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Abstract

Devices such as smartphones running mobile operating systems have become an inte-
gral part of society. Current smartphones are a response to the Internet’s influence on
computing technology: devices provide nearly pervasive access to information and com-
moditize a seemingly endless number of services. However, smartphones are more than
ultra-portable Web browsers. They combine the expanse knowledge and information
available on the Internet with local context made accessible through hardware features
such as GPS receivers, microphones, cameras, and accelerometers. In the past several
years, smartphone innovation and popularity has surged in response to more open pro-
gramming interfaces and network capabilities. Underlying this valuable innovation lies
increased security risk for users and providers of content and cellular service.

In this dissertation, we explore the limitations of existing mobile operating systems
to protect end users from undesirable behavior by downloaded applications. Existing
security frameworks define security policy in terms of permissions. We use requested
permissions to focuses security analysis of available applications. First, we consider which
permissions applications request and show that this limited information can prevent
applications with dangerous functionality from being installed. Second, we consider what
applications do with permissions. We design and build a framework for realtime dynamic
taint analysis to identify misuse of information such as location and phone identifiers.
Finally, we consider what applications can do with permissions based on implemented
functionality. In doing so, we use several types of source code analysis to identify both
dangerous behavior and vulnerabilities in decompiled applications. While we find the
coarseness of permissions to be insufficient in several cases, the permission-based model
fundamentally aided our analysis, demonstrating new potential for protecting future
mobile platforms.
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Chapter 1
Introduction

The first full-fledged mobile operating system with networking capabilities was designed
for a phone. These so called “smartphones” appeared in the early 2000’s. While the
transition to today’s definition of smartphone was gradual, the most notable early mobile
platform is the Symbian OS, which gained popularity in Europe and Asia, but not North
America. In contrast, the early North American smartphone market was dominated by
RIM’s BlackBerry handset tailored for business users. However, the platform’s vertical
focus on pervasive access to email and personal information management (PIM) had
limited appeal to the general populous. It was not until Apple’s release of the iPhone 3G
and App Store in 2008 that smartphone popularity in North America began to surge.

A smartphone is classically defined as a mobile phone that allows the user to down-
load and run third-party applications from the Internet. Contrasted with feature phones,
which provide enhanced functionality fixed by the device manufacturer or service provider,
smartphones enable the user to decide how to extend a phone’s functionally based on
available applications. However, as demonstrated by the slow adoption of smartphones in
North America during most of the 2000’s, accessibility of applications plays an important
role in both the use of applications on smartphones and innovation in the domain.

An application market provides a central point for application distribution and dis-
covery. Markets such as Apple’s App Store and Google’s Android Market remove barriers
of entry for developers by simplifying sales and distribution. Combined with these plat-
forms’ relatively easy to use application programming interfaces (APIs), the markets are
lush with hundreds of thousands of applications. On the consumer front, markets sim-
plify discovery, purchase, and installation of applications. This process is self-contained
on the phone handset. Users search for applications matching keyword criteria using an
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on-phone market user interface. After choosing an application from the search results,
the user purchases it (if necessary), and the application is downloaded over a wireless
interface and installed. This simplicity on both developer and consumer fronts creates
an incubator for innovation.

Smartphones offer a unique environment for innovation. In many regards, smart-
phones are the logical conclusion the Internet’s influence of technology over the last
decade: they offer access to information from ostensibly anywhere; they allow a diverse
and seemingly limitless set of services; and they commoditize those services into simple
to use interfaces for consumers. In fact, smartphones share many characteristics with
Web browsers, possibly more so than with traditional operating systems. However, a
smartphone is more than an ultra-portable Web browser. They combine the expanse
knowledge and information available on the Internet with local context made accessible
through hardware features such as GPS receivers, microphones, cameras, and accelerom-
eters. The result is innovation that previously only appeared in science fiction. Take for
example, an augmented reality application that visually translates signs on restaurants
and stores for a tourist visiting an area that speaks a foreign language [1]. Through
such innovations, smartphones have become invaluable resources and are reshaping the
direction of computing technology.

Unfortunately, this innovation is not without security risk. Smartphone applications
continually gather information as a matter of operation. For example, a weather forecast
application uses the phone’s geographic coordinates to report current and future weather
conditions. However, collected information extends beyond simple environmental context
from hardware sensors. It also includes the user’s social interactions with the physical
world, for example, preferences when searching for nearby restaurants, and queries for
public transit schedules. All of this information is stored on a small and easy to lose
device that always travels with the user, drifts seamlessly between “unknown” wireless
networks, and runs applications from largely unknown developers.

The source of applications is a particularly interesting security risk. The simplicity
of platform APIs and market interfaces creates a low barrier of entry for developers. The
resulting cottage industry is filled with largely unknown developers that do not always
fully understand the security and privacy requirements of the environment. In particular,
as is discussed in later chapters, developers frequently do not acquire informed consent
before using private information in ways that may negatively impact the user.
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1.1 Thesis Statement

It is a common misconception that application markets can completely eliminate mali-
cious and dangerous applications before distribution [2]. The central point of application
management does provide a very valuable feature: if a malicious application is detected,
not only can its distribution be stunted, but so called “kill switches” allow markets to
remove malicious applications from deployed phone handsets [3]. However, markets are
limited in the security guarantees that they can provide. First, security requirements are
often individualized to specific handsets. Each user has a set of expectations about what
an application should and should not do. Hence, the definition of security cannot be ar-
ticulated coherently at this level. Second, even with an acceptable definition of security,
developers submit thousands of applications each month. Applying anything more than
simple analysis to each application is logistically impractical, if not impossible.

The primary source of smartphone security is on the handset. This security is fre-
quently defined in terms of permissions. Platform developers appropriately assume a
phone handset has one physical user, thereby making applications first-class principals
in the security policy. Each application is assigned a set of permissions, which are capa-
bilities describing the information and resources the application may access. Application
permissions are granted by the user, effectively moving security decisions from the market
to the handset, where a more appropriate level of context is available.

The focus of this dissertation is to understand the limitations of existing mobile
smartphone operating system security frameworks, and to suggest techniques to improve
the state of the art. More specifically, we hope to identify the most prominent risks faced
by users and determine if failures result from protection mechanism limitations. To do
this, we study the behavior of popular applications.

As an artifact of our studies, we observe that most smartphone applications have a
vertical purpose. We surmise this characteristic results from three driving influences: a)
smartphones are an evolutionary response of Internet communication, effectively com-
moditizing services; b) the cottage market driving smartphone applications forces devel-
opers to realize conceptual ideas quickly; and c) the limited user interfaces of handsets
restricts application complexity.

The vertical purpose nature of smartphone applications has two apparent side effects:
1) the user’s expectations of application behavior are often clear; and 2) applications
frequently request a limited number of permissions. Note that despite initial fears,
we have not found applications to be simply requesting all permissions. While it is
impossible to determine if this is a result of honest developers or fear of bad reputation,
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the existence of this phenomenon has been corroborated by related studies [4].
We study the intersection of permission requests and application behavior using three

analysis techniques. First, we use static analysis of configuration to understand what
permissions applications request. These permissions represent an upper bound on the
functionality an application may exercise at runtime. While application behavior per-
mits successful articulation of security goals at this granularity, we identified several cases
where this permission-defined protection domain is too coarse. Second, we build a frame-
work to perform dynamic taint analysis of privacy sensitive information to understand
what applications do with permissions. This analysis effectively allows us to “look in-
side” of applications to identify when sensitive information is unexpectantly shared with
network servers. However, dynamic taint analysis only permits observation of a rather
vertical (albeit important) type of dangerous behavior. It is also limited to excised func-
tionality and does not identify which part of the application code was responsible (e.g.,
an included library vs. the main code). Third and finally we use static source code
analysis to understand what applications can do with permissions based on implemented
functionality. Here, we look for not only information misuse, but also a broader class of
dangerous functionality and vulnerabilities.

We observe that requested permissions have become a valuable means of assessing
risk and informing analysis. The discoveries and observations made during our studies
of smartphone applications inform the following thesis statement.

Permission requests by smartphone applications can be used to focus security
analysis to practically identify dangerous behavior and vulnerabilities.

Evidence of this thesis can be found in each of our studies. Our first study identifies
dangerous behavior directly from permissions. The vertical purpose nature of smart-
phone applications and the corresponding permission requests allows us to practically
define security invariants that do not prevent permissions combinations required by many
applications. Our second study uses permissions to determine which applications to in-
vestigate with dynamic taint analysis. Our final study uses knowledge of permission
semantics to identify which programming interfaces should be analyzed for dangerous
behavior and vulnerabilities, and how the interfaces should and should not be used.

Our study results indicate future directions for smartphone security solutions. First,
we observe the need to mitigate misuse of privacy sensitive values. We find the existing
permission-based protection mechanism insufficient in its current application. We sug-
gest an improvement based on careful privilege separation in our concluding remarks.
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Second, we observe that no granularity of permission assignment will remove all security
risks, and that the security analysis techniques describe herein should be applied as the
basis for an ongoing evaluation of the security hygiene of application markets. In some
cases, it may be practical to apply the analysis before application distribution; however,
to address the diverse security requirements of smartphone users, we see the need for
continual evaluation and rating of applications after they have appeared in markets.

Finally, we note that this dissertation focuses on abuse of information and resources
by applications as it affects end users. There are many other important areas relating
to smartphone security. In particular, we make no effort to address physical attacks on
smartphones, attacks on telecommunications infrastructure, enterprise security concerns,
or digital rights management.

1.2 Contributions

In this dissertation, we make the following contributions:

• We propose a model of lightweight certification based purely upon application config-
uration data. Each end user has different security requirements. The Kirin [5] en-
hancement to Android’s application installer certifies an application’s configuration
policy, including the permissions it requests, based on a local criteria specification.
The certification criteria are security invariants describing dangerous application
configurations. If an application fails to meet the criteria, it is not installed. We
define nine valuable invariants based on security requirements engineering applied
to the Android operating system to demonstrate the usefulness of the limited pol-
icy language. We evaluate the invariants against 311 popular applications and find
a low number of false positives.

• We design and implement a framework for monitoring privacy sensitive informa-
tion on smartphones and use it to identify risks in popular applications. In some
cases, configuration-level analysis is too coarse to distinguish between dangerous
and benign functionality in applications. The TaintDroid [6] augmentation of the
Android platform provides dynamic taint analysis for privacy sensitive informa-
tion such as location, microphone, camera, and phone identifiers. We make care-
ful trade-offs on tracking granularity to achieve realtime monitoring performance.
While TaintDroid is specific to Android, its architecture is portable to other VM
interpreter based platforms (e.g., Java-based phones such as BlackBerry). We use
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TaintDroid to analyze 30 popular applications and identify 15 applications sharing
location information with advertisement servers, and 7 applications sharing phone
identifiers with remote servers without user knowledge.

• We provide a preliminary characterization of security in Android applications us-
ing source code analysis. Dynamic taint analysis is limited to detecting dangerous
functionality based on information flows. Furthermore, only exercised functionality
is analyzed. Using the ded decompiler, we recover over 21 million lines of source
code for source code the top 1,100 popular free applications in the Android Market.
This study [7] defines source code analysis specifications for both dangerous func-
tionality and vulnerabilities. Manual inspection of analysis results finds minimal
existence of overtly dangerous or readily exploitable applications. The primary
source of identified risk in the studied applications is the use of phone identifiers
and location by developers.

• We identify that existing smartphone OS security frameworks lack sufficient me-
diation for a clear and present risk for end users. More specifically, they lack
sufficient control of privacy sensitive information such as location and phone iden-
tifiers. At the crux of this limitation is a conflict between operational and security
requirements that is specific to the smartphone environment. To benefit from the
innovation in the smartphone application domain, users must give applications
access to both privacy sensitive information such as location and the Internet.
However, once information enters a process, the OS cannot mediate its disclosure
to network servers.

1.3 Dissertation Outline

The goal of this dissertation is to understand limitations of existing smartphone security
frameworks by studying the functional requirements and operation of deployed applica-
tions. In order to achieve this objective, we concert our focus on the Android platform,
which is both representative of current and future computing trends in the smartphone
domain, and provides the necessary openness of documentation and platform source code
to facilitate study, analysis, and experimentation.

In Chapter 2, we describe the current state of security in smartphones and similar
mobile operating systems. We begin with an overview of existing and expected threats by
malware. Next, we discuss application markets in detail, enumerating their limitations
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and potential with respect to security. Chapter 2 concludes with detailed information
of the Android platform and its security framework. This background information is
followed by a discussion of foundational concepts and related work in Chapter 3.

In Chapter 4, we present an analysis approach considering static application config-
uration. Driving this investigation is the Kirin enhancement to Android’s application
installer. We present formal logic for analyzing applications based on their configuration
and describe a security requirements engineering technique to articulate security goals
limited by a single application’s configuration policy.

In Chapter 5, we extend analysis to fine-grained runtime information tracking. The
static configuration analysis in Chapter 4 proves problematic when security policy allows
an application to access both sensitive information and the Internet. We present the
TaintDroid realtime analysis framework to look inside of applications and understand
how sensitive information is used. Using this dynamic taint analysis, we study popular
applications and identify misuse of privacy sensitive values such as location and phone
identifiers.

In Chapter 6, we revert to static analysis, but do so with knowledge of application
source code obtained using the ded decompiler. Analysis of source code allows us to look
for more than misuse of values, but also control flows that lead to dangerous functionality.
Furthermore, we use source code analysis to identify vulnerabilities in applications. The
presented analysis studies over 21 million lines of code across 1,100 popular applications
demonstrates the value of transparency for security. Here, we identify information misuse
of location and phone identifiers as the most common risk for end users.

Finally, Chapter 7 concludes our discussion of the security limitations of mobile
operating systems and discusses directions for future work.



Chapter 2
Mobile Operating System Security

Smartphone platforms are the canonical example of mobile operating systems. For the
purposes of this dissertation, we consider a mobile operating system to one for a portable
network-capable device such as a phone, tablet, or netbook. While desktop operating
systems are sometimes run on tablets and netbooks (or other small laptops), our focus
is on resource constrained devices and the limitations they impose.

This chapter provides background on smartphone security necessary to understand
the remaining chapters. While the discussion focuses on smartphones, many explana-
tions and observations apply to portable devices running variants of operating systems
designed for smartphones. We begin by discussing threats to smartphones. We then de-
scribe the benefits and limitations of application markets. Finally, the chapter concludes
with a case study of the Android platform and its security framework.

2.1 Smartphone Threats

In this section, we discuss threats to smartphones. We begin with an overview of existing
malware and then classify types of malware that is emerging or is expected to occur.
Finally, we discuss privacy concerns and how not all dangerous functionality can be
characterized explicitly as malware.

2.1.1 Malware

The first smartphone virus was observed in 2004. While Cabir [8] carries a benign
payload, it demonstrated the effectiveness of Bluetooth as a propagation vector. Its
most notable outbreak was at the 2005 World Championships in Athletics [9]. More
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interestingly, Cabir did not exploit any vulnerabilities. It operated entirely within the
security parameters of both its infected host (Symbian OS) and Bluetooth. Instead, it
leveraged flaws in the user interface. While a victim is in range, Cabir continually sends
file transfer requests. When the user chooses “no,” another request promptly appears,
frustrating the user who subsequently answers “yes” repeatedly in an effort to use the
phone [10].

Cabir was followed by a series of viruses and Trojans targeting the Symbian Series
60 platform, each increasing in complexity and features. Based on Cabir, Lasco [11]
additionally infects all available software package (SIS) files residing on the phone on the
assumption that the user might share them. Commwarrior [12] added MMS propaga-
tion in addition to Bluetooth. Early variants of Commwarrior attempt to replicate via
Bluetooth between 8am and midnight (when the user is mobile) and via MMS between
midnight and 7am (when the user will not see error messages resulting from sending
an MMS to non-mobile devices). Originally masquerading as a theme manager, the
Skulls [13] Trojan provided one of the first destructive payloads. When installed, Skulls
writes non-functioning versions of all applications to the c: drive, overriding identically
named files in the firmware ROM z: drive. All applications are rendered useless and
their icons are replaced with a skull and crossbones. Other Trojans, e.g., Drever [14],
fight back by disabling Antivirus software. The Cardblock [15] Trojan embeds itself
within a pirated copy of InstantSis (a utility to extract SIS software packages from a
phone). However, Cardblock sets a random password on the phone’s removable memory
card, making the user’s data inaccessible. While malware for other early smartphone
operating systems such as Windows Mobile also appeared, smartphone malware little
new malware was discovered after 2006 until recently [16].

The Android and iPhone platforms have also observed malware, albeit primarily
“proof-of-concept.” Oberheide [17] developed RootStrap as a rootkit delivery mechanism
to demonstrate how an attacker might take advantage of zero-day vulnerabilities in the
Linux kernel. Oberheide also developed malicious levels for a popular game (i.e., Angry
Birds). This proof-of-concept malware misuses Android’s account manager to obtain an
Android Market authentication token an in turn installs applications without the user’s
knowledge [18]. Unfortunately, insufficient details of the vulnerability were available at
the time of writing. Not all Android malware has been benign: a Trojan masquerading
as a banking application attempted to steal user credentials [19]; and FakePlayer [20]
sends SMS messages to premium rate numbers. In contrast to Android, to the best of
our knowledge, iPhone malware has only affected jailbroken handsets. In the case of
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the Ikee.B worm [21], handsets with a default SSH password were infected with a botnet
client. However, many cellular providers use private IP addresses for mobile devices, and
the infection was limited to several countries.

To date, most phone malware has been either proof-of-concept or destructive, a
characteristic often noted as resembling early PC malware. Recent PC malware more
commonly scavenges for valuable information (e.g., passwords, address books) or joins a
botnet [22]. The latter frequently enables denial of service (DoS)-based extortion. It is
strongly believed that smartphone malware will move in similar directions [23, 10]. In
fact, Pbstealer [24] already sends a user’s address book to nearby Bluetooth devices, and
Viver [25] and FakePlayer [20] send SMS messages to premium-rate numbers, providing
the malware writer with direct monetary income.

Mobile phone literature has categorized phone malware from different perspectives.
Guo et al. [26] consider categories of resulting network attacks. Cheng et al. [27] derive
models based on infection vector (e.g., Bluetooth vs. MMS). However, we find a tax-
onomy based on an attacker’s motivations [23] to be the most useful when discussion
security from an OS perspective. We foresee the following motivations seeding future
malware (the list is not intended to be exhaustive):

• Proof-of-concept: Such malware often emerges as new infection vectors are explored
by malware writers and frequently have unintended consequences. For example,
Cabir demonstrated Bluetooth-based distribution and inadvertently drained device
batteries. As newer platforms such as iPhone and Android mature, we will continue
to see proof-of-concept malware such as RootStrap [17].

• Destructive: Malware such as Skulls and Cardblock (described above) were de-
signed with destructive motivations. While we believe malware with monetary
incentives will overtake destructive malware, it will continue for the time being.
Future malware may infect more than just the integrity of the phone. Current
phone operating systems and applications heavily depend on cloud computing for
storage and reliable backup. If malware, for example, deletes entries from the
phone’s address book, the data loss will propagate on the next cloud synchroniza-
tion and subsequently affect all of the user’s computing devices.

• Premeditated spyware: FlexiSPY (www.flexispy.com) is marketed as a tool to
“catch cheating spouses” and is available for Symbian, Windows Mobile, Black-
Berry, Android, and jailbroken iPhones. It provides location tracking, and remote
listening. While malware variants exist, the software itself exhibits malware-like
behavior and will likely be used for industrial espionage, amongst other purposes.
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Such malware may be downloaded and installed directly by the adversary, e.g.,
when the user leaves the phone on a table.

• Direct payoff: Viver and FakePlayer (described above) directly compensate the
malwares’ author by sending messages to premium SMS numbers, and Terdial [28]
makes voice calls to the South Pole. Such attacks impact both the end-user and
the provider. Customers will contest the additional fees, leaving the provider with
the expense. Any mechanism providing direct payment to a third party is a po-
tential attack vector. For example, the iPhone platform has in-application content
sales [29].

• Information scavengers: Web-based malware currently scours PCs for valuable
address books and login credentials (e.g., usernames, passwords, and cookies for
two-factor authentication for bank websites) [22]. Mobile phones are much more
organized then their PC counterparts, making them better targets for such mal-
ware [23]. For example, most phone operating systems include an API allowing all
applications to directly access the address book.

• Botnet: A significant portion of current malware activity results in a PC’s member-
ship into a botnet. Ikee.B [21] (mentioned above) was the first of what is expected
many to come. So called mobots (mobile bots) [30] will most likely be similar to
those of existing botnets (e.g., providing means of DoS and spam distribution);
however, the targets will change. Core telephony equipment is expected to be
subject to DoS by phones, and mobot-originated SMS spam will remove the eco-
nomic disincentive for spammers, making SMS spam much more frequent and wide
spread. Finally, the phone functionality will be used. For example, telemarketers
could use automated dialers from mobots to distribute advertisements, creating
“voice-spam” [31].

2.1.2 Privacy

Not all smartphone threats can be easily classified as malware. As discussed by this and
other work [32], legitimate and otherwise benign applications have been found to share
privacy sensitive information without acquiring user consent. In Chapters 5 and 6 we
discuss how the phone’s geographic location is often included in requests to advertisement
servers. We also found use of phone identifiers, including the phone number, in network
transactions with no apparent need for the information. Unfortunately, not everyone
perceives this disclosure as harmful to the user, and developers include this functionality
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without fully understanding the repercussion to users.1 Instances are frequently classified
as cases of over zealous data gathering [34], as malware implies malicious intent by the
developer. Therefore, throughout this document, we use the more generic classification
of “dangerous functionality”.

2.2 Application Markets

An application market, also known as an application store, or “app store,” is a central
point for sales, distribution, and discovery of applications. Almost all popular smart-
phone operating systems have at least one application market, if not more. The largest
application markets, by an order of magnitude, are Apple’s App Store, and Google’s
Android Market. These markets provide applications for not only smartphones, but also
tablets and personal media players. Recently, Apple announced a variant of its App
Store for desktops running Mac OS X [35].

The appeal of application markets is how they simplify sales, distribution, and discov-
ery. The market is responsible for accepting payment from consumers, compensating the
application provider, and hosting the applications in a manner that allows discovery by
consumers. By eliminating the need to set up payment and distribution infrastructure,
the application provider is often a single or small group of largely unknown developers.
Furthermore, consumers are more likely to provide the application market with credit
card information than an unknown provider.

The application market client runs on the smartphone or other mobile device. It
provides a central location for the consumer to find new applications (e.g., via keyword
searches). Clients typically display the name of the application, a developer/provider
name, a description of the application, and reviews/ratings by other consumers. On
some platforms, such as the Apple iPhone iOS, there is only one market.2 However,
on other platforms, e.g., Android, there are multiple markets. In the case of Android,
Google’s Android Market is considered the “official” market, but others are available for
install by consumers.

It is a common misconception that an application market can act as a security filter
for all smartphone threats [2]. For example, news articles frequently criticize Google’s
Android Market, because it does not perform any checking, as is done by Apple’s App
Store. However, it is unclear what security checks are performed by Apple, if any [36].

1The EFF discusses the repercussions of location information [33].
2Note, “jailbroken” iOS devices also access the Cyndia market.
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Performing security checks at the market level are impractical for several reasons.
First and foremost, they do not have proper context. Each user has different expecta-
tions for what applications should and should not do. The differences are particularly
prominent for privacy concerns. Second, markets receive a high volume of new and
upgraded applications. Performing more than simple analysis is impractical, if not im-
possible.

There are, however, clear security advantages of application markets. For example,
some markets implement so called “kill switches” that allow the market to not only stunt
distribution of dangerous applications, but also remove them from deployed devices [3].
This is an invaluable feature that has not been available for desktop environments. How-
ever, the ability to remotely remove applications is a concern in and of itself. Amazon’s
removal of the book “1984” from Kindle devices is a relevant analogy of the dangers [37].
Nonetheless, kill switches are arguably a net gain for end user security.

Finally, markets allow the consumer to identify the source of an application. For
example, the market can ensure that only Company X can have the provider/developer
name “Company X”. This mitigates threats wherein the adversary distributes an appli-
cation masquerading as Company X’s official application (e.g., to prevent phishing for
banks). It can also mitigates threats where the adversary grafts malware onto existing
trusted applications. However, the efficacy of the developer name should be viewed with
caution. First, just as in PKIs [38], it is difficult to determine who the real Company X is.
This is even more difficult for individual developers. Second, multiple application mar-
kets remove guarantees that a known developer/provider is the same as the one listed.
For example, an Android Trojan was recently distributed in a Chinese application mar-
ket by grafting the malicious code onto existing applications [39]. Therefore, in the face
of multiple markets, the security benefit of developer names is difficult to qualify for end
consumers.

2.3 Case Study: Android

The following chapters use the Android smartphone platform to understand security
challenges in the domain. The Android platform and its applications are representative
of the current state of smartphone technology from which trends can be established.
Furthermore, Android is open source, which allows deep understanding of platform op-
eration and enables augmentations to enhance our ability to study applications.

Android is best described as a middleware running on top of embedded Linux. The
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Figure 2.1. Typical IPC between application components

underlying Linux internals have been customized to provide strong isolation. Each ap-
plication is written in Java and runs as a process with a unique UNIX user identity. This
design choice minimizes the impact of a buffer overflows. For example, a vulnerability
in web browser libraries [40] allowed an exploit to take control of the web browser, but
the system and all other applications remained unaffected.

All interprocess communication (IPC) between applications occurs through binder.
The binder IPC framework provides the base functionality for both application operation
and security enforcement. In the remainder of this section, we describe the application
and security frameworks. See Enck et al. [41] for additional explanation and helpful
examples.

2.3.1 Application Framework

Android applications are defined as collections of components. If necessary, components
are automatically started by the system in response to IPC. IPC between components
takes the form of intent messages (in most cases). Intent messages are addressed to an
action string used by the application framework to determine the correct recipient. Ap-
plication and component resolution is performed using intent filters defined the developer
of the target application. Android defines many standard action strings; however, as long
as the source and target applications agree upon an action string, any text string can be
used. Alternatively, an intent message can be addressed to a specific component by spec-
ifying the target application’s namespace, which bypasses the resolution logic. Figure 2.1
depicts typical IPC between components that potentially crosses applications.

• An activity component interfaces with the physical user via the touchscreen and
keypad. Applications commonly contain many activities, one for each “screen”
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presented to the user. The interface progression is a sequence of one activity
“starting” another, possibly expecting a return value. Only one activity on the
phone has input and processing focus at a time.

• A service component provides background processing that continues even after
its application loses focus. Services also define arbitrary interfaces for remote
procedure call (RPC), including method execution and callbacks, which can only
be called after the service has been “bound”.

• A broadcast receiver component acts as an asynchronous event mailbox for intent
messages “broadcasted” to an action string. Android defines many standard action
strings corresponding to system events (e.g., the system has booted). Developers
often define their own action strings.

• A content provider component is a database-like mechanism for sharing data with
other applications (e.g., an address book). The interface does not use intent mes-
sages, but rather is addressed via a content URI. The interface supports standard
SQL-like queries, e.g., SELECT, UPDATE, INSERT, through which applications access
information. The content provider interface also includes IO streams for reading
and writing file content.

Every application package includes a manifest file. The manifest file specifies all
components in an application, including their types and intent filters. All components
must be specified in the manifest file, with the exception of broadcast receivers, which
can be dynamically created. Note that dynamic broadcast receivers are commonly used
by activity components to receive information only while the application is running, and
they cannot be started automatically by the system.

2.3.2 Security Framework

An Android phone’s security policy is primarily defined in the manifest files of all installed
applications, including the applications that comprise the application framework (known
as system applications). Security policy in the manifest file primarily consists of 1)
permissions defined by the application, 2) permissions requested by the application, and
3) the permissions that restrict access to components. Requested permissions are granted
to an application at install time and cannot change without reinstalling (e.g., upgrading).

Application developer specified security policy is a result of the nature of mobile
phone development. Managing access control policies of hundreds (thousands) of poten-
tially unknown applications is infeasible in many regards. Hence, the Android developers
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simplified access control policy specification by having developers define permission la-
bels to access their interfaces. The developer does not need to know about all existing
(and future) applications. Instead, the permission label allows the developer to indirectly
influence security decisions.

Android allows or disallows an application’s request for a permission based on the
permission’s protection-level. A permission’s protection-level is set by the developer of
the application defining the permission. There are four protection-levels. Permissions
with normal protection-level are always granted to any application that asks for it.
Permissions with dangerous protection-level are granted upon the user’s agreement. The
permissions protected with signature protection-level are granted only to the application
signed with the same certificate as the application that defines the permission. Lastly,
the signatureOrSystem protection-level is granted using the same logic as the signature
protection-level, with the addition that the permission is granted to any application that
is a) installed in the system firmware image (/system/app), or b) signed by the key
that signed the system firmware. Note that this crude policy is the only vehicle for an
application to protect its interfaces (aside from prohibiting any use by labeling them
“private”, as mentioned below).

Android mediates IPC based on permissions using a middleware reference moni-
tor [42]. Simply put, an application may initiate IPC with a component in another (or
the same) application if it has been assigned the same permission label associated with
the target component IPC interface. Permission labels are also used to restrict access
to certain library APIs. For instance, there is a permission label that is required for an
application to access the Internet. Android defines many system permissions in addition
to those defined by the applications.

There are a number of extensions to the Android permission system that extend
policy expressibility and reduce the complexity of specifying and managing application
security.

• Some policy is defined within application source code, and not the manifest file.
For example, the API for broadcasting intent messages optionally allows the de-
veloper to specify a permission label to restrict which applications may receive it.
This provides an access control check in the reverse direction of the IPC. A second
example is the checkPermission() reference monitor hook that can be placed any-
where in an application. These hooks are primarily used to differentiation access
to RPC interfaces in service components.

• The Android middleware does not enforce all permission checks. Several permission
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labels defined by the Android framework (e.g., Internet and Bluetooth permissions)
are enforced in the kernel based on UNIX group identifiers. For these special
permissions, an application is added to the corresponding UNIX group at install
time.

• The developer is not forced to specify a permission label in the manifest file to
restrict access to a component. If no label is specified, there is no restriction (i.e.,
default allow).

• Some components are “private” based on manifest file specification. If a component
is private, it can only be accessed by components defined in the same application.
If a component does not define an intent filter, Android automatically makes it
private. Alternatively, the developer can explicitly make a component private.
Private components simplify security policy specification for developers.

• Content provider component access control policy can restrict read and write com-
mands separately. Frequently, an application developer may wish to specify read-
only access to data. This is accomplished by defining separate read and write
permission labels.

• Pending intent objects allow another application to complete an IPC. Applications
create pending intent objects by first creating an intent message as if it were per-
forming the IPC, and then acquiring a pending intent object reference specific to
the target component type (e.g., activity). In a separate IPC, the pending intent
is sent to an application. That application can fill in any address or data fields not
specified by the original application. When the application completes the IPC, it
operates within the protection domain of the original application. If used correctly,
pending intents can enhance an application’s security. For example, an application
can use a pending intent to allow a system application to start a private activity.
However, pending intents provide a limited form of delegation, and can lead to
vulnerabilities if used unsafely (e.g., passed to an untrusted application without
specifying the intent address completely).

• Applications can delegate subparts (e.g., individual records) of a content provider.
Using the URI permission feature, any application with read or write access to a
content provider can delegate that access for a specific record (or URI path) to an
application that does not have permission. This feature can enhance application
and system security by allowing least privilege protection. However, this intro-
duction of runtime delegation complicates both policy management and analysis.
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Note that URI permissions can only be delegated if the content provider definition
specifically allows the feature.

• Special system defined broadcast actions cannot be spoofed. Following the discovery
of an application’s ability to forge the receipt of an SMS message by broadcasting
an intent message to a specific action string (a result from work [5] contributing
to this dissertation), the Android system developers added a new permission la-
bel allowing the recipient of the SMS intent broadcast to ensure it was sent by
the system. However, there are many intents broadcast by the system, and pre-
venting forging attacks using permissions requires significant policy management
by application developers. Therefore, the Android reference monitor includes the
concept of “protected broadcasts.” That is, within the framework, a set of action
strings are specified as “protected” to ensure only the system (and not third-party
applications) can broadcast intents with those actions.



Chapter 3
Related Work

This dissertation studies security in mobile operating systems with a specific focus on
smartphones. As previously discussed, these operating systems are the result of the In-
ternet pushing computing technology towards a pervasive, service-oriented architecture.
While much of the following chapters focus on the study of applications, the purpose
of these studies is to reflect upon the impact of observed phenomena on the realities of
operating system level protection for this emerging platform. We begin the following
discussion by highlighting the foundations of operating systems security.

3.1 Operating System Security

Operating systems provide the foundations for security in computing systems. OS secu-
rity is a very broad and deep area of computer science. Many of the underlying concepts
of OS security were developed during the design of Multics [43] during the 1960’s and
’70s. In 1974, Salter [44] enumerated nine areas of active OS security research, includ-
ing: system penetration, user interface studies, mathematical models, and protection
mechanisms. A brief survey of current OS security literature demonstrates a continued
presence of these themes and hence the difficulty of OS security problems. It is, to say
the least, a very intricate and challenging subject. Jaeger [45] provides an overview of
OS security fundamentals and how they relate to both research and production systems
spanning from Multics to today’s UNIX and Microsoft Windows platforms.

In traditional operating systems, applications execute as processes. Each process has
a protection domain, defined as the information and resources that the process may ac-
cess. Protection in operating systems can be represented as an access control matrix [46].
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The matrix is made up of a set of subjects (e.g., processes) and objects (e.g., files) with
matrix elements populated by actions (e.g, read, write) that subjects may perform on
objects. Because access control matrices are often sparsely populated, protection policy
commonly takes the form of an access control list (ACL). For this representation, each
object is given an ACL defining the subjects and the actions those subjects may per-
form. Another common representation of protection policy is a capability list, or C-List.
Here, subjects are assigned a C-List defining the objects and the actions the subject may
perform on them.

Access control polices can be either discretionary or mandatory. Discretionary pol-
icy is managed by the subjects. Traditionally, subjects are users, or rather, processes
executing with the authority of a user. Therefore, discretionary access control policy
is commonly described as a policy managed by the user. If policy transitions are not
carefully limited, security goals can be circumvented. The decidability of whether or
not discretionary policy can reach an unsafe state is unknown, This condition is known
as the safety problem [47]. Mandatory access control policy, or MAC policy, restricts
policy management to an administrative entity, and is therefore not subject to the safety
problem. Much of operating systems security literature has focused on MAC, as it can
provide provable security guarantees (e.g., with respect to information flows).

At the foundation of MAC policy enforcement is a reference monitor [42]. From a
purist perspective, a reference monitor requires: 1) complete mediation of all security
sensitive operations; 2) tamperproofness of the enforcement mechanism; and 3) verifia-
bility of the complete mediation and tamperproofness. However, few systems actually
achieve or attempt rigorous verifiability due to practical limitations. Hence, program-
ming errors that lead to privilege escalation or circumvention often go unnoticed until it
is too late.

3.1.1 Kernel-level Protection

Verifiability was a primary focus of OS security research in the late 1970’s and ’80s. To
be verifiable, the trusted computing base of the system must be small. This observa-
tion led rise to the concept of a security kernel, which can be defined as the hardware
and software necessary to achieve a reference monitor. Early security kernels include
Scomp [48] and GEMSOS [49]. Scomp leverages custom hardware features to minimize
trusted software. For example, protection rings to isolate trusted and untrusted software
(a Multics concept) are managed entirely in hardware, and a security protection mod-
ule mediates direct memory access (DMA) on the I/O bus. In contrast, GEMSOS was
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designed to operate on commodity x86 hardware. While the x86 architecture provides
protection rings, it cannot mediate DMA. Despite these limitations, GEMSOS was for-
mally validated and verified to the Trusted Computer System Evaluation Criteria’s level
A1 [49].

As research of verifiable security kernels progressed, Rushby [50] observed that secu-
rity goals of the verification (in this case, multilevel security) were often at odds with
the practical realities, resulting in many trusted processes outside of the kernel. This
observation lead to the concept of a separation kernel [51]. While a separation kernel is,
in fact, a security kernel, it has the very specific security goal of achieving separation
tantamount to hosts in a distributed system. Hence, verification of the separation kernel
simplifies to ensuring isolation between “regimes.” In this model, regimes need not be
completely isolated, but communication channels must be well defined, and with the
ability to “cut” them if needed.

The concept of a separation kernel led way to microkernels, which remove all unnec-
essary functionality from the kernel, placing it in user-space processes. The Mach micro-
kernel [52] applies this approach to the UNIX architecture, providing privilege separation
of kernel functionality. However, the design increases IPC latency, and the associated
context switches and accounting causes poor performance. The L4 microkernel [53, 54]
showed that microkernel performance need not be significantly worse than macrokernel
architectures using processor-specific implementations of processor-independent abstrac-
tions.

In his description of the separation kernel model, Rushby [50] noted the similar-
ity of separation kernels to virtual machine monitors (VMMs) [55, 56], e.g., the IBM
VM/370 [57]. In this environment, the VMM simulates “bare hardware” to allow mul-
tiple virtual machines to simultaneously run on the same physical machine. Kelem and
Reiertag [58] formally model the separation model for VMMs. More recently, commod-
ity VMM systems such as VMware [59] and Xen [60] have been used provide a security
perimeter. Terra [61] demonstrates an architecture where desktop applications are run
in separate VMs. sHype [62] implements mandatory access control for communication
between VMs.

3.1.2 Information Flow

Historically, mandatory access control has been synonymous with information flow con-
trol (IFC). IFC is different from traditional access control, because it reasons about the
transitive access of information. Similar to Lampson’s access control matrix [46], IFC
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models a set of subjects S and a set of objects O. However, read and write actions
are represented as flows (→). For example, when a subject s ∈ S reads from an object
o ∈ O, then s ← o. Conversely, when s writes to o, then s → o. These operations form
an information flow graph G = (V,E) where the vertices V are the union of subjects
and objects (V = S ∪O) and the edges E are flows. Note that Lampson’s access matrix
can be converted into an information flow graph by mapping each action type to one of
read, write, or both read and write.

Information flow security models label each subject and object with a security class.
Denning [63] organized security classes into a lattice to define verifiable security goals.
The lattice specifies allowable flows between security classes. Bell and LaPadula [64] de-
fine the multi-level security (MLS) model using lattices for confidentiality. In MLS, the
lattice encodes the simple-security (no read up) and �-security (no write down) policies
over hierarchical security classes (e.g., top-secret, secret, confidential, and unclassified).
Biba [65] proposes the dual for integrity, encoding the simple-integrity (no read down)
and �-integrity (no write up) policies within the lattice. While confidentiality and in-
tegrity information flow models can be enforced simultaneously, disjoint sets of security
labels are used, otherwise, subjects can only read and write within their own security
classes. For example, whereas MLS uses military security classes, an integrity model
might use security classes such as: trusted, system, application, user, and untrusted.

While the MLS and Biba models provide mathematically provable guarantees, prac-
tical implementations rely on the security of trusted processes. A trusted process is
allowed to operate outside the confines of the security lattice and therefore represents
an attack surface. The Clark-Wilson [66] integrity model constrains how trusted pro-
cesses can exist. It provides verifiability through certification of all trusted processes.
The CW-lite [67] model relaxes Clark-Wilson by not requiring certification of entire pro-
cesses, but rather relies on defined filtering interfaces to upgrade or discard inputs read
from low integrity processes. Usable Mandatory Integrity Protection (UMIP) [68] also
relaxes stricter integrity models and defines trust in terms of types of information flows
(e.g., IPC, network). UMIP handles exceptions to a low watermark model using rules
informed by the system’s discretionary access control configuration. A third practical
integrity model, Practical Proactive Integrity (PPI) [69], uses a combination of integrity
labels and policies to flexibly guarantee system integrity.

Decentralized information flow control (DIFC) [70, 71, 72] is another approach to
overcoming the limitations of trusted processes. DIFC is an application of the decentral-
ized label model (DLM) [73] for operating systems. Instead of defining label exceptions to
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a centrally defined MLS or Biba lattice, DIFC breaks trust into many non-comparable
security classes. These classes, called tags, are created and managed by applications.
Subject and object labels consist of sets of tags, and the enforced security lattice is
defined by a partial order of the set of tags. A subject is said to “own” a tag if it
can add and remove it from its label (effectively declassifying or endorsing information).
Furthermore, subjects can delegate add and remove tag capabilities to other subjects to
manage trust. Fundamental to this approach is the observation that a system has many
types of non-comparable information, and frequently, only the application developer has
sufficient context to administer protection policy.

3.1.3 Other MAC Models

Not all MAC protection systems focus on information flow. For example, Domain Type
Enforcement (DTE) [74] provides privilege separation for root owned processes on a
UNIX system. DTE is similar to Type Enforcement (TE) [75]; however, in DTE, only
objects are labeled with types. Subjects are assigned a domain, which is a tuple contain-
ing 1) “entry point” programs (i.e., a binary path), 2) access rights (i.e., read, write, ex-
ecute) to object types, and 3) access rights (i.e., signals) to other domains. SELinux [76]
(an implementation of Flask [77] for Linux) is also based on types. Like DTE, SELinux
only uses types for objects; however, subjects are assigned a role. SELinux roles are
similar to, but distinct from, roles in RBAC [78]. SELinux policy specifies how roles can
act on types, as well as transition rules between roles. Strict SELinux policy defining
access control for all processes is very complex and often breaks systems, therefore, a
target policy mode is provided. Similar to DTE, the SELinux targeted policy mode
provides root process privilege separation. In response to the complexity of SELinux
policy, AppArmor [79] (formerly known as SubDomain [80]) defines MAC policy using
path names to achieve semantics similar to SELinux’s targeted mode.

Capabilities have also been used for MAC protection. A capability is similar to a
physical key that is given to a subject to gain access to some interface. In a capabil-
ity model, protection policy is managed though the delegation of capabilities from one
process to another. Capabilities naturally encode the principle of least privilege [81], as
access policy can follow the runtime context. This characteristic is most well known as
a solution to the confused deputy problem [82]. This problem occurs when a untrusted
process convinces trusted system process to performs an action on its behalf. In a ca-
pability model, the system process need only perform actions using the capability set
assigned to untrusted processes.
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While capability delegation appears discretionary in nature, it has been used to
enforce MAC in operating systems. Most notable early OS based upon capabilities is
HYDRA [83]. Boebert [84] and Karger [85] note that traditional capability systems fail
to ensure the �-security property (no write down) required by many MAC systems. The
failure arises from the ability for a high secrecy process to read the capabilities given to
a low secrecy process and then use those capabilities to write to a low secrecy interface.
The SCAP [86] and EROS [87] operating systems overcome this property using read-only
capabilities and weak capabilities, respectively.

3.1.4 Defense of User Information

Trojans and similar malware typically enter a system as downloaded files. Many tech-
niques based on sandboxing have been proposed to prevent malware from harming the
user. Janus [88] defines secure profiles for helper applications (e.g., document viewers and
media players) to limit the effects of exploitation by malicious files downloaded by Email
clients and Web browsers. Jaeger et al. [89] flexibly limit access provided downloaded
executable content (e.g., scripts) based on policy specific to its source. MAPbox [90] lo-
cates predefined sandbox policies based on application labels. Lai and Gray [91] confine
applications based on program arguments and an assigned trust level. Exceptional file
accesses are presented to the user for authorization.

Models where the user specifically designates an action as untrusted have also been
proposed. TRON [92] uses capabilities for files and directory trees. Capabilities can
be dropped on process fork to limit the protection domain of untrusted applications.
Plash [93] provides similar functionality to users within a command line shell interface.

Damage by malware and vulnerable applications can also be mitigated by running
applications as different identities. For example, Polaris [94] uses predefined profiles
that automatically execute specified applications as a separate user account. The con-
cept of program level identities for file access originally appeared in PACLs [95], where
program access control lists are specified on files. Several systems treating programs as
first-class principals have since been proposed, including PinUP [96, 97], Sub-Operating
Systems [98], Sub-Identities [99], and FileMonster [100]. Note that by running all appli-
cations as separate users, Android’s file access control also falls within this category.
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3.2 Smartphone Security

3.2.1 Smartphone OS Protection

Smartphones are often considered as resource constrained devices running full featured
operating systems. As such, researchers have reapplied traditional techniques with the
modifications to meet the requirements of the new environment. Integrity measurement
and remote attestation [101] is one such area. Smartphones have multiple stakeholders.
The Trusted Computing Group’s (TCG) mobile specification [102] assumes four stake-
holders: device manufacturer, network operator, third-party service provider, and end
user. It uses a Mobile Remote-Owner Trusted Module (MRTM) and a Mobile Local-
Owner Trusted Module (MLTM) to perform duties traditionally performed by a Trusted
Platform Module (TPM). A TCG compliant phone architecture has multiple isolated
domains, one for each stakeholder, where each domain has its own logical MRTM, with
the exception of the end-user domain, which uses an MLTM. Zhang et al. [103] realize the
TCG’s trusted mobile phone specification using SELinux to isolate operational domains.
More recently, Zhang et al. [104] design an efficient remote attestation framework for
the LiMo platform. Similarly, Nauman et al. [105] implement remote attestation for An-
droid, including measurement of applications. Integrity measurement has also been used
to achieve more classical goals. For example, Muthukumaran et al. [106] enhanced the
Linux-based Openmoko platform with integrity measurement and SELinux to enforce
CW-lite security goals in the software installer. Shabtai et al. [107] ported SELinux to
Android to harden the Linux-based system beneath the middleware.

Virtualization has been applied to phones to provide coarse separation between sets of
applications. The VMware mobile virtualization [108] allows an enterprise administrator
to install a hosted VM containing business applications. However, this threat model
allows vulnerabilities in the user’s personal phone installation to compromise the business
VM. In contrast, the OK Labs [109] uses L4 as a hypervisor to simultaneously run
Android, Symbian, and Windows. Finally, Lee et al. [110] enforce MAC policies for
communication between VMs running on a phone. The architecture has similarities to
a configuration of ARM TrustZone for embedded Linux [111].

Higher-layer application security policy frameworks have also been considered. Mulliner
et al. [112] prevent attacks by labeling processes based on the security sensitive interfaces
they access. Policies prevent cross-service attacks by preventing a process from using
unsafe combinations of interfaces. Ion et al. [113] extend the J2ME security framework
to include policies to limit service use during a specified time period (e.g., SMS, data).
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SxC [114] allows users (or experts) to define “security contracts” for .NET applications
running on a Windows Mobile phone. This approach allows users to install untrusted
applications, but retain certain runtime guarantees. In a related effort on the Android
platform, Apex [115] changes the “all or nothing” permission model, allowing users to
select individual permissions granted to applications as well as conditions (e.g., time
of day) when permissions may be used. CRePE [116] also enforces fine-grained user
defined contextual polices (e.g., location, time). In contrast, Saint [117] enhances the ex-
pressibility of developer-defined security policies for the Android platform. Saint policies
can restrict both application installation and runtime interactions between applications
based on configuration (e.g., permissions held by other applications), signatures (e.g.,
whitelisting and blacklisting), and environmental context (e.g., location). Porscha [118]
enforces policy for content owners, restricting how SMS and Email messages can be used
once arriving on the phone.

Karlson et al. [119] interviewed smartphone users to better understand their willing-
ness to share handsets with other users. Their findings indicate that smartphones should
provide less-privileged modes to allow “guest users” to use phones without compromising
the owners privacy. Similar findings are reported by Liu et al. [120], and their xShare
prototype for Windows Mobile demonstrates how such an environment should operate.
DiffUser [121] provide similar support for Android.

Similar to our work, researchers have studied the limitations of application-level
policy frameworks. Shin et al. [122] formally model Android’s security policy language an
interactions between applications. Using this model, they identify a privilege escalation
attack where an unprivileged application can perform security sensitive operations either
by exploiting vulnerabilities in other applications or collusion [123]. One solution to
this problem requires transitive tracking of permission use. Chaudhuri [124] defines
a language based approach to evaluating communication between applications. This
formal model is used to build the ScanDroid [125] framework for automatically certifying
applications based on their source code. However, this model requires a partial ordering
based on existing Android permissions. Unfortunately, most Android permissions are
non-comparable, which severely impedes the practical application of this approach.

3.2.2 Malware Detection

The detection and prevention of Trojans and other malware has long been a topic of
security research. In desktop and server environments, antivirus software commonly
scans files to detect malware based on predefined signatures. However, such scanning is
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too resource intensive for smartphones, specifically with respect to energy consumption.
Therefore, alternative strategies are required.

Venugopal and Hu [126] describe an efficient signature base scanner optimized for
mobile phones. As an alternative, Bose et al. [127] propose the use of behavioral analysis
based on security-sensitive operations. Andromaly [128] implements anomaly detection
for Android based on runtime artifacts such as CPU load, input events, and energy con-
sumption. Nash et al. [129] consider an intrusion detection system for battery exhaustion
attacks; however, the work only discusses potential algorithms. Finally, Kim et al. [130]
use an energy consumption based anomaly detection method to detect malware. The
proposed model supports a stand alone model where all analysis occurs on the phone,
as well as the use of a remote server for processing data.

Several proposed systems send logs of system events to a central server for analysis.
However, as noted by Miettinen et al. [131], the logging mechanism must be careful
to protect the user’s privacy, ensuring that privacy sensitive information never leaves
the device. SmartSiren [27] sends logs of device activities such as use of Bluetooth and
SMS to a central server. The central server then performs behavioral analysis across
devices, which is advantageous for detecting Bluetooth worms. Similarly, Schmidt et
al. [132] record the amount of free RAM, user activity, process count, CPU usage, and
the number of sent SMS messages for analysis by a central server.

Malware analysis can also be performed by maintaining consistency between a smart-
phone and a replicated image on a network server [133]. The Paranoid Android [134]
takes this approach, but conserves energy by using “loose synchronization” to only send
data when the user is using the device. Oberheide et al. [135] provide an alternative
model for server side antivirus scanning. Here, the authors create a mobile client for the
CloudAV [136] architecture that uploads files to a server for scanning if a file with the
same cryptographic hash has not been scanned.

3.3 Information Tracking

The operating system level information flow control described in Section 3.1.2 tracks
information at a coarse granularity. DEFCon [137] uses a logic similar to the DIFC-based
operating systems, but focuses on events and modifies a Java runtime with lightweight
isolation. Related to these approaches, PRECIP [138] labels both processes and shared
kernel objects such as the clipboard and display buffer. However, these process-level
information flow models are coarse grained and cannot track sensitive information within
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untrusted applications.
Language-based information flow security [139] extends existing programming lan-

guages by labeling variables with security attributes. Compilers use the security labels to
generate security proofs, e.g., Jif [140, 73] and SLam [141]. Laminar [142] provides DIFC
guarantees based on programmer defined security regions. However, these languages re-
quire careful development and are often incompatible with legacy software designs [143].

Dynamic taint analysis (also known as “taint tracking”) provides information track-
ing for legacy programs. In taint tracking, variables or registers are marked at a taint
source where the security semantics of the information are known. These taint markings
are propagated dynamically during execution and eventually observed at a taint sink,
where appropriate actions are invoked based on the marking. Taint tracking propaga-
tion traditionally uses definition data flow semantics, also know as explicit flows. This
technique relies on an inductive definition for each instruction that effects the flow of
information. For example, the instruction c = a + b assigns the markings on a and b to
c. However, data flow semantics does not capture all information flows. Implicit flows,
also known as control flows, result from branch and loop instructions. For example,
a variable y can be set to 1 if a monitored variable x matches a specific value. Here,
there is a flow of information from x to y without an explicit instruction. Dynamic taint
tracking systems account for some types of explicit flows. For example, the marking on
the index in an array access is often propagated to account for translation tables (e.g.,
ASCII to UNICODE conversion). Taint scopes are also sometime used when the start
and end instruction addresses are known for branches and loops. Here, the marking
on conditional variables is propagated to all variables assigned inside of the branch or
loop scope. However, this is an approximation and can lead to significant false positives.
Finally, to capture for all implicit flows, some static analysis is required [144].

Dynamic taint tracking has been used to enhance system integrity (e.g., defend
against software attacks [145, 146, 147]) and confidentiality (e.g., discover privacy ex-
posure [148, 149, 150]), as well as track Internet worms [151]. When enhancing system
integrity, the network interface is used as a taint source, marking all inbound informa-
tion as untrusted. If the untrusted information is not explicitly sanitized before use in
a control point (e.g., the stack return address). When used to monitor privacy, the net-
work interface is the taint sink. Here, outbound traffic is inspected for taint markings
assigned at privacy sensitive sources. Note that privacy sensitive sources are not always
well defined. For example, it is difficult to programmatically distinguish between the
characters entered for a password or credit card number from the contents of an email at
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the keyboard input device interface. However, as we discuss in Chapter 5, smartphones
have several well defined privacy taint sources with clear semantics for all information
read from the interface.

Dynamic tracking approaches range from whole-system analysis using hardware ex-
tensions [152, 153, 154] and emulation environments [155, 148] to per-process tracking
using dynamic binary translation (DBT) [156, 146, 147, 150]. The performance and
memory overhead associated with dynamic tracking has resulted in an array of opti-
mizations, including optimizing context switches [146], on-demand tracking [157] based
on hypervisor introspection, and function summaries for code with known information
flow properties [150]. If source code is available, significant performance improvements
can be achieved by automatically instrumenting legacy programs with dynamic tracking
functionality [158, 159]. Automatic instrumentation has also been performed on x86
binaries [160], providing a compromise between source code translation and DBT. Our
TaintDroid design discussed in Chapter 5 was inspired by these prior works, but ad-
dressed different challenges unique to mobile phones. To our knowledge, TaintDroid is
the first taint tracking system for a mobile phone and is the first dynamic taint analy-
sis system to achieve practical system-wide analysis through the integration of tracking
multiple data object granularities.

Finally, dynamic taint analysis has been applied to virtual machines and interpreters.
Haldar et al. [161] instrument the Java String class with taint tracking to prevent SQL
injection attacks. WASP [162] has similar motivations; however, it uses positive tainting
of individual characters to ensure the SQL query contains only high-integrity substrings.
Chandra and Franz [163] propose fine-grained information flow tracking within the JVM
and instrument Java byte-code to aid control flow analysis. Similarly, Nair et al. [164]
instrument the Kaffe JVM. Vogt et al. [165] instrument a Javascript interpreter to prevent
cross-site scripting attacks. Xu et al. [158] automatically instrument the PHP interpreter
source code with dynamic information tracking to prevent SQL injection attacks. Finally,
the Resin [166] environment for PHP and Python uses data flow tracking to prevent an
assortment of Web application attacks. When data leaves the interpreted environment,
Resin implements filters for files and SQL databases to serialize and de-serialize objects
and policy with byte-level granularity. TaintDroid’s interpreted code taint propagation
bears similarity to some of these works. However, TaintDroid implements system-wide
information flow tracking, seamlessly connecting interpreter taint tracking with a range
of operating system sharing mechanisms.
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3.4 Security and Privacy Analysis

Many tools and techniques have been designed to identify security concerns in software.
The following discussion overviews application of these techniques on “real code” as
means of enhancing system security (as opposed to system penetration). We begin with
studies targeting vulnerability analysis.

3.4.1 Vulnerability Analysis

Software written in C is particularly susceptible to programming errors that result in
vulnerabilities. Ashcraft and Engler [167] use compiler extensions to identify errors in
range checks. The compiler modifications are used to identify over 100 vulnerabilities
in the Linux and OpenBSD kernels. More general vulnerabilities have been identified
using MOPS [168], a model checking program analysis tool that defines vulnerabilities
as finite state automata (FSA). Chen et al. [168] used MOPS to analyze eight popular
Linux applications, consisting of over a million lines of code. In several applications, they
identify failures to completely drop root privileges. Schwarz et al. [169] also use MOP,
checking all applications in a Linux distribution (60 million lines of code), and discovering
108 exploitable bugs. In related work, Ball and Rajamani [170] use SLAM [171] to
discover errors in Windows XP device drivers.

Java applications are inherently safer than C applications and avoid simple vulnera-
bilities such as buffer overflows. Ware and Fox [172] compare eight different open source
and commercially available Java source code analysis tools. They find that no one tool
detects all vulnerabilities. Hovemeyer and Pugh [173] study six popular Java appli-
cations and libraries using FindBugs extended with additional checks. While analysis
included non-security bugs, the results motivate a strong need for automated analysis
by all developers. Livshits and Lam [174] focus on Java-based Web applications. In the
Web server environment, inputs are easily controlled by an adversary, and left unchecked
can lead to SQL injection, cross-site scripting, HTTP response splitting, path traversal,
and command injection. Using static taint analysis, nine server side Java applications
are studied, finding 41 potential security violations, of which 29 were security errors.
Felmetsger et al. [175] also study Java-based web applications; however, they advance
vulnerability analysis by providing automatic detection of application-specific logic er-
rors. Their tool, Wailer, uses existing dynamic analysis tools to identify likely invariants.
False invariants are then removed using model checking. No manual annotation is re-
quired in either stage. Wailer is validated by studying four popular Web applications,
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identifying 30 vulnerabilities.
Web applications are also frequently written in PHP. Jovanovic et al. [176] design

Pixy to identify SQL injection and cross-site scripting vulnerabilities using static taint
analysis for PHP. They use Pixy to study seven popular PHP applications and observe a
low false positive rate, identifying over 200 vulnerabilities. Balzarotti et al. [177] design
Saner to discover input validation vulnerabilities in PHP applications. Saner uses both
static and dynamic analysis. First, static analysis conservatively models modifications
to inputs on all paths from the source to a sink. Next, dynamic analysis removes false
positives by determining which code paths are used by the application. They use Saner
to study five popular PHP applications and identify 13 new vulnerabilities.

3.4.2 Privacy and Malicious Behavior Analysis

The spyware class of malware seeks to extract private information. Browser Helper
Objects (BHOs) and Web browser toolbars are common sources of spyware. Kirda et
al. [178] consider behavioral properties of BHOs and toolbars. They observe that to
achieve its goal, BHO and toolbar spyware must both monitor user behavior and invoke
Windows API calls that potentially leak information. Using static analysis of API calls,
with dynamic analysis to refine executed code, they study 33 malicious and 18 benign
BHOs and toolbars. Using the combined analysis, only two studied components are
incorrectly identified as spyware. Egele et al. [149] target information leaks by browser-
based spyware explicitly using dynamic taint analysis. Their approach modifies QEMU
to only perform taint tracking of BHOs. The study investigates 21 known spyware
components and 14 benign BHOs. In addition to the spyware components, the study
found two benign BHOs actually leak sensitive data.

Yin et al. [148] consider privacy-breaching malware in general with Panorama, a tool
designed for whole-system, fine-grained taint tracking. Panorama creates “taint graphs”
that are analyzed by malware detection policies. They use Panorama to study 42 real-
world malware samples and 56 benign applications. Of these samples, only three were
falsely identified as malware due to behavior that was representative information misuse.
The authors note that these false positives result from a limitation of using information
tracking: namely, the inability to capture intent.

Jung et al. [179] use differential black box fuzz testing in the design of Privacy
Oracle. This technique combines controlled input parameters (e.g., a set of usernames)
with traditional fuzz testing. Correlations between the controlled inputs and consistent
network traffic data is are used as indicators of privacy leaks. The authors use Privacy
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Oracle to study the top 20 applications from download.com and the 6 most popular IM
clients, identifying many previously undisclosed leaks. Yumerefendi et al. [180] propose
a similar approach for TightLip; however, no application study is performed.

Finally, Egele et al. [32] use PiOS to perform static analysis on iOS applications for
the iPhone. PiOS reconstructs information flows in Objective-C binaries. The authors
use PiOS to study the use of device ID, location, address book, phone number, browser
history, and photos in over 1,400 iPhone applications from both the official Apple App
Store and the Cydia third-party application market for jailbroken devices. The study
found that the majority of the applications leak the device ID. The study also found
over half of the applications include advertisement and analytics libraries, which caused
difficulties when deciding of the information flows were a result of the library or the
application. To address this, known flows in advertisement and analytic libraries were
whitelisted.



Chapter 4
Configuration-level Analysis of

Smartphone Applications

Traditional OS protection systems rely on security policy. By analyzing the security
policy governing applications, an administrator can determine what an application can do
at runtime. In smartphones, security policy is frequently based on permissions presented
to the user. As discussed in Section 2.3, the security policy defining what an Android
application can do is specified in a manifest file that accompanies the application package.
In this chapter, we evaluate application security by asking the question, what permissions
do applications request? From this, we develop practical security invariants to prevent
certain types of malware and dangerous behavior.

4.1 Lightweight Smartphone Application Certification

Application markets have made users comfortable downloading and running smartphone
applications. As this continues to increase, so does the potential for user-installed mal-
ware. The most effective phone malware mitigation strategy to date has been to ensure
only approved software can be installed. Here, a certification authority (e.g., Symbian-
Signed) devotes massive resources towards source code inspection. This technique can
prevent both malware and general software misuse. For instance, software desired by the
end user may be restricted by the service provider (e.g., VoIP and “Bluetooth tethering”
applications). However, manual certification is imperfect. Malware authors have already
succeeded in socially engineering approval [181]. In such cases, authorities must resort
to standard revocation techniques.
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We seek to mitigate malware and other software misuse on smartphones without
burdensome certification processes for each application. Instead, we perform lightweight
certification at time of install using a set of predefined security rules. These rules de-
cide whether or not the security configuration bundled with an application is safe. We
focus our efforts on the Android platform, because it: 1) bundles useful security informa-
tion with applications, 2) is representative of current and future trends for smartphone
computing, and 3) is open source, allowing deep investigation and experimentation.

In this chapter, we propose the Kirin1 security service for Android. Kirin provides
practical lightweight certification of applications at install time. Achieving a practical
solution requires overcoming multiple challenges. First, certifying applications based
on security configuration requires a clear specification of undesirable properties. We
turn to the field of security requirements engineering to design a process for identifying
Kirin security rules. However, limitations of existing security enforcement in Android
makes practical rules difficult to define. Second, we define a security language to encode
these rules and formally define its semantics. Third, we design and implement the Kirin
security service within the Android framework.

Kirin’s practicality hinges on its ability to express security rules that simultaneously
prevent malware and allow legitimate software. Adapting techniques from the require-
ments engineering, we construct detailed security rules to mitigate malware from an
analysis of applications, phone stakeholders, and systems interfaces. We evaluate these
rules against a subset of popular applications in the Android Market. Of the 311 evalu-
ated applications spanning 16 categories, 10 were found to assert dangerous permissions.
Of those 10, 5 were shown to be potentially malicious and therefore should be installed
on a personal smartphone with extreme caution. The remaining 5 asserted rights that
were dangerous, but were within the scope of reasonable functional needs (based on
application descriptions). Note that this analysis flagged about 1.6% applications at in-
stall time as potentially dangerous. Thus, we show that even with conservative security
policy, less than 1 in 50 applications needed any kind of involvement by phone users.

Kirin provides a practical approach towards mitigating malware and general software
misuse in Android. In the design and evaluation of Kirin, this paper makes the following
contributions:

• We provide a methodology for retrofitting security requirements in Android. As a
secondary consequence of following our methodology, we identified multiple vul-
nerabilities in Android, including flaws affecting core functionality such as SMS

1Kirin is the Japanese animal-god that protects the just and punishes the wicked.
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and voice.

• We provide a practical method of performing lightweight certification of applications
at install time. This benefits the Android community, as the Android Market
currently does not perform rigorous certification.

• We provide practical rules to mitigate malware. These rules are constructed purely
from security configuration available in application package manifests.

The remainder of this chapter is organized as follows Section 4.2 overviews the Kirin
security service and software installer. Section 4.3 presents our rule identification pro-
cess and sample security rules. Section 4.4 describes the Kirin Security Language and
formally defines its semantics. Section 4.5 describes Kirin’s implementation. Section 4.6
evaluates Kirin’s practicality. Section 4.7 presents discovered vulnerabilities. Section 4.8
concludes.

4.2 Kirin Overview

The overwhelming number of existing malware requires manual installation by the user.
While Bluetooth has provided the most effective distribution mechanism [10], as bulk
data plans become more popular, so will SMS and email-based social engineering. Re-
cently, Yxe [182] propagated via URLs sent in SMS messages. While application stores
help control mass application distribution, it is not a complete solution. Few (if any) ex-
isting phone malware exploits code vulnerabilities, but rather relies on user confirmation
to gain privileges at installation.

Android’s existing security framework restricts permission assignment to an applica-
tion in two ways: user confirmation and signatures by developer keys. These permissions
are referred to as “dangerous” and “signature” permissions, respectively (as discussed in
Section 2.3). Android uses “signature” permissions to prevent third-party applications
from inflicting harm to the phone’s trusted computing base.

The Open Handset Alliance (Android’s founding entity) proclaims the mantra, “all
applications are created equal.” This philosophy promotes innovation and allows man-
ufacturers to customize handsets. However, in production environments, all applica-
tions are not created equal. Malware is the simplest counterexample. Once a phone
is deployed, its trusted computing base should remain fixed and must be protected.
“Signature” permissions protect particularly dangerous functionality. However, there
is a trade-off when deciding if permission should be “dangerous” or “signature.” Ini-
tial Android-based production phones such as the T-Mobile G1 are marketed towards
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Figure 4.1. Kirin based software installer

both consumers and developers. Without its applications, Android has no clear com-
petitive advantage. Google frequently chose the “feature-conservative” (as opposed to
“security-conservative”) route and assigned permissions as “dangerous.” However, some
of these permissions may be considered “too dangerous” for a production environment.
For example, one permission allows an application to debug others. Other times it is
combinations of permissions that result in undesirable scenarios (discussed further in
Section 4.3).

Kirin supplements Android’s existing security framework by providing a method to
customize security for production environments. In Android, every application has a cor-
responding security policy. Kirin conservatively certifies an application based on its pol-
icy configuration. Certification is based on security rules. The rules represent templates
of undesirable security properties. Alone, these properties do not necessarily indicate
malicious potential; however, as we describe in Section 4.3, specific combinations allow
malfeasance. For example, an application that can start on boot, read geographic loca-
tion, and access the Internet is potentially a tracker installed as premeditated spyware
(a class of malware discussed in Section 2.1). It is often difficult for users to translate be-
tween individual properties and real risks. Kirin provides a means of defining dangerous
combinations and automating analysis at install time.

Figure 4.1 depicts the Kirin based software installer. The installer first extracts
security configuration from the target package manifest. Next, the Kirin security service
evaluates the configuration against a collection of security rules. If the configuration
fails to pass all rules, the installer has two choices. The more secure choice is to reject
the application. Alternatively, Kirin can be enhanced with a user interface to override
analysis results. Clearly this option is less secure for users who install applications
without understanding warnings. However, we see Kirin’s analysis results as valuable
input for a rating system similar to PrivacyBird [183] (PrivacyBird is a web browser
plug-in that helps the user understand the privacy risk associated with a specific website
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by interpreting its P3P policy). Such an enhancement for Android’s installer provides
a distinct advantage over the existing method of user approval. Currently, the user is
shown a list of all requested potentially dangerous permissions. A Kirin based rating
system allows the user to make a more informed decision. Such a rating system requires
careful investigation to ensure usability. This paper focuses specifically on identifying
potential harmful configurations and leaves the rating system for future work.

4.3 Kirin Security Rules

The malware threats and the Android architecture introduced in the previous sections
serve as the background for developing Kirin security rules to detect potentially dan-
gerous application configurations. To ensure the security of a phone, we need a clear
definition of a secure phone. Specifically, we seek to define the conditions that an appli-
cation must satisfy for a phone to be considered safe. To define this concept for Android,
we turn to the field of security requirements engineering, which is an off-shoot of require-
ments engineering and security engineering. The former is a well-known fundamental
component of software engineering in which business goals are integrated with the design.
The latter focuses on the threats facing a specific system.

Security requirements engineering is based upon three basic concepts. 1) functional
requirements define how a system is supposed to operate in normal environment. For
instance, when a web browser requests a page from a web server, the web server returns
the data corresponding to that file. 2) assets are “. . . entities that someone places value
upon” [184]. The webpage is an asset in the previous example. 3) security requirements
are “. . . constraints on functional requirements to protect the assets from threats” [185].
For example, the webpage sent by the web server must be identical to the webpage
received by the client (i.e., integrity).

The security requirements engineering process is generally systematic; however, it
requires a certain level of human interaction. Many techniques have been proposed,
including SQUARE [186, 187], SREP [188, 189], CLASP [190], misuse cases [191, 192],
and security patterns [193, 194, 195]. Related implementations have seen great success
in practice, e.g., Microsoft uses the Security Development Lifecycle (SDL) for the devel-
opment of their software that must withstand attacks [196], and Oracle has developed
OSSA for the secure software development of their products [197].

Commonly, security requirements engineering begins by creating functional require-
ments. This usually involves interviewing stakeholders [186]. Next, the functional re-
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Figure 4.2. Procedure for requirements identification

quirements are translated into a visual representation to describe relationships between
elements. Popular representations include use cases [192] and context diagrams using
problem frames [198, 185]. Based on these requirements, assets are identified. Finally,
each asset is considered with respect to high level security goals (e.g., confidentiality,
integrity, and availability). The results are the security requirements.

Unfortunately, we cannot directly utilize these existing techniques because they are
designed to supplement system and software development. Conversely, we wish to retrofit
security requirements on an existing design. There is no clearly defined usage model or
functional requirements specification associated with the Android platform or the appli-
cations. Hence, we provide an adapted procedure for identifying security requirements
for Android. The resulting requirements directly serve as Kirin security rules.

4.3.1 Identifying Security Requirements

We use existing security requirements engineering techniques as a reference for identifying
dangerous application configurations in Android. Figure 4.2 depicts our procedure, which
consists of five main activities.

Step 1: Identify Assets: Instead of identifying assets from functional requirements,
we extract them from the features on the Android platform. Google has identified many
assets already in the form of permission labels protecting resources. Moreover, as the
broadcasted Intent messages (e.g. those sent by the system) impact both platform and
application operation, they are assets. Lastly, all components (Activities, etc.) of system
applications are assets. While they are not necessarily protected by permission labels,
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many applications call upon them to operate.
As an example, Android defines the RECORD_AUDIO permission to protect its audio

recorder. Here, we consider the asset to be microphone input, as it records the user’s
voice during phone conversations. Android also defines permissions for making phone
calls and observing when the phone state changes. Hence, call activity is an asset.

Step 2: Identify Functional Requirements: Next, we carefully study each asset to
specify corresponding functional descriptions. These descriptions indicate how the asset
interacts with the rest of the phone and third-party applications. This step is vital to
our design, because both assets and functional descriptions are necessary to investigate
realistic threats.

Continuing the assets identified above, when the user receives an incoming call, the
system broadcasts an Intent to the PHONE_STATE action string. It also notifies any
applications that have registered a PhoneStateListener with the system. The same
notifications are sent on outgoing call. Another Intent to the NEW_OUTGOING_CALL action
string is also broadcasted. Furthermore, this additional broadcast uses the “ordered”
option, which serializes the broadcast and allows any recipient to cancel it. If this
occurs, subsequent Broadcast Receivers will not receive the Intent message. This feature
allows, for example, an application to redirect international calls to the number for a
calling card. Finally, audio can be recorded using the MediaRecorder API.

Step 3: Determine Assets Security Goals and Threats: In general, security
requirements engineering considers high level security goals such as confidentiality, in-
tegrity, and availability. For each asset, we must determine which (if not all) goals are
appropriate. Next, we consider how the functional requirements can be abused with
respect to the remaining security goals. Abuse cases that violate the security goals pro-
vide threat descriptions. We use the malware motivations described in Section 2.1 to
motivate our threats. Note that defining threat descriptions sometimes requires a level
of creativity. However, trained security experts will find most threats straightforward
after defining the functional requirements.

Continuing our example, we focus on the confidentiality of the microphone input and
phone state notifications. These goals are abused if a malware records audio during voice
call and transmits it over the Internet (i.e., premeditated spyware). The corresponding
threat description becomes, “spyware can breach the user’s privacy by detecting the phone
call activity, recording the conversation, and sending it to the adversary via the Internet.”
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Step 4: Develop Asset’s Security Requirements: Next, we define security re-
quirements from the threat descriptions. Recall from our earlier discussion, security
requirements are constraints on functional requirements. That is, they specify who can
exercise functionality or conditions under which functionality may occur. Frequently,
this process consists of determining which sets of functionality are required to compro-
mise a threat. The requirement is the security rule that restricts the ability for this
functionality to be exercised in concert.

We observe that the eavesdropper requires a) notification of an incoming or outgoing
call, b) the ability to record audio, and c) access to the Internet. Therefore, our security
requirement, which acts as Kirin security rule, becomes, “an application must not be able
to receive phone state, record audio, and access the Internet.”

Step 5: Determine Security Mechanism Limitations: Our final step caters to
the practical limitations of our intended enforcement mechanism. Our goal is to identify
potentially dangerous configurations at install time. Therefore, we cannot ensure runtime
support beyond what Android already provides. Additionally, we are limited to the
information available in an application package manifest. For both these reasons, we
must refine our list of security requirements (i.e., Kirin security rules). Some rules may
simply not be enforceable. For instance, we cannot ensure only a fixed number of SMS
messages are sent during some time period [113], because Android does not support
history-based policies. Security rules must also be translated to be expressed in terms
of the security configuration available in the package manifest. This usually consists
of identifying the permission labels used to protect functionality. Finally, as shown
in Figure 4.2, the iteration between Steps 4 and 5 is required to adjust the rules to
work within our limitations. Additionally, security rules can be subdivided to be more
straightforward.

The permission labels corresponding to the restricted functionality in our running ex-
ample include READ_PHONE_STATE, PROCESS_OUTGOING_CALLS, RECORD_AUDIO, and INTERNET.
Furthermore, we subdivide our security rule to remove the disjunctive logic resulting
from multiple ways for the eavesdropper to be notified of voice call activity. Hence,
we create the following adjusted security rules: a) “an application must not have the
READ_ PHONE_ STATE , RECORD_ AUDIO , and INTERNET permissions.” and the nearly iden-
tical b) “an application must not have the PROCESS_ OUTGOING_ CALLS , RECORD_ AUDIO ,
and INTERNET permissions.”
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(1) An application must not have the SET DEBUG APP permission label.

(2) An application must not have PHONE STATE, RECORD AUDIO, and INTERNET permission labels.

(3) An application must not have PROCESS OUTGOING CALL, RECORD AUDIO, and INTERNET permission
labels.

(4) An application must not have ACCESS FINE LOCATION, INTERNET, and RECEIVE BOOT COMPLETE
permission labels.

(5) An application must not have ACCESS COARSE LOCATION, INTERNET, and RECEIVE BOOT COMPLETE
permission labels.

(6) An application must not have RECEIVE SMS and WRITE SMS permission labels.

(7) An application must not have SEND SMS and WRITE SMS permission labels.

(8) An application must not have INSTALL SHORTCUT and UNINSTALL SHORTCUT permission labels.

(9) An application must not have the SET PREFERRED APPLICATION permission label and receive
Intents for the CALL action string.

Figure 4.3. Sample Kirin security rules to mitigate malware

4.3.2 Sample Malware Mitigation Rules

The remainder of this section discusses Kirin security rules we developed following our
5-step methodology. For readability and ease of exposition, we have enumerated the
precise security rules in Figure 4.3. We refer to the rules by the indicated numbers for
the remainder of the paper. We loosely categorize Kirin security rules by their complexity.

4.3.2.1 Single Permission Security Rules

Recall that a number of Android’s “dangerous” permissions may be “too dangerous”
for some production environments. We discovered several such permission labels. For
instance, the SET_DEBUG_APP permission “. . . allows an application to turn on debugging
for another application.” (according to available documentation). The corresponding
API is “hidden” in the most recent SDK environment (at the time of writing, version
1.1r1). The hidden APIs are not accessible by third-party applications but only by
system applications. However, hidden APIs are no substitute for security. A malware
author can simply download Android’s source code and build an SDK that includes the
API. The malware then, for instance, can disable anti-virus software. Rule 1 ensures
third party applications do not have the SET_DEBUG_APP permission. Similar rules can
be made for other permission labels protecting hidden APIs (e.g., Bluetooth APIs not
yet considered mature enough for general use).
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4.3.2.2 Multiple Permission Security Rules

Voice and location eavesdropping malware requires permissions to record audio and ac-
cess location information. However, legitimate applications use these permissions as well.
Therefore, we must define rules with respect to multiple permissions. To do this, we con-
sider the minimal set of functionality required to compromise a threat. Rules 2 and 3
protect against the voice call eavesdropper used as a running example in Section 4.3.1.
Similarly, Rules 4 and 5 protect against a location tracker. In this case, the malware
starts executing on boot. In these security rules, we assume the malware starts on boot
by defining a Broadcast Receiver to receive the BOOT_COMPLETE action string. Note that
the RECEIVE_BOOT_COMPLETE permission label protecting this broadcast is a “normal”
permission (and hence is always granted). However, the permission label provides valu-
able insight into the functional requirements of an application. In general, Kirin security
rules are more expressible as the number of available permission labels increases.

Rules 6 and 7 consider malware’s interaction with SMS. Rule 6 protects against
malware hiding or otherwise tampering with incoming SMS messages. For example,
SMS can be used as a control channel for the malware. However, the malware author
does not want to alert the user, therefore immediately after an SMS is received from
a specific sender, the SMS Content Provider is modified. In practice, we found that
our sample malware could not remove the SMS notification from the phone’s status
bar. However, we were able to modify the contents of the SMS message in the Content
Provider. While we could not hide the control message completely, we were able to
change the message to appear as spam. Alternatively, a similar attack could ensure
the user never receives SMS messages from a specific sender, for instance PayPal or a
financial institution. Such services often provide out-of-band transaction confirmations.
Blocking an SMS message from this sender could hide other activity performed by the
malware. While this attack is also limited by notifications in the status bar, again, the
message contents can be transformed as spam.

Rule 7 mitigates mobile bots sending SMS spam. Similar to Rule 6, this rule ensures
the malware cannot remove traces of its activity. While Rule 7 does not prevent the
SMS spam messages from being sent, it increases the probability that the user becomes
aware of the activity.

Finally, Rule 8 makes use of the duality of some permission labels. Android defines
separate permissions for installing and uninstalling shortcuts on the phone’s home screen.
This rule ensures that a third-party application cannot have both. If an application has
both, it can redirect the shortcuts for frequently used applications to a malicious one.
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For instance, the shortcut for the web browser could be redirected to an identically
appearing application that harvests passwords.

4.3.2.3 Permission and Interface Security Rules

Permissions alone are not always enough to characterize malware behavior. Rule 9
provides an example of a rule considering both a permission and an action string. This
specific rule prevents malware from replacing the default voice call dialer application
without the user’s knowledge. Normally, if Android detects two or more applications
contain Activities to handle an Intent message, the user is prompted which application
to use. This interface also allows the user to set the current selection as default. However,
if an application has the SET_PREFERRED_APPLICATION permission label, it can set the
default without the user’s knowledge. Google marks this permission as “dangerous”;
however, users may not fully understand the security implications of granting it. Rule 9
combines this permission with the existence of an Intent filter receiving the CALL action
string. Hence, we can allow a third-party application to obtain the permission as long
as it does not also handle voice calls. Similar rules can be constructed for other action
strings handled by the trusted computing base.

4.4 Kirin Security Language

We now describe the Kirin Security Language (KSL) to encode security rules for the
Kirin security service. Kirin uses an application’s package manifest as input. The rules
identified in Section 4.3 only require knowledge of the permission labels requested by an
application and the action strings used in Intent filters. This section defines the KSL
syntax and formally defines its semantics.

4.4.1 KSL Syntax

Figure 4.4 defines the Kirin Security Language in BNF notation. A KSL rule-set consists
of a list of rules. A rule indicates combinations of permission labels and action strings
that should not be used by third-party applications. Each rule begins with the keyword
“restrict”. The remainder of the rule is the conjunction of sets of permissions and
action strings received. Each set is denoted as either “permission” or “receive”,
respectively.
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�rule-set� ::= �rule� | �rule� �rule-set� (4.1)
�rule� ::= “restrict” �restrict-list� (4.2)

�restrict-list� ::= �restrict� | �restrict� “and” �restrict-list�
(4.3)

�restrict� ::= “permission [” �const-list� “]” |
“receive [” �const-list� “]” (4.4)

�const-list� ::= �const� | �const� “,” �const-list�
(4.5)

�const� ::= “’”[A-Za-z0-9 .]+“’” (4.6)

Figure 4.4. KSL syntax in BNF.

4.4.2 KSL Semantics

We now define a simple logic to represent a set of rules written in KSL. Let R be set
of all rules expressible in KSL. Let P be the set of possible permission labels and A be
the set of possible action strings used by Activities, Services, and Broadcast Receivers
to receive Intents. Then, each rule ri ∈ R is a tuple (2P , 2A).2 We use the notation
ri = (Pi, Ai) to refer to a specific subset of permission labels and action strings for rule
ri, where Pi ∈ 2P and Ai ∈ 2A.

Let R ⊆ R correspond to a set of KSL rules. We construct R from the KSL rules
as follows. For each �rule�i, let Pi be the union of all sets of “permission” restrictions,
and let Ai be the union of all sets of “receive” restrictions. Then, create ri = (Pi, Ai)
and place it in R. The set R directly corresponds to the set of KSL rules and can be
formed in time linear to the size of the KSL rule set (proof by inspection).

Next we define a configuration based on package manifest contents. Let C be the set
of all possible configurations extracted from a package manifest. We need only capture
the set of permission labels used by the application and the action strings used by its
Activities, Services, and Broadcast Receivers. Note that the package manifest does not
specify action strings used by dynamic Broadcast Receivers; however, we use this fact
to our advantage (as discussed in Section 5.7). We define configuration c ∈ C as a tuple
(2P , 2A). We use the notation ct = (Pt, At) to refer to a specific subset of permission
labels and action strings used by a target application t, where Pt ∈ 2P and At ∈ 2A.

We now define the semantics of a set of KSL rules. Let fail : C×R → {true, false}
be a function to test if an application configuration fails a KSL rule. Let ct be the

2We use the standard notation 2X represent the power set of a set X, which is the set of all subsets
including ∅.
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configuration for target application t and ri be a rule. Then, we define fail(ct, ri) as:

(Pt, At) = ct, (Pi, Ai) = ri, Pi ⊆ Pt ∧Ai ⊆ At

Clearly, fail(·) operates in time linear to the input, as a hash table can provide constant
time set membership checks.

Let FR : C → R be a function returning the set of all rules in R ∈ 2R for which an
application configuration fails:

FR(ct) = {ri|ri ∈ R, fail(ct, ri)}

Then, we say the configuration ct passes a given KSL rule-set R if FR(ct) = ∅. Note
that FR(ct) operates in time linear to the size of ct and R. Finally, the set FR(ct) can
be returned to the application installer to indicate which rules failed. This information
facilitates the optional user override extension described in Section 4.2.

4.5 Kirin Security Service

For flexibility, Kirin is designed as a security service running on the mobile phone. The
existing software installer interfaces directly with the security service. This approach
follows Android’s design principle of allowing applications to be replaced based on man-
ufacturer and consumer interests. More specifically, a new installer can also use Kirin.

We implemented Kirin as an Android application. The primary functionality exists
within a Service component that exports an RPC interface used by the software installer.
This service reads KSL rules from a configuration file. At install time, the installer
passes the file path to the package archive (.apk file) to the RPC interface. Then, Kirin
parses the package to extract the security configuration stored in the package manifest.
The PackageManager and PackageParser APIs provide the necessary information. The
configuration is then evaluated against the KSL rules. Finally, the passed/failed result is
returned to the installer with the list of the violated rules. Note that Kirin service does
not access any critical resources of the platform hence does not require any permissions.

4.6 Evaluation

Practical security rules must both mitigate malware and allow legitimate applications
to be installed. Section 4.3 argued that our sample security rules can detect specific
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Table 4.1. Applications failing Rule 2

Application Description

Walki Talkie Push to Talk Walkie-Talkie style voice communication.

Shazam Utility to identify music tracks.

Inauguration Report Collaborative journalism application.

types of malware. However, Kirin’s certification technique conservatively detects dan-
gerous functionality, and may reject legitimate applications. In this section, we evaluate
our sample security rules against real applications from the Android Market. While the
Android Market does not perform rigorous certification, we initially assume it does not
contain malware. Any application not passing a security rule requires further investiga-
tion. Overall, we found very few applications where this was the case. On one occasion,
we found a rule could be refined to reduce this number further.

Our sample set consisted of a snapshot of a subset of popular applications available
in the Android Market in late January 2009. We downloaded the top 20 applications
from each of the 16 categories, producing a total of 311 applications (one category only
had 11 applications). We used Kirin to extract the appropriate information from each
package manifest and ran the FR(·) algorithm described in Section 4.4.

4.6.1 Empirical Results

Our analysis tested all 311 applications against the security rules listed in Figure 4.3. Of
the 311 applications, only 12 failed to pass all 9 security rules. Of these, 3 applications
failed Rule 2 and 9 applications failed Rules 4 and 5. These failure sets were disjoint,
and no applications failed the other six rules.

Table 4.1 lists the applications that fail Rule 2. Recall that Rule 2 defends against
a malicious eavesdropper by failing any application that can read phone state, record
audio, and access the Internet. However, none of the applications listed in Table 4.1
exhibit eavesdropper-like characteristics. Considering the purpose of each application, it
is clear why they require the ability to record audio and access the Internet. We initially
speculated that the applications stop recording upon an incoming call. However, this
was not the case. We disproved our speculation for Shazam and Inauguration Report
and were unable to determine a solid reason for the permission label’s existence, as no
source code was available.

After realizing that simultaneous access to phone state and audio recording is in fact
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beneficial (i.e., to stop recording on incoming call), we decided to refine Rule 2. Our goal
is to protect against an eavesdropper that automatically records a voice call on either
incoming or outgoing call. Recall that there are two ways to obtain the phone state:
1) register a Broadcast Receiver for the PHONE_STATE action string, and 2) register a
PhoneStateListener with the system. If a static Broadcast Receiver is used for the
former case, the application is automatically started on incoming and outgoing call. The
latter case requires the application to be already started, e.g., by the user, or on boot.
We need only consider cases where it is started automatically. Using this information,
we split Rule 2 into two new security rules. Each appends an additional condition. The
first appends a restriction on receiving the PHONE_STATE action string. Note that since
Kirin only uses Broadcast Receivers defined in the package manifest, we will not detect
dynamic Broadcast Receivers that cannot be used to automatically start the application.
The second rule appends the boot complete permission label used for Rule 4. Rerunning
the applications against our new set of security rules, we found that only the Walkie
Talkie application failed our rules, thus reducing the number of failed applications to 10.

Table 4.2 lists the applications that fail Rules 4 and 5. Recall that these security rules
detect applications that start on boot and access location information and the Internet.
The goal of these rules is to prevent location tracking software. Of the nine applications
listed in Table 4.2, the first five provide functionality that directly contrast with the
rule’s goal. In fact, Kirin correctly identified both AccuTracking and GPS Tracker
as dangerous. Both Loopt and Twidroid are popular social networking applications;
however, they do in fact provide potentially dangerous functionality, as they can be
configured to automatically start on boot without the user’s knowledge. Finally, Pintail
is designed to report the phone’s location in response to an SMS message with the correct
password. While this may be initiated by the user, it may also be used by an adversary
to track the user. Again, Kirin correctly identified potentially dangerous functionality.

The remaining four applications in Table 4.2 result from the limitations in Kirin’s in-
put. That is, Kirin cannot inspect how an application uses information. In the previous
cases, the location information was used to track the user. However, for these appli-
cations, the location information is used to supplement Internet data retrieval. Both
WeatherBug and Homes use the phone’s location to filter information from a website.
Additionally, there is little correlation between location and the ability to start on boot.
On the other hand, the T-Mobile Hotspot WiFi finder provides useful functionality by
starting on boot and notifying the user when the phone is near such wireless networks.
However, in all three of these cases, we do not believe access to “fine” location is re-
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Table 4.2. Applications failing Rule 4 and 5

Application Description

AccuTracking Client for real-time GPS tracking service
(AccuTracking).

GPS Tracker∗ Client for real-time GPS tracking service (In-
staMapper).

Loopt Geosocial networking application that shares
location with friends.

Twidroid Twitter client that optionally allows auto-
matic location tweets.

Pintail Reports the phone location in response to
SMS message.

WeatherBug Weather application with automatic weather
alerts.

Homes Classifieds application to aid in buying or
renting houses.

T-Mobile Hotspot Utility to discover nearby nearby T-Mobile
WiFi hotspots.

Power Manager Utility to automatically manage radios and
screen brightness.

* Did not fail Rule 5

quired; location with respect to a cellular tower is enough to determine a city or even
a city block. Removing this permission would allow the applications to pass Rule 4.
Finally, we were unable to determine why Power Manager required location information.
We initially thought it switched power profiles based on location, but did not find an
option.

In summary, 12 of the 311 applications did not pass our initial security rules. We
reduced this to 10 after revisiting our security requirements engineering process to better
specify the rules. This is the nature of security requirements engineering, which an
ongoing process of discovery. Of the remaining 10, Kirin correctly identified potentially
dangerous functionality in 5 of the applications, which should be installed with extreme
caution. The remaining five applications assert a dangerous configuration of permissions,
but were used within reasonable functional needs based on application descriptions.
Therefore, Kirin’s conservative certification technique only requires user involvement for
approximately 1.6% of applications (according to our sample set). From this, we observe
that Kirin can be very effective at practically mitigating malware.



49

4.6.2 Mitigating Malware

We have shown that Kirin can practically mitigate certain types of malware. However,
Kirin is not a complete solution for malware protection. We constructed practical secu-
rity by considering different malicious motivations. Some motivations are more difficult
to practically detect with Kirin. Malware of destructive or proof-of-concept origins may
only require one permission label to carry out its goals. For example, malware might
intend to remove all contacts from the phone’s address book. Kirin cannot simply deny
all third-party applications the ability to write to the address book. Such a rule would
fail for an application that merges Web-based address books (e.g., Facebook).

Kirin is more valuable in defending against complex attacks requiring multiple func-
tionalities. We discussed a number of rules that defend against premeditated spyware.
Rule 8 defends against shortcut replacement, which can be used by information scav-
engers to trick the user into using a malicious Web browser. Furthermore, Rule 6 can
help hide financial transactions that might result from obtained usernames and pass-
words. Kirin can also help mitigate the effects of botnets. For example, Rule 7 does not
let an application hide outbound SMS spam. This requirement can also be used to help a
user become aware of SMS sent to premium numbers (i.e., direct payoff malware). How-
ever, Kirin could be more effective if Android’s permission labels distinguished between
sending SMS messages to contacts in the address book verses arbitrary numbers.

Kirin’s usefulness to defend against ad-ware is unclear. Many applications are sup-
ported by advertisements. However, applications that continually pester the user are
undesirable. Android does not define permissions to protect notification mechanisms
(e.g., the status bar), but even with such permissions, there are many legitimate reasons
for using notifications. Despite this, in best case, the user can identify the offending
application and uninstall it.

Finally, Kirin’s expressibility is restricted by the policy that Android enforces. An-
droid policy itself is static and does not support runtime logic. Therefore, it cannot
enforce that no more than 10 SMS messages are sent per hour [113]. However, this is a
limitation of Android and not Kirin.

4.7 Discovered Vulnerabilities

The process of retrofitting security requirements for Android had secondary effects. In
addition to identifying rules for Kirin, we discovered a number of configuration and im-
plementation flaws. Step 1 identifies assets. However, not all assets are protected by
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permissions. In particular, in early versions of our analysis discovered that the Intent
message broadcasted by the system to the SMS_RECEIVED action string was not pro-
tected. Hence, any application can create a forged SMS that appears to have come
from the cellular network. Upon notifying Google of the problem, the new permission
BROADCAST_SMS_RECEIVED has been created and protects the system broadcast as of An-
droid version 1.1. We also discovered an unprotected Activity component in the phone
application that allows a malicious application to make phone calls without having the
CALL_PHONE permission. This configuration flaw has also been fixed. As we continued
our investigation with the most recent version of Android (v1.1r1), we discovered a num-
ber of APIs do not check permissions as prescribed in the documentation. All of these
flaws show the value in defining security requirements. Kirin relies on Android to enforce
security at runtime. Ensuring the security of a phone requires a complete solution, of
which Kirin is only part.

4.8 Summary

As users continue to become comfortable downloading software for smartphones, mal-
ware targeting phones will increase. Kirin provides lightweight certification at install
time that does not require burdensome code inspection for each application. We have
shown that Kirin can express meaningful security rules to mitigate malware. Kirin’s
conservative certification technique is appropriate to detect many types of dangerous
functionality. However, dangerous behavior that requires configuration identical to de-
sired benign behavior is inappropriate to detect with configuration-level analysis. For
example, simultaneous access to location information and the Internet. While we showed
non-security configuration artifacts can help distinguish benign and malicious behaviors,
more sophisticated analysis techniques are needed. In the next chapter, we consider in
greater detail the general class of information misuse.



Chapter 5
Dynamic Tracking for Realtime

Privacy Monitoring on Smartphones

Misuse of privacy sensitive information has become a high-profile risk for smartphones.
Several academic studies [6, 32] have identified misuse by popular applications, including
work [6] contributing to this chapter. Lack of informed consent for use of privacy values,
such as phone identifiers, has also resulted in lawsuits [199]. This high-profile attention
motivates the creation to technology to identify and mitigate such privacy risks.

Privacy sensitive values such as location are difficult to protect in the smartphone
environment, because they often transmitted to the Internet for legitimate purposes.
Hence, analysis of security policy is insufficient. To understand how such values are
used, one must look inside applications. Therefore, this chapter asks the question, what
do applications do with permissions? In particular, this chapter uses dynamic taint
analysis to focus on permissions that grant access to sensitive values.

5.1 Identifying Privacy Risks in Smartphone Applications

Resolving the tension between the utility of running third-party mobile applications and
the privacy risks they pose is a critical challenge for smartphone platforms. Smartphone
operating systems currently provide only coarse-grained controls for regulating whether
an application can access private information, but provide little insight into how private
information is actually used. For example, if a user allows an application to access her
location information, she has no way of knowing if the application will send her location
to a location-based service, to advertisers, to the application developer, or to any other
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entity. As a result, users must blindly trust that applications will properly handle their
private data.

This chapter describes TaintDroid, an extension to the Android platform that tracks
the flow of privacy sensitive data through third-party applications. TaintDroid assumes
that downloaded, third-party applications are not trusted, and monitors–in realtime–
how these applications access and manipulate users’ personal data. Our primary goals
are to detect when sensitive data leaves the system via untrusted applications and to
facilitate analysis of applications by phone users or external security services [200, 201].

Analysis of applications’ behavior requires sufficient contextual information about
what data leaves a device and where it is sent. Thus, TaintDroid automatically labels
(taints) data from privacy-sensitive sources and transitively applies labels as sensitive
data propagates through program variables, files, and interprocess messages. When
tainted data are transmitted over the network, or otherwise leave the system, Taint-
Droid logs the data’s labels, the application responsible for transmitting the data, and
the data’s destination. Such realtime feedback gives users and security services greater
insight into what mobile applications are doing, and can potentially identify misbehaving
applications.

To be practical, the performance overhead of the TaintDroid runtime must be min-
imal. Unlike existing solutions that rely on heavy-weight whole-system emulation [155,
148], we leveraged Android’s virtualized architecture to integrate four granularities of
taint propagation: variable-level, method-level, message-level, and file-level. Though the
individual techniques are not new, our contributions lie in the integration of these tech-
niques and in identifying an appropriate trade-off between performance and accuracy for
resource constrained smartphones. Experiments with our prototype for Android show
that tracking incurs a runtime overhead of less than 14% for a CPU-bound microbench-
mark. More importantly, interactive third-party applications can be monitored with
negligible perceived latency.

We evaluated the accuracy of TaintDroid using 30 randomly selected, popular An-
droid applications that use location, camera, or microphone data. TaintDroid correctly
flagged 105 instances in which these applications transmitted tainted data; of the 105,
we determined that 37 were clearly legitimate. TaintDroid also revealed that 15 of the
30 applications reported users’ locations to remote advertising servers. Seven applica-
tions collected the device ID and, in some cases, the phone number and the SIM card
serial number. In all, two-thirds of the applications in our study used sensitive data
suspiciously. Our findings demonstrate that TaintDroid can help expose potential mis-
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behavior by third-party applications.
Like similar information-flow tracking systems [155, 148], a fundamental limitation

of TaintDroid is that it can be circumvented through leaks via implicit flows. The use
of implicit flows to avoid taint detection is, in and of itself, an indicator of malicious
intent, and may well be detectable through other techniques such as automated static
code analysis [144, 139] as we discuss in Section 5.8.

The remainder of this chapter is organized as follows: Section 5.2 provides a high-
level overview of TaintDroid, Section 5.3 describes detailed background information on
the Android platform specific to TaintDroid, Section 5.4 describes our TaintDroid design,
Section 5.5 describes the taint sources tracked by TaintDroid, Section 5.6 presents results
from our Android application study, Section 5.7 characterizes the performance of our
prototype implementation, Section 5.8 discusses the limitations of our approach, and
Section 5.9 summarizes our conclusions.

5.2 Approach Overview

We seek to design a framework that allows users to monitor how third-party smartphone
applications handle their private data in realtime. Many smartphone applications are
closed-source, therefore, static source code analysis is infeasible. Even if source code
is available, runtime events and configuration often dictate information use; realtime
monitoring accounts for these environment specific dependencies.

Monitoring network disclosure of privacy sensitive information on smartphones presents
several challenges:

• Smartphones are resource constrained. The resource limitations of smartphones
precludes the use of heavyweight information tracking systems such as Panorama [148].

• Third-party applications are entrusted with several types of privacy sensitive in-
formation. The monitoring system must distinguish multiple information types,
which requires additional computation and storage.

• Context-based privacy sensitive information is dynamic and can be difficult to iden-
tify even when sent in the clear. For example, geographic locations are pairs of
floating point numbers that frequently change and are hard to predict.

• Applications can share information. Limiting the monitoring system to a sin-
gle application does not account for flows via files and IPC between applications,
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Figure 5.1. Multi-level approach for performance efficient taint tracking within a common
smartphone architecture.

including core system applications designed to disseminate privacy sensitive infor-
mation.

We use dynamic taint analysis [148, 146, 147, 150, 164] (also called “taint tracking”)
to monitor privacy sensitive information on smartphones. Sensitive information is first
identified at a taint source, where a taint marking indicating the information type is
assigned. Dynamic taint analysis tracks how labeled data impacts other data in a way
that might leak the original sensitive information. This tracking is often performed at
the instruction level. Finally, the impacted data is identified before it leaves the system
at a taint sink (usually the network interface).

Existing taint tracking approaches have several limitations. First and foremost, ap-
proaches that rely on instruction-level dynamic taint analysis using whole system emula-
tion [148, 155, 157] incur high performance penalties. Instruction-level instrumentation
incurs 2-20 times slowdown [148, 155] in addition to the slowdown introduced by em-
ulation, which is not suitable for realtime analysis. Second, developing accurate taint
propagation logic has proven challenging for the x86 instruction set [202, 203]. Im-
plementations of instruction-level tracking can experience taint explosion if the stack
pointer becomes falsely tainted [204] and taint loss if complicated instructions such as
CMPXCHG, REP MOV are not instrumented properly [150]. While most smartphones
use the ARM instruction set, similar false positives and false negatives could arise.

Figure 5.1 presents our approach to taint tracking on smartphones. We leverage archi-
tectural features of virtual machine-based smartphones (e.g., Android, BlackBerry, and
J2ME-based phones) to enable efficient, system-wide taint tracking using fine-grained
labels with clear semantics. First, we instrument the VM interpreter to provide variable-
level tracking within untrusted application code.1 Using variable semantics provided by

1A similar approach can be applied to just-in-time compilation by inserting tracking code within the
generated binary.
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the interpreter provides valuable context for avoiding the taint explosion observed in
the x86 instruction set. Additionally, by tracking variables, we maintain taint markings
only for data and not code. Second, we use message-level tracking between applications.
Tracking taint on messages instead of data within messages minimizes IPC overhead
while extending the analysis system-wide. Third, for system-provided native libraries,
we use method-level tracking. Here, we run native code without instrumentation and
patch the taint propagation on return. These methods accompany the system and have
known information flow semantics. Finally, we use file-level tracking to ensure persistent
information conservatively retains its taint markings.

To assign labels, we take advantage of the well-defined interfaces through which appli-
cations access sensitive data. For example, all information retrieved from GPS hardware
is location-sensitive, and all information retrieved from an address book database is
contact-sensitive. This avoids relying on heuristics [205] or manual specification [150] for
labels. We expand on information sources in Section 5.5.

In order to achieve this tracking at multiple granularities, our approach relies on
the firmware’s integrity. The taint tracking system’s trusted computing base includes
the virtual machine executing in userspace and any native system libraries loaded by
the untrusted interpreted application. However, this code is part of the firmware, and
is therefore trusted. Applications can only escape the virtual machine by executing
native methods. In our target platform (Android), we modified the native library loader
to ensure that applications can only load native libraries from the firmware and not
those downloaded by the application. Note that an early 2010 survey of the top 50 most
popular free applications in each category of the Android Market [206] (1100 applications
in total) revealed that less than 4% included a .so file. A similar survey conducted in
mid 2010 revealed this fraction increased to 5%, which indicates there is growth in the
number of applications using native third-party libraries, but that the number of affected
applications remains small.

In summary, we provide a novel, efficient, system-wide, multiple-marking, taint track-
ing design by combining multiple granularities of information tracking. While some
techniques such as variable tracking within an interpreter have been previously proposed
(see Section 3.3), to our knowledge, our approach is the first to extend such tracking
system-wide. By choosing a multiple granularity approach, we balance performance and
accuracy. As we show in Sections 5.6 and 5.7, our system-wide approach is both highly
efficient (∼14% CPU overhead and ∼4.4% memory overhead for simultaneously track-
ing 32 taint markings per data unit) and accurately detects many suspicious network
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packets.

5.3 Information Processing in Android

Android [207] is a Linux-based, open source, mobile phone platform. Most core phone
functionality is implemented as applications running on top of a customized middleware.
The middleware itself is written in Java and C/C++. Applications are written in Java
and compiled to a custom byte-code known as the Dalvik EXecutable (DEX) byte-
code format. Each application executes within its Dalvik VM interpreter instance. Each
instance executes as unique UNIX user identities to isolate applications within the Linux
platform subsystem. Applications communicate via the binder IPC mechanism. Binder
provides transparent message passing based on parcels. We now discuss topics necessary
to understand our tracking system.

Dalvik VM Interpreter: DEX is a register-based machine language, as opposed to
Java byte-code, which is stack-based. Each DEX method has its own predefined number
of virtual registers (which we frequently refer to as simply “registers”). The Dalvik VM
interpreter manages method registers with an internal execution state stack; the current
method’s registers are always on the top stack frame. These registers loosely correspond
to local variables in the Java method and store primitive types and object references.
All computation occurs on registers, therefore values must be loaded from and stored to
class fields before use and after use. Note that DEX uses class fields for all long term
storage, unlike hardware register-based machine languages (e.g., x86), which store values
in arbitrary memory locations.

Native Methods: The Android middleware provides access to native libraries for per-
formance optimization and third-party libraries such as OpenGL and Webkit. Android
also uses Apache Harmony Java [208], which frequently uses system libraries (e.g., math
routines). Native methods are written in C/C++ and expose functionality provided by
the underlying Linux kernel and services. They can also access Java internals, and hence
are included in our trusted computing base (see Section 5.2).

Android contains two types of native methods: internal VM methods and JNI meth-
ods. The internal VM methods access interpreter-specific structures and APIs. JNI
methods conform to Java native interface standards specifications [209], which requires
Dalvik to separate Java arguments into variables using a JNI call bridge. Conversely,
internal VM methods must manually parse arguments from the interpreter’s byte array
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internal VM methods is unlikely). mention call bridge]
Android contains two types of native methods: internal
VM methods and JNI methods. The internal VM methods
access interpreter specific structures and APIs, whereas
JNI methods conform to Java native interface standards
specifications [cite]. The specifications include passing Java
arguments to JNI methods as separate variables, which is
performed automatically by a call bridge in Dalvik. Internal
VM methods do not have this luxury and manually parse
arguments from a byte array of arguments created by the
interpreter.

Android’s middleware Java libraries make frequent use
of the Java Native Interface (JNI). The native methods are
written in C and C++ and expose the POSIX functionality
provided by the underlying Linux kernel and services. An-
droid uses the Apache Harmony implementation of Java [12]
for base Java functionality in the Dalvik VM. Portions of
the Apache Harmony implementation wraps system libraries
(e.g., math libraries) to provide functionality. The Android
binder and parcel interfaces also make use of JNI. Fur-
thermore, Android uses JNI to includes Java interfaces to
third party libraries such as OpenGL and Webkit. Finally,
Android provides the Native Development Toolkit (NDK)
to allow third party application developers to implement
and package native libraries with downloaded applications.
However, NDK use is strongly discouraged, as it impedes
application portability on a platform that runs on different
instruction set architectures, including ARM and x86. The
NDK is primarily seen as a means of providing better
runtime performance.

IV. TAINTDROID ARCHITECTURE

TaintDroid is a system that performs system-wide taint
tracking built upon Android. Figure 2 shows TaintDroid
architecture. TaintDroid propagates taint tags within an
application and between applications.

The goal of TaintDroid is to perform taint to tracking to
enforce security polices to untrusted third-party applications.
For correct taint tracking, TaintDroid’s trusted computing
base includes the firmware, including all system applica-
tions and libraries provided by the stock Android distribu-
tion. Similar assumptions are made by other taint tracking
systems, e.g., Panorama [4]. In addition, we assume all
downloaded (i.e., unknown) code executes within the Dalvik
VM. We do not allow execution of downloaded native code,
which do not propagate taint tags or may maliciously modify
taint tag storage.

Figure 2 shows an example of taint tracking in TaintDroid.
Information is tainted (1) in a trusted application with
sufficient context (e.g., the location provider). The taint
interface invokes a native method (2) that interfaces with the
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Dalvik VM interpreter, storing the specified taint marking(s)
in the virtual taint map. As the trusted application uses the
tainted information, the Dalvik VM propagates taint tags
(3) according to our data flow rules. When the trusted ap-
plication uses the tainted information in an IPC transaction,
the modified binder library (4) ensures the parcel message
carries a taint tag reflecting the combined taint markings
of all contained data. The parcel is passed transparently
through the kernel (5) and received by the remote untrusted
application. Note that the third-party interpreted code is
untrusted. The modified binder library retrieves the taint tag
from the parcel and assigns it to all values read from the
parcel (6). The remote Dalvik VM instance propagates taint
tags (7) identically for the untrusted application. When the
untrusted application invokes a library specified as a taint
sink (8), e.g., sending a data buffer over the network, the
library retrieves the taint tag for the data in question (9-11)
and makes a policy decision.

At a high level, TaintDroid architecture enables system-
wide tracking by combining execution taint tracking, IPC
taint tracking, native interface taint tracking, and secondary
storage taint tracking.
Variable-level taint tracking While previous approaches
such as Panorama [panorama] and TaintBochs [taintbochs]
provide high-accuracy taint tracking via instruction-level
taint propagation, performance is sacrificed. On the other
end of the spectrum, approaches such as PRECIP [precip]
consider only high-level system calls into the kernel, trading
off accuracy for performance; thus, they provide only nomi-
nal advantage over OS permissions (e.g., those implemented
in Android).

In TaintDroid, we choose a middle ground, variable-
level taint tracking. TaintDroid is designed to taint primitive
type variables (e.g., int, float, etc). Our taint source and
sink libraries (Section VI) provide an easy interface to set
and check the taint markings on primitive types. However,
there are cases when object references must become tainted
to ensure taint propagation operates correctly. Applications
are compiled into the Dalvik EXecutable (DEX) byte-code
format. Dalvik, unlike the stack-based virtual machine Java,
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VM methods and JNI methods. The internal VM methods
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JNI methods conform to Java native interface standards
specifications [cite]. The specifications include passing Java
arguments to JNI methods as separate variables, which is
performed automatically by a call bridge in Dalvik. Internal
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thermore, Android uses JNI to includes Java interfaces to
third party libraries such as OpenGL and Webkit. Finally,
Android provides the Native Development Toolkit (NDK)
to allow third party application developers to implement
and package native libraries with downloaded applications.
However, NDK use is strongly discouraged, as it impedes
application portability on a platform that runs on different
instruction set architectures, including ARM and x86. The
NDK is primarily seen as a means of providing better
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TaintDroid is a system that performs system-wide taint
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architecture. TaintDroid propagates taint tags within an
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The goal of TaintDroid is to perform taint to tracking to
enforce security polices to untrusted third-party applications.
For correct taint tracking, TaintDroid’s trusted computing
base includes the firmware, including all system applica-
tions and libraries provided by the stock Android distribu-
tion. Similar assumptions are made by other taint tracking
systems, e.g., Panorama [4]. In addition, we assume all
downloaded (i.e., unknown) code executes within the Dalvik
VM. We do not allow execution of downloaded native code,
which do not propagate taint tags or may maliciously modify
taint tag storage.

Figure 2 shows an example of taint tracking in TaintDroid.
Information is tainted (1) in a trusted application with
sufficient context (e.g., the location provider). The taint
interface invokes a native method (2) that interfaces with the
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Dalvik VM interpreter, storing the specified taint marking(s)
in the virtual taint map. As the trusted application uses the
tainted information, the Dalvik VM propagates taint tags
(3) according to our data flow rules. When the trusted ap-
plication uses the tainted information in an IPC transaction,
the modified binder library (4) ensures the parcel message
carries a taint tag reflecting the combined taint markings
of all contained data. The parcel is passed transparently
through the kernel (5) and received by the remote untrusted
application. Note that the third-party interpreted code is
untrusted. The modified binder library retrieves the taint tag
from the parcel and assigns it to all values read from the
parcel (6). The remote Dalvik VM instance propagates taint
tags (7) identically for the untrusted application. When the
untrusted application invokes a library specified as a taint
sink (8), e.g., sending a data buffer over the network, the
library retrieves the taint tag for the data in question (9-11)
and makes a policy decision.

At a high level, TaintDroid architecture enables system-
wide tracking by combining execution taint tracking, IPC
taint tracking, native interface taint tracking, and secondary
storage taint tracking.
Variable-level taint tracking While previous approaches
such as Panorama [panorama] and TaintBochs [taintbochs]
provide high-accuracy taint tracking via instruction-level
taint propagation, performance is sacrificed. On the other
end of the spectrum, approaches such as PRECIP [precip]
consider only high-level system calls into the kernel, trading
off accuracy for performance; thus, they provide only nomi-
nal advantage over OS permissions (e.g., those implemented
in Android).

In TaintDroid, we choose a middle ground, variable-
level taint tracking. TaintDroid is designed to taint primitive
type variables (e.g., int, float, etc). Our taint source and
sink libraries (Section VI) provide an easy interface to set
and check the taint markings on primitive types. However,
there are cases when object references must become tainted
to ensure taint propagation operates correctly. Applications
are compiled into the Dalvik EXecutable (DEX) byte-code
format. Dalvik, unlike the stack-based virtual machine Java,
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Native Methods. [WHE: say a little about how Dalvik
creates a byte-array of arguments that is passed. internal
VM vs JNI. significanlty more JNI than internal VM (more
internal VM methods is unlikely). mention call bridge]
Android contains two types of native methods: internal
VM methods and JNI methods. The internal VM methods
access interpreter specific structures and APIs, whereas
JNI methods conform to Java native interface standards
specifications [cite]. The specifications include passing Java
arguments to JNI methods as separate variables, which is
performed automatically by a call bridge in Dalvik. Internal
VM methods do not have this luxury and manually parse
arguments from a byte array of arguments created by the
interpreter.

Android’s middleware Java libraries make frequent use
of the Java Native Interface (JNI). The native methods are
written in C and C++ and expose the POSIX functionality
provided by the underlying Linux kernel and services. An-
droid uses the Apache Harmony implementation of Java [12]
for base Java functionality in the Dalvik VM. Portions of
the Apache Harmony implementation wraps system libraries
(e.g., math libraries) to provide functionality. The Android
binder and parcel interfaces also make use of JNI. Fur-
thermore, Android uses JNI to includes Java interfaces to
third party libraries such as OpenGL and Webkit. Finally,
Android provides the Native Development Toolkit (NDK)
to allow third party application developers to implement
and package native libraries with downloaded applications.
However, NDK use is strongly discouraged, as it impedes
application portability on a platform that runs on different
instruction set architectures, including ARM and x86. The
NDK is primarily seen as a means of providing better
runtime performance.

IV. TAINTDROID ARCHITECTURE

TaintDroid is a system that performs system-wide taint
tracking built upon Android. Figure 2 shows TaintDroid
architecture. TaintDroid propagates taint tags within an
application and between applications.

The goal of TaintDroid is to perform taint to tracking to
enforce security polices to untrusted third-party applications.
For correct taint tracking, TaintDroid’s trusted computing
base includes the firmware, including all system applica-
tions and libraries provided by the stock Android distribu-
tion. Similar assumptions are made by other taint tracking
systems, e.g., Panorama [4]. In addition, we assume all
downloaded (i.e., unknown) code executes within the Dalvik
VM. We do not allow execution of downloaded native code,
which do not propagate taint tags or may maliciously modify
taint tag storage.

Figure 2 shows an example of taint tracking in TaintDroid.
Information is tainted (1) in a trusted application with
sufficient context (e.g., the location provider). The taint
interface invokes a native method (2) that interfaces with the
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Dalvik VM interpreter, storing the specified taint marking(s)
in the virtual taint map. As the trusted application uses the
tainted information, the Dalvik VM propagates taint tags
(3) according to our data flow rules. When the trusted ap-
plication uses the tainted information in an IPC transaction,
the modified binder library (4) ensures the parcel message
carries a taint tag reflecting the combined taint markings
of all contained data. The parcel is passed transparently
through the kernel (5) and received by the remote untrusted
application. Note that the third-party interpreted code is
untrusted. The modified binder library retrieves the taint tag
from the parcel and assigns it to all values read from the
parcel (6). The remote Dalvik VM instance propagates taint
tags (7) identically for the untrusted application. When the
untrusted application invokes a library specified as a taint
sink (8), e.g., sending a data buffer over the network, the
library retrieves the taint tag for the data in question (9-11)
and makes a policy decision.

At a high level, TaintDroid architecture enables system-
wide tracking by combining execution taint tracking, IPC
taint tracking, native interface taint tracking, and secondary
storage taint tracking.
Variable-level taint tracking While previous approaches
such as Panorama [panorama] and TaintBochs [taintbochs]
provide high-accuracy taint tracking via instruction-level
taint propagation, performance is sacrificed. On the other
end of the spectrum, approaches such as PRECIP [precip]
consider only high-level system calls into the kernel, trading
off accuracy for performance; thus, they provide only nomi-
nal advantage over OS permissions (e.g., those implemented
in Android).

In TaintDroid, we choose a middle ground, variable-
level taint tracking. TaintDroid is designed to taint primitive
type variables (e.g., int, float, etc). Our taint source and
sink libraries (Section VI) provide an easy interface to set
and check the taint markings on primitive types. However,
there are cases when object references must become tainted
to ensure taint propagation operates correctly. Applications
are compiled into the Dalvik EXecutable (DEX) byte-code
format. Dalvik, unlike the stack-based virtual machine Java,

3

In
te

rp
re

te
d 

C
od

e
U

se
rs

pa
ce

Ke
rn

el

Figure 5.2. TaintDroid architecture within Android.

of arguments.

Binder IPC: All Android IPC occurs through binder. Binder is a component-based pro-
cessing and IPC framework designed for BeOS, extended by Palm Inc., and customized
for Android by Google. Fundamental to binder are parcels, which serialize both active
and standard data objects. The former includes references to binder objects, which al-
lows the framework to manage shared data objects between processes. A binder kernel
module passes parcel messages between processes.

5.4 TaintDroid

TaintDroid is a realization of our multiple granularity taint tracking approach within
Android. TaintDroid uses variable-level tracking within the VM interpreter. Multiple
taint markings are stored as one taint tag. When applications execute native methods,
variable taint tags are patched on return. Finally, taint tags are assigned to parcels and
propagated through binder.

Figure 5.2 depicts TaintDroid’s architecture. Information is tainted (1) in a trusted
application with sufficient context (e.g., the location provider). The taint interface in-
vokes a native method (2) that interfaces with the Dalvik VM interpreter, storing spec-
ified taint markings in the virtual taint map. The Dalvik VM propagates taint tags
(3) according to data flow rules as the trusted application uses the tainted information.
Every interpreter instance simultaneously propagates taint tags. When the trusted ap-
plication uses the tainted information in an IPC transaction, the modified binder library
(4) ensures the parcel has a taint tag reflecting the combined taint markings of all con-
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tained data. The parcel is passed transparently through the kernel (5) and received by
the remote untrusted application. Note that only the interpreted code is untrusted. The
modified binder library retrieves the taint tag from the parcel and assigns it to all values
read from it (6). The remote Dalvik VM instance propagates taint tags (7) identically
for the untrusted application. When the untrusted application invokes a library specified
as a taint sink (8), e.g., network send, the library retrieves the taint tag for the data in
question (9) and reports the event.

Implementing this architecture requires addressing several system challenges, includ-
ing: a) taint tag storage, b) interpreted code taint propagation, c) native code taint
propagation, d) IPC taint propagation, and e) secondary storage taint propagation. The
remainder of this section describes our design.

5.4.1 Taint Tag Storage

The choice of how to store taint tags influences performance and memory overhead.
Dynamic taint tracking systems commonly store tags for every data byte or word [148,
155]. Tracked memory is unstructured and without content semantics. Frequently taint
tags are stored in non-adjacent shadow memory [148] and tag maps [150]. TaintDroid
uses variable semantics within the Dalvik interpreter. We store taint tags adjacent to
variables in memory, providing spatial locality.

Dalvik has five variable types that require taint storage: method local variables,
method arguments, class static fields, class instance fields, and arrays. In all cases, we
store a 32-bit bitvector with each variable to encode the taint tag, allowing 32 different
taint markings.

Method Local Variables: Dalvik loads local variables into registers for use in methods.
Registers contain primitive type values and object references, and are always 32 bits, with
long and double type variables occupying two adjacent registers. The interpreter stores
registers on an internal execution state stack. On method invocation, Dalvik pushes
a new stack frame, allocating space for its registers. During execution, registers are
referenced by an index offset from the current frame pointer. For example, register v0 is
fp[0], register v1 is fp[1], and so on. On method termination, the stack frame is popped,
losing the register values.

TaintDroid stores taint tags for each register (regardless of its current taint state)
by allocating room for double the number of registers during the stack frame push.
Taint tags are stored immediately after registers for efficient reference (as depicted in
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Figure 5.3. Modified Stack Format. Taint tags are interleaved between registers for interpreted
method targets and appended for native methods. Dark grayed boxes represent taint tags.

Figure 5.3). TaintDroid accounts for tag storage by adjusting the frame pointer index for
each register vi to fp[2·i] (a left bit shift), with the corresponding taint tag in fp[2·i+1].

Method Arguments: A target method is either interpreted or native. The Dalvik
VM uses the execution state stack to pass arguments to both target types. Before a
method is invoked, copies of the specified argument registers are pushed onto the stack
(the copies disappear on method termination, which impacts the taint library design, as
discussed in Section 5.4.6). If the target method is interpreted, the new values become
high numbered registers in the callee stack frame. That is, interpreted method arguments
become local variable registers and hence require consistent taint instrumentation. If the
target method is native, a pointer to the stack top is passed to the native method. The
target native method receives a pointer to a byte array from which it must parse 32 and
64-bit values in accordance to its method signature.

Figure 5.3 depicts TaintDroid’s method argument modifications for both interpreted
and native methods. Arguments for interpreted methods have interleaved taint tags
for consistency with local variable taint storage. Native methods, on the other hand,
expect a specific format in the received byte array of arguments. Therefore, interleaving
taint tags for native method arguments would require pervasive modification. Not all
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native methods require taint tags for correct taint propagation (see Section 5.4.3). By
appending argument taint tags as shown in Figure 5.3, we maintain compatibility and
reduce source code modifications.

Finally, as is discussed in Section 5.4.3, TaintDroid’s native method instrumentation
also requires transfer of the return value taint tag. We use the interpreter stack to
communicate the return value taint tag to the interpreter. This modification results in
an unused 32-bit spacer for interpreted methods. This communication option maintains
native method interface compatibility, which simplifies instrumentation.

Class Fields: DEX byte-code maintains Java’s class and object semantics. Java defines
two types of class fields: static and instance. Static fields store one value per class
definition and are shared across all class instances. Instance fields store a different value
for each class instance.

Static field storage is straightforward, as values are stored directly in a data structure
managed by the interpreter, hence allowing adjacent storage of taint tags. Instance fields
require more careful instrumentation. The corresponding data structure does not store
values, but rather a byte-offset into a data object instance. Here, we interleave taint
tags with values in the class instance data object, causing the taint tag to always exist
in the 32-bits following the value. 2

Arrays: TaintDroid stores one taint tag per array, which incurs significantly less storage
than storing one tag per value. Per-value taint tag storage would be severely inefficient
for Java String objects, as each character would require its own tag and causes string
manipulation to copy individual character taint tags.

Storing one taint tag per array may result in false positives during taint propagation.
For example, if untainted variable u is stored into array A at index 0 (A[0]) and tainted
variable t is stored into A[1], then array A is tainted. Later, if variable v is assigned to
A[0], v will be tainted, even though u was untainted. Fortunately, Java frequently uses
objects, and object references are infrequently tainted (see Section 5.4.2), therefore such
false positives are intuitively minimized.

2Readers familiar with Android may recognize that the optimized DEX (ODEX) format hardcodes
field byte-offsets in the byte-code. However, the target device conventionally creates ODEX files on-
demand, allowing TaintDroid to ensure compatibility.
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5.4.2 Interpreted Code Taint Propagation

Taint tracking granularity and flow semantics influence performance and accuracy. Taint-
Droid implements variable-level taint tracking within the Dalvik VM interpreter. Vari-
ables provide valuable semantics for taint propagation, distinguishing data pointers from
scalar values. TaintDroid primarily tracks primitive type variables (e.g., int, float, etc);
however, there are cases when object references must become tainted to ensure taint
propagation operates correctly; this section addresses why these cases exist. However,
first we present taint tracking in the Dalvik machine language as a formal logic.

5.4.2.1 Taint Propagation Logic

The Dalvik VM operates on the unique DEX machine language instruction set, therefore
we must design an appropriate propagation logic. We use a data flow logic, as tracking
implicit flows requires static analysis and causes significant performance overhead and
overestimation in tracking [210] (see Section 5.8). We begin by defining taint markings,
taint tags, variables, and taint propagation. We then present our logic rules for DEX.

Definition 1 (Universe of Taint Markings L). Let each taint marking be a label l. We
assume a fixed set of taint markings in any particular system. Example privacy-based
taint markings include location, phone number, and microphone input. We define the
universe of taint markings L to be the set of taint markings considered relevant for an
application of TaintDroid.

Definition 2 (Taint Tag). A taint tag is a set of taint markings. A taint tag t is in the
power set of L, denoted 2L, which includes ∅. Each variable has an associated tag that
is dynamically updated based on logic rules.

Definition 3 (Variable). A variable is an instance of one of the five variable types
described in Section 5.4.1 (method local variable, method argument, class static field,
class instance field, and array). Variable types have different representations. The local
and argument variables correspond to virtual registers, denoted vx. Class field variables
are denoted as fx to indicate a field variable with class index x. fx alone indicates a
static field. Instance fields require an instance object and are denoted vy(fx), where vy

is the instance object reference variable. Finally, vx[·] denotes an array, where vx is an
array object reference variable.

Definition 4 (Virtual taint map function τ(·)). Let v be a variable. τ(v) returns the
taint tag t for variable v. τ(v) can also be used to assign a taint tag to a variable.
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Table 5.1. DEX Taint Propagation Logic. Register variables and class fields are referenced by
vX and fX , respectively. R and E are the return and exception variables maintained within the
interpreter. A, B, and C are byte-code constants.
Op Format Op Semantics Taint Propagation Description

const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC ] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB with vA taint
aget-op vA vB vC vA ← vB [vC ] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA to array ∪ index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA to fC ∪ obj. ref. taint

Retrieval and assignment is distinguished by the position of τ(·) w.r.t. the ← symbol.
When τ(v) appears on the right hand side of ←, τ(v) retrieves the taint tag for v.
When τ(v) appears on the left hand side, τ(v) assigns the taint tag for v. For example,
τ(v1) ← τ(v2) copies the taint tag from variable v2 to v1.

Definitions 1-4 provide the primitives required to define runtime taint propagation for
Dalvik VM. Table 5.1 captures the propagation logic. The table enumerates abstracted
versions of the byte-code instructions specified in the DEX documentation. Register
variables and class fields are referenced by vX and fX , respectively. R and E are the
return and exception variables, respectively, maintained within the interpreter. A, B,
and C are constants in the byte-code.

The taint propagation logic uses conservative data flow semantics for constant, move,
arithmetic, and logic instructions. Destination register values are always completely over-
written, therefore, the taint tag is set explicitly for each instruction. Constant values
are considered untainted and therefore do not contribute to the taint tag of the desti-
nation register. The interpreter maintains “hidden registers” for return and exception
values. These registers require taint tag storage and corresponding propagation logic.
The arithmetic and logic operations include unary negation, binary arithmetic, bit shifts,
and bitwise AND and OR (abstracted as ⊗ in the table). Finally, the DEX byte-code
does not require idioms to clear values (e.g., “xor eax, eax” in x86), therefore no special
handling is required.
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Array instructions propagate taint tags to and from array objects (recall that we store
one taint tag per array). The aput-op instruction taint logic unions the existing array
taint tag with the taint tag of the variable to be stored. The aget-op instruction logic
assigns the destination register the union of the array and index taint tags. Note that
this is a deviation from data flow, but is commonly included in taint propagation logic
(e.g., in Panorama [148]) to account for translation tables commonly used for character
conversion.

DEX also defines several array-related instructions not included in Table 5.1 (for
brevity). The array-length instruction returns the length of an array. Some taint prop-
agation logics taint array length to aid direct control flow propagation (e.g., Vogt et
al. [165]). We only consider data flow propagation, therefore we assign a taint tag of ∅.
Next, the new-array and fill-new-array instructions allocate a new array with constant
values, therefore we set the new array’s taint tag to ∅. Finally, the fill-data-array copies
values from the byte-code into an array. We assign a taint tag of ∅ to the array if none
of the original array content remains.

The field put and get instructions have data flow semantics similar to the move
instructions. This intuition holds for static fields and the instance field put instruction.
However, after investigating Dalvik VM runtime behavior, we determined instance get
instructions (iget) should include the object reference taint tag as described in the next
section.

Finally, there are two miscellaneous DEX instruction types not included in Table 5.1
that do not propagate taint tags but require instrumentation. DEX defines a set of cmp-
X instructions that perform a comparison between registers and assigns a destination
register the value of 0, 1, or −1. As we only consider data flow, we assign the destination
register a taint tag of ∅. Note that propagating taint to the destination register would
provide context for direct control flow taint propagation if a “taint scope” were statically
extracted from the DEX byte-code before execution. Lastly, the instance-of instruction
corresponds to the instanceof operation in Java. We do not consider an object instance’s
type as ever containing a taint marking, therefore we set the destination register’s taint
tag to ∅.

5.4.2.2 Tainting Object References

The propagation rules in Table 5.1 are straightforward with two exceptions. First, taint
propagation logics commonly include the taint tag of an array index during lookup
to handle translation tables (e.g., ASCII/UNICODE or character case conversion). For
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public static Integer valueOf(int i) {
if (i < -128 || i > 127) {

return new Integer(i); }
return valueOfCache.CACHE [i+128];

}
static class valueOfCache {

static final Integer [] CACHE = new Integer [256];
static {

for(int i= -128; i <=127; i++) {
CACHE[i+128] = new Integer(i); } }

}

Figure 5.4. Excerpt from Android’s Integer class illustrating the need for object reference taint
propagation.

example, consider a translation table from lowercase to upper case characters: if a tainted
value “a” is used as an array index, the resulting “A” value should be tainted even though
the “A” value in the array is not. Hence, the taint logic for aget-op uses both the array
and array index taint. Second, when the array contains object references (e.g., an Integer
array), the index taint tag is propagated to the object reference and not the object value.
Therefore, we include the object reference taint tag in the instance get (iget-op) rule.

The code listed in Figure 5.4 demonstrates a real instance of where object reference
tainting is needed. Here, valueOf() returns an Integer object for a passed int. If the int
argument is between −128 and 127, valueOf() returns reference to a statically defined
Integer object. valueOf() is implicitly called for conversion to an object. Consider the
following definition and use of a method intProxy().

Object intProxy(int val) { return val; }

int out = (Integer) intProxy(tVal);

Consider the case where tVal is an int with value 1 and taint tag TAG. When intProxy()
is passed tVal, TAG is propagated to val. When intProxy() returns val, it calls Inte-
ger.valueOf() to obtain an Integer instance corresponding to the scalar variable val. In
this case, Integer.valueOf() returns a reference to the static Integer object with value 1.
The value field (of the Integer class) in the object has taint tag of ∅; however, since the
aget-op propagation rule includes the taint of the index register, the object reference has
a taint tag of TAG. Therefore, only by including the object reference taint tag when the
value field is read from the Integer (i.e., the iget-op propagation rule), will the correct
taint tag of TAG be assigned to out.
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5.4.3 Native Code Taint Propagation

Native code is unmonitored in TaintDroid. Ideally, we achieve the same propagation
semantics as the interpreted counterpart. Hence, we define two necessary postconditions
for accurate taint tracking in the Java-like environment: 1) all accessed external vari-
ables (i.e., class fields referenced by other methods) are assigned taint tags according
to data flow rules; and 2) the return value is assigned a taint tag according to data
flow rules. TaintDroid achieves these postconditions through an assortment of manual
instrumentation, heuristics, and method profiles, depending on situational requirements.

5.4.3.1 Internal VM Methods

Internal VM method arguments include a pointer to an array of 4-byte values containing
Java arguments and a pointer to a return value. The stack augmentation shown in
Figure 5.3 provides access to taint tags for both Java arguments and the return value. We
manually inspect and instrument Dalvik’s internal VM methods for taint propagation.
Only a subset of the internal VM methods require modification. For those that do, we
manually acquire taint tags appended to the Java argument array and assign a taint
tag to the memory slot reserved for the return value taint tag. We also modify the
interpreter to copy this value to the internally managed return value taint tag after the
method terminates.

We identified 185 internal VM methods in Android version 2.1. This list was further
narrowed by considering method names and argument types. We manually inspected and
instrumented the remaining methods (if necessary). For example, the System.arraycopy()
native method copies the contents of one array object to another. Our instrumentation
acquires the taint tag stored in the source array and assigns it to the destination array.
Several native methods implementing Java reflection also required instrumentation.

5.4.3.2 JNI Methods

JNI methods are called by a call bridge, which is an internal VM method. The call bridge
parses the argument array based on a method descriptor string indicating the number
and type of Java arguments. The call bridge then copies the values into the native
instruction set calling convention. As a consequence, JNI methods cannot retrieve and
return taint tags in the same way performed for internal VM methods. However, the call
bridge provides a valuable mediation hook for generic and extensible taint propagation
rules. We use a combination of heuristics and method profiles to capture information
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flow in JNI methods. The heuristic exists to minimize the effort required to define
method profiles and is unnecessary, given an automated means of defining the profiles
(as described below).

The propagation heuristic provides conservative propagation for JNI methods that
only operate on primitive type variables (a common property). The heuristic calculates
the union of the taint tags associated with the method arguments and assigns the result
to the taint tag of the return value. For example, the cos() math library (a JNI method
in Android) takes one argument and returns the cosine of that value, where there is a
flow from the argument to the return value. Note this conservative calculation may cause
false positives.

The heuristic has only false negatives for methods using objects. Objects allow
information flows other than to the return value. Information may flow into an object
directly or indirectly referenced by 1) a method argument, 2) a field in the method’s
class, or 3) the return value. To expand coverage, we extend the heuristic to recognize
object references to arrays and Java String objects when used as arguments and the
return value.

TaintDroid also defines method profiles, which are lists of (from, to) pairs indication
information flow between variables. The profile may specify method parameters, class
variables, and return values. If any of these variables are objects, the profile specifies
the object type and allows arbitrary levels of dereferencing by variable name and type.
The profile is automatically applied on method termination.

We performed a survey of the JNI methods included in the official Android source
code (version 2.1) to determine specific properties. We found 2,844 JNI methods with a
Java interface and C or C++ implementation.3 Of these methods, 913 did not reference
objects (as arguments, return value, or method body) and hence are automatically cov-
ered by our heuristic. The remaining methods may or may not have information flows
that produce false negatives. Future work will provide a more indepth static analysis to
identify flows and automatically generate method profiles. Currently, we define method
profiles as needed. For example, methods in the IBM NativeConverter class require prop-
agation for conversion between character and byte arrays. These methods are frequently
used when transmitting strings over network connections.

3There was a relatively small number of JNI methods that did not either have a Java interface or
C/C++ implementation. These unusable methods were excluded from our survey.



67

5.4.4 IPC Taint Propagation

Taint tags must propagate between applications when they exchange data. The tracking
granularity affects performance and memory overhead. TaintDroid uses message-level
taint tracking. A message taint tag represents the upper bound of taint markings assigned
to variables contained in the message. We use message-level granularity to minimize
performance and storage overhead during IPC.

We modified the C++ parcel message object to store one taint tag per parcel and
added two interface methods: updateTaint() and getTaint(). The former method unions
its argument tag value with the existing parcel taint tag. The latter method retrieves
parcel’s current taint tag. We then modified the Java parcel object with shims for all
marshall (e.g., writeInt()) and unmarshall (e.g., readInt()) methods. The shims use our
taint library (Section 5.4.6) to acquire and set taint tags on Java variables. We modified
the Java interface, because the C++ JNI interface cannot access argument taint tags.

The binder IPC mechanism transfers C++ parcel objects. The IPC transmission
passes the byte array maintained by a parcel to the binder kernel module, which copies
the memory into the remote process. TaintDroid appends the parcel taint tag to the
byte array immediately before transmission to the kernel and sets the taint tag of the
parcel object in the remote process upon receipt and requires no kernel modifications.

We chose to implement message-level over variable-level taint propagation, because
in a variable-level system, a devious receiver could game the monitoring by unpacking
variables in a different way to acquire values without taint propagation. For example, if
an IPC parcel message contains a sequence of scalar values, the receiver may unpack a
string instead, thereby acquiring values without propagating all the taint tags on scalar
values in the sequence. Hence, to prevent applications from removing taint tags in this
way, the current implementation protects taint tags at the message-level.

Message-level taint propagation for IPC leads to false positives. Similar to arrays,
all data items in a parcel share the same taint tag. For example, Section 5.8 discusses
limitations for tracking the IMSI that results from passing as portions the value as
configuration parameters in parcels. Future implementations will consider word-level
taint tags along with additional consistency checks to ensure accurate propagation for
unpacked variables. However, this additional complexity will negatively impact IPC
performance.
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5.4.5 Secondary Storage Taint Propagation

Taint tags may be lost when data is written to a file. Our design stores one taint tag
per file. The taint tag is updated on file write and propagated to data on file read.
TaintDroid stores file taint tags in the file system’s extended attributes. To do this, we
implemented extended attribute support for Android’s host file system (YAFFS2) and
formatted the removable SDcard with the ext2 file system. As with arrays and IPC,
storing one taint tag per file leads to false positives and limits the granularity of taint
markings for information databases (see Section 5.5). Alternatively, we could track taint
tags at a finer granularity at the expense of added memory and performance overhead.

5.4.6 Taint Interface Library

Taint sources and sinks defined within the virtualized environment must communicate
taint tags with the tracking system. We abstract the taint source and sink logic into a
single taint interface library. The interface performs two functions: 1) add taint markings
to variables; and 2) retrieve taint markings from variables. The library only provides
the ability to add and not set or clear taint tags, as such functionality could be used by
untrusted Java code to remove taint markings.

Adding taint tags to arrays and strings via internal VM methods is straightforward,
as both are stored in data objects. Primitive type variables, on the other hand, are stored
on the interpreter’s internal stack and disappear after a method is called. Therefore, the
taint library uses the method return value as a means of tainting primitive type variables.
The developer passes a value or variable into the appropriate add taint method (e.g.,
addTaintInt()) and the returned variable has the same value but additionally has the
specified taint tag. Note that the stack storage does not pose complications for taint tag
retrieval.

5.5 Privacy Hook Placement

Using TaintDroid for privacy analysis requires identifying privacy sensitive sources and
instrumenting taint sources within the operating system. Historically, dynamic taint
analysis systems assume taint source and sink placement is trivial. However, complex
operating systems such as Android provide applications information in a variety of ways,
e.g., direct access, and service interface. Each potential type of privacy sensitive infor-
mation must be studied carefully to determine the best method of defining the taint
source.
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Taint sources can only add taint tags to memory for which TaintDroid provides tag
storage. Currently, taint source and sink placement is limited to variables in interpreted
code, IPC messages, and files. This section discusses how valuable taint sources and
sinks can be implemented within these restrictions. We generalize such taint sources
based on information characteristics.

Low-bandwidth Sensors: A variety of privacy sensitive information types are acquired
through low-bandwidth sensors, e.g., location and accelerometer. Such information often
changes frequently and is simultaneously used by multiple applications. Therefore, it
is common for a smartphone OS to multiplex access to low-bandwidth sensors using a
manager. This sensor manager represents an ideal point for taint source hook placement.
For our analysis, we placed hooks in Android’s LocationManager and SensorManager
applications.

High-bandwidth Sensors: Privacy sensitive information sources such as the micro-
phone and camera are high-bandwidth. Each request from the sensor frequently returns
a large amount of data that is only used by one application. Therefore, the smartphone
OS may share sensor information via large data buffers, files, or both. When sensor
information is shared via files, the file must be tainted with the appropriate tag. Due
to flexible APIs, we placed hooks for both data buffer and file tainting for tracking
microphone and camera information.

Information Databases: Shared information such as address books and SMS messages
are often stored in file-based databases. This organization provides a useful unambiguous
taint source similar to hardware sensors. By adding a taint tag to such database files, all
information read from the file will be automatically tainted. We used this technique for
tracking address book information. Note that while TaintDroid’s file-level granularity
was appropriate for these valuable information sources, others may exist for which files
are too coarse grained. However, we have not yet encountered such sources.

Device Identifiers: Information that uniquely identifies the phone or the user is privacy
sensitive. Not all personally identifiable information can be easily tainted. However, the
phone contains several easily tainted identifiers: the phone number, SIM card identifiers
(IMSI, ICC-ID), and device identifier (IMEI) are all accessed through well-defined APIs.
We instrumented the APIs for the phone number, ICC-ID, and IMEI. An IMSI taint
source has inherent limitations discussed in Section 5.8.
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Table 5.2. Applications grouped by the requested permissions (L: location, C: camera, A: audio,
P: phone state). Android Market categories are indicated in parenthesis, showing the diversity
of the studied applications.

Applications∗ # Permissions†
L C A P

The Weather Channel (News & Weather); Cestos, Solitaire
(Game); Movies (Entertainment); Babble (Social); Manga
Browser (Comics)

6 x

Bump, Wertago (Social); Antivirus (Communication); ABC —
Animals, Traffic Jam, Hearts, Blackjack, (Games); Horoscope
(Lifestyle); Yellow Pages (Reference); 3001 Wisdom Quotes
Lite, Dastelefonbuch, Astrid (Productivity), BBC News Live
Stream (News & Weather); Ringtones (Entertainment)

14 x x

Layar (Lifestyle); Knocking (Social); Coupons (Shopping);
Trapster (Travel); Spongebob Slide (Game); ProBasketBall
(Sports)

6 x x x

MySpace (Social); Barcode Scanner, ixMAT (Shopping) 3 x
Evernote (Productivity) 1 x x x
∗ Listed names correspond to the name displayed on the phone and not necessarily the name
listed in the Android Market.
† All listed applications also require access to the Internet.

Network Taint Sink: Our privacy analysis identifies when tainted information trans-
mits out the network interface. The VM interpreter-based approach requires the taint
sink to be placed within interpreted code. Hence, we instrumented the Java framework
libraries at the point the native socket library is invoked.

5.6 Application Study

This section reports on an application study that uses TaintDroid to analyze how 30
popular third-party Android applications use privacy sensitive user data. Existing ap-
plications acquire a variety of user data along with permissions to access the Internet.
Our study finds that two thirds of these applications expose detailed location data,
the phone’s unique ID, and the phone number using the combination of the seemingly
innocuous access permissions granted at install. This finding was made possible by Taint-
Droid’s ability to monitor runtime access of sensitive user data and to precisely relate
the monitored accesses with the data exposure by applications.

5.6.1 Experimental Setup

An early 2010 survey of the 50 most popular free applications in each category of the
Android Market [206] (1,100 applications, in total) revealed that roughly a third of
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the applications (358 of the 1,100 applications) require Internet permissions along with
permissions to access either location, camera, or audio data. From this set, we randomly
selected 30 popular applications (an 8.4% sample size), which span twelve categories.
Table 5.2 enumerates these applications along with permissions they request at install
time. Note that this does not reflect actual access or use of sensitive data.

We studied each of the thirty downloaded applications by starting the application,
performing any initialization or registration that was required, and then manually ex-
ercising the functionality offered by the application. We recorded system logs including
detailed information from TaintDroid: tainted binder messages, tainted file output, and
tainted network messages with the remote address. The overall experiment (conducted
in May 2010) lasted slightly over 100 minutes, generating 22,594 packets (8.6MB) and
1,130 TCP connections. To verify our results, we also logged the network traffic using
tcpdump on the WiFi interface and repeated experiments on multiple Nexus One phones,
running the same version of TaintDroid built on Android 2.1. Though the phones used
for experiments had a valid SIM card installed, the SIM card was inactivate, forcing all
the packets to be transmitted via the WiFi interface. The packet trace was used only to
verify the exposure of tainted data flagged by TaintDroid.

In addition to the network trace, we also noted whether applications acquired user
consent (either explicit or implicit) for exporting sensitive information. This provides
additional context information to identify possible privacy violations. For example, by
selecting the “use my location” option in a weather application, the user implicitly
consents to disclosing geographic coordinates to the weather server.

5.6.2 Findings

Table 5.3 summarizes our findings. TaintDroid flagged 105 TCP connections as contain-
ing tainted privacy sensitive information. We manually labeled each message based on
available context, including remote server names and temporally relevant application log
messages. We used remote hostnames as an indication of whether data was being sent
to a server providing application functionality or to a third party. Frequently, messages
contained plaintext that aided categorization, e.g., an HTTP GET request containing
geographic coordinates. However, 21 flagged messages contained binary data. Our in-
vestigation indicates these messages were generated by the Google Maps for Mobile [211]
and FlurryAgent [212] APIs and contained tainted privacy sensitive data. These conclu-
sions are supported by message transmissions immediately after the application received
a tainted parcel from the system location manager. We now expand on our findings for
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Table 5.3. Potential privacy violations by 20 of the studied applications. Note that three
applications had multiple violations, one of which had a violation in all three categories.

Observed Behavior
(# of apps)

Details

Phone Information to
Content Servers (2)

2 apps sent out the phone number, IMSI, and ICC-ID
along with the geo-coordinates to the app’s content server.

Device ID to Content
Servers (7)∗

2 Social, 1 Shopping, 1 Reference and three other apps
transmitted the IMEI number to the app’s content server.

Location to Advertise-
ment Servers (15)

5 apps sent geo-coordinates to ad.qwapi.com, 5 apps to
admob.com, 2 apps to ads.mobclix.com (1 sent location
both to admob.com and ads.mobclix.com) and 4 apps sent
location† to data.flurry.com.

∗ TaintDroid flagged nine applications in this category, but only seven transmitted the raw
IMEI without mentioning such practice in the EULA.
†To the best of our knowledge, the binary messages contained tainted location data (see the
discussion below).

each category and reflect on potential privacy violations.

Phone Information: Table 5.2 shows that 20 out of the 30 applications require per-
missions to read phone state and the Internet. We found that 2 of the 20 applications
transmitted to their server (1) the device’s phone number, (2) the IMSI which is a unique
15-digit code used to identify an individual user on a GSM network, and (3) the ICC-ID
number which is a unique SIM card serial number. We verified messages were flagged
correctly by inspecting the plaintext payload.4 In neither case was the user informed
that this information was transmitted off the phone.

This finding demonstrates that Android’s coarse-grained access control provides in-
sufficient protection against third-party applications seeking to collect sensitive data.
Moreover, we found that one application transmits the phone information every time
the phone boots. While this application displays a terms of use on first use, the terms of
use does not specify collection of this highly sensitive data. Surprisingly, this application
transmits the phone data immediately after install, before first use.

Device Unique ID: The device’s IMEI was also exposed by applications. The IMEI
uniquely identifies a specific mobile phone and is used to prevent a stolen handset from
accessing the cellular network. TaintDroid flags indicated that nine applications trans-
mitted the IMEI. Seven out of the nine applications either do not present an End User

4Because of the limitation of the IMSI taint source as discussed in Section 5.8, we disabled the IMSI
taint source for experiments. Nonetheless, TaintDroid’s flag of the ICC-ID and the phone number led us
to find the IMSI contained in the same payload.
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License Agreement (EULA) or do not specify IMEI collection in the EULA. One of the
seven applications is a popular social networking application and another is a location-
based search application. Furthermore, we found two of the seven applications include
the IMEI when transmitting the device’s geographic coordinates to their content server,
potentially repurposing the IMEI as a client ID.

In comparison, two of the nine applications treat the IMEI with more care, thus we
do not classify them as potential privacy violators. One application displays a privacy
statement that clearly indicates that the application collects the device ID. The other
uses the hash of the IMEI instead of the number itself. We verified this practice by
comparing results from two different phones.

Location Data to Advertisement Servers: Half of the studied applications exposed
location data to third-party advertisement servers without requiring implicit or explicit
user consent. Of the fifteen applications, only two presented a EULA on first run; how-
ever neither EULA indicated this practice. Exposure of location information occurred
both in plaintext and in binary format. The latter highlights TaintDroid’s advantages
over simple pattern-based packet scanning. Applications sent location data in plaintext
to admob.com, ad.qwapi.com, ads.mobclix.com (11 applications) and in binary format
to FlurryAgent (4 applications). The plaintext location exposure to AdMob occurred in
the HTTP GET string:

. . .& s=a14a4a93f1e4c68 &..& t=062A1CB1D476DE85B717D9195A6722A9
&d%5Bcoord%5D=47.661227890000006%2C−122.31589477&. . .

Investigating the AdMob SDK revealed the s= parameter is an identifier unique to an
application publisher, and the coord= parameter provides the geographic coordinates.

For FlurryAgent, we confirmed location exposure by the following sequence of events.
First, a component named “FlurryAgent” registers with the location manager to receive
location updates. Then, TaintDroid log messages show the application receiving a tainted
parcel from the location manager. Finally, the application reports “sending report to
http://data.flurry.com/aar.do” after receiving the tainted parcel.

Our experimentation indicates these fifteen applications collect location data and
send it to advertisement servers. In some cases, location data was transmitted to adver-
tisement servers even when no advertisement was displayed in the application. However,
we note that TaintDroid helped us verify that three of the studied applications (not
included in the Table 5.3) only transmitted location data per user’s request to pull local-
ized content from their servers. This finding demonstrates the importance of monitoring
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exercised functionality of an application that reflects how the application actually uses
or abuses the granted permissions.

Legitimate Flags: Out of 105 connections flagged by TaintDroid, 37 were deemed
clearly legitimate use. The flags resulted from four applications and the OS itself while
using the Google Maps for Mobile (GMM) API. The TaintDroid logs indicate an HTTP
request with the “User-Agent: GMM . . . ” header, but a binary payload. Given that
GMM functionality includes downloading maps based on geographic coordinates, it is
obvious that TaintDroid correctly identified location information in the payload. Our
manual inspection of each message along with the network packet trace confirmed that
there were no false positives. We note that there is a possibility of false negatives, which
is difficult to verify with the lack of the source code of the third-party applications.

Summary: Our study of 30 popular applications shows the effectiveness of the Taint-
Droid system in accurately tracking applications’ use of privacy sensitive data. While
monitoring these applications, TaintDroid generated no false positives (with the excep-
tion of the IMSI taint source which we disabled for experiments, see Section 5.8). The
flags raised by TaintDroid helped to identify potential privacy violations by the tested
applications. Half of the studied applications share location data with advertisement
servers. Approximately one third of the applications expose the device ID, sometimes
with the phone number and the SIM card serial number. The analysis was simplified
by the taint tag provided by TaintDroid that precisely describes which privacy relevant
data is included in the payload, especially for binary payloads. We also note that there
was almost no perceived latency while running experiments with TaintDroid.

5.7 Performance Evaluation

We now study TaintDroid’s taint tracking overhead. Experiments were performed on a
Google Nexus One running Android OS version 2.1 modified for TaintDroid. Within the
interpreted environment, TaintDroid incurs the same performance and memory overhead
regardless of the existence of taint markings. Hence, we only need to ensure file access
includes appropriate taint tags.

5.7.1 Macrobenchmarks

During the application study, we anecdotally observed limited performance overhead. We
hypothesize that this is because: 1) most applications are primarily in a “wait state,”
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Table 5.4. Macrobenchmark Results
Benchmark Android TaintDroid
App Load Time 63 ms 65 ms
Address Book (create) 348 ms 367 ms
Address Book (read) 101 ms 119 ms
Phone Call 96 ms 106 ms
Take Picture 1718 ms 2216 ms

and 2) heavyweight operations (e.g., screen updates and webpage rendering) occur in
unmonitored native libraries.

To gain further insight into perceived overhead, we devised five macrobenchmarks
for common high-level smartphone operations. Each experiment was measured 50 times
and observed 95% confidence intervals at least an order of magnitude less than the
mean. In each case, we excluded the first run to remove unrelated initialization costs.
Experimental results are shown in Table 5.4.

Application Load Time: The application load time measures from when Android’s
Activity Manager receives a command to start an activity component to the time the
activity thread is displayed. This time includes application resolution by the Activ-
ity Manager, IPC, and graphical display. TaintDroid adds only 3% overhead, as the
operation is dominated by native graphics libraries.

Address Book: We built a custom application to create, read, and delete entries for
the phone’s address book, exercising both file read and write. Create used three SQL
transactions while read used two SQL transactions. The subsequent delete operation
was lazy, returning in 0 ms, and hence was excluded from our results. TaintDroid adds
approximately 5.5% and 18% overhead for address book entry creates and reads, respec-
tively. The additional overhead for reads can be attributed to file taint propagation.
The data is not tainted before create, hence no file propagation is needed. Note that the
user experiences less than 20 ms overhead when creating or viewing a contact.

Phone Call: The phone call benchmark measured the time from pressing “dial” to the
point at which the audio hardware was reconfigured to “in call” mode. TaintDroid only
adds 10 ms per phone call setup (∼10% overhead), which is significantly less than call
setup in the network, which takes on the order of seconds.

Take Picture: The picture benchmark measures from the time the user presses the
“take picture” button until the preview display is re-enabled. This measurement includes
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Figure 5.5. Microbenchmark of Java overhead. Error bars indicate 95% confidence intervals.

the time to capture a picture from the camera and save the file to the SDcard. TaintDroid
adds 498 ms to the 1718 ms needed by Android to take a picture (an overhead of 29%).
A portion of this overhead can be attributed to additional file operations required for
taint propagation (one getxattr/setxattr pair per written data buffer). Note that some
of this overhead can be reduced by eliminating redundant taint propagation. That is,
only the taint tag for the first data buffer written to file needs to be propagated. For
example, the current taint tag could be associated with the file descriptor.

5.7.2 Java Microbenchmark

Figure 5.5 shows the execution time results of a Java microbenchmark. We used an
Android port of the standard CaffeineMark 3.0 [213]. CaffeineMark uses an internal
scoring metric only useful for relative comparisons.

The results are consistent with implementation-specific expectations. The overhead
incurred by TaintDroid is smallest for the benchmarks dominated by arithmetic and
logic operations. The taint propagation for these operations is simple, consisting of an
additional copy of spatially local memory. The string benchmark, on the other hand,
experiences the greatest overhead. This is most likely due to the additional memory
comparisons that occur when the JNI propagation heuristic checks for string objects in
method prototypes.

The “overall” results indicate cumulative score across individual benchmarks. Caf-
feineMark documentation states that scores roughly correspond to the number of Java
instructions executed per second. Here, the unmodified Android system had an aver-
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Table 5.5. IPC Throughput Test (10,000 msgs).
Android TaintDroid

Time (s) 8.58 10.89
Memory (client) 21.06MB 21.88MB
Memory (service) 18.92MB 19.48MB

age score of 1121, and TaintDroid measured 967. TaintDroid has a 14% overhead with
respect to the unmodified system.

We also measured memory consumption during the CaffeineMark benchmark. The
benchmark consumed 21.28 MB on the unmodified system and 22.21 MB while running
on TaintDroid, indicating a 4.4% memory overhead. Note that much of an Android
process’s memory is used by the zygote runtime environment. These native library
memory pages are shared between applications to reduce the overall system memory
footprint and require taint tracking. Given that TaintDroid stores 32 taint markings (4
bytes) for each 32-bit variable in the interpreted environment (regardless of taint state),
this overhead is expected.

5.7.3 IPC Microbenchmark

The IPC benchmark considers overhead due to the parcel modifications. For this ex-
periment, we developed client and service applications that perform binder transactions
as fast as possible. The service manipulates account objects (a username string and
a balance integer) and provides two interfaces: setAccount() and getAccount(). The
experiment measures the time for the client to invoke each interface pair 10,000 times.

Table 5.5 summarizes the results of the IPC benchmark. TaintDroid was 27% slower
than Android. TaintDroid only adds four bytes to each IPC object, therefore overhead
due to data size is unlikely. The more likely cause of the overhead is the continual
copying of taint tags as values are marshalled into and out of the parcel byte buffer.
Finally, TaintDroid used 3.5% more memory than Android, which is comparable to the
consumption observed during the CaffeineMark benchmarks.

5.8 Discussion

Approach Limitations: TaintDroid only tracks data flows (i.e., explicit flows) and
does not track control flows (i.e., implicit flows) to minimize performance overhead. Sec-
tion 5.6 shows that TaintDroid can track applications’ expected data exposure and also
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reveal suspicious actions. However, applications that are truly malicious can game our
system and exfiltrate privacy sensitive information through control flows. Fully track-
ing control flow requires static analysis [144, 140], which is not applicable to analyzing
third-party applications whose source code is unavailable. Direct control flows can be
tracked dynamically if a taint scope can be determined [165]; however, DEX does not
maintain branch structures that TaintDroid can leverage. On-demand static analysis
to determine method control flow graphs (CFGs) provides this context [164]; however,
TaintDroid does not currently perform such analysis in order to avoid false positives and
significant performance overhead. Our data flow taint propagation logic is consistent
with existing, well known, taint tracking systems [155, 148]. Finally, once information
leaves the phone, it may return in a network reply. TaintDroid cannot track such infor-
mation.

Implementation Limitations: Android uses the Apache Harmony [208] implementa-
tion of Java with a few custom modifications. This implementation includes support for
the PlatformAddress class, which contains a native address and is used by DirectBuffer
objects. The file and network IO APIs include write and read “direct” variants that
consume the native address from a DirectBuffer. TaintDroid does not currently track
taint tags on DirectBuffer objects, because the data is stored in opaque native data
structures. Currently, TaintDroid logs when a read or write “direct” variant is used,
which anecdotally occurred with minimal frequency. Similar implementation limitations
exist with the sun.misc.Unsafe class, which also operates on native addresses.

Taint Source Limitations: While TaintDroid is very effective for tracking sensitive
information, it causes significant false positives when the tracked information contains
configuration identifiers. For example, the IMSI numeric string consists of a Mobile
Country Code (MCC), Mobile Network Code (MNC), and Mobile Station Identifier
Number (MSIN), which are all tainted together.5 Android uses the MCC and MNC
extensively as configuration parameters when communicating other data. This causes all
information in a parcel to become tainted, eventually resulting in an explosion of tainted
information. Thus, for taint sources that contain configuration parameters, tainting
individual variables within parcels is more appropriate. However, as our analysis results
in Section 5.6 show, message-level taint tracking is effective for the majority of our taint
sources.

5Regardless of the string separation, the MCC and MNC are identifiers that warrant taint sources.
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5.9 Summary

While some mobile phone operating systems allow users to control applications’ access
to sensitive information, such as location sensors, camera images, and contact lists,
users lack visibility into how applications use their private data. To address this, we
presented TaintDroid, an efficient, system-wide information flow tracking tool that can
simultaneously track multiple sources of sensitive data. A key design goal of Taint-
Droid is efficiency, and TaintDroid achieves this by integrating four granularities of taint
propagation (variable-level, message-level, method-level, and file-level) to achieve a 14%
performance overhead on a CPU-bound microbenchmark.

We also used our TaintDroid implementation to study the behavior of 30 popular
third-party applications, chosen at random from the Android Marketplace. Our study
revealed that two-thirds of the applications in our study exhibit suspicious handling of
sensitive data, and that 15 of the 30 applications reported users’ locations to remote
advertising servers. Our findings demonstrate the effectiveness and value of enhancing
smartphone platforms with monitoring tools such as TaintDroid.



Chapter 6
Static Analysis of Smartphone

Application Source Code

The previous chapters discussed what applications can do based on permissions, and
how applications use permissions to access privacy sensitive information based on run-
time analysis. We found in Chapter 4 that static configuration-level analysis alone does
not always provide sufficient context to distinguish benign and malicious functionality.
Chapter 5 demonstrated that dynamic taint analysis can practically increase operational
context; however it is limited to: a) malicious and dangerous behavior based on misuse
of information; and b) functionality exercised during the analysis process. This chap-
ter similarly seeks to derive greater operational context from applications, but does so
based on application source code. This approach has two advantages over the dynamic
taint analysis presented in Chapter 5. First, we can look for more than just information
misuse. As described in the following sections, we also look for dangerous control flows
within API use. We also use control flows to identify vulnerabilities in applications. Sec-
ond, we are not limited to exercised functionality. The analysis statically considers the
application’s entire source code, thereby addressing the question, what can an application
do with permissions based on implemented functionality?.

6.1 A Study of Android Application Security

The fluidity of application markets presents enormous security challenges. Rapidly de-
veloped and deployed applications [214], coarse permission systems [5], privacy-invading
behaviors [6, 32, 215], malware [216], and limited security models [118, 117, 217] have
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led to exploitable phones and applications. Although users seemingly desire it, applica-
tion markets are not in a position to provide security in more than a superficial way [2].
The lack of a common definition for security and the volume of applications render a
market-based analysis a Gordian knot.

Understand that malicious, questionable, and vulnerable applications will always find
their way through attempts to certify applications before market distribution. Embrac-
ing this fact, third-party security services such as the App Genome Project [200] and
WhatApp [201] provide security and privacy reviews of applications across markets. Un-
dercutting academic and industry efforts is a pervasive lack of transparency. Ongoing
efforts have looked at install time artifacts (e.g., permissions [5]), or run-time behaviors
(e.g., taint-tracking [6]) to grossly estimate security. More recent efforts have begun
to evaluate code by analyzing application binaries for specific behaviors [32]. However,
these attempts have failed to broadly address a core question in smartphone security:
do consumer applications contain vulnerabilities or malicious code?

In this chapter, we broadly characterize the security of applications in the Android
Market. In contrast to past studies with narrower foci, e.g., [6, 32], we consider a breadth
of security concerns including both dangerous functionality and vulnerabilities, and apply
a wide range of analysis techniques. We briefly introduce the Dalvik decompilation (ded)
process that recovers source code from installation packages. We subject current popular
Android applications to a battery of general and platform-specific source code analyses
targeted at identifying poor security design, vulnerabilities, and malicious behaviors. We
document the results and provide an initial characterization of the state of security in
Android applications. This chapter makes the following contributions:

• We create an extensive test suite for analyzing the security of Android applications.
These tests are formulated as control flow, data flow, structural, and semantic
source code analysis queries.

• We execute the security analysis on 21 million lines of source code from the top
1,100 free applications in the Android application market. Results are manually
verified by investigating the code identified by static analysis.

• We document the results of the analysis and identify the root cause and potential
severity of discovered vulnerabilities. We posit on the current state of security in
Android applications and consider areas of future analysis.

Our popularity-focused security analysis provides important insight into the most
frequently used applications. Our findings inform the following broad observations.
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1. Similar to past studies, we found wide misuse of privacy sensitive information—
particularly phone identifiers and geographic location. Phone identifiers, e.g.,
IMEI, IMSI, and ICC-ID, were used for everything from “cookie-esque” tracking
to accounts numbers.

2. We found no evidence of telephony misuse, background recording of audio or video,
abusive connections, or harvesting lists of installed applications.

3. Ad and analytic network libraries are integrated with 51% of the applications
studied, with Ad Mob (appearing in 29.09% of apps) and Google Ads (appearing
in 18.72% of apps) dominating. Many applications include more than one of these
ad networks.

4. Many developers fail to securely use Android APIs. These failures generally fall
into the classification of insufficient protection of privacy sensitive information.
However, we found no exploitable vulnerabilities that can lead malicious control of
the phone.

This study is an initial but not final word on Android application security. The study
described throughout is deep but not exhaustive. Thus, one should be circumspect about
any interpretation of the following results as a definitive statement about how secure
applications are today. Rather, we believe these results are indicative of the current
state, but there remain many aspects of the applications that warrant deeper analysis.

The remainder of this chapter proceeds as follows. Section 6.2 provides an overview of
the ded decompiler, describing how an Android application’s source code can be extracted
entirely from its installation package. Section 6.3 describes our analysis methodology
and an overview of the areas analyzed in our study. Section 6.4 enumerates our security
queries in detail. Section 6.5 presents the results of our analysis including observations
made through manual inspection of source code. Section 6.7 summarizes our findings.

6.2 Overview of ded

ded recovers an application’s source code from the installation image. For brevity, here
we only highlight the challenges and structure of ded. Interested readers are referred to
the related paper describing ded for a detailed treatment of its design and validation [7].

Android applications are written in Java, but run on the Dalvik virtual machine. The
DVM was designed for resource constrained mobile phones. For this reason, the DVM
bytecode and run-time environment differ substantially from that for existing JVMs.
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Figure 6.1. Compilation process for DVM applications.

For example, DVM has a different instruction set and constant pool structure, is based
on a register architecture (rather than a stack architecture), and has different typing
structures. Moreover, in contrast to Java’s per-class file structure, a Dalvik application
consists of a single .dex file containing all classes for the application.

Android applications are compiled using both a Java compiler and the dex translator,
as shown in Figure 6.1. Here, the Java compiler operates normally to produce a collection
of .class files. The Dalvik dx compiler then consumes the classes, recompiles them to
Dalvik bytecode, and writes the resulting application into a single .dex file. The .dex

file is packaged with the application manifest into the installation image .apk file.
ded extracts an application’s source solely from its .apk image. This occurs in three

stages: a) retargeting, b) optimization, and c) decompilation. ded initially retargets
Dalvik .dex files to Java .class files by translating instructions and target/offset refer-
ences, inferring types, and performing complex class, method, and code reorganization.
However, retargeting process yields complex, unoptimized Java bytecode. When decom-
piled into Java, this unoptimized bytecode becomes a jumbled mess that when run is
semantically identical to the original program, but is nearly impossible to visually in-
spect or analyze using automated tools. For this reason, we use Soot framework [218] to
first optimize the ded bytecode output and thereafter decompile it back into the original
source.

ded has been extensively validated [7]. An initial battery of tests recovered the source
code for small, medium and large open source applications and found no errors in recov-
ery. In most cases the recovered code was virtually indistinguishable from the original
source (modulo comments and method and variable names, which are not included in the
bytecode). A second study of 12 million lines of code for 143 thousand classes in 1,100
applications was performed in late spring of 2010. This study identified 543 individual
errors falling into three classes: a) unresolved class references caused by incomplete in-
formation about system libraries, b) type violations present in the Dalvik compiled code
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(which appears to be bug in dex) and c) very infrequent pathological boundary cases
in which ded produces illegal bytecode. Note that all errors are manifest during/after
decompilation, and thus we omit the source code of any class containing these errors
from study. The number of errors we encountered during this study was vanishingly
small, and thus they had no meaningful effect on the study or its results.

The Soot framework uses sophisticated type inference and code analysis techniques [219,
220, 221] to accurately extract program semantics and recover the original code. Soot
is centrally an optimization tool with the ability to recover source code in most cases,
but does not process certain legal program idioms (bytecode structures) generated by
ded. We encountered and refactored many of these idioms while developing ded, but
were unable to resolve all of them. In particular, two central problems we have en-
countered involve interactions between synchronized blocks and exception handling, and
complex control flows caused by break statements. The difference between the success
rates of retargeted and recovered rates is almost entirely due to Soot’s inability to extract
source code from these otherwise legal idioms. Closed source decompilers such Jad [222],
JD [223] and Fernflower [224] may be more effective at recovering source code, but are
either incompatible with the Java bytecode version produced by ded or do not provide
stand-alone tools. The limitations of Soot places a upper limit on our code recovery
success rate, and we will consider other tools in future work.

6.3 Evaluating Android Security

Our Android application study consisted of a broad range of tests focused on three kinds
of analysis: a) exploring issues uncovered in previous studies and malware advisories, b)
searching for general coding security failures, and c) exploring misuse/security failures
in the use of Android framework. The following discusses the process of identifying and
encoding the tests.

6.3.1 Analysis Specification

We used four approaches to evaluate recovered source code: control flow analysis, data
flow analysis, structural analysis, and semantic analysis to perform the security tests, as
follows. Unless otherwise specified, all tests used the Fortify SCA [225] static analysis
suite of tools.

Control flow analysis: Control flow analysis imposes constraints on the sequences of
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actions executed by an input program P , classifying some of them as errors. Essentially,
a control flow rule is an automaton A whose input words are sequences of actions of
P—i.e., the rule monitors executions of P . An erroneous action sequence is one that
drives A into a predefined error state. To statically detect violations specified by A, the
program analysis traces each control flow path in the tool’s model of P , synchronously
“executing” A on the actions executed along this path. Since not all control flow paths
in the model are feasible in concrete executions of P , false positives are possible. False
negatives are also possible in principle, though uncommon in practice. Figure 6.2 shows
an example automaton for sending intents. Here, the error state is reached if the intent
contains data and is sent unprotected without specifying the target component, which
can result in unintended information leakage.

Data flow analysis: Data flow analysis permits the declarative specification of prob-
lematic data flows in the input program. For example, an Android phone contains several
pieces of private information that should never leave the phone: the user’s phone num-
ber, IMEI (device ID), IMSI (subscriber ID), and ICC-ID (SIM card serial number). In
our study, we wanted to check that this information is not leaked to the network. While
this property can in principle be coded using automata, data flow specification allows
for a much easier encoding. The specification declaratively labels program statements
matching certain syntactic patterns as data flow sources and sinks. Data flows between
the sources and sinks represent violations.

Structural analysis: Structural analysis allows for declarative pattern matching on
the abstract syntax of the input source code. Structural analysis specifications are not
concerned with program executions or data flow, therefore, analysis is local and straight-
forward. For example, in our study, we wanted to specify a bug pattern where an Android
application mines the device ID of the phone on which it runs. This pattern was defined
using a structural rule that stated that the input program called a method getDeviceId()
whose enclosing class was android.telephony.TelephonyManager.
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Semantic analysis: Semantic analysis allows the specification of a limited set of
constraints on the values used by the input program. For example, a property of in-
terest in our study was that an Android application does not send SMS messages to
hard-coded targets. To express this property, we defined a pattern matching calls to An-
droid messaging methods such as sendTextMessage() and sendDataMessage(). Semantic
specifications permit us to directly specify that the first parameter in these calls (the
phone number) is not a constant. The analyzer detects violations to this property using
constant propagation techniques well known in program analysis literature.

6.3.2 Analysis Overview

Our analysis covers both dangerous functionality and vulnerabilities. Selecting the prop-
erties for study was a significant challenge. The following enumerates our areas of inves-
tigation. Section 6.4 discusses the analysis specifications in more detail.

Misuse of Phone Identifiers (Section 6.5.1.1): Previous studies [6, 32] identified
phone identifiers leaking to remote network servers. We seek to identify not only the
existence of data flows, but to understand why they occur.

Exposure of Physical Location (Section 6.5.1.2): Previous studies [6] identified
location exposure to advertisement servers. Many applications provide valuable location-
aware utility, which may be desired by the user. By manually inspecting code, we seek
to identify the portion of the application responsible for the exposure.

Abuse of Telephony Services (Section 6.5.2.1): Smartphone malware has sent
SMS messages to premium-rate numbers. We study the use of hard-coded phone numbers
to identify SMS and voice call abuse.

Eavesdropping on Audio/Video (Section 6.5.2.2): Audio and video eavesdrop-
ping is a commonly discussed smartphone threat [226]. We examine cases where appli-
cations record audio or video without control flows to UI code.

Botnet Characteristics (Sockets) (Section 6.5.2.3): PC botnet clients historically
use non-HTTP ports and protocols for command and control. Most applications use
HTTP client wrappers for network connections. Therefore, we examine use of the Socket
API for suspicious behavior.

Harvesting Installed Applications (Section 6.5.2.4): The list of installed appli-
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cations is a valuable demographic for marketing. We survey the use of APIs capable of
retrieving this list to identify harvesting of installed applications.

Use of Advertisement Libraries (Section 6.5.3.1): Previous studies [6, 32] iden-
tified information exposure to ad and analytics networks. We survey inclusion of ad and
analytics libraries and the information they access.

Dangerous Developer Libraries (Section 6.5.3.2): During our manual source
code inspection, we observed dangerous functionality replicated between applications.
We report on this replication and the implications.

Android-specific Vulnerabilities (Section 6.5.4): We search for non-secure coding
practices [41, 227], including: writing sensitive information to logs, unprotected broad-
casts of information, IPC null checks, injection attacks on intent actions, and delegation.

Misuse of Passwords (Section 6.5.5.1): We look for vulnerabilities in password
management, including: hard-coded passwords, null or empty passwords, storage of
plaintext passwords, and leakage of passwords to external storage.

Misuse of Cryptography (Section 6.5.5.2): We look for cryptography misuse,
including: insufficient key size, deprecated algorithms (e.g., DES, MD5), inappropriate
padding, and weak pseudo-random number generators.

Injection Vulnerabilities (Section 6.5.5.3): We look for injection vulnerabilities,
including: file paths, databases, and command execution.

6.4 Analysis Query Definitions

We now describe in detail the source code analysis specifications used to identify dan-
gerous functionality and vulnerabilities. We define control flow analysis as FSMs, and
data flow analysis as articulations of sources and sinks. The structural and semantic
are presented in the Fortify SCA syntax used for the analysis. We begin with analysis
definitions for dangerous functionality.

6.4.1 Dangerous Functionality

Our analysis considers several types of dangerous functionality. First, we discuss exfiltra-
tion of information using data flow analysis. Specifically, we consider location and phone
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identifiers as data flow sources. Second, we discuss the use of semantic analysis to identify
misuse of telephony services by looking for static values passed to corresponding APIs.
Third, we describe how to identify recording of audio and video in the background using
both structural and control flow analysis. Fourth, we discuss how the Socket API can be
used as an indicator for identifying botnet-like activity. Here, we use structural analysis
as an more-intelligent grep utility. The analysis results in Section 6.5 demonstrate how
even simple queries can shed enormous insight. Finally, we discuss specifications to help
identify harvesting of the list of installed applications.

Note that all of the specifications are heuristics in and of themselves. They represent
idioms that indicate potential dangerous functionality. The goal of study is to practically
understand functionality by any means necessary. Hence, we use program analysis to
minimize manual inspection effort. As will be shown in the results for several rules,
a small number of false positives is worth the manual effort required to identify the
non-existence of a dangerous behavior.

6.4.1.1 Exfiltration of Information

We use data flow analysis to identify exfiltration of phone identifiers and location. Our
specification uses the following data flow sources in sinks. Note that there are several
APIs through which information may be transmitted to the network. As discussed below,
subtleties of these APIs require creative definitions.

Additionally, note that the Fortify SCA data flow specification syntax allows us to
apply source and sink targets to all classes that implement, override, and extend the
specified class. This syntax significantly simplifies definition specification.

Data Flow Sources: We define a data flow source for phone identifier APIs of interest:
getLine1Number() (phone number); getDeviceID() (IMEI); getSubscriberId() (IMSI); and
getSimSerialNumber() (ICC-ID). All of these APIs are defined within the TelephonyMan-
ager class in the android.telephony namespace.

Location information can be accessed directly, or obtained via a callback method reg-
istered with the phone’s location manager. Instead of using these APIs as data sources,
we observe that location information is always obtained as a Location object defined
in the android.location namespace. The latitude and longitude values are obtained by
invoking the getLatitude() and getLongitude() access methods. Therefore, we use these
methods as data flow sources. While this choice may result in additional false positives,
it simplifies source specification, and possibly more importantly, shortens the data flow
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path that must be tracked. This latter advantage is important, because it lessens the
impact of Android IPC and non-recoverable source code.

Data Flow Sinks: The network is our primary data sink; however, there are multiple
APIs through which information can leave an application. Specifically, Android provides
HTTP-specific APIs to simplify communication with Web servers. We consider both the
URLConnection class in the java.net namespace (and extended classes) as well as the
HttpClient class in org.apache.http.client namespace.

Our data flow sinks consider HTTP GET and POST parameters, request proper-
ties, and data written to the output stream. Specification of parameters and prop-
erties to APIs is straightforward. First, HTTP GET parameters are commonly en-
coded directly in a URL. Therefore, we define a data flow sink at the constructor
and set() method of the URL class in the java.net namespace. Second, the Http-
Client API is commonly used to specify HTTP POST parameters. We define a data
flow sink at the setEntity() method of the HttpEntityEnclosingRequestBase class of the
org.apache.http.client.methods namespace. However, to ensure the data flow is properly
tracked, defined several data flow pass-through rules for the constructors the HttpEntity
and AbstractHttpEntity in the org.apache.http.entity namespace, and the BasicNameVal-
uePair class in the org.apache.http.message namespace. HTTP POST parameters are
passed to these classes, and we must track information through them to setEntity().
Since these classes are within the Android library (and not included in the source code
analysis), data flow pass-through specifications are required. Finally, we define a data
flow sink at the setRequestProperty() of the URLConnection class in the java.net names-
pace.

In addition to these APIs, sensitive information may be written to an output stream.
However, we must distinguish between a file output stream and a network output stream.
To distinguish between these two IO interfaces, we define a data flow source at the getOut-
putStream() method of the URLConnection in the java.net namespace. This source
adds the flat NETOUT to the returned OutputStream object. Next, leveraging the imple-
ments/overrides/extends syntactic feature in SCA, we define a pass-through rule for all
OutputStream and Writer classes in the java.io namespace. This effectively propagates
the NETOUT flag to all corresponding output child classes. Finally, we define a data flow
sink at the write() method of the OutputStream and Writer classes (again utilizing im-
plements/overrides/extends), to identify the combination of the NETOUT flag and one of
the data flow sources for location and phone identifiers, as discussed above. Figure 6.3
depicts this approach.
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Figure 6.3. Data flow analysis to distinguish file and network IO.

Identification of API Use: The data flow analysis may have false negatives resulting
from Android IPC and code recovery. To gain a better understanding of the information
that applications access, we also define simple queries for API use. For phone identi-
fiers, our rules identify when the above defined methods are called. For location, we
consider both the getLastKnownLocation() and requestLocationUpdates() methods of the
LocationManager class in the android.location namespace. Additionally, we query for in-
stances of the onLocationChanged() callback method defined within a LocationListener
class in the android.location namespace.

6.4.1.2 Misuse of Telephony Services

We use semantic analysis to identify misuse of telephony service APIs. Specifically, we
are interested in the destination phone number used for SMS messages and placing voice
calls. Android defines significantly different APIs for SMS and voice calls. Use cases
are also different. For example, calling statically defined customer service numbers from
an application is sometimes desirable, whereas sending SMS messages are generally not
used for customer service (as email provides a more suitable mechanism for asynchronous
help).

SMS Services: We looked for hard-coded phone numbers in the SMS API using
semantic analysis. Our specification identifies constant values passed to the destina-
tion phone number in the sendTextMessage(), sendDataMessage(), and sendMultiPart-
TextMessage() methods of the SmsManager class in the android.telephony namespace.
Note that this specification is limited by Fortify SCA’s analysis. The semantic analysis
is limited to constant values, which are semantically different than hard-coded values.
While the definition identifies hard-coded values passed directly to the API, it does not
identify hard-coded values assigned to variables, unless the Java variable is made final.

Voice Call Services: Android does not use a simple method for making voice calls.
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Figure 6.4. Structural analysis definition to identify background audio recording.

Instead, an intent with either the CALL or DIAL framework defined action strings is used
to start an activity. This intent specifies a phone number as its data URI field. If the
CALL action string is used, the application must have the CALL_PHONE permission, and
the voice call is initiated immediately. If the DIAL action string is used, Android starts
the phone dialer with the specified number entered, but the user must select the “call”
button to initiate the voice call. No permission is required to use the DIAL action string.

Lacking an obvious method argument for semantic analysis, we consider the parse()
method of the Uri class in the java.net namespace. Uri objects are used for various pur-
poses; however, Android uses the “tel:” prefix to identify telephone numbers. There-
fore, our semantic analysis queries for constant strings beginning with “tel:” (note that
again, this is an approximation of the desired analysis for hard-coded values). We also
define a query that includes “900” in the semantic analysis to identify premium-rate
numbers.

6.4.1.3 Background Audio and Video Recording

Android provides three APIs for recording audio and visual information. The Au-
dioRecord class in the android.media namespace defines the read() method to access
microphone input. The Camera class in the android.hardware namespace defines the
takePicture() method to capture still images. Finally, the MediaRecorder class in the
android.media namespace is used to both record audio and video.

Audio: Simply recording audio is not suspicious in and of itself. As an approximation
of recording audio without the user’s knowledge, we look for use of the AudioRecord
API in code not accessible to an Android activity component. Figure 6.4 provides this
structural analysis definition. Here, we use the special reachedBy directive that considers
the call graph leading to the execution of read().

A nearly identical specification is used for the start() method of MediaRecord. This
rule also identifies video recording; however, as we discuss below, there are alternative
methods of identifying background recording of video.
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Figure 6.5. FSM for control flow analysis to identify background video recording.

Still Images: Still images are obtained using the takePicture() method of the Camera
class. The API requires that startPreview() is called before takePicture(). In order to
call takePicture(), setPreviewDisplay() must be called to specify a user interface layout
area to display a preview of the still image. Therefore, still images cannot be taken
without the user’s knowledge.

Video: The MediaRecorder class contains methods to set audio and video sources. Our
specification ensures that if setVideoSource() is called, then so is setPreviewDisplay(),
which will inform the user that the camera is being accessed. The FSM for our control
flow specification is shown in Figure 6.5.

6.4.1.4 Socket API Use

We hypothesize that most network-based Android applications are HTTP clients. An-
droid includes the URLConnection and HttpClient APIs to abstract network communi-
cation to Web servers. Therefore, we expect most applications will choose to use these
APIs over direct access with Socket objects. To identify the use sockets, we use simple
structural analysis that queries invocation of the connect() method and the InetAddress
and String constructor variants of the Socket class in the java.net namespace.

Note that this definition is not looking for dangerous functionality directly. In fact,
we expect some applications will use sockets directly, e.g., for streaming audio. Rather,
we hope to characterize how many applications use sockets directly in order to evaluate
our hypothesis and determine its usefulness as a security analysis heuristic.

6.4.1.5 Harvesting Installed Applications

Android provides the PackageManager API (in the android.content.pm namespace) to
abstract access to information pertaining to installed applications, their components, and
permissions. Using this API, an application harvest the list of installed applications.
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There are two general approaches to acquiring the list of installed applications. First,
one of the getInstalledApplications(), getInstalledPackages(), or getPreferredPackages()
can be called. Second, generic queries can be made to one of the queryIntentActivities(),
queryIntentServices(), queryBroadcastReceivers(), or queryContentProviders() methods.
We use a simple structural analysis definition for each of these two cases.

6.4.2 Vulnerabilities

Android applications are written Java. There are many vulnerability definitions for Java
applications; however, the definitions are frequently designed to detect vulnerabilities in
server applications. While our study includes analysis of standard Java vulnerabilities, we
seek to define Android-specific vulnerability specifications. The remainder of this section
discusses these specifications. First, we use data flow analysis to identify location and
phone identifiers written to Android’s insecure logging interface. Second, we use control
flow analysis to identify unsafe intent broadcasts that may expose sensitive information.
Third, we use control flow analysis to identify insufficiently protected dynamically created
broadcast receiver components. Fourth, we use data flow analysis to identify injection
attacks on intent messages. Fifth, we use control flow analysis to identify delegation
vulnerabilities when using pending intents. Finally, we use control flow analysis to look
specifically for failures to check for null values before dereferencing objects obtained via
Android’s IPC API.

6.4.2.1 Leaking Information to Insecure Locations

We look for two types of information leaks: leaks to log files, and leaks to IPC. We begin
with log files.

Leaks to Log files: Java has several APIs for simplified application logging. These
log files are often stored within a directory only accessible to the application writing
to the log. However, Android includes the logcat API for centralized logging by all
applications. Any application with the READ_LOGS permission can access the logs. For the
data flow analysis, we use the same sources for location and phone identifiers indicated
in Section 6.4.1.1 to identify exfiltration. We define a data flow sink at all methods of
the Log class in the android.util namespace.

Leaks to IPC: Sending sensitive information over IPC is only a vulnerability if it can
be accessed by an unintended application. Therefore, instead of using data flow analysis
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Figure 6.6. FSM for control flow analysis to identify leaks to IPC.

to identify leaks to IPC, we use control flow analysis to determine if an intent message is
broadcast to an action string without specifying either a permission to protect the intent,
or the target application and component name. If this condition is not met, a malicious
application can eavesdrop to potentially access sensitive information. The FSM for this
control flow analysis is shown in Figure 6.6.

In the figure, paths lead to the “targeted” state if the application and component is
explicitly provided. Note that there are several ways in which this can occur. Next, we
only want to identify intent messages that contain “extras” information, therefore, the
FSM must transition to has_data before reaching the error state. We assume intent
messages without extras do not contain sensitive information. Finally, eavesdropping
can only occurs if the intent is broadcast without a permission protecting its access.
Note that the developer may pass null to the API accepting a permission.

6.4.2.2 Unprotected Broadcast Receivers

Activity and service components occasionally dynamically register broadcast receivers to
receive intent messages only during a specific time interval (e.g., while the activity is in
focus). By default, if a component defines an intent filter, it is public, and any application
can construct an intent message that can be sent directly to it. In contrast, if there is
no intent filter, the component is private, and can only be accessed by components
in the same application. Developers can prevent forging attacks by protecting public
components with a permission. However, there are two APIs to dynamically register a
broadcast receiver, and one does not include a permission to protect the component.

Figure 6.7 shows the FSM for control flow analysis to identify unprotected dynamic
registration of a broadcast receiver that has an intent filter. Here, the FSM tracks an
intent filter object if. The intent filter will only make the broadcast receiver public if
it contains at least one action string. Finally, the FSM considers the case where the
developer passes null as a permission.
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Figure 6.7. FSM for control flow analysis to identify unprotected broadcast receivers.

6.4.2.3 Intent Injection Attacks

Android’s intent messages perform actions and therefore subject to injection attacks
from the network and IPC input from other applications. Specifically, we are interested
in untrusted input that is used in an address field of an intent message, which includes
both the action string and the destination application and component fields.

Network Data Flow Sources: To identify untrusted network input, we assign the
data flow source flag NETIN at the return of the getInputStream() method of the URL-
Connection class in the java.net namespace, as well as the getEntity() method of the
HttpResponse class in the org.apache.http namespace. To account for logic within An-
droid libraries, we define pass-through specifications to propagate NETIN through Input-
Stream and Reader class constructors (java.io namespace), and to the return of the read()
methods of these classes. Note that we again leverage the implements/overrides/ex-
tends feature for method specification. Additionally, to propagate NETIN for input from
HttpResponse, we define a pass-through specification for the toString(), toByteArray(),
and getContentCharSet() methods of the EntityUtils class in the org.apache.http.util
namespace.

IPC Data Flow Sources: To identify untrusted IPC input, we assign the data flow
source flag IPCIN to the return of all methods with prefix “get” in the Intent class of the
android.content namespace. The prefix matching is achieved using wildcard symbols.

Intent Address Data Flow Sink: We define the data flow sink for NETIN and IPCIN

flags at the inputs to the constructor, setAction(), setClassName(), and setComponent()
methods of the Intent class in the android.content namespace. Note that we define an
additional pass-through specification for the constructor of the ComponentName class of
the android.content namespace. This class converts text strings specifying the application
and component names into a ComponentName object passed to setComponent().
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6.4.2.4 Delegating Control

Pending intents are created from intent messages. To create a pending intent, an appli-
cation defines an intent message and specifies whether it should be used for an activity,
service, or broadcast. The pending intent itself is simply a reference to the Intent, and
can be shared via RPC to another process within the application, or to another appli-
cation altogether. When another application receives a pending intent, it can fill in any
missing fields (e.g., “extras” values), and invoke the intent. When the intent is invoked,
it targets the predefined component type (e.g., activity) and executes within the protec-
tion domain of the application that created the pending intent. Frequently, applications
use pending intents as “long-term” callbacks, e.g., to be woken up by the system’s alarm
service, or Android’s notification manager that allows the user to resume applications
based on events.

A vulnerability can result if a pending intent is created from an intent message that
does not explicitly define the target component. If the target component is not defined,
the application receiving the pending intent can effectively redirect the intent to the
application of its choosing. Figure 6.8 shows the FSM for control flow analysis to identify
pending intents created from intent messages without a specified target component.

In the figure, state variable i tracks an intent message from creation. Once a target
component is specified, the FSM transitions to the targeted state, which can never
transition to the error state. However, if a pending intent is created from an intent
message with the empty state, an error indicating a vulnerability is reported. Here,
$getp() is a macro that matches the getActivity(), getService(), and getBroadcast()
methods of the PendingIntent class in the android.app namespace.

Note that this FSM does not identify how the pending intent is used. In a practical
threat model, sending the pending intent to a system application is not a vulnerability.
However, for our analysis, we seek to understand how applications use pending intents



97

init

p1

p2

p3

p1 = i = $getAction(...) |
        i = $getExtra(...) |
        i = $bget(...)
p2 = #compare(i, null)
p3 = i.$any(...)

checked

erroraccessed

Figure 6.9. FSM for control flow analysis of null checks on IPC input.

in potentially unsafe scenarios. Future work will consider how to reduce the possibility
of false positive.

6.4.2.5 Null Checks on IPC Input

Android terminates an application if it dereferences null. Frequently, applications per-
form actions based on objects received via IPC. If the application does not perform
null checks on received objects, remote applications can cause the application to crash.
This denial of service vulnerability is particularly useful for an adversary attempting
to stop background service functionality, as the user may not be aware the service has
terminated.

Figure 6.9 shows the FSM for control flow analysis to identify missed null checks on
IPC input. The FSM tracks any variable i and transitions to state accessed when i is
input from IPC. Here, $getAction() is the similarly named method of the Intent class
in the android.content namespace; $getExtra() matches any get.*Extra() method of
the Intent class, and $bget matches any get.*() method of the Bundle class in the
android.os namespace. The FSM uses the analysis directive #compare() to determine if
the application compares i to null. However, if this does not occur, $any() matches
any method of object i, which will result in a null dereference.

To gain additional insight as to where null dereferences on IPC input occur, we
define multiple versions of the FSM that are only evaluated in Activity, Service, and
BroadcastReceiver classes. Note that this limits analysis to methods defined within
classes extending these classes, and does not include null dereferences in objects used
by activities, services, and broadcast receivers. Therefore, our analysis considers both
general and specific cases.
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Table 6.1. Access of Phone Identifier APIs
Identifier # Calls # Apps # w/ Permission∗

Phone Number 167 129 105
IMEI 378 216 184†

IMSI 38 30 27
ICC-ID 33 21 21
Total Unique - 246 210†
∗ Defined as having the READ_PHONE_STATE permission.
† Only 1 app did not also have the INTERNET permission.

6.5 Application Analysis Results

In this section, we document the program analysis results and manual inspection of
identified violations. The automated program analysis took 96.3 hours (about 4 days)
of compute time.

6.5.1 Information Misuse

In this section, we explore how sensitive information is being leaked [32, 6] by the studied
applications through information sinks including OutputStream objects retrieved from
URLConnections, HTTP GET and POST parameters in HttpClient connections, and
the string used for URL objects. Future work may also include SMS as a sink.

6.5.1.1 Phone Identifiers

We studied four phone identifiers: phone number, IMEI (device identifier), IMSI (sub-
scriber identifier), and ICC-ID (SIM card serial number). We performed two types of
analysis: a), we scanned for APIs that access identifiers, and b) used data flow analysis
to identify code capable of sending the identifiers to the network.

Table 6.1 summarizes APIs calls that receive phone identifiers. In total, 246 appli-
cations (22.4%) included code to obtain a phone identifier; however, only 210 of these
applications have the READ_PHONE_STATE permission required to obtain access (115 ap-
plications have this permission, but do not access these APIs). We observe from Table 6.1
that applications most frequently access the IMEI (216 applications, 19.6%). The phone
number is used second most (129 applications, 11.7%). Finally, the IMSI and ICC-ID
are very rarely used by applications (less than 3%).

Table 6.2 indicates the data flows that exfiltrate phone identifiers. The 33 applications
have the INTERNET permission, but 1 application does not have the READ_PHONE_STATE
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Table 6.2. Detected Data Flows to Network Sinks
Phone Identifiers Location Info.

Sink # Flows # Apps # Flows # Apps
OutputStream 10 9 0 0
HttpClient Param 24 9 12 4
URL Object 59 19 49 10
Total Unique - 33 - 13

permission (see developer toolkits in Section 6.5.3). We found data flows for all four
identifier types: 25 applications have IMEI data flows; 10 applications have phone num-
ber data flows; 5 applications have IMSI data flows; and 4 applications have ICC-ID
data flows.

To gain a better understanding of how phone identifiers are used, we manually in-
spected all 33 identified applications, as well as several additional applications that con-
tain calls to identifier APIs. For all but 1 of the 33 applications, we confirmed exfil-
tration. While we could not confirm the exact data flow for the remaining application
due to code complexity, we identified a data flow not found by program analysis. The
analysis informs the following findings.

Finding 1 - Phone identifiers are frequently leaked through plaintext requests. Most
sinks are HTTP GET or POST parameters. HTTP parameter names for the IMEI
include: “uid,” “user-id,” “imei,” “deviceId,” “deviceSerialNumber,” “devicePrint,” “X-
DSN,” and “uniquely code”; phone number names include “phone” and “mdn”; and
IMSI names include “did” and “imsi.” In one case we identified an HTTP parameter for
the ICC-ID, but the developer had mislabeled it as “imei.”

Finding 2 - Phone identifiers are used as device fingerprints. Several data flows directed
us towards code that reports not only phone identifiers, but also other phone properties to
a remote server. For example, a wallpaper application (com.eoeandroid.eWallpapers.cartoon)
contains a class named SyncDeviceInfosService that collects the IMEI and attributes
such as the OS version and device hardware. The method sendDeviceInfos() sends this
information to a server. In another application (com.avantar.wny), the method PhoneS-
tats.toUrlFormatedString() creates a URL parameter string containing the IMEI, device
model, platform, and application name. While the intent is not clear, such fingerprinting
indicates that phone identifiers are used for more than a unique identifier.

Finding 3 - Phone identifiers, specifically the IMEI, are used to track individual users.
Several applications contain code that binds the IMEI as a unique identifier to network re-
quests. For example, some applications (e.g. com.Qunar and com.nextmobileweb.craigsphone)
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appear to bundle the IMEI in search queries; in a travel application (com.visualit.tubeLondonCity),
the method refreshLiveInfo() includes the IMEI in a URL; and a “keyring” application
(com.froogloid.kring.google.zxing.client.android) appends the IMEI to a variable named
retailerLookupCmd. We also found functionality that includes the IMEI when check-
ing for updates (e.g., com.webascender.callerid, which also includes the phone number)
and retrieving advertisements (see Finding 6). Furthermore, we found two applications
(com.taobo.tao and raker.duobao.store) with network access wrapper methods that in-
clude the IMEI for all connections. These behaviors indicate that the IMEI is used as a
form of “tracking cookie”.

Finding 4 - The IMEI is tied to personally identifiable information (PII). The com-
mon belief that the IMEI to phone owner mapping is not visible outside the cellular
network is no longer true. In several cases, we found code that bound the IMEI to ac-
count information and other PII. For example, applications (e.g. com.slacker.radio and
com.statefarm.pocketagent) include the IMEI in account registration and login requests.
In another application (com.amazon.mp3), the method linkDevice() includes the IMEI.
Code inspection indicated that this method is called when user chooses to “Enter a claim
code” to redeem gift cards. We also found IMEI use in application functionality (e.g.,
com.morbe.guarder and com.fm207.discount) to sending comments or reporting prob-
lems. Finally, we found one application (com.andoop.highscore) that appears to bundle
the IMEI when submitting high scores for games. Thus, it seems clear that databases
containing mappings between physical users and IMEIs are being created.

Finding 5 - Not all phone identifier use leads to exfiltration. Several applications that
access phone identifiers did not exfiltrate the values. For example, one application
(com.amazon.kindle) creates a device fingerprint for a verification check. The finger-
print is kept in “secure storage” and does not appear to leave the phone. Another
application (com.match.android.matchmobile) assigns the phone number to a text field
used for account registration. While the value is sent to the network during registration,
the user is presented an opportunity to change it.

Finding 6 - Phone identifiers are sent to advertisement and analytics servers. Many
applications have custom ad and analytics functionality. For example, in one application
(com.accuweather.android), the class ACCUWX AdRequest is an IMEI data flow sink.
Another application (com.amazon.mp3) defines Android service component AndroidMet-
ricsManager with an IMEI data flow sink. Phone identifier data flows also occur in ad
libraries. For example, we found a phone number data flow in the com/wooboo/adlib_

android library used by several applications (e.g., cn.ecook, com.superdroid.sqd, and
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Table 6.3. Access of Location APIs
Identifier # Uses # Apps # w/ Perm.∗

getLastKnownLocation 428 204 148
LocationListener 652 469 282
requestLocationUpdates 316 146 128
Total Unique - 505 304†
∗ Defined as having a LOCATION permission.
† In total, 5 apps did not also have the INTERNET permission.

com.superdroid.ewc). Section 6.5.3 discusses ad libraries.

6.5.1.2 Location Information

Location information is accessed in two ways: (1) calling getLastKnownLocation(), and
(2) defining callbacks in a LocationListener object passed to requestLocationUpdates().
Due to code recovery failures, not all LocationListener objects have corresponding re-
questLocationUpdates() calls. We scanned for all three constructs.

Table 6.3 summarizes the access of location information. In total, 505 applications
(45.9%) attempt to access location and only 304 (27.6%) have the permission to do so.
The separation between LocationListener and requestLocationUpdates() is primarily due
to the AdMob library, which defined the former but has no calls to the latter.

Table 6.2 shows detected location data flows to the network. To overcome missing
code challenges, the data flow source was defined as the getLatitude() and getLongitude()
methods of the Location object retrieved from the location APIs. We manually inspected
the 13 applications with location data flows. Many data flows appeared to reflect legit-
imate uses of location for weather, classifieds, points of interest, and social networking
services. Inspection of the remaining applications informs the following findings:

Finding 7 - The granularity of location reporting may not always be obvious to the
user. In one application (com.andoop.highscore) both the city/country and geographic
coordinates are sent along with high scores. Users may be aware of regional geographic
information associated with scores, but it was unclear if users are aware that precise
coordinates are also used.

Finding 8 - Location information is sent to advertisement servers. Several location data
flows appeared to terminate in network connections used to retrieve ads. For example,
in two applications (com.avantar.wny and com.avantar.yp) appended the location to
the variable webAdURLString. Motivated by [6], we inspected the AdMob library to
determine why no data flow was found and determined that source code recovery failures
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led to the false negatives. Section 6.5.3 expands on ad and analytics libraries.

6.5.2 Phone Misuse

This section explores misuse of the smartphone interfaces. We begin by investigating
voice and text use, followed by on-phone audio and video, use of data interfaces, and
access to the list of installed applications.

6.5.2.1 Telephony Services

Smartphone malware can provide the author direct compensation by making phone calls
or sending SMS messages to premium-rate numbers [25, 20]. We defined queries to
identify such malicious behavior: (1) a constant used for the SMS destination number;
(2) creation of URI objects with a “tel:” prefix (used for phone call intent messages)
and the string “900” (a premium-rate number prefix in the US); and (3) any URI objects
with a “tel:” prefix. The analysis informs the following findings.

Finding 9 - Applications do not appear to be using fixed phone number services. We
found zero applications using a constant destination number for the SMS API. Note that
our analysis specification is limited to constants passed directly to the API and final
variables, and therefore may have false negatives. We found two applications creating
URI objects with the “tel:” prefix and containing the string “900”. One application
included code to call “tel://0900-9292”, which is a premium-rate number (e0.70 per
minute) for travel advice in the Netherlands. However, this did not appear malicious,
as the application (com.Planner9292) is designed to provide travel advice. The other
application contained several hard-coded numbers with “900” in the last four digits of
the number. The SMS and premium-rate analysis results are promising indicators for
non-existence of malicious behavior. Future analysis should consider more premium-rate
prefixes.

Finding 10 - Applications do not appear to be misusing voice services. We found 468
URI objects with the “tel:” prefix in 358 applications. We manually inspected a sample
of applications to better understand phone number use. We found: (1) applications
frequently include phone call functionality for customer service; (2) the “CALL” and
“DIAL” intent actions were used equally for the same purpose (CALL calls immediately
and requires the CALL_PHONE permission, whereas for DIAL the user confirms the call in
the dialer and requires no permission); (3) not all hard-coded telephone numbers are
used to make phone calls, e.g., the AdMob had a apparently unused phone number hard



103

coded.

6.5.2.2 Background Audio/Video

Microphone and camera eavesdropping on smartphones is a real concern [226]. We
analyzed application eavesdropping behaviors, specifically: (1) recording video without
calling setPreviewDisplay() (this API is always required for still image capture); (2)
AudioRecord.read() in code not reachable from an Android activity component; and (3)
MediaRecorder.start() in code not reachable from an activity component.

Finding 11 - Applications do not appear to be misusing video recording. We found no
applications that record video without calling setPreviewDisplay(). The query reason-
ably did not consider the value passed to the preview display, and therefore may create
false negatives. For example, the “preview display” might be one pixel in size. The
MediaRecorder.start() query detects audio recording, but it also detects video recording.
This query found two applications using video in code not reachable from an activity;
however the classes extended SurfaceView, which is used by setPreviewDisplay().

Finding 12 - Applications do not appear to be misusing audio recording. We found eight
uses in seven applications of AudioRecord.read() without a control flow path to an activity
component. Of these applications, three provide VoIP functionality, two are games
that repeat what the user says, and one provides voice search. In these applications,
audio recording is expected; the lack of reachability was likely due to code recovery
failures. The remaining application did not have the required RECORD_AUDIO permission
and the code most likely was part of a developer toolkit. The MediaRecorder.start()
query identified an additional five applications recording audio without reachability to
an activity. Three of these applications have legitimate reasons to record audio: voice
search, game interaction, and VoIP. Finally, two games included audio recording in a
developer toolkit, but no record permission, which explains the lack of reachability.
Section 6.5.3.2 discusses developer toolkits.

6.5.2.3 Socket API Use

Java sockets represent an open interface to external services, and thus are a potential
source of malicious behavior. For example, smartphone-based botnets have been found
to exist on “jailbroken” iPhones [216]. We observe that most Internet-based smartphone
applications are HTTP clients. Android includes useful classes (e.g., HttpURLConnec-
tion and HttpClient) for communicating with Web servers. Therefore, we queried for
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applications that make network connections using the Socket class.

Finding 13 - A small number of applications include code that uses the Socket class di-
rectly. We found 177 Socket connections in 75 applications (6.8%). Many applications
are flagged for inclusion of well-known network libraries such as org/apache/thrift,
org/apache/commons, and org/eclipse/jetty, which use sockets directly. Socket fac-
tories were also detected. Identified factory names such as TrustAllSSLSocketFactory,
AllTrustSSLSocketFactory, and NonValidatingSSLSocketFactory are interesting as po-
tential vulnerabilities, but we found no evidence of malicious use. Several applications
also included their own HTTP wrapper methods that duplicate functionality in the An-
droid libraries, but did not appear malicious. Among the applications including custom
network connection wrappers is a group of applications in the “Finance” category im-
plementing cryptographic network protocols (e.g., in the com/lumensoft/ks library).
We also note that all of these applications use Asian character sets for their market
descriptions, therefore we could not determine the exact purpose.

Finding 14 - We found no evidence of malicious behavior by applications using Socket
directly. We manually inspected all 75 applications to determine if Socket use seemed
appropriate based on the application description. Our survey yielded a diverse ar-
ray of Socket uses, including: file transfer protocols, chat protocols, audio and video
streaming, and network connection tethering, among other uses excluded for brevity.
A handful of applications have socket connections to hard-coded IP address and non-
standard ports. For example, one application (com.eingrad.vintagecomicdroid) down-
loads comics from 208.94.242.218 on port 2009. Additionally, two of the aforementioned
financial applications (com.miraeasset.mstock and kvp.jjy.MispAndroid320) include the
kr/co/shiftworks library that connects to 221.143.48.118 on port 9001. Furthermore,
one application (com.tf1.lci) connects to 209.85.227.147 on port 80 within a class named
AdService and subsequently calls getLocalAddress() to retrieve the phone’s IP address.
Overall, we found no evidence of malicious behavior, but a more in-depth investigation
is warranted for several applications.

6.5.2.4 Installed Applications

The list of installed applications provides valuable marketing data. Android has two
relevant APIs types: (1) a set of get APIs returning the list of installed applications
or package names; and (2) a set of query APIs that mirrors Android’s runtime intent
resolution, but can be made generic. We found 54 uses of the get APIs in 45 applications,
and 1015 uses of the query APIs in 361 applications. Sampling these applications, we
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found the following.

Finding 15 - Applications do not appear to be harvesting information about which
applications are installed on the phone. In all but two cases, the sampled applica-
tions using the get APIs search the results for a specific application. One application
(com.davidgoemans.simpleClockWidget) defines a method that returns the list of all
installed applications, but the results were only displayed to the user. The second appli-
cation (raker.duobao.store) defines a similar method, but it only appears to be called by
unused debugging code. Our survey of the query APIs identified three calls within the
AdMob library duplicated in many applications. These uses queried specific function-
ality and thus are not likely to harvest application information. The one non-AdMob
application we inspected queried for specific functionality, e.g., speech recognition, and
thus did not appear to attempt harvesting.

6.5.3 Included Libraries

Libraries included by applications are often easy to identify due to namespace conven-
tions: i.e., the source code for com.foo.appname typically exists in com/foo/appname.
During our manual inspection, we documented advertisement and analytics library paths.
We also found applications sharing “developer toolkits,” i.e., a common set of developer
utilities.

6.5.3.1 Advertisement and Analytics Libraries

We identified 22 library paths containing ad or analytics functionality. Sampled applica-
tions frequently contained multiple of these libraries. Using the paths listed in Table 6.4,
we found: 1 app has 8 libraries; 10 apps have 7 libraries; 8 apps have 6 libraries; 15
apps have 5 libraries; 37 apps have 4 libraries; 32 apps have 3 libraries; 91 apps have 2
libraries; and 367 apps have 1 library.

Table 6.4 shows advertisement and analytics library use. In total, at least 561 appli-
cations (51%) include these libraries; however, additional libraries may exist, and some
applications include custom ad and analytics functionality. The AdMob library is used
most pervasively, existing in 320 applications (29.1%). Google Ads is used by 206 ap-
plications (18.7%). We observe from Table 6.4 that only a handful of libraries are used
pervasively.

Several libraries access phone identifier and location APIs. Given the library purpose,
it is easy to speculate data flows to network APIs. However, many of these flows were not
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Table 6.4. Identified Ad and Analytics Library Paths
Library Path # Apps Format Obtains∗

com/admob/android/ads 320 Obfuscated L
com/google/ads 206 Plain -
com/flurry/android 98 Obfuscated -
com/qwapi/adclient/android 74 Plain L, P, E
com/google/android/apps/analytics 67 Plain -
com/adwhirl 60 Plain L
com/mobclix/android/sdk 58 Plain L, E‡

com/millennialmedia/android 52 Plain -
com/zestadz/android 10 Plain -
com/admarvel/android/ads 8 Plain -
com/estsoft/adlocal 8 Plain L
com/adfonic/android 5 Obfuscated -
com/vdroid/ads 5 Obfuscated L, E
com/greystripe/android/sdk 4 Obfuscated E
com/medialets 4 Obfuscated L
com/wooboo/adlib android 4 Obfuscated L, P, I†

com/adserver/adview 3 Obfuscated L
com/tapjoy 3 Plain -
com/inmobi/androidsdk 2 Plain E‡

com/apegroup/ad 1 Plain -
com/casee/adsdk 1 Plain S
com/webtrends/mobile 1 Plain L, E, S, I
Total Unique Apps 561 - -
∗ L = Location; P = Phone number; E = IMEI; S = IMSI; I = ICC-ID
† In 1 app, the library included “L”, while the other 3 included “P, I”.
‡ Direct API use not decompiled, but wrapper .getDeviceId() called.

detected by program analysis. This is (likely) a result of code recovery failures and flows
through Android IPC. For example, AdMob has known location to network data flows [6],
and we identified a code recovery failure for the class implementing that functionality.
Several libraries are also obfuscated, as mentioned in Section 6.6. Interesting, 6 of the
13 libraries accessing sensitive information are obfuscated. The analysis informs the
following additional findings.

Finding 16 - Ad and analytics library use of phone identifiers and location is sometimes
configurable. The com/webtrends/mobile analytics library (used by com.statefarm.pocketagent),
defines the WebtrendsIdMethod class specifying four identifier types. Only one type, “sys-
tem id extended” uses phone identifiers (IMEI, IMSI, and ICC-ID). It is unclear which
identifier type was used by the application. Other libraries provide similar configuration.
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For example, the AdMob SDK documentation [228] indicates that location information
is only included if a package manifest configuration enables it.

Finding 17 - Analytics library reporting frequency is often configurable. During manual
inspection, we encountered one application (com.handmark.mpp.news.reuters) in which
the phone number is passed to FlurryAgent.onEvent() as generic data. This method
is called throughout the application, specifying event labels such as “GetMoreStories,”
“StoryClickedFromList,” and “ImageZoom.” Here, we observe the main application code
not only specifies the phone number to be reported, but also report frequency.

Finding 18 - Advertisement and analytics libraries probe for permissions. The com/

webtrends/mobile library accesses the IMEI, IMSI, ICC-ID, and location. The (Web-
trendsAndroidValueFetcher) class uses try/catch blocks to probe, a SecurityException is
thrown when an application does not have the proper permission. Similar functionality
exists in the com/casee/adsdk library (used by com.fish.luny). In AdFetcher.getDeviceId(),
Android’s checkCallingOrSelfPermission() method is evaluated before accessing the IMSI.

6.5.3.2 Developer Toolkits

Finding 19 - Some developer toolkits replicate dangerous functionality. Three wallpaper
applications by “callmejack” (com.eoeandroid.eWallpapers.cartoon, com.jackeey.wallpapers.all1.orange,
and com.jackeey.eWallpapers.gundam) include utilities in the library path com/jackeeywu/

apps/eWallpaper. This library has data flow sinks for the phone number, IMEI, IMSI,
and ICC-ID. In July 2010, Lookout, Inc. reported a wallpaper application by devel-
oper “jackeey,wallpaper” as sending these identifiers to imnet.us [34]. This report also
indicated that the developer changed his name to “callmejack”. While the original “jac-
keey,wallpaper” application was removed from the Android Market, the applications
developed by “callmejack” remained as of September 2010.1

Finding 20 - Some developer toolkits probe for permissions. In one application
(com.july.cbssports.activity), we found code in the com/julysystems library that evalu-
ates Android’s checkPermission() method for the READ_PHONE_STATE and ACCESS_FINE_

LOCATION permissions before accessing the IMEI, phone number, and last known loca-
tion, respectively. A second application (v00032.com.wordplayer) defines the CustomEx-
ceptionHander class to send an exception event to an HTTP URL. The class attempts
to retrieve the phone number within a try/catch block, catching a generic Exception.

1Fortunately, these dangerous applications are now nonfunctional, as the imnet.us NS entry is NS1.
SUSPENDED-FOR.SPAM-AND-ABUSE.COM.
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The application does not have the READ_PHONE_STATE permission, therefore, this class
is likely a developer toolkit.

Finding 21 - Well-known brands sometimes commission developers that include dan-
gerous functionality. The com/julysystems developer toolkit identified as probing
for permissions appears in two applications with reputable names listed in the Android
Market. “CBS Sports Pro Football” (com.july.cbssports.activity) is provided by “CBS
Interactive, Inc.”, and “Univision Fütbol” (com.july.univision) is provided by “Univision
Interactive Media, Inc.”. As both applications have location and phone state permis-
sions, they potentially misuse information.

Similarly, “USA TODAY” (com.usatoday.android.news) provided by “USA TODAY”
and “FOX News” (com.foxnews.android) provided by “FOX News Network, LLC” con-
tain the com/mercuryintermedia toolkit. Both applications contain an Android activity
component named MainActivity. In the initialization phase, the IMEI is retrieved and
passed to ProductConfiguration.initialize() (part of the com/mecuryintermedia toolkit).
Both applications have IMEI to network data flows through this method.

6.5.4 Android-specific Vulnerabilities

Android provides developers a flexible programming interface. Vulnerabilities can result
from API misuse. We looked for several types of vulnerabilities based on best secure
coding practices for Android [41, 227].

6.5.4.1 Leaking Information to Logs

Android provides centralized logging via the Log API, which can displayed with the
“logcat” command. While logcat is a debugging tool, applications with the READ_

LOGS permission can read these log messages. The Android documentation for this
permission indicates that “[the logs] can contain slightly private information about what
is happening on the device, but should never contain the user’s private information.”
We looked for data flows from phone identifier and location APIs to the Android logging
interface and found the following.

Finding 22 - Private information is written to Android’s general logging interface. We
found 253 data flows in 96 applications for location information, and 123 flows in 90
applications for phone identifiers. Frequently, URLs containing this private information
are logged just before a network connection is made. Therefore, applications with the
READ_LOGS permission can access private information.
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Partially Specified Intent Message
- Action: "pkgname.intent.ACTION"

Fully Specified Intent Message
- Action: "pkgname.intent.ACTION"
- Component: "pkgname.FooReceiver"

malicous.BarReceiver
- Filter: "pkgname.intent.ACTION"

pkgname.FooReceiver
- Filter: "pkgname.intent.ACTION"

Application: pkgname Application: malicous

Figure 6.10. Eavesdropping on unprotected intent messages.

6.5.4.2 Leaking Information via IPC

As depicted in Figure 6.10, any application can receive intent broadcasts that do not
specify the target component or protect the broadcast with a permission (permission
variant not shown). This is unsafe if the intent contains sensitive information. We
found 271 such unsafe intent broadcasts with extras data in 92 applications (8.4%).
Sampling these applications, we found several intents matching this property used to
install shortcuts to the home screen.

Finding 23 - Applications broadcast private information in IPC accessible to all appli-
cations. We found many cases of applications sending unsafe intents to action strings
containing the application’s namespace (e.g., “pkgname.intent.ACTION” for application
pkgname). The contents of the bundled information varied. In some instances, the data
was not sensitive, e.g., widget and task identifiers. However, we also found sensitive infor-
mation. For example one application (com.ulocate) broadcasts the user’s location to the
“com.ulocate.service.LOCATION” intent type without protection. Another application
(com.himsn) broadcasts the instant messaging client’s status to the “cm.mz.stS” action
string. This confirms that malicious applications can eavesdrop on sensitive information
in IPC, and in some cases, gain access to information that requires a permission (e.g.,
location).

6.5.4.3 Unprotected Broadcast Receivers

Applications use broadcast receiver components to receive intent messages. Broadcast
receivers define “intent filters” to subscribe to specific event types are public. If the
receiver is not protected by a permission, a malicious application can forge messages.

Finding 24 - Few applications are vulnerable to forging attacks to dynamic broadcast
receivers. We found 406 unprotected broadcast receivers in 154 applications (14%). We
found an large number of receivers subscribed to system defined intent types. Android
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introduced “protected broadcasts” for system intent types to eliminate forging [5]. We
found one application with an unprotected broadcast receiver for a custom intent type;
however this case appears to have limited impact. Additional sampling may uncover
more cases.

6.5.4.4 Intent Injection Attacks

Intent messages are also used to start activity and service components. An intent injec-
tion attack occurs if the intent address is derived from untrusted input. We found 10
data flows from the network to an intent address in 1 application. We could not confirm
the data flow and classify it a false positive. The data flow sink exists in a class named
ProgressBroadcastingFileInputStream. No decompiled code references this class, and all
data flow sources are calls to URLConnection.getInputStream(), which is used to cre-
ate InputStreamReader objects. We believe the false positives results from the program
analysis modeling of classes extending InputStream.

We found 80 data flows from IPC to an intent address in 37 applications. We clas-
sified the data flows by the sink: the Intent constructor is the sink for 13 applications;
setAction() is the sink for 16 applications; and setComponent() is the sink for 8 applica-
tions. These sets are disjoint. Of the 37 applications, we found that 17 applications set
the target component class explicitly (all except 3 use the setAction() data flow sink),
e.g., to relay the action string from a broadcast receiver to a service. We also found
four false positives due to our assumption that all Intent objects come from IPC (a few
exceptions exist). For the remaining 16 cases, the analysis informs the following.

Finding 25 - Some applications define intent addresses based on IPC input. Three
applications use IPC input strings to specify the package and component names for the
setComponent() data flow sink. Similarly, one application uses the IPC “extras” input to
specify an action to an Intent constructor. Two additional applications start an activity
based on the action string returned as a result from a previously started activity. How-
ever, to exploit this vulnerability, the applications must first start a malicious activity.
In the remaining cases, the action string used to start a component is copied directly
into a new intent object. This can be exploited by specifying the vulnerable component’s
name directly and controlling the action string.

6.5.4.5 Delegating Control

Applications can delegate actions to other applications using a “pending intent.” An
application first creates an intent message as if it was performing the action. It then
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creates a reference to the intent based on the target component type (restricting how
it can be used). The pending intent recipient cannot change values, but it can fill in
missing fields. Therefore, if the intent address is unspecified, the remote application can
redirect an action that will be performed with the original application’s permissions.

Finding 26 - Few applications unsafely delegate actions. We found 300 unsafe pending
intent objects in 116 applications (10.5%). Sampling these applications, we found an
overwhelming number of pending intents used for either: (1) Android’s UI notification
service; (2) Android’s alarm service; or (3) communicating between a UI widget and the
main application. None of these cases allow manipulation by a malicious application. We
found two applications that send unsafe pending intents via IPC. However, exploiting
these vulnerabilities appears to provides negligible adversarial advantage.

6.5.4.6 Null Checks on IPC Input

Android applications frequently process information from intent messages received from
other applications. Null dereferences cause an application to crash, and can thus be used
to as a denial of service.

Finding 27 - Applications frequently do not perform null checks on IPC input. We
found 3925 potential null dereferences on IPC input in 591 applications (53.7%). Most
occur in classes for activity components (2,484 dereferences in 481 applications). Null
dereferences in activity components have minimal impact, as the application crash is
obvious to the user. We found 746 potential null dereferences in 230 applications within
classes defining broadcast receiver components. Applications commonly use broadcast
receivers to start background services, therefore it is unclear what effect a null derefer-
ence in a broadcast receiver will have. Finally, we found 72 potential null dereferences
in 36 applications within classes defining service components. Applications crashes cor-
responding to these null dereferences have a higher probability of going unnoticed. The
remaining potential null dereferences are not easily associated with a component type.

6.5.4.7 SDcard Use

Any application that has access to read or write data on the SDcard can read or write any
other application’s data on the SDcard. We found 657 references to the SDcard in 251
applications (22.8%). Sampling these applications, we found a few unexpected uses. For
example, the com/tapjoy ad library (used by com.jnj.mocospace.android) determines
the free space available on the SDcard. Another application (com.rent) obtains a URL
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from a file named connRentInfo.dat at the root of the SDcard.

6.5.4.8 JNI Use

Applications can include functionality in native libraries using the Java Native Interface
(JNI). As these methods are not written in Java, they have inherent dangers. We found
2762 calls to native methods in 69 applications (6.3%). Investigating the application
package files, we found that 71 applications contain .so files. This indicates two appli-
cations with an .so file either do not call any native methods, or the code calling the
native methods was not decompiled. Across these 71 applications, we found 95 included
.so files, 82 of which have unique names.

6.5.5 General Application Vulnerabilities

We analyzed the application source code for general Java application vulnerabilities based
on industry-standard criteria [225]. Many of the criteria are irrelevant due to either
artifacts of the decompilation process (e.g., variables including the “$” character) or
clearly irrelevant to Android (e.g., J2EE vulnerabilities). For the applicable criteria, we
identified 5,325 issues. A breakdown of the number of instances and affected applications
is shown in Table 6.5. We observe that analysis results are unevenly distributed. Only
564 out of 1,100 application had potential vulnerabilities detected by the general criteria.
Further, less than a third of the 564 applications—16.91% of the 1,100—account for over
82% of the detected code locations.

6.5.5.1 Password Misuse

Finding 28 - Few applications have hard-coded or empty passwords. We only found
eight applications with hard-coded passwords. Two of these applications rely on a Twit-
ter and an ICQ login. In a library common to two “Finance” applications, unique
username and password pairs are specified to authenticate to the same hard-coded IP.
The purpose of this code was unclear. The fifth application uses a hard-coded password
to authenticate custom error reporting. The sixth application contained a hard-coded
password for a demo account. Finally, in the last two applications, the same GMail
username and password is used in a class named SendTest. All of the other sampled
code locations for hard-coded or empty passwords are initializers (e.g., “changeit”) in
library code.

Finding 29 - We found no evidence of plaintext passwords written to file. All of
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the sampled code locations identified as writing plaintext passwords to file are false
positives. Most studied code locations exist in unused library code (e.g., obtaining a
password from stdin.readline(), which cannot be used in Android). Note that the Wells
Fargo application recently identified as writing a plaintext password to file [229] did not
appear to have this functionality in the recovered source code.

6.5.5.2 Cryptography Misuse

Finding 30 - Some applications use unsafe cryptographic keys and algorithms. We
found 7 applications including the toolkit class SecurityUtil that uses a variable contain-
ing the “device ID” (most likely the IMEI) as a DES encryption key. If the device ID
is not available, a hard-coded constant is used. We found several other uses of DES;
however these are in the NTLM implementation of an Apache library. It is unclear if
this functionality is used.

Finding 31 - Few applications use insufficient key size. We found two applications
(com.scfirstbank and edaily.daishin) using RSA with a 1024-bit modulus. A third appli-
cation (com.slacker.radio) uses RSA with a 512-bit modulus. Several additional instances
exist in libraries.

Finding 32 - We found no evidence of PRNG misuse. Insecure randomness accounts
for 1,681 of the 2,278 flags in the cryptography category in Table 6.5. Our sampling
found a library for one application (com.scfirstbank) where a non-cryptographic PRNG
is selected only if the requested cryptographic one is not available; however the method
did not appear to be used. Finally, the analysis looks for all PRNG uses, most of which
are not cryptographically related (e.g., selecting keywords for ad targeting).

6.5.5.3 Injection Vulnerabilities

Finding 33 - Few applications have path manipulation vulnerabilities. Path manip-
ulation consisted of 1,228 of the 2,520 flagged code locations in the injection category.
Most of the sampled cases existed within a main() method of a library (e.g., for Base64
encoding/decoding); however, Android does not execute main() methods. Android pro-
gramming conventions also led to false positives. For example, content provider compo-
nents that share files commonly store the filename in an SQLite database. This filename
was detected as untrusted. We only found one application with a path manipulation
vulnerability. In this case, a filename is based on values received from an intent message;
however, the conditions under which the vulnerability can be exploited are unclear.
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Finding 34 - We found no evidence of database or command injection vulnerabilities. All
sampled flags for database injection are false positives. We speculate the non-existence
of this vulnerability is the widespread use of parameterized SQL queries in Android.

6.6 Study Limitations

The study described in the previous section was limited in three ways: a) the studied
applications were selected with a bias towards popularity; b) the program analysis tool
cannot compute data and control flows for IPC between components; and c) source code
recovery failures interrupt data and control flows. Missing data and control flows may
lead to false negatives. In addition to the recovery failures, the program analysis tool
could not parse 8,042 classes, reducing coverage to 91.34% of the classes.

Additionally, a portion of the recovered source code was obfuscated before dis-
tribution. Code obfuscation significantly impedes manual inspection. It likely ex-
ists to protect intellectual property, as Google suggests obfuscation using ProGuard
(proguard.sf.net) for applications using its licensing service [230]. ProGuard primar-
ily protects against readability. It does not obfuscate control flow, therefore it has limited
impact for a program analysis tool.

Many forms of obfuscated code are easily recognizable: e.g., class, method, and
field names are converted to single letters, producing single letter Java filenames (e.g.,
a.java). For a rough estimate on the use of obfuscation, we searched applications
containing a.java. In total, 396 of the 1,100 applications contain this file. As discussed
in Section 6.5.3, several advertisement and analytics libraries are obfuscated. To obtain a
closer estimate of the number of applications whose main code is obfuscated, we searched
for a.java within a file path equivalent to the package name (e.g., com/foo/appname for
com.foo.appname). Only 20 applications (1.8%) have this obfuscation property, which
is expected for free applications (as opposed to paid applications). However, we stress
that the a.java heuristic is not intended to be a firm characterization of the percentage
of obfuscated code, but rather a means of acquiring insight.

6.7 Summary of Findings

Identifying a singular take-away from a broad study such as this is non-obvious. We
come away from the study with two central thoughts; one having to do with the study
apparatus, and the other to do with the applications themselves.
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ded and the program analysis specifications are enabling technologies that open a
new door for application certification. We found the approach rather effective despite
existing limitations. In addition to further studies of this kind, we see the potential
to integrate these tools into an application certification process. We leave such discus-
sions for future work, noting that such integration is challenging for both logistical and
technical reasons [2].

On a technical level, we found the security characteristics of the top 1,100 free popular
applications to be consistent with smaller studies (e.g., Enck et al. [6]). Our findings in-
dicate an overwhelming concern for misuse of privacy sensitive information such as phone
identifiers and location information. One might speculate this is because it is difficult to
assign malicious intent to such activities. In addition to the existence the information
misuse, our manual source code inspection sheds more light on how information is mis-
used. We found phone identifiers, e.g., phone number, IMEI, IMSI, and ICC-ID, were
used for everything from “cookie-esque” tracking to account numbers. Our findings also
support the existence of databases external to cellular providers that link identifiers such
as the IMEI to personally identifiable information. Our analysis also identified significant
penetration of ad and analytic libraries, occurring in 51% of the studied applications.
While this might not be surprising for free applications, the number of ad and analytics
libraries included per application was unexpected. One application included as many
as eight different libraries. One might question the need for more than one ad and one
analytics library. From a vulnerability perspective, we found that many developers fail
to take necessary security precautions. For example, sensitive information is frequently
written to Android’s centralized logs, as well as occasionally broadcast to unprotected
IPC. We also identified the potential for IPC injection attacks; however, no cases were
readily exploitable.

Finally, our study only characterized one edge of the application space. While we
found no evidence of telephony misuse, background recording of audio or video, or abusive
network connections, one might argue that such malicious functionality is less likely
to occur in popular applications. We focused our study on popular applications to
characterize those most frequently used. Future studies should take samples that span
application popularity. However, even these samples may miss the existence of truly
malicious applications. Future studies should also consider several additional attacks,
including installing new applications [231], JNI execution [17], address book exfiltration,
destruction of SDcard contents, and phishing [19].
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Chapter 7
Directions for Smartphone Security

Many millions of consumers rely on smartphones for business and personal needs. While
this relatively new technology has changed the way we live our lives, it opens us new and
previously unconsidered security risk. Smartphones collect many types of security and
privacy sensitive information simply as a matter of operation. All of this information
is stored on a small and easy to lose device that always travels with the user, drifts
seamlessly between “unknown” wireless networks, and runs applications from largely
unknown developers.

Similar commodity desktop platforms, antivirus software has emerged for smart-
phones. While antivirus software has become an important component of defense in
depth on desktops, their usefulness on smartphones is left into question. In fact, in a
mailing list discussion, an Android platform engineer called into question what exist-
ing Android antivirus applications are actually doing [232]. The application sandboxed
environments in platforms such as Android and iOS severely limit traditional antivirus
functionality. Furthermore, antivirus software is traditionally a reactive measure to
known malware. Similar functionality is provided by application market “kill switches,”
without wasting energy scanning files.

Several efforts related to antivirus software have also emerged. WhatApp [201] and
services such as Lookout’s App Genome project [200] seek to inform users of security and
privacy risks in applications. These firms have begun monitoring applications market
security hygiene not only for Trojans and viruses, but also applications that negatively
impact user privacy. In the current smartphone environment, privacy threats are not
universally considered malicious, and therefore do not warrant removal by application
markets. Third party security services such as WhatApp and Lookout fill a valuable
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void in the effort to protect end users.
The approaches and techniques described in this dissertation meaningfully advance

the technology available to security firms seeking to monitor smartphone application
market security hygiene. For example, Lookout uses a permission-based approach similar
to that previously published in our Kirin work [5]. Additionally, TaintDroid provides
an automated means of identifying privacy risks in applications. Finally, combined with
decompilation tools such as ded, the source code analysis queries described in Chapter 6
can be applied and extended to quickly identify security failures.

7.1 Host Security: A Conflict of Requirements

Each of our studies of smartphone applications presented evidence of a fundamental
conflict between functional requirements and security goals. A primary example of this
conflict involves the use of geographic location. Location-aware functionality is a distinct
and very valuable feature of mobile operating systems. One can argue that it is a major
contributor to the success of smartphones in general. However, geographic location
is also fundamentally a privacy sensitive value [33]. Historically, OS protection models
ensure the secrecy of sensitive values by restricting access by network-connected processes
to a limited set of trusted applications. However, in the smartphone and mobile OS
environment, untrusted applications often send location information to the Internet to
meet functional requirements. While users often knowingly accept and rely on location
information being sent to the Internet, a difficulty arises when determining when network
disclosure is desired, and when it is not. Our studies indicate that undesirable network
disclosure occurs more frequently than one might expect.

The smartphone community must acknowledge the reality that untrusted applications
will sometimes acquire privacy sensitive values. However, this does not mean that users
must freely give up privacy. As is common with problems of this nature, a combination
of non-technical and technical solutions will help resolve the security dilemma.

7.1.1 Informed Consent

From a non-technical perspective, applications should acquire informed consent before
accessing privacy sensitive values such as location and phone identifiers. While this
can include user interface notifications to indicate, for example, “sending coordinates to
determine your location,” it should also include a means of conveying to the user all
possible scenarios in which the values will be used. For example, if network server stores
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geographic coordinates with an anonymous identifier, and the database of coordinates is
sold to a marketing firm interested in demographics, this use should be clearly conveyed
to the user. Such information is commonly conveyed in a EULA or terms of use displayed
on first use of an application. However, it should be noted that the limited screens on
smartphones make comprehending lengthy EULAs even more difficult than on PCs.

Future work should study the best way of conveying this information to users, as
well as means of encouraging developers to disclose activities. A potential approach is
incorporate uniform notifications for applications using privacy sensitive values. In such
a model, developers using sensitive values but not reporting how the values are used may
be seen as less reputable. However, the effectiveness of such an approach and potential
drawbacks is unclear, and hence requires deep investigation.

7.1.2 Privilege Separation

While some applications must send privacy sensitive values to the Internet to meet func-
tional requirements, many applications do so as a result of functionality orthogonal to
the application’s purpose. In particular, we found location information and phone iden-
tifiers are sometimes sent to advertisement servers. Currently, advertisement and analyt-
ics functionality is added to applications though the inclusion of libraries. Application
developers often add these libraries without knowledge of the functionality contained
therein. Furthermore, when performing security analysis on an application, it is difficult
to determine what part of the application is responsible for offending behavior.

While smartphone applications are already rather vertical in implemented function-
ality, it is both technically possible and arguably necessary to provide further privilege
separation. There is no technical requirement that advertisement and analytics function-
ality be entirely implemented within an application. For example, Android’s modular
environment permits the creation of advertisement and analytics services that are in-
stalled as separate applications. This approach has several distinct advantages. First,
it can remove ambiguity when applications request permissions. Second, it gives OS
level protection mechanisms greater context for policy enforcement. Third, it simplifies
security analysis of applications and allows greater scrutiny to be devoted towards such
service applications. Finally, it promotes transparency and attributes responsibility to
arguably dangerous behavior. For example, users can potentially configure an advertise-
ment service application not to use location, as opposed to leaving that decision up to
the application developer or provider of the advertisement library.
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7.2 Future Work

This dissertation has primarily discussed the security analysis of applications. However,
the motivation for the security analysis is to better understand the limitations of existing
mobile OS security frameworks, and to inform future enhancements. We now discuss
future work in both application analysis and security enhancements for mobile operating
systems. We begin with application analysis.

7.2.1 Application Analysis

7.2.1.1 Analysis of Native Libraries

In Chapters 5 and 6, we limited our analysis to the Java portion of Android applica-
tions. As the Android Market has matured, popularity and support for native libraries
has grown. Games have been a primary motivator, both in order to achieve better per-
formance and to simplify development and maintenance of game engines. For example,
the version 2.3 release of Android included enhancements to the Native Developer Kit
(NDK) fully native applications and sound support [233].

Future work should investigate techniques for security analysis of native libraries on
Android. Related techniques have been used to study misuse of privacy sensitive values
on the iOS platform [32]. The analysis of Android native libraries, should however,
leverage artifacts of the environment. For example, native libraries may require non-
standard conventions to access location and phone identifiers. These conventions may
be easy to identify with relatively simple binary analysis. Furthermore, the Java/native
library barrier may allow analysis tools to quickly identify functionality as suspicious if
it occurs within a native library.

7.2.1.2 Study of Least Privilege

The permission-based security model used by mobile operating systems achieves a closer
approximation of least privilege than is available in commodity desktop OS environments.
However, studies of Android applications [4], including our own, frequently proclaim that
Android’s permissions are too coarse. This observation has been made without a deep
study of the APIs associated with permissions, or the frequency of which those APIs are
used. Such an investigation would be valuable to determine whether or not permissions
should be subdivided or combined. For example, the READ_PHONE_STATE permission
is used both to determine if the phone is ringing and to retrieve the handset’s phone
number. These two distinct security-sensitive operations should arguably have distinct
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permissions. However, too many permissions can confuse users. A study considering
API use within and across applications can inform how permissions may be combined.

7.2.1.3 Characterization of Information Sharing

Contrasted to the iOS platform, which isolates applications with sandboxes, the Android
platform encourages a modular development approach wherein functionality spans mul-
tiple applications. For example, in Chapter 6, we mentioned an application dedicated
to reporting high scores for games. In this example, game developers do not need to
implement the reporting functionality themselves. Rather, they direct the user to the
high scores application in the application market. The Android Market includes various
types of utility compartmentalized into individual applications. Other examples include
an interface to read bar-codes, centralized storage of credentials, and text to speech
(TTS) services.

In the early Android Market, compartmentalization of utility and information sharing
was limited. However, now that the platform has gained a strong world-wide backing and
the corpus of available applications has matured, this sharing has become more common.
Studying information sharing between applications will provide valuable insight into both
potential collusion-based attacks, as well as framework restrictions to enhance device
security. One such restriction based on information flow control is described below.

7.2.2 Operating System Enhancements

7.2.2.1 Information Flow Control

Android security is currently enforced by non-comparable permissions. For example,
the permission to read the address book cannot be compared with the permission to
read Web browser bookmarks, access location information, make phone calls, or install
applications. Literature has considered transitive flows of information between applica-
tions [124, 125]; however, they assume the existence of a lattice based on some ordering
of permissions. Attempting to construct such an ordering of non-comparable permissions
will lead false positives and ultimately break functionality.

While using existing permissions to enforce transitive information flow policies is
not practical, information flow control provides valuable security semantics for mobile
devices. Consider, for example, a smartphone used for both business and personal pur-
poses. A user (or other expert) may label applications as business, personal, privacy,
or financial. An IFC policy can ensure that business and personal information does
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Figure 7.1. Example information flow control lattice for a smartphone.

not mix while allowing both types of applications to contribute to a financial ledger
running with the financial label. Figure 7.1 encodes such a security goal.

Transitive security goals also exist for specific types of information. Consider, for
example, location information. Using information flow semantics, an application can
receive location information with the restriction that it does not flow to the Internet, or
possibly more realistically, can only flow to a specific remote server based on DNS. Such
security goals need not be restricted to well defined information types such as location.
It can also be used for application-specific information such as financial data and social
networking events. This application-centric approach to IFC policy specification parallels
existing decentralized information flow control (DIFC) [70, 71, 72].

A DIFC approach is promising for the Android platform. First, application devel-
opers already participate in security policy when assigning and requesting permissions.
Second, the component framework lends itself well to the privilege separation required to
practically realize DIFC enforcement. Future work will investigate the appropriateness
of such information flow control protection models on mobile devices.

7.2.2.2 Maintaining Firmware Integrity

A mobile device’s security relies on the integrity of its firmware. Secure and authenticated
boot [101] approaches have been discussed for mobile platforms [102, 103, 104, 105]. In
fact, Motorola has included a secure boot mechanism in several of its phones [234].
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While such precautions are primarily motivated by preventing users from “jailbreaking”
devices, a rootkit can just as easily modify the firmware for more malicious purposes.

Smartphones and similar mobile devices have an architectural advantage for main-
taining system integrity. Commonly, the device firmware is stored in a read-only partition
and is updated only via cryptographically verified procedures. For example, to update
an Android phone, the device is booted into a “recovery mode” that verifies the crypto-
graphic signature on an update image before patching the firmware. However, devices
can still be jailbroken, because the integrity of the firmware relies on the integrity of the
recovery image, which can be compromised if root level privileges are obtained on the
device (e.g., the result of a kernel-level privilege escalation attack).

The integrity of the device’s firmware and recovery image can be hardened by re-
ducing the runtime attack surface. Instead of enforcing the read-only protection of the
storage partitions in the OS kernel, it should be enforced by hardware. Similar to the
way UNIX systems use setuid to transition from root to a limited user, the device
boot process can set a security bit on storage partitions. When the device boots into
normal mode, the read-only bit is set on the firmware and recovery image; however, the
partitions remain writable when booting into the recovery image.

7.2.2.3 Extending Protection to the Cloud

Smartphones and similar mobile devices are primarily Internet service devices. However,
they also provide a valuable security perimeter for user information. While many times
user information is shared with remote servers, this is not always the case. Often, photos,
personal notes, and music playlists remain local. However, this is changing. For reasons
of consistency between devices and fault tolerance, more and more information is being
synchronized and backed up to storage facilities and services on the Internet.

Mobile devices require protection of information synchronized and backed up to
Internet-based services. As this information must be available for use in Web browsers
and other devices, simple storage encryption approaches are insufficient. Instead, there
is a need for a more general framework that decouples storage from application services.
Such a framework could protect information until it reaches the user, i.e., only decrypted
by a smartphone application or Web browser. To integrate with existing Web applica-
tions, the cryptographically protected storage should also be searchable [235]. Future
work should investigate the requirements of such a model and determine how best to
extend protection of personal information into cloud services.
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7.3 Concluding Remarks

Smartphone operating system security is primarily defined by permissions. These per-
missions are a limited form of capabilities that define the information and resources
accessible to applications. This articulation of security policy provides a means of ap-
proximating least privilege for applications. While some argue that the permission model
is inappropriate for smartphones, because users cannot make informed security decisions,
we have shown a possibly more fundamental benefit of permissions. Permissions not only
articulate security policy, but they embody a definition of security risk. That is, they
document sensitive interfaces and information. This documentation is vital for security
analysis, whether it be of applications or the operating system itself.

Our success using permissions to focus security analysis is attributable to properties
of smartphone applications. Had developers simply requested all possible permissions,
the permission related information would have been meaningless. Fortunately this was
not the case. Overall, we found smartphone applications have relatively vertical purpose.
Hence, to accomplish its goals, an application only requires use of a limited number of
security-sensitive APIs.

Smartphones are the logical conclusion of the Internet’s influence on computing tech-
nology. More importantly than providing pervasive access to information, they embody
the commoditization of discrete services. The vertical purpose nature of applications is a
reflection of the desire to market functionality in this way. Increasingly, general purpose
computing will follow in these footsteps. As this transition occurs, the approaches and
techniques described in this dissertation will become broadly applicable.
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