
The Pennsylvania State University

The Graduate School

REDUCING INTERFERENCE IN MEMORY HIERARCHY

RESOURCES USING APPLICATION AWARE MANAGEMENT

A Dissertation in

Computer Science and Engineering

by

Sai Prashanth Muralidhara

c© 2011 Sai Prashanth Muralidhara

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2011

The dissertation of Sai Prashanth Muralidhara was reviewed and approved∗ by the

following:

Mahmut Taylan Kandemir

Professor of Computer Science and Engineering

Dissertation Advisor, Chair of Committee

Padma Raghavan

Professor of Computer Science and Engineering

Mary Jane Irwin

Professor of Computer Science and Engineering

Qian Wang

Associate Professor of Mechanical and Nuclear Engineering

Raj Acharya

Head of Department of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

Aggressive technology scaling has resulted in an increase in number of cores being
integrated on-chip. While on-chip cores are increasing at a fast rate, the memory
hierarchy resources are scaling at a much slower pace. The memory resources, such
as different levels of on-chip cache and the off-chip memory bandwidth, are costly
and are often shared across multiple on-chip cores. This leads to multiple appli-
cations contending for access to these common resources. In the process, these
applications can harmfully interfere with one another, and, this interference can
result in significant degradation of both system throughput and individual applica-
tion performance. Therefore, intelligently managing the shared memory resources
by mitigating inter-application interference is vitally important in emerging mul-
ticore systems.

This dissertation makes three key contributions towards addressing the above
problem of interference in shared memory resources. First, this dissertation con-
siders the last-level shared cache and the off-chip memory as instances of shared
memory resources, and, studies the causes and different ways in which applica-
tions interfere with one another while contending for a resource. Second, this
dissertation studies the negative impact of resource contention on application and
system performances. Third, this dissertation proposes novel schemes to mitigate
inter-application interference and thereby improve system and application perfor-
mance. These schemes aim to efficiently manage the resources in an application
aware manner with the goal of mitigating the overall inter-application interfer-
ence. An application aware resource management scheme considers the memory
access characteristics of all the contending applications and uses this information
to manage the shared resource. The resource management decisions are based on
two key principles: 1) isolating applications/threads that harmfully interfere from
each other by partitioning the resources between the interfering applications, and,
2) deciding the size of the resource partition that an application gets based on its

iii

memory access characteristics and requirements.
The trend of integrating increasing number of cores on a single chip is pro-

jected to continue into the future. This continued scaling is propelling the parallel
computation capability of emerging multicore systems. Efficient management of
shared memory hierarchy resources will become ever more important in the future
if we are to ensure that applications extract the maximum possible parallelism
from these multicore systems. This dissertation takes an important step towards
addressing this problem by proposing novel schemes to efficiently manage mul-
tiple memory hierarchy resources. These schemes are very effective in practice,
improving both system performance and individual application performance.

iv

Table of Contents

List of Figures ix

List of Tables xiv

Acknowledgments xv

Chapter 1
Introduction 1
1.1 Problem: Interference in Memory Hierarchy Resources 2

1.1.1 Shared Cache Interference 2
1.1.2 Off-Chip Memory Interference 3

1.2 Approach: Application Aware Management 4
1.3 Contributions . 6

Chapter 2
Background 9
2.1 Current and Future Trends . 9
2.2 Shared Resources . 9

2.2.1 On-Chip Cache Hierarchy 10
2.2.2 Off-Chip Memory . 11
2.2.3 Interconnect Network . 13

Chapter 3
Application-Aware Memory Channel Partitioning 14
3.1 Introduction . 14
3.2 Background . 16
3.3 Motivation . 17
3.4 Memory Channel Partitioning (MCP) 20

v

3.4.1 Profiling of Application Characteristics 21
3.4.2 Preferred Channel Assignment 21

3.4.2.1 Intensity Based Grouping 22
3.4.2.2 Row-Buffer Locality Based Grouping 23
3.4.2.3 Partitioning Channels between Application Groups 23
3.4.2.4 Preferred Channel Assignment within an Applica-

tion Group . 24
3.4.3 Allocation of Pages to Preferred Channel 24

3.5 Integrated Partitioning/Scheduling (IMPS) 25
3.6 Implementation . 27
3.7 Related Work and Qualitative Comparisons to Previous Work . . . 28
3.8 Evaluation Methodology . 30
3.9 Results . 32

3.9.1 Comparison with Previous Scheduling Policies 34
3.9.2 Interaction with Previous Scheduling Policies 35
3.9.3 Comparison with Prior Work on Page Mapping 37
3.9.4 Impact of Cache Line Interleaving 38
3.9.5 Effect of MCP and IMPS on Fairness 38
3.9.6 Sensitivity Studies . 39

3.10 Conclusion . 40

Chapter 4
Reuse Distance Based Performance Modeling and Workload

Mapping 42
4.1 Introduction . 42
4.2 Background and Setup . 44
4.3 Motivation . 47
4.4 Problem Definition and Roadmap 51
4.5 Modeling Performance Effects . 52

4.5.1 Reuse Distance Analysis . 52
4.5.2 Reuse Distribution Based Parameters 53
4.5.3 Performance Effects . 56

4.5.3.1 Application Characterization 56
4.6 Reuse Distance Based Workload Mapping 58
4.7 Experimental Evaluation . 62
4.8 Discussion of Related Work . 65
4.9 Conclusion and Future Work . 67

vi

Chapter 5
Intra-Application Cache Partitioning 68
5.1 Introduction . 68
5.2 Background and Setup . 70

5.2.1 Architecture Specification 70
5.2.2 Parallel Program Structure 70

5.3 Motivation . 71
5.3.1 Why Intra-Application Cache Partitioning? 71

5.3.1.1 Performance Variability 71
5.3.1.2 Cache Interaction Across Threads 74
5.3.1.3 Cache Sensitivity Variability 75

5.4 Dynamic Cache Partitioning . 76
5.4.1 CPI Based Partitioning . 76
5.4.2 Dynamic Model Based Partitioning 77
5.4.3 Implementation Details . 79

5.5 Experimental Evaluation . 80
5.5.1 Dynamic Cache Partitioning Snapshot 81
5.5.2 Comparison with Alternate Schemes 81

Chapter 6
Bandwidth Constrained Coordinated HW/SW Prefetching for

Multicores 83
6.1 Introduction . 83
6.2 Background and Methodology . 85

6.2.1 Prefetching . 85
6.2.2 Experimental Setup . 86

6.3 Empirical Motivation . 87
6.3.1 Prefetching Benefits . 87
6.3.2 Off-Chip Bandwidth Effects 89
6.3.3 Prefetch Request Priority 91

6.4 Bandwidth Aware Prefetching . 92
6.4.1 Core-Level Prefetch Manager 93
6.4.2 Prefetch Levels . 94
6.4.3 Global Prefetch Manager . 95

6.5 Experimental Evaluation . 98
6.6 Related Work . 101
6.7 Concluding Remarks . 102

vii

Chapter 7
Communication Based Proactive Link Power Management 103
7.1 Introduction . 103
7.2 Target Architecture . 104
7.3 Empirical Motivation . 105
7.4 Link Usage Based Phase Classification 107

7.4.1 Link Vector . 107
7.4.2 Runtime Classification . 108
7.4.3 Classification Example . 108

7.5 Markov Based Prediction . 108
7.5.1 Basic Markov Prediction . 109
7.5.2 Markov Prediction Using a Threshold 110

7.6 Evaluation . 111
7.6.1 Setup . 111
7.6.2 Results . 111

7.6.2.1 Basic Markov Prediction 111
7.6.2.2 Markov Prediction Using a Threshold 112

Chapter 8
Conclusion and Future Work 114
8.1 Future Work . 115

Bibliography 116

viii

List of Figures

1.1 Bzip’s performance when executed with different companion appli-
cations. Bzip and the companion application are run on a two-core
system with the cores sharing a last level cache. Performance results
are normalized to the highest performance case. 3

1.2 Bzip’s performance when executed with different companion appli-
cations. Four copies each of Bzip and the companion application
are run on an eight-core system with the cores sharing two off-chip
memory channels. Performance results are normalized to the high-
est performance case. 4

2.1 A three-level hierarchical cache architecture. 11
2.2 A dual inline memory module (DIMM) comprising of eight parallel

DRAM devices connected to the memory controller. 11
2.3 A DRAM device with four banks of memory arrays. 12

3.1 Conceptual example showing benefits of mapping data of low and
high memory-intensity applications to separate channels. 17

3.2 Application slowdowns due to interference between high and low
memory-intensity applications. 18

3.3 Conceptual example showing benefits of mapping data of low and
high row-buffer hit rate memory-intensive applications to separate
channels. In both (a) and (b), the top part shows the request arrival
order and the bottom part shows the order in which the requests
are serviced. 19

3.4 Application slowdowns due to interference between high and low
row-buffer hit rate memory-intensive applications. 20

3.5 MCP: Application Grouping. 22
3.6 MCP and IMPS performance (normalized) across 240 workloads. . 32
3.7 MCP and IMPS performance for 4 sample workloads and avg across

40 balanced workloads. 33

ix

3.8 MCP and IMPS Performance across memory-intensity categories.
% gain values of IMPS over FRFCFS are labeled. 33

3.9 MCP and IMPS performance (normalized) vs previous scheduling
policies averaged across 240 workloads. 35

3.10 MCP and IMPS performance vs previous scheduling policies across
memory-intensity categories. Percentage improvement values of
IMPS over FR-FCFS are displayed. 35

3.11 MCP and IMPS performance over different scheduling policies (240
workloads). 36

3.12 MCP and IMPS Performance vs load balancing across memory con-
trollers [1] (40 workloads). 37

3.13 System throughput and harmonic speedup with cache line inter-
leaving (240 workloads). 38

3.14 Performance and fairness compared to previous scheduling policies
(240 workloads). 38

3.15 Performance vs Profile interval (40 workloads). 40
3.16 Performance vs Execution interval (40 workloads). 40
3.17 Performance vs MPKIt (40 workloads). 40

4.1 A three-level hierarchical cache architecture. 45
4.2 Representation of the three-level cache hierarchy. 45
4.3 Major system parameters and their values. 47
4.4 Throughput of different application-to-core mappings when exe-

cuted on a purely shared, pairwise shared and the three-level hierar-
chical cache architecture. Note here that, throughput is normalized
with respect to the one with the highest throughput value in each
architecture case. 48

4.5 (a) shows the performance of Bzip on a pairwise shared cache ar-
chitecture with different companion applications. (b) shows the
performance of Bzip on a three-level hierarchical cache system with
different combinations of companion applications. Performance is
normalized with respect to the highest performance case. 50

4.6 (a) shows the performance of Lbm on a pairwise shared cache ar-
chitecture with different companion applications. (b) shows the
performance of Lbm on a three-level hierarchical cache system with
different combinations of companion applications. Performance is
normalized with respect to the highest performance case. 50

4.7 High level description of our approach to application-to-core map-
ping. 51

x

4.8 A part of the reuse distance distribution of Bzip with the hit-miss
threshold barrier marked. 53

4.9 Reuse distance distribution of a sample application epoch with dif-
ferent thresholds. 54

4.10 (a) shows the correlation of HF with the performance degradation
of the companion applications, and (b) shows the correlation of
SF with the application’s own performance degradation. The data
points represent different applications. 58

4.11 Single-level grouping algorithm using fixed thresholds. 59
4.12 Hierarchical application grouping algorithm. 61
4.13 Illustration of the grouping and mapping steps. 62
4.14 Throughput comparison for four representative workloads and the

average case (over all 12 workloads) on the eight-core CMP. 63
4.15 Throughput comparison on an eight-core CMP when workload of

perl, bzip, gromacs, sjeng, gcc, mcf, lbm and libq applications is
executed. 64

4.16 Performance comparison of applications on the eight-core CMP
when a workload of perl, bzip, gromacs, sjeng, gcc, mcf, lbm and
libq applications is executed. 64

4.17 Throughput comparison on a 12-core CMP. 65
4.18 Performance comparison of applications on a 12-core CMP. 65

5.1 Left: A sample execution for shared-memory multithreaded appli-
cation. Right: Progress of threads in a parallel section at a partic-
ular point during execution. 71

5.2 Performance of individual threads of the application normalized to
the fastest thread. 72

5.3 Number of L2 misses incurred by each individual thread normalized
to the thread with highest misses. 72

5.4 Correlation coefficient between the number of L2 cache misses and
the corresponding CPI values. 72

5.5 CPI values of the four SWIM application threads during 50 consec-
utive execution intervals. 73

5.6 L2 misses during 50 execution intervals of thread 2 of SWIM bench-
mark. 73

5.7 Percentage of cache interaction that happens to be inter-thread. . . 74
5.8 Percentage of constructive inter-thread cache interactions. 74

xi

5.9 CPI curves for two threads of SWIM when executed with 16 and
32 ways. Clearly, thread 1 shows considerably more improvement
when the number of ways is increased from 16 to 32, when compared
to very little improvement exhibited by thread 2 75

5.10 Dynamic curve fitting based cache partitioning scheme. 78
5.11 Dynamic cache partitioning scheme in action during application

execution. 79
5.12 Hierarchical cache partitioning system. 80
5.13 A snapshot of our dynamic cache partitioning scheme in action

across four consecutive execution intervals of the NAS CG appli-
cation. This figure shows the cache ways allocated to each of the
threads during the execution intervals and the resulting CPI values. 81

5.14 Performance improvement over an equally partitioned cache (pri-
vate cache). 82

5.15 Performance improvement over a shared unpartitioned cache. . . . 82
5.16 Performance improvement over a throughput-oriented cache parti-

tioning scheme. 82

6.1 Default system parameters used. 87
6.2 Performance comparisons of different levels of hardware prefetching.

The performance values are normalized to that of the no prefetching
case. 88

6.3 Performance comparisons of software prefetching, hardware level 3
prefetching, and both with the case of no prefetching. The perfor-
mance values are normalized to that of the no prefetching case. . . 88

6.4 Performance comparisons of different prefetching schemes with both
the infinite bandwidth case and a bandwidth of 6.4 GB/s, when
prefetching is enabled only on core 1 (lbm) and disabled for all
others. 89

6.5 Contributions to the bus traffic by different applications. 90
6.6 Bandwidth stalls (in cycles) suffered by applications as the prefetch-

ing level is increased. 90
6.7 Performance comparisons of different prefetching schemes with both

the infinite bandwidth case and a bandwidth of 6.4 GB/s, when
prefetching is enabled on all cores. 90

6.8 Comparison of equal priorities for prefetch and demand requests
versus a scheme where demand requests are prioritized over prefetch
requests in terms of the number of useful prefetches. 91

6.9 Hierarchical bandwidth aware prefetching scheme that includes a
global prefetch manager and a set of core-level prefetch managers. . 92

xii

6.10 Details of a core-level prefetch manager, which controls the prefetch
levels of both hardware and software prefetchers of a core. 93

6.11 Prefetch level increase function. 93
6.12 The algorithm executed by the global prefetch manager. 97
6.13 Throughput comparison averaged across multiple workloads. . . . 99
6.14 Throughput comparison for the workload (lbm, mcf, libquantum,

and milc). 99
6.15 Performance comparisons of the applications in the workload (lbm,

mcf, libquantum, and milc). 99
6.16 Benefit and cost values of libq during execution. 100
6.17 Benefit and cost values of gromacs during execution. 100
6.18 Net benefit values of libquantum and gromacs during execution. . . 100
6.19 Prefetch levels of libquantum and gromacs during execution. 100

7.1 A 4×4 mesh NoC based CMP. Note that this is a block diagram
and not the actual layout, and the routers are not shown for clarity. 105

7.2 Left - Percentage of intervals during which at least a few links are
unused. We see that, on average, in only about 10% of intervals, all
links are used. Right - shows the number of intervals, a new link
usage pattern lasts (repeats) before it changes again to a different
usage pattern. 106

7.3 reffig:linkvecs shows a snapshot of link vectors of intervals during a
period of execution of the Wupwise multi-threaded benchmark and
the phases they map to. Mapping is done based on link vector sim-
ilarity. reffig:markov depicts a Markov based transition graph and
the corresponding prediction table. Prediction is made based on
the probabilities contained in the prediction table. The transition
graph shows the transition probabilities pictorially. 109

7.4 Prediction accuracy, performance penalty and the resulting energy
savings when the basic Markov prediction scheme is used. 112

7.5 Prediction accuracy, performance penalty and the resulting energy
savings in the case of Markov prediction using a threshold. 113

xiii

List of Tables

3.1 Hardware storage required for MCP and IMPS 27
3.2 Default processor and memory subsystem configuration. 31
3.3 SPEC CPU2006 benchmark characteristics. 32
3.4 Four representative workloads. 33
3.5 Sensitivity to number of cores, number of MCs, and L2 cache size

(40 workloads). 40

xiv

Acknowledgments

I sincerely thank my advisor, Professor Mahmut Kandemir. He has advised and
supported me immensely during my entire PhD stint. I learnt valuable lessons in
research and technical writing from him. He patiently reviewed my papers multiple
times and always provided valuable comments. He also provided me ample freedom
to pursue research projects that interested me. For this, I am extremely thankful
to him.

I am also thankful to my dissertation committee members, Professor Padma
Raghavan, Professor Mary Jane Irwin, and Professor Qian Wang, for their valuable
time and comments. I am especially thankful to professors, Padma Raghavan and
Mary Jane Irwin. Interactions with Dr. Raghavan and her research group have
always been interesting and lively. Discussions with Dr. Irwin have always been
insightful and immensely helpful at various times during my research.

I am also extremely appreciative and thankful to my fellow MDL lab mates,
and other colleagues in the department for very fruitful technical discussions, lively
debates and friendly chats. During this process, I am glad that I made some good
friends.

I would also like to thank Microsoft Research and Intel Corporation for provid-
ing me summer internship opportunities that proved invaluable. Being mentored
by Bruce Christenson and Kathakali Debnath at Intel was a great experience.

I owe my deepest gratitude to my parents. My parents, Dr. Madanapalli Kr-
ishnamurthy Muralidhara and Geetha Kandi, have been an inspiration throughout
my life. They are both dedicated teachers. They taught me the value of education
by setting an example through their own careers and lives. But for their unflinching
love, support and inspiration, this PhD would not have been possible. I am deeply
indebted to them. I have valued their and my sister, Prathima Muralidhara’s sup-
port immensely throughout my graduate career. I believe that my identity is due
in part to my family lineage and heritage. I express my sincere gratitude to my late
grandparents, who achieved so much during more difficult and challenging times.
They imparted some memorable nuggets of wisdom that have stayed with me for

xv

life. I am also thankful to my in-laws for their constant support.
My wife, Rashmi Murthy, has been right beside me through all the ups and

downs in the last five years. It is her love and support that got me through difficult
times. Throughout my haphazard schedules and paper deadlines, I always leaned
on her for support and understanding. For her love and belief in me, I cannot be
more thankful.

xvi

Dedication

To my family

xvii

Chapter 1
Introduction

The hardware industry is continuing on the path of chip multiprocessing [2, 3, 4].

This trend of increasing number of on-chip cores is projected to continue in the

future. The current Intel Xeon processors [2] with six to eight cores on a chip, and

Tilera’s hundred core chip multiprocessor (CMP) are good indicators of the future

of this trend. Increasing core counts translate to increasing parallel computation

capability of current and future multicore processors.

While this scaling in core counts continues, the memory hierarchy resources are

scaling at a much slower rate. As a result, the memory resources remain costly and

limited. Two key memory hierarchy resources are the last level cache, and, the

off-chip memory. The last level cache is the last line of defense before a memory

request goes off-chip, making it a critically important resource. In the case of off-

chip memory, the number of pins available for off-chip communication is limited

by chip dimensions. More critically, the typical off-chip memory access latencies

are one to two orders of magnitude higher than on-chip cache access latencies.

In order to improve efficiency of utilization, both of these resources are gen-

erally shared across all or a subset of on-chip cores in current multicore systems.

Sharing enables multiple cores to use these costly resources flexibly and improve

net resource utilization. In these systems, different levels of caches are shared to

different degrees by the cores forming an on-chip cache hierarchy [5, 6]. Off-chip

memory, on the other hand, is generally shared across all the on-chip cores [7, 8].

2

1.1 Problem: Interference in Memory Hierarchy

Resources

Due to being shared, different applications/threads executing on different cores

contend for access to the common memory resources. In the process, the con-

tending applications/threads interfere with one another. This interference, termed

“inter-application interference”, can negatively impact the performance of all or

some of the contending applications. In order to improve system performance

and allow all contending applications to make fast progress, the memory resource

needs to be managed such that this harmful inter-application interference is mit-

igated. The last level cache and off-chip memory play a key role in determining

performance, and consequently, managing them efficiently to mitigate the negative

impact of interference is vitally important.

1.1.1 Shared Cache Interference

When two cores share a cache, an application executing on one of the cores can evict

a cache line belonging to the other application at any point during the execution.

This inter-core cache interference can lead to the performance degradation of either

or both applications if the applications continue to evict each other’s data during

the execution.

In order to study the impact of cache interference on performance, we executed

a SPEC 2006 application, bzip2, with a companion application on a system with

the cores sharing a last level cache. The applications, bzip2 and the companion

application were run on two different cores, and this experiment was repeated with

bzip2 running with different companion applications each time. For this evaluation,

the off-chip memory was modeled with a constant latency access in order to isolate

the cache interference effects.

Figure 1.1 shows the results of this series of experiments. The performance

of bzip2 is affected to different degrees when executed with different companion

applications. We observed that, this was due to different companion applications

interfering with bzip2 to different degrees. This in turn is due to the memory access

characteristics of the companion applications, as well as that of bzip2. With the

3

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

Bz
ip

’s
Pe

rfo
rm

an
ce

Companion Application

perlbench
gcc
sjeng
gromacs

mcf
libquantum
lbm

Figure 1.1. Bzip’s performance when executed with different companion applications.
Bzip and the companion application are run on a two-core system with the cores sharing
a last level cache. Performance results are normalized to the highest performance case.

knowledge of the way applications interfere, system performance can be improved

by isolating applications into groups and partitioning the resources among these

groups. For instance, from Figure 1.1, it is easy to determine that, bzip2 needs to be

isolated from mcf , lbm, and libquantum, in order to improve bzip2’s performance.

On the other hand, bzip2 can be grouped together with perlbench and gromacs

with no or negligible loss in Bzip’s performance.

The effects of cache interference can be more complex when interfering threads

belong to the same application. To start with, threads from the same application

can share data. Consequently, an application can fetch data into the shared cache

and this data can potentially be used by the other thread later in the execution.

In this case, shared cache leads to constructive cache sharing. Therefore, in the

multithreaded application case, there is a tradeoff between negative effects of inter-

thread interference and the positive impact of cache sharing. This trade-off is

considered and evaluated in Chapter 5.

1.1.2 Off-Chip Memory Interference

When a core’s memory request misses in the last-level cache, that request enters

the memory controller queue in order to be granted access to the off-chip mem-

ory. When two applications executing simultaneously generate memory requests,

the memory requests from the two applications can interfere in memory controller

queue, increasing the queuing time of either or both application’s requests. The

net performance degradation of applications in this scenario depends on the rate

at which applications generate memory requests and other memory access charac-

4

teristics of the applications such as row buffer locality (see Section 3.3 in Chapter

3).

In order to study the effect of off-chip memory interference on performance, we

ran four copies each of bzip2 and a companion application on an eight core system

with two memory channels. In this evaluation, we consider private last level caches

in order to isolate memory interference effects.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

Bz
ip

’s
Pe

rfo
rm

an
ce

Companion Application

perlbench
gcc
sjeng
gromacs

mcf
libquantum
lbm

Figure 1.2. Bzip’s performance when executed with different companion applications.
Four copies each of Bzip and the companion application are run on an eight-core system
with the cores sharing two off-chip memory channels. Performance results are normalized
to the highest performance case.

Figure 1.2 shows bzip2’s average performance when the companion application

is varied. From Figure 1.2, the performance of bzip2 suffers greatly due to in-

terference from mcf , lbm, and libquantum. As in the shared cache case, other

companion applications do not destructively interfere with bzip2 in any significant

manner.

We discuss memory interference and its performance effects in more detail in

Chapter 3.

1.2 Approach: Application Aware Management

This dissertation addresses the problem of efficiently managing a shared memory

hierarchy resource. We first study, in detail, the application interference effects at

the last-level shared cache and the off-chip memory. We then evaluate the impact

of this interference on application and system performances. This dissertation then

proposes novel schemes to efficiently manage the last-level cache and the off-chip

memory bandwidth. These schemes mitigate the interference effects by managing

the memory resource in an application aware manner. By application aware, we

5

mean that the resource management schemes are aware of the memory access

characteristics of all contending applications. In order to motivate the need for

application aware management, we present the following three key insights:

1. From Sections 1.1.1 and 1.1.2, we can see that, application performance can

be severely affected by inter-application interference. Therefore, mitigating

interference needs to be the primary concern in managing a shared resource.

Isolating an application from other applications during execution can be

beneficial in improving its performance. However, this is not always true.

Some applications can be grouped with another companion application with

very little performance degradation. Therefore, isolation and grouping, when

performed appropriately, can mitigate interference and improve performance.

2. Effect of inter-application interference on performance is not uniform and de-

pends on which applications are contending for a resource. More specifically,

we show later in this dissertation that, effect of interference on performance

depends on specific characteristics of contending applications’ memory ac-

cess behavior. These characteristics include last level cache Misses Per Kilo

Instruction (MPKI), reuse distance distribution, and, row buffer locality.

Therefore, a shared resource management scheme needs to be application

aware – aware of the memory access characteristics of all individual contend-

ing applications.

3. Memory demands of applications are different from one another. An appli-

cation can be latency sensitive, which means that the application generates

very few memory requests. If these rare memory requests are serviced quickly,

the instruction window moves very fast since those few memory instructions

are interspersed with a large number of compute instructions. On the other

hand, an application can be bandwidth sensitive, which means that the ap-

plication generates memory requests at a faster rate and therefore needs a

constant bandwidth for the instruction window to move. While, both the ef-

fects of inter-application interference discussed previously, and, the memory

demands of applications may depend on the same memory access character-

istics of the applications, it is important to note the subtle difference between

the two concepts.

6

In this dissertation, we propose multiple shared memory resource management

schemes that are based on the three basic insights deduced above. As mentioned

previously, our proposed mechanisms reduce inter-application interference by man-

aging the memory hierarchy resource in an application aware manner. Specifically,

the resource management schemes identify the memory access characteristics of

individual applications, and, utilize this information to manage and allocate re-

sources in order to mitigate interference. We show that, by managing the resources

in this manner, both system and application performance is improved significantly.

1.3 Contributions

In this section, we introduce the specific contributions made by this dissertation

in addressing the problem of shared memory interference.

In Chapter 3, we address the problem of mitigating interference at the off-chip

memory. There are two general approaches to reduce this interference. One is

to manage interference at the memory controller (e.g., memory scheduling), the

other is to avoid interference by intelligent memory mapping. Previous research

overwhelmingly focuses on the former.

In this chapter, we first present an alternative approach to reducing inter-

application interference in the memory system: application-aware memory channel

partitioning (MCP) [9, 10]. The idea is to map the data of applications that are

likely to harmfully interfere with each other to different memory channels. The

key principles are to partition the data of 1) light (memory non-intensive) and

heavy (memory intensive) applications, and of 2) applications with low and high

row-buffer locality onto separate channels, respectively. Second, we observe that

interference can be even further reduced with a combination of MCP and memory

scheduling, which we call integrated memory partitioning and scheduling (IMPS).

The key idea is to 1) always prioritize very light applications in the memory sched-

uler since such applications cause negligible interference to others, 2) use memory

channel partitioning to reduce interference between the remaining applications.

Extensive evaluations on a variety of multi-programmed workloads and system

configurations show that this integrated memory partitioning and scheduling ap-

proach provides better system performance than MCP and four previous memory

7

scheduling algorithms employed alone.

In Chapter 4, we address shared cache contention. In addition to continued

increase in number of on-chip cores, technology scaling has resulted in not only

bigger on-chip caches, but also increase in the number of levels of cache. Modern

multicore systems have hierarchical caches, with different subsets of cores exhibit-

ing different degrees of sharing. For instance, a Dell R900 [6] server rack contains

two Intel Xeon 7400 [5] chips making it twelve cores with three levels of cache

topology , L1, L2 and L3 with varying degrees of sharing among different subsets

of cores. In this work, we aim to mitigate the shared cache contention between

different applications by intelligently mapping the applications to cores. More

specifically, we address the problem of mapping the applications to cores in a mul-

ticore system, in the presence of varying degrees of cache sharing among different

subsets of cores due to a hierarchical cache structure. The goal of this endeavor is

to mitigate contention and improve the system throughput. We use the reuse dis-

tance analysis of individual applications to characterize their application behavior

and then make mapping decisions.

In Chapter 5, we explore the last-level cache space management problem when

the contending threads belong to the same application, as opposed to different

applications. In essence, we study the intra-application cache partitioning problem

[11, 12]. When contending threads belong to the same application, improving

the throughput or fairness metrics does not necessarily improve the application

performance. This is because, most shared-memory parallel applications contain

one or more parallel sections, and the overall performance of a parallel section

and consequently, the whole application is determined by the slowest thread, also

termed the critical path thread. A thread with excellent cache behavior does little

to speed up the application performance if the other threads exhibit poor cache

behavior. We study the cache behavior of application threads, the positive and

negative impact of cache sharing/interference, and, the cache sensitivities of these

threads. We later propose a cache partitioning scheme, that dynamically partitions

the cache in order to speed up the slower threads by assigning more cache space

to them. We maintain runtime performance models of individual threads and

employ curve-fitting in order to make cache partitioning decisions. We show that,

partitioning the cache this way, speeds up the slower threads, decreases the slack

8

time, and ultimately, improves the overall application performance.

In Chapter 6, we address the problem of efficiently prefetching data into the

shared cache when multiple applications are simultaneously performing prefetches.

Prefetching is a highly effective latency hiding technique that can greatly improve

application performance. However, aggressive prefetching can potentially stress

the off-chip bandwidth. The resulting bandwidth stalls can potentially negate the

performance gain due to prefetching. In this work [13], focusing on a multicore

environment, we first study the comparative benefits of hardware and software

prefetching and analyze if the two are complimentary or redundant. This analysis

also evaluates different aggressiveness levels of hardware prefetching. Secondly,

we weigh the positive performance benefits of prefetching against the negative

performance effects of bandwidth stalls. Thirdly, we propose a hierarchical prefetch

management scheme for multicores that controls the prefetch levels such that the

overall performance gain is improved.

In Chapter 7, we consider the interconnect framework as an instance of a shared

on-chip resource. In this work [14], we address the issue of managing the resource

efficiently in order to reduce the energy consumption of the shared resource. NoC

framework is major contributor to the total on-chip power consumption. The main

motivation here is the fact that not all interconnect links are used all the time. We

propose to characterize the execution of a multi-threaded application into phases

based on the similarity in their inter-core communication pattern. We use this

characterization and implement a Markov based prediction scheme, which predicts

the link usage pattern of the next execution interval. This prediction is used to

proactively turn off predicted unused links and turn on links that are predicted to

be used. We show that, managing the link turn-ons and turn-offs in a proactive

and dynamic manner reduces the overall energy consumption of the interconnect

framework.

In Chapter 8 of the dissertation, we present some possible avenues to explore

in future research. We then conclude with a summary of contributions that are

made in this dissertation.

Chapter 2
Background

This chapter presents a discussion of the current state-of-the-art in computer ar-

chitecture and the most likely future trends. We also present requisite background

information about memory hierarchy resources.

2.1 Current and Future Trends

Power inefficiency coupled with limited instruction level parallelism changed the

trend from increasing single core frequencies to having multiple relatively simpler

cores on a single chip. Driven by this need to have power efficient systems, mul-

ticore systems have become the order of the day [2] [3] [15] [16]. As technology

scales, the number of on-chip cores continues to increase. The future multicore

systems are projected to have a large number of relatively simple cores. Although

other on-chip resources are expected to increase, their increase is not expected to

be commensurate with the increase in number of cores. Therefore, multiple cores

are expected to share and contend for these resources. It is also worthwhile noting

that, it is efficient for some of these resources to be shared among multiple cores,

for instance the last-level cache.

2.2 Shared Resources

The cores in the modern multicore systems share and contend for a number of re-

sources. In this section, we discuss some the most important shared resources. The

10

negative impact of multiple cores contending for a common resource can severely

degrade system and application performance if the resource is not efficiently man-

aged. On the flip side, sharing a resource such as the cache can benefit multi-

threaded application execution by exploiting potential data sharing between the

threads. Therefore, the goal of a resource manager is to mitigate the negative

impact of contention and improving metrics such as system throughput, fairness

or QoS [17, 18, 19], while at the same time, exploiting the advantages of resource

sharing.

2.2.1 On-Chip Cache Hierarchy

Caches and cache hierarchies in CMPs have evolved over the years and span purely

private cache organizations, totally shared cache structures and hybrid cache or-

ganizations comprising elements of both private and shared cache components. In

a purely private cache organization, each core is connected to an L1 cache, which

in turn is connected to an L2 cache, both of which are private to the core. Per-

formance isolation, absence of inter-core cache contention and shorter data access

times are the main advantages of such purely private cache structures. At the

other end of the spectrum is a fully shared L2 cache. In this configuration, each

core has a private L1 cache and each of the L1 caches is connected to a com-

mon, shared L2 cache. Efficient utilization of available cache space and absence of

data redundancy (replication) are the main advantages of this shared cache struc-

ture. As CMPs continue to scale and available cache space continues to increase,

a purely private cache structure leads to inefficient utilization of cache space and

a purely shared cache results in very high contention due to the presence of more

cores. This gave rise to hybrid cache architectures comprising elements of both

private and shared cache organizations, forming a hierarchical cache structure with

multiple levels.

Figure 2.1 shows an eight core system with a three level cache hierarchy. Each

core is connected to a private L1 cache and each pair of L1 caches is connected

to an L2 cache. Further, in the next level, each pair of L2 caches is connected

to an L3 cache. Therefore, there are eight L1, four L2 and two L3 caches in the

hierarchy.

11

��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

�	

��

�

�� ��

�� ��

Figure 2.1. A three-level hierarchical cache architecture.

2.2.2 Off-Chip Memory

This section presents a brief background about the DRAM main memory system;

more details can be found in [20, 21, 22]. A modern main memory system consists

of several channels. Each channel can be accessed independently, i.e., accesses to

different channels can proceed in parallel. A memory channel generally refers to an

address/command bus and a data bus connected to a dual inline memory module

(DIMM). A DIMM has multiple DRAM devices arranged as a rank. A rank of

DRAM devices can be accessed in parallel. Figure 2.2 shows eight DRAM devices

arranged on a DIMM. In this case, the data bus is 64 bits wide and parallely

accesses 8 bits of data from each of the 8 DRAM devices. A DIMM can also have

multiple such ranks of DRAM devices.

8 bit
DDR
Chip

8 bit
DDR
Chip

8 bit
DDR
Chip

8 bit
DDR
Chip

8 bit
DDR
Chip

8 bit
DDR
Chip

8 bit
DDR
Chip

8 bit
DDR
Chip

�������������	
���

��������
�������
��������
�����

��	

Memory Controller
(MC)

����

Figure 2.2. A dual inline memory module (DIMM) comprising of eight parallel DRAM
devices connected to the memory controller.

A DRAM device is organized as several banks as shown in Figure 2.3. These

banks can be accessed in parallel; however, the data and address buses are shared

among the banks as mentioned previously, and data from only one bank can be

sent through the channel at any time.

Each DRAM bank has a 2D structure consisting of rows and columns. A

12

column is the smallest addressable unit of memory, and a large number of columns

make up a row. When a unit of data has to be accessed from a bank, the row

containing the data is brought into a small internal buffer called the row buffer.

If subsequent memory access requests are to the same row, they can be serviced

faster (2-3 times) than accessing a new row. This is called a row-hit.

Row Buffer

�����

������	�
�������	�

��
�

����

Figure 2.3. A DRAM device with four banks of memory arrays.

A memory controller (MC), which in modern multicore systems is integrated

on-chip, is the interface between the processor and the DRAM memory (DIMM)

as shown in Figures 2.2 and 2.3. An MC manages the job of scheduling memory

requests from the last level cache on the memory channel. In order to improve

DRAM data throughput, modern memory controller scheduling algorithms prior-

itize row-hits over row-misses.

Memory Request Scheduling Policy. FR-FCFS [22, 23] is a commonly

used scheduling policy in current commodity systems. It prioritizes row-hits over

row-misses, and within each category, it prioritizes older requests. We consider

FR-FCFS as the scheduling policy in our analyses. However, in Chapter 3, we

evaluate our proposed mechanism with other scheduling policies as well.

OS Page Mapping Policy. The Operating System (OS) maps a virtual address

to a physical address. The address interleaving policy implemented in the memory

controller in turn maps the physical address to a specific channel/bank in the

main memory. Row interleaving and cache line interleaving are two commonly used

interleaving policies. In the row interleaving policy, consecutive rows of memory are

mapped to consecutive memory channels. We assume equal sizes for OS pages and

DRAM rows in this dissertation and use the terms page and row interchangeably

without loss of generality. Pure cache line interleaving maps consecutive cache lines

in physical address space to consecutive memory channels. A restricted version of

13

cache line interleaving maps consecutive cache lines of a page to banks within a

channel.

Commonly used OS page mapping and address interleaving policies are applica-

tion unaware and map applications’ pages across different channels. The OS does

not consider inter-application interference and channel information while mapping

a virtual page to a physical page. It simply uses the next physical page to al-

locate/replace based on recency of use. We build our discussions, insights and

mechanisms assuming such an interference-unaware OS page mapping policy and

a row interleaved address mapping policy.

2.2.3 Interconnect Network

The bus structure acts as an efficient communication fabric when the number of

communicating cores is low. With the projected increase in the number of cores

in CMPs, limited scalability of bus structures and the need for more on-chip com-

munication bandwidth have become major issues. These issues have given rise

to network-on-chip (NoC) [24] [25] [26], which is a more scalable on-chip com-

munication fabric. The NoC framework addresses the scalability issue effectively.

However, in such an NoC based CMP, the issue of power consumption can become

a serious limiting factor. This is especially true since the power consumption is

projected to increase rapidly as the size of NoCs increase. Therefore, there is a

need to develop a wide variety of techniques to reduce chip power consumption.

Chapter 3
Application-Aware Memory Channel

Partitioning

3.1 Introduction

Applications executing concurrently on a multicore chip contend with each other

to access main memory, which has limited bandwidth. If the limited memory

bandwidth is not managed well, different applications can harmfully interfere with

each other, which can result in significant degradation in both system performance

and individual application performance [7, 8, 27, 21, 28, 29]. Several techniques to

improve system performance by reducing memory interference among applications

have been proposed [7, 8, 27, 21, 28, 29, 30]. Fundamentally, these proposals viewed

the problem as a memory access scheduling problem, and consequently focused on

developing new memory request scheduling policies that prioritize the requests of

different applications in a way that reduces inter-application interference. However,

such application-aware scheduling algorithms require (non-negligible) changes to

the existing memory controllers’ scheduling logic [8, 31].

In this chapter, we present and explore a fundamentally-different alternative

approach to reducing inter-application interference in the memory system: control-

ling the mapping of applications’ data to memory channels. Our approach is based

on the observation that multicore systems have multiple main memory channels

[32, 33, 7] each of which controls a disjoint portion of physical memory and can

15

be accessed independently without any interference [7]. This reveals an interesting

trade-off. On the one hand, interference between applications could (theoretically)

be completely eliminated if each application’s accesses were mapped to a different

channel, assuming there were enough channels in the system. But, on the other

hand, even if so many channels were available, mapping each application to its own

channel would under utilize memory bandwidth and capacity (some applications

may need less bandwidth/capacity than they are assigned, while others need more)

and would reduce the opportunity for bank/channel-level parallelism within each

application’s memory access stream. Therefore, the main idea of our approach is

to find a sweet spot in this trade-off by mapping the data (i.e., memory pages) of

applications that are likely to cause significant interference/slowdown to each other

to different memory channels.

We make two major contributions. First, we explore the potential of reducing

inter-application memory interference purely with channel partitioning, without

modifying the memory scheduler. To this end, we develop a new Application-

Aware Memory Channel Partitioning (MCP) algorithm that assigns preferred

memory channels to different applications. The goal is to assign any two appli-

cations whose mutual interference would cause significant slowdowns, to different

channels. Our algorithm operates using a set of heuristics which are guided by

insight about how applications with different memory access characteristics inter-

fere with each other. Specifically, we show in Sec 3.3 that, whenever possible,

applications of largely divergent memory-intensity or row-buffer-hit rate should be

separated onto different channels.

Second, we show that MCP and traditional memory scheduling approaches are

orthogonal in the sense that both concepts can beneficially be applied together.

Specifically, whereas our MCP algorithm is agnostic to the memory scheduler (i.e.,

we assume an unmodified, commonly used row-hit-first memory scheduler [22, 23]),

we show that additional gains are possible when using MCP in combination with

a minimal-complexity application-aware memory scheduling policy. We develop

an Integrated Memory Partitioning and Scheduling (IMPS) algorithm that

seamlessly divides the work of reducing inter-application interference between the

memory scheduler and the system software’s page mapper based on what each can

do best.

16

The key insight underlying the design of IMPS is that interference suffered

by very low memory-intensity applications is more easily mitigated by prioritiz-

ing them in the memory scheduler, than with channel partitioning. Since such

applications seldom generate requests, prioritizing their requests does not cause

significant interference to other applications, as previous work has also observed

[7, 8]. Furthermore, explicitly allocating one or more channels for such appli-

cations can result in a waste of bandwidth. Therefore, IMPS prioritizes requests

from such applications in the memory scheduler, without assigning them dedicated

channels, while reducing interference between all other applications using channel

partitioning.

Overview of Results: We evaluate MCP and IMPS on a wide variety of

multi-programmed applications and systems and in comparison to a variety of

pure memory scheduling algorithms. Our first main finding is that on a 24-core 4-

memory controller system with an existing application-unaware memory scheduler,

MCP provides slightly higher performance benefits than the best previous mem-

ory scheduling algorithm, Thread Cluster Memory Scheduling (TCM) [8]: 7.1%

performance improvement vs. 6.1% for TCM. This performance improvement is

achieved with no modification to the underlying scheduling policy. Furthermore,

we find that IMPS provides better system performance than current state-of-the-

art memory scheduling policies, pure MCP, as well as combinations of MCP and

state-of-the-art scheduling policies: 5% over the best scheduler, while requiring

smaller hardware complexity.

Our main conclusion is that the task of reducing harmful inter-application mem-

ory interference should be divided between the memory scheduler and the system

software page mapper. Only the respective contributions of both entities yields the

best system performance.

3.2 Background

The background information about DRAM main memory system and the memory

request scheduling policy is presented in Section 2.2.2 of Chapter 2. The analy-

ses in this chapter assume the FR-FCFS scheduling policy, but our insights are

applicable to other scheduling policies as well. Sec 3.7 describes other memory

17

scheduling policies and Sec 3.8 qualitatively and quantitatively compares our ap-

proach to them. The default OS page mapping policy is introduced in Section 2.2.2

of Chapter 2. We build our discussions, insights and mechanisms assuming such

an interference-unaware OS page mapping policy and a row interleaved address

mapping policy. However, we also evaluate MCP on top of cache line interleaving

across banks in Sec 3.9.4.

Memory Related Application Characteristics. We characterize memory

access behavior of applications using two attributes. Memory Access Intensity is

defined as the rate at which an application misses in the last level on-chip cache

and accesses memory – calculated as Misses per Kilo Instructions (MPKI). Row

Buffer Locality is defined as the fraction of an application’s accesses that hit in

the row buffer (i.e., access to an open row). This is calculated as the average

Row-Buffer Hit Rate (RBH) across all banks.

3.3 Motivation

In this section, we motivate our partitioning approach by showing how applica-

tions with certain characteristics cause more interference to other applications, and

how careful mapping of application pages to memory channels can ameliorate this

problem.

Core 0
App A

Core 1
App B

Bank 0
Bank 1

Channel 1

Bank 0
Bank 1

 1234
Channel 0

Time Units
5

(a) Conventional Page Mapping.
Time Units
Saved

App A
Core 0

App B
Core 1

Bank 0
Bank 1

Bank 0
Bank 1

Channel 1

 12345
Channel 0

Time Units

(b) Channel Partitioning.

Figure 3.1. Conceptual example showing benefits of mapping data of low and high
memory-intensity applications to separate channels.

In Figure 3.1, we present a conceptual example showing the performance bene-

fits of mapping the pages of applications with largely different memory-intensities

to separate channels. Application A on Core 0 has high memory-intensity, gener-

ating memory requests at a high rate; Application B on Core 1 has low memory-

intensity and generates requests at a much lower rate. Figures 3.1(a) and 3.1(b)

18

show characteristic examples of what can happen with conventional page map-

ping (where the pages of A and B are mapped to the same channels) and with

application-aware channel partitioning (where A and B’s pages are mapped to

separate channels), respectively. In the first case, B’s single request is queued up

behind 3 of A’s requests in a bank of Channel 0 (see Fig 3.1(a)). As a result,

Application B stalls for a long period of time (4 DRAM bank access latencies, in

this example) until the 3 previously scheduled requests from A to the same bank

get serviced. In contrast, if the two applications’ data are mapped to separate

channels as shown in Figure 3.1(b), B’s request is not queued and can be serviced

immediately, leading to B’s fast progress (1 access latency vs 4 access latencies).

Furthermore, even Application A’s access latency improves (4 vs. 5 time units)

because the interference caused to it by B’s single request is eliminated. To de-

termine to what extent such effects occur in practice, we ran a large number of

simulation experiments1 with applications of vastly different memory-intensities

and present a representative result: We run four copies each of milc and h264

(from the SPEC CPU2006 suite [34]) on an eight-core, two-channel system.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

milc
(mpki: 34
rbh: 93%)

h264
(mpki: 2.7
rbh: 92%)

Sl
ow

do
w

n

App

Conventional Page Mapping
Channel Partitioning

Figure 3.2. Application slowdowns due to interference between high and low memory-
intensity applications.

Figure 3.2 shows the effects of conventional channel sharing: h264, the appli-

cation with lower memory-intensity, is slowed down by 2.7x when sharing memory

channels with milc. On the other hand, if milc’s and h264 ’s data are partitioned

and mapped to Channels 0 and 1, respectively, h264 ’s slowdown reduces to 1.5x.

Furthermore, milc’s slowdown also drops from 2.3x to 2.1x, as its queueing delays

reduce due to reduced interference from h264. This substantiates our intuition

from the example: Separating the data of low memory-intensity applications from

that of the high memory-intensity applications can largely improve the performance

1Our simulation methodology is described in Sec 3.8.

19

of both the low memory-intensity applications and the overall system.

Memory-intensity is not the only characteristic that determines the relative

harmfulness of applications. In Figure 3.3, we show potential benefits of mapping

memory-intensive applications with significantly different row-buffer localities onto

separate channels. In the example, Application A accesses the same row, Row 5,

repeatedly and hence has much higher row-buffer locality than Application B,

whose accesses are to different rows, incurring many row misses.

Core 1
App B

 Bank 0
 Bank 1

 Bank 0
 Bank 1

Channel 0

Channel 1

R3 R7 R5

R4

Core 1
App B

R5 R5Row 3 Row 7

Row 4

 Bank 0
 Bank 1

 Bank 1
 Bank 0Core 0

App A

Core 0
App A

4 2 1356

4 2 1356

Arrival Order
Time Units

Time Units

Service Order

R5

Channel 0

Channel 1

(a) Conventional Page Mapping

App A
Core 0

Core 1
App B

App A
Core 0

Core 1
App B

 Row 4

Row 3 Row 7
Saved

Time Units

R5 R5

R3

R5

R7

R5

R4

 Bank 0
 Bank 1

 Bank 0
 Bank 1

 Bank 0
 Bank 1

 Bank 0
 Bank 1

4 2 1356

4 2 13

56

Arrival Order
Time Units

Service Order
Time Units

Channel 0

Channel 1

Channel 0

Channel 1

(b) Channel Partitioning

Figure 3.3. Conceptual example showing benefits of mapping data of low and high
row-buffer hit rate memory-intensive applications to separate channels. In both (a) and
(b), the top part shows the request arrival order and the bottom part shows the order
in which the requests are serviced.

Figure 3.3(a) shows a conventional page mapping approach, while Figure 3.3(b)

shows a channel partitioning approach. With conventional mapping, the com-

monly used row-hit-first memory scheduling policy prioritizes A’s requests over

B’s requests to Rows 7 and 3, even though B’s requests had arrived earlier (Fig-

ure 3.3(a)). This leads to increased queueing delays of B’s requests causing B

to slow down. On the other hand, if the pages of A and B are mapped to sepa-

rate channels (Figure 3.3(b)), the interference received by B is reduced and conse-

quently the queueing delays experienced by B’s requests reduced (by 2 time units).

This improves Application B’s performance without affecting Application A’s.

A representative case study from among our experiments is shown in Figure 3.4.

We ran four copies each of mcf and libquantum, two memory-intensive applications

on an eight-core two-channel system. Mcf has a low row-buffer hit rate of 42%

20

 0

 5

 10

 15

 20

 25

 30

libquantum
(mpki: 50
rbh: 99%)

mcf
(mpki: 99
rbh: 42%)

Sl
ow

do
w

n

App

Conventional Page Mapping
Channel Partitioning

Figure 3.4. Application slowdowns due to interference between high and low row-buffer
hit rate memory-intensive applications.

and suffers a slow down of 20.7x when sharing memory channels with libquantum,

which is a streaming application with 99% row-buffer hit rate. On the other

hand, if the data of mcf is isolated from libquantum’s data and given a separate

channel, mcf’s slowdown drops significantly, to 6.5x from 20.7x. Libquantum’s

small performance loss of 4% shows the trade-off involved in channel partitioning:

The drop is due to the loss in bank-level parallelism resulting from assigning only

one channel to libquantum. In terms of system performance, however, this drop

is far outweighed by the reduction in slowdown of mcf. We therefore conclude

that isolating applications with low row-buffer locality from applications with high

row-buffer locality by means of channel partitioning improves the performance of

applications with low row-buffer locality and the overall system.

Based on these insights, we next develop MCP, an OS-level mechanism to

partition the main memory bandwidth across the different applications running

on a system. Then, we examine how to best combine memory partitioning and

scheduling to minimize inter-application interference and obtain better system per-

formance.

3.4 Memory Channel Partitioning (MCP)

Our MCP mechanism consists of three components: 1) profiling of application

behavior during run time, 2) assignment of preferred channels to applications, 3)

allocation of pages to the preferred channel. The mechanism proceeds in periodic

intervals. During each interval, application behavior is profiled (Sec 3.4.1). At

the end of an interval, the applications are categorized into groups based on the

characteristics collected during the interval, and each application is accordingly

21

assigned a preferred channel (Sec 3.4.2). In the subsequent interval, these preferred

channel assignments are applied. That is, when an application accesses a new page

that is either not currently in DRAM or not in the application’s preferred channel,

MCP uses the preferred channel assignment for that application: The requested

page is allocated in the preferred channel, or migrated to the preferred channel

(see Sec 3.4.3).

In summary, during the Xth interval, MCP applies the preferred channel as-

signment which was computed at the end of the (X−1)st interval, and also collects

statistics, which will then be used to compute the new preferred channel assign-

ment to be applied during the (X + 1)st execution interval.2 Note that MCP does

not constrain the memory usage of applications. It provides a preferred channel

assignment in order to reduce interference. Therefore, applications can use the

entire DRAM capacity, if needed.

3.4.1 Profiling of Application Characteristics

As shown in Sec 3.3, memory access intensity and row-buffer locality are key fac-

tors determining the level of harm caused by interference between applications.

Therefore, during every execution interval, each application’s Misses Per Kilo In-

struction (MPKI) and Row-Buffer Hit Rate (RBH) statistics are collected. To

compute an application’s inherent row-buffer hit rate, we use a per-core shadow

row-buffer index for each bank, as in previous work [35, 8, 21], which keeps track

of the row that would have been present in the row-buffer had the application been

running alone.

3.4.2 Preferred Channel Assignment

At the end of every execution interval, each application is assigned a preferred

channel. The assignment algorithm is based on the insights derived in Sec 3.3.

The goal is to separate as much as possible 1) the data of low memory-intensity

2The very first interval is used for profiling only. We envision it to be shorter than the
subsequent execution intervals, and its length is a trade off between minimizing the number of
pages that get allocated before the first set of channel preferences are established and letting the
application’s memory access behavior stabilize before collecting statistics. (Empirical evaluation
in Sec 3.9.6)

22

applications from that of high memory-intensity applications, and, 2) among the

memory-intensive applications, the data of low row-buffer locality applications

from that of high row-buffer locality applications. To do so, MCP executes the

following steps in order:

1. Categorize applications into low and high memory-intensity groups based on

their MPKI. (Sec 3.4.2.1)

2. Further categorize the high memory-intensity applications, based on their

row-buffer hit rate (RBH) values into low and high row-buffer hit rate groups.

(Sec 3.4.2.2)

3. Partition the available memory channels among the three application groups.

(Sec 3.4.2.3)

4. For each application group, partition the set of channels allocated to this group

between all the applications in that group, and assign a preferred channel to each

application. (Sec 3.4.3)

3.4.2.1 Intensity Based Grouping

 Low Row High Row
Buffer Locality Buffer Locality

MPKI > MPKI

 High Intensity Low Intensity

No Yes

No Yes

RBH > RBH t

t

Figure 3.5. MCP: Application

Grouping.

MCP categorizes applications into low and high

memory-intensity groups based on a threshold

parameter, MPKIt. MPKIt is determined by

averaging the last level cache MPKI of all ap-

plications and multiplying it by a scaling factor.

For every application i, if its MPKI, MPKIi

is less than MPKIt, the application is catego-

rized as low memory-intensity, else high memory-

intensity. The average value of MPKI provides

a threshold that adapts to the workload’s mem-

ory intensity and acts as a separation point in the

middle of the workload’s memory-intensity range.

The scaling factor further helps to move this point up or down the range, regulat-

ing the number of applications in the low memory-intensity group. We empirically

found that a scaling factor of 1 provides an effective separation point and good

system performance (Sec 5.5).

23

3.4.2.2 Row-Buffer Locality Based Grouping

MCP further classifies the high memory-intensity applications into either low or

high row-buffer locality groups based on a threshold parameter, RBHt. For every

application i, if its RBHi is less than RBHt, then it is classified as a low row-

buffer locality application. In this case, we do not take an average or use a scaling

factor, as we observe that inter-application interference due to row-buffer locality

differences are more pronounced between applications with very low and high row-

buffer localities, unlike memory-intensity where there is interference across the

continuum. We empirically observe that an RBHt value of 50% provides effective

interference reduction and good performance (Sec 5.5).

3.4.2.3 Partitioning Channels between Application Groups

After thus categorizing applications into 3 groups, MCP partitions the available

memory channels between the groups. It is important to note that at this stage

of the algorithm, memory channels are assigned to application groups and not to

individual applications. MCP handles the preferred channel assignment to indi-

vidual applications in the next step (Sec 3.4.2.4). Channels are first partitioned

between low and high memory-intensity groups. The main question is how many

channels should be assigned to each group. One possibility is to allocate channels

proportional to the total bandwidth demand (sum of applications’ MPKI) of each

group (bandwidth proportional allocation). This amounts to balancing the total

bandwidth demand across channels. Alternatively, channels could be allocated

proportional to the number of applications in that group (application count pro-

portional allocation). In the former case, the low memory-intensity applications

which constitute a very low proportion of total bandwidth demand might be as-

signed no channels. This fails to achieve their isolation from high memory-intensity

applications, leading to low system performance. In contrast, if the latter is used,

it results in bandwidth wastage as the low memory-intensity applications seldom

generate requests and the bandwidth of the channels they are assigned to would

have been better utilized by the high memory-intensity applications. We found

that the isolation benefits of application-count-proportional allocation outweighs

the bandwidth wastage caused by potentially allocating low-intensity applications

24

to one or more channels.3 Therefore, we use the application count proportional

channel allocation strategy for MCP. However, bandwidth wastage caused by po-

tentially allocating very low intensity applications dedicated channels remains,

and we will show that eliminating this wastage by handling these applications in

the scheduler in an integrated scheduling and partitioning mechanism is beneficial

(Sec 3.5). The channels allocated to the high memory-intensity group are further

partitioned between the low and high row-buffer locality groups. The applications

in the high memory-intensity group are bandwidth sensitive, meaning they each

need a fair share of bandwidth to make progress. To ensure this, MCP assigns a

number of channels to each of these two groups proportionally to the bandwidth

demand (sum of MPKIs) of the group.

3.4.2.4 Preferred Channel Assignment within an Application Group

As a final step, MCP determines which applications within a group are mapped

to which channels, when more than one channel is allocated to a group. Within

each group, we balance the total bandwidth demand across the allocated chan-

nels. For each group, we maintain a ranking of applications by memory-intensity.

We start with the least intensive application in the group and map applications

to the group’s first allocated channel until the bandwidth demand allocated to

it (approximated by sum of MPKIi of every application i allocated to it) is
Sum of MPKIs of applications in the group
Number of channels allocated to the group

. We then move on to the next channel and al-

locate applications to it. This is repeated for every application group. At the end

of this procedure, each application is assigned a preferred channel.

3.4.3 Allocation of Pages to Preferred Channel

Once each application is assigned a preferred channel, MCP allocates a page to the

preferred channel in case it is not already there. There are two possibilities. First,

a page fault: the accessed page is not present in any channel. In this case, the

page fault handler attempts to allocate the page in the preferred channel. If there

is a free page in the preferred channel, the new page is allocated there. Otherwise,

3We found that bandwidth proportional allocation results in a 4% performance loss over the
baseline since it increases memory interference.

25

a modified version of the CLOCK replacement policy, as described in [36] is used.

The baseline CLOCK policy keeps a circular list of pages in memory, with the hand

(iterator) pointing to the oldest allocated page in the list. There is a Referenced

(R) bit for each page, that is set to ’1’ when the page is referenced. The R bits

of all pages are cleared periodically by the operating system. When a page fault

occurs and there are no free pages, the hand moves over the circular list until an

unreferenced page (a page with R bit set to ’0’) is found. The goal is to choose

the first unreferenced page as the replacement. To allocate a page in the preferred

channel, the modified CLOCK algorithm looks ahead N pages beyond the first

replacement candidate to potentially find an unreferenced page in the preferred

channel. If there is no unreferenced page within N, the first unreferenced page in

the list across all channels is chosen as the replacement candidate. We use an N

value of 512.

Second, the accessed page is present in a channel other than the preferred chan-

nel, which we observe to be very rare in our workloads, since application behavior

is relatively constant within an interval. In this case, dynamically migrating the

page to the preferred channel could be beneficial. However, dynamic page migra-

tion incurs TLB and cache block invalidation overheads as discussed in [1]. We find

that less than 12% of pages in all our workloads go to non-preferred channels and

hence migration does not gain much performance over allowing some pages of an

application to potentially remain in the non-preferred channels. Thus, our default

implementation of MCP does not do migrations. However, if needed, migration

can of course be seamlessly incorporated into MCP and IMPS.

3.5 Integrated Partitioning/Scheduling (IMPS)

MCP aims to solve the inter-application memory interference problem entirely

with the system software’s page mapper (with the support of additional hardware

counters to collect MPKI and RBH metrics for each application). It does not

require any changes to the memory scheduling policy. This approach is in stark

contrast to the various existing proposals, which try to solve the problem “from

the opposite side”. These proposals aim to reduce memory interference entirely in

the memory controller hardware using sophisticated scheduling policies (e.g., [7,

26

8, 21, 28]) The question is whether either extreme alone (i.e., page mapping alone

and memory scheduling alone) can really provide the best possible interference

reduction. Based on our observations, the answer is negative. Specifically, we

devise an integrated memory partitioning and scheduling (IMPS) mechanism that

aims to combine the interference reduction benefits of both.

The key observation underlying IMPS is that applications with very low mem-

ory intensity, when prioritized over other applications in the memory scheduler, do

not cause significant slowdowns to other applications. This observation was also

made in previous work [7, 8]. These applications seldom generate memory requests;

prioritizing these requests enables the applications to quickly continue with long

computation periods and utilize their cores better, thereby significantly improving

system throughput [7, 8]. As such, scheduling can very efficiently reduce interfer-

ence that affects very low memory-intensity applications. In contrast, reducing the

interference against such applications purely using the page mapper is inefficient.

The mapper would have to dedicate one or more channels to such low-memory-

intensity applications, wasting memory bandwidth, since these applications do not

require significant memory bandwidth (yet high-intensity applications would likely

need the wasted bandwidth, but cannot use it). If the mapper cannot dedicate a

channel to such applications, they would share channels with high-intensity appli-

cations and experience high interference with an unmodified memory scheduler.

The basic idea and operation of IMPS is therefore simple. First, identify at

the end of an execution interval very low memory-intensity applications (i.e., ap-

plications whose MPKI is smaller than a very low threshold, 1.5 in most of our

experiments (Sec 3.9.6)), prioritize them in the memory scheduler over all other

applications in the next interval, and allow the mapping of the pages of such ap-

plications to any memory channel. Second, reduce interference between all other

applications by using memory channel partitioning (MCP), exactly as described in

Sec 3.4. The modification to the memory scheduler is minimal: the scheduler only

distinguishes the requests of very low memory-intensity applications over those

of others, but does not distinguish between requests of individual applications in

either group. The memory scheduling policy consists of three prioritization rules:

1) prioritize requests of very low memory-intensity applications, 2) prioritize row-

hit-first requests, 3) prioritize older requests.

27

Note that MCP is still used to classify the remaining applications as low and

high memory-intensity, as only the very low memory-intensity applications are

filtered out and prioritized in the scheduler. MCP’s channel partitioning still

reduces interference and consequent slowdowns of the remaining applications.

3.6 Implementation

Hardware support. MCP requires hardware support to estimate MPKI and

row-buffer hit rate of each application, as described in Sec 3.4.1. These counters

are readable by the system software via special instructions. Table 3.1 shows the

storage cost incurred for this purpose. For a 24-core system with 4 memory con-

trollers (each controlling 4 memory banks and 16384 rows per bank), the hardware

overhead is 12K bits. IMPS requires an additional bit per each request (called low-

intensity bit) to distinguish very low-memory-intensity applications’ requests over

others, which is an additional overhead of only 512 bits for a request queue size of

128 per MC. IMPS also requires small modifications to the memory scheduler to

take into account the low-intensity bits in prioritization decisions. Note that, unlike

previous application-aware memory request scheduling policies, IMPS (or MCP) 1)

does not require each main memory request to be tagged with a thread/application

ID since it does not distinguish between individual applications’ requests, 2) adds

only a single new bit per request for the memory scheduler to consider, 3) does

not require application ranking as in [7, 8, 28] – ranking and prioritization require

hardware logic for sorting and performing comparisons. As such, the complexity of

IMPS is much lower than previous application-aware memory scheduling policies.

Storage Description Size

Storage Overhead for MCP - per-core registers

MPKI-counter A core’s last level Ncore × log2MPKImax = 240
cache misses per kilo instruction

Storage Overhead for MCP - per-core registers in each controller

Shadow row-buffers Row address of a Ncore ×Nbanks × log2Nrows = 1344
core’s last accessed row

Shadow row-buffer Number of row-hits if the Ncore ×Nbanks × log2Countmax = 1536
hit counters application were running alone

Additional Overhead for IMPS - per request register in each MC

Very low memory To identify requests from very 1×Queuemax = 128
-intensity indicator low memory-intensity applications

Table 3.1. Hardware storage required for MCP and IMPS

28

System software support. MCP and IMPS require support from system

software to 1) read the counters provided by the hardware, 2) perform the preferred

channel assignment, at the end of each execution interval, as already described.

Each application’s preferred channel is stored as part of the system software’s

data structures, leading to a very modest memory overhead of NAppsInSystem ×

NMemoryChannels. The page fault handler and the page replacement policy are

modified slightly, as described in Sec 3.4.3. Our experiments show that the execu-

tion time overheads of the required tasks are negligible. Note that our proposed

mechanisms do not require changes to the page table.

3.7 Related Work and Qualitative Comparisons

to Previous Work

To our knowledge, this is the first work to propose and explore memory page map-

ping mechanisms as a solution to mitigate inter-application memory interference

and thereby improve system performance.

Memory Scheduling. The problem of mitigating interference has been exten-

sively addressed using application-aware memory request scheduling. We briefly

describe the two approaches we compare our mechanisms to in Section 5.5. AT-

LAS [7] is a memory scheduling algorithm that improves system throughput by

prioritizing applications based on their attained memory service. Applications

that have smaller attained memory service are prioritized over others because such

threads are more likely to return to long compute periods and keep their cores

utilized. Thread cluster memory scheduling (TCM) [8] improves both system per-

formance and fairness. System performance is improved by allocating a share of the

main memory bandwidth for latency-sensitive applications. Fairness is achieved by

shuffling scheduling priorities of memory-intensive applications at regular intervals

to prevent starvation of any application. These works and other application-aware

memory scheduler works [27, 21, 28, 29, 30] attempt to reduce inter-application

memory interference purely through memory scheduling. As a result, they require

significant modifications to the memory controller’s design. In contrast, we propose

1) an alternative approach to reduce memory interference which does not require

29

changes to the scheduling algorithm when employed alone, 2) combining our chan-

nel partitioning mechanism with memory scheduling to gain better performance

than either can achieve alone. Our quantitative comparisons in Section 5.5 show

that our proposed mechanisms perform better than the current state-of-the-art

scheduling policies, with no change or minimal changes to the memory scheduling

algorithm.

Application-unaware memory schedulers [37, 38, 22, 23], including the com-

monly employed FR-FCFS policy [22, 23], aim to maximize DRAM throughput,

and therefore, lead to low system performance in multi-core systems, as shown in

previous work [7, 8, 27, 21, 28, 29].

OS Thread Scheduling. Zhuravlev et al. [39] aims to mitigate shared

resource contention between threads by co-scheduling threads that interact well

with each other on cores sharing the resource, similar to [40]. Such solutions

require enough threads with symbiotic characteristics to exist in the OS’s thread

scheduling pool. In contrast, our proposal can reduce memory interference even

if threads that interfere significantly with each other are co-scheduled in different

cores and can be combined with co-scheduling proposals to further improve system

performance.

Page Allocation. Page allocation mechanisms have been explored pre-

viously. Awasthi et al. [1] use page allocation/migration to balance load across

memory controllers (MCs) in an application-unaware manner, to improve mem-

ory bandwidth utilization and system performance in a network-on-chip based

system where a core has different distances to different memory channels. Our

proposal, in comparison, performs page allocation in an application-aware manner

with the aim of reducing interference between different applications. We compare

our approach to an adaptation of [1] to crossbar-based multicore systems where

all memory controllers are equidistant to any core (in Section 3.9.3) and show that

application-aware channel partitioning leads to better system performance than

balancing load in MCs. However, concepts from both approaches can be combined

for further performance benefits. In NUMA-based multiprocessor systems with

local and remote memories, page allocation mechanisms were used to place data

close to corresponding computation node [41, 42]. Our goal is completely differ-

ent: to map data to different channels to mitigate interference between different

30

applications. In fact, our schemes do not require the system to have non-uniform

access characteristics to MCs.

Sudan et al. [43] propose to colocate frequently used chunks of data into rows,

thereby improving row-buffer locality, by modifying OS page mapping mechanisms.

Lebeck et al. and Hur et al. [37, 44] propose page allocation mechanisms to increase

idleness and thus decrease energy consumption in DRAM ranks/banks. Phadke

et al. [45] propose a heterogeneous memory system where each memory channel

is optimized for latency, bandwidth, or power and propose page mapping mecha-

nisms to map appropriate applications’ data to appropriate channels to improve

performance and energy efficiency. None of these works consider using page allo-

cation to reduce inter-application memory interference, and therefore they can be

potentially combined with our proposal to achieve multiple different goals.

3.8 Evaluation Methodology

Simulation Setup. MCP requires the MPKI and RBH values to be col-

lected for each application. These per-application hardware counters, though easy

to implement, are not present in existing systems. Also, our evaluation requires

different system configurations with varying architectural parameters and compar-

ison to new scheduling algorithms. For these reasons, we are unable to evaluate

MCP on a real system and use an in-house cycle-level x86 multi-core simulator.

The front end of the simulator is based on Pin [46]. This simulator models the

memory subsystem of a CMP in detail. It enforces channel, rank, bank, port and

bus conflicts, thereby capturing all the bandwidth limitations and modeling both

channel and bank-level parallelism accurately. The memory model is based on

DDR2 timing parameters [47], verified using DRAMSim [48]. We model the exe-

cution in a core, including the instruction-window. Unless mentioned otherwise,

we model a 24-core system with 4 memory channels/controllers. Table 6.1 shows

major processor and memory parameters.

Evaluation Metrics. We measure the overall throughput of the system using

weighted speedup [40]. We also report harmonic speedup, which is a combined mea-

sure of performance and fairness.

31

Processor Pipeline 128-entry instruction window (64-entry issue queue, 64-entry
store queue), 12-stage pipeline

Fetch/Exec/Commit Width 3 instructions per cycle in each core; 1 can be
a memory operation

L1 Caches 32 K-byte per-core, 4-way set associative,
32-byte block size, 2-cycle latency

L2 Caches 512 K-byte per core, 8-way set associative,
32-byte block size, 12-cycle latency

DRAM controller (on-chip) 128-entry request buffer, 64-entry write buffer,
reads prioritized over writes, row interleaving

DRAM chip parameters DDR2-800 timing parameters, tCL=15ns, tRCD=15ns,
tRP =15ns, BL/2=10ns, 8 banks, 4K row-buffer

DIMM Configuration Single-rank, 8 DRAM chips put together on
a DIMM to provide a 64-bit wide memory channel

Round-trip L2 miss latency For a 32-byte cache line, uncontended: row-buffer hit: 40ns (200 cycles),
closed: 60ns (300 cycles), conflict: 80ns (400 cycles)

Cores and DRAM controllers 24 cores, 4 independent DRAM controllers, each
controlling a single memory channel

Table 3.2. Default processor and memory subsystem configuration.

SystemThroughput = WeightedSpeedup = Σi
IPCshared

i

IPCalone
i

;

HarmonicSpeedup = Σi
N

IPCalone
i

IPCshared
i

.

Our normalized results are normalized to the FR-FCFS baseline, unless stated

otherwise.

Workloads. We use workloads constructed from the SPEC CPU2006 bench-

marks [34] in our evaluations. We compiled the benchmarks using gcc with the

O3 optimization flag. Table 3.3 shows benchmarks’ characteristics. We classify

benchmarks into two categories: high memory-intensity (greater than 10 MPKI)

and low memory-intensity (less than 10 MPKI). We vary the fraction of high

memory-intensity benchmarks in our workloads from 0%, 25%, 50%, 75%, 100%

and construct 40 workloads in each category. Within each memory-intensity cat-

egory, we vary the fraction of high row-buffer hit rate benchmarks in a workload

from low to high. We also create another category, V eryLow(V L) of 40 work-

loads. All benchmarks in these workloads have less than 1 MPKI. We consider V L

for completeness, although these workloads have little bandwidth demand. For

our main evaluations and some analyses, we use all 240 workloads and run each

workload for 300M cycles. For sensitivity studies, we use the 40 balanced (50%

memory-intensive) workloads, unless otherwise mentioned, and run for 100M cycles

to reduce simulation time.

Parameter Values. The default MPKI scaling factor and RBHt values we use in

our experiments are 1 and 50% respectively. For the profile interval and execution

32

No. Benchmark MPKI RBH No. Benchmark MPKI RBH

1 453.povray 0.03 85.15% 14 456.hmmer 5.69 35.47%
2 400.perlbench 0.13 83.64% 15 473.astar 9.21 76.17%
3 465.tonto 0.16 91% 16 436.cactusADM 9.37 17.95%
4 454.calculix 0.20 87.2% 17 471.omnetpp 21.61 46%
5 444.namd 0.32 95.4% 18 483.xalancbmk 23.85 73.17%
6 481.wrf 0.33 91.9% 19 482.sphinx3 24.85 85.38%
7 403.gcc 0.37 73.23% 20 459.GemsFDTD 25.30 28.77%
8 458.sjeng 0.42 11.53% 21 433.milc 34.33 93.24%
9 447.dealIII 0.45 81.23% 22 470.lbm 43.52 95.18%
10 445.gobmk 0.62 71.01% 23 462.libquantum 50.06 99.21%
11 435.gromacs 0.73 84.43% 24 450.soplex 50.08 91.25%
12 464.h264 2.70 92.3% 25 437.leslie3d 59.03 82.6%
13 401.bzip2 3.90 53.82% 26 429.mcf 99.79 42.87%

Table 3.3. SPEC CPU2006 benchmark characteristics.

interval, we use values of 10 million and 100 million, respectively. We later study

sensitivity to all these parameters.

3.9 Results

We first present and analyze the performance of MCP and IMPS on a 24-core 4-

memory controller system. Figure 3.6 shows the system throughput and harmonic

speedup averaged over all 240 workloads.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0.9 1 1.1 1.2 1.3 1.4N
or

m
al

iz
ed

 W
ei

gh
te

d
S

pe
ed

up

Normalized Harmonic Speedup

FRFCFS
MCP
IMPS

Figure 3.6. MCP and IMPS performance (normalized) across 240 workloads.

The upper right part of the graph corresponds to better system throughput

and a better balance between fairness and performance. MCP improves system

throughput by 7.1% and harmonic speedup by 11% over the baseline. IMPS pro-

vides 4% better system throughput (13% better harmonic speedup) over MCP, and

11% better system throughput (24% better harmonic speedup) over the baseline.

We observe (not shown) that the scheduling component of IMPS alone (without

partitioning) gains half of the performance improvement of IMPS. We conclude

that interference-aware channel partitioning is beneficial for system performance,

33

but dividing the task of interference reduction using both channel partitioning and

memory scheduling together provides better system performance than employing

either alone.

Individual Workloads. Figure 3.7 shows the weighted speedup for four randomly

selected, representative workloads shown in Table 3.4. We observe that MCP and

IMPS gain performance benefits consistently across different workloads.

Workload High memory-intensity benchmarks Low Memory-intensity benchmarks

W1 perlbench, gobmk, gromacs, gcc(2), sjeng(2), sphinx3, soplex, libquantum(4),
hmmer(2), bzip2, cactus, h264ref milc(3), lbm(3)

W2 gromacs(2), h264(2), dealII(2), astar(2), milc(2), leslie3d(2)), sphinx(3),
hmmer(2), cactusADM(2) gemsFDTD(3), libquantum(3)

W3 namd(3), gcc(3), astar(3), leslie3d(3), milc(3), omnetpp(3),
cactusADM(3) mcf(3)

W4 tonto, astar, gcc, povray, hmmer, h264, bzip2 xalancbmk, libquantum, lbm, sphinx3, milc
gromacs, perlbench, dealII, cactusADM(2), soplex, omnetpp(2), gemsFDTD(3), mcf

Table 3.4. Four representative workloads.

 6

 7

 8

 9

 10

 11

 12

 13

 14

W1 W2 W3 W4 AVG

W
eig

ht
ed

 S
pe

ed
up

Workloads

FRFCFS
MCP
IMPS

Figure 3.7. MCP and IMPS performance
for 4 sample workloads and avg across 40 bal-
anced workloads.

 0

 5

 10

 15

 20

 25

VL 0 25 50 75 100

W
ei

gh
te

d
Sp

ee
du

p

% of memory-intensive benchmarks in a workload

0%

13%
20.1%

17.7%

7.8%
-2.7%

FRFCFS
MCP
IMPS

Figure 3.8. MCP and IMPS Per-
formance across memory-intensity cate-
gories. % gain values of IMPS over FR-
FCFS are labeled.

Effect of Workload Memory-Intensity. Figure 3.8 shows the system through-

put benefits of MCP and IMPS, for six memory-intensity based categories of work-

loads.4 As expected, as workload intensity increases (from left to right in the fig-

ure), absolute system throughput decreases due to increased interference between

applications.

We make three major conclusions. First, MCP and IMPS improve performance

significantly over FR-FCFS in most of the memory-intensity categories. Specifi-

cally, MCP avoids interference between applications of both dissimilar and similar

4All categories from 0 - 100% place a load on the memory system, as the intensity cut off used
to classify an application as intensive is 10 MPKI, which is reasonably large to begin with.

34

intensities by isolating them to different channels, enabling benefits mostly re-

gardless of workload composition. Second, IMPS’s performance benefit over MCP

is especially significant in the lower-intensity workloads. Such workloads have

a higher number of very low memory-intensity applications and IMPS prioritizes

them in the scheduler, which is more effective for system performance than reducing

interference for them by assigning them to their own channels, which wastes band-

width as done by MCP. As the workload memory-intensity increases, IMPS’ per-

formance benefit over MCP becomes smaller because the number of low-intensity

workloads becomes smaller. Third, when the workload mix is very non-intensive

or very intensive, MCP/IMPS do not provide much benefit. In the V L category,

load on memory and as a result interference is very low, limiting the potential of

MCP/IMPS. When 100% of applications in the workload are intensive, the system

becomes memory bandwidth limited and conserving memory bandwidth by ex-

ploiting row-buffer locality (using simple FR-FCFS) provides better performance

than reducing inter-application interference at the expense of reducing memory

throughput. Any scheduling or partitioning scheme that breaks the consecutive

row-buffer hits results in a system performance loss. We conclude that MCP and

IMPS are effective for a wide variety of workloads where contention exists and the

system is not fully bandwidth limited.

3.9.1 Comparison with Previous Scheduling Policies

Figure 3.9 compares MCP and IMPS with previous memory scheduling policies,

FR-FCFS [22], PARBS [28], ATLAS [7] and TCM [8] over 240 workloads. Two

major conclusions are in order. First, application-aware scheduling policies perform

better than FR-FCFS, and, TCM performs the best among the application-aware

scheduling policies, consistent with previous work[7, 8, 28]. Second, MCP and

IMPS outperform TCM by 1%/5%, with no/minimal changes to the scheduler.

Figure 3.10 provides insight into where MCP and IMPS’ performance benefits

are coming from by breaking down performance based on workload intensity. As

the workload memory intensity (thus contention) increases, MCP and IMPS be-

come more effective than pure memory scheduling approaches. At low-intensity

workloads (VL, 0%, 25%), TCM performs slightly better than IMPS because TCM

35

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

N
or

m
al

iz
ed

 W
ei

gh
te

d
S

pe
ed

up

Memory Scheduling Algorithms

FRFCFS
FCFS
PARBS
ATLAS
TCM
MCP
IMPS

Figure 3.9. MCP and IMPS
performance (normalized) vs pre-
vious scheduling policies averaged
across 240 workloads.

 3

 6

 9

 12

 15

 18

 21

 24

VL 0 25 50 75 100

W
eig

ht
ed

 S
pe

ed
up

% of memory-intensive benchmarks in a workload

0%

13%
20.1%

17.7%

7.8%

-2.7%

FRFCFS
PARBS
ATLAS
TCM
MCP
IMPS

Figure 3.10. MCP and IMPS perfor-
mance vs previous scheduling policies across
memory-intensity categories. Percentage im-
provement values of IMPS over FR-FCFS are
displayed.

is able to distinguish and prioritize between each individual application in the

memory scheduler (not true for MCP/IMPS), leading to reduced interference be-

tween low and medium intensity applications. At higher intensity workloads (50%,

75%, 100%), reducing interference via channel partitioning is more effective than

memory scheduling: both MCP and IMPS outperform TCM, e.g. by 40% in

the 100%-intensity workloads. In such workloads, contention for memory is very

high as many high-intensity applications contend. Channel partitioning completely

eliminates interference between some applications by separating out their access

streams to different channels, thereby reducing the number of applications that

contend with each other. On the other hand, TCM or a pure memory scheduling

scheme tries to handle contention between high-intensity workloads purely by pri-

oritization, which is more effective at balancing interference but cannot eliminate

interference as MCP/IMPS does since all applications contend with each other.

We conclude that IMPS is a more effective solution than pure memory schedul-

ing especially when workload intensity (i.e., memory load) is high, which is the

expected trend in future systems.

Note that IMPS’s performance benefits over application-aware memory sched-

ulers come at a significantly reduced complexity, as described in Section 3.6.

3.9.2 Interaction with Previous Scheduling Policies

Figure 3.11 compares MCP and IMPS, when implemented on top of FR-FCFS,

ATLAS and TCM as the underlying scheduling policy. When IMPS is implemented

36

over ATLAS and TCM, it adds another priority level on top of the scheduling pol-

icy’s priority levels: very-low-intensity applications are prioritized over others and

the scheduling policy’s priorities are used between very-low-intensity applications

and between the remaining applications.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

FRFCFS ATLAS TCM

N
or

m
al

iz
ed

 W
ei

gh
te

d
S

pe
ed

up Base
MCP
IMPS

Figure 3.11. MCP and IMPS performance over different scheduling policies (240 work-
loads).

Several conclusions are in order. First, adding MCP/IMPS on top of any previ-

ous scheduling policy improves performance (IMPS gains 7% and 3% over ATLAS

and TCM respectively), showing that our proposal is orthogonal to the underlying

memory scheduling algorithm. Second, MCP/IMPS over FR-FCFS (our default

proposal) provides better performance than MCP/IMPS employed over TCM or

ATLAS. This is due to two reasons: 1) channel partitioning decisions MCP makes

are designed assuming an FR-FCFS policy and not designed to take into account

or interact well with ATLAS/TCM’s more sophisticated thread ranking decisions.

There is room for improvement if we design a channel partitioning scheme that is

specialized for the underlying scheduling policy. We leave this for future work. 2)

MCP/IMPS isolates groups of similar applications to different channels and AT-

LAS/TCM operate within each channel to prioritize between/cluster these similar

applications. However, ATLAS and TCM are designed to exploit heterogeneity

between applications and do not perform as well when the applications they prior-

itize between are similar. We found that prioritizing similar-intensity applications

over each other in the way ATLAS/TCM does, creates significant slowdowns be-

cause the applications are treated very differently. We conclude that MCP/IMPS

can be employed on top of any underlying scheduler to gain better performance

over using the scheduler alone. However, it performs best when employed over an

FR-FCFS baseline for which it is designed.

37

3.9.3 Comparison with Prior Work on Page Mapping

In [1], Awasthi et al propose two page allocation schemes to balance the load across

multiple memory controllers: 1) page allocation on first touch (Adaptive First

Touch, AFT), 2) Dynamic Page Migration (DPM). AFT attempts to balance load

by allocating a page to a channel which has the minimum value of a cost function

involving channel load, row buffer hit rate, and, the distance to the channel. DPM

proposes to migrate a certain number of pages from the channel with the highest

load to the least loaded channel at regular intervals, in addition to AFT. In our

adaptation of AFT, we consider both channel load and row-buffer-hit rate but

do not incorporate the channel distance, as we do not model a network-on-chip.

Figure 3.12 compares MCP/IMPS performance to that of AFT and DPM.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

Page Mapping Schemes

FRFCFS
AFT
DPM
MCP
IMPS

Figure 3.12. MCP and IMPS Performance vs load balancing across memory controllers
[1] (40 workloads).

First, AFT and DPM both improve performance by 5% over the baseline,

because they reduce memory access latency by balancing load across different

channels. The gains from the two schemes are similar as the access patterns of

the applications we evaluate do not vary largely with time, resulting in very few

invocations of dynamic page migration. Second, our proposals outperform AFT

and DPM by 7% (MCP) and 12.4% (IMPS), as they proactively reduce inter-

application interference by using application characteristics, while AFT and DPM

are not interference- or application-aware and try to reactively balance load across

memory controllers. We conclude that reducing inter-application interference by

page allocation provides better performance than balancing load across memory

controllers in an application-unaware manner.

38

3.9.4 Impact of Cache Line Interleaving

We study the effect of MCP/IMPS on a system with a restricted form of cache

line interleaving that maps consecutive cache lines of a page across banks within

a channel. Figure 3.13 shows that MCP/IMPS improve the performance of such a

system by 5.1% and 11% respectively. We observed (not shown) that unrestricted

cache line interleaving across channels (to which MCP/IMPS cannot be applied)

improves performance by only 2% over restricted cache line interleaving. Hence,

using channel partitioning with MCP/IMPS outperforms cache line interleaving

across channels. This is because the reduction in inter-application interference

with MCP/IMPS provides more system performance benefit than the increase of

channel-level parallelism with unrestricted cache-line interleaving. We conclude

that MCP/IMPS are effective independent of the interleaving policy employed, as

long as the interleaving policy allows the mapping of an entire page to a channel

(which is required for MCP/IMPS to be implementable).

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0.9 1 1.1 1.2 1.3 1.4 1.5N
or

m
al

iz
ed

 W
ei

gh
te

d
S

pe
ed

up

Normalized Harmonic Speedup

FRFCFS
MCP
IMPS

Figure 3.13. System throughput and
harmonic speedup with cache line inter-
leaving (240 workloads).

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0.4 0.6 0.8 1 1.2 1.4 1.6N
or

m
al

iz
ed

 W
ei

gh
te

d
S

pe
ed

up

Normalized Maximum Slowdown

FRFCFS
PARBS
ATLAS
TCM
MCP
IMPS

Figure 3.14. Performance and fairness
compared to previous scheduling poli-
cies (240 workloads).

3.9.5 Effect of MCP and IMPS on Fairness

The fairness metric we use, the maximum slowdown of a workload, is defined

as the maximum of the slowdowns (inverse of speedups) of all applications [7,

8, 49]; lower maximum slowdown values are more desirable. Figure 3.14 shows

throughput vs fairness of previously proposed scheduling policies and our proposed

schemes. IMPS has slightly better fairness (3% lower maximum slowdown) than

FR-FCFS. While MCP and IMPS provide the best performance compared to any

other previous proposal, they result in higher unfairness. Note that this is expected

39

by design: MCP and IMPS are designed for improving system performance and

not fairness. They make the conscious choice of placing high-intensity (and high-

row-locality) applications onto the same channel(s) to enable faster progress of

lower-intensity applications, which sometimes results in the increased slowdown

of higher-intensity applications. Channel partitioning based techniques that can

improve both performance and fairness are out of the scope of this chapter and an

interesting area of future work.

3.9.6 Sensitivity Studies

Sensitivity to MCP and IMPS algorithm parameters. We first vary

the profile interval length to study its impact on MCP and IMPS’ performance

(Figure 3.15). A shorter initial profile interval length (1 and 5 Million) leads to

less stable MPKI and RBH values, leading to inaccurate estimation of application

characteristics. In contrast, a longer profile interval length causes a number of

pages to be allocated prior to computing channel preferences. A profile interval

length of 10M cycles balances these downsides of shorter and larger intervals and

provides the best performance. We also experimented with different execution

interval lengths (Figure 3.16). A shorter interval leads to better adaptation to

changes in application behavior but also higher overhead due to page migration

if application characteristics are not stable within the interval. A longer interval

might miss changes in the behavior of applications. A 100M-cycle interval ensures

a good balance and provides good performance.

Figure 3.17 shows the sensitivity of MCP/IMPS to MPKIt. As MPKIt is in-

creased beyond 1, more medium and high memory-intensity applications get into

the low memory-intensity group, thereby slowing down the low-intensity applica-

tions and resulting in lower throughput. We also varied RBHt, the row buffer-hit

rate threshold and the very low memory-intensity threshold. System performance

remains high and stable over a wide range of these values, with the best per-

formance observed at an RBHt value of 50% and a very low memory-intensity

threshold value of 1.5.

Scalability to cores, MCs and cache sizes. Table 3.5 shows the performance

of IMPS as number of cores, number of MCs and L2 cache size are varied. The

40

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

1M 5M 10M 20M 40MN
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

Profile Interval

MCP
IMPS

Figure 3.15. Performance vs
Profile interval (40 workloads).

 1

 1.05

 1.1

 1.15

 1.2

10M 50M 100M 150M 200MN
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

Execution Interval

MCP IMPS

Figure 3.16. Performance vs
Execution interval (40 work-
loads).

 1.1

 1.15

 1.2

0.5 0.75 1 1.25 1.5N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

MPKI Threshold

MCP
IMPS

Figure 3.17. Performance vs
MPKIt (40 workloads).

rest of the system remains the same. IMPS’ benefits are significant across all

configurations. IMPS’ performance gain in general increases when the system is

more bandwidth constrained, i.e., with increasing number of cores and reducing

number of MCs. MCP shows similar trends as IMPS.

No. of Cores No. of MCs Private L2 Cache Size

16 24 32 2 4 8 256KB 512KB 1MB
IMPS System 15.8% 17.4% 31% 18.2% 17.1% 10.7% 16.6% 17.4% 14.3%
Throughput gain

Table 3.5. Sensitivity to number of cores, number of MCs, and L2 cache size (40
workloads).

3.10 Conclusion

We presented 1) MCP, a fundamentally new approach to reducing inter-application

interference at the memory system, by mapping the data of interfering applica-

tions to separate channels, 2) IMPS, that effectively divides the work of reducing

inter-application interference between the system software and the memory sched-

uler. Our extensive qualitative and quantitative comparisons demonstrate that

MCP and IMPS both provide better system performance than the state-of-the-art

memory scheduling policies, with no or minimal hardware complexity. IMPS pro-

41

vides better performance than channel partitioning or memory scheduling alone.

We conclude that inter-application memory interference is best reduced using the

right combination of page allocation to channels and memory scheduling, and that

IMPS achieves this synergy with minimal hardware complexity.

Chapter 4
Reuse Distance Based Performance

Modeling and Workload Mapping

4.1 Introduction

Many current chip multiprocessors (CMPs) support on-chip hierarchical caches.

For instance, Intel Xeon 7400 processor (previously code-named Intel Dunnington)

[5] has six on-chip cores with each pair of cores sharing a level two (L2) cache

and all cores sharing a level three (L3) cache. A Dell R900 server rack contains

two such Dunnington chips [6] making it twelve cores with three levels of cache

topology, L1, L2 and L3. Although these hierarchical cache structures have only

recently emerged in commercial CMPs, shared L2 caches have been prevalent for

quite some time in dual core and quad core CMPs. In such CMPs, multiple

cores sharing an L2 cache leads to a situation where applications running on these

cores contend for the shared cache space. This contention can have varying effects

on the performance of the simultaneously-executing applications. For instance,

an application’s performance can be adversely impacted by sharing a cache with

another application, whereas the same application can experience minimal adverse

impact when running together with some other application. The cache performance

of an application is affected by its co-runners that share a cache with it, and further,

degree to which the application’s cache performance is affected depends not only on

its own cache behavior but also on that of its co-runner’s. Therefore, co-scheduling

43

threads that have lower contention and hence run well together at the same time

is beneficial [50, 51, 52]. This problem gets more complicated in the presence of

multi-level cache hierarchies. This is because, different subsets of cores can now

have different degrees of cache sharing. For instance, two cores can share both

L2 and L3 caches, can share just L2, or share neither. With further increase in

the number of cores and multiple caches with deeper hierarchies expected in the

future [53], it is vitally important to intelligently map applications to cores in a

cache hierarchy-aware manner to extract the maximum possible performance.

In this chapter, we address the problem of mapping a workload (a set of single-

threaded applications) to the cores of a CMP in the presence of a hierarchical

cache structure, and present a mapping algorithm. The presence of different de-

grees of cache sharing among the subsets of cores introduces different levels of

cache contention at different levels of the cache hierarchy. A direct consequence

of this contention is the non-triviality of finding an application-to-core mapping

which minimizes the overall cache contention effects and improves the overall cache

performance.

Our proposed workload mapping scheme starts out by sampling the memory

accesses of all applications. The reuse distance distributions are built for all ap-

plications in the workload individually using their memory access samples. The

performance effects of possible cache contention at different levels of the cache

hierarchy are modeled. These reuse distance based models estimate two types of

performance effects for each application. The first of these is a measure of the

extent to which an application’s performance can be adversely affected by other

contending applications, and the second measure is the extent to which an ap-

plication can adversely affect the performance of other (simultaneously-executing)

contending applications. We propose a hierarchical grouping technique that uses

the reuse-distribution based models to obtain a good application-to-core mapping

for a given cache hierarchy and a workload. ”Good” in this context means a map-

ping that reduces the overall cache contention effects (at all cache levels). The

grouping algorithm considers all levels of the cache hierarchy progressively and, as

a result, the varying degrees of cache sharing among cores are taken into account

to reduce the contention effects at all levels.

There have been past studies that analyze the effect of cache contention in

44

the presence of a co-runner [50, 54]. There have also been some online efforts to

characterize application behavior [55]. Also, recently, there have been scheduling

techniques proposed to address the shared resource contention problem [39] and,

algorithms targeted at finding the optimal schedule when the contention between

applications is known [56]. Our work is distinguished from prior efforts in that

we take into account multiple levels of the on-chip cache hierarchy, and model

in detail the performance effects of applications using reuse distance analysis at

different cache levels. We then use these reuse distance based performance models

to group and schedule the target workload on to the cores. Therefore, we propose

a complete end-to-end scheme to efficiently map a given workload. It is important

to note that, using reuse distance analysis at different levels of the cache hierarchy

gives our scheme the ability to identify subsets of cores that have different degrees

of sharing and obtain a workload mapping that mitigates potential contention at all

levels of the cache hierarchy. To summarize, we make the following contributions:

• In order to motivate the problem, we start out by measuring the performance

effects of contention at different levels of a given on-chip cache hierarchy and its

effect on overall system throughput.

• We propose reuse distribution based models to estimate the cache performance

effects of applications due to contention at different cache levels.

• A cache hierarchy-aware application grouping algorithm is proposed that

tries to find an application-to-core mapping with minimal predicted overall cache-

contention-effects.

• We evaluate our proposed mapping scheme on an eight-core and a twelve-

core system. In 90% of the cases tested, our scheme computes the best possible

mapping, and, the mappings produced by our proposed scheme are within 4% of

the best case mappings in all cases. Application-to-core mappings produced by

our scheme perform up to 39% better in terms of throughput over a worst-case

mapping and up to 30% over the default operating system (OS) based mapping.

4.2 Background and Setup

Hierarchical Caches. Caches and cache hierarchies in CMPs have evolved

over the years and span purely private cache organizations, totally shared cache

45

structures and hybrid cache organizations comprising elements of both private and

shared cache components. As an example, consider Figure 4.1 which depicts an

eight core machine with a three-level hierarchical cache structure. We use this

hierarchical cache architecture for the evaluations in this chapter.

��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

�	

��

�

�� ��

�� ��

Figure 4.1. A three-level hierarchical cache architecture.

Cache Hierarchy Representation. A hierarchical cache structure can poten-

tially have multiple levels with multiple caches at each level, depending on the

underlying topology. Such a hierarchical cache structure can be represented as a

tree called the Cache Hierarchy Tree. Root of a cache hierarchy tree will be the

last level cache if there exists a single last level cache shared by all the cores. If

there are more than one last level caches, root of the cache hierarchy tree will be

a dummy node, representing the shared off-chip memory. We also define a param-

eter Ci,j to be the number of caches at level i connected to each cache at level j.

Therefore, if Ci,j = δ, then a total of δ level i caches are connected to each level j

cache. Also, level 0 represents the level of the cores. Therefore, a core connected to

a private L1 cache is represented by C0,1 = 1. Figure 4.2 shows the cache hierarchy

tree and the Ci,j values for the multicore architecture in Figure 4.1.

�

�� ��

���� �� ��

���� ���� ���� ����

���� �

���� �

���� �

Figure 4.2. Representation of the three-level cache hierarchy.

Degree of Sharing. In CMP architectures with a hierarchical cache structure,

depending on the number of levels of the cache, different subsets of cores can

have different degrees of cache sharing. Therefore, a hierarchical cache structure

creates heterogeneous subsets of cores in terms of cache sharing. The cores present

46

in a CMP can be represented by a set Cores = {c0, c1,, cm}, where m is the

number of cores in the system. For every core subset, S ∈ Cores, we define a

bit vector called the ”sharing degree”. Sharing degree of a core subset S will be

SD(S) = (sd1, sd2, ...sdn), where n is the number of levels in the cache hierarchy,

and a particular bit sdj is 1 if all the cores in S share the level j cache, and 0

otherwise. Consequently, there is a bit for each level of the cache which indicates

the cache sharing among the subset of cores at that level. Consider the architecture

depicted in Figure 4.1. The set of all cores in this architecture can be represented

by Cores = {c0, c1,, c7}. We can identify three degrees of cache sharing in this

particular topology:

• High sharing: Consider the core subset S ∈ Cores. If the cores in S share all

levels of the hierarchy except the L1 cache, then S is classified as a highly sharing1

subset of cores. For instance, S0 = {c0, c1} (in Figure 4.1) is a highly sharing

subset of cores. The sharing degree vector of core subset S, SD(S0) is (011). The

above subset of cores can experience contention at multiple cache levels (L2 and

L3).

• Medium sharing: If the cores in the subset S ∈ Cores share the L3 cache but

not the L1 and L2 caches, then the subset, S, is classified as a medium sharing

subset. An example of this is subset S1 = {c1, c2}. In this case, the sharing degree

vector is SD(S1) = (001), and, cores in S1 experience contention at only the L3

cache level.

• No sharing: Core subset S ∈ Cores is classified as a subset with no sharing if

the cores in S do not share any cache. S2 = {c3, c4} is an example of this case.

Here, the sharing degree vector is SD(S2) = (000). Since no cache is shared, there

will be no contention in this case.

The degree of sharing and the corresponding subsets of cores depend on the

number of levels in the target cache hierarchy and the way the caches in this

hierarchy are connected to each other. For example, in Figure 4.1, there are three

different degrees of cache sharing possible, resulting in corresponding contention

issues at multiple levels. It is expected that future multicore systems will have

deeper cache hierarchies [53], thereby leading to more diverse degrees of cache

1“Sharing” in this context refers to whether the cores in a subset share a cache or not and
has nothing to do with data sharing, which is an application execution characteristic.

47

sharing.

Experimental Methodology and Setup. All experiments and evaluations

presented in this chapter are carried out using Simics [57], which is a full system

simulator. Multicore architectures with different number of cores are simulated

on Simics. All of the cores simulated in this study are alike and are based on the

UltraSparc 3 architecture [3]. The important features of the simulated system are

given in Figure 6.1. The cache sizes vary with the different cache architectures we

tested. However, in the default architecture (shown in Figure 4.1) used in most of

our experiments, the L1 cache is 16KB (4 way associative), each L2 cache (shared

by two cores) is 512KB (8 way associative), and each L3 cache (shared by four

cores) is 3MB (16 way associative). We also use Simics to obtain the memory access

traces of the applications. To map and bind applications to a particular core, we use

the Solaris shell command pbind. All experiments are performed using applications

from the SPEC 2006 benchmark suite [58] with reference inputs. There are a large

number of combinations possible while evaluating a workload mapping scheme.

For instance, if there are eight applications to be run on eight cores, the number

of mappings possible can be as high as 8!, although not all of the mappings are

unique as mentioned in Section 4.4. In this chapter, for each application mix, we

evaluate all possible mappings, unless otherwise stated. However, due to space

constraints, we present results from only a representative sample of the evaluated

combinations.

Core architecture UltraSparc 3+
Core frequency 1 GHz
Operating system Sun Solaris
L1 cache latency 3 cycles
L2 cache latency 10 cycles
L3 cache latency 40 cycles
Memory latency 260 cycles

Figure 4.3. Major system parameters and their values.

4.3 Motivation

In order to motivate our application-to-core mapping problem, we quantify the

differences in performance when different application-to-core mappings are used.

Also, we repeat this experiment on architectures with different cache structures.

48

In other words, we present the differences in performance when different mappings

are employed, and study how these differences vary when different cache structures

are used. We conduct experiments on three eight-core architectures with different

cache structures: a purely shared (all cores share the last level L2 cache), pairwise

shared, and the hierarchical three-level cache architecture shown in Figure 4.1. In

the pairwise shared architecture, L1s are private and each L2 (last-level) is shared

by a pair of cores. Note that the total on-chip cache size (all levels) is the same

in all three cases. We used Perl, Bzip, Gromacs, Sjeng, Lbm, Libq, Gcc and Mcf

applications and created workloads with different application-to-core mappings.

	
�

	
�

	

�

��� ������ �������� ������ ����� �����

�
�
�
�

!
�
"

#

$�% � $�% & $�% ' $�% ($�%) $�% * $�% �

$�% � $�% $�% �	 $�% �� $�% �& $�% �' $�% �(

Figure 4.4. Throughput of different application-to-core mappings when executed on a
purely shared, pairwise shared and the three-level hierarchical cache architecture. Note
here that, throughput is normalized with respect to the one with the highest throughput
value in each architecture case.

The overall throughput of the system in terms for all application-to-core map-

pings on all three of the above mentioned cache hierarchies is plotted in Figure 4.4.

The throughput values are normalized to the highest throughput value in each

configuration. Firstly, not surprisingly, all mappings result in very similar system

throughput on a purely shared cache architecture. This is because there is only one

possible degree of sharing among subsets of cores. When a pairwise shared cache

hierarchy is used, however, some mappings do much better than the others. More

interestingly, when the cache hierarchy shown in Figure 4.1 is used, the mappings

which performed very well in the second case do not necessarily perform well now.

Also, the variation in performance between different mappings is very high. This

is due to the fact that this cache hierarchy has the maximum number of sharing

degrees, which is three. This is an important observation since an additional level

of shared cache leads to three possible degrees of cache sharing among subsets of

cores and, consequently, an additional level of contention, and the combinations of

different contention levels result in very high variation among different mappings.

49

The two takeaway points from this set of experiments are:

• In hierarchical multilevel cache structures, performance difference between

the best mapping and the worst mapping can be very high. For example, there

is about 30% degradation from the best case to the worst case for the three-level

hierarchy in Figure 4.4. Therefore, the importance of finding a good mapping is

critical.

• Considering cache sharing at one level is not sufficient. Degree of sharing,

which indicates cache sharing and contention at multiple levels, needs to be con-

sidered when determining a good mapping. For example, a mapping which is good

on a pairwise shared cache architecture may not be so good for the architecture in

Figure 4.1.

The above motivation concentrated more on the underlying cache structure of

the multicore architecture. However, it would also be interesting to know how

different applications perform when executed under different degrees of sharing.

The question we ask here is whether all applications are affected or affect other

contending applications differently. To quantitatively answer this question, we

select a single application (Bzip) and compare its performance when it is executed

under different scenarios. The two scenarios we studied are:

• One companion. Bzip runs on core 0 on a pairwise shared cache architecture

with another application executing on core 1. We repeat the experiment with

different applications on core 1. What runs on the other cores is irrelevant to this

experiment (since there is no L3 cache shared across cores 0-3).

• Multiple companions. Bzip runs on core 0 of the architecture shown in Fig-

ure 4.1 with three other applications on core 1, core 2 and core 3. We repeat the

experiment with different combinations of other applications on core1, core2 and

core3.

We plot the performance of Bzip in each of the above two scenarios in Figure 4.5.

As with the system throughput, the performance of Bzip depends on not only its

immediate companion that shares the L2 cache but also on the other relatively

distant companions that share the L3 cache with it. Therefore, any attempt to find

a good application-to-core mapping for Bzip should consider the contention effects

at both L2 and L3 caches (which is indicated by the degree of sharing). To check

whether other applications behave similarly, we repeated the same experiment with

50

+

+,-

+,.

+,/

+,0

1

2
3
45
67
8
9
:;
<
:=
>
?
@
9

ABCDEDFGHEIJGKLEMNFOJP ABCDEDFGHEIJQQELQRP

ABCDEDFGHEIHCASEHALP ABCDEDFGHEIHCASEJQQP
ABCDEDFGHEILQREJGKLP ABCDEDFGHEIMNFOJEHALP
ABCDEDFGHEIHCASEJGKLP

+

+,-

+,.

+,/

+,0

1

2
3
45
67
8
9
:;
<
:=
>
?
@
9

ABCDEDFGH ABCDEJQQ ABCDEMNFOJ

ABCDEJGKL ABCDELQR ABCDEHCAS

ABCDEHAL

TUV TWV

Figure 4.5. (a) shows the performance of Bzip on a pairwise shared cache architecture
with different companion applications. (b) shows the performance of Bzip on a three-
level hierarchical cache system with different combinations of companion applications.
Performance is normalized with respect to the highest performance case.

X

XYZ

XY[

XY\

XY]

^

_
`
a
bc
d
e
fg
h
fa
i
j
k
e

lmnonpqorlsmtouppv lmnonpqoruwxnoyz{|uv
lmnonpqor}{wlom~s}v lmnonpqorm~s}ouwxnv
lmnonpqorm~s}ouppv lmnonpqor}{wlouwxnv
lmnonpqorzy{|uom~s}v

X

XYZ

XY[

XY\

XY]

^

_
`
a
bc
d
e
fg
h
fa
i
j
k
e

lmnolsmt lmno}{wl lmnonpq

lmnoupp lmnozy{|u lmnom~s}

lmnouwxn

��� ���

Figure 4.6. (a) shows the performance of Lbm on a pairwise shared cache architecture
with different companion applications. (b) shows the performance of Lbm on a three-
level hierarchical cache system with different combinations of companion applications.
Performance is normalized with respect to the highest performance case.

Lbm and plotted the results in Figure 4.6. As we can observe from this figure,

the performance of Lbm does not change much with different mappings. We can

conclude that the performance of an application and the performance effects of

the application on other contending applications depends on the following three

factors: (a) Degree of sharing of the subset of cores on which the application and

other contending applications are executing, (b) Memory access behavior of the

application, and (c) Memory access behavior of the contending applications.

Therefore, in order to find a good mapping, we need to consider the following

two metrics for each application: (a) Extent to which an application’s performance

is negatively affected by the other contending applications, and (b) Extent to which

an application impacts the performance of the other applications.

51

4.4 Problem Definition and Roadmap

Computing an application-to-core mapping is akin to finding a good permutation

of the given set of applications. If there are M applications, there can be M !

permutations (arrangements). It is important to note however that, for a given

cache hierarchy, the number of unique application-to-core mappings, P , will be

less than M ! in most of the cases. This is because not all permutations represent

unique mappings with respect to the cache hierarchy. For instance, there is only one

unique mapping of four applications to four cores with respect to cache hierarchy

in the architecture with four cores and a single L2 cache that all cores share. This

is because all subsets of four cores are identical in terms of degree of cache sharing.

In spite of this, when M is not too small, finding a good mapping by dynamically

trying out all possible mappings at runtime is not practical. Therefore, an efficient

method to compute a good mapping is required.

��� �

��� �

��� �

��
��
��
��

�
�
�
�
��
��
		
�

�

��
�

���
�

����� ��������
������������ �

����� ��������
������������ �

����� ��������
������������ � �

��
��
�	
�
�	
��
��

��	
��
��
�
�

��
�	
�
��
��

�

��
�

��� �

��
��
��
��

��
��
��
��

��

��� � ��

��� � ��

����� � �¡�¡��¢
£¤¡¥�¤¥¡�

Figure 4.7. High level description of our approach to application-to-core mapping.

Figure 4.7 depicts a high-level view of our approach. The first step of our ap-

proach is to sample the memory access patterns of each individual application. The

second step is to build reuse distance distributions of individual applications. Sec-

tion 4.5 describes the proposed reuse-distance based modeling of performance ef-

fects of applications, when they execute in contention with other applications. Sec-

tion 6.4 proposes a hierarchical workload mapping scheme. This mapping scheme

is implemented as an apriori profiling scheme.The memory accesses of individual

applications are sampled, their reuse distance profiles are built, and the workload

mapping is determined and applied apriori before the execution begins. Since the

sampling and computation are not performed at runtime, the sampling can be

performed for longer periods and at multiple points with no runtime overhead.

52

4.5 Modeling Performance Effects

In this section, we characterize the performance effects of running a given appli-

cation with other contending applications on a subset of cores with a given degree

of sharing. The mentioned performance effects are of two kinds: the first one is

the extent to which a given application’s performance can be adversely affected by

other contending applications, and the second one is the extent to which the given

application adversely affects the performance of other contending applications. We

define various parameters derived from the reuse distance distribution of an appli-

cation. These different parameters are essential to characterize the aforementioned

performance effects of an application.

4.5.1 Reuse Distance Analysis

Reuse distance is defined as the number of other “unique” cache lines accessed

between two contiguous accesses to a particular cache line. A frequency distribu-

tion of the reuse distance occurrences is a good indicator of data locality and is

called the reuse distribution [59]. Figure 4.8 shows a part of the reuse distance

distribution of a particular phase of execution of application Bzip. Reuse distance

is particularly useful since most caches use a variant of the least recently used

(LRU) cache replacement policy. In a fully-associative cache with the LRU re-

placement policy, reuse distance accurately predicts whether an access is a hit or

a miss. If the reuse distance is greater than the total number of cache lines in the

cache, then the access is a miss; otherwise, the cache access is a hit. Therefore,

computing a histogram of reuse distances can accurately predict the miss rate for

a fully-associative cache of a given size. This is done by classifying all the frequen-

cies in the reuse distribution histogram with the reuse distance value less than the

total number of cache lines as hits and the rest as misses. This reuse distance

analysis predicts the cache performance even in the case of associative caches with

a small margin of error. Figure 4.8 indicates the hit-miss threshold barrier marked

for an L1 cache of size 128 cache lines. All the accesses with reuse distance below

the threshold barrier of 128 are estimated to be hits and those with reuse distance

higher than 128 are predicted to be misses as shown in Figure 4.8. For instance,

using the distribution in Figure 4.8, the cache performance predicted in terms of

53

miss rate is 35.1%, while the actual value on a 4-way set associative cache was

34.3%. Therefore, reuse distance analysis is an accurate way of predicting the

cache performance even in the presence of set associativity. Although computing

reuse distance distribution can be expensive, there are efficient ways to compute

them as discussed by Almasi et al. in [60].

¦

§¦¦¦¦¦

¨¦¦¦¦¦

©¦¦¦¦¦

ª¦¦¦¦¦

«¦¦¦¦¦¦

�
��
�
�
�
�
�
�

����������	
����	
��

��� ������

Figure 4.8. A part of the reuse distance distribution of Bzip with the hit-miss threshold
barrier marked.

4.5.2 Reuse Distribution Based Parameters

The reuse distance based characterization described in the Section 4.5.1 holds only

when the application runs alone with no other applications contending for the

cache. More specifically, this characterization is targeted at a scenario where the

application runs on a single core processor with no shared caches. However, as

described earlier, in the case of multicore architectures with hierarchical cache

structures, there will be subsets of cores with different degrees of sharing and

hence with different degrees of contention. We now extend this characterization

to multicores with hierarchical caches by accounting for these in our modeling.

Figure 4.9 shows the reuse distribution of a sample application for illustrative

purposes. We define four parameters that can be derived using the reuse distance

distribution of an application. These parameters capture the different regions of

reuse distance distribution defined by different intervals, are defined for a given

level of the target cache hierarchy, and their values will vary with different levels

of cache. Let k be the level of the cache considered. Now, consider an application

appa running on core ci and let Figure 4.9 be its reuse distance distribution. In

this plot, f(R) is the frequency of reuse distance R. Let S ∈ Cores be a subset of

cores such that ci ∈ S and the kth bit of the ”sharing degree vector” of subset S

54

is set to 1; i.e., S = {cl, cm...} ∈ Cores, such that ci ∈ S and SD(S)[k] = 1. Let n

be the total number cores sharing the cache at level k, i.e., n = |S|. Further, let

totalcache be the total number of cache lines.

¬®¯ °±¯²³´µ ¬

¶·̧
¹º̧
»¼
½
¶¾
¿À

�Á �Â �Ã

ÄÅÆÇÈ ÉÇÊÇÉ
ËÌËÍÇ ÍÎÏÐ

ÄÅÆ ÈÇÑÐÇ
ÒÎÐÏÌÓËÇ

ÔÇÒÎÑÕ ÈÇÑÐÇ
ÒÎÐÏÌÓËÇ

ÖÎ×Í ÈÇÑÐÇ
ÒÎÐÏÌÓËÇ

Figure 4.9. Reuse distance distribution of a sample application epoch with different
thresholds.

We now define the following metrics for a given cache size totalcache and for a

given cache level k:

• Lower level cache hits (LCH). This parameter estimates the fraction of the

reuse distances that will be hits in the lower level of the cache hierarchy and,

consequently, will not reach the level k cache. We define ”lower level cache hits”

as: LCHk =
Σ

T1

R=0
f(R)

ΣT∞

R=0
f(R)

. In this equation, if the lower level cache is the private

L1 cache, then the threshold T1 (shown in Figure 4.9) will be set to the total

number of cache lines in the private L1 cache. However, if the lower level cache

is a shared cache, our hierarchical application-to-core mapping algorithm sets the

value of threshold T1 as follows: T1 = (1
nlow

+ α× 1
nlow

)× totalcachelow, where nlow

is the number of cores sharing the cache at level k − 1 and totalcachelow is the

total number of cache lines in the level k − 1 cache. It is to be noted that, we

are determining the threshold T1 in a conservative manner, i.e., the probability

of accesses with reuse distance less than T1 being a hit in the lower level cache is

very high. T1’s value is computed with the insight that shared cache contention is

proportional to the number of contending cores. However, the effect of contention

can be quite non-uniform at extreme reuse distances, thereby, creating a band of

values where T1 might lie. The tunable parameter α is used to fix the value of

T1 using a very conservative estimation as mentioned above. We later present the

chosen value and a sensitivity analysis on α.

• Low reuse distance (LRD). We characterize the fraction of the level k cache

accesses that have a relatively low reuse distance and therefore have a high pos-

sibility of being hits in the level k cache as the ”low reuse distance” accesses,

55

LRDk =
Σ

T2

R=T1
f(R)

ΣT∞

R=T1
f(R)

, where T1 is defined as before and T2 = (1
n
−β× 1

n
)×totalcache.

It is highly likely that the accesses with reuse distance between T1 and T2 are going

to be hits in the current level (level k). Applications with very high LRD values

exhibit very good locality due to a high percentage of low reuse accesses which are

likely to be hits even in the presence of high contention. T1 and T2 are shown in

Figure 4.9. Again, β is a parameter similar to α that helps tune T2 conservatively

based on the effects of contention at reuse distance extremes.

• Medium reuse distance (MRD). Medium reuse distance (MRD) parameter

estimates the fraction of level k cache accesses that can be either hits or misses

depending on other contending applications (i.e., applications running on cores

belonging to core subset S). We define MRD as: MRDk =
Σ

T3

R=T2
f(R)

ΣT∞

R=T1
f(R)

, where

T2 = (1
n
− β × 1

n
) × totalcache and T3 = (1

n
+ α × 1

n
) × totalcache. Note here

that, MRD is an estimation of the extent to which an application can be affected

by contention from other applications. When contention from other applications

running on core subset S is high, these accesses are likely to be misses. On the

flipside, when the contention is low, these will likely be cache hits at cache level k.

Again, this is a conservative estimate, and T2 and T3 are shown in Figure 4.9.

• High reuse distance (HRD). When the reuse distance of an access is very

high, it is likely going to result in a cache miss. High reuse distance (HRD)

parameter estimates the fraction of level k cache accesses that fall under this

category. We define HRD as: HRDk =
ΣT∞

R=T3
f(R)

ΣT∞

R=T1
f(R)

, where T3 = (1
n

+ α × 1
n
) ×

totalcache. HRD includes all the accesses which are going to be cold misses and

also accesses that have very high reuse distance. When an application runs alone

on core ci with no other contending applications running on other cores ∈ S, then

an access with a reuse distance greater than totalcache will very likely be a miss.

In the presence of other contending applications, instead of totalcache, we use

a threshold T3, which conservatively estimates the fraction of the effective cache

space available to this application.

• Total k level accesses (TotAcc). This is the total number of accesses to the

kth level cache. Therefore, TotAcc for the kth level cache is defined as: TotAcck =

ΣT∞

R=T1
f(R).

56

4.5.3 Performance Effects

We now use the above defined parameters to characterize the cache performance

of an application in the context of a multicore environment.

4.5.3.1 Application Characterization

In this approach, we consider the reuse distance distribution of an application

in isolation and estimate its performance effects when it executes in a multicore

environment with a shared cache hierarchy. To that end, we define two metrics,

namely, Hindrance Factor and Susceptability Factor, for each application. Since

both these metrics are defined using the parameters defined in Section 4.5.2, they

are for a particular level and size of cache.

• Hindrance Factor. Hindrance factor of an application estimates the extent

to which an application might adversely affect the performance of other contending

companion applications. For instance, consider two applications, appa and appb,

running on two cores with a shared L2 cache. Hindrance factor of application appa

measures the extent to which the cache performance of application appb is adversely

affected due to the contention created by application appa. We define the hindrance

factor of an application (HF) at level k as: HFk = HRDk×
TotAcck

time
, where HRDk

and TotAcc are obtained from the reuse distance distribution of an application (as

described in Section 4.5.2) and, time is the memory access sampling duration in

terms of cycles. If the time of sampling is t sec and frequency of the cores is f Hz,

then time = t × f . The hindrance factor measures the number of cache accesses

with very high reuse distance per cycle. Therefore, it approximates the number

of misses possible per cycle. HF is actually an estimate of the rate at which an

application brings in new data cache lines into the cache. An application with

very high HF value is likely to bring in a large number of cache lines to the cache

and, therefore, is likely to occupy more space in the shared cache. Also, such an

application can interfere and kick out cache lines that belong to other contending

applications. Therefore, a high HF value application is likely to adversely affect

other applications due to high contention. Interestingly, an application with very

high HF value has relatively lower SF (defined shortly) value and, therefore, is not

likely to display good behavior (high performance) in presence of low contention

57

from other applications. However, the actual values of HF and SF are necessary

for the performance models, and therefore, we consider both HF and SF metrics.

• Susceptability Factor. Susceptability factor of an application estimates

the extent to which the application’s performance can be adversely affected by

other contending applications. For instance, as before, consider two applications,

appa and appb, executing on a pair of cores with a shared L2 cache. Suscept-

ability factor of application appa measures the extent to which application appa’s

performance can be adversely affected by the contending application appb. More

specifically, the susceptability factor of an application (SF) at cache level k is de-

fined as: SFk = MRDk × TotAcck

time
, where MRDk and TotAcc are obtained from

the reuse distance distribution as described in Section 4.5.2, and time is defined

as in the case of hindrance factor. Recall that, medium reuse distance (MRD) is

defined in Section 4.5.2 as the accesses with reuse distance which is not very high

and therefore can be hits if the contention for the cache is low and could turn out

to be misses in the presence of high cache contention. Susceptibility factor of an

application is a good estimate of how much an application’s cache performance

can potentially be affected. Therefore, it is important to note that, performance

of applications with very high SF values is prone to contention and can easily

deteriorate in the presence of high contention. To summarize, our fixed thresh-

old scheme characterizes an application’s cache behavior in terms of how much its

own performance can be adversely impacted (SF) and how much it can affect the

performance of other contending applications (HF).

HF and SF Correlation. We conducted experiments with applications Perl,

Bzip, Gromacs, Sjeng, Gcc, Mcf, Lbm and Libquantum in order to measure the

effectiveness of HF and SF in capturing the performance effects. To compute the

correlation of HF with the performance degradation of contending applications,

we plot the HF values of different applications versus the performance degra-

dation experienced by the contending applications in Figure 4.10(a) (each data

point represents an application). The performance degradation is calculated as

the percentage degradation from the best case performance and the performance

degradation values are averaged over all the applications. We can observe that,

the HF metric reflects the trend of performance degradation of the contending

applications very well, with a correlation coefficient of 0.96. Figure 4.10(b) plots

58

the SF values of different applications against their own performance degradation

due to contending applications. Applications with high SF values suffer a higher

performance degradation due to contention than those with lower SF values. The

correlation coefficient in this case is 0.94.

Ø

ØÙØÚ

ØÙÛ

ØÙÛÚ

ØÙÜ

ØÙÜÚ

Ø ØÙÝ ØÙÞ ÛÙÜ ÛÙß Ü

à
á
âã
ä
âå
æ
ç
èá
é
á
êâ
æ
ë
æ
ìí
ä
ç

ä
ã
î
ä
å
ï
æ
ç
íä
ç
ð

ñòóôõöó÷ø ùö÷úûõ üñùý

Ø
ØÙÛ
ØÙÜ
ØÙþ
ØÙÝ
ØÙÚ
ØÙß
ØÙÿ
ØÙÞ

Ø ØÙÜ ØÙÝ ØÙß ØÙÞ Û

�
ï
ï
�íè
æ
ìí
ä
ç
�ð
à
á
âã
ä
âå
æ
ç
èá

é
á
êâ
æ
ë
æ
ìí
ä
ç

���÷ø�úò�ò�òú� ùö÷úûõ ü�ùý

�� �� �� ��

Figure 4.10. (a) shows the correlation of HF with the performance degradation of the
companion applications, and (b) shows the correlation of SF with the application’s own
performance degradation. The data points represent different applications.

4.6 Reuse Distance Based Workload Mapping

Our application-to-core mapping strategy is carried out in two stages. The first

stage, called “application grouping”, creates groups of applications based on the

cache hierarchy tree. The second stage, called the “group mapping”, maps these

groups of applications to subsets of cores available in the target system.

Application Grouping. This stage computes application groups based on the

cache hierarchy tree (see Figure 4.2). The groups are formed hierarchically by

considering each level of the cache hierarchy tree. “Single Level Grouping” algo-

rithm groups the applications into groups considering a given level of cache. The

“Hierarchical Grouping” algorithm goes through all levels of the cache hierarchy,

in the process invoking the single-level-grouping algorithm at each level.

Single Level Grouping. Single-level-grouping algorithm shown in Figure 4.11

takes an input set, IS, of elements and groups the elements into p groups. p is

the total number of caches at the cache level k. In other words, p is the number

of nodes at level k of the cache hierarchy tree T . The elements in the input set,

IS, can be either applications or groups of applications. This is because, before

the hierarchical group algorithm invokes the single-level-grouping at some level j,

it would have invoked the single-level-grouping at the previous level j − 1, which

59

Single Level Grouping

Inputs: k - cache level; T - cache hierarchy tree

IS - set of elements to be divided into groups
mem limit - threshold to characterize cache behavior

Output: groups - set of groups computed
//groups is set of subsets of IS, such that,
gi, gj ∈ groups, gi ∩ gj = ∅
and, g0 ∪ g1 ∪ . . . gn = IS, where, n = |groups|

Initialization:

m - |IS|; num nodes = number of nodes in T at level k

group size = m
num nodes

; groups = {}
Grouping:

while (IS 6= ∅) //until all elements are grouped
curr group = {}
if ∃elemx ∈ IS, such that,
HFk(elemx) > mem limit // HFk- hindrance factor

first elem = elemx

else
select elemy ∈ IS, such that SFk(elemx) is max
where, SFk is the susceptability factor.
first elem = elemy

curr group = {first elem},IS = IS − first elem

for num ← 1 to group size:
if (HFk(first elem) > mem limit)

if ∃elemj ∈ IS,
such that, HFk(elemj) > mem limit

curr group = curr group + elemj ,
IS = IS − elemj

else:
select elemk ∈ IS, such that, SFk(elemk) is min
curr group = curr group + elemk,
IS = IS − elemk

else
select elemj ∈ IS with minimum SFk(elemj)
curr group = curr group + elemj ,
IS = IS − elemj

end for
groups = groups + curr group

end while
return groups

Figure 4.11. Single-level grouping algo-
rithm using fixed thresholds.

would have created groups at level j − 1. Therefore, at level j, the set of these

groups are further clustered into larger groups. We use a heuristic that prunes

the search space to a very small space. Our algorithm uses Hindrance Factor

and Susceptibility Factor of applications derived from the reuse distance based

parameters (see Section 4.5.3) to make grouping decisions. Note that, HF and

SF values for the kth level cache are used here (i.e., HFk and SFk). This is

important because different invocations of the algorithm for different cache levels

use different HF and SF values of applications.

60

The goal of our single level grouping algorithm is to group applications such

that the adverse effects of cache contention are mitigated and performance is im-

proved at runtime compared to other possible groupings. The size of the groups to

be formed is determined by considering the total number of caches at level k and

computing the number of applications per level k cache assuming an equal division

of applications.2 The algorithm starts out by choosing and grouping elements with

very high HF value together. For an application, appa, its HF value, HF (appa) is

classified as “very high” if HF (appa) > mem limit. Here, mem limit is a thresh-

old value chosen such that, applications with HF > mem limit adversely affects

the performance of the contending applications, especially if the contending appli-

cations have a high SF (susceptibility factor). This however is a tunable parameter.

The reasoning behind grouping all these “badly behaving” applications together is

twofold. Firstly, by quarantining these applications together in a different group,

other applications with high SF value and low HF value are not adversely im-

pacted by these applications. The second reason is that these applications have

such high HF values that their cache performance will be poor even if they are

running alone. In other words, even in case of lesser or no contention, these ap-

plications achieve very little performance gain compared to the applications with

high SF and low HF values. Therefore, it may make sense to group and schedule

them together. Note that, the algorithm may run out of other similar high HF

value applications. This is because of the fixed size of groups as mentioned before.

In that case, the high HF value application is grouped with an application with

the minimum SF value. This is done with the intention that the high HF value

application with high contention impacts a low SF value application lesser than

a high SF value application. After all the high HF values are grouped, our al-

gorithm starts grouping applications with relatively low HF values. The strategy

employed by the algorithm to group these applications is different from that of the

very high HF applications. The algorithm tries to group an application with high

SF with another application with a low SF value, because a high SF value means

that an application has a lot of accesses which can potentially be hits under low

contention but can be misses under high contention environment. Therefore, the

high SF value application has a higher number of cache hits due to low contention

2“Size” in this context refers to the number of applications in a group.

61

from the other application since it has a lower SF value. Also, the other applica-

tion with lower SF value anyway has very few accesses, which can be affected by

contention and hence is not affected too much by the high SF application. Com-

putation and usage of HF and SF values are a key step in the above algorithm.

As we mentioned before, an element of the input set (IS) can be an application or

a group of applications. The HF and SF values have an additive property in our

algorithm, that is, the HF and SF values of a group of elements will be equal to

the sum of the HF and SF values of the elements present in the group.

Hierarchical Grouping. The previous section described the grouping of ap-

plications in a cache-sharing aware manner but considering cache sharing at a

given single level in the cache hierarchy. Figure 4.12 describes our approach that

computes application groupings based on all levels of the cache hierarchy. This

algorithm hierarchically groups applications by calling single level grouping algo-

rithm (Figure 4.11) at each level of the cache hierarchy tree. This grouping scheme

starts from the first shared level of cache and hierarchically groups the applications

at each level until the root of the hierarchy tree, T , is reached.

Hierarchical Grouping

Inputs: AS = {app0, app1, .., appm}, T - cache hierarchy tree
Output: hgroups - set of groups after hierarchical grouping

//each hgi ∈ hgroups can be a set of groups
Initialization:

level= k, such that, Ck−1,k > 1 and Ck−2,k−1 = 1
// level is the lowest shared level in T

top = root level of the cache hierarchy tree, m = |AS|
Hierarchical Grouping:

hgroupsold = IS; hgroupsnew = ∅
while (level < top)

hgroupsnew=
Single Level Grouping(level, hgroupsold, T)

hgroupsold = hgroupsnew; level = parent(level)
//update level to the parent of the current level in the T

end while; return hgroups

Figure 4.12. Hierarchical application
grouping algorithm.

Mapping Groups to Cores. Once the hierarchical application groups have

been created, the applications in these groups are mapped to cores based on their

groups and the sharing degree of the subsets of cores. This mapping algorithm

takes the grouping determined by the hierarchical grouping algorithm as input

and starts assigning these groups to cache nodes at each level of the hierarchy.

62

The mapping begins with the root node of the cache hierarchy tree and proceeds

downwards till the leaf node level, at which point the determined grouping is

assigned to the cores.

Illustration. Figure 4.13 shows an illustration of how our mapping approach

works in practice. Our default CMP architecture is considered here (see Fig-

ure 4.1), and we have eight applications. The hierarchical grouping algorithm starts

out at the bottom level (leaf node level) and moves to towards the root, calling the

single-level-grouping algorithm at each level on the way. The grouping returned

by our single-level-grouping algorithm at each level is shown in Figure 4.13. The

mapping algorithm takes the generated grouping as input and traverses from the

root to the leaf node level of the tree, assigning groups to cache nodes at each level.

When the private cache level is reached, the assignment is complete.

�

�� ��

�	�	 �	 �	

�
�
 �
�
 �
�
 �
�

������������ ���� �!� "� �!�

{ }76543210 ,,,,,,, aaaaaaaa

{ }},{},,{},,{},,{ 26513740 aaaaaaaa

{ }}},{},,{{}},,{},,{{ 26513740 aaaaaaaa

{ }26513740 ,,,,,,, aaaaaaaa

{ }},{},,{},,{},,{ 26513740 aaaaaaaa

{ }}},{},,{{}},,{},,{{ 26513740 aaaaaaaa

Figure 4.13. Illustration of the grouping and mapping steps.

4.7 Experimental Evaluation

The experimental setup and the methodology described in Section 4.2 are used in

all of the experiments. In order to build the reuse distance profiles, the applica-

tions were sampled for 100 million instructions. After preliminary experiments, we

selected the values of α and β parameters (mentioned in Section 4.5.2) to be 0.3

and 0.2, respectively, and set the value of mem limit (mentioned in Section 6.4)

to 1.

Average Results. We evaluated the performance of our proposed hierarchi-

cal mapping scheme using 12 randomly selected workloads built using applications

from the SPEC 2006 benchmark suite [58]. Figure 4.14 presents the throughput

comparison of our proposed scheme over the best case mapping, worst case mapping

63

and three different runs of the default OS scheduling scheme for four representa-

tive workloads. In this chapter, by throughput, we always refer to IPC through-

put unless otherwise mentioned. Figure 4.14 also plots the average throughput

comparison (averaged over all 12 workloads). The workloads considered here are

Work1= {Sphinx, Milc, Libquantum, Lbm, Gobmk, Hmmer, Bzip, Perl}, Work2=

{Gromacs, H264, Hmmer, Lbm, Mcf, Sphinx, Gobmk, Perl}, Work3= {Sjeng,

Gobmk, Gcc, Mcf, Lbm, Libquantum, Perl, Bzip} and Work4= {Hmmer, Sphinx,

Sjeng, Perl, Lbm, Libquantum, Bzip, Gobmk}.

#$%

#$&
'

'$'
'$(
'$)

'$*

+,-.' +,-.(+,-.) +,-.* /01$

2
3
4
5
6
7
3
8
6
9

:;<=> +,-?@ A=?@

B=CDEF@ GH' B=CDEF@ GH(B=CDEF@ GH)

Figure 4.14. Throughput comparison for four representative workloads and the average
case (over all 12 workloads) on the eight-core CMP.

The application grouping scheme finds the best mapping in the case of Work3

and Work4, while it finds a mapping that performs slightly worse than the best

mapping for Work1 and Work2. In most cases, our proposed scheme finds the best

possible mapping, while in the case of the other sets, mapping computed by our

proposed scheme is within 4% of the best case mapping. Also, mappings computed

by our scheme are up to about 40% (average of 25%) better than the worst case

mapping in terms of system throughput. In the above experiment, the best case

and worst case mappings are determined by trying out all possible combinations

of mappings. For the default OS based scheme, we run the applications on the

eight-core system and do not bind the applications to cores. Interestingly, since

the OS does not consider the cache hierarchy and schedules applications randomly

(with respect to cache hierarchy awareness), different runs of the OS based scheme

yield different mappings and hence, different results. In order to demonstrate this,

we run the default OS based scheme multiple times.

Workload Instance. In order to analyze the performance impact of our pro-

posed scheme on both the workload throughput and the individual application per-

64

formance, we consider a single workload comprised of Perl, Bzip, Gromacs, Sjeng,

Gcc, Mcf, Lbm and Libquantum applications. Figure 4.15 shows the throughput

achieved by the application grouping scheme alongside the best case mapping, the

worst case mapping, and the default OS based mapping. One can observe from

these results that, the application grouping scheme achieves performance benefits

of about 32% over the worst case mapping and up to 30% over the default OS

mapping.

IJK

L

LJM

LJN

O
P
Q
R
S
T
P
U
S
V

WXYZ[\]^_` aZ_`

bZcdef` ghL bZcdef` ghM bZcdef` ghi

Figure 4.15. Throughput compari-
son on an eight-core CMP when work-
load of perl, bzip, gromacs, sjeng, gcc,
mcf, lbm and libq applications is exe-
cuted.

jkl

m

mkn

mko

mkp

mkl

q
r
st
u
sv
w
x
y
r

z{|}~ ����� �}��

Figure 4.16. Performance compari-
son of applications on the eight-core
CMP when a workload of perl, bzip,
gromacs, sjeng, gcc, mcf, lbm and libq
applications is executed.

In Figure 4.16, we show the performance of the individual applications under

different schemes. Note that, we do not show the individual application perfor-

mances in the OS based scheme. This is because, since in the OS based scheme

we do not bind the applications to cores, it is hard to determine which application

runs on which core. One can see from Figure 4.16 that, Bzip and Gromacs can

significantly improve their performance when a good application-to-core mapping

is employed. This is because they have a very high SF values. Perl and Sjeng can

also perform better when the mapping is good. The application grouping scheme

finds the best possible mapping in this case.

12 Core System. We also conducted experiments on a twelve core CMP,

where each pair of cores share an L2 cache and each group of six cores share an

L3 cache. Each L2 cache is 512 KB (8 way associative) and each L3 cache (shared

by 6 cores) is 6 MB in size. The twelve applications run in this experiment are

Perl, Bzip, Gromacs, Gobmk, Sjeng, Hmmer, Sphinx, Gcc, Mcf, Milc, Libquantum

and Lbm. Figure 4.17 and Figure 4.18 present, respectively, the throughput and

65

application performance results in this case. Our scheme outperforms the worst

case mapping by about 17% in terms of the overall system throughput.

���

���

�

���

���

��
��
��
��
��

����� ����� ����
��� ¡¢� £¤� ��� ¡¢� £¤� ��� ¡¢� £¤¥

Figure 4.17. Throughput comparison on a 12-core CMP.

¦§¨
©

©§ª
©§«
©§¬
©§¨
ª

®
°̄±
²̄
³
´
µ®

¶·¸¹º »¼½¾¿ À¹¾¿

Figure 4.18. Performance comparison of applications on a 12-core CMP.

Sensitivity Analysis. We repeated the eight-core experiments mentioned

above with larger on-chip caches (1MB L2s and 4MB L3s). Our scheme outper-

formed the worst case mapping by about 17% and the default OS mappings by

around 7%. Finally, we also evaluated our scheme with increased sampling lengths,

which resulted in the same mappings as before, and therefore, the same perfor-

mance. We also experimented with different α and β values, and found that the

values of 0.3 and 0.2, respectively, performed the best across all workloads. Also,

changing the values slightly in either direction yielded very little performance dif-

ference in this set of workloads. Therefore, the behavior and the performance of

our proposed scheme is almost independent of the α and β values employed.

4.8 Discussion of Related Work

Cache management techniques use architectural level modifications [61, 62] to im-

prove shared cache performance. In comparison, cache partitioning techniques

explicitly partition the shared cache [63, 64, 17, 19] for performance isolation.

There have been research efforts aimed at predicting cache contention in terms of

66

performance degradation due to cache contention [50, 65]. Song et al. model the

L2 cache behavior for a set of scientific applications on CMPs [54]. Federova et al.

propose an L2 cache aware scheduling algorithm based on metrics such as missrate

[66]. Xie et al. aim to make a broad characterization of programs at runtime

using metrics such as miss rate [55]. Gang scheduling of threads of parallel jobs

concurrently provides performance benefits as proposed by Jette et al [67]. Bulpin

et al. propose to use hardware performance counters to bind threads to processors.

[51] and [52] aim to find a symbiotic job schedule which runs well together after

trying out different combinations. DeVuyst and Tullsen propose an unbalanced

scheduling scheme that yields power and performance benefits [68]. Federova et

al. propose a scheduling algorithm to improve performance isolation [69]. [70]

proposes OS enhancements that use hardware monitors to improve the capabil-

ities of OS to manage CMP resources. In [56], performance degradation among

different combinations of applications is estimated and a co-scheduling scheme is

proposed using these estimated degradation values. Tam et al. propose to clus-

ter threads based on the data sharing between them [71] when the threads of a

single application can share data. Chen et al. also propose to schedule threads

for constructive cache sharing [72]. In [73], Zhang et al argue that when threads

belong to the same application, alternate schedules do not enhance cache sharing.

Reuse distance analysis has been been studied extensively in the context of single,

sequential execution [60, 59, 74]. In [74], Beyls et al. show that reuse distance

analysis of a sequential execution can reflect its cache performance in terms of

miss rate very accurately even in the presence of associativity. There have also

been proposals to efficiently calculate reuse distance distributions [60]. In [75],

authors try to maintain multiple reuse stacks in the case of CMPs to gather reuse

distances. Some of the prior works mentioned above try to measure cache con-

tention when there are two cores sharing a cache [50], while others try to compute

contention aware schedules [39]. There has been no prior work however to model

the performance effects in detail when there are multiple levels in the cache hi-

erarchy and multiple associated cores, where different subsets of cores can have

different degrees of sharing. There have been efforts to find near-optimal sched-

ules which assume the knowledge of performance degradation between different

combinations of applications [56, 76]. The problem with such schemes is that, not

67

only is computing such performance degradation values difficult but also the fact

that these performance degradation values depend on the cache structure. For a

given architecture with a particular hierarchical cache-structure, our work models

in detail the effect of cache contention and cache interference at different levels of

the cache hierarchy using the reuse distance profiles of the individual applications.

Our scheme then uses these models to compute a smart workload mapping. The

usage of reuse distance analysis at multiple levels of the cache gives us the ability

to consider all different degrees of sharing between subsets of cores before making

the workload mapping decisions.

4.9 Conclusion and Future Work

In this chapter, we showed that the reuse distance analysis is very effective in pre-

dicting the performance effects of an application when it is executed with other

contending applications. Based on our reuse distance based performance modeling,

we then studied a workload mapping strategy targeting CMPs with hierarchical

caches. This strategy is very effective in choosing a good mapping with perfor-

mance benefits of up to 39% over the worst-case mapping and up to 30% over

the default OS based mapping. As part of our future work, we intend to study

a runtime scheme that can perform our workload mapping scheme dynamically

during execution.

Chapter 5
Intra-Application Cache Partitioning

5.1 Introduction

In current multicore systems, a shared L2 cache has become the dominant on-chip

cache alternative, thanks to its efficiency in utilization and flexibility in dynamic

allocation [3, 2]. However, as discussed in Chapter 1, inter-thread contention is

a major issue in such shared caches. This contention for the shared cache from

different threads (executing on different cores) can have varying impact on those

threads. In such a scenario, performance of one or more of the contending threads

can be adversely affected [17, 72]. The commonly used LRU replacement policy

can lead to threads with not so good cache behavior occupying most of the shared

cache with very little performance gain, while other threads with possibly good

cache behavior starve [77, 78]. Therefore, efficient and smart management of an

important shared resource such as L2 cache is vital.

In this chapter, we study the cache space partitioning problem when the con-

tending threads belong to the same application. That is, as opposed to exist-

ing cache partitioning schemes, we investigate intra-application cache partitioning.

Most parallel applications targeting shared memory systems are programmed to

contain one or more parallel sections, which are bound by synchronization con-

structs such as barriers. Performance of a parallel section is always determined

by the slowest thread, also called the critical path thread. A thread with excellent

cache behavior does little to speed up the application performance if the other

application threads have really poor cache behavior. When large multithreaded

69

applications are executed on multicore machines, such differences in thread behav-

ior can severely limit the performance benefits of utilizing large number of cores.

Efficacy of previously described cache space partitioning and management tech-

niques is questionable in this scenario, where the contending threads belong to the

same application. This is because, those techniques are agnostic to inter-thread re-

lationships and, consequently, try to either optimize throughput or maintain cache

fairness. However, as we mentioned above, performance of a multithreaded appli-

cation is largely determined by the performance of the critical path thread and

therefore most of the prior techniques prove ineffective in improving the applica-

tion performance. We claim that, when partitioning the shared cache among the

threads of the same application, the goal should be neither throughput improve-

ment nor fairness, but in fact speeding up the critical path thread.

An important point to consider when contending threads belong to the same

application is the net effect of such cache contention. For starters, threads from the

same application can share data, and consequently, effects of contention need not

always be adverse. When threads share data, a simple shared cache without any

sort of partitioning may perform well in certain cases, due to possible constructive

sharing. In fact, absence of cache data sharing in private caches appears to be a

major drawback for single multithreaded application execution on such systems.

On the flip-side, in shared cache architectures, inter-thread cache evictions (one

thread evicting the data brought in by a different thread) happens to be a major

performance concern for most parallel multithreaded applications.

We propose a dynamic, runtime system based cache partitioning scheme to

partition a shared cache among threads of a single application to enhance the

overall performance of the multithreaded application. We propose to dynamically

determine the cache requirements of individual threads based on their cache per-

formances and partition the cache space such that the slowest thread gets most

of the cache space. We discuss two such dynamic, run-time system based cache

partitioning techniques. The first technique partitions the cache space at each ex-

ecution interval based on the cycles-per-instruction (CPI) values of the individual

threads, such that the slowest thread (critical path thread), which is the thread

with the highest CPI, gets a larger portion of the cache. The second technique

dynamically builds a cache model through curve fitting for each thread and finds

70

a cache partition that minimizes the slack time at each interval. In this context,

slack time is defined as the difference between thread speeds. The goal of this al-

gorithm is to try to ensure that the threads progress at approximately same speeds

by allocating lesser cache to threads with good cache hit rates and more cache to

threads with low cache hit rates.

We observe that our technique achieves application speedups up to 15% over

an unpartitioned shared cache, up to 23% over a statically partitioned cache, and

up to 20% over a prior throughput-oriented scheme.

5.2 Background and Setup

5.2.1 Architecture Specification

In this work, we consider a CMP with a shared level 2 (L2) cache. Our target

system, unless otherwise mentioned, is a four core CMP, with an L2 cache shared

by all cores. This L2 cache is assumed to be highly associative. Each of the cores

also maintains private L1 data and instruction caches. We want to make it clear

that, whenever we talk about cache partitioning in this work, we always refer to

cache way partitioning [64]. Therefore, assigning more cache resources to a thread

is synonymous to assigning more cache ways to the thread in our context.

5.2.2 Parallel Program Structure

Most multithreaded shared-memory parallel programs generally have several par-

allel code sections interspersed with sequential sections. Sequential sections might

perform tasks such as data initialization and data collation. Also, synchronization

might be needed between any two sections to maintain data integrity and avoid

race conditions. For such synchronization purposes, these parallel sections employ

constructs such as barriers. Figure 5.1 shows the structure of a typical parallel

program (on the left) and also depicts the execution progress of a sample parallel

section (on the right), assuming four threads. Execution proceeds from a parallel

section to the next stage (possibly sequential) only after all threads in the parallel

section complete, and consequently, reach the barrier. The execution time of such

71

a parallel section is determined by the time taken for the slowest thread to reach

the barrier, also termed as the critical path thread.

Figure 5.1. Left: A sample execution for shared-memory multithreaded application.
Right: Progress of threads in a parallel section at a particular point during execution.

5.3 Motivation

In this section, we present the motivation for our intra-application dynamic cache

partitioning scheme.

5.3.1 Why Intra-Application Cache Partitioning?

Runtime behavior of parallel multithreaded applications exhibit certain character-

istics that make them amenable to intra-application cache partitioning. In this

section, we identify those characteristics and describe how each of those character-

istics motivates the need for intra-application cache partitioning.

5.3.1.1 Performance Variability

In Section 5.2.2, we discussed the structure of a typical parallel program and the

possible variability in execution speeds of the different threads. In this section, we

analyze with empirical support, if this is indeed the case. Figure 5.2 shows the

overall performance 1 of each of the four threads of nine parallel benchmarks over

50 execution intervals. The performance of the application threads are normal-

ized to the fastest thread in Figure 5.2. As we can see, the applications exhibit

1We consider the inverse of execution time as performance.

72

Figure 5.2. Performance of
individual threads of the appli-
cation normalized to the fastest
thread.

Figure 5.3. Number of L2
misses incurred by each indi-
vidual thread normalized to the
thread with highest misses.

Figure 5.4. Cor-
relation coefficient be-
tween the number of
L2 cache misses and
the corresponding CPI
values.

a wide variability in the performance of the threads. More importantly, in every

application, the critical path thread (represented by the lowest bar) is considerably

slower than the other threads and hence determines the performance of the overall

application. In general, variation in performance (slack time) among the applica-

tion threads is very high. For instance, in MGRID, although thread 3 performs

exceedingly well with a CPI of 7.1, the application performance is held back by

thread 2, which has a comparably poor CPI value of 11.5.

In order to study this variability among the application threads, we collected

cache performance statistics for all the above applications during their runs. Fig-

ure 5.3 plots the cache performance of the four application threads in terms of

the L2 misses incurred by each of the threads. The values are normalized to the

thread with the highest number of L2 misses. As we can clearly see from Figures

5.2 and 5.3, the variability in the overall performance of these threads correlates

very closely with the variability in their cache performances. More specifically,

if the performance of a thread is low in Figure 5.2, its cache miss count is high

in Figure 5.3, and vice versa. This correlation between the CPI values and the

number of cache misses can be clearly seen in Figure 5.4. This figure plots the

correlation coefficient between the number of L2 cache misses and the CPI value

for the applications in our experimental suite. We can infer, from this plot, a

strong linear dependence between number of L2 cache misses and CPI for these

applications, with an average correlation coefficient value of 0.97.

Further, we plot the performance of the individual threads of SWIM application

73

(a) Thread 1. (b) Thread 2. (c) Thread 3. (d) Thread 4.

Figure 5.5. CPI values of the four SWIM application threads during 50 consecutive
execution intervals.

over 50 contiguous execution intervals in Figure 5.5. It can be observed from this

graph that, in addition to the variability across the performances of individual

threads, there is also a variation across execution intervals.

Figure 5.6. L2 misses

during 50 execution in-

tervals of thread 2 of

SWIM benchmark.

This is due to the fact that a multithreaded applica-

tion, typically goes through different phases during its exe-

cution [79]. There can be various reasons for this phase be-

havior. During one stage, a thread can be memory bound

with poor cache performance; during another, it can have

really good cache performance; some parts may not be

memory intensive at all; some other parts can have poor

branch predictor performance [79]. In order to identify the

main factor, we plot the L2 cache misses corresponding to

thread 2 in Figure 5.5(b) during the same 50 contiguous

execution intervals in Figure 5.6. As before, we observe

a clear correlation between the CPI across time and the

corresponding cache misses during the same time interval. Therefore, due to this

variability across time, the critical path thread may change from one execution

phase to another.

To summarize, different threads belonging to the same application have very

different cache requirements from one another and further, these cache require-

ments also vary over time.

74

5.3.1.2 Cache Interaction Across Threads

Application threads executing on different cores sharing a cache can interact in

different ways. In this section, we describe and quantify both the amount and

the kind of cache interactions exhibited by the application threads. Firstly, we

ran our nine applications on the target CMP and collected the inter-thread cache

interaction statistics. By inter-thread cache interaction, we mean the percentage

of cache accesses that are inter-thread accesses. In this context, we specify a cache

access to be an inter-thread cache interaction if a previous access to the same cache

line was from a different thread. On the other hand, if two contiguous accesses to a

cache line are from the same thread, then it is an intra-thread interaction. Recall

that we use the terms ”thread” and ”core” interchangeably since we consider a

single thread executing on each core. Another important point to note here is

that cache interaction covers all accesses and not just misses. Figure 5.7 shows the

contribution of inter-thread cache interactions (when considering all interactions).

As we can clearly see, there is a considerable amount of inter-thread interaction in

these multithreaded applications, averaging about 11.5% of all cache interactions.

Figure 5.7. Percentage of cache in-
teraction that happens to be inter-
thread.

Figure 5.8. Percentage of con-
structive inter-thread cache interac-
tions.

We also studied the nature of these inter-thread interactions. We describe

constructive inter-thread cache interaction to be the percentage of inter-thread

interaction that happen to be cache hits. Therefore, a set of two contiguous ac-

cesses to a cache line is considered to be constructive interaction if the second

access is a hit. To rephrase, constructive interaction happens when a data element

brought into the cache by a thread is also used by another thread before it gets

displaced, thereby helping the latter thread to improve its performance. It is to

75

be noted that, constructive inter-thread cache interaction is a result of data shar-

ing between the interacting threads. We plot the breakdown of constructive and

destructive (evictions) inter-thread interactions in Figure 5.8. We can infer from

this graph that, not all inter-thread interactions are constructive. A significant

amount of destructive inter-thread interactions in the form of evictions can be

seen in Figure 5.8. In such a partitioned shared cache, a thread can access a cache

line present in a cache partition belonging to another thread, thereby, enabling

constructive inter-thread cache sharing. However, a thread cannot evict a cache

line belonging to another thread’s cache partition, thereby, preventing destructive

inter-thread cache interference. In other words, cache space partition is in terms

of eviction control.

5.3.1.3 Cache Sensitivity Variability

Another facet of a parallel program’s behavior is the cache sensitivity of individual

threads of the program. We ran a four-threaded SWIM application multiple times,

but each time using different cache sizes. We increased the cache size from 32 KB

progressively until 1MB. We want to reiterate that, to increase cache size, we simply

add more ways. Therefore, the increase in the total cache size is accompanied by

a corresponding increase in associativity. For instance, a 32KB cache is 2 way

associative, but a larger 64KB cache will be 4 way associative. We show the CPI

for two of the threads of this application for 16 and 32 ways in Figure 5.9.

(a) Thread 1 with 16 and 32
ways.

(b) Thread 2 with 16 and 32
ways.

Figure 5.9. CPI curves for two threads of SWIM when executed with 16 and 32 ways.
Clearly, thread 1 shows considerably more improvement when the number of ways is
increased from 16 to 32, when compared to very little improvement exhibited by thread
2

76

An important observation that can be made is that, the individual threads have

variable sensitivity to cache capacity. While a cache size increase may benefit one

thread, it might not improve another thread’s performance. In Figure 5.9, when the

cache size is increased from 16 to 32 ways, thread 1 exhibits a higher CPI reduction,

as compared to almost no CPI reduction in the case of thread 2. Therefore, thread

1 is more sensitive to cache than thread 2 since thread 1 benefits a lot more by

cache size increase than thread 2. This heterogeneity in cache sensitivity among

threads of the same application is an important observation because taking cache

resources away from a cache insensitive thread may not be detrimental, as far as

overall performance is considered. Therefore, cache resources can possibly be taken

away from a cache insensitive thread without much affect on its performance. On

the flip side, if the critical path thread is cache insensitive, then giving more cache

ways to it might not be too beneficial in practice. Therefore, cache sensitivities of

threads dictates how effective a cache partitioning scheme can be.

5.4 Dynamic Cache Partitioning

Our dynamic cache partitioning scheme is applied at the granularity of execution

intervals of around 15 million instructions. That is, at the end of each interval, we

optimize for the next interval2. The dynamic cache partitioning scheme gathers

execution counter values such as cache hits/misses, cycle counts and instruction

counts for each thread during each execution interval. At the end of each such

interval, the cache space is partitioned based on individual thread performances,

so as to speed up the critical path thread, at the cost of other threads.

5.4.1 CPI Based Partitioning

CPI based cache partitioning is a scheme which collects execution characteristics

during each interval and partitions the cache space based on the thread cycles-

per-instruction (CPI) values [12]. The thread with a high CPI receives a larger

portion of the cache and those with lower CPIs receive lesser portions accordingly.

This is done with a hope that a thread with a high CPI (critical path thread) can

2Note that an (execution) interval can contain multiple parallel sections, and similarly, a
parallel section can span multiple execution intervals.

77

improve its performance with a larger cache share, thereby, improving the overall

application performance. In this scheme, we start out with equal cache partitions

during the first interval. At the end of each interval, the execution characteristics

are collected and the CPI values for each of the threads are computed. The cache

space is then partitioned based on these computed CPI values. The formulation

used to decide the cache partitions is:

partitiont = CPIt
P

CPIi
× Total Cache Ways

That is, the number of cache ways assigned to each thread is proportional to the

CPI value of the thread.

5.4.2 Dynamic Model Based Partitioning

The main drawback of the previous scheme is its naivete in assuming a particular

cache sensitivity metric. It lacks the knowledge of how the CPI value of the thread

may change when a cache way is given to it or when a cache way is taken away

from it. Therefore, a simple CPI based cache partitioning may not do very well,

and in fact, may harm performance in certain cases. Therefore, we propose a

dynamic learning based algorithm that considers not just the thread CPIs during

the current interval but also the individual thread CPI curves so that the cache

space can be partitioned more accurately. The core of this scheme is a runtime

thread performance modeling, which is explained below.

In the first execution interval, we start out with equal partitions for all the

threads. At the end of the first interval, the previously described CPI based cache

partitioning is used to partition the cache for the second interval. We do the

same for the second interval, in the process collecting two data points for the CPI

models. Later, at the end of each interval, we build a runtime CPI model for each

thread. Specifically, we model the dependency of CPI on the number of cache

ways. These CPI models are built at runtime, for each of the threads using the

available data points. By data points, we mean the assigned number of cache ways

and the corresponding CPI figures observed under these cache ways. Using these

available data points for each thread, we use a simple cubic spline interpolation

[80] to fit a curve for each of the threads. The choice of the curve fitting algorithm

used is independent of the partitioning scheme, and therefore, any other algorithm

78

Initialization:

• Start out with equal partitions in the first interval.

∀ t, partitioni = TotalCacheWays

NumberofCores

At the end of first two intervals:

• Use the previous CPI based cache partitioning.
• Record CPI for each thread t, CPIi.
• Assign cache partitions to threads, based on their CPIs.

Partition for thread t,

partitiont = CPIt
P

CPIi

× TotalCacheWays

At the end of each interval:

• Record the CPI value for each thread t, CPIi.
• Build performance models for each of
the threads using cubic spline
•Model CPI to cache way dependency

• Determine individual cache partitions by redistributing
cache ways based on the thread performance models
•Step1: Reassign cache partitions

threadMaxCPI = HighestCPI

threadMax = Thread with highest CPI
threadMinCPI = LowestCPI

threadMin = Thread with lowest CPI
waysMaxCPI = waysMaxCPI + 1
waysMinCPI = waysMinCPI − 1

•Step2: Recalculate the thread CPIs after
reassignment (step 1) based on the individual
thread performance models

newThreadMax = Thread with highest CPI
IF(threadMaxCPI 6= tewThreadMaxCPI)

waysMaxCPI = waysMaxCPI − 1
waysMinCPI = waysMinCPI + 1
EXIT

ELSE GOTO Step1

• Assign the newly calculated cache partitions to threads

Figure 5.10. Dynamic curve fitting based cache partitioning scheme.

could also be used. The CPI curves of the threads can be of any form. Now, the

goal is to allocate ways so as to minimize the CPI of the highest CPI thread, which

essentially minimizes the overall CPI of the application.

Since the search space for this problem is very large, we employ a heuristic

strategy with minimal runtime overhead in our scheme. Our curve fitting algorithm

tries to find the best possible cache way partition that minimizes the CPI of the

highest CPI thread. Minimizing the CPI of the highest CPI thread is synonymous

with speeding up the slowest thread (critical path thread), thereby speeding up

the entire application execution.

As described earlier, at the end of each execution interval, the execution char-

acteristics such as instruction counts and cycle counts are recorded for each thread

79

Figure 5.11. Dynamic cache partitioning scheme in action during application execution.

along with the current cache partition. Using the current data point (cache ways,

CPI) and the previously recored data points, a CPI model is built for each thread

of the application being executed. Then, our cache partitioning algorithm is in-

voked. At each iteration of our partitioning algorithm, we take away a cache way

from the thread with the lowest CPI (fastest thread) and assign it to the thread

with the highest CPI (slowest thread). After this repartitioning, the CPI values

are recalculated for all the threads based on the thread CPI models built earlier.

Notice that, by recalculating the CPI values this way, whether the repartitioning

has actually helped or not is taken into account. It is important to note here that,

determining CPI values using the CPI models yields predicted CPI values for each

of the threads and not the actual CPI values. After recalculating the thread level

CPI values this way, repartitioning step is performed again, and so on. Thread CPI

recalculation based on the thread CPI models and the cache way repartitioning

steps are iteratively repeated this way. The termination point is when some other

thread becomes the highest CPI thread. When that happens, we revert back the

assignment by one step and terminate. Finally, we apply the calculated cache way

assignment for the threads. Figure 5.10 shows a detailed sketch of the workings of

our curve fitting based cache partitioning heuristic, and Figure 5.11 summarizes

the entire procedure in a pictorial form.

5.4.3 Implementation Details

In our implementation, we consider an operating system (OS) cache allocator which

allocates a certain amount of cache to each of the applications in a workload [64].

80

The application now executes under the control of our proposed runtime system

which implements the cache partitioning algorithm. Implementing the cache par-

titioning this way (i.e., within a runtime system) gives us more flexibility. This is

because it is not always easy to extract thread-level information in commercially

available OSs. We envision a hierarchical system (shown in Figure 5.12), where

OS manages the cache-partitioning among applications and the runtime-system

manages the cache-partitioning among the threads of an application. Note that,

in this setting, our intra-application scheme can be applied to each application

simultaneously.

Figure 5.12. Hierarchical cache partitioning system.

5.5 Experimental Evaluation

We use the experimental setup described in Section 7.6.1 to evaluate our dynamic

partitioning scheme. As mentioned before, we use Simics [57], which is a full system

simulator to implement our scheme. We implement our cache partitioning scheme

as a module in Simics. The cache partitioning scheme acts as a dynamic runtime

system which implements the cache partitioning as described in Section 5.4.3. The

runtime system decides the individual thread cache partitions and then issues the

cache partition commands to Simics which actually partitions the shared cache.

Runtime system collects the execution characteristics of the threads by reading

the performance counters. The results presented below include all the runtime

overheads incurred by our implementation.

81

5.5.1 Dynamic Cache Partitioning Snapshot

We now provide a brief snapshot of our dynamic cache partitioning scheme in

action. Figure 5.13 shows the working of our dynamic cache partitioning scheme

across a small set of execution intervals of NAS CG application [81]. During the

first execution interval, the cache partition is equal. During the next intervals,

cache is partitioned based on their run time cache models in order to speed up the

critical path thread. In this example, since thread 3 is the slowest thread (the CPI

values for threads 1, 2, 3, 4 were 3.06, 2.96, 6.35, 2.95, after the first interval), it

is given the largest cache partition and consequently, as can be seen, the overall

CPI of the application is reduced, thereby, improving the overall performance. A

similar situation results as we move from interval 2 to interval 3. That is, our

approach successfully modulates the cache space allocation dynamically during

execution.

Figure 5.13. A snapshot of our dynamic cache partitioning scheme in action across four
consecutive execution intervals of the NAS CG application. This figure shows the cache
ways allocated to each of the threads during the execution intervals and the resulting
CPI values.

5.5.2 Comparison with Alternate Schemes

We start by comparing our dynamic cache partitioning scheme with a statically

partitioned cache with equal partitions, which is the same as a private L2 cache. A

private cache also yields the optimal fairness results. Therefore, comparison with

private cache is the same as the comparison with fairness oriented schemes (such

as those presented in [19] [17]). Figure 5.14 shows the performance improvement

achieved by our dynamic cache partitioning scheme over a private, equally parti-

82

tioned cache. Dynamically partitioned cache results in performance improvement

of up to 23% over the private cache case. This is because our algorithm adapts

dynamically to build performance models and allocates available cache space specif-

ically to speed up the critical path thread, as opposed to a simple static partition.

On average, our scheme outperforms the private cache configuration by about 11%.

Figure 5.14. Perfor-
mance improvement over an
equally partitioned cache
(private cache).

Figure 5.15. Performance
improvement over a shared
unpartitioned cache.

Figure 5.16. Perfor-
mance improvement over a
throughput-oriented cache
partitioning scheme.

Next, we compare our proposed dynamic cache partitioning scheme to an un-

partitioned shared cache (i.e., a fully-shared cache). Figure 5.15 shows the per-

formance improvement achieved by our dynamic cache partitioning scheme over a

shared, unpartitioned cache. The average performance improvement achieved is

about 9%. Although shared cache is considered the most efficient in terms of uti-

lization and data sharing, the dynamic cache partitioning scheme outperforms the

shared cache. In three of the benchmarks we tested, dynamic partitioning scheme

yields only a small benefit. This is because of the very small working set size of

those benchmarks. We also compare our scheme to a throughput-oriented scheme.

Here, we use the throughput oriented strategy employed by these prior schemes

in the intra-application case for comparison with our scheme. As we can see from

the plot in Figure 5.16, our proposed cache partitioning scheme outperforms the

throughput-oriented scheme for all the applications we tested.

Chapter 6
Bandwidth Constrained Coordinated

HW/SW Prefetching for Multicores

6.1 Introduction

Prefetching is a well-known memory latency hiding technique, which predicts fu-

ture memory accesses and proactively fetches the corresponding memory elements

to the cache ahead of time in order to hide memory access latencies during exe-

cution [82] [83] [84] [85]. Prefetching can either be implemented at the hardware

level [82] [83] [85] [84] or by the software [86] [87]. The effectiveness of a prefetch-

ing scheme is directly dependent on the predictability of memory accesses, which

is an application characteristic. In a multicore system, each core prefetches data

elements independently into the cache. The benefits due to prefetching can poten-

tially be different for different cores depending on the application characteristics.

Further, each core/application can potentially be involved in both hardware and

software prefetching. There have been previous techniques proposed to throttle

inaccurate prefetchers and increase aggressiveness levels on more accurate ones

[88]. Also, when the last level cache is shared, aggressive prefetching can worsen

the cache interference problem, especially when it is inaccurate and/or inefficient.

In such cases, it is helpful to throttle the prefetches that are inaccurate and cause

high interference in the shared cache space [89].

In this chapter, we first study the comparative accuracies and benefits of soft-

84

ware prefetching and different levels of hardware prefetching. We then study and

analyze the impact of prefetching on the off-chip memory bandwidth performance.

Prefetching can lead to increased off-chip bus traffic, and can potentially increase

the pressure on the off-chip bandwidth. This can cause extensive bandwidth

stalls.We explore the tradeoff between extensive aggressive prefetching and band-

width stalls. Further, we study if the performance degradation due to bandwidth

stalls wipe away the performance gains achieved as a result of prefetching.

We propose a hierarchical bandwidth-aware coordinated prefetching scheme

that manages the prefetch aggressiveness levels of different cores such that the

performance gains due to prefetching are improved, while the performance losses

due to bandwidth stalls are reduced. This prefetch management scheme operates

dynamically and decisions are made at the end of each execution interval. More

specifically, a global prefetch manager considers the overall bandwidth delay and

the prefetch effectiveness of each core during each execution interval, and then

decides to increase or decrease the prefetch aggressiveness levels of the cores. This

decision to change the prefetch levels of the cores is made such that the perfor-

mance improvement due to prefetching is higher than the stall time due to limited

bandwidth and contention. It then directs the individual core-level prefetch man-

agers to change the prefetch levels correspondingly. At each core, a core-level

prefetch manager manages and enforces the prefetch aggressiveness levels. This

prefetch manager not only issues hardware prefetch requests but also handles the

software prefetch instructions. It decides whether to allow software prefetching or

hardware prefetching or both and also at what aggressiveness levels. It is to be

noted that prefetching on a core can be termed very aggressive if both hardware

prefetching at the highest aggressiveness level and software prefetching is enabled.

Aggressiveness can be downgraded by reducing the aggressiveness of hardware or

software prefetching or both. Overall, the main goal of our approach is to reward

useful prefetchers and punish the ones that hurt bandwidth availability without

any performance benefit. Lastly, we evaluate our proposed scheme on set of work-

loads comprising of applications from the SPEC 2006 benchmark suite [58] on a

simulation based setup, and show that our scheme yields average system through-

put benefits of about 8%, and up to about 10% over an off-chip bandwidth unaware

scheme. To summarize, we make the following contributions in this chapter:

85

•We evaluate the performance benefit of both hardware (different levels) and

software prefetching schemes. We later compare the performance improvement

due to prefetching against the performance degradation due to the extra pressure

it exerts on the off-chip bandwidth.

•We propose a hierarchical prefetch management scheme that tries to dynam-

ically change the prefetch levels of the individual cores such that the performance

degradation due to bandwidth contention is reduced and the performance improve-

ment due to prefetching is improved.

•We present an extensive experimental evaluation of the proposed hierarchical

prefetch management. Our results show that the proposed scheme is very effective

in practice and improves the system throughput by up to 10%, and by an average

of 8%.

6.2 Background and Methodology

6.2.1 Prefetching

Prefetching is a widely employed technique intended to improve on-chip cache

performance [82] [83] [84] [85] [86] [87]. Prefetching, however, is not always bene-

ficial. Some fraction of the predicted memory requests are never accessed. This is

not the only instance of wasted prefetching. A future memory request prediction

can turn out to be true but before the prefetched memory element is accessed, it

might be evicted from the cache. Also, a prefetched request may kick out a useful

data element from the cache. In these instances, prefetching increases the off-chip

bus traffic and possibly cause bandwidth stalls without any significant benefit.

Therefore, prefetch accuracy, which is an application characteristic determines the

overall performance benefit from prefetching.

Hardware Prefetching. In the case of hardware prefetching, the future memory

access prediction and the process of initiating requests to prefetch those elements

are carried out by the hardware at runtime. Due to costs and limits on delay, hard-

ware prefetchers generally implement a simple stride based prefetching or a stream

based prefetching. A very aggressive hardware prefetcher would typically predict

a large number of future memory requests and prefetch them. In comparison, a

86

prefetcher with a lower aggressiveness level would be more conservative, predicting

and issuing fewer prefetches. In this chapter, we refer to and implement a stream

prefetcher [88] [90] [91]. Aggressiveness level of a stream prefetcher is defined

by two parameters: prefetch distance and prefetch degree [88] [90] [91]. Prefetch

Distance dictates how far ahead of the demand access stream the prefetcher can

issue prefetch requests, and Prefetch Degree determines how many cache blocks to

prefetch when there is a cache block access to a monitored memory region.

Software Prefetching. In this case, the future memory access prediction is

made statically, at compile time or at the coding time, and specific instructions

are inserted into the code body to prefetch those predicted elements at the time

of execution. Some applications render themselves to easy compile time prediction

in which case the software prefetching is very effective [86] [87] [92]. Software

prefetching also has the ability to employ complex and time consuming prefetching

algorithms since the process is done apriori at compile time. Hardware prefetching,

on the other hand, employs simpler prediction mechanisms but does well where

software prefetching fails to analyze the code, e.g., as in the case of pointer-based

applications.

6.2.2 Experimental Setup

We model the off-chip memory bandwidth and implement the prefetching infras-

tructure for multicores using a Simics [57] based in-house module. The base system

architecture simulated in our evaluations is a four-core multicore machine with a

shared L2 cache and a shared off-chip memory bandwidth. The shared L2 cache

is assumed to be a partitioned cache (i.e., its cache ways are distributed evenly

across applications though in principle we could use any partitioning strategy).

The cores simulated in this system are based on the UltraSparc 3 architecture [3].

The main architectural details of the simulated system are shown in the table given

in Figure 6.1. In the evaluation of the proposed dynamic scheme later, we employ

execution intervals of 10 million instructions. The hardware prefetcher used in this

chapter is a stream prefetcher [88] [90] [91] with 64 streams per prefetcher.

Benchmarks. For all the motivational and evaluation purposes, we use the ap-

plications from the SPEC 2006 benchmark suite [58], and construct our workloads

87

Core architecture UltraSparc 3, 3.1 GHz
Operating system Sun Solaris 9
L1 caches private, 3 cycle latency, direct-mapped
L2 cache shared, 15 cycle latency, 16 way associative
Memory latency 260 cycles
Hardware Prefetcher 64 stream prefetcher per core, 4 prefetch levels
DRAM controller demand-prefetch equal priorities, on-chip,

128 entry req buffer, FR-FCFS
DRAM chip refer to Micron DDR2-800 [93]

Figure 6.1. Default system parameters used.

from the subsets of these applications. To enable software prefetching on the ap-

plications, they are compiled on a SUN compiler with the highest optimization flag

set.

Terminology. In this chapter, by “prefetch level”, we mean the “aggressiveness

level” of the prefetcher. All types of prefetching mentioned in this chapter are

implemented for the last level of cache in a multicore. Whenever we refer to

“software prefetching” in this chapter, we mean the handling of the software-

inserted prefetch instructions in the hardware. We do not propose or implement a

new software prefetching algorithm. We compile the applications using a software

prefetch enabled compiler that inserts prefetch instructions into the executable.

We only refer to the way these instructions are handled in the hardware.

6.3 Empirical Motivation

6.3.1 Prefetching Benefits

The goal of this section is to compare the performance of various prefetching tech-

niques with different aggressiveness levels across different applications.

Hardware Prefetching. Figure 6.2 plots the performance of our applications

when different levels of prefetching are enabled compared to the case of no prefetch-

ing. We experimented with four different prefetch levels: no prefetching, level 1,

level 2 and level 3. Level 1 prefetching has a prefetch distance of 4 and prefetch

degree of 1.

Prefetch distance and prefetch degree of level 2 are 16 and 2 respectively, and

those of level 3 are 64 and 4. In this set of experiments, software prefetching is

disabled, which means the prefetch instructions are ignored as no-ops. Since we are

88

ÁÂÃ
ÄÂÄ
ÄÂÅ
ÄÂÆ
ÄÂÇ
ÄÂÃ

È
É
ÊË
Ì
ÊÍ
Î
Ï
ÐÉ

ÑÒÓÔÕÖÕ×ØÙ ÚÛÜÕÝÕÞ ß
ÚÛÜÕÝÕÞ à ÚÛÜÕÝÕÞ á

Figure 6.2. Performance compar-
isons of different levels of hardware
prefetching. The performance val-
ues are normalized to that of the no
prefetching case.

âãä
åãå
åãæ
åãç
åãè
åãä

é
ê
ëì
í
ëî
ï
ð
ñê

òóôõö÷öøùú ûüýöþöÿ �
�ü �ü � ûü ýöþöÿ�

Figure 6.3. Performance compar-
isons of software prefetching, hard-
ware level 3 prefetching, and both
with the case of no prefetching. The
performance values are normalized to
that of the no prefetching case.

first interested in studying the performance benefits of prefetching in isolation, the

performance effects due to bandwidth constraints are not considered in these ex-

periments. From Figure 6.2, we can infer that while some applications are prefetch

sensitive and, therefore benefit from more aggressive levels of prefetching, oth-

ers do not exhibit large performance gains as prefetch levels are increased. In the

above scenario, the prefetch levels can be reduced on applications that are not very

prefetch-sensitive without a high performance penalty. On the flip side, increasing

the prefetch levels on prefetch-sensitive applications can be very beneficial.

Software Prefetching. Figure 6.3 compares software prefetching, hardware

level 3 prefetching, a combined software hardware prefetching scheme against the

no prefetching case. One can see from this plot that, for some applications, hard-

ware prefetching does much better than software prefetching, whereas for some

others, it is the other way around. More interestingly, in some cases, enabling

both hardware and software prefetching is much better than enabling just one of

them, as in the case of gcc and perl. In some other cases, although effective indi-

vidually, enabling both does not do any better than enabling only one of them, as

in the case of astar and h264. Therefore, in a multicore system, some applications

perform better when both hardware and software prefetching are enabled, while

some others perform equally well with just one of them enabled.

89

6.3.2 Off-Chip Bandwidth Effects

In this section, we study the effect of prefetching on off-chip bandwidth pressure.

We employ an off-chip bandwidth of 6.4 GB/s in these experiments. For this

purpose, we selected a workload of four applications: lbm, mcf, libquantum, and

milc. These four applications are executed on a four-core processor (one application

per core) with a shared, partitioned cache, and a shared off-chip bandwidth.

One core prefetching. In the first run, we enabled prefetching only on the

first core which executed lbm, while disabling prefetching on all other cores. We

experimented with software prefetching, three levels of hardware prefetching, and

a combined hardware-software prefetching scheme. The results in Figure 6.4 show

that lbm, which executed on core 1, achieves a performance benefit when com-

pared to the case of no prefetching. However, its benefits are reduced due to the

limited bandwidth constraint. Further, it degrades the performance of the other

applications due to the additional requests (prefetch requests from core 1) and

the resulting bandwidth stalls. When using the most aggressive prefetching, the

performance degradations on the other cores are significant.

���

���

���

���

�
�
�
	

�

�
�
��
�

��

�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

�
�

��
�
�
�
�

�

�
�

�
�
�
	

�

�
�
��
�

��

�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

�
�

��
�
�
�
�

�

�
�

�
�
�
	

�

�
�
��
�

��

�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

�
�

��
�
�
�
�

�

�
�

�
�
�
	

�

�
�
��
�

��

�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

�
�

��
�
�
�
�

�

�
�

� ! !"# �$ % !$�"

&
'
()
*
(+
,
-
.
'

$/#$/$01 2345678

Figure 6.4. Performance comparisons of different prefetching schemes with both the
infinite bandwidth case and a bandwidth of 6.4 GB/s, when prefetching is enabled only
on core 1 (lbm) and disabled for all others.

We also repeated this by enabling prefetching on core 2, core 3 and core 4 alone,

and observed similar results. Therefore, prefetching can have different degrees

of performance degradation due to bandwidth constraints. Further, aggressive

prefetching by one core can adversely impact the performance of other applications

due to bandwidth contention and the resulting delays.

All cores prefetching. We also considered a more realistic execution scenario,

where different applications prefetch memory elements individually and the cores

90

share the available off-chip bandwidth. In this case, prefetching is enabled on all

the cores. In Figure 6.5, we plot the comparative contributions to the bus traffic

by the applications when prefetching is enabled on all the cores. The bus traffic

increases rapidly when the prefetch level is increased for some applications, while

for others, the increase is not that steep (for instance milc).

9:

;:

<:

=:

>?@ @AB >C?D @C>A

E
F
G
H
IJ
KK
LM

N
O
P
P
P
P
P

QRSTUVUWXYZ[\]^

_^`UaUb c _^`UaUb d

_^`UaUb e]^f _^ `UaUb e

Figure 6.5. Contributions to the
bus traffic by different applications.

g

hgg

igg

jgg

kgg

lgg

m
n
o
p
q
rp
st
u
sn
vv
w

x
yz
zy
{
|
}

~�� ���

~��� ��~�

Figure 6.6. Bandwidth stalls (in
cycles) suffered by applications as
the prefetching level is increased.

Figure 6.6 shows how this increase in bus traffic translates into stalls due to

limited bandwidth. Note that, even if the bus traffic increase is small, bandwidth

stalls can be significant. The above two graphs plot absolute values of bus traffic

increase and bandwidth stall cycles. Figure 6.7, on the other hand, illustrates how

these factors affect the performance of applications when different prefetch variants

are enabled for both the infinite bandwidth case and a more realistic case of 6.4

GB/s bandwidth.

���
���
���
���
���

�
�
��
��
��
��
��
�

��

�
�
��
��
��

�
�
��
��
�

�
�
��
��
�¡

��
¢
�
�
��
��
�¡

�
�
��
��
��
��
��
�
��

�
�
��
��
��

�
�
��
��
�

�
�
��
��
�¡

��
¢
�
�
��
��
�¡

�
�
��
��
��
��
��
�

��

�
�
��
��
��

�
�
��
��
�

�
�
��
��
�¡

��
¢
�
�
��
��
�¡

�
�
��
��
��
��
��
�

��

�
�
��
��
��

�
�
��
��
�

�
�
��
��
�¡

��
¢
�
�
��
��
�¡

£¤¥ ¥¦§ £¨¤© ¥¨£¦

ª
«
¬
®
¬̄

°
±
²
«

¨³§¨³¨´µ ¶·¸¹º»¼

Figure 6.7. Performance comparisons of different prefetching schemes with both the
infinite bandwidth case and a bandwidth of 6.4 GB/s, when prefetching is enabled on
all cores.

In the limited bandwidth case, prefetching aggressively in a bandwidth unaware

manner on all the cores results in some performance improvement only on core

3 (libq). In all other applications/cores, performance degradation due to limited

91

bandwidth completely wipes out all the benefits from prefetching and in some cases

results in a net performance degradation. This effect increases with increasing

prefetch levels. Also, for some applications, while absolute values of bandwidth

stalls in Figure 6.6 increase sharply with prefetch levels, performance degradation

is not that steep. Therefore, some applications are more bandwidth-stall resistant

(tolerant). In modeling the performance effects later in Section 6.4.3, we take this

into account. We do not just consider prefetch accuracies and the resulting bus

traffic as the basis as done previously [88] [89] but also consider the bandwidth

stalls and the actual impact of bandwidth stalls on application performance as the

basis.

To summarize, while prefetching aggressively can improve performance, it can

also hurt the performance due to bandwidth constraints. Therefore, it is important

to enable prefetching without increasing bandwidth delays extensively.

6.3.3 Prefetch Request Priority

Increase in bandwidth delays due to prefetching typically occurs only if prefetch

requests are treated on par with demand memory requests. If normal load/store

(demand) memory requests have a higher priority than the prefetching requests,

then additional bus traffic due to prefetch requests may not lead to any additional

bandwidth delay. It is to be noted here that bandwidth delays might still be

present in the system but those delays are due to the normal (demand) memory

requests, and will be present irrespective of whether prefetching is turned on or

not.

½

½¾¿

½¾À

½¾Á

½¾Â

Ã
Ã¾¿

ÄÅÆ ÆÇÈ ÄÉÅÊ ÆÉÄÇ

Ë
ÌÍ
ÎÍ
ÏÐ
Ñ
Ò
ÓÏ
Ô

ÕÊÖ×ÄØÙÚÉÛÚÉÜÉÕÝ ÞÕÆ×ßÞØÈÉÚÝÜ

Figure 6.8. Comparison of equal priorities for prefetch and demand requests versus
a scheme where demand requests are prioritized over prefetch requests in terms of the
number of useful prefetches.

Prioritizing demand requests and prefetching requests equally leads to increased

performance improvement from prefetching as can be seen in Figure 6.8. This is due

92

to the fact that if the prefetch requests have a lower priority than the demand re-

quests, then the prefetch requests can get delayed inordinately and these increased

bandwidth delays can render most of prefetch requests useless (since prefetched

data would be brought into the cache late). This leads to decreased prefetch ef-

ficiency and, therefore, decreased positive performance impact of prefetching [94].

Therefore, our proposed scheme employs equal priorities, and tries to keep the

number of useful prefetches high, while at the same time, mitigating the addi-

tional bandwidth stalls due to prefetch requests.

6.4 Bandwidth Aware Prefetching

Figure 6.9 summarizes the operation of our proposed scheme. A global prefetch

manager makes decisions on whether to increase or decrease the prefetching lev-

els on the individual cores and the decisions are communicated to the core-level

prefetch manager.

àáâãäá åæçèçéêë

ìäíäîçæïðñòñóôõ

öó÷óøöóøôö

ù÷úûüøûóõ

ûñý÷þ

ÿ��� �
����	

���	
���

ÿ���
����	

���	

ÿ��� �
����	

���	

Figure 6.9. Hierarchical bandwidth aware prefetching scheme that includes a global

prefetch manager and a set of core-level prefetch managers.

The details on how these decisions are made are presented in Section 6.4.3.

After the global manager directs a core-level prefetch manager to either increase or

decrease the prefetch level of the core, the core-level manager applies the prefetch-

level changes locally (i.e., to the core it is attached to), as described in Section 6.4.1.

This prefetch management scheme works dynamically, making decisions on prefetch

level changes and applying those changes at the end of each execution interval.

This scheme is also history based, in the sense that all the relevant statistics,

which include the total bandwidth stall-time and the prefetch efficiency counters of

individual cores, collected during an execution interval are used to make decisions

for the next execution interval.

93

Implementation. Hardware support is needed to maintain the performance

counters. The prefetch management scheme itself is implemented in the runtime

system/OS, which reads these hardware performance counters.

6.4.1 Core-Level Prefetch Manager

The core-level prefetch manager sets and enforces the prefetch aggressiveness level

at the core level. It can either increase or decrease the prefetch level based on the

directions from the global prefetch manager.

The core-level prefetch manager handles the changes in prefetch levels of the

hardware prefetcher similar to that proposed in [89]. In addition to the hard-

ware prefetcher, our proposed prefetch manager also employs a software prefetcher,

which is an engine that handles all the software prefetch instructions issued by the

core (compiler-inserted or programmer inserted). A prefetch instruction, when is-

sued, results in a prefetch request. All such prefetch requests are routed through

our proposed software prefetcher. When the global prefetch manager directs the

core-level manager to either increase or decrease the prefetch level, the core-

level manager can increase or decrease the prefetch level of either the hardware

prefetcher or the software prefetcher. What we mean by “prefetch levels” in hard-

ware and software prefetchers is explained later in detail. The role of the core-level

prefetch manager in controlling the prefetch levels of both hardware and software

prefetches is illustrated in Figure 6.10. The global prefetch manager either in-

creases or decreases prefetch level, and does not set absolute values.

���� ����� ��������
�������

��������
����������

 !"#$%&$'($"#$%&$
)#$*$+", -$.$-

/0121345
01671838

9�������
����������

/0121345
01671838

:; <=81031>
?0121345
<=830743<@=8

 !"#$%&$'($"#$%&$
)#$*$+", -$.$-

Figure 6.10. Details of a core-
level prefetch manager, which
controls the prefetch levels of
both hardware and software
prefetchers of a core.

increase prefetch level()

begin

accuracyHW = prefhitsSW

prefetchesHW

accuracySW = PrefhitsSW

prefetchesSW

if accuracyHW > accuracySW

//Increase HW prefetch level
increase prefetch distanceHW

increase prefetch degreeHW

else

//Increase SW prefetch level
increase prefetch distanceSW

increase prefetch degreeSW

end

Figure 6.11. Prefetch level
increase function.

94

The decision of whether to change the prefetch level of the hardware prefetcher

or the software prefetcher is determined by calculating the corresponding prefetch

accuracies. More accurate prefetcher is always preferred. This way, we prioritize

either hardware or software prefetching based on their accuracies (the prefetch

increase function is shown in Figure 6.11, prefetch decrease function is on similar

lines).

6.4.2 Prefetch Levels

Hardware Prefetch Levels. We implement a stream prefetcher for hard-

ware prefetching [90]. As mentioned earlier, the aggressiveness level of a stream

prefetcher is defined by two parameters: prefetch distance and prefetch degree.

Our hardware prefetcher design is similar to that implemented in [88] and further

details on implementation can be found in [88] [90] [91]. In essence, the prefetch

distance determines how far ahead of the memory stream the prefetch requests

are issued and the prefetch degree determines how many prefetch requests are

issued each time. We implement four prefetch levels in this work: no prefetch,

low prefetch, medium prefetch, and high prefetch. No prefetch level performs no

prefetching. Low prefetch level performs prefetching with a prefetch distance of 4

and prefetch degree of 1. Medium prefetch performs prefetching with a prefetch

distance of 16 and a prefetch degree of 2, while the high prefetch level has prefetch

distance of 64 and prefetch degree of 4.

Software Prefetch Levels. The software prefetcher implements the software

prefetch levels by filtering the prefetch requests. As mentioned before, the soft-

ware prefetcher receives all the prefetch requests that are issued by the software

(compiler inserted or programmer inserted) instructions. The four aggressiveness

levels of software prefetching are: no prefetch, low prefetch, medium prefetch, and

high prefetch. When the level is set to no prefetch, all the prefetch requests are

dropped. In the case of low prefetch level, two in every four prefetch requests are

dropped, while only one in every four is dropped in the case of medium prefetch

level. When the level is set to high prefetch, all prefetch requests coming from

the software inserted prefetch instructions are issued by the software prefetcher

without dropping any of them.

95

6.4.3 Global Prefetch Manager

As shown in Figure 6.9, the two main inputs to the global prefetch manager are

the total bandwidth stall-time and the prefetch statistics.

Bandwidth stall-time. A demand request stalls in the memory controller

queue if there are other requests ahead which are being serviced or waiting to be

serviced. While the prefetch requests may also wait, they do not contribute to

performance degradation (a higher wait-time for prefetch requests can of course

limit the benefits due to prefetching). We define “bandwidth stall” as the total

stall-time (in cycles) experienced by the demand requests in a given execution

interval. It is the sum of all individual demand request stall-times in that execution

interval. Observe that “stall-time” in this context refers to wait-time in the queue

due to bandwidth constraint. It does not include the time for a demand request

to get serviced (to perform the memory operation). We compute bandwidth stall

using a simple counter in the memory controller. Since the off-chip bandwidth is a

single resource shared across all the cores, bandwidth stall is a single value, which

is the sum of bandwidth stalls of all requests of all cores serviced by the off-chip

bandwidth during the given execution interval.

Prefetch Statistics. As described in Section 6.4.1, each core has a hardware

prefetcher and a software prefetcher associated with it. We define “prefetchesi”

to be the total number of prefetches issued by core i. It is the sum of the number

of prefetches issued by the hardware prefetcher and those issued by the software

prefetcher. The metric “prefhitsi” is defined as the total number of prefetch

requests (both hardware and software) that turned out to be hits for core i. These

values are calculated using the prefetch bit of the cache line and by employing

counters in the prefetchers.

Benefit Estimation. The performance improvement on core i due to prefetching

is quantified by a parameter called “benefiti”. This improvement is specifically

due to the avoidance of a fraction of core i cache misses. The metric benefiti is

computed for each core i using the prefetch statistics collected during the execution

interval as follows: benefiti = Reduction in cache miss stall timei

instructionsi
.

Therefore, accounting for this reduction in cache misses, we obtain:

benefiti = (misses oldi−misses newi)×avg miss penalty

instructionsi
= prefhitsi×avg miss penalty

instructionsi
,

where instructionsi is the number of instructions executed in the current execution

96

interval, misses oldi is the estimated number of cache misses if prefetching was

not enabled, misses newi is the number of cache misses with prefetching, and

avg miss penalty is the average cache miss penalty in cycles.

Cost Estimation. Prefetching leads to additional memory requests (in ad-

dition to the normal load/store demand requests). The measure of performance

degradation suffered by core i due to memory bandwidth stall-time resulting from

these prefetch requests it issues is quantified by the metric costi. Due to the

fact that memory bandwidth is shared, the additional prefetches issued by core

i can cause bandwidth stalls for not only core i but also for all other cores as

well. As a result, costi should take all these stalls into account. Firstly, the

total bandwidth stall caused by the prefetches issued by all the cores can be es-

timated as below: total prefetch stall =
Σn

i=0
prefetchesi

total requests
× bandwidth stall, where

Σn
i=0prefetchesi is the sum of prefetches issued by all the cores during the interval,

total requests is the total number of requests that reached the memory controller

during the execution interval (i.e., sum of the demand and prefetch requests), and

bandwidth stall is the total bandwidth stall time as defined earlier. We can now

estimate the stall caused by core i (due to the prefetches issued by core i) as fol-

lows: prefetch stalli = prefetchesi

Σn
i=0

prefetchesi
× total prefetch stall. For each core i, we

now have prefetch stalli, which is the estimated absolute bandwidth stall-time

caused by the prefetch requests issued by core i. Since the off-chip bandwidth is

a shared resource, prefetch stalli, caused by core i can affect demand requests

of any of the cores. We define band stalli,j as the bandwidth stall caused by the

prefetches from core i on the performance of core j (on the demand requests of

core j). This value estimates the fraction of the bandwidth stall of core j, due to

the prefetch requests issued by core i. We can estimate band stalli,j as follows:

band stalli,j =
demandj

Σn
i=0

demandk
×prefetch stalli, where demandj is the total number of

demand requests issued by core j, which in this case is approximately equal to the

number of L2 cache misses on core j, Σn
i=0demandk is the total number of demand

requests issued by all cores.These band stalli,j values estimated above are the ab-

solute stall times in cycles and not the impact on performance. Therefore, we now

estimate costi, which is a measure of the total performance degradation caused

by the prefetches issued by core i on the performance of all cores including core i.

Note that performance degradation considered above is just the effect of bandwidth

97

stalls. The value of costi can be estimated as follows: costi = Σn
j=0

band stalli,j
instructionsj

. It

is important to note that, we do not consider prefetch accuracies or the absolute

bandwidth stalls in our estimation of benefiti and costi values. We estimate both

these values in terms of the net effect on the application performance.

Algorithm. The global prefetch manager manages the prefetch levels for each

core with the goal of improving the overall performance gains due to prefetching.

In order to do so, global manager employs a cost/benefit analysis based scheme

global prefetch manager()

begin

for each execution interval:
read bandwidth stall

for each i from 0 to numcores:
read instructionsi, prefetchesi and prefhitsi

compute benefiti and costi
if (benefiti − costi) >= costi × α then

//increase the prefetch level of core i

core level manager i.increase prefetch level()
else if (benefiti − costi > 0 and

benefiti − costi < costi × α)
//do not change the prefetch level of core i

else (benefiti − costi) <= 0 then
//decrease the prefetch level of core i

core level manager i.decrease prefetch level()
end for

end

Figure 6.12. The algorithm executed by the global prefetch manager.

A prediction based dynamic scheme is employed by the global manager, i.e.,

the algorithm works by computing and making prefetch level changes for cores at

the end of each execution interval. This algorithm is shown in Figure 6.12. To

begin with, all cores prefetch at the highest aggressiveness levels. The benefiti and

costi values are estimated for every core i at the end of each interval after reading

the relevant performance counter values. For each core i, the prefetch level is

increased if the benefiti − costi is greater than the costi × α (i.e., if benefiti is

greater than costi by α percentage). If, on the other hand, the benefiti − costi

is lower than the costi × α but greater than zero, then the prefetch level is left

unchanged. Finally, if benefiti is less than the costi value, then the prefetch level

is decreased for core i. The global prefetch manager enforces the prefetch level

change for a given core i by directing the core-level manager of the corresponding

core. The reason for reducing the prefetch level for a given core is obvious since the

estimated benefit is lower than the estimated cost. On the other hand, increasing

98

the prefetch level is more nuanced. The level is increased only if the estimated

benefit is greater than the cost by a pre-defined threshold value (α).If the benefit

is not greater than the cost by α percentage, the prefetch level is left unchanged.

This algorithm can reduce the prefetch level of a core i gradually to zero (which

means no prefetches are issued) when benefiti continues to be lesser than costi

after continuous prefetch level decrements. In this case, when the prefetch level is

zero, benefiti will always be zero and the prefetch level will potentially be stuck

at zero without being increased. To avoid this scenario, the core-level prefetch

manager increments the prefetch level of a core to level 1 if the prefetch level

is stuck at zero for more than two execution intervals. In this algorithm, since

we consider benefit and cost values in terms of estimated changes in application

performance, the goal is always to improve the performance of applications and

improve the overall system throughput.

α values. The α values are tunable to make the prefetching scheme more

conservative or more aggressive. We experimented with a lot of α values and finally

determined that a value of 0.2 is reasonable. Therefore, in our implementation, if

the benefit exceeds the cost by 20%, we increase the prefetch level.

6.5 Experimental Evaluation

Our evaluation setup is described in Section 7.6.1. A four-core machine with a

shared, partitioned L2 cache was modeled as the underlying multicore architec-

ture. We built several workloads that consist of four applications, each from the

SPEC 2006 suite [58]. In all our evaluations, we collect results and data for a

period of 1 billion cycles. Cache is however warmed up for a period of 500 million

instructions prior to collecting results. We consider execution intervals of 10 mil-

lion instructions. Our proposed prefetching scheme is called Dyn Band throughout

the experimental section.

Average Throughput. Figure 6.13 presents the throughput gain acheived

by our proposed scheme (Dyn Band) over other prior prefetching schemes when

averaged over 10 different workloads we experimented with. Different workloads

might benefit differently from the prior prefetching schemes. Our proposed scheme

recognizes this and enables only those prefetching schemes and levels that benefits

99

the workloads, also taking into account the bandwidth pressure exerted by the

extra prefetch memory requests. Our proposed scheme yeilds an average system

throughput gain of about 8% over the best of the previous prefetching schemes.

ABC

ABD

ABE

F

FBF

FBG

H
I
J
K
L
M
N
O
P
J
M
Q
P
R

Figure 6.13.

Throughput com-
parison averaged across
multiple workloads.

STU

STV

W

WTW

WTX

Y
Z
[
\
]
^
Z
_
]
`

Figure 6.14. Through-
put comparison for the
workload (lbm, mcf,
libquantum, and milc).

abc

d

dbe

dbf

ghi ijk glhm ilgj

n
o
pq
r
ps
t
u
v
o

wxyz{| }~ �~� �~ �
�~� }~� �~� ��������

Figure 6.15. Performance
comparisons of the applica-
tions in the workload (lbm,
mcf, libquantum, and milc).

Workload Instance. In order to understand our proposed scheme in more

detail, we now present the results for a single workload instance that consists of

lbm, mcf, libquantum, and milc. The corresponding throughput results are shown

in Figure 6.14. In this case, our proposed dynamic bandwidth-aware prefetching

scheme improves throughput by 15% over the no prefetching scheme. Among the

other prefetching schemes, hardware level 2 prefetching does better than others

because of lower pressure on off-chip bandwidth. Our dynamic bandwidth-aware

scheme has a throughput gain of about 8% over this hardware level 2 prefetch-

ing. Figure 6.15 shows the individual application performance values. We observe

that the application milc gains about 40% in performance over the no prefetching

scheme and mcf gains about 20%.

Dynamics of the system. In order to analyze the working of our proposed

scheme, we consider the execution of a workload comprising of bzip2, libq, sphinx

and gromacs applications, and focus on the performances of libq and gromacs. We

track how our scheme works dynamically, and adjusts the prefetch levels of these

two applications based on their benefit and cost values (note here that our scheme

works and adjusts the prefetch levels of all four applications; we focus on just two

for clarity). Figures 6.16 and 6.17 plot the observed benefit and cost values for

these two applications for 11 execution intervals, when our scheme is used. In the

case of libq, the benefit value is consistently higher than the cost value, while in

100

the case of gromacs, the values are very close together.

�

���

���

���

���

���

���

� � � � � � � � � ����

��������� ����� ¡¢£

¤¥¦¥§¨© ª«¬©

Figure 6.16. Benefit and cost
values of libq during execution.

®¯

®°

®±

®²

®³

®³¯

³ ¯ ´ ° µ ± ¶ ² · ³³³

¸¹º»¼½¾¿À ÁÀ½ºÂÃÄÅÆ

ÇÈÉÈÊËÌ ÍÎÏÌ

Figure 6.17. Benefit and cost
values of gromacs during exe-
cution.

In order to study how our scheme dynamically changes the prefetch levels in

accordance with the above values, we plot the benefit−cost

cost
values for the two ap-

plications for the same 11 execution intervals in Figure 6.18. Recall that, in the

global prefetch management algorithm presented earlier in Figure 6.12, the equa-

tion benefiti − costi > costi ×α is used to decide whether to increase the prefetch

level or not. If the value benefit−cost

cost
is greater than α (0.2), then the prefetch level

is increased and so on.

ÐÑÒÓ
Ñ

ÑÒÓ
Ô

ÔÒÓ
Õ

ÕÒÓ
Ö

ÖÒÓ
×

Ø Ù Ú Û Ü ØØ

Ý
Þ
ß
à
Þ
á
Þ
âã
ß

äåæçèéêëì íìéæîïðñò

óôõö÷øù úûüý

Figure 6.18. Net benefit val-
ues of libquantum and gromacs

during execution.

þ

ÿ

�

�

�

�

ÿ � � � � ÿÿ

�
��
	�

�
�

�
�
�
��

��������� ���������

 !"#$%& '()*

Figure 6.19. Prefetch lev-
els of libquantum and gromacs

during execution.

Figure 6.19 plots the prefetch level changes made by our proposed scheme for

both the applications. Note that, at execution interval 3, the prefetch level of

gromacs is reduced to 2 because the benefit − cost value is less than zero (circled

in Figures 6.18 and 6.19). Also, at execution interval 10, when benefit−cost

cost
becomes

greater than 0.2 for gromacs, the prefetch level is increased to 4. However, it is

reverted back because it was not highly benefitial. On the flipside, the prefetch

level of libq is maintained at 4 since its benefit−cost

cost
values are consistently greater

than 0.2.

101

Sensitivity analysis. We increased the memory bandwidth from 6.4 GB/s to

12.8 GB/s and executed the workloads. An average throughput improvement of

about 7% over the best other prefetching scheme was observed. Therefore, even

with higher bandwidth, our scheme achieves significant throughput improvement.

We also experimented with different α values and found that a value of 0.2 provides

the right balance.

6.6 Related Work

Hardware Prefetching. Hardware-controlled prefetching is an efficient way

to implement prefetching [95] [82] [83] that tries to mitigate the negative effect of

cold misses. Sequential prefetching automatically prefetches several consecutive

data blocks into the cache upon a miss in the cache [84] [85]. Palacharla and

Kessler investigate advanced stream buffers and filtering techniques to enhance

the prefetching efficiency [91]. Hur and Lin discuss a dynamic stream detection

technique that adapts the aggressiveness levels of prefetching in order to improve

prefetching performance [96].

Software Prefetching. Seminal work related to software prefetching was au-

thored by Mowry et al in [86], where they propose to use software controlled

prefetch instruction insertion to enable prefetching. Other software prefetching

schemes include [87] [86].

Prefetch Control. Srinath et al propose to use feedback control to improve

the positive impact of prefetching and mitigate the adverse impact of harmful

prefetches [88]. In [89], Ebrahimi et al investigate a control mechanism that can

dynamically adjust the prefetch aggressiveness levels.

Off-Chip Bandwidth Studies. Rixner et al [22] introduce a scheduling policy

that favors requests that hit in the row buffer over other requests. Nesbit et

al suggest to prioritize memory requests of applications in accordance to their

QoS requirements [29]. Rafique et al propose to adaptively change the fraction

of memory bandwidth allocation for each thread [35]. In [97], Ipek et al study

a machine learning approach in which a reinforcement learning based scheme is

used to dynamically adapt scheduling decisions in the memory controller. Mutlu

and Moscibroda proposed a stall time fair memory access scheduling in [21] and

102

a parallelism-aware batch scheduling scheme in [28]. Liu et al study the effects of

memory bandwidth partitioning on system performance [98].

Prefetching and Off-Chip Bandwidth. Lee et al propose to dynamically

increase and decrease the priorities of prefetch requests at the memory controller

in order to improve the benefits due to prefetching and decrease the penalties

of inaccurate prefetchers [94]. In [99], Ebrahimi et al introduce a cooperative

hardware/sofwtare approach to prefetch linked date structures in a bandwidth-

efficient way.

In this chapter, we considered the off-chip bandwidth as an important con-

straint, based on which, the prefetching levels of different cores are adjusted such

that the prefetch benefits are improved. We considered the off-chip bandwidth

stalls instead of the inter-core interferences [89] as the constraint. We did so be-

cause inter-core interferences are not prefetch specific and can result from demand

accesses as well. We also modeled the benefits and costs of prefetching in terms

of performance changes in this work, which makes our scheme throughput driven,

and evaluated the comparative benefits of hardware and software prefetching.

6.7 Concluding Remarks

In this chapter, we proposed a smart prefetch management scheme that exploits the

performance benefits of prefetching while mitigating the performance degradation

due to bandwidth stalls. Our proposed scheme is very effective in practice yield-

ing a performance benefit of up to 8% in throughput over a bandwidth unaware

prefetching strategy.

Chapter 7
Communication Based Proactive

Link Power Management

7.1 Introduction

In NoC based multicore systems, a major contributor to chip power consumption

is the NoC infrastructure. We found that, the NoC framework is responsible for

as much as nearly 30% of the total chip power consumption. Communication links

form a significant part of an NoC framework and their count increases with the

number of cores in a CMP. This calls for power-aware design and power saving

schemes which target not only power efficient cores but also power efficient link

usage. Since, with the increase in the number of cores and with a similar increase

in the number of communication links, possibility of more links being inactive

increases dramatically, there is a need for a scalable power saving scheme which

can exploit this effectively. Although circuit level and localized techniques are

effective to an extent, they are not proactive, and therefore, lose out on important

power saving opportunities. In this chapter, we propose a completely proactive

scheme aimed at link power management.

We propose that execution of a multi-threaded application on an NoC based

CMP can be characterized into phases based on the similarity across inter-core

communication patterns. In this context, by communication pattern, we mean the

usage of communication links in the system during execution. In case of a shared

NUCA cache [100], which we consider, this usage of communication links is due to

104

shared cache accesses and corresponding coherence traffic. The present circuit-level

and localized schemes do not use this high level phase characterization information

in their link power management. We propose to use the aforementioned phase

characterization to implement a Markov based prediction scheme, which predicts

the link usage of the next interval. This prediction can be used by a proactive

link power management scheme to turn off predicted unused links and also to turn

on links that are predicted to be used. The key advantage of this scheme is that,

the links that are predicted to be used can be turned on ahead of time such that

the turn-on latency is hidden and the performance remains unaltered. We show

that this prediction based power management scheme can be very beneficial in

reducing link energy consumption. We also note that this power saving scheme is

remarkably scalable and can achieve increased power savings with increase in the

number of on-chip cores and communication links. One of the important goals of

our scheme, apart from minimizing energy consumption, is also to minimize the

adverse impact on performance. We later show that, our scheme is very accurate

in predicting link usage and hence has almost negligible performance impact.

Finally, we present the reduction in energy consumption, which is about 40%

for two of the applications. We also present the average energy savings we achieve,

which is about 23.5%.

7.2 Target Architecture

We consider a two-dimensional mesh based NoC that connects the nodes of a

CMP, although our approach is equally applicable to other NoC structures. In

this architecture, each node (core) has a private level 1 (L1) cache. On the other

hand, the level 2 (L2) cache is shared among all the cores and is banked with

each core containing an L2 bank. Figure 7.1 shows a 4×4 mesh structure we use to

convey our idea. Most of the time, unless otherwise mentioned, we consider this 16

core, 4×4 mesh based CMP with a shared L2 cache which is 16 banked with each

of the 16 cores containing an L2 bank. We use a static NUCA [100] scheme in this

work although our scheme can be similarly used with dynamic NUCA [100] as well.

We would like to emphasize that, in this chapter, by “inter-core communication”,

we always mean an access made by a core to some other core’s L2 bank.

105

Figure 7.1. A 4×4 mesh NoC based CMP. Note that this is a block diagram and not
the actual layout, and the routers are not shown for clarity.

7.3 Empirical Motivation

For any scheme aimed at link power savings to succeed, there should be consider-

able periods of execution during which some links are unused. If a multi-threaded

application executing on an NoC based CMP uses all of the communication links

during the entire period of execution, then any scheme aimed at saving link power

will have limited returns. Fortunately, that is not the case in real applications.

We profiled several parallel benchmarks from the SPEC OMP [58], NAS [81] and

Splash2 [101] benchmark suites running on a 4×4 mesh architecture described in

Figure 7.1. Profiling is done such that the execution is broken down into inter-

vals of 5000 instructions, and links used during these intervals are recorded at the

end of each such interval. We computed the percentage of such intervals during

which at least some of the links in the interconnect network are not in use. Fig-

ure 7.2(a) shows our profiling results. As can be observed clearly, during a large

percentage of intervals, at least some links are unused. Specifically, on average,

in only 10% of intervals, all communication links are used. This is due mainly

to the data allocation and the resulting cache bank access pattern exhibited by

a program execution as we show in the next section. We also observed that the

percentage increases slightly if the instruction interval is shortened. The number

of links that are unused in such intervals determine the “window of opportunity”,

which in other words, means the amount of power savings that can potentially be

extracted. The profiling results above serve as the key motivating factor for the

106

scheme we propose in the coming sections.

(a) (b)

Figure 7.2. Left - Percentage of intervals during which at least a few links are unused.
We see that, on average, in only about 10% of intervals, all links are used. Right - shows
the number of intervals, a new link usage pattern lasts (repeats) before it changes again
to a different usage pattern.

Another key factor which needs to be considered is the “repetitive phase behav-

ior” and hence possible “predictability” in parallel application’s link usage. During

execution, every time a new link usage pattern occurs, an important question is

how long does that link usage pattern last before it changes again. Figure 7.2(b)

shows the distribution of the number of times a link usage pattern repeats before

there is a change. On average, after 10% of link usage changes, link usage remains

the same for 21 to 50 intervals. After 3% of link usage changes, the usage pat-

tern remains the same for 11 to 20 intervals; after 6.6% changes, the same usage

remains for 6 to 10 intervals and after 19.1% changes, 2 to 5 times. Overall, on

average, whenever a new link usage pattern arises, on nearly 40% of occasions, it

remains for more than one interval before it changes again. It is important to note

that, we are talking about instruction intervals (intervals of 5000 instructions) here

and hence the link usage pattern repeating twice implies that the link usage re-

mains the same for 2×5000, which is for 10,000 instructions. This is an important

statistic which hints at repetitiveness and predictability in link usage patterns and

possible success of predictive schemes. As we show in the next section, this pre-

dictability and repetitiveness results from the data allocation and the cache bank

access pattern exhibited by the program execution.

107

7.4 Link Usage Based Phase Classification

Repetitive behavior is an execution characteristic of most applications. This repet-

itive behavior can be on the basis of similarity in the basic blocks touched or on

the basis of similarity in performance metrics such as cache misses [102]. We use

inter-core communication as the basis for characterizing the program execution

into phases. Therefore, we classify the execution intervals into phases based on

communication link usage. Each execution interval is an interval of 5000 instruc-

tions in our classification scheme. Since communication pattern is an application

characteristic, instruction interval can be customized for an individual application

by using profiling results. Although this interval length can be configured and

further tuned as mentioned above, we found that, an interval of 5000 instructions

works well for all applications we tested since it captures the repetitive behavior

in inter-core communication pattern well. The usage pattern of communication

links during execution depends on the data allocations and the data access pat-

terns exhibited by the application, which manifests itself as L2 bank accesses. This

means that, as the execution of a parallel application progresses, the L2 cache ac-

cesses and hence the communication link usage goes through phases. In this work,

we represent the communication link usage in the form of a vector called “Link

Vector”, and carry out our phase characterization using this novel concept.

7.4.1 Link Vector

We represent the state of all the links in our NoC in the form of a link vector. Each

bit in a link vector represents a link in the NoC and there is bit for every link.

Consequently, the number of bits in the link vector is the same as the number in

links in the on-chip network. Bit value 1 implies a used state, which means the link

is being exercised, and a bit value of 0 implies an unused state, which means the link

is idle. For example, in the case of NoC illustrated in Figure 7.1, the corresponding

link vector contains 24 bits with each bit representing the current state of a link

in the 4×4 mesh. The link vector of an execution interval is computed by ORing

the link usage of all the instructions executed during the instruction interval. This

essentially means that, even if a link is used only once during the entire interval, the

link vector of the interval denotes that link as being used during the interval. Hence

108

the motivation to have shorter instruction intervals when compared to considerably

longer instruction intervals used in other phase characterization works [102] [79].

7.4.2 Runtime Classification

A simple way to identify phases is by using an identifier called “phase id” and

a simple way to store phase information is by maintaining a “phase table”, with

each row containing the link vector which represents the phase and a uniquely

assigned phase identifier. A runtime phase classification scheme would thus involve

recording all the phases that have been previously encountered in the phase table

and (at the end of every new interval) comparing the interval’s link vector with the

link vectors of the previously-recorded phases (which essentially involves searching

the phase table). If there is a match, then that interval is classified as belonging

to that phase. If a match is not found, it is a new phase and is added to the

phase table with the link vector of the interval and a newly assigned unique phase

id. This process can be performed dynamically making it a runtime classification

scheme.

7.4.3 Classification Example

Figure 7.3(a) shows a snapshot of the link vectors (of intervals) during a period of

execution of the Wupwise benchmark from the SPEC OMP benchmark suite [58].

In this figure, “count”, present in each row, indicates the number of contiguous

intervals during which the same link vector repeats. The classification (mapping)

of intervals to phases which is based on the link vector similarity can be noted.

7.5 Markov Based Prediction

After classifying the intervals into phases as described in the last section, we use

a Markov based prediction mechanism to predict the probable link vector of the

next interval just before the end of the current interval. Markov based schemes

have been used in the past to implement BBV (basic block vector) based phase

prediction [103]. This prediction essentially provides the probable link usage infor-

mation of the next interval. This, in turn can be used to proactively turn off the

109

(a) (b)

Figure 7.3. reffig:linkvecs shows a snapshot of link vectors of intervals during a period
of execution of the Wupwise multi-threaded benchmark and the phases they map to.
Mapping is done based on link vector similarity. reffig:markov depicts a Markov based
transition graph and the corresponding prediction table. Prediction is made based on the
probabilities contained in the prediction table. The transition graph shows the transition
probabilities pictorially.

links which are predicted to be not used and pre-activate links that are predicted

to be used. This pre-activation is done just ahead of time so that the activation

latency is hidden and the link is ready for use when the next interval begins. If

the prediction turns out to be correct, we stand to save power. However, if the

prediction turns out to be wrong, there is a two-fold penalty. First, there is the

performance penalty in waiting for the correct links to power on which had been

turned off because of the misprediction. Secondly, there is also the power penalty

in turning off and then turning on additional links. Therefore, prediction accu-

racies are crucial to the effectiveness of this scheme. We describe two prediction

schemes based on the Markov model in the next two subsections.

7.5.1 Basic Markov Prediction

Markov model is a prediction model used frequently in various domains [104] [105].

A specification of the Markov model contains a set of states and a table, containing

the transition probabilities from each state to every other state and itself. With this

specification, Markov model can make a prediction about the next state, given the

present state. This prediction is based on the transition probabilities. The transi-

110

tion probabilities are continuously built and updated as and when state transitions

happen, and therefore, these transition probabilities, at any instant, are based on

the previous transition history. A basic Markov prediction involves considering the

present state and searching the transition probabilities from this present state to

every state and choosing the transition which has the maximum probability. In

our context, a state is nothing but the link vector of an interval. Figure 7.3(b)

illustrates an example of this scheme. It shows Markov based transition probabili-

ties in the form of a graph and a prediction table at the end of the execution chunk

shown in Figure 7.3(a). Each state in Figure 7.3(b) corresponds to a phase in the

phase table of Figure 7.3(a). The state S1 corresponds to phase 1, S2 to phase

2 and so on. As an example of Markov based prediction, if the current state is

S1, the next state is predicted to be S1 again. As another example, if the current

state is S2, then the next predicted state is S1. As a simple illustration of the way

transition probabilities are continuously updated, if suppose, S4 now transitions to

S2, the new transition probabilities from S4 to S1 and S4 to S4 still remain 0, but

the transition probability from S4 to S2 changes from 0 to 0.5 and, the transition

probability from S4 to S3 reduces from 1 to 0.5.

7.5.2 Markov Prediction Using a Threshold

This is similar to the basic Markov prediction scheme explained above with one

added quality. Instead of making a prediction based on the maximum probability

alone, we base the prediction on another parameter called the “threshold”. Specifi-

cally, we pick the maximum probability prediction and then, check if its probability

is greater than or equal to the pre-specified threshold parameter, and if so, we con-

tinue as before by choosing the maximum probability next state as our prediction.

However, if the maximum probability is less than the specified threshold value,

we do not make any prediction. This scheme is intended to weed out predictions

which are based on insufficient previous data or are just too close to call. Note

that employing a threshold value, in general, decreases the number of mispredic-

tions, as we show later in the results section. For example, in Figure 7.3(b), if the

present state is S3, the previous scheme would have predicted either state S1 or S4

to be the next state. In contrast, the threshold based scheme with a threshold of

111

0.67 makes no prediction (for the present state S3) since the maximum probability

entry in the row is less than the pre-specified threshold value. The threshold value

is a configurable parameter and can be set high if very little performance impact

is tolerated and can be set low if some performance impact can be tolerated with

a possibility of higher energy savings.

7.6 Evaluation

7.6.1 Setup

As mentioned previously, we use a 4×4 mesh NoC based 16-core CMP in our

experiments. We assume a traditional X-Y routing policy in the NoC. The shared

L2 cache is 16 banked SNUCA (static non-uniform cache access) architecture with

a bank in every node and each bank is 2MB in size. The link power model we

use is taken from [106], and in this model, when a link is turned on, it consumes

the same power irrespective of whether it is transmitting data or not due to the

link signaling methodology. When a link is turned off, we assume it does not

consume any power as in [106]. The power values in the table are obtained from

[107]. We use Simics [57] which is full-system simulator combined with a module

we implemented to simulate a 4×4 mesh. This setup is used to compute link usage,

support routing, and evaluate link power management.

7.6.2 Results

7.6.2.1 Basic Markov Prediction

Figure 7.4(a) shows the link vector prediction accuracy achieved by this scheme

for various applications. The main observation is the variation in the prediction

accuracies across applications. As can be clearly seen, most applications have

prediction accuracies of well over 95%, with Wupwise, Mgrid and CG having ac-

curacies over 99%. Compared to this, water-spatial has a slightly lower prediction

accuracy, probably due to the relatively shorter execution time, which in turn

results in smaller learning phases.

Figure 7.4(b) shows the performance penalties incurred for different applica-

112

(a) Prediction accuracy (b) Performance penalty (c) Energy savings

Figure 7.4. Prediction accuracy, performance penalty and the resulting energy savings
when the basic Markov prediction scheme is used.

tions, over the case where no link power management is employed. This metric is

a reflection of the prediction accuracy. The reason for the observed low penalties

is two-fold. The main reason is of course the very high link prediction accuracy.

Another reason is the fact that the links that are predicted to be used are turned

on ahead of time so that the turn-on latency is hidden and the links are up by the

time they are going to be used. The main triumph card of our scheme is the ex-

tremely low performance penalties which virtually leaves the original performance

unaltered. This is in contrast to other hardware schemes which in many cases incur

penalties as high as 12%, as mentioned in [108]. In contrast, our scheme results

in penalties below 0.5% in most cases except for water-spatial application, which

incurs a penalty of 1.5%. As we demonstrate later, the penalties can be further

reduced to being almost negligible.

Finally, Figure 7.4(c) shows the link energy savings achieved by this scheme and

as can be seen, Wupwise and CG achieve savings as high as 44% in communication

energy.

7.6.2.2 Markov Prediction Using a Threshold

Figure 7.5(a), Figure 7.5(b) and Figure 7.5(c) show the prediction accuracy, per-

formance penalty and the energy savings, respectively, resulting from this scheme

with a pre-specified threshold of 0.5. Later, we also present the results with a

different threshold value.

The key thing to note is the fact that the performance penalty is further reduced

as can be seen in Figure 7.5(b) and yet the energy savings remain almost the same

113

(a) Prediction accuracy (b) Performance penalty (c) Energy savings

Figure 7.5. Prediction accuracy, performance penalty and the resulting energy savings
in the case of Markov prediction using a threshold.

as in the basic Markov prediction scheme. Hence, incorporating a pre-specified

threshold results in further fine tuning of the performance penalties. This happens

since the threshold parameter filters out predictions which do not have a good

prediction history. Employing this scheme results in performance penalty of less

than 1% in all cases and less than 0.5% in all but one application.

Chapter 8
Conclusion and Future Work

Technology scaling has had a disparate impact. While, on-chip core counts are

increasing at a fast rate, the memory resources are scaling at a much slower rate,

and consequently, remain costly and precious. The memory hierarchy resources,

such as the on-chip cache and the off-chip memory, play a key role in determing

both the overall system throughput and the individual application performance.

In order to be used efficiently, the memory resources are generally shared across

multiple cores. As a result of being shared, multiple applications/threads can

contend and interfere with one another while accessing these resources. This inter-

application interference, if not handled aptly, can lead to extensive performance

degradation.

This disseration addressed the problem of shared memory resource contention in

emerging multicore systems. We studied the causes and different ways in which ap-

plications/threads interfere with one another in two key memory resources, namely,

the last-level cache and the off-chip memory. We then studied, in detail, the effects

of this interference on both system throughput and individual performance. Using

these studies, we presented multiple schemes to address the problem of interference

and manage the memory resource efficiently. Our approach managed the resource

in an application aware manner. Specifically, this involved considering the mem-

ory access characteristics of all contending applications and allocating/partitioning

the resources based on these application characteristics. We considered both in-

terference reduction and the memory demands of applications while partitioning a

resource. The memory resource management schemes presented in this disseration

115

have considered not just resource partitioning and allocation as solutions but also

application mapping as a way to reduce interference.

Finally, this dissertation showed that our proposed schemes can be very effective

in mitigating the negetive effects of interference on performance. Our proposed

schemes improved both system throughput and individual application performance

by mitigating inter-application interference.

As core counts continue to increase, emerging multicore systems will have

ever higher parallel computational capability. This will enable these emerging

systems to solve bigger problems of the future. However, the problem of inter-

application/thread interference can pose a significant impediment in future ap-

plications extracting the maximum possible parallel computation capability from

emergin multicore systems. This dissertation took a significant step in solving this

significant problem.

8.1 Future Work

Current application aware state-of-the-art memory scheduling schemes tackle spe-

cific problems in naive, application unaware scheduling policies. In an extensive

study of all the previous scheduling policies on a large number of workloads in

different memory intensity categories, we found that no memory scheduling policy

performs well across all the memory intensity categories. For instance, ATLAS [7]

and TCM [8] perform well when the memory intensity of the workload is less than

or equal to 50%. At higher memory intensities, the naive FRFCFS [22, 23] out-

performs both ATLAS and TCM. As part of the future work, we plan to explore a

customizable scheduling policy that adapts to the workload charcteristic, so that,

performance across all memory intensity categories is better than a fixed memory

scheduling policy.

Bibliography

[1] Awasthi, M., D. Nellans, K. Sudan, R. Balasubramonian, and
A. Davis (2010) “Handling the problems and opportunities posed by mul-
tiple on-chip memory controllers,” in PACT ’10: Proceedings of the 19th in-
ternational conference on Parallel architectures and compilation techniques.

[2] Ramanathan, R. (2006) “Intel Multi-Core Processors : Making the Move
to Quad-Core and Beyond,” in Intel White paper, Intel Corporation.

[3] Hetherington, R. (2005) in The UltraSparc T1 processor, SUN.

[4] Tilera TILE-Gx Processors Family, http://www.tilera.com/products
/TILE-Gx.php.

[5] “http://www.intel.com/p/en US/products/server/processor/xeon7000?
iid=servproc+body xeon7400subtitle,” .

[6] “http://www.dell.com/us/en/enterprise/servers/server-poweredge-
r900/pd.aspx?refid=server-poweredge-r900&cs=555&s=biz,” .

[7] Kim, Y., D. Han, O. Mutlu, and M. Harchol-Balter (2010) “AT-
LAS: A Scalable and High-Performance Scheduling Algorithm for Multiple
Memory Controllers,” in HPCA ’10: Proceedings of the 15th International
Symposium of High-Performance Computer Architecture.

[8] Kim, Y. et al. in MICRO ’10: Proceedings of the 43th International Sym-
posium on Microarchitecture.

[9] Muralidhara, S. et al. (2011) “Reducing Memory Interference in Multi-
Core Systems via Application-Aware Memory Channel Partitioning,” in CSE
Technical Report 11-006, Pennsylvania State University, June.

117

[10] Muralidhara, S., L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda (2011) “Reducing Memory Interference in Multi-Core Sys-
tems via Application-Aware Memory Channel Partitioning,” in Safari Tech-
nical Report TR-SAFARI-2011-002, Carnegie Mellon University, June.

[11] Muralidhara, S. et al. (2010) “Intra-application shared cache partition-
ing for multithreaded applications,” in PPoPP ’10: Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming.

[12] Muralidhara, S., M. Kandemir, and P. Raghavan (2010) “Intra-
application shared cache partitioning,” in IPDPS ’10: Proceedings of the
24th international symposium on parallel and distributed systems.

[13] Muralidhara, S. and M. Kandemir (2011) “Coordinated, Bandwidth
Constrained HW/SW prefetching Scheme for Multicores,” in EuroPar ’11:
Proceedings of the 17th International Euro-Par Conference.

[14] Muralidhara, S. et al. (2009) “Communication Based Proactive Link
Power Management,” in HiPEAC ’09: Proceedings of high performance em-
bedded architectures and compilers.

[15] Mattson, T. G. and G. Henry (1998) in An overview of the Intel
TFLOPS Supercomputer, Intel.

[16] (2006) “Cell BroadBand engine - white paper,” IBM.

[17] Kim, S., D. Chandra, and Y. Solihin (2004) “Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture,” in PACT ’04: Pro-
ceedings of the 13th International Conference on Parallel Architectures and
Compilation Techniques.

[18] Lin, J., Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan

(2008) “Gaining Insights into Multicore Cache Partitioning: Bridging the
Gap between Simulation and Real Systems,” in HPCA ’08: Proceeding of the
14th International Symposium of High Performance Computer Architecture.

[19] Chang, J. and G. S. Sohi (2007) “Cooperative cache partitioning for chip
multiprocessors,” in ICS ’07: Proceedings of the 21st annual international
conference on Supercomputing.

[20] Vinodh, C., B. Jacob, B. Davis, and T. Mudge (1999) “A Performance
Comparison of Contemporary DRAM Architectures,” .

[21] Mutlu, O. and T. Moscibroda (2007) “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” in MICRO ’07: Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture.

118

[22] Rixner, S., W. Dally, U. Kapasi, P. Mattson, and J. Owens (2000)
“Memory access scheduling,” in ISCA ’00: Proceedings of the 27th Interna-
tional Symposium on Computer Architecture.

[23] Zuravleff, W. and T. Robinson (1997) “Controller for a synchronous
DRAM that maximizes throughput by allowing memory requests and com-
mands to be issued out of order,” .

[24] Dally, W. and B. Towles (2003) Principles and Practices of Intercon-
nection Networks, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[25] Duato, J., S. Yalamanchili, and N. Lionel (2002) Interconnection Net-
works: An Engineering Approach, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[26] Galles, M. (1997) “Spider: A High-Speed Network Interconnect,” IEEE
Micro, 17(1), pp. 34–39.

[27] Moscibroda, T. and O. Mutlu (2007) “Memory performance attacks:
Denial of memory service in multi-core systems,” in SS ’07: Proceedings of
16th USENIX Security Symposium on USENIX Security Symposium.

[28] Mutlu, O. et al. (2008) “Parallelism-Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared DRAM Systems,” in ISCA ’08:
Proceedings of the 35th International Symposium on Computer Architecture.

[29] Nesbit, K. J., N. Aggarwal, J. Laudon, and J. E. Smith (2006) “Fair
Queuing Memory Systems,” in MICRO 39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture.

[30] Rafique, N., W. Lim, and M. Thottethodi (2007) “Effective Manage-
ment of DRAM Bandwidth in Multicore Processors,” in PACT ’07: Pro-
ceedings of the 16th International Conference on Parallel Architecture and
Compilation Techniques.

[31] Yuan, G. L. et al. (2009) “Complexity effective memory access scheduling
for many-core accelerator architectures,” in MICRO ’09: Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture.

[32] (2010), “The AMD processor roadmap for industry standard servers,” .

[33] Casazza, J. (2009) “First the Tick, Now the Tock: Next Generation Intel
Microarchitecture (Nehalem),” in Intel White Paper.

[34] SPEC CPU2006, http://www.spec.org/spec2006.

119

[35] Ebrahimi, E., C. J. Lee, O. Mutlu, and Y. N. Patt (2010) “Fairness
via source throttling: a configurable and high-performance fairness substrate
for multi-core memory systems,” in ASPLOS ’10: Proceedings of the fifteenth
edition of ASPLOS on Architectural support for programming languages and
operating systems.

[36] Das, R. et al. (2011) “Application-to-Core Mapping Policies to Reduce
Interference in On-Chip Networks,” in SAFARI Technical Report No. 2011-
001.

[37] Hur, I. and C. Lin (2004) “Adaptive History-Based Memory Schedulers,”
in MICRO ’04: Proceedings of the 37th annual IEEE/ACM International
Symposium on Microarchitecture.

[38] Natarajan, C., B. Christenson, and F. Briggs (2004) “A study of
performance impact of memory controller features in multi-processor server
environment,” in WMPI ’04: Proceedings of the 3rd workshop on Memory
performance issues: in conjunction with the 31st international symposium
on computer architecture.

[39] Zhuravlev, S., S. Blagodurov, and A. Fedorova (2010) “Addressing
shared resource contention in multicore processors via scheduling,” in AS-
PLOS ’10: Proceedings of the fifteenth edition of ASPLOS on Architectural
support for programming languages and operating systems.

[40] Snavely, A. and D. Tullsen (2000) “Symbiotic jobscheduling for a simul-
taneous mutlithreading processor,” SIGPLAN Not., 35, pp. 234–244.
URL http://doi.acm.org/10.1145/356989.357011

[41] Chandra, R., S. Devine, B. Verghese, A. Gupta, and M. Rosen-

blum (1994) “Scheduling and page migration for multiprocessor compute
servers,” in ASPLOS ’94: Proceedings of the sixth international conference
on Architectural support for programming languages and operating systems.

[42] Verghese, B., S. Devine, A. Gupta, and M. Rosenblum (1996) “Op-
erating system support for improving data locality on CC-NUMA compute
servers,” in ASPLOS ’96: Proceedings of the seventh international conference
on Architectural support for programming languages and operating systems.

[43] Sudan, K., N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubra-

monian, and A. Davis (2010) “Micro-pages: increasing DRAM efficiency
with locality-aware data placement,” in ASPLOS ’10: Proceedings of the
fifteenth-edition of ASPLOS on Architectural support for programming lan-
guages and operating systems.

120

[44] Lebeck, A., X. Fan, H. Zeng, and C. Ellis (2000) “Power aware page al-
location,” in ASPLOS ’00: Proceedings of the ninth international conference
on Architectural support for programming languages and operating systems.

[45] Phadke, S. and S. Narayanasamy (2011) “MLP aware heterogeneous
memory system,” in DATE ’11: Design, Automation and Test in Europe
Conference and Exhibition (DATE).

[46] Srikantaiah, S., M. Kandemir, and M. J. Irwin (2008) “Adaptive set
pinning: managing shared caches in chip multiprocessors,” .

[47] component, M. G. D. S. “MT47H128M8HQ-25.
http://download.micron.com/pdf/datasheets,” .
URL /dram/ddr2/1GbDDr2.pdf

[48] Wang, D., B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and
B. Jacob (2005) “Dramsim: a memory system simulator.” in SIGARCH
Comput. News. 33(4):100-107,.

[49] Vandierendonck, H. and A. Seznec (2011) “Fairness Metrics for Multi-
Threaded Processors,” IEEE Computer Architecture Letters, 10, pp. 4–7.

[50] Chandra, D., F. Guo, S. Kim, and Y. Solihin (2005) “Predicting
Inter-Thread Cache Contention on a Chip Multi-Processor Architecture,”
in HPCA ’05: Proceedings of the 11th International Symposium on High-
Performance Computer Architecture.

[51] Snavely, A. and D. M. Tullsen (2000) “Symbiotic jobscheduling for a
simultaneous multithreaded processor,” SIGARCH Comput. Archit. News,
28(5), pp. 234–244.

[52] Snavely, A., D. M. Tullsen, and G. Voelker (2002) “Symbiotic job-
scheduling with priorities for a simultaneous multithreading processor,” SIG-
METRICS Perform. Eval. Rev., 30(1), pp. 66–76.

[53] (2005) “Platform 2015: Intel Processor and Platform Evolution for the Next
Decade,” Intel White Paper, www.intel.com/go/platform2015.

[54] Song, F., S. Moore, and J. Dongarra (2007) “L2 Cache Modeling for
Scientific Applications on Chip Multi-Processors,” in ICPP ’07: Proceedings
of the 2007 International Conference on Parallel Processing.

[55] Xie, Y. and G. Loh (2008) “Dynamic classification of program memory
behaviors in CMPs,” CMP-MSI (in conjunction with ISCA).

121

[56] Jiang, Y., X. Shen, J. Chen, and R. Tripathi (2008) “Analysis and
approximation of optimal co-scheduling on chip multiprocessors,” in PACT
’08: Proceedings of the 17th international conference on Parallel architectures
and compilation techniques.

[57] Magnusson, P. S. and et al. (2002) “Simics : A full system simulation
platform,” in Computer, 35(2):50-58.

[58] “http://www.spec.org/omp/,” .

[59] Cascaval, C. and D. A. Padua (2003) “Estimating cache misses and
locality using stack distances,” in ICS ’03: Proceedings of the 17th annual
international conference on Supercomputing.

[60] Almasi, G., G. A. Asi, C. Cascaval, and D. A. Padua (2001), “Cal-
culating Stack Distances Efficiently,” .

[61] Zhang, M. and K. Asanovic (2005) “Victim Replication: Maximizing
Capacity while Hiding Wire Delay in Tiled Chip Multiprocessors,” in ISCA
’05: Proceedings of the 32nd annual international symposium on Computer
Architecture.

[62] Chang, J. and G. S. Sohi (2006) “Cooperative Caching for Chip Mul-
tiprocessors,” in ISCA ’06: Proceedings of the 33rd annual international
symposium on Computer Architecture.

[63] Suh, G. E., S. Devadas, and L. Rudolph (2002) “A New Memory Mon-
itoring Scheme for Memory-Aware Scheduling and Partitioning,” in HPCA
’02: Proceedings of the 8th International Symposium on High-Performance
Computer Architecture.

[64] Suh, G. E., L. Rudolph, and S. Devadas (2001) “Dynamic Cache Par-
titioning for Simultaneous Multithreading Systems,” in IASTED ’01: Pro-
ceedings of the IASTED International Conference on Parallel and Distributed
Computing and Systems.

[65] Wu, C.-J. and M. Martonosi (2011) “Characterization and dynamic mit-
igation of intra-application cache interference,” in ISPASS ’11: International
Symposium on Performance Analysis of Systems and Software.

[66] Fedorova, A. (2005) “CASC: A Cache-Aware Scheduler For Multithreaded
Chip Multiprocessors.” in Sun Technical Report.

[67] Jette, M. A. (1997) “Performance characteristics of gang scheduling in
multiprogrammed environments,” in Supercomputing ’97: Proceedings of the
1997 ACM/IEEE conference on Supercomputing.

122

[68] Devuyst, M., R. Kumar, and D. M. Tullsen (2006) “Exploiting un-
balanced thread scheduling for energy and performance on a CMP of SMT
processors,” in IPDPS ’06: In 20th International Parallel and Distributed
Processing Symposium.

[69] Fedorova, A., M. Seltzer, and M. D. Smith (2007) “Improving Per-
formance Isolation on Chip Multiprocessors via an Operating System Sched-
uler,” in PACT ’07: Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques.

[70] Azimi, R., D. K. Tam, L. Soares, and M. Stumm (2009) “Enhancing
operating system support for multicore processors by using hardware perfor-
mance monitoring,” SIGOPS Oper. Syst. Rev., 43(2), pp. 56–65.

[71] Tam, D., R. Azimi, and M. Stumm (2007) “Thread clustering: sharing-
aware scheduling on SMP-CMP-SMT multiprocessors,” in EuroSys ’07: Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2007.

[72] Chen, S., P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki,
G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry,
and C. Wilkerson (2007) “Scheduling threads for constructive cache shar-
ing on CMPs,” in SPAA ’07: Proceedings of the nineteenth annual ACM
symposium on Parallel algorithms and architectures.

[73] Zhang, E. Z., Y. Jiang, and X. Shen (2010) “Does cache sharing on
modern CMP matter to the performance of contemporary multithreaded
programs?” in PPoPP ’10: Proceedings of the 15th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming.

[74] Beyls, K. and E. H. D’Hollander (2001) “Reuse Distance as a Metric for
Cache Behavior,” in In Proceedings of the IASTED Conference on Parallel
and Distributed Computing and Systems, pp. 617–662.

[75] Schuff, D., B. Parsons, and V. Pai (2009) “Multicore aware reuse dis-
tance analysis,” in Purdue Technical Report.

[76] Suh, G. E., L. Rudolph, and S. Devadas (2004) “Dynamic Partitioning
of Shared Cache Memory,” J. Supercomput., 28(1), pp. 7–26.

[77] Jaleel, A., W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely,

Jr., and J. Emer (2008) “Adaptive insertion policies for managing shared
caches,” in PACT ’08: Proceedings of the 17th international conference on
Parallel architectures and compilation techniques.

123

[78] Qureshi, M. K., A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer

(2007) “Adaptive insertion policies for high performance caching,” in ISCA
’07: Proceedings of the 34th annual international symposium on Computer
architecture.

[79] Sherwood, T., E. Perelman, G. Hamerly, S. Sair, and B. Calder

(2003) “Discovering and Exploiting Program Phases,” IEEE Micro, 23(6),
pp. 84–93.

[80] Watson, D. F. (1994) “Contouring: A guide to the analysis and display of
spatial data,” .

[81] “http://www.nas.nasa.gov/Resources/Software/npb.html,” .

[82] Baer, J.-L. and T.-F. Chen (1991) “An effective on-chip preloading
scheme to reduce data access penalty,” in Supercomputing ’91: Proceedings
of the 1991 ACM/IEEE conference on Supercomputing.

[83] Charney, M. J. and T. R. Puzak (1997) “Profetching and memory sys-
tem behavior of the SPEC95 benchmark suite,” IBM J. Res. Dev., 41(3),
pp. 265–286.

[84] Dahlgren, F., M. Dubois, and P. Stenstrom (1993) “Fixed and Adap-
tive Sequential Prefetching in Shared Memory Multiprocessors,” in ICPP
’93: Proceedings of the International Conference on Parallel Processing.

[85] Dahlgren, F., M. Dubois, and P. Stenström (1995) “Sequential Hard-
ware Prefetching in Shared-Memory Multiprocessors,” IEEE Trans. Parallel
Distrib. Syst., 6(7), pp. 733–746.

[86] Mowry, T. C., M. S. Lam, and A. Gupta (1992) “Design and evaluation
of a compiler algorithm for prefetching,” in ASPLOS ’92: Proceedings of
the fifth international conference on Architectural support for programming
languages and operating systems.

[87] Mowry, T. and A. Gupta (1991) “Tolerating Latency Through Software-
Controlled Prefetching in Shared-Memory Multiprocessors,” Journal of Par-
allel and Distributed Computing, 12, pp. 87–106.

[88] Srinath, S., O. Mutlu, H. Kim, and Y. N. Patt (2007) “Feedback Di-
rected Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers,” in HPCA ’07: Proceedings of the IEEE 13th Inter-
national Symposium on High Performance Computer Architecture.

124

[89] Ebrahimi, E., O. Mutlu, C. J. Lee, and Y. N. Patt (2009) “Coor-
dinated control of multiple prefetchers in multi-core systems,” in MICRO
’09: Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture.

[90] Tendler, J. M., J. S. Dodson, J. S. F. Jr., H. Le, and B. Sinharoy

(2002) “POWER4 system microarchitecture,” IBM Journal of Research and
Development, 46(1), pp. 5–26.

[91] Palacharla, S. and R. E. Kessler (1994) “Evaluating stream buffers as
a secondary cache replacement,” in ISCA ’94: Proceedings of the 21st annual
international symposium on Computer architecture.

[92] Vanderwiel, S. P. and D. J. Lilja (2000) “Data prefetch mechanisms,”
ACM Comput. Surv., 32, pp. 174–199.
URL http://doi.acm.org/10.1145/358923.358939

[93] Micron: 1GB DDR2 SDRAM component: MT47H128M8HQ-25.,
http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDr2.pdf.

[94] Lee, C. J., O. Mutlu, V. Narasiman, and Y. N. Patt (2008)
“Prefetch-Aware DRAM Controllers,” in MICRO ’08: Proceedings of the
41st IEEE/ACM International Symposium on Microarchitecture.

[95] Jouppi, N. P. (1990) “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in ISCA
’90: Proceedings of the 17th annual international symposium on Computer
Architecture.

[96] Hur, I. and C. Lin (2006) “Memory Prefetching Using Adaptive Stream
Detection,” in MICRO ’06: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture.

[97] Ipek, E., O. Mutlu, J. F. Mart́ınez, and R. Caruana (2008) “Self-
Optimizing Memory Controllers: A Reinforcement Learning Approach,” in
ISCA ’08: Proceedings of the 35th International Symposium on Computer
Architecture.

[98] Liu, F., X. Jian, and Y. Solihin (2010) “Understanding how off-chip
memory bandwidth partitioning in chip multiprocessors affects system per-
formance,” in HPCA ’10: Proceedings of the 15th International Symposium
of High-Performance Computer Architecture.

[99] Ebrahimi, E., O. Mutlu, and Y. N. Patt (2009) “Techniques for
bandwidth-efficient prefetching of linked data structures in hybrid prefetch-
ing systems.” in HPCA ’09: Proceedings of the 14th International Symposium
of High-Performance Computer Architecture.

125

[100] Kim, C., D. Burger, and S. W. Keckler (2002) “An adaptive,
non-uniform cache structure for wire-delay dominated on-chip caches,”
SIGARCH Comput. Archit. News, 30(5), pp. 211–222.

[101] et al., S. C. W. (1995) “The SPLASH-2 programs: characterization and
methodological considerations,” in ISCA ’95: Proceedings of the 22nd annual
international symposium on Computer architecture.

[102] Isci, C. and M. Martonosi (2006) “Phase characterization for power:
evaluating control-flow-based and event-counter-based techniques,” High-
Performance Computer Architecture, International Symposium on, 0, pp.
121–132.

[103] Lau, J., S. Schoenmackers, and B. Calder (2005) “Transition Phase
Classification and Prediction,” in HPCA ’05: Proceedings of the 11th Inter-
national Symposium on High-Performance Computer Architecture.

[104] Latouche, G. and V. Ramaswami “Introduction to matrix analytic meth-
ods in stochastic modeling,” ASA SIAM, 1999, PH Distributions.

[105] Joseph, D. and D. Grunwald (1997) “Prefetching using Markov predic-
tors,” in ISCA ’97: Proceedings of the 24th annual international symposium
on Computer architecture.

[106] Soteriou, V. and L.-S. Peh (2004) “Design-Space Exploration of Power-
Aware On/Off Interconnection Networks,” in ICCD ’04: Proceedings of the
IEEE International Conference on Computer Design.

[107] Chen, X. and L.-S. Peh (2003) “Leakage power modeling and optimiza-
tion in interconnection networks,” in ISLPED ’03: Proceedings of the inter-
national symposium on Low power electronics and design.

[108] Li, F., G. Chen, M. Kandemir, and M. J. Irwin (2005) “Compiler-
directed proactive power management for networks,” in CASES ’05: Pro-
ceedings of the 2005 international conference on Compilers, architectures
and synthesis for embedded systems.

Vita

Sai Prashanth Muralidhara

Sai Prashanth Muralidhara joined the PhD program in the department of Com-
puter Science and Engineering at Penn State University in August 2006. He re-
ceived his B.S. (2004) in computer science from B.M.S. College of Engineering,
Bangalore. During his doctoral work, he worked on several research problems per-
taining to on-chip caches and off-chip memory. He has published his research in
several reputed conferences such as PPoPP, IPDPS, MICRO, HiPEAC, EuroPar
and PACT among others.

