
The Pennsylvania State University 
 

The Graduate School 
 
 

INTERFEROMETRIC TECHNIQUES IN SOFTWARE DEFINED RADARS  

A Thesis in 
 

Electrical Engineering 
 

by 
 

Tejas Nagarmat 

 

 

 

Submitted in Partial Fulfillment 
of the Requirements 

for the Degree of 

Master of Science 
 
 

May 2012 
 
 



 

 

 
 
The thesis of Tejas Nagarmat was reviewed and approved* by the following: 

 
Julio V. Urbina 
Assistant Professor of Electrical Engineering. 
Thesis Advisor 
 

 
 
 
 
 
 

 
John D. Mathews 
Professor of Electrical Engineering 
 

 
 

 
Kultegin Aydin 
Professor of Electrical Engineering 
Head of the Department of Electrical Engineering 

 

 

 

 

 

 
*Signatures are on file in the Graduate School 
 



iii 
 

 

ABSTRACT 
 
 
 

The incoherent scatter technique for ionospheric research has proven its ability to 

measure most of the parameters of interest that define the ionosphere. Penn State has been 

developing advanced cost effective instruments and technologies for future meteor radars to study 

the basic properties of the global meteor flux, such as average mass, velocity and chemical 

composition. Cross-correlative interferometric techniques not only allow us to accurately 

determine the trajectory and the speed of meteors, but also help in overcoming the geophysical 

clutter observed at these altitudes. 

The Applied Signal Processing and Instrumentation Research Laboratory (ASPIRL) at 

Penn State has developed a state-of-the art radar instrumentation, the Penn State University 

Software Defined Radar (PSUSDR), by developing a generalized instrumentation core that can be 

customized using specialized output stage hardware using low cost field-programmable gate 

arrays (FPGAs). The use of open source software tools and a generalized object oriented software 

framework make this system a promising proposition for all future radar research. 

In this work, I propose the implementation of general post processing interferometric 

techniques for PSUSDR and the specific modifications to suit the needs of the Poker Flat 

Incoherent Scatter Radar (PFISR) facility, Alaska. The instrument design concepts and some of 

the emerging technologies developed for this meteor radar are also discussed followed by 

simulations and analysis for the same. 

 

 

 

  



iv 
 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES ................................................................................................................. vi 

LIST OF TABLES ................................................................................................................... viii 

ACKNOWLEDGEMENTS ..................................................................................................... ix 

Chapter 1 Introduction ............................................................................................................. 1 

1.1 Motivation .................................................................................................................. 2 
1.2 Organization ............................................................................................................... 3 

Chapter 2 Background for Software Defined Radars .............................................................. 5 

2.1  Software Defined Radio ............................................................................................ 5 
2.2 GNU Radio ................................................................................................................ 8 
2.3 The Universal Software Radio Peripheral .................................................................. 9 

2.3.1 Aliasing: .......................................................................................................... 11 
2.3.2 Daughterboard: ................................................................................................ 11 
2.3.3 The FPGA: ...................................................................................................... 11 

Chapter 3 Systems Implementation ......................................................................................... 14 

3.1 The Front End Chain .................................................................................................. 14 
3.1.1 The PSUSDR RF Front End: .......................................................................... 14 
3.1.2 Front End Chain Design for PFISR:................................................................ 16 
3.1.3 Front End Design Validation: ......................................................................... 17 

3.2 The Radar Controller ................................................................................................. 20 
3.2.1 Configuration: ................................................................................................. 22 
3.2.2 Rules and Operation: ....................................................................................... 24 

3.3 Clocking ..................................................................................................................... 26 
3.3.1 Setup: ............................................................................................................... 27 
3.3.2 Configuration: ................................................................................................. 28 
3.3.3 External Clocking: ........................................................................................... 29 

3.4 The Radar Transmitter ............................................................................................... 30 
3.4.1 Machine States and Bringing the Transmitter up: ........................................... 31 

Chapter 4 GnuRadar ................................................................................................................ 34 

4.1 Hardware adaptations ................................................................................................. 34 
4.1.1 Changes to the motherboard: ........................................................................... 35 
4.1.2 Changes to the Basic Rx daughterboard: ........................................................ 35 

4.2 Software Configuration and Operation ...................................................................... 36 
4.2.1 Configuration – gradar-configure: ................................................................... 37 
4.2.2 Verification – gradar-verify: ........................................................................... 42 
4.2.3 Data Collection  -  gradar-run and gradar-run-server: ..................................... 43 



v 
 

 

4.2.4 Troubleshooting: ............................................................................................. 45 
4.3 Data Interpretation and Analysis ................................................................................ 47 

4.3.1 The Real Time Plotter – gradar-plot: .............................................................. 47 
4.3.2 Post Processing: ............................................................................................... 49 
4.3.3 Replaying Data – gradar-replay: ..................................................................... 53 

Chapter 5 Interferometry .......................................................................................................... 54 

5.1 Principle of Interferometry ......................................................................................... 54 
5.2 Interferometric Routine Algorithm ............................................................................ 56 
5.3 Results ........................................................................................................................ 60 

5.3.1 Generic Interferometric Routine: .................................................................... 60 
5.3.2 Angle of Arrival Estimation with baseline information: ................................. 62 

5.4 Graphical User Interface ............................................................................................ 65 

Chapter 6 Conclusions and Future Work ................................................................................. 69 

6.1 Conclusions ................................................................................................................ 69 
6.2 Future Work ............................................................................................................... 70 

Appendix .................................................................................................................................. 71 

RTI Post Processing Code (Python) ................................................................................. 71 
Interferometric Routines (IDL) ........................................................................................ 77 

Bibliography ............................................................................................................................ 91 

 

 



vi 
 

 

LIST OF FIGURES 

Figure 2-1. Software Defined Radio ........................................................................................ 7 

Figure 2-2. Universal Software Radio Peripheral .................................................................... 10 

Figure 2-3. USRP Digital Down Converter ............................................................................. 12 

Figure 3-1. RF Front End at PSUSDR ..................................................................................... 15 

Figure 3-2. RF Mixer chain for PFISR, Alaska ....................................................................... 17 

Figure 3-3. Modified Mixer chain to suit PSUSDR ................................................................. 18 

Figure 3-4. I-Q Plot obtained from the modified mixer chain at 30 MHz ............................... 19 

Figure 3-5. USRP Spectrum Plot for modified mixer chain at 30 MHz .................................. 20 

Figure 3-6. The PSU Radar System Block Diagram ............................................................... 21 

Figure 3-7. Top View of Radar Controller .............................................................................. 26 

Figure 3-8. Master Clock- Novatech 409B .............................................................................. 27 

Figure 3-9. RF input for the transmitter ................................................................................... 33 

Figure 4-1. USRP for GnuRadar .............................................................................................. 36 

Figure 4-2. Spectral Replications ............................................................................................. 38 

Figure 4-3. GnuRadar Configuration ....................................................................................... 41 

Figure 4-4. GnuRadar Verification User Interface Panel......................................................... 42 

Figure 4-5. GnuRadar Data Collection .................................................................................... 44 

Figure 4-6. Stopped Data Collection........................................................................................ 45 

Figure 4-7. Trigger Error ......................................................................................................... 46 

Figure 4-8. USRP detection error ............................................................................................ 47 

Figure 4-9.   Real Time Plotter – IQ Plot of a 10.01 MHz signal ............................................ 48 

Figure 4-10. Real Time Plotter – RTI Plot ............................................................................... 49 



vii 
 

 

Figure 4-11.  HDFView showing the data tags and metadata.................................................. 51 

Figure 4-12.  RTI Post Processing Plot – 11/20/2011 – 2:57 a.m. E.S.T. ................................ 52 

Figure 4-13.  RTI Post Processing Plot – 11/20/2011 – 7:49 a.m. E.S.T. ................................ 53 

Figure 5-1.  Phase Interferometer principle ............................................................................. 55 

Figure 5-2.  Interferometric Routine Flowchart ....................................................................... 59 

Figure 5-3.  Magnitude plot for JRO data ................................................................................ 60 

Figure 5-4.  Phase plot for JRO data ........................................................................................ 61 

Figure 5-5.  Phase plot for PSUSDR data ................................................................................ 62 

Figure 5-6.  Plot for Y-Baseline at JRO (in degrees) ............................................................... 63 

Figure 5-7.  AOA plot for simulated X-Baseline obtained from USRP ( + 0.5 degrees) ........ 64 

Figure 5-8.  AOA plot for simulated X-Baseline obtained from USRP ( - 0.5 degrees) ......... 65 

Figure 5-9.  Interferometry Interface GUI ............................................................................... 66 

 
 

 



viii 
 

 

LIST OF TABLES 

Table 3-1. Analog Parameters. ................................................................................................. 31 

Table 3-2. Error Codes. ............................................................................................................ 32 
 

 
 



ix 
 

 

ACKNOWLEDGEMENTS 

 

I would first and foremost like to thank my advisor, Dr. Julio Urbina for introducing me 

to this project and providing me with timely guidance. I would also like to thank Dr. John 

Mathews for being the second reader and for his efforts in providing me with the information and 

guidance on interferometry.  

 

I thank my senior colleague Ryan Seal in a major way for guiding me with the 

technicalities of PSUSDR. I thank my lab mate Freddy Galindo for his support and information 

on interferometry. Also, this thesis would not have been possible without the support of my lab 

mates and colleagues, Alex Hackett, Burak Tuysuz and Hakan Arslan. 

 

Lastly, I would like to thank my parents and dedicate this work to them for their support 

throughout my time at the Pennsylvania State University. 



 

 

Chapter 1  
 

Introduction  

The field of meteor science is fascinating and requires wide array of knowledge from the 

fields of astronomy, signal processing, electromagnetics, plasma physics, radar science and 

detection theory. It is interesting that very small meteor bodies hundreds of kilometers above the 

earth’s surface are detected with incredible accuracy. 

 High-Power Large-Aperture radars detect these incredibly fast moving meteor head 

echoes with a range-rate velocity which follows the meteoroid as it travels through the upper 

atmosphere [1]. The topic of meteor “head echoes” has become an area of interest recently as 

scientists have focused on the importance and usefulness of meteors [2][3][4][5][6][7]. Head echo 

measurements give accurate radial velocities which are along the radar line of sight and altitude 

ranges of deposition. Powerful narrow-beam radars can also measure head echoes and are able to 

detect many smaller meteors as compared to classical meteor radars [8]. The use of these radars 

allows us to study the population of meteors which probably contributes to the most 

extraterrestrial material to the Earth’s upper atmosphere. 

Cross-correlation interferometry is a popular technique used in radio astronomy to 

determine the position of point to point radio sources where random signals received at two 

spaced antennas are cross-correlated.  The cross-correlation can be represented by a complex 

number whose amplitude depends on the size of the source and the phase on the source position 

with respect to the center plane perpendicular to the interferometer axis [9].  An extension to this 

technique has been applied at the Jicamarca Radio Observatory (JRO), Peru wherein the direction 

of the magnetic field is measured by delaying the signal of one antenna by relatively long time 

before it is correlated with the signal received at the other antenna. The technique in this work 



2 

 

however differs in the way that the cross correlation methods are applied in the post processing 

stages which also have been applied at the JRO. 

The PSUSDR currently uses software defined radio (SDR) methods to observe and study 

these meteor head echoes.  The radar system supports four RF receive channels and operates at 

49.92 MHz at the Rock Springs Radar Site, 15 miles from Penn State University. In order to 

provide an interferometric option to the system at PFISR, the PSUSDR has been used as a proof 

of concept. The data collection process for the receiver is exactly the same as PSUSDR with the 

difference being in the RF Front End responsible for the analog down conversion of the incoming 

Radio Frequency (RF) signal in the order of 400 MHz to an Intermediate Frequency (IF) which is 

suitable for the processing in the digital radar receiver. The RF Front End has been validated in 

the laboratory environment along with the testing of constant phase difference signals coming 

into the different channels of the radar receiver.  

1.1 Motivation 

The altitudes where most of the meteor head echoes are expected occur between 90 and 

120 km. There exists a lot of geophysical clutter at these altitudes due to the presence of 

Equatorial Electro Jet (EEJ) and non-specular meteor trail echoes. In addition to improving the 

data acquisition systems, it is common practice to make the observations around sunrise so that 

there is an increase in the number of meteor observations since the EEJ echoes are expected to be 

weaker or more sporadic. Other special processing methods can be employed to overcome these 

clutter returns like using interferometry or pulse coding [1]. 

Intereferometry greatly increases the quality of the meteor head echo returns and will be 

useful if applied at the PFISR and the PSUSDR facilities.  Another source of motivation for this 

work is the power of the ever growing open source community and that of software defined radio 



3 

 

which are the building blocks of PSUSDR.  The accuracy, cost effectiveness and the ease of setup 

and configuration of PSUSDR are the main attractions of this system and make a sound 

suggestion for future radar experiments. 

1.2 Organization 

Chapter 2 aims to review several key concepts and technologies associated with Software 

Defined Radars in order to update the reader with the latest developments in the field of Software 

Defined Radios. A significant part of this chapter explains the GNU Radio project and the general 

architecture of the Universal Software Radio Peripheral (USRP).  The FPGA component of the 

USRP is also briefly discussed for a basic understanding of the signal processing inside the 

USRP. 

The next two chapters are dedicated to the description of the setup and operation of the 

PSUSDR. Chapter 3 describes the setup of different components of the PSUSDR and their 

interconnections, with a view to represent the systemic implementation. The importance of RF 

chains is enormous when collecting high quality, noise free data and thus, the configurations of 

the present RF chains at the PSUSDR and the one suggested for PFISR are detailed in this 

chapter. After explaining the validation of the proposed RF Front End, the chapter shifts the focus 

towards other significant components of PSUSDR such as the Radar Controller, the Clock and 

the Radar Transmitter. 

 Chapter 4 digs into the nuances of the hardware adaptations for the building of 

GnuRadar, the open source software project responsible for the radar data collection. The key 

radar concepts and the tuning details of the USRP are explained to make the reader comfortable 

with configuring the radar as desired. It also talks about the key binaries of this software and thus 

attempts to explain the configuration and the working of GnuRadar. The final section of this 



4 

 

chapter explains the data interpretation and analysis and describes the various tools available to 

have a better understanding and to help in better diagnosis of the received data.  

Chapter 5 explores the theory of interferometry and explains the algorithms and routines 

which contribute to the post processing techniques applied to the radar data. The routines are 

tested for raw data obtained from JRO and the PSUSDR. Further, the simulations for constant 

phase difference signals coming into the different channels of the radar receiver are discussed 

along with their analysis. A brief explanation of the Graphical User Interface for interferometry is 

provided at the end of this chapter. 

Final remarks and thoughts on how this work can be improved are provided in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

Chapter 2  
 

Background for Software Defined Radars 

This chapter provides a review of several key concepts and technologies involved in 

working with software defined radars. The PSUSDR finds its roots in Software Defined Radio 

technologies. It is thus imperative to have a basic understanding of concepts in software defined 

radio technology and signal processing.  

2.1  Software Defined Radio 

A software-defined radio, as the name implies, is a radio system that makes use of 

software in the processing of communication signals. The physical implementations of radio 

communications have changed significantly over the years although the fundamental theories 

behind these systems have remained relatively constant for the past fifty years [10].  This means 

that radio communications which were traditionally handled with the help of hardware are instead 

implemented by means of software on a personal computer or embedded computing devices [11]. 

Moreover, advances in the digital signal processing capabilities of the microprocessors have 

helped in the acceleration of these SDR systems to performance levels that exceed those of 

hardware radio systems.  

SDR systems also bring flexibility, which allows us to change the operations with 

changes in software instead of changing the underlying hardware architecture.  A practical SDR 

system consists of the following sections [12]: 

 

RF Section: This block consists of antenna and RF front-end. The antenna covers the 

spectrum linked to entire range of operation for the purpose of both transmission and reception of 



6 

 

the signal whereas RF front-end is responsible for tuning, detection, signal transmission and 

analog up conversion (for transmission from IF) or analog down conversion (to IF during 

reception). With increased bandwidth the radio becomes more vulnerable to noise and 

interference. 

 

IF Section: This section plays most important role in digital radio because the analog-to-

digital conversion (ADC) of the down-converted IF signal for reception and digital to analog 

conversion (DAC) for transmission take place here. This block also carries out digital up-

conversion (DUC) or digital down-conversion (DDC) to make high frequency data compatible 

with installed computer resources. It also performs the most important function of modulation and 

demodulation.  

 

Baseband section: The baseband section contains the processing of the actual 

information and deals with operations linked to security protocols, correlation etc.  

 

Data section: This section acts as an interface to a Personal Computer (PC), for instance, 

to program and develop intelligent controls and different routines for the SDR system. 

 

The above sections can be observed clearly in the approach shown below of a typical 

example shown in Figure 2-1 of an SDR where the RF to IF conversion is before the ADC [13]. 

The aim of any software defined radio system is to bring the ADC as close as possible to the 

receiving antenna such that most of the IF conversion and processing can be done digitally. This 

example cascades a superheterodyne receiver RF-to-IF down converter ahead of an ADC and I/Q 

transformation in digital mixers. The choice of IF values add speed and precision to ADC 

considerations. Once digitized, a mixer built from two digital multipliers performs signal-I/Q 



7 

 

conversion with precision that is virtually independent of local-oscillator frequency. The local 

oscillator is a digital synthesizer that uses sine/cosine look-up tables and a phase accumulator to 

generate samples of two sine waves precisely offset by 90 degrees because the mixer runs at the 

ADC’s native sample rate, the local oscillator varies the mix-down frequency by adjusting the 

phase advance between sine and cosine.  

 Digital mixers can down convert to zero frequency without dc-offset or significant image 

problems, allowing a low pass filter to extract signal content. This filter is normally a decimating 

FIR (finite-impulse-response) design, in which the decimation factor sets filter bandwidth and 

dictates the output-sample rate to the baseband processor. This composite local oscillator/ 

mixer/filter block is available as DDC.  

 

Figure 2-1. Software Defined Radio 

 

In SDR systems, many designers prefer to include DDC functions within other logic, 

such as FPGAs or DSP arrays that can also serve baseband-processing duties. The shift from 



8 

 

narrowband voice to wideband data-oriented services has a huge impact on processing power that 

conventional DSPs find hard to address [13]. Conventional processors are limited by fixed data 

paths and finite clock speeds, and their  generalized nature often puts far too much processing 

power in the pathway for the task in hand. An FPGA allows us to break down the problem into 

multiple parts to perform relatively simple operations in parallel at a very high speed. 

2.2 GNU Radio 

GNU Radio is an open-source software development toolkit that provides the signal 

processing runtime and processing blocks to implement software radios using readily-available, 

low-cost RF hardware and processors. It is widely used in hobbyist, academic and commercial 

environments to support wireless communications research as well as to implement real-world 

radio systems [14]. 

Eric Blossom, Matt Ettus, et. al. have made this project possible which can turn an 

ordinary PC into a good quality radio receiver whereby  the only additional hardware required are 

a low-cost RF tuner and an ADC to convert the received signal into digital samples.  

The open-source software development toolkit in GNU Radio allows us to develop a 

custom, non commercial radio receiver by combining and interconnecting appropriate software 

modules, which are independent functional blocks. With the GNU Radio approach, the designer 

is a software developer who builds the radio by creating a graph (in a similar way to what 

happens in the graph theory) where the vertices are signal processing blocks and the edges 

represent the data flow between them [15]. The signal processing blocks are normally 

implemented in C++, whereas the graph structure is defined in Python.  

GNU Radio applications are primarily written using the Python programming language, 

while the supplied, performance-critical signal processing path is implemented in C++ using 



9 

 

processor floating point extensions where available. Thus, the developer is able to implement 

real-time, high-throughput radio systems in a simple-to-use, rapid-application-development 

environment [14]. GNU Radio is used either to implement real and working radio equipments, or 

just for research in the area of wireless communication and transmission. 

  

2.3 The Universal Software Radio Peripheral 

Universal Software Radio Peripheral (USRP: pronounced “U-Surp”) is a general purpose 

hardware module developed exclusively for use with GNU Radio, by Matt Ettus and his team at 

the Ettus Research LLC [16]. This board can support a wide variety of daughterboards which 

perform the transmit and receive functions.  Since the microprocessors and the DSP’s are on 

board, this device becomes convenient and cost effective for researchers working with radio 

communication systems.  

The USRP platform hosts the following major modules:  

 Four 64-MS/s 12-bit, 85-dB SFDR analog-to-digital (ADC) converters 

(AD9862),  

 Four 128-MS/s 14-bit, 83-dB SFDR digital-to-analog (DAC) converters 

(AD9862),  

 An FPGA that can be reprogrammed (Altera Cyclone EP1C12Q240C8 FPGA),  

 A high-speed USB 2.0 interface (Cypress EZ-USB FX2) that can send up to 16 

MHz of  RF bandwidth in both directions,  

 4 extension sockets (2 TX, 2 RX) in order to connect 2–4 daughterboards,  

 64 GPIO pins available through 4 BasicTX/BasicRX daughterboards (16 pins 

each)  



10 

 

 

 

Figure 2-2. Universal Software Radio Peripheral 

 



11 

 

2.3.1 Aliasing: 

Aliasing is a major concern with the ADCs and DACs when using the USRP. When the 

sample rates after the ADC are down-converted to IF, it is important to note that the maximum 

sampling rate of ADC is, at most 64 MSamples/ sec. Therefore, the highest sampling frequency 

allowable to avoid aliasing is 32 MHz. Similarly, the DAC limits the transmitted frequency to a 

maximum of 64 MHz because of the 128 MS/s sampling rate of DAC. 

2.3.2 Daughterboard: 

The USRP is capable of using up to 4 daughter boards depending on the daughterboard 

needed for the specific job. Each of them can be used for different jobs and range for different 

frequency range, amplification, filtration and tuning capabilities. Since this document describes 

the radar receiver as an application, the daughterboard used for this purpose was the Basic Rx 

only.  

The basic Rx contains no filtration or amplification and does not have mixer capabilities. 

An RF front end is not built-in with this daughterboard but can be attached to it. The operating 

range of these boards goes from 1MHz to 250MHz [17]. 

2.3.3 The FPGA: 

The FPGA is the heart of the signal processing being carried out in the USRP. The 

ADC’s and the DAC’s are basically connected to the FPGA. The FPGA performs high bandwidth 

math to reduce the data rates to suit the speed of the USB2.0. The FPGA connects to a USB2 

through the interface chip, the Cypress FX2. 

 



12 

 

The standard FPGA configuration includes digital DDC implemented with 4 stages 

Cascaded Integrator-Comb (CIC) filters. CIC filters are very high-performance filters which use 

only adds and delays. The standard FPGA configuration implements two complete DDCs. Each 

DDC has two inputs I and Q. Each of the 4 ADCs can be routed to either I or Q input of any of 

the 4 DDCs. This allows for having multiple channels selected out of the same ADC sample 

stream.  

 Figure 2-3 [18] below shows the block diagram of the USRP digital down converter. 

 

 

Figure 2-3. USRP Digital Down Converter 

 
The DDC down converts the signal from the IF band to the base band and then decimates 

the signal so that the data rate can be adapted by the USB 2.0 and is reasonable for the computers' 

computing capability. The complex IF input signal is multiplied by the constant frequency 

exponential signal. The resulting signal is also complex and centered at 0 after which the signal is 

decimated with a factor of N.  



13 

 

The decimator is basically like a low pass filter followed by a down sampler. Given that 

the decimation factor is N, this means that one out of every N samples is selected. In the 

frequency domain, this means that a signal in the frequency range [-Fs, Fs] is reduced to [-Fs/N, 

Fs/N].  

The total bandwidth is also an important consideration. All samples sent over the USB 

interface are 16-bit signed integers in IQ format, i.e. 16-bit I and 16-bit Q data (complex) which 

means 4 bytes per complex sample. Given that we can sustain 32MB/sec across the USB, 8Mega 

complex samples/sec can be sent across the USB giving us a maximum system bandwidth of 

8MHz to work with.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14 

 

Chapter 3  
 

Systems Implementation 

GnuRadar [19], the specialized radar receiver which is an open source adaptation of the 

GNU Radio project developed by ASPIRL is fully configurable and operable in software. The 

PSUSDR uses the USRP Version1 (Rev 4.5) and the Basic Rx to receive meteor head echoes. 

This radar currently supports four RF receive channels and operates at 49.92 MHz at the Rock 

Springs Radar Site, 15 miles from Pennsylvania State University.  

In this section the key concepts in hardware that implement the radar system at PSUSDR 

are described. The radar system consists basically consists of a high voltage transmitter and a 

transmit antenna on the transmit chain and a receive antenna, an RF Front End chain and the 

USRP in the receive chain. 

3.1 The Front End Chain 

In any radio receiver, the RF front end is always the most critical aspect of the system 

which decides the quality of the information to be processed. The RF Front End is generally the 

circuitry between the antenna and the IF stage. This RF chain processes the incoming signal at the 

original RF and uses down converters and low noise amplifiers to accentuate the signal of interest 

and suppress the incoming noise. 

3.1.1 The PSUSDR RF Front End: 

 PSUSDR currently uses the RF front end chain as shown in the Figure 3-1. 



15 

 

 

Figure 3-1. RF Front End at PSUSDR 

 

The receive antenna is currently tuned to receive signals at 49.92 MHz and the incoming 

signal is first passed through a 50 MHz Band Pass Filter to filter out the noise in the other 

frequency ranges. This is followed by a Transmit/Receive (T/R) TTL switch which is 

programmed to operate in the time slots that the transmitter is not sending the transmit pulses. 

Currently, the T/R switch blanks the receiver chain with a pre-window of 10 microseconds and a 

post-window of 14 microseconds for a 77 microsecond long transmit pulse. This helps in the 

reduction of electrical noise and interference caused by the transmitter which is co-located with 

the receive chain.  

The switch is followed by a series of wideband amplifiers and attenuators to achieve a 

theoretical gain of approximately 60 dB to achieve a good Signal to Noise Ratio (SNR). As 

observed in the tests, the sky noise coming in from the antenna has been determined to be around 



16 

 

– 60 dB and any gain provided to bring the signal to 0 dB or more is sufficient for the USRP to 

process.  

The attenuators added in the configuration presently have 6 dB attenuation and they 

precede the amplifiers such that the amplifiers do not go into saturation and distort the incoming 

signal. The Noise Figure (NF) can be computed by Friis’ Formula as follows [20]: 

    NF  =  10 כ logଵ ሺܨଵ 
ሺிమିଵሻ

ீభ
 

ሺிయିଵሻ 

ீభீమ
  ሺிరିଵሻ

ீభீమீయ
  ·····    ሺிಿି ଵሻ

ீభீమீయ···ீಿషభ
 ሻ                ሺ3.1ሻ  

where FN is the noise factor and GN is the gain of the Nth device in the chain. Considering 

insertion losses in the filters of 1.8 dB at the given frequency, the calculations show the 

following: 

 Total Gain = 60.3 dB 

 Noise Figure = 3.54 dB 

3.1.2 Front End Chain Design for PFISR: 

In order to perform interferometric post processing for PFISR at Poker Flat, Alaska, a 

down conversion chain was designed to suit the IF requirements of 30 MHz from an incoming RF 

signal of 450 MHz.  The RF front end chain in this case is depicted in Figure 3-2 shown below. 

This RF chain differs in the functionality such that it performs analog down conversion to IF such 

that it suits the processing power of the USRP. The antenna input comes into the chain at a 

frequency of 450 MHz which is passed through a High Pass filter centered at 400 MHz to reject 

the noise from lower frequencies. This signal is then amplified and mixed with a Local Oscillator 

(LO) frequency of 420 MHz to produce a difference component in the frequency of 30 MHz to be 

amplified and filtered again for better SNR. 

 



17 

 

 

Figure 3-2. RF Mixer chain for PFISR, Alaska 

 
The theoretical calculations for the chain show the following: 

 Total Gain = 34.58 dB 

 Noise Figure = 4.42 dB 

3.1.3 Front End Design Validation: 

In order to verify the accuracy of the design above, it was modified to suit the PSUSDR 

and produce an IF of 30 MHz from an RF input of 49.92 MHz.  The incoming signal is trusted to 

be of good quality with good noise rejection since the input for this down conversion chain would 

be from the output of the present RF chain shown in Figure 3-1. 

 The modified design for the purpose of validation is shown as follows: 



18 

 

  

Figure 3-3. Modified Mixer chain to suit PSUSDR 

 

The LO in this case is given by the Master Clock which provides the clock to the rest of 

the radar system. This helps to preserve the synchronization present in the radar system.  The 

calculation results for this chain show: 

 Total Gain = 35.34 dB 

 Noise Figure = 3.81 dB 

 When cascaded with the pre existing RF chain, the calculations show a Noise Figure of 

3.54 dB. As indicated in the figure above, the output was fed to the USRP which was tuned to 

receive signals at 30 MHz. Figure 3-4 displays the IQ diagram at 30 MHz obtained from this 

setup for two channels while Figure 3-5 shows the spectrum plot seen at the input of the USRP 

which shows a very good power response at 30 MHz. Both these plots obtained from the tests 

verify the RF design for PFISR. 



19 

 

  

 

Figure 3-4. I-Q Plot obtained from the modified mixer chain at 30 MHz 

 



20 

 

 

Figure 3-5. USRP Spectrum Plot for modified mixer chain at 30 MHz 

 

3.2 The Radar Controller 

The Radar Controller, as the name suggests is the central control point and can be viewed 

as the heart of the radar system. It is responsible for the management of the receive and the 

transmit chains. To understand the full functionality for it is essential to understand the radar 

system as a whole.    

The PSUSDR setup is depicted in the Figure 3-6, which shows the interconnections and 

relations between the various components of the radar system. It uses Gentoo Linux OS and the 

Opal Kelly Front Panel software. 

 



21 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

                                                                  
     Remote Server Machine                                        Network                                  Local Client Machine 

 

Figure 3-6. The PSU Radar System Block Diagram 

                CLK_IN   TRIG_IN 

 
USRP 

RF_IN 
 

 
USB OUT 

Master Clock 

64 MHz                  20 MHz                49.92 MHz  

                  CLK_IN

 
A.3 (SA0)        Radar Controller   A.1(TXA)     

 
     A.0 (TR_SWITCH) 

(I/P to Switch in the chain)

 
 

O/P               RF Front End Chain          I/P     

Amp 
 

Switch 

 
 

Radar Transmitter 
 
 

(6Vp‐p RF_IN) 

T
X 
 
C
H
A
I 
N

R
X 
 
C
H
A
I 
N 



22 

 

On the hardware front it uses: 

 Spartan 3A FPGA (XC3S400)  

 Opal-Kelly FPGA Interface (XEM3001) 

 Custom Designed FPGA carrier board 

 2 TTL Line driver boards 

 signal translator board 

 signal input and output connectors 

 80 GB HDD 

 ATX PC power supply 

The purpose of the controller is to control the output window of the transmitter signal via 

various user defined, high precision pulse signals while taking care not to drive the system 

beyond safe operating limits. The design presented utilizes a variety of open source tools and 

software, along with a consumer class FPGA to implement a highly reconfigurable robust, user 

friendly and cost effective radar controller system.  Thus, it is a generalized Bit Pattern Generator 

[21] based on plain text files defining the output of the system (both digital and analog). The 

important definitions of the Inter Pulse Period (IPP), reference Clock Frequency and Baudwidth 

must be defined in these files. 

3.2.1 Configuration: 

For example, in the text file, a.11 = { +2 -5 +17 -9 +10 -6 } translates to "logic high for 

two bauds, low for 5 bauds, high for 17 bauds, low for 9 baud, high for 10 bauds and low for 6 

bauds " on port A and channel  11. Before the bit pattern is downloaded to the FPGA, it must be 



23 

 

translated in a friendly form for the FPGA to read. This is accomplished by the bpg-generate 

program which can be issued in the following steps: 

 $ ./bpg‐generate  –o  output.iif  input.hif 

 $ cp output.iif /usr/local/bpg/modes/ 

 

This program  compiles the human defined controller parameters into machine readable 

format (iif) that  can be downloaded to the FPGA. The /usr/local/bpg/modes/ is the location where 

all the configuration files are loaded from. An example of the configuration file used for the 

present setup at PSUSDR is explained below. 

 

<Input.hif> 

INSTRUMENT = RPG 

 

#Sub Instrument Definition 

RULES      = PSU1     # Several Sets of Transmitter rules can be defined here 

 

#No Functionality has been implemented for this keyword yet. 

MODE       =  Normal             # Select Normal or Multi modes 

 

#Defines inter pulse period 

IPP        =  4000 usec            # InterPulsePeriod 

 

#Defines the RPGs master clock rate 

REFCLOCK   =  20 MHz             # Reference clock rate 

 

#Defines baud width for ports A and B 

BAUDA      =   1 usec            # Baud width for port a 

BAUDB      =   1 usec            # Baud width for port b 

 

#TR SIGNAL : TR Switch Pulse 



24 

 

#Defines (pre,post) txa settings 

TR         = a.0     (14 usec, 10 usec) 

 

#TXA SIGNAL : Transmit Enable 

#Defines trasmitted width 

TXA        = a.1     ( 77 usec ) 

CODE       = a.2     { +21 -21 +7 -14 +7 -7 } 

 

#sampling windows - one or more can be defined 

#Defines (start,stop) sampling ranges 

#Optional negate signal to invert logic 

SA0        = a.3     ( 0 km, 130 km) 

SA1        = a.4     (100 km, 110 km) , negate 

 

#generic signal definitions 

#Defines logic level in number of bauds 

#a.5,a.6   =          {+320} 

a.5,a.6   =          {+5 -2 +2 -1 +1 -100} 

a.7,a.8   =          {+10 -20 +30} 

3.2.2 Rules and Operation:  

The rules are defined as per the application. In this case, the PSU rules define the 

operation for the transmitter. One has to be careful that: 

 The code width should match the transmitted pulse width 

 The duty cycle which is defined as the transmit pulse width divided by the IPP of 

the system should be less than two percent. 



25 

 

If these criteria are not met, the program does not compile the output file as directed.  

From the radar system’s point of view, the other parameters that should be taken note from the 

displayed Input.hif  are: 

 The IPP is 4 milliseconds. 

 The reference clock is 20 MHz which should come from the master clock. 

 The T/R pulse mentioned before which goes to the switch in the receive chain 

should have a pre-window of 14 microseconds and post-window of 10 

microseconds for blanking the receiver. 

 The TXA which is the actual transmit pulse width lasts 77 microseconds long 

and the CODE should have an according width. 

 The Sampling window, SA0 allows to sample from 0 km to 130 km to observe 

radar returns for that range. 

 

In order to run the program, the following steps need to be implemented: 

 $ ./bpg‐shell 

 clock std         # Indicates that the clock should be taken from external input 

 add output     # Loads the output.iif from /usr/local/bpg/modes/ 

 start a  # Starts the signal transmission through the indicated channels on port A 

 



26 

 

 

Figure 3-7. Top View of Radar Controller 

 

3.3 Clocking 

The most important component of any radar system is the clock in the system. Since the 

transmitter and the receiver are co-located it is very important for the transmit and receive 

sections of the radar system to be clocked by the same source. This helps in synchronization of 

the incoming data and also to gather intelligible data. 

As shown in the Radar System Block Diagram, the Master Clock has three outputs, one 

going to the digital receiver (64 MHz to USRP), one going to the Radar Controller (20 MHz 



27 

 

Reference Clock) and another going to the T/R switch in the receive chain (frequency same as the 

operating frequency of the antenna). 

The PSUSDR uses the Novatech 409B signal generator which generates four 

independent, phase synchronous sine wave output signals and is programmable in 0.1 Hz steps 

from 0.1 Hz to 171 MHz. Programming is via an RS232 serial interface [22]. The phase is 14-bit 

programmable and amplitude is 10-bit programmable. It requires 5 VDC external power. 

 

Figure 3-8. Master Clock- Novatech 409B 

 

The following describes the general how-to to configure the clock in the Gentoo Linux 

environment.   

3.3.1 Setup: 

If computer does not have a serial port, the kernel will need to be configured to allow 

Serial-to-USB adapters.  The adapter type should be found in the following location in the kernel. 

  Device Drivers ---> 

   <*>USB support ---> 

    <*>USB Serial Converter support ---> 

     [*] USB Serial Console device support 



28 

 

     [*] USB Generic Serial Driver 

     <*> USB [BRAND OF ADAPTER] driver  

  

Once correctly configured, one can type ‘ls /dev/’ to locate a ttyUSB0 device unless 

another USB device is plugged in. To be able to modify and operate as a user, one should look for 

file named ’50-udev.rules’ in etc/udev/rules.d and include  

‘ KERNEL="ttyUSB[0‐9]*",NAME="tts/USB%n", GROUP="tty", MODE="0666" ’ 

in place of any other existing rule. If the file does not exist, it will have to be created. 

3.3.2 Configuration:  

3.3.2.1 File to write 

 $ nano [NAME OF FILE] 

--------------------------------------------------------------------------------------------- 

 E D  | Disables serial echo for maximum interface speed <optional> 

 C I  | Enables Internal clock in case if external was previously enabled 

 

                | Channel 0 

 F0 XXX.XXXXXXX | Frequency in MHz (000.0000000-171.1276031) 

 P0 XXXXX  | Phase (00000-16383) N*360/16384 N*Pi/8192 

 V0 XXXX   | Amplitude (0000-1023) if N>=1024 set to full scale 

 

 F1 XXX.XXXXXXX  | Channel 1 

 P1 XXXXX 

 V1 XXXX 

 

 F2 XXX.XXXXXXX  | Channel 2 

 P2 XXXXX 



29 

 

 V2 XXXX  

 

 F3 XXX.XXXXXXX  | Channel 3 

 P3 XXXXX 

 V3 XXXX 

 

 S   | Saves the configuration to the EEPROM 

--------------------------------------------------------------------------------------------- 

3.3.2.2 Program the Clock 

The speed should be firstly set to 19200 baud. This can be done by issuing ‘stty -F 

/dev/ttyUSB0 19200’ at the terminal and can be double checked by issuing ‘stty -F /dev/ttyUSB0’ 

to notice the baud rate of 19200 being displayed on the terminal. 

Lastly, to download the file to the clock, 

 $ cat [LOCATION OF FILE]/[NAME OF FILE]  > /dev/ttyUSB0 

3.3.3 External Clocking: 

In many radar applications, it might be necessary to externally clock this signal generator 

and produce phase synchronous outputs. It should be remembered that the signal should be a sine 

wave or a square wave with a voltage level between 0.2 and 0.5 Vrms. A direct input of 1 MHz to 

500 MHz can be provided.  

 



30 

 

3.3.3.1 Commands to clock the module externally:   

C E       | To enable external clock 

Kp 0a   | To set the PLL gain to be 10  

#For example, setting Fout MHz output from reference Fin MHz for Kp value of 'a' in hex 

#Fcommand = (Fout)*(15*28,633,115.306666667)/(‘10’*Fin*10,00,000) 

Fn  Fcommand  | For 64 MHz output from reference 50 MHz 

3.4 The Radar Transmitter 

The present transmitter used at PSUSDR is configured to operate at 5.5 kV when input 

with an AC line of 208-240 Volts. The antenna is connected to the RF output of the transmitter. 

The various analog parameters can be determined with the help of the Monitor. It should be taken 

care that the operation is in ‘Local’ mode while operating. Table 3-1 shows the analog parameters 

which can be displayed on the panel. 

 

Analog Ch No 
 

Parameter 
 

Unit 
 

0 High Voltage 1 (8kV) Volt 
1 High Voltage 2 (4kV) Volt 
2 Cathode Bias Voltage, Final Volt 

3 Cathode Bias Voltage, Drive Volt 
4 Cathode Current, Final Milliamp 
5 Cathode Current, Driver Milliamp 

6 SSD Final, Supply Current Amp 
7 SSD Driver, Supply Current Amp 
8 SSD Final, Supply Voltage Volt 

9 T/R Duty Cycle % 
10 Microcontroller Supply Voltage (+5) Volt 
11 Real Supply Voltage (+28) Volt 

12 Filament Voltage, Final Volt, RMS 
13 Exhaust Air Temperature Degrees C 



31 

 

14 RF Output Pulse Power, Forward KiloWatt 
15 RF Output Pulse Power, Reflected KiloWatt 
16 VSWR 

 

Table 3-1. Analog Parameters. 

3.4.1 Machine States and Bringing the Transmitter up: 

The transmitter has five machine states, four of which are called up by the operator on the 

keyboard. Machine state 0 is power applied to the controller and its support. Machine state 1 turns 

on the fan, cathode bias supplies, filament supplies and the solid state driver supplies. Machine 

state 2 is the intermediate step start position to high voltage. The step-start limits the inrush 

current when the high voltage supply is turned on. Machine state 3 is the high voltage supply turn 

on. Machine state 4 enables the input switch, allowing RF into the unit. At each stage, the 

controller will register a fault if the parameter values are out of limits. The controller will return 

to the preceding machine state or will not allow the operator to proceed without correcting or 

clearing the error. 

The error codes are as shown in Table 3-2. 

Error Code Error 

0 No Error 

1 Analog Parameter error at state 0 

2 Machine state 2 requested 

3 Air Pressure Failure 

4 Analog Parameter error at state 1 

5 High Voltage fuse failure 

6 Analog Parameter error at state 3 



32 

 

7 Analog Parameter error at state 4 

8 High Voltage step start aborted for parameter error 

Table 3-2. Error Codes. 

 

The keying sequence for changing machine states is: F (for functions), machine state 

number, and E (for Execute). If the parameters in state 0 were correct, machine state 1 may be 

brought up by keying in F1E. The controller will respond with three bars in the first column of 

the display. In this case, the center bar represents state available, the lower bar represents state 

called and the upper bar represents the state active. This graph allows quick visualization and 

determination of current machine state. 

It usually takes 300 seconds to get requested state 2 or 3 from state 1 and similarly it also 

takes similar time to bring it back down to state 1. If the machine state 1 parameters are 

acceptable, machine state 3 may be requested by keying in F3E. The display will show state 3 

called, and the transmitter will proceed through state 2 to state 3. The analog parameters will 

show high voltage present, with the rest of the parameters unchanged from machine state 1. 

 The transmitter will not put out RF until it is in machine state 4. The value F4E will have 

to be keyed in to observe full transmission. The T/R pulse is active high. As shown in the Figure 

3-9 it must lead the RF pulse by at least 2 usec (A), and lab the RF pulse by at least 1 usec (B).  



33 

 

  

Figure 3-9. RF input for the transmitter 

 

 



 

 

Chapter 4  
 

GnuRadar 

This section concentrates on the hardware and software aspects of the digital receiver 

component of the PSUSDR, the GnuRadar [19]. The basic hardware needed to build the receiver 

consists of the USRP and the Basic Rx daughterboard. The USRP needs to undergo minor 

changes in the hardware depending on the USRP motherboard version being used. The software 

uses a minimalistic version of the GNU Radio software and builds on the same using custom C++ 

codes to collect radar returns. 

In the following sections, I aim to provide a brief manual for the setup and operation of 

the GnuRadar for the ease of those planning to learn and use this project for any radar application. 

The observations of this document have been carried out with the following system 

considerations: 

 USRP Version1 (Rev 4.5)  

 Basic Rx  

 Operating System: Gentoo Linux 64 bit system 

4.1 Hardware adaptations 

The USRP hardware needs to undergo minor changes for the adaptation for GnuRadar.  

Firstly, external clocking needs to be provided to the USRP motherboard to synchronize the 

receiver with the rest of the radar system. Synchronization is very important in radar systems as 

the transmitter and the receiver need to be clocked from the same source to clearly comprehend 

the data received and also preserve any data alignments therein. 



35 

 

4.1.1 Changes to the motherboard: 

The hardware changes for the motherboard are enumerated for the USRP v1 rev4.5 

below. The adaptations for other versions or revisions can be found at [23]. The Rev 4 USRPs 

have introduced an enhancement to allow one board to be the master clock, and all other boards 

will become slave to it. 

In this project, since we use an external master clock for the system, the USRP is used in 

the slave configuration. The changes needed for the motherboard are: 

 Solder an SMA connector into J2001. This is the clock input. One has to be careful when     
soldering the SMA connector so that the delicate trace from J2001 to C927 does not 
break.  

 Move R2029 to R2030. This disables the onboard clock. R2029/R2030 is a 0-ohm 
resistor. 

 Move C925 to C926. 

 Remove C924. 

 In order to chain another USRP to of this one, one can use J2002 to provide a clock out. 

4.1.2 Changes to the Basic Rx daughterboard: 

The basic Rx daughterboard does not have any internal changes for the purpose of this 

project. However, it requires an external trigger from the system which is an indication of the 

receive window size it has to adapt to.  It is advisable that another opening be made in the casing 

of the USRP for a SMA connector similar to one of the RF inputs for receiving the trigger for the 

basic Rx.  

 The J25 pin on the basic Rx daughterboard should be given a 50 ohm terminated trigger 

which comes from the radar controller. This can be done by slicing the coaxial cable to solder a 

50 ohm resistor and kept intact with heat shrink tubing.   

 

 



36 

 

 

Figure 4-1. USRP for GnuRadar 

 

It should be made sure that the USRP is identified by the computer and that the USRP is 

clocked well before starting the data collection. The lsusrp.py and test_usrp_benchmark.py from 

the GNU Radio distribution can be helpful here.  

4.2 Software Configuration and Operation 

This section explains the configuration and the operation of the GnuRadar software and 

the key theoretical concepts related therein. The build guide can be found on [19] which helps in 

installing the GnuRadar software.  After having installed GnuRadar software successfully as 



37 

 

directed in the readme, all the executable binaries will be installed in the ‘bin’ folder of the 

software and in ‘/usr/local/bin’. The software currently has three steps for operation as explained 

ahead. 

4.2.1 Configuration – gradar-configure: 

4.2.1.1 Key Concepts 

1. Aliasing: Signal Ambiguity in the frequency domain 

Periodic sampling, the process of representing a continuous signal with a sequence of 

discrete data values, pervades the field of digital signal processing. 

In practice, sampling is generally performed by applying a continuous signal to an ADC 

which outputs a series of digital values. Sampling Theory plays a very important role in 

determining the accuracy and feasibility of any digital processing scheme [24]. 

Consider a sinusoidal wave with frequency f0 which is represented in the discrete time 

domain where ‘n’ is the index on the time axis and ts is the sampling time of the ADC.  We can 

safely deduce the following given that ‘m’ and ‘n’ are integer values: 

x(n) = sin(2 πf0nts) = sin(2πf0nts  +  2πm) = sin(2π (f0 + (m/ nts))nts)                      (4.1) 

 x(n) = sin(2 π(f0 + k/ts)nts)                                                  (4.2)                                    

where ‘k’ is an integer given that ‘m’ is an integer multiple of ‘n’. 

 

Further,  

x(n) = sin(2 π(f0 + kfs)nts)                                                                                       (4.3) 

where fs is the sampling frequency.  



38 

 

We can observe from equation 4.1 and 4.3 that the fo and (fo+kfs) factors are equal. This 

means that an x(n) sequence of digital sample values, representing a sine wave of fo Hz, also 

exactly represents sine waves at other frequencies, namely, fo + kfs.  

Thus, when sampling at a rate of fs samples/s, if k is any positive or negative integer, we 

cannot distinguish between the sampled values of a sine wave of fo Hz and a sine wave of (fo+kfs) 

Hz. This implies that no sequence of values stored in either an ADC or a computer can 

unambiguously represent one and only one sinusoid without additional information.  

 The spectrum of any discrete series of sampled values contains periodic replications of 

the original continuous spectrum. The period between these replicated spectra in the frequency 

domain will always be fs. Thus aliasing occurs at multiples of the sampling frequency as shown in 

the figure alongside. 

 

Figure 4-2. Spectral Replications 

 

The care to be taken here is that the sampling frequency chosen should be more than 

twice the Fc according to Nyquist’s sampling criterion such that these spectra do not overlap.  

 

2.  Tuning frequency of the USRP  

As mentioned earlier, the clock sampling rate of the USRP ADC is 64 MHz and thus the 

sampling frequency here is preset as 64 MHz. Thus, any incoming signal with a signal Fc will 

have replications at (Fc േ nFs) where n is any integer. 



39 

 

As an example, a 30 MHz signal will have it’s closest signal representations from the 

zero frequency at +30 MHz and -34 MHz.  Thus going in accordance with the Nyquist Sampling 

Theorem, the USRP should be tuned to a frequency of 30 MHz.  In the case of the PSUSDR, the 

49.92 MHz signal is also found at -14.08 MHz which fits in the sampling criterion and the 

configuration should thus contain tuning frequency value of -14.08 MHz. 

 

3. The Receiving Sample Window 

As mentioned earlier, the radar controller specifies the sampling window (SA0) through 

channel 3 of port A to the daughterboard of the USRP.  It is very important for the GnuRadar 

software which is totally independent of the Radar Controller software to be aware of this 

sampling window parameter.  

For example, if the SA0 parameter as shown in the input.hif of the previous chapter 

extends from 0 km to 130 km, given that the signal takes twice the time to traverse the distance 

from the transmitter to the target and back, the time equivalent of this sampling window will be 

Time_duration =  2 * (Distance_Traversed/Speed )                                              (4.4) 

  =  2 * (130,000/ 3E8 ) 

  =  866.67 microseconds. 

Thus the sampling window can be viewed as a signal with an on time of 866 

microseconds and a total period of the IPP, i.e. 4 milliseconds. 

Further, the bandwidth of the system is essentially dependent on the sampling rate of the 

USRP and the decimation set. As an example here, since the sample rate is 64 MHz and the 

decimation is 32 considering a four channel operation, the bandwidth of the system will be 2 

MHz. 

Thus, the number of digital samples received in this operation will be  

Samples =  Time_duration * Bandwidth                                                               (4.5) 



40 

 

   =  866.67*10-6 * 2 * 106 

   ~  1733 

This means that approximately 1734 digital samples per channel will be received through 

the USRP during the GnuRadar operation. 

4.2.1.2 Setting the Parameters 

When the gradar-configure program is executed, Figure 4-3 appears on the screen. Some 

of the important parameters are explained as follows: 

Sample Rate: This should be equal to the sampling rate of the USRP, which is the clock input 

coming from the master clock.  

Decimation: This should be set to a minimum of 8 for one channel operation, minimum of 16 for 

a two channel operation and a minimum of 32 for a 4 channel operation. 

Bandwidth: This value gets adjusted accordingly according to the settings of sample rate and 

decimation.  

Frequency: The frequency tuning should be done for each channel according to the tuning 

concepts aforementioned.  

Window Setup: The start and stop can be specified according to the number of digital samples 

derived as shown here or can be merely specified in terms of km as in the radar controller. The 

window setup currently expects a name of ‘Rx_Win’  

FPGA Bit Image :  This is the FPGA raw binary file that will be loaded on the Altera Cyclone 

FPGA for the operation. This has to be a precompiled image which performs the signal 

processing inside the FPGA. To be able to load this file, the file should be located in 

/usr/local/share/usrp/rev4. 



41 

 

 

 

 

Figure 4-3. GnuRadar Configuration 

 

Base_File_Name:  This is the file name desired for the particular operation. It should be 

noted that this file name has to be changed for every unique receive operation. This is a 

precautionary measure so that the received data files are not over written. 

This configuration will be stored as a UCF file on the disk on a location as directed and 

can be reloaded any time in case editing is required.  

 



42 

 

4.2.2 Verification – gradar-verify: 

As specified earlier, the sample window set between the Radar Controller and the USRP 

need to be in concurrence as both the softwares are independent in operation. The verification 

software is basically a method to make sure of the same. 

When the gradar-verify program is executed, it actually takes some data in the 

background and verifies the number of samples taken per IPP  between data tags and checks with 

the ‘start’ and ‘stop’  fields in the user specified configuration (UCF) file. Data tags are 

deliberately inserted values for every IPP at the start of a window to ensure synchronization.  

 In case of a mismatch, it reports that the ‘Verification Failed’ or ‘Verification Passed’ as 

shown in Figure 4-4.  The operation can be carried on irrespective of a match or mismatch, but 

the verification serves to notify how far the configurations are off. 

 

 

Figure 4-4. GnuRadar Verification User Interface Panel 

 



43 

 

4.2.3 Data Collection  -  gradar-run and gradar-run-server: 

The GnuRadar software presently provides a remote server and local host configuration 

with networked ability such that the data collection can be started and stopped remotely by the 

user. From the networking point of view, it is important that the:  

   /usr/local/gnuradar/gnuradar_server.xml has the broadcast_ip field set to the broadcast I.P 

address of the server  

   /home/user/.gradarrc has the status_address field set to the broadcast IP address of the server 

   /etc/services file has the port numbers assigned for GnuRadar as suggested in the readme. 

When the gradar-run-server is executed, it accordingly displays the broadcast IP and the 

port being used. The gradar-run has to be loaded with the UCF file for the operation. The ‘Run’ 

and ‘Stop’ buttons can be used to begin and end the data collection.  

 

4.2.3.1 Key Concepts 

1. Producer Consumer problem 

 The GnuRadarRun uses the Producer Consumer concept for data collection. The 

producer consumer problem (also known as the bounded-buffer problem) is a classical example 

of a multi-process synchronization problem [25]. In this process, two processes share a common, 

fixed size buffer as a queue. The producer does the work of filling up this buffer as the data 

arrives and the consumer process works to read this data piece by piece at the same time. The 

main issue in synchronizing this situation is to avoid the situation where the producer adds to the 

buffer when it is full (to prevent loss of incoming data) and also to avoid the consumer from 

reading from an empty buffer. 



44 

 

In the case of GnuRadar, the incoming raw data from the USRP is stored into the 

/dev/shm as a .buf file and the consumer process reads from this buffer to further process the data.  

The solution chosen here is that the producer goes to sleep if the buffer is full and the next time 

the consumer removes an item from the buffer, it notifies the producer, who starts to fill this 

buffer again. Similarly, the consumer goes to sleep if it finds the buffer to be empty and the 

moment the producer puts data into the buffer, it wakes up the sleeping consumer.  

On the server side during operation, a series of messages are displayed on the terminal which 

display the ongoing interactions with the producer and consumer. The GnuRadarRun GUI shows 

three bars which show the progress and the status of the data collection, one of which is an 

indication of ‘dirty’ i.e. unread buffers during the operation.  

 

Figure 4-5. GnuRadar Data Collection 



45 

 

It should be noted that the ‘Stop’ command is necessary for removing the buffers and 

cleanly quitting the data collection.  This also ensures the accurate writing of the output files 

where the data is stored. Figure 4-6 is an illustration of issuing the Stop command.  

 

 

 

Figure 4-6. Stopped Data Collection 

 4.2.4 Troubleshooting: 

The Verify utility is the best way to observe the health of the system. In case of any 

unexpected problems, the program produces the error messages accordingly. Some of the most 

common error messages are described here. Figure 4-7 shows the error message shown when the 

trigger signal is not found by the daughterboard as expected. It is good practice to always test the 



46 

 

trigger on an oscilloscope before hooking it up on the daughterboard. Figure 4-8 shows the error 

message when the USRP is not detected by the software. Often, the way to overcome this error is 

to power cycle the USRP. It is also advisable to check or reconnect the USB cable in this 

situation. 

 

Figure 4-7. Trigger Error 



47 

 

 

Figure 4-8. USRP detection error 

4.3 Data Interpretation and Analysis 

This section describes the tools and methods to perform data visualization and analysis.   

4.3.1 The Real Time Plotter – gradar-plot: 

The real time plotter is a diagnostic tool which helps to view the data as it comes into the 

system. The current plotter uses python plotting tools to read from the shared memory and 

produce real time IQ and Range-Time_Intensity (RTI) plots for four channels. It should be noted 

that the program is memory intensive and it will take a minimum of 8 GB memory to run 

smoothly. 

 The figures alongside show the IQ and RTI plot as seen with the real time plotter. The 

user has to merely ‘connect’ to the data stream from the ‘File’ menu and choose the type of plot 



48 

 

desired for the number of channels. The data was fed into channels 1 and 2 of the USRP which is 

reflected in both these images. 

 

Figure 4-9. Real Time Plotter – IQ Plot of a 10.01 MHz signal 

 
 



49 

 

 

Figure 4-10. Real Time Plotter – RTI Plot 

4.3.2 Post Processing: 

4.3.2.1 The Hierarchial Data Format (HDF5) 

The raw binary data coming into the computer from the USRP is formatted into the 

Hierarchial Data Format (HDF5) and stored on disk. The HDF formats and libraries are designed 

to store and organize large amounts of numerical data. Originally developed at the National 

Center for Supercomputing Applications (NCSA), it is currently supported by the non-profit HDF 

Group, whose mission is to ensure continued development of HDF5 technologies, and the 

continued accessibility of data currently stored in HDF. 

The HDF5 libraries and tools are available under a liberal, BSD-like license for general 

use and are supported by many commercial and non-commercial software platforms, including 

Java, MATLAB, IDL, and Python. The HDF5 file structure includes two major types of objects, 



50 

 

i.e., Datasets, which are multidimensional arrays of a homogenous type, and Groups, which are 

container structures which can hold datasets and other groups [26]. This makes a file-system like 

structure which is hierarchical in nature. Metadata is stored in the form of user-defined, named 

attributes attached to groups and datasets.  

HDFView is a Java based visual tool meant for browsing and editing the HDF5 files [27]. 

Using HDFView, it is possible to easily view a file hierarchy in a tree structure, create new file, 

add or delete groups and datasets, view and modify the content of a dataset, add, delete or modify 

attributes and view the metadata for each group or dataset. 

 Figure 4-11 shows the HDFView of a radar system collected data to illustrate the 

organization of the data collected in these files. As shown, the file test_reading.h5 displays a 

number of tables labeled T00000000 and so on. These tables are the two dimensional complex 

data collected per second. Each of these tables has rows as the IPP values and the columns as the 

ranges or height at which the data has been collected. The number of samples collected per IPP 

will be as indicated by the GnuRadarVerify program multiplied by the number of channels 

collecting data. The incoming complex data from each of the channels is interleaved; hence the 

data belonging to every channel is located at a stride of 4 columns from the first index. It should 

be noted that the first column for every channel of data will contain the data tags of value 16384 

+ 16384j. These tags help confirming the synchronization of the system and also help in 

processing the data. The data collection introduces a new file after every 2 GB of data collected to 

ensure reliability of the system because if the data collection is not cleanly quit, there are chances 

that the data will be corrupted due to incomplete HDF5 close operations. The metadata for the 

given HDF5 file or any given table displays the parameters under which the data was collected. 

 

 



51 

 

 

Figure 4-11.  HDFView showing the data tags and metadata 

4.3.2.2 RTI Post Processing 

The figures shown alongside are the RTI plots for the data collected at the PSUSDR. We 

noticed some strong meteors from the data collection on November, 20 2011.  The code used for 

processing is provided in the appendix and the images are shown below: 

 

 

 

 



52 

 

Since the transmitter pulse was 77 microseconds long, we can see that the meteor returns last 

approximately 11 km long on the RTI plots.   

 

Figure 4-12.  RTI Post Processing Plot – 11/20/2011 – 2:57 a.m. E.S.T. 

 

 Figure 4-12 shows strong meteor presence around 120 km on the morning of 20th 

November, 2011 with the PSUSDR setup. Figure 4-13 shows some strong and weak meteors later 

in the same morning around the 100 km altitude range.   

 

 



53 

 

 

Figure 4-13.  RTI Post Processing Plot – 11/20/2011 – 7:49 a.m. E.S.T. 

 

4.3.3 Replaying Data – gradar-replay: 

  The GnuRadar distribution also provides a command line replay tool which helps the 

user to replay the data and view it on the real time plotter. The command line requires the 

arguments of the base file name to be replayed and the refresh rate desired.  



 

 

Chapter 5  
 

Interferometry 

This section explains the principle of interferometry and details the algorithm applied 

along with the results obtained. 

5.1 Principle of Interferometry 

Intereferometric theory is found in the general fields of optics, astronomy and 

communications. The methods employed differ according to the applications these techniques are 

used for. The approach discussed here is phase interferometry, with an aim to have an accurate 

estimate of the Angle of Arrival (AOA) of the particular target signal. An interferometer 

generally refers to an array type antenna in which the large element spacing occurs. The tradeoff 

in this method is to have microwave circuitry which is complex and maintains a precise phase 

match over a wide frequency range under extreme environmental conditions. 

In order to have a high accuracy in the order of 0.1 to 1 degrees, the baseline 

interferometers should have ambiguity resolving circuitry. The basic geometry is depicted in 

Figure 5-1 [28], whereby a plane wave seen arriving at an angle is received by one antenna earlier 

than the other due to the difference in path length.  

 

 

 

 



55 

 

 

Figure 5-1.  Phase Interferometer principle  

 
The amplitude received at each of these antennas can be expressed as an amplitude which 

is given as An = e
j(ωt+Фn)

  where An is the voltage amplitude at the nth antenna. The time 

difference can be expressed as a phase difference Ф.  

Ф = ω∆t = 2πa(f/c) = 2π(d*sinѲ)/λ                                                                                (5.1) 

where Ф is the phase difference  

  Ѳ is the angle of arrival 

  d is the antenna separation 

  λ is the wavelength. 

The minimal distance between two antennas determines the maximal frequency of the 

input signal. The maximum distance between antennas for receiving the highest frequency 

component is λ/2 [29]. In a cross correlative measurement, the complex voltages at one antenna 

are multiplied by the conjugates of those at the other to obtain the angle of arrival. 

 



56 

 

Interferometer elements commonly use broad antenna beams with beam widths of the 

order of 90 degrees. This reduction of directivity limits system sensitivity due to the reduced 

antenna gain. It also makes the system open to interference signals from within the antenna’s 

broad coverage. These signals often include multipath from strong signals which can affect the 

accuracy of the interferometer. In an interferometer, the locus of points that produce the same 

time or phase delay forms a cone.  

Having said that the maximal frequency component can be achieved by keeping the 

maximum distance between the antennas as λ/2, when high accuracy is required, the separations 

employed are greater than λ/2.  The increased separation sets up a multi-grating-lobe structure 

through the coverage angle which requires less SNR to achieve a specified accuracy.  

Sometimes, interferometers employ multiple antenna elements and are called multiple-

baseline interferometers. The typical design has a receiver which consists of a reference antenna 

and a series of companion antennas. The spacing between the reference element and the first 

companion antenna is λ/2; other secondary elements are placed to form pairs separated by 1, 2, 4, 

and 8 wavelengths. The initial AOA is measured unambiguously by the shortest-spaced antenna 

pair. Every bit of the measurement from succeeding antenna pairs supplies a more accurate 

estimate of the AOA.  

5.2 Interferometric Routine Algorithm 

The algorithms applied in this work are the modified versions of those applied at the 

interferometer at JRO [1]. These observations of meteor-head echoes were made with the high-

power large aperture Jicamarca radar in an interferometric mode. The large power-aperture of the 

system has helped record more than 3000 meteors per hour in the small volume subtended by the 

1 degree antenna beam when the cluttering EEJ echoes were weak. The JRO radar has the lowest 



57 

 

frequency of all the high-power large-aperture radars and is located under the magnetic equator  

(11.95 degrees S, 76.87 degrees W). It is able to measure the three dimensional vector of head 

echoes by operating in the interferometer mode.  

In this case, the routine was modified to have a more generic, user friendly approach.  

The algorithm was also extended for the HDF5 file system obtained from the PSUSDR. Thus, the 

routine has the flexibility to obtain the AOA for any given observatory for any slice of range and 

time within a dataset. The choice of channels to be observed is also user defined. 

One of the main characteristics of this routine, however, is the flexibility that is provided 

with the efficiency of the computations. The cross correlative math involved with the huge 

datasets often puts a huge load on the processing power of the machines. One way to make this 

more efficient is to perform the math across several operations and then coherently integrate 

them. This factor of averaging has also been made user configurable in this routine helping the 

user to tweak and optimize the operation to the limit desired. As this averaging factor increases, it 

also helps reduce the noise in the data and is particularly useful for observations of events in the 

ranges where EEJ is present. 

 

 

 

 

 

 

 

 

 

 



58 

 

 



59 

 

 

Figure 5-2.  Interferometric Routine Flowchart 



60 

 

5.3 Results 

5.3.1 Generic Interferometric Routine: 

The results obtained for the routines applied yielded accurate results.  The primary 

approach was to obtain the magnitude and the phase plots with a generic routine which could 

produce the plots for all combinations of channels requested or present in the data. 

 Figures 5-3 and 5-4 show the verification of the algorithm for the data obtained from the 

JRO facility. Since the data is obtained from three antennas, we see the cross correlation obtained 

for all the three channels independently.  

 

 

Figure 5-3.  Magnitude plot for JRO data 

 
 

 

 
 
 



61 

 

 

Figure 5-4.  Phase plot for JRO data 

 

When this scheme is applied to the four channel PSUSDR HDF5 system (Figure 5-5), we 

observe the cross correlation between all four channels. The raw data obtained here is the single 

channel data obtained from the PSUSDR on November 20, 2011. Although the plot obtained 

from this raw data does not provide much information about the interferometry, it assures the 

workability of the routine for the HDF5 system since it shows the traces of data with the subplots 

involving channel ‘A’ through which the data was collected. 

 

  



62 

 

 

Figure 5-5.  Phase plot for PSUSDR data 

 

5.3.2 Angle of Arrival Estimation with baseline information: 

At this point, the algorithms were modified to obtain the phase information for the 

baselines in the X and the Y direction and the exact angle of arrival was estimated. Keeping in 

mind that the Ѳmax for the JRO configuration is 1 degree, the scaling of the phase was reduced 

to a range of -2 degrees to +2 degrees to obtain accurate information. Figure 5-6 shows the plot 

generated for the angle of arrival in the Y baseline. 

 



63 

 

 

Figure 5-6.  Plot for Y-Baseline at JRO (in degrees) 

 

To further validate the efficacy of the algorithm, the data was collected through the RF 

Mixer chains shown in Figure 3-3 from signal sources emerging from the stable clock source 

Novatech 409B shown in Figure 3-8. The baseline configuration in this experiment was assumed 

to be the same as that at the JRO facility. The signals provided at both the channels were kept 0.5 

degrees apart in phase and two sets of data were collected with a positive and a negative phase 

difference. 

Figure 5-7 shows that the AOA was accurately estimated in the +0.5 degrees range for 

the first case. Since the signal source was constantly emitting at all ranges and IPPs, we see a 



64 

 

solid color background indicating the accurate angle of arrival. Similarly, figure 5-8 shows the 

accurate estimation of -0.5 degrees for the second data set collected with the channels reversed. 

 

 

Figure 5-7.  AOA plot for simulated X-Baseline obtained from USRP ( + 0.5 degrees) 

 
 

 

 
 



65 

 

 

Figure 5-8.  AOA plot for simulated X-Baseline obtained from USRP ( - 0.5 degrees) 

 

5.4 Graphical User Interface 

A Graphical User Interface (GUI) was developed for performing the interferometric 

operations for the ease of the user. The Interferometry Interface V1.0 was made in IDL using 

event based widget programming. IDL GUI is constructed by combining widgets in a treelike 

hierarchy where each widget has one parent widget and zero or more child widgets which allow 

user interactions via simple graphical objects such as pushbuttons or sliders [30]. In an event 

driven system, the program creates an interface and then waits for messages or events to be sent 

to it from the window system. Events are generated in response to user manipulation, such as 

pressing a button or moving a slider. The program responds to events by carrying out the action 

or computation specified by the programmer, and then waiting for the next event. Actions occur 



66 

 

in the order specified by the user at runtime, rather than in the order determined by the 

programmer. 

 As shown in figure 5-9, the Configuration tab provides the basic functionalities of saving 

and loading configurations. The configuration files are stored with an extension ‘.inter’ on the 

disk which can be loaded at a later time using the ‘Load Configuration’ option. 

 

 

Figure 5-9.  Interferometry Interface GUI 

 

The other inputs to the interface are as follows: 

Observatory:  The Observatory drop list helps the user to select the type of Observatory 

for performing the post processing. Currently the interface provides the options of ‘Jicamarca’ 

and ‘Penn State’. In the background, the file extensions of these datasets are assumed to be ‘.r’ 

and ‘.h5’ respectively. 



67 

 

Path Entries: The long text boxes expect the path or the filename involved in that 

operation. The ‘Looking for data in’ option requires the path of the folder containing the raw data 

files. The ‘Saving results in’ option helps in choosing a folder path for saving the figures. The 

‘Antenna Configurations’ option helps in picking the correct antenna configuration. 

 

 Antenna Configurations: The Antenna Configuration for a particular dataset can be 

stored in a plain text file which specifies the number of channels and the positions of the 

antennas. This file is to have prior knowledge about the antenna configurations so that the same 

could be shown graphically to the user during the operations. For example a three antenna 

configuration text file will contain the following: 

ch = 3 

rch = -73.5,73.5,73.5 ; 73.5,73.5,-73.5 

The ‘ch’ should be equal to the number of channels and the ‘rch’ should provide the X 

positions and Y positions of the antennas separated by a colon.  The ‘Show Config’ button then 

displays the configuration chosen by the user. The interface currently displays the 8 by 8 

configuration present at Jicamarca and choosing the configuration highlights and numbers the 

antennas for the comfort of the user. 

 

   X-Pair and Y-Pair: The channel numbers or the antenna numbers for the X baseline 

and the Y baseline should be entered here. The displayed configuration by the ‘Show Config’ 

button should help the user in entering the right pair of antennas. Each text box expects the 

channel numbers to be separated by a comma as shown in the figure.  

 

 



68 

 

Range Select and Time Select:  These inputs expect the subset of data that is preferred 

by the user for the operation. The range select helps to perform the interferometry at any height 

intervals. Similarly, the time select input can be fed with a time interval input. The default options 

observe the whole dataset and any erroneous input will revert to these default settings. The inputs 

here also require to be separated with a comma as shown. 

 

 Averaging Factor:  This takes the averaging factor input which is the number of 

coherent integrations desired in the operation and also helps in noise reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 

 

Chapter 6  
 

Conclusions and Future Work 

6.1 Conclusions 

The RF Front End chain design for PFISR was modified to suit the requirements of 

PSUSDR and validated in the laboratory setup. The assumption here is that the signal coming into 

the mixer chain is from the output of the present RF Front End at PSUSDR and thus is relatively 

noise free. The IQ plots showed a perfect signal reproduced shown on the real time plotter. The 

spectrum plot further validated the chain by showing almost 80 dB difference between the signal 

and noise floor on the USRP spectrum plot. Particular care had to be taken such that the LO 

frequency was within the operating range of the amplifiers and also that the amplifiers were not 

saturating. 

During the testing, it was observed that the frequency response of the filters is very 

critical while designing the RF chain. Often, while testing real radar data, the noise submerges the 

data and the filters with a high Q factor make a huge difference in the SNR measurements. 

Similarly, the use of wideband amplifiers in the front end chain should be avoided unless the 

receiver has a wide frequency range requirement. The RTI post processing plots for the data 

collected on November 20th, 2011 showed a few strong meteors. The transmitted pulse 

characteristics and the RF front end make a big impact on the number of the meteors observed. 

The generalized interferometry algorithm was first tested for the JRO data in order to 

cross check with the existing codebase, to have some clarity on the subject. The extended HDF5 

routine was also tested for the real radar data obtained from PSUSDR to observe that the plots 

provided sound information for the number of channels present in the system. With a view to 

obtain more accuracy in the routines, the phase of each baseline was computed and the exact 



70 

 

angle of arrival was estimated. This approach was again tested and validated for the existing JRO 

data.  

A final step was taken towards validating the whole system which encompassed the RF 

front end and the efficacy of the angle of arrival estimation routine. The results obtained from the 

signal generator sources fed through the chains into both the channels of the USRP provide 

accurate estimation of the angle of arrival of the signals. Overall, a sound proof of concept was 

presented for the purposes of introducing interferometry in the PFISR facility which has also 

paved the way for interferometric techniques at PSUSDR.  

6.2 Future Work 

The number of meteors observed in the data collected on November 20th, 2011 can be 

improved by further adding amplifiers to the existing RF Front end.  The interferometric routines 

can be tested for actual data observed from two or more antennas at the radar site using the 

PSUSDR.  Apart from interferometry, with a view to obtain more accurate and unambiguous 

measurements, pulse coding can be applied which can be achieved with the help of the radar 

controller and sending a coded pulse through the transmitter.  

The idea of interferometry is fascinating and always suggests room for improvements. In 

keeping with the idea of a software defined radar, instead of employing correlators in hardware as 

practiced at the JRO facility, the cross correlation can also be done in software real time and the 

phase information can be directly displayed on the computer. An interesting tradeoff is whether to 

perform these complex operations in the FPGA of the USRP or purely in software. The USRP2, 

which is the next generation USRP, provides a much faster FPGA with the Xilinx Spartan3 

family of FPGAs. Intuitively, the USRP2 suits this idea as an alternative to increasing the 

processing load in the computer.  



 

 

Appendix  
 
 

RTI Post Processing Code (Python)

#!/usr/bin/python 

 

import numpy as np 

import matplotlib as mp 

mp.interactive(1) 

import matplotlib.pyplot as pp 

import h5py 

import sys 

import os 

import pylab 

import datetime 

from datetime import datetime as dt 

 

  

def ReadH5Files(): 

 

 # SET FILENAME HERE  

 base_fileName = '/home/radar/RadarSiteData/radarsite’ 

 table_offset = 0 

  

 os.system("ls -l "+base_fileName+"_* | wc -l > count") 

 count_file  = open('count','r') 

 count = count_file.readline() 

 

 channel = 0  

  

 # Parameters to plot 

 xlabel = "Time" 



72 

 

 ylabel = "Range (km)" 

 clabel = "Power (dB)" 

 aspect = 'auto' 

 vmin = 30  

 vmax = 60 

 

  

 for data in np.arange(int(count)): 

  file_count = data + 1 

  file_index = str(file_count).zfill(8) 

  fileName = base_fileName + "_" + file_index + ".h5" 

    

    

  fapl=h5py.h5p.create(h5py.h5p.FILE_ACCESS) 

  file = h5py.File(fileName, mode='r', memb_size=1<<30) 

  #print file.Group. 

 

  if( data == 0 ): 

   BW = float(file.attrs['BANDWIDTH']) 

   Samples = int(file.attrs['RxWin_STOP']) 

   extenty2 = Samples*1.5E8/(BW*1E3) # in KM 

   ipp = float( file.attrs[ 'IPP' ] ) 

  

   

  iplots = 0 

  iblock = 0 

  label_count = 1 

  NumberofTables = len(file.keys()) 

   

  nPlots = NumberofTables/2 

   

  print "\n****Reading File "+fileName+"***\n" 

 

  for iT in np.arange(NumberofTables): 

    

    

   #table_number = iT + data*NumberofTables 



73 

 

   Filename = "T"+str(iT + table_offset).zfill(8) 

   print "Reading Table "+Filename 

  

  

   #if not show data tag, channel = channel + 4 

 

   #read first data table 

   ds = file[Filename] 

   if iT == 0: 

    ArPower = 

np.zeros((nPlots*ds.shape[0],ds.shape[1]/4 - channel)) #declare 2d 

array of n-thousand by (sample size-offset) 

    #ArNoise = 

np.zeros((nPlots*ds.shape[0],ds.shape[1]/4 - channel)) 

    firstTableTimestampStr = 

file[Filename].attrs['TIME'] 

    print firstTableTimestampStr 

    firstTableTimestamp = dt.strptime( 

firstTableTimestampStr, '%H:%M:%S' ) 

    line = firstTableTimestampStr 

    line2 = line.split(":") 

    line3 = line2[0] 

    line4 = line2[1].split(":") 

    line5 = line4[0] 

    extentx1 = int(line3+line5) 

    print extentx1 

                 

                 

            #Getting real and imaginary data. 

   dReal = ds['real'][:,channel::4]*1.0 

   dImag = ds['imag'][:,channel::4]*1.0 

    

   # Computing Power 

   Power = (dReal)**2. + (dImag)**2. 

 

   # Accumulating Power 



74 

 

  

 ArPower[iplots*ds.shape[0]:((iplots+1)*ds.shape[0]),:] = 

Power[:,:]   

    

   iplots = iplots +  1 

   if iplots==nPlots: 

     

    tempo = np.sort( ArPower.flatten() ) 

    noise = np.mean( tempo[0:tempo.size*.5] ) 

    #ArNoise.append( noise ) 

    print "Noise Level: ", noise 

     

    SNR = ( ArPower - noise ) / noise 

    dB_SNR = 10. * np.log10( SNR ) 

     

    # pre plotting data handlings 

    #dB = np.log10( ArPower ) * 10 

    #db_trans = np.transpose( dB ) 

    db_trans = np.transpose( dB_SNR ) 

      

    # Plotting related stuff 

    fig = pp.figure( num=1, figsize=(40,20) ) 

    pp.clf() 

    ax = fig.add_subplot(111) 

     

    #dims = dB.shape 

    dims = dB_SNR.shape 

    extent = ( 0, dims[0], 0, extenty2)#dims[1] ) 

    im = pp.imshow( db_trans, origin="lower", 

vmin=vmin, vmax=vmax, extent=extent, aspect=aspect ) 

 

    cticks = np.int32( vmin + np.arange(6) * ( vmax 

- vmin ) / 5. ) 

 

    # calculate positions of x-tick marks 

    numTicks = 30      

        # number of tickmarks 



75 

 

    xtickLabels = [ firstTableTimestampStr ]  

     # vector of x tick labels 

    xtickLength = ipp * float( nPlots * 

NumberofTables / numTicks )  # length of tick period (units) 

 

    newTimeStamp = firstTableTimestamp   

      # datetime temporary object 

 

    for i in range ( 1, numTicks ):   

       # iterate through each 

tickmark 

     newTimeStamp += datetime.timedelta( 

seconds=xtickLength )   # increment datetime object 

     xtickLabels.append( 

newTimeStamp.strftime( '%H:%M:%S' ) )  # convert to string, 

append to vector 

 

    ax.xaxis.set_major_locator( 

mp.ticker.MaxNLocator( numTicks ) ) 

 

    # calculate positions of y-tick marks 

    yticks = np.int32( np.array( ax.get_yticks() ) 

) 

 

    cb = pp.colorbar( im, ticks=cticks ) 

 

    cticks = np.int32( np.array( vmin + 

np.arange(6)*(vmax - vmin)/5. ) ) 

    cb.ax.set_yticklabels( cticks, size=24 ) 

    ax.set_xticklabels( xtickLabels, size=24, 

rotation=30 ) 

    ax.set_yticklabels( yticks, size=24 ) 

 

    cb.ax.set_ylabel( clabel, size = 32 ) 

    ax.set_xlabel( xlabel, size=32 ) 

    ax.set_ylabel( ylabel, size=32 ) 

 



76 

 

    pp.title( fileName + " Part " + str( 

label_count ), size=48 ) 

 

    # save the file 

    NFile = "rti_usrp" + str( data * ( 

NumberofTables / nPlots ) + iblock ).zfill(6) + ".png" 

    print "\n Plotting "+NFile+" ...\n" 

 

    pp.savefig( NFile ) 

 

    # data handling and cleanup 

    pylab.close() 

 

    iblock = iblock + 1 

    label_count = label_count + 1 

    iplots = 0 

 

  table_offset = table_offset + NumberofTables 

 

ReadH5Files() 

pp.show() 

 

 

 

 



77 

 

Interferometric Routines (IDL)  

;+  
; NAME geometry  
;   INTERF_MOD 
; 
; PURPOSE 
;   Generic Interferometry technique to compute AOA 
; 
;  
;  
;WORKING 
;   The program takes information about type of Observatory and 

number of coherent integrations for efficient 
;   computations. Time, Range, Channel information can be 

provided but is not necessary. The program also needs data path,  
;   file extension information and path to save the figures 
;    
;   After finding the data files, the program first gets the 

header information required to generate/confirm error free Time, 
;   Range and Channel information. It also computes the ccf pairs 

automatically from this information. 
;    
;   The raw data files are read and the Magnitude,Phase and AOA 

is accordingly computed, plotted and saved. 
; 
 
PRO INTERF_MOD,NEvent=NEvent, NumAver=NumAver, LProf=LProf, 

LRange=LRange, Chan_Index= Chan_Index 
 
 
  
  IF N_ELEMENTS(NEvent) EQ 0 THEN BEGIN 
    PRINT,"NEvent is not defined. Skip ..."  
    RETURN 
  ENDIF 
   
  ; User definition of working path, filename/format and type of 

data expected 
  ;INTERFEROMETRIC_ROUTINE, NEVent=0, NumAver=4, 

LProf=[0.0,9.83],LRange=[85.05,123.3],Chan_Index= [0,1,2] 
  ;INTERFEROMETRIC_ROUTINE, NEVent=1, NumAver=5, 

LProf=[0.0,0.996],LRange=[0.0,129.975],Chan_Index= [0,1,2,3] 
   
  CASE NEvent OF 
    00: BEGIN 
          ; Defining working path. [from user] 
          dpath = '/path/to/data ' 
          ; Defining the generic name of the files. [from user] 
          dfile = 'D*.r' 
          ; Observatory 
          dtype = 0 
          ; Defining path to save figures 
          GPath = "/path/to/save" 



78 

 

           
          xpair = [0,1]  ; Pair of channels defining x-axis 
          ypair = [1,2]  ; Pair of channels defining y-axis 
          lambda = 6     ; Transmitted wavelength (6m) 
          rch = [[-147/2.,147/2.,147/2.],[147/2.,147/2.,-147/2.]]  

; Position of the recievers (in meters) 
          
          PowTh = 55     ; Power Threshold (in dB) 
           
        END 
    01: BEGIN      
         ; Defining working path. [from user] 
         dpath = '/path/to/data '; Defining the generic name of 

the files. [from user] 
         dfile = '*h5'  ; Observatory 
         dtype = 1      ; Defining path to save figures 
         GPath = "/path/to/save" 
          
         xpair = [0,1]  ; Pair of channels defining x-axis 
         ypair = [1,2]  ; Pair of channels defining y-axis 
         lambda = 10    ; 30 MHz signal 
         rch =  [[-147/2.,147/2.,147/2.],[147/2.,147/2.,-147/2.]]  

; Position of the recievers (in meters) 
          
         PowTh = 55     ; Power Threshold (in dB) 
        END 
  ENDCASE 
   
  ; Checking for input errors 
  IF N_ELEMENTS(dpath) EQ 0 THEN BEGIN 
    PRINT,"NEvent is not defined. Skip ..."  
    RETURN 
  ENDIF 
   
  IF N_ELEMENTS(dfile) EQ 0 THEN BEGIN 
    PRINT,"NEvent is not defined. Skip ..."  
    RETURN 
  ENDIF 
   
  IF N_ELEMENTS(dtype) EQ 0 THEN BEGIN 
    PRINT,"NEvent is not defined. Skip ..."  
    RETURN 
  ENDIF 
     
  CASE dtype OF 
    0: READ_PROC = "READ_JRO" 
    1: READ_PROC = "READ_PSU" 
    2: READ_PROC = "Other" 
  ENDCASE 
   
 
  ; Getting the first raw file. 
  Files = FILE_SEARCH(dpath+dfile,count=NFiles) 
  IF NFiles EQ 0 THEN BEGIN 
    PRINT,'READ_RAW_FILES: Couldn''t find file ', dpath+dfile 



79 

 

    RETURN 
  ENDIF 
  Files = Files[SORT(Files)] 
   
  ; Reading radar parameters 
  Success = 

CALL_FUNCTION(READ_PROC,Filename=Files[0],cur_ptr=0,header=header) 
   
 
  ; Checking input errors in the Limits given by user 
   IF N_ELEMENTS(LProf) LT 2 THEN BEGIN 
    IF N_ELEMENTS(LProf) EQ 1 THEN PRINT, "Error: Please enter 

both values" 
    LProf = [MIN(header.time),MAX(header.time)] 
   ENDIF ELSE BEGIN 
    LProf = [LProf[0]>MIN(header.time),LProf[1]<MAX(header.time)] 
   ENDELSE 
 
   IF N_ELEMENTS(LRange) LT 2 THEN BEGIN 
    IF N_ELEMENTS(LRange) EQ 1 THEN PRINT, "Error: Please enter 

both values" 
    LRange = [MIN(header.range),MAX(header.range)] 
   ENDIF ELSE BEGIN 
    LRange = 

[LRange[0]>MIN(header.range),LRange[1]<MAX(header.range)] 
   ENDELSE 
   
    ; Compute the indexes for given limits 
   IProf =  WHERE((header.time GE LProf[0]) and (header.time LE 

LProf[1])) 
   IRange = WHERE((header.range GE LRange[0]) and (header.range 

LE LRange[1])) 
 
   ;If selected LProf is not divisible by NumAver, quit. This is 

because the first dimension is sliced  
   ; into the number of coherent integrations  
   IF N_ELEMENTS(IProf) MOD NumAver NE 0 THEN BEGIN  
    PRINT,'Time/Profile Selection is not a multiple of Number of 

Integrations  ', dpath+dfile 
    PRINT, 'The current size of profile', N_ELEMENTS(IProf) 
    RETURN 
   ENDIF 
    
   ; Computing possible cross pairs based on channels selected 
   ;  cross_pairs=[[0,0,1],[1,2,2]] case of 3 chanels 
   IF (KEYWORD_SET(Chan_Index) EQ 0)  THEN BEGIN 
    cross_pairs = TRANSPOSE(pgcomb(header.Nchans,2)) 
    Chan_Index=indgen(header.Nchans) 
   ENDIF ELSE BEGIN; this is to emulate the output of pgcomb for 

the channels selected 
    cross_pairs = TRANSPOSE(pgcomb(N_ELEMENTS(Chan_Index),2)) 
    temp_pairs = cross_pairs  
    FOR k=0,N_ELEMENTS(Chan_Index)-1 DO BEGIN 
     temp_pairs[(WHERE(cross_pairs EQ k))[*]] = Chan_Index[k] 
    ENDFOR 



80 

 

    cross_pairs = temp_pairs 
   ENDELSE 
    
   ; This is to check if channels selected exceed dataset channel 

values 
   chan_check = WHERE(cross_pairs GT 

MAX(TRANSPOSE(pgcomb(header.Nchans,2)))) 
  IF N_ELEMENTS(chan_check) GT 1 THEN BEGIN 
    PRINT,'Selected Chanels exceed dataset channel values ', 

dpath+dfile 
    RETURN 
  ENDIF 
    
   IF (N_ELEMENTS(chan_check) EQ 1 AND chan_check NE -1) THEN 

BEGIN 
     PRINT,'Selected Chanels exceed dataset channel values ', 

dpath+dfile 
    RETURN 
  ENDIF 
      
    
   channels=Chan_Index 
   chlabels = ['A','B','C','D','E','F','G','H']; labels for 

figures 
          
  
 ; Begin reading raw data 
  iFile = 0 
  block_count = 0   
   
  REPEAT BEGIN 
    FileName = Files[iFile] 
      
    cur_ptr = 0   
    REPEAT BEGIN 
      Success = 

CALL_FUNCTION(READ_PROC,Filename=Filename,cur_ptr=cur_ptr,volt=volt,hea
der=header) 

      
      IF Success NE -1 THEN BEGIN 
       
        block_count = block_count + 1 
        ; Selection of data before plotting (IPPs, Range, 

Channels)       
        

volt=volt[MIN(IProf):MAX(IProf),MIN(IRange):MAX(IRange),Chan_Index] 
               
        ;Compute CCF Pairs Begins /ccf 
               
        dim=SIZE(VOLT,/DIM) 
        volt=REFORM(volt,NumAver,dim[0]/NumAver,dim[1],dim[2]) 
        num_cross=N_ELEMENTS(cross_pairs[*,0]) 
        cross_0=INTARR(num_cross) 
        cross_1=INTARR(num_cross) 
        FOR icr=0,num_cross-1 DO BEGIN 



81 

 

          cross_0[icr]=(WHERE(channels EQ cross_pairs[icr,0]))[0] 
          cross_1[icr]=(WHERE(channels EQ cross_pairs[icr,1]))[0] 
        ENDFOR 
         
         
        ; Sum of each component in first dimension, which is 

integrating the data according to NumAver 
        ccf = 

TOTAL(volt[*,*,*,cross_0]*CONJ(volt[*,*,*,cross_1]),1);avg the 
correlations or avg 4 pulses 

        
        ;PHASE = ATAN(CCF,/PHASE) 
        ;P1 = TOTAL(ABS(volt[*,*,*,cross_0])^2,1) 
        ;P2 = TOTAL(ABS(volt[*,*,*,cross_1])^2,1) 
         
        ;MAG = ABS(CCF/SQRT(P1*P2)) 
        
        mRange = Header.range[MIN(IRange):MAX(IRange)] 
        mTime = FINDGEN(dim[0]/NumAver)*(Header.Time[1]-

Header.Time[0])*NumAver 
        print,size(mTime) 
         
        ;Computing PHASE in the x-axis baseline 
        pair = WHERE(cross_pairs[*,0] EQ xpair[0] AND 

cross_pairs[*,1] EQ xpair[1],cpair) 
        xPha = ATAN(ccf[*,*,pair[0]],/PHASE) 
          
        ;Computing PHASE in the y-axis baseline 
        pair = WHERE(cross_pairs[*,0] EQ ypair[0] AND 

cross_pairs[*,1] EQ ypair[1],cpair) 
        yPha = ATAN(ccf[*,*,pair[0]],/PHASE) 
   
        ; Computing ambiguos angle of arrival 
        xdist = rch[WHERE(channels EQ xpair[0]),0]-

rch[WHERE(channels EQ xpair[1]),0] 
        ydist = rch[WHERE(channels EQ ypair[0]),1]-

rch[WHERE(channels EQ ypair[1]),1] 
        print, "Distance between receivers:", xdist, ydist ; 

distance between any 2 receivers 
        radius = ASIN(lambda/(ABS(xdist)+ABS(ydist)))*!radeg 
        xAOA = ASIN(-lambda*xPha/(2.*!pi*xdist[0]))*180d/!pi  
        yAOA = ASIN(-lambda*yPha/(2.*!pi*ydist[0]))*180d/!pi 
         
        Pow = 10*ALOG10(MEAN(ABS(ccf)));,DIM=3)) 
         
   
        ; Taking events greater than a threshold of intensity 
         noval = WHERE(Pow LT PowTh,cnoval) 
         IF cnoval GT 0 THEN BEGIN 
          xAOA[noval] = !VALUES.F_NAN 
          yAOA[noval] = !VALUES.F_NAN 
        ENDIF 
   
 
 



82 

 

; Plotting Cross Correlation function Phase. 
        Graphic = 1 
        IF Graphic NE 0 THEN BEGIN 
          GFile = "xAoA_"+STRING(block_count,FORMAT = '(I5.5)')  
          GSave = 1     
                     
          ;xPlots = 3 
          ;yPlots = CEIL(NPairs/3.) 
          xPlots = 1 
          yPlots = 1 
           
          ;xsize = 990 
          ;ysize = 350*(yPlots<3) 
          xsize = 950 
          ysize = 950 
           
          

CTRL_PLOT,wid=1,xsize=xsize,ysize=ysize,xpos=10,path=GPath,png=1,show=1
,title="Interferometry_Phase",$ 

          overplot=0,file=GFile 
             
          !P.MULTI = [0,xPlots,yPlots] 
          CONTROL_PLOT,close=0  
       
          maxcol = 79 
          mincol = 50 
          maxlev = 2. 
          minlev = -2 
          makeformat = '(F6.0)' 
          novalid_col = !P.COLOR 
                 
          title = 'Angle 0f Arrival X-BaseLine (deg)' 
          xtitle = 'time (s)' 
              
          charsize = 2 
                       
          xrange = [MIN(mTime),MAX(mTime)] 
          yrange = [MIN(mRange),MAX(mRange)]           
          

CONT_IMAGE,xAoA,mTime,mRange,TOP=maxcol,BOTTOM=mincol,MINA=minlev,XSTYL
E=1,MAXA=maxlev,$ 

            
XRANGE=xrange,YRANGE=yrange,YSTYLE=1,TITLE=title,XTITLE=xtitle,XTICKN=x
tickn,$ 

            YTITLE='Range (km)',SUBTITLE=subtitle, 
NOVALID_COL=novalid_col,XMARGIN=[8,12],$ 

            CHARSIZE=charsize 
   
          nlev = 29 
          col = FINDGEN(nlev)/(nlev-1)*(maxcol-mincol)+mincol 
          lev = FINDGEN(nlev)/(nlev-1)*(maxlev-minlev)+minlev 
   
          

PLACE_COLOR_BAR,barcharsize=charsize*0.4,col=col,nlev=nlev,lev=lev,$ 



83 

 

                                                
bartitle=bartitle,makeformat = makeformat 

 
         
          CTRL_PLOT, /close, save=GSave 
          GFile = "yAoA_"+STRING(block_count,FORMAT = '(I5.5)')  
          GSave = 1     
                    
          xPlots = 1 
          yPlots = 1 
           
          xsize = 950 
          ysize = 950 
           
          

CTRL_PLOT,wid=1,xsize=xsize,ysize=ysize,xpos=10,path=GPath,png=1,show=1
,title="Interferometry_Phase",$ 

          overplot=0,file=GFile 
             
          !P.MULTI = [0,xPlots,yPlots] 
          CONTROL_PLOT,close=0  
       
          maxcol = 79 
          mincol = 50 
          maxlev = 2. 
          minlev = -2 
          makeformat = '(F6.0)' 
          novalid_col = !P.COLOR 
                 
          title = 'Angle 0f Arrival Y-BaseLine (deg)' 
          xtitle = 'time (s)' 
              
          charsize = 2 
                       
          xrange = [MIN(mTime),MAX(mTime)] 
          yrange = [MIN(mRange),MAX(mRange)]           
          

CONT_IMAGE,yAoA,mTime,mRange,TOP=maxcol,BOTTOM=mincol,MINA=minlev,XSTYL
E=1,MAXA=maxlev,$ 

            
XRANGE=xrange,YRANGE=yrange,YSTYLE=1,TITLE=title,XTITLE=xtitle,XTICKN=x
tickn,$ 

            YTITLE='Range (km)',SUBTITLE=subtitle, 
NOVALID_COL=novalid_col,XMARGIN=[8,12],$ 

            CHARSIZE=charsize 
   
          nlev = 29 
          col = FINDGEN(nlev)/(nlev-1)*(maxcol-mincol)+mincol 
          lev = FINDGEN(nlev)/(nlev-1)*(maxlev-minlev)+minlev 
   
          

PLACE_COLOR_BAR,barcharsize=charsize*0.4,col=col,nlev=nlev,lev=lev,$ 
                                                

bartitle=bartitle,makeformat = makeformat 
 



84 

 

         
          CTRL_PLOT, /close, save=GSave                       
 
          
       ENDIF 
       
         
    ENDIF 
       
    ENDREP UNTIL Success NE 1 
    iFile= iFile + 1    
  ENDREP UNTIL iFile GE NFiles 
     
     
    
  CLOSE,/ALL,/FORCE 
  PRINT,'End of the processing...' 
 
END 
 

 
;+ 
; NAME: 
;   READ_JRO 
; 
; PURPOSE: 
;   reads the JRO data and returns critical header information. 
; 
; INPUTS: 
;   PATH = A string to define path of the folder which ccontains 

the HDF5 files. 
;   CUR_PTR = The dataset being accessed in the current file 
; 
; OUTPUTS: 
;   RESULT = 1 if the files was opened successfully. If the file 

does not exist it is -1 (It was not opened). 
;   HEADER = A structure giving the information of the experiment 

(e.g. time and range). 
;   VOLT = Formatted data for post processing 
; 
; Authors:  
;   Freddy Galindo, Penn State University 
; 
 
FUNCTION 

READ_JRO,Filename=Filename,cur_ptr=cur_ptr,volt=volt,header=header 
        
  COMMON ReadInfo, fullheader, idltype, nfile    
     
  IF N_ELEMENTS(cur_ptr) EQ 0 THEN cur_ptr = 0 
  IF N_ELEMENTS(nfile) EQ 0 THEN nfile=1 
 
  OPENR, nfile, FileName 
 



85 

 

  POINT_LUN,nfile,cur_ptr 
 
  IF EOF(nfile) EQ 1 THEN BEGIN 
    CLOSE,nfile 
    RETURN,-1 
  ENDIF 
 
  ShortHeader = { SHEADER, HeaderLen:0UL $ 
          , HeaderVer:0US $ 
          , CurrentBlock:0UL $ 
          , time:0UL $ 
          , milliseconds:0US $ 
          , timezone:0US $ 
          , dstflag:0US $ 
          , ErrorCount:0UL } 
  READU, nfile, ShortHeader 
 
 
IF Shortheader.headerlen GT 24 THEN BEGIN 
 
  SystemHeader = {SYSHEADER, SysHeaderLen:0UL $ 
                             , AcqSamples:0UL $ 
                            , AcqProfiles:0UL $ 
                            , AcqChannels:0UL $ 
                          , ADCResolution:0UL$ 
                         , PCIDIOBUSWidth:0UL } 
  READU, nfile, SystemHeader 
 
 
  DataWindow = { DWSTR, fH0:0E $ 
                      , fDH:0E $ 
                     , nNSA:0UL } 
 
  RCHeader = { RC_HEADER, $ 
           RCHeaderLen:0UL, $ 
           EspType:0UL, $ 
           NTX:0UL, $ 
           Ipp: 0.0, $ 
           TxA: 0.0, $ 
           TxB: 0.0, $ 
           NumWindows: 0ul, $ 
           NumTaus: 0ul, $ 
           CodeType: 0ul, $ 
           Line6Function: 0ul, $ 
           Line5Function: 0ul, $ 
           Clock: 0.0, $ 
           PrePulseBefore: 0ul, $ 
           PrePulseAfter: 0ul, $ 
           RangeIpp: BYTARR(20), $ 
           RangeTxA: BYTARR(20), $ 
           RangeTxB: BYTARR(20)} 
  READU, nfile, RCHeader 
 
  ;Initial values 
  RcSamWin=0UL 



86 

 

  Taus=0UL 
  NumCodes = 0UL 
  NumBauds = 0UL 
  CODE = 0UL 
  FLIP1 = 0UL 
  FLIP2 = 0UL 
 
  IF RCHeader.NumWindows GT 0 then begin 
    RcSamWin = REPLICATE(DataWindow,RCHeader.NumWindows) 
    READU, nfile, RcSamWin 
  ENDif 
 
  IF RCHeader.NumTaus GT 0 then begin 
    Taus = FLTARR(RCHeader.NumTaus) 
    READU, nfile, Taus 
  ENDif 
 
  IF RCHeader.CodeType GT 0 then begin 
    READU, nfile, NumCodes 
    READU, nfile, NumBauds 
    SplitParts=ceil(NumBauds/32.0) 
    CODE=LONARR(SplitParts,NumCodes) 
    READU, nfile, CODE 
  ENDif 
 
  IF RCHeader.Line5Function EQ 1 then READU, nfile, FLIP1 
  IF RCHeader.Line6Function EQ 1 then READU, nfile, FLIP2 
 
  RCDynHeader = { RCDYNHEADER_RAW, $ 
          RcSamWin:RcSamWin,$ 
          Taus:Taus, $ 
          NumCodes:NumCodes, $ 
          NumBauds:NumBauds, $ 
          CODE:CODE, $ 
          FLIP1:FLIP1, $ 
          FLIP2:FLIP2} 
 
  PHeader = { PHEADER $ 
          , PHeaderLen:0UL $ 
          , DataType:0UL $ 
          , SizeOfDataBlock:0UL $ 
          , BlockFFTProfiles:0UL $ 
          , FileBlocks:0UL $ 
          , DataWindows:0UL $ 
          , ProcessFlags:0UL $ 
          , nCohInt:0UL $ 
          , nIncohInt:0UL $ 
          , nTotalSpectra:0UL} 
 
  READU, nfile, PHeader 
 
  PDSamWin=0UL 
  TotalPSam=0UL 
 
  IF PHeader.DataWindows GT 0 then begin 



87 

 

    PDSamWin = REPLICATE(DataWindow,PHeader.DataWindows) 
    READU, nfile, PDSamWin 
    TotalPSam=FIX(TOTAL(PDSamWin.nNSA,/NAN)) 
  ENDif 
 
  TotalSS=0UL;Number of SelfSpectra (mostly = number of channels) 
  TotalCS=0UL;Number of CrossSpectra 
  SpcComb=0UL 
  if PHeader.nTotalSpectra gt 0 then begin 
    SpcComb = BYTARR(2,PHeader.nTotalSpectra) 
    READU, nfile, SpcComb;Number of Self and Cross - Spectra 

combinations 
    FOR i=0,PHeader.nTotalSpectra-1 DO BEGIN 
        IF SpcComb(0,i) EQ  SpcComb(1,i) THEN TotalSS=TotalSS+1 
    ENDFOR 
    TotalCS=PHeader.nTotalSpectra-TotalSS;Number of CrossSpectra 
  endif 
 
  PDynHeader = { PDYNHEADER_RAW, $ 
           PDSamWin:PDSamWin, $ 
           TotalPSam:TotalPSam, $ 
           SpcComb:SpcComb, $ 
           TotalSS:TotalSS, $ 
           TotalCS:TotalCS} 
 
 
  fullheader={ FULL_HEADER_RAW, $ 
            ShortHeader:ShortHeader,$ 
            system_header:SystemHeader,$ 
            radar_header:RCHeader,$ 
            RCDynHeader:RCDynHeader,$ 
            process_header:PHeader,$ 
            PDynHeader:PDynHeader} 
 
  ;Allocate memory and read the Block of data data structure 
  datatype = ROUND(ALOG((pheader.ProcessFlags/2l^6) MOD 

2l^6)/ALOG(2)) 
  idltype = datatype + (datatype LE 2) + 11*(datatype EQ 3) 
ENDIF 
 
; Leyendo los datos crudos (rawdata). 
volt_iq = 

MAKE_ARRAY(2,fullheader.system_header.AcqChannels,fullheader.PDynHeader
.TotalPSam,fullheader.process_header.BlockFFTProfiles,type=idltype,/noz
ero) 

READU, nfile, volt_iq 
 
fullheader.ShortHeader = ShortHeader 
POINT_LUN,-nfile,cur_ptr 
 
IF fullheader.process_header.DataType EQ 0 THEN BEGIN 
    volt_iq = TEMPORARY(volt_iq) + 128b 
    volt_real = volt_iq[0,*,*,*] - 128 
    volt_imag = volt_iq[1,*,*,*] - 128 
ENDIF ELSE BEGIN 



88 

 

    volt_real = volt_iq[0,*,*,*] 
    volt_imag = volt_iq[1,*,*,*] 
ENDELSE 
 
  volt_real = 

REFORM(volt_real,fullheader.system_header.AcqChannels,fullheader.PDynHe
ader.TotalPSam,fullheader.process_header.BlockFFTProfiles,/overwrite) 

  volt_imag = 
REFORM(volt_imag,fullheader.system_header.AcqChannels,fullheader.PDynHe
ader.TotalPSam,fullheader.process_header.BlockFFTProfiles,/overwrite) 

   
  ; Raw data per block of data. 
  volt = COMPLEX(volt_real,volt_imag) 
  volt = TRANSPOSE(volt,[2,1,0]) 
   
  ; Creating an header 
  range = fullheader.RCDynHeader.RCSamWin.fh0+$ 
                                       

FINDGEN(fullheader.PDynHeader.TotalPSam)*fullheader.RCDynHeader.RCSamWi
n.fDH 

  time = 
FINDGEN(fullheader.process_header.BlockFFTProfiles)*fullheader.radar_he
ader.ipp*0.001/150 ; in s 

   
  NProfs = fullheader.process_header.BlockFFTProfiles 
  NRans = fullheader.PDynHeader.TotalPSam 
  NChans = fullheader.system_header.AcqChannels 
   
  header = {range:range, time:time, NProfs:NProfs, NRans:NRans, 

NChans:NChans} 
   
  CLOSE, nfile 
  RETURN,1 
 
END 

 

;+ 
; NAME: 
;   READ_PSU 
; 
; PURPOSE: 
;   The READH_HDF5 reads information of the experiment from the 

HDF5  file. If the reading-process  fails it 
;   returns 1 or -1  if it  was successful. In addition this 

function returns the experiment information in a 
;   header (Like typical Jicamarca header). 
; 
; INPUTS: 
;   PATH = A string to define path of the folder which contains 

the HDF5 files. 
;   CUR_PTR = The dataset being accessed in the current file 
; 
; OUTPUTS: 



89 

 

;   RESULT = 1 if the files was opened successfully. If the file 
does not exist it is -1 (It was not opened). 

;   HEADER = A structure giving the information of the experiment 
(e.g. time and range). 

;   VOLT = Formatted data for post processing 
; 
; Author:  
;   Tejas Nagarmat, Penn State University 
; 
 
FUNCTION 

READ_PSU,Filename=Filename,cur_ptr=cur_ptr,volt=volt,header=header 
 
  IF N_ELEMENTS(Filename) EQ 0 THEN Filename = 'path/to/data' 
   
  IF N_ELEMENTS(set) EQ 0 THEN set = 42495L 
 
 
  IF FILE_TEST(Filename) EQ 0 THEN RETURN, -1 
 
  ; Getting informacion of the HDF file. 
  ff = H5_PARSE(Filename) 
 
  ; Opening the HDF5 to read the information. 
  id = H5F_OPEN(Filename) 
 
; GET NUMBER OF TABLES 
  DNum = N_ELEMENTS(tag_names(ff)) - 26 
   
   
  IF cur_ptr LE DNum-1 THEN BEGIN 
   
  dataset = 'T0'+STRING(cur_ptr,FORMAT='(I7.7)') 
  print,dataset 
   
   
   ; Getting dimensions of the raw data. 
  tmp_id = H5D_OPEN(id,dataset) 
  tmp_id1 = H5D_GET_SPACE(tmp_id) 
  dims = H5S_GET_SIMPLE_EXTENT_DIMS(tmp_id1) 
  H5D_CLOSE,tmp_id 
    
  ; Reading Raw data  
  tmp_id = H5D_OPEN(id,dataset) 
  id0 = H5D_GET_SPACE(tmp_id) 
  memory_space = H5S_CREATE_SIMPLE(dims) 
  raw_data = 

H5D_READ(tmp_id,file_space=id0,memory_space=memory_space) 
 
  ;READING TAGS 
  NumChan=ff.CHANNELS._DATA 
  start_time = ff.START_TIME._DATA 
  sample_rate = ff.SAMPLE_RATE._DATA 
  bandwidth = ff.BANDWIDTH._DATA 
  decimation = ff.DECIMATION._DATA 



90 

 

  output_rate = ff.OUTPUT_RATE._DATA 
  ipp = ff.IPP._DATA 
   
  H5D_CLOSE,tmp_id 
   
  ;create a volt variable 
    
  volt = complexarr((dims[0]/NumChan),dims[1],NumChan) 

;1734,250,4 
  pre_volt = (complex(raw_data.real, raw_data.imag)); Struct to 

array 
   
  ref = 

REFORM(pre_volt,NumChan,dims[1],dims[0]/NumChan);4,250,1734 Channel 
data parsing 

   
  FOR i=0, NumChan-1 DO BEGIN 
  volt(*,*,i)=ref(i,*,*) 
  ENDFOR 
   
  volt=transpose(volt,[1,0,2]);250, 1734, 4     
   
  NumChan=ff.CHANNELS._DATA 
  start_time = ff.START_TIME._DATA 
  sample_rate = ff.SAMPLE_RATE._DATA 
  bandwidth = ff.BANDWIDTH._DATA 
  decimation = ff.DECIMATION._DATA 
  output_rate = ff.OUTPUT_RATE._DATA 
  ipp = ff.IPP._DATA 
  rx_start = ff.RXWIN_START._DATA 
  rx_stop = ff.RXWIN_STOP._DATA 
   
  height_lower = (rx_start/bandwidth)*1.5E8/1000 
  height_upper = (rx_stop/bandwidth)*1.5E8/1000 
   
  

time=FINDGEN((SIZE(volt))[1])*((SIZE(volt))[1]*ipp)/(SIZE(volt))[1] 
  range=height_lower + FINDGEN(rx_stop - 

rx_start)*(height_upper)/rx_stop 
   
  header = {range:range, time:time,$ 
            NProfs:(SIZE(volt))[1], NRans:(SIZE(volt))[2], 

NChans:(SIZE(volt))[3]} 
   
  cur_ptr = cur_ptr + 1 
  RETURN, 1   
   
  ENDIF ELSE BEGIN 
 
   RETURN, -1 
   
  ENDELSE 
END 
 



 

 

Bibliography 

 

[1] Chau, J. L. and Woodman, R. F.: Observations of meteor-head echoes using the Jicamarca 

50MHz radar in interferometer mode, Atmos. Chem. Phys., 4, 511-521, doi:10.5194/acp-4-511-

2004, 2004.  

 

[2] Chapin, E. and Kudeki, E.: Radar interferometric imaging studies of long-duration meteor 

echoes observed at Jicamarca, J. Geophys. Res., 99, 8937-8949, 1994. 

 

[3] Mathews, J. D., Meisel, D. D., Kunter, K. P., Getman, V. S., and Zhou, Q. H.: Very high 

resolution studies of micrometeors using the Arecibo 430MHz radar, Icarus, 126, 157-169, 1997. 

 

[4] Zhou, Q. H., Perillat, P., Cho, J. Y. N., and Mathews, J. D.: Simultaneous meteor echo 

observations by large aperture VHF and UHF radars, Radio Sci., 33, 1641-1654, 1998. 

 

[5] Close, S., Hunt, S. M., McKeen, F. M., and Minardi, M. J.: Characterization of Leonid meteor 

head echo data collected using the VHF-UHF advanced reserach projects agency long-range 

tracking and instrumentation radar (ALTAIR), Radio Sci., 37, doi:10.1029/2000RS002602, 2002. 

 

[6] Close, S., Oppeheim, M., Hunt, S., and Dyrud, L.: Scattering characteristics of hig-resolution 

meteor head echoes detected at multiple frequencies, J. Geophys. Res., 107, 

doi:10.1029/2002JA009253, 2002. 

 



92 

 

[7] Janches, D., Nolan, M. C., Meisel, D. D., Mathews, J. D., Zhou, Q. H., and Moser, D. E.: On 

the geocentric micrometeor velocity distribution, J. Geophys. Res., 108, 

doi:10.1029/2002JA009789, 2003. 

 

[8] Hocking, W. K., Fuller, B., and Vandepeer, B.: Real-time determinationof meteor-related 

parameters utilizing modern digital technology, J. Atmos. Sol. Terr. Phys., 63, 155-169, 2001. 

 

[9] Woodman, R. F.: Inclination of the geomagnetic field measured by an incoherent scatter 

technique, J. Geophys. Res., 76, 178-184, 1971. 

 

[10] Johnson C. R. and Sethares W. A.: Telecommunication Breakdown. Upper Saddle River, NJ: 

Prentice Hall, pp. 11–12, 111. , 2003. 

 

[11] Dillinger M., Madani K., Alonistioti N.: Software Defined Radio: Architectures, Systems 

and Functions Page xxxiii, Wiley & Sons, 2003. 

 

[12] Omer M: Intelligent Spectrum Sensor Radio: 

http://rave.ohiolink.edu/etdc/view?acc_num=wright1215360432 

 

[13] Marsh D.; Software-defined Radio tunes, EDN Tech Trends, 2005. 

 

[14] http://gnuradio.org/redmine/projects/gnuradio 

 

[15] http://dev.emcelettronica.com/gnu-radio-open-source-software-defined-radio 

 



93 

 

[16] Shen, Dawei: Tutorial 4: the USRP Board.ǁ Introduction. SDR Documentation. Notre Dame, 

IN: University of Notre Dame, 2005. Oct. 2007.  http://www.nd.edu/~jnl/sdr/docs/ 

 

[17] Ettus, Matt. "USRP Datasheet." Ettus Research LLC. Oct. 2007 http://www.ettus.com/ 

 

[18] http://gnuradio.org/redmine/projects/gnuradio/wiki/UsrpFAQIntroFPGA 

 

[19] https://github.com/rseal/GnuRadar 

 

[20] http://www.rfcafe.com/references/electrical/noise-figure.htm 

 

[21] https://github.com/rseal/BitPatternGenerator 

 

[22] http://www.novatechsales.com/Bench-Signal-Generator.html 

 

[23] http://gnuradio.org/redmine/projects/gnuradio/wiki/USRPClockingNotes 

 

[24] Lyons R., Understanding Digital Signal Processing, Addison-Wesley Longman Publishing 

Co., Inc., Boston, MA, 1996.  

 

[25] Silberschatz A., Galvin P., Operating System Concepts, Addison-Wesley Longman 

Publishing Co., Inc., Boston, MA, 1997. 

 

[26] http://www.hdfgroup.org/HDF5 

 



94 

 

[27] http://www.hdfgroup.org/hdf-java-html/hdfview 

 

[28] http://www.phys.hawaii.edu/~anita/new/papers/militaryHandbook/sig-sort.pdf 

 

[29] Balogh L, Kollár I: Angle of Arrival Estimation Based on Interferometer Principle, 

Proceedings of the IEEE International Symposium on Intelligent Signal Processing. Budapest, 

Hungary, IEEE, pp. 219-224, 04/09/2003-06/09/2003. 

 

[30] http://www.exelisvis.com/portals/0/tutorials/idl/Programming_in_IDL.pdf

 

 

 


