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Abstract

The thought of a cooling device or power generator with no moving parts seems

almost a part of science fiction. Such devices do exist. They are used in a small niche of

applications ranging from the cooling of individual solid state components to generating

power aboard deep space telescopes. In this document, we present research that attempts

to further improve and understand presently used and potentially new thermoelectric

materials.

To accomplish this we will use the well established technique of pressure tuning,

along with first-principles calculations to study the effects of arsenic on currently used

room temperature thermoelectric materials. The small size of arsenic may provide extra

degrees of freedom in these currently used alloys.

We found that pressure provides a route to the phase of As
2
Te

3
that is isostruc-

tural with the rhombohedral (R3m) structures of Bi
2
Te

3
and Sb

2
Te

3
. The ambient

pressure phase of As
2
Te

3
is monoclinic. We also found that As

2
Te

3
is more soluble in

group V-VI alloys containing Sb
2
Se

3
than in Bi

2
Te

3
or Sb

2
Te

3
alone.

We also present a new host for low-dimensional thermoelectric structures. Some

thermoelectric properties are enhanced by lowering the dimensionality of some materials.

Current research though uses hosts and techniques that are expensive and not feasible

for scaling up to commercial levels. We present a host and some techniques that may

make this up-scaling a reality.
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Chapter 1

Introduction

Thermoelectric devices offer an alternative to conventional compressor based re-

frigeration systems. They have no moving parts, making them extremely reliable. Their

inferior efficiency though, has limited their use to niche applications such as individual

solid state component cooling, and portable coolers that plug into vehicle lighters. Ther-

moelectric devices can also be used as power generators. Again, inferior efficiency limits

their use to applications where reliability is more important than performance. Improv-

ing the efficiencies of such devices has been the goal of much recent research. That is

also the goal of this thesis.

1.1 History

In the nineteenth century, over a span of three decades, three thermoelectric

effects were discovered. First, in 1821, Thomas Seebeck noticed that if a loop made from

two different metals was heated at one of the junctions, a nearby compass needle was

deflected. Now we know that current was flowing, generating a magnetic field, but at

that time he tried to correlate the magnetic field directly to the temperature gradient.

Next, Jean Peltier, in 1834, found a cooling or heating effect (depending on the direction

of current) when a current was passed though a junction of two dissimilar metals. Finally,

in 1854, William Thomson demonstrated a third effect and described the relationship
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between all three. He showed that when one end of a homogeneous metal bar was heated,

a potential difference was generated across the bar.

The effect discovered by William Thomson is now called the Seebeck coefficient,

thermoelectric power, or thermopower,

S =
E

∆T
, (1.1)

where E is the potential difference between the two ends of the sample, and ∆T is the

temperature difference. The Peltier coefficient, π, defined for a junction of two materials,

depends on the amount of heat emitted or absorbed, q, and the current, i,

π
ab

=
q

i
. (1.2)

The Thomson coefficient or Thomson heat of a material is the heating or cooling per

unit length that is experienced in a given temperature gradient when current is flowing,

µ
dT

dx
i =

dq

dx
. (1.3)

So, when a current is present, the rate at which heat is dissipated (per unit length) does

not depend only on the irreversible Joule heating, but also a Thomson heat term, which

depends on the direction of the current flow and the temperature gradient,

Q̇ = J
2
ρ − J

dT

dx
µ . (1.4)
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Thomson found how all of these effects were related, and showed that knowledge of only

the Seebeck coefficient is sufficient to determine the other coefficients,

µ = T
dS

dT
(1.5)

π = TS . (1.6)

1.2 Efficiency of Thermoelectric Devices

A thermoelectric cooling device is arranged most similarly to Peltier’s experiment

(Figure 1.1). Current passing through both legs of the device in series causes the majority

carriers to flow away from the heat source. In doing this they carry their thermal energy

with them to the heat sink end. A power generator works similarly. Heat applied at

the source causes the (thermally) energetic majority carriers to travel down the legs and

accumulate at the heat sink end. This imbalance cause a potential difference across the

two branches of the device.

The coefficient of performance (COP) for a refrigerator is defined as the the rate

at which heat is removed at the heat source divided by the rate at which we do work on

the system,

φ =
q
c

w
. (1.7)

The amount of heat removed at the heat source is the heat removed by Peltier cooling

working against thermal conduction and Joule heating. The work we must put into the
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Fig. 1.1. A schematic example of a thermoelectric cooler. The majority carriers of
each leg carry their thermal energy away from the heat source in response to the flowing
current.
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system fuels the Peltier cooling and compensates for Joule heating losses,

q
c

= iT
c

(

S
p
− S

n

)

− κ

(

T
h
− T

c

)

− i
2
R

2
(1.8)

w = i
(

T
h
− T

c

) (

S
p
− S

n

)

− i
2
R . (1.9)

T
h

and T
c
are the temperatures of the hot and cold ends. S

p
and S

n
are the thermopowers

of the p and n−type branches of the device. R is the resistance of the two branches in

series, κ is thermal conductance of the branches in parallel, and i is the current flowing

through the device. We can find the optimal COP by maximizing it with respect to

the current. We see then that the COP is just the Carnot efficiency, scaled by another

fraction,

φ
opt

=

(

T
c

T
h
− T

c

)

√
zT + 1 −

T
h

T
c√

zT + 1 + 1
(1.10)

where,

z =

(

S
p
− S

n

)

2

κR
. (1.11)

We can eliminate size effects by optimizing the geometry, after which we are left with

the figure of merit for a thermoelectric material,

Z =
σS

2

κ
. (1.12)

Here the electrical conductivity, σ, and the thermal conductivity, κ, are independent of

the size of the sample. We have dropped the subscript labeling the Seebeck coefficient

assuming that we have p and n−type branches of similar figures of merit.
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1.3 Present Efficiencies of Thermoelectric Devices

To date, the best room temperature thermoelectric devices, in commercial pro-

duction, contain bismuth, antimony, selenium, and tellurium [61, 109]. The pseudo-

ternary alloys (Bi
2
Te

3
)
90

(Sb
2
Te

3
)
5

(Sb
2
Se

3
)
5

and (Sb
2
Te

3
)
72

(Bi
2
Te

3
)
25

(Sb
2
Se

3
)
3

have the highest figures of merit at 300K for n−type and p−type materials respec-

tively. SbI
3
−doped (Bi

2
Te

3
)
90

(Sb
2
Te

3
)
5

(Sb
2
Se

3
)
5

has a figure of merit of 0.96

while the excess Te-doped (Sb
2
Te

3
)
72

(Bi
2
Te

3
)
25

(Sb
2
Se

3
)
3

has a slightly higher ZT of

1.14 [29, 109].

A single-stage thermoelectric device made from these materials is able to cool

a maximum of 78K from room temperature. This represents operating at 7.6% of the

maximum Carnot efficiency. A multiple stage device made from such materials achieved a

maximum cooling of 159K at room temperature. A good household refrigerator operates

at about 30% of its maximum Carnot efficiency and can cool well below freezing. So as

far as thermoelectric cooling is concerned, there is room and the need for improvement.

In the laboratory, there has been progress improving thermoelectric efficiency.

Experiments on low-dimensional structures have demonstrated that higher ZT ’s can be

attained [24, 26, 39, 102]. Whereas the bulk alloys are easily produced for large scale

applications, such quantum wells and nanowires are not. So, in this case we have a large

enough figure of merit to compete with conventional refrigeration methods but we do

not have the end result device for mass production.
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1.4 Current Research

There is currently much research being conducted to find better thermoelectric

materials. The known good alloys are being improved [29]. Skutterudites have always

been he target for intense research because of their high temperature performance as

power generators [100, 106]. Clathrates, having properties of a phonon glass-electron

crystal (PGEC), have also been the target of intense research. A PGEC material would

have elecronic properties of a good semiconductor, but thermal properties of an amor-

phous material [88]. Most of the research shown here is purely synthesis based. New

materials are synthesized and tested and then more are synthesized and more are tested.

Modeling of these structures can help in tuning the materials, but the process can still be

very tedious. It can be complimented, though, by pressure tuning which we will discuss

later.

There is also much research aimed at the possibility of nanostructures being used

as thermoelectric devices. Some efforts use known good bulk thermoelectric materials in

superlattices [101, 102]. Some are optimizing quantum well and wire size [38, 40]. Most

importantly, some research is aimed at making this technology more useful on a larger

scale[74, 107]. This aspect will also be addressed in this thesis.

Looking at equation 1.12, we see that the figure of merit, and hence the efficiency,

of a thermoelectric material can be enhanced by lowering the thermal conductivity or

raising the electrical conductivity or Seebeck coefficient. One problem is that these three

properties are closely related and cannot be tuned completely independent of each other.

In this thesis, we attempt to address these problems using old and new techniques.
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1.5 Goal of this Thesis

1.5.1 Arsenic

We mentioned earlier that the best bulk alloys are composed of bismuth, antimony,

tellurium, and selenium. Groups V and VI of the periodic table (Table 1.1) show what

seems to be an obvious trend. Aside from the much lighter elements – nitrogen, oxygen,

phosphorous, and sulfur – it seems that arsenic and polonium might complete the picture.

We can exclude the hope of using polonium since the naturally occurring isotope has a

half-life of only 138.5 days. That leaves arsenic.

Arsenic telluride and arsenic selenide, though, are monoclinic and arsenic selenide

has a low melting temperature, eliminating it as a thermoelectric candidate. Bi
2
Te

3
and

Sb
2
Te

3
are rhombohedral with space group R3m, and Sb

2
Se

3
is orthorhombic with space

group Pnma. Whereas arsenic telluride dissolves only slightly in bismuth or antimony

telluride, Sb
2
Se

3
forms pseudo-ternary solid solutions over most of the composition range

with Bi
2
Te

3
and Sb

2
Te

3
[95, 108]. It is believed that Sb

2
Se

3
is beneficial to the Bi

2
Te

3
-

Sb
2
Te

3
system because it widens the energy gap. Sb

2
Se

3
has a much larger band gap,

1.11eV , than bismuth and antimony telluride, 0.16eV and 0.25eV [6, 54, 86, 78]. The

inclusion of Sb
2
Se

3
into this system increases the room temperature figure of merit by

21%. A summary of some properties of Group V-VI compounds are shown in table

1.2 [1, 2, 10, 28, 36, 40].

Very little research has been done on crystalline As
2
Te

3
and the effect of arsenic on

systems such as those shown above. This is due to difficulties in handling arsenic because

of toxicity concerns, and difficulties in crystal growth of compounds such as As
2
Te

3
and
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Table 1.1. Groups III, IV, V, and VI of the periodic table

13 14 15 16
(III) (IV) (V) (VI)

5 6 7 8
B C N O

10.811 12.011 14.00674 15.9994

13 14 15 16
Al Si P S

26.981539 28.0855 30.973762 32.066

31 32 33 34
Ga Ge As Se

69.723 72.61 74.92160 78.96

49 50 51 52
In Sn Sb Te

114.818 118.710 121.760 127.60

81 82 83 84
Tl Pb Bi Po

204.3833 207.2 208.98038 [208.9824]

Table 1.2.
Summary of group V-VI compounds

Compound Structure Space Group Vol. (Å
3
) S

(

µV
K

)

ZT

As
2
Se

3
Monoclinic C2/m 127.4 0.02(a)

As
2
Te

3
Monoclinic C2/m 141.2 245 0.16

Sb
2
Se

3
Orthorhombic Pnma 134.6 1200 0.03

Sb
2
Se

2
Te Rhombohedral R3m 144.0

Sb
2
Te

2
Se Rhombohedral R3m 151.6

Sb
2
Te

3
Rhombohedral R3m 158.2 80 0.12

Bi
2
Se

3
Rhombohedral R3m 142.4

Bi
2
Te

2
Se Rhombohedral R3m 157.9

Bi
2
Te

3
Rhombohedral R3m 169.1 180 0.68
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As
2
Se

3
. Even when mechanically stable crystals are successfully produced, there have

been complications experienced in measuring transport properties. Measurements are

usually very unstable. Some thermoelectric power measurements have shown p−type

and n−type As
2
Te

3
within the same ingot [10].

Here, we will attempt to determine, more completely, the effect of arsenic and ar-

senic telluride on room temperature thermoelectric cooling. First we discuss the methods

we will be using to investigate the compounds being studied. Two methods have been

employed. The first is pressure tuning.

Pressure tuning provides a means to change the structure of compounds being

studied without having to synthesize a completely new compound. If an improved prop-

erty is discovered, only then must an attempt be made to synthesize a compound with

the same properties at ambient pressure. Pressure tuning is discussed in Chapter 2.

The second method we use to search for improved thermoelectric materials begins

with first-principles calculations. In Chapter 3 we discuss the derivation of transport

coefficients from band structures calculated using the full potential linearized augmented

plane wave method (FP-LAPW) within density functional theory.

First we will look at the band structure of As
2
Te

3
and how it may compare

to Bi
2
Te

3
in Chapter 4. We will look at two known phases of arsenic telluride, the

monoclinic α−phase discussed earlier, and the high pressure β−phase which is isostruc-

tural with Bi
2
Te

3
and Sb

2
Te

3
. In Chapter 5 we will then study transport properties of

As
2
Te

3
under pressure and study the effect of arsenic in the alloys mentioned earlier in

this chapter.



11

1.5.2 Low-Dimensional Thermoelectrics

In section 1.5.1 we looked at research aimed at bulk thermoelectric materials. In

Chapter 6, we will study one of the newest paths in the search for improved thermo-

electrics. In the past ten years, the suggestion of lower dimensionality as a way to increase

ZT has matured into an intensively studied field of thermoelectrics [23, 24, 26, 27, 57].

Here we will discuss a newly designed deposition method, with a recently designed host.

We will demonstrate depositing low-dimensional structures in large scale host materials.
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Chapter 2

Experimental Methods

in the Diamond Anvil Cell

2.1 Introduction

Pressure tuning provides a means for varying a compounds volume which can

change the electronic structure and bonding properties. This permits a clean optimiza-

tion of properties without the unwanted effects of chemical tuning such as disorder or

phase separation. Traditional synthesis techniques are also slow compared to pressure

tuning since the reaction methods, doping levels, and compositions must be varied to

synthesize a single target compound. Pressure tuning is possible using a diamond anvil

cell (DAC).

There have been recent rapid advances in high pressure technology that allow the

measurement of many physical properties inside the DAC. For our purposes, the pressure,

thermoelectric power, and resistance can all be measured without having to remove

the sample. X-ray powder diffraction patterns and Raman spectra can be acquired for

samples in the DAC as well. All of these methods offer a way of tuning a material

quickly and simply. If desirable results are obtained, a target is set, and synthesis of a

new compound, with the desired structure at ambient pressure, is attempted.



13

2.2 Sample Preparation

A diagram of a typical Mao-Bell DAC used in our lab is shown in figure 2.1.

Figure 2.1a shows a close-up view where the opposing diamonds can be seen. The drilled

steel gasket radially contains the sample and pressure medium. Figure 2.1b shows the

assembly in the body which acts as a vise to press the two diamonds together, thereby

compressing the sample (Figure 2.2).

To prepare a sample, first the stainless steel gasket is drilled and coated with

electrically insulating varnish. The varnish is spread around the edge of the drilled hole

to prevent the thermocouples from making electrical contact with the conductive gasket.

When the varnish dries, monoclinic zirconium powder is placed in the drilled hole and

a small amount of cesium iodide is placed in the very center of the hole. The CsI is

transparent to visible and IR light in the range of pressures we explore. This allows

visualization of the sample while laser heating. Both media are then compacted by the

opposing diamond. This “pie crust” is baked at 100
◦
C. The sample is then placed on

this smooth crust and pressed down into the ZrO
2

and CsI. Next, two 12.5µm chromel-

alumel thermocouples are placed across the sample approximately 400µm apart with the

welded joint centered on the long axis of the sample. After the thermocouples are pressed

down onto the sample, more CsI and ZrO
2

is placed on top of the sample-thermocouple

assembly. This is compressed and baked at 100
◦
C again. A small piece of ruby is placed

on top of the sample for pressure measurements to be described later. Insulating varnish

and tape are then applied where the thermocouples could make contact with the gasket

or opposing diamond seat. The 12.5µm thermocouples are soldered to heavier gauge
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Fig. 2.1. The piston-cylinder assembly (a) of the Mao-Bell diamond anvil cell used in
our lab. The assembly is shown in the cell body (b).
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Fig. 2.2. A view of the sample assembly looking down the axis of the diamond (a) and
from the side (b) is shown.
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thermocouple extension wire for easier connections outside the DAC. The piston and

cylinder are then assembled, and placed in the cell body.

2.3 Measurement of Thermoelectric Power

To measure the thermoelectric power, each of the thermocouple leads must be

connected to a digital nanovolt-meter (DVM) [87]. We must compensate for the ther-

mocouples being connected to the copper leads by immersing the thermocouple-copper

connections in a 0
◦
C reference bath. The DAC body is then mounted on a three dimen-

sional stage to allow centering and focusing on the sample inside the cell. The sample

can be viewed in situ using visible light focused onto a CCD camera. The CCD camera,

which is also sensitive to IR radiation, allows focusing the Nd-YAF laser beam onto the

sample for laser heating.

The Seebeck coefficient can be defined for a junction of two different materials,

S
12

=
E
12

∆T
12

, (2.1)

or

S
s
− S

tc
=

E
s
− E

tc
T
s
− T

tc

. (2.2)

Here the subscript s refers to the sample and tc refers to the thermocouple. If we combine

equation (2.2) for the chromel leg of the thermocouple, with equation (2.2) for the alumel

leg of the thermocouple we obtain,

S
s

=
S

a
− rS

c
1 − r

, (2.3)
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where

r =
E
aa
E
cc

. (2.4)

E
aa

and E
cc

are the voltage differences between each of the alumel, and each of the

chromel legs of the thermocouples. The thermoelectric powers of the thermocouple

materials are well documented (S
a

= −18.39µV/K and S
c

= 21.65µV/K). We can then

calculate the thermoelectric power of the sample after measuring the voltage differences

across the thermocouple leads.

We do not take the pressure dependence of the thermocouple’s thermopower into

consideration when we calculate the thermopower of the sample. It has been shown that

at 10 GPa, the chromel and alumel alloys do not depart more than 0.6µV/K from their

ambient pressure thermopowers [15].

Resistance measurements are made using the thermocouples in a psuedo-four

probe configuration. A know current is passed through the sample using one set of ther-

mocouple branches, while the voltage drop is measured with the other. The resistance

is calculated directly by the DVM.

2.4 Powder X-ray Diffraction and Raman Spectroscopy

If we are interested in results from transport measurements, it is necessary to

extract structural information from the sample in the DAC using x-ray diffraction. While

Raman spectroscopy can give some information about bonding and structure, powder

diffraction can yield precise data from which cell parameters and atomic positions can be

determined. By using radiation of constant wavelength incident on a powder sample, we
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can use Bragg’s Law for constructive interference to calculate the inter-planar spacings

in the crystal cell. Bragg’s law states [81],

λ = 2d sinΘ , (2.5)

where λ is the wavelength of the incident radiation, d is the spacing between lattice

planes, and Θ is the angle of incidence and reflection.
1

The x-ray diffraction method used in the DAC was designed in our laboratory [5].

We use a Rigaku Rotaflex RU-200 x-ray diffractometer with a rotating molybdenum

(λ = 0.7093 Å) anode. The x-rays are focused with a Johansson-Gunier curved quartz

monochromator and a fabricated collimator (Figure 2.3). The resulting beam is a square

with 100µm sides. The diffracted x-rays are incident on Kodak DEF-128 direct exposure

film, which is developed using conventional techniques. The patterns on the film are then

scanned into a computer to be interpreted by fitting them to ellipses [69]. The distance

between the sample and the film (which affects Θ) is determined from diffraction patterns

of standards.

To measure the pressure inside the DAC, the ruby fluorescence method is used [30].

Until the 1970’s, compounds that had well known volume equations of state were used

as pressure markers in the sample chamber. Pressure estimates made in this manner

were unreliable though, because of losses due to friction and gasket flexing. Ruby is

much more reliable, not only because the shift in its fluorescence spectrum depends

1
We will not concern ourselves with n (nλ = 2d sin Θ) since it can be absorbed into the miller

indices.
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Fig. 2.3. DAC arrangement for x-ray diffraction experiments.
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linearly on pressure, but also because it is chemically inert under increased pressure

and temperature. A tiny chip is enough for measurement and practically any visible

laser is sufficient. We use a Helium-Neon laser of wavelength λ = 543.5nm for our

measurements. The ruby fluorescence method has been studied intensely, and the scale

has been calibrated precisely up to 100GPa.

2.5 Results for Standards

As a test for the experimental apparatus, we measured the thermoelectric power

of CePd
3

up to 10 GPa (Figure 2.4). The thermopower dropped slightly, but stayed

between 70µV/K and 80µV/K. This is in good agreement with previously published

results which showed a slight increase in thermopower up to 5 GPa, but it stayed between

76µV/K and 90µV/K [72, 92].

Elemental silver was used to calibrate the sample to film distance in the DAC. Sil-

ver’s interplanar spacings are well documented [93]. The collapsed diffraction pattern is

shown in figure 2.5. The d-spacings calculated are in excellent agreement with previously

published results if we calculate them using a sample to film distance of 5.0cm.

2.6 Conclusions

The DAC is a very useful experimental tool. We have shown how the thermopower

can be measured while compressing a sample. We have devised a method for x-ray

diffraction of samples inside the DAC. The pressure in the sample chamber can be

measured accurately with the ruby fluorescence method. These techniques, along with
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Fig. 2.4. Thermoelectric power of CePd
3

versus pressure.
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Fig. 2.5. The powder diffraction pattern for silver inside the DAC at zero pressure is
plotted versus d-spacing. The distance from the sample to the film is then calculated
using the known d-spacing.



23

the ability to probe the sample structure and bonding nature using Raman scattering,

make the DAC is a very powerful research tool.
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Chapter 3

Transport Coefficients from

First-Principles Calculations

3.1 Introduction

Transport coefficients, on which the figure of merit of a material depends (Sec-

tion 1.2), can be modeled utilizing a combination of parameterized band structures and

scattering mechanisms fitted to experimental results. Models to account for the effect of

alloy scattering and scattering by acoustic and optical phonons, and ionized and neutral

impurities on the charge carriers are fitted to experiment. Once this parameterization

and fitting is accomplished, the model can be used to explore the effect of variations

in composition, temperature, and doping level. This approach works reasonably well as

long as the regions to be explored are not too far from the conditions of the experiment

used to fit the model. Several examples can be found in the literature [76, 90, 103]. In

view of these requirements, it is most applicable to the fine tuning of well established

compounds. It is of very limited applicability for the exploration of novel thermoelectric

materials, where the available experimental information is limited.

We introduce a different and complementary approach that attempts to obtain

as much information as possible from first-principles calculations [84]. The goal is to

reduce the empirical information required to a minimum. First-principles total energy

calculations using the linear augmented plane wave (LAPW) method are mature and
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can give detailed information about the electronic and structural properties of atoms,

molecules, crystalline solids, surfaces, and interfaces [34, 43, 53]. The first step in our

approach is to obtain the electronic structure from first-principles calculations, retaining

the empirical modeling of the scattering mechanisms. However, many of the parameters

needed to model the scattering events can be obtained from first principles calculations.

This approach is more general and cannot compete in precision with the ad-hoc models

for a given material. This approach though, can offer valuable insight when little is

known about a material.

3.2 The Transport Distribution and Transport Coefficients

To evaluate the transport coefficients we use the semi-classical approach given by

the solution of Boltzmann’s equation in the relaxation time approximation [4, 59, 66, 111]

Electrical and heat currents are fluxes of charge and energy respectively. The electrical

current is defined as

~J = e
∑

~k

f~k
~v~k

, (3.1)

and the heat current as,

~J
Q

=
∑

~k

f~k
~v~k

(ε~k
− µ), (3.2)

where e is the charge of the carriers. The sums run over all quantum numbers of the

system that, in the case of a crystalline solid, are the three components of the crystal

momentum ~k. f~k
is the population of, and ~v~k

is the group velocity associated with, the

quantum state labeled by ~k. ε~k
is the energy of state ~k and µ is the chemical potential.
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~v~k
is defined as the gradient in reciprocal space of the dispersion relation of the electrons

in the crystal,

~v~k
=

1

~
∇~k

ε~k
. (3.3)

The population of the state ~k is, in our case, the solution of the steady state
1

Boltzmann’s equation,

(

∂f~k
∂t

)

coll.

+

(

∂f~k
∂t

)

fields

+

(

∂f~k
∂t

)

diff.

= 0. (3.4)

This equation states that the rate of change of f~k
due to collisions, external fields, and

diffusion is zero, or

(

∂f~k
∂t

)

coll.

=

(

∂~k

∂t
· ∇~k

f~k

)

+
(

~v~k
· ∇

~r
f~k

)

. (3.5)

External fields change the carrier momentum at a rate,

∂~k

∂t
= − e

ℏ

(

~E +
1

c
~v~k

× ~H

)

, (3.6)

and the scattering term, with the inclusion of a relaxation time τ , can be written as,

(

∂f~k
∂t

)

coll.

= −
f~k

− f
0

~k
τ
k

. (3.7)

1
We are interested in the solution of the steady state Boltzmann equation because we are

concerning ourselves with only low field DC currents.
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Here, f
0

is the equilibrium distribution function.
2

By choice we drop the dependence on

the magnetic field. We also ignore the effects due to the size, and shape of the crystal.

Assuming that the occupations depart only slightly from equilibrium, we are left with,

f~k
− f

0

~k
τ
k

=
e

ℏ

~E · ∇~k
f
0

~k
+

(

~v~k
· ∇

~r
f
0

~k

)

. (3.8)

Finally, if we assume that the spatial dependence of f
0

~k
is only through the temperature

gradient,

f~k
= τ

k
~v~k

(

−∂f
0

∂ε~k

)

·
(

e ~E +
1

T
(ε~k

− µ)(∇ T )

)

+ f
0

~k
. (3.9)

Inserting the solution into equations (3.1) and (3.2) we obtain,

~J
e

= σ ~E − ℵ∇T

~J
Q

= Tℵ ~E − κ
0
∇T . (3.10)

2
In this case f

0
is the Fermi-Dirac distribution function,

f
0

=
1

e
(ε~k

−µ)/kT+1
.



28

Where σ (the electrical conductivity), S (the Seebeck coefficient), and κ
0

(a component

of the electronic thermal conductivity) are the transport coefficients defined as,

σ = e
2

∫

dε
(

−
∂f

0
∂ε

)

Ξ(ε) (3.11)

S =
e

Tσ

∫

dε
(

−
∂f

0
∂ε

)

Ξ(ε) (ε − µ) (3.12)

κ
0

=
1

T

∫

dε
(

−
∂f

0
∂ε

)

Ξ(ε) (ε − µ)
2

. (3.13)

κ
0

contributes to the electronic thermal conductivity according to,

κ = κ
0
− TσS

2
. (3.14)

All material dependent information in the transport coefficients, is contained, by defini-

tion, in the transport distribution (TD),

Ξ =
∑

~k

~v~k
~v~k

τ~k
. (3.15)

The TD is important in that it simplifies the numerical calculation as well as holds

valuable information that, in itself, reveals details about the material being examined.

One example of this is anisotropy, something that is not available from the density of

states, but can be seen in the TD without actually calculating any transport properties.
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3.3 Implementation

To calculate the TD (Equation (3.15)) the group velocities, the energies, and the

relaxation times are needed for each ~k–point. In this first implementation we take the

group velocity from the first-principles calculations but estimate the relaxation time.

Direct calculation of the group velocity using the definition given in equation (3.3) is

numerically difficult to implement. Electronic structure codes usually evaluate the band

energies in a numerical mesh for the Brillouin zone sampling; therefore, the group ve-

locity must be evaluated as a numerical derivative. This differentiation requires the use

of a computationally costly, very fine grid. One method currently being implemented to

reduce the computational cost employs a Fourier expansion of energy bands. The Fourier

expansion can then be analytically differentiated to obtain the group velocity [60]. How-

ever, even if the computational cost can be reduced, real materials usually have several

bands crossing the Fermi level and each other which poses a difficulty for this strategy.

We use the following approach. The group velocity is related to the momentum,
3

~v
n,~k

=
1

m
~p
n,~k

=
1

m

〈

ψ
n,~k

∣

∣

∣

~̂p
∣

∣

∣
ψ

n,~k

〉

, (3.16)

if the coefficients are evaluated at zero field. The last part of equation (3.16) is the

intra-band optical matrix element. These matrix elements are available in the optical

properties package of the FP-LAPW WIEN2k code [3, 11]. We have implemented the

calculation of transport coefficients described here as one of the modules of this package.

3
The band index n has been omitted up to this point in order to make the expressions simpler.

To recover the full expressions it is sufficient to replace ~k by (n,~k) in all the indices.
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Having the optical matrix elements and the electronic band structure, all that remains,

in order to calculate the TD, is the relaxation time.

In this first implementation of the transport code, we restrict the scattering mech-

anisms to those most relevant for compound semiconductors: scattering by acoustic

phonons (deformation potential and piezoelectric), non-polar optic phonons, ionized and

neutral impurity atoms and alloy scattering [66]. The parameters entering the expres-

sions for the scattering, such as the deformation potential constant, piezoelectric con-

stant, sound velocity, density, optical phonon frequency, and others are presently taken

from experiment.

All semiconductors used as thermoelectric materials are doped to optimize the

figure of merit. First-principles calculations, however, are performed for stoichiometric

compounds. To treat doping we have to resort to approximations. We have chosen

to use the simplest approach, the rigid band approximation. We will assume that the

band structure remains unchanged as we move the Fermi level to simulate doping. This

approximation is good as long as the doping levels used are not high enough to change

the bonding properties of the material. To test this approach, we have calculated the TD

and transport coefficients for Bi
2
Te

3
. Sufficient experimental data has been obtained for

Bi
2
Te

3
to allow for a rigorous evaluation of the method.
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3.4 Application to Bi
2
Te

3

3.4.1 Computational Details

The crystal structure of Bi
2
Te

3
belongs to the spacegroup R3m with atoms

stacked along the trigonal axis, Te(1)–Bi–Te(2)–Bi–Te(1). For all calculations we used

the experimental rhombohedral cell parameters of a = 10.48Å and α = 24.16
◦

[68].

Density functional theory was employed as implemented in the WIEN2k code, utilizing

the FP-LAPW method [11]. The generalized gradient approximation as described by

Perdew, Burke, and Ernzerhof was used for the exchange and correlation potential [70].

A muffin-tin radius, R
mt

, of 1.48Å separated the core from the interstitial region on

both the Bi and Te atoms. An R · k
max

value of 10, and G
max

value of 20 were used

corresponding to 950 basis functions in the wave function expansion and 13, 259 stars

in the interstitial region respectively. The self-consistent field calculation was converged

with 231 ~k–points, while the optical matrix elements were calculated for a denser mesh of

11, 050 ~k–points in the irreducible wedge of the Brillouin zone. Because of the large spin-

orbit (SO) effects in Bi
2
Te

3
, eigenstates were calculated up to 10.0Ry and included in the

SO calculation. The sum over ~k–points in equation (3.15) was evaluated with the Blöchl

integration method [12]. A constant, anisotropic relaxation time (discussed in section

3.4.2.2), and experimentally determined lattice thermal conductivities of 1.5 W
m·K along

the basal plane and 0.7 W
m·K along the trigonal axis were used at all doping levels [32].

All integrals were evaluated at a temperature of 300K.
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3.4.2 Results

3.4.2.1 Band Structure

To calculate transport properties, an accurate electronic structure is required.

Our calculated band structure along commonly explored high symmetry lines is shown

in figure 3.1. We have also included a point labeled Υ, chosen such that the line Υ–

Γ passes through the lowest conduction band (LCB) and highest valence band (HVB)

edges. We find the band edges in the mirror plane, yielding six LCB and six HVB

pockets as a result of three-fold rotational symmetry and inversion symmetry. This has

been confirmed by experiment [63, 91]. The calculated band gap, E
g

= 0.11eV , is in

good agreement with experiment [86]. Past reports found the LCB edge along the Γ–Z

line using the LMTO-LDA and FP-LAPW (WIEN97) methods [56, 65]. This yields only

two carrier pockets due to inversion symmetry.

SO effects are very important in Bi
2
Te

3
because its constituent elements are

heavy. The second variational method used in our calculation depends on the number

of states included in the SO perturbation term. This is controlled by the energy window

of states included. When states up to 10.0Ry are included, the LCB shows six pockets.

In contrast, when the default window is used, −7.0Ry to 1.5Ry, only two pockets are

obtained. We studied the dependence of the energy difference between the LCB states

along Γ–Z and Γ–Υ on the upper energy limit of states included in the perturbation,

and found that the two states’ energies move with respect to each other as the upper

limit of the energy window is varied. Figure 3.2 shows the difference between the LCB

edge energy that we obtain and energy of the state on the Γ–Z line, ε
d

= ε
ΓZ

− ε
ΓΥ

,
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Fig. 3.1. The electronic structure of Bi
2
Te

3
is shown with and without SO. The figure

shows the importance of SO in Bi
2
Te

3
by moving band edges further from the Fermi

energy at Γ.
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as a function of the upper energy limit. The calculations converge with the Γ–Υ pocket

lower in energy, ε
d

> 0, leading to six pockets in the LCB. An upper limit of 8.0Ry

seems to be sufficient. Reference [56] does not mention the energy window used. Other

parameters such as R
mt

, and the number of ~k–points used are also different, however

these differences do not affect the results. We also compared results between LDA and

GGA calculations and found no differences in the location of the band edges.

More recently, Youn et al. found six pockets in both the HVB and LCB using

another implementation of the FP-LAPW method and the local density approximation

for the exchange and correlation potential [110]. Our LCB edge is the same as, but our

HVB edge is slightly different than that found by Youn, et al. We find the HVB edge at

(0.652, 0.579, 0.579) (in relative rhombohedral coordinates) and a nearby secondary edge

40meV below, at (0.539, 0.368, 0.368), referred to as c and b respectively in figure 3a of

Ref [110]. Youn, et al. found the HVB edge at b, and a secondary edge 3.8meV lower

in energy at c. These differences are small and within the expected precisions of our

methods.

With a well converged band structure, and electron velocities calculated as de-

scribed in section 3.3, we were able to calculate the TD. The integrations were then

carried out for different values of the chemical potential to simulate doping as discussed

in section 3.3. We first compare our results for the Seebeck coefficient, the electrical

conductivity, and ZT with experiment. We then present a general analysis of the TD,

power factor (PF), and ZT .
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Fig. 3.2. The energy difference between the two states, ε
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the upper limit of the energy window used. An upper limit above 8.0Ry is sufficient to
produce reliable results.
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3.4.2.2 Transport Coefficients of Bi
2
Te

3

As is customarily done in thermoelectric literature, we plot S
xx

(Seebeck coef-

ficient along the basal plane), on the y–axis, and σ
xx

on the x–axis for samples with

different doping concentrations. Figure 3.3 shows experimental data of doped Bi
2
Te

3

documented in reference [33] along with our calculated values of the Seebeck coefficient.

In calculating the Seebeck coefficient, the constant relaxation time cancels from both

integrals (Equations (3.11) and (3.12)) eliminating it as a fitting parameter. We can,

however, use τ to fit the Seebeck coefficient with its corresponding electrical conductiv-

ity. A constant relaxation time of τ
xx

= 2.2×10
−14

s, which gives best agreement in the

intrinsic region, was used at all doping levels. We obtain better correspondence on the

n-doped side of the graph, but overall, the calculated data agree well with experiment

considering that only the relaxation time was adjusted to fit the data.

The anisotropy of the electrical conductivity of Bi
2
Te

3
is well documented [67].

The conductivity along the basal plane can be more than four times greater than that

along the trigonal axis (zz–direction). This is enough to compensate for a lattice thermal

conductivity along the trigonal axis that is half of that along the basal plane. Since the

lattice thermal conductivity is comparable to the electronic contribution in the range of

reasonable doping, Bi
2
Te

3
is used as a thermoelectric device with conduction along the

basal plane [33]. Figure 3.4 shows the anisotropy of our calculated electrical conduc-

tivity along with experimental data [20]. The data represented by the dotted line were

calculated using the relaxation time determined above for conductivity in all directions.

The agreement between experimental data and theory is very good. However, if we use
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an anisotropic relaxation time, τ
xx

= 2.2×10
−14

s and τ
zz

= 2.1×10
−14

s, the solid line

in figure 3.4 shows even better agreement with experiment. Since this relaxation time is

only slightly anisotropic, less than 5% difference between directions, bismuth tellurides’s

strong anisotropy is a result of its electronic structure, i.e. if any arbitrary, isotropic,

constant relaxation time were used, the strong anisotropy of the conductivities would

still be apparent. This supports the validity of our calculated band structure. The strong

disagreement starting near σ = 4× 10
−3

Ω
−1

cm
−1

(n & 10
20

cm
−3

) could be attributed

to the failure of the rigid band model at high doping concentrations.

Using the experimentally determined lattice thermal conductivity of intrinsic

Bi
2
Te

3
, we were able to make an estimate of ZT . Figure 3.5 shows experimentally

determined figures of merit along with our calculated values [33]. Both sets of data are

for ZT calculated along the preferred direction. Again, agreement between calculated

values and experiment is quite good. Confident that the band structure and velocities

used in the calculations produced reliable results, we now analyze those results to de-

termine which features of bismuth telluride’s band structure give rise to a large PF and

ZT .

3.4.2.3 Analysis of Transport Coefficients

Figure 3.6 shows several calculated properties plotted as a function of chemical

potential (i.e. versus doping in the rigid band model): The TD, DOS, Seebeck coefficient,

PF, and ZT . The doping levels represented over the entire range of the plots may be

unattainable, but it allows a complete analysis of what gives rise to good electronic

properties and ZT . For reference, carrier concentrations up to 10
20

cm
−3

correspond
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to chemical potentials between -0.17eV (p-doped) and 0.17eV (n-doped). First we will

focus on the PF and Seebeck coefficient because the value of ZT is complicated by

contributions from the lattice thermal conductivity.

In figure 3.6, there is no evident correlation between the structure of the TD or

DOS and peaks in the PF. Looking at equations (3.11)–(3.13),
∂f

0

∂ε dictates the range

of the integral. Because 5kT , the width of
∂f

0

∂ε , is small compared to the bandwidth,

we can approximate the TD as a line,

Ξ(ε) ≈ a(ε − µ) + b , (3.17)

where a and b are, respectively, the slope and the height of the TD. Evaluating equa-

tions (3.11) and (3.12) using this approximation, it is easy to show that the PF behaves

as,

σS
2 ∝ a

2

b
. (3.18)

The PF grows with increasing slope, or decreasing height of the TD. This is evident near

−0.6eV in figure 3.6a, where the two TD’s intersect. Here, the xx and zz–directions

have equal values of TD, but along the zz−direction the slope is larger. Equation (3.18)

predicts a larger PF for the TD with the larger slope. Figure 3.6d shows that the PF

along the zz−direction is indeed greater than that along the xx–direction. This behavior

also manifests itself near 0.75eV on the n-doped side of figure 3.6a.

The Seebeck coefficient, plotted in figure 3.6c shows more structure in the range

of attainable doping levels near the Fermi energy. The approximation of equation (3.17)

gives a Seebeck coefficient that behaves as
a
b . This makes it more sensitive to a larger
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height of the TD (or larger electrical conductivity). Comparing this to equation (3.18),

and by looking at figure 3.6, we see that the optimum Seebeck coefficient does not

correspond to the the optimum PF.

All but two of the peaks in the PF lie outside the range of reasonable doping.

The benefit of these peaks away from the gap is moot, due to a large κ
el

that would

accompany heavy doping. Figure 3.6e shows ZT ’s calculated from our data and the

experimentally determined lattice thermal conductivity discussed in section 3.4.2.2. One

p-type and one n-type maximum, corresponding to 5 × 10
19

cm
−3

and 4 × 10
19

cm
−3

carrier concentrations respectively, remain at reasonable doping levels. Both agree with

experimentally optimized ZT ’s. The inset of figure 3.6a shows a closer view of the TD

that gives rise to these peaks. This shows the importance of the band gap in Bi
2
Te

3
.

Near the gap, b can be very small while a can be large. This does not imply, however,

that the gap needs to be small or that this condition only occurs near the gap.

3.5 Conclusions

Starting from basic transport equations we have defined the TD, which is obtain-

able from first-principles calculations. The TD contains all the electronic information

necessary to describe a material. The optical matrix elements needed are already avail-

able in the LAPW basis. The method was tested on a material that has been thoroughly

investigated (Bi
2
Te

3
) and the calculated transport coefficients are in agreement with

those reported by experiment. The TD was also used to analyze the relationship be-

tween the electronic structure of Bi
2
Te

3
and its thermoelectric properties. The transport
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coefficients can be easily extracted from the slope and value of the transport distribu-

tion alone. The power factor is proportional to the square of the slope and inversely

proportional its value.

The method presented here should prove valuable in the search for improved

thermoelectric materials. Despite the known limitations of first principles calculations

in the treatment of alloys and the limitations of the relaxation time approximation,

the method gives a rapid and reliable way to efficiently screen potential candidates for

thermoelectric materials. Furthermore, insight can be obtained into which features of

a material make it exhibit high ZT , such as which bands contribute to the transport

process and what crystal structural features are associated with the high ZT . This

knowledge opens the way to tailoring the electronic bands to produce more efficient

materials. This is the first step toward the ultimate goal of a parameter free evaluation

of thermoelectric transport coefficients.
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Chapter 4

Electronic Structure and Transport Properties

of α and β−As
2
Te

3

4.1 Introduction

Bi
2
Te

3
and Sb

2
Te

3
, both of which have a trigonal unit cell with spacegroup R3m,

are very important thermoelectric materials and have been studied intensively. As
2
Te

3
,

though a Group V-VI semiconductor as well, has a different structure and has not been

studied nearly as much. The monoclinic unit cell of As
2
Te

3
, spacegroup C2/m, has

5 inequivalent atoms. It is a layered structure with each of the inequivalent arsenic

atoms tetrahedrally (As
1

in figure 4.1) or octahedrally (As
2

in figure 4.1) bonded to the

surrounding tellurium atoms [16, 19].

Very few band structure calculations were found in the literature for monoclinic

As
2
Te

3
(α−As

2
Te

3
) [85]. This is due in part to its large unit cell. As

2
Te

3
has been more

intensively studied in the amorphous form with emphasis placed on its optical properties.

Only a tight binding calculation and band structures for amorphous and alloyed As
2
Te

3

were found in the literature [14, 47, 58]. There have been experimental studies on the

thermoelectric power and other transport properties [36]. Some of those results are listed

in Table 1.2.
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β-As
2
Te

3
has the same anisotropic trigonal crystal structure (Fig. 4.2a) as Bi

2
Te

3

and Sb
2
Te

3
. It can be formed by rapid quenching from high temperatures during synthe-

sis or by compressing monoclinic α-As
2
Te

3
[49, 99]. Relatively little is known about the

properties of β-As
2
Te

3
. It was recently reported that there is a large improvement in the

thermoelectric figure of merit of Sb
1.5

Bi
0.5

Te
3

alloys upon pressure-tuning under non-

hydrostatic stress [7, 73]. Recent calculations also show an improvement in the power

factor of Sb
2
Te

3
under non-hydrostatic pressure [97]. Substitution of smaller atoms into

a crystal structure can sometimes be used to effect a chemical pressure that mimics the

effects of physical pressure. Arsenic is smaller than bismuth. At ambient pressure how-

ever, the thermodynamically stable crystal structure of As
2
Te

3
is monoclinic and less

than 1% of the bismuth atoms in Bi
2
Te

3
can be replaced by arsenic by conventional

synthesis techniques, and the resulting alloy is a multi-phase semiconductor [108]. At

high pressures or temperatures, where β-As
2
Te

3
becomes stable, it might be possible to

form solid solutions that could be quenched to ambient conditions [49]. In general, it

is difficult to predict whether solid solutions will form from a pair of isotypic semicon-

ductors, but the size difference between As and Bi appear to be small enough to permit

substitution. Quenching of liquid As
2
Te

3
–Bi

2
Te

3
alloys from high temperature might

also form a route to a solid-state alloy.

The electronic structure near the energy gap of a semiconductor determines its

thermoelectric properties [21, 61]. Substitution of As for Bi in the Bi
2
Te

3
crystal struc-

ture might, like pressure tuning, provide additional degrees of freedom for tuning the

thermoelectric properties if the electronic structure of β-As
2
Te

3
is sufficiently different

from that of Bi
2
Te

3
. Differences might arise because of the slightly smaller size of arsenic
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Fig. 4.1. (a) Layered structure and (b) Brillouin zone of α−As
2
Te

3
.

Fig. 4.2. The (a) rhombohedral β-As
2
Te

3
unit cell with the three inequivalent atoms

labeled, and (b) the Brillouin zone indicating special ~k-points are shown.
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and its smaller contribution to the spin orbit interaction relative to bismuth. Here we

report a full potential linearized augmented plane wave (FP-LAPW) investigation of the

electronic structure of β-As
2
Te

3
using the WIEN2K density functional code [11]. For

comparison, we have also calculated the electronic structure of α-As
2
Te

3
and Bi

2
Te

3

using the same method. In contrast to earlier calculations, we optimized the lattice

parameters of Bi
2
Te

3
within density functional theory [56, 65, 110]. The electronic

structures of β-As
2
Te

3
and Bi

2
Te

3
are similar, although there is a modest difference

near the zone center Γ point.

We will also examine transport properties of β−As
2
Te

3
using the method de-

scribed in Chapter 3. Again, we expect electronic properties to be similar to that of

Bi
2
Te

3
. Since arsenic is much lighter than bismuth though, the lattice thermal conduc-

tivity may be much higher in β-As
2
Te

3
. This would significantly lower ZT .

4.2 Method

The FP-LAPW method was used to solve the Kohn-Sham equations self consis-

tently and the generalized gradient approximation of Perdew, Burke, and Erzenhoff was

used to describe the exchange-correlation energy [53, 70]. The muffin-tin radii (R
mt

)

used as the boundaries of the interstitial regions and the ion cores were 1.22Å for arsenic

and 1.32Å for tellurium. The core energy cut-off was set at −6.0Ry. We calculated the

electronic structure using lattice parameters that were relaxed within density functional

theory. A mesh containing 344 ~k-points in the irreducible wedge of the Brillouin zone

(BZ) (Figure 4.2b) was used for convergence. The spin orbit (SO) interaction was in-

cluded. A G
max

value of 20.0 and a R
mt

· ~k
max

value of 10.0 were used corresponding
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to 1, 383 planes waves in the wave function expansion and 14, 272 stars in the interstitial

region. After convergence, the BZ was searched for band edges, and once found in the

mirror plane containing Γ, U , and A, the eigenvalues of 10, 000 ~k-points in the plane were

calculated. A similar approach was used for Bi
2
Te

3
to ensure that the true extrema,

which can be missed if only symmetry lines are explored, are located.

To calculate transport coefficients for β−As
2
Te

3
, a much denser grid was used

than that for convergence. An irreducible wedge containing 3, 894 k−points was used

for integration. This represents 42, 875 k−points in the entire BZ. A relaxation time of

1 × 10
−14

seconds was used to compare the transport distribution (TD) and transport

properties qualitatively with Bi
2
Te

3
.

The experimental lattice parameters, a = 14.4Å, b = 4.05Å c = 9.92Å, and

β = 97.0
◦
, were used for α−As

2
Te

3
. 231~k−points in the irreducible wedge of the BZ,

representing 1000~k−points in the entire BZ were used for convergence. R
mt

for the

arsenic and tellurium atoms was the same as that shown above. All cut-offs used, G
max

,

R · ~k
max

, etc., were the same as that used in the β−As
2
Te

3
calculations. Again, SO

corrections were included.

Bi
2
Te

3
properties were calculated in the same manner as that in chapter 3, with

the exception that the lattice was relaxed for the work in this chapter.
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4.3 Results and Discussion

4.3.1 Band Structures

4.3.1.1 α−As
2
Te

3

α−As
2
Te

3
was found to be an indirect band gap semiconductor with E

g
=

0.28eV . Only two experiments with published energy gaps were found. One calculated

from conductivity measurements taken at 500K reported E
g

= 0.9eV [71]. Another

found a gap of E
g

= 1.0eV using infrared transmission measurements. It is known now

that semiconductor gaps are usually underestimated in the local density approximation.

The calculated band structure along some symmetry lines (Figure 4.2a) that include the

band edges found is shown in figure 4.3. The SO interaction does little more than close

the gap slightly.

The highest valence band (HVB) edge at the ~k−point labeled h is near (0, 1/4,

0) at (0.021, 0.278, 0.021). With inversion symmetry and a mirror plane, the HVB edge

is four-fold degenerate. A secondary edge located at D in the BZ is 40meV below the

the HVB edge. The lowest conduction band (LCB) edge is also located at D. A tertiary

edge along the Γ – D line is only 1meV below the pocket at D. Since D is at the zone

boundary, the LCB is non-degenerate.

The calculated density of states (Figure 4.4) agrees with both local orbital calcu-

lations and x-ray photo-emission spectroscopy measurements [8, 14, 18]. The steep DOS

at the HVB is due to the multiple pockets described above.
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Fig. 4.3. The band structure of α−As
2
Te

3
with and without spin orbit coupling included

is shown.
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Fig. 4.4. The density of states of α−As
2
Te

3
.
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4.3.1.2 β−As
2
Te

3

The relaxation process for β-As
2
Te

3
yielded a lattice parameter and trigonal angle

of a = 10.27Å and α = 23.1
o

(relaxation of Bi
2
Te

3
resulted in parameters a = 10.59Å and

α = 24.4
o
), which differ only slightly from experimental reports [99]. This gives a final

relaxed unit cell volume that is 4% larger than the experimental volume. The relaxed

atomic positions, which are displaced less than 2% from the experimental positions, are

(0.3951, 0.3951, 0.3951) for arsenic and (0.2183, 0.2183, 0.2183) for the second tellurium

atom in relative rhombohedral coordinates. The first tellurium atom is fixed at the

origin. The bulk modulus derived from a fit of the Murnaghan equation of state to the

energy as a function of volume is 50.2 GPa. Although there are no published reports

for the bulk modulus of β-As
2
Te

3
, the calculated value is in the range observed for most

covalently bonded semiconductors, i.e. B ∼ 50 − 100GPa.

Contour plots of the energies in the mirror plane containing Γ, U , and Z for both

the highest valence band (HVB) and lowest conduction band (LCB) show the location of

the band edges in the BZ (Figure 4.5). Both the HVB maximum and LCB minimum lie

away from symmetry lines at m(−0.316,−0.427,−0.427). There are secondary extrema

just above the LCB edge and below the HVB edge at Γ. Fig. 4.6 shows the band structure

of both β-As
2
Te

3
and Bi

2
Te

3
plotted along lines that include the band edges found for

both compounds. We find both of Bi
2
Te

3
’s edges located in the mirror plane away from

high symmetry lines at the point labeled b (labeled d in reference [110]). The secondary

LCB edge of β-As
2
Te

3
is within 15meV of the primary edge and will contribute to

transport with minimal temperature broadening.
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Fig. 4.5. Contours of the (a) HVB and (b) LCB in the mirror plane containing Γ, U ,
and Z are shown. Dark areas indicate maxima and light indicate minima. The band
edges are labeled m. The contours are separated by 0.1eV
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Good thermoelectric materials often have multiple valleys at the band edges be-

cause higher degeneracies result in higher thermoelectric powers [21, 61]. From rotation

and inversion symmetry, the band edges of β-As
2
Te

3
at m must be six-fold degenerate.

Models with six valleys in the mirror plane of the Brillouin zone for both the HVB and

LCB edges are generally accepted to explain experimental observations of the Fermi

surface of doped Bi
2
Te

3
[22]. Previous density functional calculations of Bi

2
Te

3
that

utilized the experimental lattice parameters agree that the valence band has six val-

leys, but differ on the number of valleys in the conduction band. In agreement with

experimental findings, Youn and Freeman found six-fold degeneracy for the conduction

band edge [110]. They sampled a large number of ~k-points in the Brillouin zone and

located the extrema in the mirror plane off of high symmetry lines. Mishra, et al. and

Larson, et al. reported a doubly degenerate conduction band valley along the Γ − Z di-

rection [56, 65]. The difference between the energies of the band edges found in different

calculations is quite small and can be attributed to various differences in the calcula-

tion methods employed, such as different approximations for the exchange-correlation

potential or different energy cut-offs between core and valence states.

The models proposed to explain the Fermi surface data of Bi
2
Te

3
also include a

second set of six-fold valleys close in energy to the band edges resulting in twelve Fermi

surface pockets at suitable doping levels [63, 91]. The present calculations indicate that,

in contrast, the secondary edges of β-As
2
Te

3
are at the non-degenerate Γ point (Figures

4.5 and 4.6), while Bi
2
Te

3
has local maxima with higher degeneracy on both sides of the

Γ point. Γ is also the only point found where the valence band energies are substantially

different.
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Both the LCB and HVB edges of β-As
2
Te

3
lie at the m point in the Brillouin

zone giving rise to a direct gap of ε
g

= 0.12eV . Youn and Freeman found an indirect

gap of 0.061eV for Bi
2
Te

3
, compared to the experimental gap of 0.13eV , between the

HVB edge at (0.546, 0.343, 0.343) and the LCB edge at (0.663, 0.568, 0.568), labeled b

and d respectively in reference [110], not far from the Z–U line [110]. Larson et al. also

reported an indirect gap between the HVB edge at the a point along Z–U and the LCB

along Γ–Z. The density of states of β−As
2
Te

3
, also very similar to calculated DOS of

Bi
2
Te

3
, is shown in figure 4.7. The inset shows a closer view of the DOS near the Fermi

energy, where it is also very similar to that of Bi
2
Te

3
.

4.3.2 Transport Properties

The calculated TD for β-As
2
Te

3
and Bi

2
Te

3
are shown in figure 4.9. The Fermi

energies are slightly shifted to expose the structures near the gap. Their behaviors are

very similar. The slopes near the gap are quite steep and we would expect the power

factor (PF) of β-As
2
Te

3
to be close to that of bismuth telluride. On the valence band

side of the TD, Bi
2
Te

3
shows high anisotropy just below the gap. β-As

2
Te

3
though,

does not show as much anisotropy until the chemical potential reaches approximately

−0.4eV . This could indicate a degree of freedom from alloying not apparent from the

band structures alone.

Figure 4.9 shows that the PF of β−As
2
Te

3
does not come close to that of Bi

2
Te

3

near the Fermi energy. For both n and p−type compounds, the PF of Bi
2
Te

3
along the

xx−direction dominates by nearly a factor of four. Since arsenic is smaller than bismuth,

it is probable that the thermal conductivity would not be low enough in β−As
2
Te

3
to
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Fig. 4.7. The density of states of β-As
2
Te

3
. The inset shows a closer view near the

Fermi energy.

Fig. 4.8. The transport distribution of β−As
2
Te

3
is shown along with that of Bi

2
Te

3
.
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compete with Bi
2
Te

3
or other present room temperature thermoelectric materials as a

pure compound.

4.4 Conclusions

We have calculated the electronic structure of β−As
2
Te

3
for comparison with

that of Bi
2
Te

3
. Calculations reveal a band gap for β−As

2
Te

3
which is slighly smaller

than bismuth telluride’s. The band structures are very similar with a small difference at

Γ. Transport calculations also show qualitative similarities between the two compounds.

Bi
2
Te

2
shows a larger PF though, and with its low thermal conductivity would most

likely have a larger figure of merit. Finally, we note that because of the similarities in

the electronic structures, experimental studies are required to determine the amount of

flexibility β−As
2
Te

3
may provide for tuning the electronic structure of Bi

2
Te

3
.
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Fig. 4.9. The calculated power factors, using τ = 1.0×10
−14

s, of β−As
2
Te

3
are shown

along with those of Bi
2
Te

3
.
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Chapter 5

Thermoelectric Power of As
2
Te

3

and Alloys Containing As
2
Te

3
Under Pressure

5.1 Introduction

5.1.1 As
2
Te

3

We pointed out in Chapter 1 that the trend of Group V and VI compounds used

as room temperature thermoelectric materials seemed incomplete. Of all possible V-VI

compounds, Bi
2
Te

3
and Sb

2
Te

3
seem to be the most thoroughly studied. Very little

research, though, has been done on crystalline As
2
Te

3
. This is due, in part, to the

fact that single crystals are nearly impossible to grow, and polycrystalline samples are

difficult to grow. When they are grown, they are very weak [10, 36]. There are also

handling difficulties because arsenic is very toxic.

Transport experiments on As
2
Te

3
began 50 years ago when it was studied along

with Bi
2
Te

3
and Sb

2
Te

3
[10, 36]. The electrical conductivity, thermal conductivity, and

thermoelectric power of arsenic telluride were measured, but all proved to be unstable.

Both p and n−type As
2
Te

3
were found in the same ingot grown for the experiments.

After these initial studies, crystalline arsenic telluride is found only scarcely in the liter-

ature.

Another reason As
2
Te

3
may have received less attention is because its structure

is different from the R3̄m space group of Bi
2
Te

3
and Sb

2
Te

3
. At room temperature and
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pressure, As
2
Te

3
is monoclinic with spacegroup C2/m (α−As

2
Te

3
) [16, 46, 99]. Another

phase of As
2
Te

3
, one that is isostructural with Bi

2
Te

3
, has been seen at high pressure

and when α−As
2
Te

3
is quenched rapidly from high temperature. This phase is known as

β−As
2
Te

3
. Here, starting with commercially available monoclinic arsenic telluride, we

study its thermopower inside the DAC. No published experiments were found showing

high pressure Seebeck coefficient measurements. Our ultimate goal of these experiments

though, are to produce β−As
2
Te

3
.

A previously published phase diagram for As
2
Te

3
is shown in figure 5.1 [49]. The

authors only studied As
2
Te

3
up to 1.7 GPA. At this pressure and room temperature,

β−As
2
Te

3
is not seen. In the P-T plane, the separation of the monoclinic and rhombo-

hedral phases is linear in the ranges the authors studied. A rudimentary extrapolation

would yield a room temperature phase transition near 7 GPa. Here, we attempt to see

the β phase of arsenic telluride and measure its thermopower under pressure using a

Mao-Bell DAC.

5.1.2 Alloys

The current market for thermoelectric devices is dominated by bulk alloys. Most

room temperature applications use alloys containing bismuth, tellurium, antimony, and

selenium. The best room temperature alloys have the composition (Bi
2
Te

3
)
x

(Sb
2
Te

3
)
y

(Sb
2
Se

3
)
100−(x+y)

, where x = 90 and y = 5 for n−type material, and x = 25 and

y = 72 for p−type material. Their figures of merit are near 1.0. Bi
2
Te

3
and Sb

2
Te

3

alone have figures of merit of 0.68 and 0.12 respectively. So, we see that alloying can

have a large effect on transport properties.
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Fig. 5.1. High pressure and temperature phase diagram of As
2
Te

3
. The authors studied

the structure up to only 1.7GPa.
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There are two important effects of alloying on the structure, and hence electronic

structure, of a compound [17]. First, the occupation of atomic sites by alloying atoms

causes disorder in the normal periodicity of the structure. Second, shifting atoms away

from their usual atomic sites causes positional disorder. Selenium is considerably smaller

than the other constituents in the alloys mentioned above. Although it is difficult to

predict the effects of alloying on a given material, this has a profound effect on the band

structure, scattering of carriers, and hence the transport properties. Here we look at the

effect of arsenic on known good room temperature thermoelectric material alloys.

Less than 1.0% As
2
Te

3
is soluble in Bi

2
Te

3
[108]. Since the best alloys con-

tain antimony and selenium, both smaller than bismuth, it may be possible to form an

alloy that contains a higher percentage of arsenic. Here we replaced some of the an-

timony and selenium in (Sb
2
Te

3
)
72

(Bi
2
Te

3
)
25

(Sb
2
Se

3
)
3

with arsenic and tellurium.

We produced alloys of the form (Sb
2
Te

3
)
72

(Bi
2
Te

3
)
25

(Sb
2
Se

3
)
x

(As
2
Te

3
)
1−x

where

x = 0, 1, 2, 3, and measured their thermoelectric powers under pressure. To observe the

effect of As
2
Te

3
versus Sb

2
Se

3
, alloys of the form (Sb

2
Te

3
)
75−x

(Bi
2
Te

3
)
25

(As
2
Te

3
)
x

(x = 0, 1, 2, 3) were also synthesized.

5.2 Experimental Details

5.2.1 As
2
Te

3

Pure As
2
Te

3
was purchased from Alfa Aesar (99.999%) in pieces ranging from 1

to 15mm in any dimension. Samples were cut from larger pieces. The average sample
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size for study in the DAC was 750µm L × 100µm W × 50µm D. Larger samples were

studied outside of the DAC.

X-ray patterns were collected using a Rigaku RU-200 with a rotating molybdenum

anode. The apparatus was modified to adapt to the DAC as discussed in chapter 2. The

diffracted x-rays were exposed to Kodak DEF-182 direct exposure film held in a curved

camera attached to the DAC. The exposed film was developed manually. The elliptical

patterns were then collapsed using a scanner and software designed specifically for the

DAC geometry [69].

Thermopower and resistance measurements in the DAC were performed using the

methods shown in chapter 2. Measurements outside of the DAC were made by placing

the thermocouples between two samples of the same size. The sample was then laser-

heated with IR radiation on its end to eliminate instability due to radial temperature

gradients. This set-up proved extremely reliable for measurements outside of the DAC.

In the DAC, IR radiation was focused as a line to heat the sample. The heating of

all samples was visualized using a CCD camera sensitive to IR radiation. The voltages

across the thermocouple legs were measured simultaneously using two digital nanovolt

meters and LabView. Resistance measurements inside the DAC were made using the

thermocouples from the thermopower measurements in a pseudo-four configuration.

Pressure measurements were made using the ruby florescence method (chapter

2) with a He-Ne laser of wavelength λ = 543.5nm. Optics were configured to allow

visualization, heating, and pressure measurements to be collected concurrently.
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5.2.2 Alloys

The alloys studied were obtained from the chemistry department at Cornell Uni-

versity [64]. The binary constituents were crushed and weighed to give the proper stoi-

chiometric proportion. The powder was pressed into small cylindrical pellets which were

then annealed at 250
◦
C for three weeks.

Ambient pressure thermopower measurements were made by pressing the chromel-

alumel thermocouples between two samples of the same size (4mmL × 0.5mmW ×

0.25mmT). This ensured good thermal contact and minimized the effect of non-uniform

transverse temperature gradients. Heating the sample from the side (along the sample

axis) also helped to create a purely axial thermal gradient. The sample was laser-

heated and the thermopower was measured using the same equipment and arrangement

described in chapter 2. The resistance of the samples in the DAC was measured using

the thermocouples in a pseudo-four probe configuration. The crystal structures were

determined from x-ray diffraction patterns using Le Bail refinement [77].

5.3 Results and Discussion

5.3.1 As
2
Te

3

Just as reported by J. Black, et al., we found n and p−type As
2
Te

3
within

the same sample ingot [10]. For consistency, we selected samples with similar ambient

pressure thermopowers for all experiments. All samples placed under pressure in the

DAC had thermopowers between −240µV/K and −255µV/K at ambient pressure.
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Under pressure, one trend in the measured Seebeck coefficient and resistance was

consistently reproducible. The thermopower results are shown in figure 5.2 (Sample 1).

The absolute value of the thermopower was found to decrease quickly to S ≈ 60µV/K

near 4 GPa. It then dips back down and tends steadily toward S ≈ 25µV/K. Looking

more closely near 6 GPa though, a slight kink can be seen. Though this is not obvious

evidence of some type of transition, the structure of the data from a another sample near

the same pressure is more revealing (Sample 2 in figure 5.2).

The resistance data for the sample 2 is shown in figure 5.3. The behavior shown is

typical of semiconductors under pressure in the DAC. The resistance drops quickly as the

gap, most likely, begins to close. Again, near 6 GPa, a kink in the trend, more obvious

than in the thermopower data, is visible. This could be evidence of a structural or

electronic topological transition. Assuming that size effects are minimal as the pressure

is increased, this decrease in resistance is consistent with a transition from a monoclinic

semiconductor to a semiconductor with a more ordered structure. X-ray diffraction was

used to investigate the possibility of a phase transition.

X-ray diffraction patterns of As
2
Te

3
at 4 and 8 GPa are shown in figure 5.4.

A phase transition has occurred between the two pressures. Using the 8 GPa pattern,

we calculated hexagonal unit cell parameters of a = 3.83Å and c = 30.10Å [81]. This

corresponds to a unit cell with volume V = 382.9Å
3
. This calculated volume is 9.2%

smaller than that found experimentally in reference by Toscani, et al. [99]. The results

are consistent since the authors used data obtained at ambient pressure to refine the

structure of β−As
2
Te

3
.
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Fig. 5.2. The thermoelectric power of pure As
2
Te

3
is plotted versus pressure.

Fig. 5.3. The logarithm of the resistance with respect to atmospheric pressure resistance
of As

2
Te

3
is plotted against pressure.
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Fig. 5.4. X-ray diffraction patterns at 4 GPa and 8 GPa.
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5.3.2 Alloys

The only alloys that sintered well enough to withstand pressure tuning, were

containing those containing 0% and 1% As
2
Te

3
. The powder diffraction pattern for

(Sb
2
Te

3
)
72

(Bi
2
Te

3
)
25

(Sb
2
Se

3
)
2

(As
2
Te

3
)
1

(alloy c) is shown in figure 5.5. Le Bail

refinement gave cell parameters of a = 4.2907Å and c = 30.4624Å. This has a larger

unit cell than the pseudo ternary alloy (Sb
2
Te

3
)
72

(Bi
2
Te

3
)
25

(Sb
2
Se

3
)
3
. This was

expected, comparing the constituents in table 1.2. The alloys we produced were not

optimally doped, but our room pressure result, S = 225µV/K, agrees with the published

thermopowers [29, 109].

(Sb
2
Te

3
)
72

(Bi
2
Te

3
)
25

(Sb
2
Se

3
)
3

(alloy D), the best known p−type alloy in this

family, was pressure tuned up to 12 GPa (figure 5.6). The thermoelectric power decreases

rapidly to a local minimum of S = 14µV/K at 5.25 GPa. It then increases slightly before

a kink appears between 6 and 8 GPa. This is due to a phase transition in Sb
2
Te

3
that

is known to occur at 7.3 GPa [48, 80]. Having good agreement between our ambient

pressure thermopower and other published values, and having reproduced a known first

order phase transition, we then pressure tuned our alloy containing 1% As
2
Te

3
.

Alloy C was also pressure tuned up to 12 GPa (Figures 5.7 and 5.8). The two

most reproducible experiments are shown as sample 1 and 2. Both samples show slightly

different trends as their thermopowers decrease nearing the phase transition point at

7.3 GPa. After the transition both samples are in nearly exact agreement. Other than

the phase transition being more obvious in alloy d above (figure 5.6), the thermopower
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Fig. 5.5. Diffraction pattern of (Sb
2
Te

3
)
72

(Bi
2
Te

3
)
25

(Sb
2
Se

3
)
2

(As
2
Te

3
)
1
. Refine-

ment yielded cell parameters of a = 4.2907Å and c = 30.4624Å.
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results for alloy c and alloy d are very similar. The resistance data show typical behavior

for these experiments.

From alloy C and D data, it is apparent that there is no enhancement of their

thermoelectric properties due to pressure. At ambient pressure, the thermopower of

alloy D is greater than the thermopower of alloy c. Alloy C has the larger cell volume

of the two. To see how much structural freedom the addition of arsenic telluride does

actually offer, we synthesized four other alloys. These new alloys contained no Sb
2
Se

3
,

only Sb
2
Te

3
Bi

2
Te

3
and As

2
Te

3
. The alloys were of the form (Sb

2
Te

3
)
72

(Bi
2
Te

3
)
25

(As
2
Te

3
)
x
, where x = 0, 1, 2, 3. The volumes of the different alloy unit cells, with and

without Sb
2
Se

3
, are shown in figure 5.9. We can see that As

2
Te

3
does not lower the cell

volume as much as Sb
2
Se

3
alone.

5.4 Conclusions

The thermopower of As
2
Te

3
has been measured up to 10 GPa in a Mao-Bell

DAC. The transport and x-ray diffraction data show that a phase transition occurs near

8 GPa. The data presented shows a thermopower indicative of a rhombohedral (Group

V-VI) semiconductor, similar to Sb
2
Te

3
and Bi

2
Te

3
, at high pressure. Since arsenic is

much smaller than bismuth and antimony, we expect the lattice thermal conductivity in

As
2
Te

3
to be much higher than in Sb

2
Te

3
and Bi

2
Te

3
[73]. Though not evident in this

work, high pressure may still provide a route to alloys that could reproduce the behavior

of Sb
1.5

Bi
0.5

Te
3

reported by Badding, et al. with further tuning [73].

It is difficult to say whether the Sb
2
Se

3
in presently used alloys has the same

structural effect as that which produced an increase in thermopower found by Badding,
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Fig. 5.6. Thermoelectric power of Alloy D under pressure.

Fig. 5.7. Thermoelectric power of Alloy C under pressure.
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Fig. 5.8. The logarithm of the relative resistance of Alloy C under pressure.

Fig. 5.9. Unit cell volumes for alloys containing both As
2
Te

3
and Sb

2
Se

3
, and those

containing As
2
Te

3
only.
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et al. [73]. We saw that from a structural standpoint, arsenic telluride could provide only

little extra freedom in presently used alloys. The high solubility of Sb
2
Se

3
in Sb

2
Te

3

and Bi
2
Te

3
, and the high toxicity of arsenic though, will likely keep alloys of bismuth,

antimony, tellurium, and selenium the predominant room temperature thermoelectric

materials.
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Chapter 6

Low-Dimensional Structures

in Silica Hosts

6.1 Introduction

Previously we have focused on bulk alloys that are used in room temperature

thermoelectric devices. Bulk materials are preferred for large scale cooling because their

production is relatively easy. Now we turn to low-dimensional thermoelectric structures.

They are more difficult to produce for large scale cooling, but there are three advantages

in their use over current commercially produced bulk materials. Lowering the dimen-

sionality enhances the density of states near the Fermi energy, creates phonon scattering

at the interfaces (leaving the carriers less affected), and some semimetals undergo a

transition in which a band gap opens and the compound becomes semiconducting.

The figure of merit of a compound depends on its band structure near the Fermi

energy. We saw this manifested by way of the transport distribution (TD) introduced

in chapter 3. The best TD for thermoelectric performance is a delta function or a step

function [62, 96]. The density of states, on which the TD depends, of a two-dimensional

material, or thin film, has very different behavior than a bulk material. For example,

in the case of parabolic bands, a two-dimensional structure would have a DOS with

the form of a step function (Figure 6.1). This can greatly increase the figure of merit

compared to the same material in bulk form.
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Fig. 6.1. A general density of states for a two dimensional quantum well. Each step is
due to the next sub-band (which overlaps the previous bands) with increasing energy.
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The figure of merit also depends on the thermal conductivity of the lattice. This

is a major contributing factor to the success of Bi
2
Te

3
alloys as thermoelectric materials.

They have very low thermal conductivities. Considerable lowering of the thermal conduc-

tivity, due to phonon scattering at interfaces is apparent in superlattices [102]. The low

thermal conductivity due to “phonon-blocking/electron-transmitting” structures, com-

bined with the enhanced DOS can significantly improve ZT beyond that obtained in

bulk materials.

Semiconductors are the best thermoelectric materials [62, 89]. It has been pre-

dicted that nanowires of bismuth, which is a semimetal in bulk form, becomes semicon-

ducting when the diameter of the wires are 50 nm or less [23]. Alloying with antimony

may cause this transition at a larger diameter [57]. In either case, this would greatly

enhance the thermoelectric figure of merit of the nanowires.

Several theoretical and experimental examples of such low dimensional thermo-

electric structures have already been published [13, 24, 26, 31, 41, 42, 94, 102]. Most

of the nanowires used in these experiments are embedded in a host material, usually

porous alumina. The material is deposited inside channels in the hosts by either elec-

trochemical deposition, pressure injection or the vapor phase method. Within the last

two years superlattice nanowires have also been fabricated using the vapor-liquid-solid

(VLS) growth mechanism [9, 35, 105]. These experiments have shown figures of merit

greater than ZT = 2 [37, 102].

The systems that have shown such high figures of merit though, are not practical

commercially [24]. They are too expensive and too complex for mass production and for

large scale cooling. Some advances have been made toward a more feasible solution, but
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filling factors of the hosts are still not high enough and the thermal conductivity of the

hosts are still not low enough [74]. In this chapter we set forth a possible solution.

Our materials were deposited in silica (SiO
2
) hosts. At room temperature, silica

has a thermal conductivity of κ = 0.033 W
m·K . This is twenty-one times lower than the

lattice thermal conductivity of Bi
2
Te

3
. This is definitely low enough so as not to inhibit

the thermoelectric cooling or power generation of a material embedded in the silica.

It remains to demonstrate the flexibility of such silica hosts. That is the goal of this

chapter.

These porous silica hosts can also be used as an experimental tool. Silica fiber have

very high tensile strengths. In previous chapters we discussed pressure tuning in which

samples are compressed. The fiber hosts also provide a means to place thermoelectric

materials under tension. After a material has been deposited in the hosts, the fiber can

then be stretched, in turn stretching the resident material.

First we will summarize the methods by which we deposit different semiconductors

into the silica hosts. Silicon, germanium, and arsenic were deposited in several types

of holey silica fibers. The interest in silicon and germanium is due to their potential

as a high temperature power generator [25, 52]. Our interest in arsenic is two-fold.

First, there are trends in group V elements which extend from bismuth to antimony to

arsenic [45]. Currently there is much interest in bismuth and antimony nanowires and

thin films [24, 40, 74]. Even though we have not yet deposited bismuth into these silica

hosts, arsenic could provide some insight into the potential of thin films of antimony and

bismuth in such hosts. Arsenic may also be beneficial thermoelectrically in itself. For thin

films of bismuth, as the quantum well width decreases, a semi-metal to semiconductor
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transition occurs [23, 57]. The same may also hold true for antimony, arsenic, or alloys

of the two elements.

Although several different sizes of capillaries have been fabricated and “filled”, we

use fibers with an average capillary diameter of 2µm for measurements. This is obviously

not on the nano-scale, but we deposit the semiconductors in the form of thin films.

These thin films are deposited annularly inside the silica capillaries. We then present

results of thermopower measurements of silicon deposited in the large air fraction fibers.

Measurements were made on arrays of 400 to 500 annularly filled “tubes”.

6.2 Experimental Methods

6.2.1 Deposition

The porous fibers were obtained from the Optoelectronic Research Centre (ORC)

at The University of Southampton [82]. The fibers were fabricated in a manner similar

to that described in the literature [44, 50, 51, 79, 98]. In the process of being drawn,

the fibers are coated with a protective acrylic coating. This protects the fibers from

scratching and moisture during handling while being prepared for filling.

For deposition in the porous fibers, a pressure injection method was used [83].

Semiconductor grade gases - silane (SiH
4
), germane (GeH

4
), and arsine (AsH

3
) - were

used as precursors. Argon and helium were used as carrier gases. The precursor-carrier

gas mixture was loaded into a stainless steel reservoir. The porous silica fibers were then

secured, using a high pressure connection, to the precursor-carrier gas reservoir. The
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fiber was placed in a 3600 W resistive tube furnace to attain the required temperatures

for the decomposition reactions.

6.2.1.1 Germanium

A mixture of 5% germane and 95% argon was injected into the silica host, which

had a 2 µm inner diameter, at a pressure of 3150 pounds per square inch (p.s.i.). The

temperature of the host and precursor was ramped to 425
◦
C, in a 75 cm tube furnace,

from room temperature, over three hours. The host was kept at 425
◦
C for 21 hours. At

this time, flow of the gas mixture had ceased.

6.2.1.2 Silicon

5% silane with 95% helium was injected into a 2 µm capillary, and a large air

fraction fiber with 2 µm channels at a pressure of 3500 p.s.i. In the case of the capillary,

the precursor/carrier mixture was allowed to flow while the temperature of the host

was ramped to 700
◦
C from 300

◦
C over 220 min. After reaching 700

◦
C, deposition was

allowed to proceed for 90 min. In the case of the large air fraction host, helium was

flowed while the temperature was brought to 700
◦
C. A 75 cm tube furnace was used

here as well. Flow was then switched to the gas mixture. The reaction was allowed to

proceed until gas flow had stopped as indicated by visually observing flow from the host.

6.2.1.3 Arsenic

For deposition of arsenic, 3.3% arsine mixed with 96.7% helium was injected into

a 2 µm capillary host at a pressure of 2900 p.s.i.. In order to concentrate the deposition
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over a shorter range in the capillary, a 2 cm resistive tube furnace was fabricated. The

precursor-carrier gas mixture was allowed to flow while the temperature of the host was

ramped to 350
◦
C from room temperature over 90 min. After reaching 350

◦
C, deposition

was allowed to proceed for 10 min.

6.2.2 Analysis

Deposition was confirmed using visible Raman spectroscopy to determine crys-

tallinity and scanning electron microscopy to determine the film thickness. Raman scat-

tering was performed with an argon-ion laser of excitation wavelength λ = 514.5 nm.

This wavelength was suitable for all samples, as none of them fluoresce near it. SEM

images were taken using an FEI-Philips XL-20 microscope with energy dispersive x-ray

analysis to verify the sample constituents.

6.3 Results and Discussion

6.3.1 Hosts

Several types of porous and capillary fibers were received from the ORC. The

single capillaries ranged from 200nm to 5µm in inner diameter (Figure 6.2 shows a 2 µm

inner diameter capillary). Other silica fibers were formed containing arrays of pores in

different configurations. The holey fibers contain randomly oriented pores of various

sizes ranging from 100nm to 8µm (Figure 6.3). Honeycomb or “large air fraction” fibers

contain a more uniform array of pores of more consistent sizes. The pores in these fibers

are closely packed hexagons, with diagonals of 2µm (Figure 6.4).
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Fig. 6.2. The capillary fiber has one hole through the center of the fiber. The outer
diameter of the fiber is 150µm and the inner diameter is 2µm.

Fig. 6.3. The holey fiber has an array of many pores ranging from 150 to 500nm. The
right photo is a close-up of the left photo. These pores are not packed as closely as the
honeycomb fiber (Figure 6.2).
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6.3.2 Deposition

6.3.2.1 Germanium

Thin film deposition over 20 cm or more is possible while keeping the film thickness

uniform within 20%. Figure 6.5 is a scanning electron microscope image showing the

cross section of a capillary coated with a 100 nm film of germanium. The germanium

thickness in the fiber shown was within 10% of 150 nm over a length of 17 cm of fiber

and stayed within 20% over a length of 25 cm. A typical deposition profile of a capillary

that was filled with germanium until gas flow ceased is shown in figure 6.6. Conditions

were the same as above except that deposition was allowed to proceed for two days. The

results are quite different if deposition is allowed to continue unchecked.

6.3.2.2 Silicon

SEM images of a silicon filled capillary, in which deposition was allowed to proceed

until flow stopped, revealed that 75% filling of the capillary had occurred over a length of

more than 21 cm. Figure 6.9 shows a cross section of the capillary where it is more than

85% filled. Using helium as the carrier gas, the deposition profiles are much smoother

(Figure 6.7) than the profiles of experiments using argon as the carrier gas (Figure 6.8).

Silicon was also deposited in silica hosts with the pores arranged in a hexagonal

packing configuration (Figure 6.4) as shown in figure 6.10. The thermoelectric power was

measured for some of these samples. A thermopower of S ∼ −550 µV/K was measured

for two samples which agrees with bulk silicon measurements. This was expected since

the structures were on the order of or greater than 600 nm thick.
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Fig. 6.4. A view down the axis of a honeycomb-porous fiber is shown on the left with
a close-up of the pores on the right. Each pore is 2µm across the short axis of the
hexagons.

Fig. 6.5. A 150 nm film coats the inner wall of a silica capillary with a 1.6 µm inner
diameter. The silica cladding is darker surrounding the lighter inner germanium ring.
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Fig. 6.6. The deposition profile for a germanium filled fiber using a GeH
4
/Ar mixture

is shown. The distances are from the furnace entrance. The tube furnaced used is 70 cm
long.
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Fig. 6.7. The profile of a silicon “filled” fiber in which helium was used as the carrier
gas is much smoother than profiles in which argon was used.

Fig. 6.8. The profile of a silicon “filled” fiber where argon was used as the carrier gas.
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Fig. 6.9. Here, a silica capillary that is more than 85% filled with silicon is shown.
The lighter contaminants on the wire and silica cladding are remnants of the protective
coating that are left behind after cleaving the fiber.

Fig. 6.10. Slightly distorted hexagonal tubes of silicon are at the core of the silica fiber
(left). A closer view reveals shards of the silica ribs between the tubes (right).
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6.3.2.3 Arsenic

The most recent successful experiment was the deposition of arsenic in a 2 µm

capillary. Inspection of the filled host with an optical microscope revealed that deposition

had occurred over a length of less than 1 mm. This was expected since the experiment

was conducted in a 2 cm tube furnace. Raman spectroscopy confirmed the presence of

crystalline arsenic in the silica fiber host (Figure 6.11). The peak positions are in exact

accordance with other published results on pure arsenic (Table 6.1) [55]. The intensities

of the peaks are reversed though. This could be due to stresses in the arsenic crystals or

heating as a result of the incident laser light.

6.4 Conclusions

We have presented results that show the feasibility of depositing low-dimensional

semiconductors and a semimetal in microscale porous silica hosts. Films in the range of

50 nm to 1 µm were regualrly attainable. Silicon, germanium, and arsenic have all been

successfully deposited. The silica hosts are already produced on a large scale. We have

shown that deposition in these hosts using hydride precursors is a simple process. New

deposition techniques for other materials are already being developed for these silica

structures. The methods and hosts used are new to the field of thermoelectrics, and

experiments with these hosts are continuing.
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Fig. 6.11. The Raman spectrum of arsenic showing the As-As stretch (253.8 cm
−1

)

and anti-stretch (195.0 cm
−1

) modes [75].

Table 6.1.
First-order Raman peaks of arsenic [55].

Peak ω (cm
−1

) Intensity

Stretch 254.3 1.00

Anti-Stretch 193.5 0.33
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Chapter 7

Conclusions

There are three goals of the research described in this manuscript. First and

most general, we wanted to study the impact of arsenic on group V-VI thermoelectric

materials. Second and more specifically, we wanted to determine whether its impact

could improve the efficiency of those materials. Several techniques were used in the

investigation and several beneficial results were obtained. Finally, we investigated a new

host for low-dimensional thermoelectric structures.

In chapters 2 and 3 we described two methods used to tune thermoelectric mate-

rials or find new ones. Pressure tuning provides a way to scan phase space rapidly and

determine if any thermoelectric improvements can be found in a given compound. Mea-

suring transport properties, laser heating, x-ray diffraction, and Raman spectroscopy all

contribute to the value of the DAC.

Using first-principles calculations to estimate transport coefficients provides a

different angle to improve thermoelectric materials. With only very little information

(the crystal structure of the compound in which one is interested), we can gain insight

into the materials’ worth as a thermoelectric. Whereas modeling provides invaluable

tuning capabilities of well known compounds, first-principle calculations can provide

assistance in the search for new thermoelectric materials.
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Though arsenic telluride is not a new compound, the rhombohedral phase β−As
2
Te

3
,

has not been studied from a transport point of view. Using the FP-LAPW method, in

chapter 4, we calculated the band structure and ultimately some transport properties

of β−As
2
Te

3
. From the calculated band structure, it seemed apparent that β−As

2
Te

3

would have properties similar to Bi
2
Te

3
and Sb

2
Te

3
. Though the trends in the transport

distribution were similar near the band gaps of Bi
2
Te

3
and β−As

2
Te

3
, Bi

2
Te

3
has a

power factor larger by a factor of four. Since β−As
2
Te

3
likely has a higher thermal con-

ductivity than Bi
2
Te

3
because arsenic is much smaller than bismuth, it would probably

not be able to compete with currently used room temperature thermoelectric materials.

In chapter 5 we used the diamond anvil cell to produce β−As
2
Te

3
from monoclinic

α−As
2
Te

3
. Thermoelectric power and resistance measurements showed either a phase

transition or electronic topological transition near 7 GPa. X-ray diffraction experiments

confirmed a phase transition between 4 GPa and 8 GPa. Here we proved that high

pressure alone provides a route to β−As
2
Te

3
, whereas previously published reports used

high temperature.

Since the binary compound alone could not compete as a thermoelectric material,

we also synthesized alloys of group V-VI compounds containing As
2
Te

3
. In chapter 5,

we showed that As
2
Te

3
is more soluble in alloys of bismuth, antimony, tellurium, and

selenium, than in Bi
2
Te

3
or Sb

2
Te

3
alone. Although pressure tuning did not show any

substantial benefits of alloys containing As
2
Te

3
, analysis showed that As

2
Te

3
provides

extra structural freedom. As
2
Te

3
and Sb

2
Se

3
combined may provide a route to a struc-

ture recently reported that showed an increase in thermopower of antimony-bismuth-

tellurium alloys under pressure [73].
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Finally in chapter 6 we explored a new host for low-dimensional thermoelectric

materials. Recently research in this area has been stalled due to a lack of feasibility

of currently used hosts in low-dimensional thermoelectric structures. We presented a

novel use for a recently developed silica host. Semiconductors of thermoelectric interest,

including arsenic, were deposited rather easily in these structures.

Future Directions

Although much knowledge was gained from these experiments, further research

is warranted. The alloys produced in chapter 5 were not optimally doped. A route to

the pressure tuned Sb
1.5

Bi
0.5

Te
3

could also be found using As
2
Te

3
along with Sb

2
Se

3
.

Such experiments might further tune known good room temperature thermoelectrics.

The research contained in chapter 6 though, has much room for exciting new

research. Using a very young technique, we showed the simplicity of depositing semi-

conductors in these porous silica hosts. Experiments are already underway to demon-

strate deposition of materials with and without a hydride precursor. Methods being

experimented with include the vapor-liquid-solid method and the vapor-phase deposi-

tion method used in other thermoelectric experiments[38, 104]. This field is moving

rapidly and techniques are being tested and refined daily.



94

References

[1] G. B. Abdullaev, A. A. Bashshaliev, and S. A. Aliev. The heat conductivity of

solid solutions of Sb
2
S
3

and Se
2
Se

3
. Russian Physics: Rep. Nat. Acad. of Sci. of

Azerbaijan, 17:877–879, 1961.

[2] D. Adler. Amorphous Semiconductors. CRC Press, Cleveland, 1971.

[3] C. Ambrosch-Draxl and J. O. Sofo. Linear optical properties of solids within

the full-potential linearized augmented planewave method. Los Alamos National

Laboratory, Preprint Archive, Condensed Matter, 2004.

[4] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Saunders College, 1976.

[5] T. Atou and J. V. Badding. A high resolution laboratory-based high pressure x-ray

diffraction system. Rev. Sci. Inst., 66:4496–4500, 1995.

[6] I. G. Austin and A. Sheard. Optical properties of Bi
2
Te

3
-Bi

2
Se

3
alloys. J. Elec-

tronics and Control, 3:236–237, 1957.

[7] J. V. Badding, J. F. Meng, and D. A. Polvani. Pressure tuning in the search for

new and improved solid state materials. Chem. Mater., 10:2889–2894, 1998.

[8] S. G. Bishop and N. J. Shevchik. Densities of valence states of amorphous and

crystalline As
2
S
3
, As

2
Se

3
, and As

2
Te

3
. Phys. Rev. B, 12:1567–1578, 1975.



95

[9] M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson,

K. Deppert, L. R. Wallenberg, and L. Samuelson. One-dimensional steeplechase

for electrons realized. Nano Lett., 2:87–89, 2002.

[10] J. Black, E. M. Conwell, L. Seigle, and C. W. Spencer. Elecrical and optical

properties of some M
V −B

2
N

V I−B

3
semiconductors. J. Phys. Chem. Solids, 2:240–

251, 1957.

[11] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz. WIEN2k: An

Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Proper-

ties. Techn. Universitat Wien, Austria, Karlheinz Schwarz, 2001.

[12] P. E. Blochl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for

brillouin-zone integrations. Phys. Rev. B, 49:16223, 1994.

[13] D. A. Broido and T. L. Reinecke. Thermoelectric transport in quantum well and

quantum wire supperlattices. In R. K. Willardson and A. C. Beer, editors, Semi-

conductors and Semimetals, volume 71, pages 123–155. Academic Press, 2001.

[14] D. W. Bullett. Electronic structure of arsenic chalcogenides. Phys. Rev. B, 14:1683–

1692, 1976.

[15] F. P. Bundy. Effect of pressure on emf of thermocouples. In F. P. Bundy, W. R. Hi-

bbard Jr., and H. M. Strong, editors, Progress in very high pressure research, pages

256–265, 1961.



96

[16] G. J. Carron. The crystal structure and powde data for arsenic telluride. Acta

Cryst., 16:338–343, 1962.

[17] A.-B. Chen and A. Sher. Semiconductor Alloys: Physics and Materials Engineer-

ing. Plenum Press, 1995.

[18] I. Chen. Molecular orbital studies of As
2
S
3
, and As

2
Se

3
. Phys. Rev. B, 8:1440–

1444, 1973.

[19] J. Cornet and D. Rossier. Properties and structure of As-Te glasses (II): local

order parameters and structural model. J. Non-Cryst. Solids, 12:85–99, 1973.

[20] R. T. Delves, A. E. Bowley, D. W. Hazelden, and H. J. Goldsmid. Anisotropy of

the electrical conductivity in Bi
2
Te

3
. In Proc. Phys. Soc. London, volume 78, page

838, 1961.

[21] F. J. DiSalvo. Thermoelectric cooling and power generation. Science, 285:703–706,

1999.

[22] J. R. Drabble, R. Groves, and R. Wolfe. Galvanomagnetic effects in n-type bismuth

telluride. In Proc. Phys. Soc. London, volume 71, pages 430–443, 1958.

[23] M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, and T. Koga.

Low-dimensional thermoelectric materials. In Physics of the Solid State, volume 41,

pages 679–682, 1999.



97

[24] M. S. Dresselhaus, Y.-M. Lin, M. R. Black, O. Rabin, and G. Dresselhaus. New

directions for low dimensional thermoelectricity. In Mater. Res. Soc. Symp. Proc.,

volume 793, pages 419–430, 2004.

[25] M. S. Dresselhaus, Y.-M. Lin, S. B. Cronin, O. Rabin, M. R. Black, and G. Dressel-

haus. Quantum wells and quantum wires for potential thermoelectric applications.

In R. K. Willardson and A. C. Beer, editors, Semiconductors and Semimetals,

volume 71, pages 1–121. Academic Press, 2001. Recent Trends in Thermoelectric

Materials Research III.

[26] M. S. Dresselhaus, Y.-M. Lin, O. Rabin, M. R. Black, S. B. Cronin, and G. Dres-

selhaus. Overview of bismuth nanowires for thermoelectric applications. In Chem-

istry, Physics, and Materials Science of Thermoelectric Materials: Beyond Bis-

muth Telluride, pages 1–17, 2003.

[27] M. S. Dresselhaus, Y.-M. Lin, O. Rabin, and G. Dresselhaus. bismuth nanowires

for thermoelectric applications. Microscale Thermophysical Engineering, 7:207–

219, 2003.

[28] J. T. Edmond. Electronic conductivity in As
2
Se

3
, As

2
Se

2
Te and similar materials.

Br. J. Appl. Phys., 17:979–989, 1966.

[29] M. H. Ettenberg, J. R. Maddux, P. J. Taylor, W. A. Jesser, and F. D.

Rosi. Improving yield and performance in pseudo-ternary thermoelectric alloys

(Bi
2
Te

3
)(Sb

2
Te

3
)(Sb

2
Se

3
). J. Cryst. Growth, 179:495–502, 1997.



98

[30] R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block. Pressure measurement

made by the utilization of ruby sharp-line luminescence. Science, 176:284–285,

1972.

[31] L. Friedman. Thermopower of superlattices as a probe of the density of states

distribution. J. Phys. C: Sol. St. Phys., 17(22):3999–4008, 1984.

[32] H. J. Goldsmid. title. In Proc. Phys. Soc. London Sect. B, volume 69, page 203,

1956.

[33] H. J. Goldsmid. Thermoelectric Refrigeration. Plenum Press, 1964.

[34] E. K. U. Gross, C. A. Ullrich, and U. J. Gossman. Density functional theory of

time-dependent systems. In E. K. U. Gross and R. M. Dreizler, editors, Density

Functional Theory, volume 337 of NATO ASI Series B, page 149. Plenum Press,

1995.

[35] M. S. Gudiksen, J. Wang L. J. Lauhon, D. C. Smith, and C. M. Lieber. Growth of

nanowire superlattice structures for nanoscale photonics and electronics. Nature,

415:617–620, 2002.

[36] T. C. Harman, B. Paris, S. E. Miller, and H. L. Goering. Preparation and some

physical properties of Bi
2
Te

3
, Sb

2
Te

3
and As

2
Te

3
. J. Phys. Chem. Solids, 26:181–

190, 1957.

[37] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge. Quantum dot

superlattice thermoelectric materials and devices. Science, 297:2229–2232, 2002.



99

[38] J. Heremans, C. M. Thrush, Y.-M. Lin, S. B. Cronin, Z. Zhang, M. S. Dressel-

haus, and J. F. Mansfield. Bismuth nanowire arrays: Synthesis and galvomagnetic

properties. Phys. Rev. B, 61:2921–2930, 2000.

[39] J. P. Heremans. Thermoelectric transport in bismuth nanowires: Experimental

results. In Chemistry, Physics, and Materials Science of Thermoelectric Materials:

Beyond Bismuth Telluride, pages 185–201, 2003.

[40] J. P. Heremans. Thermoelectric power, electrical and thermal resistance, and mag-

netoresistance of nanowire composites. In Mater. Res. Soc. Symp. Proc., volume

793, pages 3–14, 2004.

[41] L. D. Hicks and M. S. Dresselhaus. Effect of quantum-well structures on the

thermoelectric figure of merit. Phys. Rev. B, 47:12727–12731, 1993.

[42] L. D. Hicks and M. S. Dresselhaus. Thermoelectric figure of merit of a one-

dimensional conductor. Phys. Rev. B, 47:16631–16634, 1993.

[43] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864,

1964.

[44] K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus.

Fabrication of two-dimensional photonic band structure with near-infrared band

gap. Jap. J. Appl. Phys., 33:L1463–L1465, 1994.



100

[45] J.-P. Issi J. Heremans, A. A. M. Rashid, and G. A. Saunders. Electrical and

thermal transport properties of arsenic. J. Phys. C: Sol. St. Phys., 10:4511–4522,

1977.

[46] A. S. Kanishcheva, Y. N. Milhailov, and A. P. Chernov. Refinement of the crystal

structure of arsenic telluride. Izvestiya Akademii Nauk SSSR Neorg. Mat., 18:949–

952, 1982.

[47] B. A. Khan, P. Bai, and D. Adler. Electronic structure of amorphous arsenic

telluride. J. Non-Cryst. Solids, 66:321–326, 1984.

[48] L. G. Khvostantsev, A. I. Orlov, N. K. Abrikosov, and L. D. Ivanova. Thermo-

electric properties and phase transition in antimony telluride under hydrostatic

pressure up to 9 GPa. Phys. Status Solidi A: App. Res., 58:37–40, 1980.

[49] V. A. Kirkinskii and V. G. Yakushev. Arsenic-Tellurium system at high pressures.

Neorg. Mat., 10(8):1431–1435, 1974.

[50] J. C. Knight, T. A. Birks, B. J. Mangan, and P. St. J. Russell. Microstructured

silica an an optical-fiber material. MRS Bull., 26:614–617, 2001.

[51] J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin. All-silica single-mode

optical fiber with photonic crystal cladding. Opt. Lett., 21:1547–1549, 1996.

[52] T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang. Experi-

mental proof-of-principle investigation of enhanced Z
3D

T in (001) oriented Si/Ge

superlattices. Appl. Phys. Lett., 77:1490–1492, 2000.



101

[53] W. Kohn and L. J. Sham. Self-consistent equations including exchange and corre-

lation effects. Phys. Rev., 140:A1133, 1965.

[54] F. Kosek, J. Tulka, and L. Stourac. title. Czech. J. Phys., 28:page 325, 1978.

[55] J. S. Lannin, J. M. Calleja, and M. Cardona. Second-order raman scattering in

the group-V
b

semimetals: Bi, Sb, and As. Phys. Rev. B, 12:585–593, 1975.

[56] P. Larson, S. D. Mahanti, and M. G. Kanatzidis. Electronic structure and transport

of Bi
2
Te

3
and BaBiTe

3
. Phys. Rev. B, 61:8162, 2000.

[57] Y.-M. Lin, O. Rabin, S. B. Cronin, J. Y. Ying, and M. S. Dresselhaus. Semimetal-

semiconductor transition in Bi
1−x

Sb
x

alloy nanowires and their thermoelectric

properties. Appl. Phys. Lett., 81:2403–2405, 2002.

[58] P. E. Lippens, E. Brousse, J. Olivier-Fourcade, A. Gheorghiu de la Rocque, and
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