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Abstract

In the past five years, the field of numerical relativity haaraded dramatically. With many groups now able
to simulate merging black holes and more breakthroughsmgalmost monthly, there is much competition
to pick of as many astrophysically relevant situations as possibis.sensible, though, to step back from
this competition and to look on the new techniques and resuth more skeptical eyes than before.

In this dissertation we look at two aspects of initial datarrnew perspectives and find the waveforms
generated from merging binary black hole (BBH) systems tadieist to significant errors in the initial
data. In the first study we find that, by adding tuneable aanilgravitational waves into a BBH spacetime,
up to 1% extra Arnowitt-Deser-Misner (ADM) energy can be edldo a standard BBH system before
the waveforms are significantly altered. While this studyp@sed on observations of spurious radiation
found in all standard initial data sets to date, the secondystakes a more general approach. With an eye
towards setting up more complex black hole (BH) systems, meethiat evolutions of skeleton approximate
initial data based on solutions to the ADM Hamiltonian withing sources also yield robust gravitational
waveforms that are accurate enough for use in matched teerg®#arches for gravitational wave signals in
the Laser Interferometer Gravitational-wave Observatbis0) band. We also consider the interpretation
of a possible class of constraint violations as an unphlysiegative energy field that is absorbed by the
BHSs. Both of these studies show that the change in apparezbhd AH) masses during the evolution is a
good way to gauge the robustness of the extracted waveforms.

At the end of this dissertation we discuss ongoing work orivisvg BBH mergers embedded in gaseous
clouds. This is the first study with the new matter c@&t®tch which couples a hydrodynamic matter
field to the fully-nonlinear spacetime evolution code. Evad) a wet BBH system will gauge how robust
gravitational wave templates are given that true astraphlsources are not in vacuum. This is a first step
at considering the larger question of whether the presehga®can overcome the “last parsec” problem,
hastening the mergers and thereby increasing the expe@rgknrates.
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Chapter

Introduction

“The realities of nature surpass our most ambitious dréamRodin (1837-1868)

The goals of Numerical Relativity are two-fold: (1) to siraté gravitational waves as aids in the eventual
detection of real gravitational waves and (2) to expand owatesstanding of general relativity, extensions
thereof, and alternative theories in the most non-linegimme where analytical solutions cannot reach and
approximations are no longer valid. Numerical studies ofaby black hole (BBH) systems using fully
non-linear codes are crucial to both these endeavors asdileg deeper into the non-linear regime than
analytical techniques have thus far been able to achiavelltsineously opening up new regimes of gravity
and testing the limits of applicability for each analytitethnique. The extreme masses of black holes (BHS)
in such a highly dynamic setting are simultaneously thengfest anticipated source of gravitational waves
and a perfect testbed for exploring gravity’s strong regiinehis chapter we will discuss the astrophysical
motivation behind studying BBH evolutions in Sec. 1.1 anafpess in the area thus far in Sec. 1.2. A road
map for this dissertation is laid out in Sec. 1.3 followed hyote on the conventions in Sec. 1.4.

1.1 Astrophysical Motivations for Numerical Binary Black Hole Studies

Astronomical evidence for the existence of BHs, althougtiract, has been found in abundance. Black
holes are roughly divided into three mass categories:astatitermediate, and supermassive. Stellar mass
BHs, with masses of order ten times that of the sun, are thesesrof supermassive stars. Intermediate
BHs, measuring hundreds to thousands of solar masses, bssibly been observed for the first time quite
recently [144] in the center of globular clusters where taegity of stellar material may have allowed stellar
mass BHs to merge and grow significantly. Finally, superivas8Hs, measuring over $Golar masses,
have been shown to exist at the center of many spiral galaxibe form of Active Galactic Nuclei (AGN).

In our own Milky Way Galaxy, observers have tracked the moti6 stars in the immediate vicinity of the
galactic center and shown that there must exist a very m@sairy compact object there [88, 90]. Even



in a playground as vast as the universe, there is always @pitggwo BHs will become gravitationally
entwined and dance until they merge.

1.1.1 Gravitational Wave Sources

The first strong “laboratory” test for the existence of gtational waves was the binary neutron system,
containing the pulsar PSR 19486, discovered by Hulse and Taylor in 1974 [107]. By 1982,ugfmoob-
servations of this system had been made to find that the bd#tay of the binary was consistent with
Einstein’s general relativity and inconsistent with at@ive theories of gravity [172]. This discovery
strengthened the search for gravitational waves alreagyragress through Weber bars [185], limited in
their range, and the first early interferometric gravitaibwave detector by Levine and Stebbins [122]
which put an upper limit on gravitational waves emitted by @rab pulsar. The case for gravitational waves
made by the system with PSR 1941% paved the way for the first generation of large-scale fietemetric
gravitational wave detectors. At this point in history, tharently operational interferometry-based gravi-
tational wave detectors — LIGO, Virgo, GEO600, and TAMA —é&aun their first few science runs. LIGO
is now undergoing improvements to Enhanced LIGO and theraAded LIGO which, with its order of
magnitude increase in sensitivity, is expected to hear thedravitational wave signal when online. There
is a possibility, though, that the first gravitational waaes not detected by interferometers with man-made
light sources, but by pulsars in pulsar timing array (PTA3][where timing residuals observed similarly
illuminate the gravitational waves passing between Earththe pulsars. These strides in gravitational wave
detection makes it likely that the first gravitational waignsls will be detected in the next five to ten years.

The list of possible sources for gravitational waves betndiged is quite lengthy [162, 49]. There are the
inspiral emissions of binary systems, whether the paditip are white dwarfs, neutron stars, or black holes.
There are many types of transient signals: close encouintbighly eccentric binaries, mergers of compact
binary systems, the ringdown of a merged binary as it settt®gn to a stationary BH, the gravitational
collapse of a massive stellar core during a supernova, fpations on rapidly rotating neutron stars, etc.
The list goes on, but these are the strongest sources atéidipThere will likely be sources that we aet
anticipating, possibly generated by physics we do not wstded yet. All these sources are expected to lie
on top of a stochastic background of gravitational waveegsrd by the Big Bang, carrying information
of processes from energies we have not been able to obsdnre be

Unfortunately, the weak interactions of gravitational wawvith matter means they are quitéhdult
to detect. It is for this reason that so many resources hagm tedicated to understanding and predicting
the gravitational wave signals of the strongest and mostylikignal to be detected above noise of Earthly
origin. If the ground-based interferometers, with theintaidth at relatively high frequencies (10— 10°
Hz for Advanced LIGO), do not detect gravitational wavesgréhare plans for the first space-based detector,
the Laser Interferometer Space Antenna (LISA). Sourceiestugre already keeping an eye on the LISA’s
much lower frequency bandwidth Gx 107° — 10~ Hz) and realizing signals are much more likely to be in



abundance in that band. Even without LISA, the PTAs such deRaadio telescope [129] can also reach
a completely dterent frequency range, currently (0~° — 10°6 Hz) [165] which complements both LIGO
and LISA in its frequency range and may even beat LIGO to tlsédirect detection of gravitational waves.

1.1.2 Population Studies of Compact Binaries

Population studies feed both into and from gravitationaleveetection. They predict how often signals
from specific sources might be seen given our current urailgig of cosmological evolutions and as-
tronomical observations. Population syntheses such & thp Belczynsket al. [33, 34] use numerical
methods to evolve a population of stars to simulate the faonaf compact objects and subsequent com-
pact binaries, yielding estimates of galactic merger ralée conclusions based on current models are that,
of the compact binaries, binary neutron star systems aré¢ aomsmon with predicted detection rates of
~ 20yr! for Advanced LIGO. Our BBH systems are expected to be fardessmon with detection rates
of ~ 2yr~1 [34]. On the other hand, BBH signals are much stronger thaarpineutron star systems and,
given numerical relativity’s (NR'’s) ability to simulate ayitational waveforms in vacuum spacetimes, are
much better understood and thus more easily detected. Tdelsmosed to derive these numbers, though,
could well be wrong. How often wdo detect compact binary signals, whether it is more or lesguizat
than predicted, will feed back into population studies ®ldia better understanding of the evolution of the
universe.

Beyond numbers are the characteristics expected of bimampact objects in the real Universe. In 1964,
Peters [148] showed the emission of gravitational radit@mded to circularize binary systems. The speedy
circularization was simulated recently by Hindelral. [L06] for BBH systems. Despite this, the many-
body interactions found inside globular clusters coulddkgerturbing intermediate mass BBH systems into
eccentric orbits [10, 117]. Finally, there are also tlfieets of matter on binary compact object evolutions.
In so-called “wet” mergers where participating compacteakg have accretion disks, the gas in the system
is thought to align the spins [39] and possibly hasten a mdddg. Though this decreases the possible
observed parameter space, there are other mechanisms bl ®His with interesting spin orientations
may merge. Until we observe many of these systems by theilitgti@nal wave emissions, it is important
that the NR community explore fully the parameter space wétyi compact objects, and specifically BBH
systems. With a basic understanding of non-linear genelaivistic mergers, the astrophysical community
has a better chance to understand the signals we detectharsighals we dmot detect, expanding our
understanding of the universe at large.

1.2 Binary Black Hole Simulations: A Brief History

Starting from a field where simulations were highly ideatiznd the holy grail was a BBH which could
be simulated with controllable errors through merger antkfimitely beyond, to a time when all the major



astrophysically relevant vacuum systems have been atiddefly studied, the field has come a long way in
the past few years - relatively fast-paced development iaraa of research almost half a century old [156].

Attempts have been made to solve the Einstein equationsBét 8/stems since Hahn and Lindquist's
1964 study [98] of two “worm holes” in a time-symmetric, axismetric system. The techniques and com-
putational resources of the day allowed limited degreesegfdom and a very short evolution. Hahn’s study
was at the leading edge of an intensive era of BH studies[1®if Jnumerical studies of BBH systems took
a back burner to understanding the fundamental properfi&Hs. It was 10 years into this period that
Smarr [168] and then Eppley [73] extracted the first rougtviggional waves out of a BBH system, the
head-on collision. Still, another 15 years passed befoneemical studies took hold as a separate field, pro-
pelled by the prospects of gravitational wave detectionesldlGO was finally seen as a concrete possibility.
These prospects of detecting gravitational waves spuneddmmunity to turn back to numerical studies in
order to predict the signals that could be detected and wgeavaveform templates for matched filtering,
desired for finding signals buried in noise.

Many developments in both computational power, theorktioderstanding, and formulations since this
revival have contributed to our current ability to evolve BBystems through merger. Chief among these
were the advent of large-scale multi-processor computimgsh refinement [163, 2], thdoving Puncture
Technique(MPT) [27, 55], and the Baumgarte-Shapiro-Shibata-Nakam{BSSN) formalism [166, 30].
The latter two are not to be viewed as requirements for ssfigeBBH evolutions in general, but merely the
set of formalisms and methods which allowed the first braakitph evolutions [155, 26, 56] of inspiralling
BBHs through merger.

The first successful BBH mergers that allowed commonly upgdomaches sparked a mass migration of
numerical codes to the techniques that proved successflulalEnass, non-spinning, quasi-circular BBHs
begun at various separations [26, 56] were just the beginri@rrmanret al.[103] studied the coalescence
of unequal-mass BBHSs, followed by similar studies by Badeal. [23] and Gonzalezt al. [92]. Soon
studies were done that added eccentricity [170, 106]. Spéms added, which expanded the parameter space
further and proved quite interesting. It was found that asyatries in either mass or spin configurations
resulted in final BHs with unexpectedly large linear momemtpopularly dubbed a kick [92, 104, 105, 131].
This spurred vigorous conversations concerning the eeolutf large-scale structure in the universe and
population estimates of BHs.

The initial race to cover final BH kicks and other parametesicgphas started to ebb as the merger
waveforms were found to be not as obviously interesting ashvaged, being replaced with a new collabo-
rative atmosphere. The Samurai project [101] brings nurakgroups together to compare the consistency
of waveforms between fierent groups and convey the comparison in a way that is neléwvagravita-
tional wave observations. Other collaboratiods are underway such as NINJA [21] that tie into the
data analysis féorts to test the sensitivity of the data analysis techniqueed for the first generation of
interferometry-based gravitational wave observatories.



In the past few years the field of Numerical Relativity hasrBioered with new results. It is within this
timeframe that the studies in this dissertation took place.

1.3 Robustness of Simulation Results

The studies presented in this dissertation explore thrges wavhich the robustness of numerical BBH evo-
lutions, in the face of both numerically and astrophysicafiotivated perturbations, are considered. These
studies shed some light for the Numerical Relativity comityuan the degree of non-linearity hidden in
results from BBH mergers. Aspects such as the orbital dyosynproperties of the final BH, and the gen-
erated waveforms are compared across these perturbalibesobustness of the final BH’s properties and
the generated waveform are of interest to the NR communigvaiuation of current evolution techniques
as well as the data analysis community in their search fartgitional waves.

We begin with a discussion of the relevant theoretical bemlkgd in Chapter 2 wherein we discuss the
formulation and gauges used in the vacuum portion of thiswafe also briefly summarize thayaKranc
code with its capabilities and shortcomings. Chapter 3inoes the discussion of background theory to
initial data generation methods, discussing again thecppations, assumptions and shortfalls thereof. In
addition, we examine the methods of analyzing the resufting-dimensional spacetime including gravita-
tional waveform extraction and measurements of mass andemiom.

Chapter 4 presents the first study wherein we use model gtewial waves “added” to a standard BBH
system to simulate additional spurious radiation in thegihdata. In this way, we consider how robust BBH
evolutions are to spurious gravitational waves, espgcigith respect to the numerical errors in the initial
data which manifest themselves as spurious gravitati@uhtion.

The second study, presented in Chapter 5, considers emnrthrs initial data from a more relevant source.
Given that constructing completely accurate initial dateamputationally intensive and the construction of
physically accurate initial data for reasonably close BBidtems is still a topic of study, we consider a
skeleton approximate initial data which models the BHs datpmasses. Evolving this, we discuss the
behavior of the constraint violations and it$exts on the resulting merger dynamics and waveforms.

Beginning in Chapter 6 we shift towards spacetimes where ttemfgeld is coupled to the spacetime
evolution. This requires a discussion on matter field foatiahs and coupling its evolutions to spacetime
evolutions ofMayaKranc in Chapter 6. In Chapter 7 we present preliminary resultsas hobust a BBH
system is when embedded in a gaseous cloud. Finally, we stirentlae results of all studies and reflect on
remaining open questions in Chapter 8.



1.4 Conventions

In this dissertation we follow the conventions of Wald [1&4id Misneret al. [137] where the metric has
the signature +,+,+. Unless otherwise noted, we use geometrized ugts: ¢ = 1. All simulations are
done such that the results are scalable by the total irrbumass of the system, i.®; = 1.

The indices of tensor quantities are chosen to be eitherkGnekatin. Greek indices span four dimen-
sions,u € 0, 1, 2, 3, while Latin indices are reserved for the spatial dimemsjbe 1, 2, 3. Unless otherwise
notified, the order of the spatial coordinates will bey( 2) in Cartesian coordinates and{, ¢) in spheri-
cal polar coordinates. Symmetrization is designated\iy := %(Aab + Apa) While anti-symmetrization is
designated byay = 3(Aab — Aba).

We choose to define our Riemann and Ricci tensors to folloveites of Misner et. al [137]

Ry = 0I5 —0slg, + 205, TG (1.1a)
Ry = Riop (1.1b)

and we choose to follow York’s [192] sign convention in defimithe extrinsic curvature,

1

Kep = >

LnYap- (1.2)

This is consistent with Misnegt al.. [137] but not with Wald [184]. In separating the 4-dimemsbfrom
the spatial Riemann tensor, we denote all spatial Riemarsotejuantities using.

The BSSN formulation and the standard initial data requzerdormal decomposition of the metric and
related quantities. Conformal quantities are designated tide over the physical quantityA. Likewise
complex conjugates are designated by a bar over the vari@bléetrads are designated in bold typg,in
Sec. 3.4. In other sections, tHevector of an array of vectors is designated by, for instagce,



Chapter

Spacetime Formulations and MayaKranc

“You have to learn the rules of the game, and then you haveatplptter than anyone else.” —
Albert Einstein

At the base of all general relativity lies one set of equatjdhe Einstein equations. It can be written to
look deceptively simple in geometrized units written as

Ga'g = 87TT(,'3. (21)

The Einstein tensoG, := Rz~ %gQﬁR, is constructed from the metric and its derivatives. On tiheoside,

the stress-energy-momentum tenshyg, contains information about matter in the spacetime. Nisakr
Relativity endeavors to solve these equations in theirrfait-linearity in regions of extreme gravity. Over
the past 50 years that numerical relativity has been deiapthere have been many approaches to solving
these equations. In this chapter we discuss the basic tiwdriegamework of modern numerical relativity
to the extent necessary for understanding the context nathods of the studies presented in Ch. 4 and
Ch. 5.

2.1 Decomposing the Einstein Equations: ‘81’ Decomposition

At the very heart of modern numerical relativity is the degmsition of the very thing Einstein united in
his theory of general relativity: spacetime. In the genémory, we describe spacetime by a skt, Qap)
wheregap is the four-dimensional metric defined everywhere on a nadohiM. Given no other framework,
we find ourselves with 10 tightly coupled, second-orderighdifterential equations (PDES) to be solved
everywhere on the manifold1 at once. The various decompositions treat one of the diroessliterently
from the remaining three. We can then rewrite the Einsteuratigns as an initial value problem.

The decomposition of spacetime is best expresseda@mton of the manifoldM as we are not bound



to choose our decomposition in any particular way. The stehdpproach is to foliate the spacetime into
a set of hypersurface&;, parametrized by some time-like parameter,What properties these hypersur-
faces have depends on the formalism chosen. Some studiesasen the hypersurfaces to lie along null
cones emanating from a central world tube, dubbed “chaiiatitd formalisms [187]. Others have cho-
sen hyperbolic hypersurfaces such that the outer boursdiiei@t future null infinity, dubbed “conformal”
formalisms [85, 84]. For the purposes of this dissertatianwil concentrate our discussion on the third
formalism, most often used in contemporary studies forsmalidubbed ‘31’ or “Cauchy” decomposition.

In the ‘3+1’' decomposition, we foliate spacetime by Cauchy hypess@$. These Cauchy hypersur-
faces are fully spacelike surfaces so any timelike world tivould intercept each surface at moaste We
also require these foliations and the four-dimensionalrimen these foliations to be smooth. In this way
we conserve causality between our hypersurfaces evenhhomugspacetime might evolve more slowly in
one area of spacetime than in another.

2.1.1 ADM Formalism

Applying the above foliation of spacetime to the Einsteimatgpns, we can restate them as a set of 4
constraint equations and 10 evolution equations for thlenfigitric’s 10 independent components. These
equations, presented by Arnowitt, Deser, and Misner in 1262 and popularized in form by York [192]
in 1979, make up the ADM formalism. Their intuitive derivati represent the canonicak®’ formulation
where we foliate the four-dimensional spacetime into Cgmtpersurface; parametrized by, our chosen
time coordinate.

With this foliation we can decomposg, at any point in terms of the three-dimensional “spatial” neet
Y INtrinsic toX; and a four-vector* normalized to-1 and oriented normal tB;:

Ouv = Yy — Ny (2.2)
The actual time direction is related to the hypersurfacenabr* by
tH = ant +p* (2.3)

where we have introduced thepse functiony and theshift vectors”. Together the lapse and shift encode
the gauge, or coordinate freedom, of general relativitye Tapse is a measure of hdvehanges between
hypersurfaces while a non-zero shift allows for a shiftingspatial coordinates between hypersurfaces.
Given a choice in lapse and shift together with a spatial imeive can reconstruct the four-metric line
element as

ds = —adt® + i (dX + B dt)(dx + gdy). (2.4)
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Figure 2.1. Schematic of the ADM foliation with the break up of the metrito spatial and temporal variables.

In matrix form the metric and its dual are

—a® + BB P 1 (-1 g
- 9= S o s | 25
v ( Bi Yij =2 B a2yl - gigi (2.5)

A schematic of the ADM formalism is shown in Fig. 2.1.

Being spatial, quantities intrinsic & have a reduced number of degrees of freedom. We note that any
spatial vector¥ can be uniquely denoted by its spatial componefitsThe spatial index can be lowered
using the spatial metric and the zeroth vector componerarigetl from the spatial components by lowering
the indices with the full metricA* = (0, A), A, = (-BiA, A)). It is still advantageous to define a spatial
projection operator:

1h=9k =d, + r'n,. (2.6)

The spatial metricy;j is our primary variable to be evolved in the initial value lplem. However,
knowing the spatial metric on the hypersurface, the lapsetion, and the shift vector is not enough. We
also need thextrinsic curvaturgK,,, which is the embedding of the particular hypersurface enganeral
spacetime. The extrinsic curvature is defined through a erevdtive along the vector perpendicularlp

1
K#V =—-=

zﬁ*n)’uv (2-7)

wherel,, is the Lie derivative along the vectof.

To complete this formalism, Einstein’s equations must alsseparated into spatial and temporal com-
ponents. We proceed by projecting the equations spatialtiytemporally. This gives us four equations
that relate only quantities intrinsic to one hypersurfand must vanish at all points for the hypersurface to
satisfy the Einstein equations. Therefore these are @nsgquations for the hypersurfaces. By projecting
both indices ont@?, the Einstein equations yield the scalar (or HamiltoniamstraintCy

Ch = Mn"(G,, — 81T,,) = R+ K2 — KK - 167p. (2.8)
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whereR is thespatial scalar curvature andis the projection of the stress-energy-momentum tensdren t
same mannep = n“n"T,,. The vector (or Momentum) constraiM; is derived by projecting one index of
the Einstein equations onto the hypersurface and the ottfiertbe normah:

M; =¥ 1 (G, — 87T,,) = V;K! - ViK + 87S;. (2.9)

Here we denotd; as the spatial covariant derivative connected with theigpaietric and the quantit;
is similarly derived from the stress-energy-momentum ¢ens§; = -+ L7 T,,. We will look at these
constraint equations in more detail in Ch. 5.

The quantityp can be interpreted as the total energy density in the loctiemields of the spacetime
as seen by an observet. Similarly the quantityS' can be interpreted as the total energy current of the
spacetime as seen by the same observer. In this vein we camgese the stress-energy-momentum tensor
into spatial and temporal components as

TH = prn” + 2SEn") 4 S# (2.10)

where we have introduced the spatial structural te&gor
To find the evolution equation for the spatial metric, we needompute the Lie derivative of; along
tH.

Lyij = Lanspyij = alnyij + Lgvij = —2aKij + Lgyij (2.11)

The extrinsic curvature’s evolution equation can be derivem the Einstein equations and the Ricci relation
as

. 1
oKij = -ViVia+a(Rij - 2KikK|? + KKijj) = 8na(Sij - E’yij(s -p0))
+ﬂk6kKij + Kikﬁjﬁ" + Kkjﬁiﬁk (2.12)

whereR;; is thespatial Ricci tensor andb is the trace of the structural tenssy.

In summary, the ADM formalism decomposes the full spaceiim@ a spatial metrig;; with 6 inde-
pendent components, an extrinsic curvatkijealso with 6 independent components, a lapse funeticaand
a spatial shift vecto$'. It gives us 16 independent, quasi-linear first-order PDiekconstraint equations.
This is an improvement from the 10 highly-coupled, quasedr, second-order PDEs for the 10 independent
components if you naively expand the Einstein equatiottsrnimetric components and coordinates. This is,
however, not sfiicient to solve the full four-dimensional spacetime. While tanonical ADM formalism
is intuitive and has proved tiead to successful formulations, it itself is not well-posed adgrtial value
problem [156]. In the face of numerical error during a sintiolia, it has been shown that the formulation is
generally unstable and diverges from the constraintfgaiss hypersurfaces.
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2.1.2 Baumgarte-Shapiro-Shibata-Nakamura (BSSN) Formaition

Although the ADM formalism is intuitive, it is not the formatlion that has proved successful in numerical
codes for merging BBHs. The formulation utilized in this was the BSSN formulation [166, 30] (a good
review is found in [31]). This is derived from the ADM formain by a conformal decomposition of the
spatial metric, a traceless (and generally transversegamirmal decomposition of the extrinsic curvature,
an additional variable with related constraint equatiaord the addition of factors of the constraints to the
evolution equations for the purpose of avoiding terms thiabehave.

A York-Lichnerowicz conformal transformation [123, 190pmws one metric onto that of another metric
by the relationg,s = ngaﬁ whereQ can be any smooth function (see Wald [184] Appendix D for segain
discussion of conformal transformations). In the BSSN falation, we simplify equations involving the
spatial metric by performing a conformal decomposition

Yij = v yij (2.13)

and using a simpler spatial metric as our conformal me#sictfius hiding a lot of the complexity within the
single degree of freedom found in the conformal factorThe power of 4 is chosen for convenience.
We similarly decompose the extrinsic curvature. Before weaal, though, we separate out the tr&ce

1
Kij = Aij + é)/ij K. (2.14)

leaving the traceless extrinsic curvatukg. It is this tracelessextrinsic curvature which we conformally
decompose with the same conformal factor as the spatialanetr

Aj = yAy. (2.15)

In the BSSN formulation, we take into account that the canfrfactory must be positive, introducing
the BSSN conformal factop such thaty = e’. For simplicity we choose = (Iny)/12 such that the
determinant of the conformal metric is unity. However, whepresenting BHs in our spacetimes using the
puncture method (see Sec. 3.1.3), the divergencesanfd¢ at the punctures lend to numerical problems
in the evolution. In order to regularize the conformal faictee introduce another conformal factpmvhich
we evolve instead ap. In some parts of the evolution equations, as you will seestilleuse¢. The three
conformal factors are then related such that

Y=yut=e¥ (2.16)
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and the two conformal decompositions are

X i, (2.17a)
XA (2.17b)

Yij
Aij

We also introduce the conformal connection functibheefined as
M= 50, (2.18)

wheref”‘jk are the connections of the conformal metric. If the deteamirof the conformal metric were
unity at all times as it analytically should bE, = —d;%". However, due to numerical error this is not
necessarily the case. We evolVeas a separate variable and replace the derivatives of thécrfeind in

its own evolution equation by itself, which lets us avoiditakderivatives of the metric and results in better
convergence. This requires us to add a new constraint equaterived from the definition df', which
must be monitored during the evolution

Cp =T - 7K . (2.19)

With the conformal decompositions of the spatial metric amttinsic curvature, the extraction of the
extrinsic curvature’s trace, and the introduction of thefoomal connection functionk', the BSSN vari-
ables for evolution are, ¥, K, Ajj, andI™. Due to the divergences ifnfor our puncture treatment of BHSs,
though, we take as our evolution variables theyséi;, K, Ajj, andI™.

Given the BSSN variables and our change in conformal factarevolution equations can be derived
from the ADM evolution equations as [7]

2 . .
du = —Zx(eK+aB") +Bo (2.20a)
- ~ - - 2.
OFij = —2ai +BAFij + 2xi0yB< - §7ij5kﬂk (2.20b)
- N . .1 .
oK = —x(V'Vja+27"0i¢ - Via) + o(ATA;j + §K2 +4n(p +S)) +p'o;K (2.20c)

at/&ij = X(a’@ij + a/@ﬁ - 6i6j0/ +40¢ - ﬁj)a - 871'0/Sij)TF + (IKA”‘ - ZQAikAkj
~ ~ 2~
B A + 2708 — SN (2.20d)

oL

A o1 o 2e Ao .
BT + o8 + §y'la,-akﬁ" ~-TlagB + ér'ajﬁl - §(r' ~ M98
2190 + 22Ty AN + 6A19¢p — gﬁi K - 815'S;) (2.20e)

whereV; and®; j are the covariant derivative and Ricci tensor, respegtiveith respect toyjj. Additionally
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we define the quantity
Rl = —2ViVip — 2§ V¥Vio + AVigp - Vg — 47, V50 - Vo (2.21)

which relates the spatial Ricci tensor to the conformal Rieosor byRi; = Rij + R?. In the derivation
of these evolution equations, we have made modificatioms thee ADM formalism by adding appropriate
factors of the constraints to two evolution equations:

oK — 0K + aCy, (2223.)
o' - oI - 22M (2.22b)

For a more in-depth discussion of the derivation of thesatgus, see [7].
The scalar and vector constraint equations (Eq. 2.8 andca®kimilarly be rewritten in terms of our
BSSN variables so the set of monitored constraints are,ditiad to Eq. 2.19,

L - )
Cu = xP(Rj +Rf) - AjAT + ZK2 - 16np, (2.23a)

M

~ -~ o~y o~ ~q o~ 2
6AL3 ¢ + 7™MOA™ — T4 Agi — T4 Ang) — 39K - 81Si. (2.23b)

Precisely why this formulation has been so successfulllsastbpic of study. Separating out the trace
of the extrinsic curvatur& is useful for choosing and applying a slicing condition #s the lapse, it is
a scalar measure of how quickly the spacetime is changingtl&87] suggests adding constraints to the
evolution equations df andI™ result in a partially constrained evolution system. Thattie presence of the
additional constraint equation terms keeps the system fliverging. The well-posedness and conditions
for hyperbolicity of the BSSN formulation in various gaudess been a popular topic of study [159, 161,
38, 96, 97]. These studies have found that the BSSN fornoulasi hyperbolic in some gauges, lending
credibility to their usefulness from a mathematical stanidp

At the beginning of the simulation we observe a gauge wavphysical wave in the gauges) carrying
constraint violations propagate outwards from the areaedtgst constraint violation (around the BHs) and
the remaining constraint violations eventually damping/ddurther outside the BHs. This is unlike the the
ADM formalism where the constraint violations and initisdugge waves are stationary [6]. Observations
such as this have lead to studies of constraint propagagsterss [189, 167]. Regardless of the theoretical
reasons, the BSSN formulation has proved most success$oliing the Einstein equations.

2.1.3 Slicing Conditions

As discussed for both the ADM and BSSN formulations, we age to choose our gauge conditions, or
slicing conditions These conditions express how coordinates on one hypacgurklate to those on a
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neighboring hypersurface. In terms of the ADM and BSSN fdations, this is the evolution of the lapae
and the shiffg. From our discussion of the BSSN formulation in Sec. 2.12,formulation says nothing
about the lapse or shift evolution. The “trick” to a stableletion is a good choice of gauge and the trick to
a successful gauge depends, largely, upon how the physigailarities (i.e. the BHs) are handled.

An intuitive choice in gauge, callettaximalslicing, avoids the infall of coordinate stationary obsss/
(and thus gridpoints) to areas of strong gravity like BHsimposing that proper time move more slowly in
such regions and that the shift continually counteractrifaliof gridpoints into this slowly evolving region.
This leads first to the lapse condition. In maximal slicingg wantK to vanish and so choose it to do so
initially, but we also want it to vanish on future time-sl&cer his is problematic as the condition @K = 0
at all times is a computationally expensive elliptic eqoratio find the lapse. Instead, we implement a form
of the K-driver condition [7, 40]

A = —a?f(@)(K — Ko) (2.24)

where f(a) is some arbitrary function. The slicing condition is so rahibecause it drivel§ to a constant
value, Ko, in a relatively short amount of time and therefore drivimg tsimulation towards a stationary
solution. Another feature of thK-driver condition is that it causes the lapse to collapseyamish, ex-
ponentially at physical singularities at late times. This/ery desirable for numerical simulations as the
singularity within the BH stops evolving fiectively avoiding the singularity.

It was noted by Bonat al.. [40] that if we choosd () = 2/a andKq = 0, theK-driver condition yields
the condition

(0; — B8 = —2aK. (2.25)

This condition is dubbed the ¥llog” condition as the analytic solution is simple in termstioé spatial
metric's determinant:

@ =1+log 7. (2.26)

This particular condition mimics maximal slicing at theggittarity sincef — oo whena vanishes.
The lapse condition is not the only condition we need to $§pebe gauge. Similar in concept to the
K-driver is thel'-driver which drivesd,I" to zero. This yields a shift condition

O - o) = 10T (2.27)

Before the major breakthroughs of 2005 it had become comiaocepo excise the area within the
apparent horizon (see Sec. 3.3) of the BHs. This method cathewarray of problems such as specifying
accurate inner boundary conditions, finding the apparentzd before setting the final grid structure,
and dificulties moving excised regions through a grid. Though éowiss still in use and has improved,
the method which the Penn Stdt&eorgia Tech Numerical Relativity group uses for BBH sirtiolas is
the puncture method described in Section. 3.1.3. Punctuewmlicate the shift condition as the basis is
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a mapping of another asymptotically flat spacetime to withiem BH’s horizon. The actual point of the
puncture is a mapping of asymptotically flat infinity. Sinoénity does not move, the shift which embodies
how coordinates change should also vanish at that points girred the development of MPT [27, 55],
effectively excising the BH through the gauge conditions [48] éherefore leading to the first successful
BBH simulations involving punctures. Evolving the lapsettas “1+log” slicing of Eq. 2.24, we alter the
['-driver as follows:

éB' (2.28a)
—nB' + 80" - 819 T (2.28b)

(@ - Bro)B
@ -p'9;)B'

where we choose the set of gauge paramegter%, A=1,n=2¢ = 1to avoid superluminal gauge waves.
These are the gauge conditions used in the studies of 4 and 5.

2.2 TheMayaKranc Code

The simulation code used in this dissertation, developsetlifir2005 by the Pennsylvania State University’s
Numerical Relativity group, now based at the Georgia lawitof Technology, is dubbed thayaKranc
code. Based on thtaya code developed at Penn State in the early 2000¥dpeKranc code improved
on the éficiency of thelMaya code and makes use of the latest breakthroughs in formalatid gauge.

TheMayaKranc code is based on the infrastructure@ictus [3, 1], an open source code which pro-
vides an environment for communicating between processohss includes splitting variables between
processors, output utilities, a modular environment inchiproblem-specific code can interathdrng,
and a handful of basic thorns needed for solving initial gghuoblems Cactus is portable enough that we
can compile our code on the various architectures of tifergint computing clusters available to us without
too much extra €ort.

On top of theCactus infrastructure our grid approach to solving the equati@wuires adaptive mesh
refinement for which we us€arpet [163, 2]. The need to extract gravitational waveforms resgiwe
extend the physical outer boundary of our grids well awayifiemy dynamics, to hundreds if not thousands
of M whereM is the total irreducible mass in the system. Simultaneows!\also need very high resolution
to resolve areas of strong gravity: for a non-spinning BHhgghe puncture method 3.1.3 a resolution of
M/25 is a minimum. The need for speed and the limited and expesimputational resources available
requires us to use refinement levetarpet is an open-sourced driver for tltactus infrastructure which
implements adaptive mesh refinement and utilities requoedterface with it somewhat transparently.

TheMayaKranc code itself is an array of thorns built @actus. The basic evolution thorn was gener-
ated usinKranc [108], a package which generates code through Mathematoad script containing the
equations in tensor notatiolkranc was used in generating the evolution thorn and the hearteofthvita-
tional wave extraction thorn, among others. The basic $ppaeesvolution uses the Method of Lines from
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Cactus to evolve the initial data on a Cartesian grid. All the sintiglias for this dissertation were done using
4th order Runga-Kutta as our integrator, though other @ware also available. There are thorns to track
moving BHs and a thorn separate fra@rarpet to move finer refinement levels to follow the moving BHSs.
Besides setting basic analytical solutions as initial d¥terakKranc uses Ansorg'sTwoPunctures [13]
thorn to solve the basic BBH system. We will discuss initiatadin more depth in Sec. 3.1. For analy-
sis,MayaKranc has thorns to extract and analyze gravitational wavefoiges(3.4), calculate the ADM
spacetime quantities at finite radius, and calculate thessfiBHs. We also utilize thorns from the publicly
available AEIThorns repository developed at the Albertdiin Institut (AEI). In particular we utilize Erik
Schnetter’s branch of Thornburg$iFinderDirect [175, 176, 177] to find the AHs in our spacetimes.

For the studies in Chapters 4 and 5 we use the vacuum versitayakranc. More specifically, in the
evolution and constraint equations (Eqg. 2.20, 2.23 and)2vi® let the stress-energy-momentum quantities
(o, Sij,si) vanish. Starting in Ch. 6 we discuss the theoretical bascotch, a new code based on the
public version ofWhisky [22] which is coupled tdMayaKranc such that we can evolve spacetimes fully
coupled with continuum hydrodynamics evolutions.



Chapter

Initial Data and Analysis

“There are two mistakes one can make along the road to trutlot going all the way, and not
starting.” —Buddha

Every initial value problem requires a beginning, but ekaethere and what is the beginning? The
stability of an evolution and the quality of the physics exted from an evolution are directly related to the
guality and type of initial data one evolves. We begin thiaatlkr with a discussion of the various methods
one can generate initial data, with a focus on the standdidlidata evolved by the Numerical Relativity
community in recent years and thus used in the studies teskcim Chapters 4 and 5. Initial data involving
matter fields will be discussed in Ch. 6.

Yet just as there is a beginning, so to everything there mestrbend and particularly an end result.
We need to gain something of use besides a resulting fouerthianal spacetime that can be compared
to intuition, to other evolutions, and particularly to exipeental results. For discussions of gravitational
waves we extract the waveforms using the method discuss8eédn3.4. As with all physics we want to
build intuition and compare our results to this intuitiopesifically a perspective of an object’s mass and
energy. Unlike in Newtonian gravity, this is a topic rife tvitomplications which are discussed in Sections
3.2and 3.3.

3.1 Binary Black Hole Initial Data

As an initial value problem, solving the Einstein equatiaossg a ‘3+1’ decomposition requires initial data
which solves a set of constrainisy, M;} such that they are satisfied everywhere on the initial hyptse.
For the BSSN formulation, these constraint equations (EXR)Zre a coupled set of elliptic equations which
are dfficult to solve, particularly when there is a BH in the spaceti@ook [63], Pfdfer et al. [149], and
Gourgoulhon [94] have written reviews of recent initial @abnstruction techniques.
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There are two schools of initial data generation: confortreaisverse-traceless (CTT) decompositions
and conformal thin-sandwich decompositions (CTS). Thefaromal transverse-traceless decomposition
such as the one detailed below, allows us to freely chooseahirmal spatial metrig;j, the trace of the
extrinsic curvatureK, and the symmetric, transverse-traceless portion of tihéocmal extrinsic curvature
Al For some people this is too much freedom. Needing more goito choose , the second school uses a
conformal thin-sandwich decomposition. This decompasitiouples with a gauge choice (see Sec. 2.1.3),
taking a freely specifiable transverse tensor and confolapak to create the extrinsic curvature while being
able to write down the time derivative of the spatial metsipleitly. This last point creates some guidance
in choosing the freely specifiable quantities.

The ideal initial data for a BBH simulation given infinite cpatational resources would start with the
BHs infinitely far apart with all objects in the spacetimettlgau wish to interact with it eventually also
present. Failing this, what would bmrrectis an initial hypersurface containing the gravitationalveia
information from the entire system dynamibeforethe initial hypersurface plus any deformation of the
BH’s horizons due to other energy and mass in the spacetige émother BH). To date, neither of these
ideal initial hypersurfaces can be generated and there are tyipes of new initial data being suggested
than NR groups willing to forgo template bank and data amslysrk to test the initial data’s possible
improvements on waveforms.

A brief survey of initial data generation shows several sthof thought. There have been attempts of
varying degrees of success in the latter for BBH systemsgustirmight post-Newtonian (PN) techniques.
The initial data of Tichyet al.[180] and later improved by Kellgt al. [115] use PN to generate the initial
{5/”,,&”} required for the CTT initial data. Nissanke [143] presemtsther 2nd-order PN solution for both
CCT and extended CTS (XCTS) initial data.

Beyond straight PN techniques there are attempts to marryvRiNother approximations. Alvi [9]
followed by Yuneset al. [196, 195] combined PN solutions with asymptotic expansitmnstitch together
solutions from PN and perturbative solutions in the innerezof each BH. Then of course there are attempts
to modify the standard method detailed below by changingtimformal metric to something which is still
well-behaved but not flat [99, 128].

Many of these approaches still need improvement. More itapdy, while still computationally ex-
pensive to create and time-consuming to code up, they aer@gnonly applicable, by design, to a limited
type of BBH system such as equal-mass, non-spinning, oi-gireslar BBHs. This would require a large
repository of initial data thorns, fiering for the other spacetime decompositions and coorgiohabices.

In the following sections we take a closer look at the methoasiered standard for BBH initial data in
this age where many groups have started combining the ncah@raveforms with data analysis for the first
LIGO science runs, spending considerable computatiosalurees evolving BBH systems to generate the
first waveform template banks. This initial data requirekimg some basic assumptions to simplify the
constraint equations and choose the initial coordinatesfuddy in order to end up with a stable evolution.
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It is the efects of the errors in this initial data that are the focus efgtudies in the next chapters.

3.1.1 Spacetime Full of Holes

In order to create BBH initial data, it is first enlightenirgdonsider a single BH system. Every introductory
course on general relativity starts its discussion of BHhwie standard Schwarzschild metric for a single
static BH:

1
d< = — <1 _ ZTM> di + (1— ZTM> dr? + r2de? + r2 sir? 6dg?. (3.1)

Our formulation involves a conformal decomposition andpanticular, an assumption of conformal flatness
to simplify the constraint equations. We can change coatdmin the above line element igptropic
coordinates related to Schwarzschild coordinates by (1 + %)2 to yield the isotropic line element

42— (=M ge, (1M 4(dF2+F2d92+Fzsin29dg02) (3.2)
2+ M oF ' '

In isotropic coordinates, then, foliating the spacetimeshyfaces of constant coordinate timhereates
hypersurfaces with a conformally flat intrinsic spatial mety;; = a0) j» Wherey = 1+ % is the conformal
factor.

Unlike Schwarzschild coordinates with its coordinate siagty at the event horizon = 2M, the only
singularity in isotropic coordinates is the location of Bl singularity itself when the conformal factor
diverges there. It is worth noting that the isotropic sgatiatric is invariant under the transformation

2
F o (%) rl (3.3)

where the fixed points of the isometry are the points on thatdverizon in isotropic coordinates,= %
and the singularity point = 0 maps to infinity on another spacetime [46].

With this interpretation in mind, the problem with multipBH spacetimes is that each new BH opens
a doorway to another asymptotically flat spacetime whileutiameously breaking the symmetries which
allows us to write the metric in the above form. RealizingtiBrill-Lindquist [46, 125] constructed a naive
approach to this problem by noting that under the assumptidrconformal flatness and time-symmetry
(Kij = =Kj; = 0) the Hamiltonian constraint is linear. Therefore one dosdtisfy the constraints by
constructing a conformal factor from a superposition ofnBH spacetimes. Given a spacetime with
BHs of massesy, located at coordinates,, a pointx in the conformal space is attributed the Brill-Lindquist

conformal factor N
My
YpL =1+ o (3.4)
n

2z — Ey|

This Brill-Lindquist initial data creates a spacetime wittultiple BHs which are initially stationary,
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but the interpretation is more valid the farther apart thesBire. The resulting manifold for the spacetime
actually as a topology that encompashkks 1 asymptotically flat universes, one additional infinity rpag
inside the horizon of each BH. Our method for solving the ipldtBH problem is a generalization of
Brill-Lindquist data detailed in Sec. 3.1.3.

3.1.2 Bowen-York Approach

The way around waiting for a vast library of analytic initidéta thorns for various physical scenarios is
to employ some knowingly false assumptions to create a mexéfé constraint solver which, though not
exact, can be shown to befBuient for generating the phenomenology of BBH mergers andefeams
to the accuracy where they become useful to the data analgeisnunity in searching for gravitational
waves from observatories such as LIGO. The Bowen-York apgrd42, 41, 191], the basis of our initial
data solver, assumes both conformal flathess and maxincaigsland requires an additional transverse
decomposition of the extrinsic curvature.

For the sake of generating initial data we consider the caimstequations not from the BSSN formula-
tion of Equations 2.23, but using al@irent conformal transformation. We still decompose théigl@etric
by the same conformal factgr; = i j,» but this time we decompose the traceless extrinsic cudity a
different factor ofy, namelyA;; = y~2A;; and the duall = y~1°Al In this way, the full extrinsic curvature
is decomposed as

Kil = 1041 4 %yii K (3.5)

and the constraint equations, assuming vacuum, imply

e 1 -~ 1 1 o o
Py - GUR - K2+ g TRRT = 0, (3.62)

. . 20
vj(w—loA'J)—éij

0 (3.6b)

whereR is the Ricci scalar with respect to the conformal spatialrimét;. We leave the spatial derivative in
the momentum constraint for now as it is convenient later.cafe now apply the assumptions of maximal
slicing (K = 0) and conformal fIatnesQN%(: 0) so three more terms vanish, leaving us with

6i6il//+%l//_7:&ij/&ij = 0, (3.7a)
Vi Al = 0 (3.7b)

The Bowen-York approach to solving the constraints reguane additional decomposition: splitting the
conformal traceless extrinsic curvatufiq into transverse and longitudinal tensors. Denoting théaramal
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longitudinal operator as, this decomposition can be written
Al = A+ (Cw)l. (3.8)

Given our choice of conformal factor, we can show for any syatrin, transverse-traceless tens®t that
VSl = 4107, (y198'). This simplifies the first term of the momentum constraint

w0V (AN + Vi (Lw)) =0 (3.9)
Since by definitiorﬁjﬁ” = 0, the first term vanishes and we are left with a simple vecagl&cian equation
(ALW) =0 (3.10)

where .
AW = V(Lw) = V2w + gﬁi(ﬁj(wi) +RWI. (3.11)

Thus the additional transverse decomposition has suetdlysshcoupledthe constraint equations and leav-
ing us with an equation where we can solveYéyand thus&ij, separately.
For a single BH of arbitrary linear momentugi and spinS',

Aij = % [Pinj +Pni - (5”‘ — ninj)Pknk] + I‘% [Gk”Slnknj + ekj|S|nkni] (3.12)
wherer is the coordinate radius to the BH &t, n' is the unit outward normal away from this BH' (:=

(X — Z/r), andeq is the Levi-Civita tensor. We can verify the interpretatioh?' andS' as the linear
momentum and spin by computing the ADM momentum and spinsgsigied in Sec. 3.2 below. Since the
momentum constraint in the Bowen-York approach is lineanudtiple-BH system’s momentum constraint
would be satisfied by a superposition/&f for each BH centeE, just like the Brill-Lindquist conformal

factor.

3.1.3 Punctures

While the Bowen-York approach uncouples the scalar andveonstraint equations and gives us an ana-
lytical solution to the momentum constraint, we still havesblve the scalar constraint equation

ViViy + %l//—?ﬁq,ﬂ” =0. (3.13)
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Given a physical situation we can already calculéa;eso we need only solve for the conformal factar
For this we generalize the Brill-Lindquist conformal factf Eq. 3.4 to

N

t//=a1/o+u:zn:%+u (3.14)
whereu is some smooth function which incorporates the interactietween theN BHs. If the BHs are
sufficiently far apartu = 1+ O(r~1). As in the original Brill-Lindquist conformal factor, thgarameteM,,
is the Mapm (see Sec. 3.2) of the" BH should it be isolated from the others, but in general thigist a
parameter we call thibare mass.

The ansatz thaj takes this form allows us to rewrite the constraint equa#igain as an equation for
Sincey, satisfies the homogeneous Laplace equation, this beconeesadsorder dferential equation for
u

ViViu+ %(% +u)7A;AT = 0. (3.15)

For a general set of parametévs, Pi(n), S‘(n), andEi(n) we still have a messy elliptic equation to solve for
u. For a BBH system, we proceed farther by calling uf@oPunctures, a code by Ansorg which solves
the Hamiltonian constraint numerically on a single-domasing pseudo-spectral methods [13]. The key
to this method is a chain of four coordinate transformatitmeeach a compactified bi-spherical coordinate
system with the two punctures at the focal points, regulfogt puncture locations, and spanning alRgf

For the spectral solver’s internal grid we choose coordisndgd, B, ¢) whereA; and B; are the zeros of
the Chebyshev polynomialg,, (1 - 2x) andT,,(—X) respectively ang are the zeros of the sinusoidal basis
sin(n,¢). We are free to choose the spectral resoluti@mys Ng, n¢) of the solver, knowing that the expo-
nential convergence of spectral methods allows a relgtivearse spectral resolution such as,@)16).
The spectral solver’s coordinates are then given by

, (.1
1
- nfz (03]
ok = LY (3.16¢)
Ny

These coordinates are related to the conformal Cartesetrabpoordinatesx, y, z) by the transforma-
tion

A2+1 2B
X = bmm, (317a)

_R2
y = b_AlJr—Bco&p, (3.17b)
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2
1_—2':2% sing. (3.17¢)
Having solved foru in the spectral coordinates using a Newton-Raphson iteratiethod, we transform
back to our conformal Cartesian coordinates and fill in thdmpints by calculating the superposition of
Chebyshev polynomials and sinusoidal functions. In peacii is generally sflicient, and certainly more
efficient, to just Taylor expand between the Cartesian poirdsrtiap to the collocation points used in the
spectral solver.

The coordinate transformation above fiegtive in solving the Hamiltonian constraint for BBH system
of arbitrary momenta and spins, and medium mass ratiosfdrgi= M1/M, ~ 0.3). In the studies which
follow in Chapters 4 and 5 we use modified versions of Ansatgisstraint solver to generate initial data
which differs from this standard initial data.

No initial data is complete without setting the initial gaugWe choosegs' = 0 since the maximal
slicing assumption does not require the coordinates to iftnghfrom the initial hypersurface to the next
hypersurface. This quickly evolves away from zero with odligisg condition detailed in Sec. 2.1.3. As
discussed in that section, we also ud€-driver which eventually collapses the lapse to zero at tHe Ehis
collapse takes a significant time, though, so we hasten tieegs by creating a pre-collapsed lapse derived
from our solution for the conformal factag, = 2.

3.1.4 Solving the Constraints: A Few Comments

It should be noted here that though we can introduce a lineanentum#' or spinS' to any BH in our
initial data, this is an approximation. Due to the maxim&ish assumption, our BHs are stationary on
the initial hypersurface though they build up linear monuemtquickly over the first fewM of evolution.
Our use of the puncture method in solving the Hamiltonianstraimt also assumes the singularity take the
form of a point, but when spin is added to a BH, the geometryhefactual singularity becomes a ring
instead. Garat and Price [86] showed that, because of tase is no conformally flat coordinate system
for a Kerr spacetime. Despite this, the initial data we carcstfrom the method above allows for a non-
zero spin parameter. This means spinning punctures argugspinning BHs, but the spacetime outside
the BHSs’ horizons evolve to a Kerr spacetime. Since it is {he@cstime outside the horizons that interest
us, the BHs arefeectively spinning. Due to the kludge attempt at adding sgia,initial spin parameter
cannot be set too high. Initial puncture spins of ug te |S|/M? ~ 0.8 have been stably evolved without
significantly increasing the resolution and post-mergérshave been observed and verified up t00.96.
If a puncture spins up too much without high resolution atghecture, the indticient resolution dissipates
the extra angular momentum. Thus, by increasing the résaliriside the puncture, higher initial spins can
be made stable but at a high cost in computational resourckdizciency [65].

Another topic which merits discussion is the topology of spacetime. In creating our puncture initial
data, we compactify the infinities of the punctures to wittia event horizon in ouk® manifold. Theoret-
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ically we also excise the singularities themselves fromsthecetime manifold\ since the metric diverges
there. In practice, though, this is done by either staggetire grid such that the singularity etween
gridpoints, or by modifying the radial coordinate by~ (r* + 54)1/4 wheree is a small parameter of order
107°. Studies by Browret al. [48] have shown that punctures work precisbgcausewe under-resolve
the punctures within the horizons. By plotting the punctiegion’s gridpoints on a Kruskal diagram, he
shows that the resolution of the region within the BH actualbrsens as the evolution progresses with the
standard shift condition. IMayaKranc we also set a minimum value for our conformal fachors: v/,

in calculating the right hand sides of the spacetime vagmbb avoid numerical problems.

Finally we should consider the viewpoint of constraint aogfs. The evolution equation for the confor-
mal connection functionE' is just a rewritten form of the momentum constraint whichdtely enforced
throughout the evolution [87], yieldingartially constrained evolution system. It would be correct to solve
the constraint equations on every timestep of our evolution this is prohibitively expensive in computa-
tional resources. Instead, we solve the constraints fomikial data and calculate the constraint violations
(Cw, M) to monitor how well the Einstein equations are being satisfie so doing, the space ofathemat-
ical solutions to the evolution equations given an initial data are all possible results. The set of solutions
{7ij» Kij} at all time steps on which the constraint equations arefttispan a subset of all the mathemati-
cal solutions to the evolution equations. A fully constearsystem of evolution equations starting from an
initial hypersurface on which all the constraints are elyasatisfied everywhere would ideally stay on this
set of solutions, called eonstraint surface Computers don’t function that way, though. Numerical esro
create small constraint violations, moving the solutidhtloe constraint surface into the space of solutions
beyond. No study to date hasfBciently considered how far the BBH solutions move from thastmint
surface or what ramifications this has on observable science

It is impossible to remain on the constraint surface itdalft in the BSSN formulation the constraint
surface has proved to be fairly stable — small constraintimns do not accelerate the system away from
the constraint surface. In part, this is also due to artifidiasipation added to the spacetime variables
to damp high frequency noise that would otherwise drive tfstesn df the constraint surface. Precisely
how much constraint violation is permissible before theggainvariant quantities extracted for physical
interpretation become significantly corrupt is unknown pad of the motivation for the study in Ch. 5.

3.2 Analysis: Arnowitt-Deser-Misner (ADM) Mass and Momenta

To begin an analysis it is useful to connect the gauge-degrgrgliantities of our spacetime to Newtonian
notions of mass and momentum. The problem herein lies infgndauge-independent ways of calculating
such quantities that can indeed be interpreted as, fomosfahe mass on a given hypersurface. There are
three classes of such quantities: local, quasi-local, agthptotic. We leave the local quantities, derived
from the notion of horizons, to Sec. 3.3 while the quasidouations are considered with the waveform
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extraction in Sec. 3.4.

The asymptotic quantities, defined at spatial infinity, antiams of theglobal energy and momenta
on the hypersurface. Termed the ADM mass and the ADM momémeg, traditionally take on the form
found in Chapter 11 of Wald [184]. The definitions for the massl linear momentum are given in his
equations (11.2.14) - (11.2.15) while the angular momerituleft as an exercise at the end of the chapter.
These definitions rely on the assumption of asymptotic figtnthat the full metric converges to flat space
suficiently quickly, to convert what would intuitively be a vehe integral into a surface integral over a
sphere at spatial infinity.

The integrals were rewritten assuming the BSSN’s confoiieabmposition by Murchadret al.[139]
and Bowen and York [42, 193]. In these quantities the ADM m¥kg\ is given by

1 .
Mapwm = _E VI(//dZSi (3.18)

where dS; is the area element on the sphere at infinity. Similarly theMAear momentun®,,, is
Phom = 1 f Kl d?s; (3.19)
87 J

and the ADM angular momentugfiapwm.i is

TAoM. i = ‘Z—ji'; b W KK RS, (3.20)
wheregjk is the Levi-Civita tensor.

Since the method used MayaKranc has a finite outer boundary, we cannot calculate this exiglici
on our grid. Instead, we extrapolate by calculating the ADbAufities at many large radii. The radial
dependence can then be empirically removed by fitting a pohyal in 1/r to the calculated ADM quantities
provided the radii of the detectors arefistiently far from the dynamical region. This also implies no
gravitational waves should be radiating past any detecswshe calculation must only be done on the

initial data and final (if stationary) hypersurfaces.

3.3 Analysis: Horizons

The ADM mass and momenta described in Sec. 3.2 are very Usefliscussing spacetime as a whole, but
to understand the dynamics in a simulation we need to defingyaoivstating the mass aneof the BHs

in a spacetime or the mass of a BH separated as best we caneaigriamics around it. That is, we need
a local notion of mass, linear momentum, and angular momentdeally this would be done through the
event horizon as it bounds the region where everything isrambto fall into the singularity. The fliculty
here lies in that the event horizon is a three-dimensiongablembedded in the full four-dimensional
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spacetime that can only be found by looking backwards fragrfittal hypersurface. It is possible to evolve
null geodesics or null surfaces near the anticipated everiedn backwardsin time given the full evolved
spacetime so they would converge to the event horizon [68]. 1This, unfortunately, is both expensive
in memory storage and requires the simulation to be fully piete. We need a local notion of a horizon
which can be defined and found on a single hypersurface toaidth deriving physically-based notions
for final analysis and for on-the-fly diagnostic checks thsinaulation is still being physical. In this section
we briefly describe two such notions. The first, apparentzoos, have a fast implementation to derive
local notions of mass. The second, isolated and dynamiedwsi can also supply a notion of mass, but we
instead use the framework for a quick and dirty method toutate the spin of a BH.

3.3.1 Apparent Horizon

AHs are defined asutermostMarginal Outer Trapping Surfaces (MOTS). That is, an AH isnzoeth
(differentiable) closed orientable 2-sphere embedded in a-ttineensional hypersurface whose future-
pointing, outgoing null geodesics have zero expansonFor a Cauchy ‘31’ foliated spacetime, this
definition can be explicitly written as a 2-surface whereftiiwing elliptic equation is satisfied:

@ = Vin' + /K —K =0 (3.21)

wheren' is the (3-dimensional) unit normal to the 2-surface. Witls tthefinition we see that the AH is a
gauge-dependent quantity whose interpretation must bdlédnvith care. In fact, even for a stationary,
single BH a gauge can be chosen where no AH exists. The cohaspionetheless proven quite useful in
studies of BHs with the standard gauges used in numericetiuigy.

The presence of an AH implies there is a BH contained withenhbrizon. There may, however, be
severalsurfaces which satisfy Eq. 3.21 on a hypersurface, eacbwling one or more BHs. To find the
true AH we would need to constantly check focammonAH, initially highly distorted, which indicates
that the BHs inside can already be observed from outside @slistorted BH.

For a single, stationary BH, it can be shown that the everzborand the AH coincide. More gener-
ally, an AH by definition will lie on or completelyvithin the event horizon. This is fortunate as excision
techniques use the AH as a guide to where excision must obtane closely related to these studies, the
accuracy of the initial data within the AH is not importantiis causally disconnected from the rest of the
spacetime where our interests lie.

In our group’s studies the AH is used primarily to provide diow of a BH's mass. Thefiective AH
massM, is derived from the area of the AH by

A

MAH = 471_.

(3.22)
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The location of the AH is also used in the calculation of theper distance between BHs in Ch. 4. In
other studies not included in this work, the shape of the Aditipularly the ratio of the circumferences, are
utilized as a measure of the BH'’s distortion.

There is one more important drawback to AHs. As their definitis completely confined to a single
hypersurface, there is no requirement for them to evolveathiy between hypersurfaces. That is, if we
combine the AHs found around a singularity into a world tubegparent horizons, there is no requirement
for this tube to be smooth and timelike or null. In fact, wh&e tcommon AH is first found, the world
tube will be spacelike and generally discontinuous. In aonutations, we typically follow the individ-
ual BH’s AHs close to the merger, realizing that the common fakins several 10s oM before merger.
AHFinderDirect uses provided parameters for the center of the AHs, but thevamn horizon forms well
before the coordinate locations of the punctures have ezhttte center of the common AH. For this reason
the AH finder has a tendency to crash the simulation, so tkexdieak around merger when no AH mass is
necessarily considered. The capability of dynamicallyttimg down one horizon search after another has
been found has been developed, but this drawback has beandeder increase the speed of the AH finder.

3.3.2 Isolated and Dynamic Horizons

Since the advent of AHs there have been several new frameworisidered for horizon finding which yield
new notions of local mass, momentum, and spin. Hayward [ffo2]nstance, developed the notion of a
“trapping horizon” similar to the world tube of AHs describabove where the expansion is non-zero the
horizon evolves. This led to the isolated horizon framewoykAshtekar, Beetle, and Fairhurst [17] and
later the dynamical horizons framework by Ashtekar and & [18, 19]. Numerical implementations
of isolated and dynamical horizon concepts were discusgddréyeret al.[71] and Schnetteet al. [164]
respectively.

Isolated and dynamical horizons @&xR tubes defined in terms of null tetrads with expansions defined
for the outgoing ¥) and ingoing ¢*) null normals. Isolated horizons are null surfaces with ratter or
radiation crossing them within a specific time frame and #masboth expansion and shear free. Dynamical
horizons, on the other hand, are the generalization oftestlaorizons when matter afod radiation crosses
the horizon [20].

Isolated and dynamic horizons cannot be found on a singlersypgface in isolation. Unlike AHs
they need several timesteps in order to create a null tetrddantime-like component. Requiring several
timesteps, though, is a vast improvement from requiringialesteps as the event horizon does, and its
smoothly evolving geometry avoids the discontinuitiesnidin AHs.

The results presented in this dissertation do not use thetesbor dynamical horizon framework to find
a local notion of mass due to the current implementatioreiitiency. We do, however, use the notion of
a local horizon spin derived in this framework. Given a Kiflivectors' associated with the spacetime, the
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spin of a BH in the direction of' can be defined by

1 .
Sei=— ¢ £nIKjjd?S (3.23)
87'[' AH

wheren' is the outward-pointing unit normal to the AH. Campanelial. [58] introduced the flat space
coordinate rotational Killing vectors

&=0-29) . (3.24a)
& =(20,-%), (3.24b)
& =(-9.%0). (3.24c)

where the coordinate&, ¥, 2) are relative to the coordinate center of the BH. The spia (Sx, Sy, SZ)
obtained with Campanelli’s rotational Killing vectors ags well with the one using the Killing vectgr
when one exists [58]. The spins calculated in this dissertanake use of either the Campanelli Killing
vectors derived on a coordinate sphere of approximatelganee radius as an AH would be expected (thus
not requiring the AH finder to be active at all) or approximé&tiling vectors derived on the AH itself.
Herrmannet al. [105] found these methods to be approximately equal urgicttmmon AH is formed.

3.4 Analysis: Gravitational Waveforms

As no numerical study can claim to represent actual physittewt tying into experiment, we need to extract
information from our evolutions that can be compared to expent (i.e. physics). In the case of BBH
simulations, this requires extracting the gravitationalveforms that could be incident on a gravitational
wave observatory such as LIGO or LISA from such physicalasitns. These waveforms are extracted
through a calculation of a scalar, the 4th Weyl pseudo-sé#ausing a fiducial tetrad whose construction
is detailed in [24]. Together with I. Hinder, | wrote a wavetrextion thorn, WeylScal4, for théactus
infrastructure based on this method to replace a similarghdneficient wave extraction thorn.

3.4.1 Weyl Scalars

The Newman-Penrose formalism [141, 59] is a special tetwaadlism that has proven particularly useful
in studying spacetimes with BHs. In tetrad formalisms, tlestin equations are not considered using
local, convenient, coordinate bases for the given probleistead they take a tetrad, 4 linearly independent
vector fields, as their basis. The quantities of interesttaga written by projections onto this tetrad basis.
In the Newman-Penrose formalism, this tetrad is composddusfnull vectors,z = {I*, n*, m*, m*}. Two
vectors,* andn, are real while the remaining twey andw*, are complex conjugates of each other. They
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are also required to satisfy the following orthogonalityhdition:
Fm, = Mmy, = w'm, = n'my, = 0. (3.25)
Generally there is an additional convenient though unrssocgsiormalization condition imposed:

Fn, = 1, (3.26a)
mh, = -1 (3.26b)

The trace-free component of the Riemann terRgy,;, dubbed the Weyl tensor, has 10 independent
components for the full four-dimensional Riemann tensorthe Newman-Penrose formalism, we project
the Weyl tensor onto a set of four tetrad vectors to encasgett® independent components in 5 complex
scalars called Weyl scalars. Given the Weyl terSgy,s, these are defined as

¥o = Cupl®mP'm’, (3.27a)
P71 = Cuppl™I'm’, (3.27b)
¥y = Cuppsl®mfmm’, (3.27¢)
Y3 = Caﬁy(;l(’nﬁﬁyn‘s, (3.27d)
¥, = Cupn*mPrme, (3.27e)

These quantities are not true scalars as they are not constder a rotation of the tetrad by an angléSee
Appendix A). As will be discussed in Sec. 3.4.2, for graviiaal wave extractiony is the Weyl scalar of
interest. The calculations for the remaining Weyl scalaesiacluded in Appendix A. The version of the
code available to the public only calculatés.

The definition of¥4 can be written in terms of the full Riemann tensor [52, 51, %3], where in the
following the Oth component denotes projection of the gixaminto the normal to the hypersurfacé. In
this way we can write the Weyl scalars as

v, = Rijkmiﬁjnkﬁ' +2R0-k|(n0ﬁj ki —

+Rojor (% nOm! + il wiln! — 2n%imon') (3.28a)
where, for exampleRojq = N 151319 Rygys. Using the ADM ‘3+1’ decomposition, we can rewrite
the projections of the full Riemann in terms of quantitie§irtkrd on a single hypersurface (e.g., the spatial
Riemann and Ricci tensors and the full extrinsic curvatbge)

Rijki Riji + 2KikKipj (3.29a)
Roji = —2|dpKigj +TlKip (3.29b)
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Rojo = Rji — KjpK + KK;. (3.29¢)

We don’t expand this farther into BSSN quantities silleezakKranc keeps a copy of ADM variables in
memory that are updated after every timestep from the BSSidhblas. It is more ficient and convenient
to calculate the Weyl scalars in terms of the ADM quantities.

3.4.2 Tetrad Choice

The scalars as such are merely convenient quantities witbhwdne can rewrite the Einstein equations.
Given just the tetrad requirements of the Newman-Penrasediism, we cannot say anything concretely
concerning the interpretation of the Weyl scalars. By dpew a special tetrad, though, these quantities
can be related to gravitational wave content in the far zdngarticular, Newman [141] showed a special
behavior if you choosé” to be an “outgoing” vector in the null hypersurface of an aptaotically flat
spacetime;* as an “ingoing” vector on that same null hypersurface, antl w*} to be in the angular
directions of a 2-sphere. With such a tetrad, at some distiom the region of strong gravity the amplitude
of ¥4 decreases with coordinate radiusaé ). Similarly, ¥ decreases a3 (r2), ¥, asO (r=3), ¥1 as

O (r™*), and finally'W, decreases a3 (r—°). ¥4 therefore has the radial dependence for radiation, but that
is insuficient in and of itself.

The precise choice for these null vectors depends on whainigenient for the problem at hand, but it
is standard for gravitational wave analysis to defihas an “outgoing” null vecton* as an “ingoing” null
vector. The remaining two tetrad component$, andm*, then span the angular directions. A particularly
good way of seeing the roles of the Weyl scalars with suchrades from the gravito-electric and gravito-
magnetic formulation of the Weyl tensor [168]. By decompgsihe Weyl tensor into electric and magnetic
tensors it becomes easier to separate transverse anduldingit portions of tensors. In a suitably chosen
tetrad wherel is an outgoing null,\¥4, and ¥y are then shown to be transverse. In such a tetiiad,
can be interpreted as the “outgoing transverse” scalareatiil is the “ingoing transverse” scalar. The
“longitudinal” ingoing and outgoing scalars are th&a and ¥3 respectively, andV; is the mas®&nergy
monopole. In such a tetrad whetfg is transverse, outgoing, and has the correct radial depeedave can
relate this quantity to gravitational radiation.

There are many explicit choices for the tetrad which dispiease characteristics, but with the finite grids
of the Cauchy ‘3-1’ decomposition the choice is particularly important. Awvimus choice for perturbative
studies is a tetrad lying along the principal null direcsarf the background spacetime’s Weyl tensor. The
perturbations in general vanish far from the area of inteileaving the tetrad along the true principal null
directions at distances where wave extraction is desirethné¢sley [116] considered this and found a
suitable analytic tetrad in Boyer-Lindquist coordinatégbbed the Kinnersley tetrad [173]. Unfortunately,
not all spacetimes allow an analytical and well-behavedKisley tetrad, though attempts have been made
to find “quasi-Kinnersley” tetrads that approximate the i@rsley tetrad at large enough distances [50]. In
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terms of a quasi-Kinnersley tetrad, the longitudinal Wegllars,¥; and¥3, vanish while theV, approaches
a Kinnersley-tetrad value and the transverse sc8fgrand¥, differ from the values in a Kinnersley tetrad
by only a complex factor.

The tetrad we use in this and other work uses a fiducial tetezhted in a rather intuitive way to
satisfy the criteria of Egs. 3.25 and 3.26. We first assumiethieal3+1' decomposition used allows a tetrad
decomposition of the form

. %(nurﬂ), (3.30a)

W= %(n"—r“), (3.30b)
1

o= (0 + 10" (3.30c)

wherent is the (normalized) normal to the hypersurface. The veatorg, ande form an orthonormal
spatialtriad which we choose based on intuition for a standard Z&phbn Minkowski and orthonormalize
using the Gram-Schmidt method.

Being spatial, we can write the spatial four-vectors of tieedtin terms of three-vectors. Let the spatial
triad components take the forrtt = {0, 4}, 6 = {0,V,}, ¢* = {0,V,}. Our initial guess for the sét, i, v}
is for Vi, to lie in the azimuthal direction and, to lie in the radial direction. We then creatg from
orthonormalization requirements. In Cartesian coordigathis is

Vi = (-v.x0), (3.31a)
Vo = (%V.2), (3.31b)
VI3 = /dety yij Ejk|V§VI2 (3.31c)

We then apply the Gram-Schmidt process beginning w&lithThe order is important sinozi1 is dfected the
least by frame dragging. The resulting triad is

4 \gn’ (3.32a)
6 (\/2—7;/)1;:12) ’ (3.32b)
o (Vo) (3.320)

VW33

wherewjj is created from the various projections; = V{'V'ynm. Fiskeet al. [80] showed this fiducial
tetrad leads to an extracted wave which is convergent in thne standard numerical formulation and im-
plementation, agreeing well with the analytical solutiaisan outwardly propagating (linear) Teukolsky
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wave [174].

3.4.3 Physics from¥,

The Weyl scalalY, is not, in itself, a useful physical quantity to interpret. chn, however, be used to
generate easily interpretable information and is all teatdcessary to calculate quantities vital to analyzing
the evolution for future gravitational wave detection.

Multipolar Analysis It is standard procedure to decompoBg onto spherical harmonics. Sind is
a spin-2 psuedo-scalar, the standard spherical harmorgasoa sifficient, so we decompose it onto spin-
weighted spherical harmonics [142, 178] (see Appendix Bafdiscussion of spin-weighted spherical har-
monics). There are several benefits to such a decomposhist, this is a natural way of separating higher
frequency (large) contributions td¥,4 which contain more of the numerical noise. Second, conisigexur
intuition and prior knowledge of symmetries, mode decontss can aid in evaluating the validity and
physicality of a particular numerical solution. Finalljzaet mode decomposition aids our understanding of
system dynamics. Quasi-normal mode analysis of a dist@té¢d ringdown, for instance, is based on the
decomposition of waveforms into spin-weighted spheri@ahtonic modes. Additionally, the kicks seen in
the final BHs of unequal mass aondspinning BBH systems have been traced to asymmetrictgtenal
radiation in certain modes.

It can be shown tha¥, is a spin -2 scalar (see Appendix B) so in the decompositidy lon 2 modes
will contribute. The decomposition &, is then given by

00 4
Wa=> D AM(LYM0.9)). (3.33)
=2m=—¢(

Inverting the relationship we calculate the modefiontsA“™ by

Al = ]{ ¥, (_27‘””‘(9, go)) o (3.34)

wheredQ is the standard solid angle element on a 2-sphere. For atdetaadiusrg, we interpolate¥,
onto a sphere of radiug from the Cartesian grid in the immediate vicinity and intggras in Eq. 3.34.

Strain Waveform  First and foremost in importance is the computation of theglex waveform strain,

h, which is directly observable by gravitational wave obsg¢ovies such as LIGO. In the transverse-traceless
gauge, the strain can be decomposed ash, — :h, whereh, andh, are the two polarizations of gravita-
tional radiation. The complex strain is directly relateditpby two time derivatives or, from the other point
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of view, two integrations:
t t
h:—/ dt’/ Pud (7). (3.35)

Note that the lower limit of the integral isegativeinfinity, which differs from our starting point. To account
for this oversight, we need to find the constants of integresiuch that the strain starts at zeré at—co and
ends at zero once the system has settled down to a final BHattige we find the constants of integration
by fitting a line to the tail end of the waveform after the thdigdion has propagated away, assuming there
are suficient points to get a good fit. In the remaining discussion ssume the constants of integration
are taken into account as they are needed, for instancemoveethe sinusoidal modulation found in the
radiated energy and angular momentum. In addition, to beptetely accurate, all the quantities here should
be calculated at infinity using ¥, that is extrapolated to infinity from an array of detectorsffam the
dynamical region.

Radiated Energy Between the asymptotic definitions of mass and momenta freon £2 and the local
definitions of mass and momenta from Sec. 3.3 are the enetgymamenta carried to infinity by the gravita-
tional radiation (see Ruiet al.[160] for a good discussion on calculating radiated quiesiit We approach
extracting notions of energy and momentum from the viewjpofra perturbation on an asymptotically flat
hypersurface. As there are only two degrees of freedom witgteonal radiation (the two polarizations), we
consider the gravitational wave as a transverse-trac€léigsperturbation on flat space. That is, we assume
a perturbatiorg,, = 6, + b,, wherel,, is a TT tensor satisfyingo, = b'; = V;b! with V; denoting the
convariant derivative with respect to the background rogfiat space;; .

The Isaacson stress-energy tensor [112] associated vathesperturbation in a locally inertial frame is

1
Tyv = @ lZJ: <a/1blj avblj> (336)

where() denotes an average over several wavelengths. If we havistance, an outgoing wave in tke
direction, b;; takes the form

0 0 O O
0 hy he O
bij = " x (3.37)
0 hy hy O
0 0 O O

with h, andh, being the two gravitational degrees of freedom. Using tbisnfof by; the Isaacson stress-
energy tensor becomes

T = % (0uh.0,hy + 8,hd,hy) = %% (9,h o,h) . (3.38)

In the above we have also rewritten the Isaacson stresgyemeterms of the complex strain defined earlier
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in this section. In our local Cartesian coordinates, thadsan stress-energy compon@gt is the energy

flux in the radial direction:
dE TOI’

dtdA
wheredA = r2dQ is the area element normal to the radial direction hrdd;h. Since we have assumed an
outgoing wave, the functional dependence of the pertwbas such thah = f(r — t)/r. This dependence
lets us rewrite the radial derivative as a time derivati#y ~ —h. Integrating over the entire sphere to get
the total energy being radiated, we find

1 .
= _Eaa(h arh) (3.39)

dE . r2 .o
il rII_F)I;Io ™ j{ !h! da. (3.40)

Since¥, = —h, we can rewrite this energy in terms %f

r—>c>o 1671' % ‘/ \P4dt

We utilize the decomposition onto spin-weighted spherf@monics by calculating the energy instead

dQ (3.41)

from the mode co@cients, using only the lower order multipoles we've caltethand hence avoiding

noise-ridden higher multipoles:
dE 12 P
‘&m

—00

(3.42)

Radiated Angular Momentum The Isaacson method of deriving the radiated energy linedrihe per-
turbation to first order in &r by averaging over several wavelengths, but angular momefitix is of order
1/r3. In 1971, Bryce Dewitt first derived an expression for the fidixangular momentum from a gravita-
tional wave of the form [178]

dJ

ik
GdA = 32 € (XiOby + 28,Dk) ™. (3.43)

We write Dewitt’s expression in more succinct form by utitig the angular Killing fields of the back-
ground (flat) metricg;. In Cartesian coordinates, the components of these veategé‘ = e xJ Again
assumingd;h = —ah, we can then write the angular momentum more elegantly adtiirely as a Lie
derivative of the metric perturbation along the Killing fisl

dJ r2

m = - rlm @ (LEI byv) atbﬂ dQ (344)

Similar in fashion to the radiated energy calculation, wasider this first as Cartesian Killing vectors
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in spherical coordinates,@, ¢) such that the Killing vectors are given as

& = (0,—sing, — cosycotd) , (3.45)
& = (0,cosp,-singcotd) , (3.46)

In order to calculate the Lie derivatives bf, along these Killing vectors we need to first change basis.
We introduce two complex vecto&. := &y + 1€y and an orthonormal spherical baéfs, &, é¢) where we
similarly define two complex vectoms. "= (ég F zé¢) / V2. The Lie derivative of the new basis vectess
alongé. is easily derived as

Le & =7 (1€ csch) &L (3.48)

We can also rewrite the metric perturbatipp in terms of the complex strain and the new basis vectors
b =h(&), (&), +h (&), @), (3.49)

Using both the above we can define angular operators fonspightsas|. := £lo, —1se™ csch and find
that

Lﬁib}ﬂ’ = (é—),u (é—)v Iih + (é+);1 (é+)v Iiﬁ (350)

Noting that whileh has a spin-weight of -2, it's complex conjugate has a spifgyteof +2,
(Lg,byw) 09 = 2R {j.hoh} . (3.51)

A change of base and the definition of the Cartesian set oflanguomentum operatorg for spin-
weightsas

jx = —singdy - cosp (cothd, — iscsch) | (3.52a)
Jy = cospdy - sing (cotdd, —iscsch) (3.52b)
iz = 0, (3.52¢)
yields the angular momentum flux
B j{a () fihde (3.53)
dt = - 167 ! Ji ' '

As with the radiated energy, we can use the relation betweendmplex strain andf, to write this in terms
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of ¥4

dJ . r2 v S t v
E:_J%E% f(/_oo‘l’4dt>><ji /_OO/_OO‘P4dt dt’ | dQ (3.54)

or similarly use the decomposition into spin-weighted sigla¢ harmonics to rewrite this in terms of the
mode coficients

dy . r?
a—‘r'ﬁﬂoﬁﬁ{

3 / C A g / t / " ATy dt f{ YO (LoYem) dQ} (3.55)
Quasi-Normal Modes Analysis The final analysis quantity we utilize in this work are the sjdacal
notions of mass and spin encoded in the ringdown portion@fataveform. After a merging BBH system
has formed a common AH, the BHs can be seen from observeratélgpfinity as a single, highly distorted
BH. This distorted BH can be viewed as undergoing a ringdaladding its distortion through the emission
of gravitational radiation until it settles down into a &aary, possibly rotating BH (we disregard for the
moment possible kicks). At some point in this process, tleesfime can be seen as a perturbation where
the final BH system is the background metric. This is a regirher& analytical approaches again bear fruit.

Just as bells have fundamental frequencies, or normal mateshich they emit sound waves, so to do
BHs have fundamental harmonics at which they emit grawitati waves when perturbed. The gravitational
waveform emitted in the ringdown of a perturbed BH is appmatied by a superposition of quasi-normal
modes (QNMs) [118, 37] with a time dependence&tf wherew is complex frequencw = wemn + 1/Tmn-
These modes are termed “quasi-normal” because the constsndf energy from the system changes the
nature of the modes so there is no truly complete set of mddesreal part of the frequencymn = 27 frmn
yields the real oscillations while;y, is the damping time of theZ(m, n) mode. TheZ andm mode numbers
choose the angular dependence of the mode wiiéers to one (of infinite) overtones for af) (n) mode.
Since the fundamentah = 0, excitation has the longest damping time and will contgbihe most to the
signal detected at spatial infinity, we will ignore overtere this work. In terms of its quasi-normal modes,
the waveform can be decomposed as

h=h, +ih, = ¥ D Complmitromet/tms (3.56)
fmn
whereC,mn are real constants arfé, are spin-weightedgpheroidalharmonics [36] which, for the fun-
damental it = 0) mode of non-spinning BHs reduce to the spin-weighgpkericalharmonics discussed
above and in Appendix B. The puncture spacetimes we evoladarKerr spacetimes initially, but the
gauge conditions used in the MPT underresolve the inneomegmough that the system evolves to a nearly
Kerr spacetime. Thus we find it §icient to use the spin-weighted spherical harmogi¢s” as our basis.
During our standard mode analysis, as discussed above, weetla projection off’, onto the set of
spin-weighted spherical harmonics as a set of time-depgndede coicientsA“™. Since¥,; = —h, we
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can relate our generic mode decomposition to the quasi-alammde decomposition

M 2
AN = (1™ 5 Cr e (W_m— ) g H(wremd/rem)t (3.57)

T¢,—m
Since we are just interested in the time dependence of th@learoodficients A-™, we find it easiest to
consider its amplitude and phase as a function of time

| A o T, (3.58a)
argA™™ o« —wgnt. (3.58b)

Thus, given a mode decomposition \Bj, onto a basis of spin-weighted spherical harmonics, we cah fin
7¢m from the slope Irfﬂ"’m| and w;m from the slope of argad®™. These two quantities specify the full
complex frequency for the’(m) mode.

The complex frequency for a quasi-normal mode depends dnthetmass and spin of the final BH.
In Chapter 4 we use the quasi-normal modes to find the spimdive final mass of the system, which
we acquire using the radiated energy and energy consanvakoom the final mas#1 and the complex
frequency, we can construct the dimensionless quantity and compare this to analytical calculations of
Kerr quasi-normal frequencies. In Appendix D of Begtial. [37] there is a table of such frequencies for a
range of spins. Interpolation across the spins gives us@iamj(Mw) for evaluating the spin of the final
BH.

Other Quantities The radiated linear momentum can be calculated from thessaestress-energy tensor
method in a fashion similar to the radiated energy. Thiséuldor unequal or spinning BBH systems where
the asymmetric gravitational radiation gives a “kick” t@tfinal BH. In this dissertation, though, we do not
consider BBH systems from which kicks are expected and fil&ralo not compute the radiated linear
momentum in our analyses.

3.4.4 Comments o4, Analyses

A recent joint analysis by Lindblomat al. [124] derives the accuracy requirements for parametemesti
tion and general signal detection (the complex strain) gisimmerically-generated, analytical, or hybrid
numerical-analytical waveforms. Lindblom’s study was redeased until after the study of Ch. 4 was pub-
lished. Our analysis of the waveform accuracy for data aisiy Ch. 5 remains rudimentary in light of this,
but it is suficient for the purposes of producing waveforms for LIGO. Thenparisons performed, though,
were for the purpose of evaluating themericalwaveform’s robustness with only a rough calculation in
Ch. 5 of what these results imply for data analysts.

The reader might have noticed the number of assumptionsendrements in the derivation of above.
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Succinctly, these assumptions are:

e We calculate¥, far enough away that we can assume peeling (i.e. a pure apliall-of of 1/r),
an assumption which can be readily tested by extracting aymeii).

e Asymptotic flatness

e The tetrad as derived truly exhibits all the properties itamstructed for (i.e. we neglect numerical
error in its calculation).

e The fiducial tetrad constructed is trulyfigient to allow the interpretations of the Weyl scalars to
hold.

Recently Lehner and Moreschi [121] published a carefulystafdhe delicacy in using the Weyl scalars for
wave extraction due to small violations of the above assiomgt Given the agreement between waveforms
calculated as above acrossfeient implementations, the necessary corrections arkalylio be largefor

the systems currently studiedonetheless, it should be kept in mind and might prove igmiin satisfying
Lindblom et al.s stringent accuracy requirements.



Chapter

The Effects of Spurious Radiation on
Binary Black Hole Mergers

“A single rogue wave has certainly been known to spell desdst the mariner.” — NWS Ocean
Prediction Center

The coalescence of two black holes, long thought of as thedrail of NR, is well on its way to being
a solved problem. Many groups in NR have now demonstratedltitigy to follow two black holes through
several orbits [150] and their final orbits and merger to agleimlack hole [155, 27, 55, 103, 92, 119, 181].
From the first published waveform of equal-mass, non-spopBBH coalescence, the simplicity of the
waveform’s dependence on time has been noted. Comparisoosgat the groups in NR have demon-
strated a remarkable agreement to the solution of the BBHI@no. A common aspect in all numerical
relativity BBH evolutions is the presence of spurious rédiain the initial data. In this chapter, we present
a study on how the standard equal-mass, quasi-circular BB responds to the presence of spurious
radiation that has been added in a controlled manner and maapeisponse as a function of the radiation’s
initial conditions. Our intent is to determine how much jurakliation the system can handle and how the
waveforms and the physical properties of the final black kiekdate from the standard BBH result.

Several papers have compared BBH waveforms. One of the dipgtrp to internally compare waveforms
also demonstrated the first evidence of “universality”[86&n equal-mass, non-spinning initial configura-
tion. In the paper, Bakest aldemonstrated that fierences in initial data characterized by a change in the
initial orbital separation manifested as a time shift indneplitude and phase of the gravitational waveforms.
Once time-shifted, the waveforms were within 1% agreemeat the merger and ringdown jng¥4|. We
investigate theféect that the additional spurious radiation we add to theringdll have on this universality.

The first comparison of NR waveforms between several gro@pkipcludes the most popular meth-
ods used in the community to evolve BBHs. This includes éxcisvith a hyperbolic formulation [155]
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and moving punctures with the Baumgarte-Shapiro-Shibaikamura (BSSN) formulation of the Einstein
equation [27, 55]. The waveforms were in remarkable agre¢miece time-shifted, the largestfi@irences,
occurring at the beginning of the wave, being due to the spsriradiation in the initial data. A second,
independent comparison of waveforms fronffelient methods was conducted by Sperhake [169] in which
he compared a Kerr-Schjleikcision evolution to a puncture evolution within the sarodec An interesting
guestion is to what extent the spurious radiation in theahiata could cause fiierences in the merging
time and thus fiect waveform comparisons based on time-shifts to align thglitude of the waveform.

Most groups remove the initial burst from the waveform dgrjpost-processing of the data [56, 60].
From the evolutions published, it appears that the spuriad@tion that is present in the initial data is
flushed out of the system within a crossing time, leaving thardy dynamics mostly untouched. There is
still some concern about the impact that choices made iimgetp the initial data for the evolutions, choices
such as conformal flatness, have on the waveforms. Studieslibaked at dferent ways of choosing the
freely specifiable part of initial data [99, 128] which reduthe amplitude of the spurious radiation, but
these have not been extensively implemented in the evokitiEading to the currently forming waveform
template banks.

In this chapter, we test the robustness of the binary to fifeets of spurious radiation. To this end we
create a BBH system containing additional radiation withatole initial energy initialized at the binary’s
center of mass. We then evolve a series series of spacetiities wtandard equal-mass, non-spinning,
guasi-circular BBH system plus additional radiation usthg PSU numerical cod@jayaKranc, which
implements the MPT [27, 55]. The initial data used to cortdttiie modified BBH spacetime is presented in
Section 4.2, the results in Section 4.3 and the conclusio8&ction 4.4. Our main result is that the presence
of spurious radiation causes a hastening of the mergerpthusibly accounting for the fierences in merger
times seen in the NR waveform comparisons.

4.1 A Newtonian Perspective

Before describing our numerical experiment, we presentck-o&the-envelope calculation to build our
intuition about this problem. For illustrative purposess mvestigate theftect a central pulse of energy
might have on a binary by studying a two-body orbit in New&ngravity with a stationary mass placed
at the orbit’s center of motion while the bodies are at thpwaenter. The addition of the third mass at the
center of the Newtonian binanftacts the orbit by deepening the potential in which the birsty. We
solve the problem using the standard central force solutdhe two-body problem with the new potential.
We assume = O initially since this is also assumed in our initial data floe standard quasi-circular BBH
systems. Lettingn be the masses of the black holes anglbe the equivalent mass of the third body, we
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write the ratio of the final eccentricitg’, to the original eccentricity as

Ey

52 2
O NN s T LR
e’ ~ (1+2f)2

2 ] (4.1)

wheref = m,/mis the fractional masg, = |/u is the angular momentum per unit reduced mass,chisd
the initial separation of the binary.

This simple calculation indicates that, forfBciently small eccentricities, the eccentricity increases
For the binary parameters studied herein, the eccentiiicitgriably increases foe < 0.88. Although the
black holes in our BBH evolutions are not far enough apartlemea valid determination of eccentricity,
the trajectories are quasi-circular enough for the ec@tytito be low. This illustrates that, by adding extra
gravitational radiation into the center of the studied sgstwe can expect the binary’s orbit to become more
eccentric.

4.2 Injecting Radiation into a BBH Evolution

We inject gravitational radiation into the standard, egualss, non-spinning, quasi-circular BBH evolu-
tion during the setup of the initial data. The initial data foe evolution is constructed via the puncture
method [43] using the single-domain spectral method cogeldped by Ansorgt al.. [13] which assumes
a conformally flat spacetime in solving the constraints. \&feehtwo building blocks for the data: 1) the
quasi-circular BBH and 2) the tunable radiation. The BBHadatset-up using the input conditions for the
Bakeret al.[26] R1 run of two equal-mass irrotational black holes ingjt@rcular orbits. The details of
the R1 initial data are given in the first row of Table 4.1 andavergence study was done in [183].

4.2.1 The Teukolsky-Nakamura Wave

The tunable wave is given by an even parity, quadrupolarigtéonal wave: the linearized solution to a
perturbation on Minkowski spacetime expanded over the moflthe Matthews tensor spherical harmonics
[178] (see Appendix B for discussion and Appendix C for castglderivation). This wave was first derived
by Teukolsky [174] and is typically known as a Teukolsky waVée tensor which embodies the wave is
the general traceless-transverse solution to the line@duiEinstein equations. While Teukolsky [174] derived
and wrote out thé = 2 wave explicitly, Nakamura and Oohara [140] later wrotetbetsolution for general

¢ andmmodes. Instead of using the wave apatial metricperturbation, Nakamura and Oohara manifested
their wave as an extrinsic curvature perturbation. In thislg we implement the Nakamura version of the
Teukolsky wave, herein called Teukolsky-Nakamura waveéd$WE), in order to satisfy the condition of a
conformally flat metric imposed by the puncture method .
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The Teukolsky-Nakamura (TN) extrinsic curvature tenserdarived in Appendix C, is given by

amY-m bemYy™ b,g,ng’m
~?|JTN = Z * gf,ng’m + f[’mwt’,m f[’mxf’m (4.2)
t.m * * (QemYO™ = f,mWEM) sin? 6

where the coficientsa,m, bym, frm, andg,m are functions only of the coordinate radius and timeas

follows
1.\ Ft-r)+F(
an = (L)) FUEDFOD) 20
1 3
bem = mar(r ar,m), (4.3b)
r2
Om = —Ea{’,m, (4.3c)
b = — lgmtor [ ——ar(rPam) (4.3d)
t(m = C-2)+1) 9¢,m + Or (+1 r(r~asm .
and the angular function$™ andw“™ are
XM= 29, (9 — cotd) YO, (4.4a)
1
wem = (92 - cothd ——62> yom, 4.4b
( v “7 sirPe ¢ (4.4b)

Note that the TN solution lets us choose the radial deperdenthe form of ingoing and outgoing
functions which we have chosen to be the same symmetricifunattform, F(u). Our F(u) is given by an
Eppley packet [74]:

F(u) = Aug¥/o” | (4.5)

whereu =t = r. The Eppley packet is a localized, smooth Gaussian packktamiextra factor ofl present

to ensure the wave is regular at the origin. This packet dotes$ the bulk of our parameter space studies,
but we later discuss thdfects of modulating the Eppley packet by a cosine. Thus thedlidisn gives us
the freedom to choose the location, mode content, streagthradial dependence of the injected radiation.
Since the extrinsic curvature is real and the spherical baros are complex, we take only the real part of
the TN tensor resulting in a superpositionmfnd—m modes in our TNW.

4.2.2 BBH+TNW Initial Data

We add the TNW tensor to the extrinsic curvature such thatrotial data{y;j, Kij} is

vij = ¥y, (4.6a)
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Ki = v 2(AY+AMN), (4.6D)

whereJg;; is the flat spatial metric angl is the conformal factor which satisfies the Hamiltonian ¢anst
under York's conformal approach [192]. The extrinsic cmma,&ﬁY is the Bowen and York solution [42]

to the momentum constraint given in Eq. 3.12 aﬁquﬁ‘ is the TN tensor. Notice that because the momentum
constraint is linear in the extrinsic curvature, the supsifon of the extrinsic curvatures also satisfies the
momentum constraint. As a test case we evolved the aboied matta with a vanishing Bowen-York tensor,
i.e. Minkowski background. For theé= 2, m = +2 case, we found that the Arnowitt-Deser-Misner (ADM)
angular momentunyapm calculated on the initial spacetime is zero to within maehenror. The angular
momentum of the BBHTNW is therefore independent of the TNW to our numerical aacy

4.2.3 Configurations

The simplest geometry in which we can add additional spsriadiation to our BBH initial data is a wave
pulse at the BBH'’s center of mass. We typically choosé ar2, m = 2 mode, coinciding with the dominant
mode for gravitational radiation from a BBH system, and vy amplitudeA, and width,o-, of the Eppley
packet. The values af/M are chosen from the s®,3,4,5,6 and those of the amplitud@/M3 from the
set{0,0.1, 0.5, 1.0, 1)5where the dry R1 BBH spacetime is recovered whgnS = 0. Fig. 4.1 shows the
shape of the wave in one of the components of the tracelassvierse extrinsic curvaturéy; = W2A s
along the coordinate axis intersecting the two black hatesjulated by the inverse square of the conformal
factor, forA = 1M3 ando = 3M, 4M, 5M, 6M.
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Figure 4.1. Comparison of the initial,, between the Eppley packet widths, for a wave amplitude ng3 added
to the R1 BBH system. Being tlmnformalextrinsic curvature, this includes a modulation by4 so A« vanishes
at the punctures.

When adding the TNW to the spacetime we wanted to keep thalibiack holes unaltered. We chose to
keep the AH masses constant independent of the additiona @gmtent. In practice the AH masses varied
by as much as 0.04% from the R1 run without extra wave contigtR1) due to insfiicient parameter
accuracy. The momenta remain constant as parameters toitia¢ data solver, and the ADM angular
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momentum diers by at most 0.001% from the dry R1 run. The second columrableT4.1 lists the ADM
energy&Sapm Of the spacetime for each wave choice. We note that the waeesdse the ADM energy from

a negligible 10%% to a significant 8.9%, which scales empiricallyéagu =~ A?/c°. The proper separation
between the black holes changes from the dry cade ©f9.94 to a maximum of. = 10.23. In the most
extreme case, the wave haviAg= 1.5M3 ando = 3M, we have added almost 9% additional energy into
the BBH system andfkectively moved the black holes apart b9M. The impact of these flerences in
initial data on the binary evolution are discussed furtingthie next section.

Pumping energy into the system while holding the coordilsafgaration and angular momentum con-
stant necessarily means that we are changing the bindimgyenéthe system. To study this change we
map the &ective potentials for each BBHTNW case. We do this by repeatedly solving the initial datdawi
incremented separations while holding the individual AHss®s and total ADM angular momentum fixed.
We calculated the quantitlfy, = Eapm — Man.1 — Man 2 for each spacetime. The wave itself adds to the
ADM energy and must be subtracted in this calculation; t&ityvare only interested in the relative shapes,
we can look at the relative binding enerds — Epmin. For the waves with a of 4M the binding energy
per unit reduced mass is plotted in Fig. 4.2 with a vertioa lindicating the initial coordinate separation
of the black holes. We can immediately see that the dry “qoiasular” R1 case has some non-zero eccen-
tricity as the imposed separation does not lie at the mininofithe curve. We also observe a shift of the
minimum inwards as the wave strength increases. Since tirdioate separation in the parameter search is
held fixed for the evolved initial data, the location of thatgym along the binding energy curve with respect
to its minimum is sfficient to see that the eccentricity of the orbit is likely isasing. Unfortunately, the
separation is too small to get a reliable measure of the éacign
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Figure 4.2. We plot the &ect of the TNW on the binding energy per unit reduced mass éniriftial data. The
potentials were calculated by solving the initial data gsimsorg’s code for various separations while keeping the
individual AH masses and total ADM angular momentum fixed.
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4.3 Evolutions of the BBH+TNW

Our simulations of the BBHTNW initial data are summarized in Table 4.1, where the figt corresponds
to the BBH system without added radiation, the dry R1 runsTill be our control case. We systematically
evolved each BBHTNW spacetime, varying ando of the TNW. We divide the results from evolving these
simulations into four subsections: the main result conogrthe merger time i 4.3.1, the dynamical and
radiated quantities from our runs are§mt.3.2, the final spacetime quantities§id.3.3, and a comparison
of the gravitational waves by time-shifting §4.3.4.

4.3.1 Merger Time

The main result of adding gravitational radiation to our BB¥blution is to hasten the merger of the black
holes. With increasingapwm, the binary invariably mergefaster. The sixth column in Table 4.1 lists the
differences in merger times between the dry R1 and the BBYW runs given byAT = (To — Togry)/M.
The time, Ty, is given in units of the total, initial AH masses of the bldukles and evaluated at the peak
amplitude of each waveform extracted at a radius df175The use of the waveform peak variation as a
measure of the change in merger time agrees within a few peicdT to the variation in the time it takes
for the punctures to be separated by one grid spacing.

Figs. 4.3 and 4.4 show the change in merger times from th@eetige of constant wave amplitude and
constant pulse width. We can see that there is a strong depeadn the width of the pulse as well as the
amplitude. Some cases show a positive valueAfby however, these are all equal to zero within the errors.
For all theA = 1M?3 waves that have non-zero merger time we found an approxip@ter law relation
between the width of the pulse and the change in merger time:

AT(A = IM3) o« 7493, (4.7)

A more general look at the change in merger times is foundgn4b. Given our estimated error bars, sig-
nificant changes in merger time occur when the TNW has inecet® initial ADM energy of the spacetime
by about 1% compared to that of the dry R1.

To isolate how much oAT is due to the additional spurious radiation introduced ama much is due
to other factors, we perform a series of tests. We focus omibs&t significant sources of errors, namely the
resolution of our grid, wave extraction radius, the chamggroper distance in setting up the initial data, and
the change in mass of the two black holes. We will look at ed¢hese factors and assess their individual
contribution toAT.

1. ResolutionThe finest resolution for the simulations we present in TdhleésM/38.4. We check the
error due to the resolution by repeating several cases widistiresolutions oM/44.8 andM/51.2. We ran
convergence tests on the strongest wave (1.5M3, o- = 3M) and the weakest wavA = 0.1M3, o = 6M).

A third, medium, wave withA = 0.5M3 ando- = 4M was run at just one more resolutiok,/44.8. For all
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Run Summary
AM® o/M | Eaom  Erad/Enom  Jad/Taom AT/M - MY

0.0 0 || 0.9957 0.0359 0.273 0.0 0.9599 0.682
0.1 3 0.996 0.0363 0.273 -0.6  0.9600 0.683
0.5 3 1.007 0.0451 0.271 -16.4 0.9609 0.682
1.0 3 1.037 0.0708 0.263 -56.1 0.9635 0.686
1.5 3 1.084 0.1058 0.244 -88.4 0.9696 0.693
0.1 4 0.996 0.0360 0.274 +1.5 0.9596 0.682

0.5 4 0.999 0.0385 0.272 -4.7 0.9604 0.682
1.0 4 1.007 0.0463 0.272 -14.3 0.9603 0.683
1.5 4 1.021 0.0589 0.270 -31.8 0.9607 0.683
0.1 5 0.996 0.0360 0.273 +0.2 0.9599 0.682

0.5 5 0.997 0.0369 0.273 -0.1 0.9599 0.682
1.0 5 1.000 0.0399 0.272 -4.6  0.9603 0.683
1.5 5 1.005 0.0448 0.272 -7.8 0.9599 0.686
0.1 6 0.996 0.0359 0.273 +0.2 0.9599 0.682

0.5 6 0.996 0.0364 0.273 +0.7 0.9599 0.682

1.0 6 0.998 0.0377 0.273 -0.3 0.9601 0.682
1.5 6 1.000 0.0399 0.272 -2.2 0.9602 0.682

Table 4.1. The first two columns are the parameters of the TNWs followethie ADM energy of the initial space-
times. Column 4 and 5 give the fraction of the ADM energy andudar momentum radiated over the simulation.
Column 6 is the change in merger time calculated by the ghiéxitracted waveform peak in units of the total AH
mass in the initial spacetime. Column 7 lists the final mass@olumn 8 the final spinjs = af/Mg,Z, of the black
hole.

three cases, the merger tirdecreased The merger time of the compact wave decreased little foted &b
0.1M over the three resolutions while theffise wave decreased more drastically for a total of ab&M O
The medium case had a0/ difference between the two resolutions.

2. Extraction RadiusThe next source of error is wave extraction radius. In NR,ef@nms are usually
calculated in terms of the Newman-Penrose scdfaft, X, y, 2), which are extracted on a sphere at a finite
radius some distance from the source, then expanded intdaangodes via the spin-weighted spherical
harmonics,_,Y>M(9, ¢). With a proper choice of tetrad, this scalar is a measureutdang gravitational
radiation. There has been recent work investigating ffexts the choice of extraction radius can have on the
correctness of the waveform [147, 121]. As the extracti@husincreases, the errors caused by an incorrect
tetrad and finite distance diminish. While it is still an opsgurestion whether or not there are observable
effects from the methods groups currently use to extract thefwawns, the methodology of the extraction
is not thought to contaminate the waveform. An indicatioa #ppropriate tetrad is being approached is
that the waveform amplitude scales gs,lwhich we tested. To get a rough estimate of the errors due to
extracting at a finite radius, we computd using radiation extracted at BDand extracted at M. In
Fig. 4.6 we plot the amplitude of the dominant waveform mcm’éﬂ, extracted at the two radii for both



a7

20
< OFf gaio ML
5
? -20 ™
o La
S .40 /L
2 i —— A=0.1 M3
S 60 5
E .............. A:OS M
-80 oo A=1.0 M°
’ s A=1.5 M3
_100 i 2 .
3 35 4 45 5 55 6
o/M
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Figure 4.4. Changes in merger times compared to the dry R1 run as a furatiwave amplitude with estimated error
bars.

the dry R1 run and one where the merger time changed significarne merger time shift changed by no
more than M between the two extraction radii.

3. Black Hole Mass:Aside from unphysical sources of error, the smaltetiences in the initial data
also change the merger time. Though we kept the initial AHsBasearly identical, there is still a variation
of up to 0.04% compared to the dry R1 run. While conductingrésearch for this study, we found that a
0.14% change in initial AH masses of the punctures resuitedahange in merger time of M. Although
we do not include simulations with such a large deviation esses, we used this knowledge and assumed
the change in merger time was linear in the change in inite$srto estimate an error.

4. Proper Separation:As mentioned in§ 4.2, the presence of the additional gravitational radmtio
also increased the proper separatibnfrom the dry R1 94M by up to 2.9%. We studied thetect of
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Figure 4.6. Sample comparison of waveforms extracted &itedént radii. Plotted are the waveforms for the dry R1
run andA = 1M3, o = 5M run extracted at 30 and 75V.

this change by evolving two BBH spacetimes with the saméalnihasses and angular momentum but
increasing the coordinate to yield proper separations ¢#4Md and 1010M. The merger time changed by
at most 2LM. We assumed a linear relationship betweenAfieandAL in estimating the errors from this

source at each data point.
The error bars presented in our figures are calculated byhgddi the errors in quadrature:

X7+ 34, (4.8a)
AT AT
(EAL)Z + (mAm)z + Zr2es"‘ Etzet’

2
ZAT

=t

whereX,t is the error inAT, Xt is the error inT, andXt, is the error inT for the dry R1 run.Xes = 0.75
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AM®  o/M k-M m| Ead/Spomi  Jrad/Taomi MY AT/M

1 3 0 2 0.0696 0.252 0.970 -65.5
0.25 3 0 2 0.0382 0.272 0970 -5.6
0.15 3 0 0 0.0382 0.271 0.961 -6.9

3x10°3 4 2 2 0.0363 0.272 0962 -45
7x10% 4 3 2 0.0358 0.272 0962 -4.0
Dual 0.5 4 0 2 0.0411 0.271 0.960 -8.9

Table 4.2. Overview of the odd runs. The left four columns are the waveupeters, followed by the fraction of
ADM energy radiated and the fraction of the ADM angular motnemradiated. The final masses are given in the 7th
column followed by the merger time change as derived by tla péthe waveform extracted at Vb

andZt = 0.4 are the largest measurements for the resolution and értmaadius errors. The accumulated
errors do not account for the observad@ when&apwm /Eapm.r1 > 0.01 and we note that the errors grow
as the amplitude increases and the width decreases, mastiyntie errors associated with changes in the
irreducible masses.

The parameter space of adding spurious radiation is lamgelable 4.2, we present the results from
a few evolutions outside of our main parameter survey. Th& jadiation present in the initial data of a
typical BBH simulation may not be well represented byfag m = 2 mode. Similarly the fect of the
junk radiation might be sensitive to the wavelength of this@uln order to test how important a modulation
in the frequency might be to our conclusions, we briefly itigeted an Eppley packet modulated with a
cosine wave, given by

F(u) = Acos kiue /" . (4.9)

This modulation adds an extra parameter controlling theeleagth of the perturbation. We adjusted the
amplitude of the wave to keep the energy approximately coafgha to our standard runs. The resulting
simulation merger time dliered from the unmodulated packet by less thhit T, well within error bars.
While this is still an avenue open to investigation, we cadel that the modulation was ndfecting the
results enough to warrant an additional parameter in owesutWe also conducted a test of the geometry
of the wave by initiating a pulse with ah= 2, m = 0 mode. Again we changed the amplitude so that the
energy in the wave was approximately constant and foundthiea¢ was a change in merger time dfl 1
compared to thé = 2, m = 2 simulation, again within error bars. This points towaras wavelength and
angular dependence of the pulse being secondary to theaddienergy in determining theffect of the
pulse on the merger time.

Finally, to make a stronger connection to the junk radiati@mng associated with each puncture, we
addedtwo identical waves centered at each of the black holes ratlaer & the center. Compared to the
same wave initiated at the center, the dual waves added atmice the energy and almost doubled the
change in merger time, which is consistent with the centenass TNW.
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4.3.2 Dynamical and Radiated Quantities

We now investigate thefkects of the TNWSs on the radiated quantities derived from theeforms. We
calculate these quantities from the Weyl scalarassuming, as in the calculation of the waveform, the
fiducial tetrad of Bakeet al.. [24] (see Sec. 3.4). A summary of the quantities obtainethi#¥, are listed

in Table 4.1. The fraction of the initial ADM energy radiate@s calculated across a detector alv40As
expected, the radiated energy increases with the strefigiie wave. WherA < 0.5M2 ando > 5M, there

is no measurable fierence between the BBHNW and the BBH cases within numerical error. For those
cases, we can only conclude that the energy in the wave patgmgut without a measurable interaction
with the black holes. Similarly a trend emerges as we ineédsr eacho, which corresponds to increasing
Eapm- The radiated angular momentum consistently decreases.

To look at the interaction of the TNW with the black holes apritpagates out, we study the radiated
energy and angular momentum as functions of time. In Figwé plot the energy radiated across a detector
at radiusr = 40M. We see the energy grows from a time oM®o around 80/ as the initial burst of spuri-
ous radiation passes the detector. After this burst of gnirg remaining energy radiated is approximately
0.0355apm r1 @nd is almost uniform across the various cases. From thissweee that most of the energy
introduced in the spacetime is quickly flushed out of theaystieaving a system which radiates a further
amount of energy that is independent of the junk radiation.
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Figure 4.7. Energy radiated across a sphere of radies40M as calculated from the Weyl scaly.

All the evolutions started from spacetimes with eqgaby since the TNW does not add angular mo-
mentum to the BBH spacetime. In column five of Table 4.1 anddn4=8, we see that the amount of angular
momentum radiated across a detector located st kdndependent of the wave with some numerical error.
The diference inJiaq between the runs lies iwhenthe system radiates the angular momentum. This is
better seen in Fig. 4.9 where we present the angular momefhtxnacross the sphere at= 40M and
in Fig. 4.10, a close-up of the initial part of the data. Thargmus radiation is transporting extra angular
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momentum as it is flushed out.
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Figure 4.8. Angular momentum radiated across a sphere of raditiglOM for o- of 3M as calculated from the Weyl
scalary,.

Figs. 4.7 and 4.8 show some of the TNW propagating out at time ¢eme as the spurious radiation is
flushing out. One of the consequences of the wave traveliray &wom the center of the orbit is that it can
interact with the black holes and potentially increase tlassrof each black hole during the early part of the
inspiral. Table 4.3 documents how the AH masses change awxtdu of A ando for the stronger TNW
cases. The black-hole mass is calculated using an AH trgtkéf. TheAM,,, is a measure of the change
in the mass of each black hole up toNBpsuch tha M, = My (t = 50M) — M, (t = 0). The change
in the initial ADM energy compared to the R1 run is given®yl = Eapm — Eapm.r1 att = 0. We use this
estimate of the dierences in the mass of the spacetime between R1 and the testmins to compute a
naive estimate of the total fraction of energy absorbed lili btack holes. Up to 7.89% of the extra ADM
energy is observed to be absorbed by the black holes duranfirth 50M of the simulation, 3.9% by each
black hole. The actual amount absorbed depends stronglpeowidth of the wave: the narrow, strong
pulses are more readily absorbed than the wedkys# pulses that extend beyond the black holes in the
initial data. In the weaker cases the change is barely @sibbve the noise in the AH mass calculation, in
the stronger cases it is unmistakable.

To assess how important the absorption of energy by the biatds during the evolution is to the
changes in merger time and radiated angular momentum, wetebur discussion about the sensitivity of
the merger time to a change in the initial AH masse§ #3.1. Given a change in mass of the individual
black holes of 0.14%, the merger time changed MG In setting up the initial data, we do not allow the
AH masses to change more than 0.04%. The amount of absorpéasured during the evolution is as much
as 3.9%; and, therefore, the increase in mass may be aaeguatisome, although not all, of thdfects
of the TNW. The outliers, the cases of most extreme mergargimmerge so quickly thatfierentiating the
burst of spurious radiation and region of pure inspiral fdlilt. We also tried normalizing the time axis by
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Figure 4.9. Flux of angular momentum across a sphere of radies40M for o of 4M as calculated from the Weyl
scalary,.
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Figure 4.10.Closeup of angular momentum flux across a sphere of radiué0M concentrating on what the spurious
radiation carries.

the total AH masses after the wave has passed rather thaindimathe initial spacetime. This changad
by no more than W so the choice of nhormalization does not account for the ekesediference in merger
times.

4.3.3 Final Spacetime

One of the important products of a BBH coalescence to rédasivand astrophysicists are the final black
hole’s mass and spin. The final black-hole masses and spnprasented in the last two columns of
Table 4.1. To compute the final mas&/lg,ﬂ, we use energy conservation arguments by calculating the
difference between the ADM energy and the radiated energy adatald from the Weyl scala¥,. The

final spin, j; = as /MSJ,L, is calculated by finding the complex ringdown frequencyhia4 = 2, m = 2
mode and using the numerical Kerr frequencies given in TRldéAppendix D in Bertiet al.[37] to find
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Mass Analysis
AIM3 /M AM M AMIM 2AM, /(AM) M) /(@M (t = 50))

0 - 0 0 0 0.950
0.5 3  390x10% 0.0106 734x10°2 0.950
1.0 3  156x 102 0.0412 757 x 1072 0.951
1.5 3  349x 102 0.0886 789x 1072 0.953
1.0 4  284x10% 0.0113 503x 107 0.950
1.5 4  641x10% 0.0251 511x 1072 0.949
1.0 5 589x10° 0.0045 262x 1072 0.950
1.5 5 126x10% 0.0092 274x10°2 0.950
1.0 6 176x10° 0.0020 176x 1072 0.950

Table 4.3.Change in AH mass compared to théeiience in initial ADM energy for the stronger wavesM,, is the
change in a single black hole AH mass over the fird¥15@ M is the additional ADM energy compared to the dry R1
run. Column 5 is the fraction of the extra ADM energy absorbgtoth black holes combined, and the last columnis
the ratio of the final black hole mass to the total AH mass aftervave has been absorbed.

the corresponding spin parameter. This method agreesmsthied errors to inverting the fit of Eq. (E2)
of the same paper. Given the strong dependence of the spheatamping time, we limit ourselves to the
real part of the complex frequency and compare this to a agpapin calculation using the isolated horizon
framework [71] where possible.

From the values of\/(g,lI and j¢ listed in Table 4.1, we can see that the final spins are cansf#mn
numerical accuracy and the final masses do not vary stronigifyAvando. The trend is an increase in the
final mass with increasin§apm becoming noticeably greater than our numerical errorsterfour largest
cases/\/(g,zI > 0.963. From this we can see that the narrower pulses not only have erargy, but they also
interact more #iciently with the black holes. Being more readily absorbedh#ypunctures, they increase
the individual masses and thus the final mass. The last cobfiable 4.3 shows the ratio of the final
mass to the total AH mass once the wave has interacted wiihgp&aling black holes. We see the ratio is
roughly constant, implying that approximately 5% of thaialiAH mass is radiated awal/ we include the
wave energy absorbed by the black holes. The exception istst extreme wave where the black holes
merged before all the spurious radiation has been absonbedhie AH. This would underestimate the AH
growth and thus overestimate the value of the ratio. Theghamfinal mass agrees within numerical error
to the change in total AH mass after the wave has interactddtheé inspiraling black holes except for the
case of the strongest wave. In that case the AHs have notledasatl the energy before the black holes
begin to merge so we are underestimating the growth of thiesk holes.

4.3.4 Alignment of Amplitude and Phase

As stated in the introduction, a common method to compareefeams is via a time-shift of the amplitude
of each waveforms such that their peaks overlap, the refulhih is shown in Fig. 4.11. We can see that
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the waveforms overlap very well after the merger. The onliiceable diference is for the strongest TNW
we evolved on the BBH system, tiie= 1.5M3, o = 3M case, where we find the largesttdirence in the
final black hole compared to the dry R1 run. We can also sedualcontamination of the merger portion
of the waveform by the spurious radiation due to the binaryging so quickly. Similarly, we shift the
waveform phase such that they overlag@ at Tpeakin Fig. 4.12. The agreement in the phase’s slope during
ringdown is further confirmation that the mass and spin offithed black hole are not significantly altered.

The waveform overlap in the merger regime continues to bfdre the merger, as seen in [25], as long
as the spurious radiation does not contaminate this redidineowaveform. This alludes to the relatively
simple form of the merger waveform seen in all the variousagions currently tested. As long as the
spurious radiation is not strong enough to noticeably dherfinal black hole, the merger portion of the
waveform remains essentially unaltered and the containimab the system predominately results in the
change in merger time and thus a time-shift of the waveform.
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Figure 4.11.The top panel overlays the waveform amplituld)éiﬁ’zl for all runs shifted such that the peak amplitudes
before ringdown coincide. This lets us compare the relademping times of the ringdown and thus the properties
of the final black hole. We also note the agreement for abolut 68fore ringdown as well. Though the legend only

labels the distinguishable cases, all the runs are comtainthe figure. In the bottom panel we show the fractional
error for the three most extreme cases.

4.4 Conclusions

In this study, we simulated an equal-mass, non-spinning Bgitem through its last orbits, merger and ring-
down. The system is perturbed by the systematic additiopufigus radiation in the form of a Teukolsky-
Nakamura gravitational wave at the binary’s center of magke initial energy of the wave is tunable,
specified by the amplitude and width of the radiation; in &#ddj the initial angular momentum was fixed
for the entire sequence of runs. The binaries that contare#ttra radiation invariably merge faster than
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Figure 4.12. Comparison of arg{’ﬁ’z) for all runs shifted such that the peak amplitudes befargdown coincide
and shifted vertically. This lets us compare the relatiegfrencies of ringdown. Though the legend only labels the
distinguishable cases, all the runs are contained in thegfigu

those with no additional radiation.

In addition to the main result of decreasing merger time,eschanges to the radiated quantities and the
final black hole were measurably above numerical error. db&urred once the additional energy provided
by the TNW was equal to or greater than 1% of the dry BBH spametiAs the TNW propagated out of the
center, approximately 4% of additional ADM energy was abedrby each black hole. In that strong-wave
case, it was not possible to make an accurate measureméetmgiss of the enlarged black holes before the
plunge of the binary. The final spins of the black holes, haweremained urféected by the gravitational
radiation for all but the strongest casé £ 1.5M3, o = 3M). The constant black-hole spin is consistent
with the wave slightly increasing the eccentricity of thdibfor small eccentricities [106, 170]. We also
observed a decrease in the radiated angular momentum witaising TNW strength.

We conjecture, based on the change in the initial bindingggnef the BBH+TNW systems and New-
tonian back-of-the-envelope calculation, that the spugi@diation increases the eccentricity of the original
orbit. Unfortunately, the separation of the black holes waislarge enough to enable a reliable calculation
of the eccentricity. The merger time is very sensitive to ittirease in individual black-hole masses via
wave absorption; however, this was not enough to accourthtoobserved change in the time of merger
even when ignoring the strongest wave case. The combifiedt® of increasing the individual black-hole
masses and the eccentricity of the orbit caused the bin@ri@erge faster with increasing energy.

One of the conjectures in the literature is that the spuri@akation, intrinsic to the construction of
initial data for BBH evolutions, is flushed out of the simidat within a crossing-time and does ndfext
the radiation or the binary. We can relate the results ofghidy to other BBH evolutions by looking at the
early changes in AH mass as well as how much energy leavegdtensin the burst of spurious radiation.
For the dry R1 run, the energy radiated in the initial puls@x404Expm r1. We find that there is negligible



56

effect on the merger time at that level. Our results indicatetti@spurious radiation present in initial data
sets is unlikely to cause dramatic departures from the tiBle Bolution and therefore we can state that the
simulated merger is robust to the presence of spurioustiadia



Chapter

The Effects of Approximate Initial Data on
Binary Black Hole Mergers

“Far better an approximate answer to the right questiom tha exact answer to the wrong
question, which can always be made preciseJohn Tukey

With the developments of the past few years, numericalivélatsimulations of BBH systems from
inspiral to merger are now feasible, almost routine. Mogtantantly, they are quickly becoming a potent
tool to study highly relevant astrophysical phenomena. rApimations such as those provided by PN theory
have also proven to be valuable tools. They have the appealoiding the computational complexities
associated with finding exact solutions to the Einstein fezgjdations. As the demand for mor&i@ent
simulations increases, it is desirable to consider appraié methodologies in conjunction with numerical
relativity approaches. A natural “marriage” in this regandhich is the focus of this work, is to consider full
Einstein evolutions of approximately constraint-saiisfyinitial data.

In general relativity, constructing initial data requireslving the Einstein constraints, a coupled set
of elliptic equations (see Chapter 2 for a review on the mattéal foundations of numerical relativity
and Sec. 3.1 for constructing initial data). Thus, in gehebdaining solutions to the Einstein constraints
necessitates solving elliptic equations, which is a complénerical problem. When BH excision is used,
the solvers are non-trivial [175, 152, 151] because of thagision boundaries. Even without excision,
developing constraint solvers is demanding [13] and oftguires introducing simplifying assumptions
such as spatial conformal flatness.

Flexibility is also a very important issue. The family of piems addressed by numerical relativity is
quickly expanding, involving non-traditional BH systemsybnd the two-body problem [57, 127]. Without
modifications to the standard initial data methodologyreiveill be limitations on the class of problems one
is able to consider.
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The focus of the study in this chapter is on the full Einstaimerical evolution of constraint-violating
or approximate initial data. Evolutions of constraintdaiing BBH initial data have been considered in
the past. They were mostly done in the context of superposed¥child BHs [171, 45, 130, 135], but
there was also the study on the superposed “puncture Kektaohamet al.[99] as well as several studies
evolving approximate post-Newtonian initial data [1805,1143]. More recently, constraint-violating initial
data for punctures has been used for multiple BH evolutiéis 127].

The diference with previous studies lies in the building blocksduseconstruct the data. In Refs. [67,
57, 127], the initial data sets were built from perturbatedutions of single punctures (boosted amdpin-
ning). Our approach, on the other hand, follows closely skeletonsolutions of the Einstein equations
introduced by [78]. These solutions are derived from theAlDM Hamiltonian with the BHs represented
by point-like sources modeled by Dirac delta function distiions. We consider configurations of non-
spinning, equal-mass BBHSs in quasi-circular orbits an@stigate how well the evolution of these initial
data is able to reproduce the corresponding results of @nssatisfying initial data. We assess the ef-
fectiveness of the skeleton initial data by computing théchmes with waveforms from constraint-satisfying
initial data evolutions. We find that theffirences in the evolutions, and thus waveforms, are due aiineg
Hamiltonian constraint violations present in the skeldtutial data. We observe that, during the course of
the evolution, the skeleton data develops both Hamiltoarmhmomentum constraint violations which both
propagate away and decay over time while the binary syst&ara®to a constraint-satisfying solution with
BHs of smaller mass and thudldirent dynamics.

In Sec. 5.1, we derive the procedure for constructing skelguncture initial data. In Sec. 5.2, we
focus on quasi-circular configurations of equal-mass, sginning BBHs, and, using théfective potential
method [63], we compare binding energies between skeletdrcarresponding constraint-satisfying initial
data. In Sec. 5.3, we investigate the structure of the Ham#h constraint violations in the skeleton data.
In Sec. 5.4, we present results of the evolutions. Sec. 8fepts an analysis of the nature of the constraint
violations with a model involving a single puncture. In SB®&, we discuss the impact of using waveforms
from skeleton evolutions on data analysis. Conclusiongyasen in Sec. 5.7. The numerical simulations
and results were obtained with tMayaKranc infrastructure as described in Sec. 2.2.

5.1 Skeleton Initial Data

The traditional approach to constructing initial data immarical relativity involves specifying the pair
{7ij» Kij}, wherey;j is the intrinsic 3-metric to &= constant hypersurfacg, andK;; denotes its extrinsiccur-
vature. We use the index convention that Latin indices irfitlsepart of the alphabet denote 4-dimensional
spacetime indices and those from the middle denote 3-dimmaisspatial indices. The pafy;j, Kj;} must
satisfy the Einstein constraint equations:

R+ K2- KKl = 167p (5.1)
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VKl -VIK = 8zS'. (5.2)

Equations (5.1) and (5.2) are respectively known as the Kaman and momentum constraints. The oper-
atorV; denotes covariant fierentiation with respect tg j andR;j its associated Ricci tensor. We follow the
notationK = y'K;; andR = y'IR;;.

Although we are interested in vacuum spacetimes of BH systeve have kept the matter sourges
(total energy density) an8' (momentum density). This is so we are able, as in Ref. [78jepoesent the
BHs as point-like sources modeled with Dirac delta distitns.

The constraints Egs. (5.1) and (5.2) yield four equationerd are, thus, eight freely specifiable pieces
in the datalyij, Kij}. These free data can be used to single out the physical systder consideration
(e.g., orbiting binary BHs) as well as to simplify solvingetkinstein constraints. An elegant approach to
identify the four pieces ify;j, Kijj} that are fixed from solutions to the constraints was giver182], based
on work by [123] and others. The method is based on the follgwbnformal transformations and tensorial

decompositions:

Y

Yii = ¥ i (5.3)
1

Kij = Aij+§yin (5.4)

Al =y 10AT (5.5)

K = K (5.6)

Al = A+ Lw), (5.7)

whereA; = Al; = 0 andV; A = 0 with V; covariant diferentiation with respect to the conformal metric
%i- In the tensorial decomposition & given by Eq. (5.7),A gives the transverse part &fl, with the
longitudinal part given by

LWy =2V W) - gyij Viewk. (5.8)

With the transformations Egs. (5.3-5.7), the constraing.£5.1) and (5.2) become:

8AY — YR - §¢5K2 +y T AGAY ~167y°p (5.9)

8my'os', (5.10)

(ALW) - %l//_s Vi K

with R the Ricci scalar associated with the conformal 3-megi@fid (L W) = V;([LW)'1.
At this point, we introduce the assumptions of conformahtasyi; = »;; and vanishing of botk and
Al These assumptions exhaust the eight freely specifiablditam s at our disposal ofy; i Kij}; five are
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in ¥ij, one inK and two inAl. The constraints then take the form:

AY + % v (LW)? -2y (5.11)
ALW) = 8mytls', (5.12)

where LW)2 = (LW)'] (ffW)ij. In the absence of matter sources, or if one Séts 1S, the constraints
Egs. (5.11) and (5.12) decouple. That is, one can solve firs{FE12) forW' and use this solution to solve
Eq. (5.11) fory.

Following Ref. [78] albeit with considerable fiirences in notation, with the help of the momentum
constraint Eq. (5.12), we notice that

Lw)y = 2[w)Iviw,
2Vil([CW)I W] - 2W;Vi(LW)!
2Vi[(LW) I w,] - 16y 0W;S! . (5.13)

Substitution of Eqg. (5.13) into the Hamiltonian constrdiat. (5.11) yields
1 oo ,
Ay + 20 Vil(CW) W] = -2x[y°p — > W;ST. (5.14)

We address now the matter sources. The stress-energy temsmrset of non-interacting point-like
particles with rest mass1,, 4-velocityU4, and comoving number densitya is given by

T =3 " MaNaURUR, (5.15)
A

where the sum is understood to run over all the particles.eoh particleA located atx,, the comoving
number density is given by&function as

Na

/ vi__g(s“[xa @l
1

= UL X %]
— 6A
= Wa v (5.16)

with g the determinant of 4-dimensional spacetime metfic= 63(xX — xiA), a the lapse function, W =
a Ul = -nyaU%, andn® the future-directed unit normal to the hypersurfageThe stress-energy tensor can
then be rewritten as

M6
T=)" UAUR. (5.17)
~ Wa vy
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Given Eq. (5.17), the matter sources take the form:

Ng Ny T3P
: Z MaWpop

T

he)
Il

(5.18)

and

S = -1} nT™

Z Ma J_% UR5A
DTN

P2 0A
_ , (5.19)
Xer

where we have useqy = ¢° /i, yap = Gab + NaNp and L3= g?°gep,. In deriving Eq. (5.19), we have also
introduced the spatial momentum vecft = May* 13 U,E. The vectorP? is related to the spatial part
of the 4-momentunp® = MU? of the point-like particles byp® = y# 18 p°. Substitution of the source
Egs. (5.18) and (5.19) into Egs. (5.12) and (5.14) yields

l ~. ~ I] ) _ _ mA(SA
A¢+—4Wv.[(L(W) Wi = 2n§A: 7 (5.20)

- Plp 0a
ALW) = 8 “ACR 5.21
(ALW) HEA: NG (5.21)

where MW WP
A VVA i

Ma = b 1117/*. (5.22)

Bowen and York [42] found a solution to the momentum constras given by Eq. (5.21). The solution
represent BHs with linear momentﬂ and is explicitly given as

) 1 . . .
W = _Z E(?P' +n'nj P X (5.23)
A
with n' the unit normal of constamtspheres in flat space. In terms of Eq. (5.28))%) takes the form:
. 3 o . oo K
Cw)l = ZA: 572 2200 — @ = nf ) mePX] (5.24)

In Egs. (5.23) and (5.24) = [|X' — EiJ|, 1y = (X — E,)/ra with =}, the coordinate location of Bi It can
be shown that the total ADM linear momentunyis= 3", Pl.
We now turn our attention to the Hamiltonian constraint Bg2Q). As pointed out in Ref. [78], the term
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://7%[(1&‘!4/)”"4/,-] in Eq. (5.20) is a “flesh” term that provides the field betwekea particles and has the
following contribution to the Hamiltonian:

/%%[(IEW)”W,-]&: —7/%(1‘W)”‘Wﬁil//d3x.

The only approximation that goes into defining the skeletotial data is to neglect the contribution from
this term. With this approximation, the Hamiltonian coasit Eq. (5.20) reads:

Ma da
Ay = —2n (5.25)
2

with ma given by Eq. (5.22). Notice thaty is singular atX = =, becausey and‘W' are singular ag!,.
Following Ref. [78], we solve Eq. (5.25) by means of Hadarisdhplartie finie” procedure [113]; that is,

_ Ma(X) a
v = 1-4nA7t —AR/TA
22w
(reg) i
_ m (d )6A
= 1-4xa™t —A A
(%)
(reg) =i
m (: _10A
= 1-47) A _TANT A
S
(reg)
m
-1 A 5.26
* 2rA ’ ( )
where
reg) _ MaWa WP,
m = - 5.27
A (DA q)z\ ( )
(reg)
Oy = 1+ r;B (5.28)
BA <TAB
pip; 142
Wp = [14+— 5.29
c e, 52
. -1 . . .
WiP, = Z(HQ [7Ps P! - (PR PP, (5.30)
B#A

with rag = |2, — Z5|| andnlyg = (B — Z5)/ras. The parametermgeg) is commonly known as thieare mass

of the BH. On the other hand\1 is known as thérreducible mass of the BH®, is the regularized value
of ://(E‘A). In summary, the skeleton initial datgj, K;j} is then given byy;; = ://417”- andKjj = ://‘Z(IE,’W)”
with ¢ given by Eq. (5.26) andl{W)ii given by Eq. (5.24).
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For comparison, the exact or constraint-satisfying pumctnitial data method [44] consists also of
yij = v*nij andKij = y~2([LW);; with (W) given by Eq. (5.24), but in this case

Y = 1+Z—+u (5.31)

with u a regular solution to
Au + —(LfW)2 (5.32)

and m is another mass parameter similarly called lblage mass.

5.2 Quasi-circular Initial Data

We restrict our attention to initial data configurations negenting two equal masa\{(; = M, = M,

m(lreg) = m(zreg) = m), non-spinning BHs in quasi-circular orbits. Thafls = P, = P!, ryp = ||=] || = d,

andn!?P' = 0. Under these assumptions:

m m
U=l o (5.33)
where

MW 7 P2
= o 1307 (5.34)
o = 1+2—”r(']I (5.35)

Pz 1/2
W = {1+ M2®4] . (5.36)

While deriving Eq. (5.34), we used that for circular orbigiP' = 7P2/(4d) with P2 = P'P; = P'PIy;; as
can be seen from Eq. (5.30).

We focus now on the élierences between the constraint-satisfying and skeletbal idata for quasi-
circular sequences using théextive potential method [63]. The general idea of this mettsoto find
configurations that satisfy the condition:

9E,

=0, 5.37
3L (5.37)

M. apm

with E, = Eapm — M the binding energy of the system. The distahds a measure of the proper separation
between the BHs (e.g., horizon to horizon), avd= 2 M is the sum of the irreducible masses. The
gquantitiesSapm and Japm are respectively the total ADM mass and angular momenturheoystem (see
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Run d/M P/M m/M M/M Eapm /M T apm /M2
QCOe| 2.337 0.33320 0.45300 0.519071 1.0195 0.7787
QCOa| 2.337 0.33320 0.48950 0.519071 0.9790 0.7787

Rle | 6.514 0.13300 0.48300 0.505085 0.9957 0.8664

Rla | 6.514 0.13300 0.49717 0.505085 0.9943 0.8664
D10e | 10.00 0.09543 0.48595 0.500000 0.9895 0.9530
D10a | 10.00 0.09543 0.49458 0.500000 0.9891 0.9530

Table 5.1.Initial data parametersThe punctures have bare massgedinear momenta# aligned with they-axis and
are separated by a distang@long thex-axis. The irreducible mass of each BH frarfi®® is M. The ADM masses
and angular momenta of the spacetimes are given respgabyéapy and.Japm -

Sec. 3.2), which can be computed from:

1 . .
EADM —Zf Viy d’s' (5.38)

Jaomi = ZifXijldzsl- (5.39)
T Joo

It is not too dfficult to show from Eq. (5.39) that, givef; = ://‘Z(IL‘W)”, the ADM angular momentum for
binaries initially in quasi-circular orbits i§apm = d#. On the other hand, witlh given by Eq. (5.33) the
total ADM mass from Eq. (5.38) is given by the sum of the baressea of the BHs, name§apm = 2m;
thus, the binding energy becomieg = 2m-2 M. The bare masses for the skeleton initial data are obtained
by solving the implicit Eq. (5.34) using a Newton-Raphsorthod.

Figure 5.1 (top panel) shows the comparison of the bindirey@rnEy, as a function of the total ADM
angular momentunyapm between the constraint-satisfying initial data from [1{8juares) and the skele-
ton initial data in this work (triangles). The lower panelkig. 5.1 shows the corresponding % relative
difference between both results. Not surprisingly, as the pisaparation increases (i.e. larger angular
momentum), the dierences diminish. For reference, the vertical lines dett@eangular momentum for
typical data sets considered in the literature: QCO in R&],[R1 in Ref. [26] and D10 in Ref. [179]. The
differences in binding energy between the skeleton and theraomstatisfying initial data are 20 % for
QCO0,~ 6% for R1 and~ 2% for D10.

Table 5.1 provides the parameters of the initial configaratifor both the skeleton and constraint-
satisfying data sets. The cases of exact or constrairgfgaty initial data are labeled with the letter “e” and
the corresponding skeleton or approximate case with ther I&t”.

As mentioned before, the only fundamentdfelience between the two initial data sets is in the confor-
mal factory. For the constraint-satisfying data geis computed from Eq. (5.31) by solving the Hamiltonian
constraint in the form given by Eq. (5.32) and for the skeiettte conformal factoy is constructed using
Eq. (5.26). In Fig. 5.2, we show the relativeffdrencesy /v = (Wa — we) /e from the two data along the
axis joining the punctures«axis) for the D10, R1 and QCO cases. Notice the larffedinces in the imme-
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Figure 5.1. Comparison of the binding enerdsy as a function of the total ADM angular momentympy between
the initial data from [179] (squares) and the skeletonahitiata (triangles)

diate vicinity of the punctures. In the next section, we willestigate how these fiierences translate into
constraint violations.

5.3 Hamiltonian Constraint Violations

For the remainder of the chapter we will concentrate oumétia on the D10 case: a situation in which
the BHs are not too close to the merger and with an initial djwe that permits a reasonable overlap with
the post-Newtonian regime [28, 100]. It is important to paat that the numerical data D10e, although
called exact, also violate the constraints initially. Thelations in the exact initial data, however, are a
conseqguence of numerical errors which can be made arbjtsmiall in the limit to the continuum. On the
other hand, the constraint violations in the skeleton degssttongly dominated by resolution-independent
effects, converging at fourth order to some non-zero initialst@int violations.

In order to understand the nature of the constraint viatetim the skeleton initial data and in partic-
ular their dynamics in the course of the evolution, we taleghint of view that the violations introduce
“spurious” sourcep andS' in Eq. (5.1) and (5.2), respectively. Notice that initialle do not have a “spu-
rious” momentum densit' because the skeleton initial data by construction are actesddution to the
momentum constraint. It is important to keep in mind that eheuld not assign physical propertiespto
andS'. They are only used to quantify constraint violations. Irtigalar, the violationg are not restricted
to satisfy energy conditions and thus are free to take negatlues.
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Figure 5.2. The relative diference in the conformal factgr between the skeleton initial data and the corresponding
constraint-satisfying data along thxeaxis joining the punctures for the three cases labeled gn %il. The solid
vertical lines represent the location of the AHs.

Fig. 5.3 shows a surface plot pf for the BBH skeleton initial data in the neighborhood of orie o
the punctures. Notice that the puncture seems to be embeaddedcloud” or a pocket of negative.
Furthermore, the cloud is more negative in the directiogredd with the linear momentum of the puncture
(in this case thg-axis). This éect is more evident from Fig. 5.4 where we ptoin the top panel along the
x-axis (the direction joining the BHs) and in the bottom paaiehg they-axis. The glitches at the bottom
of the bottom of the constraint violation pockets are duestonement boundaries.

5.4 Skeleton Evolutions

Given the initial data, we turn our attention now to evolago The evolution runs were done on a computa-
tional grid with 9 refinement levels, the finest 5 levels conitay 24° gridpoints in radius and the remaining
4 with 48 gridpoints in radius. To check the dependence of the resiftsresolution, we considered grid
spacings at the finest level &1/384, M/44.8 andM/51.2 and found the skeleton waveforms converge at
the same order as the exact waveforms. The results predegrtedvere done at the resolutionf51.2.

Fig. 5.5 shows the trajectory of one of the BHs from the skelenitial data (dashed line) as well as its
constraint-satisfying counterpart (solid line). Bothjédories are very close to each other during the first
quarter orbit. Beyond that point, the BH from the skeletoitiahdata follows an eccentric orbit. Finally,
near merger or at the plunge, the trajectories once agauefieclosely together.
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Figure 5.3. Surface plot op, as derived from the Hamiltonian constraint violationsthie xy-plane surrounding one
puncture for the skeleton initial data, D10a.
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Figure 5.4. Sources corresponding to Fig. 5.3 along theaxis joining the BHs (top panel) and along thaxis
(bottom panel), the linear momentum direction. The solidieal lines mark the mean coordinate radius of the AH.

In Fig. 5.6, we compare the waveforms of the skeleton indetk with its constraint-satisfying coun-
terpart as detected at B0. The presence of a phase shift between the two waveformsdsravy The
constraint-satisfying initial data evolution reachesrierger approximately 181 before the skeleton initial
data evolution. This dierence remains within ¥ of this between dferent resolutions. Anotherfélerence
in the two evolutions is in the inspiral. As mentioned befdhe skeleton data yields a larger eccentricity in
the inspiral. This can be clearly observed from Fig. 5.7 whbe same comparison as in Fig. 5.6 is shown
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Figure 5.5. The left plot shows the trajectory of one of the BHs from thelston initial data (red line) as well as
its constraint-satisfying counterpart (blue line). On tlgt we plot the coordinate separation between the BHs as a
function of coordinate time.

but in terms of the amplitude (top panel) and phase (bottonelpaHere we have applied a time shift of
10M to align the point at which the waveforms reach their maximwatues. The inspiral and plunge of
the binary is before the “knee” in the phase or the maximunhénamplitude. On the other hand the quasi-
normal ringing of the final BH takes place after the knee ingthase and the maximum in the amplitude.
Notice that the phases are practically identical for botbesa Furthermore, both the post-knee phase and
post-maximum amplitude are almost the same for skeletortanstraint-satisfying evolutions, which is an
indication that the final BHs are almost identical [106]. @e bther hand, the inspiral amplitudes in Fig. 5.7
clearly show diferences in the level of eccentricity as seen by the osdifiatin the amplitude.

From the waveforms, we have computed the endfgyy and angular momenturd, ;4 radiated. For
the constraint-satisfying initial data, we obtainEgyy = 0.0354M and J,5q = 0.3060M? and for the
skeleton datd&,,q = 0.0359M and J;5q = 0.3063M?, which correspond to dlierences of #% and 01%
respectively. These filerences are consistent withigirences in amplitude of the ADM energy and angular
momentum in the initial data<(107%).

To better understand the change in trajectories and thesmonding phase shift reflected in the wave-
forms (see Fig. 5.6), we have tracked the evolution of the Ad$ses. The AH mass for one of the BHs is
plotted in Fig. 5.8 where the error due to grid spacing remius of order 10° M. While the AH mass for
the constraint-satisfying evolution stays relatively stamt (solid line), the AH mass for the skeleton evo-
lution varies significantly (dashed line). In fact, the matsts 1.4% higher than the constraint-satisfying
value and monotonically decreases. Empirically, the AHseaglecrease agtlat late times. By fitting a
polynomial in Y/t to the AH evolution at late times, we find the mass asymptat@b01+ 0.00IM, within
0.2% of the constraint-satisfying initial AH mass. Howewbe BHs merge before the skeleton AH mass
could reach this asymptotic value. An interesting questiomently under investigation is how the skeleton
evolution’s changing eccentricity compares to that of tlsvikbnian two-body problem with variable mass.
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and constraint-satisfying data (blue). The time axis haslshifted by 1M to align the point at which the amplitudes

reach their maximum values.
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Figure 5.8. The evolution of the AH mass of one of the BHs shown for bothcthrestraint-satisfying initial data D10e
(blue) and its skeleton counterpart (red). Errors in AH dugrid spacing are of order 1DM.

5.5 Single Puncture Analysis

As noted in Sec. 5.2, the Hamiltonian constraint violatians negative in the vicinity of the punctures. To
better understand the evolutions of the skeleton inititddae consider a test case where we evolve a single,
non-spinning puncture and add by hand negative constralgtions surrounding it. That is, we solve the
Hamiltonian constraint as if there were an additional nrdiédd p present, namely

Ay = =27py°. (5.40)

Forp > 0, the existence of a solution is not in general guaranteatisasissed in [192, 61]. For sugh
one needs to re-scale the source according to the confoasedlingo™= py =, with s> 5. In our case,
however, we are mostly interesteddrk 0, which does not require any rescaling for existence of at&wl.
Following the procedure for multiple BHs, see Eq. (5.31), wge the ansat# = Yo + u, with o =
1+ m/2r the solution to the homogeneous equation (i.e. the singhtetpte solution). We use, as the
conformal factor for rescaling and keep this constant while solving the constraint eqoatidvith this
ansatz, Eq. (5.40) becomes
Au=-27p (o +U)" (5.41)

wheren must be of opposite sign compareddoWe chooses such thain = -3 forp > 0, as is standard,
andn = 5forp < 0.
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Model | F/M2  Expm/M My /M ML /M E,/M

Fi1 0.001 1.0046 1.0012 1.0041 0.0034
Fs -0.001 0.9902 0.9973 0.9911 -0.0071
Fs -0.010 0.9102 0.9858 0.9183 -0.0756

Table 5.2.Models:Results of evolutions a single puncture in the presence cies8an sourcewith ro = o = 1M
and amplitude=. The initial AH mass and ADM energy arel,, andEapm respectiverJ\/l,&H /M is the asymptotic
final AH mass as extrapolated from the simulation, &pd= Eapm — My

For simplicity, we choose
p = YMFe (-ro)/(27%) (5.42)

wherer is the position with respect to the punctune= 0 for p > 0, andm = -5 for p < 0. The factonsg
is necessary for regularity of the solutiorat the puncture. We also assume that the squidees not have
initial momentum (i.eS' = 0); thus, the momentum constraint remains satisfied as inabeum case.

Table 5.2 lists the results from the evolutions fgr= - = 1 M. The choice of centering the Gaussian
atro, = 1 M was aimed at favoring the amount @faccreted by the BH. The distribution, like the skeleton
initial data, is thus peaked at twice the horizon coordimatiius. Unlike the dumbbell-like configuration
of the skeleton initial data’s constraint violations, timroduced constraint violations in these cases are
spherically symmetric. Notice that caBe has a positive source (i.¢= > 0) yielding positive constraint
violations while the other two have negative sources yigjdiegative Hamiltonian constraint violations.
The dfect of the source is evident in the ADM massfapwm ) and initial AH mass,MiAH). For the positive
source, the masses are larger than the puncture mass imvatil, and smaller for the negative sources.
Also in Table 5.2, we includ&, = Expm — Mhy,, Which gives a measure of the extra energy content in the
initial data due tg. The strength of3 was chosen such that the strength of the constraint vioktamd
the change of the initiaM,, are comparable to those in the skeleton initial data. As #@getry of the
constraint violations create a much larger change in the A&drgy, caseb; andF, have more modest
constraint violations which yield more modest changes irvADass.

We evolved the models in Table 5.2 for 3P0 Fig. 5.9 shows how the AH mass evolves during the
evolution. We have evolved the mode} at different resolutions and estimated the AH masses to have an
approximate relative error of 0.009%. We observed that at late times the AH mass evolve,\sl,fg$+ C/t.

The values reported in Table 5.2 are those extrapolatée-t@o.

The evolutions of the single puncture models clearly dermatesthat depending on the signaturepof
the mass of the BH, as measured from the AH, will increase oredse. That is, over the course of the
evolution, the AH masses evolve to approach the ADM energgrasing for a negatiyeand increasing
for positivep. In other words, the sourgeinitially hovering near a puncture will fall into the BH, irgasing
or decreasing its mass as the system becomes stationamydiggpen the sign gb. The extent to which the
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Figure 5.9. Evolution of the AH mass for the models described in Table 3Re error between resolutions fbg
was of order 10° over the course of the evolution.

final mass of the BH approaches the total ADM energy depend®wrmuch of the density is “accreted”
by the BH. Since in our case we do not impose the restrictigposttivity onp, the BH is free to decrease
its mass. Notice also that the final AH mass does not satief;zmhditionM,iH = M, + E,, which means
that a fraction € 1% in our cases) dE, mass is radiated away.

Figure 5.10 shows the Hamiltonian constraint violatnear the beginning of the simulation tat
0.078M (top panel) and at the end= 300M, of the simulation (bottom panel). Solid lines represest th
constraint-satisfying case and dashed linesRhenodel. Fig. 5.11 shows the corresponding results for the
momentum constraint violatior8' along thex-axis. By construction, initially there are only Hamiltami
constraint violations in th&3 model. However, it is evident from the top panel in Fig. 5.tidttconstraint
violations in the momentum constraint develop also veryydarthe evolution. The growth of momentum
constraint violations proceed up to a time- 3 M. The subsequent dynamics of the constraint violations
consists of ingoing and outgoing waves. Because of the mioxio the puncture, the outgoing waves are a
little bit weaker, with most of the constraint violationsctaeted” by the BH. After approximately~ 50 M
of evolution, theF3 model relaxes to the configuration of the constraint-sgtigf puncture and remains
there as seen in the bottom panels in Figs. 5.10 and 5.11. fidectinstraint violations in the system arise
from numerical errors.

An important aspect to point out is that although the consttndolating cases relax to a constraint-
satisfying solution, the solutions that they relax to arenmexessarily the same solutions as a single puncture
in a vacuum spacetime. The new solution satisfies the Einstgiations but for a single puncture spacetime
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Figure 5.11.Same as in Fig. 5.10 but for the momentum constraint viate® The constraint violations still present
at late times are due to discretization around the puncture.
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with a smaller mass. A similar situation occurs in the bineage; the system relaxes to a binary solution,
but this solution is dferent than the vacuum case. The reason for this relaxati@nstmilar constraint-
satisfying system is thought to be connected to the constdaimping nature of the BSSN formulation, but
it is not fully understood.

5.6 Impact on Data Analysis

Finally, we want to address the extent to which the wavefdnoms evolutions of skeleton initial data may
be of use in exploring gravitational wave astronomy. We faitlus on computing the matches between the
skeleton and the constraint-satisfying waveforms. Inqpie, the match would be between the detector
output, h; and the templateh),. Hereh; is the waveform from the constraint-satisfying evolutiorddn,
from the skeleton initial data evolution. Specifically, wdl\wompare the waveforms using the minimax
match given by [79, 146, 66].

Match = maxmin max& , (5.43)
o @ @ (hylhy)(holhy)
where the inner product of two templates is defined by
fnax P (£
_ e hy (F)h5(F)
<h1|h2>_4Re/fmin S (h) df. (5.44)

The match is maximized over the time of arrival of the sigt@land minimizegmaximized over the initial
phase®1 and®,, of the orbit when the signéémplate enters the LIGO band. The variaBlg f) denotes
the noise spectrum for which we use the initial [120] and aded LIGO noise curves [5]. The domain
[ fmin. fmax] is determined by the detector bandwidth and the massesrdafignial — set such that the initial
frequency of the numerical waveform just enters the LIGOthawe have chosen to study the match for
values of the total mass of the BBH system greater than2bbtause of the limited number of cycles
that our waveforms include, stopping at 139Nbr initial LIGO and 250M, for advanced LIGO as the
ringdown-dominated match at such masses is close to unityjore detailed description of our minimax
match calculation is given in [183].

The match between the constraint-satisfying and skeledtanarsus mass is plotted in Fig. 5.12 for both
noise curves. In general, the match between the waveforonsases with increasing total mass, reaching
> 0.99 at 60M,/100M, for initial/advanced LIGO . At such large total mass, the signal is domihby
the plunge and ringdown. Comparisons of the plunge and owgdshow (see Fig. 5.7) that theffidirence
between the skeleton and constraint-satisfying evolui@wvery small. At masses lower than about 40M
the match drops below 0.97 due to théelience in the binary dynamics prior to merger. Overall, adea
LIGO is more sensitive to flierences in the data, but thesé&eliences still remain above 0.98 for most of the
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Figure 5.12. Waveform matches between the waveform extracted from #redstd, D10e, and that extracted from
the skeleton initial data evolution, D10a, using both thiéshand advanced LIGO noise curves.

mass range investigated indicating that it is unlikely teehan impact on detection. Despite the high match,
the diferences between the data due to constraint violations wielgt impact the accuracy of parameter
estimation. We note that our calculation of match did not iméze over the mass of the two waveforms.
Maximizing over the mass would have diminished th@edlences between the two waveforms.

5.7 Conclusions

We have carried out a study of the evolution of skeleton, furecBBH initial data as proposed by [78].
We focused on non-spinning punctures at initial separatadriOM, where the dierence in binding energy
with the constraint-satisfying initial data & 2%. We showed that during the inspiral the skeleton data
yields different dynamics; however, thisfiirence significantly diminishes as the binary enters thegau
merger and ringdown.

We tested the match between the constraint-satisfying kelgéten data for a series of total masses
between 20M and 130M,/250M,, for initial/advanced LIGO respectively. Our results indicate that-grav
itational wave data analysis would have some tolerancedostcaint-violating data, especially for those
binaries in which the signal is plunge-merger dominatedsdle case of high mass BHs. We conclude
that although the two systems werdtdrient, with one clearly violating the Einstein equatioing tifer-
ences were not enough to impact the match statistics for #es manges we included in our study and for
the number of cycles present in our numerical waveformsaGlethe advanced LIGO detector was more
sensitive to the errors that are introduced into the systgihd constraint violations. If these systems were
evolved starting with a larger initial BH separation, thexstaint violations would be smaller and, there-
fore, the waveforms generated could be useful for deteati@r the complete BBH mass range for initial
LIGO. If, however, larger constraint violations are presinthe data that drive the early BH mass lower,
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the diferences may lead to errors in parameter estimation.

We also analyzed the impact of the Hamiltonian constraiotations. We showed that the main feature
of the skeleton data is two packets of negative constraoiations in front of and behind the BH, along the
direction of its momentum. We conjectured that these negatinstraint violations acted as a source density
that gets absorbed by the BHs during evolution. To test onjecture, we considered a model consisting of
a single, non-rotating puncture in which we artificially adda stationary Gaussian shell source that mimics
the Hamiltonian constraint violations in the skeleton datde evolutions of this single puncture model
reproduce the decrease in the mass of the BH observed indhdien of the skeleton data.

One remarkable aspect of our study is the ability of the BS§ba#ons and moving puncture gauges
to stably evolve data away from the constraint surface. \WWhaven more remarkable is how the evolution
brings the data back to the Einstein constraint surface. M/ecarrently investigating a broader class of
solutions with this property.

Our results suggest that for the class of constraint viategtifound in the above studies, the evolutions
of such systems with the BSSN formulation approach a cadnstatisfying system with BHs of fferent
AH masses. For general classes of constraint violationsanaat conclude anything from this study.

In summary, our numerical evolutions show that the skel@tdial data proposed by [78] embeds the
BHs in a “cloud” of negative constraint violations. Thesaswaint violations act as a source field that when
accreted by the BHs decreases their masses. The changenraises modifies the binding energy of the
binary and thusféects its orbital dynamics (e.g., adding eccentricity) tad little efect on the match of the
two waveforms for initial or advanced LIGO for high mass Iidwmles. The observedfects will decrease
as the initial binary separation increases.



Chapter

Theoretical Framework: Coupling
Hydrodynamics to a Relativistic Code

“We are all dependent on one another, every soul of us on.tartBeorge Bernard Shaw

As we exist, the universe is not all vacuum. In general ratgfispacetime and matter evolve together,
each directing the other. Matter, however, adds a completelv set of length scales to the problem. By
evolving realistic matter, we must also grapple with its shock waves, instasli turbulence, electromag-
netic fields, and even chemistry and composition. A few cadsmpt to incorporate all of these in their
study of gravitational core collapse and the subsequerstecalicore-collapse supernovae, but including all
of these is much too computationally expensive for the ticedes we must simulate for BBH systems and
of questionable importance to the scale of phenomena wetwisbnsider.

There are many methods used in describing and evolving mattgeneral relativity. The gridless
smooth particle hydrodynamics (SPH) treatment such asitieat in [145] uses a set of extended Lagrangian
particles and is currently extended to relativistic ciratamces but only includes self-gravity terms. Not
only is the spacetime coupling minimal in such treatment, difficulties arise in boundary conditions,
hydrodynamic instabilities, and resolving physics at mkemgth scales (see e.g., [4]). On the other hand,
some hydrodynamics codes likeCoNuT [69] use spectral methods whidan cover many length scales
well with their quick convergence. These have been devel@xéensively for use with spectral spacetime
evolution codes [153]. Like the cod6ENESIS [8], SACRA [188], and the unnamed code of Duez [72], the
method we employ uses a conservative formulation [132, 110] of an Eulerian approach [186].

As general relativity is a field theory, we describe the nraittea way that lends itself well to the
framework already in place: describing it as a mafield defined everywhere with its variables stored at
the verticies of a grid structure and evolved using finit@edencing methods. This chapter will detail the
important aspects of evolving coupled relativistic hydnoamic fields which are implemented $totch
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and used in Chapter 7 (see Font [82] for a more general reviewethods in general relativistic hydro-
dynamics).Scotch is based on the publicly-available hydrodynamics cehlisky [22] but altered to use
the HydroBase infrastructure being added to the Cactusttin€actus repository and extra functionality
to handle the BHs from puncture spacetime initial data (ss® 8.1.3) among other structural changes.
Like MayaKranc, Scotch is based on a théactus infrastructure and evolution systems are evolved by the
Method of Lines.

6.1 Matter Evolution Equations

In general relativity, a matter field couples to the spacetemolution through the creation of the stress-
energy-momentum tensai,,, present on the right-hand side of the Einstein equatiorssdeAfrom letting
the spacetime know about the matter throdgh the matter itself must evolve, interacting both with itself
and with the curvature of spacetime. For a general mattet, fileis evolution is captured by the equations

v, TH =0 (6.1)

whereV,, is the covariant derivative of the full four-dimensional tme
In our work, we assume the stress-energy-momentum tensopeffect fluid. That is, we choodg,
to be of the form
TH = pohu'u” + Pg” (6.2)

wherep, is the rest-mass density of the fluld;= 1 + € + P/p, is the specific enthalpy of the fluid s the
internal energy of the fluidy is the co-moving four-velocity, and is the pressure. For a fluid stress-energy
tensor as such we can reconsider the evolution equationg(EEfjunder the same foliation of spacetime as
used in formulating the spacetime evolution equations. t€hworal projection of Eq. 6.1

NV, T4 =0 (6.3)

can be interpreted as local energy conservation as seercyosidering the non-relativistic limit. Similarly,
the spatial projection,
17V, T, =0 (6.4)

is interpreted as local momentum conservation. To creagalgstic fluid field, it is also standard to impose
baryonic conservation
Vi (pott') = 0. (6.5)

The co-moving four-velocity# must be normalized such thatu, = -1 to be physical, so it is standard
to introduce a spatial velocity vectet derived fromu* in different ways depending on the formulation.
At this point there are six unknown(gpo,e, P,v‘) and five evolution equations. The remaining degree of
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freedom is specified by assuming an equation of state, ggnemitten as defining the pressuie as a
function of the rest-mass density and internal enef@y= P(oo, €). Thus the matter field is described by
five physically-interpretable variablgs, €, andv, dubbed the “primitive” variables.

These primitive variables are convenient for analysis,tbay are not ideal for evolving. Since Wil-
son’s seminal work [186] on formulating the Eulerian destoin in general relativity many studies utilized
formulations based on evolving the primitive variablesdity while others used formulations based on the
conservative approach of Mast al. [132, 110, 111] and Banyukt al. [29]. These conservative formula-
tions rewrite the matter evolution equations in the form

r

N (0 (V7€) + V5 (V=07 ")) = 8 (6.6)

whereC is a set of “conserved” variableg () their related fluxes in the direction of, and S contains
the source terms. The conservative form guarantees thaolbéon, should it converge, converges to a
weak solution according to the Lax-Wenéitheorem. The choice of conserved varialdes not unique.
Additionally, they make use of approximate Riemann soleeis High-Resolution Shock Capturing (HRSC)
schemes which we will discuss later in this chapter.

Recently, Anninos and Fragile [12] showed the non-consieevdormulations were indticient for
evolving ultra-relativistic matter fields. Unlike the na@oenservative approach, that of Ibafiez avoids the
need for artificial dissipation by solving a local charaistic problem via an approximate Riemann solver
and utilizing a HRSC method to handle shocks.

6.1.1 Valencia Formulation

The formulation used iscotch is dubbed the Valencia formulation [29] for its origins aétdniversidad

de Valencia. The primitive variableg,, €, andV, are the rest-mass density, internal energy, and velocity
as seen by a Eulerian observer at rest on the hypersurfacangnalong the normal to the hypersurface
n =1 (8- p'8;). The 3-velocity/' of the matter field is defined with respect to the 4-velocityas

- ngp 1 /u
v'.:—nﬂ—u#_a<—+/3>. (6.7)

Following the approach of Banyuét al.. [29], we rewrite the evolution equations derived from Ed. 6
in conservation form. In the Valencia formulation, we defing conserved variables as the BetS', andr
defined as

O
|

VIPoW (6.82)
V7PohWAYV (6.8b)

7 = \y(ohW? - P)-D (6.8¢)

\.
[
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whereW = aut = (1—\/‘vi)% is the Lorentz factor from special relativity. We interptbese conserved

variables by looking at their special relativistic limiD reduces to the energy density of a boosted field,

S' is the relativistic momentum current of that boosted fieltfj a is related to the internal energy of the

field. Note that the conserved varial$é defined here and used in this chapter and Chaptendtithe S'

of Chapter 2, but a “densitized” versio8; — +/yS;. The notation here conforms to standard notation.
Written explicitly in terms of the conserved variables ie $tandard spacetime foliation, the system of

matter evolution equations (Eqg. 6.1 and 6.5) can be rewrittdhe conservative form as

oD +dj((av) —p)D) = 0O (6.9)

aSi +0j((av) - NS + Ps)) = T#(8,, + T, 0) (6.9b)
Ot +9j(V =Bt + PV) = ayy(K T + T (2KiB) - i) + TOU(K; 55!

—KijB'd'a)). (6.9¢c)

Notice that we evolve nd®' but S; as the evolution equation is much simpler in that case.

6.2 Important Aspects of a (Conservative) Hydrodynamics Cde

The current successes in evolving relativistic hydrodyicasgstems using finite-tlierencing schemes in-

volve several crucial theoretical tools. As mentionediearby solving the relativistic hydrodynamic evolu-
tion equations in their conservative form we can avoid agldiriificial dissipation with all its thorny issues.

We do, however, need a reconstruction technique, a Godunovdtgpie differencing scheme and HRSC.
We also need to carefully treat areas of the hypersurfade litie or no matter, and consider carefully the
matter field evolutions around the punctures.

6.2.1 Finite Differencing Scheme: Godunov Method and HRSC

The coupled matter evolution equations (Eg. 6.9) requieeispfinite diferencing methods to guarantee that
the system converges to a solution. Thankfully a half-ogntd research on conservative evolutions in the
fluid dynamics community and considerabtéogts on special relativistic hydrodynamics by the astraitsy
community can be drawn upon. For the past 50 years, muchrofsead development has gone into
Godunov-type methods for solving partiafféirential equations written in conservative form and solved
agrid [182].

Godunov methods specifically address evolutions of funsti@presented by data on a grid where cer-
tain quantities must be conserved. These data are intethest piecewise-constant functions littered with
theoretical shock waves on the scale of the grid spacing.eVbkition proceeds by setting up and solving
the Riemann problem, the problem of evolving a conservalifierential equation at a discontinuity, at
each of the 6 theoretical shocks bordering a cell defined bidgpgint we wish to evolve. In the analytical
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Figure 6.1. Schematic of Godunov-type methods. The top panel depietsefresentation of a continuous function
by a piecewise-constant function. The middle panel showsttaracteristic lines of the Riemann problem solution
at the discontinuities, composed of thre@eatient elementary waves. The bottom panel represents aatmeraged
evolution of these waves and subsequent representatidrelneit piecewise-constant function.

solution to the Riemann problem, the discontinuity breagsnto three elementary waves: shock waves,
rarefaction waves, and contact discontinuities. The abrdescontinuity, an interface across which some
hydrodynamic variables are discontinuous, remains at ¢fieborder. On either side of the border either
shock waves or rarefaction waves propate outwards at spedacteristic of the material. The new time
step is created from propagating these waves in time for a titerval no longer than that needed for the
fastest such waves to interact with the waves emanating frenother side of the cell. A schematic of a
Godunov-type method for a one-dimensional system is fonrkdg. 6.1 where the lines in the middle panel
are the characteristic lines found in solving the local Riemproblem.

Effectively applying a Godunov-type method requires a chaic®iemann solver for the cell inter-
faces [109]. There are many to choose from, both approxiraateexact, depending on the problem at
hand. The solvers available $totch (Roe, Marquina, or HLLE) use a characteristic approach keesthe
Riemann problem. That is, they consider the three 5x5 Janabitrices8' defined by

. oF 0
B = a%. (6.10)
Each Jacobian leads to the flux into and out of the cell alomgspatial coordinate. The eigenvalues of this
Jacobian define the material and acoustic waves in thistitireehere the eigenvalues lead to left and right
eigenvectors (see App.D) to decompose the variables irsacteristic waves.

In the absence of sources (Cartesian Minkowski backgrouhd)Riemann problem can be solved ex-
actly [133]. The situations which interest us, though, dbgatisfy this. An important assumption made in
such cases is that the resolution of the spacetime meshighiugh that locally you can change coordinates
to a flat spacetime. Given this assumption, the past twerassyeave shown remarkable progress in solving
hydrodynamics on flat space. Anile [11] thoroughly discasthe hyperbolic nature of the hydrodynamic
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and magnetohydrodynamic evolution equations on a Mink@wmskackground, a discussion extended to an
arbitrary reference frame by Foat al.[81]. Solving the Riemann problem exactly is also a very egpe
procedure as it involves solving an implicit equation. Appmate Riemann solvers are oftertistient in
catching much of the system dynamics, though they can allsspfectacularly [157]. For our work we use
an approximate Riemann solver, the Marquina solver, derirst by Donat and Marquina [70], modified
by Aloy et al. [8] and extended to general relativity by Frieben, Ibaded Pons. We leave a discussion of
this solver to Appendix D.

Godunov-type methods are often extended to include HRSénse$ in their set-up of the Riemann
problem. These determine how the fluxes derived from the Rienproblem solutions are used in calcu-
lating the evolution of the conserved variables, partidylaow the time-averaging of the fluxes from the
characteristic solution to the Riemann problem is perfarmia Scotch, we solve the conservative form
of the evolution equations by considering the 4-dimendioal created by a gridpoint-centered spatial cell
extended into the space between hypersurfagesdX;, at.

1 d(y70), 1 a(y=gr")
/Q\/_ o Q+/Q\/__g o dQ_/QSdQ. (6.11)

Averaging this equation over the spatial cell and dividirygtie volume we find an evolution equation for
the integral-averaged conserved variables

t+At  X2+AXE)2 x3+A)@/2
—C S+—/ / / FO (C(xt - AxY/2,y,2) - FD (COE + AX/2,y,2)) } didydz-...
X x3

2_AX2/2 —AX3/2
(6.12)
where
C = i/WCdxld%dx?‘, (6.13a)
AV )y
XA+AxXL /2 px2HAXR )2 X3 +AXE)2
AV = / / Vydxtd}dx (6.13b)
x-AxL/2 Jx2-AX2/2 Jx3-Ax3/2

and S is defined similarly taC. Thus the evolution of the conserved variables can be writiea manner
suited for the method of lines as

+1/2 Xk+1/2 ~
—c S+/J / 7 (COt12%.2) -7 (CO%ay2¥.2) b dydz+ ... (6.14)

-1/2 X 12

The fluxes,ff(i) are calculated by the Riemann method discussed in App. Dhaduiidresses the time
averaging of the fluxes in the final alteration of the flux fotenu
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6.2.2 Reconstruction: Piecewise Parabolic Method (PPM)

Setting up the Riemann problem from above uses the consgarebles on either side of a cell interface.
The popular method we use is the Piecewise Parabolic MefPBM] [62]. We assume the varialdds a
scalar function ofx, the dimension we are reconstructing along, and interpaatuadratic polynomial to
the cell boundary.

1 1
Gi+1/2 = E(in +0) + 6(5in — Sm0i+1) (6.15)
where
Sl = { signa;) min(|ogl, 2|(§1i+1 —qil, 20 — gi-1l) :i:g:w;s(:)(q - Qi-1) >0 (6.16)
1
o = 5(Qi+1 - Gi-1) (6.17)

Setting the variable value on both the left and right of thiéiogerface as equivalengf = qi':r1 = Oi+1/2)
results in oscillatory behavior in the vicinity of shocks.

The PPM includes the option to sharpen discontinuities goonstructions of the matter density, or to
flatten the zone structure near shocks by adding simplepaissn. Whether either option is used, we avoid
oscillatory behavior by making the following replacemetapreserve monotonicity:

g - ol =g it (- )G —ahy) <0 (6.18a)
. 1 1

Oy — 301 — 207 if (o -afa) <Qi - 5@+ QiR> > 56 - k)’ (6.18b)
. 1 1

of — 30 - 203, it (af - ) <Qi - 5@+ qiR> < 5@ - any)?. (6.18c)

The PPM then gives us the set of conserved and primitive Waseon both sides of a cell interface which
we can use to set up a Riemann problem. For more detail, seendippD.

6.2.3 Recovery of Primitives

As discussed above, the hydrodynamic variables evolve@doych are the set of conserved variables
C = {D, S;, 7}. While useful, they themselves are not easily interpretedtead, after every timestep we
convert back to the primitive variablés,, vV, €}. We also store the Lorentz facté¥ = ou® and the pressure
P to speed calculations and simplify analysis though bothbeaderived from the basic primitive variables.
Recovering the primitives from the conserved variablesiireg a bit of algebraic gymnastics. As with
most things there are several methods to find the primitibes ¢orrespond to the new conserved vari-
ables [114]. The procedure in place, detailed in Appendixniplves “undensitizing” the conserved vari-
ables through division by/y. This projects the conserved variables onto a nearly flatetprae, removing
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any strong gravitational contribution. We then proceedgse a Newton-Raphson type iteration to minimize
a function which constrains the definition of the conservexsganergy density for a polytropic equation of
state poW = D/ fy = D) and otherwise constrains the equation of state it§e# P(oo, €))-

6.2.4 Atmosphere Handling

In regions of sificiently small or vanishing densities, the matter field ofdfisin codes must be handled
carefully. In the vacuum limit, the speed of sound approadhe speed of light and the Riemann problem
as well as the conversion between conserved and primitivablas fails. In many cases the matter field is
confined to a small region of space (e.g., a star) so confifegrtatter evolution to just the vicinity of the
non-trivial matter field also increases thi@@&ency of the code. The current rule of thumb [89] is to allow
~ 7 orders of magnitude below the initial data’s peak mattersdg to remain dynamic. Anything below
that is not evolved: its velocity is set to zero and its dgnsét to the atmospheric value. The region around
non-atmospheric matter is given the opportunity to becooreatmosphere.

6.2.5 Physicality

With the exception of Fabaat al.s study on hydrodynamics with punctures [77], fully-réfegtic hydrody-
namic studies of BH systems have been done on spacetimetheiBiHs excised from the evolved space-
time. In our studies wittscotch, though, we continue to use the proven puncture approackeaf®1.3
for the BHs. This requires some special handling in the vigiof the puncture as numerical error quickly
causes the momentum to diverge. This error is primarily tbumthe conversion from the conserved vari-
ables to the primitive variables. Following Faledral. [77], we impose the physicality of the matter field
everywhere on the conservative variables before conggttirthe primitive variables, where an unphysical-
ity would be amplified.

The specific enthalpy) := 1+ € + P/p,, satisfiedh > 1 for physical matter where — 1 is the dust limit.
In this dust limit,r — D(W — 1) as can be readily seen from its definition in Eq. 6.8.

The dust limit on the magnitude & is derived from the requirement thefu* = -1. This can be
rewritten in terms of the conserved variables as

ij SiS;

Y=gt =DAW2 - 1). (6.19)

Combining this with the definition for, we find that asp — 1,
IS? = 1SiS; = 7(r + 2D). (6.20)

It can be shown that this is an upper limit. In our simulatiereskeep our total matter current well within
this limit by impose an upper limit on its magnitude 098¢(r + 2D) as per Fabeet al.[77].



Chapter

The Effects of Surrounding Gas on Binary
Black Hole Mergers

“Clouds come floating into my life, no longer to carry rain aher storm, but to add color to
my sunset sky.” -Rabindranath Tagore

Black holes do not exist in vacuum; they have accretion disics sometimes, as in the case of Active
Galactic Nuclei (AGN), relativistic jets. Simulations oBBl systems to date have not considered tiiects
of any surrounding matter on merging BBHSs in the fully namelar relativistic regime. Nevertheless, matter
is expected to play a non-trivial role in the merger dynamidscretion disks, for instance, may provide
torque such that the BHs’ spins slowly align [39] which fe&dsk into the orbital dynamics via the spin-
orbit coupling. In fact, Armitaget al.[15] noted that a gas medium could speed the merger of BBHis fro
eccentric binaries in such a way that LISA may be able to detstgnal encoded with physics beyond the
standard vacuum BBH waveforms currently being generatedasse. In this chapter we take the first steps
to considering these questions through fully-coupledinear simulations.

Early N-body simulations by Milosavljevic and Merritt [1B&nd subsequent studies [194, 35] found
supermassive BBH inspirals stalled at 0.01-1 parsecs.édsetlstudies, for sticiently massive BBH merg-
ers M > 10®M,), three-body interactions with stars in the galaxy are nugéy suficient to extract
enough angular momentum from the pair for the BHs to mergethat distance, gravitational wave ra-
diation alone merges the BBH on a timescale of the order of labléutime since circularized BBHs are
much less fiicient at emitting angular momentum through gravitatioraliation. For these supermassive
BBHSs, angular momentum transportation via surroundingrgag be a dominant mechanism in hastening
a merger [32, 93, 14, 75, 76]. A recent numerical study usogjdlewtonian terms in N-body simulations
found that incorporating relativity into such systems maystticient to overcome this stalled inspiral [154].
In another study, Cuadet al.[64] evolved wet binaries using SPH around BBHs, suggestytyodynam-
ics could be important in the last phase of the inspiral.
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This chapter discusses a study in progress which aims a¢ssldg this question. In Sec. 7.1 we consider
an initial system where the standard BBH vacuum initial datmbedded in atationarygas cloud whose
density is astrophysically motivated. In Sec. 7.2 we dis¢he current progress in evolving wet BBHs.

7.1 Initial Data

7.1.1 Constraint Solving with Matter

Spacetimes coupled with matter must start with constisaitisfying initial data which are once again cou-
pled. Consider the constraint equations (Eq. 3.6) from @&repwith the matter fields reinserted

-~ 1 -~ 1 1 - s
iv.,, _ = T B2 TN A - _ 5
VIVig = SUR = UK+ SuTTAGA 2myp, (7.1a)

8%, (7.1b)

. 2L
Vil AT - SViK

where we replaced thg; from the vacuum chapters with to avoid confusion. The matter quantitiesnd
Jj can now be written in terms of primitive variables using tlegfect fluid stress-energy-momentum tensor

as
p = mnT* =po(l+eW?+P(W2-1), (7.2)
1
J = — 1% n,TY = pohWlv; = —S; . (7.3)
J U 0 J \/7 J

The popular method to solve these coupled equations is sttt extended thin sandwich method, but
in this work we follow a diterent approach. By imposing our initial matter field be stadiry,S; vanishes
initially, uncoupling the constraints again. Though a daif matter surrounding a binary system would not
be stationary, this was a first step towards solving spaestioontaining matter, inspired by the alterations
already in place for Sec. 5.5. Stationary matter simpliffess tnomentum constraint so the Bowen-York
approach is again applicable. Our initial extrinsic cunvatis again given by Eq. 3.12.

To create ghysicalmatter field, solving the Hamiltonian constraint is more @linated than discussed
in Sec. 5.5. Following the approach of fii@r et al. [126] for their Black Hole — Neutron Star (BHNS)
initial data, we again rescale the quaniitypy several factors of the BY conformal factor to guarantee th
existence of a solution [61]. We rescalas

p=y"p (7.4)

wheren must satisfyn > 5 so the source term in the Hamiltonian constraint is reemitis-27y°"5. This is
suficient to guarantee a unigue solution. As has become standarchoosen = 8 such that the constraint
equation is written

ViViy - %l//ie - lizwf’Kz + %(//‘7,&”-,&” = —2my3p. (7.5)
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We computep using a modified single-domain spectral method from Ans&®] fnd an initial guess for
p. We keep the conformal fact@r used in the rescaling fixed to our initial guess while we sdibrethe
conformal factor.

As an additional complication, the quantity which feedsithte constraint equation is only the rest-mass
density in the dust limit. For general stationary matteg thatter quantity in the Hamiltonian constraint
reduces to

p =po(l+e). (7.6)

We set the form ofp to be a sum of (positive) Gaussians and solve the Hamiltoo@astraint using a
modified single-domain pseudo-spectral method from AngbBf With the final conformal factoy and
the imposeg, we use a Newton-Raphson iteration to find a set of primitemeables which are consistent
with the equation of state and

7.1.2 Choosing a Matter Field and Binary

In our current evolutions we embed the standard BBH used aph 5, the D10 run of Tichgt al.[179],
inside a Gaussian gas cloud large enough to encompass bath@H choice in the peak of our Gaussian
matter clouds is inspired by studies of the Central Molechdtzne (CMZ) in the center of the Milky Way as
reviewed by Morris and Serabyn [138]. This zore200 pc in radius has been observed through emissions
of CO lines from its surface. From this observation the stefmatter density is estimated-atsM/pc.
Within this area the number density of CO is expected to begvamage, 1ftm=3. Given CO has a mass

of 28 gmole, for a spacetime with an ADM mass of 1 in code units reprégg a system of total mass
Msys = NMg the energy density is given by

b 7.6971x 10’ g
P(cgs) = mpcode= N2 Pcode o (7.7)

Thus a Gaussian peak at20n code units yields a physical density corresponding 169710?/N?) g/cm®
which is equivalent to the CMZ’s estimated density fora'°M,, system. For all the work in this chapter
we assume, for simplicity, a polytropic equation of state

P= Kpg- (78)

This is a form of the ideal fluid which eliminates the need foe ttonserved variable to be evolved,
decreased the computational expense of simulations.

In Table 7.1 we summarize the parameters used to build otialispacetime as well as the physical
properties of the resulting spacetime. As expected, theostay matter field did not change the ADM
angular momentum of the system, but it did add an additiotd#e2ADM energy. The presence of the
matter field increased the AH masses of the BHs increased lipy0diD%. In Fig. 7.1 we present a surface
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Run D/M  |PY|/M po/M? a/M  k/(MPED) T | Muy/M Eppom /M Tapm /M2
Dry 10.0 0.0954325 — — — — 5.000 0.9895 0.9531
Wet 10.0 0.095432% 1.083x 10> 10.83 100 2| 0.5004413562 1.0133 0.9531

Table 7.1.Overview of the properties of the initial data considerethis work. HereD/M is the coordinate separation
of the binary,|PY|/M is the initial momentum of the BHs,/M? ando/M describe the geometry of the matter field.
x andI" are the parameters for the equation of states. The final ttuleenns describe the AH masses, ADM energy,
and ADM angular momentum respectively.

plot of the rest-mass density/M? in the area surrounding the BHs.

pgM?

Figure 7.1. Surface plot of the rest-mass matter dengifyM? across thexy-plane. The BHs are at= +5 as can be
seen by the dropping density at the site of the punctures.

7.2 Current Progress

We have created the above “wet” BBH system and evolved igusieMayaKranc code coupled t6cotch.
Thus far | have not been successful simulatimgiting BBH systems to and through merger. Roland Haas
has shown that head-on collisions embedded incgate successful with this code, but the BBH system
described above crashes after about19@vell after a head-on from the same separation would merge. T
trouble currently lies in the vicinity of the puncture, wiitha grid point or two of the punctures themselves,
where the curvature of the spacetime is great enough thdbthady flat approximations made ifcotch
are not sfficiently valid. When the density there becomes too high, ithellation crashes.

When a “wet” BBH system can successfully be evolved, the aldotial data is just an entry point to
a vast parameter space. Evolving eccentric binaries wdultyghe défects of the gas on the circularization
of the system. Spin and unequal masses would add more diomsnsAll of these systems can shed light
on the extent to which a surrounding gas cloud cfiech the dynamics and subsequent gravitational wave
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emissions from BBH systemsffects which may be observable with the next generation ofitgitanal
wave observatories.



Chapter

Summary and Open Questions

“The important thing is not to stop questioning.’Albert Einstein

The recent breakthroughs in NR and subsequent franticestudiwaveforms and building of waveform
template banks have changed the very nature of the field. Ngelois NR a numerical side project of
general relativistic studies, having fully realized itag¢ as a connector between gravitational theory and
experiment, the heart of matched-template signal sear@res relativistic astrophysics. The studies in
this dissertation considered the robustness of generaggdfarms for BBH mergers in the presence of the
constraint violation, inaccuracies, anfieets thereof still present in the initial data.

Not only did we find the waveforms robust to the spurious dediinal wave content present in standard
initial spacetime (see Chapter 4), but we found that a full ddditional Eapm can be added to such a
standard BBH in the form of gravitational waves before thalfBH is significantly altered. We additionally
observed that such changes, when present, were consisterihevenergy absorbed by the BHs while the
spurious radiation flushed out of the system.

This study was expanded on in Chapter 5 where we consideradoaical choice in approximate initial
data, representing the BHs as point sources in solving th Alamiltonian on the initial hypersurface.
We find that the Match between the waveforms generated bykibletsn and the standard initial data
was stficiently high & 0.97) for binary systems with masses above 40Kbr both initial and advanced
LIGO noise curves, that the resulting waveforms would b@aant for signal detection purposes, though
the diferences could still lead to significant parameter estimatigors. Perhaps more important was the
observation that the constraint violations were negative, an certain regimes, can be interpreted as an
unphysical energy field that gets absorbed by BHs as theradmtstiolating system approaches a constraint
surface of a BBH system with fierent masses.

In both the above studies, we found the dynamics of the AH esadsiring an evolution is a good
indicator of the validity and accuracy of the generated i@ws. In the first case the absorption of the
waves increased the AH masses during inspiral while in ttterl@ase the negative constraint violations
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unphysically decreased it. Such an indicator is vital whemertomplicated spacetime configurations are
considered, where the initial data is not so easily gengraide second study shows, after all, that for at
least one type of approximate initial data, approximateiodaed be good enough for waveform generation
in the LIGO band.

There are some caveats to these studies. The recent strimggiirements of Lindblonet al. [124]
have yet to be taken into account. Similarly, the suspeateall &fects of issues with our wave extraction
methods, as pointed out by Lehredral. [121], have also not been considered in depth.

Beyond these conclusions and caveats, there remain manygopstions. The above studies were done
only for equal-mass, non-spinning BBHs. Spinning BHs, asufised in Sec. 3.1.4, are implemented only
through the extrinsic curvature. As such, they can produagehmmore spurious radiation. The question
remains how much energy is seen in the resulting spuriouatiad and how much does it change the
AH masses of the BHs as it flushes out of the system. Simildré/,constraint violations from spinning
BBHSs in the skeleton initial data have not been consideredollaw-up side experiment which has not
been published shows that if the AH mass of a spinning BH dseeenough for the dimensionless spin
parameter to become extremal, the numerical solution giagefrom the constraint surface and is no longer
any use for generating waveforms. This would set an uppdt tomthe amount of constraint violations
allowed in any initial data.

These studies can be extended in other directions as wadlintérpretation of the constraint violations
as matter fields is admittedly false, but it works in the sesfsehanging AH mass and the resulting con-
vergence to a constraint surface begs the question of whiktisds a feature of the BSSN formulation of
Einstein’s equations. A possible follow-up study [95] isrtiomerically evolve the constraint propagation
system of equations on a single BH background to see what ofanstraint violations damp away rather
than diverge.

Finally, the results of these studies can be applied to atiempts at creating initial data such as the
stitching of PN and perturbative regime solutions of Yueesl. [195] or the PN initial data of Kellyet
al. [115]. The degree of acceptable constraint violations sultgng spurious radiation can better guide the
locations of the stitching regimes or delegate how manyrsrdePN must be used for ficiently accurate
initial data.

Currently still in progress, the work of Chapter 7 will eveally consider whether waveforms from
BBHs detected by observatories like LIGO or LISA might camiaformation concerning the matter content
surrounding the binary. The question would then become hewse the gas must be to significantijeat
the BBH dynamics. If this is a physical density, these coldd prove a valuable testbed for ultra-relativistic
hydrodynamics, possibly feeding into studies of coreade supernovae which also require relativistic
matter.

This dissertation could have addressed more of these qosstnd indeed there aréats currently
underway to address some of them, but it is the way of scigmaethere will always be more to under-
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stand. As this dissertation stands, the robustness of theuwa waveforms found in Chapter 4 will help
in the detection of gravitational waves using the currentglate banks. The robustness of the waveforms
generated in Chapter 5 question how well constraints musatsfied for future, nontrivial systems as well
as noting some behavior of the constraints in the BSSN fatimud which may prove interesting to follow
up on. Finally, the work in progress discussed in Chapterhilent may lead to a better understanding of
how supermassive BBHSs evolve through the last parsec,risapity a bridge to the world of fully-nonlinear,
fully-coupled ultrarelativistic hydrodynamics around BH



Appendix

Weyl| Scalars

A.1 Weyl Scalars on a Hypersurface

In Section 3.4 we considered only the derivationsiafas this is the scalar used in waveform extraction.
There are times, though, when consideration of the othar\ideyl scalars is desirable. These Weyl scalars
can be written in terms of the 13L" hypersurface quantities in a fashion similar to that fwumthe Sec. 3.4
for W,.

Again, we construct the Weyl scalars from the project of theyWensorC,,; onto an array of tetrad
components:

Yo = Cupysl®m’I'm’, (A.1a)
¥1 = Cupl™'m’, (A.1b)
¥, = Caﬁy(glamﬁﬁyn‘s, (A.1c)
Y3 = Cuppl™Pmn’, (A.1d)
Y, = Caﬁy(gn“ﬁﬁnyW. (A.le)

We rewrite the Weyl tensor in terms of the full four-dimensa Riemann tensar,,s and its ‘3+1’
decomposition. The Weyl scalars can be written as

Yo = Rijkl Iimj[kml + ZRojk| (Iomj[kml - mOIj[kml)

+Rojol (IoijOm' +mOUmOr - ZIOmijI') (A.2a)
Y1 = R nImk + Rojki (PO mM — Okt — Okt + mO0nk)

+Rojor (1! — n@i O — OO + Ol Oy, (A.2b)

¥y, = Rl min + Rojg (Omimn' — nOmkm' — mOumkn' + mOnitkm')
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+Ro; o (T = OO — mCimO% + O mOm), (A.2c)
Y3 = Rj W imkn + Rojui (11 Il — 1Ol n! — nOUmR + O

+Rojor ((Pndon' — Ot — nOdmon' + nOunOm'), (A.2d)
Y, = R.kam T 2R k|(n ik — monin m')

+Rojo (n% n%! + ln/iln! — 2n%mimon') (A.2e)

where, for exampleRoju = ng J—ﬁJ-T(J-? Ragys-

Using the ADM ‘3+1' decomposition and following [52, 51, 54, 53], we can wihe ‘3+1’ decompo-

sition of the Riemann tensor as

Rijk =
Rojk =
Rojo =

The Weyl scalars are not a true scalars.

Rijk + 2KikKij (A.3a)
=2 |0pKyj + F?[kK”p (A.3b)
Rji — KjpK§ + KK;. (A.3c)

Defined as projsabitine Weyl tensor onto a tetrad basis, they

are not invariant under a rotation of the tetrad. Just atsnia general relativity can have weights, so can
complex scalars related to the phase of their componentsiaftidyn of spin stransforms, under a rotation
of angley, asy’ = e'¥n. Consider the fiect on the Weyl scalars caused by a “spin” of the tetrad’s dexnp
components by an angl®. The real tetrad component$ and n# remain unaltered. Howevefi)" =

e® (m#). Applying this spin to¥,, the two projections of the Weyl tensor onid yields a transformation
Y, = ey, Thus the Weyl scala¥, is a spin 2 pseudo-scalar. Similarly derivély is spin 1,%, is
spinless¥; is a spin—1 pseudo-scalar, ant is spin—2.



Appendix
Multipole Expansions

Expanding quantities on a basis of spherical harmonics @es & vital tool for both understanding physics
and solving problems well beyond general relativity. Dugheagauge freedom of general relativity, not even
scalars are simply scalars. From this basis, the array @sblags expanded, encompassing spin-weighted
spherical harmonics, spherical vector harmonics, andrgiéensor harmonics. A very concise discussion
of multipolar expansions can be found in [178], but we’ll argd on this as pertains to this dissertation in
this Appendix.

B.1 Spin-weighted Spherical Harmonics

In Appendix A we show that most of the Weyl scalars have a remo-spin. The standard spherical har-
monics, though, are spin-zero objects and thus would reaquigficients that have spins themselves when
expanded on such a basis. It is easier to define a set of sjjimed spherical harmonics [142] and expand
on such a basis instead.

Consider the operatdrand it's related operat@r which, acting on a functiori with spins, are defined
as

of

—sin® L ins
sin®¢ (69+ sinea“") [ fsin~g] (B.1)

of

—sinS -t inS
sin 0(69 sinea“"> [fsin®g] . (B.2)

The spin-weighted spherical harmonics [142] are definedrims of the (spin-zero) spherical harmonics
operated on by the spin-lowering and spin-raising opesdat@ndd as

YO = g; 3: 5% (Y™M) (0<s<9), (B.3a)
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m . S (K_S)!——S m
JYOm = (—1) ,/(“S)!es (YE™) (- <s<0) (B.3b)

Some basic properties of spin-weighted spherical harnsonic

e As noted in Appendix A, any object of spin s transforms under a rotation through an anglas
n’ = e'¥y. By taking the complex conjugate of this definition, it isarléhat the complex conjugate
of n has spin-s. With the conjugation properties of the spin-zero sphélieamonics,

M = (—psm gyl (B.4)
e The spin-weighted spherical harmonics are an orthonorm@sisbsatisfying

7{ YA (0,0) s Y (6, 90) dQ = 65 560 ¢0mmy (B.5)

B.2 \ector Spherical Harmonics

There are times when the quantity one would like to decomjzaset a scalar. While our goal is a discussion
of tensor spherical harmonics, it is useful to consider fiesttor spherical harmonics, which link the scalar
spherical harmonics to a convenient, standard spatiablowate basis.

For convenience we consider a ba&fisrelated to the standard Cartesian basis as

&€ = &, (B.6a)
& = —(éxx1gy) . (B.6b)

On this basis, we define the vector spherical harmonic (V®Hgims of the spin-zero scalar spherical
harmonicsy‘™ as .
YoM SN (e mr i jem) g7 yEm (B.7)
m=—¢ mr=-1
where(¢ ¢ mni|I” m'”) are Clebsch-Gordan cfigients.
Defined in this way, this set of VSHs gpeare-orbitalbecause they are eigenvectors of the orbital angular
momentum operataE? = —r?vV2 + 8, (r2s,)

Lry“m=y¢ (¢ +1)y"m (B.8)

which is convenient as a basis in solving the vector Laplaggton such as that found in the Bowen-York
initial data (Sec. 3.1.2).
There is another set of VSHs, though, which puee-spinVSHs. Denoted as the three vectoks&™,
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Y BMandY R‘M), they are defined from the spin-zero scalar spherical haiteas

yEM %vv’«’m, (B.9a)
yBm iLYf’“, (B.9b)

’ = & .9c
YRt’m ~ Y(m (B 9 )

where we, for convenience, lat= /¢(¢ + 1), V is the Euclidean gradient operator ahd= %m x V. These
harmonics are best seen as being linked to another spatiedinate basisn, m, 1} given by

no= &, (B.10a)
m = iz(é9+lé¢), (B.10b)
N

m \/E(eg &) . (B.10c)

In this basis, we can relate the pure-spin VSHSs to the spighted spherical harmonics as derived by
Goldberget al.[91].

1
yEm _ ﬁ(_zYt’,mm_ZYl’mm), (B.11a)
yBm — L (oytmy L yEm) | B.11b
\/E( ) ) ) ( )
yRM = gybmy, (B.11c)

B.3 Tensor Spherical Harmonics

Expanding on the idea of vector spherical harmortiessorspherical harmonics couple the spin-zero scalar
spherical harmonics not once, but twice to a coordinatesbaEie choices in tensor spherical harmonics
(TSHSs) has varied frequently over the past forty years asuwaichoices in normalization and orthogonality
can be chosen and the obstacle of completeness has beeardta€Mit of this came many sets of TSHs:
the pure-orbital harmonics of Mathews [134], theure-spinharmonics of Zerilli [197], the Regge-Wheeler
harmonics [158], and the symmetric tracefree TSHs of Th¢t@8]. For the Teukolsky-Nakamura wave
solutions, the Mathews-Zerilli [197, 178] basis is usede TSHs are generally derived for spatial pertur-
bations and thus we will discuss them in that sense. Expansidull 4-dimensional TSHs encompasses
expanding the coordinate bases to four dimensions, whids ffee spatial TSHs below with zeroes in the
matrix representation and adds supplementary harmonigsrtarb what in the ‘31’ decomposition is the
gauges.
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B.3.1 Mathews Tensor Spherical Harmonics

For a spatial set of TSHs, Mathews links the coordinate %t® itself in such a way that he attains a set
of five symmetric basis tensors! wherem ranges from-2 to 2.

1 1
th= > Y (11imm’ ) 2m) M e ™ (B.12)
m=-1n=-1
These basis tensors transform into each other via an iril@lduepresentation of the 2nd order rotation
group and are made complete by the related zeroth ordersepation which happens to bg 3 times
the Euclidean identity matrix:

1 1
%5 = _mz=;1m'z=:—1<l 1m m’|00) ™ @ ™. (B.13)
This basis is used by Mathews to create six basic TSHs dehgtdd' (- ‘™ where indicies denote, in
the case of Mathews’ TSHs, the harmonics suchheinges fron¥ — A to £ + A. As with the basis tensors
t™, there are five such fot = 2 and another linked for completeness where 0. These TSHs are defined
in terms of the above coordinate basis as

4 2
200 = N N (e2m mem) YO (B.14a)
m=—{ m=-2
1
TOLIM . _ytm (_5 ) (B.14b)
V3

The Mathews harmonics as above is complete (the originaémamits T°:¢™ and as such is not
complete, but this is remedied by Thorne in his discussidtii8]. The properties of Mathews TSHs are as
follows:

e Under a complex conjugate they transform as
TAC.Im — (_l)€’+£+mTM’,€—m. (815)
e They are orthonormal
/T/M’ LM Tve UM = OO0 OLL OMMY (B.16)
where we use the notatian- y := X'y; to avoid too many indicies.

e They have parityr = (-1)"".
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¢ They are eigenstates of the total angular momentum opeiator

’r*etM=ee+ )TtetM (B.17)

B.3.2 Zerilli Tensor Spherical Harmonics

Just as there are pure-orbital vs pure-spin VSHs, so todnare pure-spin TSHs. These harmonics, denoted
now identically asr*?-™ but with 1 no longer indicating the angular momentum order, but chdsem

the setlL, T, E, B. They are related to the Mathews pure-orbital harmonicsavimitary transformation.

It is easiest to consider them in terms of coupling the comidi basist, m,m to the spin-zero spherical
harmonics. Define fj as symmetrization of an object and [[" as symmetrization and taking the transverse-
traceless portion of the object. Then the Zerilli TSHs are

oM = (n@n)vfm (B.18a)

Troem \/_(6—n®n)Y‘7m (B.18b)

TELIM (5(“ 1)> n@rvvf’“] (B.18c)
|

TE2(m _ (2(f+ 22))|> Loy (B.18d)

TBLIM — (5(“ 1)> nleY"m] (B.18e)

TB2¢m (2(5;22)”2 [rv Ly ST (B.18f)

Just as we related the pure-spin VSHs to the spin-weightldrig@al harmonics linked to the basis
n, m, m SO can we do so for the Zerilli TSHs.

TR = YoM en), (B.19a)
1

pTOm _ OYf,m((g —nen) (B.19b)
\/é s

TELM = L YMmen— Y] (B.19¢)
1

TE2¢m  _ - [L2YEMm@ m + Yo @ 7 (B.19d)

TBLImM _ ~ [ 1Yo men+,Y6 m®n}s , (B.19e)

7B2.¢m t LY@ m — oYM @ (B.19f)
V2

The properties of Zerilli's pure-spin TSHs are as follows
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e A complex conjugate operates as
TAS.(m = (—)NAStm (B.20)

¢ Unlike the version that appears in Zerilli's 1970 paper,\thesion above is orthonormal and complete
under the inner product

/Tﬂs,fm TVSTWAQ = 6,405 500 Omm (B.21)

e These TSHs exhibit two types of parity. The “magnetic’-tyf®Hs ( = B) have parityr = (—1)*1
while the “electric’-type TSHsA € {L, T, E}) have parityr = (-1)’.

e The TSHT-%!Mis purely longitudinal (radial), thus having spin 0 like tNewman-Penros#.,.
e The TSHTT%¢™Mis purely transverse but also with spin 0.

e The TSHSTEL{MandTBL ‘M are mixed longitudinal and transverse with spin 1 and tloeesfelated
to the Newman-PenrosEs.

e The TSHSTE2!M and TB2 (M are transverse and traceless with spin 2 and thereforeedetatthe
Newman-Penros¥,.

The above pure-spin TSHs are not quite equivalent to ZerillEHs. Zerilli (and therefore Nakamura
and Teukolsky in their expansions) use a slightlfatent basis related to the above by

arm = THOM, (B.22a)
bym = TEHM, (B.22D)
cem = —iTBLIM, (B.22c)
dem = —iTB2(M, (B.22d)
fom = TEZM, (B.22¢)
gem = TTOIM (B.22f)

B.3.3 Tensor Spherical Harmonics Decomposition

Given a spatial, symmetric tensor with 6 independent corapt®; it can be expanded on a set of 6 TSHs
for every (,m) mode. For a system written in the spatial coordinate basis®) we can expand a general
tensorK using Zerilli's pure-spin TSHs. Using Zerilli's notatiothis expansion is given as

K = Z {A[,maf,m + Bembem + Qemerm+ Demdem + Femfem + Gf,mgt’,m} (B.23)

,m
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or, in the above notation,

K = Z {A(’mTLO,fm + B[’mTE Lfm _ ng’mTBl’[m _ lD[’mTBz’gm + Ff’mTEZ,t’m + G[’mTT O,t’m} )

,m

(B.24)
Using the definitions in the previous section, it is convahie write the matrices representing the above
decomposition explicitly in terms of the spin-zero sphakritarmonics for the derivation of the TNWSs.
The pure longitudinal and pure transverse TSHSs are, wréigiticitly,

Yém 0 0
arm = THOIM= 0 0 0], (B.25a)
0 00
0 0 0
_ TO,(m_i om
gem = T =75 0Y 0 (B.25b)

0 0 sirfeYt™
The TSHs with mixed longitude and transverse are

0 dpYEm g ytm

bgm = TEMM=Ar| + 0 0 , (B.263a)
* 0 0
0 csaYy" —singYy"
cem = —TPH M =aAr [« 0 0 . (B.26b)
* 0 0

where we conveniently let := (V20(¢ + 1))‘%.
The remaining two TSHs are those that are transverse-tsselvritten explicitly as

, 0 O 0
fem = TEZ""mzﬁ 0 weim Xtm , (B.27a)
% —SirPeWEm
, 0 0 0
dem = —zTBZ’[m=% 0 —csoXtM sipwim (B.27b)
* singxtm

where we introduce two new angular functiokg,™ andX“™, given by

1
wem = <a§ — COt#dy — maﬁ;) yem, (B.28)
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XM = 29, (9 — cotd) YO (B.29)



Appendix
Teukolsky-Nakamura Waves

Given a spacetime such as a binary black hole system, we eddldravitational radiation through a Brill
wave [47], a solution to the fully-nonlinear Einstein edaas. Unfortunately the Brill wave is flicult
to interpret and control. We find it convenient to work instegith Teukolsky-Nakamura waves [174, 140,
166], a solution to the linearized Einstein equations. €hgravitational waves, used in perturbing the initial
spacetime of Ch. 4, are discussed and derived in this Appendi

The linearized Einstein equations is the canonical s@pint for deriving gravitational waves [184]. It
is insightful to consider the metric perturbation that sslthe linearized Einstein equations on a convenient
basis, namely the tensor spherical harmonics. It was ndtl@82 that such a solution was explicitly written
out for the? = 2 modes of a TT perturbation on a spherical coordinate bealsTeukolsky waves [174].
Teukolsky waves were useful in testing codes in a weak yeamyn regime, but their use is limited in full
non-linear numerical relativity. An alternative was an aggzh by Nakamura [140, 166] which not only
solved the linearized Einstein equation on the tensor fgdidnarmonics basis for generdl, (n) modes,
but also chose an initially conformally flat spatial metdieaving the entire perturbation in the extrinsic
curvature.

C.1 Metric Perturbation
Consider a perturbation of the metrig
Gop = G4 + Dap (C.1)

wheregg}_; is the background metric which we choose, for simplicitypéoMinkowskian flat spacé,z. As
we are looking for gravitational waves, we consider a transe-traceless perturbation. That is, we consider
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only spatial perturbations which satisfy

Il
o

Vab%
P Dap

(C.2a)
(C.2b)

Il
o

whereV, is the covariant derivative in terms of the background roefgs. With the requirements of
Eqg. C.2a and the spatial nature of the perturbation, therely two degrees of freedom corresponding to
the two polarizations of gravitational radiatidm, andh,.

As we're considering this for initial data only, let us spaakhe framework of the ADM formalism
where we choose our shift to vanish and we assume a vacuuretispac With these assumptions, the
evolution equations (Eqg. 2.11 and Eq. 2.12) simplify to

Oryij = —2aKjj, (C.3)
atKij = —%iﬁja’+(l7€ij+a’KKij—2(lKikKkj (C.4)

The constraint equations (Eqg. 2.8 and Eq. 2.9) simplify to

Ch = R+KZ2-KIKj, (C.5)
M, = VK -ViK. (C.6)

The evolution equation foy;; can be written in terms of the metric perturbation

1

Kij = —%atbij- (C.7)

Similarly, taking the trace of the evolution equation Gy and assumin@y vanishes,
oK = -VZa - KK (C.8)

which, sinceKj; is first order inb;j, is second order ;. We will only consider terms first order in the
metric perturbation, so in this cadegK =~ ~V2.

Let us assume at this point we take= 1, which is approximately accurate far from any BH. Then
0K = 0 to first order inh and, assuming we start with maximal slicing & 0), the trace always vanishes.
In this case the momentum constraint, assuming it is satjsieluces to

Vik! = 0. (C.9)

SinceK = 0, the trace of Eq. C.7 yieldétb{ﬁ = 0. Similarly, applying Eqg. C.7 into Eqg. C.9 yields
o (Wbik) = 0. Thus, choosing the trace and transverse portions totvamitsally nails the perturbation to
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be transverse-traceless.
We also note that, to first order in this spatial perturbatibie Ricci tensor is

1, o« e e e

Rij = E (—ViVJ‘bi + Vkvjbik + VkVibJ‘k - Vkabij) . (C.10)
We now assume, additionally, that the background metricaissfy the covariant derivates commute. With
this assumption and vanishing trace and transverse pertibthe perturbation, the first three terms in the
Ricci vanish, leaving

1o,
Rij = —EVkabij. (C.11)

The evolution equation for the extrinsic curvature undesthassumptions reduces to
loys
o0Kjj = _EV Vibij . (C.12)

Combining this with Eg. C.7,
92Kij = VKViKG;. (C.13)

In constructing our initial data, we set the actual osgilig@imetric perturbatior; to vanish on the initial
hypersurface. This does not, as the above shows, mean ¢hakittinsic curvature vanishes. If we choose
our Kjj such that its trac& vanishes and both Equations C.9 and C.13 are satisfied, Wendgiburselves
with a gravitational wave. To do this, we expand the extdrsirvature in terms of the TSHs of Sec. B.3.3.

C.2 Expansion ofK;;

In the linear spatial perturbation described above, weidenghe expansion of the extrinsic curvature in
terms of the Zerilli pure-spin TSHSs.

K = Z {ﬂamTLO,fm + B[,mTE Ltm _ laf’mTBl,fm _ l@[’mTBz’[m + %’mTEZ,[m + g[’mTT O,Km} )

&m

(C.14)
First let us consider the trace. Using the explicitly writieut TSHs in the previous appendix,

2

so we have one less diieient to solve for.

Eg. C.9 yields three constraint equations, while Eq. C.EBKyi five second-order coupledigirential
equations for the expansion dbeients. If we consider only even parity modes, b@h, and D, ,, must
both vanish as they are daeients to the magnetic-type parity TSHs. We can now decoagliferential



106

equation forA whose general solution is given by

1 NP (t=r)+PO (t+r
Apm =12 (;&) el =0+ Pt +1) (C.16)

r

wherePig’m(t— r) and®7 (t+r) are arbitrary functions which describe the radial depeodeof ingoing and
outgoing waves respectively. With this d¢beient, the rest of the equations fall apart.
Absorbing the extra factors ofand¢ into the TSH co#icients, we find the solution given in Chapter 4:

ArmYt™ BrmYo™ BrmYem
Ai=d | r GemY'M e FnWOT FemX'm (C.17)
&m * * (GemYO™ = FrmWEM) sir? 6

where the coficients Ay m, Br.m, Fr.m, andG,m are functions only of the coordinate radius and tinteas
follows

Epl, (t—1)+PO (t+T
Arm = 12 (%(‘%) ml=1) ” L ), (C.18a)
1 3
= — C.18b
Brm 00+ 1y Or(r°Aem), ( )
r2
Gem = —Eﬂf,m, (C.18c)

1

_ r 3
Fem = m [gt’,m"'ar (mar(r ﬂ[,m)>} (C.18d)



Appendix

Tools for Coupled Hydrodynamic
Simulations

In this appendix we will discuss the various parts of a hygiraic code in detail. For this Appendix we
drop the subscript from pq to avoid clutter in the equations.

D.1 Reconstruction: Piecewise Parabolic Method (PPM)

The PPM reconstruction technique [62], as applied in ouecot/olves four steps:

e Interpolate each variable to the cell boundary using a quedpolynomial, setting the variables on
both sides of the boundary as equivalent at first.

o If desired, see if there is a contact discontinuity in thé aetl sharpen it.
e If desired, add artificial viscosity.
e Preserve monotonicity by making replacements of one sigelable, if necessary.

We assume the variablgis a scalar function ok, the dimension we are reconstructing along, and
interpolate a quadratic polynomial to the cell boundary.

1 1
Gi+1/2 = E(in +0) + 6(5in — Om0i+1) (D.1)

where

(D.2)

g = sign@ai) min(l6Gil, 2idi+1 — Gil, 26 — Gi-1l)  if(0ir1 — G)(Gi — Gi-1) > O
m 0 otherwise
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54 = (-G 03)

Initially we set the variable value on both the left and righthe cell interface as equivalent

of = g5 = Gty (D.4)

Discontinuities which are primarily contact discontinest can be treated fikerently. We can detect
whether a contact discontinuity exists in the cell by chegkivhether the following condition is satisfied

. loi+1 — pi-1l - |Pis1 — Pi_1
min(pi+1, pi-1) ~ MiN(Pi.1, Pi—1)

(D.5)

whereKg is a user-specified, problem-specific constant to contelsénsitivity of the shock detection. If
this condition is satisfied, we apply the steepening todbmesityvariable only. We start by defining the
guantityn as

n = max(Qmin(L, 71(77 — 12))) (D.6)

wheren, andn, are user-specified positive constants. Given

_ Pir1— 20i + pi-1

2
6 pl 6AX2 ) (D7)
the quantityyis
- %ﬁr% if {6%01+16%pi—1 < 0, (pi+1 — pi-1) — o Min(pisal, lpi-1l) > O}
n= _ . (D.8)
0 otherwise
With r determined, the density to the left and right of the bouregais modified as
Lo b1 L Ls D.9
Piz1 = Pl =m) + { pi + S0moi | 1, (D.9a)
1
pft = 0=+ (pr = owpra ) (0.9b)

Thus, shock detection and sharpening depends on four afieed parameterse, and Kq define how a
contact discontinuity is detected whijg andn, determine to what extent the shock is sharpened.

The PPM also includes the option to flatten the zone structeae shocks by adding simple dissipation.
From two user-specified parameters andw,, we define a flattening parameter

max(O, 1-w> max(O, (% - w1>>> if epmin(Pi—1, Pis1) < |Piy1 — Pical, v =V, >0

1 otherwise

Vi =

(D.10)
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The flattening is then accomplished by the transformation
qil"R — viqi'"R +(1-v)q. (D.11)

This differs from the flattening in Colella and Woodward [62] by its tddéion to stencils with three points
and andy; is further modified
vi = Max (i, Vitsign®,_1-P.1) ) - (D.12)

In the final step, we avoid oscillatory behavior by makingftiiowing replacements to preserve mono-

tonicity:
Gha = O =G if (of - g)(G —dfy1) <O (D.13a)
. 1 1
du—Sa-200 if (a7 -ds) (qi -5+ qﬁ) > 5@ -as)®  (D.13)
. 1 1
ot — 3g - 273, i (o = a0 <Qi - 5@+ qiR> <3 -d)®  (D.130)

The PPM then gives us the set of conservative and primitivialas on both sides of a cell interface which
we can use to set up a Riemann problem. For more detail, seer@lppD.

D.2 Riemann Solver: Modified Marquina

For our work we use an approximate Riemann solver, the Maegsplver, derived first by Donat and
Marquina [70], modified by Aloyet al. [8] and extended to general relativity by Frieben, Ibaéed Pons.
We consider the linearized Riemann problem in one dimension

HC+0,FV =0 (D.14)

across a discontinuity at! = 0 so the solution are self-similar in terms of the variable= x'/t. The
Marquina solver only finds the flux along tl§e= O characteristic ray.

We calculate the eigenvalu@gC) and left and right eigenvector§(C) andrt;(C) respectively, of the
Jacobian matrip8 := a?,ig. The eigenvalues of this Jacobian define the material angsticavaves in this
direction. The material waves are determined by the trigleresector

Ao = av* — B~. (D.15)

The remaining two eigenvectoss define the two acoustic waves given in terms of the local svetakity

¢s found through
oP P oP
hc = -
e E+p§ de

= — D.16
e (D.16)

Po
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These acoustic eigenvectors are

a

b= 1o (V- Do [A- @D v - @Rl @)

1-v2c2
Corresponding left and right eigenvectors can be analjticalculated as well and can be found, for exam-
ple, in [70].
With this decomposition in hand, we define characteristitatdes and fluxes which simplify the solu-
tion to the problem:

R = [(CYR).CHR (D.18a)

|
fil_,R I (CL,R) . 7:L,R (D18b)

Depending on the relative sign of the left and right eigemea) the characteristic fluxe[_sare set. If4;(CHR)
are of the same sign,

i i 2. (0L
mJU={{“ﬂ}”Aw)>° (D.19)

{0,fk} otherwise

If the sign of the eigenvalug; changes across the cell boundary, we instead calculate-&tiedrichs type
flux given by

(fL + A'w}) (D.20a)

i = = (fh—A'wR) (D.20b)

NI NI

where Al = max(4;(CY), 4;(CR)). The characteristic fluxes denote the part of the approénRiemann
solution we use for the matter evolution.

Before we can compute the Marquina flux across the cell bayndansider the form of the conservation
equation in terms of the characteristic variabledefined in Eq. D.18b. Eq. D.14 can then be rewritten as

otw + Adyw =0 (D.21)

whereA is the diagonal matrix of eigenvalues. Each charactensti@ble then obeys the linear advection
equation with velocityl;, easing our forts in solving the Riemann problem. We can write the sofutio
terms of the characteristic variables and the disconimiithe characteristic variables across the disconti-
nuity,

Aw:=w —wr=1-(CL-CR). (D.22)

We reorder the variables such that the corresponding eidges are sorted by magnitude < ... < An.
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Defining (ej)i = 5,’ we can solve the Riemann problem in terms of the charatiteviariable on the left

M
w=(w) + Z Amjej (D.23)
j=1
where the similarity variablé lies between th&y, andAm,1, or in terms of the characteristic variable on
the right
N .
w=(wgr- > Awel (D.24)
j=M+1

Desiring the best of both worlds, we average these two soisiti

M N
1 . .
-z el _ el
W= | W+ wr+ 12:1 Awje j:§M+lAwJe (D.25)

which can be rewritten in terms of the actual conserved bbby operating the solution on the right
eigenvector' to obtain the solution

M N
1 . .
- = = ol
C= 5 CL+Cr+ ?:1 Awjt j:§M+1Ath . (D.26)

Given the conserved variables which approximately soleeRemann problem, we note that our goal
in solving the Riemann problem is to calculate thex across the cell boundary. From Eq. 6.9 we have
the analytic expression of the fluxes in terms of the consisezand primitive variables. By converting the
above derived conservative variables to primitives we tell/¢he information necessary to calculate the
flux. Here we simplify in that we consider only the flux along ttharacteristi¢ = 0, yielding a simple
flux calculation N

F(C) = % (T(CL) + F(CL) - Z |/li|Amiri> .. (D.27)
i=1

The actual flux used in Eq. 6.14 is
~ 1
F = E(f‘ o+ f, ot + Q). (D.28)

whereQ is the correction due to the characteristic conservativepjsl

N

8= |4l (AwLr, — Awgrg)) (D.29)
i=1
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D.3 Recovery of Primitives

While we evolve the conserved variableés= {D, S;, 7}, they are not convenient for analyzing the system.
Instead, we cover the set of primitive variablgs, V, €} together with the derived quantities of pressure
P = P(po, €) and the Lorentz factoW = (1 — vV'v;)~Y/2. There are two types of recovery methods depending
on the type of equation of state. For both methods we work thigh‘undensitized” conserved variables
defined by dividing by the square-root of the spatial metj§, We choose a constraint,= 0, and use a
Newton-Raphson type iteration until this is satisfied.

D.3.1 Polytropic Equation of State

The polytropic equation of stat(p,) = o}, is a special form of the ideal gas equation of sRfeo, €) =
(' = 1)poe where the internal energy can be directly related to thespresand rest-mass density as

r-1
_ Kpo

= : D.30
€=r_1 (D-30)

In this case, the constraint we iterate towards satisfyinderived from the definition of the undensitized

conserved energy:
f=pW-D (D.31)

where we start from a reasonable guess for the rest-masgydgnsWith the equation of state known, the
specific enthalpy for this guess simplifies to

r© Tkpo
h=1 D.32
tr1 (D.32)
From the requirement that,u* = -1 we can find the Lorentz factor in terms of the updated cowrskerv

variables and the guess for the rest-mass density to be

- S2

As W is directly related tch, it is easiest to write the derivative of the constrafnin terms of the
derivative ofh as our guess for the, changes

’ " 5082 -
WD2h3 ( )
where 1 op
=== (D.35)

" fo dp
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D.3.2 General Equation of State

For a general equation of stae= P(p,, €), we choose this the equation of state itself as the consti@i
satisfy:
f =P - P(Bo, €). (D.36)

Given an initial guess for the pressufewe find the resulting guesses for the rest-mass densitentor
factor, and internal energy from the new conserved vargble

D
bo = §\/NZ—SZ (D.37a)
~ N
2_S2_PW-D
AL Sf) W=D (D.37¢)

whereX = 7+ D + PandS? := 1IS;S;.
For the Newton-Raphson iteration, the derivative of thestr@mnt f is given in terms of the guessed
parameters of the equation of state

fr=1--°FPo 7% D.38
dpo OP D€ P (D-38)

where% and 22 are derived from the equation of state. The other derivatare found in terms of con-
served variables as

dpo DS2
N R
d ps?
€ - (D.39b)

P PN (N2-S2)
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