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ABSTRACT 

In this study, the elasto-plastic analysis of a corrugated-core sandwich plate has 

been developed. The developed study based on generalized Galerkin method (or Navior 

method for simply supported edges) and incremental theory of plasticity with the initial 

incremental plastic moments calculated by an iterative procedure can be applied in both 

elastic perfectly-plastic and strain-hardening behaviors. However, due to currently absent 

experimental data of the post yield behavior of corrugated-core sandwich plates, in these 

numerical studies, only the behaviors of elastic perfectly-plastic cases were analyzed in 

this work. 

 

Also, a comprehensive stress analysis for corrugated-core plates is developed. The 

effects of geometric parameters and various lengths and widths of corrugated-core 

sandwich plates with all simply supported boundary conditions on the plate behavior and 

strength were studied. Some new phenomena observed in experimental investigations of 

corrugated-core sandwich plates, but not found in previous numerical analysis, have been 

confirmed and reported. In particular, our investigation has strengthened some 

experimental results obtained in (Tan et al. 1989) which lacked supported from 3D FEM, 

and the other analytical solutions. 
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Chapter 1 
 

Introduction 

1.1 Background and Problem Statement 

A close-to-analytic solution is proposed for the elasto-plastic analysis of 

corrugated-core sandwich plate bending. The 3-dimensional (3D) sandwich panel will be 

reduced to an equivalent 2D structurally orthotropic thick plate continuum. In this 

analysis, the Galerkin method and the incremental method with initial plastic moments 

are employed to solve the elasto-plastic problem. 

 

For many years, the analysis and design of structures have been based on the 

linear theory of elasticity with the assumption of isotropic material properties, but it is 

well known that this approach is unduly conservative because it fails to take advantage of 

the ability of many materials to carry stresses above their yield stresses. The main 

difficulty of plastic analysis is the mathematical complexity. However, that difficulty has 

been overcome by the advent of high-speed computers and the efficient use of 

computational methods. 

 

A sandwich plate shown in Figure 1-1 is a three-layer structure, comprised of a 

thick core between two thin, flat face sheets. Generally, the face plates are made of high-

strength materials and the core is made of a low strength and density. Due to the high-
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strength faces and low-weight core, the significant feature of this structure is its high 

strength to weight ratio.  

The advantages of sandwich plates are summarized as follows: 

1. High stiffness and strength to weight ratios. 

2. The good surface finish reduces an aerodynamic resistance. 

3. Good thermal and acoustic insulation. 

4. High energy absorption capability with different fillers and cores. 

5. Increase the interior space and ease of equipment installation. 

 

 

 
Fig. 1-1: A sandwich plate 
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A corrugated-core sandwich plate is shown in Figure 1-2. To analyze the bending 

behavior of the corrugated-core sandwich plate, the following assumptions are made: 

1. The plate is symmetrical type corrugated-core sandwich plate shown in Figure 1-

2. Therefore, both face plates are identical in material and thickness. 

2. The material of the corrugated-core sandwich plate is isotropic. 

3. The deformation of this plate is small. 

4. Facing plates are thin compared with the corrugation depth. Consequently, the 

local bending stiffness of the face sheets is negligible. 

5. The core contributes to the panel flexural stiffness in the x-direction but not in the 

y-direction. 

6. The elastic modulus of the plate in the z-direction is assumed to be infinite. 

7. The core can resist the transverse shear stresses and also contribute to the flexural 

and extensional stiffness. 

8. The transverse shortening of the core is ignored. 

 

 
Fig. 1-2:  Symmetrical type of a corrugated-core sandwich plate 

y 
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The basis for this corrugated-core sandwich plate bending problem is the 

Reissner-Mindlin plate theory. In this theory, straight material lines normal to the middle 

surface are assumed to remain straight, but not necessarily normal to the middle surface 

during distortion of the plate. Namely, the three independent degrees of freedom 

correspond to the deflection w  and the slopes θx and θy. w is the deflection in z-direction 

(i.e. the direction of thickness). θx and θy are the slopes of the xz- and yz-planes, 

respectively. 

 

Due to several elastic constants derived by Libove and Hubka (1951), the 3D 

corrugated-core flat sandwich plate here can be regarded as a 2D equivalent continuum. 

The governing equations for the elasto-plastic analysis of corrugated-core sandwich 

plates are made by approximating them with continuous structurally orthotropic 

structures. The Galerkin method and the incremental theory of plasticity approach with 

initial plastic moments are employed to solve this problem. An iterative method is then 

used to evaluate the incremental plastic moments in each stage. In this elasto-plastic 

analysis, the material maintains a linear elastic behavior until yield. Then, yield 

condition, flow rule, and strain-hardening rule are used to calculate stress and plastic 

strain increments. 

 

It can be seen in literature reviews that recently the finite element method (FEM) 

is widely used in the elasto-plastic analysis. FEM is now firmly accepted as the most 

powerful numerical technique in engineering. Tan et al. (1989) showed experimentally 

that for the 3D corrugated-core sandwich plate, the 3D FEM model agreed well with 
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measured deflections in linear elastic range. However, in the moment analysis, there are 

discrepancies between the 3D FEM and experimental results (Tan et al. 1989). In the 

experimental results, the signs of moments in x- and y-directions are opposite, but the 3D 

FEM showed the same signs in the studied case. In addition, it is very difficult to modify 

the boundary conditions where using the 3D FEM.  

1.2 Importance 

The theory of elasticity cannot be used to address the behavior after material 

yielding occurs. Furthermore, an elasto-plastic analysis of corrugated-core sandwich 

plates is currently unavailable. Therefore, the procedure for the elasto-plastic analysis of 

sandwich plates was developed in this study. 

 

Also, the yield criteria for naturally isotropic and anisotropic materials have been 

developed and applied previously. However, because the corrugated-core sandwich plate 

is a structurally orthotropic system, there is no yield criterion for such a structure. 

Therefore, a yield criterion for structurally orthotropic constructions was developed in 

this study. Hill’s and Ilyushin’s yield criteria were modified and extended to include 

structurally orthotropic constructions. 
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1.3 Objectives 

The main goal of this study is to enable the development of plastic analysis of 

corrugated-core sandwich plates. The three key issues that need to be considered in this 

elasto-plastic analysis are reliable elastic analysis, yield criterion, and appropriate 

constitutive descriptions. Hill’s yield criterion developed for the naturally anisotropic 

material will be extended to include structurally orthotropic constructions. 

The results obtained from linear elastic analysis by the above-developed solution 

of the corrugated-core plate with all simply supported boundaries are compared with the 

results provided by other authors (e.g. Tan et al. 1989) before proceeding to analyze the 

elasto-plastic problem. The elasto-plastic solution begins on a linear elastic analysis. The 

linear analysis is also developed and is mainly to check the results. 

 

The behavior of a plate is related to its’ stiffness. Several geometric parameters 

might contribute to the stiffness of the corrugated sandwich panel. The effects of 

geometric parameters such as ratio of face to core thickness, ratio of pitch to core depth, 

the core depth to core thickness ratio, and corrugation angle and the length in corrugation 

direction and the width in the direction normal to corrugation are analyzed. 

1.4 Scope 

This research is limited to only the elastic perfectly-plastic analysis of rectangular 

corrugated-core sandwich plates with all simply supported edges. The theoretical 
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formulation can be adapted to elastic perfectly-plastic and strain-hardening problems; 

however, in this study, only elastic perfectly-plastic problem will be considered. 

 

Furthermore, it is also very important to know what geometric parameters in the 

corrugated-core sandwich plate will affect the behaviors of that plate significantly. 

Different geometric parameters such as the corrugation angle (α), the ratio of core to 

facing sheet thickness (tc/tf), the ratio of corrugation pitch to core depth (p/hc), and the 

core depth to core thickness ratio (hc/tc) and various lengths and widths are investigated. 

1.5 Thesis Layout 

This thesis has five chapters. Chapter One is a brief introduction to the concept, 

and also lists the scope and objectives. Chapter Two is the review of previous work for 

sandwich plates, elasto-plastic analysis, and numerical methods. The theoretical 

methodology is presented in Chapter Three. Chapter Four contains analysis and 

numerical examples to compare and investigate the effects of different geometric 

parameters. Chapter Five contains the conclusion and recommendations for future work 

in this work. 
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Chapter 2 
 

Literature Review 

2.1 Plate Bending Theories 

Several plate bending theories have been developed in the past decades. Two 

widely used theories of these plate bending theories are Kirchhoff’s theory also well 

known as the classical theory (or thin plate theory) and Reissner theory. The linear 

Kirchhoff theory assumed that there is no deformation in the middle plane of the plate 

and the straight line normal to the middle plane remains the normal to the middle surface 

after deformation. According to the Kirchhoff assumption, the transverse shear strains 

and stresses, as well as stress normal to the plate midsurface are neglected in the classical 

plate theory. 

 

Reissner (1945) modified the classical theory (or Kirchhoff’s theory). He 

proposed that the rotations of normal to the plate midsurface in the xz- and yz- plane 

could be introduced as independent variable in the plate theory. Mindlin (1951) 

simplified Reissner’s assumption that normal to the plate midsurface before deformation 

remains straight but not necessary normal to the plate after deformation and the stress 

normal to the plate midsurface is disregarded as in the Kirchhoff theory. This plate 

bending theory modified by Reissner and Mindlin is well known as the Reissner-Mindlin 

plate theory. The Reissner-Mindlin plate theory is suitable to analyze both thin and 
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moderately thick plates. The analysis of the corrugated-core sandwich plates in this thesis 

is based on this theory. 

2.2 Sandwich Plates 

2.2.1 Development of Sandwich Constructions 

Sandwich panels are extensively and increasingly used due to its lightweight 

advantage in civil engineering, aerospace engineering, and shipbuilding industry where 

weight is an important design issue. With the variety of faces and cores, the sandwich 

panels have wide applications in many fields such as acoustic and thermal insulation and 

fire safety. Therefore, the sandwich panels have been used commercially in exterior walls 

and internal partition walls in architectural engineering.  The detail introduction of 

applying sandwich panels in engineering is directly in (Davies 2001; Karbhari 1997) 

 

With the advent of high-speed flight, sandwich plates were widely used in 

airplane design because of the promised high strength and the well- finish surface 

maintaining aerodynamically smooth surface. Also, the sandwich construction can be a 

possible substitute for sheet-stringer to reduce the weight of an aircraft. Recently, the US 

Navy has been studying application of the laser-welded corrugated-core sandwich 

constructions (Marsico et al. 1993; Wiernicki et al. 1991). These applications cover 

bulkheads and decks on accommodation areas, deckhouses, deck edge elevator doors, and 

hangar by division doors. 
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The advantage of using two faces separated by a distance is thought to have been 

first discussed by Duleau, French, in 1820. This concept was first applied commercially 

after 100 years. After World War Two, due to the blossoming of aviation, there was an 

increased interest in sandwich construction. In the late 1940s, Gough et al. (1940) and 

Williams et al. (1941) published the pioneer theoretical works on structural sandwich 

constructions.  

 

The core of the sandwich construction keeps the faces apart and stabilizes them 

by resisting vertical deformations, and also enables the whole structure to act as a single 

thick plate as a virtue of its shear strength. The second feature that characterizes the 

sandwich construction is its outstanding strength. In addition, the core carries a portion of 

the bending load. Therefore, sandwich panels are commonly used in aviation, aerospace, 

civil engineering and other applications where weight is an important design issue due to 

its exceptionally high flexural stiffness-to-weight ratio. 

 

Development of core materials has continued from 1940s through to today in an 

effort to reduce the weight of sandwich panels. Many sandwich-type configurations 

employing different production techniques have been suggested. In general, sandwich 

cores could be classified into four types: (a) foam or solid core, (b) honeycomb core, (c) 

web core, and (d) corrugated or truss core. Most popular materials of sandwich cores are 

soft and light. In most foam and honeycomb core sandwich panels all the in-plane and 

bending loads are assumed to be carried by the faces only. However, in web and 
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corrugated-core constructions, a portion of the in-plane and bending loads are also carried 

by the core. 

 

Plate theories applicable to general sandwich plates for small deflection have been 

developed by Libove and Batdorf (1948) for flat panels and by Stein and Mayers (1950) 

for curved panels. In these two papers, deflections due to transverse shear are taken into 

account and sandwich plates are regarded as structurally orthotropic panels because the 

face sheets or core (or both) may have orthotropic stretching properties in general. To 

reduce a 3D sandwich construction to a 2D equivalent continuum, seven physical 

constants are introduced in flat plates. They include the transverse shear stiffness DQx and 

DQy, the bending stiffness Dx and Dy, a twisting stiffness Dxy, and the Poisson ratios υx 

and υy.  

 

In 1960s, studies in sandwich construction had spread widely. Plantema  (1966) 

published the first book on sandwich construction in 1966. In 1969, the book by Allen 

(1969) followed. In the early work up through the 1960s, including these two books 

written by Plantema and Allen, a nomenclature and analytical presentation of sandwich 

panels was developed.  

 

A book by Zenkert (1995) supplements with more examples and solved problems  

contained in the Plantema and Allen books. A review by Noor et al. (1996) provided over 

800 relevant references that were all discussed in that review and another 559 references 

as a supplemental bibliography. In this review recent developments in the computational 
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modeling of sandwich plates and shells are introduced. Vinson (1999) published a 

textbook for sandwich structural analysis. Later, Vinson (2001) had given an extensive 

list of 179 references to provide a review of several aspects of sandwich structures. 

Almost all important literatures on the subject of sandwich structures can be found in that 

review. 

2.2.2 Corrugate-Core Sandwich Plates 

Most popular materials of sandwich cores are soft and light such as balsa wood 

and foam. Conventional forms of sandwich cores are honeycomb-shaped. Honeycomb 

cores currently provide the greatest shear strength and stiffness to weight ratios but 

require special care in ensuring adequate bonding to the facing sheets.  

 

In the early literature on the instability of sandwich constructions, much attention 

was devoted to wrinkling phenomena. This type of failure is made possible by the finite 

resistance of the core to deformations perpendicular to the faces and is of special 

importance when the core is made of an expanded material. However, modern sandwich 

cores are made of high strength materials that have a high resistance in this respect, such 

as a corrugated steel sheet. For the purposes of an analysis it can be assumed that the 

transverse normal stiffness of the core is infinitely large. The innovative corrugated-core 

sandwich plate consists of a corrugated sheet laser welded between two face sheets. 

Unlike soft honeycomb-shaped core, a corrugated core resists not only vertical shear but 

also bending and twisting. In this thesis, a corrugated-core sandwich plate is analyzed. A 
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corrugated-core sandwich plate is consisted of two facing plates and a corrugation core 

shown in Figure 2-1. In general, both facing plates and corrugation are made of the same 

material. The corrugated core is often stiff enough to contribute to the flexural rigidity. 

2.2.3 Previous Works on Corrugate-Core Sandwich Panels 

In 1951, Libove and Hubka (1951) derived formulas for evaluating elastic 

constants of a corrugated-core sandwich plate. These elastic constants are necessary for 

the analysis of flat sandwich plate theory derived by Libove and Batdorf (1948). Also, 

those formulas for evaluating elastic constants are used in this elasto-plastic analysis in 

this thesis.  

 

 
Fig. 2-1: Corrugated-Core sandwich panel and a panel unit 
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In the 1980s, through the early 1990s, several experiments of sandwich panels 

have been conducted in UK. Montague and Norris (1987) and Norris et al. (1989) studied 

the structural behavior of spot-welded and corrugated-core steel panels. Tan et al. (1989) 

published a paper on experimental testing of corrugated-core sandwich panels and 

compared the results with finite element method and the closed solution developed from 

the work of Libove and Bandorf (1948).  

 

In these papers, various dimensional panels were analyzed. In the all around 

simply supported plate, both finite element analysis and the closed solution predicted the 

deflection well; however, in the predictions of bending stresses and moments, both 

solutions predicted the same sign on the facing plates in both x- and y-directions. These 

results conflicted with the experimental investigations that bending moment Mx and My 

have the opposite sign in some cases. 

 

It is believed that the production difficulties prevent the wide use of steel 

corrugated-core sandwich panels. The main manufactured difficult is firmly joining face 

sheet to the corrugated core. Laser welding enables construction of steel corrugated-core 

sandwich constructions by welding from one side only. In 1989, configurations of laser-

welded corrugated-core steel sandwich panels were tested by Forbes (1989) to illustrate 

behavior of the structure under compression, bending and shear. In that experiment, 

before extreme post-buckling deformation, no sample failed due to the failure of the 

laser-welded connection. Therefore, the laser weld shows the excellent capacity of 

joining faces to the core. 
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Recently, the corrugated-core sandwich panels are widely employed in the 

shipbuilding industry. The US Navy has studied application of the laser-welded 

corrugated-core sandwich panels since the 1990’s (Marsico, 1993; Eiernicki, 1991). Also, 

in UK in 1991, Bird (1991) conducted several experiments to study static strength, 

fatigue, and blast trials on laser-welded steel sandwich panels. In these tests the 

properties of laser-welded steel sandwich panels have been shown to be adequate for ship 

construction. Also the corrugated-core panels have shown good blast characteristics and 

could be excellent for resisting fragmentation damage with incorporation of appropriate 

absorbent materials. 

 

The third international conference on sandwich construction was held at 

Southampton, UK, in 1995. Couple papers were presented in that conference about the 

application and analysis of corrugated-core sandwich panels. Kattan (1995) and Kujala 

and Tuhkuri (1995) presented the capability of using laser-welded corrugated-core 

sandwich panels in shipbuilding. Those structures were found to be up to 40-50% lighter 

than the conventional steel grillages.  

 

More recently, several different types of core have been investigated. Fung et al. 

studied the C-core (1993; 1996) and Z-core (Fung et al., 1994) sandwich panels. In 2001, 

Lok et al. (2000) introduced a truss-core sandwich panel and studied its elastic stiffness 

properties and behavior. A truss core is very similar to a corrugated-core in the outlook. 

The difference between those two structures is that the corrugation is a continuous 

structure but the truss core is assembled by two inclined plates in a pane l unit. 
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2.3 Elasto-Plastic Analysis 

Hill (1950) introduced the further concept of plastic anisotropy into the theory of 

plasticity by Mises. He also proposed a yield criterion constituting a generalization of the 

Huber-Mises criterion. Olszak and Urbanowski (1956) introduced the anisotropic 

parameters, the tensor moduli of plasticity, into the plastic potent ial and yield criterion 

for perfectly plastic materials. Hu (1956) extended the theory for strain-hardening 

materials. These anisotropic parameters vary as the material strain-hardens as was first 

pointed out by Hill (1950) and was later used by Jensen et al. (1966) for a shear lag 

problem. 

 

The nonlinear difficulty created by mathematical complexity has been overcome 

by the advent of high-speed computers and the efficient use of computational methods. 

The formulation and solution of the incremental problem in elastic-plastic solids is a 

fundamental problem in plasticity. Finite element method and boundary element method 

are well-known for the solution of this type of problems and solutions can be carried out 

in standard finite element and boundary element codes.  

 

Beginning with the 1970s, the advent of structural mechanics dealing with 

laminated structures shifted attention of researchers to orthotropic plates and much work 

has been done in characterizing elasto-plastic analysis of these plates. All sandwich 

panels can be regard as laminated structures. One face is the lamina 1, the core is lamina 
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2, and the other face is lamina 3. The theory of laminate can be applied in all sandwich 

structures. Those idea and advantages have been discussed by Vinson (1999).  

 

Many papers in elasto-plastic analysis of composite plates were published. In 

these studies, two approximate approaches, finite element method (Marcal and King 

1967; Owen and Figueiras 1983a; Owen and Figueiras 1983b; Valliappan et al. 1976) and 

boundary element method (Karam and Telles 1992; Telles and Brebbia 1979; Telles 

1983; Telles and Carrer 1991), were employed.  

2.3.1 Finite Element Method 

The finite element solution of elastic-plastic problems has been intensely 

developed since the 1960s and a number of different approaches have been proposed. A 

considerable literature exists on the elasto-plastic analysis using finite element method. 

Oden (1969) had given an extensive list of references that include the various 

investigations in the fields of material, geometric and combined nonlinear behavior of 

structures in 1969.  

 

In the same year, Whang (1969) published a paper on elasto-plastic orthotropic 

plates and shells using finite element method. In that paper, a finite element method was 

developed for the elasto-plastic analysis for bi- linear strain-hardening orthotropic plates 

and shells. Two approaches, the initial stiffness approach and tangent stiffness approach, 

were presented and compared. Both applied the Huber-Mises yield function and the 
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Prandtl-Reuss flow rule. A generalized yield function for anisotropic material with the 

anisotropic parameters was used. 

 

In 1980, Owen and Hinton (1980) published the book of finite elements in 

plasticity. In that book, the two-dimensional layer and non- layer structures were 

analyzed. The FEM procedures and programming dealing with the elastic-plastic 

materials were introduced. 

2.3.2 Boundary Element Method 

The boundary element method has been developed for several kinds of non- linear 

problems such as elasto-plasticity, viscoplasticity and creep.  A book on boundary 

elements by Banerjee and Butterfield (1981) provided solutions for elasto-plastic 

problems of two or three dimensions by means of initial strain or stress. In 1986, 

Moshaiov and Vorus (1986) published a paper on plate bending problem by boundary 

element method and incremental theory with initial plastic moments.  

 

Whether using finite element or boundary element methods to solve elasto-plastic 

problems, an incremental approach must be applied in which the loading is divided into 

increments after the yield ing occurs. 
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2.4 Yielding Criteria 

An accurate yielding function is the key factor for the accuracy of the plastic 

analysis. The yield criterion determines the stress level at which plastic deformation 

begins. Numerous criteria have been proposed for the yielding of materials. The most 

widely used criteria are the Tresca maximum shear criterion and the von Mises yield 

criterion. Those two criteria have the significant agreement with experimental predictions  

and closely approximate metal plastic behavior. In this section, those two criteria are 

briefly introduced. The detail of those yielding surfaces can be found in several 

references (e.g. Lubliner 1990; Mendelson 1983; Shames and Cozzarelli 1992). 

 

The projections of Tresca and von Mises yield surfaces in the π-plane are regular 

hexagon and circle, respectively, as shown in Figure 2-2(a). In (σ1-σ3) and (σ2-σ3)-plane 

those are irregular hexagon and ellipse, respectively, as shown in Figure 2-2(b). 

Generally, the Tresca yield surface is a regular hexagon inscribed within the von Mises 

yield surface. 
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In Figure 2-2, it can be seen that the Tresca yield criterion is linear between 

segments. The singularities on the principal axes make the plasticity difficult. Some 

difficulties regarding the direction of plastic flow arise at the corners of the hexagon. 

Singular yield surface with corners has been discussed by Koiter (1953, 1960). Generally, 

the plastic analysis as based on the smooth von Mises yield surface seems to be more 

appropriate for the numerical discussion. Also, the von Mises yield criterion usually fits 

the experimental data better than other criteria. 

2.4.1 Tresca Criterion (Maximum Shear Theory) (Doltsinis 2000; Kachanov 1971) 

The Tresca criterion is the historically oldest. This theory assumes that the plastic 

deformation occurs when the magnitude of the maximum shear stress over all planes 

reaches a critical value. The limit value can be determined by simple tension experiment. 

This criterion may be written in the following: 

 

 
Fig. 2-2:  Projections of the von Mises and Tresca yield surfaces 
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Where 

f some function 

k a material parameter to be determined experimentally 

σ1, σ2, σ3 principal stresses 

τ1, τ2, τ3 shear stresses 

 

The forms Eq. 2.1 are not unique and not an analytic function. It can be rewritten 

as:  

The above form has the advantage of being analytic and, moreover, it can be 

expressed in terms of the principal stress-deviator invariants J2 and J3.  

According to Eq. 2.3, to apply the Tresca criterion, one major difficulty of is that 

it is necessary to know in advance the maximum and minimum principal stresses. Or it 

will suffer from the great complexity of the Tresca criterion in its general form, Eq. 2.3. 

Only in the case that the maximum and minimum principal stresses are known a priori 

can the Tresca criterion be reduced into a simple form. 
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2.4.2 von Mises Criterion (Distortion Energy Theory) 

von Mises suggested that yielding occurs when the second deviatoric stress 

invariant, J2, reaches a critical value. Or it is called the distortion energy theory. This 

theory assumes that yielding begins when the distortion energy equals the distortion 

energy at yielding in simple tension. An analytic form of the Mises yield function 

(Calcote, 1968) is  

Or  

Where 

f some function 

J2 the second deviatoric stress invariant 

σ1, σ2, σ3 principal stresses 

k a material parameter to be determined experimentally 

 

A physical meaning of the constant k can be obtained by considering the yielding 

of materials under simple stress states. In terms of the stress component referred to the x-, 

y-, and z- axes, the von Mises yield criterion may be written as: 

Where 

σx, σy, σz stresses in x-, y-, and z- directions, respectively 

2
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τxy, τyz, τxz shear stresses 

 

Hill (1950) generalized the von Mises yield criterion for isotropic materials to 

include anisotropic materials. He assumed the yield criterion to be a quadratic in the 

stress components as given by  

Where 

F, G, H, L, M, N material anisotropic parameters 

For most metals von Mises criterion fits the experimental result more closely that 

Tresca criterion. Throughout the elasto-plastic analysis in this thesis, the von Mises yield 

criterion is employed. 

 

It should be noted that there is no yield criterion for structurally orthotropic plates. 

In the previous research, both von Mises and Tresca yield criteria deal with the naturally 

isotropic and aniosotropic materials. However, in this study, the structure is made of the 

isotropic material but the behavior of the structure is orthotropic. The Ilyushin yield 

surface, shown in Eq. 2.8 and expressed in terms of dimensionless stress resultant, is 

considered and modified to the structurally orthotropic plate. 
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Because of the structural type, the behaviors of the structurally orthotropic plate 

are different in both the corrugation direction and the direction normal to the corrugation. 

The yield criteria developed for the naturally anisotropic material are not appropriate in 

this analysis. However, it seems that the empirical data of structurally orthotropic plates 

for the post yield behaviors are not available. Therefore, several physical assumptions are 

reasonably made in this study and introduced in Chapter three and these assumptions 

coincide with the naturally anisotropic material. 

2.5 Plastic Stress-Strain Relations  

A more complicated distinction between elastic and plastic stress-strain relations 

arises from the fact that in the elastic range, the strains are unique and can be determined 

by the stress; therefore, for a given set of stresses we can calculate the strains by using 

Hooke’s law without any regard as to how the stress state was reached; however, in 

general, in the plastic range, the strains are not uniquely determined by the stresses but 

depend on the history of loading or the stresses state.  

 

Because of the dependence of the plastic strains on the loading path, it is 

necessary to calculate the increments of plastic strain throughout the loading history and 

then obtain the total strains by summation. However, there is at least one important class 

of loading paths for which the plastic strains are independent of the loading path and 

depend only on the final state of stress. These are called proportional loading paths, in 

which all the stresses increase in the same ratio. These will be discussed subsequently. 
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2.5.1 Incremental Theory of Plasticity (Plastic Flow Rule) (Mendelson 1983) 

In general, the incremental theory is considered as the correct phenomenological 

theory of plasticity. The process of deformation in plastic stage is irreversible. The 

equations of the theory of plastic flow establish a connection between infinitesimal 

increments of strain and stress, the stresses themselves and certain parameters of plastic 

state. The total strain increments are combined the increments in elastic strains and 

plastic strains and shows as follow:  

Where dεe is the increment in elastic strain components and is connected with the 

increment in elastic stress according to Hooke’s law. dεp is the increment in plastic strain 

components and can be expressed by the flow rule:  

Where dλ is a positive scalar that depends on the stress increment. The function g, 

defining the ratios of the components of the plastic strain increment, is known as the 

plastic potential. In the view of the similarity of the properties of the yield function and 

the plastic potential, it is generally assumed that they are actually identical. 

 

The flow rule obtained on the basis of identity of plastic potential and yield 

function is known as the associated flow rule for the given yield criterion. There are two  

particular stress-strain relations associated with von Mises yield criterion and known as: 

(a) Levy-Mises equations and (b) Prandtl-Reuss equations. 
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(a) Levy-Mises Equations 

Levy first introduced the general three-dimensional equations relating the 

increments of total strain to the stress deviations in 1870. Also, in 1913, these equations 

were given independently by von Mises. These are known as the Levy-Mises equations. 

These equations are shown as follows:  

or  

Where 

Sij the stress deviator tensor 

dλ nonnegative constant which may vary through out the loading history 

In these equations the elastic strains are assumed to be ignored and the total strain 

increments are assumed to be equal to the plastic strain increments. Therefore, these 

equations can be applied to large plastic flow so that the elastic strains can be neglected 

and cannot be used in the elasto-plastic transitional range. 

 

(b)Prandtl-Reuss-Equations 

Instead of the Levy-Mises equations, Prandtl and Ruess included both elastic and 

plastic components of strains in the generalization of Eq. 2.11. Reuss assumed that the 

plastic strain increment is proportional to the instantaneous stress deviation at any instant 

of loading. The equations are as follows:  

λ
τ

ε

τ
ε

τ

εεεε
d

ddd

S
d

S

d

S
d

xy

xy

zx

zx

yz

yz

z

z

y

y

x

x ======  (2.11) 

λε dSd ijij =  (2.12) 



27 

or  

Eq. 2.11 can be regarded as a special case of Eq. 2.13 where the elastic strains are 

neglected. The theory in which the plastic strains are governed by Eq. 2.12 or Eq. 2.14 is 

known as the incremental or flow theory of plasticity.  We can apply von Mises yield 

criterion, the equivalent or effective stress σe, and the equivalent or effective plastic strain 

increment dεp into the Prandtl-Ruess equations. Then, the constant dλ can be written as:  

and the stress-strain relations become:  
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or  

The Prandtl-Ruess stress-strain relation is well known as the most satisfactory 

basis for dealing with plastic analysis when anisotropy and Bauschinger effect are 

secondary importance (Chakrabarty, 1987); however, the incremental theory generally 

leads to mathematical complexities. 

2.5.2 Deformation Theory 

In contrast to the incremental or flow theories, Hencky proposed total stress-strain 

relations in 1924. Considerable simplifications are often achieved by using the 

deformation theory. The components of the total plastic strain are taken to be 

proportional to the corresponding deviatoric stresses. The plastic strain relation proposed 

by Hencky can be written as: 
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Where λ is positive during loading and zero during unloading. From Eq. 2.19, the 

plastic strain is a function only of the current state of stress and is independent of the 

loading path. 

 

It can easily be proved that for the case of proportional loading, i.e., if all the 

stresses are increasing in a ratio, the incremental theory described previously can reduce 

to the deformation theory. The verification can be found in (Kachanov 1971; Mendelson 

1983). Furthermore, Budiansky (1959) proposed that there are a range of loading paths 

other than proportional loading for which the general requirements of plasticity theory are 

satisfied by deformation theories. 

2.6 Methods of Analysis 

The main difficulty of plastic analysis is the mathematic complexity. However, 

that difficulty has been overcome by advent of high-speed computers and the efficient 

use of computational methods. In this numerical analysis, the general Galerkin method, 

direct iteration, and initial stiffness approach are employed.  

2.6.1 The Galerkin method 

The Galerkin method can be employed successfully to diverse types of plate 

bending problems. The main idea of this method is minimizing errors by orthogonalizing 

with respect to the assigned set of trial functions and reducing the system of differential 
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equations into a system of algebraic equations (Giri and Smitses 1980; Niyogi 1973). By 

applying the Galerkin method, Bennett (1971) studied the nonlinear vibration of 

unsymmetrical angle-ply plates. This method can yield a very easy and fast solution. The 

detail treatment can be found in (Ventsel and Krauthammer 2001) or any plate bending 

theory monograph. 

2.6.2 Initial stiffness approach 

The mathematical programming concepts to incremental elastic-plastic analysis 

have been discussed by Martin et al. (1987). There are two approaches, initial stress and 

initial strain approaches. The initial stiffness approach (Owen and Figueiras 1983a; Owen 

and Figueiras 1983b) has been developed and extensively used for elasto-plastic problem. 

Zienkiewicz et al. (1969) developed the finite element programming using the initial 

stress method. The initial plastic moment method developed by Moshaiov et al. (1986) 

has been adopted as the computational process in the proposed elasto-plastic analysis. 
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Chapter 3 
 

Methodology 

3.1 Introduction 

In this chapter the elasto-plastic analysis of a corrugated-core sandwich plate is 

addressed. In general, the corrugated-core sandwich plate is made of an isotropic 

material. To develop a mathematical theory of plasticity, several idealizations of yield 

criterion are taken into account. First, it is assumed that the conditions of loading are such 

that all strain rate and thermal effects can be neglected. Secondly, the Bauschinger effect 

is disregarded. Finally, the material is assumed to be isotropic. 

 

As mentioned previously, the 3D corrugated-core sandwich plate can be reduced 

to a 2D structurally orthotropic continuum using several elastic constants. The basic 

elasto-plastic material behavior in the two-dimensional structurally orthotropic plate must 

be presented before the numerical aspects. The Reissner-Mindlin plate theory is applied 

to this analysis; namely, the transverse shear deformation effects are taken into account 

for a sandwich plate subjected to static loads. Also, the von Mises’ and Ilyushin’s yield 

surfaces are considered and modified in this analysis.  
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The analysis is based on the Reissner-Mindlin plate theory. Therefore, three 

hypotheses of this theory are as follows: 

1. The straight line normal to the middle plane of the plate remains straight but not 

necessarily normal to the middle plane when the plate is subjected to bending. 

2. The transverse normal stress, σz, is small when compared with the stresses σx and 

σy, i.e. the σz can be neglected.  

3. The middle plane remains unstrained subsequent to bending. 

 

An elastic-plastic analysis based on the incremental theory of plasticity can be 

carried out into two stages, elastic and elasto-plastic steps. The elastic step is that the 

elastic solution where internal stresses and strains follow Hook’s law and the elasto-

plastic step is that this elastic system is modified to combine plastic strains. The plastic 

strain is defined as the difference between the total strain and the elastic strain. Unlike 

elastic solids, in which the state of strain depends only on the final state of stress, the 

plastic deformation is determined by the complete history of the loading. Therefore, the 

plastic problems are essentially incremental in nature. The detail will be discussed in the 

following sections. 

3.2 Elastic Analysis 

Before the onset of plasticity the relationship between stress and strain remains in 

the linear elastic stage. In elastic range, the strains are linearly related to the stresses by 
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Hook’s law. We consider the corrugated-core sandwich plates with thin faces under the 

assumptions stated in Section 1.1. It is assumed that the sheet faces work as membranes; 

namely, only the direct stresses that are uniformly distributed over the thickness act in the 

faces.  The core contributes to the flexural stiffness in the corrugation direction, x-

direction, but not in the direction normal to the corrugation, y-direction. The shear strain 

deformations of this plate are taken into account. Due to these elastic constants 

introduced by Libove and Batdorf (1948), the 3D corrugated-core sandwich plate can be 

reduced to a 2D structurally orthotropic plate. 

3.2.1 Equilibrium Equations   

A positive bending moment results in tensile stresses forming in the bottom 

fibers. Accordingly, all the moments and shear forces acting on the element in Figure 3-1 

are positive. Consider the equilibrium of an infinitesimal element with length dx and 

width dy cut from the plate subjected to vertical distributing load of intensity q(x, y) 

applied to an upper surface of the plate shown in Figure 3-1. Since the stress resultants 

and the stress couples are assumed to be applied to the middle plane of this element, a 

distributed load q(x,y) is transferred to the middle plane.  
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 We can take the equilibriums of moments about x axis and y axis and the sum of 

forces in z direction. Therefore, the following three independent conditions of 

equilibrium can be formed, respectively. 

 

 

Where  

Mx bending moment in the x-direction 

 

 
Fig. 3-1:  Sign convention used in the plate analysis 
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My bending moment in the y-direction 

Mxy twisting moment and Myx=Mxy 

Qx transverse shear force in the x-z plane 

Qy transverse shear force in the y-z plane 

q transverse load intensity 

3.2.2 Curvature-Displacement Relations   

 According to the first Mindlin plate hypothesis in Section 3.1, three independent 

degrees of freedom corresponding to the deflection w in z-direction and the angles of 

rotation θx and θy, which are not related to the deflection w are acquired for the plate 

problem. Therefore, we can obtain the curvature-displacement relationship as follows:  

 

Where:  

xθ and yθ   slopes of the normal to the middle plane of the sandwich plate about 

the y and x axes, respectively. The above angles are assumed to be 

independent variables with respect to w 

xχ  curvature along the x axis 
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yχ  curvature along the y axis 

xyχ  twisting curvature with respect to the x and y axes 

3.2.3 Constitutive Equations   

 The 3D corrugated-core sandwich plate can be considered as a 2D structurally 

orthotropic construction due to several elastic constants. Thus, we can obtain the 

following bending moments, Eq. 3.6 and Eq. 3.7, and twisting moment relation, Eq. 3.8, 

for orthotropic plates by substituting curvature-displacement relations, Eq. 3.4 and 

Eq. 3.5, as follows: 
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Dx and Dy flexural stiffnesses of the sandwich plate as a whole in the xz and yz 

planes, respectively. 

Dxy twisting stiffness of the sandwich plate as a whole in the xy plane.  

υx and υy  Poinson’s ratios in x and y axes, respectively. 

Here Dxυy=Dyυx and this has been derived by Libove and Batdorf (1951), and 

yx

x
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D
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, thus, Dxxυy=Dyyυx. 

 

The shear forces can be expressed as Eq. 3.9 and Eq. 3.10: 

 

Where  

w deflection in z-direction.   

DQx and DQy  shear stiffnesses of plates in xz and yz planes, respectively. 

 

As described previously, a 3D sandwich construction can reduce to a 2D 

structurally equivalent orthotropic plate due to the above elastic constants. These elastic 

constants, Dx, Dy, Dxy, DQx, and DQy, of corrugated-core sandwich plates were derived by 
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Libove and Hubka (1951). Dx and Dy are the flexural stiffness of the sandwich plate as a 

whole in the xz and yz coordinate planes, respectively, and Dxy is the twisting stiffness of 

the sandwich plate as a whole in the xy plane. They can be defined as Eq. 3.11: 

DQx and DQy are the shear stiffness of the sandwich plate as a whole in the xz and 

yz planes, respectively.  They are defined as Eq. 3.12:  

The detailed expressions of these elastic constants can be found in Appendix A. 

3.2.4 Governing Equations  

Substituting for the stress resultants and stress couples from Eq. 3.4 to Eq. 3.8 into 

Eq. 3.1 to Eq. 3.3, we obtain the following system of governing differential equations  for 

an orthotropic sandwich plate: 
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The above system can be represented in the following operator form: 

Where:  
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q intensity of lateral loading 

3.3 Theory of Plasticity 

The objective of the theory of plasticity is to obtain a theoretical relationship 

between stress and strain for an elastic-plastic behavior of materials. There are three 

requirements in order to formulate a theory that models elasto-plastic material behavior: 

1. An explicit relationship between stress and strain must be formulated to describe 

material behavior under elastic conditions, i.e., before the onset of plastic 

deformation. 

2. A yield criterion, which specifies the state of the multiaxial stresses corresponding 

to the occurrence of plastic flow. 

3. A flow rule, which determines the relations between plastic strain increments and 

stresses increments after yielding. 

 

The second requirement the Huber-Mises yield criterion, with isotropic hardening 

extended for naturally anisotropic materials by Hill, and Ilyushin’s dimensionless yield 

surface, will be modified to a structurally orthotropic plate for this analysis. To achieve  

the elasto-plastic analysis, the yield criterion should be determined first. As mentioned 

previously, this corrugated-core sandwich plate is approximated by a 2D structurally 

orthotropic plate. The material of that plate is isotropic material; however, the structural 

behavior of that plate is orthotropic. No yield criterion was used in previous studies for 
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structurally orthotropic behavior of plates. Therefore, in this study, the yield criterion will 

be modified for a structurally orthotropic. 

 

To derive the governing differential equations for the elastic-plastic analysis of 

corrugated-core sandwich plates, the following assumptions will be made: 

1. The yield function f  is a function of the direct stresses associated with flexure of 

the plate only, but not of the transverse shear stresses.  

2. All assumptions regarding the behavior and mechanical response of the 

corrugated-core sandwich plate adapted in mechanics of sandwich plates and 

discussed previously are valid here except for the constitutive equations.  In what 

follows, it is also assumed that displacements are small, and the material of the 

plate is isotropic. 

3. When the bending moment reaches the yield moment, the whole cross section of 

the reduced plate plastifies simultaneously, namely, the whole cross section of the 

plate is assumed to become plastic instantaneously. 

 

The third assumption is however a convenient fiction as in reality there is always 

a gradual plastification of the whole cross-section of the plate with the outer fibers 

becoming initially plastic. The plastic zone then spreads inward until the whole section 

ultimately yields shown in Figure 3-2. Moreover, this assumption can reduce a significant 

difficulty in calculation. 
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According to the above conditions, the development of the elasto-plastic analysis 

is introduced in the following sections. Essentially, plastic behavior is characterized by an 

irreversible strain, which can only be obtained once a certain level of stress has been 

reached.  

3.3.1 The Yield Criterion 

It is supposed that a solid continuum is subjected to gradually increasing stresses. 

The initial deformation of the solid is entirely elastic and recoverable on completely 

unloading. For certain critical combinations of applied stresses, plastic deformation first 

occurs in the element. A rule that defines the limit of elastic behavior under any possible 

stress combinations is called yield criterion. 

 

 
Fig. 3-2:  Yielding of non-layered cross-section 
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An accurate yield function is the key factor for the accuracy of the elasto-plastic 

analysis. Because of the assumption that the whole cross section yields simultaneously in 

Section 3.3, the yield function in terms of stress couples is considered here. For Mindlin 

plates we may assume that the yield function F is expressed as a function of the bending 

moments {M}, but not of the shear forces {Q} (Karam 1992). During yielding it is 

assumed that the bending and twisting moments must remain on the yield surface so that:  

Where f is some function and k is a material parameter that is determined experimentally. 

The term k may be a function of a hardening parameter, ξ. 

Rearrange Eq. 3.21:  

The von Mises yield surface for the bending of structurally orthotropic sandwich 

plates can be obtained by modifying Ilyushin’s yield surface expressed in terms of 

dimensionless stress resultants for isotropic plates and shells (Shi and Voyiadjis 1992) or 

the plate yield criteria for isotropic plate in (Lubliner 1990) as follows:  

Where:  

 

{ }( ) ( )ξkMf =  (3.21) 

{ }( ) { }( ) ( ) 0, =−= ξξ kMfMF  (3.22) 
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α,β =1,2  

h   = the thickness of plate 

σ0 = yield stress 

Using the same dimensionless idea as Eq. 3.23 and introducing the anisotropic 

parameters into the von Mises yield function, we can obtain:  

The terms mx , my , and mxy  are dimensionless bending and twisting moments, 

respectively defined as:  

Where : 

Mx and My bending moments in the x (the corrugation direction) and y 

(perpendicular to the corrugation) directions, respectively 

Mxy twisting moment for the structurally orthotropic sandwich plate  

Mx0  and M y0   uniaxial yield bending moments in the x (the corrugation direction) 

and y (perpendicular to the corrugation) directions, respectively 

Mxy0  yield twisting moment for the structurally orthotropic sandwich 

plate  

42
0hMU σ=  (3.25) 
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 (3.27) 
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A11, A12, A22, and A33  Anisotropic parameters depend  on the structural orthotropy of the 

sandwich plate. The formulas of these anisotropic parameters are 

given in Appendix B. 

 

Accordingly, the yield criterion for structurally orthotropic sandwich plates can be 

formulated. Since the corrugated-core sandwich plate is regarded as a structurally 

orthotropic plate, the yield moments in each x- and y-direction should be different. In an 

elastic perfectly-plastic material, the effects of strain hardening are disregarded. That 

means once the yield moment M0 is reached the material could not take more strength. 

The strain hardening provides an increase in the strength of the material. Figure 3-3 is the 

behaviors of elastic perfectly-plastic and strain-hardening structures.  

 

 
Fig. 3-3: Material behavior 
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Next, let us define the uniaxial yield moment.  According to the third assumption 

in Section 3.3, the whole cross section yields simultaneously. Geometric parameters of a 

plate unit are defined in Figure 3-4. Therefore, referring to Figure 3-4, this moment in the 

direction of corrugation, Mx0, can be calculated as follows:  

Where: 

Z first moment of area of one-half of the corrugation about the central axis of 

the plate per unit length 

σ0 the yield stress of the material in a tension test 
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Fig. 3-4:  the cross section and stress distribution in x direction 
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Where:  

tc, tf  thicknesses of core and face sheets, respectively.  

α corrugation angle  

hc  depth of corrugation measured from the center line at crest to center line at 

trough 

h  distance between middle surfaces of face sheets  

2p corrugation pitch, the distance between two crowns 

f length of corrugation flat segment  

 

The flexural contribution of core in the direction normal to the corrugation is 

significantly smaller than the face sheets. Furthermore, the position of the core varies in 

different cross section selected in the y-direction. Therefore, according to the basic 

assumption of the corrugated-core sandwich plate in Section 1.1, the corrugation gives no 

contribution into the flexural resistance in the y-direction, i.e. the direction normal to the 

corrugation. Hence, referring to Figure 3-5, the yield moment My0  can be defined as:  
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+= 000 22
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The same reason of moment resistance for twisting moment as that in y-direction, 

the corrugation also gives no contribution into the twisting resistance to flexure.  Thus:  

Since τ0 = σ0 / 3 , we have: Eq. 3.31  

3.3.2 Elasto-Plastic Analysis  

The process of plastic deformation is irreversible. Most of the work of 

deformation is transformed into heat. A more complicated distinction between elastic and 

plastic stress-strain relations is that in the elastic stage the stains are uniquely determined 

by the stresses, whereas in plastic range the strains are generally not uniquely determined 

by the stresses, but depend on the whole history of loading. To analyze the elasto-plastic 

 

 
Fig. 3-5:  the cross section and stress distribution in y direction 
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behavior, the modified yield criterion based on von Mises and Ilyushin criteria and 

associated flow rule (Prandtl-Reuss equations) are used. 

3.3.2.1 Incremental Form of Elastic Constitutive Equations  

The definitions of those symbols in the incremental form are the same as previous 

sections. The symbol, d, in front of the term is defined as the increment of that term. The 

total curvature increments are considered to be the components of elastic and plastic 

curvature increments and can be written as:  

Where the superscripts e and p are the elastic and plastic curvature components, 

respectively. 

 

According to the kinematic assumptions, the increments of the total bending strain 

are given in terms of the deflection and slope increments as follows:  

 

 

{ } { } { }pe ddd χχχ +=  (3.32) 

( ) ( )
y

d
d

x
d

d y
y

x
x ∂

∂
−=

∂
∂

−=
θ

χ
θ

χ ,  (3.33) 

( ) ( )








∂

∂
+

∂
∂

−=
x

d

y
d

d yx
xy

θθ
χ

2
1

 (3.34) 

( ) ( )
y
dw

dd
x

dw
dd y

e
xx

e
x ∂

∂
+−=

∂
∂

+−= θψθψ ,  (3.35) 



50 

 The elastic strain increments are related to the moments through the orthotropic 

Hooke’s law as follows:  

Or in matrix form:  
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{ } [ ]{ }ee dCdM χ=  (3.37) 
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According to the Prandtl-Ruess theory (Valliappan 1976), the plastic strain 

incremental components (curvatures) can be expressed as:  

 

Where the equivalent moment, M , is defined by the Huber-Mises yield function. 
p

d χ is 

the incremental equivalent plastic strain associated with Md , which is obtained by 

implicit differentiation of Eq. 3.41 as shown:  
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If H  is defined as the slope of equivalent moment vs. equivalent plastic strain 

curve as shown in Figure 3-6 , then 
p

d χ  is related to Md  as follows:  

 

 

For example, consider a strip-beam cut from the plate in the x direction.  For this 

particular case, since the only moment occurs in x-direction, it can be shown that the 

equivalent moment and equivalent plastic strain increment reduce to:  

H
Md

d
p

=χ  (3.43) 

 

 
Fig. 3-6: Equivalent Stress-Strain Curve 
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Therefore, Eq. 3.43 for the above case can be considered as the following form:  

Where:  

EIx, (EIx)p the elastic and elasto-plastic response slopes, respectively 

E the modulus of elasticity of the plate material.   

It can be shown that H is the slope of the uniaxial stress versus the uniaxial plastic 

strain as obtained in a uniaxial yield test. Obviously, for structurally orthotropic sandwich 

plates, the values of H will be different in the x and y directions. 

Let us write Eq. 3.40 in the matrix form as:  

Where:  
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Then the incremental equivalent moment, Md , given by Eq. 3.42, can be also 

written in the matrix form as:  

Rewriting the elastic relations i.e. Eq. 3.37 in the form:  

and substituting Eq. 3.46 into Eq. 3.49, we can get:  

But because of Eq. 3.43:  

Substituting Eq. 3.49 into Eq. 3.48 and using Eq. 3.51, yields:  

Now the incremental equivalent plastic strain 
p

d χ  can be expressed as:  

Substituting Eq. 3.53 into Eq. 3.49, we obtain:  
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We can represent the above equa tion in the following form:  

 

The elasto-plasticity matrix [Cep] takes the place of the elasticity matrix [Ce] in the 

incremental analysis. It is evident that the elasto-plastic matrix is symmetric and positive 

definite. Furthermore, the Eq. 3.55 is valid whether or not ‘H’ takes on a zero value. 

3.3.2.2 The Incremental Form of the Governing Equations  

The incremental form of the equilibrium equations is given by:  

Where: 
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Using Eq. 3.54 the moments may be expressed as follows:  

 

 

Substituting Eq. 3.58 into Eq. 3.57 , we can get:  
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Rearrange the above Eq. 3.61, we can obtain:  

Substituting Eq. 3.59 and Eq. 3.33 to Eq. 3.36 into Eq. 3.62, after some 

transformation the following equation is obtained:  
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The differential operators Lij  ( i, j =1,2,3)  are identical to Eq. 3.20. It is evident 

that the governing equations of sandwich plate bending, Eq. 3.63, include lateral loading 

and plastic moment effects.  The plastic moment vector, {dMp}, which is unknown at any 

increment, simply appears in the equations as an additional lateral load.  

3.4 Boundary Conditions 

For most common types of supports, in practice, the boundary conditions are 

simply supported, clamped, and free. Let us consider the appropriate boundary conditions 

prescribed on an edge of a sandwich, rectangular, orthotropic plate. Unlike the classical 

theory, the governing differential equations, Eq. 3.63, have the sixth order not fourth 

order; therefore, three boundary conditions should be prescribed at any point of the 

sandwich plate side. The discussions for the different boundary conditionsis presented 

next. 

(a) Simply supported edge 

The principal boundary conditions for a simply supported edge are that the 

deflections in z-direction and bending moments, Mx or My, are zero. There are two 

different types of conditions that may be regarded as the third boundary condition (Folie 

1971), illustrated in Figure 3-7. One may set the twisting moment, Mxy, to zero thus 
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permitting the edge to shear, e.g. on this edge parallel to the x-axis γxz?0. In most 

practical cases, there will be an edge stiffener or some symmetric constraint to prevent 

such shear deformation. Therefore, the boundary condition should rather allow the 

existence of a twisting moment along the edge but restrict the shear deformation of the 

edge. The former boundary condition, where the twisting moment along the edge is  zero, 

is called the soft boundary condition. The latter, preventing shear deformations, is called 

the hard boundary condition. 

Two boundary conditions for a simply supported edge, say x=constant are:  

(1) Hard type boundary: 

The third condition will be represented for the hard type of simply supported 

boundary condition. Then the following boundary condition takes place:  

 

 
Fig. 3-7:  Definition of boundary conditions (for y=0 or b) 
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From Eq. 3.10, because DQy is the elastic constant of corrugated-core sandwich 

plates, therefore, we can obtain:  

From Eq. 3.6, we can obtain:  

Since Dxx is the material constant, hence:  

Thus, the boundary conditions at x = 0, a in this case can be formulated in terms 

of the principal unknowns of the problem, as follows:  

Since w = 0 on the edge constantx = , 0=∂∂ yw . Therefore, the third equation of 

Eq. 3.70 is of the form 0=yθ  and thus 0=∂∂ yyθ . Finally, we can represent the above 

boundary conditions in the form:  
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For x = 0, a 

Meanwhile, the boundary conditions for hard type simply support on the edges y 

= constant can be defined as follows: 

For y = 0, b  

(2) Soft type boundary: 

For x = 0, a  

For y = 0, b  

From Eq. 3.4 to Eq. 3.8, the boundary conditions, Eq. 3.73 and Eq. 3.74, can be 

expressed in terms of the deflection and slopes, therefore, 
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For y = 0, b  
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(b) Clamped edge 

The boundary conditions characterizing a clamped edge are no displacements of 

the neutral surface and no rotation of the cross-section in the boundary. These boundary 

conditions are shown as follows: Eq. 3.77  

(c) Free edge 

There are no force and stress couples on a free edge. Therefore, the boundary 

conditions for a free edge can be expressed as:  

For x = 0, a  

For y = 0, b  

Or the boundary conditions can be expressed all in terms of deflection and slopes 

as followings: 
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θx = θy = w = 0 (3.77) 

Mx = Mxy = Qx = 0 (3.78) 

My = Mxy = Qy = 0 (3.79) 
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For y=0, b    

3.5 Research Approach 

For elastic analysis, the general Galerkin method and double Fourier’s 

expressions are applied. The trial functions satisfying the boundary conditions are 

selected for this analysis. We substitute the selected trial functions into the governing 

Eq. 3.16 and solve simultaneous equation system for the unknown coefficients in double 

Fourier’s series of these unknown displacements until the yielding occurs. Thus, the 

deflection, w, and rotated angles, θx and θy, can be found by substituting these 

coefficients into the Fourier’s expressions. Furthermore, the corresponding moments and 

curvatures in x- and y-direction can be calculated. 

 

After the yielding occurs, the elasto-plastic analysis begins. Except the methods 

used in elastic analysis, in addition, the iteration procedure and incremental theory of 

plasticity are employed to solve the governing equations, Eq. 3.63, in the elasto-plastic 

analysis. Because in the elasto-plastic analysis the incremental theory of plasticity is 

employed, the trial functions are employed in an incremental style. The most difficulty of 

the elasto-plastic analysis is that in Eq. 3.63 the ∆{dR} is unknown and relates to the 

incremental plastic moments {dMp}. In each increment the incremental plastic moments 
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are unknown. Therefore, it is necessary to employ iterative to find the plastic moments 

and ∆{dR}. The procedure is discussed in Chapter Four. 



 

Chapter 4 
 

Numerical Analysis and Results 

4.1 Introduction 

The mathematical model of the elasto-plastic analysis of corrugated-core 

sandwich plates was proposed in previous Chapter. The numerical procedure for the 

elasto-plastic analysis is presented in this Chapter. In this analysis, Double Fourier 

expansions are employed to analyze plate bending problems. The linear elastic analysis is 

fairly straightforward. Each load corresponds to displacements. Thus, according to the 

constitutive equations, the stress couples can be obtained. 

 

The elasto-plastic analysis begins  on a reliable elastic linear analysis. Only a 

significant result of elastic linear analysis can induce an accurate elasto-plastic analysis. 

Therefore, the present analytical solution with simply supported edges is corroborated by 

experimental results, the analytical solution, and 3D finite element analysis of 

corrugated-core sandwich plate reported in (Tan et al. 1989).  

 

The difficulty of the elasto-plastic analysis is the mathematical complexity. The 

general Galerkin and incremental methods are employed to solve the elasto-plastic 

bending problem. The double iterations are applied to the load increment and the plastic 
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incremental moment determination. The outer loop is the load increment and the inner 

loop is to obtain the plastic incremental moments.  Numerical simulations are done by 

using MATLAB (2000). 

4.2 Linear Elastic Analysis 

4.2.1 Numerical Algorithm 

Double Fourier series solutions have been widely applied in plate problems 

especially for simply supported boundary conditions (e.g., Whitney 1969; Whitney and 

Leissa 1970; Holston 1971; Pagano 1970). Hence, in this rectangular plate, as shown in 

Figure 4-1  with all simply-supported edges, the solutions of the governing differential 

equations, Eq. 3.16, can be sought in the form of an infinite double Fourier expansion, as 

follows:  

 

Where wmn, Amn, and Bmn are represent coefficients to be determined. qmn can be 

determined by the external load using double Fourier expansion. a is the length in the 
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direction of corrugation and b is the width in the direction perpendicular to the 

corrugation.  

The external load over a rectangular plate can be any type of functions. In the 

subsequent example the uniformly distributed load is discussed. Let q be the intensity of 

the uniformly distributed load. Then, the coefficients of the double Fourier expansion, 

qmn in Eq. 4.2, can be determined as:  

 

 
Fig. 4-1: Rectangular simply supported plate 
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In Eq. 4.3, only when the terms, m and n, are equal to odd numbers the qmn is a 

non-zero value. Otherwise, it equals to zero. Furthermore, it can be easily verified that the 

expressions for the deflection and two rotations, Eq. 4.1, automatically satisfy the 

prescribed boundary conditions Eq. 3.71 and Eq. 3.72. 

 

The general Galerkin method is not necessary for solving the linear elastic 

analysis of a rectangular plate with all simply supported boundary edges.  The Navior 

method is employed, instead. Substituting Eq. 4.1 and Eq. 4.2 into Eq. 3.13 to Eq. 3.15, 

the system of equations in terms of the above unknown coefficients is in the following 

form:  

Where: 
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Solving Eq. 4.4, the coefficients of the deflection, w, and the slopes, θx and θy, in 

Eq. 4.1 can be obtained. Therefore, substituting the known solutions in Eq. 4.1 into the 

curvature-displacement relations, Eq. 3.4 and Eq. 3.5, and the constitutive relations, 

Eq. 3.6 to Eq. 3.8, the moments of this plate can be obtained. Figure 4-2  is the 

programming flow chart for the elastic analysis.  
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4.2.2 Elastic Analysis Comparison with Experimental Results 

 In this section, the behavior of the 6m by 2.1m corrugated-core sandwich plate 

studied by Tan et al. (1989) is analyzed. The material properties of the corrugated-core 

sandwich plate are the same as the plate in (Tan et al. 1989). In this case, the uniform 

distributed loading intensity is taken to be 5520 N/m2. The modulus of elasticity is 208 

GPa and the Poisson’s ratio is assumed to be 0.3. These stiffness values shown in 

 

 
Fig. 4-2: Flow chart for elastic analysis 

Start 

The applied loads q 

Yielding 
No 

Calculate the corresponding {ϑ }, 
{χ} and moments {M} 

Start elasto-plastic analysis 

Yes 

q=q+dq 
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Table 4-1 which are obtained from the formulas by (Libove and Hubka 1951) are from 

(Lok and Cheng 2000). 

 Table 4-2 shows the comparisons of the maximum deflection at the central point 

with classical analysis developed by Libove and Batdorf (1948), 3D corrugated-core 

sandwich plate finite element analysis (3D FEM) both reported in (Tan et al. 1989), and 

the present solution based on Reissner-Mindlin plate theory. As can be seen, the 

difference between the 3D FEM and the present solution in this thesis is 0.37% and 

between the solution by Tan et al.  and the 3D FEM is 1.19%. Figure 4-3 is the deflection 

diagram of the whole plate, with a complete deflects downward. 

 

 

Table 4-1: Geometric Parameters and Elastic Constants 

p (mm) hc (mm) f (mm) tf (mm) tc (mm) 

265 107.5 82.5 2.5 2.5 

Dx Dy Dxy DQx DQy 

(N-m) (N-m) (N-m) (N/m) (N/m) 

4.1x106 3.22x106 2.31x106 2.83x107 1.59x105  
 

Table 4-2: Comparison of central deflection 

Maximum Deflection, wmax (mm) 

Tan et al. 1989 

solution 3D FEM 

By Tan analysis  

Present 
solution 

Difference 
(%) between 
the present 
solution and 

3D FEM  

Difference 
(%) between 
solution by 
Tan and 3D 

FEM  

6.86 6.779 6.754 0.37 1.19  
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 Figure 4-4  shows the central deflection of the panel from this solution, the 3D 

FEM, and the experimental investigations. It is noted that although the present solution is 

closed to the experimentally obtained deflections, and it agrees closely with that given by 

the 3D FEM and provides adequate predictions. 

 

 

 
Fig. 4-3: Deflection of the corrugated-core sandwich plate 

a (m) 
b (m) 

w (m) 
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 The present results of the moments in x- and y-direction at central point are given 

in Table 4-3. It should be noted that My is very small and the signs of Mx and My are 

opposite. These results coincide with the experimental observations in (Tan et al. 1989). 

In that paper, the moments in both x- and y-direction by 3D FEM and the solution by Tan 

et al. (1989) are the same positive sign, namely, the compression in the top and tension in 

the bottom, as would be expected. However, the experimental investigation disagrees 

with My obtained by Tan et al. (1989) and the 3D FEM; i.e. My is negative (i.e. the 

compression in the bottom and tension in the top). The trend can also be seen in the 

moment predictions of the proposed solution.  
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 As shown in Figure 4-3, it is evident that the bending curvatures in both x and y 

directions are sagging. The curvature is directly related to the bending moment; therefore, 

Mx and My should be of the same sign. However, in Table 4-3, the signs of Mx and My are 

opposite. This contradiction is due to the poor structural properties in the y-direction. The 

shear stiffness DQy in Table 4-1 is very low. Therefore, the deflections due to shear effect 

overcome the bending curvature in the y-direction. Thus, the deflection of the panel gives 

a net downward trend. 

4.2.3 Convergence of Elastic Analysis 

In uniformly distributed load cases, the infinite series solutions for Eq. 4.1 

generally converge quickly; thus, a satisfactory accuracy can be obtained by considering 

only a few terms. Since the stress resultants and couples are obtained from the first 

derivatives of the slopes, θx and θy, the convergence of the infinite series expressions of 

the moments is less rapid. 

 

Considering the same case as Section 4.2.2, Table 4-4 shows the comparison of 

convergences of the central deflection and moments. The convergences of w, Mx, and My 

Table 4-3: Moments at central point 

Mx (N-m/m) My (N-m/m) 

5.99E+03 -613.9807 
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are shown in Figures 4-5 through Figure 4-7 , respectively. As can be seen, in this 

uniformly distributed load case, the double Fourier expressions have a remarkable 

convergence of all the deflection and moments. In Table 4-4, the convergence of these 

terms after m,n=13 has the difference only less than 1% in all deflection and moments.  

 

 

Table 4-4: Comparison of convergence of w, Mx, and My 

m,n = w (mm) Difference 
(%) 

Mx (N-m/m) Difference 
(%) 

My (N-m/m) Difference 
(%) 

5 6.789  6048.20  -604.46  
7 6.736 0.79% 5962.60 1.44% -620.97 2.66% 
9 6.762 0.39% 6000.50 0.63% -610.59 1.70% 
11 6.747 0.22% 5980.00 0.34% -616.85 1.01% 
13 6.756 0.14% 5992.10 0.20% -612.84 0.65% 
15 6.750 0.09% 5984.20 0.13% -615.49 0.43% 
17 6.755 0.06% 5989.60 0.09% -613.64 0.30% 
19 6.752 0.04% 5985.70 0.07% -614.97 0.22% 
21 6.754 0.03% 5988.60 0.05% -613.98 0.16%  
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Fig. 4-5: Convergence of w at central point 
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 It can be seen in Figure 4-5 and Table 4-4 that the deflection converges quickly. 

The difference between m, n=5 and 7 is already less than 1%. The difference for 

deflection between m,n=19 and 21 terms is only 0.03%. Even though m, n= 5 and 21, the 

difference is only 0.52%. Although moments are obtained from the first derivatives of the 

slopes, the convergences of the series expressions of moments in x- and y-direction are 

also very quick in this case. The differences for Mx and My between 19 and 21 terms are 

0.05% and 0.16%, respectively. It is evident that more terms can be selected for the 

different loads and can lead to more accurate solutions. However, more terms means 

more computing cost. Therefore, according the convergence study in this Section, for the 

uniformly distributed loading, a solution that m and n are both equal to 21 terms is very 

good and it is employed in this study. 
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Fig. 4-7: Convergence of My at central point 
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4.2.4 Conclusion 

In the elastic analysis the solution with simply supported boundaries is 

corroborated by experimental results (Tan et al. 1989). Some new phenomena observed 

in experimental investigations of corrugated-core sandwich plates, but not found in 

previous numerical analysis, have been confirmed and reported. Experimentally obtained 

deflections and bending moments Mx agree very closely with the 3D finite element 

analysis and the solution by (Tan et al. 1989). However, the experimental results disagree 

with the moment My (y-direction is perpendicular to the corrugation.) obtained by 3D 

FEM and the solution by Tan where both Mx and My are positive. Experimental results 

(Tan et. al 1989) show that the signs of Mx and My are opposite and My is negative and 

very small. Nevertheless, these phenomena were shown in the present analysis. The 

negative moment does not occur in all the cases. This phenomenon relates to the 

geometric parameters and the induced elastic constants of the corrugated-core sandwich 

plate. The phenomenon of negative moment is discussed in Section 4.4.6, subsequently. 

The present solution for elastic linear analysis in this thesis significantly agrees with all 

the experimental investigations both in deflections and moments from (Tan et al. 1989).  

4.3 Elasto-Plastic Analysis 

The elastic analysis was introduced in previous Section 4.2. The behavior before 

yielding occurs has been studied. The following section will discuss the elasto-plastic 

analysis. The incremental method is employed in the elasto-plastic analysis. Therefore, to 

obtain the incremental plastic moments, an iterative procedure is engaged. In the elasto-
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plastic analysis, two iterations are employed. The outer loop is the load increment and the 

inner loop is to obtain the incremental plastic moments. The convergence can be achieved 

by setting up the criterion that the changes in the incremental plastic moments are 

sufficiently small. 

4.3.1 Numerical Algorithm 

For the elasto-plastic analysis, the incremental method and iterative procedure are 

employed in the numerical simulation. Now, let us recall the incremental governing 

equation, Eq. 3.63, as follows: 

[ ]{ } { } { }dRdRdL ∆+=ϑ  

Since the boundary conditions remain simply supported, the incremental 

displacements and external uniformly distributed load can be expressed as:  

 

We substitute Eq. 4.8 and Eq. 4.9 into Eq. 3.65. This incremental simultaneous 

equation system is similar to Eq. 4.4 and can be arranged as:  
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Where  [K] is the same as in Eq. 4.4 and  
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To solve the algebraic system, Eq. 4.10, the incremental displacements can be 

obtained by substituting these coefficients into Eq. 4.8. Thus, we add these increments to 

the previous state of displacements and find the current displacement. Furthermore, the 

current moments can be obtained by the constitutive equations. 

 

However, one thing should be noted that the plastic moment vector, {dMp}, which 

must be unknown at any increment, simply appears in the equations as an additional 

lateral load in the governing equation. Therefore, { }pR∆  is unknown in the governing 

equation, Eq. 4.10.  Let us recall Eq. 3.60 as follows: 

{ } [ ]{ }{ } [ ]{ }
{ } [ ]{ } HaCa

dCaa
CdM

eT

eT
ep

+
=

χ
 

[ ]{ } { } { }pRRUK ∆+∆=∆  (4.10) 
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We can obtain the plastic moments {dMp} from Eq. 3.60. However, because the 

plastic moments are unknown at any increment, it is necessary to employ an iterative 

procedure to find {dMp} and { }pR∆  in this analysis.  

 

Before yielding occurs, there are no plastic moments. Thus, at the first load loop 

for the first iteration, when yielding just occurs, the plastic moments {dMp} can be 

assumed to be zero. Then, by solving Eq. 4.10 with the assumed {dMp} and using 

iterative procedure, the incremental displacements can be obtained and the vector {dMp} 

can be determined. Eq. 4.10 is the governing equation of the elasto-plastic analysis of the 

sandwich plate bending problems. { }pR∆ , in right-hand side of these simultaneous 

equations, depends on the incremental plastic moments which are unknown but can be 

found by an iterative procedure. With respect to the iterative procedure, it should be 

noted that the increments of the plastic moments are related to the increments of the 

plastic bending strains, which are related to the increments of the total bending strains  

shown in Eq. 3.60. The main advantage in this procedure is that only { }pR∆  in Eq. 4.10 

changes during the incremental procedure. 

4.3.2 Numerical Procedure  

There are many options for the iterative sequence to be employed. The most 

generally applicable methods are direction iteration, the Newton-Raphson method, 

tangential stiffness method, and the initial stiffness method. In this analysis the initial 
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stiffness method is employed. This method has been widely applied in elasto-plastic 

analysis with finite element and boundary element methods. For the initial stiffness 

method, the stiffness matrix, [K] in Eq. 4.10, is the same at each stage. This has the 

immediate advantage of significantly reducing the computing cost per iteration but 

reduces the convergent rate, as can be seen from Figure 4-8 . 

The solution procedure of the initial stiffness method can be summarized as: 

(1) Apply a load q and calculate the corresponding elastic bending strains {ϑ}e  using 

the linear stress analysis procedure. 

(2) Determine moments {M} and shear forces {Q} corresponding to {ϑ}e  by Eq. 3.6 to 

Eq. 3.10. Define a load which gives the elastic limit at the central point of the plate 

by using Eq. 3.26. 

 

 
Fig. 4-8: Initial stiffness solution algorithm 
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(3) Update q, w, {ϑ}e, {M}, and {Q} for the onset of yielding at a central point. 

(4) Apply a load increment dq and assume {dMp} =0.  If returned from step 11, the 

final value of {dMp} from last increment can be chosen as a first approximation. 

(5) Evaluate {dχ} by Eq. 4.10, the assumed {dMp} and the load increment. 

(6) Evaluate the corresponding increments of moments {dM} and shear forces {dQ} by 

Eq. 3.36. 

(7) Add {dM} to {M} and check yielding using Eq. 3.26.  If the point has yielded at the 

start of the increment, calculate { }p
d χ  by Eq. 3.53. 

(8) Using { }p
d χ  calculate {dMp} by Eq. 3.60. 

(9) Check convergence. Convergence occurs if changes in {dMp} are sufficiently small. 

If convergence was not achieved replace assumed {dMp} by calculated {dMp} and 

return to step 5. 

(10) If convergence has been obtained, update w,  {θ}, {M}. {Q}, q, and define the 

corresponding value of M0. In a case of hardening, the yield moment should be 

update too. 

(11) Return to step 4 unless q = Pmax or predetermined maximum number of iterations 

has been reached. 

 

An outline of the program procedure is provided in Figure 4-9. In elastic analysis, 

the deformations and loading are directly solved by the corresponding load step until the 
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yielding occurs. The incremental method is employed after yielding occurs. Two iteration 

loops are included in the post yie ld step. The inner loop is the iteration process. The 

convergence criterion determines when to terminate this inner iteration loop. The outer 

loop is the incremental loading loop. 
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Fig. 4-9: Program organization for elasto-plastic application 
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4.3.3 Convergence Criterion 

The iterative process is terminated when the numerical solution converges. In 

previous section it has been mentioned that the convergence occurs when changes in 

{dMp} are sufficiently small. Therefore, in this application we recommended the 

following convergence criteria. Let  

Where i is the ith iterations in the iterative procedure. Tolerance is a specified limit. 

Throughout the numerical analysis, the Tolerance is equal to 0.01.  is the norm of the 

vector inside the symbol and is defined as the following:  

Where the definition of i is the same as Eq. 4.11 and j is the jth element of the vector 

{dMp}.  

4.3.4 Numerical Examples for Elastic Perfectly-Plastic Material 

A MATLAB program was developed based on the above approach. The 

corrugated-core sandwich is made of steel. Throughout the analysis the Young’s modulus 

of steel is 208 GPa, the yielding stress is 200 MPa and the Poison’s ratio is 0.3. For the 

numerical examples, the depth of the corrugation, hc, remains 0.1m throughout this 
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analysis. The elastic constants of a corrugated-core sandwich plate can be obtained from 

the formula in Appendix A. 

 

In this elasto-plastic analysis the dimension of a rectangular plate is 6m by 2.1m. 

Due to the elastic-perfectly plasticity, we can use these initial orthotropic parameters in 

Appendix A for the whole plastic analysis. For a hardening case, these orthotropic 

parameters vary at each stage. In this analysis, trial functions that m and n equal to 21 for 

w, θx, and θy and the increments are selected. The reason has been discussed in Section 

4.2.3. Figure 4-10 shows the behavior of elastic perfectly-plastic structures. When the 

material reaches the yielding moment, it can not take any more moment. M0 in Figure 4-

10 is the yielding moment of the uniaxial test. 

 

 

 
Fig. 4-10: Elastic Perfectly-Plastic Behavior 
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Moment 
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 In this numerical analysis, the geometric parameters are hc/tc=10, tc/tf=1.0, and 

p/hc=1.0. These stiffness constants obtain by the formula in Appendix A according to 

these geometric parameters. Table 4-5 shows the comparison of stiffness constants, yield 

loads, and yield deflections. The yield load and deflection is the corresponding load and 

deflection when yield occurs. In this table only corrugation angle α varies in the range 

from 600 to 900. 

 

It can be seen in Table 4-5 that increasing the corrugation angle by increments of 

10 degrees will increase the bending stiffness Dx by less than 5% and increase Dy increase 

by less than 0.5% and will not increase Dxy, whereas there is a significant decrease in the 

value of DQx and DQy, especially for DQy by the corrugation angle increments. DQy 

decreases more than 30%. The decreases of DQx and DQy cause the overall plate stiffness 

to reduce. The bending stiffness Dx increases because the flat part of the trough and 

crown of the corrugation increase when the corrugation angle is larger. Therefore, the 

moment of inertia of the cross section is increasing.  

 

It also can be found that the yield load increases about 3% to 5% but the yield 

deflection decreases more than 30% by the corrugation angle increments of 10 degrees. 

The yield load increases due to the increase of flexural stiffness. In these cases, the 

bending stiffness Dx and Dy increase marginally. The yielding is the flexural effect. 

Therefore, as the flexural stiffness increases the yield load also increases. 
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Table 4-5: Comparison of stiffness constants, yielding loadings, and deflections  

p/h c t c /t f α D x % Change D y % Change D xy D Qx % Change D Qy % Change w 0 (mm) % Change p 0 (N/m 2 ) % Change

60 1.92E+07 ~ 1.53E+07 ~ 1.15E+07 7.81E+08 ~ 1.07E+08 ~ 9.97E+00 ~ 5.23E+05 ~

70 2.01E+07 4.95% 1.53E+07 0.33% 1.15E+07 7.44E+08 -4.63% 4.80E+07 -55.14% 1.33E+01 33.39% 5.36E+05 2.58%

80 2.10E+07 4.42% 1.54E+07 0.26% 1.15E+07 7.02E+08 -5.72% 2.88E+07 -40.00% 1.76E+01 31.95% 5.56E+05 3.77%

90 2.19E+07 4.23% 1.54E+07 0.33% 1.15E+07 6.55E+08 -6.74% 1.92E+07 -33.33% 2.32E+01 32.08% 5.86E+05 5.23%

1 1
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The elasto-plastic analysis of corrugated-core sandwich plates on variations of 

corrugation angle on deflections at the central point is shown in Figure 4-11. The central 

deflection increases with increasing corrugation angle. The central deflection behavior 

after yielding maintains a straight line but the slope is different from the behavior in 

elastic stage and the slope in elasto-plastic stage is smaller than in elastic stage. The 

reason that the slope in elasto-plastic is smaller than in elastic stage is that after yield 

occurs, the stiffness of the plate reduces. In this figure, we can also find that the yielding 

loading is also a somewhat increase with increasing corrugation angle.  

 

Consequently, from Table 4-5 and Figure 4-11 it is demonstrated that although 

the higher corrugation angle has a better flexural stiffness, the deflections are larger due 

to the drastic decrease in DQy. The detail of the effect of geometric parameters and 

stiffness is discussed subsequently. 
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Fig. 4-11: Central deflection vs. Loading 
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 Figures 4-12 through 4-13 are the moment vs. curvature diagrams in the x- and y-

directions, respectively. In these figures, it is shown that the moments in x- and y-

directions remain unchanged after approaching a certain value. The trend satisfies the 

elastic perfectly-plastic behavior of the material used in this analysis. Both moments in 

the x- and y-directions do not reach the uniaxial yielding moment in the analysis, 

respectively. This is a two-dimensional behavior and the yielding occurs when the 

moment combinations attain the yie lding surface, i.e. these moment combinations satisfy 

Eq. 3.26. 

 

As discussed previously, with an increasing corrugation angle, the flexural 

stiffnesses increase slightly. In these two figures, the final moments, which are the 

moment combinations when yielding occurs, for higher degree of corrugation angles in x- 

and y-directions are somewhat higher. However, these differences are very small. 

Therefore, the corrugation angles do not affect significantly the flexural moments. 

 

Also it was found that the moments in the y-direction are higher that those in x-

direction. This is due to the length contribution. In this analysis, the length is 6m and the 

width is 2.1m. The length is almost three times the width. Because the values of flexural 

stiffnesses shown in Table 4-5 in the x- and y-directions have only slight differences, the 

effect of the length becomes more important. Due to the drastic decrease in DQy, the 

deflection of high degree of the corrugation angle becomes larger and meanwhile the 

curvature increases. This also can be seen in Figure 4-12 and Figure 4-13. 
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Moment vs. Curvature in x -direction
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Fig. 4-12: Moment vs. Curvature in x-direction 
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Moments vs. Curvature in y -direction
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Fig. 4-13: Moment vs. Curvature in y-direction 
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It can be seen in Fig. 4-11, 4-12, and 4-13 that when yielding occurs, the 

deflection and moments in x- and y-directions increase as the corrugation angle increases. 

The deflection at the central point increased by more than 30% for every 100 increment in 

the corrugation angles between 600 and 900. However, the uniform load increased by 

about 3% to 5% in the same range of corrugation angles. Increasing the corrugation angle 

by increments of 10 degrees caused the moment in the x-direction at the central point to 

increase by about 12% to 20%, and the moment in the y-direction at the central point to 

increase by less than 1%.  

 

The reason that the moment in the x-direction increased for larger corrugation 

angles is that the first moment area increased. The first moment areas of the face plates 

for a unit width are constant. For the larger corrugation angles, however, the contribution 

to the first moment area from the inclined parts of corrugation increases. That means that 

the areas of the crown and trough increase for larger corrugation angles, but the area of 

inclined parts of corrugation decreases. The increases from crown and trough are more 

than the decreases from the corrugation. Also, the crown and trough are farther from the 

central plane than and it contributes more to the flexural stiffness. Consequently, the 

bending capacity when yield occurs is higher for larger corrugation angles. This also 

happens to the moment in the y-direction for the same reason. However, although the 

flexural stiffness increases for larger corrugation angles, the deflection also increases. 

Although the flexural rigidity increases for larger corrugation angles, the shear stiffnesses 

decrease more than the flexural stiffnesses. The deflection contributed by transverse 

shears causes the deflection to increase.    
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4.3.5 Conclusions  

The elasto-plastic analysis of a corrugated-core sandwich plate is developed, 

herein. In this section, an elastic perfectly-plastic behavior of the corrugated-core 

sandwich plate has been studied. Since comparable studies have not been made on the 

elasto-plastic analysis of the corrugated-core sandwich plate bending problem, a 

comparison of the results with the previous researches is not possible. 

 

The behavior of the corrugated-core sandwich plate has been discussed in this 

section. The trends of moments in x- and y-direction in this analysis are satisfied the 

elastic perfectly-plastic behavior. It is demonstrated that the iterative method for finding 

the incremental plastic moments converges. The convergence of the iterative procedure is 

quite quick. The convergence can be achieved just only 4 to 6 iterations in this analysis. 

4.4 Geometric Parameters Analysis 

Figure 4-14 is the corrugation unit. t is the thickness and the subscripts c and f are 

the core and facing respectively. 2p is the distance between central lines of two adjacent 

crowns. α is the corrugation angle. hc is the depth of the corrugation and h is the depth of 

the plate. In Figure 4-14 it can be found that several geometric parameters relate to the 

stiffness of a corrugated-core sandwich plate. To discuss the geometric parameters in this 

section, a hard-type simply supported rectangular corrugated core sandwich plates with 

the dimensions 6m x 2.1m is considered. The intensity of the uniform load is taken to be 

10 KN/m2. These above properties remain the same throughout Section 4.4. We vary 
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different geometric parameters associated with stiffness of corrugation and stiffness of 

facing plates and study their coupling effect.  

 

The primary geometric parameters affecting the behavior of the plate are the 

corrugation angle (α), core sheet to facing sheet thickness ratio (tc/tf), the pitch to core 

depth ratio (p/hc) and the core depth to core thickness ratio (hc/tc). Therefore, in this study 

these geometric parameters are analyzed. The corrugation angles vary from 600 to 900 

with the increment of 10 degrees. The ratios of core sheet to facing sheet thickness are 

0.6, 1.0, and 1.25. The pitch to core depth ratios are 1.0, 1.2, and 1.4. The ratios of the 

core depth to core thickness are 10, 20, and 40. Table 4-6, Table 4-7, and Table 4-8 show 

the results of the conducted numerical investigations for the certain hc/tc=10, 20, and 40, 

respectively, and various α, tc/tf, and p/hc. 

 

 

 
Fig. 4-14: Corrugation unit 
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In general, the moment in the stiffer direction is larger than that in the weak 

direction. It can be shown in Table 4-6 that, although the stiffness in x-direction is 

stronger than these in y-direction, the moments in x-direction are smaller than these in y-

direction in all cases. This is because the length in x-direction is almost three times that in 

y-direction. However, it also can be shown in Table 4-7 and Table 4-8 that in some cases 

the moments in x-direction are larger than these in y-direction in the same dimensions as 

Table 4-6. Comparing these cases that Mx is greater than My, it can be found that with a 

tremendously increasing value of ratio, DQx/DQy, the moments in x-direction become 

greater than the moments in y-direction although the length in x-direction is almost three 

times that in y-direction. Therefore, in the case that the overall stiffness is little different 

in x-direction from in y-direction, the length effect is the key factor for the moments. 

Otherwise, in the case that the ratio DQx/DQy is irrelevantly high, the length effect is 

eliminated due to the stronger stiffness. 
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Table 4-6: Comparison of various geometric parameters for simply support, 
c

c

t
h

=10 

Dx Dy Dxy DQx DQy w Mx My α tc/tf p/hc (N-m) (N-m) (N-m) (N-m) (N-m) (mm) (N-m/m) (N-m/m) 

1 3.20E+07 2.81E+07 2.14E+07 7.14E+08 2.95E+08 0.095 1.91E+03 5.16E+03 

1.2 3.22E+07 2.82E+07 2.14E+07 5.09E+08 1.36E+08 0.115 1.97E+03 5.11E+03 0.6 

1.4 3.23E+07 2.82E+07 2.14E+07 3.81E+08 7.53E+07 0.145 2.08E+03 5.03E+03 

1 1.92E+07 1.53E+07 1.15E+07 6.41E+08 2.47E+08 0.164 1.95E+03 5.18E+03 

1.2 1.93E+07 1.53E+07 1.15E+07 4.57E+08 1.07E+08 0.191 2.01E+03 5.14E+03 1 

1.4 1.95E+07 1.53E+07 1.15E+07 3.42E+08 6.03E+07 0.228 2.10E+03 5.09E+03 

1 1.58E+07 1.19E+07 8.91E+06 6.20E+08 2.16E+08 0.209 1.98E+03 5.18E+03 
1.2 1.60E+07 1.19E+07 8.91E+06 4.42E+08 9.71E+07 0.238 2.04E+03 5.15E+03 

60 

1.25 

1.4 1.61E+07 1.19E+07 8.91E+06 3.31E+08 5.39E+07 0.280 2.12E+03 5.10E+03 

1 3.30E+07 2.82E+07 2.14E+07 6.32E+08 1.01E+08 0.127 2.05E+03 5.07E+03 

1.2 3.30E+07 2.82E+07 2.14E+07 4.58E+08 6.08E+07 0.160 2.18E+03 4.96E+03 0.6 

1.4 3.30E+07 2.82E+07 2.14E+07 3.47E+08 3.91E+07 0.204 2.38E+03 4.81E+03 

1 2.01E+07 1.53E+07 1.15E+07 5.67E+08 8.50E+07 0.203 2.07E+03 5.12E+03 

1.2 2.01E+07 1.53E+07 1.15E+07 4.11E+08 4.80E+07 0.249 2.19E+03 5.04E+03 1 

1.4 2.01E+07 1.53E+07 1.15E+07 3.12E+08 3.26E+07 0.297 2.33E+03 4.95E+03 

1 1.67E+07 1.19E+07 8.91E+06 5.49E+08 1.21E+08 0.227 2.05E+03 5.17E+03 

1.2 1.67E+07 1.19E+07 8.91E+06 3.98E+08 4.45E+07 0.299 2.21E+03 5.07E+03 

70 

1.25 

1.4 1.68E+07 1.19E+07 8.91E+06 3.02E+08 2.94E+07 0.356 2.35E+03 4.99E+03 
1 3.39E+07 2.83E+07 2.14E+07 5.66E+08 4.92E+07 0.178 2.32E+03 4.88E+03 

1.2 3.37E+07 2.83E+07 2.14E+07 4.16E+08 3.45E+07 0.220 2.51E+03 4.73E+03 0.6 

1.4 3.36E+07 2.83E+07 2.14E+07 3.19E+08 2.46E+07 0.272 2.77E+03 4.52E+03 

1 2.10E+07 1.54E+07 1.15E+07 5.08E+08 4.25E+07 0.262 2.29E+03 5.01E+03 

1.2 2.09E+07 1.54E+07 1.15E+07 3.73E+08 2.88E+07 0.316 2.45E+03 4.90E+03 1 

1.4 2.08E+07 1.54E+07 1.15E+07 2.86E+08 2.06E+07 0.382 2.66E+03 4.76E+03 

1 1.76E+07 1.20E+07 8.91E+06 4.91E+08 3.91E+07 0.314 2.31E+03 5.05E+03 

1.2 1.75E+07 1.20E+07 8.91E+06 3.61E+08 2.70E+07 0.371 2.46E+03 4.96E+03 

80 

1.25 

1.4 1.74E+07 1.19E+07 8.91E+06 2.77E+08 1.94E+07 0.440 2.64E+03 4.84E+03 

1 3.47E+07 2.83E+07 2.14E+07 5.09E+08 3.01E+07 0.238 2.69E+03 4.63E+03 

1.2 3.45E+07 2.83E+07 2.14E+07 3.79E+08 2.23E+07 0.290 2.95E+03 4.42E+03 0.6 

1.4 3.43E+07 2.83E+07 2.14E+07 2.93E+08 1.68E+07 0.352 3.27E+03 4.16E+03 

1 2.19E+07 1.54E+07 1.15E+07 4.57E+08 2.52E+07 0.339 2.61E+03 4.84E+03 

1.2 2.16E+07 1.54E+07 1.15E+07 3.40E+08 1.92E+07 0.397 2.80E+03 4.71E+03 1 

1.4 2.14E+07 1.54E+07 1.15E+07 2.63E+08 1.48E+07 0.467 3.03E+03 4.55E+03 

1 1.85E+07 1.20E+07 8.91E+06 4.42E+08 2.43E+07 0.390 2.61E+03 4.92E+03 

1.2 1.82E+07 1.20E+07 8.91E+06 3.29E+08 1.78E+07 0.461 2.80E+03 4.79E+03 

90 

1.25 

1.4 1.80E+07 1.20E+07 8.91E+06 2.54E+08 1.40E+07 0.531 2.99E+03 4.67E+03  
 



 

Table 4-7: Comparison of various geometric parameters for simply support, 
c

c

t
h

=20 

Dx Dy Dxy DQx DQy w Mx My α tc/tf p/hc 
(N-m) (N-m) (N-m) (N-m) (N-m) (mm) (N-m/m) (N-m/m) 

1 1.32E+07 1.13E+07 8.56E+06 3.48E+08 3.47E+07 0.338 2.10E+03 5.03E+03 

1.2 1.33E+07 1.13E+07 8.56E+06 2.63E+08 1.43E+07 0.536 2.50E+03 4.72E+03 0.6 

1.4 1.34E+07 1.13E+07 8.56E+06 2.06E+08 8.74E+06 0.732 2.94E+03 4.38E+03 

1 8.39E+06 6.44E+06 4.84E+06 3.28E+08 2.45E+07 0.547 2.15E+03 5.07E+03 

1.2 8.48E+06 6.44E+06 4.84E+06 2.48E+08 1.02E+07 0.823 2.53E+03 4.82E+03 1 

1.4 8.54E+06 6.44E+06 4.84E+06 1.94E+08 5.66E+06 1.178 3.08E+03 4.45E+03 

1 7.04E+06 5.08E+06 3.80E+06 3.22E+08 2.15E+07 0.670 2.18E+03 5.08E+03 
1.2 7.13E+06 5.08E+06 3.80E+06 2.43E+08 9.34E+06 0.964 2.54E+03 4.88E+03 

60 

1.25 

1.4 7.19E+06 5.09E+06 3.80E+06 1.91E+08 5.14E+06 1.364 3.07E+03 4.55E+03 
1 1.37E+07 1.13E+07 8.56E+06 3.32E+08 1.07E+07 0.640 2.81E+03 4.52E+03 

1.2 1.37E+07 1.13E+07 8.56E+06 2.52E+08 5.99E+06 0.940 3.56E+03 3.93E+03 0.6 

1.4 1.37E+07 1.13E+07 8.56E+06 1.98E+08 3.89E+06 1.261 4.38E+03 3.29E+03 

1 8.87E+06 6.46E+06 4.84E+06 3.13E+08 8.17E+06 0.935 2.79E+03 4.69E+03 

1.2 8.87E+06 6.46E+06 4.84E+06 2.37E+08 4.78E+06 1.312 3.41E+03 4.28E+03 1 

1.4 8.88E+06 6.46E+06 4.84E+06 1.87E+08 3.14E+06 1.735 4.15E+03 3.78E+03 

1 7.52E+06 5.10E+06 3.80E+06 3.07E+08 7.79E+06 1.064 2.76E+03 4.79E+03 
1.2 7.52E+06 5.10E+06 3.80E+06 2.33E+08 5.92E+06 1.249 3.01E+03 4.64E+03 

70 

1.25 

1.4 7.53E+06 5.10E+06 3.80E+06 1.83E+08 2.96E+06 1.948 4.06E+03 3.99E+03 
1 1.42E+07 1.14E+07 8.56E+06 3.13E+08 5.02E+06 1.055 4.00E+03 3.66E+03 

1.2 1.41E+07 1.14E+07 8.56E+06 2.39E+08 3.37E+06 1.377 4.85E+03 2.99E+03 0.6 

1.4 1.40E+07 1.13E+07 8.56E+06 1.89E+08 2.43E+06 1.697 5.69E+03 2.33E+03 

1 9.31E+06 6.48E+06 4.84E+06 2.95E+08 4.15E+06 1.435 3.80E+03 4.11E+03 

1.2 9.24E+06 6.48E+06 4.84E+06 2.25E+08 2.86E+06 1.840 4.52E+03 3.62E+03 1 

1.4 9.19E+06 6.48E+06 4.84E+06 1.78E+08 2.11E+06 2.252 5.26E+03 3.12E+03 

1 7.96E+06 5.12E+06 3.80E+06 2.90E+08 4.05E+06 1.580 3.68E+03 4.31E+03 
1.2 7.89E+06 5.12E+06 3.80E+06 2.21E+08 2.74E+06 2.042 4.40E+03 3.87E+03 

80 

1.25 

1.4 7.84E+06 5.11E+06 3.80E+06 1.75E+08 1.99E+06 2.520 5.15E+03 3.40E+03 
1 1.46E+07 1.14E+07 8.56E+06 2.92E+08 2.91E+06 1.501 5.43E+03 2.67E+03 

1.2 1.45E+07 1.14E+07 8.56E+06 2.24E+08 2.20E+06 1.787 6.18E+03 2.08E+03 0.6 

1.4 1.44E+07 1.14E+07 8.56E+06 1.78E+08 1.68E+06 2.089 6.96E+03 1.45E+03 

1 9.76E+06 6.50E+06 4.84E+06 2.75E+08 2.64E+06 1.929 4.96E+03 3.46E+03 

1.2 9.61E+06 6.49E+06 4.84E+06 2.11E+08 1.92E+06 2.377 5.78E+03 2.91E+03 1 

1.4 9.51E+06 6.49E+06 4.84E+06 1.68E+08 1.51E+06 2.764 6.47E+03 2.43E+03 

1 8.41E+06 5.13E+06 3.80E+06 2.70E+08 2.55E+06 2.128 4.83E+03 3.75E+03 
1.2 8.27E+06 5.13E+06 3.80E+06 2.07E+08 1.87E+06 2.613 5.60E+03 3.26E+03 

90 

1.25 

1.4 8.16E+06 5.12E+06 3.80E+06 1.65E+08 1.43E+06 3.098 6.36E+03 2.78E+03  
 



 

Table 4-8: Comparison of various geometric parameters for simply support, 
c

c

t
h

=40 

Dx Dy Dxy DQx DQy w Mx My α tc/tf p/hc (N-m) (N-m) (N-m) (N-m) (N-m) (mm) (N-m/m) (N-m/m) 

1 5.98E+06 5.01E+06 3.79E+06 1.54E+08 3.54E+06 1.745 3.11E+03 4.26E+03 

1.2 6.02E+06 5.01E+06 3.79E+06 1.17E+08 1.45E+06 3.173 4.79E+03 2.94E+03 0.6 

1.4 6.05E+06 5.01E+06 3.79E+06 9.13E+07 8.00E+05 4.548 6.46E+03 1.62E+03 

1 3.92E+06 2.94E+06 2.21E+06 1.49E+08 2.51E+06 2.621 3.15E+03 4.41E+03 

1.2 3.96E+06 2.94E+06 2.21E+06 1.13E+08 1.09E+06 4.561 4.72E+03 3.34E+03 1 

1.4 3.99E+06 2.94E+06 2.21E+06 8.85E+07 6.00E+05 6.618 6.45E+03 2.14E+03 

1 3.32E+06 2.34E+06 1.75E+06 1.48E+08 2.17E+06 3.129 3.21E+03 4.46E+03 

1.2 3.36E+06 2.34E+06 1.75E+06 1.12E+08 9.70E+05 5.293 4.73E+03 3.50E+03 

60 

1.25 

1.4 3.39E+06 2.34E+06 1.75E+06 8.77E+07 5.60E+05 7.505 6.35E+03 2.47E+03 
1 6.22E+06 5.02E+06 3.79E+06 1.47E+08 1.14E+06 3.657 5.60E+03 2.41E+03 

1.2 6.22E+06 5.02E+06 3.79E+06 1.12E+08 6.36E+05 5.092 7.40E+03 1.01E+03 0.6 

1.4 6.22E+06 5.02E+06 3.79E+06 8.78E+07 4.15E+05 6.226 8.80E+03 -7.58E+01 

1 4.15E+06 2.95E+06 2.21E+06 1.43E+08 9.30E+05 5.019 5.36E+03 3.03E+03 

1.2 4.16E+06 2.95E+06 2.21E+06 1.08E+08 5.25E+05 7.088 7.19E+03 1.80E+03 1 

1.4 4.16E+06 2.95E+06 2.21E+06 8.51E+07 3.41E+05 8.877 8.76E+03 7.43E+02 

1 3.56E+06 2.35E+06 1.75E+06 1.41E+08 8.21E+05 5.866 5.44E+03 3.19E+03 

1.2 3.56E+06 2.35E+06 1.75E+06 1.07E+08 4.85E+05 8.103 7.16E+03 2.12E+03 

70 

1.25 

1.4 3.56E+06 2.35E+06 1.75E+06 8.43E+07 3.28E+05 10.030 8.64E+03 1.20E+03 

1 6.44E+06 5.04E+06 3.79E+06 1.39E+08 5.52E+05 5.402 8.16E+03 6.13E+02 

1.2 6.41E+06 5.04E+06 3.79E+06 1.06E+08 3.62E+05 6.504 9.53E+03 -4.51E+02 0.6 

1.4 6.38E+06 5.03E+06 3.79E+06 8.36E+07 2.63E+05 7.322 1.05E+04 -1.20E+03 

1 4.38E+06 2.96E+06 2.21E+06 1.34E+08 4.73E+05 7.435 7.95E+03 1.52E+03 

1.2 4.34E+06 2.96E+06 2.21E+06 1.03E+08 3.19E+05 9.065 9.39E+03 5.46E+02 1 

1.4 4.32E+06 2.96E+06 2.21E+06 8.10E+07 2.29E+05 10.470 1.06E+04 -2.71E+02 

1 3.78E+06 2.36E+06 1.75E+06 1.33E+08 4.48E+05 8.394 7.89E+03 1.90E+03 

1.2 3.75E+06 2.36E+06 1.75E+06 1.02E+08 2.99E+05 10.400 9.45E+03 9.34E+02 

80 

1.25 

1.4 3.72E+06 2.35E+06 1.75E+06 8.02E+07 2.20E+05 11.960 1.06E+04 1.88E+02 

1 6.66E+06 5.05E+06 3.79E+06 1.29E+08 3.24E+05 6.687 1.03E+04 -7.45E+02 

1.2 6.59E+06 5.05E+06 3.79E+06 9.92E+07 2.82E+05 7.072 1.06E+04 -1.05E+03 0.6 

1.4 6.54E+06 5.04E+06 3.79E+06 7.88E+07 1.87E+05 8.029 1.17E+04 -1.93E+03 

1 4.60E+06 2.97E+06 2.21E+06 1.25E+08 3.00E+05 9.186 1.02E+04 3.70E+02 

1.2 4.53E+06 2.96E+06 2.21E+06 9.61E+07 2.18E+05 10.520 1.13E+04 -4.09E+02 1 

1.4 4.48E+06 2.96E+06 2.21E+06 7.63E+07 1.69E+05 11.560 1.21E+04 -9.89E+02 

1 4.01E+06 2.36E+06 1.75E+06 1.24E+08 2.87E+05 10.430 1.02E+04 8.12E+02 

1.2 3.93E+06 2.36E+06 1.75E+06 9.52E+07 2.13E+05 11.960 1.13E+04 8.61E+01 

90 

1.25 

1.4 3.88E+06 2.36E+06 1.75E+06 7.56E+07 1.64E+05 13.270 1.22E+04 -5.21E+02  
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4.4.1 Ratios of Core Depth to Thickness, 
c

c

t
h

 

In this section, the effects of ratios of core depth to thickness hc/tc are discussed 

from Table 4-6, Table 4-7, and Table 4-8. It is seen tha t with an increasing hc/tc value the 

stiffness of the corrugated-core sandwich plate decrease in these tables. In this analysis, 

the depth of corrugation hc is a constant. Thus, with an increasing value of hc/tc, the 

thickness of the core sheet becomes thinner and the stiffness of the corrugated-core 

sandwich plate also declines. 

 

Comparing Table 4-6 for hc/tc=10 with Table 4-7 for hc/tc=20, we can find that by 

an increment of 10 for hc/tc, the elastic constants, Dx, Dy, and Dxy, decline about 55% to 

60% and DQx decreases about 35% to 50% but DQy declines about 90%. The difference 

between Table 4-7 and Table 4-8 for hc/tc=40, we noted that the elastic constants, Dx, Dy, 

Dxy, and DQx decreases about 55% by an increasing hc/tc value for 20, and DQy declines 

still about 90%. Therefore, with an increasing value of the hc/tc ratio, the values of the 

stiffness of the corrugated-core sandwich decrease mitigated. 

 

Comparing the deflections in these tables, it can be found that due to the decrease 

of the stiffness, the deflection increases with an increasing value of hc/tc. Although the 

deflection increases as several times as the lower value of hc/tc, the deflections of the 

higher value of hc/tc are still remarkably small. For the moments in these tables, we noted 

that when value the of hc/tc increases, the moments in x-direction increase but  the 

moments in y-direction decrease. This is due to the difference of stiffness between x- and 
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y-direction increases by an increasing value of hc/tc. This phenomenon has been discussed 

previously. 

4.4.2 Corrugation Angle, α  

The effect of corrugation angle of a corrugated-core sandwich plate is discussed 

subsequently. The geometric parameters in this section are hc/tc=10, tc/tf=0.6, and p/hc=1 

and the corrugation angle, α, is varied. It can be shown in Table 4-9 that with an 

increasing corrugation angle, the bending stiffness Dx and Dy increase only marginally 

and Dxy almost remains unchanged, whereas there are significant decreases in the values 

of DQx and DQy causing the overall plate stiffness to decrease. Increasing the corrugation 

angle by increments of 10 degrees, DQx decreases about 10% and DQy decreases mitigated 

from 60% to 40%. We also noted that the deflection can increase several times with only 

increasing the degree of the corrugation angle. 
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Table 4-9: Comparison of various ratios α  for hc/tc=10, tc/tf=0.6, and p/hc =1.0 

D x % D y % D xy % D Qx % D Qy % w % M x % M y %
(N-m) Change (N-m) Change (N-m) Change (N-m) Change (N-m) Change (mm) Change (N-m/m) Change (N-m/m) Change

60 3.20E+07 ~ 2.81E+07 ~ 2.14E+07 ~ 7.14E+08 ~ 2.95E+08 ~ 0.095 ~ 1.91E+03 ~ 5.16E+03 ~

70 3.30E+07 2.97% 2.82E+07 0.25% 2.14E+07 0.00% 6.32E+08 -11.51% 1.01E+08 -65.70% 0.127 34.56% 2.05E+03 7.56% 5.07E+03 -1.88%

80 3.39E+07 2.70% 2.83E+07 0.18% 2.14E+07 0.00% 5.66E+08 -10.43% 4.92E+07 -51.41% 0.178 40.09% 2.32E+03 13.07% 4.88E+03 -3.67%

90 3.47E+07 2.63% 2.83E+07 0.21% 2.14E+07 0.00% 5.09E+08 -10.03% 3.01E+07 -38.83% 0.238 33.56% 2.69E+03 15.88% 4.63E+03 -5.18%

1

α t c /t f p/h c

0.6
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4.4.3 Ratios of Core to Facing Plate Thickness, 
f

c

t
t

 

In this section, the effect of the ratio tc/tf is discussed. Because the corrugation 

height hc is 0.1m and the certain ratio of hc/tc, the thickness of the core sheet is 

determined. The geometric parameters in this section are hc/tc=10, α=600, and p/hc=1 and 

the ratio, tc/tf, is varied. Table 4-10 is the comparison of various tc/tf for hc/tc=10, α=60, 

and p/hc =1.0. It can be found in the table that with an increasing value of tc/tf the stiffness 

of the corrugated-core sandwich plate decreases. As the ratio of tc/tf increases for a 

particular value of tc, the thickness of the facing sheet, tf, becomes thinner, and this causes 

the plate to be less stiff.  

 

With an increasing tc/tf ratio 0.6 to 1.0, Dx decreases about 40% and Dy and Dxy 

decrease about 45%, but DQx decreases about 10% and DQy decreases about 16%. For an 

increasing tc/tf ratio 1.0 to 1.25, Dx decreases about 17% and Dy and Dxy decrease about 

22%, but DQx decreases about 3% and DQy decreases about 12%. In these cases when the 

tc/tf ratio increases the tf become thinner. And for a corrugated-core sandwich plate, the 

face sheets take most of the flexural load. Therefore, the tc/tf ratio affects the flexural 

stiffness more than the shear stiffness. 
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Table 4-10: Comparison of various ratios tc/tf for hc/tc=10, α=60, and p/hc =1.0 

D x % D y % D xy % D Qx % D Qy % w % M x % M y %
(N-m) Change (N-m) Change (N-m) Change (N-m) Change (N-m) Change (mm) Change (N-m/m) Change (N-m/m) Change

0.6 3.20E+07 ~ 2.81E+07 ~ 2.14E+07 ~ 7.14E+08 ~ 2.95E+08 ~ 0.095 ~ 1.91E+03 ~ 5.16E+03 ~

1 1.92E+07 -40.08% 1.53E+07 -45.70% 1.15E+07 -46.14% 6.41E+08 -10.25% 2.47E+08 -16.39% 0.164 73.49% 1.95E+03 2.05% 5.18E+03 0.29%

1.25 1.58E+07 -17.73% 1.19E+07 -22.32% 8.91E+06 -22.65% 6.20E+08 -3.31% 2.16E+08 -12.60% 0.209 27.38% 1.98E+03 1.59% 5.18E+03 0.10%

α t c /t fp/h c

60 1
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4.4.4 Ratios of Pitch to Core Depth, 
ch

p
 

It can be shown in Table 4-6, Table 4-7, and Table 4-8 that as the ratios p/hc 

increase the Dx and Dy increase marginally and the Dxy remains unchanged. However, the 

shear stiffnesses, DQx and DQy, decrease drastically especially the DQy. The geometric 

parameters in this section are hc/tc=10, α=600, and tc/tf=0.6 and the ratio, p/hc, is varied. 

Table 4-11 shows the certain cases obtained from Table 4-6 for the comparison of various 

ratios p/hc. It can be shown in Table 4-11 that the DQy reduces about 45% to 55% and the 

DQx reduces about 25% to 30% by an incremental ratio, 0.2, of p/hc. The deflection 

increases about 21% to 25% by an incremental value, 0.2, of p/hc. It can be seen that as 

the p/hc ratio increases the deflection at the center of the corrugated-core sandwich plate 

increases and the stiffness of the plate decreases. This is because as the p/hc ratio 

increases there are fewer corrugations in the plate for a given width of the plate, and this 

causes the plate to be less stiff.  
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Table 4-11: Comparison of various ratios p/hc for hc/tc=10, α=60, and tc/tf=0.6 

D x % D y % D xy D Qx % D Qy % w % M x % M y %
(N-m) Change (N-m) Change (N-m) (N-m) Change (N-m) Change (mm) Change (N-m/m) Change (N-m/m) Change

1 3.20E+07 ~ 2.81E+07 ~ 2.14E+07 7.14E+08 ~ 2.95E+08 ~ 0.095 ~ 1.91E+03 ~ 5.16E+03 ~

1.2 3.22E+07 0.53% 2.82E+07 0.04% 2.14E+07 5.09E+08 -28.72% 1.36E+08 -53.91% 0.115 21.34% 1.97E+03 3.57% 5.11E+03 -0.99%

1.4 3.23E+07 0.37% 2.82E+07 0.04% 2.14E+07 3.81E+08 -25.12% 7.53E+07 -44.69% 0.145 26.07% 2.08E+03 5.57% 5.03E+03 -1.66%

p/h c

60 0.6
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It should be noted that with an increasing p/hc the Dx increases; however, for 

theses cases that the corrugation angles are greater than 80 degree, the Dx decrease with 

an increasing p/hc shown in Table 4-12.  

This phenomenon is discussed subsequently. According to Figure 4-14, the Dx can 

be expressed as follows:  

From the geometry of the corrugated-core cross-section, moments of inertia for face 

sheets and core sheet can be expressed as follows: 

 

 

 

Where: 

Table 4-12: Comparison of various ratios p/hc for hc/tc=10, α=80, and tc/tf=0.6 

Dx Dy Dxy DQx DQy w Mx My α tc/tf p/hc (N-m) (N-m) (N-m) (N-m) (N-m) (mm) (N-m/m) (N-m/m) 

1 3.39E+07 2.83E+07 2.14E+07 5.66E+08 4.92E+07 0.178 2.32E+03 4.88E+03 

1.2 3.37E+07 2.83E+07 2.14E+07 4.16E+08 3.45E+07 0.220 2.51E+03 4.73E+03 80 0.6 

1.4 3.36E+07 2.83E+07 2.14E+07 3.19E+08 2.46E+07 0.272 2.77E+03 4.52E+03  
 

( )fccffccx IIEIEIED +=+=  (4.13) 
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Ec Young’s modulus of the core sheet 

Ef Young’s modulus of face sheets 

 

In these following cases, the depth of corrugation hc remains 0.1m, hc/tc equals to 

10, and tc/tf remains 0.6. The calculated results of moment of inertia on various p/hc and 

α can be found in Table 4-13. It can be shown that the moment of inertia increases with 

an increasing corrugation angle and p/hc for a given width, 2p. However, the increasing 

rates of moments of inertia for the corrugation angles greater than 80 degree are less than 

the increasing rates of the corrugation pitches. Therefore, with an increasing value of 

p/hc, moments of inertia decrease for these cases that the corrugation angles are greater 

than 80 degree. 

 

Table 4-13: Comparison of moments of inertia on various p/hc and α  

Ic 
p/hc α 

Ic1 Ic2 
If Ic+If (Ic+If)/2p 

60 1.057E-06 9.623E-07 1.070E-05 1.272E-05 6.361E-05 

70 1.590E-06 8.868E-07 1.070E-05 1.318E-05 6.590E-05 

80 2.059E-06 8.462E-07 1.070E-05 1.361E-05 6.805E-05 
1 

90 2.500E-06 8.333E-07 1.070E-05 1.404E-05 7.019E-05 

60 1.557E-06 9.623E-07 1.284E-05 1.536E-05 6.401E-05 

70 2.090E-06 8.868E-07 1.284E-05 1.582E-05 6.592E-05 

80 2.559E-06 8.462E-07 1.284E-05 1.625E-05 6.771E-05 
1.2 

90 3.000E-06 8.333E-07 1.284E-05 1.668E-05 6.949E-05 

60 2.057E-06 9.623E-07 1.499E-05 1.800E-05 6.430E-05 

70 2.590E-06 8.868E-07 1.499E-05 1.846E-05 6.594E-05 

80 3.059E-06 8.462E-07 1.499E-05 1.889E-05 6.747E-05 
1.4 

90 3.500E-06 8.333E-07 1.499E-05 1.932E-05 6.899E-05  
 



111 

4.4.5 Effects of length, a, and width, b 

The geometric parameters in this section are hc/tc=10, p/hc=1.0, α=600, and 

tc/tf=0.6. In this study, the uniformly distributed load is kept 10 kN/m2. Various lengths, 

the corrugation direction, and widths, the direction normal to corrugation, are discussed 

subsequently. Table 4-14 is the comparison of deflections and moments with various 

length, a, and width, b. In the table, a and b are varied from 2.1m, 4m, and 6m, 

respectively.  

 

It can be seen in Table 4-14 that in the fixed value of the width or length, by 

increasing length or wid th, the corresponding deflection increases. It is also seen that 

decreasing the plate span in one direction not only decrease the deformation but also 

changes the bending moments. In fact, decreasing the plate span in one direction 

influences the moments in the same manner as increasing the rigidity in that direction, 

e.g., decreasing the span in the x-direction, a, increases Mx whereas My is decreased. The 

effect of increasing stiffness in one direction has the same effect as changing the plate 

span. 

Table 4-14:  Comparison of central deflections and moments with various length 

a (m) b (m) D x D y D xy D Qx D Qy w  (mm) M x  (N-m/m) M y  (N-m/m)

6 0.164 1.95E+03 5.18E+03
4.2 0.137 2.34E+03 4.41E+03
2.1 0.054 2.50E+03 1.89E+03

2.1 0.054 2.50E+03 1.89E+03
4.2 0.111 4.79E+03 1.68E+03
6 0.126 5.33E+03 1.45E+03

2.1

2.1

2.47E+081.92E+07 1.53E+07 1.15E+07 6.41E+08
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4.4.6 Discussion of negative moments in the direction normal to the corrugation  

In previous sections, we can find that the negative moments in the direction 

normal to corrugation (or y-direction) do not occur in all cases. According to the 

moment-displacement relation, the negative moment might occur only when the slope in 

y-direction θy is negative. Therefore, from Eq. 4.4, we can obtain the coefficients of slope 

θy as following form:  

According to the condition inducing the negative moment in previous paragraph, 

we can write:  

For corrugated-core sandwich plates, in general, the shear stiffness DQx is 

irrelevantly higher than other stiffness. Therefore, according to the denominator in 

Eq. 4.17 and the elastic constants of the corrugated-core sandwich plate, we can find:  

Because Eq. 4.19 is always positive, the numerator in Eq. 4.19 should be negative 

and Eq. 4.18 can be satisfied. Thus,  
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Substituting Eq. 4.5 and Eq. 4.6 into Eq. 4.20, we can obtain:  

The above equation can be written as:  

Rearranging the above equation, we can obtain:  

We note that the moments in the y-direction are negative only when the elastic 

constants and dimensions of the plate satisfy Eq. 4.23. It can be seen that Eq. 4.23 relates 

to the dimensions and elastic constants of the corrugated-core sandwich plate. For the 

denominator in Eq. 4.23, as can be known that the shear stiffness DQx is irrelevantly high 

in corrugated-core sandwich plates; consequently, the ratios Dxx/DQx and Dxy/DQx are very 

small. For the numerator in Eq. 4.23, the situation that m and n is equal to 1 is discussed. 

If the length, a, is less than π , Eq. 4.23 is easily satisfied because the ratio, π/a, is greater 

than 1. In general, the Dxx/DQy and Dxy/DQy ratios causing the negative moments in y-

direction could be different if a, length in x-direction or corrugation direction, changes.  

 

The ratios of Dxx/DQy and Dxy/DQy are discussed subsequently. In these cases, the 

length in corrugation direction, a, is 6m. The comparison of elastic constants ratios for 

these cases that the moments in y-direction are negative in Table 4-8 is shown in Table 4-
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15. As mentioned previously, the Dxx/DQx and Dxy/DQx ratios are very small in all the 

cases shown in Table 4-15. It can also be found that only in these cases that the ratio 

Dxx/DQy is greater than 16 and the ratio Dxy/DQy is greater than 9, the coefficients of θy are 

negative and My is negative. The ratios Dxx/DQy and Dxy/DQy that cause the moment in y-

direction to be negative relates to the dimensions of the plate. Consequently, higher ratio 

of hc/tc, higher degree of corrugation angle α, and higher p/hc value can cause the ratios 

of these above elastic constants, Dxx/DQy and Dxy/DQy, to be higher due to the lower DQy 

and can cause the moment in y-direction to be negative.  

 

According the above analysis, we noted that only in the relatively high values of 

Dxx/DQy and Dxy/DQy ratios and shorter length in corrugation direction, the nega tive 

moments in y-direction might occur. Furthermore, only either Dxx or Dxy are relatively 

larger than DQy or the shear stiffness DQy is relatively low, the ratios, Dxx/DQy and 

Dxy/DQy, become relatively high. In these cases the stiffness in the x-direction or 

corrugation direction is extremely higher than that in y-direction due to the irrelevantly 

high DQx and low DQy. Therefore, the most bending resistance is taken by x-direction and 

that causes the moment in y-direction to be relatively small or even become negative.  
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Table 4-15: Comparison of elastic constant for negative-moment cases 

  hc/tc=40 a=6m b=2.1m        

Dx Dy Dxy DQx DQy 
α tc/tf p/hc 

(N-m) (N-m) (N-m) (N-m) (N-m) 
Dxx Dxx/DQx Dxy/DQx Dxx/DQy Dxy/DQy 

70 0.6 1.4 6.22E+06 5.02E+06 3.79E+06 8.78E+07 4.15E+05 6.71E+06 0.076 0.043 16.16 9.14 

1.2 6.41E+06 5.04E+06 3.79E+06 1.06E+08 3.62E+05 6.89E+06 0.065 0.036 19.05 10.48 
0.6 

1.4 6.38E+06 5.03E+06 3.79E+06 8.36E+07 2.63E+05 6.87E+06 0.082 0.045 26.13 14.43 80 

1 1.4 4.32E+06 2.96E+06 2.21E+06 8.10E+07 2.29E+05 4.60E+06 0.057 0.027 20.12 9.64 

1 6.66E+06 5.05E+06 3.79E+06 1.29E+08 3.24E+05 7.15E+06 0.055 0.029 22.09 11.71 

1.2 6.59E+06 5.05E+06 3.79E+06 9.92E+07 2.82E+05 7.08E+06 0.071 0.038 25.11 13.46 0.6 

1.4 6.54E+06 5.04E+06 3.79E+06 7.88E+07 1.87E+05 7.03E+06 0.089 0.048 37.64 20.32 

1.2 4.53E+06 2.96E+06 2.21E+06 9.61E+07 2.18E+05 4.81E+06 0.050 0.023 22.12 10.14 
1 

1.4 4.48E+06 2.96E+06 2.21E+06 7.63E+07 1.69E+05 4.76E+06 0.062 0.029 28.20 13.06 

90 

1.25 1.4 3.88E+06 2.36E+06 1.75E+06 7.56E+07 1.64E+05 4.11E+06 0.054 0.023 25.00 10.64 
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4.4.7 Conclusions  

The primary geometric parameters affecting the behavior of the plate, such as the 

corrugation angle (α), core sheet to facing sheet thickness ratio (tc/tf), the pitch to core 

thickness ratio (p/hc), and the core depth to core thickness ratio (hc/tc), and the width and 

length of the plate have been discussed in previous sections. It is demonstrated that the 

hc/tc and tc/tf control the effect of the flexural stiffness and hc/tc, tc/tf, α, and p/hc affect the 

shear stiffness more. In this section we noted that the hc/tc affects both flexural and shear 

stiffnesses and with an increasing hc/tc ratio, the stiffness might decrease more than 50% 

in Dx, Dy, Dxy, and DQx and about 90% in DQy. The ratio hc/tc and corrugation angle α are 

highly sensitive to DQy at higher values of this ratio. It is also seen that in a short length or 

width the plate become stiffer. 

 

According to this analysis of different geometric parameters, the central plate 

deflection is affected significantly by the core in this corrugated-core sandwich plate. The 

shear stiffness strongly influences the central deflection of these plates. It also can be 

seen that high shear stiffness stiffens the plate even though the flexural rigidities are 

marginally increased. Also, the effect of increasing plate stiffness has the same effect as 

shortening the panel length. 

 

The negative moments in the direction normal to the corrugation do not occur in 

all the corrugated-core sandwich plates. Only in these cases that the stiffness of the plate 

in corrugation direction is extremely higher than that in the direction normal to 
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corrugation, the negative moments might occur. The most bending resistance is taken by 

x-direction and that cause the moment in y-direction to be relatively small or even 

become negative. The stiffness of the corrugated-core sandwich plate is determined by 

the flexural and shear stiffnesses. In general, the flexural stiffnesses in both x- and y-

direction do not have a significant discrepancy. However, the shear stiffnesses are 

affected significantly by the above discussed geometric parameters. To prevent the 

extremely weak shear stiffness in y-direction, the higher degrees of corrugation angle, 

higher values of the p/hc ratio, and lower values of the tc/tf ratio should be avoided. 
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Chapter 5 
 

Conclusions  

5.1 Introduction 

One of the main goals of this study was to develop an accurate and powerful 

method for a complicated elasto-plastic problem. The Reissner-Mindlin plate theory was 

employed to formula the elasto-plastic plate bending representation. The linear elastic 

analysis is well-known and straightforward. In the elasto-plastic analysis, the general 

Galerkin method and incremental method were employed to construct a powerful 

algorithm to solve these difficult problems. Also, the iterative procedure was engaged to 

find the incremental plastic moments {dMp}. Convergence occurs if changes in {dMp} 

are sufficiently small.  

 

In this numerical study, the elastic perfectly-plastic analysis has been analyzed. 

The other main goal is the analysis of effects of geometric parameters for a corrugated 

core and various lengths and widths of these plates. The relationship between geometry 

and the stiffness of the corrugated-core sandwich plate was studied. 

5.2 Conclusions  

The elasto-plastic analysis of a corrugated-core sandwich plate has been 

developed in this study. The developed study can be applied in both elastic perfectly-
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plastic and strain-hardening behaviors. However, due to currently absent experimental 

data of the post yield behavior of corrugated-core sandwich plates, in these numerical 

studies, only the behaviors of elastic perfectly-plastic material were analyzed in this 

work. 

The modified yield surface based on Ilyushin and Hill’s yield criteria for the 

structurally orthotropic plate can theoretically work well. The convergence of the elasto-

plastic analysis is achieved quickly in this study. In general, the convergence is achieved 

in only five or six iterations.  

 

Also, a comprehensive stress analysis for corrugated-core plates is developed. The 

effects of geometric parameters and various lengths and widths of corrugated-core 

sandwich plates with all simply supported boundary conditions on the plate behavior and 

strength were studied. These geometric parameters such as the ratios of core sheet to 

facing sheet thickness (tc/tf), the pitch to core thickness (p/hc), the core depth to core 

thickness (hc/tc), and corrugation angle (α), are analyzed and discussed. The central 

deflection of the corrugated-core plate is significantly affected by the corrugated core in 

this study. It also can be seen that high shear stiffness stiffens the plate even though the 

flexural rigidities are marginally increased. The effect of increasing plate stiffness has the 

same effect as shortening the panel length or width. 

 

Some new phenomena observed in experimental investigations of corrugated-core 

sandwich plates, but not found in previous numerical ana lysis, have been confirmed and 

reported. In particular, our investigation has strengthened some experimental results 
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obtained in (Tan et al. 1989) which lacked supported from 3D FEM, and the other 

analytical solutions. The present analytical solution agrees with all the experimental 

investigations both for the deflections and the bending moments in (Tan et al. 1989). 

 

In this study, it was shown that the negative moments in the y-direction do not 

happen in all cases. The negative moments can be obtained only for significantly high 

stiffness ratios Dx/DQy and Dxy/DQy, and lower values of DQy. Therefore, to avoid the 

negative moment in the y-direction, higher corrugation angle α and higher hc/tc and p/hc 

ratios should not be used. 

 

According to this analysis, some recommendations for the selection of the 

geometric parameters of corrugated-core sandwich plates have been made. It is found that 

lower ratios of some geometric parameters such as hc/tc, tc/tf, and p/hc make the plate 

stronger. However, this will result in an increasing amount of material in the structure. 

Therefore, better corrugated-core sandwich plates should have the following properties: tc 

is identical to tf, the corrugation angle α is between 450 and 700, the ratio hc/tc is around 

20, and the ratio p/hc is between 1 and 1.2. 

5.3 Recommendations for Future Work 

The numerical study of the elasto-plastic analysis in this research focuses on 

perfectly-plastic behavior although the developed research can be applied to strain-

hardening behavior. It is necessary to do experiments to verify the structural behavior 
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after yielding occurs. These experiments relate to the post yielding behaviors and the 

orthotropic parameters of plasticity described in Appendix B should be taken in the future 

studies. 

 

The displacement-strain relationship of this elasto-plastic study is based on the 

small deflection theory. In general, when yielding occurs, the deflection might be large 

enough to consider the effects of high order terms in displacement-strain relationship. 

Therefore, in future work, combining both geometric and material nonlinearities is 

another important issue and the von Karmam stress-strain relation might be one of the 

options to be applied in the elasto-plastic analysis to consider the geometric nonlinearity. 

However, the mathematical complexity due to combination of the high order terms of the 

displacement-strain relationship and material nonlinearity might be very difficult to 

solve. 

 

In this study, an assumption that the whole cross-section yields simultaneously is 

made to simplify the calculation and complexity of the mathematical model in this 

analysis. In realty, the yielding occurs layer by layer through the whole cross-section. The 

layer-by- layer analysis can be done by FEM. However, the employed method in this 

study has the mathematical complexity corresponding to the realty, i.e., layer-by- layer 

analysis. In the future research, if the complexity caused by layer-by- layer analysis can 

be solved, the more accurate and more closed to realty answer can be obtained. 
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In this research, only the deflection at the central point was calculated, and 

moments in the x- and y-directions at the central point were calculated to check the 

yielding of the plate. However, the yielding at other points on this plate was not checked. 

It is known that the whole plate should show gradual plastification until some failure 

mechanism is achieved. In the future, it is necessary to determine the spread of plastic 

behavior in the whole plate, i.e. considering yielding at other points in the plate. The 

resistant curve in Fig. 4-11 is bilinear. In realty, when considering the entire plastic 

behavior of the plate, the real shape of the function after the first yielding occurs should 

be a curve, instead of the straight line. 
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Appendix A 
 

ELASTIC CONSTANTS 

The dimensions of the corrugation unit are defined in Figure A-1. To analyze a 

corrugated-core sandwich plate seven physical constants, Dx, Dy, Dxy, DQx, DQy, υx and υy, 

are required. Precise formulas for evaluating these constants of corrugated-core sandwich 

panels are given by Libove and Hubka (1951). 

  

 

 

 

 
Fig. A-1: Dimensions of the corrugation unit 
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Where subscripts f and c  refer to facings and core of the sandwich plate, 

respectively; Ac and Ic  are the core area and the moment of inertia of the cross-section of 

the core parallel to yz  plane taken about centroidal axis of corrugation cross section per 

unit width of corrugation; I f  is the moment of inertia per width of the faces considered as 

membranes, with respect to the sandwich middle surface. 

 
3

21 







−

=
c

c

c

c
Qy h

tShE
D

υ
 

 
222









=≈

p
h

A

tG
pl

htG
D

c

cccc
Qx  

 
p

lt
A c

c =  

x

y
fyfx D

D
υυυυ == ,  (A.3) 

( )f

f
fffxy

E
GIGD

υ+
==

12
;2  (A.4) 


















××=

2

2
22

h
tpI ff  (A.5) 

θ

θ

sin12
2

2

sin
12

2
2

2

32

2
32

cccc

cc
cc

hthtf

sth
tfI

××
+

××
=

××
+




















××=

 (A.6) 



133 

Where S is non-dimensional parameter depending upon the geometry of cross-

section of the corrugation and given in graphs prepared by Libove and Hubka (1951) and 

l is the length of one corrugation- leg center line shown in Figure A-2. 

 

 
Fig. A-2: One corrugation leg 



 

Appendix B 
 

ORTHOTROPIC PARAMETERS OF PLASTICITY  

Initial parameters 0
33

0
22

0
12

0
11 ,,, AAAA  

The equivalent moment is defined as:  

The orthotropic parameters in Eq. B.1, 33221211 ,,, AAAA , can be determined from 

the yield stress in various directions. The initial parameters, 0
33

0
22

0
12

0
11 ,,, AAAA , are 

obtained by successively permitting all moments in the yield criterion equal to zero 

except the considered one. The approach is similar to the one suggested by (Whang 

1969). 

 

Let Mx0, My0 are the uniaxial yield bending moments in the x and y directions, 

respectively. Mxy0 is the yield twisting moment. Those yield moments can be determined 

by the uniaxial pure bending tests for a strip-beams cut from the sandwich plate in the 

adopted direction. Therefore, the tests in the direction of corrugation, x-axis, and in the 

direction perpendicular to the corrugation, y-axis, as well as from the twisting test are 

necessary. Moreover, one more test is needed for determining the fourth parameter, 

namely, a uniaxial bending test for a strip beam cut from given sandwich plate at an angle 

θ  from the x axis. Let the corresponding uniaxial bending moment is Mθ0. 
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By successively letting all the moments in Eq. B.1 be equal to zero and letting 

0M  be the equivalent initial uniaxial yield moment in the y direction, i.e., setting 

00 yMM = , we obtain  

It is assumed that whenever the equivalent moment reaches the yield moment M0 

the whole cross section plastifies simultaneously. This assumption has been discussed in 

section 3.3. 

Similarly,  

 

As mentioned in previous paragraph, to obtain 0
12A , it is necessary to conduct one 

more test for a strip beam cut at angle θ from the x aixs shown in Figure B-1 and 

subjected to pure bending due to the moment Mθ. Thus, the following relations take place  
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Substituting Eq. B.5 into Eq. B.1, the equivalent yield moment reduces to  

Now, let θ=450, thus Eq. B.6 brings to the following form  

When Eq. B.2, Eq. B.3, and Eq. B.4 are substituted into Eq. B.7, the coefficient 

0
12A  can finally be expressed as 

 

 

Fig. B-1: Strip beam in θ direction for 0
12A  
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The calculations of those uniaxial yield moments used in previous equations have 

been derived in section 3.3.1. In Eq. B.7 and Eq. B.8, we have the bending yield moment 

at 45 degree from x axis. In reality, M045 is an independent parameter. However, for 

simplicity, we will make an assumption that Eq. B.9  

 

Subsecquent parameters 33221211 ,,, AAAA  

Since for a strain-hardening material, the equivalent moment and the uniaxial 

yield moments vary, 221211 ,, AAA  and 33A  should vary also. To consider a pure bending 

of the strip beam cut from the plate in x direction, the strip beam is subjected to the 

moment Mx. Let the corresponding maxium bending moment reached by this strip beam 

be m
xM . Similarly, for a test in the y direction, the maximum bending moment is m

yM . 

The plastic deformations that correspond to the above moments are p
xχ  and p

yχ , 

respectively. Let the strain-hardening relations be linear with the slops of Hx and Hy as 

shown in Figure B-2 . The plastic work done by the above moments in x axis and y axis 

should be the same.  
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The plastic work done by m
xM  can be expressed as  

p
xχ  can be expressed as  

Substituting p
xχ  into Eq. B.11, we can obtain  

Similarly, the plastic work in terms of m
yM   is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. B-2:  Moment vs. plastic curvature curve in x and y directions  
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By equating Eq. B.12 and Eq. B.13, m
xM  becomes  

Let m
yMM = , we obtain  

 

 

Similarly,  

 

Where Gp and H45 are the linear strain-hardening slopes corresponding to m
xyM  

vs. p
xyχ  and mM 45  vs. p

45χ , respectively. 
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