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Abstract

High-performance server systems have been widely used in today’s commercial and
scientific server environments, for example, Web and Email applications, online
trading and multimedia services, and many more. This research investigates the
autonomic performance management of computer server systems in the context of
Internet hosting centers. Two scenarios of the performance mangagement problem
are studied: admission control and resource allocation. This research contributes
to the problem in three major aspects: modeling of Internet services via new
approaches, more realistic and advanced control designs, and intensive performance
evaulations of various design solutions.

Modeling wise, it is learned that the linear methods may not be adequate
for Internet services modeling when there are large variations in load conditions.
Conscquently, more sophisticated nonlincar system modeling is needed to improve
system performance and robustness with respect to large variations of load con-
ditions. A linear uncertain model and a Linear-Parameter-Varying (LPV) model
of hosting center server systems arc derived based on theoretical analysis of tran-
sient queucing dynamics, as well as LPV system identification, where workload
characterizing parameters are utilized as scheduling variables.

Exisiting feedback control based performance management for Internet server
systems relies on worst-case estimates of load and resource availability thus pro-
visions resources to meet peak demands. Since the worst-case resource demand
is likely to be significantly higher than its normal usage, these methods could be
cconomically unfavorable. This work focuses on the development of an LPV con-
trol design for the performance management of server where time-varying cffects
of the system arc explicitly considered by utilizing workload arrival and service
parameters as scheduling variables. Further, it is widely noticed that workload
paramcters of Internet services are more or less unpredictable. This makes deter-
ministic modeling and control design approaches either too conservative or unable
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to meet performance service level agreements (SLA). Probabilistic modeling and
control design methods arc proposed to balance between the risk of missing per-
formance SLA and the resource efficiency.

Request level approach to provide response time guarantee based on detailed
analysis of requests response time components is studied. A request level schedul-
ing algorithm is proposed that can be used with workload characterization and
modeling techniques. Preliminary results in a response time guarantee problem
show impressive request level performance over a wide range of sampling intervals.

Intensive simulations arc conducted using real Web server workloads. Perfor-
mances of the proposed LPV based modeling and control design approaches are
benchmarked using queueing theory based provisioning results and existing linear
control modeling & designs. It is shown that the proposed method outperforms
linear control and conventional queueing-theory based designs. These evaluations
provide guidelines on which method to use for a particular problem. The results
from this rescarch can be casily gencralized to accommodate more complicated
models in characterizing workloads and server environments to enhance system
performance.

v



Table of Contents

List of Figures ix
List of Tables Xi
List of Symbols xii
Acknowledgments xiv
Chapter 1]
Introduction 1
1.1 Motivation . . . . . . . .. 1
1.2 Research objectives . . . . . . . . ... 2
1.3 Literaturc review . . . . . L Lo e 3
1.3.1  Application . . . . . ... 4
1.3.2 Modeling . . . ... 4
1.3.3 Control design. . . . . ... .. ... .. ... ... ... 6
1.4 Contributions . . . . . . . . . ... 6
1.5 Organization . . . . . . . . . . 7
Chapter 2]
Background and Foundation 9
2.1 Overview . . . .. e e 9
2.1.1  The work flow in a hosting center . . . . . . .. .. ... 10
2.1.2 A queueing system and related notations . . . . . . ... .. 11
2.2 Workload description . . . . .. ..o 12
2.3  Performance specifications . . . . . ..o Lo oL 14
2.4  The performance control problem . . . . . . . . .. ... ... 15
2.4.1 Control mechanisms . . . . . . ... .. ... L. 15



2.4.2  Feedback control elements . . . . . . . .. . .. ... .. .. 15

2.5 Qucucing theory results review . . . . ..o o0 L 17
Chapter 3]
Admission control 19
3.1 Admission control and problem formulation . . . . ... .. .. .. 19
3.2 Modecling for admission control . . . . ... ... 0oL 21
3.2.1 Linear models . . . . . . . . ... L 21
3.22 LPVmodels . . . .. .. ... 21
3.3 control synthesis . . . .. .. L L 23
3.3.1  Linear control design . . . . . .. .. ... L. 24
3.3.2  LIPPV — Il control synthesis . . . . .. ... .. ... ... 24
3.4 Simulation results . . . . . .. L 26
3.4.1  Modecl identification and validation . . . . .. .. ... ... 26
3.4.2 Control synthesis . . . . ... ... o000 28
3.5 SUIMMATY . . v v v v o e e e e e 29
Chapter 4]
Resource management 34
4.1 The resource management problem . . . . . .. .. .. ... .. 34
4.1.1  Online Server Allocation: a greedy algorithm . . . . . . . .. 36
4.2 First-principles modeling . . . . . . . ... 00000000 40
4.2.1  Derivation of LTI and LPV models . . . .. . ... ... .. 42
4.2.2 Remarks on the modeling . . . .. .. ... ... ... ... 43
4.3 Empirical modeling . . . . . . ... 44
4.4 Control design tools . . . . . . . ..o 45
4.4.1  Linear designs . . . . . . . ... Lo 45
4.4.2 LPPV — Hy control designs . . . . . . ... ... ... ... 47
4.5 Simulation results and performance cvaluation . . . . . .. ... .. 48
4.5.1 Modeling and validation . . . . . ... ... . ... ... .. 49
4.5.2  Results from first-principles approach . . . . . . . . . . . .. 49
4.5.3 Identification results . . . . . ... L L 50
454 Control design . . . . . . . .. oL 50
4.5.5  Simulation results . . . . . ... oL oL L 51
4.5.6  Scnsitivity to sampling interval . . . . ... .00 0oL 519)
4.6 SUMMATY . . . . . oo e 56
Chapter 5}
Managing Server Performance Under Self-Similar Workloads 61
5.1 Introduction . . . . . . ... 61

vi



5.2 Problem Formulation . . . . . . . . ... ... ... ... ... ... 62
5.3 Control-Oriented Web Server Modeling . . . . . . .. .. .. .. 63
5.3.1 An Alpha-Stable Model for Self-similar Workloads . . . . . . 63
5.3.2  Stochastic Envelope for an Alpha-Stable Self-similar Distri-
bution . . . ... 65
5.3.3 A Linear Parameter Varying Fluid Model . . . . . . . . . .. 65
54 LPV Controller Design . . . . . . . ... o o0 67
5.5 Simulation Evaluation . . . . ... ... ... 0000 69
5.5.1 a-Stable Modeling of Arrival and Service Demand . . . . . . 70
5.5.2 Control Design Results . . . . 0 o 00000000 74
5.6 Summary ... ..o 79
Chapter 6]
Stochastic Linear Parameter Varying Control for CPU Manage-
ment of Internet Servers 80
6.1  Motivation for Stochastic Robust LPV Control . . . . . . . . . . .. 81
6.2 Derivation of an LPV Web Server Model . . . . 0 . 0 0000 82
6.2.1 A Nonlinear Time-Varying Model . . . . . ... .. ... .. 82
6.2.2 A Linear Parameter Varying Model Derived Using Jacobian
Lincarization . . . . . . . . .. . oo 83
6.3 Probabilistic Robust LPV Control . . . . . . ... ... .. ... .. 84
6.3.1 A Probabilistic Robust LPV Control design . . . . . . . .. 85
6.3.1.1  Stochastic Gradient Algorithm . . . . . . ... .. 88
6.4 Simulation Results & Performance Analysis . . . . . . . . ... .. 89
6.5 Summary . ... L e 91
Chapter 7]
A Request Level Approach: Preliminary Results and Direction
for Future Research 93
7.1 Known Issues . . . . . ..o 93
7.2 A closer look of the FIFO queueing system at request level . . . . . 94
7.2.1 Instantaneous queue length L(n) . . . ... ... ... ... 96
7.2.2  Completion interval of a request k(t) . . . . ... ... ... 96
7.2.3  Waiting time, service time, and response time . . . . . . . . 97
7.2.4 Mecan response time . . ... L. 98
7.3 Performance Management of Internet Service . . . . . . . . . .. L. 99
7.3.1 Responsce Time Guarantee . . . . . . . . . .. ... .. ... 99
7.3.2  Resource Management Optimization . . . . . . .. . .. .. 100
7.4 Preliminary Results . . . . . . . . . . .. ... 100
7.5 Suggested Rescarch Directions . . . . . . . . . ... 104

Vil



Chapter 8}

Summary and Conclusion

Appendix A}

Queueing Theory: A Brief Review

A.1 The Little’s law

A.2 Calculations of response time and queue length

Bibliography

viil

110m

113m
113
114

1160



List of Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2

3.4

3.7

3.8

4.1
4.2
4.3

4.4

Overview of hosting data centers . . . . . . . . .. ... L. 10
Schematics of a queucing system schematics . . . . . .. . . ... 12
Some cxample Web server workloads . . . . . ..o 13
Cumulative distribution for request service demand . . . . . . . .. 14
Hosting center from control system viewpoint . . . . . . . . . . .. 17
Admission control for a single queue . . . . . .. .00 20
An LMS algorithm for identification of a polynomial parameter-

dependent LPV system . . . . . . .. ..o 23
Robust control system interconnection . . . . . . . ... ... ... 24

Construct an ARX model at workload intensity r = 0.5 using sys-
tem identification; the input/output data shown in the figure are
prefiltered /detrended data. . . . . . . ... 27
Input and scheduling parameter trajectories used in LPV system
identification and model validation. (a) A pseudo-random binary
signal used to generate rejection ratio in system identification; (b)
A random signal used to generate workload intensity r(k) as schedul-
ing parameter in system identification; (¢) A pseudo-random binary
signal used for rejection ratio in model validation; (d) A random

signal used for workload intensity r(t) in model validation. . . . . . 28
Model validation on the identified LPV system model. . . . . . . .. 31

Simulation results for a LG controller (designed based on the nomi-
nal model Eq. 3-15) to operate under the nominal load r = 0.5 and

the off-design load r = 0.8. . . . . . . . ..o 32
Simulation results for an LQ controller versus an LPV controller. . 33
Feedback control loop for performance management . . . . . . . . . 37
Pscudo code of online server allocation . . . . . . .. .. ... ... 39
Sampling time is denoted by At and operating condition changes

every AT =S At . . . .. 41
Some cxample Web server workloads . . . . . ..o 49



4.5

4.6

4.7

5.1
5.2
5.3

6.1
6.2
6.4

7.1
7.2

7.3
7.4

7.5
7.6
7.7
7.8

Model validation for analytical LPV models, where results for the
LPVModel-Equilbm and the LPVModel-G/G/1 are shown. . . . . .
Validation for system-identification models, where the LinearModel-
ARX and the LPVModel-ARX are shown. . . . . . .. . ... ...
Time historics of response time for the LPVDesign-Equilbm vs the
LinearDesign-Fquilbm. . . . . . . . . ... o

Block diagram for a general LPV control . . . . . . ... ... ...
CDF of a-stable model predicted workload . . . . . . . . . ... ..
Time-varying a-stable model predicted workload . . . . . . . . . ..

Robust control system interconnection . . . . . . . ... ... ...
Time history results: Stochastic LPV versus LQ, WL-1 . . . . . ..
Time history results: Stochastic LPV versus LQ, WL-2 . . . . . ..
Time history results: Stochastic LPV versus LQ, WL-3 . . . . . ..

Response time histograms plotted at ts=2min (source: Table 4.2)
Big bursts of request level response time (control results from Table
A2) 0
Schematics or a first-come-first-served queuing system . . . . . . ..
Request level response time: Control vs. Scheduling (control results
from Table 4.2) . . . . . ...
WL-1 time domain response time of the three scenarios . . . . . . .
WL-2 time domain response time of the three scenarios . . . . . . .
WL-3 time domain response time of the three scenarios . . . . . . .
Integrated feedback control and request level scheduling . . . . . . .

n9

94



List of Tables

4.1
4.2

5.1

[
[N}

6.1

7.1
7.2
7.3

Control design parameters . . . . . . ... Lo
Performances results of different design methods . . . . . . . . . ..

Corrclation of load paramcters and cstimation crrors between the
a-stable-model predicted CDF and recal-workload CDEF . . . . . ..
Design results . . . . . . . .

Mean performance statistics for three workloads . . . . . . . . . ..

Response time guarantee using request level scheduling, WIL-1
Response time guarantee using request level scheduling, WL-2
Response time guarantee using request level scheduling, WL-3

X1



List of Symbols

7

Arrival process, p. 11
Arrival rate, p. 11

Service demand, p. 11
Service rate, p. 11

Buffer size, p. 11

Response time, p. 12
Qucue length, p. 12
Utilization ratio, p. 12
Control input, p. 15
System output variable, p. 15
Waiting time, p. 15

Queue length, p. 15
Reference variable, p. 15
System matrices, p. 21
Workload parameters, p. 22
Cost function, p. 24

Weighting functions in H, control design, p. 24

X1



L(n)
tarrira/ (n)

LTL

Parameter-dependent controller, p. 24

Equilibrium value of the corresponding variable, p. 41
Deviation value of the corresponding variable, p. 41
Sampling time interval, p. 36

Server configuration (allocation) time interval, p. 36
Characteristic function of an a-stable distribution, p. 63
Self-similar process with paramecters o,x,m, and «, p. 63
Level of sclf-similarity, p. 64

A stationary process, p. 64

Stability index of an a-stable distribution, p. 64

Skew paramecter, p. 65

Scale paramcter, p. 65

Time varying exogenous parameter, p. 65

The service time and waiting time components of the response time
of a request, p. 94

Inter-arrival time between the request n(k), and the request been
served when n(k) enters the queue, p. 94

Instantaneous request length for request n. p. 96
Tagged arrival time of request n. p. 97

The number of requests arrived before the n' request that are still
in the queue, p. 97

xiii



Acknowledgments

This rescarch is supported in part by NSF under Grants 0325056 and 0409184,
support from the Pittsburgh Greenhouse Project. I would like to take this op-
portunity to thank my advisor Dr. Qian Wang. I am grateful for her advices
and encouragements. It is impossible to achieve what has been done without her
support. Special thanks should be given to my committee members, Dr Anand
Sivasubramaniam, Dr. Asok Ray, and Dr. Kon-Well Wang, for their opinions and
suggestions. I would also like to thank Dr Natarajan Gautam and my collabora-
tors, now Dr. Amitayu Das and Dr Yiyu Chen, for their ideas and contributions.

Xiv



Dedication

to my father, you arc survived by mom, sons and daughters.
to my mother, I couldn’t have gone this far in my carcer without your
encouragement and support.
to my wife and son.

XV



s |

Chapter

Introduction

1.1 Motivation

High performance server systems have been widely used in today’s commercial and
scientific server environments, for example, Web and Email applications, online
trading and multimedia services, and many more. With the fast-growing total
cost of ownership (initial investment, management, and maintenance) and the
increasing complexity of server systems, many cnterprises arc outsourcing their I'T
service needs by offloading their applications to third party hosting/data centers.

A hosting center often operates thousands of servers and provides services to
multiple applications at the same time. A guaranteed level of performance, which
is referred to as Quality of Service (QoS) delivered to end customers, is often part
of a Service Level Agreement (SLA) specified between the hosting center and each
application owner. The SLA may include different performance specifications (e.g.,
response time, bandwidth and throughput) in terms of the amount of money the
application owner pays the hosting center. Conscquently, a hosting center needs to
allocate sufficient resources (CPU, memory and I/O bandwidth) to each individual
application so that the SLA for each application is met; on the other hand. the
hosting center would like to optimize the resource allocation to each application
such that the profit can be maximized.

Traditional performance management and resource allocation for large clusters
of server systems have been relied on queucing-theory based steady-state analysis

and static optimization. Since the incoming traffic (request arrival and request



demand) for an individual application is essentially stochastic and time varying,
for example, the workload/traffic pattern to a particular web site may be bursty
and cxhibit scasonal phenomena, static resource allocation is not favored. Static
allocation could either cause the system to be over-utilized so that the SLA can
not be met, or allocating for worst-case load conditions to mect the peak demand,
which is obviously economically unattractive since the worst-case resource demand
is likely to be significantly higher than its normal usage.

In order for the system to adapt to dynamically-varying workload and oper-
ating conditions, feedback based approaches are strongly motivated. There has
been increasing research interest in applying control-theoretic approaches to the
management of computer systems, though mainly in the arca of communication
systems. The rescarch on the management and resource allocation for server sys-
tems is still in its infancy; most of existing work on performance control of Web,
c-commerce and storage servers is limited to system-identification based lincar
ARX models and classical PID control designs.

This thesis is motivated by following two reasons. First, the inherent nonlin-
car dependence of system performance metrics with respect to resource allocation
rariables, as well as the demand on adaptation to stochastic, time-varying load
conditions calls for the development of nonlincar modcling and design methodolo-
gies to improve system performance. Sccond, a workload is often characterized
by two complimentary distributions: the request inter-arrival time and the service
demand distributions, which capture the workload intensity and its variability.
Conscquently, probabilistic approaches to system modeling and control designs
arc in demand. Rather than over-provisioning for the worst-case load condition,
performance management in today’s Internet hosting center would limit rather
than climinate the risk of failing to mect request demand, allocating to cach ap-
plication the minimal server resources nceded for acceptable service quality and

leaving surplus resources to deploy elsewhere.

1.2 Research objectives

The general goal of this rescarch is to develop systematic control-theoretic ap-

proaches to automating performance management for large clusters of Internet



server systems, in particular, hosting centers. Specific objectives of this thesis are

as follows,

e Decvelopment of control-oriented nonlincar models for performance manage-
ment of Internet hosting centers that directly characterize the system depen-

dence on the stochastic. dynamically changing load and operating conditions:

e Dcvelopment of control design methodologics for the performance manage-
ment of hosting centers that explicitly utilize detail workload information
(distributions) so that the performance specifications can be met in the pres-
ence of dynamically varying load conditions, based on the models derived in

the first objective;

e Decvelopment of probabilistic approaches to robust control design to balance
between the risk of missing performance SLA and the resource efficiency for

the performance management of hosting centers.

To be more specific, a Internet service is modeled as a dynamical lincar param-
eter varying (LPV) system, parameterized by incoming workload characteristics.
These workload characteristics are then utilized in LPV control design in a way
such that the synthesized controller can adapt to workload changes and control

design performance can be improved.

1.3 Literature review

Control theory provides a promising foundation for modecling, analysis and de-
sign for feedback based performance management of large and complex computer
systecms. There has been increasing rescarch effort in applying control-theorctic
approaches to the performance management for information systems. Most appli-
cations though arc in the arca of communication network systems and congestion
control [1, 2, 3, 4, 5, 6, 7, 8 9, 10]. This dissertation considers the performance
management for server systems (Web, E-mail, and storage servers in the context
of data center, etc), where response time is the primary performance metric, which
introduces nonlincarity and is much more difficult to model and control. Compared

to communication networks, a significant difference lies in the modeling of request



service demand. Requests in a network system are just fixed-size packets (all pack-
ets have the same size); the service time of a request at a link (leaving a router)
corresponds to the transmission time of the packet. Thus a request’s service time
is more or less constant (depending on the link bandwidth); an exponential service
time distribution would be good enough for modecling communication networks. In
contrast, service demand in a Web/storage server system is highly varied and poses
scrious modecling challenges. In the following we summarize the existing literature

on control theoretic approaches to server systems.

1.3.1 Application

Existing literature has applied control-theoretic approaches to applications such
as Web servers [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], E-mail servers [15], and
Lotus Notes [22, 23]; storage systems in the aspects of data migration scheduling
124]. performance isolation [25, 26], and 1/0 throughput regulation [27]; dynamic
voltage scheduling (DVS) in energy conscious devices [28, 29]; load balancing in

distributed computer systems [30]; and real-time CPU scheduling [31, 32, 33. 34].

1.3.2 Modeling

In order to solve the performance management problem by control theoretic ap-
proach, a dynamic model that describes the relation between control variables
(e.g., resource allocated to each application) and performance metrics (e.g. re-
sponse time, utilization ratio, etc.) is necessary. In general, the dynamic models
can be obtained cither through first-principles approaches or system identification
algorithms using empirical data.

System identification: The majority of existing literatures for performance
control of server systems adopts linear-time-invariant (LTI) models obtained by
system-identification. Reference 17 models the dynamic relation between adminis-
trator tuning paramecters such as the maximum number of users, memory usage, as
well as CPU usage of an Apache Web server using both single-input-single-output
(SISO) and multiple-input-multiple-output (MIMO) approaches. Standard Mat-
lab identification toolbox is used to estimate the parameters offline in [12], where

sinusoidal inputs arc used as cxcitation signals in their identification experiments.



Similar LTT models have been derived using Matlab system identification toolbox
in [28, 25, 14, 22, 23]. In these papers a server is treated as a black box and can
be easy to implement. However designing proper experiments to obtain training
data for identification would appreciate detail domain knowledge in order for the
identified models to work well.  Further, they arc lincar time-invariant models,
no information on variations of workload and opcrating conditions have cver been
taken into account in the system modeling.

In order to adapt to load changes recursive least squares algorithms have been
applied in adaptive control design methods to build system models, which can up-
date the models with online measurements. In this category, [35, 36, 37] adopts an
ARMA difference equation to describe the input variable (caching buffer size) and
system output (average time delay requests experienced in a sampling interval) re-
lation of an Apache Web server. A first-order ARX model is used to approximate
the transient behavior of a memory pool between allocated resource and measured
response time every sampling interval in [30]. An advantage of these methods
is that they do not require detailed a priori knowledge of the system. However
they still need an initial kick-off model of the system for the algorithm to evolve.
A “proper” initial model is usually necessary for the online identification algo-
rithm to converge. In addition there are many parameters need to be configured
properly to guarantee stability and performance, such as when the model should
be updated, how to weight the contributions of the current as well as previously
identified models, and the criteria to discard certain updated models, cte. Indeed
implementation issucs need to be taken care of when applying these methods.

First-principles: [13] proposed a first-principles approach to constructing trans-
fer functions for admission control in a generic M/M/1/K queuing system, where
it is linearised and approximated by a first order I/O model. A transfer function is
constructed and parameterized using workload characteristics work load intensity.
[38] models a Web server as a nonlinear system to capture the transient behav-
ior of the application workloads. The paramecters of the model arc updated using

prediction by time series analysis techniques.



1.3.3 Control design

The most applied control design technique in the surveyed literatures is PID con-
trol. PID control designs are adopted in CPU scheduling [28, 29], QoS management
for email servers [36, 14, 15], groupware [22, 23], and storage systems [25, 24], etc.
A fuzzy-logic control is used to optimize performance of an Apache Web server in
[39], which is essentially an automatic parameter tuning using a fuzzy controller
that employs rules incorporating qualitative knowledge of the effect of tuning pa-
rameters. In [26] the authors argue that it is impractical to devise off-line models
of enterprise-scale storage systems, therefore based on a recursive least-squarcs
model, an adaptive controller was presented. [40] designs a model predictive con-
troller for a CPU utilization regulation problem. [14] proposes the combination of
a PID control with a queucing model based feed-forward compensation for the con-
trol of Web servers, where a queucing theory model is used to provision resources
that provides average delay guarantee while the PID overcomes uncertainties and

disturbances.

1.4 Contributions

This disertation investigates the performance management of computer server sys-
tems in the context of Internet hosting centers. Compared to existing literatures
this thesis has the following contributions to the problem.

Modeling: Though modecling the performance management as a lincar dynam-
ical system (which captures system transient behavior) has shown certain compe-
tency compared to the queuecing-based steady-state analysis, it is widely awarc of
that linear models may not be adequate when there are large variations in load con-
ditions. Conscquently, more sophisticated nonlinecar system modeling is needed to
improve system performance and robustness with respect to large variations of load
conditions. A mnonlinear model of hosting center server systems is derived based
on first-principles analysis of transient queucing dynamics, which is lincarized and
approximated by a linear parameter varying (LPV) model. Empirical counter-
part modecls arc obtained via system identification. In both modecling approaches

workload characterizing parameters are utilized as scheduling variables. Using real



Web traces it is shown that the LPV model over-performs lincar models. The
first-principles models also make offline training not neccessary.

Control design: Traditional performance management for server systems re-
lics on worst-casc cstimates of load and resource availability thus provisions re-
sources to meet peak demands. Since the worst-case resource demand is likely
to be significantly higher than its normal usage, these methods could be cco-
nomically unfavorable. This work focuses on the development of an LPV control
design for the performance management of server where we explicitly consider
time-varying cffects of the system by utilizing workload arrival and service param-
eters as scheduling variables. It is widely accepted that Internet services are under
sclf-similar, bursty, and stochastic workload. LPV control based on deterministic
characterization of these workloads may not work very well. We model Web server
workloads using a-stable distributions and characterize workload characteristics
using stochastic envelopes. LPV control design based on stochastic envelopes pro-
vide more modeling flexibility and can tolerate larger workload variance. A prob-
abilistic method is introduced to further reduce control design conservativeness by
considering nonlinear (bilinear) scheduling parameter dependence.

Evaluation: An intensive comparative study is conducted in this dissertation
for the proposed modeling and control design techniques using real Web work-
loads. Qucucing theory based provisioning results arc used as the benchmark to
evaluate the proposed control theoretic approaches. Simulation results show that
the proposed LPV based modeling and control design outperforms both lincar
control and conventional queueing-theory based designs. The presented pros and
cons cvaluation provides guidelines on sclecting the right approach for Internct
service performance control. Results from this dissertation can be genceralized in a
straight-forward way to accommodate more complicated models in characterizing

workloads and scrver environments to enhance system performance.

1.5 Organization

The organization of this thesis is as follows. In Chapter 2, we present the de-
scription of a hosting center, workload characterization together with commonly

used performance specifications. Traditional queucing theory results will also be



reviewed in this chapter. The proposed modeling and control design methodologies
arc illustrated by two applications: admission control and CPU resource manage-
ment for web applications housed on a hosting center, which will be addressed in
Chapter 3 and Chapter 4 respectively. In these two chapters, results on deter-
ministic modeling and robust control designs arc presented. Chapter 5 presents
a combined solution of the LPV modeling & control framework with workload
characterization using a-stable-model based stochastic envelopes, which param-
eterizes a control-oriented dynamic-system model and resulting controller using
workload-distribution parameters. Chapter 6 takes a step further by modeling In-
ternet services as stochastic LPV systems and applies probabilistic robust control
design to the same performance management problem. Finally a conclusion of the
dissertation and suggested future work arc given in Chapter 8. Some preliminary

ideas and results arce presented, along this direction further rescarch is needed.



e 2

Chapter

Background and Foundation

In this chapter, we introduce the problem of performance management of server
systems in the context of hosting centers. We first give an overall description of a
hosting center, together with a review of workload characterization and commonly
used performance specifications. We briefly introduce how to formulate the per-
formance management of a hosting center as a feedback control problem, what are
the possible control input, system output, and cost functions. Then we formularize
the performance control as an optimal control problem. Finally we bricfly review

fundamentals of the queucing theory and related modeling results.

2.1 Overview

Generally there are multiple applications hosted in the center (Figure 2.1(a)).
Onc application may span across a cluster of servers, while any server may be
dedicated to one application only at any time. It is also possible that multiple
small applications collocate on a single server. Each application provides a sct of
functionalitics and services. Users of these applications arc usually physically away
from these servers. Remote users of these applications access the hosting center
via communication networks, c.g. the Internct. Service requests initiated from
remote users arrive at the gateway, where they are directed to requested services

(applications).
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Figure 2.1. Overview of hosting data centers

2.1.1 The work flow in a hosting center

The incoming request may demand resources such as CPU, memory, and 1/0
bandwidth. First for cach incoming request, the hosting center may decide to
admit or reject it, which is often referred to as admission control. Admission
control is usually used to throttle the incoming traffic such that cnough service
for the admitted requests can be provided. After the requests for each application
are admitted into the system, the hosting center needs to determine how much
resource has to be allocated for cach application dynamically in order to achicve
the SLA, for example, how many servers need to be turn on/off, and allocated to
cach application, what is the corresponding CPU speed for cach server? How much
memory, I/O will be assigned to each hosted application? The function blocks of
admission control and resource management are illustrated in Figure 2.1(b).

By performance management of a hosting center, we aim to maximize its op-
crating profit in this thesis. So we need to consider both revenue and cost. The
objective is to make an optimal balance between the two sides, subject to SLA
requirements. In admission control, when a request arrives, associated with a
particular application and its SLA. the controller decides whether to admit the
request or not. For new incoming requests, if they are predicted to be unable to
meet SLA target, or eventually causes already admitted requests to fail to meet
their SLAs, they should not be admitted. The primary objective is to maximize
requests admission subject to SLA constraints. In the resource management sce-
nario, allocating more servers and/or running them at higher speed will definitely

result in lower response time and more satisfied customers, and will thus generate



11

more revenue. However the operating cost also increases, due to the increase of

items such as electricity bill, equipment purchases, etc.

2.1.2 A queueing system and related notations

A hosting center consists of clusters of servers. A server resembles a queueing
system in that it receives requests, takes some time to serve cach of them, and
release them upon completion of service (Figure 2.2). Generally the following
aspects together describe a queueing systemn,

Arrival process: customers’ requests arrive one at a time and the times be-
tween two successive arrivals, which is often referred to as inter-arrival time, arc
non-negative random variables. The process that counts the number of arrivals up
to time t is called a renewal process, and such a process is described by the common
inter arrival time distribution. Some widely studied distributions are Exponential
(M), Erlang (F7), General (), etc.

e Inter-arrival time A: the arrival time difference of any two consecutive re-

quests of the workload as a sequence.

e Arrival rate A: defined as the number of arriving request by the observation

time.

Service demand: cach arrival request claims a service that corresponds to
certain service time demand. Some widely studied distributions for service demand

are Exponential (M), General (), etc.

e Scrvice demand s: an attribute associated with cach request indicating the

amount of requested service, e.g. Read/Write access of a file, CPU time, etc.

e Scrvice rate p: average service rate as the number of served requests by the
obscrvation time. Scrvice rate is related to service demand by the system’s

processing capability.

Buffer size: the maximum number of requests that can be in the system at any
time, which sets the upper limit of queue length. If the buffer size is K, an arriving

request that sees K + 1 requests in the system is rejected.
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Performance metrics: somc commonly used variables as performance metrics

are,

e Response time T the average time spent in the queue of all served requests.

e Qucuc length ¢: number of requests in the queue including the one being
scrved, based on a recasonable number of observations. For a system with

buffer size K, obviously ¢ < K.

e Utilization ratio p: defined as the ratio of A and pu.

Figure 2.2. Schematics of a queucing system schematics

When a new request arrives, the server may be busy serving other requests.
meaning it has to wait for its turn to be served. A scheduling policy that decides
which, when, and how cach request is served is neccessary.  Some widely used
policies are: first-come-first-served (FCE'S). last-in-first-out (LIFO). random, and
processor-sharing (PS), where several requests can be served simultaneously, etc.
For a given workload with certain inter-arrival pattern and request size distribution,
the rate at which the server processes requests determines the number of requests
in the queue, i.e. queue length.

We shall follow the symbolic representation introduced by Kendall and rep-
resent the queueing system as Inter arrival time distribution / Service time dis-
tribution / Number of servers / Capacity / Service discipline. Thus for example
M /G /1 represents a queueing system with Poisson arrivals, generally distributed
service times, a single server, and infinite queue size, and a first-come-first-served

queueing discipline.

2.2 Workload description

Workload consists of the sequence of all incoming customer requests. A workload is

typically described by inter-arrival times between requests, service demand of cach
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request (which is referred to request size in certain applications); other workload
characterizations could include seasonality, sequentiality /randomness in access, lo-
cality, etc. In this dissertation we will mainly be interested in inter-arrival times
and request sizes, however, other workload characterization parameters could be
incorporated without much difficulty.

In the queucing theory community probability distribution functions are used
to approximate inter-arrival times and request sizes. The simplest workload has
exponential distributions for both inter-arrival time and request size. Workloads
with generally distributed arrival and/or request size are much more complicated.

Unfortunately the majority of real word workloads fall into this category.
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Figure 2.3. Somc example Web server workloads

A server hosting academic applications may have totally different workload
characteristics from a server hosting a news website. Figure 2.3 shows the arrival
rate (the reciprocal of inter arrival time) and service time (file size) of the three real
Web server traces (WL-1/2/3) studied in this research during a 24 hours period,
with 10-minute interval. Usually request sizes have much larger variance than
arrival rates for these traces. Figure 2.4 plots the cumulative distribution function
(CDF) of request file sizes of WIL-2 at request level. It shows that the maximum
request size is around 5000K B, which is about 500 times of its average value. The
95-percentile value, which is larger than 95% of all the request sizes, is ten times
more than the mean value. The heavy-tail of distribution indicates large variance.
One can also do the same for the inter-arrival times distribution. Further, the

large workload variance justifies the dynamic performance management proposed
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Figure 2.4. Cumulative distribution for request service demand

in this work. Designs based on the peak workload will be very conservative and
cconomically unattractive if it is unable to dynamically adapt to changing workload

condition.

2.3 Performance specifications

Hosting centers sell their services with SLAs to application owners. So defining
the performance specifications is important since the SLAs are stated in terms of
these specifications. There are different measures of performance specifications,
depending on the particular application. In the context of hosting center, these
specifications arc gencrally related to measures that quantitize user experiences of
the service provided by the hosting center, such as response time, throughput, and
utilization, etc.

In general, the performance specification could be request-level or window-
based. For example, in some real time scheduling applications the objective is to
achieve a hard constraint on response time to guarantee certain worst case per-
formance bound. In these applications request level specifications are considered.
We use window-based performance specifications in this thesis in order to be com-
patible with the adopted control theoretic techniques. Our discussions on system
modeling, controller design, and feedback loop implementation require a clear def-

inition of sampling interval. It is truc however that one can consider request level
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response time in the discrete event control framework, which is out of the scope of

this work.

2.4 The performance control problem

We consider a hosting center that operates multiple servers to support multiple
applications (Figure 2.1(b)). The performance control problem is to provide per-
formance guarantees for these applications to meet their SLA specifications by
properly admitting incoming requests and/or allocating server resources. Achiev-
ing this brings revenue to the hosting center. On the other hand, operating cost

is to be minimized such that the profit is maximized.

2.4.1 Control mechanisms

Performance control can be enabled via traffic shaping and/or resource manage-
ment, or possibly some other mechanisms that arc not the focus in this dissertation.
In traffic shaping the decision is in the form of throttling server workload. In this
rescarch we focus on admission control as an example of traffic shaping where
certain requests are adaptively rejected in order to meet SLA requirement of ad-
mitted requests, for example, rejection ratio is a possible choice of decision variable
and can serve as the control action. Request rejection can be implemented in the
scheduling policy. In a resource management framework, it needs to determine is
in terms of the amount of resource the hosting center would provide to serve the
incoming workload. The more resource being allocated the lower response can be
achicved, given the workload characteristics. Different types of resources can be

manipulated and allocated, such as CPU speed, network bandwidth, ctc.

2.4.2 Feedback control elements

In order to formulate a feedback control loop, we need to identify and define the
system elements such as control input, system output, sensor, actuator, etc. We
also nced to establish a dynamic model describing the relationship from input to

output.
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e Control input u(t) is often defined in terms of the system variables that can
be controlled. For example, in resource allocation problems, we can define
the number of servers allocated and their speed; for admission control, we

can define the ratio of incoming requests to be rejected.

e System output variable y(t) often consists of controlled performance mea-
surement and possibly system states, such as response time W (t), queue

length ¢(t), etc.

e The reference variable T'(¢) is usually SLA specifications, e.g., target response

time.

e Scnsors that measurc the concerned output performance metrics, and actu-
ators that implement the control input w(t) needed to be designed / imple-
mented as well. In the context of computer system, an actuator may be
a mechanism to adjust certain system parameters such as CPU frequency,
stack size, storage volume, 1/0 rate, etc. A sensor usually means a functional
algorithm that record/compute a set of interested information, such as the

measurcement of queue length, response time to customer requests.

The next step will naturally be building a control oriented dynamical model of
the hosting center (a cluster of servers) before we can study the performance control
problem. Workload characteristics, such as inter-arrival time and request sizes, are
in general stochastic variables and are considered as system parameters. A hosting
center is obviously a time varying system since inter-arrival times and request
sizes change over time (Figure 2.5). Nevertheless one can always approximate the
system by an LTI model considering the nominal inter-arrival time and request
size.

As mentioned in Section 2.1 the main objective is to maximize operating profit
in the performance management of hosting centers, which is usually to make a
trade off between the cost side and the gain side, subject to SLA requirements. It
can be achicved by formulating a properly defined optimization problem. Thus ¢
well defined cost function is necessary which intuitively incorporates both control
action (cost) and performance measures (gain). Several solutions are possible with

a properly defined cost function. For example, we can approximate the system by
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Figure 2.5. Hosting center from control system viewpoint

an LTI modecl and directly solve the optimization problem taking an L) control
design approach. We can also model the system as an LPV model and then
apply H,, LPV control synthesis, where the cost function is optimized using loop
shaping techniques. It is also possible to optimize the cost function by dynamic

programming.

2.5 Queueing theory results review

Queucing theory will be used in developing the LPV models and implementing
the performance benchmark. Queucing theory is a branch of applied probability
theory. Historically the subject of qucucing theory has been developed largely
in the context of communication traffic engincering. Now it has been applied

to numerous applications in telecommunications, manufacturing, transportation,
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and information systems, cte. Simply put, queucing theory establishes steady state
relations between arrival request, service rate, and output performances. Variables
such as arrival rate, scrvice rate, queue length, response time are of particular

interest. A briefly summarizes commonly used queueing theory results.
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Chapter

Admission control

This chapter presents a linear parameter varying (LPV) approach to the modeling
and control of scrver systems to provide QoS guarantees. In particular we focus
on the admission control mechanism to provide performance control. Workload
intensity, which is the ratio of request arrival rate and service rate, is chosen as
the scheduling parameter in the LPV formulation. Existing tools on LPV system
identification and control synthesis arc applied to this example and results arc
compared with that of linear designs. An advantage of the proposed method is
that it does not require a priori knowledge of the workload as long as it is on-
linc measurable. In addition, the utilizing of information on load conditions and
resource availability would allow better performance in QoS guarantees compared

to linear control techniques.

3.1 Admission control and problem formulation

Admission control regulates customer requests in an effort to provide adequate
resources to those that are already admitted so that their SLAs are met. It is an
cffective performance control mechanism especially when the server is under heavy
workload, in which casc dynamic resource allocation alone may not be sufficient
since there is not too much resource left. In this case admitting a new request
may result in deteriorated performance of other requests, leading to unsatisfactory
customer requests. As a result the server will generate less profit. What admission

control does is to reject certain customer requests so that the admitted requests
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arc delivered good performance. There are different mechanisms to implement the
rcjection while we adopt a fairly straightforward one: randomly rcject a percentage
of incoming requests during a time interval. For example, when a rejection ratio
u(k) in the £ sampling period is determined, a request comes in this sampling
period is denied to enter the system with probability w(k) (or is admitted to the
system with probability 1 — u(k)). Thus the original arrival rate A(k) becomes

Ae(k). the effective arrival rate, as shown in Figure 3.1.
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Figure 3.1. Admission control for a single queue

We define rejection ratio as control input and response time as system output.
For a fixed sctting of rcjection ratio, the performance output, c.g. response time,
depends on the incoming workload. We first derive a dynamic model describing
the relation between rejection ratio and system performance, then we design a
controller to dynamically sct the rejection ratio so that the performance measure
is within desired range.

Suppose that the server itself (the hardware) does not change over time, the
performance output depends on incoming workload. So the controller should sct
the rejection ratio based on the workload. In order for the controller to adapt
to dynamically varying load conditions, it would be desirable if the controller
gain changes with respect to the changing workload so that the controller is more
responsive to performance violations. This motivates the formulation of an LPV
control system, where the workload parameters are used as scheduling variables.

Since the traffic load varies in a slower time scale (usually in minutes for a web
server application) compared to the system dynamics (where the response time of
a web server is usually in seconds), the LPV system is slow varying, which satisfies

the conditions for a general LPV control synthesis.
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3.2 Modeling for admission control

In this scction, we briefly review how lincar time invariant as well as LPV system
identification algorithms can be applied to build the dynamic relation from input
(rejection ratio) to output (performance metrics variable) of admission control for
a hosting scrver, i.c. estimating the afore-mentioned cocfficients based on exper-
imental training data. For the LPV model, time-varying workload characterizing

paramecters arc specified as scheduling variables.

3.2.1 Linear models

The input-output dynamic relation from rejection ratio u(k) to system response
time T'(k) is essentially nonlinear. A simplistic modeling solution is to construct a
lincar time-invariant cmpirical model using system identification techniques, which
can be interpreted as the linearization of the original nonlincar dynamic system at

a nominal operating condition. We consider an ARX model as follows.

M) T (k) = B(q)u(k) + e(k) (3.1)

with
Ag)=1+aqgt+- -+ apg ™ (3.2)
B(q) = bog ' 4+ bupg ™ (3.3)

where ¢ is the delay operator, na and nb determine the system order.

The constant cocfficients a; and b; arc computed through running system iden-
tification algorithms (e.g., standard tools in Matlab) on properly designed experi-
mental data (u(k),T'(k)). We denote this model as LinearModel-ARX.

3.2.2 LPV models

In order for the system to adapt to dynamically varying load conditions, we formu-
late a lincar parameter varying system by defining workload paramcters as schedul-
ing variables. Assuming that coeflicients a; and b; in Egs. 3.1-3.3 are functions of

load conditions, we specify the following LPV-ARX model,
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Alg, )T (k) = B(q,r)u(k) + e(k) (3.4)

with
Mg, r)=1+a(r(k—1)g  + -+ an(r(k —na))g ™ (3.5)

Bg,r) = bo(r(E)) + by(r(k — 1))g " 4 -+ bup(r(k — nb))g ™ (3.6)

where in general r(k) represents the vector of workload parameters; it is also the
scheduling variable for the LPV-ARX system.

The function relation of coefficients a;(r).i = 1,--- ,naand b;(r),j = 1.--+ .nb
in terms of the load paramecter r could be nonlincar in general. We can start by
assuming that the plant has a Linear Fractional Transformation (LFT) dependence
on the scheduling variable r. Alternatively, we assume that r(k) enters Eqs. 3.4-
3.6 in a polynomial manner, ie.. a;(r).i = 1,--- . na and b;(r),j = 1.--+ . nb are

polynomials in r of degree N — 1,
ai(r)y=al +air+---+a rV! (3.7)

aj(r) = by +br+ -+ b N (3.8)

Depending on the system under consideration, the vector 7 could include dif-
ferent paramecters that characterize workload behavior, c.g., arrival rate, file size,
locality, read/write ratio, etc. As a starting point, we use a scalar scheduling

parameter (k) defined as the reciprocal of workload intensity,

AR
rk) = (k)

which makes the implementation of the LPV system identification casier and more

(3.9)

cfficient. Here workload intensity is used slightly different from its convectional

definition, which is the ratio of the arrival rate A and service rate p.

A naive approach for estimating the coefficients a;(r),i = 1,--- ,na and b;(r).
j = 1,-+-.nbcan be conducted as follows: 1) identify a set of linear time-invariant

ARX models as Egs. 3.1-3.3 corresponding to a sequence of values of workload
parameter r, 2) then derive a;(r).i = 1.--- ,ne and b;(r).j = 1.--+ . nb by inter-

polating corresponding coefficients of the set of linear time-invariant ARX models.
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We apply a Least-Mean-Squares based algorithm from [41]to directly identify the
LPV system Eqgs. 3.4-3.9, where polynomial dependence on the scheduling param-
eter 1 is assumed.

Dcfine an n x N matrix © containing all the coefficients to be identified and
define the extended regression operator ¥ containing the input/output data and

the parameter trajectories,

at ool ~T(k—1)
Lo Ay —T(k —n, N
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Figure 3.2. An LMS algorithm for identification of a polynomial parameter-dependent
LPPV system

The Least-Mcan-Squares algorithm in Figure 3.2 is used to compute the es-
timate © iteratively. This algorithm docs not require the scheduling variable
to be slow varying, but requires the persistence of excitation for the inputs and
scheduling parameters. For different LPV system identification algorithms, refer
to [41, 42, 43]for LFT dependence on scheduling variables and in [44]for nonlinear

parameter dependence (where a neural network is used).

3.3 control synthesis

Corresponding to the different types of models developed, we may design cither an

LTI or an LPV controller for the performance control.
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3.3.1 Linear control design

Corresponding to the linear ARX model (Eq. 3.1), we formulate a Linear Quadratic

(LQ) control problem, which optimizes the cost function as follows:

J = Z (T'T CT2HE) 41y, - &2(/{7))) (3.11)

=1
where rp and 7, are penalty weighting matrices on off-target response time and
deviation from nominal rejection ratio. Intuitively we would like the actual per-
formance output to track its SLA, this justifies for the first component. On the
control action side, we want to rcject as few requests as possible, which is an ab-
solute value instead of a deviation amount. Thus for the sccond part however it is

a little different from what we actually want.

3.3.2 LPV — H, control synthesis

Corresponding to the LPV-ARX model (Eq. 3.4, we formulate an LPV — [l

control synthesis as illustrated by Figure 3.3.
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Figure 3.3. Robust control system interconnection

In order to apply the above LPV — H, control synthesis, low-pass filters arc
appended to input and output channcls of the original LPV plant. The cutoff
bandwidth of the low-pass filters is chosen to be much higher than the feedback
sampling frequency so that the system performance would not be affected. With a
bit abuse of notation, we let /°(r) denote the LPV model that includes the original
plant as well as the input/output low-pass filters.

The performance specifications on minimizing tracking crror of mecting target

response time and reducing control action arc addressed through the design of
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weighting functions W, and W, respectively. Define an augmented plant 12,,,(r)
that includes the actual LPV system /°(r) to be controlled as well as auxiliary
weighting functions W, and W, representing closed-loop performance criteria (Fig-
ure 3.3). The LPV control can be classified as a generalized gain-scheduling control.
It designs a parameter-dependent controller K (r) to stabilize an augmented LPV
plant 12,,,(r) for all admissible parameter trajectories r, minimizing the effect of
the exogenous inputs on the controlled variables in certain norm. In LIV — [1
control, the controller K (r) is designed such that the closed-loop system is stabi-
lized and the Ho, norm of the transfer function 7%, from the cxogenous input w
(the reference response time 7T) to the controlled variable z (the weighted error

signal € and the weighted control signal @) is minimized. i.e.,

||Tsz <~ <3~12)

with performance level ~.

In general, for an affine parameter-dependent plant /°(r). the design of an
affine parameter-dependent controller K(r) is often reduced to solving a set of
parameter-dependent Linear Matrix Inequalities (LMIs) [45]. Consider the affine

parameter-dependent LPV system,

or = A(0)x + B(O)uy = C(d)x + D(d)u (3.13)

where o := z is for discrete time. The LPV system has quadratic Hy, performance
~ if and only if there exists a single matrix X > 0 such that B3(X,~) < 0 for all

/

admissible values of the parameter vector =, where

~X' 4 B 0
AT X 0 Cf
BY 0 —I D'
0 O D =~

/

(3.14)

Then the Lyapunov function V(z) = 27 Xz establishes the global asymptotic
stability. For an LPV system with polynomial paramecter dependence, a sum-of-
squares based approach was presented by [46]for control synthesis.

By utilizing time-varying load parameters as scheduling variables, the LPV
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control synthesis is expected to improve control performance with efficient control
usage. Furthermore, the LPV design does not require a priori knowledge of load

conditions as long as they are on-line measurable.

3.4 Simulation results

The proposed modeling and control design results are implemented and evaluated
by a Web server simulator [47]. System identification is based on a set of synthetic
workload running on computer simulation. Then we compare LPV synthesis results
and the LQ) results. Some common issues in modeling and control synthesis are

discussed.

3.4.1 Model identification and validation

We assume that in a sampling period, the request arrivals follow an exponential
distribution with mean rate A\(k) (requests per second). After requests are admit-
ted to the system, they are served in a first-come first-serve (FCFS) manner. We
assume that service times arc independent and the service rate follows an exponen-
tial distribution with mean rate (k) (requests per second). Size of the document
requested is not included for simplicity in illustrating the proposed LPV approach.
Note that although exponential distribution is used here the underlying approach
does not preclude using any other distributions.

Before applying LPV system identification, we first examine Eq. 3.4 at a nom-
inal load condition. It is intended to evaluate whether a linearized model at the
nominal load condition is able to capture the major dynamics when the load vari-
ation is small. For r = 0.5 with mean service rate 100 requests/sec, we use a
pseudo-random binary input for the rejection ratio 6(k); together with the result-
ing response time T'(k) we construct a second-order ARX model (data fitting does

not get improved by increasing the order of the model).

Th+2)=a;T(k+1)+aT(k)+b0(k+ 1)+ ek +2) (3.15)

with al = 0.01938, a2 = -0.01747, and b = -0.01027. Figure 3.4(a) shows the

predicted versus the measured response time for a pscudo-random binary input
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used in the system identification. Figure 3.4(b) shows the model validation on
data obtained by using a multiple-step input for rejection ratio. From the results
we can see that the linear approximation has captured the major system dynamics

at a nominal load condition.

(a) Predicted vs measured data with pscudo- (b) Validation against a different sct of data
random binary rejection ratio obtained using a multiple-step input as rcjec-
tion ratio

Figure 3.4. Construct an ARX model at workload intensity r = 0.5 using system
identification; the input/output data shown in the figure are prefiltered /detrended data.

The pseudo-random binary signal used to generate rejection ratio (k) and the
random signal used to generate the scheduling parameter (workload intensity r(k))
in the LPV system identification are plotted in Figure 3.5(a) and Figure 3.5(b).

The resulting LPV model corresponding to Eq. 3.4 is

Tk4+2)= [0.3464 4+ 0.1313r(k + 1)] * T(k + 1) 4+ [0.2527 + 0.1187r (k)] = T'(k)
+[=0.0007 + 0.0443r(k + D]O(k + 1) + e(k + 2)
(3.16)
Then we use a different set of rejection ratio input and workload intensity
parameter trajectories (shown in Figure 3.5(c) and Figure 3.5(d)) to validate the
identified model. Figure 3.6 plots the LPV predicted response time versus the
measured response time in the model validation, which demonstrates the accuracy

of the identified LPV model.
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Figure 3.5. Input and scheduling parameter trajectories used in LIV system identifica-
tion and modecl validation. (a) A pscudo-random binary signal used to gencrate rejection
ratio in system identification; (b) A random signal used to generate workload intensity
r(k) as scheduling parameter in system identification; (¢) A pscudo-random binary sig-
nal used for rejection ratio in model validation; (d) A random signal used for workload
intensity r(t) in model validation.

3.4.2 Control synthesis

The goal of the control synthesis is to achicve a target response time 7. The
admission control has to balance between achieving the target response time and
maintaining certain system throughput. Rejecting all requests would definitely
put response time to zero. but the service provider would not make any money by
serving requests either.

We specify the target response time T as 0.02 scc. We first design an LQ con-
troller using the model (Eq. 3-15) that is identified at nominal workload intensity
r = 0.5. In order to guarantee the target response time, the plant was augmented
with an integrator at the control input. Figure 3-7 shows the performance of this
LQ design operates at the design point (workload intensity r = 0.5) and at the

off-design load condition (r = 0.8). It is noted that the LQ) design is able to achieve
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the 0.02 scc target response time at r = 0.5, but when the traffic load increases to
r = (0.8, it does not meet the target response time.

Next we design a robust LPV controller based on the identified LPV model
Eq. 3-16. The control synthesis block diagram is shown in Figure 3-3. The
controlled variable includes tracking error and actuation cffort, which arc shaped
by weighting functions We and Wu, respectively. A suitable set of weighting

functions in s-domain is chosen as

0.1429s + 0.4 0.1+ s+ 2.5
W, — —SJVT - 0 T8+ 20 (3.17)
s+ 0.02 0.282 4+ 44.72s + 2500

In Figure 3.8(a), the performance for the LPV controller to operate at workload
intensity r = 0.8 is compared with that of the LQ controller running under the same
load condition. The LPV controller is able to achieve the .02 sec target response
time at the off-nominal load condition. Figure 3.8(b) compares the performance of
the LPV controller against that of the LQ design for a time-varying load conditions.
It is noted that the LQ design only provides response time guarantece for the
nominal load or less intensive traffic; the response time increases dramatically
for the heavy traffic. In comparison, the LPV design adapts to the change of
workload intensity very well; it provides the response time guarantee despite of

the dynamically changing load conditions.

3.5 Summary

This chapter presents an LPV formulation for admission control. Workload pa-
rameters such as workload intensity are used as scheduling parameters in the LPV
modeling and control, which allows system’s fast adaptation to traffic changes.
Identification and validation using synthetic workloads shows that the proposed
LPV-ARX modeling out-performs LTI ARX models. L) control design fails to
meet response time requirement when operating condition changes, while the LIV
controller can adapt to such changes and can still provide response time guarantees.
Compared to queuing-theory based approaches that study steady-state behavior
and require prediction of workload paramecters, the LPV design does not require

a priori knowledge of workload paramecters provided they are on-line measurable.
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Thercfore, the proposed LPV modeling and control framework scts a promising di-
rection for the performance control for today’s hosting center server systems that
operate in open environments with unpredicted load changes.

The results of this chapter are published in American Control Conference 2005
48], and TFAC Journal of Control Engineering Practice, April 2007 [49].
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Chapter

Resource management

In this chapter, a CPU frequency management problem is studied to provide re-
sponsec time guarantces with minimal cnergy cost. We have derived first-principles
models based on analyzing transient queueing dynamics as well as empirical models
using system identification algorithms. LPV — H, controllers are then designed for
the derived LPV system models to meet performance SLA with minimal CPU us-
age. Using real Web scrver workloads, the performance of LPV control compares
favorably to various lincar control designs and a design based on conventional

queueing theory.

4.1 The resource management problem

We consider a hosting center that operates M identical servers to support N dif-
ferent Web applications at any time. Each server is equally capable of running
any application; it is devoted to a particular application while each application
may span on multiple servers. As discussed in our coauthored paper [47]. two
mechanisms arc available for power management of server clusters. One is to turn
off the server when it is not in use, which will reduce power consumption but
will take time and energy to reboot the machine; in addition, reboot will increase
wear-and-tear of components (e.g., disks) and reduce their mean time between
failure (MTBF). Another way to reduce power consumption is to use the dynamic
voltage/frequency scaling (DVS) scheme since the power consumed in circuits is

proportional to the cubic power of the operating clock frequency. In a blade server



35

system, CPU consumes a high percentage of the bulk power, ¢.g., an Intel Xcon
consumes ~ 75— 100 Watts at full speed, while the other blade components includ-
ing disk only add about 15-30 Watts, thus DVS control becomes very important
in power management [47].

In summary, the objective of the power management for a hosting center is to
dynamically allocate an appropriate number of servers to cach application and to
control cach server’s CPU frequency so that the target response time of cach appli-
cation is met with minimal energy consumption. In [47], the power management
is formulated to minimize the following operational cost (housing N applications

over Z time units of duration At ) while meeting target response time,

S (S Ks o milz) - (Po+ Py 1)) - At)

+ Zf:l B- (Zz\:l ni(2) — > ni(z — 1)>+ (4.1)

The first term in Eq. 4.1 calculates the clectricity cost of operating servers.
The power consumed by one scrver node equals to the sum of the CPU power
consumption, which is proportional to the cubic power of the server frequency f
with cocfficient Pf, and the power consumption of other components that does not
scale with frequency. The energy consumption is then obtained by multiplying the
power by time. For the " application. it is assumed that all servers allocated to
this application run at the same frequency since this will consume less power than
otherwise duc to the dependence of power consumption on the cubic power of CPU
frequency. Then total cnergy consumption for the i application is calculated by
multiplying the encrgy for a single server with the number of servers allocated to
this application. The clectricity cost is obtained by further multiplying Kg, the
dollars per unit of energy consumption (kilowatt hour (KWH)).

The second term in Eq. 4.1 computes the cost due to turning on new servers
across successive time periods (in 4.1, {-}" = max(-,0)). The cocfficient B denotes
the dollar cost for a single server turn-on, which includes encrgy cost for bring up
the machine (energy consumed during the machine boot time) and the dollar cost
resulted from a smaller MTBF due to wear and tear in turning-on servers [47].

We decompose this performance/power management problem into two sub-

problems, as illustrated by Figure 4.1:
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1. Dynamically determine a minimal aggregate CPU frequency for cach appli-
cation that can meet response time guarantee as though there is a single
scrver per application running at this frequency, noting that the energy con-

sumption is directly related to the frequency in Eq. 4.1.

2. Solve an online scerver allocation problem, which determines the number of
scervers allocated to cach application and the CPU frequency of cach indi-
vidual server such that the aggregate frequency obtained from the first sub-
problem is provided. The objective for this subproblem is to seck the one
with minimum cnergy consumption among different configuration choices:
running more scrvers with a lower frequency or running less servers with a

higher frequency.

In our previous work [47]. the first subproblem was solved through a linear
optimal control using a linear ARX model, which was derived by system identi-
fication algorithms; the sccond subproblem was solved through a greedy on-line
algorithm, which is described in the next section. With server allocation the final
energy consumption can be calculated. The possible approximation errors due to
this 2-step decomposition have been addressed in [47]. In this chapter we aim to
develop an LPV modcling and design for server performance management, thus
we focus on the first subproblem - dynamical control of the aggregate CPU fre-
quency to meet target response time with minimal CPU usage. The aggregate
CPU frequency resulting from the LPV control will then be used to determine
the number of servers and their operating CPU frequencics by applying the same
greedy on-line algorithm as in [47](see Figure 4.1). In the sequel, we denote the
average aggregate CPU frequency in the £ time interval as w(k) and refer it to

be CPU in brief.

4.1.1 Online Server Allocation: a greedy algorithm

The decision on server allocation is updated every T time period, which is indexed
by z=1,---,Z. In cach T time period, the control decision on CPU frequency is
updated every At time period, which is indexed by p = 1,--- . [’ ie., T = 7+ At.
Note that the server allocation time period 7" is not necessarily the same as the

time period AT for updating operating condition in the LI’V modeling and design.
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Figure 4.1. Feedback control loop for performance management

Let ui(z, p) denote the aggregate frequency allocated to the i application in the
p Al-time interval within the z* T-time duration. The dynamic control of the
aggregate frequency wu;(z,p) at any time is obtained from the first subproblem
thus u;(z, p) is assumed to be known for the second subproblem, where an online
optimization is formulated to allocate servers to cach application and to sct the
CPU frequency of cach on-server with the goal of providing the aggregate CPU
ui{z, p) with minimal energy cost.

At each time interval of T', define

N

n(z) = Z ni(z) (4.2)

i=1

to denote the total number of servers being turned on for all applications, and

define

N

u(z) = Z (max,y(u;(z.p))) (4.3)

i=1
to denote the CPU capacity that the n(z) servers should provide in the 2! T-
time duration. We allocate the number of servers for the i* application, n,;(z)

H

proportional to this application’s aggregate frequency demand, i.c.,

() = [z, uz ) - 2 (1.4)

u(z)

where [-] denotes the ceiling value. As fi(z,p) = wi(z,p)/ni(z) < u(z)/n(z),
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i=1,---, N, we replace Eq. 4.1 by the cost function as follows,

5

7
ZKS-H(Z)-T' (Po+ Py (u(z)/n(z2) +ZI§ n(z) —n(z—1)"  (4.5)
=1 2=
Since each server’s frequency should be operated within (foin. fimaez). the to-

tal number of on-servers n(z) should satisty n(z) < n(z) < n(z) with n(z) =

(w(2)/ finaz | and 1(z) = min (|u(z)/ fuin| - M). where | -] denotes the floor value.
Note that if we ignore the server turn-on cost which is the sccond term in

Eq. 4.5, the optimal number of on-servers for minimizing (Eq. 4.5). denoted

by n*(z). is achieved by setting the first derivative of (Eq. 4.5) to zero, which

“(2) = (|u(2)(2;/1%)*?]). This n*(2) is the break-even number of servers

between the cost increase due to server reboot and the power cost decrease due to

glves 1

scerver operating at a lower frequency. If we take into account the cost of turning

on servers, a greedy algorithm is implemented:

1. If the number of on-servers in the previous time period n(z — 1) is higher
than min(n*(z), n(z)), the number of servers n(z) is set to min(n*(z),n(z)),

and there is no associated boot cost for this;

2. Otherwise, additional servers beyond n(z — 1) could be turned on, but the

total number of on-servers is still upper-bounded by min(n*(2). n(z)).

For the second case, the number of on-servers is determined iteratively. As-
suming that the number of servers has been increased from n(z — 1) to ¢, turning
on one more server beyond ¢ will add a one-time boot cost /3, while it will reduce
power cost by Kg- (j—z41)-T - (=1 + 2Ppu*(2)/¢*) (which is the derivative
of the first term in (Eq. 4.5) at n(z) = ¢) only if no server will be turned off
during time z to time j. The latter condition is checked by verifying if ¢ is less
than min(n*(z),n(z)) up to time j. Note that at current time period 2z, we do not
have future aggregate frequency u(j) for j < z to calculate ni(j). So we use an
estimated value to restrict ¢, which could cause the algorithm even greedier. Based
on this argument, the algorithm scarches if there exists such 7 within the whole
Z time periods, during which the saving in power cost is larger than the one-time

boot cost for turning on onc more scerver. Servers will be turned on when such j
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exists until the number of on-servers touches its upper bound. After the aggregate
frequency and number of servers for cach application have been determined, the
server frequency is calculated as fi(z, s) = D(wi(z, 8)/mi(z)), for z = 1,--- . Z
and s = 1,---,5. where D () denotes rounding up the frequency to the different
operating levels in I, Figure 4.1.1 shows the pscudo code for the greedy algorithm.

Server Allocation{n)
i w Called “I exd of fi — 1Yo set i

Vol ey

i6 while [*i
17 Ao :
13 do flag — i
19 for j — wtelV

20 doif (7§ — +1!l
21 ke |' -+ I

2 then

3 IIE}E] et (!l “3[
: o [ 'i

)
-
¥

[ i

Ir::lv

27 i flng =="
2% thent — i+ 1

& mifu) — macid miu))

2 fori— lioN
3 dowmgiuy — [min}

3 retarnn (e =1, o Y

Figure 4.2. Pscudo code of online server allocation
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4.2 First-principles modeling

In this scction, we focus on analyzing transient dynamics of the system in Figure
2.5 to develop control-oriented models. Over the sampling interval [(k — 1)At, kA?]
define ¢(k) as the queue length at the end of the interval k, and T'(k) as the mean
response time following the definition of ¢ and T in Chapter 2. Choosce allocated
CPU u(k) as the control input, ¢(k) as the state variable, and T'(k) as the system
output.

We consider the situation where the traffic load scen by the system is high and
the utilization is high, i.c., the server is serving requests all the time. Since the
number of requests queued up during the time period of [kAt, (k + 1)At] is the
sum of the initial queue length at AA¢ and the number of arrival requests minus

the number of requests serviced in this duration, we have

k + 1 {q + narrw - nfrved}+ (46)

where {}+ = max(-,0), enforcing queue length to be non-negative. When the
traffic load is high and the system utilization is high, the number of arrivals and
departures in a sampling period can be approximated by A(k)At and p(k)At,
respectively: i.e

AE) = nk

JAE (k) =nk A (4.7)

arriv srued

Also due to the high load and high utilization assumption for the system, the

queue will never be empty thus the projection to the positive plane {}+ in Eq.

4.6 can be removed. using A.2 and Eq. 4.7, Eq. 4.6 becomes,

At
s(k)

q(k+1)=q(k) — u(k) + A(k)At (4.8)

Further, the average response time T'(k) in [kAt, (k+1)At] can be approximated
by the sum of mean queueing delay ¢*(k)/X (k) and mean service time 1/u(k),

where ¢*(k) denotes the average queuc length in the & sampling period. That is,

T(k) = ) — (4.9)
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For a stable open system. the throughput X (k) can be approximated by the
arrival rate A(k); while for a closed system, the throughput X (k) is approximated
by w(k). By further approximating the average queue length ¢*(k) by ¢(k) and
absorbing the one request in service in the calculation of ¢(k), we have for a open

system,

T(k) = L (4.10)

or for a closed system,

o q(k)  qlk)s(k)
Ttk) = plk) — u(k)

It should be noted that the system consisting of Eqs. 4.8 and 4.10 is already

(4.11)

a linear parameter varying system with scheduling variables s(k) and A(k). The
system consisting of Eqs. 4.8 and 4.11 is a nonlincar time-varying system since the
output variable T'(k) is inversely proportional to the control input w(k).

In the rest of this scction, we lincarize the nonlinear cquation 4.11 at specific
operating points (trajectory) to derive linear time-invariant (LTT) models and lin-
ear parameter varying models. Given a sampling time period Af, it is assumed
that it might take multiple sampling periods for the system to achieve (quasi)
steady state. We use index m to denote every time period AT when the operating

condition would vary (Figure 4.3).

u=1 u=2 u=U
s=1]s=2 |+ ¢ ¢|s=5]s=1]s=2 |+ ¢ Js=8 tee s=1]5=2 |+ + +|s=8
s |
K 1
« SN

Figure 4.3. Sampling time is denoted by At and operating condition changes every
AT =S - At

It is without loss of generality to assume that AT is an integer multiple of the

sampling period At. Define

~

q(k) = q(m) + q(k). T(k) = T(m) +T(k). u(k) = a(m) + a(k) (4.12)
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where we let (g(m), T, u(m)) denote the (steady-state) operating condition in the
m! AT-time period ( “-” represents steady-state condition); note that 7" does not
depend on m since we consider the same target response time 7 across all time
periods.

There are two ways to determine operating condition (g(m), T, u(m)). First we
calculate (g(m), T, u(m)) using G/G/1 queucing cquations A.2 & A.7 for cach AT,
where AT is chosen sufficient long enough for G/G/1 modeling to be valid. That
is, the linearization of nonlinear system 4.8 & 4.11 is performed around the G/G/1
steady-state condition. Alternatively., we choose the steady-state equilibrium of 4.8
& 4.11 as the operating condition ((j(m), T, ﬂ(m)). By setting g(k + 1) = ¢(k) in
Eq. 4.8 and using Eq. 4.11. the equilibrium condition in each A7 is characterized

by

Am) = ji(m) = ié;:i T = W (4.13)

It should be noted that., when solving (g(m).a(m)) for a specified target re-
sponse time 7" using either the G/G/1 queueing model (Eqs. A.2 & A.7) or the
equilibrium condition (Eq. 4.13), the mean arrival rate A(m) and service rate 5(m)
need to be calculated with respect to the time period AT (the choice of AT could
be different for using G/G/1 and the equilibrium condition in (Eq. 4.13).

Linearizing 4.8 & 4.11 at (g(m), T, a(m)) and using 4.12, we have

T stm) ~ 5(’”" stm) — ~ <414>
T(k) = ond(k) + sgya(m)ak)
where
t
n(k) = Mk)At — mﬂ(m) (4.15)

1s modeled as a disturbance.

4.2.1 Derivation of LTI and LPV models

Based on Eqgs. 4.12-4.15 or Eq. A.2, A.7. 4.12, and 4.14-4.15, we have derived a
sct of Lincar Time-invariant and Lincar Paramecter-Varying Modcels as follows.

Linear Time-Invariant Models: If we choose AT as the entire duration of
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the workload. i.e. s = 1 in Figure 4.3, then there is only one single operating
condition (g, ) (which gives the target response time T') in the whole duration
of the workload, if we further approximate the s(k) and A(k) in Eqs. 4.14-4.15
by constant values (e.g.. the mean or high percentile value computed over the
entire duration of the workload), the system Eqs. (4.14-4.15) becomes a linear

time-invariant system. We define the following LTT models:

e LinearModel-Equilbm: the LTI model with operating condition (g, a) satis-
fying Eq. 4.13. Note that if we use the same and s and A in Eq. 4.13 and

4.15, the disturbance 7 in 4.15 disappears.

e LinearModel-G/G/1: the LTI model with operating point (g, @) satisfying
G/G/1 equations A.2 & A.7.

Linear Parameter Varying Models: 1f we consider an operating trajectory
(@(m), a(m)), m =1 to S, which is solved either from the G/G/1 queueing model
A.2-A.7 or the equilibrium equation 4.13 for all the AT time periods, the linearized
system Eqs. 4.14-4.15 become a linear parameter varying system derived based on
Jacobian lincarization. We define the following LPV models:

e LPVModel-Equilbm: the LPV system with (g(m), u(m)) satisfying Eq. 4.13.

Essentially the scheduling variables are the workload arrival rate A and ser-

vice demand s.

e LPVModel-G/G/1: the LPV model with (G(m), a(m)) satisfying Eq. A.2 &
Eq. A.7. Note that the operating trajectory depends on the workload arrival

rate A, service demand s, and squared cocfficients of variation C? and C2.

o LPVModel-OpenS: the LPV system Eqs. 4.8 & 4.10.

It should be noted that if the target response time T is chosen to be time-
varying (e.g. piece-wise constant), T could be used as one scheduling variable for

the LPV system, but we do not consider this case in this chapter.

4.2.2 Remarks on the modeling

The first-principles models developed in this section are essentially parameterized

(scheduled) by the workload characterizing parameters; in particular, request ar-
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rival rate A and service demand s. One of the advantages for using these derived
modcls for the performance management of Web servers is that same off-line con-
trol designs can be used to deal with different types of workloads/Web applications,
only requiring on-line measurcements of workload paramecters. Therefore, the pro-
posed modeling and control design in this chapter could lay a good foundation for
building a middle warc for different applications. To the best of our knowledge, it
is the first reported work to develop first-principles based LPV models for server
performance control by specifying workload parameters as scheduling variables.
In [1], a similar form as Eq. 4.8 was used to describe queue dynamics for the con-
gestion control of communication network systems, g(k-+1) = (k) + >3 (r (k) —
p(k)); where ry, is the control variable, denoting the source rate from source m
at the input of the bottleneck link. The service rate p(k) in [1]was modeled by a
p-dimensional stable Autoregressive (AR) process and a Linear Quadratic control
was applied to determine r,, in order to achieve target queue length. We consider
the performance management for Web server systems for which response time
(other than queue length) is the primary performance metric, which introduces
nonlinearity and is much more difficult to model and control. Another significant
difference lies in the modeling of request service demand. Requests in a network
system are just fixed-size packets (all packets have the same size); the service time
of a request at a link (leaving a router) corresponds to the transmission time of
the packet. Thus a request’s service time is more or less constant (depending
on the link bandwidth); an exponential service time distribution would be good
cnough for modeling communication networks. In contrast, service demand in a
Web/storage server system is highly varied and poses serious modeling challenges.
Also motivated by the complicated workload characterization and difficulty in de-
riving accurate performance models, system identification algorithms are applied

in Section 4.3 to develop control-oriented empirical models.

4.3 Empirical modeling

We adopt similar lincar and LPV system identification algorithms as that are
used in Chapter 3. Here the control input is CPU speed instead of rejection ratio

though. Again, depending on the system under consideration, the vector r could



45

include different parameters that characterize workload behavior, ¢.g. arrival rate,
file size, locality, and read/write ratio etc (or the scheduling parameters used in
the first-principles models in Section 4.2). As a starting point, we use a scalar
scheduling parameter (k) defined as the reciprocal of workload intensity,

(4.16)

1
") = s

which makes the implementation of the LPV system identification casier and more
cfficient. Here workload intensity is used slightly different from its convectional
definition, which is the ratio of the arrival rate A and service rate . We denote
the model obtained as LPVModel-ARX.

Motivated by the analytical LPV model which is derived by linearization around
G/G/1 steady-state operating conditions Eqs. A.2 & A.7, we have also investigated
LPV models using additional scheduling parameters (in the system identification)
such as the squared cocfficients of variation of the intcrarrival time C2 and service
11 1
As? AsC27 N2s2(C2+C72
corresponding LPV model as LPVModel-ARX-VAR.

demand (2. In particular, we specify r = ( )) and refer to the

4.4 Control design tools

Similar control design tools in Chapter 3 arce used here. Corresponding to cach
linear/LPV model derived in the previous section, we design control for the CPU
frequency u(k) so that the response time 7T(k) will meet its target value T while
reducing cnergy consumption. We classify the designs into lincar and LPV and

explain cach of them in detail as follows.

4.4.1 Linear designs

We formulate a Linear Quadratic (LQ) control problem, which optimizes the cost

function as follows:

J = (g THk) + 1 - 0 (R)) (4.17)

k=1
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where 7 and r, are weights for meeting the response time SLA and minimizing
the control energy.

a) LinearDesign-Equilbm: linear design at high-percentile load conditions using
the LinearModel-Equilbm.

Consider the LTI model LincarModel-Equilbm, where constant values of the
arrival rate A and service demand s will be used in Eqgs. 4.12-4.15. In order to
meet response time SLA for varying load conditions while reducing design con-
scervativeness, we design the lincar controller using different percentile values of A
and s calculated over entire workload. since the arrival rate and service demand
could vary a lot in the entire workload. In particular, the following percentile
o = 50—, 85—, 95—percentile values for A and s arc used. Therefore, the lincar
optimal control is designed with objective function 4.17 subject to the following
dynamic equation,

Gk +1)= qgk) — 2La(k)

S(l%

Th) = (k) — —5—a(k)

At Sa%Aat%

(4.18)

where the subscript “a%” represents the a-percentile value. In order to reduce
steady-error in meeting target response time, we augment the system Eq. 4.18 by

adding an integrator. Define a new state variable 4y,

ACEDW (4.9
ik +1) = qu(k) + q(k) (4.20)

The state feedback control law for CPU frequency u(k) is then computed as,

a1 (k)

w(k) =a+ [kiks) |
q(k

— )\()I%S(Y% + kl(}la{) + kQQ(k) (421)

where the feedback gain &y and ks are computed by solving the LQ) problem defined
by Eqgs. 4.17-4.20. Following a similar procedure, we have the following control
designs corresponding to different lincar models.

b) LinearDesign-G/G/1: linear design using the LinearModel-G/G /1.

¢) LinearDesign-ARX: linear quadratic design using the LinearModel-ARX in
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Scction 3.2.1.

d) LinearDesign-ARX + G/G/1-Feedforward: add a feedforward controller
using the G/G/1 queueing model to the design ¢).

It should be noted that the linear designs a) and b) presented above are not on-
line implementable since the entire workload is not available a priori to compute
the required information on arrival rate A and scrvice demand s. For real-time
implementation, predicted values for A and s would be used instead, which could
lead to additional uncertainty in modeling thus degrade control performance. In
order to use designs ¢) and d), we need historical workload data as training data
to build the ARX model. Since we mainly use the above linear controllers as
baseline designs to compare with LI’V modeling and designs, we neglect the on-

line implementation issues for the above lincar controllers.

4.4.2 LPV — H, control designs

We design controllers for cach LPV models derived in the modeling section.

a) LPVDesign-OpenS: LIPPV — [l control design for the LPVModel-OpenS
consisting of FEqs. 4.8-4.10.

Note that for the open-system modeling, system (4.8-4.10) is already a linear
parameter varying system. Define a (shifted) new control variable, (k) = u(k) —
(k) with a(k) = A(k)s(k), Egs. (4.8-4.10) become

.j/f) alk), T(k) — L) (4.92)

k)
It is an affine parameter-dependent plant with scheduling variables r; = 1/A(k)

gk +1) = q(k) -

and ro = 1/s(k). In implementation the scheduling variables can be determined by
measuring workload arrival rate and request size. In addition we need to specify
the range of the scheduling variable. This can be done offline by estimating the
extreme cascs of the workload. Once we obtain the LPV model and the scheduling
parameter, we can apply the similar LPV synthesis technique and system inter-
connection as used in Chapter 3.

Following a similar procedure, we have designed the following controllers:

b) LPVDesign-Equilbm: [.°V — 4 control design for the LPVModel-Equilbm.

Define scheduling parameters r; = 1/A(k), ro = 1/s(k), and ry =



48

1/(A(Kk)s(k)). The LPVModel-Equilbm then becomes an affine parameter-
dependent plant. Note that the scheduling parameters defined in this way are
not independent, which may cause the resulting design more conservative, but it
allows the direct application of affine parameter-dependent LPV control designs
without resorting to the polynomial parameter-dependent LIPV. The disturbance
n(k) in (4.15) is included in the exogenous input w in the [/, control design.

¢) LPVDesign-G/G/1: .PV — 114 control design using the LPVModel-G/G /1.

We specify scheduling parameters ry = 1/s(k), r = s(k)/a(m). and r3 =
s(k)g(m)/u?(m) with (a(m).q(m)) from (A.2) & (A.7).

d) LPVDesign-LPVARX: LI’V — 1, control design using the LPVModel-ARX.
According to the trace used in this chapter (see next section), data fitting of the
LPV model with polynomial dependence on scheduling variables does not improve
much than the LPV model with affine dependence on scheduling variables; there-
fore, the LPV — H,, control algorithm for affine LPV modecls is used, though the
Sum-of-Squares based synthesis [46]could be applied for polynomial LPV-ARX

models.

4.5 Simulation results and performance evalua-
tion

Modeling and control designs have been evaluated using a simulator built on top
of the commercial simulation library CSIM. We use real HTTP traces from [50].
which were collected during October 2004. There are 3 traces in all, denoted as
Workload 1 to 3 (or WL 1-3). The arrival pattern and service demand (file size)
of the three (one-day) workloads are plotted in Figure 4.4. Note that the values
of dynamic model coefficients highly depend on the choice of sampling period. We
present results obtained for sampling period At = 2 minutes and AT = 10 minutes
(AT = 1hr whenever G/G/1 queueing model is used since it gives the best result
compared to other time granularities). Sensitivity of the modeling and control
design to sampling interval is discussed as well. CDF plots of request sizes and

inter-arrival times indicate that these traces have large variances.
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4.5.1 Modeling and validation

We first study if the developed first-principles models capture major system dy-
namics of real traces; we only analyze LPV models here. Then training experiments
are conducted to identify linear ARX and LPV-ARX models. In both cases, a tra-
jectory of CPU frequency w(k), which is proportional to the time-varying workload
intensity (arrival rate A times service demand s), is used to run the workload. The

resulting time histories of queue length ¢(k) and response time T'(k) are measured.

WL 10

WL-2 -
12 . Wis g A MAAPA A A JAAAAA A\ A A
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Time (hr)
(a) Arrival ratce (b) Service demand

Figure 4.4. Somec cxample Web server workloads

4.5.2 Results from first-principles approach

Figure 4.5 plots the measured response time T'(k) versus the one-step prediction
by the LPVModel-Equilbm and the LPVModel-G/G/1 for all three workloads. Ex-
cept for prediction given by the LPVModel-G/G/1 running Workload 2. we can
see that both LPV models give reasonable accurate predictions; in particular, they
are able to capture the spikes in response time. The predictions are relatively
more conservative when response time is low (both models tend to predict higher
response time than the measured values), e.g., hour 15-24 of Workloads 1&3 by the
LPVModel-Equilbm, first 15 hrs of Workload 3 by LPVModel-G/G/1. This deteri-
oration in prediction corresponds to the situation when the server is experiencing
light load so that the modecling assumptions might not be well satisfied.

It is also noted that the LPVModel-G/G/1 provides slightly better prediction

in certain regions, c.g., after Hour 20 for both Workload 1 and Workload 3. The
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poor prediction of the LPVModel-G/G/1 for Workload 2 at Hour 18-20 is due to
the significantly high variation of request arrival rate C? for which Eq. A.7 is a
bad approximation for qucuc length; the several miss-prediction points after hour

20 arc duc to the high variance of scrvice demand C2.

4.5.3 Identification results

The same system identification algorithms arce applied to cach of the three work-
loads (WL-1/2/3). For Workload 2, the sampling time At is set to 5min in order
for the system identification algorithm to converge while At = 2min for both Work-
load 1 & 3. In model validation, similarly to the previous section, a trajectory of
CPU frequency u(k) that is proportional to the time-varying workload intensity is
used to run the workload.

Figure 4.6 shows the model predicted response time versus the measured values
using the same CPU frequency as in Figure 4.5. We can sce that the LPVModel-
ARX fits data quite nicely (in particular for Workload 1), improving significantly
compared to the LinearModel-ARX. By comparing the LPVModel-ARX in Fig-
urc 4.6 with the analytical LPVModel-Equilbm in Figure 4.5, it sccms that for
Workload which is less varied (e.g., Workload 1), the system-identified model gives
slightly better predictions while for Workloads with large variations/sudden jumps
(e.g. Workload 2 & 3), the two models are quite comparable.

We have also evaluated the LPVModel-ARX-VAR. which utilizes variance (be-
sides mean) of load conditions as additional scheduling parameters in the system
identification. It is obscrved that there is marginal improvement in prediction by
taking into account the variance in workload arrival and service distributions in

the system identification.

4.5.4 Control design

Each LQ and LPV design described in Scction 4.4 has been implemented in the
simulation package CSIM. Table 4.1 lists values of design paramecters for cach
controller: feedback gains in Eq. 4.21 for LQ designs and weighting functions
for LI’V — I, controllers (same weighting functions are used across different

LPV designs). Linear designs using 85—percentile load conditions are presented
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in Table 4.1 since they achieve the best trade off in mecting target response time
and reducing CPU usage compared to designs using 50— and 95—percentile load

conditions. The target response time T is set to 20 scc for all the designs.

o . Design parameters
Design Methods Workload 1 Workload 2 Workload 3
pom | R omr R
e 1= —0.0415 Ji1 = —0.0170 k1 = —0.0432
LinearDesign-G/G/1 ky = —0.0205 ko = —0.0083 ka = —0.0209
. e k1 = —0.1666 k1 = —0.0291 k1 = —0.0538
LincarDesign-ARX ko = 0.0037 ko = —0.0205 ko = —0.0045
W — 01827 —0.34210.16 | |4/ _ 0.312°—0.47210.20 | ;. — 0.0727=0.132 ] 0.06
L.PVDesign (systemlID models) ¢ A 211231-%512;0-2549 ¢ 0 1?;Z4§ON;) s ¢ A Zle-%f)?;ro-af)m
1 A.712°—9.19241.4¢ 17— 9.272°—17.4132+8.2: 17— A712°-9.19241.1¢
Wu = 22—1.77210.83 Wy = 22—1.51z | 0.68 Wy = 22—1.77210.83
LPVDesign (analytical models) We = %&M, Wy = W

d

Table 4.1. Control design parameters

Model Type | Design Method ;;\,})IHOKE?PIU ;}1(‘)1141()?(1}1)2[; ;}FTHO(E?EEI;
ARX 19.88 | 17.98 | 34.00 | 71.59 | 18.15 | 20.149
SystemID ARX4+G/G/1 21.16 18.41 29.87 | 72.83 19.81 20.23
LPVARX 19.90 | 1148 | 20.16 | 37.79 | 17.83 | 13.41

Lincar-Equilbm | 21.21 2250 | 23.99 | 38.18 17.93 | 26.16
Linear-G/G/1 22.49 | 24.41 28.52 | 39.49 | 19.59 | 24.78

Analytical LPV-OpenS 19.89 | 14.02 | 20.06 | 19.87 | 17.83 | 13.42
LPV-Equilbm 19.89 14.03 | 20.06 | 19.86 | 17.83 | 13.42

LPV-G/G/1 19.63 | 19.93 | 1849 | 27.87 | 18.22 | 22.12

Pure-G/G/1 3.23 31.98 844 15.13 33.1 22.18

Table 4.2. Performances results of different design methods

4.5.5 Simulation results

In this section, we present simulation results for cach control design running real
traces plotted in Figure 4.4. Table 4.2 lists the average response time and CPU
frequency for cach design, where for the LinearDesign-Equilbm and LinearDesign-
G/G/1. the results designed at 85—percentile of load conditions are presented
here. Average values for response time and CPU are calculated with respect to
the whole 24 hr duration of the workload. The unit of the CPU frequency has
been transformed from MHz to the processing capacity MB/sec. For comparison
purpose, we also list the result produced by using u(m) (AT = 1hr ), which
is computed directly from G/G/1 queueing model A.2 & A.7 by setting target

response time 7 = 20sec; in the computation of u(m), we assume full knowledge
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of the workload thus no prediction is involved. We denote this bascline design as
Pure-G/G/1 in the rest of the chapter.

Note that the target response time T is sct to 20scc, for performance evaluation,
we take 10% slackness and specify that if the average response time for a design is
less than 22 secs, the response time SLA is met and the design is a feasible solution.
We only compare the magnitude of CPU frequency among feasible designs. Except
the Pure-G/G/1 for Workload 3, we can see that almost all designs satisfy the
response time SLA for Workload 1 and Workload 3 (the LinearDesign-G/G/1 has
slightly higher response time for Workload 1); while for Workload 2, only LPV
designs and the Pure-G/G/1 design meet the target response time.

Linear vs. LPV: From Table 4.2, we can see that compared to linear designs,
the LPV designs save up to 30% CPU in average for Workload 1 and Workload
3. For Workload 2. LPV designs are able to meet target response time while use
significantly less CPU than lincar designs. This demonstrates that the utilization of
detailed time-varying information on workload improves the performance of control
design substantially. By examining the time-varying behavior in Figure 4.7, where
response time histories of the LPVDesign-Equilbm and the LinearDesign-Equilbm
arc plotted, we can sce that the LPV design outperforms lincar designs significantly.
In particular, during the transient overload situation (e.g.. ~hour 21 of Workload
1, ~hour 19 of Workload 2 and ~hour 16 of Workload 3 by obscrving both arrival
and service demand shown in Figure 4.4), the LPV design is able to allocate the
right amount CPU thus to maintain reasonable response time while the LQ design
is not able to handle this, which causecs significant oscillations in CPU allocation,
dramatic spikes in responsc time and getting stuck in overload for much longer
time.

W/ vs. W/O G/G/1-Feedforward: Both LinearDesign-G/G/1 and
LPVDesign-G/G/1 can be viewed as G/G/1 feedforward control combined with
feedback control. Table 4.2 shows that G/G/1-feedforward based linear designs
provide no or marginal improvement in reducing response time and CPU usage
compared to other linear designs. It is a clear trend that G/G/1-feedforward
based LPV designs consume much higher CPU than other LPV designs, which is
very possibly due to the conservativeness of the G/G/1 model in response time

prediction.
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Design Based on First-Principles vs SystemID Model: For Workload
1 and Workload 3, lincar designs using system-identification based models have
slightly better response time (with lower CPU usage) than the linear designs based
on analytical models; the results of LPV designs based on both models arc very
close to each other (except the LPVDesign-G/G/1). While for Workload 2, whose
rariability in arrival pattern and service demand is very high thus is quite chal-
lenging for the system identification algorithms used in this chapter, the designs
based on first-principles models are more competent, showing significant reduction
in CPU usage while meeting target response time. In terms of casiness for im-
plementation, analytical-model based LPV designs are not trace dependent - all
designs can be done offline and only require on-line measurement of load parame-
ters thus cffort in building models using historical training data is saved. On the
other hand, system-identification based modeling is more generic and applicable
to broader types of systems and traces, which is particular useful when analyti-
cal performance models are hard to derive for complicated systems (e.g. storage
systems, multiple-queue networks and other complex queueing systems).

Control Theoretic vs Pure-G/G/1: Note that the control of CPU for
the Pure-G/G/1 is updated every 1hr since it is the time granularity for which
queucing predication has the best accuracy for the traces used, while feedback
control design is implemented with At = 2min (At = bmin for the LPVDesign-
LPVARX) and At = 10min. In general, it is expected to see that queueing-
basced approaches perform better in coarse time granularity while feedback control
would be more responsive for finer time granularity. Here we focus on comparing
performance of the LPVDesign-Equilbm vs the Pure-G/G/1. From Table 4.2, we
can see that, in general (except for Workload 3). the Pure-G/G/1 provides very
low response time (far less than the target value) but with almost double CPU
usage than the LPVDesign-Equilbm. This shows that the result from the G/G/1
model is quite conservative, and there is no flexibility in trading off mecting target
response time and reducing CPU usage. For Workload 3, the squared coefficient of
rariation for arrival rate C? is around 2.5 ~ 5.0 for certain periods, which makes
Eq. A.7 a poor approximation thus the Pure-G/G/1 can not meet target response
time. We do not present the time-varying behavior between the LIV design vs.

the Pure-G/G/1 here due to the dramatic difference in response time and CPU
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usage.

Energy Consumption: With these allocation designs we evaluate the energy
consumption of cach design, which is the result of the combination of cach lin-
ear/LPV control with the same on-line server allocation algorithm listed in the
Appendix. We will also compare our designs with several naive heuristics that
are static, rather than dynamic, control of performance/power: 1) turning on all
servers in the pool (M = 30 servers) all the time, either at the minimum fre-
quency (denoted as All-server/min-freq) or at the maximum frequency (denoted
as All-server/max-freq), where the number M = 30 is determined in terms of the
peak load; 2) operating servers at the minimum/maximum frequency with mini-
mal necessary number of servers to meet the target response time (denoting them
as Min-server /min-freq and Min-server /max-freq, respectively). Note that for the
last two schemes, it needs an exhaustive scarch of number of servers to find the
least necessary number to meet response time SLA. thus they are not online im-
plementable. As listed in Table 4.2, we found that it takes at least 8/13/8 servers
to operate at the maximum frequency to meet response time SLA for Workload
1/2/3 respectively, while it takes at least 13/21/14 servers to run at the mini-
mum frequency for meceting target response time. For the comparison of cnergy
consumption across different designs, we evaluate the energy consumption of cach
design expressed as a percentage of the energy (Energy %) that would be consumed
by All-server/max-freq.

Remark 1: We have also evaluated the modeling and control designs based on
using a single LPV model, which is identified from cither one of the three traces.
In particular, 1) applying the LPV model and weighting functions of LPV de-
sign derived from WL1, WL2 has average response time 136.56 sccs with average
aggregate CPU 42.53 GHz and WL3 has average response time 22.04 with aggre-
gate CPU 22.47; 2) applying the LPV model and design parameters derived from
WL2, WL1 has average response time 24.97 with aggregate CPU 28.31 and WL3
has response time 18.94 with CPU 39.42; 3) applying the LPV model and design
paramcters derived from WL3, WL1 has average response time 25.55 with aggre-
gate CPU 18.16 and WL2 has response time 32.51 with CPU 33.18. Considering
that the target response time is 20sec (plus the 10% slackness, it is considered to

satisfy the response time SLA if the response time is less than 22sec), the above
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performance results based on a single LPV modecl arc reasonably good. The only
exceptional case comes from applying the model derived from WL1 to WL2, which
has several times longer response time than the target value. However, noting that
WIL2 changes significantly from WL1 in that it has substantially higher variance in
both arrival and service demand, any system-identification based approach would
have difficulty in dealing with this since in order for any system-identification based
models to work well, it is not uncommon to assume that there are no dramatic
changes between the evaluation data and the training data. Alternatively, the first-
principles based approach could be a better option since it does not rely on any
historical data training. Noting that in this paper, we have investigated both first-
principles based and system-identification based modeling and control designs, we
do not intend to advocate one approach over another, but rather evaluate the pros
and cons of cach approach and view them as complementary approaches.

Considering that WL2 scems to have the highest variance in both arrival and
file size among the three workloads, future work to improve current LPV sys-
tem identification results may include incorporating variance information of the
workload into scheduling parameters, or exploring higher order (or even nonlinear)
dependence on scheduling variables.

Remark 2: Note that the system identification related results presented in the
previous and current scctions essentially used the same data for both identifying
models and cvaluation. Evaluating an identified modcl on the original training
data (based on which the model is built) is the first step to validate a system
identification model since it is not nccessary that any derived model would fit the
training data well - appropriate function form and system order would be required
to provide a good fit. Onc major purposc for presenting this type of system-
identification results is to demonstrate that an LPV model would fit the data; the
identified LPV models capture the right functional relationship with respect to load
parameters and sufficient system order to characterize system dynamics. Another
purposc is to serve as a comparison basis for the first-principles based approach. We
would like to investigate how the analytical models (which are developed based on
certain approximations) would compare to the ”perfectly”-identified models. The
sccond step for model validation often requires evaluating the identified model on a

new sct of data. The results from Remark 1 have provided sufficient information on
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this aspect. In particular, if we append WL2/WL3 to WLI1, append WL3/WL1
to WL2. or append WL1/WL2 to WL3, then each "new” workload, which is a
combination of any two original workloads, could be viewed as a 2-day trace, and

the first half is used to build the model while the other half is nsed for evaluation.

4.5.6 Sensitivity to sampling interval

The choice of sampling period may affect system modeling and the resulting control
designs. There is a trade off in choosing an appropriate sampling period. Shorter
sampling interval tends to capture system dynamics more accurately and make the
system more responsive, but it could cause the model to be more sensitive to noise,
further, the modeling assumptions in Section 4.2 for a qucucing system may not be
satisfied for an overly short sampling period. We have examined the sensitivity of
modeling and control design to different time granularities such as At = 2—, 5—,
10—, 20— and 30— minutes sampling periods. We found that results for At = 2—
and 5— minutes intervals arc acceptable but the results for 10—, 20—, and 30—

minutes sampling time have larger response time in several orders of magnitude.

4.6 Summary

This chapter has presented a comprehensive framework for control-oriented mod-
cling and design for performance management of Web servers in achieving re-
sponse time SLA. We have developed system identification models as well as first-
principles models, which are based on analyzing transient queucing dynamics for
a hosting scrver in the presence of time varying load conditions. Both LTI and
LPPV control designs are studied and queueing theory based optimization results
arc presented as a benchmark. Results show that LPV designs outperform both
LTI and queucing optimization, in terms of responsivencss and conservativeness.
LPV control design achicves the best trade off between cost and revenue and thus
the optimal profit among the three approaches.

As a significant contribution of the proposed approach, we model the perfor-
mance control of a hosting scerver as a LPV system with the time-varying load

conditions as scheduling variables. Various LPV models have been evaluated, and
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corresponding controllers are designed. Through simulations using real Web traces,
it is demonstrated that LPV designs outperform linear controls and a conventional
G/G/1-based approach in terms of mean response time, mean control effort, and
time historics of response time.

It is worth pointing out that duc to the inherent LPV nature of server system
performance with respect to workload variations, the presented framework in this
chapter provides the versatility in dealing with different types of workload and
operating environment without much modifying the implementation of control al-
gorithms. The general framework of this LPV modcling and control is applicable
to a varicty of resource and performance management problems for server systems.

The results of this chapter are published in SIGMETRICS 2005 [47], American
Control Conference 2006 [51], and IEEE Transaction of Control System Technology
2007 [52].
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Chapter

Managing Server Performance
Under Self-Similar Workloads

This chapter presents a novel control-theoretic approach based on LPPV techniques
and workload characterization using a-stable-model based stochastic envelopes.
The proposed approach parameterizes a control-oriented dynamic-system model
and resulting controller using workload-distribution paramecters. By further in-
corporating the a-stable modeling into the LPV control approach. the presented
solutions not only allow system to adapt to workload changes, but also show great
promisc in handling self-similar workloads. The proposed system modeling and
control design approach is applied to a CPU management problem for web servers,
which performs Dynamic Voltage/Frequency Scaling to achieve response time guar-
antee. Simulations using real web-server traces arce conducted to show the strength

of the proposed approach.

5.1 Introduction

Beside feedback control, another body of work in the resource management of In-
ternet service has focused on understanding and characterizing the load imposed
on these servers by studying real world traces from different environments. Here we
do not intend to review the numerous references in this arca but try to concentrate
on the literature on characterizing the self-similar traffic, for which [53] gives an

extensive bibliographical guide to rescarch in self-similar network traffic and perfor-
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mance modeling. Note that incoming traffic to web servers may exhibit sclf-similar
behavior [54, 55] thus cannot be modeled by Poisson and Markovian processes due
to long-range dependence, which refers to correlations that decay very slowly [56].
In addition, such self-similar traffic also tends to exhibit burstiness in a wide range
of time scales. While heavy-tailed Parcto and stable distributions can be used
to model burstiness [54, 56], they cannot directly model long-range correlations.
At the other end, Gaussian self-similar models can be used to capture long-range
correlations and the self-similarity at different time scales [57], but they fall short
in their ability to model burstiness. There is also research which applies multi
fractal (multiplicative processes or cascade models), in contrast to a mono fractal
scaling (single Hurst parameter) characterization, to model more complex scaling
behavior in networks [58]. In this chapter, we are particularly interested in recent
work [59, 60] on using a-stable stochastic processes to model the self-similarity of
incoming traffic. Over and beyond the flexibility of fitting different levels of bursti-
ness and correlation in data, it provides a small sct of paramecters which have clear
physical meaning with manageable on-line computational cost.

In this chapter we investigate (i) how well do purely predictive (using sophis-
ticated workload models such as the a-stable stochastic processes), and purely
feedback-based (without a sophisticated workload model) strategies compare un-
der real workload? and (ii) can we integrate the sophisticated prediction models
with feedback control to perform better than the existing two individual options?
We present a novel framework that combines the LPV control with the a-stable
workload modeling techniques. We use a set of traces from the real world for a
proxy server to evaluate the proposed method. Results show that the proposed
solution can (i) meet response time bounds without over provisioning; and (ii)
outperform both the predictive-model-based provisioning and the feedback control

that adopts a simple workload model.

5.2 Problem Formulation

We consider managing CPU frequency to provide response time guarantecs for
requests in the context of Internet servers. As a first step, we consider a single queue

scrved by a single server, whose CPU frequency can be tuned dynamically, c.g.,



63

using the dynamic voltage/frequency scaling (DVS) mechanism which is allowed by
most processors today. Noting that the CPU frequency is closely related to power
consumption and clectricity cost associated with cach server, the DVS scheme
allows cnergy saving while still serving requests at a lower CPU speed thus leading
to no or less performance degradation. The design goal is to dynamically determine
a minimal CPU frequency that can meet target response time.

In the previous Chapter 4 a solution to CPU allocation for multiple servers
multiple applications is presented, where the problem was decomposed into two
subproblems. The first subproblem is to determine a minimal aggregate CPU
frequency for cach application that can mect response time guarantee as though
there is a single server per application running at this frequency. Then the second
subproblem is to solve an online server allocation problem. which determines the
number of servers allocated to cach application and the CPU frequency of cach
individual server such that the ageregate frequency obtained from the first sub-
problem is provided. This chapter focuses on providing new modeling and control
design framework to solve the first subproblem. Rather than the aggregate CPU

frequency, we use CPU frequency directly in the sequel.

5.3 Control-Oriented Web Server Modeling

In this section, we integrate the a—stable sclf-similar workload characterization
with the linear parameter varying technique to build a control-oriented model.
The review of a-stable modeling in Section 5.3.1 and Scction 5.3.2 is mainly in

terms of recent results from [59, 60].

5.3.1 An Alpha-Stable Model for Self-similar Workloads

Definition a-stable distribution [61]: A random variable X is called to follow an a-
stable distribution, referred to as X ~ Sg, . if there are parameters, 0 < o < 2,

o >0, —1 < x <1, and m € R such that its characteristic function has the

following form:

O(w) = E(5) = exp{jmw — |ow|*[1 — jxsgn(w)f(w, )]} (5.1)
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with f(w, ) defined as O(w,a) = tan(an/2) if a # 1, otherwise f{w, ) =
—2/mIn|w|.

Note that the characteristic function in Eq.5.1 is determined by four parame-
ters. The exponent « specifies which family the distribution belongs to, and it is
an indicator of the bursty level of the distribution. The distribution for o = 2 is
the Gaussian distribution. The paramecter y denotes the skewness, and m and o
denote the mean (location) and the scale (dispersion) of the distribution. There
are various algorithms [62, 63, 64] on parameter estimation for a-stable modeling
of web traffic. In this chapter, we are particularly interested in onc rescarch di-
rection based on the linear fractional stable noise (LFSN) [59]. An LFSN N, is
a stationary process dependent on the characteristic exponent « of the a-stable
distribution and the Hurst parameter H, which indicates the level of self-similarity
and satisfics 0 < H < 1. The LFSN has long-range dependence if the Hurst pa-
rameter /1 > 1/c. In addition, an LESN sequence N, j; corresponds to an a-stable
measure with zero mean, scale paramecter ¢ = 1 and some fixed skewness y sat-
isfying —1 < x <1 (x = 1 is often used to represent a totally positively skewed
distribution) [61]. That is, the LESN sequence N (i) ~ Sf, . Further, the LFSN
is the incremental process of a linear fractional stable motion (LFSM) process. It
is worth pointing out that the fractional Brownian motion is a spccial case of the
LFSM with the index @ = 2, and the fractional Gaussian noisc is a special case of
the LFSN with a = 2.

Consider applying the a—stable sclf-similar model to a sclf-similar arrival pro-
cess, then the number of requests arrived in the kth sampling period (with duration

At) can be computed as follows,

where the parameter A denotes the mean arrival rate. The scaling factor ¢ is defined
as the ratio of the scale parameter of the traffic process to the scale parameter of the
LFSN. Noting that the scale parameter of the LESN N, 5 is 1, the scaling factor ¢
is actually the scale/dispersion around the mean of the traffic. In summary, the a-
stable model in Eq.5.2 for request arrivals depends on four parameters: « denoting
the level of burstiness, H denoting the level of sclf-similarity, A representing the

mean arrival rate, and ¢ denoting the scale.
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5.3.2 Stochastic Envelope for an Alpha-Stable Self-similar

Distribution

The notion of stochastic envelope provides the flexibility for capacity allocation

to satisfy different percentiles of service demand. A stochastic envelope for the
arrivals in Eq.5.2 is computed as [60].

A=\+084-04) At (5.3)

The skew parameter 34 is uniquely determined by the probability that the

number of arrivals A surpasses its approximation /Al, where the probability is set

to a pre-specified small risk ¢, i.c.,

. A=At
/){/1>/1}/){7(7 N >3A}e (5.4)
AV

In Eq.5.3, the parameters A and o4 denote the mean and scale parameters of the
arrival process. Comparing Eq.5.2 and Eq.5.3, and denoting the scale parameter
of the LFSN N,y by o, then 04 = ¢ - oy, where ¢ is the scaling factor in
Eq.5.2. Thercfore, the arrival parameters A and o4 can be obtained from the a-
stable modeling of the request arrival process. Note that there is no closed-form
mathematical formula to give the direct relation from the risk ¢ to the parameter
34 in Eq.5.4, in terms of the a-stable distribution. However, given a sct of ¢’s, the
corresponding 347s can be numerically gencrated and tabulated using the a-stable
distribution model. If we also model the service demand (or file size) of requests
using the a-stable sclf-similar model, similar results as Eq.5.2 and Eq.5.3 can be

obtained as well, and the details are given in the next section.

5.3.3 A Linear Parameter Varying Fluid Model

A general discrete-time linear parameter varying system, denoted by I'(p), can be

represented by a difference equation as follows:

w(k+1) = F(p(k))x(k) + G(p(k))u(k) (5.

[
[
e
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where x(k) and x(k + 1) are often referred to as state variables in control systems
theory, and u(k) is called the control variable. p(k) is a time-varying exogenous
paramcter, which is often referred to as the scheduling variable.

Consider sampling intervals with sampling time At, and let N (k) denote the
number of jobs in the system at the beginning of the klh sampling interval, then
the number of jobs in the system at the beginning of the (k+1)th sampling interval

can be calculated as,

N(k+1) = {N(k) + Alk) — D(k)}* (5.6)

where A(k) denotes the number of arrivals in the kth period, and D(k) denotes
the number of departures (finished requests) in the kth period. The notation
{-}* = max(-,0). Eq. 5.6 indicates that the number of jobs in the system at the
end of At is the sum of the initial number of jobs in the system and the number
of arrivals minus the number of requests serviced in this duration.

Considering a sclf-similar arrival process, by Eq.5.3, the number of arrivals is

approximated by its e-stochastic envelope.

A(k) =~ (A(k) + Balk) - oa(k)) - At (5.7)

with 34 defined in Eq.5.4. We further consider that the request file size (service
demand), denoted by s(k), is a random variable approximated by the a-stable

sclf-similar model.

s(k) ~v(k)+ G4(k) - og(k) (5.8)

where v(k) and o4(k) are the mean and scale parameters of s(k) respectively. The

parameter 9, is determined similarly as in Eq.5.4,

s(k) — vk
P{s(k) > (v(k) + 3s(k) - 05(k))} = P {S()(k‘y)() > b(k)} = (5.9)
os(k
Note that different risk parameters € can be chosen for approximation of A(k)
and s(k). Let u(k) denote the allocated capacity and assume that the service time

is inversely proportional to the allocated capacity, then the number of requests
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being served is approximated as,

At u(k) - At
sk Ju(k) T w(k) + Bu(k) - og(k)

Conscquently, by plugging Eq.5.7 and Eq.5.10 into Eq.5.6, and lincarizing the

D(k) (5.10)

{-}7 (the lincarization is just used in the control design but the simulation will

include the {-}7), we have,

u(k)

N(k+1)=N(k)+ {()\(k) + Oalk) - oa(k)) — } - At (5.11)
By the Little’s law, the average response time T (k) in the kth sampling time

interval can be approximated by

T(k) =~ (5.12)

Note that for a given pre-specified risk level ¢ for stochastic envelope, Eqs.
(5.11-5.12) are parameterized by workload-characterizing parameters A(k), o.(k).
v(k), and o4(k) (where the parameters 3, and 3, are determined once € is fixed),
which can be obtained through a-stable self-similar models for the request arrival
and service demand. Define p = {\, 04,7, 0}, and compare Eqs. 5.11-5.12 with
Eq. 5.5, we sce that the system model consists of Eqs. 5.11-5.12 is a lincar
paramcter varying system with parameters of arrival and service demand defined
as scheduling variables. It should also be noted that the scheduling variables (A(k),
oalk). v(k). and o4(k)) may not be updated in the same time-granularity as the
control u(k) and mean response time T'(k), due to the minimum time required for

on-line identifying distribution paramecters of the a—stable models.

5.4 LPV Controller Design

Corresponding to the LPV model in Eqgs. 5.11-5.12 which is scheduled by the a-
stable distribution parameters, this section designs an load-parameter scheduled
LPV controller that generates time-varying aggregate capacity u(k) such that the

response time T'(k) will meet its target value T with minimal allocated capacity.
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The LPV control is often classified as a generalized gain-scheduling control, but it
provides provable stability guarantee for the closed-loop system, which can not be
provided by traditional gain-scheduling control. Another advantage of the LPV
control is that it does not require a priori knowledge of the scheduling parameters
but their online measurements.

A block diagram of a general LPV control is illustrated in Fig.5.1, and we
briefly summarize the LPV control as follows [45]. An LPV model I'y,,(p) can be
viewed as a linear-time-invariant model I'y,, (the subscript aug will be explained
in next paragraph), which is scheduled in a specific way by the parameter p .
The right figure in Fig.5.1(b) shows that the scheduling parameter p enters the
model Iy, (p) in a so-called linear-fractional-transformation (LFT) way [45]. An
LPV model I'y,,(p) which is affine dependent on the scheduling variable p is a
special case of the LPV models that have LFT dependence on the scheduling
rariables. For an LIV model I'y,4(p), an LIV control designs a scheduling-variable
parameterized controller K(p) such that the closed-loop system is stabilized for
all admissible parameter trajectories p [45]. Note that in Fig.5.1(b), K(p) is a
linear-time-invariant controller K scheduled by p in the exactly same way as the
LPV model Iy, (p) is scheduled by p. Besides stability, the controller also assures
that the norm of the transfer function from w to z, denoted by T, (which is an
input-output mapping in frequency domain) is less than a specified level ~, that
is || T

the-shelf LPV control algorithms can be applied to generate the control law K,

< ~. Commonly used norms || - || include /1. /15, and 11 norms. Off-

and the online controller K(p) is implemented by scheduling K with parameters p
online.

Next we explain how the augmented model Iy, relates to the original system
model T" and what the input/output variables w,u. z, y in Fig.5.1(b) mean in En-
glish. The augmented model Iy, is @ combination of I and a set of filters, which
arc often referred to as weighting functions. There are two input vectors and two
output vectors of the augmented model I',,,: 1) the input w denotes any external
input signals to the system, c.g., the reference signal, disturbance and sensor noise;
2) the input u denotes the control input to the system model. which is also the
output of the controller K; 3) the output y is the output variable of the system

model, which is measured and fed back into the controller K: 4) the controlled
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variable z, which consists of the sct of variables of interest, c.g., the tracking error
and control cffort.

Given a set of external inputs w to the system, performance specifications of
the controller can be fulfilled by specifying appropriate controlled variables z and
designing the weighting functions. For example, in Fig.5.1(a), given a target re-
sponse time T (which is an external input included in w), reducing the tracking
error can be achieved by 1) including the weighted tracking error signal Z, in the
controlled variable z, 2) designing a filter W, that specifies the frequency range
where reducing tracking error should be emphasized, and 3) minimizing (or re-
stricting) the norm of the transfer function from the input w to the output z. In
Fig.5.1(a), we also include the weighted control input signal 7, = W, - u in the
controlled output z, then limiting the control cffort can be achieved by minimiz-
ing or reducing the norm of the transfer function from 7 to Z,. By comparing
Fig.5.1(a) and the left figure of Fig.5.1(b), the augmented I'y,, is formed by com-
bining the original model I and weighting functions W, and W,,, with appropriate
block-diagram transformations.

For the LPV model in Egs. (5.11-5.12), we formulate an LPV-//, control design
problem as shown in Fig.5.1(a). Performance specifications on minimizing tracking
crror of meeting target response time and reducing control action arc addressed
by minimizing the H, norm of the transfer function 7,, from the input signal
w, which includes the target response time 7. to the controlled output variable
z, which includes the frequency-weighted tracking crror 7, and the frequency-
weighted control action Z,. The algorithms for a general LPV-H. can be found
in [45], and off-the-shelf MATLAB LPV Robust Control toolbox is used in our
controller design. The design paramecters are the weighting functions W, for the

tracking crror and W, for the control input.

5.5 Simulation Evaluation

Our simulation uses real HTTP traces from the Web Caching project [50]. There
arc three traces in all and cach corresponds to an individual web application for onc-
day duration. We denote the traces as Workload 1 to 3 (or WL 1-3) respectively.

The arrival rates and file sizes of the three workloads can be found in Fig. 5.3. The
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Figure 5.1. Block diagram for a general LPV control

modeling and control designs have been evaluated using a simulator built on top
of the CSIM simulation package. It is assumed that the static http requests in WL
1-3 hit in the cache. Micro benchmarks have been run for requests with different
file sizes to obtain request service times, and it is verified that the service time of
a request is more or less proportional to the file size and inversely proportional to
the operating CPU frequency [47]. In Sec. 5.5.1, we first study how the a-stable
models fit the arrival and service demand of the three workloads and how the

fitness relates to the self-similarity and burstiness of the workloads.

5.5.1 «-Stable Modeling of Arrival and Service Demand

The a-stable model for a workload is determined by four paramecters: stability
index, scale, mean and skewness (or the Hurst parameter). We have evaluated
several popular a-stable-modeling algorithms in [62, 59, 63] to investigate their ac-

curacy in identifying these parameters and easiness/complexity in implementation.



71

Here we use the quantile-based algorithm in [62, 59] for identifying parameters.

Evaluating a-stable self-similar modeling using CDFs Notc that the no-
tion of stochastic envelope originates from the cumulative distribution function
(CDF) for a random variable. Consequently, we first would like to compare the
CDFs constructed from measured request arrivals and service demands and the
CDF's predicted by the identified a-stable models. The CDF plots given in Fig.
5.2 are obtained by applying a single (stationary) a-stable self-similar model to
cither the arrivals or file sizes of cach workload of the 24hr duration, where the
x-axis is normalized by the mean arrival rate or mean file size of cach workload.

We have the following obscrvations:

e Majority region of cach CDF curve corresponding to the a-stable model is
located to the right of the CDF curve from the measurements. This implics
that the a-stable-model estimated arrivals (or service demands) are more

conservative than the actual measurements.

o The a-stable estimated CDFs and actual measurcment based CDFs match
quite well for high-percentiles (around 85% — 95%), which are exactly the

percentile range used for the stochastic-envelope based CPU allocation.

e There exist relatively large mismatches in CDFs between the a-stable models
and the actual measurements corresponding to low-percentile values. Obser-
vations from workloads’ time histories reveal that the mismatches could he
due to that the request arrivals and file sizes exhibit multi modal probability
density functions, cspecially there arce a few requests that have much larger
file sizes than the rest of requests, while the a-stable models have unimodal
probability density functions. By trying to fit a multi modal distribution
using a unimodal distribution, it is expected to see a bias (shift) of the dis-
tribution, and relatively larger mismatches at the low percentile region or
extremely high percentile region (probability approaching one). However,
since our CPU allocations target high-percentile range (85% — 95%), thus
estimation errors in the low-percentile or extremely high-percentile ranges

would not affect much our capacity allocation anyway.



Table 5.1. Corrclation of load paramcters and estimation crrors between the a-stable-

model predicted CDFE and real-workload CDF

To further understand the fitness of a-stable models with respect to the real
traces, in Table 5.1, we list for cach workload, load parameters and the estimation
(mismatch) error, which is calculated as the summation of the squared error over

all sample points between the a-stable model predicted CDF and the measurcment

basced CDF. We have observed that

Arrival Trile size
Tist. error o 1/cy o H Tist. error o 1/cy o H
WIL-1 0.1184 1.9240 | 0.5196 1.6685 | 0.64 1.1490 1.2243 | 0.8168 | 0.3126 | 0.52
WL-2 0.0511 2 0.5 2.8302 | 0.66 0.5282 1.4986 | 0.6673 | 0.6738 | 0.5
WL-3 0.2543 1.8561 | 0.5388 | 2.1735 | 0.65 1.3505 1.1665 | 0.8573 | 0.3858 | 0.55

e In all workloads, both arrivals and file sizes have Hurst paramecters H > 0.5

thus indicating sclf-similarity.

Since /1 > 1/« indicates long-range dependence (5.3.1), the arrival processes
of all workloads cxhibit stronger long range dependence than their service
demands since /1 > 1/« for all arrivals while /1 < 1/« for all file sizes. This
could also explain why the estimation crror for file sizes are much higher than

that for the arrivals.

Smaller estimation errors always correspond to higher «v values (higher bursti-
ness). especially for the arrival process of WL2 where a=2 implying that the
arrival process follows a Guassian sclf-similar model. This is partially due to
that the accuracy of a-stable modcling increases when the stability index o

increases.

Among the three workloads, WL-2 has the highest scale parameter in both
arrivals and file sizes but has the lowest estimation error from a-stable mod-

eling.

In summary, we speculate that with higher stability index (for burstiness) and

higher Hurst parameter (for self-similarity), the a-stable self-similar models would

provide better and less conservative estimations for workloads.

Evaluating the time-varying a-stable models We further study if a time-

varying a-stable model would capture the time-varying behavior of load conditions.
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We divide the whole trace of each workload into period segments and let AT denote
the duration of cach such scgment with k as period index. Then we identify
the workload parameters A(k), oa(k), v(k), and o4(k) corresponding to certain
e-stochastic envelopes, and generate the a-stable model predicted arrivals and
file sizes in each period AT. Fig.5.3 shows the measured vs. a-stable model
predicted arrivals and service demands of cach workload. In these figures, Mean
Value is computed using the measurements, while A-S corresponds to a-stable
model predicted workload statistics for 85% envelope (¢ = 0.15). Both the Mean
Value and A-S are calculated using AT = 1hr. It can be seen that the time-varying

a-stable models capture the load variations very well.

5.5.2 Control Design Results

In this section, we compare our a-stable-parameter scheduled LPV control design
(with € = 0.15 stochastic envelopes for both arrivals and file sizes) to three other

design approaches:

1. Alloc-by-request (Req): a nobrainer scheme that allocates CPU demanded
by the total requests, which is the product of the arrival rate and file size in

a sampling period.

2. OpenLoop-a-stable (OpLp): a pure a-stable model based CPU allocation
scheme, which does not use any feedback thus can be considered as an open-
loop design. The stochastic envelope used in this approach is chosen as
¢ = 0.15. The algorithm is a modified version of that from [60] and is

described below.

An a-stable stochastic envoloping method is applied to solve the CPU al-
location problem in the afore-mentiond OpLp experiments. The algorithm
is based on [60], which considers a resource allocation problem with both
buffer size and delay constraints (7). While the original problem considers
a single-server queueing system of constant-service rate (C'), and assumes a
service policy where the requests exceeding the buffer size () are discarded,
our formulation is different in several aspects: we study the infinite buffer

size case; service rate is time varying, which makes the problem more chal-
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lenging; we only consider the delay constraint. The following approximations

are made in order to apply the reported resource allocation algorithm,

e Dcrives a buffer size constraint from time delay constraint using the
Little’s law to obtain its two-constraint equivalent. More specificly, we
characterize the arrival process over each AT using a-stable models to
get A, then B = X\ * T

e Approximates the time varying service rate by its a-stable envolope

value.

With these approximations the CPU allocation algorithm in the OpLp
experiments is a straight-forward implementation of "Resource allocation

with loss and delay constraints” in [60]. See the pseudo code below.

define mean-arrival-rate as A

define mean-service-demand as S

define buffer-size as B

define resource-allocation as R

define aggregate-C'PU-allocation as uk

I = target-response-time * \

for each «allocation-interval
get H. K. ao; from the arrival process
get  S%% a5 the 85% service demand
R m B(ufl)/U(Kay/uH(l _ H)(lfu)/u
uk = R 9%

end

3. LQ: a linear quadratic (LQ) controller which minimizes the weighted
quadratic sum of response-time tracking error and CPU frequency. An ARX

system-identification model is used.

Essentially, we compare performances among a design that allocates by demand
with no modeling on either workload or dynamics (from CPU to response time),

a design that uses detail workload modeling but no feedback, a design that uses
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Table 5.2. Design results

WIL1
(AT, At) | mean resp. time (sec) resp. time var. mean CPU (MHz) CPU var.
(min, sec) | LPV | LQ |Oplp| Req |[LPV| LQ |OplLp| Req |LPV | LQ |[Oplp| Req |LPV|LQ|OplLp|Req
(10,10) |20.43(20.00|21.44 [110.1|1610| 1589 | 1587 |3.6c1[14.11[16.10| 15.68 [12.93| 88 | 91 13 87
(30,30) |20.08(19.79| 34.81 |74.62| 1050 | 1532 | 3553 [3.4c4[13.01[14.96| 14.73 [12.78 | 58 | 18 12 70
(60,60) 120.09(19.72]39.31 |76.14|1011| 1707 | 1818 [2.5c4[13.22[16.01| 11.58 [12.55| 12 | 38 11 11
(210,300) [20.25(22.62| 61.04 [78.61 1117 | 3730 | 9127 | 7907 |14.23[20.62| 11.43 |12.07| 17 | 89 12 13
WIL2
(AT, Al) | mean resp. time (scc) resp. time var. mean CPU (Mliz) CPU var.
(min, scc) | LPV | LQ |OpLp| Req [LPV ] LQ |[OpLp| Req | LPV | LQ [OpLp| Req |LPV|LQ|OpLp|Req
(10,10) |21.39(22.80|118.3 | 1962 | 1734|1254 | 7.7¢5 |3.4c6 [ 18.50(30.56 | 21.77 [15.51| 213 |264| 61 |162
(30,30) |21.13(25.01|372.7 |592.3| 1563 | 7654 | 5.7¢d | 5.6¢5[18.25]19.82| 24.35 [ 15.68 | 150 | 65 81 | 117
(60,60) |21.17(25.54|211.9 [205.1]1990| 9023 | 2.0¢5 |6.9¢4[19.69]21.23|26.90 |15.57| 140 | 39 | 100 | 85
(210,300) [26.03[4111.9{ 31.29 [292.5 | 6831 | 1.5c5 | 2.1 |1.1e1{25.01(23.61| 29.47 |15.43| 235 [298| 415 51
WL3
(AT, AD)| mean resp. time (sec) resp. time var. mean CPU (Mliz) CPU var.
(min, scc) | LPV | LQ |OpLp| Req [LPV ] LQ |[OpLp| Req | LPV | LQ [OpLp| Req |LPV|LQ|OpLp|Req
(10,10) |18.40(18.17]210.8 |24.21 1267|1303 | 1.1e5 | 7810 [14.27[16.59| 14.54 [13.71] 92 [121| 62 72
(30,30) |18.08(35.39|104.0 [31.73|3482[1.0c1| 5.1ed [1.1c4[15.70]16.03| 15.61 [13.27] 101 [119| 68 A7
(60,60) |18.13[104.3]120.2 |40.33|4151|2.9e4 | 6.4e4 | 1.2e4[16.23]15.24| 15.19 [13.05] 88 [223| 63 36
(240,300) [20.33[26.02| 883.7 |85.78 | 4462 | 1.2e4 | 2.1e6 | 1.9e4 | 16.02[19.99| 14.71 [12.81] 27 | 74 33 23

feedback but no sophisticated workload modcling, and the proposed design that
integrates LPV control and a-stable modeling.

The main metrics used for comparison here arc average response time and
average CPU frequency. The response time SLA is set to be 20s;: with 10% slack.
the design is considered to meet the response time SLA thus feasible if the mean
response time is less than 22s. The mean CPU frequency will then be compared
among feasible designs. Besides the mean statistics, Table 5.2 also lists variances
of response time and CPU frequency to give an indication on reacting to transient
overloads.

Note that the a-stable sclf-similar modcling and all design schemes depend
on the time granularity of the sampling periods (denoted by At) during which the
control is implemented and the response time and workload statistics are measured,

and possibly the time intervals where the a-stable models are updated (denoted

by AT). In Table 5.2, we include the results for different time granularities: At =
10s, 30s, 60s, 300s, and for each Atf, the corresponding AT = 10min, 30min, 1hr.
4hr. All results in the Table are based on online implementation.

From Table 5.2, one can see that the LPV controller consistently meets the
response time SLA (except for WL2 at At = 300s) and has lower mean CPU

frequency than other feasible designs. The LPV controller also has much lower
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variances of response time, and lower variances of CPU in most cases. Further, the
LPV controller is very robust to different time granularities. Detail comparisons

arc given as follows:

e LPVws. LQ): Interms of the mean response time, the best LQ controllers can
meet target response time for both WL1 and WL3, and have slightly higher
response time than the target value for WL2. Though the mean CPUs of the
LQ controllers arc only slightly higher than the LPV controllers, the best LQ
design has at least 50% higher (and up to ten-times) variance of response
time than the best LPV controller for cach workload. This indicates that
the LPV controllers adapt to load variations and handle transient overloads

much better than the linear controllers.

e LIV ws. OpLp: The best design of OpLp meets the response time SLA for
WL1, but its response time is far from the target value for both WL2 and
WL3, while it uses comparable mcan CPU frequency as the LPV controller.
It is also obscrved that OpLp has much higher variance of response time
(~100 times higher than the LPV) and is very sensitive to the sampling
time. There is no consistent trend that smaller time granularities would
provide better results or vice versa based on the simulations. The OpLp
designs allocate CPU corresponding to certain stochastic envelope with no
feedback, thus they ignore and do not react to spikes in workloads, while the
LPV designs smooth out the cffect of workload spikes on response time by

using feedback.

e LIV vs. Reqg: The best Alloc-by-request design is close to meeting target
response time for WL3., but none of them can satisfy the response time SLA
for WL1 and WL2. We can see that the Alloc-by-request designs are not
able to allocate cnough CPU by just utilizing mean statistics of workloads.
In addition, among all designs for all workloads, the Req designs have the

highest (or 2nd highest) variances of response time.
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5.6 Summary

It is widely aware of that Internet services arce under sclf-similar workloads, which
exhibit large variance in a wide range of time scales. The large variance in arrival
ratc and service demand have significant negative impact on Server’s performance.
As a result QoS specifications such as response time may not be able to guaranteed
under these workloads using the workload characterization methods discussed in
Chapter 4, duc to under estimation. a-stable distributions arc adopted to model
Web server workloads and their characteristics such as arrival rate and service
demand are estimated using stochastic envelopes based on a-stable modeling.
The results of this chapter has been published on the IEEE International Work-
shop on Feedback Control Implementation and Design in Computing Systems and

Networks 2007 [65]. and submitted to Journal of Performance Evaluation [66].



Chapter

Stochastic Linear Parameter Varying
Control for CPU Management of

Internet Servers

In this chapter, we continue with the same application on CPU allocation, but
adopt a probabilistic robust control approach. In particular, we present a stochastic
LPV control that uses an LPV fluid model scheduled by randomly-distributed
workload parameters and provides control solutions via solving a stochastic semi-
definite program.

In the sequel we first give the motivations of introducing stochastic control
design in Scction 6.1. Stochastic LPV modecling of Internet servers is presented in
Section 6.2. In Section 6.3, we present the stochastic robust LPV control, where
the randomly distributed workload parameters are used as scheduling parameters,
and the resulting probabilistic LPV control is solved via stochastic semi-definite
programming. Simulation results using recal Web traces are given in Section 6.4.

Conclusions arc drawn in the end.
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6.1 Motivation for Stochastic Robust LPV Con-

trol

The stochastic approach to Internet Web-server dynamics modeling and perfor-
mance control proposed in this chapter is mainly motivated by two reasons.

First, a workload is often characterized by two complementary distributions:
(1) the request inter-arrival time and (2) the service demand distributions, which
capturc the workload intensity and its variability. Performance metrics are com-
monly specified in a statistical way as well. Consequently, probabilistic approaches
to system modeling and control designs are needed.

Sccond, traditional performance management for server systems relies on worst-
casce estimates of load and resource availability; thus, server resources arc often
provisioned to meet peak demands. However, the worst-case resource demand is
likely to be significantly higher than its normal usage. Thus provisioning for peak
demands often implics underutilization of server resources most of time. Conse-
quently, rather than over-provisioning for the worst-case load, performance man-
agement in today’s Internet hosting center would limit rather than eliminate the
risk of failing to meet demand, allocating to cach application the minimal scrver
resources needed for acceptable service quality, and leaving surplus resources to
deploy clsewhere. This also motivates the need for probabilistic approaches for
modeling system uncertainty and operating conditions.

Thirdly, the deterministic LI’V control design employed in the previous chap-
ters (Chapter 3-Chapter 5) requires affine dependence on scheduling parameters.
As a result a third scheduling parameter has to be introduced to transform a non-
linear (bilinear) LPV model into an affine LPV model, which leads to design con-
servativeness. Gridding techniques arc available for nonlincar deterministic LPV
control design, however they are usually computationally intensive. The proba-
bilistic LPV control design method introduced in this chapter is able to handle

nonlincar paramcter dependence and is computationally more cffective.
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6.2 Derivation of an LPV Web Server Model

In this scction, we focus on analyzing transient dynamics of the system in Figure
2.5 to develop control-oriented models. Over the sampling interval [(k — 1)At, kA?]
define N (k) as the queue length at the end of the interval k. and T'(k) as the mean
response time following the definition of Ny and T in Chapter 2. Choose allocated
CPU wu(k) as the control input, Ng(k) as the state variable, and T'(k) as the system
output.

6.2.1 A Nonlinear Time-Varying Model

We consider the situation where the traffic load scen by the system is high and
the utilization is high, i.c., the server is serving requests all the time. Since the
number of requests queued up during the time period of [kAt, (k+ 1)At] is the
sum of the initial queue length at AA¢ and the number of arrival requests minus

the number of requests serviced in this duration, we have

k + 1 { /\ + n(LII[b - /nflUE’d}+ (6'1)

where {37 = max(-,0), enforcing queuc length to be non-negative.  When the
traffic load is high and the system utilization is high, the number of arrivals and
departures in a sampling period can be approximated by A(k)At and p(k)At.

respectively: i.e

AK) = tigpriu] AL pi(k) = 100/ A (6.2)

Also due to the high load and high utilization assumption for the system, the
queue will never be empty thus the projection to the positive plane {-}7 in Eq.
6.1 can be removed. using A.2 and Eq. 6.2, Eq. 6.1 becomes,

At .
Ny(k+1)= Ny(k)— mu(k‘) + Ak)AL (6.3)
s(k

Further, the average response time T'(k) in [kAt, (k+1)At] can be approximated

by the sum of mean queueing delay ¢*(k)/X (k) and mean service time 1/u(k).

where ¢*(k) denotes the average queuc length in the k% sampling period. That is,
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oy g (k) 1
=S T m

(6.4)

For a stable open system, the throughput X (k) can be approximated by the
arrival rate A(k); while for a closed system, the throughput X (k) is approximated
by (k). By further approximating the average queue length ¢*(k) by Ny(k) and
absorbing the one request in service in the calculation of Ng(k), we have for a open

system,

or for a closed system,
No(k)  N(k)s(k)
wk) (k)

It should be noted that the system consisting of Eqs. 6.3 and 6.5 is a nonlincar

T(k) = (6.6)

time-varying system since the output variable T'(k) is inversely proportional to the

control input u(k).

6.2.2 A Linear Parameter Varying Model Derived Using
Jacobian Linearization
An LPV model can be derived based on Jacobian linearization, i.e., linearizing

Egs. 6.3 & 6.6 around an equilibrium trajectory. By setting Ny (k+ 1) = N (k) in

6.3 and using 6.6, the equilibrium trajectory is characterized by

Am) = p(m) = 4

s(m) .
T — Ng(m)s(m) (67)
w(m)
Define
No(k) = Ny(m) 4+ N (k)T (k) = T(m) + T(kyu(k) = a(m) + a(k) (6.8)

where we let (Ny(m). T, u(m)) denote the (steady-state) operating condition in the

m! AT-time period ( “-” represents steady-state condition); note that 7" does not

depend on m since we consider the same target response time 7" across all time
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periods.

Note that from Eq. 6.7, we have u(k) = A(k)s(k) and N, = Tu(k)/s(k) =
TA(k). where the “-” and index k are used to denote “steady-state” values in the
E" sampling interval. The target response time T is the same across all intervals.

By 6.8, we derive the LPV model from Eqs. 6.3 & 6.6 as follows,

A

Ny(k+1) = ,\AS k) — )At ulk
s( ; ) 1( 2 Sm) a( 3 A 6.9
T(k) - A(m) \S(k) B s(m)ﬂ(m)i‘(k)

Equation 6.9 is a linear parameter varying system with scheduling variables
51(m) == 1/X(m) and &(m) := 1/5(m), where A(m) and 5(m) can be approxi-
mated by the mean arrival rate A(k) and file size s(m) in the m*® AT interval. AT
in general does not have to be equal to the sampling interval. Since the traffic load
raries in a much slower time scale (usually in minutes for a Web server applica-
tion) compared to the system dynamics (where the response time of a Web server
is expected to be seconds), the LPV system 6.9 is slow varying, which satisfies the
conditions for LPV control design.

Meanwhile note that Eq. 6.9 has nonlinear (bilinear in particular) dependence
on scheduling variables. Existing deterministic LPV control designs have to use a
gridding technique to partition the scheduling parameter space in order to solve
any nonlinear-parameter-dependent LPV systems. Alternatively, approximations
have to be made to transform such LPV systems into ones that have cither affine or
linear-fractional-transformation (LFT) dependence on scheduling variables. The
probabilistic robust LPV control used in this chapter (details are given in Section
6.3) applies a stochastic gradient algorithm to solve an LIV control for the model
6.9 scheduled by workload arrival rates and service demand. Advantages of this
design method is that it does not need the gridding technique. neither approxima-

tions of the functional dependence with respect to scheduling parameters.

6.3 Probabilistic Robust LPV Control

We formulate an LPV — L, control design problem as illustrated by Figure 6.1,
where the performance specifications on minimizing tracking crror of mecting tar-

get response time and reducing control action are addressed through the design
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Figure 6.1. Robust control system interconnection

of weighting functions W, and W,,, respectively. Low-pass filters arce appended to
both input and output channels of the original LPV plant. The cutoff bandwidth
of the low-pass filters should be much higher than the feedback sampling frequency
so that the system performance would not be affected. With a bit abuse of notion,
let 17(0) denote the LPV model that includes the original plant Eq. 6.9 as well as
the input/output low-pass filters. The controller K(0) is designed such that the
closed-loop system is stabilized and the Ly norm of the transfer function from the
exogenous input (the reference response time T) to the controlled variables (the

weighted error signal € and the weighted control signal ) is minimized, i.e.,

with performance level k, where S denotes the sensitivity transfer function.

We.S

<k (6.10)
W,KS

2

Note that in the LPV system Eq. 6.9, scheduling paramecters arc defined as
(k) == 1/Xk). da(k) = 1/s(k), ie.. the LPV model Eq. 6.9 has nonlinear
(bilinear) dependence with respect to scheduling parameters. In next section, we

apply the probabilistic robust LPV control from [67] to solve Eq. 6.10.

6.3.1 A Probabilistic Robust LPV Control design

The control design of a LPV system is often reduced to solving a sct of paramecter-
dependent Linear Matrix Inequalities (LMI) [45]. In this section, we illustrate the

probabilistic robust LPV control. The LPV system Eq. 6.9 together with input-
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output low-pass filters and performance weighting functions W, and W, (as in Eq.
6.10 and Figure 6.1) forms an augmented LPV plant; by abuse of notation, we
still refer the augmented LPV system as the LPV system. Further, for the casc
of implementation using the Matlab toolbox, we derive a continuous LPV model
from the original discrete-time augmented LPV system and put it into a standard

LPV plant form as follows:

Ny A(0)  Bi(9)  Bs(9) N,
¢ | =1 i) D) D) d (6.11)
T W) Dy(8) 0 u

where d denotes the external input vector (in Figure 6.1, it includes the tar-
get response time T), e(k) is the controlled output vector (in Figure 6.1, it
consists of the weighted tracking crror between the measured response time
and its reference value, and the weighted control signal). The system matrices
(A, By, Ba, C1, Cy, Dy, Dy, Dyy) are defined accordingly.

The LI’V — Ly control problem (with /Ly norm < K) is solvable if and only if
there exist X = X7, Y = YT that satisfy the following QMI/LMI, for v > 0 and
for all 9 € © [67]:

P(X,8) = A(O)X + XAT(8) + XCT(0)C1(8)X
Fr2B(8) BT(8) — Ba(0) BT (8) + ~1 (6.12)
< 0

QY.8)= AT()Y + YA(S) + YB ()BT (8)Y

+12CT(6)01(8) — OT (0)Co(6) +~1 (6.13)
<0
X k'
RIX,Y) = "l <o (6.14)
k'Y

If Egs. 6.12-6.14 hold, an LPV controller (A.(3), 3.(8), C.(d)) can be con-
structed in terms of the solution (X, Y) and online measurements of the scheduling

parameter d(k), i.e.,
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A(8) = A@B) — Y OT(8)Co(8) — Bo(8)BT()(X — w2y 1)
K2V T OT(B)OL(8) + 1 2Y QY. 8) — A1) (XY — 5 21)]

B.0) = Y 'CT(o)

Cu(8) = —BIE)(X -k 2y 1)

(6.15)

Conscquently, the LPV control design for Eq. 6.9 is reduced to solving the
parameter-dependent QMI/LMI in Eqgs. 6.12-6.14.

Define a matrix-valued function,

P(X,8) 00
V(X,Y,8) = 0 Q.5 0 (6.16)
0 RX.Y)

and a scalar function

J(X.Y.8) = |IV-(X.Y.5)|

‘ ‘ | 6.17
= (I1PH(X,0) 17+ QT (X, 8)I + [[RT (X, 8)[1")!/ 040

where (-)T denotes the projection to the semi-definite cone, e.g., Pt = UATUT,
where J is the eigenvector of I? and A = diagAy, A, - - - contains all the eigenvalues
of I, with AT = diagA\[, Ay, -+ and X\ = max();.0).

By treating the scheduling parameter ¢ as random samples from ¢ € 0 following
certain statistical distributions (note that for the LPV Web server model Eq. 6.9.
the scheduling parameter § is 6 = [§105]", where §;(k) := 1/A(k) and (k) =

1/s(k)), we define the following stochastic optimization problem

1)1(1181/1 Ios(J(X,Y,0)) (6.18)

where I75(-) denotes the expected value with respect to random samples § € ©.
There arc different approaches for optimizing the probabilistic cost function defined
in Eq. 6.18. One approach is to first approximate the expected value I25(+) by finite
number of Monte Carlo simulations, c.g., the estimated expected value based on
n, Monte Carlo simulations is given by Ey(J) = 1/n, 327" J(X,Y, %), where

=1
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5,62, -~ 8™ arc random samples drawn from § € ©. It is then followed by
solving a deterministic optimization problem to minimize the estimated expected
value ﬁ,(/) for which a gradient algorithm can be applied since the expected
value of J (which is defined in terms of QMI/LMI and their projections to the
semi-definite cone) is a convex function. For a given approximation error bound 7
and confidence level «, the required number of Monte Carlo samples, which is a
function of n and « can be explicitly derived using the statistical learning theory
(68], guarantees that the minimizing solution to ﬁ(;(J ) approaches the optimal
solution to F55(J) with approximation error less than § with probability 1 — a.

In this chapter, we adopt an iterative stochastic gradient algorithm from [67]
to search (X,Y) for minimizing 755(J(X,Y,0)). In this algorithm, rather than
approximating the expected value by its Monte Carlo estimate and then solving a
deterministic minimization problem, the % iteration of (X, Y) is directly updated
using the gradient dxy.J evaluated at a random sample 6/ € O - the so-called
stochastic gradient. The details of the stochastic gradient algorithm are given

below.

6.3.1.1 Stochastic Gradient Algorithm

The subgradients of the convex function J(X,VY,0) are derived as follows,
If J(X,Y,d) >0,

OxJ(X.Y.0) = 88 (A(8) + X T (86)C1(0)) 6.19)
(A0 + T O DX) Jxy — 0 cyg 10"
Oy J(X.Y,0) = L (AL (6) + Y 13,(0) B (6)) 6.20)
+(A@) + RO B (0)Y) fxys — 0N lon”
Otherwisc,
OxJ(X,Y,8) = Oy J(X.Y.8) =0 (6.21)

The iterative stochastic gradient algorithm starts with an initial condition X
and Y°, and then implements the following in the j* iteration:
If J(X7,Y3, 67) > 0, define
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(X7, Y7, 80) = \/H@xJ(vaYj:(Sj)Hz (6.22)
IO CREN)
SO ERZRT) e (6.23)

with ¢ as a design paramcter for improving convergence of the algorithm, then

J0xJ(XI, Y3, §0)

Xt = X7 — 6.24
XY ) o2
. Oy J(XT, YT 80
yitt =y g T 6.25
H y()(y1 YJ:()J) ( d)
Otherwise (J(X7,Y7,67) =0),
Xt = X9 yitl —yi, (6.26)

6.4 Simulation Results & Performance Analysis

Modeling and control designs in this chapter are evaluated by a simulator built on
top of the CSIM, which is a commonly used commercial simulation library. The
same real HTTP traces from the Web Caching Project group [50] used in Chapter
4 are studied in this Chapter (see Figure 4.4). The target response time 7T is set to
be 20 scconds. We choose a 2-minute sampling period for implementing the LPV
model in Section 6.2. However, for the purposc of better visibility of presentation
in a limited space, simulation results in the rest of the chapter arce plotted using a
larger sampling period.

The stochastic robust LPV control law has been implemented in the simulator
package CSIM. Then the control performance is evaluated using the real traces.
Table 6.1 shows average response time and average CPU frequency corresponding
to cach of the three workloads, and the time-varying histories of the response time
and CPU arc plotted in Figures 6.2-6.4. For comparison purpose, we also list the
results of a linear-quadratic (LQ) controller in Table 6.1 and Figures 6.2-6.4. The
linear-quadratic controller is designed using a linear model, which is obtained by
linearizing Eqs. 6.3 & 6.6 at 85-percentile of workload arrival and service demand,

and a quadratic cost function which penalizes the response time tracking error and
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Table 6.1. Mcan performance statistics for three workloads

Stochastic LPV 1.Q
Resp.time (sec) | CPU freq. (GHz) | Resp.time (sec) |CPU freq. (GHz)
WIL-1 18.89 17.45 20.82 18.23
WL-2 20.56 24.73 19.88 28.01
WL-3 21.68 15.95 16.85 37.49

CPU frequency.

Note that the target response time 7 is set to 20s, for performance cvaluation,
we take 10% slackness and specify that if the average response time for a design is
less than 22s. the response time SLA is met and the design is feasible. It is abserved
that the proposed LPV control designs meet the response time SLAs for all three
workloads. Among the three workloads, the mean CPU frequency for the WL2
is higher than the other two workloads, which is consistent with the observation
that WL2 has substantially higher variance in both arrival and service demand. It
is worth pointing out that a single LIV model and a single L’V control law can
adapt to different workloads (WL2 changes significantly from WL1 and WL3) by
scheduling the model and controller design with workload parameters online. For
the LQ designs however we have to tune the controller gains for cach workload in
order to meet the target response time.

By comparing the mean performance statistics (mean response time and CPU
frequency of the whole 24hr duration) between the probabilistic LV control and
those of the LQ) control (designed at 85-percentile load condition), we can see that
LPV control designs allocate much less CPU resources than LQ) counterparts for
all the workloads. The significant difference in CPU allocation for WL-3 is due to
saturation, which we believe can be reduced by ad-hoc anti-windup techniques. For
WL-2, probabilistic LPV design saves about 15% CPU and keeps a much smaller
worst-case response time and less variance of response time as well. For WL-1, peak
response time of LQ control is less than 100sec, compared to 180sec of probabilistic
LPV control. Notice however the peak response time of LQ for WI-2 is almost
700scc and above 400scc for WL-3. This indicates that deterministic LQ control
often allocates excessive CPU resources to try to keep response time as small as
possible (WL-1), in some cases leading to controller saturation (WIL-3). In contrast,
probabilistic LPV control scems to have achieved a balance between violation of

target responsc time and CPU allocation, with worst-case response time ranges
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from 200 — 400sec accross workloads (note that WL-1/2/3 are independent real

traces).
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6.5 Summary

In this chapter, we present a stochastic LPV controller for the CPU management

for an Internet Web server to meet response time SLA. Essentially, based on an

LPV Web server model which is scheduled by randomly distributed workload ar-

rival and service-demand parameters, an LI’V control is obtained by applying a

stochastic gradient algorithm which utilizes the sample distributions of workload



92

Trace 3 mean resp time Trace 3 mean CPU use
450
Stoc-LPV
eoovoceeeee | Q)
L - 70
400 Stoc-LPV
LQ
3501 - 60
£
300
N 9 50-
o 9
g 250f i
= 5 40-
2 Il
< 2001 K
g ¢
8 i
ki i
150t 2
O
o | |
0 4 12 8 20 24 0 4 8 12 8 20 24
Time (hr) Time (hr)
(a) Response time (b) CPU frequency

Figure 6.4. Time history results: Stochastic LPV versus LQ, WL-3

parameters. Through evaluation using real Web traces, the resulting stochastic
LPV control shows better performance results than a lincar quadratic controller
designed at high-percentile load conditions. Future work will include investigat-
ing different formulations of the stochastic programming problem in deriving the
stochastic LPV controller to achicve an explicit trade off between the risk of not
meeting performance SLA and efficient resource usage. The results of this chapter

have been accepted by the Conference on Decision and Control 2007 [69].



Chapter

A Request Level Approach:
Preliminary Results and Direction

for Future Research

7.1 Known Issues

It has been shown in Chapters 3~6 that the control theory based approaches
proposed in this thesis have advantages over open loop provisioning approaches
based on queueing theory and on a-stable modeling. However these approaches are
still subject to incffectiveness in terms of request level response time. Note that the
system models used for control designs are built on interval measurements. Thus
inherently one can only enforces interval-wise performance measures, and request
level response time violations are inevitable. Examine the experiment results Table
4.2, take the results of LPVARX, LPV-Equilbm, and Linear-Equilbm for Workload
2 for example. The average response times of these experiments are all very close to
the target value (20sec). In the average sense, the response time meets the target
value “perfectly”. If onc plots the time domain response times over 2-minute
intervals as shown in Figure 7.1, it is observed that the response time oscillates
around the target value wildly.

Further Figure 7.2 shows the request level response time of the same LPV-

Equilbm cxperiment in fig:chapter-future-Ipv-vs-Ipvarx-ts. It shows that at the
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Figure 7.1. Response time histograms plotted at ts=2min (source: Table 4.2)

request level the response time exhibits huge variance, with a maximum value of
525.7 scconds and minimum of 0.0004 scconds. In fact the output almost never
scttles at or approaches the target value. If the controlled system was a “conven-
tional” mechanical system, it had lost control and became unstable already. In the
field of response time control of Internet services, this is an existing phenomenon
and has never been addressed before. Continued rescarch cffort is needed to solve
this problem.

In the following sections a new direction for Internet services performance man-
agement that is based on request level optimization is discussed, and some prelim-

inary results are presented.

7.2 A closer look of the FIFO queueing system

at request level

Consider requests arrive at a single-server queue (Figure 7.2) at times Ay, A9, A3,- - -
where A,, is the arrival time of the n'” request. Dy, Dy, Dy, - -+, are the departure
times of corresponding requests. The parameters \;, 4 > 0 are the arrival (birth)
parameters, and iy, i > 0 are the departure (death) parameters. The arrival and
departure parameters follow some distributions 7 (A) and 1% (u).

Define, wg(n), wy(n): the service time and waiting time components of the

responsc time of a request,
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Figure 7.2. Big bursts of request level response time (control results from Table 4.2)
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w: with a bit abuse of annotations, response time of individual requests,

k: sampling interval index.

W (k): with a bit abuse of annotations, the mean response time of all served
requests during interval k.

N(k): total number of arrival requests during interval k,

n(k): request arrival n during the interval k.

s: scervice demand of a request,

u(k): CPU resource allocation,

tia(n, 1): inter-arrival time between the request n(k), and the request been
served when n(k) enters the queue.

With these notations we now give definitions of queue length, service time,
waiting time, and response time for cach request, and define a mean response time

measure over the studied interval.
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7.2.1 Instantaneous queue length L(n)

Instantancous qucuc length of the n® request is the number of requests in the
queuc station it obscrves at the instant it enters into the queuc including itself,
with the 1% in the queue being the front-most one that is being serviced, and
the L' being the entering request n. The instantancous request length is given

inexplicitly as,

Lin)=A{L<n:Dn-—1>0L)>An) AND D(n—L—1) <= A(n)} (7.1)

Note that the instantancous quecuce length is different from queue length in
the usual sense, which is a statistical measure over a period of time based on a
sufficiently large number of observations. 1.(n) can be measured, or observed, for

each request n upon arrival.

7.2.2 Completion interval of a request k(¢)

For any given request, we try to predict its service completion time immediately
when it enters the queue. The expected response time of cach request can be
determined using the above formulas, provided that the CPU allocation sequence

u(k) is known. Tt is straight forward to calculate the expected completion time
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with the expected response time and the current clock time,

kn = roof {(tarrivar +w(n)) /Ts} (7.2)

where tgiva(n) is the tagged arrival time for each request.

7.2.3 Waiting time, service time, and response time

Consider the response time w(n)of request n that consists of two parts: a waiting

time and a service time,

w(n) = wy(n) + ws(n) (7.3)

while the service time part of cach request is given as

we(n) =1ty —ty (7.4)
where [, l5 arc defined for cach request as its service start time and departure
time respectively, and should satisfy,

| [ () dE — s(n) (7.5)

where with a little abuse of notations, k(t) is a function mapping continuous
time ¢ to the sampling interval index, and u(k) the CPU resource allocation which
is a piccewise constant function.

Let L, denote the number of requests arrived before the n'” request that are still
in the queue, and (n,4),i=1,---, L, the i request in the quene upon the arrival
of request n. Denote @4(n, ) as the service time of request (n, i) that contributes
to w,(n). The sum of service time of all these terms uniquely determines w,(n),

ie.,

Ln,—1

wy(n) = Z we(n, i) (7.6)

i=1
Note that when request n enters the queue, the first request may have been

partially served. This makes wq(n, 1) different from other terms in that it is the
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remaining service time of the first request,

We(n,i) == ws(n —L+1i—1); i # 1

. , (7.7)
we(n, 1) = to—1ty =D, 1 — Ap: i =1.

For cach request its service time is determined by its size and the CPU allo-
cation. The waiting time is more entangled which involves the service times of
a finite number of previous requests, its arrival time, and the waiting time of a
particular request (the currently served request). Essentially waiting time depends
on the birth parameters, request sizes, and CPU allocation.

A web server queueing system can be considered as a dynamic system with
arrival parameters and request sizes as exogenous input, CPU allocation as control
action, and response time as output. The above formulation symbolically describes
such queuecing systems as time varying nonlincar dynamic models. Generally one
needs to have the perfect a priori knowledge of the birth and death paramecters to

quantitatively study such a queueing system.

7.2.4 Mean response time

Denote N (k) as the number requests served during interval k, the average response

time during interval & is defined as,

SN w(n)

Wi(k) = 7.8
substitute 7.3 into 7.8,
SNE Ly (n) + we(n)}
Vi(k) .= ="= :
W (k) N (&) (7.9)
According to 7.6,
N [t g N
Wk = D1 {21:1 s (n, 4)} . Zn:(,l) w,(n) (7.10)
o N (k) N(k) '

Substitute 7.7 into 7.10,
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n=1

N (k) N (k)

Z,?:(/?) {Zf:(z)fl we(n — L+1i— 1)} + D, 5 — A, NEY L ()
Wik) = > ()

(7.11)

The response time during an interval k£ is defined as the average service time
and waiting time of all served requests during that interval. The waiting time of a
request n can be calculated from the service time of some requests, as well as the
arrival time of the request itself, and departure time of the request being served
when request n arrives. Because the request size, arrival time, and departure
time can all be measured, the response time of all requests in the queue can be
determined given the service rate.

When target response time is much longer than sampling interval. in the ideal
situation the actual response time will be consistently much longer than sampling
time. This means that at any time instance, it will take multiple sampling intervals
to finish the requests in the queue, i.c. all finished requests during the upcoming
scveral intervals are already in the queue at the given time instance. Thus from Eq.
7.11 the mean response time of several future intervals are “accurately” predictable,

given the service rate trajectory.

7.3 Performance Management of Internet Ser-
vice

The fact that future response time is predictable (over limited horizon) when target
response time is much longer than sampling time indicates that Eq. 7.11 can be
used to allocate CPU resources optimally to meet target response time. Another
advantage is that it is possible to avoid excessive response time due to arrival
bursts and extremely large requests, when these requests become foresceable when

they are in the queue.

7.3.1 Response Time Guarantee

In a response time guarantee problem the only concern is to enforce mean response

time to the target value. The idea is that at the end of cach interval, start with an
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initial service rate and calculate the mean response time during the next interval
using Eq. 7.11. The predicted mean response time is used to adjust the service
rate iteratively, until the predicted mean response time is close enough to the
target value. The desirable service rate during the next interval can then be set
accordingly. In the ideal situation there are always enough waiting requests such

that the actual response time during the next interval can be accurately predicted.

7.3.2 Resource Management Optimization

In the resource management problem the objective of performance control is to pro-
vide response time guarantee, while keep resource allocation at minimum. Define

the following cost function for a typical performance control problem,

Ny N,

JINL N2 N = > o (Wt + ) — Wit + N+ » Oult+j—1)7 (7.12)

=N J=1

where N, and N5 are the minimum and maximum cost horizons and N, is the
control horizon. which does not necessarily have to coincide with the maximum
horizon. The meaning of N; and N, arc rather intuitive. They mark the limits
of the instants in which it is desirable for the output to follow the reference. The
objective is to compute the future control effort sequence u(k) in such a way that
the future response time W (k) sequence is driven close to the target response time,
while maintaining a minimum resource allocation. This is achieved by designing

the control sequence that minimizes the above cost function.

7.4 Preliminary Results

To illustrate the cffectivencss of the proposed concept a response time guarantee
algorithm is implemented in this section. In this algorithm CPU frequency is
provisioned based on Eq. 7.11. The only purpose is to maintain the target response
time for all the requests in the queue, based on the snapshot at cach T, instance.

The same workloads WI-1/2/3 and simulator used in earlier chapters are used

again in this study, and three different scenarios are investigated for comparison,
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e With Perfect Knowledge: with perfect request level information of the
workload, the response time of the next interval can be accurately predicted.

This is the ideal case and indicates the upper bound of possible results.

e With Pure Observation: predicts the next interval mean response time
simply based on obscrvation of the queue. Knowledge of incoming requests
beyond the current time is unavailable. This shows the performance simply

based on the proposed method without any workload modeling.

e With a-stable Modeling: an extension based on the second scenario.
When there are not enough waiting requests in the queue to predict the mean
response time during the next interval, wvirtual requests gencrated from an

a-stable model of the workload are used to compensate (stuff) the queue.

Figure 7.4 shows the request level response time of WL-1 in comparison with
that of the results as in Chapter 4. The scheduling results is obscrvation based
and the sampling interval is 5 scconds. The mean response time of the scheduling
method result is 17.71 seconds, which is quite close to that of the control based re-
sults. At the request level however the scheduling results are much more consistent
and almost always settles at the target value (20 seconds). In this experiment only
427 out of 483838 requests (0.09%) have response times bigger than 50 seconds,
compared to 12.43% of the LPV control based results.

Table 7.1~7.3 show performance measures in terms of mean response time and
mecan CPU allocation of the three scenarios of the request level scheduling algo-
rithm. Note that as mentioned before the objective in the implemented scheduler
is to guarantee that mean response time over the next interval is no larger than the
target value (20 seconds) subject to CPU resource limitation. Thus the scheduler
is inevitably conscrvative. It should be mentioned that it is straight-forward to
implement more complex scheduler so that it is less greedy.

It can be observed that for all workloads (WL-1/2/3) the target response time
are met regardless of the sampling interval used. As sampling interval shrinks, the
performance improves in terms of CPU allocation. In gencral observation based
scheduling performs better than a-stable model based scheduling for smaller sam-
pling interval. When sampling interval is much smaller than target response time,

c.g. 5 scconds, observation based scheduling almost achicves the same performance
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WL-1 request level response time: control vs. scheduling

250 ‘ ‘ . .
Control
— Scheduling
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Figure 7.4. Request level response time: Control vs. Scheduling (control results from
Table 4.2)

as the scheduling assuming full knowledge. This is quite intuitive, as when sam-
pling interval shrinks the queue is long enough for the server to service during the
coming interval, which essentially equals full knowledge.

Figures 7.5~7.7 plot the response time trajectories of the three scenarios at
sampling intervals (5, 20, 120) seconds over an 10 minutes window for workload
WL-1/2/3 respectively. For all workloads it can be observed that over the time
obscrvation based scheduling matches full knowledge scheduling very well when
sampling interval is very small compared to target response time, for example At
= 5 seconds. As sampling interval becomes bigger. observation degrades. When
At = 120 seconds no response time guarantee can be achieved for any of the three
workloads. On the other hand a-stable modeling based scheduling achicves same
level performance as obscervation based scheduling at short sampling intervals; at

longer sampling intervals, it is still able to provide response time guarantee. Thus
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Al (scc)|Full Knowledge |With Observation | With a-stable

RT CPU RT CPU RT | CPU
5 17.48) 1093 |17.71 10.93 17.03) 11.01
10 18.301 10.95 |18.51 10.95 17.23) 11.29
20 18.591 1098 |17.87 11.43 15.43) 12.14
30 18.42) 11.06 [15.20 13.68 13.91) 13.31
60 18.101 11.39 18.27 38.81 12.2 ] 19.72
120 17.49) 12.04 36.82 39.49 15.17) 26.58

Table 7.1. Response time guarantee using request level scheduling, WL-1

Al (scc)|Full Knowledge |With Observation | With a-stable

RT CPU RT CPU RT | CPU
5 17.23) 15.05 [17.52 15.05 16.48) 15.17
10 18.15) 15.06 |18.57 15.08 16.49| 15.56
20 18.56| 15.16 |18.10 15.56 14.20) 16.81
30 18.51 15.27 15.47 18.55 12.44) 19.13
60 18.291 1579 19.86 38.16 10.96| 25.70
120 17.82) 17.12 |37.91 39.11 13.84) 31.58

Table 7.2. Response time guarantee using request level scheduling, WL-2

the a-stable prediction based scheduling alone or an integrated scheduling based on
both observation and a-stable modeling is able to provide response time guarantee
for a wide range of sampling intervals. This shows the effectiveness of the proposed
scheduling algorithm.

Two points need to be made. In real Internet applications it is not always
possible to change CPU allocation very frequently, i.c. to usc very short sampling
intervals. Onc of the reason is that changing resource allocation configurations

too frequently is not desirable due to hardware limitations. Thus an cffective

Al (scc)|Full Knowledge |With Observation | With a-stable

RT CPU RT CPU RT | CPU
5 16.83| 10.43 [17.02 10.43 16.21) 10.86
10 17.68| 10.45 |17.77 10.44 16.58) 11.17
20 18.08 10.48 [17.06 10.75 15.64) 11.64
30 17.89) 10.57 [14.78 13.71 14.59) 12.63
60 17.70) 1092 [17.59 34.29 14.30) 18.58
120 1731 11.44 34.87 38.94 21.71) 25.72

Table 7.3. Response time guarantee using request level scheduling, WL-3
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scheduling algorithm acting in a longer time window is necessary. Sccondly, vari-
ant a-stable modeling algorithms can be deployed in the scheduling to adapt to
different levels of modeling conservativeness. In these experiments, it is observed
that the a-stable based scheduling results are more conservative than observation
based schedulings, in terms of actual response time. We believe that the conserva-
tiveness can be reduced or eliminated by applying some other a-stable modeling
techniques. In fact this may prove to be a desirable characteristics of the proposed
a-stable prediction based scheduling, as it provides the flexibility and capability

to be able to adapt to different workload characteristics.

7.5 Suggested Research Directions

Based on the preliminary results presented in the previous section, it is our belief
that the proposed scheduling algorithm is of great potential and worth further
investigation. The fact that it works so well with the simulator with real traces
motivates future rescarch along this direction to make it applicable to real Internet
scervices.  Performance degradation is expected when the scheduling is applied
to real scervers. In this case we believe that feedback control techniques can be
integrated into the scheduling to adapt to inaccuracy of the underlying assumptions
of the simulator.

Note that one of the fundamental assumption for validity of the simulator itsclf
is that service time is reciprocally proportional to request size, which may not
be valid for many applications. The justification for the assumption is that the
requests hit the cache. The rate that a request hit the cache depends on size
of the cache (compared to that of the file set) and the caching algorithm. In
production scrvers the rate can be anywhere from scveral percent to about 50
percent.  Performance degradation is incvitable when the solutions proposed in
Chapters 3~6 arc applied to real scrvers.

Onc of the most appreciated future rescarch cffort in Internet service perfor-
mance management is probably to achicve similar performances shown in carlier
chapters in terms of response time and resource allocation on real Internct servers.
The fact that the request level scheduling based on Eqgs. 7.1~7.11 works so well

given the relation from request size to service time indicates great potential of a
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combined approach of the request level scheduling and a feedback mechanism that
can adjust the estimation of the relation from request size to service time and/or
the underlying a-stable model of the scheduler. The inherent nature of the feed-
back loop will provide certain robustness against cstimation inaccuracy of such
relationship.

In this framework there arce at least two structurces that can be considered,

which are listed using the response time guarantee problem as an example,

1. Parallel Loops: An inner loop as the request level scheduler that attempts to
provide response time guarantee, which is compensated by an LPV feedback

control outer loop to get the aggregate CPU allocation. See Figure 7.8(a).

2. Complimentary Loops: The request level scheduler depends on the feedback
loop for the relation from request size to service time. Performance feedback
information can also be used to improve the a-stable modeling algorithm.
See Figure 7.8(b).

Note that for both structures the scheduler loop and the feedback loop can be
working in a unsynchronized manncr, meaning they may have different sampling

interval. In a typical application the feedback loop kicks in less frequently.
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Chapter

Summary and Conclusion

High performance server systems arc now widely deployed as Internet has become
part of our daily life. Performance management, which provides performance re-
quirements guarantees while minimizing resource usage, becomes a critical issue
considering the scale of deployment of these server systems these days. This disser-
tation is concerned with a linear parameter varying (LPV) modeling and control
design framework for this problem.

In Chapter 3, we study linear time invariant (LTT) and LPV modeling and con-
trol design in admission control, where incoming service request can be rejected
in order to meet specified target response time. For LPV control design we es-
tablish empirical Web server LPV models parameterized by the server’s workload
characteristics, i.c. workload intensity. Evaluations show that the identified LPV
model is able to capture system dynamics better than ARX models. Based on the
LPV model, controllers designed using standard LPV synthesis tools can adapt to
workload changes by adjusting feedback gains. Simulation results show that tar-
get response time can be better enforced when the server is working in off-design
workload conditions.

Despite the success of LPV control design based on empirical modeling tech-
niques, a first principles LPV model is desirable for a more systematic modcling
and control design framework. Based on a fluid single-queuc-single-server model,
Chapter 4 derives an analytical LPV model for Web servers, with queue length
being the state variable, CPU frequency the input, and response time being the

system output. The LPV model is explicitly parameterized by workload char-
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1
A7

service demand % and their multiplication ﬁ The

acteristics: arrival rate
model is evaluated in simulation with real Web server traces and it captures the
dynamic bchavior of response time with respect to server CPU frequency, under
three independent workloads WL-1/2/3. LPV control designs based on this models
outperform those based on the same empirical system identification LPV models
studied in Chapter 3.

In both chapters 3 and 4 straight forward workload characterizations to es-
timate the scheduling parameters of the LPV models.  Either the mean value
or a percentile value during the previous sampling interval is used as an estima-
tion of the scheduling parameter during the current interval. When the workload
has large variance however the estimation may not be accurate and fail to pro-
vide response time guarantee. Unfortunately it is widely agreed that workloads
of Internet services are sclf-similar and has large variances in different scales, i.c.
under-estimation may still occur even we take the mean values over a long sampling
window. Chapter 5 presents a novel control-theoretic approach based on LPV tech-
niques and workload characterization using a-stable-model based stochastic en-
velopes. The proposed approach parameterizes a control-oriented dynamic-system
model and resulting controller using workload-distribution parameters. By further
incorporating the a-stable modeling into the LPPV control approach, the presented
solutions not only allow system to adapt to workload changes, but also show great
promisc in handling workloads with large variances. The same CPU management
problem as in Chapter 4 is revisited using the proposed method. Simulations show
the strength of the proposed approach.

In Chapter 6 revisits the same CPU allocation problem in Chapter 4 with
an emphasis on introducing a probabilistic approach to LPV control design. A

major advantage of this control design is its capability of considering nonlincar

parameter dependence of the analytical LPV model on i and % without having
to introduce an extra non-independent nonlinear (bilinear) parameter ﬁ This

reduces conscrvativeness of the LPV control design compared to the method used
in Chapter 4.

The work of Chapters 3~6 of this thesis is solely conducted at the “aggregation”
level, i.e. dynamical behaviors of the server system from input (CPU frequency

or rejection ratio) to output (response time), and system state variable (queue
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length) are only modeled with window based average values. It is perfectly fine if
the QoS specifications arce in terms of mean values as well. In practice many QoS
requirements are specified in more detailed statistical language, ¢.g, response time
is less than 20 seconds for 86% of all requests. 1t is difficult if not impossible at
all to provide request level response time guarantee, since the relationship between
mean response time and the response times of of individual requests during a given
time window is not straightforward and is solely dependent on the distribution of
workload characteristics. Investigations at the request level becomes neccessary in
this case, which is recommended for future work.

Chapter 7 takes a request level approach to provide response time guarantee
based on detailed analysis of requests response time components. A request level
scheduling algorithm is proposed that can be used with a-stable modeling. Prelim-
inary results in a response time guarantee problem show impressive request level
performance over a wide range of sampling intervals. Potential future rescarch
dircctions arc given in Chapter 7.

In summary, a major contribution of this dissertation is the formation of a self-
sufficient LPV modecling and control design framework for performance manage-
ment of Internet services. Compared to reported rescarches based on conventional
Queucing analysis and lincar modeling and control designs, the proposed method
outperforms in terms of response time guarantee, variance of response time, and
use of CPU resource allocation. The limitations of feedback control approaches
arc briefly discussed, which lead to the proposced request level scheduling algo-
rithm. Preliminary results indicates great potential in performance management

for Internet services.



S

Appendix

Queueing Theory: A Brief Review

A.1 The Little’s law

First we shall introduce an important thecorem of qucucing theory, which relates
queue length with arrival rate, and average waiting time. Consider a queucing
system where requests arrive at random time instants, get served according to a
specified service discipline, receive a random amount of service and depart. Each
request, depending on its size, consumes a certain amount of processing time and
left the system (Figure 2.2). Then we have the following theorem,

Supposc that for a fixed sample path the limits A, T exist and are finite. Then

the limit of queue length ¢ exists and is given by,

q
A

This is the well known Little’s Law in queueing theory. It is essentially a deter-

qg= AT, orT = (A.1)

ministic result. Although the response times of individual requests depend on the
service discipline, Eq. A.1 implies that the average response time is independent
of scrvice discipline since the quantitics ¢, A arc independent of it. In fact the
Little’s law holds under very general conditions, regardless of service discipline,
inter-arrival time distribution, and request size distributions, provided that the

scerver is work conserving, i.c. there is no internally generated traffic.
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A.2 Calculations of response time and queue

length

M/M/1 queue: For a stable M/M /1 queue with workload intensity less than 1,

i.e. p <1, the expected number of requests in the system is given by
P
g=——— (A.2)

Thus as p — 1 the expected number in the queue explodes to oo. This is a
manifestation of increasing congestion as p — 1.

The steady state waiting time is given by

1 1 A 1

: ! _ 2. A3
T q (A.3)

T .
A p—XA A

G/G/1 queue: For a stable G/G/1 queue, i.e. p < 1, establishing a similar
relation as Eq.A.2 is much more challenging. Many empirical formulas are proposed

in existing literatures, and the following lists some commonly used ones [70].

2(1 4+ C? 2 — 0)C? + p2C?
q(p( + )2> (p( p)Catrp 5)4”) (AA)
2—p+pC: 2(1—p)
2 Y2 Y2 Ry
P21+ C2)\ (2 p2C"
_ ' S a S A.r
! <1+026‘.3 20—p) )7 (A5)
Q012 Y2 2N 12
p (O +C5) (1= CCEp
— a S a a A
=00 ) 5 + (A.6)

where C? and C? denote squared cocfficients of variation for inter-arrival time and
service demand respectively. Formula Eq.A.6 can be rewritten in terms of arrival

rate and service rate as,

AONCE( -0 NC? 402
qg=—+

A.
T 241 21— N p) = p? (A7)

which provides a good approximation for quecuc length when the squared cocfficient
of variation C? < 2 while the approximation could get poor when €2 is very large

(the workload is highly varied). It is not very sensitive to server utilization, and it
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provides quite accurate approximation even when the server utilization gets close

to 1. Response time (7)) can be obtained by applying the Little’s law (Eq.A.1).
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