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Abstract

Modern rotor blades are constructed using composite materials to exploit their superior
structural performance compared to metals. Helicopter rotor blade spars are convention-
ally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter
are envisioned to be as heavy as 800 lbs when designed using the monocoque spar de-
sign. A new and innovative design is proposed to replace the conventional spar designs
with light weight grid-stiffened composite shell. Composite stiffened shells have been
known to provide excellent strength to weight ratio and damage tolerance with an excel-
lent potential to reduce weight. Conventional stringer–rib stiffened construction is not
suitable for rotor blade spars since they are limited in generating high torsion stiffness
that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffen-
ers must be provided. This is a new design space where innovative modeling techniques
are needed. The structural behavior of grid-stiffened structures under axial, bending,
and torsion loads, typically experienced by rotor blades need to be accurately predicted.
The overall objective of the present research is to develop and integrate the necessary
design analysis tools to conduct a feasibility study in employing grid-stiffened shells for
heavy-lift rotor blade spars.

Upon evaluating the limitations in state-of-the-art analytical models in predicting the
axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a
new analytical model was developed. The new analytical model based on the smeared
stiffness approach was developed employing the stiffness matrices of the constituent
members of the grid structure such as an arch, helical, or straight beam representing
circumferential, helical, and longitudinal stiffeners. This analysis has the capability to
model various stiffening configurations such as angle-grid, ortho-grid, and general-grid.
Analyses were performed using an existing state-of-the-art and newly developed model
to predict the torsion, bending, and axial stiffness of grid and grid-stiffened structures
with various stiffening configurations. These predictions were compared to results gen-
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erated using finite element analysis (FEA) to observe excellent correlation (within 6%)
for a range of parameters for grid and grid-stiffened structures such as grid density,
stiffener angle, and aspect ratio of the stiffener cross-section. Experimental results from
cylindrical grid specimen testing were compared with analytical prediction using the
new analysis. The new analysis predicted stiffness coefficients with nearly 7% error
compared to FEA results. From the parametric studies conducted, it was observed that
the previous state-of-the-art analysis on the other hand exhibited errors of the order of
39% for certain designs. Stability evaluations were also conducted by integrating the
new analysis with established stability formulations. A design study was conducted to
evaluate the potential weight savings of a simple grid-stiffened rotor blade spar structure
compared to a baseline monocoque design. Various design constraints such as stiffness,
strength, and stability were imposed. A manual search was conducted for design param-
eters such as stiffener density, stiffener angle, shell laminate, and stiffener aspect ratio
that provide lightweight grid-stiffened designs compared to the baseline. It was found
that a weight saving of 9.1% compared to the baseline is possible without violating any
of the design constraints.
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Chapter 1
Introduction

1.1 Background and Motivation

Modern helicopter rotor blades are typically fabricated from composite materials due to

their superior strength to weight ratio, fatigue tolerance, resistance to corrosion, and the

ability to use automated fabrication techniques. The blade as a whole experiences op-

erational loads due to aerodynamic pressure along with gravitational and inertial effects

which originate from steady flight, maneuver, or gust conditions. Generally, these force

resultants cause axial tension, bending, shear, and torsion loads in all parts of the blade

along with local pressure loads imposed on the skin. In addition to these, environmental

factors such as temperature, moisture, and skin erosion also affect the integrity of the

structure. The blades are therefore designed to withstand critical combination of these

loads while keeping the weight of the blade structure to a minimum.

The composition and construction of the blade structure are dictated by the mission

requirements the aircraft must be designed to satisfy. The main rotor of the conventional
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helicopter is the sole source of propulsion and lifting surface of the aircraft, Hence the

design of it is directly controlled by the empty weight, payload requirements, and the

speed and range of the aircraft. Additionally, the blades have to be designed to withstand

numerous threats ranging from low to high velocity impact to be certified for use in

military aircraft. While the blades are not expected to retain their original structural

integrity after an impact event, they must be designed to sustain a flight long enough to

get the aircraft to safety.

1.1.1 Heavy-lift helicopter blades

Johnson et al. [1] conducted the rotor system investigations of three heavy-lift rotorcraft

designs. The blades of these aircraft are envisioned to be much larger and heavier than

the rotor blades currently in operation. The rotors may have a diameter in the range

of 23–27.5 m (76–90 ft) with blades having chord dimensions in the range of 0.9–1.5

m (3–5 ft) at 3/4 of the blade radius. The model of the Large Civil Tiltrotor (LCTR)

aircraft is shown in Fig 1.1. Designing such large, wing-like, blades for minimized

weight is a challenging task, especially when constraints such as strength and stiffness

have to be met. The spar structures of composite rotor blades, are currently designed as

monocoque D-spars with single or multi-cell cross-section configurations. Examples of

typical cross-sections of certain blades are shown in Fig. 1.2.

Zhang and Smith [2] conducted an extensive laminate design study with stiffness

and strength constraints using the conventional single cell D-spar designs for heavy-lift

helicopter blades. They concluded that a single blade could weigh nearly 360 kg (≈ 800

lb). The weight predictions for different blade designs are shown in Fig. 1.3. These

heavy designs are mainly driven by the high torsion stiffness and strength requirements.
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Figure 1.1. Large Civil Tiltrotor (LCTR) [1]. Number of blades per rotor- 4. Blade chord at
0.75R- 3.07 ft (0.94 m)

Boeing CH-47 Chinook

Boeing AH-64 Apache

Bell AH-1 Cobra

1.75 ft (0.53 m)

2.5 ft (0.76 m)

2.67 ft (0.81 m)

Figure 1.2. Rotor blade cross-sections showing different spars designs. Source: Lab display
articles
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Figure 1.3. Heavy-lift blade weights of various designs from the monocoque laminate design
study [2]

The D-spar being the primary load bearing component of the blade, sufficient num-

ber of 0◦ and 45◦ plies need to be added to the spar laminate to provide sufficient axial,

bending, and torsion stiffness to maintain aeroelastic stability. The lamina strains must

be limited to prevent material failure as well. As a consequence of the above design re-

quirements, the spar laminates become thicker in the design process. Introducing design

constraints such as fatigue strength, damage tolerance, sufficient residual strength after

impact, environmental factors, etc., could further increase the blade weight.

The impacts of having such heavy and large rotor blades are multiple fold. The

blades experience extremely high stresses along the length due to bending and twisting

deformations under the aerodynamic loads. It could also lead to high control loads in

the hub that could eventually be detrimental to the airframe and payload. Also, a weight

reduction in rotor system is a gain in the payload carrying capacity. Therefore, it is

desirable that the blade weight is reduced.
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A design domain that has a large wing-like structures subject to helicopter rotor

blade loads introduces new design challenges. The loading conditions and the in-flight

responses of the rotor blades are significantly different from that of a fixed wing. In

order to achieve the goal to obtain a lighter blade, new and innovative structural design

concepts need to be introduced and the new design space has to be explored. The initial

step in addressing these challenges is to explore how large lightweight structures are

currently designed for aerospace applications.

1.1.2 Large lightweight structures

The aerospace industry employs several design methodologies to address various struc-

tural and operational requirements. Components such as airplane fuselages, launch vehi-

cle shrouds, etc., are seldom constructed as monocoque structures. Instead, rib–stringer

construction generally termed as semi-monocoque design is generally adopted. The rea-

sons include, but are not limited to, reduced weight while providing high stiffness and

strength, automated manufacturing process, ease of maintenance, increased damage tol-

erance, and so on. A semi-monocoque structure with ribs (transverse or circumferential)

and stringers (longitudinal) oriented orthogonal to each other acting as the primary load

bearing entity and a skin (shell or plate) attached to the rib–stringer grid structure by

welds or fasteners [3] in the case of metallic structures. In the case of fiber reinforced

polymer composites, the stiffeners and the skin are attached using fasteners, adhesives,

or co-curing of these components.

In a semi-monocoque design, the primary function of the skin is to provide a smooth

profile which can support the aerodynamic pressure loads. These loads are in turn trans-

mitted to the ribs and stringers. This results in the skin resisting the shear loads while

the axial and bending loads are reacted by the combined action of the stiffeners and the
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skin. In general, stiffened structures are characterized by a skin (plate or shell) with

attached stiffeners oriented in one or more directions. The classical stiffening configu-

ration is when the ribs and stringers are orthogonal and parallel to the structural axes.

In the absence of the skin, the framework of stiffeners is termed grid structure. A grid

structure could consist of stiffeners oriented in a 3D space forming truss-like patterns.

The individual members can be straight or curved depending on the shape profile. In the

context of the present research, the terminology is confined to those structures that have

the stiffeners confined to a surface that is planar or cylindrical.

A famous example of a successful application of grid structures in a fuselage con-

struction is the Vickers Wellington Bomber of the second world war. Figure 1.4 [4]

shows the aircraft fuselage frame where the grid construction is clearly visible. The

material used for geodesic construction was an aluminum alloy for lightweight designs.

The grid structure was designed to act as a skeleton for the flexible skin that formed the

aerodynamic surface. The purpose of such a construction was to increase the survivabil-

ity against anti-aircraft projectiles with the notion that a skin-damaged aircraft would

still be airworthy for a safe return. Also, the fuselage grid structure could still retain

a sufficient degree of structural integrity after sustaining a localized damage due to the

redundant loads paths provided by the stiffeners.

Almost all aircraft designs employ classical rib–stringer construction for fuselage

and wing structures. The fuselage section of a passenger airliner is shown in Fig. 1.5 [5].

There are innumerable examples to demonstrate the robustness, cost, and weight savings

of rib–stringer construction; from bridges to automobiles to spacecraft structures. In

summary, semi-monocoque structures provide excellent strength to weight ratio while

facilitating light-weight designs.
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Figure 1.4. Grid fuselage of the Vickers Wellington bomber [4]

Figure 1.5. Airbus A380 aircraft fuselage showing rib–stringer construction [5]
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1.1.3 Composite semi-monocoque structures

Composite materials are known for their superior performance in weight critical aerospace

applications compared to similar metallic designs. The high strength and stiffness

exhibited by composite plies in their fiber direction made them a promising candi-

date for grid designs. The integrally stiffened all-composite structures, generally re-

ferred to as advanced grid-stiffened (AGS) structures, were originally developed by

McDonnel-Douglas Corporation in the early 1970s. In that period, McDonnell Douglas

and NASA [6] identified the limitations of the conventional stiffening configuration, rib–

stringer construction called ortho-grid, in resisting shear loads. Their research identified

a unique configuration where the stiffeners form a network of equilateral triangles called

isogrid. It was also recognized to be a good candidate for automated winding process.

This was a giant leap in terms of weight savings from the conventional manufactur-

ing methods where the individual components were connected together using fasteners.

Also, the isogrid configuration was demonstrated to be superior to ortho-grid design in

resisting in-plane loads without any weight or out-of-plane bending stiffness penalty.

Under the US Army’s Advanced Composite Airframe Program (ACAP), Bell He-

licopter Textron (along with Sikorsky) was awarded a contract to design and develop

an all-composite helicopter. The main objective of the ACAP program was to reduce

weight, cost and improve military helicopter characteristics by the application of ad-

vanced composite material construction. The company developed several airframe pro-

totypes and completed their testing by the end of 1982 [7]. The Bell ACAP helicopter,

D-292 is shown in Fig. 1.6. D-292’s entire elongated pod-and-boom airframe is con-

structed of glass-reinforced plastic (GRP), graphite, and Kevlar. D-292’s basic load-

bearing structure is constructed primarily of graphite/epoxy. The flooring and most of

the aircraft’s exterior shell structure are made of a more ballistic-tolerant Kevlar/epoxy
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or glass/epoxy blend.

Figure 1.6. Bell ACAP D-292 experimental aircraft in flight (top). Vertical drop test of a D-292
airframe (bottom). The truss-like tailboom structure is also shown [8]

D-292 aircraft featured a weight reduction of 22% in the airframe structure, a 17%

savings in cost, survivability in a vertical crash, and reduced radar signature. These

comparisons were made with contemporary aircraft with conventional metal construc-

tion. The ACAP program proved successful in meeting its objectives to demonstrate

the use of advanced composites in a fully militarized airframe [8]. The hexagonal

semi-monocoque tailboom construction is particularly relevant to the present research

since its structural configuration was adopted to reduce weight as well as to increase the

damage tolerance while maintaining the stringent strength and stiffness requirements.

Remarkable advancements in composite manufacturing techniques during the last
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couple of decades makes it feasible to economically and efficiently fabricate grid-stiffened

structures. Two notable examples are the Tooling Reinforced Integral Grid (TRIG)

concept from Stanford University and the hybrid Tooling concept from the Air Force

Research Laboratory [9]. The section of the conical AGS payload shroud fabricated

using hybrid tooling is shown in Fig. 1.7. The AGS shroud weighed only 37 kg (82

lbs) whereas the existing aluminum shroud structure, that this design replaced, weighed

97 kg (212 lbs). In addition to a remarkable 60% reduction in weight, the AGS shroud

program demonstrated 88% reduction in manufacturing time, a 300% strength increase,

and an impressive 10 times stiffness increase over the existing aluminum designs. This

AGS shroud was a part of the space vehicle that was launched in the February of 1997.

This was also the first successful space flight of an AGS structure.

Figure 1.7. Conical grid-stiffened structure with off-axis (helical) stiffeners [9]

The fabrication of AGS structures using automated continuous wet filament wind-
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ing and co-curing of the stiffeners and the skin, significantly reduced the cost of man-

ufacturing [10, 11]. The automated filament winding of composite grid is shown in

Fig. 1.8 [11]. AGS structures possess excellent resistance to damage propagation and

delamination while exhibiting high strength to weight ratios [9, 11–13]. They are there-

fore used currently in rotorcraft and aircraft wing and fuselage components, rocket in-

terstages, payload shrouds, etc. The energy absorption characteristics of grid-stiffened

composite panels were studied using experimental evaluation and numerical simula-

tions [14, 15]. It was demonstrated that they are superior to the conventional laminated

shells.

Figure 1.8. Automated filament winding of a grid structure with helical stiffeners [11]

Recent accomplishments in the large scale use of composite materials in airframe

construction include aircraft such as the Boeing 787 and Airbus A380 commercial air-

craft. The A380 program used glass reinforced aluminum (Glare) and carbon fiber rein-

forced plastic (CFRP) in the fuselage and wing sections. Altogether, composite materi-

als accounted for nearly 16% by weight of the A380 airframe [16] saving about 15 tons
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over the weight of an equivalent all-metal structure (total empty aircraft weight is nearly

170 tons.)

The advantages composite grid-stiffened structures in terms of their high strength to

weight ratio, damage tolerance, and the design opportunities arising from the arrange-

ment of stiffeners in off-axis orientations were recognized and applied successfully by

various aerospace programs as described. The advantages of grid-stiffened structures

coupled with advanced grid fabrication techniques make them an excellent candidate

for large lightweight aerospace applications. Considering the larger size and increased

weight of the heavy-lift rotor blades compared to the conventional rotor blades in op-

eration, the present study aims to evaluate the potential of employing grid-stiffened

composite structures for heavy-lift rotor blade spars.

In the context of application of grid structures for rotor blade spars, a study con-

ducted in the early 1970s by Lockheed-California and the US Army Air Mobility R&D

Lab must be mentioned. This was a feasibility study on using composite grid designs

(including off-axis stiffeners) for a helicopter main rotor blade spar [17, 18]. The pur-

pose of this study was to investigate the survivability of the blade structure against 23

mm High Explosive Incendiary Tracer (HEI-T) projectiles. The grid spar specimen from

that study is shown in Fig 1.9. The driving force behind this research was that the grid

structures are crack-insensitive due to redundant load paths provided by the stiffeners

despite localized damage. The fabrication was done by hand to generate grids with

an elongated-oval cross-section as shown in Fig. 1.10. Apart from the conventional

rib–stringer configuration, off-axis stiffeners were also used to enhance the torsional

stiffness. The composite grid spar was provided with a nominal wrap of [±45]s lami-

nate. The whole blade structure had an additional [±45]s wrap, which acted as the skin

structure.
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Figure 1.9. Lockheed grid spar made from Graphite/Epoxy material with longitudinal, trans-
verse, and off-axis stiffeners [18]

DIMENSIONS IN INCHES

Figure 1.10. Lockheed geodesic blade section showing the geometry and composition of grid
spar and skin wrap [18]
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The hand-wound fabrication process had several limitations resulting in large dis-

crepancies between analytical predictions and experimental results. The fatigue studies

performed on the ballistic damaged grid specimen by applying cyclic loading, which

was estimated to be equivalent to over 23 hours of flight time, demonstrated excellent

damage tolerance characteristics. The study concluded that the grid spar is a promising

concept to increase the survivability of the blades. The lack of efficient and robust grid

fabrication methodology was cited as the key limiting factor in grid spar applications.

Based on the literature review conducted, this [18] is the only study prior to the present

research that investigated the application of composite grids in helicopter rotor blade

spar design.

Apart from the strength requirements, the torsional and bending stiffness require-

ments are high for the helicopter rotor blades. Therefore, stiffening configurations other

than the conventional ortho-grid (rib–stringer) must be considered. Various grid config-

urations [19] are illustrated in Fig. 1.11. Together, the ribs and stringers in an ortho-grid

construction provide excellent resistance to bending, axial, and circumferential loads

and are therefore utilized in compression and pressure loaded structures. Inclusion of

oblique (angle or off-axis) stiffeners, which are oriented at an arbitrary angle with re-

spect to the longitudinal axis, provide additional functionality in resisting in-plane shear,

which is analogous to the off-axis plies in composite laminates. When a structure has

only angle stiffeners, generally provided in symmetric ±θ pairs with respect to the

longitudinal axis, the configuration is termed angle-grid. A configuration with both

ortho- and angle-grid, when appropriately arranged, results in a generalized configura-

tion called general-grid. As shown in the figure, AL-grid and AT-grid are examples

where the former has the no transverse stiffeners and the latter has no longitudinal stiff-

eners. The isogrid configuration is also illustrated. It should be noted that additional
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angle stiffener pairs can be added to the configuration such as, ±θ1, ±θ2, ±θ3, . . . ±θn.

In the present study, the number of oblique stiffener pair is restricted to one symmetric

pair.

Ortho-grid Angle-grid

General-grid

x

y

z

AT-grid

AL-grid

Isogrid

60o

60o

Figure 1.11. Different grid configurations [19]. x refers to the longitudinal direction

The grid-stiffened structures offer a greater degree of design flexibility compared to

a conventional monocoque design. The ability to manipulate the design variables such

as the geometry of the stiffener cross-section, stiffener orientation, stiffening configura-

tions (topology), and choice of different material systems open up a large design space

where a comprehensive optimization study can be performed when required.
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1.2 Grid-stiffened heavy-lift helicopter blade spar

Considering the advantages of grid-stiffened structures, it is proposed to replace the

conventional D-spar laminate with an AGS structure for the heavy-lift helicopter blade

spar. A concept is illustrated in Fig. 1.12. The concept include an elliptical cross-

sectioned spar in recognition of the fact that such a geometry would be conducive to

automated fabrication and would also fit the cross-sectional shape of the blade. In the

present investigation however, the spar geometry is idealized to a circular cross-section

to simplify the analysis. The filler regions shown in the aft and fore sections of the spar

are for demonstration purpose only since the design of these sections is out of the scope

of the present investigation. Also, only the spar, which is a grid-stiffened structure, is

considered in this study.

Filler

Figure 1.12. Heavy-lift helicopter rotor blade cross-section showing grid-stiffened spar concept.
Present study idealizes the spar structure to a circular cylindrical cross-section

AGS structures are primarily used in applications where the geometry of the struc-

ture is large compared to the individual stiffeners . The design domain changes dra-

matically when the scope of its application is in the domain of a helicopter blade spar

designs. The controlling loading cases are different, for example, compared to a space
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launch vehicle fairing or an aircraft fuselage. In addition, the structural integrity require-

ments such as stiffness, strength, and stability are different. As such, the applicability

of the various analysis tools currently available are to be evaluated before they can be

applied. This is particularly true in the case of computationally efficient analytical mod-

els.

1.3 State-of-the-art analysis tools

Several methods exist to analyze AGS structures. Those that are widely employed are

based on (i) finite element formulations and (ii) equivalent (smeared) stiffness approach.

The finite element models consist of commercially available codes or models with spe-

cially developed elements utilized to analyze stiffened structures. These tools are capa-

ble of modeling the exact geometry of the AGS structures. The Equivalent (smeared)

Stiffness Models (ESM) on the other hand are approximate closed-form formulations,

but rather simple and efficient for preliminary studies [19–21]. The principle behind

ESM is that the grid layer (consists of stiffeners in one or more directions) is repre-

sented as an equivalent plate/shell continuum by smearing the stiffness characteristics

of individual stiffeners, in any given direction, over their spacing. The key assump-

tion to perform smearing of the stiffness components is that the stiffeners are ‘closely’

spaced. The accuracy and applicability of an ESM also depend on the assumptions in-

volved in terms of various deflection modes of the stiffeners that are incorporated in the

formulation [20].

A limitation of ESM is that it does not provide any physical insight into the failure

mechanisms of grid-stiffened structures [12, 22, 23]. Predicting the strength of grid

and grid-stiffened structures analytically is complicated by the fact that the structure has
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abrupt geometric and stiffness changes in its profile. As an example, the skin-stiffener

bonding can fail when the stiffeners exhibit excessive deformation, such as in the case

of buckling [24], which cannot be captured using traditional ESM. Most of the ESM

are simplified to apply to certain specific cases. The models developed in [6, 13, 25]

neglected the torsion of the ribs which can significantly influence the transverse bending

behavior of planar grids [20].

There are other modeling tools such as the branched plate and shell approach [26, 27]

that utilize finite element formulations and preserve the spatial discreteness of the stiff-

eners and the stiffener-skin interaction effects. Since these models are capable of repre-

senting the stiffeners and plate/shell of grid-stiffened structures discretely, they provide

sufficiently accurate results with the proper selection of elements, meshing scheme, and

solution strategies. The stiffeners are modeled using either beam, shell, or solid ele-

ments. The attached shell structure is modeled using shell or solid elements depending

on the nature of the problem. It is required to have the element mesh match with the

geometry of individual components of the grid-stiffened structure. As a consequence,

a topology change would require a re-mesh or a complete regeneration of the geometry

of certain parts or even the entire model. This could lead to longer development cycles

and undesirable modeling complications. Also, these models could be prohibitively ex-

pensive in a design environment owing to a large number of iterations required and the

need for high performance computing resources.

Analytical–numerical hybrid models also exist where both ESM and finite element

models are coupled to analyze stiffened structures. Chen and Tsai [20] employed the

ESM approach to calculate the effective properties of the laminate and input those pa-

rameters in a finite element model for a detailed structural analysis. On the contrary,

tools such as HyperSizer® [28] accepts input from a simplified, coarse-meshed finite
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element results and interprets the loads or stresses to generate smeared models for rapid

analysis. Although it is possible to predict the deflections, strains, and buckling loads of

grid and grid-stiffened structures using numerical models with varying degrees of accu-

racy, computationally efficient and robust analytical models are desired for preliminary

analysis and design.

There exists several tools that are designed specifically for the buckling analysis and

sizing of stiffened structures. One of the notable ones is PANDA2, a code developed by

Bushnell [29]. This code is designed to perform preliminary weight reduction optimiza-

tion studies of stiffened panels. It employes a multitude of solution strategies such as

exact closed-form models by means of finite strip method (FSM) [30] and discretized

branched shell models to predict buckling and post-buckling characteristics. Another

tool that is being used to analyze shell and stiffened shell structures is STAGS [31].

STAGS is a general purpose finite element implementation to perform nonlinear static

and dynamic analysis of shell structures. Stiffened panels can also be analyzed for in-

stabilities and strength, in both linear and nonlinear domains. An extensive review of

various codes available for stiffened shells/panel instability and failure analyses is pro-

vided by Venkataraman [32].

Since the present study is in the realm of rotor blade spar analysis where the bending

and torsion stiffness requirements are stringent, computationally efficient models that

can predict the stiffness characteristics of closed cross-section cylindrical grid-stiffened

structures with various stiffening configurations (topology) is required. ESM models

were developed and extensively employed by many studies [12, 13, 19, 20, 22, 33] for

the buckling analysis of stiffened panels and cylindrical (both closed and open section)

shells under different loading conditions. They derived the equivalent stiffness coeffi-

cients of stiffened structures using force-displacement relations assuming that the unit
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cell is flat. This assumption simplified the solution greatly when the effects of curvature

of the stiffeners are ignored. In fact, the simple ESM developed in the studies cited,

predicted the stability characteristics of stiffened cylindrical shell with reasonable ac-

curacy compared to finite element results or experiments. This is due to two reasons:

(i) the diameters of the structures analyzed were large, (ii) buckling modes (both due to

compression and torsion) are characterized primarily by the out-of-plane (radial direc-

tion) deformation of the stiffened shells due to axial and circumferential buckle wave

interaction.

Block [34] developed stability equations using strain energy principle to predict the

global buckling of ortho-grid stiffened cylinders. The effect of stiffener eccentricity

was included in the derivation and the study concluded that ignoring eccentricity could

lead to significant errors in stability predictions. Soong [35] developed similar buck-

ling equations using energy methods for closed section cylindrical shells with helical,

longitudinal, and axial stiffeners. The equations are valid only for global buckling pre-

dictions. The torsion and out-of-plane deformation of the stiffeners along with stiffener

eccentricity were included in the formulation. The results were in good agreement with

experimental results for the case of uniaxial compression and combined compression

and torsion buckling loads. Both of these studies did not take into account the in-plane

(circumferential direction) bending stiffness of the stiffeners.

As demonstrated by Chen and Tsai [20], neglecting in-plane bending stiffness of the

stiffeners leads to singular membrane stiffness matrix of the grid layer for an angle-grid

configuration. This is the consequence of using the force equilibrium equations to de-

rive the smeared stiffness coefficients of the angle-grid where simply supported bound-

ary conditions at each stiffener end is implicitly assumed. An angle-grid configuration

with simply supported stiffener ends would form a rigid body mechanism under all in-
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plane loads. However, when stiffeners, such as a family of longitudinal or transverse

(circumferential) stiffeners, are added to the existing angle-grid, the final configuration

(AT- or AL-grid) is a geometrically stable truss with finite in-plane stiffness. This would

still lack the capability to capture any coupling due to the geometry of stiffeners since

they behave as bar (only axial deformation) elements. For large diameter structures, flat

unit cell assumption and simply supported stiffener boundaries do not lead to significant

errors in stiffness predictions since the stiffeners effectively act as bar elements.

Almost all the models for grid-stiffened structure analyses available in the published

domain are developed to predict the stability characteristics under different loading sce-

narios. Formulations such as layerwise theory developed by Reddy and Starnes [36] and

the improved smeared model by Jaunky et al [24, 37] provide accurate platforms for the

general stability predictions of stiffened structures. There are numerous studies that em-

ployed ESM based on planar unit cell assumption to design lightweight grid-stiffened

structures with buckling constraints. Based on the literature review conducted, torsion

and bending stiffness coefficients of closed cross-section grid-stiffened structures were

not considered as design constraints. The present research aims to perform such a study

with the aforementioned stiffness parameters as design constraints. Since the diame-

ter of the spar structure is relatively small in comparison to the structures analyzed in

the literature, the applicability of the ESM in predicting the stiffness coefficients must

be evaluated. Note that the the grid-stiffened cylinders subjected to tip torque ( shear

load around the cross-section circumference) could result in in-plane (circumferential)

deformation of the stiffeners, which is not captured in the traditional ESM.

The conventional force equilibrium method to develop smeared stiffness coefficients

would become extremely difficult when various deflection modes of individual stiffeners

are to be simultaneously considered. These deflections include in-plane (circumferen-
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tial), out-of-plane (radial), and torsion of the stiffeners between their supports. These

deflection modes could result in significant coupling effect when the diameter of the

grid or grid-stiffened structures are small compared to the individual stiffener dimen-

sions. The implication of ignoring high curvature of stiffeners when predicting various

stiffness coefficients of grid and grid-stiffened cylinders is quantified later in Chapter 6.

A new analytical model is developed in this research to include the effect of curvature of

the stiffeners (for helical and circumferential) directly utilizing the corresponding stiff-

ness matrices of the stiffeners. This is accomplished by considering the stiffeners as

beam elements with appropriate boundary conditions.

1.4 Research objectives

The overall objective of the present research is to develop and integrate a set of efficient

design analysis tools to conduct a feasibility study of employing advanced grid-stiffened

structures for the spar of the heavy-lift helicopter blades. Specific tasks are enumerated

as follows:

1. Develop and validate computationally efficient analytical tools to predict the stiff-

ness coefficients of grid and grid-stiffened cylindrical structures

2. Perform experimental studies on angle-grid cylindrical specimens to determine

their stiffness characteristics under various loading conditions for validation stud-

ies

3. Develop FEA models for validation studies and also to aid in analytical model

development
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4. Predict the strength characteristics of grid-stiffened cylindrical structures using

established failure criteria

5. Conduct stability evaluation of grid-stiffened closed-cross section cylindrical struc-

tures under torque and bending induced axial compression loads

6. Conduct preliminary design studies to minimize the weight of general-grid stiff-

ened spar structures with stiffness, strength and stability constraints

1.5 Novel Contributions

The contributions from the present research are summarized as:

1. First investigation to examine the application of grid-stiffened structures for rotor

blade spars with the objective to reduce weight by including stiffness (bending

and torsion), stability (torsion and bending induced compression), and strength

constraints

2. A new unified analytical model is developed to predict the equivalent stiffness

coefficients of grid and grid-stiffened structures from the stiffness matrices of in-

dividual stiffener elements.

3. The analytical model can explicitly prescribe various boundary conditions for the

stiffeners in a grid structure. The boundary conditions considered in the present

study are clamped, simply supported, and elastic (using in-plane torsion spring.)

4. The analytical model developed is applicable to model cylindrical grid and grid-

stiffened structures. The oblique (off-axis) stiffeners are modeled using helical

beams to accurately represent their geometry in the analytical model. Similarly,
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the circumferential stiffeners are modeled using the stiffness matrix of a arch

beam.

5. The new analytical model is capable of modeling a variety of stiffening configu-

rations such as angle-grid, ortho-grid, and general-grid.

6. An FEM modeling methodology is developed to efficiently model the stiffener

overlap that results from the automated filament winding process. This is per-

formed using a commercial, general purpose finite element code.

1.6 Dissertation Outline

This research focuses on the application of grid-stiffened structures for heavy-lift ro-

tor blade spar designs. Various aspects of this research are classified and described in

relevant chapters.

The finite element modeling of grid and grid-stiffened structures are presented in

Chapter 2. The experimental procedure to determine the deflections of cylindrical grid

specimens under various loading conditions, in order to evaluate their stiffness charac-

teristics, is also discussed.

Chapter 3 is dedicated to the new analytical model formulation using the smeared

stiffness approach in order to predict the axial, bending, and torsion stiffness coefficients

of grid and grid-stiffened cylindrical structures. The model developed is capable of

capturing the exact geometry of the stiffeners while explicitly incorporating appropriate

stiffener boundary conditions at their cross-over points.

The methodologies employed to predict the stability characteristics of the grid-

stiffened cylindrical structures under various loading scenarios are provided in Chap-
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ter 4. The analytical models employed are obtained from published studies. The strate-

gies used to predict buckling of grid-stiffened cylindrical structures under torque and

bending induced axial compression are discussed.

A design methodology is presented in Chapter 5, to evaluate the weight savings of

grid-stiffened structures by comparing to a monocoque baseline structure. The different

design variables and constraints considered in this preliminary design investigation are

enumerated. The newly formulated analytical model is used in this design study. No

formal optimization algorithm is employed.

All the results generated from various analysis performed are provided in Chapter 6.

The design results based on the methodology established in Chapter 5 are also presented

in Chapter 6. Discussions on the results presented are provided in appropriate sections.

Finally, the conclusions obtained based on the present investigation and the direc-

tions for future work are presented in Chapter 7.



Chapter 2
Experiments and numerical models

The experimental evaluation to determine the load–deflection behavior of cylindrical

grid specimens are described. These results are used to determine the axial, bending,

and torsion stiffness of the cylindrical grid speciemens for validatin studies. The results

are provided in the relevant sections of Chapter 6. A commercially available, general

purpose finite element code, ABAQUS® [38] is employed to generate and analyze grid,

grid-stiffened and monocoque composite models. Two different techniques to model the

stiffener intersections in the grid and grid-stiffened structures are presented.

2.1 Experimental evaluation

2.1.1 Grid fabrication

The cylindrical grid specimens are fabricated using wet filament winding technique at

the Composite Manufacturing Technology Center of the Dept. of Engineering Science
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and Mechanics at The Pennsylvania State University∗. The S-glass/epoxy grid structures

are wet filament wound on a McClean-Anderson® filament winding machine. A typical

set up for filament winding is shown in Fig. 2.1. The epoxy is prepared using Epon®

resin 8132 and the Jeffamine® T-403 as the curative, mixed with a resin to curative ra-

tio by weight of five to two. The mandrel dimensions, fiber winding angle along with

data pertaining to the ply thickness, etc., are input into the computer which controls the

winding machine. The machine is instructed such that the tow is laid out on to the man-

drel exactly over the previous one resulting in a grid like structure with a predetermined

winding angle with respect to the mandrel axis. Note that no special tooling was used

to fabricate these specimens. As a result, there is a practical limit of the number of plies

that can be wound to fabricate the grid specimen without considerable ‘tow flattening.’

Figure 2.1. Filament winding set up: (1) filament feeder, (2) wet tow, and (3) mandrel

∗Fabrication: Courtesy of Ms. Kirsten Bossenbroek (then a graduate student) and Prof. Charles E.
Bakis
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The angle-grid specimens fabricated for this study all have helical winding angle of

45◦. The two varieties of specimens are shown in Fig. 2.2. The specimen, S8 has a total

of 8 helical stiffeners–4 in each direction and the specimen, S4 has 2 stiffeners in each

direction. Both specimens are of approximately the same weight. The geometric prop-

erties of the specimen are shown in Table 2.1. The stiffeners consist of unidirectional

plies (fibers run parallel to the direction of the stiffeners.) As a result, the overlap has

twice the number of plies. The thickness of the overlap is less than twice that of the ribs

as a result of the compaction process for curing.

Specimen: S8

Figure 2.2. Angle-grid specimens fabricated by filament winding

The material properties of the ribs and the overlap are determined from the fiber

and matrix volume fractions which are calculated from the fiber and matrix properties

and geometric measurements directly obtained from the cured specimens. Halpin-Tsai

equations [39] are used to determine material properties for the overlap sections.

E11 = E f V f +EmVm (2.1)
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Table 2.1. Geometric properties of grid specimens. (Dimensions in mm)

Specimens S8 S4

Avg. length bet. supports 229 221

Inner diameter 19.05 19.05

Avg. ply thickness 0.229 0.228

Avg. ply thickness at overlap 0.193 0.193

Stiffener (tow) width 3.708 3.708

No. of plies in stiffener 2 4

ν12 = ν f Vf +νmVm (2.2)

E22 = Em
1+ζ1η1Vf

1−η1Vf
(2.3)

where

η1 =
E f −Em

E f +ζ1Vf
(2.4)

and m and f refer to matrix and fiber respectively. A statistically valid value of fiber

volume fraction, V f is calculated by taking geometric measurements from multiple grid

segments obtained from different specimens. The geometry parameter, ζ1 = 1 and the

shear modulii are calculated as,

G12 = 0.8E22 (2.5)

G23 =
E22

2(1+Vm)
(2.6)
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Various parameters and calculated material properties are given in Table 2.2.

Table 2.2. Material properties of the stiffener and overlap region of the specimens. (Modulii in
GPa)

Fiber and matrix

Fiber modulus, E f 86.90

Matrix modulus, Em 1.89

ν f 0.20

νm 0.35

ζ1 (assumed) 1

Parameter Stiffener Overlap

Fiber vol. fraction, V f 0.31 0.57

Matrix vol. fraction, Vm 0.69 0.43

Properties Stiffener Overlap

E11 28.24 50.34

E22 3.85 7.43

G12 1.29 2.40

G23 1.37 2.65

ν12 0.304 0.265

2.1.2 Experiment setup

An apparatus capable of applying pure torque at the free end of a cantilever beam is

used to determine the twist response of the grid structure. Both ends are glued to

metal fixtures to provide the necessary rigidity for the applications of boundary con-

dition and load. The setup is shown in Fig. 2.3. The loads are applied incrementally

using free weights and pulley arrangement. A moment arm is generated by the use of



31

a near-frictionless rotating disc attached to the free end of the beam as demonstrated in

Fig. 2.3b. The twist angle is directly measured from a protractor attached on the fixed

part of the head assembly. The twist angle measurement has an accuracy of 0.5◦. The

rotating disc provides a lever arm of 56.89 mm (2.24 in) and the torque on the beam tip

is simply the applied load multiplied by the lever arm. The tests are repeated at least

three times and the data are averaged.

(a) (b)

Figure 2.3. Torsion test of the grid cantilever beam

The apparatus shown in Fig. 2.3, with some modifications, is used for the bending

test. The beam is cantilevered with the bottom end clamped. The load is applied using

free weights and pulley arrangement. The deflections are directly read using a dial

gauge. The apparatus arrangement for bending test is shown in Fig. 2.4. The load is

applied in increments of 0.245 N (25 g). The dial gauge has a sensitivity of 0.0254 mm.

The tests are repeated at least three times and data are averaged to minimize error in

measurements.
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Figure 2.4. Bending test of the dense grid cantilever beam

A displacement controlled axial test is performed† on a servo-hydraulic testing ma-

chine. The test is controlled and monitored using a computer connected to the machine

(Fig. 2.5). The load is calculated and recorded real-time through a 111.2 N (25 lb) load

cell attached to the top end of the beam. The fixtures at both ends of the beam are

provided with articulated bolts to negate any bending moment that may develop in the

grid beam due to possible but minor misalignment. Load sampling rate is set to about 6

readings per second and the maximum displacement is restricted to 1.5 mm (0.06 in) so

as to not to overload the load cell.
†Testing: Courtesy of Dr. Zhu (then a graduate student) and Prof. Charles E. Bakis for guidance
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Loadcell

SpecimenSpecimen

(a) (b) (c)

Figure 2.5. Axial test of the grid specimen

2.1.3 Cross-section stiffness

The experiment set ups described in the preceding section yield displacements in the

direction of the applied loads. The bending, axial, and torsion stiffness values are de-

termined from the displacement values using Euler beam theory [40]. The bending

stiffness EIgE of the grid specimen is determined using

EIgE =
Pa L3

gE

3wgE
(2.7)

The axial and torsion stiffness values are determined using Eqs. (2.8) and (2.8) respec-

tively.

EAgE =
Fa LgE

ugE
(2.8)

GJgE =
Ta LgE

ϕgE
(2.9)
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where the subscript, E refers to experiements. Pa, Fa, and Ta are the applied tip trans-

verse bending load, axial load, and torque respectively. Tip transverse bending deflec-

tion, wgE , tip axial deflection, ugE , and tip twist, ϕgE are the experimentally determined

values. LgE is the length of the grid specimen.

2.2 Numerical models

2.2.1 Finite element modeling of grid structures

The FEA models developed in this study to analyze grid and grid-stiffened structures

are broadly classified as:

1. Shell element models

(a) Blade-like stiffener (BLS)

(b) Strip-like stiffener (SLS)

2. Solid element grid models

The primary distinction between BLS and SLS models is in the way the geometric

planes of the stiffeners are oriented. Figure 2.6 illustrates these two types. The planes

for BLS are oriented perpendicular and that for the SLS are parallel to the xy plane as

demonstrated. The other distinction is in the element section definition input; specifi-

cally, the way the composite ply layups are defined at the stiffener overlap regions and

shell–stiffener attachment. The motivation behind developing the SLS model is repre-

sent the geometry of overlapping sections as accurate as possible compared to the grid

specimens fabricated.
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Figure 2.6. Stiffener modeling technique: (a) BLS and (b) SLS modeling. Applicable also to
cylindrical profile

Reference points (RP) are created at the centroid of the cross-sections of the struc-

ture end and the respective edges are tied to these points using kinematic coupling con-

straints. This is demonstrated in Fig. 2.7. Constraints are prescribed in the form of BCs

to avoid warping of the cross-section. The loads and boundary conditions are applied at

these reference points.

The cylindrical models used for bending analysis have simple support boundary con-

ditions and those for torsion analysis have fixed-free boundary conditions. A change in

the stiffener width, bs (dimension along the cylindrical plane) requires that the FEM

stiffener geometry be regenerated. Appropriate dimensions, ply thickness and materi-

als properties are input for the stiffeners and overlap regions. The axial, bending, and

torsion loads are applied independently and the respective axial, transverse, and twist



36

Figure 2.7. Reference point (RP) and constraint ‘surface’ at the grid beam end for the applica-
tion of loads and BCs. RP is located at the centroid of the cross-section. Kinematic coupling
constraints are used to connect the surface to the RPs

deformations are determined from the nodal displacement results. The nodal displace-

ments are measured at multiple locations along the length of the beam for all load cases

to obtain robust sets of data. The ply orientation for each stiffener is prescribed appro-

priately by defining local coordinate systems. The ply orientation angles are provided

such that the stiffeners are made of uniaxial fibers. This is depicted in Fig. 2.8. Note that

the helical stiffeners in only one direction are highlighted for clarity. All finite element

analyses performed are linear elastic. The effects of cross-section and restraint warping

are not included in the analysis.

The grid winding process is illustrated in Fig. 2.9. The filament feeder pass back

and forth while the grooved mandrel is rotating on its axis generating the grid layer.

The feeder should be programmed to lay the fibers exactly over the previous layer in the

groove. The resulting stiffener overlap section, is modeled as illustrated in Fig. 2.10.
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Figure 2.8. Ply orientation specified for the helical stiffeners in the cylindrical coordinate sys-
tem. 1, 2, and n correspond to the fiber, transverse to fiber, and normal (stacking) directions
respectively

FA FB

TATB

Winding direction

A
B

Overlap 

region

Mandrel

Figure 2.9. Schematic of angle-grid fabrication by filament winding on a grooved mandrel

The methodology to model overlapping composite plies is discussed in the documen-

tation (§21.5 Modeling composite layups) [38] of the CAE® User’s manual. According
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Figure 2.10. Schematic of ply by ply FEM modeling of stiffeners

to the numbering scheme shown, ply numbers in the overlap section in +z direction

is then 1,2,3, . . . ,8. With a careful geometry partitioning scheme, appropriate section

definitions can be provided for the stiffeners and the overlapping regions independently.

The section definition includes ply name, ply thickness, material properties, ply ori-

entation angle, number of integration points and node offset. The outer (+z direction)

surface of the stiffener overlapping regions should be flush with that of the stiffener

profile in order to have the grid fit perfectly inside the cylindrical shell. This is accom-

plished by providing appropriate offset for the shell element nodes.

The geometric plane that represents the nodal plane of a conventional shell model is

shown in Fig. 2.11. The nodal plane for the stiffeners is the middle surface as shown,

which has, for e.g., the nodes (1) and (2). The nodal plane of the overlap section is

at a distance eo from the node (2′), which is, by default, situated at half-thickness of

the overlap section. The purpose of this exercise is to make all the nodes lie on the
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reference plane representative of an equivalent grid layer. This node is provided with an

offset of eo so that the outer surface of the overlapping region is flush with the rest of

the stiffeners.

Figure 2.11. FEA modeling strategy for a stiffener overlap region using conventional shell
elements. Only corner nodes are shown for clarity. Final form is obtained after applying the
offset

Considerable attention is given to generate regular mesh where ever possible, though

it is found that in some cases, such as in the case of grid-stiffened general-grid models,

it is not always possible without tedious geometry partitioning schemes. The element

distortion effect is minimized by providing sufficient density to the mesh. To maintain

reliability, data are collected at various locations along the length of the beam.

A small number of FEM 3D solid models of angle-grid and ortho-grid tubes are also

generated. Since the modeling aspect is cumbersome and costly for 3D models, they are

only used to study the deflection characteristics of individual stiffeners when the grid

cylinder is subjected to torsion loads. The angle-grid and ortho-grid cylindrical models

in torsional deflection modes are depicted in Fig. 2.12 and Fig. 2.13 respectively.
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Figure 2.12. 3D FEA model of a cylindrical angle-grid structure showing deflection under tip
torque. Out-of-plane (radial) deflection of the stiffeners can be observed

Figure 2.13. 3D finite element model of a cylindrical ortho-grid structure showing deflection
under tip torque. In-plane (along cylindrical surface) deflection of the stiffeners can be observed

Generating grid and grid-stiffened models based on BLS technique is relatively sim-

ple compared to SLS technique. An angle-grid cylindrical model is shown in Fig. 2.14.

Reference points for application of loads and boundary conditions are also shown. In

the present research, most of the finite element simulations are performed using models
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Figure 2.14. Unmeshed model of a cylindrical angle-grid generated using BLS technique with
reference points (RPs)

developed using BLS method. A few exceptions are– FEM validation studies of grid

specimens and torsional buckling study of grid-stiffened cylinders.

2.2.2 Grid-stiffened structures

The methodology developed for grid structures can be extended to model grid-stiffened

structures. The technique for modeling shell–stiffener attachment is demonstrated in

Fig. 2.15. The difference between BLS and SLS modeling aspects are discussed. For

illustration purpose, the shell of the grid-stiffened structure has a stacking sequence

[β1,β2,β3,β4] as illustrated. The ply stacking directions are also indicated. In the case

of BLS model, the common area highlighted in the schematic has both the section prop-

erties of the shell and the stiffener; this area is not modeled explicitly.

On the contrary, the SLS model provides accurate representation of the shell–stiffener

attachment (as illustrated on the left) when appropriate nodal offset values are provided.

Offsetting the nodes shifts the reference plane of the structure because the conventional
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Figure 2.15. FEM modeling technique to represent grid–stiffener sections using conventional
shell elements

shell element, (S4R) has only a single node through the thickness [38]. When the offset

value is +0.5 the reference plane shifts to the top surface of the shell, an offset of −0.5

shifts the reference plane to the bottom, and a zero offset value distributes the plies

equally on either side of the mid-plane [38](§24.6.5), which is indicated in Fig. 2.15

as ‘no offset.’ In the SLS method, the shaded region has the ply angles for the shell

laminate which are provided in the section definition of the stiffener elements. Specif-

ically, given the stacking direction, the last four ply angles in the stiffener laminate are

β1, β2, β3, and β4. This means that the shell and stiffener geometries can be indepen-

dently modeled with suitable section definitions. The eccentricity of the grid-layer from

the reference plane (mid-plane of the shell) of the grid-stiffened structures is implicitly

taken into account in the calculations. The general-grid stiffened cylindrical models
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(meshed and unmeshed) developed using BLS methodology are shown in Fig. 2.16.

Figure 2.16. A complete shell model geometry of a general-grid stiffened cylinder and the
corresponding meshed model for FEA simulations

A solid model with solid composite elements or continuum (3D) shell elements can

capture complex geometries, for e.g., variable thickness and drastic curvature changes,

with a high computational cost penalty. Unless the model is relatively simple, such as

a structure with smooth geometry, it is cumbersome to develop the grid-stiffened mod-

els using composite solid sections. The procedure is especially cumbersome when the

helical stiffeners are included. Therefore, 3D grid-stiffened models are not generated.

A mesh sensitivity study is performed on representative grid-stiffened models, such

as the one shown in Fig. 2.16. A series of eigenvalue analysis are conducted on models

with different mesh densities under axial compression to check for convergence. The

solutions are also verified against a model with high mesh density. From the models

with converged solutions, the coarsest mesh density is selected for further modeling

procedures. Once the nodal displacements from FEA results are obtained, the equations

provided in Sec. 2.1.3 can then used to predict the stiffness coefficients of grid and

grid-stiffened cylinders.



Chapter 3
Analytical formulation

A novel analytical model is developed to determine the stiffness properties of grid and

grid-stiffened structures. This analytical model is formulated from beam stiffness ma-

trices facilitating accurate representation of geometry. This model also provides capa-

bilities to prescribe boundary conditions for the stiffeners explicitly. The objective is

to directly employ the stiffness matrices of the constituent stiffener components to de-

rive the equivalent stiffness coefficients (A, B, D matrices) of grid- and grid-stiffened

shells. From these coefficients, the axial, bending, and torsion stiffness of the cylin-

drical structures are calculated. First, a the methodology is demonstrated and validated

against published results on flat unit cells and then extended to more complex stiffener

geometries such as cylindrical grid and grid-stiffened structures.

3.1 A new approach

A grid layer with closely spaced stiffeners can be represented as an equivalent stiff-

ness plate or shell layer by smearing the stiffness properties of the stiffeners [19]. The
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accuracy of such a model depends on how accurately the deflection modes of the stiff-

eners are represented in the smeared model. The traditional equivalent stiffness models

employ direct force equilibrium relations to derive the stiffness contribution from the

stiffeners. The force equilibrium method implicitly assumes that the stiffener joints pro-

vide simply supported boundary conditions and thus the moment carrying capabilities

of all stiffener elements are ignored. This assumption eliminates the coupling between

various deflection modes to obtain simple solutions. One of the consequences, apart

from the possible inaccuracies, is that in certain cases the deflection solutions for the

grid layer cannot be obtained. For example, an angle-grid configuration with the stiff-

eners joints that are assumed to be pinned, does not have any in-plane rigidity. Thus

the in-plane stiffness matrix, A becomes singular [20]. Similarly, the shear stiffness of

the ortho-grid configuration is null with pinned nodes. Also, the direct force balancing

procedure becomes difficult to apply when the stiffener geometry is complex, such as in

the case of a helical stiffener in a cylindrical angle-grid.

A new, unified methodology is developed to derive the equivalent stiffness coeffi-

cients of the grid layer analytically which can accurately capture the exact geometry

(for example, curvature) of the stiffeners and explicitly include either clamped, pinned,

or elastic boundary conditions at the nodes. The effects of transverse shear in the stiff-

eners are also included in the analysis. Initially, the grid structures are analyzed to de-

termine the in-plane and out-of-plane bending stiffness matrices for various grid topolo-

gies. Subsequently, the stiffness coefficients of grid-stiffened structures are obtained.

In the new approach, the equivalent stiffness coefficients of the grid layer are obtained

from stiffness matrices of the stiffeners. Appropriate stiffness matrices are determined

to match the geometry, orientation, and boundary conditions of the stiffeners for various

stiffening configurations and structural geometry.
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The equivalent stiffness matrices for various stiffening configurations that include

combinations of longitudinal, transverse, and oblique stiffeners are formulated for both

flat panel and cylindrical shell equivalents. As in a laminated plate or shell theory, two

sets of parameters need to be derived; in-plane and out-of-plane stiffness coefficients. A

set of assumptions are employed that are consistent with well established linear elastic

plate, shell, and beam theories:

1. All structures are perfectly elastic and exhibit linear behavior.

2. Deflection are assumed to be small and thus the superposition principle is valid.

3. Stiffeners are modeled as prismatic structures made of uniaxially reinforced fiber

composite material.

4. Stiffeners have identical cross-section geometries and made of the same mate-

rial system. All stiffeners have rectangular cross-sections and thus, their product

moment of area is zero.

5. All stiffeners lie on the same plane. The reference plane of the grid layer is defined

as the plane formed by the centroid of the cross-sections of the stiffeners.

6. Angle (oblique) stiffeners appear in symmetric pairs of ±θ orientation with re-

spect to the structural longitudinal axis. Bg
i j = 0 for the equivalent grid layer.

7. Stiffeners intersect at common, dimensionless ‘nodes’ where the boundary condi-

tions are imposed and loads are applied. The radial displacements of these nodes

are assumed to be zero (out-of-plane in the case of planar grids.)

8. The arrangement of stiffeners is periodic in a given grid configuration so that a

unit cell can be established. It is also assumed that the stiffeners are continuous;

there are no missing stiffeners or cut-outs in the structure.
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One of the important steps in the present derivation is to determine the boundary

conditions of the stiffeners considering their periodicity and the behavior of various grid

elements within the unit cells under external loads. The analysis is greatly simplified

when the representative grid beam members are identified and appropriate loading and

boundary conditions are prescribed. It is only necessary to analyze two fundamental

topologies viz., ortho-grid and angle-grid.

The stiffness contributions from each set of parallel stiffeners (family of stiffeners)

are combined using the principle of superposition to obtain the stiffness coefficients of

grid layers with various stiffener orientations [12, 13, 19, 20, 33]. The analysis reference

plane of each family of stiffeners must coincide in order to combine their stiffness con-

tributions. Also, it requires that the grid layer can be defined in terms of a representative

segment, the unit cell, the periodic repetition of which defines the entire grid layer.

It is required to derive stiffness coefficients for both flat plate and cylindrical shell

equivalents. The geometry of the stiffeners have to conform to the exact geometry of

the plate or shell to be stiffened. Thus a stiffened plate has straight stiffeners (no out-of-

plane curvature) while a cylindrical stiffened shell has straight, arch, and helical beams

for longitudinal, transverse, and angle stiffeners respectively. It is also noted that a

plate structure can have in- curvilinear stiffeners (in-plane curvature) [41] although such

configurations are not considered in this study.

3.2 Flat grids: In-plane stiffness

The analytical derivation conducted in this study is based on the assumption, as stated

earlier, that the stiffener distribution is periodic and the stiffness coefficients of the entire

structure can be determined from its unit cell. A generalized grid unit cell is shown in
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Fig. 3.1. The spacing between stiffeners, stiffener orientations, and the unit-cell dimen-

sions are also shown. Note that the oblique stiffeners are in pairs of ±θ orientation with

respect to the x (longitudinal) axis.

dθ dθ

d0

d90
lx

ly

θ

θ

θ

θ

x

y

Figure 3.1. Unit cell of a general-grid

Based on the coordinate system shown in Fig. 3.1, the combination of only the verti-

cal (transverse) and horizontal (longitudinal) stiffeners form the ortho-grid. A topology

with only oblique stiffeners is called an angle-grid. The effect of various boundary con-

ditions (BC) at the stiffener joints (nodes) is analyzed in this study and the unit cells

are depicted in Figs. 3.2(a) simply supported (SS), (b) Clamped–clamped (CC), and (c)

elastic–elastic (EE) BCs.
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Ortho-grid

General-grid

Angle-grid

(a) (b) (c)

Figure 3.2. Boundary conditions at stiffener joints for various topologies. (a) Simply supported,
(b) Clamped, and (c) elastic (in-plane torsion springs)

3.2.1 Ortho-grid

The constitutive relations for the equivalent stiffness panel of a general-grid can be

represented as 
nx

ny

nxy



g

=


A11 A12 0

A12 A22 0

0 0 A66


g 

εx

εy

γxy



g

(3.1)

where xyz is the global coordinate system. The superscript, g refers to grid and nx,

ny, nxy are the in-plane stress resultants. Ag
16 and Ag

26 are zero since there is no extension-

shear coupling in the grid panel due to the presence of symmetric stiffener pairs. The
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strain–displacement relations for the equivalent stiffness plate are given by



εx

εy

γxy



g

=



∂δx

∂x
∂δy

∂y
∂δx

∂y
+

∂δy

∂x



g

(3.2)

All the stiffeners in a flat grid are planar (xy plane) beams. Thus, only three DOFs

(2 in-plane displacements and 1 in-plane rotation) per node need to be considered to

calculate the in-plane stiffness coefficients, Ag
i j. The local coordinate system, forces,

moment, displacements, and rotation are shown in Fig. 3.3. Note that for the longitudinal

and transverse beams, the local coordinate system coincides with the global coordinate

system and the subscripts are changed to x, y, and z accordingly.

(a) (b)

1

2
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z

x

y

z

x

1

2

ϕz

δx

δy Fy

Fx

Mz

Figure 3.3. 2D planar beam element of length, l. (a) displacements and rotation, and (b) forces
and moment. The local coordinate system is also shown

The force displacement relation for a two-node beam-column in matrix form is

Fi = kbc δi (3.3)
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where

Fi = [Fx1, Fy1, Mz1, Fx2, Fy2, Mz2]
T (3.4)

δi = [δx1, δy1, ϕz1, δx2, δy2, ϕz2]
T (3.5)

Equation (3.6) provide the (6×6) stiffness matrix kbc of the beam-column of length, l

[42].

kbc =



EA
l

0 0
−EA

l
0 0

0
12EIz

(αy +1) l3
6EIz

(αy +1) l2 0
−12EIz

(αy +1) l3
6EIz

(αy +1) l2

0
6EIz

(αy +1) l2
(αy +4) EIz

(αy +1) l
0

−6EIz

(αy +1) l2
(2−αy) EIz

(αy +1) l
−EA

l
0 0

EA
l

0 0

0
−12EIz

(αy +1) l3
−6EIz

(αy +1) l2 0
12EIz

(αy +1) l3
−6EIz

(αy +1) l2

0
6EIz

(αy +1) l2
(2−αy)EIz

(αy +1) l
0

−6EIz

(αy +1) l2
(αy +4)EIz

(αy +1) l



(3.6)

where

αy =
12EIz

αsc GAl2 (3.7)

αy is the non-dimensional shear correction parameter and αsc is the shear correction

factor (see Sec. A.2 in Appendix A). EIz and GA are the in-plane bending and shear

stiffness of the beam respectively. Setting αy = 0 in Eq. (3.6) reduces it to the Euler-

Bernoulli beam-column element stiffness matrix.
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3.2.1.1 Simply supported nodes

The model employed is shown in Figs. 3.4. The dark and lighter shades are used to

represent the beams in the schematics. Dark shaded beam elements undergo elastic

deformation whereas the gray shaded beam elements undergo rigid body motion. The

gray shaded elements are provided only as a reference to a connecting member. Also,

the lengths of the beam shown in the diagrams for ortho-grid are the spacing between

the stiffeners. For example, the length of a longitudinal (x direction) stiffener would be

d90 since the length is determined by the spacing between 90◦ (y direction or transverse)

stiffeners.

(b)

d90

d0

Fx

(a)

x

y

δx

δy

Fy

d90

d0

Figure 3.4. Loading and BCs for ortho-grid in-plane stiffness calculations. (a) A11, and (b) A22

Applying the BCs δx1 = δy1 = δy2 = 0 and setting Fx2 = Fx, δx2 = δx, and the length

of the longitudinal stiffeners l = d90 in Eq. (3.6) gives

Fx =
EA
d90

δx (3.8)

Considering Eq. (3.2), converting the beam displacement to plate strain and beam

force to plate load using the following equations result in,
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δx = εx d90 (3.9)

Fx = nx d0 (3.10)

to get

nx = Ag
11 εx (3.11)

with

Aos
11 =

EA
d0

(3.12)

The superscripts ‘o’ and ‘s’ stand for ortho-grid—the topology and SS—the BCs

respectively. Following a similar procedure, Aos
22 can also be obtained by analyzing

the transverse stiffener which is oriented in the y direction. For this case, apply the

BCs δx1 = δy1 = δx2 = 0 in Eq. (3.6) and set Fy2 = Fy, δy2 = δy, and the length of the

transverse stiffener l = d0. The beam displacement and force are represented in terms

of the corresponding plate parameters employing the expressions in Eq. (3.2).

δy = εy d0 (3.13)

Fy = ny d90 (3.14)

The in-plane stiffness can be written as

Aos
22 =

EA
d90

(3.15)

Aos
12 = 0 for an ortho-grid since there is no x direction deflection due to Fy or y direction
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deflection due to Fx. The in-plane stiffness matrix Ai j of an ortho-grid layer with simply

supported nodes can be represented in the conventional matrix form as



nx

ny

nxy


=



EA
d0

0

0
EA
d90

0

0 0 0





εx

εy

γxy


(3.16)

These results are in perfect agreement with several published works [13, 19–21, 33].

3.2.1.2 Clamped nodes

Aoc
11 and Aoc

22 for the clamped BC case are identical to that obtained for the simply sup-

ported case in Eq. (3.16). This is because the loads are purely axial for both longitudinal

and transverse beams as demonstrated in Fig. 3.5.

(b)

d90

d0

Fx

(a)

x

y

δx

δy

Fy

d90

d0

Figure 3.5. Loading and clamped BCs for ortho-grid in-plane stiffness calculations. (a) A11, and
(b) A22

However, Aoc
66 ̸= 0 when clamped BCs are imposed at the nodes [20]. The shear

stiffness of the panel comes from the in-plane bending of the stiffeners. In order to

determine the shear strains, δx and δy need to be calculated as per the equation for γxy in
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Eq. (3.2). The boundary conditions and loading patterns are provided in Fig. 3.6.

d90

d0

Fy

(a) (b)

x

y

d90
d0

Fx

δx δy

Figure 3.6. Loading and clamped BCs for ortho-grid shear stiffness calculations

The tip bending deflections can be calculated directly by inverting reduced kbc.

Beam loads are then applied at the beam tips independently to get δx from the trans-

verse beam and δy from the longitudinal beam under bending. The equivalent loads and

rotations are represented as

Fy = nxy d0 (3.17)

Fx = nxy d90 (3.18)

γy =
δy

d90
(3.19)

γx =
δx

d0
(3.20)

γxy = γx + γy (3.21)
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The compliance coefficients are defined as the inverse of the matrix in Eq. (3.1). The

shear compliance of an ortho-grid panel with clamped nodes is determined to be

aoc
66 =

d0 d2
90

EI
+

d90 d2
0

EI
+

d0

αsc GA
+

d90

αsc GA
(3.22)

The other compliance coefficients are given by

aoc
11 =

d0

EA
(3.23)

aoc
22 =

d90

EA
(3.24)

They are identical to that obtained by Chen and Tsai [20], where the derivation of these

expressions was not provided.

3.2.1.3 Elastic nodes

Ideally, a node provides neither a perfectly clamped nor a perfectly pinned boundary

condition for the stiffeners. It is identified to be somewhere between the two [20]. A

flexibility condition can be imposed at the nodes analytically by considering the in-

plane shear compliance of the laminate structure at the overlapping section. The nodal

laminate and in turn its stiffness properties depend on the manufacturing technique em-

ployed. For example, the stacking sequence depends on the grid fabrication process and

the elastic constants of the lamina depend on the volume fraction.

In-plane torsion springs are added at the nodes and the procedure for the clamped

case is repeated with the spring constants added to kbc. The stiffeners are isolated

as explained earlier and the loading schemes and boundary conditions are provided in

Figs. 3.8. Equation (3.25) gives the (6×6) torsion spring stiffness matrix, the derivation
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of which is based on Ref. [43]. Similar to the stiffeners with clamped BCs, elastic BCs

do not change A11, and A22 since the loads are parallel to the stiffener elastic axis as

shown in Fig. 3.7.

(b)

d90

d0

Fx

(a)

x

y
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δy

Fy

d90

d0

Figure 3.7. Loading and BCs for ortho-grid in-plane stiffness calculations. (a) A11, and (b) A22
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Figure 3.8. Loading and elastic BCs for ortho-grid shear stiffness calculations
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kθ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 kθ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 kθ


(3.25)

where kθ is the in-plane shear stiffness of the stiffener overlapping regions. The stiffness

matrix of the assembly is then obtained by algebraically adding kbc and kθ . There

are three DOFs for an isolated beam representing a stiffener such as the one shown in

Fig. 3.8(a); rotations at the supports and the deflection δx. Note that the node flexibility

is associated with the rotation at the nodes. Upon employing the procedure developed

for ortho-grid panels in Sec. 3.2.1.2, the following shear compliance coefficient for an

ortho-grid panel with elastic nodes is obtained.

aoe
66 =

d2
0 d90

EI
+

d0 d2
90

EI
+

d0 d90

kθ
+

d0

αsc GA
+

d90

αsc GA
(3.26)

The first and the second terms correspond to longitudinal (0◦) and transverse (90◦)

stiffeners respectively. The underlined term is due to the elastic BCs at the nodes, which

is a newly derived parameter in this study. Since the grid layer is orthotropic, the shear

stiffness coefficient is obtained by

Aoe
66 =

1
aoe

66
(3.27)

Identical results can be obtained also by solving the differential equation of an Euler

beam bending problem with torsion spring added to its boundaries. When the torsion

spring stiffness kθ → ∞ in Eq. (3.26), the expression reduces to the shear compliance
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aoc
66 given in Eq. (3.22). Note that setting kθ = 0 to obtain simply supported nodes would

result in zero shear stiffness, which is consistent with the observation made previously.

A finite value of kθ would reduce the overall shear stiffness of the panel compared to the

clamped BC case. The coefficients aoe
11 and aoe

22 are identical to that of the clamped BC

case since the stiffeners are parallel to the global axes and hence do not exhibit bending.

Thus,

aoe
11 =

d0

EA
(3.28)

aoe
22 =

d90

EA
(3.29)

The in-plane compliance matrix of an ortho-grid panel is given in Eq. (3.30). The

stiffness matrix is the inverse of aoe
i j .

aoe
i j =


aoe

11 0 0

0 aoe
22 0

0 0 aoe
66

 (3.30)

The effect of various stiffener BCs such as simply supported, clamped, and elastic on

the in-plane stiffness coefficients can be obtained from Eq. (3.30) by the proper selection

kθ .

3.2.2 Angle-grid

The angle-grid stiffeners are oriented at an angle θ with respect to the x axis. The

schematic used for derivation is shown in Fig. 3.9.
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Figure 3.9. Loading and clamped BCs for angle-grid shear stiffness calculations
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Figure 3.10. Loading and elastic BCs for angle-grid shear stiffness calculations. φ is due to the
elastic rotation in the springs

The initial step is to transform the stiffness matrix of a stiffener arbitrarily oriented
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Figure 3.11. Loading and simply supported BCs for angle-grid shear stiffness calculations.
Rigid-body rotation at the joints and so there is no flexure in the stiffeners

at an angle θ to the global coordinates as shown in Eq. (3.31).

Kbc = T T
bc kbc Tbc (3.31)

Tbc =



c s 0 0 0 0

−s c 0 0 0 0

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 −s c 0

0 0 0 0 0 1


(3.32)

where s = sinθ and c = cosθ .

As stated earlier, the in-plane stiffness matrix of the simply supported angle-grid

configuration is singular. So the elastic node case is derived first and the other two cases
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are subsequently derived from the elastic BC solution. The compliance coefficients

are calculated directly by inverting the reduced (after applying appropriate BCs) beam-

column stiffness matrix given in Eq. (3.6). The torsion spring stiffness matrix is also

transformed to the global coordinate system using Eq. (3.33).

Kθ = T T
bc kθ Tbc (3.33)

Due to the symmetry of the angle stiffener orientation, stiffener lengths are identical,

i.e. L(+θ) ≡ L(−θ) = Lθ . The global stiffness matrix that includes the effect of transverse

shear and elastic BCs is obtained by

Kag =Kbc +Kθ (3.34)

The presence of torsion springs at the support requires that the node rotations are

retained. Applying the BCs δx1 = δy1 = 0 to get the (4×4) stiffness matrix Kag for the

angle-grid. Displacement vector is obtained by inverting Kag and multiplying by the

force vector as

[ϕz1, δx, δy, ϕz2]
T =K−1

ag [0, Fx, Fy, 0]T (3.35)

The deflections δx1 and δy1 are set to δx and δy respectively. Using Eqs. (3.17)

to (3.21) for forces and shear strains, and Eq. (3.2) for normal strains, the smeared

stiffness matrix can be obtained for an angle-grid panel with elastic BCs. The lengths of

the beams in the above equations are altered to reflect the angle-grid calculation model

as,

d0 = Lθ s (3.36)



63

d90 = Lθ c (3.37)

After performing the substitutions, the partial compliance matrix of an angle-grid is

represented in the matrix form as

εx

εy

=

a11 a12

a12 a22


nx

ny

 (3.38)

where

aae
11 =

Lθ s
c

[
c2

EA
+ s2

(
Lθ

2Kθ
+

(αy +1)L2
θ

12EIz

)]
(3.39)

aae
22 =

Lθ c
s

[
s2

EA
+ c2

(
Lθ

2Kθ
+

(αy +1)L2
θ

12EIz

)]
(3.40)

aae
12 = Lθ cs

[
1

EA
−
(

Lθ
2Kθ

+
(αy +1)L2

θ
12EIz

)]
(3.41)

The forces and deflections required to determine aae
66 are depicted in Fig. 3.10. The

shear stiffness derivation is similar to that of the ortho-grid panel. Employing Eqs. (3.17)

and (3.21) and using stiffener length Lθ , the shear compliance of the angle-grid config-

uration with elastic BCs is

aae
66 =

1
2cs


s2

s2 EA
Lθ

+ c2 12EIz

L3
θ

(
(αy +1)+

6EIz

Kθ Lθ

)
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+
c2

c2 EA
Lθ

+ s2 12EIz

L3
θ

(
(αy +1)+

6EIz

Kθ Lθ

)

 (3.42)

The effect of transverse shear is also captured in the formulation. The spacing between

the angle stiffeners dθ (see Fig. 3.1) determines the grid density. Lθ and dθ are related

by,

Lθ =
dθ

2cs
(3.43)

Setting Kθ → ∞ and substituting for αy from Eq. (3.7) lead to the clamped condition

as represented in the following equations.

aac
11 =

Lθ s
c

[
c2

EA
+ s2

(
1

αsc GA
+

L2
θ

12EIz

)]
(3.44)

aac
22 =

Lβ c
s

[
s2

EA
+ c2

(
1

αsc GA
+

L2
θ

12EIz

)]
(3.45)

aac
12 = Lθ cs

[
1

EA
−
(

1
αsc GA

+
L2

θ
12EIz

)]
(3.46)

aac
66 =

1
2cs

 s2

s2 EA
Lθ

+ c2 12EIz

L3
θ
(
αy +1

) +
c2

c2 EA
Lθ

+ s2 12EIz

L3
θ
(
αy +1

)
 (3.47)

The expressions for aac
11, aac

12, and aac
22 are identical to that reported in [20]. aac

66 is

a newly derived coefficient. The effect of transverse shear can be neglected by setting
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αy = 0. The general compliance and stiffness matrices of an angle-grid panel are

aa
i j =


a11 a12 0

a12 a22 0

0 0 a66


a

(3.48)

Aa
i j = aa

i j
−1 (3.49)

3.2.3 General-grid

General-grid is a combination of ortho-grid and angle-grid. By invoking the principle

of superposition, the in-plane stiffness matrix for a grid configuration with any stiffener

BCs is determined by

A(general−grid) =A(angle−grid) + A(ortho−grid) (3.50)

3.3 Flat grids: Bending stiffness

Chen and Tsai [20] conducted analytical and experimental studies to validate the accu-

racy of their bending stiffness formulation which was based on the implicit assumption

that the stiffeners have simply supported BCs. The same assumption, although explic-

itly, is applied in the present formulation. As in the earlier sections, ortho-grid and

angle-grid topologies are analyzed for bending stiffness coefficients. The grid layers

considered in the present research do not exhibit extension-bending coupling. As a re-
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sult, the moment–curvature relations can be expressed as

[mx, my, mxy]
T =Dg

i j [κx, κy, κxy]
T (3.51)

with

Dg
i j =


Dg

11 Dg
12 0

Dg
12 Dg

22 0

0 0 Dg
66

 (3.52)

Effect of transverse shear is also included in the analysis. The transverse shear

strains in the equivalent stiffness panel is determined by conducting the bending analysis

of the grid members. For moderately thick and thick beams, there is an additional rota-

tion of the cross-section [44–46]. A first-order shear deformation theory (FSDT) [47] is

employed to derive the transverse shear stiffness matrix which relates transverse shear

forces to transverse shear strains. The rotation of the beam cross-section under a bend-

ing moment is illustrated in Fig. 3.12. The additional rotation of the cross-section is the

transverse shear strain γxz [48].

γxz = ϕys − ϕy (3.53)

where ϕys is that total rotation of the cross-section when shear effects are included in

the formulation. ϕy is the end rotation, which can be directly obtained when shear

deformation is ignored. Equation (3.53) shows that when the end rotations from both

with-shear and without-shear calculations are known, the difference between the two

gives the transverse shear strain. The model to compare the cross-section rotations for

both cases is illustrated in Fig. 3.13. An equilibrating shear force Qx is developed in the

cross-section (x face, z direction) to counteract the applied moment. From the Fig. 3.13,
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ϕys ϕy
γxz

x

z
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Without shear

With shear

Elastic axis

Figure 3.12. Beam cross-section rotation including transverse shear deformation due to bending
moment

My =
Qx l

2
(3.54)

Similarly, Qy (y face, z direction) is computed using

Mx =
Qy l

2
(3.55)

Based on the loading scheme given in Fig. 3.13, the rotations ϕys and ϕy can be

obtained from the 3D stiffness matrix given in Eq. (B.1) of the Appendix B. A 3D beam

stiffness matrix is used since the one in Eq. (3.6) does not have the bending degrees of

freedom in x and y directions. It is also with the intention that a general methodology can

be developed to apply it for stiffeners with more complex geometry, which is discussed

in Section 3.4.
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l
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Figure 3.13. Beam end rotations due to antisymmetric bending under applied end moments; (a)
no shear included and (b) transverse shear included. Qx and Qy are the reaction shear forces

Using Eq. (3.53), the strains can be expressed in terms of the applied moment in the

form

γxz =
(
dys − dy

)
My (3.56)

where dys and dy are the effective bending compliance of the beam with respect to

the y axis with-shear and without shear respectively. Similarly, for bending with respect

to x axis,

γyz =
(
dxs − dx

)
Mx (3.57)

Substituting for moments in Eqs. (3.56) and (3.57) respectively from Eqs. (3.54) and

(3.55) to obtain the transverse shear stiffness coefficients for beams oriented in x and y

directions. They can be expressed in matrix form as

Qx

Qy

=

H11 0

0 H22


γxz

γyz

 (3.58)
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where H11 and H11 are the transverse shear stiffness coefficients for a beam.

3.3.1 Angle-grid

The bending deformations of an angle stiffener oriented at an angle θ with the x axis

in transverse and axial directions are shown in Figs. 3.14 and 3.15. The dotted lined

sketches represent the stiffener layer at which the equivalent stiffness coefficients are

determined. The task is to determine the bending stiffness of an equivalent plate layer

representing the angle stiffener. The boundary conditions are assumed to be simply sup-

ported and the moments are applied such that the structure exhibits symmetric bending.

The curvatures and moments of the plate equivalent in terms of the beam parameters are

Mx2

(+)

ϕx2
(+)

ϕx1
(-)

x

y
z

θ

Mx1

(-)

Figure 3.14. Bending of an angle-grid beam in the transverse direction

κx =
2ϕy

Lx
(3.59)
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ϕx1

x

y
z

θ

My1

(+)

ϕy1
(+)

ϕx2

My2

(-)

ϕy2
(-)

Figure 3.15. Bending of an angle-grid beam in the longitudinal direction

κy =
2ϕx

Ly
(3.60)

mx =
My

Ly
(3.61)

my =
Mx

Lx
(3.62)

with Lx = Lc and Ly = Ls. The plate bending and moment resultants are shown in

Fig. 3.16. It is important to distinguish between the parameters used to define beam and

plate bending. In beam bending, the subscript in the moment parameter represents the

axis with which the moment is applied whereas in plate bending the subscript indicates

the axis that bends upon the application of the moment. This can be observed by com-

paring Figs. 3.15 and 3.16. Isolating curvatures in x and y directions and representing
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x

yz
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my
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x

yz

mx

Figure 3.16. Plate bending and moments in x and y directions

them in terms of displacements using Eq. (3.51),

Mx

My

= 2

D22
s
c

D12

D12 D11
c
s


ϕx

ϕy

 (3.63)

The bending stiffness coefficients of an equivalent plate from a grid layer can be derived

using the stiffness matrix of a beam in 3D.

K3D = T T
3D k3D T3D (3.64)
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T3D =



T 0 0 0

0 T 0 0

0 0 T 0

0 0 0 T


(3.65)

T =


c −s 0

s c 0

0 0 1

 (3.66)

The (12×12) stiffness matrix of the beam in space k3D, in local coordinate system

is given in Eq. (B.1) of Appendix B. The force–displacement relations for a beam in xyz

coordinates are expressed in the general form as

F =K3D∆ (3.67)

where K3D is the (12×12) stiffness matrix. The force and displacement vectors are

F = [Fx1,Fy1 ,Fz1 ,Mx1,My1,Mz1 ,Fx2 ,Fy2,Fz2,Mx2,My2,Mz2]
T (3.68)

∆= [δx1,δy1,δz1,ϕx1,ϕy1,ϕz1,δx2,δy2,δz2,ϕx2,ϕy2,ϕz2]
T (3.69)

Applying simply supported BCs at both ends and introducing proper sign conven-
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tions, the moment–twist relations become



(−)Mx1

(+)My1

(+)Mx2

(−)My2


= [Di j]

(4×4)



(−)ϕx1

(+)ϕy1

(+)ϕx2

(−)ϕy2


(3.70)

The signs for moments and rotations are from Fig. 3.17. Once the above matrix is

obtained, expressions for end moments are set as Mx1 =−Mx, Mx2 = Mx, My1 = My, and

My2 =−My. Combining the expressions for the respective moments leads to

Mx

My

=

D11 D12

D12 D22


ϕx

ϕy

 (3.71)

The matrix in the above equation can be directly obtained from the stiffness coeffi-

cients in Eq. (3.67). Comparing Eq. (3.71) to Eq. (3.63) gives the expressions for the

elements in the matrix given in Eq. (3.63) in terms of the beam stiffness coefficients.

The coefficients thus obtained are for a stiffener oriented at an arbitray angle prescribed

in Eq. (3.134). In order to obtain the contributions of both the +θ and −θ stiffeners are

obtained by adding the corresponding stiffness coefficients. Again, as explained earlier,

this is possible since it is assumed that the principle of superposition is valid. Thus the

bending stiffness coefficients of representing equivalent stiffness plate representing the

angle-grid configuration are

Dag
11 = 2

EI
dθ

c4 +2
GJ
dθ

c2 s2 (3.72)
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Dag
22 = 2

EI
dθ

s4 +2
GJ
dθ

c2 s2 (3.73)

Dag
12 = 2

EI
dθ

c2 s2 −2
GJ
dθ

c2 s2 (3.74)

where dθ is the spacing between the oblique stiffeners.

Derivation of Dg
66 follows a similar procedure except that the beam rotations are

expressed in terms of the equivalent plate twists as shown in Eq. (3.75). The beam

twisting moments and rotations are presented on an equivalent stiffness plate element in

Fig. 3.17. The sign conventions used for the moments and rotations are also indicated.

The plate twist is given by [49]

κxy = 2
∂ 2w
∂x∂y

dx leads to

κxy =
2ϕx

Lx
or

2ϕy

Ly
(3.75)

The expression for mxy is obtained following the assumption that the net twisting

moment is the average of the twisting moments on the adjacent edges [20].

mxy =
1
2

(
Mx

Ly
+

My

Lx

)
(3.76)

The plate twisting moment and plate twist are related by,

mxy = Dg
66 κxy (3.77)
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Figure 3.17. Beam twisting moments and beam end rotations illustrated in a plate representative
of a grid layer

Upon following the procedure explained for deriving the bending stiffness coefficients

employing Eqs.(3.77), (3.76), and (3.75) and adopting the sign conventions in Fig. 3.17,

Dag
66 = 2

EI
dθ

c2 s2 +
GJ
2dθ

(
c2 − s2)2 (3.78)

It is interesting to note that when the stiffener angle is 45◦, the second term in

Eq. (3.78) involving the torsion stiffness GJ vanish. This means that there is no twisting

of the stiffener which is the consequence of the assumption given in Eq. (3.76).

3.3.2 Ortho-grid

To derive the parameters in Eq. (3.52), the moments are applied such that the struc-

ture exhibits pure bending. The bending of transverse and longitudinal stiffeners are

illustrated in Figs. 3.18 and 3.19 respectively. The sign conventions used for the beam

moments and rotations are also shown. The methodology is identical to that of angle-
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Mx1

(-)

ϕx1
(-)

Mx2

(+)

ϕx2
(+)

x

y
z

θ=90o

Figure 3.18. Moments applied to the transverse stiffener

grid. The stiffness matrices should be altered from that of an angle-grid by specifying

appropriate stiffener orientation angles. Setting θ = 0 and θ = 90 gives the stiffness ma-

trices for longitudinal and transverse stiffeners respectively. Dog
11 and Dog

22 are determined

independently as there are no Mx moments for longitudinal stiffeners and My moments

for transverse stiffeners for the loading conditions shown. This also leads to Eq. (3.81).

Thus, the bending coefficients are given by

Dg
11 =

EI
d0

(3.79)

Dg
22 =

EI
d90

(3.80)

Dg
12 = 0 (3.81)
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My1
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ϕy1
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ϕy2
(-)

x
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z

θ=0o

My2

(-)

Figure 3.19. Moments applied to the longitudinal stiffener

d0 and d90 are the spacing between longitudinal and transverse stiffeners respectively.

Following the same procedure for angle-grid, Dog
66 is evaluated to be

Dog
66 =

(
GJ
4d0

+
GJ

4d90

)
(3.82)

The expressions obtained for the Dg
i j for both angle- and ortho-grid are identical to

that reported in the literature [20], where there was no derivation provided.

3.3.3 General-grid

The bending stiffness matrix of a general-grid can be obtained from ortho-grid and

angle-grid by using the principle of superposition as

D(general−grid) =D(angle−grid) + D(ortho−grid) (3.83)
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where the D is given in Eq. (3.52).

3.4 Cylindrical grids

The methodologies developed to derive the equivalent stiffness coefficients of the flat

grids can be directly applied for the case of cylindrical grids. The ortho-grid and general-

grid stiffening configurations are shown in the Figs. 3.20 and 3.21 respectively. The

x

ψ

Rgm

d0

d90

bs

hs

z

Figure 3.20. Cylindrical ortho-grid structure. Transverse stiffener is a circular arch

transverse stiffeners of the ortho-grid are circular arch beams and the angle-stiffeners of

the general- and angle-grid are circular helical beams as illustrated. The task is to derive

the stiffness matrices of the these stiffeners since the equivalent stiffness coefficients are

developed directly from them. The stiffness matrix of the circular arch can be derived

from the more general case of the helical beam, the stiffness matrix of the helical beam

is derived first.
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x

ψ
z

d90

d0

Rgm
bs

hs

dθ

Figure 3.21. Cylindrical general-grid structure. Angle stiffener is a helical beam and transverse
stiffener is a circular arch

3.4.1 Derivation of the stiffness matrix

An exact derivation of the stiffness coefficients of helical stiffeners is performed using

the transfer matrix method (TMM) [42, 50, 51]. Detailed derivations and applications

of the TMM are provided by Wunderlich and Pilkey [42]. The beam that is used to

represent a helical stiffener is shown in Fig. 3.22. The pitch of the helix is given by

p = 2πh and the height z = hξ . Various parameters for the helix are defined as,

h = ch sinψ (3.84)

Rgm = ch cosψ (3.85)
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t

n

b

Rgm

s
hξ

Rgm ψ

Figure 3.22. Helical beam orientation showing local (t,n,b) and cylindrical (r,t,z) coordinate
systems. θ and ξ are the stiffener angle and pitch angle respectively

χ =
Rgm

c2
h

(3.86)

τ =
h
c2

h
(3.87)

h is the change in height of the helix after one full rotation. The helix geometry param-

eter ch is given by

ch =
√

R2
gm +h2 (3.88)

χ and τ are the bending and torsional curvatures of the helix respectively. These quan-

tities are constants for a given helix [52]. ψ is the circumferential coordinate of the

cylinder and also referred to as the pitch angle of the helix. Rgm is the radius of the

cylinder measured at the centroid of the helical stiffener cross-section. This is also the
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radius of the reference plane of the grid layer. The stiffener angle, θ is defined as the

orientation of an angle stiffener with the longitudinal (x) axis of the cylinder.

θ =
π
2
−ξ (3.89)

Therefore the length of the helical stiffener between its boundaries in terms of the stiff-

ener orientation is given by

Lθ =
Rgm ψ
sinθ

(3.90)

A local coordinate system is prescribed to generate the locus of the centroid of the

helical stiffener using the Frenet trihedron tnb. The unit vectors t̂, n̂, and b̂ represent

the tangent, the normal which is directed radially inward, and the binormal which is

perpendicular to the t − n plane respectively. The local and global coordinate systems,

forces, displacements, moments, and rotations in the stiffener cross-section are shown in

Fig. 3.23. The shell structure is also shown for reference, although this section addresses

only the grid structure.

3.4.1.1 Equilibrium equations

The equilibrium equations are as follows [50]:

Force equilibrium equations,

dVt

ds
−χVn = 0 (3.91a)

χVt +
dVn

ds
− τVb = 0 (3.91b)
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Figure 3.23. A helical stiffener displacements and internal forces

τVn +
dVb

ds
= 0 (3.91c)

Moment equilibrium equations,

dMt

ds
−χMn = 0 (3.92a)

−Vb +χMt +
dMn

ds
− τMb = 0 (3.92b)

Vn + τMn +
dMb

ds
= 0 (3.92c)

Compatibility of rotations,

−Mt

GJ
+

dϕt

ds
−χϕn = 0 (3.93a)
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− Mn

EIn
+χϕt +

dϕn

ds
− τϕb = 0 (3.93b)

− Mb

EIb
+ τϕn +

dϕb

ds
= 0 (3.93c)

Compatibility of displacements,

− Vt

EA
+

dut

ds
−χun = 0 (3.94a)

−αnVn

GA
−ϕb +χut +

dun

ds
− τub = 0 (3.94b)

−αbVb

GA
+ϕn + τun +

dub

ds
= 0 (3.94c)

Q(s) relates the state vector S0(s = s1) to that of an arbitrary location SI(s = s2) is the

transfer matrix [51]. For a homogeneous solution, i.e., in the absence of any external

loads, the state vector at an arbitrary location is given by setting s1 = 0 and s2 = s as

demonstrated in Eq. (3.95).

S(s) =Q(s) S(0) (3.95)

Note that the transfer matrix Q(s) is a (12×12) matrix. The state vector at s2 = s

can be represented as

S(s) = [Vs, Ms, Φs, ∆s]
T (3.96)

where the force, moment, rotation, and displacement vectors are given in Eq. (3.97),
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(3.98), (3.99) and (3.100) respectively.

Vs = [Vts , Vns , Vbs ]
T (3.97)

Ms = [Mts , Mns , Mbs ]
T (3.98)

Φs = [ϕts , ϕns , ϕbs ]
T (3.99)

∆s = [δts , δns , δbs ]
T (3.100)

and the state vector at location s1 = 0 is

S(0) = [V0, M0, Φ0, ∆0]
T (3.101)

where

V0 = [Vt0 , Vn0, Vb0]
T (3.102)

M0 = [Mt0 , Mn0, Mb0]
T (3.103)

Φ0 = [ϕt0 , ϕn0 , ϕb0 ]
T (3.104)

∆0 = [δt0 , δn0 , δb0 ]
T (3.105)
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3.4.1.2 Solution of the equilibrium equations

For a circular helix, the variable s can be expressed in ψ as [50].

s = ch ψ (3.106)

Thus,

ds = ch dψ (3.107)

The solution methodology is explained using only a set of representative equations.

For example, the force equilibrium equations can be solved as follows. Substituting

Eqs. (3.91a) and (3.91c) in Eq.(3.91b) and writing the resulting expression in terms of

the variable, ψ gives

Vn
′′+Vn = 0 (3.108)

The notation ()′′ is used to represent d2()/dψ . Equation (3.108) is a second order

linear homogeneous ordinary differential equation which can be solved directly. Equa-

tion for Vt can be obtained as shown in Eq. (3.109), which is a first order linear ordinary

differential equation that can also be solved directly.

Vt
′ = χ chVn (3.109)

Once Vn and Vt are obtained, Vb can be determined from Eq. (3.91b) as,

Vb =
1

ch τ
Vn

′+ ch χ Vt (3.110)

Similar procedure is employed to solve for moments, rotations, and displacements.



86

For moments, Eqs. (3.92a) to (3.92c) are rewritten as

Mn
′′+Mn =Vb

′ ch − τ c2
hVn (3.111)

Mt
′ = χ ch Mn (3.112)

Mb =
1

ch τ
(
Mn

′+ ch χMt − chVb
)

(3.113)

and the rotations, in Eqs. (3.93a) to (3.93c) are

ϕn
′′+ϕn = c2

h

(
τ

Mb

EIb
−χ

Mt

GJ

)
+ ch

Mn
′

EIn
(3.114)

ϕt
′ = ch

(
χ ϕn +

Mt

GJ

)
(3.115)

ϕb =
1

ch τ

(
ϕn

′+ ch χϕt − ch
Mn

EIn

)
(3.116)

and finally the displacements in terms of the variable, ψ are

un
′′+un =−c2

h τ ϕn + c2
h

(
τ

αbVb

GA
−χ

χ Vt

EA

)
+ ch

(
αnVn

′

GA
+ϕb

′
)

(3.117)

ut
′ = ch

(
χ un +

Vt

EA

)
(3.118)

ub =
1

ch τ

[
un

′+ ch

(
χ ut −ϕb −

αnVn

GA

)]
(3.119)
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These equations are solved sequentially in strict order; forces, moments, rotations, and

finally the displacements. The general solution of the homogeneous differential equation

given in Eq. (3.108) is of the form

Vn = k1 cosψ + k2 sinψ (3.120)

where k1 and k2 are arbitrary constants. Vt is obtained by substituting Vn in Eq. (3.109)

and performing direct integration to obtain

Vt = χ ch (k1 sinψ − k2 cosψ)+ k3 (3.121)

where k3 is an arbitrary integration constant. Vb is then determined from Eq. (3.110)

as explained earlier. The general solution of nonhomogeneous second oder differential

equation, such as the one in Eq. (3.111), is of the form

Mn = Mnh +Mnp (3.122)

where Mnh and Mnp are the homogeneous and particular solutions respectively. The

particular solution is not unique among the various equations that must be solved and so

are not presented. The solution strategies are readily available in various calculus books,

for example [52]. The rest of the equations can be solved analytically as explained

earlier. It can be deduced that the solutions become progressively complex in terms of

the analytical expressions. Consequently, a symbolic algebra tool such as Maxima [53]

is employed.
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3.4.1.3 Stiffness coefficients

The twelve arbitrary constants k1,k2,k3, . . . ,k12 are obtained by setting limits on the

values of ψ . The initial step is to determine the transfer matrix relating the state vectors

between any two arbitrary locations ψ1 and ψ2. To facilitate the analytical derivation,

the state vector in Eq. (3.101) is evaluated at ψ1 = 0 to obtain expressions for forces,

moments, rotations, and displacements as shown in Eqs. (3.102) to (3.104). The twelve

constants are solved in terms of these parameters. The constants are then substituted into

S(ψ2 = ψ). The resulting relations can then be expressed as shown earlier in Eq. (3.95)

in terms of variable ψ in a concise form with Q(ψ) set to Q as

Fψ

dψ

=

Q11 Q12

Q21 Q22


F0

d0

 (3.123)

where

Fψ = [Vψ ,Mψ ]
T (3.124)

F0 = [V0,M0]
T (3.125)

dψ = [∆ψ , Φψ ]
T (3.126)

d0 = [∆0, Φ0]
T (3.127)

The sub-matrices Q in Eq. (3.123) are (6×6) matrices. Once Q(ψ) is determined,

it is rearranged to obtain the stiffness matrix of the helical beam in local coordinates,
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(t,n,b). The force–displacement relations are thus written as

[F0, Fψ ]
T = kh [d0, dψ ]

T (3.128)

where

kh =

kh11 kh12

kh21 kh22

 (3.129)

with

kh11 =−Q21
−1 Q22 (3.130)

kh12 =Q21
−1 (3.131)

kh21 =−Q11Q21
−1Q22 +Q12 (3.132)

kh22 =Q11Q21
−1 (3.133)

The stiffness matrix kh in Eq. (3.128) is symmetric. The size of kh is (12× 12),

representing the 6 DOFs at each end of the helical beam as illustrated in Fig. 3.23. An

alternate method to determine stiffness matrix from the TM is provided in Sec. B.3 of

Appendix B.

kh is in the tnb local coordinate system and is transformed to the cylindrical rψz co-

ordinates to obtain the global (12×12) stiffness matrix Kh, which is shown in Eq. (3.134).

The stiffness matrix is transformed to the cylindrical coordinates system to facilitate the

application of boundary conditions and loads.

Kh =

GT
t0B

T
t0 kh11 Gt0Bt0 GT

t0B
T
t0 kh12 Gt Bt

GT
t BT

t kh21 Gt0Bt0 GT
t BT

t kh22 Gt Bt

 (3.134)
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where Bt0 =Bt(0), Gt0 =Gt(0) and

Bt =Bt(ψ) =


cosψ −sinψ 0

cosψ sinψ 0

0 0 1

 (3.135)

Gt =Gt(ψ) =


−sinψ cosξ cosψ cosξ sinξ

−cosψ −sinψ 0

sinψ sinξ −cosψ sinξ cosξ

 (3.136)

The force–displacement relation of the helical beam in the cylindrical coordinate system

is given as

Fc =Kh ∆c (3.137)

where Fc and ∆c are the force and displacement vectors in cylindrical coordinates sys-

tem. They are defined as,

Fc = [Fr1 ,Fψ1,Fz1,Mr1,Mψ1,Mz1,Fr2,Fψ2,Fz2,Mr2,Mψ2,Mz2]
T (3.138)

∆c = [δr1,δψ1,δz1,ϕr1,ϕψ1,ϕz1,δr2,δψ2,δz2,ϕr2,ϕψ2,ϕz2]
T (3.139)

3.5 Cylindrical grids: In-plane stiffness

The strains at the mid-plane of a typical cylindrical shell element after first-order ap-

proximations are [54],

ε◦x =
∂δx

∂x
(3.140)
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ε◦ψ =
∂δψ

∂ψ
+

1
Rgm

δr (3.141)

ε◦xψ =
1

Rgm

∂δx

∂ψ
+

∂δψ

∂x
(3.142)

The term δr/Rgm in the circumferential strain in Eq. (3.141) denotes the uniform

radial expansion of the shell calculated from the change in the circumference after de-

formation and not from the circumferential displacement uψ . However, in order to not

to violate the assumption that the stiffener nodes are constrained to the plane of the

undeformed cylinder, the radial displacement δr is set to zero at the supports. The cou-

pling between various deflection modes due to the beam geometry is already taken into

account in the stiffness matrix formulation of the helical and circumferential stiffeners.

The derivation of the in-plane shear stiffness calculation of the cylindrical ortho-grid

configuration with clamped BCs is presented. The loading and BCs for the calculation

of the shear stiffness is shown in Fig. 3.24. Figure 3.24a shows the contribution of

the longitudinal stiffeners, which is identical to the flat ortho-grid problem defined in

Fig. 3.6a. The deflections in the transverse stiffeners for cylindrical and flat ortho-grid

are shown in Fig. 3.24b and Fig. 3.6b respectively. They are different only in terms of

the stiffness matrices employed to determine the deflection in the direction of x axis.

The cylindrical ortho-grid uses the stiffness matrix of an arch beam instead of a planar

beam.

The shear compliance of the cylindrical ortho-grid with clamped BCs is calculated

to be

caoc
66 =

d2
90 d0

12EI
+ c66

d90

d0
(3.143)
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Figure 3.24. Shear stiffness calculation scheme for cylindrical ortho-grid

where

d0 = 2Rgm sin
(ψ

2

)
(3.144)

and

c66 =
[ψ (s−ψ)GJ− ((s+ψ)+4(c−1)) EIn] R3

gm

GJ [(s−ψ)GJ− (s+ψ)EIn]
+

αsc ψ Rgm

GA
(3.145)

where c = cosψ and s = sinψ .

The equivalent stiffness coefficients with other boundary conditions and topologies

are determined following the methodologies developed for the flat grids. The expres-

sions are very complex in terms of their analytical expressions and are not provided

here.
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3.6 Cylindrical grids: Bending stiffness

The curvature changes in a cylindrical shell are [54]

κx =
∂ 2w
∂x2 (3.146)

κψ =
∂ 2w
∂ψ2 +

1
R2 w (3.147)

κxψ = 2
∂ 2w

∂x∂ψ
− 1

R
∂v
∂x

+
1
R

∂u
∂ψ

(3.148)

The analytical derivation becomes tedious, especially in the case of helical stiffeners,

if a direct force equilibrium relations are used to derive the stiffness properties of the

equivalent shell structure. As discussed in the previous section, the explicit inclusion

of BCs facilitates the derivation of equivalent bending stiffness coefficients via arch and

helical beam stiffness matrices. The bending and twisting moments are shown for the

cylindrical ortho-grid structure in Fig. 3.25.

For bending stiffness calculations only simply supported BCs are considered. Since

the stiffener nodes are assumed to be constrained in the plane of the undeformed cylin-

der, the curvatures are determined directly from the slope as in the case of flat grids.

Various stiffener members are isolated and moment–slope analyses are performed as

explained in the case of flat grids.
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Figure 3.25. Beam bending and twisting moments on the stiffeners for bending and twisting
stiffness calculations

3.7 Grid-stiffened structures

A grid-stiffened structure is analyzed as a multilayer system with the mid-plane of the

shell taken as the reference plane. This is illustrated in Fig. 3.26. The grid-layer offset

is es from the reference plane and is negative when the grid is ‘inside’ (−z direction) of

the shell. The effect of eccentricity of the stiffening in the buckling loads of stiffened

cylinders has been shown to be extremely significant [34, 54–57]. Both the magnitude

and the sign of es can significantly affect the buckling behavior of the grid-stiffened

structures. A schematic of the grid-stiffened cylinder is shown in Fig. 3.27. According

to the coordinate system adopted, the eccentricity es < 0 when the stiffeners are inside

of the cylinder and vice versa.

The mean radius of the grid-stiffened structure is Rm measured at the reference plane

of the structure where the loads and BCs are applied. For the present study, the outer
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Figure 3.26. Stiffened shell and equivalent continuum shell

radius is fixed and the other parameters shown in Fig. 3.27 are determined accordingly.

The effect of eccentricity can be captured in the equivalent stiffness model using com-

patibility equations. Thus, for a plate element in xy plane [58],

εg
x = εs

x − es κg
x (3.149)

εg
y = εs

y − es κg
y (3.150)

εg
xy = εs

xy −2es κg
xy (3.151)

κg
x = κs

x (3.152)
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Figure 3.27. Cross-section of a grid-stiffened circular cylindrical structure

κg
y = κs

y (3.153)

κg
xy = κs

xy (3.154)

where ()g and ()s denote grid and shell (reference) plane respectively. Similar expres-

sions can be written for a cylindrical shell where the y coordinate is replaced with ψ .

Note that the above equations are similar to that of a laminated plate or shell where the

strains are determined at the reference surface. The force and moment resultants at the

reference surface can be determined using

ngs = ns +ng (3.155)
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mgs = (mg − esng)+ms (3.156)

where n and m are the 3× 1 force and moment resultant vectors from Eqs. (3.1) and

(3.51) respectively.

The cross-sectional stiffness properties of helical beam segments are evaluated based

on the works by Yildirim [59, 60]. The cross-section stiffness coefficients EA, GAn,

GAb, EIn, EIb, and GJ of a composite beam (stiffener) made of unidirectional plies are

EA = Q11 Acs (3.157)

GAn = Q66 Acs (3.158)

GAb = GAn (3.159)

EIn = Q11 In (3.160)

EIb = Q11 Ib (3.161)

GJ = Q66 J (3.162)

where Acs is the area of the beam cross-section. In and Ib are the area moment of inertia

of the cross-section with respect to the normal n and bi-normal b axes respectively (see

Fig. 3.22). Here the (1,2,3) axes coincide with the Frenet coordinates (t,n,b). Qi j terms
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are the lamina stiffness coefficients with fiber direction oriented at an arbitrary angle. In

the present case the angle is zero. The polar moment of inertia, J of the cross-section is

given in Eq. (A.1) Appendix A.

The stiffness matrix of the grid-stiffened cylindrical structure when the shell lay-up

is symmetric can be written in the conventional matrix form as



nx

nψ

nxψ

mx

mψ

mxψ



gs

=



A11 A12 0 B11 B12 0

A12 A22 0 B12 B22 0

0 0 A66 0 0 B66

B11 B12 0 D11 D12 D16

B12 B22 0 D12 D22 D26

0 0 B66 D16 D26 D66



gs 

εx

εψ

γxψ

κx

κψ

κxψ



gs

(3.163)

The non-zero Bi j elements are due to the eccentricity of the stiffeners with respect to

the shell mid-plane. The compliance coefficients of the closed cross-section cylindrical

grid-stiffened structure can be determined by inverting the square matrix in Eq. (3.163)

to obtain ags
i j , bgs

i j , and dgs
i j . They are the axial, extension-bending, and bending compli-

ance coefficients respectively.

The wall of the grid-stiffened structures, after smearing the stiffness coefficients, is

similar to the non-symmetric layup, although there is no explicit layup definition for the

equivalent stiffness grid layer. To determine the axial, bending, and torsion stiffness,

the grid-stiffened cylinders are treated as closed cross-section beams. These stiffness

coefficients are approximately determined using the formulations given by Kollár and

Springer [49]. The expressions for axial stiffness EAgs, bending stiffness EIgs, and
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torsion stiffness GJgs are given as,

EAgs =
2π Rs

âgs
11

(3.164)

EIgs = π
(

R3
s

1
ags

11
+Rm

1
dgs

11

)
(3.165)

GJgs =
2π R3

s

âgs
66

(3.166)

where Rs is the radius of the cylindrical shell measured at the shell mid-plane and the

parameter âgs
66,

âgs
66 = ags

66 −
bgs

66
2

dgs
66

(3.167)

In summary, the stiffness coefficients of grid and grid-stiffened closed cross-section

tubes are derived directly from the stiffness coefficients of the constituent structure rep-

resenting the stiffeners using smeared stiffness approach. This is conducted by identify-

ing and incorporating periodicity of boundary conditions of the stiffeners. The method-

ology can be readily extended to incorporate more complex stiffener boundary condi-

tions. Validation and parametric studies are presented in Chapter. 6.



Chapter 4
Stability and strength

The methodology to determine the torsional buckling loads of monocoque and grid-

stiffened circular cylindrical tubes is described. The critical torsional buckling loads are

determined with the assumption that the tubes are long such that the effect of boundary

conditions on the buckling loads can be neglected. The stability analyses performed

in this study are based on linear eigenvalue formulations. The buckling under bending

loads are characterized by conducting axial compression buckling of the grid-stiffened

panels in the compression regions. The procedure to predict the strains in the grid-

stiffened models under bending, axial, and torsion loads are described. Failure analysis

is conducted using maximum strain criterion for the grid layer and Tsai-Wu quadratic

failure criterion for the laminated shells.

4.1 Stability evaluation

The linear eigenvalue analyses are performed in the initial design phase to predict the

critical loads to establish the design space for various load cases since they provide
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sufficiently accurate representation of the instability loads [12]. The thin walled struc-

tures could exhibit geometric nonlinear (large deflection) behavior prior to the onset of

buckling [54]. However, the present investigation is confined to the purview of prelim-

inary analysis and consequently factors such as geometric imperfections, thermals ef-

fects, pre-buckling deformations, boundary effects, and transverse shear effects are not

considered. The buckling instabilities under torsion and bending loads are determined

where each of these cases are analyzed separately.

The linear buckling instabilities of thin walled structures under various loading and

boundary conditions have been studied extensively by many researchers [44, 54, 56, 61].

Due to their wide applications in light weight structural designs, stability character-

istics of composite structures are also extensively investigated. Some of the studies

addressed stability of composite stiffened structures using computationally efficient for-

mulations [33, 55, 57, 62–66].

A grid-stiffened cylindrical shell can exhibit different buckling modes such as global

buckling, skin buckling, and stiffener crippling. The skin and stiffener buckling are lo-

cal buckling modes which cannot be predicted by the smeared stiffness approach em-

ployed in the present study since the contributions of the stiffeners are homogenized to

an equivalent continuum [13, 27, 33]. However, the global instability of stiffened shells

can be predicted with reasonable accuracy using smeared model for a variety of loading

scenarios including axial compression [22, 34, 35, 55, 64, 65], torsion [35, 57, 67], and

pure bending [35, 68].

In the present study, existing analytical models are utilized to predict the buck-

ling characteristics of grid-stiffened structures. The stability equations employed to

derive the stability equations in the present investigation is identical to that of gener-

ally anisotropic monocoque shells. Recall that the stiffness matrix of the grid-stiffened



102

shells in the present investigation has non-zero coupling between extension and bending

due to the eccentricity of the stiffeners with respect to the shell mid-plane. The stiffness

coefficients developed earlier (Eq. (3.163)) in Chapter 3 are directly employed to predict

the general buckling loads of the cylindrical grid-stiffened cylinder. In the classical shell

theory, the internal forces and moments of a cylindrical shell are represented in terms

of forces and moments per unit distance along the edges of a shell element as shown in

Fig. 4.1.

Mxψ

Figure 4.1. Internal forces and moments in a typical infinitesimal cylindrical shell element

4.1.1 Torsional instability

Considering that the heavy lift blade spar has a large length to diameter ratio, long tube

assumption is adopted. The stability of thin walled long tubes under torsional loading

has been studied by many researchers [56, 61, 69]. The long tube assumption indicates

that the mode shapes are unaffected by the boundary conditions. An appropriate set of

displacement functions are selected that capture the buckled modes [56]. The equilib-

rium equations in terms of stress resultants in the absence of applied or body loads can
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be expressed as shown in Eqs. (4.1) to (4.3) [69].

nx,x +nψx,ψ − 1
2Rm

mxψ ,ψ −2Nxψ0 u,xψ = 0 (4.1)

nxψ,x +nψ ,ψ +
3

2Rm
mxψ,x +

1
Rm

mψ ,ψ −2Nxψ0

(
v,xψ +

1
Rm

w,x

)
= 0 (4.2)

mx,xx +2mxψ,xψ +mψ,ψψ − 1
Rm

nψ +2Nxψ0

(
1

Rm
v,x −w,xψ

)
= 0 (4.3)

where ni and mi are in-plane and out-of-plane stress resultants. Nxψ0 is the shear load,

u, v, w are the axial, circumferential, and out-of-plane displacements. ‘(),’ indicates

partial differentiation with respect to the subscript following the comma.

Flügge [56] provided the displacement modes to model the torsional buckling of

long tubes, with length L and mean radius (measured at the shell mid-plane), Rm, and

are given in Eqs. (4.4) to (4.6).

u =Umn sin
(λx

Rm
+nψ

)
(4.4)

v =Vmn sin
(λx

Rm
+nψ

)
(4.5)

w =Wmn cos
(λx

Rm
+nψ

)
(4.6)

where Umn, Vmn, and Wmn are the arbitrary amplitudes and λ =mπRm/L. n is the number

of waves in the circumferential direction and m is the number of half-waves in the axial

direction. Note that the assumed displacements in Eq. (4.4) do not satisfy clamped



104

or pinned boundary conditions. However, for long tubes where the support conditions

do not significantly impact the torsion buckling modes, such as the tubular structure

representative of the heavy lift blade spar, these modes can be adopted [58, 61]. The

procedure developed by Bert and Kim [69] is employed with the assumed modes as

given earlier.

The strain–displacement relations are from the thin shell theory due to Sanders [70].

They are demonstrated [69] to be reliable for modeling composite tubes with arbitrary

wall laminate lay-ups. The mid-surface strains of the shell (indicated by ()◦) are pro-

vided in Eqs. (4.7) to (4.9)

ε◦x = u,x (4.7)

ε◦ψ = v,ψ +
w

Rm
(4.8)

ε◦xψ = u,ψ + v,x (4.9)

and the curvatures

κx =−w,xx (4.10)

κψ =−w,ψψ +
1

Rm
v,ψ (4.11)

κxψ =−2w,xψ +
3

2Rm
v,x −

1
2Rm

u,ψ (4.12)

The stress resultants are calculated from the general laminate constitutive relations
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given in Eq. (4.13). For the case of grid-stiffened tubes, the coefficients Ai j, Bi j, and

Di j in Eq. (4.13) are replaced by Ags
i j , Bgs

i j , and Dgs
i j respectively, which are provided in

Eq. (3.163) in Chapter 3.



nx

nψ

nxψ

mx

mψ

mxψ



=



A11 A12 0 B11 B12 0

A12 A22 0 B12 B22 0

0 0 A66 0 0 B66

B11 B12 0 D11 D12 D16

B12 B22 0 D12 D22 D26

0 0 B66 D16 D26 D66





ε◦x

ε◦ψ

ε◦xψ

κx

κψ

κxψ



(4.13)

The strains are represented in displacements and substituted into the equilibrium

equations given in Eqs. (4.1) to (4.3). The assumed displacements are input into the

resulting equilibrium equations to obtain three algebraic equations in three unknown

non-zero amplitudes, Umn, Vmn, and Wmn. This is the characteristic equation and is

shown in Eq. (4.14). 
c11 c12 c13

c21 c22 c23

c31 c32 c33




Umn

Vmn

Wmn

=


0

0

0

 (4.14)

where ci j are the coefficients of the amplitudes in terms of wavelength parameters, m

and n, and shear load per unit circumferential length, Nxψ0. The non-trivial solutions

are obtained by equating the determinant of the coefficient matrix in Eq. (4.14) to zero.

The buckling shear per unit length is then determined by searching for the lowest value

of Nxψ0 by iterating the wavelength parameters, m and n. The critical buckling torque,
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Tcr on the cross-section is then determined as shown in Eq. (4.15).

Tcr = 2(Nxψ0)cr π R2
m (4.15)

4.1.2 Bending instability

The rotor blades of a helicopter experience significant bending (both flap and lag) de-

flection modes. These bending modes generate high compressive loads along the length

of the blade spar. Such high compressive loads could cause the thin shell region be-

tween the stiffeners to buckle locally. Depending on the shell laminate, stiffener ge-

ometry and topology, individual stiffeners could also buckle independently or in mixed

interaction modes. Another mode is when the stiffener boundaries essentially provide

elastic boundary conditions to the included shell where the stiffeners merely partici-

pate in the shell buckling via elastic deformation rather than exhibiting instability mode

themselves. Analytically predicting these buckling modes is extremely difficult espe-

cially when the shell topology has curved profile, non-rectangular plan form, with elastic

boundaries.

Various analytical solutions exist [35, 68] for cases when the global bending buck-

ling loads of stiffened cylindrical shells need to be determined under pure bending mo-

ments. Since the length to diameter ratio of the blade spar is large, global bending

buckling solution (under pure bending) does not provide adequate representation of the

instability. What is being sought is a methodology to capture the local instability in the

compression regions of the tube under bending using computationally efficient tools. As

a result, axial compression buckling analysis is performed on cylindrical shell panels in

the compression region of the tube. The terminology ‘cylindrical shell panel’ (some-

times ‘curved panels’) is used in the literature [71, 72] to indicate the shell structure that
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does not form a closed profile.

To illustrate an earlier note regarding the complexity in capturing the effect of stiff-

eners in predicting the buckling loads, consider the following axial compression buck-

ling problem. Two different plates with identical properties are stiffened with blade stiff-

eners but with different stiffener densities. Figure. 4.2 shows the buckling modes from

FEA linear eigenvalue solutions. The plate in Fig. 4.2b has half the number of stiffeners

in both direction than plate-(a). The plate-a exhibits global plate buckling mode similar

to that of the critical mode of an unstiffened plate under axial compression. In this case,

the stiffeners merely conforms to the buckled shape without any in-plane deformation.

The plate-b behaves differently where the stiffeners rotate elastically to maintain their

profile normal to the plate after buckling. The behavior of plate-(a) can be predicted

reasonably accurately using the smeared stiffness approach since the critical buckling

mode is identical to that of an unstiffened plate. In the case of plate-(b), accurate an-

alytical prediction using conventional (similar to the one one developed in this study)

smeared theory is not possible, since the discreteness of the stiffeners are not available in

the final form of the formulation. This is one of the limitations in the smeared approach

when the stiffeners are not ‘closely spaced.’ Identifying these modes requires support

(a) (b)

Figure 4.2. Critical buckling mode of stiffened plates under uniaxial compression and simply
supported BCs. (a) global mode similar to an unstiffened plate (b) local skin buckling with the
stiffeners deflect elastically
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from detailed finite element models.

From the computationally efficient analytical model perspective, a methodology is

needed to compare the stability of grid-stiffened and monocoque structures under trans-

verse bending. A methodology is adopted to study the axial compression problem of

the cylindrical shell panel. The geometry of the shell panel is selected such that the

compression region of the cylinder under bending can be analyzed for buckling. The

model is illustrated in Fig. 4.3. Figure 4.3a shows a clamped-free cylindrical tube under

transverse bending load and Fig. 4.3b shows the isolated compression region of the tube.

For the present analysis, it is assumed that the bending induced compression region has

an axial length of Lxu = π R from the support. In calculating the circumferential length,

the included angle of the isolated shell is kept at π radians resulting in a circumferential

length of π R. The radius, R shown has the value Rm for the monocoque structure and

Rs for the grid-stiffened structure.

The analytical formulation to predict the buckling loads is adopted from published

works and are presented below. Note that the critical buckling mode of the semi-

cylindrical shell is a global mode for the model shown whereas it is a local mode when

the entire grid-stiffened cylindrical structure is considered. No particular relevance is

given to the source of the compressive load except that it is a resultant of the bending

induced stresses developed in the spar structure. To simplify the analysis, the bound-

ary conditions are assumed to be simply supported on all four edges for the present

investigation.

The formulations to obtain the stability equations for grid-stiffened shells is identical

to that of generally anisotropic monocoque shell stability. Recall that the stiffness matrix

of the grid-stiffened shells in the present investigation has non-zero coupling between

extension and bending due to the eccentricity of the stiffeners with respect the mid-
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x
z

ψ

R
OF

Clamped

Free

Nx0
Lxu= πR

R

Nx0

(a) (b)

All edges simply supported

Figure 4.3. (a) Clamped-free thin walled cylinder under transverse bending showing compres-
sion region. (b) Cylindrical shell panel isolated for bending induced uniaxial compression buck-
ling study

plane (reference surface) of the attached shell. Leissa [71] developed detailed stability

equations for cylindrical shells using energy methods to include the effect of general

anisotropy of the composite shells arising from various coupling coefficients. Also see

the studies by [34, 47, 54, 55, 73, 74] for the theory and detailed studies on shell stability.

Without repeating the derivation of the equilibrium equations that are well estab-

lished and validated, the assumed displacement modes and differential operators for

cylindrical shell stability are given by [71, 73]. The mid-surface displacements (refer-

ence plane of the shell) at buckling are selected as,

u◦(x,y) =
∞

∑
m=1

∞

∑
n=1

Amn cos(mπ x/l) sin(nπ y/b)
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v◦(x,y) =
∞

∑
m=1

∞

∑
n=1

Bmn sin(mπ x/l) cos(nπ y/b)

(4.16)

w◦(x,y) =
∞

∑
m=1

∞

∑
n=1

Cmn sin(mπ x/l) sin(nπ y/b)

where l and b are the axial and circumferential dimensions of the cylindrical shell re-

spectively and m, n = 1,2,3, . . .. The y coordinate in the equations can be represented

in ψ as subsequently stated. The governing buckling equations can be written as


L11 L12 L13

L21 L22 L23

L31 L32 L33




u◦

v◦

w◦

=


0

0

0

 (4.17)

where the differential operators, Li j [71] are

L11 = A11 ∂,xx +2A16 ∂,xy +A66 ∂,yy

L12 = L21 =
(

A16 +
B16

R

)
∂,xx +

(
A12 +A66 +

B12 +B66

R

)
∂,xy +

(
A26 +

B26

R

)
∂,yy

L13 = L31 =−B11 ∂,xxx −B26 ∂,yyy −3B16 ∂,xxy −
(

B12 +2B66

)
∂,xyy

+
A12

R
∂,x +

A26

R
∂,y (4.18)

L22 =
(

A66 +
2B66

R

)
∂,xx +

(
2A26 +

4B26

R

)
∂,xy +

(
A22 +

2B22

R

)
∂,yy

L23 = L32 =
(
−B16 −

D16

R

)
∂,xxx +

(
−B22 −

D22

R

)
∂,yyy +

(
−3B26 −

3D26

R

)
∂,xyy
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+
(
−B12 −2B66 −

[D12 +2D66

R

])
∂,xxy

+
(A26

R
+

B26

R2

)
∂,x +

(A22

R
+

B22

R2

)
∂,y

L33 = D11 ∂,xxxx +4D16 ∂,xxxy +2
(

D12 +2D66

)
∂,xxyy +4D26 ∂,xyyy +D22 ∂,yyyy

−2
(B12

R
∂,xx +2

A26

R
∂,xy +

B22

R
∂,yy

)
+

A22

R2 +Nx0 ∂ ,xx

where ∂,( ) represents the differential of the assumed displacement function with respect

to the parameter(s) in the parenthesis following the comma. Nx0 is the compressive load

to be determined. The above equations can be written in terms of (x,ψ) by substituting

∂,y = (1/R)∂,ψ . Ai j,Bi j,Di j are the stiffness coefficients of the monocoque or grid-

stiffened shell laminate. Note that the radius R is measured at the reference plane of the

shell and is equal to the mean radius Rm for monocoque and Rs for grid-stiffened shell.

The characteristic equations are then determined using Galerkin’s method [75] by

taking the first variation (by method of Euler–Lagrange equations). Thus,

∫ Lxu

0

∫ b

0

[
L11(u◦)+L12(v◦)+L13(w◦)

]
cos(mπ x/l) sin(nπ y/b)dψ dx = 0

∫ Lxu

0

∫ b

0

[
L12(u◦)+L22(v◦)+L23(w◦)

]
sin(mπ x/l) cos(nπ y/b)dψ dx = 0

(4.19)∫ Lxu

0

∫ b

0

[
L13(u◦)+L23(v◦)+L33(w◦)

]
sin(mπ x/l) sin(nπ y/b)dψ dx = 0

where Lxu is the axial (parallel to the cylinder axis) length of the unitcell determined

from the grid stiffening configuration. b = Rψ gives the circumferential length of the

shell and ψ = π radians for the semi-circular shell problem. Upon performing the in-
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tegration, the resulting algebraic eigenvalue problem can be written in matrix form as

shown in Eq. (4.20). 
e11 e12 e13

e21 e22 e23

e31 e32 e33




Amn

Bmn

Cmn

=


0

0

0

 (4.20)

where ei j are the elements of the coefficient matrix of the amplitudes. Iterating through

different values of m and n in the expression after setting the determinant of the square

matrix, e in Eq. (4.20) to zero and determining the lowest possible value of Nx0 (see

differential operator, L33 in Eq. (4.18)), the critical axial compressive load on the shell

edge is calculated by,

Pcr = min(Nx0)ψR (4.21)

For the design study, monocoque shells are also analyzed in an identical manner.

A MATLAB® code is developed to predict the buckling loads which is validated by

generating results for various shell models and compare them against published results.

The compression buckling problem for closed cylindrical laminated shells are calculated

for various laminates from Wong et al. [76] and compared for checking the accuracy of

the code developed in the present study.

Additionally, pertaining to the problem at hand, semi-circular cylindrical models are

analyzed to specify the circumferential dimensions corresponding to an included angle

of π as stated. The results are compared against those provided in the literature [37, 77].

Once the results are reproduced successfully there by validating the code, it can be

directly employed to analyze the grid-stiffened structures for stability. All that is needed

is to validate the accuracy of the stiffness coefficients (A,B,D) formulation developed

in the present study for the grid-stiffened cylindrical structures. Validation studies are

performed and the results are provided in Chapter 6.



113

4.2 Strength evaluation

The quadratic polynomial failure theories such as Tsai-Wu and Tsai-Hill are commonly

used to predict the onset of failure by a ply by ply analysis of a laminate. The limit

theories such as the maximum stress and maximum strain criteria on the other hand

adopt a much direct method where the stresses or strains in each ply in the laminate is

compared against the corresponding material stress or strain allowables.

As noted earlier, the discreteness of the stiffeners is discarded when the effective

stiffness coefficients of a grid or grid-stiffened structure are derived using smeared stiff-

ness approach. The stress distribution in a grid-stiffened structure is complex due to

abrupt changes in geometry and stiffness that a detailed analytical prediction of strength

of various components using quadratic failure theories is not possible [12]. It should be

noted that there are no ‘plies’ in the grid layer once the individual stiffness contributions

from the stiffeners are smeared. Thus, maximum strain criterion is used in the present

study following the methodology employed by Phillips and Gürdal [12].

No attempt is made in the analytical model developed in the present study to include

the stiffener–shell interactions. As a result, grid and shell layers are treated as sepa-

rate entities to apply the strength constraints. To further simplify the approach, only

the membrane strains in the grid layer are considered, similar to previous published

works on the topic [12, 78]. This assumption is reasonable since stiffeners are primarily

designed to sustain axial strains [12, 20, 79].

The maximum strain criterion is described as shown in shown in Eqs. (4.22) and

(4.23), says that the calculated strains in the stiffeners must be less than the corre-

sponding material strain allowables to avoid failure. For the grid layer in a grid or



114

grid-stiffened structure,

ε t
L < aε t

L (4.22)

εc
L < aεc

L (4.23)

The strain in the grid layer is calculated from global strains developed under the ex-

ternally applied loads. Then the grid layer strains are transformed to the corresponding

principal axial directions of the stiffeners. For example, if the topology is angle-grid,

then the global strain tensor is rotated at θ to obtain the axial strains in the θ direction

stiffeners and −θ direction for stiffeners in the −θ stiffeners. The same procedure is

repeated if there exist stiffener in other directions depending on the stiffening configu-

ration. The transformation from the global xψ to the lamina principal coordinates, LT

is performed by

[εL, εT , γLT ]
T = Ts [εx, εψ , γxψ ]

T (4.24)

where the strain transformation matrix Ts is given in Eq. (4.25) [80].

Ts =


1 0 0

0 1 0

0 0 2




c2 s2 cs

s2 c2 −cs

−2cs 2cs c2 − s2




1 0 0

0 1 0

0 0
1
2

 (4.25)

with c = cosθ and s = sinθ .

The shell of a grid-stiffened structure is analyzed for first play failure using Tsai-

Wu failure criterion [80, 81]. For the plane stress condition, the lamina failure can be
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expressed as,

f1 σL + f2 σT + f11 σ2
L + f22 σ2

T + f66 σ2
LT +2 f12 σL σT ≤ 1 (4.26)

with the coefficients given as,

f1 =
1

σ t
L
− 1

σ c
L
, f2 =

1
σ t

T
− 1

σ c
T

(4.27)

f11 =
1

σ t
L σ c

L
, f22 =

1
σ t

T σ c
T

(4.28)

f66 =
1

τa
LT

2 , f12 ≈−1
2

√
f11 f22 (4.29)

where σ t
L, σ c

L and σ t
T , σ c

T are the lamina tensile, compressive stresses in the fiber and

transverse to the fiber directions respectively. τa
LT is the allowable shear stress in the

lamina, which is direction independent.

The strain vector for the grid-stiffened structure is determined from the smeared

constitutive equations under independently applied load cases using Eq. (3.163) given

in Chapter 3. Once the strains are transformed into the lamina coordinate system using

Eq. (4.24), the stresses in principal coordinates of a lamina can be calculated using

Eq. (4.30). For a given set of material and associated strength properties, Tsai-Wu failure

checks are performed as explained.


σL

σT

σLT

=


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66




εL

εT

εLT

 (4.30)
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The failure analyses are performed for both compressive and tensile loads and the

minimum value among these loads is the failure load of the laminate. When employing

maximum strain criterion, allowable strains are identified depending on whether the

calculated lamina strain in the fiber direction is compressive or tensile. For the grid-

stiffened structure, the maximum load determined from the Tsai-Wu criterion for the

shell of the grid-stiffened structure and the maximum load obtained via the maximum

strain rule for the grid layer are compared. The lowest of the two loads is the failure

load of the grid-stiffened structure. The results from the analyses stated are provided in

Chapter 6.



Chapter 5
Design methodology

A design study is conducted to evaluate the potential weight savings of grid-stiffened

cylindrical structures compared to conventional monocoque structures. The circular

cross-sections are considered simple surrogates for a heavy-lift rotor blade spar. Various

constraints such as stiffness, strength, and stability under different loading conditions

are imposed to identify the design candidates. No formal optimization tool such as an

evolutionary algorithm is implemented to conduct the design study. In this chapter the

methodology is presented. The results are provided in Chapter 6.

5.1 Parameters and constraints

The cross-section of the monocoque and grid-stiffened cylinders are shown in Fig. 5.1a

and 5.1b respectively. The baseline monocoque laminate is selected as [45,0,90,−45]4s—

a balanced symmetric configuration. The outer diameter of the baseline, Do = 165 mm

(6.5 in). The monocoque cylinder is analyzed as thin walled structure with tm/Do =

0.025 ≪ 0.1 [82].
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Figure 5.1. Schematic of the cross-sections of monocoque and grid-stiffened cylindrical struc-
tures

AGS structures have a large number of design variables compared to monocoque

structures, making the optimal design process significantly challenging. For a given

material system and ply thickness, Table 5.1 demonstrates the difference between mono-

coque and AGS structures in terms of the number of design variables. At the same time,

having a large number of variables presents an excellent opportunity for design. In

this investigation, a manual design study is conducted using a limited set of parameters

highlighted with boxes in Table 5.1.

A general-grid stiffening configuration (see Fig. 3.21) is selected since this configu-

ration provides higher stiffness values compared to the other (ortho-grid and angle-grid)

configurations discussed earlier. The general-grid stiffness coefficients are calculated as

a linear combination of ortho-grid and angle-grid stiffness coefficients. Note that this

linear combination is valid only for the grid portion of the AGS structure since the ref-

erence planes of both the ortho- and angle-grid coincide with the resulting general-grid,

which in turn differs from the reference plane of the skin.

The grid-stiffened and monocoque shell structures are made of the material system
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Table 5.1. Overview of various design variables available for monocoque and grid-stiffened
structures. Boxed parameters are the only design variables considered in the present study

Component

Design Shell Grid

Monocoque Shell thick.: ts -

Ply angles: βs -

Grid-stiffened Shell thick.: tgs (1) Stiffener cross-section Width, bs

Ply angles: βgs See Fig. 5.1 Height, hs

(2) Topology Ortho-grid

(See Fig. 1.11) Angle-grid

General-grid

AL-grid

AT-grid

Isogrid

(3) Stiffener spacing dθ

(See Fig. 3.1) d0

d90

(4) Stiffener angle θ

and hence the material density is set to unity for convenience. Since the weights are to

be compared, the unit cell geometry, where the dimension of the reference geometry are

the axial and circumferential dimensions of the unit cell. These quantities are calculated

first and then these dimensions along with the radius of curvature and wall thickness are

used to calculate the weight of monocoque shell.

The number of one-direction helical stiffeners in the cross-section, Na1 and the he-

lical stiffener spacing, dθ are mutually dependent parameters for a given tube radius.
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They are related as shown in Eq. (5.1).

dθ =
2π Rgm

Na1
cosθ (5.1)

where Rgm is the radius measured at the reference plane of the grid layer (see Fig. 5.1b).

The weight of the general-grid layer, Wg is calculated considering that all the stiffeners

have identical cross-section geometry. Wg is given in Eq. (5.2) and this quantity is

obtained by calculating the total length of all the stiffeners (helical, longitudinal, and

circumferential) in a unitcell and multiplying it by the stiffener cross-section area, As.

The contribution from the stiffener cross-over regions are not deducted when calculating

weight, which is conservative.

Wg = 2As Na1 La

[
cosθ + sinθ +1

cosθ

]
(5.2)

where La is the length of the unitcell in the axial direction of the cylindrical tube. The

weight contribution from the shell of the grid-stiffened structure is given in Eq. (5.3).

Ws = 2La ts π Rs (5.3)

where Rs is measured at the mid-plane of the shell of the grid-stiffened structure as

shown in Fig. 5.1b. The weight of the grid-stiffened shell, Wgs is given in Eq. (5.4).

Wgs =Wg +Ws (5.4)

For the monocoque cylinder with shell thickness, tm and radius, Rm, the weight (with
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unit density) is given in Eq. (5.5).

Wm = 2La tm π Rm (5.5)

The range of variability of each design parameter for the grid-stiffened structure is

prescribed for the design investigation. As explained earlier in Chapter 3, the longitu-

dinal stiffener spacing, d0 and the circumferential stiffener spacing, d90 are dependent

on the helical stiffener spacing, dθ . dθ can be established by specifying the number of

helical stiffeners in one direction around the circumference, Na1 and the stiffener angle

θ as shown in Eq. (5.1). The stiffener angle, θ is varied discretely in 5◦ increments.

The cross-section dimensions bs and hs are varied in 0.1 mm increments where as the

quantity Na1 is incremented by unity. The limits on the varied parameters are prescribed

as,

6 ≤ Na1 ≤ 16 (5.6)

30◦ ≤ θ ≤ 60◦ (5.7)

tgs ≤ bs ≤ 10 tgs (5.8)

bs ≤ hs ≤ 6bs (5.9)

The quantities given in Eqs. (5.6) to (5.9) completely define the general-grid geome-

try for a fixed outer diameter of the cylinder and the shell laminate. Consequently, these
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Figure 5.2. Number of stiffeners (around the cylindrical surface) needed to maintain constant
grid density for θ and (90−θ ) stiffener angles

parameters are the input from which the stiffness, stability, and strength are calculated.

The limiting values of Na1 given in Eq. (5.6) should be ascertained before the values

are implemented. The relationship between these parameters is noteworthy. Figure 5.1

shows the number of stiffeners, Na1 needed around the circumference of an angle-grid

cylinder with stiffener angle, (90−θ ) to maintain the same grid density as of an angle-

grid with a stiffener angle, θ . As an example, without considering the practicality, to

obtain the grid density of a 60◦ angle-grid with 12 stiffeners, a 30◦ angle-grid should

have nearly 20 stiffeners in one direction around the circumference. Generating detailed

finite element models can thus become extremely tedious if it is required to manipulate

the aforementioned parameters.

The objective of the design study is to minimize the weight of the grid-stiffened

structure compared to the baseline monocoque. To conduct the design study, constraints

have to be set for stiffness, strength, and stability in order to maintain structural integrity
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of the designs. The constraint parameters are defined as the ratio of the parameter of

grid-stiffened to that of the monocoque baseline structure. There are four classes of

constraints imposed in the present design study. Three of them are the comparison be-

tween grid-stiffened design and the baseline— stiffness (bending and torsion), strength

(bending induced axial and torsion induced shear), and stability (bending induced axial

compression and global buckling under torque). The fourth constraint is imposed on

the grid-stiffened structure itself where the ratio of the laminate failure loads to that of

the corresponding critical buckling loads. That is, the critical buckling load under axial

compression is compared to that of the axial strength of the laminate. Similarly, for tor-

sion, the critical torsional buckling load is compared to that of the failure torque of the

grid-stiffened structure. The dimensions, boundary conditions, and the methodologies

to calculate the buckling loads are provided in Chapter 2.

The objective function is defined as the minimization of the weight parameter, W ,

the ratio of the weights of grid-stiffened to monocoque as shown in Eq. (5.10).

minimize (W ) | W < 1 (5.10)

subject to the different design constraints given in Eq. (5.11) and (5.12). The subscripts

()cr and ()max denote the critical buckling and strength failure loads respectively.

{
EI, GJ, Pcr, T cr, Pmax, T max

}
≥ 1 (5.11)

The constraints imposed on the grid-stiffened designs are shown in Eq. (5.12). These

constraints stipulate that the strength failure precedes the stability failure for the grid-

stiffened designs. {
(Pcr)gs

(Pmax)gs
,

(Tcr)gs

(Tmax)gs

}
≥ 1 (5.12)
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where the subscripts, ()gs and ()m represent grid-stiffened and monocoque structures re-

spectively. The parameters that appear in Eqs. (5.10) and (5.11) are defined in Eqs. (5.13)

to (5.19).

W =
Wgs

Wm
(5.13)

EI =
EIgs

EIm
(5.14)

GJ =
GJgs

GJm
(5.15)

Pcr =
(Pcr)gs

(Pcr)m
(5.16)

T cr =
(Tcr)gs

(Tcr)m
(5.17)

Pmax =
(Pmax)gs

(Pmax)m
(5.18)

T max =
(Tmax)gs

(Tmax)m
(5.19)

EIm and GJm are the bending and torsion stiffness respectively. Pmax and Tmax denote

axial compression and torsion failure loads respectively.

The stiffness coefficients of the baseline tubular structure are determined using cross-

section stiffness analysis developed by Rehfield et al. [83]. The expressions for bending

and torsional stiffness coefficients of the monocoque baseline are given in Eqs. (5.21) to
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(5.22).

EAm = 2π Rm K11 (5.20)

EIm = π R3
m K11 (5.21)

GJm = 2π R3
m K22 (5.22)

where the coefficients Ki j are obtained from the monocoque laminate membrane stiff-

ness, A as

K11 = A11 −
A2

12
A22

(5.23)

K22 = A66 −
A2

26
A22

(5.24)

The bending and torsion stiffness coefficients for the grid-stiffened designs are deter-

mined using the newly formulated model. The expressions to calculate these coefficients

are presented earlier in Eq. (3.164) in Chapter 3.

5.2 Loads

Two separate analyses are conducted to determine the maximum (critical buckling and

strength failure) loads: (i) linear static analysis for laminate failure loads and (ii) linear

eigenvalue analysis for critical buckling loads. The methodologies used to determine

these parameters are described in the following sections.
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5.2.1 Design loads

The critical buckling and failure loads of the monocoque baseline that appear in the

denominators of Eqs. (5.16) to (5.19) are the design loads. As discussed earlier, laminate

failure analyses are conducted to calculate the strength of the baseline. Note that no

combined loading cases are considered in this investigation. Only the maximum values

of the stress resultants, Nxψ and Nx need to be determined. The hoop stress resultant, Nψ

is assumed to be zero since there is no internal of external pressure loads and the radius

of curvature of both structures are assumed to be unchanged between the deformed and

the undeformed states. The stiffness matrix, ABDm of the monocoque laminate is used

for calculating the strains due to the above mentioned applied loads.

The maximum axial load, Pmax is determined from the axial stress resultant, Nx at

which the first ply failure occurs as per the Tsai-Wu failure criterion. Both the tension

and compression failure loads are calculated and the minimum value of these loads is

taken as the failure stress resultant, (Nx)max. The net axial load on the cross-section of

the monocoque structure, Pmax is calculated as shown in Eq. (5.25).

(Pmax)m = 2(Nx)max π Rm (5.25)

An identical procedure is employed to determine the maximum shear load with ap-

plied load, Nxψ . The maximum value of torque is then determined using Eq. (5.26) [49].

(Tmax)m = 2(Nxψ)max π R2
m (5.26)

As in the case of strength calculations, critical axial compression buckling load,

(Pcr)m and critical torque, (Tcr)m can be calculated. The procedure to calculate the
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critical buckling loads are explained in Sec. 4.1.1 for the case of torsion and Sec. 4.1.2

for the case of axial compression in Chapter 4. The critical loads of the baseline are

found using Eq. (5.27) for axial compression and Eq. (5.28) for the buckling torque.

(Pcr)m = (Nx0)cr π Rm (5.27)

(Tcr)m = 2(Nxψ0)cr π R2
m (5.28)

5.2.2 Grid-stiffened structure loads

Instead of applying the design loads calculated in the previous sections to the grid-

stiffened designs and checking for failure, the failure loads of the grid-stiffened design

candidates are directly determined. This is done since the ratios of failure loads can be

obtained to apply the constraint conditions given in Eq. (5.11) for verification. The over-

all methodology is identical to the one adopted for the baseline. However, the procedure

is more involved in the case of strength calculations of the grid-stiffened structures since

two different failure criteria are used as explained in Sec. 4.2 of Chapter 4.

The critical buckling loads are calculated exactly as defined for the baseline with the

exception of the stiffness matrix, ABDgs and the radius of curvature used. The radius

can be different for grid-stiffened structures, which is identified as Rs (see Fig. 5.1b).

Note that Rm = Rs if tm = ts since the outer diameter is identical for both the baseline

and the grid-stiffened structure. The axial critical buckling load can be found using

Eq. (5.29).

(Pcr)gs = (Nx0)
gs
cr π Rs (5.29)
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where as the critical torque is,

(Tcr)gs = 2(Nxψ0)
gs
cr π R2

s (5.30)

The failure loads of the shell attached to the grid and the grid layer are calculated

separately as explained in Sec. 4.2. Similar to the critical buckling loads calculations,

the stiffness matrix, ABDgs is used to determine the strains and stresses in the shell

laminate by considering independently applied loads Nx and Nxψ . The values for these

applied loads are iterated until the first ply failure occurs,evaluated as per the Tsai-Wu

failure theory. They are represented as (Nx)s and (Nxψ)s where ()s indicates the skin or

shell of the grid-stiffened structure.

For the grid layer, maximum strain failure criterion is used as described in Sec. 4.2.

The maximum axial and shear loads that satisfy the inequalities given in Eq. (4.22) and

Eq. (4.23) are calculated by iteration. They can be represented, respectively as (Nx)g

and (Nxψ)g where ()g here indicates the grid layer of the grid-stiffened structure. Hav-

ing obtained the maximum values of these loads, the failure loads of the grid stiffened

designs can be found using Eq. (5.31) for the net axial load and Eq. (5.32) for the torque.

(Pmax)gs = min
{
(Nx)s,(Nx)g

}
π Rs (5.31)

(Tmax)gs = 2 min
{
(Nxψ)s,(Nxψ)g

}
π R2

s (5.32)

Once the failure (critical buckling and material strength) loads for the grid-stiffened

structure are obtained, the load constraints defined earlier in Eq. (5.11) can be calculated.

The procedure for design study conducted in the present investigation is described in the

next section.
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5.3 Design process

The initial step is to identify the quantities that define the general-grid topology com-

pletely. As mentioned earlier, these quantities and their value domain are given in

Eqs. (5.6) to (5.9). For a given shell laminate of the grid-stiffened structure, a vector, Vi

of the design variables is defined as shown in Eq. (5.33).

Vi = [Na1, θ , bs, hs]i, i = 1,2,3, . . . (5.33)

where the subscript i indicates different combinations obtained by varying the range of

each design variable. The effect of various shell laminates is discussed in Sec. 6.3 of

Chapter 6.

A MATLAB® design code is developed to perform all the comparisons and calcu-

lations. A large number of combinations are generated and the weight constraint given

in Eq. (5.10) is applied as a filter to reduce the number of combinations. The code im-

plementation and the design procedure are depicted in Fig. 5.3. The weight ratio, W is

prescribed as a range between 0.75 to 0.99 in the main program. The resulting reduced

vector, Vr is submitted to various subroutines to calculate various quantities. The tasks

undertaken by various subroutines are also indicated in Fig. 5.3. The output from the

subroutines are returned to the main program to calculate various design constraints.

Several iterations among different design variables are performed to establish whether

all the design constrains are satisfied or not. It is also required to manipulate the W range

to obtain a manageable number of grid-stiffened design candidates. Design candidates

are those that satisfy all the design constraints within the range of design variable input.

These are done manually after evaluating the output each time the parameter set in Vr

are processed. The results from the design study are presented in Sec. 6.3 of Chapter 6.



130

Weights of GS & Monocoque

(Unitcell)

Main program

Monocoque

Geometry, ABDm

Subroutines

Input:

- Mat. data., outer dia.(fixed)

- Monocoque laminate (fixed)

- Shell laminate of GS 

- Vi = [Na1, θ, hs, bs]i

Set weight ratio

GS/Mono. limits

Output: 

Buckling load ratios

Failure load ratios

Stiffness ratios

GS

Geometry, ABDgs

Laminate failure load:

Monocoque (Tsai-Wu)

(Nx)m, (Nxψ)m

Torsion buckling

Monocoque, (Tcr)m

Compr. buckling

Monocoque, (Pcr)m

Laminate failure load:

shell of GS (Tsai-Wu)

(Nx)s, (Nxψ)s

Grid layer failure load:

(Max. strain)

(Nx)g, (Nxψ)g

Torsion buckling

GS, (Tcr)gs

Compr. buckling

GS, (Pcr)gs

Pass weight 

restriction
No

Yes

Determine: 

- Failure loads

- Buckling loads

- Stiffness

Figure 5.3. Code implementation of the design study. Dotted arrows represent calls to subrou-
tines. GS refers to grid-stiffened structure



Chapter 6
Results and discussions

Validations studies on stiffness predictions from the model developed in the present

study are conducted on selected cylindrical grid-stiffened models using FEM and ex-

perimental evaluation. Limitations in the state-of-the-art analytical models in predicting

the stiffness properties of grid structures are also quantified. Parametric studies on stiff-

ness evaluations are performed on grid and grid-stiffened structures using the newly

derived analytical models. Torsional buckling predictions are conducted on cylindri-

cal grid-stiffened tubes by employing the analytical methods available in the literature.

The bending buckling evaluation is performed by considering a representative cylin-

drical section under uniaxial compression. A preliminary design study is presented

to demonstrate the weight savings potential of grid-stiffened structures compared to a

monocoque baseline. Failure predictions are conducted using the methodology outlined

in Chapter 4.
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6.1 Stiffness evaluation

6.1.1 Planar grids

Planar grid (no attached skin) structures are analyzed first. The analytical formulations

developed for axial and bending stiffness for the grid structures in the present research,

as stated earlier in Chapter 3, are identical to that demonstrated by Chen and Tsai [20],

which they validated against FEM and experiments. Thus the methodology by which the

equivalent stiffness coefficients are derived along with the formulations themselves are

validated for the axial and bending stiffness. Consequently, the results for bending and

axial stiffness are not reproduced here. However, the analytical model developed in the

present study for predicting shear stiffness for the flat angle-grid structures is novel for

the case of stiffeners with clamped BCs. Therefore, only the results for shear stiffness

are presented.

As explained earlier in Chapter 3, the angle-grid configuration requires a non-pinned

support at the nodes to determine the in-plane shear stiffness. The present analytical

formulations are validated against shell FEA results. The validity of the angle-grid FEA

models generated in the present study are evaluated by successfully reproducing the

axial and bending deflection results provided in Ref. [20]. In-plane shear stiffness of

the grid is of particular interest in this study. This is due to the fact that the torsional

stiffness, which is derived from the shear stiffness, is of significant importance for a

rotor blade spar. An FEA model of a planar grid showing deformed and undeformed

states shown in Fig. 6.1. Also shown in Fig. 6.2 is a slightly oriented view of the same

planar angle-grid structure to demonstrate the deflection of the blade stiffeners.

The stiffeners exhibit in-plane bending deformation under in-plane loads on the grid

structure. Several of these models are analyzed and the results averaged to obtain reli-
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Figure 6.1. FEA (Abaqus) model of a planar angle-grid showing deformed and undeformed
shapes. In-plane bending of the stiffeners is evident

Figure 6.2. Planar angle-grid shear deformation showing the blade stiffeners

able results. The shear stiffness is determined from the angle made by a hypothetical

line passing through the stiffener nodes (joints) with respect to the undeformed state.

Boundary effects, where relatively large in-plane deflections in the stiffeners occur, can

be noticed in the model. It is not possible to completely avoid this phenomenon. How-

ever, a simpler and more convenient methodology is to provide a sufficient number of

unit-cells away from the boundaries. Upon performing a few trials, it is found that at

least 2 units cells in the interior regions provide reliable results. Reliability is assessed
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by comparing the slope of a series of hypothetical lines connecting the stiffener joints

(cross-over locations) with respect to the structural axes.

The angle-grid geometry from Ref. [20] is analyzed for pure shear. The material

system used is T300/5208 which has the properties, in GPa, EL = 181.0, ET = 10.30,

GLT = 7.17, and the major Poisson’s ratio νLT = 0.28. The stiffener cross-section pa-

rameters are bs = 4 mm and hs = 8 mm and the stiffener spacing dθ = 100 mm. Shear

stiffness per unit width, A66, from the new closed-form analysis and FEA simulations

for various stiffener orientation angles are compared and presented in Fig. 6.3. Note that

the stiffener BCs are considered to be clamped for this problem. The effect of stiffener

cross-section width (bs) is also analyzed since this is the parameter that defines the in-

plane bending rigidity of the stiffener. bs, parallel to the grid plane, is varied from 1 mm

to 4 mm in 0.5 mm increments while keeping the stiffener depth hs constant at 8 mm.

The variation of shear stiffness for a range of stiffener angles are also demonstrated in

the figure.

The analytical results from the newly formulated models are in excellent agreement

(of the order of 4% difference) with the FEA simulations for all the stiffening angles and

different stiffener widths analyzed. Thus the shear stiffness model developed for angle-

grid structures in the present study is validated. It can be noted that the shear stiffness

increases as the stiffener width is increased, indicating the influence of in-plane bending

rigidity of the stiffeners on the in-plane shear of an angle-grid structure.

The curves are symmetric with respect to the 45◦ stiffener angle for which the shear

stiffness peaks. The variation of in-plane shear stiffness of an angle-grid with ±θ stiff-

eners follows the trend similar to a symmetric orthotropic laminate; the coupling matrix

B = 0 and the coefficients A12 = A16 = 0 for the present model as shown earlier in

Chapter 3. The variation of stiffener length to spacing ratio, with which the shear stiff-
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Figure 6.3. Variation of shear stiffness with stiffener orientation. Curves showing the effect of
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ness of the planar grid is calculated, is shown for different stiffener orientation angles

for a given grid density (stiffener spacing, dθ ) in Fig. 6.4. Note that the variation is

symmetric with respect to 45◦ angle where Lθ is at its minimum making the stiffener

less compliant. This leads to the shear stiffness peaking at 45◦ angle. The factor that

determines the symmetry is the combination of deflections calculated to determine the

shear stiffness. As a demonstration, consider two different stiffener orientation angles

30◦ and 60◦, where according to Fig. 6.3 give identical values for shear stiffness. Re-

ferring to Fig. 3.9 in Chapter 3, the deflection determined in the x direction for the 30◦

stiffener is identical to the deflection calculated for the 60◦ in the y direction and vice

versa. This leads to the symmetry observed for the shear stiffness in Fig. 6.3.

As noted earlier, Chen and Tsai [20] validated the models developed to predict the

in-plane and bending stiffness properties of planar ortho-grid structures and axial and

bending stiffness properties of planar angle-grid structures. Considering that the expres-

sions for these parameters obtained in the present study are identical to that reported in
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[20] and that the general-grid structures can be modeled by the superposition of angle-

grid and ortho-grid, general-grid derivations are also validated. Consequently, results

for general-grid are not presented here.

The effect of stiffener joint (node region) compliance was investigated by Sandhu et

al. [84]. The in-plane joint flexibility was determined by experiments and concluded that

such compliance can significantly affect the overall grid behavior. It was also demon-

strated that the in-plane flexibility (‘scissoring’) of the joint has to be determined from

experiments. Using the analysis developed in this study for stiffeners with elastic bound-

ary conditions, some preliminary results are generated with a set of arbitrary values for

in-plane torsion spring stiffness. These are provided in Appendix B. It is found that, for

the set of grid parameters employed, the effect of torsional compliance at the joints has

no significant impact in the shear stiffness behavior of the angle-grid. Further investi-

gation into this aspect must be conducted before a conclusion can be made. Thus, the

present study on elastic BCs is declared inconclusive.
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6.1.2 Cylindrical grids

6.1.2.1 Validation studies

The grid specimens are tested for deflection under various loading conditions to deter-

mine their cross-section stiffness properties. Deflection simulations are also performed

using FEM and analytical formulations. The material properties used for this study are

given in Table 2.2 of Chapter 2. The overlap section material properties are used in their

respective stiffener overlap locations in SLS FEA models. The same material system is

used for all parametric studies on stiffness and stability conducted in this research. Since

the analytical formulation developed assumes that the stiffener intersect at dimension-

less node points, properties of the overlap section are not needed. Similarly, the BLS

FEA models do not require separate modeling of the stiffener joints as well.

The tip deflections under tip transverse bending loads are presented in Fig. 6.5. Two

analytical solutions are employed, both of which are based on smeared stiffness ap-

proach as explained in Chapter 3; the planar grid formulation indicated as ‘Analytical

Flat’ and the newly developed closed-form analysis indicated as ‘Analytical Cyl.’ The

results from FEM and analytical predictions are also presented. The results shows excel-

lent correlation (of the order of 5%) between experiment, FEM, and the analytical model

based on cylindrical grid formulation. The planar grid model predicts 26% higher stiff-

ness compared to the FEM and experiment data. This indicates that the compliance

due to coupling between various deflection modes of the stiffeners viz., out-of-plane

deflection and torsion of the stiffeners must be included in the formulation in order to

accurately predict the deflections of grid structures with non-planar topology.

Axial deflection tests are performed on the cylindrical grid specimens and the re-

sults are compared to FEM simulations and analytical predictions using the planar and
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Figure 6.5. Comparison of bending tests, analytical and FEM simulations of the S8 (angle-grid)
specimen

cylindrical grid models. The cross-section stiffness is determined using Euler beam the-

ory and the axial stiffness coefficients for the S8 grid tube from various analyses are

compared in Fig. 6.6. Excellent correlation between test results and results predicted by

FEM and the new analytical model can be observed. This is a validation for the new

formulation which includes the coupling between different deflection modes due to the

complex geometry of the stiffeners. The planar grid formulation over predicts the axial

stiffness by nearly 17%.

The torsion stiffness determined from various simulations and tests are shown in

Fig. 6.7. Without accounting for the in-plane bending of the stiffeners in the formulation,

the analysis over predicts the torsion stiffness by more than 80% (not shown). When

the in-plane bending is introduced [20] in the formulation, also derived in Eq.(3.42) in

Chapter 3, the error drops to nearly 39%. When the helical geometry is appropriately

represented, using the newly derived formulation in the present research, the analytical
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Figure 6.6. Axial stiffness of the S8 (angle-grid) specimen from tension tests, analytical and
FEM simulations

prediction matches with the FEM and experiment with in 5%. It can be concluded

that, for the range of parameters considered, the coupling between various deflection

modes in the helical stiffeners due to the complex geometry is significant and cannot

be neglected when predicting the torsion stiffness of tubular grid structures with helical

stiffeners.

A section of the FEA SLS model demonstrating out-of-plane deflection is shown in

Fig. 6.8. The complex deformation modes in the stiffeners can be easily observed. A

flat panel based analytical model cannot capture these complex deflection modes. The

stiffener response, when subjected to a tip torque on the angle-grid tube, characterizes

coupled twist, out-of-plane (radial), in-plane (along the cylindrical surface) deflections

of the stiffeners between the stiffener overlap regions. For the structures analyzed, the

out-of-plane bending mode is more significant than the in-plane bending mode due to

the cross-section aspect ratio, ars = hs/bs = 0.126, being very low.
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Figure 6.7. Torsion stiffness of the S8 (angle-grid) specimen from torsion tests, analytical and
FEM simulations

Figure 6.8. Complex deflection modes in the stiffeners of an angle-grid tube (S8 specimen
validation model) under torque captured using SLS FEA model. Only one lateral section (axial
cut) is shown for clarity

The coupling from the stiffener geometry changes with stiffener angle. In order to

further validate the present model, the stiffness coefficients of the specimen grid struc-
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tures are predicted for various stiffener angles. The torsion, axial, and bending stiffness,

respectively, are demonstrated in Figs. 6.9, 6.10, and 6.11. The FEA (using SLS models)

predictions and experiments results (identical to the ones shown earlier) are also shown.

The specimen, S4 is found to be not a good candidate for validation. The smeared

stiffness approach could not be applied to this geometry since the grid is very sparse—

two helical stiffeners in one direction around the circumference. Large discrepancy

between analysis predictions and experimental results are observed. Consequently, the

studies on this specimen are not provided.

The new analytical model is capable of accurately predicting all the stiffness co-

efficients with excellent accuracy. The maximum error between FEA predictions and

analytical results is observed to be of the order of 7% for torsion stiffness. Also, for

bending and axial stiffness, excellent correlation is observed with maximum deviation

of the order of 6% between analytical and FEM predictions. It is noted that the deflected

mode shown in the Fig. 6.8, the stiffeners almost behaves like plate elements with the

overlap regions clearly showing complex deflected shape. The new analysis is not set

up to predict this behavior since the stiffeners are assumed to be beams where the cal-

culations are performed at their cross-section centroid. However, since all the deflection

modes in the stiffener segments, such as the out-of-plane, in-plane, torsion, axial (along

the stiffener axis) are included in the formulation, the complex nature of the stiffener

axis is captured. The geometric centers of the overlap regions (where the stiffener joints

are defined in the new analysis) are observed to be not exhibiting significant displace-

ments in the radial direction. The regions within the overlap section, are observed to be

providing almost-clamped support for the stiffener ends, which is the assumption used

for the stiffener ends in the analysis employed.

The validation studies conducted so far has been on cylindrical grids with 19 mm
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Figure 6.9. Variation of torsion stiffness of cylindrical angle-grid structures with stiffener ori-
entation angles, θ . Geometric parameters of the structure are identical to the S8 specimen
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Figure 6.10. Variation of axial stiffness of cylindrical angle-grid structures with stiffener orien-
tation angles. Geometric parameters of the structure are identical to the S8 specimen
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Figure 6.11. Variation of bending stiffness of cylindrical angle-grid structures with stiffener
orientation angles, θ . Geometric parameters of the structure are identical to the S8 specimen

diameter, identical to that of the grid specimens. A change in diameter could affect

the deflection behavior of individual stiffeners. To verify this, the outer diameter of

the cylinder is increased to 165 mm (6.5 in.) This value is selected since this is ap-

proximately equal to chord thickness of the heavy-lift blade spar (see data [2] given in

Table C.1 of Appendix C.)

The relative performances between the new analytical model and FEM (BLS method)

are presented in Fig. 6.12 for the torsion stiffness and Fig. 6.13 for the axial stiffness.

Three different stiffener angles, 30, 45, 60 degrees are considered. The effect of a range

of stiffener aspect ratio on these stiffness coefficients are also evaluated. It can be seen

that the new analytical model can predict the torsion and stiffness behavior of the angle-

grid structure with excellent accuracy for all cases presented. The maximum deviation

observed is within 7% for both the torsion stiffness and axial stiffness.
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Figure 6.12. Comparison study of angle-grid torsion stiffness between new analysis and FEM.

Various stiffener angles 30, 45, and 60◦ and stiffener CS aspect ratios,
hs

bs
. Stiffener spacing,

dθ ≈ 38 mm. Stiffener width, bs = 4 mm

The complex deflection modes of the stiffeners captured by the new analytical model

can be illustrated using the deflected shapes obtained from the finite element simula-

tions. Figure 6.14 demonstrates the out-of-plane bending of the stiffeners under torsion

load on the cylindrical angle-grid with 30◦ stiffener angle. The in-plane bending is

not as pronounced as the out-of-plane deformation under torque loading. For the 45◦

angle-grid, shown in Fig 6.15, the out-of-plane deformation of the stiffeners is more

pronounced than the former model.

The response under an axial load on a 45◦ angle-grid is depicted in Fig 6.16. The

dominant response of the stiffeners are in-plane as expected. The major contribution to

the cylindrical grid axial stiffness comes from the in-plane rigidity of the stiffeners.

It can be concluded that the newly formulated analytical model can predict the tor-

sion, bending, and axial stiffness of grid structures with helical stiffeners with excellent
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Figure 6.13. Comparison study of angle-grid axial stiffness between new analysis and FEM.

Various stiffener angles, θ =30,45,60◦ and stiffener CS aspect ratios,
hs

bs
. Stiffener spacing,

dθ ≈ 76 mm. Stiffener width, bs = 4 mm

Figure 6.14. Section of the FEA model of a 30◦ angle-grid under torsion. Out-of-plane and
in-plane deflections of the stiffeners can be noticed

accuracy. Having validated the new analytical model by comparing the stiffness predic-

tions to FEM simulations and experiments, numerous parametric studies are conducted

on grid and grid-stiffened structure with different stiffening configuration. The purpose
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Figure 6.15. Section of the FEA model of a 45◦ angle-grid with a finer mesh showing out-of-
plane stiffener response. Stiffeners under compression and tension deflect radially outward and
inward respectively. U1 in the legend denotes radial displacement (cyl. coord. system)

Figure 6.16. Section of FEA model of a 45◦ angle-grid under axial load. Stiffeners deflect
primarily in-plane

is to study the influence of various design variables (see Table 5.1 in Chapter 5) such

as the grid density, dθ (directly related to Na1), cross-section dimensions, hs and bs, and

stiffener angle, θ on the axial, bending, and torsion stiffness behavior of the cylindrical

grid structures.
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6.1.3 Parametric studies

6.1.3.1 Angle-grid

The effect of various design parameters such as the stiffener cross-section dimensions,

stiffener spacing, and diameter of the cylindrical angle-grid structures is investigated.

The material system used is identical to that of the grid specimen as stated before. The

cylinder outer diameter, Do = 165 mm for all structures investigated. The effect of grid

density, which is dictated by the stiffener spacing, dθ , is evaluated. The stiffener cross-

section values are kept constant as, width, bs = 4 mm, and depth, hs = 2bs = 8 mm.

Figure 6.17 shows the variation of torsion stiffness with different stiffener angles.

The torsion stiffness increases with increasing grid density (decreasing dθ ) for all stiff-

ener angles as expected. Their values peak at 45◦ stiffener angle. The bending stiffness,

shown in Fig. 6.18 and axial stiffness shown in Fig. 6.19 exhibit the same trend be-

tween the two. They both decrease with increase in stiffener orientation angles, which

is expected. Note that the axial and bending stiffness coefficients present proportional

variation for all the parameters as demonstrated.

The effect of stiffener cross-section aspect ratio is analyzed for various stiffener

angles next. Initially, the stiffener width, bs = 4 mm, is kept constant. The stiffener

cross-section depth, hs, is varied between 4 mm to 12 mm such that the aspect ratio,

ars =
hs

bs
ranges from 1 to 3. Stiffener spacing, dθ = 76.2 mm, and is fixed. Figure 6.20

shows the torsion stiffness variation for a range of stiffener angles and aspect ratios. As

the aspect ratios increase, torsion stiffness of the structure also increases for all stiffener

angles. Similar observation can be drawn on both the axial (Fig. 6.21) and bending

(Fig. 6.22) stiffness variations. The lower values of stiffener angles generate high values

of axial and bending stiffness compared to higher stiffener angles.
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Figure 6.17. Variation of torsion stiffness of cylindrical angle-grid with stiffener orientation
angles, θ for various stiffener spacing, dθ
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Figure 6.18. Variation of bending stiffness of cylindrical angle-grid structures with stiffener
orientation angles, θ for various stiffener spacing, dθ

The stiffener depth, hs is now set constant and the effect of stiffener cross-section

aspect ratio is investigated. The torsion stiffness variation shown in Figure 6.23 also



149

30 35 40 45 50 55 60
0

20

40

60

80

100

120

140

160

Stiffener angle, deg

A
xi

al
 s

ti
ff

n
es

s,
 k

N

 

 

89 mm

76 mm

102 mm

114 mm

127 mm

Figure 6.19. Variation of axial stiffness of cylindrical angle-grid structures with stiffener orien-
tation angles, θ for various stiffener spacing, dθ
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Figure 6.20. Variation of torsion stiffness of cylindrical angle-grid structures with stiffener

orientation angles, θ for various stiffener cross-section aspect ratios,
hs

bs
. Stiffener spacing, dθ =

76.2 mm, stiffener width, bs = 4 mm
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Figure 6.21. Variation of axial stiffness of cylindrical angle-grid structures with stiffener orien-

tation angles, θ for various stiffener cross-section aspect ratios,
hs

bs
. Stiffener spacing, dθ = 76.2

mm, stiffener width, bs = 4 mm

in agreement with the previous observation of having high values at higher aspect ra-

tios. However, compared to Fig. 6.20, higher values of stiffener width (circumferential

direction) significantly increase the torsion stiffness. This is due to the fact that the stiff-

eners now have high bending stiffness in-plane. So, for a given cross-section area of the

stiffener, ars > 1 would provide higher torsion stiffness compared to ars < 1. Similar

observations can be made in the case of bending stiffness by comparing Figs. 6.22 and

6.24. Recall that the bending stiffness is calculated from the global axial strain for the

grid tubes (see Eq. (5.21) in Chapter 5.) Identical reasoning can be applied in the case

of axial stiffness (see Eq. (5.20) in Chapter 5.) Consequently, axial stiffness variation is

not presented.

The difference between planar and cylindrical grid formulation is investigated for

45◦ angle-grid cylinders. The results are provided in Fig. 6.25. Curves are generated for
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Figure 6.22. Variation of bending stiffness of cylindrical angle-grid structures with stiffener

orientation angles, θ for various stiffener cross-section aspect ratios,
hs

bs
. Stiffener spacing, dθ =

76.2 mm, stiffener width, bs = 4 mm
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Figure 6.23. Variation of torsion stiffness of cylindrical angle-grid structures with stiffener

orientation angles, θ for various stiffener cross-section aspect ratio,
hs

bs
. Stiffener depth, hs = 4

mm
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Figure 6.24. Variation of bending stiffness of cylindrical angle-grid structures with stiffener

orientation angles, θ for various stiffener cross-section aspect ratio,
hs

bs
. Stiffener depth, hs = 4

mm

different stiffener spacing values, dθ . It is clear that the length of the angle-grid stiffener

between support (from dθ ) and the curvature play significant roles in torsion stiffness.

The error observed is of the order of 60% when the cylinder diameter and the spacing,

dθ are at their maximum. The error goes down to less than 10% for all cases when

the cylinder diameter is increased by 40%. At the maximum grid density and 165 mm

diameter, the differences between the two analysis is nearly 22%.

6.1.3.2 Ortho-grid

The cylindrical ortho-grid configuration has the circumferential stiffeners modeled as

arch segments with clamped BCs. The curvature of the transverse (circumferential for

ortho-grid) stiffeners is newly introduced in the present formulation. The significance

of including this parameter is investigated. This is performed by comparing the anal-
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Figure 6.25. Relative error between angle-grid torsion stiffness predictions from planar and
cylindrical grid formulation with respect to different cylinder diameter, Do. bs = 4 mm and
hs = 8 mm

yses where the torsion stiffness derivations are based on cylindrical and planar grids.

For the case when the stiffener cross-section aspect ratio, ars =
hs

bs
= 2, the maximum

difference between cylindrical and planar formulation is observed to be 15% when the

grid is the coarsest, as shown in Fig. 6.26. This indicates that the in-plane bending of

the circumferential stiffeners dominates with minimum coupling effect from torsional

mode.

The aspect ratio is now decreased to obtain ars =
hs

bs
= 0.5, to study the effect of

coupling between in-plane bending and torsion of the circumferential stiffeners. Note

that the longitudinal stiffeners exhibit in-plane bending only. It can be observed from

Fig. 6.27 that the difference between cylindrical and planar formulation in predicting

the torsion stiffness of the cylindrical grid can reach as high as 45% when the grid is at

its minimum dense configuration.

The significance of curvature of the circumferential (transverse) stiffener is investi-
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Figure 6.26. Variation of torsion stiffness of cylindrical ortho-grid structures with different
stiffener spacing, dθ . Effect of diameter, Do (in mm) of circumferential stiffeners on torsion
stiffness is also compared. Stiffener CS width, bs = 4 mm and stiffener CS height, hs = 8 mm

gated by analyzing ortho-grid tubes with different outer diameters ranging from 165 mm

to 330 mm and the aspect ratio, ars = 2. The variation of torsion stiffness is shown in

Fig. 6.28 for different longitudinal stiffener spacing, d0 = 50.8 to 127 mm . It is evident

that the larger the diameter (lower curvature), the lower the error between the two analy-

ses for a given d0. When the diameter is 165 mm, the error increases from 4% to 43% as

d0 is increased (increased circumferential length of the transverse stiffeners) in the range

specified. It can be concluded that a careful investigation on the effect of curvature, stiff-

ener spacing, and stiffener CS aspect ratio is necessary before planar grid formulation

can be used for torsion stiffness prediction of small diameter ortho-grid structures.

The general-grid stiffness coefficients are obtained by algebraically adding the cor-

responding stiffness parameters of angle-grid and ortho-grid topologies as narrated in

Chapter 3. Consequently separate results for general-grid configuration are are not pre-
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Figure 6.27. Variation of torsion stiffness of cylindrical ortho-grid structures with different
stiffener spacing, dθ . Effect of diameter, Do of circumferential stiffeners on torsion stiffness is
also compared. Stiffener CS width, bs = 8 mm and stiffener CS height, hs = 4 mm
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Figure 6.28. Relative error in the prediction of cylindrical ortho-grid structures using planar and
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sented. From the parametric studies conducted, it is observed that, the largest of errors

occur for the torsion stiffness predictions when planar grid formulation is employed.

6.1.4 Grid-stiffened cylinders

Two shell laminates for grid-stiffened cylinders are arbitrarily selected as [±45]s and

[±45]2s with ‘s’ indicating symmetry. The stiffeners have geometry parameters simi-

lar to the grid structures studied in earlier sections. The materials properties are also

identical to those used in the grid parametric study. Having established the influence of

stiffener geometry in the grid structure stiffness, the effect of skins on the compliance

of the stiffeners is examined in this section. Only general-grid designs under torsion are

considered for this study.

The planar grid model is compared against the model developed in the present study,

which captures the exact geometry of the curved stiffeners. Of particular interest is the

magnitude of error between the two models in predicting the torsional stiffness with

different shell thicknesses. Torsion stiffness is examined since this coefficient has been

identified earlier to be the most impacted when the stiffener curvature is ignored.

The outer diameter of the shell is 165 mm (6.5 in). The schematic of the grid-

stiffened shell and the stiffener cross-section are shown earlier in Fig. 3.27 in Chapter 3.

A validation study is performed using FEM BLS shell model that provides clamped

BCs at the stiffener cross-over locations as described in Chapter 2. By setting the topol-

ogy of angle-grid, the topology of ortho-grid is also fixed because of the assumption

that the stiffeners pass through common nodes (see Fig 3.1 of Chapter 3.) Thus, a

general-grid topology can be completely defined by prescribing the stiffener angle and

helical stiffener spacing. The spacing between helical stiffeners, dθ = 76.2 mm (3 in) is

kept constant. The stiffener angle is set to 45◦ with respect to the cylinder longitudinal
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axis. A comparison study between the two analyses in predicting torsion stiffness is

demonstrated in Fig. 6.29. Also shown for reference is the relative difference between

analytical and FEM predictions of the monocoque cylinder (first data bar.)

The data indicated as ‘GS: FEM/Ana’ shows the ratio of data from FEM to that

of from the newly developed analytical model demonstrates excellent correlation (with

in 5%). The third data in the chart shows nearly 20% over-prediction by planar grid

formulation. This difference can be attributed to ignoring (in fact not including) the

curvature of the stiffeners. It is interesting to note that the error is reduced from 35% in

the case of grid structure as shown earlier (see Fig. 6.25), to nearly 20% in the present

case. This indicates that the presence of the shell structure, although reduced, does not

eliminate the influence of coupled deformations of the stiffeners in torsional stiffness

prediction.
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Figure 6.29. Torsion stiffness ratio of cylindrical general-grid stiffened shell using planar and
cylindrical shell analysis. Stiffener CS width, bs = 4 mm and stiffener CS height, hs = 8 mm,
diameter, Do = 165 mm. Shell is [±45]s
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The relative errors between the two analyses in predicting the torsional stiffness of

general-grid stiffened cylindrical shell are presented in Fig. 6.30. The shell laminate for

this model is [±45]2s. Note that the maximum error dropped to nearly 36% compared to

the grid structure presented earlier in Fig. 6.25. The presence of the shell has significant

impact in governing the stiffener compliance associated with the complex curvature.

When the diameter of the cylinder is large, the error between the analyses drops to

negligible amount for all grid densities evaluated. However, the designer has to be

careful with the tool employed when the parameters vary in the range shown. Comparing

the results in Fig. 6.30 to the third data bar in Fig. 6.29, it is clear that the thickness

of the shell significantly alter the relative error between the planar and curved shell

analytical models. A decrease of error from nearly 20% to 13% when the shell thickness

is doubled. Also, a drop in error from 36% (see Fig. 6.25) for diameter, 165 mm and

spacing, dθ = 76 mm. For the minimum stiffener spacing, the error drops below 10%

for all diameters.

Helical stiffener spacing (mm)

76

51

89

102

Figure 6.30. Relative error between general-grid stiffened cylindrical shell torsion stiffness pre-
dictions from planar grid and newly developed analysis for different grid spacing, dθ . Stiffener
CS width, bs = 4 mm and stiffener CS height, hs = 8 mm
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In summary, the effect of complex geometry of stiffeners must be included in the

formulation when the cylinder diameter is small as demonstrated. In the case of axial

(consequently bending) stiffness, the error is with in the range of 7–12% for grid struc-

tures. The error is expected to only reduce when the shell is attached to the grid. The

results presented are only typical of the nature of the parameters considered. The behav-

ior demonstrated could be different for different shell laminates with various stiffness

couplings present.

6.2 Stability evaluation

6.2.1 Torsion

A code is developed based on existing analytical models [61, 69, 85, 86] to predict the

critical buckling torques of long laminated composite cylinders. This code is validated

against published results [87] to verify its accuracy. The results generated in the current

investigation are presented in Table 6.1. In the study cited, the results were validated

with finite element models which are also provided here for reference.

The buckling formulation employed in this study permits direct substitution of stiff-

ness coefficients, Ai j, Bi j, and Di j. Several grid-stiffened cylinders are analyzed for

buckling under tip torque by means of linear eigenvalue buckling analysis using FEM.

The material used are same as the one used for the parametric studies on stiffness pre-

sented earlier. Various examples of torsional buckling of grid-stiffened tubes of finite

length are shown in Fig. 6.31. These models are generated using SLS modeling tech-

nique (see Sec. 2.2.1 of Chapter 2) and as a result the stiffeners are not visible. The SLS

modeling is selected since it is relatively easier to change the stiffener depth compared

to the BLS models.
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Table 6.1. Critical torsion buckling loads of various long thin walled composite monocoque
cylinders. Minimum buckling load occurs for circumferential wave parameter, n = 2 [61] and
axial wave number from the present study, m as shown

Tube laminate Analy. [87] FEM [87] Analy. present m

N m N m N m

[15,−15]4 193 210 193 4

[−15,15]4 197 214 197 4

[30,−30]4 254 263 255 6

[−30,30]4 259 268 260 6

[45,−45]4 383 385 383 9

[−45,45]4 382 385 383 9

[02,45,−45,45,−45,02] 218 230 221 5

[02,−45,45,−45,45,02] 208 219 210 5

[02,45,0,−45,0,45,−45] 342 358 343 5

[02,−45,0,45,0,−45,45] 315 329 318 5

[02,45,0,0,−45,45,−45] 340 355 340 5

[02,−45,0,0,45,−45,45] 300 313 302 5

[−45,−15,15,45,15,−15,−45,45] 375 389 377 6

[45,15,−15,−45,−15,15,45,−45] 449 439 449 6

[15,−15,−45,−15,15,45,15,−15] 206 219 208 5

[−15,15,45,15,−15,−45,−15,15] 226 241 227 4

An angle-grid stiffened model is selected to present various buckling modes. All

models shown have the same diameter and length. There are four helical stiffeners

around the circumference. The only variables in these models are the skin thickness

and stiffener depth. The stiffener angle, θ = 45◦, outer diameter, Do = 165 mm, length

is approximately 8Do. Simply supported BCs are applied at both ends using reference

points with opposing torques applied to determine the buckling modes.

The images in Fig. 6.31 are selected out of numerous critical modes to explain the

complexities involved in modeling as well as the sensitiveness of various parameters.
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(a)

(b)

(c)
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Figure 6.31. Critical buckling modes of angle-grid stiffened cylinders using FEA simulations.
(a) local skin buckling, (b) local stiffener crippling, (c) local skin and stiffener mode interaction,
(d) global buckling mode, (e) global torsion buckling mode of a monocoque tube

The stiffener width is set as constant, bs = 4 mm. Figure 6.31a with hs = 4 mm, has

the lowest skin ([±45]s) thickness where the local buckling occurs predominantly in the

skin regions. An increase in the stiffener depth to 8 mm forces the structure to buckle in
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a mixed mode (local skin and stiffener buckling) as shown in Fig. 6.31b. Figure 6.31c is

showing local stiffener crippling combined with a global mode. In this case, the skin is

supplemented with additional [±45] plies compared to that in (a). Figure 6.31d shows

the global mode obtained with an increased stiffener depth of 12 mm with [±45]2s shell

laminate.

The only criterion used to describe this mode as a global mode is by comparing it to

the critical mode of a composite monocoque tube, which such mode is demonstrated in

Fig. 6.31e. Based on the parameters employed such the stiffener angle, stiffener spacing,

aspect ratio of the stiffener cross-section, ply thickness, and the diameter of the cylinder,

it was found that at least six plies of symmetric or alternating ±45 are required in the

shell laminate to obtain the global buckling mode.

Developing an analytical model to predict the aforementioned local mode interac-

tions and local–global modes is extremely difficult. This is especially true if there exist

critical modes where multiple unit cells participate in the buckling mode. A solution

methodology where the structure is assumed to be infinitely long is therefore imple-

mented, based on existing formulations, as stated in Chapter 4. A set of results are

presented for the general-grid stiffened tubes to demonstrate the impact of various de-

sign parameters. The choice of shell laminate is arbitrary while the total number of plies

are kept to at least six.

Figure 6.32 shows the variation of critical torques with respect to the stiffener angles

for different helical stiffener spacing, dθ . The stiffener aspect ratio is set to 1 (4× 4

mm) and the shell laminate is [±45]2s. The buckling loads peak at 48◦ for all the cases

presented and the critical buckling load increases with increasing grid densities.

The effect of stiffener aspect ratio, ars =
hs

bs
is studied by varying that quantity and

predicting buckling torque for different stiffener angles. The stiffener spacing is kept
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Figure 6.32. Buckling behavior of general-grid stiffened tubes under torque for different stiff-
ener spacing, dθ mm. Stiffener CS is 4×4 mm. Shell [±45]2s

constant at dθ = 25.4 mm. The results are shown in Fig. 6.33. The buckling loads for

the aspect ratio of 1 is provided for reference. As the width of the stiffener is increased,

the buckling loads also increase peaking at the same stiffener angle, θ = 48◦. How-

ever, high aspect ratios provide high buckling loads with maximum values exhibited at

lower stiffener angles. A maximum of 60% increase in buckling load is obtained for

the same stiffener cross-section area (same weight), when the cross-section dimensions

are switched, 8×4 to 4×8 mm. This attribute would help in the design process where

high buckling loads are sought. Considering this specific example, this high aspect ratio

would adversely affect the torsion stiffness of the grid-stiffened structure as discussed

earlier. Also, high aspect ratio result in increased stiffener eccentricity effects from the

coupling coefficients in B matrix.

The impact of increased skin thickness on the buckling is studied by varying the

shell laminate as depicted in Fig. 6.34. It is seen that the increased skin thickness not
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Figure 6.33. Buckling behavior of general-grid stiffened tubes under torque for different stiff-

ener aspect ratios,
hs

bs
. Shell [±45]2s, dθ = 25.4 mm

only increased the buckling load but also shifted the peaks to lower stiffener angles. A

33% increase in the buckling when the skin thickness is doubled from 0.91 to 1.82 mm

(tply = 0.229 mm) while a 17% increase in buckling load when the thickness is increased

from 1.82 to 2.73 mm.

Since the global buckling modes are characterized predominantly by the radial dis-

placement of the stiffeners, high aspect ratios augment the critical buckling loads. The

critical torque is very sensitive to the stiffener depth. This can also be verified by the

buckling loads peaking at lower stiffener angles because a lower stiffener angle provides

maximum out of plane stiffness due to reduced coupling effect from their low curvature.

Note that the contribution of circumferential stiffeners are included in the analysis. An-

other important aspect is how the stiffener placement would ‘break’ the buckle waves.

A stiffener with ‘sufficient’ stiffness at a crest or trough of the buckling waves would
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Figure 6.34. Buckling behavior of general-grid stiffened tubes under torque for different skin
layup and thickness. Stiffener CS is 4×4 mm. dθ = 25.4 mm

essentially establish a boundary thereby increasing the buckling loads. Improvement in

the buckling load by increasing the stiffener width is not as significant as increasing the

stiffener depth.

6.2.2 Bending

As explained in Chapter 4, Sec. 4.1.2, stability of grid-stiffened tubes under bending

loads are evaluated by compression buckling of a representative section in the compres-

sion region of the cylinder under transverse bending.

The subroutines developed in this study, based on well established analytical models,

are validated against the results published by Wong and Weaver [76]. The comparison

study is depicted in Table. 6.2. It can be observed from the data presented that the code
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developed in the present study gives accurate results.

Table 6.2. Critical compression buckling loads of various composite monocoque closed cross-
section cylindrical shells [76]. Material (T 800− 924 prepreg) properties (GPa): E11 = 161,
E22 = 11.5, G12 = 7.17, ν12 = 0.349. Cylinder length, L = 150 mm, mean radius, R = 80 mm,
Ply thickness, tply = 0.125 mm

Shell laminate Analy. [76] FEM [76] Analy. present

kN kN kN

[90,−45,0,45]s 156 156 158

[90,−45,0,45]as 172 169 172

[90,−45,−45,0]s 138 130 138

[90,90,90,0] 29 30 29

[90,−45,45,45,0,−45,−45,45] 158 156 160

[90,−45,0,45,−45,90,45,0] 196 194 196

[90,−45,0,45,90,0,−45,45] 190 186 189

[90,−45,0,45,−45,0,−45,90] 170 176 170

[90,−45,0,45,0,0,90,−45] 154 160 153

Another code validation that is directly applicable to the semi-circular cross-section

shell model is provided in Table. 6.2.2. The results generated using the code are in ex-

cellent agreement with the published data by Januky et al. [37]. Additional verifications

are performed (not reported) by analyzing the models and comparing to the data (shown

in Fig. 6.37) given in Ref. [77] and observing excellent correlation.

To predict the behavior of grid-stiffened structures, the monocoque stiffness coef-

ficients are replaced by that of the grid-stiffened structures derived using the newly

developed analytical model. The critical axial compression buckling loads of isogrid

stiffened cylinders provided by Reddy et al. [13] are compared against those predicted

by the new model. The results are presented in Table. 6.4. The critical buckling loads

are in excellent agreement for the structures shown. The mode shapes, represented by
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Table 6.3. Critical compression buckling loads of various composite monocoque semi-circular
cylindrical shell panels [37]. Material properties (Msi): E11 = 13.75, E22 = 1.03, G12 = 0.42,
ν12 = 0.25. Cylinder length, L= 22 in, mean radius, R= 40 in, Shell laminate: [±45,0,90,±45]s

Shell wall thickness, t Analy. [37] FEM [37] Analy. present

in lb/in lb/in lb/in

0.072 391 375 368

0.144 1459 1481 1438

0.216 3288 3328 3235

axial wave, m and circumferential wave number, n , are different. Note that the smeared

model employed in Ref. [13] is based on a flat unit cell. It is believed that the presence

of compliance of stiffeners from coupled deflection modes captured in the new model is

the source of the difference in the mode shapes identified via the wave numbers, m and

n.

There is little variation in the buckling loads between the present and the cited re-

sults. This implies that the effect of curvature is not significant when the diameter of the

cylinder is large (990 mm) with closely spaced stiffeners. This observation is consistent

with the results from the parametric studies on the stiffness characteristics presented

earlier.

Table 6.4. Validation study of critical compression global buckling loads of composite isogrid
stiffened closed cylindrical shells [13]. AS4/3502 graphite/epoxy material system. Cylinder
length, L = 1168 mm, diameter, D = 990 mm, Shell thickness 1.22 mm

Shell Ring stiff. Stiff. CS Mode (m, n) Nxycr [13] Nxycr Present Error

laminate # hs ×bs, mm [13]; Present kN/m kN/m %

[0,90]s 50 4.44×1.53 (7, 10); (8, 12) 176 170 3

[±45]s 55 3.81×2.03 (15, 1); (18, 1) 181 172 6.6

Similar to the FEM torsional buckling exercise, bending buckling predictions under
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transverse bending of clamped-free tubes are conducted using FEM. Some example

cases are presented in Fig. 6.35. It can be seen that grid-stiffened tubes exhibit local

buckling modes under transverse bending. Not only the skin layup, but all the grid

design variables contribute to this behavior. This makes it difficult to establish their

interdependency on the buckling behavior. Figure 6.35a shows only axial waves which

is entirely different from the other modes shown.

(a) (b)

(c)

Figure 6.35. Bending buckling behavior of grid stiffened tubes with 45◦ stiffeners under trans-
verse bending. (a) local buckling with only axial waves, (b) local buckling interaction of shell
and stiffeners, and (c) lateral cross-section of BLS angle-grid model showing local buckling

An interesting observation is that several grid-stiffened unit cells could participate in

local buckling which is evident from Figs. 6.35b and 6.35c. This aspect poses significant

challenges in terms of isolating the shell between a set of stiffeners and prescribing sim-

ply supported or clamped boundary conditions . Even an assumption of elastic boundary

conditions imposed by the stiffeners on the shell within a unit cell would not completely
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alleviate the challenge since multiple unit cells or shell bays could be involved as shown.

Thus, the whole semi-circular section in the compression region of the tube under

transverse bending is isolated with simply supported boundaries to study the local buck-

ling behavior under bending as explained in Chapter 4. For the grid-stiffened structure,

the semi circular cylindrical section is represented by the smeared coefficients. The

entire segment is evaluated as a single shell with simply supported boundary conditions.
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Figure 6.36. Critical buckling loads of general-grid stiffened semi-circular shells under com-
pressive loads for different helical stiffener spacing, dθ (mm). Shell [±45]2s, stiffener CS: 4×4
mm.

The axial length of the semi-circular length of the grid-stiffened shell is taken as

lxu = π Rms. The buckling predictions performed for the grid-stiffened semi-circular

shell segment for various stiffener angles and helical stiffener spacing are shown in

Fig 6.36. The buckling load trend is not unusual even for a monocoque shell structure.

Jaunky and Knight [77] evaluated the accuracy of various shell theories using numeri-

cal models and the plot from their publication is shown in Fig. 6.37. The observation
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from the present study that the buckling loads are high for lower stiffener angles is in

agreement with that given in Fig. 6.37. Also, the similarity in the non-uniform varia-

tion with respect to the winding angle in both grid-stiffened and monocoque cases is

noteworthy. The buckling loads do not generally follow a uniform trend which makes it

difficult to apply intuition prior to the analysis. This is especially critical for the case of

grid-stiffened cylindrical structures as the deviation has greater variability compared to

the monocoque composite shells.

These drastic variation can be attributed to mode switching. It is likely that, a slight

variation in input parameters could trigger a completely different mode. A detailed finite

element model would be able to predict these modes, provided the critical modes are

global in nature. However, quantitative assessments are not made since no such study is

conducted. The best practical design could not be deduced from the results presented.

Those designs that are less sensitive to slight variations in parameters could be extracted

by a thorough search on various parameter range and discreteness.

It must be reiterated that the skin-stiffener interaction is not captured in the present

model. Thus, if the geometric parameters are such that this interaction may become

significant, an even higher degree of non-uniformity can be expected. The results pre-

sented demonstrate that, generalizing the stability behavior of grid-stiffened structures

based on a given set of parameters is difficult. This makes the design study significantly

more challenging when buckling constraints are imposed.

Additional justification of the foregoing discussion can be seen in Fig. 6.38, where

the buckling loads are presented for various stiffener cross-section aspect ratios for a

range of stiffener angles. It is generally possible to obtain high buckling loads by in-

creasing the stiffener depth in radial direction. However, an increase in stiffener depth

increases the coupling between extension and bending stiffness due to high eccentric-



171

Figure 6.37. Critical axial compression buckling load predictions using various theories and nu-
merical evaluation of semi-circular monocoque shells for different ply angles, θ . Shell laminate
[±θ ,±θ ,θ ]s [77]

ity of stiffeners from the reference (shell mid-plane) surface. This coupling can affect

the buckling loads adversely [64]. For the cases presented, it is seen that significant

increase in buckling loads is obtained when the aspect ratio is between 1.5 and 2 when

the stiffener angles are between 40 and 45◦.

Figure 6.39 also shows significant variations in the buckling loads for different stiff-

ener angles. The critical buckling loads when the stiffener cross-section, 6×4 and 8×4

are generally lower than 4×6 and 4×8 (see Fig. 6.38).

Based on the parametric studies conducted, it is observed that the stiffness and sta-

bility behavior of grid-stiffened structures are sensitive in a very broad range of design

variables. A code is developed to connect various subroutines that determine stability,
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Figure 6.38. Critical buckling loads of general-grid stiffened semi-circular shells under com-
pressive loads for different stiffener CS aspect ratios, (ars = hs/bs ≥ 1). Shell [±45]2s, dθ = 25.4
mm, hs measured in radial direction

strength, stiffness, and weight of both the baseline and grid-stiffened tubular designs.

The design results and discussions are provided in subsequent sections.
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Figure 6.39. Critical buckling loads of general-grid stiffened semi-circular shells under com-
pressive loads for different stiffener CS aspect ratios, (ars = hs/bs < 1). Shell [±45]2s, dθ = 25.4
mm, hs measured in radial direction

6.3 Design study

The procedure described in Chapter 5 is implemented in the present design study. The

material system used is IM7/8552 and the material properties are as given in Table 6.5.

The baseline monocoque model presented in Fig. 5.1 in Chapter 5, is analyzed to

predict the failure loads in strength and stability. Various parameters of the monocoque

baseline for calculating the design constraints are predicted and are provided in Ta-

ble 6.6. Note that the weight of the baseline is not provided. This quantity changes since

the geometry (axial and circumferential length) used to calculate the baseline weight is

dependent on the grid-stiffened unit cell geometry. The unit cell geometry changes with

respect to the design variables such as the stiffener spacing, dθ and the stiffener angle,

θ , which are variables in the design investigation.
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Table 6.5. Material properties of IM7/8552 used for the design study [2]. Modulii units in GPa
(column A) and msi (column B). Strength allowable units in GPa (column A) and ksi (column
B). Ply thickness, tply = 0.127 mm (0.005 in)

Properties A B

Long. modulus EL 164.10 23.80

Trans. modulus ET 11.72 1.70

Shear. modulus GLT 5.20 0.75

Major Poisson’s ratio νLT 0.32 0.32

Strength allowables

Long. tensile σ t
L 2.72 395

Long. compressive σ c
L 1.69 245

Trans. tensile σ t
T 0.11 16.10

Trans. compressive σ c
T 0.15 21.80

Shear τa
LT 0.12 17.40

The parameters shown for the baseline in Table 6.6 are determined for the grid-

stiffened structures as explained in Chapter 5. The range for each design variable is

given earlier in Eqs. (5.6) to (5.9). An exploratory study is conducted to evaluate the

impact of various parameters on various design constraints established. The shell lam-

inate of the grid-stiffened structure is initially selected as [±45]2s with the subscript s

indicating symmetry. Initially the weight constraint, W is arbitrarily set to a maximum

value of 0.750 in order to explore the designs. Since there are a large number of grid-

Table 6.6. Monocoque stiffness, strength, and stability predictions. Do = 165 mm, ply thickness,
tply = 0.127 mm, shell mid-plane radius, Rm = 80.5 mm

Stiffness Strength Stability

Laminate EIm GJm (Pmax)m (Tmax)m (Pcr)m (Tcr)m

kN ·m2 kN ·m2 kN kN ·m kN kN ·m

[45,0,90,−45]4s 418 317 1120 53 3978 96
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stiffened designs possible that are much lighter than the baseline, a lower limit for the

weight ratio is also set as 0.730. Eleven designs that satisfy the weight constraint limits

are generated with the design variable vector defined in Eq. (5.33) in Chapter 5, which

are shown in Table 6.7.

Table 6.7. Different cylindrical general-grid stiffened designs generated with only weight con-
straint, 0.73 <W < 0.75. Na1 is the number of helical stiffeners in one direction. i indicates the
design number for Vi (see Eq. (5.33).) Skin layup, [±45]2s. Data sorted with θ ◦

Design No. stiff. Stiff. angle Stiff. width Stiff. depth Weight ratio

i Na1 θ ◦ bs, mm hs, mm W

1 7 30 4 6.3 0.732

2 7 30 4 6.4 0.739

3 7 30 4 6.5 0.747

4 7 30 4.1 6.2 0.735

5 7 30 4.1 6.3 0.743

6 7 30 4.2 6 0.730

7 7 30 4.2 6.1 0.739

8 7 30 4.2 6.2 0.747

9 7 30 4.3 6 0.742

10 7 35 4 6 0.739

11 7 35 4 6.1 0.748

The constraints, stiffness, strength, and stability ratios, along with the ratios of buck-

ling loads to strength values of the grid-stiffened designs are presented. The numbers

labeled on the data points in the following plots represent cylindrical general-grid stiff-

ened designs indicated as i, given in Table 6.7. Figure 6.40 shows the bending, EI and

torsion, GJ ratios for the designs generated with the weight constraints as discussed.

The ratios, being less than 1, show that the stiffness constraints are not satisfied invali-

dating the grid-stiffened designs. However, the behavior of bending and torsion stiffness

is noteworthy. Considering that the stiffness values of the baseline is fixed, the bending
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and torsion stiffness of grid-stiffened behave in an inverse relation where the designs

that provide high bending stiffness give low torsion stiffness. It is interesting to note

that the combination, V11 (11th design) that provides the highest GJ is 19% lower than

the baseline. The same design exhibits a drop in bending stiffness ratio, EI of nearly

19% compared to the baseline.
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Figure 6.40. Stiffness ratios for different grid-stiffened designs when 0.73<W < 0.75. Bending
stiffness ratio, EI. Torsion stiffness ratio, GJ

Figure 6.41 presents the critical buckling load ratios. In general, all of the axial

compression buckling ratios satisfy the design constraints. The design, V6 shows a drop

of only 2.5%. The critical torque constraints, all ratios being less than one, are violated.

In the case of torsion buckling, nine of the variable sets exhibit nearly the same ratios.

These values correspond to the stiffener angle of 30◦. When the stiffener angle becomes

35◦ (V10 and V11), the drop in buckling loads are significant. This is the opposite of

what is seen for GJ in Fig. 6.40. This inverse relation makes it challenging to design for
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both buckling and stiffness constraints in the case of torsion.
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Figure 6.41. Critical buckling load ratios for different grid-stiffened designs when 0.73 <W <
0.75. Axial buckling ratio, Pcr. Torsional buckling ratio, T cr

The strength ratios are presented in Fig. 6.42. Pmax values, which relate the axial

strength of grid-stiffened to baseline are all satisfied in the set of designs shown. The

torsion buckling ratios, T max on the other hand drop significantly. Similar behavior is

shown earlier for the case of torsion stiffness ratio in Fig. 6.40 demonstrating a direct

relation between torsion stiffness and laminate strength under torque.

The ratios of buckling loads to the strength values for the grid-stiffened structures

are greater than 2 as depicted in Fig. 6.43. This behavior is observed in almost all the

designs considered in this design study. Notice that, as in the case of torsion stiffness

ratios, the torsion parameters in Fig. 6.43 show high sensitivity to a change (from 30◦ to

35◦) in the helical stiffener angle.
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From the different iterations performed without altering the shell laminate, it was

found that, obtaining a weight saving of 25% is difficult within the range and discrete-

ness specified for the design variables in Vi. The key controlling aspect in these designs

are the stiffness constraints, specifically, GJ. As a result, the study is repeated by in-

creasing the shell thickness by setting the skin laminate to [±45]3s. To compensate for

this added weight, the lower bound of the stiffener width, bs is set to 3 mm. After per-

forming some trials, it is determined that any feasible design solutions are only possible

with relaxing the weight constraint, W . Thus the upper bound of W is raised to 0.915.

The number of designs obtained is 4 by prescribing a lower bound of W = 0.909. Out

of these four designs, the two sets of design variables that provide the highest weight

savings are tabulated in Table 6.8.

The designs depicted have large values (> 2) for
(Pcr)gs

(Pmax)gs
and

(Tcr)gs

(Tmax)gs
, the con-
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Figure 6.42. Strength failure ratios for different grid-stiffened designs with 0.73 < W < 0.75.
Axial strength ratio, Pmax. Torsional strength ratio, T max



179

0 5 10
2.1

2.2

2.3

2.4

2.5

2.6

2.7

Grid−stiffened designs

(P
c
r
) g

s
/
(P

m
a
x
) g

s

 1

 2
 3

 4

 5

 6
 7

 8

 9

10
11

0 5 10
2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

Grid−stiffened designs

(T
c
r
) g

s
/(

T
m

a
x
) g

s

 1  2  3  4  5  6  7  8
 9

1011

Figure 6.43. Critical buckling to failure load ratios for different cylindrical general-grid stiffened
designs with 0.73 <W < 0.75

Table 6.8. Grid-stiffened design results. Do = 165 mm, ply thickness, tply = 0.127 mm, shell
mid-plane radius, Rs = 81.8 mm, bs and hs are in mm. Skin layup, [±45]3s

Variables Stiffness Strength Stability Wt. Saving

Shell Na1 θ bs hs EI GJ Pmax T max Pcr T cr %

[±45]3s 7 30 3.0 9.1 1.01 1.00 1.35 1.29 1.75 1.02 9.1

[±45]3s 6 30 3.2 9.9 1.01 1.00 1.38 1.32 1.93 1.03 9.0

straints defined in Eq. (5.12).

Several attempts are made to obtain increased weight savings by replacing 45◦ plies

with 0◦ or 90◦ ply angles while keeping number of plies identical to that of the laminates

in Table 6.8. 0◦ plies generate high bending stiffness and buckling loads (both in torsion

and axial compression). However, the torsion stiffness and failure torque ratios are

adversely affected while failing to meet these constraints. 90◦ plies do not improve the
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weight performance either. In fact, in general, these designs perform even more poorly

compared to the shell laminate with 0◦ plies. The ply angles other than 45◦, 90◦, and

0◦ are not considered for the shell laminate of the grid-stiffened designs. Additional

trials conducted on the grid-stiffened designs indicate that the maximum weight saving

within the specified ranges of the design variables, without relaxing any of the design

constraints established is nearly 9%. All possible options in terms of the ranges and

discreteness of the design variables are not evaluated.

The results presented show that there is potential for further investigation by con-

ducting a thorough sweep of the design space using formal optimization routines. For

example, an evolutionary algorithm would be capable of extracting higher weight sav-

ings than those reported in this study. The primary variable that could provide additional

weight savings within the framework of the analytical models employed would be the

stiffener angle, θ . A finer increment on the cross-section dimensions of the stiffen-

ers could provide additional weight savings although such dimensions would be of no

practical significance.

The analytical models employed for the present design study do not have the capa-

bility to predict any local buckling modes. Note that the minimum number of stiffeners

in one direction around the circumference is set to 6 in the present design study. It is in-

tentionally kept to this value so as to avoid generating designs that has a high likelihood

of buckling locally.

Robust analytical tools which can accurately predict various local buckling modes

(including different mode interactions) would facilitate a high fidelity search of the de-

sign space for increased weight savings from using grid-stiffened structures. At the very

least, computationally efficient tools which can conduct a thorough evaluation of the

design variables to set their limits such that certain instability modes can be avoided
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are required. The designs discussed here are of approximate nature considering the

assumptions employed, especially for instability and strength predictions. It must be

mentioned that the maximum weight saving achieved is within the range of accuracy of

the analytical models employed.

It is known that the co-curing of the grid layer and the skin would provide sufficient

strength for several aerospace applications [88]. However, in practical designs, several

knockdown factors are imposed to consider the effect of structural imperfections arising

from manufacturing limitations and errors. No such factors are used in the present

design study while calculating the design constraints discussed.



Chapter 7
Conclusions and future work

An innovative structural concept to replace the conventional monocoque spar of the

heavy-lift rotor blades with grid-stiffened composite shells was proposed. The present

research is the first study to consider grid-stiffened shells for rotor blade spars with

the objective to reduce blade weight with stiffness, strength, and stability constraints.

Limitations in various state-of-the-art analytical models were identified in predicting

the stiffness coefficients of close cross-section grid-stiffened structures with high length

to diameter ratios. These analytical models are not capable of analytically capturing the

exact geometry of the stiffeners in the grid-stiffened cylindrical structures.

A new analytical model was developed which can accurately capture the exact ge-

ometry of the helical stiffeners incorporating capability to capture the coupling between

their deflection modes due to their complex geometry. The new model is capable of

explicitly prescribing boundary condition for the stiffeners, which is novel. Validation

studies of certain analytical predictions were performed using FEM and experiments.

Several parametric studies were conducted to quantify the structural behavior of grid

and grid-stiffened structures. A design study was conducted to determine the weight

saving potential of general-grid stiffened structures compared to a baseline monocoque
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structure with stiffness, stability, and strength constraints.

Based on the studies conducted, the following conclusions can be drawn:

7.1 New analytical model

A methodology was successfully developed to derive the stiffness coefficients of grid

structures from the stiffness matrices of the stiffeners modeled as beams. The validity

of the procedure was established by comparing the planar grid model derivations with

previously published and validated formulations. The analysis developed in the present

study employed the equivalent stiffness (smeared approach) method to determine the

stiffness characteristics of grid and grid-stiffened structures. The model is capable of

analyzing a variety of stiffening configuration such as angle-grid, ortho-grid, isogrid,

and general-grid. The procedure entails the direct use of stiffness matrices of the con-

stituent structural members of the grid structure, which can be straight, curved, or helical

beams. This methodology also facilitates the explicit definition of any boundary condi-

tions at the stiffener ends, which is novel.

7.1.1 Stiffness evaluation

An FEM methodology was developed using a commercial, general purpose tool to

model the overlapping sections of the stiffeners with reasonable accuracy. The results

from this FEA and experiments match within 6%.

The stiffness coefficients of planar grid were derived using the new methodology

developed and the analytical model is validated against various published results for dif-

ferent grid topologies. The in-plane shear stiffness of angle-grid structure was predicted
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using the present model and the results were demonstrated to be in excellent agreement

(within 5%) with FEM results, thereby validating the model.

Cylindrical grid specimens were fabricated by wet filament winding technique and

tested for deflections under axial, bending, and torsion loading to determine their stiff-

ness behavior. The new model predicted all of these stiffness coefficients within 6% of

experimental and FEM results. The existing state-of-the-art showed significant errors

(39%) in predicting torsion stiffness. This is because the planar grid formulation does

not capture the coupling between various deflection modes of the stiffeners due to their

curved geometry. Several parametric studies were also conducted on cylindrical grids

using the new formulation and demonstrated excellent correlation between FEM results.

The maximum error, considering various stiffener angles, aspect ratios of the stiffener

cross-section, was less than 10%. The new analysis demonstrated excellent accuracy in

capturing various complex deflection modes of the stiffeners, especially, the helical and

the circumferential ones.

It was shown that, the torsion and axial stiffness of the cylindrical grids were di-

rectly influenced by the stiffener width (circumferential direction.) Also demonstrated

were the effects of cylinder diameter and stiffener spacing on torsion stiffness behav-

ior of the grid structures. As the diameter of the cylinder was increased, for a constant

stiffener spacing, the effect of curvature of the stiffeners on the cylindrical grids was di-

minished. The planar grid formulation exhibited an error of 60%, when the diameter is

small compared to the stiffener spacing. From the models analyzed, with the maximum

grid density and a 165 mm diameter, the differences between the planar and the new

model was nearly 20%. As the thickness of the skin increased, the error reduced to 13%

between the planar and cylindrical models.

The axial, bending, and torsion stiffness evaluation of cylindrical grid-stiffened struc-
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tures were also performed. The effect of in-plane bending rigidity of the stiffeners on

the in-plane shear stiffness could be significant and not to be neglected. However, when

the structure had large diameter compared to the stiffener dimensions, planar based for-

mulation gave minimal error of the order of 5-10%.

It was established using different validation studies that the newly developed model

is robust and accurate for predicting the stiffness coefficients of cylindrical grid and

grid-stiffened structures.

7.1.2 Stability evaluation

Well-established stability formulations were employed to predict the buckling loads of

grid-stiffened models by integrating the newly developed analysis. The torsional buck-

ling problem was conducted assuming that the structure is infinitely long where the

effect of boundary conditions on the critical buckling loads can be neglected.

A set of complex buckling modes exhibited by finite length grid-stiffened tubes ob-

tained using finite element models were presented. The global buckling mode was iden-

tified by visually comparing those of grid-stiffened cylinders to the critical buckling

mode of a monocoque tube. The critical torsional buckling modes of grid-stiffened

structures are observed to be sensitive to all the variables that define the structures, es-

pecially that of the grid layer.

It was shown that, for the models considered, the torsional buckling loads of the

general-grid stiffened cylinders peak at 48◦ stiffener angle when the aspect ratio of the

stiffener cross-section is 1. The critical buckling loads increased with increasing grid

density. All other parameters being the same, for a given cross-section area of the stiff-

eners, a change in the stiffener cross-section aspect ratio can alter the buckling load
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significantly. This means that, different torsional instability responses (of the order of

60% for a particular set of parameters) can be obtained for a given structural weight.

Also, a parametric study on the effect of aspect ratio on the torsional buckling loads

showed that the stiffener angles at which the critical buckling load peaks could be varied.

From the general-grid stiffened models analyzed with a prescribed limit on the stiffener

angles, the critical torsional buckling load was found to be maximum for a stiffener

angle of 30◦.

The effect of skin thickness on the torsional buckling load was also evaluated. This

was conducted by varying the shell thickness and was demonstrated that an increase in

skin thickness not only could increase the buckling load but also could shift the stiffener

angle at which the critical buckling loads peak. An increase of up to 33% was obtained

when the thickness of the skin is increased keeping all other parameters constant except

the stiffener angle.

Existing stability formulation were employed and the new smeared analysis was in-

tegrated to this formulation to predict the critical compressive buckling loads of general-

grid stiffened structures. A semi circular cylindrical section, representative of the com-

pression region of a cylinder under transverse bending was selected as the model for this

study. This strategy was adopted since state-of-the-art analytical models are not capable

of accurately predicting the complex local buckling and mode interactions of a stiffened

cylinder.

The general-grid stiffened cylindrical structures analyzed exhibited dramatic vari-

ations in their critical compression buckling loads with respect to a range of stiffener

angles. Similar behavior was also observed in a parametric study using stiffener aspect

ratio as the variable. It was observed that a generalized conclusion of the compression

buckling behavior is not possible due to the high sensitivity of various parameters on the
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buckling loads. It is believed that the abrupt variations in these buckling loads are due

to mode switching, even on slight variations in the parameters used.

7.2 Design study

A preliminary design study is performed on grid-stiffened shell cylindrical structures

to determine their weight savings potential compared to a monocoque baseline. No

formal optimization algorithm was employed. The objective was to identify general-

grid stiffened designs (with an outer diameter of 165 mm) that satisfy certain constraints

at the same time lighter than the monocoque designs.

The constraints are established as the ratios of various parameters of grid-stiffened

to that of the baseline. These parameters are the strength (axial and shear), stiffness

(bending and torsion) , and stability (bending induced axial compression and torsion).

The key design variables were identified as the number of one-direction stiffeners

in the cross-section Na1, stiffener angle, θ , and the cross-section dimensions hs and bs.

Several combinations of these parameters are generated so that the weight of the grid-

stiffened structure is less than that of the baseline. Those parameters that satisfied this

constraint, were used to determine all the constraints.

Initially, several grid-stiffened structures that are 25% lighter than the baseline were

evaluate to study the effect of the design variables on stiffness, strength, and stability

constraints. It was found that none of the design would satisfy all the design constraints

simultaneously.

Eventually the weight constraint was gradually relaxed to determine several sets

of design variables that can satisfy all the design constraints. It was found that the

maximum weight savings, compared to the baseline selected, is 9.1%.
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Note that no formal search algorithms are used. A broader sweep of the design space

with the analytical tools employed was not possible. The critical constraints that were

difficult to satisfy are the torsion stiffness of the grid-stiffened structure.

7.3 Future directions

During the present study, many challenges were identified, based on which a set of

recommended future works are enumerated.

• A significant advantage in the methodology presented to derive the equivalent

stiffness coefficients of grid and grid-stiffened structures is that the degrees of

freedom of the stiffener joints can be manipulated efficiently. Analytical formu-

lations were presented for various stiffener boundary conditions such as simply

supported, clamped, and elastic. However, this study did not evaluate the relative

merits of employing any of these boundary conditions in predicting the structural

responses of grid and grid-stiffened structures. Also, the present research did not

examine the validity domain of a particular stiffener boundary condition where

the geometric and/or material parameters can be variables. It is recommended

to address these voids by conducting appropriate parametric and validation stud-

ies. For example, elastic verses clamped boundary conditions when the stiffener

height or width or both are changed. Notice that, depending on the degrees of

freedom provided for the stiffener nodes (joints), appropriate plate or shell theory

must be selected.

• Stiffened structures are primarily used in large structures to save weight. The ad-

vantages of these type structures are in buckling critical applications. It is required

to evaluate the benefits of grid-stiffened structures by considering structures that
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are larger than the ones presented. Specifically, quantify the size of the structure

at which these designs become significantly efficient in reducing weight while

satisfying several design constraints.

• Fabrication of grid-stiffened structures is a non-trivial task. Considering the ad-

vancements in fabrication techniques currently available, it is recommended to

use the necessary tooling to fabricate different grid and grid-stiffened specimens

for experimental studies.

• A rigorous experimental evaluation is required to obtain accurate insight into the

deflection behavior of stiffeners in grid and grid-stiffened cylindrical structures.

Also, explore their strength characteristics under bending, torsion, and axial load-

ing conditions typically experience by a helicopter rotor blade. An empirical so-

lution methodology to predict the strains at various locations of grid-stiffened

structures would be beneficial for design studies. Also, studies on skin–stiffener

debonding and intralaminar failure within the unidirectional grid must be con-

ducted.

• Predicting the stability behavior of grid-stiffened structures is challenging. This

is due to the complex critical buckling modes exhibited by these structures. The

critical mode could be local (skin buckling), local–global interaction (skin or stiff-

ener buckling along with the whole structure exhibiting global mode), local–local

interaction (skin and stiffener buckle in combination.) Presently, computation-

ally efficient analytical tools that can accurately predict these phenomena are not

available. It is recommended to develop computationally efficient analytical mod-

els that can predict the buckling mode interactions under different loading sce-

narios. Possible mode switching behavior must be investigated for grid-stiffened

structures buckling under compressive loads. Torsional buckling load estimation
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of grid-stiffened tubes of finite length should be added to the design matrix.

• It is recommended to employ formal optimization tools to thoroughly search the

design space in order to identify potential weight savings of grid-stiffened struc-

tures for heavy-lift rotor blade spars.

• The practical significance in fabricating blade-like stiffeners were not considered

while deriving the analyses. It was assumed that the stiffeners are rigidly con-

nected to the shell structure. The stiffeners, considered to be made from uniaxial

fiber reinforced composites, there is a practical limit of the stiffener height (ra-

dial direction) dimensions that can be achieved after which the stiffeners would

not provide sufficient strength. This dimension can be ascertained by the careful

study of the strain levels in the stiffeners. The failure checks must be performed

relaxing the assumption used in the present study that the stiffeners only resist

axial strains.

• It would be interesting to quantify the relative performances of the skin and the

grid layer of grid-stiffened structures. Specifically, stiffness and strength. Com-

pare the torsion and bending stiffness contribution as well as the maximum failure

load obtained. This would assist further design study where these components

may be independently optimized for the best performance.

• The effect of elastic boundary conditions at the stiffener joints should be studied

in more detail. Experimental studies would provide insight into the behavior of

the stiffener joints.

• It is recommended to evaluate the feasibility of providing the entire blade cross-

section , not only the spar, with grid-stiffened design. The model developed in the

present investigation can be extended to an elliptical cross-section, resulting in a
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useful tool for stiffness, and global stability predictions. It is expected to be a non-

trivial task since the solutions for elliptical cross-section may not be closed-form.

Numerical methods could be employed to determine equivalent stiffness charac-

teristics, while not significantly sacrificing the analysis’ computational efficiency.

• The local stability characteristics of grid-stiffened structures were not conducted

for tensile loading. Although not studied, it is likely that a thin shell between

the stiffeners could buckle due to lateral compressive loads. For example, an

angle-grid stiffened panel under tension may buckle the skin between the stiffen-

ers locally, when the stiffeners form elongated rhombic profiles.

• Combined load cases were not considered in the present study. It is recommended

to evaluate the stability characteristics of grid-stiffened structures under combined

bending, axial tension, and torsion loads

• Domain other than helicopter rotor blades, such a large wind turbine, blade should

be explored. It is anticipated that, much higher weight savings could be obtained

for such large structures. Note that very specialized analytical models that can

predict the local buckling loads accurately are necessary to investigate this do-

main.



Appendix A

A.1 Polar Moment of Inertia

Reference [40] provides the expressions to determine the polar moment of inertia of a

rectangular cross-section as:

J = β ab (A.1)

where a and b are the width and depth of the cross-section. The parameter β is given by

the expression in Eq. (A.2).

β
(a

b

)
=

256
π6

∞

∑
m=1

∞

∑
n=1

1
m2n2 [m2(b/a)2 +n2]

(A.2)

where m and n are odd integers.

A.2 Shear correction factor

In determining the variation of transverse shear stress through a composite beam cross–

section, the discrepancy between the actual state and the constant stress state predicted

by the first–order shear deformation theory is often corrected in computing the trans-
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verse shear force resultants, (Qx, Qy) by multiplying with a parameter, αsc called the

shear correction coefficient [89]. Thus,

Qx

Qy

= αsc

∫ h
2

− h
2

σxz

σyz

 dz (A.3)

The shear correction coefficient, αsc is determined such that the strain energy due

to the transverse shear stresses in the above equation equals the strain energy due to the

transverse stresses predicted by the three–dimensional elasticity theory. For a homoge-

neous beam with rectangular cross–section with width, b and height, h, the actual shear

distribution through the thickness of the beam is determined using,

σ c
xz =

3Q
2bh

[
1−

(
2z
h

)2
]
,−h

2
≤ z ≤ h

2
(A.4)

where Q is the transverse shear force. The transverse shear stress in the first–order

theory is constant, σ f
xz = Q/bh. The strain energies due to the transverse shear stresses

in the two theories are:

Uc
s =

1
2G13

∫
A
(σ c

xz)
2 dA =

3Q2

5G13bh
(A.5)

U f
s =

1
2G13

∫
A
(σ f

xz)
2 dA =

Q2

2G13bh
(A.6)

Shear correction factor is the ratio of U f
s to Uc

s which gives αsc = 5/6. The value of αsc

for a general laminate depends on lamina properties and lamination scheme. This value

is applicable to the uniaxial fiber reinforced composite beams, such as the case used in

this investigation [20].
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A.3 Cartesian to Frenet frame

The Frenet frame is represented in vector form as r⃗(t̂, n̂, b̂). Position vector of a point in

a helix in the Cartesian coordinate system:

r⃗ = Rcosψ êi +Rsinψ ê j +hψ êk (A.7)

t̂ =
d⃗r
ds

(A.8)

n̂ =
t̂
∥t̂∥

(A.9)

b̂ = t̂ × n̂ (A.10)

where ds= cdψ for a helix where c=
√

R2 +h2 and 2πh is the pitch. R is the cylindrical

radius. The transformation matrix is to convert from {t,n,b} to the Cartesian coordinate

system is given by [50],

Ti jk =


−(R/c)sinψ (R/c)cosψ (h/c)

−cosψ −sinψ 0

(h/c)sinψ −(h/c)cosψ (R/c)

 (A.11)



Appendix B

B.1 Beam in 3D space

The stiffness matrix of a beam in space in the local coordinate system is given by
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B.2 Grids with elastic supports for stiffeners

Ideally, a node provides neither a perfectly clamped nor a perfectly pinned boundary

condition for the stiffeners. It is identified to be somewhere between the two [20]. A

flexibility condition can be imposed at the nodes analytically by considering the compli-

ance of the laminate structure at the overlapping section. The nodal laminate and in turn

its stiffness properties depend on the manufacturing technique employed. For example,

the stacking sequence depends on the grid winding process and the elastic constants

of the lamina. A schematic of a grid fabrication using an automated filament winding

technique is depicted in Fig. 2.9.

To simplify the analysis, it is assumed that the node has a square profile. As a di-

rect consequence of having large number of plies (depending on the stiffener depth) in

the nodal laminate, the coefficients, Bi j are relatively small. The flexibility provided

by the nodes can be directly incorporated into the boundaries of the stiffeners as elastic

supports. The in-plane shear stiffness of the laminate at the nodes can be captured by in-

troducing torsion springs at the supports. The stiffeners are isolated as explained earlier

in Sec. 3.2.1.3 and the loading and boundary conditions are provided in Figs. B.1. The

shear stiffness coefficients are determined from the deflections and geometry. Eq. (3.25)

gives the spring stiffness matrix. The stiffness matrix of the assembly is derived in

Eq. (??), following the methodology used in Ref. [43].

There are three degrees of freedom for an isolated beam depicting a stiffener such

as the one in Fig. B.1(b); rotations ωx=0,L0 at the support and transverse deflection δy.

Note that the joint flexibility is associated with the rotations ω0 and ωL0 at the nodes.

The expressions for the displacements of the beam in Fig. B.1(b) in which the spring

constants at the beam ends are not identical are provided in Eqs. (B.2) to (B.4). Consider

Entayyo
Rectangle

Entayyo
Rectangle

Entayyo
Rectangle
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Figure B.1. Longitudinal and transverse stiffener loading and BCs

the spring constants at x = 0 and x = L0 be kω0 and kωl respectively. Then,

ω0 =
Fy L2

0

L0

[
1

2kω0

+
(EI

L0

) 1
kω0 kωl

]
(B.2)

δL =
FyL3
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L0
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12EI
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1
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( 1
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1
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+
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L0

) 1
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]
(B.3)

ωl =
Fy L2

0

L0

[
1

2kωl

+
(EI

L0

) 1
kω0 kωl

]
(B.4)

L0 = L0 +EI
( 1

kω0

+
1

kωl

)
(B.5)

When the end springs are identical with rigidity kω0 = kωl ≡ kω , then the displacement

vector is given by Eq. (B.6). As the spring stiffness kω → ∞, the nodal rotations vanish

and the displacement vector for the beam in Fig. B.1(b) given in Eq. (B.6) reduces to
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that of beams with clamped boundary conditions as shown in Eq. (B.7).
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(B.7)

Identical results can be obtained by solving the differential equation of an Euler beam

with appropriate boundary conditions. For the structure shown in Fig. B.1(b), the bound-

ary conditions are provided in Eq. (B.8) and the beam bending differential equation is

given in Eq. (B.9). The slope and deflection solutions are provided in Eq. (B.10) and

Eq. (B.11) respectively.

EI w′′(x) =


+kω0 w′(x), at x = 0

−kωl w′(x), at x = L0

(B.8)

EI w′′′(x) =−Fy (B.9)

EI w′(x) =−Fy

(x2

2

)
+C1x (B.10)

EI w(x) =−Fy

(x3

6

)
+C1

(x2

2

)
+C2x (B.11)
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and the constants C1 and C2 from the integration are provided in Eqs. (B.12).

C1 = Fy L0


1

kωl

+
L0

2EI
L0

EI
+
( 1

kω0

+
1

kωl

)


C2 =C1

( EI
kω0

)
(B.12)

As for the case of the vertical beam in Fig. B.1(a), the displacements can be obtained

by replacing the length L0 with L90, the external load Fy with Fx, and the coordinate

x with y. The effect of elastic BCs is evaluated and compared with FEM models with

overlap node designs as explained in Section. 2.2.1. Complexity arises in the elastic BC

case since the value for the torsion spring constant is not readily obtained. A study on

the effect of elastic stiffener BCs in a planar angle-grid configuration is presented. The

stiffener orientation for the problem presented is 45◦ and the variation of shear stiffness

of the angle-grid structure is plotted against different spring constants. The geometry

and material properties are identical to that of the S8 specimen (see Table 2.1.) The

shear stiffness of the overlap section is also noted along with the shear stiffness of the

angle-grid with clamped BC case in Fig. B.2.

It is evident from Fig B.2 that the torsion spring constants determined from the

overlap region in-plane stiffness do not have any significant effect on the shear stiffness

of the grids analyzed. Only a maximum of 2% difference is observed between the in-

plane shear stiffness determined using clamped and elastic stiffener BCs. This implies

that the stiffeners are essentially clamped at their joints for the models analyzed.

Parametric studies are not performed to investigate the effect of different stiffener

aspect ratios and attached skin. It is likely that the results could show a different trend. It

is anticipated that there could be other sources of compliance at the stiffener joints apart
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Figure B.2. Variation of shear stiffness of 45◦ angle-grid with different spring constant values
for the elastic supports. Shear stiffness for the clamped BC case is also shown

from just the in-plane torsion of the overlap regions. Note that the results presented are

not of a general nature and so are not conclusive. Further investigation is necessary to

determine the effect of elastic boundary conditions at the stiffener joints in the overall

behavior of grid and grid-stiffened structures.
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B.3 Transfer to stiffness matrix

The stiffness matrix is obtained by reordering the TM after expanding Eq. (3.123) using

Eqs. (3.125) to (3.127).

Q(ψ)[12×12] =



Q11 Q12 0 0

Q21 Q22 0 0

Q31 Q32 Q33 0

Q41 Q42 Q43 Q44


(B.13)

Rearranging the sub-matrices to separate forces and displacements by,



Q11 Q12 I 0

Q21 Q22 0 I

Q31 Q32 0 0

Q41 Q42 0 0





−V0

−M0

Vψ

Mψ


=



0 0 0 0

0 0 0 0

0 Q33 0 −I

Q44 Q43 −I 0





∆0

Φ0

∆ψ

Φψ


(B.14)

The stiffness matrix is then given by,

K(ψ)[12×12] =



Q11 Q12 I 0

Q21 Q22 0 I

Q31 Q32 0 0

Q41 Q42 0 0



−1 

0 0 0 0

0 0 0 0

0 Q33 0 −I

Q44 Q43 −I 0


(B.15)

where I and 0 are the 3×3 identity and null matrices respectively.



Appendix C

C.1 Heavy lift blade properties

Table C.1. Blade cross-section stiffness [2]

Loc. r/Rb 0.25 0.5 0.75 1

Chord c 3.43 3.25 3.07 2.89

Thick. ratio t/c 0.2 0.18 0.12 0.08

Flap bend EI f
b 1.87×107 8.07×106 1.98×106 3.96×105

Lag bend EIl
b 1.51×108 9.75×107 6.62×107 3.40×107

Torsion GJb 2.34×107 1.65×107 5.52×106 1.98×106

Axial EAb 3.24×108 1.79×108 1.18×108 6.93×107

Table C.2. D-spar laminate stacking sequence at various blade locations. Spar width at 40%
chord [2]

Rad. loc. D-spar No. plies Spar Thick. Spar

r/Rb laminate width, w ratio, t/c depth, d

0.25 [±4533,060,±452] 130 16.46 0.20 8.23

0.50 [±4533,030,±452] 100 15.60 0.18 7.02

0.75 [±4528,020,±452] 80 14.74 0.12 4.42

1.00 [±4528,010,±452] 70 13.87 0.08 2.77
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Table C.3. Monocoque blade cross-section design loads [2]

Section Flap BM, ft-lb Lag BM, ft-lb Torsion, ft-lb Axial force, lb

0.25 Rb 85,000 70,000 -7500 92,000

0.50 Rb 38,000 40,000 -5000 71,000

0.75 Rb 22,000 11,500 2000 44,000

1.0 Rb 6400 3700 1000 30,000
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