1

10
(x
(1)
− 6)

2
−
1

2
x
2

(2)
− f

δ,α
(s),

where s =
[

1 1
]

x− c(t) = g
T
x− c(t),

c|
t=0

= 3,

ċ =















0.8, if t ∈ [
5

8
k,
5

8
(k + 1)),

−0.8, if t ∈ [
5

8
(k + 1),

5

8
(k + 2)),

k = 0, 2, 4, ...

α = 2,

δ = 0.01,

f
δ,α
(s) =































0, if s ≤ −δ,

αs, if s ≥ δ,

a
4
s
4
+ a

2
s
2
+ a

1
s+ a

0
, otherwise,

a
4
= −1.2500e+ 005, a

2
= 75, a

1
= 1, a

0
= 0.0037.
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It can be proven that it satisfies Condition 1, and the behavior of the time-varying pa-

rameter c(t) is shown in Fig. 5.3. Note that in this example, the gradient of the objective

function changes quite fast when s is “close” to 0; i.e., −δ < s < δ. The parameters of

CFoA and CSoA are chosen as: K(x) = ζH
−2
(x) for the CFoA, and K(x) = ζI for the

CSoA; The sampling time is 1ms; x|
t=0

=
[

2.5 0.3
]T
; For both CFoA and CSoA, ζ = 8;

For CSoA, q
i
(y
i
) = 70y

i
and y|

t=0
=

[

0 0
]T
.

The left column of Fig. 5.3 shows the behavior of CFoA, and the right column

shows the behavior of CSoA. Although both of them converge to the time-varying optimal

solution, one should note that, since the gradient of the objective function changes quite

fast when s is “close” to 0, CFoA shows high frequency oscillations when s is “close”

to 0, in both trajectories and objective functions, while CSoA has a “smoother” behavior

than CFoA.

5.5.2 Discontinuous Derivative

We now provide an example of problem (5.10), which has a discontinuous deriva-

tive, to exemplify the behavior of SA (5.12). Fig. 5.4 shows the simulation result. The
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Fig. 5.3. Second example of continuous derivative problem
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objective function U(x, t) used in this example is

U(x, t) = −
1

2

1

10
(x
(1)
− 6)

2
−
1

2
x
2

(2)
− us(x, t),

where s(x, t) =





s
1
(x, t)

s
2
(x, t)



 =





0 1

0.2 1



x−





c
1
(t)

c
2
(t)



 ,

u
i
=















1, if s
i
> 0,

0, if s
i
< 0,

i = 1, 2,

c
1
|
t=0

= c
2
|
t=0

= −0.2,

ċ
1
(t) =















1, if t ∈ [0.3k, 0.3(k + 1)),

−1, if t ∈ [0.3(k + 1), 0.3(k + 2)),

k = 0, 2, 4, ...

ċ
2
(t) =















0.75, if t ∈ [
4

15
k,

4

15
(k + 1)),

−0.75, if t ∈ [
4

15
(k + 1),

4

15
(k + 2)),

k = 0, 2, 4, ...

It can be proven that this objective function satisfies the conditions of problem (5.10).

The behavior of the time-varying parameter c(t) is shown in the left of Fig. 5.4. The

parameters are chosen as: sampling time 1ms, x|
t=0

=
[

−2 −0.2
]T

and ζ = 4. The

right of Fig. 5.4 shows the behavior of SA (5.12). And as expected, the descent func-

tion L(t) converges to a neighborhood of zero, and the Sliding Algorithm converges to a

neighborhood of the time-varying optimum.

5.5.3 Time-varying Optimization with Time-varying Linear Constraints

We now provide an example of problem (5.15) to exemplify that the Sliding Al-

gorithm converges to the time-varying optimum for such a problem. Fig. 5.5 shows the
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Fig. 5.4. Discontinuous derivative example

simulation results. The optimization problem used in this example is

maxU(x, t) = −
1

2

1

10
(x
(1)
− 6)

2
−
1

2
x
2

(2)
,

subject to s(x, t) =
[

1 1
]

x− c(t) = g
T
x− c(t) ≤ 0,

where c|
t=0

= 3,

ċ =















0.5, if t ∈ [4k, 4k + 2),

−0.5, if t ∈ [4k + 2, 4k + 4),

k = 0, 1, 2, ...

It can be proven that this example satisfies the conditions of problem (5.15). The

behavior of the time-varying parameter c(t) is shown in Fig. 5.5. Note that in this

example, the Lagrangian Multiplier is strictly lower bounded away from zero. The

parameters are chosen as: the sampling time 1ms, x|
t=0

=
[

2.5 0.1
]T
, α = 2, and ζ = 1.

The simulation shows that the descent function L(t) converges to zero, and the Sliding

Algorithm converges to the time-varying optimum.
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Fig. 5.5. Example of problem with time-varying linear constraints

5.6 Conclusion

This chapter focuses on a class of time-varying optimization problems, and uses

the smallest norm of the gradient/subgradient as a descent function. The algorithms

designed only require local information of the objective function.

First, for the time-varying optimization problems with twice differentiable strictly

convex/concave objective functions (Problem (5.2)), the Continuous First Order Algo-

rithm (CFoA) is proposed. Moreover, in order to achieve “smoother” behavior, the

Continuous Second Order Algorithm (CSoA) is also proposed. Both of these algorithms

are shown to converge to and track the time-varying optimum. Then, for the time-

varying optimization problems with strictly convex/concave objective functions having

derivatives with “linear” discontinuity (Problem (5.10)), the Sliding Algorithm (SA) is

proposed, which makes the descent function converge to an arbitrarily small neighbor-

hood of zero. Moreover, the SA is applied to time-varying linearly constrained optimiza-

tion problems, sufficient conditions for asymptotic convergence of the Sliding Algorithm

are provided.
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Chapter 6

Concluding Remarks

By using the sliding mode control, this dissertation addressed two computer net-

work traffic engineering problems: the multi-domain traffic engineering problem, and

the overlay network traffic engineering problem. Due to the fact that the overlay traf-

fic engineering problem is fundamentally a time-varying optimization problem, we also

extended our research to more general time-varying optimization problems.

For the multi-domain traffic engineering problem presented in Chapter 3, a family

of adaptation control laws for optimal rate adaptation and load balancing in a multi-

domain internet was proposed. Moreover, the percentage adaptation laws were developed

to further improve the scalability of the control laws. To the best of our knowledge, this

family of control laws is the first of its kind that jointly optimizes the traffic allocation

at the inter-domain and intra-domain levels. The control laws run at the access points

and domain edge nodes only. Moreover, the control laws can work properly with locally

inferrable information only (e.g., through exchange of information with its next-hop node

only). As a result, the proposed control approach is highly scalable. Simulation results

demonstrated that the proposed approach can provide good QoS, TE, and FFR features

in a multi-domain environment.

In Chapter 4, the overlay network traffic engineering problem was presented and

formulated as a time-varying convex optimization problem. A family of distributed

algorithms for optimal traffic allocation under CoS constraints was developed, under the

assumption that the utility function is strictly concave. It was shown that the proposed

control laws converge to the time-varying optimal solution. And the simulation results

showed that the proposed algorithms lead to rather high performance in terms of resource

utilization, as measured by utility function.

Moreover, since the overlay traffic engineering problem addressed in Chapter 4 is

fundamentally a time-varying optimization problem, we extended our research to more
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general time-varying optimization problems. In Chapter 5, we focused on a class of

convex objective functions having derivatives with “linear” discontinuity. First, the

Continuous First Order Algorithm (CFoA) was proposed for the time-varying optimiza-

tion problem with a twice differentiable strictly convex/concave objective function. In

order to achieve “smoother” dynamics than the CFoA, the Continuous Second Order

Algorithm (CSoA) was also proposed. Both the CFoA and CSoA were shown to con-

verge to and track the time-varying optimum. These results serve as a step stone of

the algorithm design for a class of time-varying optimization problems with strictly con-

vex/concave objective functions having “linear” discontinuous derivatives. Then, for

strictly convex/concave objective functions having derivatives with “linear” discontinu-

ity, the Sliding Algorithm (SA) was proposed. This algorithm is shown to converge to

an arbitrarily small neighborhood of the time-varying optimum. Moreover, the SA was

applied to time-varying linearly constrained strictly convex optimization problems, and

sufficient conditions for asymptotical convergence of the SA were provided. Simulation

results were presented to exemplify the behaviors of the algorithms proposed.
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Appendix A

Proof of Results in Chapter 3

This Appendix is devoted to present the proofs of Theorem 3.1 and Theorem 3.2

in Chapter 3.

A.1 Preliminary

Define the n× n matrix W (x, t)

W (x, t) = diag
(

w
i
(t, x

i
, cg(l), r

out

i
), w

i,b
(t, x

out

i,b,l
, cg(l), r

in

i,b
, r
out

i,b,l
),

w
i,b
(t, x

out

i,b,l(j)
, cg[l(j)], r

in

i,b
, r
out

i,b,l
)
)

.

The optimization problem presented in Section 3.2 can be represented in the following

standard form

max
x

U(x), (A.1)

subject to the inequality and equality constraints

s
k
(x) = g

T

k
x− c

k
≤ 0, k = 1, 2, ...,m,

s
k
(x) = g

T

k
x− c

k
= 0, k = m+ 1,m+ 2, ...,M,

where U(x) is a concave differentiable function increasing in each one of its argu-

ments, s
k
(x) are affine functions of x for all k = 1, 2, ...,M . Define C as the feasible

set. Moreover, define G as

G
T
=

[

g
1

g
2

... g
M

]

,
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and define u(x) =
[

u
1
(x) u

2
(x) ... u

M
(x)

]T
, an M × 1 vector whose components

are of the form

u
k
(x) =















α
k
, if s

k
(x) > 0,

0, if s
k
(x) < 0,

k = 1, 2, ...,m,

u
k
(x) =















α
k
, if s

k
(x) > 0,

−α
k
, if s

k
(x) < 0,

k = m+ 1,m+ 2, ...,M.

One states and proves the following theorem.

Theorem A.1. [25] If a family of control laws for problem (A.1) is given as

ẋ =W (x, t)
[

∇U(x)− G
T
u(x)

]

,

and for k = 1, 2, ...,M , α
k

satisfy the following conditions:

• for u
k

associated with link capacity constraints: α
k
≥ α

∗

• for u
k

associated with CoS constraints: α
k
≥ α

∗

• for u
k

associated with flow conservation constraints: α
k
≥ α

∗
Cg

(A.2)

where

α
∗
= max

i

∣

∣

∣

∣

∣

dU
i

dx
i

∣

∣

∣

∣

∣

xi=0

,

the control laws converge to the optimal resource allocation.

A.2 Proof of Theorem 3.1

Lemma A.1. If the conditions in Theorem 3.1 hold, then vector x converges to the

feasible set C in finite time.
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Proof: Let x ≥ 0, and assume that x is outside the feasible set C due to some given x
i
;

i.e., there exists at least one constraint involving x
i
is violated. Note that

ẋ
i
= w

i
(t, x

i
, cg(l), r

out

i
)
[

h
i
(x
i
)− (1− cg(l)r

i
r
out

i
)
]

,

if a link capacity constraint involving x
i
is violated (i.e., cg(l) = 0), such that x is

outside the feasible set C, then there exists positive constant ε > 0, such that ẋ
i
≤

−ε < 0. Similarly, if a CoS requirement constraint and/or a flow conservation constraint

involving x
i
is violated, due to the fact that

α
∗
= max

i

∣

∣

∣

∣

∣

dU
i

dx
i

∣

∣

∣

∣

∣

xi=0

,

one also has that there exists positive constant ε > 0, such that ẋ
i
≤ −ε < 0. Note that

the same reasoning can be applied to ẋ
out

i,b,l
and ẋ

out

i,b,l(j)
. Therefore, since the derivative is

strictly negative outside the feasible set, x reaches the feasible set in finite time.

Lemma A.2. The control laws given in Section 3.3 can be expressed as

ẋ = Ŵ (x, t)
[

∇U(x)− G
T
u(x)

]

.

Proof: The control laws presented in Section 3.3 can be formulated as follows: For class A

control laws,

ẋ
i
= w

i
(t, x

i
, cg(l), r

out

i
)
[

h
i
(x
i
)− (1− cg(l)r

i
r
out

i
)
]

,

let K
i
be the set of indices k ∈ {1, 2, ...,M} such that the constraints s

k
(x) involve the

data rate x
i
. Then,

ẋ
i
= w

i
(t, x

i
, cg(l), r

out

i
)

[

h
i
(x
i
)−

(

1−
∏

k∈Ki

ũ
k

)

]

,
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where the quantities ũ
k
are defined as follows For AF constraints, let

ũ
k
= r

i
.

For link capacity constraints, let

ũ
k
= cg(l).

For flow conservation constraints, let

ũ
k
= r

out

i
.

Now, when x ∈ C, either x is an inner point of C, or a sliding mode occurs on

some surface s(x) = 0, where x ∈ ∂C (the boundary of C). In the latter case, using the

equivalent control method [33], there exists ũ
k,eq

such that

ẋ
i
= w

i
(x, t)

[

−
(

1− h
i
(x
i
)
)

+
∏

k∈Ki

ũ
k,eq

]

.

Moreover, since max
x∈C

h
i
(x
i
) = χ

1
< 1, and for any x ∈ C, there exist constant χ

2
, χ

3
>

0 such that

χ
2
< ũ

k,eq
< χ

3
, ∀x ∈ C.

Hence, given that the logarithm function has a bounded derivative in the closed inter-

val
[

min(1− χ
1
, χ

3

2
),max(1, χ

3

3
)
]

, the evolution of x
i
can be represented as

ẋ
i

=ŵ
i
(t, x

i
, cg(l), r

out

i
)

[

log
1

1− h
i
(x
i
)
+

∑

k∈Ki

log ũ
k,eq

]

=ŵ
i
(t, x

i
, cg(l), r

out

i
)

[

∂U

∂x
i

+
∑

k∈Ki

log ũ
k,eq

]

,
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and there exists ζ̂ > 0, such that ŵ
i
≥ ζ̂ > 0. By applying the same reasoning to ẋ

out

i,b,l

and ẋ
out

i,b,l(j)
, we have,

ẋ = Ŵ (x, t)
[

∇U(x)− G
T
u(x)

]

.

By comparing it with the control laws given in Theorem A.1, if the conditions in

Theorem 3.1 hold, the control laws given in Section 3.3 converge to an optimal resource

allocation.

A.3 Proof of Theorem 3.2

Since p
i,b,l

is defined as

p
i,b,l

(t) =

x
out

i,b,l
(t)

∑

l̃∈Lb,i

xout

i,b,l̃
(t)
, l ∈ L

b,i
.

Straightforward computation of the time derivative of p
i,b,l

yields

dp
i,b,l

(t)

dt
=

ẋ
out

i,b,l
(t)

∑

l̃∈Lb,i;l̃ 6=l

p
i,b,l̃

(t)− p
i,b,l

(t)
∑

l̃∈Lb,i;l̃ 6=l

ẋ
out

i,b,l̃
(t)

∑

l∈Lb,i

xout

i,b,l
(t)

,

where the derivatives ẋ
out

i,b,l̃
are computed according to the optimal control laws given

in Section 3.4. Now, if the total data rate is strictly positive, the following positive

multiplication factor can be introduced

w
i,b

(

t, x
out

i,b,l
, cg(l), r

in

i,b
, r
out

i

)

∑

l∈Lb,i

x
out

i,b,l
.

This factor has only effect to change the adaptation speed but it does not affect the

steady state behavior of these laws, since it is strictly positive.
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Proceeding in this way and dropping function arguments for notational conve-

nience, the proposed percentage adaptation laws are obtained

ṗ
i,b,l

= w
i,b

(

ẋ
out

i,b,l

∑

l̃∈Lb,i;l̃ 6=l

p
i,b,l̃
− p

i,b,l

∑

l̃∈Lb,i; l̃ 6=l

ẋ
out

i,b,l̃

)

.

Note that the same reasoning can be applied to p
i,b,l(j)

. Therefore, these laws are equiv-

alent to the convergent data rate adaptation laws for the case of strictly positive total

data rate, and thus, they also converge to the optimal data rate of the optimization

problem at hand.
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Appendix B

Proof of Results in Chapter 4

This Appendix is devoted to present the proof of Theorem 4.1 in Chapter 4.

B.1 Sliding Mode Condition and Equivalent Motion

The algorithm in Section 4.3 can be written as

ẋ = ζZ(
∂U

∂x
− G

T
u),

where Z = −H
−1

is block diagonal, and G is the gradient of the constraints. Due to the

fact that one only has linear constrains, G is an M × n constant matrix. Moreover u is

an M × 1 vector where M is the number of constraints

u
i
=















α
i
, at s

i
(x, t) > 0,

0, at s
i
(x, t) < 0,

for i = 1, 2, ...,M , α
i
satisfy following conditions

for link capacity constraints: α
i
≥ α

∗
,

for CoS constraints: α
i
≥ α

∗
max
i,j

B
i,j
,

for nonnegative rate constraints: α
i
≥ 2α

∗
max
i,j

B
i,j
.

(B.1)

Sliding mode exists on a discontinuity surface s(x) = 0 whenever the following

conditions are satisfied

lim
s→−0

ṡ > 0 and lim
s→+0

ṡ < 0. (B.2)
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We now prove that the Sliding Mode Condition (B.2) holds for x ∈ X
sm
.

Since condition (4.3) holds (for simplicity, the index x is omitted), we have

inf
x∈Xsm

((GZG
T
)
−1
(GZ∇U −

1

ζ
ċ) > ϕ−

1

ρ
Ψn

1/2 ρϕ

n1/2Ψ
≥ 0,

where ρ =
ċmaxn

1/2
Ψ

ϕ . This implies

(GZG
T
)
−1
(GZζ∇U − ċ) > 0. (B.3)

If sliding mode occurs on active constraints s̄ = 0, the equivalent motion is [33]

ẋ
eq
= ζ(Z − ZḠ

T
(ḠZḠ

T
)
−1
ḠZ)∇U + ZḠ

T
(ḠZḠ

T
)
−1

ċ.

If x encounters a constraint s
g
having gradient g at some x ∈ X

sm
, and g is not

a linear combination of Ḡ
T
, by condition (B.3)

(





Ḡ

g
T



Z
[

Ḡ
T

g
]

)
−1
(





Ḡ

g
T



Zζ∇U −





ċ

ċ
g



) > 0,

which implies that







∗ ∗

−C
−1

2
g
T
ZḠ

T
(ḠZḠ

T
)
−1

C
−1

2











ḠZζ∇U − ċ

g
T
Zζ∇U − ċ

g



 > 0,

where C
2
= g

T
Zg − g

T
ZḠ

T
(ḠZḠ

T
)
−1
GZg > 0. Then

g
T
Zζ∇U − ċ

g
− g

T
ZḠ

T
(ḠZḠ

T
)
−1
(ḠZζ∇U − ċ) > 0.

If s
g
< 0, u

g
= 0, then

ṡ
g
= g

T
ẋ
eq
− ċ

g
= g

T
ζZ(∇U − Ḡ

T
(ḠZḠ

T
)
−1
(ḠZ∇U −

1

ζ
ċ))− ċ

g
> 0.
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Define

zgn(s) =















0, s ≤ 0,

1, s > 0,

and zgn(s) =
[

zgn(s
1
) zgn(s

2
) ... zgn(s

m
)
]T
. The control law is

ẋ = ζZ(∇U − Ḡ
T
u) = ζZ(∇U − αḠ

T
zgn(s)),

the equivalent motion is

ẋ
eq
= ζZ(∇U − Ḡ

T
u
eq
) = ζZ(∇U − αḠ

T
zgn(s)

eq
),

also note that zgn(s)
eq,i
∈ [0, 1].

If s
g
> 0, u

g
= α, condition (4.4) implies

ṡ
g
= g

T
ẋ
eq
− ċ

g

=g
T
ζZ(∇U −

[

Ḡ
T

g
]





αzgn(s)
eq
)

α



)− ċ
g

=ζg
T
Z(∇U − gα)− αζg

T
ZḠ

T
zgn(s)

Ḡ,eq
− ċ

g

<ρmin
x
(Z)(max

x
(∇U)− α) + ċ

max
≤ 0,

and hence a sliding mode occurs where x ∈ X
sm
.

B.2 Convergence

In this section, we will prove that the algorithm given in Section 4.3 converges. To

do that, first, based on the optimization problem in Section 4.2, two modified optimiza-

tion problems are formulated, and two optimization algorithms are proposed; second, the

optimization algorithm for the second modified problem is proved to converge; third, the
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relationship between the two optimization algorithms are given; finally, the convergence

of the algorithm given in Section 4.3 is provided. Without loss of generality, it is assumed

that with ζ = 1, the control law is fast enough to follow the time-varying constraints.

B.2.1 Original-problem and Two Modified Problems

The optimization problem given in Section 4.2 is referred to as the Original-

problem(OP)

maxU(x), subject to s
i
(x) ≤ 0, i = 1, ...,M, (B.4)

all M constraints s
i
(x, t) = g

T

i
x− c

i
(t) ≤ 0 are linear inequality constraints.

The First-modified-problem (FMP) is defined as

max Ũ(x, t), (B.5)

where

Ũ(x, t) = U(x)−
∑

i=1,...,M

u
i
s
i
(x) = U(x)−

∑

f
i
(s
i
),

u
i
=















α
i
, if s

i
> 0,

0, if s
i
< 0,

(B.6)

the α
i
, i = 1, ...,M , satisfy condition (C.16). The objective function Ũ(x, t) is contin-

uous, strictly concave. It has a unique time-varying optimal solution x̃
opt
(t). More-

over [20, 33]

x̃
opt
(t) = x

opt
(t). (B.7)
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The gradient of Ũ(x, t) is given by

∇Ũ(x, t) = ∇U(x)− G
T
u, where ∀i, s

i
(t) 6= 0,

the ith column of G
T
is g

i
, the ith element of u is u

i
. The Hessian matrix H̃ of Ũ(x, t)

is given by

H̃(t) = H, where ∀i, s
i
(t) 6= 0.

Note that ∇Ũ(x, t) and H̃ do not exist at x, if for some i, s
i
(x) = 0.

Let Z̃ = −H̃
−1
, propose the Sliding Algorithm (SA) for the FMP

ẋ = −H̃
−1
∇Ũ(x, t) = Z[∇U(x)− G

T
u]. (B.8)

The Sliding Algorithm is not defined where s
i
= 0. Note that the Sliding Algorithm is

exactly the algorithm given in Section 4.3. The convergence of SA will be provided in

next sections.

Now we define the Second-modified-problem (SMP). Let

Ū
δ
(x, t) = U(x)−

∑

f
δ,i
(s
i
) = U(x)− f

δ
(x, c),

and for f
δ
(x, c) =

∑

f
δ,i
(s
i
), H

fδ

≥ 0 exists

f
δ,i
(s
i
) =















s
i
α
i
if s

i
≥ δ

0 if s
i
≤ −δ

df
δ,i
(s
i
)

ds
i

=















α
i
if s

i
≥ δ

0 if s
i
≤ −δ
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d
2
f
δ,i
(s
i
)

ds2

i

=















0 if s
i
/∈ [−δ, δ]

≥ 0 if − δ ≤ s
i
≤ δ

The gradient of Ū
δ
(x, t) is given by

∇Ū
δ
(x, t) = ∇U(x)−

df
δ
(x, c)

dx
= ∇U(x)−

∑
df
δ,i
(s
i
)

dx
.

The Hessian matrix of Ū
δ
(x, t), H̄

δ
= H −H

fδ

< 0.

The Second-modified-problem (SMP) is defined as

max Ū
δ
(x, t). (B.9)

The objective function of the SMP, Ū
δ
(x, t), is continuous, strictly concave. It has a

unique time-varying optimal solution x̄
δ,opt

(t).

Let Z̄
δ
= −H̄

−1

δ
, propose the Cont-algorithm (CA) for the SMP

˙̄x
δ
= −H̄

−1

δ
[∇Ū

δ
(x, t) +

d∇Ū
δ

dt
] = Z̄

δ
[∇U(x)−

df
δ
(x, c)

dx
−
d
2
f
δ
(x, c)

dxdt
]. (B.10)

Note that lim
δ→0

‖Ū
δ
(x, t) − Ũ(x, t)‖ = 0, moreover, due to the fact that Ū

δ
(x, t) is

continuous, strictly concave, it has a unique time-varying optimal solution x̄
δ,opt

(t),

moreover, one has

lim
δ→0

x̄
δ,opt

(t) = x̃
opt
(t). (B.11)

In the next sections, the convergence of the Cont-algorithm is provided, then the

Sliding Algorithm is proved to converge.



88

B.2.2 Convergence of the Cont-algorithm

The SMP is an unconstrained time-varying optimization problem. It has a unique

time-varying optimal solution x̄
δ,opt

(t). We now prove that the Cont-algorithm ˙̄x
δ
con-

verges. Propose the following Lyapunov function

L
δ
(t) = (1/2)∇Ū

T

δ
(x, t)∇Ū

δ
(x, t).

Due to the fact, which is proved in Section B.1, that ẋ is fast to follow the time-varying

boundary, the CA ˙̄x
δ
and the SA ẋ are only different in the δ-layer, so ˙̄x

δ
is fast to

follow the time-varying δ-layer. The time-derivative is

dL
δ
(t)/dt = ∇Ū

T

δ
(x, t)H̄

δ
˙̄x
δ
+∇Ū

T

δ
(x, t)

d∇Ū
δ

dt

=∇Ū
T

δ
(x, t)H̄

δ
Z̄
δ
[∇Ū

δ
(x, t) +

d∇Ū
δ

dt
] +∇Ū

T

δ
(x, t)

d∇Ū
δ

dt

=−∇Ū
T

δ
(x, t)∇Ū

δ
(x, t) ≤ 0,

it is zero if and only if ∇Ū
δ
(x, t) = 0; i.e., x̄

δ
(t) = x̄

δ,opt
(t). So the CA converges to the

optimal solution of the SMP.

B.2.3 Relationship between SA and CA

Assume x
δ
(t) is close to m constraints; i.e.,

s
i
= g

T

i
x− c

i
∈ (−δ, δ), i = 1, ...,m

Let G
T
=

[

g
1

... g
m

]

, without loss of generality, assume m ≤ n, G has linear inde-

pendent rows, and the first m columns of G are linear independent. Construct an n× n

matrix Ω as the following

Ω =





G
0

G
0
Λ

0 I



 ,
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where G =
[

G
0

G
0
Λ
]

, G
0
is an m×m invertible matrix, Λ is an m× (n−m) matrix, I

is an (n − m) × (n − m) identity matrix, so Ω is invertible. Do a linear transforma-

tion y = Ωx, and we use the index y to distinguish the terms in x-space and y-space,

for example, U is the objective function in x-space, and U
y
= U(Ω

−1
y) in y-space. The

Sliding Algorithm given in y-space

ẏ = Z
y
[∇U

y
(y)− G

T

y
u], (B.12)

the Cont-algorithm given in y-space

˙̄y
δ
= Z̄

y,δ
[∇U

y
(y)−

df
y,δ
(y, c)

dy
−
d
2
f
y,δ
(y, c)

dydt
]. (B.13)

Note that the following equation holds for any δ > 0

H̄
y,δ
˙̄y
δ
+
d∇Ū

y,δ

dt
= −∇Ū

T

y,δ
(y, t),

H
y
˙̄y
δ
−



















d
2
fy,δ,1

dy2
1

˙̄y
1

...

d
2
fy,δ,m

dy2
m

˙̄y
m

0



















+



















d
2
fy,δ,1

dy2
1

ċ
1

...

d
2
fy,δ,m

dy2
m

ċ
m

0



















= −∇U
y
+
df
y,δ

dy
,

also note that lim
δ→0

d
2
fy,δ,i

dy2
i

=∞, one has

lim
δ→0
‖

[

d
2
fy,δ,1

dy2
1

( ˙̄y
1
− ċ

1
) ...

d
2
fy,δ,m

dy2
m

( ˙̄y
m
− ċ

m
) 0

T
]

‖ = 0,

˙̄y
δ
= Z

y
[∇U

y
(y) +

df
y,δ

dy
] +O(δ),
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that means in the δ-neighborhood of the set of points of discontinuity of the Sliding

Algorithm ẏ, the Cont-algorithm ˙̄y differs, for almost all t by not more than some

value ξ(δ), from some mean (with any nonnegative weights) values of the function ẏ in

the δ-neighborhood of the point (t, ȳ
δ
(t)), and lim

δ→0
ξ = 0. More specifically,

‖ ˙̄y
δ
(t)−

∑

i=1,...,k

η
i
ẏ
i
(t)‖ ≤ ξ, (B.14)

∑

i=1,...,k

η
i
= 1, η

i
> 0, ‖y

i
(t)− ȳ

δ
(t)‖ ≤ δ, i = 1, ..., k,

where the numbers η
i
and the vectors y

i
(t) may depend arbitrarily on (t, ȳ

δ
(t)).

Moreover, condition (C.3) also holds in x-space.

B.2.4 Convergence of the Sliding Algorithm

For any given ε
1
> 0, one may construct a sequence {ε

i
}
i≥1

, such that

ε
1
> ε

2
> ... > ε

i
> ε

i+1
> ...

Since condition (B.11) holds, for ε
1
> 0, there exists δ

1
(ε
1
) > 0, such that if 0 <

δ < δ
1
(ε
1
)

‖x̄
δ,opt

(t)− x̃
opt
(t)‖ < ε

1
, ∀t, (B.15)

Note that the Cont-algorithm ˙̄x
δ
converges to the time-varying optimal solu-

tion x̄
δ,opt

(t), then for any initial point (t
0
,x

0
) and δ < δ

1
(ε
1
), there exists t

1
(ε
1
) < ∞,

such that

‖x̄
δ
(t)− x̄

δ,opt
(t)‖ < ε

1
, t > t

1
(ε
1
), (B.16)

Moreover, for ε
1
> 0, and any interval t

0
≤ t ≤ T

1
, where t

1
< T

1
< ∞, there

exist ξ
1
(ε
1
) > 0 and δ

2
(ε
1
) > 0, such that if δ < δ

2
, condition (C.3) holds, then with
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any same initial point (t
0
,x

0
) [8], x̄

δ
(t), the motion given by the CA ˙̄x

δ
, and x(t), the

motion given by the SA ẋ(t), satisfy

‖x̄
δ
(t)− x(t)‖ < ε

1
, t

0
≤ t ≤ T

1
. (B.17)

Then by the conditions (B.15, B.16, B.17), one has

‖x(t)− x̃
opt
(t)‖ < 2ε

1
, t

1
(ε
1
) < t ≤ T

1
.

Similarly to the above steps, for the sequence {ε
i
}, one may construct a time

sequence {t
i
, T

i
}
i≥1

t
1
< t

2
< T

1
< t

3
< T

2
< ... < t

i
< T

i−1
< t

i+1
< T

i
< ...

such that

‖x(t)− x̃
opt
(t)‖ < 2ε

i
, t

i
< t ≤ T

i
,

which implies

‖x(t)− x̃
opt
(t)‖ < 2ε

i
, t

i
< t ≤ t

i+1
,

so for t > t
1
,

‖x(t)− x̃
opt
(t)‖ < 2ε

1
, t > t

1
.

Due to the fact that ε
1
can be arbitrarily small, x(t) given by the Sliding Algorithm

converges to x̃
opt
(t). Note that the Sliding Algorithm is exactly the algorithm given in

Section 4.3 and x̃
opt
(t) = x

opt
(t), so the algorithm given in Section 4.3 converges to the

time-varying optimal solution x
opt
(t).
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Appendix C

Proof of Results in Chapter 5

This Appendix is devoted to present the proofs of the Theorem 5.1, Theorem 5.2,

Theorem 5.3 and Theorem 5.4 in Chapter 5.

C.1 Proof of Theorem 5.1

Use the descent function defined by (5.13)

(1/2)L
2
[x(t), t] = (1/2)∇U

T
[x(t), t]∇U [x(t), t].

Given the Continuous First Order Algorithm (CFoA) (5.3), the time-derivative of the

descent function is

d
[

(1/2)L
2
[x(t), t]

]

dt
= ∇U

T
[x(t), t]H(t)ẋ+∇U

T
[x(t), t]

∂∇U [x(t), t]

∂t

=−∇U
T
[x(t), t]H(t)K[x(t)]H(t)∇U [x(t), t]

≤− zp
2
∇U

T
[x(t), t]∇U [x(t), t]

≤0.

This derivative is zero if and only if ∇U [x(t), t] = 0, so ‖∇U [x(t), t]‖ converges to zero.

C.2 Proof of Theorem 5.2

In Continuous Second Order Algorithm (CSoA) (5.9)

ẋ = −H
−1
[x(t), t]

[

K[x(t)]y(t) +
∂∇U [x(t), t]

∂t

]

,
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it implies

d

dt
∇U [x(t), t] = H(t)ẋ+

∂∇U [x(t), t]

∂t
= −K[x(t)]y.

Use the vector
[

∇U [x(t), t]
T

y
T
]T

as the state variable, the CSoA implies the following

algorithm















d

dt
∇U [x(t), t] = −K[x(t)]y,

ẏ = K[x(t)]∇U [x(t), t]− q(y).

Propose the following descent function

V (t) = (1/2)y
T
y + (1/2)∇U

T
[x(t), t]∇U [x(t), t].

Its time-derivative is

dV (t)/dt = y
T
ẏ +∇U

T
[x(t), t]

d

dt
∇U [x(t), t] = −y

T
q(y).

Due to the fact that each q
i
(y
i
) is a continuous function of y

i
which satisfies

q
i
(0) = 0,

y
i
q
i
(y
i
) > 0, for y

i
6= 0,

then dV (t)/dt < 0 for y 6= 0, it is zero if and only if y = 0. By LaSalle’s theorem [17],

one has

lim
t→∞

y = 0,

lim
t→∞

ẏ = K[x(t)]∇U [x(t), t]− q(y) = 0.

Note that K(x) > zI, one has

lim
t→∞

∇U [x(t), t] = 0.
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C.3 Proof of Theorem 5.3

Now we will provide the proof of Theorem 5.3. The proof has following steps:

• In Appendix C.3.1: (1) Define a Second Modified Problem (SMP), which is an

approximation of the original problem (5.10); (2) To the SMP problem, apply the

Continuous First Order Algorithm which is also referred as the Continuous Algo-

rithm (CA) throughout the proof; (3) Achieve the convergence of the Continuous

Algorithm.

• Given the structure of the Sliding Algorithm, for some time t, x(t) may not be

able to “follow” some hyperplane s
i
(x, t) = 0. A precise definition of such case,

called Not Follow Condition (NFC), is given in Appendix C.3.2.

• In Appendix C.3.3, discuss the case NFC does not hold for all time t, show that

with the Sliding Algorithm (5.12), the descent function L[x(t), t] converges to zero,

moreover, it converges no slower than exponentially.

• In Appendix C.3.4, discuss the case NFC holds, and prove Theorem 5.3.

Throughout this proof, recall that U(x, t) is said to be convex (concave) if U(x, t) is

convex (concave) with respect to x at time t, and that U(x, t) is said to be (not be)

differentiable if U(x, t) is (is not) differentiable with respect to x at time t. Moreover,

define Z(x, t) as

Z(x, t) = −H
−1
(x, t),

where H(x, t) is the Hessian matrix of U(x, t) with respect to x, correspondingly,

if H(x, t) is not defined for some x, so is Z(x, t).

Also note that many quantities depend on (x(t), t), (x, t) or t, and for simplicity,

unless needed for clarity, the (x(t), t), (x, t) and t are omitted.
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C.3.1 Second Modified Problem, Continuous Algorithm and Its Conver-

gence Analysis

Given problem (5.10) defined in Section 5.3, let

Ū
δ
(x, t) = U(x, t)−

∑

f
δ,i
(s
i
) = U(x, t)− f

δ
(x, c),

where f
δ,i
(s
i
) is a twice differentiable function which satisfies the following conditions:

f
δ,i
(s
i
) =















s
i
α
i
, if s

i
≥ δ,

0, if s
i
≤ −δ,

df
δ,i
(s
i
)

ds
i

=















α
i
, if s

i
≥ δ,

0, if s
i
≤ −δ,

d
2
f
δ,i
(s
i
)

ds2

i

=















0, if s
i
/∈ [−δ, δ],

≥ 0, if − δ ≤ s
i
≤ δ.

The gradient of Ū
δ
(x, t) is given by

∇Ū
δ
(x, t) = ∇U(x, t)−

df
δ
(x, c)

dx
= ∇U(x, t)−

∑
df
δ,i
(s
i
)

dx
.

The function Ū
δ
(x, t) is twice differentiable, and the Hessian matrix of Ū

δ
(x, t), H̄

δ
(x, t) =

H(x, t)−H
fδ

(x, t) < 0.

The Second Modified Problem (SMP) is defined as following

max Ū
δ
(x, t). (C.1)

For any given δ > 0, the objective function of SMP, Ū
δ
(x, t), satisfies Condition 1. Note

that the function f
δ,i
(s
i
) uniformly converges to the function f

i
(s
i
) (5.10) as δ goes to

zero, and that M is finite, then Ū
δ
(x, t) converges to Ũ(x, t) uniformly as δ goes to zero;
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i.e., the SMP is an approximation problem of the form (5.8) defined in Section 5.2.1.

One can apply the Continuous First Order Algorithm (5.3) to SMP, which is referred as

the Continuous Algorithm (CA) for SMP in the reminder of this proof

ẋ
δ
=− H̄

−1

δ
(t)

[

ζ∇U [x(t), t] +
∂∇U [x(t), t]

∂t
− ζ

df
δ
(x, c)

dx
− ∂(

df
δ
(x, c)

dx
)/∂t

]

. (C.2)

By applying Theorem 5.1, the Continuous Algorithm (C.2) converges; i.e.,

lim
t→∞

‖∇Ū
δ
[x(t), t]‖ = 0.

C.3.2 Not Follow Condition (NFC)

In the time-varying optimization problem (5.10), the set of x for which the ob-

jective function is not differentiable, is a function of c(t). And, given the structure of

SA, x may not be able to “follow” some hyperplane s
i
(x, t) = 0 at some time. In this

section, we provide a precise definition of such case referred to as the Not Follow Condi-

tion (NFC). Then, in the following sections, we will discuss the cases where NFC holds

and does not hold. We start with the following proposition.
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Proposition 2. [8] If in the δ-neighborhood of the set of points of discontinuity of the

SA ẋ, and for an interval t
0
≤ t ≤ t

1
, the CA ẋ

δ
and SA ẋ satisfy the following condi-

tions











































































































(i) for any ε, there exists δ
0
, such that if δ < δ

0
,

∥

∥

∥

∥

∥

∥

ẋ
δ
(t)−

∑

i=1,...,k

ϑ
i
ẋ
i
(t)

∥

∥

∥

∥

∥

∥

≤ ε, for a.e. t
0
≤ t ≤ t

1

∑

i=1,...,k

ϑ
i
= 1, ϑ

i
> 0, ‖x

i
(t)− x

δ
(t)‖ ≤ δ, i = 1, ..., k,

where the numbers k, ϑ
i
and the vectors x

i
(t)

may depend arbitrarily on (t,x
δ
(t)).

(ii) lim
ε→0

δ
0
= 0

(C.3)

Then given any ξ > 0, there exist δ
1
> 0, and δ

2
> 0, such that if

δ < δ
1
, and ‖x

δ
(t
0
)− x(t

0
)‖ < δ

2
,

one has

‖x
δ
(t)− x(t)‖ < ξ, t

0
≤ t ≤ t

1
.

Definition 1. The Not Follow Condition holds for hyperplane s
m
(x, t) = 0 at t

m
, if:

• There exists dt
1
> 0, such that, for the interval [t

m
− dt

1
, t
m
], condition (C.3) in

Proposition 2 holds.

• At time t
m

, s
m
[x(t

m
), t

m
] = 0.

• There exists dt
2
> 0, such that, for the interval (t

m
, t
m
+dt

2
], with x

δ
(t
m
) = x(t

m
),

lim
δ→0

sup
(tm,tm+dt2]

|s
m
[x
δ
(t), t]| = 0, and s

m
[x(t), t] 6= 0.
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Remark: If NFC 1 holds at t
m
for hyperplane s

m
(x, t) = g

T

m
x(t) − c

m
(t) = 0,

without loss of generality, we only consider the case

ċ
m
(t
m
) > 0. (C.4)

The proof for the case ċ
m
(t
m
) < 0 is very similar, and the result is the same.

Throughout the rest of this proof, given x(t
0
), a hyperplane s

i
(x, t) = g

T

i
x −

c
i
(t) = 0 being active at time t

0
, means that s

i
(x(t

0
), t

0
) = g

T

i
x(t

0
)− c

i
(t
0
) = 0. Let the

active hyperplane set G(t) be a matrix such that, if s
i
= 0 is active at t, then g

T

i
is a

row of G(t). Note that G(t) depends on x(t), and is an m(t)× n matrix, where m(t) is

the number of active hyperplanes. And for simplicity, some times we omit t and use G

as the active hyperplane set when there is no ambiguity.

C.3.3 NFC Does Not Hold

In this section, we address the case that NFC 1 does not hold for all t. It shows

that if the NFC does not hold for all t, the descent function L[x(t), t] converges to zero

no slower than exponentially.

• In Appendix C.3.3.1, more detailed forms of the descent function L[x, t] of prob-

lem (5.10) and the descent function L
δ
[x
δ
, t] of SMP (C.1) are provided.

• In Appendix C.3.3.2, a relationship between L[x, t] and L
δ
[x
δ
, t] is given.

• The convergence of SA is established by showing that L[x(t), t] does not increase for

all t in Appendix C.3.3.3, and that L[x(t), t] decreases no slower than exponentially

at t if L[x(t), t] is differentiable with respect to t in Appendix C.3.3.4.

C.3.3.1 Descent Function L[x, t] of Problem (5.10) and Descent Function

L
δ
[x
δ
, t] of SMP (C.1)

The definition of the descent function L[x, t] of problem (5.10) is given by (5.13),

here we will recall it and give a more detailed form of it for problem (5.10).
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For problem (5.10) if at x, Ũ(x, t) is differentiable,

L(x, t) = ‖∇Ũ(x, t)‖.

If at x, Ũ(x, t) is not differentiable, assume that,

s
i
(x, t) = g

T

i
x− c

i
(t) = 0, for i = 1, ...,m,

s
i
(x, t) = g

T

i
x− c

i
(t) 6= 0, for i = m+ 1, ...,M.

Due to the linear structure of s
i
(x, t), i = 1, ...,M , for problem (5.10), the descent

function defined by (5.13) has the following form

L(x, t) = min
γi∈[0,αi], i=1,...,m

‖∇U(x, t)−G
T
γ −G

′
T
u
′
‖, (C.5)

where

G
T
=

[

g
1

... g
m

]

,

G
′
T
=

[

g
m+1

... g
M

]

,

γ =
[

γ
1

... γ
m

]T
,

u
′
=

[

u
m+1

... u
M

]T
,

the u
i
is defined in problem (5.10).

The descent function L
δ
[x
δ
, t] for SMP (C.1) is

L
δ
[x
δ
, t] = ‖∇Ū

δ
(x

δ
, t)‖.

Note that it has been proven in Appendix C.1 that, for any δ > 0, with the Continuous

Algorithm (CA) (C.2), L
δ
[x
δ
(t), t] decreases at any t.

C.3.3.2 Relationship between L(x, t) and L
δ
(x

δ
, t)

The following Lemma provides a relationship between L(x, t) and L
δ
(x

δ
, t).
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Lemma C.1. Given any ε > 0, any x
0
, and any t, there exist ξ(x

0
) > 0, and δ

0
[ξ(x

0
)] >

0 such that for any δ < δ
0
[ξ(x

0
)],

inf
‖xδ−x0‖<ξ(x0)

L
δ
(x

δ
, t) > L(x

0
, t)− ε.

Proof of Lemma C.1.

1. Given x
0
, if Ũ(x, t) is not differentiable at x

0
,

L(x
0
, t) = min

γi∈[0,αi], i=1,...,m
‖∇U(x

0
, t)−G

T
γ −G

′
T
u
′
‖,

and let γ
∗∗
(x

0
, t) be a vector such that

1

γ
∗∗
(x

0
, t) ∈ {arg min

γi∈[0,αi], i=1,...,m
‖∇U(x

0
, t)−G

T
γ −G

′
T
u
′
‖}.

Also note that

L
δ
(x

δ
, t) = ‖∇U(x

δ
, t)−G

T
γ
δ
(x

δ
, t)−G

′
T
γ
′

δ
(x

δ
, t)‖,

where γ
δ
(x

δ
, t) =

[

γ
δ,1

... γ
δ,m

]

, and γ
′

δ
(x

δ
, t) =

[

γ
δ,m+1

... γ
δ,M

]

for some

γ
δ,i
∈ [0, α

i
], i = 1, ...M . Given any ξ(x

0
) > 0, there exists δ

0
[ξ(x

0
)] > 0 such that

if δ < δ
0
[ξ(x

0
)], one has

L
δ
(x

δ
, t) = ‖∇U(x

δ
, t)−G

T
γ
δ
(x

δ
, t)−G

′
T
u
′
‖, if ‖x

δ
− x

0
‖ ≤ ξ(x

0
).

Let

x
∗∗

δ
(t) = arg min

‖xδ−x0‖≤ξ(x0)
L
δ
(x

δ
, t),

1
Note that if G

T
has linear independent columns, the argument which minimize ‖∇U(x0, t)−

G
T
γ −G

′

T
u
′

‖ may be not unique.
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and d∇U = ∇U [x
∗∗

δ
(t), t] − ∇U(x

0
, t). Since −H(t) < PI (Condition 1), then

there exists ξ(x
0
) such that ‖d∇U‖ < ε, and one has

inf
‖xδ−x0‖<ξ(x0)

L
δ
(x

δ
, t)

≥ min
‖xδ−x0‖≤ξ(x0)

L
δ
(x

δ
, t)

=‖∇U [x
∗∗

δ
(t), t]−G

T
γ
δ
[x
∗∗

δ
(t), t]−G

′
T
u
′
‖

=‖∇U(x
0
, t)−G

T
γ
δ
[x
∗∗

δ
(t), t]−G

′
T
u
′
+ d∇U‖

≥‖∇U(x
0
, t)−G

T
γ
δ
[x
∗∗

δ
(t), t]−G

′
T
u
′
‖ − ‖d∇U‖

≥ min
γi∈[0,αi], i=1,...,m

‖∇U(x
0
, t)−G

T
γ −G

′
T
u
′
‖ − ‖d∇U‖

=‖∇U(x
0
, t)−G

T
γ
∗∗
(x

0
, t)−G

′
T
u
′
‖ − ‖d∇U‖

>L(x
0
, t)− ε.

2. If Ũ(x, t) is differentiable at x
0
, there exists ξ(x

0
) > 0 and δ

0
[ξ(x

0
)] > 0, such that

if δ < δ
0
[ξ(x

0
)], one has

L
δ
(x

δ
, t) = L(x

δ
, t), if ‖x

δ
− x

0
‖ < ξ(x

0
),

moreover

inf
‖xδ−x0‖<ξ(x0)

L
δ
(x

δ
, t) > L(x

0
, t)− ε.

By the above two steps, one has

inf
‖xδ−x0‖<ξ(x0)

L
δ
(x

δ
, t) > L(x

0
, t)− ε.
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C.3.3.3 Convergence of SA - L[x(t), t] does not increase for all t

We now show that L[x(t), t] is a non-increasing function for all t if the NFC does

not hold. Proceeding by contradiction, assume the function L[x(t), t] increases at some

time t
0
; i.e., there exist dt > 0 and ε > 0 such that

L[x(t
0
+ dt), t

0
+ dt] = L[x(t

0
), t

0
] + ε.

1. If at x(t
0
), Ũ(x, t) is differentiable, there exist ξ[x(t

0
)] > 0 and δ

a

[

ξ[x(t
0
)]
]

> 0,

such that if δ < δ
a

[

ξ[x(t
0
)]
]

, one has

L
δ
(x

δ
, t
0
) = L(x

δ
, t
0
), if ‖x

δ
− x(t

0
)‖ < ξ[x(t

0
)].

Due to the fact that L
δ
(x

δ
, t) is continuous with respect to x

δ
, one can pick ξ[x(t

0
)],

such that

L
δ
(x

δ
, t
0
) < L[x(t

0
), t

0
] + ε/3, if ‖x

δ
− x(t

0
)‖ < ξ[x(t

0
)].

Hence, one may pick some x
δ
(t
0
) such that

‖x
δ
(t
0
)− x(t

0
)‖ < ξ[x(t

0
)], and L

δ
[x
δ
(t
0
), t

0
] < L[x(t

0
), t

0
] + ε/3.

2. If at x(t
0
), Ũ(x, t) is not differentiable, at time t

0
, L[x(t

0
), t

0
] has the form (C.5),

and one has

γ
∗∗
[x(t

0
), t

0
] ∈ {arg min

γi∈[0,αi], i=1,...,m
‖∇U(x(t

0
), t

0
)−G

T
γ −G

′
T
u
′
‖}.

Since for all t, pI < −H(t) < PI (Condition 1), given ε/3, there exists ξ[x(t
0
)] > 0,

such that

‖∇U(x
δ
, t
0
)−∇U [x(t

0
), t

0
]‖ < ε/3, if ‖x

δ
− x(t

0
)‖ < ξ[x(t

0
)],
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and there exists δ
b

[

ξ[x(t
0
)]
]

> 0, such that if δ < δ
b

[

ξ[x(t
0
)]
]

, there exists

some x
δ
(t
0
) satisfying

‖x
δ
(t
0
)− x(t

0
)‖ < ξ[x(t

0
)],

∇Ū [x
δ
(t
0
), t

0
] = ∇U [x

δ
(t
0
), t

0
]−G

T
γ
∗∗
[x(t

0
), t

0
]−G

′
T
u
′
.

Then

L
δ
[x
δ
(t
0
), t

0
]

=‖∇Ū [x
δ
(t
0
), t

0
]‖

=‖∇U [x
δ
(t
0
), t

0
]−G

T
γ
∗∗
[x(t

0
), t

0
]−G

′
T
u
′
‖

=‖∇U [x(t
0
), t

0
]−G

T
γ
∗∗
[x(t

0
), t

0
]−G

′
T
u
′
+∇U [x

δ
(t
0
), t

0
]−∇U [x(t

0
), t

0
]‖

<‖∇U [x(t
0
), t

0
]−G

T
γ
∗∗
[x(t

0
), t

0
]−G

′
T
u
′
‖+ ε/3

=L[x(t
0
), t

0
] + ε/3.

So at time t
0
, for any given ε, there exists ξ

1
[x(t

0
)] > 0, and δ

1

[

ξ
1
[x(t

0
)]
]

, such

that if δ < δ
1

[

ξ
1
[x(t

0
)]
]

, there exists x
δ
(t
0
) satisfying

‖x
δ
(t
0
)− x(t

0
)‖ < ξ

1
[x(t

0
)],

L
δ
[x
δ
(t
0
), t

0
] < L[x(t

0
), t

0
] + ε/3.

At time t
0
+ dt, by applying Lemma C.1, given ε/3, for all x(t

0
+ dt), there

exist ξ
2
[x(t

0
+ dt)] and δ

2

[

ξ
2
[x(t

0
+ dt)]

]

, such that if δ < δ
2

[

ξ
2
[x(t

0
+ dt)]

]

,

inf
‖xδ−x(t0+dt)‖<ξ2[x(t0+dt)]

L
δ
(x

δ
, t
0
+ dt) > L[x(t

0
+ dt), t

0
+ dt]− ε/3.
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Apply Proposition (2), so that given ξ
2
[x(t

0
+ dt)], there exist δ

3
, ξ

1
[x(t

0
)], and

δ
1

[

ξ
1
[x(t

0
)]
]

, such that if δ < δ
3
and ‖x

δ
(t
0
)− x(t

0
)‖ < ξ

1
[x(t

0
)] [8],

‖x
δ
(t
0
+ dt)− x(t

0
+ dt)‖ < ξ

2
[x(t

0
+ dt), t

0
+ dt].

Let δ = min(δ
1
, δ
2
, δ
3
), then

L
δ
[x
δ
(t
0
+ dt), t

0
+ dt]

>L[x(t
0
+ dt), t

0
+ dt]− ε/3

=L[x(t
0
), t

0
] + ε− ε/3

=L[x(t
0
), t

0
] + (2/3)ε,

and

L
δ
[x
δ
(t
0
), t

0
] < L[x(t

0
), t

0
] + ε/3,

which implies that L
δ
[x
δ
(t), t] increases at t

0
. This contradicts the fact that L

δ
[x
δ
(t), t]

is a decreasing function of t for any δ > 0. Hence one concludes that L[x(t), t] is a

non-increasing function of t.

C.3.3.4 Convergence of SA - L[x(t), t] decreases no slower than exponentially

at t if L[x(t), t] is differentiable with respect to t

Now we assume that for some time interval, the set of active hyperplanes is

invariant; i.e., x is sliding on hyperplanes s
i
= 0, i = 1, 2, ...,m, which have gradi-

ent G
T
=

[

g
1

... g
m

]

, and the rest hyperplanes s
i
= 0, i = m + 1,m + 2, ...,M , have

gradient G
′T
=

[

g
m+1

... g
M

]

. By [33] the equivalent motion is

ẋ
eq
= Z(t)

[

ζ∇U [x(t), t]− ζG
T
u
eq
− ζG

′
T
u
′
+
∂∇U [x(t), t]

∂t

]

,
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where u
eq
=

[

u
1,eq

, u
2,eq

, ..., u
m,eq

]

, and u
i,eq
∈ [0, α

i
], i = 1, 2, ...,m. Note that

L[x(t), t] = min
γi∈[0,αi], i=1,...,m

‖∇U [x(t), t]−G
T
γ −G

′
T
u
′
‖,

let

Γ
∗∗
[x(t), t] = {arg min

γi∈[0,αi], i=1,...,m
‖∇U [x(t), t]−G

T
γ −G

′
T
u
′
‖},

let vector γ
∗∗
[x(t), t] ∈ Γ

∗∗
[x(t), t] be

γ
∗∗
[x(t), t] =

[

γ
∗∗

1
γ
∗∗

2
... γ

∗∗

m

]

,

and let k be

k = min
γ∗∗[x(t),t]∈Γ∗∗[x(t),t]

card({γ
∗∗

i
: γ

∗∗

i
∈ (0, α

i
], i = 1, ...,m}), (C.6)

the k is the smallest number of positive entries in any solution γ
∗∗
[x(t), t], and we only

consider the solutions with k positive entries. For a given such solution γ
∗∗
[x(t), t],

without loss of generality

γ
∗∗

i
∈ (0, α

i
), i = 1, 2, ..., k

+
,

γ
∗∗

i
= α

i
, i = k

+
+ 1, k

+
+ 2, ..., k,

γ
∗∗

i
= 0, i = k + 1, k + 2, ...,m,

then G
T
can be rewritten as

G
T
=

[

G
T

+
G
′
T

+
G
T

−

]

, (C.7)
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where the columns of G
T

+
are the gradients of s

i
= 0, i = 1, 2, ..., k

+
, the columns of G

′
T

+

are the gradients of s
i
= 0, i = k

+
+1, k

+
+2, ..., k, and columns of G

T

−
are the gradients

of s
i
= 0, i = k + 1, k + 2, ...,m.

Lemma C.2. There exists at least one solution γ
∗∗
[x(t), t] such that G

T

+
has linear in-

dependent columns.

Proof of Lemma C.2. Assume that γ
∗∗
[x(t), t] is a solution such that G

T

+
has

linear dependent columns. Without loss of generality, assume that

g
k+

=
∑

i=1,...,k+−1

g
i
β
i
.

According to

G
T
=

[

G
T

+
G
′
T

+
G
T

−

]

,

the vector γ
∗∗
[x(t), t] can be written as

γ
∗∗T

[x(t), t] =

[

γ
∗∗T

+
γ
∗∗
′
T

+
γ
∗∗T

−

]

.

For simplicity, in the rest of the proof of Lemma C.2, let γ = γ
∗∗

+
. Then

G
T

+
γ =

∑

i=1,...,k+

g
i
γ
i

=g
k+
γ
k+
+ θg

k+
(α

k+
− γ

k+
)− θ(α

k+
− γ

k+
)(

∑

i=1,...,k+−1

g
i
β
i
) +

∑

i=1,...,k+−1

g
i
γ
i

=g
k+
[θ(α

k+
− γ

k+
) + γ

k+
] +

∑

i=1,...,k+−1

g
i
[γ
i
− θβ

i
(α

k+
− γ

k+
)],

where θ ≥ 0 is a scalar. Let

θ̂ = min{
r
i
− α

i

β
i
(α

k+
− γ

k+
)
, 1 : i = 1, ..., k

+
− 1},
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then

γ
new

=

[

γ
1
− θ̂β

1
(α

k+
− γ

k+
) ... γ

k+−1
− θ̂β

k+−1
(α

k+
− γ

k+
) θ̂(α

k+
− γ

k+
) + γ

k+

]

is also a part of a solution with respect to G
T

+
. Note that θ̂ ∈ (0, 1], it is the smallest θ

such that there is at least one î satisfying

γ
î
− θβ

î
(α

k+
− γ

k+
) = α

î
.

Remark: due to the fact that γ has the smallest cardinality (C.6), so there is no

θ ∈ (0, θ̂] such that for some i, r
new,i

= 0.

So for γ
new

, there is at least one γ
new,̂i

= α
î
, î ∈ {1, ..., k

+
}. With the γ

∗∗T

+,new
=

γ
T

new
, one has γ

∗∗

new
, G

T

+,new
, and G

′
T

+,new
, note that G

T

+,new
has less columns than G

T

+
.

Then, by repeating the above procedure, one will get a solution such that G
T

+
has linear

independent columns.

Now, by applying Lemma C.2, there is one solution γ
∗∗
[x(t), t], such that G

T
can

be written as the following partition where G
T

+
has linear independent columns

G
T
=

[

G
T

+
G
′
T

+
G
T

−

]

,

correspondingly

γ
∗∗T

[x(t), t] =

[

γ
∗∗T

+
γ
∗∗
′
T

+
γ
∗∗T

−

]

,

u
T

eq
=

[

u
T

eq,+
u
′
T

eq,+
u
T

eq,−

]

.

Moreover G
′
T

+
and G

T

−
can be written as

G
′
T

+
= G

T

+
Λ
′

+
+ Ḡ

′
T

+
, G

T

−
= G

T

+
Λ
−
+ Ḡ

T

−
,
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such that G
+
Ḡ
′
T

+
= 0 and G

+
Ḡ
T

−
= 0. Now

[

(1/2)L
2
[x(t), t]

]

=(1/2)

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

,

d
[

(1/2)L
2
[x(t), t]

]

/dt

=

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)[H(t)ẋ

eq
+
∂∇U [x(t), t]

∂t
]

=

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

H(t)Z(t)

[

ζ∇U − ζG
T
u
eq
− ζG

′
T
u
′
+
∂∇U [x(t), t]

∂t

]

+
∂∇U [x(t), t]

∂t

]

=

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

−ζ∇U + ζG
T
u
eq
+ ζG

′
T
u
′
−
∂∇U [x(t), t]

∂t
+
∂∇U [x(t), t]

∂t

]

=− ζ

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

+ ζ

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

G
T

+
u
eq,+

+G
′
T

+
u
′

eq,+
−G

′
T

+
γ
∗∗
′

+
+G

T

−
u
eq,−

]

=− ζ

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

+ ζ

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

G
T

+
u
eq,+

+ (G
T

+
Λ
′

+
+ Ḡ

′
T

+
)(u

′

eq,+
− γ

∗∗
′

+
) + (G

T

+
Λ
−
+ Ḡ

T

−
)u

eq,−

]

=− ζ

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

+ ζ

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

Ḡ
′
T

+
(u

′

eq,+
− γ

∗∗
′

+
) + Ḡ

T

−
u
eq,−

]

.
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Proceeding by contradiction, assume that for some i ∈ {k + 1, k + 2, ...,m},

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)ḡ
i,−

> 0,

where ḡ
i,−

is a column of Ḡ
T

−
. This implies γ

∗∗

i
> 0 (γ

∗∗

i
is the entry in γ

∗∗
with respect

to g
i
). It is contradiction, so

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)ḡ
i,−
≤ 0.

Hence,

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)Ḡ

T

−
≤ 0.

Note that u
eq,−

≥ 0, then

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)Ḡ

T

−
u
eq,−

≤ 0.

Similarly, proceeding by contradiction, assume that for some i ∈ {k
+
+ 1, k

+
+ 2, ..., k},

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)ḡ
′

i,+
< 0,

where ḡ
′

i,+
is a column of Ḡ

′
T

+
. This implies γ

∗∗

i
< α

i
(γ
∗∗

i
is the entry in γ

∗∗
with respect

to g
i
). It is contradiction, so

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)ḡ
′

i,+
≥ 0.

Hence,

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)Ḡ

′
T

+
≥ 0.
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Note that u
′

eq,+
− γ

∗∗
′

+
≤ 0, then

[

∇U [x(t), t]−G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)Ḡ

′
T

+
(u

′

eq,+
− γ

∗∗
′

+
) ≤ 0.

By the above steps, one has

d
[

(1/2)L
2
[x(t), t]

]

/dt

=− ζ

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

+ ζ

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

Ḡ
′
T

+
(u

′

eq,+
− γ

∗∗
′

+
) + Ḡ

T

−
u
eq,−

]

≤− ζ

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

T

(I −G
T

+
(G

+
G
T

+
)
−1
G
+
)

[

∇U −G
′
T

+
γ
∗∗
′

+
−G

′
T
u
′
]

=− ζL
2
[x(t), t],

and that d
[

(1/2)L
2
[x(t), t]

]

/dt is zero if and only if L[x(t), t] is zero. Moreover, note

that L[x(t), t] is a non-increasing function of t (this is proved in Appendix C.3.3.3), and

that L[x(t), t] is not differentiable only at isolated time points, then if L[x(t), t] is not

differentiable at t,

L[x(t
−
), t
−
] ≥ L[x(t

+
), t

+
].

So L[x(t), t] is a decreasing function of t, and SA (5.12) converges; i.e.,

lim
t→∞

L[x(t), t] = 0.

Moreover, L[x(t), t] decreases no slower than exponentially almost everywhere; i.e.,

dL[x(t), t]/dt ≤ −ζL[x(t), t].
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C.3.4 NFC Holds

In this section, we will address the case that x can not follow some hyperplanes;

i.e., NFC 1 holds for some hyperplane s
i
(x, t) = 0 at t

i
, and prove Theorem 5.3.

• In Appendix C.3.4.1, it shows that if NFC holds for hyperplane s
i
(x, t) = 0 at

time t
i
, the increment of the descent function L[x(t), t] is upper bounded.

• In Appendix C.3.4.2, it defines the “s
i
-leaving” event and its pair event “s

i
-

returning”.

• In Appendix C.3.4.3, according to the original problem, it defines a problem re-

ferred to as the Base-problem, and discuss its properties.

• The proof of Theorem 5.3 is given in Appendix C.3.4.4.

C.3.4.1 Bound on Descent Function Increment

Without loss of generality, assume that at some t
m
, the hyperplanes s

i
(x, t) =

g
T

i
x−c

i
(t) = 0, i = 1, ...,m are active, and at t

m
, x can not follow hyperplane s

m
(x, t) =

0; i.e., NFC 1 holds for hyperplane s
m

= 0 at time t
m
. Then, the descent func-

tion L[x(t), t] may have discontinuities and may increase; i.e., one may have

L[x(t
−

m
), t
−

m
] < L[x(t

+

m
), t

+

m
].
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In this section, we will give an upper bound on the increment of the descent function

caused by not following just one hyperplane s
m
(x, t) = 0.

At time t
−

m

L[x(t
−

m
), t
−

m
] = min

γm

‖v
m
‖,

where v
m
= ∇U [x(t

m
), t

m
]−G

T

m
γ
m
−G

′
T
u
′
,

γ
m
=

[

γ
1

... γ
m−1

γ
m

]T
, γ

i
∈ [0, α

i
], i = 1, ...,m− 1,m,

G
T

m
=

[

g
1

... g
m−1

g
m

]

.

At time t
+

m

L[x(t
+

m
), t

+

m
] = min

γm−1

‖v
m−1

‖,

where v
m−1

= ∇U [x(t
m
), t

m
]−G

T

m−1
γ
m−1

− g
m
u
m
−G

′
T
u
′
,

γ
m−1

=
[

γ
1

... γ
m−1

]T
, γ

i
∈ [0, α

i
], i = 1, ...,m− 1,

G
T

m−1
=

[

g
1

... g
m−1

]

.

(C.8)

here u
′
=

[

u
m+1

... u
M

]T
, u

i
, i = m + 1, ...,M , is defined in problem (5.10). Also

recall that when NFC 1 holds, we can concentrate on the case ċ
m
> 0; i.e., c

m
increasing

such that x “can not follow” the hyperplane s
m
= 0. Hence, s

m
[x(t

+

m
), t

+

m
] < 0, it implies

u
m
= 0.

Then, one has

L[x(t
+

m
), t

+

m
]− L[x(t

−

m
), t
−

m
] = min

γm−1

‖v
m−1

‖ −min
γm

‖v
m
‖ ≤ min

γm−1

‖v
m−1

‖.
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Recall that L[x(t
+

m
), t

+

m
] = min

γm−1

‖v
m−1

‖ (C.8), and let
2

γ
∗∗

m−1
∈ {arg min

γm−1

‖v
m−1

‖}.

Note that the feasible set of γ
m−1

is an m − 1 dimension hypercube, and the extreme

points (vertexes) ū
j

m−1
, j = 1, 2, ..., 2

m−1
, are of the following form

ū
j

m−1
=

[

ū
j

1
... ū

j

m−1

]

, ū
j

i
∈ {0, α

i
}, i = 1, ...,m− 1,

and one has, for any j = 1, 2, ..., 2
m−1

,

‖∇U [x(t
m
), t

m
]−G

T

m−1
γ
∗∗

m−1
− g

m
u
m
−G

′
T
u
′
‖

≤‖∇U [x(t
m
), t

m
]−G

T

m−1
ū
j

m−1
− g

m
u
m
−G

′
T
u
′
‖.

Now, consider the motion of x(t) in a small neighborhood of the intersection of

hyperplanes s
i
= 0, i = 1, ...,m− 1. For j = 1, 2, ..., 2

m−1
, let

ẋ
j
= ζZ(t

m
)

[

∇U [x(t
m
), t

m
]−G

T

m−1
ū
j

m−1
− g

m
u
m
−G

′
T
u
′
+ (1/ζ)

∂∇U [x(t
m
), t

m
]

∂t

]

,

which are the motions “above” and “below” the discontinuity surfaces s
i
= 0, i =

1, 2, ...,m− 1.

We now show that the largest increment in L[x(t), t] occurs when the hyper-

plane s
m
= 0 is the only active one prior to this hyperplane becoming non-active at

time t
m
.

2
The argument that minimizes the ‖vm−1‖ may not be unique if the G

T

m−1
has linear depen-

dent columns.
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To show this, note that if the x can not follow s
m
= g

m
x − c

m
= 0, and sliding

mode occurs on s
i
= 0, i = 1, ...,m− 1, it means

0 < g
T

m
ẋ
eq
< ċ

max
,

where the equivalent motion is

ẋ
eq

=ζZ(t
m
)

[

∇U [x(t
m
), t

m
]−G

T

m−1
u
m−1,eq

− g
m
u
m
−G

′
T
u
′

eq
+ (1/ζ)

∂∇U [x(t
m
), t

m
]

∂t

]

.

The equivalent motion ẋ
eq

is a convex linear combination of ẋ
j
, the motions

around the discontinuity surfaces are [33]

ẋ
eq
=

∑

j=1,2,...,2m−1

λ
j
ẋ
j
, where

∑

j=1,2,...,2m−1

λ
j
= 1, λ

j
∈ [0, 1], j = 1, 2, ..., 2

m−1
.

Proceeding by contradiction, assume that for all j = 1, 2, ..., 2
m−1

,

g
T

m
ẋ
j
≥ ċ

max
.

Then

g
T

m
ẋ
eq
= g

T

m

∑

j=1,2,...,2m−1

λ
j
ẋ
j
≥ ċ

max
.

This is a contradiction. So there exists at least one j̄ such that

g
T

m
ẋ
j̄
< ċ

max
.
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Take any one such j̄, then one can consider a point close to the intersection of

hyperplanes s
i
= 0, i = 1, ...,m− 1, where the motion ẋ

r
(t
m
) is given by

ẋ
r
(t
m
)

=ζZ(t
m
)

[

∇U [x(t
m
), t

m
]−G

T

m−1
ū
j̄

m−1
− g

m
u
m
−G

′
T
u
′
+ (1/ζ)

∂∇U [x(t
m
), t

m
]

∂t

]

=ẋ
j̄
,

it implies

g
T

m
ẋ
r
(t
m
) < ċ

max
.

Let L
r
[x
r
(t), t] be the descent function of trajectory x

r
(t), also note that at time t

m
, x

r
(t)

can not follow the hyperplane s
m
= 0, then

L
r
[x(t

+

m
), t

+

m
]− L

r
[x(t

−

m
), t
−

m
]

≤‖∇Ũ
r
[x(t

m
), t

m
]‖

=‖∇U [x(t
m
), t

m
]−G

T

m−1
ū
j̄

m−1
− g

m
u
m
−G

′
T
u
′
‖.

Note that

L[x(t
+

m
), t

+

m
]− L[x(t

−

m
), t
−

m
] ≤ ‖∇U [x(t

m
), t

m
]−G

T

m−1
γ
∗∗

m−1
− g

m
u
m
−G

′
T
u
′
‖,

L
r
[x(t

+

m
), t

+

m
]− L

r
[x(t

−

m
), t
−

m
] ≤ ‖∇U [x(t

m
), t

m
]−G

T

m−1
ū
j̄

m−1
− g

m
u
m
−G

′
T
u
′
‖,

‖∇U [x(t
m
), t

m
]−G

T

m−1
γ
∗∗

m−1
− g

m
u
m
−G

′
T
u
′
‖

≤‖∇U [x(t
m
), t

m
]−G

T

m−1
ū
j̄

m−1
− g

m
u
m
−G

′
T
u
′
‖.

So the largest increment on the descent function occurs when just one hyperplane is

active, and this will be the case we concentrate on. And we now give the upper bound
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of such an increment. If x can not follow s
m
= g

T

m
x− c

m
= 0, note that

g
T

m
ẋ = g

T

m
Z(t)

[

ζ∇Ũ(x, t) +
∂∇Ũ(x, t)

∂t

]

= ζg
T

m
Z(t)

[

∇Ũ(x, t) + (1/ζ)
∂∇U(x, t)

∂t

]

,

then

0 < ζg
T

m
Z(t)

[

∇Ũ(x, t) + (1/ζ)
∂∇U(x, t)

∂t

]

< ċ
max

.

And recall that

‖g
T

i
‖ = 1,

pI < Z(t) < PI,

∥

∥

∥

∥

∂∇U(x, t)

∂t

∥

∥

∥

∥

< Q.

Therefore, one has

ζp

∥

∥

∥

∥

∇Ũ(x, t) + (1/ζ)
∂∇U(x, t)

∂t

∥

∥

∥

∥

< ċ
max

,

∥

∥

∥

∥

∇Ũ(x, t) + (1/ζ)
∂∇U(x, t)

∂t

∥

∥

∥

∥

<
ċ
max

ζp
,

∣

∣

∣

∣

‖∇Ũ(x, t)‖ −

∥

∥

∥

∥

(1/ζ)
∂∇U(x, t)

∂t

∥

∥

∥

∥

∣

∣

∣

∣

<
ċ
max

ζp
,

‖∇Ũ(x, t)‖ <
ċ
max

ζp
+

∥

∥

∥

∥

(1/ζ)
∂∇U(x, t)

∂t

∥

∥

∥

∥

<
ċ
max

ζp
+
Q

ζ
.

Hence, if x(t) can not follow hyperplane s
m
(x, t) = 0, the worst case increment on L[x(t), t]

is bounded from above

L[x(t
+

m
), t

+

m
]− L[x(t

−

m
), t
−

m
] <

ċ
max

ζp
+
Q

ζ
. (C.9)
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C.3.4.2 “s
i
-leaving” Event and Its Pair Event “s

i
-returning”

Consider the event x can not follow some hyperplane s
i
(x, t) = 0 at time t

l

i
; i.e.,

NFC 1 holds at time t
l

i
. This event is referred as “s

i
-leaving” at t

l

i
. We now define its

pair event “s
i
-returning”. If there exists a finite t

r

i
, such that the hyperplane s

i
(x, t) = 0

becomes active at time t
r

i
, then such an event is referred to as “s

i
-returning”, also as

the pair event of “s
i
-leaving”. Moreover, “s

i
-leaving” is also referred to as pair event

of “s
i
-returning”.

Given an initial condition t
0
, x(t

0
), and any finite t̂, in the time interval t

0
≤ t < t̂,

there is an event sequence. For example

t
0
≤ t

l,1

1
≤ t

l

2
≤ t

r,1

1
≤ t

l

3
≤ t

l,2

1
≤ t

r

2
< t̂,

where at t
l,2

1
, the event “s

1
-leaving” happens the 2nd time in time interval t

0
≤ t < t̂,

etc. Moreover, there are several properties of such an event sequence:

• For a fixed hyperplane s
i
= 0, and an event “s

i
-leaving”, it is not necessary to

have its pair event “s
i
-returning”. For example, “s

3
-leaving” event does not have

its pair event in time interval t
0
≤ t ≤ t̂.

• The event “s
i
-returning” must happen after its pair event “s

i
-leaving”; i.e., t

l

i
< t

r

i
.

• For a fixed hyperplane s
i
= 0, the event “s

i
-leaving” may happen more than one

time in time interval t
0
≤ t < t̂, but there must have exactly one event “s

i
-

returning” in between any consecutive “s
i
-leaving” events. For example, “s

1
-

leaving” event happens two times for the s
1
= 0 hyperplane, and there is one “s

1
-

returning” event in between the two “s
1
-up” events; i.e., t

l,1

1
< t

r,1

1
< t

l,2

1

C.3.4.3 Base-problem B(t
0
, t̂)

Given an initial condition t
0
, x(t

0
), and finite t̂, we define c

b

i
(t) in the interval [t

0
, t̂]:

for all k, such that at time t
l,k

i
∈ [t

0
, t̂], the event “s

i
-leaving” happens the kth time, and
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at time t
r,k

i
∈ [t

0
, t̂] its pair event “s

i
-returning” kth time happens,

c
b

i
(t) = g

T

i
x(t), t

l,k

i
≤ t < t

r,k

i
,

c
b

i
(t) = c

i
(t), otherwise.

For any given finite t̂, we define the following optimization problem referred to

as B(t
0
, t̂), the Base-Problem

max Ũ
b
(x, t) = U(x, t)−

∑

i=1,...,M

u
i
s
b

i
(x, t), (C.10)

s
b

i
(x, t) = g

T

i
x− c

b

i
(t), i = 1, ...,M,

u
i
=



















α
i
, if s

b

i
> 0,

0, if s
b

i
< 0.

Note that the Base-problem depends on time t
0
and t̂.

Recall that the original objective function Ũ(x, t) is of this form

Ũ(x, t) = U(x, t)−
∑

i=1,...,M

u
i
s
i
(x, t).

So in the Base-Problem, the hyperplanes s
b

i
(x, t) = g

T

i
x− c

b

i
(t) = 0 are defined and take

the place of s
i
(x, t) = g

T

i
x − c

i
(t) = 0. Note that s

i
(x, t) and s

b

i
(x, t) have the same

gradient, only c
i
(t) and c

b

i
(t) are different. Moreover, by the way the Base-problem

is constructed, the trajectory of the original problem x(t) and the trajectory of the

Base-problem x
b
(t) satisfy

x
b
(t) = x(t), t

0
≤ t ≤ t̂.
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Now we will compare the event sequences of the original problem and the Base-

problem. Consider the event “s
i
-leaving” kth time in the original problem. If its pair

event happens in the original problem before time t̂, then by the way the Base-problem

is constructed, in the Base-problem the event “s
i
-leaving” kth time and its pair event

do not happen. Only if its pair event does not happen in the original problem before

time t̂, the event “s
i
-leaving” kth time happens in the Base-problem. For example, the

event sequence in the original problem is

t
0
≤ t

l,1

1
≤ t

l

2
≤ t

r,1

1
≤ t

l

3
≤ t

l,2

1
≤ t

r

2
< t̂,

correspondingly,the event sequence in the Base-problem is
3

t
0
≤ t

l

3
≤ t

l,2

1
< t̂.

So there is no pair event happening. Then given any initial condition t
0
, x(t

0
), L[x(t

0
), t

0
]

and any finite t̂, in the time interval [t
0
, t̂], the event sequence of Base-problem has

following properties:

• There are only “s
i
-leaving” events.

• If “s
i
-leaving” and “s

j
-leaving” both happen, then i 6= j. Therefore, there are at

most M “s
i
-leaving” events.

Recall the definition of c
b

i
(t), at time t̂, for any i = 1, 2, ...,M , c

b

i
(t̂) = c

i
(t̂), so one

has

x
b
(t̂) = x(t̂),

s
b

i
(x, t̂) = s

i
(x, t̂).

3
Here the number 2 in the superscript t

l,2

1
implies t

l,2

1
is the time the event “s1-leaving” 2nd

time happening in the original problem, however it the Base-problem, the event “s1-leaving”

only happens once at time t
l,2

1
.
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It implies that at time t̂, the descent function of the original problem L[x(t̂), t̂], and the

descent function of the Base-problem L
b
[x
b
(t̂), t̂] satisfies

4

L
b
[x
b
(t̂), t̂] = L[x(t̂), t̂].

C.3.4.4 Proof of Theorem 5.3

Recall that T (ζ, ε, a) is given by (5.1), which is the time for system ė = −ζe to

decrease from a + ε to ε. It has the following property: Given any a, a
1
, a

2
, ε, ζ > 0,

if a = a
1
+ a

2
, then

T (ζ, ε, a) < T (ζ, ε, a
1
) + T (ζ, ε, a

2
). (C.11)

Given any initial condition t
0
, x(t

0
), L[x(t

0
), t

0
], recall the T̂ defined in Theo-

rem 5.3

T̂ = T (ζ, ε, L[x(t
0
), t

0
]− ε) +MT (ζ, ε,

ċ
max

ζp
+
Q

ζ
) <∞.

Then for any t̂ ≥ T̂ , one may define a Base-problem B(t
0
, t̂). Note that B(t

0
, t̂) has the

property that in the time interval [t
0
, t̂] there are at most M “s

i
-leaving” events; i.e.,

there are at most M increments. Note that each increment is bounded (C.9), i.e,

L
b
[x
b
(t
l,+

i
), t

l,+

i
]− L

b
[x
b
(t
l,−

i
), t

l,−

i
] <

ċ
max

ζp
+
Q

ζ
.

Also note that T (ζ, ε, a) is the time for system ė = −ζe to decrease from a+ε to ε, which

has property (C.11), and that t̂ > T̂ , then there exists time t
ε
∈ [t

0
, t̂] such that

L
b
[x
b
(t
−

ε
), t
−

ε
] < ε.

4
The L[x(t), t] and L

b
[x

b
(t), t] are not non-increasing function, but we use them to measure

the performance.
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Moreover, in the time interval [t
ε
, t̂], there are at most M “s

i
-leaving” events, so for

any t̂ > T̂ ,

L[x(t̂), t̂] = L
b
[x
b
(t̂), t̂]

<L
b
[x
b
(t
−

ε
), t
−

ε
] +M

[

ċ
max

ζp
+
Q

ζ

]

<ε+M

[

ċ
max

ζp
+
Q

ζ

]

.

So for any given ε > 0, and any initial condition t
0
, x(t

0
), L[x(t

0
), t

0
], apply the

Sliding Algorithm, and one has that, for any t ≥ T̂ ,

L[x(t), t] < ε+M

[

ċ
max

ζp
+
Q

ζ

]

.

C.4 Proof of Theorem 5.4

Throughout of this section, we will use following notation. Let G
1
be m

1
×n, G

2

be m
2
× n, and G

3
be m

3
× n matrix, such that m

3
≤ m

1
≤ m

2
≤ n,

G
1
⊆ G

2

means that any row in G
1
is a row in G

2
.

G
1
∩G

2
= G

3

means any row of G
3
is a row in both G

1
and G

2
. If G

1
has linear independent rows,

the projection P(G
1
) is defined as

P(G
1
) = (I −G

T

1
(G

1
G
T

1
)
−1
G
1
).

Recall that Section 5.3 focuses on the unconstrained problem (5.10) and Theo-

rem 5.3, and Appendix C.3 provides proof of Theorem 5.3. Section 5.4 focuses on the
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constrained problem (5.15), and addresses it by solving its unconstrained form, which is

a special case of the unconstrained problem (5.10). Hence, all the definitions given in Ap-

pendix C.3 also work in this section. However, due to the fact that we have constrained

problem in this section, we will refer to s
i
as a constraint instead of a hyperplane. For

example, we use “active constraint set” instead of “active hyperplane set”, and both

have the same meaning.

Also note that many quantities in this section depend on (x(t), t), (x, t) or t,

for simplicity, unless needed for clarity, the (x(t), t), (x, t) and t are omitted. More-

over, H
opt

= H(x
opt
) and ∇U

opt
= ∇U(x

opt
).

C.4.1 Preliminary

Let G be any matrix with linear independent rows, whose rows are g
i
, i ∈

{1, ...,M}. Note that one has finite number of constraints (the number M is finite),

and that pI < −H
−1
(x) < PI, then there exist positive constants ψ and φ,

ψ = max
G
‖(GG

T
)
−1
G‖ <∞, (C.12)

φ = max
x,G

‖(GH
−1
(x)G

T
)
−1
‖ <∞. (C.13)

Moreover, for any n×1 vector g being a column of G
T
, rewrite G

T
=

[

g G
T

rest

]

. Again,

note that one has finite number of constraints, hence, there exists positive constant κ,

such that for any G and g being a column of G
T
,

‖P(G
rest

)g‖ > κ > 0. (C.14)

Due to the condition (5.18), there exists a constant χ > 0, such that

χ = max
x∈X

‖∇U(x)‖ <∞. (C.15)
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Recall the constants P , ċ
max

, λ̄, χ, φ, and ψ given by (5.16, 5.17, C.15, 5.19,

C.12, C.13), and that dimx = n. For any given ζ > 0, define

α
∗
= max(λ̄, ψχ, n

1/2
φPχ+ (1/ζ)n

1/2
φċ

max
). (C.16)

The time-varying optimization problem (5.15) given in Section 5.4 can be written

as the following unconstrained form which is a special case of problem (5.10) addressed

in Section 5.3

max
x

Ũ(x, t) = U(x)−
∑

i=1,...,M

u
i
s
i
(x, t). (C.17)

Recall that

u
i
=















α
i
, if s

i
> 0,

0, if s
i
< 0.

Note that by (C.16), α
∗
≥ λ̄, and hence, if α

i
> α

∗
≥ λ̄, (i.e., the condition (5.21)

holds), then the unconstrained problem (C.17) is equivalent to the original constrained

problem (5.15) in the sense that they have the same solution for all t.

Lemma C.3. Let α
∗

be defined in (C.16). If α
i
> α

∗
, i = 1, ...,M , and for some

time t
0
, x(t

0
) is feasible (i.e., s

i
[x(t

0
), t

0
] ≤ 0, i = 1, ...,M), then for t ≥ t

0
, x(t) is

feasible.

Proof of Lemma C.3. Assume at time t, for a constraint s
m
(x, t) = g

T

m
x−c

m
(t) ≤

0, there exists feasible point x satisfying s
m
(x, t) = g

T

m
x − c

m
(t) = 0, moreover, at

feasible point x, sliding mode occurs on hyperplanes s
i
= 0, i = 1, 2, ...,m − 1. If

the vectors g
i
, i = 1, ...,m − 1 are linear dependent, let Ḡ be any matrix with linear

independent rows, whose rows are g
i
, i ∈ {1, ...,m − 1}, and the column space of Ḡ

T

equals the space spanned by vectors g
i
, i = 1, ...,m−1, then the equivalent motion is [33]

ẋ
eq
= ζ(Z − ZḠ

T
(ḠZḠ

T
)
−1
ḠZ)∇U + ZḠ

T
(ḠZḠ

T
)
−1
˙̄c.
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The entries of vector c̄ are c
i
, such that g

T

i
is a row of Ḡ. Note that the motion lim

sm→0+
ṡ
m

is

lim
sm→0+

ṡ
m
= g

T

m
ẋ
eq
− ζα

m
g
T

m
Zg

m
− ċ

m
.

Without loss of generality, assume that the vector g
m
is not in the column space of Ḡ

T
.

Let vector v be

v =(







Ḡ

g
T

m






Z

[

Ḡ
T

g
m

]

)
−1
(







Ḡ

g
T

m






Zζ∇U −





˙̄c

ċ
m



)

=







∗ ∗

−C
−1

2
g
T

m
ZḠ

T
(ḠZḠ

T
)
−1

C
−1

2













ḠZζ∇U − ˙̄c

g
T

m
Zζ∇U − ċ

m






,

where C
−1

2
= (g

T

m
Zg

m
−g

T

m
ZḠ

T
(ḠZḠ

T
)
−1
GZg

m
)
−1

> 0. Then the last entry of vector v

is

(g
T

m
Zg

m
− g

T

m
ZḠ

T
(ḠZḠ

T
)
−1
GZg

m
)
−1
(g
T

m
ẋ
eq
− ċ

m
)

≤‖v‖
∞
≤ ‖v‖ ≤ ζ[φn

1/2
Pχ+ (1/ζ)φn

1/2
ċ
max

] = ζα
∗
,

then

g
T

m
ẋ
eq
− ċ

m
≤ (g

T

m
Zg

m
− g

T

m
ZḠ

T
(ḠZḠ

T
)
−1
GZg

m
)ζα

∗
≤ ‖g

T

m
Zg

m
‖
2
ζα
∗
.

It implies

lim
sm→0+

ṡ
m
= g

T

m
ẋ
eq
− ζα

m
g
T

m
Zg

m
− ċ

m
≤ ‖g

T

m
Zg

m
‖
2
ζα
∗
− ζα

m
g
T

m
Zg

m
< 0.

It means for any time t, the motion of x(t) close and just outside the feasible set is toward

the inside of the feasible set. So if for some time t
0
, x(t

0
) is feasible, then for t ≥ t

0
, x(t)

is feasible.
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Assume that x is feasible and sliding on hyperplanes s
i
= 0, i = 1, 2, ...,m, and the

rows of the active hyperplane set G are g
T

i
, i = 1, 2, ...,m. For the rest hyperplanes s

i
=

0, i = m+1,m+2, ...,M , let the matrix G
′T
be

[

g
m+1

... g
M

]

. The equivalent motion

is [33]

ẋ
eq
= Z(t)

[

ζ∇U [x(t), t]− ζG
T
u
eq
− ζG

′
T
u
′
]

.

By Lemma C.3, one has u
′
= 0.

Recall that

L[x(t), t] = min
γi∈[0,αi], i=1,...,m

‖∇U [x(t), t]−G
T
γ‖,

and that the partition of G
T
is given by (C.7) in Appendix C.3.3.4,

G
T
=

[

G
T

+
G
′
T

+
G
T

−

]

,

we have following lemma.

Lemma C.4. Let α
∗

be defined in (C.16). If α
i
> α

∗
, i = 1, ...,M , then the matrix G

′
T

+

is empty.

Proof of Lemma C.4. If the active constraint set G is not row linear independent,

let G
LI

be a matrix with linear independent rows such that G
LI
⊆ G (any row in G

LI

is a row in G). Note that such G
LI

may be not unique. And one has

min
γi∈[0,αi], i=1,...,m

‖∇U −G
T
γ‖

≥ min
GLI :(GLIG

T

LI
)−1GLI∇U>0

‖∇U −G
T

LI
(G

LI
G
T

LI
)
−1
G
LI
∇U‖.

Also note that for any G
∗

LI
such that

G
∗

LI
∈ {arg min

GLI :(GLIG
T

LI
)−1GLI∇U>0

‖∇U −G
T

LI
(G

LI
G
T

LI
)
−1
G
LI
∇U‖},
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one has, for all i = 1, ...,M ,

‖(G
∗

LI
G
∗T

LI
)
−1
G
∗

LI
∇U‖

∞
≤ ‖(G

∗

LI
G
∗T

LI
)
−1
G
∗

LI
‖‖∇U‖ ≤ ψχ ≤ α

∗
< α

i
.

Hence

min
γi∈[0,αi], i=1,...,m

‖∇U −G
T
γ‖ = ‖∇U −G

∗T

LI
(G
∗

LI
G
∗T

LI
)
−1
G
∗

LI
∇U‖.

It implies G
+
= G

∗

LI
, and matrix G

′
T

+
is empty.

By Lemma C.4, G
T
can be written as

G
T
=

[

G
T

+
G
T

−

]

.

And correspondingly

γ
∗∗T

=

[

γ
∗∗T

+
γ
∗∗T

−

]

.

Note that

γ
∗∗

+
= (G

+
G
T

+
)
−1
G
+
∇U, γ

∗∗

−
= 0.

Moreover, for any time t, let

G
+,opt

= G
+
∩G

opt
,

then G
T
can be rewritten as

G
T
=

[

G
T

+,opt
G
T

+,rest
G
T

−

]

,

correspondingly

γ
∗∗T

=

[

γ
∗∗T

+,opt
γ
∗∗T

+,rest
γ
∗∗T

−

]

. (C.18)
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We now give a definition: x(t) being on the right active constraints set means

that there exists G
+
(t) such that G

+,opt
(t) = G

opt
(t).

C.4.2 Auxiliary Lemmas

Assume at some time t
g
, x “reaches” the right active constraint set G

opt
(t
g
); i.e.,

for some vector g being a column of G
T

opt
(t
g
), one has

[

G
T

+,opt
(t
−

g
) g

]

= G
T

opt
(t
g
), and G

T

+,opt
(t
+

g
) = G

T

opt
(t
g
).

And let

(







G
+
(t
−

g
)

g
T







[

G
T

+
(t
−

g
) g

]

)
−1







G
+
(t
−

g
)

g
T






∇U =





∗

γ
g



 , (C.19)

the γ
g
is the entry of the above vector, which is with respect to vector g.

Lemma C.5. Recall the definitions of κ and λ given in (C.14, 5.19), there exists σ̄ > 0,

such that, if L(t
−

g
) < σ̄ and NFC 1 does not hold at time t

g
, then γ

g
< (1/2)λ.

Proof of Lemma C.5. NFC 1 does not hold at time t
g
, then one has

G
T

+
(t
−

g
) ⊆ G

T

+
(t
+

g
) =

[

G
T

+
(t
−

g
) g

]

.

For simplicity, omit t
−

g
and let G

+
= G

+
(t
−

g
). One has

(





G
+

g
T





[

G
T

+
g

]

)
−1





G
+

g
T



∇U =





∗

γ
g



 ,







∗ ∗

−C
−1

2
g
T
G
T

+
(G

+
G
T

+
)
−1

C
−1

2











G
+
∇U

g
T
∇U



 =





∗

γ
g



 ,
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C
−1

2
= (g

T
g − g

T
G
T

+
(G

+
G
T

+
)
−1
G
+
g)
−1
.

Note that L(t
−

g
) = ‖(I −G

T

+
(G

+
G
T

+
)
−1
G
+
)∇U‖ = ‖P(G

+
)∇U‖ < σ̄, then

γ
g
=
g
T
P(G

+
)P(G

+
)∇U

‖P(G
+
)g‖2

≤
‖g
T
P(G

+
)‖‖P(G

+
)∇U‖

‖P(G
+
)g‖2

=
‖P(G

+
)∇U‖

‖P(G
+
)g‖

≤ σ̄/κ.

So if σ̄ < (1/2)(λκ), then γ
g
< (1/2)λ.

Lemma C.6. Recall the definitions of p and P given in (5.16). Assume that x(t) is on

the right active constraint set, i.e, G
+,opt

(t) = G
opt
(t), and L(t) < σ̂, then

‖∇U −∇U
opt
‖ <

P

p
σ̂. (C.20)

Proof of Lemma C.6. G
+
is a k×n constant matrix with linear independent rows.

There exist a matrix F and a vector x̂, such that

x = F
T
z + x̂ and U

z
(z) = U(F

T
z + x̂),

where z ∈ R
n−k

, F is an (n− k)× n matrix with linear independent rows, which satisfy

FF
T
= I and G

+
F
T
= 0.

Then for any vector v ∈ R
n
, there exists a unique vector pair (v

G
, v
F
), such that

v = G
T

+
v
G
+ F

T
v
F
,

and one has

v
T
P(G

+
)v = (v

T

G
G
+
+ v

T

F
F )P(G

+
)(G

T

+
v
G
+ F

T
v
F
) = v

T

F
v
F
= v

T
F
T
Fv,
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i.e.,

‖P(G
+
)v‖ = ‖Fv‖. (C.21)

Note that

∇U
z
(z) =

dU
z

dz
= F∇U(F

T
z + x̂) and H

z
=
d
2
U
z

dz2
= FHF

T
.

Moreover, one has

pI < −FHF
T
< PI.

Let z
opt

be the vector such that

∇U
z
(z
opt
) = F∇U(F

T
z
opt

+ x̂) = 0,

then

‖z − z
opt
‖ ≤

‖∇U
z
(z)‖

p
.

Moreover, the vector F
T
z
opt

+ x̂ satisfies

‖P(G
+
)∇U(F

T
z
opt

+ x̂)‖ = ‖F∇U(F
T
z
opt

+ x̂)‖ = 0.

It implies

x
opt

= F
T
z
opt

+ x̂.

Also note that

‖x− x
opt
‖
2
= (x− x

opt
)
T
(x− x

opt
) = (z − z

opt
)
T
FF

T
(z − z

opt
) = ‖z − z

opt
‖
2
,

‖P(G
+
)∇U(F

T
z + x̂)‖ = ‖F∇U(F

T
z + x̂)‖ = ‖∇U

z
(z)‖,
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then one has

‖x− x
opt
‖ <

1

p
σ̂,

and hence

‖∇U −∇U
opt
‖ <

P

p
σ̂.

Lemma C.7. Recall the definitions of p, P , λ, and ψ given in (5.16, 5.19, C.12), and

the vector γ
∗∗

+,opt
is defined by (C.18). Furthermore, assume that x(t) is on the right

active constraint set; i.e., G
+,opt

(t) = G
opt
(t). Then, there exists a constant σ̂, such

that, if L(t) < σ̂,

γ
∗∗

+,opt
> (1/2)λ. (C.22)

Proof of Lemma C.7. Let

v = (G
+
G
T

+
)
−1
G
+
(∇U −∇U

opt
),

and let λ be the Lagrangian Multiplier vector. By assumption one has

G
+,opt

= G
opt
.

Therefore,

(G
+
G
T

+
)
−1
G
+
∇U

opt
=







(G
+,opt

G
T

+,opt
)
−1
G
+,opt

∇U
opt

0






=





λ

0



 .

Also note that G
T

+
(G

+
G
T

+
)
−1
G
+
is a projection matrix, then

‖G
T

+
v‖ = ‖G

T

+
(G

+
G
T

+
)
−1
G
+
(∇U −∇U

opt
)‖ ≤ ‖∇U −∇U

opt
‖ ≤ (P/p)σ̂,
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and

‖v‖ = ‖(G
+
G
T

+
)
−1
G
+
G
T

+
v‖ ≤ ‖(G

+
G
T

+
)
−1
G
+
‖‖G

T

+
v‖ ≤ ψ(P/p)σ̂.

Hence

‖(G
+
G
T

+
)
−1
G
+
∇U − (G

+
G
T

+
)
−1
G
+
∇U

opt
‖
∞

=

∥

∥

∥

∥

∥

∥

∥







γ
∗∗

+,opt

γ
∗∗

+,rest






−





λ

0





∥

∥

∥

∥

∥

∥

∥

∞

= ‖v‖
∞
≤ ‖v‖ = ψ(P/p)σ̂.

Recall that

λ = (G
+
G
T

+
)
−1
G
+
∇U

opt
> λ,

therefore, if ψ(P/p)σ̂ < (1/2)λ, i.e., σ̂ < λ
2(P/p)ψ , one has

γ
∗∗

+,opt
> (1/2)λ.

Given an initial condition x(t
0
) and c(t

0
), assume that for t ≥ t

0
, the vector ċ(t) =

0; i.e., all constraints are time-invariant after time t
0
. This case is a time-invariant convex

optimization problem and a special scenario of the time-varying problem (5.15). And

this time-invariant problem has a unique bounded time-invariant optimal solution x
opt
.

Lemma C.8. For the above time-invariant problem, there exists finite time t̄, such that,

at time t̄, x(t) “reaches” the right active constraint set; i.e., for some vector g being a

column of G
T

opt
, one has

[

G
T

+,opt
(t̄
−
) g

]

= G
opt

and G
+,opt

(t̄
+
) = G

opt
.
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Proof of Lemma C.8. Without loss of generality, assume that at the optimal x
opt
, the

Hessian matrix satisfies −H
opt

= I
5
. Also assume the G

opt
is an m× n matrix (m ≤ n).

For any constraint g
T

i
x− c

i
≤ 0, such that g

T

i
is not a row of G

opt
; i.e., g

T

i
x
opt
− c

i
> 0,

there exists a finite time t
i
such that g

T

i
x(t) − c

i
> 0 for t > t

i
. So without loss of

generality, we only consider the constraints g
T

i
x− c

i
≤ 0 such that g

T

i
is a row of G

opt
.

Let G
k
be any k × n matrix such that G

k
⊂ G

opt
, moreover, recall that G

opt
is assumed

to have linear independent rows, then G
k
has linear independent rows. Let

% = min
Gk,k=0,1,...,m−1

{min
γk≥0

‖∇U
opt
−G

T

k
γ
k
‖}, where γ

k
=

[

γ
1

... γ
k

]T
.

Note that there exists Lagrangian Multiplier vector λ > 0 such that ∇U
opt

= G
T

opt
λ, one

has

% > 0.

Consider the set X
ε
, a small neighborhood of x

opt

6
,

X
ε
= {x : ‖∇U(x)−∇U

opt
‖ < ε, and x is feasible}.

Assume that at x ∈ X
ε
, G

k
x − c = 0, where G

k
⊂ G

opt
; i.e., x is not on the right

constraint set, one has

L(x) = min
γk≥0

‖∇U −G
T

k
γ
k
‖.

Moreover, note that

lim
x→xopt

L(x) = min
γk≥0

‖∇U
opt
−G

T

k
γ
k
‖ > %,

5
If −Hx,opt is not identity matrix, one may do a linear transformation y = (−Hx,opt)

1/2
x, then

for the new problem, i.e. y-problem, at optimal solution yopt = (−Hx,opt)
1/2

xopt, −Hy,opt = I.
6
By Lemma C.3, without loss of generality, we only consider feasible point.
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then for (1/2)%, there exists a small enough ε > 0 such that for any x ∈ X
ε
not being

on the right constraint set,

L(x) > (1/2)%.

Note that for t > t
0
, all constraints are time-invariant, then NFC 1 does not hold

for t > t
0
, the function L(t) decreases and converges to zero, so there exist finite time t

%

and t
ε
such that,

L[x(t)] < (1/2)%, t > t
%
,

‖∇U [x(t)]−∇U
opt
‖ < ε, t > t

ε
.

For t > max(t
%
, t
ε
), if x(t) is not on the right active constraint set, there is a contradic-

tion. So for t > max(t
%
, t
ε
), x(t) is on the right active constraint set; i.e., there exists a

finite time, such that x(t) “reaches” the right active constraint set.

Lemma C.9. Recall the definitions of p, P , λ, ψ, and κ given in (5.16, 5.19, C.12,

C.14). There exists a constant σ, such that, if L(t
0
) < σ, then x(t

0
) is on the right

active constraint set; i.e., G
+,opt

(t
0
) = G

opt
(t
0
).

Proof of Lemma C.9.

• Recall the definitions of p, P , λ, ψ and κ given in (5.16, 5.19, C.12, C.14), there

exist a constant σ̄ from Lemma C.5, and a constant σ̂ from Lemma C.7, let σ =

min(σ̄, σ̂). Assume at some time t
0
, L(t

0
) < σ. Proceeding by contradiction,

assume that G
+,opt

(t
0
) ⊂ G

opt
(t
0
); i.e., x(t) is not on the right active constraint

set at time t
0
.

• Assume for t ≥ t
0
, all constraints are time-invariant after time t

0
. Then the optimal

solution x
opt
(t) is time-invariant after time t

0
; i.e., x

opt
(t) = x

opt
(t
0
) for t ≥ t

0
.

This is a special scenario of problem (5.15). By Lemma C.8, there exists a finite

time t̄ > t
0
, such that x(t) “reaches” the right active constraint set at time t̄.
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• Note that for t ≥ t
0
, all constraints are time-invariant, NFC 1 does not hold,

and L[x(t), t] is a decreasing function, one has L[x(t̄), t̄] < σ. By Lemma C.5, γ
g
<

(1/2)λ. Note that the γ
g
is the entry with respect to g in vector γ

∗∗

+,opt
(t
+

σ
) given

in (C.22), by Lemma C.7, γ
g
> (1/2)λ. There is a contradiction.

• So if L(t
0
) < σ, then G

+,opt
(t
0
) = G

opt
(t
0
), x(t

0
) is on the right active constraint

set.

C.4.3 Follow-problem F (t
0
)

Recall that in Appendix C.3.4.2, one defines the “s
i
-leaving” and “s

i
-returning”

events and discusses the event sequence properties. Then given an initial condition t
0
, x(t

0
),

and c(t) for t ≥ t
0
, define c

f

i
(t):

c
f

i
(t) = c

i
(t), t

r,k−1

i
≤ t < t

l,k

i
,

c
f

i
(t) = g

T

i
x(t), otherwise.

where t
r,0

i
= t

0
. And define an optimization problem referred to as F (t

0
), the Follow-

Problem

max Ũ
f
(x, t) = U(x)−

∑

i=1,...,M

u
i
s
f

i
(x, t), (C.23)

s
f

i
(x, t) = g

T

i
x− c

f

i
(t), i = 1, ...,M,

u
i
=



















α
i
, if s

f

i
> 0,

0, if s
f

i
< 0.
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Note that the Follow-problem depends on time t
0
. Recall that the original objective

function Ũ(x, t) is of this form

Ũ(x, t) = U(x)−
∑

i=1,...,M

u
i
s
i
(x, t).

So in the Follow-Problem, the hyperplanes s
f

i
(x, t) = g

T

i
x−c

f

i
(t) are defined and take the

place of s
i
(x, t) = g

T

i
x− c

i
(t) = 0. Note that s

i
(x, t) and s

f

i
(x, t) has the same gradient,

only c
i
(t) and c

f

i
(t) are different. By the way the Follow-problem is constructed, the

trajectory of the original problem x(t) and the trajectory of the Follow-problem x
f
(t)

satisfy

x
f
(t) = x(t), t

0
≤ t.

Moreover, due to the fact that NFC 1 never holds for the Follow-problem F (t
0
), the

descent function of the Follow-problem L
f
[x
f
(t), t] is a decreasing function for t ≥ t

0
,

and

lim
t→∞

L
f
[x
f
(t), t] = 0.

C.4.4 Proof of Theorem 5.4

Let σ be given by Lemma C.9. By the result of Theorem 5.3, there exists a large

enough ζ such that
7

Mċ
max

ζp
≤ (1/2)σ.

Hence, there exits a finite t
σ
such that L(t) < σ for t > t

σ
. Moreover, by Lemma C.9,

one has G
+,opt

(t) = G
opt
(t) for t > t

σ
.

7
Due to U(x) only depends on x, Q = 0.
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Define the Follow-problem F (t
σ
) for t ≥ t

σ
. For any t > t

σ
, let G

f
(t) be the

active constraints set of the Follow-problem F (t
σ
). One has

G(t) ⊆ G
f
(t).

Lemma C.10. Let x
opt
(t) be the optimal solution of the original problem, and x

f

opt
(t) be

the optimal solution of the Follow-problem, then for t ≥ t
σ

x
f

opt
(t) = x

opt
(t).

Proof of Lemma C.10. Recall that the Follow-problem (C.23) is

max Ũ
f
(x, t) = U(x)−

∑

i=1,...,M

u
i
s
f

i
(x, t),

and the original problem is

max Ũ(x, t) = U(x)−
∑

i=1,...,M

u
i
s
i
(x, t).

For any t, λ(t) is the Lagrangian Multiplier with respect to the optimal constraint

set G
opt
(t); i.e.,

∇U [x
opt
(t)] = G

opt
(t)

T
λ(t).

Note the following facts

G
f
(t)x

opt
(t) = c

f
(t) and G

opt
(t) ⊆ G(t) ⊆ G

f
(t),

i.e., the point x
opt
(t) belongs to the feasible set of Follow-problem, and for the Follow-

problem, the KKT condition holds at x
opt
(t), then

G
f

opt
(t) = G

opt
(t), and x

f

opt
(t) = x

opt
(t).
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Note that the descent function of the Follow-problem F (t
σ
), L

f
[x
f
(t), t] is a

decreasing function for t ≥ t
σ
, and

lim
t→∞

L
f
[x
f
(t), t] = 0,

it implies

lim
t→∞

‖x
f
(t)− x

f

opt
(t)‖ = 0.

Note that

x
f
(t) = x(t), t

σ
≤ t,

then

lim
t→∞

‖x(t)− x
opt
(t)‖ = 0 and lim

t→∞
L(t) = 0.
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