LAND AND LABOR: CLASSIC MAYA TERRACED AGRICULTURE AT CARACOL, BELIZE

A Thesis in
Anthropology

by

Timothy Michael Murtha Jr.

© 2002 Timothy Michael Murtha Jr.

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

August 2002
We approve the thesis of Timothy Michael Murtha Jr.

David Webster
Professor of Anthropology
Thesis Advisor
Chair of Committee

Kenneth Hirth
Professor of Anthropology

George Milner
Professor of Anthropology

William Sanders
Evan Pugh Professor Emeritus of Anthropology

Barry Scheetz
Professor of Nuclear Engineering

Dean Snow
Professor of Anthropology
Head of the Department of Anthropology

Arlen Chase
Special Signatory
Professor of Anthropology
The University of Central Florida
ABSTRACT

This dissertation addresses several issues facing current research in archaeology. First, and generally, it illustrates that archaeologists still need to emphasize process over event in prehistory. We are often taken aback by the scale and complexity of the features we excavate, sample, and survey, which can lead to difficulties in our interpretations. This is particularly true when studying large scale and complex agro-engineering features, such as terraces, wetland fields, and irrigation systems. The scale and complexity of the features can bias our interpretations, as they are typically the end result of several centuries of a process of agricultural intensification, not a single event. Using quantitative models and analysis helps to refocus archaeological research to intensification in process.

Second, this project demonstrates the value in the application of information technology for analyzing and reconstructing past behavior. Recent advances in computer technology, specifically, GIS, now allow archaeologists to accurately and efficiently model and simulate complex systems, diachronically. While such simulations and models may present an abstracted picture of the past, they do provide us with a means to view broad processual change and to identify critical periods and variables for intensive exploration.
Third, and more specific to my case study the Classic Maya, the use of a smallholder approach is not only appropriate but critical to understand many of the major features of Classic Maya culture history. In this particular case study, the smallholder approach helped to identify two crucial variables for reconstructing the history of Classic Maya sites and polities, land and labor. Such a focus illustrates that many of the patterns found within and between sites, concerning the political economy of rulers, may be the result of largely bottom-up processes.

The location of this research is the Classic Maya site of Caracol, Belize, which exhibits the clearest evidence for agricultural intensification in the Maya lowlands. The features are extremely complex and cover a broad region on the Vaca Plateau in Belize. When I first viewed the features, I was taken aback by their scale and complexity. Using quantitative models and simulations, I illustrate that these ‘landesque’ capital improvements to the landscape were the result of a process of agricultural intensification occurring over the course of several hundred years. The features were constructed, managed and maintained by households early on in the agricultural and archaeological history of the region. Through time, the intensity of production increased greatly, leaving the system very ‘tight’ from a surplus perspective. This research illustrates that Late Classic farmers in the region, not only produced little in the form of agricultural surplus, but also had very little surplus labor, due to the demands of intensive agriculture. I believe that these changing patterns of land and labor directly affected the political economy of the ruling elite and can be tied to some broad patterns viewed in the
epigraphic and archaeological record. Ultimately, the power of Classic Maya ruling elite was directly tied to their ability to extract a surplus of labor and agricultural produce from the thousands of farming households found throughout the region.
TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES ... xvi

ACKNOWLEDGMENTS .. xviii

CHAPTER 1 INTRODUCTION .. 1
 The Problem ... 1
 The Research ... 7
 The Goals ... 8
 The Data ... 11
 The Setting .. 11
 Location/Environment .. 13
 Caracol…what we know? ... 13
 History of Research at Caracol .. 14

CHAPTER 2 BACKGROUND AND FRAMEWORK ... 23
 Agricultural Intensification ... 24
 Demography and Intensification, General Theory .. 24
 What Is Agricultural Intensification? .. 25
 Malthus ... 27
 Boserup ... 29
 Malthus plus Boserup ... 31
 Beyond Demography, The Smallholder Approach ... 34
 Smallholders and Intensification ... 34
 What is a Smallholder? ... 35
 Summary of Intensification .. 39
 Can the Maya be Viewed As Smallholders? ... 40
 Classic Maya Agriculture ... 47
 Wetland Agriculture ... 49
 Terraces ... 54
 Contour Terraces ... 55
 Weir Terraces ... 55
CHAPTER 3 CARACOL .. 61
 Overview .. 62
 The History of Caracol .. 68
 Early Caracol, the ‘Sleeping Giant’ 68
 Middle Caracol History, the Giant Awakens 72
 Late – Terminal Classic Caracol, the Giant Reemerges only to Sleep... 77
 Major Interpretations about Caracol 79
 Demography .. 79
 Urbanism .. 81
 Administered Economy .. 84
 Middle Class .. 86
 Terraced Administration .. 88
 Interpreting the Interpretations 90

CHAPTER 4 THE SETTLEMENT ... 91
 Introduction .. 91
 Climate ... 93
 Topography ... 94
 Drainage ... 99
 Survey Area and Methods ... 100
 Settlement Description .. 103
 Cohune .. 105
 Chaquistero .. 110
 Cohune Ridge Settlement Features 111
 Overview ... 112
 Discussion of the Settlement .. 117
 Count of Structures .. 118
 Number of Plazas ... 119
 Construction Area and Volume 119
 Summary and Meaning of Measurements 125
 Population Estimates .. 129
 Previously Published or Projected Estimates 130
 Structure Estimates on the Cohune Ridge 133
 Adding the structure estimates to Caracol estimates 136
 Working back and refining the Caracol population estimates 137
 Buffer Distance and Plaza Group Density 142

CHAPTER 5 THE COHUNE RIDGE TERRACES 145
 Introduction .. 145
 History of Terrace Research on the Cohune Ridge 147
 Terrace Research Methods .. 151
 Terrace Survey .. 151
CHAPTER 6 PRODUCTIVITY AND MODELING OF PRODUCTION

What Is Productivity? ... 197
Biomass Measurement .. 198
Scale of Production .. 198
Intensity of Production .. 200
Labor and Productivity .. 201
EPIC and Simulating Productivity ... 203
How Does EPIC Work? ... 204
Climate/Weather Data .. 206
Soil Data .. 209
Slope Characterization .. 210
Management data ... 214
Maize Yields ... 217

Questions 1 and 2: What was the productive potential of the Cohune Ridge without terraces? And What was the quantitative effects of terracing on the productivity of the Cohune Ridge landscape? 219

Questions 1 and 2: Results and Interpretations .. 228
Landscape Effects: Back to GIS .. 229
(LF) Long Fallow (figure 6.9) ... 229
(MF) Medium Fallow (figure 6.10) ... 230
(SF) Short Fallow (figure 6.11) ... 232
Interpretations .. 238
What was the quantitative effect of terracing on the Cohune Ridge and by extension, Caracol? ... 238
What was agricultural production like on the Cohune Ridge before terracing was constructed? .. 239
Question 3, What were the demographic implications of terracing on the Cohune Ridge? .. 240
Period B: AD 450 to 500... 247
Period C: AD 525 to 575... 250
Period D: AD 725 to 775 ... 250
Implications of the Demographic Model.. 251

CHAPTER 7 THE COHUNE RIDGE AGRARIAN HOUSEHOLD ECONOMY:
LAND AND LABOR.. 253

Part I: Land and Households on the Cohune Ridge .. 255
Methods ... 257
Simple Thiessen .. 259
Weighted Thiessen Polygons... 264
Rationale for using minimum thresholds.. 265
Results, Total Land: Simple Thiessen ... 268
Results, Total Raw Land, Using Weighted Thiessen Polygons 274
Agricultural lands, simple and weighted thiessen polygons .. 277
Land vs. Household size .. 278
Results: Comparing Household Size to Agricultural Plot Size 278
Results, demographic reconstructions ... 280
Summary of Land Analyses ... 282
Evaluation of the labor economy ... 283
General Labor Requirements .. 283
Summary and Discussion ... 285
Labor Productivity and Urbanization ... 287

CHAPTER 8 SUMMARY, DISCUSSION AND CONCLUSIONS.. 289

Goal 1: To fully document the intensive agricultural features on the Cohune Ridge. ... 289
Goal 2: To fully document the settlement and associated features within a previously unknown portion of Caracol. .. 293
Goal 3: To quantitatively estimate the effects of terracing within the Cohune Ridge region and to evaluate the demographic implications of terracing. ... 295
Goal 4: To evaluate the social conditions of terracing at Caracol, including how the landscape within the research area was partitioned
and utilized and how labor was organized and recruited for agricultural production

Goal 5: To identify how terraces themselves relate to Maya civilization in general, and particularly to dealing with the political economy or ecology of the Caracol rulers, the urban nature of Maya settlements, and traditional conceptions of Maya staple production and trade.

Discussion

Discussion of the Simulations

Future Research Considerations

BIBLIOGRAPHY

APPENDIX A: COHUNE RIDGE SETTLEMENT ATLAS

APPENDIX B: EXCAVATION REPORT

APPENDIX C: RAW SOIL DATA

APPENDIX D: HOUSEHOLD AND AGRICULTURAL MEASUREMENTS

ENDNOTES
LIST OF FIGURES

Figure 1.1. The Maya World illustrating the location of Caracol and other Maya sites. ... 8

Figure 1.2. Map of the Caracol settlement................................. ... 10

Figure 1.3. Map illustrating modern day Belize and bordering countries............. 12

Figure 1.4. Top graph: Observed annual precipitation for a 19 year period, expressed in millimeters. Bottom graph: Monthly averages, minimums and maximums of rainfall for the Caracol region... 15

Figure 1.5. Map of the epicenter of Caracol... 16

Figure 1.6. Images of Caana, the largest structure found at Caracol. 17

Figure 2.1: Maya lowlands with sites labeled and regions shaded where wetlands have been identified... 51

Figure 2.2: Terrace construction components... 56

Figure 2.3: The Maya lowlands, with terraced sites labeled or regions of terracing shaded ... 57

Figure 3.1. The Maya world illustrating the location of Caracol and other well known Maya sites................................. ... 63

Figure 3.2. Map of the Caracol epicenter ... 64

Figure 3.3. Photos of the 'bound captive' altar, which details the late Late Classic warfare of Caracol with Ucanal and B’ital... 78

Figure 4.1. Map of the Caracol settlement illustrating the location of the Cohune Ridge Region. Research Setting, Environment... 92

Figure 4.2. Graphs of observed annual precipitation and monthly precipitation for the Vaca Plateau... 95
Figure 4.3. Minimum, Maximum and Average observed temperatures for the Vaca Plateau...96

Figure 4.4. Digital elevation model and topographic map of the Cohune Ridge.97

Figure 4.5. Slope Map of the Cohune Ridge. Each grid square is .25 km².98

Figure 4.6. Approximate locations of ‘bajos’ and drainages in the Cohune Ridge Region..101

Figure 4.7. Map of the Cohune Ridge region, illustrating the location of survey transects. ...102

Figure 4.8. Sketch diagram of the various Residential Units observed throughout the Cohune Ridge region. ..107

Figure 4.9. Map of Cohune. Grid north is to the top of the page..............................108

Figure 4.10. Photograph of small stela and altar found at Cohune.109

Figure 4.11. Map of Chaquistero. Grid north is to the top of the page.113

Figure 4.12. Photographs of the Chaquistero Giant Ajaw altar...............................114

Figure 4.13. Distribution of the different types of residential groups on the Cohune Ridge...117

Figure 4.14. Frequency distribution of number of structures per residential unit.120

Figure 4.15. Frequency distribution of the number of plazas for each group..........121

Figure 4.16. Frequency distribution of construction volume.................................122

Figure 4.17. Frequency distribution of construction area by group.........................123

Figure 4.18. Top: Regression plot of number of structures and construction area illustrating the relatedness of two measures of the residential units.124

Figure 4.19. Graphs illustrating the similar data reported for Liepins' settlement pattern survey along the Conchita causeway...128

Figure 4.20. Buffered map illustrating the settlement and area of the projected Caracol Polity...131

Figure 4.21. Buffer density map of estimated number of structures per sq. km......139

Figure 4.22. Plaza group density per sq. km..140
Figure 4.23. Top chart: Revised population by buffer area. Bottom: Revised population density by buffer area. ...141

Figure 4.24. Top graph illustrates the assumed relationship between the number of structures and population estimates per group. Bottom: The likely relationship between the number of structures and estimated number of inhabitants. ...144

Figure 5.1. Regional map of western Belize illustrating Caracol, Benque and other places noted in the text. ...146

Figure 5.2. Map illustrating the Cohune Ridge, the location of this research.149

Figure 5.3. Map illustrating the planned location of the 2 1.1 km2 blocks of settlement and terraces surveyed and reported here.153

Figure 5.4. Map with red crosses illustrating the location of the soil samples I extracted. ...155

Figure 5.5. East Terrace block. ...159

Figure 5.6. West Terrace block. ...160

Figure 5.7. Contour terrace sketch based upon actual excavations near Chaquistero. ...163

Figure 5.8. Diagram illustrating the likely construction sequence for terracing164

Figure 5.9. Facing and Stonework of Contour Terraces. ...165

Figure 5.10. Contour terraces with construction modification. Top excavation revealed an earlier terrace construction. Bottom excavation revealed a modified bedrock outcropping. ...166

Figure 5.11. Weir terrace system sketch based upon actual excavations.169

Figure 5.12. Weir Terrace Section Illustrating a Double Wall and Construction Variation. ..170

Figure 5.13. Valley Bottom Terrace Section. ...172

Figure 5.14. Sketch of ideal Contour and Weir Terraces. ...176

Figure 5.15. Graphs illustrating the amount of labor required for construction of all of the terracing in the 177 km2 area of the Caracol Polity.184

Figure 5.16. Dotplot of pH by soil sample context. ...191
Figure 5.17. Results of the available P plotted by soil sample context.................192
Figure 5.18. Dot Plot of Potassium by soil sample context.194
Figure 5.19. Dot plot of Calcium, by soil sample context.................................195
Figure 6.1. Diagram of the EPIC simulation program. Light blue lines indicate user query-able output...205
Figure 6.2. Temperature data input into EPIC...207
Figure 6.3. Precipitation data input into the EPIC model.................................208
Figure 6.4. Map of the different soil types classified for use in EPIC...............211
Figure 6.5. Map of the slope categories used in EPIC for the simulations.......212
Figure 6.6. Map illustrating the 21 combinations of slope and soil class.........213
Figure 6.7. Graphs of reported maize estimates. ...218
Figure 6.8. Illustration of fitting productivity results to line function...220
Figure 6.9. Long fallow effects of terracing on the Cohune Ridge landscape..231
Figure 6.10. Medium fallow effects of terracing on the Cohune Ridge landscape....233
Figure 6.11. Short fallow effects of terracing on the Cohune Ridge landscape.234
Figure 6.12. Annual cropping effects of terracing on the Cohune Ridge landscape..235
Figure 6.13. Double cropping effects of terracing on the Cohune Ridge landscape.................................237
Figure 6.14. Estimated Population history, low and high for the Cohune Ridge region of Caracol..242
Figure 6.15. Estimated population history of Caracol, plotted with the agricultural model..248
Figure 6.16. The population history and agricultural model of the Cohune Ridge, with critical periods marked..249
Figure 7.1. Population history for Caracol. The peak population is recorded at AD 600..256
Figure 7.2. Point map of the Cohune Ridge Survey Region.........................258

Figure 7.3. Triangulated network of household remains on the Cohune Ridge, used to construct simple thiessen polygons. ...261

Figure 7.4. Voronoi diagram of households used to construct simple thiessen polygons...262

Figure 7.5. Simple thiessen polygons constructed after voronoi diagram clipping....263

Figure 7.6. Buffered example of weighted thiessen construction......................267

Figure 7.7. Histogram of raw land surrounding each household using simple thiessen polygons. ...269

Figure 7.8. 3D perspective, looking northeast at the Cohune Ridge settlement. Polygons are extruded by the amount of total available land surrounding each household...270

Figure 7.9. Box plot of simple thiessen polygon areas by structure counts.272

Figure 7.10. Histogram of weighted thiessen polygons, total area surrounding each household...273

Figure 7.11. Boxplot of land area surrounding each household using a weighted thiessen polygon...275

Figure 7.12. Top: 3D perspective of the distribution of the best agricultural lands. Bottom: Histogram of the distribution of the best agricultural lands..........276

Figure 7.13. Regression plot of construction area vs. total land using weighted thiessen polygons. ...281
LIST OF TABLES

Table 2.1. Some sites and regions of the Maya lowlands, with verified wetland fields. ...50

Table 2.2. Sites and regions with verified agricultural terracing.60

Table 3.1: Important events in Caracol’s history, largely from epigraphic data. See http://www.caracol.org/maya_prehistory.htm for a more detailed table from which this table was derived..72

Table 3.2: Late Classic Populations of other well documented Maya sites.81

Table 4.1: Distribution of residential units on the Cohune Ridge.116

Table 4.2: Distribution of residential units on the Cohune Ridge.116

Table 4.3: Projected figures for the 4.1 km² area of the Cohune Ridge, based upon a range of published population estimates.132

Table 4.4: Comparing projected estimates for the Cohune Ridge and Observed or Calculated estimates presented here..135

Table 4.5: Refined high and low estimates for Caracol’s early Late Classic peak population. ..136

Table 4.6: Newly revised Caracol peak high and low population estimates........143

Table 5.1. Table identifying the constants applied to the different operations associated with terrace construction..177

Table 5.2. Contour Terrace measurements used in the labor requirement calculations. ...177

Table 5.3. Results of the labor requirement estimates for one linear m of a one m tall 'typical' contour terrace..178
Table 5.4. Weir Terrace measurements used in the labor requirement calculations. ...178

Table 5.5. Results of the labor requirement estimates for one linear meter of a 1 m tall 'typical' weir terrace. ...178

Table 5.6. Construction requirements of terraces in the 177 km2 of Caracol's polity compared along a timeline. ...183

Table 5.7. Household by household labor requirements for terrace construction in the entire 117 km2 area of Caracol. ...186

Table 6.1. Bairoch's (1990:134) calculated data for European cities during dramatic periods of urbanization, comparing pre-industrial to industrial.202

Table 6.2. Table Listing the slope categories used for EPIC ...214

Table 6.3. Simulation results reported by Land Class, Slope Class, and Management Strategy ...221

Table 6.4. Productivity slopes categorized for landscape analysis ...230

Table 6.5. Population growth rates used for population reconstruction. Modified rates derived from D. Chase (1997). ...241

Table 6.6. Estimated high and low population figures based upon the growth rates reported in table 6.5 ...243

Table 7.1. Raw land surrounding households using simple thiessen polygons271

Table 7.2. Raw agricultural land by group type using weighted thiessen polygons...277

Table 7.3. Labor requirements expressed in person hours adjusted for stone tool use ...283

Table 7.4. Labor Productivity reported for pre-industrial and industrial regions of Europe, as compared to those modeled and calculated for the Cohune Ridge Maya (Bairoch 1990) ...287
ACKNOWLEDGMENTS

A dissertation is never the result of one person’s efforts. Throughout the course of this research, a number of individuals and institutions have generously provided support and assistance. I am indebted to them all and I am pleased to have this opportunity to thank them.

I would first like to thank the Department of Archaeology, Government of Belize, for not only allowing me to carry out this research, but for providing an immeasurable amount of assistance and logistical support. I am especially grateful to John Morris, George Thompson, and Brian Woodeye of the DoA. The Hill Foundation of the Department of Anthropology and RGSO of the Graduate School, at Penn State provided the financial support of this research.

While collecting, analyzing, and writing up these data a number of friends, colleagues and students provided their help and assistance. I would like to thank Gustavo Mendez, in particular for his help and assistance in the field. I would also like to thank Scott Aubrey, Steven Barry, Amy Morris, Neil Murray, and Kirk Straight for putting up with me in the field and in the lab. Settlement survey in the lowlands is especially difficult. Thank you for putting your bodies on the line.
I would like to acknowledge the support of the Department of Anthropology at Penn State and in particular, my committee. My advisor, David Webster, suffered through every single draft of this thesis. I am indebted to him for his guidance and support of my research the moment I started my graduate career at Penn State. I am forever indebted to Drs. Diane and Arlen Chase who not only provided me with my first field opportunity at Caracol, but also worked with me until the final hour to improve the quality of this dissertation. I would like to thank Dr. Kenneth Hirth for his help and support during all stages of this research, including the opportunity to begin field research through an externship he generously supported. I would also like to thank Dr. Barry Scheetz for the late nights on his microscope while analyzing other archaeological data and for his careful read of my dissertation. I am very grateful to Dr. George Milner for finding a way to read my dissertation while juggling a number of other responsibilities and offering an immeasurable amount of advice. Finally, I would like to thank Dr. William Sanders for his support of this research. Dr. Sanders’ career in Mesoamerican archaeology was the inspiration for this work and I am grateful for his help and comments throughout the process.

Several individuals, not on my committee, also provided assistance and support. I would like to thank Dr. Claire Milner for the many opportunities she provided for me at the Matson Museum while I attended Penn State. I would also like to thank Dr. Dean Snow, who offered graduate support throughout my career and a number of field opportunities outside of Mesoamerica. Dr. Francis Hayashida graciously provided citations and case
studies for me to review from outside of Mesoamerica. I would also like to acknowledge the help and assistance of David Retherford, of the DIPL Lab at UCF. I would like to thank Phil Odham, in particular, for inspiring me to use computers and computer programs in new and inventive ways. Christian Harder of ESRI has been especially patient, as I completed this research. Thank you Christian for the opportunities and support you have provided. Finally, I am terribly indebted to Richard Bidstrup who taught me how to survey in the jungle, and more importantly, how to be a good teacher.

I would also like to thank my friends for making my time at Penn State very memorable. Craig Goralski, Josh Borstein, Mike Dupree, Rich Thomas, Rebecca Ferrell, Amy Kovak, Brad Andrews, Jay Silverstein, Janet Schulenberg, and David Reed have been terrific friends and colleagues. I am indebted to Erin Dwyer, who has shown so much patience over the past year and half as I completed the dissertation. My brother and friend, James Murtha, always found a way to crack a smile and joke when I needed it most. Thanks Jim!

Finally, I would like to acknowledge my parents, Timothy and Florence Murtha, for whom this dissertation is dedicated. They have selflessly supported my career in anthropology, both literally and figuratively for the past ten years. Without their generous support, this research and dissertation would not have been possible. I owe it all to them.
For Mom and Dad, Thank you.