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Abstract

In the past five years, the field of numerical relativity has changed dramatically. With many groups now able
to simulate merging black holes and more breakthroughs coming almost monthly, there is much competition
to pick off as many astrophysically relevant situations as possible. It is sensible, though, to step back from
this competition and to look on the new techniques and results with more skeptical eyes than before.

In this dissertation we look at two aspects of initial data from new perspectives and find the waveforms
generated from merging binary black hole (BBH) systems to berobust to significant errors in the initial
data. In the first study we find that, by adding tuneable auxiliary gravitational waves into a BBH spacetime,
up to 1% extra Arnowitt-Deser-Misner (ADM) energy can be added to a standard BBH system before
the waveforms are significantly altered. While this study isbased on observations of spurious radiation
found in all standard initial data sets to date, the second study takes a more general approach. With an eye
towards setting up more complex black hole (BH) systems, we find that evolutions of skeleton approximate
initial data based on solutions to the ADM Hamiltonian with point sources also yield robust gravitational
waveforms that are accurate enough for use in matched template searches for gravitational wave signals in
the Laser Interferometer Gravitational-wave Observatory(LIGO) band. We also consider the interpretation
of a possible class of constraint violations as an unphysical negative energy field that is absorbed by the
BHs. Both of these studies show that the change in apparent horizon (AH) masses during the evolution is a
good way to gauge the robustness of the extracted waveforms.

At the end of this dissertation we discuss ongoing work on evolving BBH mergers embedded in gaseous
clouds. This is the first study with the new matter codeScotch which couples a hydrodynamic matter
field to the fully-nonlinear spacetime evolution code. Evolving a wet BBH system will gauge how robust
gravitational wave templates are given that true astrophysical sources are not in vacuum. This is a first step
at considering the larger question of whether the presence of gas can overcome the “last parsec” problem,
hastening the mergers and thereby increasing the expected merger rates.
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Chapter 1
Introduction

“The realities of nature surpass our most ambitious dreams.” – Rodin (1837-1868)

The goals of Numerical Relativity are two-fold: (1) to simulate gravitational waves as aids in the eventual

detection of real gravitational waves and (2) to expand our understanding of general relativity, extensions

thereof, and alternative theories in the most non-linear regime where analytical solutions cannot reach and

approximations are no longer valid. Numerical studies of binary black hole (BBH) systems using fully

non-linear codes are crucial to both these endeavors as theydelve deeper into the non-linear regime than

analytical techniques have thus far been able to achieve, simultaneously opening up new regimes of gravity

and testing the limits of applicability for each analyticaltechnique. The extreme masses of black holes (BHs)

in such a highly dynamic setting are simultaneously the strongest anticipated source of gravitational waves

and a perfect testbed for exploring gravity’s strong regime. In this chapter we will discuss the astrophysical

motivation behind studying BBH evolutions in Sec. 1.1 and progress in the area thus far in Sec. 1.2. A road

map for this dissertation is laid out in Sec. 1.3 followed by anote on the conventions in Sec. 1.4.

1.1 Astrophysical Motivations for Numerical Binary Black Hole Studies

Astronomical evidence for the existence of BHs, although indirect, has been found in abundance. Black

holes are roughly divided into three mass categories: stellar, intermediate, and supermassive. Stellar mass

BHs, with masses of order ten times that of the sun, are the corpses of supermassive stars. Intermediate

BHs, measuring hundreds to thousands of solar masses, have possibly been observed for the first time quite

recently [144] in the center of globular clusters where the density of stellar material may have allowed stellar

mass BHs to merge and grow significantly. Finally, supermassive BHs, measuring over 106 solar masses,

have been shown to exist at the center of many spiral galaxiesin the form of Active Galactic Nuclei (AGN).

In our own Milky Way Galaxy, observers have tracked the motion of stars in the immediate vicinity of the

galactic center and shown that there must exist a very massive, very compact object there [88, 90]. Even
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in a playground as vast as the universe, there is always a possibility two BHs will become gravitationally

entwined and dance until they merge.

1.1.1 Gravitational Wave Sources

The first strong “laboratory” test for the existence of gravitational waves was the binary neutron system,

containing the pulsar PSR 1913+16, discovered by Hulse and Taylor in 1974 [107]. By 1982, enough ob-

servations of this system had been made to find that the orbital decay of the binary was consistent with

Einstein’s general relativity and inconsistent with alternative theories of gravity [172]. This discovery

strengthened the search for gravitational waves already inprogress through Weber bars [185], limited in

their range, and the first early interferometric gravitational wave detector by Levine and Stebbins [122]

which put an upper limit on gravitational waves emitted by the Crab pulsar. The case for gravitational waves

made by the system with PSR 1913+16 paved the way for the first generation of large-scale interferometric

gravitational wave detectors. At this point in history, thecurrently operational interferometry-based gravi-

tational wave detectors – LIGO, Virgo, GEO600, and TAMA – have run their first few science runs. LIGO

is now undergoing improvements to Enhanced LIGO and then Advanced LIGO which, with its order of

magnitude increase in sensitivity, is expected to hear the first gravitational wave signal when online. There

is a possibility, though, that the first gravitational wavesare not detected by interferometers with man-made

light sources, but by pulsars in pulsar timing array (PTA)s [83] where timing residuals observed similarly

illuminate the gravitational waves passing between Earth and the pulsars. These strides in gravitational wave

detection makes it likely that the first gravitational wave signals will be detected in the next five to ten years.

The list of possible sources for gravitational waves being studied is quite lengthy [162, 49]. There are the

inspiral emissions of binary systems, whether the participants are white dwarfs, neutron stars, or black holes.

There are many types of transient signals: close encountersin highly eccentric binaries, mergers of compact

binary systems, the ringdown of a merged binary as it settlesdown to a stationary BH, the gravitational

collapse of a massive stellar core during a supernova, perturbations on rapidly rotating neutron stars, etc.

The list goes on, but these are the strongest sources anticipated. There will likely be sources that we arenot

anticipating, possibly generated by physics we do not understood yet. All these sources are expected to lie

on top of a stochastic background of gravitational waves generated by the Big Bang, carrying information

of processes from energies we have not been able to observe before.

Unfortunately, the weak interactions of gravitational waves with matter means they are quite difficult

to detect. It is for this reason that so many resources have been dedicated to understanding and predicting

the gravitational wave signals of the strongest and most likely signal to be detected above noise of Earthly

origin. If the ground-based interferometers, with their bandwidth at relatively high frequencies (∼ 10− 103

Hz for Advanced LIGO), do not detect gravitational waves, there are plans for the first space-based detector,

the Laser Interferometer Space Antenna (LISA). Source studies are already keeping an eye on the LISA’s

much lower frequency bandwidth (∼ 5×10−5−10−1 Hz) and realizing signals are much more likely to be in
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abundance in that band. Even without LISA, the PTAs such as Parkes radio telescope [129] can also reach

a completely different frequency range, currently (∼ 10−9 − 10−6 Hz) [165] which complements both LIGO

and LISA in its frequency range and may even beat LIGO to the first direct detection of gravitational waves.

1.1.2 Population Studies of Compact Binaries

Population studies feed both into and from gravitational wave detection. They predict how often signals

from specific sources might be seen given our current understanding of cosmological evolutions and as-

tronomical observations. Population syntheses such as those by Belczynskiet al. [33, 34] use numerical

methods to evolve a population of stars to simulate the formation of compact objects and subsequent com-

pact binaries, yielding estimates of galactic merger rates. The conclusions based on current models are that,

of the compact binaries, binary neutron star systems are most common with predicted detection rates of

∼ 20yr−1 for Advanced LIGO. Our BBH systems are expected to be far lesscommon with detection rates

of ∼ 2yr−1 [34]. On the other hand, BBH signals are much stronger than binary neutron star systems and,

given numerical relativity’s (NR’s) ability to simulate gravitational waveforms in vacuum spacetimes, are

much better understood and thus more easily detected. The models used to derive these numbers, though,

could well be wrong. How often wedo detect compact binary signals, whether it is more or less frequent

than predicted, will feed back into population studies to yield a better understanding of the evolution of the

universe.

Beyond numbers are the characteristics expected of binary compact objects in the real Universe. In 1964,

Peters [148] showed the emission of gravitational radiation tended to circularize binary systems. The speedy

circularization was simulated recently by Hinderet al. [106] for BBH systems. Despite this, the many-

body interactions found inside globular clusters could keep perturbing intermediate mass BBH systems into

eccentric orbits [10, 117]. Finally, there are also the effects of matter on binary compact object evolutions.

In so-called “wet” mergers where participating compact objects have accretion disks, the gas in the system

is thought to align the spins [39] and possibly hasten a merger [15]. Though this decreases the possible

observed parameter space, there are other mechanisms by which BHs with interesting spin orientations

may merge. Until we observe many of these systems by their gravitational wave emissions, it is important

that the NR community explore fully the parameter space of binary compact objects, and specifically BBH

systems. With a basic understanding of non-linear general relativistic mergers, the astrophysical community

has a better chance to understand the signals we detect, and the signals we donot detect, expanding our

understanding of the universe at large.

1.2 Binary Black Hole Simulations: A Brief History

Starting from a field where simulations were highly idealized and the holy grail was a BBH which could

be simulated with controllable errors through merger and indefinitely beyond, to a time when all the major
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astrophysically relevant vacuum systems have been at leastbriefly studied, the field has come a long way in

the past few years - relatively fast-paced development in anarea of research almost half a century old [156].

Attempts have been made to solve the Einstein equations for BBH systems since Hahn and Lindquist’s

1964 study [98] of two “worm holes” in a time-symmetric, axisymmetric system. The techniques and com-

putational resources of the day allowed limited degrees of freedom and a very short evolution. Hahn’s study

was at the leading edge of an intensive era of BH studies[137], but numerical studies of BBH systems took

a back burner to understanding the fundamental properties of BHs. It was 10 years into this period that

Smarr [168] and then Eppley [73] extracted the first rough gravitational waves out of a BBH system, the

head-on collision. Still, another 15 years passed before numerical studies took hold as a separate field, pro-

pelled by the prospects of gravitational wave detection since LIGO was finally seen as a concrete possibility.

These prospects of detecting gravitational waves spurred the community to turn back to numerical studies in

order to predict the signals that could be detected and to provide waveform templates for matched filtering,

desired for finding signals buried in noise.

Many developments in both computational power, theoretical understanding, and formulations since this

revival have contributed to our current ability to evolve BBH systems through merger. Chief among these

were the advent of large-scale multi-processor computing,mesh refinement [163, 2], theMoving Puncture

Technique(MPT) [27, 55], and the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [166, 30].

The latter two are not to be viewed as requirements for successful BBH evolutions in general, but merely the

set of formalisms and methods which allowed the first breakthrough evolutions [155, 26, 56] of inspiralling

BBHs through merger.

The first successful BBH mergers that allowed commonly used approaches sparked a mass migration of

numerical codes to the techniques that proved successful. Equal-mass, non-spinning, quasi-circular BBHs

begun at various separations [26, 56] were just the beginning. Herrmannet al. [103] studied the coalescence

of unequal-mass BBHs, followed by similar studies by Bakeret al. [23] and Gonzalezet al. [92]. Soon

studies were done that added eccentricity [170, 106]. Spinswere added, which expanded the parameter space

further and proved quite interesting. It was found that asymmetries in either mass or spin configurations

resulted in final BHs with unexpectedly large linear momentum, popularly dubbed a kick [92, 104, 105, 131].

This spurred vigorous conversations concerning the evolution of large-scale structure in the universe and

population estimates of BHs.

The initial race to cover final BH kicks and other parameter space has started to ebb as the merger

waveforms were found to be not as obviously interesting as was hoped, being replaced with a new collabo-

rative atmosphere. The Samurai project [101] brings numerical groups together to compare the consistency

of waveforms between different groups and convey the comparison in a way that is relevant to gravita-

tional wave observations. Other collaborative efforts are underway such as NINJA [21] that tie into the

data analysis efforts to test the sensitivity of the data analysis techniquesused for the first generation of

interferometry-based gravitational wave observatories.
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In the past few years the field of Numerical Relativity has overflowed with new results. It is within this

timeframe that the studies in this dissertation took place.

1.3 Robustness of Simulation Results

The studies presented in this dissertation explore three ways in which the robustness of numerical BBH evo-

lutions, in the face of both numerically and astrophysically motivated perturbations, are considered. These

studies shed some light for the Numerical Relativity community on the degree of non-linearity hidden in

results from BBH mergers. Aspects such as the orbital dynamics, properties of the final BH, and the gen-

erated waveforms are compared across these perturbations.The robustness of the final BH’s properties and

the generated waveform are of interest to the NR community inevaluation of current evolution techniques

as well as the data analysis community in their search for gravitational waves.

We begin with a discussion of the relevant theoretical background in Chapter 2 wherein we discuss the

formulation and gauges used in the vacuum portion of this work. We also briefly summarize theMayaKranc

code with its capabilities and shortcomings. Chapter 3 continues the discussion of background theory to

initial data generation methods, discussing again the approximations, assumptions and shortfalls thereof. In

addition, we examine the methods of analyzing the resultingfour-dimensional spacetime including gravita-

tional waveform extraction and measurements of mass and momentum.

Chapter 4 presents the first study wherein we use model gravitational waves “added” to a standard BBH

system to simulate additional spurious radiation in the intiial data. In this way, we consider how robust BBH

evolutions are to spurious gravitational waves, especially with respect to the numerical errors in the initial

data which manifest themselves as spurious gravitational radiation.

The second study, presented in Chapter 5, considers errors in the initial data from a more relevant source.

Given that constructing completely accurate initial data is computationally intensive and the construction of

physically accurate initial data for reasonably close BBH systems is still a topic of study, we consider a

skeleton approximate initial data which models the BHs as point masses. Evolving this, we discuss the

behavior of the constraint violations and its effects on the resulting merger dynamics and waveforms.

Beginning in Chapter 6 we shift towards spacetimes where a matter field is coupled to the spacetime

evolution. This requires a discussion on matter field formulations and coupling its evolutions to spacetime

evolutions ofMayaKranc in Chapter 6. In Chapter 7 we present preliminary results of how robust a BBH

system is when embedded in a gaseous cloud. Finally, we summarize the results of all studies and reflect on

remaining open questions in Chapter 8.
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1.4 Conventions

In this dissertation we follow the conventions of Wald [184]and Misneret al. [137] where the metric has

the signature -,+,+,+. Unless otherwise noted, we use geometrized units:G = c = 1. All simulations are

done such that the results are scalable by the total irreducible mass of the system, i.e.Mirr = 1 .

The indices of tensor quantities are chosen to be either Greek or Latin. Greek indices span four dimen-

sions,µ ∈ 0, 1, 2, 3, while Latin indices are reserved for the spatial dimensions, i ∈ 1, 2, 3. Unless otherwise

notified, the order of the spatial coordinates will be (x, y, z) in Cartesian coordinates and (r, θ, φ) in spheri-

cal polar coordinates. Symmetrization is designated byA(ab) ≔
1
2(Aab + Aba) while anti-symmetrization is

designated byA[ab] ≔
1
2(Aab− Aba).

We choose to define our Riemann and Ricci tensors to follow thesigns of Misner et. al [137]

Rαβ,γ,δ = ∂γΓ
α
βδ − ∂δΓαβα + 2Γασ[γΓ

σ
δ]β (1.1a)

Rαβ = Rσασβ (1.1b)

and we choose to follow York’s [192] sign convention in defining the extrinsic curvature,

Kαβ = −
1
2
Lnγαβ. (1.2)

This is consistent with Misneret al.. [137] but not with Wald [184]. In separating the 4-dimensional from

the spatial Riemann tensor, we denote all spatial Riemann tensor quantities usingR.

The BSSN formulation and the standard initial data require aconformal decomposition of the metric and

related quantities. Conformal quantities are designated by a tilde over the physical quantity:̃A. Likewise

complex conjugates are designated by a bar over the variable, m. Tetrads are designated in bold type,z, in

Sec. 3.4. In other sections, theith vector of an array of vectors is designated by, for instance,ξi .



Chapter 2
Spacetime Formulations and MayaKranc

“You have to learn the rules of the game, and then you have to play better than anyone else.” –

Albert Einstein

At the base of all general relativity lies one set of equations, the Einstein equations. It can be written to

look deceptively simple in geometrized units written as

Gαβ = 8πTαβ. (2.1)

The Einstein tensor,Gαβ ≔ Rαβ− 1
2gαβR, is constructed from the metric and its derivatives. On the other side,

the stress-energy-momentum tensor,Tαβ, contains information about matter in the spacetime. Numerical

Relativity endeavors to solve these equations in their fullnon-linearity in regions of extreme gravity. Over

the past 50 years that numerical relativity has been developing, there have been many approaches to solving

these equations. In this chapter we discuss the basic theoretical framework of modern numerical relativity

to the extent necessary for understanding the context for and methods of the studies presented in Ch. 4 and

Ch. 5.

2.1 Decomposing the Einstein Equations: ‘3+1’ Decomposition

At the very heart of modern numerical relativity is the decomposition of the very thing Einstein united in

his theory of general relativity: spacetime. In the generictheory, we describe spacetime by a set (M, gab)

wheregab is the four-dimensional metric defined everywhere on a manifoldM. Given no other framework,

we find ourselves with 10 tightly coupled, second-order partial differential equations (PDEs) to be solved

everywhere on the manifoldM at once. The various decompositions treat one of the dimensions differently

from the remaining three. We can then rewrite the Einstein equations as an initial value problem.

The decomposition of spacetime is best expressed as afoliation of the manifoldM as we are not bound
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to choose our decomposition in any particular way. The standard approach is to foliate the spacetime into

a set of hypersurfaces,Στ, parametrized by some time-like parameter,τ. What properties these hypersur-

faces have depends on the formalism chosen. Some studies have chosen the hypersurfaces to lie along null

cones emanating from a central world tube, dubbed “characteristic” formalisms [187]. Others have cho-

sen hyperbolic hypersurfaces such that the outer boundaries lie at future null infinity, dubbed “conformal”

formalisms [85, 84]. For the purposes of this dissertation we will concentrate our discussion on the third

formalism, most often used in contemporary studies formalism, dubbed ‘3+1’ or “Cauchy” decomposition.

In the ‘3+1’ decomposition, we foliate spacetime by Cauchy hypersurfaces. These Cauchy hypersur-

faces are fully spacelike surfaces so any timelike world line would intercept each surface at mostonce. We

also require these foliations and the four-dimensional metric on these foliations to be smooth. In this way

we conserve causality between our hypersurfaces even though our spacetime might evolve more slowly in

one area of spacetime than in another.

2.1.1 ADM Formalism

Applying the above foliation of spacetime to the Einstein equations, we can restate them as a set of 4

constraint equations and 10 evolution equations for the full metric’s 10 independent components. These

equations, presented by Arnowitt, Deser, and Misner in 1962[16] and popularized in form by York [192]

in 1979, make up the ADM formalism. Their intuitive derivation represent the canonical ‘3+1’ formulation

where we foliate the four-dimensional spacetime into Cauchy hypersurfacesΣt parametrized byt, our chosen

time coordinate.

With this foliation we can decomposegµν at any point in terms of the three-dimensional “spatial” metric

γµν intrinsic toΣt and a four-vectornµ normalized to−1 and oriented normal toΣt:

gµν = γµν − nµnν. (2.2)

The actual time direction is related to the hypersurface normal nµ by

tµ = αnµ + βµ (2.3)

where we have introduced thelapse functionα and theshift vectorβµ. Together the lapse and shift encode

the gauge, or coordinate freedom, of general relativity. The lapse is a measure of howt changes between

hypersurfaces while a non-zero shift allows for a shifting in spatial coordinates between hypersurfaces.

Given a choice in lapse and shift together with a spatial metric, we can reconstruct the four-metric line

element as

ds2 = −α2dt2 + γi j (dxi + βidt)(dxj + β jdt). (2.4)
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Figure 2.1.Schematic of the ADM foliation with the break up of the metricinto spatial and temporal variables.

In matrix form the metric and its dual are

gµν =

(

−α2 + βkβ
k βi

β j γi j

)

, gµν =
1
α2

(

−1 βi

β j α2γi j − βiβ j

)

. (2.5)

A schematic of the ADM formalism is shown in Fig. 2.1.

Being spatial, quantities intrinsic toΣt have a reduced number of degrees of freedom. We note that any

spatial vectorAµ can be uniquely denoted by its spatial components,Ai. The spatial index can be lowered

using the spatial metric and the zeroth vector component is derived from the spatial components by lowering

the indices with the full metric:Aµ = (0,Ai), Aµ = (−βiAi ,Ai). It is still advantageous to define a spatial

projection operator:

⊥µν≔ γµν = gµν + nµnν. (2.6)

.

The spatial metricγi j is our primary variable to be evolved in the initial value problem. However,

knowing the spatial metric on the hypersurface, the lapse function, and the shift vector is not enough. We

also need theextrinsic curvature, Kµν, which is the embedding of the particular hypersurface in the general

spacetime. The extrinsic curvature is defined through a Lie derivative along the vector perpendicular toΣt.

Kµν ≔ −
1
2
Lnγµν (2.7)

whereLn is the Lie derivative along the vectornµ.

To complete this formalism, Einstein’s equations must alsobe separated into spatial and temporal com-

ponents. We proceed by projecting the equations spatially and temporally. This gives us four equations

that relate only quantities intrinsic to one hypersurface and must vanish at all points for the hypersurface to

satisfy the Einstein equations. Therefore these are constraint equations for the hypersurfaces. By projecting

both indices ontona, the Einstein equations yield the scalar (or Hamiltonian) constraint�H

�H ≔ nµnν(Gµν − 8πTµν) = R + K2 − K i j Ki j − 16πρ. (2.8)
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whereR is thespatialscalar curvature andρ is the projection of the stress-energy-momentum tensor in the

same manner:ρ ≔ nµnνTµν. The vector (or Momentum) constraint�i is derived by projecting one index of

the Einstein equations onto the hypersurface and the other onto the normalnµ:

�i ≔ nµ ⊥νi (Gµν − 8πTµν) = ∇̆ jK
j
i − ∇̆iK + 8πSi . (2.9)

Here we denotĕ∇i as the spatial covariant derivative connected with the spatial metric and the quantitySi

is similarly derived from the stress-energy-momentum tensor: Si ≔ −nµ ⊥νi Tµν. We will look at these

constraint equations in more detail in Ch. 5.

The quantityρ can be interpreted as the total energy density in the local matter fields of the spacetime

as seen by an observerna. Similarly the quantitySi can be interpreted as the total energy current of the

spacetime as seen by the same observer. In this vein we can decompose the stress-energy-momentum tensor

into spatial and temporal components as

Tµν = ρnµnν + 2S(µnν) + Sµν (2.10)

where we have introduced the spatial structural tensorSi j .

To find the evolution equation for the spatial metric, we needto compute the Lie derivative ofγi j along

tµ.

Ltγi j = Lαn+βγi j = αLnγi j + Lβγi j = −2αKi j + Lβγi j (2.11)

The extrinsic curvature’s evolution equation can be derived from the Einstein equations and the Ricci relation

as

∂tKi j = −∇̆i∇̆ jα + α(Ri j − 2KikKk
j + KKi j ) − 8πα(Si j −

1
2
γi j (S − ρ))

+βk∇̆kKi j + Kik∇̆ jβ
k + Kk j∇̆iβ

k (2.12)

whereRi j is thespatialRicci tensor andS is the trace of the structural tensorSi j .

In summary, the ADM formalism decomposes the full spacetimeinto a spatial metricγi j with 6 inde-

pendent components, an extrinsic curvatureKi j also with 6 independent components, a lapse functionα, and

a spatial shift vectorβi . It gives us 16 independent, quasi-linear first-order PDEs and 4 constraint equations.

This is an improvement from the 10 highly-coupled, quasi-linear, second-order PDEs for the 10 independent

components if you naı̈vely expand the Einstein equations into metric components and coordinates. This is,

however, not sufficient to solve the full four-dimensional spacetime. While the canonical ADM formalism

is intuitive and has proved tolead to successful formulations, it itself is not well-posed as an initial value

problem [156]. In the face of numerical error during a simulation, it has been shown that the formulation is

generally unstable and diverges from the constraint-satisfying hypersurfaces.
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2.1.2 Baumgarte-Shapiro-Shibata-Nakamura (BSSN) Formulation

Although the ADM formalism is intuitive, it is not the formulation that has proved successful in numerical

codes for merging BBHs. The formulation utilized in this work is the BSSN formulation [166, 30] (a good

review is found in [31]). This is derived from the ADM formalism by a conformal decomposition of the

spatial metric, a traceless (and generally transverse) andconformal decomposition of the extrinsic curvature,

an additional variable with related constraint equation, and the addition of factors of the constraints to the

evolution equations for the purpose of avoiding terms that misbehave.

A York-Lichnerowicz conformal transformation [123, 190] maps one metric onto that of another metric

by the relation,gαβ = Ω2g̃αβ whereΩ can be any smooth function (see Wald [184] Appendix D for a general

discussion of conformal transformations). In the BSSN formulation, we simplify equations involving the

spatial metric by performing a conformal decomposition

γ̃i j ≔ ψ−4γi j (2.13)

and using a simpler spatial metric as our conformal metric ˜γi j , thus hiding a lot of the complexity within the

single degree of freedom found in the conformal factor,ψ. The power of 4 is chosen for convenience.

We similarly decompose the extrinsic curvature. Before we do so, though, we separate out the traceK

Ki j = Ai j +
1
3
γi j K. (2.14)

leaving the traceless extrinsic curvatureAi j . It is this tracelessextrinsic curvature which we conformally

decompose with the same conformal factor as the spatial metric:

Ãi j ≔ ψ−4Ai j . (2.15)

In the BSSN formulation, we take into account that the conformal factorψ must be positive, introducing

the BSSN conformal factorφ such thatψ = eφ. For simplicity we chooseφ = (ln γ)/12 such that the

determinant of the conformal metric is unity. However, whenrepresenting BHs in our spacetimes using the

puncture method (see Sec. 3.1.3), the divergences ofψ andφ at the punctures lend to numerical problems

in the evolution. In order to regularize the conformal factor, we introduce another conformal factorχ which

we evolve instead ofφ. In some parts of the evolution equations, as you will see, westill useφ. The three

conformal factors are then related such that

χ = ψ−4 = e−4φ (2.16)
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and the two conformal decompositions are

γi j = χ−1γ̃i j , (2.17a)

Ai j = χ−1Ãi j . (2.17b)

We also introduce the conformal connection functionsΓ̃i defined as

Γ̃i
≔ γ̃ jkΓ̃i

jk (2.18)

whereΓ̃i
jk are the connections of the conformal metric. If the determinant of the conformal metric were

unity at all times as it analytically should be,Γ̃i = −∂ j γ̃
i j . However, due to numerical error this is not

necessarily the case. We evolveΓ̃i as a separate variable and replace the derivatives of the metric found in

its own evolution equation by itself, which lets us avoid taking derivatives of the metric and results in better

convergence. This requires us to add a new constraint equation, derived from the definition of̃Γi, which

must be monitored during the evolution

�Γ̃ ≔ Γ̃
i − γ̃ jkΓ̃i

jk . (2.19)

With the conformal decompositions of the spatial metric andextrinsic curvature, the extraction of the

extrinsic curvature’s trace, and the introduction of the conformal connection functions̃Γi, the BSSN vari-

ables for evolution areφ, γ̃i j , K, Ãi j , andΓ̃i. Due to the divergences inφ for our puncture treatment of BHs,

though, we take as our evolution variables the setχ, γ̃i j , K, Ãi j , andΓ̃i.

Given the BSSN variables and our change in conformal factor,our evolution equations can be derived

from the ADM evolution equations as [7]

∂tχ = −2
3
χ(αK + ∂ jβ

j) + βi∂iχ (2.20a)

∂tγ̃i j = −2αÃi j + β
k∂kγ̃i j + 2γ̃k(i∂ j)β

k − 2
3
γ̃i j∂kβ

k (2.20b)

∂tK = −χ(∇̃ j∇̃ jα + 2γ̃i j∂iφ · ∇̃ jα) + α(Ãi j Ãi j +
1
3

K2 + 4π(ρ + S)) + β j∂ jK (2.20c)

∂tÃi j = χ(αR̃i j + αR̃φi j − ∇̃i∇̃ jα + 4∂(iφ · ∇̃ j)α − 8παSi j )
TF + αKÃi j − 2αÃikÃk

j

+βk∂kÃi j + 2Ãk(i∂ j)β
k − 2

3
Ãi j∂kβ

k (2.20d)

∂tΓ̃
i = β j∂ jΓ̃

i + hkl∂l∂kβ
i +

1
3
γ̃i j∂ j∂kβ

k − Γ̃ j∂ jβ
i +

2
3
Γ̃i∂ jβ

j − 4
3

(Γ̃i − γ̃lmΓ̃i
lm)∂ jβ

j

−2Ãi j∂ jα + 2α(Γ̃i
klÃ

kl + 6Ãi j∂ jφ −
2
3
∇̃iK − 8πγ̃i j S j) (2.20e)

where∇̃i andR̃i j are the covariant derivative and Ricci tensor, respectively, with respect to ˜γi j . Additionally
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we define the quantity

R̃φi j = −2∇̃i ∇̃ jφ − 2γ̃i j ∇̃k∇̃kφ + 4∇̃iφ · ∇̃ jφ − 4γ̃i j ∇̃kφ · ∇̃kφ (2.21)

which relates the spatial Ricci tensor to the conformal Ricci tensor byRi j = R̃i j + R̃φ. In the derivation

of these evolution equations, we have made modifications from the ADM formalism by adding appropriate

factors of the constraints to two evolution equations:

∂tK → ∂tK + α�H , (2.22a)

∂tΓ̃
i → ∂tΓ̃

i − 2α�i (2.22b)

For a more in-depth discussion of the derivation of these equations, see [7].

The scalar and vector constraint equations (Eq. 2.8 and 2.9)can similarly be rewritten in terms of our

BSSN variables so the set of monitored constraints are, in addition to Eq. 2.19,

�H = χγ̃i j (R̃i j + R̃φi j ) − Ãi j Ã
i j +

2
3

K2 − 16πρ, (2.23a)

�i = 6Ã j
i∂ jφ + γ̃

mk(∂kÃmi − Γ̃d
mkÃdi − Γ̃d

ikÃmd) −
2
3
∂iK − 8πSi . (2.23b)

Precisely why this formulation has been so successful is still a topic of study. Separating out the trace

of the extrinsic curvatureK is useful for choosing and applying a slicing condition as, like the lapse, it is

a scalar measure of how quickly the spacetime is changing. Gentle [87] suggests adding constraints to the

evolution equations ofK andΓ̃i result in a partially constrained evolution system. That is, the presence of the

additional constraint equation terms keeps the system fromdiverging. The well-posedness and conditions

for hyperbolicity of the BSSN formulation in various gaugeshas been a popular topic of study [159, 161,

38, 96, 97]. These studies have found that the BSSN formulation is hyperbolic in some gauges, lending

credibility to their usefulness from a mathematical standpoint.

At the beginning of the simulation we observe a gauge wave (unphysical wave in the gauges) carrying

constraint violations propagate outwards from the area of greatest constraint violation (around the BHs) and

the remaining constraint violations eventually damping down further outside the BHs. This is unlike the the

ADM formalism where the constraint violations and initial gauge waves are stationary [6]. Observations

such as this have lead to studies of constraint propagation systems [189, 167]. Regardless of the theoretical

reasons, the BSSN formulation has proved most successful insolving the Einstein equations.

2.1.3 Slicing Conditions

As discussed for both the ADM and BSSN formulations, we are free to choose our gauge conditions, or

slicing conditions. These conditions express how coordinates on one hypersurface relate to those on a
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neighboring hypersurface. In terms of the ADM and BSSN formulations, this is the evolution of the lapseα

and the shiftβi . From our discussion of the BSSN formulation in Sec. 2.1.2, our formulation says nothing

about the lapse or shift evolution. The “trick” to a stable evolution is a good choice of gauge and the trick to

a successful gauge depends, largely, upon how the physical singularities (i.e. the BHs) are handled.

An intuitive choice in gauge, calledmaximalslicing, avoids the infall of coordinate stationary observers

(and thus gridpoints) to areas of strong gravity like BHs by imposing that proper time move more slowly in

such regions and that the shift continually counteract the infall of gridpoints into this slowly evolving region.

This leads first to the lapse condition. In maximal slicing, we wantK to vanish and so choose it to do so

initially, but we also want it to vanish on future time-slices. This is problematic as the condition for∂tK = 0

at all times is a computationally expensive elliptic equation to find the lapse. Instead, we implement a form

of theK-driver condition [7, 40]

∂tα = −α2 f (α)(K − K0) (2.24)

where f (α) is some arbitrary function. The slicing condition is so named because it drivesK to a constant

value, K0, in a relatively short amount of time and therefore driving the simulation towards a stationary

solution. Another feature of theK-driver condition is that it causes the lapse to collapse, orvanish, ex-

ponentially at physical singularities at late times. This is very desirable for numerical simulations as the

singularity within the BH stops evolving, effectively avoiding the singularity.

It was noted by Bonaet al.. [40] that if we choosef (α) = 2/α andK0 = 0, theK-driver condition yields

the condition

(∂t − βi∂i)α = −2αK. (2.25)

This condition is dubbed the “1+log” condition as the analytic solution is simple in terms ofthe spatial

metric’s determinant:

α = 1+ log
√
γ. (2.26)

This particular condition mimics maximal slicing at the singularity sincef → ∞ whenα vanishes.

The lapse condition is not the only condition we need to specify the gauge. Similar in concept to the

K-driver is theΓ̃i-driver which drives∂tΓ̃
i to zero. This yields a shift condition

(∂t − βk∂k)β
i = λ∂tΓ̃

i . (2.27)

Before the major breakthroughs of 2005 it had become commonplace to excise the area within the

apparent horizon (see Sec. 3.3) of the BHs. This method came with an array of problems such as specifying

accurate inner boundary conditions, finding the apparent horizon before setting the final grid structure,

and difficulties moving excised regions through a grid. Though excision is still in use and has improved,

the method which the Penn State/ Georgia Tech Numerical Relativity group uses for BBH simulations is

the puncture method described in Section. 3.1.3. Puncturescomplicate the shift condition as the basis is
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a mapping of another asymptotically flat spacetime to withinthe BH’s horizon. The actual point of the

puncture is a mapping of asymptotically flat infinity. Since infinity does not move, the shift which embodies

how coordinates change should also vanish at that point. This spurred the development of MPT [27, 55],

effectively excising the BH through the gauge conditions [48] and therefore leading to the first successful

BBH simulations involving punctures. Evolving the lapse asthe “1+log” slicing of Eq. 2.24, we alter the

Γ̃i-driver as follows:

(∂t − βk∂k)β
i = ξBi (2.28a)

(∂t − β j∂ j)B
i = −ηBi + λ∂tΓ̃

i − ζβ j∂ j Γ̃
i (2.28b)

where we choose the set of gauge parametersξ = 3
4 , λ = 1, η = 2, ζ = 1 to avoid superluminal gauge waves.

These are the gauge conditions used in the studies of 4 and 5.

2.2 TheMayaKranc Code

The simulation code used in this dissertation, developed first in 2005 by the Pennsylvania State University’s

Numerical Relativity group, now based at the Georgia Institute of Technology, is dubbed theMayaKranc

code. Based on theMaya code developed at Penn State in the early 2000s, theMayaKranc code improved

on the efficiency of theMaya code and makes use of the latest breakthroughs in formulation and gauge.

TheMayaKranc code is based on the infrastructure ofCactus [3, 1], an open source code which pro-

vides an environment for communicating between processors. This includes splitting variables between

processors, output utilities, a modular environment in which problem-specific code can interact (thorns),

and a handful of basic thorns needed for solving initial value problems.Cactus is portable enough that we

can compile our code on the various architectures of the different computing clusters available to us without

too much extra effort.

On top of theCactus infrastructure our grid approach to solving the equations requires adaptive mesh

refinement for which we useCarpet [163, 2]. The need to extract gravitational waveforms requires we

extend the physical outer boundary of our grids well away from any dynamics, to hundreds if not thousands

of M whereM is the total irreducible mass in the system. Simultaneouslywe also need very high resolution

to resolve areas of strong gravity: for a non-spinning BH using the puncture method 3.1.3 a resolution of

M/25 is a minimum. The need for speed and the limited and expensive computational resources available

requires us to use refinement levels.Carpet is an open-sourced driver for theCactus infrastructure which

implements adaptive mesh refinement and utilities requiredto interface with it somewhat transparently.

TheMayaKranc code itself is an array of thorns built onCactus. The basic evolution thorn was gener-

ated usingKranc [108], a package which generates code through Mathematica from a script containing the

equations in tensor notation.Kranc was used in generating the evolution thorn and the heart of the gravita-

tional wave extraction thorn, among others. The basic spacetime evolution uses the Method of Lines from
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Cactus to evolve the initial data on a Cartesian grid. All the simulations for this dissertation were done using

4th order Runga-Kutta as our integrator, though other choices are also available. There are thorns to track

moving BHs and a thorn separate fromCarpet to move finer refinement levels to follow the moving BHs.

Besides setting basic analytical solutions as initial data, MayaKranc uses Ansorg’sTwoPunctures [13]

thorn to solve the basic BBH system. We will discuss initial data in more depth in Sec. 3.1. For analy-

sis, MayaKranc has thorns to extract and analyze gravitational waveforms (Sec. 3.4), calculate the ADM

spacetime quantities at finite radius, and calculate the spins of BHs. We also utilize thorns from the publicly

available AEIThorns repository developed at the Albert Einstein Institut (AEI). In particular we utilize Erik

Schnetter’s branch of Thornburg’sAHFinderDirect [175, 176, 177] to find the AHs in our spacetimes.

For the studies in Chapters 4 and 5 we use the vacuum version ofMayaKranc. More specifically, in the

evolution and constraint equations (Eq. 2.20, 2.23 and 2.19), we let the stress-energy-momentum quantities

(ρ,Si j ,Si) vanish. Starting in Ch. 6 we discuss the theoretical basis of Scotch, a new code based on the

public version ofWhisky [22] which is coupled toMayaKranc such that we can evolve spacetimes fully

coupled with continuum hydrodynamics evolutions.



Chapter 3
Initial Data and Analysis

“There are two mistakes one can make along the road to truth ... not going all the way, and not

starting.” –Buddha

Every initial value problem requires a beginning, but exactly where and what is the beginning? The

stability of an evolution and the quality of the physics extracted from an evolution are directly related to the

quality and type of initial data one evolves. We begin this chapter with a discussion of the various methods

one can generate initial data, with a focus on the standard initial data evolved by the Numerical Relativity

community in recent years and thus used in the studies described in Chapters 4 and 5. Initial data involving

matter fields will be discussed in Ch. 6.

Yet just as there is a beginning, so to everything there must be an end and particularly an end result.

We need to gain something of use besides a resulting four-dimensional spacetime that can be compared

to intuition, to other evolutions, and particularly to experimental results. For discussions of gravitational

waves we extract the waveforms using the method discussed inSec. 3.4. As with all physics we want to

build intuition and compare our results to this intuition, specifically a perspective of an object’s mass and

energy. Unlike in Newtonian gravity, this is a topic rife with complications which are discussed in Sections

3.2 and 3.3.

3.1 Binary Black Hole Initial Data

As an initial value problem, solving the Einstein equationsusing a ‘3+1’ decomposition requires initial data

which solves a set of constraints{�H ,�i} such that they are satisfied everywhere on the initial hypersurface.

For the BSSN formulation, these constraint equations (Eq. 2.23) are a coupled set of elliptic equations which

are difficult to solve, particularly when there is a BH in the spacetime. Cook [63], Pfeiffer et al. [149], and

Gourgoulhon [94] have written reviews of recent initial data construction techniques.
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There are two schools of initial data generation: conformaltransverse-traceless (CTT) decompositions

and conformal thin-sandwich decompositions (CTS). The conformal transverse-traceless decomposition

such as the one detailed below, allows us to freely choose theconformal spatial metric ˜γi j , the trace of the

extrinsic curvatureK, and the symmetric, transverse-traceless portion of the conformal extrinsic curvature

Ai j . For some people this is too much freedom. Needing more guidance to choose , the second school uses a

conformal thin-sandwich decomposition. This decomposition couples with a gauge choice (see Sec. 2.1.3),

taking a freely specifiable transverse tensor and conformallapse to create the extrinsic curvature while being

able to write down the time derivative of the spatial metric explicitly. This last point creates some guidance

in choosing the freely specifiable quantities.

The ideal initial data for a BBH simulation given infinite computational resources would start with the

BHs infinitely far apart with all objects in the spacetime that you wish to interact with it eventually also

present. Failing this, what would becorrect is an initial hypersurface containing the gravitational wave

information from the entire system dynamicsbeforethe initial hypersurface plus any deformation of the

BH’s horizons due to other energy and mass in the spacetime (e.g., another BH). To date, neither of these

ideal initial hypersurfaces can be generated and there are more types of new initial data being suggested

than NR groups willing to forgo template bank and data analysis work to test the initial data’s possible

improvements on waveforms.

A brief survey of initial data generation shows several schools of thought. There have been attempts of

varying degrees of success in the latter for BBH systems using straight post-Newtonian (PN) techniques.

The initial data of Tichyet al. [180] and later improved by Kellyet al. [115] use PN to generate the initial

{γ̃i j , Ãi j } required for the CTT initial data. Nissanke [143] presents another 2nd-order PN solution for both

CCT and extended CTS (XCTS) initial data.

Beyond straight PN techniques there are attempts to marry PNwith other approximations. Alvi [9]

followed by Yuneset al. [196, 195] combined PN solutions with asymptotic expansions to stitch together

solutions from PN and perturbative solutions in the inner zone of each BH. Then of course there are attempts

to modify the standard method detailed below by changing theconformal metric to something which is still

well-behaved but not flat [99, 128].

Many of these approaches still need improvement. More importantly, while still computationally ex-

pensive to create and time-consuming to code up, they are generally only applicable, by design, to a limited

type of BBH system such as equal-mass, non-spinning, or quasi-circular BBHs. This would require a large

repository of initial data thorns, differing for the other spacetime decompositions and coordinate choices.

In the following sections we take a closer look at the method considered standard for BBH initial data in

this age where many groups have started combining the numerical waveforms with data analysis for the first

LIGO science runs, spending considerable computational resources evolving BBH systems to generate the

first waveform template banks. This initial data requires making some basic assumptions to simplify the

constraint equations and choose the initial coordinates carefully in order to end up with a stable evolution.
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It is the effects of the errors in this initial data that are the focus of the studies in the next chapters.

3.1.1 Spacetime Full of Holes

In order to create BBH initial data, it is first enlightening to consider a single BH system. Every introductory

course on general relativity starts its discussion of BHs with the standard Schwarzschild metric for a single

static BH:

ds2 = −
(

1− 2M
r

)

dt2 +

(

1− 2M
r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2. (3.1)

Our formulation involves a conformal decomposition and, inparticular, an assumption of conformal flatness

to simplify the constraint equations. We can change coordinates in the above line element toisotropic

coordinates related to Schwarzschild coordinates byr = r̃
(

1+ M
2r̃

)2
to yield the isotropic line element

ds2 = −
(

2r̃ − M
2r̃ + M

)2

dt2 +

(

1+
M
2r̃

)4
(

dr̃2 + r̃2dθ2 + r̃2 sin2 θdϕ2) . (3.2)

In isotropic coordinates, then, foliating the spacetime bysurfaces of constant coordinate timet creates

hypersurfaces with a conformally flat intrinsic spatial metric, γi j = ψ
4δi j , whereψ = 1+ M

2r̃ is the conformal

factor.

Unlike Schwarzschild coordinates with its coordinate singularity at the event horizonr = 2M, the only

singularity in isotropic coordinates is the location of theBH singularity itself when the conformal factor

diverges there. It is worth noting that the isotropic spatial metric is invariant under the transformation

r̃ →
(

M
2

)2 1
r̃′

(3.3)

where the fixed points of the isometry are the points on the event horizon in isotropic coordinates, ˜r = M
2 ,

and the singularity point ˜r = 0 maps to infinity on another spacetime [46].

With this interpretation in mind, the problem with multipleBH spacetimes is that each new BH opens

a doorway to another asymptotically flat spacetime while simultaneously breaking the symmetries which

allows us to write the metric in the above form. Realizing this, Brill-Lindquist [46, 125] constructed a naı̈ve

approach to this problem by noting that under the assumptions of conformal flatness and time-symmetry

(Ki j = −Ki j = 0) the Hamiltonian constraint is linear. Therefore one could satisfy the constraints by

constructing a conformal factor from a superposition of single BH spacetimes. Given a spacetime withN

BHs of massesmn located at coordinatesΞi
n, a pointxi in the conformal space is attributed the Brill-Lindquist

conformal factor

ψBL ≔ 1+
N
∑

n

mn

2|x −Ξn|
. (3.4)

This Brill-Lindquist initial data creates a spacetime withmultiple BHs which are initially stationary,
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but the interpretation is more valid the farther apart the BHs are. The resulting manifold for the spacetime

actually as a topology that encompassesN + 1 asymptotically flat universes, one additional infinity mapped

inside the horizon of each BH. Our method for solving the multiple-BH problem is a generalization of

Brill-Lindquist data detailed in Sec. 3.1.3.

3.1.2 Bowen-York Approach

The way around waiting for a vast library of analytic initialdata thorns for various physical scenarios is

to employ some knowingly false assumptions to create a more flexible constraint solver which, though not

exact, can be shown to be sufficient for generating the phenomenology of BBH mergers and waveforms

to the accuracy where they become useful to the data analysiscommunity in searching for gravitational

waves from observatories such as LIGO. The Bowen-York approach [42, 41, 191], the basis of our initial

data solver, assumes both conformal flatness and maximal slicing and requires an additional transverse

decomposition of the extrinsic curvature.

For the sake of generating initial data we consider the constraint equations not from the BSSN formula-

tion of Equations 2.23, but using a different conformal transformation. We still decompose the spatial metric

by the same conformal factorγi j = ψ
4γ̃i j , but this time we decompose the traceless extrinsic curvature by a

different factor ofψ, namelyAi j = ψ
−2Ãi j and the dualAi j = ψ−10Ãi j . In this way, the full extrinsic curvature

is decomposed as

K i j = ψ−10Ãi j +
1
3
γi j K (3.5)

and the constraint equations, assuming vacuum, imply

∇̃i∇̃iψ −
1
8
ψR̃ − 1

12
ψ5K2 +

1
8
ψ−7Ãi j Ã

i j = 0, (3.6a)

∇̆ j(ψ
−10Ãi j ) − 2

3
∇̆ jK = 0 (3.6b)

whereR̃ is the Ricci scalar with respect to the conformal spatial metric γ̃i j . We leave the spatial derivative in

the momentum constraint for now as it is convenient later. Wecan now apply the assumptions of maximal

slicing (K = 0) and conformal flatness (R̃ = 0) so three more terms vanish, leaving us with

∇̃i∇̃iψ +
1
8
ψ−7Ãi j Ã

i j = 0, (3.7a)

∇̆ j(ψ
−10Ãi j ) = 0 (3.7b)

The Bowen-York approach to solving the constraints requires an additional decomposition: splitting the

conformal traceless extrinsic curvatureÃi j into transverse and longitudinal tensors. Denoting the conformal
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longitudinal operator as̃L, this decomposition can be written

Ãi j = Ãi j + (L̃W)i j . (3.8)

Given our choice of conformal factor, we can show for any symmetric, transverse-traceless tensorSi j that

∇̆ jSi j = ψ−10∇̃ j(ψ10Si j ). This simplifies the first term of the momentum constraint

ψ−10(∇̃ j(Ãi j ) + ∇̃ j(L̃W)i j ) = 0 (3.9)

Since by definitioñ∇ jÃi j = 0, the first term vanishes and we are left with a simple vector Laplacian equation

(△̃LW)i = 0 (3.10)

where

△̃LWi
≔ ∇̃ j(L̃W)i j = ∇̃2Wi +

1
3
∇̃i(∇̃ jW j) + R̃i

jW j . (3.11)

Thus the additional transverse decomposition has successfully uncoupledthe constraint equations and leav-

ing us with an equation where we can solve forW, and thusÃi j , separately.

For a single BH of arbitrary linear momentumPi and spinSi,

Ãi j =
3

2r2

[

Pin j + Pni − (δi j − nin j)Pknk
]

+
3
r3

[

ǫkilSlnkn j + ǫk jlSlnkni
]

(3.12)

wherer is the coordinate radius to the BH atΞi , ni is the unit outward normal away from this BH (ni
≔

(xi − Ξi)/r), andǫkil is the Levi-Civita tensor. We can verify the interpretationof Pi andSi as the linear

momentum and spin by computing the ADM momentum and spin as discussed in Sec. 3.2 below. Since the

momentum constraint in the Bowen-York approach is linear, amultiple-BH system’s momentum constraint

would be satisfied by a superposition ofÃi j for each BH centerΞn just like the Brill-Lindquist conformal

factor.

3.1.3 Punctures

While the Bowen-York approach uncouples the scalar and vector constraint equations and gives us an ana-

lytical solution to the momentum constraint, we still have to solve the scalar constraint equation

∇̃i∇̃iψ +
1
8
ψ−7Ãi j Ã

i j = 0. (3.13)
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Given a physical situation we can already calculateÃi j so we need only solve for the conformal factorψ.

For this we generalize the Brill-Lindquist conformal factor of Eq. 3.4 to

ψ = ψo + u =
N
∑

n

Mn

2|x −Ξn|
+ u (3.14)

whereu is some smooth function which incorporates the interactionbetween theN BHs. If the BHs are

sufficiently far apart,u = 1+ O(r−1). As in the original Brill-Lindquist conformal factor, theparameterMn

is theMADM (see Sec. 3.2) of thenth BH should it be isolated from the others, but in general this is just a

parameter we call thebaremass.

The ansatz thatψ takes this form allows us to rewrite the constraint equationagain as an equation foru.

Sinceψo satisfies the homogeneous Laplace equation, this becomes a second-order differential equation for

u

∇̃i∇̃iu+
1
8

(ψo + u)−7Ãi j Ã
i j = 0. (3.15)

For a general set of parametersMn,Pi
(n),Si

(n), andΞi
(n) we still have a messy elliptic equation to solve for

u. For a BBH system, we proceed farther by calling uponTwoPunctures, a code by Ansorg which solves

the Hamiltonian constraint numerically on a single-domainusing pseudo-spectral methods [13]. The key

to this method is a chain of four coordinate transformationsto reach a compactified bi-spherical coordinate

system with the two punctures at the focal points, regular atboth puncture locations, and spanning all ofR3.

For the spectral solver’s internal grid we choose coordinates (A, B, ϕ) whereAi andB j are the zeros of

the Chebyshev polynomialsTnA(1−2x) andTnB(−x) respectively andϕk are the zeros of the sinusoidal basis

sin(nϕϕ). We are free to choose the spectral resolutions
(

nA, nB, nϕ
)

of the solver, knowing that the expo-

nential convergence of spectral methods allows a relatively coarse spectral resolution such as (30, 30, 16).

The spectral solver’s coordinates are then given by

Ai = sin2
[

π

2nA

(

i +
1
2

)]

, (3.16a)

Bi = − cos

[

π

nB

(

j +
1
2

)]

, (3.16b)

ϕk = 2π
k
nϕ
. (3.16c)

These coordinates are related to the conformal Cartesian spatial coordinates (x, y, z) by the transforma-

tion

x = b
A2 + 1
A2 − 1

2B
1+ B2 , (3.17a)

y = b
2A

1− A2

1− B2

1+ B2 cosϕ, (3.17b)
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z = b
2A

1− A2

1− B2

1+ B2 sinϕ. (3.17c)

Having solved foru in the spectral coordinates using a Newton-Raphson iteration method, we transform

back to our conformal Cartesian coordinates and fill in the gridpoints by calculating the superposition of

Chebyshev polynomials and sinusoidal functions. In practice it is generally sufficient, and certainly more

efficient, to just Taylor expand between the Cartesian points that map to the collocation points used in the

spectral solver.

The coordinate transformation above is effective in solving the Hamiltonian constraint for BBH systems

of arbitrary momenta and spins, and medium mass ratios (around q = M1/M2 ≃ 0.3). In the studies which

follow in Chapters 4 and 5 we use modified versions of Ansorg’sconstraint solver to generate initial data

which differs from this standard initial data.

No initial data is complete without setting the initial gauge. We chooseβi = 0 since the maximal

slicing assumption does not require the coordinates to be shifting from the initial hypersurface to the next

hypersurface. This quickly evolves away from zero with our slicing condition detailed in Sec. 2.1.3. As

discussed in that section, we also use aK-driver which eventually collapses the lapse to zero at the BH. This

collapse takes a significant time, though, so we hasten the process by creating a pre-collapsed lapse derived

from our solution for the conformal factor,α = ψ−2.

3.1.4 Solving the Constraints: A Few Comments

It should be noted here that though we can introduce a linear momentumPi or spinSi to any BH in our

initial data, this is an approximation. Due to the maximal slicing assumption, our BHs are stationary on

the initial hypersurface though they build up linear momentum quickly over the first fewM of evolution.

Our use of the puncture method in solving the Hamiltonian constraint also assumes the singularity take the

form of a point, but when spin is added to a BH, the geometry of the actual singularity becomes a ring

instead. Garat and Price [86] showed that, because of this, there is no conformally flat coordinate system

for a Kerr spacetime. Despite this, the initial data we construct from the method above allows for a non-

zero spin parameter. This means spinning punctures are not true spinning BHs, but the spacetime outside

the BHs’ horizons evolve to a Kerr spacetime. Since it is the spacetime outside the horizons that interest

us, the BHs are effectively spinning. Due to the kludge attempt at adding spin,the initial spin parameter

cannot be set too high. Initial puncture spins of up toj = |S|/M2 ≃ 0.8 have been stably evolved without

significantly increasing the resolution and post-merger spins have been observed and verified up toj ≃ 0.96.

If a puncture spins up too much without high resolution at thepuncture, the insufficient resolution dissipates

the extra angular momentum. Thus, by increasing the resolution inside the puncture, higher initial spins can

be made stable but at a high cost in computational resources and efficiency [65].

Another topic which merits discussion is the topology of ourspacetime. In creating our puncture initial

data, we compactify the infinities of the punctures to withinthe event horizon in ourR3 manifold. Theoret-
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ically we also excise the singularities themselves from thespacetime manifoldM since the metric diverges

there. In practice, though, this is done by either staggering the grid such that the singularity isbetween

gridpoints, or by modifying the radial coordinate byr →
(

r4 + ǫ4
)1/4

whereǫ is a small parameter of order

10−5. Studies by Brownet al. [48] have shown that punctures work preciselybecausewe under-resolve

the punctures within the horizons. By plotting the punctureregion’s gridpoints on a Kruskal diagram, he

shows that the resolution of the region within the BH actually worsens as the evolution progresses with the

standard shift condition. InMayaKranc we also set a minimum value for our conformal factor,χ = ψ−1/4,

in calculating the right hand sides of the spacetime variables to avoid numerical problems.

Finally we should consider the viewpoint of constraint surfaces. The evolution equation for the confor-

mal connection functions̃Γi is just a rewritten form of the momentum constraint which is actively enforced

throughout the evolution [87], yielding apartially constrained evolution system. It would be correct to solve

the constraint equations on every timestep of our evolution, but this is prohibitively expensive in computa-

tional resources. Instead, we solve the constraints for theinitial data and calculate the constraint violations
(

�H,�
i
)

to monitor how well the Einstein equations are being satisfied. In so doing, the space ofmathemat-

ical solutions to the evolution equations given an initial data set, are all possible results. The set of solutions

{γi j , Ki j } at all time steps on which the constraint equations are satisfied span a subset of all the mathemati-

cal solutions to the evolution equations. A fully constrained system of evolution equations starting from an

initial hypersurface on which all the constraints are exactly satisfied everywhere would ideally stay on this

set of solutions, called aconstraint surface. Computers don’t function that way, though. Numerical errors

create small constraint violations, moving the solution off the constraint surface into the space of solutions

beyond. No study to date has sufficiently considered how far the BBH solutions move from the constraint

surface or what ramifications this has on observable science.

It is impossible to remain on the constraint surface itself,but in the BSSN formulation the constraint

surface has proved to be fairly stable – small constraint violations do not accelerate the system away from

the constraint surface. In part, this is also due to artificial dissipation added to the spacetime variables

to damp high frequency noise that would otherwise drive the system off the constraint surface. Precisely

how much constraint violation is permissible before the gauge-invariant quantities extracted for physical

interpretation become significantly corrupt is unknown andpart of the motivation for the study in Ch. 5.

3.2 Analysis: Arnowitt-Deser-Misner (ADM) Mass and Momenta

To begin an analysis it is useful to connect the gauge-dependent quantities of our spacetime to Newtonian

notions of mass and momentum. The problem herein lies in finding gauge-independent ways of calculating

such quantities that can indeed be interpreted as, for instance, the mass on a given hypersurface. There are

three classes of such quantities: local, quasi-local, and asymptotic. We leave the local quantities, derived

from the notion of horizons, to Sec. 3.3 while the quasi-local notions are considered with the waveform



25

extraction in Sec. 3.4.

The asymptotic quantities, defined at spatial infinity, are notions of theglobal energy and momenta

on the hypersurface. Termed the ADM mass and the ADM momenta,they traditionally take on the form

found in Chapter 11 of Wald [184]. The definitions for the massand linear momentum are given in his

equations (11.2.14) - (11.2.15) while the angular momentumis left as an exercise at the end of the chapter.

These definitions rely on the assumption of asymptotic flatness, that the full metric converges to flat space

sufficiently quickly, to convert what would intuitively be a volume integral into a surface integral over a

sphere at spatial infinity.

The integrals were rewritten assuming the BSSN’s conformaldecomposition by Murchadhaet al. [139]

and Bowen and York [42, 193]. In these quantities the ADM massMADM is given by

MADM ≔ −
1
2π

∮

∞
∇̃iψd2Si (3.18)

where d2Si is the area element on the sphere at infinity. Similarly the ADM linear momentumPi
ADM is

Pi
ADM ≔

1
8π

∮

∞
K̃ i j d2Si (3.19)

and the ADM angular momentumJADM , i is

JADM , i ≔
ǫi jk

8π

∮

∞
x jKkld2Sl (3.20)

whereǫi jk is the Levi-Civita tensor.

Since the method used inMayaKranc has a finite outer boundary, we cannot calculate this explicitly

on our grid. Instead, we extrapolate by calculating the ADM quantities at many large radii. The radial

dependence can then be empirically removed by fitting a polynomial in 1/r to the calculated ADM quantities

provided the radii of the detectors are sufficiently far from the dynamical region. This also implies no

gravitational waves should be radiating past any detectors, so the calculation must only be done on the

initial data and final (if stationary) hypersurfaces.

3.3 Analysis: Horizons

The ADM mass and momenta described in Sec. 3.2 are very usefulfor discussing spacetime as a whole, but

to understand the dynamics in a simulation we need to define a way of stating the mass ofoneof the BHs

in a spacetime or the mass of a BH separated as best we can from the dynamics around it. That is, we need

a local notion of mass, linear momentum, and angular momentum. Ideally this would be done through the

event horizon as it bounds the region where everything is doomed to fall into the singularity. The difficulty

here lies in that the event horizon is a three-dimensional object embedded in the full four-dimensional
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spacetime that can only be found by looking backwards from the final hypersurface. It is possible to evolve

null geodesics or null surfaces near the anticipated event horizon backwardsin time given the full evolved

spacetime so they would converge to the event horizon [68, 177]. This, unfortunately, is both expensive

in memory storage and requires the simulation to be fully complete. We need a local notion of a horizon

which can be defined and found on a single hypersurface to aid in both deriving physically-based notions

for final analysis and for on-the-fly diagnostic checks that asimulation is still being physical. In this section

we briefly describe two such notions. The first, apparent horizons, have a fast implementation to derive

local notions of mass. The second, isolated and dynamic horizons, can also supply a notion of mass, but we

instead use the framework for a quick and dirty method to calculate the spin of a BH.

3.3.1 Apparent Horizon

AHs are defined asoutermostMarginal Outer Trapping Surfaces (MOTS). That is, an AH is a smooth

(differentiable) closed orientable 2-sphere embedded in a three-dimensional hypersurface whose future-

pointing, outgoing null geodesics have zero expansionΘ. For a Cauchy ‘3+1’ foliated spacetime, this

definition can be explicitly written as a 2-surface where thefollowing elliptic equation is satisfied:

Θ ≔ ∇̆in
i + ni

n
jKi j − K = 0 (3.21)

whereni is the (3-dimensional) unit normal to the 2-surface. With this definition we see that the AH is a

gauge-dependent quantity whose interpretation must be handled with care. In fact, even for a stationary,

single BH a gauge can be chosen where no AH exists. The concepthas nonetheless proven quite useful in

studies of BHs with the standard gauges used in numerical relativity.

The presence of an AH implies there is a BH contained within the horizon. There may, however, be

severalsurfaces which satisfy Eq. 3.21 on a hypersurface, each surrounding one or more BHs. To find the

true AH we would need to constantly check for acommonAH, initially highly distorted, which indicates

that the BHs inside can already be observed from outside as one distorted BH.

For a single, stationary BH, it can be shown that the event horizon and the AH coincide. More gener-

ally, an AH by definition will lie on or completelywithin the event horizon. This is fortunate as excision

techniques use the AH as a guide to where excision must occur.More closely related to these studies, the

accuracy of the initial data within the AH is not important asit is causally disconnected from the rest of the

spacetime where our interests lie.

In our group’s studies the AH is used primarily to provide a notion of a BH’s mass. The effective AH

massMAH is derived from the area of the AH by

MAH ≔

√

A
4π
. (3.22)
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The location of the AH is also used in the calculation of the proper distance between BHs in Ch. 4. In

other studies not included in this work, the shape of the AH, particularly the ratio of the circumferences, are

utilized as a measure of the BH’s distortion.

There is one more important drawback to AHs. As their definition is completely confined to a single

hypersurface, there is no requirement for them to evolve smoothly between hypersurfaces. That is, if we

combine the AHs found around a singularity into a world tube of apparent horizons, there is no requirement

for this tube to be smooth and timelike or null. In fact, when the common AH is first found, the world

tube will be spacelike and generally discontinuous. In our simulations, we typically follow the individ-

ual BH’s AHs close to the merger, realizing that the common AHforms several 10s ofM before merger.

AHFinderDirect uses provided parameters for the center of the AHs, but the common horizon forms well

before the coordinate locations of the punctures have reached the center of the common AH. For this reason

the AH finder has a tendency to crash the simulation, so there is a break around merger when no AH mass is

necessarily considered. The capability of dynamically shutting down one horizon search after another has

been found has been developed, but this drawback has been left in order increase the speed of the AH finder.

3.3.2 Isolated and Dynamic Horizons

Since the advent of AHs there have been several new frameworks considered for horizon finding which yield

new notions of local mass, momentum, and spin. Hayward [102], for instance, developed the notion of a

“trapping horizon” similar to the world tube of AHs described above where the expansion is non-zero the

horizon evolves. This led to the isolated horizon frameworkby Ashtekar, Beetle, and Fairhurst [17] and

later the dynamical horizons framework by Ashtekar and Krishnan [18, 19]. Numerical implementations

of isolated and dynamical horizon concepts were discussed by Dreyeret al. [71] and Schnetteret al. [164]

respectively.

Isolated and dynamical horizons areS2×R tubes defined in terms of null tetrads with expansions defined

for the outgoing (lµ) and ingoing (nµ) null normals. Isolated horizons are null surfaces with no matter or

radiation crossing them within a specific time frame and thusare both expansion and shear free. Dynamical

horizons, on the other hand, are the generalization of isolated horizons when matter and/or radiation crosses

the horizon [20].

Isolated and dynamic horizons cannot be found on a single hypersurface in isolation. Unlike AHs

they need several timesteps in order to create a null tetrad with a time-like component. Requiring several

timesteps, though, is a vast improvement from requiring alltimesteps as the event horizon does, and its

smoothly evolving geometry avoids the discontinuities found in AHs.

The results presented in this dissertation do not use the isolated or dynamical horizon framework to find

a local notion of mass due to the current implementation’s inefficiency. We do, however, use the notion of

a local horizon spin derived in this framework. Given a Killing vectorξi associated with the spacetime, the



28

spin of a BH in the direction ofξi can be defined by

Sξ ≔
1
8π

∮

AH
ξi
n

jKi j d
2S (3.23)

whereni is the outward-pointing unit normal to the AH. Campanelliet al. [58] introduced the flat space

coordinate rotational Killing vectors

ξi
x = (0,−ẑ, ŷ) , (3.24a)

ξi
y = (ẑ, 0,−x̂) , (3.24b)

ξi
z = (−ŷ, x̂, 0) . (3.24c)

where the coordinates(x̂, ŷ, ẑ) are relative to the coordinate center of the BH. The spinS =
(

Sx,Sy,Sz
)

obtained with Campanelli’s rotational Killing vectors agrees well with the one using the Killing vectorξi

when one exists [58]. The spins calculated in this dissertation make use of either the Campanelli Killing

vectors derived on a coordinate sphere of approximately thesame radius as an AH would be expected (thus

not requiring the AH finder to be active at all) or approximateKilling vectors derived on the AH itself.

Herrmannet al. [105] found these methods to be approximately equal until the common AH is formed.

3.4 Analysis: Gravitational Waveforms

As no numerical study can claim to represent actual physics without tying into experiment, we need to extract

information from our evolutions that can be compared to experiment (i.e. physics). In the case of BBH

simulations, this requires extracting the gravitational waveforms that could be incident on a gravitational

wave observatory such as LIGO or LISA from such physical situations. These waveforms are extracted

through a calculation of a scalar, the 4th Weyl pseudo-scalar Ψ4, using a fiducial tetrad whose construction

is detailed in [24]. Together with I. Hinder, I wrote a wave extraction thorn, WeylScal4, for theCactus

infrastructure based on this method to replace a similar though inefficient wave extraction thorn.

3.4.1 Weyl Scalars

The Newman-Penrose formalism [141, 59] is a special tetrad formalism that has proven particularly useful

in studying spacetimes with BHs. In tetrad formalisms, the Einstein equations are not considered using

local, convenient, coordinate bases for the given problem.Instead they take a tetrad, 4 linearly independent

vector fields, as their basis. The quantities of interest arethen written by projections onto this tetrad basis.

In the Newman-Penrose formalism, this tetrad is composed offour null vectors,z = {lµ, nµ,mµ,mµ}. Two

vectors,lµ andnµ, are real while the remaining two,mµ andmµ, are complex conjugates of each other. They
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are also required to satisfy the following orthogonality condition:

lµmµ = l
µmµ = n

µmµ = n
µmµ = 0. (3.25)

Generally there is an additional convenient though unnecessary normalization condition imposed:

l
µ
nµ = 1, (3.26a)

m
µ
mµ = −1. (3.26b)

The trace-free component of the Riemann tensorRαβγδ, dubbed the Weyl tensor, has 10 independent

components for the full four-dimensional Riemann tensor. In the Newman-Penrose formalism, we project

the Weyl tensor onto a set of four tetrad vectors to encase those 10 independent components in 5 complex

scalars called Weyl scalars. Given the Weyl tensorCαβγδ, these are defined as

Ψ0 = Cαβγδl
αmβlγmδ , (3.27a)

Ψ1 = Cαβγδl
αnβlγmδ , (3.27b)

Ψ2 = Cαβγδl
αmβmγnδ , (3.27c)

Ψ3 = Cαβγδl
αnβmγnδ , (3.27d)

Ψ4 = Cαβγδn
αmβnγmδ. (3.27e)

These quantities are not true scalars as they are not constant under a rotation of the tetrad by an angleψ (See

Appendix A). As will be discussed in Sec. 3.4.2, for gravitational wave extractionΨ4 is the Weyl scalar of

interest. The calculations for the remaining Weyl scalars are included in Appendix A. The version of the

code available to the public only calculatesΨ4.

The definition ofΨ4 can be written in terms of the full Riemann tensor [52, 51, 54,53], where in the

following the 0th component denotes projection of the quantity onto the normal to the hypersurfacenµ. In

this way we can write the Weyl scalars as

Ψ4 = Ri jkln
i
m

j
n

k
m

l + 2R0 jkl (n
0
m

j
n

k
m

l −m0
n

j
n

k
m

l)

+R0 j0l(n
0
m

j
n

0
m

l +m0
n

j
m

0
n

l − 2n0
m

j
m

0
n

l) (3.28a)

where, for example,R0 jkl = nα ⊥βj⊥
γ
k⊥δl Rαβγδ. Using the ADM ‘3+1’ decomposition, we can rewrite

the projections of the full Riemann in terms of quantities defined on a single hypersurface (e.g., the spatial

Riemann and Ricci tensors and the full extrinsic curvature)by

Ri jkl = Ri jkl + 2Ki[kKl] j (3.29a)

R0 jkl = −2
[

∂[lKk] j + Γ
p
j[kKl]p

]

(3.29b)
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R0 j0l = R jl − K jpKp
l + KK jl . (3.29c)

We don’t expand this farther into BSSN quantities sinceMayaKranc keeps a copy of ADM variables in

memory that are updated after every timestep from the BSSN variables. It is more efficient and convenient

to calculate the Weyl scalars in terms of the ADM quantities.

3.4.2 Tetrad Choice

The scalars as such are merely convenient quantities with which one can rewrite the Einstein equations.

Given just the tetrad requirements of the Newman-Penrose formalism, we cannot say anything concretely

concerning the interpretation of the Weyl scalars. By specifying a special tetrad, though, these quantities

can be related to gravitational wave content in the far zone.In particular, Newman [141] showed a special

behavior if you chooselµ to be an “outgoing” vector in the null hypersurface of an asymptotically flat

spacetime,nµ as an “ingoing” vector on that same null hypersurface, and{mµ,mµ} to be in the angular

directions of a 2-sphere. With such a tetrad, at some distance from the region of strong gravity the amplitude

of Ψ4 decreases with coordinate radius asO
(

r−1
)

. Similarly,Ψ3 decreases asO
(

r−2
)

,Ψ2 asO
(

r−3
)

,Ψ1 as

O
(

r−4
)

, and finallyΨ0 decreases asO
(

r−5
)

. Ψ4 therefore has the radial dependence for radiation, but that

is insufficient in and of itself.

The precise choice for these null vectors depends on what is convenient for the problem at hand, but it

is standard for gravitational wave analysis to definelµ as an “outgoing” null vector,nµ as an “ingoing” null

vector. The remaining two tetrad components,mµ andmµ, then span the angular directions. A particularly

good way of seeing the roles of the Weyl scalars with such a tetrad is from the gravito-electric and gravito-

magnetic formulation of the Weyl tensor [168]. By decomposing the Weyl tensor into electric and magnetic

tensors it becomes easier to separate transverse and longitudinal portions of tensors. In a suitably chosen

tetrad wherelµ is an outgoing null,Ψ4 andΨ0 are then shown to be transverse. In such a tetrad,Ψ4

can be interpreted as the “outgoing transverse” scalar while Ψ0 is the “ingoing transverse” scalar. The

“longitudinal” ingoing and outgoing scalars are thenΨ1 andΨ3 respectively, andΨ2 is the mass/energy

monopole. In such a tetrad whereΨ4 is transverse, outgoing, and has the correct radial dependence, we can

relate this quantity to gravitational radiation.

There are many explicit choices for the tetrad which displaythese characteristics, but with the finite grids

of the Cauchy ‘3+1’ decomposition the choice is particularly important. An obvious choice for perturbative

studies is a tetrad lying along the principal null directions of the background spacetime’s Weyl tensor. The

perturbations in general vanish far from the area of interest, leaving the tetrad along the true principal null

directions at distances where wave extraction is desired. Kinnersley [116] considered this and found a

suitable analytic tetrad in Boyer-Lindquist coordinates,dubbed the Kinnersley tetrad [173]. Unfortunately,

not all spacetimes allow an analytical and well-behaved Kinnersley tetrad, though attempts have been made

to find “quasi-Kinnersley” tetrads that approximate the Kinnersley tetrad at large enough distances [50]. In
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terms of a quasi-Kinnersley tetrad, the longitudinal Weyl scalars,Ψ1 andΨ3, vanish while theΨ2 approaches

a Kinnersley-tetrad value and the transverse scalarsΨ0 andΨ4 differ from the values in a Kinnersley tetrad

by only a complex factor.

The tetrad we use in this and other work uses a fiducial tetrad,created in a rather intuitive way to

satisfy the criteria of Eqs. 3.25 and 3.26. We first assume that the ‘3+1’ decomposition used allows a tetrad

decomposition of the form

l
µ =

1√
2

(

nµ + rµ
)

, (3.30a)

n
µ =

1√
2

(

nµ − rµ
)

, (3.30b)

m
µ =

1√
2

(

θµ + ıϕµ
)

(3.30c)

wherenµ is the (normalized) normal to the hypersurface. The vectorsrµ, θµ, andϕµ form an orthonormal

spatial triad which we choose based on intuition for a standard 2-sphere on Minkowski and orthonormalize

using the Gram-Schmidt method.

Being spatial, we can write the spatial four-vectors of the triad in terms of three-vectors. Let the spatial

triad components take the formrµ = {0, vi
3}, θµ = {0, vi

2}, ϕµ = {0, vi
1}. Our initial guess for the set{vi

1, v
i
2, v

i
3}

is for vi
1 to lie in the azimuthal direction andvi

2 to lie in the radial direction. We then createvi
3 from

orthonormalization requirements. In Cartesian coordinates, this is

vi
1 = (−y, x, 0) , (3.31a)

vi
2 = (x, y, z) , (3.31b)

vi
3 =

√

detγ γi j ǫ jklv
k
1vl

2 (3.31c)

We then apply the Gram-Schmidt process beginning withvi
1. The order is important sincevi

1 is affected the

least by frame dragging. The resulting triad is

vi
1 −→ vi

1√
ω11

, (3.32a)

vi
2 −→

(

vi
2 − vi

1ω12
)

√
ω22

, (3.32b)

vi
3 −→

(

vi
3 − vi

1ω13− vi
2ω23

)

√
ω33

(3.32c)

whereωi j is created from the various projectionsωi j ≔ vn
i vm

j γnm. Fiskeet al. [80] showed this fiducial

tetrad leads to an extracted wave which is convergent in the now standard numerical formulation and im-

plementation, agreeing well with the analytical solutionsof an outwardly propagating (linear) Teukolsky
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wave [174].

3.4.3 Physics fromΨ4

The Weyl scalarΨ4 is not, in itself, a useful physical quantity to interpret. It can, however, be used to

generate easily interpretable information and is all that is necessary to calculate quantities vital to analyzing

the evolution for future gravitational wave detection.

Multipolar Analysis It is standard procedure to decomposeΨ4 onto spherical harmonics. SinceΨ4 is

a spin-2 psuedo-scalar, the standard spherical harmonics are not sufficient, so we decompose it onto spin-

weighted spherical harmonics [142, 178] (see Appendix B fora discussion of spin-weighted spherical har-

monics). There are several benefits to such a decomposition.First, this is a natural way of separating higher

frequency (largel) contributions toΨ4 which contain more of the numerical noise. Second, considering our

intuition and prior knowledge of symmetries, mode decompositions can aid in evaluating the validity and

physicality of a particular numerical solution. Finally, the mode decomposition aids our understanding of

system dynamics. Quasi-normal mode analysis of a distortedBH’s ringdown, for instance, is based on the

decomposition of waveforms into spin-weighted spherical harmonic modes. Additionally, the kicks seen in

the final BHs of unequal mass and/or spinning BBH systems have been traced to asymmetric gravitational

radiation in certain modes.

It can be shown thatΨ4 is a spin -2 scalar (see Appendix B) so in the decomposition only l ≥ 2 modes

will contribute. The decomposition ofΨ4 is then given by

Ψ4 =

∞
∑

ℓ=2

ℓ
∑

m=−ℓ
Aℓ,m

(

−2Yℓ,m(θ, ϕ)
)

. (3.33)

Inverting the relationship we calculate the mode coefficientsAℓ,m by

Aℓ,m =

∮

Ψ4

(

−2Y
ℓ,m

(θ, ϕ)
)

dΩ (3.34)

wheredΩ is the standard solid angle element on a 2-sphere. For a detector at radiusr0, we interpolateΨ4

onto a sphere of radiusr0 from the Cartesian grid in the immediate vicinity and integrate as in Eq. 3.34.

Strain Waveform First and foremost in importance is the computation of the complex waveform strain,

h, which is directly observable by gravitational wave observatories such as LIGO. In the transverse-traceless

gauge, the strain can be decomposed ash = h+ − ıh× whereh+ andh× are the two polarizations of gravita-

tional radiation. The complex strain is directly related toΨ4 by two time derivatives or, from the other point
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of view, two integrations:

h = −
∫ t

−∞
dt′
∫ t′

−∞
Ψ4d

(

t′′
)

. (3.35)

Note that the lower limit of the integral isnegativeinfinity, which differs from our starting point. To account

for this oversight, we need to find the constants of integration such that the strain starts at zero att = −∞ and

ends at zero once the system has settled down to a final BH. In practice we find the constants of integration

by fitting a line to the tail end of the waveform after the the radiation has propagated away, assuming there

are sufficient points to get a good fit. In the remaining discussion we assume the constants of integration

are taken into account as they are needed, for instance, to remove the sinusoidal modulation found in the

radiated energy and angular momentum. In addition, to be completely accurate, all the quantities here should

be calculated at infinity using aΨ4 that is extrapolated to infinity from an array of detectors far from the

dynamical region.

Radiated Energy Between the asymptotic definitions of mass and momenta from Sec. 3.2 and the local

definitions of mass and momenta from Sec. 3.3 are the energy and momenta carried to infinity by the gravita-

tional radiation (see Ruizet al. [160] for a good discussion on calculating radiated quantities). We approach

extracting notions of energy and momentum from the viewpoint of a perturbation on an asymptotically flat

hypersurface. As there are only two degrees of freedom in gravitational radiation (the two polarizations), we

consider the gravitational wave as a transverse-traceless(TT) perturbation on flat space. That is, we assume

a perturbationgµν = δµν + hµν wherehµν is a TT tensor satisfyingh0µ = hii = ∇ jh
i j with ∇ j denoting the

convariant derivative with respect to the background metric, flat spaceδi j .

The Isaacson stress-energy tensor [112] associated with such a perturbation in a locally inertial frame is

Tµν =
1

32π

∑

i, j

〈

∂µhi j ∂νhi j
〉

(3.36)

where〈〉 denotes an average over several wavelengths. If we have, forinstance, an outgoing wave in thez

direction,hi j takes the form

hi j =













0 0 0 0

0 h+ h× 0

0 h× h+ 0

0 0 0 0













(3.37)

with h+ andh× being the two gravitational degrees of freedom. Using this form of hi j the Isaacson stress-

energy tensor becomes

Tµν =
1

16π

〈

∂µh+∂νh+ + ∂µh×∂νh×
〉

=
1

16π
ℜ
〈

∂µh ∂νh
〉

. (3.38)

In the above we have also rewritten the Isaacson stress-energy in terms of the complex strain defined earlier
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in this section. In our local Cartesian coordinates, the Isaacson stress-energy componentT0r is the energy

flux in the radial direction:
dE

dt dA
= T0r = − 1

16π
ℜ
〈

ḣ ∂rh
〉

(3.39)

wheredA= r2dΩ is the area element normal to the radial direction andḣ = ∂th. Since we have assumed an

outgoing wave, the functional dependence of the perturbation is such thath = f (r − t)/r. This dependence

lets us rewrite the radial derivative as a time derivative,∂rh ≃ −ḣ. Integrating over the entire sphere to get

the total energy being radiated, we find

dE
dt
= lim

r→∞
r2

16π

∮

∣

∣ḣ
∣

∣

2
dΩ. (3.40)

SinceΨ4 = −ḧ , we can rewrite this energy in terms ofΨ4

dE
dt
= lim

r→∞
r2

16π

∮
∣

∣

∣

∣

∫ t

−∞
Ψ4dt′

∣

∣

∣

∣

2

dΩ. (3.41)

We utilize the decomposition onto spin-weighted sphericalharmonics by calculating the energy instead

from the mode coefficients, using only the lower order multipoles we’ve calculated and hence avoiding

noise-ridden higher multipoles:

dE
dt
= lim

r→∞
r2

16π

∑

ℓ,m

∣

∣

∣

∣

∫ t

−∞
Aℓ,mdt′

∣

∣

∣

∣

2

. (3.42)

Radiated Angular Momentum The Isaacson method of deriving the radiated energy linearized the per-

turbation to first order in 1/r by averaging over several wavelengths, but angular momentum flux is of order

1/r3. In 1971, Bryce Dewitt first derived an expression for the fluxof angular momentum from a gravita-

tional wave of the form [178]

dJi

dt dA
=

1
32π

ǫ i jk
(

x j∂khµν + 2δµ jhνk
)

∂rh
µν. (3.43)

We write Dewitt’s expression in more succinct form by utilizing the angular Killing fields of the back-

ground (flat) metric,ξi . In Cartesian coordinates, the components of these vectorsareξk
i = ǫ

jk
i x j. Again

assuming∂rh = −∂th, we can then write the angular momentum more elegantly and intuitively as a Lie

derivative of the metric perturbation along the Killing fields

dJi

dt dA
= − lim

r→∞
r2

32π

∮

(

Lξihµν
)

∂th
µνdΩ. (3.44)

Similar in fashion to the radiated energy calculation, we consider this first as Cartesian Killing vectors
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in spherical coordinates (r, θ, ϕ) such that the Killing vectors are given as

ξx = (0,− sinϕ,− cosϕ cotθ) , (3.45)

ξy = (0, cosϕ,− sinϕ cotθ) , (3.46)

ξz = (0, 0, 1) . (3.47)

In order to calculate the Lie derivatives ofhµν along these Killing vectors we need to first change basis.

We introduce two complex vectorsξ± ≔ ξx ± ıξy and an orthonormal spherical basis
(

êr , êθ, êϕ
)

where we

similarly define two complex vectors ˆe± ≔
(

êθ ∓ ıêϕ
)

/
√

2. The Lie derivative of the new basis vectors ˆe±

alongξ± is easily derived as

Lξ± ê
µ
± = ∓

(

ıe±ıϕ cscθ
)

êµ±. (3.48)

We can also rewrite the metric perturbationhµν in terms of the complex strain and the new basis vectors

hµν = h (ê−)µ (ê−)ν + h (ê+)µ (ê+)ν (3.49)

Using both the above we can define angular operators for spin-weight sas ĵ± ≔ ξ
µ
±∂µ − ıse±ıϕ cscθ and find

that

Lξ±hµν = (ê−)µ (ê−)ν ĵ±h+ (ê+)µ (ê+)ν ĵ±h. (3.50)

Noting that whileh has a spin-weight of -2, it’s complex conjugate has a spin-weight of +2,

(

Lξ±hµν
)

∂th
µν = 2ℜ

{

ĵ±h ∂th
}

. (3.51)

A change of base and the definition of the Cartesian set of angular momentum operatorŝj i for spin-

weight sas

ĵx = − sinϕ ∂θ − cosϕ
(

cotθ ∂ϕ − ıscscθ
)

, (3.52a)

ĵy = cosϕ ∂θ − sinϕ
(

cotθ ∂ϕ − ıscscθ
)

, (3.52b)

ĵz = ∂ϕ (3.52c)

yields the angular momentum flux

dJi

dt
= − lim

r→∞
r2

16π
ℜ
{
∮

∂t
(

h
)

ĵ ih dΩ

}

. (3.53)

As with the radiated energy, we can use the relation between the complex strain andΨ4 to write this in terms
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of Ψ4

dJi

dt
= − lim

r→∞
r2

16π
ℜ
{

∮ (∫ t

−∞
Ψ4dt′

)

× ĵ i

(

∫ t

−∞

∫ t′

−∞
Ψ4dt′′dt′

)

dΩ

}

(3.54)

or similarly use the decomposition into spin-weighted spherical harmonics to rewrite this in terms of the

mode coefficients

dJi

dt
= − lim

r→∞
r2

16π
ℜ
{

∑

ℓ,m

∑

ℓ′,m′

∫ t

−∞
Aℓ′,m′

dt′ ×
∫ t

−∞

∫ t′

−∞
Aℓ,mdt′′dt′ ×

∮

−2Y
ℓ′,m′

ĵ i
(

−2Yℓ,m
)

dΩ

}

(3.55)

Quasi-Normal Modes Analysis The final analysis quantity we utilize in this work are the quasi-local

notions of mass and spin encoded in the ringdown portion of the waveform. After a merging BBH system

has formed a common AH, the BHs can be seen from observers at spatial infinity as a single, highly distorted

BH. This distorted BH can be viewed as undergoing a ringdown,shedding its distortion through the emission

of gravitational radiation until it settles down into a stationary, possibly rotating BH (we disregard for the

moment possible kicks). At some point in this process, the spacetime can be seen as a perturbation where

the final BH system is the background metric. This is a regime where analytical approaches again bear fruit.

Just as bells have fundamental frequencies, or normal modes, at which they emit sound waves, so to do

BHs have fundamental harmonics at which they emit gravitational waves when perturbed. The gravitational

waveform emitted in the ringdown of a perturbed BH is approximated by a superposition of quasi-normal

modes (QNMs) [118, 37] with a time dependence ofeıωt whereω is complex frequencyω = ωℓmn+ ı/τℓmn.

These modes are termed “quasi-normal” because the constantloss of energy from the system changes the

nature of the modes so there is no truly complete set of modes.The real part of the frequency,ωℓmn = 2π fℓmn

yields the real oscillations whileτℓmn is the damping time of the (ℓ,m, n) mode. Theℓ andmmode numbers

choose the angular dependence of the mode whilen refers to one (of infinite) overtones for an (ℓ,m) mode.

Since the fundamental,n = 0, excitation has the longest damping time and will contribute the most to the

signal detected at spatial infinity, we will ignore overtones in this work. In terms of its quasi-normal modes,

the waveform can be decomposed as

h = h+ + ıh× =
M
r

∑

ℓmn

Cℓmne
ı(ωℓmnt+φℓmn)e−t/τℓmnSℓmn (3.56)

whereCℓmn are real constants andSℓmn are spin-weightedspheroidalharmonics [36] which, for the fun-

damental (n = 0) mode of non-spinning BHs reduce to the spin-weightedsphericalharmonics discussed

above and in Appendix B. The puncture spacetimes we evolve are not Kerr spacetimes initially, but the

gauge conditions used in the MPT underresolve the inner region enough that the system evolves to a nearly

Kerr spacetime. Thus we find it sufficient to use the spin-weighted spherical harmonicssYℓ,m as our basis.

During our standard mode analysis, as discussed above, we have the projection ofΨ4 onto the set of

spin-weighted spherical harmonics as a set of time-dependent mode coefficientsAℓ,m. SinceΨ4 = −ḧ, we
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can relate our generic mode decomposition to the quasi-normal mode decomposition

Aℓ,m = (−1)m+2 M
r
Cℓ,−me−ıφℓ,−m

(

ıωℓ,−m−
1

τℓ,−m

)2

e−ı(ωℓ,−m+1/τℓ,−m)t (3.57)

Since we are just interested in the time dependence of the complex coefficientsAℓ,m, we find it easiest to

consider its amplitude and phase as a function of time

∣

∣Aℓ,m
∣

∣ ∝ et/τℓ,m , (3.58a)

argAℓ,m ∝ −ωℓ,mt. (3.58b)

Thus, given a mode decomposition ofΨ4 onto a basis of spin-weighted spherical harmonics, we can find

τℓ,m from the slope ln
∣

∣Aℓ,m
∣

∣ andωℓ,m from the slope of argAℓ,m. These two quantities specify the full

complex frequency for the (ℓ,m) mode.

The complex frequency for a quasi-normal mode depends on both the mass and spin of the final BH.

In Chapter 4 we use the quasi-normal modes to find the spin given the final mass of the system, which

we acquire using the radiated energy and energy conservation. From the final massM and the complex

frequency, we can construct the dimensionless quantityMω and compare this to analytical calculations of

Kerr quasi-normal frequencies. In Appendix D of Bertiet al. [37] there is a table of such frequencies for a

range of spins. Interpolation across the spins gives us a function j(Mω) for evaluating the spin of the final

BH.

Other Quantities The radiated linear momentum can be calculated from the Isaacson stress-energy tensor

method in a fashion similar to the radiated energy. This is useful for unequal or spinning BBH systems where

the asymmetric gravitational radiation gives a “kick” to the final BH. In this dissertation, though, we do not

consider BBH systems from which kicks are expected and therefore do not compute the radiated linear

momentum in our analyses.

3.4.4 Comments onΨ4 Analyses

A recent joint analysis by Lindblomet al. [124] derives the accuracy requirements for parameter estima-

tion and general signal detection (the complex strain) using numerically-generated, analytical, or hybrid

numerical-analytical waveforms. Lindblom’s study was notreleased until after the study of Ch. 4 was pub-

lished. Our analysis of the waveform accuracy for data analysis in Ch. 5 remains rudimentary in light of this,

but it is sufficient for the purposes of producing waveforms for LIGO. The comparisons performed, though,

were for the purpose of evaluating thenumericalwaveform’s robustness with only a rough calculation in

Ch. 5 of what these results imply for data analysts.

The reader might have noticed the number of assumptions and requirements in the derivation of above.
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Succinctly, these assumptions are:

• We calculateΨ4 far enough away that we can assume peeling (i.e. a pure amplitude fall-off of 1/r),

an assumption which can be readily tested by extracting at many radii).

• Asymptotic flatness

• The tetrad as derived truly exhibits all the properties it isconstructed for (i.e. we neglect numerical

error in its calculation).

• The fiducial tetrad constructed is truly sufficient to allow the interpretations of the Weyl scalars to

hold.

Recently Lehner and Moreschi [121] published a careful study of the delicacy in using the Weyl scalars for

wave extraction due to small violations of the above assumptions. Given the agreement between waveforms

calculated as above across different implementations, the necessary corrections are unlikely to be largefor

the systems currently studied. Nonetheless, it should be kept in mind and might prove important in satisfying

Lindblom et al.’s stringent accuracy requirements.



Chapter 4
The Effects of Spurious Radiation on

Binary Black Hole Mergers

“A single rogue wave has certainly been known to spell disaster for the mariner.” – NWS Ocean

Prediction Center

The coalescence of two black holes, long thought of as the holy grail of NR, is well on its way to being

a solved problem. Many groups in NR have now demonstrated theability to follow two black holes through

several orbits [150] and their final orbits and merger to a single black hole [155, 27, 55, 103, 92, 119, 181].

From the first published waveform of equal-mass, non-spinning BBH coalescence, the simplicity of the

waveform’s dependence on time has been noted. Comparisons amongst the groups in NR have demon-

strated a remarkable agreement to the solution of the BBH problem. A common aspect in all numerical

relativity BBH evolutions is the presence of spurious radiation in the initial data. In this chapter, we present

a study on how the standard equal-mass, quasi-circular BBH system responds to the presence of spurious

radiation that has been added in a controlled manner and map that response as a function of the radiation’s

initial conditions. Our intent is to determine how much junkradiation the system can handle and how the

waveforms and the physical properties of the final black holedeviate from the standard BBH result.

Several papers have compared BBH waveforms. One of the first papers to internally compare waveforms

also demonstrated the first evidence of “universality”[26]in an equal-mass, non-spinning initial configura-

tion. In the paper, Bakeret al.demonstrated that differences in initial data characterized by a change in the

initial orbital separation manifested as a time shift in theamplitude and phase of the gravitational waveforms.

Once time-shifted, the waveforms were within 1% agreement over the merger and ringdown in|r0Ψ4|. We

investigate the effect that the additional spurious radiation we add to the binary will have on this universality.

The first comparison of NR waveforms between several groups [25] includes the most popular meth-

ods used in the community to evolve BBHs. This includes excision with a hyperbolic formulation [155]
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and moving punctures with the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of the Einstein

equation [27, 55]. The waveforms were in remarkable agreement once time-shifted, the largest differences,

occurring at the beginning of the wave, being due to the spurious radiation in the initial data. A second,

independent comparison of waveforms from different methods was conducted by Sperhake [169] in which

he compared a Kerr-Schild/excision evolution to a puncture evolution within the same code. An interesting

question is to what extent the spurious radiation in the initial data could cause differences in the merging

time and thus affect waveform comparisons based on time-shifts to align the amplitude of the waveform.

Most groups remove the initial burst from the waveform during post-processing of the data [56, 60].

From the evolutions published, it appears that the spuriousradiation that is present in the initial data is

flushed out of the system within a crossing time, leaving the binary dynamics mostly untouched. There is

still some concern about the impact that choices made in setting up the initial data for the evolutions, choices

such as conformal flatness, have on the waveforms. Studies have looked at different ways of choosing the

freely specifiable part of initial data [99, 128] which reduce the amplitude of the spurious radiation, but

these have not been extensively implemented in the evolutions leading to the currently forming waveform

template banks.

In this chapter, we test the robustness of the binary to the effects of spurious radiation. To this end we

create a BBH system containing additional radiation with tunable initial energy initialized at the binary’s

center of mass. We then evolve a series series of spacetimes with a standard equal-mass, non-spinning,

quasi-circular BBH system plus additional radiation usingthe PSU numerical code,MayaKranc, which

implements the MPT [27, 55]. The initial data used to construct the modified BBH spacetime is presented in

Section 4.2, the results in Section 4.3 and the conclusions in Section 4.4. Our main result is that the presence

of spurious radiation causes a hastening of the merger, thusplausibly accounting for the differences in merger

times seen in the NR waveform comparisons.

4.1 A Newtonian Perspective

Before describing our numerical experiment, we present a back-of-the-envelope calculation to build our

intuition about this problem. For illustrative purposes, we investigate the effect a central pulse of energy

might have on a binary by studying a two-body orbit in Newtonian gravity with a stationary mass placed

at the orbit’s center of motion while the bodies are at their apocenter. The addition of the third mass at the

center of the Newtonian binary affects the orbit by deepening the potential in which the binarysits. We

solve the problem using the standard central force solutionto the two-body problem with the new potential.

We assume ˙r = 0 initially since this is also assumed in our initial data forthe standard quasi-circular BBH

systems. Lettingm be the masses of the black holes andmw be the equivalent mass of the third body, we
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write the ratio of the final eccentricity,e′, to the original eccentricity as

(
e′

e
)2 =

1
(1+ 2 f )2 [1 +

(4− 2 j2/µd) f + 4 f 2

e2 ] (4.1)

where f = mw/m is the fractional mass,j = l/µ is the angular momentum per unit reduced mass, andd is

the initial separation of the binary.

This simple calculation indicates that, for sufficiently small eccentricities, the eccentricity increases.

For the binary parameters studied herein, the eccentricityinvariably increases fore ≤ 0.88. Although the

black holes in our BBH evolutions are not far enough apart to allow a valid determination of eccentricity,

the trajectories are quasi-circular enough for the eccentricity to be low. This illustrates that, by adding extra

gravitational radiation into the center of the studied system, we can expect the binary’s orbit to become more

eccentric.

4.2 Injecting Radiation into a BBH Evolution

We inject gravitational radiation into the standard, equal-mass, non-spinning, quasi-circular BBH evolu-

tion during the setup of the initial data. The initial data for the evolution is constructed via the puncture

method [43] using the single-domain spectral method code developed by Ansorget al.. [13] which assumes

a conformally flat spacetime in solving the constraints. We have two building blocks for the data: 1) the

quasi-circular BBH and 2) the tunable radiation. The BBH data is set-up using the input conditions for the

Bakeret al. [26] R1 run of two equal-mass irrotational black holes in quasi-circular orbits. The details of

the R1 initial data are given in the first row of Table 4.1 and a convergence study was done in [183].

4.2.1 The Teukolsky-Nakamura Wave

The tunable wave is given by an even parity, quadrupolar gravitational wave: the linearized solution to a

perturbation on Minkowski spacetime expanded over the modes of the Matthews tensor spherical harmonics

[178] (see Appendix B for discussion and Appendix C for complete derivation). This wave was first derived

by Teukolsky [174] and is typically known as a Teukolsky wave. The tensor which embodies the wave is

the general traceless-transverse solution to the linearized Einstein equations. While Teukolsky [174] derived

and wrote out theℓ = 2 wave explicitly, Nakamura and Oohara [140] later wrote outthe solution for general

ℓ andmmodes. Instead of using the wave as aspatial metricperturbation, Nakamura and Oohara manifested

their wave as an extrinsic curvature perturbation. In this study we implement the Nakamura version of the

Teukolsky wave, herein called Teukolsky-Nakamura waves (TNWs), in order to satisfy the condition of a

conformally flat metric imposed by the puncture method .
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The Teukolsky-Nakamura (TN) extrinsic curvature tensor, as derived in Appendix C, is given by

ÃTN
i j =

∑

ℓ,m







aℓ,mYℓ,m bℓ,mYℓ,m
θ bℓ,mYℓ,m

ϕ

∗ gℓ,mYℓ,m+ fℓ,mWℓ,m fℓ,mXℓ,m

∗ ∗ (gℓ,mYℓ,m− fℓ,mWℓ,m) sin2 θ






(4.2)

where the coefficientsaℓ,m, bℓ,m, fℓ,m, andgℓ,m are functions only of the coordinate radius and timer, t as

follows

aℓ,m = rℓ−2
(

1
r
∂r

)ℓ F(t − r) + F(t + r)
r

, (4.3a)

bℓ,m =
1

ℓ(ℓ + 1)r
∂r(r

3aℓ,m), (4.3b)

gℓ,m = − r2

2
aℓ,m, (4.3c)

fℓ,m =
1

(ℓ − 2)(ℓ + 1)

[

gℓ,m+ ∂r

(

r
ℓ(ℓ + 1)

∂r(r
3aℓ,m)

)]

(4.3d)

and the angular functionsXℓ,m andWℓ,m are

Xℓ,m = 2∂ϕ (∂θ − cotθ) Yℓ,m, (4.4a)

Wℓ,m =

(

∂2
θ − cotθ∂θ −

1

sin2 θ
∂2
ϕ

)

Yℓ,m . (4.4b)

Note that the TN solution lets us choose the radial dependence in the form of ingoing and outgoing

functions which we have chosen to be the same symmetric functional form,F(u). Our F(u) is given by an

Eppley packet [74]:

F(u) = Aue−u2/σ2
, (4.5)

whereu = t ± r . The Eppley packet is a localized, smooth Gaussian packet with an extra factor ofu present

to ensure the wave is regular at the origin. This packet constitutes the bulk of our parameter space studies,

but we later discuss the effects of modulating the Eppley packet by a cosine. Thus the TN solution gives us

the freedom to choose the location, mode content, strength,and radial dependence of the injected radiation.

Since the extrinsic curvature is real and the spherical harmonics are complex, we take only the real part of

the TN tensor resulting in a superposition ofm and−mmodes in our TNW.

4.2.2 BBH+TNW Initial Data

We add the TNW tensor to the extrinsic curvature such that ourinitial data{γi j , Ki j } is

γi j = ψ4δi j , (4.6a)
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Ki j = ψ−2(ÃBY
i j + ÃT N

i j ) , (4.6b)

whereδi j is the flat spatial metric andψ is the conformal factor which satisfies the Hamiltonian constraint

under York’s conformal approach [192]. The extrinsic curvature ÃBY
i j is the Bowen and York solution [42]

to the momentum constraint given in Eq. 3.12 andÃT N
i j is the TN tensor. Notice that because the momentum

constraint is linear in the extrinsic curvature, the superposition of the extrinsic curvatures also satisfies the

momentum constraint. As a test case we evolved the above initial data with a vanishing Bowen-York tensor,

i.e. Minkowski background. For theℓ = 2, m= ±2 case, we found that the Arnowitt-Deser-Misner (ADM)

angular momentumJADM calculated on the initial spacetime is zero to within machine error. The angular

momentum of the BBH+TNW is therefore independent of the TNW to our numerical accuracy.

4.2.3 Configurations

The simplest geometry in which we can add additional spurious radiation to our BBH initial data is a wave

pulse at the BBH’s center of mass. We typically choose anℓ = 2, m= 2 mode, coinciding with the dominant

mode for gravitational radiation from a BBH system, and varythe amplitude,A, and width,σ, of the Eppley

packet. The values ofσ/M are chosen from the set{0,3,4,5,6} and those of the amplitudeA/M3 from the

set{0,0.1, 0.5, 1.0, 1.5} where the dry R1 BBH spacetime is recovered whenA/M3 = 0 . Fig. 4.1 shows the

shape of the wave in one of the components of the traceless-transverse extrinsic curvature,Ai j = ψ−2Ãi j ,

along the coordinate axis intersecting the two black holes,modulated by the inverse square of the conformal

factor, forA = 1M3 andσ = 3M, 4M, 5M, 6M.
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Figure 4.1. Comparison of the initial̃Axx between the Eppley packet widths,σ, for a wave amplitude of 1M3 added
to the R1 BBH system. Being theconformalextrinsic curvature, this includes a modulation by 1/ψ2 so Ãxx vanishes
at the punctures.

When adding the TNW to the spacetime we wanted to keep the initial black holes unaltered. We chose to

keep the AH masses constant independent of the additional wave content. In practice the AH masses varied

by as much as 0.04% from the R1 run without extra wave content (dry R1) due to insufficient parameter

accuracy. The momenta remain constant as parameters to the initial data solver, and the ADM angular
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momentum differs by at most 0.001% from the dry R1 run. The second column of Table 4.1 lists the ADM

energyEADM of the spacetime for each wave choice. We note that the waves increase the ADM energy from

a negligible 10−4% to a significant 8.9%, which scales empirically asEADM ≃ A2/σ5. The proper separation

between the black holes changes from the dry case ofL = 9.94 to a maximum ofL = 10.23. In the most

extreme case, the wave havingA = 1.5M3 andσ = 3M, we have added almost 9% additional energy into

the BBH system and effectively moved the black holes apart by 0.29M. The impact of these differences in

initial data on the binary evolution are discussed further in the next section.

Pumping energy into the system while holding the coordinateseparation and angular momentum con-

stant necessarily means that we are changing the binding energy of the system. To study this change we

map the effective potentials for each BBH+TNW case. We do this by repeatedly solving the initial data with

incremented separations while holding the individual AH masses and total ADM angular momentum fixed.

We calculated the quantityEb = EADM −MAH,1 −MAH,2 for each spacetime. The wave itself adds to the

ADM energy and must be subtracted in this calculation; but, as we’re only interested in the relative shapes,

we can look at the relative binding energy,Eb − Eb,min. For the waves with aσ of 4M the binding energy

per unit reduced mass is plotted in Fig. 4.2 with a vertical line indicating the initial coordinate separation

of the black holes. We can immediately see that the dry “quasi-circular” R1 case has some non-zero eccen-

tricity as the imposed separation does not lie at the minimumof the curve. We also observe a shift of the

minimum inwards as the wave strength increases. Since the coordinate separation in the parameter search is

held fixed for the evolved initial data, the location of the system along the binding energy curve with respect

to its minimum is sufficient to see that the eccentricity of the orbit is likely increasing. Unfortunately, the

separation is too small to get a reliable measure of the eccentricity.
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Figure 4.2. We plot the effect of the TNW on the binding energy per unit reduced mass in the initial data. The
potentials were calculated by solving the initial data using Ansorg’s code for various separations while keeping the
individual AH masses and total ADM angular momentum fixed.
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4.3 Evolutions of the BBH+TNW

Our simulations of the BBH+TNW initial data are summarized in Table 4.1, where the first row corresponds

to the BBH system without added radiation, the dry R1 run. This will be our control case. We systematically

evolved each BBH+TNW spacetime, varyingA andσ of the TNW. We divide the results from evolving these

simulations into four subsections: the main result concerning the merger time in§ 4.3.1, the dynamical and

radiated quantities from our runs are in§ 4.3.2, the final spacetime quantities in§ 4.3.3, and a comparison

of the gravitational waves by time-shifting in§ 4.3.4.

4.3.1 Merger Time

The main result of adding gravitational radiation to our BBHevolution is to hasten the merger of the black

holes. With increasingEADM , the binary invariably mergesfaster. The sixth column in Table 4.1 lists the

differences in merger times between the dry R1 and the BBH+TNW runs given by∆T = (T0 − T0,dry)/M .

The time,T0, is given in units of the total, initial AH masses of the blackholes and evaluated at the peak

amplitude of each waveform extracted at a radius of 75M . The use of the waveform peak variation as a

measure of the change in merger time agrees within a few percent in ∆T to the variation in the time it takes

for the punctures to be separated by one grid spacing.

Figs. 4.3 and 4.4 show the change in merger times from the perspective of constant wave amplitude and

constant pulse width. We can see that there is a strong dependence on the width of the pulse as well as the

amplitude. Some cases show a positive value for∆T; however, these are all equal to zero within the errors.

For all theA = 1M3 waves that have non-zero merger time we found an approximatepower law relation

between the width of the pulse and the change in merger time:

∆T(A = 1M3) ∝ σ−4.93 . (4.7)

A more general look at the change in merger times is found in Fig. 4.5. Given our estimated error bars, sig-

nificant changes in merger time occur when the TNW has increased the initial ADM energy of the spacetime

by about 1% compared to that of the dry R1.

To isolate how much of∆T is due to the additional spurious radiation introduced and how much is due

to other factors, we perform a series of tests. We focus on themost significant sources of errors, namely the

resolution of our grid, wave extraction radius, the change in proper distance in setting up the initial data, and

the change in mass of the two black holes. We will look at each of these factors and assess their individual

contribution to∆T.

1. Resolution:The finest resolution for the simulations we present in Table4.1 isM/38.4. We check the

error due to the resolution by repeating several cases with finest resolutions ofM/44.8 andM/51.2. We ran

convergence tests on the strongest wave (A = 1.5M3,σ = 3M) and the weakest wave (A = 0.1M3,σ = 6M).

A third, medium, wave withA = 0.5M3 andσ = 4M was run at just one more resolution,M/44.8. For all
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Run Summary

A/M3 σ/M EADM Erad/EADM Jrad/JADM ∆T/M M( f )
AH j f

0.0 0 0.9957 0.0359 0.273 0.0 0.9599 0.682
0.1 3 0.996 0.0363 0.273 -0.6 0.9600 0.683
0.5 3 1.007 0.0451 0.271 -16.4 0.9609 0.682
1.0 3 1.037 0.0708 0.263 -56.1 0.9635 0.686
1.5 3 1.084 0.1058 0.244 -88.4 0.9696 0.693
0.1 4 0.996 0.0360 0.274 +1.5 0.9596 0.682
0.5 4 0.999 0.0385 0.272 -4.7 0.9604 0.682
1.0 4 1.007 0.0463 0.272 -14.3 0.9603 0.683
1.5 4 1.021 0.0589 0.270 -31.8 0.9607 0.683
0.1 5 0.996 0.0360 0.273 +0.2 0.9599 0.682
0.5 5 0.997 0.0369 0.273 -0.1 0.9599 0.682
1.0 5 1.000 0.0399 0.272 -4.6 0.9603 0.683
1.5 5 1.005 0.0448 0.272 -7.8 0.9599 0.686
0.1 6 0.996 0.0359 0.273 +0.2 0.9599 0.682
0.5 6 0.996 0.0364 0.273 +0.7 0.9599 0.682
1.0 6 0.998 0.0377 0.273 -0.3 0.9601 0.682
1.5 6 1.000 0.0399 0.272 -2.2 0.9602 0.682

Table 4.1. The first two columns are the parameters of the TNWs followed by the ADM energy of the initial space-
times. Column 4 and 5 give the fraction of the ADM energy and angular momentum radiated over the simulation.
Column 6 is the change in merger time calculated by the shift in extracted waveform peak in units of the total AH
mass in the initial spacetime. Column 7 lists the final mass and Column 8 the final spin,j f = af /M( f )

AH of the black
hole.

three cases, the merger timedecreased. The merger time of the compact wave decreased little for a total of

0.1M over the three resolutions while the diffuse wave decreased more drastically for a total of about 0.5M .

The medium case had a 0.2M difference between the two resolutions.

2. Extraction Radius:The next source of error is wave extraction radius. In NR, waveforms are usually

calculated in terms of the Newman-Penrose scalar,Ψ4(t, x, y, z), which are extracted on a sphere at a finite

radius some distance from the source, then expanded into angular modes via the spin-weighted spherical

harmonics,−2Yℓ,m(θ, φ). With a proper choice of tetrad, this scalar is a measure of outgoing gravitational

radiation. There has been recent work investigating the effects the choice of extraction radius can have on the

correctness of the waveform [147, 121]. As the extraction radius increases, the errors caused by an incorrect

tetrad and finite distance diminish. While it is still an openquestion whether or not there are observable

effects from the methods groups currently use to extract the waveforms, the methodology of the extraction

is not thought to contaminate the waveform. An indication the appropriate tetrad is being approached is

that the waveform amplitude scales as 1/r, which we tested. To get a rough estimate of the errors due to

extracting at a finite radius, we compute∆T using radiation extracted at 30M and extracted at 75M. In

Fig. 4.6 we plot the amplitude of the dominant waveform mode,|Ψ2,2
4 |, extracted at the two radii for both
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the dry R1 run and one where the merger time changed significantly. The merger time shift changed by no

more than 0.4M between the two extraction radii.

3. Black Hole Mass:Aside from unphysical sources of error, the small differences in the initial data

also change the merger time. Though we kept the initial AH masses nearly identical, there is still a variation

of up to 0.04% compared to the dry R1 run. While conducting theresearch for this study, we found that a

0.14% change in initial AH masses of the punctures resulted in a change in merger time of 6.7M. Although

we do not include simulations with such a large deviation of masses, we used this knowledge and assumed

the change in merger time was linear in the change in initial mass to estimate an error.

4. Proper Separation:As mentioned in§ 4.2, the presence of the additional gravitational radiation

also increased the proper separation,L, from the dry R1 9.94M by up to 2.9%. We studied the effect of
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this change by evolving two BBH spacetimes with the same initial masses and angular momentum but

increasing the coordinate to yield proper separations of 10.24M and 10.10M. The merger time changed by

at most 2.1M. We assumed a linear relationship between the∆T and∆L in estimating the errors from this

source at each data point.

The error bars presented in our figures are calculated by adding all the errors in quadrature:

Σ2
∆T = Σ2

T + Σ
2
T0

(4.8a)

Σ2
T = (

∆T
∆L
∆L)2 + (

∆T
∆m
∆m)2 + Σ2

res+ Σ
2
tet ,

whereΣ∆T is the error in∆T, ΣT is the error inT, andΣT0 is the error inT for the dry R1 run.Σres = 0.75
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A/M3 σ/M k · M m Erad/EADM ,i Jrad/JADM ,i M( f )
AH ∆T/M

1 3 0 2 0.0696 0.252 0.970 -65.5
0.25 3 0 2 0.0382 0.272 0.970 -5.6
0.15 3 0 0 0.0382 0.271 0.961 -6.9

3× 10−3 4 2 2 0.0363 0.272 0.962 -4.5
7× 10−4 4 3 2 0.0358 0.272 0.962 -4.0
Dual 0.5 4 0 2 0.0411 0.271 0.960 -8.9

Table 4.2. Overview of the odd runs. The left four columns are the wave parameters, followed by the fraction of
ADM energy radiated and the fraction of the ADM angular momentum radiated. The final masses are given in the 7th
column followed by the merger time change as derived by the peak of the waveform extracted at 75M.

andΣtet = 0.4 are the largest measurements for the resolution and extraction radius errors. The accumulated

errors do not account for the observed∆T whenEADM/EADM ,R1 > 0.01 and we note that the errors grow

as the amplitude increases and the width decreases, most notably the errors associated with changes in the

irreducible masses.

The parameter space of adding spurious radiation is large. In Table 4.2, we present the results from

a few evolutions outside of our main parameter survey. The junk radiation present in the initial data of a

typical BBH simulation may not be well represented by anℓ = m = 2 mode. Similarly the effect of the

junk radiation might be sensitive to the wavelength of the pulse. In order to test how important a modulation

in the frequency might be to our conclusions, we briefly investigated an Eppley packet modulated with a

cosine wave, given by

F(u) = Acos (ku)ue−u2/σ2
. (4.9)

This modulation adds an extra parameter controlling the wavelength of the perturbation. We adjusted the

amplitude of the wave to keep the energy approximately comparable to our standard runs. The resulting

simulation merger time differed from the unmodulated packet by less than 1M in T, well within error bars.

While this is still an avenue open to investigation, we concluded that the modulation was not affecting the

results enough to warrant an additional parameter in our survey. We also conducted a test of the geometry

of the wave by initiating a pulse with anℓ = 2, m = 0 mode. Again we changed the amplitude so that the

energy in the wave was approximately constant and found thatthere was a change in merger time of 1M

compared to theℓ = 2, m = 2 simulation, again within error bars. This points towards the wavelength and

angular dependence of the pulse being secondary to the additional energy in determining the effect of the

pulse on the merger time.

Finally, to make a stronger connection to the junk radiationbeing associated with each puncture, we

addedtwo identical waves centered at each of the black holes rather than at the center. Compared to the

same wave initiated at the center, the dual waves added almost twice the energy and almost doubled the

change in merger time, which is consistent with the center-of-mass TNW.
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4.3.2 Dynamical and Radiated Quantities

We now investigate the effects of the TNWs on the radiated quantities derived from the waveforms. We

calculate these quantities from the Weyl scalarΨ4 assuming, as in the calculation of the waveform, the

fiducial tetrad of Bakeret al.. [24] (see Sec. 3.4). A summary of the quantities obtained fromΨ4 are listed

in Table 4.1. The fraction of the initial ADM energy radiatedwas calculated across a detector at 40M. As

expected, the radiated energy increases with the strength of the wave. WhenA < 0.5M3 andσ ≥ 5M, there

is no measurable difference between the BBH+TNW and the BBH cases within numerical error. For those

cases, we can only conclude that the energy in the wave propagates out without a measurable interaction

with the black holes. Similarly a trend emerges as we increaseA for eachσ, which corresponds to increasing

EADM . The radiated angular momentum consistently decreases.

To look at the interaction of the TNW with the black holes as itpropagates out, we study the radiated

energy and angular momentum as functions of time. In Fig. 4.7we plot the energy radiated across a detector

at radiusr = 40M. We see the energy grows from a time of 40M to around 80M as the initial burst of spuri-

ous radiation passes the detector. After this burst of energy the remaining energy radiated is approximately

0.035EADM ,R1 and is almost uniform across the various cases. From this we can see that most of the energy

introduced in the spacetime is quickly flushed out of the system, leaving a system which radiates a further

amount of energy that is independent of the junk radiation.
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Figure 4.7.Energy radiated across a sphere of radiusr = 40M as calculated from the Weyl scalarΨ4.

All the evolutions started from spacetimes with equalJADM since the TNW does not add angular mo-

mentum to the BBH spacetime. In column five of Table 4.1 and in Fig. 4.8, we see that the amount of angular

momentum radiated across a detector located at 40M is independent of the wave with some numerical error.

The difference inJrad between the runs lies inwhenthe system radiates the angular momentum. This is

better seen in Fig. 4.9 where we present the angular momentumflux across the sphere atr = 40M and

in Fig. 4.10, a close-up of the initial part of the data. The spurious radiation is transporting extra angular
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momentum as it is flushed out.
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Figure 4.8. Angular momentum radiated across a sphere of radiusr = 40M for σ of 3M as calculated from the Weyl
scalarΨ4.

Figs. 4.7 and 4.8 show some of the TNW propagating out at the same time as the spurious radiation is

flushing out. One of the consequences of the wave traveling away from the center of the orbit is that it can

interact with the black holes and potentially increase the mass of each black hole during the early part of the

inspiral. Table 4.3 documents how the AH masses change as a function of A andσ for the stronger TNW

cases. The black-hole mass is calculated using an AH tracker[176]. The∆MAH is a measure of the change

in the mass of each black hole up to 50M, such that∆MAH =MAH(t = 50M) −MAH(t = 0) . The change

in the initial ADM energy compared to the R1 run is given by∆M = EADM −EADM ,R1 at t = 0 . We use this

estimate of the differences in the mass of the spacetime between R1 and the rest ofthe runs to compute a

naive estimate of the total fraction of energy absorbed by both black holes. Up to 7.89% of the extra ADM

energy is observed to be absorbed by the black holes during the first 50M of the simulation, 3.9% by each

black hole. The actual amount absorbed depends strongly on the width of the wave: the narrow, strong

pulses are more readily absorbed than the weak, diffuse pulses that extend beyond the black holes in the

initial data. In the weaker cases the change is barely visible above the noise in the AH mass calculation, in

the stronger cases it is unmistakable.

To assess how important the absorption of energy by the blackholes during the evolution is to the

changes in merger time and radiated angular momentum, we refer to our discussion about the sensitivity of

the merger time to a change in the initial AH masses in§ 4.3.1. Given a change in mass of the individual

black holes of 0.14%, the merger time changed by 6.7M. In setting up the initial data, we do not allow the

AH masses to change more than 0.04%. The amount of absorptionmeasured during the evolution is as much

as 3.9%; and, therefore, the increase in mass may be accounting for some, although not all, of the effects

of the TNW. The outliers, the cases of most extreme merger times, merge so quickly that differentiating the

burst of spurious radiation and region of pure inspiral is difficult. We also tried normalizing the time axis by
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the total AH masses after the wave has passed rather than thatfrom the initial spacetime. This changed∆T

by no more than 1M so the choice of normalization does not account for the observed difference in merger

times.

4.3.3 Final Spacetime

One of the important products of a BBH coalescence to relativists and astrophysicists are the final black

hole’s mass and spin. The final black-hole masses and spins are presented in the last two columns of

Table 4.1. To compute the final mass,M( f )
AH, we use energy conservation arguments by calculating the

difference between the ADM energy and the radiated energy as calculated from the Weyl scalarΨ4 . The

final spin, j f = af /M( f )
AH, is calculated by finding the complex ringdown frequency in the ℓ = 2, m = 2

mode and using the numerical Kerr frequencies given in TableII of Appendix D in Bertiet al. [37] to find
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Mass Analysis

A/M3 σ/M ∆MAH/M ∆M/M 2∆MAH/(∆M) M( f )
AH/(2MAH(t = 50))

0 - 0 0 0 0.950
0.5 3 3.90× 10−4 0.0106 7.34× 10−2 0.950
1.0 3 1.56× 10−3 0.0412 7.57× 10−2 0.951
1.5 3 3.49× 10−3 0.0886 7.89× 10−2 0.953
1.0 4 2.84× 10−4 0.0113 5.03× 10−2 0.950
1.5 4 6.41× 10−4 0.0251 5.11× 10−2 0.949
1.0 5 5.89× 10−5 0.0045 2.62× 10−2 0.950
1.5 5 1.26× 10−4 0.0092 2.74× 10−2 0.950
1.0 6 1.76× 10−5 0.0020 1.76× 10−2 0.950

Table 4.3.Change in AH mass compared to the difference in initial ADM energy for the stronger waves.∆MAH is the
change in a single black hole AH mass over the first 50M, ∆M is the additional ADM energy compared to the dry R1
run. Column 5 is the fraction of the extra ADM energy absorbedby both black holes combined, and the last column is
the ratio of the final black hole mass to the total AH mass afterthe wave has been absorbed.

the corresponding spin parameter. This method agrees within stated errors to inverting the fit of Eq. (E2)

of the same paper. Given the strong dependence of the spin on the damping time, we limit ourselves to the

real part of the complex frequency and compare this to a separate spin calculation using the isolated horizon

framework [71] where possible.

From the values ofM( f )
AH and j f listed in Table 4.1, we can see that the final spins are constant within

numerical accuracy and the final masses do not vary strongly with A andσ. The trend is an increase in the

final mass with increasingEADM becoming noticeably greater than our numerical errors for the four largest

cases,M( f )
AH ≥ 0.963. From this we can see that the narrower pulses not only have more energy, but they also

interact more efficiently with the black holes. Being more readily absorbed bythe punctures, they increase

the individual masses and thus the final mass. The last columnof Table 4.3 shows the ratio of the final

mass to the total AH mass once the wave has interacted with theinspiraling black holes. We see the ratio is

roughly constant, implying that approximately 5% of the initial AH mass is radiated awayif we include the

wave energy absorbed by the black holes. The exception is themost extreme wave where the black holes

merged before all the spurious radiation has been absorbed into the AH. This would underestimate the AH

growth and thus overestimate the value of the ratio. The change in final mass agrees within numerical error

to the change in total AH mass after the wave has interacted with the inspiraling black holes except for the

case of the strongest wave. In that case the AHs have not absorbed all the energy before the black holes

begin to merge so we are underestimating the growth of these black holes.

4.3.4 Alignment of Amplitude and Phase

As stated in the introduction, a common method to compare waveforms is via a time-shift of the amplitude

of each waveforms such that their peaks overlap, the result of which is shown in Fig. 4.11. We can see that



54

the waveforms overlap very well after the merger. The only noticeable difference is for the strongest TNW

we evolved on the BBH system, theA = 1.5M3, σ = 3M case, where we find the largest difference in the

final black hole compared to the dry R1 run. We can also see residual contamination of the merger portion

of the waveform by the spurious radiation due to the binary merging so quickly. Similarly, we shift the

waveform phase such that they overlap atT = Tpeak in Fig. 4.12. The agreement in the phase’s slope during

ringdown is further confirmation that the mass and spin of thefinal black hole are not significantly altered.

The waveform overlap in the merger regime continues to startbefore the merger, as seen in [25], as long

as the spurious radiation does not contaminate this region of the waveform. This alludes to the relatively

simple form of the merger waveform seen in all the various situations currently tested. As long as the

spurious radiation is not strong enough to noticeably alterthe final black hole, the merger portion of the

waveform remains essentially unaltered and the contamination to the system predominately results in the

change in merger time and thus a time-shift of the waveform.
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Figure 4.11.The top panel overlays the waveform amplitude|r0Ψ
2,2
4 | for all runs shifted such that the peak amplitudes

before ringdown coincide. This lets us compare the relativedamping times of the ringdown and thus the properties
of the final black hole. We also note the agreement for about 50M before ringdown as well. Though the legend only
labels the distinguishable cases, all the runs are contained in the figure. In the bottom panel we show the fractional
error for the three most extreme cases.

4.4 Conclusions

In this study, we simulated an equal-mass, non-spinning BBHsystem through its last orbits, merger and ring-

down. The system is perturbed by the systematic addition of spurious radiation in the form of a Teukolsky-

Nakamura gravitational wave at the binary’s center of mass.The initial energy of the wave is tunable,

specified by the amplitude and width of the radiation; in addition, the initial angular momentum was fixed

for the entire sequence of runs. The binaries that contain the extra radiation invariably merge faster than
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those with no additional radiation.

In addition to the main result of decreasing merger time, some changes to the radiated quantities and the

final black hole were measurably above numerical error. Thisoccurred once the additional energy provided

by the TNW was equal to or greater than 1% of the dry BBH spacetime. As the TNW propagated out of the

center, approximately 4% of additional ADM energy was absorbed by each black hole. In that strong-wave

case, it was not possible to make an accurate measurement of the mass of the enlarged black holes before the

plunge of the binary. The final spins of the black holes, however, remained unaffected by the gravitational

radiation for all but the strongest case (A = 1.5M3, σ = 3M). The constant black-hole spin is consistent

with the wave slightly increasing the eccentricity of the orbit for small eccentricities [106, 170]. We also

observed a decrease in the radiated angular momentum with increasing TNW strength.

We conjecture, based on the change in the initial binding energy of the BBH+TNW systems and New-

tonian back-of-the-envelope calculation, that the spurious radiation increases the eccentricity of the original

orbit. Unfortunately, the separation of the black holes wasnot large enough to enable a reliable calculation

of the eccentricity. The merger time is very sensitive to theincrease in individual black-hole masses via

wave absorption; however, this was not enough to account forthe observed change in the time of merger

even when ignoring the strongest wave case. The combined effects of increasing the individual black-hole

masses and the eccentricity of the orbit caused the binariesto merge faster with increasing energy.

One of the conjectures in the literature is that the spuriousradiation, intrinsic to the construction of

initial data for BBH evolutions, is flushed out of the simulation within a crossing-time and does not effect

the radiation or the binary. We can relate the results of thisstudy to other BBH evolutions by looking at the

early changes in AH mass as well as how much energy leaves the system in the burst of spurious radiation.

For the dry R1 run, the energy radiated in the initial pulse is9×10−4EADM ,R1. We find that there is negligible



56

effect on the merger time at that level. Our results indicate that the spurious radiation present in initial data

sets is unlikely to cause dramatic departures from the true BBH solution and therefore we can state that the

simulated merger is robust to the presence of spurious radiation.



Chapter 5
The Effects of Approximate Initial Data on

Binary Black Hole Mergers

“Far better an approximate answer to the right question, than the exact answer to the wrong

question, which can always be made precise.” –John Tukey

With the developments of the past few years, numerical relativity simulations of BBH systems from

inspiral to merger are now feasible, almost routine. Most importantly, they are quickly becoming a potent

tool to study highly relevant astrophysical phenomena. Approximations such as those provided by PN theory

have also proven to be valuable tools. They have the appeal ofavoiding the computational complexities

associated with finding exact solutions to the Einstein fieldequations. As the demand for more efficient

simulations increases, it is desirable to consider approximate methodologies in conjunction with numerical

relativity approaches. A natural “marriage” in this regard, which is the focus of this work, is to consider full

Einstein evolutions of approximately constraint-satisfying initial data.

In general relativity, constructing initial data requiressolving the Einstein constraints, a coupled set

of elliptic equations (see Chapter 2 for a review on the mathematical foundations of numerical relativity

and Sec. 3.1 for constructing initial data). Thus, in general obtaining solutions to the Einstein constraints

necessitates solving elliptic equations, which is a complex numerical problem. When BH excision is used,

the solvers are non-trivial [175, 152, 151] because of the excision boundaries. Even without excision,

developing constraint solvers is demanding [13] and often requires introducing simplifying assumptions

such as spatial conformal flatness.

Flexibility is also a very important issue. The family of problems addressed by numerical relativity is

quickly expanding, involving non-traditional BH systems beyond the two-body problem [57, 127]. Without

modifications to the standard initial data methodology, there will be limitations on the class of problems one

is able to consider.
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The focus of the study in this chapter is on the full Einstein numerical evolution of constraint-violating

or approximate initial data. Evolutions of constraint-violating BBH initial data have been considered in

the past. They were mostly done in the context of superposed Kerr-Schild BHs [171, 45, 130, 135], but

there was also the study on the superposed “puncture Kerr” ofHannamet al. [99] as well as several studies

evolving approximate post-Newtonian initial data [180, 115, 143]. More recently, constraint-violating initial

data for punctures has been used for multiple BH evolutions [57, 127].

The difference with previous studies lies in the building blocks used to construct the data. In Refs. [67,

57, 127], the initial data sets were built from perturbativesolutions of single punctures (boosted and/or spin-

ning). Our approach, on the other hand, follows closely theskeletonsolutions of the Einstein equations

introduced by [78]. These solutions are derived from the full ADM Hamiltonian with the BHs represented

by point-like sources modeled by Dirac delta function distributions. We consider configurations of non-

spinning, equal-mass BBHs in quasi-circular orbits and investigate how well the evolution of these initial

data is able to reproduce the corresponding results of constraint-satisfying initial data. We assess the ef-

fectiveness of the skeleton initial data by computing the matches with waveforms from constraint-satisfying

initial data evolutions. We find that the differences in the evolutions, and thus waveforms, are due to negative

Hamiltonian constraint violations present in the skeletoninitial data. We observe that, during the course of

the evolution, the skeleton data develops both Hamiltonianand momentum constraint violations which both

propagate away and decay over time while the binary system relaxes to a constraint-satisfying solution with

BHs of smaller mass and thus different dynamics.

In Sec. 5.1, we derive the procedure for constructing skeleton puncture initial data. In Sec. 5.2, we

focus on quasi-circular configurations of equal-mass, non-spinning BBHs, and, using the effective potential

method [63], we compare binding energies between skeleton and corresponding constraint-satisfying initial

data. In Sec. 5.3, we investigate the structure of the Hamiltonian constraint violations in the skeleton data.

In Sec. 5.4, we present results of the evolutions. Sec. 5.5 presents an analysis of the nature of the constraint

violations with a model involving a single puncture. In Sec.5.6, we discuss the impact of using waveforms

from skeleton evolutions on data analysis. Conclusions aregiven in Sec. 5.7. The numerical simulations

and results were obtained with theMayaKranc infrastructure as described in Sec. 2.2.

5.1 Skeleton Initial Data

The traditional approach to constructing initial data in numerical relativity involves specifying the pair

{γi j , Ki j }, whereγi j is the intrinsic 3-metric to at = constant hypersurfaceΣt, andKi j denotes its extrinsiccur-

vature. We use the index convention that Latin indices in thefirst part of the alphabet denote 4-dimensional

spacetime indices and those from the middle denote 3-dimensional spatial indices. The pair{γi j , Ki j } must

satisfy the Einstein constraint equations:

R + K2 − Ki j K
i j = 16π ρ (5.1)
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∇̆ jK
i j − ∇̆iK = 8πSi . (5.2)

Equations (5.1) and (5.2) are respectively known as the Hamiltonian and momentum constraints. The oper-

ator∇̆i denotes covariant differentiation with respect toγi j andRi j its associated Ricci tensor. We follow the

notationK ≡ γi j Ki j andR ≡ γi jRi j .

Although we are interested in vacuum spacetimes of BH systems, we have kept the matter sourcesρ

(total energy density) andSi (momentum density). This is so we are able, as in Ref. [78], torepresent the

BHs as point-like sources modeled with Dirac delta distributions.

The constraints Eqs. (5.1) and (5.2) yield four equations; there are, thus, eight freely specifiable pieces

in the data{γi j , Ki j }. These free data can be used to single out the physical systemunder consideration

(e.g., orbiting binary BHs) as well as to simplify solving the Einstein constraints. An elegant approach to

identify the four pieces in{γi j , Ki j } that are fixed from solutions to the constraints was given in [192], based

on work by [123] and others. The method is based on the following conformal transformations and tensorial

decompositions:

γi j = ψ4 γ̃i j (5.3)

Ki j = Ai j +
1
3
γi j K (5.4)

Ai j = ψ−10Ãi j (5.5)

K = K̃ (5.6)

Ãi j = Ãi j + (L̃W)i j , (5.7)

whereAi
i = Ãi

i = 0 and∇̃iÃi j = 0 with ∇̃i covariant differentiation with respect to the conformal metric

γ̃i j . In the tensorial decomposition of̃Ai j given by Eq. (5.7),Ãi j gives the transverse part ofÃi j , with the

longitudinal part given by

(L̃W)i j ≡ 2 ∇̃(iW j) −
2
3
γ̃i j ∇̃kWk . (5.8)

With the transformations Eqs. (5.3-5.7), the constraint Eqs. (5.1) and (5.2) become:

8∆ψ − ψ R̃ − 2
3
ψ5K2 + ψ−7Ãi j Ã

i j = −16πψ5ρ (5.9)

(∆LW)i − 2
3
ψ−6 ∇̃i K = 8πψ10Si , (5.10)

with R̃ the Ricci scalar associated with the conformal 3-metric ˜γi j and (∆LW)i ≡ ∇̃ j(L̃W)i j .

At this point, we introduce the assumptions of conformal flatness ˜γi j = ηi j and vanishing of bothK and

Ãi j . These assumptions exhaust the eight freely specifiable conditions at our disposal on{γi j , Ki j }; five are
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in γ̃i j , one inK and two inÃi j . The constraints then take the form:

∆ψ +
1
8
ψ−7(L̃W)2 = −2πψ5ρ (5.11)

(∆LW)i = 8πψ10Si , (5.12)

where (̃LW)2 ≡ (L̃W)i j (L̃W)i j . In the absence of matter sources, or if one setsS̃i = ψ10Si, the constraints

Eqs. (5.11) and (5.12) decouple. That is, one can solve first Eq. (5.12) forWi and use this solution to solve

Eq. (5.11) forψ.

Following Ref. [78] albeit with considerable differences in notation, with the help of the momentum

constraint Eq. (5.12), we notice that

(L̃W)2 = 2 (L̃W)i j ∇̃iW j

= 2 ∇̃i [(L̃W)i jW j ] − 2W j ∇̃i(L̃W)i j

= 2 ∇̃i [(L̃W)i jW j ] − 16πψ10W jS
j . (5.13)

Substitution of Eq. (5.13) into the Hamiltonian constraintEq. (5.11) yields

∆ψ +
1
4
ψ−7∇̃i [(L̃W)i jW j ] = −2π[ψ5ρ − ψ3WiS

i ] . (5.14)

We address now the matter sources. The stress-energy tensorfor a set of non-interacting point-like

particles with rest massMA, 4-velocityUa
A, and comoving number densityNA is given by

Tab =
∑

A

MANA Ua
A Ub

A , (5.15)

where the sum is understood to run over all the particles. Foreach particleA located atxi
A, the comoving

number density is given by aδ-function as

NA =

∫

1√−g
δ4[xa − xa

A(τ)]dτ

=
1

αU t
A
√
γ
δ3[xi − xi

A(t)]

=
δA

WA
√
γ
, (5.16)

with g the determinant of 4-dimensional spacetime metric,δA ≡ δ3(xi − xi
A), α the lapse function, WA =

αU t
A = −naUa

A, andna the future-directed unit normal to the hypersurfaceΣt. The stress-energy tensor can

then be rewritten as

Tab =
∑

A

MA δA

WA
√
γ

Ua
A Ub

A . (5.17)
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Given Eq. (5.17), the matter sources take the form:

ρ = na nb Tab

=
∑

A

MA WA δA

ψ6 √η , (5.18)

and

Sa = − ⊥a
b nc Tbc

=
∑

A

MA ⊥a
b Ub

A δA

ψ6 √η

=
∑

A

Pa
A δA

ψ10 √η , (5.19)

where we have used
√
γ = ψ6 √η, γab = gab + na nb and⊥a

b= gacgcb. In deriving Eq. (5.19), we have also

introduced the spatial momentum vectorPa
A ≡ MAψ

4 ⊥a
b Ub

A. The vectorPa is related to the spatial part

of the 4-momentumpa = MUa of the point-like particles byPa = ψ4 ⊥a
b pb. Substitution of the source

Eqs. (5.18) and (5.19) into Eqs. (5.12) and (5.14) yields

∆ψ +
1

4ψ7 ∇̃i [(L̃W)i jW j] = −2π
∑

A

mA δA√
η

(5.20)

(∆LW)i = 8π
∑

A

Pi
A δA√
η

, (5.21)

where

mA =
MA WA

ψ
− WiPi

A

ψ7 . (5.22)

Bowen and York [42] found a solution to the momentum constraint as given by Eq. (5.21). The solution

represent BHs with linear momentumPi
A and is explicitly given as

Wi = −
∑

A

1
4 r

(7Pi + ni
n j P j)

∣

∣

∣

∣

A
(5.23)

with ni the unit normal of constantr spheres in flat space. In terms of Eq. (5.23), (L̃W)i j takes the form:

(L̃W)i j =
∑

A

3
2 r2

[

2P(i n j) − (ηi j − ni n j) nkPk
]

A (5.24)

In Eqs. (5.23) and (5.24),rA = ||xi − Ξi
A||, ni

A = (xi − Ξi
A)/rA with Ξi

A the coordinate location of BHA. It can

be shown that the total ADM linear momentum isPi =
∑

APi
A.

We now turn our attention to the Hamiltonian constraint Eq. (5.20). As pointed out in Ref. [78], the term
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ψ7∇̃i [(L̃W)i jW j ] in Eq. (5.20) is a “flesh” term that provides the field betweenthe particles and has the

following contribution to the Hamiltonian:

∫

1
ψ7 ∇̃i [(L̃W)i jW j ]d

3x = −7
∫

1
ψ8 (L̃W)i jW j∇̃iψd3x .

The only approximation that goes into defining the skeleton initial data is to neglect the contribution from

this term. With this approximation, the Hamiltonian constraint Eq. (5.20) reads:

∆ψ = −2π
∑

A

mA δA√
η

(5.25)

with mA given by Eq. (5.22). Notice thatmA is singular atxi = Ξi
A becauseψ andWi are singular atΞi

A.

Following Ref. [78], we solve Eq. (5.25) by means of Hadamard’s “partie finie” procedure [113]; that is,

ψ = 1− 4π∆−1

(

∑

A

mA(xi) δA

2
√
η

)

= 1− 4π∆−1

(

∑

A

m(reg)
A (Ξi

A) δA

2
√
η

)

= 1− 4π
∑

A

m(reg)
A (Ξi

A)
2

∆−1 δA√
η

= 1+
∑

A

m(reg)
A

2 rA
, (5.26)

where

m(reg)
A ≡ MA WA

ΦA
− W

A
i Pi

A

Φ7
A

(5.27)

ΦA = 1+
∑

B,A

m(reg)
B

2rAB
(5.28)

WA =

[

1+
PiPi

M2Φ4

]1/2

A
(5.29)

WA
i Pi

A =
∑

B,A

( −1
4 rAB

)

[7Pi
BPA

i − (nAB
i Pi

A)(nAB
i Pi

B)] , (5.30)

with rAB = ||Ξi
A−Ξi

B|| andni
AB = (Ξi

A−Ξi
B)/rAB. The parameterm(reg)

A is commonly known as thebaremass

of the BH. On the other hand,M is known as theirreducible mass of the BH.ΦA is the regularized value

of ψ(Ξi
A). In summary, the skeleton initial data{γi j , Ki j } is then given byγi j = ψ

4ηi j andKi j = ψ
−2(L̃W)i j

with ψ given by Eq. (5.26) and (L̃W)i j given by Eq. (5.24).
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For comparison, the exact or constraint-satisfying puncture initial data method [44] consists also of

γi j = ψ
4ηi j andKi j = ψ

−2(L̃W)i j with (L̃W)i j given by Eq. (5.24), but in this case

ψ = 1+
∑

A

mA

2 rA
+ u , (5.31)

with u a regular solution to

∆u+
1

8ψ7 (L̃W)2 = 0 (5.32)

and mA is another mass parameter similarly called thebaremass.

5.2 Quasi-circular Initial Data

We restrict our attention to initial data configurations representing two equal mass (M1 = M2 ≡ M,

m(reg)
1 = m(reg)

2 ≡ m), non-spinning BHs in quasi-circular orbits. That isPi
1 = −Pi

2 ≡ Pi , r12 = ||Ξi
1−Ξi

2|| ≡ d,

andn12
i Pi = 0. Under these assumptions:

ψ = 1+
m

2 r1
+

m
2 r2

(5.33)

where

m =
MW
Φ
− 7

4
P2

dΦ7 (5.34)

Φ = 1+
m
2d

(5.35)

W =

[

1+
P2

M2Φ4

]1/2

. (5.36)

While deriving Eq. (5.34), we used that for circular orbitsWiPi = 7P2/(4d) with P2 = PiPi = PiP jηi j as

can be seen from Eq. (5.30).

We focus now on the differences between the constraint-satisfying and skeleton initial data for quasi-

circular sequences using the effective potential method [63]. The general idea of this method is to find

configurations that satisfy the condition:

∂Eb

∂L

∣

∣

∣

∣

M,JADM

= 0 , (5.37)

with Eb = EADM −M the binding energy of the system. The distanceL is a measure of the proper separation

between the BHs (e.g., horizon to horizon), andM = 2M is the sum of the irreducible masses. The

quantitiesEADM andJADM are respectively the total ADM mass and angular momentum of the system (see
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Run d/M P/M m/M M/M EADM/M JADM /M2

QC0e 2.337 0.33320 0.45300 0.519071 1.0195 0.7787
QC0a 2.337 0.33320 0.48950 0.519071 0.9790 0.7787
R1e 6.514 0.13300 0.48300 0.505085 0.9957 0.8664
R1a 6.514 0.13300 0.49717 0.505085 0.9943 0.8664
D10e 10.00 0.09543 0.48595 0.500000 0.9895 0.9530
D10a 10.00 0.09543 0.49458 0.500000 0.9891 0.9530

Table 5.1.Initial data parameters:The punctures have bare massesm, linear momenta±P aligned with they-axis and
are separated by a distanced along thex-axis. The irreducible mass of each BH fromm(reg) isM. The ADM masses
and angular momenta of the spacetimes are given respectively by EADM andJADM .

Sec. 3.2), which can be computed from:

EADM = − 1
2π

∮

∞
∇̃iψd2Si (5.38)

JADM i =
ǫi jk

8π

∮

∞
x jKkl d2Sl . (5.39)

It is not too difficult to show from Eq. (5.39) that, givenKi j = ψ
−2(L̃W)i j , the ADM angular momentum for

binaries initially in quasi-circular orbits isJADM = dP. On the other hand, withψ given by Eq. (5.33) the

total ADM mass from Eq. (5.38) is given by the sum of the bare masses of the BHs, namelyEADM = 2m;

thus, the binding energy becomesEb = 2m−2M. The bare masses for the skeleton initial data are obtained

by solving the implicit Eq. (5.34) using a Newton-Raphson method.

Figure 5.1 (top panel) shows the comparison of the binding energy Eb as a function of the total ADM

angular momentumJADM between the constraint-satisfying initial data from [179](squares) and the skele-

ton initial data in this work (triangles). The lower panel inFig. 5.1 shows the corresponding % relative

difference between both results. Not surprisingly, as the binary separation increases (i.e. larger angular

momentum), the differences diminish. For reference, the vertical lines denotethe angular momentum for

typical data sets considered in the literature: QC0 in Ref. [55], R1 in Ref. [26] and D10 in Ref. [179]. The

differences in binding energy between the skeleton and the constraint-satisfying initial data are∼ 20 % for

QC0,∼ 6 % for R1 and∼ 2 % for D10.

Table 5.1 provides the parameters of the initial configurations for both the skeleton and constraint-

satisfying data sets. The cases of exact or constraint-satisfying initial data are labeled with the letter “e” and

the corresponding skeleton or approximate case with the letter “a”.

As mentioned before, the only fundamental difference between the two initial data sets is in the confor-

mal factorψ. For the constraint-satisfying data setψ is computed from Eq. (5.31) by solving the Hamiltonian

constraint in the form given by Eq. (5.32) and for the skeleton the conformal factorψ is constructed using

Eq. (5.26). In Fig. 5.2, we show the relative differenceδψ/ψ = (ψa − ψe)/ψe from the two data along the

axis joining the punctures (x-axis) for the D10, R1 and QC0 cases. Notice the large differences in the imme-
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Figure 5.1. Comparison of the binding energyEb as a function of the total ADM angular momentumJADM between
the initial data from [179] (squares) and the skeleton initial data (triangles)

diate vicinity of the punctures. In the next section, we willinvestigate how these differences translate into

constraint violations.

5.3 Hamiltonian Constraint Violations

For the remainder of the chapter we will concentrate our attention on the D10 case: a situation in which

the BHs are not too close to the merger and with an initial separation that permits a reasonable overlap with

the post-Newtonian regime [28, 100]. It is important to point out that the numerical data D10e, although

called exact, also violate the constraints initially. The violations in the exact initial data, however, are a

consequence of numerical errors which can be made arbitrarily small in the limit to the continuum. On the

other hand, the constraint violations in the skeleton data are strongly dominated by resolution-independent

effects, converging at fourth order to some non-zero initial constraint violations.

In order to understand the nature of the constraint violations in the skeleton initial data and in partic-

ular their dynamics in the course of the evolution, we take the point of view that the violations introduce

“spurious” sourcesρ andSi in Eq. (5.1) and (5.2), respectively. Notice that initiallywe do not have a “spu-

rious” momentum densitySi because the skeleton initial data by construction are an exact solution to the

momentum constraint. It is important to keep in mind that oneshould not assign physical properties toρ

andSi . They are only used to quantify constraint violations. In particular, the violationsρ are not restricted

to satisfy energy conditions and thus are free to take negative values.
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Figure 5.2. The relative difference in the conformal factorψ between the skeleton initial data and the corresponding
constraint-satisfying data along thex-axis joining the punctures for the three cases labeled in Fig. 5.1. The solid
vertical lines represent the location of the AHs.

Fig. 5.3 shows a surface plot ofρ for the BBH skeleton initial data in the neighborhood of one of

the punctures. Notice that the puncture seems to be embeddedin a “cloud” or a pocket of negativeρ.

Furthermore, the cloud is more negative in the direction aligned with the linear momentum of the puncture

(in this case they-axis). This effect is more evident from Fig. 5.4 where we plotρ in the top panel along the

x-axis (the direction joining the BHs) and in the bottom panelalong they-axis. The glitches at the bottom

of the bottom of the constraint violation pockets are due to refinement boundaries.

5.4 Skeleton Evolutions

Given the initial data, we turn our attention now to evolutions. The evolution runs were done on a computa-

tional grid with 9 refinement levels, the finest 5 levels containing 243 gridpoints in radius and the remaining

4 with 483 gridpoints in radius. To check the dependence of the resultswith resolution, we considered grid

spacings at the finest level ofM/38.4, M/44.8 andM/51.2 and found the skeleton waveforms converge at

the same order as the exact waveforms. The results presentedhere were done at the resolution ofM/51.2.

Fig. 5.5 shows the trajectory of one of the BHs from the skeleton initial data (dashed line) as well as its

constraint-satisfying counterpart (solid line). Both trajectories are very close to each other during the first

quarter orbit. Beyond that point, the BH from the skeleton initial data follows an eccentric orbit. Finally,

near merger or at the plunge, the trajectories once again lievery closely together.
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Figure 5.3. Surface plot ofρ, as derived from the Hamiltonian constraint violations, inthe xy-plane surrounding one
puncture for the skeleton initial data, D10a.

Figure 5.4. Sourcesρ corresponding to Fig. 5.3 along thex-axis joining the BHs (top panel) and along they-axis
(bottom panel), the linear momentum direction. The solid vertical lines mark the mean coordinate radius of the AH.

In Fig. 5.6, we compare the waveforms of the skeleton initialdata with its constraint-satisfying coun-

terpart as detected at 50M. The presence of a phase shift between the two waveforms is evident. The

constraint-satisfying initial data evolution reaches themerger approximately 10M before the skeleton initial

data evolution. This difference remains within 1M of this between different resolutions. Another difference

in the two evolutions is in the inspiral. As mentioned before, the skeleton data yields a larger eccentricity in

the inspiral. This can be clearly observed from Fig. 5.7 where the same comparison as in Fig. 5.6 is shown
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Figure 5.5. The left plot shows the trajectory of one of the BHs from the skeleton initial data (red line) as well as
its constraint-satisfying counterpart (blue line). On theright we plot the coordinate separation between the BHs as a
function of coordinate time.

but in terms of the amplitude (top panel) and phase (bottom panel). Here we have applied a time shift of

10M to align the point at which the waveforms reach their maximumvalues. The inspiral and plunge of

the binary is before the “knee” in the phase or the maximum in the amplitude. On the other hand the quasi-

normal ringing of the final BH takes place after the knee in thephase and the maximum in the amplitude.

Notice that the phases are practically identical for both cases. Furthermore, both the post-knee phase and

post-maximum amplitude are almost the same for skeleton andconstraint-satisfying evolutions, which is an

indication that the final BHs are almost identical [106]. On the other hand, the inspiral amplitudes in Fig. 5.7

clearly show differences in the level of eccentricity as seen by the oscillations in the amplitude.

From the waveforms, we have computed the energyErad and angular momentumJrad radiated. For

the constraint-satisfying initial data, we obtainedErad = 0.0354M and Jrad = 0.3060M2 and for the

skeleton dataErad = 0.0359M andJrad = 0.3063M2, which correspond to differences of 1.4% and 0.1%

respectively. These differences are consistent with differences in amplitude of the ADM energy and angular

momentum in the initial data (< 10−4).

To better understand the change in trajectories and the corresponding phase shift reflected in the wave-

forms (see Fig. 5.6), we have tracked the evolution of the AH masses. The AH mass for one of the BHs is

plotted in Fig. 5.8 where the error due to grid spacing resolution is of order 10−5 M. While the AH mass for

the constraint-satisfying evolution stays relatively constant (solid line), the AH mass for the skeleton evo-

lution varies significantly (dashed line). In fact, the massstarts 1.4% higher than the constraint-satisfying

value and monotonically decreases. Empirically, the AH masses decrease as 1/t at late times. By fitting a

polynomial in 1/t to the AH evolution at late times, we find the mass asymptotes to 0.501± 0.001M, within

0.2% of the constraint-satisfying initial AH mass. However, the BHs merge before the skeleton AH mass

could reach this asymptotic value. An interesting questioncurrently under investigation is how the skeleton

evolution’s changing eccentricity compares to that of the Newtonian two-body problem with variable mass.
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Figure 5.6.Real parts of the waveform,roΨ
2,2
4 M, extracted atro = 50M for both the skeleton (red) and the constraint-

satisfying (blue) initial data.

Figure 5.7.Amplitude (top panel) and phase (bottom panel) of the waveformsroΨ
2,2
4 M in Fig. 5.6, skeleton data (red)

and constraint-satisfying data (blue). The time axis has been shifted by 10M to align the point at which the amplitudes
reach their maximum values.
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Figure 5.8.The evolution of the AH mass of one of the BHs shown for both theconstraint-satisfying initial data D10e
(blue) and its skeleton counterpart (red). Errors in AH due to grid spacing are of order 10−5 M.

5.5 Single Puncture Analysis

As noted in Sec. 5.2, the Hamiltonian constraint violationsare negative in the vicinity of the punctures. To

better understand the evolutions of the skeleton initial data, we consider a test case where we evolve a single,

non-spinning puncture and add by hand negative constraint violations surrounding it. That is, we solve the

Hamiltonian constraint as if there were an additional matter field ρ present, namely

∆ψ = −2π ρψ5 . (5.40)

For ρ > 0, the existence of a solution is not in general guaranteed asdiscussed in [192, 61]. For suchρ,

one needs to re-scale the source according to the conformal rescaling ˆρ = ρψ−s, with s > 5 . In our case,

however, we are mostly interested inρ < 0, which does not require any rescaling for existence of a solution.

Following the procedure for multiple BHs, see Eq. (5.31), weuse the ansatzψ = ψo + u, with ψo =

1 + m/2r the solution to the homogeneous equation (i.e. the single puncture solution). We useψo as the

conformal factor for rescalingρ and keep this constant while solving the constraint equation. With this

ansatz, Eq. (5.40) becomes

∆u = −2π ρ̂ (ψo + u)n (5.41)

wheren must be of opposite sign compared toρ. We chooses such thatn = −3 for ρ > 0, as is standard,

andn = 5 for ρ < 0.
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Model F/M2 EADM/M Mi
AH/M M f

AH/M Eρ/M

F1 0.001 1.0046 1.0012 1.0041 0.0034
F2 -0.001 0.9902 0.9973 0.9911 -0.0071
F3 -0.010 0.9102 0.9858 0.9183 -0.0756

Table 5.2.Models:Results of evolutions a single puncture in the presence of a Gaussian sourceρ with ro = σ = 1 M
and amplitudeF. The initial AH mass and ADM energy areMi

AH andEADM respectively.M f
AH/M is the asymptotic

final AH mass as extrapolated from the simulation, andEρ = EADM −Mi
AH.

For simplicity, we choose

ρ = ψm
o Fe−(r−ro)2/(2σ2) (5.42)

wherer0 is the position with respect to the puncture,m= 0 for ρ > 0, andm= −5 for ρ < 0. The factorψm
o

is necessary for regularity of the solutionu at the puncture. We also assume that the sourceρ does not have

initial momentum (i.e.Si = 0); thus, the momentum constraint remains satisfied as in thevacuum case.

Table 5.2 lists the results from the evolutions forro = σ = 1 M. The choice of centering the Gaussian

at ro = 1 M was aimed at favoring the amount ofρ accreted by the BH. The distribution, like the skeleton

initial data, is thus peaked at twice the horizon coordinateradius. Unlike the dumbbell-like configuration

of the skeleton initial data’s constraint violations, the introduced constraint violations in these cases are

spherically symmetric. Notice that caseF1 has a positive source (i.e.F > 0) yielding positive constraint

violations while the other two have negative sources yielding negative Hamiltonian constraint violations.

The effect of the sourceρ is evident in the ADM mass (EADM ) and initial AH mass (Mi
AH). For the positive

source, the masses are larger than the puncture mass in vacuum, 1M, and smaller for the negative sources.

Also in Table 5.2, we includeEρ = EADM −Mi
AH, which gives a measure of the extra energy content in the

initial data due toρ. The strength ofF3 was chosen such that the strength of the constraint violations and

the change of the initialMAH are comparable to those in the skeleton initial data. As the geometry of the

constraint violations create a much larger change in the ADMenergy, casesF1 andF2 have more modest

constraint violations which yield more modest changes in ADM mass.

We evolved the models in Table 5.2 for 300M. Fig. 5.9 shows how the AH mass evolves during the

evolution. We have evolved the modelF3 at different resolutions and estimated the AH masses to have an

approximate relative error of∼ 0.009%. We observed that at late times the AH mass evolves asM f
AH +C/t.

The values reported in Table 5.2 are those extrapolated tot → ∞.

The evolutions of the single puncture models clearly demonstrate that depending on the signature ofρ,

the mass of the BH, as measured from the AH, will increase or decrease. That is, over the course of the

evolution, the AH masses evolve to approach the ADM energy, decreasing for a negativeρ and increasing

for positiveρ. In other words, the sourceρ initially hovering near a puncture will fall into the BH, increasing

or decreasing its mass as the system becomes stationary depending on the sign ofρ. The extent to which the
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Figure 5.9. Evolution of the AH mass for the models described in Table 5.2. The error between resolutions forF3

was of order 10−5 over the course of the evolution.

final mass of the BH approaches the total ADM energy depends onhow much of the densityρ is “accreted”

by the BH. Since in our case we do not impose the restriction ofpositivity onρ, the BH is free to decrease

its mass. Notice also that the final AH mass does not satisfy the conditionM f
AH =Mi

AH +Eρ, which means

that a fraction (< 1% in our cases) ofEρ mass is radiated away.

Figure 5.10 shows the Hamiltonian constraint violationρ near the beginning of the simulation att =

0.078M (top panel) and at the end,t = 300M, of the simulation (bottom panel). Solid lines represent the

constraint-satisfying case and dashed lines theF3 model. Fig. 5.11 shows the corresponding results for the

momentum constraint violationsSi along thex-axis. By construction, initially there are only Hamiltonian

constraint violations in theF3 model. However, it is evident from the top panel in Fig. 5.11 that constraint

violations in the momentum constraint develop also very early in the evolution. The growth of momentum

constraint violations proceed up to a timet ∼ 3 M. The subsequent dynamics of the constraint violations

consists of ingoing and outgoing waves. Because of the proximity to the puncture, the outgoing waves are a

little bit weaker, with most of the constraint violations “accreted” by the BH. After approximatelyt ∼ 50M

of evolution, theF3 model relaxes to the configuration of the constraint-satisfying puncture and remains

there as seen in the bottom panels in Figs. 5.10 and 5.11. The final constraint violations in the system arise

from numerical errors.

An important aspect to point out is that although the constraint-violating cases relax to a constraint-

satisfying solution, the solutions that they relax to are not necessarily the same solutions as a single puncture

in a vacuum spacetime. The new solution satisfies the Einstein equations but for a single puncture spacetime
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Figure 5.10. Hamiltonian constraint violationρ near the beginning of the simulation att = 0.078M (top panel)
and at the end,t = 300M, of the simulation (bottom panel). Solid blue lines represents the constraint-satisfying
case and dashed red lines theF3 model. The solid vertical lines are the mean coordinate radii of the skeleton (red)
and constraint-satisfying (blue) AH at the given time. The constraint violations still present at late times are due to
discretization around the punctures.

Figure 5.11.Same as in Fig. 5.10 but for the momentum constraint violation Sx. The constraint violations still present
at late times are due to discretization around the puncture.
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with a smaller mass. A similar situation occurs in the binarycase; the system relaxes to a binary solution,

but this solution is different than the vacuum case. The reason for this relaxation toa similar constraint-

satisfying system is thought to be connected to the constraint damping nature of the BSSN formulation, but

it is not fully understood.

5.6 Impact on Data Analysis

Finally, we want to address the extent to which the waveformsfrom evolutions of skeleton initial data may

be of use in exploring gravitational wave astronomy. We willfocus on computing the matches between the

skeleton and the constraint-satisfying waveforms. In principle, the match would be between the detector

output,h1 and the template,h2. Hereh1 is the waveform from the constraint-satisfying evolution and h2

from the skeleton initial data evolution. Specifically, we will compare the waveforms using the minimax

match given by [79, 146, 66].

Match≡ max
t0

min
Φ2

max
Φ1

〈h1|h2〉√
〈h1|h1〉〈h2|h2〉

, (5.43)

where the inner product of two templates is defined by

〈h1|h2〉 = 4 Re
∫ fmax

fmin

h̃1( f )h̃∗2( f )
Sh( f )

d f. (5.44)

The match is maximized over the time of arrival of the signal,t0, and minimized/maximized over the initial

phase,Φ1 andΦ2, of the orbit when the signal/template enters the LIGO band. The variableSh( f ) denotes

the noise spectrum for which we use the initial [120] and advanced LIGO noise curves [5]. The domain

[ fmin, fmax] is determined by the detector bandwidth and the masses of our signal – set such that the initial

frequency of the numerical waveform just enters the LIGO band. We have chosen to study the match for

values of the total mass of the BBH system greater than 20M⊙ because of the limited number of cycles

that our waveforms include, stopping at 130M⊙ for initial LIGO and 250M⊙ for advanced LIGO as the

ringdown-dominated match at such masses is close to unity. Amore detailed description of our minimax

match calculation is given in [183].

The match between the constraint-satisfying and skeleton data versus mass is plotted in Fig. 5.12 for both

noise curves. In general, the match between the waveforms increases with increasing total mass, reaching

> 0.99 at 60M⊙/100M⊙ for initial/advanced LIGO . At such large total mass, the signal is dominated by

the plunge and ringdown. Comparisons of the plunge and ringdown show (see Fig. 5.7) that the difference

between the skeleton and constraint-satisfying evolutionare very small. At masses lower than about 40M⊙,

the match drops below 0.97 due to the difference in the binary dynamics prior to merger. Overall, advanced

LIGO is more sensitive to differences in the data, but these differences still remain above 0.98 for most of the
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Figure 5.12. Waveform matches between the waveform extracted from the standard, D10e, and that extracted from
the skeleton initial data evolution, D10a, using both the initial and advanced LIGO noise curves.

mass range investigated indicating that it is unlikely to have an impact on detection. Despite the high match,

the differences between the data due to constraint violations wouldlikely impact the accuracy of parameter

estimation. We note that our calculation of match did not maximize over the mass of the two waveforms.

Maximizing over the mass would have diminished the differences between the two waveforms.

5.7 Conclusions

We have carried out a study of the evolution of skeleton, puncture BBH initial data as proposed by [78].

We focused on non-spinning punctures at initial separations of 10M, where the difference in binding energy

with the constraint-satisfying initial data is< 2%. We showed that during the inspiral the skeleton data

yields different dynamics; however, this difference significantly diminishes as the binary enters the plunge,

merger and ringdown.

We tested the match between the constraint-satisfying and skeleton data for a series of total masses

between 20M⊙ and 130M⊙/250M⊙ for initial/advanced LIGO respectively. Our results indicate that grav-

itational wave data analysis would have some tolerance for constraint-violating data, especially for those

binaries in which the signal is plunge-merger dominated, asis the case of high mass BHs. We conclude

that although the two systems were different, with one clearly violating the Einstein equations, the differ-

ences were not enough to impact the match statistics for the mass ranges we included in our study and for

the number of cycles present in our numerical waveforms. Clearly, the advanced LIGO detector was more

sensitive to the errors that are introduced into the system by the constraint violations. If these systems were

evolved starting with a larger initial BH separation, the constraint violations would be smaller and, there-

fore, the waveforms generated could be useful for detectionover the complete BBH mass range for initial

LIGO. If, however, larger constraint violations are present in the data that drive the early BH mass lower,
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the differences may lead to errors in parameter estimation.

We also analyzed the impact of the Hamiltonian constraint violations. We showed that the main feature

of the skeleton data is two packets of negative constraint violations in front of and behind the BH, along the

direction of its momentum. We conjectured that these negative constraint violations acted as a source density

that gets absorbed by the BHs during evolution. To test our conjecture, we considered a model consisting of

a single, non-rotating puncture in which we artificially added a stationary Gaussian shell source that mimics

the Hamiltonian constraint violations in the skeleton data. The evolutions of this single puncture model

reproduce the decrease in the mass of the BH observed in the evolution of the skeleton data.

One remarkable aspect of our study is the ability of the BSSN equations and moving puncture gauges

to stably evolve data away from the constraint surface. Whatis even more remarkable is how the evolution

brings the data back to the Einstein constraint surface. We are currently investigating a broader class of

solutions with this property.

Our results suggest that for the class of constraint violations found in the above studies, the evolutions

of such systems with the BSSN formulation approach a constraint-satisfying system with BHs of different

AH masses. For general classes of constraint violations we cannot conclude anything from this study.

In summary, our numerical evolutions show that the skeletoninitial data proposed by [78] embeds the

BHs in a “cloud” of negative constraint violations. These constraint violations act as a source field that when

accreted by the BHs decreases their masses. The change in themasses modifies the binding energy of the

binary and thus affects its orbital dynamics (e.g., adding eccentricity) but had little effect on the match of the

two waveforms for initial or advanced LIGO for high mass black holes. The observed effects will decrease

as the initial binary separation increases.



Chapter 6
Theoretical Framework: Coupling

Hydrodynamics to a Relativistic Code

“We are all dependent on one another, every soul of us on earth.” – George Bernard Shaw

As we exist, the universe is not all vacuum. In general relativity, spacetime and matter evolve together,

each directing the other. Matter, however, adds a completely new set of length scales to the problem. By

evolving realistic matter, we must also grapple with its shock waves, instabilities, turbulence, electromag-

netic fields, and even chemistry and composition. A few codesattempt to incorporate all of these in their

study of gravitational core collapse and the subsequent cause of core-collapse supernovae, but including all

of these is much too computationally expensive for the time scales we must simulate for BBH systems and

of questionable importance to the scale of phenomena we wishto consider.

There are many methods used in describing and evolving matter in general relativity. The gridless

smooth particle hydrodynamics (SPH) treatment such as thatused in [145] uses a set of extended Lagrangian

particles and is currently extended to relativistic circumstances but only includes self-gravity terms. Not

only is the spacetime coupling minimal in such treatment, but difficulties arise in boundary conditions,

hydrodynamic instabilities, and resolving physics at manylength scales (see e.g., [4]). On the other hand,

some hydrodynamics codes likeCoCoNuT [69] use spectral methods whichcan cover many length scales

well with their quick convergence. These have been developed extensively for use with spectral spacetime

evolution codes [153]. Like the codesGENESIS [8], SACRA [188], and the unnamed code of Duez [72], the

method we employ uses a conservative formulation [132, 110,111] of an Eulerian approach [186].

As general relativity is a field theory, we describe the matter in a way that lends itself well to the

framework already in place: describing it as a matterfield defined everywhere with its variables stored at

the verticies of a grid structure and evolved using finite differencing methods. This chapter will detail the

important aspects of evolving coupled relativistic hydrodynamic fields which are implemented inScotch
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and used in Chapter 7 (see Font [82] for a more general review of methods in general relativistic hydro-

dynamics).Scotch is based on the publicly-available hydrodynamics codeWhisky [22] but altered to use

the HydroBase infrastructure being added to the CactusEinstein Cactus repository and extra functionality

to handle the BHs from puncture spacetime initial data (see Sec. 3.1.3) among other structural changes.

Like MayaKranc, Scotch is based on a theCactus infrastructure and evolution systems are evolved by the

Method of Lines.

6.1 Matter Evolution Equations

In general relativity, a matter field couples to the spacetime evolution through the creation of the stress-

energy-momentum tensorTµν, present on the right-hand side of the Einstein equations. Aside from letting

the spacetime know about the matter throughTµν the matter itself must evolve, interacting both with itself

and with the curvature of spacetime. For a general matter field, this evolution is captured by the equations

∇µTµν = 0 (6.1)

where∇µ is the covariant derivative of the full four-dimensional metric.

In our work, we assume the stress-energy-momentum tensor ofa perfect fluid. That is, we chooseTµν
to be of the form

Tµν = ρohuµuν + Pgµν (6.2)

whereρo is the rest-mass density of the fluid,h≔ 1+ ǫ + P/ρo is the specific enthalpy of the fluid ,ǫ is the

internal energy of the fluid,uµ is the co-moving four-velocity, andP is the pressure. For a fluid stress-energy

tensor as such we can reconsider the evolution equation (Eq.6.1) under the same foliation of spacetime as

used in formulating the spacetime evolution equations. Thetemporal projection of Eq. 6.1

nν∇µTµ
ν = 0 (6.3)

can be interpreted as local energy conservation as seen fromconsidering the non-relativistic limit. Similarly,

the spatial projection,

⊥νi ∇µTµ
ν = 0 (6.4)

is interpreted as local momentum conservation. To create a realistic fluid field, it is also standard to impose

baryonic conservation

∇µ
(

ρouµ
)

= 0. (6.5)

The co-moving four-velocityuµ must be normalized such thatuµuµ = −1 to be physical, so it is standard

to introduce a spatial velocity vectorvi derived fromuµ in different ways depending on the formulation.

At this point there are six unknowns
(

ρo, ǫ,P, vi
)

and five evolution equations. The remaining degree of
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freedom is specified by assuming an equation of state, generally written as defining the pressureP as a

function of the rest-mass density and internal energy:P = P(ρo, ǫ). Thus the matter field is described by

five physically-interpretable variablesρo, ǫ, andvi , dubbed the “primitive” variables.

These primitive variables are convenient for analysis, butthey are not ideal for evolving. Since Wil-

son’s seminal work [186] on formulating the Eulerian description in general relativity many studies utilized

formulations based on evolving the primitive variables directly while others used formulations based on the

conservative approach of Martı́et al. [132, 110, 111] and Banyulset al. [29]. These conservative formula-

tions rewrite the matter evolution equations in the form

1√−g

(

∂t
(√

γC
)

+ ∇̆xi

(√−gF (i)))
= S (6.6)

whereC is a set of “conserved” variables,F (i) their related fluxes in the direction ofx j , andS contains

the source terms. The conservative form guarantees that thesolution, should it converge, converges to a

weak solution according to the Lax-Wendroff theorem. The choice of conserved variablesC is not unique.

Additionally, they make use of approximate Riemann solversand High-Resolution Shock Capturing (HRSC)

schemes which we will discuss later in this chapter.

Recently, Anninos and Fragile [12] showed the non-conservative formulations were insufficient for

evolving ultra-relativistic matter fields. Unlike the non-conservative approach, that of Ibáñez avoids the

need for artificial dissipation by solving a local characteristic problem via an approximate Riemann solver

and utilizing a HRSC method to handle shocks.

6.1.1 Valencia Formulation

The formulation used inScotch is dubbed the Valencia formulation [29] for its origins at the Universidad

de Valencia. The primitive variables,ρo, ǫ, andvi , are the rest-mass density, internal energy, and velocity

as seen by a Eulerian observer at rest on the hypersurface moving along the normal to the hypersurface

nµ = 1
α

(

∂t − βi∂i
)

. The 3-velocityvi of the matter field is defined with respect to the 4-velocityuµ as

vi
≔ − ni∂i

nµuµ
=

1
α

(

ui

ut + β
i

)

. (6.7)

Following the approach of Banyulset al.. [29], we rewrite the evolution equations derived from Eq. 6.1

in conservation form. In the Valencia formulation, we defineour conserved variables as the setD, Si, andτ

defined as

D ≔
√
γρoW (6.8a)

Si
≔
√
γρohW2vi (6.8b)

τ ≔
√
γ(ρohW2 − P) − D (6.8c)
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whereW ≔ αut =
(

1− vivi
) 1

2 is the Lorentz factor from special relativity. We interpretthese conserved

variables by looking at their special relativistic limit.D reduces to the energy density of a boosted field,

Si is the relativistic momentum current of that boosted field, and τ is related to the internal energy of the

field. Note that the conserved variableSi defined here and used in this chapter and Chapter 7 isnot theSi

of Chapter 2, but a “densitized” version:Si →
√
γSi . The notation here conforms to standard notation.

Written explicitly in terms of the conserved variables in the standard spacetime foliation, the system of

matter evolution equations (Eq. 6.1 and 6.5) can be rewritten in the conservative form as

∂tD + ∂ j((αv j − β j)D) = 0 (6.9a)

∂tSi + ∂ j((αv j − β j)Si + Pδ j
i ) = Tµν(∂µgνi + Γ

δ
µνgδi) (6.9b)

∂tτ + ∂ j((αv j − β j)τ + Pvj) = α
√
γ(KµνT

µν + T0i(2Ki jβ
j − ∂iα) + T00(Ki jβ

iβ j

−Ki jβ
i∂ jα)). (6.9c)

Notice that we evolve notSi but Si as the evolution equation is much simpler in that case.

6.2 Important Aspects of a (Conservative) Hydrodynamics Code

The current successes in evolving relativistic hydrodynamic systems using finite-differencing schemes in-

volve several crucial theoretical tools. As mentioned earlier, by solving the relativistic hydrodynamic evolu-

tion equations in their conservative form we can avoid adding artificial dissipation with all its thorny issues.

We do, however, need a reconstruction technique, a Godunov-typefinite differencing scheme and HRSC.

We also need to carefully treat areas of the hypersurface with little or no matter, and consider carefully the

matter field evolutions around the punctures.

6.2.1 Finite Differencing Scheme: Godunov Method and HRSC

The coupled matter evolution equations (Eq. 6.9) require special finite differencing methods to guarantee that

the system converges to a solution. Thankfully a half-century of research on conservative evolutions in the

fluid dynamics community and considerable efforts on special relativistic hydrodynamics by the astrophysics

community can be drawn upon. For the past 50 years, much research and development has gone into

Godunov-type methods for solving partial differential equations written in conservative form and solvedon

a grid [182].

Godunov methods specifically address evolutions of functions represented by data on a grid where cer-

tain quantities must be conserved. These data are interpreted as piecewise-constant functions littered with

theoretical shock waves on the scale of the grid spacing. Theevolution proceeds by setting up and solving

the Riemann problem, the problem of evolving a conservativedifferential equation at a discontinuity, at

each of the 6 theoretical shocks bordering a cell defined by a grid point we wish to evolve. In the analytical
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Figure 6.1. Schematic of Godunov-type methods. The top panel depicts the representation of a continuous function
by a piecewise-constant function. The middle panel shows the characteristic lines of the Riemann problem solution
at the discontinuities, composed of three different elementary waves. The bottom panel represents a time-averaged
evolution of these waves and subsequent representation by the next piecewise-constant function.

solution to the Riemann problem, the discontinuity breaks up into three elementary waves: shock waves,

rarefaction waves, and contact discontinuities. The contact discontinuity, an interface across which some

hydrodynamic variables are discontinuous, remains at the cell border. On either side of the border either

shock waves or rarefaction waves propate outwards at speedscharacteristic of the material. The new time

step is created from propagating these waves in time for a time interval no longer than that needed for the

fastest such waves to interact with the waves emanating fromthe other side of the cell. A schematic of a

Godunov-type method for a one-dimensional system is found in Fig. 6.1 where the lines in the middle panel

are the characteristic lines found in solving the local Riemann problem.

Effectively applying a Godunov-type method requires a choice in Riemann solver for the cell inter-

faces [109]. There are many to choose from, both approximateand exact, depending on the problem at

hand. The solvers available inScotch (Roe, Marquina, or HLLE) use a characteristic approach to solve the

Riemann problem. That is, they consider the three 5x5 Jacobian matricesBi defined by

Bi
≔ α

∂F (i)

∂C . (6.10)

Each Jacobian leads to the flux into and out of the cell along one spatial coordinate. The eigenvalues of this

Jacobian define the material and acoustic waves in this direction where the eigenvalues lead to left and right

eigenvectors (see App.D) to decompose the variables into characteristic waves.

In the absence of sources (Cartesian Minkowski background), the Riemann problem can be solved ex-

actly [133]. The situations which interest us, though, do not satisfy this. An important assumption made in

such cases is that the resolution of the spacetime mesh is high enough that locally you can change coordinates

to a flat spacetime. Given this assumption, the past twenty years have shown remarkable progress in solving

hydrodynamics on flat space. Anile [11] thoroughly discusses the hyperbolic nature of the hydrodynamic
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and magnetohydrodynamic evolution equations on a Minkowskian background, a discussion extended to an

arbitrary reference frame by Fontet al. [81]. Solving the Riemann problem exactly is also a very expensive

procedure as it involves solving an implicit equation. Approximate Riemann solvers are often sufficient in

catching much of the system dynamics, though they can also fail spectacularly [157]. For our work we use

an approximate Riemann solver, the Marquina solver, derived first by Donat and Marquina [70], modified

by Aloy et al. [8] and extended to general relativity by Frieben, Ibáñezand Pons. We leave a discussion of

this solver to Appendix D.

Godunov-type methods are often extended to include HRSC schemes in their set-up of the Riemann

problem. These determine how the fluxes derived from the Riemann problem solutions are used in calcu-

lating the evolution of the conserved variables, particularly how the time-averaging of the fluxes from the

characteristic solution to the Riemann problem is performed. In Scotch, we solve the conservative form

of the evolution equations by considering the 4-dimensional cell created by a gridpoint-centered spatial cell

extended into the space between hypersurfacesΣt andΣt+∆t.

∫

Ω

1√−g

∂(
√
γC)

∂t
dΩ +

∫

Ω

1√−g
∂(
√−gF (i))
∂xi dΩ =

∫

Ω

SdΩ . (6.11)

Averaging this equation over the spatial cell and dividing by the volume we find an evolution equation for

the integral-averaged conserved variables

d
dt
C̄ = S̄+

1
∆V

∫ t+∆t

t

∫ x2+∆x2/2

x2−∆x2/2

∫ x3+∆x3/2

x3−∆x3/2

{

F
(1) (C(x1 − ∆x1/2, y, z)

)

− F (1) (C(x2 + ∆x1/2, y, z)
)}

dtdydz+...

(6.12)

where

C̄ ≔
1
∆V

∫

V

√
γCdx1dx2dx3 , (6.13a)

∆V ≔

∫ x1+∆x1/2

x1−∆x1/2

∫ x2+∆x2/2

x2−∆x2/2

∫ x3+∆x3/2

x3−∆x3/2

√
γdx1dx2dx3 (6.13b)

andS̄ is defined similarly toC̄. Thus the evolution of the conserved variables can be written in a manner

suited for the method of lines as

d
dt
C̄ = S̄ +

∫ x2
j+1/2

x2
j−1/2

∫ x3
k+1/2

x3
k−1/2

{

F̂
(1) (
C(x1

i−1/2, y, z)
)

− F̂ (1) (
C(x1

i+1/2, y, z)
)

}

dydz+ . . . . (6.14)

The fluxes,F̂
(i)

are calculated by the Riemann method discussed in App. D which addresses the time

averaging of the fluxes in the final alteration of the flux formula.
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6.2.2 Reconstruction: Piecewise Parabolic Method (PPM)

Setting up the Riemann problem from above uses the conservedvariables on either side of a cell interface.

The popular method we use is the Piecewise Parabolic Method (PPM) [62]. We assume the variableq is a

scalar function ofx, the dimension we are reconstructing along, and interpolate a quadratic polynomial to

the cell boundary.

qi+1/2 =
1
2

(qi+1 + qi) +
1
6

(δmqi − δmqi+1) (6.15)

where

δmqi =

{

sign(δqi) min( |δqi |, 2|qi+1 − qi |, 2|qi − qi−1|) if(qi+1 − qi)(qi − qi−1) > 0

0 otherwise
(6.16)

δqi =
1
2

(qi+1 − qi−1) (6.17)

Setting the variable value on both the left and right of the cell interface as equivalent (qR
i = qL

i+1 = qi+1/2)

results in oscillatory behavior in the vicinity of shocks.

The PPM includes the option to sharpen discontinuities for reconstructions of the matter density, or to

flatten the zone structure near shocks by adding simple dissipation. Whether either option is used, we avoid

oscillatory behavior by making the following replacementsto preserve monotonicity:

qL
i+1 → qR

i = qi if (qR
i − qi )(qi − qL

i+1) ≤ 0 (6.18a)

qL
i+1 → 3qi − 2qR

i if (qR
i − qL

i+1)

(

qi −
1
2

(qL
i+1 + qR

i

)

>
1
6

(qR
i − qL

i+1)2 (6.18b)

qR
i → 3qi − 2qL

i+1 if (qR
i − qL

i+1)

(

qi −
1
2

(qL
i+1 + qR

i

)

<
1
6

(qR
i − qL

i+1)2 . (6.18c)

The PPM then gives us the set of conserved and primitive variables on both sides of a cell interface which

we can use to set up a Riemann problem. For more detail, see Appendix D.

6.2.3 Recovery of Primitives

As discussed above, the hydrodynamic variables evolved byScotch are the set of conserved variables

C = {D,Si , τ}. While useful, they themselves are not easily interpreted.Instead, after every timestep we

convert back to the primitive variables{ρo, vi , ǫ}. We also store the Lorentz factorW = αu0 and the pressure

P to speed calculations and simplify analysis though both canbe derived from the basic primitive variables.

Recovering the primitives from the conserved variables requires a bit of algebraic gymnastics. As with

most things there are several methods to find the primitives that correspond to the new conserved vari-

ables [114]. The procedure in place, detailed in Appendix D,involves “undensitizing” the conserved vari-

ables through division by
√
γ. This projects the conserved variables onto a nearly flat spacetime, removing
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any strong gravitational contribution. We then proceed to use a Newton-Raphson type iteration to minimize

a function which constrains the definition of the conserved mass/energy density for a polytropic equation of

state (ρoW = D/
√
γ = D̆) and otherwise constrains the equation of state itself (P = P(ρo, ǫ)).

6.2.4 Atmosphere Handling

In regions of sufficiently small or vanishing densities, the matter field of Eulerian codes must be handled

carefully. In the vacuum limit, the speed of sound approaches the speed of light and the Riemann problem

as well as the conversion between conserved and primitive variables fails. In many cases the matter field is

confined to a small region of space (e.g., a star) so confining the matter evolution to just the vicinity of the

non-trivial matter field also increases the efficiency of the code. The current rule of thumb [89] is to allow

∼ 7 orders of magnitude below the initial data’s peak matter density to remain dynamic. Anything below

that is not evolved: its velocity is set to zero and its density set to the atmospheric value. The region around

non-atmospheric matter is given the opportunity to become non-atmosphere.

6.2.5 Physicality

With the exception of Faberet al.’s study on hydrodynamics with punctures [77], fully-relativistic hydrody-

namic studies of BH systems have been done on spacetimes withthe BHs excised from the evolved space-

time. In our studies withScotch, though, we continue to use the proven puncture approach of Sec. 3.1.3

for the BHs. This requires some special handling in the vicinity of the puncture as numerical error quickly

causes the momentum to diverge. This error is primarily found in the conversion from the conserved vari-

ables to the primitive variables. Following Faberet al. [77], we impose the physicality of the matter field

everywhere on the conservative variables before converting to the primitive variables, where an unphysical-

ity would be amplified.

The specific enthalpy,h≔ 1+ ǫ +P/ρo, satisfiesh ≥ 1 for physical matter whereh→ 1 is the dust limit.

In this dust limit,τ→ D(W− 1) as can be readily seen from its definition in Eq. 6.8.

The dust limit on the magnitude ofSi is derived from the requirement thatuµuµ = −1. This can be

rewritten in terms of the conserved variables as

γi j SiS j

h2 = D2(W2 − 1). (6.19)

Combining this with the definition forτ, we find that ash→ 1,

|S|2 = γi j SiS j → τ(τ + 2D). (6.20)

It can be shown that this is an upper limit. In our simulationswe keep our total matter current well within

this limit by impose an upper limit on its magnitude of 0.98τ(τ + 2D) as per Faberet al. [77].



Chapter 7
The Effects of Surrounding Gas on Binary

Black Hole Mergers

“Clouds come floating into my life, no longer to carry rain or usher storm, but to add color to

my sunset sky.” –Rabindranath Tagore

Black holes do not exist in vacuum; they have accretion disksand sometimes, as in the case of Active

Galactic Nuclei (AGN), relativistic jets. Simulations of BBH systems to date have not considered the effects

of any surrounding matter on merging BBHs in the fully non-linear relativistic regime. Nevertheless, matter

is expected to play a non-trivial role in the merger dynamics. Accretion disks, for instance, may provide

torque such that the BHs’ spins slowly align [39] which feedsback into the orbital dynamics via the spin-

orbit coupling. In fact, Armitageet al. [15] noted that a gas medium could speed the merger of BBHs from

eccentric binaries in such a way that LISA may be able to detect a signal encoded with physics beyond the

standard vacuum BBH waveforms currently being generated enmasse. In this chapter we take the first steps

to considering these questions through fully-coupled, nonlinear simulations.

Early N-body simulations by Milosavljevic and Merritt [136] and subsequent studies [194, 35] found

supermassive BBH inspirals stalled at 0.01-1 parsecs. In these studies, for sufficiently massive BBH merg-

ers (M & 108M⊙), three-body interactions with stars in the galaxy are no longer sufficient to extract

enough angular momentum from the pair for the BHs to merge. Atthat distance, gravitational wave ra-

diation alone merges the BBH on a timescale of the order of a Hubble time since circularized BBHs are

much less efficient at emitting angular momentum through gravitational radiation. For these supermassive

BBHs, angular momentum transportation via surrounding gasmay be a dominant mechanism in hastening

a merger [32, 93, 14, 75, 76]. A recent numerical study using post-Newtonian terms in N-body simulations

found that incorporating relativity into such systems may be sufficient to overcome this stalled inspiral [154].

In another study, Cuadraet al. [64] evolved wet binaries using SPH around BBHs, suggestinghydrodynam-

ics could be important in the last phase of the inspiral.
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This chapter discusses a study in progress which aims at addressing this question. In Sec. 7.1 we consider

an initial system where the standard BBH vacuum initial datais embedded in astationarygas cloud whose

density is astrophysically motivated. In Sec. 7.2 we discuss the current progress in evolving wet BBHs.

7.1 Initial Data

7.1.1 Constraint Solving with Matter

Spacetimes coupled with matter must start with constraint-satisfying initial data which are once again cou-

pled. Consider the constraint equations (Eq. 3.6) from Chapter 3 with the matter fields reinserted

∇̃i∇̃iψ −
1
8
ψR̃ − 1

12
ψ5K2 +

1
8
ψ−7Ãi j Ã

i j = −2πψ5ρ, (7.1a)

∇̆ j(ψ
−10Ãi j ) − 2

3
∇̆ jK = 8πψ10γ̃i j J j (7.1b)

where we replaced theS j from the vacuum chapters withJ j to avoid confusion. The matter quantitiesρ and

J j can now be written in terms of primitive variables using the perfect fluid stress-energy-momentum tensor

as

ρ ≔ nµnνT
µν = ρo(1+ ǫ)W2 + P

(

W2 − 1
)

, (7.2)

J j ≔ − ⊥νj nµT
µν = ρohW2v j =

1
√
γ

S j . (7.3)

The popular method to solve these coupled equations is basedon the extended thin sandwich method, but

in this work we follow a different approach. By imposing our initial matter field be stationary,S j vanishes

initially, uncoupling the constraints again. Though a cloud of matter surrounding a binary system would not

be stationary, this was a first step towards solving spacetimes containing matter, inspired by the alterations

already in place for Sec. 5.5. Stationary matter simplifies the momentum constraint so the Bowen-York

approach is again applicable. Our initial extrinsic curvature is again given by Eq. 3.12.

To create aphysicalmatter field, solving the Hamiltonian constraint is more complicated than discussed

in Sec. 5.5. Following the approach of Löffler et al. [126] for their Black Hole – Neutron Star (BHNS)

initial data, we again rescale the quantityρ by several factors of the BY conformal factor to guarantee the

existence of a solution [61]. We rescaleρ as

ρ̂ = ψnρ (7.4)

wheren must satisfyn > 5 so the source term in the Hamiltonian constraint is rewritten as−2πψ5−nρ̂. This is

sufficient to guarantee a unique solution. As has become standard, we choosen = 8 such that the constraint

equation is written

∇̃i∇̃iψ −
1
8
ψR̃ − 1

12
ψ5K2 +

1
8
ψ−7Ãi j Ã

i j = −2πψ−3ρ̂ . (7.5)
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We compute ˆρ using a modified single-domain spectral method from Ansorg [13] and an initial guess for

ρ. We keep the conformal factorψ used in the rescaling fixed to our initial guess while we solvefor the

conformal factor.

As an additional complication, the quantity which feeds into the constraint equation is only the rest-mass

density in the dust limit. For general stationary matter, the matter quantityρ in the Hamiltonian constraint

reduces to

ρ = ρo(1+ ǫ). (7.6)

We set the form ofρ to be a sum of (positive) Gaussians and solve the Hamiltonianconstraint using a

modified single-domain pseudo-spectral method from Ansorg[13]. With the final conformal factorψ and

the imposedρ, we use a Newton-Raphson iteration to find a set of primitive variables which are consistent

with the equation of state andρ.

7.1.2 Choosing a Matter Field and Binary

In our current evolutions we embed the standard BBH used in Chapter 5, the D10 run of Tichyet al. [179],

inside a Gaussian gas cloud large enough to encompass both BHs. Our choice in the peak of our Gaussian

matter clouds is inspired by studies of the Central Molecular Zone (CMZ) in the center of the Milky Way as

reviewed by Morris and Serabyn [138]. This zone,∼ 200 pc in radius has been observed through emissions

of CO lines from its surface. From this observation the surface matter density is estimated at∼ 5M⊙/pc2.

Within this area the number density of CO is expected to be, onaverage, 104cm−3. Given CO has a mass

of 28 g/mole, for a spacetime with an ADM mass of 1 in code units representing a system of total mass

Msys= NM⊙ the energy density is given by

ρ(cgs)=
c6

M2G3ρcode=
7.6971× 107

N2 ρcode
g

cm3 . (7.7)

Thus a Gaussian peak at 10−5 in code units yields a physical density corresponding to (7.697×102/N2) g/cm3

which is equivalent to the CMZ’s estimated density for a 4×1010M⊙ system. For all the work in this chapter

we assume, for simplicity, a polytropic equation of state

P = κρΓo. (7.8)

This is a form of the ideal fluid which eliminates the need for the conserved variableτ to be evolved,

decreased the computational expense of simulations.

In Table 7.1 we summarize the parameters used to build our initial spacetime as well as the physical

properties of the resulting spacetime. As expected, the stationary matter field did not change the ADM

angular momentum of the system, but it did add an additional 2.4% ADM energy. The presence of the

matter field increased the AH masses of the BHs increased by only 0.09%. In Fig. 7.1 we present a surface
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Run D/M |Py|/M ρo/M2 σ/M κ/(M2(Γ−1)) Γ MAH/M EADM/M JADM /M2

Dry 10.0 0.0954325 – – – – 5.000 0.9895 0.9531
Wet 10.0 0.0954325 1.083× 10−5 10.83 100 2 0.5004413562 1.0133 0.9531

Table 7.1.Overview of the properties of the initial data considered inthis work. HereD/M is the coordinate separation
of the binary,|Py|/M is the initial momentum of the BHs.ρo/M2 andσ/M describe the geometry of the matter field.
κ andΓ are the parameters for the equation of states. The final threecolumns describe the AH masses, ADM energy,
and ADM angular momentum respectively.

plot of the rest-mass densityρo/M2 in the area surrounding the BHs.
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Figure 7.1. Surface plot of the rest-mass matter densityρo/M2 across thexy-plane. The BHs are atx = ±5 as can be
seen by the dropping density at the site of the punctures.

7.2 Current Progress

We have created the above “wet” BBH system and evolved it using theMayaKranc code coupled toScotch.

Thus far I have not been successful simulatingorbiting BBH systems to and through merger. Roland Haas

has shown that head-on collisions embedded in gascanbe successful with this code, but the BBH system

described above crashes after about 90M, well after a head-on from the same separation would merge. The

trouble currently lies in the vicinity of the puncture, within a grid point or two of the punctures themselves,

where the curvature of the spacetime is great enough that thelocally flat approximations made inScotch

are not sufficiently valid. When the density there becomes too high, the simulation crashes.

When a “wet” BBH system can successfully be evolved, the above initial data is just an entry point to

a vast parameter space. Evolving eccentric binaries would study the effects of the gas on the circularization

of the system. Spin and unequal masses would add more dimensions. All of these systems can shed light

on the extent to which a surrounding gas cloud can affect the dynamics and subsequent gravitational wave
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emissions from BBH systems, effects which may be observable with the next generation of gravitational

wave observatories.



Chapter 8
Summary and Open Questions

“The important thing is not to stop questioning.” –Albert Einstein

The recent breakthroughs in NR and subsequent frantic studies of waveforms and building of waveform

template banks have changed the very nature of the field. No longer is NR a numerical side project of

general relativistic studies, having fully realized its place as a connector between gravitational theory and

experiment, the heart of matched-template signal searches, and relativistic astrophysics. The studies in

this dissertation considered the robustness of generated waveforms for BBH mergers in the presence of the

constraint violation, inaccuracies, and effects thereof still present in the initial data.

Not only did we find the waveforms robust to the spurious gravitational wave content present in standard

initial spacetime (see Chapter 4), but we found that a full 1%additionalEADM can be added to such a

standard BBH in the form of gravitational waves before the final BH is significantly altered. We additionally

observed that such changes, when present, were consistent with the energy absorbed by the BHs while the

spurious radiation flushed out of the system.

This study was expanded on in Chapter 5 where we considered a canonical choice in approximate initial

data, representing the BHs as point sources in solving the ADM Hamiltonian on the initial hypersurface.

We find that the Match between the waveforms generated by the skeleton and the standard initial data

was sufficiently high (> 0.97) for binary systems with masses above 40M⊙, for both initial and advanced

LIGO noise curves, that the resulting waveforms would be sufficient for signal detection purposes, though

the differences could still lead to significant parameter estimation errors. Perhaps more important was the

observation that the constraint violations were negative and, in certain regimes, can be interpreted as an

unphysical energy field that gets absorbed by BHs as the constraint-violating system approaches a constraint

surface of a BBH system with different masses.

In both the above studies, we found the dynamics of the AH masses during an evolution is a good

indicator of the validity and accuracy of the generated waveform. In the first case the absorption of the

waves increased the AH masses during inspiral while in the latter case the negative constraint violations
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unphysically decreased it. Such an indicator is vital when more complicated spacetime configurations are

considered, where the initial data is not so easily generated. The second study shows, after all, that for at

least one type of approximate initial data, approximate canindeed be good enough for waveform generation

in the LIGO band.

There are some caveats to these studies. The recent stringent requirements of Lindblomet al. [124]

have yet to be taken into account. Similarly, the suspected small effects of issues with our wave extraction

methods, as pointed out by Lehneret al. [121], have also not been considered in depth.

Beyond these conclusions and caveats, there remain many open questions. The above studies were done

only for equal-mass, non-spinning BBHs. Spinning BHs, as discussed in Sec. 3.1.4, are implemented only

through the extrinsic curvature. As such, they can produce much more spurious radiation. The question

remains how much energy is seen in the resulting spurious radiation and how much does it change the

AH masses of the BHs as it flushes out of the system. Similarly,the constraint violations from spinning

BBHs in the skeleton initial data have not been considered. Afollow-up side experiment which has not

been published shows that if the AH mass of a spinning BH decreases enough for the dimensionless spin

parameter to become extremal, the numerical solution diverges from the constraint surface and is no longer

any use for generating waveforms. This would set an upper limit to the amount of constraint violations

allowed in any initial data.

These studies can be extended in other directions as well. The interpretation of the constraint violations

as matter fields is admittedly false, but it works in the senseof changing AH mass and the resulting con-

vergence to a constraint surface begs the question of whether this is a feature of the BSSN formulation of

Einstein’s equations. A possible follow-up study [95] is tonumerically evolve the constraint propagation

system of equations on a single BH background to see what class of constraint violations damp away rather

than diverge.

Finally, the results of these studies can be applied to otherattempts at creating initial data such as the

stitching of PN and perturbative regime solutions of Yuneset al. [195] or the PN initial data of Kellyet

al. [115]. The degree of acceptable constraint violations or resulting spurious radiation can better guide the

locations of the stitching regimes or delegate how many orders of PN must be used for sufficiently accurate

initial data.

Currently still in progress, the work of Chapter 7 will eventually consider whether waveforms from

BBHs detected by observatories like LIGO or LISA might contain information concerning the matter content

surrounding the binary. The question would then become how dense the gas must be to significantly affect

the BBH dynamics. If this is a physical density, these could also prove a valuable testbed for ultra-relativistic

hydrodynamics, possibly feeding into studies of core-collapse supernovae which also require relativistic

matter.

This dissertation could have addressed more of these questions, and indeed there are efforts currently

underway to address some of them, but it is the way of science that there will always be more to under-
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stand. As this dissertation stands, the robustness of the vacuum waveforms found in Chapter 4 will help

in the detection of gravitational waves using the current template banks. The robustness of the waveforms

generated in Chapter 5 question how well constraints must besatisfied for future, nontrivial systems as well

as noting some behavior of the constraints in the BSSN formulation which may prove interesting to follow

up on. Finally, the work in progress discussed in Chapter 7, while it may lead to a better understanding of

how supermassive BBHs evolve through the last parsec, is primarily a bridge to the world of fully-nonlinear,

fully-coupled ultrarelativistic hydrodynamics around BHs.



Appendix A
Weyl Scalars

A.1 Weyl Scalars on a Hypersurface

In Section 3.4 we considered only the derivations ofΨ4 as this is the scalar used in waveform extraction.

There are times, though, when consideration of the other four Weyl scalars is desirable. These Weyl scalars

can be written in terms of the ‘3+1’ hypersurface quantities in a fashion similar to that found in the Sec. 3.4

for Ψ4.

Again, we construct the Weyl scalars from the project of the Weyl tensorCαβγδ onto an array of tetrad

components:

Ψ0 = Cαβγδl
α
m
β
l
γ
m
δ , (A.1a)

Ψ1 = Cαβγδl
α
n
β
l
γ
m
δ , (A.1b)

Ψ2 = Cαβγδl
α
m
β
m
γ
n
δ , (A.1c)

Ψ3 = Cαβγδl
α
n
β
m
γ
n
δ , (A.1d)

Ψ4 = Cαβγδn
α
m
β
n
γ
m
δ. (A.1e)

We rewrite the Weyl tensor in terms of the full four-dimensional Riemann tensorRαβγδ and its ‘3+1’

decomposition. The Weyl scalars can be written as

Ψ0 = Ri jkl l
im j lkml + 2R0 jkl (l

0m j lkml −m0l j lkml)

+R0 j0l(l
0m j l0ml +m0l jm0ll − 2l0m jm0ll) , (A.2a)

Ψ1 = Ri jkln
i
l
j
m

k
l
l + R0 jkl (n

0
l
j
m

k
l
l − l0m j

n
k
l
l − l0n j

m
k
l
l +m0

l
j
n

k
l
l)

+R0 j0l(n
0
l
j
m

0
l
l − n0

l
j
l
0
m

l − l0n j
m

0
l
l + l0n j

l
0
m

l) , (A.2b)

Ψ2 = Ri jkl l
i
m

j
m

k
n

l + R0 jkl (l
0
m

j
m

k
n

l − n0
m

j
l
k
m

l −m0
l
j
m

k
n

l +m0
n

j
l
k
m

l)



94

+R0 j0l(l
0m jm0nl − l0m jn0ml −m0l jm0ml + n0l jm0ml) , (A.2c)

Ψ3 = Ri jkl l
in jmknl + R0 jkl(l

0n jmknl − n0m j lknl − n0l jmknl +m0n j lknl)

+R0 j0l(l
0
n

j
m

0
n

l − l0n j
n

0
m

l − n0
l
j
m

0
n

l + n0
l
j
n

0
m

l) , (A.2d)

Ψ4 = Ri jkln
i
m

j
n

k
m

l + 2R0 jkl (n
0
m

j
n

k
m

l −m0
n

j
n

k
m

l)

+R0 j0l(n
0
m

j
n

0
m

l +m0
n

j
m

0
n

l − 2n0
m

j
m

0
n

l) (A.2e)

where, for example,R0 jkl = nαΣ ⊥
β
j⊥

γ
k⊥δl Rαβγδ.

Using the ADM ‘3+1’ decomposition and following [52, 51, 54, 53], we can writethe ‘3+1’ decompo-

sition of the Riemann tensor as

Ri jkl = Ri jkl + 2Ki[kKl] j (A.3a)

R0 jkl = −2
[

∂[lKk] j + Γ
p
j[kKl]p

]

(A.3b)

R0 j0l = R jl − K jpKp
l + KK jl . (A.3c)

The Weyl scalars are not a true scalars. Defined as projections of the Weyl tensor onto a tetrad basis, they

are not invariant under a rotation of the tetrad. Just as tensors in general relativity can have weights, so can

complex scalars related to the phase of their components. A quantityη of spins transforms, under a rotation

of angleψ, asη′ = e−ısψη. Consider the effect on the Weyl scalars caused by a “spin” of the tetrad’s complex

components by an angleℵ. The real tetrad componentslµ andnµ remain unaltered. However,(mµ)′ =

eıℵ (mµ). Applying this spin toΨ4, the two projections of the Weyl tensor ontomµ yields a transformation

Ψ′4 = e−i2ℵΨ4. Thus the Weyl scalarΨ4 is a spin 2 pseudo-scalar. Similarly derived,Ψ3 is spin 1,Ψ2 is

spinless,Ψ1 is a spin−1 pseudo-scalar, andΨ0 is spin−2.



Appendix B
Multipole Expansions

Expanding quantities on a basis of spherical harmonics has been a vital tool for both understanding physics

and solving problems well beyond general relativity. Due tothe gauge freedom of general relativity, not even

scalars are simply scalars. From this basis, the array of bases has expanded, encompassing spin-weighted

spherical harmonics, spherical vector harmonics, and spherical tensor harmonics. A very concise discussion

of multipolar expansions can be found in [178], but we’ll expand on this as pertains to this dissertation in

this Appendix.

B.1 Spin-weighted Spherical Harmonics

In Appendix A we show that most of the Weyl scalars have a non-zero spin. The standard spherical har-

monics, though, are spin-zero objects and thus would require coefficients that have spins themselves when

expanded on such a basis. It is easier to define a set of spin-weighted spherical harmonics [142] and expand

on such a basis instead.

Consider the operatorð and it’s related operatorð which, acting on a functionf with spin s, are defined

as

ð f ≔ − sinsθ
(

∂θ +
ı

sinθ
∂ϕ

)

[

f sin−sθ
]

(B.1)

ð f ≔ − sin−sθ
(

∂θ −
ı

sinθ
∂ϕ

)

[

f sinsθ
]

. (B.2)

The spin-weighted spherical harmonics [142] are defined in terms of the (spin-zero) spherical harmonics

operated on by the spin-lowering and spin-raising operators ð andð as

sY
ℓ,m
≔

√

(ℓ − s)!
(ℓ + s)!

ð
s
(

Yℓ,m
)

(0 ≤ s≤ ℓ), (B.3a)
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sY
ℓ,m
≔ (−1)s

√

(ℓ − s)!
(ℓ + s)!

ð
−s (

Yℓ,m
)

(−ℓ ≤ s≤ 0) (B.3b)

Some basic properties of spin-weighted spherical harmonics.

• As noted in Appendix A, any objectη of spin s transforms under a rotation through an angleψ as

η′ = e−ısψη. By taking the complex conjugate of this definition, it is clear that the complex conjugate

of η has spin−s. With the conjugation properties of the spin-zero spherical harmonics,

sY
ℓ,m
= (−1)s+m

−sY
ℓ,−m. (B.4)

• The spin-weighted spherical harmonics are an orthonormal basis, satisfying

∮

sY
ℓ,m (θ, ϕ) s′Y

ℓ′,m′
(θ, ϕ) dΩ = δs s′δℓ ℓ′δm m′ (B.5)

B.2 Vector Spherical Harmonics

There are times when the quantity one would like to decomposeis not a scalar. While our goal is a discussion

of tensor spherical harmonics, it is useful to consider firstvectorspherical harmonics, which link the scalar

spherical harmonics to a convenient, standard spatial coordinate basis.

For convenience we consider a basisξm related to the standard Cartesian basis as

ξ0 = êz , (B.6a)

ξ± =
∓1√

2

(

êx ± ıêy
)

. (B.6b)

On this basis, we define the vector spherical harmonic (VSH) in terms of the spin-zero scalar spherical

harmonicsYℓm as

Y ℓ′,ℓm
≔

ℓ′
∑

m′=−ℓ′

1
∑

m′′=−1

〈

1ℓ′m′′m′ | ℓm
〉

ξm′′Yℓ′m′ (B.7)

where〈ℓ ℓ′m m′ | l′′m′′〉 are Clebsch-Gordan coefficients.

Defined in this way, this set of VSHs arepure-orbitalbecause they are eigenvectors of the orbital angular

momentum operatorL2 = −r2∇2 + ∂r
(

r2∂r
)

L2Y ℓ′,ℓm = ℓ′
(

ℓ′ + 1
)

Y ℓ′,ℓm (B.8)

which is convenient as a basis in solving the vector Laplace equation such as that found in the Bowen-York

initial data (Sec. 3.1.2).

There is another set of VSHs, though, which arepure-spinVSHs. Denoted as the three vectors (Y E,ℓm,
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Y B,ℓm andY R,ℓm), they are defined from the spin-zero scalar spherical harmonics as

Y E,ℓm
≔

r
Λ
∇Yℓm , (B.9a)

Y B,ℓm
≔

ı

Λ
LYℓm , (B.9b)

Y R,ℓm
≔ êrY

ℓm (B.9c)

where we, for convenience, letΛ =
√
ℓ(ℓ + 1),∇ is the Euclidean gradient operator andL ≔ 1

ı
x×∇. These

harmonics are best seen as being linked to another spatial coordinate basis,{n,m,m} given by

n = êr , (B.10a)

m =
1√
2

(

êθ + ıêϕ
)

, (B.10b)

m =
1√
2

(

êθ − ıêϕ
)

. (B.10c)

In this basis, we can relate the pure-spin VSHs to the spin-weighted spherical harmonics as derived by

Goldberget al. [91].

Y E,ℓm =
1√
2

(

−2Yℓ,m
m − 2Yℓ,m

m
)

, (B.11a)

Y B,ℓm =
−ı√

2

(

−2Yℓ,mm + 2Yℓ,mm
)

, (B.11b)

Y R,ℓm = 0Yℓ,mn. (B.11c)

B.3 Tensor Spherical Harmonics

Expanding on the idea of vector spherical harmonics,tensorspherical harmonics couple the spin-zero scalar

spherical harmonics not once, but twice to a coordinate basis. The choices in tensor spherical harmonics

(TSHs) has varied frequently over the past forty years as various choices in normalization and orthogonality

can be chosen and the obstacle of completeness has been tackled. Out of this came many sets of TSHs:

thepure-orbitalharmonics of Mathews [134], thepure-spinharmonics of Zerilli [197], the Regge-Wheeler

harmonics [158], and the symmetric tracefree TSHs of Thorne[178]. For the Teukolsky-Nakamura wave

solutions, the Mathews-Zerilli [197, 178] basis is used. The TSHs are generally derived for spatial pertur-

bations and thus we will discuss them in that sense. Expansion to full 4-dimensional TSHs encompasses

expanding the coordinate bases to four dimensions, which pads the spatial TSHs below with zeroes in the

matrix representation and adds supplementary harmonics toperturb what in the ‘3+1’ decomposition is the

gauges.
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B.3.1 Mathews Tensor Spherical Harmonics

For a spatial set of TSHs, Mathews links the coordinate basisξm to itself in such a way that he attains a set

of five symmetric basis tensors,tm wherem ranges from−2 to 2.

tm
≔

1
∑

m′=−1

1
∑

m′′=−1

〈

1 1m′m′′ |2m
〉

ξm′ ⊗ ξm′′ (B.12)

These basis tensors transform into each other via an irreducible representation of the 2nd order rotation

group and are made complete by the related zeroth order representation which happens to be 1/
√

3 times

the Euclidean identity matrix:

1√
3
δ ≔ −

1
∑

m′=−1

1
∑

m′′=−1

〈

1 1m′m′′ |0 0
〉

ξm′ ⊗ ξm′′ . (B.13)

This basis is used by Mathews to create six basic TSHs denotedby T λ ℓ′, ℓm where indicies denote, in

the case of Mathews’ TSHs, the harmonics such thatℓ′ ranges fromℓ − λ to ℓ + λ. As with the basis tensors

tm, there are five such forλ = 2 and another linked for completeness whereλ = 0. These TSHs are defined

in terms of the above coordinate basis as

T 2ℓ′, ℓm
≔

ℓ′
∑

m′=−ℓ′

2
∑

m=−2

〈

ℓ′ 2m′m′′ | ℓm
〉

Yℓ′mtm′′ , (B.14a)

T 0ℓ, ℓm
≔ −Yℓm

(

1√
3
δ

)

. (B.14b)

The Mathews harmonics as above is complete (the original paper omitsT 0ℓ, ℓm and as such is not

complete, but this is remedied by Thorne in his discussion in[178]. The properties of Mathews TSHs are as

follows:

• Under a complex conjugate they transform as

T λ ℓ′, ℓm = (−1)ℓ
′+ℓ+mT λ ℓ′, ℓ−m. (B.15)

• They are orthonormal
∫

T λ ℓ, L M · T λ′ ℓ′, L′ M′dΩ = δλλ′δℓℓ′δLL′δMM′ (B.16)

where we use the notationx · y ≔ xiyi to avoid too many indicies.

• They have parityπ = (−1)ℓ
′
.
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• They are eigenstates of the total angular momentum operator, L2

L2T λ ℓ, L M = ℓ (ℓ + 1) T λ ℓ, L M (B.17)

B.3.2 Zerilli Tensor Spherical Harmonics

Just as there are pure-orbital vs pure-spin VSHs, so too are there pure-spin TSHs. These harmonics, denoted

now identically asT λ ℓ′, ℓm but with λ no longer indicating the angular momentum order, but chosenfrom

the setL,T,E, B. They are related to the Mathews pure-orbital harmonics viaa unitary transformation.

It is easiest to consider them in terms of coupling the coordinate basisn,m,m to the spin-zero spherical

harmonics. Define []S as symmetrization of an object and []S TT as symmetrization and taking the transverse-

traceless portion of the object. Then the Zerilli TSHs are

T L 0, ℓm = (n ⊗ n)Yℓm , (B.18a)

T T 0, ℓm =
1√
2

(δ − n ⊗ n)Yℓm , (B.18b)

T E 1, ℓm =

(

2
ℓ(ℓ + 1)

) 1
2
[

n ⊗ r∇Yℓm
]S

, (B.18c)

T E 2, ℓm =

(

2(ℓ − 2)!
(ℓ + 2)!

) 1
2
[

LLYℓm]S TT
, (B.18d)

T B1, ℓm =

(

2
ℓ(ℓ + 1)

) 1
2
[

n × ıLYℓm
]S

, (B.18e)

T B2, ℓm =

(

2(ℓ − 2)!
(ℓ + 2)!

)
1
2
[

ır∇LYℓm
]S TT

(B.18f)

Just as we related the pure-spin VSHs to the spin-weighted spherical harmonics linked to the basis

n,m,m so can we do so for the Zerilli TSHs.

T L 0, ℓm = 0Yℓ,m(n ⊗ n) , (B.19a)

T T 0, ℓm =
1√
2

0Yℓ,m(δ − n ⊗ n) , (B.19b)

T E 1, ℓm =
[

−1Yℓ,m
m ⊗ n − 1Yℓ,m

m ⊗ n
]S

, (B.19c)

T E 2, ℓm =
1√
2

[

−2Yℓ,mm ⊗m + 2Yℓ,mm ⊗m
]

, (B.19d)

T B1, ℓm = −ı
[

−1Yℓ,mm ⊗ n + 1Yℓ,mm ⊗ n
]S

, (B.19e)

T B2, ℓm =
−ı√

2

[

−2Yℓ,m
m ⊗m − 2Yℓ,m

m ⊗m
]

(B.19f)

The properties of Zerilli’s pure-spin TSHs are as follows



100

• A complex conjugate operates as

T λS, ℓm = (−1)mT λS, ℓm (B.20)

• Unlike the version that appears in Zerilli’s 1970 paper, theversion above is orthonormal and complete

under the inner product

∫

T λS, ℓm · T λ′ S′, ℓ′m′dΩ = δλλ′δS S′δℓℓ′δmm′ (B.21)

• These TSHs exhibit two types of parity. The “magnetic”-typeTSHs (λ = B) have parityπ = (−1)ℓ+1

while the “electric”-type TSHs (λ ∈ {L,T,E}) have parityπ = (−1)ℓ.

• The TSHT L 0, ℓm is purely longitudinal (radial), thus having spin 0 like theNewman-PenroseΨ2.

• The TSHT T 0, ℓm is purely transverse but also with spin 0.

• The TSHsT E 1, ℓm andT B1, ℓm are mixed longitudinal and transverse with spin 1 and therefore related

to the Newman-PenroseΨ3.

• The TSHsT E 2, ℓm andT B2, ℓm are transverse and traceless with spin 2 and therefore related to the

Newman-PenroseΨ4.

The above pure-spin TSHs are not quite equivalent to Zerilli’s TSHs. Zerilli (and therefore Nakamura

and Teukolsky in their expansions) use a slightly different basis related to the above by

aℓ,m = T L 0, ℓm , (B.22a)

bℓ,m = T E 1, ℓm , (B.22b)

cℓ,m = −ıT B1, ℓm , (B.22c)

dℓ,m = −ıT B2, ℓm , (B.22d)

fℓ,m = T E 2, ℓm , (B.22e)

gℓ,m = T T 0, ℓm (B.22f)

B.3.3 Tensor Spherical Harmonics Decomposition

Given a spatial, symmetric tensor with 6 independent components, it can be expanded on a set of 6 TSHs

for every (l,m) mode. For a system written in the spatial coordinate basis (r, θ, φ) we can expand a general

tensorK using Zerilli’s pure-spin TSHs. Using Zerilli’s notation,this expansion is given as

K =
∑

ℓ,m

{

Aℓ,maℓ,m+ Bℓ,mbℓ,m+ Qℓ,mcℓ,m+ Dℓ,mdℓ,m+ Fℓ,mfℓ,m+Gℓ,mgℓ,m
}

(B.23)



101

or, in the above notation,

K =
∑

ℓ,m

{

Aℓ,mT L 0, ℓm+ Bℓ,mT E 1, ℓm− ıQℓ,mT B1, ℓm− ıDℓ,mT B2, ℓm + Fℓ,mT E 2, ℓm+Gℓ,mT T 0, ℓm
}

.

(B.24)

Using the definitions in the previous section, it is convenient to write the matrices representing the above

decomposition explicitly in terms of the spin-zero spherical harmonics for the derivation of the TNWs.

The pure longitudinal and pure transverse TSHs are, writtenexplicitly,

aℓ,m = T L 0, ℓm =







Yℓ,m 0 0

0 0 0

0 0 0






, (B.25a)

gℓ,m = T T 0, ℓm =
r2

√
2







0 0 0

0 Yℓ,m 0

0 0 sin2θYℓ,m






(B.25b)

The TSHs with mixed longitude and transverse are

bℓ,m = T E 1, ℓm = Λr







0 ∂θYℓ,m ∂ϕYℓ,m

∗ 0 0

∗ 0 0






, (B.26a)

cℓ,m = −ıT B1, ℓm = ıΛr







0 cscθYℓ,m
,φ −sinθYℓ,m

,θ

∗ 0 0

∗ 0 0






. (B.26b)

where we conveniently letΛ ≔ (
√

2ℓ(ℓ + 1))−
1
2 .

The remaining two TSHs are those that are transverse-traceless, written explicitly as

fℓ,m = T E 2, ℓm =
Λr2

√
(ℓ − 1)(ℓ + 2)







0 0 0

0 Wℓ,m Xℓ,m

0 ∗ −sin2θWℓ,m






, (B.27a)

dℓ,m = −ıT B2, ℓm =
−ıΛr2

√
(ℓ − 1)(ℓ + 2)







0 0 0

0 −cscθXℓ,m sinθWℓ,m

0 ∗ sinθXℓ,m






(B.27b)

where we introduce two new angular functions,Wℓ,m andXℓ,m, given by

Wℓ,m
≔

(

∂2
θ − cotθ∂θ −

1

sin2 θ
∂2
ϕ

)

Yℓ,m , (B.28)
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Xℓ,m
≔ 2∂ϕ (∂θ − cotθ) Yℓ,m. (B.29)



Appendix C
Teukolsky-Nakamura Waves

Given a spacetime such as a binary black hole system, we couldadd gravitational radiation through a Brill

wave [47], a solution to the fully-nonlinear Einstein equations. Unfortunately the Brill wave is difficult

to interpret and control. We find it convenient to work instead with Teukolsky-Nakamura waves [174, 140,

166], a solution to the linearized Einstein equations. These gravitational waves, used in perturbing the initial

spacetime of Ch. 4, are discussed and derived in this Appendix.

The linearized Einstein equations is the canonical starting point for deriving gravitational waves [184]. It

is insightful to consider the metric perturbation that solves the linearized Einstein equations on a convenient

basis, namely the tensor spherical harmonics. It was not until 1982 that such a solution was explicitly written

out for theℓ = 2 modes of a TT perturbation on a spherical coordinate basis,call Teukolsky waves [174].

Teukolsky waves were useful in testing codes in a weak yet dynamic regime, but their use is limited in full

non-linear numerical relativity. An alternative was an approach by Nakamura [140, 166] which not only

solved the linearized Einstein equation on the tensor spherical harmonics basis for general (ℓ,m) modes,

but also chose an initially conformally flat spatial metric,leaving the entire perturbation in the extrinsic

curvature.

C.1 Metric Perturbation

Consider a perturbation of the metric,hαβ

gαβ = g(0)
αβ + hαβ (C.1)

whereg(0)
αβ is the background metric which we choose, for simplicity, tobe Minkowskian flat spaceδαβ. As

we are looking for gravitational waves, we consider a transverse-traceless perturbation. That is, we consider



104

only spatial perturbations which satisfy

∇αhαβ = 0 (C.2a)

δαβhαβ = 0 (C.2b)

where∇µ is the covariant derivative in terms of the background metric δαβ. With the requirements of

Eq. C.2a and the spatial nature of the perturbation, there are only two degrees of freedom corresponding to

the two polarizations of gravitational radiation,h+ andh×.

As we’re considering this for initial data only, let us speakin the framework of the ADM formalism

where we choose our shift to vanish and we assume a vacuum spacetime. With these assumptions, the

evolution equations (Eq. 2.11 and Eq. 2.12) simplify to

∂tγi j = −2αKi j , (C.3)

∂tKi j = −∇̆i∇̆ jα + αRi j + αKKi j − 2αKikKk
j (C.4)

The constraint equations (Eq. 2.8 and Eq. 2.9) simplify to

�H = R + K2 − K i j Ki j , (C.5)

�i = ∇̆ jK
j
i − ∇̆iK. (C.6)

The evolution equation forγi j can be written in terms of the metric perturbation

Ki j = −
1

2α
∂thi j . (C.7)

Similarly, taking the trace of the evolution equation forKi j and assuming�H vanishes,

∂tK = −∇̆2α − KikKk
j (C.8)

which, sinceKi j is first order inhi j , is second order inhi j . We will only consider terms first order in the

metric perturbation, so in this case∂tK ≃ −∇̆2α.

Let us assume at this point we takeα = 1, which is approximately accurate far from any BH. Then

∂tK = 0 to first order inh and, assuming we start with maximal slicing (K = 0), the trace always vanishes.

In this case the momentum constraint, assuming it is satisfied, reduces to

∇̆ jK
j
i = 0. (C.9)

SinceK = 0, the trace of Eq. C.7 yields∂th
k
k = 0. Similarly, applying Eq. C.7 into Eq. C.9 yields

∂t
(

∇̆khik
)

= 0. Thus, choosing the trace and transverse portions to vanish initially nails the perturbation to
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be transverse-traceless.

We also note that, to first order in this spatial perturbation, the Ricci tensor is

Ri j =
1
2

(

−∇̆i∇̆ jh
k
k + ∇̆k∇̆ jhik + ∇̆k∇̆ih jk − ∇̆k∇̆khi j

)

. (C.10)

We now assume, additionally, that the background metric is flat so the covariant derivates commute. With

this assumption and vanishing trace and transverse portions of the perturbation, the first three terms in the

Ricci vanish, leaving

Ri j = −
1
2
∇̆k∇̆khi j . (C.11)

The evolution equation for the extrinsic curvature under these assumptions reduces to

∂tKi j = −
1
2
∇̆k∇̆khi j . (C.12)

Combining this with Eq. C.7,

∂2
t Ki j = ∇̆k∇̆kKi j . (C.13)

In constructing our initial data, we set the actual oscillating metric perturbationhi j to vanish on the initial

hypersurface. This does not, as the above shows, mean that the extrinsic curvature vanishes. If we choose

our Ki j such that its traceK vanishes and both Equations C.9 and C.13 are satisfied, we will find ourselves

with a gravitational wave. To do this, we expand the extrinsic curvature in terms of the TSHs of Sec. B.3.3.

C.2 Expansion ofKi j

In the linear spatial perturbation described above, we consider the expansion of the extrinsic curvature in

terms of the Zerilli pure-spin TSHs.

K =
∑

ℓ,m

{

Aℓ,mT L 0, ℓm+ Bℓ,mT E 1, ℓm − ıQℓ,mT B1, ℓm− ıDℓ,mT B2, ℓm+ Fℓ,mT E 2, ℓm + Gℓ,mT T 0, ℓm
}

.

(C.14)

First let us consider the trace. Using the explicitly written out TSHs in the previous appendix,

K = Aℓ,m+
2
r2Gℓ,m = 0. (C.15)

so we have one less coefficient to solve for.

Eq. C.9 yields three constraint equations, while Eq. C.13 yields five second-order coupled differential

equations for the expansion coefficients. If we consider only even parity modes, bothQℓ,m andDℓ,m must

both vanish as they are coefficients to the magnetic-type parity TSHs. We can now decouplea differential
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equation forA whose general solution is given by

Aℓ,m = rℓ−2
(

1
r
∂r

)ℓ Pi
ℓ,m(t − r) + Po

ℓ,m(t + r)

r
(C.16)

wherePi
ℓ,m(t− r) andPo

ℓ,m(t+ r) are arbitrary functions which describe the radial dependence of ingoing and

outgoing waves respectively. With this coefficient, the rest of the equations fall apart.

Absorbing the extra factors ofr andℓ into the TSH coefficients, we find the solution given in Chapter 4:

Ai j =
∑

ℓ,m







Aℓ,mYℓ,m Bℓ,mYℓ,m
θ Bℓ,mYℓ,m

ϕ

∗ Gℓ,mYℓ,m+ Fℓ,mWℓ,m Fℓ,mXℓ,m

∗ ∗ (Gℓ,mYℓ,m− Fℓ,mWℓ,m) sin2 θ






(C.17)

where the coefficientsAℓ,m, Bℓ,m, Fℓ,m, andGℓ,m are functions only of the coordinate radius and timer, t as

follows

Aℓ,m = rℓ−2
(

1
r
∂r

)ℓ Pi
ℓ,m(t − r) + Po

ℓ,m(t + r)

r
, (C.18a)

Bℓ,m =
1

ℓ(ℓ + 1)r
∂r(r

3Aℓ,m), (C.18b)

Gℓ,m = − r2

2
Aℓ,m, (C.18c)

Fℓ,m =
1

(ℓ − 2)(ℓ + 1)

[

Gℓ,m+ ∂r

(

r
ℓ(ℓ + 1)

∂r(r
3Aℓ,m)

)]

(C.18d)



Appendix D
Tools for Coupled Hydrodynamic

Simulations

In this appendix we will discuss the various parts of a hydrodynamic code in detail. For this Appendix we

drop the subscripto from ρo to avoid clutter in the equations.

D.1 Reconstruction: Piecewise Parabolic Method (PPM)

The PPM reconstruction technique [62], as applied in our code, involves four steps:

• Interpolate each variable to the cell boundary using a quadratic polynomial, setting the variables on

both sides of the boundary as equivalent at first.

• If desired, see if there is a contact discontinuity in the cell and sharpen it.

• If desired, add artificial viscosity.

• Preserve monotonicity by making replacements of one side’svariable, if necessary.

We assume the variableq is a scalar function ofx, the dimension we are reconstructing along, and

interpolate a quadratic polynomial to the cell boundary.

qi+1/2 =
1
2

(qi+1 + qi) +
1
6

(δmqi − δmqi+1) (D.1)

where

δmqi =

{

sign(δqi) min( |δqi |, 2|qi+1 − qi |, 2|qi − qi−1|) if(qi+1 − qi)(qi − qi−1) > 0

0 otherwise
(D.2)
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δqi =
1
2

(qi+1 − qi−1) (D.3)

Initially we set the variable value on both the left and rightof the cell interface as equivalent

qR
i = qL

i+1 = qi+1/2. (D.4)

Discontinuities which are primarily contact discontinuities can be treated differently. We can detect

whether a contact discontinuity exists in the cell by checking whether the following condition is satisfied

K0
|ρi+1 − ρi−1|

min(ρi+1, ρi−1)
≥ |Pi+1 − Pi−1|

min(Pi+1,Pi−1)
(D.5)

whereK0 is a user-specified, problem-specific constant to control the sensitivity of the shock detection. If

this condition is satisfied, we apply the steepening to thedensityvariable only. We start by defining the

quantityη as

η = max(0,min(1, η1(η̃ − η2))) (D.6)

whereη1 andη2 are user-specified positive constants. Given

δ2ρi =
ρi+1 − 2ρi + ρi−1

6∆x2 , (D.7)

the quantity ˜η is

η̃ =

{

ρi−2−ρi+2+4δρi
12δρi

if
{

δ2ρi+1δ
2ρi−1 < 0 , (ρi+1 − ρi−1) − ǫp min(|ρi+1|, |ρi−1|) > 0

}

0 otherwise
. (D.8)

With η determined, the density to the left and right of the boundaries is modified as

ρL
i+1 → ρL

i+1(1− η) +
(

ρi +
1
2
δmρi

)

η, (D.9a)

ρR
i → ρR

i (1− η) +
(

ρi+1 −
1
2
δmρi+1

)

η (D.9b)

Thus, shock detection and sharpening depends on four user-defined parameters:ǫp and K0 define how a

contact discontinuity is detected whileη1 andη2 determine to what extent the shock is sharpened.

The PPM also includes the option to flatten the zone structurenear shocks by adding simple dissipation.

From two user-specified parametersω1 andω2, we define a flattening parameter

νi =







max
(

0, 1− ω2 max
(

0,
(

Pi+1−Pi−1
Pi+2−Pi−2

− ω1

)))

if ǫp min(Pi−1,Pi+1) < |Pi+1 − Pi−1|, vx
i−1 − vx

i+1 > 0

1 otherwise
(D.10)
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The flattening is then accomplished by the transformation

qL,R
i → νiq

L,R
i + (1− νi)qi . (D.11)

This differs from the flattening in Colella and Woodward [62] by its adaptation to stencils with three points

and andνi is further modified

νi → max
(

νi , νi+sign(Pi−1−Pi+1)
)

. (D.12)

In the final step, we avoid oscillatory behavior by making thefollowing replacements to preserve mono-

tonicity:

qL
i+1 → qR

i = qi if (qR
i − qi)(qi − qL

i+1) ≤ 0 (D.13a)

qL
i+1 → 3qi − 2qR

i if (qR
i − qL

i+1)

(

qi −
1
2

(qL
i+1 + qR

i

)

>
1
6

(qR
i − qL

i+1)2 (D.13b)

qR
i → 3qi − 2qL

i+1 if (qR
i − qL

i+1)

(

qi −
1
2

(qL
i+1 + qR

i

)

<
1
6

(qR
i − qL

i+1)2 (D.13c)

The PPM then gives us the set of conservative and primitive variables on both sides of a cell interface which

we can use to set up a Riemann problem. For more detail, see Appendix D.

D.2 Riemann Solver: Modified Marquina

For our work we use an approximate Riemann solver, the Marquina solver, derived first by Donat and

Marquina [70], modified by Aloyet al. [8] and extended to general relativity by Frieben, Ibáñezand Pons.

We consider the linearized Riemann problem in one dimension

∂tC + ∂xiF (i) = 0 (D.14)

across a discontinuity atx1 = 0 so the solution are self-similar in terms of the variableξ ≔ xi/t. The

Marquina solver only finds the flux along theξ = 0 characteristic ray.

We calculate the eigenvaluesλi(C) and left and right eigenvectors,li(C) andri(C) respectively, of the

Jacobian matrixB ≔ α∂F
∂C . The eigenvalues of this Jacobian define the material and acoustic waves in this

direction. The material waves are determined by the triple eigenvector

λo = αvx − βx. (D.15)

The remaining two eigenvectorsλ± define the two acoustic waves given in terms of the local soundvelocity

cs found through

hc2
s =

∂P
∂ρo

∣

∣

∣

∣

ǫ

+
P
ρ2

o

∂P
∂ǫ

∣

∣

∣

∣

ρo

. (D.16)
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These acoustic eigenvectors are

λ± =
α

1− v2c2
s

{

vx(1− c2
s) ± cs

√

(1− v2)[γxx(1− v2c2
s) − (vx)2(1− c2

s)]

}

− βx. (D.17)

Corresponding left and right eigenvectors can be analytically calculated as well and can be found, for exam-

ple, in [70].

With this decomposition in hand, we define characteristic variables and fluxes which simplify the solu-

tion to the problem:

w
L,R
i ≔ li(CL,R) · CL,R (D.18a)

f
L,R
i ≔ li(CL,R) · F L,R (D.18b)

Depending on the relative sign of the left and right eigenvalues, the characteristic fluxesfi± are set. Ifλi(CL,R)

are of the same sign,

{fi+, fi−} =
{

{fiL, 0} if λi(CL) > 0

{0, fiR} otherwise
. (D.19)

If the sign of the eigenvalueλi changes across the cell boundary, we instead calculate a Lax-Friedrichs type

flux given by

fi+ =
1
2

(

fiL + Λ
iwi

L

)

(D.20a)

fi− =
1
2

(

fiR− Λiwi
R

)

(D.20b)

whereΛi = max(|λi(CL), λi(CR)|). The characteristic fluxes denote the part of the approximate Riemann

solution we use for the matter evolution.

Before we can compute the Marquina flux across the cell boundary, consider the form of the conservation

equation in terms of the characteristic variablesw defined in Eq. D.18b. Eq. D.14 can then be rewritten as

∂tw + Λ∂xw = 0 (D.21)

whereΛ is the diagonal matrix of eigenvalues. Each characteristicvariable then obeys the linear advection

equation with velocityλi , easing our efforts in solving the Riemann problem. We can write the solution in

terms of the characteristic variables and the discontinuity of the characteristic variables across the disconti-

nuity,

∆w ≔ wL − wR = l · (CL − CR) . (D.22)

We reorder the variables such that the corresponding eigenvalues are sorted by magnitudeλ1 ≤ ... ≤ λN.



111

Defining
(

e j
)

i ≔ δ
j
i , we can solve the Riemann problem in terms of the characteristic variable on the left

w = (w)L +

M
∑

j=1

∆w je
j (D.23)

where the similarity variableξ lies between theλM andλM+1, or in terms of the characteristic variable on

the right

w = (w)R−
N
∑

j=M+1

∆w je
j . (D.24)

Desiring the best of both worlds, we average these two solutions

w =
1
2



wL + wR+

M
∑

j=1

∆w je
j −

N
∑

j=M+1

∆w je
j



 (D.25)

which can be rewritten in terms of the actual conserved variables by operating the solution on the right

eigenvectorri to obtain the solution

C =
1
2



CL + CR+

M
∑

j=1

∆w jr
j −

N
∑

j=M+1

∆w jr
j



 . (D.26)

Given the conserved variables which approximately solve the Riemann problem, we note that our goal

in solving the Riemann problem is to calculate theflux across the cell boundary. From Eq. 6.9 we have

the analytic expression of the fluxes in terms of the conservative and primitive variables. By converting the

above derived conservative variables to primitives we haveall the information necessary to calculate the

flux. Here we simplify in that we consider only the flux along the characteristicξ = 0, yielding a simple

flux calculation

F (C) =
1
2

(

F (CL) + F (CL) −
N
∑

i=1

|λi |∆wir
i

)

. . (D.27)

The actual flux used in Eq. 6.14 is

F̂ =
1
2

(f− · r− + f+ · r+ + Q). (D.28)

whereQ is the correction due to the characteristic conservative jumps

Q ≔

N
∑

i=1

|λi | (∆wLrL − ∆wRrR)) (D.29)
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D.3 Recovery of Primitives

While we evolve the conserved variablesC = {D,Si , τ}, they are not convenient for analyzing the system.

Instead, we cover the set of primitive variables{ρo, vi , ǫ} together with the derived quantities of pressure

P = P(ρo, ǫ) and the Lorentz factorW = (1− vivi)−1/2. There are two types of recovery methods depending

on the type of equation of state. For both methods we work withthe “undensitized” conserved variablesC̆
defined by dividing by the square-root of the spatial metric,

√
γ. We choose a constraint,f = 0, and use a

Newton-Raphson type iteration until this is satisfied.

D.3.1 Polytropic Equation of State

The polytropic equation of stateP(ρo) = κρΓo is a special form of the ideal gas equation of stateP(ρo, ǫ) =

(Γ − 1)ρoǫ where the internal energy can be directly related to the pressure and rest-mass density as

ǫ =
κρΓ−1

o

Γ − 1
. (D.30)

In this case, the constraint we iterate towards satisfying is derived from the definition of the undensitized

conserved energy:

f = ρ̃oW̃− D̆ (D.31)

where we start from a reasonable guess for the rest-mass density ρ̃o. With the equation of state known, the

specific enthalpy for this guess simplifies to

h̃ = 1+
Γκρ̃o

Γ − 1
(D.32)

From the requirement thatuµuµ = −1 we can find the Lorentz factor in terms of the updated conserved

variables and the guess for the rest-mass density to be

W̃ =

√

1+
S2

(D̆h̃)2
. (D.33)

As W̃ is directly related tõh, it is easiest to write the derivative of the constraintf in terms of the

derivative ofh̃ as our guess for theρo changes

f ′ = W̃− ρ̃oS2

W̃D̆2h̃3
h̃′ (D.34)

where

h̃′ =
1
ρ̃o

∂P
∂ρ

(D.35)
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D.3.2 General Equation of State

For a general equation of stateP = P(ρo, ǫ), we choose this the equation of state itself as the constraint to

satisfy:

f = P̃− P(ρ̃o, ǫ̃). (D.36)

Given an initial guess for the pressureP̃, we find the resulting guesses for the rest-mass density, Lorentz

factor, and internal energy from the new conserved variables

ρ̃o =
D̆
ℵ
√
ℵ2 − S2 (D.37a)

W̃ =
ℵ√
ℵ2 − S2

(D.37b)

ǫ̃ =

√
ℵ2 − S2 − P̃W̃− D̃

D̆
(D.37c)

whereℵ ≔ τ̆ + D̆ + P̃ andS2
≔ γi j S̆iS̆ j .

For the Newton-Raphson iteration, the derivative of the constraint f is given in terms of the guessed

parameters of the equation of state

f ′ = 1− ∂P
∂ρo

∂ρo

∂P
− ∂P
∂ǫ

∂ǫ

∂P
(D.38)

where ∂P
∂ρo

and ∂P
∂ǫ

are derived from the equation of state. The other derivatives are found in terms of con-

served variables as

∂ρo

∂P
=

D̆S2

ℵ2
√
ℵ2 − S2

(D.39a)

∂ǫ

∂P
=

P̃S2

ρ̃oℵ
(

ℵ2 − S2
) . (D.39b)
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[44] S. Brandt and B. Brügmann. A simple construction of initial data for multiple black holes.Phys. Rev.
Lett., 78(19):3606 (1997).gr-qc/9703066.
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[123] A. Lichnerowicz. L’intégration des équations de lagravitation relativiste et la problème des n corps.
J. Math Pures et Appl., 23:37 (1944).

[124] L. Lindblom, B. J. Owen, and D. A. Brown. Model waveformaccuracy standards for gravitational
wave data analysis.Phys. Rev. D, 78:124020 (2008).arXiv:0809.3844.

[125] R. Lindquist. Initial-value problem on einstein-rosen manifolds.J. Math. Phys., 4:938 (1963).

[126] F. Löffler, L. Rezzolla, and M. Ansorg. Numerical evolutions of a black hole-neutron star system in
full general relativity: I. head-on collision.Phys. Rev. D, 74:104018 (2006).gr-qc/0606104.

[127] C. O. Lousto and Y. Zlochower. Foundations of multipleblack hole evolutions. Phys. Rev. D,
77:024034 (2008).arXiv:0711.1165.

[128] G. Lovelace. Reducing spurious gravitational radiation in binary-black- hole simulations by using
conformally curved initial data.Class. Quant. Grav., 26:114002 (2009).arXiv:0812.3132.

[129] R. N. Manchester. The parkes pulsar timing array. In40 Years of Pulsars: Millisecond Pulsars,
Magnetars and More, vol. 983, pp. 584–592. AIP Conf. Proc., Montreal (2008).arXiv:0710.5026.



122

[130] P. Marronetti, M. F. Huq, P. Laguna, L. Lehner, R. A. Matzner, and D. Shoemaker. Approximate
analytical solutions to the initial data problem of black hole binary systems.Phys. Rev. D, 62:024017
(2000). Gr-qc/0001077.
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