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Abstract

The propagation of electromagnetic waves through ceramics and composite materials is in-

vestigated in this work. The design of complex artificial materials has potential as a valuable

tool for application to many new devices, such as high-resolution lenses and electromagnetic

imaging devices, as well as for the improvement of currently existing ones. A technique is

demonstrated for the characterization of ceramics and other dielectrics, at terahertz frequen-

cies, with the use of terahertz time-domain spectroscopy (THz TDS). Composite materials

comprised of complex scatterers, and in particular spherical resonators, are studied using

the same system. In order to calculate the scattered fields from a large number of resonant

spheres, a new technique is developed, based on the characteristic basis function method

(CBFM). This technique improves the computational speed of the calculation, as well as

allowing the solution of bigger scattering problems, with a larger number of larger sized

spheres. Finally, a technique is developed that allows the characterization of an anisotropic

material, at any angle of incidence, to provide all the material tensor coefficients of the

material of interest. The material tensors of effective media are related to the structure of

the medium’s lattice, and the importance of symmetry in the structure is demonstrated.

A procedure is demonstrated that allows one to verify that the retrieved parameters are

indeed those of the bulk material, by comparing eigenvectors of the extracted T -matrices.

The procedure reveals that for many complex materials, such as dielectric resonators arrays,

effective medium approximations do not apply, and so calculation techniques such as the

CBFM, or the finite-difference time-domain method must be used to correctly determine the

behavior of a composite.
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Chapter 1

Introduction

1.1 Statement of the problem

This thesis presents a methodology for characterizing materials and complex composite elec-

tromagnetic structures, and in particular aggregates of resonant spheres. The motivation

behind this work is to contribute to an understanding of the behavior and response of com-

plex media, and to determine the viability of these exotic materials for application to new

engineering devices and designs. The term metamaterial - a composite media with a re-

sponse that differs from those of its constituent parts - has received increasing attention in

recent years. The promise of wonderful new applications, verging on the science fiction, has

driven research from engineers, scientists and mathematicians. The idea of a perfect lens,

or a cloaking device, to name but two, have captured the imagination of the general pub-

lic. And academically, the number of publications and citations has grown exponentially. A

great draw for research, and of interest, has been the homogenization of a complex structure;

representing that complex structure as an effective media that will simplify its use in the

designs of devices, as well as some of the wonders that have been promised. The question

bodes though, how well do these effective media truly represent the structure they are re-

placing? It would surely simplify all design processes if they were a perfect representation,

but are these representations truly correct?

A common technique for representing a composite structure as an effective media, is to

1



replace that structure with an effective permittivity and permeability. The permeability and

permeability are the parameters of any material that determine how it will respond to an

electromagnetic field. The idea is that, if you can find a permittivity and a permeability that

responds exactly as your structure does, then you can replace your structure with a black

box, of which you can ignore everything else but those two parameters, and that will allow

you to work with it for any application you may need.

The basis for the techniques that are used to determine those parameters have existed

for as long as the study of electromagnetics itself. We will discuss the history of this research

further, later in this chapter, however we should note that the attempt at determining the

permittivity and permeability of a structure is not just limited to complex, exotic materials,

but is of utmost importance to the characterization of even the basic of materials. We will

begin our discussion, in chapter 2, with the demonstration of a material characterization

technique for some of these materials, in a region of the electromagnetic spectrum that is

possibly the fastest growing in terms of interest - the terahertz band. This is a region of

the spectrum that contains 90% of the energy in the universe, but which we have only very

recently been able to attempt to harness. Even relatively common materials may possibly

have unknown or surprising behavior at these frequencies, and so it is of interest to explore.

After our investigation of ceramics at these frequencies, we will then turn our attention to

more complicated structures, i.e., periodic arrays of spheres. These spheres have complicated

scattering, but is it possible to represent these spheres as an effective media?

To begin to answer this question, we need a full understanding of how electromagnetic

fields behave with these spheres. And for that purpose, in chapter 3 we will present a new,

highly efficient technique for calculating the fields that are scattered from the spheres. The

technique is called the characteristic basis function method (CBFM), and allows the complete

solution of the scattering from a random, or periodic, arrangement of spheres.

We stated earlier that the idea of replacing a structure by an effective permittivity and

permeability was very popular. However, can a complex structure like an aggregate of spheres

2



really behave like a regular isotropic dielectric material? It turns out that the permittivity

and permeability are themselves very complicated ideas. A common approach has been to

use a constant for each of the two, or in some cases provide a frequency dependence, i.e.,

dispersion. However in reality, materials can be, and quite regularly are, more complicated

than just frequency dispersive. They may be spatially dispersive, or if they are functions

of space, then they are inhomogeneous (very common despite what most textbooks would

have you believe!) They may also be nonlinear, in that they are functions of the strengths of

the fields. What we are most interested in, however, is isotropy, or rather, the lack thereof.

An isotropic material is independent of the polarization of the interacting electromagnetic

wave. These structures are extremely simple to analyze. However, many materials are in

fact anisotropic; that is, they are dependent on the direction of the field. In chapter 4 we will

discuss the relationship of symmetry in a structure to its anisotropy, and determine what

complex structures cannot be modeled as isotropic media. In order to provide a methodology

to do this, we have developed what is, to the best of our knowledge, the first technique, at

the microwave and terahertz frequencies, that allows the complete determination of the

material parameters of the most general form of an anisotropic material. Additionally, the

technique will allow characterization at oblique incident angles (almost all others are limited

to normal incidence), while also providing a simple quantitative test for whether the extracted

parameters truly reflect those of the bulk material. It will be shown that a sample must be

of a minimum thickness, otherwise surface layer effects dominate, and the material will not

behave as a homogeneous bulk material.

In the concluding chapter, the results of the work are summarized, including important

findings and newly developed techniques. Finally, suggestions for future work will be made.

1.2 The terahertz gap

Recent years have seen a large amount of interest devoted to the terahertz (THz) region

of the electromagnetic spectrum. A lack of sources, especially in the frequency range of
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100 GHz to 10 THz, had made investigations into this band difficult. This was despite the

promise of applications in the characterization of materials, biomedical imaging, detection of

explosives, communications, and a plethora of other fields. The term ”terahertz gap” proved

a particularly good description of the gap between the microwave and infrared (IR) bands;

the division between solid-state electronics and optical photonics. Lately, this gap has begun

to narrow as new, higher-power sources have started to cover a greater range of frequencies,

leading to excitement at the range of applications that have begun to open up.

1.2.1 Terahertz sources

The earliest investigations at terahertz frequencies were reported in the 1960’s, not long

after the development of the laser. Gebbie et al., in particular, demonstrated an HCN laser

operating at .337 mm (0.89 THz) [1]. Shortly afterwards, the same group used their setup

to characterize the monochromatic refractive indexes and absorption coefficients of various

benzene compounds [2], as well as air [3]. In recent years, the development of new terahertz

sources have involved both solid-state electronic devices and optical schemes. Solid-state

technologies, extended from the microwave frequencies, have in particular been useful for

applications in wireless communication. The two main photonic sources that have been at-

tracting attention are the quantum cascade laser (QCL), as well as traditional optical THz

generation. The QCL was first demonstrated at far-IR frequencies (70 THz) in 1994 [4],

while the first terahertz band (as we have defined it here) QCL, operating at 4.4 THz, was

demonstrated in 2002 [5, 6]. Undoubtedly, the most widely used source for terahertz materi-

als research and characterization has been time-domain optical THz generation. The earliest

works on this technique were performed at AT&T Bell Laboratories [7] and the IBM Wat-

son Research Center [8]. These two labs also developed, respectively, the electro-optic and

photoconductive antenna for THz generation/detection. The electro-optic effect was used

to generate Cherenkov radiation, while the technique used currently, namely the free-space

electro-optic sampling method, was developed by Wu et al. [9]. These works were also the
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precursors to the technique termed THz time-domain spectroscopy (TDS). This is the most

prevalent technique used currently for material characterization at terahertz frequencies. We

will discuss THz TDS, as well as the two main generation/detection techniques in more detail

in chapter 2.

For further information on the various aspects of terahertz technology, the interested

reader may consult one of a number of reviews. This began with the earliest terahertz

research involving submillimeter astronomy [10], as well as more contemporary works in-

cluding terahertz materials [11], so-called ”T-ray” imaging [12, 13], biomedical applications

[14], space sciences [15], and security applications [16, 17]. There have also been a number

of reviews on the historical achievements of terahertz research in general [18, 19, 20, 21, 22].

1.3 Metamaterials

The term metamaterial was coined in 1999 by Rodger Walser [23, 24]. He defined them as:

Macroscopic composites having a manmade, three-dimensional, periodic cellular

architecture designed to produce an optimized combination, not available in na-

ture, of two or more responses to specific excitation.

In 2001, Valerie Browning and Stu Wolf of the Defense Advanced Research Projects Agency

(DARPA), redefined the term, stating that:

Metamaterials are a new class of ordered composites that exhibit exceptional prop-

erties not readily observed in nature. These properties arise from qualitatively

new response functions that are:

� Not observed in the constituent materials and

� Result from the inclusion of artificially fabricated, extrinsic, low dimensional

inhomogeneities.
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This definition has remained popular in the metamaterials community, with the key omission

of the reference to observation in nature. Many natural materials, whether discovered or not,

exhibit unusual properties that would be beneficial to engineers if we were able to artificially

design them to our needs. An example of such a natural material is the opal, which at

visible wavelengths exhibits some of the metamaterial properties that we will discuss, due

to its ordered lattice of silica spheres.

1.3.1 Negative refractive indexes and other ”metamaterial” concepts

Possibly the most well known possiblity allowed by metamaterials is the negative index of

refraction (NIR). The index of refraction determines how much the speed of light is reduced

in a medium, compared to in a vacuum. This is determined by Snell’s Law:

n1 sin θ1 = n2 sin θ2, (1.1)

in which n1 and n2 are the refractive indices of two materials, while θ1 and θ2 are the angles

that a ray of light will make, to the normal, at an interface between the two media. Snell’s

law, named after Willebrord Snellius who derived it in 1621, had been described a few years

earlier, in 1602 by Thomas Harriot. However it was in fact first described in it’s current

form centuries earlier, by the Islamic mathematician Abu Said al-Ala ibn Sahl [25, 26]. Ibn

Sahl had been investigating the use of lenses as burning instruments, and had known of

the laws of refraction by at least 984 CE. Ibn Sahl was one of a number of Islamic scholars

and philosophers in this Golden Age of science in the Islamic World. A century earlier,

Ya’qub ibn Ishaq al-Kindi (known as Alkindus in the West), had begun the promotion of

the Greek and Hellenistic philosophies, and particularly those of Aristotle. Among his many

contributions to philosophy, mathematics, and science (he wrote what is possibly the oldest

known work on environmentalism and pollution), he was an accomplished optical scientist; he

investigated both the Aristotelean and the Euclidean theories of optics, eventually settling,
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after numerous laboratory and thought experiments, on the Euclidean ray optical theory

(See Figure 1.1). The works of ibn Sahl and al-Kindi were later built upon by probably the

greatest Islamic scientist, Abu Ali al-Hasan ibn al-Haytham (known in the West as Alhacen)

in, among other texts, his Kitab al-Manazir (Book of Optics) [27] - a classic referenced for

centuries afterwards by many optics scholars, including Sir Isaac Newton. Ibn al-Haytham

not only investigated the theories of refraction, both theoretically and experimentally, but

he also applied it to the first experimental studies of the dispersion of visible light into the

colors of the rainbow. In addition, he investigated the multiple reflections within a spherical

lenses [28], which is a very early precursor to a later chapter in this thesis on scattering from

dielectric spheres.

Returning to the concept of a negative refractive index, Viktor Veselago showed in 1964

(with the translation to English appearing in 1968), that a media with simultaneously neg-

ative permittivity ε and permeability µ, a so called double negative (DNG) material, will

exhibit a negative refractive index [29]. Applying this to Snell’s Law (1.1), what this means

is that light traveling through free space, and incident upon a material with a negative n,

will in fact bend in a direction opposite to what one would expect with a positive index

media.

In addition to the concepts of negative refraction and double negatives, Veselago also

related these properties to the handedness of a wave, i.e. whether the E, H and k vectors

form a right- or a left-handed triplet. He showed that conventional double positive materials

will exhibit right-handedness, while a DNG material will be left-handed, leading to the term

left-handed material (LHM). What left-handedness implies, is that for a particular electric E

and magnetic H field, the phase vector k in a left-handed medium will point in the opposite

direction to that in a right-handed one. A further result of this property is the backward-

wave, for which the phase vector points in the opposite direction to the Poynting, or power

vetor S. In fact, this wave was first postulated for mechanical systems by Horace Lamb in

1904 [30], and Henry Pocklington in 1905 [31]. Arthur Schuster first discussed backward-

7



(a)

(b)

Figure 1.1: Geometrical investigations of ray optics by al-Kindi. Courtesy of the Tareq Rajab
Museum, Kuwait.
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waves for optical systems [32], with speculations on the implications for refraction. In fact in

Lamb’s paper, he mentions that the concept of oppositely directed group and phase velocities

was proposed to him by Schuster, who noted anomalous dispersion in the absorption spectra

of sodium vapor. Interestingly though, Schuster was doubtful of the applications of negative

refraction, due to these highly absorbing bands. Nevertheless, in the 1950’s, the backward-

wave did find useful application in the form of the backward-wave oscillator [33].

Veselago did, however, note that no known naturally occurring materials simultaneously

exhibited the properties he wrote of. It was not until around four decades later that further

progress was made. Pendry et al. first proposed an artificial medium, formed by periodic

arrays of wires mimicking a plasmon, that would exhibit a negative effective permittivity at

microwave frequencies [34]. Three years later, in 1999, he then demonstrated a cylindrical

structure formed with two split rings, now known as the split-ring resonator (SRR), as well

as a similar structure which he name the ”Swiss roll” capacitor, that both exhibited effective

magnetic permeabilities from nonmagnetic materials. Pendry showed that the designed

effective permeabilities could include negative values, and thus the two components needed

to create an artificial double negative medium were available. In 2000 Pendry described the

creation of a material with a negative index of refraction [35], and in the same year, the first

double negative structure was fabricated by Smith et al. [36]. A transmission line approach

to left-handed materials was later developed [37, 38, 39, 40, 41], with close relation to the

backward-wave oscillators of the 1950’s.

The definition of a metamaterial is not, however, limited to just these double negative,

left-handed media. There are a number of other exotic properties and intriguing structures

that are borne out of the engineering of artificial media, including photonic bandgap (PBG)

and electronic bandgap (EBG) structures [42, 43, 44, 45, 46]. In fact, the first metamaterial

devices, using the current definition, were probably Kock’s metal lens antenna [47] and

metallic delay lens [48]. He designed them in the 1940’s to take advantage of physical effects

caused by many periodic, sub-wavelength conductors; in effect creating an artificial material.
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A few years later, in 1952, Corkum followed these up with his own investigations of artificial

dielectrics composed of spheres [49].

1.3.2 Homogenizing a material

Homogenization is the process of replacing a complex structure with an effective medium - a

material that has properties which would exactly replicate the response of the structure that

it has replaced. The history of homogenization is almost as long as that of electromagnetics

itself. The first significant results in electromagnetic homogenization were due to the investi-

gations of collections of molecules or inclusions in a background environment. The works of

Octavio Mossotti in 1850 [50], and Rudolf Clausius in 1870 [51] led to the Clausius-Mossotti

formulas. Lord Rayleigh later studied the effective material parameters of a cubic lattice of

spherical or cylindrical inclusions [52], later generalizing his theory to ellipsoidal inclusions

[53]. James Clerk Maxwell-Garnett derived the Maxwell-Garnett formula, based on his work

on the color of glasses due to metal inclusions [54]. Dirk Anton George Bruggeman then de-

veloped his theory, the Bruggeman formula, in another important step for mixing theory [55].

Joseph Keller followed Lord Rayleigh’s lead by looking at the effective material properties

of arrays of spheres and cylinders [56], and then provided a breakthrough in homogenization

theory, revolutionizing the field by using variational calculus to obtain an effective conduc-

tivity for an array of cylinders [57]. A more in-depth overview of homogenization and mixing

theory can be found in [24, 58, 59].

Pendry took a classic technique to homogenization in [60], when he used a volume integral

[59] to average the fields over the unit cell enclosing his structure. More popular lately, due to

their experimentally simple and numerically efficient implementation, have been variations

of the Nicolson-Ross-Weir [61, 62] transmission line-based material characterization method.

Using this technique, the reflection and transmission coefficients are measured with a wave

incident upon a slab of an unknown material, followed by an inversion to provide the material

parameters [63]. Chapter 4 will cover this topic in more detail, including the demonstration
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of a method for extracting the anisotropic permittivity and permeability tensors of a slab of

unknown material.

1.3.3 Applications of metamaterials

Since the development of Kock’s artificial dielectric antennas, a number of applications have

been both theorized, and demonstrated for metamaterials. Amongst the most well known

has been Pendry’s so-called perfect lens [35], with which a negative refractive material can

beat the diffraction limit, and focus sub-wavelength light. Additionally, he conjectured the

surprising result that a single-negative material is capable of amplifying evanescent waves,

and thus focusing the near-fields. He proposed that silver, which demonstrates negative

permittivity, plasmonic behavior at optical frequencies, if only a few nanometers thick, can

behave as a sub-wavelength focusing lens. This was verified experimentally by the group of

Xiang Zhang [64], when a silver lens used in conjunction with atomic force microscopy, was

capable of achieving superior resolution to what is normally possible.

At microwave frequencies, the transmission line approach to metamaterials has resulted

in a number of beneficial applications, including novel directional couplers [65], leaky-wave

antennas with backfire-to-endfire scanning capabilities [66], and miniaturized antennas [67,

68]. At terahertz frequencies, liquid crystals have allowed the design of zero-index and

tunable metamaterials [69], with which the refractive index may be tuned from negative, to

zero, and to positive values. Applied in the terahertz gap, this may see significant benefit as

a filtering device.
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Chapter 2

Terahertz Materials Characterization

2.1 Dielectric characterization

The dielectric properties of materials are vitally important in the design and application

of any particular device at any frequency range. The dielectric behavior of a material is

defined by its complex permittivity, ε = ε′− jε′′. However, we generally deal separately with

the relative permittivity, εr = ε′/ε0 (referred to as the dielectric constant κ in the materials

community), and the loss tangent, tanδ = ε′′/ε′ (or alternatively quality factor, Q = 1/tanδ)

. A variety of characterization techniques exist that would allow one to obtain these dielec-

tric properties, but the availability of so many different techniques can also lead to some

confusion; each one of the plethora of material characterization methods has its own advan-

tages and disadvantages, and they are each suitable for use in a particular frequency range,

from close to DC up to the infrared frequencies. Above these frequencies, the macroscopic

material models begin to fail.

Figure 2.1 shows the electromagnetic spectrum from DC up to the ultraviolet frequencies,

with the THz gap in between. At frequencies below the THz gap, we have the electronic

regime. Here we can find the radio waves, including the microwaves (300 MHz to 300 GHz).

Above 300 GHz, and up to the edge of the visible light spectrum (450 THz to 750 THz),

the infrared waves (300 GHz to 450 THz) can be found. The THz gap is in fact a part of

the near-IR band, and above the gap we have the optical regime. Just as the sources and
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devices change between these two regimes, the material characterization techniques, along

with the response of the materials themselves change.

2.2 Outside the terahertz Gap – material characterization tech-

niques

Before we discuss dielectric characterization techniques at terahertz frequencies, an overview

of the available methods outside the terahertz gap will be provided. This will give the reader

the context in which to place the terahertz techniques, as well as an idea of the frequency

ranges that we may cover. As well as splitting the electromagnetic spectrum into electronic

and photonic regimes, Figure 2.1 also summarizes a number of the available techniques. It

is impossible to be truly exhaustive; however, the most widely used methods are included.

Low frequency techniques, up to around the 10 MHz range, rely on the measurement of

quasistatic parameters (i.e., capacitance or impedance). At microwave frequencies, a variety

of techniques exist, each of which can loosely be defined as either a resonant or a broadband

measurement. The resonant techniques have the ability to measure high quality factor

(high Q), low loss materials, with small sample sizes, albeit only in a narrow frequency

band (or bands). In general though, low loss dielectrics have very little change in the

permittivity over a broad frequency range, so resonant techniques are ideally suited for

these materials. They are however limited in measuring high-loss (low Q) materials. The

broadband techniques, on the other hand, are well suited to measuring high-loss samples, at a

large range of frequencies, although they require larger sample dimensions. At the upper end

of the frequency scale, reflectivity measurements are used to obtain the broadband dielectric

characteristics of a material. The Electromagnetics Division of the National Institute of

Standards and Technology have published a series of comprehensive reviews covering a large

number of different characterization techniques [70, 71, 72]. Afsar et al. have also covered

a number of techniques in [73]. The interested reader is referred to these reviews; however,
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we will briefly introduce a number of the most important characterization techniques.

2.2.1 Parallel plate (∼ DC - 30 MHz)

Below 30 MHz, LCR meter or impedance analyzer measurements are used to obtain the

permittivity [73]. This involves the measurement of the parallel-plate capacitance of an

electroded dielectric. The permittivity is then obtained from the capacitance measurement

and the material dimensions. We should also note that capacitor geometries are not limited

to parallel plates; interdigital capacitors have been shown to be suitable in certain circum-

stances, e.g., biosensors for remote complex permittivity determination [74]. This method

is more mathematically complicated however, as complex mapping techniques are needed to

reduce the geometry into a solveable problem. This also limits accuracy.
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2.2.2 Resonant cavity (∼ 0.5 - 50 GHz)

Resonant cavities have the advantage of being high Q structures. The cavities are usually

an easily-analyzed geometry, such as a rectangle or a cylinder, where the resonant modes

can be determined as functions of the dimensions and εr. The general idea is to extract

the permittivity, knowing the resonant frequency and the dimensions. The dimensions are

measured to within an acceptable level of error (error analysis will be discussed in a later

section), while the frequency sweep is usually measured with a vector network analyzer.

Subsequently, from the bandwidth of the measured peak, the material’s loss tangent or Q

may also be extracted. From these techniques we are able to measure extremely high Qs (on

the order of 10,000), albeit only at a single frequency (or a few frequencies if we use multiple

modes).

Open cavity techniques are very widely used, since samples can be conveniently fabri-

cated, and is generally small in size with respect to the wavelength. This is of particular

benefit at low frequencies, for example at 1 GHz where the wavelength in free space is 30

cm. The classical geometry for this technique is the dielectric cylinder, as demonstrated by

Hakki and Coleman [75, 76]. A more recent method makes use of the nonradiative dielectric

waveguide (NRD), and allows the measurement range to be extended to higher frequencies

[77]. As an example of the sample dimensions that would yield a 1 GHz resonance for εr = 10,

the Hakki-Coleman cylinder that would give a TM011 resonance here could have a diameter

of 10 cm, and a thickness of 8.6 cm. The NRD waveguide LSE101 resonance could occur here

with dimensions of 7 cm × 5 cm × 10 cm. The Fabry-Perot open resonator is a technique

suitable for characterization up to 300 GHz [78, 79] . In this case, a coupling aperture in a

mirror is used to excite a thin dielectric that is rested on a second planar mirror. The setup

has very high quality factors, enabling the measurement of low losses, however metal losses

from the mirrors lead to inaccuracy.

Another resonance technique is the split-cylinder cavity method [80, 81]. The fixture here

consists of a fixed lower cylindrical cavity, and un upper cavity that is lowered to sandwich
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the material in-between. The sample is a thin dielectric slab that is larger than the cross-

sectional area of the cavity. One may then use the TE011 resonant mode of the system to

obtain the complex permittivity of the enclosed dielectric.

Other examples of resonant techniques at microwave frequencies include perturbational

cavity methods [82], and ring resonator techniques [83, 84].

2.2.3 Transmission line methods (∼ 0.01 - 300 GHz)

Broadband characterization methods at microwave frequencies generally consist of various

transmission line techniques. The transmission lines may be microstrips, coaxial and rect-

angular waveguides [61, 62, 87, 94], or even free space. A wave propagating along any

transmission line will have a phase velocity determined by the structure, so the analysis of

the phase of the reflection (S11 and S22) or transmission (S21 and S12) coefficients will yield

the relative permittivity. This, in conjunction with the magnitudes of those coefficients,

could allow one to extract tanδ as well. And because the techniques do not rely on any

particular resonances, they are broadband, allowing characterization over a large frequency

range. However, they are by their nature, inaccurate when measuring materials with low

tanδ.

Coaxial transmission lines are formed by an outer conductor enclosing a dielectric, with an

inner conductor running through the center. They can be used both as an open-ended probe

[85, 86], with S11 measurements of a dielectric covering the end of the line, or as a two-port

transmission line. As a characterization method, they provide results over a broad frequency

range, going down to MHz frequencies for the case of the open-ended probe. This technique

does, however, have limited εr accuracy, and as with all transmission line techniques, it is

inaccurate when measuring low losses. On the other hand, the two port coaxial transmission

line provides more accurate εr results. The difficulty with using this technique stems from

its awkward geometry. A sample must fit snuggly within the conductors. As a result, this

method is most suitable for liquids, powders, and semi-solids (such as bio-materials). Similar
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techniques take advantage of other structures, such as the rectangular waveguide, in place of

the coaxial line. The rectangular waveguide is, however, limited by a lower cut-off frequency

of a supported mode. Nevertheless, the geometry is more conducive to measurements of

most solid dielectrics.

A microstrip consists of a thin conducting strip on top of one side of a dielectric substrate.

The reverse side of the substrate is generally a conducting ground plane. The characteri-

zation methods rely on the measurements of the phase of a wave transmitted through the

structure, and this phase can be used to extract an effective permittivity, based on the speed

of propagation of the wave through the structure. Analytical formulas can then be used to

obtain εr. Similar planar technologies such as coplanar waveguides may be used in place of

the microstrip [88].

The free-space measurement technique [89] is a transmission line method in the loosest

sense of the term. The transmission line is in fact just the free space in between two antennas

(most often horns). A sample is placed in-between the horns, and the measured S-parameters

are used to determine the material characteristics. Although it appears straight-forward at

first glance, there are in fact experimental difficulties that make it less than trivial to operate.

The primary difficulty is with the nature of the experimental setup; theoretically, the material

is assumed to have infinite area, while the propagating wave is assumed to be a perfect plane

wave. Both of these assumptions are obviously incorrect, but we can try to get as close to the

ideal case as possible. A dielectric lens may be used to focus the beam to the center of the

sample. Additionally, a sample area of at least a wavelength squared is generally required,

which may be prohibitively large at low frequencies. A further difficulty is the calibration

of the setup, as there are no connectors. The TRL (Thru-Reflect-Line) calibration method

applies well to this technique though, with a large conducting plate acting as the Reflect

standard. Additionally, if the network analyzer in use allows it, time-domain gating may be

used to remove artifacts of the system and improve the calibration. The use of absorbers

can also improve measurements. Despite these difficulties, the technique is very useful at

20



mm-wave frequencies, up to around 100 GHz. Much above these frequencies, the size of the

horn antennas become prohibitively small and traditional microwave frequency sources do

not work. This technique is of particular interest to us because it is most similar to, and

relies on the same principles, as that of the terahertz time-domain spectroscopy (THz TDS)

characterization methods that will be described in this chapter.

2.2.4 Fourier-transform infrared spectroscopy (∼ 1 - 100 THz)

At infrared frequencies, Fourier-transform infrared spectroscopy (FT-IR) can be used to

obtain the complex permittivity, or more commonly at these wavelengths, the complex re-

fractive index ñ = n − jκ (where the imaginary part of the refractive index, κ is not to be

confused with the materials community’s dielectric constant) [93]. The absorption coefficient,

α, of a material can also be defined as

α =
2ωκ

c
. (2.1)

A variety of similar techniques exist, but a common one makes use of reflectivity mea-

surements. The magnitude of the light reflected off a sample can be measured over a broad

frequency range, however FTIR is insensitive to phase. The Kramers-Kronig causality rela-

tions can be used to obtain a good approximation for the phase [95]. With the measurements

of the polar phonon modes, as well as the high frequency permittivity ε∞, a model dielectric

function can be fit to obtain the complex permittivity over the frequency range of inter-

est. This dispersion analysis is not straightforward though, and numerical approximations

must be made to approximate the phase function. Additionally, reflection measurements are

sensitive to surface roughness, and hence, the sample surfaces must be smooth. It should

also be noted that Fourier-transform spectroscopy can also be applied at millimeter-wave

frequencies, for example with a two-beam polarization interferometer, to obtain broadband

characterization in the 30 - 300 GHz range [79].
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2.3 Terahertz time-domain spectroscopy (∼ 0.1 - 10 THz)

With the increasing interest in the development of applications within the terahertz gap,

material characterization techniques are necessary for frequencies between 100 GHz and 10

THz. These frequencies are not well covered by either the microwave techniques, or by FT-

IR. Terahertz time-domain spectroscopy is one method that can be used to fill this gap. This

spectroscopic technique operates with an ultrashort pulse of terahertz radiation, transmitted

through a material. The pulse is probed, either after transmission or reflection. The mea-

sured signature can be transformed to the frequency domain. The spectrum subsequently

provides amplitude and phase information of the material. This information can be used

for a variety of applications, including materials characterization, tomographic imaging, and

chemical detection.

Before we discuss the dielectric characterization techniques, the experimental setup will

be described so as to provide the reader with an overview of the system (see Figure 2.2).

The experimental setup can be split into five main operations subsequent to the source

producing the laser: beam splitting; signal delay; THz generation; propagation through

the sample; and, THz detection. A laser with an appropriately short pulse will generate a

beam, which is split so that the majority of its intensity forms the pump beam, used for

THz generation. The remaining portion of the beam is used as a probe beam for detection.

Once the beam has been split, the pump beam is directed through a delay line. The length

of the delay line is swept, so that the entire pulse amplitude is obtained as a function of

time. This delayed pump beam is then used for THz generation. The most common method

of generating THz waves is by use of a biased photoconducting gallium arsenide (GaAs)

aperture antenna [96, 97]. A laser pulse generates carriers in the conduction band of the

semiconductor, effectively causing it to turn from an insulator into a conductor. The bias

voltage across the antenna accelerates the carriers so that a current is formed, and the rapid

switching of the pulses induces the generation of THz radiation, in a manner similar to an

antenna working at microwave frequencies. Other generation schemes include the use of
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Figure 2.2: Typical setup for THz TDS. The ultrafast laser beam is split into a probe beam
and a pump beam. The pump beam is delayed, and then used for THz generation. The THz
waves are collimated and focused on the sample, and then again collimated and focused,
along with the probe beam, onto a THz detector, so as to obtain the temporal profile of the
electric field.

crystalline materials. Once the THz waves have been generated, they are free to propagate

and interact with the sample. A detector is placed in an appropriate position to measure

the signal of interest (for example transmission or reflection). Photoconducting antennas

and electro-optic crystals may also be used for detection. The probe pulse that was split

from the pump beam is delayed so that it arrives at the detector at the same time as the

THz pulse. For detection with an electro-optic crystal [9, 98, 99], the polarization is rotated

slightly, as the probe pulse travels through the birefringent crystal simultaneously to a point

in the THz pulse. This rotation is proportional to the amplitude of the THz field, and the

direction of rotation is proportional to the sign. Polarizers and photodiodes can be used to

determine these polarization changes.
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The setup we used is set up as follows: a diode laser pumped Ti:Sapphire laser emits 60

µs pulses at a center wavelength of 790 nm, operating at 80 MHz. The beam is split so that

90% of the intensity is used as a pump beam for THz generation, with the other 10% used

as a probe beam for detection. THz generation was provided by excitation of a biased GaAs

photo-conductive aperture antenna, with the THz pulses collimated and focused by a series

of off-axis parabolic mirrors through the sample, and onto a 1 mm thick ZnTe crystal.

2.3.1 Transmission

Once the time domain signal has been measured, the frequency spectrum is obtained with a

discrete Fourier transform (DFT). Numerically, this would be done by way of a fast Fourier

transform (FFT). A reference spectrum, with no sample present, is first measured. This is

best done through a nitrogen-purged atmosphere, so as to minimize water absorption and

remove resonances. A second spectrum is then measured with the sample in place.

Figure 2.3 shows the transmitted time domain signals through the reference and through

a sample specimen. The delay is evident in the pulse traveling through the sample, as light

is slowed down due to the material’s refractive index. An approximation of the average

permittivity of the material over the pulse’s measured bandwidth can be determined using

this delay, as:

εr =
(

1 +
c

d
∆t
)2

, (2.2)

where c is the speed of light in free space, d is the sample thickness, and ∆t, shown in

Figure 2.3, is the delay between the peak amplitudes of the reference and sample pulses.

This is, however, just a rough approximation, and does not give us much more than a

crude estimate of the permittivity over the frequency range. To find the frequency-dependent

complex permittivity of the sample, an FFT should be performed on the signal. We will now

have the complex transmission spectrums of the reference and the sample, the magnitudes

and unwrapped phases of which are shown in Figure 2.4. These transmission spectra may be

used to investigate the dielectric properties of the sample. We can view the sample’s system
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Figure 2.3: Time Domain signal.

as a three-medium (air - dielectric - air) Fabry-Perot resonator. The transmission, t(ω) is

derived from the Fresnel formulas as [90]:

t(ω) =
Tsample(ω)

Tref (ω)
= τ(ω)P (ω, d) · 1

1− r(ω)P 2(ω, d)
· exp

(
j
ωd

c

)
, (2.3)

where Tsample(ω) and Tref (ω) are the complex transmission spectra through the sample and

the reference, respectively, and ω = 2πf is the radial frequency. The reflection, transmission

and propagation coefficients are represented by r(ω), τ(ω), and P (ω, d) respectively, where,

r(ω) =

[
ñ(ω)− 1

]2[
ñ(ω) + 1

]2 (2.4a)
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(a) Magnitude.

(b) Unwrapped phase.

Figure 2.4: Reference and sample transmission spectra.

τ(ω) =
4ñ(ω)[

ñ(ω) + 1
]2 (2.4b)
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P (ω, d) = exp

[
− j ωñ(ω)d

c

]
. (2.4c)

For a non-magnetic material the complex permittivity ε(ω)/ε0 =
√
ñ(ω).

Although this solution is exact, in practice (2.3) is not the best method of solving for

the material characteristics. Temporal echoes, as seen in Figure 2.3, are caused by reflec-

tions in the slab that lead to time-delayed transmitted pulses. The equation is derived by

assuming that all temporal echoes have been measured, implying an infinite time measure-

ment. In practice a signal of only a few tens of picoseconds is measured, which may not

allow sufficient damping of the transmitted peaks before they can be neglected. Further-

more, reflections from the experimental setup will eventually interfere with measurements.

Numerical techniques are also necessary to solve for ñ, rendering this technique impractical.

We will now look at a more efficient and accurate technique that also uses the measured

transmission spectra. This technique compares the spectra of two different samples of the

same material, but with different thicknesses. The trick here is to treat the reference as

a material with zero thickness. The solution, as will be outlined below, has been derived

to separately treat each of the temporal echoes. The directly transmitted signal, which is

represented by the 0th echo, is suitable for use when all echoes are neglected. Following

the method of Duvillaret et al. [91, 100], the spectral component of the transmitted field

through a sample, Et(ω), can be expressed as:

Et(ω) = Ei(ω)τ(ω)P (ω, d)
∞∑
p=0

[
r(ω)P 2(ω, d)

]p
, (2.5)

where r, τ and P were defined in (2.4), and Ei(ω) is the incident field. This equation is

consistent with (2.3) if we simplify the geometric series with

N∑
p=0

xp =
xN+1 − 1

x− 1
⇒

∞∑
p=0

[
r(ω)P 2(ω, d)

]p
=

1

1− r(ω)P 2(ω, d)
. (2.6)

Et corresponds to the transmission through the sample, Tsample. Tref is not, however, the
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incident field, but the field transmitted through the reference. This is just the incident field

modified by a phase term, such that Tref = Ei · exp(jωd/c), and so (2.5) is equivalent to

(2.3), with the summation term representing the Fabry-Perot effect. Although the form of

(2.3) appears simpler than that of (2.5), we wish to take advantage of the nature of the

infinite geometric series, as each successive term will represent a temporal echo. Thus, using

(2.5) we can handle a finite number of temporal echoes.

Defining the sample’s transmission coefficient for an echo p,

t(p, ω) =
Tsample(p, ω)

Tref (p, ω)
= τ(ω)rp(ω)P 2p+1(ω, d) · exp

[
j
ωd

c

]
, (2.7)

we can find its magnitude and phase as:

|t(p, ω)| = |τ(ω)| · |r(ω)|p · |P (ω, d)|2p+1

=
4|ñ| ·

[
(n− 1)2 + κ2

]p[
(n+ 1)2 + κ2

]p+1 × exp

[
−κ(2p+ 1)

ωd

c

]
(2.8a)

ϕ(p, ω) ≡ arg [t(p, ω)]

= arg[τ(ω)] + p · arg[r(ω)] + (2p+ 1) · arg[P (ω, d)] +
ωd

c

= − [(2p+ 1)n− 1]
ωd

c
− 2p · arctan

(
2κ

|ñ|2 − 1

)
+

+ arctan

[
κ
(
|ñ|2 − 1

)
|ñ|2(n+ 2) + n

]
. (2.8b)

Note that eq. (3) in [91] contains an error in the phase term. ϕ represents the difference in

phase between the Tsample and Tref . The phases of these terms should be unwrapped before

the difference is taken. Assuming a relatively low loss sample, i.e. κ � n, we can solve for

n and α using (2.8a) and (2.8b), as well as (2.1) to get:

n =
1

(2p+ 1)
·
[
1− c

ωd
ϕ(p, ω)

]
(2.9a)
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α =
−2

(2p+ 1)d
· ln
[

(n+ 1)2p+2

4n(n− 1)2p
|t(p, ω)|

]
. (2.9b)

The refractive index and absorption coefficient can be found from the measurement of the

directly transmitted signal. Substituting p = 0 into the equations above, we have

n =
[
1− c

ωd
ϕ(0, ω)

]
(2.10a)

α =
−2

d
· ln
[

(n+ 1)2

4n
|t(0, ω)|

]
. (2.10b)

Figure 2.5 shows the results of these equations. Modifications to the formulas above can be

used to determine the permittivity of a thin-film material [90, 92].

Figure 2.5: Retrieved refractive index, n, and absorption coefficient, α, for two different
alumina samples.
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(a) Permittivity of 96% alumina.

(b) Permittivity of 99.6% alumina.

Figure 2.6: Measurements performed using a split-cylinder cavity, THz TDS, and FTIR.

In Figure 2.6, the real part of the permittivity is plotted for the two different alumina sam-

ples. Measurements were performed with terahertz time-domain spectroscopy from around

200 GHz to 2.5 THz. Below these frequencies, a resonant split-cylinder cavity measure-

ment was performed, to obtain the permittivity at 15 GHz. At higher frequencies, Fourier-

transform infrared spectroscopy was used to measure the permittivity. There is good corre-

lation between the techniques over the different bands. There is a slight mismatch between

the THz TDS and the FTIR measurements of 96% alumina. This can possibly be explained
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(a) Real part of the refractive in-
dex, n.

(b) Imaginary part of the refrac-
tive index, κ.

(c) Real part of the permittivity,
ε.

Figure 2.7: Measurement errors.

by scattering at higher frequencies, which FTIR, being a reflection techniques, is particularly

susceptible to. FTIR also relies on complex data fitting and analysis, which may further lead

to errors. Nevertheless, it is still important to determine the uncertainty in the THz TDS

characterization process.

2.3.2 Error analysis

The uncertainties in the refactive index and the absorption coefficient, ∆n and ∆α respec-

tively, have been derived in [91]. We have modified them to take into account errors due to

the sample thickness uncertainty. For a parameter x, the uncertainty may be expressed as:

∆x =

√(
∂x

∂ϕ
∆ϕ

)2

+

(
∂x

∂|t|
∆|t|

)2

+

(
∂x

∂d
∆d

)2

. (2.11)

The error ∆d is determined by the measurement technique in use. ∆ϕ and ∆|t| are obtained

from the standard deviation of the measured transmission coefficient t(p, ω).

In [91] it is shown that

∆|t(p, ω)| =

[〈
|tN(p, ω)|2

〉
2

]1/2

(2.12a)
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∆ϕ(p, ω) =
∆|t(p, ω)|
|t(p, ω)|

(2.12b)

∆n =
c|ϕ|
ωd

√(
∆ϕ

ϕ

)2

+

(
∆d

d

)2

(2.13a)

∆α =
2

d

√√√√(∆ |T |
|T |

)2

+

(
∆n

n

)2
[

(n− 1)2(
n2 − 1

)]2

, (2.13b)

where 〈·〉 denotes the average value of the enclosed function, and tN(p, ω) is the noise in the

measured transmission.

In Figure 2.7, the calculated errors in the real and imaginary parts of the refractive

index, and in the real part of the permittivity, are plotted with frequency. In common with

transmission techniques at microwave frequencies, the accuracy is very good for the real part,

but the loss measurement succumb to errors, particularly at higher frequencies.

2.3.3 Scattering from complex structures

In addition to the characterization of ceramics, THz TDS can be used to examine the trans-

mission through more complex structures. We have measured the transmission through an

array of silicon nitride (εr = 8.9) spheres, shown in Figure 2.8. The effective representation

of composite media is of interest, and so it may be tempting to view the aggregation of

spheres as a slab of material, and to extract the effective parameters using the equations in

this chapter. However, the scattering from resonant spheres is complex, and may not simply

be replaced by a slab. The scattering from multiple spheres will be considered in chapter 3.

2.4 Summary

A terahertz time-domain spectroscopy system was presented that allows the measurement

of phase-coherent transmission in the terahertz gap, from around 100 GHz up to around 5

THz. The system was applied towards the characterization of dielectric materials, in order
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(a) Array of silicon nitride spheres, Si3N4.

(b) Transmission through the array of spheres.

Figure 2.8: Array of silicon nitride spheres, Si3N4, for measurement at terahertz frequencies.

to determine the material parameters, including the permittivity and the loss tangent (or

Q), or the refractive index and the absorption coefficient. Error analysis was performed in

order to determine the effects of measurement errors. THz TDS was also used to measure

the transmission through a composite media formed of arrays of Si3N4 spheres.
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Chapter 3

Scattering from Aggregates of Spheres

3.1 Introduction

Electromagnetic scattering from spheres has provided a continuous stream of applications

and scientific interest, dating back centuries, in part due to its inherent symmetry, as well

as its relative agreement with the geometries of many naturally occurring objects. A very

early study of the dielectric sphere was performed in Baghdad, in the 11th century, by

Ibn al-Haytham [25, 27, 28]. He developed a geometric theory on the multiple reflections

of light (which he viewed as small particles) within a spherical lens, which he used as a

burning device, and with which he argued that light was produced by an external source and

detected by the eye, and not produced by the eye as the ancient Greek Ptolemic theories

suggested. Three centuries later, Kamal al-Din al Farisi used Ibn al-Haytham’s work to

provide an explanation for rainbows [25, 101]. Subsequent investigations of spheres have

benefited many fields, including the atmospheric sciences and astronomy [102], numerical

electromagnetic code verification, artificial dielectrics [49], and more recently the study of

metamaterials [103, 104, 105].

An important contribution to the modern theory of scattering by spheres was produced

in 1871 by John Strutt, more popularly known as Lord Rayleigh [106]. Rayleigh scattering

is the scattering of light by small particles, with respect to the wavelength, and was used to

explain the color of the blue sky [107]. Prior to that, in 1863 Alfred Clebsch had investigated
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the scattering by reflecting spheres [108]. The modern formulation of the scattering from

spheres is solved using the separation of variables, along with the boundary conditions. These

were applied to spheres by Gustav Mie in 1908 [109, 110], however the same results were

obtained independently even earlier by Ludvig Lorenz [111], and also by Peter Debye [112].

These formulations were not restricted to just small spheres, but were capable of determining

the scattered fields from any sized sphere with any material composition. An important

contribution to the formulation of the scattering problem was developed by P. C. Waterman

in the 1960’s and 70’s. Waterman used the Ewald-Oseen extinction theorem, known also

as the null field theorem, to develop the transfer, or T -matrix formulation of scattering

[113, 114]. This formulation has been particularly beneficial for numerical computation,

with the popularization of the digital computer.

The scattering of multiple object significantly complicates matters. Not only must the

solution of the objects be determined in isolation, but their mutual interactions are also nec-

essarily found. A solution to the boundary value problem for two spheres has been available

as far back as 1935, when Trinks presented his solution for broadside and endfire plane-wave

incidence on identical spheres [115]. He employed an addition theorem to represent the har-

monics around one sphere in terms of the coordinate system of another. However, due to

the difficulty in calculating the coefficients of the addition theorems, he was limited to only

very small Rayleigh-sized spheres, with radius much less than the wavelength. In 1945 Leslie

Foldy presented his multiple scattering theory for the approximation of the averaged scalar

fields of an ensemble of randomly oriented scatterers [116]. Waterman further developed this

averaging theory with his own work on multiple scattering [117] with vector fields. However,

exact solutions for scattering from even a small number of particles were difficult to obtain.

Work was performed by Victor Twersky, who first studied the two-dimensional problem of

two parallel circular cylinders [118], and then provided solutions to multiple scattering the-

ory [119, 120]. These lacked explicit calculations of the scattered fields, but they did provide

the rigorous basis for solving the problems. It was the addition theorems of Stein [121] and

35



Cruzan [122] that laid the foundation for the next series of breakthroughs. Liang and Lo

used these addition theorems to provide numerical results for scattering from two metallic

spheres [123], followed by Bruning and Lo, who solved the scattering problems of arbitrarily

sized dielectric and conducting spheres, at any angle of incidence, and compared the results

to measurements [124, 125, 126]. Their results were demonstrated for two or three spheres

in a linear array, with the possibility of expanding the technique to an arbitrary number

of spheres, again arranged linearly. A key contribution of theirs was the development of an

efficient set of recurrence relations for the addition theorems, for translation along the z -axis.

These relations significantly decreased the time and effort it took to calculate the addition

theorem coefficients.

As computational power increased, later researchers studied scattering from many spheres

in various arrangements. Peterson and Ström extended Waterman’s T -matrix formulation

of scattering to multiple spheres (both acoustic [127] and electromagnetic [128]). Various

authors built on this technique, including Lakhtakia [129], who extended the formulation

to spheroids. Later on Chew [130, 131, 132] developed a more efficient recursive T -matrix

formulation. An extensive review may be found in [133]. In this method, the T -matrix is

calculated first for N spheres, after which they are treated as single sphere as the interaction

with the (N + 1)st sphere is calculated. However, violations of the additions theorems

are caused when the (N + 1)st sphere is within the larger sphere encompassing the other N

spheres. This leads to inaccuracies, although efforts have been made to reduce these errors by

windowing [134]. In addition to these violations, double-truncation of the addition formulas

lead to further inaccuracies in the calculated scattered fields, particularly for spheres located

in close proximity to one another [135, 136].

In this chapter, a new technique based on the Characteristic Basis Function Method

(CBFM) is presented. The CBFM is a procedure for computing computationally large prob-

lems by reducing the problem with appropriately selected basis functions [137, 138, 139]. The

technique enables one to calculate the scattered fields from any number of spheres, in any
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arrangement, and illuminated by an arbitrary incident field. It is shown that the technique

is comparable in accuracy to multiple scattering theory; in addition, it is numerically more

efficient. The formulation is also conducive to iterative matrix inversion, which can signifi-

cantly reduce computation time, and allow the determination of extremely large scattering

problems.

We will begin the chapter with an introduction to vector spherical basis functions, that

are necessary for the representation of the fields in a spherical coordinate system. To guide

the reader through the development of the CBFM, the multiple scattering theory will be

presented first as a lead-on to the CBF technique. Although the chapter will be mathemati-

cally involved, it is designed to highlight the differences between the two approaches, and to

provide their physical interpretations. Each technique is presented, first with the simplest

case of a single sphere, followed by an extension to the two sphere case, and finally to the

general case. This should enable the reader to develop a greater appreciation of the effect

of adding additional spheres to an existing system. Once the theoretical background has

been developed, computational aspects will be discussed. The incident wave coefficients will

be provided, and then far field computation will be discussed. Finally, efficient methods

of solving the resulting linear system of equations are presented, along with comparisons

between the computational complexities of multiple scattering theory, and the CBFM.

3.1.1 Scalar wave equations

The Helmholtz equation, the time-invariant form of the wave equation, is an elliptic par-

tial differential equation that must be solved to obtain the solution of an electromagnetic

boundary value problem.

Although in general we will be dealing with a vector problem, it is nevertheless useful to

discuss the scalar Helmholtz equation. As one would expect, the solutions of the scalar and

vector equations are closely related, and play a particularly important role in the definition of

the scalar and vector transformation operators. We will discuss these shortly, but we remark
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here that these operators are critical in the handling of multiple objects in any coordinate

system, which is spherical in our case.

The scalar Helmholtz equation is written as,

∇2ψ + k2ψ = 0, (3.1)

where ψ is a scalar function, ∇2 is the scalar Laplacian, and k is the wavenumber.

Using the method of separation of variables, a solution to (3.1) can be expressed as

ψmn(r, θ, φ) = z(J)
n (kr)Y m

n (θ, φ). (3.2)

For the radial component of the solution, z
(J)
n (kr), we choose the appropriate type of spherical

Bessel function, viz., jn, yn, h
(1)
n or h

(2)
n for J = 1, 2, 3 or 4. Y m

n (θ, φ) is the spherical harmonic

function, and forms the angular dependent factor of the solution of (3.1). In this thesis, by

convention θ ∈ [0, π] is the zenith (polar) angle, while φ ∈ [0, 2π) is the azimuthal angle (see

Figure 3.1). Definitions, properties, and recursion relations for efficient calculation of the

spherical Bessel and harmonic functions can be found in Appendix A. It is important to note

that there are infinitely many solutions to the scalar Helmholtz equation, with n = 0, . . . ,∞

and m = −n, . . . , n.

When one finds a solution, an appropriate coordinate system is selected that effectively

represents the geometry in question. For the case of a sphere, this generally means placing

the origin of the coordinate system at the center of the sphere. Problems arise when another

sphere is brought into the system, since its center will not coincide with the origin of the

initial system (providing, of course, that layered spheres are not a concern). To circumvent

this problem, the origin of the coordinate system should be translated between the centers

of each of the spheres. Fortunately, just such a translation exists, and the details may be

found in Appendix B. It is based on the Legendre addition theorem for spherical harmonic,
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Figure 3.1: Coordinate system, where the location of an observation point is defined by
(r, θ, φ), where r is the distance, θ is the zenith (polar) angle, and φ is the azimuthal angle.

and can be stated as

ψ(J)
mn(rjx) =

∞∑
ν=0

ν∑
µ=−ν

ψ(J)
µν (rix)β

mn
µν (j, i), (3.3)

which implies that a solution in one coordinate system is equivalent to a doubly-infinite

summation of solutions in another system, multiplied by the β coefficients. Although closed-

form solutions are available for these coefficients, they involve many summations of Wigner

3j -symbols, that are themselves functions of many double factorials. As a result, the calcula-

tion of the required coefficients, using these closed-form solutions, is relatively complex and

numerically intensive. A more efficient method would be to use recurrence relations, so that

an initial calculated coefficient would recursively generate all the required coefficients. Of

the many recurrence relations that have been developed, we have chosen to use the relations

presented by Chew [140, 141], because they are both efficient and stable. Further details,

including the stating of the recurrence relations used, may be found in Appendix B.
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3.1.2 Vector wave equations

As mentioned previously, the electromagnetic problems of interest herein are vectorial in

nature. Although the vector equation may be split into a number of scalar equations (see

e.g., [142, p. 336]), we will choose to follow Stratton’s formulation [143, p. 415] instead and

solve the vector form of the Helmholtz equation for Ψ, given by

∇×∇×Ψ− k2Ψ = 0. (3.4)

Following Stratton we express the solutions to the above equation in terms of three vector

functions, L, M, and N as follows.

L = ∇Ψ (3.5a)

M = ∇×RΨ = L×R =
1

k
∇×N (3.5b)

N =
1

k
∇×M, (3.5c)

where the position vector R is defined in the (r, θ, φ) system as

R = (r̂, θ̂, φ̂). (3.6)

Again following Stratton’s definitions, we can write the spherical basis vectors explicitly

as

L(J)
mn(r, θ, φ) =

(
∂r
[
z(J)
n (kr)

]
Y m
n (θ, φ),

,
z

(J)
n (kr)

r
∂θ
[
Y m
n (θ, φ)

]
, im

z
(J)
n (kr)

r

Y m
n (θ, φ)

sin θ

)
(3.7a)

M(J)
mn(r, θ, φ) = z(J)

n (kr) ·

(
0, im

Y m
n (θ, φ)

sin θ
,−∂θ

[
Y m
n (θ, φ)

])
(3.7b)
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Figure 3.2: Translation of a coordinate system with the observation point x. The origin of
the system is translated from a point j to a point i. Translation theorem depends on the
region that i is in.

N(J)
mn(r, θ, φ) =

(
n(n+ 1)

z
(J)
n (kr)

r
Y m
n (θ, φ),

,
∂r
[
rz

(J)
n (kr)

]
kr

∂θ
[
Y m
n (θ, φ)

]
, im

∂r
[
rz

(J)
n (kr)

]
kr

Y m
n (θ, φ)

sin θ

)
. (3.7c)

The L vector is included only for the sake of completeness. In fact for a divergenceless

incident field, as is true in our case, L = 0, and will be neglected from here on.

In analogy to the scalar field solutions, a translation theorem is needed for the M and

N vectors. The vector addition theorem is slightly more complex than the scalar case, in
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that it is dependent on whether the field is outgoing (J = 3) or regular (J = 1), and on the

position vector of interest with respect to the two coordinate systems. Below, for example,

the translation theorems are given for an outgoing wave that is translated to within region

1 in Figure 3.2. This is the translation theorem that will be used in solving the boundary

conditions for the multiple sphere problem.

M(3)
mn(rjx) =

∞∑
ν=1

ν∑
µ=−ν

[
M(1)

µν (rix)A
mn
µν (j, i) + N(1)

µν (rix)B
mn
µν (j, i)

]
(3.8a)

N(3)
mn(rjx) =

∞∑
ν=1

ν∑
µ=−ν

[
M(1)

µν (rix)B
mn
µν (j, i) + N(1)

µν (rix)A
mn
µν (j, i)

]
(3.8b)

The representation of the translation theorems in (3.8a) and (3.8b) is quite unwieldy. It

can be presented more succinctly in a matrix form. For translation from a coordinate system

i to j, the fields at an observation point x are found using one of:

Region 1: OuΨ(krjx) = ᾱij ·RgΨ(krix) if
∣∣rix∣∣ < ∣∣rij∣∣ (3.9a)

Region 2: OuΨ(krjx) = β̄ij ·OuΨ(krix) if
∣∣rix∣∣ > ∣∣rij∣∣ (3.9b)

All regions: RgΨ(krjx) = β̄ij ·RgΨ(krix) if ∀
∣∣rix∣∣ (3.9c)

where RgΨ refers to the regular vector wave function, while OuΨ is the outgoing function,

and

ᾱij =

 Āij B̄ij

B̄ij Āij

 (3.10a)

β̄ij =

 C̄ij D̄ij

D̄ij C̄ij

 (3.10b)

and
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F̄ =
mn

↓
µν−→(
Fmn
µν

)
(3.11a)

Ψ = {· · ·Nmn · · · · · ·Mmn · · · }T , (3.11b)

where F is any one of A,B,C or D. Recursive relations to find them are again found in

Appendix B. Equation (3.9a) is in fact equivalent to (3.8a) and (3.8b) in matrix form.

Before we apply these translation theorems for the calculation of the scattered fields from a

conglomerate of spheres, we will first derive the scattered fields of a single sphere.

3.2 Multiple scattering theory

3.2.1 Single sphere

Lord Rayleigh’s work [107] explaining the color of the blue sky, published in 1899, was based

on the scattering of electromagnetic waves off of spheres much smaller than the wavelength.

As remarkable as this discovery was, this solution was limited only to small size factors,

where the size factor is defined as x = ka� 1, and where a is the radius of the sphere, and

k = 2π/λ is the wavenumber. However, by the end of the 19th and the beginning of the

20th centuries, Lorenz, Mie and Debye had all independently arrived at full solutions for the

scattering from a single homogeneous, isotropic dielectric sphere of any size.

To fully describe the scattering from any number of spheres, we follow a procedure very

similar to those used by Lorenz, Mie, and Debye:

1. Represent all incident, scattered, and internal electric and magnetic fields, with un-

known coefficients.

2. Enforce the boundary conditions.

3. Use orthogonality relations to obtain a linear system with the relevant number of

equations.
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Figure 3.3: Wave incident on a single sphere. Sphere has material characteristics (ε2, µ2),
and radius a. Incident wave is defined by the Euler angles (α, β, γ), where α is the zenith
angle, β is the azimuthal angle, and γ represent the polarization with another rotation along
the elevation plane.

4. Solve equations for the unknown coefficients.

To demonstrate this procedure, we will first apply it to a single sphere. The geometry of

the problem is shown in Figure 3.3.

Step 1: Fields

The electric E and magnetic H fields can be represented as:

Einc =
∑
mn

{
pmnN

(1)
mn(k1r) + qmnM

(1)
mn(k1r)

}
= ainc ·RgΨ(k1r) (3.12a)
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Esca =
∑
mn

{
amnN

(3)
mn(k1r) + bmnM

(3)
mn(k1r)

}
= asca ·OuΨ(k1r) (3.12b)

Eint =
∑
mn

{
dmnN

(1)
mn(k2r) + cmnM

(1)
mn(k2r)

}
= aint ·RgΨ(k2r) (3.12c)

Hinc =
1

jη1

∑
mn

{
qmnN

(1)
mn(k1r) + pmnM

(1)
mn(k1r)

}
(3.13a)

Hsca =
1

jη1

∑
mn

{
bmnN

(3)
mn(k1r) + amnM

(3)
mn(k1r)

}
(3.13b)

Hint =
1

jη2

∑
mn

{
cmnN

(1)
mn(k2r) + dmnM

(1)
mn(k2r)

}
(3.13c)

where

ainc = {· · · pmn · · · · · · qmn · · · } , (3.14)

and Ψ is defined in (3.11b). It is important to note that the p and q coefficients are

dependent solely on the nature of the incident wave, and thus are predetermined values.

However, we will leave them undefined for now, to preserve the generality of the problem.

The coefficients a, b, c, and d are the unknowns to be solved for. With the range of n and

m given previously, it would appear that there are an infinite number of coefficients to be

determined, however, we can select a truncation point N , where N will determine the largest

value of n that will be considered in calculations. It must be selected so as to reduce the

errors to within a negligible level. Many such empirical formulas exist, and we will use those
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given by Wiscombe ([144]):

N =


1 + x+ 4x1/3 if 0.02 ≤ x ≤ 8

2 + x+ 4.05x1/3 if 8 < x < 4200

2 + x+ 4x1/3 if 4200 ≤ x ≤ 20, 000.

(3.15)

So with n = 1 . . . N , and m = −n . . . n, we are left with N(N + 2) coefficients for each of

a, b, c and d, and thus we will need 4 ·N(N + 2) equations to solve them.

Step 2: Boundary conditions

To obtain the relevant number of equations, we make use of the boundary conditions at

the interface between the sphere and the surrounding medium. The tangential fields at the

interface must be continuous at the surface of the sphere, with

n̂×
[
Eext(a+)− Eint(a−)

]
= 0⇒ Eext

(θ,φ)(a
+) = Eint

(θ,φ)(a
−) (3.16a)

n̂×
[
Hext(a+)−Hint(a−)

]
= 0⇒ Hext

(θ,φ)(a
+) = H int

(θ,φ)(a
−). (3.16b)

We may then use the following boundary conditions:

Einc
(θ,φ)(a) + Esca

(θ,φ)(a) = Eint
(θ,φ)(a) (3.17a)

H inc
(θ,φ)(a) +Hsca

(θ,φ)(a) = H int
(θ,φ)(a), (3.17b)
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into which we can substitute (3.12) – (3.13) to yield

∑
mn

{[
pmnN

(1)
mn(k1a) + amnN

(3)
mn(k1a)− dmnN (1)

mn(k2a)
]

+

+
[
qmnM

(1)
mn(k1a) + bmnM

(3)
mn(k1a)− cmnM (1)

mn(k2a)
]}

= 0 (3.18a)

∑
mn

{[
qmnN

(1)
mn(k1a) + bmnN

(3)
mn(k1a)

η1

− cmnN
(1)
mn(k2a)

η2

]
+

+

[
pmnM

(1)
mn(k1a) + amnM

(3)
mn(k1a)

η1

− dmnM
(1)
mn(k2a)

η2

]}
= 0, (3.18b)

where N and M can represent either the θ or φ components of their respective vectors.

Step 3: Orthogonality

Next we discuss how to extract 4 · N(N + 2) separate equations from just two equations.

The key is that each of those equations is made up of an M and an N component, and each

of those two components are a summation of N(N + 2) terms. To obtain an equation for

each of those terms, we make use of the orthogonality properties of N and M :

〈
M (J)

µν (kia)
∣∣∣M (J ′)

mn (kja)
〉

=
[
CMz

(J ′)
n (kja)

]
· z(J)

n (kia)δmµδnν (3.19a)

〈
N (J)
µν (kia)

∣∣∣N (J ′)
mn (kja)

〉
=

[
CN

∂a
[
z

(J ′)
n (kja)

]
kja

]
·
∂a
[
z

(J)
n (kia)

]
kia

δmµδnν (3.19b)

〈
M (J)

µν (kia)
∣∣∣N (J ′)

mn (kja)
〉

=
〈
N (J)
µν (kia)

∣∣∣M (J ′)
mn (kja)

〉
= 0, (3.19c)

where 〈
X
∣∣Y 〉 ≡{

X · Y ∗ dΩ. (3.20)

CM and CN are constants which will cancel out, along with the the other term in the square

brackets. The type of spherical Bessel (or Hankel) function (i.e. the selection of J ′) that
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is applied as the orthogonalization operator is not important; after applying orthogonality

relationships they will all cancel out leaving only the original spherical Bessel functions. We

also note that the relationships are independent of m, and so we can reduce the problem

down to one of only 4 · N unknowns. Inserting (3.18) into (3.19), we obtain the following

linear system of four equations:

pmn∂a
[
ajn(k1a)

]
+ amn∂a

[
ah(1)

n (k1a)
]
− dmn∂a

[
ajn(k2a)

]
= 0 (3.21a)

qmnjn(k1a) + bmnh
(1)
n (k1a)− cmnjn(k2a) = 0 (3.21b)

qmn∂a
[
ajn(k1a)

]
+ bmn∂a

[
ah

(1)
n (k1a)

]
η1

−
cmn∂a

[
ajn(k2a)

]
η2

= 0 (3.21c)

pmnjn(k1a) + amnh
(1)
n (k1a)

η1

− dmnjn(k2a)

η2

= 0. (3.21d)

It should be noted that, to utilize the orthogonality condition, it is in fact possible to use

only the spherical harmonic, or it’s derivative with respect to θ; as we noted, the spherical

Bessel functions that we apply will cancel out, however, for consistency we use the full M

and N functions. This procedure of selecting the testing function to be equal to the basis

functions is called the Galerkin method [145, p. 692], and we will use this later with the

CBFM.

Step 4: Solution

The final step is to solve for the unknown coefficients. This involves rearranging the equations

above, to yield

amn =
µ2ψn(k1a)ψ′n(k2a)− µ1ψn(k2a)ψ′n(k1a)

µ1ψn(k2a)ξ′n(k1a)− µ2ξn(k1a)ψ′n(k2a)
pmn (3.22a)

bmn =
ε2ψn(k1a)ψ′n(k2a)− ε1ψn(k2a)ψ′n(k1a)

ε1ψn(k2a)ξ′n(k1a)− ε2ξn(k1a)ψ′n(k2a)
qmn (3.22b)

cmn =
µ2

[
ψn(k1a)ξ′n(k1a)− ξn(k1a)ψ′n(k1a)

]
η2N1ψn(k2a)ξ′n(k1a)− η1N2ξn(k1a)ψ′n(k2a)

qmn (3.22c)
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dmn =
µ2

[
ψn(k1a)ξ′n(k1a)− ξn(k1a)ψ′n(k1a)

]
µ1ψn(k2a)ξ′n(k1a)− µ2ξn(k1a)ψ′n(k2a)

pmn, (3.22d)

where the Riccati-Bessel functions are

ψ(x) = xjn(x) (3.23a)

ξ(x) = xh(1)
n (x), (3.23b)

and for either of the functions,

′ ≡ ∂

∂x
. (3.24)

Recursion relations for these functions are found in the Appendix A. We are primarily

concerned with the a and b coefficients, as these determine the scattered fields.

T -Matrix solution

As with the field representations, it is once again possible to represent the solutions more

succinctly in matrix form. As we are dealing with a linear system, we may express the

coefficients in terms of a transfer matrix, or T -matrix, as follows:

T̄sca =



. . .

amn
. . .

. . .

bmn
. . .


. (3.25a)

The same is also true for the internal field coefficients:

T̄int =



. . .

dmn
. . .

. . .

cmn
. . .


. (3.25b)
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Figure 3.4: Wave incident on a two sphere system. Coordinate system is centered on sphere
with material characteristics (εj, µj), and radius aj. Second sphere has material character-
istics (εi, µi), and radius ai. In the coordinate system of sphere j, sphere i is located at
(rji, θji, φji).

This allows us to rewrite (3.12b) and (3.12c), and write the final solutions to the problem

as:

Esca = ainc · T̄sca ·OuΨ(k1r) (3.26a)

and

Eint = ainc · T̄int ·RgΨ(k2r). (3.26b)
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3.2.2 Two spheres

When a second sphere is introduced to the system, we have the added complexity that the

two spheres will couple to each other. Electromagnetic waves will scatter from one sphere to

the next, and it is this phenomenon that forms the basis of the multiple scattering theory.

The physical idea behind this technique is that the fields scattered from one sphere are

considered as secondary incident waves on the other sphere. However the procedure for

solving for the unknown coefficients will follow the same four steps as discussed previously.

Step 1: Fields

The electric and magnetic fields are listed below for a sphere j, in the presence of a second

sphere i (see Figure 3.4):

Einc(primary), j =
∑
mn

{
p(j)
mnN

(1)
mn(k1r) + q(j)

mnM
(1)
mn(k1r)

}
= a

(j)
inc ·RgΨ(k1r) (3.27a)

Einc(secondary), j =
∑
mn

∑
µν

{[
a(i)
mnA

mn
µν (i, j) + b(i)

mnB
mn
µν (i, j)

]
N(1)
µν (k1r) +

+
[
a(i)
mnB

mn
µν (i, j) + b(i)

mnA
mn
µν (i, j)

]
M(1)

µν (k1r)

}
= a(i)

sca · ᾱij ·RgΨ(k1r) (3.27b)

Esca, j =
∑
mn

{
a(j)
mnN

(3)
mn(k1r) + b(j)

mnM
(3)
mn(k1r)

}
= a(j)

sca ·OuΨ(k1r) (3.27c)

51



Eint, j =
∑
mn

{
d(j)
mnN

(1)
mn(kjr) + c(j)

mnM
(1)
mn(kjr)

}
= a

(j)
int ·RgΨ(kjr) (3.27d)

Hinc(primary), j =
1

jη1

∑
mn

{
q(j)
mnN

(1)
mn(k1r) + p(j)

mnM
(1)
mn(k1r)

}
(3.28a)

Hinc(secondary), j =
1

jη1

∑
mn

∑
µν

{[
a(i)
mnB

mn
µν (i, j) + b(i)

mnA
mn
µν (i, j)

]
N(1)
µν (k1r) +

+
[
a(i)
mnA

mn
µν (i, j) + b(i)

mnB
mn
µν (i, j)

]
M(1)

µν (k1r)

}
(3.28b)

Hsca, j =
1

jη1

∑
mn

{
b(j)
mnN

(3)
mn(k1r) + a(j)

mnM
(3)
mn(k1r)

}
(3.28c)

Hint, j =
1

jηj

∑
mn

{
c(j)
mnN

(1)
mn(kjr) + d(j)

mnM
(1)
mn(kjr)

}
(3.28d)

The scattered and internal fields have the same forms as those for the single sphere case.

However, the incident field in this case consists of a primary and a secondary component.

The primary incident field for the two sphere case will correspond to the incident field from

the single sphere case. The secondary incident field, as described previously, is the scattered

field from the other sphere in the system, and it involves the use of translation formulas from

either (3.8a) and (3.8b) or (3.9a). The translation involves expressing the scattered fields

from sphere i in the coordinates of sphere j. It will also be useful to find the fields at the

sphere i, and to do this we simply interchange i and j in the equations above. This leads

us to a total of 2× 4N(N + 2) unknowns for the problem. To solve for these unknowns, we

again go to the step of imposing the boundary conditions.
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Step 2: Boundary conditions

We use (3.16) to obtain two boundary conditions at the interface of sphere j:

E
inc(primary), j
(θ,φ) (aj) + E

inc(secondary), j
(θ,φ) (aj) + Esca, j

(θ,φ) (aj) = Eint, j
(θ,φ) (aj) (3.29a)

H
inc(primary), j
(θ,φ) (aj) +H

inc(secondary), j
(θ,φ) (aj) +Hsca, j

(θ,φ) (aj) = H int, j
(θ,φ) (aj) (3.29b)

Substituting eqs. (3.27) and (3.28) into these we get

∑
mn

{[
p(j)
mnN

(1)
mn(k1aj) +

∑
µν

[
a(i)
mnA

mn
µν (i, j) + b(i)

mnB
mn
µν (i, j)

]
N(1)
µν (k1aj)+

+ a(j)
mnN

(3)
mn(k1aj)− d(j)

mnN
(1)
mn(kjaj)

]
+

+

[
q(j)
mnM

(1)
mn(k1aj) +

∑
µν

[
a(i)
mnB

mn
µν (i, j) + b(i)

mnA
mn
µν (i, j)

]
M(1)

µν (k1aj)+

+ b(j)
mnM

(3)
mn(k1aj)− c(j)

mnM
(1)
mn(kjaj)

]}
(3.30a)

∑
mn

{
1

η1

[
q(j)
mnN

(1)
mn(k1aj) +

∑
µν

[
b(i)
mnA

mn
µν (i, j) + a(i)

mnB
mn
µν (i, j)

]
N(1)
µν (k1aj)+

+ b(j)
mnN

(3)
mn(k1aj)

]
− 1

ηj
c(j)
mnN

(1)
mn(kjaj)+

+
1

η1

[
p(j)
mnM

(1)
mn(k1aj) +

∑
µν

[
b(i)
mnB

mn
µν (i, j) + a(i)

mnA
mn
µν (i, j)

]
M(1)

µν (k1aj)+

+ a(j)
mnM

(3)
mn(k1aj)

]
− 1

ηj
d(j)
mnM

(1)
mn(kjaj)

}
(3.30b)

We can replace j with i to obtain the equivalent conditions for the second sphere. This gives

us four boundary conditions, which we can use to obtain the requisite number of equations.
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Step 3: Orthogonality

We again apply the orthogonality relations (3.19) to the boundary conditions (3.30), to get

the following equations:

∂a
[
ajn(k1aj)

]
·
{
p(j)
mn +

∑
µν

[
a(i)
µνA

µν
mn(i, j) + b(i)

µνB
µν
mn(i, j)

]}
+

+ a(j)
mn∂a

[
ah(1)

n (k1aj)
]
− d(j)

mn∂a
[
ajn(kjaj)

]
= 0 (3.31a)

jn(k1aj) ·
{
q(j)
mn +

∑
µν

[
b(i)
µνA

µν
mn(i, j) + a(i)

µνB
µν
mn(i, j)

]}
+

+ b(j)
mnh

(1)
n (k1aj)− c(j)

mnjn(kjaj) = 0 (3.31b)

∂a
[
ajn(k1aj)

]
η1

·
{
q(j)
mn +

∑
µν

[
b(i)
µνA

µν
mn(i, j) + a(i)

µνB
µν
mn(i, j)

]}
+

+
1

η1

b(j)
mn∂a

[
ah(1)

n (k1aj)
]
− 1

ηj
c(j)
mn∂a

[
ajn(kjaj)

]
= 0 (3.31c)

jn(k1aj)

η1

·
{
p(j)
mn +

∑
µν

[
a(i)
µνA

µν
mn(i, j) + b(i)

µνB
µν
mn(i, j)

]}
+

+
1

η1

a(j)
mnh

(1)
n (k1aj)−

1

ηj
d(j)
mnjn(kjaj) = 0. (3.31d)

Again, we will have the same equations for sphere i by interchanging i and j. It is useful to

note that both the primary and secondary incident waves are composed of the same regular

fields, hence their coefficients will all have the same multiplicative factor. In the equations

above they are collected within curly {}-brackets, and in the solutions they can be dealt

with together.
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Step 4: Solution

Rearranging the equations above, we can solve for the unknown coefficients. The solutions

are identical to the single sphere case, but with the collected primary - and secondary -

incident field coefficients replacing the lone incident field coefficients. With a
(j)
mn and b(j)

mn

representing the single sphere solutions from eq. (3.22), we have:

a(j)
mn = a(j)

mn

{
p(i)
mn +

∑
µν

[
a(i)
µνA

µν
mn(i, j) + b(i)

µνB
µν
mn(i, j)

]}
(3.32a)

b(j)
mn = b(j)

mn

{
q(i)
mn +

∑
µν

[
b(i)
µνA

µν
mn(i, j) + a(i)

µνB
µν
mn(i, j)

]}
(3.32b)

a(i)
mn = a(i)

mn

{
p(j)
mn +

∑
µν

[
a(j)
µνA

µν
mn(j, i) + b(j)

µνB
µν
mn(j, i)

]}
(3.32c)

b(i)
mn = b(i)

mn

{
q(j)
mn +

∑
µν

[
b(j)
µνA

µν
mn(j, i) + a(j)

µνB
µν
mn(j, i)

]}
(3.32d)

T -Matrix solution

We can again represent the solution to the problem in a matrix form, using a T -matrix.

Not only does this allow a more succinct representation of the solution, but it also provides

us with an efficient method of solving for the coefficients. The matrices are comprised of

smaller submatrices, each created with the coefficients of the isolated spheres as follows:

T̄sca =


T̄

(j)
sca

T̄
(i)
sca

 (3.33a)

ainc =
(

a
(j)
inc a

(i)
inc

)
(3.33b)
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ᾱ =


0 ᾱij

ᾱji 0

 . (3.33c)

The scattered field is then found as

Esca = ainc · T̄sca ·
[̄
I− T̄sca · ᾱ

]−1 ·OuΨt(k1r), (3.34)

where OuΨt is composed by stacking the OuΨ vector for each of the spheres. The solution

is equivalent to solving for the coefficients in eqs. (3.32a) – (3.32d) and substituting them

into (3.27c).

3.2.3 Multiple spheres

For the most general case involving an arbitrary number of spheres, the setup of the problem

follows almost exactly the same lines as that for the two-sphere case. The only difference

is that secondary field incident on each sphere is made up of the scattered fields from a

summation of all other spheres, as opposed to from just one other sphere.

Step 1: Fields

For a system of Ns spheres, the fields on a sphere j in the presence of all other spheres

i = 1 . . . Ns − 1 follow the same form as that for the two-sphere case. The primary incident

fields, along with the scattered and internal fields can be described using (3.27) and (3.28).

The only difference lies with the secondary incident fields, which as mentioned earlier, are
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composed of a summation of scattered fields from Ns − 1 spheres.

Einc(secondary) =
∑
i

∑
mn

∑
µν

{[
a(i)
mnA

mn
µν (i, j) + b(i)

mnB
mn
µν (i, j)

]
N(1)
µν (k1r) +

+
[
a(i)
mnB

mn
µν (i, j) + b(i)

mnA
mn
µν (i, j)

]
M(1)

µν (k1r)

}
=

∑
i

a(i)
sca · ᾱij ·RgΨ(k1r) (3.35)

Hinc(secondary) =
1

jη1

∑
i

∑
mn

∑
µν

{[
a(i)
mnB

mn
µν (i, j) + b(i)

mnA
mn
µν (i, j)

]
N(1)
µν (k1r) +

+
[
a(i)
mnA

mn
µν (i, j) + b(i)

mnB
mn
µν (i, j)

]
M(1)

µν (k1r)

}
(3.36)

Step 2: Boundary conditions

Using (3.29),we again obtain expressions that are similar to (3.30), and they read

∑
mn

{[
p(j)
mnN

(1)
mn(k1aj) +

∑
i

∑
µν

[
a(i)
mnA

mn
µν (i, j) + b(i)

mnB
mn
µν (i, j)

]
N(1)
µν (k1aj)+

+ a(j)
mnN

(3)
mn(k1aj)− d(j)

mnN
(1)
mn(kjaj)

]
+

+

[
q(j)
mnM

(1)
mn(k1aj) +

∑
i

∑
µν

[
a(i)
mnB

mn
µν (i, j) + b(i)

mnA
mn
µν (i, j)

]
M(1)

µν (k1aj)+

+ b(j)
mnM

(3)
mn(k1aj)− c(j)

mnM
(1)
mn(kjaj)

]}
(3.37a)
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∑
mn

{
1

η1

[
q(j)
mnN

(1)
mn(k1aj) +

∑
i

∑
µν

[
b(i)
mnA

mn
µν (i, j) + a(i)

mnB
mn
µν (i, j)

]
N(1)
µν (k1aj)+

+ b(j)
mnN

(3)
mn(k1aj)

]
− 1

ηj
c(j)
mnN

(1)
mn(kjaj)+

+
1

η1

[
p(j)
mnM

(1)
mn(k1aj) +

∑
i

∑
µν

[
b(i)
mnB

mn
µν (i, j) + a(i)

mnA
mn
µν (i, j)

]
M(1)

µν (k1aj)+

+ a(j)
mnM

(3)
mn(k1aj)

]
− 1

ηj
d(j)
mnM

(1)
mn(kjaj)

}
.

(3.37b)

Step 3: Orthogonality

Once again we apply the orthogonality relationships, given in (3.19), to get

∂a
[
ajn(k1aj)

]
·
{
p(j)
mn +

∑
i

∑
µν

[
a(i)
µνA

µν
mn(i, j) + b(i)

µνB
µν
mn(i, j)

]}
+

+ a(j)
mn∂a

[
ah(1)

n (k1aj)
]
− d(j)

mn∂a
[
ajn(kjaj)

]
= 0 (3.38a)

jn(k1aj) ·
{
q(j)
mn +

∑
i

∑
µν

[
b(i)
µνA

µν
mn(i, j) + a(i)

µνB
µν
mn(i, j)

]}
+

+ b(j)
mnh

(1)
n (k1aj)− c(j)

mnjn(kjaj) = 0 (3.38b)

∂a
[
ajn(k1aj)

]
η1

·
{
q(j)
mn +

∑
i

∑
µν

[
b(i)
µνA

µν
mn(i, j) + a(i)

µνB
µν
mn(i, j)

]}
+

+
1

η1

b(j)
mn∂a

[
ah(1)

n (k1aj)
]
− 1

ηj
c(j)
mn∂a

[
ajn(kjaj)

]
= 0 (3.38c)
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jn(k1aj)

η1

·
{
p(j)
mn +

∑
i

∑
µν

[
a(i)
µνA

µν
mn(i, j) + b(i)

µνB
µν
mn(i, j)

]}
+

+
1

η1

a(j)
mnh

(1)
n (k1aj)−

1

ηj
d(j)
mnjn(kjaj) = 0, (3.38d)

for a sphere j, where the summation over i represents all other spheres.

Step 4: Solution

The last step is to solve for the unknown coefficients, to derive expressions that are equivalent

to (3.32), except for the summation, which is now over all other spheres i.

a(j)
mn = a(j)

mn

{
p(i)
mn +

∑
i

∑
µν

[
a(i)
µνA

µν
mn(i, j) + b(i)

µνB
µν
mn(i, j)

]}
(3.39a)

b(j)
mn = b(j)

mn

{
q(i)
mn +

∑
i

∑
µν

[
b(i)
µνA

µν
mn(i, j) + a(i)

µνB
µν
mn(i, j)

]}
. (3.39b)

The a
(j)
mn and b(j)

mn expressions are again the single sphere scattering coefficients.

T -Matrix solution

Following the exact same procedure as we used for the two sphere case, we get the following

matrix expressions:

T̄sca =



T̄
(j)
sca

T̄
(1)
sca

. . .

T̄
(i)
sca

. . .

T̄
(Ns−1)
sca


(3.40a)

ainc =

(
a

(j)
inc a

(1)
inc · · · a

(i)
inc · · · a

(Ns−1)
inc

)
(3.40b)
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ᾱ =



0 ᾱ1j · · · ᾱij · · · ᾱ(Ns−1)j

ᾱj1 0 · · · ᾱi1 · · · ᾱ(Ns−1)1

...
...

. . .
...

. . .
...

ᾱji ᾱ1i · · · 0 · · · ᾱ(Ns−1)i

...
...

. . .
...

. . .
...

ᾱj(Ns−1) ᾱ1(Ns−1) · · · ᾱi(Ns−1) · · · 0


, (3.40c)

so that the final expression for the total scattered field can be written:

Esca = ainc · T̄sca ·
[̄
I− T̄sca · ᾱ

]−1 ·OuΨt(k1r). (3.41)

3.3 Characteristic basis function method (CBFM)

In this section we present a technique that is numerically efficient for calculating the scat-

tered fields of a system of spheres. It achieves the efficiency by reducing the size of the

matrix that we need to invert. As mentioned previously, in multiple scattering theory a sec-

ondary incident wave on a given is comprised of the fields scattered from all other spheres.

The concept is equally valid in the present technique, but the crucial difference that the

secondary incident wave will now be decomposed into a multitude of characteristic basis

functions. To systematically develop the CBFM, we will, once again begin with a trivial sin-

gle sphere case, then move onto a two sphere case, and finally, we will address the problem

of a completely arbitrary system. The general procedure for solving the problem will still

follow the same outline as that of the multiple scattering theory, in that we will begin with

the representation of the fields, followed by the imposition of the boundary conditions, then

finally use orthogonality relationships to generate the requisite number of linear equations

for the unknowns.
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3.3.1 Single sphere

Let us begin the demonstration of the CBFM by presenting the trivial case of a single

sphere. Although this will reduce to the same problem that we have solved previously in

subsection 3.2.1, it will serve to highlight the differences between the methods.

Step 1: Fields

We again proceed to represent the incident, as well as scattered and internal fields for the

sphere. The notation used is the same as before, except for the fact that the vector of incident

field coefficients ainc, as defined in (3.14), will now have a superscript index, p, because the

secondary incident field will now be decomposed into a number of basis functions. The

primary incident wave has the index p = 0, while for a decomposition of P basis functions,

or incident waves, the subsequent waves will have the indices p = 1 . . . P . For a single sphere

system, we would not expect a secondary incident field as there are no other scatterers.

Nevertheless, for any incident plane wave, the T -matrices from (3.25a) and (3.25b) will

define the scattered and internal fields due to that wave; hence, the total scattered and

internal fields will be represented by a summation of those fields.

Einc = a
(0)
inc ·RgΨ(k1r) (3.42a)

Esca =
∑
p

zp · a(p)
inc · T̄sca ·OuΨ(k1r) (3.42b)

Eint =
∑
p

zp · a(p)
inc · T̄int ·RgΨ(k2r). (3.42c)

The incident field is identical to that of (3.12a). As stated previously, the scattered and

internal fields are a summation of P scattered and internal fields found using the relevant

T -matrices. Every term due to a basis function p will have an unknown coefficient zp, and

we will be solving for these coefficients. Again, for this trivial case there are no secondary

incident fields, and so one would expect all z coefficients to equal zero, apart from that
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coinciding with the incident wave. I.e., for an incident plane wave, if we select a
(1)
inc = a

(0)
inc,

then we would expect z1 = 1, and zp = 0 if p > 1.

Step 2: Boundary conditions

Using the boundary conditions from (3.17), and substituting in (3.42), we obtain:

a
(0)
inc ·RgΨ(θ,φ)(k1r) +

∑
p

zp · a(p)
inc · T̄sca ·OuΨ(θ,φ)(k1r)

=
∑
p

zp · a(p)
inc · T̄int ·RgΨ(θ,φ)(k2r)

⇒ a
(0)
inc ·RgΨ(θ,φ)(k1r) =

∑
p

zp · a(p)
inc ·

[
T̄int ·RgΨ(θ,φ)(k2r)−

− T̄sca ·OuΨ(θ,φ)(k1r)
]

=
∑
p

zp · a(p)
inc ·RgΨ(θ,φ)(k1r). (3.43)

This indicates that the incident wave can be decomposed into P secondary waves. The

question now is, how do we solve for the coefficients of these plane waves, in order to obtain

the solution to the problem at hand?
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Step 3: Orthogonality

We again use Galerkin’s Method to generate a matrix to solve for zp. So for an incident

wave p′, the inner product, defined in (3.20), is taken with (3.43) to get:

〈
a

(0)
inc ·RgΨ(θ,φ)(k1r)

∣∣∣a(p′)
inc ·RgΨ(θ,φ)(k1r)

〉
=

=

〈∑
p

zp · a(p)
inc ·RgΨ(θ,φ)(k1r)

∣∣∣a(p′)
inc ·RgΨ(θ,φ)(k1r)

〉
=

=
∑
p

zp ·
〈
a

(p)
inc ·RgΨ(θ,φ)(k1r)

∣∣∣a(p′)
inc ·RgΨ(θ,φ)(k1r)

〉
. (3.44)

At this point it is important to note that the wave vectors a
(p)
inc must be made orthogonal

to one another. So as to not diverge too much from the present discussion, the methods of

orthogonalization will be deferred to a later section. For now, it suffices to say (for now) that

the most efficient and stable method is based on the use of the Singular Value Decomposition

(SVD) method, which automatically creates an orthonormal basis of vectors. We can define

the following function to simplify the relationship between plane waves with the arbitrary

indices p and p′:

ϕ(p′, p) =
〈
a

(p)
inc ·RgΨ(θ,φ)(k1r)

∣∣∣a(p′)
inc ·RgΨ(θ,φ)(k1r)

〉
. (3.45)

Step 4: Solution

We are now ready to generate a set of equations whose solution will provide us with the

desired coefficients. We can generate the following matrix to solve for z:

Φ̄ · Z = A. (3.46)
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The matrix is generated by forming the inner product for all values of p′ = 1 . . . P , and using

(3.44) to generate the elements of the Φ̄ matrix as follows:

Φ̄ =



ϕ(0, 0) · · · ϕ(0, p) · · · ϕ(0, P )

...
. . .

...
. . .

...

ϕ(p′, 0) · · · ϕ(p′, p) · · · ϕ(p′, P )

...
. . .

...
. . .

...

ϕ(P, 0) · · · ϕ(P, p) · · · ϕ(P, P )


. (3.47a)

The vector Z in (3.46) is comprised of the unknown z coefficients, while the vector A is

determined by the incident field:

Z =



z0

...

zp
...

zP


(3.47b)

A =



ϕ(0, 0)

...

ϕ(p′, 0)

...

ϕ(P, 0)


. (3.47c)
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By selecting the incident angles so that they are orthogonal to one another, Φ̄ is reduced to

a diagonal matrix:

Φ̄ =



ϕ(0, 0)

. . .

ϕ(p′, p)

. . .

ϕ(P, P )


, (3.48a)

and A is simplified to:

A =



ϕ(0, 0)

...

0

...

0


. (3.48b)

The solution is trivial in this case, with z0 6= 0, and zp = 0 for p 6= 0. However this was

expected, with the final expression for the scattered field matching that of (3.26a).

3.3.2 Two spheres

The introduction of a second sphere to the system enables us to examine the treatment

of the secondary waves incident on a sphere. Again, these secondary incident waves are a

result of the scattered waves from the other sphere in the system. They will be treated as a

summation of basis functions, with unknown coefficients.

Step 1: Fields

In a similar manner to the previous section, we will represent the incident field coefficients

vector as a
(j)
inc. The basis functions will be relabeled as a

(p,j)
⊥ , with ⊥ representing their

orthogonality to one another. Each incident wave has an index p, while a sphere will have
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an index j. The index j has been included to account for the variation of the incident wave

dependent on the location of the sphere in question. For a sphere j, with the coordinate

system origin at its center, and in the presence of another sphere i, the fields are represented

as:

Einc(primary) = a
(j)
inc ·RgΨ(k1r) (3.49a)

Einc(secondary) =
∑
p

z(i)
p · a

(p,i)
⊥ · T̄(i)

sca ·αij ·RgΨ(k1r) (3.49b)

Esca =
∑
p

z(j)
p · a

(p,j)
⊥ · T̄(j)

sca ·OuΨ(k1r) (3.49c)

Eint =
∑
p

z(j)
p · a

(p,j)
⊥ · T̄(j)

int ·RgΨ(kjr). (3.49d)

The above representations are similar in form to those of the single sphere case. There is the

addition of the secondary incident field, which is the scattered field from sphere i translated

to sphere j. The fields in the coordinate system of sphere i are found by interchanging i and

j.

Step 2: Boundary conditions

Applying the boundary conditions (3.29), with (3.49) we have:

a
(j)
inc ·RgΨ(θ,φ)(k1r) +

∑
p

z(i)
p · a

(p,i)
⊥ · T̄(i)

sca · ᾱij ·RgΨ(θ,φ)(k1r) =

∑
p

z(j)
p · a

(p,j)
⊥ ·

[
T̄

(j)
int ·RgΨ(θ,φ)(kjr)− T̄(j)

sca ·OuΨ(θ,φ)(k1r)
]

⇒ a
(j)
inc ·RgΨ(θ,φ)(k1r) =

∑
p

z(j)
p · a

(p,j)
⊥ ·RgΨ(θ,φ)(k1r)

−
∑
p

z(i)
p · a

(p,i)
⊥ · T̄(i)

sca · ᾱij ·RgΨ(θ,φ)(k1r). (3.50)

The preceding equation states that the fields on each sphere can be decomposed into a
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number of basis functions. That will be equivalent to the primary incident wave, in addition

to the summation of the plane waves from the other sphere that have scattered onto this one

(i.e., the secondary incident waves). Rearranging this, we can express that primary incident

wave as in (3.50). It is evident that we will need 2P equations to find the coefficients z
(i)
p

and z
(j)
p .

Step 3: Orthogonality

We again use Galerkin’s Method to generate the Φ̄ matrix. Additionally, we note that all

spherical basis functions are regular due to the translation matrix. Thus, during the process

of its orthogonalization, RgΨ(θ,φ)(k1r) may be neglected. We can therefore define the inner

product, in a similar manner to (3.44) for the single sphere case, as

ϕ(j,i)(p
′, p) =


〈
a

(p,j)
⊥
∣∣a(p′,j)
⊥

〉
if i = j

−
〈
a

(p,i)
⊥ · T̄(i)

sca · ᾱij
∣∣a(p′,j)
⊥

〉
if i 6= j,

(3.51a)

and similarly for the primary incident wave,

ϕ(j,j)(p
′, 0) =

〈
a(j)

inc

∣∣a(p′,j)
⊥

〉
. (3.51b)

Step 4: Solution

The matrix Φ̄ is diagonal for the case of i = j

Φ̄(j,j) =



ϕ(j,j)(1, 1)

. . .

ϕ(j,j)(p
′, p)

. . .

ϕ(j,j)(P, P )


, (3.52a)
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but that is not true when i 6= j:

Φ̄(i,j) =



ϕ(i,j)(1, 1) · · · ϕ(i,j)(1, p) · · · ϕ(i,j)(1, P )

...
. . .

...
. . .

...

ϕ(i,j)(p
′, 1) · · · ϕ(i,j)(p

′, p) · · · ϕ(i,j)(p
′, P )

...
. . .

...
. . .

...

ϕ(i,j)(P, 1) · · · ϕ(i,j)(P, p) · · · ϕ(i,j)(P, P )


. (3.52b)

The matrix

Φ̄ =


Φ̄(j,j) Φ̄(i,j)

Φ̄(j,i) Φ̄(i,i)

 (3.53a)

is thus composed of four submatrices. The two submatrices that form the main diagonal
are themselves diagonal, and are each equivalent to the Φ̄ matrix from the isolated single
sphere case. The other two submatrices are dense, and represent the interaction coefficients
between the two spheres. Additionally, for each sphere

Z(i) =


z

(i)
1
...

z
(i)
p

...

z
(i)
P

 (3.53b)

A(i) =


ϕ(i,i)(1, 0)

...
ϕ(i,i)(p

′, 0)
...

ϕ(i,i)(P, 0)

 . (3.53c)

And so
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Z =


Z(j)

Z(i)

 (3.54a)

A =


A(j)

A(i)

 . (3.54b)

We can then solve for the unknowns Z as

Z = Φ̄−1 ·A. (3.55)

3.3.3 Multiple spheres

The two-sphere case will now be extended to the most general case, with an arbitrary (Ns)

number of spheres. As with multiple scattering theory, the modification to the two-sphere

case will involve only summing the contributions of Ns − 1 scattered waves, to form the

secondary incident field on a sphere.

Step 1: Fields

The primary incident field, along with the internal and scattered fields, will once again follow

the same form as their respective fields from (3.49) in the two-sphere case. The secondary

incident fields will, however, be composed of the scattered fields over all other spheres i:

Einc(secondary) =
∑
i

∑
p

z(i)
p · a

(p,i)
⊥ · T̄(i)

sca · ᾱij ·RgΨ(k1r) (3.56)
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Step 2: Boundary conditions

As for the two sphere case, we apply the boundary conditions (3.29) to obtain an expression

for the fields on sphere j. The fields on a every sphere may be found in a similar manner.

a
(j)
inc ·RgΨ(θ,φ)(k1r) +

∑
i

∑
p

z(i)
p · a

(p,i)
⊥ · T̄(i)

sca · ᾱij ·RgΨ(θ,φ)(k1r) =

∑
p

z(j)
p · a

(p,j)
⊥ ·

[
T̄

(j)
int ·RgΨ(θ,φ)(kjr)− T̄(j)

sca ·OuΨ(θ,φ)(k1r)
]

⇒ a
(j)
inc ·RgΨ(θ,φ)(k1r) =

∑
i

∑
p

z(j)
p · a

(p,j)
⊥ ·RgΨ(θ,φ)(k1r)

−
∑
p

z(i)
p · a

(p,i)
⊥ · T̄(i)

sca · ᾱij ·RgΨ(θ,φ)(k1r). (3.57)

Step 3: Orthogonality

We apply the Galerkin procedure once again. Using the definitions (3.52a) and (3.52b), we

have

Φ̄ =



Φ̄(1,1) · · · Φ̄(1,i) · · · Φ̄(1,Ns)

...
. . .

...
. . .

...

Φ̄(j,1) · · · Φ̄(j,i) · · · Φ̄(j,Ns)

...
. . .

...
. . .

...

Φ̄(Ns,1) · · · Φ̄(Ns,i) · · · Φ̄(Ns,Ns)


. (3.58a)

Again, the Ns submatrices that form the main diagonal each represent an isolated sphere’s

Φ̄ matrix. They are once again diagonal themselves, while the off-diagonal submatrices are

not. These submatrices represent the interaction coefficients between the spheres.

Part 4: Solution

Additionally,
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Z =


Z(1)

...
Z(j)

...
Z(Ns)

 (3.58b)

A =


A(1)

...
A(j)

...
A(Ns)

 . (3.58c)

And we can thus solve for the unknown coefficients Z using (3.55).

3.4 Field computation

3.4.1 The far field approximation

Of primary interest for most applications, and our method of verification of the CBFM, is

the scattered field in the far zone region. Once all coefficients have been solved for, the

scattered field can be found using, e.g., (3.49c) for the general CBFM case, or (3.41) for the

corresponding T -matrix solution. The final remaining task is the expression of the spherical

basis vectors in their far field forms, i.e., as r → ∞. Due to the fact that we are dealing

solely with the outgoing field, OuΨ, this will involve reducing the spherical Hankel function,

h
(1)
n , and its derivative in (3.7b) and (3.7c), into their asymptotic forms,

h(1)
n (kr) ' (−j)n

jkr
ejkr, kr →∞ (3.59a)

∂r
[
rh

(1)
n (kr)

]
kr

' (−j)n

kr
ejkr, kr →∞. (3.59b)
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Hence, the spherical basis vectors will reduce to,

M(3)
mn(r, θ, φ) ≈ Dmn(r) ·

(
0, jτmn (θ),−πmn (θ)

)
· ejmφ (3.60a)

N(3)
mn(r, θ, φ) ≈ Dmn(r) ·

(
0, jπmn (θ),−τmn (θ)

)
· ejmφ, (3.60b)

where

Dmn(r) = (−j)2m+n · e
jkr

jkr
·

√
(n−m)!

(n+m)!
· 2n+ 1

4π
. (3.60c)

The outgoing fields at a sphere j can then be found, such that,

OuΨ
(j)
(θ,φ) = OuΨ(θ,φ) · e−jr·d0j . (3.61a)

And so the total outgoing field vector, using (3.11b) is,

OuΨt =

{
OuΨ OuΨ(1) · · · OuΨ(j) · · · OuΨ(Ns−1)

}T
, (3.61b)

where the observation vector is,

r = r


sin θ cosφ

sin θ sinφ

cos θ

 . (3.61c)

Multiple scattering

Substituting (3.61b), along with the incident field coefficients and the T -matrix T̄, into

(3.41), we can obtain the scattered fields. Generally though, it is the radar cross-sectional

(RCS), σ, that is plotted as a function of angle. This is given as,

σ(θ, φ) = lim
r→∞

4πr2

∣∣∣∣Es(r, θ, φ)

Ei(r)

∣∣∣∣2 . (3.62)
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CBFM

Once the z
(j)
p coefficients have been found, the total scattered field is given by summing the

fields from every sphere, and from every basis function, giving

Esca
(θ,φ) =

Ns∑
j=1

P∑
p=1

z(j)
p a

(p,j)
⊥ · T̄(j)

sca ·OuΨ
(j)
(θ,φ). (3.63)

The RCS is then obtained from (3.62).

3.4.2 The incident wave

In the T -matrix and CBFM techniques presented here, the incident field coefficients, pmn

and qmn from (3.14) are required to solve a scattering problem for a particular incident

wave. A vector plane wave can be decomposed into a summation of spherical waves, using

the technique outlined by Stratton [143, p.418-420] and Sarkar [146]. Using the associated

Legendre functions, τmn (θ) and πmn (θ), defined in section A.4, and with the Eulerian incident

angles (α, β, γ) from Figure 3.3, the plane wave coefficients at the origin of the coordinate

system are,

p0
mn = Cmn [πmn (α) cos γ + jτmn (α) sin γ] e−jmβ (3.64a)

q0
mn = Cmn [τmn (α) cos γ + jπmn (α) sin γ] e−jmβ, (3.64b)

where

Cmn =
j2m+n+1

n(n+ 1)

√
4π(2n+ 1) · (n−m)!

(n+m)!
. (3.64c)

Multiple scattering

The incident wave coefficients are required at every sphere. For a source in the far field, this

can be approximated by a phase shift factor. Defining a
(0)
inc and a

(i)
inc using (3.14),

a
(i)
inc ≈ a

(0)
inc · exp(jk · d0i). (3.65)
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Here, the propagation constant vector k, and direction vector d are,

k = k1


sinα cos β

sinα sin β

cosα

 , d0i = d0i


sin θ0i cosφ0i

sin θ0i sinφ0i

cos θ0i

 , (3.66)

where k1 is the wavenumber in the background medium, d0i is the distance between the

coordinate system origins (i.e. the distance between sphere 0 and sphere i), and the angles

(θ0i, φ0i) represent the angular location of system i in terms of system 0 (see Figure 3.4, with

j = 0). The complete incident field coefficient vector, ainc, is then obtained using (3.40b).

CBFM

The incident wave coefficients vectors, a
(j)
inc, are found in an identical manner to the multiple

scattering theory, using (3.65). However, as we stated previously, the CBFM requires an

orthogonal basis of vectors, such that,

〈
a

(p,j)
⊥
∣∣a(p′,j)
⊥

〉
=


6= 0 if p = p′

= 0 if p 6= p′.

(3.67)

An obvious solution would be to use a Gram-Schmidt orthogonalization. But, and we will

quote from [147, p.74], ”Numerically, however, because of the build-up of roundoff errors,

naive Gram-Schmidt orthogonalization is terrible.” The correct procedure, numerically, to

form an orthogonal basis, would be to use the singular value decomposition (SVD). In fact,

this powerful procedure will provide an orthonormal basis set, while also giving information

on which basis vectors may safely be ignored. The SVD will factorize a matrix into the

form M̄ = Ū · Σ̄ · V̄H , where V̄H represents the conjugate transpose of the matrix V̄. The

columns of the matrix Ū are the desired orthonormal basis vectors. Σ̄ is a diagonal matrix

in which the entries are singular values that correspond to the vectors in Ū. These act as
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gain terms, such that the vectors corresponding to the small singular values can be ignored.

Generally, a cutoff value is selected, with vectors corresponding to smaller values discarded.

One may ask, is it necessary to use an SVD to achieve an orthonormal basis? Why

would one not just use a standard basis, i.e. {(1, 0, 0, · · · ), (0, 1, 0, · · · ), (0, 0, 1, · · · ), · · · }?

The reasoning for using the standard basis would be that, not only would this remove the

need to perform an SVD, but it may make more physical sense to create an orthonormal

basis out of the different spherical harmonics. Additionally, the T -matrices themselves

are independent of the form of any incident wave, while the problem in general, being of

spherical geometry, certainly will not have any predisposition to a basis of plane waves. In

fact, we find that on substituting the standard basis into the requisite equations, and taking

P = 2N(N + 2), then it is easily shown that (3.55) will become (3.41). What this means

is that the CBFM is exactly equal to the multiple scattering theory, in the case that we

choose an equal number of basis functions to the number of spherical harmonics. This is

demonstrated in Figure 3.5, where the effect of reducing the number of basis functions is

demonstrated. The multiple scattering case consists of 720 harmonic modes. However, even

reducing this down to 600 basis functions leaves only a negligible error. With less than half

the harmonics kept, at P = 350, errors are still below 1%, although at P = 300 the swiftly

increase to significant levels.

By reducing the number of basis functions, however, the problem can be more efficiently

computed. This will be discussed in more detail in a later section on computational com-

plexity. However for now, it would be of interest to compare the use of the standard basis

functions, with the use of plane waves. In Figure 3.6, it is evident that the calculations

performed using plane waves will diverge a lot more rapidly than those performed using the

standard basis functions. The standard basis function calculation will still provide good

results using only 107 basis functions. However, the use of even 174 plane waves will result

in inaccurate calculations. Thus our hypothesis that the harmonics should provide fastest

convergence of the scattered fields is correct. Nevertheless, the scattering of spheres is an
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(a) RCS calculated using multiple scattering theory, and using CBFM with vary-
ing numbers of basis functions.

(b) Error in RCS calculated with CBFM, compared to multiple scattering.

Figure 3.5: Divergence of RCS calculated with CBFM, as the number of basis functions
is decreased. The system consists of three linearly arranged spheres, each with ka = π,
or a = λ/2. The spheres have a relative permittivity of εr = 3, and the lattice spacing is
kd = 3ka. The incidence is endfire, and the θ component of the electric field is displayed
here.

idealized situation, and with more complex geometries, the plane waves would certainly have

use.

Of additional interest is the effect that various parameters will have on the number of
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Figure 3.6: Scattering cross section (RCS) of four touching spheres, in a linear array, and
with endfire incidence along the z-axis. The identical spheres each have a size factor of
ka = 2, and a relative permittivity of εr = 3. The computations are performed using both
the standard basis functions, and by using plane waves. With P = 107, the standard basis
functions still converge well to the correct solution. However, with plane waves, the results
rapidly diverge when P = 174.

basis functions required to attain a certain level of accuracy. Table 3.1 shows the number of

basis functions required to achieve a better than 0.1%, 1%, and 10% error level, as compared

to when all basis functions are used. Different parameters are varied (the varying parameter

is bolded in the table). It appears, however, that apart from the size factor and the number

of spheres, the other parameters have little effect. The parameters varied were the incident

angle and polarization, the seperation distance, and the permittivity, but there appears to

be no correlation to the required number of basis functions.

Regardless of the choice of basis functions, we can now give the final form of the problem.
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We may define an inner product of two vectors, a and b, as the dot product,

〈
a
∣∣b〉 ≡ a · b∗. (3.68)

Table 3.1: Number of basis functions, P , required for varying levels of accuracy with respect
to the multiple scattering solution, as different parameters are varied.

Size factor, Spheres, Separation, Permittivity, Incident angle Harmonics NsP for error

ka Ns kd εr α γ 2NsN(N + 2) 0.1% 1% 10%

1 2
2

3 0 0 192
110 110 102

50 118 110 100

1 10
2

3 0 0 960
550 550 510

50 610 550 510

1 2 2 3
90 0

192
112 112 102

90 90 122 110 102

π 2 2

3

90 90 480

354 304 284

10 390 340 286

100 358 308 286

For an orthonormal set of vectors, we may rewrite (3.51a) as,

ϕ(j,i)(p
′, p) =


δpp′ if i = j

−a
(p,i)
⊥ · T̄(i)

sca · ᾱij ·
(
a

(p′,j)
⊥

)H
if i 6= j,

(3.69)

where a
(p,i)
⊥ = a

(p,i)
⊥ exp(jk ·d0i), such that (3.52a) will become Φ̄(j,j) = Ī, where Ī is a P ×P

identity matrix. (3.52b) is also filled in using (3.69), so that the entire Φ̄ matrix from (3.58a)

is determined. In a similar manner, (3.51b) will become,

ϕ(j,j)(p
′, 0) = a

(j)
inc ·

(
a

(p′,j)
⊥

)H
, (3.70)
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and so A, from (3.58c), may be fully determined as well. The Z coefficient can now be found

using (3.55).

It should be noted that the sphere scattering solutions in this chapter are not, of course,

limited to just incident plane waves; as long as the relevant incident field coefficients can

be found for an arbitrary profile, then it may be used as an excitation. Gaussian beams

decompositions, for example, are examined in [148, 149, 150].

3.4.3 Solving a linear system of equations

The bulk of the computational expense in solving the scattering problems in this chapter, is

the inversion of the matrices Φ̄, for the CBFM, or [̄I− T̄sca · ᾱ], for the multiple scattering

technique. The most obvious solution would be to use Gauss-Jordan elimination (also know

as ”Gaussian elimination,” which strictly speaking refers to a different technique) [147, p. 41].

Although this technique works well, and is very stable, is it in fact the best method to use?

Gauss-Jordan elimination generally requires N3 operations for the inversion of an N × N

matrix. We will investigate two other algorithms for solving linear systems of equations;

LU decomposition and the Strassen formulas, and then determine whether they are more

efficient, and suitable for these scattering problems.

LU decomposition

The LU decomposition expresses a matrix M̄ as the product of an upper diagonal matrix

Ū, and a lower diagonal matrix L̄, such that,

M̄ = L̄ · Ū. (3.71a)
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So, for example, a 3× 3 matrix M̄ can be decomposed as,


M11 M12 M13

M21 M22 M23

M31 M32 M33

 =


L11 0 0

L21 L22 0

L31 L32 L33

 ·

U11 U12 U13

U21 U22 0

U31 0 0

 (3.71b)

The procedure for performing an LU decomposition is quite standard in most numerical

computation packages, and so for details the readers are referred to [147, p. 48]. Once the

decomposition has been performed though, it makes the solution of a linear system very

straightforward. It is easily shown that a linear set, such as the CBFM equation Φ̄ · Z = A

can be broken up into two successive linear sets, by solving first for the intermediate vector

y,

L̄ · ȳ = Ā, (3.72a)

and then solving for Z,

Ū · Z̄ = ȳ. (3.72b)

Although there are now two sets of linear equations to solve, the problem is in fact greatly

simplified, as the triangular matrices allow the coefficients to be solved for algebraically,

using forward and backsubstitution. (3.72a) is first solved as,

y1 =
A1

L00

yi =
1

Lii

[
Ai −

i−1∑
j=1

Lijyj

]
i = 2, 3, · · · , N, (3.73a)

and then the coefficients of Z can be solved for as,

ZN =
AN
UNN

Zi =
1

Uii

[
Zi −

N∑
j=i+1

UijZj

]
i = N − 1, N − 2, · · · , 1. (3.73b)
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The advantage of this technique is that we do not, in fact, have to perform a matrix inver-

sion. The LU decomposition will give us the solution to the linear set, requiring only 1
3
N3

operations. This is three times less than if were to perform an inversion using Gauss-Jordan

elimination. Additionally, the LU decomposition may still be used to easily solve the set for

different values of the vector A, and so that benefit of the T -matrix techniques is not lost.

The Strassen formulas

In his seminal paper, published in 1967, Volker Strassen showed that Gauss-Jordan elimina-

tion is not, in fact, optimal for matrix multiplication and inversion [151]. He demonstrated

efficient techniques that were of order O(N log2 7) ≈ O(N2.808). For smaller matrices, there is

little benefit to this technique as the size of the constant in front of the power term is much

larger than with Gauss-Jordan elimination. However, depending on the numerical imple-

mentation and the hardware used, the Strassen algorithm can see substantial computational

savings. Of most benefit to us is the inversion algorithm. For the inversion of a matrix M̄,

it is first split up into four smaller block matrices,

M̄ =

 Ā B̄

C̄ D̄

 , (3.74)

where Ā ∈ C m×m, B̄ ∈ C m×n, C̄ ∈ C n×m, and D̄ ∈ C n×n. The inversion may be found

as,

M̄−1 =

 Ā−1 + Ā−1B̄(D̄− C̄Ā−1B̄)−1C̄Ā−1 −Ā−1B̄(D̄− C̄Ā−1B̄)−1

−(D̄− C̄Ā−1B̄)−1C̄Ā−1 (D̄− C̄Ā−1B̄)−1

 . (3.75)

There are now two smaller matrices that have to be inverted, and less operations overall.

The approach we take to matrix inversion is, in fact, to divide M̄ into P×P smaller matrices,

each of size n × n, such that N = nP . This division is conducive to a recursive method,
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in which we can begin with the inversion of the top left n× n matrix, and then use this to

find the inversion of the 2n× 2n matrix of which it is a part, which in turn may be used to

solve for the inversion of the 3n× 3n matrix, and so on until the entire Pn×Pn matrix has

been inverted. As an example, a recursive approach to obtaining a 3n× 3n matrix is shown

below, where Q̄(i) is the ith iteration of the inversion process, with Q̄(3) giving the inversion

of the entire matrix.
Q̄

(1)
11

 −→


Q̄
(2)
11 Q̄

(2)
12

Q̄(2) Q̄(2)

 −→


Q̄
(3)
11 Q̄

(3)
12 Q̄

(3)
13

Q̄
(3)
21 Q̄

(3)
22 Q̄

(3)
23

Q̄
(3)
31 Q̄

(3)
32 Q̄

(3)
33

 (3.76)

The benefit of this technique is that the largest inversion required is only an n × n

matrix, and at each iteration, only one further inversion, corresponding to (D̄− C̄Ā−1B̄)−1,

will be required, as Ā−1 is found in the preceding iteration. This method is particularly

beneficial for the inversion that we will use for the scattering problems, as their diagional

submatrices are identity matrices, and so their inversion are trivial. Additionally, this method

is extremely useful for the inversion of very large matrices when only limited computer

memory is available. The block submatrices may be stored to a physical drive, and called

only as they are needed for an operation. Although there is a speed cost, it allows the solution

of problems that otherwise would not be possible. A further advantage of the block matrix-

approach to inversion, is that it may be used to iteratively invert the matrix, increasing the

number of basis functions (and blocks), until a requisite level of accuracy has been achieved.

Table 3.2 shows the time taken to compute the matrix Z̄ from (3.55), using the different

techniques. First, a regular inversion is performed using Gauss-Jordan elimination. This is

compared to the Strassen algorithm, LU decomposition, and the Strassen algorithm with

physical drive-storage. The comparisons are done for a number of different sphere sizes,

and with a varying number of spheres. The Strassen algorithm and LU decomposition

are significantly faster than the traditional technique, with the Strassen algorithm showing
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significant benefit as the number of spheres increases, or the number of spherical harmonics

are increased (or sphere sizes are larger). On the other hand, as we expect,the use of the

physical drive significantly decreases the performance. However, only this technique is able

to solve the larger problems. Therefore, it should be used only when absolutely necessary.

Additionally, for comparison purposes, the storage technique was programmed so that each

sphere interaction submatrix was called only when required, and operations where performed

only with these matrices. It would be more efficient if full use was made of available memory,

with larger matrices kept in memory and only sent to storage when required. This would

be useful for the case when the scattering of a very large number of small spheres is to be

calculated.

Table 3.2: Computational times for inversion of matrices for various aggregations of spheres

Size factor, Harmonics, Number of spheres, Matrix size, Computation time, s

ka N Ns 2NsN(N + 2) G-J Strassen LU Storage

0.01 2

10 160 0.17 0.09 0.08 4.84

20 320 0.72 0.41 0.36 39.1

50 800 13.58 5.39 5.80 554

0.5 5

2 140 0.14 0.11 0.08 0.49

10 700 9.39 2.23 3.78 67.8

20 1400 74.7 17.4 34.3 560

π 10

2 480 2.17 1.00 1.078 4.64

5 1200 43.6 10.9 20.8 106

8 1920 N/A N/A N/A 452

2π 15

2 1020 31.1 15.7 15.3 26.8

3 1530 127 49.2 56.6 124

4 2040 N/A N/A N/A 326
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3.4.4 Computational complexity

It is of interest to determine the computational complexity of the CBFM, as compared to

multiple scattering. This is achieved by determining the order of the number of calculations

required to solve a problem so, e.g., an N × N matrix requires O(N3) to invert, assuming

Gauss-Jordan elimination is used.

Multiple scattering

For a system of Ns spheres, recall that the fields from each sphere will be represented by

N(N + 2) spherical harmonics. There are two computationally intensive sets of calculations

to perform: the first is the determination of all the special functions, and in particular

the vector addition theorem coefficients. Direct calculation of all the special functions and

addition theorem coefficients would be extremely inefficient. However, recurrence relations

are presented in Appendix A and Appendix B that significantly decrease the computational

cost. The second computationally intensive calculation is the matrix inversion in (3.41).

For simplicity in comparing computational complexity, we will assume inversions are done

using Gauss-Jordan elimination. So for the multiple scattering case, performing the required

inversion will require O(N3
sM

3) operations to solve the problem, where M ≡ N(N + 2).

CBFM

In the same manner as the multiple scattering solution, the vector addition theorem coeffi-

cients and the special functions can be solved for using recurrence relations. The inversion

in this case, will require O(N3
sP

3) operations, again assuming Gaussian elimination is used.

This is where the computational complexity is decreased. The selection of the basis functions

will at most keep the size of the problem the same, with P ≤ M . In reality though, P will

be smaller than M , and in many cases it will be significantly smaller. This can reduce the

size of the problem by many times.
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3.5 Summary

In this chapter a novel technique was presented for calculating the scattered fields from an

aggregate of spheres. The characteristic basis function method is a highly efficient technique

that allows the calculation of larger scattering problems than multiple scattering theory. It

is capable of handling dielectric, magnetic, and conducting spheres, with sizes ranging from

much less than a wavelength (Rayleigh regime) to multiple wavelengths in diameter. The

physical idea behind the CBFM is that the waves incident upon any particular sphere in a

system, can be decomposed into a number of weighted waves, or basis functions, that are

incident from other spheres. Each of these waves can be treated individually, as a plane wave

incident on an isolated sphere. The weightings of each of these waves are then determined,

and this gives the solution to the scattering problem. It was also shown that in the case

when the number of waves is equal to the total number of spherical harmonics, then the

CBFM is equivalent to the multiple scattering formulation.

In addition, a number of numerical techniques were discussed for solving the linear system

of equations. It was found that the Strassen algorithms for matrix inversion are well suited

to this problem, and significantly reduce computational time. Additionally, the algorithm

allows the iterative inversion of a matrix, while also allowing the solution of larger problems,

by storing blocks of the matrix on a physical drive. With this technique, as long as round-off

errors are kept to an acceptable level, then the size of the problem that can be solved is

increased by many times.
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Chapter 4

Effective Media Representation of Anisotropic

Materials

With the increased interest in electromagnetic metamaterials over the past few years, a

large amount of attention has been focused on the treatment of these metamaterials as

homogeneous effective media [34, 36, 60, 152]. Techniques have been developed to extract the

effective material properties of a slab composed of a metamaterial [63, 153, 154, 155]. These

techniques are generally based on the inversion of the reflection and transmission parameters

of a wave, normally incident on the slab, to give the effective refractive index n and impedance

z. The effective permittivity ε and permeability µ are then calculated as ε = n/z and µ = nz.

These methods are all basically extensions of the more traditional techniques described in

chapter 2 [61, 62, 94], but applied to structures with negative values of ε and/or µ. All these

techniques have been limited to the characterization of homogeneous, isotropic media, and at

normal incidence. The vast majority of attempts at measuring the refractive index or other

material parameters at oblique incidence (see e.g. [152]), or accounting for anisotropy [156],

have relied on fitting techniques. In [157], a reflection/transmission technique is presented

that allows the extraction of bianisotropic material parameters for a slab with a normally

incident wave. This method provides the main-diagonal tensor parameters for ε̄ and µ̄: εxx,

εyy, εzz, µxx, µyy, and µzz, in addition to the bianisotropic term ξ0. However, the technique

is limited to normal incidence, and does not provide information on the off-diagonal tensor
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terms. Additionally, six different incidences (the first three TE and TM) are required for

extraction, significantly complicating the procedure.

In this chapter, a material characterization technique is presented that allows the retrieval

of the twelve different ε̄ and µ̄ parameters, using transmission and reflection measurements

at oblique incidence. The method requires the measurement of two different homogeneous

slabs, of the same material but with different thicknesses. The method will first be verified

with the analytically calculated reflection and transmission coefficients of an anisotropic

slab, followed by simulations of the same slab. The technique will then be applied towards

the parameter extraction of composite material, composed of lattices of spheres. In [63],

it is shown that the extracted parameters of a single-layered wire medium will differ from

the extracted parameters of the bulk medium, composed of a larger number of layers. It

is evident from these results that there exists a lower bound of unit cell layers, such that

the material can be treated as homogeneous bulk medium. It will be shown in this chapter

that the eigenvectors of a slab’s T -matrices, as the thickness is varied, may be compared

to quantify whether or not the extracted material parameters for a particular slab thickness

match up with those of the bulk material. In other words, it will be shown that, as the

thickness of the slab is increased, the eigenvectors will eventually reach a point of saturation,

at which they will no longer vary with increasing thickness (assuming the slab is not so thick

that there are longitudinal resonances), and the extracted material parameters will thus

be equivalent to those of the bulk material. This test is critical in confirming whether or

not these effective media models may be used in the design of new devices utilizing these

metamaterial structures.

4.1 Structure symmetry and its relation to the physical properties

Before we discuss the material property extraction techniques, a brief introduction will be

provided on the forms of the material parameters that we can expect. In the study of crystal

structures, the symmetry of a structure will determine the form of its material tensors. This
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(a) Cubic, tetragonal, or or-
thorhombic system

(b) Triclinic, monoclinic, or
rhombohedral (trigonal) system

(c) Hexagonal system

Figure 4.1: The seven lattice systems

is stated as Neumann’s Principle [158]:

The symmetry elements of any physical property of a crystal must include the

symmetry elements of the point group of the crystal.

The point group of a crystal is the group of macroscopic symmetry elements that its

structure possesses. What this means, is that all crystal structures can be divided into one

of seven different lattice symmetry systems, and within each symmetry system, the material

tensors will follow the same form. Figure 4.1 shows the structures of the different symmetry

system unit cells, where interaxial angles α, β, and γ, and the unit cell lengths a, b, and c

are used to differentiate between them. Table 4.1 summarizes the geometrical properties of

these seven different systems, along with their optical classifications as isotropic, uniaxial, or

biaxial. The form of a material property’s tensor for each of the systems is given, where X can

represent ε or µ. An isotropic material’s permittivity tensor, for example, will be represented

by a single ε coefficient, while a triclinic material will need up to six independent coefficients.

The three uniaxial systems: tetragonal, hexagonal, and rhombohedral (trigonal), all have

the same tensor form, and so we in fact only have a total of five different tensor forms.
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4.2 Retrieval techniques from the literature

4.2.1 Homogeneous isotropic media [63, 153, 154, 155]

The majority of metamaterial characterization techniques developed to date are, as we stated

previously, based on variations of the Nicholson-Ross-Weir [61, 62] method; developed ini-

tially for regular dielectrics. Inversion equations have been derived to retrieve an isotropic

slab’s refractive index n and impedance z:

z = ±

√√√√(1 + S11

)2 − S2
21

(1− S11

)2 − S2
21

, Re(z) ≥ 0 (4.1)

Im(n) = ±Im

{
1

k0d
cos−1

(
1

2S21

[
1− (S2

11 − S2
21)
])}

, Im(n) ≥ 0 (4.2)

Re(n) = ±Re

{
1

k0d
cos−1

(
1

2S21

[
1− (S2

11 − S2
21)
])}

+
2πm

k0d
, (4.3)

where k0 = ω/c is the wavenumber of the incident field, and the S-parameters S11 and S21

are the reflection and transmission coefficients, respectively, for a slab of thickness d. The

sign of the square root in (4.1) is determined such that Re(z) ≥ 0. Likewise, the sign in (4.2)

is chosen such that Im(n) ≥ 0. The retrieval of the real part of n is, however, complicated

by the branch cuts of the inverted function; we are left with an unknown branch index m

that causes an ambiguity in the result. This is a problem that plagues all the extraction

techniques that will be presented in this chapter. Many suggestions have been made on how

to remove the uncertainty in the determination of the integer m, e.g., [155] however there

is still much debate. A recently published technique that is showing promise, makes use of

the Kramers-Kronig causality relationships [159], that mathematically relates the frequency
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dispersive imaginary component of a complex function to its real part, and vice-versa. As

we can unambiguously determine the Im(n), we can thus obtain an approximation for Re(n)

over the relevant frequency band, which will give us a good idea of the correct value of m to

select.

Assuming the branch index is known, a further limitation of this method is that it is

restricted to the retrieval of the material parameters of an isotropic medium, and only at

normal incidence.

4.2.2 Homogeneous bianisotropic media [157]

The anisotropic behavior of many metamaterials is evident due to their non-symmetrical

structures, and this has long been recognized [60, 160]. A technique for extracting the mate-

rial parameters of a bianisotropic metamaterial has been demonstrated [157], for structures

with at least orthorhombic symmetry, where the tensor coefficients are zero off the main-

diagonal. This system will have up to seven unknowns: εxx, εyy, εzz, µxx, µyy, and µzz, in

addition to the bianisotropic term ξ0. This technique also makes use of the reflection and

transmission coefficients, however six different waves at normal incidence are used, as op-

posed to the single measurement of Smith’s isotropic retrieval technique. Dispersive relations

for each of these waves have been found, and they are solved for the seven unknown material

parameters, in a manner similar to that of the isotropic case. These dispersive relations are

summarized in Table 4.2.
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Table 4.2: Dispersion relationship, impedance z, and refractive index n for each incident
wave [157]

Case Dispersion relationship z n

TE1 k2
z = k2

0εyyµxx
√
µxx/εyy

√
εyyµxx

TM1 k2
z = k2

0 (εxxµyy − ξ2
0εxx/εzz)

εxx√
εxxµyy − ξ2

0εxx/εzz

√
εxxµyy − ξ2

0εxx/εzz

TE2 k2
x = k2

0 (εzzµyy − ξ2
0)

µyy√
εzzµyy − ξ2

0 + jξ2
0

√
εzzµyy − ξ2

0

TM2 k2
x = k2

0εyyµzz
√
εyy/µzz

√
εyyµzz

TE3 k2
y = k2

0εxxµzz
√
µzz/εxx

√
εxxµzz

TM3 k2
y = k2

0 (εzzµxx − ξ2
0µxx/µyy)

εzz√
εzzµxx − ξ2

0µxx/µyy

√
εzzµxx − ξ2

0µxx/µyy

4.3 Homogeneous anisotropic media

4.3.1 Motivation for retrieval at oblique incidence angles

In practise, a wave may be incident on the metamaterial slab from an oblique angle. Fur-

thermore, an incident wave may be non-planar (e.g., Gaussian [161]), in which case a spatial

decomposition of the wave will reveal that it is a summation of a number of waves incident

from different angles. Although in theory a homogeneous material will have angular inde-

pendent material tensors, the homogeneity of the metamaterial structures that have been

characterized has only been assumed. The material has been characterized only at normal

incidence by a plane wave, and the assumption is made that the retrieved material parame-

ters will be valid for any incident wave. For device design, however, it is extremely important

to know whether these assumptions will in fact hold. There will be absolutely no benefit of

modeling a metamaterial structure as an effective medium, if that effective medium model

is only valid at normal incidence on a rectangular dielectric slab by a plane wave.

Furthermore, it would be of interest to be able to model complex metamaterial structures

as effective materials with less than orthorhombic symmetry, i.e. there will be non-zero ten-
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sor coefficients off the main axis. Referring back to Neumann’s Principle, if the metamaterial

structure has less than orthorhombic symmetry, then the material tensors may do as well.

We will now describe a technique that can be used to extract the material parameters of a

homogeneous anisotropic material with dielectric and magnetic components. The character-

ization can be performed at normal or oblique incidence, and requires the measurement of

a TE and a TM wave. We will discuss the number of coefficients that can be extracted for

different symmetries, as well as when we use an oblique, as opposed to a normal incident

wave.

Additionally, it was mentioned that for very thin composite media, the extracted material

parameters may not be equivalent to those of the bulk medium. In [63], an investigation is

performed on a material with a unit cell composed of a single wire. The effective permittivity

of the medium is extracted for thicknesses of one, three, and five unit cells. Traditionally,

one would define the medium as homogeneous if the extracted parameters were equivalent

for all three cases. However, in the investigation by Smith et al., it is found that the effective

permittivity of the single-layer medium deviates noticeably from the three- or five-layer

bulk media, yet the bulk medium is still treated as homogeneous. This complication in the

definition of a homogeneous medium arises due to the complex interactions between the

different layers of a composite medium. For this case of a wire medium, a single wire layer

will interact only with the incident wave, and we can call these interactions the surface layer

effects. However, with multiple layers of wires, there will be mutual interactions between

the different wire layers. With increasing numbers of wire layers, a saturation point will

eventually be achieved, such that the interacting fields will average out to a bulk medium,

with the surface layer effects having a minimal contribution. Once this saturation point

has been reached, the material parameters will not subsequently vary with increasing slab

thickness.

In Figure 4.2a, a medium is composed of wires with spacings large enough, such that

there is minimal interaction between the wires. In this case, one would expect the extracted
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(a) Medium with minimal interaction between ad-
jacent wires.

(b) Medium with significant interaction between
adjacent wires.

Figure 4.2: Two different wire media, with arrows representing the strength of the field
interactions with distance from a particular wire. The first medium has sufficient distance
between wires such that there is minimal interaction. The second medium has closely spaced
wires, and so there is significant interaction between adjacent wires. Note that the figures are
not to scale; most important are the lengths of the arrows representing the field interactions.

parameters of just one or two layers of wires to represent that of the bulk material. In

Figure 4.2b, the wires are closer to one another in this case, such that there is significant

interaction between adjacent wires, as represented by the arrows. In this scenario, the fields

between the middle two wire layers can be expected to be very similar to one another, and

will form the bulk material. The outer two wire layers contribute the surface layer effects.

Because of the strong interactions between the adjoining unit cells, one or two layers of wires

will not sufficiently represent the material parameters of the bulk medium, and so at least

three or four layers must be considered. As an analogy, consider a slab of material that we

know to be homogeneous (e.g. the Alumina samples we characterized in chapter 2). Now

assume that the surface of the slab is rough, and that the slab is very thin, such that the

surface roughness is significant in comparison to the thickness of the slab. We can consider

this surface roughness to be the surface layer effects, while the interior of the sample is the

bulk material. If we were to characterize this material, then we would not have acceptable

results, due to the strong surface layer effects. However, if we increased the thickness of the

material, such that the surface roughness is negligible in comparison, then the surface layer

effects will similarly be negligible in comparison to the bulk material, and our characterization

will hence give acceptable results for the bulk material.

The techniques presented will first be verified by analytically calculating the reflection
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and transmission coefficients of several known anisotropic materials, and then backing out

the material parameters and comparing them to the correct (known) values. A similar task

will be performed with the simulated reflection and transmission coefficients of the materials.

Finally, the effective material parameters of conglomerates of spheres will be calculated. The

spheres will be arranged with different lattice symmetries, so as to determine the lattice’s

effect on the tensor forms.

4.3.2 Scattering from an anisotropic slab.

The source-free, time-harmonic forms of Maxwell’s equations relate the electric E and mag-

netic H fields to one another, at a frequency ω, in terms of the complex permittivity ε̄ and

permeability µ̄ tensors:

−∇× E = jωµ̄ ·H (4.4a)

∇×H = jωε̄ · E. (4.4b)

Recall that the most general (and least symmetric) form of the second-rank material

tensors are related to the triclinic point group, then using Table 4.1, we can define the

permittivity and permeability tensors, in a rectangular coordinate system as,

ε̄ =


εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 and µ̄ =


µxx µxy µxz

µxy µyy µyz

µxz µyz µzz

 , (4.5a)

respectively. Any of the coefficients can be complex, with an imaginary component repre-

senting either dielectric or magnetic losses, while a purely real tensor will represent a lossless

system. Figure 4.3 shows the geometry under consideration.

A planar anisotropic slab of thickness d in the z-direction, and doubly-infinite in the
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x- and y-directions, is incident upon by either a TE or a TM wave, at an angle θ1 from

the normal, and with a wavenumber k0. In [162, 163], this geometry is analyzed in the

traditional sense, in that the scattered and transmitted fields are calculated, knowing the

material tensors. A state-variable approach is used, wherein a second-order wave equation

is converted into two first-order ordinary differential equation, with a state vector describing

the state of the system. Defining the state vector in terms of the transverse E and H field

components:

Ψ =



Ex(z)

Ey(z)

Hx(z)

Hy(z)


, (4.6)

it is possible to reduce the system from (4.4) and Figure 4.3, with both the TE and TM

incident waves, into four coupled linear first-order differential equations [162]. In matrix

notation, these are expressed as

d

dz
Ψ(z) = Γ̄(ε,µ, θ1, ω) ·Ψ(z), (4.7)

where Γ̄ is a 4× 4 complex matrix, that is a function of the material parameters, as well as

θ1 and ω. Additionally, as we are concerned only with linear media, we may define a 4 × 4

transition matrix Ā, that relates the state vectors at the two boundaries of the slab:

Ψ(0) = Ā ·Ψ(d). (4.8)

The regular scattering problem is concerned with the determination of Ā, knowing Γ̄,

and then solving for the complex scattering and transmission matrices, S̄ and T̄ respectively.

It is shown in [162] that (4.7) may be expressed as the eigenvalue system

[
Γ̄− γnĪ

]
·Vn = 0, (4.9)
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Figure 4.3: Scattering and transmission from an anisotropic doubly-infinite material.

where Ī is the 4 × 4 identity matrix. The eigenvalue system will therefore give us four

eigenvalues γn, and eigenvectors Vm, such that n = 1 to 4. If we define a matrix P̄ whose

diagonal elements are the eigenvalues γ,

P̄ =



γ1

γ2

γ3

γ4


, (4.10)

and a matrix V̄ = [V1,V2,V3,V4], then we can solve for the eigendecomposition

Ā = V̄ · e−P̄d · V̄−1, (4.11)
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where the exponentiation of a matrix is given as

e−P̄d =



e−γ1d

e−γ2d

e−γ3d

e−γ4d


. (4.12)

This is the solution given in [162] for the transfer matrix. Our goal, however, is to begin

with the S-parameters, and retrieve the material properties.

4.3.3 Material parameter retrieval

Extraction procedure

The procedure to extract the material parameters of an anisotropic slab, from the S-parameters,

can be summarized as follows:

1. Obtain S-parameters for TE and TM incidence, and for two different slab thicknesses.

2. Solve for Ā.

3. Find eigenvectors and eigenvalues of Ā.

4. Solve for eigenvalues of Γ̄.

5. Γ̄ = V̄ · P̄ · V̄−1.

6. Retrieve ε̄ and µ̄.

Step 1 should be relatively straightforward, if the relevant experimental setup, or a nu-

merical software tool is available. There are two important points to note: both TE and

TM measurements are required, and the measurements must be performed on two slabs of

the same composition, but with different thicknesses. For the first point, it is useful to note

that of all the symmetries, only the triclinic point group will demonstrate cross-coupling
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between the TE and the TM modes, i.e. the polarization of the incident wave can change.

The reason for this is that, recalling Table 4.1, it is the only group that has non-zero off-axis

parameters, outside the plane of propagation, i.e. non-zero tensor coefficients Xxy or Xyz.

Monoclinic symmetry will show a non-zero Xxz, however this is in the plane of propagation

of the incident wave, and thus will not affect its polarization. This is an interesting property,

as it means that a change in polarization of the incident waves exists only if the structure

symmetry is triclinic. One may ask, is the converse true? I.e., will triclinic symmetry always

result in cross-polarization? The answer is no. It can be shown that all of the following three

criteria must be satisfied such that no cross-polarization occurs:

εyz
εzz

=
µyz
µzz

, εxy =
εxzεyz
εzz

, and µxy =
µxzµyz
µzz

. (4.13)

So while the most obvious solution to those cases is the trivial one, implying a non-

triclinic structure, it is possible that a triclinic structure may not lead to cross-polarization

of the incident waves. However, it should be noted that the conditions that will satisfy all

three of those equations are extremely rare, and most likely do not exist in any material

over a broad frequency range. So with a broadband measurement, we can say almost with

certainty, that if no cross-polarization is exhibited, then the structure is not triclinic. As an

example, if one’s incident wave is TE, and a TM component is measured, then we can say

that the structure definitely has triclinic symmetry, but if no TM component is measured,

then we can safely ignore all Xxy or Xyz coefficients!

The reason for measuring two different slabs, is due to the number of equations required

to solve for all the unknowns. Recall that Ā is a 4 × 4 matrix, and so there are a total

of 16 unknowns, for which we will need 16 linearly independent equations. On each slab,

we will perform four sets of measurements (TE-TE, TM-TM, TE-TM and TM-TE), and

each of these measurements will provide us with four S-parameters. However, due to the

fact that we are measuring a linear, passive media, we will only actually have two unique
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S-parameters, for a total of eight equations after all four measurements have been made.

To obtain another eight, we must thus perform a second set of measurements on a different

sample. We will however want to express the transition matrix for this second sample, in

terms of the transition matrix Ā of the first. Using (4.8) and (4.11), we can express the

fields at the boundary z = 0 in terms of the fields at z = pd, where p ≥ 0, such that

Ψ(0) = V̄ · e−P̄pd · V̄−1 ·Ψ(pd) = V̄ ·
[
e−P̄d

]p
· V̄−1 ·Ψ(pd) = Āp ·Ψ(pd). (4.14)

So as long as the samples are homogeneous, we can express their transition matrices in

terms of one another. To solve for Ā, we must first express it in terms of the S-parameters.

Introducing the tangential field matrices,

ET (z) =

 Ex(z)

Ey(z)

 (4.15a)

HT (z) =

 Hx(z)

Hy(z)

 , (4.15b)

we can define the 2× 2 complex scattering and transmission matrices, S̄ and T̄, as

Es
T (0) = S̄ · Einc

T (0) (4.16a)

Et
T (d) = T̄ · Einc

T (0), (4.16b)

where the superscripts inc, s, and t denote the incident, scattered, and total field, respec-

tively. The S̄ matrix coefficients may be obtained from the relevant S11 measurements,

while T̄ is composed of the corresponding S21 coefficients. For the purpose of clarifying the
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definitions of the S̄ and T̄ matrices, we write them as

S̄ =

 Sxx Sxy

Syx Syy

 T̄ =

 Txx Txy

Tyx Tyy

 , (4.17)

so the Sxy component, for example, corresponds to the coefficient for the x component of

the scattered field when a y-polarized electric field is incident, and so on.

Furthermore, for the case when the regions on both sides of the slab are the same, then

θ1 = θ3, and

Einc
T (0) = Z̄ ·Hinc

T (0) (4.18a)

Es
T (0) = −Z̄ ·Hs

T (0) (4.18b)

Et
T (d) = Z̄ ·Ht

T (d), (4.18c)

where we have introduced a wave impedance matrix to relate the electric and magnetic fields,

Z̄ =

 0 ηm cos θm

−ηm sec θm 0

 , (4.19a)

for a characteristic impedance,

ηm =

√
µm
εm
. (4.19b)

The next step is to solve for the coefficients of the matrix Ā. If we partition Ā into four

2× 2 submatrices, such that

Ā =

 Q̄11 Q̄12

Q̄21 Q̄22

 , (4.20)
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then along with (4.6), (4.16), and (4.18), we obtain the following matrix equation for a slab

with thickness pd:

 Ī

Ī

+

 S̄pd

−S̄pd

−
 Ī 0

0 Z̄

 ·
 Q̄11 Q̄12

Q̄21 Q̄22


p

·

 T̄pd

Z̄−1 · T̄pd

 = 0, (4.21)

where the subscript pd refers to the measurements of the slabs with that thickness. The

thinner of the two slabs may be set such that p = 1, and this allows us to rewrite the Ā

matrix in the preceding equations as:

 Q̄11 Q̄12

Q̄21 Q̄22


p

=

 Q̄11

[(̄
I + S̄d

)
· T̄−1

d − Q̄11

]
· Z̄

Q̄21

[
Z̄−1

(̄
I− S̄d

)
· T̄−1

d − Q̄21

]
· Z̄


p

, (4.22)

resulting in an easily solveable system, with an equivalent number of equations and un-

knowns. The difficulty, however, is that this is a nonlinear system, and for p > 2 there may

be multiple solutions.

For the special case where p = 2 there will be a unique solution, and so the most

appropriate setup is one in which the second slab is twice the thickness of the first. Making

use of (4.21) and (4.22), we are able to solve for the Q̄ matrices, such that,

Q̄11 =
1

2

[(̄
I + S̄2d

)
· T̄−1

2d · T̄d −
(̄
I + S̄d

)
· T̄−1

d ·
(̄
I− S̄d

)]
· S̄−1

d (4.23a)

Q̄12 =
[(̄

I + S̄d

)
· T̄−1

d − Q̄11

]
· Z̄ (4.23b)

Q̄21 =
1

2
Z̄−1 ·

{(̄
I− S̄2d

)
· T̄−1

2d −
[(̄

I− S̄d

)
· T̄−1

d

]2} · T̄d · S̄−1
d (4.23c)

Q̄22 =
[
Z̄−1

(̄
I− S̄d

)
· T̄−1

d − Q̄21

]
· Z̄. (4.23d)

Once Ā has been determined, it is a simple matter to find its eigenvalues λm and eigen-

vectors, with a number of numerical routines available [147]. An eigendecomposition can the
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be performed on Ā, and equating this to (4.11), we can solve for the four eigenvalues of Γ̄,

γn =
1

d
ln [λn − 2jπm] , (4.24)

where m is the branch index that was discussed earlier. Recalling that Ā and Γ̄ have the

same set of eigenvectors V, and using the definition of P̄ from (4.10), we can solve for

Γ̄ = V̄ · P̄ · V̄−1. (4.25)

Now that we have obtained the Γ̄ matrix, the final step is to extract the material pa-

rameters. The material tensor coefficients can be found by solving the following equations:

εxx = −εzz
Γ2

11

k2
x

+ j
Γ41

ω
(4.26a)

µxx = −µzz
Γ2

22

k2
x

− jΓ23

ω
(4.26b)

εxz = −jεzz
Γ11

kx
(4.26c)

µxz = −jµzz
Γ22

kx
(4.26d)

εxy = −j
(
εyz

Γ11

kx
+

Γ31

ω

)
(4.26e)

µxy = −j
(
µyz

Γ22

kx
+

Γ24

ω

)
(4.26f)

εyy =
ε2yz
εzz

+
1

ω

(
k2
x

ω

1

µzz
− jΓ32

)
(4.26g)

µyy =
µ2
yz

µzz
+

1

ω

(
k2
x

ω

1

εzz
+ jΓ14

)
(4.26h)

µyz
µzz

=
εyz
εzz

+ j
Γ12

kx
. (4.26i)
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However, examination of the coefficients will lead to the conclusion that there will not

always be sufficient equations to solve for all the unknowns. Hence, for certain symme-

tries, some of the parameters should be known a priori, or another set of measurements will

be required. For non-magnetic materials, however, the relevant number of coefficients will

be known and the full permittivity tensor can be determined with a single measurement.

Table 4.3 lists the number of parameters needed for the full solution of both material param-

eters, under the different symmetry conditions. So a cubic (isotropic), or a uniaxial material

may be fully determined just from measurements, but for triclinic symmetry, at least three

parameters must be known beforehand. Also listed, are the determined parameters, that

may be retrieved from Γ̄ without any knowledge of other material parameters. The final col-

umn shows the different groups of parameters that may be used to solve for the coefficients,

in the case that parameters are known a priori. Only one coefficient may be selected from

each group, so for example, with triclinic symmetry, µyz, µyy, and µzz may be used to fully

determine the tensors, however µyz, µxx, and µzz may not be, as µxx and µzz are in the same

group.

Another set of measurements will negate the need for a priori knowledge of any of the

coefficients, as a second set of equations will allow the full solution of the coefficients. There

are three modifications to the system that we can make to achieve a second measurement:

we can change the angle of incidence; rotate the sample; or change the plane of the incident

wave. The last two cases are identical mathematically, however sample rotation is easier

experimentally, and so we will discuss this case along with the incident angle variation. The

suitability of each of these two techniques will be determined for application to different

symmetries.
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Table 4.3: Parameters required for determination of second-rank material tensor with differ-
ent lattice symmetries

System Number of Parameters

needed a priori

Determined parameters Parameter groups (Select at

most one from each group)

Cubic 0 ε, µ -

Uniaxial 0 εxx, εzz, µxx, µzz -

Orthorhombic 2 εxx, µxx (εyy, µzz), (εzz, µyy)

Monoclinic 2 - (εxx, εxz, εzz, µyy),

(µxx, µxz, µzz, εyy)

Triclinic 3 - (εxx, εxz, εzz), (µxx, µxz, µzz),

(εxy, εyz), (µxy, µyz), (εyy), (µyy)

Angle of incidence variation

Subsequent to the measurement of the sample at an angle θ1, a second measurement is per-

formed at an angle θ2. For the isotropic or uniaxial cases, this second angular measurement

is, of course, unnecessary. It can, however, be beneficial in other cases. For the biaxial cases,

(4.26h) and (4.26g) can be rearranged to obtain expressions for εzz and µzz:

εzz =
j

ω

k2
x(1) − k2

x(2)

Γ
(1)
14 − Γ

(2)
14

(4.27a)

µzz =
j

ω

k2
x(1) − k2

x(2)

Γ
(2)
32 − Γ

(1)
32

, (4.27b)

where the bracketed number refers to one of the two angular measurements. However, Γ11

is a linear function of kx, and so (4.26e) and (4.26f) cannot be used to determine the xy

and yz components of ε and µ. So with these two equations, we will have the two required

parameters needed to solve for all the orthorhombic and monoclinic coefficients in Table 4.3.

However, this method cannot be used for magnetic materials with triclinic symmetry.
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(a) Coordinate system rotation (b) Sample rotation

Figure 4.4: Rotation by an angle β.

Sample rotation

A rotation of the sample is equivalent to a rotation of the coordinate system, and a rotation

in the coordinate system will lead to changes in the properties of the material tensors. In

Figure 4.4a, the coordinate system axes are rotated around the z-axis, by an angle β. An

identical rotation is shown in Figure 4.4b. It should be noted though, that the direction of

the rotation will affect the material tensors, and so a clockwise rotation of the sample should

be seen as a counterclockwise rotation of the coordinate axes.

A rotation matrix may be defined [158, 163] as,

T̄ =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (4.28a)

A second-order tensor, X̄, can then be described, after rotation of the coordinate system, as
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X̄′, where,

X̄′ = T̄ · X̄ · T̄T . (4.28b)

Of most use to us is the case where β = 90 deg, i.e., the sample is rotated by 90 deg clockwise.

In this case, the rotated material tensors will be,

ε̄′ =


εyy −εyx εyz

−εxy εxx −εxz

εzy −εzx εzz

 and µ̄′ =


µyy −µyx µyz

−µxy µxx −µxz

µzy −µzx µzz

 . (4.29)

Substituting these coefficients, in place of the unrotated coefficients, into (4.26) will provide

enough equations to solve for all material parameters, and for all symmetry classes, including

triclinic. The following three equations are most convenient:

µzz = −j k
2
x

ω
· 1

Γ41 + Γ′32

(4.30a)

εzz = j
k2
x

ω
· 1

Γ23 + Γ′14

(4.30b)

εyz = −jεzz
Γ′11

kx
. (4.30c)

4.4 Results

4.4.1 Verification of parameter retrieval technique

The technique will first be verified on a number of slabs with known material parameters.

The S-parameters will be calculated analytically, as well as simulated for the uniaxial and

orthorhombic cases. Frequency domain simulations are performed using CST Microwave

Studio [164], using the Unit Cell boundary conditions. The simulations, however, do not

allow off-axis material parameters, and so triclinic materials will not be simulated. Once

S-parameters are obtained, they will then be used to retrieve the material’s permittivity and
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permeability.

Uniaxial case

This is a relatively simple structure, yet it is very common in nature. From Table 4.3, it

is evident that a single set of measurements, at one incident angle, will provide all material

parameters. A lossless uniaxial material with,

ε̄ = ε0


5− 0.5j 0 0

0 5− 0.5j 0

0 0 1− 0.1j

 and µ̄ = µ0


2− 0.2j 0 0

0 2− 0.2j 0

0 0 1− 0.1j


at 10 GHz has been simulated and calculated, for sample thicknesses of 1mm and 2mm. The

non-zero parameters of the S̄ and T̄ matrices, as defined in (4.16), are plotted in Figure 4.5.

Recall that for the uniaxial case, there is no cross-polarization of the incident waves, and

so the xy and yx components are zero. The simulations matched our expectations, and so

those components have not been plotted.

Following the procedure in subsection 4.3.3, the Γ̄ matrices are found at each frequency

point. For the purpose of demonstrating this procedure, we will present the numerical results

for the first frequency point (8 GHz) in Figure 4.5. Recalling that our two samples have

thickness of 1mm and 2mm respectively, the simulated S̄ and T̄ matrices at this frequency

are found to be

S̄(1mm) =

 −0.053− 0.102j 0

0 −0.24− 0.269j


T̄(1mm) =

 0.832− 0.428j 0

0 0.709− 0.496j


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(a) Reflection magnitude. (b) Reflection phase.

(c) Transmission magnitude. (d) Transmission phase.

Figure 4.5: Calculated and simulated S and T parameters for a uniaxial material. Cross-
coupling terms, i.e., Sxy, Syx, Txy and Tyx are zero, and are not shown.

S̄(2mm) =

 −0.154− 0.118j 0

0 −0.498− 0.203j


T̄(2mm) =

 0.511− 0.703j 0

0 0.334− 0.65j

 . (4.31)
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To find the Q̄ matrices at this frequency, we solve the equations given in (4.23) to get,

Q̄11 =

 0.899 + 0.023j 0

0 0.878 + 0.025j


Q̄12 =

 0 13.523 + 91.426j

−10.414− 118.847j 0


Q̄21 =

 0 −2.098× 10−4 − 1.967j × 10−3

1.587× 10−4 + 2.181j × 10−3 0


Q̄22 =

 0.884 + 0.029j 0

0 0.908 + 0.031j

 . (4.32)

Recall that, by definition, the Ā matrix is composed of all the Q̄ matrices, as shown in (4.20).

We have thus completed step 2 in the extraction procedure. Step 3 is to determine the

eigenvalues and eigenvectors of the Ā matrix. Following the formulation in subsection 4.3.2,

the matrices of eigenvalues and eigenvectors are

e−P̄d = diag



0.854− 0.42j

0.953 + 0.474j

0.834− 0.456j

0.928 + 0.511j


and V̄ =



1 1 0 0

0 0 1 1

0 0 V33 V34

V41 V42 0 0


, (4.33)

where V33 = 4.055 × 10−3 − 1.668j × 10−5, V34 = −4.089 × 10−3 + 6.03j × 10−5, V41 =

−4.807× 10−3− 2.247j × 10−4, and V42 = 4.915× 10−3 + 1.352j × 10−4. The next step is to
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determine the eigenvalues of Γ̄. They are found, using (4.24), to be

P̄ = diag



49.486 + 456.732j

−62.149− 461.655j

50.638 + 500.705j

−57.506− 503.209j


1

m
. (4.34)

The branch index was selected as m = 0. An advantage of a thin material, is that a change

in the branch index will have a significant effect on the retrieved material parameters. An

intuition of the expected parameters will thus give a very good idea of what the branch index

should be. The eigenvectors will, of course, be the same as the eigenvectors of Ā. Thus, we

can solve for Γ̄ as

Γ̄ =



Γ11 0 0 Γ14

0 Γ22 Γ23 0

0 Γ32 Γ33 0

Γ41 0 0 Γ44


, (4.35)

where Γ11 = −1.32 + 1.937j, Γ14 = −1.496 × 104 − 9.391j × 104, Γ22 = −0.537 + 0.585j,

Γ23 = 1.211 × 104 + 1.234j × 105, Γ32 = 0.239 + 2.042j, Γ33 = −6.331 − 3.089j, Γ41 =

−0.188 − 2.242j, and Γ44 = −11.343 − 6.86j. In actual fact, there should only be non-zero

terms along the minor diagonal, however errors in the simulations have resulted in some

small non-zero terms on the main diagonal. It is evident that these are non-physical, as

for a symmetric tensor with εxz = εzx and µxz = µzx, then we should have Γ11 = Γ44 and

Γ22 = Γ33.

Nevertheless, we are now able to calculate the material parameters using (4.26a), (4.26b),

(4.26g), and (4.26h). The extracted material parameters over the whole frequency range

are plotted in Figure 4.6. The plot includes materials extracted from simulation, and also

from analytically calculated S parameters. They show good agreement. Errors from the

parameters extracted from simulation are due to the errors in the S parameters, as seen in
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(a) Re(ε). (b) Re(µ).

(c) Im(ε). (d) Im(µ).

Figure 4.6: Extracted material parameters for a material with uniaxial symmetry. Parame-
ters are extracted from simulations, and also from calculated S parameters.

Figure 4.5. There is also a possibility that the dispersion model in the simulation, due to

the losses included, result in material parameters that may diverge slightly from what we

expect.

Orthorhombic case

A more complicated material is used for verification in this case. The magnetic mate-

rial demonstrates orthorhombic symmetry, and to complicate matters, it is lossy, and the
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anisotropic permittivity functions are dispersive. The material tensors are given as

ε̄(ω) =


εxx(ω) 0 0

0 εyy(ω) 0

0 0 εzz(ω)

 and µ̄ = µ0


4− 0.4j 0 0

0 2− 0.2j 0

0 0 1− 0.1j


Each of the permittivity functions follows a Lorentz dispersion model, defined as:

ε(ω) = ε0

(
ε∞ +

(εs − ε∞)ω2
0

ω2
0 + jωδ − ω2

)
, (4.36)

where εs is the static permittivity, ε∞ is the permittivity at infinity, ω0 is the resonant

frequency, and δ is the damping factor. The coefficients for each parameter are,

εxx(ω) : εs = 5; ε∞ = 2; ω0 = 70× 109rad/s; δ = 25rad/s

εyy(ω) : εs = 1000; ε∞ = 1; ω0 = 200π × 106rad/s; δ = 1rad/s

εzz(ω) : εs = 5; ε∞ = 4; ω0 = 20π × 109rad/s; δ = 10rad/s. (4.37)

Referring to Table 4.3, it is evident that a second measurement is required in order to

extract all parameters. Although sample rotation may be used, the method of incident angle

variation shall be used for demonstration purposes. Two different angular measurements are

made, at 45 deg and 60 deg off-normal. The procedure is almost exactly the same as for the

uniaxial case, however as we have measured the two incident angles, we may first extract εzz

and µzz using (4.27). The relevant equations from (4.26) may then be used to solve for the

rest of the parameters.

The extracted parameters are shown in Figure 4.7. Again, the retrieved parameters show

good agreement with what we would expect. In general, the errors in the imaginary parts of

the coefficients are larger than those of the real, in common with the techniques presented

in chapter 2. Although there are visible errors in some of the extracted results, as compared
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to the calculated parameters, the technique still shows a good deal of accuracy, and it is

envisioned that with more accurate simulations, an even closer match can be attained.

(a) εxx. (b) εyy.

(c) εzz. (d) µxx.

(e) µyy. (f) µzz.

Figure 4.7: Extracted material parameters for a material with orthorhombic symmetry.
Parameters are extracted from simulations, and also from calculated S parameters.
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Triclinic case

In this, the most general case, all material parameters are unknown. The sample rotation

technique is required to solve the entire system, as the incident angle variation technique,

demonstrated for the orthorhombic case, will not provide sufficient equations to solve for

all unknowns. For this most general of cases, simulation tools available are not capable

of modeling the complicated material parameters that we wish to retrieve. Nevertheless,

verification can be performed by first calculating the required S parameters, and then using

only those S parameters, assuming no a priori knowledge of the material, to retrieve the

material’s properties.

The S parameters are calculated for a slab with the following material parameters:

ε̄(ω) = ε0


5 −0.5 1

−0.5 4 0.5

1 0.5 3

 and µ̄ = µ0


5 0.5 0.5

0.5 3 2

0.5 2 2

 .

The material tensor of the rotated sample must also be found. Upon rotation by 90 deg

clockwise, the slab will exhibit the following material parameters:

ε̄(ω) = ε0


4 0.5 0.5

0.5 5 1

0.5 1 3

 and µ̄ = µ0


3 −0.5 2

−0.5 5 −0.5

2 −0.5 2

 ,

The analytically calculated S̄ and T̄ matrices are plotted in Figure 4.8. It should be noted

that in this case, the xy and yx coefficients are non-zero. This is as we expected, with the

incident wave exhibiting cross-polarization. This cross-polarization is evident only with a tri-

clinic material tensor. We can thus conclude that a structure that exhibits cross-polarization

of an incident wave must be represented by a triclinic material tensor.

We will now attempt to retrieve the material tensors, using only the S parameters that we
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(a) Sxx and Syy. (b) Sxy and Syx.

(c) Txx and Tyy. (d) Txy and Txy.

Figure 4.8: Analytically calculated S and T parameters for material with triclinic symmetry.
The sample is measured at two different orientations.

now know. This is achieved following a similar procedure to the uniaxial and orthorhombic

case, apart from the fact that we now have two measurements of a sample that has been

rotated. Once the Γ̄ matrix has been obtained, (4.30) is used to extract εzz, µzz, and εyz.

Subsequently, all other parameters may be retrieved using (4.26). The results are shown

in Figure 4.9, with the extracted parameters matching exactly with the original material

tensors, and thus verifying the sample rotation technique.
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(a) εxx, εyy, and εzz. (b) εxy, εxz, and εyz.

(c) µxx, µyy, and µzz. (d) µxy, µxz, and µyz.

Figure 4.9: Retrieved material parameters of a lossless triclinic material.

4.4.2 Spheres arranged within a planar slab

Dielectric spheres will now be arranged into a planar slab. We will attempt to retrieve the

material parameters, while at the same time gaining an understanding of the number of

layers of spheres required, such that we may obtain the characteristics of the bulk material,

as discussed in section 4.3. The slab will be composed of a cubic arrangement of touching

spheres, and will be infinitely periodic in the x- and y-directions. In the direction of propa-

gation – the z-direction – there will be a finite number of layers of spheres, with the number

varying from two to 16. The spheres have a size factor of ka = 0.1, and permittivity of

ε = 10. Figure 4.10 shows this arrangement of spheres into a slab, 16 sphere layers thick.
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Figure 4.10: A doubly-infinite periodic arrangement of spheres into a slab, 16 sphere-layers
thick.

This should enable us to obtain an understanding of the number of spheres that are required

in order for the composite medium to behave as a homogeneous bulk material. This will be

important for the design of devices formed with such a composite structure.

Once the S parameters have been obtained, and the transfer matrix calculated, our initial

goal will be to determine the minimum number of sphere layers required, such that the slab

may be treated as a homogeneous bulk material. Recall that the calculation of a transfer

matrix requires the use of two different slab thicknesses. So, for example, a slab two sphere

layers thick, and a slab four sphere layers thick, together will give one transfer matrix. The

eigenvectors of this matrix should then be constant, assuming the material is homogeneous,

if we compare them to those of matrices formed, for example, using slabs of thickness three

and six spheres, or four and eight spheres (note that it is not required that slabs double

in thickness, however it simplifies calculations and guarantees stability of solutions). In

Figure 4.11 we compare the eigenvectors calculated using different slabs. Five different T-
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matrices are calculated, each using a combination of two difference sample thicknesses. Each

T-matrix is labeled based on the two samples used to form it, so for example, T2|4 refers to

the eigenvectors of the matrix created using slabs two and four sphere layers thick. Recall

that for the extracted parameters to represent those of the bulk material, the eigenvectors

should stay relatively constant as the slab thickness is changed. For this purpose, the relative

difference is calculated between the eigenvectors of the different T-matrices, using T4|8 as a

reference. So in other words, the relative difference is found as:

Relative Difference =

∣∣∣∣Tx|2x − T4|8

T4|8

∣∣∣∣ . (4.38)

One would expect the relative difference between the eigenvectors to be close to zero once the

retrieved properties match those of the bulk properties. In Figure 4.11 it is evident that for

the thinnest slabs, T2|4, there are large differences in the eigenvectors compared to T4|8. We

can thus conclude that the two sphere-layer thick slab cannot be treated as a homogeneous

material; even though it is formed of spheres as with the other two, being only two spheres

thick implies that the surface layer effects dominate over the bulk effects. However, on

comparing both T3|6 and T6|12 to T4|8, the relative differences between the eigenvectors are

minimal. So with a thickness of three sphere-layers should be sufficient to retrieve the

bulk parameters. Another point to note is that the relative differences of T8|16 witness the

effects of a longitudinal resonance at around 10 GHz, which results in errors in the extracted

eigenvectors, and thus the material parameters, at those frequencies.

In Figures 4.12 and 4.13, the material parameters of the spheres are plotted. The com-

posite structures show close to isotropic, and nonmagnetic behavior, as one would expect. εyy

is not plotted as it is identical to εxx. The retrieved parameters are plotted only for the bulk

cases, i.e., for T3|6, T4|8, and T6|12. As expected, the very closely correlate to one another,

with slight errors due to simulation inaccuracies. For T2|4, the surface layer effects dominate,

and so the retrieved parameters would not match with the expected bulk parameters. For
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Figure 4.11: Relative differences between the eigenvectors of the T-matrices.

T8|16, the retrieved parameters would be similar to those of the bulk parameters, although

at the frequency of the longitudinal resonance, there would be large errors. Nevertheless,

this confirms the procedure, with the homogeneity between the different slab thicknesses

resulting in very well-matching extracted parameters, in fact so well that they cannot be

easily distinguished on the plots.

4.5 Summary

A technique for retrieving the permittivity and permeability tensors of an anisotropic slab

has been presented. Unlike previous techniques, this method allows characterization at

oblique angles of incidence, and it is capable of characterizing even the most general, and

non-symmetric of anisotropic materials. Furthermore, the eigenvalues may be compared in

order to verify that the slab is thick enough, such that the extracted material properties are

those of the bulk material. This is necessary for the use of the material in device design,

allowing us to ascertain the minimum thickness of a homogeneous material that may be
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(a) Re(εxx). (b) Im(εxx).

(c) Re(εzz). (d) Im(εzz).

Figure 4.12: Retrieved effective permittivities of cubic lattices of spheres, calculated using
T-matrices formed with different slab thicknesses.

used.

The technique is based on the state variable approach, in which a transfer matrix is used

to represent the fields on one side of the slab in terms of the fields on the other. S parameters

must be measured for two different slab thicknesses, and for two different polarizations (TE

and TM). An eigendecomposition of the transfer matrix will then provide information on

the homogeneity of the slab, as well as allowing the retrieval of the material parameters.

The technique was verified, first with a uniaxial material, retrieving the parameters from

simulation results. Next, a lossy, dispersive, orthorhombic material was simulated, and

the parameters retrieved. In this case, the xx-, yy-, and zz-components of the tensors are
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(a) Re(µxx). (b) Im(µxx).

(c) Re(µzz). (d) Im(µzz).

Figure 4.13: Retrieved effective permeabilities of cubic lattices of spheres, calculated using
T-matrices formed with different slab thicknesses.

all different, and so two different incident angle measurements were used to obtain the

requisite number of equations. Finally, the technique was verified on the most general case

of a triclinic material, in which there were twelve independent material parameters. As

simulations were not capable of modeling this material, the parameters were retrieved from

analytical calculations of the S parameters. Additionally, it was shown that only in the

triclinic symmetry case, will a structure produce cross-polarization of an incident wave.

Thus, it can be concluded that previous effective material models and extraction techniques,

are insufficient if a change in the polarization of the incident wave is observed, as they are

not capable of reproducing this behavior.
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Additionally, the material parameters of a cubic lattice of spheres were extracted. It

was concluded that for too thin a slab, homogeneity may not be assumed, as the extracted

parameters will not match those of the bulk material. Instead, surface layer effects will

dominate. Additionally, when there is a longitudinal resonance for a thick slab, the extraction

procedure is inaccurate, as with other transmission methods. However, with an appropriate

sample thickness, the extracted results match up extremely well.
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Chapter 5

Conclusion

5.1 Summary

The goal of this work was to provide a method for designing and characterizing metama-

terial structures within a group theoretical framework, relating the symmetry of the com-

posite structures to their anisotropic material properties. In particular, dielectric spheres

were characterized at terahertz frequencies, both through measurement and numerically.

The measurements were performed using terahertz time-domain spectroscopy, which was

also used for the characterization of ceramics. The sphere aggregates were numerically an-

alyzed with the use of a novel, highly efficient technique based on the characteristic basis

function method. Their effective material properties were subsequently investigated with

various lattice symmetry arrangements. The anisotropic material parameters were extracted

from the reflection and transmission coefficients at different angles of incidence, so that the

entire ε̄ and µ̄ tensors could be retrieved. It was found that an isotropic material model is

insufficient for representation of most metamaterials, and in many cases, a triclinic model

is necessary. Furthermore, at resonance, the loss of homogeneity of dielectric metamaterials

is demonstrated, and it is shown that traditional effective medium models are incapable

of representing the structure accurately. Thus, we can conclude that for real-world device

design incorporating metamaterials, it is imperative that:

� The effective medium representation of a metamaterial has been verified, and homo-
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geneity confirmed, or,

� Ideally, full wave simulations or analytical techniques are used to fully describe the

composite.

For application at microwave frequencies, the relative permittivity of a material is gener-

ally assumed to be relatively constant. However, as applications move to higher frequencies,

particularly the terahertz frequencies, the material behavior will begin to change. Material

characterization is thus very important, not only for device design, but also for metamate-

rial design, in which the properties of the constituent materials can vastly affect the prop-

erties of the metamaterial as a whole. A terahertz time-domain spectroscopy system was

used for the dielectric characterization of ceramics, and for the measurement of transmis-

sion through lattices of dielectric spheres of resonant size. The characterization technique

allowed the broadband extraction of the relative permittivities of lossy, non-magnetic dielec-

tric materials. The extracted permittivities of different ceramics were then compared with

good agreement to those obtained using microwave techniques at lower frequencies, and

Fourier-transform infrared spectroscopy at frequencies above those allowed by THz TDS.

Additionally, an error analysis was performed on the technique, to investigate the effects of

measurement inaccuracies on the extracted results. It was found that losses in particular are

sensitive to measurement errors which, as with other transmission methods, limits accuracy

in determination of tanδ for low loss samples. Transmission through arrays of Silicon Nitride

spheres in various lattice arrangements were then measured.

A technique for calculating the scattered fields from an aggregate of spheres was devel-

oped. It was shown that the technique, based on the characteristic basis function method, is

more efficient than the T -matrix formulation of multiple scattering, especially as sphere sep-

arations are increased. Furthermore, calculation speeds are increased significantly with the

use of the Strassen matrix multiplication and inversion algorithms, in which large matrices

are broken up into smaller block matrices, resulting in fewer operations. Additionally, it was

shown that this technique can be applied to the solution of large matrix problems, by storing
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the matrix on a physical drive, and only calling up to memory the smaller block matrices

as they are needed. The developed techniques were applied to calculate the scattering from

a large number of resonant spheres - a problem that would previously have been impossible

on a single processor with limited memory.

A method for extracting the complex material tensors of an anisotropic homogeneous

medium was established. The technique, effectively a generalization of the method we used

for isotropic ceramic characterization at terahertz frequencies, allows the retrieval of the ma-

terial characteristics of a slab from the reflection and transmission measurements. Excitation

is at oblique incidence by TE and TM plane waves, with the measurement of two slabs of

identical material but different thickness. Depending on the symmetry of the structure, ei-

ther one of two different incident angles were needed for extraction: one for cubic (isotropic)

and uniaxial symmetries, and two for orthorhombic, monoclinic and triclinic symmetries.

It was also shown that only triclinic symmetries, with all off-axis tensor terms being non-

zero, will change the polarization of an incident wave. Thus, previous material models for

metamaterials could not sufficiently describe the structures, as they experience polarization

changes, and so triclinic tensor forms were used. The technique was first verified analytically

and with simulations, and then applied to extract the material parameters of the well known

split-ring resonator structure. Finally, it was applied to investigate the effects of symmetry

on effective media composed of lattices of spheres.

5.2 Future work

Research into metamaterials, and effective media, are continually ongoing. The extrac-

tion technique presented here, which allows the characterization of anisotropic materials at

oblique incidence, holds many possibilities for further work. A more comprehensive study

can be performed on the effective anisotropic material parameters of various symmetries

of structures. All classes of effective media would be well served by an analysis into their

isotropy, and this technique is easily applied, both numerically, and also experimentally.
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and in fact, an experimental verification of the technique could be a top priority for any

future work. At microwave frequencies, a free space measurement system would be ideal for

characterization. At terahertz frequencies, terahertz time-domain spectroscopy should work

well, although with the added difficulty that angle variations are difficult to achieve.
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Appendix A

Special Functions

A number of special functions are useful for solving various scattering problems. This ap-

pendix will cover the special functions that are relevant to the scattering problems encoun-

tered in this thesis. For calculation purposes, the recurrence relations are of particular

interest. Equations are referenced from [147, 165].

A.1 Cylindrical Bessel functions

A.1.1 Definition

The cylindrical Bessel functions are the solutions to the Bessel differential equation, given

by

z2d
2f

dz2
+ z

df

dz
+
[
z2 − n2

]
z = 0, n ∈ C (A.1)

where n is an arbitrary real or complex number.

A.1.2 Solutions

Two linearly independent solutions to (A.1) are Jn(z) and Yn(z), the cylindrical Bessel

functions of the first and second kind, respectively. We can define a linear combination of
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the two functions, called the Hankel functions, as

H(1)
n (z) = Jn(z) + jYn(z) (A.2a)

H(2)
n (z) = Jn(z)− jYn(z). (A.2b)

A.1.3 Recurrence relations

It would be relatively computationally intensive to calculate every required special function

value individually, especially in cases where hundreds, or thousands of different solutions

are required. A much more efficient technique would be to recursively calculate all required

values, from just a few known initial values. Defining Fn as a linear combination of any of

the Bessel (or Hankel) functions, the following recurrence relations are useful for calculating

the n-th order Bessel functions, or their derivatives, for a particular z:

2n

z
Fn(z) = Fn−1(z) + Fn+1(z) (A.3a)

2
d

dz
Fn(z) = Fn−1(z)− Fn+1(z) (A.3b)

z
d

dz
Fn(z) = nFn(z)− zFn+1(z) = −nFn(z) + zFn−1(z) (A.3c)∫

[Fn(z)]2 zdz =
z2

2

[
F 2
n(z)− Fn−1(z)Fn+1(z)

]
. (A.3d)

It is important to note that the recurrence relations could diverge if we use upward recurrence

(i.e. begin with values at n = 0 and n = 1 to solve for higher values of n), and so downward

recurrence is preferable [147, p.278].
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A.2 Spherical Bessel functions

A.2.1 Definition

Of particular use in solving scattering problems with a spherical geometry, are the spherical

Bessel functions; they form the radial portion of the solution to the wave equation in spher-

ical coordinates. The Helmholtz equation in spherical coordinates is the spherical Bessel

differential equation

r2d
2R

dr2
+ 2r

dR

dr
+
[
k2r2 − n(n+ 1)

]
R = 0, k ∈ C. (A.4)

A.2.2 Solutions

The solution to the differential equation is, in fact, related to the cylindrical Bessel functions

of half integral order,

jn(kr) =

√
π

2kr
Jn+1/2(kr) n ∈ Z (A.5a)

yn(kr) =

√
π

2kr
Yn+1/2(kr) = (−1)n+1

√
π

2kr
J−n−1/2(kr). (A.5b)

We can also define the spherical Hankel functions,

h(1)
n (kr) = jn(kr) + jyn(kr) (A.5c)

h(2)
n (kr) = jn(kr)− jyn(kr). (A.5d)
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A.2.3 Recurrence relations

Again, recurrence relations are useful in solving various scattering problems, and will make

numerical techniques more efficient. Useful recurrence relations are given as:

fn−1(z) + fn+1(z) = (2n+ 1)
fn(z)

z
(A.6a)

nfn−1(z)− (n+ 1)fn+1(z) = (2n+ 1)
d

dz
fn(z) (A.6b)

n+ 1

z
fn(z) +

d

dz
fn(z) = fn−1(z) (A.6c)

n

z
fn(z)− d

dz
fn(z) = fn+1(z), (A.6d)

where fn is a linear combination of the spherical Bessel (or Hankel) functions. In a similar

manner to the cylindrical Bessel functions, it is preferrable to use downward recursion [147,

p.284].

A.3 Riccati-Bessel functions

A.3.1 Definition

The Riccati-Bessel functions are special functions that occur in the solution for scattering

from a sphere. The Riccati differential equation is,

z2d
2R

dz2
+
[
z2 − n(n+ 1)

]
R = 0, k ∈ C. (A.7)

A.3.2 Solutions

The solution is very closely related to the spherical Bessel functions:

ψn(z) = zjn(z) n ∈ Z (A.8a)
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ηn(z) = −zyn(z) (A.8b)

ξn(z) = zh(1)
n (z) (A.8c)

ζn(z) = zh(2)
n (z). (A.8d)

A.3.3 Recurrence relations

Defining gn as a linear combination of any of the Riccati-Bessel functions, we have the

following recurrence relations,

(2n+ 1)
d

dz
gn(z) = (n+ 1)gn−1 − ngn+1 (A.9a)

d

dz
gn(z) = gn−1(z)− nfn(z) = (n+ 1)fn(z)− gn+1(z) (A.9b)

A.4 Associated Legendre functions

A.4.1 Definition

Another important class of special functions, for the solution of scattering problems with

spherical geometries, are the associated Legendre functions. These functions form part of

the angular (zenith, or elevation) portion of the solution to the wave equation in spherical

coordinates. The associated Legendre differential equations is

(1− x2)
d2y

dx2
− 2x

dy

dx
+

(
n[n+ 1]− m2

1− x2

)
y = 0, x ∈ [−1, 1]. (A.10)

A.4.2 Solutions

The solutions to the differential equation are the associated Legendre functions,

Pm
n (x) =

(1− x2)m/2

2nn!

dm+n

dxm+n
(x2 − 1)n, n ∈ N,−n ≤ m ≤ n. (A.11a)
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The functions are of most important to us when x ≡ cos θ:

Pm
n (cos θ) =

(−1)n

2nn!
(sin θ)m

dm+n

d(cos θ)m+n
(sin θ)n. (A.11b)

The following functions are also useful in sphere scattering problems:

τmn (θ) =
mPm

n (cos θ)

sin θ
(A.12a)

πmn (θ) =
d

dθ
Pm
n (cos θ) (A.12b)

A.4.3 Recurrence relations

The first few associated Legendre functions are given as,

P 0
0 (cos θ) = 1, P 0

1 (cos θ) = cos θ, P 1
1 (cos θ) = sin θ, P 1

2 (cos θ) = 3
2

sin 2θ. (A.13a)

These can be used to recursively determine subsequent functions, using the following rela-

tionships:

P n
n+1 = (2n+ 1) sin θ P n−1

n (A.13b)

P n+1
n+1 = (2n+ 1) sin θ P n

n (A.13c)

Pm
n+1 =

(2n+ 1) cos θ Pm
n − (n+m)Pm

n−1

n−m+ 1
(A.13d)

P−mn = (−1)m
(n−m)!

(n+m)!
Pm
n . (A.13e)

τmn may similarly be found using:

τ 0
0 (cos θ) = τ 0

1 (cos θ) = 0, τ 1
1 (cos θ) = 1 τ 1

2 (cos θ) = 3 cos θ, (A.14a)
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and

τnn+1 =
n(2n+ 1)

n− 1
sin θ τn−1

n (A.14b)

τn+1
n+1 =

(n+ 1)(2n+ 1)

n
sin θ τnn (A.14c)

τmn+1 =
(2n+ 1) cos θ τmn − (n+m)τmn−1

n−m+ 1
(A.14d)

τ−mn = (−1)m+1 (n−m)!

(n+m)!
τmn . (A.14e)

For cos θ = ±1, πmn will take the special values,

πmn (±1) =
1

2
(±1)nn(n+ 1)δm1 (A.15a)

Otherwise, it can be found using the initial values,

π0
0(cos θ) = π1

0(cos θ) = 0, π0
1(cos θ) = − sin θ π1

1(cos θ) = cos θ (A.15b)

as well as the previously calculated τmn coefficients, and the following relationships,

π0
n =

2n− 1

n− 1
cos θ π0

n−1 −
n

n− 1
π0
n−2 (A.15c)

πmn =
n−m+ 1

m
πmn+1 −

(n+ 1)

m
cos θ πmn (A.15d)

π−mn = (−1)m
(n−m)!

(n+m)!
πmn . (A.15e)

A.4.4 Orthogonality

The following orthogonality relationships are useful in solving sphere scattering problems:

∫ +1

−1

Pm
n (z)P l

n(z)

1− z2
dz =

1

m

(n+m)!

(n−m)!
δml (A.16a)
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∫ +1

−1

Pm
n (z)Pm

l (z)dz =
2

2n+ 1

(n+m)!

(n−m)!
δnl, n ≥ m (A.16b)

∫ π

0

(
dPm

n

dθ

dPm
l

dθ
+

m2

sin2 θ
Pm
n P

m
l

)
sin θdθ =

2n(n+ 1)

2n+ 1

(n+m)!

(n−m)!
δnl. (A.16c)

A.5 Spherical harmonic functions

A.5.1 Definition

These are the angular portion of the solution to Laplace’s equation,

∇2f(r, θ, φ) = 0 (A.17)

A.5.2 Solutions

The spherical harmonics are functions of the associated Legendre functions, and an expo-

nential phase term, along with a normalizing constant. In this thesis it is defined as follows,

Y m
n (θ, φ) = (−1)m

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ)ejmφ. (A.18)
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Appendix B

Transformation properties of spherical waves

B.1 Scalar translation theorem

B.1.1 The scalar wave equation

The scalar Helmholtz equation, the time-invariant form of the wave equation, is defined as,

∇2ψ + k2ψ = 0. (B.1)

In a spherical coordinate system, a solution can be found, using the separation of variables,

ψ(J)
mn(r, θ, φ) = z(J)

n (kr)Y m
n (θ, φ), n,m ∈ N, n ≥ 0,−n ≤ m ≤ n (B.2a)

where Y m
n (θ, φ) is the spherical harmonic function, and z

(J)
n (kr) represents a spherical Bessel

function of the J-th kind, i.e., jn, yn, h
(1)
n , and h

(2)
n for J = 1 to 4, respectively. Both of

these functions have been defined in Appendix A. It will also be beneficial to represent the

scalar wave function ψ in matrix form,

ψ(J)(r, θ, φ) =
{
· · ·ψ(J)

mn(r, θ, φ) · · ·
}T

. (B.2b)
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B.1.2 Definition

Addition theorem in three dimensions

Critical to the solution of a multiple scattering problem in any coordinate system, is the

transformation of a wave function between different coordinate system origins. For an ob-

servation point x, the scalar wave equation in a coordinate system j can be represented in

terms of a summation of scalar wave equations at i (see Figure 3.2), as well as the translation

coefficients β, such that,

ψ(J)
mn(rjx) =

∞∑
ν=0

ν∑
µ=−ν

ψ(J)
µν (rix)β

mn
µν (j, i) (B.3a)

βmnµν (j, i) =
∑
p

4πj(ν+p−n)ψ
(J)
(m−µ)p(rji)A(m,n,−µ, ν, p) (B.3b)

A(m,n,−µ, ν, p) = (−1)m
√

(2n+ 1)(2ν + 1)(2p+ 1)

4π

·

n ν p

0 0 0


 n ν p

−m µ m− µ

 , (B.3c)

where

 n ν p

m µ q

 is the Wigner 3j symbol [166]. In matrix formulation, this is,

ψ(rjx) = ψ(rix) · β̄ji, (B.4a)

where,

β̄ =
mn

↓
µν−→(
βmnµν

)
. (B.4b)

These theorems will translate from a coordinate system j to a coordinate system i.
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B.1.3 Recurrence relations

A number of different recurrence relations have been derived for the translation theorems,

e.g. [124, 140, 167]. The formulas of Chew [140] are presented here, where αmnµν represents

the outgoing case (J = 3), and βmnµν represents the regular case (J = 1):

α00
µν = (−1)µ+ν

√
4πY −µν (θji, φji)h

(1)
ν (krji) (B.5a)

β00
µν = (−1)µ+ν

√
4πY −µν (θji, φji)jν(krji) (B.5b)

a+
mnβ

m(n+1)
µν = −a−mnβm(n−1)

µν + a+
µ(ν−1)β

mn
µ(ν−1) + a−µ(ν+1)β

mn
µ(ν+1) (B.5c)

b+
nnβ

(n+1)(n+1)
µν = b+

(µ−1)(ν−1)β
nn
(µ−1)(ν−1) + b−(µ−1)(ν+1)β

nn
(µ−1)(ν+1), (B.5d)

where,

a+
mn = −

√
(n+m+ 1)(n−m+ 1)

(2n+ 1)(2n+ 3)
(B.6a)

a−mn =

√
(n+m)(n−m)

(2n+ 1)(2n− 1)
(B.6b)

b+
mn =

√
(n+m+ 2)(n+m+ 1)

(2n+ 1)(2n+ 3)
(B.6c)

b−mn =

√
(n−m)(n−m− 1)

(2n+ 1)(2n− 1)
. (B.6d)

B.2 Vector translation theorem

B.2.1 The vector wave equation

Electromagnetic scattering problems are inherently vectorial in nature, and so we must solve

the vector form of the wave equation,

∇×∇×Ψ− k2Ψ = 0. (B.7)
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Here, Ψ is a vector function. Stratton gives the solutions to this equation in terms of the

three vector functions, L, M, and N:

L = ∇Ψ (B.8a)

M = ∇×RΨ = L×R =
1

k
∇×N (B.8b)

N =
1

k
∇×M, (B.8c)

where the position vector R is defined in the (r, θ, φ) system as

R = (r̂, θ̂, φ̂). (B.9)

For a divergenceless incident field L = 0. We can thus define,

Ψ = {· · ·Nmn · · · · · ·Mmn · · · }T . (B.10)

B.2.2 Definition

In matrix form, the vector translation theorems are,

OuΨ(krjx) = ᾱij ·RgΨ(krix) if
∣∣rix∣∣ < ∣∣rij∣∣ (B.11a)

OuΨ(krjx) = β̄ij ·OuΨ(krix) if
∣∣rix∣∣ > ∣∣rij∣∣ (B.11b)

RgΨ(krjx) = β̄ij ·RgΨ(krix) if ∀
∣∣rix∣∣, (B.11c)
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where RgΨ refers to the regular vector wave function, while OuΨ is the outgoing function.

The translation matrices are defined as,

ᾱij =

 Āij B̄ij

B̄ij Āij

 (B.12a)

β̄ij =

 C̄ij D̄ij

D̄ij C̄ij

 . (B.12b)

The Ā, B̄, C̄, and D̄ matrices are formed in the same manner as β̄ in (B.4b).

B.2.3 Recurrence relations

Various different recurrence relations have been derived for the vector translation theorems

[121, 122, 124, 141, 168], however we will present those of [141].

Amnµν = αmnµν +rji sin θji
e−jφji

2(ν + 1)

√
(ν − µ+ 2)(ν − µ+ 1)

(2ν + 1)(2ν + 3)
αmn(µ−1)(ν+1)

−rji sin θji
e−jφji

2ν

√
(ν + µ− 1)(ν + µ)

(2ν − 1)(2ν + 1)
αmn(µ−1)(ν−1)

−rji sin θji
ejφji

2(ν + 1)

√
(ν + µ+ 2)(ν + µ+ 1)

(2ν + 1)(2ν + 3)
αmn(µ+1)(ν+1)

+rji sin θji
ejφji

2ν

√
(ν − µ)(ν − µ− 1)

(2ν − 1)(2ν + 1)
αmn(µ+1)(ν−1)

+rji cos θji
1

ν + 1

√
(ν + µ+ 1)(ν − µ+ 1)

(2ν + 1)(2ν + 3)
αmnµ(ν+1)

+rji cos θji
1

ν

√
(ν + µ)(ν − µ)

(2ν − 1)(2ν + 1)
αmnµ(ν−1) (B.13a)

Bmn
µν = rji cos θji

jµ

ν(ν + 1)
αmnµν + rji sin θji

j

2ν(ν + 1)
·
[ √

(ν − µ)(ν + µ+ 1) · ejφji · αmn(µ+1)ν

+
√

(ν + µ)(ν − µ+ 1) · e−jφji · αmn(µ−1)ν

]
, (B.13b)
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where α is calculated recursively using the formulas from (B.5). For the calculation of the

coefficients of C̄ and D̄, replace α in (B.13) with β.
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