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ABSTRACT 

 

 Accurate forecasting of snowfall accumulation has widespread economic and safety 

consequences.  Owing to the complex characteristics and dynamics inherent in winter weather 

systems, snowfall accumulation forecasts tend to have a large degree of uncertainty associated 

with them.  Numerical Weather Prediction (NWP) ensemble prediction systems were developed 

to address the uncertainty in weather forecasts.  A deterministic forecast is of utmost importance 

to the public; therefore, several post-processing methods for combining ensemble members have 

been developed.  This study examines the use of several statistical guidance methods for post-

processing the Global Ensemble Forecast System (GEFS) output in order to predict 24-hour 

snowfall accumulation.  Out of the seven methods—an artificial neural network, linear 

regression, least median squares regression, support vector regression, radial basis function 

network, conjunctive rule, and k-nearest neighbor—the k-nearest neighbor method produces 

significantly more accurate forecasts, ones with lower mean absolute error, and the best calibrated 

ensemble spread as measured by rank histograms, spread-skill plots, and quantile-quantile plots. 
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Chapter 1  
 

Introduction 

Meteorologists face the difficult task of forecasting complex winter storm systems that 

can affect millions of people.   More than 85,000 automobile crashes occurred on average each 

year for the period 1995-2001 nationwide when the road conditions were reported as either snowy 

and slushy or icy (Kocin and Uccellini 2005: L. Good-win, Mitretek Systems Inc, unpublished 

manuscript).  An average of 1270 fatalities per year possibly result from snow/ice road conditions 

(Kocin and Uccellini 2005).  These major weather storms also can have an extensive impact on 

the economy.  The National Climate Database Center (NCDC) estimated the March 1993 and 

January 1996 storms each resulted in billions of dollars in damage (Kocin and Uccellini 2005).  

Accurate winter weather forecasts provide state and local departments of transportation the 

information required to prepare for these winter weather events efficiently and safely.  At the 

2005 USWRP Workshop, Ralph et al. (2005) stated ―one effort should focus on winter storms 

along the East Coast of the United States, with freezing rain, coastal cyclones (e.g., nor’easters), 

heavy snow, and lake effect snow as priorities.‖ Thus, accurate winter weather forecasts are 

valuable for public safety and more research is warranted to improve these predictions.   

Forecasting snowstorms is a multifaceted problem presenting many challenges.  One 

challenge is the difficulty of obtaining accurate and precise snowfall measurement, owing to the 

location and the surface of the observation, blowing and drifting, melting, compaction, mixed 

precipitation events, and how often the measurement is taken (Doesken and Leffler 2000).  

Without consistent and accurate snow accumulation observations, it is difficult to evaluate the 

performance of any forecast.  Another challenge in snowfall forecasting is that both small and 
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large snowfall events can have similar indicators of snowfall.  Evans and Jurewicz (2009) show 

that frontogenetical forcing, weak moist symmetric stability, saturation, and microphysical 

characteristics favorable for the production of dendritic snow crystals each of which having been 

identified as being critical indicators for heavy and/or banded snowfall in major storms, are often 

found in smaller magnitude snowfall events.  Other challenges include the different spatial 

distribution of snowfall among various intensity snowfall events and the difference in spatial 

distribution among snowfalls of similar intensity.  For example, the Blizzard of 1996 produced 

heavy snowfall in a wide area along the eastern seaboard, yet a lake-effect snow band may 

produce heavy snow in Erie, PA while the sky is clear in nearby Bradford, PA.   

Another issue with winter weather forecasting is the large local differences in snowfall 

accumulation and precipitation type that are created by differing elevations and topographies 

among sites.  Miller (1946) examines 200 cases of East Coast snowstorm development and 

classifies them into two categories: the classical polar front wave cyclone depicted by the 

Norwegian Cyclone model and the complex cyclonic development that Miller describes as a 

phenomenon unique to the East Coast.  The distinctions between these two types of snowfall 

create different spatial and temporal snowfall accumulations. Snowstorms also have various 

economic and transportation impacts based on the duration of snowfall, propagation rates, 

whether there are winds that can cause significant blowing and drifting, and the population 

density where the snowfall occurs.   

 There have been significant improvements during the past century in winter weather 

prediction.  Kocin and Uccellini (2005) state that, ―one can conclude that the accuracy of weather 

forecasting, even for a rare event such as a major Northeast snowstorm, can be attributed to the 

introduction of numerical models into the forecast process beginning in the 1950s, the continued 

improvements made to the numerical models and global data, and the overall professional 

development of forecasters whose training and education are based heavily on understanding the 
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strengths and weaknesses of the models.‖  In addition to improvements made to the numerical 

models, improvements in weather forecasting have come from the development of statistical post-

processing methods of weather forecasting.  Glahn and Lowry (1972) implement a post-

processing technique named Model Output Statistics (MOS), which is an objective weather 

forecasting technique that consists of determining a statistical relationship between a predictand 

and variables forecast by a numerical model at various projection times. 

Another development in weather forecasting is the advent of meteorological ensembles. 

Ensemble forecasts represent possible realizations of future states of the atmosphere.  Grimmit 

and Mass (2002) show that a correlation exists between ensemble spread and forecast uncertainty, 

thus providing the forecaster with valuable uncertainty information.  Advanced statistical post-

processing techniques recently have been developed and implemented to order to improve the 

calibration, or uncertainty information, and the accuracy of NWP ensembles.  An ensemble 

approach should provide more stable forecast solutions, thus improving the confidence in 

forecasters from the public and emergency management community when the potential for a 

snowstorm arises.  Tracton and Kalnay (1993) applied the ensemble approach operationally for 

medium- and extended range predictions. Significant model variations reduce forecasters’ 

confidence and accuracy.   

Several studies examine different methods of post-processing ensemble forecasts in order to 

improve weather prediction.  Raftery et al. (2005) use Bayesian Model Averaging (BMA) to 

improve 48-hr surface temperature forecasts in the Pacific Northwest.  Their BMA forecasts were 

are calibrated much better than the raw ensemble, have prediction intervals 60% narrower than 

climatology, and yield a deterministic point forecast with 7% lower error than the best of the 

ensemble members and 8% lower than the ensemble mean.  Greybush et al. (2008) use 

performance-weighted windows and a k-means regime clustering technique of optimally 

weighting ensemble temperature forecasts from the University of Washington Mesoscale 
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Ensemble to improve 48-hr surface temperature forecasts as compared with an equal-weighted 

deterministic forecast.  Glahn et al. (2009) apply the error estimation capabilities of a linear 

regression framework together with the kernel density fitting applied to individual and aggregate 

ensemble members of the Global Ensemble Forecast System of the National Centers for 

Environmental Prediction to develop forecast probability density functions and cumulative 

density functions.  This method produces reliable temperature, dewpoint, daytime maximum 

temperature, and nighttime minimum temperature forecasts with an accuracy exceeding that of 

the raw ensembles. 

Although many of these advanced statistical post-processing methods have been shown to 

improve general forecasting, only recently have there been attempts to use post-processing to 

improve snowfall accumulation predictions.  Cosgrove and Sfanos (2004) apply the MOS post-

processing technique to forecast the conditional probability of snow and the snowfall amount 

exceeding a certain threshold, given that snowfall occurs, using the Global Forecast System 

(GFS) model.   

Several studies attempt to improve snowfall forecasting by more accurately predicting the 

snow density.  Roebber et al. (2003) conduct a principal component analysis of radiosonde and 

surface data and identify seven factors that influence snow ratio diagnosis: solar radiation per 

month, low- to mid-level temperature, mid- to upper-level temperature, low- to mid-level relative 

humidity, mid-level relative humidity, upper-level relative humidity, and external compaction as 

measured by surface wind speed and liquid equivalent precipitation amount.  Using these seven 

predictors, they develop a ten-member ensemble of artificial neural networks that improve the 

snow-ratio class when compared with using a 10:1 ratio, sample climatology, and National 

Weather Service new-snowfall-to-estimated-meltwater conversion table. In 2007, Roebber et al. 

tested this ensemble of artificial neural networks on the 2004/05 and 2005/06 cold seasons and 

they find that this neural network approach substantially improves upon previous methods.  
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Baxter et al. (2005) develop a climatology of snow-to-liquid ratio for the contiguous United 

States and find that a mean snow-to-liquid equivalent of 13 is more typical than the often-

assumed value of 10; there is considerable spatial variation in the mean however. 

 The goal of this study is to use advanced statistical guidance methods to post-process 

forecasts from the Global Ensemble Forecast System (GEFS) in order to improve both the 

accuracy and ensemble calibration, i.e. the forecast uncertainty information, for 24-hour snowfall 

accumulation predictions. Seven different statistical guidance methods are tested for producing 

24-hour snowfall accumulation forecasts from the Global Ensemble Forecast System direct model 

output.  These methods are trained to reduce the error of the control ensemble member and then 

applied to each ensemble member individually.  These individual ensemble members are then 

used to produce a single consensus forecast of snowfall accumulation.  Several techniques are 

used to examine the ensemble spread or calibration.  

In chapter 2, the Global Ensemble Forecast System and the cooperative observing network 

are described.  The statistical guidance methods used in this study are explained in chapter 3.  In 

the following chapter results are summarized and discussed.  Conclusions and prospects for future 

research are discussed in chapter 5. 
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Chapter 2  
 

Data 

 This chapter introduces the data used for this thesis: first the observing network is 

described, and then the ensemble forecast system is explained. 

 

2.1 Cooperative Observing Network 

In order to test the validity of any forecast or create a consistent, reliable statistical post-

processing, an accurate observing system is necessary (Allen 2001).  The National Climatic Data 

Center (NCDC) Cooperative Summary of the Day (co-op) reports were used as the snowfall 

observing network.  The co-op reports are produced daily by volunteers at their home or 

workplace and then sent to NCDC, which collects and processes the data.  The variables reported 

once per 24 hour period were precipitation amount, snowfall accumulation, maximum 

temperature, and minimum temperature.  Co-op stations are established, closed, supervised, and 

inspected by National Weather Service (NWS) personnel in annual visits to ensure observer 

proficiency, adherence to instrument and exposure standards, and network integrity (NWS 2000).  

The co-op stations do not report at a fixed time each day; thus in order to maintain consistency 

and to provide a valid test of the statistical guidance methods as described by Allen (2001), only 

those observations between 11 UTC and 17 UTC are retained.  This is done in order to compare 

forecasts valid for 12 UTC.  Not only are most of the observations recorded between 11 UTC and 

17 UTC, but this time period corresponds with a lead time of 12 hours from the Global Ensemble 

Forecast System.  This methodology is the same as that used by Cosgrove and Sfanos (2004).  
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Only the co-op observations with a snowfall measurement of a trace or more are retained in the 

dataset that spans the period from October 1, 2006 to March 31, 2007.   

 

2.2 Global Ensemble Forecast System 

The National Center for Environmental Prediction (NCEP) Global Ensemble Forecast 

System is an ensemble forecast system that uses the Global Spectral Model.  Owing to several 

changes in the model configuration and number of members, the longest cold season consistent 

dataset available was October 1, 2006 to March 31, 2007.  During this time period, the GEFS 

consisted of 15 total ensemble members (individual NWP forecasts): one high resolution control 

run and fourteen perturbations using the NCEP Ensemble Transform Bred Vector.  The high 

resolution control run is the Global Forecast System (GFS) model at 35 km resolution and 0 

degrees, while the fourteen other ensemble members are 105 km resolution and 0 degrees.  The 

initialization time of the forecasts was 00 UTC each day, and each forecast was archived at 95.25-

km resolution.  The GEFS direct model output consists of forecasts for every six hours from 0-

364 hours.  There are 31 forecast elements from the GEFS, which are listed in Table 2-1.  There 

are four forecasted wind speeds for both the U- and V-wind components, temperature forecast at 

five levels, four categorical precipitation variables: rain, freezing rain, ice pellets, and snow, four 

geopotential height fields, six-hour maximum temperature, six-hour minimum temperature, six-

hour accumulated precipitation, relative humidity forecast at four levels, and two pressure fields. 
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Table 2-1.  GEFS archived elements. 

Element Element Description [Units] Levels 

Press Pressure [hPa] Surface 

PRMSL Pressure reduced to MSL [hPa] Mean Sea Level 

RH Relative humidity [%] 2-M, 925hPa, 850hPa, 700hPa, 

500hPa 

TMP Temperature [K] 2-M,  1000hPa, 850hPa, 700hPa, 

500hPa 

TMAX Maximum temperature in 6-hr period [K]  2-M 

TMIN Minimum temperature in 6-hr period [K] 2-M 

U GRD U-comp of wind [m/s] 10-M,  850hPa,  700hPa, 500hPa 

V GRD V-comp of wind [m/s] 10-M,  850hPa,  700hPa,  500hPa 

HGT Geopotential height [gpm] 1000hPa,  850hPa,  700hPa,  500hPa 

FRZR Categorical Freezing Rain [1=yes;0=no]  2-M 

ICEP Categorical Ice Pellets [1=yes;0=no]  2-M 

SNOW Categorical Snow [1=yes;0=no]  2-M 

RAIN Categorical Rain [1=yes;0=no]  2-M 

PRCP 6-hr Total Precipitation Accumulation [kg/m
2
] 2-M 

 

 Some of the GEFS output variables exhibit collinearity, thus three variables are deleted: 

surface pressure because it is collinear with mean sea level pressure, 1000 hPa temperature 

because it is collinear with 2-M temperature, and 1000 hPa height because it is collinear with 

mean sea level pressure.  Although the GEFS predictions and co-op data cover the entire United 

States, the Northeast United States was the focus of this study.  Thus, the dataset only included 

Northeast observation sites.   Lake Ontario and Lake Erie help generate lake-effect snow, which 

has a completely different weather pattern than synoptic winter weather storms.  Therefore, the 
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Northeast United States dataset was structured so that it did not include locations that generally 

receive direct lake effect snow.   

 The dataset was split into levels based on elevation, owing to the fact that certain 

variables would be potentially below ground level if they were kept in the dataset.  At an 

elevation of 760 m, or approximately 2500 ft, the 925 hPa relative humidity is potentially below 

ground level; thus, the Northeast dataset was split into locations below 760 m, labeled the level-

one dataset, and locations above 760 m, labeled the level-two dataset.  For the locations above 

760 m, the dataset does not include the 925 hPa relative humidity for each six-hour forecast 

interval.  There are 10418 snowfall observations in the level-one dataset and 762 observations in 

the level-two dataset.  Figure 2-1 plots the observations for both levels in the northeast with black 

asterisks marking the locations of the level-one observations and the red plus signs marking the 

locations of the level-two observations.  There are 417 observation sites in the level-one dataset 

and 16 observation sites in the level-two dataset. 
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Figure 2-1.  Snowfall observation sites with black asterisks marking the locations of the level-one 
observations and the red plus signs marking the locations of the level-two observations. 

 

In order to compare the GEFS forecasts on a 95.25 km grid with individual co-op reporting 

sites, a nearest-neighbor weighting method was used to interpolate the GEFS gridded forecasts to 

the co-op locations.  First, the interpolation process converted the grid point locations and co-op 

reporting sites from spherical to Cartesian coordinates.  Then, the respective distances between 

the three nearest grid points and the co-op reporting sites were computed.  Finally, a distance-

weighted average of the three nearest neighbor grid points was used to calculate a forecast for the 

co-op location.   

The datasets consisted of GEFS predicted weather variables for each level at forecast valid 

times of 12-18 hours, 18-24 hours, 24-30 hours, and 30-36 hours.  These variables were 
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combined with latitude, longitude, and elevation of each station as predictors for the statistical 

guidance model as shown in Figure 2-2.   

 

 

Figure 2-2. Schematic of the predictors that the statistical guidance models use to predict the 24-

hr snowfall accumulation.   

 

Thus, the statistical guidance methods used these variables to predict the total 24-hour 

snowfall accumulation, conditional on snow occurring.  This methodology is displayed in Figure 

2-3.  The 11 UTC-17 UTC co-op observation, which is approximately 7 AM for observations in 

the Eastern Time Zone, is compared with a 12-36 hour prediction from the GEFS. 
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Figure 2-3. Process layout for the 12-36 hour snowfall accumulation forecast and corresponding 

observation.   
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Chapter 3  
 

Statistical Guidance Methods 

In order to forecast 24-hour snowfall accumulation, a method must be devised that translates 

the predicted weather variables from the GEFS, as well as the latitude, longitude, and elevation 

from the co-op sites, into a 24-hour snowfall accumulation prediction.  These are referred to as 

statistical guidance methods because they use statistics to post-process the direct model output 

into weather variables not directly output by the numerical weather prediction model.   

 

3.1 Linear Regression (LR) 

MOS is the statistical technique used in operational forecasting at the NWS to predict 

numeric variables not explicitly forecast in the model (Glahn and Lowry 1972).  MOS uses linear 

regression equations to relate the predicted variables to the predictands; thus, linear regression 

(LR) is the baseline method for comparison. 

 

3.2 Least Median Squares (LMS) 

In a slight variation of linear regression, the Least Median Squares (LMS) method is used 

(Rousseeuw and Annick 1987).  This method is a robust linear regression that minimizes the 

median of the squares of residuals instead of minimizing the mean of the residuals from the 

regression line.  It repeatedly applies ordinary linear regression to subsamples of the data and 

outputs the solution that has the smallest median-squared error.  

 

3.3 Artificial Neural Network (ANN) 

 The first nonlinear statistical guidance method used here is an Artificial Neural Network 

(ANN), which is depicted in Figure 3-1 (Rosenblatt 1958).  The goal is to improve upon LR by 



14 

 

capturing nonlinear relationships among the predictors.  This simplified diagram shows four 

predictors fed into one hidden layer consisting of five nodes.  These five nodes are connected to 

the output layer, or prediction, which in this case is the 24-hour snowfall accumulation forecast. 

  

Figure 3-1. Schematic of an Artificial Neural Network.   

 

 The ANN used in this study is a feed-forward neural network trained by a backpropagation 

algorithm, also known as a multi-layer perceptron (Rosenblatt 1958).  This ANN configuration is 

one hidden layer, a learning rate of 0.1 and a momentum of 0.1.  The back-propagating algorithm 

goes through 500 training cycles to find the optimal set of model weights.   For level-one, the 

hidden layer contains 30 nodes, while for level-two the ANN contains 58 nodes.  These 

configurations are chosen because they produce the lowest Root Mean Square Error (RMSE) on 

the control ensemble member using a three-fold cross-validation with 50 training cycles.  

Increasing the momentum or learning rate increased the RMSE, and decreasing these parameter 
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values produced statistically insignificant improvements in RMSE.  The addition of a second 

hidden layer or decay function increased the RMSE; therefore, neither were used in the final 

configuration.   

The activation function (1) is the standard sigmoid function,  

                                                       𝑌 𝑥 =  
1

1+ 𝑒−𝑥                                                                  (1) 

where Y is the snowfall prediction for instance x.  The predictor values are scaled to range from -1 

to +1.  The activation function defines the output of the node given a set of predictors.  This 

output node is linear for the numerical regression task of snowfall accumulation prediction.  

 

3.4 Radial Basis Function Network (RBF) 

 A method similar to the Artificial Neural Network used is a Radial Basis Function (RBF) 

network (Frank and Witten 2005).  The key difference between an ANN and an RBF network is 

the way in which the hidden layers perform computation.  The RBF network uses Gaussian radial 

basis functions (2) as the activation functions, and the ANN uses the sigmoid function (1) as the 

activation function.  A sigmoid function divides the pattern space using planes (or hyperplanes), 

but the Gaussian radial basis function uses circles (or hyperspheres).   Equation (2) is the 

Gaussian radial basis function Y  

                                            𝑌 𝑥 − 𝑐𝑖 =  
1

𝑒𝛽(𝑥−𝑐𝑖 )2      𝑓𝑜𝑟 𝛽 > 0                                                (2) 

in which 𝑐𝑖  is the center vector for neuron i, and 𝛽  is a weight. The radius, 𝑥 − 𝑐𝑖  is the distance 

from the center of the hypersphere to the instance x.  The Gaussian radial basis function  

                                                 𝑃 𝑥 =   𝑎𝑖𝑌(𝑥 −𝑁
𝑖=1 𝑐𝑖)                                                           (3) 

then predicts the output P(x), or the snowfall accumulation, via equation (3).  N is the number of 

neurons in the hidden layer and the three weights 𝑎𝑖  𝑐𝑖 , and 𝛽, are tuned to optimize by fit 

between the predictions and the training data.  In this RBF algorithm, the k-means clustering 
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algorithm is used to provide the basis functions and the algorithm learns a linear regression on top 

of that (Witten and Frank 2005).  The activations of the basis functions are normalized to sum to 

one before they are fed into the linear models.   

 The RBF network with three-fold cross validation on the control ensemble member for 

level-one tested various cluster sizes from 2 to 300 in order to determine the optimal 

configuration.  Three-fold cross validation is used to assess how the results of a method will 

generalize on a test dataset.  Three-fold cross validation splits the dataset into three equal subsets.  

Then, the method is trained on two of the subsets and predicts the third subset.  This is repeated 

two more times to predict the other two subsets.  Finally, the results are averaged from the three 

rounds. Although ten-fold cross validation is generally used (Witten and Frank 2005), three-fold 

cross validation is used for finding the optimal configuration because it still generalizes well and 

is more computationally efficient.  Figure 3-2 plots the RMSE of the RBF network for the 

different cluster numbers.   

 

 

Figure 3-2.  Sensitivity study to determine the optimal cluster size for the RBF network. 
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The RMSE decreases noticeably until approximately 120 clusters and then is approximately level.  

Therefore, 120 clusters were used in the RBF network.   

 The minimum standard deviation for the clusters was set to 0.1 and the iterations stop 

when the value for the ridge regression is less than 1.0 x 10
-8

, because these values produced the 

lowest RMSE for the RBF configuration with 120 clusters.   Ridge regression was used because it 

avoids the issue of predictor collinearity by using a penalized least squares procedure (Witten and 

Frank 2005).  For level two, 75 clusters were used in the RBF network because it produced the 

lowest RMSE with a three-fold cross validation on the level two dataset for the control ensemble 

member.  More clusters than 75 results in an exponentially increase of the RMSE, which was 

likely the result of overfitting. 

  

3.5 Conjunctive Rule (CR) 

 A Conjunctive Rule (CR) is a machine learning algorithm that bases its predictions on 

setting rules for the predictors (Witten and Frank 2005).  Conjunctive rules are learned by 

determining conditions shared by the examples.  A limitation of conjunctive rules occurs when 

problems do not have a single set of necessary and sufficient conditions.  A rule consists of 

antecedents ―AND‖ed together and the consequent for the regression (Witten and Frank 2005).  

The consequent is the mean for the numeric predictors in the dataset.  Uncovered test instances 

are assigned the default mean value of the uncovered training instances.  The algorithm selects an 

antecedent by computing the information gain from each antecedent and then prunes the 

generated rule.  Pruning is done with a reduced-error pruning technique that uses the weighted 

average of the mean-squared errors on the pruned data to determine the amount of pruning 

required.  In regression problems like snowfall accumulation predictions, the information gain is 

the weighted average of the mean-squared errors of both the data covered and the data not 

covered by the rule. A simple example of a conjunctive rule technique is predicting whether 
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freezing rain is possible.  If the temperature is less than 0°C and the minimum relative humidity is 

greater than 99%, then freezing rain would be predicted. The parameter that was tuned in the 

conjunctive rule was the number of rules to be used.  The results for three-fold cross validation on 

the control ensemble member with the level-one dataset produces no significant difference among 

2, 3, 5, 10, and 25 rules, with all RMSE values between 0.0566 and 0.0571 meters.  Thus, the 

default of three rules was used in the final configuration. 

 

3.6 Support Vector Regression (SVR) 

  Another method tested was a type of support vector machine for regression (SVR) 

(Smola and Scholkopf, 2004).  An issue with many linear models is that they only can represent 

linear boundaries between classes; a SVR method uses linear models to produce nonlinear class 

boundaries, however (Witten and Frank 2005).  The key in SVR is to transform the input, or 

predictors, using nonlinear mapping that transforms the predictor space into a new space.  A 

linear model, specifically a maximum margin hyperplane, developed in this new space can 

represent a nonlinear decision boundary in the original space (Witten and Frank 2005).   
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Figure 3-3.  Schematic of a maximum margin hyperplane and support vectors separating two 

classes in support vector classification. 

 

 Figure 3-3 describes the design of a support vector classifier.   In this two-class example, 

the instances are separated into two classes, labeled Class 1 and Class 2.  The maximum margin 

hyperplane is the linear model that separates the classes while maximizing the separation between 

classes.  The instances, i.e. the individual observations and corresponding predictors mapped on a 

high-dimensional space, that are closest to the maximum margin hyperplane are called the 

support vectors.  These support vectors uniquely define the maximum margin hyperplane for the 

learning algorithm.  This example also shows how overfitting is rarely an issue with support 

vectors because the two support vectors describe the maximum margin hyperplane and the other 

instances do not affect the hyperplane.  Thus, the maximum margin hyperplane remains relatively 

stable even when moving or deleting the non-support vector training instances.  In order to form a 

prediction, a dot product between the test instance and every support vector is calculated.  This 
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process can be very computationally expensive when there are many predictors, as is the situation 

with the snowfall prediction dataset of over 100 predictors.  

  Although the concept of maximum margin hyperplane applies to classification, it serves 

as a basis for numerical regression.  Both classification and numerical regression produce a model 

represented by support vectors that can be applied to nonlinear problems through kernel 

functions.  There are three main differences between classification and numerical regression in 

support vector machines.  First, the deviations up to a certain user-specified threshold are 

discarded in numerical regression.  This threshold determines how well the kernel functions are 

fit to the dataset.  Second, when minimizing the error, the risk of overfitting is reduced by 

simultaneously trying to maximize the flatness of the function kernel.  The third difference is that 

the error that is minimized is the absolute error of the prediction, instead of the squared error.   

 This support vector regression method uses a dot kernel type, a convergence epsilon of 

0.0010, and a maximum of 100000 iterations.  This configuration is chosen because it provides 

the lowest RMSE on the three-fold cross validation compared to other convergence epsilons and 

maximum number of iterations.  A dot kernel type also produces lower RMSE than a radial 

kernel type. 

 

3.7 K-Nearest Neighbor (kNN) 

 The final method tested was a k-nearest neighbor (kNN) algorithm that finds the closest k 

training instances in Euclidean distance to the given test instance (Witten and Frank 2005).  A 

distance-weighted average of these k-nearest neighbors was used to predict the snowfall 

accumulation.  Thus, the algorithm finds the closest k neighbors and averages their corresponding 

snowfall accumulation by 1/distance.  The number of k training instances was selected using 

leave-one-out cross-validation, given an upper limit for k of 100.  Leave-one-out cross validation 
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determined the optimal number of k to be 6 for the level one dataset and 5 for the level two 

dataset.    

 Figure 3-4 illustrates how the k-nearest neighbor algorithm works.  All dots correspond to 

instances mapped on a high-dimensional space.  Instances are the GEFS interpolated forecasts, 

latitude, longitude, and elevation valid for each snowfall observation.  The center orange dot 

corresponds to the test instance that the k-nearest neighbor method predicts.  The algorithm 

searches for the closest ten instances in this space, which is represented by all the dots inside the 

circle.  The method then computes the distance-weighted average snowfall accumulation for these 

ten instances.  In this diagram, out of the ten closest instances, eight have 0.2 m accumulations, 

one has a 0.1 m accumulation, and one has a 0.3 m accumulation.  Thus, the forecast given by the 

k-nearest neighbor method would be 0.2 m, assuming the 0.1 m and 0.3 m observations are the 

same distance from the test instance.  

 

 

Figure 3-4. Illustration of the k-nearest neighbor algorithm.  All dots correspond to instances 

mapped on a high dimensional space.  For k = 10, the distance weighted average of the ten 
instances inside the circle are used to predict the test instance in orange. 
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  All of the statistical guidance methods were trained on the high resolution ensemble 

member using a ten-fold cross validation (Wilks 2005).  Ten-fold cross validation uses the same 

methodology as three-fold cross validation, but instead of splitting the dataset into three equal 

subsets, it splits the dataset into ten equal subsets.  After the Root Mean Square Error (RMSE) of 

the 24-hour snowfall accumulation prediction is minimized in the cross validation, the statistical 

guidance models are saved.  The models were next applied to each ensemble member 

individually to form a 15-member ensemble of 24-hour snowfall accumulation predictions.  After 

the predictions were made by all statistical guidance methods, all forecasts below a trace, which 

are reported as 0.04 inches, or 0.001016 m, are set to 0.001016 m.  In addition, all forecasts 

greater than 36 inches, or 0.9144 m, are reset to that value in order to provide an upper boundary 

of snowfall accumulation, and therefore to eliminate outliers from skewing the results of the 

methods.
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Chapter 4  
 

Results 

 The accuracy of the methods is evaluated using the Mean Absolute Error (MAE) of the 

consensus forecast.  Ensemble spread is assessed with rank histograms, spread-skill relationships, 

and quantile-quantile plots.  Lastly, the value of splitting the datasets is tested by training the 

kNN method on a combined dataset and analyzing the results of the level-two instances. 

 

4.1 Accuracy Testing 

The ensemble mean consensus forecast was calculated by averaging the forecasts from the 

15 individual ensemble members in order to test the deterministic forecast accuracy of the 

statistical guidance methods,.  The Mean Absolute Error (MAE) of the consensus forecast is the 

mean absolute difference between the consensus forecast and the observation.  The MAE is 

averaged over all instances for each level in the Northeast separately.  Table 4-1 shows the MAE 

results for the statistical guidance methods for both levels. The k-nearest neighbor method 

produced the lowest MAE of all the methods tested.  The ANN was the second-best method and 

the SVR was the third best method.  Linear regression performed in the middle of the techniques 

for both levels.  The least accurate methods were the CR, LMS, and RBF.   
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Table 4-1.  Mean absolute error for all statistical guidance methods on both the level-one and 

level-two datasets.   

 
Level 1  

 
Level 2  

Method MAE (m) Ranking Method MAE (m) Ranking 

ANN 0.0236 2 ANN 0.0232 2 

CR 0.0327 6 CR 0.0327 5 

kNN 0.0168 1 kNN 0.0186 1 

LMS 0.0318 5 LMS 0.0353 6 

LR 0.0298 4 LR 0.0326 4 

RBF 0.0370 7 RBF 0.0426 7 

SVR 0.0267 3 SVR 0.0323 3 

 

 A paired two-sample student t-test with unequal variances was performed to examine if 

the results were significantly different among the statistical guidance methods.  The null 

hypothesis is that the two samples of forecast errors, one from each of two methods, have the 

same mean value.  Stated another way, the null hypothesis is that the two methods produce the 

same mean absolute error.   A p-value less than 0.05 rejects the null hypothesis.  Thus, values less 

than 0.05 indicate that the mean absolute error of the forecasting method in the column is 

significantly different from the mean absolute error of the forecasting method in the row.  The p-

value results for the t-test for level-one are shown in Table 4-2 and the results for level-two are 

shown in Table 4-3.  For the level one analysis, all methods produce significantly different mean 

absolute errors than all other methods at the 95% confidence level.  For the level two dataset, 

there were three combinations of methods that produced insignificantly different mean absolute 

errors because the null hypothesis could not be rejected: LMS and LR; SVR and LR; and CR and 

RBF.  

 Thus, the most accurate method, kNN, produced significantly better MAEs from all other 

methods on both datasets.  For both levels, three methods produced more accurate forecasts than 

linear regression; kNN, ANN, and SVR; the MAE for SVR was not significantly different from 

that for LR on the level two dataset, however. 
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Table 4-2.  Paired two-sample student t-test results for the level-one dataset.  Values less than 

0.05 are statistically significant at the 95% level. 

Level One ANN LR K LMS RBF SVR CR 

ANN -  0 0 0 0 0 0 

LR 0 -  0 0 0 0 0 

kNN 0 0 -  0 0 0 0 

LMS 0 0 0 -  0 0 0.0156 

RBF 0 0 0 0 -  0 0 

SVR 0 0 0 0 0 -  0 

CR 0 0 0 0.0156 0 0 -  
 

Table 4-3. Paired two-sample student t-test results for the level-two dataset.  Values less than 0.05 

are statistically significant at the 95% level. 

Level Two ANN LR K LMS RBF SVR CR 

ANN -  0 0.0062 0 0 0 0 

LR 0 -  0 0.0796 0 0.8409 0 

kNN 0.0062 0 -  0 0 0 0 

LMS 0 0.0796 0 -  0 0 0 

RBF 0 0 0 0 -  0 0.1025 

SVR 0 0.8409 0 0 0 -  0 

CR 0 0 0 0 0.1025 0 -  
 

4.2 Ensemble Spread Tests 

It is also important to evaluate the ensemble spread, or the forecast uncertainty, given by the 

statistical guidance methods.  One method to display ensemble spread is rank histograms.  The 

rank histogram was developed independently by Anderson (1996), Hamill and Colucci (1996, 

1997), and Talagrand et al. (1997) to quantify ensemble dispersion. These rank histograms are 

created by tallying the rank of the verifying observation relative to the ensemble member 

forecasts, which are first sorted from lowest to highest (Hamill 2001).  For example, if the 

verifying snow accumulation observation is lower than the lowest ensemble member forecast, 

then bin one, the leftmost bin, would get a tally.  Likewise, if the verifying observation is higher 
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than the lowest ensemble member forecast, but lower than the second highest ensemble member, 

then the second bin from the left would get a tally.  There are thus 16 bins for the 15-member 

ensemble studied here because the verifying observation could be lower than all ensemble 

members, higher than all ensemble members, or in between any of the 15 sorted members. 

 The rank histograms for all statistical guidance methods are displayed in Figures 4-1 and 

4-2 for level-one and level-two respectively.  Almost all of these rank histograms have a U-shape 

for all statistical guidance methods, which was traditionally identified as the ensemble being 

underdispersive.  An underdispersive ensemble has a spread that is not great enough to 

adequately capture the uncertainty in the forecast.  This result is evidenced by bins one (leftmost) 

and 16 (rightmost) having higher tallies than the other bins, meaning that the snowfall 

accumulation observation tended to be less than all of the ensemble member forecasts or greater 

than all of the ensemble member forecasts.  The lone exception is for the ANN method for level 

two that has more of an under-predictive rank histogram, that is, the snowfall accumulation 

observation tends to be greater than most or all ensemble member predictions.  These rank 

histograms show that none of the methods produced a calibrated or flat ensemble.  However, 

Marzban et al. (2010) showed that a U-shaped rank histogram does not necessarily mean that the 

ensemble is underdispersive because correlations among ensemble members can also produce a 

U-shaped rank histogram.   
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Figure 4-1. Rank histograms for all statistical guidance methods on the level-one dataset.  Here, a. 
is ANN, b. is LR, c. is kNN, d. is LMS, e. is RBF, f. is SVR, and g. is CR.  All methods show a 

U-shaped rank histogram. 
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Figure 4-2.  Rank histograms for all statistical guidance methods on the level-two dataset.  Here, 

a. is ANN, b. is LR, c. is kNN, d. is LMS, e. is RBF, f. is SVR, and g. is CR.  All methods except 

the ANN show a U-shaped rank histogram. 

 

A simple prediction method using the GEFS direct model output is used in order to test 

whether the statistical guidance methods are the cause of the U-shaped rank histograms, or if the 

cause of the U-shaped rank histograms is from the GEFS direct model output.   This method sums 

the accumulated precipitation from each 6-hr interval into a 24-hr total accumulated precipitation.  

Then, the liquid water equivalent in kg/m2 is converted to inches of rain, and finally a snowfall 

accumulation prediction is made using a snow-to-rain ratio of 10:1.  All forecasts that are greater 

than 36 inches of snowfall accumulation are given the value of 36 inches and all forecasts less 

than a trace, or 0.04 inches, are given the value of a trace.  The rank histogram for this method, 

Figure 4-3, shows this simple prediction method still produces a U-shaped rank histogram.  The 

first bin is higher than the last bin, which is expected because it is possible that some of the 
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precipitation fell as rain, sleet, or freezing rain during the 24-hr period. This analysis shows that 

the under-variability in the forecasts, as shown by the U-shape rank histogram in Figure 4-3, is 

likely a result of the direct model output rather than the statistical guidance methods. 

 

 

Figure 4-3.  Rank histograms for the simple prediction method based off the GEFS direct model 
output accumulated precipitation. This method also produces a U-shaped rank histogram. 

 

Another method for examining ensemble spread or calibration is analyzing the spread-skill 

relationship, which is a measure of the correlation between the ensemble spread and the ensemble 

mean error (Whitaker and Loughe 1998).  The ensemble spread is calculated by finding the 

standard deviation of the ensemble member forecasts.  The ensemble error is the absolute 

difference between the ensemble mean consensus forecast and the snowfall accumulation 

observation.  A calibrated ensemble should show a y = x correlation, or a slope of unity, between 
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the ensemble error and the ensemble spread.  Tables 4-4 and 4-5 show the correlation coefficient, 

slope, and intercept for a linear fit on the level-one and level-two datasets respectively. 

 

Table 4-4.  Correlation coefficient (R), slope and intercept for all statistical guidance methods on 

the level-one dataset.  The highest correlation coefficient value is for the kNN method. 

Method R Slope Intercept 

ANN 0.33 1.12 0.02 

CR 0.17 0.52 0.03 

kNN 0.80 1.66 0.00 

LMS 0.06 0.97 0.03 

LR 0.25 1.20 0.02 

RBF 0.10 1.28 0.03 

SVR 0.32 3.28 0.01 
 

Table 4-5.  Correlation coefficient (R), slope and intercept for all statistical guidance methods on 
the level-two dataset.  The highest correlation coefficient value is for the kNN method. 

Method R Slope Intercept 

ANN 0.55 0.61 0.01 

CR 0.26 0.51 0.04 

kNN 0.90 2.30 0.00 

LMS 0.10 0.24 0.03 

LR 0.44 0.78 0.02 

RBF -0.07 1.28 0.03 

SVR 0.12 0.29 0.03 
 

 The method with the highest correlation coefficient values for both levels is the k-nearest 

neighbor method. This indicates that the kNN method produced the best correlation between 

ensemble spread and ensemble error.  Figures 4-4 and 4-5 show the spread-skill plots for the k-

nearest method for levels one and two respectively.  The plots indicate that ensemble for both 

levels, the slope is greater than one, which means the ensemble mean error was on average 

greater than the ensemble spread; that is, the ensemble is underdispersive. 
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Figure 4-4.  Spread-skill plot for the k-nearest neighbor method for the level-one dataset. 
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Figure 4-5. Spread-skill plot for the k-nearest neighbor method for the level-two dataset 

 

 The high correlation coefficient value indicates that the correlation between ensemble 

error and spread is high and that the relationship can be accurately calibrated.  Other methods 

have slopes closer to unity but correlation coefficients much less than one, such as the LMS 

method for level-one that has a slope of 0.9692 but a correlation coefficient of only 0.0593.  This 

means that the slope of the best-fit line is close to unity, but is a poor representation of the 

relationship between spread and error because the correlation coefficient value is low.  These 

spread-skill plots and correlation analyses show that the kNN method produces an ensemble 

spread that best predicts the ensemble error. 

 Another technique for evaluating the forecast uncertainty is Quantile-Quantile, or QQ, 

plots (Wilks 2005).  A QQ plot is a method for comparing two probability distributions by 
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plotting the quantiles of the two variables against each other.  A QQ plot is computed by sorting 

the observations from lowest to highest and the forecasts from lowest to highest independently.  

These independently sorted observations are then paired with these independently sorted 

ensemble forecasts.  These pairs are then plotted with the observations on the abscissa versus the 

ensemble member forecasts on the ordinate, as shown by the + signs on Figures 4.6 and 4.7.  The 

different colors represent the different ensemble members. The dashed lines join the first and 

third quartiles of each distribution and are extended out to the ends of the sample to help evaluate 

the linearity of the data.  A calibrated ensemble will show a 1-1 relationship between the 

ensemble member forecasts and the observations.  Thus, the closer the dashed lines to the solid 

line, the more calibrated the ensemble. Figures 4-6 and 4-7 display all of the statistical guidance 

methods QQ plots for level-one and level-two, respectively.  
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Figure 4-6.  QQ plots for all statistical guidance methods on the level-one dataset.  The dark line 

is unity, the colored plus signs represent the different ensemble member quantiles, and the 

colored dashed lines connect the first and third quartiles of each ensemble member. 
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Figure 4-7. QQ plots for all statistical guidance methods on the level-two dataset.  The dark line is 

unity, the colored plus signs represent the different ensemble member quantiles, and the colored 

dashed lines connect the first and third quartiles of each ensemble member. 

 

  There are two distinct features of the QQ plots that show the kNN method produces the 

best ensemble spread estimates of the methods tested.  First, the first to third quartile lines for the 

kNN method are closest to the y = x line.  Second, within the same plot, each of the first to third 

quartile lines are only slightly different, unlike other methods that have some outlier ensemble 

members  The QQ plots confirm that the kNN method produces the most calibrated ensemble.  

Shown in Figures 4-8 and 4-9 are larger QQ plots for the kNN method on level-one and level-two 

datasets. 
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Figure 4-8. QQ plot for kNN method on the level-one dataset.  The dark line is y = x, the colored 

plus signs represent the different ensemble member quantiles, and the colored dashed lines 
connect the first and third quartiles of each ensemble member. 
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Figure 4-9.  QQ plot for kNN method on the level-two dataset.  The dark line is y = x, the colored 

plus signs represent the different ensemble member quantiles, and the colored dashed lines 
connect the first and third quartiles of each ensemble member. 

 

 The QQ plot for kNN method on the level-one dataset, Figure 4-8, had a convex shape 

compared to the y = x line.  This indicates that the kNN method produced ensemble members 

with probability density function that is negatively skewed.  This means that the probability 

density function of the ensemble forecasts is skewed low compared to the probability density 

function of the observations.   For the level-two QQ plot, the plotted quantiles below the y = x 

line indicate that the kNN method had a low forecasting bias for snowfall observations greater 

than 0.1 m.  Although the kNN QQ plots are not ideal, they are better than the other methods. In 

addition, these QQ plots can be used to improve operational forecasting.  For example, at a 

location site above 760 m, if the kNN method was predicting 0.2 m for an impending snowstorm, 
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the QQ plot shows that the forecasts tend to be biased low, and therefore, the forecaster should 

predict snowfall to be greater than 0.2 m.  Thus, the QQ plots reaffirm that the kNN method 

produced the best ensemble spread, or calibration. 

 

4.4 Robustness 

 In addition to the ensemble mean accuracy and ensemble spread metrics, the k-nearest 

neighbor method was tested on a combined dataset.  This approach combined the data from the 

two levels and kept the 925 hPa relative humidity for the original level-two instances.  This 

dataset had 11180 instances of snowfall accumulation.  The goal of this analysis was twofold: to 

determine if the kNN method was robust enough to handle the combined dataset and to determine 

if splitting into levels was significant for prediction.  As was done for finding the optimal number 

of k-nearest neighbors on the elevation split datasets, leave-one-out cross validation technique is 

used and the optimal number of k-nearest neighbors is determined to be six.  This kNN model is 

trained on the high resolution ensemble member using ten-fold cross validation and then applied 

to each ensemble member individually.   

 Since there are 10418 observations in the level-one dataset and only 762 in the level-two 

dataset, the question is whether the skill of the kNN method is degraded on the level-two dataset 

when training the kNN on the combined dataset.  The MAE of these 762 instances from the level-

two trained kNN is 0.019 m, while the MAE of these 762 instances from the kNN trained on the 

combined dataset is 0.022 m.  A two-sample student t-test with unequal variances proved that the 

MAE for the kNN method on the combined dataset is significantly different at the 95% level.  

 For the spread-skill analysis, the level-two trained kNN produces a correlation coefficient 

of 0.90 with a slope of 2.30 when the kNN method trained on the combined dataset produces a 

correlation coefficient of 0.87 and a slope of 2.36.  Both the correlation coefficient and slope 
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show decreased forecasting performance of the kNN method when trained on the combined 

analysis.  

 The QQ plot for the kNN method trained on the combined dataset confirms the degraded 

skill of the kNN method by training on the combined dataset.  The QQ plot, Figure 4-10, shows 

that there are some outlier ensemble members, as evidences by their first to third quartile lines 

further from the y = x line. In addition, none of the ensemble member lines that connect the first 

and third quartiles are as close to the y = x line as they are in the level-two trained kNN method, 

Figure 4-9.   

 

Figure 4-10. QQ plot for kNN trained method on the combined dataset with only the level-two 
instances plotted.  The dark link is y = x, the colored plus signs represent the different ensemble 

member quantiles, and the colored dashed lines connect the first and third quartiles of each 

ensemble member. 

 

 Thus, the kNN method on the combined analysis provides evidence that the kNN method 

is not robust enough to handle not splitting the dataset into elevation subsets.  In addition, a 

dataset that included the Rocky Mountains with higher elevations that have different 
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climatologies or datasets that have a fairly equal number of observations may degrade the 

forecasting ability of the kNN method even more.  

  



41 

 

Chapter 5    

Conclusions 

Seven different statistical guidance methods were tested for producing 24-hour snowfall 

accumulation forecasts from the Global Ensemble Forecast System direct model output.  These 

methods were trained to reduce the error of the control ensemble member and then applied to 

each ensemble member individually.  An average of these individual ensemble members into a 

single consensus forecast produced a deterministic snowfall accumulation forecast.  Several 

techniques were used to examine the ensemble spread or calibration.  The linear regression 

method was used as the baseline for comparison because it is the method closest to the National 

Weather Service standard operational statistical guidance method, Model Output Statistics.  Three 

methods, SVR, ANN, and kNN, showed potential improvements over linear regression in terms 

of accuracy with the kNN method producing the best ensemble spread calibration, or uncertainty 

estimate, of all the methods tested.   

The results demonstrate that the kNN statistical guidance method of predicting 24 hr 

snowfall accumulation provides more accurate deterministic forecasts than the linear regression 

method or any other method.  The MAE of the kNN method was significantly smaller than that 

for the second most accurate method, the ANN.   The RBF network and SVR did not perform as 

well as did the ANN or the kNN.  The disadvantage of the RBF network and SVR is that both 

methods give every predictor the same weight because they are equally valued in the distance 

computation; thus, these methods cannot ignore irrelevant predictors.   

To evaluate the ensemble spread or calibration, three methods were used: rank histograms, 

spread-skill relationships, and Quantile-Quantile (QQ) plots.  The rank histograms provided 

evidence that nearly all statistical guidance methods produced U-shaped ranked histograms, 
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which can indicate underdispersive or correlated ensemble members.  Examining the correlation 

coefficients for the spread-skill relationships showed that the kNN method produced the highest 

correlation between ensemble spread and ensemble error for both level-one and level-two.  Thus, 

its spread can be calibrated via a linear transformation to produce useful error estimates.  In 

addition, the QQ plots confirmed that the kNN method produced the most appropriately 

calibrated ensemble.  

In conclusion, the kNN statistical guidance method outperforms not only linear regression, 

but all other methods in terms of the both deterministic forecast accuracy and the ensemble 

spread. Thus, the kNN method appears to be the best statistical guidance method for forecasting 

24-hour snowfall accumulation for this dataset. 

This study examined a 24 hour snowfall accumulation with a forecast lead time of 12 hours.  

Examining these methods at longer lead times would help confirm the rankings of the methods.  

The support vector regression technique required extensive computer resources.  There are many 

versions of support vector regression techniques, but the extensive computer time required to test 

each limited the number of different variations tested.  It may be possible to combine support 

vector regression with a technique that preprocesses the data to allow for faster computations and 

potentially more accurate predictions.  In addition, a performance, regime, or elevation-weighted 

average of these statistical guidance methods may improve the forecast accuracy and spread of 

the ensemble. 

Future work will involve calibrating the kNN method to produce better ensemble spread 

estimates.  The QQ plot for the kNN method on the level-one dataset showed that the probability 

density function of the forecasts is negatively skewed compared to the probability density 

function of the observations.  A post-processing method could be devised to transform the 

probability density function of the forecasts to more accurately match the probability density 

function of the observations, which would lead to better ensemble spread estimates.  For the 
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level-two trained kNN method, the QQ plot showed a low forecasting bias for instances greater 

than 0.1 m.  An equation could be developed to post-process the kNN method to increase the 

forecasts that were already previously greater than 0.1 m.  The spread-skill relationships for the 

kNN method on both levels datasets produced slopes greater than one; thus, a post-processing 

method that increases the ensemble spread compared to the ensemble error would provide better 

forecast uncertainty estimates. 
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