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Abstract

In large-eddy simulation (LES), the modeling of subfilter-scale motions when the
filter width (~ A) is comparable to the size of the energy-carrying eddies (~ 1), is a
challenging task. Under such conditions, the SF'S model is required to parameterize
the SE'S eddies realistically in addition to extracting energy from the resolved, large
eddies.

In this dissertation, we analyze an SFS model that solves for the SFS fluxes
prognostically using a truncated version of the SFS conservation equations. We
evaluate the model’s performance in LES of the moderately convective, stable and
neutral atmospheric boundary layer (ABL). We supplement our LES studies of the
convective and stable ABL with analysis of the SF'S conservation equations using
data from the Horizontal Array Turbulence Study (HATS) experiments conducted
in 2003. In LES of the convective ABL, we find that the transport-equation-based
SF'S model predicts the mean values and fluctuation levels of the SF'S fluxes better
than does an eddy-viscosity closure, when compared to HATS data. The modeled
SF'S conservation equations reproduce reasonably well the dominant trends in the
real conservation equations. The scaled, dominant production terms in the mod-
eled SFS stress budgets exhibit asymptotes at low [/A, some of which agree well
with theoretically derived values in the limit {/A — 0.

The HATS analysis for the stable ABL shows that terms typically ignored in
eddy-viscosity closures contribute significantly to both the mean values and fluc-
tuation levels of the SF'S fluxes at low {/A. We perform LES of a moderately sta-
ble ABL with the modeled SFS conservation equations, using physical conditions
identical to those used in a previous LES-intercomparison study. The predictions
of bulk parameters and equilibrium profiles of important statistics are robust to
changes in resolution but the “locally” scaled effective eddy-viscosities of heat and
momentum are overpredicted compared to observations.

We perform LES of the neutral ABL in order to test whether a recently devel-
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oped framework — known as the “high accuracy zone” (HAZ) — to improve LES
predictions in the surface layer is applicable to non-eddy-viscosity closures. We
find that the modeled SF'S conservation equations fail to eliminate the overshoot
in the profile of the nondimensional mean-gradient of velocity without following
the algorithm prescribed by the HAZ framework. This result provides further
evidence for the generality of the HAZ framework.
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Chapter

Introduction and literature review

Large-eddy simulation (LES) has gained widespread acceptance as a reliable tech-
nique for simulating the high Reynolds-number (Re) atmospheric boundary layer
(ABL). In LES, we filter spatially the Navier-Stokes equations to obtain the re-
solved (or filtered) scales of motion and parameterize the effect of the unresolved
(or subfilter) scales on the resolved scales using a subfilter-scale (SFS) model.
When the filter scale is much smaller than the energy-producing scales, the pri-
mary role of the SF'S model is to drain energy from the large, resolved eddies at
the correct rate, which can be achieved by simple eddy diffusivity models such as
the Smagorinsky model, as outlined by Lilly (1967). If, however, the filter scale
is comparable to the energy-containing scales, as in the near-wall region, the SF'S
model is required not only to extract energy from the large eddies but also to
represent the SF'S stresses and fluxes.

In conditions of under-resolved turbulence, constant-eddy-diffusivity closures
can fare poorly (Khanna and Brasseur, 1997) in their predictions of low-order flow
statistics. Zhou et al. (2001) have shown that in the near-wall region, contributions
from the SF'S motions to the evolution of the resolved scales are of the same order
as those from the resolved scales themselves. Consequently, the evolution of the
flow in the near-wall region is highly sensitive to the SF'S model. Using LES of the
moderately convective ABL, Khanna and Brasseur (1998) found errors incurred in
the near-wall region affected flow structure in the entire ABL.

In spite of its deficiencies, the Smagorinsky closure is used widely owing to its

simplicity and ease of implementation. There are numerous SFS closures for the



ABL that overcome some of the shortcomings of the Smagorinsky closure. We
mention briefly a few such attempts. The standard dynamic Smagorinsky model
(Germano et al., 1991) and its subsequent variants (Basu and Porté-Agel, 2006;
Porté-Agel, 2004; Porté-Agel et al., 2000) improve upon the original Smagorinsky
closure by computing the model parameter in real time from the resolved scales.
For instance, in the neutral ABL, the scale-dependent dynamic model (Porté-
Agel et al., 2000) yields better profiles of ¢,, (stability function for velocity) than
the traditional Smagorinsky closure. Following Schumann (1975), Sullivan et al.
(1994) developed a two-part eddy-viscosity model whose predictions of ¢, and
¢p, (stability function for potential temperature) were significantly better than
those of the Smagorinsky closure in both neutral and unstable ABLs. Mason
and Thomson (Mason and Thomson, 1992) incorporated a stochastic term which
enabled backscatter, a feature absent in the Smagorinsky closure. They also used
a modified length scale that allowed the energy-containing eddies to scale with z in
the inertial surface layer. Their SF'S model resulted in good improvements in the
predictions of the mean velocity profile and streamwise variances. Kosovi¢ (1997)
developed an SFS stress model based on the nonlinear constitutive relationship
suggested by Speziale (1991). Results obtained using Kosovic’s SFS model for a
moderately convective ABL showed considerable improvement over those obtained
using the Smagorinsky closure (Chen et al., 2009).

While the closures discussed above model the SF'S stress directly, there are SF'S
models that parameterize the unresolved velocity components from which the SF'S
stress is then reconstructed. We now describe briefly two such attempts in the
latter category: the Resolvable-Subfilter-Scale (RSFS) model (Zhou et al., 2001)
and a model developed by Chow et al. (2005). In LES, we have two cutoff filters:
(i) the grid cutoff filter, which is imposed explicitly by the grid; and (ii) the LES
cutoff filter, which is imposed either explicitly in a dealiasing step (in a pseudospec-
tral code) or implicitly (in a physical-space code), in order to maintain numerical
stability. By definition, the LES cutoff filter is coarser than the grid cutoff filter.
Zhou et al. (2001) decomposed the SFS velocity field into two components: (i)
resolvable-subfilter-scale (RSFS); and (ii) subgrid-scale (SGS). The RSFS compo-
nent corresponds to scales that reside between the LES filter cutoff and the grid

filter cutoff, i.e., the scales that are resolvable on the grid but are discarded due to



the effect of the LES filter. The SGS component, on the other hand, corresponds
to scales smaller than the grid filter cutoff and hence, is unresolvable. Evidently,
the resolved scales feel the direct impact of the RSFS component more than that
of the SGS component. The RSF'S model solves for the RSF'S component prognos-
tically and uses it as a surrogate for the unresolved velocity field, which, in reality,
also includes the SGS component. Zhou et al. (2001) found that under conditions
where the turbulence is under-resolved, the RSF'S model represents both the energy
transfer from the resolved to the RSFES scales, and the SFS terms in the momen-
tum equation better than do eddy-viscosity closures. Chow et al. (2005) combined
multiple modeling strategies, such as, dynamic eddy viscosity (Wong and Lilly,
1994), reconstruction from RSFS motions and a “canopy” model (Brown et al.,
2001), and observed improvements in the prediction of ¢, for a neutral ABL.

To study the general features in an SFS model that lead to better resolved-
scale statistics, Chen and Tong (2006) devised an approach based on the joint
probability density function (jpdf) of the resolved-scale velocity field. They derived
the evolution equation of the one-time, one-point joint pdf of the resolved-scale
velocity components, isolating the two terms on its right hand side that involved
SFS contributions: (i) conditional mean of SF'S stress; and (ii) conditional mean of
SFS production rate. Subsequently, they performed a priori (Chen and Tong, 2006)
and a posteriori (Chen et al., 2009) tests for the convective ABL comparing results
using different SF'S models with those from HATS data, their evaluation criteria
being the correct prediction of the conditional means of the SFS stresses and the
SFS production rate. Their LES results showed that SFS models which yielded
poor predictions of the conditional means of SFS stress and SFS production rate
fared poorly in the near-wall region. From the trends in the conditional means
of the SFS stress and SFS production rate, Chen and Tong argued that errors
in the predictions of low-order statistics in the near-wall region were related to
under-prediction of SF'S anisotropy and lack of SF'S buoyant production. Previous
work by Juneja and Brasseur (1999) has found the Smagorinsky closure to severely
underpredict the level of anisotropy at the subfilter scales in the near-wall region.
Chen and Tong (2009; 2006) observed that SE'S models capable of exhibiting higher
anisotropy, such as the nonlinear model of Kosovié¢ (1997), resulted in better LES

predictions of low-order velocity moments.



1.1 SF'S conservation equations

A natural way to begin to address some of the deficiencies in eddy-diffusivity
closures is to consider the parent equations from which they are derived, namely,
the conservation equation for the SFS stresses and SFS fluxes. A scalar eddy-
diffusivity closure can be derived (Lilly, 1967) from the SF'S conservation equations
by retaining only the isotropic production term and the pressure-strain covariance,
the latter being modeled using the Rotta model (Rotta, 1951).

Deardorff (1973), seeking “a more sophisticated treatment of the subgrid Reynolds
stresses and fluxes” was the first to implement a version of the SF'S conservation
equations themselves as a subgrid model in his LES study of the convective ABL.
His SF'S model consisted of a set of ten conservation equations for all the second-
order moments: (i) the six SF'S stresses, 7;; ; (ii) three SFS scalar (potential tem-
perature, ) fluxes, f; ; and (iii) the SF'S variance of . The conservation equations
were then ‘closed’” by modeling the following: (i) third-order transport terms; (ii)
pressure-strain covariances; and (iii) the scalar dissipation rate. We list below the

two main conclusions of his study, followed by a brief discussion:

1. The SFS conservation equations are capable of removing energy from the
resolved scales at the correct rate provided that numerical errors due to

truncation can be controlled.

2. The use of conservation equations for SFS stresses yields increased SFS

anisotropy near the wall.

Since the Smagorinsky closure is capable of draining energy from the large
scales, it is reasonable to expect the parent SFS transport equation to be capable
of the same, as confirmed by Deardorft’s findings. The truncation errors he en-
countered were a source of instability in his simulations and he imposed artificial
bounds on all second-order modeled SF'S quantities in order to ensure the stability
of his system of equations.

The cause of the observed increase in SF'S anisotropy is the presence of pro-
duction mechanisms in the SF'S conservation equations that are ignored in eddy-
diffusivity closures. These mechanisms (mentioned earlier) include: (i) nonlinear

generation of SFS stresses due to SFS anisotropy; and (ii) buoyant generation



(Wyngaard, 2004) of SFS stresses by SFS scalar fluxes.

Deardorft’s study demonstrated successfully the use of the SEFS conservation
equations as an SFS model in LES. In spite of obtaining encouraging results,
however, he abandoned the conservation-equation-based approach and reverted to
eddy-diffusivity closures in his later works (Deardorff, 1980) due to computational
constraints at that time. While the notion of modeling the turbulent stresses
and fluxes through their conservation equations has been embraced in ensemble-
averaged modeling (Canuto et al., 1993; Cheng et al., 2001; Mellor and Yamada,
1974), three-dimensional mesoscale modeling still relies primarily on eddy-viscosity
closures, as evidenced in state-of-the-art mesoscale codes like Advanced Regional
Prediction System (Xue et al., 2000) and, Weather Research and Forecasting (Ska-
marock and Klemp, 2008).

Wyngaard (2004) has argued for revisiting the SE'S conservation equations as a
basis for SF'S modeling, especially in the so-called “Terra Incognita” regime where
the energy-containing length scales are of the same order as the grid resolution.
Such a situation is encountered in both coarse-mesh LES and in fine-mesh meso-
cale simulations. He showed that the simplest SF'S model consistent across the
entire range of grid resolutions involves additional SEF'S production terms that are
present in the governing SF'S conservation equations but ignored in eddy-diffusivity
closures.

Building upon the study by Wyngaard (2004), Hatlee and Wyngaard (2007)
analyzed unstable cases from the HATS data set, and tested two SFS closures: (i)
a truncated version of the SFS conservation equations; and (ii) an eddy-diffusivity
closure with a constant model parameter. The SF'S conservation equations yielded
better predictions of both the diagonal (normal) and the off-diagonal (shear) com-
ponents of the SFS stress tensor. The SFS conservation equations also outper-
formed the eddy-diffusivity closure in its predictions of SF'S scalar fluxes and the
scalar variance transfer rate. For instance, the difference in the predictions of the
horizontal SFS scalar flux, in particular, by the two SFS models was dramatic.
The conservation equations have an explicit flux-tilting term (discussed in more
detail later) which tilts the vertical SFS flux into the horizontal direction in re-
gions of high vertical shear of the horizontal velocity, e.g., near the surface. An

eddy-diffusivity closure, on the other hand, can produce a horizontal SF'S flux only



in the presence of a horizontal scalar gradient. As a result, the SFS conservation
equations predict a non-zero value for the SF'S horizontal scalar flux, in good agree-
ment with observations, whereas the eddy-diffusivity closure predict a near-zero

value.

1.2 Motivation

SFS models have evolved considerably since Smagorinsky’s original formulation
(Smagorinsky, 1963). They have become more nuanced and sophisticated (Kosovié,
1997; Mason and Thomson, 1992; Sullivan et al., 1994; Zhou et al., 2001) in their
attempts to address better both their functions: (i) to drain energy from the
large scales at the correct rate; and (ii) to parameterize correctly the SFS stresses
and fluxes. In conditions where the turbulence is poorly resolved, the SF'S model
needs to perform both the above functions satisfactorily. For these reasons, it is
desirable to develop SFS parameterizations that are not overly simplistic in their
representation of the SFS stresses and fluxes.

The SFS conservation equations, in principle, enable the description of SFS
stresses and fluxes according to their governing equations. As a result, important
SF'S physics such as anisotropy, backscatter and buoyant production are built into
the equations and don’t need to be modeled explicitly. While the third-order
terms in the SFS conservation equations still need to be modeled, the principal
SFS production mechanisms (Wyngaard, 2004) can be described in their exact
analytical form. An additional advantage of the SF'S conservation equations is their
generality, which enables them to describe flows across a wide range of stabilities.

Deardorff’s study (1973) was seminal yet limited in its scope as its main objec-
tive was to “realistically simulate the transfer of larger scale variance to subgrid
scales” using the SF'S conservation equations, which he achieved successfully. The
studies by Wyngaard (2004) and Hatlee and Wyngaard (2007) show the poten-
tial of the conservation equations to overcome some of the major deficiencies that
plague eddy-diffusivity closures. If the SF'S conservation equations show promise,
they are also complicated and merit further study. Hence, in this dissertation, we
revisit the notion of SFS modeling based on the conservation equations for the

SF'S stresses and fluxes. The SFS model we use in our study is identical to that



used by Hatlee and Wyngaard (2007). The use of additional prognostic equations
necessarily implies higher computational expense. Deardortff (1973) using a 1 MHz
processor which was considered state-of-the-art at the time, concluded that “the
results were worth the price.” Today, it is routine to run high-resolution LES
simulations on huge parallel clusters of 2 GHz processors. This tremendous surge
in computing power mitigates partially the concerns regarding the computational

expense incurred in using the SF'S conservation equations.

1.2.1 SFS model versus other factors

In the previous sections, we discussed the potential benefits of using an SF'S model
that wasn’t too restrictive in its assumptions. Within the context of an LES,
however, the SFS model is only one of many factors affecting the resolved-scale
statistics. The evolution of the resolved scales depends in a complex way on a host
of factors: (i) the SF'S model; (ii) the numerical scheme employed (finite-difference
versus pseudospectral); (iii) grid size; (iv) aliasing error; (v) discretization error;
and (vi) the boundary conditions. All these factors affect non-trivially the time-
evolution of the discretized Navier-Stokes (N-S) equations and in general, it is not
easy to untangle their individual influences.

Recent studies of the neutral ABL by Brasseur and Wei (2010) have unearthed
some crucial insights into the interplay between some of the factors cited above.
In their studies, they focused on the requirements for obtaining law-of-the-wall
scaling in the inertial surface layer. They found that the familiar overshoot in
the non-dimensional mean velocity gradient ¢,, was caused by a spurious mani-
festation of numerical “friction.” In order to eliminate the overshoot and recover
law-of-the-wall scaling, they have proposed a so-called ‘High Accuracy Zone’ (HAZ)
framework (discussed in Ch. (4). They have validated it using LES of the shear-
driven neutral ABL. Presently, the HAZ framework is yet to be extended to the
convective and the stable ABLs.

As Brasseur and Wei (2010) demonstrated the validity of the HAZ framework
using the Smagorinsky closure, it is of interest to examine its applicability to other

non-eddy-viscosity closures, such as the SF'S conservation equations.



1.3 Outline

In the next chapter, we discuss the implementation and performance of an SFS
closure that uses conservation equations, in LES of the moderately convective
ABL. We perform coarse-mesh LES to gain insight into various terms in the SF'S
conservation equations. We then use high-resolution LES and compare select SF'S
statistics with observations from the Horizontal Array Turbulence Study (HATS)
experiment. We conclude the second chapter by analyzing the conditional means
of the SFS stresses and the SF'S production rate.

The third chapter contains results obtained from analysis of HATS data and
LES for the stable boundary layer. In the first part of the chapter, we use HATS
data to assess the relative importance of various production terms in the SFS
budgets and their impact on the magnitudes of SF'S stresses and fluxes. The second
part of the chapter is devoted to LES studies of a moderately stable boundary layer.

In the fourth chapter, we perform LES of the shear-driven neutral ABL using
the conservation-equation-based SFS model, in order to test the applicability of
the HAZ framework to non-eddy-viscosity-closures.

We summarize our conclusions in the fifth chapter and suggest potential topics

for future work.



Chapter

Large-eddy simulation of the
moderately convective atmospheric

boundary layer

In the previous chapter, we summarized the potential advantages of an SF'S model
that uses conservation equations for the SF'S stresses and fluxes. In this chapter, we
discuss the implementation of such an SFS model (Hatlee and Wyngaard, 2007)
and its performance in LES of the moderately convective boundary layer. The
outline of the chapter is as follows. Using coarse-mesh LES, we first illustrate
the significance of the various terms in the SFS model using simple qualitative
arguments. We then compare various subfilter-scale statistics in the surface layer
obtained using high-resolution LES, to those obtained from the Horizontal Array
Turbulence Study or HATS (Sullivan et al., 2003). Finally, we test the performance
of the SFS model using criteria devised by Chen and Tong (2006) that involve
studying the trends in the conditional means of the SFS stresses and the SFS

production rate.
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2.1 Model equations

We begin by obtaining filtered equations for the potential temperature and velocity
fields making the following assumptions:(i) the Boussinesq approximation! is valid;
(i) the Re of the flow is high enough to ensure either (a) the viscous sublayer is
confined to a very thin region near the ground and therefore, unresolved; or (b) the
surface is characterized by an effective roughness scale that is also unresolved; and
(iii) high Peclet number?, Pe. The high Re and Pe imply that the viscous terms can
be neglected in the filtered equations for velocity and the potential temperature.
The potential temperature, 6, is related to temperature, T, as follows (Wyngaard,
2010):

p(O)} faler 7 (2.1)

o=T [@
where p is the pressure, IR, is the gas constant for dry air and ¢, is the specific
heat of dry air at constant pressure. From Eq. (2.1), potential temperature of
an air parcel is the temperature of that parcel after it is brought adiabatically
and reversibly to a reference state, typically assumed to correspond to sea-level
conditions. In dry, adiabatic conditions potential temperature is a conserved scalar

(Wyngaard, 2010).

2.1.1 Equations for the filtered scalar and velocity fields

The continuity equation for a Boussinesq flow is (Wyngaard, 2010),

8%,;

=0 2.2
o (2.2)
Filtering Eq. (2.2) spatially yields,
ou;
=0 2.3
o, (2.3)

!Density differences are dynamically significant only when they are multiplied by the acceler-
ation due to gravity.

2The Peclet number is defined as Pe = UL/k, where U and L are characteristic velocity and
length scales, while k is the thermal diffusivity. It is the ratio of transport of heat by advection
to that by conduction.
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The evolution equation for 6 is given by

06 00 00

(2.4)

where wu; is the component of velocity in the ith direction and ~ is the molecu-
lar diffusivity of the scalar. Filtering (2.4) spatially and using the Boussinesq
approximation yields

o0 00  Of;

where the overbar denotes the filtering operation and f; denotes the component
of the SFS scalar flux in the ¢th direction. The diffusive terms are absent in
Eq. (2.5) due to the assumption of high Pe. The only restriction placed on the
filtering operation is that it commute with differentiation, which is true when the
filter function is uniform in space. For nonuniform grids the filter width varies
in space and consequently, the commutation error is non-zero (Ghosal and Moin,
1995). The linearized, filtered momentum equation written in rotation form for a

Boussinesq flow (Moeng, 1984), is

8'&1- 1 op* ~ aTid-
) J

*

where @y, is the kth component of filtered vorticity, p* is the modified pressure
(discussed below), pg is the reference density, ©q is the reference potential tem-
perature, U8 = (U,, V,,0) is the geostrophic wind vector, g is the acceleration due
to gravity, €;;; is the third-order permutation tensor, {2 is earth’s angular velocity
and Tfjl- denotes the deviatoric part (the isotropic part is subtracted out) of the

SEF'S momentum stress tensor, defined as

2 2

i
where 0;; is the Kronecker-Delta operator and e = (wu; — @;u;) is the SFS kinetic
energy. The viscous terms are absent in Eq. (2.6) due to the assumption of high
Re. All filtered quantities in Eqs. (2.5)—(2.6) represent small deviations from a base
state in hydrostatic equilibrium (Wyngaard, 2010). The expression for the buoyant
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forcing in Eq. (2.6) assumes that the deviations in velocity are much smaller than
the speed of sound, a reasonable approximation in the turbulent ABL (Wyngaard,
2010). Following Moeng (1984), the modified pressure p* is given by
=t [ et D (2.8)
= —e+ —— .
p P po 3 5
where p is the filtered pressure. Taking the divergence of Eq. (2.6) and invoking

the Boussinesq approximation yields the following Poisson equation for p*:

1 9% Or
Lo al'zal'z N 833'1'7

(2.9)

where r; denotes the right-hand side of Eq. (2.6) without the pressure-gradient
term. Equation (2.9) shows that p* in a Boussinesq flow is purely a diagnostic
field.

To close Egs. (2.5)-(2.6), we need models for f;, 74 and e. We refer to the
models for f; and 7 collectively as the ‘SFS model.” In the next section, we
outline the conservation equations for f; and TZ- which form the basis for our SF'S
model. Deardorff (1973) derived the SFS conservation equations for the ‘total’ 7;;

variables (deviatoric + isotropic) which introduced the turbulent dissipation rate

e = (v/2)(w;j + u;;)(u;; + u;,;) into the equations for the diagonal components,
Taa, (@ =1,2,3), where u; ; = (Ju;/0x;). To close the conservation equations, he
used a model for e. In our analysis, the conservation equations describe only the
deviatoric components. Hence, the equations for the normal components, 74, do
not contain e. We, however, still need a model for € as one of the inputs to our SF'S
models is the SF'S kinetic energy, e, whose prognostic equation (discussed later in
Sec. 2.1.4) requires the parameterization of €. In Deardorff’s SFS model, e is given

simply by the trace of 7;;.

2.1.2 Conservation equations for the SFS flux and stress

In this section we discuss the conservation equations for the SEF'S fluxes and stresses.

We only present the final equations without going through their derivation.
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2.1.2.1 Conservation equation for f;

The conservation equation for the SFS flux of potential temperature, f;, is (Hatlee
and Wyngaard, 2007):
0fi ofi , 0

a[Ej 833]-

ou 400 2 98

J; 0x; 90z, 3" 0m; - SN <9 ’ ) s
1 0 — _ 1 00 @0_
P | s L _ 2.1

where e,,;. is the permutation tensor and €2 is the angular velocity vector of the
coordinate frame. The second and third terms on the left hand side represent
advection and turbulent transport, respectively. On the right hand side, the terms
represent (in order): flux tilting and stretching, anisotropic and isotropic gradient-
production, buoyant production, rotation, pressure transport and pressure scalar-
gradient covariance. The last two terms together represent pressure destruction?.
We refer to the second term on the right hand side as anisotropic production as
it would vanish under conditions of isotropy, which would require Tg to be zero.
We refer to the third term on the right hand side as isotropic production due to
its dependence on e, the isotropic part of the total stress tensor, 7,;. The molec-
ular diffusion terms are absent in Eq. (2.10) due to the assumption of high Re
and Pe. The molecular destruction terms are absent due to local isotropy, as
confirmed by experiments (Mydlarski, 2003). An eddy-diffusivity closure can be
derived from Eq. (2.10) by assuming a balance solely between the boxed terms, i.e.,
isotropic gradient-production and modeled pressure strain-rate covariance (Wyn-
gaard, 2004) (model discussed in Sec. 2.1.2.4). Pressure destruction is the principal
sink term in Eq. (2.10) (Hatlee and Wyngaard, 2007; Wyngaard, 2004).

d

Given models for f;, 7;

transport and pressure-destruction terms.

and e, we need to model the buoyant, turbulent-

3Hatlee and Wyngaard (2007) refer to only the pressure scalar-gradient covariance as pressure
destruction. While the pressure transport term vanishes upon integrating over a finite volume, it
contributes to destruction of SFS scalar fluxes locally. Hence, we include the pressure transport
term in our definition of pressure destruction.
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2.1.2.2 Conservation equation for 7

The conservation equation for the deviatoric stress is given by (Hatlee and Wyn-
gaard, 2007),

ory ot B
ot Ty, — a—xk[

UUj UK — ﬂiujuk — ﬂjuiuk — ﬂkuiuj + 2ﬂiﬂjﬂk
5@']‘

—3 (ulguk — 2faluluk — I_LkulQ + 27?61217,]6) i|

2 (0u; Ou; J0u; 4 0u; 1_ , (0w Ou\|
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The second term on the left side is advection. The terms on the right side are, in
order, turbulent transport (split over two lines), isotropic production, anisotropic
production, buoyant production, rotational production, pressure strain-rate covari-
ance and pressure transport. The pressure strain-rate covariance has zero trace
and represents intercomponent energy transfer. The last two terms in Eq. (2.11)
together represent pressure destruction?. As in Eq. (2.10), retaining only the
boxed terms, i.e., isotropic production and modeled pressure strain-rate covari-
ance (model discussed in Sec. (2.1.2.4)), yields an eddy-viscosity closure. The
anisotropic-production term is similar to the flux-tilting term in Eq. (2.10) as it
describes generation of Tg through both tilting and stretching of the different Tg
components. The pressure destruction term plays the role of the sink, just as in
Eq. (2.10). The molecular diffusion terms are negligible outside the thin viscous

sublayer due to the assumption of high Re. The molecular destruction terms in the

4As in the SFS flux conservation equations, Hatlee and Wyngaard (2007) identify only pressure
strain-rate covariance as pressure destruction. Our definition, however, includes the pressure
transport term as well.
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off-diagonal equations are negligible under the assumption of local isotropy (Wyn-
gaard et al., 1971) and are absent in the 7¢, equations as Eq. (2.11) describes
the evolution of the deviatoric stresses and not the total stresses (deviatoric +
isotropic).

Given models for f;, Tg and e, we need to model turbulent transport and
pressure destruction.

The buoyant terms in Eq. (2.11) are determined explicitly as a function of f;.
In the SFS flux conservation equations, the buoyant terms affect only f3 and their
parameterization requires a model for the SFS variance of §. We present results
later showing that the buoyant terms are small compared to the dominant terms
in the f3 budget.

The Coriolis terms in the SFS conservation equations are expected to play
an important role when the SFS Rossby number, \/e/(fA) where f = 2Q is the
Coriolis parameter, is of order unity. Equivalently, the SF'S time scale given by
A/+/e should be comparable to the rotational time scale, 1/f. In the present
study, we use f = 107*. In our LES runs we found the SFS time scale increases
monotonically with height (due to decreasing e) and typically assumes a value of
60-90 at the base of the capping inversion, i.e., a value two orders of magnitude
smaller than the rotational time scale. It is even smaller in the surface layer, where
the SF'S motions are most important. For comparison, the time scale for the large
eddies in our LES runs is typically an order of magnitude higher than the SFS
time scale.

The transport terms vanish upon integrating Eqs. (2.10)—(2.11) over a finite
volume and assuming zero velocity on its boundaries. Locally, they can be signif-
icant, especially under convectively unstable conditions in the “mesoscale limit”
(Wyngaard, 2004), where essentially all the turbulence is parameterized by the
SF'S model.

We now discuss the Rotta model (Rotta, 1951) for the slow part of the pressure-

strain-rate covariance.

2.1.2.3 Rotta’s model

We can split the pressure field formally into three parts, p = p; + ps + pp (Hatlee
and Wyngaard, 2007; Moeng and Wyngaard, 1986), where p; and pg denote con-
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tributions to the total pressure field from turbulent-turbulent and mean-turbulent
interactions, respectively, while p; denotes those from buoyancy. The components
pr and pg are referred to as the “slow” and “rapid” components as pg responds
instantaneously to mean gradients while p; does not (Mathieu and Scott, 2000).
The Rotta model (Rotta, 1951) is applicable to that part of the ensemble-averaged
pressure strain-rate covariance arising purely from the slow component, p;, as-
suming the absence of factors that induce anisotropy, such as, mean gradients
and stratification. Under such conditions, the slow pressure strain-rate covariance
drives the SF'S stresses towards isotropy. Hence, the Rotta model is also referred

to as a return-to-isotropy model. According to the Rotta model,’

1/ 00 o0 fi
—pp——pp— | ==& 2.12
Po (p ox; b 8%’) Ty ( )
| ou;  ow;\ _ [Ou O 7
— |pr —or | — =—— 2.1

where Ty and T are timescales for the SF'S motions, models for which are discussed

in the next section.

2.1.2.4 Deriving an eddy-viscosity closure from the SF'S conservation

equations

We now review the derivation of an eddy-viscosity closure from Eqgs. (2.10)-(2.11)
(Lilly, 1967; Wyngaard, 2004). The SFS time scales Ty and T, are modeled as
proportional to Isps/+/e¢ where Isps is the length scale for the SFS eddies. We
denote the proportionality constants in the expressions for Ty and T, by ¢y and
c¢;, respectively. Retaining isotropic gradient-production and modeling the slow
pressure strain-rate covariance using the Rotta model while neglecting the rest of
the terms in Eq. (2.10) yields (Wyngaard, 2004),

2 (06 fi
B 56 (8931) - Coy lsps\/g

2 00
= fi= —3 lsrs Ve (693) : (2.14)

®Moeng and Wyngaard (1986) note that Rotta originally proposed Eq. (2.13) which was then
extended to scalars, as in Eq. (2.12), by Zeman (1981).
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Defining K, = (2/3) cg lsrs /€, where K}, is the scalar eddy-viscosity, we recognize
Eq. (2.14) as the one-equation eddy-viscosity closure for the SF'S scalar flux (Dear-
dorff, 1980). Retaining only isotropic production and the modeled slow pressure

strain-rate covariance in Eq. (2.11) yields,

2 (%i Eh‘oj T;]l.
B ge <8xj + 83:1-) e lspg\/E

2 w O
— Tg =-3 ¢ lsrs Ve <3U 8w) .

8953- + (9362

(2.15)

Equation (2.15) is an eddy-viscosity closure where K, = [(2/3) ¢, lsrs v/€] is the
eddy-viscosity for momentum. Deardorff’s eddy-viscosity closure for Tgf prescribes
a factor of (4/15) instead of (2/3), as in Eq.(2.15), because his model for the
pressure strain-rate covariance in the Tg conservation equations is different from
that used in the above derivation. The constants ¢, and ¢ in Egs. (2.14)-(2.15) can
be tuned empirically (Deardorff, 1980) such that the SFS model extracts energy
at the correct rate from the resolved scales.

In most eddy-viscosity closures, K,, and K} are not estimated independently
but differ by a factor, the turbulent Prandtl number, which is typically assumed
to be constant and equal to 1/3 under unstable conditions (Moeng, 1984) al-
though the basis for this assumption is questionable (Moeng and Wyngaard, 1988).
Some eddy-viscosity closures, such as the locally-averaged scale-dependent dy-
namic model (Basu and Porté-Agel, 2006), estimate K, and K} independently,
thereby allowing the turbulent Prandtl number to vary.

2.1.3 SFS model

While Egs. (2.10)-(2.11) represent the conservation equations for f; and 775 with
the entire suite of terms, Hatlee and Wyngaard (2007) modeled them by neglecting
the transport and rotational production terms while accounting for only the slow
pressure strain-rate covariance through Rotta’s model. They retained the buoy-
ant production terms in the conservation equations for the SFS stress but not in
those for the SFS flux. After observing inadequate performance of their modeled
conservation equations for the SFS deviatoric stress, they also modeled the rapid

contribution to the pressure strain-rate terms, which improved the performance of
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their SF'S model.

Our motivation for the present work is similar to that of Hatlee and Wyngaard
(2007), namely, to try and improve upon eddy-viscosity closures by including ad-
ditional SF'S production mechanisms in their exact analytical form while modeling
select unclosed terms in the simplest way possible. Thus, we use an SF'S model sim-
ilar to that used by Hatlee and Wyngaard (2007), the only difference being that
we account only for the slow pressure-destruction terms. We follow Hatlee and
Wyngaard (2007) in neglecting the transport and rotational production terms in
the modeled SF'S conservation equations. For reasons stated earlier, we do not ex-
pect the Coriolis terms to play a significant role in the SF'S conservation equations.
By omitting the transport terms and modeling only the slow pressure strain-rate
covariance, we strive to achieve a reasonable balance between retaining sufficient
physics in the SF'S model and avoiding the use of too many ad hoc models. The
final truncated version of the full conservation equations that will serve as the SF'S
model is shown in Egs. (2.16)—(2.17) :

ofi . _ 0fi ou; a2 8 f
9 + U, r, f oz, (Tz-j + 35Ue> or, T, (2.16)
87—% e 87—% . 2 8111 I (%ij
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The SFS length scale, Isps, scales on the length scale for the smallest resolved
eddies, i.e., the grid cut-off length scale. Thus, in regions of unstable stratification
we set lsps = A = (AzAyAz)'/? (Deardorff, 1973), where Az is the resolution
in the x-direction and likewise for Ay and Az. In regions of stable stratification,
however, using A as the SFS length scale causes the SFS model to blow up. We
confirmed that using lsps = A in stably-stratified regions leads to insufficient
dissipation (o< 1/lgps) of SF'S fluxes and stresses in Eqgs. (2.16)—(2.17), in a plane-
averaged sense. A better estimate for lgpg in stably-stratified regions is given
by lsrs = 0.76/¢/N where N = 1/(g/00)(00/0z) is the Brunt-Viisila frequency
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(Deardortf, 1973). This formulation for the SF'S length scale accounts explicitly for
the effects of stable stratification and reduces lspg accordingly, thereby preventing
Egs. (2.16)—(2.17) from blowing up. Hence, we use lsps = 0.764/¢/N in stably-

stratified regions.

2.1.4 Conservation equation for the SFS turbulent kinetic

energy

The exact conservation equation for the SF'S turbulent kinetic energy, e, is:

Oe — o ,_ g g (__ 1
E = —Tgsij — 8_513'] (uje) + @_0f3 - 8_33] (uje — uje + %(u]p — u]p)) — €, (218)
The turbulent and pressure transport terms are modeled together following
Moeng (1984):

1 Oe
e — ;e + —(Wp — u;p) | = — | 2K—r 2.1
(uje uje + po (u;p u]p)> ( m@xj) , (2.19)

where K,, is an eddy-diffusivity. It is modeled as K,, = cx/e A (Moeng, 1984),
where ¢ denotes the SF'S model constant. Lilly (1967) derived the value of ¢, for
homogeneous, isotropic turbulence and found it to be 0.094 while Deardorff (1973)
and Moeng (1984) used ¢ = 0.1 in their LES. We will use ¢, = 0.1 for our LES

runs. Thus, the modeled prognostic equation for e is given by,

% = —158i; — a%j (uje) + @iofg + % <2Km§—;> — ¢, (2.20)
where S;; = (1/2)(04;/0x; + Ou;/dx;) is the resolved strain-rate tensor, K,, =
crv/e A is the eddy-diffusivity (Moeng, 1984) and e is viscous dissipation of e. The
terms on the right side of Eq. (2.20) represent (in order): downscale (larger to
smaller) energy transfer, advection, buoyant production, modeled turbulent and
pressure transport, and viscous dissipation.

We model the viscous dissipation term as € = ¢, e*2/A (Lilly, 1967). We use
c. = 0.93, a value first derived by Lilly (1967) and commonly used in LES (Moeng,
1984; Moeng and Wyngaard, 1988).
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An eddy-diffusivity closure for 7{ makes —TZ-SU positive definite everywhere
and at all times. In principle, this is too strong a constraint as the cascade of energy
from the larger to the smaller scales exists only on average. The flow of energy
locally or instantaneously from the smaller to the larger scales, or ‘backscatter,” was
reported first by Piomelli et al. (1991) through direct numerical simulation (DNS) .
It has since been observed in laboratory flows and field measurements (Porté-Agel
et al., 1998; Sullivan et al., 2003; Tao et al., 2002). The dynamic model (Germano
et al., 1991), the stochastic backscatter model (Mason and Thomson, 1992), the
resolvable subfilter scale (RSFS) model (Zhou et al., 2001), Kosovi¢’s nonlinear
model (Kosovié, 1997) and the modeled SFS stress conservation equations, as
represented by Eq. (2.17), all exhibit backscatter although in some models, such
as the dynamic model, the backscatter is averaged to ensure numerical stability.

In a one-equation eddy-diffusivity closure, the buoyancy term in Eq. (2.20)
accounts indirectly for the effects of stratification on the SFS stresses and fluxes
as follows. An increase in upward buoyant forcing increases e, which leads to
higher magnitudes of eddy-diffusivities (K, o< \/€), thereby increasing turbulent
mixing. Equivalently, in such closures buoyancy modulates the deviatoric stresses,
TZ-, through the isotropic part, e. It follows that this mechanism does not allow for
buoyancy to affect 7'% differentially but the SF'S conservation equations show that

the buoyant terms in the 7'% equations do not assume identical analytical forms.

2.2 Details of LES code

The LES code used in this study is based on a serial pseudospectral code developed
by Sullivan and Moeng (1994) that was later parallelized by Otte and Wyngaard
(2001) using the Message Passing Interface (MPI).

The code employs periodic boundary conditions in the horizontal plane (Otte
and Wyngaard, 2001) to simulate a horizontally homogeneous flow. The mesh is
staggered vertically such that the first plane of u, v and 6 is located a distance
Az/2 above the surface, while that of w and e is located a distance Az above the
surface. The SFS variables f3, 7 and 74, are colocated with w while the remaining
SFS flux components are colocated with u. A spectral cut-off filter eliminates the

top third of the wavenumbers generated by the nonlinear advective term, in order
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to suppress aliasing errors. We compute horizontal derivatives in Fourier-space
and use second order finite-differencing for the vertical derivatives.

In our implementation of Eq. (2.17), we found that the buoyancy term led
to instabilities near the capping inversion causing the simulation to blow up. To
remove the instability, we reduced the buoyancy term linearly to zero over the top
10% of the ABL such that its magnitude is exactly zero at the inversion height,

which we define to be the base of the capping inversion.

2.2.1 Boundary conditions

Due to the staggered nature of the grid, we require boundary conditions for w,
e, T, T and f3. At the lower boundary, we set w = 0 and e = e;, where e; is
the value of e at the first grid level (Otte and Wyngaard, 2001). Enforcing the
lower boundary conditions for 7, 7% and f3 requires knowledge of the surface
friction velocity, u,, and the Monin-Obukhov (MO) length, L. The square of the
friction velocity, u2, is equal to the ensemble-averaged wall stress. The MO length
is defined to be the height below which production of turbulent kinetic energy by

shear exceeds that by buoyancy, and is given by,

u3

b Ry 221
where @)y is the surface heat flux and k& approximated as 0.4 is the von Karman
constant. We now discuss an iterative procedure to estimate the values of u, and
L (Khanna, 1995; Otte and Wyngaard, 2001).

The mean surface potential temperature, 6,, can be evaluated as follows as-
suming the profile of mean potential temperature is Monin-Obukhov (MO) similar

(Paulson, 1970):
(6,) — 0, = 0.74% {m (j—;) - %} : (2.22)

where 0, is the potential temperature at the first 6 level (angled brackets denote

horizontal averaging), 6, = —Qo/u., 21 = Az/2 is the height of the first 0 level, z,
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is the surface roughness height and

1 2 1/4
¢2:21n[ ty} y:<1—9i> . (2.23)

L

The surface roughness height, zy, represents the height at which the mean wind
speed is zero assuming it exhibits a logarithmic profile. The use of Eq. (2.22)
requires knowledge of u, and L. The variable u, is determined using a procedure
similar to that for 6, (Paulson, 1970):

() =+ [m <ﬁ> = wll , (2.24)

20

where U, is the wind speed at the first u grid level and

1 1+ 22
P = 21n[ +x]+ln[ +I}—2tanlx+g,
21 1/4
— (1- 15—) . 2.25
vo= (1157 (2.25)

In the neutral limit, z/L — 0 and consequently, ¥»; — 0. Equating ; to zero
in Eq. (2.24), we recover the familiar log-law. Thus, we interpret ¢, as a factor
accounting for the effects of stratification.

In principle, the two unknowns u, and L can be estimated simultaneously from
Egs. (2.21)-(2.24). In practice it is easier to solve for them iteratively. Thus,
we initiate the iterative sequence by assuming a value for u, which is then used
to evaluate L from Eq. (2.21). This value of L is then used to evaluate u, from
Eq. (2.24). The newly obtained value of u, is substituted back in Eq. (2.21) to
reevaluate L. In this way, the iterative procedure is repeated till two successive
estimates of L differ by less than 1%.

The surface values of 7% (o = 1,2) and f3 are modeled using the following

surface stress model (Moeng, 1984):

733 = CD Wl <a0¢1> + <U1> (aal - <ﬂa1>)} ) (2'26>
s = Cy [Ul (<§1> - 90) + <U1> (51 — <51>)} (2.27)

where %,, denotes the value of u, at the first u level. The coefficients Cp and Cy
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are defined as

o Qo
AR GAY S

The lower boundary condition for pressure is derived by substituting w = 0 in the

Cp=— (2.28)

w-momentum equation. The vertical gradients of u, v and 6 at the surface are set
equal to their computed values at z; = Az.

We specify a geostrophic wind vector that is constant with height.

At the upper boundary, w and all SF'S quantities are set to zero (Moeng, 1984).
A radiative boundary condition (Klemp and Durran, 1983) allows gravity waves
to pass out of the computational domain without undergoing reflection.

The complete set of prognostic equations describing the evolution of the re-
solved and the SFS fields are:

e Filtered fields, 4; and @ : Egs. (2.5)—(2.6) (4 equations)

e SFS stresses, 7, and fluxes, f;: Eqgs. (2.16)—(2.17) (9 equations)

17
e SFS turbulent kinetic energy, e: Eq. (2.20) (1 equation)

Since 7¢ is symmetric, we only need to solve for six of its nine components. Of these

]
six components, only five are independent as the trace is zero. At every iteration,
these 14 nonlinear coupled equations are integrated forward in time using a third-
order Runge-Kutta scheme with a time step that is computed dynamically for a
fixed CFL number (Sullivan et al., 1996).

Utilizing horizontal homogeneity, we compute all necessary statistics by aver-

aging over horizontal planes.

2.2.2 Realizability

Deardorff (1973), in his implementation of SFS conservation equations, enforced
“realizability” conditions on all SF'S quantities at every grid point at every time
step in order to stabilize the code. In our simulations, we do not impose realizability
conditions on the SFS stresses and SFS fluxes. As noted earlier, we prescribe a
linear variation of the buoyancy term in Eq. (2.17) such that it reduces to zero over
the top 10% of the ABL. In other words, the magnitude of the buoyancy term in
Eq. (2.17) at the boundary layer top is precisely zero. The only prognostic variable
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for which we have an explicit constraint is e. The constraint, which ensures that
e > 0 at all grid points and at all times, is necessary as the subfilter length scale
in stably-stratified regions is parametrized as being proportional to /e (Deardorff,
1980). The need for a realizability constraint on e, however, is a consequence of
using the spectral cut-off filter and not of the underlying SF'S model. Vreman et al.
(1994) have illustrated theoretically and numerically that use of a spectral cut-off

filter generates negative values of e.

2.3 Spectra

In this section, we show that the SF'S transport equations can be “tuned” to extract
energy from the resolved scales at the correct rate. We simulate a a moderately
convective ABL with the parameters prescribed in Table 2.1. The prescribed value
of the roughness height, zg, is such that z5/2z; < 1, where z; is the height of the first
grid level, thereby rendering the roughness height unresolved, as assumed earlier
in Sec. (2.1). A list of the important diagnosed parameters is shown in Table 2.2.
We begin by showing in Fig. (2.1) the following statistics: (i) velocity variances
(resolved + SFS) scaled with w?; (ii) vertical shear stress scaled with w?; (iii)
vertical heat flux scaled with Qy; (iv) mean potential temperature; and (v) mean
velocity. The magnitudes of the scaled variances (resolved + SFS) in Fig. (2.1)
are typical of moderately convective ABLs (Sullivan and Moeng, 1994). The near-
linear profiles of shear stress and vertical heat flux show that the simulation has
attained a quasi-steady state. The profiles of mean temperature and mean velocity
are representative of a well-mixed moderately convective ABL. In Fig. (2.2), we
show the nondimensional mean-gradients of potential temperature and velocity,
denoted by ¢; and ¢,,, respectively. Inaccuracies in LES predictions of ¢,, and ¢y,
have been a long-standing problem (Mason and Thomson, 1992) and have recently
been addressed in detail for the case of a neutral ABL by Brasseur and Wei (2010),
who have isolated the fundamental reasons that cause LES to overpredict ¢,,.
Brasseur and Wei (2010) also provide a systematic framework for accurate LES
predictions of ¢,, in the inertial surface-layer of the neutral ABL. Later in this
dissertation, we perform LES of the neutral ABL to determine the applicability of
the findings of Brasseur and Wei (2010) to the modeled SF'S conservation equations.
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Table 2.1. A list of important prescribed physical parameters. L,, L, and L. are the
physical dimensions of the computational domain in the x, y and z directions, respec-
tively. IV, is the number of grid points in the x-direction and similarly for IV, and V..
Qo is the prescribed surface temperature flux, zg is the roughness length, U, and V, are
the geostrophic wind velocity components in the x and y directions, I' is the lapse rate
above the capping inversion and f is the Coriolis parameter.

Prescribed physical parameters of LES

L. (m) 6000
L,(m) 6000
L.(m) 1600
N, N, 192
N, 144
Qo(Kms™) 0.20
2p(m) 0.05
Uy(ms™) 15
Vyms) 0
[(Km™) 0.003
Fs™) 0.0001

Table 2.2. A list of important diagnosed physical parameters. The variable wu, is the
friction velocity, w, is the mixed layer convective velocity scale, L is the Monin-Obukhov
length and z; is the inversion height.

Diagnosed physical parameters of LES

u,(ms™!) 0.68
w,(ms™t) 1.77
—L(m) 119
z;(m) 857

The turbulent spectra in the inertial subrange have the following form (Ten-
nekes and Lumley, 1972):

Ey(k) = 1483y k5 (2.29)
En(k) = 1.64 a 3753, (2.30)

In Egs. (2.29)-(2.30), Ey(r) and Ej (k) are the resolved two-dimensional ring spec-
tra of potential temperature and horizontal turbulent kinetic energy, respectively,

while « is the radial wavenumber (Peltier et al., 1996). The constants o and 3 are
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(i) Total velocity variances (resolved + SFS) scaled with w? (ii) The

(1,3) stress component scaled with w2 (iii) vertical heat flux scaled with Qg (iv) mean
potential temperature; and (v) mean velocity components, U and V. The geostrophic
velocity components are denoted by U, and V.

universal and are known as the Kolmogorov constant and the Corrsin-Obukhov

constant, respectively. The variable x denotes the plane-averaged rate of destruc-

tion of f-variance at the smallest scales while € denotes the plane-averaged dissi-

pation of turbulent kinetic energy at the smallest scales. While Egs. (2.29)—(2.30)
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Figure 2.2. Left panel: Nondimensional mean gradient of potential temperature, ¢y,
versus —z/L, where L is the Monin-Obukhov length. Right panel: Nondimensional
mean gradient of velocity, ¢,, versus —z/L. The top of the layer shown corresponds to
z/z; = 0.1. Legend — Solid line : modeled SFS conservation equations, dot-dash line :
empirical fit (Businger et al., 1971).

describe two-dimensional spectra, o and 3 have been scaled appropriately to cor-
respond to their values for one-dimensional spectra. This is done to facilitate easy
comparison between our results and observations as o and (3 are obtained typically
from measurements of one-dimensional spectra. Sreenivasan (1995; 1996) has done
an extensive compilation of the values of these universal spectral constants cited
in the literature. He found their consensus values to be a ~ 0.5 and § ~ 0.4 which
will also serve as our reference. At equilibrium, y is equal to the rate of variance

transfer from the resolved to the subfilter scales. Hence, we obtain the following

o0’
X = <_fj0_xj> ; (2.31)

where the () operator denotes averaging over a plane and §' = 0 — <§> Similarly,

expression for x:

we can derive an expression for € at equilibrium:

€= <—r;§ ng> : (2.32)




28

The RHS of Eq. (2.32) is the mean rate of transfer of turbulent kinetic energy from
the resolved to the subfilter scales.

In Fig. (2.3a)-(2.3c) we show two-dimensional turbulent spectra of potential
temperature, horizontal kinetic energy and vertical kinetic energy, denoted by
Ey(r), En(k) and E,(k), respectively. The spectra are plotted against xL /2,
where L = L, L, and k = m is the radial wavenumber. The spectra corre-
spond to mid-ABL levels where we expect the turbulence to be well resolved into
a discernible inertial range. In Fig. (2.3a) we plot temperature spectra holding
¢, = 0.10 constant while ¢y assumes the values (0.17,0.21,0.26). In Fig. (2.3b)-
(2.3c) are shown the horizontal and vertical velocity spectra, respectively, for
cg = 0.21 and ¢, = (0.06,0.10,0.15). Figure (2.3a) shows that the effects of
changing (cg, ¢;) are felt most at scales close to the filter cutoff. As ¢, is increased,
the spectra droop increasingly downward at the smaller scales implying greater
dissipation by the SF'S model. From Fig. (2.3b)-(2.3c), increasing ¢, has a similar
effect on the resolved-scale spectra of horizontal and vertical kinetic energy. Ex-
cessively low values of (¢g, ¢;) tend to result in a build up of variance close to the
filter cut-off. For instance, when ¢, = 0.06, the energy spectra droop upward im-
plying an unphysical build-up of energy close to the filter cutoff due to insufficient
dissipation by the SF'S model. These observations can be explained crudely in con-
ditions of well-resolved turbulence as follows. Increasing cy weakens the sink term
in Eq. (2.12) leading to larger SF'S fluxes which in turn increase the rate of drain of
variance from the resolved scales, based on Eq. (2.31). We are implicitly assuming
that the resolved-scale scalar gradient depends only weakly on the SF'S model in
regions of well-resolved turbulence. Similar arguments can be made accounting
for the effect of ¢, on the resolved kinetic energy spectra. Higher ¢, results in
larger magnitudes of the SF'S stresses which extract more energy from the resolved
scales through Eq. (2.32). Again, we are assuming that the resolved-scale velocity
gradients depend only weakly on the SFS model in regions where the turbulence
is well-resolved.

Hatlee and Wyngaard (2007) found that (cy, ;) = (0.21,0.08) best optimized
the run-averaged modeled SF'S stress and flux values, and the rate of variance trans-
fer in comparison with observations. As an illustrative case, we plot in Fig. (2.4)
the spectral constants o and [, associated with (cg,¢,) = (0.21,0.10). While the
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agreement between the consensus and LES values is better for § than for «, it
is reasonable to infer from Figs. (2.3)-(2.4) that the modeled SFS conservation
equations are able to extract energy from the resolved scales at approximately the

correct rate.

10.00 \ 100.0¢

1.00} 10.0}

Eq (k)
E; ()

0.10 1.0}

0.01 0.1 ‘

E. (k)

Figure 2.3. Two-dimensional (Wyngaard, 2010) resolved-scale spectra of: (a) potential
temperature (b) horizontal kinetic energy (c) vertical kinetic energy, versus nondimen-
sional horizontal wavenumber at mid-ABL. In (a), ¢, = 0.10 while in (b)-(c), cg = 0.21.
Ey(k) has the units K*m and E}, ,,(k) has the units m®s=2. The radial wavenumber, &, is
given by £ = \/k? + k3 where k1 2 are wavenumbers corresponding to the 1,2 directions.
The dash-dot line has a slope of (-5/3).
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Figure 2.4. The spectral constants  and a. The consensus values are shown using
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2.4 SFS budgets

In this section, we study the modeled SF'S stress and flux budgets given by Egs. (2.16)—
(2.17). Eddy-diffusivity closures are derived from the SFS conservation equations
by retaining solely isotropic gradient-production and modeled slow pressure strain-
rate covariance, using the Rotta model for the latter. Hence, it is of interest to

explore the relative contributions of different terms in the SF'S budgets.

2.4.1 SFS flux budgets

The SFS flux budgets are shown in this section for a 64x64x48 grid mesh. The
physical conditions describing the run (apart from the grid size) are identical to
those in Table 2.1. In Fig. (2.5) we plot the plane-averaged terms in the f; budgets
versus height for 0 < z < 1.2z;. To examine closer the budgets in the lower part of
the ABL, we also plot in Fig. (2.6) the SFS flux budgets for 0 < z < 0.3z; where

z; = 787.5m is the inversion height.
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Figure 2.5. Plane-averaged terms in the f; budgets plotted versus height. The inversion
height is 787.5m. The units on all the budget terms is mKs™2. Plot legend : (—)
Anisotropic gradient-production, (---) Isotropic gradient-production, (- —) Flux tilting,
(= +) Advection, (- --- — ) Modeled slow pressure strain-rate covariance, (— —) Time
tendency

2.4.1.1 f; and f, budgets

From Fig. (2.6), the dominant terms in the f; budget are flux-tilting, anisotropic
gradient-production and modeled slow pressure strain-rate covariance. Using HATS

data, Sullivan (2010) has studied the partitioning of SFS production in the scalar
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Figure 2.6. Plane-averaged terms in the f; budgets for 0 < z < 0.3z;. The units on all
the budget terms is mKs™2. Plot legend : (—) Anisotropic gradient-production, (---)
Isotropic gradient-production, (——) Flux tilting, (- -) Advection, (- --- —) Modeled slow
pressure strain-rate covariance, (— —) Time tendency

flux budgets into its isotropic and anisotropic components. He found anisotropic
production to dominate isotropic production in the f; budget and the reverse to
hold true of the f3; budget. Thus, Fig. (2.6) is consistent with his findings but
also highlights the importance of the tilting term. The mean flux-tilting term in

the f; budget, given by (—f3(0u1/0x3)), represents the generation of f; by the
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tilting of f3 into the 1-direction due to the presence of vertical shear. As the near-
wall region in the presence of a mean wind is shear-dominated, the tilting term
is most effective there and gradually decreases in magnitude with height in the
region below the inversion. Near the inversion, the presence of wind shear causes
the flux-tilting term to increase although to a lesser degree than near the surface as
the magnitude of f3 is considerably higher near the surface than at the inversion.

The gradient-production term can be split into: (i) anisotropic gradient produc-
tion, (—{; (00/0x;)) ; and (ii) isotropic gradient production, (—(2/3)e (96/9x1)).
The anisotropic gradient-production term involves gradients of # in all three di-
rections while its isotropic counterpart depends solely on the gradient in the 1-
direction. In our simulations, the mean temperature gradients in the horizon-
tal directions are insignificant compared to those in the vertical. As a result,
the isotropic gradient-production term is ineffective in generating horizontal SFS
fluxes. The anisotropic gradient-production term, on the other hand, has signifi-
cant contributions from (—7{; (08/9x5)). Consequently, it is maximum near the
surface and decreases monotonically with height in the region below the inversion.
As we approach the inversion, the vertical gradients of # become significant causing
the anisotropic gradient-production to increase in magnitude.

The flux tilting and anisotropic gradient-production terms are balanced by
modeled slow pressure strain-rate covariance. The horizontal advection terms,
O (fiu1) /Oxy and O (fatiy) /Oxg, are zero due to horizontal homogeneity while the
vertical advection term is negligible compared to the other terms in the budget.

The f; budget over most of the ABL is qualitatively similar to the f; budget
except near the inversion. The magnitudes of the various terms in the budget,
however, are much smaller as |0ty /0z3| < |01 /0x3| and |7%] < |7%], on average.
Near the inversion, the tilting and anisotropic gradient-production terms in the
fo budget have signs opposite to those in the f; budget. The difference in the
sign of the tilting terms can be explained by observing that 0 (uy) /0z > 0 and
0 (ug) /0z < 0, near the inversion.

In Fig. (2.7) we plot the horizontal heat fluxes (resolved and SFS) nondimen-
sionalized with the surface heat flux, @y, obtained using two SFS models: (i) the
modeled SFS conservation equations; and (ii) an eddy-diffusivity closure, wherein
7'3- = -2 ngij and f; = —Kj (85 / &Ui). We defined the eddy-diffusivity for mo-
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Figure 2.7. Plot showing predicted nondimensional horizontal heat fluxes (resolved
and SFS) as functions of height. Top panel: from modeled SFS conservation equations,

bottom panel: from eddy-diffusivity closure.

mentum, K,,, earlier in Sec. (2.1.4). The eddy-diffusivity for heat, K}, is given by
Ky, = [1+4 2lsps/A] Ky, (Moeng, 1984), where [gps is the length scale for the SE'S
eddies (see Sec. (2.1.2.4)).

The modeled SEFS conservation equations (top panel) predict significant SFS

horizontal fluxes near the surface due to flux tilting and anisotropic gradient-

production. The eddy-diffusivity closure (bottom panel) is unable to produce any

horizontal SF'S flux due to its dependence solely on isotropic gradient-production.
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These findings are in agreement with those of Hatlee and Wyngaard (2007) who
found that eddy-diffusivity closures underpredict the SEF'S horizontal fluxes severely.

2.4.1.2 f3 budget

The f3 budget is dominated by isotropic gradient-production and modeled slow
pressure-strain covariance. The dominance of isotropic over anisotropic production
is consistent with the studies by Sullivan (2010). Near the surface, positive buoy-
ancy causes the nonlinear stretching term, (f3 (0us/0x3)), to attain positive values,
but it plays a small role in the overall budget. Anisotropic gradient-production,
given by <(—T§f38§ / 81’3) >, is insignificant compared to isotropic gradient-production,
((—(2/3) € 800/0x3) ) as |75] < [(2/3)e|. The dominance of isotropic production in
the modeled f3 budget suggests that f3 is more suitable to eddy-diffusivity closures
than f; or fs.

2.4.1.3 Role of SF'S advection in the SFS flux budgets

From the previous section, the mean advection terms play an insignificant role in
the modeled SFS flux budgets. This does not imply, however, that the advection
terms are insignificant in the instantaneous budgets as well.

Deardorff (1973) found the advective term in the SFS rate equations gave rise
to large truncation errors that led to numerical instabilities. Hatlee and Wyngaard
(2007) found that the SFS flux equations without the advection terms behave in-
correctly when the coordinate system translates at a constant velocity, thereby
violating Galilean invariance. We found that excluding the SF'S advection terms
in the flux conservation equations has no effect on the mean values of the SF'S fluxes
themselves. It does affect the resolved-scale potential temperature spectrum sig-
nificantly. In Fig. (2.8a)-(2.8b) we show the resolved-scale potential temperature
spectrum at mid-ABL with and without the advection terms in the SFS flux con-
servation equations. We retain the advection terms in the SFS stress equations.
Omitting the advection terms causes the potential temperature spectrum to ex-
hibit a spurious build up of energy at the smaller scales and deviate considerably
from a —(5/3) slope (in log-log axes) in the inertial range. Figure (2.8) shows that

SF'S advection, while negligible in the mean, plays a crucial role in the conservation
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Figure 2.8. Resolved-scale potential temperature spectra at mid-ABL for (c;,cg) =
(0.10,0.21): (a) with advection of SFS fluxes; and (b) without advection of SFS fluxes.
The straight line has a slope of —5/3.

equations, as without them the SF'S model is unable to extract energy adequately

from the resolved scales leading to unphysical potential temperature spectra.

2.4.1.4 Summary

We summarize below the main inferences from our discussion of the modeled SFS

flux budgets:

o Eddy-diffusivity closures are based on the premise that the SFS flux bud-
gets are in equilibrium between isotropic gradient-production and modeled
slow pressure-strain-rate covariance. Our LES results suggest — in agreement
with observations (Hatlee and Wyngaard, 2007) — that this assumption is
justifiable for f3 but not for the horizontal SF'S fluxes, f; and f.

e Flux-tilting and anisotropic gradient-production are the two dominant sources
of production in the f; and fy budgets. Flux-tilting rotates vertical SFS
fluxes into horizontal directions in regions of high shear. Anisotropic gradient-
production produces horizontal scalar SF'S fluxes even in the absence of hor-

izontal scalar gradients. The absence of flux tilting and anisotropic gradient-
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production in eddy-diffusivity closures causes them to underestimate the val-
ues of horizontal SFS fluxes (Hatlee and Wyngaard, 2007).

e The advection terms in the SFS flux conservation equations are negligible in
the mean but are crucial in enabling the SF'S model to extract energy from
the resolved scales. Excluding the advection terms yields incorrect potential
temperature spectra that lack an inertial range and exhibit spurious build

up of energy at the smaller scales.

2.4.2 SFS stress budgets

Using HATS data, Sullivan (2010) found that anisotropic production dominates
isotropic production in the 79 budgets and the reverse to be true of the 7% budget.
We plot the budgets of the six 74 components in Fig. (2.9). To understand better
the budgets in the lower part of the ABL, we plot the SFS stress budgets for
0 < z < 0.3z; in Fig. (2.10).

2.4.2.1 ¢ budgets

(i) 7 : Fig. (2.10) shows anisotropic production to be positive in the 7} budget.
This is consistent with strong anisotropy in the shear-dominated surface layer
which yields (7)) > 0 and ({(75), (%)) < 0 (Sullivan et al., 2003). Anisotropic
production is much larger than isotropic production, which is in agreement with
the findings by Sullivan (2010). The buoyant contribution, (— (2¢/30¢) f3), is
negative as f3 > 0, on average. The modeled slow pressure strain-rate term drives
TZ- towards zero, i.e., towards isotropy. It is negative in sign as it is modeled as
being proportional to (—7¢}). The mean horizontal advection terms, 0 <ﬂﬂ'§a> /0x;
where i = (1,2), are zero due to homogeneity in the plane while mean vertical
advection is negligible.

(i) 75, : By definition, the sum of the deviatoric SFS stresses, 74 (summation

i
implied), is identically zero. Hence, the anisotropic production terms in their bud-
gets must also sum to zero. The same is true of other production and destruction
terms as well. Consequently, the sign of anisotropic production in the 7&, budget

is opposite that in the 7¢ budget. As in the 7, budget, anisotropic production is



38

considerably larger in magnitude than the isotropic production term. The buoy-
ancy term is negative and the isotropic production term positive for reasons similar
to those applicable to the ¢, budget. The modeled slow pressure strain-rate term

is positive as <T§2> < 0. The mean advection terms are negligible.
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Figure 2.9. Plane-averaged values of terms in the SFS stress budgets plotted versus
height. The units on all the budget terms are m?s~3. The inversion height is 787.5m.
Plot legend: (—) Anisotropic production, (---) Isotropic production, (— —) Buoyant
production, (- -) Advection, (- --- —) Modeled slow pressure strain-rate covariance, (—
—) Time tendency
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Figure 2.10. Plane-averaged values of terms in the SF'S stress budgets for 0 < z < 0.3z;.

The units on all the budget terms are m?s™3. The inversion is 787.5m. Plot legend:

(—) Anisotropic production, (---) Isotropic production, (— —) Buoyant production, (—
-) Advection, (— --- — ) Modeled slow pressure-strain-rate covariance, (— —) Time
tendency

(iii) 7% : The buoyancy term, ((4g/30q) f3), appears as a production term
in the budget. Isotropic production, < —2/3) 6533> is negative as Ss3 > 0, on
average, due to positive buoyancy. Anisotropic production is negative owing to

its traceless nature. The modeled slow pressure-strain-rate term is positive as
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(7§3) < 0. Once again, the mean advection terms are insignificant.

2.4.2.2 7Y, budgets

Figure (2.10) shows that the 7% and 75 budgets are in balance mainly between
isotropic production and modeled slow pressure-strain-rate covariance. The domi-
nance of isotropic over anisotropic production is consistent with studies by Sullivan
(2010). Buoyant effects are unimportant in Fig. (2.10) but might become signif-
icant at coarser resolutions (Wyngaard, 2004). Thus, for resolutions comparable
to that in Fig. (2.10), eddy-diffusivity closures can be expected to fare reasonably
for the components 7 and 7.

The 7, budget is in equilibrium primarily between anisotropic production and
modeled slow pressure-strain-rate covariance. Both the resolved and SFS compo-
nents of the horizontal shear stress (1-2 plane) are much smaller in magnitude than

those of the other stresses.

2.4.2.3 Role of advection in the SFS stress budgets

From our discussion of the SF'S flux budgets, the SF'S advection terms are necessary
to yield realistic potential temperature spectra that do not exhibit a large build
up of variance at the smaller scales. We find the advection terms play a similar
role in the SFS stress conservation equations. In Fig. (2.11a)-(2.11b) we plot the
horizontal kinetic energy spectra at mid-ABL with and without SFS advection,
respectively. From Fig. (2.11Db), the lack of SF'S advection results in a large build
up of energy at the smallest resolved scales and the absence of a well-defined
inertial range. The spectra of resolved vertical velocity, shown in Fig. (2.12), also
displays a build up of energy at the smallest resolved scales when there is no
SFS advection, although there is a discernible inertial-range unlike Fig. (2.11b).
Hence, we conclude that the SF'S advection terms are essential to ensure that the
SEF'S model extracts energy from the resolved scales in a physically meaningful

manner.
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Figure 2.11. Resolved-scale horizontal kinetic energy spectra at mid-ABL for (¢;, ¢p) =

(0.10,0.21): (a) with SFS advection; (b) without SFS advection. The straight line has a
slope of —5/3.
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Figure 2.12. Resolved-scale vertical kinetic energy spectra for (c,,cp) = (0.10,0.21):

(a) with SFS advection; (b) without SFS advection. The straight line has a slope of
—5/3.
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Figure 2.13. Plot showing 74, /u? versus z/z;. Left panel: SFS conservation equations,
right panel: eddy-diffusivity closure.

2.4.2.4 Effect of anisotropic production on predictions of 79,

In Fig. (2.13) we plot the nondimensional deviatoric stresses, 74 /uZ, obtained
using two SFS models: (i) the SFS conservation equations; and (ii) an eddy-
diffusivity closure which models the SFS stresses as Tg = —Kmbij, where K, =
ceAy/e is the eddy-diffusivity and Eij =2 32-]- is the resolved-scale deformation
rate. Following Moeng and Wyngaard (1988), we set ¢, = 0.1. We first discuss
the lower part of the ABL corresponding to 0 < z/z; < 0.2.

In the convective ABL with a mean wind, both shear and buoyancy are sources
of anisotropy at the energy-containing scales (Kaimal et al., 1972). We expect
isotropy at scales much smaller than the production scales (Kaimal et al., 1972;
Lumley and Panofsky, 1964). Closer the filter cutoff is to the energy-containing
range, the more we expect the anisotropy of the production scales to spill over
into the subfilter scales. Near the surface, the energy-containing scales vary as z
and hence, the subfilter scales are forced to be anisotropic regardless of the grid
resolution. Thus, a mean wind in the 1-direction induces strong anisotropy near
the surface such that (r&) > 0. This shear-induced anisotropy is counteracted

in the convective ABL by buoyancy (Katul et al., 1995), which we recall tends
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Figure 2.14. Plot showing 7%, /u? versus z/z;. Left panel: SFS conservation equations
without SFS buoyancy production , right panel: SFS conservation equations without
SE'S anisotropic or buoyant production.

to increase 74, and decrease 7{,. The near-wall region in a moderately convective
ABL is shear-dominated and hence, the net effect of shear and buoyancy is to yield
(r¢,) > 0 and (1) < 0 (Chen and Tong, 2006).

Figure (2.13) shows that the SFS conservation equations exhibit strong SF'S
anisotropy near the wall with (7{}) > 0. The other two normal components are
such that (7%,) < 0 and (%) < 0, due to the traceless nature of 7¢,. Compared to
the SF'S conservation equations, the eddy-diffusivity closure yields severely reduced
levels of SF'S anisotropy near the surface. To examine the source of anisotropy near
the surface in the case of the SFS conservation equations, we plot in Fig. (2.14)
74 Ju? obtained: (i) without the buoyancy term (left panel); and (ii) without the
anisotropic production or buoyancy terms (right panel). Wyngaard (2004) used
scaling arguments to show that the effect of buoyancy on the SF'S budgets depends
on the grid resolution, becoming more important at coarser resolutions. Compar-
ing the left panel of Fig. (2.14) to that of Fig. (2.13), at the current resolution,
buoyancy appears to influence the values of (72, ) only weakly in the mixed layer,
where 7 attains slightly higher values with the inclusion of the SFS buoyant term

than without. Near the surface, the absence of SFS buoyant production results
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in slightly increased levels of SF'S anisotropy due to the lack of competition be-
tween shear and buoyancy in the conservation equations. The effects of anisotropic
production are more apparent from a comparison of the right panel of Fig. (2.14)
and the left panel of Fig. (2.13). Omitting the anisotropic production term causes
the SF'S conservation equations to predict negligible levels of anisotropy near the
surface. Hence, the anisotropic production term is essential for the conservation
equations to yield realistic predictions of 72 in the near-wall region. The eddy-
diffusivity closure doesn’t account for anisotropic production and subsequently,
yields very low SF'S anisotropy.

The SFS conservation equations and the eddy-diffusivity closure also differ in
their 74 predictions over the rest of the ABL although to a lesser extent than
near the surface. Figure (2.13) shows that the conservation-equation-based closure
yields (r5) > 0 and ({111), (T22)) < 0 over a wider range of z/z; in the mixed
layer than does the eddy-diffusivity closure. The anisotropy of subfilter scales in
the mixed layer is due to buoyancy, as shear-induced anisotropy is negligible in the
mixed layer, where the mean gradients are weak. But the direct effects of buoyancy
on the SFS budgets are resolution-dependent (Wyngaard, 2004). In Fig. (2.15),
we plot the scaled deviatoric stresses, 72, /u?, obtained using the SF'S conservation
equations but with a finer grid containing 192x192x144 points. A similar plot
corresponding to the eddy-diffusivity closure is shown in Fig. (2.16). The physical
conditions for the fine-resolution runs are identical to those for the coarser runs.

The SF'S conservation equations continue to exhibit significant SF'S anisotropy
near the surface in the high-resolution run, due to reasons outlined earlier. For

z/z; > 0.15, however, 74 is negligible indicating isotropy at the subfilter scales.

This suggests that the anisotropy observed at mid-ABL levels in Fig. (2.13) (left
panel), while due to buoyancy, depends also on the coarseness of the grid. In
the mixed layer, the energy-containing eddies scale on z;, the inversion height.
Thus, a sufficiently fine grid ensures that the filter cutoff is far removed from the
energy-containing scales, yielding isotropy at the subfilter scales.

At the higher resolution, the eddy-diffusivity closure yields near-zero levels of
SFS anisotropy (Fig. (2.16)) throughout the ABL, which can be attributed to the

absence of the anisotropic production term in such closures.
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Figure 2.15. 72 /u2 versus z/z;, obtained using SFS conservation equations in high-
resolution LES (1922x144 grid) . Left panel: 0 < z/z; < 1.0, right panel: 0 < z/2; < 0.2
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Figure 2.16. 7 /u? versus z/z;, obtained using an eddy-diffusivity closure in high-
resolution LES (192%x144 grid) . Left panel: 0 < z/z; < 1.0, right panel: 0 < z/2z; < 0.2

2.4.2.5 Summary

We summarize below our discussion of the SE'S stress budgets.
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o Eddy-diffusivity closures assume that the budgets of all the SF'S stress com-
ponents are in equilibrium between isotropic production and modeled slow
pressure strain-rate covariance. Our LES result suggest that this assumption
is too simplistic for the 7¢  budgets where anisotropic production dominates
isotropic production. It is justifiable for the 7{; and 7% budgets, however,
where isotropic production is considerably more significant than anisotropic

production.

e The presence of anisotropic production in the SFS budgets is essential for

realistic predictions of 79 near the wall.

e The SFS advection terms are negligible in the mean but are necessary in
the instantaneous rate equations for the SFS model to extract energy from
the resolved scales in a physically realistic manner. Omitting the advection
terms leads to a spurious build up of resolved-scale turbulent kinetic energy

at the smaller scales.

2.5 Comparison of statistics from high-resolution
LES with HATS data

In the previous sections, we used coarse-mesh LES and qualitative arguments to
gain insight the relative contributions of various terms in the modeled SF'S budgets.
In this section, we further test the performance of the SF'S conservation equations
by comparing surface-layer statistics obtained using high-resolution LES with those

obtained from the HATS experimental campaign (Sullivan et al., 2003).

2.5.1 Description of the HATS study

The HATS study used the array filtering technique which was developed first by
Tong et al. (1998) and has since been adopted in numerous experimental studies
(Horst et al., 2003; Kleissl et al., 2003; Porté-Agel et al., 2001). A schematic of
the experimental configuration is shown in Fig. (2.17). The array comprises two
rows of sonic anemometers facing the mean wind, five in the top row and nine in

the bottom row. Following Sullivan et al. (2003) we filter the fields in streamwise
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Figure 2.17. Schematic showing the array configuration of sonic anemometers used in
the HATS experiment (figure reproduced from (Horst et al., 2003)). The variables S
and Sy denote the spacings between the sonics in the top and the bottom arrays. The
distances of the top and the bottom arrays from the ground are denoted by zs and zg4,
respectively.

and crosswise directions using a Gaussian and top-hat filter, respectively. As the
crosswise filter can consist of a maximum of five or nine sonics, it is required to be
compact in physical space. This constraint makes the top-hat filter a natural choice
for the crosswise filter. In the streamwise direction, filtering is done using Taylor’s
“frozen field” hypothesis wherein the measured time series is used as a surrogate for
a spatial record which is then filtered spatially. Tong et al. (1998) analyzed carefully
the various potential sources of error in applying the Taylor approximation and
concluded that they were sufficiently small to permit its use. The high frequency of
the sonics (20 Hz) implies a much finer spatial resolution in the streamwise direction
— from Taylor’s hypothesis — than in the crosswise direction, which permits the use
of a Gaussian filter in the streamwise direction. The Gaussian filter, in contrast
to the top-hat filter, decays slowly in physical space but is compact in spectral
space. The studies by Chen and Tong (2006) and Chen et al. (2009) found that
the differences between the statistics obtained using a top-hat and a Gaussian filter
in the streamwise direction are much less than those between the true statistics
obtained from the field data and the statistics corresponding to different SF'S
models. Hence, for the purposes of testing SF'S models, the use of either the top-
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hat or the Gaussian filter in the streamwise direction is justifiable. Finally, there is
the issue of comparing statistics obtained from fields filtered in two dimensions to
those obtained from LES where the fields are filtered in all three directions. Tong
et al. (1998) found that two-dimensional filtering in horizontal planes is a good
approximation to filtering in three dimensions. Higgins et al. (2007) found that
two-dimensional horizontal filtering is a reasonable surrogate for three-dimensional
filtering under unstable conditions but recommended two-dimensional filtering in
vertical planes parallel to the mean wind — when possible — under near-neutral
and stable conditions. The HATS experimental setup, by design, does not permit
vertical filtering of the fields. Thus, in our current study, we use two-dimensional
filtering in horizontal planes to process the HATS data.

Sullivan et al. (2003) demonstrated that various nondimensional statistics ex-
hibit good collapse across a broad range of stabilities and filter widths, when
plotted against the nondimensional parameter, A, /A, where A, is the peak in
the vertical velocity spectrum, and A is the filter width. The parameter A, /A is
a measure of how well the turbulence is resolved. High values of A,,/A imply a
filter width much smaller than the energy-containing scales and, thereby, condi-
tions of well-resolved turbulence. Low values of A, /A correspond to conditions
where the filter width is of the order the integral length scales, as is the case in
the near-wall region, coarse LES, stably stratified layers, etc. Thus, the parameter
A, /A captures the effects of both stability and scale. Following Sullivan et al.
(2003), in our comparison of the HATS data with LES results, we plot statistics
against A, /A. In particular, we are interested in the following statistics: mean
SFS stresses, SF'S variances, mean SFS fluxes, and important production terms
in the SF'S budgets. A drawback of using A, /A is that it contains only surface-
layer information (through A,) and lacks “outer scale” information — such as
the boundary layer height — which have been shown to influence the structure
of horizontal motions near the surface (Kaimal and Finnigan, 1994; Khanna and
Brasseur, 1997, 1998). The boundary layer height wasn’t measured in the HATS
experiments. In spite of the lack of outer scale information in the parameter A, /A,
the studies by Sullivan et al. (2003) show that it is quite effective in describing

statistics consistently across a broad range of stabilities.
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Figure 2.18. HATS data, unstable cases: The partitioning of SFS production into
isotropic, anisotropic and buoyant components for the deviatoric stresses, Tga, and 71d3,
plotted against the nondimensional parameter A,,/A. The production terms have been
scaled using 0.93e3/2/A.

2.5.2 HATS: ¢ and 7, budgets

In Fig. (2.18), we show the scaled anisotropic, isotropic and buoyant production
terms for the diagonal components, 7¢ = and 7%, plotted versus A, /A. Fig-
ure (2.18) is similar to results obtained by Sullivan (2010) the only difference
being that we have also included the buoyant terms. The production terms have
been scaled with ¢ = 0.93 ¢*2/A. Following Sullivan et al. (2003), we compute A,
using A, = 27(U)7,, where (U) is the mean wind in the streamwise direction and

7, is the Eulerian time scale obtained by assuming an exponential autocorrelation
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function for the vertical velocity, R(t) = exp(t/7,).

At high values of A, /A, the turbulence is well-resolved and the production
terms in the SFS budgets are dormant. They start to become significant at lower
values of A,,/A, where the subfilter scales account for a significant portion of the

total stresses and fluxes. We now describe the important trends in Fig. (2.18).

2.5.2.1 7% budgets

The magnitude of scaled anisotropic production in the 7¢, budgets increasingly
dominates that of isotropic production as A, /A decreases. This trend is most
apparent in the 7{, budget where the scaled magnitude of isotropic production is
much lower than that of anisotropic production across the entire range of A, /A
considered in our study. Isotropic production is more significant in the 75, and 7,
budgets than in the 74 budget, but fails to keep up with anisotropic production
in magnitude at lower A, /A. Anisotropic production is positive in the 74 budget
and negative in the (7, 7%) budgets due to its traceless nature. As expected, the
trends exhibited by the scaled anisotropic and isotropic production are identical
to those observed by Sullivan (2010).

The SFS buoyant terms appear as production terms in the 7¢ budget and
as destruction terms in the (7¢,7) budgets. Although they assume identical
analytical forms in the (7%, 7%,) budgets, their effects are more pronounced in the
7, budget than in the 7% budget due to smaller magnitudes of the other production
terms (anisotropic and isotropic) in the former. The trends in the variation of
buoyant production with A, /A from Fig. (2.18) are less clear when compared to
that of anisotropic production. Based on scaling arguments put forth by Wyngaard
(2004), the magnitude of buoyant production scaled with € ~ (u(A))?/A yields,

i _ 99 (L ~I7 () A (2.33)
€ Ogu? \ A Opu? \ A

]uoy denotes the intensity scale of buoyant production for the filter scale,

where P
A. The variables [, # and u denote the length, temperature and velocity scales
corresponding to the energy-containing range. If the factor (g/0g) (6/u?), which

has the dimensions of an inverse length scale, doesn’t change appreciably, then
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Figure 2.19. HATS data, unstable cases: Array-wise partitioning of SFS production
into isotropic, anisotropic and buoyant components for the 7'??3 budget, plotted against
the nondimensional parameter A, /A. The production terms have been scaled using
0.93¢3/2/A.

Eq. (2.33) implies that the relative importance of buoyant production in the SFS
budgets depends on both (I/A) and A. In Fig. (2.19), we show the 7% budget
for the four array configurations used in HATS, each corresponding to a fixed
filter width, A. Note that arrays 2 and 3 correspond to different physical heights
of the sonic array. As the buoyant terms in the 7¢ budgets are merely scalar
multiples of each other, Fig. (2.19) is a representative case. The magnitude of
scaled buoyant production attains its largest and least values for arrays 1 and 4,

respectively, which also corresponds to the arrays with largest and the smallest
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filter widths. For fixed A, the role of buoyant production in the budget diminishes
with decreasing {/A. Thus, the buoyant terms in the 7‘5 budgets depend on both
(I/A) and A, in agreement with Eq. (2.33).

The other terms in the budget include modeled slow pressure strain-rate covari-
ance, advection and the transport terms. Of these terms, the first is the principal
sink in the SFS budgets (Wyngaard, 2004). Based on Fig. (2.18), balance of the 72
budgets requires modeled slow pressure strain-rate covariance to be the dominant
sink term in the 7{; budget, and the dominant production term in the (75, 75%)
budgets.

2.5.2.2 7{ budget

In contrast to the 7¢, budgets, isotropic production dominates anisotropic pro-
duction in the 78 budget. Anisotropic production, while non-zero, is smaller in
magnitude than isotropic production across the entire range of A,,/A considered
in our study, although it exhibits a marked increase for A, /A < 2. The buoyant
terms assume small values and play a negligible role in the budget. For the budget
to be balanced, the modeled slow pressure strain-rate has to be a gain. We infer
that for A, /A > 2, isotropic production is more significant than anisotropic pro-
duction in the 7{4 budget. For A, /A < 2, anisotropic production exhibits a sharp

increase but remains smaller in magnitude than isotropic production.

2.5.3 LES: 7¢, and 7{; budgets

In order to compare the modeled SF'S budgets with those obtained from HATS, we
now present results obtained from high-resolution LES using two closures: (i) the

modeled SF'S conservation equations; and (ii) an eddy-diffusivity closure described
earlier in Sec. (2.4.1.1).

2.5.3.1 Obtaining the wavenumber corresponding to the vertical ve-

locity spectral peak

We plot the various terms in the SFS budgets as a function of A, /A, where
A = (AzAyAz)"? is the filter width and A,, is the peak of the two-dimensional

vertical velocity spectrum, as obtained by fitting the following function, E(k), to
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Figure 2.20. Two-dimensional vertical velocity spectra for a moderate convective ABL
from a 192%x144 simulation. The spectra are shown for the heights 0 < z/z; < 0.1. The
dashed lines denote best fits as prescribed by Eq. (2.34). The dash-dot line has a slope
of —5/3.

the spectrum (Peltier et al., 1996).

a1 l’s’k
B(r) = — 258 (2.34)
[e2 + (/il)z} /

In Eq. (2.34), (c1, ¢2) are constants and & is the radial wavenumber. The character-
istic length and intensity scales are denoted by [ and s, respectively. The modeled
spectrum F(k) has a maximum at x ~ 1/l and exhibits a —5/3 slope for £ > 7'

In Fig. (2.20), we plot the resolved-scale vertical velocity spectrum and the
corresponding best fit from Eq. (2.20), for 0 < z/z; < 0.1, using both the SF'S con-
servation equations and the eddy-diffusivity closure. Both the plots in Fig. (2.20)
utilize a 192x192x144 grid and have physical conditions identical to those described
in Table 2.1. The modeled spectrum, F(k), predicts the peak in the resolved-scale
spectrum satisfactorily for both closures, although it is in slightly better agreement
with spectra obtained using the SF'S conservation equations at higher wavenum-
bers. A visual inspection of Fig. (2.20) reveals that the peak in the vertical velocity

spectrum obtained using the SF'S conservation equations is associated with smaller
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scales (higher wavenumbers) than that obtained using the eddy-diffusivity closure.

2.5.3.2 Design of LES runs

The unstable cases in HATS correspond to different surface heat fluxes, filter widths
and presumably, boundary layer heights. Indeed, one of the interesting findings by
Sullivan et al. (2003) is the efficacy of the scaling parameter A, /A, as observed
in the good collapse of various resolved and SFS statistics across a wide range
of scale and stability. Hence, we present LES statistics as a function of A, /A
combining results from five LES runs whose specified and diagnosed characteristics
are described in Table (2.3) and Table (2.4), respectively. The runs describe weakly
to moderately convective ABLs with their (z/L) values ranging from —1.21 to —7.2.
We label the runs as ‘CONV1’, ‘CONV2’, etc., in increasing order of their —z;/L

values.

Table 2.3. A list of important prescribed physical parameters. L,, L, and L. are the
dimensions of the computational domain in the x, y and z directions, respectively. Qg is
the prescribed kinematic surface potential temperature flux, 2o is the roughness length,
Uy and Vj are the geostrophic wind velocity components in the x and y directions, I' is
the lapse rate above the inversion and f is the Coriolis parameter.

Specified physical parameters of LES runs
CONV1 CONV2 CONV3 CONV4 CONV5

Ly, L,(m) 6000 3000 3000 6000 6000
L.(m) 1600 1000 1000 2000 1600
N,.N, 192 192 216 192 192
N, 144 160 192 160 144
Qo(Kms™) 0.02 0.2 0.2 0.2 0.2
Uy(ms™") 15 15 15 15 15
V,(ms™1) 0 0 0 0 0
2o(m 0.05 0.16 0.16 0.16 0.05
I'(Km™) 0.003 0.003 0.003 0.003 0.003
f(s™) 0.0001 0.0001 0.0001 0.0001 0.0001

2.5.3.3 The budgets for 7¢, and 75

In Fig. (2.21), we show the terms in the modeled 7 and 73, budgets, scaled
with € = 0.93 ¢*2/A, plotted versus A, /A. A similar plot for the 7% and 7%
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Table 2.4. A list of important diagnosed physical parameters. The variable z; is the
inversion height, wu, is the friction velocity, L is the Monin-Obukhov length and w, is
the mixed layer convective velocity scale.

Diagnosed physical parameters of LES runs

CONV1 CONV2 CONV3 CONV4 CONV5

w, (ms ) 0.55 0.72 0.71 0.71 0.63
w, (ms™1) 0.8 1.52 1.51 1.71 1.77
—L(m) 657 142 139 140 119
2(m) 795 537 531 767 857
—z/L 1.21 3.78 3.82 5.47 7.2

budgets is shown in Fig. (2.22). The range of A, /A considered in Figs. (2.21)-
(2.22) corresponds to 0 < z/z; < 0.1, which is approximately the depth of the
surface layer. The results from various runs collapse well and vary smoothly with
Ay, /A. The two major trends in Figs. (2.21)—(2.22) are: (i) the dominance of
anisotropic production for the diagonal stresses, 72 ; and (ii) the dominance of
isotropic production for the shear component, 7{;.

As we approach lower A, /A, the modeled ¢, budgets simplify to a balance
mainly between anisotropic production and modeled slow pressure strain-rate co-
variance (labeled ‘sink’ in the plots), in agreement with the behavior of the ob-
served 72 budgets as implied by Fig. (2.18). The effects of isotropic production
and advection are insignificant. The buoyant terms are relatively more significant
in the 7%, and 7% budgets than in the 7, budget, but their overall effects in all
three budgets are negligible.

The 7% budget is dominated by isotropic production and the modeled slow
pressure strain-rate terms across the entire range of A, /A considered in our runs.
The sharp increase in the magnitude of anisotropic production in the HATS data
for A, /A < 2 is absent in the modeled 7{; budget. Anisotropic production in
the 7% budget is determined primarily by the term —7% (9u/9z) (Chen and Tong,
2006). Later, we see that the modeled SFS budgets underpredict 7% compared to
observations, which might partially account for the underprediction of anisotropic
production.

An interesting feature of Figs. (2.21)—(2.22) is the tendency of the scaled budget

terms to asymptote at lower values of A, /A. In particular, the scaled dominant
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Figure 2.21. Modeled 7, and 7, budgets. The horizontal lines at low A, /A indicate
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production and destruction terms in both the 7¢, and 7% budgets appear to ap-

proach constant values with decreasing A,,/A. Sullivan et al. (2003) showed that
the filtering operation is equivalent to Reynolds averaging at very low values of
A, /A, In other words, A,/A — 0 corresponds to the “RANS limit” (RANS
stands for Reynolds Averaged Navier-Stokes) and the asymptotic values of the
dominant, scaled terms in the SFS budgets at low A, /A are indicative of the SF'S

model’s performance as we approach this limit. The horizontal solid lines shown in
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Figs. (2.21)-(2.22) denote theoretical values in the RANS limit for the anisotropic
production term in the case of the 7¢, budgets, and the isotropic production term
in the case of the 74 budget. In Appendix A, we derive analytically the limits
for the anisotropic production term while infering that for the isotropic produc-
tion term through HATS data. The values of the dominant production terms in
the modeled 7, and 7% budgets at low A, /A are in good agreement with their

theoretical values in the RANS limit. Those in the modeled 75, and 7% budgets
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are underpredicted slightly. While these asymptotic limits are not observed in the
HATS data for convectively unstable conditions, we recover these limits for stably
stratified conditions, discussed in the next chapter. The values of A, /A associated

with stable stratification are typically lower than those for unstable stratification.

2.5.3.4 Significance of the LES to RANS transition

Near the wall, the horizontal length scale of the vertical velocity spectrum scales
as z implying that turbulent motions in that region will always be under-resolved,
irrespective of the grid resolution (Khanna and Brasseur, 1997). Thus, as we ap-
proach the wall, the parameter A,,/A tends to zero and the SFS model is required
to represent an increasing fraction of the total turbulent stresses and fluxes. Ide-
ally, an SF'S model would provide a smooth transition from LES to RANS towards
the wall. In practice, this turns out to be a challenging requirement for SF'S models
to meet (Sullivan et al., 1994). For instance, one of the main features of the two-
part eddy-viscosity model developed by Sullivan et al. (1994) is that it is designed
to achieve a transition from LES to RANS towards the wall by using a fluctuating
and mean-field viscosity, the latter representing near-wall effects. In their stud-
ies, Sullivan et al. (1994) calculated the shear production term in the prognostic
equation for e after subtracting the mean shear from the resolved-scale strain rate.
Our results in the previous section suggest that the modeled conservation equa-
tions have the potential to enable a smooth transition from LES to RANS without

using ad-hoc corrections.

2.5.4 SFS total stresses
2.5.4.1 HATS results

In Fig. (2.23) we show the magnitudes of the total (deviatoric + isotropic) SFS
stresses, 7., and 7%, normalized with the magnitudes of the corresponding total
stresses (resolved + subfilter), as a function of A,/A. The total stresses are
denoted as (u'u’)r, (v'v')r and so on. Figure (2.23) is identical to results presented
by Sullivan et al. (2003) except that we have shown merely the unstable cases. The
magnitudes of the normalized stresses increase with decreasing A,,/A, as expected.

The fraction of the total stresses residing at the subfilter scales at a given value
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Figure 2.23. HATS: SFS stresses as a fraction of the total stresses (resolved + SFS)
for convectively unstable cases.

of A, /A is typically larger for 755 than is for either 7, or 7y, (Sullivan et al.,
2003), which reflects the difference in the spectral content of horizontal and vertical
velocity fluctuations. The collapse is considerably better for 754 than for the other

three 7;; components.

2.5.4.2 LES results

Figures. (2.24)—(2.25) are plots similar to Fig. (2.23), but obtained from LES with
the SEF'S conservation equations and the eddy-diffusivity closure. Compared to

Fig. (2.23), both closures underpredict the scaled magnitudes of 7y; and 7,, at
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Figure 2.24. LES: SFS stresses as a fraction of the total stresses (resolved + SFS),

obtained using the SFS conservation equations. Color legend: — :
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high A, /A but overpredict at lower values of A, /A. The scaled magnitudes of
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733 and 7,5 are predicted reasonably by the two closures at low A,,/A . At higher

A, /A, however, their magnitudes are underpredicted severely. As we shall see

in later plots, this is a recurring trend in our LES resuls with both SFS models,

namely, the underprediction of various statistics at high A,,/A when compared to

HATS data. We speculate that this could be a consequence of the differences in
the type of filtering used in LES and for the HATS data.
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Figure 2.25. LES: SFS stresses as a fraction of the total stresses (resolved + SFS),
obtained using the eddy-diffusivity closure. Color legend: =™ : —z;/L = 1.21 ,
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There are some differences between results obtained using the two closures.
Firstly, the variations of the scaled SFS stresses with A, /A are different for the
two closures. LES results with the SFS conservation equations collapse better
than those with the eddy-diffusivity closure, as a function of A, /A. In fact, they
collapse even better than the HATS data. This can be explained by noting that
our LES runs cover only a limited range of z;/L, as outlined in Table 2.4. The

HATS data correspond, presumably, to a wider range of stabilities than our LES
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runs. In general, it appears that within this narrow range of z;/L, the influence
of the outer scales on the scaled SFS stresses leaves only a weak signature, when
they are plotted against the parameter A, /A. Thus, statistics involving horizon-
tal velocity fluctuations exhibit greater scatter in the HATS data than in our LES
studies. Another difference is that A, for the eddy-diffusivity closure is consis-
tently higher than that for the SFS conservation equations at the first few grid
levels. Andren et al. (1994), in their studies of the neutral ABL, found that SF'S
models with reduced eddy-diffusivities and/or backscatter pushed the location of
the spectral peak to smaller scales (higher wavenumbers). Thus, reducing the value
of ¢ in the eddy-diffusivity closure is expected to shift the spectral peak to higher

wavenumbers, which would result in lower values of A,,/A.

2.5.5 SFS deviatoric components

In this section, we compare the means and the normalized standard deviations of

the modeled SFS stresses and fluxes with those obtained from HATS data.

2.5.5.1 Mean values

In Fig. (2.26), we show the normalized stresses, T2, /u?, obtained from HATS data
(Sullivan et al., 2003). A similar plot for the LES results is shown in Fig. (2.27).
The HATS data show the deviatoric components tending towards zero at large
A, /A indicating the onset of isotropy. As A, /A decreases, the SF'S stresses start
to exhibit strong anisotropy. The LES results in Fig. (2.27) show that the SFS
conservation equations reproduce partially the anisotropy at the subfilter scales
while the eddy-diffusivity closure predicts near-zero values for the scaled deviatoric
components. The poor performance of the eddy-diffusivity closure is due to its
lack of anisotropic production, which is an important production term in the 72,
budgets at low A, /A, as seen in Fig. (2.18).

Although the SF'S conservation equations account explicitly for anisotropic pro-
duction, Figs. (2.26)-(2.27) show that the SF'S conservation equations underpredict
the magnitudes of 7, /u? and 7% /u? while overpredicting that of 74, /u2. The errors
in the predicted magnitudes of 79 could potentially be due to the fact that the

model for the pressure-strain covariance used in this study takes into account only
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Figure 2.26. HATS: SFS normal stresses, 72, scaled with u2. The dashed line corre-

sponds to 74, = 0.
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Figure 2.28. HATS: Root mean square values of SFS deviatoric stresses 7} and 7%,
normalized with the magnitudes of their mean values.

2.5.5.2 Fluctuation levels

We discuss first the fluctuation levels of 7¢} and 74, followed by those of 7. In
Fig. (2.28), we show the rms (root mean square) values of 7, and 755 normalized
with the magnitudes of their respective mean values, as obtained using HATS
data. As A, /A increases, the normalized fluctuation levels of 7, and 7% increase
monotonically, attaining nearly equal magnitudes at higher values of A, /A. As
A, /A decreases, the normalized fluctuations of 7% tend to exceed slightly those
of 7&,.

The normalized fluctuations of 7¢, and 7% obtained from LES are shown in
Fig. (2.29). The SF'S conservation equations reproduce the trends correctly, wherein
the normalized fluctuations of 7 and 7¢ increase monotonically with increasing
A,/A. The normalized rms values of 7{, and 7% are underpredicted consider-
ably at low A,,/A but are in better agreement with observations at higher A,,/A.
There appears to be a systematic dependence on z;/L wherein the normalized
fluctuations increase with increasing —z;/ L.

The eddy-diffusivity closure predicts very high normalized rms values of ¢ pri-

marily because it predicts near-zero levels of |74, |, as discussed in earlier sections.
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normalized with the magnitudes of their mean values. Top panel: SFS conservation
equations, bottom panel: eddy-diffusivity closure. Color legend: =™ : —z;/L = 1.21 ,
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It predicts reasonably the trends in the normalized rms values of 7, namely, their
increase with increasing A,,/A. The predicted normalized rms values of 73 fare
poorly both in magnitude and trend when compared to observations. The depen-
dence on z;/L is harder to discern than in the case of the modeled SFS conservation
equations.

Figure (2.30) shows the normalized rms values of 7{; obtained from HATS

data. They increase in magnitude with increasing A, /A and are nearly equal to
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Figure 2.30. HATS: Root mean square value of 7{}, normalized with |(7d)].

the normalized rms values of 78 and 7% at high A, /A.

The normalized rms values of 75 obtained using the SFS conservation equa-
tions and the eddy-diffusivity closure are shown in Fig. (2.31). Both closures
reproduce correctly the trends but underpredict the magnitudes at low A, /A. As
A, /A increases, the modeled SFS conservation equations continue to underpre-
dict 705/ |<7’1d3>‘ while the predictions by the eddy-diffusivity closure become
increasingly sensitive to the underlying z;/L values. At A, /A ~ 5, for instance,
the normalized 7¢; fluctuations from the HATS data and LES are ~ 2 and =~ 1.2,
respectively. The eddy-diffusivity closure yields values ranging from 1.5 to 3.2.
Nevertheless, the eddy-diffusivity closure predicts the normalized rms values of
74 better than those of 7¢, as it accounts for isotropic production, which is the

dominant production term in the 7% budget.

2.5.6 SFS kinetic energy

In Fig. (2.32), we show SFS turbulent kinetic energy, esps, as a fraction of the
total turbulent kinetic energy, eror, obtained from HATS data. Corresponding
plots from LES runs using the SF'S conservation equations and the eddy-diffusivity
closure are shown in Fig. (2.33a) and Fig. (2.33b), respectively. Compared to



67

5 5
4t (a) 4l (b)
A ~
'O'_.OHO 3t -cl_'g 3t *
\% V
E 2} £ 2
o £
T - *?K** .U'Pﬂ
1t ﬁaﬁi 1
oL FETRT
0
1 3 6 1

Figure 2.31. LES: Root mean square value of 7{; normalized with |(7{)|, using (a) SFS

conservation equations; (b) eddy-diffusivity closure. Color legend: —— : —z;/L = 1.21
, : —z/L = 3.78, : —z/L = 3.82, t =2 /L=547 7 : —z/L =72
1.07
0.8F ]
= I
206 A
o I
> |
Q‘)” 04* ¥ . %% B
r X *
r *
0.2+ x KK 8
I X
| *
0.0 ‘ e
1 10
A, A

Figure 2.32. HATS: SFS turbulent kinetic energy, esrs, as a fraction of the total
(resolved + SFS) turbulent kinetic energy, etor.

HATS data, both closures overpredict esps/eror at lower values of A, /A and

underpredict it at higher values of A,,/A.
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The principal production term for the SFS kinetic energy, e, is 7 S, which we
recognize as the rate of energy transfer from the resolved to the subfilter scales.
Since the eddy-diffusivity closure is capable of downscale energy transfer at the
correct mean rate, its poor representation of the SE'S stresses themselves does not
affect adversely the predicted magnitudes of e. Thus both the eddy-diffusivity
closure and the SF'S conservation equations yield more or less similar trends and

magnitudes of e in Fig. (2.33).

2.5.7 HATS: [, budgets

Among isotropic and anisotropic production, Sullivan (2010) found the latter to
dominate in the f; budget and the former to dominate in the f; budget. In
Fig. (2.34) we present the budgets for f; and f; obtained from HATS measure-
ments. Figure (2.34) is similar to results obtained by Sullivan (2010), the only
difference being that we also show the tilting and buoyant production terms. We
discuss first the f; budget followed by the f3 budget.
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Figure 2.34. HATS: Scaled production terms in the f; (left) and f3 (right) budgets.

2.5.7.1 f; budget

The dominant production terms in the f; budget are flux tilting and anisotropic
gradient-production. The magnitudes of flux-tilting and anisotropic gradient-
production are nearly equal with the former being slightly larger. Isotropic gradient-
production is negligible at all values of A, /A in Fig. (2.34), as shown by Sulli-
van (2010) and implied in studies by Hatlee and Wyngaard (2007), who found
eddy-viscosity closures — which account only for isotropic production — to yield
near-zero values of f;. The other terms in the f; budget are advection, turbulent
transport, and pressure destruction. Of these, pressure destruction is the principal
sink term (Wyngaard, 2004) in the f; budget.

2.5.7.2 f3 budget

For values of A,,/A in the range (4,10) the dominant production term in the f3 bud-
get is isotropic production while anisotropic and buoyant production are negligi-
ble. For lower A, /A, both anisotropic- and buoyant-production increase although
their magnitudes remain smaller than that of isotropic production. The increase
in the magnitude of anisotropic gradient-production, in particular, is marked for

A, /A < 3. Anisotropic gradient-production in the f; budget contains contribu-
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tions from 7% (00/0z). At higher values of A, /A, the SFS stresses are nearly
isotropic with 72 a 0 (Sullivan et al., 2003) implying low values of anisotropic
gradient-production. As A, /A decreases, the SFS stresses become increasingly
anisotropic such that the magnitudes of 78 and 75 increase (Sullivan et al., 2003),
thereby leading to higher values of anisotropic gradient-production. Buoyant pro-
duction is negligible at higher A, /A but increases slightly as A, /A decreases.
We infer that the pressure-destruction term has to be negative to balance the f3
budget.

To summarize, at higher A, /A, isotropic production dominates anisotropic-
and buoyant production in the f3 budget. At lower A,,/A, buoyant-production and
anisotropic gradient-production become important although they remain smaller
in magnitude when compared to isotropic production. The principal sink term in

the f3 budget is pressure destruction.

2.5.8 High-resolution LES: f; budgets

In Fig. (2.35) we present the modeled f; and f3; budgets obtained using LES. We
discuss first the f; budget.

2.5.8.1 f; budget

The dominant production terms in the f; budget are: flux tilting (loss), anisotropic
gradient-production (loss) and the modeled slow pressure strain-rate covariance
(gain). The flux-tilting term is larger in magnitude than the anisotropic gradient-
production term at all A, /A. Isotropic production and advection are negligible.
These observations are true of all the stabilities considered in Fig. (2.35). The mod-
eled f; budget is able to reproduce qualitatively the important features observed
in Fig. (2.34), namely, the dominance of flux tilting and anisotropic gradient-

production over isotropic gradient-production.

2.5.8.2 f3 budget

The f3 budget is in balance primarily between isotropic production (gain) and the
modeled slow pressure strain-rate term (loss) across the entire range of A, /A in

Fig. (2.35). Anisotropic gradient-production and advection are negligible. The
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predictions of anisotropic-gradient production differ markedly from observations
where their magnitudes increase sharply at low A, /A (Fig. (2.34). Anisotropic
gradient-production in the f; budget is dominated by the term 7% (96/92) (Chen
et al., 2005). In our discussion of the SFS stresses, we observed that the SFS
conservation equations while capable of exhibiting SF'S anisotropy, underpredict
the magnitudes of 7¢, in comparison to HATS data. Thus, it is likely that the

underprediction of anisotropic gradient-production is caused in part due to the
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underprediction of 7.

2.5.9 SF'S scalar fluxes: mean values
2.5.9.1 f

We plot in Fig. (2.36), the magnitude of f; scaled with the magnitudes of the total
flux (left panel) and with that of the surface flux, @y (right panel), against A,,/A.
These plots are similar to those presented by Hatlee and Wyngaard (2007) in their
studies. The scaled magnitudes of f; increase with decreasing A,,/A, as expected.
At low A, /A, fi attains values that are comparable to the surface flux.

In Figs. (2.37)-(2.38) we plot the scaled magnitudes of f;, corresponding to
the SF'S conservation equations and the eddy-diffusivity closure. The SFS con-
servation equations yield results in good agreement with the HATS data at low
A, /A because they incorporate the tilting and anisotropic gradient-production
mechanisms, as seen in Fig. (2.35). At high A, /A, however, they underpredict
the scaled values of f;. The eddy-diffusivity closure depends solely on isotropic
gradient-production which plays a negligible role in the f; budget (Fig. (2.34)),

and thus, predicts near-zero values of f; across the entire range of A,,/A.
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In Figs. (2.39)-(2.40), we show the vertical SF'S flux as a fraction of the total flux,
obtained from HATS data and LES, respectively. Both closures predict satisfac-
torily the scaled magnitudes of the SES vertical flux at lower A, /A. At higher
A, /A, both closures underpredict the scaled magnitude of f3, as was also the case
for fi.

The eddy-diffusivity closure is designed to account only for isotropic gradient-
production. The SF'S conservation equations possess additional production mech-
anisms but still yield isotropic gradient-production as the only significant mode of
production in the f3 budget, as seen in Fig. (2.35). This is because the buoyant
term in the f3 budget isn’t included in our implementation of the SF'S conser-
vation equations while anisotropic gradient-production — which is included — is
underpredicted due to the underprediction of |7%|. But buoyancy and anisotropic

gradient-production have opposite signs in the f3 budget, as seen in Fig. (2.34).
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As our implementation of the SFS conservation equations includes one of these
terms, i.e., anisotropic gradient-production, but not the other, in principle, we
should see reduced magnitudes of f3 at lower A, /A. This is not observed due to
the underprediction of anisotropic gradient-production which minimizes — artifi-
cially — the negative impact of neglecting buoyant production. Thus, the scaled
magnitudes of f3 predicted by the two closures do not differ appreciably although

they are underpredicted compared to observations.

2.5.10 SF'S scalar fluxes: fluctuations

In Fig. (2.41) we show the rms values of f; and f3 normalized with the magnitudes
of their respective means, as obtained from HATS data. Corresponding plots from
LES using the SF'S conservation equations and the eddy-diffusivity closure are
shown in Fig.(2.42) and Fig. (2.43), respectively.

The HATS data in Fig. (2.41) exhibit normalized fluctuations that increase
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Figure 2.41. HATS: Root mean square values of f; (left panel) and f3 (right panel)
normalized with the magnitudes of their respective means.

monotonically with A, /A. The SFS conservation equations underpredict the
magnitudes of the normalized fluctuations at lower A,,/A but yield better predic-
tions at higher A, /A, although the normalized f; fluctuations are underpredicted
slightly at higher A,,/A. The eddy-diffusivity closure yields very high magnitudes
of the normalized f; fluctuations because it predicts near-zero mean values of f7,
as seen earlier. In contrast to HATS data, it yields symmetrical trends in the nor-
malized f; fluctuations wherein they attain nearly equal values at both low and
high A, /A.

The predictions of the normalized f3 fluctuations by the eddy-diffusivity closure
become increasingly sensitive to z;/L with decreasing A,,/A. We observe similar

trends in its predictions of 7{.

2.5.11 Summary

In this section, we used surface-layer HATS data to compare the performance of
the SF'S conservation equations and an eddy-diffusivity closure. In particular, we
considered the following: (i) production terms in the SFS stress budgets; (ii) pro-
duction terms in the SFS flux budgets; (iii) SF'S stresses; (iv) SFS fluxes; and (v)
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Figure 2.42. LES, SFS conservation equations: Root mean square values of (a) fi and
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fluctuations in SF'S stresses and fluxes. We obtained these statistics by combining
results from high-resolution LES runs corresponding to different domain sizes, fil-
ter widths and stability conditions. The runs were designed to mimic partly the
different physical conditions and filter widths associated with the HATS exper-
iments. Following Sullivan (2010), we studied the trends in the statistics listed
above by plotting them against the nondimensional parameter A, /A, where A,
is the wavelength of the vertical velocity spectral peak and A is the filter width.
We found that the modeled SFS stress budgets were able to replicate some
trends in the observed SFS stress budgets better than others. They reproduced
successfully the dominance of anisotropic production in the 74, budgets and that
of isotropic production in the 7{; budget, but failed to exhibit the sharp increase
in the magnitude of anisotropic production in the 7{; budget at low A, /A, as
observed in the HATS data. Advection and buoyant effects were negligible in the
SFS budgets. We showed that the dominant production terms in the modeled 72,
and 7% budgets, i.e., anisotropic- and isotropic-production, respectively, approach

constant values at low A, /A. We showed that these limiting values for the 7{,
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Figure 2.43. LES, eddy-diffusivity closure: Root mean square values of (a) f; and
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and 7% budgets are in good agreement with theoretically derived values for the
dominant production terms in the limit A, /A — 0. The limiting values for the
8 and 7% budgets obtained from LES were found to be lesser in magnitude than
their corresponding theoretical values.

The eddy-viscosity closure underpredicted severely the magnitudes of the de-

and consequently the level of SF'S anisotropy. This is

viatoric components, |7' ga‘v

because such closures depend solely on isotropic production, which observations
show plays an increasingly insignificant role in the 74 budgets as A,,/A decreases.
The SFS conservation equations yielded more realistic magnitudes of 72, reflect-
ing the underlying SE'S anisotropy, but the magnitudes were nevertheless lesser
than those obtained from HATS data. One possible reason for the underpredic-
tion of SKFS anisotropy by the conservation equations could be that the model
for pressure-strain-rate covariance used in this study neglects contributions from
the rapid pressure component, which is expected to be significant in the shear-
dominated surface layer.

At low A, /A, the normalized rms values of 7{, and 7%, are underpredicted by



79

the SEF'S conservation equations and the eddy-diffusivity closure. At high A, /A,
they are better predicted by the SFS conservation equations. The normalized
fluctuations of 7{; at low A,,/A tend to be underpredicted by both closures. They
continue to be underpredicted by the SFS conservation equations at higher A,,/A
while their predictions by the eddy-diffusivity closure become overly sensitive to
z;/ L, exhibiting a spread of 100% across the range of z;/L considered.

The HATS data revealed that the dominant production terms in the f; budget
are tilting and anisotropic gradient-production while isotropic gradient-production
is negligible. The eddy-viscosity closure used in our study, which accounted only for
isotropic gradient production, predicted near-zero values for f; across the entire
range of A, /A, in agreement with previous studies by Hatlee and Wyngaard
(2007). The modeled conservation equations account for flux tilting and anisotropic
gradient-production and hence, yielded more realistic predictions of f7.

Using HATS data, we found the dominant mode of production in the f3 budget
to be isotropic gradient-production. At low values of A, /A, buoyant production
and anisotropic gradient-production were found to be significant individually, al-
though their magnitudes were nearly equal and opposite in sign, thereby dimin-
ishing the net influence of the two terms in the f3 budget. This explains why
the eddy-diffusivity closure, which lacks both buoyant production and anisotropic
gradient-production, still predicts reasonably accurate values of f;. The SFS con-
servation equations predicted isotropic production to be the dominant mode of pro-
duction in the f3 budget but failed to reproduce the marked increase in anisotropic
gradient-production at lower A, /A, seen in observations. This underprediction of
anisotropic gradient-production — which is caused partly due to the underpredic-
tion of |7%| — compensates for the lack of buoyant production in the SFS flux
conservation equations, with the net result that they yield satisfactory predictions
of fs.

The SFS conservation equations yield reasonable predictions of the normalized
rms values of f; while the predictions by the eddy-diffusivity closure are poor in
both magnitude and trend. The normalized rms values of f3 are underpredicted
by both closures at low A, /A. As A, /A increases, the modeled SFS conser-
vation equations yield better predictions than the eddy-diffusivity closure, whose

predictions become highly sensitive to z;/L.
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2.6 Conditional means of SFS stress and SFS

production rate

In the previous sections, we analyzed the relative significance of various terms in
the modeled SFS conservation equations using coarse-resolution LES and simple
qualitative arguments. Using high-resolution LES, we then compared trends in the
variation of SFS production terms and other SFS statistics with A, /A, to those
observed in the HATS data. In this section, we explore further the performance of

the SF'S conservation equations using criteria developed by Chen and Tong (2006).

2.6.1 Evolution equation for the resolved-scale velocity jpdf

In order to isolate the influence of the SFS model on resolved-scale statistics,

Chen and Tong (2006) focused on the evolution equation of the one-time one-

point joint probability density function (jpdf) of the resolved-scale velocity field.

The significance of the one-time one-point resolved-scale velocity jpdf lies in the

fact that it determines completely the entire set of resolved-scale velocity statistics

(means, variances, covariances, etc.) locally in time and space. that describe

the velocity field. If f denotes the jpdf of the resolvable-scale velocity field, its
evolution is given by (Chen and Tong, 2006),
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In Eq. (2.35), the superscript 7, as in u”, denotes resolved-scale quantities and
the angled brackets denote ensemble averaging. The right hand side represents,
sequentially, mixed transport in physical and velocity spaces by the conditional
SF'S stress and the resolvable-scale pressure, and transport in velocity space by

the conditional SFS stress production rate, (—(1/2)F,;/u” = v), the conditional
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resolvable-scale pressure-strain correlation, and the conditional resolvable-scale

buoyancy force where,

ouj oul
b = {Tzka ’ +Tjkax } (2.36)

In Eq. (2.36), 7 refers to the total kinematic stress and not the deviatoric stress.
Equation (2.35) is a modified form of the jpdf equation studied by Meneveau
(1994), as it demonstrates explicitly the dependence of f, and hence resolved-
scale statistics, on the SFS production rate, P;;. From Eq. (2.35), the evolution
equation of the resolvable-scale velocity joint-pdf has two terms that involve direct
contributions from the SES model: (i) the conditional SFS stress; and (ii) the
conditional SFS production rate. Chen and Tong (2006) argued that in order
to obtain realistic resolvable-scale velocity statistics, it is necessary that an SFS
model yield good predictions of the conditional SF'S stress and the conditional SF'S
production. In LES, we typically model the deviatoric stress, ”, and hence, it is
natural to define the SFS deviatoric production rate, Pd.

G oul ot
) 2 — 2.37
iJ { a + ]k axk } ( )
P;; and Pf]l are related as follows:

4 1 T
=Pl — —eSI o Sl = 3 <8uz + uﬂ) (2.38)

w3 ox; | O,

where e is the SF'S kinetic energy. As the term eSj; doesn’t depend directly on the
SF'S model, we will henceforth focus only on the deviatoric SFS production rate,
Pg, as we want to study the direct influence of the SF'S model on the resolved-
scale velocity jpdf. It is straightforward to show that the rate at which energy is
extracted from the resolved scales by the SF'S model is equal to one-half the trace
of Pj. As P;j and P{ have the same trace (S}, = 0, by incompressibility), accurate
predictions of Pd are essential to ensure the right amount of energy extraction by

the SF'S model.
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2.6.2 Procedure for obtaining conditional means

Our primary motivation behind studying the conditional means of Tg- and Pf; is
to understand how they relate to resolved-scale statistics. We present in Fig. (2.44)
the following two statistics describing the velocity field: (i) ¢, = (kz/u.) (0(u)/0z),
the nondimensional mean-gradient of velocity; and (ii) the vertical velocity skew-
ness, S, = (0°)/(w'w')*?. We show LES results obtained using both the modeled
SF'S conservation equations and the eddy-diffusivity closure. Note that we didn’t
find significant differences between the velocity variance profiles for the two SFS
models. The parameter x = 0.4 denotes the von Karman constant. The physical
conditions describing the runs are identical to those described in Table 2.1. The nu-
merator in the expression for skewness includes only the resolved-scale component
of vertical velocity as we do not solve for its SF'S component. Observations indi-
cate that S,, is positive everywhere in the convective ABL, increases with height,
and attains a maximum of & 0.8 in the upper third of the boundary layer (Hogan
et al., 2009; Lenschow et al., 1980). Figure (2.44) reveals that the predictions of
om and Sy, by the SF'S conservation equations are slightly better than those by the
eddy-diffusivity closure.

We now proceed to compare the conditional means of 75 and P obtained
from LES with those from the HATS data. Only the (1,1), (2,2), (3,3) and (1,3)
components of 7% and P are considered in our analysis. In order to make a
meaningful comparison between HATS data and LES results, we ensure that A/z
(A/A, ~ A/z in the surface layer) for both the HATS data and our LES runs are
nearly equal, where 2 is the height at which the conditional means are computed.
We use HATS data from the ‘Array 2’ configuration which has A/z ~ 2 and
z/L = —0.4. The LES runs have z;/L = —0.09, where z; refers to the first grid
level, and z;/L = —7.2, which corresponds to a moderately convective ABL. The
conditional means are obtained at z = z;, such that A/z; = 2. Chen and Tong
(2006) found the conditional statistics to be dependent primarily on A/z while
z/L played only a secondary role in the form of a stability correction. The values
of the SFS model constants used are given by (c;,cg) = (0.10,0.19) for the SFS
conservation equations and ¢, = 0.10 for the eddy-diffusivity closure.

Following Chen et al. (2009), we compute conditional means by conditioning

only on two velocity components instead of all three, owing to the limited amount
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Figure 2.44. Left panel: Nondimensional mean gradient of velocity, ¢y, versus —z/L,
where L is the Monin-Obukhov length. The top of the layer shown corresponds to
z/z = 0.1. Legend — Solid line : modeled SF'S conservation equations, dashed line
: eddy-diffusivity closure, dot-dash line : empirical fit (Businger et al., 1971). Right
panel: Vertical velocity skewness, S, = (%) /(w'w’)3/2. Legend — Solid line : modeled
SE'S conservation equations, dashed line : eddy-diffusivity closure.

of HATS data. They showed that conditioning using only two velocity components
was sufficient to ensure statistical convergence. For Pf, P& and P& we choose u
and w as the conditioning variables while for Psy we pick v and w as the condition-
ing variables. We plot the conditional means against the first conditioning variable
for different values of the second conditioning variable. We split the first condi-
tioning variable into 8 data bins covering + 1.8 standard deviations and the second
conditioning variable into 5 data bins also covering + 1.8 standard deviations.
There are some constraints on choosing the number of bins and the width of
the conditioning variable. A large number of bins (i.e., small bin sizes) yields
the underlying trend but makes statistical convergence harder to achieve as each
bin might not have a sufficient number of samples. Too few bins will ensure
convergence but might smooth out trends of interest. Choosing a large width
(i.e., many standard deviations wide) for the conditioning variables gives us more
information about events at the tails of their pdfs but that information is also less

reliable due to decreased convergence, as events at the tails occur rarely. In spite
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of these constraints, Chen and Tong (2006) achieved reasonable convergence in
their statistics and demonstrated that we can draw important conclusions based
on the trends exhibited by the conditional means of 7 and Pg. In the ensuing

discussion, we denote u, v and w as uf, u5 and uj, respectively.

2.6.3 HATS: Conditional means of Pf]l'
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Figure 2.45. HATS: Conditional means of SF'S production rate.

In Fig. (2.45), we show the conditional means of the deviatoric production rate,

obtained from HATS data. Only the diagonal and (1,3) components are shown.
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We now summarize arguments put forth by Chen and Tong (2006) in order to
understand the trends exhibited in Fig. (2.45).

2.6.3.1 (P{|ul,u})

The conditional mean of P, denoted by (P |uf, u}), increases with increasing uj.
Its dependence on uj is weak for negative uj but considerably more pronounced

for positive uj. Expanding (P& |u}, u}), we obtain,

Ti1 5 Tio=—— Tia =
11 8ZE1 12 31'2 13 8[E3

ou’| ou] ou’|
(Pl ) = -2 (i 58+ 20 4 7 21

uy, u§> (2.39)

For positive uj, (Ju}/Ox3) > 0 on average in an unstable ABL due to positive
buoyant forcing, which implies (Ouj/0z;) < 0 and (Oub/0z2) < 0, from incom-
pressibility. Positive u} also represents advection of 7¢ from near the ground
where <T{11> > 0, due to strong SF'S anisotropy induced by the presence of a mean
wind along the x; direction. Thus, the term associated with the normal strain,
— (i) (0w} /Ox1) | uf, u}), is positive on average. Among the terms associated with
the shear strain, — {7{, (Ju}/0z2) + 75 (Qu} /Ox3) }, the second is strongly depen-
dent on uj. When u} > 0, 7% is advected from near the surface, where it is
negative and assumes large magnitudes. Simultaneously, u; > 0 is associated with
positive values of (Ouj/0z3) on average, as the updrafts are originating from near
the ground, a region of high shear. As uj becomes more positive, the above effects
on both the normal- and shear-strain terms are enhanced. Thus, when u; > 0,
(P |uf, u3) is generally positive and its magnitude increases with increasing uj.
When u} is negative, (Ou}/0xs) < 0 on average and from incompressibility it
follows that (Ouj/0z1) > 0 and (Oul/Oxe) > 0. Thus, the term associated with
the normal strain is negative. The shear-strain related terms remain positive for
reasons similar to those discussed above for u§ > 0. Observations (Chen and
Tong, 2006) show that the terms associated with the shear strain are greater in
magnitude than those associated with the normal strain, with the net effect that
(PR |uf, uy < 0) is positive, although the competition among its various terms
implies that it is lesser in magnitude when u5 < 0 than when u; > 0. As uj becomes
more negative, the magnitude of du’/0x; increases, from incompressibility. The

advection effect, however, is much weaker as 7} and ¢ are being advected from
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the higher regions where the SF'S stresses are negligible. For similar reasons, the
values of (Ou}/Ox3) associated with u} < 0, on average, are lesser than those
associated with u} > 0. Consequently, (P& |u}, u}) exhibits a weaker dependence
on u; when uy < 0 than when uf > 0.

Fig. (2.45) shows that (P{ |uf, uj) depends weakly on u} for u} < 0 but this
dependence is enhanced for u} > 0. Compared to —7 (Ouf/dx,), the terms asso-
ciated with the shear strain vary more strongly with u] (Chen and Tong, 2006). In
particular, when uj > 0, a larger value of u} is associated with a larger magnitude
of Ouf/0z3, due to “no-slip” at the wall. This effect is further enhanced as uj}
increases. In contrast, when uj < 0, a larger value of u] is not associated with
greater shear on average, as the shear in the region above ‘z’ is lesser, on average,
than that in the region below ‘z’ due to the presence of a lower boundary. This is
true of increasingly negative uj as well. Thus, the dependence of (P |uf, u}) on
uf is enhanced more by positive uj than by negative wuj.

Finally, we note that <P1dl} ul, u§> is almost always positive. Recall that the
rate of transfer of energy from the resolved to the subfilter scales is equal to one-half
the trace of P4. Thus the abundance of positive values of ( P{j|uf, uj) indicates

negligible amounts of conditional backscatter associated with 7.

2.6.3.2 (P ub,uf)

From Fig. (2.45), ( Psh| ub,u4) has smaller magnitudes than ( Pg| uj, uj) and ex-
hibits weaker dependencies on w; and wj. This is due to the lack of mean wind
in the o direction which leads to reduced magnitudes of 755 and (Qu}/dx3). The
dependence of (P, |uf, u%) on uf can be explained using arguments similar to those
applicable to (P |u}, u3). The trends in <P2d2} uh, uf) with respect to uj are weakly
symmetrical such that its magnitude depends on |u}|. If there were no Coriolis
force, we would expect symmetry in the z, direction due to the absence of mean
wind in that direction. In the ABL, however, the presence of Coriolis force disturbs

the lateral symmetry.
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2.6.3.3  ( Pg| uj, ul)

The conditional mean of Pg exhibits a marked asymmetric dependence on
wherein it attains higher values for u4 > 0 than for v} < 0, which can be explained
as follows. The dominant term in P& is —7% (Qub/dz3) (Chen and Tong, 2006),
which on average, is positive for v > 0 and negative for u; < 0, due to continuity
and strong anisotropy near the surface. As u} becomes more positive, both 7
and (Ouj/0xs) increase in magnitude on average, due to stronger advection effects
and positive buoyant acceleration, respectively. It follows that P& increases in
magnitude with positively increasing uj. As u; becomes increasingly negative, the
magnitude of (Ou}/dx3), on average, increases but that of 7¢; decreases due to
advection from higher regions with negligible SF'S stresses. These two competing
effects yield magnitudes of Pg; that are much lesser for uj < 0 than for uj > 0.
The negative values of uj are associated with negative <P?fl3| uf,ut), which

represents conditional backscatter.

2.6.3.4 (P ul,u})

The conditional mean of P is largely positive and increases weakly with u] for
uf < 0 but uf > 0 enhances its dependence on u]. The dominant term in P{
is —7% (Ou}/Ox3) (Chen and Tong, 2006), which is positive on average, for both
uy > 0 and uf < 0, due to strong anisotropy ({74;) < 0) and positive vertical
shear. The trends, however, are qualitatively different for u5 > 0 and u5 < 0. When
uf > 0, a larger value of v} implies on average, larger magnitudes of (Qu}/dz3). For
higher values of uj, these effects are more pronounced due to stronger advection
effects and thus, the dependence of <P1d3‘ u’{,u§> on uf is enhanced by positive
values of us. When u; < 0, advection from the higher regions is much weaker due
to decreased magnitudes of SFS stresses and vertical shear. Hence, <P1‘13‘ u’{,u§>

exhibits a weaker dependence on w; when uj < 0.

2.6.4 LES: Conditional means of Pl-‘j-

In the previous section, we summarized the arguments of Chen and Tong (2006)

explaining the trends exhibited by the conditional means of P in Fig. (2.45).

In this section, we compute the same using LES with two SFS models: the SFS
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conservation equations and an eddy-diffusivity closure. Chen et al. (2009) have
presented LES results using an eddy-diffusivity closure identical to the one in our
study. We include results from the eddy-diffusivity closure, nevertheless, for the
sake of comparison. Our goal here is to examine whether the SFS conservation
equations are able to reproduce the trends in Fig. (2.45), and to contrast their
performance with that of an eddy-diffusivity closure.

In Figs. (2.46)-(2.47), we plot the conditional means of P using the eddy-
diffusivity closure and the SF'S conservation equations, respectively. Asin Fig. (2.45),

only the diagonal and (1,3) components of Pl‘j are shown.

2.6.4.1 (P{|ul,uf)

Both closures yield reasonable magnitudes of <P1dl} uf, u§> but overstate its depen-
dence on u] when u} < 0. We recall that in the case of HATS data, <P1d1‘ uy, uf)
varies strongly with «] only for positive uj. The tendency of <P1d1| uf, u§> to in-
crease with uj — due to advection effects — is captured by both the closures. The
influence of advection for uj > 0 is more marked for the SF'S conservation equa-
tions as they account explicitly for SE'S advection. In the HATS data, <P1d1‘ uy, uf)
exhibits very little conditional backscatter. The eddy-diffusivity closure is inca-
pable of exhibiting backscatter, a constraint which follows from its definition. Fig-
ure. (2.47) shows that the SFS conservation equations, which are capable of ex-
hibiting backscatter, also fail to yield any conditional backscatter over the range

of (uf,u}) considered.

2.6.4.2 (P up,uf)

The conditional means of Pg, predicted by both closures are very similar to each
other. <P2dQ| u, u§> is nearly symmetric with respect to u} as its magnitude in-
creases with u;. The conditional means exhibit weak dependence on uj as the
advection effects are much smaller for Pg, than for P%. These trends agree with
the HATS data qualitatively, except at the extremes of the uj distribution where
the conditional means obtained from LES are lesser than those obtained from

HATS.
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Figure 2.46. LES: Conditional means of SF'S deviatoric production rate using an eddy-
diffusivity closure.

2.6.4.3 (P uj,ul)

Both closures underpredict <P3d3| uf, u}) compared to HATS data, at the positive
end of the uj distribution. The eddy-diffusivity closure is unable to differentiate be-
tween the qualitatively different effects of updrafts and downdrafts, as evident from
the nearly symmetrical shape of <P§3| uf,u}). The SFS conservation equations re-
produce to some degree the asymmetry in <P§i3| u§,u’1">. The SFS conservation

equations exhibit very small amounts of conditional backscatter for uj < 0 that is
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Figure 2.47. LES: Conditional means of SFS deviatoric production rate using the SF'S
conservation equations.

considerably lesser than that observed in the HATS data.

2.6.4.4 (Ph|ul,u})

The eddy-diffusivity closure predicts incorrectly both the magnitudes and trends
of <P1d3| uf, u73"> The positive magnitudes are under-predicted while the negative
magnitudes are over-predicted, in comparison to observations. The variation of
<P1d3| uf, u§> with uf is slightly stronger for negative w4 than for positive uj, which

is qualitatively opposite to what we see in observations.
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The SFS conservation equations yield reasonable predictions of <P1d3| ul, uf),
both in magnitude and trend. The magnitudes are in good agreement with obser-
vations, while the dependence on uj reproduces correctly the effects of advection

n <P1d3}u71",u§>

2.6.5 HATS: Conditional means of Tg-

In the previous section, we contrasted the conditional means of Pl‘j obtained from
HATS data and from LES. In this section, we analyze the other term in the evo-
lution equation for the resolved-scale jpdf that is influenced directly by the SF'S
model: the conditional mean of 7.

In Fig. (2.48) we show the conditional means of the SFS stresses obtained from
HATS data. Only the diagonal and (1,3) components are shown. Before comparing
the HATS results with LES, we review briefly the explanations provided by Chen
and Tong (2006) for the trends observed in Fig. (2.48).

2.6.5.1 (78| uf,ub)

The conditional means of 7% attain mostly positive magnitudes due to strong SFS
anisotropy near the surface, where (7{}) > 0 and (r%) < 0. The dependence of
(r) on u} is weak for negative uj and stronger for positive uj, similar to the
trends observed in (P{|uf,u4). The enhanced dependence of (7{j|uf,u}) on u}
for uj > 0 is due to advection of 7, from near the surface where it attains high

values.

2.6.5.2 (7| ub, u)

The conditional means of 75, like those of Pg, fail to exhibit symmetry with respect
to uh. The advection effects are considerably weaker than for 7¢, as magnitudes of

7, near the surface are much less than those of 7.

2.6.5.3 (75| uf, uf)

Strong anisotropy near the surface yields mostly negative values for <T§i3| uy, uh).
The magnitude of <7’é13| uy, uy) increases with u} due to advection from near the

surface. When u} > 0, increasingly positive values of uf, on average, are associated
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Figure 2.48. HATS: Conditional means of SFS deviatoric stresses.

with higher levels of SFS anisotropy (Chen and Tong, 2006), and consequently,
larger magnitudes of the deviatoric stresses. The above arguments explain the

: d T
trends in (74| uf, uf).

2.6.5.4 (7| uf,ub)

The conditional means of 7{; are almost entirely negative which is consistent with
the dynamics of the unstable surface layer (Haugen et al., 1971) and represents

the upward ejection of fluid parcels with a horizontal velocity deficit. Their weak
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dependence on u] for uj < 0 is enhanced by uj > 0. The observed increase in the
magnitude of (7‘1‘%} uf, ug) with increasing uj is due to advection of 7{; from near
the surface. The trends exhibited by <Tld3| uy,uy) are quite different from those
exhibited by (Pf%! uy,us). This is because the dominant production term in the
7L budget is isotropic production, —(4/3)eS;3, which (not shown) does exhibit the

same trends as (7{5| u},u5) (Chen and Tong, 2006).

2.6.6 LES: Conditional means of TZ%

In this section, we examine the trends in (74| uf, uj) obtained from LES using the
modeled SF'S conservation equations and an eddy-diffusivity closure.

Figures (2.49)—(2.50) show the conditional means of the SF'S deviatoric stresses
using the eddy-diffusivity closure and the SF'S conservation equations, respectively.

Only the diagonal and the (1,3) components of <7’;§-‘ u” = v") are shown.

2.6.6.1 (78| uf,u)

Both closures underpredict the magnitude of <7‘1dl‘ u},uy) compared to observa-
tions, the eddy-diffusivity closure doing so more severely as it doesn’t account for
anisotropic production, the dominant production mechanism in the 7¢ budget.
The modeled SF'S conservation equations account explicitly for anisotropic pro-
duction which explains why their predictions of <Tldl| uy,uy) are better than those
by the eddy-diffusivity closure. They are still lesser in magnitude compared to ob-
servations as they underestimate the SF'S anisotropy, plausibly due to deficiencies

in the model for the pressure-strain covariance.

2.6.6.2 (75| ub, uf)

The predictions of <7’2dQ‘ ul, us) by the eddy-diffusivity closure and the SF'S conser-
vation equations are similar in their variations with wj and wj. They differ in that
the former predicts conditional means that are nearly symmetric about zero while
the SF'S conservation equations yield values that are predominantly negative. The
corresponding predictions for the HATS data in Fig. (2.48) exhibit mostly nega-
tive values for the central u}, bins but large positive values for the extreme bins.

Neither of the two closures reproduces this trend.
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LES: Conditional means of SFS deviatoric stresses using an eddy-

We note that the HATS values for <T§a> in Fig. (2.26) display increasingly

negative values of <7'2dZ> as A, /A decreases. We can thus argue that its magnitude

must be enhanced by positive uj as high magnitudes of 7%, (negative in sign) are

advected upwards from near the surface. Both the SF'S conservation equations and

the eddy-diffusivity closure yield predictions of <7'2dg| uh, uy) that become increas-

ingly positive for positive us > 0, which is opposite to what we expect. Note that
the SFS conservation equations yield values of (75,) at low A, /A (Fig. (2.27))

that are in reasonable agreement with observations. It follows that the conser-
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Figure 2.50. LES: Conditional means of SFS deviatoric stresses using the SF'S conser-
vation equations.

vation equations represent the 73, field satisfactorily in the mean but not in its

overall structure, as evidenced by Fig. (2.50).

2.6.6.3 (75| uf, uf)

Compared to HATS data, both closures under-predict magnitudes of (7'3?3‘ uy, ub)
but differ in their predicted trends of the same. The eddy-diffusivity closure yields
conditional means that are almost symmetric about zero, a trend consistent with

its near-zero prediction of (7). The SFS conservation equations yield (753‘ ul, u)
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that are predominantly negative, in qualitative agreement with observations. Their
magnitudes are, however, underpredicted considerably when compared to observa-
tions which is consistent with the underprediction of ‘Tga| by the SF'S conservation
equations.

The variations of <Téi3| uy,uy) with u] and uj are better predicted by the SFS
conservation equations. In particular, they capture the enhanced sensitivity of
(7'?‘,13‘ uf, ul) to uj for positive uj, a trend the eddy-diffusivity closure fails to re-

produce.

2.6.6.4 (7{;|up, uf)

The predictions of (Tldg| uf, uj) by both closures are mostly similar in trend and
magnitude as the dominant production term in the 7% budget — isotropic pro-
duction — is accounted for in both closures. The advection effects for uf > 0 are
weaker in both closures, when compared to observations. This could be caused
partly by the influence of the surface stress model. We are plotting the conditional
statistics at the first grid level, 2 = Az, where the advection term in the 7{; rate
equation utilizes values of 7 at z = 2Az and z = 0, i.e., the surface. The sur-
face value of 7% (and 75) is set by the surface stress model. It follows that the

formulation of the surface stress model influences (74| uf, )| _ directly.

zZ=Z

2.6.7 Summary

In the previous section, we analyzed the conditional means of the SFS stresses and
the SF'S production rate using HATS data and two closures: the SF'S conservation
equations and an eddy-diffusivity closure. These two conditional means represent
the direct influence of the SF'S model on the resolved-scale velocity joint pdf, and
hence, on the resolved-scale statistics (Chen et al., 2009; Chen and Tong, 2006).
Consequently, it is desirable for an SF'S model to yield accurate predictions of the
conditional means of the SF'S stress and the SF'S production rate. We summarize
below our main findings.

The eddy-diffusivity closure yields reasonable predictions of <P1dl’ uf, uj) and
<P2‘12| u§,u§> but predicts <P§ig‘ u§,u§> and <P1dg‘ u”{,u§> poorly. The poor pre-
diction of <P§13‘ us, u§> by the eddy-diffusivity closure is linked to its inability to
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reproduce the differential influence of updrafts and downdrafts on <P§l3| uf, uf).
The predictions of <P1d3} uf, u§> by the eddy-diffusivity closure are overly negative
and fail to display the correct trends when compared to observations.

In general, the SFS conservation equations predict trends in the conditional
means of the SF'S production rate better when compared to the eddy-diffusivity
closure. They are able to capture the asymmetric nature of <P§13‘ uf, uf) and the
correct trends in <P1d3} uf, uj) as they account explicitly for advection of the SFS
stresses.

The eddy-diffusivity closure doesn’t take into account anisotropic production,
the dominant production term in the 72, budgets. Thus, it underpredicts (7% ’ uy, uy)
and fails to reproduce the correct trends in (74| uj, uj), and (75| uf, u}). It pre-
dicts <7'f3| u’, uh) reasonably well as the principal production term in the 7% budget
is isotropic production, which is accounted for in eddy-diffusivity closures.

The SFS conservation equations predict the conditional means of 74, better
compared to the eddy-diffusivity closure as they include anisotropic production.
They also reproduce better the effects of advection on the conditional means of 79,
The predictions of (7{5| uf,u}) by the SFS conservation equations differ negligibly

from those by the eddy-diffusivity closure, in both trend and magnitude.



Chapter

The moderately stable boundary
layer: analysis using HATS data and
LES

In the previous chapter, we examined the performance of an SF'S model based on
a truncated version of the full SF'S conservation equations (Hatlee and Wyngaard,
2007), using LES of the moderately convective ABL. In the current chapter, we
continue to explore the SF'S conservation equations through analysis of HATS data

and Large-eddy Simulation (LES) of a moderately stable boundary layer.

3.1 Introduction

Stable stratification refers to lighter fluid overlying heavier fluid. In such a configu-
ration, the effect of buoyancy is to inhibit vertical motions and suppress turbulent
activity. Consequently, the stable boundary layer (SBL) is shallower than the un-
stable daytime boundary layer. The SBL can be highly nonstationary owing to
its “patchy” and intermittent nature, thereby making it harder to obtain reliable
statistics from observations (Caughey et al., 1979). The study of SBLs is fur-
ther complicated by their sensitivity to the following factors: terrain slope (Brost
and Wyngaard, 1978), internal waves (Hunt et al., 1985), “global” intermittency
(Mahrt, 1989) and mesoscale influences (Mason and Derbyshire, 1990). From a
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practical viewpoint, modeling the SBL is necessary for nighttime surface tempera-
ture predictions, modeling pollutant transport (Banta et al., 1998), fog prediction
(Duynkerke, 1999), understanding polar climates (King et al., 2001), and more
recently, wind energy applications (Pichugina et al., 2008; Sim et al., 2009). Evi-
dently, the parameterization of stably stratified boundary layers is an essential but
daunting exercise.

LES, where in principle, the dominant energy-carrying scales can be computed
explicitly, has emerged as an attractive option to study the SBL (Basu and Porté-
Agel, 2006; Galmarini et al., 1998; Kosovi¢ and Curry, 2000; Mason and Derbyshire,
1990; Saiki et al., 2000; Stoll and Porté-Agel, 2008). The turbulent eddies in the
SBL, however, are confined to much smaller length scales (Jimenez and Cuxart,
2005; Kaimal et al., 1972) than in the unstable boundary layer where buoyancy
aids their growth into large structures that scale on the boundary layer depth. The
confinement of turbulent activity in the SBL to smaller scales implies a greater role
for the SF'S model. While simulating the SBL in all its generality is not an easy
task, the quasi-steady SBL with weak-to-moderate stratification over flat terrain
has received considerable attention in the literature. Mason and Derbyshire (1990)
are credited with having performed the first LES of the SBL. For weak stratifica-
tion, their results showed general agreement with the analytical model developed
by Nieuwstadt (1984) and, the second-order closure model of Brost and Wyn-
gaard (1978). For highly negative surface fluxes, though, their LES runs exhibited
“runaway cooling”, which refers to a spurious, rapid decrease in the surface tem-
perature (30K over 90 min). They identified one of the potential factors behind
runaway cooling as the inability of the SF'S model to represent strongly stratified
boundary layers at coarse resolutions. More recently, Van de Wiel et al. (2007)
have argued that runaway cooling has a physical basis but is arrested in nature
by negative feedbacks arising from vegetation and radiative effects. Neverthe-
less, the pioneering work by Mason and Derbyshire (1990) demonstrated for the
first time the feasibility of simulating SBLs with LES. Building on those results,
Derbyshire (1990) extended further Nieuwstadt’s theory (Nieuwstadt, 1984) and
showed that Nieuwstadt’s model can be interpreted as a limiting case associated
with a maximum value of the downward surface heat flux that can support turbu-

lence. Kosovi¢ and Curry (2000) simulated the moderately stratified quasi-steady
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SBL using a nonlinear SF'S model (Kosovi¢, 1997) and initial conditions similar
to the BASE (Beaufort Sea Arctic Stratus Experiment) observations. They found
their results to be in good agreement with observations and Nieuwstadt’s model
for the SBL (Nieuwstadt, 1984). Saiki et al. (2000) performed LES of the mod-
erately stable boundary layer and found that the original formulation of the two
part SE'S model by Sullivan et al. (1994) triggered a collapse of the vertical SFS
heat flux near the surface, which led to unphysical profiles of turbulent statistics.
They tracked the cause for this behavior to an incorrect formulation of the SFS
heat flux and obtained good results after using a two part eddy-viscosity model
for the SFS heat flux, similar to their model for the SFS stresses. Even with the
improved SFS model, they found the simulations to be sensitive to rapid changes
in the surface flux. Basu and Porté-Agel (2006) simulated the moderately sta-
ble boundary layer using the locally-averaged scale-dependent dynamic model and
found good agreement with observations and theory. The Global Energy and Wa-
ter Cycle Experiment Atmospheric Boundary Layer Study or GABLS (Beare et al.,
2006), an intercomparison study of different SF'S models for the moderately stable
boundary layer, found that the SFS models reproduced reasonably the essential
features of a quasi-steady SBL. While the results from the high-resolution runs
(< 3.125m) showed good convergence, there was significant sensitivity to the SF'S
model at coarse resolutions (> 6.25m). Due to the computational expense of the
high-resolution runs, the GABLS experiment noted that SF'S model development
will continue to play a crucial role in improving SBL simulations, especially at

coarse resolutions.

3.1.1 Motivation

As discussed in the previous chapter, the SF'S conservation equations present a nat-
ural way to describe the evolution of the SF'S stresses and fluxes. Eddy-diffusivity
closures assume implicitly a balance between isotropic production and pressure
destruction in the SFS conservation equations. This assumption is violated in
regions where the turbulence is poorly-resolved as the budgets of the diagonal
SEF'S deviatoric stress components are dominated by anisotropic production with

isotropic production playing a negligible role (Sullivan, 2010). Similarly, in the
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horizontal SF'S flux budgets, the main production mechanisms are flux tilting and
anisotropic gradient-production with isotropic gradient-production playing an in-
significant role. Consequently, eddy-diffusivity closures perform poorly in param-
eterizing the diagonal SFS deviatoric stresses and horizontal SFS fluxes. While
the above arguments were demonstrated for unstable conditions in the previous
chapter, they are equally valid for the SBL where in fact, the role of the SF'S model
is enhanced due to the effects of stratification. In strongly stratified environments,
the turbulence can be highly anisotropic (Jimenez and Cuxart, 2005), implying that
SF'S models need to account for anisotropy at the subfilter scales. Eddy-diffusivity
closures, unlike the SF'S conservation equations, lack any mechanism for gener-
ating SF'S anisotropy. Finally, the SF'S conservation equations retain important
SF'S production mechanisms in their exact analytical form. Thus, in principle, we
expect a model based on the SF'S conservation equations to require less tweaking
from one stability regime to another.

If the SFS conservation equations hold promise, they are also complex and
merit further study. Wyngaard (2004) and Hatlee and Wyngaard (2007) have
studied the SF'S conservation equations for the convectively unstable regime. In the
current chapter, we build on their work by gaining insight into the SF'S conservation
equations for the moderately stable regime, using a combination of observations

and LES.

3.1.2 Outline of chapter

A brief outline of the current chapter follows. In the next section, we use HATS
data corresponding to stably-stratified conditions, in order to examine the relative
importance of different production terms in the SFS stress and flux budgets. We
then investigate the sources of fluctuations in the SFS stresses and fluxes by de-
termining directly the contribution from the various production terms. We also
compare the fluctuation levels of different SFS stress and flux components among
themselves.

The HATS analysis is followed by an LES study of the moderately stable bound-
ary layer using an SF'S model that uses prognostic equations to determine the SF'S

stresses and fluxes. The initial conditions and physical parameters in our LES



102

runs are identical to those used in the GABLS LES intercomparison study (Beare
et al., 2006) although we also perform LES for cooling rates other than that used
by Beare et al. (2006). We examine timeseries and steady-state profiles of impor-
tant bulk parameters and other variables of interest. Where possible, we compare
our LES results with past experimental, numerical and analytical studies. We
conclude with a discussion on the influence of the surface cooling rate on our LES

results.

3.2 HATS: 7/, and 7% budgets

In this section, we study the dominant production terms in the 72, and 7, budgets.
The details of the HATS experiment and the filtering procedures used are described
in Ch. 2.

Figure (3.1) shows the scaled anisotropic, isotropic and the buoyant production

terms in the 7¢

d and 7{ budgets, plotted versus the nondimensional parameter

A, /A, where A, is the wavelength associated with the peak in the vertical velocity
spectrum and A is the filter width. Using HATS data, Sullivan (2010) examined
the partitioning of SF'S production into anisotropic and isotropic components. He
showed the dominance of anisotropic production in the 74, budgets and that of
isotropic production in the 7% budget, at low A, /A. In Fig. (3.1), we plot the
scaled anisotropic, isotropic and buoyant production terms for 72, and 7, as
functions of A, /A. High values of A,,/A correspond to well-resolved turbulence
while low values correspond to poorly-resolved turbulence. The various budget
terms have been scaled with ¢ = ¢ (ul/kz,4), where ¢ = [1 +2.5(z/l))3/5}3/2
(Wyngaard and Coté, 1971), k = 0.4 is the von Kérmdan constant and z4 is the
height of the primary sonic array. Following Sullivan et al. (2003), we compute A,,
using A, = 27(U)7,, where (U) is the mean wind in the streamwise direction and
7, is the Eulerian time scale obtained by assuming an exponential autocorrelation

function for the vertical velocity, R(t) = exp(t/7,).
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Figure 3.1. HATS data, stable cases: The partitioning of SFS deviatoric production
into isotropic, anisotropic and buoyant components, scaled with ¢ = ¢(u2/kzq). The
terms are plotted versus the nondimensional parameter, A,,/A .

3.2.1 72 budgets

From Fig. (3.1), scaled anisotropic production far exceeds scaled isotropic- and
buoyant- production in the 7¢, budgets, especially at low A, /A. Scaled isotropic
production is relatively insignificant almost across the entire range of A,,/A. Buoy-
ancy is associated with production in the 7¢, and 7%, budgets, and destruction in
the 7 budget, due to stable stratification. Among the three diagonal components,
the effects of buoyancy are felt most in the 7% budget underlining the influence
of stratification on the vertical eddies. The magnitude of buoyant destruction in

the 7% budget increases with decreasing A,,/A but at a much slower rate when
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compared to anisotropic production.

3.2.2 7% budget

The 7% budget, in contrast to those of 74, is dominated by isotropic production.
Anisotropic production increases with decreasing A,,/A but at a rate slower than
that of isotropic production, at all values of A,,/A. Buoyant production (gain) also
increases with decreasing A,,/A but at a rate slower than even that of anisotropic
production.

The dominance of anisotropic production in the 72, budgets and that of isotropic
production in the 78 budget were also observed for the convectively unstable cases,

discussed earlier in Ch. 2.

3.2.3 Asymptotic values in the “RANS” limit

In our discussion of LES results for the unstable cases, we observed that the dom-
inant production terms in the 74, and 7{; budgets tend to asymptote at lower
values of A,,/A. Such trends were absent in the unstable HATS cases as they are
in Fig. (3.1). We replot the production terms for the stable cases in Fig. (3.2) after
scaling them with (—7{5;;), where S;; (denoted by Sy, in Fig. 3.2) is the resolved-
scale strain rate tensor and () denotes time-averaging. The horizontal solid lines
at low A, /A represent analytically derived values of scaled anisotropic production
in the 7¢, budgets and that of scaled isotropic production in the 7 budget in the
limit A, /A — 0, also called the “RANS” limit (Appendix A). The asymptotes
of the scaled production terms in Fig. (3.2) at low A,,/A are in reasonable agree-
ment with our theoretical predictions. The stable cases in the HATS data with
low A, /A are associated typically with highly stable environments. Our analysis
in Appendix A does not make any assumptions regarding the stratification of the
flow. The key to obtaining values for the scaled production terms in the RANS
limit is the observation by Sullivan et al. (2003) that the filtering operation is
equivalent to Reynolds averaging at very low values of A, /A. That analytical
predictions based on this observation are valid for two strikingly different flows
— moderately unstable (from LES in Ch. 2) and very stable — highlights the

effectiveness of A,,/A in describing SFS statistics across a wide range of stability
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Figure 3.2. HATS data, stable cases: The partitioning of SFS deviatoric production

into isotropic, anisotropic and buoyant components, scaled with (—Tijfj), where S{j is
the resolved-scale strain rate tensor. The terms are plotted versus the nondimensional
parameter, A,,/A. The horizontal solid lines denote theoretical values in the “RANS

limit,” discussed in Appendix A.

regimes.

A possible reason for the absence of any asymptotic trends in Fig. (3.1) could
be the irrelevance of z; as a length scale at low values of A, /A, which as men-
tioned earlier correspond to strong stratification. A more appropriate length scale
under such conditions might be [, = o, /N (Brost and Wyngaard, 1978), where
0, is the vertical velocity standard deviation and N = /(g/0)(060/0z) is the

Brunt-Vaisila frequency. The length scale [, decreases as N increases, which re-

flects the diminishing size of turbulent eddies as the flow becomes increasingly
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Figure 3.3. HATS data, stable cases: The partitioning of SFS deviatoric production
into isotropic, anisotropic and buoyant components, scaled with (u/kly), where [, is
a buoyancy length scale, dependent on the Brunt-Vaisila frequency. The terms are
plotted versus the nondimensional parameter, A, /A. The horizontal solid lines denote
theoretical values in the “RANS limit,” discussed in Appendix A.

stable. In Fig. (3.3) we plot the SFS deviatoric production scaled with (u2/kly).
The anisotropic- and isotropic-production terms in the 7¢, and 7% budgets, respec-
tively, exhibit a common trend wherein they increase in magnitude with decreasing
Ay, /A for A, /A > 1 and then decrease sharply for further decreases in A,,/A.
Compared to Fig. (3.1), the scaled anisotropic and isotropic production terms in
Fig. (3.3) appear more likely to approach constant values at low A,,/A. But based
on Fig. (3.3) alone, it is unclear whether they indeed do asymptote at low A, /A

and even if they do, whether the asymptotes are equal to those derived analytically
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in the RANS limit and observed in Fig. (3.2).

3.2.4 RMS values of production terms in the T{; budgets

In the previous section, we examined the trends exhibited by the mean values
of scaled production terms in the Tidj budgets, when plotted versus A, /A. The
mean and variance of 7'% are the two lowest moments that contribute to its prob-
ability density function (pdf) (Wyngaard, 2010). Thus, it is of interest to study
the contributions of the measured production terms to the fluctuation level of
(07i/0t), denoted by (d7/0t) . We demonstrate later that (97/0t) is a

j
good indicator of the fluctuation level of Tfé. The variable (87’% / 6t)rms il;l::olves
contributions from unmeasured and measured terms. The unmeasured terms com-
prise advection, turbulent transport and pressure destruction while the measured
terms comprise anisotropic-, isotropic- and buoyant-production. In general, it is
not possible to infer the contributions from the unmeasured terms to (87{2 / 8t) s
based on those from the measured terms due to cross-correlations between the two
groups of terms.

In Fig. (3.4), we present the rms values of anisotropic production, isotropic
production, buoyant production and the rms value of their sum, normalized with
(87{‘; /8t)rms. Although the advection, turbulent transport and pressure terms

aren’t available to us, the rms value of ((97'% / 825) can be obtained directly using

the time series of ng-.

3.2.4.1 7, budgets

We discuss first the rms value of the time derivative of 7{, followed by those of
the time derivatives of the other two diagonal components. From Fig. (3.4), as
A, /A decreases, the fluctuation levels of anisotropic production as a fraction of
(87’{% / (?t) e Increase in relation to those of isotropic production and buoyant pro-
duction. Furthermore, the normalized rms values of the sum of these three pro-
duction terms increase with decreasing A, /A. As A, /A increases, anisotropic
production, isotropic production and buoyant production together account for a
decreasing fraction of (87{% / Bt) ,- As noted earlier they could, in principle, in-

rm

fluence (97¢,/ 8t)rms through cross-correlations with the unmeasured terms.



108

Ty T
1.0 ‘ 1.0 ‘
Anliso.A
S0. %
§ 0.8’ Z Buoy.D 7 § 0.8’
§ X Sum x E
X
o 06F L0 % & 06" y
E X E % ><>22%< X
v & X x 4 e B X
ho] 04’ %X ho] 04’ }g SA
ks X ¢ ¥ ks - *
S ool ’; %%%&A S ol * 5 ix&
n U * % n U % % VNI
00 ‘D ‘D‘@ﬁumﬁ_ﬂ?ﬂm‘mum 00 ‘D \D\%\\M\ﬁm\m\uﬂ
0.1 1.0 10.0 0.1 1.0 10.0
A, A A, A
d d
T3 Ti3
1.0 ‘ 1.0 ‘
A x
g 08 * g 08 *
T n XX T o
> L > L K
& 0.6 % & 0.6 z
s A s A X X
VI T o4l
B ’ % X ? §§ B ’ | X%KX% %
S A A%A%X 3 0
L X L A A
»n 0.2 o X §A§&X »n 0.2 A A
0.0 S Bmnon o 0oL . ® Fang
0.1 1.0 10.0 0.1 1.0 10.0
A,/ A, A

Figure 3.4. HATS data, stable cases: rms values of anisotropic production, isotropic
production, buoyant production and their sum, normalized with the rms value of the
time derivative of 7¢

i

The trends in the fluctuation levels of terms in the 73, budget are similar in some
respects to those observed in the 7, budget, but differ in others. For instance, the
normalized rms values of anisotropic production increase with decreasing A, /A,
as in the 7¢ budget. In contrast to the 7¢ budget, however, the fluctuations of
isotropic production are greater than those of anisotropic production for all but
the lowest values of A, /A. Buoyant production contributes negligibly to the fluc-
tuation level across the entire range of A, /A in Fig. (3.4). Thus, at low values of
A, /A, anisotropic production emerges as an important contributor to the fluctu-

ation level but even at the lowest value of A,,/A, the sum of anisotropic, isotropic
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and buoyant production account only for half the total fluctuation level. This
shows that advection, turbulent transport or pressure destruction are responsible
for a significant fraction of (974,/ at)m at low A, /A, either directly or through
cross-correlations with the measured terms. As A, /A increases, the contributions
of anisotropic, isotropic and buoyant production to (872"[2 / (’%)rms decrease.

In the 7 budget, as A, /A decreases, anisotropic production, isotropic pro-
duction and buoyant production together account for an increasingly large fraction
of (078y/ (9t)rms. Among these three terms, anisotropic production emerges as the
principal contributor at low A, /A. As in the 75, budget, the normalized rms values
of anisotropic- and isotropic-production are comparable but the latter is typically
greater than the former except at very low A, /A. For A, /A < 1, the normal-
ized fluctuations of buoyant production increase sharply from near-zero values to
around 20% but remain smaller than that of anisotropic- and isotropic-production.
As A, /A increases, the sum of anisotropic production, isotropic production and

buoyant production accounts for a decreasing fraction of (975;/0t)

rms’

3.2.4.2 7{, budget

We recall from our discussion of the Ti‘j- budgets that the dominant production
term in the 7{; budget is isotropic production. Fig. (3.4) shows that isotropic
production is also a significant contributor to (07f;/ (%)rms. As A, /A decreases,
the normalized rms values of isotropic production, anisotropic production, buoyant
production and the rms value of their sum, increase steeply. Among the three pro-
duction terms, normalized fluctuations levels are highest for isotropic production
and lowest for buoyant production. There is a marked increase in the normalized
rms values of buoyant production for A,,/A < 1, but it is considerably lesser than
those of isotropic- or anisotropic-production.

A couple of observations regarding the fluctuation levels in the 7% budget merit

some discussion as they are mostly absent in the 7¢, budgets:

1. The normalized rms value of isotropic production, anisotropic production
and buoyant production together is in some instances greater than 1. This

is especially pronounced at very low A, /A.

2. The normalized rms value of isotropic production is in some instances, greater
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than that of the sum of isotropic production, anisotropic production and
buoyant production. This is observed at low to intermediate values of A, /A.
The terms in the 7%, budget do exhibit such behavior although in very few
instances. For instance, at the lowest value of A,,/A, the dominant produc-
tion term in the 75, budget, i.e., anisotropic production, has an rms value

slightly greater than that of the sum of the three production terms.

We explain the second of these observations first. For it to be true, we require ei-
ther buoyant- or anisotropic-production in the 74 budget to exhibit high negative
correlation with isotropic production. In Fig. (3.5), we plot the correlation coeffi-
cients between the dominant production term and the other two production terms
for each of the 74 and 7{; budgets. The dominant production terms in the 7¢, and
7 budgets are anisotropic- and isotropic-production, respectively. The correlation
coefficients have been plotted versus A, /A. We see high negative correlations in
both the 73, and 7 budgets, although the correlation coefficients in the latter are
considerably more negative than in the former. This is most evident at low A,,/A
where the correlation coefficient between isotropic- and anisotropic-production in
the 7{, budget is nearly —0.9. Such high negative correlation enables isotropic
production to attain rms values much higher than that of isotropic, buoyant and
anisotropic production together.

It is now possible to offer a similar explanation for the fact that the normalized
rms value of isotropic production, anisotropic production and buoyant production
together is in some instances greater than 1. We infer from Fig. (3.5) that either
advection, turbulent transport or pressure destruction (or a linear combination
thereof) exhibits high negative correlation with the sum of isotropic production,

buoyant production and anisotropic production.

3.2.4.3 Relative rms values of (87’% /Ot)

In the previous section, we identified the primary sources of fluctuations in the 72
and 7 budgets across a broad range of A, /A. While this provided insight into

the individual Ti‘é budgets, it is also of interest to compare the fluctuation levels of

7 amongst themselves. We plot in Fig. (3.6) the rms values of 75 normalized with

that of 75 versus A, /A. The normalized rms values of 7, are the highest while
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Figure 3.5. HATS data, stable cases: (i) Correlation coefficient of anisotropic produc-
tion in the 72, budgets with 1sotr0plc— and buoyant-production; (ii) Correlation coeffi-
cient of 1s0trop1(: production in the 7'13 budget with anisotropic- and buoyant-production.

those of 74, and 78 are comparable with the former slightly larger than the latter.
In order to relate these trends to our discussions in previous sections, we plot in
Fig. (3.7) the rms values of (97{,/0t), (074,/0t) and (O7{;/0t), normalized with
that of (974;/0t). The normalized fluctuations have been plotted versus A, /A.
The observed trends are similar to that observed in Fig. (3.6) which suggests that

the normalized fluctuation levels of (87’d / 8t) are good indicators of the normalized

fluctuation levels of 7,

At the largest value of A, /A, the normalized rms values of (97{,/0t) and
(074,/0t) are 1.2 and 1, respectively. As

as hypothesized earlier.

A, /A decreases, they both increase
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Figure 3.7. HATS, stable cases: RMS values of (87% /815) normalized with that of

(974;/0t), plotted versus A, /A.

such that the fluctuation levels of (87’1011 / 015) increase more rapidly than that of
(872‘[2 / 8t). The normalized rms values of (87‘1d3 / 8t) are close to unity and exhibit
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a spread of only 10-15% across the entire range of A,,/A.

3.2.5 Summary

We summarize briefly our observations regarding the mean values of the production
terms followed by those regarding their fluctuations.

Anisotropic production dominates isotropic- and buoyant-production in the 72
budgets while isotropic production plays the dominant role in the 7% budget. The
buoyant production terms are relatively insignificant in the 7{;, 7, and 7% budgets
but can be comparable to anisotropic production in the 73 budget, at very low
A, /A. These trends are qualitatively similar to those observed in the unstable
HATS cases, discussed in Ch. (2).

At high A, /A, anisotropic production, isotropic production and buoyant pro-
duction together account only for a small fraction of the fluctuations in (87’% / 6t),
implying significant contributions from advection, turbulent transport or pressure
destruction, either directly or through cross-correlations with the measured terms.
With decreasing A,,/A, the three measured production terms together account for
an increasingly large fraction of the total fluctuation level although this still does
not rule out cross-correlations with the unmeasured terms. In the 7¢, budgets,
anisotropic production emerges as the principal source of fluctuations among the
three production terms at low A, /A. In the 7% budget, isotropic production is the
principal source of fluctuations among the three production terms at low A, /A.
Among the diagonal components, (97{; /0t) fluctuates the most and (975/0t) the
least. The fluctuations in (97{5/0t) are nearly equal to those in (97{4/0t) and
don’t change significantly with A, /A.

3.3 HATS: f; and f3 budgets

In this section, we examine the f; and f3 budgets in order to determine how
the following terms vary with A, /A: isotropic gradient-production, anisotropic
gradient-production, flux tilting and buoyant production. Among isotropic and
anisotropic production, Sullivan (2010) found the latter to dominate in the f;

budget and the former to dominate in the f3; budget.
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Figure 3.8. HATS, stable cases: Scaled production terms in the f; (left) and f3 (right)
budgets, plotted versus A, /A. The terms have been scaled with QoN where Qg is the
surface heat flux and NN is the Brunt-Vaiisila frequency.

In Fig. (3.8) we plot the following terms in the f; and f3 budgets after scaling
them appropriately: isotropic- and anisotropic-gradient production, flux tilting
and buoyant production. We scale these terms with Qo /N, where () is the surface
heat flux and N is the Brunt-Viisila frequency. Figure (3.8) is similar to results
obtained by Sullivan (2010), the only difference being that we have also plotted
the tilting and buoyant production terms. Similar to the 7'% budgets, the scaled
production terms in Fig. (3.8) increase with decreasing A,,/A for A,,/A > 1 and
then decrease sharply for further decreases in A,,/A. We now discuss the f; budget
followed by the f3 budget.

3.3.1 f; budget

In the f; budget, flux tilting and anisotropic-gradient production are the dominant
production terms. For A, /A > 2, these two terms are comparable in magnitude
but as A, /A decreases further, flux tilting tends to dominate anisotropic-gradient
production till A, /A =~ 0.2, when the two production terms converge and appear

to asymptote approximately to a value of 2 for lower values of A, /A. Isotropic
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Figure 3.9. HATS, stable cases: Plot of | f1]|/Qo versus A, /A, where Qg is the surface
heat flux.

gradient-production is negligible across the entire range of A, /A. We plot in
Fig. (3.9) |fi| normalized with the surface heat flux, Qo, versus A, /A. The nor-
malized values of | fi| increase with decreasing A,,/A and tend towards a value of
2.1 at low A, /A. Figures (3.8)-(3.9) show that the horizontal SFS scalar flux can
be significant even in the absence of horizontal mean gradients in the scalar field.
Using HATS data for the unstable cases, Hatlee and Wyngaard (2007) found that
eddy-viscosity closures — which account only for isotropic gradient-production
— fare poorly in their prediction of SF'S horizontal fluxes Hatlee and Wyngaard
(2007). Thus Figs. (3.8)—(3.9) are consistent with their findings.

3.3.2 f3 budget

Isotropic gradient-production plays a significant role in the f3 budget as it is pro-
portional to the vertical gradient of potential temperature. Anisotropic gradient-
production and buoyant production are non-zero but have smaller magnitudes than
isotropic gradient-production. Anisotropic gradient-production is typically larger
in magnitude than buoyant production but they appear to converge as A, /A

decreases. It is harder to discern the asymptotes for the production terms at
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low A, /A but crude visual extrapolation suggests a value slightly lesser than 5
for isotropic gradient-production and a value of ~ —2 for anisotropic gradient-
production and buoyant production.

It is interesting to note that the implied asymptotes at low A, /A for terms
in the f; budget are equal approximately to those observed in our high-resolution
LES results for the unstable boundary layer in Ch. (2) (see Fig. (2.35)). This is
also true of the implied low A, /A asymptote for isotropic gradient-production in
the f3 budget. The common asymptote for anisotropic gradient-production and
buoyant production (~ —2), however, is absent from our LES results due to two
reasons: (i) we neglect the buoyant terms in the f3 conservation equation, modeling
which would require an additional model for the SFS # variance; (ii) the modeled
SF'S conservation equations underpredict the levels of SF'S anisotropy close to the
surface, which in turn leads to underprediction of anisotropic gradient-production
in the SFS scalar flux budgets. Nevertheless, the parallels between Fig. (3.8) and
our LES results for the unstable boundary layer show once again that the parameter
A, /A is quite effective in describing turbulence statistics across a wide range of

stabilities.

3.3.3 RMS values of production terms in the f; and f3
budgets

In the present section, we discuss trends in the rms values of production terms in
the f; budgets, scaled with the rms values of (0f;/0t), denoted by (9f;/0t)

particular, we consider tilting, isotropic gradient-production, anisotropic gradient-

In

rms”’

production and buoyant production. We discuss first the f; budget followed by
the f3 budget.

3.3.3.1 f; budget

In Fig. (3.10a), we show the rms values of flux tilting, isotropic gradient-production,
Of

the three production terms, flux tilting has the highest normalized fluctuation lev-

anisotropic gradient-production and of their sum, normalized with (0 f; /0t)

rms’

els. This shows that flux tilting influences significantly not only the mean value of

f1 but also its fluctuation level. As A, /A decreases, the three production terms



117

together account for an increasing fraction of (0f;/0t) For low A, /A, the nor-

malized rms values of the sum of the three production terms, in some instances,

rms”’

exceeds considerably that of either of the individual terms. For this to be possible,
two or more of the three production terms must have high positive correlation.
In Fig. (3.10b) we show the correlation coefficients between two pairs of produc-
tion terms: (i) flux tilting and isotropic gradient-production (ii) flux tilting and
anisotropic gradient-production. With decreasing A, /A, the correlation coeffi-
cient between flux tilting and anisotropic gradient-production increases to values
as high as 0.8, which explains why in some instances, the sum of the three pro-
duction terms has rms values much higher than do either one of them. At higher
values of A,,/A, the three production terms account for only a small fraction of
the total fluctuation rate (= 0.3). It follows that advection, turbulent transport or
at high A, /A, either

directly or through cross-correlations with the measured terms.

pressure destruction contributes significantly to (0f;/0t)

rms
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production, anisotropic gradient-production and of their sum, normalized with that
of (0f1/0t) (b) Correlation coefficient between flux tilting and isotropic gradient-
production, and flux tilting and anisotropic gradient-production
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plotted alongside the normalized rms values of their sum. The normalization factor is
the rms value of (0f3/0t).

3.3.3.2 f3 budget

In Fig. (3.11), we show the rms values of flux tilting, buoyant production, isotropic
gradient-production, anisotropic gradient-production and of their sum, normalized

fluctuation levels of each of these four production terms along with that of their

ms- TOT easy interpretation, we show in separate plots the normalized
sum. We recall from earlier discussions that the principal production term in the
f3 budget is isotropic gradient-production. Figure (3.11) shows that it is also the

dominant source of fluctuations in (9f3/0t). As A, /A decreases, the normalized
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rms values of isotropic gradient-production, anisotropic gradient-production and
buoyant production increase sharply with the latter two lagging behind the first.
The normalized rms values of buoyant production in particular, increase rapidly
from near-zero values to ~ 0.7 at low A, /A. The contributions from flux tilting
remain insignificant (=~ 0.1-0.2) across the entire range of A,,/A. The dominant
production term — isotropic gradient-production — has fluctuation levels that
in some instances exceed that of the sum of all four production terms. This is
consistent with increasingly high negative correlation between isotropic gradient-
production and anisotropic gradient-production with decreasing A, /A, as shown
in Fig. (3.12). Close observation of Fig. (3.11) reveals that for the lowest value
of A,/A in the HATS data ( &~ 0.23, see the fluctuations of the tilting term in
Fig. (3.11)), the normalized fluctuation of the sum of the four production terms
is greater than unity and hence, not visible in the plot. This implies that the
unmeasured terms exhibit significant negative correlation with the sum of the four

production terms at very low A, /A.
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Figure 3.13. HATS, stable cases: RMS values of (0f;/0t) normalized with that of
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3.3.3.3 Relative rms values of (0f;/0t)

In Fig. (3.13), we plot (0f1/0t),.,
A, /A. It increases from ~ 1.2 at the highest value of A, /A to =~ 2.5 at low A,,/A.

The four production terms — tilting, isotropic gradient-production, anisotropic

normalized with (0f5/0t), ., as a function of

gradient-production and buoyant production — account for an increasingly large
fraction of the fluctuations with decreasing A, /A. As discussed in the previous
section, however, unlike in the Tg- budgets, we have more than one significant
source of fluctuations in the f; budgets even at the lowest value of A, /A. The
steep increase in the normalized rms values of (0f1/0t) with decreasing A, /A
imply that at low A, /A, the dominant sources of fluctuations in the f; budget
fluctuate more than those in the f3 budget.

3.3.4 Summary

As A, /A decreases, the f; budget is dominated by flux tilting and anisotropic
gradient-production with isotropic gradient-production playing a negligible role.
The principal source of production in the f3 budget is isotropic gradient-production

but anisotropic gradient-production and buoyant production also play a significant
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role at low A,,/A. Flux tilting plays a negligible role in the f3 budget for all A,,/A.

At high A, /A, isotropic gradient-production, anisotropic gradient-production
and flux tilting together account only for a small fraction of the rms value of
(0f1/0t), implying significant contributions from advection, turbulent transport
or pressure destruction, either directly or through cross-correlations with the mea-
sured terms. As A, /A decreases, the three production terms together account for
an increasingly large fraction of the total fluctuation level although this still does
not rule out cross-correlations with the unmeasured terms. Isotropic gradient-
production contributes negligibly to the total fluctuation level across the entire
range of A, /A.

In the f3 budget, as A, /A decreases, the normalized rms values of isotropic
gradient-production, anisotropic gradient-production, buoyant production and their
sum increase while those of flux tilting are relatively insignificant (=~ 0.1-0.15).
Among the four production terms, isotropic gradient-production has the highest
normalized rms values. At high values of A, /A, the four production terms to-
gether represent only a small fraction (= 0.2) of the rms value of (0f3/0t) and
we infer significant contributions from advection, turbulent transport or pressure
destruction, either directly or through cross-correlations with the measured terms.
Finally, the fluctuations in (0f;/0t) exceed those in (Jf3/0t) and at very low
A, /A, the former is more than twice the latter which shows that the dominant
sources of fluctuations in the f; budget fluctuate more than do their counterparts
in the f3 budget.

Our results in the current and preceding section show that as A, /A decreases,
SF'S production terms in the 7‘3 and f; budgets that dominate in the mean also

account for a significant fraction of the fluctuations in Tfjl» and f;, respectively.

3.4 SFS model

In the previous sections, we used HATS data for the stable boundary layer to
gain insight into the conservation equations for the SFS stresses and fluxes. We
determined that at low A, /A, the principal production terms in the SF'S budgets
(for both stresses and fluxes) are also an important source of fluctuations in the SF'S

stresses and fluxes. Our HATS analysis suggests that traditional eddy-viscosity
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closures that account only for isotropic production are expected to represent poorly
the diagonal SFS deviatoric stresses, 74, and the horizontal SFS scalar flux, fi,
in whose budgets isotropic production plays a negligible role.

In the present section, we investigate the performance of an SF'S model that
uses conservation equations by implementing it in LES of a moderately stable
boundary layer. The SFS model we employ is identical to the one developed by
Hatlee and Wyngaard (2007) and was used in Ch. (2) for LES of the unstable

ABL. Equations (3.1)—(3.2) comprise the SFS model:
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The nomenclature is the same as defined in previous Ch. (2). The terms in
Eq. (3.1) are (from left to right): time derivative, advection, flux tilting, anisotropic
gradient-production, isotropic gradient-production and modeled slow pressure strain-
rate covariance. The terms in Eq. (3.2) are (from left to right): time derivative,
advection, isotropic production, anisotropic production, buoyant production and
modeled slow pressure strain-rate covariance.

1/2 where

The SFS time scales Tj , are modeled as being proportional to lsps/e
lsps is the length scale for the SFS eddies. We denote the proportionality con-
stants in the expressions for Ty and T, by ¢y and c,, respectively. We set lsps =
A = (AzAyAz)'/? in regions of unstable stratification and lsps = 0.761/e/N
(Deardorff, 1973) under stable stratification where N = /(g/00)(00/9z) is the

Brunt-Vaisala frequency. Use of the stability dependent length scale is critical to

prevent Egs. (3.1)—(3.2) from blowing up in stably stratified regions.
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3.5 Set-up of LES runs

The GABLS experiment (Beare et al., 2006) was the first major intercomparison
study that assessed the ability of different SF'S models to simulate the moderately
stable boundary layer. We describe briefly the main parameters of the LES runs
used in GABLS, as we use an identical set-up for our LES runs in this chapter. The
set-up used in GABLS is similar to that used by Kosovi¢ and Curry (2000), who in
turn modeled their runs on the BASE (Beaufort Sea Arctic Stratus Experiment)
observations.

The domain size is 400 m in all three directions. The surface cooling rate is
prescribed to be 0.25 K/hr. The geostrophic wind in the x-direction is 8m/s with
the Coriolis parameter set to 1.39 x 107 s™! (corresponding to latitude 73°N). To
initiate turbulence, a random potential temperature perturbation of amplitude 0.1
K and zero mean is applied to vertical levels below a height of 50 m. The initial
SFS turbulent kinetic energy is initialized as 0.4(1 — 2/250)® m?s3, for z < 250m
and is set to zero for z > 250m. Gravity wave damping is applied above z = 300m
to suppress reflection of gravity waves from the top of the domain. The damping is
achieved by nudging the instantaneous velocities linearly towards their geostrophic
values. The surface roughness length is 0.1 m and the initial surface potential
temperature is 265 K. The terrain is assumed to be flat and homogeneous. The
simulations are run for a total of 9 hours (model time) and statistics are collected
over the last one hour. The long simulation times are necessary in order to obtain
a quasi-steady SBL which then enables comparisons between the LES results and
Nieuwstadt’s predictions (Nieuwstadt, 1984). In following the GABLS set-up for
our LES runs, our goal is admittedly modest: to assess the performance of the
modeled SFS conservation equations in simulating the quasi-steady moderately
stable boundary layer. Consequently, factors such as terrain slope, gravity waves
and very strong stratification (the “very stable boundary layer” (Mahrt, 1998)),
while certainly relevant to a more general treatment of the SBL, are beyond the
scope of our LES study.

Before presenting the results, we comment briefly on our use of a surface cool-
ing rate rather than the surface heat flux as the lower boundary condition. Basu

et al. (2008) have demonstrated theoretically and numerically that prescribing the
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surface heat flux is suitable only for near-neutral to weakly-stable conditions as it
leads to erroneous values of w, for strong stratifications. They showed that pre-
scribing the surface potential temperature is more appropriate and recommended
avoiding the specification of the surface heat flux as a lower boundary condition
in LES of the SBL.

3.6 Results

In this section, we present LES results using three different grid sizes: 128x128x128,
64x64x64 and 32x32x32, which correspond to resolutions 3.125m, 6.25m and 12.5m,
respectively. We denote the corresponding LES runs as SBL1, SBL2 and SBL3, in
increasing order of coarseness. All participants in the GABLS experiment (Beare
et al., 2006) submitted results from LES runs at the above three resolutions. A
couple of participants also submitted results at a resolution of 1 m. We begin with
a brief discussion of the modeled SFS budgets of TZ. followed by those of f;, as
described by Egs. (3.1)—(3.2). We plot the budgets only for SBL2 as an illustrative
case.

We define the boundary layer height in a manner similar to Kosovi¢ and Curry
(2000) and Beare et al. (2006), wherein z; = zp.95/0.95, 2995 being the height at
which the total (resolved + SFS) resultant shear stress, /(u/w’)2 + (v'w’)?, falls

to a small fraction (5%) of its surface value, u?. In the SBL, it is preferable to

define z; in terms of the momentum fluxes rather than the heat flux as the latter
is influenced significantly by gravity waves near the top of the SBL (Kosovi¢ and
Curry, 2000) and thus, the height corresponding to zero heat flux might not be an

accurate indicator of the boundary layer top.

3.6.1 Modeled TZ% budgets

In Fig. (3.14) are shown the various terms in the modeled TZ budgets, scaled with
<—T$~5’Zj> and plotted versus z/z;, where z; = 182m is the inversion height. At
equilibrium, the dissipation of turbulent kinetic energy, € is approximately equal
to <—7’%§,~j>. In the HATS data, the stably-stratified cases are associated with

lower values of A, /A than are the unstable cases. In our LES runs of the SBL,
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Figure 3.14. Plane-averaged values of terms in the SF'S stress budgets scaled with
<—TZ-C§-5’Z-]->, for the run SBL2 (643). Left column: diagonal components, right column: off-

diagonal components. The scaled terms are plotted versus z/z;, where z; = 182m is the
inversion height. Plot legend: (—) Anisotropic production, (---) Isotropic production,
(= —) Buoyant production, (- -) Advection, (—--- — ) Pressure-strain covariance, (— —)
Time tendency

we expect the lowest values of A, /A to occur in the surface layer, where A,, ~ z
(Lenschow et al., 1988)
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3.6.1.1 7, budgets

The HATS data show anisotropic production to be the principal production term
in the 7¢, budgets and buoyant production to be non-negligible in the 7% bud-
get at low A,/A. Fig. (3.14) shows the dominance of anisotropic production
over isotropic production in the 7¢, budgets. Due to stable stratification, buoy-
ancy appears as a loss in the 7% budget and, as a gain in the 7 and 7%, bud-
gets. The effects of buoyancy are most significant near the inversion, a region of
strong stratification due to steep gradients in mean potential temperature. Mod-
eled slow pressure-strain covariance is the principal destruction term that balances
anisotropic production in the 7¢, budgets. The advection terms are negligible
in the mean. They are, however, necessary for the SFS model to extract energy
meaningfully from the resolved-scales and avoid a spurious build-up of resolved-
scale energy close to the filter cut-off, as discussed earlier in Ch. (2).

To see the effect of the anisotropic production term, we examine the mean
values of 72 as predicted by LES and compare them to observations. We show
results obtained using two closures: (i) an eddy-diffusivity closure; and (ii) the
modeled SF'S conservation equations. The eddy-diffusivity closure is identical to
the one used in Ch. (2), wherein the eddy-diffusivity, K,,, is defined to be K,, =
cev/e A. For our LES runs of the unstable ABL, we used ¢, = 0.1, a value first
derived by Lilly (1967) assuming homogeneous and isotropic turbulence. In LES
of the SBL, however, we found ¢; = 0.1 to be too high as it leads to incorrect mean
potential-temperature profiles that were almost linear while past LES studies (Basu
and Porté-Agel, 2006; Beare et al., 2006) and field observations (Caughey et al.,
1979; Lenschow et al., 1988; Newsom and Banta, 2003; Nieuwstadt, 1984) show
the mean potential temperature profile to have a positive curvature in the middle
portion of the boundary layer. We found that reducing ¢ was necessary to obtain
more realistic mean potential temperature profiles. Thus, we use ¢, = 0.06 in all
our LES runs using the eddy-diffusivity closure.

In Fig. (3.15), we plot 72 /u? as a function of A,,/A for the stable HATS cases.
As Ay /A decreases, 78 /u? (> 0) and 7% /u? (< 0) increase sharply in magnitude
while 75, /u? attains small negative values. Thus, the SFS stresses are strongly
anisotropic at low A, /A, which we recall describes conditions of under-resolved

turbulence such as the near-wall region, strongly stratified flow, etc. In Fig. (3.16),
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we plot 74, /u? obtained from LES. A qualitative comparison of Figs. (3.15)-(3.16)
reveals that the modeled SFS conservation equations are capable of reproducing
anisotropy at the subfilter scales but severely underpredict 7¢, when compared
to observations. The eddy-diffusivity closure predicts near-zero values of 72, /u?

throughout the boundary layer, as it fails to account for SF'S anisotropy.
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Figure 3.15. HATS, stable cases: SFS deviatoric stresses, 72, /u2, plotted versus A, /A.

3.6.1.2 Tgﬁ budgets

In the 7% budget, the HATS data yield isotropic production as the principal pro-
duction term but anisotropic production and buoyant production are also signifi-
cant, especially at low values of A, /A. Our LES results yield isotropic production
to be the dominant production term in the 7{; budget but yield negligible values
for both anisotropic- and buoyant-production, in comparison to observations. The
underprediction of anisotropic production in the 7 budget was also observed in
our LES simulations of the unstable boundary layer in Ch. (2). Anisotropic pro-
duction in the 7% budget is determined primarily by the term —7% (94/92) (Chen
et al., 2005). Thus, the underprediction of anisotropic production is likely due
to the underprediction of 7%. In Ch. (2), we speculated that the modeled SFS

conservation equations underpredict the magnitude of 72, at low A,,/A due to the
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Figure 3.16. LES: SFS deviatoric stresses, Tao/u2, plotted versus z/z;, using an eddy-
diffusivity closure (left ) and the modeled SF'S conservation equations (right).

inadequacy of the model for the pressure-strain covariance terms. Thus, it is plau-
sible that the modeled pressure strain covariance term influences the predictions
of anisotropic production adversely in the SBL as well.

The 73, budget is qualitatively similar to the 7{; budget wherein it is in balance
between isotropic production and modeled slow pressure strain-rate covariance.
The 7, budget has anisotropic production as the principal production mechanism
which is balanced by modeled slow pressure strain-rate covariance. The mean SF'S
advection terms are negligible in the 7,5 budgets. Although we have shown the
modeled SFS budgets for all six 7;5 components, 755 and 7{, are much smaller in
magnitude than the other components.

3.6.2 Modeled f; budgets

In Fig. (3.17), we plot the plane-averaged terms in the modeled f; budget scaled
with QoNV, as a function of z/z;. We now qualitatively compare Fig. (3.17) with
corresponding results from HATS data, shown in Fig. (3.8).
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Figure 3.17. LES: Plane-averaged terms in the f; budgets scaled with Qo/N and plotted
versus z/z;, for the run SBL2 (643). The variable Qg is the surface heat flux, N is the
Brunt-Vaisalé frequency, and z; = 182m is the inversion height.

3.6.2.1 f; and f5 budgets

Our LES results show that the principal production terms in the f; budget are flux
tilting and anisotropic gradient-production, in agreement with Fig. (3.8). Isotropic
gradient-production and advection in the modeled f; budget are negligible. The

advection term, while negligible in the mean, is necessary to prevent an unphysical
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Figure 3.18. LES: Horizontal flux of potential temperature versus z/z;, for the run
SBL2 using an eddy-diffusivity closure and the modeled SF'S conservation equations.

build-up of resolved-scale potential temperature variance at scales close to the filter
cut-off. The modeled slow pressure-strain covariance is the principal destruction
term. The trends in the f, budget are mostly similar to those in the f; budget but
the magnitudes of the mean production and sink terms are smaller in magnitude.

In Fig. (3.18), we plot f1/Qo as a function of z/z;. The modeled SFS conserva-
tion equations predict a non-zero value for fi, in agreement with observations (see
Fig. (3.9)). The eddy-diffusivity closure is unable to produce any horizontal SE'S
flux due to its sole dependence on isotropic gradient-production, which according
to Fig. (3.8), plays a negligible role in the f; budget.

In general, the nature of balance in the modeled f; and f; budgets for the SBL
mirrors that observed in our LES results for the unstable boundary layer, discussed
in Chapter (2).

3.6.2.2 f3 budget

The f3 budget has isotropic gradient-production as its principal production term
which is balanced by the modeled pressure-strain covariance. Anisotropic gradient-

production and advection are negligible. Flux tilting while non-zero is much
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Table 3.1. Boundary layer height (z;), Monin-Obukhov (MO) length (L), surface flux
(Qo), MO scales u, and 6., and the Zilitinkevich parameter, v, where v = z;/(ux L/ f)/2.
The statistics are averaged over the last hour of simulation. Where possible, we also list

for each parameter the corresponding minimum and maximum values observed in the
GABLS LES-intercomparison study (Beare et al., 2006).

Diagnosed physical parameters of LES runs

Resolution (m) 3.125 6.25 12.5 3.125 (GABLS)
z;i(m) 173 182 188 (168,204)
L(m) 107 107 102 (100, 150)
Qo(Wm™2) —14.62 ~15.95 ~15.95 (—12.5,-19.6)
u,(ms) 0.262 0.268 0.267 (0.245,0.283
0.(K) 0.043 0.045 0.047 —
~ 0.38 0.40 0.42 _

smaller than isotropic gradient-production everywhere in the ABL. The dominance
of isotropic gradient-production in the modeled f3 budget is also observed in the
HATS data. Anisotropic-gradient production, however, is severely under-predicted
in the modeled f3 budget compared to observations, which show it to be a signifi-
cant loss term even if lesser in magnitude than isotropic gradient-production. This
under-prediction of anisotropic gradient-production was also observed in our LES
results for the unstable boundary layer. We now proceed to discuss in detail our
results obtained from LES runs SBL1, SBL2 and SBL3.

3.6.3 Bulk parameters

Table (3.1) lists the boundary layer height (z;), Monin-Obukhov (MO) length (L),
surface heat flux (Qo), the MO scales 0, and u,, and the Zilitinkevich parameter,
v = zi/(u. L/ f)? (Zilitinkevich, 1972). As one of the aims in the GABLS experi-
ment (Beare et al., 2006) was to test the sensitivity of various SF'S models to grid
resolution, we tabulate values from LES runs at three resolutions: (i) 3.125m; (ii)
6.25m; and (iii) 12.5m. For comparison, we also list the corresponding minimum
and maximum values — where available — observed by Beare et al. (2006) at a
resolution of 3.125m.

To convert the surface flux values from K-m to Wm™2, we have used the re-
lation, H = —pc, 0, u., where H is the heat flux in Wm™2, p = 1.3223kgm™
and ¢, = 1.005kJkg ' K~'. We obtained the values of L from the time series
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provided on the official GABLS webpage (www.gabls.org). The CASES exper-
iment (Poulos et al., 2003) observed u, and Qg to lie within (0.22,0.59) ms™!
and (—5.7,—48.4) Wm™2, respectively, for continuously turbulent boundary layers.
Thus, the values of the bulk parameters from our LES runs at all three resolutions
are consistent with the GABLS experiment and the CASES-99 experiment.

Among the parameters shown in Table (3.1), z; exhibits the greatest sensitivity
to resolution. Beare et al. (2006) found a majority of SF'S models to display a
similar trend wherein z; increases with coarsening resolution. The change (increase
or decrease) in predicted z; at A = 12.5m from that at A = 6.25m averaged to
a value of 14% across all the SFS models. Indeed, for some SFS models, the
percentage increase in z; was as high as 30% which led to a smearing out of the
inversion at the coarse resolutions. In comparison, the modeled SEF'S conservation
equations exhibit a modest increase (3%) in z; as the resolution increases from
A =6.25m to A = 12.5m. The values of the other parameters in Table (3.1) differ
by less than 10% for any two resolutions. Nieuwstadt (1985) derived analytically
an expression for the Zilitinkevich parameter which yielded v = 0.37. Observations
reveal a slightly higher value of 0.4 (Garratt, 1982).

In Fig. (3.19) we show the time evolution of u., @y and z; over the entire
simulation length of 9 hours. We also indicate nondimensional time, t* = tz; /u,,
on the top axis of each plot. Since our simulations include the Coriolis effect, we
expect all statistics to exhibit gradual variations over a timescale 1/f (~ 10* sec.),
even after the flow has reached quasi-steady state.

Fig. (3.19) shows that u, undergoes significant variations until ¢ ~ 15000s
(t* ~ 25) after which the changes are more gradual. The boundary layer height
z; increases sharply till ¢ ~ 14000s (t* =~ 21). For ¢ > 14000s, z; continues to
fluctuate more or less about a constant value. The fluctuations are consistent
with the intermittent nature of the boundary layer top (Kosovi¢ and Curry, 2000).
As our lower boundary condition employs a prescribed cooling rate instead of
a prescribed surface heat flux, )y varies with time although its rate of change
decreases in magnitude gradually over time. By the end of the simulation Qg
is nearly constant. Thus, to a good approximation we have quasi-steady state
conditions during the final hour of simulation, which is our window for gathering

statistics.
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Figure 3.19. Time series of u,, surface flux Q)¢ and z; over the entire simulation length
of 9 hours. On the top axis of each plot is shown the time scaled with z; /u..

3.6.4 Evolution of mean profiles of potential temperature

and velocity

In Fig. (3.20) we plot the vertical profiles of mean potential temperature and
resultant horizontal velocity at ¢, = (5,15,25,30) to show their evolution with
time. The profiles at ¢, = (5,15,25) are considerably different (especially (©))
as the flow is still transitioning towards equilibrium. The profiles at ¢, = 25 and

t, = 30 are similar suggesting that the flow is nearing equilibrium. This observation
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Figure 3.20. Profiles of mean potential temperature (left panel) and resultant mean
velocity (right panel) at t, = (5,15,25,30), where t, = tus/z;, is the nondimensional
time.

combined with the fact that u, stabilizes at ¢, ~ 25 suggests that the transient
phase ends approximately at 25 < ¢, < 30.

We can also see the nocturnal jet (also called the low level jet) evolving in
time with the “nose” of the jet accelerating to super-geostrophic speeds, as seen
in the profiles at ¢, = 25 and ¢, = 30. The jet continues to accelerate even beyond
t, = 30, as the peak jet velocity at equilibrium is higher than that implied by
Fig. (3.20). As the nocturnal jet plays an important role in the SBL, we now

discuss it at greater length.

3.6.4.1 The nocturnal jet

The nocturnal jet is a common feature of the nighttime boundary layer (Andreas
et al., 2000; Banta et al., 2002; Davies, 2000) and refers to a shallow layer of air
(~ 100m) with high shear, which is produced as a result of the dynamical de-
coupling of the flow aloft from the surface (Blackadar, 1957). Banta et al. (1998)

showed that it influences the transport of pollutants such as Ozone in the urban
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boundary layer. Using data from the CASES-99 experiment, Banta et al. (2003)
found that the strength of the nocturnal jet modulates the turbulence in the re-
gion below it and subsequent studies by Banta et al. (2006) showed that high jet
speeds (> 15m/s) give rise to the so-called “upside down boundary layer” (Mahrt,
1999; Mahrt and Vickers, 2002), in which turbulence generated aloft due to shear
propagates downwards to the surface. In such boundary layers, the turbulent fluc-
tuations typically increase with height within the boundary layer and the peak jet
velocity, Uy, scales the velocity fluctuations better than does u,, even near the sur-
face. Understanding the evolution of the nocturnal jet also has practical relevance
for wind energy applications (Banta et al., 2008; Sim et al., 2009).

Blackadar (1957) proposed a mechanism for the evolution of the nocturnal jet,
wherein the decay of the turbulent stresses aloft — and consequently, their diver-
gence — during the early-evening period leads to an imbalance in the horizontal
momentum equation, which in turn causes the jet to accelerate to super-geostrophic
speeds. We now review briefly Blackadar’s solution describing the nocturnal jet
(Wyngaard, 2010). The horizontal mean momentum equations for an incompress-

ible, horizontally homogeneous flow are,

o(U) 0 (u'w’)
ﬁ = f({V)=V,) <8z | (3.3)
oV o '’
W)~ pw, -y -2 (3.4

Neglecting the stress divergence terms, it is straightforward to show that the solu-
tion to Eqs. (3.3)-(3.4) is given by AU = Upe ™ (~%) and AV = Vye /=) where
AU = (U) - U,, AV = (V) = V,, ty is the time at which the stress divergence
terms collapse and (Up, V) are the mean velocities at t = t;. The above solution
states that for t > tg, the velocity difference vector (AU, AV') traces out the tip
of a circle of radius \/m with frequency f. The nocturnal jet can also be
explained as a feature of the quasi-steady SBL wherein it is a consequence of the
equilibrium between the Coriolis terms and the stress divergence terms in the hor-
izontal momentum equations (Kosovi¢ and Curry, 2000; Nieuwstadt, 1984), i.e.,
the first and second terms on the right hand side of Eqgs. (3.3)—(3.4). This view is
in agreement with past studies that found that the peak jet velocity might depend
on the stress divergence terms (Mahrt, 1981). Davies (2000) have argued that the
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Figure 3.21. Time-evolution of the peak jet velocity shown in (AU, AV)-space where
AU = (U) —Uqy and AV = (V) — V. The dash-dot lines in the left and right panels are
circles of radii 2 and 2.2, respectively. These radii denote the magnitude of the (AU, AV)
vector at approximately the beginning of the inertial oscillation. The individual points
correspond to samples collected at 1000-second intervals over the course of the simulation
(9 hours).

nocturnal jet is influenced by both the above mechanisms, which implies that all
terms in Eqgs. (3.3)—(3.4) play a role in the evolution of the jet.

In Fig. (3.21), we plot the time-evolution of the peak jet velocity in (AU, AV)-
space. The dash-dot line in Fig. (3.21) denotes a circle of radius 1.95, whose
significance we explain below. To illustrate the onset of the inertial oscillation we
plot the timeseries of: (i) (vAU? 4+ AV?) in Fig. (3.22a); (ii) the scaled Coriolis
and stress divergence terms in the (0(V') /0t) equation in Fig. (3.22b); and (iii) the
scaled Coriolis and stress divergence terms in the (9(U)/0t) in Fig. (3.22¢). We
have scaled the momentum equation terms shown in Figs. (3.22b)-(3.22¢) using
z;i/u?. Fort, < 22, VAU? + AV? ~ 0 which implies that the peak mean velocities
of the jet are nearly identical to their geostrophic values. In (AU, AV')-space, this
is equivalent to the velocity-difference vector occupying the origin. Shortly after
t, > 22, we see a sharp increase in the magnitudes of (AU, AV) and the scaled
stress divergence terms, which corresponds to the velocity-difference vector moving

vertically upward from the origin in Fig. (3.21). From ¢, ~ 25 till ¢, ~ 42, the
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Figure 3.22. (a) Timeseries of VAU? + AV?2; (b) timeseries of scaled Coriolis and
stress divergence terms in the (9(V')/0t) equation; (c) timeseries of scaled Coriolis and
stress divergence terms in the (0(U)/0t). The terms shown in (b) and (c) have been
scaled with z;/u2. The individual points correspond to samples collected at 1000-second
intervals over the course of the simulation (9 hours). Only results from the run SBL2
have been shown.

magnitude of the (AU, AV') vector appears to stabilize and averages approximately
to a value of 1.95 and thereafter, starts tracing out a path that ideally would be a
circle, as predicted by Blackadar (1957). Fig. (3.21) shows that results from the run
SBL3 (1283%) agree better with Blackadar’s analysis compared to the other two runs
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modeled SFS conservation equations. The dotted lines denote the geostrophic values,
Uy =8m/s and V; = 0 m/s. The profiles are averages over the last hour of simulation.

although even in the case of SBL3, the values of (AU, AV) start to deviate from
Blackadar’s solution towards the final stages of the simulation. We show in later
sections that higher surface cooling rates yield better agreement with Blackadar’s
analysis.

Although Blackadar’s analysis assumes that the stress divergence terms are
zero, Fig. (3.22) shows that they are non-negligible precisely when the (AU, AV)
vector appears to obey Blackadar’s solution. Thus, it appears that both the Cori-
olis and stress divergence terms influence the dynamics of the inertial oscillation
Davies (2000). We can reconcile Blackadar’s analysis with our results by noting
that non-zero stress divergence terms do not preclude an oscillatory solution to
Egs. (3.3)-(3.4). This is because the necessary condition for oscillatory behavior
in Egs. (3.3)-(3.4) is the presence of the time-derivative and the Coriolis terms —
which together represent a linear, harmonic oscillator — and not the absence of
the stress-divergence terms, although assuming the latter has the benefit of ren-
dering the momentum equations analytically tractable. Thus, we can imagine the
stress divergence terms modulating the amplitude and frequency of the oscillation

without disrupting it completely.
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In Fig. (3.23), we show the profiles of the mean velocity components averaged
over the last hour of simulation. We observe a deepening of the boundary layer
and slight weakening of the peak jet velocity with decreasing resolution. Similar
trends were also recorded in the GABLS experiment (Beare et al., 2006) and by
Basu and Porté-Agel (2006) in their LES simulations using the locally-averaged
scale-dependent dynamic model. The peak jet velocities are in close agreement
with those observed by Beare et al. (2006).

3.6.4.2 Profile of mean potential temperature

In Fig. (3.24) we plot the profiles of mean potential temperature averaged over
the final hour of simulation. A marked characteristic of the potential temperature
profile in the nocturnal SBL. with weak to moderate stratification is its positive
curvature, i.e., d*(0)/dz? > 0 (Caughey et al., 1979; Lenschow et al., 1988; Nieuw-
stadt, 1984), except very close to the surface. André and Mahrt (1982) found that
SBLs associated with high wind speeds and strong mixing displayed a positive cur-
vature in the potential temperature profile. Those associated with weak winds and

dominated by clear-air radiative cooling were found to exhibit a negative curvature.
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Hyun et al. (2005) used CASES-99 data to show that the development of a strong
nocturnal jet on some nights caused the curvature in the potential temperature
profile to change sign from negative to positive. Analytical profiles (Nieuwstadt,
1985) and LES studies (Basu and Porté-Agel, 2006; Beare et al., 2006; Stoll and
Porté-Agel, 2008) also indicate a positive curvature in the potential temperature
profile for well-mixed SBLs with weak to moderate stratifications.

Figure (3.24) shows that the profiles at all three resolutions exhibit a positive
curvature, which is consistent with the moderate stratification of our simulated
SBLs. There is reasonable convergence between the profiles for the lowest 100 m
but they exhibit differences as we approach the inversion. The GABLS experiment
(Beare et al., 2006) found maximum sensitivity to the SF'S model near the inversion.
There is a slight decrease in curvature with the coarsening of grid resolution but
the effect is less severe than that observed in some of the SFS models tested by
Beare et al. (2006).

For comparison, we reproduce in Fig. (3.25), the mean potential temperature
profile obtained using the locally-averaged (LASDD) and plane-averaged scale-
dependent models (Basu and Porté-Agel, 2006). Both these models belong to the
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family of dynamic SFS models wherein the SFS model coefficient is computed
dynamically from the resolved scales. The LASDD model was developed as an
improvement over the PASDD model which was found to be insufficiently dissipa-
tive in regions of strong stratification (Basu and Porté-Agel, 2006). Some of the
deficiencies in the LASDD model, in turn, have been addressed in the Lagrangian
averaged formulation of Stoll and Porté-Agel (2008). The LES simulations of Stoll
and Porté-Agel (2008) use a computational domain whose dimensions and aspect
ratio are different from those used in the GABLS study. Moreover, the coarsest
resolution used in the LES study by Stoll and Porté-Agel (2008) (9.92m) is finer
than that (12.5m) used in the GABLS numerical experiment (Beare et al., 2006)
and by Basu and Porté-Agel (2006). The physical parameters for the LES runs by
Basu and Porté-Agel (2006) are identical to those used in the GABLS numerical
experiment (Beare et al., 2006), which enables a direct comparison between our
results and theirs. Thus, we focus here on the results obtained using the LASDD
model and compare them to those obtained using the modeled SF'S conservation
equations. Figures (3.24)—(3.25) reveal that there is negligible difference between
the results from the two SFS models at the finer resolutions. There is, however,
significant deterioration in the performance of the LASDD model for the 323 run,

as witnessed in the smearing out of the mean profile near the inversion.

3.6.5 Time series of velocity and potential temperature

fluctuations

In Fig. (3.26), we plot the timeseries of the total velocity variances (resolved +
SFS) scaled with u? and the resolved-scale variance of potential temperature, scaled
with 62, at z/z; = 0.1. The location z/z; = 0.1 isn’t fixed as we use the instan-
taneous values of z;. Once equilibrium is attained, however, the variations in z;
are considerably lesser than in the initial stages of the simulation. The timeseries
have been plotted versus t/t.. We have used the equilibrium values of u, and 6,
for scaling purposes.

The scaled variances of u, v and w decrease initially and reach a minimum
at around ¢, ~ 13. For t, > 13, ((u?)/u?, (v*)/u?, (w?)/u?) increase until they

attain maxima at times approximately between t, = 35 and ¢, = 40. The pre-
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Figure 3.26. Time series of (i) (u?), (v?), (w?) (resolved + SFS) scaled with u?; and (ii)
(62) (resolved only) scaled with 62, plotted versus t/t, at z/z; = 0.1, where t, = 2; /us.
The individual points correspond to samples collected at 1000-second intervals over the
course of the simulation (9 hours).

dictions of ((u?)/u?, (v?)/u?) are considerably more sensitive to grid resolution
compared to those of (w?)/u?. The values of resolved-scale potential temper-
ature variance increase almost linearly versus time till around ¢/t, ~ 25. For
t/t, > 25, their growth rate is resolution-dependent. The scaled variances for

the runs SBL1 and SBL2 increase at a rate faster than that for the coarsest run,



143

SBL3, and appear to stabilize at around t¢/t, ~ 40, which is approximately when
the surface flux, )y, stabilizes. Their steady-state values are greatest for the run
SBL1 and least for SBL.3 which is consistent with the notion of a finer grid yield-
ing greater resolved-scale variances. The Minnesota experiments (Caughey et al.,
1979) yielded values of 3.8, 1.8 and 3.0 for (u?)/u2, (w?)/u? and (6*)/6? (resolved
+ SFS), respectively, at z/z; = 0.1. Aircraft measurements during the Severe
Environmental Storms and Mesoscale Experiment (Lenschow et al., 1988) found
((u?), (v, (w?)) Ju? =~ (3.8,3.8,2.2) at z/z; = 0.1. The scaled potential temper-
ature variances obtained by Lenschow et al. (1988) exhibited considerable scatter
and yielded values of 4-4.5 at z/z; = 0.1. Our values of ((u?), (w?)) /u? during the
last hour of simulation agree satisfactorily with observations while those of (v?)/u?
are underpredicted. We use values of resolved-scale (6?)/6? from run SBL1 for
comparison with observations as the SFS contribution is least for SBLL1 among the
three runs. The resolved-scale potential temperature variances from LES agree
well with field measurements (Caughey et al., 1979) but are underpredicted when
compared to aircraft measurements (Lenschow et al., 1988). To provide further
context to our results, we now cite results from a few DNS studies.

Nieuwstadt (2005) performed DNS of stably stratified channel flow with no
rotation for a range of stratifications. In his DNS study, the Reynolds number,
Re, = u.z;/v = 360, was quite low but he invoked Reynolds number similarity
to postulate that his results might be relevant for higher Reynolds numbers as
well. The CASES-99 experiment (Poulos et al., 2003; Van de Wiel et al., 2003) in
Kansas found u, to lie in the range (0.22,0.59)m/s for continuously turbulent stable
boundary layers spanning a wide range of stratifications. Corresponding values of z;
range from 70m and 200m. Choosing u, = 0.4m/s and z; = 150m as representative
values, and using v ~ 107°, we obtain Re, ~ 10° which is four orders of magnitude
higher than its value in Nieuwstadt’s DNS studies (Nieuwstadt, 2005). He found
the maximum value of z;/L — a measure of the stratification — that could sustain
continuous turbulence in the channel!, to be 0.6. This value is much lower than
the z;/L values in our LES runs (= 1.7) and in past LES studies (Basu and Porté-
Agel, 2006; Beare et al., 2006) which report z;/L values of ~ 2. For z;/L < 0.6,

INieuwstadt originally reported the critical value of z;/L to be 1.2 but he defined L without
using the von Kédrman constant, £ = 0.4, in the denominator. We have recalculated Nieuwstadt’s
z;/ L values using the traditional definition of L.
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Nieuwstadt (2005) found (u?) /u2, (v*) /u? and (w?) /u? to attain steady-state values
of 4, 1.5 and 0.8, respectively, at z/2z; = 0.1 for t, > 25. The DNS values of (u?) /u?
agree reasonably with observations (Caughey et al., 1979; Lenschow et al., 1988)
and our LES results but those of (v?)/u? and (w?)/u? are significantly lower in
comparison. From Fig. (3.26), the LES values of (w?)/u? stabilize at t. ~ 25, in
agreement with Nieuwstadt’s (2005) DNS studies. We recall that u, also stabilizes
around t/t, ~ 25 (see Fig. (3.19)).

DNS by lida et al. (2002) corresponding to Re, = 150 and Ri, = 0.35 (defined
below) yielded values of the scaled velocity variances at z/z; = 0.1 that are nearly
equal to those obtained by Nieuwstadt. They found (6?)/6? ~ 5.7 at z/z; = 0.1
which is high compared to field measurements (Caughey et al., 1979). The variable
Riy = (9©0)(Af 2;/U7), where Af is the change in 6 across the boundary layer,
denotes the bulk Richardson number and is a measure of the global stratification.
In our LES runs, we estimate Ri, to be 0.16. Iida et al. (2002) found that Ri, > 0.54
caused the flow to re-laminarize.

Thus, although a strict comparison between DNS and our LES results might
not be possible due to the differences in Re, there appears to be limited agreement

between the two in select aspects of the flow dynamics.

3.6.6 Profiles of flux- and gradient-Richardson number

The flux Richardson number, Riy, is defined to be the ratio of buoyant destruction
to shear production of turbulent kinetic energy. A related nondimensional quantity
is the gradient Richardson number, Ri,, which can be derived from Ri; assuming
a gradient-diffusion form for the turbulent fluxes. Both Ri, and Ri; are indicators
of the level of stratification in a flow.

In Fig. (3.27), we plot Ri, and Riy averaged over the last hour of simula-
tion. They are found to increase smoothly with height within the boundary layer
(173m < z < 188m). All three runs yield a value of Ri, between 0.25 and
0.30 near the inversion. Miles (1961) used linear stability analysis to show that a
stratified flow is stable for Ri, > 0.25. Field studies (Caughey et al., 1979) and
wind tunnel measurements (Ohya, 2001; Ohya et al., 1997) show that for weak

to moderate stratification, Ri, increases gradually with height and attains values
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Figure 3.27. Vertical profiles of gradient Richardson number, Ri,4, and flux Richardson
number, Ri;. The mean inversion height for the runs SBL1-SBL3 is ~ 181 m. The
profiles are averages over the last hour of simulation.

close to the critical value (0.25) near the inversion. Thus, our Ri, values near
the inversion are consistent with theory and observations. Above the inversion,
Ri, is unbounded because the gradient of mean velocity tends towards zero while
that of mean potential temperature stays finite. In contrast, the definition of Riy
involves fluxes as opposed to gradients and hence, is ill-defined above the inversion
due to negligible levels of turbulence there. For comparison, we show the vertical
profile of Ri, obtained using the LASDD model (Basu and Porté-Agel, 2006) in
Fig. (3.28). The sensitivity to resolution in Fig.(3.28) is greater than in the case of
the modeled SF'S conservation equations. We found that similar conclusions hold
for Ris as well (plot not shown).

Our LES values of Ri,/Ris, which is equal to the turbulent Prandt] number,
Pr, are 0.6-0.7 throughout most of the boundary layer for all three grid resolutions.
The turbulent Prandtl number is a measure of the relative mixing efficiencies of
momentum and heat. Townsend (1976) and Yakhot and Orszag (1986) predicted a
value of 0.7 for the Prandt]l number analytically. For weak stratification, Schumann
and Gerz (1995) estimated Pr to lie between 0.8 and 1.2. Howell and Sun (1999)
found Pr to be O(1) in the stable surface layer from field experiments. They also
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Figure 3.28. Reproduced from Basu and Porté-Agel (2006). Vertical profile of gradient
Richardson number, Ri,, averaged over the last hour of simulation using the locally-
averaged (LASDD) and plane-averaged (PASDD) scale-dependent dynamic models.

observed an increase in the value of Pr towards the surface implying more efficient
mixing of momentum relative to heat near the wall. Ha et al. (2007) noticed
similar trends in their analysis of CASES-99 data. Our LES values of Pr do not
increase towards the surface. The LASDD model does exhibit such an increase in

Pr towards the surface (Basu and Porté-Agel, 2006).

3.6.6.1 Ris as a function of Ri,

The flux Richardson number is an important modeling parameter in mesoscale
codes and is parameterized typically as a function of Ri, (Pardyjak et al., 2002).
Thus, it is of interest to examine the relationship between Ri; and Ri,. In
Fig. (3.29) we plot Ri; as a function of Ri,. We have shown only the points inside
the boundary layer as Riy is not well-defined in regions where the turbulent fluxes
are negligible. We recall that Ri, < 0.25 within the boundary layer except near
the inversion where it increases sharply to super-critical values. For comparison,

we also show the following parameterizations of Riy used in the literature:

o Ri; = 0.725 | Ri, +0.186 — (Ri2 — 0.316Ri, + 0.0346)1/2} (Mellor and Ya-
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Figure 3.29. The flux Richardson number, Ri¢, as a function of the gradient Richardson
number, Ri,. Symbols represent values from LES runs averaged over the last hour
of simulation. Lines represent commonly used parameterizations for Riy. A value of
Rig crit = (1/3) has been used in Townsend’s parameterization.

mada, 1982)

o Riy=0.774 [Rz'g +0.220 — (Ri2 — 0.328Ri, + 0.0484) "/ 2] (Nakanishi, 2001)

° le =0.5 [1 - (1 - RiQ/Rig,cr)l/Q} (TOWHSGHd, 1958)

Following Pardyjak et al. (2002), we use Ri, .. = (1/3) in the parameterization
of Townsend (1958). The parameterizations by Nakanishi (2001) and Mellor and
Yamada (1982) are very similar for Ri, < 0.3.

In Fig. (3.30), we reproduce a plot from Pardyjak et al. (2002) showing Ri;
(denoted as Ry in their figure) versus Ri, using values obtained from field studies,
laboratory measurements and a few parameterizations. The field studies include
measurements taken in Salt Lake City, Utah, as part of the Vertical Transport and
Mixing Experiment (VTMX), and in Los Alamos. The laboratory measurements
of Riy and Ri, were taken by Strang and Fernando (2001). The parameterizations
shown in Fig. (3.30) are identical to those shown in Fig. (3.29), the only differ-
ence being that Fig. (3.30) shows Riy values using Townsend’s parameterization
for both Rig, e = (1/12) and Rig e = (1/3). Pardyjak et al. (2002) found Riy



148

0.6

05F
04

Rf 0.3 "

02}

Figure 3.30. The flux Richardson number as a function of the gradient Richardson
number, Ri, (reproduced from Pardyjak et al. (2002)). Legend: — — —, Townsend
(1958) with Rig cri¢ = 1/12; —, Mellor and Yamada (1982); ——, Nakanishi (2001); ~A~
, VITMX data; —x—, Los Alamos data; —o—, Strang and Fernando (2001); —o—, Townsend
with Rig i = 1/3.

from the field data to attain a maximum value of 0.4 — 0.5 at Ri, = 1 and to de-
crease for further increases in Ri,. In general, they found the parameterizations to
work satisfactorily only for Ri, < 0.1. A comparison of Figs. (3.29)-(3.30) shows
that for 0.01 < Ri, < 0.06, our LES results and two of the parameterizations
(Mellor and Yamada, 1982; Nakanishi, 2001) agree well with observations. For
0.06 < Riy < 0.2, they overpredict Riy while the parameterization by Townsend
(1958) with Riy..ix = 1/3 yields better values of the same. For Ri, > 0.2, the pre-
dictions by both LES and the various parameterizations are poor due to different
reasons. The Townsend (1958) parameterization is defined only for Ri, lesser than
some maximum value by the nature of its definition while the other two parameter-
izations asymptote to non-zero values of Ri for high Ri, which is inconsistent with
observations. The LES results exhibit values of Riy that are unrealistically high for

Riy, > 0.2. As the critical value of Ri,4 required to sustain continuous turbulence
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is ~ 0.25 (Miles, 1961), values of Ri, significantly greater than 0.25 correspond
to very stable environments with highly intermittent turbulence wherein long pe-
riods of inactivity are punctuated by “bursting” phenomena with Ri, alternating
between sub-critical and super-critical values (Ohya et al., 2008; Pardyjak et al.,
2002). Thus, the failure of our LES results and some of the parameterizations —
which are sometimes tuned using LES — to predict Ri; accurately at high Ri, is
a reflection of their inadequate performance in their current form, in very stable

environments.

3.6.7 The “local” scaling hypothesis

The “local” scaling hypothesis (Nieuwstadt, 1984) posits that in the SBL, statis-
tics scaled appropriately with variables at the same height (hence, “local”) are
functions solely of ( = z/A, where A is a local length scale given by,

3/2

A(z) = . (3.5)

(9/00)(w'e")”
In Eq. (3.5), 7 = [{(u'w')(2) + (v'w')(2)]/? is the local stress magnitude, (w'6')(z)
is the local vertical potential temperature flux and k is the von Karman constant.
The length scale A tends to the Monin-Obukhov length, L, towards the surface.
Nieuwstadt (1984) showed the set of scaling variables to be (A, 7, (w'6")). A corol-
lary of the local scaling hypothesis is that variables scaled locally using the set
(A, 7, (w'8")), tend to constant values in the limit { — oo, also known as “z-less”
scaling (Wyngaard, 1973). Physically, z-less scaling can be understood as arising
due to stable stratification limiting the eddy size such that at large enough z, the
flow is decoupled dynamically from the surface and z ceases to be a relevant length
scale. Nieuwstadt (1984) demonstrated the validity of the local scaling hypothesis
using both theoretical arguments and field studies carried out at Cabauw, Nether-
lands. While he observed z-less scaling for ( < 4, he found the locally scaled
statistics at higher values of ( to be “dubious because of large scatter.” The local
scaling hypothesis, by construction, is flux-based and hence might not be suitable
for very large values of ¢ which are associated with low levels of turbulence, and

consequently, low magnitudes of turbulent fluxes. Using two data sets from the
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Figure 3.31. The variation of {( = z/A versus z/z;, where A is the local length scale.
The horizontal dotted lined denotes z/z; = 0.75.

CASES-99 experiment corresponding to continuous and weak turbulence, Sorb-
jan (2006) demonstrated that the flux-based local scaling arguments fail for the
weakly turbulent case, which is characterized by weak winds and radiative cool-
ing. He found a gradient-based scaling approach to work consistently in both the
continuous and weakly turbulent cases.

Mahrt and Vickers (2003) have termed the functional dependence of turbu-
lent statistics on ¢ as “hybrid” similarity theory due to its consistency with both
Monin-Obukhov scaling near the surface and z-less scaling away from the surface.
Since Nieuwstadt’s original study, both local scaling and z-less scaling have been
validated in numerous field studies (Dias et al., 1995; Heinemann, 2004; Howell and
Sun, 1999; Smedman, 1988), most recently in an elaborate study by Basu et al.
(2006) combining field studies, wind-tunnel experiments and LES. Our focus in
this study is the moderately stable boundary layers where local scaling is valid, as
shown by the above studies. Thus, we do not explore the gradient-based scaling
methodology outlined by Sorbjan (2006).

We consider only the lower 75% of the boundary layer while investigating our
statistics for local scaling, in order to minimize the influence of the boundary layer
top (Basu et al., 2006). Figure (3.31), a plot of ¢ as a function of z/z;, shows that
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Figure 3.32. Variation of locally scaled o, = (u'u/)'/?, 0, = (Vv')Y/?, 6, = (w'w')/?
and 0, = (¢'¢)'/? with ¢ = z/A, where (¢¢) = (Wu') + (V') + (w'w'). The local
variables have been scaled with u, = /7.

z/z; = 0.75 corresponds approximately to ¢ = 6-7.

3.6.7.1 Variances

In Fig. (3.32) we plot the locally scaled (resolved + SFS) standard deviations of
the three velocity components and the turbulent kinetic energy. The evidence for
z-less scaling is strongest in the results from the 128 run and in the case of o, 7y,
and og. Locally scaled standard deviation of resolved-scale potential temperature
is shown in Fig. (3.33). Both the 128 and 64° runs show o,/6;, leveling off at

large (. We have shown here only the tendency of locally scaled statistics to
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Figure 3.33. The variation of locally scaled standard deviation of resolved-scale poten-
tial temperature, oy/0r, with ¢ = z/A. The local scale 0, is given by 0 = (w'0") /7.

approach constant values at large (. A comparison of the actual z-less values with

observations is undertaken in later sections.

3.6.7.2 Gradient-Richardson number

We plot in Fig. (3.34) the gradient-Richardson number as a function of ¢. The
Cabauw data (Nieuwstadt, 1984) reveals Ri, to increase steeply for 0 < ¢ < 1
and at a much slower rate for 1 < ¢ < 4, as it gradually tends towards a value
of 0.2. Figure (3.34) shows that our LES results are consistent with the Cabauw
data. The variation of the flux Richardson number (not shown) with ¢ is very

similar to that of Ri, except that it has higher magnitudes, as discussed earlier in
Sec. (3.6.6.1).
3.6.7.3 Eddy-diffusivities of momentum and heat

In Fig. (3.35), we plot the effective eddy-diffusivities of momentum and heat, de-
noted by K,, and K, respectively, scaled locally using A7%°. The eddy-diffusivities,
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Figure 3.34. Variation of gradient-Richardson number, Ri 4, with ( = z/A.

K,, and Kj,, are determined as follows:

(8<U>)2 . (a<V>)2
0z 0z

For comparison, we have reproduced in Fig. (3.36), a similar plot from the GABLS
experiment (Beare et al., 2006). The results shown in Fig. (3.36) are from LES
runs at resolutions of 2 m (200%) and 6.25 m (128%). As the physical set-up of
our runs is identical to that used in the GABLS experiment, a direct compari-

son between Fig. (3.35) and the right panel of Fig. (3.36) is possible. A visual

comparison between the two plots shows that our LES predictions of scaled K,

~1/2
K,=1

K= —(w0) (@) (3.6)

and K} are too high when compared to observations. The GABLS results show
that most SEF'S models overpredict the locally scaled eddy-diffusivities consider-
ably when compared to observations, especially at a resolution of 6.25m. At this
resolution, values of K,,/(A 7%%) predicted by the modeled SFS conservation equa-
tions and about half of the SF'S models tested by Beare et al. (2006) lie outside
the observation range for low (, entering it at 3 < ( < 4. Aircraft measurements
under very stable conditions in Greenland as part of KABEG (Katabatic wind and

Boundary-layer front Experiment around Greenland) (Heinemann, 2004) indicate



154

Q.15 T T T T T 0.15 AR T TR
+ 12873
% 6473 Ay + *
A 3273 A . ++++ 4+
« A% ¥ X A X ++++ .
. 0.10+ y A%j:++++ 4+ . 0.10*A >s<+j 1
F )@Jﬁr** =
< s < f
€ <
X A X E
0.05*2k 1 0.053&* 1
i% +
£ v
e 3
X -
0.00 ... L ! 0.00 Lt
0 1 2 3 4 0 1 2 3 4
zIN zZIN

Figure 3.35. Locally scaled eddy-diffusivities of momentum (K,,) and heat (K}), as a
function of ¢ = z/A. The eddy-diffusivities have been scaled with A 79,

a z-less value of 0.06 for K,,/(A7%%). The agreement between our LES results
and observations is poorer for Kj /(A 7%?) since its predicted values lie completely

outside the observation range. This is also true of many of the SF'S models tested

in the GABLS experiment (Beare et al., 2006).

3.6.8 Nondimensional gradients of mean potential temper-

ature and velocity

We plot first the nondimensional gradients as a function of gradient Richardson

number and then as a function of (. Businger et al. (1971) derived the following

empirical expressions for Ri,, ¢, and ¢y, as a function of (s = z/L:

S 0744 47¢,
ng - Cs (1 + 4.7(5)2’ (37)
¢ = 074447, (3.8)

Om = 1+4.7(,,



155

0.10

Pm

005+ 7

0.10

¢KH

Figure 3.36. Reproduced from the GABLS LES-intercomparison study (Beare et al.,
2006). The axes are the same as in Fig. (3.35). The nondimensional mean-gradients
are given by ®xy = Ky /(A7%5) and ®@xpy = Kp,/(A7%). The left and right panels
correspond to resolutions of 2 m (200%) and 6.25 m (643), respectively. The crosses
denote mean values obtained from the Cabauw data (Nieuwstadt, 1984) and the shaded
area represents the associated spread in data. The different lines represent results from
LES using 11 SFS models listed in Table 1 of Beare et al. (2006).

where ¢,, is the nondimensional gradient of mean velocity and ¢y, is the nondimen-
sional gradient of mean potential temperature. In Egs. (3.7)—(3.8), the functions
are defined in terms of z/L and the scaling factors used to obtain the nondimen-

sional gradients are kz/u, or kz/0,, as appropriate. Eliminating (s, we arrive at
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Figure 3.37. Plot of 1/¢,, and 1/¢;, versus gradient Richardson number, Ri,.

the following expressions relating Ri, to ¢, and ¢p:

. _ (¢m _ 1) (qu _ 0-26)
Riy = = 7 (3.10)

m

(404 o
Ri, = T o 020) (3.11)

We plot 1/¢,, and 1/¢), as functions of Ri, in Fig. (3.37) alongside the functions
derived in Egs. (3.10)—(3.11). Both 1/¢,, and 1/¢;, are underpredicted but the
latter agrees slightly better with Businger’s empirical fit.

To examine the presence of local scaling, we define new variables ¢,,;, = kz/uy,
and ¢y, = kz/6; (“L” stands for local) involving the local quantities u;, = /7 and
0, = (w'0') /ur, (Howell and Sun, 1999; Sorbjan, 1986). In Fig. (3.38), we plot ¢y,1,
and ¢y, as functions of {. For comparison, we also show the “local” versions ((; is
replaced by () of empirical functions derived by: (i) Businger et al. (1971), shown
in Egs. (3.8)—(3.9): (ii) Mahrt and Vickers (2003), who recommend a slope of 3.7
instead of 4.7 in Eqgs. (3.8)—(3.9); and (iii) Beljaars and Holtslag (1991), which are

given below:

Omr, = L4+([a+be®(1+c—d()], (3.12)
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Figure 3.38. Plots of ¢y, (left) and ¢,,1, (right) versus ( = z/A, where ¢,,,1, and ¢y, are
the locally scaled nondimensional mean-gradients of velocity and potential temperature.
The lines denote the following formulations — dotted : Businger et al. (1971), dash-dot :
Mahrt and Vickers (2003), dashes : Beljaars and Holtslag (1991) .

9 1/2
onr, = 1+¢ a(1+§ag> +be (1 +c—dQ)|. (3.13)

The constants in Egs. (3.12)—(3.13) are given by (a,b,¢,d) = (1,2/3,5,0.35).

The predicted values of ¢p; are sensitive to resolution. At low A, /A, the
values of ¢y at all three resolutions agree reasonably with the formulation by
Mahrt and Vickers (2003). For higher ¢, ¢pz, from the 128° run is better tracked
by the functions derived by Beljaars and Holtslag (1991) while those from the other
two coarser runs are not described satisfactorily by any of the three formulations.
The LES predictions of ¢,,, are also found to be sensitive to resolution, especially
at higher (. At low (, the values of ¢,,;, from all three runs converge and show
good agreement with the empirical fit suggested by Mahrt and Vickers (2003). As
( increases, they start to diverge from each other and lie approximately between
the formulations of Mahrt and Vickers (2003), and Beljaars and Holtslag (1991)
in Fig. (3.38).

We re-plot in Figs. (3.39)—(3.40), ¢,z and ¢y, as functions of ¢ using a log-log
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Figure 3.39. Plot of ¢,,;, versus ( = z/A using a log-log scale, where ¢, is the
locally scaled nondimensional mean-gradient of velocity. The lines denote the following
formulations — dotted : Businger et al. (1971), dash-dot : Mahrt and Vickers (2003),
dashes : Beljaars and Holtslag (1991) .

scale and show similar plots in Fig. (3.41)-(3.42), obtained using the LASDD and
PASDD models (Basu and Porté-Agel, 2006). At low (, predictions of ¢,,;, by
both the LASDD and the modeled SFS conservation equations tend towards the
Businger formulation, but the former exhibits better agreement with the empirical
profile. At high (, the predictions of ¢,,;, by the LASDD model appear to agree
better with the Businger formulation while those by the modeled SF'S conservation
equations follow more closely the profile obtained by Beljaars and Holtslag (1991).
The predicted profiles of ¢, by both closures don’t differ significantly at large (.
At low (, however, the LASDD model predicts ¢, better than do the modeled

SF'S conservation equations as the latter overpredict ¢, near the surface.

3.6.9 Steady-state profiles of 7 and (w'¢’)

Local scaling, unlike Monin-Obukhov scaling, relates various turbulent statistics
to local quantities which are themselves unknown. As a result, the local scaling
hypothesis by itself is insufficient to obtain vertical profiles for quantities of interest.

Thus, Nieuwstadt (1984) invoked a closure hypothesis wherein the z-less limits for



159

100.0¢ T T
r v 32
o 64°
o 128
Businger et al. -
100 - — Beljaars and Holtslag v
&
1.0+ 5 E
01 L L | M| L L Lo
0.01 0.10 1.00 10.00

Figure 3.40. Plot of ¢, versus ( = z/A using a log-log scale, where ¢, is the locally
scaled nondimensional mean-gradient of potential temperature. The lines denote the
following formulations — dotted : Businger et al. (1971), dash-dot : Mahrt and Vickers
(2003), dashes : Beljaars and Holtslag (1991) .

Riy, and Riy are assumed to be valid throughout the boundary layer. This is an
approximation as Ri, and Riy tend to zero towards the surface and thus, cannot
be constant throughout the boundary layer. Using the new closure hypothesis,
Nieuwstadt (1984) derived analytical profiles for 7 and (w'¢’) that are valid for an
SBL in equilibrium. They are:

i [-C0
W) _ % (3.15)

Qo 24

We plot in Fig. (3.43) the steady state profiles of 7/u? and (w'0’)/Qo obtained
from LES. They show good agreement with Nieuwstadt’s analytical prediction for
z/z; < 0.5. They are also robust and show negligible sensitivity to resolution. The
values of 7/u? at z/z; = 1 are much smaller than those of (w'6’)/Qq because the

definition of inversion employed in this study involves momentum stresses, and
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Figure 3.41. Reproduced from Basu and Porté-Agel (2006). Plot of ®,,;, versus ¢ =
z/ A using a log-log scale, where ®,,,;, (identical to ¢,,, in Fig. (3.39)) is the locally scaled
nondimensional mean-gradient of velocity. The lines denote the following formulations —
dotted : Businger et al. (1971), dash-dot : Mahrt and Vickers (2003), dashes : Beljaars
and Holtslag (1991) .

not the potential temperature fluxes (Kosovi¢ and Curry, 2000). The agreement
between LES and theory is better in the lower regions of the ABL, a trend also
witnessed in past LES studies (Basu and Porté-Agel, 2006; Beare et al., 2006; Stoll
and Porté-Agel, 2008) as well. Since the assumption that Ri, and Riy are constant
isn’t valid in the surface layer, we would expect poor agreement between LES and
Nieuwstadt’s predictions in that region. That we don’t observe this in LES studies
is counter-intuitive but we are unable to provide an explanation for it.

For comparison, we plot in Figs. (3.44)—(3.45), the steady state profiles of 7/u?
and (w'6’)/Qy obtained using the LASDD and the PASDD models (Basu and
Porté-Agel, 2006). The LASDD model displays poorer agreement with theory and
greater sensitivity to resolution when compared to the modeled SFS conservation

equations.
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Figure 3.42. Reproduced from Basu and Porté-Agel (2006). Plot of ®, versus ¢ = z/A
using a log-log scale, where @, (identical to ¢, in Fig. (3.40)) is the locally scaled
nondimensional mean-gradient of potential temperature. The lines denote the following
formulations — dotted : Businger et al. (1971), dash-dot : Mahrt and Vickers (2003),
dashes : Beljaars and Holtslag (1991) .
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Figure 3.43. Steady-state profiles of 7/u2 and (w'6)/Qq, averaged over the last hour
of simulation. The solid curves are theoretical profiles derived by Nieuwstadt (1984).
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Figure 3.44. Reproduced from Basu and Porté-Agel (2006). Steady-state profile of
7 /u? averaged over the last hour of simulation, using the locally-averaged (LASDD) and
plane-averaged (PASDD) models. The solid curve is a theoretical profile derived by
Nieuwstadt (1984).

3.6.10 Influence of surface cooling rate

In this section, we examine briefly the role of the surface cooling rate as an external
parameter. We perform LES runs using a 1283 grid (A = 3.125m) for the following
cooling rates (in K/hr): (i) 0.1; (ii) 0.18; (iii) 0.5; and (iv) 0.7. Table (3.2)
lists important bulk parameters for these runs. For the sake of completeness,
we have also listed the values for the run corresponding to a surface cooling rate
of 0.25 K/hr.

3.6.10.1 Evolution of the mean velocity

In Fig. (3.46) we plot the time evolution of AU and AV at the location of the jet
maximum for the four cooling rates, where AU = (U)—U, and AV = (V)—V,. We
recall from our discussion of the inertial oscillation in Sec. (3.6.4.1) that the tip of
the (AU, AV') vector is supposed to trace out a circle (Blackadar, 1957). Fig. (3.46)
shows that the circular arcs traced out by the (AU, AV') vectors increase in length

as the surface cooling rate is increased, which implies that the onset of the inertial
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Figure 3.45. Reproduced from Basu and Porté-Agel (2006). Steady-state profile of
(w'8") / Qo averaged over the last hour of simulation, using the locally-averaged (LASDD)
and plane-averaged (PASDD) models. The solid straight line is a theoretical profile
derived by Nieuwstadt (1984).

oscillation occurs quicker at higher surface cooling rates. For runs with weak
surface cooling, the maximum value of AU hasn’t been attained by the end of
the simulation (9 hours). At cooling rates of 0.5 K/hr and 0.7 K/hr, the maximum
value of AU is attained when AV a 0.5 and not when AV = 0. Thus AU and AV
are not exactly 90° out of phase, as implied by Blackadar’s analysis. Saiki et al.
(2000) found that increased surface cooling led to better agreement between LES
predictions of the time-evolution of the jet maximum and Blackadar’s analytical
solution. They too found the phase difference between AU and AV to differ from
90°. Thus, Fig. (3.46) agrees qualitatively with their findings. Closer observation
of Fig. (3.46) reveals that the circular arcs are approximately concentric such that
larger radii are associated with higher cooling rates, indicating that stronger surface

cooling is associated with greater acceleration of the jet aloft.

3.6.10.2 Boundary layer height

In Fig. (3.47), we show the time-evolution of the boundary-layer height versus t/t,,

where t, = z;/u,. Among the four runs, the simulation with the lowest cooling
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Table 3.2. Boundary layer height (z;), Monin-Obukhov (MO) length (L), Bulk Richard-
son number (Riyp), surface flux (Qp), MO scales u, and 6., and the Zilitinkevich param-
eter, v, where v = z;/(u, L/f)"/?. The statistics are averaged over the last hour of
simulation.

Diagnosed physical parameters from LES runs with different surface cooling rates

Surface cooling (K/hr) 0.10 0.18 0.25 0.5 0.7
zi(m) 210 189 173 136 116
L(m) 231 145 107 53 36
Ry, 0.12 0.14 0.16 0.21 0.25
Qo(Wm™2) —8.9 —12.5 —14.6 —21.9 —25.7
w,(ms™1) 0284  0.273 0.262 0.235 0.219
0.(K) 0.023 0.034 0.043 0.070 0.088
Y 0.30 0.35 0.38 0.45 0.48
3;““““‘\“‘“““\““““‘““““‘“““““““““
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Figure 3.46. Time-evolution of the mean velocity components, AU and AV, where
AU = (U) — Uy and likewise for AV. Results shown are from simulations with four dif-
ferent cooling rates: 0.1 K/hr, 0.18 K/hr, 0.5 K /hr and 0.7 K/hr. The points correspond
to samples collected every 1000 s over the entire course of the simulation.

rate (0.1 K /hr), takes the longest time — relative to ¢, — for z; to stabilize. For
the other three cooling rates, z; appears to stabilize at t/t, ~ 23, which is close to
the corresponding value for our earlier runs with the GABLS (Beare et al., 2006)
cooling rate, i.e., 0.25 K /hr.

We list in Table (3.3) z; obtained from LES and two commonly used parame-



165

400 T AN AN A R AR AR ]
[| + 0.10 K/hr ]
[ x 0.18 K/hr
[| A 0.50 K/hr ]
300 F| O 0.70 K/hr .

z;(m)

N
200 35@%+ 3%@% =
roF KK IR b

+éé DD@%{%&DA AAPAD ABABA ANDIAA

100 ¥ DA
0 é wwwwwwww Livuiiaias Lovuvunas Lovovunas | Lovvvuiias Lo vvviuns
0 10 20 30 40 50 60 70

Figure 3.47. Time-evolution of the boundary layer height, z;, versus t¢/t., where t, =
z;i/ux. Results shown are from simulations with four different cooling rates: 0.1 K/hr,
0.18 K/hr, 0.5K/hr and 0.7K/hr. The points correspond to samples collected every
1000 s over the entire course of the simulation.

terizations, which are described below:

o z =04 (u, L/f)"* (Zilitinkevich, 1972)

2
° (C,fZQ> + CZiL + évf; = 1 (Zilitinkevich and Mironov, 1996)

We denote these parameterizations as 272 and ZM96. The constants are given
by C, = 0.1, Cs = 10 and C; = 20 (Zilitinkevich and Mironov, 1996). Nieuw-
stadt (1984) derived Z72 independently for a stably stratified boundary layer in
equilibrium although he found the proportionality constant to be 0.35. The pa-
rameterization ZM96 is a more general form of Z72 as it also accounts for the
effects of surface buoyancy and the free-flow stability through the introduction of
the scales L and u,/N, where N is the Brunt-Vaisala frequency in the layer above
the boundary layer. In our LES studies, N =~ 0.02.

Table (3.3) shows that ZM96 predicts z; well at weak stratifications but develops
a systematic negative bias at stronger stratifications. Z72 overpredicts z; at weak

stratifications but like ZM96, underpredicts it as the stratification is increased.
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Table 3.3. Table showing boundary-layer height obtained from LES and two commonly
used parameterizations developed by Zilitinkevich (1972) and Zilitinkevich and Mironov
(1996), referred to as Z72 and ZM96, respectively. The fractional error between LES and
parameterized values are also indicated.

Comparison of boundary layer heights from LES and two parameterizations

Surface cooling (K/hr) 0.10 0.18 0.25 0.5 0.7
2 (m) (LES) 210 189 173 136 116
Zimod (m) (Z72) 275 214 180 120 96
% mod (1) (ZMO6) 208 179 158 110 86
(Zimod — 2i)/ 2 (Z72) 0.31 0.13 0.04  —012  —0.17
(2imod — 2i)/ 2 (ZMO6) —0.01  -005  —0.09  —019  —0.26

Vickers and Mahrt (2004) have done a comprehensive study of various parameter-
izations — including 772 and ZM96 — for the stable boundary-layer height using
data from multiple experimental campaigns. Their findings also report a negative

bias in predicted z; by Z72 and ZM96 in strongly stratified environments.

3.6.10.3 Mean gradients of velocity and potential temperature

In Fig. (3.48) we plot the nondimensional gradients ¢, and ¢, as functions of (.

The slope of ¢, decreases with increasing surface cooling rate. For the cooling
rates 0.1 K/hr and 0.18 K/hr, ¢, shows good agreement with the empirical profiles
recommended by Mahrt and Vickers (2003) when ¢ < 1. For higher values of (,
they are closer to the formulation by Beljaars and Holtslag (1991). In contrast, ¢
for the higher cooling rates agree poorly with all three empirical functions, as the
LES predictions are lower than the empirically derived values at all (.

The ¢,, profiles for the two lowest cooling rates agree well with the Businger
(1971) formulation for ( < 1 but deviate considerably from it for higher ¢. At the
higher cooling rates, ¢,, follows closely the Mahrt and Vickers (2003) formulation
for ¢ < 1 but yields relatively lesser values for higher (. For { < 3, the spread in
om across different cooling rates is lesser than in ¢;. For further increases in ¢, ¢y,
increases with increasing surface cooling rate.

An alternative to plotting ¢,,;, and ¢, versus ( is to plot them as functions
of z/ly, as shown in Fig. (3.49). The variable |, = o,,/N is the buoyancy length
scale. The range of z/l, considered in Fig. (3.49) corresponds to the bottom 75%
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Figure 3.48. Plots of ¢y, (left) and ¢,,1, (right) versus ¢ = z/A for different surface
cooling rates, where ¢,,;, and ¢y, are the locally scaled nondimensional mean-gradients
of velocity and potential temperature, respectively. The lines denote the following for-
mulations — dotted : Businger et al. (1971), dash-dot : Mahrt and Vickers (2003), dashes
: Beljaars and Holtslag (1991).

of the boundary layer. The nondimensional mean-gradients collapse significantly
better compared to Fig. (3.48). Both ¢,,;, and ¢, are nearly linear with slopes of
1.0 and 0.92, respectively. Aircraft measurements by Heinemann (2004) show that
¢mr and ¢y are linear functions of z/l, with slopes of 0.95 and 3.3, respectively.
Field measurements in Antarctica by Forrer (1999) found both ¢, and ¢y, to vary
linearly versus z/l, with a slope of 0.45. The experiments by Heinemann (2004)
covered a wider range of z/A than did those by Forrer (1999). Our slope for ¢,,1,
lies closer to observations compared to that for ¢,;. Nevertheless, Fig. (3.49)
suggests that z/l, is more consistent than z/A in describing the locally scaled

nondimensional mean-gradients across a range of stabilities.

3.6.10.4 Equilibrium profiles of 7 and (w'¢’)

In Fig. (3.50) we plot the profiles of 7/u? and (w'0')/Qq versus z/z;. The solid lines
denote profiles derived analytically by Nieuwstadt (1984). For all four cooling rates,

the LES predictions of 7/u? are nearly coincident and exhibit good agreement with
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Figure 3.49. Plots of ¢pp (left) and ¢y, (right) versus z/l, for different surface cool-
ing rates, where ¢, and ¢y, are the locally scaled nondimensional mean-gradients of
velocity and potential temperature, respectively, and I, = 0,,/N is the buoyancy length
scale. The solid lines in the left and right panels have slopes of 0.92 and 1.0, respectively.

the theoretical profile for z/z; < 0.4. The profiles of (w'60')/Qy are approximately
linear but differ markedly from Nieuwstadt’s predictions for the two lowest cooling

rates. As the cooling rate increases, they agree better with the theoretical profiles.

3.6.10.5 Potential temperature fluctuations

The resolved-scale standard deviation of potential temperature scaled with 6, is
shown in Fig. (3.51). The profiles converge approximately to a value of 1.7 for
z/z; < 0.4 but display markedly different behavior higher up in the boundary-
layer. For the cooling rates 0.1 K/hr and 0.18 K/hr, the #-fluctuations attain their
maximum values slightly above the inversion. In contrast, for the cooling rates
0.5 K/hr and 0.7 K/hr, the #-fluctuations attain their maximum values at 0.3 <
z/z; < 0.4. The normalized #-fluctuations for the two highest cooling rates are
nearly identical.

We now attempt to explain the sharp decrease in the scaled potential tempera-
ture fluctuations near the inversion with increasing stratification. The generation of

g-fluctuations is primarily through the gradient-production term, (w'6") (0(©)/0z).
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Figure 3.50. Equilibrium profiles of 7/u? and (w'¢/)/Qq averaged over the last hour
of simulation, for different surface cooling rates. Solid lines denote theoretical profiles
derived by Nieuwstadt (1984).
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Figure 3.51. Resolved-scale standard deviation of potential temperature scaled with 6,
for different surface cooling rates. Results are averaged over the last hour of simulation.

Thus, we expect high fluctuation levels in regions where both the gradients and

turbulent fluxes of potential-temperature are significant. For a fixed surface cool-
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ing rate, the gradients are highest near the inversion (see Fig. (3.24). As the
surface cooling rate increases in magnitude, the gradients of potential tempera-
ture steepen everywhere in the boundary layer. In contrast, the turbulent flux of
potential temperature doesn’t vary linearly with changes in the stratification but
exhibits a so-called “dual” nature (Malhi, 1995). This is understood easily by con-
sidering two limiting cases: no stratification (neutral) and very high stratification.
The potential temperature flux is negligible in both cases, due to zero buoyancy in
the former and negligible levels of turbulence in the latter. It follows that (w'6’)
peaks in magnitude at some intermediate level of stratification. Presumably, the
potential temperature fluctuations also attain their maximum at the same strat-
ification level. This is consistent qualitatively with DNS studies (Garcid-Villalba
and del Alamo, 2008; Tida et al., 2002) of stably-stratified channel flow over a range
of stratifications, which found that the normalized temperature fluctuations near
the inversion peak at an intermediate stratification (as measured by Rij). From
Fig. (3.51), the stratifications considered in our study appear to be greater than
that corresponding to the maximum value of the heat flux. Thus, we speculate
that simulations with weaker stratifications, i.e., with cooling rates lesser than
0.1K/hr, would be necessary to observe a decrease in the potential temperature
fluctuations near the inversion.

An interesting feature of the profiles at the two highest cooling rates is the
evidence of limiting behavior and the presence of a maximum in the lower re-
gions of the boundary-layer. We reproduce in Fig. (3.52) a plot from the study by
Nieuwstadt (1984) showing the scaled potential temperature variances from four
different sources: (i) unfiltered Cabauw data (contains signatures from mesoscale
disturbances) denoted by circles (Nieuwstadt, 1984); (ii) filtered Cabauw data (no
mesoscale fluctuations) denoted by triangles; (iii) Minnesota experiments (Caughey
et al., 1979) denoted by crosses; and (iv) an analytical profile (Nieuwstadt, 1984),
denoted by a solid line. Nieuwstadt (1984) found that filtering out the mesoscale
content led to greatly improved agreement between theory and experiment. There
is significant difference between the Cabauw (filtered) and Minnesota data. The
scaled potential temperature fluctuations from the Minnesota experiments are
greatest near the surface and decrease rapidly with height. Those obtained from

the Cabauw data exhibit a maximum at z/z; &~ 0.4 and decrease gradually with
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Figure 3.52. Reproduced from Nieuwstadt (1984). Plot showing variance of potential
temperature scaled with 72 (same as §2) versus z/h, where h = z; is the boundary layer
depth. Legend — Unfiltered Cabauw data (contains mesoscale fluctuations) : circles,
filtered Cabauw data (no mesoscale fluctuations) : triangles, Minnesota data (Caughey
et al., 1979) : crosses, analytical profile (Nieuwstadt, 1984) : solid line.

height for z/z; > 0.4. The profiles of temperature fluctuations in the studies by
(Beare et al., 2006) and Basu and Porté-Agel (2006) — both of which used a
cooling rate of 0.25 K/hr — are closer to the Cabauw data than to the Minnesota
data. Even so, they tend to be approximately constant with height and don’t ex-
hibit a maximum in the lower boundary-layer. Our simulations with cooling rates
of 0.18 K/hr and 0.25 K/hr yield similar results. The simulations with increased
cooling rates, i.e., 0.5 K/hr and 0.7 K/hr, however, show better qualitative agree-
ment with the Cabauw data in that the potential temperature fluctuations exhibit
a maximum in the lower half of the ABL. The KABEG data (Heinemann, 2004),
which covered a wide stability range (0 < z/A < 25), yielded maxima in potential
temperature fluctuations both at 0.3 < z/z; < 0.4 and near the inversion. We
conclude that the equilibrium profile of potential temperature fluctuations is quite

sensitive to the level of stratification.
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3.6.10.6 Z-less scaling

In this section, we tabulate the so-called z-less values for important turbulent
statistics. Following convention, we split the data into five stability classes, as
shown in Table (3.4).

Table 3.4. Table defining the stability classes and showing the number of samples in
each stability class

Stability class ¢ Number of samples
S1 0.00 — 0.10 5
S2 0.10 — 0.25 9
S3 0.25 — 0.50 13
S4 0.50 — 1.00 19
S5 > 1.00 82

Within each stability class, the values of a particular statistic are then averaged.
We approximate the mean values in the S5 class to be the z-less values (Basu and
Porté-Agel, 2006). As the values are averaged within each stability class, it is
beneficial to have a large number of points in the classes corresponding to higher
stabilities as the z-less values are realized at high (. Thus, we combine our results
from multiple 128 simulations with different cooling rates in order to increase the
number of samples in each stability class. Doing so enables us to create a large
sample space without having to perform expensive runs at higher resolution. For
the purposes of this section, we performed an additional LES for a cooling rate of
1.0 K/hr. We confirmed that the results from this run are qualitatively similar to
those from our earlier runs with the higher cooling rates. Results from simulations
with the following cooling rates (in K/hr) are grouped together: 0.25, 0.5, 0.7 and
1.0. For each simulation, we only consider heights such that z/z; < 0.75. The final
number of samples in each stability class is shown in Table (3.4).

We tabulate the z-less values in Table (3.5) alongside their corresponding val-
ues obtained from different studies. The variable r,, in Table (3.5) denotes the
correlation coefficient between x and y. Since the expressions in Table (3.5) have
been computed using only the resolved-scale variance of § (where applicable) we
expect gy/0; to be larger than the indicated value. By the same logic, the true

correlations 7,9 and 7,9 will be lesser than their indicated values. The locally
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Table 3.5. Z-less values for select statistics from LES (present study and the study by
Basu and Porté-Agel (2006)) and various field experiments. The variable r,, denotes the
correlation coefficient between x and y. Numbers with a superscript, *, indicate use of
resolved-scale §-variance only. The values for Heinemann (2004) indicate the mid-points
of the following ranges: (1.2,1.6), (4.5,7.3), (—0.15,—0.30) and (—0.1, —0.2).

Uu/uL 01)/uL Ow/uL UQ/QL Tuw Tup Two
LES 2.2 1.7 1.5 2.0* -0.3 0.6* —-0.33*
LES - LASDD model 2.3 1.7 1.4 2.4 —0.32 0.56 —0.3
Field observations 2.7 2.1 1.6 2.4 —0.21 051 —0.27
Nieuwstadt (1984) 2.0 1.7 1.4 3.0 - - —0.24
Sorbjan (1986) 2.4 1.8 1.6 2.4 — 0.5 —
Heinemann (2004) — - 1.4 5.9 —0.23 — —0.15

scaled velocity variances are in reasonable agreement with observations while 7,

is at the higher end of the range of observations.

3.7 Summary

We have implemented a new SFS closure based on the conservation equations for
the SF'S stresses and fluxes, in LES of a stably-stratified atmospheric boundary
layer. For our LES runs, we adopted the initial conditions and the physical set-up
of the GABLS LES-intercomparison study (Beare et al., 2006), which describe an
SBL with moderate stratification. We compared our LES results to past DNS
studies, field experiments and other LES studies.

Following the GABLS experiment, we performed LES of a moderately strat-
ified SBL with three resolutions, given by A = (3.125,6.25,12.5)m. One of the
issues uncovered in the GABLS experiment was the tendency of some SFS mod-
els to yield laminar-like solutions at coarse resolutions, i.e., A = 12.5m. In our
LES runs, the modeled SFS conservation equations produced turbulent solutions
at all of the three resolutions listed above. The bulk parameters for the three
resolutions were in reasonable agreement with each other and with their values in
the GABLS experiment. The prediction of the boundary layer height, in particu-
lar, was more robust than most of the models tested in the GABLS experiment.
The profiles of mean velocity and mean potential temperature showed low sensi-

tivity to resolution. At coarse resolutions, the potential temperature profile did
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not smear out near the inversion, as observed for some SFS models in the GABLS
experiment and for the LASDD model in the LES study by Basu and Porté-Agel
(2006). The equilibrium profiles for the turbulent stresses and fluxes at all three
resolutions displayed significantly better agreement with theory and robustness to
resolution than those obtained using the LASDD model. Finally, we investigated
the influence of the surface cooling rate as it varied from 0.1 K/hr to 1.0 K/hr. The
locally scaled mean-gradients of velocity and potential temperature for different
cooling rates collapsed significantly better when plotted versus z/l, than versus
z/A. The steady-state profile for the potential temperature fluctuations was found
to be quite sensitive to the cooling rate. Our simulations at the higher cooling
rates showed evidence of limiting behavior in the profiles for the potential temper-
ature fluctuations after scaling them appropriately. These profiles were in better
agreement with observations (Nieuwstadt, 1984) than were those observed in the
GABLS experiment. The z-less values for the locally scaled velocity variances were
found to be in reasonable agreement with observations while that for the correla-
tion coefficient between v and w was closer to the high end of the observational
range. The corresponding values obtained using the LASDD model yielded better
agreement with observations and theory. The modeled SF'S conservation equations
yielded z-less values for the effective mixing coefficients that were unrealistically
high compared to observations, a trend also seen in the GABLS numerical experi-

ment.



Chapter

Large-eddy simulation of the neutral

boundary layer

In the previous chapters, we explored the performance of a conservation-equation-
based SF'S model in LES of the convectively unstable and stable boundary layers.
We also used HATS data to study the trends exhibited by important production
terms in the SF'S stress and flux budgets, when plotted versus the nondimensional
parameter, A, /A. In the current chapter, we apply the High Accuracy Zone
(HAZ) framework developed by Brasseur and Wei (2010) to the modeled SFS

conservation equations in LES of the shear-driven neutral boundary layer.

4.1 The overshoot problem

Inaccurate prediction of the mean velocity gradient has plagued LES of the ABL
for a long time and was first brought to our attention by Mason and Thomson
(1992). They showed that LES of the shear-driven neutral ABL tends to over-
predict the nondimensional mean velocity gradient, ¢,,, near the surface system-
atically, thereby causing it to overshoot its theoretical value of 1. This overshoot
has also been observed in the nondimensional gradient of potential temperature,
¢n, (Andren et al.; 1994), in LES of the convective ABL. Subsequent research on
the so-called overshoot problem has focused primarily on improving the underlying
SEF'S model with the understanding that better SF'S models should lead to better

predictions of ¢,,. Brasseur and Wei (2010) provide a comprehensive survey of the
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various studies that have addressed the overshoot problem, a few of which we now
mention.

Sullivan et al. (1994) developed a two-part eddy viscosity model that improved
the ¢,, and ¢, profiles significantly. Their SFS model behaved like a traditional
eddy-viscosity model in regions of well-resolved turbulence but transitioned to a
RANS-like model towards the surface, where the turbulence is under-resolved.
Using LES with two different SF'S models, Khanna and Brasseur (1998) showed
that the one with the more prominent overshoot was also associated with stronger
and more coherent thermals that were over-aligned with the mean wind. They
found that in moderately convective ABLs, the presence of buoyancy strengthened
the dynamical coupling between the surface layer and the overlying region, thereby
causing errors in the surface layer to propagate upwards into the ABL. Kosovié¢
(1997) designed an SFS model that related the SF'S stresses and the resolved-scale
strain rate nonlinearly, and yielded good improvement in the ¢,, profile in LES of
the neutral ABL. Porté-Agel et al. (2000) used a scale-dependent dynamic model
which reduced the overshoot in ¢,,. More recent work focused on the overshoot
problem includes research by Chow et al. (2005), Esau (2004) and Drobinski et al.
(2007). While the above studies have all contributed to our understanding of the
issues underlying the overshoot problem, they fail to provide a systematic approach
to reduce or eliminate the overshoot, that in principle is valid for any SF'S model.
This is partly because these studies were unsuccessful in isolating the fundamental
reasons for the presence of the overshoot in ¢,,. We now review briefly the main
findings of Brasseur and Wei (2010).

4.2 The ‘High Accuracy Zone’ framework

Using DNS data corresponding to a smooth walled neutral channel flow, Brasseur
and Wei (2010) observed an overshoot in the ¢, profile that occurs inside the
viscous layer. The observed overshoot in ¢,, within the viscous layer reflects the
incorrect use of the inertial surface layer length scale, z, in a region where the
appropriate length scale is [, = v/u,. In LES of high Reynolds number flows,
however, we don’t resolve the viscous layer as the first grid level is well into the

inertial surface layer. In principle, therefore, z should be the only relevant length
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scale in the resolved surface layer. Brasseur and Wei (2010) showed that the
overshoot in LES results from a competition between the correct inertial surface
layer scale, z, and a spurious length scale that arises due to “numerical friction.”
In DNS, they found the overshoot to peak within the viscous layer at a height
where the turbulent and viscous components of the shear stress ((1,3) component)
cross over. In LES, the overshoot was found to peak at a height where the resolved
and SFS components of the shear stress cross over. Thus, the overshoot observed
in DNS has a physical basis but that seen in LES is purely a numerical artifact.
The source of numerical friction lies in a combination of factors involving the SF'S
model and the computational grid, which Brasseur and Wei (2010) found can be

understood in terms of the following three nondimensional parameters:

1. R =1T,/Ts, where T, and Ty are the resolved-scale and SF'S components of
the (1,3) component of 7;;, at the first grid point.

2. Ns, the number of grid points in the vertical direction within the boundary

layer.

3. Repps = Ns(R+1)/(& R1); & is the ratio of (7,4 T5) at the second grid point
to that at the first grid point and is = 1, k1 is the predicted von Karman

constant assuming law-of-the-wall holds at the first grid point above the wall.

In LES of the neutral ABL, typically, N5 ~ N,/2, where N, is the total number
of grid points in the vertical direction. This ensures that the top of the boundary
layer in the fully developed turbulent flow is well below the top of the domain,
thereby minimizing any possible influence of the upper boundary condition. The
parameters (R, Repgps, Ns) describe a two-dimensional R-Repps space with con-
stant values of Ns corresponding to straight lines that sweep across this space, as
shown in Fig. (4.1), which has been reproduced from Brasseur and Wei (2010).
Any particular simulation has (R, Repgs, N5) fixed and hence, corresponds to a
unique point in R-Repgg space, although two different simulations could corre-
spond to the same point in R-Reppg space. Brasseur and Wei (2010) identify an
optimal region in R-Repps space called the ‘High Accuracy Zone’ (HAZ) within
which LES captures law-of-the-wall scaling without exhibiting an overshoot in ¢,,.

The boundaries of the HAZ are defined in terms of constraints on (R, Repgg, Ns)
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Figure 4.1. A schematic of the R — Repgg space with lines of constant Ns showing
conceptually the High Accuracy Zone. Reproduced from Brasseur and Wei (2010).

given by: (i) R > R*; (ii) Rergs > Re}pg; and (iii) Ny > Nj. The parame-
ters (R*, Rej pg, Ny) represent critical values that must be exceeded for the LES
to reside in the HAZ. Brasseur and Wei (2010) estimate (R*, Re} g, N§) to be
~ (1,350,50). The constraint on N5 can be shown to follow from the first two.
Satisfying the three constraints, in effect, suppresses the frictional content in the
LES sufficiently, thereby preventing it from interfering with law-of-the-wall scaling
in the surface layer.

Using the parameters (R, Repgs, N5), Brasseur and Wei (2010) prescribe the

following simple algorithm to move the simulation systematically into the HAZ:

1. Increase N, holding other parameters fixed, such that Ns in the fully devel-

oped flow exceeds NNj.

2. Decrease the SFS model constant and aspect ratio, AR, systematically such
that the simulation moves along a constant Ny line into the HAZ. Equiva-
lently, the simulation can be considered to shift from a “subcritical” region
in R-Reygs space that is outside the HAZ into the HAZ.
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For the Smagorinsky closure, they showed that the expressions for R and Reppg
can be rewritten as:

_ &R Fi_ Ns

= s — 1 ¢ Rewss = &t (4.1)

i & (CZARYP)’

where C is the SFS model constant in the Smagorinsky closure, AR is the grid
aspect ratio and &; is a constant found to be &~ 1 for LES of the neutral ABL. The
benefit of Eq. (4.1) is that it relates R and Repgs explicitly to the SF'S model con-
stant and the grid aspect ratio, both of which are known prior to performing the
simulation. Using Eq. (4.1) and the estimates for (R*, Re} g, N5) as guidelines,
Brasseur and Wei (2010) demonstrated the validity of their two-step algorithm
described above, for the Smagorinsky closure. Their simulations inside the HAZ
yielded ¢,, profiles that exhibited: (i) correct law-of-the-wall scaling without any
overshoot; and (ii) grid convergence. Recent work (Brasseur et al., 2009) has
confirmed the validity of the HAZ framework for another commonly used eddy-
diffusivity closure, namely, the one-equation model (Moeng, 1984). It turns out
that the one-equation eddy-viscosity model yields expressions similar in form to
Eq. (4.1) but with different exponents on the SFS model constant and the aspect
ratio (Brasseur et al., 2009). As both the Smagorinsky closure and the one-equation
model are eddy-viscosity closures, a natural question arises: does the HAZ frame-
work hold for non-eddy-viscosity closures as well? We address this question in
the present chapter by showing that the HAZ formulation is also applicable to the

modeled SF'S conservation equations, an example of a non-eddy-viscosity closure.

4.3 Set-up of LES runs

The details of the pseudospectral LES code and the numerical algorithm have
already been described in Ch. (2). We list in Table (4.1) the important physical
parameters that are prescribed in our LES runs. Their values are identical to
those used by Brasseur and Wei (2010). The surface flux is set to zero in order
to ensure zero buoyant forcing. We do impose a capping inversion which results
in weak negative fluxes at the boundary layer top. The influence of the capping

inversion, however, is minimal over the bulk of the boundary layer where the
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Table 4.1. A list of important prescribed physical parameters. L,, L, and L. are the
physical dimensions of the computational domain in the x, y and z directions, respec-
tively. N, is the number of grid points in the x-direction and, similarly for N, and V..
Qo is the prescribed kinematic surface potential temperature flux, zp is the roughness
length, U, and V; are the geostrophic wind velocity components in the x and y directions,
and I is the lapse rate above the capping inversion.

Prescribed physical parameters of LES

L, (m) 3000
L, (m) 3000
L, (m) 1000
Qo (Kms™1) 0.0
2 (m) 0.16
U, (ms™1) 15
v, (ms1) 0
I (Km™) 0.003

heat fluxes are negligible. We collect statistics after 15-20 eddy turnover times
which is approximately the duration of the transient phase in the evolution of the
flow. Note that the inclusion of Coriolis forcing implies that even after equilibrium
is achieved, the mean velocity continues to exhibit oscillatory behavior over a
timescale ~ (1/f).

4.4 Results

Let (N, Ny, N.) denote the number of grid points in the x-, y- and z-directions,
respectively. We present results for three different values of N,, given by N, =
(32,64,96). Based on the estimates by Brasseur and Wei (2010), N, = 32 and
N, = 64 correspond to N5 < Ny, while N, = 96 corresponds to the lowest vertical

resolution that meets the criterion N; > Nj.

4.4.1 ¢, profiles for N, =32 and N, = 64

In Fig. (4.2), we plot ¢,, corresponding to N, = 32 and N, = 64 with different
grid aspect ratios. In all our simulations, N, = NN, so that there is no grid-
induced anisotropy in the horizontal plane. For N, = 32, the symbols correspond

to increasing values of N, in the following sequence: + (32), x (64) and o (128).
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Figure 4.2. ¢,, for ¢, = 0.12. Left panel: N, = 32,N, = 32(+),64 (x),128(¢).
Right panel: N, = 64, N, = 64 (+),96 (%), 128 (¢), 192 (A). The dotted line denotes the
theoretical value of ¢,, for the neutral boundary layer, assuming x = 0.4.

The corresponding sequence for N, = 64 is given by: + (64), % (96), ¢ (128) and
A (192). The value of ¢, is held fixed at 0.12. Recall that ¢, is the SFS model
constant in the modeled conservation equations for 7'%. We found that the results
were insensitive to the choice of ¢y, the SFS model constant in the conservation
equations for the SFS potential temperature flux, f;. This is consistent with the
fact we are simulating a neutral ABL with negligible heat flux within the boundary
layer. We discuss first the ¢,, profiles for N, = 32 followed by those for N, = 64.

The ¢, profile for N, = 32 and N, = 32 is similar to what we would observe
in low Reynolds number laminar flow, which suggests that the grid is barely able
to sustain turbulence. Brasseur and Wei (2010) obtained similar results for N, =
32 and high grid aspect ratios (low N,) with the Smagorinsky closure (see their
Fig. 5c). As N, increases, there is marginal improvement in the ¢, profiles as

the grid begins to resolve some of the turbulence. At the highest value of NV,
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Figure 4.3. ¢,, for N, = 64. Left panel: ¢, = 0.08, N, = 64 (4), 96 (x), 128 (¢), 192 (A).
Right panel: ¢; = 0.09, N, = 64 (+), 96 (x), 128 (¢), 192 (A). The dotted line denotes the
theoretical value of ¢,, for the neutral boundary layer, assuming x = 0.4.

ie, N, = 128, ¢,, still fails to exhibit law-of-the-wall scaling even as it starts to
develop oscillations at the surface.

For N, = 64, we see the presence of a well-defined overshoot in ¢,, at the higher
aspect ratios. As N, is increased to 192 (A), the overshoot disappears gradually
although we have still not recovered law-of-the-wall scaling. In Fig. (4.3), we plot
¢m for N, = 64 and two lower values of ¢;, 0.08 and 0.09. The symbols in Fig. (4.3)
have the same meaning as in Fig. (4.2) for N, = 64. We note trends similar to
that in Fig. (4.2): vanishing of the overshoot and the development of oscillations
at the surface, with decreasing aspect ratio. Comparing Fig. (4.2) and Fig. (4.3),
we also observe that for a fixed aspect ratio, lower values of ¢, are associated with
a reduced overshoot.

To understand better the significance of the trends in Fig. (4.2) and Fig. (4.3),

we compute R and Repgs for the above simulations and plot their values in R—
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Figure 4.4. Values of R and Reppgs associated with the simulations in Fig. (4.2) and
Fig. (4.3). Lines correspond to constant N, while increasing values of N, (for fixed N,)
correspond to upward movement along the lines.

Repps space in Fig. (4.4). Note that we use the general definitions of R and Reggs
and not the forms given by Eq. (4.1) which are valid only for the Smagorinsky
closure. A couple of important trends emerge in Fig. (4.4). Firstly, the slope
of the lines in R-Repgs space vary inversely with .. Secondly, for fixed N,,
decreasing the aspect ratio (AR) and SFS model constant (¢,) yields higher values
of R and Repgs. Both these trends are identical to those observed with eddy-
viscosity closures (Brasseur and Wei, 2010; Brasseur et al., 2009). Hence, although
the exact functional forms in Eq. (4.1) are valid only for the Smagorinsky closure,
their predicted qualitative dependence of (R, Repgg) on the SF'S model constant
and aspect ratio appears to be general in nature.

For some of these simulations, R and Rey g exceed their critical values, R* and
Re; pg, as estimated by Brasseur and Wei (2010). Their ¢,, profiles, however, fail
to display grid convergence and law-of-the-wall scaling. This is because we haven’t
yet satisfied the third requirement to move a simulation into the HAZ, namely,

Ns > Nj. We now proceed to discuss results for N, = 96.
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4.4.2 ¢, profiles for N, = 96

Simulations of the neutral ABL can be computationally expensive due to the long
transient phase whose duration ~ 1/f. Thus, a higher value of f shortens the
transient phase. In our simulations with N, = 32 and N, = 64 we used f =
0.000146, which corresponds to a latitude of 90°, i.e., the poles. Brasseur and Wei
(2010) use a still higher value, f = 0.0004, in their simulations. We use the same
value of f for our LES runs with N, = 96, in order to reduce the computational
time.

Figure (4.5) shows profiles of 7 over the surface layer for a series of simulations,
where ¢, = 0.07 and N, increases from 64 to 216. The corresponding ¢,, profiles
are shown in Fig. (4.6). From Fig. (4.5), a decrease in the aspect ratio, AR, is
accompanied by an increase in R, which we recall is the ratio of the resolved to
the SFS component of 7% at the first grid point. This relationship between AR
and R is consistent qualitatively with the expressions in Eq. (4.1) and our results
for N, = (32,64). Figure (4.6) shows that increasing values of R are associated
with a reduction in the overshoot in ¢,,. For N, = 144 and N, = 192, the ¢,,
profiles are free of the overshoot and relatively vertical over bulk of the surface
layer indicating that law-of-the-wall scaling has been achieved. In other words, the
simulations with N, = 144 and N, = 192 are in the HAZ. As N, increases further
to 216, ¢,, develops oscillations near the surface. The progression in the evolution
of ¢,,, shown in Fig. (4.6) is strikingly similar to that obtained by Brasseur and Wei
(2010) with the Smagorinsky closure (see their Fig. 10). In more recent work, Wei
and Brasseur show that the oscillations in ¢,, near the ground are caused due to
deficiencies in the surface stress model. They were able to reduce the oscillations

substantially by using an improved formulation of the surface stress model.
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Figure 4.5. (1,3) component of Tidj for ¢; = 0.07 and N, = 96. Legend: resolved (—),
SFS (---) and total (——). Corresponding ¢,, is shown below.
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Figure 4.6. ¢,, profiles for the simulations in Fig. (4.5).

To understand better the interplay between the SF'S model constant, ¢, and

AR, we plot in Fig. (4.7), ¢, for ¢,

(0.06,0.08,0.12). For each of these ¢, values,

we consider three values of N, given by N, = (64, 144,192). Thus, Fig. (4.7) shows
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Figure 4.7. ¢, profiles for 9 simulations corresponding to three different N, =
(64,144, 192) for each of three different ¢; = (0.06,0.08,0.12).

¢m profiles obtained from 9 simulations. Moving from left to right along a row of

plots in Fig. (4.7) corresponds to constant ¢, and decreasing AR. Moving from top
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to bottom along a column of plots corresponds to constant AR and increasing c,.

Let us begin with the bottom row, which corresponds to ¢, = 0.12. For this
value of ¢, none of the three N, values manage to get rid of the overshoot and re-
cover law-of-the-wall scaling. For ¢, = 0.08, there is a pronounced overshoot when
N, = 64. When N, is increased to 192, however, the overshoot disappears yielding
better ¢,, profiles. In simulations with ¢, = 0.06, the overshoot vanishes even
earlier for N, = 144. This is accompanied, however, by a quicker intensification of
oscillations, as evidenced by a comparison of the ¢,, profiles for N, = 192 among
the three values of ¢,. Note also that the ¢,, profile for ¢, = 0.06 and N, = 192 is
further away from the theoretical profile when compared to that for ¢, = 0.08 and
N, = 192. We now interpret these observations in terms of the HAZ framework.

Analysis for eddy-viscosity closures (Brasseur and Wei, 2010; Brasseur et al.,
2009) reveals that the SFS model constant, Cs, and AR combine in the form
D, = C? AR? to determine R and Rerpg. In particular, for the Smagorinsky
closure, Eq. (4.1) shows that R and Repps vary inversely with D,. A similar
relationship holds for the one-equation model as well. It follows that D, must be
less than some critical value DY for R and Repps to exceed their critical values.
Thus, in order to place a simulation inside the HAZ, high SF'S dissipation, i.e., high
values of C;, must be complemented by low AR and vice versa. This is precisely
the message conveyed by Fig. (4.7), even though for the modeled SFS conservation
equations we don’t know the exact combination of ¢, and AR that determines R
and Reppg. The simulations with ¢; = 0.12 can now be interpreted as having too
much model dissipation which require aspect ratios lower than that corresponding
to N, = 192, if the overshoot is to be removed. By the same logic, simulations
with ¢, = 0.06 have low model dissipation so that aspect ratios corresponding to
N, = 144 are sufficient to eliminate the overshoot. Fig. (4.6) and Fig. (4.7) show
that R and Reygg need to exceed their critical values, but must stay within bounds
to prevent severe oscillations in ¢,,. Equivalently, the amount of friction in the
simulation needs to be sufficiently low to eliminate the overshoot and at the same
time above some threshold. These observations parallel findings for eddy-viscosity
closures by Brasseur and Wei (2010).

Apart from the cases shown in Fig. (4.6) and Fig. (4.7), we performed addi-

tional simulations for N, = 96 while varying ¢, and N, according to Table (4.2).



C, N, Ny
0.05 96 96,144,192
0.06 96 64,96,144,160,192,216
0.07 96 64,96,144,160,192,216
0.08 96 64,96,144,160,192,216
0.09 96 64,96,144,160,192,216
0.12 96 64, 144,160, 192
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Table 4.2. Values of ¢, and N, used in simulations where N, = 96 was held fixed.

In Fig. (4.8), we plot the R and Repgpg values for all the simulations listed in
Table (4.2).
in Fig. (4.6) and Fig. (4.7). For instance, the simulations with ¢, = 0.12 which

The trends in Fig. (4.8) are consistent with the ¢,, profiles shown

yielded a severe overshoot, occupy a subcritical region in R-Repps space. The
simulations with lower values of ¢, which yield improved ¢,, profiles tend to be
associated with values of R and Reppg that are higher than their critical values.
Simulations with excessively low values of ¢, that yield severe oscillations in ¢,

near the surface, tend towards the upper right corner of Fig. (4.8).

3.op T MM Ittt tatettat aetatestMaseatad ]

—

25F

~

~ A

x> o x+
000000
T TIR TR TR

COO000
RPOOOOO

NOoo~NO Ul

1.0F

0.5F

O.O:HHMH?SHH\ \\\\\\\\\ I [ [ [ ]

100 200 30 400 500 600 700
Regs

Figure 4.8. Values of R and Repgg for the simulations listed in Table (4.2).

In Fig. (4.9), we plot ¢,, profiles for those simulations which are inside the

HAZ. Above the first couple of grid points, there is reasonable grid convergence
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Figure 4.9. ¢, for simulations inside the HAZ. The values of ¢, range from 0.07
(black) to 0.09 (red) while those of N, range from 160 to 216. The dotted line denotes
the theoretical value of ¢, for the neutral ABL.

between the profiles for a given value of ¢;. As ¢, increases, there is a clear
tendency for the profiles to shift horizontally towards the dotted line, which is
the theoretical ¢, value for a neutral ABL. A ¢,, profile that coincides with the
dotted line would yield a x value of 0.4 which implies that all the profiles shown
in Fig. (4.9) correspond to k < 0.4. Averaging the x values in Fig. (4.9) over
simulations corresponding to a constant ¢,, we obtain x = (0.317,0.332,0.342) for
¢ = (0.07,0.08,0.09), respectively. Brasseur and Wei (2010) note that the value
of k is not universal but appears to vary with the outer scale flow characteristics.
Nagib and Chauhan (2008) estimate x to be 0.37 in channel flow and 0.41 in pipe
flow. Andreas et al. (2006) estimate x to be 0.387 in the atmospheric surface layer.
Field measurements under near-neutral conditions yield x ~ 0.365 (Oncley et al.,
1996). An alternate formulation for the surface stress model developed by Wei and
Brasseur (2010) yields ¢,, profiles that are closer to unity in the surface layer and
consequently, higher values of k. In later sections, we show results from a couple

of simulations that employ the new surface stress model.
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4.4.3 Dependence of (R, Reyps) on (¢, AR)

It is straightforward to determine the exact functional form of the relationship
between (R, Rerps) and (Cs, AR) for eddy-viscosity closures due to their simplic-
ity. Such a feat is considerably harder with the modeled SFS conservations or
other closures which don’t use an eddy-viscosity explicitly. It might be be pos-
sible, however, to deduce such relationships numerically using LES results. Let
us assume that the relevant combination of ¢, and AR for the modeled conserva-
tion equations is ¢ AR®2. Eq. (4.1) shows that the Smagorinsky closure yields
Repps o< 1/(C% ARY3). If a similar relationship were to hold for Reppg in the
conservation-equation-based closure, then plotting Rejgpg versus ¢, for fixed AR
using a log-log scale would yield straight lines with a slope s;. A similar procedure

could be used to determine s,.

1000

AT A

OO0 0O00OO0
~7 A
I man

-

CoOo0000

RPooooo

NODISOG
>

-

Rees

100

AR

Figure 4.10. Rerggs as a function of AR, for N, = 96 and different values of ¢,. The
dotted line has a slope of —0.7.

In Fig. (4.10), we plot Reppg versus AR with ¢, as a parameter using a loga-
rithmic scale on both axes. Only simulations with N, = 96 have been considered.
The plotted curves are approximately linear which suggests an inverse power rela-
tionship between Reppgs and AR. The curve for ¢, = 0.12 has a noticeably lesser

slope than the others. Recall that ¢, = 0.12 corresponds to highly dissipative
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Figure 4.11. Reppg as a function of ¢, for N, = 96 and different values of AR. The
dotted lines have a slope of —1.0.

simulations with a strong overshoot in ¢,,. The curves for the other ¢, values have
an approximate slope of —0.7, indicated by a dotted line in the figure.

Figure (4.11) shows Repgs as a function of ¢, for different values of AR. The
curves are not strictly linear but are instead piecewise linear. For each curve,
the portion connecting points representing simulations inside the HAZ, i.e, those
typically with low ¢, and high Reygg, is nearly linear with a slope &~ —1, indicated
by dotted lines in the figure. Towards higher values of ¢,, the slopes of the curves
deviate systematically from unity to assume lesser values (in magnitude). Once
again, the curve for ¢, = 0.12 is considerably different from the other curves.

Based on Fig. (4.10) and Fig. (4.11), Rergpg is approximately proportional
to (¢, AR®7)~1. We can contrast this result with the corresponding expressions
for the Smagorinsky closure and the one-equation eddy-viscosity model, given by
(C? AR*33)~! and (Cx AR7%89)~!  respectively. The exponents on the SFS model
constants are consistent with the nature of the respective closures. The eddy-
viscosities in the Smagorinsky closure and the one-equation model are proportional
to C? and Cy, respectively. For the modeled conservation equations, we can show
(Hatlee and Wyngaard, 2007) by retaining one production and one destruction

term that an effective eddy-viscosity is proportional to ¢,. Thus, the exponent on
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the SF'S model constant in its combination with AR is determined by how it relates
to the eddy-viscosity, either explicitly or implicitly. We are unable to provide a
physical explanation for the —0.7 exponent on AR beyond inferring its approximate
value from Fig. (4.10).

4.4.4 Influence of surface stress model

In this section, we use a new formulation for the surface stress model (Wei and
Brasseur, 2010) and examine its effect on ¢,, and the streamwise velocity variance
near the ground. Wei and Brasseur (2010) implemented the new formulation in
LES with the Smagorinsky closure and found that it led to more realistic predic-
tions of k, and the scaled streamwise velocity variance near the ground. Thus, it
is of interest to see if their surface stress model yields similar improvements for
the conservation-equation-based closure. We review briefly the new surface stress
model developed by Wei and Brasseur (2010) before presenting our LES results.
We denote the modeled instantaneous wall shear stress by 719 (z,y,0;t). The
subscript ‘tot’ refers to the fact that the modeled wall stress has resolved-scale,
SFS and viscous components (Wei and Brasseur, 2010) but it is their sum that is

modeled. Decomposing 7/ (x, y, 0;¢) into mean and fluctuating parts,
Tl (2,y,08) = (11")o + 71 (2,7, 031). (4.2)

Wei and Brasseur (2010) showed that (779%), is dictated by global momentum
balance and is equal to (§/p) (0(p)/0x;1) for a channel flow, where ¢ is the half-
channel width and p is the filtered pressure field. Thus, it is the fluctuating part,
i (z,y,0;t), that differs from one wall stress model to another. In LES of the
ABL, the mean pressure gradient is specified through the geostrophic velocities
but the modeling of the wall stress model is similar to that for a channel flow to
the extent that (7/9%), is determined by the global flow balance in both flows. The

fluctuating wall stress is further rewritten as (Wei and Brasseur, 2010):

Tis(,y, 0; 1)
u?

= B3 gis(w, y; 1), (4.3)

where i = (1,2) denotes the streamwise and spanwise directions, respectively.
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From Eq. (4.3), it is clear that g;3(x,y;t) has to meet the following constraints:

(gs(z,9:1)) =0 3 V{ga(z,y:t) gis(z,y31)) = 1 (4.4)

Equations (4.3)—(4.4) show that the fluctuation level of 7,5(z,y,0;t) is set by ;3
and the structure of the fluctuations themselves are determined by g;3(x,y;t). In
our LES code, we use the wall stress model developed originally by Moeng (1984)
(hereafter referred to as M84), for which 7,;(z,y,0), 83 and g;3(x,y;t) are given
by (Wei and Brasseur, 2010):

Ts(x,y,0) = —ul <§>2AZ/2 (4.5)
VI (@ — (@) + (@) G — ().
51'3 = - 2 (46>
<S>Az/2
sale.y) = [(5) (@ — () + 4a) (5 — ()]aepp (47

VI @ = (@) + (@) 6 — ()],

In Eqs. (4.5)—(4.7), 4, is the filtered velocity and 5 is the filtered resultant horizontal
velocity. The Az/2 subscript reminds us that these variables are computed at the
first model grid level for u and v, which is located physically at z = Az/2. Wei
and Brasseur (2010) showed that ;3 is negative and has a magnitude close to 0.2
for the M84 wall stress model.

We present in Fig. (4.12) plots of streamwise velocity variances for two sim-
ulations, one inside the HAZ and another outside it. The ¢,, profiles for these
two simulations are shown in Fig. (4.6). In both cases, the variance profiles (to-
tal and resolved ) don’t increase smoothly towards the ground but exhibit a kink
such that there is a decrease in their magnitude at the first grid level. In smooth
wall boundary layer flows, the streamwise velocity variance peaks deep inside the
viscous layer at zu, /v ~ 15 and decreases sharply to zero towards the wall. Since
we don’t resolve the viscous layer in LES, the peak at zu, /v ~ 15 lies well below
the first grid level. Thus, the kink seen in Fig. (4.12) is unphysical and doesn’t
conform to observations (Grant, 1986). Wei and Brasseur (2010) were successful in

removing the kink by changing the sign of 3;3 from negative to positive in Eq. (4.3).
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Figure 4.12. Scaled streamwise variances, (u/u’)/u?, versus z/z; for two simulations,
one outside the HAZ (panel (a)) and one within the HAZ (panel (b)). N,(= N,) for (a)
and (b) is 96 and 192, respectively, while N, = 96 for both cases. For both simulations,
cr = 0.07.

They further showed that a negative value of ;3 results in a sink-like term in the
prognostic equation for the streamwise velocity variance. In Fig. (4.13) we contrast
(ulul)/u? (‘r’ denotes resolved-scale) and ¢,,, obtained with two wall stress models:
M84 and that developed by Wei and Brasseur (2010) (referred to as WB10 in the
figure) in which g;3(x, y) is given by Eq. (4.7) and ;3 = 0.15. The M84 model yields
(R, Rerps) = (0.89,378) and the WB10 model yields (R, RELgs) = (1.58,391).
Both simulations lie inside the HAZ and have similar Rejgs values although the
WB10 model yields a sharp increase in R, which is solely due to the effect of the
wall stress model as all other factors such as SFS model constant, grid size, etc.
are held fixed. With the WB10 model, the streamwise variance profile increases
smoothly without exhibiting a kink. In contrast, the LES with the M84 wall model
yields a kink in the streamwise variance profile although the simulation parameters
are inside the HAZ. The corresponding ¢,, profiles show that the WB10 wall stress
model reduces the oscillation at the first grid level and yields ¢,, values slightly
closer to 1, thereby implying a higher value of k. The trends seen in Fig. (4.13)

mirror those observed for eddy-viscosity closures (Brasseur et al., 2009).
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Figure 4.13. (a) Nondimensional resolved-scale streamwise variances, (u'u’)/u?, versus
2/zi. (b) ¢, profiles. M84 refers to the wall stress model developed by Moeng (1984)
and WBI10 to that developed by Wei and Brasseur (2010). N,(= N,) and N for (a) and
(b) are 144 and 96, respectively. For the simulation using M84, (R, Rergs) = (0.89,378),
while for that using WB10, (R, Rerps) = (1.58,391). For both cases, ¢, = 0.07.

4.5 Summary

In this chapter, we explored the applicability of the ‘High Accuracy Zone’ (HAZ)
framework (Brasseur and Wei, 2010) to a closure based on the SFS conservation
equations. The HAZ framework is a systematic approach to recovering law-of-the-
wall scaling and obtaining accurate predictions of ¢, in LES of high Reynolds
number flows. Past work (Brasseur and Wei, 2010; Brasseur et al., 2009) has
demonstrated the validity of the HAZ framework for commonly used eddy-viscosity
closures. Our results show that the arguments put forth by Brasseur and Wei
(2010) are equally valid for the conservation-equation-based closure. We found
significant improvement in the accuracy of ¢,, predictions upon following the al-
gorithm outlined by Brasseur and Wei (2010) delineating the HAZ framework. As
the modeled SF'S conservation equations bear little resemblance to standard eddy-
viscosity closures, our findings support the conclusion of Brasseur and Wei (2010)
that the HAZ framework is relevant to accurate predictions in LES irrespective of

the underlying SF'S model.
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We also examined the effects of a new wall stress model (Wei and Brasseur,
2010) on the predictions of streamwise velocity variance and ¢,,, using the modeled
SF'S conservation equations. We found that it significantly reduced the oscillations
in ¢,, at the first grid level and led to better representation of the streamwise
velocity fluctuations, similar to earlier findings by Wei and Brasseur (2010) for

eddy-viscosity closures.
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Conclusions

When the filter width, A, is much smaller than the energy-containing length scales,
[, the subfilter scales account for a small fraction of the turbulent fluxes and it is
sufficient that the SF'S model accomplish the downscale transfer of energy at the
correct rate. When [ ~ A, however, a significant fraction of the turbulent fluxes
resides in the subfilter scales. Thus, it is essential that the SFS model not only
drain energy from the large eddies but also represent the SF'S motions accurately.
While there have been attempts to address some of the limitations of standard
eddy-diffusivity closures by making the SF'S model constant depend on local flow
parameters of the atmospheric boundary layer (ABL), “the best one can hope for
is to improve the model’s accuracy in representing the energy transfer to smaller
scales” (Chamecki et al., 2007). A better parameterization of the subfilter scales
themselves will require incorporating essential SF'S physics into the SFS model.
This dissertation is an attempt towards achieving that objective. We have focused
on studying the performance of an SFS model that solves for the SF'S fluxes using
a truncated version of their conservation equations, one similar to that used by
Hatlee and Wyngaard (2007). In the modeled SFS conservation equations, we
neglect the transport terms and model the slow pressure strain-rate covariance
using a linear return-to-isotropy model (Rotta, 1951) while retaining advection
and dominant production terms in their exact analytical form. We studied the
performance of the modeled SF'S conservation equations in LES of convective,
stably stratified and neutral ABLs. Our LES studies for the convective and stably

stratified ABLs were supplemented by analysis of the SF'S conservation equations
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using surface layer data from the Horizontal Array Turbulence Study (HATS)
experiment (Horst et al., 2003).

5.1 Studies of the convective ABL

As part of our analysis of the convective ABL, we studied the nature of balance
in the modeled SF'S conservation equations and trends exhibited by the low-order
moments of the SFS fluxes (means and fluctuations), when plotted against the
nondimensional parameter A, /A (Sullivan et al., 2003), where A, is the wave-
length corresponding to the peak in the vertical velocity spectrum. The modeled

conservation equations for the SFS deviatoric stresses, 7%, predicted the dominance

» Tigo
of anisotropic production in the 7¢, budgets and that of isotropic production in
the 7 budget with decreasing A,,/A, in agreement with observations. They, how-
ever, underpredicted the magnitude of anisotropic production in the 7% budget at
low A, /A, when compared to observations. The advection terms were found to be
negligible in the mean, but were required to prevent a spurious build up of resolved-
scale energy close to the filter cutoff. One of the interesting features of the modeled
conservation equations was the tendency of the scaled, principal production terms
in the 72, and 7% budgets to yield asymptotes at low A, /A, some of which were
in good agreement with theoretically derived values in the limit A, /A — 0, i.e.,
the “RANS limit.” This shows the ability of the transport-equation-based SF'S
model to predict the dominant SF'S production terms consistently across a range
of A, /A without any ad hoc modifications to it in regions where A, ~ A, such
as the near-wall region. Thus, this SF'S model can be viewed as an alternative to
“hybrid” methods which try to unify LES and RANS formulations into one model.

The modeled conservation equations for the SFS scalar fluxes, f;, reproduced
successfully the major trends observed in the HATS data, namely, the dominance
of flux tilting and anisotropic gradient-production in the f; budget, and that of
isotropic gradient-production in the f3 budget. As in the modeled TZ- budgets, the
advection terms while insignificant in the mean were essential to ensure proper
downscale transfer of resolved-scale variance. Our LES results showed that an
eddy-viscosity closure yields near-zero values of f; while observations (Hatlee and

Wyngaard, 2007) reveal it to be significant in regions of high mean shear within the



199

ABL. In general, the eddy-viscosity closure predicted well only those components
of 7’% and f; which are produced primarily through isotropic production, namely,
L and f.

Apart from studying the trends exhibited by different SE'S statistics as a func-
tion of A, /A, we also examined the conditional means of the two terms in the
resolved-scale velocity jpdf equation that involve a direct contribution from the
SFS model (Chen et al., 2009; Chen and Tong, 2006): (i) SFS deviatoric stress,
i and (ii) SFS production rate, P Overall, the modeled SFS conservation equa-
tions predicted trends in the conditional means of 7% and P¢ better than did an
eddy-diffusivity closure due to two factors: (i) they include the dominant produc-
tion terms for all the Tg- components; and (ii) they include SFS advection. Thus,
apart from its direct impact on the downscale transfer of energy, SFS advection
also influences resolved-scale statistics indirectly through its beneficial role in the

prediction of the conditional means of 7'% and Pg

5.2 Studies of the stably stratified ABL

The stably stratified ABL is associated typically with low A, /A as stratification
confines the energy carrying eddies to scales smaller than in the convective ABL.
Accordingly, our analysis of the SFS budgets in the stably stratified surface layer,
using HATS data, found that terms typically ignored in eddy-viscosity closures play
an even greater role than in the convective ABL. In the Tg- budgets, we found that
anisotropic production and buoyant production contribute significantly to both
the mean values and fluctuation levels of Tg. The dominant production terms,
scaled appropriately, yielded asymptotes at low A, /A that agreed well with our
analytically derived values in the limit A, /A — 0.

In the f; budget, we found the tilting and anisotropic gradient production
contribute significantly to the mean and fluctuation level of f;. While isotropic
gradient-production remained the principal contributor to the mean and fluctua-
tion level of f3 across the entire range of A,,/A considered in our study, anisotropic
gradient-production and buoyant destruction played an increasingly important role
as A, /A decreased.

Following our analysis of the stable surface layer using HATS data, we per-
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formed LES of the moderately stable boundary layer using an SF'S model identical
to that used in our LES of the convective ABL. The LES runs employed physical
conditions identical to that prescribed in the GABLS LES-intercomparison study
(Beare et al., 2006) and were performed at three resolutions:(3.125,6.25,12.5)m
with a prescribed surface cooling rate of 0.25K/hr. One of the findings of the
GABLS study was that convergence in various resolved-scale statistics occurred
only at resolutions finer than 3.125m. In particular, the prediction of the boundary
layer depth was found to be quite sensitive to the grid resolution. For instance, at
the coarsest resolution of 12.5m, some of the SFS models tested exhibited a smear-
ing out of the inversion base and yielded boundary layers significantly deeper than
those observed in LES runs at finer resolutions. In contrast, the predicted bound-
ary layer depth by the modeled SFS conservation equations was more robust to
changes in resolution. The equilibrium profiles of turbulent momentum flux and
turbulent heat flux showed good agreement with theory (Nieuwstadt, 1984). The
steady-state profiles of potential temperature, velocity and Richardson numbers
converged well for all three resolutions. One important limitation of the modeled
SEF'S conservation equations was their overprediction of locally scaled turbulent
mixing — as quantified through effective eddy-viscosities for heat and momentum
— compared to observations. Finally, we observed evidence of limiting behavior in
the profile of normalized potential temperature fluctuations with increasing surface
cooling rate. This limiting profile exhibited a maximum at mid-ABL heights, in

agreement with observations (Nieuwstadt, 1984).

5.3 LES studies of the neutral ABL

Our final set of LES studies with the modeled SFS conservation equations involved
simulation of a shear-driven neutral ABL. in order to test the applicability of the
High Accuracy Zone (HAZ) framework (Brasseur and Wei, 2010) to non-eddy-
viscosity closures. The HAZ refers to a region in parameter space in which LES
recovers law-of-the-wall scaling in the inertial surface layer without an overshoot
in the profile of ¢,,, where ¢,, is the nondimensional mean-gradient of velocity. We
found that without satisfying the criteria specified by Brasseur and Wei (2010), the

modeled SFS conservations failed to eliminate the overshoot in ¢,,. We were able
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to remove the overshoot and recover law-of-the-wall scaling only after following
systematically the algorithm prescribed by Brasseur and Wei (2010). As the mod-
eled SFS conservations are fundamentally different from eddy-viscosity closures,
our results provide evidence for the generality of the HAZ framework. We also
tested a new formulation for the surface stress model (Wei and Brasseur, 2010)
and found that it led to reduced oscillations in ¢,, near the surface. Brasseur et al.
(2009) observed similar effects with the new surface stress model for two commonly

used eddy-viscosity closures.

5.4 Future Work

We list some potential topics for future research:

1. In the modeled SFS conservation equations, we considered only the slow part
of the pressure strain-rate covariance but neglected the rapid and buoyant
contributions, both of which are important in the ABL (Moeng and Wyn-
gaard, 1986). The difficulty of measuring turbulent pressure fluctuations
(Wyngaard et al., 1994) accurately has been an obstacle to evaluating mod-
els for the pressure strain-rate covariance although LES studies (Moeng and
Wyngaard, 1986) have been used in the past for this purpose. The recently
concluded AHATS (Advection HATS) experiments by a team of researchers
from Clemson University, Pennsylvania State University and National Cen-
ter for Atmospheric Research have succeeded in measuring turbulent pressure
fluctuations reliably over a wide range of atmospheric stabilities. Data from
this experiment can be used to gain insight into the role played by the pres-
sure terms in the conservation equations and develop better models for the

pressure strain-rate covariance.

2. The AHATS experiments also facilitate the evaluation of the streamwise ad-
vection terms in the SFS conservation equations. While our LES studies
showed that the advection terms are negligible in the mean, they can be a
significant contributor to the fluctuation levels of the SFS stresses (Wyn-
gaard, 2004). Thus, their study enables a fuller understanding of the SFS

conservation equations.
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3. The Kansas experiments provided the first detailed surface-layer measure-
ments of the Reynolds stress and flux budgets, and have significantly shaped
our understanding of turbulence in the atmospheric boundary layer (Wyn-
gaard, 1992). It would be desirable to gain insight into the more general SFS
stress and flux budgets, which tend to their Reynolds-averaged counterparts
as A, /A — 0. Toward that end, experiments based on the array technique
(Tong et al., 1998), such as HATS and AHATS, play a unique role in that
they enable the measurement of filtered fields which can be compared directly
to LES results. Using data from these experiments it would be useful to con-
struct the SF'S budgets as a function of suitable nondimensional parameters
(like A, /A). Such SFS budgets can be used, in principle, to develop closures

that perform seamlessly across scale and stability.



Appendix l \

Derivation of asymptotic values for
the dominant production terms in
the Tga and ’7'1d3 budgets, as

Aw/A — 0 (“RANS limit”)

In this section, we provide further explanation for the asymptotic limits at low
values of A, /A, as observed in Figs. (2.21)-(2.22) in Sec. (2.5.3.3). In particular,
we are interested in the limits of the anisotropic production term in the 724, budgets
and that of the isotropic production term in the 7{; budget. We first discuss
the anisotropic production terms followed by the isotropic production terms. For
notational ease, we denote the anisotropic production term in the Tg budget as

Aniso(i,j) and the isotropic production term as Iso(i,j).

A.1 7¢ budgets

In the following derivation, we consider a horizontally homogeneous ABL with a
mean geostrophic wind in the x-direction. This induces a non-zero mean wind in
the y-direction due to the Coriolis force but because it is much smaller than the
x-component, we will treat the mean vertical wind shear as arising solely due to

the mean wind in the x-direction.
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As A, /A — 0, the filtering operation tends towards Reynolds averaging (Sul-
livan et al., 2003). Thus, in this limit, filtering a variable yields its ensemble mean.
For instance, if u denotes the unfiltered streamwise velocity component, it follows
that u = U+« where U = (u) = @ is the ensemble mean and «’ is the fluctuation
about the ensemble mean. A similar decomposition holds for other variables, in
the RANS limit. Invoking horizontal homogeneity,

ou oUu oV oV oW oW
ox oy ox oy ox dy
Incompressibility implies that both the ensemble-mean and the fluctuating parts

of the velocity field are divergence free (Wyngaard, 2010). Hence,

ou oV oW _

T A T A A2
8x+8y+8z (4.2)

Combining Eqns. (A.1)-(A.2), we get OW/Jz = 0. Using the lower boundary
condition at the wall, W| __, = 0, in conjunction with Eq. (A.1) yields W = 0.
Expanding out Aniso(i,j),

i i, N - . 1[0 1
Aniso(i,j) = — { a 01; + 74 aul} + (—) T,flSkz 7 Sk = 3 (% + %> (A.3)

Tik 8_xk Tik ox; 3 ox;  Oxy,

Taking the ensemble average of Eq. (A.3),

(Aniso(i, j)) = <— WS—Z 7l ZZ] > 4 (;) (r45u) (A4)

We recognize <T,‘fl§kl> as the ensemble mean rate of energy transfer from the re-
solved to the subfilter scales. At steady state, <—T,§ll§kl> is the principal mean
production term in the conservation equation for e, the SFS kinetic energy, and
is balanced primarily by (e), the mean rate of molecular destruction. Hence
(=72 Su) = (¢). In Egs. (A.3)-(A.4), we have not yet invoked the limit A,,/A — 0,
which we recall is equivalent to replacing the overbar by the ensemble averaging

operator.
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For i =j =1, Eq. (A.4) in the limit A, /A — 0, yields,

(Aniso(1,1)) 2222, < 2 |1 +% +rhS > (3)@ @s

We can also further simplify (¢) = (=74 S);) in the limit A, /A — 0 as follows:

) = (7S 2e/AZ (o <s,d>>:< w2 > (A.6)

The other five components of (S;;) are all zero, which follows from Eq. (A.1),
W = 0 and our approximation regarding the vertical wind shear (explained earlier).

Equation (A.5) simplifies to,

(niso(1, 1)) 2% 209~ (3) = (3) @@

_ (Anis<(2(>1,1)> Aw/A=0 (%) (A7)

Repeating the above analysis for the (2,2) component,

0 0
(Aniso(2, 2)) 22270, <—2 rf2%+ ﬁé%‘{Jr 7513%‘{ > - (;) (). (A8)

It follows that,

(Anis<(;§2, 2)) Au/a—0 <_§) (A.9)

Since Aniso(1, 1) + Aniso(2,2) + Aniso(3, 3) = 0, it follows trivially that,

<Anis<c;§3, 3)) Au/A-0 (_;) (A.10)




A.2 7% budget
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We recall that the dominant production term in the 7% budget is isotropic pro-

duction. Expanding out Iso(1,3) in the limit A, /A — 0,

=2 ()

(Is0<(€1>,3)> Au/Am0 (g) _<6><?9_Z>

! (713)‘1
ou T3\ 2¢
()
< 13> 0z Aw/A—0
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Figure A.1. HATS: Magnitude of (1,3) component of normalized anisotropy tensor,
b1z = ||/ 2e, for convectively unstable cases only (left) and the entire range of stabilities

in the HATS data set (right).

To deduce the limit on the right side of Eq. (A.11), we plot in Fig. (A.1) the
mean magnitude of 7} /2¢ as a function of A,,/A for the unstable cases and for the
entire range of stabilities. Corresponding plots from LES for the SFS conservation

equations and the eddy-diffusivity closure are shown in Fig. (A.2). From Fig. (A.1),

the mean value of |7 /2e| appears to asymptote approximately to 0.1, at lower

values of A,,/A. This trend is weakly visible for the convectively unstable cases but
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Figure A.2. LES: Magnitude of (1,3) component of normalized anisotropy tensor,
biz = |7%]/2e, using (a) SFS conservation equations; and (b) eddy-diffusivity closure.
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is clearer for the whole HATS data set covering both stable and unstable regimes.
While we are unable to provide an analytical proof, we infer from Figs. (A.1) that
7 /2e tends approximately to —0.1 in the mean as A, /A — 0, using the fact that

7L is negative in the ABL. Using this inferred limit for 7% /2e as A, /A — 0,

I )] e

Finally, we note that our LES results correspond to spatial averaging whereas
in the above derivation we have used ensemble averaging. We can equate the two

kinds of averages by invoking ergodicity.
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