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Abstract

Analysis of variance is a corner stone of statistical applications. The classical asymptotic
results were built either under the normality and homoscedasticity assumptions, or on
cases when the numbers of factor levels are all fixed. However, the past decade has
witnessed the generation of large data sets which involve a multitude of factor levels
while the number of replications per factor combination is very small. The asymptotic
theory is considerably more complicated when testing against those high-dimensional
alternatives.

In the first part of this thesis, we consider the problem of testing for the sub-class
effect in the unbalanced two-fold nested models with a large number of sub-classes. It
is shown that the classical F-statistic is very sensitive to departures from homoscedas-
ticity, even in balanced designs. We propose new testing procedures to accommodate
heteroscedasticity, and the asymptotic distributions of the proposed test statistics, both
under the null and local alternative hypotheses, are established. Simulation studies
examine the finite sample performance of the proposed statistics and the competing
classical F-test. Two real data sets are analyzed and ramifications of these results to the
hypothesis of no covariate effect in the analysis of covariance are discussed, which leads
to a more sophisticated approach described in the second part of the thesis. Testing for

the class effect is also investigated.
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In the second part of this thesis, we introduce a new approach for testing the covariate
effect in the context of the fully nonparametric ANCOVA model which capitalizes on the
connection to the testing problems in nested designs. The basic idea behind the proposed
method is to think of each distinct covariate value as a level of a sub-class nested in each
group/class. A projection-based tool is developed to obtain a new class of quadratic
forms, whose asymptotic behavior is then studied to establish the limiting distributions
of the proposed test statistic under the null hypothesis and local alternatives. Simulation
studies show that this new method, compared with existing alternatives, has better power
properties and achieves the nominal level under violations of the classical assumptions.
Three data sets are analyzed, and asymptotic results concerning testing for the covariate-

adjusted group effect are also included.
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Chapter

Introduction

1.1 Heteroscedastic Unbalanced Two-fold Nested Model

The classical ANOVA model assumes that the error terms are i.i.d. normal, in which case
F-statistics have certain optimality properties (cf. Arnold (1981), Chapter 7). Arnold
(1980) showed that the classical F-test is robust to the normality assumption if the
sample sizes are large while the number of factor levels or groups is small. The past
decade has witnessed the generation of large data sets, involving a multitude of factor
levels, in several areas of scientific investigation. For example, in agricultural trials it is
not uncommon to see a large number of treatments with a small number of replications
per treatment. Another application arises in certain type of microarray data in which
the nested factor corresponds to a large number of genes. As a consequence, testing in
designs with a large number of factor levels has attracted considerable attention.

The asymptotic theory of inference is considerably more complicated when the num-
ber of parameters increases with the sample sizes. The seminal paper by Neyman and
Scott (1948) highlights these difficulties. See also Andersen (1970), Portnoy (1985),
Fan and Lin (1998), Simons and Yao (1999), Li et al. (2003) and Hall et al. (2005) for
some representative publications. Li et al. (2003) distinguish two types of frameworks
for the development of asymptotic theory for high-dimensional data: the Neyman-Scott
framework, where the sample sizes remain fixed while the number of parameters tend to

infinity, and the rectangular array framework, where both sample sizes and number of



parameters tend to infinity. The asymptotic theory in the present paper falls under the
Neyman-Scott framework.

Testing in factorial designs with a large number of factor levels appears to have been
initiated by Brownie and Boos (1994) who, however, used a specialized technique applica-
ble only to a few designs with independent data. More general approaches for finding the
asymptotic distribution of F-statistics, which are of the form F = MST/MSE, were
developed in Akritas and Arnold (2000), Bathke (2002), and Akritas and Papadatos
(2004). Wang and Akritas (2006) applied the Akritas and Papadatos (2004) approach
to two-way designs, Gupta et al. (2006) consider designs with multivariate data, while
Wang and Akritas (2004) and Bathke and Harrar (2008) consider methods based on
ranks. When the degrees of freedom of both the numerator and the denominator of
F-statistics tend to infinity, inference is based on the asymptotic distribution of F' — 1
(with some scaling that depends on the number of factor levels). In all cases known to
the authors, the asymptotic distribution of F'—1 is normal and the test procedure rejects
the null hypothesis at level @ when F' — 1 is larger than the 100(1 — «)th percentile of
its limiting distribution. This is because under the alternative E(MST) > E(MSE).

In this thesis we study the two-fold nested design. The motivating application comes
from the Mussel Watch Project of the National Oceanic and Atmospheric Administration
(NOAA), which monitors chemical and biological contaminant trends in sediment and
bivalve tissue collected from hundreds of EDAs (Estuarine Drainage Areas) in the West
Coast, the East Coast (North, Middle and South Atlantic), the Gulf of Mexico, and the
Great Lakes. Since each coastal region has its own EDAs, results of crossed designs are
not appropriate for studying differences among the different EDAs. In this data set, the
number of EDAs within each coastal region is relatively large, ranging from 30-60, while
the cell sizes within each sub-class is small. While normality and homoscedasticity are
difficult to ascertain with small sample sizes, Figure 2.1 suggests that these assumptions
are violated. Thus, there is need for an asymptotic theory that accommodates these
features.

It is known that the classical, normality-based F-test is sensitive to departures from

the homoscedasticity assumption, especially when the design is unbalanced. For exam-



ple, based on 10,000 simulated replications from an unbalanced, between-classes het-
eroscedastic nested design (i.e. homoscedasticity within each class, but not between
classes), the classical F-test achieved « level of 0.57 at nominal o = 0.05, as reported in
Table3.2. This simulation study used r = 5 classes, (¢1, ¢2, 3, ¢4, ¢5) = (2, 4, 5, 6, 8)
sub-classes and (2, 2), (1,2,2,2), (1,5,1,3,1), (12,8,13,12,10,11), (5,2,1,3,3,1,2,2) cell
sample sizes in each sub-class. For the same setting, the proposed unweighted (between-
classes) heteroscedastic test procedure (based on Theorem 2.2.2) achieved an « level of
0.115. For the same setting but with larger number of sub-classes ((¢1, c2, ¢3, ¢4, ¢5) =
(50, 75, 100, 125, 150)), the proposed procedure achieved an « level of 0.067, while the
F-test rejected 100% of the time. In fact, for the nested design we consider, even under
homoscedasticity, the classical F-test is not asymptotically valid in the unbalanced de-
sign if the cell sizes are small, unless the model is normal. More details are discussed in

Chapters 2-4.

1.2 Fully Nonparametric Analysis of Covariance and Fully

Nonparametric Hypotheses

For a k-group (one-way) analysis of covariance (ANCOVA) model, let (X;;,Y;;) denote
the paired covariate and the response variables for the j-th observation in the i-th group,
i=1,---,k, j=1,---,n;. The classical ANCOVA model specifies that, conditionally

on Xij =x,
Y;j:,u+06i+5i T + €45, (121)

where e;; are independent and identically distributed normal errors. Without the nor-
mality assumption, model (1.2.1) is known as the semiparametric ANCOVA.

In this thesis, we consider the nonparametric ANCOVA model of Akritas et al. (2000),
which assumes only that, conditionally on X;; = x, the distribution of ¥;; depends on ¢

and z:



As pointed out in their paper, this model does not place any assumption on normality,
homoscedasticity, linearity and additivity, so they called it “completely nonparametric”
or “fully nonparametric” as used in Akritas and Arnold (1994) when they first introduced
this concept. Also note that this model allows ordinal categorical covariates and its model
interpretation is scale-free.

Next, choose distribution functions G;(z), i = 1,--- , k, and define

FO () = [ Fuly) dGi(o) (1.2.3)

If X;;’s are random, one can think of G; as the distribution function of X;; in group 4,
and FZG’ as the marginal distribution function of Y;; in the same group i. Note that the
definition in (1.2.3) uses the individual G;(x), instead of the overall G(z), so it allows
the covariate to have different distributions and different supports for different groups.

Under this setting, there are two hypotheses of interest:

No covariate-adjusted group effect <— Hj : F’ZG’ does not depend on i; (1.2.4)
No covariate effect <= Hj: Fj,; does not depend on z.  (1.2.5)

Note that our null hypothesis of no covariate-adjusted group effect, as defined in (1.2.4),
is different from the one used by Akritas et al. (2000):

Hy : F;.(y) does not depend on i, where Fj.(y) = /Fw(y) dG(x). (1.2.6)
The distribution function used in F;.(y) is the overall G(z). Compare with F;.(y), we

believe that FZG’ (y) has at least two advantages:

1. FZGZ (y) is a more natural way to define the average effect of the covariate variable
on the response variable, because it allows the covariate X;; to have different ranges
in different groups, while F;.(y) forces the covariate to have the same range, which

may cause the issue of missing values in applications.

2. In many cases, it makes more sense to compare FzGZ (y), instead of Fj.(y) when



testing the covariate-adjusted group effect. Take a simple medical study as an
example. Suppose that the response is the reduction in blood pressure, while the
covariate is the baseline measurement. Suppose that the group effect of interest
is ethnicity. Since different races represent different populations, it might not be
reasonable to assume that the covariate variables for different ethnicity groups
come from a common distribution G(x). As a consequence, the definition of Fj.(y)
itself may be questionable under those cases and testing hypotheses based on it

may also make no sense.

Conditionally on X;; = z, we can further decompose F;, as follows:

where
k n; k
DD Aily) = nidi(y) =0,V / Dj(y; ) dGi(x) = 0,Vi, Vy.
i=1 j=1 i=1

Thus, letting N =, n;,

Di(y;x) = Fi(y) — Ai(y) — M(y).

In this unique decomposition, the functions M(y), A;(y) and D;(y;z) can be thought
of as the overall effect, the covariate-adjusted group effect of group 4, and the covariate
effect with the value z, respectively. The null hypothesis (1.2.4) of no covariate-adjusted

group effect can then be equivalently rewritten as

Hy(A): Ai(y) =0 for all i and all y, (1.2.8)



while the null hypothesis (1.2.5) of no covariate effect can be restated as

Ho(D): Di(y;xz) =0 for all 4, all z and all . (1.2.9)

Since these hypotheses are clearly invariant under monotone transformations of the re-
sponse and do not depend on any modeling assumptions, they are “fully nonparametric”
as well. For the importance of test procedures being invariant under monotone trans-
formations, see Patel and Hoel (1973), Akritas and Arnold (1994), Akritas et al. (1997)

and references therein.

1.3 Connections between Two Models

The idea for constructing test statistics for the null hypotheses in the fully nonparametric
ANCOVA model, (1.2.8) and (1.2.9), is inspired by the similarity of model (1.2.7) to the
model for the two-fold nested design, with the group variable corresponding to the class
factor and the covariate variable corresponding to the sub-class factor. What makes
the connection between these two models feasible is that in the context of the fully
nonparametric ANCOVA model, the covariate effect is in fact not modeled. In spite
of this conceptual similarity, however, the classical asymptotic test procedures in the
two-fold nested model were driven by a large number of replications on fixed numbers of
levels of the class and sub-class factors, while the classical ANCOVA built its standard
asymptotics with a large number of observations per group, which makes the number
of levels of the ‘covariate factor’ tend to infinity. Therefore, the asymptotic results in
the classical two-fold nested model are not directly applicable to the classical ANCOVA
model.

To construct a link between these two models using the conceptual similarity stated
above, we first consider the asymptotic test procedures using the Neyman-Scott frame-
work according to which the number of sub-class levels tends to infinity with the number
of replications being at least two, but otherwise allowed (but not required) to remain
fixed. Note that, however, there is typically only one observation per covariate value, if

assuming no ties on the covariate. One simple way to solve this ‘sparseness’ issue, due



to the continuity of the covariate, is to discretise the covariate factor. More specifically,
one can simply partition the paired observations (Xj;;, Yj;) in the same group i into
n; /w non-overlapping windows, according to their sorted covariate values, so that there
are only a small number w of observations per window. Those artificially-created non-
overlapping small windows serve as the sub-classes in the two-fold nested model setting,
and the asymptotic results derived for the two-fold nested model with a large number
of sub-classes (and a small number of observations in each sub-class) can then apply
directly. We call this “non-overlapping windows approach”, and a simple application of
this approach can be found in Section 2.4.2.

Another way to remedy this sparseness issue, or the issue of lack of replications on
each of the covariate values, is to consider a window W;; around each X;; consisting of
the w nearest covariate values from group i. That is, we utilize smoothness assumptions
to augment the observed data in ANCOVA to construct a large number of overlapping
local windows in order to form an artificial two-fold nested model with each sub-class
having w replications. Under the assumption that the conditional distribution Fj; of the
response at a given covariate value x changes smoothly with z, simultaneously taking
into account the responses having covariate values close to the given z-value can magnify
the information available for Fj,, and hence enlarge the power of the corresponding test
procedures. This approach is called “overlapping windows approach” in this thesis, and
more details about how to implement this approach can be found in Chapter 5. Since the
overlapping windows in this artificial two-fold nested model have common observations
with other windows close by, the asymptotic results obtained in Chapters 24 do not
apply. A new set of asymptotic approximation techniques using the projection principle
is then introduced in Section 5.2 to accommodate such kind of augmented dependence
in our design. It can be shown that the “overlapping windows approach” is indeed more
powerful than the naive “non-overlapping windows approach” (see Section 5.3.2 for some

numerical evidence).



1.4 Thesis Outline

The rest of this thesis is organized as follows. The first part comprises three chapters. In
Chapter 2, we consider the problem of testing for the sub-class effect in the unbalanced
two-fold nested model, when the number of of sub-classes is large while the number
of classes and the number of observations per sub-class remain fixed. The designs un-
der homoscedasticity and under heteroscedasticity are all investigated. Appropriate test
procedures are developed for different designs, and the asymptotic distributions of the
proposed test statistics, both under the null hypothesis and local alternatives, are estab-
lished. Simulation studies examine the finite sample performance of the proposed test
procedures and the competing classical F-test. Two real data sets are analyzed: one is
from a project monitoring the chemical contaminants in the coastal areas, and the other
is used to illustrate ramifications of these results to the hypothesis of no covariate effect
in the nonparametric analysis of covariance.

In Chapter 3, the extension of the results in Chapter 2 to the case when the number
of classes and the number of sub-classes are both large is introduced. We derive the
asymptotic theories of the proposed test procedures both under the null hypothesis and
local alternatives, and examine their performances using some simulation studies. An
application of this methodology for testing the lack-of-fit in regression is also discussed.

In Chapter 4, testing for the class effect in the two-fold nested model with a large
number of sub-classes is considered. Asymptotic results are presented for the hypotheses
with arbitrary weights on sub-classes. Both homoscedastic designs and heteroscedastic
designs are included.

In the second part of this thesis, which consists of two chapters, we investigate fully
nonparametric analysis of covariance, as introduced in Section 1.2. In Chapter 5, we
establish a new methodology to test for the covariate effect by utilizing the connection
to testing in the nested models. Although the proposed test statistic has a form similar
to those for testing the sub-class effect in nested models when the number of sub-classes
is large, the asymptotic derivations of its limiting distributions under the null hypotheses
and local alternatives involves a different class of quadratic forms, and hence needs a

new asymptotic tool based on the projection principle which we introduce. Simulation



studies are performed to demonstrate the proposed method and compare its properties
with existing alternatives. Three real data sets are analyzed.

In Chapter 6, we further consider testing for the covariate-adjusted group effect in the
fully nonparametric analysis of covariance model. Asymptotic results for the proposed
test statistic are given and proved.

Finally, we complete this thesis with a brief summary of our work and some possible

future research topics in Chapter 77.



Chapter

Testing for the Sub-class Effect in
Two-fold Nested Model when the

number of sub-classes is large

The purpose of the present chapter is to provide valid test procedures for the sub-class
effect which can perform well in unbalanced and/or heteroscedastic designs when the
number of sub-classes is large. The proposed test statistics are of the general form
MST — MSE, but the MSE is chosen so that, under the null hypothesis, E(MSE) =
E(MST). Note that this last relation does not hold under heteroscedasticity for the
classical definition M SE. The basic asymptotic technique we apply is based on finding
the joint limiting distribution of (M ST, MSFE) through a suitable representation by a
simpler, asymptotically equivalent, random vector.

The rest of this chapter is organized as follows. Section 2.1 describes the statistical
model for the unbalanced heteroscedastic two-fold nested design, and reviews the classical
F-test procedure for the hypothesis of no sub-class effect. In Section 2.2.1 we present the
asymptotic theory for the classical F-statistic in the homoscedastic case. In Section 2.2.2
we propose two test statistics (one weighted and one unweighted) for the between-classes
heteroscedastic model, and present their asymptotic distributions. In Section 2.2.3 we

propose an unweighted test statistic for the model with general heteroscedasticity, and
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present its asymptotic theory. Simulation results are presented in Section 2.3, while the
lead concentration data set from the Mussel Watch Project is analyzed in Section 2.4.1.
A ramification of these results for analysis of covariance is illustrated in Section 2.4.2
using the Acid Rain data from the National Atmospheric Deposition Program (NADP).

Finally, proofs of the results presented in Section 2.2 are provided in Section 2.5.

2.1 The Statistical Model and the Test Statistic

In the general unbalanced two-fold nested model, we observe
Yijk = pij + 045 - €ijie,  i=1,---,1r; j=1,---,¢c; k=1 ,ny, (2.1.1)
where the p;; and o;; are bounded and e;j;, are independent with
E(eijr) =0, Var(ejr) = 1. (2.1.2)

Note that the general model (2.1.1), (2.1.2) does not assume that the errors e;j, are
normally, or even identically, distributed. Thus, ordinal discrete data are included in

this formulation. Let

T Cq roC T
C = E Ci, n;. = E g, NC = E E Ni; = E n;..
=1 Jj=1 i=1

i=1 j=1
The means p;; are typically decomposed as

pij = p =+ o + 0y, (2.1.3)

where we assume that

ZT:HZ‘.O[Z‘ =0 and inwéw = O, Vi.
i=1 j=1
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In this chapter, we are mainly interested in testing Hp: 6;; = 0 (no sub-class effect). Let

> 12; 1 i (Y - Y.)?
C—r ’

Zgzl 25;1 ZZI(Y;JIC - 57@']‘-)2

MS) =

(2.1.4)

MSE =

(2.1.5)

where Yw and Y;.. are the corresponding unweighted means of Yijx within each sub-class

and within each class, i.e.

1 Tij 1 ¢ Mg 1 Ci

}/’L] = E Y;]ka Yi.=— E E Y;,jk = — E nl]}/;j
g ng. “— — ng. =
k=1 J=1 k=1 j=1

Then, the usual F-test statistic for testing Hy: d;; = 0 is

M S5
o _
Fo = 1rep (2.1.6)

Under the normal homoscedastic model, i.e. if e;;;, are assumed to be iid N(0,1) and all

0;j = 0, we have that
F(o; ~ Fo_y No—c, under Hy : 6;; = 0. (2.1.7)

In what follows we examine the robustness of this procedure to departures from the
assumptions of normality and homoscedasticity as the number of sub-classes gets large.

In all that follows we will use the notation

B 1 & n;.
’I’lwl:—zn”:—l7 7161_—27
(& — & = Nij
Ji
All results, except those of Section 5, are derived under the following conditions on the
sample sizes: There exist numbers \; € (0,1), 7; > 1, and n; € (0,00) such that as
min (¢;) — oo,

ve (% a ’\"> =0, Ve (e, — 1) = 0, nj, — 1. (2.1.8)
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Finally, we define
,
n = Z il (2.1.9)
i=1

2.2 Main Results

2.2.1 Homoscedastic Designs

In this subsection we consider the unbalanced two-fold nested design with homoscedastic
errors and derive the asymptotic distribution of F2, defined in (2.1.6). As a corollary of
Theorem 2.2.1 below, we obtain that the usual, normal-based, F-test procedure is not

robust to departures from the normality assumption even under homoscedasticity.

Theorem 2.2.1. Consider the model and assumptions given in (2.1.1) with ;5 = o,
(2.1.2), (2.1.8) and the decomposition of the means given in (2.1.3). In addition assume
that

E(e?jk) =0, E(efjk) = ki, and Elejji|*t* < 0o for some € > 0.

Then, under alternatives d;; which satisfy
1 & 02
N2 . Znijﬁ —0; | =0, for some numbers 6; € (0,00),
T .
7=1

as min (¢;) — oo while r, n;; stay fized,
Ve (Fg (14 9)) 4N, %), (2.2.1)

where \;, i, n, and 0 are as gwen in (2.1.8) and (2.1.9), 0 = >"._, \ib;, and
2(1 +6)?
n—1

4 20 + 1) (An; — 1) + (20 + 1)(7; — 7)) + 6%(A; + n; — 2
+;[(m—3)>\i( +7n)(nn; —1) + ( (:—)1()2 ) +607(ni + )

Y = 2440+
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Under the null hypothesis Hy : 6;; = 0, which results in 0 = 0, we then have

(72n; — 27 + nZ)D  (229)

2 " [ (ki — 3)A
Fo-1) SN (0,24 = 1
\/5( C — (O, + 71 + ; |:
Corollary 2.2.1. Under the model and assumptions of Theorem 2.2.1, the classical,
normality-based, F-test procedure for the hypothesis Hy : 6;5 = 0, shown in (2.1.7), is

not asymptotically valid when the model is not normal, unless n;; = n.

It can be shown that if normality holds, the test procedure implied by Theorem 2.2.1

is asymptotically equivalent to the classical F-test procedure under Hy : 6;; = 0.

2.2.2 Between-classes Heteroscedastic Designs
Two possible statistics

In this subsection we consider the heteroscedastic unbalanced two-fold nested design, but
assume we have between-classes heteroscedasticity, i.e. o;; = o; in the relation (2.1.1).
It can be shown that if the design is unbalanced, then, under heteroscedasticity, it is no
longer true that E(MSE) = E(MS6) under the null hypothesis Hy : §;; = 0. Thus it is
clear that the usual F-test procedure is not valid even under normality. In this section,
we will first introduce two possible test statistics, one unweighted and one weighted.

The unweighted statistic simply replaces M SE with

. 1 r Ci—l c; Mg B )

It is easily seen that MSE™* satisfies E(MSE*) = E(MS¢) under the null hypothesis.

Thus, the unweighted statistic is

 MS§
 MSE*

Fi—1 ~1. (2.2.3)

It is easy to verify that, in the balanced case, Fy = Fg, where Fg is the classical
F-statistic given in (2.1.6).

The weighted statistic will be derived from a totally different angle. Assume first that
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the o; are known and consider the mean-error decomposition of the weighted random

variables ka =Yijr/o:

/ Y:ij ' )% (673 5@'
Yije = o £ juj + eijr, Where pi; = i (2.2.4)
The new means u;j are then further decomposed (uniquely) as
r ci

i=1 j=1

where

yo= ZZ””“H chnz (M‘F%),

=1 j=1
“n W+ o
Q= Zn”luzj_“:Tz_#v
]:1 (s 1
/ / / / 6
6 = g —(p +a;) = .

0

Note that the original null hypothesis Hy : d;; = 0, Vi, j, is equivalent to the cor-
responding hypothesis for the model for the weighted random variables Yl/]k, namely,
Hy : 6 =0, Vi, j. Let MS§', MSE', and F/, be as defined in (2.1.4)-(2.1.6) but with

Y-jk replacing Yk, that is,

?

/!

S S L 10 g ~ Y\
MS§ = o ZZ”W< i ) (226
=1 j=1
N2 A 2
MSE/ _ Z Z %:Vk( zgé ’L]') ZZZ( ik — ].) ,(2.2.7)
c i=1 j=1 k=1
FLo— M55 (2.2.8)

MSE'
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Of course, the o; are not known and thus they need to be estimated. Let

. 1
> Vi =Yg 2, SF=———3 (nij —1)S5; (2.2.9)
k=1 2 7 j

1
nij—l

2 _

be the usual estimators of 01-2]- and 2. Note that if o; is replaced by S; in M SE', the

expression in (2.2.7) is identically equal to one. The proposed weighted test statistic is

thus

— — 1 S = o \2
Fl,—1, where F, = mZ?ZnJ (Vi — Vi)~ (2.2.10)
17 =1

i=
Asymptotic Theory for the Unweighted Statistic

The asymptotic distribution of the unweighted statistic, F¢% — 1, defined in (2.2.3), is
given by Theorem 2.2.2. As a corollary to this theorem we obtain that, under het-
eroscedasticity, the classical F-test procedure is not valid in the balanced case (where

F}, = FY) even under normality.

Theorem 2.2.2. Consider the model and assumptions given in Theorem 2.2.1, except
that the variances o;; = o; are allowed to vary among classes. Then, under alternatives

0i; which satisfy
1 & 52.
Ve | — an% —0; | =0, for some numbers 6; € (0,00),
Ci © o
j=1 v

as min (¢;) — oo while r, n;; stay fized,
VO (Fs— (1+0%) 3 N (0,29, (2.2.11)
where \;, n;, n; and n are given in (2.1.8), and

6° - y

0* = a where HJ:ZUZZM‘@%' and ﬁzzgz‘z/\ia and
i—1 i=1

r 4

o= A% Lo 4 a6, +

s ﬁ2

1

2(1 + 0%)?
n; — 1

-.
Il
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K; — 3 _ o\ %2/
+W (7 + 26%) (Rim; — 1) + 672 (71 + n; —2)]}-

Under the null hypothesis Hy : 6;; = 0, which results in 6* = 0, we then have

T

VO (FE-1) 4 N (0, D hio} [2 L2 e d)m(n - 1)]) . (2212)

— 62 n; — 1 (7_1Z — 1)2

Corollary 2.2.2. Under the model and assumptions of Theorem 2.2.2, if the design is
balanced (i.e. ¢; = ¢ and ni; = n), then the unweighted test statistic F¢. is equal to the

classical F-test statistic Fg, and as ¢ — 00

\FC(Fg—miN(o, i/\;? [2+”31D’ (2.2.13)
=1

under the null hypothesis Hy : §;; = 0. Thus the classical F'-test procedure based on Fg,

1s not asymptotically valid even when the design is balanced and normality holds.

Asymptotic Theory for the Weighted Statistic

The asymptotic distribution of the weighted statistic, ﬁg — 1, as defined in (2.2.10), is

given by the following theorem.

Theorem 2.2.3. Consider the model and assumptions given in Theorem 2.2.1, except
that the variances o;; = o; are allowed to vary among classes. Then, under alternatives

0i; which satisfy
1 & 52,
Ve | — an% —0; | =0, for some numbers 6; € (0,00),
Ci © o
J=1 !

as min (¢;) — oo while r, n;; stay fived,

Ve (Z?é — 1+ 9)) 4N (0, z) , (2.2.14)
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where \i, n;, and n are as given in (2.1.8), 0 =, \ib; and

. " T2 20; + n;)(Rin; — 1) + 0%(n; +n; — 2
IR :2+49+Z |:ﬁ — 1(1+9i)2(/ﬁ}i3))\l’( )( (ﬁ _) 1)2 ( ):| .
=1 LV '

Under the null hypothesis Hy : 6;; = 0, which results in 0 = 0, we then have

— " 2 (Iii — 3)ﬁl(ﬁlﬂ — 1)
Fl - 1) 4N n |2 i . (221
@(C KA <OZ; [+m_1+ o (2.2.15)
Corollary 2.2.3. Consider the model and assumptions of Theorem 2.2.3. If the design
is balanced (c; = ¢ and n;j = n), then under the null hypothesis Hy : §;; = 0,

— 2
\/5<F(’;—1>£>N(0,2+>, as ¢ — oo.

n—1
2.2.3 General Heteroscedastic Designs

In this subsection we consider the general unbalanced heteroscedastic two-fold nested
model, as defined in (2.1.1). As remarked in the context of between-classes heteroscedas-
ticity, the relation E(MSE) = E(MS0) is no longer true if the design is unbalanced.
Moreover, the usual F-test procedure is not valid even in the balanced case under nor-
mality.

In the previous subsection, we introduced two statistics, unweighted and weighted.
Conceptually, we should be able to extend both ideas to the present model which al-
lows general heteroscedasticity. However, the weighted statistic is very unstable when
estimation of the o;; is based on small sample sizes. In fact, the asymptotic theory of
the weighted test statistic in this case requires the sample sizes to also tend to infinity.
Therefore, we will only consider the unweighted statistic in this subsection.

The idea of the unweighted statistic is to replace M.SE by a different linear combi-
nation of the cell sample variances in order to match the expected value of M S§ under

the null hypothesis. This achieved by replacing M SE by MSE**, defined as

w1 O Nij \ o2
MSE C_TZZ<1—W> SZ, (2.2.16)

i=1 j=1
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where Sizj is as given in (2.2.9). The unweighted statistic for the general heteroscedastic

case would be then defined as

MS6

F** _ 1 - "
¢ MSE*

—1. (2.2.17)

It is easy to verify that, in the balanced case, F3* = F/ = Fg, where Fg is the classical
F-statistic given in (2.1.6) and F{ is the unweighted statistic under between-classes
heteroscedastic designs. The asymptotic distribution of the unweighted statistic F&* —1

is given by the following theorem.

Theorem 2.2.4. Consider the model and assumptions given in (2.1.1), (2.1.2), and the
decomposition of the means given in (2.1.8). In addition, assume that there exist k;j,

Ai, @13, a2q, bii, ba; and bs; such that, as min (¢;) — oo,
E(e3;,) =0, E(el,) = kij, and Eleyn|*T% 0;
(ez;r) =0, (eijk) = Kij, an leijnl < oo for some e > 0;

¢ 1 — 1 &
Ve (é - )\i) —0, Ve o > of—au | =0, ni. > nijol; — agi, (2.2.18)
j=1 Jj=1

ci ci 4 ¢ 4
1o, 1N oy 1~ 0y5(Kij — 3)
— E o — b,  — E —— — by, — E ———— — bs;.
Ci “ ¢ = nij —1 ¢ 4 Nij
J=1 J=1 J=1

Then, under alternatives 0;; which satisfy, as min (¢;) — oo while r, n;; stay fized,

1< 1<
Vei - Znijd?j =061 ) =0, - Znijégjoz?j — O,
) =1 ) =1
for some numbers 61; € (0,00) and 62; € (0,00), we have

1
VO (Fz —(1+6%) % N (0, p [2(b1 + ba) + 4(62 + b20™) + (202 + 53)9**2]> ,

where

01 r r
0 = —, 0 = )\2‘9 s ap = )\ia ) 2.2.19
a1 1 ;_1 1 1 ;_1 1 ( )
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by = Z Aibii, b2 = Z)\ib%a by = Z Aibgi, b2 = Z)\i92i-
i=1 i=1 i=1 i=1
Under the null hypothesis Hy : 6;; = 0, which results in 6** = 0, we then have

201 + 262 2b2> (2.2.20)

\FC(Fg;*_niN(o, ,

a7y
2.3 Simulation Studies

In this section, simulations are used to compare the achieved sizes and/or powers of
several test procedures. Let CF denote the classical F-test procedure, shown in (2.1.7),
and HOM, UW, WT, HET denote the test procedures implied by the asymptotic results
of (2.2.2), (2.2.12), (2.2.15) and (3.1.3), respectively. The procedure CF is compared
with HOM for homoscedastic designs (Section 2.3.1), and with both of UW and WT
for between-classes heteroscedastic designs (Section 2.3.2). In Section 2.3.3 the HET
procedure is compared to UW and HOM for both homoscedastic and heteroscedastic
designs.

For all simulations except those of Section 2.3.3, the number of classes used in all
simulations is five (r = 5). The different combinations of numbers of sub-classes studied

here, with the average ¢ in each case, are:
ec=5<% (c1, 2, €3, C4, c5) = (2, 4, 5, 6, 8);

0 &< (Cl, c2, C3, C4, 65) = (15, 23, 30, 37, 45);

[ ]
ol
Il
w

e ¢=100 < (c1, 2, c3, ¢4, c5) = (50, 75, 100, 125, 150);
o c=500 < (c1, ¢, c3, ¢4y c5) = (250, 375, 500, 625, 750).

The number of observations in each sub-class (n;;) is generated by truncated Poisson
distributions. More specifically, n;; = Z;; + v; x I(Z;; = 0), where I is an indicator
function and Z;; ~ Poisson(v;), i =1,---,5; j=1,---,¢;. The value of v; used in our
simulations is (v1, ve, vs, v4,v5) = (2, 2, 2, 12, 2). The values of the other parameters

in the decomposition (2.1.3) are as follows: pu = 0, (a1, ag, as, aq)’ = (=3,-2,-1,2)
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and oy is chosen so that ), n;a; = 0. After generating the n;; and fixing all param-
eters, we randomly generate errors e;j;, from one of the following five distributions: (1)
Normal: the standard normal; (ii) Exponen: the exponential distribution with A = 1;
(ii1) LogNorm: the log-normal distribution whose logarithm has mean 0 and standard
deviation 1; (i) Mixture: the mixture distribution defined as Uy - X7 + (1 — Uq) - Y7,
where U; ~ Bernoulli(p = 0.9), X1 ~ N(—1,1) and Y7 ~ N(9,1); and (v) Multi-d:
when r = 1, 2, 3, 4, generate e;;;, from Normal, Exponen, LogNorm, and Mizture as
described above, respectively. When r = 5, generate e;j;, from another mixture distribu-
tion defined as Us - Xo + (1 — Us) - Yo, where Uz ~ Bernoulli(p = 0.5), X3 ~ N(—3,.5)
and Yo ~ N(3,.5). All e;j; are standardized to have mean 0 and standard deviation
1. As for the variances, we use 0;; = 0 = 1, Vi, j for homoscedastic designs, use
(0ij) = (03) = (01, 02, 03, 04, 05) = (1, 1, 5, 1, 1), Vj for between-classes het-
eroscedastic designs, and ;5 =4-I(i =3)+5-1(j < 0.3 ¢;) + (j/ci), Vi, j, where I(-)

is an indicator function, for general heteroscedastic designs.

2.3.1 Simulations under Homoscedastic designs

We first compare the achieved sizes of two procedures, CF and HOM, under homoscedas-
tic designs. The first procedure, CF, based on the classical normality-based F-test the-

orem, rejects at level « if
F&>F8_ No—os (2.3.1)

where FY, is defined in (2.1.6) and F& , No—c s the (1 — a)100th percentile of the
Fc_y No—c distribution. The second procedure, HOM, using the asymptotic null distri-

bution shown in (2.2.2), rejects at level a if

~N A'Q2AA_ A 2
VOFS, - 1) > |2+ -2 +3 (ks = 3) P, =20+ 1) |, (2.3.2)

n—1 =

where Fg is as before and Z, is the (1 — «)100th percentile of the standard normal

distribution. In addition, \;, n;, 7;, n, and &; are the empirical versions of \;, n;, n;, n,
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and x;, namely

1 1 — 1. 1 .
Ai = EZ, n; = p Znija n; = o 2y’ n= Z)\iﬁia (2.3.3)
7=1 7=1 i=1
. Vi o1 5 \4

It can be easily verified that, under the null hypothesis, &; Lt Ki, as min (¢;) — oo. The

simulated sizes, based on 10,000 simulation runs, are shown in Table 3.1.

Table 2.1. Achieved a-levels over 10,000 simulation runs under homoscedastic designs at nom-
inal o = 0.05.

c=35 c=30 c =100 ¢ =500

CF HOM CF HOM CF HOM CF HOM
Normal 0.0489 0.0839 0.0516 0.0604 0.0525 0.0581 0.0502 0.0518
Exponen 0.0943 0.0869 0.1044 0.0554 0.1110 0.0488 0.1151 0.0465
LogNorm 0.1392 0.0826 0.1917 0.0534 0.2314 0.0507 0.2679 0.0470
Mixture  0.0953 0.0868 0.0919 0.0576 0.0980 0.0561 0.1021 0.0535
Multi-d 0.0818 0.0875 0.0806 0.0573 0.0742 0.0526 0.0839 0.0521

The results in Table 3.1 confirm the conclusions stated in Corollary 2.2.1. Thus,
the classical CF is liberal in this unbalanced design for all non-normal distributions,
with the achieved a-level increasing with the number of sub-classes. Its performance is
worse for the log-normal distribution. On the other hand, the proposed HOM procedure
performed well for all distributions, though somewhat liberal in the case of small number

of sub-classes.

2.3.2 Simulations under between-classes Heteroscedastic designs

Here we compare the achieved sizes of CF, UW and WT. The first procedure, CF, is
as shown in (2.3.1). The second procedure, UW, using the asymptotic null distribution

shown in (2.2.12), rejects at level « if

" NG} 2 Ri — 3)ni(nin; — 1
G RIS [“ 2 IR, (235)
i=1
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where F, is defined in (2.2.3), while the third procedure, WT, using the asymptotic null

distribution shown in (2.2.15), rejects at level « if

where ]/770 is defined in (2.2.10). The empirical quantities S\i, ni, n;, and 1 are as defined

in (2.3.3). Moreover, 8, 6¢, and &; above, are as follows:

T A

6= Ne?, where 6? =57 &f=(69)% and k= oy (2.3.7)
g,

) i 4
=1 %

where 7; is defined in (2.3.4). Again, it can be easily verified that, as min (¢;) — o0, R;
converges in probability to x«; under the null hypothesis. The corresponding simulated

sizes under heteroscedastic designs, based on 10,000 runs, are shown in Table 3.2.

Table 2.2. Achieved a-levels over 10,000 simulation runs under between-classes heteroscedastic
designs with smaller average cell sizes at nominal o = 0.05.

c=35 c =30 c =100 ¢ =500

CFk UW WT CF UW WT CF UW WT CF UW WT
Normal b7 115 299 .99 079 120 1.0 .067 .0Y7 1.0 .059 .062
Exponen .47 155 333 97 .089 .152 1.0 .072 .084 1.0 .057 .067
LogNorm .39 .154 .350 .89 .105 .193 .99 .083 .118 1.0 .074 .094
Mixture .37 159 351 .95 .082 .170 1.0 .068 .085 1.0 .054 .060
Multi-d 48 156 332 97 .089 .138 1.0 .067 .080 1.0 .063 .065

Table 3.2 makes it clear that the traditional CF procedure is quite inappropriate
under between-classes heteroscedastic designs. More specifically, when ¢ is large enough,
regardless of the underlying distribution, the CF procedure rejects the null hypothesis
almost all the times under the null hypothesis. When comparing the two proposed pro-
cedures, UW and WT, we can see that procedure WT appears to be more liberal than
procedure UW, but becomes less so when ¢ increases. The most likely explanation for
this is the small-sample instability of the variance estimators that are used to standardize
the observations in the WT statistic. This explanation is confirmed by the results in Ta-

ble 2.3, where the only difference is that the sample sizes were generated from truncated
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Poisson distributions with larger mean values: (v1, va, vs, v4,v5) = (5, 5, 5, 12, 5)) .

Table 2.3. Achieved a-levels over 10,000 simulation runs under between-classes Heteroscedas-
ticity with larger average cell sizes at nominal o = 0.05.

c=5 c=30 c =100 ¢ =500

CFk UW WT CF UW WT CF UW WT CF UW WT
Normal 25 105 183 .55 072 .080 .91 .063 .059 1.0 .055 .058
Exponen .23 097 .17v5 .52 .072 .082 .91 .068 .068 1.0 .056 .057
LogNorm .21 .083 .156 .46 .060 .076 .85 .0v0 .071 .99 .057 .062
Mixture .21 .079 .157 .52 .073 .081 .90 .065 .065 1.0 .059 .059
Multi-d 23 .094 183 .52 072 .078 .90 .068 .065 1.0 .059 .061

With the same simulation settings used for Table 2.3, but taking ¢ = 100, Table 2.4
compares the achieved powers of the two proposed test statistics UW and WT, under
the alternatives ¢;; = t x (2j/¢; — 1), for t = 0.6, 0.8, 1.0, 1.2 and i = 1,---,5,
j=1,---,¢; — 1. For each i, d;., is chosen so that Zj n;j0;; = 0.

Table 2.4. Powers over 10,000 simulation runs under between-classes heteroscedastic designs
with larger average cell sizes at nominal o = 0.05 (¢ = 100).

t=0.6 t=0.8 t=1.0 t=1.2

uw WI UW WIT UW WI UW WT
Normal 3245 1.0 5676 1.0 9725 1.0 .9999 1.0
Exponen .2828 1.0 .5002 1.0 .9465 1.0 .9989 1.0
LogNorm .9027 1.0 .9670 1.0 .9945 1.0 .9985 1.0
Mixture  .2813 1.0 .5090 1.0 .9576 1.0 .9997 1.0
Multi-d 2855 1.0 .5006 1.0 .9476 1.0 .9985 1.0

As expected, Table 2.4 reveals that the WT procedure is much more powerful in
detecting the sub-class effect than the unweighted procedure UW. Note that with the
larger cell sample sizes used in Table 2.3, WT is only mildly liberal. Thus, the power
advantage of WT does not come at the expense of level accuracy.

More discussion and comparisons between the procedures UW and WT are provided

in Appendix A.
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2.3.3 Simulations under general Heteroscedastic designs

The simulations in the previous subsection demonstrate that the classical CF proce-
dure is very liberal under between-classes heteroscedasticity. Simulations under general
heteroscedasticity, not shown here, reveal similar behavior. Thus, the tables in this
subsection exclude the CF procedure.

In Table 2.5 we compare the achieved a-levels of UW and HET, under general het-
eroscedasticity. The former procedure is described in (2.3.5), while the latter uses the
statistic F5* given in (2.2.17) and its asymptotic null distribution shown in (3.1.3). Thus,
the HET procedure rejects at level « if

2?)1 + 2[32

=2
ag

VC(FE —1) > Z, (2.3.8)
where a, I;l and 132 are consistent estimators of ay, by and by. Note that consistent
estimation of b; and by needs unbiased estimation of each afj. For such unbiased esti-
mation we use the U-statistics with the kernel (Yj;; — Yijg)2/2 x (Yijs — ng4)2/2. As
a consequence, the application of procedure HET requires n;; > 4, although Theo-
rem 3.1.2 requires only n;; > 2. Because of this constraint, we generate n;; using n;; =
Zijx1(Zij > 4)+v; x I(Z;j < 4), where I is an indicator function and Z;; ~ Poisson(v;)
with (v, vg, v3, vg,v5) = (5, 5, 5, 12, 5),i=1,---,5; j=1,-- ,¢.

Table 2.5. Achieved a-levels over 10,000 simulation runs at nominal o = 0.05 under general
Heteroscedasticity.

c=295 c=30 ¢ =100 ¢ =500

UW HET UW HET UW HET UW HET
Normal 1089 1043 .0985 .0837 .1479 .0701 .1560 .0575
Exponen .1120 .1012 .0896 .0717 .1333 .0597 .1545 .0530
LogNorm .1064 .1052 .0738 .0568 .1092 .0491 .1225 .0461
Mixture  .1192 .1018 .0852 .0567 .1378 .0554 .1507 .0508
Multi-d 1093 .0968 .0910 .0718 .1366 .0635 .1576 .0550

From Table 2.5 we see that both procedures are liberal when the average number

of sub-classes is 5, but HET becomes less so as ¢ increases. On the other hand, UW
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becomes more liberal as ¢ increases, a behavior which is expected in view of the fact that
it is not designed to allow the present type of heteroscedasticity.

The next two tables perform a more detailed comparison of the procedures UW and
HET under the setting of between-classes heteroscedasticity when both are asymptot-
ically valid. Table 2.6 suggests that the achieved a-levels of the two procedures are
comparably close to the nominal level, with HET slightly less liberal for non-normal
distributions. Table 2.7 shows the achieved powers of these two procedures, only for the
case of ¢ = 100, under the alternatives used in Table 2.4. Again the procedures have

comparable power with HET being slightly more powerful for non-normal distributions.

Table 2.6. Achieved a-levels over 10,000 simulation runs under between-classes heteroscedas-
ticity at nominal o = 0.05.

c=95 c=30 ¢ =100 ¢ =500

UW HET UW HET UW HET UW HET
Normal 077 1194 .0701 .0771 .0606 .0612 .0513 .0539
Exponen .0907 .1017 .0720 .0698 .0628 .0560 .0566 .0519
LogNorm .0757 .0871 .0655 .0529 .0651 .0525 .0624 .0440
Mixture  .0798 .0851 .0750 .0633 .0650 .0536 .0584 .0494
Multi-d 0921 .1041 .0711 .0655 .0626 .0567 .0560 .0505

Table 2.7. Powers over 10,000 simulation runs under between-classes heteroscedastic designs
at nominal o = 0.05 (¢ = 100).

t=0.6 t=0.8 t=1.0 t=1.2

UW HET UW HET UW HET UW HET
Normal 3353 3410 .6249 .6214 .9204 9173 1.000 .9998
Exponen .3308 .3361 .6210 .6436 .9083 .9259 .9997 .9997
LogNorm .9750 .9986 .9941 1.000 .9986 1.000 .9996 1.000
Mixture  .3289 .3218 .6115 .6417 .9135 .9350 .9998 1.000
Multi-d 3325 3347 .6243 .6549 9101 .9304 .9994 .9997

The final two tables perform a more detailed comparison of the procedures HOM,
UW and HET under homoscedasticity when all three are asymptotically valid. The
results reported in Table 2.8 suggest that the achieved a-levels of the three procedures

are comparably close to the nominal level (the results for ¢ = 500 are very close to those
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for ¢ = 100, so they are omitted). Table 2.9 compares the achieved powers of these three
procedures, only for the case of ¢ = 100, under alternatives 6;; = t x (2j/¢; — 1), for
t=0.20, 0.25, 0.35and i =1,---,5,7=1,---,¢; — 1. For each i, d;., is chosen so that
> y n;;0;; = 0. Note that the cell sizes used here are larger than those used in Table 3.1,
as required for the applicability of HET. The results suggest that, even though procedure
HET estimates more parameters, this does not compromise its power.

Table 2.8. Achieved a-levels over 10,000 simulation runs under Homoscedasticity at nominal
o = 0.05.

c=30 ¢ =100

HOM UW HET HOM UW HET HOM UW HET
Normal 092 .087 .099 .058 .057 .058 .053 .053 .053
Exponen  .088 .075 .083 .061 .058 .056 .056 .053 .050
LogNorm .078 .057 .072 .062 .053 .044 .057 .053 .041
Mixture .094 .080 .080 .064 .064 .058 .058 .059 .052
Multi-d 085 .0v6 .084 .066 .062 .062 .059 .058 .056

ol
I
ot

Table 2.9. Powers over 10,000 simulation runs under Homoscedasticity at nominal o = 0.05
(¢ = 100).

t=0.20 t=0.25 t=0.35

HOM UW HET HOM UW HET HOM UW HET
Normal 436 429 427 735 725 724 993 992 .992
Exponen 411 418 426 .706 .716 .732 992 993 .994
LogNorm .977 989 1.00 .995 .998 1.00 .998 1.00 1.00
Mixture A17 421 4280 o711 o714 727 992 992 .995
Multi-d 419 420 422 716 720 725 992 992  .993

2.4 Data Analyses: Two Empirical Studies

2.4.1 Application to the Mussel Watch Project Data

One real-world application for our methodology can be found through the National
Oceanic and Atmospheric Administration’s National Status and Trends Program. In

1986, this division undertook a very large scale project to monitor the levels of numerous
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chemical contaminants and organic chemical constituents in marine sediment and bivalve
(mollusk) tissue samples. This project, dubbed the Mussel Watch Project, is still on-
going and there are no apparent plans to discontinue it in the near future. There are
currently over 300 coastal sites at which sediment and bivalve samples are collected and
analyzed for the project. Each site is categorized as being within a certain Estuarine
Drainage Area (EDA). See O’Connor (1998) for more details on this project. For our
data analysis, we chose to analyze the Lead concentrations from years 1998 to 2005. We
chose to analyze concentrations of Lead in tissue samples, specifically in the Crassostrea
virginica, or American Oysters, from two different regions: Middle and South Atlantic,
and the Gulf of Mexico. Due to the fact that nested in each region there are many EDAs,
it is natural to consider regions as classes, and EDAs as sub-classes in our analysis. The
main interest of our study is the sub-class effect. The boxplots of the lead concentration
levels at each EDA, shown in Figure 2.1, suggest heteroscedasticity among different
EDAs in the same region (general heteroscedasticity). Thus, the procedure HET seems
to be the appropriate one for analyzing this data set. However, the results of application
of the other procedures mentioned in this chapter (i.e. CF, HOM, UW, and WT) are
also included for comparison purposes. Because the HET procedure requires at least 4
observations within each sub-class, we remove four EDAs with less than four observations
from our data, resulting in 58 EDAs in total. (Another approach would be to impute
values, but this will be pursued elsewhere.)

Application of five procedures, CF, HOM, UW, WT and HET, on this data set yields
p-values of 0.1076, 0.3136, 0.2008, 0.0005 and 0.0246, respectively, for the hypothesis of
no EDA effect. Note that only procedures HET and WT detect the effect of EDA at
a = 0.05. A closer examination of the data reveals that the largest sample variance
estimate from EDA ‘G120x’ in the Gulf of Mexico region is 69.21, while the second
largest one is only 2.45. This high variance of the data in EDA ‘G120x’ in fact results
from a few outliers in a site named ‘CBPP’, as shown in Figure 2.1. After four data
points from ‘CBPP’ are removed (see the changed boxplots in Figure 2.2), the sample
variance estimate of the EDA ‘G120x’ becomes 0.0921 and heteroscedasticity is not so

pronounced. With the outliers removed, the p-values of five procedures are all very close
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Figure 2.1. Mussel Watch Project. The boxplots of the Lead concentration levels in American
Opysters at EDAs nested in Middle and South Atlantic (left) and in the Gulf of Mexico (right).
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Figure 2.2. Mussel Watch Project. The boxplots of the Lead concentration levels in American
Opysters at EDAs nested in Middle and South Atlantic (left) and in the Gulf of Mexico (right),

after four observations at ’"CBPP’ removed.

to zero (less than 107'2). This dramatic change confirms the instability of procedures

CF, HOM and UW under general heteroscedasticity.

2.4.2 Application to the NADP Data: Ramification for ANCOVA

Another real-world application for our methodology can be found through the National

Atmospheric Deposition Program (2009), which monitors of geographical and temporal
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long-term trends on the chemistry of precipitation. Starting from only 22 stations in
1978, NAPD has grown as a nationwide network of over 250 sites for which precipitation
samples are collected and analyzed in the Central Analytical Laboratory (CAL) weekly.
For our data analysis, we chose to analyze the pH level (reported as the negative log of
hydrogen ion concentration) of precipitation samples as measured in the CAL from the
first week of January 2003 to the last week of December 2007. We consider comparing
the data in two North Carolina towns, Lewiston and Coweeta, and are interested in the
effect of Time. Among the total 233 weeks in this period, we notice that there are several
weeks in which data were missing at one or both locations. After removing those missing
values, there are 180 weeks of data for each of these two towns, i.e. nqy = ng = 180,
although this balancedness is simply a coincidence. A further examination reveals that
the missing data in fact happen at different time points for the two locations.

This data set can be analyzed as a simple one-way ANCOVA model with locations as
groups and time as the covariate. Here, in order to directly apply the asymptotic theory
for the two-fold nested model, we think of two locations as two classes and form artificial
sub-classes by dividing the observations in the same class into non-overlapping ‘windows’
of a fixed size 5. More specifically, the first time sub-class consists of observations from
weeks 1-5, the second time sub-class consists of observations from weeks 6-10, and so
on. Since there are 180 observations in each of two locations, this division results in
180/5 = 36 sub-classes each class, i.e. ¢; = ¢o = 36. We call this simple ramification
for the analysis of covariance, as outlined above, the non-overlapping windows approach.
The boxplots of the pH levels at each of these 36 times for the two locations are shown
in Figure 2.3 (the left panel for Lewiston, the right one for Coweeta). A simple time
series analysis does not indicate meaningful correlation over time (see Appendix B), so
it appears reasonable to implement our methodology in this study.

For the sub-class effect of Time, the five procedures mentioned in this chapter, CF,
HOM, UW, WT and HET, give p-values of 0.0929, 0.0757, 0.0760, 0.0773 and 0.0508,
respectively. Given that the assumption of homoscedasticity is clearly violated as shown
in Figure 2.3, it is not surprising that the HET procedure is the only one which finds the

effect of Time (marginally) significant at « = 0.05. Although this simple ramification of
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The boxplots of the pH levels of precipitation at different

Times from January 2003 to December 2007 in two towns in North Carolina: Lewiston (left) and
Coweeta (right).

the present methodology for the nested model seems to work for analysis of covariance

as well, we look for a more powerful tool. A further analysis shows that if we apply

the HET procedure on the data from Year 1998 to Year 2007 (i.e. use the weekly data

from 10 years, instead of just 5 years), the p-value for the null hypothesis of no time

effect is as small as 0.000189, implying that a larger number of ‘windows’ may result in

a better power in testing. A more advanced approach for analysis of covariance, called

the overlapping windows approach, is proposed in Chapter 5.

2.5 Proofs

In this appendix we will use the following notations:

U. =V,

a. ~ b,

& Ve(U,— Vo) B,

& Ve(ae—be) — 0,

as ¢ — 00,

as ¢ — 00,

where U, and V. are two sequences of random vectors, while a, and b, are two sequences

of constant vectors.
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Proof of Theorem 2.2.1

Define
B 0ij
Ui&j = nij(eij' + 7 = Z ijs ZU Cz zca
N _ ) c; r
- P _ 1 _ 1 _
nol = ¢
Uo U _ i
vi=|( 7|, V= ), ve={ _
Wl] Wic WC
Note that
T
Ug = MS§+ _TZJQnZeZQ —CT_rUg , and
=1
We = MSE + ﬁi 6 _an=DN oy
¢ - C Ng-C e
i=1

It can be easily verified that, as min (¢;) — oo and r, n;; remain fixed

1 — _
> met Lo, VO g5 B,
—T
=1

el and (2.5.2)
-1\ oo _(, C-1) — P

Combining the above we have that, as min (¢;) — oo and 7, n;; remain fixed

MSo

Ve~ Mg = . (2.5.3)
MSE

Hence, the asymptotic joint distribution of M'S§ and M SFE is the same as the asymptotic
joint distribution of Ug and We.
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It can be shown that, under normality, Ufj and W;; are independent, and

5 o ( il _ 2
Ui ~ xi o2 |7 (= 1)Wij ~ X1

Using known results regarding the mean and covariance of quadratic forms (cf. Theorem

1 in Akritas and Arnold (2000)) and the facts that E(x2(av)) = a(1+7), Var(x2(ay)) =
a(2 + 4v), we obtain

..5.2.
1 + i 1]
6\ o2
E(VZ]) - nij—1 )
n—1
41'1,1']'62‘2]‘ 1 7’7,1']'—1
Cov(VS) = 2475 0 TR 5 nl
ij) — 0 2(ni;—1) Nij njj_l (njj_l)Q
(n—1)2 n—1 n—1
) 52,
Let HfCi = C% 25;1 nij—4%. Then, for each class 4, as ¢; — oo,
_ 1462, 1+6;
EV) = . 7= ﬁ.,lz 2 p;, and (2.5.4)
) =
¢i - Cov(V,)
. 2+ 49?0 0 + Ki — 3 (77" - 1)2ﬂici (T_L - 1)(1 - ﬂici)
- 72‘0'71 n — 2 — —
0 ) DT UG- -n) e + g, 2
- 2 + 46; 0 N i — 3 (n—1)>%, (-1 -mn) sy
= = 2 - (
0 2((7—?_11)12) =D*\ @-1)01-n) 7i+n—2

Under the assumption that E|e;j,|*T2¢ < oo for some € > 0, Lindeberg-Feller’s theorem

together with Cramér-Wold’s theorem yield

Va (Ve — i) 5 Ny(0,%5).
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Using the independence among \_/fC and the assumption (2.1.8), one can be show that

_ - 1+0
VOV — ) < Ny(0,0* Z A\iYi), where p = o? . (2.5.5)

i=1 1

By the asymptotic equivalence between \_/% and I\/I‘é shown in (2.5.3), we then have

\/E(M‘SC — p,) i) NQ(O’OAZ)\iEi)’ as min (Cl) — OQ.
i=1

Note that if s’ = (1, —(1+0)) /0%, VC' (ML — pu) = VC[M S5 — (1 +6)MSE]/c? which,
by Slutsky’s theorem, is asymptotically equivalent to v/C' (Fgv —(1+ 9)) Thus, by the

A-method, as min (¢;) — oo,
Ve (Fg 1+ 0)) 4N (0, oty )\z‘S/EZ‘S> —N(0,3,),
i=1
where X is as defined in Theorem 2.2.1.

Proof of Corollary 2.2.1

It can be easily verified that for C' large enough, the approximate distribution of the

classical F-test under Hy : 6;; = 0, and under the normality assumption is:

Ve (Fg - 1) LN <0,2 (1 + NCC_ C)) : (2.5.6)

where ~ means ”approximately distributed”. The relation (2.5.6) is obviously not equiv-

alent to (2.2.2), unless n;; = n for all ¢ and j so that

1

ﬁici =n="n, Q’L'Ci = E =n; ﬁlﬂz -1= 07

and hence both of (2.2.2) and (2.5.6) would become

Ve (Fg - 1) 4N (0, 2 (1 + 1)) . (2.5.7)

n—1
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Proof of Theorem 2.2.2

Define new quantities U? Ug, We to be as the corresponding quantities in (2.5.1) but

K
with 01-2 replacing o2, and the new quantity Wi;; to be as the corresponding quantity in

V¢ and \750 be as defined

c?

Wicv V6

(2.5.1) but with 7; replacing 7. Finally, let U2 P

c?

in (2.5.1) but using the above new quantities. It can then be shown that Ug, W are

related to MS6, MSE* via

MSé +

U

)

1 - 2 2 =S
 — oing.e;. — U
C’—r; e oy ¢

> <0 ) (<05_—1r)>c<35?—_cj>)> " W] |

=1

We = MSE* +

Using (2.5.2), and the fact that, as min (¢;) — oo and r, n;; remain fixed,

~ (¢ (ci—Dei(ni—1 _
ve ; <C B <(C - r))(r(u. - c))> 7t Wie =0, (2.5.8)

we have that, as min (¢;) — oo and r, n;; remain fixed,
VS~ M = . (2.5.9)

Following the same derivation in the proof of Theorem 2.2.1, one can easily get

Va(Ve — ) <, N3(0,%7), where uf and X} are defined by (2.5.10)
_ 1+62, 1+ 06; 13, 62
EVS) = ] 2 wh 95.:75 i d
(Vie) ﬁ;i—_ll . w;, where 0;. o j:1njai2, an



36

¢ C’ov(vgc)

o 2+ 49?0 0 + Ri — 3 (ﬁi - 1)2ﬂici (ﬁi - 1)(1 - ﬂici)
= fiie, 1 12\ - _
0 Gt ) DT - (- ng) e, + e, — 2
2t 0 L ni—3 (=1 (=11 -my) | , -
0 m2_1 (ni = 1)* (7 — 1)(1 — ny) ni +1n; —2 Z

By the independence among \7?6 and the assumption (2.1.8), it can be shown that

_ r 4 6°
VO — ) b 80,3 oiAs), where = 0T
i—1 B

where 3 and 67 are as defined in Theorem 2.2.2. Because \750 and M¢, are asymptotically

equivalent, as shown in (2.5.9), we then have
T
VOME — p*) % N0, 0fAEY), as min (¢;) — oo,
i=1

Finally, by the A-method with s*’ = (1, —(1 + 6*))/3, where 0* = 67 /13, it can be easily

verified that, as min (¢;) — oo,
,
VO (F5— (1+607) 5N (o, Zoms*’xz‘s*> =N (0,33),
i=1
where 3% is as defined in Theorem 2.2.2.

Proof of Corollary 2.2.2

The fact that, when the design is balanced, the unweighted statistic I equals the
classical F-statistic is clear. Next, (2.2.13) follows directly from Theorem 2.2.2. Finally,
the fact that the classical F-test procedure is not valid follows by comparing (2.5.7) and
(2.2.13).



37

Proof of Theorem 2.2.3

Let US., U? Wij, Wie, and V‘s be as defined in Proof of Theorem 2.2.2. It follows easily

igy Yicr

from the definition (2.2.10) and the assumption (2.1.8) that as min (¢;) — oo,

_|_ 6
FC—ZC—T 2 NZC—T Vi

Wie + Op Wice

In addition, (2.5.10) tells us that

Ui(z: 1+ 91 d * %
Vi - — N3 (0, ¥7), where ¥ is as defined there.

Wic 1

Thus, by the A-method with s’ = (1, —(1 + 6;)), the assumption (2.1.8), and the inde-

pendence among UJ, and Wj., we obtain (2.2.14).

Proof of Corollary 2.2.3

The proof follows directly from Theorem 2.2.2.

Proof of Theorem 3.1.2

Define V‘S = (UY,

2 Wig), Vi, = (UL,

Wie)', and V¢, = (U, W¢)', where

Ji 1 -
s 2. (> i) s
Uy = oignij(es. + ; 2, = Z i UC = — ZciUic,
Y i:l
0_.2‘ Nij 1 Ci 1 r
ij - \2 T i T
Wi = - > (eijk — €)%, Wie = p Z Wij» Wo =7 ZCiWio
k=1 j=1 i=1
Note that
2

_ 1 r _
0 0
US = MS6+ C_TZ Zawnwew -5 U], and



38

r

_ r 1 Ci 1 T 1 ci
We = MSE™ — ) SZ — 52,

Under the assumptions in (3.1.3), it can be easily verified that, as min (¢;) — oo,

2
T

1 1 [& _ P T P
\/5 ZH ;Jijnljeij. —>0, \/5 C UC’_)O’

C —1r+“ -7
=1

T 1 Ci 1 r 1 ci
\/5070_7.;0;53]20, \@C_r;mzmjsfjio

J=1

Combining the above we have that, as min (¢;) — oo and 7, n;; remain fixed,

Vo~ ME = M50 (2.5.11)
C C . Je
MSE**

Following the same derivation in the proof of Theorem 2.2.1, one can easily get the

asymptotic distribution of \7/;5C as

\ / *k d *ok
\/a(vfc — Ky ) - NQ(Ovzi )v

where p;* and X7 are

1 2 1 .52 ] )
E(VS) = o 2 Uz‘lj + 2 25 nigi; ~ | M + 6 5 and
& 25 % ai
ci - Cov(V2,)
L L BN PO oL Rl N
a 1 o A y
O 2?1 j ’I'L'Ljil C’L ] n’Lj 1 1
2b1; +462; 0O 1 1

N 1z 21 I b3i 2 E;"*

0 2b; 11
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By the independence among V¢ | the assumptions in (3.1.3) and the asymptotic equiva-

c?

lence shown in (2.5.11), we then have

a; +0 "
Ve Mg - 7T | S (o, ZAZ-E;‘*) 7
al =1
where a1 and 6; are as defied in the theorem above. Finally, using the A-method with
s = (1,—(1+6**)) /a1, 0** = 61 /ai, one can easily get the limiting distribution of F}*

as shown in (2.2.19) and complete the proof.



Chapter

Testing for the Sub-classes Effect in
Two-fold Nested Model with large

numbers of sub-classes and classes

The purpose of this chapter is to extend the results in Chapter 2 to cases having a large
number of classes (r) and a large number of subclasses (¢;), while the cell sizes remain
small. It is organized as follows. The first section that follows gives the asymptotic theo-
ries for the proposed test statistics in the two-fold nested model, both under homoscedas-
ticity and under heteroscedasticity (more specifically, under general heteroscedasticity,
as described in the previous chapter). In Section 3.2, simulations are used to compare
the corresponding procedures with the classical F test procedures. In Section 3.3, we
demonstrate an interesting application of our methodology for testing the lack-of-fit in

regression, which is in fact the core of this chapter.

3.1 Main Results

The proofs of the asymptotic theorems presented in this section are basically similar to

those in Section 2.5 (with some slightly more tedious calculations) and hence omitted.
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3.1.1 Homoscedastic Designs

Under homoscedastic assumption (i.e. 0;; = o), we have the following theorem giving
the asymptotic distributions for the test statistic 2, as defined in (2.1.7), when the

numbers of classes and sub-classes (i.e. r and all ¢;) are both large.

Theorem 3.1.1. Consider the model and assumptions given in (2.1.1), (2.1.2), and the
decomposition of the means given in (2.1.8). In addition, we assume that there exist k,

n>1, and n € (0,00) such that as r — oo and min (¢;) — oo,

E(e%k) =0, E(efjk) =, and Ele;x|*T* < 0o for some € > 0;

Ne I emm 1
\/5<C—n>—>0, 6zzn—ﬁ—>@<oo, (3.1.1)
=1 j=1
Then, under alternatives 0;; which satisfy
1 <& 52.
\/5 622711]%79 —>0,
i=1 j=1

as r — 00, min (¢;) — oo while n;; stay fized, we have
VO (Fe = (1+0) 4 N (0,3,),

where

(1+06)2

n —

m+20)(an—1)+6*m+n — 2)'

Ye=2+4+460+2
+ 46 + -1y

+ (k—3)

Under the null hypothesis Hy : 6;; = 0, which results in 0 = 0, we then have

\@(Fg—1> iN(O, 2+n31(’£_(?2(_n?;2_")>. (3.1.2)

3.1.2 Heteroscedastic Designs

Consider the unbalanced two-fold nested model with (general) heteroscedasticity, as

described in (2.1.1). The following theorem giving the asymptotic distributions for the
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proposed statistic F{*, defined in (2.2.17), when the numbers of classes and sub-classes

are both large.

Theorem 3.1.2. Consider the model and assumptions given in (2.1.1), (2.1.2), and the
decomposition of the means given in (2.1.3). In addition, we assume that there exist K;j,

ai, by, be and by such that as r — oo and min (¢;) — o0,

E(e Z]k) 0, E(efjk) = kij, and Elejji|* < oo for some e > 0;

V(& —a | —o. Y e —

i=1 j=1 i=1 j=1
1 T
c )IH3

1=1 j=

PEL AR D) DL I
14

11]1

Then, under alternatives 0;; which satisfy

1
\/5 azzmjéfj—t% CZZRU(S?JO‘” —>92,

i=1 j=1 i=1 j=1

as r — 00, min (¢;) — oo while n;; stay fized, we have, with 0* = 01 /a1,

VO (Fg —(1+6%) % N (0, %

[2([)1 + bQ) + 4(92 + 529*) + (2[)2 + b3)0*2]> .
1

Under the null hypothesis Hy : 6;; = 0, which results in 0* = 0, we then have

\@(Fg*—nimv(o, :

ay

3.2 Simulation Studies

In this section, we use simulations to compare the achieved a-levels of several test proce-
dures when the number of classes, 7, equal to 5, 30, and 60. For each r, we study different
combinations of numbers of sub-classes with the average ¢, defined as C/r = ) . ¢;/r,

equal to 5, 30, and 100 respectively. More specifically, for ¢ = 1,--- ,r — 1, we use

c; = round(r ¢ X;), where \; = 0.02 + (1 —0.02 r) x ~ (2rjr1)’ and ¢, is so chosen that
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>oi_i¢i =r-¢ Then the number of observation in each sub-class (n;;) is generated by

truncated Poisson distributions: n;; = Z;; x [1 — I(Z;; < 3)] + v; x I(Z;; < 3), where

I is an indication function and Z;; ~ Poisson(v;), @ = 1,---,r; j = 1,---,¢;. The
values of v; used in our simulations are v; = 2+ 10 x I(i = 4, 14,---,54) for cases
under homoscedasticity, while use v; = 5+ 7 x I(i = 4, 14,---,54) for cases under

heteroscedasticity. As for the values of parameters in the decomposition (2.1.3), we use
p=0a =—(r/2)+i—1fori=1,---,r—1, and o, so chosen that ), n;.a; = 0.
In addition, 0;; = 0 = 1 are used in the cases under homoscedastic designs, while
oij =b6x1I(i=3,13,---,53)+ (j/ci), Vi=1,---,r; j=1,--- ¢, are used when the
designs are heteroscedastic.

For each case, four distributions of e;;, are studies: (i) Normal : the standard
normal; (77) Exponen: the exponential distribution with A = 1; (i77) LogNorm: the
log-normal distribution whose logarithm has mean 0 and standard deviation 1; and (iv)
Mixture: the mixture distribution defined as Uy - X7 + (1 — Uy) - Y1, where U; ~
Bernoulli(p = 0.9), X; ~ N(—1,1) and Y7 ~ N(9,1).

3.2.1 Simulations under Homoscedastic Designs

First, simulations are used to compare two test procedures: the classical F-test procedure,
shown in (2.1.7), and the proposed test procedure of (3.1.2). Let CF and HOM denote
them respectively. For the latter one, procedure HOM, the empirical versions of n, n

and k, denoted as 71, 7 and &, are needed. More specifically,

I I~ 1 S > (Vi — Y )
R ) I R g S 7
C 4 - C « - Nij NC . (MSE)2
i=1 j=1 =1 j=1

The achieved simulated sizes, based on 10,000 simulation runs, are shown in Table 3.1.
From Table 3.1, we can see that the classical CF procedure is liberal in the unbal-
anced design at all non-normal distributions, especially in the case of the log-normal
distribution. On the other hand, the proposed HOM procedure performs well with all
distributions with the achieved a-levels approaching the nominal one as the number of

classes (r) and the average number of sub-classes (¢) are both large.
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r=25¢c=2>5 r=230,c=5 r=060,c=5

CF HOM CF HOM CF HOM
Normal 0.0500 0.0883 0.0480 0.0768 0.0488 0.0745
Exponen  0.0853 0.0978 0.1203 0.0983 0.1136 0.0921

LogNorm 0.1267 0.0998 0.2084 0.1135 0.2167 0.0997
Mixture  0.0827 0.0901 0.1062 0.0873 0.0938 0.0827

r=5,¢=30 r=30,¢=30 r =60, = 30

CF HOM CF HOM CF HOM

Normal 0.0446 0.0541 0.0500 0.0556 0.0463 0.0519
Exponen 0.1064 0.0690 0.1200 0.0641 0.1206 0.0630
LogNorm 0.1890 0.0681 0.2425 0.0683 0.2715 0.0705
Mixture  0.0911 0.0583 0.0941 0.0563 0.1035 0.0573

r=5,¢=100 r=30,e=100 r=60,¢=100

CF HOM CF HOM CF HOM

Normal 0.0477  0.0520 0.0511 0.0542 0.0504 0.0517
Exponen 0.1120 0.0588 0.1195 0.0555 0.1166 0.0527
LogNorm 0.2344 0.0673 0.2813 0.0659 0.2886  0.0637
Mixture  0.0949 0.0531 0.1005 0.0546 0.0972 0.0512

Table 3.1. Achieved a-levels over 10,000 simulation runs under homoscedastic and unbalanced
design at nominal o = 0.05.

3.2.2 Simulations under Heteroscedastic Designs

In this section, we compare three test procedures: the classical F-test procedure, the
proposed test procedure of (3.1.2), and the proposed test procedure of (3.1.3). Let CF
and HOM denote the first two as before, while let HET denote the last one. Note
that the accuracy of procedure HET requires consistent estimation of by and bo, which
needs unbiased estimation of U;lj for all 4, j. For such unbiased estimation we use the
U-statistics with the kernel (Y1 — Yij2)2/2 x (Yijs — Yij4)2/2. As a consequence, the
application of procedure HET requires n;; > 4, although Theorem 3.1.2 requires only
n;; > 2. The achieved simulated sizes, based on 10,000 simulation runs, are shown in
Table 3.2.

As expected, Table 3.2 reveals that the proposed procedure HET, although some-
what liberal as r» and ¢ are small, outperforms both of CF and HOM procedures in all

simulations.
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r=5¢c=5 r=30,c=5 r=60,c=5

CF HOM HET CF HOM HET CF HOM HET

Normal  0.322 0.348 0.120 0.321 0.329 0.115 0.252 0.259 0.096
Exponen 0.313 0.329 0.102 0.301 0.289 0.096 0.244 0.230 0.087

LogNorm 0.284 0.282 0.087 0.285 0.239 0.088 0.242 0.190 0.075
Mixture  0.280 0.281 0.084 0.288 0.272 0.090 0.247 0.233 0.077

r=295,¢c=30 r=30,c=30 r =60,c = 30
CFk HOM HET CF HOM HET CF HOM HET

Normal 0.613 0.603 0.075 0.421 0.402 0.066 0.536 0.518 0.062
Exponen 0.626 0.570 0.072 0.430 0.367 0.065 0.538 0.473 0.057
LogNorm 0.605 0.437 0.057 0417 0.246 0.052 0.533 0.332 0.050
Mixture  0.594 0.537 0.060 0.420 0.361 0.053 0.533 0.478 0.056

r = 95,¢c = 100 r = 30,¢ =100 r = 60,c = 100
CF HOM HET CF HOM HET CF HOM HET

Normal 0912 0.906 0.063 0.610 0.586 0.057 0.714 0.691 0.058
Exponen 0.908 0.875 0.058 0.609 0.536 0.054 0.720 0.651 0.052
LogNorm 0.905 0.745 0.050 0.586 0.347 0.043 0.682 0.421 0.045
Mixture  0.917 0.889 0.055 0.603 0.543 0.049 0.704 0.652 0.052

Table 3.2. Achieved a-levels over 10, 000 simulation runs under heteroscedastic and unbalanced
design at nominal o = 0.05.

3.3 Application: Ramification for Lack-of-Fit testing in

Regression

Consider the following heteroscedastic nonparametric regression model with two covari-

ates: conditioning on Xi; = z1; and Xo; = x9;,
Y = m(x1i, w2:) + o(x14, x2i) €y, i=1,---, N,

where m(-,-) and o(+,-) are unknown functions. The test of interest is to check whether
the second covariate, X9, should be included in the model. More specifically, the null
hypothesis of interest is Hy : m(x1,x2) = m(x1), Yai, Vas.

Consider the following decomposition:

m(xi,xe) = p+a(r))+o(xy,x2)
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po= Elm(Xy,Xs)]
a(z1) = Elm(Xy, Xo)| X1 =a1] —p

5(371,:132) = m(a:l,arg) — E[m(X1,X2)|X1 = :L’ﬂ
Then, testing
Hy: 6(x1,m9) =0,Vxy, Yoo < Hy: m(zy,22) = C(x1), Va1, VIo.

The idea for constructing the test statistic in this regression setting is to discretise
the first covariate, X1, into r “windows” or classes, and then further discretise the second
covariate, X, nested in class i, into ¢; “sub-windows” or sub-classes so that there are
n;; observations in each of those sub-classes. Here, we consider the simplest case: when
the random errors are homoscedastic and normal (i.e. o(-,-) = 1 and ey ~ N(0,0%))
and the design is balanced (i.e. ¢; = ¢, and n;; = n). We first independently generate
X1; and X3; from i.i.d Unif(0,1), i =1,--- | N, where N =r x ¢ x n. = 30 x 30 x 3. Let
X9 =2 X1+ sin(4 m X3)+ ex, where ex are i.i.d. N(0, O'g( = 1). Then, generate the
response Y using Y = 2- X1+ (5 X5+ €y, where the random errors €y are i.i.d. standard
normal. In Table below, we compare our test for the homoscedastic cases (denoted as
HOM) with the usual sequential test on the regression model Y = 81 X7 + (33 X3 + € with
the null hypothesis Hy : 3 = 0 (denoted as REG).

B2 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

HOM .053 .143 .669 .995 1.00 1.00 1.00 1.00 1.00 1.00 1.00
REG .042 .404 811 899 .060 .112 1.00 .992 1.00 1.00 .246

Table 3.3. Achieved Powers/a-levels over 1,000 simulation runs at nominal o = 0.05.

Two phenomenon are observed from Table 3.3. First, both procedures HOM and
REG achieve reasonable a-levels (i.e. 2 = 0). Second, The power of HOM increases
when the value of (35 increases, and achieves the power of 1.00 as B2 > 0.40; however,
the performance of REG seems very unstable when (2 # 0, suggesting its lack of power

to detect the effect of the additional covariate under alternatives.



Chapter I

Asymptotic Theorems in Testing for

the Class Effect in Two-fold Nested

Model when the number of

sub-classes is large

4.1 The Hypotheses with arbitrary Weights

Unlike the crossed models, the nested models under homoscedasticity are orthogonal
designs for a particular set of weights. The classical two-fold model (2.1.1) with 0;; = o

and the mean decomposition as specified in (2.1.3) is an example:
r ci
Wij = b+ a; + d;5, assuming Zni‘ai =0 and Znij(&j =0, Vi,

=1 j=1

where p, a;, and 0;; are p = fi.., o = fij. — fy  Oij = fij — i,

B 1 & B 1 —
Hi. = W;nijﬂija K. = NC;WM
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In this model, the null hypothesis of no sub-class effect is stated as “41;; does not depend
on j”, or equivalently Hg : 0;; = 0, as shown in Section 2.1, while the null hypothesis
of no class effect is often specified as “fi;. does not depend on ¢”, or equivalently H§ :
a; =0 < ;. = ... The classical F test statistic and the corresponding procedure under
normality and homoscedasticity for Hy : d;; = 0 are given in (2.1.6) and (2.1.7). As for

the class effect, the classical F test statistic for testing Hy: a; =0 is

. MSa ST g (Vi — V)2
FC: m, where MSO[: 1 r—1 s

(4.1.1)

and MSE is as defined in (2.1.5). The Y... and Y;.. in the above definition (4.1.1) are the

unweighted sample overall means and the unweighted sample class means of Yjjp, i.e.

B 1 r B _ 1 ci B B 1 Nij
Y. = Ni ZTLZY;, Y; = — Znin;‘j., Y;] = — ZY;Jk
¢ia i ij 12
J
Then, under normality and homoscedasticity,
F& ~ F._1 No—c, under Hy : o; = 0. (4.1.2)

It can be shown that the hypothesis of no sub-class effect is unaffected by the weights
in the definition; however, the hypothesis of no class effect is actually testing the equality
of f1;., which is equivalently testing the weighted averages of the sub-class means weighted
by the sample sizes. This might not be a sensible way to test for the class effect, since two
researchers investigating the same class effects are in fact testing different hypotheses if
the sample sizes used in their studies are not the same. As a consequence, a better way
of testing for the class effect in the nested models might be to choose the appropriate
weights w;; for the sub-classes, based on their relative importance within a class, and
then decide the sampling scheme accordingly. More details and examples can be found
in Arnold (1981). This chapter is established for providing the suitable test procedures
for such two-fold nested models with arbitrary weights.

We define the average performance of each class, based on the chosen weights w;; on
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sub-classes, by

Cq Ci Ci
S w1
—w =1 WijMij
iy = 23017 =— E wijij, Where w;. = E Wi, (4.1.3)
j=1Wij Wi j=1 j=1

and test the equality of the weighted means fi’,
Hy : @i does not depend on i < [ = pv, (4.1.4)

where

T

1 ¢ 11 L wy
qv = W _— = — Y = .
u..—Q‘;Qzuz., o wzzni/ Q=Y Qi

i j=1 i=1
as our null hypothesis of no class effect.
Further define
1 Cq 1 T
vj=1 Ci=1

where Yw are the unweighted means of Y;;;, within each sub-class, as defined before. The
asymptotic results based on A; and A for testing HY in the nested models, both under
homoscedasticity and under heteroscedasticity, are given in the next section, while the

details of these theoretical derivations can be found in Section 4.3.

4.2 Main Results

4.2.1 Homoscedastic Designs

In this subsection we consider the unbalanced two-fold nested models with arbitrary
weights under homoscedasticity, and derive the asymptotic results for testing for the
class effect both under the null hypothesis H{’ as specified in (4.2.3) and under some
alternatives. As a corollary of Theorem 4.2.1 below, we obtain that the usual, normal-
based, F-test procedure for the class effect is robust to departures from the normality

assumption if the number of sub-classes is large, no matter whether the model is unbal-
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anced.

Lemma 4.2.1. Consider the model and assumptions given in (2.1.1) with 055 = o,

(2.1.2), and (2.1.8). In addition assume that there exists some positive € > 0 such that
1 c; Mg
. 2+ .
lim sup . Z ZE\eijk\ ¢ < o0, Vi.
Jj=1k=1
Then, under the null hypothesis Hy' : [’ = ¥ with arbitrary w;;, as specified in (4.1.4),
we have

*12 E Qi (Ai — A)2 4 X%T,l), as min (¢;) — 00, (4.2.1)
o
i=1

where A; and A are as defined in (4.1.5).

In addition, under alternatives [y’ satisfying
1 o v
@ — ) =, for some 1 € (0,00), (4.2:2)
i=1

as min (¢;) — oo while r, n;; stay fived,

1 ¢ _
52 Qi(4i- A2 L2 ). (4.2.3)
=1

Theorem 4.2.1. Consider the model and assumptions given in Lemma 4.2.1. Provided
that C~2 Y2 E (efjk> — 0, Vi, as min (¢;) — oo, under the null hypothesis HY of
no class effect, we have

22:1 Qi (Ai - A)Q
MSE

d 2 .
= X(r—1)> @S min (¢i) — oo,

where MSE as defined in (2.1.5).

Corollary 4.2.1. Under the model and assumptions of Theorem 4.2.1, the classical,
normality-based, F-test procedure for the hypothesis Hf : o = 0, shown in (4.1.2), is

asymptotically valid even when the model is not normal.
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4.2.2 Heteroscedastic Designs

Lemma 4.2.2. Consider the model and assumptions given in (2.1.1), (2.1.2), and
(2.1.8), and let fi;., fi.., Q;, Q., A; and A be as defined in (4.1.3), (4.1.4) and (4.1.5) with
arbitrary weights w;;. Assume that there exist some positive € > 0 and aii € (0,00), i =

1,--- ,k, such that

1 c; MNij
limsupnf E E E|eijk\2+€ < o0, Vi.
v oj=1k=1

and

Cq

)

Wij o 2 :
g ——0jj — 04, G5 min (ci) — o0. (4.2.4)
j=1 "

O

Var <\/Q>Al> =

<

Define the contrast matriz H as

— =
o |
o
I o
—
o o

o T B R |

(r—1)xr

Let A = (A1, A), py = (B2, ,52), and V4 = diag(afh,--- ,air). Then,
H’UJ
under the null hypothesis HY : ¥ = i, which results in Hu, = HE*1, = 0,_1, we

have
i ! -1
Q. (HA) (HVAH> (HA) % x2_,), as min(e;) — oo. (4.2.5)
Under alternatives [i° satisfying

Q.(Hp,) (HVAH/)_1 (Hpy) — 1, for somen € (0,00), (4.2.6)
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as min (¢;) — oo while r, n;; stay fized, we obtain
’ ’ -1 d 2
Q. (HA) (HVAH) (HA) 32y (). (4.2.7)

Theorem 4.2.2. Consider the model and assumptions given in Lemma 4.2.1. Define

Vy= diag(&il, e ,612%) where
Ci 2 Mg
w. 1 _
~92 Q Z 5 ~92 ~2 2
Wi 5= M ij k=1

Provided that E <efjk> are all bounded away from 0 and oo, under the null hypothesis

Hy of no class effect, we have
! $ A d 2 .
Q. (HA) (HVAH ) (HA) = x{,_1), as min(¢;) — .

Using the Sherman-Marrison-Woodbury Theorem to obtain the inverse of HV 4 H |

along with some algebra calculation (see Section 4.3), one can get

Q. (HA) (HVAH’) ' (HA)

- 1 ERTE
= QA [VAI—WVAlJTVAIIA (4.2.9)
B A2 Q. oA\
= @ 5:02 /N E:UT
i=1 A (Z;"l %) i=1 A
=157

where J, = 1T1; is a r X r matrix with all elements equal to one.
This relation is the main tool used to prove the asymptotic equivalence under Ho-
moscedasticity between the test procedures based on Theorem 4.2.1 and Theorem 4.2.2,

as stated in the corollary below.

Corollary 4.2.2. Consider the model and assumptions of Theorem 4.2.2. Under Ho-
/ N1

moscedasticity, i.e. 0;; =0, Q.(HA) (HVAH > (HA) in Lemma 4.2.2 is asymptot-

ically equivalent to >, Q; (A,- - A)2 /o? in Lemma 4.2.1.
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’ ~ A —1
In addition, Q. (HA) (HVAH ) (HA) /(r—1) in Theorem 4.2.2 is asymptotically
equivalent to the classical F test statistic F&, as defined in (4.1.2), under homoscedas-

ticity.

4.3 Proofs

Proof of Lemma 4.2.1

Recall that

1 C; B ci Tij W
SR ONT IR 9 e
Wj. “— ws.
j=1 Jj=1k=1
and note that
1 &
BE(A) = —- > wijpi; = fg
1
1 & 9 o?
Var(A;) = 3 Zwij Var(pij +o0-€j.) = o

K2

% j=1

Let

m = lim inf (%) , M =limsup (l%) .
g Nij

To prove the asymptotic normality of A;, or more specifically, for the limiting distri-

bution of » 7. >, wi;(Yijk — pij)/nij, we check the Lyapounov condition: Je € (0,00),

2+-€

zgk: /Mj)

c; Tij ‘

LEC = 2+€ZZE

Z "LJ 12 7j=1 k=1
kln

ci Tij

M2+6 . 0_2+6 1 ot .
(om)2+e(n; )2 . > > Eleg[*™ — 0, as min(¢;) — cc.
' =1 k=1

j
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Since the Lyapounov condition holds, we know that, as min (n;) — oo,

A —pe 225 2k e (Yije — pij)

d

= — N(0,1).

O/V«i Wij

/ Q \/Z] Zk Var E (Y;]k — sz)]
Note that

S - _w - o
A= 6262“4" — FE(A)=pY and Var(A)= 0
= .

and hence as min (¢;) — o0,
. T _w d Q T —_w\2 d 2
— (A-p¥) — N(0,1) = ;(A—M..) — X{(1)

In addition, note that

\/@(Ai —p) =

g g o

suggesting that

~ Qi w d
D5 A=) S (),
i=1

where 7 is as defined in (4.2.2).
Then, (4.2.3) follows the fact that A and Y, Q;(A; — A)? are independent, and

S QA - =>Qi(A— A+ Qi (A-p)", as > Qi (4 — A) =0.
The null distribution (4.2.1) is a straightforward result from H{ : g’ = p%, Vi = n=0.

Proof of Theorem 4.2.1

By WLLN, MSFE P, 52, The theorem then follows the Slutsky’s Theorem.
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Proof of Corollary 4.2.1

Take the weights wij = nj;. Then, w;. = n;. = Q;, Q. = Ne, pf = [, i¥ = fi..,
A; =Y. and A =Y... Hence, testing HY : ¥ = ¥, Vi is clearly equivalent to testing
Hy: a; =p; — p.. =0,Vi, and

ZQlA — 4)* an i~ Y.)? = (r—1)MSa.

Then, this corollary follows from Theorem 4.2.1.

Proof of Lemma 4.2.2

Let

o Wi . W
m’ = liminf (Z] O'Z'j> , M7 =limsup <” o*ij) ,
M5 Nij

and note that

¢

E(A’L) = ﬂ?? Var Z 2] .»24,7
i j=1
where 0% are as defined in (4.2.4).
Check the Lyapounov condition: Je € (0, 00),
Le B w” 2+4€
o = = e 3| (e
n’L i 1 k=1
()
MO’)2+€ 1 ¢ Mij -
€ .
—(m0)2+6( ) Z ZE leije]” "¢ — 0, as min(¢;) — oo,
' j=1 k=1

and hence

VQ (A — i)~ N(0,03), Vi = VQ (A=) -5 No(0,,V.a).
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Hw
Under HY : g% = i%, Vi = Hp, = Hu%1l, = 0,_1, we have

i =

VQHA -4 N,_1(0,_1, HV 4H) (4.3.1)

— Q. (HA) (HV4H) ' (HA) -5 x? ), as min (¢;) — cc.
On the other hand, under alternatives i}’ satisfying (4.2.6), in which 7 is defined,
- d
Q. (HA) (HVH') ™ (HA) -5 x% ().

Proof of Theorem 4.2.2

Since é}?j are unbiased estimators of 0;; and F (efjk) are bounded, by WLLN,

A P . .
0'1242_ —>01242,, as min (¢;) — oo, Vi=1,---,r.

As r is fixed/finite, we further have 61241_ — 01241_ £, 0, uniformly in 4. Since V 4 and \Y% A
are r X r diagonal matrices with elements 01242, and [71241,, \Y A—Vy £, 0 follows.

In addition, because for any r x r squared matrix C, the elements of HCH' are con-
tinuous functions of the elements of C, and the dimension r is finite, by CMT (continuous

mapping theorem), we get
HV, H - HV H £, 0, as min (¢;) — oo.

Similarly, by the fact that the elements of any inverse matrix with finite dimensions are

continuous functions of the elements of the original matrix, CMT further tells us that
<7 / -1 n—1 P .
(AVAH)  — (BEVAE) " 50, as min(c) - oc.
Under the null hypothesis HY’, by (4.3.1) and the Slutsky’s theorem,

(JQHA)' [(H\A/'AH’>_1 = (HVAH’)I} (VQHA) 20, as min(e) - oo,



which completes the proof.

Calculation of Relation (4.2.9)

Let D = diag(afh, e ,01247.). Then,

0.2 O/ 1/
HVAH/ = (]‘7”—1 ’ _Ir—l)(r—l)xr A -t r=1
0,1 D -1
rx(r—1)

2 9/

=\ 1r—1

= (17"—1 ’ _Ir_l)(T—l)Xr 1

-D

= 03,111, + D.

Recall the Sherman-Marrison-Woodbury Theorem:

0

-1 _ _ _
(Fpo + prxlx’lxp) =T - mf xx'T 1.
Hence,
2
(HV,H) ' = D' = T4 D1, 41, D!
1+0%3 1, D711, "
1

— H (HV,H)'H = HD 'H- H'D '1, ,1._,D'H.

(k)

Because
1,
H/D—IH — r— D_1 (]—r—l |IT—1)(T—1)><7‘

_Ir—l
rx(r—1)

1 0.2 1 0'2

_ /o, /74, (L1 | Tr—1) (1) er

D1

rx(r—1)
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¢ 1 __1
01242 012%
1 1
R "1
_ Ay Ay , where ( = ZT )
: s i=2 74
1 1
—— 0 -5z
Ap Ap TXT
and
1
—L
H/Dfll 1/ DilH o 0',42 _ 1 __1
r—14p_1 - C’ A ;
: T4z TAr ) 1xr
_ 1
2
O-Ar rx1
2 1 1
-2 ’ T2
¢ = ¢ 2 ¢
1 C 1 1 1
5 2] 2 2
_ JA? (01242) UA2 "
— b
_ 1 ¢ 1 1
P] 2 2 2 2
T4, T4y Ay (UAT) rXr
we obtain
1 H (HV,H) 'H
ZT 0.2 A
i=1"A;
1 1 1 !
—5— . 5 -3 2 2 2
%, (Zz;ﬁl gAi> 04, %4, 94, %A,
1 1 !
—— 2 i£2 3 2 o2
_ Ay %4, &\ ZZ#Z Ta,; 743 %Ar

TXTr

1 S S T D
72 o2 a2 o4 (Z#T 012‘\1)

- JAT‘ O'Al Ap JAQ
On the other hand,

(LV3'1,) Vil - VL vy
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r 1/(71241 0 1/01241
-1 CA; "
0 1/012% 1/012%
1(2#1) it =
= (mij),,, where m;; = i ) ! o
—mv if i # j;

which completes the proof of Relation (4.2.9).

REMARK Let W = V;l — VZIJer/l;Vgllr, which is a r x r square matrix of
rank (r —1). It can be shown that (1) W1, =0, and (2) WV4W = W, ie V4 isa
generalized inverse of W ( see Lemma A.1. of Akritas et al. (1995)).

Hence, Relation (4.2.9) may be further extended to

Q. (HA)' (HVAH’)_1 (HA) = QA'WA

— Q. (WA) (WVAW’)_ (WA).
Note that under Hy : pf = g, Vi, not only HA = 0,_1 but also WA = 0,.

Proof of Corollary 4.2.2

When o055 = 0, (4.2.4) tells us that

2

—~0 —>01241,, as min (¢;) — o0.

7

/ A1
Using (4.2.9), it is clear that Q. (HA) (HVAH ) (HA) is approximately equal to

r A? B Q. r A 2 - i . | .
Q. (; C}(ﬂ/@i) (Zr Qi ) (Zl Q-UQ/QZ') = 2 ;Qz (AZ A) .

i=1 Q.02 i=

/ A 1
The asymptotical equivalence between Q. (HA) (HVAH> (HA) /(r — 1) and F§

follows similarly.



Chapter

Testing for the Covariate Effect in
the Fully Nonparametric ANCOVA

Consider the fully nonparametric ANCOVA model with the observed pairs (X;;,Y:;), i =
1,---,k, j = 1,--- ,n;, as introduced in the beginning of this thesis (Section 1.2 in

particular), which specifies only that
Yij‘Xij =T~ Fw(y) = M(y) + Al(y) + Di(y;;n)7 i=1,---,k,

where the decomposition of Fj, is defined in (1.2.7). In the present chapter, we de-
velop a test procedure for testing the null hypothesis of no covariate effect in the fully

nonparametric fashion:
Ho(D): Di(y;2) =0 <& Fi(y)=F(y), foralls,allzandally. (5.0.1)

The basic idea used to construct the test procedure is to think of the continuous co-
variate variable as a factor with many levels and utilize suitable test statistics from the
heteroscedastic unbalanced two-fold nested model. As outlined in Section 1.3, there are
two possible approaches: non-overlapping windows approach and overlapping windows
approach. The former one applies directly the asymptotic results from Chapter 2 and

has been demonstrated on a real data set in Section 2.4.2. On the other hand, the
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technical derivation of the owerlapping windows approach involves some complications
resulting from the augmented dependence in our design. New asymptotic tools based
on the projection principle are hence developed in this chapter to accommodate those
challenges.

The rest of this chapter is organized as follows. Section 5.1 introduces how to im-
plement the overlapping windows approach and the corresponding test statistic. In
Section 5.2 we present the asymptotic techniques and the main theoretical results, while
in Section 5.3 we summarize numerical results from several simulation studies. Three
real data sets are analyzes in Section 5.4: the Low Birth Weight data, the Ethanol data,
and the Acid Rain data from the National Atmospheric Deposition Program (NADP).

Finally, we provide proofs of the main theorems and some technical details in Section 5.5.

5.1 The Test Statistic

To implement the overlapping windows approach, we first enumerate the observed pairs
(Xi5,Y55), i=1,---,k; j=1,---,ny, such that X;; < Xjo <--- < Xjp, (i.e. assuming
no ties) for each i. Thus, each ordered covariate value corresponds to a level of the
nested factor in the artificial two-fold nested design. The observations at each such level
(i, X;) are augmented by including in it the responses corresponding to the w covariate
values X;; that are nearest to X;, in the sense that
. 1 &
, where Gi(z) = — ZI(XZ-]- < x).

2n; n; 4
J=1

N w—1

Gi(Xij) — Gi(Xir)| <

Note that @Z(x) is the empirical distribution function of the covariate in group ¢. For
simplicity, we only consider w to be odd in this chapter.
Let Z;+ denote the t" observation at level (4, X;,) of subclass factor group i in this

artificial two-fold nested design. In particular, letting

- 2ny

. . -1
Wi, = {1 <Jg < |Gi(Xyj) — Gi(Xir)| < = }’
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we have
n;
Zipt = Yy iff > (X < wis L€ W) =t, (5.1.1)
=1
=1, k;r=1,--- ng; t=1---  w.
Note that, for each ¢ = 1,...,k, the number of observations in levels (i, X;;.), r =

1,...;,(w=1)/2and r =n; — (w+1)/24+1,...,n; is less than w. More specifically,

wir = Y5t 4, if 1<r <t
Wip = W, if wT_l-l-l STéni—wT_l; (5.1.2)

Wy =Y 4+ 140 —r, if ni— Y 4+1<r <n,.

It can be shown that

n;
w;. = Zwir
r=1
w—1 ni_w—l
Sl DOE=mrea B I SEE B I DR e
= 5 r w n; 5 n; T
r=1 7":wa1+1 r:ni7%+1
w—1 w—1 1 w—1 w+1
— o N+9|—=. = -4 -, = - Z'-
w(n; w—i—)—i—{z 5 t3 2]
w—1)3w —1
= w(ni—w—i-l)—i-( )i )
N w? —1
Wi = MW —
i ;W 1
k
k(w? —1
= w. = EW'ZNUJ—(ZL)’
1=

where N = Zle n;.
Consider a heteroscedastic unbalanced two-fold nested design with & classes/groups

and n; sub-classes nested in class i, ¢ = 1,--- k. Let Vi1, -+, Vipy,, denote the w;,
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observations of sub-class r in class i, ¢ =4,--- ,k; r =1, -+ ,n;. Define
MST 1 Ly 2
D [/ [/ .
Fp = MSE'D’ where MSTp = m ;;wzr (‘/zr — Vz) )
1 w 1
ir = 2
MSEp = N%,ZZ (1— w) ww—lz(%”_v"’") : (5.1.3)
i=1 r=1 t=1
where
1 Wip 1 U
Vir. = 0, Z‘/irta Vi. = wi Zwirv;r--
=1 vor=1

We replace Vi in (5.1.3) with Zjq, i =1,--- Jk; r=1,--- ,n;; t=1,--+ ,wy, and have

k n
MSTp 1 2 — N
Fp = , where MSTp=———> Y wi (Zir. — Zi.)",
MSEp N—k & &
1 w; 1 &
MSEp = ——> > (1 —~ ) S (Zine — Zir.)?, (5.1.4)
N — kJ PR — wj. Wiy — 1 —1
1 Wiy 1 nq
Ziy. = Z Zirty, Lio = — ) WirLir..
Wir 1= Wi 13

Define the test statistic for the null hypothesis of no covariate effect (5.0.1) as

Tp = MSTp — MSEp. (5.1.5)

In this chapter we study the asymptotic distributions of Tp under both the null and the
local alternative hypotheses. Although we do not use Fp in (5.1.4) as our test statistic
here, one can easily prove that the MSEp converges to some constant in probability
as min (n;) — oo under weak regularity conditions, and apply the Slutsky’s theorem to

obtain the asymptotic distributions of (Fp — 1) if desired.
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5.2 Main Results

5.2.1 Some notations and Assumptions

Let Ziy = (Zivy s Ziv2y s Zirw,, ) be wir x 1 vectors, Z; = (Z;l, Z;Q, e ,Z;ni)’ be w;. x 1
vectors, and Z = (le, ZIQ, e ,Z;g)’ be a w.. X 1 vector containing all observations in the
augmented design. In addition, let 14 denote the d x 1 vector of 1’s, J4 = 1d1,d, and Iy
be the d-dimensional identity matrix. @ denotes the operation of Kronecker sum.

It can be shown that M SEp = Z'T1Z (as in Section 5.5.1) with

k: @@ <1 _ 'wz'r> wlrl_ : [Iwi,« - ;Jwir] , (5.2.1)

i=1 r=1 Wi-
while M STp = Z'TyZ with

U

1
wy — — Jw,. | - 5.2.2
Dot o 3 522

7.
r=1

k
oy @

Then, the test statistic Tp = M STp — MSEp = Z'(Ty — T1)Z = Z' AZ, where

k n
R Wy 1 1
A=T,-T; = 1-—= : Jow,;
? ! @@[wzr < wi-)wir_l wi’r:| i

k 1 ko w 1
_ il j R—— I
- Wi Gj@< z’->wzr—1w"
= diag{A1, -+, Ag},
ng
with Al = @(airtjww Yir w”) ﬂl Wy
r=1
Bi Bilugluy - —Bilugly,,
B —ﬁilwigl;ﬁl B2 :
_51.1%% l/wu . o Bin,

Wi;. XW;.

T (Nk?)iwirl) (1_1;-); = m
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o 1 1_ Wi\
T = N — k) (wir — 1) w. )
0, if g =h;

Bir = (bz’r,gh)wirxwirv bir,gh = .
Qi — Bi = Yir, if g # h.

The following notations will be frequently used in this chapter:
Z' =7 - E(ZIX); Y=Y~ E(Yy|Xy); oi()=Var(Yy | Xij = ).

To study the asymptotic distributions of Tp, we need to further define two quadratic

forms, Z¥ApZ* and Z*' A}, Z*, where

k  n; k  n;
Ap=PEPB: and AL=PHEPB;, (5.2.3)

i=1 r=1 i=1 r=1

with the B, defined as By, with +;, replaced by

= e k)l(w 5 (1 _ ;) . (5.2.4)

These two quadratic forms will serve as approximations of the test statistic Tp = Z'AZ
in our asymptotic derivations. Z* ApZ* is obtained by an application of the projection
method, as introduced in Akritas and Papadatos (2004), while Z*' A% Z* is designed to
simplify our calculations in the proofs. (The calculation of the projection matrix Ap is
quite tedious and hence omitted here; see Section 5.5.1 for details.)

The asymptotic distributions of Tp are derived under the following assumptions:

Assumption A1l. (1) Vi, 3\; € (0,1), such that n;/N — A;, as n = min (n;) — oo;

(2) w>2and n % — 0, for all 0 < a < 1;
Assumption A2. E(Yé‘ | Xij = x) are uniformly bounded in i, x;

Assumption A3. The covariate X is a continuous random variable with bounded support S;, c.d.f

Gi, and p.d.f g;, : =1,--- , k. The density g; is bounded away from 0 on 5.
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5.2.2 Asymptotic Distribution under the Null

To obtain the asymptotic distribution of N'/2w=1/2Tp under Hy(D), we first show in
Lemma 5.2.1 that observations are (conditionally) centered under the null hypothesis. In
addition, Lemma 5.2.2 shows that this centered quadratic form can be approximated by
another (centered) quadratic form based on the projection matrix A p, while Lemma 5.2.3
tells us that this projection quadratic form can be further approximated by a simpler form
based on A7, as defined in (5.2.3). The asymptotic variance of this simpler quadratic form
is then given in Lemma 5.2.4, while Theorem 5.2.1 provides the asymptotic distribution

of the proposed test statistic under Hy(D) (see Section 5.5.2 for all corresponding proofs).

Lemma 5.2.1. Under Hy(D),
Z'AZ =7"AZ".
Lemma 5.2.2. Under Hyo(D) and Assumptions A1-A2,
NY/2yy=1/2 (ZYAZ* — 7" ApZ*| 20, as min (n;) — oo.
Lemma 5.2.3. Under Ho(D) and Assumptions A1-A2,
NY2yy=1/2 (Z'ApZ* — 7' A} Z7] T 0, as min(n;) — oo.

Lemma 5.2.4. Under Hyo(D) and Assumption Al,

M) 52 5 0, Va, (of = (02)?)

provided that o?(x)

k
22w —1
Var(NY2w 1225 A% Z%) = 3((“’)) Y Xiof +o(1), as min (n;) — cc.
=1

w—1
Theorem 5.2.1. [Asymptotic Null Distribution]
Under Ho(D) as defined in (1.2.9) and Assumptions A1-A2,

provided that o?(x) D) o2 >0, Vz, (o} = (67)?)

7

(1) if w is fizved,
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k

22w -1
N2~ 127, 4N <0’ 3((101)) E )\ia?> , as min (n;) — oo;
w —_—
i=1

(2) if w — o0 as min (n;) — oo (while Assumption A1 holds),

k
4
=1

5.2.3 Asymptotic Distribution under Local Alternatives

The asymptotic power is investigated by considering the local alternative sequence:
Hu(D): Di(ysa) = (n; - w)~YACi(ys ), (5.2.5)

where Cj(y;z), i = 1,--- ,k, are chosen so that [ydC;(y;z) are uniformly bounded
and uniformly Lipschitz continuous for all ¢ and x. Note that (5.2.5) implies that the
alternatives need to approach the null at the rate of (inf; n;w)~/* to ensure nontrivial

power. Define

o i Now { / [ / yd@(y;x)rdam - { [ [wiciw x)dai@)} 2} . (526)
Recall that

Nl/Zw—l/QTD _ N1/2'UJ_1/2(Z/AZ N Z*/AZ*) + Nl/Qw—l/Q(Z*/AZ* . Z*/ADZ*)

+N1/2w—1/2(Z*IADZ* - Z*/A*DZ*) + Nl/Qw_l/QZ*’A*DZ*.

In this section we first show that, under the local alternative sequence as defined in
(5.2.5), the first term converges in probability to fp as min (n;) — oo in Lemma 5.2.5,
while the second and third terms remain negligible as shown in Lemmas 5.2.6 and 5.2.7.
Next, the asymptotic variance of the simpler quadratic form is given in Lemma 5.2.8.
Finally, Theorem 5.2.2 provides the asymptotic distribution of the proposed test statistic
under H, (D) (see Section 5.5.2 for proofs).
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Lemma 5.2.5. Under H,(D) and Assumptions A1-A3, as min (n;) — oo,
N2 2 (A7 — 77 AZ*] L 6p,

where Op is as defined in (5.2.6).

Lemma 5.2.6. Under H,(D) and Assumptions A1-AS3,

NY/2yp=1/2 (Z'AZ" — 7' ApZ*] 20, as min (n;) — oo.
Lemma 5.2.7. Under Hy,(D) and Assumptions A1-A3,

NY2y= V2 (2 ApZ* — 2" A} Z] L0, as min(n;) — co.

Lemma 5.2.8. Under H,(D) and Assumptions A1-A3, provided that o?(x) is positive

and uniformly Lipschitz continuous in x and i, (o}(z) = [0?(x)]?)

k
VCLT(NI/2U)_1/2Z*/A*DZ*) — 23((211}_11)) Z AzE[Jf(X)] + O(].)7 as min (’I’LZ) — OQ.
w —_—
=1

Theorem 5.2.2. [Asymptotic Distribution under Local Alternatives]
Under H,(D) as defined in (5.2.5) and Assumptions A1-A3, provided that o?(x) is

positive and uniformly Lipschitz continuous in x and i,

(1) if w is fized, as min (n;) — oo,

y 22w — 1) &
1/2, . —1/2 - , 4 .
N2y 121 S N (9]3, 3w 1) ;&E[az (X)]) ;

(2) if w — o0 as min (n;) — oo (while Assumption A1 holds),
PR
N2yt 4 N <9D, - ZA@W(X)]) ,
33

where Op is as defined in (5.2.6).
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5.3 Simulation Studies

In this section, simulations are used to compare the achieved sizes and/or powers of
several test procedures for testing the null hypothesis of no (simple) covariate effect. Let
NP(w) denote the proposed nonparametric test using overlapping windows of size w. By

Theorem 5.2.1, NP(w) rejects at level « if

N\ 2 22w — 1) < «
— T — )\iAZ‘lZOM
(w) D> B on) 2N

where Z, is the (1 — «)100th percentile of the standard normal distribution and Ai is
the empirical versions of A;, namely N = ng /N. The 614 can be any consistent estimator

for J?, and the one we use in the simulations studies shown in this section is

where 6}(X;,) is the U-statistic of the observations in window W, (i.e. the window
centered around X;,.) with the kernel h(z1, 22, 23, 24) = (21 — 22)? X (23 — 24)%/4. Another

possible simple estimator of af is

n;—3

A Ak 1
ol = ——— > (Vi = Yij1)? x (Yijz — Yijia)?, (5.3.1)
4(n; — 3) =

which can be thought of as a modified Rice’s estimator (1984). From simulations (not

shown here), the performance of NP(w) using &;1 seems slightly better than the one using

5

%, so we only include the results using the former. In addition, for simplicity, we only

4

use windows of size 5 to compute the estimator &; in our simulations, regardless of the
window size used in computing the test statistic Tp.

All simulations are demonstrated using two groups (kK = 2) and one continuous
covariate whose values are randomly generated from the standard uniform distribution
U(0,1). The proposed NP(w) test is compared with two alternatives: the classical F

test (denoted as CF') and the rank-based test of McKean and Sheather (1991) (denoted
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as Drop). Both of these tests can be directly implemented in R (2009). For more details
about the Drop test in R, see Terpstra and McKean (2005).

5.3.1 Simulations under Heteroscedasticity and Non-Normality
We first compare the achieved a-levels of these three test procedures when homoscedas-
ticity does not hold. The data for our two groups are generated from

Ylj :9-€1j and }/Qj :2+62j7

where e;; ~ N(0,1), ¢ =1, 2, for § = 1, 3, 5, 10. Note that, when § = 1, the ho-
moscedastic assumption in fact holds. The achieved a-levels, based on 10,000 simulation

runs, at nominal level of .05 are shown in Table 5.1.

Table 5.1. Achieved a-levels over 10,000 simulation runs under homoscedasticity (6 = 1) and
under heteroscedasticity (6 # 1) at nominal o = 0.05.

(n1, n2) 0 CF Drop NP(5) NP(7) NP(9)
(20, 30) 1 .0508 .0515 .0457 .0324  .0243
3 1085 .1408 .0664 .0476  .0345

5 .1237 2088 .0702 .0506  .0367

10 .1308 .3212 .0730 .0544  .0407

(40, 60) 1 .0462 .0464 .0482 .0402  .0340
3 .1007 .1358 .0692  .0546  .0481

5 1159 2158 .0681 .0570  .0480

10 1258 .3352 .0728 .0609  .0526

(150, 200) 1 .0519 .0498 .0508 .0453  .0404
3 .0901 .1265 .0645 .0605  .0563

5 1019 .2019 .0616 .0564  .0532

10 1083 .3219 .0639 .0610 .0572

Table 5.1 makes it clear that both the CF test and the Drop test are too liberal
under heteroscedasticity, although the CF test appears to become less so when the num-
ber of observations, n; and ng, increase. On the other hand, the proposed procedure
NP (w) performs reasonably well both under homoscedasticity and under heteroscedas-
ticity, though it is somewhat conservative in the case of homoscedasticity, especially

when the number of observations are small.
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In addition, we investigate the effect of normality by considering data generated from
some non-normal distributions. More specifically, we generate Y;; from the exponential
distribution with rate equal to either .2 or 1 (denoted as exp(0.2) and exp(1.0)), and
from the the log-normal distribution whose logarithm has mean 0 and standard deviation
equal to either .2 or 1 (denoted as inorm(0.2) and Inorm(1.0)) . The achieved a-levels,
based on 10,000 simulation runs, at nominal level of .05 are shown in Table 5.2.

Table 5.2. Achieved a-levels over 10,000 simulation runs under non-normality at nominal
a = 0.05.

(nl, ng) Ylj ng CF Drop NP(5) NP(7) NP(Q)
(20,30)  exp(0.2)  exp(1.0)  .1186 2138 .0557 0309 .0275
exp(1.0)  exp(1.0)  .0502 .0461 .0445 .0318  .0227
Inorm(0.2) Inorm(1.0) .0528 .0922 .0516 .0407  .0302
Inorm(1.0) Inorm(1.0) .0541 .0451 .0358 .0232  .0168
(40, 60)  exp(0.2)  exp(L.0)  .1137 2247 .0550 .0446 .0362
exp(1.0)  exp(1.0)  .0495 .0445 0421 .0325 .0285
Inorm(0.2) Inorm(1.0) .0533 .0987 .0469 .0376 .0344
Inorm(1.0) Inorm(1.0) .0504 .0449 .0356 .0271  .0216
(150, 200) exp(0.2) exp(1.0) 0978 .2069 .0553  .0483  .0466
exp(1.0)  exp(1.0)  .0518 .0484 0434 .0381  .0360
Inorm(0.2) Inorm(1.0) .0637 .1131 .0463 .0410  .0388
Inorm(1.0) Inorm(1.0) .0517 .0456 .0362 .0309 .0293

Although it is well-known that the classical F test is robust to the departure from
the normality assumption when the number of observation goes to infinity (see Arnold
(1980)), Table 5.2 reveals something very interesting. When the underlying distributions
in the two groups are the same, even though non-normal, the classical CF test and the
rank-based Drop test do perform well. However, if the observations in the two groups
are generated from different distributions, like exp(0.2) vs exp(1.0) or Inorm(0.2) vs
Inorm(1.0), these two test procedures can become much too liberal, as seen in Table 5.2.
This seems to suggest that the insensitivity of the CF test and the Drop test to the
normality assumption only holds within groups, not between groups. As for the pro-
posed NP(w) test, its achieved a-levels are all reasonable under various data-generating

mechanisms, though a comparative conservativeness is still observed with smaller w.
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5.3.2 Simulations under Linearity and Non-Linearity

Due to the sensitivity of the C'F and Drop procedures to departures from certain model
assumptions (see previous subsection), we only use homoscedastic normal errors in the
present subsection.

When the assumptions of the classical ANCOVA model all hold (i.e. under ho-
moscedasticity, normality and linearity), the CF test unsurprisingly outperforms the

other test procedures, as shown in Table 5.3, where the data are generated from

}/1]' = .261]' and YQj =0- ng + .262j, (5.3.2)

with e;; ~ N(0,1),4=1, 2, for # =0, 0.1, 0.3, 0.5. Note that when 6 = 0, data in the

two groups are generated under the null hypothesis.

Table 5.3. Powers over 10,000 simulation runs under linear alternatives at nominal o = 0.05.

(n1, na) 0 CF Drop NP(5) NP(7) NP(9) HOM(5)
(20, 30) level) 0521 0502 .0464 0347 0260  .0964
power) .0952 .0923 .0748 0611 .0497  .1323
power) 5197 4775 3187 .3198 .3109  .3849
power) 9192 8939 .7473 7697 .7724 7877

(40, 60) level) 0525 .05619 .0503  .0409  .0353 .0854
power) .1470 .1370 .0768 .0739  .0705 1171
power) 9988 .9979 .9489 9674  .9757 9419
(150, 200) level) 0513 .0501 .0521  .0479  .0459 0670

power) .4260 .4060 .1124 .1210 .1284 1228
power) .9999 .9997 .8757  .9279  .9527 .8097

0.0 (
0.1 (
0.3 (
0.5 (
0.0 (
0.1 (
0.3 (power) .8342 .8083 .4821  .5308 .5609  .4850
0.5 (
0.0 (
0.1 (
0.3 (
0.5 (power) 1.000 1.000 1.000 1.000 1.000  1.000

To investigate the sensitivity of these test procedures to departures from the linearity

assumption, we further generate data from two non-linear alternatives:

Y1 = 2eq; Versus Yo; =0 (X22j — Xoj) + 2ea5; (5.3.3)

Yij = 2eq; versus Yo; =60 cos(2 m Xoj) + .2ea;; (5.3.4)
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where e;; ~ N(0,1), i = 1, 2, and 0 are as specified in the tables. As in the previous

simulation study, 8 = 0 gives us the achieved a-levels. The achieved a-levels and powers,

based on 10,000 simulation runs, at nominal level of .05 are shown in Table 5.4 and

Table 5.5, respectively.

Table 5.4. Powers over 10,000 simulation runs under quadratic alternatives as specified in
(5.3.3) at nominal o = 0.05.

(n1, n2) 6 CF Drop NP(5) NP(7) NP(9) HOM(5)
(20, 30) 0.0 (level) .0471 .0475 .0467 .0351 .0234 .0980
0.5 (power) .0503 .0488 .0753 .0584  .0428 1385
1.0 (power) .0550 .0536 .1951 .1690  .1350 .2626
1.5 (power) .0633 .0582 4247 3957  .3389 4888
(40, 60) 0.0 (level) 0508 0506 .0527 .0430 0364  .0837
0.5 (power) .0517 .0536 .1060 .0999  .0936 1419
1.0 (power) .0564 .0528 .3387 .3610  .3671 .3693
1.5 (power) .0605 .0567 .7322 .7625  .7706 7253
(150, 200) 0.0 (level) .0506 .0490 .0541 .0495 .0459 0738
0.5 (power) .0520 .0532 .1685 .1900  .2050 1651
1.0 (power) .0572 .0581 .7188 .7920  .8337 6323
1.5 (power) .0641 .0651 .9917  .9953  .9979 9769

Table 5.5. Powers over 10,000 simulation runs under cosine alternatives as specified in (5.3.4)
at nominal o = 0.05.

(n1, no) 6 CF Drop NP(5) NP(7) NP(9) HOM(5)
(20, 30) 0.0 (level) 0483 .0458 .0498  .0346  .0253 1010
0.1 (power) .0514 .0488 .1969  .1797  .1459 .2639
0.2 (power) .0514 .0515 .7023  .6952  .6513 7281
0.3 (power) .0558 .0613 .9700 .9693  .9588 9643
(40, 60) 0.0 (level) 0497 0500 .0505 .0411 .0350  .0829
0.1 (power) .0495 .0501 .3160 .3422  .3544 3357
0.2 (power) .0513 .0512 .9392  .9600  .9666 9200
0.3 (power) .0550 .0592 .9999  .9999  .9999 9995
(150, 200) 0.0 (level) .0515 .0482 .0506 .0478  .0422 .0692
0.1 (power) .0506 .0519 .6572 .7382  .7935 .5693
0.2 (power) .0513 .0505 1.000 1.000  1.000 1.000
0.3 (power) .0564 .0628 1.000 1.000  1.000 1.000

From Table 5.4 and Table 5.5, one can easily notice the superiority of the proposed
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NP(w) test under non-linear alternatives, regardless of the local window size w used.
Tables 5.4 and 5.5 also spotlight the lack of power in detecting non-linear covariate
effects when using the CF test and the Drop test; their achieved powers are very close
to the specified nominal level .05.

Also note that we include the simulation results using the non-overlapping windows
approach, which directly utilizes the asymptotic theorem from the two-fold nested model.
Since the errors used are homoscedastic, only the results of the HOM(5) procedure are
shown here, where the number 5 means that the non-overlapping windows used have
size 5 (i.e. the size of each ‘sub-class’ is 5); see Section 2.4.2 for a description of the
non-overlapping windows approach. Unsurprisingly, HOM(5) procedure performs too
liberally in all simulations shown here, due to the fact that the corresponding numbers
of ‘sub-classes’ are not large enough to make the asymptotic theorem work. For exam-
ple, for the case with (n; = 40, ny = 60), the corresponding numbers of sub-classes
are as small as ¢y = 8 and ¢cg = 12. Even though the achieved a-levels of the HOM
procedure do decrease to about .07 (at the nominal level .05) in cases with n; = 150
and ng = 200, Tables 5.3 — 5.5 show that its achieved powers are not as promising as
those of the NP procedure, based on the overlapping windows approach. This indicates
that the newly-proposed overlapping windows approach does outperform the naive non-
overlapping windows approach in analysis of covariance when testing for the covariate

effect.

5.4 Data Analyses: Three Empirical Studies

5.4.1 Example using Low Birth Weight Data

In 1986, the Baystate Medical Center in Springfield, Massachusetts, collected data from
189 females, 59 of which had low birth weight babies (weighing less than 2500 grams)
while the other 130 of which had babies with normal birth weights. The main objective
of this study was to identify influential factors which would result in low birth weights,
and among all, two variables of interest were race (96 Whites, 26 Blacks, and 67 Others)

and weight of the mother in pounds at her last menstrual period (LWT). See Hosmer
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Low Birth Weight (LBW) Data
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Figure 5.1. Scatterplot of Low Birth Weight Data.

and Lemeshow (2000) for more details on this data set. Here we would like to investigate
whether LWT has a significant effect on babies’ birth weights in grams (BWT) when the
factor RACE is being considered. Figure 5.1 is the scatter plot of BWT versus LWT,
where the circles represent the White group, the triangles represent the Black group,
and the crosses represent the Others group.

Due to recording purposes, the LWT values were rounded to integers in the data,
resulting in some ties on the covariate values in this study. To implement our method-
ology on this data set, we use the uniform random generator on (0.0001, 0.01) to add a
small random quantity on the LWT values, and then sorted the observed pairs of (origi-
nal LWT, BWT) for each of the three race groups separately, according to the modified
LWT values. The average p-values of NP(5), NP(7), and NP(9), over 100 repeat runs,

for the covariate effect are .2572, .3271, and .3065, respectively, indicating an insignifi-
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Standardized Residual Plot
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Figure 5.2. Low Birth Weight Data: Standardized Residual Plot from the classical ANCOVA
model.

cant LW effect on BWT. However, the CF' test gives a p-value of .0578 and the Drop
test gives a p-value of .0382, suggesting otherwise.

A closer examination of the data reveals a serious violation of the homoscedasticity
assumption in this study, which can be seen from Figure 5.2, the standardized residual
plot from the classical ANCOVA model. This is also suggested by Rice’s estimators, as
defined in (5.3.1), since 6% . = 2.05x 10!, 63 | =1.14x10", and 62, = = 1.18x10".
As shown by simulations reported in Table 5.1, the CF test and the Drop test tend to

perform more liberally than they should be when the model is not homoscedastic, so the

small p-values they give in the study of low birth weight are in fact not surprising.
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5.4.2 Example using Ethanol Data

As another example, we analyze a data set which has been studied previously by Ku-
lasekera (1995). The data set consists of 88 observations from an experimental study in
which Ethanol fuel was used in a single-cylinder engine. Three variables were recorded:
the concentration of nitrogen oxides (NOx, in ug/J), the compression ratio (CR), and
the equivalence ratio (ER), a measure of the richness of the air and fuel mixture. Since
NOx is one of the major air pollutants, the main goal of the original study was to un-
derstand how the concentration of NOx depends on various settings of the compression
ratio and the equivalence ratio. For more details, see also Cleveland (1993). Following
Kulasekera (1995), we categorize the compression ratio as either Low: CR < 10 or High:
CR >= 10, which is then utilized to divide the observed pairs (ER, NOz) into two
groups. As a consequence, the Low group has 39 observations, while the High group has
49 observations. Figure 5.3 shows the relation between the equivalence ratio (ER) and
the concentration of NOx, where the circles represent the Low group and the asterisks
represent the High group. Local linear Gaussian kernel regression estimates are fitted for
the two groups separately, with bandwidths selected by the direct plug-in methodology
of Ruppert et al. (1995). The dashed line represents Group Low, while the solid line
represents Group High.

Note that the local kernel regression curves show a high nonlinearity for both groups.
Application of the two test procedures CF and Drop on this data set yields p-values of
.6373 and .6285 respectively, for the hypothesis of no ER effect. On the other hand, the
proposed NP test yields very small p-values (less than 10712) for a wide range of window
sizes, suggesting that the effect of the equivalence ratio is in fact significant. Clearly, the
nonlinearity of the ER effect causes the failure of the C'F and Drop tests in detecting a
significant covariate effect in this study. This result echoes our findings in the previous

section 5.3.2.

5.4.3 Example using NADP Data

The third real-world application for our methodology can be found through the National

Atmospheric Deposition Program (2009), which monitors geographical and temporal
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Ethanol Data
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Figure 5.3. Scatterplot of Ethanol Data.

long-term trends on the chemistry of precipitation. Starting from only 22 stations in
1978, NAPD has grown as a nationwide network of over 250 sites at which precipitation
samples are collected and analyzed in the Central Analytical Laboratory (CAL) weekly.
For our data analysis, we chose to analyze the pH level (reported as the negative log of
hydrogen ion concentration) of precipitation samples as measured in the CAL from the
first week of January 2003 to the last week of January 2007. We consider comparing
the data in two North Carolina towns, Lewiston and Coweeta, and are interested in the
covariate effect of Time. The data, along with local linear kernel regression estimates,
are shown in Figure 5.4. The circles and the dash line are for Lewiston data, while the
asterisks and the solid line are for Coweeta data. Since a simple time series analysis does
not indicate meaningful correlation over time (see Appendix B), it appears reasonable

to implement our methodology in this study.
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Figure 5.4. Scatterplot of NADP Data.

It should be pointed out that there are several weeks in which data were missing
at one or both locations. One interesting feature in this data set is that there are 180
weeks of data in both Lewiston and Coweeta among the total 233 weeks, although this
balancedness of the design is simply a coincidence. A further examination reveals that
the missing data in fact happen at different time points in the two locations. This fact
does not cause any difficulties to the implementation of our methodology. However, it
does matter for some procedures which are applicable to studies like NADP, although
they were designed for different type of hypotheses. For instance, the bootstrap test of
Hall and Hart (1990) for the hypothesis of no location effect can be conducted using
only those weeks in which there are no missing data at both locations, meaning that it
can only use less than 150 weeks of data in this study. That is a loss of 30/180 = 1/6 of

the data. This constraint could be a crucial drawback in practice, especially when the
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number of observations in each group is smaller moderate.

For the covariate effect of time in our analysis, the CF test yields a p-value of .5737,
the Drop test yields a p-value of .7527, and the NP(w) test yields p-values of .0217,
.0239, and .0221, for w = 5, 7, 9, respectively. As seen in the previous two examples,
the choice of the local window size w does not seem to affect the testing result of the
proposed procedure NP. In addition, the failure of the CF and Drop tests in detecting
the time effect in this example again confirms their lack of power when the effect of
interest is not linear.

Recall that the application of the non-overlapping windows approach on this data set
is demonstrated in Section 2.4.2 and the HET procedure gives a p-value of 0.0508 for the
effect of time. The small p-values of the NP(w) procedures, compared with that of the
HET procedure, confirms the superiority of the overlapping windows approach over the
non-overlapping windows approach for detecting the effect of the covariate in analysis of

covariance.

5.5 Technical Details

5.5.1 Some Calculations
Calculation of 77 and T

Firstly, for 77 in Equation 5.2.1,
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Secondly, for T5 in Equation 5.2.2,
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Calculation of the projection matrix Ap

Let Uy = (Ui, - - - ,Uirwir)’ be independent random vectors with independent compo-

nents; WLOG, assume that E(Ujy¢) = 0.

Let U = (U},---,U,) = (U}, - 7U,1n1)v"' (U, ’U;mk)). Then,

k
U'AU =) UAU;
=1

and the projection (Hajek’s projection) of U AU is defined as

> > E(U'AU|U,) — (N — k)E(U AU).
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E(U,B,U;) = 0, Vi, vr.
Therefore,
E(U,A;U,;|Uy) = U, B, Uy

In addition,
E(UAU;) = E(E(U,A;U;|Uy)) = E(U;ByUy) =0
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Therefore, the projection (Hajek’s projection) of U'AU is defined as
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5.5.2 Proofs of Lemmas and Theorems
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Here are some more notations used in the following proofs. Let Z° = Z — Ej0(Z|X)

where

E0(Z|X) = E(Z|X; under Hy(D) as defined in (1.2.9)).

In addition, let A* = A — Ap, where Ap is as define in (5.2.3).

Proof of Lemma 5.2.1

Write Fi.(y) as Fi(y;x). Consider Z;; = Yj; with the covariate X;; = x;j; in other

words, Y 1 I(Xy < xij; | € Wy,) = t. Although in general
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Hence,
Ho(D
A B(Z]X) " (T~ T1)Epo(Z | X) = 0y 1. (5.5.1)

As a consequence,

ZYAZ* = (Z-E(Z|X))A(Z-E(Z|X))

= ZAZ-FE(Z|X)AZ-(Z-E(Z|X))AE(Z|X)

which completes the proof.

Proof of Lemma 5.2.5

First note that

Z'AZ* = [Z- E(ZIX)A[Z - E(Z|X)]
= Z'AZ - 2E(Z|X)A|Z - E(Z|X)] — E(Z|X) AE(Z|X).
From (5.5.1), we learned that AEpo(Z|X) = 0y.x1, SO
Z'AZ - Z'AZ* = 2 E(Z|X)AZ* + E(Z|X) AE(Z|X)

= 2[B(@ZX) - B (2IX)] "AZ" ¢ [B(zIx) - EF?(Z|X)}'A [BZX) - Bpo(2IX)]

= 2 d(X)AE(Z|X) + d(X)'Ad(X),

where

d(X) = E(ZIX) — Epo(Z|X).

Let djy be the elements of d(X), i.e. dirt = [ ydD;(y; Xirt), and

dz‘j :/ydDi(y;Xij), and Cij = /ydCi(y; ng) (552)
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Then, it is clear that d;; = (niw)_l/‘lcij, 1=1,---k; j=1,---,n,.
To prove that N/2w=1/2(Z' AZ—Z* AZ*) — 6p in probability, it’s sufficient to show
that (1) N'/2w™1/2d(X)'Ad(X) = 0p + 0,(1) and (2) N/ 2w=1/2d(X) AZ* = 0,(1).
We first prove (1). Note that
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Ezwerzr = Wwa/ydCl(y,er) — //ydcl(:%x)dGl(x)
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et
Therefore,

A\ /2 »
(w) d(X) Ad(X) — 0p, as min (n;) — oo.

We now prove (2). Since A = Ap + A*, it is equivalent to prove that

Ry = NY2w Y2q(X)ApZ* = 0,(1), (5.5.3)

and Ry = NY2w V24(X)A*Z* = o0,(1). (5.5.4)

To prove (5.5.3), first note that
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Because

B (Ry[X) = () S i 3 dig BV X)L o € W) =0,

w , —
i=lr=l " ji#j2

and
) N o
B (RYX) =~ [(d(X) ApZ*) \X}

= % Z Z Z Z Vi Vigre Z Z diljldi2llE 11]2 Z2l2 ’X)

i1 dg r1 o T2 J1#£j2 li#le
XI(jlan S Wiu"l) X I(llalQ € Wi27’2)
k

> Z Z O (N2w™?) Z >N dida (Y X) x I(j,m € Wi,) x I(1,m € Wiy,)

=1 ri=1ry=1 m=1 j#m l#m
(o B(Y;,Yi,1X) =0 unless iy =iy and jp =l = m; vir = O(N~tw™h))

—1wim—1w;m—1

= 24 Z Z Z dlm+s1 i,m~+S2 (Y*2|X)

m=1 s1=1 s9=1

g n;
X Z I(m,m+51 S Wirl) *Yiry X Z I(m7m+52 € VI/i’r‘g) * Yirg -

ri=1 ro=1

Since d;; = O((n;w)~'/4), uniformly a.s.; by Assumption 2, E(YZjZ\X) = 0(1), was,;
and Vm=1,--- ,n; — 1,

we have
E (R%‘X) =0 (N_lw_s) -0 <n1 cw? - (niw)_l/Z : wz) = O(N_l/le/z), U.a.S.

Then, by DCT, E(R;) = E[E(R1|X)] = 0 and E(R?) = E[E(R?X)] = o(1), which
completes the proof of Ry = op(1).



Similarly, to prove (5.5.4), note that
n; Wiry Wirg

d(X)/A*Z* = _Zﬂz Z Z Zdlﬁtl irgto

=1 ri#re t1=11t2=1

- _Zﬂl Z i: Zdl]l ij2 jl EVVZT‘l) XI(]2 EWZTQ)

=1 ri#re ji=1j2=1
Since E(R2|X) =0 and

B(RYX) = %E [(d(X)’A*z*)2 \X}

= %ZZIBH[}D Z Z Z Zdiljldi2l1E i1j2 ZQZQ‘X)

i1 i T1#£7r2 T37#T4 J1, J2 U1, l2
XI(jl € Wi1T1) X I(j2 € WilTQ) X I(ll € mzm) X I(ZQ € Wi27“4)
n; n;

= *252 S TSN BN

i=1 7‘1#7‘2 7’3757‘4] 11=1 m=1
x1(j € Wip,) X I(l € Wip,) X I(m € Wip, N Wi,)

k
< %Zﬂ? > dij (ZE YinlX ) x O(w')

i=1 j
= Nw lO(N 2w 1H2. (n?/4w_1/4)2 ng - wh) = O(N"Y?w?), wa.s.
B = Zdj = O(n; - (naw)™ %), wa.s.; BE(Y;2X) = O(1), w.a.s.
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by DCT, E(Rs2) = E[E(Ry|X)] = 0 and E(R%) = E[E(R3|X)] = o(1), so Ry = o0,(1),

which completes the proof.

Proof of Lemmas 5.2.2 and 5.2.6
Since A* = A — Ap,
n; Wiry Wirg

k
ZVA*ZF = —Z/@z Z Z ZZ irvts Zirats
=1

ri=1rqo#r) t1=1t2=1
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k n; n;
= _Z/@z Z Z Z Z }/131}/1;2 ]1 S Wzm) (]2 € Wir2)
=1

ri=1ro#r; j1=1j2=1

Let Q = NY2w~1/2Z* A*Z*. To show Q; = op(1), first note that, conditionally on
X, Y;;, and Y;jo are independent if j; # j2, and hence E(Y;? Y* |X) # 0 only if j; = jo.

J17 12

This tells us that

Q) = - (3) X8 B0 X Y 16 € Wi 1)
=1 j=1

ri=1rqo#r;

— N2y 1/2. O(N~2w™Y) - O(n; - w?), uniformly a.s.

(8= O(N2w™1); (Y*2|X) 0(1), u.a.s.,by A2;)

' Z 1(j € Wir, N Wip,) = wij(wij — 1) < w?.

r17£r2

= ON"Y2uw'?) wa.s.
In addition,
E(Q%|X) - F [(Nl/wal/ZZ*/A*Z*)2|X}

—1 2
= NwT'Y > D, DL Y BE(GYRYLY5X)
i=1 r1#ra r3#14 J1, j2=1 Jj3, ja=1
xI(j1 € Wiry, J2 € Wipy, J3 € Wips, Ja € Wip,)

nll ’I’LZ2 TLZl ’I’LZ2

+ ! Z Z Z Z Z /8“@2 Zl]l 1122|X) (YZ:B 12J4’X)

11742 T1#£T2 T3F£T4 J1, J2=1 j3, ja=1

XI(jl S Wilrlv j2 S VVhrzv j3 € VVizrga j4 € Wi2T4)a

and because (1) E(Y}; Y3 V2 Y7 [X) # 0 only if j1 = j2 = js = ja or (j1, jo, js, ja) are

J17 127 137 )4

two pairs of equal indices; (2) E(Y;*, Y. |X) - E(Y;*. Y. |X) # 0 only if j; = j» and

111 11]2 1273 " 1274
Js =Ja; (3) 22011 I1(j € Wip) = wij < w, Vi, j, we know

4

4!
E(Q}X) < Nw*1262 ZE “41X) + 5ro1

— l1<l2

( il1 |X) ( zlz‘X) "11)4
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’VLrLl TL12

- Z 511ﬂ12 Z Z )/:?1 }/Z:_?g‘x) -w?

11712 J1=J2 j3=ja

= Nw 'ON*w 2){[0(n;) + O(nd)] + O(n?)} - w, w.a.s. (by A2)

= O(N"'w), w.a.s.

Then, by DCT, E(Q1) = E[E(Q1|X)] = o(1) and E(Q?) = E[E(Q?X)] = o(1), which

completes the proof.

Proof of Lemmas 5.2.3 and 5.2.7

First note that

ng ng

Z*I (AD - AE) Z" = ZZ %r - i Z Y;jl}/zjgj ]17 jo € W’LT‘) where
i=1r=1 1=1j2#5

= R (1 ) ZZ) By (1 ) nl> '

Let Qo = NY2w™1/2Z* (Ap — A}) Z*. since E(Y; Y5, x 1(j1,j2 € Wir)|X), Vi1 # ja,
it’s clear that E(Q2|X) = 0. In addition,

E{Q3| X}
N L
= o ZZZ Yir = 6) (s — s Y > B (Y3, Yi,Yi Yid, | X)
i=1 ri=1rgo=1 1772 l1#lo
x1I(j1, 52 € Wip,) x I(l1,lo € Wiy,)
N * * . .
= E Z Z Z Yiry — /y“”? - Z E szgf}/zjg | X) X I(]la]Q € Wir‘l N Wim)
i=1 ri=1re=1 J1#j2
N n;—1
= E Z Z Z Yir: — 77,7"2 - Z Z O X I j17]2 c erl M W“"Q) u.a.s.
i=1 ri=1rgo=1 j1=1 jo>j1
(- By A2, E (Yz;fYZ;g | X) = O(1), uniformly a.s.,Vj; # jo.)
N k n;—1 wijfl min (]+wal7 nz)
- W Z Z (Vir, — i) (Yiry — ki) X O(1), w.a.s.

i=1 j=1 s=1 p ro=max(1, j+s——“’;1)
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Recall that w;. = n;w — (w? —1)/4. It can be easily verified that, if 14 (w—1)/2 <r <
ni — (w—1)/2 (" wy = w),

1 gyt
Pp— e - o
“Yir ( (N —k)(w—1) Wy i
- 1 nyw — # —nw
T W Rw- nawi
2
w
_ = O(N~3
(NwNNw> (N
otherwise,
1 Wiy Wi. — NiWir
e < 1-— -1+—]=
S T e ) = B b
< ni(’UJ - wzr) _ w
= (N = E)(wir — Dngw; Nuwn;w
= O(N2w™h
Hence,
E(Q3]X)
n;—w w—1 -7+wT_1

s w—1
1, T2=J+8s——5—

w—1 n;—1 wij—1 min(jﬁ'LQ_l, n;)

5 (55000 SH B SHE SR NS

=1 g=ni—w+l) s=1 p ro=max (1, j+s—251)

2
= ON*w?)+O(N3w) = O(N3w), u.a.s.

By DCT, E(Q2) = E[E(Q2[X)] = 0 and E(Q3) = E[E(Q3X)] = o(1), 50 Q2 = 0,(1).

Proof of Lemmas 5.2.4 and 5.2.8

First note that E(Y}; | X) =0 = E[Z"A}LZ* | X] =0, and

of(Xiy) = Var(Yyy|Xij) = B{[Yy; — B(Yy| X)) X35} = B(Y;?| X))
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= Var(Y | Xi5)
In addition,

E(Z"ApZ")*|X]

k n; n; n;
- Z ZQZ Z Z Z E l]1 ljz 7,>lk1 ’LlQ‘X) (]17j2EWiTl)‘[(l17l2€Wi7’2)

i=1  rmi=17r2=1j1#)2 li#l2

LYY S S BN G € Wi 1 W)

=1 ri=1re=1ji1=l1<j2=l2
- Z 4 Z Z Z 1.71 ’ Xl]2) X I(]la]? S W/’Lrl N WZTQ)
=1 ri=1r2=1j1<j2

From the proof of Lemma 5.5.1, we learn that for all n; large enough,

xU-xt=0 <n.1+5 + Y

)

> , uniformly a.s..

1y

Since, by Assumption, 0'1-2(.%‘) are uniformly Lipschitz continuous in x, we know that

Vi1, jo € Wy, there exists a positive constant C' such that, for n; large enough,

07 (Xi5,) — 07 (Xij)| < C|Xij, — Xijs|

< cxy-xkh=o0 (ni_l'HS + w> , u.a.s., Vo >0,
n;

implying that

So,

El(Z"ApZ")*|X]

- o305 5 et [t +0 (i )

i=1 ri=1ra=1j1<j2

XI(]]J.]Q € Wi'rl N I/I/i'rQ), u.a.s.



[o;.*(Xij) +0 (ni”‘S + ;:ﬂ

wij_l n; n;
X Z Z Z I(3, 7+ s € Wi, N Wip,), u.a.s.
s=1 ri=1re=1

Note that, if 1 + %51 <j <n; — 251 = w;; = w,

. -1
w—1 n; mny w—1 J+=
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SIS G i+ s €W, N Wir,) = > > 1(j,5+s € Wi, N Wip,)

s=1ri=1re=1 s=1 w—1

r1,r2=j 48—

- Z(w_s)Q B w(w—1)6(2w—1);

otherwise, > > > I(j,j+s € Wi, N Wip,) = O(w?).
This tells us that

El(Z7AHZ")?X]

k 3 n;—1
+ZO (N_zw 2) : Z + Z 0] (w?’) , U.G.S.
i=1 J=1 j=n—vrl4
k 9 n._w—l
4 I\ ww—-1)Q2w-1) — 4
= - = X;
> = () g 2 i)
= iz
+0 (N 2w 2n; - w? (nl 49 4 :)) +0 (N_QwQ) , U.Q.S.
K ni— gt
w o 2(2W —1) 1 n; 1 4
= 1 — X;
N—k 3w-1) Z;( n> N—Fk |n; 121‘71( 2
1= = _;'_w;
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By WLLN,

1 gy 4 4

; Z g; (XU) E[Uz (X)] +0P(1)

"=ttt
Therefore,
2 2(2
E |:(N1/2w—1/2Z*IADZ*) ’ X:| _ w_ 1 ZA E + Op( )
+0 <N_1+‘S + N_1w> , U.Q.S.

By DCT,

Var(NY?w=22" ApZ*)

= Var|E(NY2w™'22¥ A pZ*|X)] + E[Var(Nl/Zw’l/QZ*’ADZ*\X)]

= BBV P2 ApZPIX)} = SR ZA Elof (X)) + o(1),
(w—
which completes the proof.

Proof of Theorems 5.2.1 and 5.2.2

The following is in fact the proof of Theorem 5.2.2, but the proof of Theorem 5.2.1 should
be similar (and in act easier).

Following Lemmas 5.2.5-5.2.8, it remains to verify the asymptotic normality of

NY2p=1/27x A% Z* under H,(D). Write NY/2w=1/2Z* A% Z* as follows:

() zaia

ny Ny

- (g)mi (Nk:)l(w <1_ ) 22 2 Vi Vil ln o € W)

r=1 j1 je#j

- FEE - ]

1
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where Tj, = —— 1 Z Y5 Y5 I(j1, g2 € Wip).

’le 2]2
J1#j2

We now first prove the asymptotic normality of N/2w=1/2Z* AT Z*, conditionally
on X. Due to the independence among different groups, it’s sufficient to prove the
asymptotic normality of (n;w)~1/? oty Tir, Vi, conditionally on X.

Define t,, = |n 2/3J Sn; = [ni/(tn, + w)], ln, = sp,(tn, +w), where |a, | denotes the

largest integer which is not greater than a,,. Further define, Vr =1,--- ,s,,,

Ui = ﬂ,(r—l)(tni—l—w)—s—l +eoet T;,r(tni-i—w)—w

Vir, = ,I%,r(tni—&—w)—w—i-l +ooet T%,'r(tni—l-w)'

Note that there are ¢,, terms in each Uj while only w terms in each Vj,.. Hence, for all
n; large enough, conditionally on X, {U;y;7 = 1,--- , sy, } are independent; so do {V,}.

Now, decompose (n;w)~1/? Yot Ty as three parts:

(nyw) /2 Z Tir = Qi1 + Qiz + Qi3,

r=1
where
Sn; Sn;
—1/2 —1/2 —1/2
Qzl = n w / E Usr, Q12 = n w / E Vir, Ql3 = (’I’L w / E Ti,r-
r=1 r=1 r= ln +1

Our plan here is to show that, conditionally on X, both of Q;2 and Q;3 are op(1), and Q1
converges in distribution to normal as min (n;) — oco. Then, Slusky’s theorem completes
the proof.

First note that

1

E(Tiy |X)=——

E (Y3 Y5, | X) - 1(j1, jo € Wip) =0, Vi, ¥r

1317 1)2
J1#j2

— E(Qi|X) = E(Q:2|X) = E(Qi3]X) = 0.
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Next, consider U;; = Zi’zl Tir = E(U;|X)=0and

tn; tn,

(w_Q) Z Z Z Z E 1;1 1;(2 z>lkl zlg’X)

ri=1r2=1j1#j2 lh#l2

XI(jl,jQ € Wz’m) X I(ll,lQ S Wirg)

tn; tn,

Ow™2) >34 > BEY2Y2X) x I(j1, j2 € Wir, N Wip,)

ri=lre=1  j1<j2

"z ’LUZ] tnz t"z
w?) Y Z BYFY2 X)) > I, §+ 8 € Wiy N Wipy)
j=1 s=1 ri=1rqo=1

where ty, = t,, + (w—1)/2 -1

O(w™2 - tyw-w?) x O(1), w.a.s

( E(Y;5|X) = O(1), wa.s., by A2 > > "I(j, j+s € Wiy, N Wip,) = O(w2)>

L T2

O(tn,w), u.a.s.

Similarly, one can show that Vr =1,--- ,s,,,
E(U2|X) = O(tn, -w) =0m>* w), w.a.s.; (5.5.5)
E(VZX) = O(w?), u.a.s.; (5.5.6)

E

S o1, x

r=ln,;+1

2

IA
o)
—~
—
&
+
S
~—
I
2
N
~
w
S
:—/
IS
S|
»
=
[Sa4
BN |
~—

Given that F(Q:2|X) = E(Qi3]X) =0, (5.5.6) and (5.5.7) tell us that

Var(Qp|X) = ZVa'r Vir|X) = EE (V2X)
r=1

= (naw) 'O (5n, 'wg), u.a.s. = o(l), u.a.s.
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and

Var(Qis|X) = E(Q%X) = (njw) 'E Y T | X
r:lniJrl

-1

= (njw) " x O ((tp, + w) - w), u.a.s. = o(l), u.a.s.

Therefore, it’s clear that, conditionally on X, both Q2 and Q;3 are 0,(1), uniformly a.s.
Now, we verify the asymptotic normality of ();1, conditionally on X. Since condi-
tionally on X, U1, -+, Uy, are independent, it is sufficient to check the Lyapounov’s

condition:
Sn.:
S B(UL1X)

Sn. 2
|0 B(U2IX)

=2
L= =
Note that

E(Uj|X)
ZZZZ YD D> D> BV Ya,Ya, Y, Y, Vi, Y, Yi,1X)
T2 T3 T4 a17$a2 bl;ébQ 617503 dl#dz
XI(CLl,CLQ € Wirl) . I(bl,bz S Wirg) . I(Cl,CQ € VVirg) . I(dl,dg S Wim)-

Since the nonzero expected terms in the above equation must be one of the follow-
ing forms: E(V;Y3X), BYEVEY2IX), EOEYEVE(X), or BYEYEYEVEX),
where a # b # ¢ # d, we have

B(UAIX)
”z Wig—1

2 Y BOGEY LX) x 0w

a=1 s=1

Zn: f Z E Y*4Y;*3+31Y;*3+32’X) X O(w4)

a=1 s2=1 s1<s82

t”z Wig—1

+ 0w ™)) > BV YR L IX) x O(w?)

1,a+81 " 1,a+82
a=1 s1#s9
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nz Wiqg—1
YD BOEYELYiElX) X Ot
a=1 s;#s2
nz Wiq—1
D1 Y BRI Y X) x Ow?)
a=1 s;#s9
n’L Wig—1 n’L wip—1
DS S B L) (28 B | <o
a=1 s1=1 b#a s2=1
where ty = t,, + (w—1)/(2) =1
= O(ty, - w) + O(ty, - w?) + Olty, - w?) + O(t2 - w?), w.a.s.
= O(t%i w?), w.a.s
Similarly,
EULX) = Ot - w?), w.a.s., Vr=1,-- sp,.
Combining with (5.5.5), we then have
o B(ULIX O(sp, - 12 w?)
L§:2 _ Z ( | ) g ng
n - 2 2 u.a.s.
S E(UZ%IX)] [O(sn, o, w)]
= O(s;}) o(1), u.a.s.
This completes the proof of the asymptotic conditional normality of N/2w=1/2Z* ALZ*.

In other words, conditionally on X,

By the proof of Lemma 5.2.8, we know that, as min (n;) —

Nl/Qw—l/Qz*/A*DZ*
Var [NV/2w=1/22+ A3 Z*|X]

d

Var <N1/2w*1/2Z*'AEZ*]X) — 7, a.s.

for some positive constant n =

2(2w —
w—1)

3(

D

4, N(0,1).

o0,

k

=1

4
7

(X)]-
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By the Slutsky’s Theorem that, conditionally on X,
NY2y=12z2 A% 75 25 N(0, 7).

Since the limiting distribution is the same for all X, this weak convergence also holds
unconditionally (see Lemma 5.5.2), which completes the proof.
5.5.3 Some Auxiliary Results

Lemma 5.5.1. Under Assumption 3, for any Lipschitz continuous function h;(z) on S;

and n; large enough,

1
E hi(Xi;)1(5 € Wip) — hi(Xiy) = O <ni1+5 + w> , uniformly a.s.,
Wiy = n;

J=1

Vo>0, VieWy,, 1<i<k 1<r<n,.

Proof. Let X = max(X;j, j € W) and XE = min(X,j; j € W;,) for an arbitrary
window Wj;,.. For any [ € W;,.,

ng

1 1

n;
— > Mi(Xi)I(G € Wir) = ha(Xar)| < —— > " |ha(Xij) = hi(Xa)| - 1(j € Wi)
r ‘771 r le
n;
1 .
< ZK’ | Xsj — Xa| - I(j € Wyr), for some constant K; > 0
Wiy £
7=1
(.- h; are Lipschitz continuous functions.)
1 &
< = SR X[ - X1 € Wa) = K- (X — X[).
r ]:1
Recall that
A A Wi — 1
Gi(Xi)) = Gi(Xj) = ——.
(2

By Smirnov’s LIL (Laws of the Iterated Logarithm), we have (loga = log log)

T n;
limy,, 00 log, 7, sup
2 Ny T

Gi(z) — Gi(z)| = —=, a.s.




1

= limy, oo
logy n

i ]GAXU) —Gi(xk) - Y 1] <3 as.

= lim,, log, 1
2 M

Since by MVT (the mean value theorem),

1Gi(XY) = Gi(XE)| = g:i(Xir) - | XY — XE|, for some XU < X, < XL,

we know that, for all n; large enough,

~ Wi — 1 2 logon;
gi(X;r) - [Xg — Xﬁ,] - r - ‘ < 1/79 L a.s.
n; n;

1 21 i ir — 1
= XV - xki< ) ( Odami | Dir ) . a.s.
Gi( Xir T T

n; ng

21 i —1
= |xYV-xk< M( o9 | W ) , a.s., for some M > 0.

(". g; are bounded away from 0, by AssumptionA3.)

Let

21 i -1 _
ani71=M< og?n +w )zO(ni .5+61+::)->’ Vo, > 0.

n; 4z i

Then, by Theorem 2.11 of Stute (1982), for all n; large enough,

Wi — 1

Gi(XY) — Giy(xk) - ‘ < \/2 n,, 1loga;i17 1, a.s.

n;

S

=

n; n;

ng ng

. -1
= \X;{—Xﬁ\gM(\ﬁ Mloga;jﬁw ),a.s. (byA3).

Let

v —1
Qn,;, 2 :M<\/2 Mloga;}’ 1+ v : ) =0 <ni'75+62 —|—:j>, Voo > 0.

n; g i
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> Wi — 1 p;, 1 _
gi( X)) - (XY — xLy - ' < \/2 —2—loga,' |, a.s. (byMVT)
7
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Then, by Theorem 2.11 of Stute (1982) again, for all n; large enough,

Wiy — 1 _
NG Gi(Xfi) — Gl-(XZ-LT) — Wn' < \/2 an,, 2logam17 9, @.S.
(2
. —1
= ‘Xg—Xﬁ‘SM(\/2an“210ga;12+w >, a.s.,
n; v n;

where

, -1 _I
M<\/2 Mloga;_lz—i—w )—O(ni 8+§3+w), Vo3 > 0.
. 1 n

Uz n; 7

Repeatedly using Stute (1982), we can then obtain that, for n; large enough,

XU -xt=0 <"z‘1+6 + w) , uniformly a.s., (5.5.8)
1

which completes the proof.

/

Lemma 5.5.2. Suppose that, conditionally on U,, = (Uy,---,Uy),
é\n (Vn =V, ,Vn)l) 4, Z, asn — 0o, (5.5.9)

where the distribution of Z is continuous and does not depend on X. IfU;, i =1,--- ,n,
are from a continuous random variable with bounded support S, then the above weak

convergence holds unconditionally.

Proof. Since the limiting distribution is continuous, (5.5.9) implies that
P (@l <t|U,= u) — Fyz(t), for all u,
where Fz(t) = P(Z < t), which follows that the convergence is uniformly in u, i.e.
81111p|P(§n §t|Un:u) — Fz(t)] — 0, asn — oc.
This implies that

Ve > 0, P[]P<5n§t|Un)—FZ(t)|>e]—>0, as n — 0o
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P

= P(@ngt\Un> — Fz(t), as n — oc.

This convergence i probability tells use that, for every subsequence {ki, ko, --} C
{1,---,n}, there exists a further subsequence {mi, mo,--- ,m;} C {ki, ko, -} such

that
P (67,1 <t] Umj) L5 Fy(t), asj — oo.
Then, by the Lebesgue Dominated Convergence Theorem (DCT),
E{P (@\n <t| Um].)} — Fz(t), asj— oo.
Since the above equation holds for every subsequence of {1,--- ,n}, we have
P<§n<t) :E{P(@n gtyUn)} — Fy(t), asn — oo,

which completes the proof.



Chapter

Asymptotics in Testing for the
Group effect in the Fully
Nonparametric ANCOVA

Recall the fully nonparametric ANCOVA model as defined in Section 1.2, which assumes
only that

Vil Xij =2 ~ Fip(y) = M(y) + Ai(y) + Dily; 2), i =1,--- K,

where (Xj;, Yj;) are paired observable variables while the decomposition of Fj, is defined
in (1.2.7). Also recall that, for any given distribution functions G;(x), i =1,--- ,k, we

define
Fli(y) = / Fip(y) dGy(z),

and it is assumed that [ D;(y; z) dG;(x) = 0, Vi, Vy. The null hypothesis of no covariate-

adjusted group effect in the fully nonparametric fashion is then specified as:

Ho(A): Ai(y) =0 < FZGZ (y) = F°(y), for all 4 and all y. (6.0.1)
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As introduced in the previous chapter, there are two possible approaches to utilize the
similarity between the nested model and the analysis of covariate: non-overlapping
windows approach and overlapping windows approach. For testing (6.0.1), the non-
overlapping windows approach can apply directly the asymptotic results from Chapter 4,
while the present chapter is constructed to tackle the challenges coming with the aug-
mented dependence in the design of the overlapping windows approach, and to provide
an appropriate test procedure accordingly. We first introduce the test statistic in the
next section, and then provide its asymptotic distributions, both under the null and local

alternatives, in Section 6.2. All proofs can be found in Section 6.3.

6.1 The Test Statistic

For a k-group ANCOVA model with overlapping windows of a fixed size w (assuming to
be odd for simplicity), consider the notations in the hypothetical two-fold nested design
as introduced in Section 5.1: letting (Xj;, Yi;), ¢ = 1,---,k; j = 1,--- ,n;, be the

enumerated pairs with X;; < Xjo < --- < Xy, for each ¢,

ng
Zirt = Yij iff ZI(Xz‘ZSIij; leW;)=t,
=1

l:]-u )k7 T:]-u"' yniy = ]-7 > Wir,
where wj, are as shown in (5.1.2) and
n;

Wir = {1 <j<nmi: |Gi(Xi) - Gi(Xa) < 2 _1}7 Gilz) = iZ:I(Xij <um).

2711' n;

Jj=1

Note that W;, are in fact functions of X;;’s. Also recall that w;. = Y wj = njw — (w2 —

1)/4 and w.. = >, w;. = Nw — k(w? — 1) /4.

Define
w; n;
_ 1 r B 1 i B
Zir~ = W E Zirt and Zz = ’11}7 wiTZiT..
=1 vor=1

For testing the null hypothesis of no covariate-adjusted group effect (6.0.1), we consider a
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test statistic based on the random vector U = (Uy, --- ,Uy) whereU; = Z;.., i = 1,--- | k.

More specifically, since the aforementioned hypothesis (6.0.1) is equivalent to
Hy(H): HF = 04_;, where F = (Ffl,--- ,F,f’“)',

and the contrast matrix H is defined as

1 -1 0 0
1 0 -1 -~ 0 ,

H=| . ) = <1k71 | _Ik71> ; (6.1.1)
1 0 0 —

(k—1)xk

the test statistic we consider in this chapter for testing (6.0.1) is of the form
~ ~1
N (HUY <H2H’) (HU)

where H is the contrast matrix defined above, and $ is a suitable estimator of the
asymptotic covariance matrix of v/ NU. As shown in the next section, under the null
hypothesis Hg(A), this test statistic converges in distribution to a y? distribution with
degree of freedom (k — 1), as min (n;) — oo. Its asymptotic distributions under suitable

local alternatives are also included in the next section.

6.2 The Main Results

6.2.1 Assumptions and Lemmas

Here are two notations which are frequently used in this chapter:
pi(z) = B(Yyy | Xij = x); of(x) = Var(Yy | Xy = x),

and all assumptions required for Lemmas and Theorems presented in this section are as

follows:

Assumption S1. Vi, 3\; € (0,1), such that n;/N — X;, as n = min (n;) — oc;
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Assumption S2. The covariate X is a continuous random variable with bounded support S;, c.d.f G,

and p.d.f g;, ¢ =1,--- ,k. The density g; is bounded away from 0 on S; uniformly

in 4;

Assumption S3. E(YZ;l | X;; = =) are uniformly bounded in ¢ and z;

2

Assumption S4. o;(z) are bounded away from 0 and oo uniformly in ¢ and z.

Assumption S5. y;(x) and o?(z) are uniformly Lipschitz continuous in .

The following four lemmas which are basic vehicles for deriving the asymptotic dis-

tributions of the test statistic under the null and the local alternatives.

Lemma 6.2.1. Under Assumptions S1-S4, for all i =1,--- |k, we have that,

conditionally on X,
VN (Ui — E(U; | X)) -5 N (0,a2), as min (n;) — oo,

where U; = Z;.. and

Lemma 6.2.2. Under Assumptions S1, S58-S4, for alli=1,--- |k,

\/ﬁ(E(UZ- | X) — //dem(y) d@i(x)) — 0, a.s., as min(n;) — oo.

Lemma 6.2.3. Under Assumptions S1-S2, for alli=1,--- kK,

\/N//ydﬂx(y)d<éi(a:) —Gi(x)> 4, N (0,02), as min (n;) — oo,

where

bfzji{ /1] dem@)rdGi(m)— [/ ydwy)dca(x)r}.
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Lemma 6.2.4. Under Assumptions S1-55,

ng

R 1 1 ~
a? — T;ZUf(XZJ)? where
i vj=1
1 n; W 1 i 2
~92 2 ij
2 (X..) = Y2 x I(l € W) — Y x I(l € Wij)|
7 (Xy) wij_llz; ey wij — 1 wijzz; ot v
2
~ 11 & -1 Yi, Y 1 Q-
R TR S N P W I
o LAl =
- 1 <
where  [; (XZJ) = o ZY;Z x I(l € Wij);
Yog=1

are strongly consistent estimators of ag and b?, as defined in Lemma 6.2.1 and in

Lemma 6.2.3, respectively.

6.2.2 Asymptotic Distribution under the Null

Let
U = (U, - ,U) = (21, , Zy.), (6.2.1)
Y = diag(a%+b%,---,-~,ai+bi), (6.2.2)
where a? and b?, i1=1,---,k, are as defined in Lemma 6.2.1 and in Lemma 6.2.3.

The following Lemma gives the asymptotic result under the null hypothesis of no
covariate-adjusted group effect when the covariance elements a? and b?, i=1,---,k,
are known, while Theorem 6.2.1 that follows states the asymptotic distribution of the

proposed test statistic under Hy(A).

Lemma 6.2.5. Under Hyo(A) as defined in (6.0.1) and Assumptions S1-S4,
NMHUY HZH) " (HU) L x?_,, as min(n;) — oo,

where H is the contrast matriz as defined in (6.1.1) while U and X are as defined in
(6.2.1) and (6.2.2).
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Theorem 6.2.1. Under Hy(A) as defined in (6.0.1) and Assumptions S1-S5,
. ~1
N (HUY <HEH’) (HU) -4 y2_,, as min(n;) — oo,

where H is the (k — 1) x k contrast matriz as defined in (6.1.1), U is as defined in
(6.2.1), and S = diag (Zi% —i—?)\%,--- e ,624—/5%), where the @3 and 312, i =1,---,k,
are as defined in Lemma 6.2.4.

6.2.3 Asymptotic Distribution under Local Alternatives

The asymptotic power property is investigated by considering the local alternative se-
quence:

Ho(A): Ai(y) = (ni)""*By(y), (6.2.3)

where B;j(y), i =1,--- , k, are so chosen that [ ydB;(y) are uniformly bounded for all i.
Note that (6.2.3) implies that the alternatives need to approach the null at the rate of

(inf; ng)~%/? to ensure nontrivial power. Define
k k 2
P a? + b% Zle 1/ (a? + b?) P a? 4 522 . 2.

Then, Theorem 6.2.2 below provides the asymptotic distribution of the proposed test

statistic under the local alternatives H,(A).

Theorem 6.2.2. Under H,(A) as defined in (6.2.3) and Assumptions S1-55,
- -1
N (HUY <H2 H’) (HU) -4 2, (¢), as min (n;) — oo,

where H, U, and S are as defined in Theorem 6.2.1, while ¢ is as defined in (6.2.4).
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6.3 Technical Details

o)

Recall that X;; are ordered covariate variable. Letting Xi(j be the original covariate
variable, i.e. the one without ordering, there is one fact which is repeated used in our
proofs: For any well-defined function f(z), it should be clear that > 7%, f(X;;) has
the same distribution as Z;“:l f (XZ(]O )), since the only difference between the original
{X-(‘-)), j=1,---,n;} and the ordered {X;;, j =1,---,n;} are the permutations. Note
that we take advantage of the X (©)5g independent and identically distributed feature
(within the group ) to significantly simplify the proofs in this section. Similarly, let
(X (]O), ngo)), 7 =1,---,n;, denote the original un-ordered paired data, which are i.i.d.
Let

pe = (//delx ) dG1 (x //de,m ) dG(z )) . (6.3.1)

6.3.1 Proofs of Lemmas and Theorems
Proof of Lemma 6.2.1

First note that

n; n; Wir ng
U, = Zi~-:L.Zwirzi%:izzzzrt—izzy;jXIJGVVW)
Wi 13 vor=1t=1 vor=1j=1

which, conditionally on X,

E Wiy * 7,]-

So,

1 &

EU; | X) = wa pi (Xij), Var (Ui | X) = — w .02

w;
T =1

Also note that under Assumptions S3 and S4, both of u;(X;;) and 02(X;;) are O(1),
uniformly almost surely.

For the limiting distribution of 3 w;; [Y;; — E(Y; | Xi5)], check the Lyapounov con-
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dition : conditionally on X,

i B {|wz’j [Yij — B (Y | Xip)]* | X}
4
(\/2?21 wi; Var (Y | Xz‘j))
-1 g

n: 1 4 "
= — z2 . Q‘nj-zwijE(Yij‘Xij)’
<7 Z)llwzg i (X1J)> J=1
where Y} =Y — E (Yij | Xi5),

=2 __
B=2 =

= o(1), u.a.s., as min(n;) — oo.

Since the Lyapounov condition holds, we have that, conditionally on X,

ni i YE ; — ]
Z] 1 ’LUJ ij _ \/N[Ul E (U’L | X)] i> J\/”(O7 1), as min (nl) — OQ.

\/Z] 1w S (Xij) \/Var<\/NUi\X)

Because by Lemma 6.3.1,

Var (VU 1X) s a5 min )

79

for some positive constant a? are as defined in Lemma 6.2.1, we know by the Slutsky’s

Theorem that, conditionally on X,
VN (Ui — E(U; | X)) -5 N (0,a3), as min (n;) — oo,
which completes the proof.

Proof of Lemma 6.2.2

First note that

ng
EU; | X) - //dem ) dGi( wa Yij | Xij) — ZE Yij | Xij) -
] 1



114

Since

21
wij 1 ni-wij —w; n"w_(niw_wT)f (w?—1) /4

- 9
wW;. n; n; - wW;. n; w;. ni <nl w— wi;l)

if “=1 41 < j <n; — 2572 otherwise, it’s O(n; !). In addition, note that E (Y;; | X;;) =
O(1), u.a.s. by Assumptions S3 and S4. Therefore,

3 ni——3 ng
= Z @) (nl_l) + Z 0 (n;2) + Z O (n:l) x O(1), u.a.s.
j=1 j=27141 j=ni—25t+1
= O(N7Y, was.,

which completes the proof.

Proof of Lemma 6.2.3

First note that
. . 1
//dem(y) dGi(z) = /E[Yij | Xij = a]dGi(z) = — Y i (Xij);
//dem(y) dGi(z) = /E[Yz‘j | Xij = 2]dGi(z) = E [p; (Xi)] -

-5-0)), j =1,---  n;, denote the original un-ordered paired data, and let
w (X)) =B (Y1 x) and o2 (X7) = Var (v | X{). Note that

ij

nq

LS () L

J=1 J=

l,uz' (Xij) ://yd-Fm(y) daz(x)

In addition, by Lemma 13.1 of van der Vaart (2000),

S ()] - B S () i



(0)

where R,,, are the vector of ranks of XU , =1,

1 &
EZM (Xij)] .
7j=1

1

;, im (Xij):| } =

Similarly,

Since Xi(;-’) are i.i.d., by CLT,

o (58) - (49)])
vor (2 S ()

while

— N(0,1), as min(n;) —

o0,

115

E ;im(&(j’)) = E Ti i ( //dem )dGi(x), and
J=

Var

58 00)] = el 3] =S
L=l z

where b? is as defined in Lemma 6.2.3. This completes the proof.

Proof of Lemma 6.2.4

Firstly,
1
i (Xi5) a < I(l € Wij)
Wij 1
1 1 s 1 &
= [uz (Xig) — pi (Xij) = > o > Wa — i (Xig)] x I(1 € Wiy)
L) j=1 ¥

= = S Y- (X)) x I(1 € Wiy)
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1 1
+*Z W Z Mz 7,l Xl])} X I(l € WZ])
ti=1 W4
= My + My;.
Note that
1 & GRS |
My = — > Wi — s (X)) ) oAt e Wy).
Yl=1 j=1 "
It can be shown that for any [
—l n; min (ni,l+wT_1 1 w
I(leW;) = L 6.3.2
<wa € Wij) > = (6.3.2)
j:max(l,l—wal)
and
EYy—w(Xa) = ElYu—E | Xu)] =0,
Var Yy — i (Xa)] = EVar(Ya— i (Xa) | Xa)] + Var [E (Y — i (Xa) | Xa)],
where E (Y — pi (Xa) | Xa) =0
= El[o} (Xa)] = O(1), uniformly
Since > [Yir — pi (Xa)] 4 Yo [Y( ) L (Xi(lo))} and the original (XZ(]), Yi@) are
iid., by SLLN,
as n; — 00.

My; — 0, a.s.,

On the other hand, under Assumption S5, we know by Lemma 5.5.1 that, for n; large

enough, Vé > 0,
1 &
wi(Xa)I(l € Wij) — pi(Xi5) = O <ni1+‘S + :) , uniformly a.s., Vj,

Wor
Y o=1
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SO
My; = ZO < —l4s m) — 0, a.s., as n; — oo,
which completes the proof of
— Z fi (Xij) — pi (Xi5)] — 0, a.s., as n; — oo.

Moreover, under Assumptions S2-S4, by SLLN,

— Zuz ij) — E i (Xi5)] — 0, a.s., as n; — oo.
Therefore,
~ Zm Xij) = E[ui (Xij)] +o(1), a.s. (6.3.3)
7 ] 1
Secondly,
o (Xy) = — Z x I(l € Wy;) — wli 1 [ (Xij)}Q, where
ij

n; 2
[ (X)) = [wl] > YuxI(le Wz‘j)]
=1

1|1 & 1
= { ZY;’%XI(ZEWU)}_‘_wQZYih Y;lQXI(ll, lQEVI/ij)

Wi Wi o

i 1yl
Wi Wi 1 1 &
~2 ij i
P = (oot ) ar > al e )
Wi 1
wi-lil ) > Yi, Ya, x Iy, Iz € W)
J (R
1
= wr; Z XIZEWU) m Z}/ﬂl Y:ilz XI(ll, ZQGWU)
7 =1 JAT li#ls
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To prove that

1 O
— Z 0i (Xij) — 0i (Xi5)] — 0, a.s., as n; — oo, (6.3.4)

n;
Zjl

it suffices to show that

ng

1 1
1= Z ZYZ% x I(l e W) — E( Z? | Xij) | =o(1), a.s.
tim LW
and
1 O 1
— 2
Q2 = m; w”(wm_l)l%; Yi, Yi, % I(l17 ly € Wij) - (E (Yij ‘ Xz'j)) = 0(1), a.s.
= 17402

Further write Q1; as

4 nq

Qu = ~> S [Vi-B(} | Xa)] x 1(1 € Wy)

7 w;
=1 Y =1

+ Z Z l2 | le (YZ ’ X@])] X I(l c VVZ])

Wij 1

= Tu+ T2i-

T, = o(1), a.s., because by (6.3.2),

Z I(l € W;j) = O(1), uniformly in [, (6.3.5)
and by SLLN;,
1 - 2 2
—Z Yi—E (Y| Xu)] — 0, asn; — oo
t=1

In addition, by Lemma 5.5.1 and under Assumption S5, for n; large enough,

ng

1

Y B (Vi | Xa) x Il € Wyj) = E (Y| Xi5) = O (n;“ + Z’) , uniformly a.s.,
] =1 (2
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Vv > 0. Hence,

ho L ZO( e

) — 0, a.s., as n; — 00,
(2

which completes the proof of Q1; = o(1), a.s.

Similarly, one can further decompose Q9; as

1 & 1
Q2 = — Z P cr— Z i, Yi, — E (Y, Y, | Xay, Xay)] < I(11,12 € Wij)
tg=1 WY l1#l2

1 & 1
+ EZ wiy(wy —1) > [E (Yie, Y, | Xity, Xary) — (B (Yij | Xi5))°| I(ln, 1o € W)
Jj=1 l1#l2

We prove T3; = o(1), a.s. in Lemma 6.3.2. For Tj;, note that under Assumption S5,
Equation (5.5.8) tells us that, for n; large enough, there exists some constant K > 0

such that, VI € W;; and Vé > 0,

B (Y | Xa) — E(Yiy | Xi)| < K- | Xy — Xy

< K- (Xg — X{;) = 0 <n71+5 + w) , U.Q.S.

where Xg = max (Xj;, | € W;;) and XZ% = min (Xj;, | € W;;). Hence, Vi1, ly € Wi,
2
B (Y | Xu) E (Wi, | X)) = |B (%1 %) +0 (1454 2]
= [E(Yy | Xij)]? +0(1), u.a.s.

which leads to

1 1 1 &
T4i = EZO(l)XﬁZIh,ZQEWW n];o

wl] (wU 11 £y

— 0, a.s., as n; — oo.

This also completes the proof of (6.3.4).
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Furthermore, under Assumptions S2-S4, by SLLN,

n;

1
— Zaf (Xij) — E [07 (Xij)] 20, asn; — oo.
(2 jzl

Therefore,
na? = /a,?(x) dGi(x) + 0(1) = A a2 + o(1), a.s.

which completes the proof of the asymptotic consistency of @7 to a?.

To prove the asymptotic consistency of BZQ to b?, first note that by (6.3.3) and CMT,

nlz;ﬁ () - [ [ v iraw dai<x>]2, as min (1) — 0.

In addition, using the proved fact that Qo; = o(1), a.s. and SLLN, one can easily get

that, under Assumptions S2-S5, as min (n;) — oo,

ng Ny

;ZZ (cyuy~! 3 % x I(ly, ly € Wij) —>/ Uy dFm(y)}2 dGy(x),

j=1 j=1 l1#l2

which completes the proof.

Proof of Lemma 6.2.5

First by Lemma 6.2.2,
VN (Ui _ / / Y dFoa(y) dG,;(:r))

— VN[U,-E(U; | X)|+ \/N//y AFia(y) 4 [Gi(x) — Gi()] + OV ), was.

Since conditionally on X, [U; — E(U; | X)] and [ [y dFiu(y) d [él(x) — Gz(a:)] are in-
dependent, by Lemmas 6.2.1 and 6.2.3, we know: conditionally on X,

\/ﬁ(UZ- - //dem(y) dG,-(a;)) ~%, N(0, a2 +b?), as min (n;) — oo.
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Since the limiting distribution is the same for all X, this weak convergence also holds

unconditionally (by Lemma 5.5.2). Hence,
VN (U - pg) , Ni(0,%), as min(n;) — oo,

where U, pq, and ¥ are as defined in (6.2.1), (6.3.1), and (6.2.2), respectively.
Recall that

Fin(y) = M(y) + Ai(y) + Di(y; ), where / Di(y: z) dGi(x) = 0, Vi, V.
As o consequence,
[ [varaaciar = [va| [ Rt dio)]
= [va| [ 016+ )+ Ditgsa) dGite)
— [yauw)+ [vanw.
Under Ho(A) as defined in (6.0.0),

[ [y aratw e "™ [y i) — sue "™ ( [y )= o

Hence,

VNHU -% Ny, (0, HEH'), under Hy(A); (6.3.6)

— NHU) (HSH) ' (HU) -5 3, under Hy(A),
which completes the proof.

Proof of Theorem 6.2.1

First note that & — 3 —» 0, as min (n;) — oo, since they are k x k diagonal matrices

with diagonal elements a? + 512 and a? + b? respectively, while a? + 322 are consistent
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estimators of a? + b? by Lemma 6.2.4. In addition, note that for any k x k squared
matrix C, the elements of HCH' are continuous functions of the elements of C, by the

Continuous Mapping Theorem (CMT), we get
HSH - HxH -2 0, as min (n;) — oo.

By applying the CMT again along with the fact that the elements of any inverse matrix
with finite dimensions are continuous functions of the elements of the original matrix,

we further get

" 2,0, as min (n;) — oc.

(rsH) T (azH)
Then, by the Slutsky’s Theorem and (6.3.6), we have that, under Hy(A),
(\/NHU)' {(HEH’)_l _ (HEH’)_I} (\/NHU) 2.0, as min (n;) — oo,
which completes the proof.

Proof of Theorem 6.2.2

First recall that

wo = ([ [var o). [ [ ara) de@s))'
= (/y dM(y)+/y dA1(y),- - ,/y dM(y)+/y dAk(y)>I-

Define

b= </ydA1<y>,--~ ,/ydAk@))/z (s oia)

where pa, = [y dA;(y), i = 1,--- k. It is clear that Hug = Hpuy, where H is the
contrast matrix as defined in (6.1.1). In addition, under the local alternatives H,(A) as

defined in (6.2.3), pa, = (n;) V2 [y dBi(y) = (n;)"Y?up,, i=1,--- k.
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The non-centrality of the asymptotic x? distribution is then decided by
-1 -1
N (Hpg) (HEH') " (Hpg) = N (Hpy) (HEH') " (Hpuy)

b N ayy i
() () e

; k 2
i=1 ¢ i=1 l/ci) i=1

E N, 2 E (N 1/2 ]
- (Z nCl;B) - (Z 1 > <n) 2 ) - ¢, as min (n;) — oo,

k 2 c?
=1 i i:11/0i) i=1 i

where ( is as defined in (6.2.4). For the calculation of (6.3.7), see Section 4.3.
Finally, we complete the proof using the fact that a2 +612 are consistent estimators
of a? + b? ( see Lemma 6.2.4) and the arguments stated in the proof of Theorem 6.2.1.

6.3.2 Some Auxiliary Results

Lemma 6.3.1. Under Assumptions S1, S2 and S4,

Var (\/NUZ | X) - a’127 a.s., as min (n;) — oo,

2

where ai are as defined in Lemma 6.2.1.

Proof. Let A; = Var (\/NUZ | X) and write A; as

A = EQZVCLT

Y > I € Wy) | X]

r=1

o4ow=1 _ a2 a2
+i Z (m+ 7 +1 ]) w Q(Xi‘)
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N
= ;{A1+A2+A3}

Note that

g

1 1
— o? ij) = — o; (X, ), fora .
Lyt = Ly et (X)), foran x
Z] 1

i—1 j=1

)

Since the original covariate XZ(]O are i.i.d. and o?(z) are uniformly bounded in x (by As-

sumptions S2 and S4), o7 (XZ(JO)) , j=1,--+,n;, are i.i.d. with finite means. Therefore,
by SLLN,

Ay — /012(37) dG;(z), a.s., as min (n;) — oo.

In addition, by Assumption S4, it is clear that Ao = O (n;l) and A3 = O (n;l), u.a.s.

Then the remaining part of the proof is completed by Assumption S1.
Lemma 6.3.2. Under Assumptions in Lemma 6.2.4,
1 & 1
Ty = —Y ———— Y [Yiy, Y, — E(Ya,Ya, | Xity, Xaty)] x I(I1,12 € Wyj)
ni = wij(wij — 1)

1
Iy £l

— 0, a.s., asn; — oo.

Proof. To simplify the notations, write E(Y;; | Xi;) as p;; in this proof, and let Y7 =
Yij — pij, which have zero means: E(Y;7) = 0. Note that

i>lkl 272 = [Y;h - )uill] [Y;lz - )uilg]
= Y, Y, — Y, pir, — tity Yar, + pity fits
Yilll/:ib - MilluilQ = 7;{1 Z'}kg + }271/1’7;[2 + lul'll}/{lkg'

Hence,

TBi = Rlni + RQni + RSni’
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where

Rin, = 7Zw o Z Yo < I(ly, 1y € Wij);
W\ 117512

Rop, = 72 ——c Z Vi, pity % I(l, 1y € Wig);
i g l17£12

Rgnz = —_ Z Z /"L’Lll 1,[2 X I<l17 l2 e Wz])
1 Wi w” 117512

To prove T3; = o(1), a.s., it is sufficient to prove that all of Ry, Rop, and Rs,, are
o(1), a.s. It is easy to prove the latter two. For example, Ry,, = o(1), a.s. because

i, = O(1), uniformly in /o, and hence 3K3 > 0 such that

Rop, = — Z Zl1 Z Hily Z < w;; w’LJ (l17l2 € Wl])

l1 1 [lo—l1|<w

IN

Z 7, — 0, a.s., by SLLN.
=1

Similarly, Rs,, = o(1), a.s.

Now we prove Ry,, = o(1), a.s. It suffices to show that Ve > 0,

> P(|Rin,| > €) < 0. (6.3.8)
n;=1
Let
SZ-:nZ--Rln— ZZ l l lllQEWZ) as 1 < 1
¢ T2 ’ J wij(wij—l)_wQ—l’
J=111#l2

where the window size w is fixed. Then,

E(S}[X)
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1
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a=1 s1=1 b#a s2=1
= 0(n?), u.a.s.

7

Therefore, £ (S;l) =0 (nQ)

)

Then, by Markov’s Inequality with order 4, Ve > 0,

E R4n. E (54 K
P(‘Rlnl| > 6) < ( 41 l) — 4( 14) < s
€ ni - € ni

for some positive constant K7 which does not depend on n;.

Since Y °_; n;? = 72/6 < oo, the condition (6.3.8) holds. Therefore, Ry, =
o(1), a.s., which completes the proof.



Chapter

Summary and Future Work

7.1 Summary

In the context of a nonparametric model for the unbalanced heteroscedastic two-fold
nested design, we considered the problem of testing for the sub-class effect. We have
established, via theoretical derivations and numerical evidence, that, when the number
of sub-classes is large, the classical F-test (CF) procedure is very sensitive to departures
from homoscedasticity regardless of whether the model is balanced or unbalanced. Even
under homoscedasticity, it is still not asymptotically valid in unbalanced designs with
non-normal errors. For this reason, we developed procedures which are asymptotically
valid under heteroscedasticity.

We distinguished between what we call general heteroscedasticity and between-classes
heteroscedasticity. For the latter case we develop two test procedures, one based on un-
weighted (UW) and one on weighted observations (WT). The UW procedure is extended
also to the case of general heteroscedasticity (HET). Our simulations indicate that the
HET procedure is very competitive against the CF and the UW procedures in cases where
the last two are valid. Thus, we recommend the procedure HET for general applicability
provided n;; > 4 in all sub-classes. The procedure WT is preferable to HET when the
between-classes heteroscedasticity assumption appears tenable and there is either a very
large number of sub-classes, or large cell sizes. The procedure CF is preferable to HET

when the assumptions of normality and homoscedasticity appear tenable.
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A connection is made between testing for no sub-class effect in the nested model, and
testing for no covariate effect in nonparametric ANCOVA. We call this naive approach
the non-overlapping windows approach for analysis of covariance, which leads to the
more sophisticated nonparametric ANCOVA approach, called the overlapping windows
approach, described in the second half of the thesis. Testing for the class effect in the
two-fold nested model is also investigated.

In the second half of the thesis, we propose a new method to test for the covariate
effect in the context of the fully nonparametric ANCOVA model by capitalizing on the
connection, alluded to in the previous paragraph, to testing in nested designs. The basic

idea behind the proposed method can be briefly outlined as three steps:

e treat the levels of the categorical group variable as the classes in the two-fold nested

model;
e consider each distinct covariate value as a sub-class nested in each group/class;

e take a small “window” around each distinct covariate value which consists of the
w nearest covariate values nested in the same group to artificially create duplicates

within each sub-class.

The key advantage of this idea is allowing the covariate to behave differently and to have
possibly different ranges in each group. Of course the aforementioned asymptotic results
for the two-fold nested model cannot be directly applied here, due to the dependence of
the observations resulting from the overlapping windows. Some new asymptotic tools,
based on an application of the projection principle, are thus developed to obtain a new
class of quadratic forms, whose asymptotical approximation is then utilized to establish
the limiting distributions of the proposed test statistic under the null hypotheses and
local alternatives. Our simulations and real data analyses confirm that the proposed test
procedure, compared with other existing methodologies, is very powerful and has unique
flexibility. Testing for the group effect in the fully nonparametric ANCOVA model is

also investigated.
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7.2 Future Research

In the near future, we will investigate, among others, the following topics.

Lack-of-Fit Test in ANCOVA

When parametric assumptions can be validated, the usual parametric analysis of covari-
ance is more powerful than nonparametric ANCOVA. A general parametric ANCOVA
model is of the form Y;; = p + a; + gi(xi5,0) + 04(x4;5) €5, where g;(x,6) are known
functions depending on the unknown parameter 6. A simple, yet common, version of
this model uses g;(z,0) = [z, while more complicated models allow not only ( to differ
among groups, but also g; to be of completely different form in different groups. To test
the feasibility of such a model, I plan to propose the statistic for testing for no covariate
effect in ANCOVA (see previous paragraph), applied on the residuals Y;; — gi(xij,é).
The dependence of the residuals should pose some new methodological challenges which

I plan to handle.

Generalizations of Fully Nonparametric ANCOVA

As a nature extension, I will focus on the development of higher-way ANCOVA model
(i.e. more than one factors) with multiple covariates. The main challenge may rest on the
construction of nearest-neighborhood windows among covariates, which requires appro-
priate ordering of a multivariate vector. This might be achieved via the incorporation of
data depth measurements or the application of some multivariate clustering techniques

(such as K-means).

Extension to Designs with Dependent Observations

The nested design considered in my thesis assumes independent observations. In many
applications it is reasonable to assume random sub-class effects. Successful application
of our methodology to designs with dependent data will also lead to lack-of-fit testing

for certain stochastic regression models. One example I plan to consider is lack-of-fit
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testing in nonlinear time series models such as the nonlinear autoregressive model

Vi =p(Yiz1) + o(Yiz1) €,

which includes as special cases the AR Y; =~Y;_1+4+¢, ARCHY; = (a% + a% Yf_l)l/2 €,

EARY; = [u+vexp (—wY2,)] Yi_1 + ¢ and TAR Y; = amax (V;;0) + bmin (;; 0) + ¢;
models. These tools can then be utilized to select the most appropriate model for
studying diverse issues such as global warming/environmental issues and problems in

financial econometrics.

More Statistical Learning: Classification and Clustering

In 2005 I proposed an innovative classification methodology in my master thesis, called
test-based classification (TBC), which applies to any dimensional, high or low, data set-
ting provided a suitable k-sample test exists and uses p-values to quantify the similarity
of a new observation to each of the training data sets. Because the performance of
this classification method relies heavily on the efficiency of the test procedure used, my
subsequent efforts have been concentrated in developing test procedures involving high-
dimensional alternatives. In particular, I have been working on test procedures in the
nested models and in the fully nonparametric ANCOVA models in this thesis. As a
natural next step, I plan to incorporate the asymptotic results of testing in this thesis
with the TBC rule, and apply the combined methodologies to different classification
challenges in bioinformatics, bio-medical research, statistical genetic/genomics studies,
and other data mining problems. I expect that these will simulate similar developments

in the cluster analysis as well.
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Some comments on two procedures:

UW and WT

To understand why UW couldn’t perform as well as WT under the local alternatives,
we try more simulations (not shown here) under difference settings and found that the
UW procedure is comparatively sensitive to the departure of homoscedasticity under the
local alternatives. More specifically, if the value of o3 decreases, given that the original o;
values used in Table 2.4 are (01, 02, 03, 04, 05) = (1, 1, 5, 1, 1), the resulting powers
of the UW procedure could change dramatically, especially when the value of o3 is large.
Figure A.1 shows the achieved powers, over 10,000 simulation runs at each different value
of o3, of the UW and WT procedures, under the normality and C' = 500, from which
one can see that the smaller the value of o3, the better powers of UW, while the achieved
powers of the WT procedure remains stably high at any values of o3. Also note that the
difference in the achieved powers between UW and WT becomes less distinguishable as
the values of J;; increases.

Two more simulation studies are done to investigate the performances of procedures
UW and WT under homoscedastic designs and under balanced designs. For the for-
mer one, we repeat the simulations done in Table 3.2 except let all o; = 1, to compare
procedures UW and WT with procedures HOM and CF under homoscedasticity. The

corresponding results are shown in Table A.1. Comparing Table A.1 with Table 3.1,
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Size: UW(dashed) vs. WT(solid) vs. CF(dotted) Power (t=1): UW(dashed) vs. WT(solid)
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Figure A.1l. Sizes and Powers under Normality and between-classes Heteroscedasticity (unbal-
anced design with » = 5 and C' = 500; o = 0.05)

one can easily see that procedure HOM still outperform both of UW and WT, al-
though the differences among them become smaller as C increases. Also note that
all three procedures (HOM, UW, and WT) perform better than procedure CF in the
non-normal cases when C' is large enough. Although the theory tells us that the WT
procedure is asymptotically equivalent to HOM under homoscedasticity (see Remark
before Corollary 2.2.3), as addressed in the previous paragraph, this asymptotic equiv-
alence highly depends on the accuracy of sample variance estimates, and hence needs
either larger numbers of sub-classes or the larger cell sizes to achieve. For instance, if
using (vi, v, vs, v4,v5) = (5, 5, 5, 12, 5) to generate n;;, our simulations (not shown

here) indicates that, three procedures (HOM, UW and WT) could in fact perform very
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c=95

c =30

¢ =100

¢ =500

a=0.05 Uw WT

Normal 0.0902 0.2536
Exponen 0.0988 0.2716
LogNorm 0.0946 0.2624
Mixture  0.0993 0.2649
Multi-d 0.0871 0.2438

Uw

0.0632
0.0713
0.0791
0.0700
0.0662

WT
0.1408
0.1362
0.1423
0.1466
0.1315

Uw

0.0583
0.0611
0.0726
0.0546
0.0618

WT

0.1029
0.0959
0.1008
0.0913
0.0975

Uw

0.0499
0.0564
0.0658
0.0519
0.0557

WT
0.0827
0.0713
0.0679
0.0698
0.0732

Table A.1l. Sizes over 10,000 simulation runs under Homoscedasticity (r = 5, unbalanced

design)

similarly under the null when C is large.

For the case under balanced designs, we redo the simulation as in Table 3.2 except

letting all ¢; = ¢ = C/r and all n;; = 3 while the number of classes remains the same

as before (r = 5). The goal of this simulation study is to see whether the balance of

the design would affect the performances of three procedures: UW, WT, and CF. The

achieved sizes are shown in Table A.2. Recall that under homoscedasticity, if the design

a=0.05 CF

Normal 0.1763
Exponen  0.1421
LogNorm 0.1094
Mixture 0.1017
Multi-d 0.1467

o =0.05 CF

Normal 0.1931
Exponen  0.1903
LogNorm 0.1550
Mixture  0.1858
Multi-d 0.1938

c=5 c=30

UW WT CF UW WT
0.1293 0.2224 0.1878 0.0810 0.0987
0.1090 0.1956 0.1807 0.0845 0.0991
0.0861 0.1679 0.1509 0.0715 0.0954
0.0783 0.1546 0.1723 0.0806 0.1067
0.1107 0.2041 0.1781 0.0847 0.1026
¢ =100 c¢=500

UW WT CF UW WT
0.0710 0.0751 0.2029 0.0604 0.0607
0.0684 0.0720 0.1950 0.0615 0.0660
0.0664 0.0787 0.1731 0.0626 0.0622
0.0733 0.0866 0.1938 0.0616 0.0626
0.0712 0.0787 0.1945 0.0602 0.0566

Table A.2. Sizes over 10,000 simulation runs under between-classes heteroscedastic designs
(r =5, balanced design with ¢; = ¢ = C/r and n;; = 3).

is balanced, the classical F-test procedure is in fact asymptotically valid even when the

model is not normal (see Corollary 2.2.1). However, Table A.2 tells us that this asymp-
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totical validity of the classical F-test procedure no longer holds under between-classes
heteroscedastic designs, even when the design is balanced and the model is normal. This
confirms our findings in Corollary 2.2.2. In addition, comparing Table A.2 with Table 3.2,
once can easily see how much the balance of design could improve the performances of
procedures CF and WT, especially for the CF procedure, while its influence on the UW
procedure is comparatively limited.

To sum, based on simulations done above, we would in general recommend the un-
weighted test statistic and the corresponding UW procedure for the nested model under
heteroscedastic and unbalanced designs, while when C' is large enough and the cell sizes

are not too small, procedure UW would be a good choice as well.



Appendix

A simple Time Series Analysis on

NADP Data

In Section 2.4.2 and Section 5.4.3, we analyze the rain data from NADP (National
Atmospheric Deposition Program). The response variable of interest is the pH levels of
precipitation in two towns, Lewiston and Coweeta, while the effect of interest is Time.
To ensure the implementations of our methodologies on this data set are valid, a simple
time series analysis is performed to check the correlations of observations over time in
two locations. The easiest way to complete this mission is to check the plots of the
autocorrelation functions (ACF) for two locations, as shown in Figure B.1. The top
ACF plot is for Lewiston, while the bottom one is for Coweeta. The confidence limits in
the plots assume an MA (k-1), the moving average model of order k£ — 1, input for lag k,
instead of a white noise input.

As seen in Figure B.1, the absolute values of all autocorrelations at different lags in
two locations are less than .20 and all are not significant at level .05, except one. This
only exception is the lag 20 autocorrelation of Coweeta. Given that its value is as small
as —.2256 while the value of the lag is as large as 20, it does not seem meaningful to
take this small possible correlation into consideration in the analysis. We hence ignore

it in our empirical studies.
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Figure B.1. NADP Data. ACF plots of pH levels in two locations: Lewiston (left) and Coweeta
(right).
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