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ABSTRACT 

The goal of this thesis research is to investigate the feasibility of utilizing the left 

and right eigenvector assignment concept for active control of structural vibration and 

acoustic radiation. 

The right eigenvector assignment approach is directly related to mode shape 

tailoring.  It therefore can be utilized to achieve structural vibration confinement and 

acoustic radiation reduction.  The control strategy of vibration confinement is to alter the 

right eigenvectors through active action, such that the modal components corresponding 

to the concerned region have relatively small amplitude.  Similarly, the control strategy 

for reducing acoustic radiation is to alter the right eigenvectors through active action so 

that the modal velocity distributions cause as small radiation as possible.  Reciprocally, 

the concept of left eigenvector assignment is to alter the left eigenvectors so that the 

effects of the exogenous disturbances on the system responses can be modified.  

Therefore the left eigenvector assignment can be conceptually used to reduce the effects 

of external excitations, and thus achieve disturbance rejection.  The design goal is to alter 

the left eigenvectors through active action such that the forcing vectors are as closely 

orthogonal to the left eigenvectors as possible.  Because of these clear physical meanings, 

the proposed left-right eigenvector assignment concept can target the nature of the 

structural vibration-acoustics problem with more physical insight as compared to many 

more classical control schemes.  With such an approach, one can achieve both 

disturbance rejection and modal confinement (vibration control purpose) or modal 
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radiation reduction (noise reduction purpose) concurrently for forced vibration-acoustics 

problems.   

In this research, simultaneous left-right eigenvector assignment and partial left-

right eigenvector assignment approaches are synthesized for structural vibration control 

(discussed in Chapters 2 and 3 of this thesis) and acoustic radiation reduction (Chapter 5), 

respectively.  With the simultaneous left-right eigenvector assignment approach, the 

feedback gain matrix is derived based on the generalized inverse procedure.  In such a 

method, all the left and right eigenvectors of the closed-loop system are determined to 

best-match the desired eigenvectors through a least square approximation.  On the other 

hand, the partial left-right eigenvector assignment method can exactly assign the selected 

left and right eigenvectors of the closed-loop system as the desired optimal ones.  With 

this algorithm, both the left and right eigenvectors can be determined accurately from the 

achievable subspaces through solving generalized eigenvalue problems.   

Numerical simulations are performed to evaluate the effectiveness of the proposed 

methods on a clamped-clamped beam structure example for the vibration and noise 

control problem.  Frequency responses of different case studies in the selected frequency 

range are illustrated.  It is shown that with the simultaneous left-right eigenvector 

assignment or the partial left-right eigenvector assignment techniques, both disturbance 

rejection and modal confinement or modal radiation reduction can be achieved, and thus 

the vibration amplitude in the concerned region or the sound pressure radiation at the 

receiver can be reduced significantly.  Experimental efforts are performed to implement 

the new active control concepts for structural vibration control (Chapter 4), where the test 

results demonstrate the effectiveness of the proposed approaches.   
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Finally, in the last chapter of this thesis, the research efforts and achievements are 

summarized, and recommendations for possible future investigations are discussed. 
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Chapter 1 
 

INTRODUCTION 

 

 

1.1 Background 

Structural vibration control and noise reduction is a common issue that engineers 

have to address in various industries.  There are many mechanical components and 

systems, such as engine housing, fuselage panels, gearbox struts and machinery mounts, 

in which low vibration and noise transmission are desired to ensure human comfort, 

measurement accuracy, or expensive instrument protection. 

Among the different control methods, the eigenstructure assignment approach has 

attracted considerable attention for active vibration suppression.  The general 

eigenstructure assignment approach allocates not only the closed-loop eigenvalues if they 

are controllable, but also further shape the associated eigenvectors.  It is well-known that 

the eigenvalues determine the system stability and dynamic characteristics.  It is also 

known that the system eigenvectors are related to the system response distribution and 

disturbance rejection ability.  Therefore, the eigenstructure assignment (assignment of 

eigenvalues and eigenvectors) method is an effective approach for active structure control 
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because the system dynamic behaviors are strongly governed by the eigenvalues and the 

corresponding eigenvectors. 

The eigenstructure assignment method facilitates the control system through 

synthesizing a feedback gain matrix such that the closed-loop eigenvalues and 

eigenvectors can be placed according to the designer’s wish.  In general, the right 

eigenvectors of the system govern the response of each mode while the left eigenvectors 

are related to the system’s response excited by the external excitations.  The 

eigenstructure assignment approach can thus be divided into two portions, the right 

eigenvector assignment and left eigenvector assignment parts. 

The right eigenvector assignment approach is directly related to the concept of 

mode shape tailoring, and thus has been utilized for vibration confinement applications.  

The principle of vibration confinement through right eigenvector assignment is to alter 

the closed-loop right eigenvectors such that the modal components corresponding to the 

concerned region have smaller amplitudes.  As will be shown later in this thesis, the 

concept of right eigenvector assignment can be expanded to structural noise control as 

well, where one can alter the closed-loop right eigenvectors such that the modal velocity 

distribution of the mode shape will cause minimal sound radiation.   

Most eigenstructure assignment approaches today have focused on right 

eigenvector shaping and vibration confinement.  However, since such a technique only 

focuses on the tailoring of mode shapes, the absolute vibration amplitude of the 

concerned region of the structure might still be significant even though it is relatively low 

compared to other parts of the structure.  Therefore, it is not guaranteed that the overall 

vibration response will always be suppressed. 
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Reciprocally with assigning right eigenvectors, the left eigenvector assignment 

method is related to the concept of changing the effects of the excitations on the system 

responses, and thus it can be utilized for disturbance rejection.  There exist various 

analytical approaches to handle the disturbance rejection problems if the properties of 

external disturbances are known statistically, such as periodic disturbances (Bai and Wu, 

1998) or zeros mean white noise (Kwakernaak, 1972).  Robust control designs can also 

be applied to accommodate for exogenous disturbances and uncertainties but sacrificing 

the performance (Wei et al., 1992; Konstanzer and Kroeplin, 1999; Li et al., 2003).  In 

general, while most external disturbances in forced vibration problems are unknown, 

their space distributions are usually known.  Therefore, the left eigenvector assignment 

method can be utilized for disturbance rejection in this type of forced vibration problems 

where the locations of excitation can be predicted.  The principle of disturbance rejection 

through left eigenvector assignment is to alter the closed-loop left eigenvectors such that 

the left eigenvectors are as closely orthogonal to the disturbance distribution vectors 

(forcing vectors) as possible, and thus it can reduce the effects of external disturbances on 

the system responses.  

For general non-self-adjoint systems, which are common with dissipated elements 

or active actions, the left and right eigenvectors are not the same and the system 

dynamics depends on both eigenvector sets.  Therefore, to completely control the system 

responses, combining the two eigenvector assignment methods will provide us with the 

best design possibilities.  In other words, the left-right eigenvector assignment approach 

can be used to concurrently achieve disturbance rejection, and modal confinement 

(vibration control purpose), or modal radiation reduction (noise control purpose). 
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Because of the clear physical meaning of the left and right eigenvectors, the left-right 

eigenvector assignment concept can target the nature of the structural vibration-acoustics 

problem with more physical insight as compared to many more classical control schemes.    

  

1.2 Literature Review 

1.2.1 Right Eigenvector Assignment Approach 

Moore (1976) recognized the flexibility offered by state feedback in multi-input 

systems beyond the closed-loop eigenvalue assignment.  In such a system, not only the 

closed-loop eigenvalues but also the eigenvectors can be assigned.  This is now generally 

referred to the term “eigenstructure assignment”.  Some issues in linear control system 

were discussed by Andry et al. (1983) that the assignment of eigenstructure, in general, is 

possible only in multiple-inputs system, and the assigned eigenvectors must fall into 

admissible spaces.  Kwon and Youn (1987) extended the previous theorem to the cases 

with repeated eigenvalues.  Song and Jayasuriya (1993) utilized eigenvector assignment 

for mode localization in a multi-input-multi-output active vibration control system.  In 

their method, the number of actuators requires the same as the number of the structural 

degrees of freedom.  Choura (1995) and Choura and Yigit (1995) proposed to solve for 

the feedback gain matrices in vibration confinement problems by using an inverse 

eigenvalue problem method.  In this method, a large number of actuators and sensors 

have to be used.  Shelley and Clark (2000b) proposed a singular value decomposition 
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method to assign shaped right eigenvectors in a mode localization problem, and the 

feedback gain matrix is determined by the closest approximation to the desired right 

eigenvectors.  Tang and Wang (2004) proposed a new vibration confinement technique 

through right eigenvector assignment in which the vibration energy can be confined in 

the unconcerned region of mechanical structure and the piezoelectric circuitry.  The 

desired right eigenvectors are selected by minimizing the modal energy ratios of 

concerned modal energy relative to the total modal energy based on the Rayleigh 

Principle.  Wu and Wang (2004) used the idea of combining a periodic structure and right 

eigenvector assignment to achieve vibration isolation design.  This method can reduce the 

modal transmissibility from the exogenous excitation to the attenuated end of the isolator, 

and increase the stop band of the traditional passive isolator. 

1.2.2 Left Eigenvector Assignment Approach 

As discussed in 1.2.1, the objective of most eigenstructure assignment methods 

applied to active vibration control is to alter the structural mode shapes.  However, in 

forced vibration problems, the left eigenvectors also contribute to the vibration responses.  

The left eigenvectors are related to the effects of the external disturbance on the system 

responses, and thus required to be investigated concurrently.  The concept of left 

eigenvector assignment is to modify the effects of the external excitations so that the 

system response can be changed. 

Zhang et al. (1990) proposed a left eigenvector assignment method to suppress the 

vibration amplitude of a flexible beam.  In this method, they considered the external 
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forces to be undesired inputs and achieved the disturbance rejection by altering the 

closed-loop left eigenvectors such that the closed-loop left eigenvectors are as closely 

orthogonal to the column vector of forcing matrix.  Patton et al. (1987) demonstrated the 

left eigenvector assignment method on robust fault detection.  In this approach, the 

assigning technique is the same as the right eigenvector assignment procedure in its dual 

controller design space.  Burrows and Patton (1992) used a left eigenvector assignment 

approach for the observer design of a closed-loop system.  The signal can be decoupled 

from the disturbances in this approach.  Based on the bi-orthogonality condition between 

the right and left eigenvector matrices of the system, Choi et al. (1995) developed a flight 

control system in which both the disturbance suppressibility and controllability were 

considered by assigning the left eigenvectors. 

1.2.3 Simultaneous Left-Right Eigenvector Assignment Approach 

Due to the intrinsic characteristics of the system as aforementioned, in order to 

achieve disturbance rejection as well as modal confinement in a forced vibration 

problem, proper assignment of both the left and right eigenvectors is required. 

Choi (1998) developed a simultaneous right and left eigenvector assignment 

method for a lateral flight control application.  The bi-orthogonality condition between 

the left and right eigenvector matrices of the system as well as the relations between the 

achievable right modal matrix and states selection matrices are used to develop this 

methodology. 
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1.2.4 Partial Left-Right Eigenvector Assignment Approach 

The achievable eigenvector set in the simultaneous left-right eigenvector 

assignment method proposed by Choi (1998) in 1.2.3 is determined based on the least 

square approximation.  Since this method cannot exactly assign the eigenvectors, the least 

square error will always exist.  Therefore the final system performance cannot be 

designed accurately.  The simultaneous left-right eigenvector assignment approach tried 

to specify 2N eigenvectors (N left and N right eigenvectors).  This is excessive since the 

protection methods (Davison and Wang, 1975; Srinathkumar, 1978) show that assigning 

N eigenvectors is sufficient to place N eigenvalues for an N-dimensional system.  

Therefore, this motivates the studies of partial left-right eigenvector assignment 

approach. 

Fletcher (1980) presented an algorithm for an output feedback system through 

selecting left and right eigenvectors.  This algorithm pointed out that the closed-loop 

eigenstructure assignable by output feedback is constrained by the requirement that the 

left and right eigenvectors must be in certain subspaces and the number of inputs plus the 

number of outputs exceeds the number of states.  Fahmy and O’Reilly (1988) developed 

an efficient multistage parametric approach for eigenstructure assignment in linear 

multivariable output-feedback systems.  This approach allows the subsets of left and right 

eigenvectors to be assigned in separate stages and thus the computational algorithm is 

relaxed from the orthogonality condition between the left and right eigenvectors.  

Roppenecker and O’Reilly (1989) presented the reduced orthogonality condition between 

the left and right eigenvectors by expressing the condition directly in terms of the 
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eigenvectors selected from the allowed subspaces.  Clarke et al. (2003) presented a new 

method of output feedback eigenstructure assignment.  A new reduced orthogonality 

condition between the left and right eigenvectors was derived so that the general 

formulation for the feedback gain matrix can be admitted, which utilized a two-stage 

design procedure. 

1.2.5 Modal Tailoring Concept on Structural Acoustics Control  

From the proposed investigation of structural vibration control in 1.1, the 

structural response is directly governed by the system’s right and left eigenvectors, which 

are related to the system’s mode shapes and its ability of disturbance rejection, 

respectively.  Since the structural noise radiation originates from the vibrating structure, 

one can also expand the concept of mode shape tailoring and disturbance rejection to 

address structural noise control by using different assigning strategies rather than 

vibration control methods. 

It has been shown that significant suppressions in vibration levels do not 

necessarily imply significant reductions in radiated sound pressure levels (Baumann et 

al., 1991; Baumann et al., 1992; Dehandschutter et al., 1999).  Fuller and Burdisso (1991) 

also showed that sound attenuation in the far field can be achieved with a reduced control 

authority compared to the cases where all structural motion is cancelled. 

The concept of structural modal shaping was introduced to account for the 

structural acoustics control problems in the past decade.  Naghshineh and Koopmann 

(1993) presented the improved active structural acoustics control method based on the 
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minimization of the total power radiated from the vibrating structure expressed in terms 

of a truncated series sum.  Each term of the sum is related to the coupling between the 

acoustic basis function of the radiation impedance matrix and the structural surface 

velocity vector.  It has also been shown that the radiation modes can be calculated as the 

eigenvectors of an elemental radiation resistance matrix (Elliott and Johnson, 1993).  

Constans et al. (1998) presented a numerical tool to minimize sound power from a 

vibrating shell structure.  The optimal design of a weak radiator is achieved by tailoring 

the mode shapes through adding point masses, which is similar to the concept of right 

eigenvector assignment. 

 

1.3 Problem Statements and Research Objectives 

The literature review reveals that considerable amount research has been 

performed in structural vibration control through eigenstructure assignment techniques.  

However, the previous studies do not take both the left and right eigenvectors into 

consideration.  In a general structural dynamics problem, the left and right eigenvectors 

are not the same and are related to different physical interpretations.  In such a system, 

the right eigenvectors determine the individual modal responses while the left 

eigenvectors, reciprocally, determine the structural responses excited by external 

disturbances.  Therefore it is reasonable to concurrently take both left and right 

eigenvectors into consideration in a structural vibration and noise control problem. 
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In the previous studies (Zhang et al., 1990; Choi et al., 1995; Choi, 1998), one 

needs to pre-determine the desired closed-loop left eigenvectors a priori and enforce the 

elements of the desired left eigenvectors corresponding to nonzero elements of the 

forcing vector to be zeros.  This will create two problems.  First, the closed-loop left 

eigenvectors have to fall into certain admissible subspaces, hence the desired left 

eigenvectors may be highly different from the achievable eigenvectors.  Second, 

theoretically, one only needs to minimize the inner product of each left eigenvector and 

each forcing vector, which means each left eigenvector is as closely orthogonal to each 

forcing vector as possible.  Therefore, enforcing zeros into some elements of the desired 

left eigenvectors is not necessary.  That may lead to unsatisfactory results while the 

controller tries to drive these elements to zeros rather than minimizes the inner products 

of the left eigenvectors and forcing vectors. 

Furthermore, since structural acoustic radiation can be described by structural 

vibration behavior, the structural sound pressure radiation can be also decomposed into 

left and right eigenvectors.  Although the concept of mode shape tailoring has been 

utilized in passive weak radiator design (Constans et al., 1998), however, the disturbance 

rejection issue (left eigenvector concept) has not been addressed and the possible benefits 

of using active action has not been discussed.  Therefore, it is reasonable to expand the 

concept of left-right eigenvector assignment for active control of structural noise 

radiation. 

Based on the above discussions, the goal of this research is to investigate the 

feasibility of developing new left-right eigenvector assignment methods for active control 

of structural vibration and noise radiation.  The literature review reveals that a few 
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investigations have been conducted in developing mathematical theories of left-right 

eigenstructure assignment for general control systems (Roppenecker and O’Reilly 1989; 

Choi, 1998; Clarke et al., 2003).  However, utilizing the left-right eigenvector assignment 

concept for structural vibration and acoustic controls has not been extensively explored. 

In this research, the design criteria of eigenvectors are synthesized to satisfy the 

desired requirements in structural vibration and noise control applications, respectively.  

The closed-loop left eigenvectors will be altered so that the forcing vectors are as closely 

orthogonal to the left eigenvectors as possible.  With this concept, the effects of external 

excitations on the system responses will be reduced.  In this research, a new formulation 

is developed so that the desired closed-loop left eigenvectors are selected from certain 

admissible subspaces and decided through solving a generalized eigenvalue problem, 

where the orthogonality indices between the forcing vectors and the left eigenvectors are 

minimized.  Reciprocally, to match the modal confinement requirement for vibration 

control purpose, the assigning strategy of right eigenvectors is to alter the closed-loop 

right eigenvectors such that the modal components corresponding to concerned region are 

as small as possible.  Combining the Rayleigh Principle based right eigenvector 

assignment method (Tang and Wang, 2004) and the minimized orthogonality index based 

left eigenvector assignment method, one can satisfy modal confinement and disturbance 

rejection concurrently for vibration control purpose.  For structural noise control, the 

design criteria of left eigenvectors is the same as that in vibration control, that is to 

achieve disturbance rejection.  Reciprocally, the right eigenvectors will be assigned such 

that the modal velocity distribution will cause minimal acoustic radiation.  In this 

approach, the modal radiation indices will be minimized through solving a generalized 

 



12 

eigenvalue problem.  Integrating the minimized orthogonality index and modal radiation 

index based left-right eigenvector assignment algorithm, one can achieve disturbance 

rejection and modal radiation reduction concurrently for structural noise control purpose.  

Conceptually, compared to many traditional control methods, the proposed eigenstructure 

assignment approach can provide more physical insight to the problem because both the 

left and right eigenvectors have clear physical meanings related to structural dynamics.  

Therefore, it may provide the best possibility to satisfy the structural vibration and noise 

control requirements. 

 

1.4 Thesis Outline 

This thesis consists of six chapters, which are organized as follows. 

The first chapter introduces the background of this research.  A review of the state 

of the art is presented.  The problem statement and research objectives are stated. 

The second chapter presents the structural vibration control approach by using the 

concepts of disturbance rejection and modal confinement through the simultaneous left-

right eigenvector assignment approach.  A fundamental understanding of the left and 

right eigenvector assignment method is provided.  The design procedure and algorithm of 

this approach is stated.  A clamped-clamped beam structure with piezoelectric actuators 

is used to illustrate the effectiveness of method.    

The third chapter presents the study that investigates the feasibility of utilizing the 

partial left and right eigenvector assignment approach for structural vibration control.  
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The motivation of using this method and the algorithm and procedure are stated in this 

chapter.  The same system example illustrated in Chapter 2 is used to evaluate the system 

performance. 

The fourth chapter reports the experimental validation effort on structural 

vibration control through the left-right eigenvector assignment approaches.  The test 

stand hardware and the system identification process are presented.  A modified 

feedforward configuration is introduced to compensate for the system uncertainties and 

undesired noise so that the left-right eigenvector assignment algorithms can be 

implemented experimentally.  The effectiveness of the proposed methods is illustrated. 

The fifth chapter reports the study on expanding the left-right eigenvector 

assignment concept to achieve structural noise control.  The mathematical expression of 

structural sound pressure radiation is formulated.  The new tailoring strategy of mode 

shapes is derived.  A clamped-clamped beam structure with piezoelectric actuators is 

utilized to illustrate the effectiveness of the left-right eigenvector assignment approaches 

for structural noise reduction. 

Finally, the research efforts and achievements of this thesis are concluded and 

summarized in Chapter 6.  The suggestions on possible future research directions and 

investigations are also provided. 

 

 

 

 



 

Chapter 2 
 

STRUCTURAL VIBRATION CONTROL VIA SIMULTANEOUS LEFT-RIGHT 
EIGENVECTOR ASSIGNMENT 

 

 

2.1 Introduction 

The purpose of the study discussed in the chapter is to investigate the feasibility 

of utilizing the simultaneous left and right eigenvector assignment method for active 

structural vibration control.  The motivation is that while the right eigenvector 

assignment method can provide modal confinement as mentioned in Chapter 1, however, 

since such a technique only focuses on mode shape tailoring, the vibration level of the 

concerned region might still be significant even though it is relatively low compare to 

other parts of the structure.  In other words, there is no guarantee that the overall 

vibration response will always be suppressed under external excitations.  The concept of 

the right eigenvector assignment method for vibration confinement purpose is to alter the 

closed-loop system modes such that the modal components corresponding to the 

concerned region have relatively small amplitude.  Reciprocally, the design goal of left 

eigenvector assignment is to alter the left eigenvectors of the closed-loop system so that 

they are as closely orthogonal to the system’s forcing vectors as possible.  For general 

non-self-adjoint systems (e.g., many systems with dissipative elements and/or feedback 
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actions), the right and left eigenvectors will not be the same and the system dynamics 

depends on both the eigenvector sets.  Therefore, combining the two eigenvector 

assignment methods will provide us with the best design possibilities for a forced 

vibration control problem. 

To advance the previous studies proposed by Zhang et al. (1990), Choi et al. 

(1995) and Choi (1998), a new formulation of desired left eigenvectors is developed.  In 

this new method, the desired left eigenvectors of the integrated system are selected from 

the admissible subspaces and decided through solving a generalized eigenvalue problem, 

where the orthogonality indices between the forcing vectors and the left eigenvectors are 

minimized.  With this concept, the effects of external disturbance can be reduced.  On the 

other hand, the components of right eigenvectors corresponding to the concerned regions 

are minimized concurrently.   

The simultaneous left-right eigenvector assignment algorithm will be first 

discussed in the next section.  Numerical simulations are then performed to evaluate the 

effectiveness of the proposed method in different case studies.   

 

2.2 Simultaneous Left-Right Eigenvector Assignment Method 

Consider a general linear time-invariant dynamical control system with full state 

feedback.  The state equation can be described as 
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x Ax Bu Ef
y Cx
u Kx

= + +
=
=

�
 (2.1)

 

where x is the N×1 system state vector, A is the N×N state matrix, u is the m×1 input 

vector, B is the N×m input matrix, f is the l×1 external disturbance vector, E is the N×l 

disturbance distribution matrix, y is the r×1 system output vector, C is the r×N output 

matrix, and K is the feedback gain matrix.  The solution of the closed-loop state equation 

with zeros initial conditions can be described by the closed-loop eigenvalues and the 

corresponding right and left eigenvectors,  

 

( )

0 0
1 1

( ) ( ) ( ) ( )j
l Nt tt T T

j j k
k j

x t e Ef d e e fλ ττ dτ τ φ ψ τΛ −

= =

= Φ Ψ =∑∑∫ ∫ τ  (2.2)

 

where λj is the jth eigenvalue of the closed-loop system (A+BK), fj and ψj are its 

corresponding right and left eigenvectors, respectively, Λ is a diagonal matrix including 

all the closed-loop eigenvalues, and ek is the kth column vector of disturbance distribution 

matrix E.   

This equation shows that the state response of the closed-loop system x(t) depends 

on the right eigenvectors which determine the response of each mode, and the left 

eigenvectors which determine the response excited by external disturbances.  The goal of 

the simultaneous left-right eigenvector assignment is to determine a feedback gain matrix 

K such that the left and right eigenvectors are assigned concurrently for disturbance 

rejection and modal confinement, respectively. 

 



17 

The closed-loop system can be expressed by its eigenvalues and corresponding 

left and right eigenvectors in the state space form, i.e.  

 

( )

( )
j N j

T T T
j N j

A BK I

A K B I

0

0

λ φ

λ ψ

+ − =

+ − =
1,2,...,j N=  (2.3)

 

In this investigation, we assume that all eigenvalues of the closed-loop system are 

different from the open-loop ones.  If the closed-loop eigenvalue is complex, its complex 

conjugate eigenvalue will exist simultaneously.  Equation 2.3 can be re-written as 

 

| 0

| 0

j
j N

j

jT
T Tj N N

j

A I B
K

A I I
K B

φ
λ

φ

ψ
λ

ψ

 
 − =  

 
 

 − =  
 

1,2,...,j N=  (2.4)

 

We define 

 

|

|

j j N

T
j j N

T A I B

P A I I

λ

λ N

 = − 
 = − 

1,2,...,j N=  (2.5)

 

and then take singular value decomposition of Tj and Pj.  Equation 2.5 can be described 

as 
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( ) (( )*
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j j N j j j
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j j N N j j
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P A I I U D V

λ

λ

   = − =   
   = − =   

L
j

1,2,...,j N=  (2.6)

 

where Uj
(∏) and Vj

(∏) are the left and right singular vector matrices (Klema and Laub, 1980) 

which satisfy the unitary condition, i.e., 

 

( )* ( )

( )* ( )

j j

j j

U U I

V V I

=

=

i i

i i
1,2,...,j N=  (2.7)

 

Since we assume all closed-loop eigenvalues are different from the open-loop ones, 

j NA Iλ−  and T
j NA Iλ−  are nonsingular and Dj will be a positive definite diagonal 

matrix containing all the singular values of Tj and Pj.  The matrix Vj
(∏) can be partitioned 

as 

 

( ) ( )
1 2( )

( ) ( )
3 4

, 1, 2,...,j j
j

j j

v v
V j

v v
 

= = 
  

i i
i

i i N  (2.8)

 

where vj2
(R), vj4

(R), vj2
(L), and vj4

(L)
 are N×m, mäm, NäN, and NäN submatrices.  Hence it is 

easy to verify the following equations. 
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Equation 2.9 means that the matrix 
( )

2
( )

4

j

j

v
v
 
 
  

i

i
 spans the null space of Tj and Pj.  By comparing 

Equation 2.4 and Equation 2.9, one can conclude that the admissible closed-loop left and 

right eigenvectors must be the linear combinations of the column vectors of vj2
(∏) 

(Cunningham, 1980; Corr and Clark, 1995; Shelley and Clark, 2000b), i.e. 

 

( )
2

( )
2
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j j

L
j j
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j

j

φ µ

ψ γ

=

=
1,2,...,j N=  (2.10)

 

where mj and γj are mä1 and N×1 scalar vectors.   

As the design criteria for disturbance rejection expressed above, the closed-loop 

left eigenvectors should be assigned so that each closed-loop left eigenvector is as closely 

orthogonal to the forcing vector ek as possible.  Here we first define the orthogonality 

index σj as  
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2 2

1
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The left eigenvector assignment approach in this research is to choose the scalar vector γj 

appropriately so that the orthogonality index σj is minimized.  Therefore, one can 

formulate this idea as following,  
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We define  
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Hence Equation 2.12 can be re-written as 
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Equation 2.14 is equivalent to solve for the following generalized eigenvalue problem, 
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, , 1, 2,...,j j jk j jX Y j k Nγ β γ= =  (2.15)

  

where bjk is the eigenvalue of Equation 2.15.  The minimal ratio 
minjβ in Equation 2.15 is 

the minimal eigenvalue among bjk and γj is its corresponding eigenvector.  Once the 

scalar vector γj is determined, we can form the desired left eigenvector matrix by 

substituting γj into Equation 2.10, 

 

( ) ( ) ( )
12 1 22 2 2 1 2, ,..., , ,...,d L L L d d

N N Nv v v dγ γ γ ψ ψ ψ  Ψ = =     (2.16)

 

Consider the orthogonality condition between the right and left eigenvector matrices, 

 

T IΨ Φ =  (2.17)

 

and the problem is thus formulated to minimize the following performance index 

 

2

1 ( ) , 1, 2,...,d T
j j jJ I jφ= Ψ − = N  (2.18)

 

where Ij is the jth column of identity matrix I.  On the other hand, we also want to 

minimize the modal components of the right eigenvectors corresponding to the concerned 

regions for vibration confinement purpose, and hence we can formulate this concept by 

minimizing the following performance index 
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2

2 , 1, 2,...,j jJ b jφ= = N  (2.19)

 

where b is Boolean matrix to extract the components of the right eigenvectors 

corresponding to the concerned regions.   

Combining the idea presented above, Equation 2.10, Equation 2.18 and 

Equation 2.19, the overall simultaneous left-right eigenvector assignment approach can 

be formulated such that the following performance index is minimized (Choi, 1998), 
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where wL and wR are the weighting factors on the left and right eigenvectors respectively.  

The optimal solution of Equation 2.20 can be determined by letting dJj/dµj=0, that 
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Substitute jµ�  into Equation 2.10 and Equation 2.4, we can obtain the following 
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where fj
a is the jth achievable right eigenvector.  If the matrix [Φa B] is full rank (Clarke 

et al., 2003), then there exists a real feedback gain matrix K that is solved as (Andry et 

al., 1983; Kwon and Youn, 1987) 

 

1( )aK W −= Φ  (2.23)

 

 

2.3 Numerical Simulation on Forced Vibration Control Example 

In this section, we will illustrate the control results of the forced vibration 

problem and examine the theoretical predictions by numerical simulation. 

2.3.1 System Model 

As shown in Figure 2-1, the host clamped-clamped beam structure is assumed to 

be made of aluminum.  Four sets of piezoelectric patches are bonded onto the top surface 

of the beam.  Each of the piezoelectric patches connects to a voltage source as the active 

control input.  An external force is exerted on point 7.  The integrated system is 
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discretized and modeled by finite element method (FEM).  All the system parameters are 

listed in Table 2-1. 

 

 
 

Figure 2-1:  System arrangement consisting of host clamped-clamped beam, piezoelectric 
patches, and active control voltage inputs.  External disturbance is exerted
on point 

V1(t) V2(t) V3(t) V4(t)

Piezoelectric 
patches 

1 2 3 4 5 6 7 

f(t) 

7. 

 

Table 2-1:  Parameters of the system used in simulation 

 

Eb=3.1×1010 Pa Ep=7.40×1010 Pa 

ρb=2700 Kg/m3 ρp=7600 Kg/m3 

ζ=0.008 tp=2.5×10-4 m 

Lb=0.2524 m wb=0.020 m 

Lp=0.03155 m wp=0.020 m 

tb=0.0030 m h31=7.664×108 N/C 

β33=7.3310×107 V  
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The discretized equations of motion for the integrated system can be described as  

 

0 1

1 2 0

d d

T

Mq C q K q K Q F f

K q K Q B V

+ + + =

+ =

�� �
 (2.24)

  

where M, Cd and K0 are the 2n×2n mass, damping and stiffness matrices of the structure, 

q is the 2n×1 structural transverse displacement and slope vector, Q is the m×1 electric 

charge vector, K2 is the m×m inverse capacitance matrix of the piezoelectric patches, K1 

is the 2n×m matrix which represents the electromechanical coupling effect of the 

piezoelectric materials, Fd is the external force distribution vector, B0 is the m×m control 

input matrix and V is the m×1 active control input vector.  Equation 2.24 can be merged 

as 

 

  

and then transformed to the state-space form as Equation 2.1, 
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where Keq=K0-K1K2
-1K1

T and Beq=-K1K2
-1B0. 

2.3.2 Case Studies and Analysis: Right Eigenvector Assignment Example 

As mentioned earlier, we summarize that the vibration amplitude of the concerned 

region may not always be reduced by modal confinement technique through right 

eigenvector assignment method in a forced vibration problem.  Since such a technique 

only focuses on the tailoring of mode shapes, the structural vibration level of the 

concerned region might still be significant even though it is relatively low compare to 

other part of the structure.  It is also noted from Equation 2.2 that the vibration response 

x(t) depends on not only the right eigenvectors (mode shape concept), but also the 

product of left eigenvectors and disturbance distribution (disturbance rejection concept).  

In this section we will illustrate an example to show this hypothesis. 

As shown in Figure 2-1, the integrated beam structure is utilized for 

demonstration.  The vibration suppression is needed in the concerned region, point 1 

through point 4 of the beam.  The desired closed-loop eigenvalues have to be decided a 

priori.  In this example, we choose the desired closed-loop eigenvalues to be 5.000 times 

the real part and 1.006 times the imaginary part of the open-loop ones so that we do not 

change the resonant frequencies significantly but increase the damping of the closed-loop 

system. 
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Figure 2-2:  Frequency responses at point 1 w/ and w/o right eigenvector assignment

method. 

 

Figure 2-2 shows the frequency response of the displacement relative to the 

external force at point 1 of the beam.  The vibration amplitude of this point (also in other 

points of concerned region) increases after the right eigenvector assignment method is 

applied.  In order to analyze the mode shape distribution, the modal energy level Em can 

be defined as  

 

{ }2 2 2
1 2

1

, ,...,
N T

m j j jN
j

E t t t
=

= ∑  (2.27)

 

where tji is the component of the jth right eigenvector.  Figure 2-3 shows the modal 

energy distribution of all states corresponding to the displacements and the velocities.  
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The states 1 through 13 are related to structural displacements, and the states 15 through 

27 related to structural velocities corresponding to points 1 through 7 of the beam.  

Figure 2-4 shows the orthogonality indices of the selected modes.  A smaller index σj 

means the left eigenvector is more closely orthogonal to the forcing vector and hence 

better disturbance rejection.  Even though the modal energy, both potential energy 

(related to displacements) and kinetic energy (related to velocities) is reduced in states 1 

through 9 and states 15 through 25 by this method as shown in Figure 2-3, the 

orthogonality indices of several modes are still higher than the original system after the 

active control is applied as shown in Figure 2-4.  This example shows the arguments as 

aforementioned that the vibration amplitude in the concerned region of the beam cannot 

always be suppressed by pure right eigenvector assignment method.  Therefore it is 

intuitive to utilize the simultaneous left-right eigenvector assignment approach for forced 

vibration problems. 
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Figure 2-3:  Modal energy distribution of all states w/ and w/o right eigenvector

assignment method 
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Figure 2-4:  Orthogonality indices w/ and w/o right eigenvector assignment method 
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2.3.3 Case Studies and Analysis: Simultaneous Left-Right Eigenvector Assignment  

Figure 2-5 and Figure 2-6 show the frequency responses of the displacement 

relative to the external force at point 1 and point 7 with wL=4.040 (weighting factor for 

left eigenvector assignment) and wR=1 (weighting factor for right eigenvector 

assignment).   The same set of closed-loop eigenvalues as in 2.3.2 is used in this case.  

Figure 2-5 shows that the vibration amplitude at point 1 (also in other points of the 

concerned region) has been suppressed significantly throughout the broad frequency 

range by the simultaneous left-right eigenvector assignment method.  It is also noted that 

compared with the original system without active control, the vibration amplitude at point 

7 becomes larger at the resonant frequencies higher than 1K Hz as shown in Figure 2-6.  

The phenomenon is reasonable since modal energy has been confined in the unconcerned 

region as a result of the right eigenvector assignment contribution. 
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Figure 2-5: Frequency responses at point 1 w/ and w/o simultaneous left-right 

eigenvector assignment method 
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Figure 2-6: Frequency responses at point 7 w/ and w/o simultaneous left-right 

eigenvector assignment method 
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Figure 2-7: Orthogonality indices w/ and w/o simultaneous left-right eigenvector 

assignment 
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Figure 2-8: Modal energy distribution of all states w/ and w/o simultaneous left-right 

eigenvector assignment 
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Figure 2-7 shows the orthogonality indices of the selected modes.  It shows that 

with the simultaneous left-right eigenvector assignment approach, the orthogonality 

indices are reduced except to the 10th mode at 10.481 KHz.  Figure 2-8 shows the modal 

energy distribution of all the states corresponding to the displacements (states 1 through 

13 related to points 1 through 7) and the velocities (states 15 through 27).  It shows that 

the modal energy has been re-distributed after the active control is applied.  Both the 

potential energy (related to the displacements) and kinetic energy (related to the 

velocities) decrease significantly in states 1 through 11 and states 15 through 25.  On the 

other hand, the modal energy levels increase in the other states (states 13 and 27) of the 

unconcerned region, indicating that some modal energy has been confined in this region.  

Conclusively, the analysis results have demonstrated that the simultaneous left-right 

eigenvector assignment approach can successfully achieve disturbance rejection (as 

shown in Figure 2-7 and modal confinement (as shown in Figure 2-8) concurrently. 

2.3.4 Weighting Factor Selection for Left and Right Eigenvector Assignments 

The solution in Equation 2.21 is determined based on the least square 

approximation.  Therefore, the desired left and right eigenvectors can not be assigned 

exactly.  On the other hand, the solutions and control performance may be sensitive to the 

weighting factors in the formulation.  Due to these reasons, this study is to investigate the 

effect of the weighting factors.  In this section, we will discuss the relationship of the 

right eigenvector error versus the weighting factor ratio (left weighting factor/right 
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weighting factor), the left eigenvector error versus the weighting factor ratio, and the 

performance prediction index versus the weighting factor ratio. 

From Equation 2.19, the right eigenvector error is define to be 

 

*

*
1 1

j

a T aN N
j j

R R a a
j j j j

b bφ φ
ε ε

φ φ= =

= =∑ ∑  (2.28)

 

where fj
a is the jth achievable right eigenvector.  On the other hand, the left eigenvector 

error is defined as 

 

1 1
2

j

d aN N
j j

L L d a
j j j j

ψ ψ
ε ε

ψ ψ= =

= = −∑ ∑  (2.29)

 

where ψj
d is the jth desired left eigenvector as in Equation 2.16 and ψj

a is the jth 

achievable left eigenvector of Ψa (=[(Φa)-1]T) that is obtained through the orthogonality 

condition between the left and right eigenvector matrices.  Figure 2-9 shows the right and 

left eigenvector errors versus weighting factor ratio wL/wR.  The overall trend of the two 

curves indicates that the right eigenvector errors become larger with increasing weighting 

factor ratios, while the left eigenvector errors are reduced with increasing weighting 

factor ratios.  In order to find a weighting factor ratio such that the most suppression 

effects can be achieved, one can define the performance prediction index to be the 

product of the right and left eigenvector errors, i.e. 
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1
j j

N

R L
j

ξ ε ε
=

=∑  (2.30)

 

Figure 2-10 shows the performance prediction index versus weighting factor ratio.  The 

minimal performance prediction index in this example is obtained at wL/wR=4.040.  The 

control performance of this case with wL/wR=4.040 through the simultaneous left-right 

eigenvector assignment method are shown as in Figure 2-5 and Figure 2-6. 
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2.4 Summary 

A simultaneous left-right eigenvector assignment for both disturbance rejection 

and modal confinement in a structural vibration control problem is investigated and 

reported in this chapter.  A new formulation to select the desired closed-loop left 

eigenvectors by minimizing the orthogonality indices is derived.  A method to choose the 

weighting factors is also provided.  The effectiveness of the proposed method is 

demonstrated through numerical simulations on a clamped-clamped beam structure 

example.  Conclusively, this approach can successfully achieve both disturbance rejection 
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and modal confinement concurrently, and thus can enhance the vibration suppression 

performance in the concerned region of the beam structure. 

 

 

 



 

Chapter 3 
 

STRUCTURAL VIBRATION CONTROL VIA PARTIAL LEFT-RIGHT 
EIGENVECTOR ASSIGNMENT 

 

 

3.1 Introduction 

The purpose of the research presented in this chapter is to investigate the 

feasibility of utilizing the partial left and right eigenvector assignment method for active 

structural vibration control.   

In Chapter 2, it is shown that the solution of the simultaneous left-right 

eigenvector assignment method is determined through a generalized inverse, based on 

least square approximation.  While the method is promising, it is generally difficult to 

predict the least square error and determine the system performance.  Furthermore, the 

solution of the least square approximation and hence control performance can be 

sensitive to the weighting factors in the formulation.  Since it is difficult to quantify the 

contributions of the left and right eigenvectors at certain resonant frequencies 

individually, there is no rigorous rule to decide the weighting factors for general cases.  It 

is thus necessary to utilize significant computational efforts in deciding the weighting 

factors as discussed in 2.3.4.   
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Clarke et al. (2003) proposed an algorithm in which the reduced number of 

selected left and right eigenvectors can be exactly assigned as the desired ones for an 

output feedback system without approximation.  The motivation of the research presented 

in this chapter is to utilize this control theory and derive the corresponding design 

strategy for structural vibration control.  In such an algorithm, both the selected left and 

right eigenvectors can be exactly assigned so that the disturbance rejection as well as 

modal confinement can be achieved concurrently.   

To satisfy disturbance rejection, the selected desired left eigenvectors are 

determined by minimizing the orthogonality indices so that they are as closely orthogonal 

to the forcing vectors as possible.  On the other hand, to achieve modal confinement, the 

remaining desired right eigenvectors are determined by minimizing the ratio of concerned 

area modal energy relative to the total modal energy based on the Rayleigh Principle so 

that the modal components corresponding to the concerned coordinates are as small as 

possible (Tang and Wang, 2004).  Therefore, the two criteria of assigning the selected left 

and right eigenvectors can be used for a forced vibration control problem. 

In the next section, the partial left-right eigenvector assignment algorithm will be 

discussed.  Numerical simulations are then performed to evaluate the effectiveness of the 

proposed method on the clamped-clamped beam structure.    
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3.2 Partial Left-Right Eigenvector Assignment Method and Algorithm 

To discuss the partial left-right eigenvector assignment method, we first consider 

a general linear time-invariant dynamical control system with output feedback, 

 

x Ax Bu Ef
y Cx
u Ky

= + +
=
=

�
 (3.1)

 

where x is the N×1 system state vector, A is the N×N state matrix, u is the m×1 input 

vector, B is the N×m input matrix, f is the l×1 external disturbance vector, E is the N×l 

disturbance distribution matrix, y is the r×1 system output vector, C is the r×N output 

matrix, and K is the feedback gain matrix.  The objective of this method is to determine a 

feedback gain matrix K such that the total N closed-loop left and right eigenvectors are 

exactly assigned as the desired ones in which the disturbance rejection and modal 

confinement can be achieved simultaneously. 

The closed-loop system can be expressed by its eigenvalues and the 

corresponding right and left eigenvectors in the state space form similarly as in 

Equation 2.3, 

 

( )

( )
j N j

T T T T
j N j

A BKC I

A C K B I

0

0

λ φ

λ ψ

+ − =

+ − =
1,2,...,j N=  (3.2)
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In this investigation, we also assume that all eigenvalues of the closed-loop system are 

different from the open-loop ones as discussed in Chapter 2.  Equation 3.2 can be re-

written as 

 

| 0

| 0

j
j N

j

jT T
T Tj N

j

A I B
KC

A I C
K B

φ
λ

φ

ψ
λ

ψ

 
 − =  

 
 

 − =  
 

1,2,...,j N=  (3.3)

 

With the same procedure as in Chapter 2, we define 

 

|

|

j j N

T T
j j N

T A I B

P A I C

λ

λ

 = − 
 = − 

1,2,...,j N=  (3.4)

 

and then take singular value decomposition of Tj and Pj.  The admissible right and left 

eigenvectors can be obtained by spanning the admissible subspaces vj2 and mj2 (Choi, 

1998; Shelley and Clark, 2000b; Tang and Wang, 2004; Wu and Wang, 2004) 

respectively, i.e. 

 

2

2

j j j

j j

v

m j

φ µ

ψ γ

=

=
1,2,...,j N=  (3.5)
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where µj and γj are m×1 and r×1 scalar vector.  The left and right eigenvectors have to 

satisfy the orthogonality condition, i.e. 

 

0T
i j for all i jψ φ = ≠  (3.6)

 

The orthogonality condition in Equation 3.6 requires 2N eigenvectors to be 

assigned, however, only N closed-loop eigenvalues are allocated.  The protection 

methods (Davison and Wang, 1975; Srinathkumar, 1978) show that assigning N 

eigenvectors is sufficient to place N eigenvalues.  Therefore the following theorem will 

depict this condition (Clarke et al., 2003). 

 

Theorem: The eigenvalue λj is assignable if there exists ψj and fj spanned by the 

admissible subspace as described in Equation 3.5, such that  

(a) rank(C[f1, f2,.., fp])=p and j kλ λ=  implies j kφ φ=  

(b) rank(BT[ψp+1, ψp+2,.., ψN])=N-p and j kλ λ=  implies j kψ ψ=  

(c) 0T
i jψ φ =  for all j=1,2,…,p; i=p+1, p+2,..N 

 

The proof of this theorem can be seen in Clarke et al. (2003). 

We assume p closed-loop right eigenvectors are first derived from the admissible 

subspaces as in Equation 3.5, 
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1 2 12 1 22 2 2

1 2 14 1 24 2 4

, ,..., , ,...

, ,..., , ,...

a a a a
p p p p

a
p p p p

v v v

W KC w w w v v v

φ φ φ µ µ µ

pµ µ µ

   Φ = =   
  = Φ = =    

 (3.7)

 

and then impose the “achievable” right eigenvectors on the second part of Equation 3.3  

to satisfy the orthogonality condition, constraint (c) of the theorem, i.e. 

 

0
( ) 0

T T
jj N

T Ta T
jp

A I C
K B
ψλ

ψ
 −  

=   Φ    
, 1, 2,...,j p p N= + +  (3.8)

 

As the same steps as stated earlier, we define  

 

( ) 0

T T
j N

j a T
p

A I C
P

λ −
′ =  Φ  

 (3.9)

 

and then take singular value decomposition of jP ′ .  Therefore we can obtain the null 

space of  and then determine the achievable left eigenvectors by spanning the 

“achievable” subspaces of the left eigenvectors, i.e. 

jP ′

 

1 2 1,2 1 2,2 2 2

1 2 1,4 1 2,4 2 4

, ,..., , ,...,

, ,..., , ,...,

a a a a
p p p N p p p p N N

T T a
p p p p N p p p p N

m m m

Z K B z z z m m m

ψ ψ ψ γ γ γ

Nγ γ γ

+ + + + + +

+ + + + + +

′ ′ ′   Ψ = =   
′ ′ ′  = Ψ = =   

 (3.10)
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where  is a Nä(r-p) matrix for the “achievable” subspace of left eigenvector and γj is a 

(r-p)ä1 scalar vector. 

2jm′

Alternatively, we assume N-p closed-loop left eigenvectors are first derived from 

the admissible subspaces as in Equation 3.5, 

 

 

and then impose the “achievable” left eigenvectors on the first part of Equation 3.3 to 

satisfy the orthogonality condition, i.e. 

1 2 1,2 1 2,2 2 2

1 2 1,4 1 2,4 2 4

, ,..., , ,...,

, ,..., , ,...,

a a a a
p p p N p p p p N N

T T a
p p p p N p p p p N

m m m

Z K B z z z m m m

ψ ψ ψ γ γ γ

Nγ γ γ

+ + + + + +

+ + + + + +

   Ψ = =   
  = Ψ = =   



 (3.11)

0
( ) 0

j N j
a T
p j

A I B
KC

λ φ
φ

−  
=  Ψ   

 (3.12)

 

 

Similarly as the previous steps, we define  

 

( ) 0
j

a Tj
p

A I B
T

λ− 
′ =  Ψ 

 (3.13)

 

After determining the null space of Tj
′ , we can obtain the “achievable” subspaces for the 

right eigenvectors and then determine the achievable right eigenvectors, i.e. 
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where  is a Nä(m+p-N) matrix for the “achievable” subspace of right eigenvector and 

µj is a (m+p-N)ä1 scalar vector.  If 

2jv′

a
pΦ  and a

pΨ  satisfy the constraint (a) and (b) of the 

theorem, the feedback gain matrix is thus obtain (Clarke et al., 2003) as 

1 2 12 1 22 2 2

1 2 14 1 24 2 4

, ,..., , ,...

, ,..., , ,...

a a a a
p p p p

a
p p p p

v v v

W KC w w w v v v

φ φ φ µ µ µ

pµ µ µ

′ ′ ′   Φ = =   
′ ′ ′  = Φ = =    

†
p

 (3.14)

† † †(( ) ) ( ) (( ) ) ( )a T T a a T T a a
p p p p p p pK B Z W C B Z C C= Ψ + Φ − Ψ Φ Φ  (3.15)

 

 

where ( )  denotes the generalized inverse of (∏). †i

It is noted that when either the right or left eigenvectors are first determined in the 

procedure, m (input number), r (output number), and p (assigned right eigenvector 

number) have to satisfy the constraints.  The rank constraints (a) and (b) of the theorem 

dictate that the number of assignable right eigenvector can not be more than r and the 

number of assignable left eigenvector can not be more than m.  Equation 3.8  and 

Equation 3.12 also show that the assigned right eigenvector number, p, and the assigned 

left eigenvector number, (N-p), have to satisfy these constraints if the null spaces of Tj
′  

and  are not empty.  While the left eigenvectors are first assigned, the extra constraint 

is that the number of assignable left eigenvector (N-P) is less than m.  Conversely if the 

right eigenvectors are first determined, an extra constraint, p<r, has to be imposed.  It is 

also noted that the eigenvectors that are first determined have larger achievable spaces for 

jP ′
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assigning.  Therefore the eigenvectors that are dominant in performance should be first 

assigned. 

 

3.3 Numerical Simulations on Forced Vibration Control Example 

In this section, we will use the same clamped-clamped beam structure system in 

Figure 2-1 as an example to illustrate the control results and examine the theoretical 

predictions through numerical simulation.  All the system parameters are listed in 

Table 2-1. 

3.3.1 Criteria of Selecting Left and Right Achievable Eigenvectors 

The design criteria of the left eigenvectors for disturbance rejection purpose is to 

assign specific closed-loop left eigenvectors so that the desired closed-loop left 

eigenvectors are as closely orthogonal to the forcing vectors ek as possible.  Based on this 

concept, the desired left eigenvector is determined by minimizing the orthogonality 

indices as the design steps expressed in Chapter 2, 

 

* * *
2 2

1 1
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* * *
2 2

1 1

( ) ( )
min min ,

( ) ( )

l l
d T d T
j k k j j j k k j j
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jl l

T d d T
k k j j j k k j j j

k k

e e m e e m

e e e e m m

ψ ψ γ γ
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ψ ψ γ γ

= =

= =

= =
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∑ ∑
 

1, 2,...,j p p N= + +  

(3.16)
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The scalar vector gj for synthesizing the desired left eigenvectors can be 

determined through solving a generalized eigenvalue problem, 

 

j j jk j jX Yγ β γ=  (3.17)

 

where *
2 2

1
( )

l
T

j j k k
k

jX m e e m
=

= ∑ , and Y e .  The minimal ratio *
2

1
( )

l
T

j k k j
k

e m
=

= ∑ 2jm
minjβ in 

Equation 3.16 is the minimal eigenvalue among bjk and γj is its corresponding 

eigenvector.   

Reciprocally, the design criteria of the right eigenvectors for modal confinement 

is to assign the remaining closed-loop right eigenvectors so that the desired closed-loop 

right eigenvectors have as small components corresponding to the concerned region as 

possible.  This concept can be realized by minimizing the modal energy ratio of the 

concerned region modal energy relative to the total modal energy  

 

* * *
2 2

* * * min
2 2

min min , 1, 2,...,
T T

j j j j j j
j

j j j j j j

b Sb v b Sbv
j

S v Sv
φ φ µ µ

α
φ φ µ µ

= = p=  (3.18)

 

where 
0

0
eqK

S
M

 
= 
 

 , and b is the Boolean matrix representing the concerned 

coordinates and the remaining coordinates of the closed-loop right eigenvector. 
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Based on the Rayleigh Principle (Meirovitch, 1980), the scalar vector µj for 

synthesizing the desired right eigenvectors can be determined through solving the 

generalized eigenvalue problem (Tang and Wang, 2004), 

 

j j jk j jµ α µΛ = Ω  (3.19)

 

where , and .  The minimal modal energy ratio *
2 2

T
j jv b SbvΛ = j 2j

*
2j jv SvΩ =

minjα  is the 

minimal eigenvalues among αjk and µj is its corresponding eigenvector. 

3.3.2 Case Studies and Analysis: Partial Left-Right Eigenvector Assignment 

In this test bed example, since the control input number m, is 4 and all 

eigenvalues are complex, two left eigenvectors (a complex conjugate pair) are selected to 

be first assigned in the partial left-right eigenvector assignment algorithm.  This is 

because the number of assigned left eigenvectors has to be less than the input number and 

the complex conjugate pair of the eigenvectors has to exist simultaneously.  We choose 

the output number to be (N-2) so that all numbers, m, r and p, satisfy the constraints.  The 

remaining (N-2) right eigenvectors are assigned in the second step after the two left 

eigenvectors are first assigned.  Since the complex conjugate pairs of eigenvectors have 

to exist simultaneously, we cannot arbitrarily assign both the left and right eigenvectors 

corresponding to the same complex conjugate pair of eigenvalues concurrently.  

Conceptually, the left and right eigenvectors cannot be assigned focusing on the same 
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resonant frequencies simultaneously.  It is also noted that it is difficult to evaluate the 

contributions of the left and right eigenvectors separately for the control performance at 

different resonant frequencies.  However, the combination number of the total N assigned 

left and right eigenvectors corresponding to the different eigenvalues is very limited.  

Therefore the optimal solution can be obtained by selecting the case of most suppression 

among all the achievable combinations without paying heavy computational efforts. 

The criteria for selecting the best combination of assigned left and right 

eigenvectors is to select the case in which the most suppression effect is achieved in all 

the concerned coordinates at the resonant frequencies.  In this simulation example, the 

same set of desired closed-loop eigenvalues as in Chapter 2 is used.  Table 3-1 lists the 

total frequency response suppressions of structural vibration at point 1 through point 4 

(concerned coordinates) focusing on the first four resonant frequencies with different 

combinations of assigned left and right eigenvectors.  The top row indicates the first four 

resonant peaks and the left column indicates the eigenvalues corresponding to the two left 

eigenvectors which will be first assigned.  The middle arrays indicate the total vibration 

suppression on point 1 through point 4 at each resonant frequency with each assigned 

combination respectively.  The smaller magnitude in the middle arrays means more 

vibration suppression.  It is determined that the most suppression performance, as shown 

in the summation column, can be obtained in the shaded case of Table 3-1. 
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Table 3-1: Total suppression in concerned coordinates at the first four resonant frequencies
with different combinations of assigned left and right eigenvectors 

 
Suppression 

(dB) 
 

Eigenvalue 

1st Resonant 
Peak 

176.1655 Hz
 

2nd Resonant 
Peak 

488.1796 Hz
 

3rd Resonant 
Peak 

964.7710 Hz
 

4th Resonant 
Peak 

1595.6997 Hz
 

Summation

-121.9505  
≤ 3067.3225i 

-75.4241 -165.8650 -78.5494 -23.7370 -343.5755 

-241.0339  
≤ 6061.8366i 

4.1400 -16.9012 -99.4555 14.3826 -97.8341 

-398.6438  
≤ 10026.0760i 

-10.4917 -34.7706 -19.2776 -71.2914 -135.8313 

-846.6194  
≤ 21291.7977i 

6.0983 13.9728 12.3894 -8.1486 24.3119 

-1118.7197  
≤ 28134.8746i 

-81.7825 -55.6646 -54.7616 -65.8452 -258.0539 

-1619.8745  
≤ 40738.2656i 

-18.1940 -35.3669 -54.0730 -19.1778 -126.8117 

-2056.1936  
≤ 51712.0089i 

21.6258 6.2653 -85.4116 -47.6497 -105.1702 

-3312.7089  
≤ 83311.7658i 

21.8795 30.9404 42.8908 52.7116 148.4223 

-4258.3065  
≤ 107093.0265i 

-123.6421 -99.7633 -114.7339 -97.6091 -435.7484 

-6119.7848  
≤ 153906.0730i 

51.8113 54.2799 54.4475 108.3536 268.8923 
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Figure 3-1: Frequency responses at point 1 w/ and w/o partial left-right eigenvector 

assignment method 

 

Figure 3-1 shows the frequency response of the displacement relative to the 

external force at point 1 by the optimal combination of assigned left and right 

eigenvectors.  In this case, the left eigenvectors corresponding to the 12th mode (the 

eigenvalues are -4258.307≤107093.027i) are first assigned and then the right 

eigenvectors corresponding to the remaining modes are assigned in the second step.  

Figure 3-1 shows that through partial left-right eigenvector assignment, the vibration 

amplitude can be suppressed significantly at point 1 (also at other points of the concerned 

region) throughout the broad frequency range including the first 7 resonant frequencies. 
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Figure 3-2: Orthogonality indices w/ and w/o partial left-right eigenvector assignment 

 

Figure 3-2 shows the orthogonality indices of the selected system modes.  It is 

shown that all the orthogonality indices can be reduced by the partial left-right 

eigenvector assignment approach except the 10th mode at 10.481 KHz.  In other words, 

the system capability of disturbance rejection can be improved by this approach.  It is 

also noted that with this method the orthogonality index at the 12th mode (17044.384 Hz) 

is reduced significantly because the left eigenvectors corresponding to this mode are 

assigned exactly. 
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Figure 3-3: Modal energy distribution of all states w/ and w/o partial left-right 

eigenvector assignment 

 

Figure 3-3 shows the modal energy distribution of all the system states 

corresponding to the displacements (states 1 through 13 related to point 1 through 7) and 

the velocities (states 15 through 27).  With this method, all the right eigenvectors except 

the 12th mode are exactly assigned by minimizing the modal energy ratios.  It shows that 

the modal energy has been re-distributed after the active control is applied.  Both the 

potential modal energy (related to the displacements) and kinetic modal energy (related to 

the velocities) decrease in states 1 through 11 and states 15 through 25.  On the other 

hand, the modal energy levels increase in the other states (state 13 and state 27) of the 

unconcerned region, indicating that some modal energy has been confined in this region.  

Compared with Figure 2-3 which shows the modal energy distribution with right 
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eigenvector assignment, the concerned modal energy using the partial left-right 

eigenvector assignment method is larger (particularly in potential energy) than that with  

the pure right eigenvector assignment.  The reason is that the right eigenvectors (except 

the two corresponding to the 12th mode) are assigned after first assigning the left 

eigenvectors in this approach, therefore the achievable subspaces for right eigenvectors 

become smaller due to the orthogonality condition imposed.  Conclusively, the analysis 

results have demonstrated that the partial left-right eigenvector assignment approach can 

successfully achieve disturbance rejection (as shown in Figure 3-2) and modal 

confinement (as shown in Figure 3-3). 
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Figure 3-4: Comparison of frequency responses at point 1 w/ pole placement,

simultaneous left-right eigenvector assignment and partial left-right 
eigenvector assignment. 
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Figure 3-5: Comparison of frequency responses at point 7 w/ pole placement,

simultaneous left-right eigenvector assignment and partial left-right 
eigenvector assignment. 

 

Figure 3-4 and Figure 3-5 show the comparison of frequency responses of the 

displacement at point 1 and point 7 through the pole placement method, simultaneous 

left-right eigenvector assignment method and partial left-right eigenvector assignment 

method respectively with the same set of desired eigenvalues.  It is noted that both the 

simultaneous left-right eigenvector assignment and partial left-right eigenvector 

assignment methods can achieve more vibration suppression at point 1 (also at the other 

points of concerned region) than the pole placement method throughout the broad 

frequency range.  On the other hand, the vibration amplitude becomes larger at point 7 

(the unconcerned region) with both the simultaneous left-right eigenvector assignment 

and partial left-right eigenvector assignment methods than with the pole placement 
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method.  Conceptually the pole placement method does not focus on the performance in 

the specific coordinates and does not consider the external disturbances.  However, both 

the simultaneous left-right eigenvector assignment and partial left-right eigenvector 

assignment methods use the same set of closed-loop eigenvalues, and then focus on the 

concerned coordinates.  The disturbance rejection is also considered in these two 

methods.  Therefore both the simultaneous left-right eigenvector assignment and partial 

left-right eigenvector assignment methods can be utilized to further enhance the 

suppression performance in the concerned region from the baseline of the pole placement 

method with the same desired closed-loop eigenvalue set. 

It is also noted that the vibration suppression performance at some resonant 

frequencies is worse using the partial left-right eigenvector assignment method than using 

the simultaneous left-right eigenvector assignment method.  Even though in this example, 

the suppression performance at certain resonant peaks is better with simultaneous left-

right eigenvector assignment than that with partial left-right eigenvector assignment, the 

computation efficiency of the two algorithms must be indicated and addressed.  The 

solution of simultaneous left-right eigenvector assignment approach is determined based 

on the least square approximation and it is normally difficult to predict the least square 

error and the control performance.  Furthermore, the solution and performance may be 

very sensitive to the weighting factors.  Since there is no rigorous rule to choose the 

optimal weighting factors in general cases so that the most suppression effects can be 

achieved, it is necessary to pay heavy computational efforts to decide the optimal 

weighting factors.  However, the partial left-right eigenvector assignment approach can 

exactly assign all the selected desired left and right eigenvectors without approximation.  
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The optimal case of the partial left-right eigenvector assignment method can be easily 

obtained among the limited combination number of different assigned left and right 

eigenvectors cases without heavy computational efforts.  In general, the control 

performance with different methods is case-dependent.  One should not conclude that the 

simultaneous left-right eigenvector assignment approach always outperforms the partial 

left-right eigenvector assignment method or vice versa.  The partial left-right eigenvector 

assignment method is an alternative method to achieve satisfactory system performance 

with more efficient computation effort, as compared to the simultaneous left-right 

eigenvector assignment approach.   

3.4 Summary 

A partial left-right eigenvector assignment for both disturbance rejection and 

modal confinement is explored for structural vibration control.  The selected left and right 

eigenvectors can be assigned exactly without approximation.  The desired left 

eigenvectors are determined by minimizing the orthogonality indices so that the 

disturbance rejection can be achieved.  The desired right eigenvectors are selected by 

minimizing the modal energy ratios.  Through numerical simulations, the effectiveness of 

the proposed method is demonstrated on a clamped-clamped beam structure example.  

Conclusively, this method can successfully achieve both disturbance rejection and modal 

confinement concurrently, and thus its vibration confinement/suppression performance 

can be enhanced as compared to the baseline system with the same eigenvalues via pole-

placement.            

 



 

Chapter 4 
 

EXPERIMENTAL INVESTIGATION ON STRUCTUAL VIBRATION 
CONTROL TEST STAND 

 

 

4.1 Introduction 

The objective of the research presented in this chapter is to implement the left-

right eigenvector assignment algorithms experimentally, and validate the effectiveness of 

the proposed approach for structural vibration control.  The test stand is a clamped-

clamped beam structure, with piezoelectric strips bonded on the surface of the beam as 

actuators and exciter.  The experimental setup, including the beam structure, 

measurement instruments, actuation devices, and PC-based data acquisition system will 

be introduced in the next section.  A system identification procedure, utilizing the modal 

analysis technique and structured state-space parameterization, is performed to identify 

the system model.  A modified feedforward configuration is introduced to accommodate 

for the system uncertainties and undesired noise.  Both the simultaneous and partial left-

right eigenvector assignment methods are implemented to evaluate their vibration control 

performance. 
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4.2 Experimental Test Stand Hardware 

Figure 4-1 shows the photograph of the experimental setup, which consists of a 

clamped-clamped beam structure, signal analyzer and function generator, laser 

vibrometer sensing instrument, smoothing low pass filter, power amplifier and dSPACE 

data acquisition system.  Figure 4-2 shows the schematic of the experimental setup and 

the dimension of the integrated piezoelectric-beam structure.   

 

 

Figure 4-1: Photograph of experimental setup 
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Figure 4-2:  Schematic of experimental setup 
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As shown in Figure 4-2, three piezoelectric patches are bonded on the top surface 

of the host beam structure.  The left patch is used as an external exciter and the other two 

are used as actuators (control inputs) for active control.  The concerned region is selected 

to be the right half part of the beam.  A Non-contact laser vibrometer sensor is utilized to 
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measure the structural velocity at the position shown in the figure.  A PC-based digital 

control system, which consists of the SIMULINK software and the dSPACE DS1103 

control board, is used to realize the active control laws.  A disturbance signal is generated 

and applied on the left piezoelectric patch as the external excitation.  The velocity sensor 

signal is sent to the A/D converters of the dSPACE board and the data acquisition system.  

The control signals from the D/A converters of the dSPACE board are filtered and 

amplified, and then fed to the piezoelectric actuators. 

 

4.3 System Identification 

As described in the previous chapters, an accurate system model is required 

before the left and right eigenvector assignment method can be applied.  It is in general 

difficult to obtain a discretized analytical model which can precisely describe all the 

physical characteristics of the actual continuous structure.  The uncertainties in the 

experimental setup will also reduce the accuracy of the system model that is to be used 

for controller design.  Therefore, in many applications, system identification techniques 

are utilized to experimentally characterize the system mathematical model.  The 

conventional system identification techniques, such ARX and ARMAX (Ljung, 1999), 

requires high-order models to approximate the system such that an acceptable 

mathematical model can be obtained, which may cause numerical difficulties and is very 

inefficient.  To compromise this dilemma, the experimental modal analysis technique 
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combined with the structured state-space parameterization algorithm is utilized in this 

investigation to derive the system state model. 

The experimental modal analysis is a well known test method for determining the 

structure’s natural frequencies, damping ratios and mode shapes.  This therefore will be 

performed in the first step of model identification.  Considering the integrated clamped-

clamped beam structure with piezoelectric patches as shown in Figure 4-2, the system 

mathematical model, Equation 2.25, can be transformed into the modal space expression 

by substituting q=Φh and pre-multiplying ΦT on each term of Equation 2.25, i.e. 

 

 

where Φ is the right eigenvector matrix and h is the modal coordinate vector.  Since the 

system is light-damped, we can assume that the system model can be decoupled to a 

diagonal form by properly scaling Φ, i.e. 

T T T T T
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where Fm=ΦTFd and Bm=ΦTBeq.  Therefore the state space form can be expressed in terms 

of the modal coordinates, 
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where Co is a Boolean row vector representing measured output.  The natural frequencies 

wj, damping ratios zj and mode shapes fj (right eigenvector) of the structure can be 

determined by the STAR MODAL software from the experimental data through the 

modal analysis technique.  Therefore the matrices A and C of state space format in 

Equation 4.3 can be modeled in term of the damping ratios zj, natural frequencies wj, and 

right eigenvectors fj. 

In the state space format of Equation 4.3, matrices A and C are fixed while the 

elements in the bottom half of B and E can be freely adjusted.  In such a structured-

matrices condition, one can utilize the structured state-space parameterization algorithm 

(Ljung, 1999) to determine the parameters Fm and Bm (or Fd and Beq) in Equation 4.3.  

The structured state-space parameterization algorithm can be executed by the MATLAB 

System Identification Toolbox. 

The frequency bandwidth is selected to be 800 Hz in the experiments.  Within the 

bandwidth, four vibration modes of the test stand can be detected.  Table 4-1 shows the 

results of experimental modal analysis, which includes the damping ratios, natural 

frequencies and mode shapes.   

 

 



64 

Table 4-1: Results of experimental modal analysis 

 
 1st Mode 2nd Mode 3rd Mode 4th Mode 

Damping Ratio zj  
(%) 0.6757 0.6770 0.2804 0.3843 

Natural Frequency wj 
(Hz) 94.0267 224.6200 449.6700 761.0467 

Eigenvalue λj -3.9919 
≤590.7735i 

-9.5545 
≤1411.2967i

-7.9224 
≤2825.3488i 

-18.3752 
≤4781.7619i

7.1621 
+12.8257i 

11.8351 
+30.7512i 

13.4880 
+22.5547i 

4.3903 
+12.3636i 

28.8294 
+18.9346i 

18.8823 
+10.7747i 

-10.3232 
-3.7213i 

-16.7612 
-17.8331i 

-276.1478 
+4.1180i 

98.5884 
-1.0658i 

74.2546 
-0.2617i 

-172.3970 
-20.8879i 

 
 
 

Mode Shape fj 

92.5224 
-204.3723i 

-92.6700 
+206.4647i 

51.7835 
-105.3933i 

-76.6960 
+96.3050i  

 

 

Since the structure is lightly damped, the following rule can be used to convert complex 

modes to real modes in STAR MODAL.  All complex modal coefficients which have 

phase between -67.5˚ and 112.5˚ are changed to 0˚ and all other complex modal 

coefficients are changed to 180˚.  Figure 4-3 shows the mode shapes of the first four 

modes of the structure with real modal coefficients.  Point 1 to 4 are the measured points 

in the modal analysis process and point 0 and 5 are fixed points at the clamped ends.   
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Figure 4-3: Mode shapes of first four modes with real modal coefficients 

 

Through the structured state-space parameterization process and coordinate 

transformation, the state space model with displacement/velocity state vector can be 

obtained as described in Equation 4.4.  Figure 4-4 to Figure 4-6 show the frequency 

response functions of velocity sensor signal to the first, second actuator inputs and 

excitation signals, respectively.  The errors between measured data and identified model 

are mainly caused due to the assumption that the system model can be perfectly 

decoupled to a diagonal form as Equation 4.3. 
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Figure 4-4: Frequency response function of velocity sensor to first input signal.  
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Figure 4-5:  Frequency response function of velocity sensor to second input signal.  
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Figure 4-6:  Frequency response function of velocity sensor to excitation signal. 

 

 

4.4 State Estimator 

The simultaneous left-right eigenvector assignment algorithm discussed in 

Chapter 2 is derived based on the full state feedback assumption so that the closed-loop 

eigenvalues can be exactly located.  In Chapter 3, even though the partial left-right 

eigenvector assignment algorithm is developed in an output feedback configuration, the 

required number of outputs is generally greater than the number of measurements in the 

practical situation.  Therefore, a state estimator is required for implementation of the left-
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right eigenvector assignment algorithms in the experiments.  In this section, the state 

estimator will be introduced to estimate the unmeasured states.  The block diagram of the 

integrated system with the state estimator is shown in Figure 4-7. 
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 4-7:  Block diagram of the integrated system with state estimator 

 

The equation of the state estimator is written as 

x  is the estimated state vector and L is the output gain matrix to be decided.  By 

tion property (Chen, 1984), the design of state feedback and the design of the state 

tor can be carried out independently and the eigenvalues of the entire system are 

on of those of state feedback and those of the estimator.  Combining the equations 
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of the state feedback system, Equation 2.1, and the state estimator, Equation 4.5, the 

closed-loop system thus becomes 

 

[ ]0

x A BK x E
f

x LC A LC BK x E

x
y C

x

       
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 (4.6)

 

 

4.5 Controller Design 

In the experiment, the state vector of the discretized state space model in 

Equation 2.1 represents the displacements and velocities of the four points on the beam 

structure.  The concerned region is selected to be the two right points of the beam 

structure as shown in Figure 4-2.  Therefore the Boolean matrix in Equation 2.19 is 

expressed as 

 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

b

 
 
 =
 
 
 

 (4.7)

 

and the one in Equation 3.18 is described as  
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

b

 
 
 
 
 
 =  
 
 
 
 
  

 (4.8)

 

Through the simultaneous and partial left-right eigenvector assignment algorithms 

developed in Chapter 2 and Chapter 3, one can solve for the feedback gain matrices for 

the identified state space model in Equation 4.4.     

To determine the feedback gain matrix of the simultaneous left-right eigenvector 

assignment algorithm, the performance prediction index (as defined in Equation 2.30) 

versus weighting factor ratio is first calculated and shown in Figure 4-8. 
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The minimal (best) performance prediction index for this identified model is 

obtained at wL/wR=177.407.  The feedback gain matrix for the identified model is thus 

determined (Equation 2.23) as 

 

5 5

4 4

4 4

4 4

-1.95 10   -1.37 10
8.33 10     2.53 10
-3.69 10   -1.00 10
1.73 10     -0.33 10
-16.274         -25.553

170.836         138.760
37.054           29.954
30.427           25.366

K

 × ×
 × × 
 × ×
 

× × =  
 
 
 
 
 

T



 (4.9)
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For the partial left-right eigenvector assignment algorithm, the output number is 

selected to be seven.  In this case, the right eigenvectors at the first, second and fourth 

modes are first assigned and then followed by assigning the left eigenvectors of the third 

mode (447.361 Hz).  The feedback gain matrix (Equation 3.15) in this case is determined 

as  

 

4 4

5 5

4 4

4 4

7.90 10     7.79 10
2.14 10     1.44 10
-2.98 10   -0.71 10
5.80 10     4.03 10
54.3469       46.1825
52.8336       49.2237
0.7756           1.3601

T

K

 × ×
 × × 
 × ×
 

= × × 
 
 
 
   

 (4.10)

 

The output gain of state estimator L in Equation 4.5 for both methods is also determined 

to be 

 

     -2.2579
      6.0280
      2.0691
      3.3218

13219.8235
4282.1373
1279.2240
1281.4294

L
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 
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 
 
 
 
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(4.11)
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4.6 Modified Feedforward Configuration 

For the experimental test stand, the identified frequency response functions 

consist of not only the mechanical structure dynamics, but also the dynamics of the 

velocity sensor, low pass filters and power amplifiers.  All the components will increase 

the damping effects of the loop characteristics.  It will reduce the precision of the 

identified state space model if the complex modal coefficients are converted to real 

modal coefficients.  Under this circumstance, the closed-loop feedback system with state 

estimator may not tolerate the discrepancy between the identified model and the actual 

system.  That will cause instability or unsatisfactory performance. 

In order to address this issue, a modified feedforward configuration is proposed in 

this section to decrease the effects of system uncertainties and undesired noise.  The 

block diagram of the modified feedforward configuration is shown in Figure 4-9.  In the 

schematic, f is the external excitation, y is the structural velocity measured by the laser 

vibrometer sensor, u is the control voltage input activated by the dSPACE system, and x 

represents the state vector of the identified state space model.  As shown in this figure,  

the control input u applied to the actuators is determined from the product, Kx, in which 

the feedback gain matrix K is the same as that determined in Equation 4.9 or 

Equation 4.10, and the state x is determined from the output of the identified state-space 

model, instead of the state vector output of the state estimator as shown in Figure 4-7.  
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With such a modified configuration, the system instability caused from the sensor noise 

can be relaxed so that the feedforward system is more robust against the uncertainties and 

undesired noise. 

 

 

 
Figure 4-9: Modified feedforward configuration 

 yf Real Test Stand 

u 
 A   B,E  KI      0 x

Identified State  
Space Model 

 

The experimental results are shown in Figure 4-10 and Figure 4-11.  These two 

figures show the frequency responses of the measured velocity to the external excitation 

with and without applying the left-right eigenvector assignment methods.  By applying 

the simultaneous left-right eigenvector assignment method or the partial left-right 

eigenvector assignment algorithm, the vibration amplitude at the measured point (in the 

concerned region) can be well suppressed (up to 15 dB) at the resonant frequencies. 
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Figure 4-10: Frequency response of velocity sensor to excitation signal w/ and w/o

simultaneous left-right eigenvector assignment method 

 

 

0 100 200 300 400 500 600 700 800
-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Frequency (Hz)

A
m

pl
itu

de
 (d

B
)

Frequency Response of Velocity to Excitation

Original System w/o Control              
Partial Left-Right Eigenvector Assignment

 
Figure 4-11: Frequency response of velocity sensor to excitation signal w/ and w/o partial

left-right eigenvector assignment method 
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4.7 Summary 

An experimental investigation is performed to validate the proposed left-right 

eigenvector assignment algorithms for vibration control.  The test stand hardware, 

including a piezoelectric transducer integrated beam structure, smoothing filters, power 

amplifiers, signal analyzer and function generator, and PC-based dSPACE data 

acquisition system, is set up to implement the control laws.  A system identification 

process consisting of experimental modal analysis and structured state-space 

parameterization is introduced.  A modified feedforward configuration is utilized to 

accommodate for the system uncertainties and undesired noise so that both the 

simultaneous left-right eigenvector assignment and partial left-right eigenvector 

assignment algorithms can be implemented.  The experimental results show that both the 

proposed approaches can be implemented and achieve vibration suppression. 

 

 



 

Chapter 5 
 

REDUCTION OF STRUCTURAL ACOUSTIC RADIATION VIA LEFT-RIGHT 
EIGENVECTOR ASSIGNMENT 

 

 

5.1 Introduction 

The objective of the research study in this chapter is to expand the concept of the 

left and right eigenvector assignment developed in Chapter 2 and Chapter 3 and achieve 

structural acoustic radiation control.  Many studies have been conducted in the field of 

active control of sound.  In the traditional active noise control (ANC) methods, 

destructive interference is normally applied by other acoustic sources to reduce the sound 

pressure field (Nelson and Elliott, 1992; Fuller and von Flotow, 1995; Bai and Wu, 

1997).  On the other hand, the active structural acoustic control (ASAC) concept has also 

attracted much attention, where the radiated sound pressure is attenuated by directly 

applying active actions to the structure rather than by exciting the medium with acoustic 

sources (Clark and Fuller, 1992).  With the ASAC technique, sensors and actuators are 

integrated in the structure to form a compact, smart and quiet system, thus the numerous 

acoustic sources and error signal microphone necessary in the classical ANC system are 

not required (Maillard and Fuller, 1999). 
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A state-space, model-based ASAC method has been investigated by Meirovitch 

and Thangjitham (Meirovitch and Thangjitham, 1990; Meirovitch and Thangjitham, 

1990).  Their approach is based on vibration control of harmonic disturbances, with 

observation of resulting far-field radiated pressure during the tuning process of vibration 

cost function.  Alternatively, previous research works investigated the ASAC problem 

using quadratic optimization techniques to determine the required control forces and 

moments on the structure that will minimize the radiated acoustic power (Fuller, 1990; 

Naghshineh and Koopmann, 1994; Lee and Park, 1996; Sung and Jan, 1997).  The 

structurally radiated noise can also be formulated as the standard LQR (linear quadratic 

regulator) and LQG (linear quadratic Gaussian) problems, and the active feedback system 

can suppress the structural radiated sound pressure that is included within the cost 

function expression (Baumann et al., 1991; Baumann et al., 1992; Sung and Chiu, 1997; 

Dehandschutter et al., 1999). 

To advance the state of the art in ASAC, the research in this chapter is to explore 

the feasibility of utilizing the left and right eigenvector assignment methods for active 

control of structural acoustic radiation.  Since both left and right eigenvectors are 

physically meaningful to the system dynamics, this approach will directly target the 

nature of vibrating structure.  In this chapter, a new assigning strategy of right 

eigenvectors is derived so that the modal velocity distributions are shaped through 

solving a generalized eigenvalue problem, where the modal radiation is minimized.  

Combining the design criteria of left eigenvector assignment, one can achieve disturbance 

rejection and mode shape tailoring concurrently so that the structural sound radiation can 

be reduced. 
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In the next section, the mathematical model of structural sound pressure radiation 

will be first discussed.  The shaping strategy of modal velocity distribution is also 

derived.  Numerical simulations are then performed to evaluate the effectiveness of the 

simultaneous left-right eigenvector assignment and partial left-right eigenvector 

assignment methods for structural acoustic control. 

 

5.2 Modeling of Structural Acoustic Radiation 

 Figure 5-1 shows a schematic of the vibrating clamped-clamped beam structure 

as illustrated in Chapter 2 and Chapter 3.  A microphone receiver is placed to detect the 

noise signal as shown in the figure. 
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Figure 5-1:  System arrangement consisting host clamped-clamped beam, piezoelectric 
patches, and active control voltage inputs.  External disturbance is exerted
on point 7.  A microphone receiver is placed to detect the noise signa

Microphone 
Receiver 

Signal 
Analyzer 

V1(t) V2(t) V3(t) V4(t)
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f(t) 

l. 

 

The discretized equations of motion for the integrated system can be also 

expressed as Equation 2.25 and transformed to state space form as Equation 2.1 or 

Equation 3.1.  The radiated acoustical pressure can be described as a function of the 

structural vibration profile.  For flat sources, the radiated sound pressure at the 

observation position R
K

 in the medium can be described by the Rayleigh integral 

(Blackstock, 2000), which is a general expression as a surface integral of the normal 

surface velocity on the planar structure, i.e. 
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where V r  is the velocity in the direction normal to the vibrating surface of structure at 

the position 

( )n s
K

sr
K , aρ  is the medium density, w is the structural vibration frequency, the 

wave number k=w/Ca and Ca is the sound speed in the medium.  We define 
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and 

 

[ ]1 1 20 |  0,  0,...,  0n nH h h h×=  (5.3)

 

The expression of radiated sound pressure at the observation point in the medium can 

thus be formulated in terms of the state equation solution, i.e. 

 

( )
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( ) ( )
t

t TP Hx t H e Ef dτ τ τΛ −= = Φ Ψ∫  (5.4)
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where L is a diagonal matrix including the eigenvalues of the closed-loop system, F and 

Y are the corresponding  right and left eigenvector matrices, respectively.  It is clear, from 

Equation 5.4, that the radiated sound pressure depends on both the right eigenvectors 

(mode shape concept) and left eigenvectors (disturbance rejection concept).  The goal of 

this research, therefore, is to alter both the left and right eigenvectors by applying active 

feedback action so that the radiated sound pressure can be minimized. 

 

5.3 Left-Right Eigenvector Assignment Algorithm for Reduction of Structural 
Acoustic Radiation 

Both simultaneous left-right eigenvector assignment and partial left-right 

eigenvector assignment methods will be applied for reducing the structural sound 

radiation.  Since the concept of left eigenvector assignment for noise control is also to 

enhance the system capability of disturbance rejection, the design strategy of left 

eigenvectors will be the same as that given in 2.2 and 3.3.1.  Reciprocally, the design 

criterion of right eigenvectors for noise reduction is different from that for vibration 

control and will thus be introduced in the following section. 

5.3.1 Right Eigenvector Assignment: Modal Velocity Tailoring 

The idea of using right eigenvector assignment for structural noise reduction is to 

alter the right eigenvectors such that the profile of modal velocity distribution will cause 

minimum acoustic radiation.  In the sense of far-field sound pressure, the velocity 
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distribution in the normal direction of the vibrating surface should be as asymmetrical as 

possible.  In this study, we define 
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where wj is the jth resonant frequency corresponding to the assigned right eigenvector, 

skrK  is the kth position vector on the vibrating surface.  Define Dj to be the jth modal 

velocity vector, which is the sub-vector of the jth right eigenvector including all the 

modal velocity components in the normal direction: 

 

1 2,  ,...,  ,  1,  2,...,  2
T

j j j jnD d d d j = =  n  (5.6)

 

For noise radiation reduction purpose, we define the modal radiation index of the jth 

mode, ξj to be 

 

2 * 2

2 2 22 *
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where .  Based on the Rayleigh integral in Equation 5.4, it is 

desirable to minimize ξj so that the sound radiation from the vibrating structure can be 

1 2,  ,...,  
T

j j j jnQ q q q=  
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reduced.  Therefore we can formulate this idea by substituting Equation 2.10 (or 

Equation 3.5) into Equation 5.7, 

 

* *
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 (5.8)

  

where jv′  is the sub-matrix of the jth right eigenvector subspace vj2 in Equation 2.10 (or 

Equation 3.5), including the modal velocity components in the normal direction, and ( i ) 

denotes the complex conjugate of (•).  The design criterion for the closed-loop right 

eigenvectors is thus to determine the vector µj so that ξj is minimized.  Let 
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2 *
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The optimal solution µj in Equation 5.8 is equivalent to the eigenvector corresponding to 

the minimal eigenvalue αj,min among all eigenvalues αj in the generalized eigenvalue 

problem: 

 

j j j j jF Jµ α µ=  (5.10)
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The desired right eigenvectors for structural noise control purpose are thus obtained as 

 

 

5.3.2 Simultaneous Left-Right Eigenvector Assignment Algorithm 

As aforementioned that the desired left eigenvectors for disturbance rejection can 

be obtained by Equation 2.12 to Equation 2.15, the optimal desired left eigenvectors are 

thus determined by minimizing the orthogonality indices as 

2 , 1, 2,...,d
j j jv jφ µ= = N

d

 (5.11)
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where γj is the eigenvector corresponding to the minimal eigenvalue of the generalized 

eigenvalue problem in Equation 2.15. 

Therefore the simultaneous left-right eigenvector assignment approach can be 

formulated by substituting Equation 5.11 and Equation 5.12 into Equation 2.20 and 

minimizing the performance index, i.e. 
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where wL and wR are the weighting factors on the left and right eigenvectors respectively,  

d
jφ  is the desired right eigenvector for structural noise reduction derived in Equation 5.11.  

The optimal solution of Equation 5.13 can be determined by letting dJj/dµj=0, that 
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Substitute jµ�  into Equation 2.10 and Equation 2.4, we can obtain the following 
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where fj
a is the jth achievable right eigenvector.  If the matrix [Φa B] is full rank (Clarke 

et al., 2003), then there exists a real feedback gain matrix K that is (Andry et al., 1983; 

Kwon and Youn, 1987) 

 

1( )aK W −= Φ  (5.16)
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5.3.3 Partial Left-Right Eigenvector Assignment Algorithm 

As aforementioned in Chapter 3 that the partial left-right eigenvector assignment 

algorithm can be divided into two steps, the left eigenvector assignment and the right 

eigenvector assignment procedures.  Either the left or the right eigenvectors are first 

assigned exactly, and then the achievable subspaces in the second step will be further 

constrained by imposing the orthogonality condition between the left and right 

eigenvectors.  From the associated achievable subspaces, either in the first step or the 

second step, both the achievable left and right eigenvectors can be determined as 

 

1 2 12 1 22 2 2

1 2 1,2 1 2,2 2 2

, ,..., , ,...

, ,..., , ,...,

a a a a
p p p p

a a a a
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m m m

φ φ φ µ µ µ

ψ ψ ψ γ γ γ+ + + + + +

   Φ = =   
   Ψ = =   

 (5.17)

 

where vj2 is the achievable right subspace, mj2 is the achievable left subspace, µj is 

determined from Equation 5.10, γj is determined from Equation 3.17, and p is the number 

of assigned right eigenvectors.  As explained in 3.2, p cannot be larger than the number 

of system outputs and (N-p) cannot be larger than the number of system inputs.   

From Equation 3.3, one can determine the following matrices after µj and γj are 

solved, i.e. 
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 (5.18)
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If a
pΦ  and a

pΨ  satisfy the constraints (a) and (b) of theorem in 3.2, then the feedback gain 

matrix is thus obtain (Clarke et al., 2003) as 

 

† † †(( ) ) ( ) (( ) ) ( )a T T a a T T a a
p p p p p p pK B Z W C B Z C C= Ψ + Φ − Ψ Φ Φ †

p  (5.19)

 

where ( )  denotes the generalized inverse of (∏). †i

 

5.4 Numerical Simulations on Reduction of Structural Sound Pressure Radiation 

In this section, the clamped-clamped beam structure system shown in Figure 5-1 

is used as an example to illustrate the control results and examine the theoretical 

predictions through numerical simulation.  The coordinates (location) of the microphone 

receiver is X=5.3 m, Y=0.1262 m.  The properties of the medium, air, are that temperature 

is 20°C, density is 1.201 Kg/m3, and sound speed in the air is 343.400 m/s.  All the 

parameters of the beam structure used in this example are the same as listed in Table 2-1.  

The desired closed-loop eigenvalues are the same as the set selected in Chapter 2, which 

are 5.000 times the real part and 1.006 times the imaginary part of the open-loop 

eigenvalues. 
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5.4.1 Case Studies and Analysis: Simultaneous Left-Right Eigenvector Assignment 

From Equation 5.7, the right eigenvector error for structural noise reduction is 

defined as 

 

*

22
1 1

2 2
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a TN N
j j j j

R R aj j j j

D Q Q D

Q D
ε ε

= =
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where Dj
a is the jth achievable modal velocity vector.  On the other hand, the definition 

of left eigenvector error is the same as in Equation 2.29.  Similarly as in 2.3.4, one can 

define the performance prediction index for structural noise reduction as 

 

1
j j

N

R L
j

ξ ε ε
=

=∑  (5.21)

 

Figure 5-2 shows the right and left eigenvector errors versus weighting factor 

ratio wL/wR.  The overall trend of the two curves indicates that the right eigenvector errors 

become larger with increasing the weighting factor ratios, while the left eigenvector 

errors are reduced with increasing the weighting factor ratios. 
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Figure 5-2:  Left and right eigenvector error vs. weighting factor ratio 
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Figure 5-3 shows the performance prediction index versus weighting factor ratio.  

The minimal performance prediction index in this example is obtained at wL/wR=0.310.  

The control performance of this case with wL/wR=0.310 through the simultaneous left-

right eigenvector assignment method is shown as in Figure 5-4. 

 

 

 
10

2
10

3

-100

-80

-60

-40

-20

0

20

Frequency (Hz)

A
m

pl
itu

de
 (d

B
)

Frequency Response of Sound Pressure Radiation

Original System w/o Control                   
Simultaneous Left-Right Eigenvector Assignment

 
Figure 5-4: Frequency response of sound pressure radiation at the microphone receiver

with wL/wR=0.3104.  

 

The sound pressure radiation at the microphone receiver increases through the 

simultaneous left-right eigenvector assignment method in this case.  Although the noise 

reduction performance is not satisfactory with this weighting factor combination that is 

determined from performance prediction index, however, from Figure 5-3, it can be 
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noticed that the overall trend shows that the performance prediction indices are smaller 

within very low weighting factor ratios.  Based on this observation, one can propose the 

hypothesis that the right eigenvectors dominates the contribution of the control 

performance in this case.  Therefore it is intuitive to set a lower weighting factor ratio for 

achieving more obvious suppression.  Figure 5-5 shows the frequency response of sound 

pressure radiation at the microphone receiver with the extreme case, wL/wR=0, that is pure 

right eigenvector assignment. 
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Figure 5-5: Frequency response of sound pressure radiation at the microphone receiver

with wL/wR=0. 

 

The closed-loop eigenvalues in this example are set the same for both the pole 

placement and right eigenvector assignment methods.  With such a selection, one can 
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fairly evaluate the further improvement achieved mainly by eigenvector assignment.  The 

result shows that the structural noise radiation can be reduced significantly throughout the 

broad frequency range by the eigenvector assignment method.  It is also noted that both 

the left and right eigenvectors will be determined based on least square approximation in 

the simultaneous left-right eigenvector assignment method.  However, in this extreme 

case, all the right eigenvectors can be solved exactly without least square approximation 

because the desired right eigenvectors are derived from the right achievable subspaces.  

That is the reason that in this case, the pure right eigenvector assignment method can 

achieve more structural noise reduction. 
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Figure 5-6: Modal radiation index analysis, wL/wR=0.3104 and wL/wR=0. 
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Figure 5-6 shows the modal radiation indices of the selected frequency range with 

cases wL/wR=0.310 (simultaneous left-right eigenvector assignment) and wL/wR=0 (pure 

right eigenvector assignment), respectively.  Since right eigenvectors are dominant for 

noise reduction performance in this case, the modal radiation indices have been 

suppressed more by the pure right eigenvector assignment method than by the 

simultaneous left-right eigenvector assignment approach.    

5.4.2 Case Studies and Analysis: Partial Left-Right Eigenvector Assignment 

In this structural acoustic control example, since the same vibrating structure 

system as in 3.3.2 is used for illustration, the selected two left eigenvectors (a complex 

conjugate pair) are first assigned and then followed by assigning the remaining (N-2) 

right eigenvectors for the structural noise control purpose. 

As depicted in 3.3.2, it is difficult to evaluate the individual contributions of the 

left and right eigenvectors independently on the suppression performance at different 

resonant frequencies.  However, the combination number of the total N assigned left and 

right eigenvectors corresponding to the different eigenvalues is limited.  Therefore it is 

easy to select the optimal solution among all the achievable combinations without heavy 

computational efforts.   

Table 5-1 lists the noise reductions at the microphone receiver focused on the first 

nine resonant frequencies (30-10000 Hz) with all the achievable combinations of the 

assigned left and right eigenvectors.  The left column indicates the first nine resonant 

peaks and the top row indicates the eigenvalues corresponding to the two left 
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eigenvectors (complex conjugate pair) which will be first assigned.  The middle arrays 

indicate the frequency response reductions of sound pressure radiation at each resonant 

frequency with each assigned combination respectively.  The smaller magnitude in the 

middle arrays means more noise suppression.  It is determined that the most reduction 

performance, as shown in the summation row, can be obtained in the shaded case of 

Table 5-1. 

 

Table 5-1: Noise reduction at the microphone receiver at the first 9 resonant frequencies
with different combinations of assigned left/right eigenvectors 

 
              Eigenvalue 

 
Suppression (dB)   

1st Mode 
-44.0126  

≤ 1106.8805i 

7th Mode 
-1118.7186 

≤ 28134.8733i 

8th Mode 
-1619.8632 

≤ 40738.2556i 
1st Resonant Frequency  

(176.1655 Hz) 
-77.5444 

 
-17.9057 

 
-4.1642 

 
2nd Resonant Frequency 

(488.1796 Hz) 
-43.9052 

 
26.3522 

 
36.8562 

 
3rd Resonant Frequency 

(964.7710 Hz) 
-54.3040 

 
0.8190 

 
-12.3430 

 
4th Resonant Frequency 

(1595.6997 Hz) 
-13.5426 

 
3.6849 

 
33.9960 

 
5th Resonant Frequency 

(2406.4086 Hz) 
-26.8545 

 
-17.6537 

 
5.0026 

 
6th Resonant Frequency 

(3388.6949 Hz) 
-12.1291 

 
1.7440 

 
5.9022 

 
7th Resonant Frequency 

(4477.8042 Hz) 
-26.9088 

 
-25.1462 

 
-20.4433 

 
8th Resonant Frequency 

(6483.6948 Hz) 
8.6214 

 
19.4543 

 
-9.0166 

 
9th Resonant Frequency 

(8230.2249 Hz) 
19.8599 34.2888 9.4481 

Summation -226.7073 25.6377 45.2379  
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Figure 5-7: Frequency response of sound pressure radiation at the microphone receiver

(assigned left eigenvectors: 1st mode; assigned right eigenvectors: other 
modes). 

 

Figure 5-7 shows the frequency response of the sound pressure radiation at the 

microphone receiver by the pole placement and partial left-right eigenvector assignment 

methods, respectively.  The closed-loop eigenvalues with the two methods are set to be 

the same so that one can fairly evaluate the further improvement achieved mainly by 

eigenvector assignment.  In the partial left-right eigenvector assignment case, the left 

eigenvectors corresponding to the 1st mode (the eigenvalues are -44.013≤1106.881i) are 

first assigned and then the right eigenvectors at the remaining modes are assigned in the 

second step.  It shows that through the partial left-right eigenvector assignment approach, 
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the structural noise can be further reduced significantly throughout the broad frequency 

range including the first 7 resonant frequencies. 
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Figure 5-8: Orthogonality indices w/ and w/o partial left-right eigenvector assignment 

(assigned left eigenvectors: 1st mode) 

 

Figure 5-8 shows the orthogonality indices of selected modes with and without 

the partial left-right eigenvector assignment method.  With the partial left-right 

eigenvector assignment method, the orthogonality indices can be reduced, that means the 

system capability of disturbance rejection can be enhanced by this method.  It is also 

noted that the orthogonality index at the first mode is significantly suppressed because 

the left eigenvectors at this mode have been assigned exactly. 
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Figure 5-9: Modal radiation indices  w/ and w/o partial left-right eigenvector assignment 

(assigned right eigenvectors: other mode except to 1st mode) 

 

Figure 5-9 shows the modal radiation indices of selected modes with and without 

the partial left-right eigenvector assignment method.  It shows that the modal radiation 

indices can be reduced by the partial left-right eigenvector assignment.  From the analysis 

in Figure 5-8 and Figure 5-9, one can conclude that the proposed approach can achieve 

both disturbance rejection and modal velocity distribution tailoring, therefore, the 

structural sound pressure radiation can be suppressed. 
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5.5 Summary 

Both the simultaneous left-right eigenvector assignment and partial left-right 

eigenvector assignment methods are applied for the active control of structural acoustic 

radiation.  A new design criterion of right eigenvectors for structural noise control is 

derived.  The desired right eigenvectors are determined by minimizing the modal 

radiation indices that quantify the radiation from modal velocity distribution.  The desired 

left eigenvectors are selected to achieve disturbance rejection through the same 

procedures as in Chapter 2 and Chapter 3.  Through numerical simulations on a clamped-

clamped beam structure example, it is shown that the left-right eigenvector assignment 

methods can successfully achieve disturbance rejection and modal velocity tailoring, and 

thus can effectively reduce structural sound radiation. 

 

 

 

 



 

Chapter 6 
 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 Summary of Research Effort and Achievements 

In this research, two left-right eigenvector assignment approaches are explored 

and investigated for active control of structural vibration and acoustic radiation, namely 

the simultaneous left-right eigenvector assignment method and the partial left-right 

eigenvector assignment method. 

As discussed in Chapter 2, the simultaneous left-right eigenvector assignment 

algorithm is developed for structural vibration control, such that disturbance rejection and 

modal confinement can be achieved.  A new formulation to select the desired left 

eigenvectors is developed.  The desired closed-loop left eigenvectors can be determined 

through minimizing the orthogonality indices by solving a generalized eigenvalue 

problem.  The analysis of the modal energy distribution and orthogonality index is 

proposed for providing insight.  The effectiveness of the proposed method is 

demonstrated on a clamped-clamped beam structure example through numerical 

simulations.  Conclusively, this approach can successfully achieve both disturbance 
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rejection and modal confinement concurrently, and thus can successfully achieve 

vibration suppression in the concerned region of the beam structure. 

In Chapter 3, the partial left-right eigenvector assignment method is discussed.  

With this approach, the selected left and right eigenvectors are derived from the 

achievable subspaces and can be exactly assigned without approximation errors.  The 

desired left eigenvectors are determined by minimizing the orthogonality indices.  

Reciprocally, the desired right eigenvectors are determined by minimizing the modal 

energy ratios based on the Rayleigh Principle.  By assigning both the left and right 

eigenvectors with these strategies, this method can also satisfy both the disturbance 

rejection and modal confinement requirements for structural vibration control.  The 

numerical simulation performed on a clamped-clamped beam structure test bed 

demonstrated the effectiveness of the method.  The analysis results of the orthogonality 

indices and modal energy distribution show that this approach can enhance the system 

capability of disturbance rejection and re-distribute the modal energy concurrently, and 

thus the vibration amplitude in the concerned region of the beam structure can be 

significantly suppressed. 

In Chapter 4, experimental efforts for structural vibration control utilizing the 

proposed left-right eigenvector assignment ideas are reported.  The test results show that 

the measured vibration amplitude can be reduced through either the simultaneous left-

right eigenvector assignment method or the partial left-right eigenvector assignment 

method. 

In Chapter 5, the concept of left-right eigenvector assignment is expanded for 

structural acoustic radiation control.  In this case, the desired right eigenvectors are re-
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shaped by minimizing the modal radiation indices through solving a generalized 

eigenvalue problem.  The design strategy of left eigenvectors is the same as for vibration 

control, in which the disturbance rejection ability is enhanced.  Through numerical 

simulations on a clamped-clamped beam structure, the analysis result illustrates the 

effectiveness of proposed methods. 

In general, it is difficult to conclude from the presented examples which of the 

two methods (the simultaneous left-right eigenvector assignment approach and the partial 

left-right eigenvector assignment method) will have better performance.  In other words, 

the control performance with different methods is case-dependent.  In the simultaneous 

left-right eigenvector assignment approach, all the left and right eigenvectors are assigned 

by closest approximation to the designer’s wish.  However, to achieve a satisfactory 

control performance, significant computation effort may be required to decide the 

weighting factors.  Alternatively, only selected eigenvectors can be exactly assigned in 

the partial left-right eigenvector assignment method, however, satisfactory system 

performance can be obtained among a limited number of assignable combinations, in 

which the computation is more efficient as compared to the simultaneous left-right 

eigenvector assignment approach. 

 

6.2 Recommendations for Future Work 

In this thesis, the left-right eigenvector assignment methods are investigated and 

are shown to be promising for structural vibration and acoustic control.  Extending from 
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the current effort, there are several interesting topics that could be further explored in the 

future, as discussed in the following sections. 

6.2.1 Simultaneous Suppression on Structural Vibration and Acoustic Radiation 

The first recommendation for future study is to develop a methodology that will 

take into account both the vibration and noise suppression performance.  It has been 

shown that significant suppressions in vibration levels do not necessarily imply 

significant reductions in radiated sound pressure levels (Baumann et al., 1991; Baumann 

et al., 1992; Dehandschutter et al., 1999).  Therefore the control laws for structural 

vibration and acoustic control are developed separately in this thesis because the design 

strategies of mode shape tailoring are different for vibration suppression and noise 

reduction purposes.   However, many industrial applications need low vibration 

amplitude and noise radiation concurrently.  The suggested research idea is to investigate 

the feasibility of utilizing the optimization technique to develop the design law that will 

simultaneously consider the performance of vibration suppression and noise reduction. 

6.2.2 Response Enhancement of Structural Vibration and Acoustic Radiation 

This recommendation is to investigate the feasibility of utilizing the opposite 

concept of vibration and acoustics suppression for some engineering applications.  Due to 

the physical meanings of the left and right eigenvectors, it is intuitively reasonable to 

explore the possibility of using the eigenvector assignment approach for enhancing the 
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frequency response in specific applications, such as sub-woofer, high-frequency 

loudspeaker or ultrasonic motor.  Similarly to the concept of disturbance rejection, the 

left eigenvector can also be altered so that the control input authority is increased.  

Correspondently, the right eigenvectors can be tailored into strong-efficient modes at 

certain resonant frequencies so that the radiations from the mode shapes will be 

amplified.  By properly assigning left and right eigenvectors, the structural response at 

certain frequency range can be enhanced. 

6.2.3 Optimization of the Number and Location of Sensor/Actuator for Structural 
Vibration and Acoustic Control 

Although effective left-right eigenvector assignment strategies have been 

developed in this thesis, they are synthesized for fixed sensor-actuator configurations.  

On the other hand, the selection of the number and locations of sensors and actuators is 

still a challenge.  These factors will affect the system dynamics and may be critical to the 

control performance.  As in many previous studies done in this field, the selection of 

performance index and objective function for optimizing the transducer distribution is 

still an important topic worth investigating in the future.    
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Appendix A 
 

ANALYTICAL MODEL DERIVATION 

 

 

A.1 Constitutive Equation of Piezoelectric Material 

For one-dimensional structures with uni-axial loading, the constitutive relation of 

piezoelectric materials is (IEEE, 1987) 
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where tj, ¶ j, D j and E j represent the stress, strain, electrical displacement (charge/area) 

and electrical field (voltage/length along the transverse direction) within the j-th 

piezoelectric patch.   
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A.2 Integrated System of Beam Structure with Piezoelectric Actuator 

The mathematical model of integrated system of beam structure with piezoelectric 

actuator referenced in Chapter 2 and Chapter 3 is derived as the following.  The equations 

of motion are derived using extended Hamilton’s principle. 
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The kinetic energy (T), potential energy (V) and virtual work (dW) terms for the beam 

and piezoelectric patches are shown in Equation A.3. 
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where w is the transverse displacement.  The equations for beam bending with 

piezoelectric actuators thus are 
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where e
j

s
jx x−  represents the length of jth piezoelectric patch, H(∏) is the Heavidide’s 

function, and 
2 2

2 2 2
p b

p p

w t tJ t
    = + −   
     

b  .  Equation A.5 shows the terms for the 

element of the beam and piezoelectric patches by finite element method (FEM). 
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(A.5)

 

where Abeamj, APZTj represent the element area for beam and piezoelectric patch 

respectively and lj is the length of the element.  we=[wj, qj, wj+1, q j+1]T is the displacement 

and slope vector of the element.  Ibeam and IPZT are moments of inertia of beam and 

piezoelectric patches, respectively. 
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