AUTOMATIC TEXT-BASED EXPLANATION OF EVENTS

A Thesis in
Computer Science and Engineering
by
Sandip Debnath

© 2005 Sandip Debnath

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

December 2005
The thesis of Sandip Debnath was reviewed and approved* by the following:

C Lee Giles
David Reese Professor of Information Sciences and Technology and Professor of Computer Science and Technology
Thesis Co-Advisor, Co-Chair of Committee

Prasenjit Mitra
Assistant Professor of Information Sciences and Technology
Thesis Co-Advisor, Co-Chair of Committee

Hongyuan Zha
Professor of Computer Science and Engineering

Tracy Mullen
Assistant Professor of Information Sciences and Technology

Arun Upneja
Associate Professor of School of Hospitality Management

Raj Acharya
Department Head of Computer Science and Engineering

*Signatures are on file in the Graduate School.
Abstract

With the abundance of publicly available information on the Web reflecting the ever-changing nature of world events, one question naturally comes to our mind – how can we explain a specific event using this vast amount of information? This enormous information source is freely available but its unstructured nature, and inherent noise demand sophisticated techniques to understand reasons behind any event. Modern day search engines are too general in nature. They only try to find documents which contain the query keyword(s) and supposedly most relevant, but this search method has an inherent limitation. At the end, they are just query matching engines. They do not have and do not require an understanding of the domain knowledge and specialized document processing techniques to provide an explanation of any event. By the word “event” we mean an occurrence to which we can associate a time, e.g. “the IBM stock price went up in the third week of June, 2004”, or “More than 1.5 million people lost electricity in Florida in September 2004”. Newspapers or on-line news articles are full of events like these. Though these articles are important and useful information sources, they are noisy and unstructured compared to structural information sources such as relational databases.

In this thesis, I propose a novel assembly of techniques which can be applied on unstructured information sources such as news articles, news reports, or other text-based documents.

These techniques, applied in a step-by-step fashion, will permit proper analysis of the information source and can provide text-based explanations for major events that have occurred during a given time-frame. Given a noisy, unstructured, weekly-organized source of information, our method can reduce noise with high precision,
sort them (according to specified attributes) with high accuracy, find relevance to the domain of concern with high precision, and at the end can show a text-based explanation (in the form of keywords, phrases or even sentences) for a particular event.
Table of Contents

List of Figures xi
List of Tables xv
Acknowledgments xx

Chapter 1
Introduction 1
1.1 Motivation ... 3
1.2 Problem Statement 4
1.2.1 Core Issues .. 4
1.2.2 Contribution .. 5
1.2.3 Probable Applications 6

Chapter 2
Sports Market and Event-Price Correlation 7
2.1 Prelude .. 7
2.1.1 Brief Description 8
2.2 Introduction .. 8
2.3 Background ... 10
2.3.1 Related work ... 10
2.3.2 Metrics ... 12
2.4 Soccer World Cup 2002 13
2.4.1 Delay Calculation 14
2.5 2002 NBA Championship 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6 Soccer and Basketball</td>
<td>20</td>
</tr>
<tr>
<td>2.7 WSE and the Iowa Electronic Market</td>
<td>22</td>
</tr>
<tr>
<td>2.8 Conclusion</td>
<td>23</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>26</td>
</tr>
<tr>
<td>System Design</td>
<td></td>
</tr>
<tr>
<td>3.1 Description of the Architecture</td>
<td>27</td>
</tr>
<tr>
<td>3.1.1 Getting the Information</td>
<td>27</td>
</tr>
<tr>
<td>3.1.2 Getting the Right Information: Filtering Out the Noise</td>
<td>27</td>
</tr>
<tr>
<td>3.1.3 Right Information at the Right Time: Temporal Ordering</td>
<td>29</td>
</tr>
<tr>
<td>3.1.4 Getting the Relevant Information: Relevance Measure</td>
<td>29</td>
</tr>
<tr>
<td>3.1.5 Building Domain Ontology</td>
<td>30</td>
</tr>
<tr>
<td>3.1.6 Analyzer</td>
<td>31</td>
</tr>
<tr>
<td>3.1.6.1 Keyword-based Model</td>
<td>31</td>
</tr>
<tr>
<td>3.1.6.2 Sentence-based Model</td>
<td>31</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>33</td>
</tr>
<tr>
<td>Getting the Right Information: Feature-based Extraction of Informative Blocks from Web-pages</td>
<td></td>
</tr>
<tr>
<td>4.1 Motivation</td>
<td>34</td>
</tr>
<tr>
<td>4.2 Introduction</td>
<td>34</td>
</tr>
<tr>
<td>4.3 Related Work</td>
<td>38</td>
</tr>
<tr>
<td>4.4 Segmenting Web-pages into Blocks</td>
<td>41</td>
</tr>
<tr>
<td>4.4.1 Block Features</td>
<td>42</td>
</tr>
<tr>
<td>4.4.2 Inverse Block Document Frequency and Block Similarity</td>
<td>43</td>
</tr>
<tr>
<td>4.5 Algorithm: ContentExtractor</td>
<td>44</td>
</tr>
<tr>
<td>4.5.1 GetBlockSet</td>
<td>44</td>
</tr>
<tr>
<td>4.5.2 GetBlocks</td>
<td>44</td>
</tr>
<tr>
<td>4.5.3 Identifying Primary Content Blocks</td>
<td>46</td>
</tr>
<tr>
<td>4.5.4 ContentExtractor</td>
<td>46</td>
</tr>
<tr>
<td>4.5.4.1 The Similarity Function and Threshold</td>
<td>46</td>
</tr>
<tr>
<td>4.5.4.2 Complexity Measure</td>
<td>46</td>
</tr>
<tr>
<td>4.6 Algorithm: FeatureExtractor / K-FeatureExtractor</td>
<td>49</td>
</tr>
<tr>
<td>4.6.1 Block Features</td>
<td>50</td>
</tr>
<tr>
<td>4.6.2 K-FeatureExtractor</td>
<td>51</td>
</tr>
<tr>
<td>4.7 Experimental Evaluation</td>
<td>53</td>
</tr>
<tr>
<td>4.7.1 First Comparison: With the LH Algorithm</td>
<td>53</td>
</tr>
<tr>
<td>4.7.2 Metric Used</td>
<td>53</td>
</tr>
<tr>
<td>4.7.3 Data Set</td>
<td>55</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.7.4 Performance Comparison</td>
<td>56</td>
</tr>
<tr>
<td>4.7.5 b-Precision and b-Recall</td>
<td>57</td>
</tr>
<tr>
<td>4.7.6 Execution Time</td>
<td>58</td>
</tr>
<tr>
<td>4.7.7 Second Comparison: With Shingling Algorithm</td>
<td>58</td>
</tr>
<tr>
<td>4.8 Algorithm: L-Extractor</td>
<td>61</td>
</tr>
<tr>
<td>4.9 Conclusions</td>
<td>62</td>
</tr>
<tr>
<td>Chapter 5</td>
<td></td>
</tr>
<tr>
<td>Right Information at Right Time: Temporal Ordering</td>
<td>65</td>
</tr>
<tr>
<td>5.1 Motivation</td>
<td>66</td>
</tr>
<tr>
<td>5.2 Introduction</td>
<td>66</td>
</tr>
<tr>
<td>5.3 Related Work</td>
<td>68</td>
</tr>
<tr>
<td>5.4 Our Approach</td>
<td>70</td>
</tr>
<tr>
<td>5.4.1 Example</td>
<td>70</td>
</tr>
<tr>
<td>5.5 Time format and Grammar</td>
<td>72</td>
</tr>
<tr>
<td>5.6 Data Preparation and Training Phase</td>
<td>74</td>
</tr>
<tr>
<td>5.6.1 Data Parameters</td>
<td>75</td>
</tr>
<tr>
<td>5.7 Testing and Evaluation Phase</td>
<td>78</td>
</tr>
<tr>
<td>5.8 Conclusion</td>
<td>80</td>
</tr>
<tr>
<td>Chapter 6</td>
<td></td>
</tr>
<tr>
<td>Analyzer Model</td>
<td>81</td>
</tr>
<tr>
<td>6.1 Keyword-based Explanation Model</td>
<td>82</td>
</tr>
<tr>
<td>6.1.1 Fixed Window Approach</td>
<td>82</td>
</tr>
<tr>
<td>6.1.1.1 Definition</td>
<td>83</td>
</tr>
<tr>
<td>6.1.2 Variable Window Approach</td>
<td>83</td>
</tr>
<tr>
<td>6.1.2.1 Definition</td>
<td>83</td>
</tr>
<tr>
<td>6.2 Sentence-based Explanation Model</td>
<td>84</td>
</tr>
<tr>
<td>Chapter 7</td>
<td></td>
</tr>
<tr>
<td>Keyword-based Model (Fixed Window)</td>
<td>86</td>
</tr>
<tr>
<td>7.1 Event Description</td>
<td>87</td>
</tr>
<tr>
<td>7.1.1 Market Events</td>
<td>87</td>
</tr>
<tr>
<td>7.1.2 Method and Notation</td>
<td>87</td>
</tr>
<tr>
<td>7.1.2.1 Logarithmic Score</td>
<td>87</td>
</tr>
<tr>
<td>7.1.2.2 Notation</td>
<td>88</td>
</tr>
<tr>
<td>7.2 Implementation</td>
<td>89</td>
</tr>
<tr>
<td>7.2.1 Finding out Pivotal dates</td>
<td>89</td>
</tr>
<tr>
<td>7.2.2 Dates Found</td>
<td>89</td>
</tr>
<tr>
<td>7.2.3 Data</td>
<td>90</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Our method</td>
</tr>
<tr>
<td>7.2.4.1</td>
<td>Feature Entropy</td>
</tr>
<tr>
<td>7.2.4.2</td>
<td>Kullback-Liebler Divergence</td>
</tr>
<tr>
<td>7.3</td>
<td>Results</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Chapter 8

Keyword-based Model and Need of an Ontology

8.1 Prelude | 97
8.2 Real Market Analysis | 98
8.2.1 Differences | 99
8.3 Evaluation of Keyword-based Model | 99
8.3.1 Metric | 100
8.3.1.1 Weighted Precision | 100
8.3.2 Results | 104
8.4 Need of a Better Relevance | 104
8.4.1 An Agent Based Solution | 104
8.4.1.1 LawBOT: A Multiagent Assistant for Legal Research | 105
8.4.1.2 LawBOT Architecture | 106
8.4.2 Using Ontology to Augment Search | 109
8.4.2.1 A Proposed Business Ontology | 111
8.5 Our Goal | 112

Chapter 9

Domain Ontology Construction

9.1 Term-relationship Based Extraction | 118
9.2 Introduction | 119
9.3 Related Work | 120
9.4 Our Contribution | 122
9.5 Our Approach | 122
9.5.1 Related Term-Vector | 124
9.5.2 Bayesian Network | 125
9.5.3 Ontology Construction | 126
9.6 Implementation | 126
9.6.1 Weighted Sentence Based Related-Term Vector | 127
9.6.2 BN Constructor Algorithm | 129
9.6.3 Experiment and Result | 131
9.6.4 Using the BN to construct Ontology | 132
9.7 Rule-based Extraction | 133
9.7.1 Company Ticker Symbol | 133
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Logarithmic score plot for a World Cup 2002 soccer game between Sweden and Nigeria played on Jun 07</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Logarithmic score plot for a World Cup 2002 soccer game between Denmark and France played on Jun 11</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Average logarithmic score of fifteen soccer markets on Sports Exchange. Higher (less negative) log scores reflect increasing accuracy.</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Average entropy of fifteen soccer markets on Sports Exchange. Lower entropy values reflect increasing certainty in the outcome.</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Average logarithmic score of eighteen basketball markets on Sports Exchange. Higher (less negative) log scores reflect increasing accuracy.</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Average entropy of eighteen basketball markets on Sports Exchange. Lower entropy values reflect increasing certainty in the outcome.</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Correlation between logarithmic normalized price of the winner and the score difference in the basketball game between San Antonio and LA Lakers held on May 07, 2002</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Average logarithmic score of twenty-two political markets on Iowa Electronic Markets. Higher (less negative) scores reflect increasing accuracy. The horizontal axis is the number of days until the end of the market (which occurs on or near election day).</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>The architecture of the system designed to extract keywords affecting certain events at certain date.</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>A Web-page from CNN.com and its blocks (shown using boxes)</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Two Web-pages’ block structures as seen by <code>GetBlockSet</code>. The output from them are shown under the dotted line.</td>
<td>45</td>
</tr>
</tbody>
</table>
4.3 Run-times for the LH, ContentExtractor and FeatureExtractor algorithms. The vertical axis represents the time of execution (in seconds) for a number of pages (plotted in the horizontal axis).

4.4 Total storage requirement of Web-caches using ContentExtractor-based and Shingling algorithms.

4.5 Total execution time taken for ContentExtractor and the Singling-based algorithm.

4.6 Accuracy obtained by using our blocking algorithm with an SVM-based classifier based on block features to identify primary content blocks.

5.1 A sample Yahoo finance page with temporal expressions highlighted.

5.2 Our temporal grammar used in the TimeFinder algorithm.

6.1 Analysis procedure for keyword extraction. The date for which we are trying to find an explanation is called the pivotal date. The documents before the pivotal date are in negative document set or Document B(Before) set. The documents after the pivotal date are put in the positive document set or Document A(After) set.

7.1 A simple way to show the analysis procedure. The documents are shown as vertical bars of different shades. The documents before the pivotal date (for which dates event we are looking for a reason) are in negative document set or Document B set. The documents after the pivotal date are put in the positive document set or Document A set.

7.2 Portion of the price time series for candidate Giuliani in NY Senate election market on IEM, with significant dates highlighted.

7.3 Portion of the price time series for candidate Gore in US Presidential election market on IEM. Note that in this market a bet for Gore won if Gore had a larger share of the popular vote.

7.4 Portion of the price time series for “100 cents if extra-terrestrial life discovered by 2050” on the Foresight Exchange.

8.1 The ranking of an explanatory keyword-set. The top ranked keywords, which can be associated with an explanatory event will be given highest score. The total score is divided by the maximum possible score of $55X$ (for top 10 keywords) for normalization purpose.

8.2 The results from first 10 companies. The score is pretty low for plain vanilla “fixed window” approach.
8.3 The architecture of the LawBOT system designed to use ontologies in the context of a legal database search. .. 107
8.4 A part of the ontology used by the LawBOT system. The ontology here is shown as a connected graph of related keywords. 109
8.5 A proposed ontology for Microsoft .. 111
9.1 A simple architecture of our system. We create the BN as the knowledge base to be used in the Ontology construction. The main focus of this paper is the part, surrounded by dotted red rectangle. 123
9.2 The BN structure used in our algorithm. Note that to ensure that we construct the DAG we are not connecting w1 and w2 even if there is a dependence between them. From w2’s related term-vector we remove any parent or sibling node before creating the child of w2. . 126
9.3 The weighting function $W(j)$ and the set of sentences included in $N(S_i)$ as shown by the bar graphs. The preliminary sentence set was 1, 10, 20, 23, 24, 31, 39, 40, 41, 46, and 50 and the final extended sentence set is 1-3, 10-12, 20-26, 31-33, 39-43, 46-48, and 50. Each bar represents a sentence. .. 127
9.4 The BN created by our algorithm for eBay. Note that “Paypal”, “Amazon”, “AspenTech”, “Meg Whitman”, etc. are all related with “eBay”. We show the sub-nodes only for “Amazon” and as we can verify “Sams’ Club”, “Jeff Bezos”, “Yahoo” etc. are also co-related with “Amazon”. .. 131
9.5 A profile page for the company GE (General Electric). We collected useful information from pages like these to build the ontologies of the company. .. 134
10.1 This figure shows the number of relevant sentences extracted from around 1000 news articles for the company MSFT or Microsoft. We gradually increase the knowledge base capacity from just the ticker symbol to ontology with the use of synonames. As we see the number of relevant sentences extracted increase dramatically by using more and more relevant information. .. 142
10.2 This figure shows part of the Figure 10.1 blown up to show the effectiveness of using synonames for the company executives. . . . 143
10.3 This figure shows the F-measure for the first 50 news articles from the above chart. The precision and recall values were measured for all the stages. This shows that using ontology and synoname results in a much higher F-measure than use of just the ticker symbol (which the finance pages of Yahoo usually does). .. 145
10.4 The improvement in the weighted precision scoring by using the ontology and the variable window approach. The vertical axis represents the “Score” or the “Weighted Precision Score”. The horizontal axis represents the company. FW represents the case for fixed window. FW + Onto shows the case when we apply fixed window approach with ontologies, and VW + Onto is the case where we used variable window approach with ontologies. VW + Onto outperforms the other two cases in almost all companies.

11.1 The company names are arranged in ascending order of magnitude of DS or Document/Swing ratio. FW represents fixed window approach. FW+Onto shows the results from fixed window approach with the use of ontologies. VW+Onto uses variable window and ontologies.

11.2 Trend comparison of all the keyword models with the DS count value. This graph shows that the VW + Onto model correlates with the DS count most closely. This indicates that the variable width model with the use of ontology can bring more relevant portions of the news articles as the number of news articles increases on average. And more data leads to better analysis and better performance score.

11.3 Price graph for HPQ(Hewlett Packard)

11.4 Price graph for DELL(Dell)

11.5 Price graph for F(Ford Motors)

11.6 Price graph for GM(General Motors)

12.1 A simple way to show the analysis procedure for explanatory sentence generation. The date for which we are trying to find an explanation is called the pivotal date. Only the documents during or before the pivotal date with same price trend as the pivotal date are considered for the analysis.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Scoring times in Sweden vs. Nigeria and Denmark vs. France games. Time in parentheses is game clock time.</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Time difference between the price update and the scoring in 38 different cases of 15 games from 2002 Soccer World Cup resulting in average time difference of 24.7647 seconds. Note that this difference reflects a conservative estimate, due to the thresholding procedure; any delay may be entirely the result of website update delays and/or network delays.</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Last Table continued</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Correlation between logarithmic score and normalized score difference in 18 basketball games. The average of these correlations is 0.61.</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Details of the dataset. The number of pages taken from individual categories are not shown due to the enormous size of the latex table, but the interested reader can contact authors to get the details.</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Block level Precision and Recall values from LH algorithm, ContentExtractor and FeatureExtractor. The second, third, and fourth columns are from LH algorithm, the fifth, sixth, and the seventh columns are from ContentExtractor and the eighth, ninth, and tenth columns are from (K-)FeatureExtractor. We put K in parenthesis to imply that these results are almost same for FeatureExtractor and K-FeatureExtractor.</td>
<td>55</td>
</tr>
</tbody>
</table>
4.3 Block level Precision and Recall values from LH algorithm, \textit{ContentExtractor} and \textit{FeatureExtractor}. The second, third, and fourth columns are from LH algorithm, the fifth, sixth, and the seventh columns are from \textit{ContentExtractor} and the eighth, ninth, and tenth columns are from \textit{K-FeatureExtractor}. Due to poor performance of \textit{FeatureExtractor} for these Web-pages (which we do not show here) we improved it to \textit{K-FeatureExtractor}.

4.4 A property-wise comparison table for three algorithms. Note that (K-)\textit{FeatureExtractor} here represents both \textit{FeatureExtractor} and \textit{K-FeatureExtractor}. For the case of (K-)\textit{FeatureExtractor} we took the b-precision, b-recall, b-F-measure and all other comparisons with respect to text feature.

4.5 A property-wise comparison table for \textit{Shingling algorithm} and \textit{ContentExtractor}.

4.6 Block level Precision and Recall values from \textit{Shingling} algorithm, and \textit{ContentExtractor} algorithm for 50 Web-pages. The second, third, and fourth columns are from \textit{Shingling} algorithm, the fifth, sixth, and the seventh columns are from \textit{ContentExtractor}.

5.1 Accuracy values of the output produced by Linear Kernel Support Vector classification. The columns represent Site i.e. the source Web sites where the article was published, Average number of Paragraphs per article, Average number of Sentences per article, Average number of Words per article, Average number of Time Expressions per article, and Accuracy. Here note that sometimes the average number of sentences are really low, but as we randomly check, we realized that sometimes they are long sentences, and sometimes the articles are really short articles as opposed to regular general news articles.

7.1 Top features found for dates corresponding to major price changes in the NY Senate market.

7.2 Top features found for the US Presidential market.

7.3 Top features found for the XLif market on the Foresight Exchange.
8.1 Details of the dataset for the randomly selected 20 companies. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.

8.2 Details of the dataset. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.

8.3 Details of the dataset. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.

8.4 Details of the dataset. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.

8.5 Details of the dataset. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.

8.6 Details of the dataset. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.

9.1 Part of the Synoname table used for extracting names abbreviated or used other ways.
10.1 Details of the result. Precision from using ontologies are shown in the second column followed by Recall and van-Rijsbergen F-Measure. Precision, Recall and F-Measure using plain vanilla TF-IDF are shown in fifth, sixth, and seventh columns.

10.2 Some instances from the keyword model for various companies. As we see keywords are extracted which are very relevant to the facts pertinent to the possible reasons for the price swings for these companies. These results are mainly from variable window approach with the use of ontology \((VW + Onto)\).

10.3 Some instances from the keyword model for various companies. As we see keywords are extracted which are very relevant to the facts pertinent to the possible reasons for the price swings for these companies. These results are mainly from variable window approach with the use of ontology \((VW + Onto)\).

10.4 Some instances from the keyword model for various companies. As we see keywords are extracted which are very relevant to the facts pertinent to the possible reasons for the price swings for these companies. These results are mainly from variable window approach with the use of ontology \((VW + Onto)\).

11.1 Details of the dataset for the randomly selected 20 companies. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model. The last column shows the document distribution versus the number of price up swing or down swing. This is basically the ratio of total file to analyze and the total number of “UP Count” and “DOWN Count”.

11.2 One instance from the keyword model for Hewlett Packard is shown here. As Dell and Hewlett Packard are competitors in a flourishing business sector (computer hardware), reports of a bad news of rival (Dell) acted as a boon to Hewlett Packard. Simply, rival’s bad news is good news in a flourishing sector.
11.3 Two instances from the keyword model for Ford and General Motors, competitors in the auto industry. But the industry is recently not doing well. In this shaky market, if something good happens to any company (here GM), then it influences others as well, even if they are competitors. Here as billionaire Kirk Kerkorian offered to buy a big chunk of General Motors share, not only did General Motors share price go up, but so did it Ford’s share. This is a very interesting example of the fact that the market felt more confident in the whole sector as one of the player’s (GM’s) shares went up due to a good news.

12.1 Explanatory sentences for companies for a specified date
Acknowledgments

I thank GOD and my parents for everything bestowed upon me. I thank my wife for her love, care and patience. I thank my sisters, brother-in-law for their affection, love and care. I thank my aunty, in-laws, nephew and other family members and friends who have given me hope and cheer. I thank my advisors, teachers, committee members, all my institutions, my country India and the USA for my education and all the opportunities, I have had. I would be nowhere without everybody’s help, care, love and support.
I dedicate my thesis to my Parents, Wife and my Sisters for their unparalleled love, affection, care, and support.
Chapter 1

Introduction

“The goal of mankind is knowledge ... Now this knowledge is inherent in man. No knowledge comes from outside: it is all inside. What we say a man 'knows', should, in strict psychological language, be what he 'discovers' or 'unveils'; what man 'learns' is really what he discovers by taking the cover off his own soul, which is a mine of infinite knowledge.”

- Swami Vivekananda
 (Hindu Philosopher and Spiritual Leader)
 (1863-1902)

After the introduction of the Internet, the amount of online publishing has increased by leaps and bounds. As it is becoming more and more pervasive, the Internet is encompassing all areas of human life. Online publishing has the fascinating inherent feature that content publishing is not controlled by a single entity. As a classic example of a distributed information source, this online publishing is also the largest of its kind on our planet. What this means is that information on the Web is edited, organized and maintained by millions of people with varied backgrounds, styles, organizing skills, and knowledge. As a result, the Web is undoubtedly diverse in domain, class, concept, content and structure. These unique characteristics of distributed control of content and diversity also come with seri-
ous challenges. Searching this huge information source for the right information is just one of these challenges. Traditional search engines crawl the Web, locate documents, store the document or the information in their local cache (most of the time) and create an index of words or phrases present in these documents. When a search request is made with keywords, these engines return these stored documents or links to them (with or without rank, specifying their importance [26, 1, 2, 3, 4]) . However, few of the results returned by a search engine may be valuable to a user [89, 92] who is looking for a deeper understanding of a fact or an event.

Therefore, in this scenario, there are challenges and there are several areas where improvements and advanced features can be introduced. More intelligent crawling [98, 128, 15, 36], parallel crawling [31], focused crawling [54, 28], efficient caching techniques [18], classification of documents [34, 88, 134], useful indexing algorithms [120, 60, 61, 90], categorization of results [20, 25, 97], measuring relevancy of the documents, fast and useful ranking are just a few examples of possible improvements.

While improvements in the aforesaid areas are absolutely necessary and researchers are working on them, the researchers will only improve the result sets coming from a traditional search engine. For example, a focused crawler [54, 28] will only make the crawling more intelligent by making it subject specific, and that can make the search result more specific to the search keyword.

Similarly, an efficient caching algorithm [18] will be useful in storing and retrieving data more economically, efficiently and fast and can provide the user with a copy of the documents, which are removed from their original url location after they are crawled.

A categorization of the result [20] coming from a metasearch engine will improve the readability and accessibility of the documents by situating them properly in a wide variety of categories.

Some of these above improvements are already being tried in commercial search engines. Search engines like Google, Yahoo, and FAST are fetching more and more documents from the Web, by their intelligent crawlers. Thus larger numbers of documents are available to users than before, faster than before. Similarly, search engines like NorthernLight and Vivisimo [5] try to organize their results in an
intelligent and meaningful way to help users focus on certain areas of interest. For example, a search with a phrase like “C Lee Giles” will bring search clusters labelled as “Gary Flake”, “lawrence”, “NEC Research Institute”, “Search Engines”, “David M. Pennock”, “Penn State University” etc. This result will help a user narrow down and focus on a certain specific category, if the user is interested in looking at publications of “C Lee Giles” with “David M. Pennock” or the courses taught by Lee Giles at “Penn State University”.

Though recent commercial search engines are trying to improve the search experience and other features, still they are not enough considering the inherent limitations of the search functionality. After all the improvements, they are still regular keyword-matching search engines, trying to find the best and most appropriate matches for the given keyword(s) among available online documents. We still do not have a full-fledged natural-language question-answering facility available in search engines. There have been recent efforts to provide question-answering services as will be described in the related work section, but a deep analyzing capability of events is still missing in those approaches.

We plan to create a system where users can ask a question similar to: “Why did the Intel stock price fall on Aug 12, 2004?” What this example signifies is that we plan to answer a question of “why” when there is a cause and effect involved regarding the question and the domain involved.

1.1 Motivation

In the present day and age, people are not satisfied with the search results for a keyword. Users find it hard to deal with a search result consisting of several thousand documents. People do not have time to read or analyze them.

Let us assume somebody is looking for IBM stocks and news articles. Not having enough time to read and analyze every news article about IBM, he may want to have an understanding of the whole stock price scenario for the last two years and try to find an explanation for the price movement for a specific date. Can we help him with the existing search technology? In cases like these, even the most advanced search facilities such as those provided by Google [1], Yahoo [2] or other search engines cannot help. These advanced features can only enhance
the search, but cannot analyze the result and produce more intelligent and useful understanding. Therefore, we need a technique or a group of techniques to read, order, analyze, and present an understanding rather than just a keyword-match. To address these issues, we present in this work a group of techniques which can extract the correct right information, order and analyze it and provide a more deeper understanding.

1.2 Problem Statement

We attempt to answer the question “why did a particular event happen?” using information sources, freely available on the Web. As mentioned earlier, by the word “event” we mean an occurrence with which we can associate a time, and so situate it temporally with other events. These events are such that we can also associate a cause and effect relationship. We selected some domains to test the techniques, and attempted to get a deeper understanding of the probable relevant causes and background information for a certain event.

1.2.1 Core Issues

The quality of the Web as a diverse, flexible, open and distributed information source has been seen as a boon to open editing and publishing. The Web also has a very major inherent disadvantage. Most of the Web-text content is written in HTML (or generated as HTML/SGML/XML format from the script) and thus the contents are not tagged intelligently. Even after the introduction and adoption of XML [6], the scenario did not change that much; it will take quite some time before everything is intelligently tagged in a semantically meaningful way. Nevertheless, we do not have a major common standard for content-editing and publishing. The absence of a standard poses a major challenge in Web-data mining.

The Web is very different from a relational database where all the information is stored in tabular, well-structured, and well-defined format. Pulling the required and right information from a database was never a problem (though size, atomicity, consistency, isolation and durability property requirements are important and so intelligent optimization techniques are needed in relational database systems, but
these are separate problems). The simple question of pulling the right information from a Web-page has not yet found a good answer. There have been previous attempts to make complex queries \cite{112} or mapping Web content as a semi-structured database \cite{14, 126} to answer simple questions \cite{127}, but they have never been properly scaled \cite{14}. The reason is that answering simple questions from a Web content not only requires mapping the content as a database table \cite{127, 95} but also domain knowledge, understanding the context of the question, language-based techniques and much more. Web search engines are just a very shallow level keyword (or maybe mostly synonym, or related word) matching engine and so left many related questions unanswered. Though there have been attempts to answer natural language queries like “What”, “Who”, “How many”, “Where” etc. (\cite{7} from Zhiping Zheng, AskJeeves \cite{4}, IONAUT \cite{8} from Steve Abney and Michael Collins, LAMP \cite{9} from National University of Singapore, QuASM \cite{10} from UMASS/CIIR, Start \cite{11} from MIT, Wondir \cite{12} from Wondir Inc. etc.), a deeper understanding of the domain knowledge based information is missing. That may be the reason why previous researchers never attempted to answer the question “why”.

1.2.2 Contribution

In this thesis, a novel assembly of techniques is proposed that can be applied together on an unstructured information source (in the form of text-based news articles, reports, and other text-based documents). These techniques, applied in a step-by-step fashion, will be able to properly analyze the information source and can provide a text-based explanation for any events occurring during a time-frame. Given a noisy, unstructured, weekly organized source of information, our method can reduce noise with high precision, sort information bits (according to specified attributes) with high accuracy, find relevance with the domain of concern with high precision and in the end provide text based explanations (in the form of keywords, phrases or even with sentences) for a particular event.
1.2.3 Probable Applications

This approach can be used to find a better understanding of the probable causes or factors affecting a particular event in concern. Though we worked mainly with artificial and real market events, the technique can be used in principle as a same set of techniques, as used here, to get a better understanding of the event as well as factors affecting it. The first problem that we worked on is: “The probable causes or factors (in the form of keywords or phrases) behind a certain event in a market”. A rich Web-query system needs more than just finding the keyword or answering simple questions like “What is the GDP of India in 2003?”, or “Who is Isaac Newton”, or “What is the distance between New Delhi and New York”. We need an automatic system which can read documents, clean noises in them, earn a better understanding using domain knowledge and give pointers to the factors affecting everyday life.

In the next chapter we will describe the assumptions and demonstrate them with examples from sports betting markets and artificial markets. These assumptions are important to theoretically prove that there is a high correlation between market events and real events and finding the real events affecting the market events will be beneficial in the long run (e.g. we can later come up with a predictive model that can exploit the real events as soon as they are published and act on the market front based on the analysis).

\footnote{Though the most advanced MIT system Start [11] could not answer the question}
Chapter 2
Sports Market and Event-Price Correlation

“Research is to see what everybody else has seen, and to think what nobody else has thought”
- Albert Szent-Gyorgyi
(Hungarian Biochemist, 1937 Nobel Prize for Medicine)
(1893-1986)

2.1 Prelude

As previously discussed, markets are nice test-beds for analyzing the correlation between an event and price movements. It would be easy just for the experimentation purpose and to prove that the explanations for the events can be justified with the price movements. Prior to the work as described below, no solid proof was described in the literature about the close correlation between the price movements and the real-life events. Real-life events are specified as some of the test-markets used here are not stock-markets but political markets and betting markets. But these markets show very similar and sometimes identical characteristics of a real
market and so the proof of correlation in these markets can prove their existence in real markets too.

2.1.1 Brief Description

This chapter reports on our experiment with these markets. Data is analyzed from thirty-three “interactive” sports betting markets on the World Sports Exchange (WSE), where betting is allowed continuously throughout a sporting event. The study includes markets based on soccer (European football) games from the 2002 World Cup, and markets based on basketball games from the 2002 National Basketball Association (NBA) championship in the United States. Prices in such betting markets are shown on average to approach the correct outcome over time. Important events are recorded throughout the course of the games, for example changes in score. The corresponding price dynamics in the markets are closely coupled with actual game events: the market reacts almost instantaneously to the occurrences of those events, indicating agreement with the assumptions of the efficient markets hypothesis. The dynamics of price changes in soccer games are compared with dynamics in basketball games, highlighting the characteristic differences between these two types of games and their corresponding markets. The nature of these sports betting markets is also compared with “political stock markets” (betting markets on the outcomes of political elections) on the Iowa Electronic Market (IEM) [51, 50]

2.2 Introduction

Typically, a market is thought of as any place where items are bought and sold, whether a physical place or an online one, and whether the items are physical items or more abstract financial instruments like securities or derivatives. At the same time, a market can serve as a tool for aggregating the players’ (i.e., buyers’ and sellers’) knowledge about items of uncertain value. As an example, one of the motivations for a seller to utilize an auction mechanism is to help price an item whose value is not completely known to the seller: rather than set an arbitrary price, the seller can initiate an auction to find out the “correct” (efficient) price
according to the actual demand among the buyers. In fact, under certain assumptions, an equilibrium price in a market can be viewed as a summary statistic that reflects the overall knowledge of all market players about the item’s value. So in this sense markets are good mechanisms for combining information that is spread across a population, and summarizing that information in terms of price.

Perhaps an even more direct example of an uncertain-value item than an auction is a gamble. A gamble, also called a security in the classical economics literature, pays an amount contingent on some future outcome. For example, the gamble “$1 if it rains tomorrow” pays $1 if it rains tomorrow, and $0 if it does not rain. If an agent purchases (one unit of) this gamble for $0.3, then the agent wins $1-$0.3=$0.7 if it rains, and loses the $0.3 otherwise. Clearly the expected value (or expected utility) of the gamble is uncertain, and depends on the buyer’s subjective probability of rain.

Tomorrow, the value of the gamble will be certain (exactly $1 or exactly $0). But the value of the gamble today depends on the probability of rain tomorrow. In fact, assuming the buyer is risk neutral, the value to the buyer is exactly his or her subjective probability of rain, since the buyer’s expected value is
\[E[\text{\$1 if rain}] = \Pr(\text{rain}) \times \$1 + \Pr(\text{no-rain}) \times \$0 = \$\Pr(\text{rain}). \]

One of the stronger forms of the so-called efficient markets hypothesis (sometimes referred to as the Hayek hypothesis, [23] and justified using the rational expectations equilibrium concept [64], [86]) states that information is incorporated into market prices virtually instantaneously, as soon as it becomes available to any trader. Informally, the reasoning behind this assumption is that, if some trader has superior information that allows him or her to obtain an expected profit at the current price, then he or she will take advantage of the opportunity by appropriately buying or selling, thereby driving prices toward the correct value (equilibrium price) given the new information.

Gambling markets ranging from horse racing markets [129] to standard sports betting markets like the National Basketball Association (NBA) point spread market [63] to an experimental market in the Euro 2000 soccer championship [121] have been analyzed for signs of economic efficiency and information aggregation. In almost all investigations, assessments coming from the market (in the form of prices or odds encoding probabilities or expectations) appear remarkably accurate
and unbiased.

A new form of sports betting—called interactive betting—is now becoming popular on the Internet.1 In this type of market, bets can be placed or revised at any time throughout the corresponding sporting event, even as, for example, teams score points, penalties are called, or key players are injured. Clearly, as significant events happen “on the field”, the probabilities of the gamble outcomes change, and the expected value of the gamble changes. The continuous nature of the market allows prices to nearly instantly reflect the most recent events in the game, and the most accurate likelihoods of the possible game outcome at any given moment.

We analyze price data from thirty-three such interactive betting markets on the World Sports Exchange (WSE),2 including fifteen soccer games from the 2002 World Cup held in Japan and South Korea, and eighteen basketball games from the 2002 National Basketball Association (NBA) Championship held in several different cities in the United States. Prices nearly always react almost immediately to game events (e.g., score changes), as predicted by the efficient markets hypothesis. Prices in the markets also inexorably converge (on average) toward the correct answer, as information pertaining to the final outcome is revealed during the course of the game. We highlight distinctive properties of soccer and basketball games and the characteristic differences between their corresponding betting markets, with some implications for the relative psychologies of the two games.

\section{2.3 Background}

\subsection{2.3.1 Related work}

It is clear that markets often react quickly to the release of new and relevant information. This becomes very interesting in the case of betting markets as the relationship between price and information is very clear. There is a direct relationship between the current price of a gamble and the probabilities of the possible payoffs of it, and so any information available about the gamble for any possible outcome should affect the price appropriately according to the rules of Bayesian

1Some say interactive betting will do for gambling what Ebay did for auctions.

2http://www.wsex.com
The economic theory of rational expectations (RE) accounts for information incorporation in markets. RE theory posits that prices reflect the sum total of all information available to all market participants [64, 86]. Even when some agents have exclusive access to inside information, prices equilibrate exactly as if everyone had access to all information. The procedural explanation is that prices reveal to the ignorant agents any initially private information; that is, agents learn by observing prices.

Plott et al. [108] investigate, in a laboratory setting, whether parimutuel markets (the type employed at horse races) are able to aggregate information, as postulated by RE theory. Plott and Sunder [109, 110] and Forsythe and Lundholm [58] conducted laboratory experiments to test the reasonableness of the RE assumption in the context of a securities market (essentially a betting market as described in the introduction). In many cases in all these experiments, the equilibrium reached reflected the combination of all information, as predicted by RE theory.

Beyond the controlled setting of the laboratory, empiricists have analyzed the accuracy of implied probability assessments given by public markets. Perhaps the most direct tests involve betting markets. Several studies demonstrate that odds on horses at the track correlate well with the actual frequencies of victory [129]. Other sports betting markets, like the National Basketball Association point spread market [63], or an experimental soccer market organized at the Max Plank Institute in Germany [121], provide accurate and unbiased forecasts of likely game outcomes. Financial options markets (in many ways equivalent to betting markets) yield accurate probability distributions over the future prices of their underlying stocks [76].

The Iowa Electronic Market (IEM) supports trading in securities tied to the outcome of political and financial events. Since opening to the public, many IEM election markets (especially US Presidential election markets) have attracted wide participation and following, and in many cases have proven more prescient than public opinion polls [59]. Other election markets have now opened in Canada.

3http://esm.ubc.ca/
Austria.\footnote{http://ebweb.tuwien.ac.at/apsm/} Pennock et al.\footnote{http://hsx.com/} \cite{102} show that forecasts on IEM consistently improve over time, reflecting a roughly constant flow of information into the market. The authors develop a theory of information aggregation to explain this behaviour, and describe an algorithm to automatically extract semantic explanations of large market swings by mining online news sources.

Even market games, run entirely with play money, show signs of “economic” efficiency and information aggregation. Pennock et al.\footnote{http://ideosphere.com/} \cite{104, 105} show that games like the Hollywood Stock Exchange\footnote{http://hsx.com/} and the Foresight Exchange\footnote{http://ideosphere.com/} (an implementation of Hanson’s idea futures concept \cite{66}) yield remarkably accurate forecasts of future events.

2.3.2 Metrics

The current work uses the \textit{logarithmic score} to measure accuracy and information incorporation in betting markets. The logarithmic score is a \textit{proper scoring rule} \cite{132}, and is an accepted method of evaluating probability assessments. When experts are rewarded according to a proper score, they can maximize their expected return by reporting their probabilities truthfully. Additionally, more accurate experts can expect to earn a higher average score than less competent experts. Suppose an expert reports probabilities p_1, p_2, \ldots, p_k for k mutually exclusive and exhaustive alternatives. Let $w_i = 1$ if and only if the ith event occurs, and $w_i = 0$ otherwise. Then the expert’s score for the current event is

$$\ln \left(\sum_{i=1}^{k} w_i p_i \right).$$

Higher scores indicate more accurate forecasts, with 0 the maximum and negative infinity the minimum. The “expert assessments” given by the market are taken to be the (normalized) prices of the possible outcomes.

Note that under the logarithmic scoring rule, an expert’s expected score equals the entropy of his or her probability distribution. Stated another way, the negative of the logarithmic score gives the amount that the expert is “surprised” by the
actual outcome. So the logarithmic score is both a measure of forecast accuracy and an information-theoretic measure of the amount that the market is surprised when the winner of the gamble is finally determined.

We used the midpoint of the bid and ask prices of the eventual winner of the bet to calculate the average logarithmic score. If the price \((\text{bid} + \text{ask})/2 \) of the ultimate winner is \(p(t) \) at time \(t \), then the average logarithmic score for the market at time \(t \) is

\[
\text{Average Logarithmic Score}(t) = \frac{\sum_{i=1}^{N} \log p(t)}{N} \tag{2.2}
\]

where \(N \) is the number of markets. Similarly, the average entropy at time \(t \) is

\[
\text{Average Entropy}(t) = -\frac{\sum_{i=1}^{N} p(t) \log p(t) - (1 - p(t)) \log(1 - p(t))}{N} \tag{2.3}
\]

2.4 Soccer World Cup 2002

Fifteen markets on the WSE were analyzed corresponding to fifteen soccer games in the 2002 World Cup. These include several games from the first round and a few from second round of the tournament. The markets for the soccer games on average started long before the games started (usually 1-12 hours before the commencement of the game). The markets offered continuous betting on the outcome of the game, often with an associated point spread. A game of soccer normally lasts for 90 minutes in the first round (where games can end in a win for either team, or a draw). In the later rounds of the tournament a game may continue for more than 90 minutes if it remains undecided. In that case, the game will be played for 30 minutes more; if it still remains undecided, then the decision will be based on a penalty shoot-out. In the games we considered here, there are no cases of a penalty shoot-out. The matches were played from June 7 to June 15, 2002, and three out of these fifteen games ended in draws. Price variations from the WSE market, the score changes in the actual game, and the game clock time were recorded in parallel. The prices, scores, and game clock are aligned according to the time at which the information was gathered from the World Wide Web. For scores and game clock information, Livescore.com was used. Prices, scores, and clock information were gathered in ten second intervals throughout the games, though
Table 2.1. Scoring times in Sweden vs. Nigeria and Denmark vs. France games. Time in parentheses is game clock time.

<table>
<thead>
<tr>
<th>Date</th>
<th>Match Details</th>
<th>Scoring</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 7, 2002</td>
<td>Sweden vs. Nigeria</td>
<td>0-1</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Sweden vs. Nigeria</td>
<td>1-1</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Sweden vs. Nigeria</td>
<td>2-1</td>
<td>79</td>
</tr>
<tr>
<td>June 11, 2002</td>
<td>Denmark vs. France</td>
<td>1-0</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Denmark vs. France</td>
<td>2-0</td>
<td>85</td>
</tr>
</tbody>
</table>

the websites did not always update immediately, and network delays may have introduced further synchronization errors.

Examples of price changes for two representative games are shown in Figures 2.1 and 2.2. Figure 2.1 is the logarithm of the price of Sweden (the bet winner) in the “Sweden vs. Nigeria” game played on June 7, 2002, while Figure 2.2 is the same for Denmark in the “Denmark vs. France” game played on July 11, 2002. Interestingly, in the first game (“Sweden vs. Nigeria”) there are immediate and large price variations after each scoring, but in the second game (“Denmark vs. France”), though price changes are prominent for the first goal, there is almost no price change after the second goal. This highlights the natural time factor involved in the market where the team currently winning near the end of the game is likely to finish as the winner, and, depending on the score, a last-minute goal does not have much impact on the outcome. The scoring times in these two games are listed in Table 2.1. For scoring in the second half of the game, both the actual time from the start of the game and the game clock time are shown in parentheses. Other games display very similar characteristics to these two games.

2.4.1 Delay Calculation

This work evaluates how promptly the market reacts to scoring in the games. The timestamp of the scoring is recorded as s and the timestamp of the price update as p. The network delay supposedly associated with these two websites is represented as δ_s and δ_p. It is assumed that no general predicting devices have been used while playing in the market and any negative time difference between τ_p and τ_s is due to the delay difference in updating of the corresponding websites. This difference is eliminated by thresholding the most negative different at 0, and adding this value
Figure 2.1. Logarithmic score plot for a World Cup 2002 soccer game between Sweden and Nigeria played on Jun 07.

to every other difference; this results in a conservative (over-) estimate of delay. Thus the delay Δ is defined as

$$\Delta = (\tau_p - \tau_s) + \Theta$$ \hspace{1cm} (2.4)

where $\Theta = \text{max}(\tau_s - \tau_p)$ is the threshold. All 38 cases of these are shown in Tables 2.2 and 2.3. Column 2 shows the date when the game was played, column 3 shows the details (team names), and column 4 shows the scoring; in case of multiple goals, it shows them one after another with the final score last. Columns 5 and 6 give the threshold and delay in each individual cases. It was found that the average delay is 24.7647 seconds. Note that this difference reflects a conservative estimate, due to the thresholding procedure; any delay may be entirely the result of website update delays and/or network delays. Note also that in the calculation cases where there was no change of price after goal scoring were excluded (i.e.,
Figure 2.2. Logarithmic score plot for a World Cup 2002 soccer game between Denmark and France played on Jun 11 when the outcome is already nearly certain).

The average log score and the average entropy of all 15 soccer games appear in Figures 2.3 and 2.4. Both are plotted versus time, where 0 is aligned with the start of the game. Price movement information during the interval, which typically consists of two halves of 45 minutes of play separated by a 15 minute halftime break was processed. Surprisingly, some minor price movements were found after the 90 minutes of play ended, so the plots range in time (in minutes) from 0 to close to 110. As seen from the graph, it is clear that during the time period from the 46th to the 61st minute (which approximately encompasses halftime of most games) there is less price movement (the average log score and entropy are flat compared to other regions), as expected, since very little information about the game outcome is decided during halftime. Moreover, the final few minutes show large price movements, meaning that the largest changes in the amount of certainty of the outcome happens at the end of the games on average (around
Higher (less negative) log scores reflect increasing accuracy. The 104th minute in the graph which actually is (104 - 15) or 89th minute of the 90 minute game). This indicates a quite clear and intuitive fact that people feel more certain about the outcome of the game just a few minutes before the game ends. Otherwise the average log score is increasing roughly linearly heading toward zero, indicating a roughly constant flow of information on average through much of the game. The average entropy of these markets (Figure 2.4) shows the downward slope during the two halves of play as information about the outcome becomes available, and the ultimate drop to 0 entropy (certainty) at the end of the game. This indicates a roughly constant reduction of uncertainty over time with a more rapid resolution of uncertainty near the end of the game. The small glitch near the end is due to instances where last minute goals changed the result of the game and the uncertainty level increased slightly for a few minutes.

Figure 2.3. Average logarithmic score of fifteen soccer markets on Sports Exchange.
2.5 2002 NBA Championship

Basketball games are characteristically different and played for 4 quarters, each lasting for 12 minutes, totalling 48 minutes of playtime. There is a halftime break of about 20 minutes in between the 2nd and 3rd quarters. We analyzed 18 games from the 2002 NBA championship played between May 6, 2002 and May 31, 2002. Similar to the soccer games, the score and game clock information was taken from Sportsline.com and the price information from WSE, and they were aligned according to the timestamps. On average the stream was sampled every 10 seconds. Figure 2.5 plots the average logarithmic score and Figure 2.6 plots the average entropy of these games, using the average of the bid and ask prices (bid+ask/2). Here time is shown in minutes starting from 0 to 170 minutes. Though the actual game is played for only 48 minutes, here price information was also processed during several breaks, which adds up to a little more than 2.5 hours in total play.
The average entropy of these games (Figure 2.6) is indicative of major uncertainty over the course of the game as the entropy value is greater than 0.7 for more than 77% of the game, and greater than 0.8 for more than 55.5% of the game. This means the people participating in the market are very uncertain about the outcome of the game and their uncertainty is reflected in the price movements. Not surprisingly this entropy drops sharply over the last 23% of the game and heads towards 0, reflecting increased certainty about the outcome in last quarter of play.

Results show that price changes in basketball games are very much correlated with score changes. Figure 2.7 displays the correlation in one of the games on May 7, 2002, played between San Antonio and the Los Angeles Lakers. This is one of the 18 games where the correlation between the price on WSE and the score differential in the game is very high. In this graph the top curve is the normalized
Figure 2.6. Average entropy of eighteen basketball markets on Sports Exchange. Lower entropy values reflect increasing certainty in the outcome.

score difference between the two teams and the bottom curve is the logarithm of the price of the winner. The correlation between these two has been measured as 0.93. For other games the correlation values are shown in Table 2.4.

2.6 Soccer and Basketball

We will now try to compare the basic characteristics of soccer and basketball. In the last two sections the average entropy and average logarithmic scores of these two types of markets were illustrated. The correlation between scoring and price movements has also been shown. Following are some observations about the similarities and differences between the two types of games.

- Basketball games are more uncertain for a larger proportion of the game. One way to interpret this is that basketball is more exciting longer into the
Figure 2.7. Correlation between logarithmic normalized price of the winner and the score difference in the basketball game between San Antonio and LA Lakers held on May 07, 2002

contest, as the outcome does not become clear until late in the game. Putting it other way, when a comeback does occur in soccer, it is that much more unlikely, and thus more dramatic than in basketball.

- Both in basketball and soccer the price is highly correlated with the scoring, but there are some fundamental differences between these two due to the fundamental difference of these two games. In the case of basketball, there is continuous scoring throughout the game and so the price change is very frequent, following closely with the scoring. Typically in basketball a single score for either team does not change the price much. In the case of soccer markets, prices do not change that often, but when they do change with a score it is often a very drastic change.
Figure 2.8. Average logarithmic score of twenty-two political markets on Iowa Electronic Markets. Higher (less negative) scores reflect increasing accuracy. The horizontal axis is the number of days until the end of the market (which occurs on or near election day).

2.7 WSE and the Iowa Electronic Market

The Iowa Electronic Market (IEM) is a betting market mainly focused on political elections, run for research purposes by the University of Iowa Tippie College of Business.

Figure 2.8 shows the average logarithmic score of twenty-two IEM markets. There is a qualitative similarity between this graph and the average logarithmic score of the markets on the WSE. One difference between these markets is that IEM markets are longer term (run over a period of months or years), while the sports markets are shorter term (run over a period of hours). The horizontal axis of the IEM markets measures the number of days; that of the WSE markets, measured in minutes. Nonetheless, we still see a roughly constant increase in log score on average with a large increase near the end as election day approaches.
and the outcome becomes clear. In previous work [102], an entropy-based feature extraction algorithm was employed to mine possible semantic explanations from news sources for large price changes in the 2000 US New York Senate market and 2000 US Presidential market.

2.8 Conclusion

This chapter has set out data analysis from sports betting markets, where betting is allowed continuously throughout the sporting event. The analysis has covered both soccer games and basketball games. It has been shown that prices in such betting markets on average approach the correct outcomes. Important events throughout the course of the game (goal scoring, etc.) and the corresponding price dynamics are well-correlated, and the market reacts almost instantaneously to these events. It has also been shown that the distribution models of soccer and basketball exhibit some characteristic differences. Still, many characteristics are qualitatively similar, including in much longer-term markets like the IEM.

The easy part of the sports betting market is that the real events which are responsible for the price dynamics are basically the scores of the ongoing games. Discovering the correlation between price and the game scores (real life events), or viewing from another angle, the explanation of the price change from the game scores or real life events, is easier. Here the numbers tell the truth. But it is much harder if the real life events can not be quantified by an integer number, as in a game scorecard. The next chapter looks into this much harder version of the problem. For example in real stock exchanges or even other markets such as a political market, or a futures market, where real life events affecting the price are related news, the problem becomes multiplyingly harder. As one cannot quantify the effectiveness or score of any event against another as easily as above, other efforts need to be made to come close to that goal.
<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Match Details</th>
<th>Score</th>
<th>Threshold θ</th>
<th>Time Difference Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>June 7, 2002</td>
<td>Argentina vs. England</td>
<td>0-1</td>
<td>56 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>02</td>
<td>June 7, 2002</td>
<td>Sweden vs. Nigeria</td>
<td>0-1</td>
<td>11 sec</td>
<td>55 sec</td>
</tr>
<tr>
<td>03</td>
<td>June 7, 2002</td>
<td>Sweden vs. Nigeria</td>
<td>1-1</td>
<td>11 sec</td>
<td>2 sec</td>
</tr>
<tr>
<td>04</td>
<td>June 7, 2002</td>
<td>Sweden vs. Nigeria</td>
<td>2-1</td>
<td>11 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>05</td>
<td>June 8, 2002</td>
<td>Brazil vs. China</td>
<td>1-0</td>
<td>0 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>06</td>
<td>June 8, 2002</td>
<td>Brazil vs. China</td>
<td>2-0</td>
<td>0 sec</td>
<td>22 sec</td>
</tr>
<tr>
<td>07</td>
<td>June 8, 2002</td>
<td>Brazil vs. China</td>
<td>3-0</td>
<td>0 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>08</td>
<td>June 8, 2002</td>
<td>Brazil vs. China</td>
<td>4-0</td>
<td>0 sec</td>
<td>no change</td>
</tr>
<tr>
<td>09</td>
<td>June 8, 2002</td>
<td>Italy vs. Croatia</td>
<td>1-0</td>
<td>44 sec</td>
<td>44 sec</td>
</tr>
<tr>
<td>10</td>
<td>June 8, 2002</td>
<td>Italy vs. Croatia</td>
<td>1-1</td>
<td>44 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>11</td>
<td>June 8, 2002</td>
<td>Italy vs. Croatia</td>
<td>1-2</td>
<td>44 sec</td>
<td>no change</td>
</tr>
<tr>
<td>12</td>
<td>June 8, 2002</td>
<td>S.Africa vs. Slovenia</td>
<td>1-0</td>
<td>0 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>13</td>
<td>June 9, 2002</td>
<td>Costa Rica vs. Turkey</td>
<td>0-1</td>
<td>44 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>14</td>
<td>June 9, 2002</td>
<td>Costa Rica vs. Turkey</td>
<td>1-1</td>
<td>44 sec</td>
<td>22 sec</td>
</tr>
<tr>
<td>15</td>
<td>June 9, 2002</td>
<td>Japan vs. Russia</td>
<td>1-0</td>
<td>34 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>16</td>
<td>June 10, 2002</td>
<td>Korea vs. USA</td>
<td>0-1</td>
<td>0 sec</td>
<td>21 sec</td>
</tr>
<tr>
<td>17</td>
<td>June 10, 2002</td>
<td>Korea vs. USA</td>
<td>1-1</td>
<td>0 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>18</td>
<td>June 10, 2002</td>
<td>Portugal vs. Poland</td>
<td>1-0</td>
<td>0 sec</td>
<td>22 sec</td>
</tr>
<tr>
<td>19</td>
<td>June 10, 2002</td>
<td>Portugal vs. Poland</td>
<td>2-0</td>
<td>0 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>20</td>
<td>June 10, 2002</td>
<td>Portugal vs. Poland</td>
<td>3-0</td>
<td>0 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>21</td>
<td>June 10, 2002</td>
<td>Portugal vs. Poland</td>
<td>4-0</td>
<td>0 sec</td>
<td>no change</td>
</tr>
<tr>
<td>22</td>
<td>June 10, 2002</td>
<td>Tunisia vs. Belgium</td>
<td>0-1</td>
<td>0 sec</td>
<td>21 sec</td>
</tr>
<tr>
<td>23</td>
<td>June 10, 2002</td>
<td>Tunisia vs. Belgium</td>
<td>1-1</td>
<td>0 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>24</td>
<td>June 11, 2002</td>
<td>Denmark vs. France</td>
<td>1-0</td>
<td>0 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>25</td>
<td>June 11, 2002</td>
<td>Denmark vs. France</td>
<td>2-0</td>
<td>0 sec</td>
<td>no change</td>
</tr>
<tr>
<td>26</td>
<td>June 11, 2002</td>
<td>Senegal vs. Uruguay</td>
<td>1-0</td>
<td>41 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>27</td>
<td>June 11, 2002</td>
<td>Senegal vs. Uruguay</td>
<td>2-0</td>
<td>41 sec</td>
<td>83 sec</td>
</tr>
<tr>
<td>28</td>
<td>June 11, 2002</td>
<td>Senegal vs. Uruguay</td>
<td>3-0</td>
<td>41 sec</td>
<td>124 sec</td>
</tr>
<tr>
<td>29</td>
<td>June 11, 2002</td>
<td>Senegal vs. Uruguay</td>
<td>3-1</td>
<td>41 sec</td>
<td>83 sec</td>
</tr>
<tr>
<td>30</td>
<td>June 11, 2002</td>
<td>Senegal vs. Uruguay</td>
<td>3-2</td>
<td>41 sec</td>
<td>83 sec</td>
</tr>
<tr>
<td>31</td>
<td>June 11, 2002</td>
<td>Senegal vs. Uruguay</td>
<td>3-3</td>
<td>41 sec</td>
<td>62 sec</td>
</tr>
</tbody>
</table>

Table 2.2. Time difference between the price update and the scoring in 38 different cases of 15 games from 2002 Soccer World Cup resulting in average time difference of 24.7647 seconds. Note that this difference reflects a conservative estimate, due to the thresholding procedure; any delay may be entirely the result of website update delays and/or network delays.
<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Match Details</th>
<th>Score</th>
<th>Threshold Θ</th>
<th>Time Difference Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>June 12, 2002</td>
<td>S.Africa vs. Spain</td>
<td>0-1</td>
<td>11 sec</td>
<td>33 sec</td>
</tr>
<tr>
<td>33</td>
<td>June 12, 2002</td>
<td>S.Africa vs. Spain</td>
<td>1-1</td>
<td>11 sec</td>
<td>35 sec</td>
</tr>
<tr>
<td>34</td>
<td>June 12, 2002</td>
<td>S.Africa vs. Spain</td>
<td>1-2</td>
<td>11 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>35</td>
<td>June 12, 2002</td>
<td>S.Africa vs. Spain</td>
<td>2-2</td>
<td>11 sec</td>
<td>11 sec</td>
</tr>
<tr>
<td>36</td>
<td>June 12, 2002</td>
<td>S.Africa vs. Spain</td>
<td>2-3</td>
<td>11 sec</td>
<td>33 sec</td>
</tr>
<tr>
<td>37</td>
<td>June 13, 2002</td>
<td>Ecuador vs. Croatia</td>
<td>1-0</td>
<td>0 sec</td>
<td>86 sec</td>
</tr>
<tr>
<td>38</td>
<td>June 15, 2002</td>
<td>Germany vs. Paraguay</td>
<td>1-0</td>
<td>11 sec</td>
<td>0 sec</td>
</tr>
</tbody>
</table>

Table 2.3. Last Table continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Winner</th>
<th>Details</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>May 6, 2002</td>
<td>Dallas</td>
<td>Dallas vs. Sacramento</td>
<td>0.911234895882537</td>
</tr>
<tr>
<td>02</td>
<td>May 7, 2002</td>
<td>New Jersey</td>
<td>Charlotte vs. New Jersey</td>
<td>0.931731122180932</td>
</tr>
<tr>
<td>03</td>
<td>May 7, 2002</td>
<td>San Antonio</td>
<td>San Antonio vs. LA Lakers</td>
<td>0.643892830218919</td>
</tr>
<tr>
<td>04</td>
<td>May 10, 2002</td>
<td>Detroit</td>
<td>Detroit vs. Boston</td>
<td>0.241489294093237</td>
</tr>
<tr>
<td>05</td>
<td>May 10, 2002</td>
<td>Los Angeles</td>
<td>Los Angeles vs. San Antonio</td>
<td>0.899529974086272</td>
</tr>
<tr>
<td>06</td>
<td>May 12, 2002</td>
<td>LA Lakers</td>
<td>LA Lakers vs. San Antonio</td>
<td>0.769319276995048</td>
</tr>
<tr>
<td>07</td>
<td>May 13, 2002</td>
<td>Sacramento</td>
<td>Dallas vs. Sacramento</td>
<td>0.913128573373542</td>
</tr>
<tr>
<td>08</td>
<td>May 14, 2002</td>
<td>Boston</td>
<td>Boston vs. Detroit</td>
<td>0.759604460761744</td>
</tr>
<tr>
<td>09</td>
<td>May 14, 2002</td>
<td>San Antonio</td>
<td>San Antonio vs. LA Lakers</td>
<td>0.366704064261902</td>
</tr>
<tr>
<td>10</td>
<td>May 15, 2002</td>
<td>New Jersey</td>
<td>Charlotte vs. New Jersey</td>
<td>0.764031988154954</td>
</tr>
<tr>
<td>11</td>
<td>May 24, 2002</td>
<td>Sacramento</td>
<td>Sacramento vs. LA Lakers</td>
<td>0.794065198465937</td>
</tr>
<tr>
<td>12</td>
<td>May 25, 2002</td>
<td>New Jersey</td>
<td>New Jersey vs. Boston</td>
<td>0.469322845099931</td>
</tr>
<tr>
<td>13</td>
<td>May 26, 2002</td>
<td>Sacramento</td>
<td>Sacramento vs. LA Lakers</td>
<td>0.15290543696519</td>
</tr>
<tr>
<td>14</td>
<td>May 27, 2002</td>
<td>New Jersey</td>
<td>New Jersey vs. Boston</td>
<td>-0.1130231355228</td>
</tr>
<tr>
<td>15</td>
<td>May 28, 2002</td>
<td>LA Lakers</td>
<td>LA Lakers vs. Sacramento</td>
<td>0.68098360751506</td>
</tr>
<tr>
<td>16</td>
<td>May 29, 2002</td>
<td>New Jersey</td>
<td>Boston vs. New Jersey</td>
<td>0.85118768248148</td>
</tr>
<tr>
<td>17</td>
<td>May 31, 2002</td>
<td>New Jersey</td>
<td>New Jersey vs. Boston</td>
<td>0.876953977582046</td>
</tr>
<tr>
<td>18</td>
<td>May 31, 2002</td>
<td>Sacramento</td>
<td>Sacramento vs. LA Lakers</td>
<td>0.193926069160131</td>
</tr>
</tbody>
</table>

Table 2.4. Correlation between logarithmic score and normalized score difference in 18 basketball games. The average of these correlations is 0.61
Chapter 3
System Design

“Design is what you do when you don’t [yet] know what you are doing.”
- George Stiny
(Professor of Architecture, Massachusetts Institute of Technology)
(June 21, 2002)

As will be seen in the coming chapters, finding real life events in textual format to explain price movements is a much harder and complex version of a simple sports betting market and game score. The reasons behind this complexity are many. Firstly, unlike in a sports event, which is the scorecard of the ongoing game, finding relevant and correct information is the main problem. The second major obstacle is to align the price movement and the events properly. An efficient market is such that any new information will be immediately incorporated into the market price, and so finding the “right information” at the “right time” is most crucial in this problem. Once the right information is aligned with the right timeline, the information can be analyzed, compared with other similar events, and the patterns and/or the information content\(^1\) in them can be discovered to justify the reasoning behind any price dynamics. So the main thrust of this research is to find

\(^1\)Information content is basically the textual content in the news articles
the right information aligned with the right time-line.

3.1 Description of the Architecture

In Figure 3.1, the basic overall architecture of the system is shown. Each block in this architecture represents each subtask of the whole system. The whole system depends on these blocks or subtasks as each of these blocks can potentially improve overall system performance. Therefore, to achieve the efficiency and high accuracy of the whole explanation model, it is necessary to concentrate on each of these blocks and try to improve these subtasks’ efficiencies. In the coming chapters, we will take each individual subtask of this architecture, explain in detail why we need the subtask and how we improved their performance. Here we will briefly mention their function, necessity, and their intended use.

3.1.1 Getting the Information

We used basic web-crawler mechanisms [31] to download web-documents that are mainly news articles for events. The two most important facts to mention here are (1) First, the whole approach depends on the news articles. Sometimes we could not find enough articles due to various reasons\(^2\). The efficiency of our approach suffered in few places. (2) Secondly, though these news articles are the most important source for up-to-date knowledge, yet they are unstructured in nature and so filtering the noise out and getting the right information is one of the most important tasks in our approach.

3.1.2 Getting the Right Information: Filtering Out the Noise

The first problem and subtask in this architecture is to filter in the proper information about the event and filter out the noise associated with it. Online news articles are the main source of “event-data”. The positive side of this is that they are a rich source of information and are freely available. The negative side is the

\(^2\)crawling restrictions, subscription requirements, broken links, very few filtered documents, etc.
Figure 3.1. The architecture of the system designed to extract keywords affecting certain events at certain date.
amount of noise in the form of banner-advertisements, images, javascripts, applets and various other HTML elements. So in this subtask, the very first step is to remove the noise so that we can access the right information. By crawling the online news articles from various sources, one finds that they are naturally full of irrelevant textual or non-textual blocks of data. These constitute a huge portion of the data. Here in Figure 3.1, this is shown as the “Filter-block”. This step of the process is described in the next chapter 4.

In the next chapter we will lay out a plan, devise the algorithm for text-based information extraction in detail, and prove our method’s high performance with crawled data. This algorithm can improve the performance of the overall system by reducing noise content (banner-advertisements, header, footer and any other redundant information) by cleaning the textual data of these redundant contents.

3.1.3 Right Information at the Right Time: Temporal Ordering

Just getting the right information is not enough in this system. We need to align the articles with the proper temporal information. The question of “Why did it happen” can only be answered if we know exactly “When did it happen”. The right information is useless when temporal information is of vital importance (which is always true in most time-related cause-and-effect events). As price dynamics are precisely time-dependent, we need to align the real-life events in that order. Thus extracting temporal information and ordering news articles by their date and time is one of the most crucial parts of the system. This temporal ordering process is represented in the architecture as the “Temporal Ordering” block. We will elaborate more on this in chapter 5.

3.1.4 Getting the Relevant Information: Relevance Measure

Getting the right information also means getting the right information for the right candidate. Simply put, in the sports betting market, the scorecard of China vs.

\[^3\text{If we just compare the sizes of an HTML page before and after the cleaning we see an 86\% size reduction (See chapter 4)}\]
India is of no use when analyzing the market of USA and Mexico. Similarly, in analyzing data from the real stock market, if one is analyzing the news data of "IBM", then a news article on "BBBY" (Bed, Bath and Beyond) is not relevant. Things are complex in the stock market and sometimes people are influenced by different news. But it is the right amount of domain knowledge which will be crucial in deciding whether a news story is relevant or irrelevant. We will first attempt the problem with regular keyword-dependent model without any domain knowledge. Later we will introduce domain knowledge and will show how introducing it will improve performance. The idea of introducing domain knowledge is also an improvement over the existing TDT (Topic Detection and Tracking) research regarding sentence based relevance. We will show how domain knowledge in the form of ontology [52] can be incorporated and can play a crucial role in improving the relevance measure. Therefore, using domain knowledge, the news articles can be narrowed down in more detail, and put in proper bins 4 of the companies where they should belong.

3.1.5 Building Domain Ontology

Building domain ontologies is a necessary subtask of our approach as will be shown in the coming few chapters. Building an ontology could be a enormous task given the fact that ontology construction is a highly purpose-dependent complex procedure. A very exciting fact in this regard is that as ontologies are built for specific purposes, comparing an ontology with another one (even if they are in the same domain but built for different purposes) is not useful. Secondly, to save time we first decided to re-use any existing ontology in the business domain, but an extensive search through the literature and online databanks and lists of available ontologies produced negative results. Therefore we decided to build our own ontology which will be specific to our purpose. Extensive details of how ontologies were built from news articles and other sources will be set out in chapter 9. It will be shown that exploiting term-relationships can be very useful in building domain ontologies,

4We refer to bins as a folder where we keep documents, so for company bins, documents are put in individual folders for the companies. We also create temporal bins where we put the news articles according to the publication time, which is called Base Time-line or BT or DateLine
3.1.6 Analyzer

The analyzer is the subtask where the last and major attention needs to be focused. In this thesis, we will describe two explanatory models. The first is the **keyword-based model** for explaining an event, which finds referential keywords which are indicative of the possible explanation of an event. The second model is a **sentence-based model** which actually tries to find explanatory sentences from the huge information source, which can show why a certain event, such as a stock price-drop, happened. Though they seem to be very similar approaches, but when we went deep in finding possible models for explanatory sentences, we found that the useful methods are very very different from the keyword-based approaches.

3.1.6.1 Keyword-based Model

In the keyword-based model we try to explain any major event with a set of keywords extracted from news articles. In this model the information theoretic approach was used and produced a good result. This method is applied on the artificial market with real money (IEM political markets), the artificial market with artificial money (Foresight exchange) and on the real market with real money (stock exchange). Important keywords and phrases found, indicate the real life events for the price changes.

3.1.6.2 Sentence-based Model

In the sentence-based model, explanatory sentences indicative of possible reasons for any major event are provided. In this model we used a mixture of a learning model along with the traditional relevance model with newly developed concept of language model. One of the results of this research is that the latter model can perform even better than the keyword-model and can be more useful in pinpointing the reason for any major event.

At the end a functional and behavioural comparisons between these two approaches will be provided and the advantages and disadvantages of these models and ways in which they be improved will be identified. Hopefully these models can be used not just for finding explanations of past events, but also for learning and thus for providing forecasts for stock price movements and more. While it is a type
of open problem to forecast stock price dynamics, we hope that these methods can play a crucial role in that respect.
In this chapter the text-filtering approach which was developed is elaborated. An obvious question here is: why we focus on a data preparation stage so deeply for the removal of redundant information. The primary reason is to get the right information for the data analysis. Without the proper and correct information no algorithm, regardless of how efficient it is, can find the explanation for an event. However, one of the off-the-shelf text extractors could have been used. Actually, as will be shown in this chapter, re-implementations of the recent best extractor algorithms could not provide sufficiently good and acceptable results.
Applications of our analyser algorithm on the results of these extractors could not give acceptable keyword explanations. Therefore we decided to improve the performance of the overall system by introducing our own algorithms [44, 46, 47].

4.1 Motivation

Web-pages – especially dynamically generated ones – contain several items that cannot be classified as the “primary content”, e.g., navigation sidebars, advertisements, copyright notices, etc. Most clients and end-users search for the primary content, and largely do not seek the non-informative content. A tool that assists an end-user or application to search and process information from Web-pages automatically must separate the “primary content sections” from the other content sections. Both types of these sections are referenced to as “Web-page blocks” or just “blocks”. First, a tool must segment the Web-pages into Web-page blocks and second, the tool must separate the primary content blocks from the non-informative content blocks. In this work, Web-page blocks are formally defined and a new algorithm is devised to partition an HTML page into constituent Web-page blocks. Four new algorithms are then proposed: ContentExtractor, FeatureExtractor, K-FeatureExtractor, and L-Extractor. These algorithms identify primary content blocks by (i) looking for blocks that do not occur a large number of times across Web-pages, (ii) looking for blocks with desired features, and (iii) using classifiers, trained with block-features, respectively. While operating on several thousand Web-pages obtained from various Websites, the algorithms in this study outperform several existing algorithms with respect to runtime and accuracy. Furthermore, it will be shown that a Web-cache system that applies our algorithms to remove non-informative content blocks and to identify similar blocks across Web-pages can achieve significant storage savings.

4.2 Introduction

Search engines crawl the World-Wide Web to collect Web-pages. These pages are either readily accessible without any activated account or they are restricted by username and password. In whatever way the crawlers access these pages, they
are (in almost all cases) cached locally and indexed by the search engines.

An end-user who performs a search using a search engine is interested in the primary informative content of these Web-pages. However, a substantial part of them – especially those that are created dynamically – is content that should not be classified as the primary informative content of the Web-page. These blocks are seldom sought by the users of the Website. We refer to such blocks as non-content blocks. Non-content blocks are very common in dynamically generated Web-pages. Typically such blocks contain advertisements, image-maps, plug-ins, logos, counters, search boxes, category information, navigational links, related links, footers and headers, and copyright information.

Before the content from a Web-page can be used, it must be subdivided into smaller semantically-homogeneous sections based on their content. Such sections are referred to as blocks in the rest of the paper. A block (or Web-page block), B, is a portion of a Web-page enclosed within an open-tag and its matching close-tag, where the open and close tags belong to an ordered tag-set T that includes tags like $<TR>$, $<P>$, $<HR>$, and $$. Figure 4.1, shows a Web-page obtained from CNN’s Website\(^1\) and the blocks in that Web-page.

In this work, the problem of identifying the primary informative content of a Web-page is addressed. From the empirical observations, it was found that approximately three-fourths of the dynamically generated pages found on the Web, have a table in them. An HTML table is defined using the tag $<TABLE>$. In a table occurring in a Web-page, each cell is considered to be a block. Where tables are not available, identifying blocks involves partitioning a Web-page into sections that are coherent, and that have specific functions. For example, a block with links for navigation is a navigation block. Another example is an advertising block that contains one or more advertisements that are laid out side by side. Usually, a navigation block is found on the left side of a Web-page. Typically, the primary informative content block is laid out to the right of a Web-page. Four algorithms, ContentExtractor, FeatureExtractor, K-FeatureExtractor, and L-Extractor, were designed and implemented for this study, which identify the primary content blocks in a Web-page.

An added advantage of identifying blocks in Web-pages is that if the user does

\(^1\)http://www.cnn.com
Figure 4.1. A Web-page from CNN.com and its blocks (shown using boxes)

not require the non-content blocks or requires only a few non-content blocks, the rest of the blocks can be deleted. This contraction is useful in situations where large parts of the Web are crawled, indexed and stored. Since the non-content blocks are often a significant part of dynamically generated Web-pages, eliminating them results in significant savings with respect to storage cache and indexing.

The study can identify similar blocks across different Web-pages obtained from different Websites. For example, a search on Google News on almost any topic returns several syndicated articles. Popular items like syndicated columns or news articles written by global news agencies like AP or Reuters appear in many newspapers. Even the top 100 results returned by Google contain only very few unique
columns related to the topic because of duplicates published at different sites. Ideally, the user wants only one of these several copies of articles. Since the different copies of the article are from different newspapers and Websites, they differ in their non-content blocks but have similar content blocks. By separating and indexing only the content blocks, one can easily identify that two Web-pages have identical content blocks, save on storage and indexing by saving only one copy of the block, and make search results better by returning more unique articles. Even search times improve because there is less data to search.

To identify and separate content blocks from non-content blocks four simple yet powerful algorithms, called ContentExtractor, FeatureExtractor, K-FeatureExtractor, and L-Extractor are proposed. Different types of blocks are characterized based on the different features they possess. FeatureExtractor is based on this characterization and uses heuristics based on the occurrence of certain features to identify content blocks. K-FeatureExtractor is a special modification of FeatureExtractor which performs better in a wide variety of Web-pages. ContentExtractor identifies non-content blocks based on the appearance of the same block in multiple Web-pages. L-Extractor uses various block-features and train a Support Vector (SV) based classifier to identify a informative block vs. a non-informative block.

First, the algorithms partition the Web-page into blocks based on heuristics. These heuristics are based on our previous study of HTML editing style over a few thousand Web-pages. Lin and Ho [84] have proposed an entropy-based algorithm that partitions a Web-page into blocks on the basis of HTML tables. In contrast, this study considers not only HTML tables but also other tags, combined with the heuristics to partition a Web-page. Secondly, these algorithms classify each block as either a content block or a non-content block. While the algorithm decides whether a block, \(B\), is content or not, it also compares \(B\) with stored blocks to determine whether \(B\) is similar to a stored block. Both \((K-)FeatureExtractor\) and ContentExtractor produce excellent precision and recall values and runtime efficiency and above all, do not use any manual input and require no complex machine learning process. L-Extractor is still under experimentation, but it seems to produce fairly high accuracy.

While operating on several thousand Web-pages obtained from news and various other Websites, these algorithms significantly outperform their nearest com-
petitor, the Entropy-based blocking algorithm proposed by Lin and Ho [84]. The ContentExtractor algorithm was also compared with the Shingling algorithm devised by Ramaswamy et al. [113, 114]. ContentExtractor achieves similar savings on storage requirements as the Shingling algorithm. However it outperforms the Shingling algorithm significantly with respect to runtime, showing that simple heuristics can suffice to identify primary content blocks in Web-pages.

The rest of this chapter is organized as follows: Section 4.3 covers the related work. The concept of “blocks” and a few related terms are described in section 4.4. The algorithms are described in sections 4.5, 4.6, and 4.8. Section 4.7 outlines the performance evaluation plan and the data set on which the experiments were run. This study’s algorithms are compared with the LH and Shingling algorithm in subsection 4.7.4. Section 4.9 set out conclusions and future work.

4.3 Related Work

Yi and Liu [133, 85] have proposed an algorithm for identifying non-content blocks (they refer to it as “noisy” blocks) of Web-pages. Their algorithm examines several Web-pages from a single Website. If an element of a Web-page has the same style across various Web-pages, the element is more likely than not to be marked as a non-content block. Their algorithm also looks at the entropy of the blocks to determine non-content blocks. Their technique is intuitively very close to the concept of “information content” of a block. This is one of the very innovative ideas examined in this study.

The algorithms in this work, only look at the inverse block document frequency (defined below) and features of blocks. In order to identify the presentation styles of elements of Web-pages, Yi and Liu’s algorithm constructs a “Style Tree”. A “Style Tree” is a variation of the DOM sub-structure of Web-page elements. If there are Web-pages whose elements have the same style but different contents and yet are non-content blocks, the algorithms in the current work would not be able to detect that. However, in practice, these algorithms, even in the presence of advertisement images that vary from page to page, can identify such images as non-content blocks by making use of the text in the blocks that are almost the same. Since these algorithms use simple heuristics to determine non-content
blocks, this process does not incur the overhead of constructing “Style Tree”s.

Another work that is closely related is that of Lin and Ho [84]. The algorithm they proposed also tries to partition a Web-page into blocks and to identify content blocks. They used the entropy of the keywords used in a block to determine whether the block is redundant. The current study has a more comprehensive definition of blocks and demonstrates that the algorithm herein designed and implemented gives better precision and recall values than Lin and Ho’s algorithm as shown below.

Cai, et.al. [27] have introduced a vision-based page segmentation (VIPS) algorithm, which segments a Web-page based on its visual characteristics, identifying horizontal spaces and vertical spaces delimiting blocks much as a human being would visually identify semantic blocks on a Web-page. They use this algorithm to show that better page segmentation and a search algorithm based on semantic content blocks improves the performance of Web searches. Song, et.al. [125] have also used VIPS to find blocks in Web-pages. Then they use Support Vector Machines (SVM) and Neural Networks to identify important Web-pages. The current study observed that VIPS is significantly more expensive than the proposed simple blocking algorithm. The first step of \textit{(L-Extractor)} uses the blocking algorithm and the second step uses a SVM-based algorithm to achieve good results. \textit{ContentExtractor} and \textit{k-FeatureExtractor} use even simpler and less expensive techniques to identify primary content blocks in Web-pages.

Ramaswamy, et.al., [113, 114] propose a Shingling algorithm to identify fragments of Web-pages and use it to show that the storage requirements of Web-caching are significantly reduced. It is shows below that a \textit{ContentExtractor}-based algorithm provides similar savings for Web-caching, and is at the same time \textit{ContentExtractor} is significantly less expensive than the Shingling algorithm.

Bar-Yossef and Rajagopalan [22] have proposed a method to identify frequent templates of Web-pages and pagelets (identical to the blocks as described in the current study). Yi and Liu argue that their entropy-based method supersedes the template identification method. It will be shown that the method developed in the current work produces better result than the entropy-based method.

Kushmerick [81, 80] has proposed a feature-based method that identifies Internet advertisements in a Web-page. It is solely geared towards removing advertise-
ments and does not remove other non-content blocks. While their algorithm can be extended to remove other non-content blocks, its efficacy for the general Web-cleaning problem has not been studied. Besides, their algorithm generates rules from training examples using a manually-specified procedure that states how the features to be used can be identified. This manual specification is dependent upon applications. The algorithms in this study do not require any manual specification or training data set (except \textit{L-Extractor}).

There has been substantial research on the general problem of extracting information from Web-pages. Information extraction or Web mining systems try to extract useful information from either structured or semi-structured documents. Since a large percentage of dynamically-generated Web-documents have some form of underlying templates, Wrapper \cite{81, 80}, Roadrunner \cite{35}, Softmealy \cite{73} and other systems try to extract information by identifying and exploiting the templates. Systems like Tsimmis \cite{29} and Araneus \cite{21} depend on manually provided grammar rules. Information Manifold \cite{78, 83}, Whirl \cite{32}, or Ariadne \cite{19} attempted to extract information using a query system that is similar to database systems. In Wrapper systems \cite{81}, the wrappers are automatically created without the use of hand-coding. Kushmerick et.al. \cite{81, 80} have found an inductive learning technique. Their algorithm learns a resource’s wrapper by reasoning about a sample of the resource’s pages. In Roadrunner \cite{35}, a subclass of regular expression grammar (UFRE or Union Free Regular Expression) is used to identify the extraction rules by comparing Web-pages of the same class and by finding similarities or dissimilarities among them. In Softmealy \cite{73}, a novel Web-wrapper representation formalism has been presented. This representation is based on a finite-state transducer (FST) and contextual rules, which allow a wrapper to wrap semistructured Web-pages containing missing attributes, multiple attribute values, variant attribute permutations, exceptions and typos, features that no previous work can handle. A SoftMealy wrapper can be learned from labelled example items using a simple induction algorithm. For other semi-structured wrapper generators like Stalker \cite{93}, a hierarchical information-extraction technique converts the complexity of mining into a series of simpler extraction tasks. It is claimed that Stalker can wrap information sources that can not be learned by existing inductive learning techniques. Most of these approaches are geared toward learning the regular ex-
pressions or grammar induction [30] of the inherent structure or the semi-structure and so computational complexities are quite high.

The efforts mentioned above are involved in extracting information that originally came from databases. This underlying data stored in databases is very structured in nature. This work concentrates on Web-pages in which the underlying information is unstructured text. The techniques used for information extraction are applied on entire Web-pages, whereas they actually seek information only from the primary content blocks of the Web-pages.

Using the current study’s algorithm to extract the primary content blocks of the Web-pages as a pre-processing step, and then running the information extraction algorithms on the primary content blocks reduces the complexity and increase the effectiveness of the extraction process.

Preliminary work [44] shows great improvements in extracting the informative blocks from Web-pages. The feature-based algorithm can be enhanced by using machine learning mechanisms to select the useful features that are used to identify the non-content blocks. The study of using the Support Vector Learning approach in this context is described in section 4.8.

4.4 Segmenting Web-pages into Blocks

This section defines the concept of “blocks” in Web-pages and a few other related terms. Most Web-pages on the Internet are still written in HTML [33]. Even dynamically generated pages are mostly written with HTML tags, complying with the SGML format. The layouts of these SGML documents follow the Document Object Model tree structure of the World Wide Web Consortium 2. Out of all these tags, Web authors mostly use <TABLE> to design the layouts. Our algorithm uses <TABLE> as the first tag on the basis of which it partitions a Web-page. After <TABLE>, it uses <TR>, <P>, <HR>, , <DIV> and etc. as the next few partitioning tags in that order. The order of the tags was selected based on observations of Web-pages and a belief that it is the natural order used by most Web-page designers (according to a study of HTML editing style for a few thousand Web-pages from various sources and formats). For example, <TABLE>

\[\text{W3C or http://www.w3c.org}\]
comes as first partitioning tag since we see more instances of `` in a table cell than `<TABLE>`s coming inside ``, an item under ``. This study’s algorithms partition a Web-page based on the first tag in the list to identify the blocks, and then sub-partitions the identified blocks based on the second tag and so on. It continues to partition until there is no tag left in a block in the block-set which is part of the list of tags. This ensures that the blocks are atomic in nature and no further division is possible on them. The partitioning algorithm is illustrated in subsection 4.5.1 and this tag-set is called the partitioning tag-set.

4.4.1 Block Features

By definition, blocks may include other smaller blocks. But in the current implementation, as described above, only atomic blocks have been used for computation purposes (except in a few cases in FeatureExtractor). Atomic blocks will have features like text, images, applets, javascript, etc. Actually, all HTML tags (Following W3C (http://w3c.org)) except the tags in a partitioning tag-set are included for feature analysis. A *block-feature set* is a set of features that a block contains. Several features are associated with their respective standard tags but not all features have standard tags. For example, an image is always associated with the tag ``; however, the text feature has no standard tag. For features that are associated with a tag, the W3C guidelines on HTML pages were used to make the full list of features. The features of a block used include, but are not limited to, Text, Text-tag, List, Table, Link, Object, Frame, Form, Script, Style-Sheet, etc. The most important (and nice) quality of the algorithm is that this list can be updated as time and version of HTML pages change, without making any fundamental changes in the algorithm.

Examples of individual features in the feature vectors constructed by this algorithms are: the number of terms (in case of text feature), the number of images (in case of `` tag), the number of javascripts (in case of `<SCRIPT>` tag), etc. However, for text blocks, simply taking the number of terms in the block may result in falsely identifying two blocks as similar. Therefore, the features are augmented by the addition of a binary feature for each term in the corpus of documents. If a term occurs in a block, the entry in the corresponding feature vector is a one,
otherwise it is zero. If other features are deemed important, this framework can be easily modified by the addition of new features and adjustment in the weights of those features while computing the similarity between blocks.

4.4.2 Inverse Block Document Frequency and Block Similarity

ContentExtractor computes the Inverse Block Document Frequency (IBDF) as defined below. For example, if a block appears in multiple Web-pages, say, in most of CNN’s Web-pages, the block will have a smaller Inverse Block Document Frequency (IBDF) than one that appears only in one Web-page.

Let us assume IBDF\(^i\) represents the IBDF of a block \(B_i\) in a set of pages \(S\). Typically, the set \(S\) consists of similar pages from the same source. IBDF\(^i\) is inversely proportional to the number of Web-pages the block \(B_i\) occurs in.

So \(S\) is a set of Web-pages of the same class, i.e., obtained from the same source. Then

\[
S = \{P_1, P_2, P_3, \ldots P_M\}.
\]

where \(P_i\)s \((\forall i \in M)\) are individual HTML pages from that source.

And in

\[
IBDF^i \equiv f\left(\frac{1}{|S^i| + 1}\right)
\]

where

\[
S^i = \bigcup\{P_i : Sim(B_i, B_k) < \epsilon, \forall B_k \in P_i, \forall P_i \in S\}
\]

\(f\) denotes a function, usually a linear or log function. The function \(Sim(B_i, B_k)\) is a similarity measure of the two blocks. An expert provides the threshold \(\epsilon\).

There may be a question regarding whether the basis of this algorithm is a rule-based technique. Actually an analogy is drawn between the TF-IDF measure in vector-space model [118] and the IBDF measure. As the commonly occurring or redundant words or phrases in a collection are eliminated by applying the IDF measure of all the words and phrases, the same concept is extended for blocks. If we consider blocks as the atomic units in a Web-page, it is easy to visualize that the blocks having lower IBDF values or high frequency of occurring in several Web-pages will be eliminated as redundant blocks. TF-IDF measure and related
algorithms are undoubtedly not rule-based algorithms. Likewise IBDF measure and ContentExtractor should not be considered as rule-based approaches.

4.5 Algorithm: ContentExtractor

The input to the algorithms is a set (at least two) of Web-pages belonging to a class of Web-pages. A class is defined as a set of Web-pages from the same Website whose designs or structural contents are very similar. A set of Web-pages dynamically generated from the same script is an example of a class. The output of the algorithms are the primary content blocks in the given class of Web-pages.

The first step of all the algorithms in the current study is to use the GetBlockSet routine (described next) to partition each page into blocks.

4.5.1 GetBlockSet

The GetBlockSet routine takes an HTML page as input with the ordered tag-set.

GetBlockSet takes a tag from the tag-set one by one and calls the GetBlocks routine for each block belonging to the set of blocks, already generated. New sub-blocks created by GetBlocks are added to the block set and the generating main block (which was just partitioned) is removed from the set. The First function gives the first element (tag) of an ordered set, and the Next function gives the consecutive elements (tags) of an ordered set.

4.5.2 GetBlocks

GetBlocks takes a full document or a part of a document, written in HTML, and a tag as its input. It partitions the document into blocks according to the input tag. For example, in the case of the \(<TABLE>\) tag given as input, it will produce the DOM tree with all the table blocks. It does a breadth-first search of the DOM tree (if any) of the HTML page. If the input tag is \(<TABLE>\) and there is no table structure available in the HTML page, it does not partition the page. In that case the whole input page comes back as a single block. In the case of other tags such as \(<P>\), it partitions the page/block into blocks/sub-blocks separated by those tags. Figure 4.2 shows the structure of two HTML pages. It also shows
the blocks that our blocking algorithm identifies for each of these pages (under the dotted line).

Figure 4.2. Two Web-pages’ block structures as seen by GetBlockSet. The output from them are shown under the dotted line.
4.5.3 Identifying Primary Content Blocks

After the blocks have been identified, the second step of the process involves identifying the primary content blocks and separating them from the non-content blocks. All four algorithms identify the primary content blocks in the Web-pages, but their methodologies are different.

4.5.4 ContentExtractor

We show the pseudo-code for ContentExtractor in Algorithm 1. It calculates the $IBDF$ values of each block. For implementation purpose we compute the $IBDF$ values as a counter, and compare with θ, which is same as comparing $IBDF^{-1}$ with θ^{-1}. The algorithm used a similarity measure function Sim, to find out the similarity between two blocks.

4.5.4.1 The Similarity Function and Threshold

Given two blocks, Sim returns the cosine between their block feature vectors. We used a threshold value of $\epsilon = 0.9$. That is, if the similarity measure is greater than the threshold value, then the two blocks are accepted as identical. The threshold value can be changed according to the needs of the application and affects the precision and recall of the algorithm. Blocks that occur rarely across different Web-pages, i.e., have low $IBDF$’s are output as the primary content blocks.

4.5.4.2 Complexity Measure

The computational complexity of this approach is dependent on the computation of the similarity measure between blocks and the computation of the $IBDF$’s of the blocks.

Let us assume there are N blocks per page and the total number of documents in a class is M. According to the definition of a class, these pages are derived from the same script or from the same Website. In practical cases, pages derived from the same class are of the same design. Their headers, left panels, or the footers are similar (depending on the threshold ϵ). Thus, during the comparison, the number of completely new blocks coming from the second page is pretty low. Therefore,
Input: Set \mathcal{S} of HTML pages, Sorted tag-set \mathcal{T}
Output: Primary Content Blocks and their associated pages in \mathcal{S}

begin
$\mathcal{M}_{BD} \leftarrow \emptyset$
\hspace{1em} \{ Here the \mathcal{M}_{BD} matrix is the block-document matrix where rows represent document and columns represent block identifier. \}

for each $H^k \in \mathcal{S}$ do
\hspace{2em} \{ Here B^k represents the kth row of the \mathcal{M}_{BD} matrix. \}
\hspace{1em} $B^k \leftarrow \text{GetBlockSet}(H^k, \mathcal{T})$
\hspace{1em} $\mathcal{M}_{BD}^k \leftarrow B^k$
end

for each $b_{ij} \in \mathcal{M}_{BD}$ do
\hspace{2em} $\text{IBDF}_{ij}^{-1} \leftarrow 1$
\hspace{2em} for each $b_{kl} \in \mathcal{M}_{BD}$ do
\hspace{3em} \{ Here $i \neq k$. \}
\hspace{4em} $\text{Sim}_{ijkl} \leftarrow \text{Sim}(b_{ij}, b_{kl})$
\hspace{4em} if $\text{Sim}_{ijkl} > \epsilon$ then
\hspace{5em} $\text{IBDF}_{ij}^{-1} \leftarrow \text{Update}(\text{IBDF}_{ij}^{-1})$
\hspace{5em} \{Update Recalculates IBDF^{-1}\}
\hspace{3em} end
\hspace{2em} end
\hspace{2em} {If IBDF^{-1} value above threshold we will produce the output}

for each $b_{ij} \in \mathcal{M}_{BD}$ do
\hspace{2em} if $\text{IBDF}_{i}^{-1} > \theta^{-1}$ then
\hspace{3em} Output the content of the block
\hspace{2em} end
\hspace{2em} end
end

Algorithm 1: ContentExtractor

when the algorithm compares pages P_i and P_{i+1}, we can arguably assume that the similar blocks will largely outnumber the dissimilar blocks.

Suppose the average number of new blocks in $P_{i} + 1$ that are not present in P_{i} is κ. Then from above discussion $\kappa \ll N$. Accordingly, after the first comparison, a $(N + \kappa) \times M$ dimensional Block-Document matrix will be formed. The computational complexity of this step is $O(N^2)$. After these pages are compared, the blocks
(Function GetBlockSet :)

Input : HTML page H, Sorted tag-set T
Output: Set of Blocks in H

begin
 $B \leftarrow H$; // set of blocks, initially set to H.
 $f \leftarrow \text{Next}(T)$
 while $f \neq \emptyset$ do
 $b \leftarrow \text{First}(B)$
 while $b \neq \emptyset$ do
 if b contains f then
 $B^N \leftarrow \text{GetBlocks}(B,f)$ $B \leftarrow (B - b) \cup B^N$
 end
 end
 $b \leftarrow \text{Next}(B)$
 end
 $f \leftarrow \text{Next}(T)$
end

Algorithm 2: GetBlockSet Function (ContentExtractor Algorithm continued)

(Function Sim :)

Input : $Block_1, Block_2$
Output: Similarity Measure

begin
 //FeatureVector produces a vector of all
 //features as enlisted and described above
 $F_1 \leftarrow \text{FeatureVector}(Block_1)$
 $F_2 \leftarrow \text{FeatureVector}(Block_2)$
 return $\cos(F_1, F_2)$
end

Algorithm 3: Sim Function (ContentExtractor Algorithm continued)

of the third page will be compared with the combined set of blocks coming from first two pages. When the second step of the comparison will be performed, the cost of computation will be increased. Ultimately the total number of comparison
will be

\[N^2 + (N + \kappa) \times N + (N + 2\kappa) \times N + \ldots + (N + (M - 2)\kappa) \times N \]

\[= (M - 1)N^2 + \frac{\kappa}{2}(M^2 - 3M + 2)N \]

\[= (MN^2 - N^2 + \frac{\kappa}{2}M^2N - \frac{3\kappa}{2}MN + \kappa N) \]

\[= O(M^2N) \quad (4.4) \]

as \(M >> N \) and \(\kappa << N \).

The Block-Document matrix computation will be dependent on the value of \(M \) or the number of pages in the set and the average number of blocks in each individual page. In the future, we would like to explore if taking a smaller number of pages in a set is enough for identifying the irrelevant blocks. The time complexity to make the sorted block-document matrix is \(O(M^3N^2\log(N)) \).

If all Web-pages in the same class are dynamically generated from the same template, and running \textit{ContentExtractor} for all \(M \) documents is excessively costly, in practice, we can identify the template using fewer than \(M \) documents. Then, for all \(M \) documents, the primary content block that appears at a fixed place in the template can be extracted using the template.

4.6 Algorithm: FeatureExtractor

\textbf{/K-FeatureExtractor}

We now show our second algorithm, \textit{FeatureExtractor}. We designed \textit{FeatureExtractor} such that any informative block (corresponding to any feature) can be identified. For example, \textit{FeatureExtractor} invoked with the features text, image, links, identifies the text blocks, image blocks or navigational blocks as the primary content blocks respectively. We show the pseudo-code for \textit{FeatureExtractor} in Algorithm 4.
4.6.1 Block Features

The following list describes the features of a Web-page block that we have used in our implementation. A Web-page block can have any or all features of an HTML page. The W3C HTML guidelines have been followed here.

- **Text**: The text content inside the block.
- **Text-tag**: The text tags, e.g., `<h1>`, `<h2>` etc. inside the block.
- **List**: The lists available inside the block.
- **Table**: Available tables inside the block.
- **Link**: URLs or links inside the block.
- **Object**: Image, Applet etc. available in the block.
- **Frame**: Frames inside the block. Usually it is rare to have frame in the block, but to make the list complete it has been added.
- **Form**: Forms available inside the block.
- **Script**: Javascripts or other types of scripts written in the block.
- **Style-Sheet**: This is also to make the list complete and compliant to W3C guidelines. Styles are usually important for browser rendering, and usually included inside other tags, like links and tables etc.

A question may arise here that why we are taking these features. As aforesaid, all these blocks are HTML blocks and we are trying to find out a particular block or set of blocks which can be identified by the block-property such as text-blocks or image-blocks. In FeatureExtractor we are looking for all the text-blocks and so we need to compare the properties of a block against other blocks. These comparison is only possible if we consider all the HTML tags as the feature-set of the blocks. As we mentioned earlier, we can update this list if we so desire because of changes in HTML features or because of an application’s updated preferences of desirable features easily without fundamentally changing the algorithm.
Unlike the \textit{ContentExtractor} algorithm, the \textit{FeatureExtractor} algorithm does not depend on multiple Web-pages but depends on the feature-set and the chosen feature for output. The set features are HTML features as explained before. For example, let us consider the chosen feature is text (T_i). Now our algorithm calculates a value for each feature in each block. Say, a block contains 1000 words and 2 images and 3 links and an applet, and the maximum values of words, images, links, and applets contained in blocks in the data-set are 2000, 4, 50 and 3. Then the values for the features in the given block are $\frac{1000}{2000}$, $\frac{2}{4}$, $\frac{3}{50}$, and $\frac{1}{3}$ respectively. After that we put each block in the winner-basket if the sum of the feature values of the desired features is greater than the sum of the feature values of the rest of the features. From this winner-basket, we recompute the feature values for this new set of blocks, and chose the one with highest value of desired feature.

Now according to this algorithm a block with a single word and nothing else would be the obvious winner and will be chosen. In most practical cases this scenario did not arise. And also, we do not consider a single row or column of a table as a block. We consider the whole table (in the highest depth of table tree) as a block. So the chance of getting a block with a single word is distant.

4.6.2 K-FeatureExtractor

Though \textit{FeatureExtractor} performs with high precision and recall for one of our datasets, it may not do so in general and can be improved. For Web-pages with multiple important text blocks, a typical reader may be interested in all the sections not just one of them (winner of \textit{FeatureExtractor}). For example, an end-user may be interested in all the reviews available from a page in Amazon.com and each review is in a separate block. General shopping sites, review sites, chat forums etc. may all contain multiple blocks of important textual information. \textit{FeatureExtractor} shows poor precision and recall as it produces only one text-block with highest probability, while other important blocks are not retrieved. To overcome this drawback, we revised the last part of the \textit{FeatureExtractor} and named the new algorithm as \textit{K-FeatureExtractor} (Algorithm 5). To handle more general Web-pages of varied editing-styles, we improved the \textit{FeatureExtractor} algorithm.
Input: Set of HTML pages H, Sorted Tag Set T, Desired Feature \mathcal{F}_I
Output: Content Blocks of H
Feature: Feature set \mathcal{F}_S used for block separation sorted according to importance taken from T

begin
 $B \leftarrow \text{GetBlockSet}(B, T)$
 \{ W is the output variable that records potential output block sets \}
 $W \leftarrow \emptyset$
 for each $b \in B$ do
 $P_1 \leftarrow \Pr(\mathcal{F}_I | \mathcal{F})$
 $P_2 \leftarrow \Pr((\mathcal{F} - \mathcal{F}_I) | \mathcal{F})$
 if $P_1 > P_2$ then
 $W \leftarrow W \cup b$
 end

 \{ Now depending on the condition or choice we will produce output \}
 for each $b \in W$ do
 $P_b \leftarrow \Pr(\mathcal{F}_I | \mathcal{F}, W)$
 // $\mathcal{F}_I = T_I$ in the experiment
 end
 \{ Output: Sort W according to the Probability value P_b and (1) \}
 Produce the content of the Winner block
end

Algorithm 4: FeatureExtractor

Instead of taking just the winner block from the winner-basket, we apply a k-means clustering algorithm to select the best probability blocks from the basket. This helps us get high precision and recall from shopping Websites and review Websites and in general a much broader range of Websites. The results from using the K-FeatureExtractor for these types of Web-pages are shown in table 4.3 separately. Needless to mention that FeatureExtractor did not do well for these Web-pages. K-FeatureExtractor uses an adaptive K-means clustering on the winner set to retrieve multiple winners as opposed to FeatureExtractor that selects a single winner. The usual values of k taken are 2 or 3, and the initial centroids are chosen from the sorted list at equidistant index values. After the clustering is done, the
high probability cluster(s) are taken and the corresponding text contents of all those blocks are taken as the output.

begin
 ... same as FeatureExtractor except the last statement ...
 { Output: Sort W according to the probability value P_b and (2) Use k-means clustering and take high probability cluster(s). Combine the text contents from all of the blocks. }
end

Algorithm 5: K-FeatureExtractor

4.7 Experimental Evaluation

In this section, we present empirical evaluation of our methods. We also compare our algorithms with two other major competitors.

4.7.1 First Comparison: With the LH Algorithm

We implemented and compared our algorithm with LH, the entropy-based algorithm, proposed by Lin and Ho [84]. They use the terms precision and recall to refer to the metrics to evaluate their algorithm. Although, the use of these terms are somewhat different from their usual sense in the field, “Information Retrieval”, in order to avoid confusion, we use the same terms (added with a “b-” for blocks) to refer to the evaluation metrics of our work.

4.7.2 Metric Used

Precision is defined as the ratio of the number of relevant items (actual primary content blocks) r found and the total number of items (primary content blocks suggested by an algorithm) t found. Here we used a block level precision and so we call it as b-Precision.

$$b - Precision = \frac{r}{t}. \quad (4.5)$$

Recall has been defined as the ratio of the number of relevant items found and the desired number of relevant items. The desired number of relevant items includes
<table>
<thead>
<tr>
<th>Site</th>
<th>Address</th>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>http://www.indiatimes.com</td>
<td>Main Page, Main Stories, Top Media Headlines</td>
<td>454</td>
</tr>
<tr>
<td>MSNBC</td>
<td>http://www.msnbc.com</td>
<td>Main Page, Business, Sports, Technology an Science, Health, Travel</td>
<td>647</td>
</tr>
<tr>
<td>Shopping</td>
<td>http://www.shopping.com</td>
<td>Miscellaneous Products</td>
<td>100</td>
</tr>
<tr>
<td>Amazon</td>
<td>http://www.amazon.com</td>
<td>Book Pages</td>
<td>100</td>
</tr>
<tr>
<td>Barnes And Noble</td>
<td>http://www.bn.com</td>
<td>Book Pages</td>
<td>100</td>
</tr>
<tr>
<td>Epinion</td>
<td>http://www.epinions.com</td>
<td>Reviews</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.1. Details of the dataset. The number of pages taken from individual categories are not shown due to the enormous size of the latex table, but the interested reader can contact authors to get the details.
Table 4.2. Block level Precision and Recall values from LH algorithm, ContentExtractor and FeatureExtractor. The second, third, and fourth columns are from LH algorithm, the fifth, sixth, and the seventh columns are from ContentExtractor and the eighth, ninth, and tenth columns are from (K-)FeatureExtractor. We put K in parenthesis to imply that these results are almost same for FeatureExtractor and K-FeatureExtractor.

\[
b - \text{Recall} = \frac{r}{r + m}
\] (4.6)

Similar to the way it is defined in information retrieval literature by Van Rijsbergen [116], we can refer to the F-measure here as the \(b\)-F-measure and define it as

\[
b - F - \text{measure} = \frac{2 \times (b - \text{Precision}) \times (b - \text{Recall})}{(b - \text{Precision}) + (b - \text{Recall})}
\] (4.7)

4.7.3 Data Set

Exactly like Lin and Ho, we chose several Websites from the news domain. We crawled the Web for news articles and other types of Websites to collect documents. The details (name, source, category, number) of the dataset are shown in Table 4.1.

In total we took 15 different Websites including news, shopping, opinion posting Websites etc. whose designs and page-layouts are completely different. In table 4.2, we took 11 different news Websites for first comparison. Unlike Lin and Ho’s
dataset [84] that is obtained from one fixed category of news sections (only one of them is “Miscellaneous” news from CDN), we took random news pages from every section of a particular Website. This choice makes the dataset a good mix of a wide variety of HTML layouts. This step was necessary to compare the robustness of their algorithm to ours.

4.7.4 Performance Comparison

We implemented all four algorithms in Perl 5.8.0 on a Pentium-based Linux platform. With the generous help from a few graduate students and professors, we calculated the b-precision and b-recall values for each Website and layout category for text feature. These values are shown in tables 4.2 and 4.3.

Our algorithms outperform LH in all news sites in all categories. The b-recall is always good since all algorithms could find most relevant blocks but the results obtained by running the LH algorithm were less precise than those obtained by ContentExtractor since the former algorithm also includes lots of other non-content blocks.

We believe that the primary reason for the poor b-precision of LH is because of the greedy approach taken by their algorithm while identifying the solution. A second reason is that the LH algorithm works at the feature level instead of the block level. LH gives high redundancy score to features that occur across Web-pages. The redundancy score of a block is proportional to the weighted sum of the redundancy scores of each feature it contains. Instead of looking at occurrences of features across Web-pages, the ContentExtractor algorithm looks at occurrences of similar blocks across pages. This fundamental difference results in better b-precision obtained by our algorithm.

The FeatureExtractor algorithm only works well on Web-pages where the primary Web-pages have one dominant feature. For example, in news Web pages, text is the dominant feature. However, if we go to a domain where the primary content is a mix of multiple features, FeatureExtractor’s b-precision suffers. If FeatureExtractor has to be deployed in such a domain, it must be modified to handle multiple features and use a weighted measure of the presence of multiple features to identify the primary content pages. Due to the dependence of FeatureExtractor
<table>
<thead>
<tr>
<th>Site</th>
<th>b-Prec of LH</th>
<th>b-Recall of LH</th>
<th>b-F-measure of LH</th>
<th>b-Prec of CE</th>
<th>b-Recall of CE</th>
<th>b-F-measure of CE</th>
<th>b-Prec of K-FE</th>
<th>b-Recall of K-FE</th>
<th>b-F-measure of K-FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shopping</td>
<td>0.79</td>
<td>1.00</td>
<td>0.88</td>
<td>0.971</td>
<td>1.00</td>
<td>0.985</td>
<td>1.00</td>
<td>0.99</td>
<td>0.994</td>
</tr>
<tr>
<td>Amazon</td>
<td>0.771</td>
<td>0.99</td>
<td>0.86</td>
<td>0.98</td>
<td>1.00</td>
<td>0.989</td>
<td>1.00</td>
<td>0.967</td>
<td>0.983</td>
</tr>
<tr>
<td>Barnes And Noble</td>
<td>0.81</td>
<td>1.00</td>
<td>0.895</td>
<td>0.982</td>
<td>0.98</td>
<td>0.98</td>
<td>1.00</td>
<td>0.968</td>
<td>0.983</td>
</tr>
<tr>
<td>Epinion</td>
<td>0.79</td>
<td>1.00</td>
<td>0.88</td>
<td>0.97</td>
<td>1.00</td>
<td>0.984</td>
<td>1.00</td>
<td>0.956</td>
<td>0.977</td>
</tr>
</tbody>
</table>

Table 4.3. Block level Precision and Recall values from LH algorithm, ContentExtractor and FeatureExtractor. The second, third, and fourth columns are from LH algorithm, the fifth, sixth, and the seventh columns are from ContentExtractor and the eighth, ninth, and tenth columns are from K-FeatureExtractor. Due to poor performance of FeatureExtractor for these Web-pages (which we do not show here) we improved it to K-FeatureExtractor.

on one particular feature, we expect it to perform poorer than ContentExtractor in more general cases where the dominant features in a primary content block are not known.

In other cases (the last four Websites in table 4.1) where there is a single dominant feature but multiple blocks should be in the winner set (not just a single winner), FeatureExtractor may not perform well. And supporting our intuition, FeatureExtractor resulted in poor performance for these Websites. Because of that, we used K-FeatureExtractor for these Websites. The results are shown in table 4.3 compared to our ContentExtractor and LH algorithms.

4.7.5 b-Precision and b-Recall

Both FeatureExtractor and ContentExtractor performed better than LH in almost all cases. Actually with ContentExtractor, there are few or almost no missing blocks because the algorithm discards only repetitive blocks and keeps the other blocks and repetitive blocks have low real information content. In the news domains, most primary content blocks were dominated by text content and so FeatureExtractor deployed with the mandate to find blocks with predominantly text content, performs well. The b-precision of ContentExtractor increases with the number of pages involved in IBDF calculation. We compare the features of the
Table 4.4. A property-wise comparison table for three algorithms. Note that (K-)FeatureExtractor here represents both FeatureExtractor and K-FeatureExtractor. For the case of (K-)FeatureExtractor we took the b-precision, b-recall, b-F-measure and all other comparisons with respect to text feature.

<table>
<thead>
<tr>
<th>Property</th>
<th>LH</th>
<th>ContentExtractor</th>
<th>(K-)FeatureExtractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>b-Precision</td>
<td>Low</td>
<td>High</td>
<td>Very High</td>
</tr>
<tr>
<td>b-Recall</td>
<td>High</td>
<td>Very High</td>
<td>Very High</td>
</tr>
<tr>
<td>Number of pages needed</td>
<td>All the pages to calculate Entropy of features</td>
<td>Very few (5–10) pages from same class are enough to give high performance</td>
<td>A single HTML page is all that is needed</td>
</tr>
<tr>
<td>Time of completion</td>
<td>Always more than ContentExtractor</td>
<td>Less than LH (shown in figure 4.3)</td>
<td>Even less than ContentExtractor</td>
</tr>
</tbody>
</table>

First three algorithms in Table 4.4.

4.7.6 Execution Time

Figure 4.3 shows execution time taken by the three algorithms (LH, ContentExtractor and FeatureExtractor) averaged over all test Web-pages. We did not include K-FeatureExtractor as the time taken by it would be same and will overlap the lowermost curve to make it more cluttered. From the figure it is clear that our algorithms outperform the LH algorithm by a significant margin. We can further increase the performance of ContentExtractor by generating a template of a set of Web-pages using five to ten Web-pages from a site and using the template to extract primary content blocks.

Here in table 4.4 we present a comparison table for the features of both algorithms. This table shows the clear difference between LH and our ContentExtractor and (K)-FeatureExtractor algorithms.

4.7.7 Second Comparison: With Shingling Algorithm

In this section, we compare one of our algorithms with the Shingling algorithm proposed by Ramaswamy et.al. [113]. Regarding the way this algorithm is designed, it is the closest to our ContentExtractor algorithm, and therefore we will attempt
Figure 4.3. Run-times for the LH, ContentExtractor and FeatureExtractor algorithms. The vertical axis represents the time of execution (in seconds) for a number of pages (plotted in the horizontal axis).

to compare these two algorithms side-by-side. They also partition the HTML page into blocks (in their case they call them the nodes of the AF or Augmented Fragment tree). Then they characterize each individual node with different properties, such as SubtreeValue, SubtreeSize, SubtreeShingles and others. The detection of similar nodes was done by an algorithm called “Shared Fragment Detection”. The Shingling algorithm was designed to save storage for Web-caches. First, we compare the storage requirements of a Web-cache using a ContentExtractor algorithm versus one obtained by the Shingling algorithm. Table 4.4 shows a comparison of the Shingling algorithm with ContentExtractor. To show the amount of storage-savings obtained, we show the initial storage requirement of few HTML files, when neither of our algorithms have been run. It is evident that both ContentExtractor and the Shingling algorithm provide substantial (and almost similar) amount of savings in caching size.

Precision and recall values using Shingling algorithm are very very close (from table 4.6) to our those from ContentExtractor algorithm as we see from the Web-pages we have analysed. Thus, the main advantage of ContentExtractor is its time
of execution. Due to less complex steps and easy feature-based characterization of individual blocks in ContentExtractor the generation of informative blocks is very fast. The Shingling algorithm depends mainly on calculating the hash values of all \((N - W + 1)\) possible token-IDs for \(N\) tokens and shingles set of window length \(W\). The computation of hash values and the computation for the comparison involved in the resemblance equation

\[
\text{Resemblance}(A_i, B_j) = \frac{\text{SubtreeShingles}(A_i) \cap \text{SubtreeShingles}(B_j)}{\text{SubtreeShingles}(A_i) \cup \text{SubtreeShingles}(B_j)}
\]

are expensive. ContentExtractor does not remove any HTML tags and uses them for making the feature vector. This computation is relatively simple and inexpensive because the comparison/similarity is based on just a cosine calculation between two vectors. Therefore, ContentExtractor is much faster than the Shingling algorithm. Figure 4.5 shows a comparison of run-times taken by Shingling algorithm and ContentExtractor. Clearly, the Shingling algorithm does not scale very well and thus, the times for the larger number of Web-pages is not reported.

Figure 4.4. Total storage requirement of Web-caches using ContentExtractor-based and Shingling algorithms.
<table>
<thead>
<tr>
<th>Property</th>
<th>Shingling Algorithm</th>
<th>ContentExtractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Structure</td>
<td>AF Tree Node</td>
<td>Block</td>
</tr>
<tr>
<td>Basis of Similarity</td>
<td>Shared Fragment Measure</td>
<td>IBDF Measure</td>
</tr>
<tr>
<td>Similarity Calculation</td>
<td>ShareFactor</td>
<td>IBDF value</td>
</tr>
<tr>
<td>Similarity Threshold</td>
<td>ShareFactor</td>
<td>θ^{-1}</td>
</tr>
<tr>
<td>Matching</td>
<td>MinMatchFactor</td>
<td>ϵ</td>
</tr>
<tr>
<td>Atomic Property</td>
<td>Complex and expensive measurement of $(N-W+1)$ node-ids.</td>
<td>Simple HTML tag feature, which is perfect for measuring similarity. Inexpensive.</td>
</tr>
<tr>
<td>Precision and Recall</td>
<td>Similar to ContentExtractor</td>
<td>Similar to Shingling</td>
</tr>
<tr>
<td>Speed</td>
<td>Slow</td>
<td>Much faster</td>
</tr>
</tbody>
</table>

Table 4.5. A property-wise comparison table for Shingling algorithm and ContentExtractor algorithm.

<table>
<thead>
<tr>
<th>Site</th>
<th>b-Prec of Shingling</th>
<th>b-Recall of Shingling</th>
<th>b-F-measure of Shingling</th>
<th>b-Prec of CE</th>
<th>b-Recall of CE</th>
<th>b-F-measure of CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>0.92</td>
<td>0.99</td>
<td>0.953</td>
<td>0.915</td>
<td>0.99</td>
<td>0.95</td>
</tr>
<tr>
<td>BB</td>
<td>0.98</td>
<td>1.00</td>
<td>0.989</td>
<td>0.997</td>
<td>1.00</td>
<td>0.998</td>
</tr>
<tr>
<td>BBC</td>
<td>0.971</td>
<td>1.00</td>
<td>0.985</td>
<td>0.968</td>
<td>1.00</td>
<td>0.983</td>
</tr>
<tr>
<td>CBS</td>
<td>0.97</td>
<td>0.99</td>
<td>0.979</td>
<td>0.972</td>
<td>1.00</td>
<td>0.985</td>
</tr>
<tr>
<td>CNN</td>
<td>0.97</td>
<td>1.00</td>
<td>0.984</td>
<td>0.977</td>
<td>1.00</td>
<td>0.988</td>
</tr>
</tbody>
</table>

Table 4.6. Block level Precision and Recall values from Shingling algorithm, and ContentExtractor algorithm for 50 Web-pages. The second, third, and fourth columns are from Shingling algorithm, the fifth, sixth, and the seventh columns are from ContentExtractor.

4.8 Algorithm: L-Extractor

Song et.al. [125] used VIPS to perform page segmentation and then used an SVM to identify primary content blocks in a Web-page. VIPS is an expensive page segmentation algorithm. However, we hypothesized that an SVM can be very useful to identify primary content blocks. To prove our hypothesis, we applied our GetBlockSet algorithm to 250 Web-pages. In the next step we created the feature-vectors for these blocks using HTML tags as described above. This set includes all HTML tags except that are included in the partitioning-list of tags and including text feature. We then ran our Support Vector Learning classifier [72] (We used...
Figure 4.5. Total execution time taken for ContentExtractor and the Singling-based algorithm.

a linear Kernel for the Perl SV classifier with cost and weight values of two-class C-SVC algorithm both set to 1 with 5-fold cross validation following Chang and Lin [74]). Figure 4.6 shows the accuracy of finding the informative blocks over increasing number of Web-pages. From this study we can claim that our block-partitioning algorithm combined with an SVM works with high efficiency.

4.9 Conclusions

Simple, yet powerful, and modular algorithms were devised to identify primary content blocks from Web-pages. These algorithms outperformed the LH algorithm significantly, in b-precision as well as run-time, without the use of any complex learning technique. The FeatureExtractor algorithm, provided a feature, can identify the primary content block with respect to that feature. The ContentExtractor algorithm detects redundant blocks based on the occurrence of the same block across multiple Web-pages. The algorithms, thereby, reduce the storage requirements, make indices smaller, and result in faster and more effective searches. Though the savings in filesize and the precision and recall values from “Shingling
Algorithm” is as good as from ContentExtractor. ContentExtractor outperforms the “Shingling Algorithm” by a high margin in run-time. The next step would be to deploy these algorithms as a part of a system that crawls Web-pages, and extracts primary content blocks from them. As part of this process, primary content would be determined and heuristic algorithms will be sought for to identify the semantics of the content to generate markup. The storage requirement for indices, the efficiency of the markup algorithms, and the relevancy measures of documents with respect to keywords in queries should also improve (as shown briefly by caching size benefit) since now only the relevant parts of the documents are considered.

Now, as the text content is in hand, a further step would be to identify the temporal information from them. As explained earlier “why something happened” can only be answered if “when that happened” is known. So getting temporal information and associating the articles with that information is crucial to proceed with the agenda. In the next chapter the algorithm to extract the time of publication of a news article will be introduced. This time of publication has been named as base time-line or BT of the article (the reason will be explained in the next chapter itself). A support vector learning classifier based approach was introduced

Figure 4.6. Accuracy obtained by using our blocking algorithm with an SVM-based classifier based on block features to identify primary content blocks.
and it was ascertained that a right set parameter can produce a good performance in finding the base time-line.
Chapter 5

Right Information at Right Time:
Temporal Ordering

"Everybody gets so much information all day long that they lose their common sense."
- Gertrude Stein
(American Writer)
(1874-1946)

After getting the correct information, or more precisely, the clean information from Web pages, how to associate them with the proper time-lines is crucial. The proper time-line of a news article is its date and time of publication. There are other deeper levels of temporal associations, which we plan to use in the final work, but for the time being the basic need is to find the base time-lines of the articles. In future we plan to extract all the events from the article and will try to associate them with the individual time-lines of their contexts. To do that we need to extract the available temporal information for those events, and then try to find out the time-lines with the help of a base time-line. More on this will be elaborated soon, but before that let us discuss the motivation behind it again [45].
5.1 Motivation

The importance of textual information manifolds when it can be associated with the actual time-line of when it happened. This is more true with the on-line publishing of news articles for a particular subject. We introduce a novel approach to tag these news articles with temporal information, whenever available. This involves a temporal baseline, which needs to be established for the entire article. Temporal baseline is defined as the date and possibly time of when the article had first been published, as stated in the article. Without a precise and correct temporal baseline, no further processing can be possible. To accurately find the temporal baseline we approached with a support vector based classification method. We found that the proper choice of parameters to train the support vector classifier can result in high accuracy. We showed the data collection phase, training phase, and testing phase and report our accuracies for web-pages from 26 different Web sites. From this accuracy we can claim that our approach can be used to find the temporal baseline very accurately.

5.2 Introduction

In Web data mining, retrieving relevant documents has always been of great importance. This is related to other important areas of research such as text summarization and question answering. All these areas of research requires situating a document in proper time-line for better precision and recall and this has formed a major research area of temporal information processing. Lots of efforts have recently been put to tag news articles with temporal information and great strides have been made using areas such as rule-based and natural language based techniques. Researchers like Hwang and Schubert, Kemp and Reyle, Lascarides and Asher, Allen, Hitzman, Kehler and others have used knowledge sources, tense, aspect, adverbs, rhetorical relations and of course background knowledge. For example, Lascarides and Asher used "narration" relation in sentences to identify the time of events. Others have found that news stories may not be a right place to use the narrative convention. As researchers found, events in news articles are tough to order. But even before starting to order the events in a news article, the first
and foremost requirement is to find out the sentences carrying any occurrences of
time units such as year, month, week, day and so on.

In most cases these time units are relative. Which means that these time units
are not expressed in complete time unit formats\(^1\) This makes temporal ordering
difficult in news articles. We have to fill up the missing parts according to the
current notion or context of time in the article. For example, if month and date
are available and year is not mentioned, then we can fill up the gap using the year
when the news article was published. If time and day are mentioned, we can try to
fill up the month and year similarly. We consider these time lines, where any part
is missing, as relative time-lines, as they are relative in time with the context of the
article. Therefore, in almost all cases, the missing parts can be understood from the
temporal baseline. We refer temporal baseline or base time-line interchangeably.

Base time-line is defined as the date and time (if available) of the publication
of the news article, \textit{as mentioned in the article itself}. Almost all news articles
mention the date of publication somewhere inside the body. It may not be the
exact same time when the news article came on-line (file update date and time) or
the time of its crawling (crawl date and time). To properly identify other relative
date and time expressions in the article and to calculate the exact date and time,
it is very important to find out the base time-line (henceforth called \textbf{BT}). In this
work, we consider only those articles which has base time-line. An article without
any mention of its publication date or time can not be covered by this approach
of us. For any referenced temporal expression (e.g. "last Friday", "next month",
"next weekend" etc.) to be tagged with other temporal information such as year,
month, possible date and time, it is obvious that we need to add or subtract the
proper difference of time from the \textbf{BT} of that article. Therefore to order the events
of a news article using temporal information we need to find the \textbf{BT} of the article,
and then find the relative time-lines of individual events in the article. In this
chapter we concentrate on finding the \textbf{BT} of an article.

The problem is not trivial due to several reasons. Firstly, temporal expressions
are not used in a standard way. It has many different forms due to different
languages. In a particular language people can express the dates and times in

\(^1\)Complete time units are usually expressed in \texttt{YY::MM::DD::HH:mm::SS} following the
ISO8601 guidelines or at least in a similar way, which can easily be converted to ISO8601 format
using simple converter algorithms.
many different ways too. So finding temporal expressions is not trivial. It needs a proper grammar. We have developed our own grammar. We do not focus on the grammar part for a few reasons. Firstly to claim the superiority of the performance of our grammar we needed to compare its performance with other grammars or techniques. Unfortunately in this area of research, we found it is hard to get grammars used by other researchers, or their implementation. Secondly it was not our focus here to build a better grammar. A moderately accurate and workable grammar is enough for the task. We are more interested in finding the BT. BT is very crucial in temporal ordering and yet we found that almost every researcher assumed that this information is available somehow or other. Unfortunately that is not true. Due to the on-line information explosion, it is very difficult to keep up with the publishing speed of all news articles regularly and to crawl and cache them in timely manner. The natural delay in crawling, caching and putting them in proper temporal bins brings the necessity of an algorithm which is very necessary and important to find the BT of these articles. Researchers in this area almost always assume that this publication date is available or they take the first available date in their implementations, which is not the right choice as we will see soon. We approached the problem by identifying the proper set of parameters by which we will a train a learning classifier. Agreeing with our intuition, our choice of parameter-set combined with the support vector based classifier, produced high accuracy.

The rest of the chapter is organized as follows. Some of the related previous efforts in this area of research are mentioned in the next section. In section 5.4 we describe our approach, in section 5.5 we mention the time format and standards, used in the experiment and in section 5.6 we describe the method to prepare the data. After that in section 5.7 we evaluated the classification accuracy and conclude thereafter.

5.3 Related Work

Tagging news article with temporal information has received much attention these days. Most of the prior work is based on natural language research. Unfortunately, we have not seen much prior work to find the base time-line of an article. The
reason, as explained above, is due to the limited assumption that data can be available sorted according to the date and time of publishing. This is not a workable assumption in today’s scenario due to the information explosion in the Web and less time to organize data. In a few instances where we found that researchers had no information about the date of the article, they assumed the first available date as the date of publication of the article. Now it may be true in a very few percentage of article, but we can not rely on this assumption. So actually we could not find any such previous attempt to find the BT of an article. We cited a few cases of general temporal information extractors here, some of them are outstanding work.

Starting with Allen’s general theory of action and time [16] we have seen very effective efforts towards structuring textual documents into temporally well-defined blocks. Some early approaches are very formal with finding time or time related expressions in documents but they were instrumental in setting up the ground-breaking steps. Based on that others tried to use rule-based or sometimes knowledge-based techniques. But most of the researchers related to text summarization, question answering or temporal ontology building, used or tried to use techniques and advances in Natural Language Processing. Natural language processing has its roots long back in time with Reichenbach [115] who pointed out the difference between the point of speech (time of utterance), the point (time) of the event and point of reference or the reference time. In Time Frames [79], Koen and Bender stated the benefits of the time augmentation of news and approaches the problem with time or time-related information already available in the content. Their time extractor extracts time with moderate precision and recall. MIT’s Questioning News System [117] used individual documents of a set, but did not create a temporal structure as such. Kullberg, in his masters thesis created a visualization tool to see dynamic time-lines in historical events. Other researchers such as Allen [17], Dorr [55], Mani [87], Lascarides [82], Passonneau [99], Ferro [57], tried to approach it from Natural Language Processing perspective using discourse structures, tense of the verb or the aspect. But as we have seen and explained before there is not enough evidence of classifying the temporal expressions using machine language techniques to find out the base time-line (BT) of an article. It sounds obvious that without the proper BT, no technique could give the proper
time-line of any events inside the article.

5.4 Our Approach

We used a support vector classifier [72, 122] to find the accurate BT of an article. We first used our TimeFinder algorithm (based on a temporal grammar described in figure 5.2) to find all possible temporal expressions inside an article. Once it finds and builds the temporal expression set, we compute the values of several parameters (these parameters are described in section 5.6.1) for each of these time expressions. We train our classifier with this data. When we get new articles, we process these articles first through the TimeFinder algorithm to generate a set of temporal expressions as we did for the training set. We then measure the parameter values for all these temporal expressions. Then we run our trained classifier to find the BTs of these new articles.

5.4.1 Example

Let us show an example page (Figure 5.1). This figure shows a sample HTML page from Yahoo finance \(^2\). We put dotted rectangular boxes around the probable time expressions which our TimeFinder algorithm is going to extract. From this figure it is clear why we need a learning classifier to classify the BT from other temporal expressions. As we see there are lots of temporal expressions in the beginning of this article as surrounded by the dotted rectangular box. But none of them are the base time-line. The base time-line BT is the date “December 06, 2002”, which is surrounded by rectangular box just above the heading “AMERISOURCEBERGEN CORP (ABC)”. So the first temporal expression is not the publication date of the article as we see here. So clearly we should not be relying on taking the first temporal expression as the BT, as taken by lots of previous researchers.

\(^2\)http://finance.yahoo.com
Figure 5.1. A sample Yahoo finance page with temporal expressions highlighted.
5.5 Time format and Grammar

We need to use a standard date and time format to identify every temporal expression in an article. According to the ISO 8601 guidelines, the standard way of expressing the date is YYYY-MM-DD and that of time is hh:mm:ss. There is also specifications and specialized off-the-shelf algorithms available for time zone
and day-light saving time data.\footnote{Arthur David Olson and others maintain a database of all current and many historic time zone changes and daylight saving time algorithms: http://www.twinsun.com/tz/tz-link.htm}

We use our own grammar in TimeFinder algorithm to extract time and date expressions. This include most of the time and date formats like “Jan 20, 2004”, “01/20/2004”, “2004-01-20”, “Jan 20th, 2004”, “20th Jan, 2004” etc. All of our news articles are from US news Web sites and so there was no need of month-date-position disambiguation (“DD/MM/YY” or “MM/DD/YY”) (In future, we would like to show our results in this area. We are using Geographic IP address locator to find out which country the article/story is originating from and with our existing database of the country/region-wise mapping of date formats we will be able to identify and disambiguate the expressions.) Moreover we also look for phrases like “2 months ago”, “3 weeks after”, “in 5 minutes”, etc. Though we can not always fill every entries of “YYYY-MM-DD hh:mm:ss”, at least to find the BT we do not have to worry about that too much. We followed the initial work by Koen and Bender \cite{79} and classify these expressions into the following classes.

- **Interval** Intervals are expressions like “twenty to twenty five minutes” (exactly same examples from Koen and Bender \cite{79}) or “twenty-to-thirty years” etc.

- **Age** Age defines expressions like “2 years old”, “A week after”, “2 months before” etc. In relative sense we can get the time by using the precise base time-line (e.g. “Jan 01, 2004 20:34:00” + A week) equivalent to “Jan 08, 2004 20:34:00” for a workable algorithm.

- **Date** Dates are precise dates such “Jan 02, 2003”, or “03/04/2004” or “03.04.2004” etc. There are various ways of expressing the date as explained above.

- **Precise Time** Precise times are time expressions such “2:00pm”, or “Morning 7’O clock”, or “18:15:01 hours”. All these expressions precisely tell the time of the day. As always we fill-up the missing values with the base value, i.e. a missing second will be replaced by “00”.

\footnote{Arthur David Olson and others maintain a database of all current and many historic time zone changes and daylight saving time algorithms: http://www.twinsun.com/tz/tz-link.htm}
• **Time Duration** “Evening”, “Morning”, “Dawn” etc. are obviously not very precise time expressions, but we can get a clear idea from these expressions in the same way as described in the “Age” part. We can use the base time-line to find out the date and approximate time duration of the event.

• **Special Day** “Christmas”, “New Year’s Eve”, “Thanksgiving”, “Rosh Hashanah” etc. come under this category which can precisely tell the date of the year without any “Precise Time”. Here you need the base year to properly identify the date.

We show a snippet of our TimeFinder grammar in figure 5.2. Due to the space constraint we could not show the whole grammar but we are creating an Website to show the full grammar as well as a CGI script to test the performance of TimeFinder. This figure shows a few different ways we can expect the date, time and other temporal expressions’ formats. Creating an extensive grammar is very important to increase the recall value of TimeFinder.

5.6 Data Preparation and Training Phase

We measure the values of the parameters (as described below) of all the temporal expressions by using our algorithm **TemporalDataPreparer**. Our algorithm has several passes and it is described here in algorithm 6. **ContentExtractor** is an intelligent HTML to text converter devised by Debnath et. al. ([43]), which breaks the whole page into logical blocks, identifies the redundant un-informative blocks comparing with other HTML pages from the same source and keep the informative blocks of text. During the first pass, the **TimeFinder** function finds all probable temporal expressions in the article (we call this article as “training article”, as it is used to train the classifier), and converts them into ISO 8601 format (as much as possible with unknown fields empty and keeping the other duration/age related expressions as they are). During the second pass, **TemporalDataPreparer** asks the user to identify the **BT** of this training article. It produces all the temporal expressions, generated from the first pass, to the user. The user identifies the correct temporal expression which can be attributed as the **BT** of the article. We
did not use a fancy Web-base interface, but we used a regular linux command line interface for the user input submission.

During the third pass, TemporalDataPrepaper pulls every temporal expression hash key and measures the values of different parameters (described next) by using MeasureParameterValue function. This function performs all possible counting of paragraphs, sentences, and word occurrences before and after every temporal expression. This needs a complete splitting of the article into paragraphs, sentences and words.

5.6.1 Data Parameters

The following set of parameters are used to create data to train the support vector classifier. We included 15 different parameters to properly characterize the temporal expressions. Most of them fall under distance measures, but some of them can be considered as frequency measures.

- **Paragraph Distance (PD):** The paragraph distance consists of two parameters – how many paragraphs are there before a time expression or PDB and how many paragraphs are there after the time expression or PDA.

- **Sentence Distance (SD):** The sentence distance consists of two parameters – how many sentences are there before a time expression or SDB and how many sentences are there after the time expression or SDA.

- **Word Distance (WD):** The word distance also consists of two parameters – how many words are there before a time expression or WDB and how many words are there after the time expression or WDA.

- **Reporter Names (RN):** Reporter names or the names of reporting agencies (RN) are also a prime factor in identifying the beginning of a news story and the time. This idea is very similar to the way we understand the beginning of a story. The distance between each time expression and the names of the reporter or reporting agencies in words or characters are stored.

4We thank the students who helped in building the training and test dataset.
Input : HTML Page H, Parameter Set \mathcal{P}
Output : Training Set to train the Support Vector Classifier
Standard: ISO 8601 standard for date and time

begin
 Extract the textual content from the HTML page
 using our intelligent algorithm, which eliminates
 the redundant blocks such as navigational links,
 headers or footers
 $X \leftarrow \text{ContentExtractor}(H)$

Pass 1:
 $T \leftarrow \text{TimeFinder}(H)$
 Extract all time expressions using our grammar
 Let us assume that the set of all time
 expressions in this page is T

Pass 2: (User interface)
 Ask the user to specify which time-line $t \in T$ is
 the BT.

Pass 3:
 Measuring the \mathcal{P} parameter values for the time expressions which are
 selected in the first pass.
 for each $t_i \in T$ do
 $P_{t_i} \leftarrow \text{MeasureParameterValue}(t, H, X)$;
 $(P_{t_i}$ is a data row in the $|T|X|\mathcal{P}$ matrix. $)$
 end
 Prepare all parameter values in tabular format and stores them in
 training datafile.
end

Algorithm 6: TemporalDataPreparer (for Training phase): This algorithm
prepares data to train support vector classifier.

our algorithm, we used a knowledge base of all available reporting agency’s
names and our algorithm checks the occurrence using some simple regular
expression rules and then stores the distance in character from all the tem-
poral expressions to the Reporter names. Sometimes reporter names also
come in the middle or end of the article and this may reduce the accuracy,
but we believe that with all the other parameters together our approach can
find the proper BT with high accuracy.
• **Specific Words** Specific words (SW) are also very important to properly identify the BT. Words like “By”, “On”, etc. has more often been seen near the base time-line’s temporal expression compared to other temporal expressions.

• **Specific Symbols** In the same way we also consider the occurrences and distances between specific symbols (SS) and the time expressions. These symbols include special character-set like “-” or “:” which are also common near the base time expression.

• **Font Face Variation** Font face variation (FFV) is also another important factor which can be used to identify the location of BT. We see that usually the news publication date is placed close to the headline of the news article and usually the headline is written in different character size or in bold face. The regular text in normal font face follows it. Though things are not always written in the same way (that is why it is a challenging problem), yet there is a correlation between their locations and BT. We wanted to exploit this correlation and so we marked the places in the document where a change of font face occurs. Then we calculated distance $D_i \forall i \in |T|$ where D_i is the shortest distance between t_i (the i^{th} temporal expression) and the marks. So if there are M places where font face changes, $D_i = \min (Distance(i, j))$, where $Distance(i, j)$ is character difference between t_i and j^{th} mark.

• **Similarity Measures** Similarity measures involve word level similarity between sentences before and after a time expression. The reason behind choosing this parameter is the observation that usually the headline of a news article and the first paragraph just after the BT describe the same event, sometimes even using identical words or phrases.

We have chosen the above parameters to mimic how a human being would find out the BT of a news article. Some of the parameters alone may not be sufficient in distinguishing the BT from other temporal expressions but we wanted to see the combined effect of learning all these parameters in the context of each individual temporal expressions. Also the question may come as to why we have chosen so many different distance measures e.g. by paragraphs, by sentences, and by
Algorithm 7: MeasureParameterValue (used in both training and testing phase)

This function calculates all the parameter values for a temporal expression in an HTML page H.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time expression t, HTML Page H, Text Page X converted from H</td>
<td>Values of Temporal Data Parameters</td>
</tr>
</tbody>
</table>

begin

Function MeasureParameterValue($t; H; X$)

We need both X, and H as some of the parameter calculations depend on HTML characters and some will be calculated from the text version of the article.

begin

Takes the content X and breaks it into Paragraphs, Sentences, Words ... etc.

P is the Data Parameters as described in Section 5.6.1

for each parameter $p \in P$ do

p_{t_i} ← value of p in X for t_i;

Push p_{t_i} in P_{t_i}.

end

return P_{t_i} (A row vector)

end

end

words. Statistically there are several variations in news article formats. Sometimes only paragraph distance measure is not enough because there may be a redundant paragraph in the HTML page and sometimes there are few paragraphs with several sentences in them and other paragraphs consist of only a single sentence. So taking everything into account will hopefully be helpful.

5.7 Testing and Evaluation Phase

To test and evaluate the effectiveness of our approach we crawled financial news articles from various (here 26) financial Web sites (shown in the table 5.1). These are linked to the corresponding stock symbols in finance pages of Yahoo [75]. From that list, we took 114 stock symbols and their news articles (over 1000 in number) for this experiment. We used half of this set for training and the rest half for testing the classifier. Algorithm 8 shows the testing process.
<table>
<thead>
<tr>
<th>Site</th>
<th>Avg Para</th>
<th>Avg Sent</th>
<th>Avg Word</th>
<th>Avg Time</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated Press</td>
<td>18.71</td>
<td>28.71</td>
<td>494.71</td>
<td>9.57</td>
<td>96.54</td>
</tr>
<tr>
<td>Briefing.com</td>
<td>19.07</td>
<td>42.48</td>
<td>677.93</td>
<td>18.54</td>
<td>92.67</td>
</tr>
<tr>
<td>BusinessWeek Online</td>
<td>22.78</td>
<td>79.93</td>
<td>1030.65</td>
<td>18.91</td>
<td>93.25</td>
</tr>
<tr>
<td>Business Wire</td>
<td>20.72</td>
<td>36.54</td>
<td>585.74</td>
<td>13.33</td>
<td>93.78</td>
</tr>
<tr>
<td>CBS MarketWatch</td>
<td>60.10</td>
<td>85.97</td>
<td>929.93</td>
<td>21.14</td>
<td>94.01</td>
</tr>
<tr>
<td>CCBN</td>
<td>6.16</td>
<td>9.89</td>
<td>410.77</td>
<td>3.48</td>
<td>95.43</td>
</tr>
<tr>
<td>Dow Jones Business News</td>
<td>14.96</td>
<td>21.22</td>
<td>629.34</td>
<td>7.62</td>
<td>93.43</td>
</tr>
<tr>
<td>EDGAR Online</td>
<td>56.26</td>
<td>122.25</td>
<td>2005.31</td>
<td>54.92</td>
<td>92.91</td>
</tr>
<tr>
<td>EDGAR Online Financials</td>
<td>7.00</td>
<td>12.34</td>
<td>583.60</td>
<td>2.97</td>
<td>94.00</td>
</tr>
<tr>
<td>FT.com</td>
<td>14.00</td>
<td>21.00</td>
<td>426.00</td>
<td>8.00</td>
<td>90.22</td>
</tr>
<tr>
<td>First Call Events</td>
<td>6.00</td>
<td>14.00</td>
<td>387.00</td>
<td>4.00</td>
<td>91.22</td>
</tr>
<tr>
<td>Forbes Magazine</td>
<td>19.33</td>
<td>59.33</td>
<td>925.33</td>
<td>15.33</td>
<td>92.02</td>
</tr>
<tr>
<td>Forbes.com</td>
<td>26.04</td>
<td>53.81</td>
<td>696.15</td>
<td>16.96</td>
<td>94.12</td>
</tr>
<tr>
<td>Investor’s Business Daily</td>
<td>34.75</td>
<td>58.25</td>
<td>779.00</td>
<td>14.50</td>
<td>93.11</td>
</tr>
<tr>
<td>Market Wire</td>
<td>16.73</td>
<td>33.40</td>
<td>583.67</td>
<td>10.47</td>
<td>96.68</td>
</tr>
<tr>
<td>Morningstar .com</td>
<td>12.62</td>
<td>38.00</td>
<td>650.62</td>
<td>11.00</td>
<td>92.07</td>
</tr>
<tr>
<td>Motley Fool</td>
<td>26.11</td>
<td>61.51</td>
<td>832.57</td>
<td>16.39</td>
<td>93.80</td>
</tr>
<tr>
<td>NewsFactor</td>
<td>34.12</td>
<td>51.00</td>
<td>725.88</td>
<td>15.75</td>
<td>91.72</td>
</tr>
<tr>
<td>PR Newswire</td>
<td>17.59</td>
<td>32.47</td>
<td>560.72</td>
<td>12.68</td>
<td>95.26</td>
</tr>
<tr>
<td>PrimeZone Media Network</td>
<td>14.07</td>
<td>25.28</td>
<td>458.21</td>
<td>8.28</td>
<td>96.22</td>
</tr>
<tr>
<td>Reuters</td>
<td>14.94</td>
<td>22.57</td>
<td>660.81</td>
<td>8.89</td>
<td>98.60</td>
</tr>
<tr>
<td>SmartMoney .com</td>
<td>28.00</td>
<td>72.42</td>
<td>900.92</td>
<td>21.50</td>
<td>92.11</td>
</tr>
<tr>
<td>StarMine</td>
<td>8.00</td>
<td>9.72</td>
<td>417.00</td>
<td>3.06</td>
<td>89.03</td>
</tr>
<tr>
<td>TheStreet.com</td>
<td>20.73</td>
<td>28.08</td>
<td>303.35</td>
<td>7.39</td>
<td>70.50</td>
</tr>
<tr>
<td>Wall Street Transcript</td>
<td>26.67</td>
<td>67.67</td>
<td>1303.33</td>
<td>24.33</td>
<td>95.55</td>
</tr>
<tr>
<td>Yahoo</td>
<td>4.20</td>
<td>8.00</td>
<td>423.87</td>
<td>12.30</td>
<td>92.21</td>
</tr>
</tbody>
</table>

Table 5.1. Accuracy values of the output produced by Linear Kernel Support Vector classification. The columns represent Site i.e. the source Web sites where the article was published, **Average number of Paragraphs per article**, **Average number of Sentences per article**, **Average number of Words per article**, **Average number of Time Expressions per article**, and **Accuracy**. Here note that sometimes the average number of sentences are really low, but as we randomly check, we realized that sometimes they are long sentences, and sometimes the articles are really short articles as opposed to regular general news articles.

The table 5.1 shows the accuracy of this data. From this table we see that our approach of data preparation and the use of support vector classifier worked pretty well.
Input : Classifier \(C \), HTML Page \(H \)

Output : Accuracy

begin
\[
X \leftarrow \text{ContentExtractor}(H)
\]

Pass 1:
\[
T \leftarrow \text{TimeFinder}(H)
\]

Pass 2:
Measure the \(\mathcal{P} \) parameter values for all the time expressions extracted in the first pass.

for each \(t_i \in T \) do
\[
\begin{align*}
 p_{t_i} & \leftarrow \text{MeasureParameterValue}(t,H,X); \\
 p_{t_i} & \text{ is a data row in the } |T|X|\mathcal{P}| \text{ matrix.}
\end{align*}
\]
end

Prepare all parameter values in tabular format and stores them in testing datafile.

Pass 3:
Feed the testing datafile to the classifier \(C \)
Find the \(\textbf{BT} \) and match with the labelled dataset and find the accuracy

end

Algorithm 8: FindAccuracy (testing phase): This algorithm uses classifier \(C \) to classify the temporal expressions.

5.8 Conclusion

We devised a grammar for temporal expressions, and presented a learning based approach to find the base time-line of a news article. We claimed our contribution in finding the right set of parameters which can efficiently classify the base time-line. We crawled financial news articles from 26 web sites and tested our algorithm. Our algorithm finds the base time-line \(\textbf{BT} \) with high accuracy. In future we would like to report on associating the base time-line with referenced temporal expressions, disambiguation of temporal expressions due to geographical origins among others. We also tried to use the same technique for other news metadata extraction [41] and preliminart results show promising future.
Chapter 6

Analyzer Model

“As do not go where the path may lead, go instead where there is no path and leave a trail.”
- Ralph Waldo Emerson
(American essayist and poet)
(1803-1882)

As described in Chapter 3, Analyzer block is the core of the explanation model. This block takes time-aligned news articles and the price change during that time period and produces either a (1) keyword-based explanation or a (2) sentence-based explanation. Based on these directions the functionality of the analyzer model can be classified in two sub-blocks, namely “keyword-based model” sub-block and “sentence-based model” \(^1\) sub-block, as shown in Figure 6.1. In the next two sections the functionality of these sub-blocks is explained briefly and then the next few chapters will be devoted to describing them in detail and evaluating the performance of these models.

\(^1\)We will call these model as “keyword-based explanation model”, or “keyword-based model” or keyword model” interchangeably. The same also applies for “sentence-based explanation model”, “sentence-based model” or “sentence model”.
6.1 Keyword-based Explanation Model

The keyword-based explanation model depends mainly on ana analysis of keyword characteristics during and before any major event. The date of this major events is named as the “pivotal date”. This is described in the upper portion of Figure 6.1. In all the analysis, the resolution of the time scale is taken as a day. This means that any hourly changes during a day have not been aligned with hourly news articles. Therefore, all the news articles in a day are taken as the unit set of news articles for the day and the day’s trend is measured as the price difference between the day’s price at 16:00 (or 4:00pm) (when the market closes), and the price at 16:01 (or 4:01pm) in the previous day. If the days are indicated as d then price trend ΔP at day d is

$$\Delta P = P_{d16:00} - P_{d+116:01}$$ (6.1)

As will be defined in the next chapter, the price values were not taken directly, but rather the log-likelihood values, and the difference between the log-likelihood values of these price values was thresholded.

The news articles or events (in case of deeper temporal processing of individual events) around an event are segregated into two windows, Window A (or Window After) and Window B (or Window Before).

We examined the effectiveness of bandwidths of these two windows on the overall performance, and we will show that a variable window bandwidth (W_{A2}) aligned with the price dynamics works better than a fixed one (W_{A1}). The reasoning and significance behind fixed and variable bandwidths will be described in Chapter 8 and 10, but here fixed and variable windows are defined.

6.1.1 Fixed Window Approach

In the fixed window approach, documents or news articles to be analyzed are taken from fixed interval windows before and after the pivotal date. If the pivotal date is d, W^{f}_{A} is the “Window A”, and W^{f}_{B} is the “Window B”, they can be defined in the following way.
6.1.1 Definition

\[W^f_A = (d_A - d) \] where \(d_A \) is constant and \(d < d_A \) \hspace{2cm} (6.2)

\[W^f_B = (d - d_B) \] where \(d_B \) is constant and \(d > d_B \) \hspace{2cm} (6.3)

and similarly the document collections are

\[C^f_A = C(d) + C(d_A - d) \] \hspace{2cm} (6.4)

\[C^f_B = C(d - d_B) \] \hspace{2cm} (6.5)

where \(C(i) \) means the news article collection for the day \(i \) and \(C(i - j); i > j \) means all the news articles dated from day \(j \) to day \(i \). So for the news articles in “Window A”, all the news articles published on the pivotal day itself plus all the news articles for \(d_A \) days ahead are included, while for “Window B”, all news articles of \(d_B \) days behind the pivotal date are included.

6.1.2 Variable Window Approach

The variable window approach is a little more complex than the fixed window approach and, as we will see, it works better for real market scenarios. It is more fine-tuned and more subtle. Let us define the “Window A” first. As will be seen from the equation below, though it is named “Window A” or “Window After”, actually it is not like the \(W^f_A \) defined above.

6.1.2.1 Definition

\[W^v_A = -(d_A - d) \] where \(\text{slope}(d) \neq \text{slope}(d_{(a-1)}), \forall a, A = \max(a), \text{ and } d > d_A \) \hspace{2cm} (6.6)

This means that the “Window A” starts from the day \(d \), but goes backward for \(d_A \) days as long as \(\text{slope}(d) = \text{slope}(d_A) \). It stops at the first day \(A \) when the \(\text{slope}(d_{(A-1)}) \) changes.

\[W^v_B = (d_A - d_B) \] where \(d_B \) is constant and \(d_A > d_B \) \hspace{2cm} (6.7)

The document collecting equations are as before. For the “Window A”, all the
news articles during d_A are included as well as the pivotal date.

The keyword-based model has proven to work better under an ontology model. This means that before applying the model algorithm, an ontology-based relevance extraction of the sub-parts (paragraphs or sentences) of the news article provides better results. This fact will be shown in Chapter 10 where the business ontologies for individual companies are used prior to applying the keyword-based model. However in some cases where ontology was used with a fixed window, good results were not produced. These cases will be discussed in Chapter 10. However variable window approach with ontology works better than a fixed window with no ontology.

6.2 Sentence-based Explanation Model

Here the fundamental explanation unit is not the “word” but the “whole sentence”. The sentence-based model is very different from the keyword-based model. The differences are described in Chapter 12. The main differences are the use of a learning based language model and of window bandwidths. Study results show that the sentence-based model has more promising and more helpful outcomes than a keyword-based model.

The sentence-based model is based on learning. This means that past news articles and trend of price dynamics were examined to create general models of price dynamics by aligning the price and the relevant news events inside the news articles. These models are then used for very recent news articles. One very important feature to mention here is that individual models were not created for each company. The models were created completely independent of the companies and these models depend only on the price dynamics. The segregation of the company ontologies and the models is an very bold and important step. In Chapter 12 it will be shown that as the company ontologies are used separately to extract the most relevant information (in the form of sentences) units, the segregation is a necessity.
Figure 6.1. Analysis procedure for keyword extraction. The date for which we are trying to find an explanation is called the pivotal date. The documents before the pivotal date are in negative document set or Document B(Before) set. The documents after the pivotal date are put in the positive document set or Document A(After) set.
Chapter 7

Keyword-based Model (Fixed Window)

“I am careful not to confuse excellence with perfection. Excellence, I can reach for; perfection is God’s business.”

- Michael J. Fox
 (American (Canadian-born) actor)
 (1961-)

After the news events are extracted, cleaned, and ordered according to their base time-line BT (i.e. publishing date and/or time), they must be analyzed to detect information events and explain them. Chapter 2 discussed artificial markets, sports betting markets and electronic markets for political events and other types of events. Those same events will now be used to test the method to see if a reasonable set of keywords or phrases can be extracted to explain them from the real world news stories [102].

This chapter concentrates on the fixed window approach of the keyword-based model and presents results from various markets including two markets from IEM (Iowa Electronic Market), and one from the Foresight Exchange,¹ a market game that operates like a betting market (much like IEM), except that all transactions

¹http://www.ideosphere.com/
are using play money. Previous studies show that play-money market games behave in many ways like real markets [104, 105].

7.1 Event Description

7.1.1 Market Events

Market events are basically major and/or drastic price changes. While the real market or stock exchange data consists of price changes in several companies and will be described in the next chapter, for artificial markets, the following three markets are considered: (1) candidate Giuliani in the 2000 US New York Senate election, (2) candidate Gore in the 2000 US Presidential election, and (3) the outcome “extraterrestrial life discovered by 2050” (XLif) as defined on the Foresight Exchange\(^2\). Note that in market (2), the winning bet was defined as the candidate with the largest share of the *popular* vote, not the winner of the electoral college, so Gore was the eventual winning bet.

7.1.2 Method and Notation

7.1.2.1 Logarithmic Score

The logarithmic score was used previously to measure accuracy and information incorporation in IEM. The logarithmic score is a *proper scoring rule* [132], and is an accepted method of evaluating probability assessments. When experts are rewarded according to a proper score, they can maximize their expected return by reporting their probabilities truthfully. Additionally, more accurate experts can expect to earn a higher average score than less competent experts. Suppose an expert reports probabilities \(p_1, p_2, \ldots, p_k\) for \(k\) mutually exclusive and exhaustive alternatives. Let \(w_i = 1\) if and only if the \(i\)th event occurs, and \(w_i = 0\) if it does not. Then the expert’s score for the current event is \(\text{Log}(\sum_{i=1}^{k} w_ip_i)\). Higher scores indicate more accurate forecasts, with 0 the maximum and negative infinity the minimum. The “expert assessments” given by the market are taken to be the (normalized) prices of the candidates.

\(^2\)http://www.ideosphere.com/fx-bin/Claim?claim=XLif
Note that under the logarithmic scoring rule, an expert’s expected score equals the entropy of his or her probability distribution. Stated another way, the negative of the logarithmic score gives the amount that the expert is surprised by the actual outcome. So the logarithmic score applied to IEM is both a measure of forecast accuracy and a measure of the amount that the market is “surprised” when the winners of the elections are finally determined.

7.1.2.2 Notation

Let us assume that the probability of event E is $P(E)$. Then the likelihood of an event E is

$$\mathcal{L}(E) = \frac{P(E)}{P(E)}$$

and the log-likelihood of E is

$$\mathcal{LL}(E) = \log \mathcal{L}(E) = \log\left(\frac{P(E)}{P(E)}\right)$$

We denote a gamble/bid paying off $1 if and only if event E occurs as $<E>$. Now let the price of $<E>$ at time t be p_t. In analogy to the definitions of likelihood and log-likelihood, the likelihood price can be defined as

$$\mathcal{L}_t = \frac{p_t}{1 - p_t}$$

and the log-likelihood price as

$$\mathcal{LL}_t = \log(\mathcal{L}_t) = \log\left(\frac{p_t}{1 - p_t}\right).$$

So, for example, given that the log-likelihood price is a at time $t - 1$, the probability that the log-likelihood price moves to b at time t is denoted by

$$\mathcal{P}(\mathcal{LL}_t = b|\mathcal{LL}_{t-1} = a).$$

Similarly, the probability that event E occurs given that the likelihood price at time t is a is written as $\mathcal{P}(E|\mathcal{L}_t = a)$.
7.2 Implementation

7.2.1 Finding out Pivotal dates

The price dynamics for the above markets were collected from IEM and foresight exchange price data. Daily price fluctuations in the above three markets were characterized using the difference between log-likelihood prices from one day to the next. That means that the log-likelihood price of day d_i is $\mathcal{L} \mathcal{L}_{d_i}$ and that of the next day is $\mathcal{L} \mathcal{L}_{d_{i+1}}$. Days were identified on which exceptionally large differences were observed. These dates are determined as follows. Assume the total number of days is D. For a day d_i the change in log-likelihood price $\Delta_{i, i-1}$ is

$$\Delta_{i, i-1} = \mathcal{L} \mathcal{L}_{d_i} - \mathcal{L} \mathcal{L}_{d_{i-1}}$$

(7.6)

We took the only dates d_j for which $\Delta_{i, i-1} \geq \delta$, a threshold fixed by looking at the possible values.

7.2.2 Dates Found

Accordingly, the following dates were found to be some of the pivotal dates or “events”, immediately following huge price swings:

1. April 27, 2000 and May 19, 2000 for candidate Giuliani in the New York Senate market;
2. November 8, 2000 for candidate Gore in the US Presidential market;

Figures 7.2, 7.3, and 7.4 show the price graphs for the three markets surrounding these dates. Each of these dates was used as a splitting point for generating two text corpuses: a negative set of documents from before the date in question, and a positive set of documents from the week following the date in question (shown in Figure 7.1).
Figure 7.1. A simple way to show the analysis procedure. The documents are shown as vertical bars of different shades. The documents before the pivotal date (for which date the event we are looking for a reason) are in negative document set or Document B set. The documents after the pivotal date are put in the positive document set or Document A set.

7.2.3 Data

Documents were gathered from Usenet news archives on Google \(^3\) for all three markets. We collected all postings to the newsgroups ny.politics (622 postings), us.politics (480 postings), and sci.space.news (127 postings) for the three markets, respectively. We did not use any keywords to narrow the search further. Additionally, we gathered the titles and abstracts of articles in the Washington Post containing “Giuliani” for the NY Senate market (189 articles). We then find the base time-line BT of these articles and sort them according to their base time-lines.

7.2.4 Our method

We identify the features (words and up to three-word phrases) that differentiate the positive and negative document sets using expected entropy loss. We do not explicitly remove stop words. Instead, we remove all features that occur in less than 7.5% of the positive documents. After they are sorted according to the base time-line or BT which is the publishing date and/or time there was no need of the phrases containing any date or time. So we remove all dates and numbers, and we also manually removed all source-specific words (e.g., “google” and “Washington Post”). We then rank keywords by expected entropy loss as follows.

\(^3\)http://groups.google.com/
7.2.4.1 Feature Entropy

Entropy is computed independently for each feature. Let P be the event that a document is in the positive set. Let f denote the event that the document contains the specified feature (e.g., contains the word “meteorite”). The prior entropy of the class distribution is

$$e = -Pr(P)\log Pr(P) - Pr(\overline{P})\log Pr(\overline{P})$$ \hspace{1cm} (7.7)

The posterior entropy of the class when the feature is present is

$$e_f = -Pr(P|f)\log Pr(P|f) - Pr(\overline{P}|f)\log Pr(\overline{P}|f)$$ \hspace{1cm} (7.8)

likewise, the posterior entropy of the class when the feature is absent is

$$e_{\overline{f}} = -Pr(P|\overline{f})\log Pr(P|\overline{f}) - Pr(\overline{P}|\overline{f})\log Pr(\overline{P}|\overline{f})$$ \hspace{1cm} (7.9)

Thus, the expected posterior entropy is
Figure 7.3. Portion of the price time series for candidate Gore in US Presidential election market on IEM. Note that in this market a bet for Gore won if Gore had a larger share of the popular vote.

\[e_f Pr(f) + e_{\overline{f}} Pr(\overline{f}), \]

(7.10)

and the expected entropy loss is

\[e - (e_f Pr(f) + e_{\overline{f}} Pr(\overline{f})). \]

(7.11)

If any of these probabilities are zero, we use a fixed value instead of 0 in above four equations. Expected entropy loss is synonymous with expected information gain, and is always nonnegative. Features are sorted by expected entropy loss to provide an approximation of the usefulness of each individual feature. This approach correctly assigns low scores to features that, although common in both sets, are unlikely to be useful for a binary classifier.
Figure 7.4. Portion of the price time series for “100 cents if extra-terrestrial life discovered by 2050” on the Foresight Exchange.

7.2.4.2 Kullback-Liebler Divergence

Kullback-Liebler divergence is another technique used here, by which we can get the probability distribution distance between two probabilities. As above, let \(P \) be the event that a document is in the positive set. Let \(f \) denote the event that the document contains the specified feature (e.g., contains the word “meteorite”). Then the Kullback-Liebler divergence for this word (and similarly for all other words) is

\[
KL(f) = Pr(f|P) \log \frac{Pr(f|P)}{Pr(f|\overline{P})},
\]

(7.12)

The value of Kullback-Liebler divergence for any feature is always positive. We sorted the features (basically keywords/phrases) and took the top 10 list of keywords which indicates better probability of coming in the window A rather than window B.
7.3 Results

Results from analyzing the aforesaid (as described in subsection 7.1.1) three markets are shown in the Tables 7.1, 7.2, and 7.3. Our analysis could extract many words and phrases that are closely associated with real incidents. These incidents happened during the identified dates with major implications for the corresponding market bets.

1. NYSenate Election 2000 (NYSenate)

 For example, on April 27, 2000, Giuliani announced that he had prostate cancer. Entropy loss extracted terms and phrases like “cancer”, “prostate”, “prostate cancer” from both Usenet newsgroups and the Washington Post articles. Around May 19, 2000 Giuliani formally announced that he was quitting the Senate race, with Rick Lazio the replacement Republican candidate. Again, reasonable explanatory terms and phrases were discovered using our algorithm. Both the Usenet results (“lazio”, “rick laazio”, “mayor”, “voted”) and Washington Post results (“lazio”, “rick laazio”, “rick”, “rep rick”, “rep rick laazio”) indicate the name of Lazio as a top ranked feature. Words like “drop”, “dropped”, “quit”, and “bow out” did appear in the positive documents, but were removed during thresholding. We believe that more intelligent use of stemming and synonyms would help in this situation where there are many ways to say the same thing (as opposed to the case of “prostate cancer”, where there is essentially only one way to say it).

2. US Presidential Election 2000 (Press00)

 In the US Presidential election, the price of candidate Gore skyrocketed after the election when it became clear he won the popular vote. The near tie and resulting chaos in counting the ballots in Florida appear in our extracted keyword list, where the top ranked features are “florida”, “ballots”, “recount”, “palm beach” etc.

3. Extra Terrestrial Life (XLif)

 On August 6, 1996, NASA announced it had discovered possible signs of life on a Martian meteorite. The price of a bet on XLif on the Foresight Exchange rose quickly, apparently in response.
<table>
<thead>
<tr>
<th>Source</th>
<th>Date</th>
<th>top ranked features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usenet ny.politics</td>
<td>Apr 27, 2000</td>
<td>cancer, cancer newsgroups.prostate, prostate cancer, cancer newsgroups ny, commies subject liberal, subject liberal propaganda, damn liberals liberals, has prostate, commies</td>
</tr>
<tr>
<td>Washington Post</td>
<td>Apr 27, 2000</td>
<td>cancer, from prostate, is suffering from, business of politics, diagnosis, suffering from prostate, prostate cancer, suffering, from prostate cancer, cancer diagnosis</td>
</tr>
<tr>
<td>Usenet ny.politics</td>
<td>May 19, 2000</td>
<td>lazio, rick lazio, mayor, voted, rick, rep rick lazio, alt fan rush, difference, ca politics, families</td>
</tr>
<tr>
<td>Washington Post</td>
<td>May 19, 2000</td>
<td>lazio, rick lazio, rick, rep rick, rep rick lazio, convinced, opponent, rudy, abortion rights, giuliani’s inner</td>
</tr>
</tbody>
</table>

Table 7.1. Top features found for dates corresponding to major price changes in the NY Senate market.

<table>
<thead>
<tr>
<th>Source</th>
<th>Date</th>
<th>top ranked features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usenet us.politics</td>
<td>Nov 08, 2000</td>
<td>florida, ballots, recount, palm beach, ballot, beach county, palm beach county, recounts, counted, county, in palm, the ballot, counties, fraud, in palm beach</td>
</tr>
</tbody>
</table>

Table 7.2. Top features found for the US Presidential market.

Indeed our algorithm found very relevant explanatory features, as listed in Table 7.3.

<table>
<thead>
<tr>
<th>Source</th>
<th>Date</th>
<th>top ranked features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usenet sci.space.news</td>
<td>Aug 06, 1996</td>
<td>meteorite, life, evidence, washington dc august, martian meteorite, primitive, gibson, organic, of possible, martian, life on mars, david, life on, billion years ago, mckay</td>
</tr>
</tbody>
</table>

Table 7.3. Top features found for the XLif market on the Foresight Exchange.
7.4 Conclusion

In this chapter we describe our first basic model of explanatory keyword extraction based on entropy model as well as equivalent Kullback-Liebler divergence model. In three case studies, our algorithm found keywords and phrases subjectively very relevant to the events corresponding to sharp market upswings or downswings or directly or indirectly responsible for these upswings and downswings. We believe that this model can also be used for the real market and we show the experimental results in the next chapter.
Chapter 8

Keyword-based Model and Need of an Ontology

“Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information on it.”
- Samuel Johnson
(English author, critic, and lexicographer)
(1709 - 1784)

8.1 Prelude

As we see from the last chapter, basic keyword-model works well in artificial markets with artificial money and artificial market with real money. Now let us concentrate on the real market with real money – which is the stock market. We considered here around 200 companies enlisted in the Forbes list of global companies [13]. This list gives us a look at the top global companies and we took top 200 US companies from that list as it is easy to follow up the company profiles, news articles (regarding language), and timelines (other countries may have a different way of representing the timeline) without any major change in our system.
8.2 Real Market Analysis

Real market with real money, at first look, seems to be no different than artificial market regarding the basic characteristics. For example the artificial markets also show the characteristics of efficient market hypothesis [103] and we will give excerpt from his paper here:

There are various forms of the efficient markets hypothesis, and at least four different degrees of efficiency to consider:

1. **Internal coherence**: prices are self-consistent or arbitrage-free: no trader can make a sure profit without any risk.

2. **Internal unpredictability**: future prices are not predictable based on current and past prices. Also called the weak form of the efficient markets hypothesis.

3. **Unpredictability**: future prices are not predictable based on any currently available information, including prices, economic variables, fundamental data, etc. Also called the semi-strong form of the efficient markets hypothesis.

4. **Expert-level accuracy**: Prices fully reflect all information available to all traders. Informed experts cannot consistently outperform naive traders. In particular, when prices constitute forecasts, market estimates are at least as accurate as expert assessments. Also called the strong form of the efficient markets hypothesis.

He also mentions about the Theory of rational Expectations and that it hold also in the artificial market scenario.

While there is no doubt that there are lots of characteristic similarity between artificial and real market, however to generate the keyword explanation of any given event, things are not always the same. While our keyword generation algorithm solely depends on the news articles about the event and a stream of it (as described in chapter 6), the frequency and characteristics of these articles are much different from regular news articles.
8.2.1 Differences

Now the basic difference in the form of news articles and their focus and availability is as follows:

- Events in artificial markets such as IEM political markets or the Foresight exchanges long bets are associated with news articles of slow changing nature. Whereas the real stock market is associated with fast change of price and fast change of news articles and trends.

- News articles about artificial market events are more in number due to the above nature of long duration and for a single major event (less in number than the real stock market), it is easy to find more number of news articles. In case of real stock exchange there are more number of events in a small time-frame and so the number of news articles, which can associated with a major event are much less than in the case of artificial market.

- News articles for the artificial market events are general news in nature, such as NASA’s discovery of life evidence in Mars is a general science related news and all news channels cover this type of news. Therefore the possibility of getting a huge number of articles is more in this kind of news event.

On the contrary a useful news article of a company, for our analysis purpose is of specific nature. It is usually pre-filtered for the specific company and as a result can not be well distinguished from other news articles which are also pre-filtered in the same way but talk about very different events. It is hard to find deeper relevancy and distinguish them if we simply use the company name or ticker symbol as a keyword for TFIDF analysis. As the number of articles are also limited in financial domain, it becomes harder to analyze.

8.3 Evaluation of Keyword-based Model

From the previous section we get an idea of difference between artificial market explanation generation and real stock market explanation generation, but do not get any evidence. In this section we show with some evidence that the bare entropy
model is not sufficient in the later case. In tables 8.2, 8.3, 8.4, 8.5, and 8.6, we show the total dataset with number of upswings and downswings of prices for 200 companies from Forbes list of US companies. These price swings are also aligned with the news articles about them crawled from various websites through Yahoo finance page\(^1\). The number of articles associated with these swings are also given in the fifth and sixth column and thus the total number of articles in the seventh column. These dataset represents the price dynamics of just over an year (July 2004 - Aug 2005) and the price swings are registered only if the total percentage difference is more than 2%.

The results from these many events will be huge in size and so we prefer to show them on the graph for 20 different companies and we show the scoring of these explanations in figure 8.2.

8.3.1 Metric

Results from any explanation model is hard to quantify. As far as our knowledge in this area of research goes, there is no prior effort in explaining market events, and to the best of our knowledge we are the first to try it. Therefore it is not a completely established field of research and there are no fixed data-archives (like TREC), no benchmark algorithms, no well-defined metric or any chance of a performance comparison. We try to come up with an acceptable metric by which we can at least evaluate our system with or without different components (such as window type\(^2\) or ontology\(^3\) etc.).

8.3.1.1 Weighted Precision

To create the metric useful for quantifying the performance, we followed the IR research carefully and came up with “weighted precision” metric. Here we demonstrate our thought process.

- Precision in IR community is defined as the ratio between the number of relevant retrieved item and the total retrieved item. In short, precision is

1. \(^{http://finance.yahoo.com}\)
2. Fixed-windows vs. Variable-window
3. With or without using ontology
basically “how much of the retrieved item set is relevant”. In mathematical notation if from any engine (let us suppose search engine or an explanation generation engine), if the result contains \(t \) item (documents or keywords) and out of these items, only \(r \) items are relevant to the query (search engine query or price-swing query), then the precision \(Pr \) of the result is

\[
Pr = \frac{r}{t}
\]

(8.1)

- We also know about the recall metric which is nothing but “how much of the relevant items are retrieved”. It means that if we somehow know beforehand that how many relevant items the aforesaid engine would provide in the ideal case, then we can quantify the recall performance by the ratio of the number of relevant items retrieved and the total number of relevant items in the whole universe in question. Therefore if the number of relevant items retrieved is \(r \) (as in the previous equation) and the total number of relevant items in the universe, which has been missed by the engine is \(m \), then the total number of relevant items in the universe is \(r + m \) and the recall \(Re \) is

\[
Re = \frac{r}{r + m}
\]

(8.2)

- Now comes the difficult part. First of all we do not know for sure how many different factors played a role behind the price swing. The factors playing behind any price change can be almost impossible to fathom completely. Sometimes there are generic factors (not specific to the company) and in this work we do not consider the generic effect. So finding out the recall value is really difficult as we do not know the amount \(m \) in the equation above.

- So now we have to rely on precision. We can at least find out how many of the extracted keyword can be associated with a fact or possible reason behind any price movement. Usually this is not too hard to find. Nowadays financial websites are full of analysts’ columns and we can at least find out for sure what major things happened or any breaking news. Therefore, calculating precision will not be too hard.
Now we have to think whether the precision itself will be enough for quantifying the betterness of a solution over another. In our belief, mere precision can not distinguish between a result having 4 useful keywords in the end of a top 10 keyword versus a result having the same 4 words in the beginning of the list. Simply, we will not be able to quantify the ranks of the resulting keywords if we just consider the plain vanilla precision.

Solution: We came up with “weighted precision” measure. This is basically giving more weight to the keywords according to their ranks in the result list.

If we denote weighted precision as \(Pr_w \), then

\[
Pr_w = \frac{r_w}{t_w} \tag{8.3}
\]

where

\[
r_w = \sum_i r_i S_i \tag{8.4}
\]

and \(S_i \) is the scoring which

\[
t_w = \max(\sum_i r_i S_i) \tag{8.5}
\]

and so,

\[
Pr_w = \frac{\sum_i r_i S_i}{\max(\sum_i r_i S_i)} \tag{8.6}
\]

For all our experiments, we took 10 top keywords in the result. Now we can assign different weight to them according to their position in the list. So the topmost keyword (if it is considered as a keyword which can be associated with an explaining event) will get \(10X \) point. The next keyword (again if it is considered as a keyword which can be associated with an explaining event) will get \(9X \) point and so on. As the maximum point a list can get is

\[
MaxX(1..10) = \Sigma_i^{10}(i \times X) = 55X \tag{8.7}
\]
Figure 8.1. The ranking of an explanatory keyword-set. The top ranked keywords, which can be associated with an explanatory event will be given highest score. The total score is divided by the maximum possible score of $55X$ (for top 10 keywords) for normalization purpose.

Therefore we normalize the all the ranking by dividing them with $55X$. This procedure is shown in figure 8.1. This is a way to ensure that we give high weight to a keyword which is an explanatory keyword and also coming in a top rank.

- This method is a restrictive method as the overall ratio only tells us how many percentage of the resulting keyword-set can be considered as a set where all the keywords are explanatory. So scoring a good point is hard. However this scoring technique has the feature that a top scoring single keyword at first position having $10X$ points is considered to be same as three keywords at
positions 6th, 7th and 9th position (having scored $5X + 4X + 1X = 10X$).
Our argument is that both the rank and the number of keywords should be counted. So it is a good mix of both.

8.3.2 Results

Now we are ready to show the preliminary results from the basic keyword model with windows of fixed width. Though this same technique gave us promising results in the artificial market (as seen from chapter 7) it does not give very good results. We evaluated 20 major companies (as shown in table 8.1) and we took top 10 price swings for each one of them to calculate the average “weighted precision” score. The scores are shown in figure 8.2.

So as we see from the results graph, the entropy model with fixed window approach does not work well. Therefore we need to improve the model. We plan to do so by (1) the variable window approach and (2) using better relevance model. In the next few sections we describe the need for the better relevance model, a proof-of-concept system design and then how we can use this relevance model to improve the results.

8.4 Need of a Better Relevance

In this section we present one of our previous work on an intelligent agent system, where domain knowledge has been successfully used before. The system is called LawBOT and it is described in detail in our IEEE Intelligent Systems paper [52]. Here we give a brief description of this system and its architecture and show that the same ideas can be fruitfully used in case of business domain.

8.4.1 An Agent Based Solution

In this section we present an Internet based agent which was designed to assist legal researchers in retrieving laws and case reports electronically warehoused at a diverse set of databases maintained by local, state, and federal governments.
Figure 8.2. The results from first 10 companies. The score is pretty low for plain vanilla “fixed window” approach.

8.4.1.1 LawBOT: A Multiagent Assistant for Legal Research

LawBOT is implemented as a collection of agents which are employed according to users preferences to collect, filter, organize and recommend relevant case histories, state statutes or supreme court cases. Our goal is to create a system that can be effectively used not only by lawyers but also by a lay person to retrieve legal documents relevant to the issue that the user wants to research. The requirement of enabling research by the commoner required us to add a novel ontology-based search component. We have developed an ontology for some of the common law categories and will show that similar techniques can also be applied to business domain. This ontology is used to map colloquial terms to corresponding legal
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Name</th>
<th>UP Count</th>
<th>DOWN Count</th>
<th>UP Doc</th>
<th>Down Doc</th>
<th>Total Document to Analyze</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPL</td>
<td>Apple Computer</td>
<td>43</td>
<td>33</td>
<td>439</td>
<td>240</td>
<td>679</td>
</tr>
<tr>
<td>AET</td>
<td>Aetna</td>
<td>32</td>
<td>18</td>
<td>45</td>
<td>44</td>
<td>89</td>
</tr>
<tr>
<td>AIG</td>
<td>American Intl Group</td>
<td>23</td>
<td>24</td>
<td>143</td>
<td>140</td>
<td>283</td>
</tr>
<tr>
<td>AXP</td>
<td>American Express</td>
<td>13</td>
<td>12</td>
<td>66</td>
<td>29</td>
<td>95</td>
</tr>
<tr>
<td>BA</td>
<td>Boeing</td>
<td>30</td>
<td>19</td>
<td>134</td>
<td>136</td>
<td>270</td>
</tr>
<tr>
<td>BAC</td>
<td>Bank of America</td>
<td>12</td>
<td>14</td>
<td>134</td>
<td>273</td>
<td>407</td>
</tr>
<tr>
<td>C</td>
<td>Citigroup</td>
<td>13</td>
<td>10</td>
<td>127</td>
<td>201</td>
<td>328</td>
</tr>
<tr>
<td>DELL</td>
<td>Dell</td>
<td>21</td>
<td>16</td>
<td>278</td>
<td>110</td>
<td>388</td>
</tr>
<tr>
<td>EBAY</td>
<td>eBay Inc.</td>
<td>41</td>
<td>31</td>
<td>184</td>
<td>214</td>
<td>398</td>
</tr>
<tr>
<td>F</td>
<td>Ford Motor</td>
<td>27</td>
<td>30</td>
<td>209</td>
<td>255</td>
<td>464</td>
</tr>
<tr>
<td>GE</td>
<td>General Electric</td>
<td>16</td>
<td>10</td>
<td>44</td>
<td>17</td>
<td>61</td>
</tr>
<tr>
<td>GM</td>
<td>General Motors</td>
<td>28</td>
<td>26</td>
<td>515</td>
<td>481</td>
<td>996</td>
</tr>
<tr>
<td>HPQ</td>
<td>Hewlett-Packard</td>
<td>26</td>
<td>24</td>
<td>300</td>
<td>164</td>
<td>464</td>
</tr>
<tr>
<td>IBM</td>
<td>IBM</td>
<td>18</td>
<td>14</td>
<td>565</td>
<td>419</td>
<td>984</td>
</tr>
<tr>
<td>INTC</td>
<td>Intel</td>
<td>33</td>
<td>29</td>
<td>501</td>
<td>430</td>
<td>931</td>
</tr>
<tr>
<td>LMT</td>
<td>Lockheed Martin</td>
<td>23</td>
<td>17</td>
<td>123</td>
<td>58</td>
<td>181</td>
</tr>
<tr>
<td>LOW</td>
<td>Lowe's Cos</td>
<td>26</td>
<td>20</td>
<td>101</td>
<td>28</td>
<td>129</td>
</tr>
<tr>
<td>MER</td>
<td>Merrill Lynch</td>
<td>23</td>
<td>18</td>
<td>163</td>
<td>60</td>
<td>223</td>
</tr>
<tr>
<td>MOT</td>
<td>Motorola</td>
<td>37</td>
<td>25</td>
<td>342</td>
<td>75</td>
<td>417</td>
</tr>
<tr>
<td>MSFT</td>
<td>Microsoft</td>
<td>14</td>
<td>13</td>
<td>534</td>
<td>129</td>
<td>663</td>
</tr>
</tbody>
</table>

Table 8.1. Details of the dataset for the randomly selected 20 companies. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.

terminology. This feature enables the average user to perform a more effective and thorough search for relevant legal documents. The ontology also enables query enhancement to search by related words which can return a more comprehensive set of documents. In business domain, we will show a set of techniques which can be used to do the similar job efficiently.

8.4.1.2 LawBOT Architecture

The system architecture is presented in Figure 8.3. In the following we briefly state the functionalities of each module:
Figure 8.3. The architecture of the LawBOT system designed to use ontologies in the context of a legal database search.

- **Interface:** The first screen is used to login to the system. User profiles including preferences and recent searches are stored in the system. These are used to present a customized second screen (e.g., allowing users to resubmit modified versions of recent searches, biasing search to look for specific states, etc.). The interface connects to the user preference database to collect or edit the user interactions and preferences. The interface forwards user queries to
resource managers (described next) and also displays to the user the results provided by the resource manager.

- **Resource Manager:** Resource Manager (RM) plays the important role of organizing information retrieval and processing. It augments the user query by consulting domain ontologies and then deploys the relevant Resource Agents as required by the query.

 The RM fuses the information retrieved by resource agents and from existing LawBOT databases and returns this to the interface. The RM can also perform proactive notification to the users with recent updates on prior search results if requested. This feature allows the user to be updated with important and timely information as new laws and cases become available.

- **Resource Agent:** The user’s selection of jurisdictions to be searched determines which resource agent (RA) or agents will receive search requests. On receiving requests, the research agents format them according to the syntax expected by the search engine of the jurisdiction to be searched. The RAs are programmed to access specific sites on the web and run a word filtering algorithm over the retrieved documents. The documents are sorted and ordered according to word densities. The ordered documents are returned to the Resource Manager using an Agent Communication Language (ACL) [9, 11].

- **LawBOT Database:** The LawBOT database stores user preferences, domain ontology, and auxiliary information like frequently used links, etc. which the RM can then effectively use to reformulate queries and rank results.

- **Proactive Component:** The proactive component can use stored user preferences and past queries to do more extensive research offline, i.e., when the user is not logged in. If new documents with high relevance are found in this offline search, the user will be notified about the availability of new documents relevant to their interest.
8.4.2 Using Ontology to Augment Search

As one of the principal goals for developing LawBOT was to enable the lay person to retrieve legal documents of interest, additional functionality had to be provided to rephrase an informal query into legal jargon. The use of an extensive ontology [131] was planned to enable this functionality. Ontology helps to build proper relations between words and phrases and those relations can be used to reformulate
a query if very few or no results are available. It is very difficult for a common person to find the documents efficiently and quickly due to the lack of knowledge of legal terminology. Ontology allows the user to reformulate a particular phrase into proper, closely related legal jargon. The facility to reformulate a query helps naive users to find legally useful documents from a very large database. Some examples are provided which explains the kind of functionality we planned for and then the outline of our approach to obtaining such a capability is presented.

- **Legally Appropriate Synonyms:** The word kid is similar in meaning to baby, child, or youngster. Of these, child is used most frequently in law records. So any search with the words kid or baby will rarely produce any worthwhile result. LawBOT uses its legal ontology to search by child as well when a naive user chooses kid as the search word.

- **Related Words and Law Categories:** The word child may be associated with a number of other words, e.g., care, custody, support, abuse, etc. A user who searches only with child will receive too many references. This system assists the user to rephrase such searches by asking them to select either from a law category (e.g., family law, criminal law), or by expanding the search by choosing from a suggested list of often-used additional terms.

- **Appropriate Search:** Legal issues are categorized into standardized, fixed sections. The number is indicative of the category of the law. A search by 26 or Section 26 should initiate the search for Internal revenue related laws. This is unique in the context of legal research. Such information is rarely used in the search engines which use either word count or word density. Rather, common search engines often returns irrelevant pages which included 26 in the date (April 26, 1996), or as in Local 26 or in 26th Delaware Street.

This ontology is a semantic network (figure 8.4) which relates words by their relationships. Words are associated with synonyms, hyponyms, hypernyms (this, for example, allows the system to additionally search for firearm laws if someone asks for handgun laws), often-used associated words, special synonyms (e.g., child for baby), etc. If the user-specified keywords contain a special synonym, the latter is used in place of the given keyword. If the number of documents returned
Figure 8.5. A proposed ontology for Microsoft

for the user-specified search is below a threshold, the search is augmented by using synonyms, hyponyms, and hypernyms. On the other hand, if the user-specified search returns too many results, the user is asked to choose from law categories and/or augment search with often-used associated words. The current system uses a core ontology with terms from family law. This was appropriate to demonstrate the proof-of-concept of ontology-based search augmentation, but needs to be expanded to other law categories.

8.4.2.1 A Proposed Business Ontology

It is hoped that the use of ontology like in LawBOT can generate better results. The news articles crawled are only superficially filtered according to the company ticker symbol, and this can be improved. Moreover, instead of taking the whole article for explanatory keyword generation, it can be narrowed it down to only those few paragraphs or sentences which are absolutely important and relevant
to the specific company. Explanation generation is a complex procedure and any noise filtered out can improve the overall performance of the system.

In this regard this study forsees building business ontologies. These are ontologies for individual companies that work as a knowledge source for that company. It is hoped that they can be efficiently exploited to extract the most important portions from a large news article.

8.5 Our Goal

In the next chapter we show the intricate details of how we can build a business ontology and then in chapter 10 will show the results from the keyword based model with the use of these ontologies. For sentence based model, we also used the ontology as part of the whole system and it improved the system performance too.
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Name</th>
<th>UP Count</th>
<th>DOWN Count</th>
<th>UP File-count</th>
<th>Down File-count</th>
<th>File to Analyze</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Alcoa</td>
<td>31</td>
<td>22</td>
<td>129</td>
<td>98</td>
<td>227</td>
</tr>
<tr>
<td>AAPL</td>
<td>Apple Computer</td>
<td>43</td>
<td>33</td>
<td>439</td>
<td>240</td>
<td>679</td>
</tr>
<tr>
<td>ABC</td>
<td>AmerisourceBergen</td>
<td>26</td>
<td>18</td>
<td>31</td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>ABS</td>
<td>Albertsons</td>
<td>28</td>
<td>26</td>
<td>14</td>
<td>46</td>
<td>60</td>
</tr>
<tr>
<td>ABT</td>
<td>Abbott Laboratories</td>
<td>17</td>
<td>14</td>
<td>42</td>
<td>61</td>
<td>103</td>
</tr>
<tr>
<td>ADBE</td>
<td>Adobe</td>
<td>35</td>
<td>25</td>
<td>39</td>
<td>66</td>
<td>105</td>
</tr>
<tr>
<td>ADM</td>
<td>Archer Daniels</td>
<td>34</td>
<td>21</td>
<td>32</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td>ADP</td>
<td>Automatic Data</td>
<td>19</td>
<td>14</td>
<td>22</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>AET</td>
<td>Aetna</td>
<td>32</td>
<td>18</td>
<td>45</td>
<td>44</td>
<td>89</td>
</tr>
<tr>
<td>AFL</td>
<td>Aflac</td>
<td>22</td>
<td>16</td>
<td>18</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td>AHC</td>
<td>Amerada Hess</td>
<td>34</td>
<td>27</td>
<td>22</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>AIG</td>
<td>American Intl Group</td>
<td>23</td>
<td>24</td>
<td>143</td>
<td>140</td>
<td>283</td>
</tr>
<tr>
<td>ALL</td>
<td>Allstate</td>
<td>23</td>
<td>11</td>
<td>29</td>
<td>18</td>
<td>47</td>
</tr>
<tr>
<td>AMGN</td>
<td>Amgen</td>
<td>25</td>
<td>23</td>
<td>131</td>
<td>47</td>
<td>178</td>
</tr>
<tr>
<td>AOC</td>
<td>Aon</td>
<td>27</td>
<td>18</td>
<td>50</td>
<td>14</td>
<td>64</td>
</tr>
<tr>
<td>APA</td>
<td>Apache</td>
<td>40</td>
<td>29</td>
<td>17</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>APC</td>
<td>Anadarko Petroleum</td>
<td>38</td>
<td>27</td>
<td>43</td>
<td>13</td>
<td>56</td>
</tr>
<tr>
<td>AT</td>
<td>Alltel</td>
<td>16</td>
<td>11</td>
<td>29</td>
<td>10</td>
<td>39</td>
</tr>
<tr>
<td>AXP</td>
<td>American Express</td>
<td>13</td>
<td>12</td>
<td>66</td>
<td>29</td>
<td>95</td>
</tr>
<tr>
<td>BA</td>
<td>Boeing</td>
<td>30</td>
<td>19</td>
<td>134</td>
<td>136</td>
<td>270</td>
</tr>
<tr>
<td>BAC</td>
<td>Bank of America</td>
<td>12</td>
<td>14</td>
<td>134</td>
<td>273</td>
<td>407</td>
</tr>
<tr>
<td>BAX</td>
<td>Baxter International</td>
<td>22</td>
<td>12</td>
<td>34</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>BBT</td>
<td>BB &T</td>
<td>17</td>
<td>14</td>
<td>33</td>
<td>14</td>
<td>47</td>
</tr>
<tr>
<td>BBY</td>
<td>Best Buy</td>
<td>39</td>
<td>25</td>
<td>133</td>
<td>42</td>
<td>175</td>
</tr>
<tr>
<td>BK</td>
<td>Bank of New York</td>
<td>18</td>
<td>18</td>
<td>28</td>
<td>10</td>
<td>38</td>
</tr>
<tr>
<td>BLS</td>
<td>BellSouth</td>
<td>16</td>
<td>17</td>
<td>120</td>
<td>50</td>
<td>170</td>
</tr>
<tr>
<td>BMY</td>
<td>Bristol-Myers Squibb</td>
<td>21</td>
<td>19</td>
<td>67</td>
<td>79</td>
<td>146</td>
</tr>
<tr>
<td>BNI</td>
<td>Burlington Santa Fe</td>
<td>34</td>
<td>19</td>
<td>48</td>
<td>7</td>
<td>55</td>
</tr>
<tr>
<td>BR</td>
<td>Burlington Resources</td>
<td>43</td>
<td>34</td>
<td>20</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>BRK-A</td>
<td>Berkshire Hathaway</td>
<td>11</td>
<td>12</td>
<td>28</td>
<td>30</td>
<td>58</td>
</tr>
<tr>
<td>BSC</td>
<td>Bear Stearns Cos</td>
<td>23</td>
<td>20</td>
<td>86</td>
<td>32</td>
<td>118</td>
</tr>
<tr>
<td>BUD</td>
<td>Anheuser-Busch Cos</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>C</td>
<td>Citigroup</td>
<td>13</td>
<td>10</td>
<td>127</td>
<td>201</td>
<td>328</td>
</tr>
<tr>
<td>CAG</td>
<td>ConAgra Foods</td>
<td>14</td>
<td>18</td>
<td>11</td>
<td>39</td>
<td>50</td>
</tr>
<tr>
<td>CAH</td>
<td>Cardinal Health</td>
<td>25</td>
<td>23</td>
<td>39</td>
<td>32</td>
<td>71</td>
</tr>
<tr>
<td>CAT</td>
<td>Caterpillar</td>
<td>29</td>
<td>21</td>
<td>116</td>
<td>21</td>
<td>137</td>
</tr>
<tr>
<td>CB</td>
<td>Chubb</td>
<td>25</td>
<td>12</td>
<td>26</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>CCE</td>
<td>Coca-Cola Enterprises</td>
<td>22</td>
<td>20</td>
<td>32</td>
<td>11</td>
<td>43</td>
</tr>
<tr>
<td>CCU</td>
<td>Clear Channel Commun</td>
<td>21</td>
<td>24</td>
<td>48</td>
<td>60</td>
<td>108</td>
</tr>
<tr>
<td>CD</td>
<td>Cendant</td>
<td>23</td>
<td>20</td>
<td>36</td>
<td>64</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 8.2. Details of the dataset. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Name</th>
<th>UP Count</th>
<th>DOWN Count</th>
<th>UP File-count</th>
<th>Down File-count</th>
<th>File to Analyze</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEG</td>
<td>Constellation Energy</td>
<td>24</td>
<td>15</td>
<td>26</td>
<td>9</td>
<td>35</td>
</tr>
<tr>
<td>CFC</td>
<td>Countrywide Financial</td>
<td>28</td>
<td>26</td>
<td>29</td>
<td>33</td>
<td>62</td>
</tr>
<tr>
<td>CI</td>
<td>Cigna</td>
<td>31</td>
<td>18</td>
<td>62</td>
<td>11</td>
<td>73</td>
</tr>
<tr>
<td>CIT</td>
<td>CIT Group</td>
<td>27</td>
<td>21</td>
<td>35</td>
<td>23</td>
<td>58</td>
</tr>
<tr>
<td>CL</td>
<td>Colgate-Palmolive</td>
<td>16</td>
<td>15</td>
<td>51</td>
<td>40</td>
<td>91</td>
</tr>
<tr>
<td>CMA</td>
<td>Comerica</td>
<td>21</td>
<td>17</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>CMCSA</td>
<td>Comcast</td>
<td>22</td>
<td>22</td>
<td>115</td>
<td>135</td>
<td>250</td>
</tr>
<tr>
<td>COF</td>
<td>Capital One Financial</td>
<td>23</td>
<td>17</td>
<td>28</td>
<td>38</td>
<td>66</td>
</tr>
<tr>
<td>COP</td>
<td>ConocoPhillips</td>
<td>38</td>
<td>26</td>
<td>162</td>
<td>80</td>
<td>242</td>
</tr>
<tr>
<td>COST</td>
<td>Costco Wholesale</td>
<td>28</td>
<td>24</td>
<td>34</td>
<td>30</td>
<td>64</td>
</tr>
<tr>
<td>CSC</td>
<td>Computer Sciences</td>
<td>29</td>
<td>21</td>
<td>32</td>
<td>22</td>
<td>54</td>
</tr>
<tr>
<td>CSX</td>
<td>Cisco Systems</td>
<td>28</td>
<td>31</td>
<td>380</td>
<td>206</td>
<td>586</td>
</tr>
<tr>
<td>CTX</td>
<td>Centex</td>
<td>39</td>
<td>36</td>
<td>27</td>
<td>19</td>
<td>46</td>
</tr>
<tr>
<td>CVS</td>
<td>CVS</td>
<td>28</td>
<td>15</td>
<td>40</td>
<td>9</td>
<td>49</td>
</tr>
<tr>
<td>CVX</td>
<td>ChevronTexaco</td>
<td>31</td>
<td>20</td>
<td>267</td>
<td>197</td>
<td>464</td>
</tr>
<tr>
<td>DD</td>
<td>El du Pont de Nemours</td>
<td>21</td>
<td>17</td>
<td>39</td>
<td>78</td>
<td>117</td>
</tr>
<tr>
<td>DE</td>
<td>Deere & Co</td>
<td>30</td>
<td>25</td>
<td>44</td>
<td>19</td>
<td>63</td>
</tr>
<tr>
<td>DELL</td>
<td>Dell</td>
<td>21</td>
<td>16</td>
<td>278</td>
<td>110</td>
<td>388</td>
</tr>
<tr>
<td>DIS</td>
<td>Walt Disney</td>
<td>22</td>
<td>15</td>
<td>151</td>
<td>53</td>
<td>204</td>
</tr>
<tr>
<td>DOM</td>
<td>Dominion Resources</td>
<td>27</td>
<td>18</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>DOW</td>
<td>Dow Chemical</td>
<td>28</td>
<td>21</td>
<td>65</td>
<td>28</td>
<td>93</td>
</tr>
<tr>
<td>DTE</td>
<td>DTE Energy</td>
<td>18</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>DVN</td>
<td>Devon Energy</td>
<td>38</td>
<td>34</td>
<td>21</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>EBay</td>
<td>eBay Inc.</td>
<td>41</td>
<td>31</td>
<td>184</td>
<td>214</td>
<td>398</td>
</tr>
<tr>
<td>ED</td>
<td>Consolidated Edison</td>
<td>16</td>
<td>5</td>
<td>23</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>EIX</td>
<td>Edison International</td>
<td>26</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>EK</td>
<td>Eastman Kodak</td>
<td>28</td>
<td>21</td>
<td>57</td>
<td>82</td>
<td>139</td>
</tr>
<tr>
<td>EMC</td>
<td>EMC</td>
<td>38</td>
<td>29</td>
<td>61</td>
<td>66</td>
<td>127</td>
</tr>
<tr>
<td>EMR</td>
<td>Emerson Electric</td>
<td>21</td>
<td>12</td>
<td>30</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>ETR</td>
<td>Entergy</td>
<td>20</td>
<td>13</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>EXC</td>
<td>Exelon</td>
<td>31</td>
<td>19</td>
<td>95</td>
<td>26</td>
<td>121</td>
</tr>
<tr>
<td>F</td>
<td>Ford Motor</td>
<td>27</td>
<td>30</td>
<td>209</td>
<td>255</td>
<td>464</td>
</tr>
<tr>
<td>FD</td>
<td>Federated Dept Strs</td>
<td>32</td>
<td>24</td>
<td>59</td>
<td>28</td>
<td>87</td>
</tr>
<tr>
<td>FDC</td>
<td>First Data</td>
<td>25</td>
<td>25</td>
<td>23</td>
<td>31</td>
<td>54</td>
</tr>
<tr>
<td>FDX</td>
<td>FedEx</td>
<td>30</td>
<td>21</td>
<td>77</td>
<td>78</td>
<td>155</td>
</tr>
<tr>
<td>FE</td>
<td>FirstEnergy</td>
<td>25</td>
<td>10</td>
<td>26</td>
<td>7</td>
<td>33</td>
</tr>
<tr>
<td>FITB</td>
<td>Fifth Third Bancorp</td>
<td>18</td>
<td>24</td>
<td>11</td>
<td>46</td>
<td>57</td>
</tr>
<tr>
<td>FNM</td>
<td>Fannie Mae</td>
<td>22</td>
<td>27</td>
<td>91</td>
<td>113</td>
<td>204</td>
</tr>
<tr>
<td>FON</td>
<td>Sprint FON</td>
<td>29</td>
<td>16</td>
<td>184</td>
<td>18</td>
<td>202</td>
</tr>
<tr>
<td>FPL</td>
<td>FPL Group</td>
<td>22</td>
<td>8</td>
<td>26</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>FRE</td>
<td>Freddie Mac</td>
<td>28</td>
<td>20</td>
<td>78</td>
<td>52</td>
<td>130</td>
</tr>
</tbody>
</table>

Table 8.3. Details of the dataset. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Name</th>
<th>UP Count</th>
<th>DOWN Count</th>
<th>UP File-count</th>
<th>DOWN File-count</th>
<th>File to Analyze</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Gillette</td>
<td>20</td>
<td>16</td>
<td>60</td>
<td>27</td>
<td>87</td>
</tr>
<tr>
<td>GCI</td>
<td>Gannett</td>
<td>10</td>
<td>11</td>
<td>23</td>
<td>79</td>
<td>102</td>
</tr>
<tr>
<td>GD</td>
<td>General Dynamics</td>
<td>18</td>
<td>12</td>
<td>45</td>
<td>13</td>
<td>58</td>
</tr>
<tr>
<td>GDW</td>
<td>Golden West Finl</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>GE</td>
<td>General Electric</td>
<td>16</td>
<td>10</td>
<td>44</td>
<td>17</td>
<td>61</td>
</tr>
<tr>
<td>GIS</td>
<td>General Mills</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>GM</td>
<td>General Motors</td>
<td>28</td>
<td>26</td>
<td>515</td>
<td>481</td>
<td>996</td>
</tr>
<tr>
<td>GP</td>
<td>Georgia-Pacific</td>
<td>27</td>
<td>24</td>
<td>25</td>
<td>21</td>
<td>46</td>
</tr>
<tr>
<td>GPS</td>
<td>Gap</td>
<td>29</td>
<td>28</td>
<td>66</td>
<td>50</td>
<td>116</td>
</tr>
<tr>
<td>GS</td>
<td>Goldman Sachs Group</td>
<td>20</td>
<td>13</td>
<td>204</td>
<td>90</td>
<td>294</td>
</tr>
<tr>
<td>HCA</td>
<td>HCA</td>
<td>23</td>
<td>21</td>
<td>42</td>
<td>33</td>
<td>75</td>
</tr>
<tr>
<td>HD</td>
<td>Home Depot</td>
<td>25</td>
<td>21</td>
<td>148</td>
<td>59</td>
<td>207</td>
</tr>
<tr>
<td>HNZ</td>
<td>HJ Heinz</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>HON</td>
<td>Honeywell</td>
<td>28</td>
<td>23</td>
<td>53</td>
<td>45</td>
<td>98</td>
</tr>
<tr>
<td>HPQ</td>
<td>Hewlett-Packard</td>
<td>26</td>
<td>24</td>
<td>300</td>
<td>164</td>
<td>464</td>
</tr>
<tr>
<td>IBM</td>
<td>IBM</td>
<td>18</td>
<td>14</td>
<td>565</td>
<td>419</td>
<td>984</td>
</tr>
<tr>
<td>INTC</td>
<td>Intel</td>
<td>33</td>
<td>29</td>
<td>501</td>
<td>430</td>
<td>931</td>
</tr>
<tr>
<td>IP</td>
<td>International Paper</td>
<td>24</td>
<td>28</td>
<td>53</td>
<td>34</td>
<td>87</td>
</tr>
<tr>
<td>ITW</td>
<td>Illinois Tool Works</td>
<td>17</td>
<td>16</td>
<td>9</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>JCI</td>
<td>Johnson Controls</td>
<td>21</td>
<td>19</td>
<td>12</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>JCP</td>
<td>JC Penney</td>
<td>40</td>
<td>26</td>
<td>70</td>
<td>27</td>
<td>97</td>
</tr>
<tr>
<td>JHFT</td>
<td>John Hancock Financial</td>
<td>20</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JNJ</td>
<td>Johnson & Johnson</td>
<td>16</td>
<td>7</td>
<td>42</td>
<td>73</td>
<td>115</td>
</tr>
<tr>
<td>JPM</td>
<td>JP Morgan Chase</td>
<td>15</td>
<td>14</td>
<td>98</td>
<td>61</td>
<td>159</td>
</tr>
<tr>
<td>K</td>
<td>Kellogg</td>
<td>10</td>
<td>8</td>
<td>37</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>KEY</td>
<td>KeyCorp</td>
<td>22</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>KMB</td>
<td>Kimberly-Clark</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>KO</td>
<td>Coca-Cola</td>
<td>17</td>
<td>13</td>
<td>169</td>
<td>70</td>
<td>239</td>
</tr>
<tr>
<td>KR</td>
<td>Kroger</td>
<td>24</td>
<td>16</td>
<td>20</td>
<td>31</td>
<td>51</td>
</tr>
<tr>
<td>KRB</td>
<td>MBNA</td>
<td>24</td>
<td>20</td>
<td>25</td>
<td>77</td>
<td>102</td>
</tr>
<tr>
<td>KSS</td>
<td>Kohl’s</td>
<td>33</td>
<td>28</td>
<td>36</td>
<td>34</td>
<td>70</td>
</tr>
<tr>
<td>LEH</td>
<td>Lehman Bros Holdings</td>
<td>29</td>
<td>19</td>
<td>99</td>
<td>34</td>
<td>133</td>
</tr>
<tr>
<td>LLY</td>
<td>Eli Lilly and Co</td>
<td>30</td>
<td>30</td>
<td>118</td>
<td>89</td>
<td>207</td>
</tr>
<tr>
<td>LMT</td>
<td>Lockheed Martin</td>
<td>23</td>
<td>17</td>
<td>123</td>
<td>58</td>
<td>181</td>
</tr>
<tr>
<td>LNC</td>
<td>Lincoln National</td>
<td>23</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>LOW</td>
<td>Lowe’s Cos</td>
<td>26</td>
<td>20</td>
<td>101</td>
<td>28</td>
<td>129</td>
</tr>
<tr>
<td>MAS</td>
<td>Masco</td>
<td>30</td>
<td>19</td>
<td>12</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>MAY</td>
<td>May Dept Stores</td>
<td>28</td>
<td>25</td>
<td>42</td>
<td>11</td>
<td>53</td>
</tr>
<tr>
<td>MCD</td>
<td>McDonald’s</td>
<td>25</td>
<td>20</td>
<td>101</td>
<td>95</td>
<td>196</td>
</tr>
<tr>
<td>MCK</td>
<td>McKesson</td>
<td>32</td>
<td>28</td>
<td>52</td>
<td>19</td>
<td>71</td>
</tr>
<tr>
<td>MDT</td>
<td>Medtronic</td>
<td>26</td>
<td>21</td>
<td>82</td>
<td>49</td>
<td>131</td>
</tr>
</tbody>
</table>

Table 8.4. Details of the dataset. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswnings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Name</th>
<th>UP Count</th>
<th>DOWN Count</th>
<th>UP File-count</th>
<th>DOWN File-count</th>
<th>File to Analyze</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEL</td>
<td>Mellon Finl</td>
<td>20</td>
<td>19</td>
<td>9</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>MER</td>
<td>Merrill Lynch</td>
<td>23</td>
<td>18</td>
<td>163</td>
<td>60</td>
<td>223</td>
</tr>
<tr>
<td>MET</td>
<td>MetLife</td>
<td>27</td>
<td>18</td>
<td>72</td>
<td>26</td>
<td>98</td>
</tr>
<tr>
<td>MHS</td>
<td>Medco Health Solutions</td>
<td>34</td>
<td>27</td>
<td>25</td>
<td>14</td>
<td>39</td>
</tr>
<tr>
<td>MMC</td>
<td>Marsh & McLennan</td>
<td>26</td>
<td>21</td>
<td>41</td>
<td>95</td>
<td>136</td>
</tr>
<tr>
<td>MMM</td>
<td>3M</td>
<td>19</td>
<td>19</td>
<td>28</td>
<td>30</td>
<td>58</td>
</tr>
<tr>
<td>MO</td>
<td>Altria Group</td>
<td>21</td>
<td>18</td>
<td>58</td>
<td>58</td>
<td>116</td>
</tr>
<tr>
<td>MOT</td>
<td>Motorola</td>
<td>37</td>
<td>25</td>
<td>342</td>
<td>75</td>
<td>417</td>
</tr>
<tr>
<td>MRK</td>
<td>Merck & Co</td>
<td>26</td>
<td>23</td>
<td>233</td>
<td>259</td>
<td>492</td>
</tr>
<tr>
<td>MRO</td>
<td>Marathon Oil</td>
<td>41</td>
<td>26</td>
<td>52</td>
<td>29</td>
<td>81</td>
</tr>
<tr>
<td>MSFT</td>
<td>Microsoft</td>
<td>14</td>
<td>13</td>
<td>534</td>
<td>129</td>
<td>663</td>
</tr>
<tr>
<td>MTB</td>
<td>M&T Bank</td>
<td>24</td>
<td>14</td>
<td>15</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>MWD</td>
<td>Morgan Stanley</td>
<td>32</td>
<td>30</td>
<td>162</td>
<td>104</td>
<td>266</td>
</tr>
<tr>
<td>NCC</td>
<td>National City</td>
<td>20</td>
<td>17</td>
<td>29</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>NKE</td>
<td>NIKE</td>
<td>27</td>
<td>16</td>
<td>68</td>
<td>47</td>
<td>115</td>
</tr>
<tr>
<td>NOC</td>
<td>Northrop Grumman</td>
<td>16</td>
<td>19</td>
<td>87</td>
<td>70</td>
<td>157</td>
</tr>
<tr>
<td>NSC</td>
<td>Norfolk Southern</td>
<td>37</td>
<td>24</td>
<td>35</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>NXTL</td>
<td>Nextel Commun</td>
<td>30</td>
<td>28</td>
<td>117</td>
<td>34</td>
<td>151</td>
</tr>
<tr>
<td>OMC</td>
<td>Omnicom Group</td>
<td>18</td>
<td>21</td>
<td>31</td>
<td>37</td>
<td>68</td>
</tr>
<tr>
<td>ORCL</td>
<td>Oracle</td>
<td>32</td>
<td>30</td>
<td>130</td>
<td>91</td>
<td>221</td>
</tr>
<tr>
<td>OXY</td>
<td>Occidental Petroleum</td>
<td>34</td>
<td>23</td>
<td>38</td>
<td>30</td>
<td>68</td>
</tr>
<tr>
<td>PEG</td>
<td>Pub Svc Enterprise</td>
<td>26</td>
<td>17</td>
<td>40</td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>PFE</td>
<td>PepsiCo</td>
<td>15</td>
<td>13</td>
<td>93</td>
<td>32</td>
<td>125</td>
</tr>
<tr>
<td>PGM</td>
<td>Principal Financial</td>
<td>21</td>
<td>25</td>
<td>266</td>
<td>376</td>
<td>642</td>
</tr>
<tr>
<td>PFG</td>
<td>Procter and Gamble</td>
<td>26</td>
<td>17</td>
<td>19</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>PG</td>
<td>Procter and Gamble</td>
<td>18</td>
<td>16</td>
<td>110</td>
<td>70</td>
<td>180</td>
</tr>
<tr>
<td>PGN</td>
<td>Progress Energy</td>
<td>13</td>
<td>15</td>
<td>11</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>PGR</td>
<td>Progressive</td>
<td>24</td>
<td>15</td>
<td>10</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>PNC</td>
<td>PNC Financial Services</td>
<td>17</td>
<td>14</td>
<td>24</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>PPL</td>
<td>PPL</td>
<td>22</td>
<td>12</td>
<td>34</td>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>PRU</td>
<td>Prudential Financial</td>
<td>25</td>
<td>14</td>
<td>25</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>Q</td>
<td>Qwest Communications</td>
<td>38</td>
<td>35</td>
<td>138</td>
<td>140</td>
<td>278</td>
</tr>
<tr>
<td>QCOM</td>
<td>Qualcomm</td>
<td>39</td>
<td>36</td>
<td>121</td>
<td>58</td>
<td>179</td>
</tr>
<tr>
<td>RF</td>
<td>Regions Financial</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>RHAT</td>
<td>Red Hat</td>
<td>44</td>
<td>41</td>
<td>37</td>
<td>38</td>
<td>75</td>
</tr>
<tr>
<td>RTN</td>
<td>Raytheon</td>
<td>17</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>SBC</td>
<td>SBC Communications</td>
<td>16</td>
<td>13</td>
<td>195</td>
<td>123</td>
<td>318</td>
</tr>
<tr>
<td>SCH</td>
<td>Charles Schwab</td>
<td>38</td>
<td>29</td>
<td>95</td>
<td>25</td>
<td>120</td>
</tr>
<tr>
<td>SEBL</td>
<td>Siebel Systems Inc.</td>
<td>42</td>
<td>42</td>
<td>34</td>
<td>81</td>
<td>115</td>
</tr>
<tr>
<td>SGP</td>
<td>Schering-Plough</td>
<td>28</td>
<td>24</td>
<td>86</td>
<td>36</td>
<td>122</td>
</tr>
</tbody>
</table>

Table 8.5. Details of the dataset. First two columns represents the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Name</th>
<th>UP Count</th>
<th>DOWN Count</th>
<th>UP File-count</th>
<th>Down File-count</th>
<th>File to Analyze</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHLD</td>
<td>Sears, Roebuck</td>
<td>41</td>
<td>38</td>
<td>100</td>
<td>86</td>
<td>186</td>
</tr>
<tr>
<td>SLE</td>
<td>Sara Lee</td>
<td>20</td>
<td>16</td>
<td>15</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>SLM</td>
<td>SLM</td>
<td>28</td>
<td>21</td>
<td>24</td>
<td>22</td>
<td>46</td>
</tr>
<tr>
<td>SNE</td>
<td>Sony Corp.</td>
<td>22</td>
<td>18</td>
<td>85</td>
<td>128</td>
<td>213</td>
</tr>
<tr>
<td>SO</td>
<td>Southern Co</td>
<td>15</td>
<td>8</td>
<td>30</td>
<td>9</td>
<td>39</td>
</tr>
<tr>
<td>SPLS</td>
<td>Staples</td>
<td>33</td>
<td>33</td>
<td>26</td>
<td>11</td>
<td>37</td>
</tr>
<tr>
<td>SRE</td>
<td>Sempra Energy</td>
<td>25</td>
<td>13</td>
<td>47</td>
<td>27</td>
<td>74</td>
</tr>
<tr>
<td>STA</td>
<td>St Paul Cos</td>
<td>23</td>
<td>13</td>
<td>41</td>
<td>17</td>
<td>58</td>
</tr>
<tr>
<td>STI</td>
<td>SunTrust Banks</td>
<td>22</td>
<td>13</td>
<td>18</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>STT</td>
<td>State Street</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>34</td>
<td>49</td>
</tr>
<tr>
<td>SYY</td>
<td>Sysco</td>
<td>16</td>
<td>22</td>
<td>11</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>T</td>
<td>AT&T</td>
<td>24</td>
<td>19</td>
<td>123</td>
<td>67</td>
<td>190</td>
</tr>
<tr>
<td>TGT</td>
<td>Target</td>
<td>35</td>
<td>20</td>
<td>117</td>
<td>54</td>
<td>171</td>
</tr>
<tr>
<td>TRB</td>
<td>Tribune</td>
<td>18</td>
<td>21</td>
<td>30</td>
<td>57</td>
<td>87</td>
</tr>
<tr>
<td>TXW</td>
<td>Time Warner</td>
<td>22</td>
<td>23</td>
<td>152</td>
<td>271</td>
<td>423</td>
</tr>
<tr>
<td>TXN</td>
<td>Texas Instruments</td>
<td>40</td>
<td>35</td>
<td>221</td>
<td>77</td>
<td>298</td>
</tr>
<tr>
<td>UCL</td>
<td>Unocal</td>
<td>35</td>
<td>21</td>
<td>193</td>
<td>74</td>
<td>267</td>
</tr>
<tr>
<td>UNH</td>
<td>UnitedHealth Group</td>
<td>37</td>
<td>18</td>
<td>43</td>
<td>83</td>
<td>126</td>
</tr>
<tr>
<td>UNP</td>
<td>Union Pacific</td>
<td>22</td>
<td>18</td>
<td>31</td>
<td>14</td>
<td>45</td>
</tr>
<tr>
<td>UPS</td>
<td>United Parcel Service</td>
<td>18</td>
<td>17</td>
<td>42</td>
<td>69</td>
<td>111</td>
</tr>
<tr>
<td>USB</td>
<td>US Bancorp</td>
<td>15</td>
<td>15</td>
<td>21</td>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td>UTX</td>
<td>United Technologies</td>
<td>24</td>
<td>14</td>
<td>25</td>
<td>27</td>
<td>52</td>
</tr>
<tr>
<td>VIA</td>
<td>Viacom</td>
<td>18</td>
<td>25</td>
<td>73</td>
<td>132</td>
<td>205</td>
</tr>
<tr>
<td>VLO</td>
<td>Valero Energy</td>
<td>49</td>
<td>34</td>
<td>74</td>
<td>51</td>
<td>125</td>
</tr>
<tr>
<td>VZ</td>
<td>Verizon Communications</td>
<td>13</td>
<td>15</td>
<td>105</td>
<td>122</td>
<td>227</td>
</tr>
<tr>
<td>WAG</td>
<td>Walgreen</td>
<td>24</td>
<td>19</td>
<td>65</td>
<td>11</td>
<td>76</td>
</tr>
<tr>
<td>WB</td>
<td>Wachovia</td>
<td>17</td>
<td>16</td>
<td>53</td>
<td>74</td>
<td>127</td>
</tr>
<tr>
<td>WFC</td>
<td>Wells Fargo</td>
<td>12</td>
<td>8</td>
<td>20</td>
<td>19</td>
<td>39</td>
</tr>
<tr>
<td>WLP</td>
<td>WellPoint Health</td>
<td>27</td>
<td>22</td>
<td>44</td>
<td>35</td>
<td>79</td>
</tr>
<tr>
<td>WM</td>
<td>Washington Mutual</td>
<td>20</td>
<td>15</td>
<td>39</td>
<td>42</td>
<td>81</td>
</tr>
<tr>
<td>WMI</td>
<td>Waste Management</td>
<td>19</td>
<td>17</td>
<td>9</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>WMT</td>
<td>Wal-Mart Stores</td>
<td>14</td>
<td>16</td>
<td>108</td>
<td>132</td>
<td>240</td>
</tr>
<tr>
<td>WY</td>
<td>Weyerhaeuser</td>
<td>27</td>
<td>18</td>
<td>35</td>
<td>21</td>
<td>56</td>
</tr>
<tr>
<td>WYE</td>
<td>Wyeth</td>
<td>25</td>
<td>14</td>
<td>44</td>
<td>24</td>
<td>68</td>
</tr>
<tr>
<td>XOM</td>
<td>ExxonMobil</td>
<td>26</td>
<td>19</td>
<td>195</td>
<td>197</td>
<td>392</td>
</tr>
<tr>
<td>XRX</td>
<td>Xerox</td>
<td>31</td>
<td>27</td>
<td>15</td>
<td>92</td>
<td>107</td>
</tr>
</tbody>
</table>

Table 8.6. Details of the dataset. First two columns represent the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model.
Chapter 9

Domain Ontology Construction

“The only good is knowledge and the only evil is ignorance.”
- Socrates
 (Greek philosopher)
 (469 BC - 399 BC)

This chapter describes the various techniques used by the study to build the domain ontologies. Building domain ontology is a complex process and consists of various sub-tasks some of which can be automated with carefully crafted technical implementations, while others requires human intervention. Moreover some of these techniques are the result of intense research while others are rule-based techniques. In this chapter the techniques described mainly fall under two major umbrellas, (1) term-relationship based keyword extraction and (2) rule-based keyword extraction. Both of these techniques extract useful terms or keywords which are later used by humans to carefully place in an ontology model.

9.1 Term-relationship Based Extraction

Term-relationship plays a major role in several areas of research including document relevance, domain ontology construction and metadata extraction. As part
of this study in semi-automatic business ontology construction, term-relationships are used to facilitate the process of extracting useful terms from text-based data. Text-based data, e.g. news articles, provide valuable information about a company. This thesis reports on a learning model to learn term-relationships to extract related terms for a company. Bayesian Networks (BN) are constructed for individual companies to encode these term-relationships. These BNs are then used in the ontology construction process. To show the effectiveness of this learning model, the ontologies were used in the context of document relevance which results in excellent precision and recall values. It is shown that this model can be effectively used for learning term-relationships from text-based information sources.

9.2 Introduction

Learning term-relationships is considered one of the most useful steps in the context of knowledge discovery, construction of knowledge-bases (e.g. domain ontologies) or knowledge management issues. The main goal is to build business ontologies for major public companies listed on the NYSE and in other stock exchanges. These ontologies will be part of the business knowledge-base, which will be used for analysing textual information (such as corporate news sources, whitepapers or annual reports etc.) for individual companies.

To construct these ontologies for individual companies, up-to-date information was needed, in the form of useful terms e.g. from news articles available on business Web-sites. Useful terms can be learned from these sources, which in the later stages, can be incorporated into the ontology with human assistance. OWL-Lite was used for creating the ontology in this study. However that part is not relevant in this paper. This paper focuses mainly on the pre-processing of documents so that all related terms for a company (in this case) can be extracted from the corresponding news document set.

The block-diagram in Figure 9.1 provides some details of the ontology construction process. The main focus here though is the learning model (surrounded by dotted rectangle surrounding “Related Term-vector Generator”, “Bayes-Net Generator” and the “Bayesian Network”) involved. The model is used to retrieve important terms to be included in the ontology. As a proof of concept, it is shown
that by using this learning model, one can build ontologies which can be used in
document relevance measurement to obtain high precision and recall values.

The approach of finding useful terms borrows ideas from query expansion or
query term re-weighting. The objective here is to find “related term-vector” (de-
dined later) for a particular company. This is an on-line learning process, which
does not rely on any dictionary, thesaurus, or word-net to generate the ”related
term-vector”, and can be thought of as query-expansion. News articles were used
to learn the term co-occurrences for the companies and we used company names
as query terms. This knowledge is used to build the ”related term-vector” and
the corresponding BN. This network provides an easy way to view the relational
probabilities between two terms. This is an on-line learning approach. As new
news articles are introduced the analysis is done on-the-fly to update the ontology.

9.3 Related Work

Learning term-term relationships has its roots in Information Retrieval (IR) re-
search in the context of relevance feedback and is used mainly for query modi-
cation. The two main trends in this research are query term re-weighting and query
expansion.

Harman [67, 68, 70, 69] examined these two trends in a probabilistic model. There he discussed the question of adding best possible terms [67] with the query. Term re-weighting has been investigated by Salton et. al. [119, 71] in addition to
their experiments with variations of probabilistic and vector space model [118].

Smeaton and van Rijsbergen [124] investigated query expansion and term re-
weighting using term-relationships. The results of these experiments were largely
negative. Query expansion via Maximum Spanning Tree shows poor performance
for unexpected query. The same happened using Nearest Neighbor approach. They
cited as the reason behind this, the difficulty in estimating probability. This these
introduced a simple way of estimating the probability for a set of documents.
Two words are associated if they co-occur in a sentence or nearby-sentences. It is
believed that, this is a more realistic and reasonable approach and can be viewed
as learning the relationships from a set of documents.

User specific information has been used to expand query [24]. Personal con-
struct theory has been used in this [77] paper. The document set is analyzed to determine the probability of co-occurrence and is used instead of user-preference. A user-centric evaluation of ranking algorithms can be found in [56]. In [94] Ramesh worked with the SenTree model to find term-dependencies.

In [107] researchers used a logical approach to describe the relationship between a term and a document. They used a probabilistic argumentation system and claimed after Rijsbergen that IR systems are a form of uncertain inference. In order to be relevant to a term, a document must imply the term. The approach in this study can be seen from this angle, that each term must imply the occurrence of the related term with a certain probability. The idea of term-relationship is somewhat similar to term co-occurrence [101]. In that work, Peat and Willett explained the limitations of using term co-occurrence. But they used a more generic calculation of similar terms by three similarity measures: cosine, dice, and tanimoto. They used the whole document to find the term co-occurrence instead of a small region. This study posits that the way the similarity measures are formed and the way term co-occurrences are identified are too generic in nature to find any useful result. Instead of completely relying on the document statistics, if the usual constructs of natural language sentence formation can be exploited and a smaller region of terms used rather than the whole document, a better result can be achieved.

Use of BNs is comparatively more limited in IR research than in mainstream Artificial Intelligence (AI) or in Uncertainty in AI (UAI) literature. Luis M. de Campos [37, 38, 39] extensively used BNs for query expansion and IR research. Others include Turtle and Croft [130], Fung et.al. [62], Haines and Croft [65] (relevance feedback by using inference network), Neto [96], Pearl [100] and Silva [123]. Some of the researchers viewed the document as a sample of the collection of terms. Terms occur randomly in the document with some probability distribution and these distributions are not always known. Even if the real distribution is not known, document-term-relationship or term-term relationship can play a major role. The study uses BN because it is believed that the term-term-relationship can be learned as “effect of one term on another given the document set”. If the company name is used as the main (root) term, the relationships between this and any other linked term can be thought of as “a measure of the effect of the company name on the other term in the context of the discussion”. The idea behind this
work is to find this relationship, measure it and use this knowledge to construct
the BN, and ultimately the ontology.

9.4 Our Contribution

Firstly, this work introduces a new way to learn term-relationships. Natural lan-
guage documents are not just an arbitrary array of words. Words co-occurring in
sentences or nearby sentences, relate to each other more closely than do those in
two distant sentences. As described above, the reason behind the failure of term
coo-occurrences as studied in [101] can possibly be improved.

This study introduces a “Weighted-Sentence” (WS) based term co-occurrence
model [48]. Secondly, it also introduces a BN based approach to encode the “term-
relationship” with probability values directly influenced by term co-occurrence
measure. These networks for each individual company have been used to create
the corresponding ontologies.

The system architecture is shown in Figure 9.1 for a company. The news
collection is pre-filtered for each company. We use this collection to generate the
related-term vectors. Next step is the construction of the BN. Once complete, it
is used to construct the ontology.

9.5 Our Approach

Our approach is described in three parts. In the first part the fundamentals of
learning term-relationships are described. The second part sets out the construc-
tion of the (BN). In the third stage, the BN is used to construct the ontology,
and it is then used to find the relevance ranking of new articles.

News Websites were crawled and news articles were filtered for an individual
company. Let us assume that in a collection \(C \) there are in total \(M \) news arti-
cles \(D_1, \ldots D_M \) pre-filtered for the company \(w \). This constitutes the document
collection \(C \). So

\[
C = \{D_1, D_2, D_3, \ldots D_M\}
\]

As these documents can be thought of as a set of sentences, if document \(D_i \) has
Figure 9.1. A simple architecture of our system. We create the BN as the knowledge base to be used in the Ontology construction. The main focus of this paper is the part, surrounded by dotted red rectangle.
N_i number of sentences in it,

$$D_i = \{S_{1i}, S_{2i}, S_{3i}, \ldots S_{Ni}\} \quad (9.2)$$

where S_{ji} : j^{th} sentence in document D_i. Similarly each sentence can be thought of as a set of words and so if S_j contains P_j number of words in it,

$$S_j = \{w_{j1}, w_{j2}, w_{j3}, \ldots w_{jp}\} \quad (9.3)$$

where w_{jk} represents the k^{th} word in sentence S_j.

9.5.1 Related Term-Vector

Related term-vector of a term w is a vector of all the words which co-occur with w and are important (ranked higher than a given threshold). Basically it is the set of terms for which the term-relationship measure between them and the main term is higher than a threshold. The difference between conventional co-occurring terms \[101\] and the approach used here is that words in the same sentence or neighbouring sentences are considered as probable candidates. At this point, it is assumed that a function Ψ will provide all the related words of w when applied to a sentence S_j containing w. Therefore,

$$\Psi(w, S_i)$$

$$= \begin{cases} \
\{w_{r1}, w_{r2}, w_{r3}, \ldots w_{rn}\}, & w R w_{ri} and w \in N(S_i) \\
\phi, & otherwise
\end{cases} \quad (9.4)$$

Ψ generates a vector of related words of the main term w. Considering the fact that function Ψ generates a vector, one can write $\Psi(w, S_i)$ as $\Psi(w, S_i)$. R is a notation indicating that w and w_{ri} are related. $N(S_i)$ is a function which takes the position of S_i and gives the set of neighbouring sentences (implementation details in section 9.6.1).

An example would be useful here to understand the concept. From the list of news articles pre-filtered for Microsoft, let us assume a sentence “Microsoft (MSFT) CEO Bill Gates announced today the upcoming version of windows oper-
ating system, codenamed longhorn”. The words/phrases like “CEO”, “Bill Gates”, “today”, “upcoming”, “version”, “windows”, “longhorn” etc. could be all related to the keyword “Microsoft” or “MSFT”. Given this sentence, the function Ψ will generate the related word/phrase vector. Now the type of this relationship (notation R is used to express “relationship”) such as CEO_OF or PRODUCT_NAME etc. can be attributed by human agent in the next step.

Similar to the above derivations (1, 2, &3) we can see that in case of a whole news document D_i and for the whole document collection C in category C,

$$\overrightarrow{\Psi}(w, D_i) = \sum_{i=1}^{N_i} \overrightarrow{\Psi}(w, S_i), \quad \overrightarrow{\Psi}(w, C) = \sum_{i=1}^{M} \overrightarrow{\Psi}(w, D_i)$$

(9.5)

The algorithm to implement the Ψ function and the related-vector generating process are described in subsection 9.6.1.

9.5.2 Bayesian Network

BN is one of many graphical models available. It is simply a directed acyclic graph (DAG) where the nodes represent a set of random variables and the directed edge from one (source) node to another (destination) node represents that there is a direct influence from the source to the destination node. Our BN reflects the term-relationship hierarchy in a list of news articles for a company. We have a BN for each company and the company name (for which the pre-filtering was done) is taken as the root of the BN. In BN literature, edges represent direct influence from one node to another. Similarly here, an edge represents a similar influence regarding relationship in a sentence-set in any of the news article in the list. That, in simple notations, means that if w is at the root node, and wRw' , then w' occurred with w or in another way, occurrence of w has a direct influence on the occurrence of w' given the news collection C.

The construction of the BN is described here (Figure 9.2). Here w is placed at the root node. The related term-vector is found for w and place all the related words (or R_w) under it as the children nodes. R_w is defined as

$$R_w = \{w_i | \|w_i \uparrow \cdot \overrightarrow{\Psi}(w, C)\| \neq 0\}$$

(9.6)
where $w_i \uparrow$ is a unit vector in the direction of $\overrightarrow{w_i}$. The conditional probability value of w_i represents the probability or relationship of w_i on w, given the news collection C or

$$Pr(w_i|w, wRw_i, C) = \frac{||w_i \uparrow \cdot \overrightarrow{\Psi}(w, C)||}{\sum_i ||w_i \uparrow \cdot \overrightarrow{\Psi}(w, C)||}$$

(9.7)

9.5.3 Ontology Construction

Once the BN is complete, it represents a comprehensive knowledge-base for a company. Domain experts are then used to assign labels to each individual links as “CEO”, or “PRODUCT_NAME”, or “COMPETITOR” etc. These terms and the link-types are then used to create an ontology of the company.

9.6 Implementation

This section describes the way to form the related term-vector based on term relationship. Also described is the algorithm to build the BN for a company. ““
Figure 9.3. The weighting function $W(j)$ and the set of sentences included in $N(S_i)$ as shown by the bar graphs. The preliminary sentence set was 1, 10, 20, 23, 24, 31, 39, 40, 41, 46, and 50 and the final extended sentence set is 1-3, 10-12, 20-26, 31-33, 39-43, 46-48, and 50. Each bar represents a sentence.

9.6.1 Weighted Sentence Based Related-Term Vector

A novel concept of finding related-term vectors is introduced based on weighted sentences. On-line publishable natural language texts are almost always written in a coherent way; consecutive sentences are devoted to describe the topic. This simple, natural, and powerful editing style can be exploited to extract related-term vector by using the weighted sentence (WS) based method.

As mentioned earlier, related-term vector depends on the concept of term co-occurrences. Let us proceed step-by-step assembling all the concepts necessary to get the generating function for related-term vector. First, one can modify the concept of “sentences” to an “extended sentence-set”. A function $N(S_i)$ is introduced which takes the position of a sentence S_i and generates the extended sentence-set. First the following function is defined to get the weighting factor.

$$W(j) = e^{(j-i)\log(r)}$$ (9.8)
where \(w \in S_i, j \geq i, \tau = \text{threshold} \). Here \(W(j) \) is a weighting factor for all consecutive sentences at position \(j \) after the sentence \(i \) containing the query \(w \). In the implementation, \(\tau = 0.5 \). With this definition, \(N(S_i) \) is defined as

\[
N(S_i) = \{ S_j | j \geq i, W(j) \geq \epsilon \}
\]

(9.9)

In our implementation \(\epsilon = 0.2 \). For a typical document, sentences at position 1, 10, 20, 23, 24, 31, 39, 40, 41, 46, and 50 contain the query term, and therefore the \(W(j) \) will look like Figure 9.3. In this particular case sentences at positions 1-3, 10-12, 20-26, 31-33, 39-43, 46-48, and 50 will be included in corresponding \(N(S_i) \)'s. Term-relationships are calculated using a formula similar to [106], where term-term relationships were calculated per-document basis. This study calculates it per-collection basis. The significance of a word \(w_m \) co-occurring with \(w \) in sentence \(S_i \) is

\[
\sigma_{w_m} = \frac{ptf_m}{\sqrt{\sum_r ptf_r^2}} \times \log \Phi
\]

(9.10)

where

\[
ptf_m = \left(\frac{tf_m}{\max_r tf_r} \right)
\]

(9.11)

and where

\[
\Phi = \frac{N}{n_m}
\]

(9.12)

where

\[
tf_m = ntf^j_m \times W(j | S_j \in N(S_i)) \text{(from (9))}
\]

(9.13)

where \(ntf^j_m \) = term-frequency of term \(w_m \) in sentence \(S_j \). \(N \) is the number of total sentences in the document collection \(C \) which is (from (1) and (2))

\[
N = \sum_k^M N_k, \quad n_m = \sum_{S_k \notin N(S_i), w_m \in Nouns(S_k)}^M N_k
\]

(9.14)

which in simple term is the number of sentences outside the set \(N(S_i) \) where the term \(w_m \) appears. \(Nouns(S_k) \) is an NLP function which gives the set of all nouns of a sentence, taken as its input. Now \(\mathcal{R} \) represents the relatedness between two terms. It is defined as a relation between \(w \) and \(w_m \) which produces the candidacy
of w_m to be included in the related-term vector depending on some conditions.

$$\mathcal{R} \equiv \{f : w \rightarrow w_m | \sigma_{w_m} > \zeta, w_m \in \text{Nouns}(N(S_i))\} \tag{9.15}$$

Here $\text{Nouns}(N(S_i))$ gives the whole set of nouns from the extended WS set of S_i. ζ is a threshold.

9.6.2 BN Constructor Algorithm

Once the related term-vector is formed, the BN for a company is built using equation (7) and (8). After the first level is constructed, a recursive process was used to build the rest of the tree. It is described in algorithms 9 and 10. Here the corresponding node for w is denoted as $t(w)$ and the tree is denoted as T

```
Input : News collection $C$, Company name $w$
Output: $T$, a BN for word relations rooted at $w$

begin
    //Initialization - Create the root node $t(w)$
    $t(w) \leftarrow$ new TreeType() //Root node Create
    //Assign probability of 1 to $t(w)$
    $Pr(w) = 1$ //Assign probability of 1 to $t(w)$
    // $T$ is a TreeType Node
    $T \leftarrow t(w)$ //TreeType node
    // $N$ is a set of structures (word,level)
    $N \leftarrow (w, 0)$ // (word,level)
    $l \leftarrow 0$

    //Traversal and new node addition
    while ($l < l_t$ or No new node can be added) do
        Traverse $T$ in BFS fashion
        AddNewNode($T, l$)
    end
end
```

Algorithm 9: The BN building process. N is a structure which we use for storing the word and the level of the BN tree in which the word is coming inside a node. TempSet keeps the R_w which is defined in equation (7). The formation of TempSet ensures that the network is a DAG. The result of using this algorithm for “eBay” has been shown in figure 9.4.
Input: News collection C, Company name w
Output: T, a BN for word relations rooted at w

begin

Function AddNewNode

for (each node $t(w)$ in level l) do

 TempSet $\leftarrow R_w$ // R_w is defined in equation (7)

 for (each word $w_k \in R_w$) do

 if $((w_k, l_k) \in N$ and $l_k \leq l)$ then

 Delete w_k from TempSet

 end

 end

for (each word $w_i \in$ TempSet) do

 //Create the child node $t(w_i)$
 $t(w) \leftarrow$ new TreeType()

 //Assign probability From equation (7))
 //From equation (7))
 $Pr(t(w)) = Pr(w_i|w, wRw_i, C)$

 $N \leftarrow N \cup (w_i, l + 1)$

 Add $t(w)$ to T

end

end

Algorithm 10: (contd..) The BN building process. N is a structure which we use for storing the word and the level of the BN tree in which the word is coming inside a node. TempSet keeps the R_w which is defined in equation (7). The formation of TempSet ensures that the network is a DAG. The result of using this algorithm for “eBay” has been shown in figure 9.4.

Lemma 1 The formation of TempSet ensures the construction of a BN

This is true because N is a set which keeps track of all the existing nodes by including in the set the word associated with the node and the node level of the corresponding node in the tree. Now, each time the algorithm traverses the tree in BFS fashion and tries to add the nodes for the related word of any word, it takes the related word from the word set (TempSet) for which the label is not defined OR if it is there, then at least it is not in the upper level of the tree. Because of
Figure 9.4. The BN created by our algorithm for eBay. Note that “Paypal”, “Amazon”, “AspenTech”, “Meg Whitman”, etc. are all related with “eBay”. We show the sub-nodes only for “Amazon” and as we can verify “Sams’ Club”, “Jeff Bezos”, “Yahoo” etc. are also co-related with “Amazon”.

A BN is constructed starting from the root node as company name. Then we take each of the terms in the related term-vector of the company name. The conditional probability values are calculated according to equation (7). Once this step is complete we use the same technique for each of these terms and find the related term-vectors for them.

9.6.3 Experiment and Result

We implemented above algorithms in Perl on Unix platform. We used the Alembic workbench [91] for the Noun function. Alembic has a nice feature of producing noun phrases rather than a single noun word. This feature is useful in case of person names or company names consisting of multiple words.
There is no definitive way of showing the superiority of one ontology over another. This is more true due to the fact that ontologies are constructed for different purposes, so there is lack of benchmark ontologies and benchmark data and application set, which can be used. However, in the next chapter more concrete proof of the effectiveness of these ontologies will be given.

However, in this chapter one example BN for eBay Inc. (EBAY) in Figure 9.4 is shown. From this figure it is vividly clear that our construction technique works pretty well and consistent with knowledge about eBay.

Now, to show the effectiveness of this approach, BNs for a few companies are used to find document relevance for the corresponding news article set. The results are reported in Table 10.1 in the next chapter. As we see from this table, this method outperforms the basic vanilla TF-IDF measures. Actually these results depend on how many useful documents are thresholded, and so TF-IDF gives perfect recall as it includes all the news article (based on company ticker symbols or name which is present in all these documents – as they are already pre-filtered from Yahoo and other Web-sites) and so provides no guarantee of precision performance. Otherwise, according to the use of ontologies, it only picks up the useful and more relevant ones and so precision is much better than the TF-IDF case and that way it outperforms the TF-IDF in overall F-measure.

9.6.4 Using the BN to construct Ontology

As described earlier, the BN is this study was created using the values in the conditional probability table. In this step domain experts are used to label the edges. Once the labelling is done, a converter algorithm can be used to fill up the OWL-Lite instances. In the purpose of this thesis and to use these ontologies easily, we actually filled up XML [6] instances from these BNs. As demonstrated in the next few sections, finding keywords only from the news articles is not enough for the purpose of this whole work. Various other information is needed which can be available in the company profile pages, company competitor pages and other informative documents.
9.7 Rule-based Extraction

As described in the block diagram in Figure 9.1, data have been collected from various sources. This also includes company profile pages and other related information sources crawled, collected, cleaned and finally parsed to extract the right information. Figure 9.5 shows one example of the company GE (General Electric) from Yahoo profile page.

Some intelligent processing of this information was done. However due to the space constraints of this thesis, and to the focus on the main topic of thesis we will not evaluate any of these ideas. However, we are confident to claim that applying each of these techniques improved the overall performance.

9.7.1 Company Ticker Symbol

The company ticker symbol was used as a query keyword to determine the basic relevance of the news article as well as individual sentences. This will be elaborated more in the “sentence-based explanation” model in Chapter 11.

9.7.2 Company Name and Variations

Alongside the main ticker symbol, the company name was also used to increase the relevance measure. Company names, when abbreviated, such as “Intl. Bus. Machines”, “International Business Machines”, or IBM, should all be considered as they refer to the same company. A database of the company names was created semi-automatically (with the help of some grammar rules and hand-coding and entry of the names in the database). It improved the overall efficiency.

9.7.3 Company Product Information

Company product names are another important piece of information to be used in the relevance model. An example would be appropriate here. A news article with no mention of “MSFT” or “Microsoft”, but lots of reference to “Windows XP” or “Longhorn” is as equally important to Microsoft as any other news article having the company name. So product names and their abbreviations play a major role in
Figure 9.5. A profile page for the company GE (General Electric). We collected useful information from pages like these to build the ontologies of the company.
identifying the right article with the right amount of relevance assigned according to them.

9.7.4 Company Executives

Company executives’ names are a useful source of information which can be efficiently used to get relevant documents/sentences. For example, any sentence with the phrase “Bill Gates” is sure to be pertinent to Microsoft corporation. This is more prominent in financial news articles as the company executives’ names come more often in these articles.

9.7.5 Synoname

Synonames are usually applied in the context of archiving historical information. They are used to find different versions of personal names which vary greatly from one institution to the next, reflecting traditional differences\(^1\). There is a computer program named SYNONAME, which automatically matches many possible forms of a single personal name by using an ordered sequence of 12 algorithms for pattern matching including both character and word-matching. The matched pairs of these names are considered to be “candidate matches” until confirmed by a human name-authority editor. Running against a merged file of artists’ names from museum collections data, the program performed with an accuracy rate of 97.4% and an optimum efficiency rate of 90.8%. Accuracy can increase to nearly 99% at the expense of some efficiency.

In the absence of an available version of this program’s download-able version, the name matching engine was implemented by simple regular expression matching and as it is using pre-edited well-tabulated data, it worked with over almost 100% accuracy. Table 9.1 shows part of the table which was edited after collecting the information for mostly Christian names used in the USA\(^2\), \(^3\), \(^4\).

\(^1\)http://crl.mmsu.edu/cgi-bin/Tools/CLR/clinfo?SYNONAME
\(^2\)http://freereg.rootsweb.com/howto/reallnames.htm
\(^3\)http://freereg.rootsweb.com/howto/latinnames.htm
\(^4\)http://www.hampton.lib.nh.us/hampton/history/dow/abbrev.htm
<table>
<thead>
<tr>
<th>Name</th>
<th>Synoname</th>
<th>Name</th>
<th>Synoname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abraham</td>
<td>Abra, Abram</td>
<td>Anthony</td>
<td>Ant, Tony</td>
</tr>
<tr>
<td>Benjamin</td>
<td>Ben, Benja</td>
<td>Charles</td>
<td>Charlie, Cha</td>
</tr>
<tr>
<td>Christopher</td>
<td>Chris, Christo</td>
<td>Edmund</td>
<td>Ed., Edm</td>
</tr>
<tr>
<td>Francis</td>
<td>Franc, Firan</td>
<td>Jeffrey</td>
<td>Geoffrey, Jef</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>John</td>
<td>Jo</td>
<td>Nathaniel</td>
<td>Nate, Nathl, Nathan</td>
</tr>
<tr>
<td>Robert</td>
<td>Rob, Bob</td>
<td>Samuel</td>
<td>Sam, Samu,</td>
</tr>
<tr>
<td>Thomas</td>
<td>Tom, Thom</td>
<td>William</td>
<td>Bill, Billie</td>
</tr>
</tbody>
</table>

Table 9.1. Part of the Synoname table used for extracting names abbreviated or used other ways.

9.7.6 Competitors

Competitors’ names are also very useful in the context of document relevance. Competitors names can indicate that the article is about the group of companies in the same sector, and thus can be inferred as useful to the company. For example, an article under the MSFT (Microsoft) bin may have a sentence about AAPL (Apple) or IBM (IBM), and as all these companies are in the Software business, the sentence will be deemed relevant in the context of MSFT. Though this feature was not extensively used in the recent version of the software in this study, it can be used more fruitfully in future. Chapter 12 includes further discussions and future directions, where we conclude the thesis.

All these techniques are useful in extracting more relevant information from articles. In the next chapter, as seen in Table 10.1 and Figures 10.1, 10.2, and 10.3, all these techniques can improve the document and sentence level relevance and the overall keyword-model.

9.8 Conclusion and Future Work

This study developed a novel learning method to measure term-relationship from a collection of news articles. Once the term-relationships are learned, and the related term-vector has been found, this knowledge is provided to domain experts in the form of a Bayesian Network, who then label the relation-types using the ontology schema. The effectiveness of our learning method is demonstrated in the context...
of document relevance measure in the next chapter.
Domain knowledge is now ready to be used in the form of domain ontologies. These ontologies will be used to find relevant documents, important sentences inside these relevant documents and henceforth be used to improve upon the results received by using the basic keyword-model on a handful of companies (in Chapter 8).

As noticed in the previous chapter, building a domain ontology is a complex procedure. We built individual ontologies for individual companies, but this was not accomplished in just one step. Old news articles, and relevant documents were analyzed to extract useful keywords. Then the relationship was visualized by using Bayesian Network. In the following step, these keywords were put in their proper places (according to the type of relations). Rule-based techniques were also used to extract other useful information about these companies wherever available. This includes the company profile page, company competitor page, and use of other
10.1 Preliminary Improvement

Several improvements resulted from using all these techniques. The first few tables and associated figures show how the use of ontologies can improve the document-level and sentence-level relevance.

10.2 Document-level Relevance

We try to give a measure of document relevance with the use of ontologies and how it can be useful in the context of document relevance. To find the relevance measure of a document D_i for the company w all the terms of the BN rooted at w are used. From equation (2) in the previous chapter,

$$D_i = \{S^i_1, S^i_2, S^i_3, \ldots S^i_{N_i}\} \quad (10.1)$$

Using the conditional probability values of each term in the BN with the root probability value as 1, each sentence is marked with a significance value of $\mathcal{S}(S_j)$. That means if there is a word w_k in the BN with p parent nodes then the significance of the term w_k is calculated as

$$\mathcal{S}(w_k) = \sum_{p_i} P(w_k|w_i^{p_i}) \times P(w_i^{p_i})$$

$$= \sum_{p_i} P(w_k|w_i^{p_i}) \times P(w_i^{p_1}|w_k^{p_1}p_1) \times \ldots \times 1 \quad (10.2)$$

Sentence significance is calculated as

$$\mathcal{S}(S_j) = \sum_{w_k \in S_j} \mathcal{S}(w_k) \quad (10.3)$$

which means that for all the terms w_k in sentence S_j if it is present in the BN, the equation (15) is used to calculate the individual significance values for these
terms and they are simply added to measure the sentence significance. $\mathcal{S}(S_j)$ can be greater than 1. $\mathcal{S}(S_j) = 0$ if there is no term in S_j which is in the network. Let us assume that there are total Y_i sentences ($Y=Yes$) in D_i which has significance value greater than 0 (we can identify these sentences as S^i_{yj}). Then the document relevance is defined as

$$\mathcal{S}(D_i) = \Psi \mathcal{S}(S^i_{yj}) \times \frac{Y_i}{N_i} \times \frac{Y_i}{\sum_{D_i} S^i_{yj}}$$

(10.4)

where

$$\Psi \mathcal{S}(S^i_{yj}) = \frac{\sum_{\forall S^i_{yj}} \mathcal{S}(S^i_{yj})/Y_i}{\sqrt{\sum_{D_i} (\sum_{\forall S^i_{yj}} \mathcal{S}(S^i_{yj})/Y_i)^2}}$$

(10.5)

The above equation (15) ensures that the number of sentences having significance value > 0 and the percentage of such sentences an article contributes to the whole list are listed into account.

10.2.1 Data Set for Document-level Relevance

From our main dataset, 112 stock symbols were selected for this experiment. Lists for 14 companies are taken to set up a user-survey. However the survey did not produce any good amount of user turnout and so we could not definitely claim the superiority of using ontologies. However for a few cases, the document level relevance turned out to be better than vanilla TF-IDF.

10.2.2 Evaluation

To evaluate the relevance of the news collection for the company, the precision and recall values are used as the metric. To get user feedback for their relevance we developed our own web-based interface and conducted a user-survey for 4 months. Actually the response was poor, but whatever minimal response was collected, was good in quality. The rankings given by them for these news articles were collected.
Table 10.1. Details of the result. Precision from using ontologies are shown in the second column followed by Recall and van-Rijsbergen F-Measure. Precision, Recall and F-Measure using plain vanilla TF-IDF are shown in fifth, sixth, and seventh columns.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Our Precision</th>
<th>Our Recall</th>
<th>Our F-Measure</th>
<th>TF-IDF Precision</th>
<th>TF-IDF Recall</th>
<th>TF-IDF F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPL</td>
<td>0.90</td>
<td>0.94</td>
<td>0.919</td>
<td>0.581</td>
<td>1.0</td>
<td>0.734</td>
</tr>
<tr>
<td>EBAY</td>
<td>0.927</td>
<td>0.955</td>
<td>0.94</td>
<td>0.62</td>
<td>1.0</td>
<td>0.765</td>
</tr>
<tr>
<td>MSFT</td>
<td>0.982</td>
<td>0.99</td>
<td>0.9859</td>
<td>0.92</td>
<td>1.0</td>
<td>0.958</td>
</tr>
</tbody>
</table>

10.2.3 Metric

In traditional relevance measure, precision is defined as the ratio of the number of relevant items r found and the total number of items t found. Precision $= \frac{r}{t}$. Recall has been defined as the ratio of the number of relevant items found and the desired number of relevant items. The desired number of relevant items includes the number of relevant items found and the missed relevant items m. Recall $= \frac{r}{r + m}$.

van-Rijsbergen F-Measure which is the harmonic mean of precision and recall, which is

$$F - Measure = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

(10.6)

In our experiment r is the number of documents for which user-given relevance is more than the threshold (set at 0.3) which is used to ensure that the effect of pre-filtering is eliminated.

10.3 Sentence-level Relevance

Using ontologies in different steps can be used to extract more relevant sentences in an article. In this section it is shown that the gradual use of more and more knowledge can bring more and more relevant sentences and increase the recall values and thus the overall F-measure of the sentence-level extraction. It was decided to use Microsoft’s (MSFT’s) news article-set in this context. We took 1000 Microsoft news articles and applied our sentence extraction algorithm to extract possible sentences which are relevant to Microsoft.

In the first stage only the ticker symbol of Microsoft or MSFT was applied. In
the second stage the ticker symbol as well as the name “Microsoft” were applied. In the third phase the whole Microsoft ontology, as we built it, was applied and in the fourth stage the extended version of the ontology with the use synonames was applied.

As seen from the Figures 10.1, 10.2 and 10.3, use of ontology with the use of synonames performed the best among all the other choices. Therefore, it is proved that when this combination is used, high recall value of relevant sentence extraction will result.
10.4 Improving Keyword Model Performance

This section shows how keyword model performance can be improved by two methods: (1) using ontologies and (2) using a variable window approach.

10.4.1 Using Ontology

Ontologies are used to improve the performance in the keyword model for all the 20 companies as shown in the Table 8.1, and the results look more promising [49]. The performance improvement is shown in Figure 10.4. From this figure it is seen that in some cases the use of ontologies did not result in very large increase in performance. When we looked for the reason behind this, we found that the use of ontologies in some cases restricts the amount of information available for analyzing and calculating the entropy. However, other than this, the performance
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Date</th>
<th>Price Swing</th>
<th>Real Cause/Fact/Analysis</th>
<th>Keywords Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBAY</td>
<td>Mar 14, 2005</td>
<td>DOWN</td>
<td>Expected federal court ruling of a suit against eBay by MerceExchange Inc. (started in September 2001) and in the last few cases MerceExchange was awarded $5 million and $29 million.</td>
<td>mercexchange, appeals, consignment, federal, claim, multiple, award, court, auction</td>
</tr>
<tr>
<td>EBAY</td>
<td>Feb 13, 2005</td>
<td>UP</td>
<td>There was a talk in the town that the PowerSellers – members of a voluntary program eBay offers to its high-volume customers – will leave eBay completely or substantially reduce the listing. However “there appears to be no PowerSeller interest in leaving eBay, but there is interest in allocating incremental investment dollars to other channels, specifically sellers’ own websites,” - Mark Mahaney (Analyst)</td>
<td>powerseller, bad, shopper, voluntary, multiple, dollars, amazon, executive, offer</td>
</tr>
<tr>
<td>GE</td>
<td>Jul 15, 2004</td>
<td>UP</td>
<td>Sales level implies growth of 8 “When you can maintain that level of ROE for 10 years or more it shows that a company has a sustainable competitive advantage,” says Jensen portfolio manager Robert Millen. John Joyce (since named to head up the company’s services arm) said customer infrastructure was the oldest it’s been in nearly two decades, hinting buying would soon accelerate</td>
<td>level, economic, accelerate, joyce, growth, portfolio, john</td>
</tr>
</tbody>
</table>

Table 10.2. Some instances from the keyword model for various companies. As we see keywords are extracted which are very relevant to the facts pertinent to the possible reasons for the price swings for these companies. These results are mainly from variable window approach with the use of ontology (VW + Onto)
Figure 10.3. This figure shows the F-measure for the first 50 news articles from the above chart. The precision and recall values were measured for all the stages. This shows that using ontology and synoname results in a much higher F-measure than use of just the ticker symbol (which the finance pages of Yahoo usually does).

can be improved by using the business ontology.

10.4.2 Using Variable Window

Variable window is a much better concept than fixed window. This was described in detail in subsection 6.1.2 in Chapter 6. Figure 10.4 shows the performance improvement. As seen from this figure, using variable window has a much larger effect on performance than using the domain ontology. Some instances of results (in the form of keyword) are also shown for different companies for a few pivotal dates in Tables 10.2, 10.3, and 10.4.
Figure 10.4. The improvement in the weighted precision scoring by using the ontology and the variable window approach. The vertical axis represents the “Score” or the “Weighted Precision Score”. The horizontal axis represents the company. **FW** represents the case for fixed window, **FW + Onto** shows the case when we apply fixed window approach with ontologies, and **VW + Onto** is the case where we used variable window approach with ontologies. **VW + Onto** outperforms the other two cases in almost all companies.
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Date</th>
<th>Price Swing</th>
<th>Real Cause/Fact/Analysis</th>
<th>Keywords Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPQ (Hewlett Packard)</td>
<td>Mar 30, 2005</td>
<td>UP</td>
<td>HP issued a press release entitled “HP Names Mark Hurd of NCR to Serve as CEO and President,” a copy of which is filed with this report as Exhibit 99. “The HP board is taking a very hands-on approach to the company now and they basically wanted someone who is skilled and talented, but also someone who will be answering to the board in a direct way,” said Charles King, principal with Pund-IT Research</td>
<td>mark, hurd, change, board, charles, principal, serve, fiorina</td>
</tr>
<tr>
<td>INTC (Intel)</td>
<td>Aug 12, 2004</td>
<td>DOWN</td>
<td>In late July Intel said it would miss a deadline for shipping its 4-gigahertz version of the Pentium 4 by one quarter</td>
<td>gigahertz, differentiate, lower, fall, pentium, deadline</td>
</tr>
<tr>
<td>INTC (Intel)</td>
<td>May 27, 2005</td>
<td>UP</td>
<td>At a gathering with analysts and reporters last week, Intel executive Gerald Holzhammer said the company is shipping 100,000 Pentium D processors this quarter - “We’re shipping 100,000 this quarter, and we’re going to ship millions by the end of the year”</td>
<td>indicator, gerald, ship, holzhammer, millions, pentium</td>
</tr>
</tbody>
</table>

Table 10.3. Some instances from the keyword model for various companies. As we see keywords are extracted which are very relevant to the facts pertinent to the possible reasons for the price swings for these companies. These results are mainly from variable window approach with the use of ontology \((VW + Onto)\)

10.5 Conclusion

The keyword model is the basic model used for the work in this study and as shown in the above analysis, its performance can be improved by the use of ontologies as well as the variable window approach. In the next chapter some interesting observations in this market model are presented.
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Date</th>
<th>Price Swing</th>
<th>Real Cause/Fact/Analysis</th>
<th>Keywords Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMT</td>
<td>May 4, 2005</td>
<td>UP</td>
<td>lockheed martin announces first quarter 2005 results. the first quarter results include an after-tax gain of $31 million. LMT got an order to deliver a total of 80 aircraft.</td>
<td>results, order, models, commander, leaders, f-16, excited</td>
</tr>
<tr>
<td>MSFT</td>
<td>Aug 3, 2005</td>
<td>UP</td>
<td>There is a speculation that the software company may raise its bid to secure a controlling stake in Indian Banking Software firm I-Flex. “The possibility of Microsoft raising its dividend or Microsoft announcing a special dividend, and Microsoft call option volume is aggressive on dividend possibilities”, said Paul Foster, options strategist.</td>
<td>i-flex, raising, redact, banking, dividend</td>
</tr>
<tr>
<td>MSFT</td>
<td>Apr 7, 2005</td>
<td>UP</td>
<td>An independent survey of 555 businesses found that Microsoft’s much maligned Windows operating system provides service and reliability that is at least as good as – and often better than – that of upstart rival Linux, and is nearly as secure. Although Linux fans are sure to deride the study as Microsoft propaganda, it was conducted by Yankee group, a respected Boston-based it research and consulting company, which paid for it internally, with no outside funding. But it certainly gives Microsoft sales people more ammunition.</td>
<td>propaganda, people, found, linux, ammunition, service</td>
</tr>
</tbody>
</table>

Table 10.4. Some instances from the keyword model for various companies. As we see keywords are extracted which are very relevant to the facts pertinent to the possible reasons for the price swings for these companies. These results are mainly from variable window approach with the use of ontology (VW + Onto)
Chapter 11

Interesting Observations

“There is nothing like looking, if you want to find something. You certainly usually find something, if you look, but it is not always quite the something you were after.”

- J.R.R. Tolkien
(English Writer and Author of The Lord of the Rings)
(1892-1973)

This short chapter shows some observations from the keyword-model which are very interesting and worth sharing. As shown in the last chapter, this thesis investigated 20 companies and 10 best dates for each company were taken into consideration for this study. These dates are taken from the duration Jan 1, 2004 to Aug 3, 2005 when the price swings (UP or DOWN) for individual companies were the higher than a threshold selected. If for any company, the number of dates when the price swings were above the threshold was more than 10 we took only the first 10. Therefore, we simple took the top 10 dates when the price swings were the highest. While examining these dates for keyword-based explanation, other interesting facts were discovered. This chapter describes some of them in brief.
11.1 Document Distribution Correlation

Before reporting on document distribution correlation, a definition of document distribution is necessary. It will be defined in the next subsection, and the graph of document distribution will be shown by arranging the company names in an ascending order of document distribution value. Later this distribution will be shown as related to the keyword-model performance.

11.1.1 Document Distribution

Document distribution is defined as the ratio between the number of news articles or documents and the number of price swings in a time period. It means that (for a company) if in time period T, the number of times the price went up (in significant amount1) is N^+_T and the number of times the price went down (in significant amount2) is N^-_T, document distribution or DS (short form of Document/Swing) will be defined as:

$$DS = \frac{D^+_T + D^-_T}{N^+_T + N^-_T} \quad (11.1)$$

where

$$D^+_T + D^-_T = \text{Number of Documents to Analyze} \quad (11.2)$$

and

$$N^+_T + N^-_T = \text{Total Number of Upswings and Downswings} \quad (11.3)$$

Here $D^+_T + D^-_T$ represents the number of documents to analyze: meaning that during that time period T, thses many documents (in the form of news articles) were found to be related to the company and were crawled/downloaded for explanation generation purpose.

Now, we present a very interesting observation about the correlation between

\[\text{over a threshold } \delta^+ \]
\[\text{less than a threshold } \delta^- \]
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Name</th>
<th>UP Count</th>
<th>DOWN Count</th>
<th>UP Doc</th>
<th>DOWN Doc</th>
<th>Total Doc</th>
<th>Doc/Swing</th>
</tr>
</thead>
<tbody>
<tr>
<td>AET</td>
<td>Aetna</td>
<td>32</td>
<td>18</td>
<td>45</td>
<td>44</td>
<td>89</td>
<td>1.78</td>
</tr>
<tr>
<td>GE</td>
<td>General Electric</td>
<td>16</td>
<td>10</td>
<td>44</td>
<td>17</td>
<td>61</td>
<td>2.34</td>
</tr>
<tr>
<td>LOW</td>
<td>Lowe’s Cos</td>
<td>26</td>
<td>20</td>
<td>101</td>
<td>28</td>
<td>129</td>
<td>2.8</td>
</tr>
<tr>
<td>AXP</td>
<td>American Express</td>
<td>13</td>
<td>12</td>
<td>66</td>
<td>29</td>
<td>95</td>
<td>3.8</td>
</tr>
<tr>
<td>LMT</td>
<td>Lockheed Martin</td>
<td>23</td>
<td>17</td>
<td>123</td>
<td>58</td>
<td>181</td>
<td>4.52</td>
</tr>
<tr>
<td>MER</td>
<td>Merrill Lynch</td>
<td>23</td>
<td>18</td>
<td>163</td>
<td>60</td>
<td>223</td>
<td>5.43</td>
</tr>
<tr>
<td>BA</td>
<td>Boeing</td>
<td>30</td>
<td>19</td>
<td>134</td>
<td>136</td>
<td>270</td>
<td>5.51</td>
</tr>
<tr>
<td>EBAY</td>
<td>eBay Inc.</td>
<td>41</td>
<td>31</td>
<td>184</td>
<td>214</td>
<td>398</td>
<td>5.52</td>
</tr>
<tr>
<td>AIG</td>
<td>American Intl Group</td>
<td>23</td>
<td>24</td>
<td>143</td>
<td>140</td>
<td>283</td>
<td>6.02</td>
</tr>
<tr>
<td>MOT</td>
<td>Motorola</td>
<td>37</td>
<td>25</td>
<td>342</td>
<td>75</td>
<td>417</td>
<td>6.72</td>
</tr>
<tr>
<td>F</td>
<td>Ford Motor</td>
<td>27</td>
<td>30</td>
<td>209</td>
<td>255</td>
<td>464</td>
<td>8.14</td>
</tr>
<tr>
<td>AAPL</td>
<td>Apple Computer</td>
<td>43</td>
<td>33</td>
<td>439</td>
<td>240</td>
<td>679</td>
<td>8.93</td>
</tr>
<tr>
<td>HPQ</td>
<td>Hewlett-Packard</td>
<td>26</td>
<td>24</td>
<td>300</td>
<td>164</td>
<td>464</td>
<td>9.28</td>
</tr>
<tr>
<td>DELL</td>
<td>Dell</td>
<td>21</td>
<td>16</td>
<td>278</td>
<td>110</td>
<td>388</td>
<td>10.48</td>
</tr>
<tr>
<td>C</td>
<td>Citigroup</td>
<td>13</td>
<td>10</td>
<td>127</td>
<td>201</td>
<td>328</td>
<td>14.26</td>
</tr>
<tr>
<td>INTC</td>
<td>Intel</td>
<td>33</td>
<td>29</td>
<td>501</td>
<td>430</td>
<td>931</td>
<td>15.01</td>
</tr>
<tr>
<td>BAC</td>
<td>Bank of America</td>
<td>12</td>
<td>14</td>
<td>134</td>
<td>273</td>
<td>407</td>
<td>15.65</td>
</tr>
<tr>
<td>GM</td>
<td>General Motors</td>
<td>28</td>
<td>26</td>
<td>515</td>
<td>481</td>
<td>996</td>
<td>18.44</td>
</tr>
<tr>
<td>MSFT</td>
<td>Microsoft</td>
<td>14</td>
<td>13</td>
<td>534</td>
<td>129</td>
<td>663</td>
<td>24.55</td>
</tr>
<tr>
<td>IBM</td>
<td>IBM</td>
<td>18</td>
<td>14</td>
<td>565</td>
<td>419</td>
<td>984</td>
<td>30.75</td>
</tr>
</tbody>
</table>

Table 11.1. Details of the dataset for the randomly selected 20 companies. First two columns represent the ticker symbol and the company name. The third and fourth columns respectively represent the number of upswings and downswings of price. The fifth and sixth columns shows the number of articles associated with these swings and thus the seventh column is merely the total number of articles considered for running the keyword model. The last column shows the document distribution versus the number of price up swing or down swing. This is basically the ratio of total file to analyze and the total number of “UP Count” and “DOWN Count”.

document distribution and the performance from the keyword-based model. Here, Table 11.1 takes the data from Table 8.1 of Chapter 8, but sorts the entries by Doc/Swing count or DS count instead of alphabetical order. Then these data points are plotted in Figure 11.1.

11.1.2 Correlation

Figure 11.2 demonstrates how the DS counts of different companies correlate with the keyword model performance.

Basically this graph shows that the variable width (VW) approach with the use
Figure 11.1. The company names are arranged in ascending order of magnitude of DS or Document/Swing ratio. FW represents fixed window approach. FW+Onto shows the results from fixed window approach with the use of ontologies. VW+Onto uses variable window and ontologies.

of ontology can bring more relevant segments from the news articles as the number of news articles increases on average. In a simplified term, this means that more data leads to better analysis and better performance score. Other approaches, including FW and FW +Onto are not exactly aligned with the document distribution, which is intuitively true, as they always take fixed windows for any pivotal date and those windows may not always catch the right set of documents, which should be analyzed to get the real explanation. The point to be noted here is that the performance of this analysis also empirically dependent on the choice of proper set of documents, which is also intuitively true. If we can not analyze the right dataset, however better the algorithm is, the quality of the result or the performance will never be good.
Figure 11.2. Trend comparison of all the keyword models with the DS count value. This graph shows that the VW + Onto model correlates with the DS count most closely. This indicates that the variable width model with the use of ontology can bring more relevant portions of the news articles as the number of news articles increases on average. And more data leads to better analysis and better performance score.

11.2 Other Observations

There are other interesting observations about how one company’s up or down swing of price can help or affect another company’s price. Two such examples of opposite nature are shown here.

- The first set consists of Figures 11.3, 11.4, and Table 11.2. It is shown that in a flourishing business sector, a bad news of a competitor can help increase a company’s stock price.

- Similarly the second set consists of Figures 11.5, 11.6, and Table 11.3. Here it is shown that in a shaky market, where not many companies are doing well, a good news for a certain company can boost the price of even a rival
company. In this scenario a good news of any company actually influences the whole sector, and as people’s confidence on the sector increases, prices of other companies, even if they are competitors can be affected.
<table>
<thead>
<tr>
<th>Ticker</th>
<th>Date</th>
<th>Price Swing</th>
<th>Real Cause/Fact/Analysis</th>
<th>Keywords Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPQ</td>
<td>Feb 8-10, 2005</td>
<td>UP</td>
<td>Dell’s fourth-quarter profit edged expectations, but after-hours investors were shaken by revenue that was merely in line, as well as a top-line forecast below the current Street consensus.</td>
<td>forecast, shaken, net, stay, billion</td>
</tr>
</tbody>
</table>

Table 11.2. One instance from the keyword model for Hewlett Packard is shown here. As Dell and Hewlett Packard are competitors in a flourishing business sector (computer hardware), reports of a bad news of rival (Dell) acted as a boon to Hewlett Packard. Simply, rival’s bad news is good news in a flourishing sector.

![Price graph of F](chart.png)

Figure 11.5. Price graph for F(Ford Motors)

11.3 Conclusion

Though keyword model is the primary method we used here, we also tried a new model of explanation generation, which is based on sentence analysis. As we have described briefly in chapter 6, sentence model is worth trying for showing more presentable results. In the next chapter we will see some interesting results from this model and we will conclude afterwards.
Figure 11.6. Price graph for GM (General Motors)
Table 11.3. Two instances from the keyword model for Ford and General Motors, competitors in the auto industry. But the industry is recently not doing well. In this shaky market, if something good happens to any company (here GM), then it influences others as well, even if they are competitors. Here as billionaire Kirk Kerkorian offered to buy a big chunk of General Motors share, not only did General Motors share price go up, but so did it Ford’s share. This is a very interesting example of the fact that the market felt more confident in the whole sector as one of the player’s (GM’s) shares went up due to a good news.

<table>
<thead>
<tr>
<th>Ticker</th>
<th>Date</th>
<th>Price Swing</th>
<th>Real Cause/Fact/Analysis</th>
<th>Keywords Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>April 29 - May 4, 2005</td>
<td>UP</td>
<td>Standard & Poor downgraded the credit ratings of automakers like Ford and GM to junk status – however billionaire Kirk Kerkorian offered to buy big chunks of GM shares. Microsoft chairman Bill Gates and Ford chairman and chief executive Bill Ford Jr. said having high-definition screens in vehicles, speech recognition, cameras, digital calendars and navigation equipment with directions and road conditions will set car companies apart from their competitors.</td>
<td>Thursday, interest, bill, gates, kirk, billionaire, kerkorian</td>
</tr>
<tr>
<td>GM</td>
<td>April 29 - May 4, 2005</td>
<td>UP</td>
<td>Standard & Poor downgraded the credit ratings of automakers like Ford and GM to junk status – however billionaire Kirk Kerkorian offered to buy big chunks of GM shares.</td>
<td>kirk, likely, billionaire, kerkorian, expectations</td>
</tr>
</tbody>
</table>
Chapter 12

Conclusion and Sentence-based Explanation Model

‘Finally, I will not become any dumber.’
- Paul Erdös
(Hungarian Gypsy Mathematician)
(1913-1996)

In this chapter we conclude our work and show some of the preliminary results of our ongoing work to find sentence-based explanation. In this model we go even further and deeper to assist users with an explanation which is presented as a sentence or a set of sentences. At first look it seems that this model should not be too different from the keyword-based model (Chapters 6, 8, 10).

12.1 Why We Need a Separate Model

Let us discuss why we need a completely separate model for sentence-based explanation [42].

- If we can extract explanatory keywords by applying the entropy model or
Kullback-Liebler divergence on the keywords, it should be possible to generate explanatory sentences if we can feed the same entropy model with sentences. However, this does not work as the basic granularity of any news article is not a sentence, it is a word. The probability of finding the exact same sentence in two articles is almost nil. On the contrary, as words are the basic granular or atomic identity of an article, paragraph or a sentence, the same word can occur several times in a single paragraph or multiple paragraphs. So applying the entropy model or the Kullback-Liebler divergence will not produce any result.

- Similarly we can think of extending the keyword-based explanation model to generate the sentence from an article. If we can associate a simple mapping from the words to the article and to the sentences inside an article, then once we get the word, we can refer to the article and the sentence from which it is coming. However, first of all, we lose the mapping between a word and a sentence immediately when we just take different probability measures of the word (by word count). It is not possible to associate each word with the sentence reference while we are measuring the probabilities and entropies.

- Thirdly, we can think of an ad-hoc technique where we may not need the aforesaid reference. After getting the keywords, we can just search through the article set (in W_A) to find the sentence from which it can possibly come. This approach, however, is too simplistic and can not guarantee any performance if implemented. However, in practice, implementing this simplistic approach may not be that simple. During the keyword generation and keywords probability measures, if we rely upon stemming [111], then the actual form of the word gets lost. Therefore, during the last step, if we also have to stem each word in a candidate sentence, the chances of getting multiple sentences for the word increases. In real cases, we do stem the words and so the real form of the word is already lost.

Due to all these fundamental difficulties, we realized that sentence-based explanation generation is a very different problem than the keyword-based approach. In the next section we describe the architecture and theory behind this model.
12.2 Sentence-based Model Architecture

Our sentence-based model is a complex model and is described in Figure 12.1. The main difference between the keyword-model and the sentence-model is that in the sentence model we do not consider two different windows of documents. We only consider one window which is representative of the pivotal date according to the price trend. This is the same window as the variable-window in the keyword-model. As there is only one window or one set of documents analyzed, there is no concept of entropy or difference between the two sets.

In the sentence-based model, we only consider the “Window A” as defined in chapter 6, and no “Window B”. Therefore

\[W^v_A = -(d_A - d) \text{ where } \text{slope}(d) \neq \text{slope}(d_{(a-1)}), \forall a, A = \max(a), \text{ and } d > d_A \]

(12.1)

And so the only document set analysed is the document or news collection gathered during the pivotal date and during the \(d_A \) days just before the pivotal date.

\[C^v_A = C(d) + C(d_A - d) \]

(12.2)

12.3 Language Model

Language models are recently gaining popularity among IR researchers. We extracted necessary keywords for generating the language models by the steps as follows. These steps ensure that these language models can be learned from the previous articles (training articles).

1. **Selecting the Time Frame:** First we select a time frame for the learning period. In our case this duration was from Jan 1, 2002 to Dec 31, 2004. Let’s say this price duration is \(T \).

2. **Collecting the News Articles:** We collected whatever news articles were available for 200 US companies. As we were building the models for price
Figure 12.1. A simple way to show the analysis procedure for explanatory sentence generation. The date for which we are trying to find an explanation is called the pivotal date. Only the documents during or before the pivotal date with same price trend as the pivotal date are considered for the analysis.
movements, we kept the models independent of the companies and dependent only on price movements. Let us assume this document set is $D(T)$, which consists of documents from all companies.

$$D(T) = \bigcup (D_1(T), D_2(T), \ldots D_N(T))$$ \hspace{1cm} \text{(12.3)}$$

where $N = 200$, the number of companies, and $D_i(T)$ is the document (news article) set for i^{th} company for the time duration T.

3. **Separating the News Articles:** We separate the articles according to the major price swings and put them in two separate bins, UP Bin and DOWN Bin. As the number of articles grew too large, we only took the price swings which exceeded 5%. Let us assume these bins are $D^{UP}(T)$ and $D^{DOWN}(T)$

4. **Tagging the Paragraphs:** This part was tedious work. We had to tag part of these articles very quickly to curb out the unnecessary part and to reduce the amount of sentences/words used to make these models. The tagged portions represent the possible effect of/fact of/reason for the price movement.

5. **POS Tagging:** We used Brill’s POS tagger to tag all the important portions (paragraphs) of these articles, which might possibly affect the price swings during those time periods. This way we can separate the nouns, verbs, or articles and only take the necessary ones which can possibly affect prices. We took mainly verbs and some nouns which could possibly be responsible. This part is also manual and took a while to build.

6. **Building the Learned Model:** After we got the words responsible for the price swings, we created the language model with them. The models also include frequencies of each word. We specify the models as M^{+pt} for UP swing and M^{-pt} for DOWN swing.
<table>
<thead>
<tr>
<th>Company</th>
<th>Date</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSFT</td>
<td>July 1, 2005</td>
<td>IBM Corp. will get $775 million in cash and $75 million worth of software from Microsoft Corp. to settle claims ...</td>
</tr>
<tr>
<td>C</td>
<td>July 11, 2005</td>
<td>Merrill Lynch cut its second-quarter earnings estimate for Citigroup, Inc. to $1.04 from $1.09 a share and slashed its fiscal 2005 earnings estimate...</td>
</tr>
</tbody>
</table>
| IBM | April 15, 2005 | 1. IBM fell $6.94, to close at $76.70, as investors reacted to the company’s surprise earnings announcement. ...
2. ...Big Blue’s report came out, some analysts speculated there could be weakness in IBM’s services business... |
| DELL | May 10, 2005 | Billionaire Dell Invests In Linux Giant Red Hat... |

Table 12.1. Explanatory sentences for companies for a specified date

12.4 Explanatory Sentences

12.4.1 Language Model

Let us assume that C^w_A denotes the document set inside the W^v_A window (variable window) for a price swing. Let us assume that the price swing was UP and we will derive the equations for it (the derivation for DOWN swing will be similar). Let us assume D denotes the number of documents in the set C^w_A.

$$D = |C^w_A| \quad (12.4)$$

Let suppose that document i has S_i sentences and so the total number of sentences S in the set is

$$S = \sum_{i=1}^{D} |S_i| \quad (12.5)$$

With this set up, we calculate the probability distribution of the sentences given the language model and then calculate it for all the sentences. If we denote this score as L_j for a sentence S_j then

$$L_j = \text{Prob}(S_j|M^+_p), \forall j \in S \quad (12.6)$$
12.4.2 Ontology-based Relevance Model

We used the ontologies built as shown in Chapter 9 and give scores to all the sentences. We then take R_j as the score from this relevance model,

$$R_j = \text{Prob}(S_j | O^C), \forall j \in S$$ \hspace{1cm} (12.7)

where O^C denotes the ontology for the company C, which is basically the word-set coming from their ontologies.

12.4.3 Mixture Model

We use a mixture model for finding the explanatory sentences. We calculate the following score for all the sentences. If this final score is denoted as F_j then

$$S_{expl} = \text{argmax}_j (F_j | F_j = w_L \times L_j + w_R \times R_j)$$ \hspace{1cm} (12.8)

where w_L and w_R are the weights to control the effect of the ontologies for sentence based relevance.

12.5 Results

We used the above method with some minor variations and got decent results from several different companies [53]. We also tried to use news HeadLine to extract the themes of the stories (exploiting the fact that HeadLines often represents a one-liner for the main theme) by matching main keywords in the HeadLine and in each sentence of the story [40]. The results are shown in Table 12.1.

12.6 Conclusion

We studied the keyword-based model extensively and show that it can work as an effective tool to find keyword-based explanation for an event with which we can associate a time-frame and for which we can collect some relevant documents. We decided to use market domain as there are two distinct characteristics: price and related market events.
Firstly, we demonstrated that price and related market events are well-correlated. In that context we picked up a few artificial markets and betting markets, and we studied them extensively.

Secondly, we extracted important text portions, and removed redundant portions of a Web-page (news article) to get important text-based data.

Thirdly, we extracted the temporal information and publishing time of these news articles with high accuracies and so could align these news articles with time-frame very well.

We analyzed these articles according to the price dynamics and extracted useful keywords (by using entropy-based model and KL divergence) which can explain the price dynamics. In the real stock market, as these techniques did not work out well, we planned to extract more relevant information by using domain ontologies. We built domain ontologies for all companies we were analyzing and applied them to get improved results. We used term-relationship and a few other rule-based extractor methods to collect terms to build these ontologies. We also introduced a variation of the keyword-model which is variable window approach, and it worked out better than using just ontology over the basic fixed window model.

At the end, we also looked into other possibilities and a learning-based approach to extract useful explanation. For this, we introduced sentence-based model. Though it is still in the nascent stage, sentence-based model is a promising model to find explanatory sentences when we can learn the language models from past articles. Preliminary results show better success with an ontology model than without it. We hope that in future this model will be studied and analyzed more extensively.

[34] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom M. Mitchell, Kamal Nigam, and Seán Slattery. Learning to extract symbolic

Vita
Sandip Debnath

HIGHLIGHTS

- 3+ years of IT job experience including jobs at Wipro.com, internships in Webel/Philips, NEC Lab, Overture/Yahoo Lab, Smeal Business School Lab
- Main designer and architect of Smealsearch (departmental search engine of Smeal College of Business)
- Distinction/Honors in M.Tech (Computer Science)
- First Class with Honors in B.E.T.C.E
- Stood 3rd (Medical) and 43rd (Engineering) in State-wise Joint Entrance Examinations (JEE 1990) among approximately 0.6 million students
- Diploma in Indian classical music (Hawaiian guitar)
- Language: Bengali, English, Sanskrit, Hindi, Gujarati, Spanish and Russian (learning)

EDUCATION

- PhD (Computer Science) The Pennsylvania State University, PA, 2005
 20+ publications, GPA: 3.82
- M.S. (Computer Science) University of Tulsa, OK, Jan 1999-Dec 2000
 Topper with First Class and Distinction
- B.E. (Electronics and Telecommunications Engineering), Jadavpur University, India, Aug 1990-Aug 1994
 First Class with Honors