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Abstract

In large-eddy simulation (LES), the modeling of subfilter-scale motions when the
filter width (∼ ∆) is comparable to the size of the energy-carrying eddies (∼ l), is a
challenging task. Under such conditions, the SFS model is required to parameterize
the SFS eddies realistically in addition to extracting energy from the resolved, large
eddies.

In this dissertation, we analyze an SFS model that solves for the SFS fluxes
prognostically using a truncated version of the SFS conservation equations. We
evaluate the model’s performance in LES of the moderately convective, stable and
neutral atmospheric boundary layer (ABL). We supplement our LES studies of the
convective and stable ABL with analysis of the SFS conservation equations using
data from the Horizontal Array Turbulence Study (HATS) experiments conducted
in 2003. In LES of the convective ABL, we find that the transport-equation-based
SFS model predicts the mean values and fluctuation levels of the SFS fluxes better
than does an eddy-viscosity closure, when compared to HATS data. The modeled
SFS conservation equations reproduce reasonably well the dominant trends in the
real conservation equations. The scaled, dominant production terms in the mod-
eled SFS stress budgets exhibit asymptotes at low l/∆, some of which agree well
with theoretically derived values in the limit l/∆ → 0.

The HATS analysis for the stable ABL shows that terms typically ignored in
eddy-viscosity closures contribute significantly to both the mean values and fluc-
tuation levels of the SFS fluxes at low l/∆. We perform LES of a moderately sta-
ble ABL with the modeled SFS conservation equations, using physical conditions
identical to those used in a previous LES-intercomparison study. The predictions
of bulk parameters and equilibrium profiles of important statistics are robust to
changes in resolution but the “locally” scaled effective eddy-viscosities of heat and
momentum are overpredicted compared to observations.

We perform LES of the neutral ABL in order to test whether a recently devel-
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oped framework — known as the “high accuracy zone” (HAZ) — to improve LES
predictions in the surface layer is applicable to non-eddy-viscosity closures. We
find that the modeled SFS conservation equations fail to eliminate the overshoot
in the profile of the nondimensional mean-gradient of velocity without following
the algorithm prescribed by the HAZ framework. This result provides further
evidence for the generality of the HAZ framework.

iv



Table of Contents

List of Figures ix

List of Tables xxi

Acknowledgments xxiii

Chapter 1
Introduction and literature review 1
1.1 SFS conservation equations . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 SFS model versus other factors . . . . . . . . . . . . . . . . 7
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2
Large-eddy simulation of the moderately convective atmospheric

boundary layer 9
2.1 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Equations for the filtered scalar and velocity fields . . . . . . 10
2.1.2 Conservation equations for the SFS flux and stress . . . . . 12
2.1.3 SFS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Conservation equation for the SFS turbulent kinetic energy . 19

2.2 Details of LES code . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Realizability . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 SFS budgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 SFS flux budgets . . . . . . . . . . . . . . . . . . . . . . . . 30

v



2.4.2 SFS stress budgets . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Comparison of statistics from high-resolution LES with HATS data 46

2.5.1 Description of the HATS study . . . . . . . . . . . . . . . . 46
2.5.2 HATS: τ d

αα and τ d
13 budgets . . . . . . . . . . . . . . . . . . . 49

2.5.3 LES: τ d
αα and τ d

13 budgets . . . . . . . . . . . . . . . . . . . . 52
2.5.4 SFS total stresses . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.5 SFS deviatoric components . . . . . . . . . . . . . . . . . . . 62
2.5.6 SFS kinetic energy . . . . . . . . . . . . . . . . . . . . . . . 66
2.5.7 HATS: fi budgets . . . . . . . . . . . . . . . . . . . . . . . . 68
2.5.8 High-resolution LES: fi budgets . . . . . . . . . . . . . . . . 70
2.5.9 SFS scalar fluxes: mean values . . . . . . . . . . . . . . . . . 72
2.5.10 SFS scalar fluxes: fluctuations . . . . . . . . . . . . . . . . . 74
2.5.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.6 Conditional means of SFS stress and SFS production rate . . . . . . 80
2.6.1 Evolution equation for the resolved-scale velocity jpdf . . . . 80
2.6.2 Procedure for obtaining conditional means . . . . . . . . . . 82
2.6.3 HATS: Conditional means of P d

ij . . . . . . . . . . . . . . . . 84
2.6.4 LES: Conditional means of P d

ij . . . . . . . . . . . . . . . . . 87
2.6.5 HATS: Conditional means of τ d

ij . . . . . . . . . . . . . . . . 91
2.6.6 LES: Conditional means of τ d

ij . . . . . . . . . . . . . . . . . 93
2.6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 3
The moderately stable boundary layer: analysis using HATS

data and LES 98
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.1.2 Outline of chapter . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 HATS: τ d
αα and τ d

13 budgets . . . . . . . . . . . . . . . . . . . . . . . 102
3.2.1 τ d

αα budgets . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.2.2 τ d

13 budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2.3 Asymptotic values in the “RANS” limit . . . . . . . . . . . . 104
3.2.4 RMS values of production terms in the τ d

ij budgets . . . . . 107
3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.3 HATS: f1 and f3 budgets . . . . . . . . . . . . . . . . . . . . . . . . 113
3.3.1 f1 budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.3.2 f3 budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.3.3 RMS values of production terms in the f1 and f3 budgets . . 116
3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.4 SFS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vi



3.5 Set-up of LES runs . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.6.1 Modeled τ d
ij budgets . . . . . . . . . . . . . . . . . . . . . . 124

3.6.2 Modeled fi budgets . . . . . . . . . . . . . . . . . . . . . . . 128
3.6.3 Bulk parameters . . . . . . . . . . . . . . . . . . . . . . . . 131
3.6.4 Evolution of mean profiles of potential temperature and ve-

locity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.6.5 Time series of velocity and potential temperature fluctuations 141
3.6.6 Profiles of flux- and gradient-Richardson number . . . . . . 144
3.6.7 The “local” scaling hypothesis . . . . . . . . . . . . . . . . . 149
3.6.8 Nondimensional gradients of mean potential temperature

and velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.6.9 Steady-state profiles of τ and 〈w′θ′〉 . . . . . . . . . . . . . . 158
3.6.10 Influence of surface cooling rate . . . . . . . . . . . . . . . . 162

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Chapter 4
Large-eddy simulation of the neutral boundary layer 175
4.1 The overshoot problem . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.2 The ‘High Accuracy Zone’ framework . . . . . . . . . . . . . . . . . 176
4.3 Set-up of LES runs . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.4.1 φm profiles for Nz = 32 and Nz = 64 . . . . . . . . . . . . . 180
4.4.2 φm profiles for Nz = 96 . . . . . . . . . . . . . . . . . . . . . 184
4.4.3 Dependence of (R, ReLES) on (cτ , AR) . . . . . . . . . . . . 190
4.4.4 Influence of surface stress model . . . . . . . . . . . . . . . . 192

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Chapter 5
Conclusions 197
5.1 Studies of the convective ABL . . . . . . . . . . . . . . . . . . . . . 198
5.2 Studies of the stably stratified ABL . . . . . . . . . . . . . . . . . . 199
5.3 LES studies of the neutral ABL . . . . . . . . . . . . . . . . . . . . 200
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Appendix A
Derivation of asymptotic values for the dominant production

terms in the τ d
αα and τ d

13 budgets, as ∆w/∆ → 0 (“RANS
limit”) 203

A.1 τ d
αα budgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

vii



A.2 τ d
13 budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Bibliography 208

viii



List of Figures

2.1 (i) Total velocity variances (resolved + SFS) scaled with w2
∗ (ii) The

(1,3) stress component scaled with u2
∗ (iii) vertical heat flux scaled

with Q0 (iv) mean potential temperature; and (v) mean velocity
components, U and V. The geostrophic velocity components are
denoted by Ug and Vg. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Left panel: Nondimensional mean gradient of potential temper-
ature, φh, versus −z/L, where L is the Monin-Obukhov length.
Right panel: Nondimensional mean gradient of velocity, φm, versus
−z/L. The top of the layer shown corresponds to z/zi = 0.1. Leg-
end – Solid line : modeled SFS conservation equations, dot-dash
line : empirical fit (Businger et al., 1971). . . . . . . . . . . . . . . . 27

2.3 Two-dimensional (Wyngaard, 2010) resolved-scale spectra of: (a)
potential temperature (b) horizontal kinetic energy (c) vertical ki-
netic energy, versus nondimensional horizontal wavenumber at mid-
ABL. In (a), cτ = 0.10 while in (b)-(c), cθ = 0.21. Eθ(κ) has the
units K2m and Eh,w(κ) has the units m3s−2. The radial wavenum-

ber, κ, is given by κ =
√
κ2

1 + κ2
2 where κ1,2 are wavenumbers cor-

responding to the 1,2 directions. The dash-dot line has a slope of
(-5/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 The spectral constants β and α. The consensus values are shown
using dotted lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Plane-averaged terms in the fi budgets plotted versus height. The
inversion height is 787.5m. The units on all the budget terms is
mKs−2. Plot legend : (—) Anisotropic gradient-production, (· · · )
Isotropic gradient-production, (– –) Flux tilting, (– ·) Advection, (–
· · · – ) Modeled slow pressure strain-rate covariance, (— —) Time
tendency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



2.6 Plane-averaged terms in the fi budgets for 0 < z < 0.3zi. The units
on all the budget terms is mKs−2. Plot legend : (—) Anisotropic
gradient-production, (· · · ) Isotropic gradient-production, (– –) Flux
tilting, (– ·) Advection, (– · · · – ) Modeled slow pressure strain-rate
covariance, (— —) Time tendency . . . . . . . . . . . . . . . . . . . 32

2.7 Plot showing predicted nondimensional horizontal heat fluxes (re-
solved and SFS) as functions of height. Top panel: from modeled
SFS conservation equations, bottom panel: from eddy-diffusivity
closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Resolved-scale potential temperature spectra at mid-ABL for (cτ , cθ) =
(0.10, 0.21): (a) with advection of SFS fluxes; and (b) without ad-
vection of SFS fluxes. The straight line has a slope of −5/3. . . . . 36

2.9 Plane-averaged values of terms in the SFS stress budgets plotted
versus height. The units on all the budget terms are m2s−3. The
inversion height is 787.5m. Plot legend: (—) Anisotropic produc-
tion, (· · · ) Isotropic production, (– –) Buoyant production, (– ·)
Advection, (– · · · – ) Modeled slow pressure strain-rate covariance,
(— —) Time tendency . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Plane-averaged values of terms in the SFS stress budgets for 0 < z <
0.3zi. The units on all the budget terms are m2s−3. The inversion is
787.5m. Plot legend: (—) Anisotropic production, (· · · ) Isotropic
production, (– –) Buoyant production, (– ·) Advection, (– · · · – )
Modeled slow pressure-strain-rate covariance, (— —) Time tendency 39

2.11 Resolved-scale horizontal kinetic energy spectra at mid-ABL for
(cτ , cθ) = (0.10, 0.21): (a) with SFS advection; (b) without SFS
advection. The straight line has a slope of −5/3. . . . . . . . . . . . 41

2.12 Resolved-scale vertical kinetic energy spectra for (cτ , cθ) = (0.10, 0.21):
(a) with SFS advection; (b) without SFS advection. The straight
line has a slope of −5/3. . . . . . . . . . . . . . . . . . . . . . . . . 41

2.13 Plot showing τ d
αα/u

2
∗ versus z/zi. Left panel: SFS conservation

equations, right panel: eddy-diffusivity closure. . . . . . . . . . . . . 42
2.14 Plot showing τ d

αα/u
2
∗ versus z/zi. Left panel: SFS conservation

equations without SFS buoyancy production , right panel: SFS con-
servation equations without SFS anisotropic or buoyant production. 43

2.15 τ d
αα/u

2
∗ versus z/zi, obtained using SFS conservation equations in

high-resolution LES (1922x144 grid) . Left panel: 0 < z/zi < 1.0,
right panel: 0 < z/zi < 0.2 . . . . . . . . . . . . . . . . . . . . . . . 45

2.16 τ d
αα/u

2
∗ versus z/zi, obtained using an eddy-diffusivity closure in

high-resolution LES (1922x144 grid) . Left panel: 0 < z/zi < 1.0,
right panel: 0 < z/zi < 0.2 . . . . . . . . . . . . . . . . . . . . . . 45

x



2.17 Schematic showing the array configuration of sonic anemometers
used in the HATS experiment (figure reproduced from (Horst et al.,
2003)). The variables Ss and Sd denote the spacings between the
sonics in the top and the bottom arrays. The distances of the top
and the bottom arrays from the ground are denoted by zs and zd,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.18 HATS data, unstable cases: The partitioning of SFS production
into isotropic, anisotropic and buoyant components for the devi-
atoric stresses, τ d

αα, and τ d
13, plotted against the nondimensional

parameter ∆w/∆. The production terms have been scaled using
0.93 e3/2/∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.19 HATS data, unstable cases: Array-wise partitioning of SFS produc-
tion into isotropic, anisotropic and buoyant components for the τ d

33

budget, plotted against the nondimensional parameter ∆w/∆. The
production terms have been scaled using 0.93 e3/2/∆. . . . . . . . . 51

2.20 Two-dimensional vertical velocity spectra for a moderate convec-
tive ABL from a 1922x144 simulation. The spectra are shown for
the heights 0 < z/zi < 0.1. The dashed lines denote best fits as
prescribed by Eq. (2.34). The dash-dot line has a slope of −5/3. . . 53

2.21 Modeled τ d
11 and τ d

22 budgets. The horizontal lines at low ∆w/∆
indicate theoretical values in the RANS limit (refer Appendix A).
Color legend: — : −zi/L = 1.21 , — : −zi/L = 3.78, — :
−zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . . . . . 56

2.22 Modeled τ d
33 and τ d

13 budgets. The horizontal lines at low ∆w/∆
indicate theoretical values in the RANS limit (refer Appendix A).
Color legend: — : −zi/L = 1.21 , — : −zi/L = 3.78, — :
−zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . . . . . 57

2.23 HATS: SFS stresses as a fraction of the total stresses (resolved +
SFS) for convectively unstable cases. . . . . . . . . . . . . . . . . . 59

2.24 LES: SFS stresses as a fraction of the total stresses (resolved +
SFS), obtained using the SFS conservation equations. Color legend:
— : −zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82,
— : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . . . . . . . . . . . . . 60

2.25 LES: SFS stresses as a fraction of the total stresses (resolved +
SFS), obtained using the eddy-diffusivity closure. Color legend:
— : −zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82,
— : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . . . . . . . . . . . . . 61

2.26 HATS: SFS normal stresses, τ d
αα, scaled with u2

∗. The dashed line
corresponds to τ d

αα = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 63

xi



2.27 LES: Comparison of predictions of τ d
αα/u

2
∗ by (a) SFS conservation

equations; and (b) eddy-diffusivity closure. Color legend: — :
−zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82, — :
−zi/L = 5.47 ,— : −zi/L = 7.2 . . . . . . . . . . . . . . . . . . 63

2.28 HATS: Root mean square values of SFS deviatoric stresses τ d
11 and

τ d
33, normalized with the magnitudes of their mean values. . . . . . 64

2.29 LES: Root mean square values of SFS deviatoric stresses τ d
11 and

τ d
33, normalized with the magnitudes of their mean values. Top

panel: SFS conservation equations, bottom panel: eddy-diffusivity
closure. Color legend: — : −zi/L = 1.21 , — : −zi/L = 3.78,
— : −zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . 65

2.30 HATS: Root mean square value of τ d
13, normalized with |〈τ d

13〉|. . . . 66
2.31 LES: Root mean square value of τ d

13 normalized with |〈τ d
13〉|, using

(a) SFS conservation equations; (b) eddy-diffusivity closure. Color
legend: — : −zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L =
3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . . . . . . . . . . 67

2.32 HATS: SFS turbulent kinetic energy, eSFS, as a fraction of the total
(resolved + SFS) turbulent kinetic energy, eTOT. . . . . . . . . . . . 67

2.33 LES: SFS turbulent kinetic energy, eSFS, as a fraction of the total
(resolved+sfs) turbulent kinetic energy, eTOT, using (a) SFS con-
servation equations; and (b) eddy-diffusivity closure. Color legend:
— : −zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82,
— : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . . . . . . . . . . . . . 68

2.34 HATS: Scaled production terms in the f1 (left) and f3 (right) budgets. 69
2.35 LES: Scaled terms in the modeled (a) f1 and (b) f3 budgets. Color

legend: — : −zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L =
3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . . . . . . . . . . 71

2.36 HATS: SFS horizontal scalar flux, f1, as a fraction of the total flux
(left) and the surface flux, Q0 (right). . . . . . . . . . . . . . . . . . 72

2.37 LES, SFS conservation equations: SFS horizontal scalar flux, f1, as
a fraction of the total flux, 〈u′θ′〉T (left) and of the surface flux, Q0

(right). Color legend: — : −zi/L = 1.21 , — : −zi/L = 3.78,
— : −zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . 73

2.38 LES, eddy-diffusivity closure: SFS horizontal flux of potential tem-
perature, f1, as a fraction of the total flux (left) and of the sur-
face flux, Q0 (right). Color legend: — : −zi/L = 1.21 , — :
−zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— :
−zi/L = 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.39 HATS: SFS vertical flux of potential temperature, f3, normalized
with the total flux, 〈w′θ′〉T . . . . . . . . . . . . . . . . . . . . . . . 75

xii



2.40 LES: SFS vertical flux of potential temperature, f3, as a fraction
of the total flux, using (a) SFS conservation equations; and (b)
eddy-diffusivity closure. Color legend: — : −zi/L = 1.21 , —
: −zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— :
−zi/L = 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.41 HATS: Root mean square values of f1 (left panel) and f3 (right
panel) normalized with the magnitudes of their respective means. . 76

2.42 LES, SFS conservation equations: Root mean square values of (a)
f1 and (b) f3, normalized with the magnitudes of their respective
means. Color legend: — : −zi/L = 1.21 , — : −zi/L = 3.78,
— : −zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . 77

2.43 LES, eddy-diffusivity closure: Root mean square values of (a) f1 and
(b) f3, normalized with the magnitudes of their respective means.
Color legend: — : −zi/L = 1.21 , — : −zi/L = 3.78, — :
−zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2 . . . . . . . 78

2.44 Left panel: Nondimensional mean gradient of velocity, φm, versus
−z/L, where L is the Monin-Obukhov length. The top of the layer
shown corresponds to z/zi = 0.1. Legend – Solid line : modeled
SFS conservation equations, dashed line : eddy-diffusivity closure,
dot-dash line : empirical fit (Businger et al., 1971). Right panel:
Vertical velocity skewness, Sw = 〈w3〉/〈w′w′〉3/2. Legend – Solid
line : modeled SFS conservation equations, dashed line : eddy-
diffusivity closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.45 HATS: Conditional means of SFS production rate. . . . . . . . . . . 84
2.46 LES: Conditional means of SFS deviatoric production rate using an

eddy-diffusivity closure. . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.47 LES: Conditional means of SFS deviatoric production rate using

the SFS conservation equations. . . . . . . . . . . . . . . . . . . . . 90
2.48 HATS: Conditional means of SFS deviatoric stresses. . . . . . . . . 92
2.49 LES: Conditional means of SFS deviatoric stresses using an eddy-

diffusivity closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.50 LES: Conditional means of SFS deviatoric stresses using the SFS

conservation equations. . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1 HATS data, stable cases: The partitioning of SFS deviatoric pro-
duction into isotropic, anisotropic and buoyant components, scaled
with ε = φε(u

3
∗/kzd). The terms are plotted versus the nondimen-

sional parameter, ∆w/∆ . . . . . . . . . . . . . . . . . . . . . . . . 103

xiii



3.2 HATS data, stable cases: The partitioning of SFS deviatoric pro-
duction into isotropic, anisotropic and buoyant components, scaled
with 〈−τ d

ijS
r
ij〉, where Sr

ij is the resolved-scale strain rate tensor.
The terms are plotted versus the nondimensional parameter, ∆w/∆.
The horizontal solid lines denote theoretical values in the “RANS
limit,” discussed in Appendix A. . . . . . . . . . . . . . . . . . . . . 105

3.3 HATS data, stable cases: The partitioning of SFS deviatoric pro-
duction into isotropic, anisotropic and buoyant components, scaled
with (u3

∗/klb), where lb is a buoyancy length scale, dependent on the
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Chapter 1
Introduction and literature review

Large-eddy simulation (LES) has gained widespread acceptance as a reliable tech-

nique for simulating the high Reynolds-number (Re) atmospheric boundary layer

(ABL). In LES, we filter spatially the Navier-Stokes equations to obtain the re-

solved (or filtered) scales of motion and parameterize the effect of the unresolved

(or subfilter) scales on the resolved scales using a subfilter-scale (SFS) model.

When the filter scale is much smaller than the energy-producing scales, the pri-

mary role of the SFS model is to drain energy from the large, resolved eddies at

the correct rate, which can be achieved by simple eddy diffusivity models such as

the Smagorinsky model, as outlined by Lilly (1967). If, however, the filter scale

is comparable to the energy-containing scales, as in the near-wall region, the SFS

model is required not only to extract energy from the large eddies but also to

represent the SFS stresses and fluxes.

In conditions of under-resolved turbulence, constant-eddy-diffusivity closures

can fare poorly (Khanna and Brasseur, 1997) in their predictions of low-order flow

statistics. Zhou et al. (2001) have shown that in the near-wall region, contributions

from the SFS motions to the evolution of the resolved scales are of the same order

as those from the resolved scales themselves. Consequently, the evolution of the

flow in the near-wall region is highly sensitive to the SFS model. Using LES of the

moderately convective ABL, Khanna and Brasseur (1998) found errors incurred in

the near-wall region affected flow structure in the entire ABL.

In spite of its deficiencies, the Smagorinsky closure is used widely owing to its

simplicity and ease of implementation. There are numerous SFS closures for the
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ABL that overcome some of the shortcomings of the Smagorinsky closure. We

mention briefly a few such attempts. The standard dynamic Smagorinsky model

(Germano et al., 1991) and its subsequent variants (Basu and Porté-Agel, 2006;

Porté-Agel, 2004; Porté-Agel et al., 2000) improve upon the original Smagorinsky

closure by computing the model parameter in real time from the resolved scales.

For instance, in the neutral ABL, the scale-dependent dynamic model (Porté-

Agel et al., 2000) yields better profiles of φm (stability function for velocity) than

the traditional Smagorinsky closure. Following Schumann (1975), Sullivan et al.

(1994) developed a two-part eddy-viscosity model whose predictions of φm and

φh (stability function for potential temperature) were significantly better than

those of the Smagorinsky closure in both neutral and unstable ABLs. Mason

and Thomson (Mason and Thomson, 1992) incorporated a stochastic term which

enabled backscatter, a feature absent in the Smagorinsky closure. They also used

a modified length scale that allowed the energy-containing eddies to scale with z in

the inertial surface layer. Their SFS model resulted in good improvements in the

predictions of the mean velocity profile and streamwise variances. Kosović (1997)

developed an SFS stress model based on the nonlinear constitutive relationship

suggested by Speziale (1991). Results obtained using Kosovic’s SFS model for a

moderately convective ABL showed considerable improvement over those obtained

using the Smagorinsky closure (Chen et al., 2009).

While the closures discussed above model the SFS stress directly, there are SFS

models that parameterize the unresolved velocity components from which the SFS

stress is then reconstructed. We now describe briefly two such attempts in the

latter category: the Resolvable-Subfilter-Scale (RSFS) model (Zhou et al., 2001)

and a model developed by Chow et al. (2005). In LES, we have two cutoff filters:

(i) the grid cutoff filter, which is imposed explicitly by the grid; and (ii) the LES

cutoff filter, which is imposed either explicitly in a dealiasing step (in a pseudospec-

tral code) or implicitly (in a physical-space code), in order to maintain numerical

stability. By definition, the LES cutoff filter is coarser than the grid cutoff filter.

Zhou et al. (2001) decomposed the SFS velocity field into two components: (i)

resolvable-subfilter-scale (RSFS); and (ii) subgrid-scale (SGS). The RSFS compo-

nent corresponds to scales that reside between the LES filter cutoff and the grid

filter cutoff, i.e., the scales that are resolvable on the grid but are discarded due to
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the effect of the LES filter. The SGS component, on the other hand, corresponds

to scales smaller than the grid filter cutoff and hence, is unresolvable. Evidently,

the resolved scales feel the direct impact of the RSFS component more than that

of the SGS component. The RSFS model solves for the RSFS component prognos-

tically and uses it as a surrogate for the unresolved velocity field, which, in reality,

also includes the SGS component. Zhou et al. (2001) found that under conditions

where the turbulence is under-resolved, the RSFS model represents both the energy

transfer from the resolved to the RSFS scales, and the SFS terms in the momen-

tum equation better than do eddy-viscosity closures. Chow et al. (2005) combined

multiple modeling strategies, such as, dynamic eddy viscosity (Wong and Lilly,

1994), reconstruction from RSFS motions and a “canopy” model (Brown et al.,

2001), and observed improvements in the prediction of φm for a neutral ABL.

To study the general features in an SFS model that lead to better resolved-

scale statistics, Chen and Tong (2006) devised an approach based on the joint

probability density function (jpdf) of the resolved-scale velocity field. They derived

the evolution equation of the one-time, one-point joint pdf of the resolved-scale

velocity components, isolating the two terms on its right hand side that involved

SFS contributions: (i) conditional mean of SFS stress; and (ii) conditional mean of

SFS production rate. Subsequently, they performed a priori (Chen and Tong, 2006)

and a posteriori (Chen et al., 2009) tests for the convective ABL comparing results

using different SFS models with those from HATS data, their evaluation criteria

being the correct prediction of the conditional means of the SFS stresses and the

SFS production rate. Their LES results showed that SFS models which yielded

poor predictions of the conditional means of SFS stress and SFS production rate

fared poorly in the near-wall region. From the trends in the conditional means

of the SFS stress and SFS production rate, Chen and Tong argued that errors

in the predictions of low-order statistics in the near-wall region were related to

under-prediction of SFS anisotropy and lack of SFS buoyant production. Previous

work by Juneja and Brasseur (1999) has found the Smagorinsky closure to severely

underpredict the level of anisotropy at the subfilter scales in the near-wall region.

Chen and Tong (2009; 2006) observed that SFS models capable of exhibiting higher

anisotropy, such as the nonlinear model of Kosović (1997), resulted in better LES

predictions of low-order velocity moments.
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1.1 SFS conservation equations

A natural way to begin to address some of the deficiencies in eddy-diffusivity

closures is to consider the parent equations from which they are derived, namely,

the conservation equation for the SFS stresses and SFS fluxes. A scalar eddy-

diffusivity closure can be derived (Lilly, 1967) from the SFS conservation equations

by retaining only the isotropic production term and the pressure-strain covariance,

the latter being modeled using the Rotta model (Rotta, 1951).

Deardorff (1973), seeking “a more sophisticated treatment of the subgrid Reynolds

stresses and fluxes” was the first to implement a version of the SFS conservation

equations themselves as a subgrid model in his LES study of the convective ABL.

His SFS model consisted of a set of ten conservation equations for all the second-

order moments: (i) the six SFS stresses, τij ; (ii) three SFS scalar (potential tem-

perature, θ) fluxes, fi ; and (iii) the SFS variance of θ. The conservation equations

were then ‘closed’ by modeling the following: (i) third-order transport terms; (ii)

pressure-strain covariances; and (iii) the scalar dissipation rate. We list below the

two main conclusions of his study, followed by a brief discussion:

1. The SFS conservation equations are capable of removing energy from the

resolved scales at the correct rate provided that numerical errors due to

truncation can be controlled.

2. The use of conservation equations for SFS stresses yields increased SFS

anisotropy near the wall.

Since the Smagorinsky closure is capable of draining energy from the large

scales, it is reasonable to expect the parent SFS transport equation to be capable

of the same, as confirmed by Deardorff’s findings. The truncation errors he en-

countered were a source of instability in his simulations and he imposed artificial

bounds on all second-order modeled SFS quantities in order to ensure the stability

of his system of equations.

The cause of the observed increase in SFS anisotropy is the presence of pro-

duction mechanisms in the SFS conservation equations that are ignored in eddy-

diffusivity closures. These mechanisms (mentioned earlier) include: (i) nonlinear

generation of SFS stresses due to SFS anisotropy; and (ii) buoyant generation
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(Wyngaard, 2004) of SFS stresses by SFS scalar fluxes.

Deardorff’s study demonstrated successfully the use of the SFS conservation

equations as an SFS model in LES. In spite of obtaining encouraging results,

however, he abandoned the conservation-equation-based approach and reverted to

eddy-diffusivity closures in his later works (Deardorff, 1980) due to computational

constraints at that time. While the notion of modeling the turbulent stresses

and fluxes through their conservation equations has been embraced in ensemble-

averaged modeling (Canuto et al., 1993; Cheng et al., 2001; Mellor and Yamada,

1974), three-dimensional mesoscale modeling still relies primarily on eddy-viscosity

closures, as evidenced in state-of-the-art mesoscale codes like Advanced Regional

Prediction System (Xue et al., 2000) and, Weather Research and Forecasting (Ska-

marock and Klemp, 2008).

Wyngaard (2004) has argued for revisiting the SFS conservation equations as a

basis for SFS modeling, especially in the so-called “Terra Incognita” regime where

the energy-containing length scales are of the same order as the grid resolution.

Such a situation is encountered in both coarse-mesh LES and in fine-mesh meso-

cale simulations. He showed that the simplest SFS model consistent across the

entire range of grid resolutions involves additional SFS production terms that are

present in the governing SFS conservation equations but ignored in eddy-diffusivity

closures.

Building upon the study by Wyngaard (2004), Hatlee and Wyngaard (2007)

analyzed unstable cases from the HATS data set, and tested two SFS closures: (i)

a truncated version of the SFS conservation equations; and (ii) an eddy-diffusivity

closure with a constant model parameter. The SFS conservation equations yielded

better predictions of both the diagonal (normal) and the off-diagonal (shear) com-

ponents of the SFS stress tensor. The SFS conservation equations also outper-

formed the eddy-diffusivity closure in its predictions of SFS scalar fluxes and the

scalar variance transfer rate. For instance, the difference in the predictions of the

horizontal SFS scalar flux, in particular, by the two SFS models was dramatic.

The conservation equations have an explicit flux-tilting term (discussed in more

detail later) which tilts the vertical SFS flux into the horizontal direction in re-

gions of high vertical shear of the horizontal velocity, e.g., near the surface. An

eddy-diffusivity closure, on the other hand, can produce a horizontal SFS flux only
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in the presence of a horizontal scalar gradient. As a result, the SFS conservation

equations predict a non-zero value for the SFS horizontal scalar flux, in good agree-

ment with observations, whereas the eddy-diffusivity closure predict a near-zero

value.

1.2 Motivation

SFS models have evolved considerably since Smagorinsky’s original formulation

(Smagorinsky, 1963). They have become more nuanced and sophisticated (Kosović,

1997; Mason and Thomson, 1992; Sullivan et al., 1994; Zhou et al., 2001) in their

attempts to address better both their functions: (i) to drain energy from the

large scales at the correct rate; and (ii) to parameterize correctly the SFS stresses

and fluxes. In conditions where the turbulence is poorly resolved, the SFS model

needs to perform both the above functions satisfactorily. For these reasons, it is

desirable to develop SFS parameterizations that are not overly simplistic in their

representation of the SFS stresses and fluxes.

The SFS conservation equations, in principle, enable the description of SFS

stresses and fluxes according to their governing equations. As a result, important

SFS physics such as anisotropy, backscatter and buoyant production are built into

the equations and don’t need to be modeled explicitly. While the third-order

terms in the SFS conservation equations still need to be modeled, the principal

SFS production mechanisms (Wyngaard, 2004) can be described in their exact

analytical form. An additional advantage of the SFS conservation equations is their

generality, which enables them to describe flows across a wide range of stabilities.

Deardorff’s study (1973) was seminal yet limited in its scope as its main objec-

tive was to “realistically simulate the transfer of larger scale variance to subgrid

scales” using the SFS conservation equations, which he achieved successfully. The

studies by Wyngaard (2004) and Hatlee and Wyngaard (2007) show the poten-

tial of the conservation equations to overcome some of the major deficiencies that

plague eddy-diffusivity closures. If the SFS conservation equations show promise,

they are also complicated and merit further study. Hence, in this dissertation, we

revisit the notion of SFS modeling based on the conservation equations for the

SFS stresses and fluxes. The SFS model we use in our study is identical to that
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used by Hatlee and Wyngaard (2007). The use of additional prognostic equations

necessarily implies higher computational expense. Deardorff (1973) using a 1 MHz

processor which was considered state-of-the-art at the time, concluded that “the

results were worth the price.” Today, it is routine to run high-resolution LES

simulations on huge parallel clusters of 2 GHz processors. This tremendous surge

in computing power mitigates partially the concerns regarding the computational

expense incurred in using the SFS conservation equations.

1.2.1 SFS model versus other factors

In the previous sections, we discussed the potential benefits of using an SFS model

that wasn’t too restrictive in its assumptions. Within the context of an LES,

however, the SFS model is only one of many factors affecting the resolved-scale

statistics. The evolution of the resolved scales depends in a complex way on a host

of factors: (i) the SFS model; (ii) the numerical scheme employed (finite-difference

versus pseudospectral); (iii) grid size; (iv) aliasing error; (v) discretization error;

and (vi) the boundary conditions. All these factors affect non-trivially the time-

evolution of the discretized Navier-Stokes (N-S) equations and in general, it is not

easy to untangle their individual influences.

Recent studies of the neutral ABL by Brasseur and Wei (2010) have unearthed

some crucial insights into the interplay between some of the factors cited above.

In their studies, they focused on the requirements for obtaining law-of-the-wall

scaling in the inertial surface layer. They found that the familiar overshoot in

the non-dimensional mean velocity gradient φm was caused by a spurious mani-

festation of numerical “friction.” In order to eliminate the overshoot and recover

law-of-the-wall scaling, they have proposed a so-called ‘High Accuracy Zone’ (HAZ)

framework (discussed in Ch. (4). They have validated it using LES of the shear-

driven neutral ABL. Presently, the HAZ framework is yet to be extended to the

convective and the stable ABLs.

As Brasseur and Wei (2010) demonstrated the validity of the HAZ framework

using the Smagorinsky closure, it is of interest to examine its applicability to other

non-eddy-viscosity closures, such as the SFS conservation equations.



8

1.3 Outline

In the next chapter, we discuss the implementation and performance of an SFS

closure that uses conservation equations, in LES of the moderately convective

ABL. We perform coarse-mesh LES to gain insight into various terms in the SFS

conservation equations. We then use high-resolution LES and compare select SFS

statistics with observations from the Horizontal Array Turbulence Study (HATS)

experiment. We conclude the second chapter by analyzing the conditional means

of the SFS stresses and the SFS production rate.

The third chapter contains results obtained from analysis of HATS data and

LES for the stable boundary layer. In the first part of the chapter, we use HATS

data to assess the relative importance of various production terms in the SFS

budgets and their impact on the magnitudes of SFS stresses and fluxes. The second

part of the chapter is devoted to LES studies of a moderately stable boundary layer.

In the fourth chapter, we perform LES of the shear-driven neutral ABL using

the conservation-equation-based SFS model, in order to test the applicability of

the HAZ framework to non-eddy-viscosity-closures.

We summarize our conclusions in the fifth chapter and suggest potential topics

for future work.



Chapter 2
Large-eddy simulation of the

moderately convective atmospheric

boundary layer

In the previous chapter, we summarized the potential advantages of an SFS model

that uses conservation equations for the SFS stresses and fluxes. In this chapter, we

discuss the implementation of such an SFS model (Hatlee and Wyngaard, 2007)

and its performance in LES of the moderately convective boundary layer. The

outline of the chapter is as follows. Using coarse-mesh LES, we first illustrate

the significance of the various terms in the SFS model using simple qualitative

arguments. We then compare various subfilter-scale statistics in the surface layer

obtained using high-resolution LES, to those obtained from the Horizontal Array

Turbulence Study or HATS (Sullivan et al., 2003). Finally, we test the performance

of the SFS model using criteria devised by Chen and Tong (2006) that involve

studying the trends in the conditional means of the SFS stresses and the SFS

production rate.
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2.1 Model equations

We begin by obtaining filtered equations for the potential temperature and velocity

fields making the following assumptions:(i) the Boussinesq approximation1 is valid;

(ii) the Re of the flow is high enough to ensure either (a) the viscous sublayer is

confined to a very thin region near the ground and therefore, unresolved; or (b) the

surface is characterized by an effective roughness scale that is also unresolved; and

(iii) high Peclet number2, Pe. The high Re and Pe imply that the viscous terms can

be neglected in the filtered equations for velocity and the potential temperature.

The potential temperature, θ, is related to temperature, T , as follows (Wyngaard,

2010):

θ = T

[
p(0)

p(z)

]Rd/cp

, (2.1)

where p is the pressure, Rd is the gas constant for dry air and cp is the specific

heat of dry air at constant pressure. From Eq. (2.1), potential temperature of

an air parcel is the temperature of that parcel after it is brought adiabatically

and reversibly to a reference state, typically assumed to correspond to sea-level

conditions. In dry, adiabatic conditions potential temperature is a conserved scalar

(Wyngaard, 2010).

2.1.1 Equations for the filtered scalar and velocity fields

The continuity equation for a Boussinesq flow is (Wyngaard, 2010),

∂ui

∂xi

= 0 (2.2)

Filtering Eq. (2.2) spatially yields,

∂ūi

∂xi

= 0 (2.3)

1Density differences are dynamically significant only when they are multiplied by the acceler-
ation due to gravity.

2The Peclet number is defined as Pe ≡ UL/κ, where U and L are characteristic velocity and
length scales, while κ is the thermal diffusivity. It is the ratio of transport of heat by advection
to that by conduction.
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The evolution equation for θ is given by

∂θ

∂t
+ ui

∂θ

∂xi

= γ
∂2θ

∂xi∂xi

, (2.4)

where ui is the component of velocity in the ith direction and γ is the molecu-

lar diffusivity of the scalar. Filtering (2.4) spatially and using the Boussinesq

approximation yields

∂θ̄

∂t
+ ūi

∂θ̄

∂xi

+
∂fi

∂xi

= 0, fi = θui − θ̄ūi, (2.5)

where the overbar denotes the filtering operation and fi denotes the component

of the SFS scalar flux in the ith direction. The diffusive terms are absent in

Eq. (2.5) due to the assumption of high Pe. The only restriction placed on the

filtering operation is that it commute with differentiation, which is true when the

filter function is uniform in space. For nonuniform grids the filter width varies

in space and consequently, the commutation error is non-zero (Ghosal and Moin,

1995). The linearized, filtered momentum equation written in rotation form for a

Boussinesq flow (Moeng, 1984), is

∂ūi

∂t
= εijkūjω̄k − 1

ρ0

∂p∗

∂xi

+
g

Θ0

θ̄δi3 + εij3(2Ω)
[
ūj − U g

j

]− ∂τ d
ij

∂xj

, (2.6)

where ω̄k is the kth component of filtered vorticity, p∗ is the modified pressure

(discussed below), ρ0 is the reference density, Θ0 is the reference potential tem-

perature, Ug = (Ug, Vg, 0) is the geostrophic wind vector, g is the acceleration due

to gravity, εijk is the third-order permutation tensor, Ω is earth’s angular velocity

and τ d
ij denotes the deviatoric part (the isotropic part is subtracted out) of the

SFS momentum stress tensor, defined as

τ d
ij = τij − 2

3
δije = (uiuj − ūiūj)− 2

3
δije (2.7)

where δij is the Kronecker-Delta operator and e = (uiui − ūiūi) is the SFS kinetic

energy. The viscous terms are absent in Eq. (2.6) due to the assumption of high

Re. All filtered quantities in Eqs. (2.5)–(2.6) represent small deviations from a base

state in hydrostatic equilibrium (Wyngaard, 2010). The expression for the buoyant
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forcing in Eq. (2.6) assumes that the deviations in velocity are much smaller than

the speed of sound, a reasonable approximation in the turbulent ABL (Wyngaard,

2010). Following Moeng (1984), the modified pressure p∗ is given by

p∗ = p̄+ ρ0

(
2

3
e+

ūkūk

2

)
(2.8)

where p̄ is the filtered pressure. Taking the divergence of Eq. (2.6) and invoking

the Boussinesq approximation yields the following Poisson equation for p∗:

1

ρ0

∂2p∗

∂xi∂xi

=
∂ri

∂xi

, (2.9)

where ri denotes the right-hand side of Eq. (2.6) without the pressure-gradient

term. Equation (2.9) shows that p∗ in a Boussinesq flow is purely a diagnostic

field.

To close Eqs. (2.5)–(2.6), we need models for fi, τ
d
ij and e. We refer to the

models for fi and τ d
ij collectively as the ‘SFS model.’ In the next section, we

outline the conservation equations for fi and τ d
ij which form the basis for our SFS

model. Deardorff (1973) derived the SFS conservation equations for the ‘total’ τij

variables (deviatoric + isotropic) which introduced the turbulent dissipation rate

ε = (ν/2)(ui,j + uj,i)(ui,j + uj,i) into the equations for the diagonal components,

ταα, (α = 1, 2, 3), where ui,j ≡ (∂ui/∂xj). To close the conservation equations, he

used a model for ε. In our analysis, the conservation equations describe only the

deviatoric components. Hence, the equations for the normal components, τ d
αα, do

not contain ε. We, however, still need a model for ε as one of the inputs to our SFS

models is the SFS kinetic energy, e, whose prognostic equation (discussed later in

Sec. 2.1.4) requires the parameterization of ε. In Deardorff’s SFS model, e is given

simply by the trace of τij.

2.1.2 Conservation equations for the SFS flux and stress

In this section we discuss the conservation equations for the SFS fluxes and stresses.

We only present the final equations without going through their derivation.
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2.1.2.1 Conservation equation for fi

The conservation equation for the SFS flux of potential temperature, fi, is (Hatlee

and Wyngaard, 2007):

∂fi

∂t
+ ūj

∂fi

∂xj

+
∂

∂xj

(θuiuj − θuiūj − θ̄uiuj − ūiθuj − ūiθuj + 2θ̄ūiūj) =

−fj
∂ūi

∂xj

− τ d
ij

∂θ̄

∂xj

−2

3
e
∂θ̄

∂xi

+
g

Θ0

(
θ2 − θ̄2

)
δi3

−2 emij Ωm fj − 1

ρ0

∂

∂xi

(pθ − p̄θ̄) +
1

ρ0

(
p
∂θ

∂xi

− p̄
∂θ̄

∂xi

)
(2.10)

where emik is the permutation tensor and Ω is the angular velocity vector of the

coordinate frame. The second and third terms on the left hand side represent

advection and turbulent transport, respectively. On the right hand side, the terms

represent (in order): flux tilting and stretching, anisotropic and isotropic gradient-

production, buoyant production, rotation, pressure transport and pressure scalar-

gradient covariance. The last two terms together represent pressure destruction3.

We refer to the second term on the right hand side as anisotropic production as

it would vanish under conditions of isotropy, which would require τ d
ij to be zero.

We refer to the third term on the right hand side as isotropic production due to

its dependence on e, the isotropic part of the total stress tensor, τij. The molec-

ular diffusion terms are absent in Eq. (2.10) due to the assumption of high Re

and Pe. The molecular destruction terms are absent due to local isotropy, as

confirmed by experiments (Mydlarski, 2003). An eddy-diffusivity closure can be

derived from Eq. (2.10) by assuming a balance solely between the boxed terms, i.e.,

isotropic gradient-production and modeled pressure strain-rate covariance (Wyn-

gaard, 2004) (model discussed in Sec. 2.1.2.4). Pressure destruction is the principal

sink term in Eq. (2.10) (Hatlee and Wyngaard, 2007; Wyngaard, 2004).

Given models for fi, τ
d
ij and e, we need to model the buoyant, turbulent-

transport and pressure-destruction terms.

3Hatlee and Wyngaard (2007) refer to only the pressure scalar-gradient covariance as pressure
destruction. While the pressure transport term vanishes upon integrating over a finite volume, it
contributes to destruction of SFS scalar fluxes locally. Hence, we include the pressure transport
term in our definition of pressure destruction.
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2.1.2.2 Conservation equation for τ d
ij

The conservation equation for the deviatoric stress is given by (Hatlee and Wyn-

gaard, 2007),

∂τ d
ij

∂t
+ ūk

∂τ d
ij

∂xk

=
∂

∂xk

[
uiujuk − ūiujuk − ūjuiuk − ūkuiuj + 2ūiūjūk

−δij
3

(
u2

l uk − 2ūluluk − ūku2
l + 2ū2

l ūk

) ]

−2

3
e

(
∂ūi

∂xj

+
∂ūj

∂xi

)
−

[
τ d
ik

∂ūj

∂xk

+ τ d
jk

∂ūi

∂xk

− 1

3
δijτ

d
kl

(
∂ūk

∂xl

+
∂ūl

∂xk

)]

+
g

Θ0

[
δj3fi + δi3fj −

(
2

3

)
δijf3

]

−2 Ωk

[
eikl τ

d
jl + ejkl τ

d
il −

(
2

3

)
emkl τ

d
ml

]

+
1

ρ0

[
p

(
∂ui

∂xj

+
∂uj

∂xi

)
− p̄

(
∂ūi

∂xj

+
∂ūj

∂xi

)]

− 1

ρ0

∂

∂xk

[
δik(ujp− ūj p̄) + δjk(uip− ūip̄)− 2

3
δij(ukp− ūkp̄)

]
. (2.11)

The second term on the left side is advection. The terms on the right side are, in

order, turbulent transport (split over two lines), isotropic production, anisotropic

production, buoyant production, rotational production, pressure strain-rate covari-

ance and pressure transport. The pressure strain-rate covariance has zero trace

and represents intercomponent energy transfer. The last two terms in Eq. (2.11)

together represent pressure destruction4. As in Eq. (2.10), retaining only the

boxed terms, i.e., isotropic production and modeled pressure strain-rate covari-

ance (model discussed in Sec. (2.1.2.4)), yields an eddy-viscosity closure. The

anisotropic-production term is similar to the flux-tilting term in Eq. (2.10) as it

describes generation of τ d
ij through both tilting and stretching of the different τ d

ij

components. The pressure destruction term plays the role of the sink, just as in

Eq. (2.10). The molecular diffusion terms are negligible outside the thin viscous

sublayer due to the assumption of high Re. The molecular destruction terms in the

4As in the SFS flux conservation equations, Hatlee and Wyngaard (2007) identify only pressure
strain-rate covariance as pressure destruction. Our definition, however, includes the pressure
transport term as well.
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off-diagonal equations are negligible under the assumption of local isotropy (Wyn-

gaard et al., 1971) and are absent in the τ d
αα equations as Eq. (2.11) describes

the evolution of the deviatoric stresses and not the total stresses (deviatoric +

isotropic).

Given models for fi, τ
d
ij and e, we need to model turbulent transport and

pressure destruction.

The buoyant terms in Eq. (2.11) are determined explicitly as a function of fi.

In the SFS flux conservation equations, the buoyant terms affect only f3 and their

parameterization requires a model for the SFS variance of θ. We present results

later showing that the buoyant terms are small compared to the dominant terms

in the f3 budget.

The Coriolis terms in the SFS conservation equations are expected to play

an important role when the SFS Rossby number,
√
e/(f∆) where f = 2Ω is the

Coriolis parameter, is of order unity. Equivalently, the SFS time scale given by

∆/
√
e should be comparable to the rotational time scale, 1/f . In the present

study, we use f = 10−4. In our LES runs we found the SFS time scale increases

monotonically with height (due to decreasing e) and typically assumes a value of

60–90 at the base of the capping inversion, i.e., a value two orders of magnitude

smaller than the rotational time scale. It is even smaller in the surface layer, where

the SFS motions are most important. For comparison, the time scale for the large

eddies in our LES runs is typically an order of magnitude higher than the SFS

time scale.

The transport terms vanish upon integrating Eqs. (2.10)–(2.11) over a finite

volume and assuming zero velocity on its boundaries. Locally, they can be signif-

icant, especially under convectively unstable conditions in the “mesoscale limit”

(Wyngaard, 2004), where essentially all the turbulence is parameterized by the

SFS model.

We now discuss the Rotta model (Rotta, 1951) for the slow part of the pressure-

strain-rate covariance.

2.1.2.3 Rotta’s model

We can split the pressure field formally into three parts, p = pT + pS + pB (Hatlee

and Wyngaard, 2007; Moeng and Wyngaard, 1986), where pT and pS denote con-
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tributions to the total pressure field from turbulent-turbulent and mean-turbulent

interactions, respectively, while pB denotes those from buoyancy. The components

pT and pS are referred to as the “slow” and “rapid” components as pS responds

instantaneously to mean gradients while pT does not (Mathieu and Scott, 2000).

The Rotta model (Rotta, 1951) is applicable to that part of the ensemble-averaged

pressure strain-rate covariance arising purely from the slow component, pT , as-

suming the absence of factors that induce anisotropy, such as, mean gradients

and stratification. Under such conditions, the slow pressure strain-rate covariance

drives the SFS stresses towards isotropy. Hence, the Rotta model is also referred

to as a return-to-isotropy model. According to the Rotta model,5

1

ρ0

(
pT

∂θ

∂xi

− p̄T

∂θ̄

∂xi

)
= − fi

Tθ

(2.12)

1

ρ0

[
pT

(
∂ui

∂xj

+
∂uj

∂xi

)
− p̄T

(
∂ūi

∂xj

+
∂ūj

∂xi

)]
= −τ

d
ij

Tτ

, (2.13)

where Tθ and Tτ are timescales for the SFS motions, models for which are discussed

in the next section.

2.1.2.4 Deriving an eddy-viscosity closure from the SFS conservation

equations

We now review the derivation of an eddy-viscosity closure from Eqs. (2.10)–(2.11)

(Lilly, 1967; Wyngaard, 2004). The SFS time scales Tθ and Tτ are modeled as

proportional to lSFS/
√
e where lSFS is the length scale for the SFS eddies. We

denote the proportionality constants in the expressions for Tθ and Tτ by cθ and

cτ , respectively. Retaining isotropic gradient-production and modeling the slow

pressure strain-rate covariance using the Rotta model while neglecting the rest of

the terms in Eq. (2.10) yields (Wyngaard, 2004),

− 2

3
e

(
∂θ̄

∂xi

)
=

fi

cθ lSFS

√
e

=⇒ fi = −2

3
cθ lSFS

√
e

(
∂θ̄

∂xi

)
. (2.14)

5Moeng and Wyngaard (1986) note that Rotta originally proposed Eq. (2.13) which was then
extended to scalars, as in Eq. (2.12), by Zeman (1981).
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Defining Kh ≡ (2/3) cθ lSFS

√
e, where Kh is the scalar eddy-viscosity, we recognize

Eq. (2.14) as the one-equation eddy-viscosity closure for the SFS scalar flux (Dear-

dorff, 1980). Retaining only isotropic production and the modeled slow pressure

strain-rate covariance in Eq. (2.11) yields,

− 2

3
e

(
∂ūi

∂xj

+
∂ūj

∂xi

)
=

τ d
ij

cτ lSFS

√
e

=⇒ τ d
ij = −2

3
cτ lSFS

√
e

(
∂ūi

∂xj

+
∂ūj

∂xi

)
. (2.15)

Equation (2.15) is an eddy-viscosity closure where Km ≡ [(2/3) cτ lSFS

√
e] is the

eddy-viscosity for momentum. Deardorff’s eddy-viscosity closure for τ d
ij prescribes

a factor of (4/15) instead of (2/3), as in Eq.(2.15), because his model for the

pressure strain-rate covariance in the τ d
ij conservation equations is different from

that used in the above derivation. The constants cτ and cθ in Eqs. (2.14)–(2.15) can

be tuned empirically (Deardorff, 1980) such that the SFS model extracts energy

at the correct rate from the resolved scales.

In most eddy-viscosity closures, Km and Kh are not estimated independently

but differ by a factor, the turbulent Prandtl number, which is typically assumed

to be constant and equal to 1/3 under unstable conditions (Moeng, 1984) al-

though the basis for this assumption is questionable (Moeng and Wyngaard, 1988).

Some eddy-viscosity closures, such as the locally-averaged scale-dependent dy-

namic model (Basu and Porté-Agel, 2006), estimate Km and Kh independently,

thereby allowing the turbulent Prandtl number to vary.

2.1.3 SFS model

While Eqs. (2.10)–(2.11) represent the conservation equations for fi and τ d
ij with

the entire suite of terms, Hatlee and Wyngaard (2007) modeled them by neglecting

the transport and rotational production terms while accounting for only the slow

pressure strain-rate covariance through Rotta’s model. They retained the buoy-

ant production terms in the conservation equations for the SFS stress but not in

those for the SFS flux. After observing inadequate performance of their modeled

conservation equations for the SFS deviatoric stress, they also modeled the rapid

contribution to the pressure strain-rate terms, which improved the performance of
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their SFS model.

Our motivation for the present work is similar to that of Hatlee and Wyngaard

(2007), namely, to try and improve upon eddy-viscosity closures by including ad-

ditional SFS production mechanisms in their exact analytical form while modeling

select unclosed terms in the simplest way possible. Thus, we use an SFS model sim-

ilar to that used by Hatlee and Wyngaard (2007), the only difference being that

we account only for the slow pressure-destruction terms. We follow Hatlee and

Wyngaard (2007) in neglecting the transport and rotational production terms in

the modeled SFS conservation equations. For reasons stated earlier, we do not ex-

pect the Coriolis terms to play a significant role in the SFS conservation equations.

By omitting the transport terms and modeling only the slow pressure strain-rate

covariance, we strive to achieve a reasonable balance between retaining sufficient

physics in the SFS model and avoiding the use of too many ad hoc models. The

final truncated version of the full conservation equations that will serve as the SFS

model is shown in Eqs. (2.16)–(2.17) :

∂fi

∂t
+ ūj

∂fi

∂xj

= −fj
∂ūi

∂xj

−
(
τ d
ij +

2

3
δije

)
∂θ̄

∂xj

− fi

Tθ

. (2.16)

∂τ d
ij

∂t
+ ūk

∂τ d
ij

∂xk

= −2

3
e

(
∂ūi

∂xj

+
∂ūj

∂xi

)

−
[
τ d
ik

∂ūj

∂xk

+ τ d
jk

∂ūi

∂xk

− 1

3
δijτ

d
kl

(
∂ūk

∂xl

+
∂ūl

∂xk

)]

+
g

Θ0

[
δj3fi + δi3fj −

(
2

3

)
δijf3

]
− τ d

ij

Tτ

. (2.17)

The SFS length scale, lSFS, scales on the length scale for the smallest resolved

eddies, i.e., the grid cut-off length scale. Thus, in regions of unstable stratification

we set lSFS = ∆ = (∆x∆y∆z)1/3 (Deardorff, 1973), where ∆x is the resolution

in the x-direction and likewise for ∆y and ∆z. In regions of stable stratification,

however, using ∆ as the SFS length scale causes the SFS model to blow up. We

confirmed that using lSFS = ∆ in stably-stratified regions leads to insufficient

dissipation (∝ 1/lSFS) of SFS fluxes and stresses in Eqs. (2.16)–(2.17), in a plane-

averaged sense. A better estimate for lSFS in stably-stratified regions is given

by lSFS = 0.76
√
e/N where N =

√
(g/Θ0)(∂θ/∂z) is the Brunt-Väisälä frequency
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(Deardorff, 1973). This formulation for the SFS length scale accounts explicitly for

the effects of stable stratification and reduces lSFS accordingly, thereby preventing

Eqs. (2.16)–(2.17) from blowing up. Hence, we use lSFS = 0.76
√
e/N in stably-

stratified regions.

2.1.4 Conservation equation for the SFS turbulent kinetic

energy

The exact conservation equation for the SFS turbulent kinetic energy, e, is:

∂e

∂t
= −τ d

ijSij − ∂

∂xj

(ūje) +
g

Θ0

f3− ∂

∂xj

(
uje− ūj ē+

1

ρ0

(ujp− ūj p̄)

)
− ε, (2.18)

The turbulent and pressure transport terms are modeled together following

Moeng (1984):

(
uje− ūj ē+

1

ρ0

(ujp− ūj p̄)

)
= −

(
2Km

∂e

∂xj

)
, (2.19)

where Km is an eddy-diffusivity. It is modeled as Km = ck
√
e ∆ (Moeng, 1984),

where ck denotes the SFS model constant. Lilly (1967) derived the value of ck for

homogeneous, isotropic turbulence and found it to be 0.094 while Deardorff (1973)

and Moeng (1984) used ck = 0.1 in their LES. We will use ck = 0.1 for our LES

runs. Thus, the modeled prognostic equation for e is given by,

∂e

∂t
= −τ d

ijSij − ∂

∂xj

(ūje) +
g

Θ0

f3 +
∂

∂xj

(
2Km

∂e

∂xj

)
− ε, (2.20)

where Sij = (1/2)(∂ūi/∂xj + ∂ūj/∂xi) is the resolved strain-rate tensor, Km =

ck
√
e ∆ is the eddy-diffusivity (Moeng, 1984) and ε is viscous dissipation of e. The

terms on the right side of Eq. (2.20) represent (in order): downscale (larger to

smaller) energy transfer, advection, buoyant production, modeled turbulent and

pressure transport, and viscous dissipation.

We model the viscous dissipation term as ε = cε e
3/2/∆ (Lilly, 1967). We use

cε = 0.93, a value first derived by Lilly (1967) and commonly used in LES (Moeng,

1984; Moeng and Wyngaard, 1988).
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An eddy-diffusivity closure for τ d
ij makes −τ d

ijS̄ij positive definite everywhere

and at all times. In principle, this is too strong a constraint as the cascade of energy

from the larger to the smaller scales exists only on average. The flow of energy

locally or instantaneously from the smaller to the larger scales, or ‘backscatter,’ was

reported first by Piomelli et al. (1991) through direct numerical simulation (DNS) .

It has since been observed in laboratory flows and field measurements (Porté-Agel

et al., 1998; Sullivan et al., 2003; Tao et al., 2002). The dynamic model (Germano

et al., 1991), the stochastic backscatter model (Mason and Thomson, 1992), the

resolvable subfilter scale (RSFS) model (Zhou et al., 2001), Kosović’s nonlinear

model (Kosović, 1997) and the modeled SFS stress conservation equations, as

represented by Eq. (2.17), all exhibit backscatter although in some models, such

as the dynamic model, the backscatter is averaged to ensure numerical stability.

In a one-equation eddy-diffusivity closure, the buoyancy term in Eq. (2.20)

accounts indirectly for the effects of stratification on the SFS stresses and fluxes

as follows. An increase in upward buoyant forcing increases e, which leads to

higher magnitudes of eddy-diffusivities (Km ∝ √
e), thereby increasing turbulent

mixing. Equivalently, in such closures buoyancy modulates the deviatoric stresses,

τ d
ij, through the isotropic part, e. It follows that this mechanism does not allow for

buoyancy to affect τ d
ij differentially but the SFS conservation equations show that

the buoyant terms in the τ d
ij equations do not assume identical analytical forms.

2.2 Details of LES code

The LES code used in this study is based on a serial pseudospectral code developed

by Sullivan and Moeng (1994) that was later parallelized by Otte and Wyngaard

(2001) using the Message Passing Interface (MPI).

The code employs periodic boundary conditions in the horizontal plane (Otte

and Wyngaard, 2001) to simulate a horizontally homogeneous flow. The mesh is

staggered vertically such that the first plane of u, v and θ is located a distance

∆z/2 above the surface, while that of w and e is located a distance ∆z above the

surface. The SFS variables f3, τ
d
13 and τ d

23 are colocated with w while the remaining

SFS flux components are colocated with u. A spectral cut-off filter eliminates the

top third of the wavenumbers generated by the nonlinear advective term, in order
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to suppress aliasing errors. We compute horizontal derivatives in Fourier-space

and use second order finite-differencing for the vertical derivatives.

In our implementation of Eq. (2.17), we found that the buoyancy term led

to instabilities near the capping inversion causing the simulation to blow up. To

remove the instability, we reduced the buoyancy term linearly to zero over the top

10% of the ABL such that its magnitude is exactly zero at the inversion height,

which we define to be the base of the capping inversion.

2.2.1 Boundary conditions

Due to the staggered nature of the grid, we require boundary conditions for w,

e, τ d
13, τ

d
23 and f3. At the lower boundary, we set w = 0 and e = e1, where e1 is

the value of e at the first grid level (Otte and Wyngaard, 2001). Enforcing the

lower boundary conditions for τ d
13, τ

d
23 and f3 requires knowledge of the surface

friction velocity, u∗, and the Monin-Obukhov (MO) length, L. The square of the

friction velocity, u2
∗, is equal to the ensemble-averaged wall stress. The MO length

is defined to be the height below which production of turbulent kinetic energy by

shear exceeds that by buoyancy, and is given by,

L = − u3
∗

k(g/θ0)Q0

, (2.21)

where Q0 is the surface heat flux and k approximated as 0.4 is the von Kármán

constant. We now discuss an iterative procedure to estimate the values of u∗ and

L (Khanna, 1995; Otte and Wyngaard, 2001).

The mean surface potential temperature, θs, can be evaluated as follows as-

suming the profile of mean potential temperature is Monin-Obukhov (MO) similar

(Paulson, 1970):
〈
θ1

〉− θs = 0.74
θ∗
k

[
ln

(
z1

z0

)
− ψ2

]
, (2.22)

where θ1 is the potential temperature at the first θ level (angled brackets denote

horizontal averaging), θ∗ = −Q0/u∗, z1 = ∆z/2 is the height of the first θ level, z0
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is the surface roughness height and

ψ2 = 2 ln

[
1 + y2

z

]
, y =

(
1− 9

z1

L

)1/4

. (2.23)

The surface roughness height, z0, represents the height at which the mean wind

speed is zero assuming it exhibits a logarithmic profile. The use of Eq. (2.22)

requires knowledge of u∗ and L. The variable u∗ is determined using a procedure

similar to that for θs (Paulson, 1970):

〈
U1

〉
=
u∗
k

[
ln

(
z1

z0

)
− ψ1

]
, (2.24)

where U1 is the wind speed at the first u grid level and

ψ1 = 2 ln

[
1 + x

2

]
+ ln

[
1 + x2

2

]
− 2 tan−1 x+

π

2
,

x =
(
1− 15

z1

L

)1/4

. (2.25)

In the neutral limit, z/L → 0 and consequently, ψ1 → 0. Equating ψ1 to zero

in Eq. (2.24), we recover the familiar log-law. Thus, we interpret ψ1 as a factor

accounting for the effects of stratification.

In principle, the two unknowns u∗ and L can be estimated simultaneously from

Eqs. (2.21)–(2.24). In practice it is easier to solve for them iteratively. Thus,

we initiate the iterative sequence by assuming a value for u∗ which is then used

to evaluate L from Eq. (2.21). This value of L is then used to evaluate u∗ from

Eq. (2.24). The newly obtained value of u∗ is substituted back in Eq. (2.21) to

reevaluate L. In this way, the iterative procedure is repeated till two successive

estimates of L differ by less than 1%.

The surface values of τ d
α3 (α = 1, 2) and f3 are modeled using the following

surface stress model (Moeng, 1984):

τ d
α3 = CD

[
U1 〈ūα1〉+

〈
U1

〉
(ūα1 − 〈ūα1〉)

]
, (2.26)

f3 = Cθ

[
U1

(〈
θ1

〉− θ0

)
+

〈
U1

〉 (
θ1 −

〈
θ1

〉)]
(2.27)

where ūα1 denotes the value of ūα at the first u level. The coefficients CD and Cθ
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are defined as

CD = − u2
∗〈

U1

〉2 , Cθ =
Q0〈

U1

〉 〈〈
θ1

〉− θ0

〉 (2.28)

The lower boundary condition for pressure is derived by substituting w = 0 in the

w-momentum equation. The vertical gradients of u, v and θ at the surface are set

equal to their computed values at z1 = ∆z.

We specify a geostrophic wind vector that is constant with height.

At the upper boundary, w and all SFS quantities are set to zero (Moeng, 1984).

A radiative boundary condition (Klemp and Durran, 1983) allows gravity waves

to pass out of the computational domain without undergoing reflection.

The complete set of prognostic equations describing the evolution of the re-

solved and the SFS fields are:

• Filtered fields, ūi and θ̄ : Eqs. (2.5)–(2.6) (4 equations)

• SFS stresses, τ d
ij, and fluxes, fi: Eqs. (2.16)–(2.17) (9 equations)

• SFS turbulent kinetic energy, e: Eq. (2.20) (1 equation)

Since τ d
ij is symmetric, we only need to solve for six of its nine components. Of these

six components, only five are independent as the trace is zero. At every iteration,

these 14 nonlinear coupled equations are integrated forward in time using a third-

order Runge-Kutta scheme with a time step that is computed dynamically for a

fixed CFL number (Sullivan et al., 1996).

Utilizing horizontal homogeneity, we compute all necessary statistics by aver-

aging over horizontal planes.

2.2.2 Realizability

Deardorff (1973), in his implementation of SFS conservation equations, enforced

“realizability” conditions on all SFS quantities at every grid point at every time

step in order to stabilize the code. In our simulations, we do not impose realizability

conditions on the SFS stresses and SFS fluxes. As noted earlier, we prescribe a

linear variation of the buoyancy term in Eq. (2.17) such that it reduces to zero over

the top 10% of the ABL. In other words, the magnitude of the buoyancy term in

Eq. (2.17) at the boundary layer top is precisely zero. The only prognostic variable
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for which we have an explicit constraint is e. The constraint, which ensures that

e > 0 at all grid points and at all times, is necessary as the subfilter length scale

in stably-stratified regions is parametrized as being proportional to
√
e (Deardorff,

1980). The need for a realizability constraint on e, however, is a consequence of

using the spectral cut-off filter and not of the underlying SFS model. Vreman et al.

(1994) have illustrated theoretically and numerically that use of a spectral cut-off

filter generates negative values of e.

2.3 Spectra

In this section, we show that the SFS transport equations can be “tuned” to extract

energy from the resolved scales at the correct rate. We simulate a a moderately

convective ABL with the parameters prescribed in Table 2.1. The prescribed value

of the roughness height, z0, is such that z0/z1 ¿ 1, where z1 is the height of the first

grid level, thereby rendering the roughness height unresolved, as assumed earlier

in Sec. (2.1). A list of the important diagnosed parameters is shown in Table 2.2.

We begin by showing in Fig. (2.1) the following statistics: (i) velocity variances

(resolved + SFS) scaled with w2
∗; (ii) vertical shear stress scaled with u2

∗; (iii)

vertical heat flux scaled with Q0; (iv) mean potential temperature; and (v) mean

velocity. The magnitudes of the scaled variances (resolved + SFS) in Fig. (2.1)

are typical of moderately convective ABLs (Sullivan and Moeng, 1994). The near-

linear profiles of shear stress and vertical heat flux show that the simulation has

attained a quasi-steady state. The profiles of mean temperature and mean velocity

are representative of a well-mixed moderately convective ABL. In Fig. (2.2), we

show the nondimensional mean-gradients of potential temperature and velocity,

denoted by φh and φm, respectively. Inaccuracies in LES predictions of φm and φh

have been a long-standing problem (Mason and Thomson, 1992) and have recently

been addressed in detail for the case of a neutral ABL by Brasseur and Wei (2010),

who have isolated the fundamental reasons that cause LES to overpredict φm.

Brasseur and Wei (2010) also provide a systematic framework for accurate LES

predictions of φm in the inertial surface-layer of the neutral ABL. Later in this

dissertation, we perform LES of the neutral ABL to determine the applicability of

the findings of Brasseur and Wei (2010) to the modeled SFS conservation equations.
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Table 2.1. A list of important prescribed physical parameters. Lx, Ly and Lz are the
physical dimensions of the computational domain in the x, y and z directions, respec-
tively. Nx is the number of grid points in the x-direction and similarly for Ny and Nz.
Q0 is the prescribed surface temperature flux, z0 is the roughness length, Ug and Vg are
the geostrophic wind velocity components in the x and y directions, Γ is the lapse rate
above the capping inversion and f is the Coriolis parameter.

Prescribed physical parameters of LES
Lx(m) 6000
Ly(m) 6000
Lz(m) 1600
Nx, Ny 192
Nz 144
Q0(K m s−1) 0.20
z0(m) 0.05
Ug(m s−1) 15
Vg(m s−1) 0
Γ(K m−1) 0.003
f(s−1) 0.0001

Table 2.2. A list of important diagnosed physical parameters. The variable u∗ is the
friction velocity, w∗ is the mixed layer convective velocity scale, L is the Monin-Obukhov
length and zi is the inversion height.

Diagnosed physical parameters of LES
u∗(m s−1) 0.68
w∗(m s−1) 1.77
−L(m) 119
zi(m) 857
−zi/L 7.2

The turbulent spectra in the inertial subrange have the following form (Ten-

nekes and Lumley, 1972):

Eθ(κ) = 1.4 β ε−1/3χ κ−5/3. (2.29)

Eh(κ) = 1.64 α ε2/3κ−5/3. (2.30)

In Eqs. (2.29)–(2.30), Eθ(κ) and Eh(κ) are the resolved two-dimensional ring spec-

tra of potential temperature and horizontal turbulent kinetic energy, respectively,

while κ is the radial wavenumber (Peltier et al., 1996). The constants α and β are
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Figure 2.1. (i) Total velocity variances (resolved + SFS) scaled with w2∗ (ii) The
(1,3) stress component scaled with u2∗ (iii) vertical heat flux scaled with Q0 (iv) mean
potential temperature; and (v) mean velocity components, U and V. The geostrophic
velocity components are denoted by Ug and Vg.

universal and are known as the Kolmogorov constant and the Corrsin-Obukhov

constant, respectively. The variable χ denotes the plane-averaged rate of destruc-

tion of θ-variance at the smallest scales while ε denotes the plane-averaged dissi-

pation of turbulent kinetic energy at the smallest scales. While Eqs. (2.29)–(2.30)
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Figure 2.2. Left panel: Nondimensional mean gradient of potential temperature, φh,
versus −z/L, where L is the Monin-Obukhov length. Right panel: Nondimensional
mean gradient of velocity, φm, versus −z/L. The top of the layer shown corresponds to
z/zi = 0.1. Legend – Solid line : modeled SFS conservation equations, dot-dash line :
empirical fit (Businger et al., 1971).

describe two-dimensional spectra, α and β have been scaled appropriately to cor-

respond to their values for one-dimensional spectra. This is done to facilitate easy

comparison between our results and observations as α and β are obtained typically

from measurements of one-dimensional spectra. Sreenivasan (1995; 1996) has done

an extensive compilation of the values of these universal spectral constants cited

in the literature. He found their consensus values to be α ≈ 0.5 and β ≈ 0.4 which

will also serve as our reference. At equilibrium, χ is equal to the rate of variance

transfer from the resolved to the subfilter scales. Hence, we obtain the following

expression for χ:

χ =

〈
−fj

∂θ̄′

∂xj

〉
, (2.31)

where the 〈〉 operator denotes averaging over a plane and θ̄′ = θ̄ − 〈
θ̄
〉
. Similarly,

we can derive an expression for ε at equilibrium:

ε =

〈
−τ d

ij

∂ūi

∂xj

〉
. (2.32)
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The RHS of Eq. (2.32) is the mean rate of transfer of turbulent kinetic energy from

the resolved to the subfilter scales.

In Fig. (2.3a)-(2.3c) we show two-dimensional turbulent spectra of potential

temperature, horizontal kinetic energy and vertical kinetic energy, denoted by

Eθ(κ), Eh(κ) and Ew(κ), respectively. The spectra are plotted against κL/2π,

where L = Lx, Ly and κ =
√
κ2

1 + κ2
2 is the radial wavenumber. The spectra corre-

spond to mid-ABL levels where we expect the turbulence to be well resolved into

a discernible inertial range. In Fig. (2.3a) we plot temperature spectra holding

cτ = 0.10 constant while cθ assumes the values (0.17, 0.21, 0.26). In Fig. (2.3b)-

(2.3c) are shown the horizontal and vertical velocity spectra, respectively, for

cθ = 0.21 and cτ = (0.06, 0.10, 0.15). Figure (2.3a) shows that the effects of

changing (cθ, cτ ) are felt most at scales close to the filter cutoff. As cθ is increased,

the spectra droop increasingly downward at the smaller scales implying greater

dissipation by the SFS model. From Fig. (2.3b)-(2.3c), increasing cτ has a similar

effect on the resolved-scale spectra of horizontal and vertical kinetic energy. Ex-

cessively low values of (cθ, cτ ) tend to result in a build up of variance close to the

filter cut-off. For instance, when cτ = 0.06, the energy spectra droop upward im-

plying an unphysical build-up of energy close to the filter cutoff due to insufficient

dissipation by the SFS model. These observations can be explained crudely in con-

ditions of well-resolved turbulence as follows. Increasing cθ weakens the sink term

in Eq. (2.12) leading to larger SFS fluxes which in turn increase the rate of drain of

variance from the resolved scales, based on Eq. (2.31). We are implicitly assuming

that the resolved-scale scalar gradient depends only weakly on the SFS model in

regions of well-resolved turbulence. Similar arguments can be made accounting

for the effect of cτ on the resolved kinetic energy spectra. Higher cτ results in

larger magnitudes of the SFS stresses which extract more energy from the resolved

scales through Eq. (2.32). Again, we are assuming that the resolved-scale velocity

gradients depend only weakly on the SFS model in regions where the turbulence

is well-resolved.

Hatlee and Wyngaard (2007) found that (cθ, cτ ) = (0.21, 0.08) best optimized

the run-averaged modeled SFS stress and flux values, and the rate of variance trans-

fer in comparison with observations. As an illustrative case, we plot in Fig. (2.4)

the spectral constants α and β, associated with (cθ, cτ ) = (0.21, 0.10). While the
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agreement between the consensus and LES values is better for β than for α, it

is reasonable to infer from Figs. (2.3)-(2.4) that the modeled SFS conservation

equations are able to extract energy from the resolved scales at approximately the

correct rate.
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Figure 2.3. Two-dimensional (Wyngaard, 2010) resolved-scale spectra of: (a) potential
temperature (b) horizontal kinetic energy (c) vertical kinetic energy, versus nondimen-
sional horizontal wavenumber at mid-ABL. In (a), cτ = 0.10 while in (b)-(c), cθ = 0.21.
Eθ(κ) has the units K2m and Eh,w(κ) has the units m3s−2. The radial wavenumber, κ, is
given by κ =

√
κ2

1 + κ2
2 where κ1,2 are wavenumbers corresponding to the 1,2 directions.

The dash-dot line has a slope of (-5/3).
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2.4 SFS budgets

In this section, we study the modeled SFS stress and flux budgets given by Eqs. (2.16)–

(2.17). Eddy-diffusivity closures are derived from the SFS conservation equations

by retaining solely isotropic gradient-production and modeled slow pressure strain-

rate covariance, using the Rotta model for the latter. Hence, it is of interest to

explore the relative contributions of different terms in the SFS budgets.

2.4.1 SFS flux budgets

The SFS flux budgets are shown in this section for a 64x64x48 grid mesh. The

physical conditions describing the run (apart from the grid size) are identical to

those in Table 2.1. In Fig. (2.5) we plot the plane-averaged terms in the fi budgets

versus height for 0 < z < 1.2zi. To examine closer the budgets in the lower part of

the ABL, we also plot in Fig. (2.6) the SFS flux budgets for 0 < z < 0.3zi where

zi = 787.5m is the inversion height.
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Figure 2.5. Plane-averaged terms in the fi budgets plotted versus height. The inversion
height is 787.5m. The units on all the budget terms is mKs−2. Plot legend : (—)
Anisotropic gradient-production, (· · · ) Isotropic gradient-production, (– –) Flux tilting,
(– ·) Advection, (– · · · – ) Modeled slow pressure strain-rate covariance, (— —) Time
tendency

2.4.1.1 f1 and f2 budgets

From Fig. (2.6), the dominant terms in the f1 budget are flux-tilting, anisotropic

gradient-production and modeled slow pressure strain-rate covariance. Using HATS

data, Sullivan (2010) has studied the partitioning of SFS production in the scalar
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Figure 2.6. Plane-averaged terms in the fi budgets for 0 < z < 0.3zi. The units on all
the budget terms is mKs−2. Plot legend : (—) Anisotropic gradient-production, (· · · )
Isotropic gradient-production, (– –) Flux tilting, (– ·) Advection, (– · · · – ) Modeled slow
pressure strain-rate covariance, (— —) Time tendency

flux budgets into its isotropic and anisotropic components. He found anisotropic

production to dominate isotropic production in the f1 budget and the reverse to

hold true of the f3 budget. Thus, Fig. (2.6) is consistent with his findings but

also highlights the importance of the tilting term. The mean flux-tilting term in

the f1 budget, given by 〈−f3 (∂ū1/∂x3)〉, represents the generation of f1 by the
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tilting of f3 into the 1-direction due to the presence of vertical shear. As the near-

wall region in the presence of a mean wind is shear-dominated, the tilting term

is most effective there and gradually decreases in magnitude with height in the

region below the inversion. Near the inversion, the presence of wind shear causes

the flux-tilting term to increase although to a lesser degree than near the surface as

the magnitude of f3 is considerably higher near the surface than at the inversion.

The gradient-production term can be split into: (i) anisotropic gradient produc-

tion,
〈−τ d

1j

(
∂θ̄/∂xj

)〉
; and (ii) isotropic gradient production,

〈−(2/3)e
(
∂θ̄/∂x1

)〉
.

The anisotropic gradient-production term involves gradients of θ̄ in all three di-

rections while its isotropic counterpart depends solely on the gradient in the 1-

direction. In our simulations, the mean temperature gradients in the horizon-

tal directions are insignificant compared to those in the vertical. As a result,

the isotropic gradient-production term is ineffective in generating horizontal SFS

fluxes. The anisotropic gradient-production term, on the other hand, has signifi-

cant contributions from
〈−τ d

13

(
∂θ̄/∂x3

)〉
. Consequently, it is maximum near the

surface and decreases monotonically with height in the region below the inversion.

As we approach the inversion, the vertical gradients of θ̄ become significant causing

the anisotropic gradient-production to increase in magnitude.

The flux tilting and anisotropic gradient-production terms are balanced by

modeled slow pressure strain-rate covariance. The horizontal advection terms,

∂ 〈f1ū1〉 /∂x1 and ∂ 〈f2ū1〉 /∂x2, are zero due to horizontal homogeneity while the

vertical advection term is negligible compared to the other terms in the budget.

The f2 budget over most of the ABL is qualitatively similar to the f1 budget

except near the inversion. The magnitudes of the various terms in the budget,

however, are much smaller as |∂ū2/∂x3| ¿ |∂ū1/∂x3| and |τ d
23| ¿ |τ d

13|, on average.

Near the inversion, the tilting and anisotropic gradient-production terms in the

f2 budget have signs opposite to those in the f1 budget. The difference in the

sign of the tilting terms can be explained by observing that ∂ 〈ū1〉 /∂z > 0 and

∂ 〈ū2〉 /∂z < 0, near the inversion.

In Fig. (2.7) we plot the horizontal heat fluxes (resolved and SFS) nondimen-

sionalized with the surface heat flux, Q0, obtained using two SFS models: (i) the

modeled SFS conservation equations; and (ii) an eddy-diffusivity closure, wherein

τ d
ij = −2KmSij and fi = −Kh

(
∂θ̄/∂xi

)
. We defined the eddy-diffusivity for mo-
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Figure 2.7. Plot showing predicted nondimensional horizontal heat fluxes (resolved
and SFS) as functions of height. Top panel: from modeled SFS conservation equations,
bottom panel: from eddy-diffusivity closure.

mentum, Km, earlier in Sec. (2.1.4). The eddy-diffusivity for heat, Kh, is given by

Kh = [1 + 2 lSFS/∆]Km (Moeng, 1984), where lSFS is the length scale for the SFS

eddies (see Sec. (2.1.2.4)).

The modeled SFS conservation equations (top panel) predict significant SFS

horizontal fluxes near the surface due to flux tilting and anisotropic gradient-

production. The eddy-diffusivity closure (bottom panel) is unable to produce any

horizontal SFS flux due to its dependence solely on isotropic gradient-production.
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These findings are in agreement with those of Hatlee and Wyngaard (2007) who

found that eddy-diffusivity closures underpredict the SFS horizontal fluxes severely.

2.4.1.2 f3 budget

The f3 budget is dominated by isotropic gradient-production and modeled slow

pressure-strain covariance. The dominance of isotropic over anisotropic production

is consistent with the studies by Sullivan (2010). Near the surface, positive buoy-

ancy causes the nonlinear stretching term, 〈f3 (∂ū3/∂x3)〉, to attain positive values,

but it plays a small role in the overall budget. Anisotropic gradient-production,

given by
〈(−τ d

33∂θ̄/∂x3

)〉
, is insignificant compared to isotropic gradient-production,〈(−(2/3) e ∂θ̄/∂x3

)〉
as |τ d

33| ¿ |(2/3)e|. The dominance of isotropic production in

the modeled f3 budget suggests that f3 is more suitable to eddy-diffusivity closures

than f1 or f2.

2.4.1.3 Role of SFS advection in the SFS flux budgets

From the previous section, the mean advection terms play an insignificant role in

the modeled SFS flux budgets. This does not imply, however, that the advection

terms are insignificant in the instantaneous budgets as well.

Deardorff (1973) found the advective term in the SFS rate equations gave rise

to large truncation errors that led to numerical instabilities. Hatlee and Wyngaard

(2007) found that the SFS flux equations without the advection terms behave in-

correctly when the coordinate system translates at a constant velocity, thereby

violating Galilean invariance. We found that excluding the SFS advection terms

in the flux conservation equations has no effect on the mean values of the SFS fluxes

themselves. It does affect the resolved-scale potential temperature spectrum sig-

nificantly. In Fig. (2.8a)-(2.8b) we show the resolved-scale potential temperature

spectrum at mid-ABL with and without the advection terms in the SFS flux con-

servation equations. We retain the advection terms in the SFS stress equations.

Omitting the advection terms causes the potential temperature spectrum to ex-

hibit a spurious build up of energy at the smaller scales and deviate considerably

from a −(5/3) slope (in log-log axes) in the inertial range. Figure (2.8) shows that

SFS advection, while negligible in the mean, plays a crucial role in the conservation
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Figure 2.8. Resolved-scale potential temperature spectra at mid-ABL for (cτ , cθ) =
(0.10, 0.21): (a) with advection of SFS fluxes; and (b) without advection of SFS fluxes.
The straight line has a slope of −5/3.

equations, as without them the SFS model is unable to extract energy adequately

from the resolved scales leading to unphysical potential temperature spectra.

2.4.1.4 Summary

We summarize below the main inferences from our discussion of the modeled SFS

flux budgets:

• Eddy-diffusivity closures are based on the premise that the SFS flux bud-

gets are in equilibrium between isotropic gradient-production and modeled

slow pressure-strain-rate covariance. Our LES results suggest – in agreement

with observations (Hatlee and Wyngaard, 2007) – that this assumption is

justifiable for f3 but not for the horizontal SFS fluxes, f1 and f2.

• Flux-tilting and anisotropic gradient-production are the two dominant sources

of production in the f1 and f2 budgets. Flux-tilting rotates vertical SFS

fluxes into horizontal directions in regions of high shear. Anisotropic gradient-

production produces horizontal scalar SFS fluxes even in the absence of hor-

izontal scalar gradients. The absence of flux tilting and anisotropic gradient-
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production in eddy-diffusivity closures causes them to underestimate the val-

ues of horizontal SFS fluxes (Hatlee and Wyngaard, 2007).

• The advection terms in the SFS flux conservation equations are negligible in

the mean but are crucial in enabling the SFS model to extract energy from

the resolved scales. Excluding the advection terms yields incorrect potential

temperature spectra that lack an inertial range and exhibit spurious build

up of energy at the smaller scales.

2.4.2 SFS stress budgets

Using HATS data, Sullivan (2010) found that anisotropic production dominates

isotropic production in the τ d
αα budgets and the reverse to be true of the τ d

13 budget.

We plot the budgets of the six τ d
ij components in Fig. (2.9). To understand better

the budgets in the lower part of the ABL, we plot the SFS stress budgets for

0 < z < 0.3zi in Fig. (2.10).

2.4.2.1 τ d
αα budgets

(i) τd
11 : Fig. (2.10) shows anisotropic production to be positive in the τ d

11 budget.

This is consistent with strong anisotropy in the shear-dominated surface layer

which yields 〈τ d
11〉 > 0 and (〈τ d

22〉, 〈τ d
33〉) < 0 (Sullivan et al., 2003). Anisotropic

production is much larger than isotropic production, which is in agreement with

the findings by Sullivan (2010). The buoyant contribution, 〈− (2g/3Θ0) f3〉, is

negative as f3 > 0, on average. The modeled slow pressure strain-rate term drives

τ d
ij towards zero, i.e., towards isotropy. It is negative in sign as it is modeled as

being proportional to 〈−τ d
11〉. The mean horizontal advection terms, ∂

〈
ūiτ

d
αα

〉
/∂xi

where i = (1, 2), are zero due to homogeneity in the plane while mean vertical

advection is negligible.

(ii) τd
22 : By definition, the sum of the deviatoric SFS stresses, τ d

ii (summation

implied), is identically zero. Hence, the anisotropic production terms in their bud-

gets must also sum to zero. The same is true of other production and destruction

terms as well. Consequently, the sign of anisotropic production in the τ d
22 budget

is opposite that in the τ d
11 budget. As in the τ d

11 budget, anisotropic production is
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considerably larger in magnitude than the isotropic production term. The buoy-

ancy term is negative and the isotropic production term positive for reasons similar

to those applicable to the τ d
11 budget. The modeled slow pressure strain-rate term

is positive as
〈
τ d
22

〉
< 0. The mean advection terms are negligible.
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Figure 2.9. Plane-averaged values of terms in the SFS stress budgets plotted versus
height. The units on all the budget terms are m2s−3. The inversion height is 787.5m.
Plot legend: (—) Anisotropic production, (· · · ) Isotropic production, (– –) Buoyant
production, (– ·) Advection, (– · · · – ) Modeled slow pressure strain-rate covariance, (—
—) Time tendency
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Figure 2.10. Plane-averaged values of terms in the SFS stress budgets for 0 < z < 0.3zi.
The units on all the budget terms are m2s−3. The inversion is 787.5m. Plot legend:
(—) Anisotropic production, (· · · ) Isotropic production, (– –) Buoyant production, (–
·) Advection, (– · · · – ) Modeled slow pressure-strain-rate covariance, (— —) Time
tendency

(iii) τd
33 : The buoyancy term, 〈(4g/3Θ0) f3〉, appears as a production term

in the budget. Isotropic production,
〈
(−2/3) eS̄33

〉
, is negative as S̄33 > 0, on

average, due to positive buoyancy. Anisotropic production is negative owing to

its traceless nature. The modeled slow pressure-strain-rate term is positive as
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〈
τ d
33

〉
< 0. Once again, the mean advection terms are insignificant.

2.4.2.2 τ d
αβ budgets

Figure (2.10) shows that the τ d
13 and τ d

23 budgets are in balance mainly between

isotropic production and modeled slow pressure-strain-rate covariance. The domi-

nance of isotropic over anisotropic production is consistent with studies by Sullivan

(2010). Buoyant effects are unimportant in Fig. (2.10) but might become signif-

icant at coarser resolutions (Wyngaard, 2004). Thus, for resolutions comparable

to that in Fig. (2.10), eddy-diffusivity closures can be expected to fare reasonably

for the components τ d
13 and τ d

23.

The τ d
12 budget is in equilibrium primarily between anisotropic production and

modeled slow pressure-strain-rate covariance. Both the resolved and SFS compo-

nents of the horizontal shear stress (1-2 plane) are much smaller in magnitude than

those of the other stresses.

2.4.2.3 Role of advection in the SFS stress budgets

From our discussion of the SFS flux budgets, the SFS advection terms are necessary

to yield realistic potential temperature spectra that do not exhibit a large build

up of variance at the smaller scales. We find the advection terms play a similar

role in the SFS stress conservation equations. In Fig. (2.11a)-(2.11b) we plot the

horizontal kinetic energy spectra at mid-ABL with and without SFS advection,

respectively. From Fig. (2.11b), the lack of SFS advection results in a large build

up of energy at the smallest resolved scales and the absence of a well-defined

inertial range. The spectra of resolved vertical velocity, shown in Fig. (2.12), also

displays a build up of energy at the smallest resolved scales when there is no

SFS advection, although there is a discernible inertial-range unlike Fig. (2.11b).

Hence, we conclude that the SFS advection terms are essential to ensure that the

SFS model extracts energy from the resolved scales in a physically meaningful

manner.
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Figure 2.11. Resolved-scale horizontal kinetic energy spectra at mid-ABL for (cτ , cθ) =
(0.10, 0.21): (a) with SFS advection; (b) without SFS advection. The straight line has a
slope of −5/3.
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Figure 2.12. Resolved-scale vertical kinetic energy spectra for (cτ , cθ) = (0.10, 0.21):
(a) with SFS advection; (b) without SFS advection. The straight line has a slope of
−5/3.
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Figure 2.13. Plot showing τd
αα/u2∗ versus z/zi. Left panel: SFS conservation equations,

right panel: eddy-diffusivity closure.

2.4.2.4 Effect of anisotropic production on predictions of τ d
αα

In Fig. (2.13) we plot the nondimensional deviatoric stresses, τ d
αα/u

2
∗, obtained

using two SFS models: (i) the SFS conservation equations; and (ii) an eddy-

diffusivity closure which models the SFS stresses as τ d
ij = −KmDij, where Km =

ck∆
√
e is the eddy-diffusivity and Dij = 2 Sij is the resolved-scale deformation

rate. Following Moeng and Wyngaard (1988), we set ck = 0.1. We first discuss

the lower part of the ABL corresponding to 0 < z/zi < 0.2.

In the convective ABL with a mean wind, both shear and buoyancy are sources

of anisotropy at the energy-containing scales (Kaimal et al., 1972). We expect

isotropy at scales much smaller than the production scales (Kaimal et al., 1972;

Lumley and Panofsky, 1964). Closer the filter cutoff is to the energy-containing

range, the more we expect the anisotropy of the production scales to spill over

into the subfilter scales. Near the surface, the energy-containing scales vary as z

and hence, the subfilter scales are forced to be anisotropic regardless of the grid

resolution. Thus, a mean wind in the 1-direction induces strong anisotropy near

the surface such that 〈τ d
11〉 > 0. This shear-induced anisotropy is counteracted

in the convective ABL by buoyancy (Katul et al., 1995), which we recall tends
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Figure 2.14. Plot showing τd
αα/u2∗ versus z/zi. Left panel: SFS conservation equations

without SFS buoyancy production , right panel: SFS conservation equations without
SFS anisotropic or buoyant production.

to increase τ d
33 and decrease τ d

11. The near-wall region in a moderately convective

ABL is shear-dominated and hence, the net effect of shear and buoyancy is to yield

〈τ d
11〉 > 0 and 〈τ d

33〉 < 0 (Chen and Tong, 2006).

Figure (2.13) shows that the SFS conservation equations exhibit strong SFS

anisotropy near the wall with 〈τ d
11〉 > 0. The other two normal components are

such that 〈τ d
22〉 < 0 and 〈τ d

33〉 < 0, due to the traceless nature of τ d
αα. Compared to

the SFS conservation equations, the eddy-diffusivity closure yields severely reduced

levels of SFS anisotropy near the surface. To examine the source of anisotropy near

the surface in the case of the SFS conservation equations, we plot in Fig. (2.14)

τ d
αα/u

2
∗ obtained: (i) without the buoyancy term (left panel); and (ii) without the

anisotropic production or buoyancy terms (right panel). Wyngaard (2004) used

scaling arguments to show that the effect of buoyancy on the SFS budgets depends

on the grid resolution, becoming more important at coarser resolutions. Compar-

ing the left panel of Fig. (2.14) to that of Fig. (2.13), at the current resolution,

buoyancy appears to influence the values of 〈τ d
αα〉 only weakly in the mixed layer,

where τ d
33 attains slightly higher values with the inclusion of the SFS buoyant term

than without. Near the surface, the absence of SFS buoyant production results
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in slightly increased levels of SFS anisotropy due to the lack of competition be-

tween shear and buoyancy in the conservation equations. The effects of anisotropic

production are more apparent from a comparison of the right panel of Fig. (2.14)

and the left panel of Fig. (2.13). Omitting the anisotropic production term causes

the SFS conservation equations to predict negligible levels of anisotropy near the

surface. Hence, the anisotropic production term is essential for the conservation

equations to yield realistic predictions of τ d
αα in the near-wall region. The eddy-

diffusivity closure doesn’t account for anisotropic production and subsequently,

yields very low SFS anisotropy.

The SFS conservation equations and the eddy-diffusivity closure also differ in

their τ d
αα predictions over the rest of the ABL although to a lesser extent than

near the surface. Figure (2.13) shows that the conservation-equation-based closure

yields 〈τ d
33〉 > 0 and (〈τ11〉, 〈τ22〉) < 0 over a wider range of z/zi in the mixed

layer than does the eddy-diffusivity closure. The anisotropy of subfilter scales in

the mixed layer is due to buoyancy, as shear-induced anisotropy is negligible in the

mixed layer, where the mean gradients are weak. But the direct effects of buoyancy

on the SFS budgets are resolution-dependent (Wyngaard, 2004). In Fig. (2.15),

we plot the scaled deviatoric stresses, τ d
αα/u

2
∗, obtained using the SFS conservation

equations but with a finer grid containing 192x192x144 points. A similar plot

corresponding to the eddy-diffusivity closure is shown in Fig. (2.16). The physical

conditions for the fine-resolution runs are identical to those for the coarser runs.

The SFS conservation equations continue to exhibit significant SFS anisotropy

near the surface in the high-resolution run, due to reasons outlined earlier. For

z/zi > 0.15, however, τ d
αα is negligible indicating isotropy at the subfilter scales.

This suggests that the anisotropy observed at mid-ABL levels in Fig. (2.13) (left

panel), while due to buoyancy, depends also on the coarseness of the grid. In

the mixed layer, the energy-containing eddies scale on zi, the inversion height.

Thus, a sufficiently fine grid ensures that the filter cutoff is far removed from the

energy-containing scales, yielding isotropy at the subfilter scales.

At the higher resolution, the eddy-diffusivity closure yields near-zero levels of

SFS anisotropy (Fig. (2.16)) throughout the ABL, which can be attributed to the

absence of the anisotropic production term in such closures.
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Figure 2.15. τd
αα/u2∗ versus z/zi, obtained using SFS conservation equations in high-

resolution LES (1922x144 grid) . Left panel: 0 < z/zi < 1.0, right panel: 0 < z/zi < 0.2
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Figure 2.16. τd
αα/u2∗ versus z/zi, obtained using an eddy-diffusivity closure in high-

resolution LES (1922x144 grid) . Left panel: 0 < z/zi < 1.0, right panel: 0 < z/zi < 0.2

2.4.2.5 Summary

We summarize below our discussion of the SFS stress budgets.
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• Eddy-diffusivity closures assume that the budgets of all the SFS stress com-

ponents are in equilibrium between isotropic production and modeled slow

pressure strain-rate covariance. Our LES result suggest that this assumption

is too simplistic for the τ d
αα budgets where anisotropic production dominates

isotropic production. It is justifiable for the τ d
13 and τ d

23 budgets, however,

where isotropic production is considerably more significant than anisotropic

production.

• The presence of anisotropic production in the SFS budgets is essential for

realistic predictions of τ d
αα near the wall.

• The SFS advection terms are negligible in the mean but are necessary in

the instantaneous rate equations for the SFS model to extract energy from

the resolved scales in a physically realistic manner. Omitting the advection

terms leads to a spurious build up of resolved-scale turbulent kinetic energy

at the smaller scales.

2.5 Comparison of statistics from high-resolution

LES with HATS data

In the previous sections, we used coarse-mesh LES and qualitative arguments to

gain insight the relative contributions of various terms in the modeled SFS budgets.

In this section, we further test the performance of the SFS conservation equations

by comparing surface-layer statistics obtained using high-resolution LES with those

obtained from the HATS experimental campaign (Sullivan et al., 2003).

2.5.1 Description of the HATS study

The HATS study used the array filtering technique which was developed first by

Tong et al. (1998) and has since been adopted in numerous experimental studies

(Horst et al., 2003; Kleissl et al., 2003; Porté-Agel et al., 2001). A schematic of

the experimental configuration is shown in Fig. (2.17). The array comprises two

rows of sonic anemometers facing the mean wind, five in the top row and nine in

the bottom row. Following Sullivan et al. (2003) we filter the fields in streamwise
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FIG. 1. Genericsonicconfigurationandthe(x, y, z) coordinate
systemusedfordataanalysis. ThesonicanemometersJinthesingle
anddoublearraysarelocatedat(zd, zs) abovethesurface;thecross-
windseparationbetweentheindividualsonicsis(Ss, Sd). Tworef-
erencesonics3 areusedtomonitorthepossibilityofflowinter-
ferenceamongthesonicsinthes andd arrays.

lationshipsbetweenresolvedandsubfilter-scaleturbu-
lentfields. Investigationsbasedonanalysisofdirect
numericalsimulation(DNS) turbulencefieldsandon
spatiallyresolvedmeasurementsoflaboratoryflows
havebeenlimitedtolowReynoldsnumbersandneutral
stratification(MeneveauandKatz2000). Atmospheric
surface-layerturbulencedoesnothavetheselimitations,
butmostexistingatmosphericdataareinadequatebe-
causetraditionalfieldexperimentsmeasureatimeseries
ofturbulentmotionsatasinglepoint, whileLES entails
spatiallyfilteredturbulencevariables.
A methodformeasuringbothspatiallyfilteredand
SFS motionsintheatmospherewasrecentlyproposed
byTongetal. (1998, hereafterTWKB). Thisinnovative
techniqueusestwohorizontallinesofthree-component
sonicanemometer–thermometerswhichareoriented
transversetotheprevailingwinddirectionasshownin
Fig. 1. Usingacrosswindfiltercomposedoffivesonics,
aprimarylineofninesonicanemometersprovidesspa-
tiallyfilteredandSFS fieldsofvelocityandvirtualtem-
peratureatthelocationsofthecentralfiveanemometers,
andthuscanalsoprovidedouble-filteredflowvariables
andcrosswindgradientsofresolved-scalevariablesat
thecentralsonic. Taylor’shypothesisisassumedinorder
tousetimeseriesdatatoestimatespatialaveragesand
gradientsinthestreamwisedirection. A secondlineof
fivesonicanemometers, displacedverticallyfromthe
primaryline, isusedtocalculateverticalgradientsof
theresolved-scalefields. Thisgeneraltechniquehas
beenimplementedinfieldmeasurementprojectsby
Tongetal. (1999), Porté-Ageletal. (2000b, 2001), and
mostrecentlyintheHorizontalArrayTurbulenceStudy
(HATS) fieldprojectexecutedinSeptember2000 near
KettlemanCity, California. A majorgoalofHATS was
toextendsignificantlytherangesofatmosphericsta-
bilityandtheratioofheighttofilterscaleoverthose
obtainedintheprevious, pioneeringfieldstudies.
Inthispaperwedescribethedesignandimplemen-
tationoftheHATS fieldproject(section2) andexamine
indetailtheaccuracyofthehorizontalarraytechnique
forestimationofresolved-scaleandSFS turbulence
quantities. TWKBinvestigatedtheaccuracyofthistech-

niquebyusingturbulencefieldsgeneratedinanLES
ofamoderatelyconvectiveboundarylayertocompare
array-andtime-filteredvariablestothoseobtainedby
direct2Dspatialfiltering. Insection3weusetheHATS
fielddatatoinvestigatetheaccuracyofthediscrete
approximationofthecrosswindfilteroverwideranges
ofatmosphericstability, filterwidth, andsonicspacing.
Ouranalysisusesspatiallylocalfiltersinbothhorizontal
directions, incontrasttoTWKB’scombinationofa
spectral-cutofffilterinthestreamwisedirectionanda
discreteapproximationtoacutofffilterinthecrosswind
direction. Insection4 weexaminetheuseofTaylor’s
hypothesisforstreamwisefiltering,firstdeterminingthe
turbulenceadvectionvelocitywithHATS fielddataand
thenusinganeutrallystratifiedLES simulationtoex-
tendtheTWKBanalysistoawiderangeoftheratioof
heighttofilterwidth. Finally, insection5, weinves-
tigatetheaccuracyofthefinite-differenceestimatesof
spatialgradientsofresolved-scalevelocitiesandtem-
perature. ThislasttopicwasnotinvestigatedbyTWKB,
butiscrucialtoexaminationanddevelopmentofSFS
parameterizations.

2. HATS field observations

a. Measurement design

TheHATS fieldmeasurementdesignisbasedonthe
transversearraytechniqueproposedbyTWKB. The
sonicconfigurationconsistsofaprimaryhorizontalline
ofnineequallyspacedsonicanemometersmountedat
oneheightandaparallellineoffivesonicanemometers
atasecondheight(Fig. 1). Thetwolinesofsonicsare
orientedperpendiculartotheprevailingwinddirection
sothatcrosswind-filtereddatacanbeestimatedbycal-
culatingaweightedsumofthesonicanemometerdata
ateachheight, forexample,

2
a au (x, t) 5 C u(x , x 1 iS, x , t 1 idt), (1)O i 1 2 3

i522

whereu istheunfilteredvelocity(u1, u2, u3), x 5

(x1, x2, x3), uaisthecrosswindorarray-filteredvelocity,
andS isthespacingofthesonicanemometersinthex2
direction. Thecrosswindfilterencompassesfiveadja-
centsonicsandthefiltershapedependsontheweighting
coefficients .Inreality,thewinddirectionwillseldomaC i

beexactlynormaltothetransversearray. Therefore,
assumingTaylor’shypothesis,theobserveddataarepro-
jectedontoalinenormaltothewinddirectionbyap-
plyingtimelagsidt tothedatafromeachsonic, where
dt 5 S sinQ/Uc. HereQ isthemeanwinddirection
relativetothearraynormal, averagedoverallsonicsat
thatheight, andUc istheeddyadvectionvelocity, the
speedatwhichturbulenceisadvectedinthestreamwise
direction. Thisreducestheeffectivecrosswindspacing
oftheanemometers, andthusalsothefilterwidth, by
thefactorcosQ.
Streamwisefilteringisapproximatedbyinvoking

Figure 2.17. Schematic showing the array configuration of sonic anemometers used in
the HATS experiment (figure reproduced from (Horst et al., 2003)). The variables Ss

and Sd denote the spacings between the sonics in the top and the bottom arrays. The
distances of the top and the bottom arrays from the ground are denoted by zs and zd,
respectively.

and crosswise directions using a Gaussian and top-hat filter, respectively. As the

crosswise filter can consist of a maximum of five or nine sonics, it is required to be

compact in physical space. This constraint makes the top-hat filter a natural choice

for the crosswise filter. In the streamwise direction, filtering is done using Taylor’s

“frozen field” hypothesis wherein the measured time series is used as a surrogate for

a spatial record which is then filtered spatially. Tong et al. (1998) analyzed carefully

the various potential sources of error in applying the Taylor approximation and

concluded that they were sufficiently small to permit its use. The high frequency of

the sonics (20 Hz) implies a much finer spatial resolution in the streamwise direction

– from Taylor’s hypothesis – than in the crosswise direction, which permits the use

of a Gaussian filter in the streamwise direction. The Gaussian filter, in contrast

to the top-hat filter, decays slowly in physical space but is compact in spectral

space. The studies by Chen and Tong (2006) and Chen et al. (2009) found that

the differences between the statistics obtained using a top-hat and a Gaussian filter

in the streamwise direction are much less than those between the true statistics

obtained from the field data and the statistics corresponding to different SFS

models. Hence, for the purposes of testing SFS models, the use of either the top-
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hat or the Gaussian filter in the streamwise direction is justifiable. Finally, there is

the issue of comparing statistics obtained from fields filtered in two dimensions to

those obtained from LES where the fields are filtered in all three directions. Tong

et al. (1998) found that two-dimensional filtering in horizontal planes is a good

approximation to filtering in three dimensions. Higgins et al. (2007) found that

two-dimensional horizontal filtering is a reasonable surrogate for three-dimensional

filtering under unstable conditions but recommended two-dimensional filtering in

vertical planes parallel to the mean wind — when possible — under near-neutral

and stable conditions. The HATS experimental setup, by design, does not permit

vertical filtering of the fields. Thus, in our current study, we use two-dimensional

filtering in horizontal planes to process the HATS data.

Sullivan et al. (2003) demonstrated that various nondimensional statistics ex-

hibit good collapse across a broad range of stabilities and filter widths, when

plotted against the nondimensional parameter, ∆w/∆, where ∆w is the peak in

the vertical velocity spectrum, and ∆ is the filter width. The parameter ∆w/∆ is

a measure of how well the turbulence is resolved. High values of ∆w/∆ imply a

filter width much smaller than the energy-containing scales and, thereby, condi-

tions of well-resolved turbulence. Low values of ∆w/∆ correspond to conditions

where the filter width is of the order the integral length scales, as is the case in

the near-wall region, coarse LES, stably stratified layers, etc. Thus, the parameter

∆w/∆ captures the effects of both stability and scale. Following Sullivan et al.

(2003), in our comparison of the HATS data with LES results, we plot statistics

against ∆w/∆. In particular, we are interested in the following statistics: mean

SFS stresses, SFS variances, mean SFS fluxes, and important production terms

in the SFS budgets. A drawback of using ∆w/∆ is that it contains only surface-

layer information (through ∆w) and lacks “outer scale” information — such as

the boundary layer height — which have been shown to influence the structure

of horizontal motions near the surface (Kaimal and Finnigan, 1994; Khanna and

Brasseur, 1997, 1998). The boundary layer height wasn’t measured in the HATS

experiments. In spite of the lack of outer scale information in the parameter ∆w/∆,

the studies by Sullivan et al. (2003) show that it is quite effective in describing

statistics consistently across a broad range of stabilities.



49

0.1 1.0 10.0
∆w / ∆

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

<τ
11d   b

ud
ge

t >
 / 

ε

Aniso.
Iso.

Buoy.

1 10
∆w / ∆

-1.0

-0.5

0.0

0.5

1.0

< 
τ 2

2d   b
ud

ge
t >

 / 
ε

0.1 1.0 10.0
∆w / ∆

-1.0

-0.5

0.0

0.5

1.0

< 
τ 3

3d   b
ud

ge
t >

 / 
ε

0.1 1.0 10.0
∆w / ∆

-4

-2

0

2

4

< 
τ 1

3d   b
ud

ge
t >

 / 
ε 

Figure 2.18. HATS data, unstable cases: The partitioning of SFS production into
isotropic, anisotropic and buoyant components for the deviatoric stresses, τd

αα, and τd
13,

plotted against the nondimensional parameter ∆w/∆. The production terms have been
scaled using 0.93 e3/2/∆.

2.5.2 HATS: τ d
αα and τ d

13 budgets

In Fig. (2.18), we show the scaled anisotropic, isotropic and buoyant production

terms for the diagonal components, τ d
αα, and τ d

13, plotted versus ∆w/∆. Fig-

ure (2.18) is similar to results obtained by Sullivan (2010) the only difference

being that we have also included the buoyant terms. The production terms have

been scaled with ε = 0.93 e3/2/∆. Following Sullivan et al. (2003), we compute ∆w

using ∆w = 2π〈U〉τp, where 〈U〉 is the mean wind in the streamwise direction and

τp is the Eulerian time scale obtained by assuming an exponential autocorrelation
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function for the vertical velocity, R(t) = exp(t/τp).

At high values of ∆w/∆, the turbulence is well-resolved and the production

terms in the SFS budgets are dormant. They start to become significant at lower

values of ∆w/∆, where the subfilter scales account for a significant portion of the

total stresses and fluxes. We now describe the important trends in Fig. (2.18).

2.5.2.1 τ d
αα budgets

The magnitude of scaled anisotropic production in the τ d
αα budgets increasingly

dominates that of isotropic production as ∆w/∆ decreases. This trend is most

apparent in the τ d
11 budget where the scaled magnitude of isotropic production is

much lower than that of anisotropic production across the entire range of ∆w/∆

considered in our study. Isotropic production is more significant in the τ d
22 and τ d

33

budgets than in the τ d
11 budget, but fails to keep up with anisotropic production

in magnitude at lower ∆w/∆. Anisotropic production is positive in the τ d
11 budget

and negative in the (τ d
22, τ

d
33) budgets due to its traceless nature. As expected, the

trends exhibited by the scaled anisotropic and isotropic production are identical

to those observed by Sullivan (2010).

The SFS buoyant terms appear as production terms in the τ d
33 budget and

as destruction terms in the (τ d
11, τ

d
22) budgets. Although they assume identical

analytical forms in the (τ d
11, τ

d
22) budgets, their effects are more pronounced in the

τ d
22 budget than in the τ d

11 budget due to smaller magnitudes of the other production

terms (anisotropic and isotropic) in the former. The trends in the variation of

buoyant production with ∆w/∆ from Fig. (2.18) are less clear when compared to

that of anisotropic production. Based on scaling arguments put forth by Wyngaard

(2004), the magnitude of buoyant production scaled with ε ∼ (u(∆))3/∆ yields,

P buoy
ij

ε
=

g

Θ0

θl

u2

(
l

∆

)−2/3

=
g

Θ0

θ

u2

(
l

∆

)1/3

∆ (2.33)

where P buoy
ij denotes the intensity scale of buoyant production for the filter scale,

∆. The variables l, θ and u denote the length, temperature and velocity scales

corresponding to the energy-containing range. If the factor (g/Θ0) (θ/u2), which

has the dimensions of an inverse length scale, doesn’t change appreciably, then
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Figure 2.19. HATS data, unstable cases: Array-wise partitioning of SFS production
into isotropic, anisotropic and buoyant components for the τd

33 budget, plotted against
the nondimensional parameter ∆w/∆. The production terms have been scaled using
0.93 e3/2/∆.

Eq. (2.33) implies that the relative importance of buoyant production in the SFS

budgets depends on both (l/∆) and ∆. In Fig. (2.19), we show the τ d
33 budget

for the four array configurations used in HATS, each corresponding to a fixed

filter width, ∆. Note that arrays 2 and 3 correspond to different physical heights

of the sonic array. As the buoyant terms in the τ d
αα budgets are merely scalar

multiples of each other, Fig. (2.19) is a representative case. The magnitude of

scaled buoyant production attains its largest and least values for arrays 1 and 4,

respectively, which also corresponds to the arrays with largest and the smallest
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filter widths. For fixed ∆, the role of buoyant production in the budget diminishes

with decreasing l/∆. Thus, the buoyant terms in the τ d
ij budgets depend on both

(l/∆) and ∆, in agreement with Eq. (2.33).

The other terms in the budget include modeled slow pressure strain-rate covari-

ance, advection and the transport terms. Of these terms, the first is the principal

sink in the SFS budgets (Wyngaard, 2004). Based on Fig. (2.18), balance of the τ d
αα

budgets requires modeled slow pressure strain-rate covariance to be the dominant

sink term in the τ d
11 budget, and the dominant production term in the (τ d

22, τ
d
33)

budgets.

2.5.2.2 τ d
13 budget

In contrast to the τ d
αα budgets, isotropic production dominates anisotropic pro-

duction in the τ d
13 budget. Anisotropic production, while non-zero, is smaller in

magnitude than isotropic production across the entire range of ∆w/∆ considered

in our study, although it exhibits a marked increase for ∆w/∆ < 2. The buoyant

terms assume small values and play a negligible role in the budget. For the budget

to be balanced, the modeled slow pressure strain-rate has to be a gain. We infer

that for ∆w/∆ > 2, isotropic production is more significant than anisotropic pro-

duction in the τ d
13 budget. For ∆w/∆ < 2, anisotropic production exhibits a sharp

increase but remains smaller in magnitude than isotropic production.

2.5.3 LES: τ d
αα and τ d

13 budgets

In order to compare the modeled SFS budgets with those obtained from HATS, we

now present results obtained from high-resolution LES using two closures: (i) the

modeled SFS conservation equations; and (ii) an eddy-diffusivity closure described

earlier in Sec. (2.4.1.1).

2.5.3.1 Obtaining the wavenumber corresponding to the vertical ve-

locity spectral peak

We plot the various terms in the SFS budgets as a function of ∆w/∆, where

∆ = (∆x∆y∆z)1/3 is the filter width and ∆w is the peak of the two-dimensional

vertical velocity spectrum, as obtained by fitting the following function, E(κ), to
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Figure 2.20. Two-dimensional vertical velocity spectra for a moderate convective ABL
from a 1922x144 simulation. The spectra are shown for the heights 0 < z/zi < 0.1. The
dashed lines denote best fits as prescribed by Eq. (2.34). The dash-dot line has a slope
of −5/3.

the spectrum (Peltier et al., 1996).

E(κ) =
c1l

2s2κ
[
c2 + (κl)2]4/3

. (2.34)

In Eq. (2.34), (c1, c2) are constants and κ is the radial wavenumber. The character-

istic length and intensity scales are denoted by l and s, respectively. The modeled

spectrum E(κ) has a maximum at κ ∼ 1/l and exhibits a −5/3 slope for κÀ l−1.

In Fig. (2.20), we plot the resolved-scale vertical velocity spectrum and the

corresponding best fit from Eq. (2.20), for 0 < z/zi < 0.1, using both the SFS con-

servation equations and the eddy-diffusivity closure. Both the plots in Fig. (2.20)

utilize a 192x192x144 grid and have physical conditions identical to those described

in Table 2.1. The modeled spectrum, E(κ), predicts the peak in the resolved-scale

spectrum satisfactorily for both closures, although it is in slightly better agreement

with spectra obtained using the SFS conservation equations at higher wavenum-

bers. A visual inspection of Fig. (2.20) reveals that the peak in the vertical velocity

spectrum obtained using the SFS conservation equations is associated with smaller
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scales (higher wavenumbers) than that obtained using the eddy-diffusivity closure.

2.5.3.2 Design of LES runs

The unstable cases in HATS correspond to different surface heat fluxes, filter widths

and presumably, boundary layer heights. Indeed, one of the interesting findings by

Sullivan et al. (2003) is the efficacy of the scaling parameter ∆w/∆, as observed

in the good collapse of various resolved and SFS statistics across a wide range

of scale and stability. Hence, we present LES statistics as a function of ∆w/∆

combining results from five LES runs whose specified and diagnosed characteristics

are described in Table (2.3) and Table (2.4), respectively. The runs describe weakly

to moderately convective ABLs with their (z/L) values ranging from−1.21 to−7.2.

We label the runs as ‘CONV1’, ‘CONV2’, etc., in increasing order of their −zi/L

values.

Table 2.3. A list of important prescribed physical parameters. Lx, Ly and Lz are the
dimensions of the computational domain in the x, y and z directions, respectively. Q0 is
the prescribed kinematic surface potential temperature flux, z0 is the roughness length,
Ug and Vg are the geostrophic wind velocity components in the x and y directions, Γ is
the lapse rate above the inversion and f is the Coriolis parameter.

Specified physical parameters of LES runs
CONV1 CONV2 CONV3 CONV4 CONV5

Lx, Ly(m) 6000 3000 3000 6000 6000
Lz(m) 1600 1000 1000 2000 1600
Nx, Ny 192 192 216 192 192
Nz 144 160 192 160 144
Q0(Kms−1) 0.02 0.2 0.2 0.2 0.2
Ug(ms−1) 15 15 15 15 15
Vg(ms−1) 0 0 0 0 0
z0(m) 0.05 0.16 0.16 0.16 0.05
Γ(Km−1) 0.003 0.003 0.003 0.003 0.003
f(s−1) 0.0001 0.0001 0.0001 0.0001 0.0001

2.5.3.3 The budgets for τ d
αα and τ d

13

In Fig. (2.21), we show the terms in the modeled τ d
11 and τ d

22 budgets, scaled

with ε = 0.93 e3/2/∆, plotted versus ∆w/∆. A similar plot for the τ d
33 and τ d

13
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Table 2.4. A list of important diagnosed physical parameters. The variable zi is the
inversion height, u∗ is the friction velocity, L is the Monin-Obukhov length and w∗ is
the mixed layer convective velocity scale.

Diagnosed physical parameters of LES runs
CONV1 CONV2 CONV3 CONV4 CONV5

u∗(ms−1) 0.55 0.72 0.71 0.71 0.68
w∗(ms−1) 0.8 1.52 1.51 1.71 1.77
−L(m) 657 142 139 140 119
zi(m) 795 537 531 767 857
−zi/L 1.21 3.78 3.82 5.47 7.2

budgets is shown in Fig. (2.22). The range of ∆w/∆ considered in Figs. (2.21)–

(2.22) corresponds to 0 < z/zi < 0.1, which is approximately the depth of the

surface layer. The results from various runs collapse well and vary smoothly with

∆w/∆. The two major trends in Figs. (2.21)–(2.22) are: (i) the dominance of

anisotropic production for the diagonal stresses, τ d
αα; and (ii) the dominance of

isotropic production for the shear component, τ d
13.

As we approach lower ∆w/∆, the modeled τ d
αα budgets simplify to a balance

mainly between anisotropic production and modeled slow pressure strain-rate co-

variance (labeled ‘sink’ in the plots), in agreement with the behavior of the ob-

served τ d
αα budgets as implied by Fig. (2.18). The effects of isotropic production

and advection are insignificant. The buoyant terms are relatively more significant

in the τ d
22 and τ d

33 budgets than in the τ d
11 budget, but their overall effects in all

three budgets are negligible.

The τ d
13 budget is dominated by isotropic production and the modeled slow

pressure strain-rate terms across the entire range of ∆w/∆ considered in our runs.

The sharp increase in the magnitude of anisotropic production in the HATS data

for ∆w/∆ < 2 is absent in the modeled τ d
13 budget. Anisotropic production in

the τ d
13 budget is determined primarily by the term −τ d

33 (∂u/∂z) (Chen and Tong,

2006). Later, we see that the modeled SFS budgets underpredict τ d
33 compared to

observations, which might partially account for the underprediction of anisotropic

production.

An interesting feature of Figs. (2.21)–(2.22) is the tendency of the scaled budget

terms to asymptote at lower values of ∆w/∆. In particular, the scaled dominant
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Figure 2.21. Modeled τd
11 and τd

22 budgets. The horizontal lines at low ∆w/∆ indicate
theoretical values in the RANS limit (refer Appendix A). Color legend: — : −zi/L =
1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— :
−zi/L = 7.2

production and destruction terms in both the τ d
αα and τ d

13 budgets appear to ap-

proach constant values with decreasing ∆w/∆. Sullivan et al. (2003) showed that

the filtering operation is equivalent to Reynolds averaging at very low values of

∆w/∆. In other words, ∆w/∆ → 0 corresponds to the “RANS limit” (RANS

stands for Reynolds Averaged Navier-Stokes) and the asymptotic values of the

dominant, scaled terms in the SFS budgets at low ∆w/∆ are indicative of the SFS

model’s performance as we approach this limit. The horizontal solid lines shown in
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Figure 2.22. Modeled τd
33 and τd

13 budgets. The horizontal lines at low ∆w/∆ indicate
theoretical values in the RANS limit (refer Appendix A). Color legend: — : −zi/L =
1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— :
−zi/L = 7.2

Figs. (2.21)–(2.22) denote theoretical values in the RANS limit for the anisotropic

production term in the case of the τ d
αα budgets, and the isotropic production term

in the case of the τ d
13 budget. In Appendix A, we derive analytically the limits

for the anisotropic production term while infering that for the isotropic produc-

tion term through HATS data. The values of the dominant production terms in

the modeled τ d
11 and τ d

33 budgets at low ∆w/∆ are in good agreement with their

theoretical values in the RANS limit. Those in the modeled τ d
22 and τ d

13 budgets
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are underpredicted slightly. While these asymptotic limits are not observed in the

HATS data for convectively unstable conditions, we recover these limits for stably

stratified conditions, discussed in the next chapter. The values of ∆w/∆ associated

with stable stratification are typically lower than those for unstable stratification.

2.5.3.4 Significance of the LES to RANS transition

Near the wall, the horizontal length scale of the vertical velocity spectrum scales

as z implying that turbulent motions in that region will always be under-resolved,

irrespective of the grid resolution (Khanna and Brasseur, 1997). Thus, as we ap-

proach the wall, the parameter ∆w/∆ tends to zero and the SFS model is required

to represent an increasing fraction of the total turbulent stresses and fluxes. Ide-

ally, an SFS model would provide a smooth transition from LES to RANS towards

the wall. In practice, this turns out to be a challenging requirement for SFS models

to meet (Sullivan et al., 1994). For instance, one of the main features of the two-

part eddy-viscosity model developed by Sullivan et al. (1994) is that it is designed

to achieve a transition from LES to RANS towards the wall by using a fluctuating

and mean-field viscosity, the latter representing near-wall effects. In their stud-

ies, Sullivan et al. (1994) calculated the shear production term in the prognostic

equation for e after subtracting the mean shear from the resolved-scale strain rate.

Our results in the previous section suggest that the modeled conservation equa-

tions have the potential to enable a smooth transition from LES to RANS without

using ad-hoc corrections.

2.5.4 SFS total stresses

2.5.4.1 HATS results

In Fig. (2.23) we show the magnitudes of the total (deviatoric + isotropic) SFS

stresses, ταα and τ d
13, normalized with the magnitudes of the corresponding total

stresses (resolved + subfilter), as a function of ∆w/∆. The total stresses are

denoted as 〈u′u′〉T , 〈v′v′〉T and so on. Figure (2.23) is identical to results presented

by Sullivan et al. (2003) except that we have shown merely the unstable cases. The

magnitudes of the normalized stresses increase with decreasing ∆w/∆, as expected.

The fraction of the total stresses residing at the subfilter scales at a given value
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Figure 2.23. HATS: SFS stresses as a fraction of the total stresses (resolved + SFS)
for convectively unstable cases.

of ∆w/∆ is typically larger for τ33 than is for either τ11 or τ22 (Sullivan et al.,

2003), which reflects the difference in the spectral content of horizontal and vertical

velocity fluctuations. The collapse is considerably better for τ33 than for the other

three τij components.

2.5.4.2 LES results

Figures. (2.24)–(2.25) are plots similar to Fig. (2.23), but obtained from LES with

the SFS conservation equations and the eddy-diffusivity closure. Compared to

Fig. (2.23), both closures underpredict the scaled magnitudes of τ11 and τ22 at
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Figure 2.24. LES: SFS stresses as a fraction of the total stresses (resolved + SFS),
obtained using the SFS conservation equations. Color legend: — : −zi/L = 1.21 ,
— : −zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2

high ∆w/∆ but overpredict at lower values of ∆w/∆. The scaled magnitudes of

τ33 and τ13 are predicted reasonably by the two closures at low ∆w/∆ . At higher

∆w/∆, however, their magnitudes are underpredicted severely. As we shall see

in later plots, this is a recurring trend in our LES resuls with both SFS models,

namely, the underprediction of various statistics at high ∆w/∆ when compared to

HATS data. We speculate that this could be a consequence of the differences in

the type of filtering used in LES and for the HATS data.
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Figure 2.25. LES: SFS stresses as a fraction of the total stresses (resolved + SFS),
obtained using the eddy-diffusivity closure. Color legend: — : −zi/L = 1.21 , — :
−zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2

There are some differences between results obtained using the two closures.

Firstly, the variations of the scaled SFS stresses with ∆w/∆ are different for the

two closures. LES results with the SFS conservation equations collapse better

than those with the eddy-diffusivity closure, as a function of ∆w/∆. In fact, they

collapse even better than the HATS data. This can be explained by noting that

our LES runs cover only a limited range of zi/L, as outlined in Table 2.4. The

HATS data correspond, presumably, to a wider range of stabilities than our LES
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runs. In general, it appears that within this narrow range of zi/L, the influence

of the outer scales on the scaled SFS stresses leaves only a weak signature, when

they are plotted against the parameter ∆w/∆. Thus, statistics involving horizon-

tal velocity fluctuations exhibit greater scatter in the HATS data than in our LES

studies. Another difference is that ∆w for the eddy-diffusivity closure is consis-

tently higher than that for the SFS conservation equations at the first few grid

levels. Andren et al. (1994), in their studies of the neutral ABL, found that SFS

models with reduced eddy-diffusivities and/or backscatter pushed the location of

the spectral peak to smaller scales (higher wavenumbers). Thus, reducing the value

of ck in the eddy-diffusivity closure is expected to shift the spectral peak to higher

wavenumbers, which would result in lower values of ∆w/∆.

2.5.5 SFS deviatoric components

In this section, we compare the means and the normalized standard deviations of

the modeled SFS stresses and fluxes with those obtained from HATS data.

2.5.5.1 Mean values

In Fig. (2.26), we show the normalized stresses, τ d
αα/u

2
∗, obtained from HATS data

(Sullivan et al., 2003). A similar plot for the LES results is shown in Fig. (2.27).

The HATS data show the deviatoric components tending towards zero at large

∆w/∆ indicating the onset of isotropy. As ∆w/∆ decreases, the SFS stresses start

to exhibit strong anisotropy. The LES results in Fig. (2.27) show that the SFS

conservation equations reproduce partially the anisotropy at the subfilter scales

while the eddy-diffusivity closure predicts near-zero values for the scaled deviatoric

components. The poor performance of the eddy-diffusivity closure is due to its

lack of anisotropic production, which is an important production term in the τ d
αα

budgets at low ∆w/∆, as seen in Fig. (2.18).

Although the SFS conservation equations account explicitly for anisotropic pro-

duction, Figs. (2.26)-(2.27) show that the SFS conservation equations underpredict

the magnitudes of τ d
11/u

2
∗ and τ d

33/u
2
∗ while overpredicting that of τ d

22/u
2
∗. The errors

in the predicted magnitudes of τ d
αα could potentially be due to the fact that the

model for the pressure-strain covariance used in this study takes into account only
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Figure 2.26. HATS: SFS normal stresses, τd
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sponds to τd
αα = 0.

1 3 6
−1

−0.5

0

0.5

1

(a)

τ α 
α

d
 
/
 
u
*2

∆
w
 / ∆

1 3 6
−1

−0.5

0

0.5

1

(b)

 

 

τ α 
α

d
 
/
 
u
*2

∆
w
 / ∆

(1,1)

(2,2)

(3,3)

Figure 2.27. LES: Comparison of predictions of τd
αα/u2∗ by (a) SFS conservation equa-

tions; and (b) eddy-diffusivity closure. Color legend: — : −zi/L = 1.21 , — :
−zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2

contributions from pT .
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Figure 2.28. HATS: Root mean square values of SFS deviatoric stresses τd
11 and τd

33,
normalized with the magnitudes of their mean values.

2.5.5.2 Fluctuation levels

We discuss first the fluctuation levels of τ d
11 and τ d

33, followed by those of τ d
13. In

Fig. (2.28), we show the rms (root mean square) values of τ d
11 and τ d

33 normalized

with the magnitudes of their respective mean values, as obtained using HATS

data. As ∆w/∆ increases, the normalized fluctuation levels of τ d
11 and τ d

33 increase

monotonically, attaining nearly equal magnitudes at higher values of ∆w/∆. As

∆w/∆ decreases, the normalized fluctuations of τ d
11 tend to exceed slightly those

of τ d
33.

The normalized fluctuations of τ d
11 and τ d

33 obtained from LES are shown in

Fig. (2.29). The SFS conservation equations reproduce the trends correctly, wherein

the normalized fluctuations of τ d
11 and τ d

33 increase monotonically with increasing

∆w/∆. The normalized rms values of τ d
11 and τ d

33 are underpredicted consider-

ably at low ∆w/∆ but are in better agreement with observations at higher ∆w/∆.

There appears to be a systematic dependence on zi/L wherein the normalized

fluctuations increase with increasing −zi/L.

The eddy-diffusivity closure predicts very high normalized rms values of τ d
11 pri-

marily because it predicts near-zero levels of |τ d
αα|, as discussed in earlier sections.
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Figure 2.29. LES: Root mean square values of SFS deviatoric stresses τd
11 and τd

33,
normalized with the magnitudes of their mean values. Top panel: SFS conservation
equations, bottom panel: eddy-diffusivity closure. Color legend: — : −zi/L = 1.21 ,
— : −zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2

It predicts reasonably the trends in the normalized rms values of τ d
11, namely, their

increase with increasing ∆w/∆. The predicted normalized rms values of τ d
33 fare

poorly both in magnitude and trend when compared to observations. The depen-

dence on zi/L is harder to discern than in the case of the modeled SFS conservation

equations.

Figure (2.30) shows the normalized rms values of τ d
13 obtained from HATS

data. They increase in magnitude with increasing ∆w/∆ and are nearly equal to
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Figure 2.30. HATS: Root mean square value of τd
13, normalized with |〈τd

13〉|.

the normalized rms values of τ d
11 and τ d

33 at high ∆w/∆.

The normalized rms values of τ d
13 obtained using the SFS conservation equa-

tions and the eddy-diffusivity closure are shown in Fig. (2.31). Both closures

reproduce correctly the trends but underpredict the magnitudes at low ∆w/∆. As

∆w/∆ increases, the modeled SFS conservation equations continue to underpre-

dict τ d,rms
13 /

∣∣〈τ d
13

〉∣∣ while the predictions by the eddy-diffusivity closure become

increasingly sensitive to the underlying zi/L values. At ∆w/∆ ≈ 5, for instance,

the normalized τ d
13 fluctuations from the HATS data and LES are ≈ 2 and ≈ 1.2,

respectively. The eddy-diffusivity closure yields values ranging from 1.5 to 3.2.

Nevertheless, the eddy-diffusivity closure predicts the normalized rms values of

τ d
13 better than those of τ d

αα as it accounts for isotropic production, which is the

dominant production term in the τ d
13 budget.

2.5.6 SFS kinetic energy

In Fig. (2.32), we show SFS turbulent kinetic energy, eSFS, as a fraction of the

total turbulent kinetic energy, eTOT, obtained from HATS data. Corresponding

plots from LES runs using the SFS conservation equations and the eddy-diffusivity

closure are shown in Fig. (2.33a) and Fig. (2.33b), respectively. Compared to
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Figure 2.31. LES: Root mean square value of τd
13 normalized with |〈τd

13〉|, using (a) SFS
conservation equations; (b) eddy-diffusivity closure. Color legend: — : −zi/L = 1.21
, — : −zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2
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Figure 2.32. HATS: SFS turbulent kinetic energy, eSFS, as a fraction of the total
(resolved + SFS) turbulent kinetic energy, eTOT.

HATS data, both closures overpredict eSFS/eTOT at lower values of ∆w/∆ and

underpredict it at higher values of ∆w/∆.
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Figure 2.33. LES: SFS turbulent kinetic energy, eSFS, as a fraction of the total (re-
solved+sfs) turbulent kinetic energy, eTOT, using (a) SFS conservation equations; and
(b) eddy-diffusivity closure. Color legend: — : −zi/L = 1.21 , — : −zi/L = 3.78,
— : −zi/L = 3.82, — : −zi/L = 5.47 ,— : −zi/L = 7.2

The principal production term for the SFS kinetic energy, e, is τ d
klS̄kl, which we

recognize as the rate of energy transfer from the resolved to the subfilter scales.

Since the eddy-diffusivity closure is capable of downscale energy transfer at the

correct mean rate, its poor representation of the SFS stresses themselves does not

affect adversely the predicted magnitudes of e. Thus both the eddy-diffusivity

closure and the SFS conservation equations yield more or less similar trends and

magnitudes of e in Fig. (2.33).

2.5.7 HATS: fi budgets

Among isotropic and anisotropic production, Sullivan (2010) found the latter to

dominate in the f1 budget and the former to dominate in the f3 budget. In

Fig. (2.34) we present the budgets for f1 and f3 obtained from HATS measure-

ments. Figure (2.34) is similar to results obtained by Sullivan (2010), the only

difference being that we also show the tilting and buoyant production terms. We

discuss first the f1 budget followed by the f3 budget.
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Figure 2.34. HATS: Scaled production terms in the f1 (left) and f3 (right) budgets.

2.5.7.1 f1 budget

The dominant production terms in the f1 budget are flux tilting and anisotropic

gradient-production. The magnitudes of flux-tilting and anisotropic gradient-

production are nearly equal with the former being slightly larger. Isotropic gradient-

production is negligible at all values of ∆w/∆ in Fig. (2.34), as shown by Sulli-

van (2010) and implied in studies by Hatlee and Wyngaard (2007), who found

eddy-viscosity closures — which account only for isotropic production — to yield

near-zero values of f1. The other terms in the f1 budget are advection, turbulent

transport, and pressure destruction. Of these, pressure destruction is the principal

sink term (Wyngaard, 2004) in the f1 budget.

2.5.7.2 f3 budget

For values of ∆w/∆ in the range (4,10) the dominant production term in the f3 bud-

get is isotropic production while anisotropic and buoyant production are negligi-

ble. For lower ∆w/∆, both anisotropic- and buoyant-production increase although

their magnitudes remain smaller than that of isotropic production. The increase

in the magnitude of anisotropic gradient-production, in particular, is marked for

∆w/∆ < 3. Anisotropic gradient-production in the f3 budget contains contribu-
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tions from τ d
33 (∂θ/∂z). At higher values of ∆w/∆, the SFS stresses are nearly

isotropic with τ d
αα ≈ 0 (Sullivan et al., 2003) implying low values of anisotropic

gradient-production. As ∆w/∆ decreases, the SFS stresses become increasingly

anisotropic such that the magnitudes of τ d
11 and τ d

33 increase (Sullivan et al., 2003),

thereby leading to higher values of anisotropic gradient-production. Buoyant pro-

duction is negligible at higher ∆w/∆ but increases slightly as ∆w/∆ decreases.

We infer that the pressure-destruction term has to be negative to balance the f3

budget.

To summarize, at higher ∆w/∆, isotropic production dominates anisotropic-

and buoyant production in the f3 budget. At lower ∆w/∆, buoyant-production and

anisotropic gradient-production become important although they remain smaller

in magnitude when compared to isotropic production. The principal sink term in

the f3 budget is pressure destruction.

2.5.8 High-resolution LES: fi budgets

In Fig. (2.35) we present the modeled f1 and f3 budgets obtained using LES. We

discuss first the f1 budget.

2.5.8.1 f1 budget

The dominant production terms in the f1 budget are: flux tilting (loss), anisotropic

gradient-production (loss) and the modeled slow pressure strain-rate covariance

(gain). The flux-tilting term is larger in magnitude than the anisotropic gradient-

production term at all ∆w/∆. Isotropic production and advection are negligible.

These observations are true of all the stabilities considered in Fig. (2.35). The mod-

eled f1 budget is able to reproduce qualitatively the important features observed

in Fig. (2.34), namely, the dominance of flux tilting and anisotropic gradient-

production over isotropic gradient-production.

2.5.8.2 f3 budget

The f3 budget is in balance primarily between isotropic production (gain) and the

modeled slow pressure strain-rate term (loss) across the entire range of ∆w/∆ in

Fig. (2.35). Anisotropic gradient-production and advection are negligible. The
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Figure 2.35. LES: Scaled terms in the modeled (a) f1 and (b) f3 budgets. Color legend:
— : −zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47
,— : −zi/L = 7.2

predictions of anisotropic-gradient production differ markedly from observations

where their magnitudes increase sharply at low ∆w/∆ (Fig. (2.34). Anisotropic

gradient-production in the f3 budget is dominated by the term τ d
33 (∂θ/∂z) (Chen

et al., 2005). In our discussion of the SFS stresses, we observed that the SFS

conservation equations while capable of exhibiting SFS anisotropy, underpredict

the magnitudes of τ d
αα in comparison to HATS data. Thus, it is likely that the

underprediction of anisotropic gradient-production is caused in part due to the
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Figure 2.36. HATS: SFS horizontal scalar flux, f1, as a fraction of the total flux (left)
and the surface flux, Q0 (right).

underprediction of τ d
33.

2.5.9 SFS scalar fluxes: mean values

2.5.9.1 f1

We plot in Fig. (2.36), the magnitude of f1 scaled with the magnitudes of the total

flux (left panel) and with that of the surface flux, Q0 (right panel), against ∆w/∆.

These plots are similar to those presented by Hatlee and Wyngaard (2007) in their

studies. The scaled magnitudes of f1 increase with decreasing ∆w/∆, as expected.

At low ∆w/∆, f1 attains values that are comparable to the surface flux.

In Figs. (2.37)-(2.38) we plot the scaled magnitudes of f1, corresponding to

the SFS conservation equations and the eddy-diffusivity closure. The SFS con-

servation equations yield results in good agreement with the HATS data at low

∆w/∆ because they incorporate the tilting and anisotropic gradient-production

mechanisms, as seen in Fig. (2.35). At high ∆w/∆, however, they underpredict

the scaled values of f1. The eddy-diffusivity closure depends solely on isotropic

gradient-production which plays a negligible role in the f1 budget (Fig. (2.34)),

and thus, predicts near-zero values of f1 across the entire range of ∆w/∆.
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Figure 2.37. LES, SFS conservation equations: SFS horizontal scalar flux, f1, as a
fraction of the total flux, 〈u′θ′〉T (left) and of the surface flux, Q0 (right). Color legend:
— : −zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47
,— : −zi/L = 7.2

2.5.9.2 f3

In Figs. (2.39)-(2.40), we show the vertical SFS flux as a fraction of the total flux,

obtained from HATS data and LES, respectively. Both closures predict satisfac-

torily the scaled magnitudes of the SFS vertical flux at lower ∆w/∆. At higher

∆w/∆, both closures underpredict the scaled magnitude of f3, as was also the case

for f1.

The eddy-diffusivity closure is designed to account only for isotropic gradient-

production. The SFS conservation equations possess additional production mech-

anisms but still yield isotropic gradient-production as the only significant mode of

production in the f3 budget, as seen in Fig. (2.35). This is because the buoyant

term in the f3 budget isn’t included in our implementation of the SFS conser-

vation equations while anisotropic gradient-production — which is included — is

underpredicted due to the underprediction of |τ d
33|. But buoyancy and anisotropic

gradient-production have opposite signs in the f3 budget, as seen in Fig. (2.34).
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Figure 2.38. LES, eddy-diffusivity closure: SFS horizontal flux of potential tempera-
ture, f1, as a fraction of the total flux (left) and of the surface flux, Q0 (right). Color
legend: — : −zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82, — :
−zi/L = 5.47 ,— : −zi/L = 7.2

As our implementation of the SFS conservation equations includes one of these

terms, i.e., anisotropic gradient-production, but not the other, in principle, we

should see reduced magnitudes of f3 at lower ∆w/∆. This is not observed due to

the underprediction of anisotropic gradient-production which minimizes — artifi-

cially — the negative impact of neglecting buoyant production. Thus, the scaled

magnitudes of f3 predicted by the two closures do not differ appreciably although

they are underpredicted compared to observations.

2.5.10 SFS scalar fluxes: fluctuations

In Fig. (2.41) we show the rms values of f1 and f3 normalized with the magnitudes

of their respective means, as obtained from HATS data. Corresponding plots from

LES using the SFS conservation equations and the eddy-diffusivity closure are

shown in Fig.(2.42) and Fig. (2.43), respectively.

The HATS data in Fig. (2.41) exhibit normalized fluctuations that increase
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Figure 2.40. LES: SFS vertical flux of potential temperature, f3, as a fraction of the
total flux, using (a) SFS conservation equations; and (b) eddy-diffusivity closure. Color
legend: — : −zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82, — :
−zi/L = 5.47 ,— : −zi/L = 7.2
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Figure 2.41. HATS: Root mean square values of f1 (left panel) and f3 (right panel)
normalized with the magnitudes of their respective means.

monotonically with ∆w/∆. The SFS conservation equations underpredict the

magnitudes of the normalized fluctuations at lower ∆w/∆ but yield better predic-

tions at higher ∆w/∆, although the normalized f3 fluctuations are underpredicted

slightly at higher ∆w/∆. The eddy-diffusivity closure yields very high magnitudes

of the normalized f1 fluctuations because it predicts near-zero mean values of f1,

as seen earlier. In contrast to HATS data, it yields symmetrical trends in the nor-

malized f1 fluctuations wherein they attain nearly equal values at both low and

high ∆w/∆.

The predictions of the normalized f3 fluctuations by the eddy-diffusivity closure

become increasingly sensitive to zi/L with decreasing ∆w/∆. We observe similar

trends in its predictions of τ d
13.

2.5.11 Summary

In this section, we used surface-layer HATS data to compare the performance of

the SFS conservation equations and an eddy-diffusivity closure. In particular, we

considered the following: (i) production terms in the SFS stress budgets; (ii) pro-

duction terms in the SFS flux budgets; (iii) SFS stresses; (iv) SFS fluxes; and (v)
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Figure 2.42. LES, SFS conservation equations: Root mean square values of (a) f1 and
(b) f3, normalized with the magnitudes of their respective means. Color legend: — :
−zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— :
−zi/L = 7.2

fluctuations in SFS stresses and fluxes. We obtained these statistics by combining

results from high-resolution LES runs corresponding to different domain sizes, fil-

ter widths and stability conditions. The runs were designed to mimic partly the

different physical conditions and filter widths associated with the HATS exper-

iments. Following Sullivan (2010), we studied the trends in the statistics listed

above by plotting them against the nondimensional parameter ∆w/∆, where ∆w

is the wavelength of the vertical velocity spectral peak and ∆ is the filter width.

We found that the modeled SFS stress budgets were able to replicate some

trends in the observed SFS stress budgets better than others. They reproduced

successfully the dominance of anisotropic production in the τ d
αα budgets and that

of isotropic production in the τ d
13 budget, but failed to exhibit the sharp increase

in the magnitude of anisotropic production in the τ d
13 budget at low ∆w/∆, as

observed in the HATS data. Advection and buoyant effects were negligible in the

SFS budgets. We showed that the dominant production terms in the modeled τ d
αα

and τ d
13 budgets, i.e., anisotropic- and isotropic-production, respectively, approach

constant values at low ∆w/∆. We showed that these limiting values for the τ d
11
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Figure 2.43. LES, eddy-diffusivity closure: Root mean square values of (a) f1 and
(b) f3, normalized with the magnitudes of their respective means. Color legend: — :
−zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82, — : −zi/L = 5.47 ,— :
−zi/L = 7.2

and τ d
33 budgets are in good agreement with theoretically derived values for the

dominant production terms in the limit ∆w/∆ → 0. The limiting values for the

τ d
22 and τ d

13 budgets obtained from LES were found to be lesser in magnitude than

their corresponding theoretical values.

The eddy-viscosity closure underpredicted severely the magnitudes of the de-

viatoric components, |τ d
αα|, and consequently the level of SFS anisotropy. This is

because such closures depend solely on isotropic production, which observations

show plays an increasingly insignificant role in the τ d
αα budgets as ∆w/∆ decreases.

The SFS conservation equations yielded more realistic magnitudes of τ d
αα reflect-

ing the underlying SFS anisotropy, but the magnitudes were nevertheless lesser

than those obtained from HATS data. One possible reason for the underpredic-

tion of SFS anisotropy by the conservation equations could be that the model

for pressure-strain-rate covariance used in this study neglects contributions from

the rapid pressure component, which is expected to be significant in the shear-

dominated surface layer.

At low ∆w/∆, the normalized rms values of τ d
11 and τ d

33 are underpredicted by
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the SFS conservation equations and the eddy-diffusivity closure. At high ∆w/∆,

they are better predicted by the SFS conservation equations. The normalized

fluctuations of τ d
13 at low ∆w/∆ tend to be underpredicted by both closures. They

continue to be underpredicted by the SFS conservation equations at higher ∆w/∆

while their predictions by the eddy-diffusivity closure become overly sensitive to

zi/L, exhibiting a spread of 100% across the range of zi/L considered.

The HATS data revealed that the dominant production terms in the f1 budget

are tilting and anisotropic gradient-production while isotropic gradient-production

is negligible. The eddy-viscosity closure used in our study, which accounted only for

isotropic gradient production, predicted near-zero values for f1 across the entire

range of ∆w/∆, in agreement with previous studies by Hatlee and Wyngaard

(2007). The modeled conservation equations account for flux tilting and anisotropic

gradient-production and hence, yielded more realistic predictions of f1.

Using HATS data, we found the dominant mode of production in the f3 budget

to be isotropic gradient-production. At low values of ∆w/∆, buoyant production

and anisotropic gradient-production were found to be significant individually, al-

though their magnitudes were nearly equal and opposite in sign, thereby dimin-

ishing the net influence of the two terms in the f3 budget. This explains why

the eddy-diffusivity closure, which lacks both buoyant production and anisotropic

gradient-production, still predicts reasonably accurate values of f3. The SFS con-

servation equations predicted isotropic production to be the dominant mode of pro-

duction in the f3 budget but failed to reproduce the marked increase in anisotropic

gradient-production at lower ∆w/∆, seen in observations. This underprediction of

anisotropic gradient-production — which is caused partly due to the underpredic-

tion of |τ d
33| — compensates for the lack of buoyant production in the SFS flux

conservation equations, with the net result that they yield satisfactory predictions

of f3.

The SFS conservation equations yield reasonable predictions of the normalized

rms values of f1 while the predictions by the eddy-diffusivity closure are poor in

both magnitude and trend. The normalized rms values of f3 are underpredicted

by both closures at low ∆w/∆. As ∆w/∆ increases, the modeled SFS conser-

vation equations yield better predictions than the eddy-diffusivity closure, whose

predictions become highly sensitive to zi/L.
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2.6 Conditional means of SFS stress and SFS

production rate

In the previous sections, we analyzed the relative significance of various terms in

the modeled SFS conservation equations using coarse-resolution LES and simple

qualitative arguments. Using high-resolution LES, we then compared trends in the

variation of SFS production terms and other SFS statistics with ∆w/∆, to those

observed in the HATS data. In this section, we explore further the performance of

the SFS conservation equations using criteria developed by Chen and Tong (2006).

2.6.1 Evolution equation for the resolved-scale velocity jpdf

In order to isolate the influence of the SFS model on resolved-scale statistics,

Chen and Tong (2006) focused on the evolution equation of the one-time one-

point joint probability density function (jpdf) of the resolved-scale velocity field.

The significance of the one-time one-point resolved-scale velocity jpdf lies in the

fact that it determines completely the entire set of resolved-scale velocity statistics

(means, variances, covariances, etc.) locally in time and space. that describe

the velocity field. If f denotes the jpdf of the resolvable-scale velocity field, its

evolution is given by (Chen and Tong, 2006),

∂f

∂t
+ vj

∂f

∂xj

=
∂2

∂vi∂xj

{〈τij|ur = v〉f}+
∂2

∂vi∂xi
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+
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2
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{〈
pr
∂ur
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∂xi
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〉
f

}

− g

Θ0

∂

∂v3

{〈θr|ur = v〉 f} (2.35)

In Eq. (2.35), the superscript r, as in ur, denotes resolved-scale quantities and

the angled brackets denote ensemble averaging. The right hand side represents,

sequentially, mixed transport in physical and velocity spaces by the conditional

SFS stress and the resolvable-scale pressure, and transport in velocity space by

the conditional SFS stress production rate, 〈−(1/2)Pij|ur = v〉, the conditional
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resolvable-scale pressure-strain correlation, and the conditional resolvable-scale

buoyancy force where,

Pij = −
{
τik
∂ur

j

∂xk

+ τjk
∂ur

i

∂xk

}
. (2.36)

In Eq. (2.36), τik refers to the total kinematic stress and not the deviatoric stress.

Equation (2.35) is a modified form of the jpdf equation studied by Meneveau

(1994), as it demonstrates explicitly the dependence of f , and hence resolved-

scale statistics, on the SFS production rate, Pij. From Eq. (2.35), the evolution

equation of the resolvable-scale velocity joint-pdf has two terms that involve direct

contributions from the SFS model: (i) the conditional SFS stress; and (ii) the

conditional SFS production rate. Chen and Tong (2006) argued that in order

to obtain realistic resolvable-scale velocity statistics, it is necessary that an SFS

model yield good predictions of the conditional SFS stress and the conditional SFS

production. In LES, we typically model the deviatoric stress, τ d
ij, and hence, it is

natural to define the SFS deviatoric production rate, P d
ij:

P d
ij = −

{
τ d
ik

∂ur
j

∂xk

+ τ d
jk

∂ur
i

∂xk

}
. (2.37)

Pij and P d
ij are related as follows:

Pij = P d
ij −

4

3
eSr

ij ; Sr
ij =

1

2

(
∂ur

i

∂xj

+
∂ur

j

∂xi

)
(2.38)

where e is the SFS kinetic energy. As the term eSr
ij doesn’t depend directly on the

SFS model, we will henceforth focus only on the deviatoric SFS production rate,

P d
ij, as we want to study the direct influence of the SFS model on the resolved-

scale velocity jpdf. It is straightforward to show that the rate at which energy is

extracted from the resolved scales by the SFS model is equal to one-half the trace

of Pij. As Pij and P d
ij have the same trace (Sr

ii = 0, by incompressibility), accurate

predictions of P d
ij are essential to ensure the right amount of energy extraction by

the SFS model.
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2.6.2 Procedure for obtaining conditional means

Our primary motivation behind studying the conditional means of τ d
ij and P d

ij is

to understand how they relate to resolved-scale statistics. We present in Fig. (2.44)

the following two statistics describing the velocity field: (i) φm = (κz/u∗) (∂〈ū〉/∂z),
the nondimensional mean-gradient of velocity; and (ii) the vertical velocity skew-

ness, Sw = 〈w3〉/〈w′w′〉3/2. We show LES results obtained using both the modeled

SFS conservation equations and the eddy-diffusivity closure. Note that we didn’t

find significant differences between the velocity variance profiles for the two SFS

models. The parameter κ = 0.4 denotes the von Kármán constant. The physical

conditions describing the runs are identical to those described in Table 2.1. The nu-

merator in the expression for skewness includes only the resolved-scale component

of vertical velocity as we do not solve for its SFS component. Observations indi-

cate that Sw is positive everywhere in the convective ABL, increases with height,

and attains a maximum of ≈ 0.8 in the upper third of the boundary layer (Hogan

et al., 2009; Lenschow et al., 1980). Figure (2.44) reveals that the predictions of

φm and Sw by the SFS conservation equations are slightly better than those by the

eddy-diffusivity closure.

We now proceed to compare the conditional means of τ d
ij and P d

ij obtained

from LES with those from the HATS data. Only the (1,1), (2,2), (3,3) and (1,3)

components of τ d
ij and P d

ij are considered in our analysis. In order to make a

meaningful comparison between HATS data and LES results, we ensure that ∆/z

(∆/∆w ∼ ∆/z in the surface layer) for both the HATS data and our LES runs are

nearly equal, where z is the height at which the conditional means are computed.

We use HATS data from the ‘Array 2’ configuration which has ∆/z ≈ 2 and

z/L = −0.4. The LES runs have z1/L = −0.09, where z1 refers to the first grid

level, and zi/L = −7.2, which corresponds to a moderately convective ABL. The

conditional means are obtained at z = z1, such that ∆/z1 = 2. Chen and Tong

(2006) found the conditional statistics to be dependent primarily on ∆/z while

z/L played only a secondary role in the form of a stability correction. The values

of the SFS model constants used are given by (cτ , cθ) = (0.10, 0.19) for the SFS

conservation equations and ck = 0.10 for the eddy-diffusivity closure.

Following Chen et al. (2009), we compute conditional means by conditioning

only on two velocity components instead of all three, owing to the limited amount
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Figure 2.44. Left panel: Nondimensional mean gradient of velocity, φm, versus −z/L,
where L is the Monin-Obukhov length. The top of the layer shown corresponds to
z/zi = 0.1. Legend – Solid line : modeled SFS conservation equations, dashed line
: eddy-diffusivity closure, dot-dash line : empirical fit (Businger et al., 1971). Right
panel: Vertical velocity skewness, Sw = 〈w3〉/〈w′w′〉3/2. Legend – Solid line : modeled
SFS conservation equations, dashed line : eddy-diffusivity closure.

of HATS data. They showed that conditioning using only two velocity components

was sufficient to ensure statistical convergence. For P d
11, P

d
33 and P d

13 we choose u

and w as the conditioning variables while for P22 we pick v and w as the condition-

ing variables. We plot the conditional means against the first conditioning variable

for different values of the second conditioning variable. We split the first condi-

tioning variable into 8 data bins covering ± 1.8 standard deviations and the second

conditioning variable into 5 data bins also covering ± 1.8 standard deviations.

There are some constraints on choosing the number of bins and the width of

the conditioning variable. A large number of bins (i.e., small bin sizes) yields

the underlying trend but makes statistical convergence harder to achieve as each

bin might not have a sufficient number of samples. Too few bins will ensure

convergence but might smooth out trends of interest. Choosing a large width

(i.e., many standard deviations wide) for the conditioning variables gives us more

information about events at the tails of their pdfs but that information is also less

reliable due to decreased convergence, as events at the tails occur rarely. In spite
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of these constraints, Chen and Tong (2006) achieved reasonable convergence in

their statistics and demonstrated that we can draw important conclusions based

on the trends exhibited by the conditional means of τ d
ij and P d

ij. In the ensuing

discussion, we denote u, v and w as ur
1, u

r
2 and ur

3, respectively.

2.6.3 HATS: Conditional means of P d
ij
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Figure 2.45. HATS: Conditional means of SFS production rate.

In Fig. (2.45), we show the conditional means of the deviatoric production rate,

obtained from HATS data. Only the diagonal and (1,3) components are shown.
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We now summarize arguments put forth by Chen and Tong (2006) in order to

understand the trends exhibited in Fig. (2.45).

2.6.3.1
〈
P d

11

∣∣ur
1, u

r
3

〉

The conditional mean of P d
11, denoted by 〈P d

11|ur
1, u

r
3〉, increases with increasing ur

3.

Its dependence on ur
1 is weak for negative ur

3 but considerably more pronounced

for positive ur
3. Expanding 〈P d

11|ur
1, u

r
3〉, we obtain,

〈
P d

11|ur
1, u

r
3

〉
= −2

〈
τ d
11

∂ur
1

∂x1

+ τ d
12

∂ur
1

∂x2

+ τ d
13

∂ur
1

∂x3

∣∣∣∣ur
1, u

r
3

〉
(2.39)

For positive ur
3, (∂ur

3/∂x3) > 0 on average in an unstable ABL due to positive

buoyant forcing, which implies (∂ur
1/∂x1) < 0 and (∂ur

2/∂x2) < 0, from incom-

pressibility. Positive ur
3 also represents advection of τ d

11 from near the ground

where
〈
τ d
11

〉
> 0, due to strong SFS anisotropy induced by the presence of a mean

wind along the x1 direction. Thus, the term associated with the normal strain,

− 〈
τ d
11 (∂ur

1/∂x1)
∣∣ur

1, u
r
3

〉
, is positive on average. Among the terms associated with

the shear strain, −{
τ d
12 (∂ur

1/∂x2) + τ d
13 (∂ur

1/∂x3)
}
, the second is strongly depen-

dent on ur
3. When ur

3 > 0, τ d
13 is advected from near the surface, where it is

negative and assumes large magnitudes. Simultaneously, ur
3 > 0 is associated with

positive values of (∂ur
1/∂x3) on average, as the updrafts are originating from near

the ground, a region of high shear. As ur
3 becomes more positive, the above effects

on both the normal- and shear-strain terms are enhanced. Thus, when ur
3 > 0,

〈P d
11|ur

1, u
r
3〉 is generally positive and its magnitude increases with increasing ur

3.

When ur
3 is negative, (∂ur

3/∂x3) < 0 on average and from incompressibility it

follows that (∂ur
1/∂x1) > 0 and (∂ur

2/∂x2) > 0. Thus, the term associated with

the normal strain is negative. The shear-strain related terms remain positive for

reasons similar to those discussed above for ur
3 > 0. Observations (Chen and

Tong, 2006) show that the terms associated with the shear strain are greater in

magnitude than those associated with the normal strain, with the net effect that

〈P d
11|ur

1, u
r
3 < 0〉 is positive, although the competition among its various terms

implies that it is lesser in magnitude when ur
3 < 0 than when ur

3 > 0. As ur
3 becomes

more negative, the magnitude of ∂ur
1/∂x1 increases, from incompressibility. The

advection effect, however, is much weaker as τ d
11 and τ d

13 are being advected from
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the higher regions where the SFS stresses are negligible. For similar reasons, the

values of (∂ur
1/∂x3) associated with ur

3 < 0, on average, are lesser than those

associated with ur
3 > 0. Consequently, 〈P d

11|ur
1, u

r
3〉 exhibits a weaker dependence

on ur
3 when ur

3 < 0 than when ur
3 > 0.

Fig. (2.45) shows that 〈P d
11|ur

1, u
r
3〉 depends weakly on ur

1 for ur
3 < 0 but this

dependence is enhanced for ur
3 > 0. Compared to −τ d

11 (∂ur
1/∂x1), the terms asso-

ciated with the shear strain vary more strongly with ur
1 (Chen and Tong, 2006). In

particular, when ur
3 > 0, a larger value of ur

1 is associated with a larger magnitude

of ∂ur
1/∂x3, due to “no-slip” at the wall. This effect is further enhanced as ur

3

increases. In contrast, when ur
3 < 0, a larger value of ur

1 is not associated with

greater shear on average, as the shear in the region above ‘z’ is lesser, on average,

than that in the region below ‘z’ due to the presence of a lower boundary. This is

true of increasingly negative ur
3 as well. Thus, the dependence of

〈
P d

11|ur
1, u

r
3

〉
on

ur
1 is enhanced more by positive ur

3 than by negative ur
3.

Finally, we note that
〈
P d

11

∣∣ur
1, u

r
3

〉
is almost always positive. Recall that the

rate of transfer of energy from the resolved to the subfilter scales is equal to one-half

the trace of P d
ij. Thus the abundance of positive values of

〈
P d

11

∣∣ur
1, u

r
3

〉
indicates

negligible amounts of conditional backscatter associated with τ d
11.

2.6.3.2
〈
P d

22

∣∣ur
2, u

r
3

〉

From Fig. (2.45),
〈
P d

22

∣∣ur
2, u

r
3

〉
has smaller magnitudes than

〈
P d

22

∣∣ur
2, u

r
3

〉
and ex-

hibits weaker dependencies on ur
2 and ur

3. This is due to the lack of mean wind

in the x2 direction which leads to reduced magnitudes of τ d
23 and (∂ur

2/∂x3). The

dependence of 〈P d
22|ur

2, u
r
3〉 on ur

3 can be explained using arguments similar to those

applicable to 〈P d
11|ur

1, u
r
3〉. The trends in

〈
P d

22

∣∣ur
2, u

r
3

〉
with respect to ur

2 are weakly

symmetrical such that its magnitude depends on |ur
2|. If there were no Coriolis

force, we would expect symmetry in the x2 direction due to the absence of mean

wind in that direction. In the ABL, however, the presence of Coriolis force disturbs

the lateral symmetry.
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2.6.3.3
〈
P d

33

∣∣ur
3, u

r
1

〉

The conditional mean of P d
33 exhibits a marked asymmetric dependence on ur

3

wherein it attains higher values for ur
3 > 0 than for ur

3 < 0, which can be explained

as follows. The dominant term in P d
33 is −τ d

33 (∂ur
3/∂x3) (Chen and Tong, 2006),

which on average, is positive for ur
3 > 0 and negative for ur

3 < 0, due to continuity

and strong anisotropy near the surface. As ur
3 becomes more positive, both τ d

33

and (∂ur
3/∂x3) increase in magnitude on average, due to stronger advection effects

and positive buoyant acceleration, respectively. It follows that P d
33 increases in

magnitude with positively increasing ur
3. As ur

3 becomes increasingly negative, the

magnitude of (∂ur
3/∂x3), on average, increases but that of τ d

33 decreases due to

advection from higher regions with negligible SFS stresses. These two competing

effects yield magnitudes of P d
33 that are much lesser for ur

3 < 0 than for ur
3 > 0.

The negative values of ur
3 are associated with negative

〈
P d

33

∣∣ur
3, u

r
1

〉
, which

represents conditional backscatter.

2.6.3.4
〈
P d

13

∣∣ur
1, u

r
3

〉

The conditional mean of P d
13 is largely positive and increases weakly with ur

1 for

ur
3 < 0 but ur

3 > 0 enhances its dependence on ur
1. The dominant term in P d

13

is −τ d
33 (∂ur

1/∂x3) (Chen and Tong, 2006), which is positive on average, for both

ur
3 > 0 and ur

3 < 0, due to strong anisotropy (
〈
τ d
33

〉
< 0) and positive vertical

shear. The trends, however, are qualitatively different for ur
3 > 0 and ur

3 < 0. When

ur
3 > 0, a larger value of ur

1 implies on average, larger magnitudes of (∂ur
1/∂x3). For

higher values of ur
3, these effects are more pronounced due to stronger advection

effects and thus, the dependence of
〈
P d

13

∣∣ur
1, u

r
3

〉
on ur

1 is enhanced by positive

values of ur
3. When ur

3 < 0, advection from the higher regions is much weaker due

to decreased magnitudes of SFS stresses and vertical shear. Hence,
〈
P d

13

∣∣ur
1, u

r
3

〉

exhibits a weaker dependence on ur
3 when ur

3 < 0.

2.6.4 LES: Conditional means of P d
ij

In the previous section, we summarized the arguments of Chen and Tong (2006)

explaining the trends exhibited by the conditional means of P d
ij in Fig. (2.45).

In this section, we compute the same using LES with two SFS models: the SFS
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conservation equations and an eddy-diffusivity closure. Chen et al. (2009) have

presented LES results using an eddy-diffusivity closure identical to the one in our

study. We include results from the eddy-diffusivity closure, nevertheless, for the

sake of comparison. Our goal here is to examine whether the SFS conservation

equations are able to reproduce the trends in Fig. (2.45), and to contrast their

performance with that of an eddy-diffusivity closure.

In Figs. (2.46)-(2.47), we plot the conditional means of P d
ij using the eddy-

diffusivity closure and the SFS conservation equations, respectively. As in Fig. (2.45),

only the diagonal and (1,3) components of P d
ij are shown.

2.6.4.1
〈
P d

11

∣∣ur
1, u

r
3

〉

Both closures yield reasonable magnitudes of
〈
P d

11

∣∣ur
1, u

r
3

〉
but overstate its depen-

dence on ur
1 when ur

3 < 0. We recall that in the case of HATS data,
〈
P d

11

∣∣ur
1, u

r
3

〉

varies strongly with ur
1 only for positive ur

3. The tendency of
〈
P d

11

∣∣ur
1, u

r
3

〉
to in-

crease with ur
3 — due to advection effects — is captured by both the closures. The

influence of advection for ur
3 > 0 is more marked for the SFS conservation equa-

tions as they account explicitly for SFS advection. In the HATS data,
〈
P d

11

∣∣ur
1, u

r
3

〉

exhibits very little conditional backscatter. The eddy-diffusivity closure is inca-

pable of exhibiting backscatter, a constraint which follows from its definition. Fig-

ure. (2.47) shows that the SFS conservation equations, which are capable of ex-

hibiting backscatter, also fail to yield any conditional backscatter over the range

of (ur
1, u

r
3) considered.

2.6.4.2
〈
P d

22

∣∣ur
2, u

r
3

〉

The conditional means of P d
22 predicted by both closures are very similar to each

other.
〈
P d

22

∣∣ur
2, u

r
3

〉
is nearly symmetric with respect to ur

2 as its magnitude in-

creases with ur
2. The conditional means exhibit weak dependence on ur

3 as the

advection effects are much smaller for P d
22 than for P d

11. These trends agree with

the HATS data qualitatively, except at the extremes of the ur
2 distribution where

the conditional means obtained from LES are lesser than those obtained from

HATS.
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Figure 2.46. LES: Conditional means of SFS deviatoric production rate using an eddy-
diffusivity closure.

2.6.4.3
〈
P d

33

∣∣ur
3, u

r
1

〉

Both closures underpredict
〈
P d

33

∣∣ur
1, u

r
3

〉
compared to HATS data, at the positive

end of the ur
3 distribution. The eddy-diffusivity closure is unable to differentiate be-

tween the qualitatively different effects of updrafts and downdrafts, as evident from

the nearly symmetrical shape of
〈
P d

33

∣∣ur
1, u

r
3

〉
. The SFS conservation equations re-

produce to some degree the asymmetry in
〈
P d

33

∣∣ur
3, u

r
1

〉
. The SFS conservation

equations exhibit very small amounts of conditional backscatter for ur
3 < 0 that is
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Figure 2.47. LES: Conditional means of SFS deviatoric production rate using the SFS
conservation equations.

considerably lesser than that observed in the HATS data.

2.6.4.4
〈
P d

13

∣∣ur
1, u

r
3

〉

The eddy-diffusivity closure predicts incorrectly both the magnitudes and trends

of
〈
P d

13

∣∣ur
1, u

r
3

〉
. The positive magnitudes are under-predicted while the negative

magnitudes are over-predicted, in comparison to observations. The variation of〈
P d

13

∣∣ur
1, u

r
3

〉
with ur

3 is slightly stronger for negative ur
3 than for positive ur

3, which

is qualitatively opposite to what we see in observations.
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The SFS conservation equations yield reasonable predictions of
〈
P d

13

∣∣ur
1, u

r
3

〉
,

both in magnitude and trend. The magnitudes are in good agreement with obser-

vations, while the dependence on ur
3 reproduces correctly the effects of advection

on
〈
P d

13

∣∣ur
1, u

r
3

〉
.

2.6.5 HATS: Conditional means of τ d
ij

In the previous section, we contrasted the conditional means of P d
ij obtained from

HATS data and from LES. In this section, we analyze the other term in the evo-

lution equation for the resolved-scale jpdf that is influenced directly by the SFS

model: the conditional mean of τ d
ij.

In Fig. (2.48) we show the conditional means of the SFS stresses obtained from

HATS data. Only the diagonal and (1,3) components are shown. Before comparing

the HATS results with LES, we review briefly the explanations provided by Chen

and Tong (2006) for the trends observed in Fig. (2.48).

2.6.5.1 〈τ d
11

∣∣ur
1, u

r
3〉

The conditional means of τ d
11 attain mostly positive magnitudes due to strong SFS

anisotropy near the surface, where 〈τ d
11〉 > 0 and 〈τ d

33〉 < 0. The dependence of

〈τ d
11〉 on ur

1 is weak for negative ur
3 and stronger for positive ur

3, similar to the

trends observed in 〈P d
11

∣∣ur
1, u

r
3〉. The enhanced dependence of 〈τ d

11

∣∣ur
1, u

r
3〉 on ur

1

for ur
3 > 0 is due to advection of τ d

11 from near the surface where it attains high

values.

2.6.5.2 〈τ d
22

∣∣ur
2, u

r
3〉

The conditional means of τ d
22, like those of P d

22, fail to exhibit symmetry with respect

to ur
2. The advection effects are considerably weaker than for τ d

11 as magnitudes of

τ d
22 near the surface are much less than those of τ d

11.

2.6.5.3 〈τ d
33

∣∣ur
1, u

r
3〉

Strong anisotropy near the surface yields mostly negative values for 〈τ d
33

∣∣ur
1, u

r
3〉.

The magnitude of 〈τ d
33

∣∣ur
1, u

r
3〉 increases with ur

3 due to advection from near the

surface. When ur
3 > 0, increasingly positive values of ur

1, on average, are associated
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Figure 2.48. HATS: Conditional means of SFS deviatoric stresses.

with higher levels of SFS anisotropy (Chen and Tong, 2006), and consequently,

larger magnitudes of the deviatoric stresses. The above arguments explain the

trends in 〈τ d
33

∣∣ur
1, u

r
3〉.

2.6.5.4 〈τ d
13

∣∣ur
1, u

r
3〉

The conditional means of τ d
13 are almost entirely negative which is consistent with

the dynamics of the unstable surface layer (Haugen et al., 1971) and represents

the upward ejection of fluid parcels with a horizontal velocity deficit. Their weak
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dependence on ur
1 for ur

3 < 0 is enhanced by ur
3 > 0. The observed increase in the

magnitude of 〈τ d
13

∣∣ur
1, u

r
3〉 with increasing ur

3 is due to advection of τ d
13 from near

the surface. The trends exhibited by 〈τ d
13

∣∣ur
1, u

r
3〉 are quite different from those

exhibited by 〈P d
13

∣∣ur
1, u

r
3〉. This is because the dominant production term in the

τ d
13 budget is isotropic production, −(4/3)eS13, which (not shown) does exhibit the

same trends as 〈τ d
13

∣∣ur
1, u

r
3〉 (Chen and Tong, 2006).

2.6.6 LES: Conditional means of τ d
ij

In this section, we examine the trends in 〈τ d
13

∣∣ur
1, u

r
3〉 obtained from LES using the

modeled SFS conservation equations and an eddy-diffusivity closure.

Figures (2.49)–(2.50) show the conditional means of the SFS deviatoric stresses

using the eddy-diffusivity closure and the SFS conservation equations, respectively.

Only the diagonal and the (1,3) components of 〈τ d
ij

∣∣ur = vr〉 are shown.

2.6.6.1 〈τ d
11

∣∣ur
1, u

r
3〉

Both closures underpredict the magnitude of 〈τ d
11

∣∣ur
1, u

r
3〉 compared to observa-

tions, the eddy-diffusivity closure doing so more severely as it doesn’t account for

anisotropic production, the dominant production mechanism in the τ d
11 budget.

The modeled SFS conservation equations account explicitly for anisotropic pro-

duction which explains why their predictions of 〈τ d
11

∣∣ur
1, u

r
3〉 are better than those

by the eddy-diffusivity closure. They are still lesser in magnitude compared to ob-

servations as they underestimate the SFS anisotropy, plausibly due to deficiencies

in the model for the pressure-strain covariance.

2.6.6.2 〈τ d
22

∣∣ur
2, u

r
3〉

The predictions of 〈τ d
22

∣∣ur
2, u

r
3〉 by the eddy-diffusivity closure and the SFS conser-

vation equations are similar in their variations with ur
2 and ur

3. They differ in that

the former predicts conditional means that are nearly symmetric about zero while

the SFS conservation equations yield values that are predominantly negative. The

corresponding predictions for the HATS data in Fig. (2.48) exhibit mostly nega-

tive values for the central ur
2 bins but large positive values for the extreme bins.

Neither of the two closures reproduces this trend.
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Figure 2.49. LES: Conditional means of SFS deviatoric stresses using an eddy-
diffusivity closure.

We note that the HATS values for
〈
τ d
αα

〉
in Fig. (2.26) display increasingly

negative values of
〈
τ d
22

〉
as ∆w/∆ decreases. We can thus argue that its magnitude

must be enhanced by positive ur
3 as high magnitudes of τ d

22 (negative in sign) are

advected upwards from near the surface. Both the SFS conservation equations and

the eddy-diffusivity closure yield predictions of 〈τ d
22

∣∣ur
2, u

r
3〉 that become increas-

ingly positive for positive ur
3 > 0, which is opposite to what we expect. Note that

the SFS conservation equations yield values of
〈
τ d
22

〉
at low ∆w/∆ (Fig. (2.27))

that are in reasonable agreement with observations. It follows that the conser-
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Figure 2.50. LES: Conditional means of SFS deviatoric stresses using the SFS conser-
vation equations.

vation equations represent the τ d
22 field satisfactorily in the mean but not in its

overall structure, as evidenced by Fig. (2.50).

2.6.6.3 〈τ d
33

∣∣ur
1, u

r
3〉

Compared to HATS data, both closures under-predict magnitudes of 〈τ d
33

∣∣ur
1, u

r
3〉

but differ in their predicted trends of the same. The eddy-diffusivity closure yields

conditional means that are almost symmetric about zero, a trend consistent with

its near-zero prediction of
〈
τ d
33

〉
. The SFS conservation equations yield 〈τ d

33

∣∣ur
1, u

r
3〉
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that are predominantly negative, in qualitative agreement with observations. Their

magnitudes are, however, underpredicted considerably when compared to observa-

tions which is consistent with the underprediction of
∣∣τ d

αα

∣∣ by the SFS conservation

equations.

The variations of 〈τ d
33

∣∣ur
1, u

r
3〉 with ur

1 and ur
3 are better predicted by the SFS

conservation equations. In particular, they capture the enhanced sensitivity of

〈τ d
33

∣∣ur
1, u

r
3〉 to ur

1 for positive ur
3, a trend the eddy-diffusivity closure fails to re-

produce.

2.6.6.4 〈τ d
13

∣∣ur
1, u

r
3〉

The predictions of 〈τ d
13

∣∣ur
1, u

r
3〉 by both closures are mostly similar in trend and

magnitude as the dominant production term in the τ d
13 budget — isotropic pro-

duction — is accounted for in both closures. The advection effects for ur
3 > 0 are

weaker in both closures, when compared to observations. This could be caused

partly by the influence of the surface stress model. We are plotting the conditional

statistics at the first grid level, z = ∆z, where the advection term in the τ d
13 rate

equation utilizes values of τ d
13 at z = 2∆z and z = 0, i.e., the surface. The sur-

face value of τ d
13 (and τ d

23) is set by the surface stress model. It follows that the

formulation of the surface stress model influences 〈τ d
13

∣∣ur
1, u

r
3〉

∣∣
z=z1

directly.

2.6.7 Summary

In the previous section, we analyzed the conditional means of the SFS stresses and

the SFS production rate using HATS data and two closures: the SFS conservation

equations and an eddy-diffusivity closure. These two conditional means represent

the direct influence of the SFS model on the resolved-scale velocity joint pdf, and

hence, on the resolved-scale statistics (Chen et al., 2009; Chen and Tong, 2006).

Consequently, it is desirable for an SFS model to yield accurate predictions of the

conditional means of the SFS stress and the SFS production rate. We summarize

below our main findings.

The eddy-diffusivity closure yields reasonable predictions of
〈
P d

11

∣∣ur
1, u

r
3

〉
and〈

P d
22

∣∣ur
2, u

r
3

〉
but predicts

〈
P d

33

∣∣ur
3, u

r
1

〉
and

〈
P d

13

∣∣ur
1, u

r
3

〉
poorly. The poor pre-

diction of
〈
P d

33

∣∣ur
3, u

r
1

〉
by the eddy-diffusivity closure is linked to its inability to
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reproduce the differential influence of updrafts and downdrafts on
〈
P d

33

∣∣ur
3, u

r
1

〉
.

The predictions of
〈
P d

13

∣∣ur
1, u

r
3

〉
by the eddy-diffusivity closure are overly negative

and fail to display the correct trends when compared to observations.

In general, the SFS conservation equations predict trends in the conditional

means of the SFS production rate better when compared to the eddy-diffusivity

closure. They are able to capture the asymmetric nature of
〈
P d

33

∣∣ur
3, u

r
1

〉
and the

correct trends in
〈
P d

13

∣∣ur
1, u

r
3

〉
as they account explicitly for advection of the SFS

stresses.

The eddy-diffusivity closure doesn’t take into account anisotropic production,

the dominant production term in the τ d
αα budgets. Thus, it underpredicts 〈τ d

11

∣∣ur
1, u

r
3〉

and fails to reproduce the correct trends in 〈τ d
22

∣∣ur
2, u

r
3〉, and 〈τ d

33

∣∣ur
1, u

r
3〉. It pre-

dicts 〈τ d
13

∣∣ur
1, u

r
3〉 reasonably well as the principal production term in the τ d

13 budget

is isotropic production, which is accounted for in eddy-diffusivity closures.

The SFS conservation equations predict the conditional means of τ d
αα better

compared to the eddy-diffusivity closure as they include anisotropic production.

They also reproduce better the effects of advection on the conditional means of τ d
αα.

The predictions of 〈τ d
13

∣∣ur
1, u

r
3〉 by the SFS conservation equations differ negligibly

from those by the eddy-diffusivity closure, in both trend and magnitude.



Chapter 3
The moderately stable boundary

layer: analysis using HATS data and

LES

In the previous chapter, we examined the performance of an SFS model based on

a truncated version of the full SFS conservation equations (Hatlee and Wyngaard,

2007), using LES of the moderately convective ABL. In the current chapter, we

continue to explore the SFS conservation equations through analysis of HATS data

and Large-eddy Simulation (LES) of a moderately stable boundary layer.

3.1 Introduction

Stable stratification refers to lighter fluid overlying heavier fluid. In such a configu-

ration, the effect of buoyancy is to inhibit vertical motions and suppress turbulent

activity. Consequently, the stable boundary layer (SBL) is shallower than the un-

stable daytime boundary layer. The SBL can be highly nonstationary owing to

its “patchy” and intermittent nature, thereby making it harder to obtain reliable

statistics from observations (Caughey et al., 1979). The study of SBLs is fur-

ther complicated by their sensitivity to the following factors: terrain slope (Brost

and Wyngaard, 1978), internal waves (Hunt et al., 1985), “global” intermittency

(Mahrt, 1989) and mesoscale influences (Mason and Derbyshire, 1990). From a
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practical viewpoint, modeling the SBL is necessary for nighttime surface tempera-

ture predictions, modeling pollutant transport (Banta et al., 1998), fog prediction

(Duynkerke, 1999), understanding polar climates (King et al., 2001), and more

recently, wind energy applications (Pichugina et al., 2008; Sim et al., 2009). Evi-

dently, the parameterization of stably stratified boundary layers is an essential but

daunting exercise.

LES, where in principle, the dominant energy-carrying scales can be computed

explicitly, has emerged as an attractive option to study the SBL (Basu and Porté-

Agel, 2006; Galmarini et al., 1998; Kosović and Curry, 2000; Mason and Derbyshire,

1990; Saiki et al., 2000; Stoll and Porté-Agel, 2008). The turbulent eddies in the

SBL, however, are confined to much smaller length scales (Jimenez and Cuxart,

2005; Kaimal et al., 1972) than in the unstable boundary layer where buoyancy

aids their growth into large structures that scale on the boundary layer depth. The

confinement of turbulent activity in the SBL to smaller scales implies a greater role

for the SFS model. While simulating the SBL in all its generality is not an easy

task, the quasi-steady SBL with weak-to-moderate stratification over flat terrain

has received considerable attention in the literature. Mason and Derbyshire (1990)

are credited with having performed the first LES of the SBL. For weak stratifica-

tion, their results showed general agreement with the analytical model developed

by Nieuwstadt (1984) and, the second-order closure model of Brost and Wyn-

gaard (1978). For highly negative surface fluxes, though, their LES runs exhibited

“runaway cooling”, which refers to a spurious, rapid decrease in the surface tem-

perature (30K over 90 min). They identified one of the potential factors behind

runaway cooling as the inability of the SFS model to represent strongly stratified

boundary layers at coarse resolutions. More recently, Van de Wiel et al. (2007)

have argued that runaway cooling has a physical basis but is arrested in nature

by negative feedbacks arising from vegetation and radiative effects. Neverthe-

less, the pioneering work by Mason and Derbyshire (1990) demonstrated for the

first time the feasibility of simulating SBLs with LES. Building on those results,

Derbyshire (1990) extended further Nieuwstadt’s theory (Nieuwstadt, 1984) and

showed that Nieuwstadt’s model can be interpreted as a limiting case associated

with a maximum value of the downward surface heat flux that can support turbu-

lence. Kosović and Curry (2000) simulated the moderately stratified quasi-steady
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SBL using a nonlinear SFS model (Kosović, 1997) and initial conditions similar

to the BASE (Beaufort Sea Arctic Stratus Experiment) observations. They found

their results to be in good agreement with observations and Nieuwstadt’s model

for the SBL (Nieuwstadt, 1984). Saiki et al. (2000) performed LES of the mod-

erately stable boundary layer and found that the original formulation of the two

part SFS model by Sullivan et al. (1994) triggered a collapse of the vertical SFS

heat flux near the surface, which led to unphysical profiles of turbulent statistics.

They tracked the cause for this behavior to an incorrect formulation of the SFS

heat flux and obtained good results after using a two part eddy-viscosity model

for the SFS heat flux, similar to their model for the SFS stresses. Even with the

improved SFS model, they found the simulations to be sensitive to rapid changes

in the surface flux. Basu and Porté-Agel (2006) simulated the moderately sta-

ble boundary layer using the locally-averaged scale-dependent dynamic model and

found good agreement with observations and theory. The Global Energy and Wa-

ter Cycle Experiment Atmospheric Boundary Layer Study or GABLS (Beare et al.,

2006), an intercomparison study of different SFS models for the moderately stable

boundary layer, found that the SFS models reproduced reasonably the essential

features of a quasi-steady SBL. While the results from the high-resolution runs

(≤ 3.125m) showed good convergence, there was significant sensitivity to the SFS

model at coarse resolutions (> 6.25m). Due to the computational expense of the

high-resolution runs, the GABLS experiment noted that SFS model development

will continue to play a crucial role in improving SBL simulations, especially at

coarse resolutions.

3.1.1 Motivation

As discussed in the previous chapter, the SFS conservation equations present a nat-

ural way to describe the evolution of the SFS stresses and fluxes. Eddy-diffusivity

closures assume implicitly a balance between isotropic production and pressure

destruction in the SFS conservation equations. This assumption is violated in

regions where the turbulence is poorly-resolved as the budgets of the diagonal

SFS deviatoric stress components are dominated by anisotropic production with

isotropic production playing a negligible role (Sullivan, 2010). Similarly, in the
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horizontal SFS flux budgets, the main production mechanisms are flux tilting and

anisotropic gradient-production with isotropic gradient-production playing an in-

significant role. Consequently, eddy-diffusivity closures perform poorly in param-

eterizing the diagonal SFS deviatoric stresses and horizontal SFS fluxes. While

the above arguments were demonstrated for unstable conditions in the previous

chapter, they are equally valid for the SBL where in fact, the role of the SFS model

is enhanced due to the effects of stratification. In strongly stratified environments,

the turbulence can be highly anisotropic (Jimenez and Cuxart, 2005), implying that

SFS models need to account for anisotropy at the subfilter scales. Eddy-diffusivity

closures, unlike the SFS conservation equations, lack any mechanism for gener-

ating SFS anisotropy. Finally, the SFS conservation equations retain important

SFS production mechanisms in their exact analytical form. Thus, in principle, we

expect a model based on the SFS conservation equations to require less tweaking

from one stability regime to another.

If the SFS conservation equations hold promise, they are also complex and

merit further study. Wyngaard (2004) and Hatlee and Wyngaard (2007) have

studied the SFS conservation equations for the convectively unstable regime. In the

current chapter, we build on their work by gaining insight into the SFS conservation

equations for the moderately stable regime, using a combination of observations

and LES.

3.1.2 Outline of chapter

A brief outline of the current chapter follows. In the next section, we use HATS

data corresponding to stably-stratified conditions, in order to examine the relative

importance of different production terms in the SFS stress and flux budgets. We

then investigate the sources of fluctuations in the SFS stresses and fluxes by de-

termining directly the contribution from the various production terms. We also

compare the fluctuation levels of different SFS stress and flux components among

themselves.

The HATS analysis is followed by an LES study of the moderately stable bound-

ary layer using an SFS model that uses prognostic equations to determine the SFS

stresses and fluxes. The initial conditions and physical parameters in our LES
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runs are identical to those used in the GABLS LES intercomparison study (Beare

et al., 2006) although we also perform LES for cooling rates other than that used

by Beare et al. (2006). We examine timeseries and steady-state profiles of impor-

tant bulk parameters and other variables of interest. Where possible, we compare

our LES results with past experimental, numerical and analytical studies. We

conclude with a discussion on the influence of the surface cooling rate on our LES

results.

3.2 HATS: τ dαα and τ d13 budgets

In this section, we study the dominant production terms in the τ d
αα and τ d

13 budgets.

The details of the HATS experiment and the filtering procedures used are described

in Ch. 2.

Figure (3.1) shows the scaled anisotropic, isotropic and the buoyant production

terms in the τ d
αα and τ d

13 budgets, plotted versus the nondimensional parameter

∆w/∆, where ∆w is the wavelength associated with the peak in the vertical velocity

spectrum and ∆ is the filter width. Using HATS data, Sullivan (2010) examined

the partitioning of SFS production into anisotropic and isotropic components. He

showed the dominance of anisotropic production in the τ d
αα budgets and that of

isotropic production in the τ d
13 budget, at low ∆w/∆. In Fig. (3.1), we plot the

scaled anisotropic, isotropic and buoyant production terms for τ d
αα and τ d

13, as

functions of ∆w/∆. High values of ∆w/∆ correspond to well-resolved turbulence

while low values correspond to poorly-resolved turbulence. The various budget

terms have been scaled with ε = φε(u
3
∗/kzd), where φε =

[
1 + 2.5(z/L)3/5

]3/2

(Wyngaard and Coté, 1971), k = 0.4 is the von Kármán constant and zd is the

height of the primary sonic array. Following Sullivan et al. (2003), we compute ∆w

using ∆w = 2π〈U〉τp, where 〈U〉 is the mean wind in the streamwise direction and

τp is the Eulerian time scale obtained by assuming an exponential autocorrelation

function for the vertical velocity, R(t) = exp(t/τp).
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Figure 3.1. HATS data, stable cases: The partitioning of SFS deviatoric production
into isotropic, anisotropic and buoyant components, scaled with ε = φε(u3∗/kzd). The
terms are plotted versus the nondimensional parameter, ∆w/∆ .

3.2.1 τ d
αα budgets

From Fig. (3.1), scaled anisotropic production far exceeds scaled isotropic- and

buoyant- production in the τ d
αα budgets, especially at low ∆w/∆. Scaled isotropic

production is relatively insignificant almost across the entire range of ∆w/∆. Buoy-

ancy is associated with production in the τ d
11 and τ d

22 budgets, and destruction in

the τ d
33 budget, due to stable stratification. Among the three diagonal components,

the effects of buoyancy are felt most in the τ d
33 budget underlining the influence

of stratification on the vertical eddies. The magnitude of buoyant destruction in

the τ d
33 budget increases with decreasing ∆w/∆ but at a much slower rate when
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compared to anisotropic production.

3.2.2 τ d
13 budget

The τ d
13 budget, in contrast to those of τ d

αα, is dominated by isotropic production.

Anisotropic production increases with decreasing ∆w/∆ but at a rate slower than

that of isotropic production, at all values of ∆w/∆. Buoyant production (gain) also

increases with decreasing ∆w/∆ but at a rate slower than even that of anisotropic

production.

The dominance of anisotropic production in the τ d
αα budgets and that of isotropic

production in the τ d
13 budget were also observed for the convectively unstable cases,

discussed earlier in Ch. 2.

3.2.3 Asymptotic values in the “RANS” limit

In our discussion of LES results for the unstable cases, we observed that the dom-

inant production terms in the τ d
αα and τ d

13 budgets tend to asymptote at lower

values of ∆w/∆. Such trends were absent in the unstable HATS cases as they are

in Fig. (3.1). We replot the production terms for the stable cases in Fig. (3.2) after

scaling them with 〈−τ d
ijS̄ij〉, where S̄ij (denoted by Sr

ij in Fig. 3.2) is the resolved-

scale strain rate tensor and 〈〉 denotes time-averaging. The horizontal solid lines

at low ∆w/∆ represent analytically derived values of scaled anisotropic production

in the τ d
αα budgets and that of scaled isotropic production in the τ d

13 budget in the

limit ∆w/∆ → 0, also called the “RANS” limit (Appendix A). The asymptotes

of the scaled production terms in Fig. (3.2) at low ∆w/∆ are in reasonable agree-

ment with our theoretical predictions. The stable cases in the HATS data with

low ∆w/∆ are associated typically with highly stable environments. Our analysis

in Appendix A does not make any assumptions regarding the stratification of the

flow. The key to obtaining values for the scaled production terms in the RANS

limit is the observation by Sullivan et al. (2003) that the filtering operation is

equivalent to Reynolds averaging at very low values of ∆w/∆. That analytical

predictions based on this observation are valid for two strikingly different flows

— moderately unstable (from LES in Ch. 2) and very stable — highlights the

effectiveness of ∆w/∆ in describing SFS statistics across a wide range of stability
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Figure 3.2. HATS data, stable cases: The partitioning of SFS deviatoric production
into isotropic, anisotropic and buoyant components, scaled with 〈−τd

ijS
r
ij〉, where Sr

ij is
the resolved-scale strain rate tensor. The terms are plotted versus the nondimensional
parameter, ∆w/∆. The horizontal solid lines denote theoretical values in the “RANS
limit,” discussed in Appendix A.

regimes.

A possible reason for the absence of any asymptotic trends in Fig. (3.1) could

be the irrelevance of zd as a length scale at low values of ∆w/∆, which as men-

tioned earlier correspond to strong stratification. A more appropriate length scale

under such conditions might be lb = σw/N (Brost and Wyngaard, 1978), where

σw is the vertical velocity standard deviation and N =
√

(g/Θ0)(∂θ/∂z) is the

Brunt-Väisälä frequency. The length scale lb decreases as N increases, which re-

flects the diminishing size of turbulent eddies as the flow becomes increasingly
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Figure 3.3. HATS data, stable cases: The partitioning of SFS deviatoric production
into isotropic, anisotropic and buoyant components, scaled with (u3∗/klb), where lb is
a buoyancy length scale, dependent on the Brunt-Väisälä frequency. The terms are
plotted versus the nondimensional parameter, ∆w/∆. The horizontal solid lines denote
theoretical values in the “RANS limit,” discussed in Appendix A.

stable. In Fig. (3.3) we plot the SFS deviatoric production scaled with (u3
∗/klb).

The anisotropic- and isotropic-production terms in the τ d
αα and τ d

13 budgets, respec-

tively, exhibit a common trend wherein they increase in magnitude with decreasing

∆w/∆ for ∆w/∆ > 1 and then decrease sharply for further decreases in ∆w/∆.

Compared to Fig. (3.1), the scaled anisotropic and isotropic production terms in

Fig. (3.3) appear more likely to approach constant values at low ∆w/∆. But based

on Fig. (3.3) alone, it is unclear whether they indeed do asymptote at low ∆w/∆

and even if they do, whether the asymptotes are equal to those derived analytically
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in the RANS limit and observed in Fig. (3.2).

3.2.4 RMS values of production terms in the τ d
ij budgets

In the previous section, we examined the trends exhibited by the mean values

of scaled production terms in the τ d
ij budgets, when plotted versus ∆w/∆. The

mean and variance of τ d
ij are the two lowest moments that contribute to its prob-

ability density function (pdf) (Wyngaard, 2010). Thus, it is of interest to study

the contributions of the measured production terms to the fluctuation level of(
∂τ d

ij/∂t
)
, denoted by

(
∂τ d

ij/∂t
)
rms

. We demonstrate later that
(
∂τ d

ij/∂t
)
rms

is a

good indicator of the fluctuation level of τ d
ij. The variable

(
∂τ d

ij/∂t
)
rms

involves

contributions from unmeasured and measured terms. The unmeasured terms com-

prise advection, turbulent transport and pressure destruction while the measured

terms comprise anisotropic-, isotropic- and buoyant-production. In general, it is

not possible to infer the contributions from the unmeasured terms to
(
∂τ d

ij/∂t
)
rms

based on those from the measured terms due to cross-correlations between the two

groups of terms.

In Fig. (3.4), we present the rms values of anisotropic production, isotropic

production, buoyant production and the rms value of their sum, normalized with(
∂τ d

ij/∂t
)
rms

. Although the advection, turbulent transport and pressure terms

aren’t available to us, the rms value of
(
∂τ d

ij/∂t
)

can be obtained directly using

the time series of τ d
ij.

3.2.4.1 τ d
αα budgets

We discuss first the rms value of the time derivative of τ d
11 followed by those of

the time derivatives of the other two diagonal components. From Fig. (3.4), as

∆w/∆ decreases, the fluctuation levels of anisotropic production as a fraction of(
∂τ d

11/∂t
)
rms

increase in relation to those of isotropic production and buoyant pro-

duction. Furthermore, the normalized rms values of the sum of these three pro-

duction terms increase with decreasing ∆w/∆. As ∆w/∆ increases, anisotropic

production, isotropic production and buoyant production together account for a

decreasing fraction of
(
∂τ d

11/∂t
)
rms

. As noted earlier they could, in principle, in-

fluence
(
∂τ d

11/∂t
)
rms

through cross-correlations with the unmeasured terms.
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Figure 3.4. HATS data, stable cases: rms values of anisotropic production, isotropic
production, buoyant production and their sum, normalized with the rms value of the
time derivative of τd

ij .

The trends in the fluctuation levels of terms in the τ d
22 budget are similar in some

respects to those observed in the τ d
11 budget, but differ in others. For instance, the

normalized rms values of anisotropic production increase with decreasing ∆w/∆,

as in the τ d
11 budget. In contrast to the τ d

11 budget, however, the fluctuations of

isotropic production are greater than those of anisotropic production for all but

the lowest values of ∆w/∆. Buoyant production contributes negligibly to the fluc-

tuation level across the entire range of ∆w/∆ in Fig. (3.4). Thus, at low values of

∆w/∆, anisotropic production emerges as an important contributor to the fluctu-

ation level but even at the lowest value of ∆w/∆, the sum of anisotropic, isotropic
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and buoyant production account only for half the total fluctuation level. This

shows that advection, turbulent transport or pressure destruction are responsible

for a significant fraction of
(
∂τ d

22/∂t
)
rms

at low ∆w/∆, either directly or through

cross-correlations with the measured terms. As ∆w/∆ increases, the contributions

of anisotropic, isotropic and buoyant production to
(
∂τ d

22/∂t
)
rms

decrease.

In the τ d
33 budget, as ∆w/∆ decreases, anisotropic production, isotropic pro-

duction and buoyant production together account for an increasingly large fraction

of
(
∂τ d

33/∂t
)
rms

. Among these three terms, anisotropic production emerges as the

principal contributor at low ∆w/∆. As in the τ d
22 budget, the normalized rms values

of anisotropic- and isotropic-production are comparable but the latter is typically

greater than the former except at very low ∆w/∆. For ∆w/∆ < 1, the normal-

ized fluctuations of buoyant production increase sharply from near-zero values to

around 20% but remain smaller than that of anisotropic- and isotropic-production.

As ∆w/∆ increases, the sum of anisotropic production, isotropic production and

buoyant production accounts for a decreasing fraction of
(
∂τ d

33/∂t
)
rms

.

3.2.4.2 τ d
13 budget

We recall from our discussion of the τ d
ij budgets that the dominant production

term in the τ d
13 budget is isotropic production. Fig. (3.4) shows that isotropic

production is also a significant contributor to
(
∂τ d

13/∂t
)
rms

. As ∆w/∆ decreases,

the normalized rms values of isotropic production, anisotropic production, buoyant

production and the rms value of their sum, increase steeply. Among the three pro-

duction terms, normalized fluctuations levels are highest for isotropic production

and lowest for buoyant production. There is a marked increase in the normalized

rms values of buoyant production for ∆w/∆ < 1, but it is considerably lesser than

those of isotropic- or anisotropic-production.

A couple of observations regarding the fluctuation levels in the τ d
13 budget merit

some discussion as they are mostly absent in the τ d
αα budgets:

1. The normalized rms value of isotropic production, anisotropic production

and buoyant production together is in some instances greater than 1. This

is especially pronounced at very low ∆w/∆.

2. The normalized rms value of isotropic production is in some instances, greater
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than that of the sum of isotropic production, anisotropic production and

buoyant production. This is observed at low to intermediate values of ∆w/∆.

The terms in the τ d
22 budget do exhibit such behavior although in very few

instances. For instance, at the lowest value of ∆w/∆, the dominant produc-

tion term in the τ d
22 budget, i.e., anisotropic production, has an rms value

slightly greater than that of the sum of the three production terms.

We explain the second of these observations first. For it to be true, we require ei-

ther buoyant- or anisotropic-production in the τ d
13 budget to exhibit high negative

correlation with isotropic production. In Fig. (3.5), we plot the correlation coeffi-

cients between the dominant production term and the other two production terms

for each of the τ d
αα and τ d

13 budgets. The dominant production terms in the τ d
αα and

τ d
13 budgets are anisotropic- and isotropic-production, respectively. The correlation

coefficients have been plotted versus ∆w/∆. We see high negative correlations in

both the τ d
22 and τ d

13 budgets, although the correlation coefficients in the latter are

considerably more negative than in the former. This is most evident at low ∆w/∆

where the correlation coefficient between isotropic- and anisotropic-production in

the τ d
13 budget is nearly −0.9. Such high negative correlation enables isotropic

production to attain rms values much higher than that of isotropic, buoyant and

anisotropic production together.

It is now possible to offer a similar explanation for the fact that the normalized

rms value of isotropic production, anisotropic production and buoyant production

together is in some instances greater than 1. We infer from Fig. (3.5) that either

advection, turbulent transport or pressure destruction (or a linear combination

thereof) exhibits high negative correlation with the sum of isotropic production,

buoyant production and anisotropic production.

3.2.4.3 Relative rms values of
(
∂τ d

ij/∂t
)

In the previous section, we identified the primary sources of fluctuations in the τ d
αα

and τ d
13 budgets across a broad range of ∆w/∆. While this provided insight into

the individual τ d
ij budgets, it is also of interest to compare the fluctuation levels of

τ d
ij amongst themselves. We plot in Fig. (3.6) the rms values of τ d

ij normalized with

that of τ d
33 versus ∆w/∆. The normalized rms values of τ d

11 are the highest while
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Figure 3.5. HATS data, stable cases: (i) Correlation coefficient of anisotropic produc-
tion in the τd

αα budgets with isotropic- and buoyant-production; (ii) Correlation coeffi-
cient of isotropic production in the τd

13 budget with anisotropic- and buoyant-production.

those of τ d
22 and τ d

13 are comparable with the former slightly larger than the latter.

In order to relate these trends to our discussions in previous sections, we plot in

Fig. (3.7) the rms values of
(
∂τ d

11/∂t
)
,
(
∂τ d

22/∂t
)

and
(
∂τ d

13/∂t
)
, normalized with

that of
(
∂τ d

33/∂t
)
. The normalized fluctuations have been plotted versus ∆w/∆.

The observed trends are similar to that observed in Fig. (3.6) which suggests that

the normalized fluctuation levels of
(
∂τ d

ij/∂t
)

are good indicators of the normalized

fluctuation levels of τ d
ij, as hypothesized earlier.

At the largest value of ∆w/∆, the normalized rms values of
(
∂τ d

11/∂t
)

and(
∂τ d

22/∂t
)

are 1.2 and 1, respectively. As ∆w/∆ decreases, they both increase
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Figure 3.6. HATS, stable cases: RMS values of τd
ij normalized with that of τd

33, plotted
versus ∆w/∆.
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Figure 3.7. HATS, stable cases: RMS values of
(
∂τd

ij/∂t
)

normalized with that of(
∂τd

33/∂t
)
, plotted versus ∆w/∆.

such that the fluctuation levels of
(
∂τ d

11/∂t
)

increase more rapidly than that of(
∂τ d

22/∂t
)
. The normalized rms values of

(
∂τ d

13/∂t
)

are close to unity and exhibit
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a spread of only 10-15% across the entire range of ∆w/∆.

3.2.5 Summary

We summarize briefly our observations regarding the mean values of the production

terms followed by those regarding their fluctuations.

Anisotropic production dominates isotropic- and buoyant-production in the τ d
αα

budgets while isotropic production plays the dominant role in the τ d
13 budget. The

buoyant production terms are relatively insignificant in the τ d
11, τ

d
22 and τ d

13 budgets

but can be comparable to anisotropic production in the τ d
33 budget, at very low

∆w/∆. These trends are qualitatively similar to those observed in the unstable

HATS cases, discussed in Ch. (2).

At high ∆w/∆, anisotropic production, isotropic production and buoyant pro-

duction together account only for a small fraction of the fluctuations in
(
∂τ d

ij/∂t
)
,

implying significant contributions from advection, turbulent transport or pressure

destruction, either directly or through cross-correlations with the measured terms.

With decreasing ∆w/∆, the three measured production terms together account for

an increasingly large fraction of the total fluctuation level although this still does

not rule out cross-correlations with the unmeasured terms. In the τ d
αα budgets,

anisotropic production emerges as the principal source of fluctuations among the

three production terms at low ∆w/∆. In the τ d
13 budget, isotropic production is the

principal source of fluctuations among the three production terms at low ∆w/∆.

Among the diagonal components,
(
∂τ d

11/∂t
)

fluctuates the most and
(
∂τ d

33/∂t
)

the

least. The fluctuations in
(
∂τ d

13/∂t
)

are nearly equal to those in
(
∂τ d

13/∂t
)

and

don’t change significantly with ∆w/∆.

3.3 HATS: f1 and f3 budgets

In this section, we examine the f1 and f3 budgets in order to determine how

the following terms vary with ∆w/∆: isotropic gradient-production, anisotropic

gradient-production, flux tilting and buoyant production. Among isotropic and

anisotropic production, Sullivan (2010) found the latter to dominate in the f1

budget and the former to dominate in the f3 budget.
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Figure 3.8. HATS, stable cases: Scaled production terms in the f1 (left) and f3 (right)
budgets, plotted versus ∆w/∆. The terms have been scaled with Q0N where Q0 is the
surface heat flux and N is the Brunt-Väisälä frequency.

In Fig. (3.8) we plot the following terms in the f1 and f3 budgets after scaling

them appropriately: isotropic- and anisotropic-gradient production, flux tilting

and buoyant production. We scale these terms with Q0N , where Q0 is the surface

heat flux and N is the Brunt-Väisälä frequency. Figure (3.8) is similar to results

obtained by Sullivan (2010), the only difference being that we have also plotted

the tilting and buoyant production terms. Similar to the τ d
ij budgets, the scaled

production terms in Fig. (3.8) increase with decreasing ∆w/∆ for ∆w/∆ > 1 and

then decrease sharply for further decreases in ∆w/∆. We now discuss the f1 budget

followed by the f3 budget.

3.3.1 f1 budget

In the f1 budget, flux tilting and anisotropic-gradient production are the dominant

production terms. For ∆w/∆ > 2, these two terms are comparable in magnitude

but as ∆w/∆ decreases further, flux tilting tends to dominate anisotropic-gradient

production till ∆w/∆ ≈ 0.2, when the two production terms converge and appear

to asymptote approximately to a value of 2 for lower values of ∆w/∆. Isotropic
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Figure 3.9. HATS, stable cases: Plot of |f1|/Q0 versus ∆w/∆, where Q0 is the surface
heat flux.

gradient-production is negligible across the entire range of ∆w/∆. We plot in

Fig. (3.9) |f1| normalized with the surface heat flux, Q0, versus ∆w/∆. The nor-

malized values of |f1| increase with decreasing ∆w/∆ and tend towards a value of

2.1 at low ∆w/∆. Figures (3.8)-(3.9) show that the horizontal SFS scalar flux can

be significant even in the absence of horizontal mean gradients in the scalar field.

Using HATS data for the unstable cases, Hatlee and Wyngaard (2007) found that

eddy-viscosity closures — which account only for isotropic gradient-production

— fare poorly in their prediction of SFS horizontal fluxes Hatlee and Wyngaard

(2007). Thus Figs. (3.8)–(3.9) are consistent with their findings.

3.3.2 f3 budget

Isotropic gradient-production plays a significant role in the f3 budget as it is pro-

portional to the vertical gradient of potential temperature. Anisotropic gradient-

production and buoyant production are non-zero but have smaller magnitudes than

isotropic gradient-production. Anisotropic gradient-production is typically larger

in magnitude than buoyant production but they appear to converge as ∆w/∆

decreases. It is harder to discern the asymptotes for the production terms at
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low ∆w/∆ but crude visual extrapolation suggests a value slightly lesser than 5

for isotropic gradient-production and a value of ≈ −2 for anisotropic gradient-

production and buoyant production.

It is interesting to note that the implied asymptotes at low ∆w/∆ for terms

in the f1 budget are equal approximately to those observed in our high-resolution

LES results for the unstable boundary layer in Ch. (2) (see Fig. (2.35)). This is

also true of the implied low ∆w/∆ asymptote for isotropic gradient-production in

the f3 budget. The common asymptote for anisotropic gradient-production and

buoyant production (≈ −2), however, is absent from our LES results due to two

reasons: (i) we neglect the buoyant terms in the f3 conservation equation, modeling

which would require an additional model for the SFS θ variance; (ii) the modeled

SFS conservation equations underpredict the levels of SFS anisotropy close to the

surface, which in turn leads to underprediction of anisotropic gradient-production

in the SFS scalar flux budgets. Nevertheless, the parallels between Fig. (3.8) and

our LES results for the unstable boundary layer show once again that the parameter

∆w/∆ is quite effective in describing turbulence statistics across a wide range of

stabilities.

3.3.3 RMS values of production terms in the f1 and f3

budgets

In the present section, we discuss trends in the rms values of production terms in

the fi budgets, scaled with the rms values of (∂fi/∂t), denoted by (∂fi/∂t)rms. In

particular, we consider tilting, isotropic gradient-production, anisotropic gradient-

production and buoyant production. We discuss first the f1 budget followed by

the f3 budget.

3.3.3.1 f1 budget

In Fig. (3.10a), we show the rms values of flux tilting, isotropic gradient-production,

anisotropic gradient-production and of their sum, normalized with (∂f1/∂t)rms. Of

the three production terms, flux tilting has the highest normalized fluctuation lev-

els. This shows that flux tilting influences significantly not only the mean value of

f1 but also its fluctuation level. As ∆w/∆ decreases, the three production terms
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together account for an increasing fraction of (∂f1/∂t)rms. For low ∆w/∆, the nor-

malized rms values of the sum of the three production terms, in some instances,

exceeds considerably that of either of the individual terms. For this to be possible,

two or more of the three production terms must have high positive correlation.

In Fig. (3.10b) we show the correlation coefficients between two pairs of produc-

tion terms: (i) flux tilting and isotropic gradient-production (ii) flux tilting and

anisotropic gradient-production. With decreasing ∆w/∆, the correlation coeffi-

cient between flux tilting and anisotropic gradient-production increases to values

as high as 0.8, which explains why in some instances, the sum of the three pro-

duction terms has rms values much higher than do either one of them. At higher

values of ∆w/∆, the three production terms account for only a small fraction of

the total fluctuation rate (≈ 0.3). It follows that advection, turbulent transport or

pressure destruction contributes significantly to (∂f1/∂t)rms at high ∆w/∆, either

directly or through cross-correlations with the measured terms.
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Figure 3.10. HATS, stable cases: (a) rms values of flux tilting, isotropic gradient-
production, anisotropic gradient-production and of their sum, normalized with that
of (∂f1/∂t) (b) Correlation coefficient between flux tilting and isotropic gradient-
production, and flux tilting and anisotropic gradient-production
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Figure 3.11. HATS, stable cases: normalized rms values of isotropic gradient-
production, anisotropic gradient-production, buoyant production and flux tilting shown
plotted alongside the normalized rms values of their sum. The normalization factor is
the rms value of (∂f3/∂t).

3.3.3.2 f3 budget

In Fig. (3.11), we show the rms values of flux tilting, buoyant production, isotropic

gradient-production, anisotropic gradient-production and of their sum, normalized

with (∂f3/∂t)rms. For easy interpretation, we show in separate plots the normalized

fluctuation levels of each of these four production terms along with that of their

sum. We recall from earlier discussions that the principal production term in the

f3 budget is isotropic gradient-production. Figure (3.11) shows that it is also the

dominant source of fluctuations in (∂f3/∂t). As ∆w/∆ decreases, the normalized
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Figure 3.12. HATS, stable cases: Correlation coefficient between isotropic gradient-
production in the f3 budget and – (i) flux tilting (ii) anisotropic gradient-production
(iii) buoyant production.

rms values of isotropic gradient-production, anisotropic gradient-production and

buoyant production increase sharply with the latter two lagging behind the first.

The normalized rms values of buoyant production in particular, increase rapidly

from near-zero values to ≈ 0.7 at low ∆w/∆. The contributions from flux tilting

remain insignificant (≈ 0.1–0.2) across the entire range of ∆w/∆. The dominant

production term — isotropic gradient-production — has fluctuation levels that

in some instances exceed that of the sum of all four production terms. This is

consistent with increasingly high negative correlation between isotropic gradient-

production and anisotropic gradient-production with decreasing ∆w/∆, as shown

in Fig. (3.12). Close observation of Fig. (3.11) reveals that for the lowest value

of ∆w/∆ in the HATS data ( ≈ 0.23, see the fluctuations of the tilting term in

Fig. (3.11)), the normalized fluctuation of the sum of the four production terms

is greater than unity and hence, not visible in the plot. This implies that the

unmeasured terms exhibit significant negative correlation with the sum of the four

production terms at very low ∆w/∆.
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Figure 3.13. HATS, stable cases: RMS values of (∂f1/∂t) normalized with that of
(∂f3/∂t), plotted versus ∆w/∆.

3.3.3.3 Relative rms values of (∂fi/∂t)

In Fig. (3.13), we plot (∂f1/∂t)rms normalized with (∂f3/∂t)rms, as a function of

∆w/∆. It increases from ≈ 1.2 at the highest value of ∆w/∆ to ≈ 2.5 at low ∆w/∆.

The four production terms — tilting, isotropic gradient-production, anisotropic

gradient-production and buoyant production — account for an increasingly large

fraction of the fluctuations with decreasing ∆w/∆. As discussed in the previous

section, however, unlike in the τ d
ij budgets, we have more than one significant

source of fluctuations in the fi budgets even at the lowest value of ∆w/∆. The

steep increase in the normalized rms values of (∂f1/∂t) with decreasing ∆w/∆

imply that at low ∆w/∆, the dominant sources of fluctuations in the f1 budget

fluctuate more than those in the f3 budget.

3.3.4 Summary

As ∆w/∆ decreases, the f1 budget is dominated by flux tilting and anisotropic

gradient-production with isotropic gradient-production playing a negligible role.

The principal source of production in the f3 budget is isotropic gradient-production

but anisotropic gradient-production and buoyant production also play a significant
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role at low ∆w/∆. Flux tilting plays a negligible role in the f3 budget for all ∆w/∆.

At high ∆w/∆, isotropic gradient-production, anisotropic gradient-production

and flux tilting together account only for a small fraction of the rms value of

(∂f1/∂t), implying significant contributions from advection, turbulent transport

or pressure destruction, either directly or through cross-correlations with the mea-

sured terms. As ∆w/∆ decreases, the three production terms together account for

an increasingly large fraction of the total fluctuation level although this still does

not rule out cross-correlations with the unmeasured terms. Isotropic gradient-

production contributes negligibly to the total fluctuation level across the entire

range of ∆w/∆.

In the f3 budget, as ∆w/∆ decreases, the normalized rms values of isotropic

gradient-production, anisotropic gradient-production, buoyant production and their

sum increase while those of flux tilting are relatively insignificant (≈ 0.1–0.15).

Among the four production terms, isotropic gradient-production has the highest

normalized rms values. At high values of ∆w/∆, the four production terms to-

gether represent only a small fraction (≈ 0.2) of the rms value of (∂f3/∂t) and

we infer significant contributions from advection, turbulent transport or pressure

destruction, either directly or through cross-correlations with the measured terms.

Finally, the fluctuations in (∂f1/∂t) exceed those in (∂f3/∂t) and at very low

∆w/∆, the former is more than twice the latter which shows that the dominant

sources of fluctuations in the f1 budget fluctuate more than do their counterparts

in the f3 budget.

Our results in the current and preceding section show that as ∆w/∆ decreases,

SFS production terms in the τ d
ij and fi budgets that dominate in the mean also

account for a significant fraction of the fluctuations in τ d
ij and fi, respectively.

3.4 SFS model

In the previous sections, we used HATS data for the stable boundary layer to

gain insight into the conservation equations for the SFS stresses and fluxes. We

determined that at low ∆w/∆, the principal production terms in the SFS budgets

(for both stresses and fluxes) are also an important source of fluctuations in the SFS

stresses and fluxes. Our HATS analysis suggests that traditional eddy-viscosity
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closures that account only for isotropic production are expected to represent poorly

the diagonal SFS deviatoric stresses, τ d
αα, and the horizontal SFS scalar flux, f1,

in whose budgets isotropic production plays a negligible role.

In the present section, we investigate the performance of an SFS model that

uses conservation equations by implementing it in LES of a moderately stable

boundary layer. The SFS model we employ is identical to the one developed by

Hatlee and Wyngaard (2007) and was used in Ch. (2) for LES of the unstable

ABL. Equations (3.1)–(3.2) comprise the SFS model:

∂fi

∂t
+ ūj

∂fi

∂xj

= −fj
∂ūi

∂xj

− τ d
ij

∂θ̄

∂xj

− 2

3
e
∂θ̄

∂xi

− fi

Tθ

. (3.1)
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ij
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∂τ d
ij

∂xk

= −2

3
e

(
∂ūi
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∂ūj
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)

−
[
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ik

∂ūj

∂xk

+ τ d
jk

∂ūi

∂xk

− 1

3
δijτ

d
kl

(
∂ūk

∂xl

+
∂ūl

∂xk

)]

+
g

T0

[
δj3fi + δi3fj −

(
2

3

)
δijf3

]
− τ d

ij

Tτ

. (3.2)

The nomenclature is the same as defined in previous Ch. (2). The terms in

Eq. (3.1) are (from left to right): time derivative, advection, flux tilting, anisotropic

gradient-production, isotropic gradient-production and modeled slow pressure strain-

rate covariance. The terms in Eq. (3.2) are (from left to right): time derivative,

advection, isotropic production, anisotropic production, buoyant production and

modeled slow pressure strain-rate covariance.

The SFS time scales Tθ,τ are modeled as being proportional to lSFS/e
1/2 where

lSFS is the length scale for the SFS eddies. We denote the proportionality con-

stants in the expressions for Tθ and Tτ by cθ and cτ , respectively. We set lSFS =

∆ = (∆x∆y∆z)1/3 in regions of unstable stratification and lSFS = 0.76
√
e/N

(Deardorff, 1973) under stable stratification where N =
√

(g/Θ0)(∂θ/∂z) is the

Brunt-Väisälä frequency. Use of the stability dependent length scale is critical to

prevent Eqs. (3.1)–(3.2) from blowing up in stably stratified regions.
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3.5 Set-up of LES runs

The GABLS experiment (Beare et al., 2006) was the first major intercomparison

study that assessed the ability of different SFS models to simulate the moderately

stable boundary layer. We describe briefly the main parameters of the LES runs

used in GABLS, as we use an identical set-up for our LES runs in this chapter. The

set-up used in GABLS is similar to that used by Kosović and Curry (2000), who in

turn modeled their runs on the BASE (Beaufort Sea Arctic Stratus Experiment)

observations.

The domain size is 400 m in all three directions. The surface cooling rate is

prescribed to be 0.25 K/hr. The geostrophic wind in the x-direction is 8m/s with

the Coriolis parameter set to 1.39 x 10−4 s−1 (corresponding to latitude 73◦N). To

initiate turbulence, a random potential temperature perturbation of amplitude 0.1

K and zero mean is applied to vertical levels below a height of 50 m. The initial

SFS turbulent kinetic energy is initialized as 0.4(1 − z/250)3 m2s3 , for z < 250m

and is set to zero for z > 250m. Gravity wave damping is applied above z = 300m

to suppress reflection of gravity waves from the top of the domain. The damping is

achieved by nudging the instantaneous velocities linearly towards their geostrophic

values. The surface roughness length is 0.1 m and the initial surface potential

temperature is 265 K. The terrain is assumed to be flat and homogeneous. The

simulations are run for a total of 9 hours (model time) and statistics are collected

over the last one hour. The long simulation times are necessary in order to obtain

a quasi-steady SBL which then enables comparisons between the LES results and

Nieuwstadt’s predictions (Nieuwstadt, 1984). In following the GABLS set-up for

our LES runs, our goal is admittedly modest: to assess the performance of the

modeled SFS conservation equations in simulating the quasi-steady moderately

stable boundary layer. Consequently, factors such as terrain slope, gravity waves

and very strong stratification (the “very stable boundary layer” (Mahrt, 1998)),

while certainly relevant to a more general treatment of the SBL, are beyond the

scope of our LES study.

Before presenting the results, we comment briefly on our use of a surface cool-

ing rate rather than the surface heat flux as the lower boundary condition. Basu

et al. (2008) have demonstrated theoretically and numerically that prescribing the
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surface heat flux is suitable only for near-neutral to weakly-stable conditions as it

leads to erroneous values of u∗ for strong stratifications. They showed that pre-

scribing the surface potential temperature is more appropriate and recommended

avoiding the specification of the surface heat flux as a lower boundary condition

in LES of the SBL.

3.6 Results

In this section, we present LES results using three different grid sizes: 128x128x128,

64x64x64 and 32x32x32, which correspond to resolutions 3.125m, 6.25m and 12.5m,

respectively. We denote the corresponding LES runs as SBL1, SBL2 and SBL3, in

increasing order of coarseness. All participants in the GABLS experiment (Beare

et al., 2006) submitted results from LES runs at the above three resolutions. A

couple of participants also submitted results at a resolution of 1 m. We begin with

a brief discussion of the modeled SFS budgets of τ d
ij followed by those of fi, as

described by Eqs. (3.1)–(3.2). We plot the budgets only for SBL2 as an illustrative

case.

We define the boundary layer height in a manner similar to Kosović and Curry

(2000) and Beare et al. (2006), wherein zi = z0.95/0.95, z0.95 being the height at

which the total (resolved + SFS) resultant shear stress,
√
〈u′w′〉2 + 〈v′w′〉2, falls

to a small fraction (5%) of its surface value, u2
∗. In the SBL, it is preferable to

define zi in terms of the momentum fluxes rather than the heat flux as the latter

is influenced significantly by gravity waves near the top of the SBL (Kosović and

Curry, 2000) and thus, the height corresponding to zero heat flux might not be an

accurate indicator of the boundary layer top.

3.6.1 Modeled τ d
ij budgets

In Fig. (3.14) are shown the various terms in the modeled τ d
ij budgets, scaled with〈−τ d

ijS̄ij

〉
and plotted versus z/zi, where zi = 182m is the inversion height. At

equilibrium, the dissipation of turbulent kinetic energy, ε is approximately equal

to
〈−τ d

ijS̄ij

〉
. In the HATS data, the stably-stratified cases are associated with

lower values of ∆w/∆ than are the unstable cases. In our LES runs of the SBL,
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Figure 3.14. Plane-averaged values of terms in the SFS stress budgets scaled with〈
−τd

ijS̄ij

〉
, for the run SBL2 (643). Left column: diagonal components, right column: off-

diagonal components. The scaled terms are plotted versus z/zi, where zi = 182m is the
inversion height. Plot legend: (—) Anisotropic production, (· · · ) Isotropic production,
(– –) Buoyant production, (– ·) Advection, (– · · · – ) Pressure-strain covariance, (— —)
Time tendency

we expect the lowest values of ∆w/∆ to occur in the surface layer, where ∆w ∼ z

(Lenschow et al., 1988)
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3.6.1.1 τ d
αα budgets

The HATS data show anisotropic production to be the principal production term

in the τ d
αα budgets and buoyant production to be non-negligible in the τ d

33 bud-

get at low ∆w/∆. Fig. (3.14) shows the dominance of anisotropic production

over isotropic production in the τ d
αα budgets. Due to stable stratification, buoy-

ancy appears as a loss in the τ d
33 budget and, as a gain in the τ d

11 and τ d
22 bud-

gets. The effects of buoyancy are most significant near the inversion, a region of

strong stratification due to steep gradients in mean potential temperature. Mod-

eled slow pressure-strain covariance is the principal destruction term that balances

anisotropic production in the τ d
αα budgets. The advection terms are negligible

in the mean. They are, however, necessary for the SFS model to extract energy

meaningfully from the resolved-scales and avoid a spurious build-up of resolved-

scale energy close to the filter cut-off, as discussed earlier in Ch. (2).

To see the effect of the anisotropic production term, we examine the mean

values of τ d
αα as predicted by LES and compare them to observations. We show

results obtained using two closures: (i) an eddy-diffusivity closure; and (ii) the

modeled SFS conservation equations. The eddy-diffusivity closure is identical to

the one used in Ch. (2), wherein the eddy-diffusivity, Km, is defined to be Km =

ck
√
e ∆. For our LES runs of the unstable ABL, we used ck = 0.1, a value first

derived by Lilly (1967) assuming homogeneous and isotropic turbulence. In LES

of the SBL, however, we found ck = 0.1 to be too high as it leads to incorrect mean

potential-temperature profiles that were almost linear while past LES studies (Basu

and Porté-Agel, 2006; Beare et al., 2006) and field observations (Caughey et al.,

1979; Lenschow et al., 1988; Newsom and Banta, 2003; Nieuwstadt, 1984) show

the mean potential temperature profile to have a positive curvature in the middle

portion of the boundary layer. We found that reducing ck was necessary to obtain

more realistic mean potential temperature profiles. Thus, we use ck = 0.06 in all

our LES runs using the eddy-diffusivity closure.

In Fig. (3.15), we plot τ d
αα/u

2
∗ as a function of ∆w/∆ for the stable HATS cases.

As ∆w/∆ decreases, τ d
11/u

2
∗ (> 0) and τ d

33/u
2
∗ (< 0) increase sharply in magnitude

while τ d
22/u

2
∗ attains small negative values. Thus, the SFS stresses are strongly

anisotropic at low ∆w/∆, which we recall describes conditions of under-resolved

turbulence such as the near-wall region, strongly stratified flow, etc. In Fig. (3.16),
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we plot τ d
αα/u

2
∗ obtained from LES. A qualitative comparison of Figs. (3.15)-(3.16)

reveals that the modeled SFS conservation equations are capable of reproducing

anisotropy at the subfilter scales but severely underpredict τ d
αα when compared

to observations. The eddy-diffusivity closure predicts near-zero values of τ d
αα/u

2
∗

throughout the boundary layer, as it fails to account for SFS anisotropy.
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Figure 3.15. HATS, stable cases: SFS deviatoric stresses, τd
αα/u2∗, plotted versus ∆w/∆.

3.6.1.2 τ d
αβ budgets

In the τ d
13 budget, the HATS data yield isotropic production as the principal pro-

duction term but anisotropic production and buoyant production are also signifi-

cant, especially at low values of ∆w/∆. Our LES results yield isotropic production

to be the dominant production term in the τ d
13 budget but yield negligible values

for both anisotropic- and buoyant-production, in comparison to observations. The

underprediction of anisotropic production in the τ d
13 budget was also observed in

our LES simulations of the unstable boundary layer in Ch. (2). Anisotropic pro-

duction in the τ d
13 budget is determined primarily by the term −τ d

33 (∂ū/∂z) (Chen

et al., 2005). Thus, the underprediction of anisotropic production is likely due

to the underprediction of τ d
33. In Ch. (2), we speculated that the modeled SFS

conservation equations underpredict the magnitude of τ d
αα at low ∆w/∆ due to the
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Figure 3.16. LES: SFS deviatoric stresses, ταα/u2∗, plotted versus z/zi, using an eddy-
diffusivity closure (left ) and the modeled SFS conservation equations (right).

inadequacy of the model for the pressure-strain covariance terms. Thus, it is plau-

sible that the modeled pressure strain covariance term influences the predictions

of anisotropic production adversely in the SBL as well.

The τ d
23 budget is qualitatively similar to the τ d

13 budget wherein it is in balance

between isotropic production and modeled slow pressure strain-rate covariance.

The τ d
12 budget has anisotropic production as the principal production mechanism

which is balanced by modeled slow pressure strain-rate covariance. The mean SFS

advection terms are negligible in the ταβ budgets. Although we have shown the

modeled SFS budgets for all six τ d
ij components, τ d

23 and τ d
12 are much smaller in

magnitude than the other components.

3.6.2 Modeled fi budgets

In Fig. (3.17), we plot the plane-averaged terms in the modeled fi budget scaled

with Q0N , as a function of z/zi. We now qualitatively compare Fig. (3.17) with

corresponding results from HATS data, shown in Fig. (3.8).
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Figure 3.17. LES: Plane-averaged terms in the fi budgets scaled with Q0N and plotted
versus z/zi, for the run SBL2 (643). The variable Q0 is the surface heat flux, N is the
Brunt-Väisälä frequency, and zi = 182m is the inversion height.

3.6.2.1 f1 and f2 budgets

Our LES results show that the principal production terms in the f1 budget are flux

tilting and anisotropic gradient-production, in agreement with Fig. (3.8). Isotropic

gradient-production and advection in the modeled f1 budget are negligible. The

advection term, while negligible in the mean, is necessary to prevent an unphysical
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Figure 3.18. LES: Horizontal flux of potential temperature versus z/zi, for the run
SBL2 using an eddy-diffusivity closure and the modeled SFS conservation equations.

build-up of resolved-scale potential temperature variance at scales close to the filter

cut-off. The modeled slow pressure-strain covariance is the principal destruction

term. The trends in the f2 budget are mostly similar to those in the f1 budget but

the magnitudes of the mean production and sink terms are smaller in magnitude.

In Fig. (3.18), we plot f1/Q0 as a function of z/zi. The modeled SFS conserva-

tion equations predict a non-zero value for f1, in agreement with observations (see

Fig. (3.9)). The eddy-diffusivity closure is unable to produce any horizontal SFS

flux due to its sole dependence on isotropic gradient-production, which according

to Fig. (3.8), plays a negligible role in the f1 budget.

In general, the nature of balance in the modeled f1 and f2 budgets for the SBL

mirrors that observed in our LES results for the unstable boundary layer, discussed

in Chapter (2).

3.6.2.2 f3 budget

The f3 budget has isotropic gradient-production as its principal production term

which is balanced by the modeled pressure-strain covariance. Anisotropic gradient-

production and advection are negligible. Flux tilting while non-zero is much
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Table 3.1. Boundary layer height (zi), Monin-Obukhov (MO) length (L), surface flux
(Q0), MO scales u∗ and θ∗, and the Zilitinkevich parameter, γ, where γ = zi/(u∗ L/f)1/2.
The statistics are averaged over the last hour of simulation. Where possible, we also list
for each parameter the corresponding minimum and maximum values observed in the
GABLS LES-intercomparison study (Beare et al., 2006).

Diagnosed physical parameters of LES runs
Resolution (m) 3.125 6.25 12.5 3.125 (GABLS)
zi(m) 173 182 188 (168, 204)
L(m) 107 107 102 (100, 150)
Q0(W m−2) −14.62 −15.95 −15.95 (−12.5,−19.6)
u∗(ms−1) 0.262 0.268 0.267 (0.245, 0.283)
θ∗(K) 0.043 0.045 0.047 −
γ 0.38 0.40 0.42 −

smaller than isotropic gradient-production everywhere in the ABL. The dominance

of isotropic gradient-production in the modeled f3 budget is also observed in the

HATS data. Anisotropic-gradient production, however, is severely under-predicted

in the modeled f3 budget compared to observations, which show it to be a signifi-

cant loss term even if lesser in magnitude than isotropic gradient-production. This

under-prediction of anisotropic gradient-production was also observed in our LES

results for the unstable boundary layer. We now proceed to discuss in detail our

results obtained from LES runs SBL1, SBL2 and SBL3.

3.6.3 Bulk parameters

Table (3.1) lists the boundary layer height (zi), Monin-Obukhov (MO) length (L),

surface heat flux (Q0), the MO scales θ∗ and u∗, and the Zilitinkevich parameter,

γ = zi/(u∗ L/f)1/2 (Zilitinkevich, 1972). As one of the aims in the GABLS experi-

ment (Beare et al., 2006) was to test the sensitivity of various SFS models to grid

resolution, we tabulate values from LES runs at three resolutions: (i) 3.125m; (ii)

6.25m; and (iii) 12.5m. For comparison, we also list the corresponding minimum

and maximum values — where available — observed by Beare et al. (2006) at a

resolution of 3.125m.

To convert the surface flux values from K-m to W m−2, we have used the re-

lation, H = −ρ cp θ∗ u∗, where H is the heat flux in W m−2, ρ = 1.3223 kg m−3

and cp = 1.005 kJ kg−1 K−1. We obtained the values of L from the time series
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provided on the official GABLS webpage (www.gabls.org). The CASES exper-

iment (Poulos et al., 2003) observed u∗ and Q0 to lie within (0.22, 0.59) m s−1

and (−5.7,−48.4) W m−2, respectively, for continuously turbulent boundary layers.

Thus, the values of the bulk parameters from our LES runs at all three resolutions

are consistent with the GABLS experiment and the CASES-99 experiment.

Among the parameters shown in Table (3.1), zi exhibits the greatest sensitivity

to resolution. Beare et al. (2006) found a majority of SFS models to display a

similar trend wherein zi increases with coarsening resolution. The change (increase

or decrease) in predicted zi at ∆ = 12.5m from that at ∆ = 6.25m averaged to

a value of 14% across all the SFS models. Indeed, for some SFS models, the

percentage increase in zi was as high as 30% which led to a smearing out of the

inversion at the coarse resolutions. In comparison, the modeled SFS conservation

equations exhibit a modest increase (3%) in zi as the resolution increases from

∆ = 6.25m to ∆ = 12.5m. The values of the other parameters in Table (3.1) differ

by less than 10% for any two resolutions. Nieuwstadt (1985) derived analytically

an expression for the Zilitinkevich parameter which yielded γ = 0.37. Observations

reveal a slightly higher value of 0.4 (Garratt, 1982).

In Fig. (3.19) we show the time evolution of u∗, Q0 and zi over the entire

simulation length of 9 hours. We also indicate nondimensional time, t∗ = tzi/u∗,

on the top axis of each plot. Since our simulations include the Coriolis effect, we

expect all statistics to exhibit gradual variations over a timescale 1/f (∼ 104 sec.),

even after the flow has reached quasi-steady state.

Fig. (3.19) shows that u∗ undergoes significant variations until t ≈ 15000s

(t∗ ≈ 25) after which the changes are more gradual. The boundary layer height

zi increases sharply till t ≈ 14000s (t∗ ≈ 21). For t > 14000s, zi continues to

fluctuate more or less about a constant value. The fluctuations are consistent

with the intermittent nature of the boundary layer top (Kosović and Curry, 2000).

As our lower boundary condition employs a prescribed cooling rate instead of

a prescribed surface heat flux, Q0 varies with time although its rate of change

decreases in magnitude gradually over time. By the end of the simulation Q0

is nearly constant. Thus, to a good approximation we have quasi-steady state

conditions during the final hour of simulation, which is our window for gathering

statistics.
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Figure 3.19. Time series of u∗, surface flux Q0 and zi over the entire simulation length
of 9 hours. On the top axis of each plot is shown the time scaled with zi/u∗.

3.6.4 Evolution of mean profiles of potential temperature

and velocity

In Fig. (3.20) we plot the vertical profiles of mean potential temperature and

resultant horizontal velocity at t∗ = (5, 15, 25, 30) to show their evolution with

time. The profiles at t∗ = (5, 15, 25) are considerably different (especially 〈Θ〉)
as the flow is still transitioning towards equilibrium. The profiles at t∗ = 25 and

t∗ = 30 are similar suggesting that the flow is nearing equilibrium. This observation
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Figure 3.20. Profiles of mean potential temperature (left panel) and resultant mean
velocity (right panel) at t∗ = (5, 15, 25, 30), where t∗ = tu∗/zi, is the nondimensional
time.

combined with the fact that u∗ stabilizes at t∗ ≈ 25 suggests that the transient

phase ends approximately at 25 < t∗ < 30.

We can also see the nocturnal jet (also called the low level jet) evolving in

time with the “nose” of the jet accelerating to super-geostrophic speeds, as seen

in the profiles at t∗ = 25 and t∗ = 30. The jet continues to accelerate even beyond

t∗ = 30, as the peak jet velocity at equilibrium is higher than that implied by

Fig. (3.20). As the nocturnal jet plays an important role in the SBL, we now

discuss it at greater length.

3.6.4.1 The nocturnal jet

The nocturnal jet is a common feature of the nighttime boundary layer (Andreas

et al., 2000; Banta et al., 2002; Davies, 2000) and refers to a shallow layer of air

(∼ 100m) with high shear, which is produced as a result of the dynamical de-

coupling of the flow aloft from the surface (Blackadar, 1957). Banta et al. (1998)

showed that it influences the transport of pollutants such as Ozone in the urban
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boundary layer. Using data from the CASES-99 experiment, Banta et al. (2003)

found that the strength of the nocturnal jet modulates the turbulence in the re-

gion below it and subsequent studies by Banta et al. (2006) showed that high jet

speeds (> 15m/s) give rise to the so-called “upside down boundary layer” (Mahrt,

1999; Mahrt and Vickers, 2002), in which turbulence generated aloft due to shear

propagates downwards to the surface. In such boundary layers, the turbulent fluc-

tuations typically increase with height within the boundary layer and the peak jet

velocity, UJ , scales the velocity fluctuations better than does u∗, even near the sur-

face. Understanding the evolution of the nocturnal jet also has practical relevance

for wind energy applications (Banta et al., 2008; Sim et al., 2009).

Blackadar (1957) proposed a mechanism for the evolution of the nocturnal jet,

wherein the decay of the turbulent stresses aloft — and consequently, their diver-

gence — during the early-evening period leads to an imbalance in the horizontal

momentum equation, which in turn causes the jet to accelerate to super-geostrophic

speeds. We now review briefly Blackadar’s solution describing the nocturnal jet

(Wyngaard, 2010). The horizontal mean momentum equations for an incompress-

ible, horizontally homogeneous flow are,

∂〈U〉
∂t

= f (〈V 〉 − Vg)− ∂ 〈u′w′〉
∂z

(3.3)

∂〈V 〉
∂t

= f (Ug − 〈U〉)− ∂ 〈v′w′〉
∂z

. (3.4)

Neglecting the stress divergence terms, it is straightforward to show that the solu-

tion to Eqs. (3.3)–(3.4) is given by ∆U = U0e
−if(t−t0) and ∆V = V0e

−if(t−t0), where

∆U = 〈U〉 − Ug, ∆V = 〈V 〉 − Vg, t0 is the time at which the stress divergence

terms collapse and (U0, V0) are the mean velocities at t = t0. The above solution

states that for t > t0, the velocity difference vector (∆U,∆V ) traces out the tip

of a circle of radius
√
U2

0 + V 2
0 with frequency f . The nocturnal jet can also be

explained as a feature of the quasi-steady SBL wherein it is a consequence of the

equilibrium between the Coriolis terms and the stress divergence terms in the hor-

izontal momentum equations (Kosović and Curry, 2000; Nieuwstadt, 1984), i.e.,

the first and second terms on the right hand side of Eqs. (3.3)–(3.4). This view is

in agreement with past studies that found that the peak jet velocity might depend

on the stress divergence terms (Mahrt, 1981). Davies (2000) have argued that the
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Figure 3.21. Time-evolution of the peak jet velocity shown in (∆U,∆V )-space where
∆U = 〈U〉 −Ug and ∆V = 〈V 〉 − Vg. The dash-dot lines in the left and right panels are
circles of radii 2 and 2.2, respectively. These radii denote the magnitude of the (∆U,∆V )
vector at approximately the beginning of the inertial oscillation. The individual points
correspond to samples collected at 1000-second intervals over the course of the simulation
(9 hours).

nocturnal jet is influenced by both the above mechanisms, which implies that all

terms in Eqs. (3.3)–(3.4) play a role in the evolution of the jet.

In Fig. (3.21), we plot the time-evolution of the peak jet velocity in (∆U,∆V )-

space. The dash-dot line in Fig. (3.21) denotes a circle of radius 1.95, whose

significance we explain below. To illustrate the onset of the inertial oscillation we

plot the timeseries of: (i) (
√

∆U2 + ∆V 2) in Fig. (3.22a); (ii) the scaled Coriolis

and stress divergence terms in the (∂〈V 〉/∂t) equation in Fig. (3.22b); and (iii) the

scaled Coriolis and stress divergence terms in the (∂〈U〉/∂t) in Fig. (3.22c). We

have scaled the momentum equation terms shown in Figs. (3.22b)-(3.22c) using

zi/u
2
∗. For t∗ < 22,

√
∆U2 + ∆V 2 ≈ 0 which implies that the peak mean velocities

of the jet are nearly identical to their geostrophic values. In (∆U,∆V )-space, this

is equivalent to the velocity-difference vector occupying the origin. Shortly after

t∗ > 22, we see a sharp increase in the magnitudes of (∆U,∆V ) and the scaled

stress divergence terms, which corresponds to the velocity-difference vector moving

vertically upward from the origin in Fig. (3.21). From t∗ ≈ 25 till t∗ ≈ 42, the
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Figure 3.22. (a) Timeseries of
√

∆U2 + ∆V 2; (b) timeseries of scaled Coriolis and
stress divergence terms in the (∂〈V 〉/∂t) equation; (c) timeseries of scaled Coriolis and
stress divergence terms in the (∂〈U〉/∂t). The terms shown in (b) and (c) have been
scaled with zi/u2∗. The individual points correspond to samples collected at 1000-second
intervals over the course of the simulation (9 hours). Only results from the run SBL2
have been shown.

magnitude of the (∆U,∆V ) vector appears to stabilize and averages approximately

to a value of 1.95 and thereafter, starts tracing out a path that ideally would be a

circle, as predicted by Blackadar (1957). Fig. (3.21) shows that results from the run

SBL3 (1283) agree better with Blackadar’s analysis compared to the other two runs
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Figure 3.23. Profiles of mean velocity components, 〈U〉 and 〈V 〉, obtained using the
modeled SFS conservation equations. The dotted lines denote the geostrophic values,
Ug = 8 m/s and Vg = 0 m/s. The profiles are averages over the last hour of simulation.

although even in the case of SBL3, the values of (∆U,∆V ) start to deviate from

Blackadar’s solution towards the final stages of the simulation. We show in later

sections that higher surface cooling rates yield better agreement with Blackadar’s

analysis.

Although Blackadar’s analysis assumes that the stress divergence terms are

zero, Fig. (3.22) shows that they are non-negligible precisely when the (∆U,∆V )

vector appears to obey Blackadar’s solution. Thus, it appears that both the Cori-

olis and stress divergence terms influence the dynamics of the inertial oscillation

Davies (2000). We can reconcile Blackadar’s analysis with our results by noting

that non-zero stress divergence terms do not preclude an oscillatory solution to

Eqs. (3.3)–(3.4). This is because the necessary condition for oscillatory behavior

in Eqs. (3.3)–(3.4) is the presence of the time-derivative and the Coriolis terms —

which together represent a linear, harmonic oscillator — and not the absence of

the stress-divergence terms, although assuming the latter has the benefit of ren-

dering the momentum equations analytically tractable. Thus, we can imagine the

stress divergence terms modulating the amplitude and frequency of the oscillation

without disrupting it completely.
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Figure 3.24. Profiles of mean potential temperature averaged over the last hour of
simulation.

In Fig. (3.23), we show the profiles of the mean velocity components averaged

over the last hour of simulation. We observe a deepening of the boundary layer

and slight weakening of the peak jet velocity with decreasing resolution. Similar

trends were also recorded in the GABLS experiment (Beare et al., 2006) and by

Basu and Porté-Agel (2006) in their LES simulations using the locally-averaged

scale-dependent dynamic model. The peak jet velocities are in close agreement

with those observed by Beare et al. (2006).

3.6.4.2 Profile of mean potential temperature

In Fig. (3.24) we plot the profiles of mean potential temperature averaged over

the final hour of simulation. A marked characteristic of the potential temperature

profile in the nocturnal SBL with weak to moderate stratification is its positive

curvature, i.e., d2〈Θ〉/dz2 > 0 (Caughey et al., 1979; Lenschow et al., 1988; Nieuw-

stadt, 1984), except very close to the surface. André and Mahrt (1982) found that

SBLs associated with high wind speeds and strong mixing displayed a positive cur-

vature in the potential temperature profile. Those associated with weak winds and

dominated by clear-air radiative cooling were found to exhibit a negative curvature.
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tive curvature (;]2Q/]z2), which is clearly visible in

Fig. 4.

We would like to point out that the analytical model

of Nieuwstadt is based on the hypothesis that the gra-

dient Richardson number (Rig) and the flux Richard-

son number (Rif) are constant with height inside the

stable boundary layer. Nieuwstadt was aware of the fact

that this hypothesis does not hold for the lower part of

the boundary layer (Nieuwstadt 1985). In fact, Rig and

Rif should go to zero near the surface (Nieuwstadt

1985), as can be seen from our simulations (Fig. 5). The

violation of the basic assumption in the proximity of the

land surface might explain some of the discrepancies

between the LES results and Nieuwstadt’s predictions

(e.g., the results related to surface wind direction).

The Richardson numbers represent the ratio of the

amount of TKE destroyed by buoyancy forces to the

amount of TKE generated by wind shear (Stull 1988).

The values of Rif are consistently higher than the cor-

responding Rig values, which is expected (see below).

In the interior part of the boundary layer, Rig is more or

less constant (;0.2), in accord with the assumption of

Nieuwstadt. However, Rif increases monotonically and

is higher than 0.2 in the upper part of the boundary

layer. The magnitudes of both these Richardson num-

bers increase sharply near the top of the boundary layer

and become more than 1 in the inversion layer.

It is straightforward to show that the ratio between

Rig and Rif is the turbulent Prandtl number (Prt) (Der-

byshire 1999; Howell and Sun 1999):

Prt 5
KM

KH

5
Rig

Rif
, ~23 !

where KM and KH represent eddy diffusivities for mo-

mentum and heat flux, respectively. The dependence of

Prt on atmospheric stability is not strong (Derbyshire

1999; Howell and Sun 1999). Inside the boundary layer

(up to ;150 m), (almost) all our simulated results yield

(Rig /Rif) 5 Prt ; 0.7 (not shown here). B ased on phe-

nomenological theories of turbulence Townsend (197 6 )

and Y akhot and O rszag (1986 ) also derived Prt 5 0.7 .

However, in the surface layer our results show that the

values of Prt increase to ;1. This is consistent with M i-

crofronts field experimental data analyzed by Howell

and Sun (1999). They found on average, the estimates

of Prt at 3 -m level are higher than at the 10-m level,

indicating that the relative efficiency of turbulent mo-

mentum transfer with respect to heat transfer increases

FIG . 4. M ean temperature profiles. These profiles are averaged

over the last hour of simulation.

FIG . 5. M ean profiles of (top) gradient Richardson number and

(bottom) flux Richardson number. These profiles are averaged

over the last hour of simulation.
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Figure 3.25. Reproduced from Basu and Porté-Agel (2006). Profiles of mean poten-
tial temperature averaged over the last hour of simulation using the locally-averaged
(LASDD) and plane-averaged (PASDD) scale-dependent dynamic models.

Hyun et al. (2005) used CASES-99 data to show that the development of a strong

nocturnal jet on some nights caused the curvature in the potential temperature

profile to change sign from negative to positive. Analytical profiles (Nieuwstadt,

1985) and LES studies (Basu and Porté-Agel, 2006; Beare et al., 2006; Stoll and

Porté-Agel, 2008) also indicate a positive curvature in the potential temperature

profile for well-mixed SBLs with weak to moderate stratifications.

Figure (3.24) shows that the profiles at all three resolutions exhibit a positive

curvature, which is consistent with the moderate stratification of our simulated

SBLs. There is reasonable convergence between the profiles for the lowest 100 m

but they exhibit differences as we approach the inversion. The GABLS experiment

(Beare et al., 2006) found maximum sensitivity to the SFS model near the inversion.

There is a slight decrease in curvature with the coarsening of grid resolution but

the effect is less severe than that observed in some of the SFS models tested by

Beare et al. (2006).

For comparison, we reproduce in Fig. (3.25), the mean potential temperature

profile obtained using the locally-averaged (LASDD) and plane-averaged scale-

dependent models (Basu and Porté-Agel, 2006). Both these models belong to the
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family of dynamic SFS models wherein the SFS model coefficient is computed

dynamically from the resolved scales. The LASDD model was developed as an

improvement over the PASDD model which was found to be insufficiently dissipa-

tive in regions of strong stratification (Basu and Porté-Agel, 2006). Some of the

deficiencies in the LASDD model, in turn, have been addressed in the Lagrangian

averaged formulation of Stoll and Porté-Agel (2008). The LES simulations of Stoll

and Porté-Agel (2008) use a computational domain whose dimensions and aspect

ratio are different from those used in the GABLS study. Moreover, the coarsest

resolution used in the LES study by Stoll and Porté-Agel (2008) (9.92m) is finer

than that (12.5m) used in the GABLS numerical experiment (Beare et al., 2006)

and by Basu and Porté-Agel (2006). The physical parameters for the LES runs by

Basu and Porté-Agel (2006) are identical to those used in the GABLS numerical

experiment (Beare et al., 2006), which enables a direct comparison between our

results and theirs. Thus, we focus here on the results obtained using the LASDD

model and compare them to those obtained using the modeled SFS conservation

equations. Figures (3.24)–(3.25) reveal that there is negligible difference between

the results from the two SFS models at the finer resolutions. There is, however,

significant deterioration in the performance of the LASDD model for the 323 run,

as witnessed in the smearing out of the mean profile near the inversion.

3.6.5 Time series of velocity and potential temperature

fluctuations

In Fig. (3.26), we plot the timeseries of the total velocity variances (resolved +

SFS) scaled with u2
∗ and the resolved-scale variance of potential temperature, scaled

with θ2
∗, at z/zi = 0.1. The location z/zi = 0.1 isn’t fixed as we use the instan-

taneous values of zi. Once equilibrium is attained, however, the variations in zi

are considerably lesser than in the initial stages of the simulation. The timeseries

have been plotted versus t/t∗. We have used the equilibrium values of u∗ and θ∗
for scaling purposes.

The scaled variances of u, v and w decrease initially and reach a minimum

at around t∗ ≈ 13. For t∗ > 13, (〈u2〉/u2
∗, 〈v2〉/u2

∗, 〈w2〉/u2
∗) increase until they

attain maxima at times approximately between t∗ = 35 and t∗ = 40. The pre-
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Figure 3.26. Time series of (i) 〈u2〉, 〈v2〉, 〈w2〉 (resolved + SFS) scaled with u2∗; and (ii)
〈θ2〉 (resolved only) scaled with θ2∗, plotted versus t/t∗ at z/zi = 0.1, where t∗ = zi/u∗.
The individual points correspond to samples collected at 1000-second intervals over the
course of the simulation (9 hours).

dictions of (〈u2〉/u2
∗, 〈v2〉/u2

∗) are considerably more sensitive to grid resolution

compared to those of 〈w2〉/u2
∗. The values of resolved-scale potential temper-

ature variance increase almost linearly versus time till around t/t∗ ≈ 25. For

t/t∗ > 25, their growth rate is resolution-dependent. The scaled variances for

the runs SBL1 and SBL2 increase at a rate faster than that for the coarsest run,
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SBL3, and appear to stabilize at around t/t∗ ≈ 40, which is approximately when

the surface flux, Q0, stabilizes. Their steady-state values are greatest for the run

SBL1 and least for SBL3 which is consistent with the notion of a finer grid yield-

ing greater resolved-scale variances. The Minnesota experiments (Caughey et al.,

1979) yielded values of 3.8, 1.8 and 3.0 for 〈u2〉/u2
∗, 〈w2〉/u2

∗ and 〈θ2〉/θ2
∗ (resolved

+ SFS), respectively, at z/zi = 0.1. Aircraft measurements during the Severe

Environmental Storms and Mesoscale Experiment (Lenschow et al., 1988) found

(〈u2〉, 〈v2〉, 〈w2〉) /u2
∗ ≈ (3.8, 3.8, 2.2) at z/zi = 0.1. The scaled potential temper-

ature variances obtained by Lenschow et al. (1988) exhibited considerable scatter

and yielded values of 4–4.5 at z/zi = 0.1. Our values of (〈u2〉, 〈w2〉) /u2
∗ during the

last hour of simulation agree satisfactorily with observations while those of 〈v2〉/u2
∗

are underpredicted. We use values of resolved-scale 〈θ2〉/θ2
∗ from run SBL1 for

comparison with observations as the SFS contribution is least for SBL1 among the

three runs. The resolved-scale potential temperature variances from LES agree

well with field measurements (Caughey et al., 1979) but are underpredicted when

compared to aircraft measurements (Lenschow et al., 1988). To provide further

context to our results, we now cite results from a few DNS studies.

Nieuwstadt (2005) performed DNS of stably stratified channel flow with no

rotation for a range of stratifications. In his DNS study, the Reynolds number,

Re∗ = u∗zi/ν = 360, was quite low but he invoked Reynolds number similarity

to postulate that his results might be relevant for higher Reynolds numbers as

well. The CASES-99 experiment (Poulos et al., 2003; Van de Wiel et al., 2003) in

Kansas found u∗ to lie in the range (0.22, 0.59)m/s for continuously turbulent stable

boundary layers spanning a wide range of stratifications. Corresponding values of zi

range from 70m and 200m. Choosing u∗ = 0.4m/s and zi = 150m as representative

values, and using ν ∼ 10−5, we obtain Re∗ ∼ 106 which is four orders of magnitude

higher than its value in Nieuwstadt’s DNS studies (Nieuwstadt, 2005). He found

the maximum value of zi/L — a measure of the stratification — that could sustain

continuous turbulence in the channel1, to be 0.6. This value is much lower than

the zi/L values in our LES runs (≈ 1.7) and in past LES studies (Basu and Porté-

Agel, 2006; Beare et al., 2006) which report zi/L values of ≈ 2. For zi/L < 0.6,

1Nieuwstadt originally reported the critical value of zi/L to be 1.2 but he defined L without
using the von Kármán constant, k = 0.4, in the denominator. We have recalculated Nieuwstadt’s
zi/L values using the traditional definition of L.
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Nieuwstadt (2005) found 〈u2〉/u2
∗, 〈v2〉/u2

∗ and 〈w2〉/u2
∗ to attain steady-state values

of 4, 1.5 and 0.8, respectively, at z/zi = 0.1 for t∗ > 25. The DNS values of 〈u2〉/u2
∗

agree reasonably with observations (Caughey et al., 1979; Lenschow et al., 1988)

and our LES results but those of 〈v2〉/u2
∗ and 〈w2〉/u2

∗ are significantly lower in

comparison. From Fig. (3.26), the LES values of 〈w2〉/u2
∗ stabilize at t∗ ≈ 25, in

agreement with Nieuwstadt’s (2005) DNS studies. We recall that u∗ also stabilizes

around t/t∗ ≈ 25 (see Fig. (3.19)).

DNS by Iida et al. (2002) corresponding to Re∗ = 150 and Rib = 0.35 (defined

below) yielded values of the scaled velocity variances at z/zi = 0.1 that are nearly

equal to those obtained by Nieuwstadt. They found 〈θ2〉/θ2
∗ ≈ 5.7 at z/zi = 0.1

which is high compared to field measurements (Caughey et al., 1979). The variable

Rib = (gΘ0)(∆θ zi/U
2
g ), where ∆θ is the change in θ across the boundary layer,

denotes the bulk Richardson number and is a measure of the global stratification.

In our LES runs, we estimateRib to be 0.16. Iida et al. (2002) found thatRib > 0.54

caused the flow to re-laminarize.

Thus, although a strict comparison between DNS and our LES results might

not be possible due to the differences in Re, there appears to be limited agreement

between the two in select aspects of the flow dynamics.

3.6.6 Profiles of flux- and gradient-Richardson number

The flux Richardson number, Rif , is defined to be the ratio of buoyant destruction

to shear production of turbulent kinetic energy. A related nondimensional quantity

is the gradient Richardson number, Rig, which can be derived from Rif assuming

a gradient-diffusion form for the turbulent fluxes. Both Rig and Rif are indicators

of the level of stratification in a flow.

In Fig. (3.27), we plot Rig and Rif averaged over the last hour of simula-

tion. They are found to increase smoothly with height within the boundary layer

(173 m < zi < 188 m). All three runs yield a value of Rig between 0.25 and

0.30 near the inversion. Miles (1961) used linear stability analysis to show that a

stratified flow is stable for Rig > 0.25. Field studies (Caughey et al., 1979) and

wind tunnel measurements (Ohya, 2001; Ohya et al., 1997) show that for weak

to moderate stratification, Rig increases gradually with height and attains values
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Figure 3.27. Vertical profiles of gradient Richardson number, Rig, and flux Richardson
number, Rif . The mean inversion height for the runs SBL1-SBL3 is ≈ 181 m. The
profiles are averages over the last hour of simulation.

close to the critical value (0.25) near the inversion. Thus, our Rig values near

the inversion are consistent with theory and observations. Above the inversion,

Rig is unbounded because the gradient of mean velocity tends towards zero while

that of mean potential temperature stays finite. In contrast, the definition of Rif

involves fluxes as opposed to gradients and hence, is ill-defined above the inversion

due to negligible levels of turbulence there. For comparison, we show the vertical

profile of Rig obtained using the LASDD model (Basu and Porté-Agel, 2006) in

Fig. (3.28). The sensitivity to resolution in Fig.(3.28) is greater than in the case of

the modeled SFS conservation equations. We found that similar conclusions hold

for Rif as well (plot not shown).

Our LES values of Rig/Rif , which is equal to the turbulent Prandtl number,

Pr, are 0.6–0.7 throughout most of the boundary layer for all three grid resolutions.

The turbulent Prandtl number is a measure of the relative mixing efficiencies of

momentum and heat. Townsend (1976) and Yakhot and Orszag (1986) predicted a

value of 0.7 for the Prandtl number analytically. For weak stratification, Schumann

and Gerz (1995) estimated Pr to lie between 0.8 and 1.2. Howell and Sun (1999)

found Pr to be O(1) in the stable surface layer from field experiments. They also
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tive curvature (;]2Q/]z2), which is clearly visible in

Fig. 4.

We would like to point out that the analytical model

of Nieuwstadt is based on the hypothesis that the gra-

dient Richardson number (Rig) and the flux Richard-

son number (Rif) are constant with height inside the

stable boundary layer. Nieuwstadt was aware of the fact

that this hypothesis does not hold for the lower part of

the boundary layer (Nieuwstadt 1985). In fact, Rig and

Rif should go to zero near the surface (Nieuwstadt

1985), as can be seen from our simulations (Fig. 5). The

violation of the basic assumption in the proximity of the

land surface might explain some of the discrepancies

between the LES results and Nieuwstadt’s predictions

(e.g., the results related to surface wind direction).

The Richardson numbers represent the ratio of the

amount of TKE destroyed by buoyancy forces to the

amount of TKE generated by wind shear (Stull 1988).

The values of Rif are consistently higher than the cor-

responding Rig values, which is expected (see below).

In the interior part of the boundary layer, Rig is more or

less constant (;0.2), in accord with the assumption of

Nieuwstadt. However, Rif increases monotonically and

is higher than 0.2 in the upper part of the boundary

layer. The magnitudes of both these Richardson num-

bers increase sharply near the top of the boundary layer

and become more than 1 in the inversion layer.

It is straightforward to show that the ratio between

Rig and Rif is the turbulent Prandtl number (Prt) (Der-

byshire 1999; Howell and Sun 1999):

Prt 5
KM

KH

5
Rig

Rif
, ~23 !

where KM and KH represent eddy diffusivities for mo-

mentum and heat flux, respectively. The dependence of

Prt on atmospheric stability is not strong (Derbyshire

1999; Howell and Sun 1999). Inside the boundary layer

(up to ;150 m), (almost) all our simulated results yield

(Rig /Rif) 5 Prt ; 0.7 (not shown here). B ased on phe-

nomenological theories of turbulence Townsend (197 6 )

and Y akhot and O rszag (1986 ) also derived Prt 5 0.7 .

However, in the surface layer our results show that the

values of Prt increase to ;1. This is consistent with M i-

crofronts field experimental data analyzed by Howell

and Sun (1999). They found on average, the estimates

of Prt at 3 -m level are higher than at the 10-m level,

indicating that the relative efficiency of turbulent mo-

mentum transfer with respect to heat transfer increases

FIG . 4. M ean temperature profiles. These profiles are averaged

over the last hour of simulation.

FIG . 5. M ean profiles of (top) gradient Richardson number and

(bottom) flux Richardson number. These profiles are averaged

over the last hour of simulation.

2082 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S V O LU M E 6 3

Figure 3.28. Reproduced from Basu and Porté-Agel (2006). Vertical profile of gradient
Richardson number, Rig, averaged over the last hour of simulation using the locally-
averaged (LASDD) and plane-averaged (PASDD) scale-dependent dynamic models.

observed an increase in the value of Pr towards the surface implying more efficient

mixing of momentum relative to heat near the wall. Ha et al. (2007) noticed

similar trends in their analysis of CASES-99 data. Our LES values of Pr do not

increase towards the surface. The LASDD model does exhibit such an increase in

Pr towards the surface (Basu and Porté-Agel, 2006).

3.6.6.1 Rif as a function of Rig

The flux Richardson number is an important modeling parameter in mesoscale

codes and is parameterized typically as a function of Rig (Pardyjak et al., 2002).

Thus, it is of interest to examine the relationship between Rif and Rig. In

Fig. (3.29) we plot Rif as a function of Rig. We have shown only the points inside

the boundary layer as Rif is not well-defined in regions where the turbulent fluxes

are negligible. We recall that Rig < 0.25 within the boundary layer except near

the inversion where it increases sharply to super-critical values. For comparison,

we also show the following parameterizations of Rif used in the literature:

• Rif = 0.725
[
Rig + 0.186− (

Ri2g − 0.316Rig + 0.0346
)1/2

]
(Mellor and Ya-



147

0.001 0.010 0.100
Ri

g

0.0

0.5

1.0

1.5

2.0

R
i f

1283

643

323

Townsend (1958)
Mellor-Yamada (1982)
Nakanishi (2001

Figure 3.29. The flux Richardson number, Rif , as a function of the gradient Richardson
number, Rig. Symbols represent values from LES runs averaged over the last hour
of simulation. Lines represent commonly used parameterizations for Rif . A value of
Rig,crit = (1/3) has been used in Townsend’s parameterization.

mada, 1982)

• Rif = 0.774
[
Rig + 0.220− (

Ri2g − 0.328Rig + 0.0484
)1/2

]
(Nakanishi, 2001)

• Rif = 0.5
[
1− (1−Rig/Rig,cr)

1/2
]

(Townsend, 1958).

Following Pardyjak et al. (2002), we use Rig,cr = (1/3) in the parameterization

of Townsend (1958). The parameterizations by Nakanishi (2001) and Mellor and

Yamada (1982) are very similar for Rig < 0.3.

In Fig. (3.30), we reproduce a plot from Pardyjak et al. (2002) showing Rif

(denoted as Rf in their figure) versus Rig using values obtained from field studies,

laboratory measurements and a few parameterizations. The field studies include

measurements taken in Salt Lake City, Utah, as part of the Vertical Transport and

Mixing Experiment (VTMX), and in Los Alamos. The laboratory measurements

of Rif and Rig were taken by Strang and Fernando (2001). The parameterizations

shown in Fig. (3.30) are identical to those shown in Fig. (3.29), the only differ-

ence being that Fig. (3.30) shows Rif values using Townsend’s parameterization

for both Rig,crit = (1/12) and Rig,crit = (1/3). Pardyjak et al. (2002) found Rif
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R ich a rd so n n u m b e r (Rig). 9 00 s a v e ra g e d n o c tu rn a l b o u n d a ry la y e r d a ta ta k e n fro m th e T A -6 site
o v e r tw o w e e k s a re sh o w n .

3. Results and discussion

F ig u re 1 is a p lo t o f fl u x R ich a rd so n n u m b e r v e rsu s g ra d ie n t R ich a rd so n n u m b e r
fo r th e tw o se ts o f fi e ld d a ta (a v e ra g e d o v e r 9 00 s) a n d th e la b o ra to ry d a ta o f S F 01b .
T h e p a ra m e te riz a tio n s o f M Y 8 2, T o w n se n d a n d N a k a n ish i a re a lso sh o w n ((1.5 )–
(1.7 )). (N o te th a t th e V T M X d a ta c o n ta in m u ltip le p o in ts w h e re th e Rf = 0. T h is w a s
a n a rtifa c t th a t re su lte d fro m a la ck o f d a ta d u rin g th e se p e rio d s.) T h e d e ta ils o f th e
c u rv e s (e .g . ra te s o f in c re a se o r d e c re a se ) d iff e r fo r e a ch site , w h ich m a y b e a ttrib u te d
to a v a rie ty o f re a so n s, in c lu d in g th e se n sitiv ity o f Rf to th e fl o w d e ta ils (e .g . p ro fi le s)
a n d c o n trib u tio n s o f n o n -lo c a l p ro c e sse s. A ll th re e d a ta se ts, h o w e v e r, sh o w th e sa m e
g e n e ra l tre n d : a slo w in c re a se o f Rf fo r Rig < 0.1, a ste e p in c re a se fo r 0.1 < Rig < 1.0,

Figure 3.30. The flux Richardson number as a function of the gradient Richardson
number, Rig (reproduced from Pardyjak et al. (2002)). Legend: − − −, Townsend
(1958) with Rig,crit = 1/12; —, Mellor and Yamada (1982); —, Nakanishi (2001); –4–
, VTMX data; –x–, Los Alamos data; –¦–, Strang and Fernando (2001); –◦–, Townsend
with Rig,crit = 1/3.

from the field data to attain a maximum value of 0.4− 0.5 at Rig ≈ 1 and to de-

crease for further increases in Rig. In general, they found the parameterizations to

work satisfactorily only for Rig < 0.1. A comparison of Figs. (3.29)-(3.30) shows

that for 0.01 < Rig < 0.06, our LES results and two of the parameterizations

(Mellor and Yamada, 1982; Nakanishi, 2001) agree well with observations. For

0.06 < Rig < 0.2, they overpredict Rif while the parameterization by Townsend

(1958) with Rig,crit = 1/3 yields better values of the same. For Rig > 0.2, the pre-

dictions by both LES and the various parameterizations are poor due to different

reasons. The Townsend (1958) parameterization is defined only for Rig lesser than

some maximum value by the nature of its definition while the other two parameter-

izations asymptote to non-zero values of Rif for high Rig which is inconsistent with

observations. The LES results exhibit values of Rif that are unrealistically high for

Rig > 0.2. As the critical value of Rig required to sustain continuous turbulence
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is ≈ 0.25 (Miles, 1961), values of Rig significantly greater than 0.25 correspond

to very stable environments with highly intermittent turbulence wherein long pe-

riods of inactivity are punctuated by “bursting” phenomena with Rig alternating

between sub-critical and super-critical values (Ohya et al., 2008; Pardyjak et al.,

2002). Thus, the failure of our LES results and some of the parameterizations —

which are sometimes tuned using LES — to predict Rif accurately at high Rig is

a reflection of their inadequate performance in their current form, in very stable

environments.

3.6.7 The “local” scaling hypothesis

The “local” scaling hypothesis (Nieuwstadt, 1984) posits that in the SBL, statis-

tics scaled appropriately with variables at the same height (hence, “local”) are

functions solely of ζ = z/Λ, where Λ is a local length scale given by,

Λ(z) = − τ 3/2

k(g/θ0)〈w′θ′〉 . (3.5)

In Eq. (3.5), τ = [〈u′w′〉(z) + 〈v′w′〉(z)]1/2 is the local stress magnitude, 〈w′θ′〉(z)
is the local vertical potential temperature flux and k is the von Kármán constant.

The length scale Λ tends to the Monin-Obukhov length, L, towards the surface.

Nieuwstadt (1984) showed the set of scaling variables to be (Λ, τ, 〈w′θ′〉). A corol-

lary of the local scaling hypothesis is that variables scaled locally using the set

(Λ, τ, 〈w′θ′〉), tend to constant values in the limit ζ → ∞, also known as “z-less”

scaling (Wyngaard, 1973). Physically, z-less scaling can be understood as arising

due to stable stratification limiting the eddy size such that at large enough z, the

flow is decoupled dynamically from the surface and z ceases to be a relevant length

scale. Nieuwstadt (1984) demonstrated the validity of the local scaling hypothesis

using both theoretical arguments and field studies carried out at Cabauw, Nether-

lands. While he observed z-less scaling for ζ < 4, he found the locally scaled

statistics at higher values of ζ to be “dubious because of large scatter.” The local

scaling hypothesis, by construction, is flux-based and hence might not be suitable

for very large values of ζ which are associated with low levels of turbulence, and

consequently, low magnitudes of turbulent fluxes. Using two data sets from the
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Figure 3.31. The variation of ζ = z/Λ versus z/zi, where Λ is the local length scale.
The horizontal dotted lined denotes z/zi = 0.75.

CASES-99 experiment corresponding to continuous and weak turbulence, Sorb-

jan (2006) demonstrated that the flux-based local scaling arguments fail for the

weakly turbulent case, which is characterized by weak winds and radiative cool-

ing. He found a gradient-based scaling approach to work consistently in both the

continuous and weakly turbulent cases.

Mahrt and Vickers (2003) have termed the functional dependence of turbu-

lent statistics on ζ as “hybrid” similarity theory due to its consistency with both

Monin-Obukhov scaling near the surface and z-less scaling away from the surface.

Since Nieuwstadt’s original study, both local scaling and z-less scaling have been

validated in numerous field studies (Dias et al., 1995; Heinemann, 2004; Howell and

Sun, 1999; Smedman, 1988), most recently in an elaborate study by Basu et al.

(2006) combining field studies, wind-tunnel experiments and LES. Our focus in

this study is the moderately stable boundary layers where local scaling is valid, as

shown by the above studies. Thus, we do not explore the gradient-based scaling

methodology outlined by Sorbjan (2006).

We consider only the lower 75% of the boundary layer while investigating our

statistics for local scaling, in order to minimize the influence of the boundary layer

top (Basu et al., 2006). Figure (3.31), a plot of ζ as a function of z/zi, shows that
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Figure 3.32. Variation of locally scaled σu = 〈u′u′〉1/2, σv = 〈v′v′〉1/2, σw = 〈w′w′〉1/2

and σE = 〈q′q′〉1/2 with ζ = z/Λ, where 〈q′q′〉 = 〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉. The local
variables have been scaled with uL =

√
τ .

z/zi = 0.75 corresponds approximately to ζ = 6–7.

3.6.7.1 Variances

In Fig. (3.32) we plot the locally scaled (resolved + SFS) standard deviations of

the three velocity components and the turbulent kinetic energy. The evidence for

z-less scaling is strongest in the results from the 1283 run and in the case of σu, σw

and σE. Locally scaled standard deviation of resolved-scale potential temperature

is shown in Fig. (3.33). Both the 1283 and 643 runs show σθ/θL leveling off at

large ζ. We have shown here only the tendency of locally scaled statistics to
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Figure 3.33. The variation of locally scaled standard deviation of resolved-scale poten-
tial temperature, σθ/θL, with ζ = z/Λ. The local scale θL is given by θL = 〈w′θ′〉/τ0.5.

approach constant values at large ζ. A comparison of the actual z-less values with

observations is undertaken in later sections.

3.6.7.2 Gradient-Richardson number

We plot in Fig. (3.34) the gradient-Richardson number as a function of ζ. The

Cabauw data (Nieuwstadt, 1984) reveals Rig to increase steeply for 0 < ζ < 1

and at a much slower rate for 1 < ζ < 4, as it gradually tends towards a value

of 0.2. Figure (3.34) shows that our LES results are consistent with the Cabauw

data. The variation of the flux Richardson number (not shown) with ζ is very

similar to that of Rig except that it has higher magnitudes, as discussed earlier in

Sec. (3.6.6.1).

3.6.7.3 Eddy-diffusivities of momentum and heat

In Fig. (3.35), we plot the effective eddy-diffusivities of momentum and heat, de-

noted byKm andKh respectively, scaled locally using Λτ 0.5. The eddy-diffusivities,
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Figure 3.34. Variation of gradient-Richardson number, Rig, with ζ = z/Λ.

Km and Kh, are determined as follows:

Km = τ

[(
∂〈U〉
∂z

)2

+

(
∂〈V 〉
∂z

)2
]−1/2

; Kh = −〈w′θ′〉
(
∂〈Θ〉
∂z

)−1

(3.6)

For comparison, we have reproduced in Fig. (3.36), a similar plot from the GABLS

experiment (Beare et al., 2006). The results shown in Fig. (3.36) are from LES

runs at resolutions of 2 m (2003) and 6.25 m (1283). As the physical set-up of

our runs is identical to that used in the GABLS experiment, a direct compari-

son between Fig. (3.35) and the right panel of Fig. (3.36) is possible. A visual

comparison between the two plots shows that our LES predictions of scaled Km

and Kh are too high when compared to observations. The GABLS results show

that most SFS models overpredict the locally scaled eddy-diffusivities consider-

ably when compared to observations, especially at a resolution of 6.25 m. At this

resolution, values of Km/(Λ τ
0.5) predicted by the modeled SFS conservation equa-

tions and about half of the SFS models tested by Beare et al. (2006) lie outside

the observation range for low ζ, entering it at 3 < ζ < 4. Aircraft measurements

under very stable conditions in Greenland as part of KABEG (Katabatic wind and

Boundary-layer front Experiment around Greenland) (Heinemann, 2004) indicate
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Figure 3.35. Locally scaled eddy-diffusivities of momentum (Km) and heat (Kh), as a
function of ζ = z/Λ. The eddy-diffusivities have been scaled with Λ τ0.5.

a z-less value of 0.06 for Km/(Λτ
0.5). The agreement between our LES results

and observations is poorer for Kh/(Λ τ
0.5) since its predicted values lie completely

outside the observation range. This is also true of many of the SFS models tested

in the GABLS experiment (Beare et al., 2006).

3.6.8 Nondimensional gradients of mean potential temper-

ature and velocity

We plot first the nondimensional gradients as a function of gradient Richardson

number and then as a function of ζ. Businger et al. (1971) derived the following

empirical expressions for Rig, φm and φh as a function of ζs = z/L:

Rig = ζs
0.74 + 4.7 ζs

(1 + 4.7 ζs)
2 , (3.7)

φh = 0.74 + 4.7 ζs, (3.8)

φm = 1 + 4.7 ζs, (3.9)
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(1984) states that these non-dimensional diffusivities can be expressed solely

as functions of z=K, and for large z=K will approach a constant value (z-less

scaling).

Figure 10 shows /KM and /KH against z=K at 2 and 6.25m resolutions,

along with the scaled observations of Nieuwstadt (1984) and their standard

deviation. Even at 6.25-m resolution, the /KM profiles reach an approxi-

mately constant value at large z=K, consistent with local scaling. However, at

this resolution about half of the LES results imply greater non-dimensional

momentum diffusion than the observations. The /KH profiles have consid-

erably more spread at 6.25-m resolution, and only four of the profiles pass

through the observation range. At 2-m resolution, however, all the /KM

profiles pass through the range of the observations at large z=K, but still

overestimate the values relative to observations at small z=K. This provides
additional evidence that high resolution is required for reliable LES of the

SBL. There is still a spread in /KM and /KH at 2-m resolution with the MO

model implying less heat and momentum diffusion than the others; this

difference is less than the observational error, however. The results of IMUK

and MO at 1m (not shown) favoured the lower limiting values of /KM

between 0.06 and 0.08.

F i g u r e 1 0 . Locally scaled momentum (top) and heat (bottom) diffusivities compared with the

Nieuwstadt (1984) observations (crosses for mean values and the grey shaded areas giving the

standard deviation) for resolutions of 2 m (left column) and 6.25m (right column).

INTER C OMP AR ISON OF LAR G E-ED D Y SIMULATIONS 263

Figure 3.36. Reproduced from the GABLS LES-intercomparison study (Beare et al.,
2006). The axes are the same as in Fig. (3.35). The nondimensional mean-gradients
are given by ΦKM = Km/(Λ τ0.5) and ΦKH = Kh/(Λ τ0.5). The left and right panels
correspond to resolutions of 2 m (2003) and 6.25 m (643), respectively. The crosses
denote mean values obtained from the Cabauw data (Nieuwstadt, 1984) and the shaded
area represents the associated spread in data. The different lines represent results from
LES using 11 SFS models listed in Table 1 of Beare et al. (2006).

where φm is the nondimensional gradient of mean velocity and φh is the nondimen-

sional gradient of mean potential temperature. In Eqs. (3.7)–(3.8), the functions

are defined in terms of z/L and the scaling factors used to obtain the nondimen-

sional gradients are kz/u∗ or kz/θ∗, as appropriate. Eliminating ζs, we arrive at
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Figure 3.37. Plot of 1/φm and 1/φh versus gradient Richardson number, Rig.

the following expressions relating Rig to φm and φh:

Rig =
(φm − 1)

4.7

(φm − 0.26)

φ2
m

(3.10)

Rig =
(φh − 0.74)

4.7

φh

(φh + 0.26)2 (3.11)

We plot 1/φm and 1/φh as functions of Rig in Fig. (3.37) alongside the functions

derived in Eqs. (3.10)–(3.11). Both 1/φm and 1/φh are underpredicted but the

latter agrees slightly better with Businger’s empirical fit.

To examine the presence of local scaling, we define new variables φmL = kz/uL

and φhL = kz/θL (“L” stands for local) involving the local quantities uL =
√
τ and

θL = 〈w′θ′〉/uL (Howell and Sun, 1999; Sorbjan, 1986). In Fig. (3.38), we plot φmL

and φhL as functions of ζ. For comparison, we also show the “local” versions (ζs is

replaced by ζ) of empirical functions derived by: (i) Businger et al. (1971), shown

in Eqs. (3.8)–(3.9): (ii) Mahrt and Vickers (2003), who recommend a slope of 3.7

instead of 4.7 in Eqs. (3.8)–(3.9); and (iii) Beljaars and Holtslag (1991), which are

given below:

φmL = 1 + ζ
[
a+ b e−d ζ (1 + c− d ζ)

]
, (3.12)
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Figure 3.38. Plots of φhL (left) and φmL (right) versus ζ = z/Λ, where φmL and φhL are
the locally scaled nondimensional mean-gradients of velocity and potential temperature.
The lines denote the following formulations – dotted : Businger et al. (1971), dash-dot :
Mahrt and Vickers (2003), dashes : Beljaars and Holtslag (1991) .

φhL = 1 + ζ

[
a

(
1 +

2

3
a ζ

)1/2

+ b e−d ζ (1 + c− d ζ)

]
. (3.13)

The constants in Eqs. (3.12)–(3.13) are given by (a, b, c, d) = (1, 2/3, 5, 0.35).

The predicted values of φhL are sensitive to resolution. At low ∆w/∆, the

values of φhL at all three resolutions agree reasonably with the formulation by

Mahrt and Vickers (2003). For higher ζ, φhL from the 1283 run is better tracked

by the functions derived by Beljaars and Holtslag (1991) while those from the other

two coarser runs are not described satisfactorily by any of the three formulations.

The LES predictions of φmL are also found to be sensitive to resolution, especially

at higher ζ. At low ζ, the values of φmL from all three runs converge and show

good agreement with the empirical fit suggested by Mahrt and Vickers (2003). As

ζ increases, they start to diverge from each other and lie approximately between

the formulations of Mahrt and Vickers (2003), and Beljaars and Holtslag (1991)

in Fig. (3.38).

We re-plot in Figs. (3.39)–(3.40), φmL and φhL as functions of ζ using a log-log
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Figure 3.39. Plot of φmL versus ζ = z/Λ using a log-log scale, where φmL is the
locally scaled nondimensional mean-gradient of velocity. The lines denote the following
formulations – dotted : Businger et al. (1971), dash-dot : Mahrt and Vickers (2003),
dashes : Beljaars and Holtslag (1991) .

scale and show similar plots in Fig. (3.41)–(3.42), obtained using the LASDD and

PASDD models (Basu and Porté-Agel, 2006). At low ζ, predictions of φmL by

both the LASDD and the modeled SFS conservation equations tend towards the

Businger formulation, but the former exhibits better agreement with the empirical

profile. At high ζ, the predictions of φmL by the LASDD model appear to agree

better with the Businger formulation while those by the modeled SFS conservation

equations follow more closely the profile obtained by Beljaars and Holtslag (1991).

The predicted profiles of φhL by both closures don’t differ significantly at large ζ.

At low ζ, however, the LASDD model predicts φhL better than do the modeled

SFS conservation equations as the latter overpredict φhL near the surface.

3.6.9 Steady-state profiles of τ and 〈w′θ′〉
Local scaling, unlike Monin-Obukhov scaling, relates various turbulent statistics

to local quantities which are themselves unknown. As a result, the local scaling

hypothesis by itself is insufficient to obtain vertical profiles for quantities of interest.

Thus, Nieuwstadt (1984) invoked a closure hypothesis wherein the z-less limits for
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Figure 3.40. Plot of φhL versus ζ = z/Λ using a log-log scale, where φhL is the locally
scaled nondimensional mean-gradient of potential temperature. The lines denote the
following formulations – dotted : Businger et al. (1971), dash-dot : Mahrt and Vickers
(2003), dashes : Beljaars and Holtslag (1991) .

Rig and Rif are assumed to be valid throughout the boundary layer. This is an

approximation as Rig and Rif tend to zero towards the surface and thus, cannot

be constant throughout the boundary layer. Using the new closure hypothesis,

Nieuwstadt (1984) derived analytical profiles for τ and 〈w′θ′〉 that are valid for an

SBL in equilibrium. They are:

τ

u2∗
=

[
1−

(
z

zi

)]3/2

(3.14)

〈w′θ′〉
Q0

= 1− z

zi

(3.15)

We plot in Fig. (3.43) the steady state profiles of τ/u2
∗ and 〈w′θ′〉/Q0 obtained

from LES. They show good agreement with Nieuwstadt’s analytical prediction for

z/zi < 0.5. They are also robust and show negligible sensitivity to resolution. The

values of τ/u2
∗ at z/zi = 1 are much smaller than those of 〈w′θ′〉/Q0 because the

definition of inversion employed in this study involves momentum stresses, and
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in the proximity of the land surface (Howell and Sun

1999).

In SBL simulations, one can test the performance of

a SGS model by plotting a local nondimensional shear:

FML 5
kz

u
*L
ÎSU

z
D2

1 SV

z
D2

~24 !

and nondimensional temperature gradient:

FHL 5
kz

u
*L

Q

z
~25 !

as a function of local stability parameter (z/L) and com-

paring with field-observ ation-based formulations.

Here, L denotes the local O buk hov length. In this

work , a subscript L on the turbulence q uantities (e.g.,

u
*L) will be used to specify ev aluation using local tur-

bulence q uantities—otherwise, surface v alues are im-

plied. R ecently, Mahrt and V ick ers (20 0 3) called this

type of similarity theory the hybrid similarity theory,

since it approaches Monin–O buk hov similarity as z de-

creases and also conforms to z- less stratification as z →

`. In Fig. 6 we plot the hybrid nondimensionaliz ed gra-

dients and compare them with the formulations by

Businger et al. (197 1):

FML 5 1 1 4 .7
z

L
, ~26 !

FHL 5 0 .7 4 1 4 .7
z

L
, ~27 !

and by Beljaars and Holtslag (1991):
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L
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L
FaS1 1

2

3

az

L
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z

L
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where the suggested v alues of the coefficients are (Bel-

jaars and Holtslag 1991): a 5 1, b 5 2/3, c 5 5 , and d 5

0 .35 . Interestingly, both these simulated gradients plot-

ted against z/L show slopes slightly smaller than the

widely used formulations by Businger et al. Based on

C ooperativ e Atmosphere–Surface E xchange Study

1999 (C ASE S99) field observ ations data, Mahrt and

V ick ers (20 0 3) found a slope of 3.7 [in contrast to 4 .7 as

proposed by Businger et al. (197 1)], which also fits our

LE S results remark ably well. P rev ious studies, such as

Beljaars and Holtslag (1991) also found that FM L and

FH L increase slower than the formulations of Businger

et al. and they proposed the aforementioned nonlinear

formulation (Beljaars and Holtslag 1991).

T here exists another representation for the nondi-

mensional gradients in terms of local gradient R ichard-

son number (R ig). Figure 7 once again shows that the

agreement between our LE S results and established

formulations is q uite good. In the literature, usually the

critical gradient R ichardson number (R igc) is consid-

ered to be approximately 0 .25 . For R igc . 0 .25 turbu-

lence is v ery weak (Stull 198 8 ; Brown et al. 1994 ),

FIG. 6 . Locally computed (top) nondimensional gradients of

v elocity and (bottom) temperature against the local stability pa-

rameter. T hese statistics are computed during the last hour of simu-

lation. T he field-observ ation-based formulations giv en by Businger

et al. (197 1) and Beljaars and Holtslag (1991) are also shown.
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Figure 3.41. Reproduced from Basu and Porté-Agel (2006). Plot of ΦmL versus ζ =
z/Λ using a log-log scale, where ΦmL (identical to φmL in Fig. (3.39)) is the locally scaled
nondimensional mean-gradient of velocity. The lines denote the following formulations –
dotted : Businger et al. (1971), dash-dot : Mahrt and Vickers (2003), dashes : Beljaars
and Holtslag (1991) .

not the potential temperature fluxes (Kosović and Curry, 2000). The agreement

between LES and theory is better in the lower regions of the ABL, a trend also

witnessed in past LES studies (Basu and Porté-Agel, 2006; Beare et al., 2006; Stoll

and Porté-Agel, 2008) as well. Since the assumption that Rig and Rif are constant

isn’t valid in the surface layer, we would expect poor agreement between LES and

Nieuwstadt’s predictions in that region. That we don’t observe this in LES studies

is counter-intuitive but we are unable to provide an explanation for it.

For comparison, we plot in Figs. (3.44)–(3.45), the steady state profiles of τ/u2
∗

and 〈w′θ′〉/Q0 obtained using the LASDD and the PASDD models (Basu and

Porté-Agel, 2006). The LASDD model displays poorer agreement with theory and

greater sensitivity to resolution when compared to the modeled SFS conservation

equations.
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LE S results remark ably well. P rev ious studies, such as

Beljaars and Holtslag (1991) also found that FM L and

FH L increase slower than the formulations of Businger

et al. and they proposed the aforementioned nonlinear

formulation (Beljaars and Holtslag 1991).
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formulations is q uite good. In the literature, usually the
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ered to be approximately 0 .25 . For R igc . 0 .25 turbu-

lence is v ery weak (Stull 198 8 ; Brown et al. 1994 ),

FIG. 6 . Locally computed (top) nondimensional gradients of

v elocity and (bottom) temperature against the local stability pa-

rameter. T hese statistics are computed during the last hour of simu-

lation. T he field-observ ation-based formulations giv en by Businger
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Figure 3.42. Reproduced from Basu and Porté-Agel (2006). Plot of ΦhL versus ζ = z/Λ
using a log-log scale, where ΦhL (identical to φhL in Fig. (3.40)) is the locally scaled
nondimensional mean-gradient of potential temperature. The lines denote the following
formulations – dotted : Businger et al. (1971), dash-dot : Mahrt and Vickers (2003),
dashes : Beljaars and Holtslag (1991) .
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Figure 3.43. Steady-state profiles of τ/u2∗ and 〈w′θ′〉/Q0, averaged over the last hour
of simulation. The solid curves are theoretical profiles derived by Nieuwstadt (1984).
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will be marginally higher than the momentum flux-

based estimate.

Perhaps more interesting is to explore the normal-

ized flux profiles shown in Fig. 9. Nieuwstadt’s analyti-

cal model predictions are as follows (Nieuwstadt 1985):
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FI G . 9. M ean (top) normalized momentum flux and (bottom)

normalized buoyancy flux profiles from the simulations per-

formed in the present work . T hese profiles are av eraged ov er the

last hour of simulation. T heoretical predictions by Nieuwstadt

(1985) are also shown for comparison.

FI G . 10 . R esolv ed v elocity v ariances from the simulations per-

formed in the present work . T hese profiles are av eraged ov er the

last hour of simulation.
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Figure 3.44. Reproduced from Basu and Porté-Agel (2006). Steady-state profile of
τ/u2∗ averaged over the last hour of simulation, using the locally-averaged (LASDD) and
plane-averaged (PASDD) models. The solid curve is a theoretical profile derived by
Nieuwstadt (1984).

3.6.10 Influence of surface cooling rate

In this section, we examine briefly the role of the surface cooling rate as an external

parameter. We perform LES runs using a 1283 grid (∆ = 3.125 m) for the following

cooling rates (in K/hr): (i) 0.1; (ii) 0.18; (iii) 0.5; and (iv) 0.7. Table (3.2)

lists important bulk parameters for these runs. For the sake of completeness,

we have also listed the values for the run corresponding to a surface cooling rate

of 0.25 K/hr.

3.6.10.1 Evolution of the mean velocity

In Fig. (3.46) we plot the time evolution of ∆U and ∆V at the location of the jet

maximum for the four cooling rates, where ∆U = 〈U〉−Ug and ∆V = 〈V 〉−Vg. We

recall from our discussion of the inertial oscillation in Sec. (3.6.4.1) that the tip of

the (∆U,∆V ) vector is supposed to trace out a circle (Blackadar, 1957). Fig. (3.46)

shows that the circular arcs traced out by the (∆U,∆V ) vectors increase in length

as the surface cooling rate is increased, which implies that the onset of the inertial
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will be marginally higher than the momentum flux-

based estimate.

Perhaps more interesting is to explore the normal-

ized flux profiles shown in Fig. 9. Nieuwstadt’s analyti-

cal model predictions are as follows (Nieuwstadt 1985):
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Figure 3.45. Reproduced from Basu and Porté-Agel (2006). Steady-state profile of
〈w′θ′〉/Q0 averaged over the last hour of simulation, using the locally-averaged (LASDD)
and plane-averaged (PASDD) models. The solid straight line is a theoretical profile
derived by Nieuwstadt (1984).

oscillation occurs quicker at higher surface cooling rates. For runs with weak

surface cooling, the maximum value of ∆U hasn’t been attained by the end of

the simulation (9 hours). At cooling rates of 0.5 K/hr and 0.7 K/hr, the maximum

value of ∆U is attained when ∆V ≈ 0.5 and not when ∆V = 0. Thus ∆U and ∆V

are not exactly 90o out of phase, as implied by Blackadar’s analysis. Saiki et al.

(2000) found that increased surface cooling led to better agreement between LES

predictions of the time-evolution of the jet maximum and Blackadar’s analytical

solution. They too found the phase difference between ∆U and ∆V to differ from

90o. Thus, Fig. (3.46) agrees qualitatively with their findings. Closer observation

of Fig. (3.46) reveals that the circular arcs are approximately concentric such that

larger radii are associated with higher cooling rates, indicating that stronger surface

cooling is associated with greater acceleration of the jet aloft.

3.6.10.2 Boundary layer height

In Fig. (3.47), we show the time-evolution of the boundary-layer height versus t/t∗,

where t∗ = zi/u∗. Among the four runs, the simulation with the lowest cooling
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Table 3.2. Boundary layer height (zi), Monin-Obukhov (MO) length (L), Bulk Richard-
son number (Rib), surface flux (Q0), MO scales u∗ and θ∗, and the Zilitinkevich param-
eter, γ, where γ = zi/(u∗ L/f)1/2. The statistics are averaged over the last hour of
simulation.

Diagnosed physical parameters from LES runs with different surface cooling rates
Surface cooling (K/hr) 0.10 0.18 0.25 0.5 0.7
zi(m) 210 189 173 136 116
L(m) 231 145 107 53 36
Rib 0.12 0.14 0.16 0.21 0.25
Q0(W m−2) −8.9 −12.5 −14.6 −21.9 −25.7
u∗(ms−1) 0.284 0.273 0.262 0.235 0.219
θ∗(K) 0.023 0.034 0.043 0.070 0.088
γ 0.30 0.35 0.38 0.45 0.48
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Figure 3.46. Time-evolution of the mean velocity components, ∆U and ∆V , where
∆U = 〈U〉 − Ug and likewise for ∆V . Results shown are from simulations with four dif-
ferent cooling rates: 0.1K/hr, 0.18K/hr, 0.5K/hr and 0.7K/hr. The points correspond
to samples collected every 1000 s over the entire course of the simulation.

rate (0.1 K/hr), takes the longest time — relative to t∗ — for zi to stabilize. For

the other three cooling rates, zi appears to stabilize at t/t∗ ≈ 23, which is close to

the corresponding value for our earlier runs with the GABLS (Beare et al., 2006)

cooling rate, i.e., 0.25 K/hr.

We list in Table (3.3) zi obtained from LES and two commonly used parame-
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Figure 3.47. Time-evolution of the boundary layer height, zi, versus t/t∗, where t∗ =
zi/u∗. Results shown are from simulations with four different cooling rates: 0.1K/hr,
0.18K/hr, 0.5K/hr and 0.7K/hr. The points correspond to samples collected every
1000 s over the entire course of the simulation.

terizations, which are described below:

• zi = 0.4 (u∗ L/f)1/2 (Zilitinkevich, 1972)

•
(
f zi

Cn u
2
∗

)2

+ zi
Cs L

+ N zi
Ci u∗

= 1 (Zilitinkevich and Mironov, 1996)

We denote these parameterizations as Z72 and ZM96. The constants are given

by Cn = 0.1, Cs = 10 and Ci = 20 (Zilitinkevich and Mironov, 1996). Nieuw-

stadt (1984) derived Z72 independently for a stably stratified boundary layer in

equilibrium although he found the proportionality constant to be 0.35. The pa-

rameterization ZM96 is a more general form of Z72 as it also accounts for the

effects of surface buoyancy and the free-flow stability through the introduction of

the scales L and u∗/N , where N is the Brunt-Väisälä frequency in the layer above

the boundary layer. In our LES studies, N ≈ 0.02.

Table (3.3) shows that ZM96 predicts zi well at weak stratifications but develops

a systematic negative bias at stronger stratifications. Z72 overpredicts zi at weak

stratifications but like ZM96, underpredicts it as the stratification is increased.
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Table 3.3. Table showing boundary-layer height obtained from LES and two commonly
used parameterizations developed by Zilitinkevich (1972) and Zilitinkevich and Mironov
(1996), referred to as Z72 and ZM96, respectively. The fractional error between LES and
parameterized values are also indicated.

Comparison of boundary layer heights from LES and two parameterizations
Surface cooling (K/hr) 0.10 0.18 0.25 0.5 0.7
zi (m) (LES) 210 189 173 136 116
zi,mod (m) (Z72) 275 214 180 120 96
zi,mod (m) (ZM96) 208 179 158 110 86
(zi,mod − zi)/zi (Z72) 0.31 0.13 0.04 −0.12 −0.17
(zi,mod − zi)/zi (ZM96) −0.01 −0.05 −0.09 −0.19 −0.26

Vickers and Mahrt (2004) have done a comprehensive study of various parameter-

izations — including Z72 and ZM96 — for the stable boundary-layer height using

data from multiple experimental campaigns. Their findings also report a negative

bias in predicted zi by Z72 and ZM96 in strongly stratified environments.

3.6.10.3 Mean gradients of velocity and potential temperature

In Fig. (3.48) we plot the nondimensional gradients φh and φm as functions of ζ.

The slope of φh decreases with increasing surface cooling rate. For the cooling

rates 0.1 K/hr and 0.18 K/hr, φh shows good agreement with the empirical profiles

recommended by Mahrt and Vickers (2003) when ζ < 1. For higher values of ζ,

they are closer to the formulation by Beljaars and Holtslag (1991). In contrast, φh

for the higher cooling rates agree poorly with all three empirical functions, as the

LES predictions are lower than the empirically derived values at all ζ.

The φm profiles for the two lowest cooling rates agree well with the Businger

(1971) formulation for ζ < 1 but deviate considerably from it for higher ζ. At the

higher cooling rates, φm follows closely the Mahrt and Vickers (2003) formulation

for ζ < 1 but yields relatively lesser values for higher ζ. For ζ < 3, the spread in

φm across different cooling rates is lesser than in φh. For further increases in ζ, φm

increases with increasing surface cooling rate.

An alternative to plotting φmL and φhL versus ζ is to plot them as functions

of z/lb, as shown in Fig. (3.49). The variable lb = σw/N is the buoyancy length

scale. The range of z/lb considered in Fig. (3.49) corresponds to the bottom 75%
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Figure 3.48. Plots of φhL (left) and φmL (right) versus ζ = z/Λ for different surface
cooling rates, where φmL and φhL are the locally scaled nondimensional mean-gradients
of velocity and potential temperature, respectively. The lines denote the following for-
mulations – dotted : Businger et al. (1971), dash-dot : Mahrt and Vickers (2003), dashes
: Beljaars and Holtslag (1991).

of the boundary layer. The nondimensional mean-gradients collapse significantly

better compared to Fig. (3.48). Both φmL and φhL are nearly linear with slopes of

1.0 and 0.92, respectively. Aircraft measurements by Heinemann (2004) show that

φmL and φhL are linear functions of z/lb with slopes of 0.95 and 3.3, respectively.

Field measurements in Antarctica by Forrer (1999) found both φmL and φhL to vary

linearly versus z/lb with a slope of 0.45. The experiments by Heinemann (2004)

covered a wider range of z/Λ than did those by Forrer (1999). Our slope for φmL

lies closer to observations compared to that for φhL. Nevertheless, Fig. (3.49)

suggests that z/lb is more consistent than z/Λ in describing the locally scaled

nondimensional mean-gradients across a range of stabilities.

3.6.10.4 Equilibrium profiles of τ and 〈w′θ′〉

In Fig. (3.50) we plot the profiles of τ/u2
∗ and 〈w′θ′〉/Q0 versus z/zi. The solid lines

denote profiles derived analytically by Nieuwstadt (1984). For all four cooling rates,

the LES predictions of τ/u2
∗ are nearly coincident and exhibit good agreement with
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Figure 3.49. Plots of φhL (left) and φmL (right) versus z/lb for different surface cool-
ing rates, where φmL and φhL are the locally scaled nondimensional mean-gradients of
velocity and potential temperature, respectively, and lb = σw/N is the buoyancy length
scale. The solid lines in the left and right panels have slopes of 0.92 and 1.0, respectively.

the theoretical profile for z/zi < 0.4. The profiles of 〈w′θ′〉/Q0 are approximately

linear but differ markedly from Nieuwstadt’s predictions for the two lowest cooling

rates. As the cooling rate increases, they agree better with the theoretical profiles.

3.6.10.5 Potential temperature fluctuations

The resolved-scale standard deviation of potential temperature scaled with θ∗ is

shown in Fig. (3.51). The profiles converge approximately to a value of 1.7 for

z/zi < 0.4 but display markedly different behavior higher up in the boundary-

layer. For the cooling rates 0.1 K/hr and 0.18 K/hr, the θ-fluctuations attain their

maximum values slightly above the inversion. In contrast, for the cooling rates

0.5 K/hr and 0.7 K/hr, the θ-fluctuations attain their maximum values at 0.3 <

z/zi < 0.4. The normalized θ-fluctuations for the two highest cooling rates are

nearly identical.

We now attempt to explain the sharp decrease in the scaled potential tempera-

ture fluctuations near the inversion with increasing stratification. The generation of

θ-fluctuations is primarily through the gradient-production term, 〈w′θ′〉 (∂〈Θ〉/∂z).
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Figure 3.50. Equilibrium profiles of τ/u2∗ and 〈w′θ′〉/Q0 averaged over the last hour
of simulation, for different surface cooling rates. Solid lines denote theoretical profiles
derived by Nieuwstadt (1984).
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Figure 3.51. Resolved-scale standard deviation of potential temperature scaled with θ∗,
for different surface cooling rates. Results are averaged over the last hour of simulation.

Thus, we expect high fluctuation levels in regions where both the gradients and

turbulent fluxes of potential-temperature are significant. For a fixed surface cool-
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ing rate, the gradients are highest near the inversion (see Fig. (3.24). As the

surface cooling rate increases in magnitude, the gradients of potential tempera-

ture steepen everywhere in the boundary layer. In contrast, the turbulent flux of

potential temperature doesn’t vary linearly with changes in the stratification but

exhibits a so-called “dual” nature (Malhi, 1995). This is understood easily by con-

sidering two limiting cases: no stratification (neutral) and very high stratification.

The potential temperature flux is negligible in both cases, due to zero buoyancy in

the former and negligible levels of turbulence in the latter. It follows that 〈w′θ′〉
peaks in magnitude at some intermediate level of stratification. Presumably, the

potential temperature fluctuations also attain their maximum at the same strat-

ification level. This is consistent qualitatively with DNS studies (Garciá-Villalba

and del Álamo, 2008; Iida et al., 2002) of stably-stratified channel flow over a range

of stratifications, which found that the normalized temperature fluctuations near

the inversion peak at an intermediate stratification (as measured by Rib). From

Fig. (3.51), the stratifications considered in our study appear to be greater than

that corresponding to the maximum value of the heat flux. Thus, we speculate

that simulations with weaker stratifications, i.e., with cooling rates lesser than

0.1 K/hr, would be necessary to observe a decrease in the potential temperature

fluctuations near the inversion.

An interesting feature of the profiles at the two highest cooling rates is the

evidence of limiting behavior and the presence of a maximum in the lower re-

gions of the boundary-layer. We reproduce in Fig. (3.52) a plot from the study by

Nieuwstadt (1984) showing the scaled potential temperature variances from four

different sources: (i) unfiltered Cabauw data (contains signatures from mesoscale

disturbances) denoted by circles (Nieuwstadt, 1984); (ii) filtered Cabauw data (no

mesoscale fluctuations) denoted by triangles; (iii) Minnesota experiments (Caughey

et al., 1979) denoted by crosses; and (iv) an analytical profile (Nieuwstadt, 1984),

denoted by a solid line. Nieuwstadt (1984) found that filtering out the mesoscale

content led to greatly improved agreement between theory and experiment. There

is significant difference between the Cabauw (filtered) and Minnesota data. The

scaled potential temperature fluctuations from the Minnesota experiments are

greatest near the surface and decrease rapidly with height. Those obtained from

the Cabauw data exhibit a maximum at z/zi ≈ 0.4 and decrease gradually with
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Figure 3.52. Reproduced from Nieuwstadt (1984). Plot showing variance of potential
temperature scaled with T 2∗ (same as θ2∗) versus z/h, where h = zi is the boundary layer
depth. Legend — Unfiltered Cabauw data (contains mesoscale fluctuations) : circles,
filtered Cabauw data (no mesoscale fluctuations) : triangles, Minnesota data (Caughey
et al., 1979) : crosses, analytical profile (Nieuwstadt, 1984) : solid line.

height for z/zi > 0.4. The profiles of temperature fluctuations in the studies by

(Beare et al., 2006) and Basu and Porté-Agel (2006) — both of which used a

cooling rate of 0.25 K/hr — are closer to the Cabauw data than to the Minnesota

data. Even so, they tend to be approximately constant with height and don’t ex-

hibit a maximum in the lower boundary-layer. Our simulations with cooling rates

of 0.18 K/hr and 0.25 K/hr yield similar results. The simulations with increased

cooling rates, i.e., 0.5 K/hr and 0.7 K/hr, however, show better qualitative agree-

ment with the Cabauw data in that the potential temperature fluctuations exhibit

a maximum in the lower half of the ABL. The KABEG data (Heinemann, 2004),

which covered a wide stability range (0 < z/Λ < 25), yielded maxima in potential

temperature fluctuations both at 0.3 < z/zi < 0.4 and near the inversion. We

conclude that the equilibrium profile of potential temperature fluctuations is quite

sensitive to the level of stratification.
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3.6.10.6 Z-less scaling

In this section, we tabulate the so-called z-less values for important turbulent

statistics. Following convention, we split the data into five stability classes, as

shown in Table (3.4).

Table 3.4. Table defining the stability classes and showing the number of samples in
each stability class

Stability class ζ Number of samples
S1 0.00− 0.10 5
S2 0.10− 0.25 9
S3 0.25− 0.50 13
S4 0.50− 1.00 19
S5 > 1.00 82

Within each stability class, the values of a particular statistic are then averaged.

We approximate the mean values in the S5 class to be the z-less values (Basu and

Porté-Agel, 2006). As the values are averaged within each stability class, it is

beneficial to have a large number of points in the classes corresponding to higher

stabilities as the z-less values are realized at high ζ. Thus, we combine our results

from multiple 1283 simulations with different cooling rates in order to increase the

number of samples in each stability class. Doing so enables us to create a large

sample space without having to perform expensive runs at higher resolution. For

the purposes of this section, we performed an additional LES for a cooling rate of

1.0 K/hr. We confirmed that the results from this run are qualitatively similar to

those from our earlier runs with the higher cooling rates. Results from simulations

with the following cooling rates (in K/hr) are grouped together: 0.25, 0.5, 0.7 and

1.0. For each simulation, we only consider heights such that z/zi < 0.75. The final

number of samples in each stability class is shown in Table (3.4).

We tabulate the z-less values in Table (3.5) alongside their corresponding val-

ues obtained from different studies. The variable rxy in Table (3.5) denotes the

correlation coefficient between x and y. Since the expressions in Table (3.5) have

been computed using only the resolved-scale variance of θ (where applicable) we

expect σθ/θL to be larger than the indicated value. By the same logic, the true

correlations ruθ and rwθ will be lesser than their indicated values. The locally
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Table 3.5. Z-less values for select statistics from LES (present study and the study by
Basu and Porté-Agel (2006)) and various field experiments. The variable rxy denotes the
correlation coefficient between x and y. Numbers with a superscript, ∗, indicate use of
resolved-scale θ-variance only. The values for Heinemann (2004) indicate the mid-points
of the following ranges: (1.2, 1.6), (4.5, 7.3), (−0.15,−0.30) and (−0.1,−0.2).

σu/uL σv/uL σw/uL σθ/θL ruw ruθ rwθ

LES 2.2 1.7 1.5 2.0∗ −0.3 0.6∗ −0.33∗

LES - LASDD model 2.3 1.7 1.4 2.4 −0.32 0.56 −0.3
Field observations 2.7 2.1 1.6 2.4 −0.21 0.51 −0.27
Nieuwstadt (1984) 2.0 1.7 1.4 3.0 – – −0.24
Sorbjan (1986) 2.4 1.8 1.6 2.4 – 0.5 –
Heinemann (2004) – – 1.4 5.9 −0.23 – −0.15

scaled velocity variances are in reasonable agreement with observations while ruw

is at the higher end of the range of observations.

3.7 Summary

We have implemented a new SFS closure based on the conservation equations for

the SFS stresses and fluxes, in LES of a stably-stratified atmospheric boundary

layer. For our LES runs, we adopted the initial conditions and the physical set-up

of the GABLS LES-intercomparison study (Beare et al., 2006), which describe an

SBL with moderate stratification. We compared our LES results to past DNS

studies, field experiments and other LES studies.

Following the GABLS experiment, we performed LES of a moderately strat-

ified SBL with three resolutions, given by ∆ = (3.125, 6.25, 12.5) m. One of the

issues uncovered in the GABLS experiment was the tendency of some SFS mod-

els to yield laminar-like solutions at coarse resolutions, i.e., ∆ = 12.5 m. In our

LES runs, the modeled SFS conservation equations produced turbulent solutions

at all of the three resolutions listed above. The bulk parameters for the three

resolutions were in reasonable agreement with each other and with their values in

the GABLS experiment. The prediction of the boundary layer height, in particu-

lar, was more robust than most of the models tested in the GABLS experiment.

The profiles of mean velocity and mean potential temperature showed low sensi-

tivity to resolution. At coarse resolutions, the potential temperature profile did
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not smear out near the inversion, as observed for some SFS models in the GABLS

experiment and for the LASDD model in the LES study by Basu and Porté-Agel

(2006). The equilibrium profiles for the turbulent stresses and fluxes at all three

resolutions displayed significantly better agreement with theory and robustness to

resolution than those obtained using the LASDD model. Finally, we investigated

the influence of the surface cooling rate as it varied from 0.1 K/hr to 1.0 K/hr. The

locally scaled mean-gradients of velocity and potential temperature for different

cooling rates collapsed significantly better when plotted versus z/lb than versus

z/Λ. The steady-state profile for the potential temperature fluctuations was found

to be quite sensitive to the cooling rate. Our simulations at the higher cooling

rates showed evidence of limiting behavior in the profiles for the potential temper-

ature fluctuations after scaling them appropriately. These profiles were in better

agreement with observations (Nieuwstadt, 1984) than were those observed in the

GABLS experiment. The z-less values for the locally scaled velocity variances were

found to be in reasonable agreement with observations while that for the correla-

tion coefficient between u and w was closer to the high end of the observational

range. The corresponding values obtained using the LASDD model yielded better

agreement with observations and theory. The modeled SFS conservation equations

yielded z-less values for the effective mixing coefficients that were unrealistically

high compared to observations, a trend also seen in the GABLS numerical experi-

ment.



Chapter 4
Large-eddy simulation of the neutral

boundary layer

In the previous chapters, we explored the performance of a conservation-equation-

based SFS model in LES of the convectively unstable and stable boundary layers.

We also used HATS data to study the trends exhibited by important production

terms in the SFS stress and flux budgets, when plotted versus the nondimensional

parameter, ∆w/∆. In the current chapter, we apply the High Accuracy Zone

(HAZ) framework developed by Brasseur and Wei (2010) to the modeled SFS

conservation equations in LES of the shear-driven neutral boundary layer.

4.1 The overshoot problem

Inaccurate prediction of the mean velocity gradient has plagued LES of the ABL

for a long time and was first brought to our attention by Mason and Thomson

(1992). They showed that LES of the shear-driven neutral ABL tends to over-

predict the nondimensional mean velocity gradient, φm, near the surface system-

atically, thereby causing it to overshoot its theoretical value of 1. This overshoot

has also been observed in the nondimensional gradient of potential temperature,

φh (Andren et al., 1994), in LES of the convective ABL. Subsequent research on

the so-called overshoot problem has focused primarily on improving the underlying

SFS model with the understanding that better SFS models should lead to better

predictions of φm. Brasseur and Wei (2010) provide a comprehensive survey of the
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various studies that have addressed the overshoot problem, a few of which we now

mention.

Sullivan et al. (1994) developed a two-part eddy viscosity model that improved

the φm and φh profiles significantly. Their SFS model behaved like a traditional

eddy-viscosity model in regions of well-resolved turbulence but transitioned to a

RANS-like model towards the surface, where the turbulence is under-resolved.

Using LES with two different SFS models, Khanna and Brasseur (1998) showed

that the one with the more prominent overshoot was also associated with stronger

and more coherent thermals that were over-aligned with the mean wind. They

found that in moderately convective ABLs, the presence of buoyancy strengthened

the dynamical coupling between the surface layer and the overlying region, thereby

causing errors in the surface layer to propagate upwards into the ABL. Kosović

(1997) designed an SFS model that related the SFS stresses and the resolved-scale

strain rate nonlinearly, and yielded good improvement in the φm profile in LES of

the neutral ABL. Porté-Agel et al. (2000) used a scale-dependent dynamic model

which reduced the overshoot in φm. More recent work focused on the overshoot

problem includes research by Chow et al. (2005), Esau (2004) and Drobinski et al.

(2007). While the above studies have all contributed to our understanding of the

issues underlying the overshoot problem, they fail to provide a systematic approach

to reduce or eliminate the overshoot, that in principle is valid for any SFS model.

This is partly because these studies were unsuccessful in isolating the fundamental

reasons for the presence of the overshoot in φm. We now review briefly the main

findings of Brasseur and Wei (2010).

4.2 The ‘High Accuracy Zone’ framework

Using DNS data corresponding to a smooth walled neutral channel flow, Brasseur

and Wei (2010) observed an overshoot in the φm profile that occurs inside the

viscous layer. The observed overshoot in φm within the viscous layer reflects the

incorrect use of the inertial surface layer length scale, z, in a region where the

appropriate length scale is lν = ν/u∗. In LES of high Reynolds number flows,

however, we don’t resolve the viscous layer as the first grid level is well into the

inertial surface layer. In principle, therefore, z should be the only relevant length
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scale in the resolved surface layer. Brasseur and Wei (2010) showed that the

overshoot in LES results from a competition between the correct inertial surface

layer scale, z, and a spurious length scale that arises due to “numerical friction.”

In DNS, they found the overshoot to peak within the viscous layer at a height

where the turbulent and viscous components of the shear stress ((1,3) component)

cross over. In LES, the overshoot was found to peak at a height where the resolved

and SFS components of the shear stress cross over. Thus, the overshoot observed

in DNS has a physical basis but that seen in LES is purely a numerical artifact.

The source of numerical friction lies in a combination of factors involving the SFS

model and the computational grid, which Brasseur and Wei (2010) found can be

understood in terms of the following three nondimensional parameters:

1. R = Tr/Ts, where Tr and Ts are the resolved-scale and SFS components of

the (1,3) component of τij, at the first grid point.

2. Nδ, the number of grid points in the vertical direction within the boundary

layer.

3. ReLES = Nδ(R+1)/(ξ2 κ̃1); ξ2 is the ratio of (Tr+Ts) at the second grid point

to that at the first grid point and is ≈ 1, κ̃1 is the predicted von Kármán

constant assuming law-of-the-wall holds at the first grid point above the wall.

In LES of the neutral ABL, typically, Nδ ≈ Nz/2, where Nz is the total number

of grid points in the vertical direction. This ensures that the top of the boundary

layer in the fully developed turbulent flow is well below the top of the domain,

thereby minimizing any possible influence of the upper boundary condition. The

parameters (R,ReLES, Nδ) describe a two-dimensional R-ReLES space with con-

stant values of Nδ corresponding to straight lines that sweep across this space, as

shown in Fig. (4.1), which has been reproduced from Brasseur and Wei (2010).

Any particular simulation has (R,ReLES, Nδ) fixed and hence, corresponds to a

unique point in R-ReLES space, although two different simulations could corre-

spond to the same point in R-ReLES space. Brasseur and Wei (2010) identify an

optimal region in R-ReLES space called the ‘High Accuracy Zone’ (HAZ) within

which LES captures law-of-the-wall scaling without exhibiting an overshoot in φm.

The boundaries of the HAZ are defined in terms of constraints on (R,ReLES, Nδ)
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Several interesting observations can be extracted from

Eqs. s28 d and s29 d. Since th e oversh oot scales on ,nL ES
and

p eak s at 10 ,nL ES
sF ig. 5d, th e observation made in Sec. I I C

from p reviou s stu dies— th at th e oversh oot is tied to th e

grid— can now be exp lained. Equ ation s28 d sh ow s th at if

neith er th e model constant nor th e grid asp ect ratio is altered

w h ile th e grid is refi ned, th e L ES viscou s scale ,nL ES
,

and th erefore th e p eak in Fm, w ill move closer to th e su rface

in p rop ortion to th e grid sp acing Dz. H ow ever, since

Dt=C
t

a
A

R

b is left u nch anged du ring th e grid refi nement, R

and th e magnitu de of th e oversh oot w ill not ch ange— th e

oversh oot simp ly moves closer to th e su rface, as sh ow n in

F igs. 3 and 5. In p articu lar, F ig. 5 sh ow s th at as th e over-

sh oot moves tow ard th e su rface in p rop ortion to th e grid

sp acing at constant AR and Ct, th e ratio TR1
/TS1

=R and mag-

nitu de of p eak Fm remain u nch anged, and th e locations of

p eak Fm remain attach ed to th e crossover betw een TR and

TS.

A second interp retation follow s by rep lacing R eL ES
p w ith

d /,nL ES

p in Eq. s27 d. T h e criterion R.R
p<1 is th en equ iva-

lent to

,nL ES

Dz

,
,nL ES

p

Dz

=
j2k̃1

R
p + 1

, 0 .2 sclosu re indep endentd .

s30 d

Equ ation s30 d states th at th e sp u riou s length scale ,nL ES
aris-

ing from friction w ith in th e SF S model and grid u nder-

resolu tion in a L ES mu st be confi ned su ffi ciently w ell w ith in

th e fi rst grid cell for nu merical L ES friction to not adversely

affect th e L ES. N ote th at Eq. s30 d is equ ivalent to th e re-

qu irement th at z1L ES

+ *5: th e fi rst grid level mu st be at least

fi ve times larger th an th e sp u riou s viscou s length scale.

T h e inequ ality s30 d is satisfi ed w h en R.R
p, so th at th e

fi rst and second criteria are met w h en th e sp u riou s viscou s

length scale is su ffi ciently small relative to th e grid sp acing.

H ow ever Eq. s30 d does not gu arantee th e th ird criterion

Nd.Nd
p. T h is is becau se th e oversh oot p eak s at 10 ,nL ES

, so

th at th e condition given by Eq. s30 d still allow s p artial reso-

lu tion of th e oversh oot se.g., w h en 10 ,nL ES
/Dz,2d. O ne

can th erefore interp ret th e addition of th e th ird criterion

Nd.Nd
p as demanding th at th e sp u riou s frictional length

scale ,nL ES
be bu ried both su ffi ciently far w ith in th e fi rst grid

level Dz and w ith in th e bou ndary lay er d th at th e grid is

given no op p ortu nity to eith er create an oversh oot or alter

L O T W scaling th rou gh th e infl u ence of friction w ith in th e

su rface lay er.

V. A FRAMEWORK FOR HIGH-ACCURACY

LARGE-EDDY SIMULATION: THE “HIGH-ACCURACY

ZONE”

B y comp aring Eq. s23d for R w ith Eq. s29 d for R eL ES w e

learn th at redu cing th e model constant and/or th e grid asp ect

ratio in th e combination Dt=C
t

a
A

R

b cau ses both R and R eL ES

to increase sand, corresp ondingly , ,nL ES
/Dz to decreased.

H ow ever, increasing only th e vertical resolu tion increases

th e L ES R ey nolds nu mber bu t h as no effect on th e ratio of

resolved to SF S stress R. T h is observation leads to th e con-

cep t of a “ R − R eL ES p arameter sp ace” in w h ich h igh -

accu racy L ES of th e h igh R ey nolds nu mber bou ndary lay er

cou ld be develop ed. W ith in th is framew ork , one can sy stem-

atically adju st th e L ES of th e bou ndary lay er so th at, in th e

h igh R ey nolds nu mber limit, th e oversh oot is su p p ressed and

th e L O T W is cap tu red. T h e R − R eL ES p arameter sp ace is

illu strated in F ig. 6; a L ES of th e bou ndary lay er is identifi ed

as a p oint on a p lot of R against R eL ES. In su bsequ ent simu -

lations, th e L ES is adju sted to move th e p oint w ith in th e

R − R eL ES p arameter sp ace relative to th e critical p arameters

R
p, R eL ES

p , and Nd
p.

F or th e L ES to cap tu re th e L O T W w h ile resolving th e

oversh oot, th e simu lation mu st live in th e rectangu lar sp ace

R.R
p, R eL ES. R eL ES

p . W e h ave rou gh ly estimated R
p,1

and R eL ES
p ,350 . H ow ever in addition to th e criteria

R.R
p and R eL ES. R eL ES

p , w e h ave argu ed for a th ird crite-

rion Nd.Nd
p. R and R eL ES are linearly related by Eq. s26d,

R = S j2k̃1

Nd

DR eL ES − 1 sclosu re indep endentd . s31d

T h u s, Nd enters in th e slop e of R versu s R eL ES. In F ig. 6 w e

p lot Eq. s31d as a series of lines w ith constant slop e j2k̃1 /Nd.

Since L O T W is only cap tu red in th e su p ercritical region of

th e R − R eL ES p arameter sp ace, in general k̃1 w ill vary from

p oint to p oint on lines of constant slop e j2k̃1 /Nd. H ow ever

th e variation in k̃1 is not so great as to obscu re th e strong

inverse relationsh ip betw een th e slop es of th e R − R eL ES lines

and th e vertical grid resolu tion Nd. I t can be sh ow n from Eq.

s27 d th at th e th ird criterion Nd.Nd
p is met w h en th e simu la-

tion lies to th e righ t of th e R − R eL ES line w ith slop e j2k̃1 /Nd
p

th at p asses th rou gh th e intersection betw een R=R
p and

R eL ES=R eL ES
p , as illu strated in F ig. 6. W e call th e w edge-

sh ap ed region th at defi nes su p ercritical L ES satisfy ing all

th ree criteria R.R
p, R eL ES. R eL ES

p , and Nd.Nd
p th e “ h igh

accu racy z one” sH A Z d. T h e L ES mu st reside w ith in th e H A Z

to meet th e th ree criteria requ ired to both eliminate th e over-

sh oot and cap tu re th e L O T W .

F I G . 6. Sch ematic of th e stru ctu re of th e R − R eL ES p arameter sp ace. T h is

p arameter sp ace u nderlies th e framew ork w e p rop ose for designing a L ES

th at is cap able of p redicting L O T W scaling for ]U /]z.
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Figure 4.1. A schematic of the R − ReLES space with lines of constant Nδ showing
conceptually the High Accuracy Zone. Reproduced from Brasseur and Wei (2010).

given by: (i) R > R∗; (ii) ReLES > Re∗LES; and (iii) Nδ > N∗
δ . The parame-

ters (R∗, Re∗LES, N
∗
δ ) represent critical values that must be exceeded for the LES

to reside in the HAZ. Brasseur and Wei (2010) estimate (R∗, Re∗LES, N
∗
δ ) to be

≈ (1, 350, 50). The constraint on Nδ can be shown to follow from the first two.

Satisfying the three constraints, in effect, suppresses the frictional content in the

LES sufficiently, thereby preventing it from interfering with law-of-the-wall scaling

in the surface layer.

Using the parameters (R,ReLES, Nδ), Brasseur and Wei (2010) prescribe the

following simple algorithm to move the simulation systematically into the HAZ:

1. Increase Nz holding other parameters fixed, such that Nδ in the fully devel-

oped flow exceeds N∗
δ .

2. Decrease the SFS model constant and aspect ratio, AR, systematically such

that the simulation moves along a constant Nδ line into the HAZ. Equiva-

lently, the simulation can be considered to shift from a “subcritical” region

in R-ReLES space that is outside the HAZ into the HAZ.



179

For the Smagorinsky closure, they showed that the expressions for R and ReLES

can be rewritten as:

R =
ξκ̃2

1

C2
s AR

4/3
− 1 ; ReLES =

κ̃1

ξ1

Nδ

(C2
s AR

4/3)
, (4.1)

where Cs is the SFS model constant in the Smagorinsky closure, AR is the grid

aspect ratio and ξ1 is a constant found to be ≈ 1 for LES of the neutral ABL. The

benefit of Eq. (4.1) is that it relates R and ReLES explicitly to the SFS model con-

stant and the grid aspect ratio, both of which are known prior to performing the

simulation. Using Eq. (4.1) and the estimates for (R∗, Re∗LES, N
∗
δ ) as guidelines,

Brasseur and Wei (2010) demonstrated the validity of their two-step algorithm

described above, for the Smagorinsky closure. Their simulations inside the HAZ

yielded φm profiles that exhibited: (i) correct law-of-the-wall scaling without any

overshoot; and (ii) grid convergence. Recent work (Brasseur et al., 2009) has

confirmed the validity of the HAZ framework for another commonly used eddy-

diffusivity closure, namely, the one-equation model (Moeng, 1984). It turns out

that the one-equation eddy-viscosity model yields expressions similar in form to

Eq. (4.1) but with different exponents on the SFS model constant and the aspect

ratio (Brasseur et al., 2009). As both the Smagorinsky closure and the one-equation

model are eddy-viscosity closures, a natural question arises: does the HAZ frame-

work hold for non-eddy-viscosity closures as well? We address this question in

the present chapter by showing that the HAZ formulation is also applicable to the

modeled SFS conservation equations, an example of a non-eddy-viscosity closure.

4.3 Set-up of LES runs

The details of the pseudospectral LES code and the numerical algorithm have

already been described in Ch. (2). We list in Table (4.1) the important physical

parameters that are prescribed in our LES runs. Their values are identical to

those used by Brasseur and Wei (2010). The surface flux is set to zero in order

to ensure zero buoyant forcing. We do impose a capping inversion which results

in weak negative fluxes at the boundary layer top. The influence of the capping

inversion, however, is minimal over the bulk of the boundary layer where the
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Table 4.1. A list of important prescribed physical parameters. Lx, Ly and Lz are the
physical dimensions of the computational domain in the x, y and z directions, respec-
tively. Nx is the number of grid points in the x-direction and, similarly for Ny and Nz.
Q0 is the prescribed kinematic surface potential temperature flux, z0 is the roughness
length, Ug and Vg are the geostrophic wind velocity components in the x and y directions,
and Γ is the lapse rate above the capping inversion.

Prescribed physical parameters of LES
Lx (m) 3000
Ly (m) 3000
Lz (m) 1000
Q0 (Kms−1) 0.0
z0 (m) 0.16
Ug (ms−1) 15
Vg (ms−1) 0
Γ (Km−1) 0.003

heat fluxes are negligible. We collect statistics after 15–20 eddy turnover times

which is approximately the duration of the transient phase in the evolution of the

flow. Note that the inclusion of Coriolis forcing implies that even after equilibrium

is achieved, the mean velocity continues to exhibit oscillatory behavior over a

timescale ∼ (1/f).

4.4 Results

Let (Nx, Ny, Nz) denote the number of grid points in the x-, y- and z-directions,

respectively. We present results for three different values of Nz, given by Nz =

(32, 64, 96). Based on the estimates by Brasseur and Wei (2010), Nz = 32 and

Nz = 64 correspond to Nδ < N∗
δ , while Nz = 96 corresponds to the lowest vertical

resolution that meets the criterion Nδ > N∗
δ .

4.4.1 φm profiles for Nz = 32 and Nz = 64

In Fig. (4.2), we plot φm corresponding to Nz = 32 and Nz = 64 with different

grid aspect ratios. In all our simulations, Nx = Ny so that there is no grid-

induced anisotropy in the horizontal plane. For Nz = 32, the symbols correspond

to increasing values of Nx in the following sequence: + (32), ∗ (64) and ¦ (128).
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Figure 4.2. φm for cτ = 0.12. Left panel: Nz = 32, Nx = 32 (+), 64 (∗), 128 (¦).
Right panel: Nz = 64, Nx = 64 (+), 96 (∗), 128 (¦), 192 (4). The dotted line denotes the
theoretical value of φm for the neutral boundary layer, assuming κ = 0.4.

The corresponding sequence for Nz = 64 is given by: + (64), ∗ (96), ¦ (128) and

4 (192). The value of cτ is held fixed at 0.12. Recall that cτ is the SFS model

constant in the modeled conservation equations for τ d
ij. We found that the results

were insensitive to the choice of cθ, the SFS model constant in the conservation

equations for the SFS potential temperature flux, fi. This is consistent with the

fact we are simulating a neutral ABL with negligible heat flux within the boundary

layer. We discuss first the φm profiles for Nz = 32 followed by those for Nz = 64.

The φm profile for Nz = 32 and Nx = 32 is similar to what we would observe

in low Reynolds number laminar flow, which suggests that the grid is barely able

to sustain turbulence. Brasseur and Wei (2010) obtained similar results for Nz =

32 and high grid aspect ratios (low Nx) with the Smagorinsky closure (see their

Fig. 5c). As Nx increases, there is marginal improvement in the φm profiles as

the grid begins to resolve some of the turbulence. At the highest value of Nx,
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Figure 4.3. φm for Nz = 64. Left panel: cτ = 0.08, Nx = 64 (+), 96 (∗), 128 (¦), 192 (4).
Right panel: cτ = 0.09, Nx = 64 (+), 96 (∗), 128 (¦), 192 (4). The dotted line denotes the
theoretical value of φm for the neutral boundary layer, assuming κ = 0.4.

i.e, Nx = 128, φm still fails to exhibit law-of-the-wall scaling even as it starts to

develop oscillations at the surface.

For Nz = 64, we see the presence of a well-defined overshoot in φm at the higher

aspect ratios. As Nx is increased to 192 (4), the overshoot disappears gradually

although we have still not recovered law-of-the-wall scaling. In Fig. (4.3), we plot

φm for Nz = 64 and two lower values of cτ , 0.08 and 0.09. The symbols in Fig. (4.3)

have the same meaning as in Fig. (4.2) for Nz = 64. We note trends similar to

that in Fig. (4.2): vanishing of the overshoot and the development of oscillations

at the surface, with decreasing aspect ratio. Comparing Fig. (4.2) and Fig. (4.3),

we also observe that for a fixed aspect ratio, lower values of cτ are associated with

a reduced overshoot.

To understand better the significance of the trends in Fig. (4.2) and Fig. (4.3),

we compute R and ReLES for the above simulations and plot their values in R–
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Figure 4.4. Values of R and ReLES associated with the simulations in Fig. (4.2) and
Fig. (4.3). Lines correspond to constant Nz while increasing values of Nx (for fixed Nz)
correspond to upward movement along the lines.

ReLES space in Fig. (4.4). Note that we use the general definitions of R and ReLES

and not the forms given by Eq. (4.1) which are valid only for the Smagorinsky

closure. A couple of important trends emerge in Fig. (4.4). Firstly, the slope

of the lines in R-ReLES space vary inversely with Nz. Secondly, for fixed Nz,

decreasing the aspect ratio (AR) and SFS model constant (cτ ) yields higher values

of R and ReLES. Both these trends are identical to those observed with eddy-

viscosity closures (Brasseur and Wei, 2010; Brasseur et al., 2009). Hence, although

the exact functional forms in Eq. (4.1) are valid only for the Smagorinsky closure,

their predicted qualitative dependence of (R,ReLES) on the SFS model constant

and aspect ratio appears to be general in nature.

For some of these simulations, R and ReLES exceed their critical values, R∗ and

Re∗LES, as estimated by Brasseur and Wei (2010). Their φm profiles, however, fail

to display grid convergence and law-of-the-wall scaling. This is because we haven’t

yet satisfied the third requirement to move a simulation into the HAZ, namely,

Nδ > N∗
δ . We now proceed to discuss results for Nz = 96.
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4.4.2 φm profiles for Nz = 96

Simulations of the neutral ABL can be computationally expensive due to the long

transient phase whose duration ∼ 1/f . Thus, a higher value of f shortens the

transient phase. In our simulations with Nz = 32 and Nz = 64 we used f =

0.000146, which corresponds to a latitude of 90◦, i.e., the poles. Brasseur and Wei

(2010) use a still higher value, f = 0.0004, in their simulations. We use the same

value of f for our LES runs with Nz = 96, in order to reduce the computational

time.

Figure (4.5) shows profiles of τ d
13 over the surface layer for a series of simulations,

where cτ = 0.07 and Nx increases from 64 to 216. The corresponding φm profiles

are shown in Fig. (4.6). From Fig. (4.5), a decrease in the aspect ratio, AR, is

accompanied by an increase in R, which we recall is the ratio of the resolved to

the SFS component of τ d
13 at the first grid point. This relationship between AR

and R is consistent qualitatively with the expressions in Eq. (4.1) and our results

for Nz = (32, 64). Figure (4.6) shows that increasing values of R are associated

with a reduction in the overshoot in φm. For Nx = 144 and Nx = 192, the φm

profiles are free of the overshoot and relatively vertical over bulk of the surface

layer indicating that law-of-the-wall scaling has been achieved. In other words, the

simulations with Nx = 144 and Nx = 192 are in the HAZ. As Nx increases further

to 216, φm develops oscillations near the surface. The progression in the evolution

of φm shown in Fig. (4.6) is strikingly similar to that obtained by Brasseur and Wei

(2010) with the Smagorinsky closure (see their Fig. 10). In more recent work, Wei

and Brasseur show that the oscillations in φm near the ground are caused due to

deficiencies in the surface stress model. They were able to reduce the oscillations

substantially by using an improved formulation of the surface stress model.
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Figure 4.5. (1,3) component of τd
ij for cτ = 0.07 and Nz = 96. Legend: resolved (—),

SFS (· · · ) and total (−−). Corresponding φm is shown below.
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Figure 4.6. φm profiles for the simulations in Fig. (4.5).

To understand better the interplay between the SFS model constant, cτ , and

AR, we plot in Fig. (4.7), φm for cτ = (0.06, 0.08, 0.12). For each of these cτ values,

we consider three values of Nx, given by Nx = (64, 144, 192). Thus, Fig. (4.7) shows
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Figure 4.7. φm profiles for 9 simulations corresponding to three different Nx =
(64, 144, 192) for each of three different cτ = (0.06, 0.08, 0.12).

φm profiles obtained from 9 simulations. Moving from left to right along a row of

plots in Fig. (4.7) corresponds to constant cτ and decreasing AR. Moving from top
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to bottom along a column of plots corresponds to constant AR and increasing cτ .

Let us begin with the bottom row, which corresponds to cτ = 0.12. For this

value of cτ , none of the three Nx values manage to get rid of the overshoot and re-

cover law-of-the-wall scaling. For cτ = 0.08, there is a pronounced overshoot when

Nx = 64. When Nx is increased to 192, however, the overshoot disappears yielding

better φm profiles. In simulations with cτ = 0.06, the overshoot vanishes even

earlier for Nx = 144. This is accompanied, however, by a quicker intensification of

oscillations, as evidenced by a comparison of the φm profiles for Nx = 192 among

the three values of cτ . Note also that the φm profile for cτ = 0.06 and Nx = 192 is

further away from the theoretical profile when compared to that for cτ = 0.08 and

Nx = 192. We now interpret these observations in terms of the HAZ framework.

Analysis for eddy-viscosity closures (Brasseur and Wei, 2010; Brasseur et al.,

2009) reveals that the SFS model constant, Cs, and AR combine in the form

Ds = Ca
s AR

b to determine R and ReLES. In particular, for the Smagorinsky

closure, Eq. (4.1) shows that R and ReLES vary inversely with Ds. A similar

relationship holds for the one-equation model as well. It follows that Ds must be

less than some critical value D∗
s for R and ReLES to exceed their critical values.

Thus, in order to place a simulation inside the HAZ, high SFS dissipation, i.e., high

values of Cs, must be complemented by low AR and vice versa. This is precisely

the message conveyed by Fig. (4.7), even though for the modeled SFS conservation

equations we don’t know the exact combination of cτ and AR that determines R

and ReLES. The simulations with cτ = 0.12 can now be interpreted as having too

much model dissipation which require aspect ratios lower than that corresponding

to Nx = 192, if the overshoot is to be removed. By the same logic, simulations

with cτ = 0.06 have low model dissipation so that aspect ratios corresponding to

Nx = 144 are sufficient to eliminate the overshoot. Fig. (4.6) and Fig. (4.7) show

that R and ReLES need to exceed their critical values, but must stay within bounds

to prevent severe oscillations in φm. Equivalently, the amount of friction in the

simulation needs to be sufficiently low to eliminate the overshoot and at the same

time above some threshold. These observations parallel findings for eddy-viscosity

closures by Brasseur and Wei (2010).

Apart from the cases shown in Fig. (4.6) and Fig. (4.7), we performed addi-

tional simulations for Nz = 96 while varying cτ and Nx according to Table (4.2).
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Table 4.2. Values of cτ and Nx used in simulations where Nz = 96 was held fixed.

cτ Nz Nx

0.05 96 96, 144, 192
0.06 96 64, 96, 144, 160, 192, 216
0.07 96 64, 96, 144, 160, 192, 216
0.08 96 64, 96, 144, 160, 192, 216
0.09 96 64, 96, 144, 160, 192, 216
0.12 96 64, 144, 160, 192

In Fig. (4.8), we plot the R and ReLES values for all the simulations listed in

Table (4.2). The trends in Fig. (4.8) are consistent with the φm profiles shown

in Fig. (4.6) and Fig. (4.7). For instance, the simulations with cτ = 0.12 which

yielded a severe overshoot, occupy a subcritical region in R-ReLES space. The

simulations with lower values of cτ which yield improved φm profiles tend to be

associated with values of R and ReLES that are higher than their critical values.

Simulations with excessively low values of cτ that yield severe oscillations in φm

near the surface, tend towards the upper right corner of Fig. (4.8).
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Figure 4.8. Values of R and ReLES for the simulations listed in Table (4.2).

In Fig. (4.9), we plot φm profiles for those simulations which are inside the

HAZ. Above the first couple of grid points, there is reasonable grid convergence
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Figure 4.9. φm for simulations inside the HAZ. The values of cτ range from 0.07
(black) to 0.09 (red) while those of Nx range from 160 to 216. The dotted line denotes
the theoretical value of φm for the neutral ABL.

between the profiles for a given value of cτ . As cτ increases, there is a clear

tendency for the profiles to shift horizontally towards the dotted line, which is

the theoretical φm value for a neutral ABL. A φm profile that coincides with the

dotted line would yield a κ value of 0.4 which implies that all the profiles shown

in Fig. (4.9) correspond to κ < 0.4. Averaging the κ values in Fig. (4.9) over

simulations corresponding to a constant cτ , we obtain κ = (0.317, 0.332, 0.342) for

cτ = (0.07, 0.08, 0.09), respectively. Brasseur and Wei (2010) note that the value

of κ is not universal but appears to vary with the outer scale flow characteristics.

Nagib and Chauhan (2008) estimate κ to be 0.37 in channel flow and 0.41 in pipe

flow. Andreas et al. (2006) estimate κ to be 0.387 in the atmospheric surface layer.

Field measurements under near-neutral conditions yield κ ≈ 0.365 (Oncley et al.,

1996). An alternate formulation for the surface stress model developed by Wei and

Brasseur (2010) yields φm profiles that are closer to unity in the surface layer and

consequently, higher values of κ. In later sections, we show results from a couple

of simulations that employ the new surface stress model.
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4.4.3 Dependence of (R, ReLES) on (cτ , AR)

It is straightforward to determine the exact functional form of the relationship

between (R,ReLES) and (Cs, AR) for eddy-viscosity closures due to their simplic-

ity. Such a feat is considerably harder with the modeled SFS conservations or

other closures which don’t use an eddy-viscosity explicitly. It might be be pos-

sible, however, to deduce such relationships numerically using LES results. Let

us assume that the relevant combination of cτ and AR for the modeled conserva-

tion equations is c s1
τ AR s2 . Eq. (4.1) shows that the Smagorinsky closure yields

ReLES ∝ 1/(C2
s AR

4/3). If a similar relationship were to hold for ReLES in the

conservation-equation-based closure, then plotting ReLES versus cτ for fixed AR

using a log-log scale would yield straight lines with a slope s1. A similar procedure

could be used to determine s2.
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cτ = 0.08
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Figure 4.10. ReLES as a function of AR, for Nz = 96 and different values of cτ . The
dotted line has a slope of −0.7.

In Fig. (4.10), we plot ReLES versus AR with cτ as a parameter using a loga-

rithmic scale on both axes. Only simulations with Nz = 96 have been considered.

The plotted curves are approximately linear which suggests an inverse power rela-

tionship between ReLES and AR. The curve for cτ = 0.12 has a noticeably lesser

slope than the others. Recall that cτ = 0.12 corresponds to highly dissipative
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Figure 4.11. ReLES as a function of cτ for Nz = 96 and different values of AR. The
dotted lines have a slope of −1.0.

simulations with a strong overshoot in φm. The curves for the other cτ values have

an approximate slope of −0.7, indicated by a dotted line in the figure.

Figure (4.11) shows ReLES as a function of cτ for different values of AR. The

curves are not strictly linear but are instead piecewise linear. For each curve,

the portion connecting points representing simulations inside the HAZ, i.e, those

typically with low cτ and high ReLES, is nearly linear with a slope ≈ −1, indicated

by dotted lines in the figure. Towards higher values of cτ , the slopes of the curves

deviate systematically from unity to assume lesser values (in magnitude). Once

again, the curve for cτ = 0.12 is considerably different from the other curves.

Based on Fig. (4.10) and Fig. (4.11), ReLES is approximately proportional

to (cτ AR
0.7)−1. We can contrast this result with the corresponding expressions

for the Smagorinsky closure and the one-equation eddy-viscosity model, given by

(C2
s AR

1.33)−1 and (CK AR−0.89)−1, respectively. The exponents on the SFS model

constants are consistent with the nature of the respective closures. The eddy-

viscosities in the Smagorinsky closure and the one-equation model are proportional

to C2
s and Ck, respectively. For the modeled conservation equations, we can show

(Hatlee and Wyngaard, 2007) by retaining one production and one destruction

term that an effective eddy-viscosity is proportional to cτ . Thus, the exponent on
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the SFS model constant in its combination with AR is determined by how it relates

to the eddy-viscosity, either explicitly or implicitly. We are unable to provide a

physical explanation for the −0.7 exponent on AR beyond inferring its approximate

value from Fig. (4.10).

4.4.4 Influence of surface stress model

In this section, we use a new formulation for the surface stress model (Wei and

Brasseur, 2010) and examine its effect on φm and the streamwise velocity variance

near the ground. Wei and Brasseur (2010) implemented the new formulation in

LES with the Smagorinsky closure and found that it led to more realistic predic-

tions of κ, and the scaled streamwise velocity variance near the ground. Thus, it

is of interest to see if their surface stress model yields similar improvements for

the conservation-equation-based closure. We review briefly the new surface stress

model developed by Wei and Brasseur (2010) before presenting our LES results.

We denote the modeled instantaneous wall shear stress by τ̃ tot
13 (x, y, 0; t). The

subscript ‘tot’ refers to the fact that the modeled wall stress has resolved-scale,

SFS and viscous components (Wei and Brasseur, 2010) but it is their sum that is

modeled. Decomposing τ̃ tot
13 (x, y, 0; t) into mean and fluctuating parts,

τ̃ tot
13 (x, y, 0; t) = 〈τ tot

13 〉0 + τ tot
13 (x, y, 0; t). (4.2)

Wei and Brasseur (2010) showed that 〈τ tot
13 〉0 is dictated by global momentum

balance and is equal to (δ/ρ) (∂〈p̄〉/∂x1) for a channel flow, where δ is the half-

channel width and p̄ is the filtered pressure field. Thus, it is the fluctuating part,

τ tot
13 (x, y, 0; t), that differs from one wall stress model to another. In LES of the

ABL, the mean pressure gradient is specified through the geostrophic velocities

but the modeling of the wall stress model is similar to that for a channel flow to

the extent that 〈τ tot
13 〉0 is determined by the global flow balance in both flows. The

fluctuating wall stress is further rewritten as (Wei and Brasseur, 2010):

τi3(x, y, 0; t)

u2∗
= βi3 gi3(x, y; t), (4.3)

where i = (1, 2) denotes the streamwise and spanwise directions, respectively.
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From Eq. (4.3), it is clear that gi3(x, y; t) has to meet the following constraints:

〈gi3(x, y; t)〉 = 0 ;
√
〈gi3(x, y; t) gi3(x, y; t)〉 = 1 (4.4)

Equations (4.3)–(4.4) show that the fluctuation level of τi3(x, y, 0; t) is set by βi3

and the structure of the fluctuations themselves are determined by gi3(x, y; t). In

our LES code, we use the wall stress model developed originally by Moeng (1984)

(hereafter referred to as M84), for which τ̃i3(x, y, 0), βi3 and gi3(x, y; t) are given

by (Wei and Brasseur, 2010):

τ̃i3(x, y, 0) = −u2
∗
[〈s̄〉 (ūi − 〈ūi〉) + s̄ 〈ūi〉]∆z/2

〈s̄〉2∆z/2

(4.5)

βi3 = −

√
[〈s̄〉 (ūi − 〈ūi〉) + 〈ūi〉 (s̄− 〈s̄〉)]2∆z/2

〈s̄〉2∆z/2

(4.6)

gi3(x, y) =
[〈s̄〉 (ūi − 〈ūi〉) + 〈ūi〉 (s̄− 〈s̄〉)]∆z/2√
[〈s̄〉 (ūi − 〈ūi〉) + 〈ūi〉 (s̄− 〈s̄〉)]2∆z/2

. (4.7)

In Eqs. (4.5)–(4.7), ūi is the filtered velocity and s̄ is the filtered resultant horizontal

velocity. The ∆z/2 subscript reminds us that these variables are computed at the

first model grid level for u and v, which is located physically at z = ∆z/2. Wei

and Brasseur (2010) showed that βi3 is negative and has a magnitude close to 0.2

for the M84 wall stress model.

We present in Fig. (4.12) plots of streamwise velocity variances for two sim-

ulations, one inside the HAZ and another outside it. The φm profiles for these

two simulations are shown in Fig. (4.6). In both cases, the variance profiles (to-

tal and resolved ) don’t increase smoothly towards the ground but exhibit a kink

such that there is a decrease in their magnitude at the first grid level. In smooth

wall boundary layer flows, the streamwise velocity variance peaks deep inside the

viscous layer at zu∗/ν ≈ 15 and decreases sharply to zero towards the wall. Since

we don’t resolve the viscous layer in LES, the peak at zu∗/ν ≈ 15 lies well below

the first grid level. Thus, the kink seen in Fig. (4.12) is unphysical and doesn’t

conform to observations (Grant, 1986). Wei and Brasseur (2010) were successful in

removing the kink by changing the sign of βi3 from negative to positive in Eq. (4.3).
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Figure 4.12. Scaled streamwise variances, 〈u′u′〉/u2∗, versus z/zi for two simulations,
one outside the HAZ (panel (a)) and one within the HAZ (panel (b)). Nx(= Ny) for (a)
and (b) is 96 and 192, respectively, while Nz = 96 for both cases. For both simulations,
cτ = 0.07.

They further showed that a negative value of βi3 results in a sink-like term in the

prognostic equation for the streamwise velocity variance. In Fig. (4.13) we contrast

〈u′ru′r〉/u2
∗ (‘r’ denotes resolved-scale) and φm obtained with two wall stress models:

M84 and that developed by Wei and Brasseur (2010) (referred to as WB10 in the

figure) in which gi3(x, y) is given by Eq. (4.7) and βi3 = 0.15. The M84 model yields

(R,ReLES) = (0.89, 378) and the WB10 model yields (R,RELES) = (1.58, 391).

Both simulations lie inside the HAZ and have similar ReLES values although the

WB10 model yields a sharp increase in R, which is solely due to the effect of the

wall stress model as all other factors such as SFS model constant, grid size, etc.

are held fixed. With the WB10 model, the streamwise variance profile increases

smoothly without exhibiting a kink. In contrast, the LES with the M84 wall model

yields a kink in the streamwise variance profile although the simulation parameters

are inside the HAZ. The corresponding φm profiles show that the WB10 wall stress

model reduces the oscillation at the first grid level and yields φm values slightly

closer to 1, thereby implying a higher value of κ. The trends seen in Fig. (4.13)

mirror those observed for eddy-viscosity closures (Brasseur et al., 2009).
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Figure 4.13. (a) Nondimensional resolved-scale streamwise variances, 〈u′u′〉/u2∗, versus
z/zi. (b) φm profiles. M84 refers to the wall stress model developed by Moeng (1984)
and WB10 to that developed by Wei and Brasseur (2010). Nx(= Ny) and Nz for (a) and
(b) are 144 and 96, respectively. For the simulation using M84, (R, ReLES) = (0.89, 378),
while for that using WB10, (R, ReLES) = (1.58, 391). For both cases, cτ = 0.07.

4.5 Summary

In this chapter, we explored the applicability of the ‘High Accuracy Zone’ (HAZ)

framework (Brasseur and Wei, 2010) to a closure based on the SFS conservation

equations. The HAZ framework is a systematic approach to recovering law-of-the-

wall scaling and obtaining accurate predictions of φm in LES of high Reynolds

number flows. Past work (Brasseur and Wei, 2010; Brasseur et al., 2009) has

demonstrated the validity of the HAZ framework for commonly used eddy-viscosity

closures. Our results show that the arguments put forth by Brasseur and Wei

(2010) are equally valid for the conservation-equation-based closure. We found

significant improvement in the accuracy of φm predictions upon following the al-

gorithm outlined by Brasseur and Wei (2010) delineating the HAZ framework. As

the modeled SFS conservation equations bear little resemblance to standard eddy-

viscosity closures, our findings support the conclusion of Brasseur and Wei (2010)

that the HAZ framework is relevant to accurate predictions in LES irrespective of

the underlying SFS model.
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We also examined the effects of a new wall stress model (Wei and Brasseur,

2010) on the predictions of streamwise velocity variance and φm, using the modeled

SFS conservation equations. We found that it significantly reduced the oscillations

in φm at the first grid level and led to better representation of the streamwise

velocity fluctuations, similar to earlier findings by Wei and Brasseur (2010) for

eddy-viscosity closures.



Chapter 5
Conclusions

When the filter width, ∆, is much smaller than the energy-containing length scales,

l, the subfilter scales account for a small fraction of the turbulent fluxes and it is

sufficient that the SFS model accomplish the downscale transfer of energy at the

correct rate. When l ∼ ∆, however, a significant fraction of the turbulent fluxes

resides in the subfilter scales. Thus, it is essential that the SFS model not only

drain energy from the large eddies but also represent the SFS motions accurately.

While there have been attempts to address some of the limitations of standard

eddy-diffusivity closures by making the SFS model constant depend on local flow

parameters of the atmospheric boundary layer (ABL), “the best one can hope for

is to improve the model’s accuracy in representing the energy transfer to smaller

scales” (Chamecki et al., 2007). A better parameterization of the subfilter scales

themselves will require incorporating essential SFS physics into the SFS model.

This dissertation is an attempt towards achieving that objective. We have focused

on studying the performance of an SFS model that solves for the SFS fluxes using

a truncated version of their conservation equations, one similar to that used by

Hatlee and Wyngaard (2007). In the modeled SFS conservation equations, we

neglect the transport terms and model the slow pressure strain-rate covariance

using a linear return-to-isotropy model (Rotta, 1951) while retaining advection

and dominant production terms in their exact analytical form. We studied the

performance of the modeled SFS conservation equations in LES of convective,

stably stratified and neutral ABLs. Our LES studies for the convective and stably

stratified ABLs were supplemented by analysis of the SFS conservation equations
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using surface layer data from the Horizontal Array Turbulence Study (HATS)

experiment (Horst et al., 2003).

5.1 Studies of the convective ABL

As part of our analysis of the convective ABL, we studied the nature of balance

in the modeled SFS conservation equations and trends exhibited by the low-order

moments of the SFS fluxes (means and fluctuations), when plotted against the

nondimensional parameter ∆w/∆ (Sullivan et al., 2003), where ∆w is the wave-

length corresponding to the peak in the vertical velocity spectrum. The modeled

conservation equations for the SFS deviatoric stresses, τ d
ij, predicted the dominance

of anisotropic production in the τ d
αα budgets and that of isotropic production in

the τ d
13 budget with decreasing ∆w/∆, in agreement with observations. They, how-

ever, underpredicted the magnitude of anisotropic production in the τ d
13 budget at

low ∆w/∆, when compared to observations. The advection terms were found to be

negligible in the mean, but were required to prevent a spurious build up of resolved-

scale energy close to the filter cutoff. One of the interesting features of the modeled

conservation equations was the tendency of the scaled, principal production terms

in the τ d
αα and τ d

13 budgets to yield asymptotes at low ∆w/∆, some of which were

in good agreement with theoretically derived values in the limit ∆w/∆ → 0, i.e.,

the “RANS limit.” This shows the ability of the transport-equation-based SFS

model to predict the dominant SFS production terms consistently across a range

of ∆w/∆ without any ad hoc modifications to it in regions where ∆w ∼ ∆, such

as the near-wall region. Thus, this SFS model can be viewed as an alternative to

“hybrid” methods which try to unify LES and RANS formulations into one model.

The modeled conservation equations for the SFS scalar fluxes, fi, reproduced

successfully the major trends observed in the HATS data, namely, the dominance

of flux tilting and anisotropic gradient-production in the f1 budget, and that of

isotropic gradient-production in the f3 budget. As in the modeled τ d
ij budgets, the

advection terms while insignificant in the mean were essential to ensure proper

downscale transfer of resolved-scale variance. Our LES results showed that an

eddy-viscosity closure yields near-zero values of f1 while observations (Hatlee and

Wyngaard, 2007) reveal it to be significant in regions of high mean shear within the
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ABL. In general, the eddy-viscosity closure predicted well only those components

of τ d
ij and fi which are produced primarily through isotropic production, namely,

τ d
13 and f3.

Apart from studying the trends exhibited by different SFS statistics as a func-

tion of ∆w/∆, we also examined the conditional means of the two terms in the

resolved-scale velocity jpdf equation that involve a direct contribution from the

SFS model (Chen et al., 2009; Chen and Tong, 2006): (i) SFS deviatoric stress,

τ d
ij; and (ii) SFS production rate, P d

ij. Overall, the modeled SFS conservation equa-

tions predicted trends in the conditional means of τ d
ij and P d

ij better than did an

eddy-diffusivity closure due to two factors: (i) they include the dominant produc-

tion terms for all the τ d
ij components; and (ii) they include SFS advection. Thus,

apart from its direct impact on the downscale transfer of energy, SFS advection

also influences resolved-scale statistics indirectly through its beneficial role in the

prediction of the conditional means of τ d
ij and P d

ij.

5.2 Studies of the stably stratified ABL

The stably stratified ABL is associated typically with low ∆w/∆ as stratification

confines the energy carrying eddies to scales smaller than in the convective ABL.

Accordingly, our analysis of the SFS budgets in the stably stratified surface layer,

using HATS data, found that terms typically ignored in eddy-viscosity closures play

an even greater role than in the convective ABL. In the τ d
ij budgets, we found that

anisotropic production and buoyant production contribute significantly to both

the mean values and fluctuation levels of τ d
ij. The dominant production terms,

scaled appropriately, yielded asymptotes at low ∆w/∆ that agreed well with our

analytically derived values in the limit ∆w/∆ → 0.

In the f1 budget, we found the tilting and anisotropic gradient production

contribute significantly to the mean and fluctuation level of f1. While isotropic

gradient-production remained the principal contributor to the mean and fluctua-

tion level of f3 across the entire range of ∆w/∆ considered in our study, anisotropic

gradient-production and buoyant destruction played an increasingly important role

as ∆w/∆ decreased.

Following our analysis of the stable surface layer using HATS data, we per-
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formed LES of the moderately stable boundary layer using an SFS model identical

to that used in our LES of the convective ABL. The LES runs employed physical

conditions identical to that prescribed in the GABLS LES-intercomparison study

(Beare et al., 2006) and were performed at three resolutions:(3.125, 6.25, 12.5)m

with a prescribed surface cooling rate of 0.25K/hr. One of the findings of the

GABLS study was that convergence in various resolved-scale statistics occurred

only at resolutions finer than 3.125m. In particular, the prediction of the boundary

layer depth was found to be quite sensitive to the grid resolution. For instance, at

the coarsest resolution of 12.5m, some of the SFS models tested exhibited a smear-

ing out of the inversion base and yielded boundary layers significantly deeper than

those observed in LES runs at finer resolutions. In contrast, the predicted bound-

ary layer depth by the modeled SFS conservation equations was more robust to

changes in resolution. The equilibrium profiles of turbulent momentum flux and

turbulent heat flux showed good agreement with theory (Nieuwstadt, 1984). The

steady-state profiles of potential temperature, velocity and Richardson numbers

converged well for all three resolutions. One important limitation of the modeled

SFS conservation equations was their overprediction of locally scaled turbulent

mixing — as quantified through effective eddy-viscosities for heat and momentum

— compared to observations. Finally, we observed evidence of limiting behavior in

the profile of normalized potential temperature fluctuations with increasing surface

cooling rate. This limiting profile exhibited a maximum at mid-ABL heights, in

agreement with observations (Nieuwstadt, 1984).

5.3 LES studies of the neutral ABL

Our final set of LES studies with the modeled SFS conservation equations involved

simulation of a shear-driven neutral ABL. in order to test the applicability of the

High Accuracy Zone (HAZ) framework (Brasseur and Wei, 2010) to non-eddy-

viscosity closures. The HAZ refers to a region in parameter space in which LES

recovers law-of-the-wall scaling in the inertial surface layer without an overshoot

in the profile of φm, where φm is the nondimensional mean-gradient of velocity. We

found that without satisfying the criteria specified by Brasseur and Wei (2010), the

modeled SFS conservations failed to eliminate the overshoot in φm. We were able
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to remove the overshoot and recover law-of-the-wall scaling only after following

systematically the algorithm prescribed by Brasseur and Wei (2010). As the mod-

eled SFS conservations are fundamentally different from eddy-viscosity closures,

our results provide evidence for the generality of the HAZ framework. We also

tested a new formulation for the surface stress model (Wei and Brasseur, 2010)

and found that it led to reduced oscillations in φm near the surface. Brasseur et al.

(2009) observed similar effects with the new surface stress model for two commonly

used eddy-viscosity closures.

5.4 Future Work

We list some potential topics for future research:

1. In the modeled SFS conservation equations, we considered only the slow part

of the pressure strain-rate covariance but neglected the rapid and buoyant

contributions, both of which are important in the ABL (Moeng and Wyn-

gaard, 1986). The difficulty of measuring turbulent pressure fluctuations

(Wyngaard et al., 1994) accurately has been an obstacle to evaluating mod-

els for the pressure strain-rate covariance although LES studies (Moeng and

Wyngaard, 1986) have been used in the past for this purpose. The recently

concluded AHATS (Advection HATS) experiments by a team of researchers

from Clemson University, Pennsylvania State University and National Cen-

ter for Atmospheric Research have succeeded in measuring turbulent pressure

fluctuations reliably over a wide range of atmospheric stabilities. Data from

this experiment can be used to gain insight into the role played by the pres-

sure terms in the conservation equations and develop better models for the

pressure strain-rate covariance.

2. The AHATS experiments also facilitate the evaluation of the streamwise ad-

vection terms in the SFS conservation equations. While our LES studies

showed that the advection terms are negligible in the mean, they can be a

significant contributor to the fluctuation levels of the SFS stresses (Wyn-

gaard, 2004). Thus, their study enables a fuller understanding of the SFS

conservation equations.
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3. The Kansas experiments provided the first detailed surface-layer measure-

ments of the Reynolds stress and flux budgets, and have significantly shaped

our understanding of turbulence in the atmospheric boundary layer (Wyn-

gaard, 1992). It would be desirable to gain insight into the more general SFS

stress and flux budgets, which tend to their Reynolds-averaged counterparts

as ∆w/∆ → 0. Toward that end, experiments based on the array technique

(Tong et al., 1998), such as HATS and AHATS, play a unique role in that

they enable the measurement of filtered fields which can be compared directly

to LES results. Using data from these experiments it would be useful to con-

struct the SFS budgets as a function of suitable nondimensional parameters

(like ∆w/∆). Such SFS budgets can be used, in principle, to develop closures

that perform seamlessly across scale and stability.



Appendix A
Derivation of asymptotic values for

the dominant production terms in

the τdαα and τd13 budgets, as

∆w/∆ → 0 (“RANS limit”)

In this section, we provide further explanation for the asymptotic limits at low

values of ∆w/∆, as observed in Figs. (2.21)-(2.22) in Sec. (2.5.3.3). In particular,

we are interested in the limits of the anisotropic production term in the τ d
αα budgets

and that of the isotropic production term in the τ d
13 budget. We first discuss

the anisotropic production terms followed by the isotropic production terms. For

notational ease, we denote the anisotropic production term in the τ d
ij budget as

Aniso(i,j) and the isotropic production term as Iso(i,j).

A.1 τ dαα budgets

In the following derivation, we consider a horizontally homogeneous ABL with a

mean geostrophic wind in the x-direction. This induces a non-zero mean wind in

the y-direction due to the Coriolis force but because it is much smaller than the

x-component, we will treat the mean vertical wind shear as arising solely due to

the mean wind in the x-direction.
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As ∆w/∆ → 0, the filtering operation tends towards Reynolds averaging (Sul-

livan et al., 2003). Thus, in this limit, filtering a variable yields its ensemble mean.

For instance, if u denotes the unfiltered streamwise velocity component, it follows

that u = U + u′ where U = 〈u〉 = ū is the ensemble mean and u′ is the fluctuation

about the ensemble mean. A similar decomposition holds for other variables, in

the RANS limit. Invoking horizontal homogeneity,

∂U

∂x
=
∂U

∂y
=
∂V

∂x
=
∂V

∂y
=
∂W

∂x
=
∂W

∂y
= 0 (A.1)

Incompressibility implies that both the ensemble-mean and the fluctuating parts

of the velocity field are divergence free (Wyngaard, 2010). Hence,

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0 (A.2)

Combining Eqns. (A.1)-(A.2), we get ∂W/∂z = 0. Using the lower boundary

condition at the wall, W |z=0 = 0, in conjunction with Eq. (A.1) yields W ≡ 0.

Expanding out Aniso(i,j),

Aniso(i, j) = −
[
τ d
ik

∂ūj

∂xk

+ τ d
jk

∂ūi

∂xi

]
+

(
2

3

)
τ d
klS̄kl ; S̄kl =

1

2

(
∂ūk

∂xl

+
∂ūl

∂xk

)
(A.3)

Taking the ensemble average of Eq. (A.3),

〈Aniso(i, j)〉 =

〈
−

[
τ d
ik

∂ūj

∂xk

+ τ d
jk

∂ūi

∂xi

]〉
+

(
2

3

) 〈
τ d
klS̄kl

〉
(A.4)

We recognize
〈
τ d
klS̄kl

〉
as the ensemble mean rate of energy transfer from the re-

solved to the subfilter scales. At steady state,
〈−τ d

klS̄kl

〉
is the principal mean

production term in the conservation equation for e, the SFS kinetic energy, and

is balanced primarily by 〈ε〉, the mean rate of molecular destruction. Hence〈−τ d
klS̄kl

〉
= 〈ε〉. In Eqs. (A.3)-(A.4), we have not yet invoked the limit ∆w/∆ → 0,

which we recall is equivalent to replacing the overbar by the ensemble averaging

operator.
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For i = j = 1, Eq. (A.4) in the limit ∆w/∆ → 0, yields,

〈Aniso(1, 1)〉 ∆w/∆→0−−−−−→
〈
−2


τ d

11
¶

¶
¶¶7
0

∂U

∂x
+ τ d

12
¶

¶
¶¶7

0
∂U

∂y
+ τ d

13

∂U

∂z




〉
−

(
2

3

)
〈ε〉 (A.5)

We can also further simplify 〈ε〉 =
〈−τ d

klS̄kl

〉
in the limit ∆w/∆ → 0 as follows:

〈ε〉 =
〈−τ d

klS̄kl

〉 ∆w/∆→0−−−−−→ 〈−τ d
kl 〈Skl〉

〉
=

〈
−τ d

13

∂U

∂z

〉
, (A.6)

The other five components of 〈Sij〉 are all zero, which follows from Eq. (A.1),

W ≡ 0 and our approximation regarding the vertical wind shear (explained earlier).

Equation (A.5) simplifies to,

〈Aniso(1, 1)〉 ∆w/∆→0−−−−−→ 2 〈ε〉 −
(

2

3

)
〈ε〉 =

(
4

3

)
〈ε〉

=⇒ 〈Aniso(1, 1)〉
〈ε〉

∆w/∆→0−−−−−→
(

4

3

)
(A.7)

Repeating the above analysis for the (2,2) component,

〈Aniso(2, 2)〉 ∆w/∆→0−−−−−→
〈
−2


τ d

12
¶

¶
¶¶7
0

∂V

∂x
+ τ d

22
¶

¶
¶¶7

0
∂V

∂y
+ τ d

23
¶

¶
¶¶7
0

∂V

∂z




〉
−

(
2

3

)
〈ε〉 . (A.8)

It follows that,

〈Aniso(2, 2)〉
〈ε〉

∆w/∆→0−−−−−→
(
−2

3

)
(A.9)

Since Aniso(1, 1) + Aniso(2, 2) + Aniso(3, 3) = 0, it follows trivially that,

〈Aniso(3, 3)〉
〈ε〉

∆w/∆→0−−−−−→
(
−2

3

)
(A.10)
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A.2 τ d13 budget

We recall that the dominant production term in the τ d
13 budget is isotropic pro-

duction. Expanding out Iso(1,3) in the limit ∆w/∆ → 0,

〈Iso(1, 3)〉 ∆w/∆→0−−−−−→ −
(

2

3

)
〈e〉

〈
∂U

∂z

〉

=⇒ 〈Iso(1, 3)〉
〈ε〉

∆w/∆→0−−−−−→
(

2

3

) −〈e〉
〈
∂U

∂z

〉

− 〈
τ d
13

〉 〈
∂U

∂z

〉

∣∣∣∣∣∣∣∣
∆w/∆→0

=
1

3

(
τ d
13

2 e

)−1
∣∣∣∣∣
∆w/∆→0

(A.11)
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Figure A.1. HATS: Magnitude of (1,3) component of normalized anisotropy tensor,
b13 = |τd

13|/2e, for convectively unstable cases only (left) and the entire range of stabilities
in the HATS data set (right).

To deduce the limit on the right side of Eq. (A.11), we plot in Fig. (A.1) the

mean magnitude of τ d
13/2e as a function of ∆w/∆ for the unstable cases and for the

entire range of stabilities. Corresponding plots from LES for the SFS conservation

equations and the eddy-diffusivity closure are shown in Fig. (A.2). From Fig. (A.1),

the mean value of |τ d
13/2e| appears to asymptote approximately to 0.1, at lower

values of ∆w/∆. This trend is weakly visible for the convectively unstable cases but
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Figure A.2. LES: Magnitude of (1,3) component of normalized anisotropy tensor,
b13 = |τd

13|/2e, using (a) SFS conservation equations; and (b) eddy-diffusivity closure.
Color legend: — : −zi/L = 1.21 , — : −zi/L = 3.78, — : −zi/L = 3.82, — :
−zi/L = 5.47 ,— : −zi/L = 7.2

is clearer for the whole HATS data set covering both stable and unstable regimes.

While we are unable to provide an analytical proof, we infer from Figs. (A.1) that

τ d
13/2e tends approximately to −0.1 in the mean as ∆w/∆ → 0, using the fact that

τ d
13 is negative in the ABL. Using this inferred limit for τ d

13/2e as ∆w/∆ → 0,

〈Iso(1, 3)〉
〈ε〉

∆w/∆→0−−−−−→ −
(

1

3

)(
1

0.1

)
= −3.33 (A.12)

Finally, we note that our LES results correspond to spatial averaging whereas

in the above derivation we have used ensemble averaging. We can equate the two

kinds of averages by invoking ergodicity.
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Lundquist, A. Mccabe, A. F. Moene, Y. Noh, and P. P. Sullivan, 2006: An
intercomparison of large-eddy simulations of the stable boundary layer. Bound.
Layer. Meteo., 118, 247–272.

Beljaars, A. C. M. and A. A. M. Holtslag, 1991: Flux-parameterization over land
surfaces for atmospheric models. J. Appl. Meteo., 30, 327–341.

Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for
the growth of nocturnal inversions. Bull. Amer. Met. Soc., 38, 283–290.

Brasseur, J. G. and T. Wei, 2010: Designing large-eddy simulation of the turbulent
boundary layer to capture law-of-the-wall scaling. Phys. Fluids., 22, 1–21.

Brasseur, J. G., T. Wei, and S. Ramachandran, 2009: Predicting law-of-the-wall
with LES: Role of SFS and surface stress models. Bull. Amer. Phys. Soc., 54,
228.

Brost, R. A. and J. C. Wyngaard, 1978: A model study of the stably-stratified
planetary boundary layer. J. Atmos. Sci., 35, 1427–1440.

Brown, A. R., J. M. Hobson, and N. Wood, 2001: Large-eddy simulation of neutral
turbulent flow over rough sinusoidal ridges. Bound. Layer. Meteo., 98, 411–441.

Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile
relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.



210

Canuto, V. M., F. Minotti, C. Ronchi, R. M. Ypma, and O. Zeman, 1993: Second-
order closure PBL model with new third-order moments: Comparison with LES
data. J. Atmos. Sci., 51, 1605–1618.

Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, 1979: Turbulence in the
evolving stable boundary layer. J. Atmos. Sci., 36, 1041–1052.

Chamecki, M., C. Meneveau, and M. B. Parlange, 2007: The local structure of
atmospheric turbulence and its effect on the Smagorinsky model for large eddy
simulation. J. Atmos. Sci., 64, 1941–1958.

Chen, Q., M. Otte, P. Sullivan, and C. Tong, 2009: Aposteriori subgrid-scale mod-
els tests based on the conditional means of subgrid-scale stress and its production
rate. J. Fluid. Mech., 626, 149–181.

Chen, Q. and C. Tong, 2006: Investigation of the subgrid-scale stress and its
production rate in a convective atmospheric boundary layer using measurement
data. J. Fluid. Mech., 547, 65–104.

Chen, Q., D. Wang, H. Zhang, and C. Tong, 2005: Effects of subgrid-scale turbu-
lence on resolvable-scale velocity-scalar statistics. J. Turb., 6, 1–31.

Cheng, Y., V. M. Canuto, and A. M. Howard, 2001: An improved model for the
turbulent PBL. J. Atmos. Sci., 59, 1550–1565.

Chow, F. K., R. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and re-
construction turbulence modeling for large-eddy simulation of neutral boundary
layer flow. J. Atmos. Sci., 62, 2058–2077.

Davies, P. A., 2000: Development and mechanisms of the nocturnal jet. Meteo.
Appl., 7, 239–246.

Deardorff, J. W., 1973: The use of subgrid transport equations in a three-
dimensional model of atmospheric turbulence. J. Fluids. Eng., 95, 429–438.

— 1980: Stratocumulus-capped mixed layers derived from a three-dimensional
model. Bound. Layer. Meteo., 18, 495–527.

Derbyshire, S. H., 1990: Nieuwstadt’s stable boundary layer revisited. Quart. J.
Roy. Met. Soc., 116, 127–158.

Dias, N. L., W. Brutsaert, and M. L. Wesely, 1995: Z-less stratification under
stable conditions. Bound. Layer Meteo., 75, 175–187.

Drobinski, P., P. Carlotti, J.-L. Redelsperger, R. M. Banta, V. Masson, and R. K.
Newsom, 2007: Numerical and experimental investigation of the neutral atmo-
spheric surface layer. J. Atmos. Sci., 64, 137–156.



211

Duynkerke, P. G., 1999: Turbulence, radiation and fog in dutch stable boundary
layers. Bound. Layer Meteo., 90, 447–477.

Esau, I., 2004: Simulation of Ekman boundary layers by large-eddy model with
dynamic mixed subfilter closure. Env. Flu. Mech., 4, 273–303.

Forrer, J., 1999: The structure and turbulence characteristics of the stable boundary
layer over the Greenland ice sheet . ETH Zurich, Züricher Klimaschriften 75
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Porté-Agel, F., 2004: A scale-dependent dynamic model for scalar transport in les
of the atmospheric boundary layer. Bound. Layer Meteo., 112, 81–105.
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