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Abstract

Analysis of variance is a corner stone of statistical applications. The classical asymptotic

results were built either under the normality and homoscedasticity assumptions, or on

cases when the numbers of factor levels are all fixed. However, the past decade has

witnessed the generation of large data sets which involve a multitude of factor levels

while the number of replications per factor combination is very small. The asymptotic

theory is considerably more complicated when testing against those high-dimensional

alternatives.

In the first part of this thesis, we consider the problem of testing for the sub-class

effect in the unbalanced two-fold nested models with a large number of sub-classes. It

is shown that the classical F-statistic is very sensitive to departures from homoscedas-

ticity, even in balanced designs. We propose new testing procedures to accommodate

heteroscedasticity, and the asymptotic distributions of the proposed test statistics, both

under the null and local alternative hypotheses, are established. Simulation studies

examine the finite sample performance of the proposed statistics and the competing

classical F-test. Two real data sets are analyzed and ramifications of these results to the

hypothesis of no covariate effect in the analysis of covariance are discussed, which leads

to a more sophisticated approach described in the second part of the thesis. Testing for

the class effect is also investigated.
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In the second part of this thesis, we introduce a new approach for testing the covariate

effect in the context of the fully nonparametric ANCOVA model which capitalizes on the

connection to the testing problems in nested designs. The basic idea behind the proposed

method is to think of each distinct covariate value as a level of a sub-class nested in each

group/class. A projection-based tool is developed to obtain a new class of quadratic

forms, whose asymptotic behavior is then studied to establish the limiting distributions

of the proposed test statistic under the null hypothesis and local alternatives. Simulation

studies show that this new method, compared with existing alternatives, has better power

properties and achieves the nominal level under violations of the classical assumptions.

Three data sets are analyzed, and asymptotic results concerning testing for the covariate-

adjusted group effect are also included.
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Chapter 1
Introduction

1.1 Heteroscedastic Unbalanced Two-fold Nested Model

The classical ANOVA model assumes that the error terms are i.i.d. normal, in which case

F -statistics have certain optimality properties (cf. Arnold (1981), Chapter 7). Arnold

(1980) showed that the classical F -test is robust to the normality assumption if the

sample sizes are large while the number of factor levels or groups is small. The past

decade has witnessed the generation of large data sets, involving a multitude of factor

levels, in several areas of scientific investigation. For example, in agricultural trials it is

not uncommon to see a large number of treatments with a small number of replications

per treatment. Another application arises in certain type of microarray data in which

the nested factor corresponds to a large number of genes. As a consequence, testing in

designs with a large number of factor levels has attracted considerable attention.

The asymptotic theory of inference is considerably more complicated when the num-

ber of parameters increases with the sample sizes. The seminal paper by Neyman and

Scott (1948) highlights these difficulties. See also Andersen (1970), Portnoy (1985),

Fan and Lin (1998), Simons and Yao (1999), Li et al. (2003) and Hall et al. (2005) for

some representative publications. Li et al. (2003) distinguish two types of frameworks

for the development of asymptotic theory for high-dimensional data: the Neyman-Scott

framework, where the sample sizes remain fixed while the number of parameters tend to

infinity, and the rectangular array framework, where both sample sizes and number of
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parameters tend to infinity. The asymptotic theory in the present paper falls under the

Neyman-Scott framework.

Testing in factorial designs with a large number of factor levels appears to have been

initiated by Brownie and Boos (1994) who, however, used a specialized technique applica-

ble only to a few designs with independent data. More general approaches for finding the

asymptotic distribution of F -statistics, which are of the form F = MST/MSE, were

developed in Akritas and Arnold (2000), Bathke (2002), and Akritas and Papadatos

(2004). Wang and Akritas (2006) applied the Akritas and Papadatos (2004) approach

to two-way designs, Gupta et al. (2006) consider designs with multivariate data, while

Wang and Akritas (2004) and Bathke and Harrar (2008) consider methods based on

ranks. When the degrees of freedom of both the numerator and the denominator of

F -statistics tend to infinity, inference is based on the asymptotic distribution of F − 1

(with some scaling that depends on the number of factor levels). In all cases known to

the authors, the asymptotic distribution of F−1 is normal and the test procedure rejects

the null hypothesis at level α when F − 1 is larger than the 100(1 − α)th percentile of

its limiting distribution. This is because under the alternative E(MST ) > E(MSE).

In this thesis we study the two-fold nested design. The motivating application comes

from the Mussel Watch Project of the National Oceanic and Atmospheric Administration

(NOAA), which monitors chemical and biological contaminant trends in sediment and

bivalve tissue collected from hundreds of EDAs (Estuarine Drainage Areas) in the West

Coast, the East Coast (North, Middle and South Atlantic), the Gulf of Mexico, and the

Great Lakes. Since each coastal region has its own EDAs, results of crossed designs are

not appropriate for studying differences among the different EDAs. In this data set, the

number of EDAs within each coastal region is relatively large, ranging from 30-60, while

the cell sizes within each sub-class is small. While normality and homoscedasticity are

difficult to ascertain with small sample sizes, Figure 2.1 suggests that these assumptions

are violated. Thus, there is need for an asymptotic theory that accommodates these

features.

It is known that the classical, normality-based F -test is sensitive to departures from

the homoscedasticity assumption, especially when the design is unbalanced. For exam-
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ple, based on 10, 000 simulated replications from an unbalanced, between-classes het-

eroscedastic nested design (i.e. homoscedasticity within each class, but not between

classes), the classical F -test achieved α level of 0.57 at nominal α = 0.05, as reported in

Table3.2. This simulation study used r = 5 classes, (c1, c2, c3, c4, c5) = (2, 4, 5, 6, 8)

sub-classes and (2, 2), (1, 2, 2, 2), (1, 5, 1, 3, 1), (12, 8, 13, 12, 10, 11), (5, 2, 1, 3, 3, 1, 2, 2) cell

sample sizes in each sub-class. For the same setting, the proposed unweighted (between-

classes) heteroscedastic test procedure (based on Theorem 2.2.2) achieved an α level of

0.115. For the same setting but with larger number of sub-classes ((c1, c2, c3, c4, c5) =

(50, 75, 100, 125, 150)), the proposed procedure achieved an α level of 0.067, while the

F -test rejected 100% of the time. In fact, for the nested design we consider, even under

homoscedasticity, the classical F -test is not asymptotically valid in the unbalanced de-

sign if the cell sizes are small, unless the model is normal. More details are discussed in

Chapters 2–4.

1.2 Fully Nonparametric Analysis of Covariance and Fully

Nonparametric Hypotheses

For a k-group (one-way) analysis of covariance (ANCOVA) model, let (Xij , Yij) denote

the paired covariate and the response variables for the j-th observation in the i-th group,

i = 1, · · · , k, j = 1, · · · , ni. The classical ANCOVA model specifies that, conditionally

on Xij = x,

Yij = µ+ αi + δi x+ eij , (1.2.1)

where eij are independent and identically distributed normal errors. Without the nor-

mality assumption, model (1.2.1) is known as the semiparametric ANCOVA.

In this thesis, we consider the nonparametric ANCOVA model of Akritas et al. (2000),

which assumes only that, conditionally on Xij = x, the distribution of Yij depends on i

and x:

Yij |Xij = x ∼ Fix. (1.2.2)
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As pointed out in their paper, this model does not place any assumption on normality,

homoscedasticity, linearity and additivity, so they called it “completely nonparametric”

or “fully nonparametric” as used in Akritas and Arnold (1994) when they first introduced

this concept. Also note that this model allows ordinal categorical covariates and its model

interpretation is scale-free.

Next, choose distribution functions Gi(x), i = 1, · · · , k, and define

F̄Gi
i· (y) =

∫
Fix(y) dGi(x). (1.2.3)

If Xij ’s are random, one can think of Gi as the distribution function of Xij in group i,

and F̄Gi
i· as the marginal distribution function of Yij in the same group i. Note that the

definition in (1.2.3) uses the individual Gi(x), instead of the overall G(x), so it allows

the covariate to have different distributions and different supports for different groups.

Under this setting, there are two hypotheses of interest:

No covariate-adjusted group effect ⇐⇒ H0 : F̄Gi
i· does not depend on i; (1.2.4)

No covariate effect ⇐⇒ H0 : Fix does not depend on x. (1.2.5)

Note that our null hypothesis of no covariate-adjusted group effect, as defined in (1.2.4),

is different from the one used by Akritas et al. (2000):

H0 : Fi·(y) does not depend on i, where Fi·(y) =
∫
Fix(y) dG(x). (1.2.6)

The distribution function used in Fi·(y) is the overall G(x). Compare with Fi·(y), we

believe that F̄Gi
i· (y) has at least two advantages:

1. F̄Gi
i· (y) is a more natural way to define the average effect of the covariate variable

on the response variable, because it allows the covariate Xij to have different ranges

in different groups, while Fi·(y) forces the covariate to have the same range, which

may cause the issue of missing values in applications.

2. In many cases, it makes more sense to compare F̄Gi
i· (y), instead of Fi·(y) when
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testing the covariate-adjusted group effect. Take a simple medical study as an

example. Suppose that the response is the reduction in blood pressure, while the

covariate is the baseline measurement. Suppose that the group effect of interest

is ethnicity. Since different races represent different populations, it might not be

reasonable to assume that the covariate variables for different ethnicity groups

come from a common distribution G(x). As a consequence, the definition of Fi·(y)

itself may be questionable under those cases and testing hypotheses based on it

may also make no sense.

Conditionally on Xij = x, we can further decompose Fix as follows:

Fix(y) = M(y) +Ai(y) +Di(y;x), i = 1, · · · , k, (1.2.7)

where

k∑
i=1

ni∑
j=1

Ai(y) =
k∑
i=1

niAi(y) = 0, ∀y;
∫
Di(y;x) dGi(x) = 0,∀i, ∀y.

Thus, letting N =
∑

i ni,

M(y) =
1
N

k∑
i=1

niF̄
Gi
i· ;

Ai(y) = F̄Gi
i· −M(y);

Di(y;x) = Fix(y)−Ai(y)−M(y).

In this unique decomposition, the functions M(y), Ai(y) and Di(y;x) can be thought

of as the overall effect, the covariate-adjusted group effect of group i, and the covariate

effect with the value x, respectively. The null hypothesis (1.2.4) of no covariate-adjusted

group effect can then be equivalently rewritten as

H0(A) : Ai(y) = 0 for all i and all y, (1.2.8)
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while the null hypothesis (1.2.5) of no covariate effect can be restated as

H0(D) : Di(y;x) = 0 for all i, all x and all y. (1.2.9)

Since these hypotheses are clearly invariant under monotone transformations of the re-

sponse and do not depend on any modeling assumptions, they are “fully nonparametric”

as well. For the importance of test procedures being invariant under monotone trans-

formations, see Patel and Hoel (1973), Akritas and Arnold (1994), Akritas et al. (1997)

and references therein.

1.3 Connections between Two Models

The idea for constructing test statistics for the null hypotheses in the fully nonparametric

ANCOVA model, (1.2.8) and (1.2.9), is inspired by the similarity of model (1.2.7) to the

model for the two-fold nested design, with the group variable corresponding to the class

factor and the covariate variable corresponding to the sub-class factor. What makes

the connection between these two models feasible is that in the context of the fully

nonparametric ANCOVA model, the covariate effect is in fact not modeled. In spite

of this conceptual similarity, however, the classical asymptotic test procedures in the

two-fold nested model were driven by a large number of replications on fixed numbers of

levels of the class and sub-class factors, while the classical ANCOVA built its standard

asymptotics with a large number of observations per group, which makes the number

of levels of the ‘covariate factor’ tend to infinity. Therefore, the asymptotic results in

the classical two-fold nested model are not directly applicable to the classical ANCOVA

model.

To construct a link between these two models using the conceptual similarity stated

above, we first consider the asymptotic test procedures using the Neyman-Scott frame-

work according to which the number of sub-class levels tends to infinity with the number

of replications being at least two, but otherwise allowed (but not required) to remain

fixed. Note that, however, there is typically only one observation per covariate value, if

assuming no ties on the covariate. One simple way to solve this ‘sparseness’ issue, due
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to the continuity of the covariate, is to discretise the covariate factor. More specifically,

one can simply partition the paired observations (Xij , Yij) in the same group i into

ni/w non-overlapping windows, according to their sorted covariate values, so that there

are only a small number w of observations per window. Those artificially-created non-

overlapping small windows serve as the sub-classes in the two-fold nested model setting,

and the asymptotic results derived for the two-fold nested model with a large number

of sub-classes (and a small number of observations in each sub-class) can then apply

directly. We call this “non-overlapping windows approach”, and a simple application of

this approach can be found in Section 2.4.2.

Another way to remedy this sparseness issue, or the issue of lack of replications on

each of the covariate values, is to consider a window Wij around each Xij consisting of

the w nearest covariate values from group i. That is, we utilize smoothness assumptions

to augment the observed data in ANCOVA to construct a large number of overlapping

local windows in order to form an artificial two-fold nested model with each sub-class

having w replications. Under the assumption that the conditional distribution Fix of the

response at a given covariate value x changes smoothly with x, simultaneously taking

into account the responses having covariate values close to the given x-value can magnify

the information available for Fix, and hence enlarge the power of the corresponding test

procedures. This approach is called “overlapping windows approach” in this thesis, and

more details about how to implement this approach can be found in Chapter 5. Since the

overlapping windows in this artificial two-fold nested model have common observations

with other windows close by, the asymptotic results obtained in Chapters 2–4 do not

apply. A new set of asymptotic approximation techniques using the projection principle

is then introduced in Section 5.2 to accommodate such kind of augmented dependence

in our design. It can be shown that the “overlapping windows approach” is indeed more

powerful than the naive “non-overlapping windows approach” (see Section 5.3.2 for some

numerical evidence).
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1.4 Thesis Outline

The rest of this thesis is organized as follows. The first part comprises three chapters. In

Chapter 2, we consider the problem of testing for the sub-class effect in the unbalanced

two-fold nested model, when the number of of sub-classes is large while the number

of classes and the number of observations per sub-class remain fixed. The designs un-

der homoscedasticity and under heteroscedasticity are all investigated. Appropriate test

procedures are developed for different designs, and the asymptotic distributions of the

proposed test statistics, both under the null hypothesis and local alternatives, are estab-

lished. Simulation studies examine the finite sample performance of the proposed test

procedures and the competing classical F-test. Two real data sets are analyzed: one is

from a project monitoring the chemical contaminants in the coastal areas, and the other

is used to illustrate ramifications of these results to the hypothesis of no covariate effect

in the nonparametric analysis of covariance.

In Chapter 3, the extension of the results in Chapter 2 to the case when the number

of classes and the number of sub-classes are both large is introduced. We derive the

asymptotic theories of the proposed test procedures both under the null hypothesis and

local alternatives, and examine their performances using some simulation studies. An

application of this methodology for testing the lack-of-fit in regression is also discussed.

In Chapter 4, testing for the class effect in the two-fold nested model with a large

number of sub-classes is considered. Asymptotic results are presented for the hypotheses

with arbitrary weights on sub-classes. Both homoscedastic designs and heteroscedastic

designs are included.

In the second part of this thesis, which consists of two chapters, we investigate fully

nonparametric analysis of covariance, as introduced in Section 1.2. In Chapter 5, we

establish a new methodology to test for the covariate effect by utilizing the connection

to testing in the nested models. Although the proposed test statistic has a form similar

to those for testing the sub-class effect in nested models when the number of sub-classes

is large, the asymptotic derivations of its limiting distributions under the null hypotheses

and local alternatives involves a different class of quadratic forms, and hence needs a

new asymptotic tool based on the projection principle which we introduce. Simulation
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studies are performed to demonstrate the proposed method and compare its properties

with existing alternatives. Three real data sets are analyzed.

In Chapter 6, we further consider testing for the covariate-adjusted group effect in the

fully nonparametric analysis of covariance model. Asymptotic results for the proposed

test statistic are given and proved.

Finally, we complete this thesis with a brief summary of our work and some possible

future research topics in Chapter ??.



Chapter 2
Testing for the Sub-class Effect in

Two-fold Nested Model when the

number of sub-classes is large

The purpose of the present chapter is to provide valid test procedures for the sub-class

effect which can perform well in unbalanced and/or heteroscedastic designs when the

number of sub-classes is large. The proposed test statistics are of the general form

MST −MSE, but the MSE is chosen so that, under the null hypothesis, E(MSE) =

E(MST ). Note that this last relation does not hold under heteroscedasticity for the

classical definition MSE. The basic asymptotic technique we apply is based on finding

the joint limiting distribution of (MST,MSE) through a suitable representation by a

simpler, asymptotically equivalent, random vector.

The rest of this chapter is organized as follows. Section 2.1 describes the statistical

model for the unbalanced heteroscedastic two-fold nested design, and reviews the classical

F -test procedure for the hypothesis of no sub-class effect. In Section 2.2.1 we present the

asymptotic theory for the classical F -statistic in the homoscedastic case. In Section 2.2.2

we propose two test statistics (one weighted and one unweighted) for the between-classes

heteroscedastic model, and present their asymptotic distributions. In Section 2.2.3 we

propose an unweighted test statistic for the model with general heteroscedasticity, and
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present its asymptotic theory. Simulation results are presented in Section 2.3, while the

lead concentration data set from the Mussel Watch Project is analyzed in Section 2.4.1.

A ramification of these results for analysis of covariance is illustrated in Section 2.4.2

using the Acid Rain data from the National Atmospheric Deposition Program (NADP).

Finally, proofs of the results presented in Section 2.2 are provided in Section 2.5.

2.1 The Statistical Model and the Test Statistic

In the general unbalanced two-fold nested model, we observe

Yijk = µij + σij · eijk, i = 1, · · · , r; j = 1, · · · , ci; k = 1, · · · , nij , (2.1.1)

where the µij and σij are bounded and eijk are independent with

E(eijk) = 0, V ar(eijk) = 1. (2.1.2)

Note that the general model (2.1.1), (2.1.2) does not assume that the errors eijk are

normally, or even identically, distributed. Thus, ordinal discrete data are included in

this formulation. Let

C =
r∑
i=1

ci, ni· =
ci∑
j=1

nij , NC =
r∑
i=1

ci∑
j=1

nij =
r∑
i=1

ni·.

The means µij are typically decomposed as

µij = µ+ αi + δij , (2.1.3)

where we assume that

r∑
i=1

ni·αi = 0 and
ci∑
j=1

nijδij = 0, ∀i.
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In this chapter, we are mainly interested in testing H0: δij = 0 (no sub-class effect). Let

MSδ =

∑r
i=1

∑ci
j=1 nij(Ȳij· − Ȳi··)2

C − r
, (2.1.4)

MSE =

∑r
i=1

∑ci
j=1

∑nij

k=1(Yijk − Ȳij·)2

NC − C
, (2.1.5)

where Ȳij· and Ȳi·· are the corresponding unweighted means of Yijk within each sub-class

and within each class, i.e.

Ȳij· =
1
nij

nij∑
k=1

Yijk, Ȳi·· =
1
ni·

ci∑
j=1

nij∑
k=1

Yijk =
1
ni·

ci∑
j=1

nij Ȳij·.

Then, the usual F -test statistic for testing H0: δij = 0 is

F δC =
MSδ

MSE
. (2.1.6)

Under the normal homoscedastic model, i.e. if eijk are assumed to be iid N(0, 1) and all

σij = σ, we have that

F δC ∼ FC−r,NC−C , under H0 : δij = 0. (2.1.7)

In what follows we examine the robustness of this procedure to departures from the

assumptions of normality and homoscedasticity as the number of sub-classes gets large.

In all that follows we will use the notation

n̄ici =
1
ci

ci∑
j=1

nij =
ni·
ci
, nici =

1
ci

ci∑
j=1

1
nij

.

All results, except those of Section 5, are derived under the following conditions on the

sample sizes: There exist numbers λi ∈ (0, 1), n̄i > 1, and ni ∈ (0,∞) such that as

min (ci)→∞,

√
C
( ci
C
− λi

)
→ 0,

√
ci (n̄ici − n̄i)→ 0, nici −→ ni. (2.1.8)
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Finally, we define

n̄ =
r∑
i=1

λin̄i. (2.1.9)

2.2 Main Results

2.2.1 Homoscedastic Designs

In this subsection we consider the unbalanced two-fold nested design with homoscedastic

errors and derive the asymptotic distribution of F δC , defined in (2.1.6). As a corollary of

Theorem 2.2.1 below, we obtain that the usual, normal-based, F -test procedure is not

robust to departures from the normality assumption even under homoscedasticity.

Theorem 2.2.1. Consider the model and assumptions given in (2.1.1) with σij = σ,

(2.1.2), (2.1.8) and the decomposition of the means given in (2.1.3). In addition assume

that

E(e3
ijk) = 0, E(e4

ijk) = κi, and E|eijk|4+2ε <∞ for some ε > 0.

Then, under alternatives δij which satisfy

√
ci

 1
ci

ci∑
j=1

nij
δ2
ij

σ2
− θi

→ 0, for some numbers θi ∈ (0,∞),

as min (ci)→∞ while r, nij stay fixed,

√
C
(
F δC − (1 + θ)

)
d→ N (0, Σs) , (2.2.1)

where λi, n̄i, n, and n̄ are as given in (2.1.8) and (2.1.9), θ =
∑r

i=1 λiθi, and

Σs = 2 + 4θ +
2(1 + θ)2

n̄− 1

+
r∑
i=1

[
(κi − 3)λi

(2θ + n̄)(n̄ni − 1) + (2θ + 1)(n̄i − n̄) + θ2(n̄i + ni − 2)
(n̄− 1)2

]
.
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Under the null hypothesis H0 : δij = 0, which results in θ = 0, we then have

√
C
(
F δC − 1

)
d→ N

(
0, 2 +

2
n̄− 1

+
r∑
i=1

[
(κi − 3)λi(n̄2ni − 2n̄+ n̄i)

(n̄− 1)2

])
. (2.2.2)

Corollary 2.2.1. Under the model and assumptions of Theorem 2.2.1, the classical,

normality-based, F -test procedure for the hypothesis H0 : δij = 0, shown in (2.1.7), is

not asymptotically valid when the model is not normal, unless nij = n.

It can be shown that if normality holds, the test procedure implied by Theorem 2.2.1

is asymptotically equivalent to the classical F -test procedure under H0 : δij = 0.

2.2.2 Between-classes Heteroscedastic Designs

Two possible statistics

In this subsection we consider the heteroscedastic unbalanced two-fold nested design, but

assume we have between-classes heteroscedasticity, i.e. σij = σi in the relation (2.1.1).

It can be shown that if the design is unbalanced, then, under heteroscedasticity, it is no

longer true that E(MSE) = E(MSδ) under the null hypothesis H0 : δij = 0. Thus it is

clear that the usual F -test procedure is not valid even under normality. In this section,

we will first introduce two possible test statistics, one unweighted and one weighted.

The unweighted statistic simply replaces MSE with

MSE∗ =
1

C − r

r∑
i=1

ci − 1
ni· − ci

ci∑
j=1

nij∑
k=1

(
Yijk − Ȳij·

)2
.

It is easily seen that MSE∗ satisfies E(MSE∗) = E(MSδ) under the null hypothesis.

Thus, the unweighted statistic is

F ∗C − 1 =
MSδ

MSE∗
− 1. (2.2.3)

It is easy to verify that, in the balanced case, F ∗C = F δC , where F δC is the classical

F -statistic given in (2.1.6).

The weighted statistic will be derived from a totally different angle. Assume first that
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the σi are known and consider the mean-error decomposition of the weighted random

variables Y
′
ijk = Yijk/σi:

Y
′
ijk =

Yijk
σi

, µ
′
ij + eijk, where µ

′
ij =

µ

σi
+
αi
σi

+
δij
σi
. (2.2.4)

The new means µ
′
ij are then further decomposed (uniquely) as

µ
′
ij = µ

′
+ α

′
i + δ

′
ij , where

r∑
i=1

ni·α
′
i = 0 and

ci∑
j=1

nijδ
′
ij = 0, ∀i, (2.2.5)

where

µ
′

=
1
NC

r∑
i=1

ci∑
j=1

nijµ
′
ij =

1
NC

r∑
i=1

ni·

(
µ+ αi
σi

)
,

α
′
i =

ci∑
j=1

nij
ni·

µ
′
ij − µ

′
=
µ+ αi
σi

− µ′ ,

δ
′
ij = µ

′
ij − (µ

′
+ α

′
i) =

δij
σi
.

Note that the original null hypothesis H0 : δij = 0, ∀i, j, is equivalent to the cor-

responding hypothesis for the model for the weighted random variables Y
′
ijk, namely,

H0 : δ
′
ij = 0, ∀i, j. Let MSδ

′
, MSE

′
, and F ′C be as defined in (2.1.4)–(2.1.6) but with

Y
′
ijk replacing Yijk, that is,

MSδ
′

=

∑
i

∑
j nij(Ȳ

′
ij· − Ȳ

′
i··)

2

C − r
=

1
C − r

r∑
i=1

ci∑
j=1

nij

(
Ȳij· − Ȳi··

σi

)2

, (2.2.6)

MSE
′

=

∑
i

∑
j

∑
k(Y

′
ijk − Ȳ

′
ij·)

2

NC − C
=

1
NC − C

r∑
i=1

ci∑
j=1

nij∑
k=1

(
Yijk − Ȳij·

σi

)2

,(2.2.7)

F ′C =
MSδ

′

MSE′
. (2.2.8)
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Of course, the σi are not known and thus they need to be estimated. Let

S2
ij =

1
nij − 1

nij∑
k=1

(Yijk − Ȳij·)2, S2
i =

1
ni· − ci

∑
j

(nij − 1)S2
ij , (2.2.9)

be the usual estimators of σ2
ij and σ2

i . Note that if σi is replaced by Si in MSE
′
, the

expression in (2.2.7) is identically equal to one. The proposed weighted test statistic is

thus

F̂ ′C − 1, where F̂ ′C =
1

C − r

r∑
i=1

1
S2
i

ci∑
j=1

nij
(
Ȳij· − Ȳi··

)2
. (2.2.10)

Asymptotic Theory for the Unweighted Statistic

The asymptotic distribution of the unweighted statistic, F ∗C − 1, defined in (2.2.3), is

given by Theorem 2.2.2. As a corollary to this theorem we obtain that, under het-

eroscedasticity, the classical F -test procedure is not valid in the balanced case (where

F ∗C = F δC) even under normality.

Theorem 2.2.2. Consider the model and assumptions given in Theorem 2.2.1, except

that the variances σij = σi are allowed to vary among classes. Then, under alternatives

δij which satisfy

√
ci

 1
ci

ci∑
j=1

nij
δ2
ij

σ2
i

− θi

→ 0, for some numbers θi ∈ (0,∞),

as min (ci)→∞ while r, nij stay fixed,

√
C (F ∗C − (1 + θ∗)) d→ N (0, Σ∗s) , (2.2.11)

where λi, n̄i, ni and n̄ are given in (2.1.8), and

θ∗ =
θσ

β
, where θσ =

r∑
i=1

σ2
i λiθi and β =

r∑
i=1

σ2
i λi, and

Σ∗s =
r∑
i=1

λiσ
4
i

β2

{
2 + 4θi +

2(1 + θ∗)2

n̄i − 1
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+
κi − 3

(n̄i − 1)2

[
(n̄i + 2θ∗)(n̄ini − 1) + θ∗2(n̄i + ni − 2)

]}
.

Under the null hypothesis H0 : δij = 0, which results in θ∗ = 0, we then have

√
C (F ∗C − 1) d→ N

(
0,

r∑
i=1

λiσ
4
i

β2

[
2 +

2
n̄i − 1

+
(κi − 3)n̄i(n̄ini − 1)

(n̄i − 1)2

])
. (2.2.12)

Corollary 2.2.2. Under the model and assumptions of Theorem 2.2.2, if the design is

balanced (i.e. ci = c and nij = n), then the unweighted test statistic F ∗C is equal to the

classical F -test statistic F δC , and as c→∞

√
C (F ∗C − 1) d→ N

(
0,

r∑
i=1

λiσ
4
i

β2

[
2 +

2
n− 1

])
, (2.2.13)

under the null hypothesis H0 : δij = 0. Thus the classical F -test procedure based on F δC ,

is not asymptotically valid even when the design is balanced and normality holds.

Asymptotic Theory for the Weighted Statistic

The asymptotic distribution of the weighted statistic, F̂ ′C − 1, as defined in (2.2.10), is

given by the following theorem.

Theorem 2.2.3. Consider the model and assumptions given in Theorem 2.2.1, except

that the variances σij = σi are allowed to vary among classes. Then, under alternatives

δij which satisfy

√
ci

 1
ci

ci∑
j=1

nij
δ2
ij

σ2
i

− θi

→ 0, for some numbers θi ∈ (0,∞),

as min (ci)→∞ while r, nij stay fixed,

√
C
(
F̂ ′C − (1 + θ)

)
d→ N

(
0, Σ̂s

)
, (2.2.14)
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where λi, n̄i, and n are as given in (2.1.8), θ =
∑

i λiθi and

Σ̂s = 2 + 4θ +
r∑
i=1

[
2λi
n̄i − 1

(1 + θi)2(κi − 3)λi
(2θi + n̄i)(n̄ini − 1) + θ2

i (n̄i + ni − 2)
(n̄i − 1)2

]
.

Under the null hypothesis H0 : δij = 0, which results in θ = 0, we then have

√
C
(
F̂ ′C − 1

)
d→ N

(
0,

r∑
i=1

λi

[
2 +

2
n̄i − 1

+
(κi − 3)n̄i(n̄ini − 1)

(n̄− 1)2

])
. (2.2.15)

Corollary 2.2.3. Consider the model and assumptions of Theorem 2.2.3. If the design

is balanced (ci = c and nij = n), then under the null hypothesis H0 : δij = 0,

√
C
(
F̂ ′C − 1

)
d→ N

(
0, 2 +

2
n− 1

)
, as c→∞.

2.2.3 General Heteroscedastic Designs

In this subsection we consider the general unbalanced heteroscedastic two-fold nested

model, as defined in (2.1.1). As remarked in the context of between-classes heteroscedas-

ticity, the relation E(MSE) = E(MSδ) is no longer true if the design is unbalanced.

Moreover, the usual F -test procedure is not valid even in the balanced case under nor-

mality.

In the previous subsection, we introduced two statistics, unweighted and weighted.

Conceptually, we should be able to extend both ideas to the present model which al-

lows general heteroscedasticity. However, the weighted statistic is very unstable when

estimation of the σij is based on small sample sizes. In fact, the asymptotic theory of

the weighted test statistic in this case requires the sample sizes to also tend to infinity.

Therefore, we will only consider the unweighted statistic in this subsection.

The idea of the unweighted statistic is to replace MSE by a different linear combi-

nation of the cell sample variances in order to match the expected value of MSδ under

the null hypothesis. This achieved by replacing MSE by MSE∗∗, defined as

MSE∗∗ =
1

C − r

r∑
i=1

ci∑
j=1

(
1− nij

ni·

)
S2
ij , (2.2.16)
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where S2
ij is as given in (2.2.9). The unweighted statistic for the general heteroscedastic

case would be then defined as

F ∗∗C − 1 =
MSδ

MSE∗∗
− 1. (2.2.17)

It is easy to verify that, in the balanced case, F ∗∗C = F ∗C = F δC , where F δC is the classical

F -statistic given in (2.1.6) and F ∗C is the unweighted statistic under between-classes

heteroscedastic designs. The asymptotic distribution of the unweighted statistic F ∗∗C − 1

is given by the following theorem.

Theorem 2.2.4. Consider the model and assumptions given in (2.1.1), (2.1.2), and the

decomposition of the means given in (2.1.3). In addition, assume that there exist κij,

λi, a1i, a2i, b1i, b2i and b3i such that, as min (ci)→∞,

E(e3
ijk) = 0, E(e4

ijk) = κij , and E|eijk|4+2ε <∞ for some ε > 0;

√
C
( ci
C
− λi

)
→ 0,

√
ci

 1
ci

ci∑
j=1

σ2
ij − a1i

→ 0,
1
ni·

ci∑
j=1

nijσ
2
ij −→ a2i, (2.2.18)

1
ci

ci∑
j=1

σ4
ij −→ b1i,

1
ci

ci∑
j=1

σ4
ij

nij − 1
−→ b2i,

1
ci

ci∑
j=1

σ4
ij(κij − 3)
nij

−→ b3i.

Then, under alternatives δij which satisfy, as min (ci)→∞ while r, nij stay fixed,

√
ci

 1
ci

ci∑
j=1

nijδ
2
ij − θ1i

→ 0,
1
ci

ci∑
j=1

nijδ
2
ijσ

2
ij −→ θ2i,

for some numbers θ1i ∈ (0,∞) and θ2i ∈ (0,∞), we have

√
C (F ∗∗C − (1 + θ∗∗)) d→ N

(
0,

1
a2

1

[
2(b1 + b2) + 4(θ2 + b2θ

∗∗) + (2b2 + b3)θ∗∗2
])

,

where

θ∗∗ =
θ1

a1
, θ1 =

r∑
i=1

λiθ1i, a1 =
r∑
i=1

λia1i, (2.2.19)
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b1 =
r∑
i=1

λib1i, b2 =
r∑
i=1

λib2i, b3 =
r∑
i=1

λib3i, θ2 =
r∑
i=1

λiθ2i.

Under the null hypothesis H0 : δij = 0, which results in θ∗∗ = 0, we then have

√
C (F ∗∗C − 1) d→ N

(
0,

2b1 + 2b2
a2

1

)
. (2.2.20)

2.3 Simulation Studies

In this section, simulations are used to compare the achieved sizes and/or powers of

several test procedures. Let CF denote the classical F -test procedure, shown in (2.1.7),

and HOM, UW, WT, HET denote the test procedures implied by the asymptotic results

of (2.2.2), (2.2.12), (2.2.15) and (3.1.3), respectively. The procedure CF is compared

with HOM for homoscedastic designs (Section 2.3.1), and with both of UW and WT

for between-classes heteroscedastic designs (Section 2.3.2). In Section 2.3.3 the HET

procedure is compared to UW and HOM for both homoscedastic and heteroscedastic

designs.

For all simulations except those of Section 2.3.3, the number of classes used in all

simulations is five (r = 5). The different combinations of numbers of sub-classes studied

here, with the average c in each case, are:

• c = 5 ⇔ (c1, c2, c3, c4, c5) = (2, 4, 5, 6, 8);

• c = 30 ⇔ (c1, c2, c3, c4, c5) = (15, 23, 30, 37, 45);

• c = 100 ⇔ (c1, c2, c3, c4, c5) = (50, 75, 100, 125, 150);

• c = 500 ⇔ (c1, c2, c3, c4, c5) = (250, 375, 500, 625, 750).

The number of observations in each sub-class (nij) is generated by truncated Poisson

distributions. More specifically, nij = Zij + υi × I(Zij = 0), where I is an indicator

function and Zij ∼ Poisson(υi), i = 1, · · · , 5; j = 1, · · · , ci. The value of υi used in our

simulations is (υ1, υ2, υ3, υ4, υ5)′ = (2, 2, 2, 12, 2). The values of the other parameters

in the decomposition (2.1.3) are as follows: µ = 0, (α1, α2, α3, α4)′ = (−3,−2,−1, 2)′
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and α5 is chosen so that
∑

i ni·αi = 0. After generating the nij and fixing all param-

eters, we randomly generate errors eijk from one of the following five distributions: (i)

Normal: the standard normal; (ii) Exponen: the exponential distribution with λ = 1;

(iii) LogNorm: the log-normal distribution whose logarithm has mean 0 and standard

deviation 1; (iv) Mixture: the mixture distribution defined as U1 ·X1 + (1 − U1) · Y1,

where U1 ∼ Bernoulli(p = 0.9), X1 ∼ N(−1, 1) and Y1 ∼ N(9, 1); and (v) Multi-d:

when r = 1, 2, 3, 4, generate eijk from Normal, Exponen, LogNorm, and Mixture as

described above, respectively. When r = 5, generate eijk from another mixture distribu-

tion defined as U2 ·X2 + (1− U2) · Y2, where U2 ∼ Bernoulli(p = 0.5), X2 ∼ N(−3, .5)

and Y2 ∼ N(3, .5). All eijk are standardized to have mean 0 and standard deviation

1. As for the variances, we use σij = σ = 1, ∀i, j for homoscedastic designs, use

(σij) = (σi) = (σ1, σ2, σ3, σ4, σ5) = (1, 1, 5, 1, 1), ∀j for between-classes het-

eroscedastic designs, and σij = 4 · I(i = 3) + 5 · I(j < 0.3 ci) + (j/ci), ∀i, j, where I(·)

is an indicator function, for general heteroscedastic designs.

2.3.1 Simulations under Homoscedastic designs

We first compare the achieved sizes of two procedures, CF and HOM, under homoscedas-

tic designs. The first procedure, CF, based on the classical normality-based F -test the-

orem, rejects at level α if

F δC > FαC−r,NC−C , (2.3.1)

where F δC is defined in (2.1.6) and FαC−r,NC−C is the (1 − α)100th percentile of the

FC−r,NC−C distribution. The second procedure, HOM, using the asymptotic null distri-

bution shown in (2.2.2), rejects at level α if

√
C(F δC − 1) >

√√√√2 +
2

ˆ̄n− 1
+

r∑
i=1

[
(κ̂i − 3)λ̂i(ˆ̄n2n̂i − 2ˆ̄n+ ˆ̄ni)

(ˆ̄n− 1)2

]
Zα, (2.3.2)

where F δC is as before and Zα is the (1 − α)100th percentile of the standard normal

distribution. In addition, λ̂i, ˆ̄ni, n̂i, ˆ̄n, and κ̂i are the empirical versions of λi, n̄i, ni, n̄,
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and κi, namely

λ̂i =
ci
C
, ˆ̄ni =

1
ci

ci∑
j=1

nij , n̂i =
1
ci

ci∑
j=1

1
nij

, ˆ̄n =
r∑
i=1

λ̂i ˆ̄ni, (2.3.3)

κ̂i =
ν̂i

(MSE)2
, where ν̂i =

1
ni·

∑
j

∑
k

(Yijk − Ȳi··)4. (2.3.4)

It can be easily verified that, under the null hypothesis, κ̂i
P→ κi, as min (ci)→∞. The

simulated sizes, based on 10, 000 simulation runs, are shown in Table 3.1.

Table 2.1. Achieved α-levels over 10, 000 simulation runs under homoscedastic designs at nom-
inal α = 0.05.

c = 5 c = 30 c = 100 c = 500

CF HOM CF HOM CF HOM CF HOM
Normal 0.0489 0.0839 0.0516 0.0604 0.0525 0.0581 0.0502 0.0518
Exponen 0.0943 0.0869 0.1044 0.0554 0.1110 0.0488 0.1151 0.0465
LogNorm 0.1392 0.0826 0.1917 0.0534 0.2314 0.0507 0.2679 0.0470
Mixture 0.0953 0.0868 0.0919 0.0576 0.0980 0.0561 0.1021 0.0535
Multi-d 0.0818 0.0875 0.0806 0.0573 0.0742 0.0526 0.0839 0.0521

The results in Table 3.1 confirm the conclusions stated in Corollary 2.2.1. Thus,

the classical CF is liberal in this unbalanced design for all non-normal distributions,

with the achieved α-level increasing with the number of sub-classes. Its performance is

worse for the log-normal distribution. On the other hand, the proposed HOM procedure

performed well for all distributions, though somewhat liberal in the case of small number

of sub-classes.

2.3.2 Simulations under between-classes Heteroscedastic designs

Here we compare the achieved sizes of CF, UW and WT. The first procedure, CF, is

as shown in (2.3.1). The second procedure, UW, using the asymptotic null distribution

shown in (2.2.12), rejects at level α if

√
C(F ∗C − 1) >

√√√√ r∑
i=1

λ̂iσ̂4
i

β̂2

[
2 +

2
ˆ̄ni − 1

+
(κ̃i − 3)ˆ̄ni(ˆ̄nin̂i − 1)

(ˆ̄ni − 1)2

]
Zα, (2.3.5)
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where F ∗C is defined in (2.2.3), while the third procedure, WT, using the asymptotic null

distribution shown in (2.2.15), rejects at level α if

√
C(F̂ ′C − 1) >

√√√√2 +
2

ˆ̄n− 1
+

r∑
i=1

[
(κ̃i − 3)λ̂i(ˆ̄n2n̂i − 2ˆ̄n+ ˆ̄ni)

(ˆ̄n− 1)2

]
Zα, (2.3.6)

where F̂ ′C is defined in (2.2.10). The empirical quantities λ̂i, ˆ̄ni, n̂i, and ˆ̄n are as defined

in (2.3.3). Moreover, β̂, σ̂4
i , and κ̃i above, are as follows:

β̂ =
r∑
i=1

λ̂iσ̂
2
i , where σ̂2

i = S2
i ; σ̂4

i = (σ̂2
i )

2; and κ̃i =
ν̂i
σ̂4
i

, (2.3.7)

where ν̂i is defined in (2.3.4). Again, it can be easily verified that, as min (ci) → ∞, κ̃i

converges in probability to κi under the null hypothesis. The corresponding simulated

sizes under heteroscedastic designs, based on 10, 000 runs, are shown in Table 3.2.

Table 2.2. Achieved α-levels over 10, 000 simulation runs under between-classes heteroscedastic
designs with smaller average cell sizes at nominal α = 0.05.

c = 5 c = 30 c = 100 c = 500

CF UW WT CF UW WT CF UW WT CF UW WT
Normal .57 .115 .299 .99 .079 .120 1.0 .067 .077 1.0 .059 .062
Exponen .47 .155 .333 .97 .089 .152 1.0 .072 .084 1.0 .057 .067
LogNorm .39 .154 .350 .89 .105 .193 .99 .083 .118 1.0 .074 .094
Mixture .37 .159 .351 .95 .082 .170 1.0 .068 .085 1.0 .054 .060
Multi-d .48 .156 .332 .97 .089 .138 1.0 .067 .080 1.0 .063 .065

Table 3.2 makes it clear that the traditional CF procedure is quite inappropriate

under between-classes heteroscedastic designs. More specifically, when c is large enough,

regardless of the underlying distribution, the CF procedure rejects the null hypothesis

almost all the times under the null hypothesis. When comparing the two proposed pro-

cedures, UW and WT, we can see that procedure WT appears to be more liberal than

procedure UW, but becomes less so when c increases. The most likely explanation for

this is the small-sample instability of the variance estimators that are used to standardize

the observations in the WT statistic. This explanation is confirmed by the results in Ta-

ble 2.3, where the only difference is that the sample sizes were generated from truncated
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Poisson distributions with larger mean values: (υ1, υ2, υ3, υ4, υ5)′ = (5, 5, 5, 12, 5)) .

Table 2.3. Achieved α-levels over 10, 000 simulation runs under between-classes Heteroscedas-
ticity with larger average cell sizes at nominal α = 0.05.

c = 5 c = 30 c = 100 c = 500

CF UW WT CF UW WT CF UW WT CF UW WT
Normal .25 .105 .183 .55 .072 .080 .91 .063 .059 1.0 .055 .058
Exponen .23 .097 .175 .52 .072 .082 .91 .068 .068 1.0 .056 .057
LogNorm .21 .083 .156 .46 .060 .076 .85 .070 .071 .99 .057 .062
Mixture .21 .079 .157 .52 .073 .081 .90 .065 .065 1.0 .059 .059
Multi-d .23 .094 .183 .52 .072 .078 .90 .068 .065 1.0 .059 .061

With the same simulation settings used for Table 2.3, but taking c = 100, Table 2.4

compares the achieved powers of the two proposed test statistics UW and WT, under

the alternatives δij = t × (2j/ci − 1), for t = 0.6, 0.8, 1.0, 1.2 and i = 1, · · · , 5,

j = 1, · · · , ci − 1. For each i, δici is chosen so that
∑

j nijδij = 0.

Table 2.4. Powers over 10, 000 simulation runs under between-classes heteroscedastic designs
with larger average cell sizes at nominal α = 0.05 (c = 100).

t=0.6 t=0.8 t=1.0 t=1.2

UW WT UW WT UW WT UW WT
Normal .3245 1.0 .5676 1.0 .9725 1.0 .9999 1.0
Exponen .2828 1.0 .5002 1.0 .9465 1.0 .9989 1.0
LogNorm .9027 1.0 .9670 1.0 .9945 1.0 .9985 1.0
Mixture .2813 1.0 .5090 1.0 .9576 1.0 .9997 1.0
Multi-d .2855 1.0 .5006 1.0 .9476 1.0 .9985 1.0

As expected, Table 2.4 reveals that the WT procedure is much more powerful in

detecting the sub-class effect than the unweighted procedure UW. Note that with the

larger cell sample sizes used in Table 2.3, WT is only mildly liberal. Thus, the power

advantage of WT does not come at the expense of level accuracy.

More discussion and comparisons between the procedures UW and WT are provided

in Appendix A.
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2.3.3 Simulations under general Heteroscedastic designs

The simulations in the previous subsection demonstrate that the classical CF proce-

dure is very liberal under between-classes heteroscedasticity. Simulations under general

heteroscedasticity, not shown here, reveal similar behavior. Thus, the tables in this

subsection exclude the CF procedure.

In Table 2.5 we compare the achieved α-levels of UW and HET, under general het-

eroscedasticity. The former procedure is described in (2.3.5), while the latter uses the

statistic F ∗∗C given in (2.2.17) and its asymptotic null distribution shown in (3.1.3). Thus,

the HET procedure rejects at level α if

√
C(F ∗∗C − 1) >

√
2b̂1 + 2b̂2

â2
1

Zα, (2.3.8)

where â1, b̂1 and b̂2 are consistent estimators of a1, b1 and b2. Note that consistent

estimation of b1 and b2 needs unbiased estimation of each σ4
ij . For such unbiased esti-

mation we use the U-statistics with the kernel (Yij1 − Yij2)2/2 × (Yij3 − Yij4)2/2. As

a consequence, the application of procedure HET requires nij ≥ 4, although Theo-

rem 3.1.2 requires only nij ≥ 2. Because of this constraint, we generate nij using nij =

Zij×I(Zij ≥ 4)+υi×I(Zij < 4), where I is an indicator function and Zij ∼ Poisson(υi)

with (υ1, υ2, υ3, υ4, υ5)′ = (5, 5, 5, 12, 5), i = 1, · · · , 5; j = 1, · · · , ci.

Table 2.5. Achieved α-levels over 10, 000 simulation runs at nominal α = 0.05 under general
Heteroscedasticity.

c = 5 c = 30 c = 100 c = 500

UW HET UW HET UW HET UW HET
Normal .1089 .1043 .0985 .0837 .1479 .0701 .1560 .0575
Exponen .1120 .1012 .0896 .0717 .1333 .0597 .1545 .0530
LogNorm .1064 .1052 .0738 .0568 .1092 .0491 .1225 .0461
Mixture .1192 .1018 .0852 .0567 .1378 .0554 .1507 .0508
Multi-d .1093 .0968 .0910 .0718 .1366 .0635 .1576 .0550

From Table 2.5 we see that both procedures are liberal when the average number

of sub-classes is 5, but HET becomes less so as c increases. On the other hand, UW
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becomes more liberal as c increases, a behavior which is expected in view of the fact that

it is not designed to allow the present type of heteroscedasticity.

The next two tables perform a more detailed comparison of the procedures UW and

HET under the setting of between-classes heteroscedasticity when both are asymptot-

ically valid. Table 2.6 suggests that the achieved α-levels of the two procedures are

comparably close to the nominal level, with HET slightly less liberal for non-normal

distributions. Table 2.7 shows the achieved powers of these two procedures, only for the

case of c = 100, under the alternatives used in Table 2.4. Again the procedures have

comparable power with HET being slightly more powerful for non-normal distributions.

Table 2.6. Achieved α-levels over 10, 000 simulation runs under between-classes heteroscedas-
ticity at nominal α = 0.05.

c = 5 c = 30 c = 100 c = 500

UW HET UW HET UW HET UW HET
Normal .1077 .1194 .0701 .0771 .0606 .0612 .0513 .0539
Exponen .0907 .1017 .0720 .0698 .0628 .0560 .0566 .0519
LogNorm .0757 .0871 .0655 .0529 .0651 .0525 .0624 .0440
Mixture .0798 .0851 .0750 .0633 .0650 .0536 .0584 .0494
Multi-d .0921 .1041 .0711 .0655 .0626 .0567 .0560 .0505

Table 2.7. Powers over 10, 000 simulation runs under between-classes heteroscedastic designs
at nominal α = 0.05 (c = 100).

t=0.6 t=0.8 t=1.0 t=1.2

UW HET UW HET UW HET UW HET
Normal .3353 .3410 .6249 .6214 .9204 .9173 1.000 .9998
Exponen .3308 .3361 .6210 .6436 .9083 .9259 .9997 .9997
LogNorm .9750 .9986 .9941 1.000 .9986 1.000 .9996 1.000
Mixture .3289 .3218 .6115 .6417 .9135 .9350 .9998 1.000
Multi-d .3325 .3347 .6243 .6549 .9101 .9304 .9994 .9997

The final two tables perform a more detailed comparison of the procedures HOM,

UW and HET under homoscedasticity when all three are asymptotically valid. The

results reported in Table 2.8 suggest that the achieved α-levels of the three procedures

are comparably close to the nominal level (the results for c = 500 are very close to those
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for c = 100, so they are omitted). Table 2.9 compares the achieved powers of these three

procedures, only for the case of c = 100, under alternatives δij = t × (2j/ci − 1), for

t = 0.20, 0.25, 0.35 and i = 1, · · · , 5, j = 1, · · · , ci − 1. For each i, δici is chosen so that∑
j nijδij = 0. Note that the cell sizes used here are larger than those used in Table 3.1,

as required for the applicability of HET. The results suggest that, even though procedure

HET estimates more parameters, this does not compromise its power.

Table 2.8. Achieved α-levels over 10, 000 simulation runs under Homoscedasticity at nominal
α = 0.05.

c = 5 c = 30 c = 100

HOM UW HET HOM UW HET HOM UW HET
Normal .092 .087 .099 .058 .057 .058 .053 .053 .053
Exponen .088 .075 .083 .061 .058 .056 .056 .053 .050
LogNorm .078 .057 .072 .062 .053 .044 .057 .053 .041
Mixture .094 .080 .080 .064 .064 .058 .058 .059 .052
Multi-d .085 .076 .084 .066 .062 .062 .059 .058 .056

Table 2.9. Powers over 10, 000 simulation runs under Homoscedasticity at nominal α = 0.05
(c = 100).

t = 0.20 t = 0.25 t = 0.35

HOM UW HET HOM UW HET HOM UW HET
Normal .436 .429 .427 .735 .725 .724 .993 .992 .992
Exponen .411 .418 .426 .706 .716 .732 .992 .993 .994
LogNorm .977 .989 1.00 .995 .998 1.00 .998 1.00 1.00
Mixture .417 .421 .428 .711 .714 .727 .992 .992 .995
Multi-d .419 .420 .422 .716 .720 .725 .992 .992 .993

2.4 Data Analyses: Two Empirical Studies

2.4.1 Application to the Mussel Watch Project Data

One real-world application for our methodology can be found through the National

Oceanic and Atmospheric Administration’s National Status and Trends Program. In

1986, this division undertook a very large scale project to monitor the levels of numerous
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chemical contaminants and organic chemical constituents in marine sediment and bivalve

(mollusk) tissue samples. This project, dubbed the Mussel Watch Project, is still on-

going and there are no apparent plans to discontinue it in the near future. There are

currently over 300 coastal sites at which sediment and bivalve samples are collected and

analyzed for the project. Each site is categorized as being within a certain Estuarine

Drainage Area (EDA). See O’Connor (1998) for more details on this project. For our

data analysis, we chose to analyze the Lead concentrations from years 1998 to 2005. We

chose to analyze concentrations of Lead in tissue samples, specifically in the Crassostrea

virginica, or American Oysters, from two different regions: Middle and South Atlantic,

and the Gulf of Mexico. Due to the fact that nested in each region there are many EDAs,

it is natural to consider regions as classes, and EDAs as sub-classes in our analysis. The

main interest of our study is the sub-class effect. The boxplots of the lead concentration

levels at each EDA, shown in Figure 2.1, suggest heteroscedasticity among different

EDAs in the same region (general heteroscedasticity). Thus, the procedure HET seems

to be the appropriate one for analyzing this data set. However, the results of application

of the other procedures mentioned in this chapter (i.e. CF, HOM, UW, and WT) are

also included for comparison purposes. Because the HET procedure requires at least 4

observations within each sub-class, we remove four EDAs with less than four observations

from our data, resulting in 58 EDAs in total. (Another approach would be to impute

values, but this will be pursued elsewhere.)

Application of five procedures, CF, HOM, UW, WT and HET, on this data set yields

p-values of 0.1076, 0.3136, 0.2008, 0.0005 and 0.0246, respectively, for the hypothesis of

no EDA effect. Note that only procedures HET and WT detect the effect of EDA at

α = 0.05. A closer examination of the data reveals that the largest sample variance

estimate from EDA ‘G120x’ in the Gulf of Mexico region is 69.21, while the second

largest one is only 2.45. This high variance of the data in EDA ‘G120x’ in fact results

from a few outliers in a site named ‘CBPP’, as shown in Figure 2.1. After four data

points from ‘CBPP’ are removed (see the changed boxplots in Figure 2.2), the sample

variance estimate of the EDA ‘G120x’ becomes 0.0921 and heteroscedasticity is not so

pronounced. With the outliers removed, the p-values of five procedures are all very close
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Figure 2.1. Mussel Watch Project. The boxplots of the Lead concentration levels in American
Oysters at EDAs nested in Middle and South Atlantic (left) and in the Gulf of Mexico (right).
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Figure 2.2. Mussel Watch Project. The boxplots of the Lead concentration levels in American
Oysters at EDAs nested in Middle and South Atlantic (left) and in the Gulf of Mexico (right),
after four observations at ’CBPP’ removed.

to zero (less than 10−12). This dramatic change confirms the instability of procedures

CF, HOM and UW under general heteroscedasticity.

2.4.2 Application to the NADP Data: Ramification for ANCOVA

Another real-world application for our methodology can be found through the National

Atmospheric Deposition Program (2009), which monitors of geographical and temporal
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long-term trends on the chemistry of precipitation. Starting from only 22 stations in

1978, NAPD has grown as a nationwide network of over 250 sites for which precipitation

samples are collected and analyzed in the Central Analytical Laboratory (CAL) weekly.

For our data analysis, we chose to analyze the pH level (reported as the negative log of

hydrogen ion concentration) of precipitation samples as measured in the CAL from the

first week of January 2003 to the last week of December 2007. We consider comparing

the data in two North Carolina towns, Lewiston and Coweeta, and are interested in the

effect of Time. Among the total 233 weeks in this period, we notice that there are several

weeks in which data were missing at one or both locations. After removing those missing

values, there are 180 weeks of data for each of these two towns, i.e. n1 = n2 = 180,

although this balancedness is simply a coincidence. A further examination reveals that

the missing data in fact happen at different time points for the two locations.

This data set can be analyzed as a simple one-way ANCOVA model with locations as

groups and time as the covariate. Here, in order to directly apply the asymptotic theory

for the two-fold nested model, we think of two locations as two classes and form artificial

sub-classes by dividing the observations in the same class into non-overlapping ‘windows’

of a fixed size 5. More specifically, the first time sub-class consists of observations from

weeks 1–5, the second time sub-class consists of observations from weeks 6–10, and so

on. Since there are 180 observations in each of two locations, this division results in

180/5 = 36 sub-classes each class, i.e. c1 = c2 = 36. We call this simple ramification

for the analysis of covariance, as outlined above, the non-overlapping windows approach.

The boxplots of the pH levels at each of these 36 times for the two locations are shown

in Figure 2.3 (the left panel for Lewiston, the right one for Coweeta). A simple time

series analysis does not indicate meaningful correlation over time (see Appendix B), so

it appears reasonable to implement our methodology in this study.

For the sub-class effect of Time, the five procedures mentioned in this chapter, CF,

HOM, UW, WT and HET, give p-values of 0.0929, 0.0757, 0.0760, 0.0773 and 0.0508,

respectively. Given that the assumption of homoscedasticity is clearly violated as shown

in Figure 2.3, it is not surprising that the HET procedure is the only one which finds the

effect of Time (marginally) significant at α = 0.05. Although this simple ramification of
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Figure 2.3. NADP Rain Data. The boxplots of the pH levels of precipitation at different
Times from January 2003 to December 2007 in two towns in North Carolina: Lewiston (left) and
Coweeta (right).

the present methodology for the nested model seems to work for analysis of covariance

as well, we look for a more powerful tool. A further analysis shows that if we apply

the HET procedure on the data from Year 1998 to Year 2007 (i.e. use the weekly data

from 10 years, instead of just 5 years), the p-value for the null hypothesis of no time

effect is as small as 0.000189, implying that a larger number of ‘windows’ may result in

a better power in testing. A more advanced approach for analysis of covariance, called

the overlapping windows approach, is proposed in Chapter 5.

2.5 Proofs

In this appendix we will use the following notations:

Uc ≈ Vc ⇔
√
c(Uc − Vc)

P→ 0, as c→∞,

ac ≈ bc ⇔
√
c(ac − bc)→ 0, as c→∞,

where Uc and Vc are two sequences of random vectors, while ac and bc are two sequences

of constant vectors.
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Proof of Theorem 2.2.1

Define

U δij = nij(ēij· +
δij
σ

)2, Ū δic =
1
ci

ci∑
j=1

U δij , Ū δC =
1
C

r∑
i=1

σ2ciŪ
δ
ic,

Wij =
∑nij

k=1(eijk − ēij·)2

n̄− 1
, W̄ic =

1
ci

ci∑
j=1

Wij , W̄C =
1
C

r∑
i=1

σ2ciW̄ic, (2.5.1)

Vδij =

 U δij

Wij

 , V̄δic =

 Ū δic

W̄ic

 , V̄δC =

 Ū δC

W̄C

 .

Note that

Ū δC = MSδ +

[
1

C − r

r∑
i=1

σ2ni·ē
2
i·· −

r

C − r
Ū δC

]
, and

W̄C = MSE +

[
r∑
i=1

(
ci
C
− ci(n̄− 1)
NC − C

)
σ2W̄ic

]
.

It can be easily verified that, as min (ci)→∞ and r, nij remain fixed,

√
C

1
C − r

r∑
i=1

ni·ē
2
i··

P→ 0,
√
C

r

C − r
Ū δC

P→ 0, and (2.5.2)

√
C

r∑
i=1

(
ci
C
− ci(n̄− 1)
NC − C

)
σ2W̄ic =

(
1− C(n̄− 1)

NC − C

)√
CW̄C

P→ 0.

Combining the above we have that, as min (ci)→∞ and r, nij remain fixed,

V̄δC ≈ Mδ
C ≡

 MSδ

MSE

 . (2.5.3)

Hence, the asymptotic joint distribution of MSδ and MSE is the same as the asymptotic

joint distribution of Ū δC and W̄C .
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It can be shown that, under normality, U δij and Wij are independent, and

U δij ∼ χ2
1

(
nijδ

2
ij

σ2

)
, (n̄− 1)Wij ∼ χ2

nij−1.

Using known results regarding the mean and covariance of quadratic forms (cf. Theorem

1 in Akritas and Arnold (2000)) and the facts that E(χ2
a(aγ)) = a(1+γ), V ar(χ2

a(aγ)) =

a(2 + 4γ), we obtain

E(Vδij) =

 1 +
nijδ

2
ij

σ2

nij−1
n̄−1

 ,

Cov(Vδij) =

 2 + 4
nijδ

2
ij

σ2 0

0 2(nij−1)
(n̄−1)2

+
κi − 3
nij

 1 nij−1
n̄−1

nij−1
n̄−1

(
nij−1
n̄−1

)2

 .

Let θδici = 1
ci

∑ci
j=1 nij

δ2ij
σ2 . Then, for each class i, as ci →∞,

E(V̄δic) =

 1 + θδici
n̄ici
−1

n̄−1

 ≈
 1 + θi

n̄i−1
n̄−1

 , µi, and (2.5.4)

ci · Cov(V̄δic)

=

 2 + 4θδic 0

0 2
n̄−1

n̄ici
−1

n̄−1

+
κi − 3

(n̄− 1)2

 (n̄− 1)2nici (n̄− 1)(1− nici)

(n̄− 1)(1− nici) n̄ici + nici − 2



−→

 2 + 4θi 0

0 2(n̄i−1)
(n̄−1)2

+
κi − 3

(n̄− 1)2

 (n̄− 1)2ni (n̄− 1)(1− ni)

(n̄− 1)(1− ni) n̄i + ni − 2

 , Σi.

Under the assumption that E|eijk|4+2ε <∞ for some ε > 0, Lindeberg-Feller’s theorem

together with Cramér-Wold’s theorem yield

√
ci(V̄δic − µi)

d→ N2(0,Σi).
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Using the independence among V̄δic and the assumption (2.1.8), one can be show that

√
C(V̄δC − µ) d→ N2(0, σ4

r∑
i=1

λiΣi), where µ = σ2

 1 + θ

1

 . (2.5.5)

By the asymptotic equivalence between V̄δC and Mδ
C shown in (2.5.3), we then have

√
C(Mδ

C − µ) d→ N2(0, σ4
r∑
i=1

λiΣi), as min (ci)→∞.

Note that if s′ = (1,−(1 + θ))/σ2,
√
C s′(Mδ

C −µ) =
√
C[MSδ− (1 + θ)MSE]/σ2 which,

by Slutsky’s theorem, is asymptotically equivalent to
√
C
(
F δC − (1 + θ)

)
. Thus, by the

∆-method, as min (ci)→∞,

√
C
(
F δC − (1 + θ)

)
d→ N

(
0, σ4

r∑
i=1

λis
′Σis

)
= N (0, Σs) ,

where Σs is as defined in Theorem 2.2.1.

Proof of Corollary 2.2.1

It can be easily verified that for C large enough, the approximate distribution of the

classical F -test under H0 : δij = 0, and under the normality assumption is:

√
C
(
F δC − 1

)
·∼ N

(
0, 2

(
1 +

C

NC − C

))
, (2.5.6)

where ·∼ means ”approximately distributed”. The relation (2.5.6) is obviously not equiv-

alent to (2.2.2), unless nij = n for all i and j so that

n̄ici = n = n̄i, nici =
1
n

= ni −→ n̄ini − 1 = 0,

and hence both of (2.2.2) and (2.5.6) would become

√
C
(
F δC − 1

)
d→ N

(
0, 2

(
1 +

1
n− 1

))
. (2.5.7)
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Proof of Theorem 2.2.2

Define new quantities U δij , Ū
δ
C , W̄C to be as the corresponding quantities in (2.5.1) but

with σ2
i replacing σ2, and the new quantity Wij to be as the corresponding quantity in

(2.5.1) but with n̄i replacing n̄. Finally, let Ū δic, W̄ic, Vδij , V̄δic, and V̄δC be as defined

in (2.5.1) but using the above new quantities. It can then be shown that Ū δC , W̄C are

related to MSδ, MSE∗ via

Ū δC = MSδ +

[
1

C − r

r∑
i=1

σ2
i ni·ē

2
i·· −

r

C − r
Ū δC

]
,

W̄C = MSE∗ +

[
r∑
i=1

(
ci
C
− (ci − 1)ci(n̄i − 1)

(C − r)(ni· − ci)

)
σ2
i W̄ic

]
.

Using (2.5.2), and the fact that, as min (ci)→∞ and r, nij remain fixed,

√
C

r∑
i=1

(
ci
C
− (ci − 1)ci(n̄i − 1)

(C − r)(ni· − ci)

)
σ2
i W̄ic

P→ 0, (2.5.8)

we have that, as min (ci)→∞ and r, nij remain fixed,

V̄δC ≈ M∗C ≡

 MSδ

MSE∗

 . (2.5.9)

Following the same derivation in the proof of Theorem 2.2.1, one can easily get

√
ci(V̄δic − µ∗i )

d→ N2(0,Σ∗i ), where µ∗i and Σ∗i are defined by (2.5.10)

E(V̄δic) =

 1 + θδici
n̄ici
−1

n̄i−1

 ≈
 1 + θi

1

 , µ∗i , where θδici =
1
ci

ci∑
j=1

nij
δ2
ij

σ2
i

, and
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ci · Cov(V̄δic)

=

 2 + 4θδic 0

0 2
n̄i−1

n̄ici
−1

n̄i−1

+
κi − 3

(n̄i − 1)2

 (n̄i − 1)2nici (n̄i − 1)(1− nici)

(n̄i − 1)(1− nici) n̄ici + nici − 2



−→

 2 + 4θi 0

0 2
n̄i−1

+
κi − 3

(n̄i − 1)2

 (n̄i − 1)2ni (n̄i − 1)(1− ni)

(n̄i − 1)(1− ni) n̄i + ni − 2

 , Σ∗i .

By the independence among V̄δic and the assumption (2.1.8), it can be shown that

√
C(V̄δC − µ∗) d→ N2(0,

r∑
i=1

σ4
i λiΣ

∗
i ), where µ∗ =

 β + θσ

β

 ,

where β and θσ are as defined in Theorem 2.2.2. Because V̄δC and M∗C are asymptotically

equivalent, as shown in (2.5.9), we then have

√
C(M∗C − µ∗) d→ N2(0,

r∑
i=1

σ4
i λiΣ

∗
i ), as min (ci)→∞.

Finally, by the ∆-method with s∗′ = (1,−(1 + θ∗))/β, where θ∗ = θσ/β, it can be easily

verified that, as min (ci)→∞,

√
C (F ∗C − (1 + θ∗)) d→ N

(
0,

r∑
i=1

σ4
i λis

∗′Σ∗i s
∗

)
= N (0, Σ∗s) ,

where Σ∗s is as defined in Theorem 2.2.2.

Proof of Corollary 2.2.2

The fact that, when the design is balanced, the unweighted statistic F ∗C equals the

classical F -statistic is clear. Next, (2.2.13) follows directly from Theorem 2.2.2. Finally,

the fact that the classical F -test procedure is not valid follows by comparing (2.5.7) and

(2.2.13).
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Proof of Theorem 2.2.3

Let U δij , Ū
δ
ic, Wij , W̄ic, and Vδij be as defined in Proof of Theorem 2.2.2. It follows easily

from the definition (2.2.10) and the assumption (2.1.8) that as min (ci)→∞,

F̂ ′C =
r∑
i=1

ci
C − r

×
Ū δic + op(c−.5i )
W̄ic + op(c−.5i )

≈
r∑
i=1

ci
C − r

× Ū δic
W̄ic

.

In addition, (2.5.10) tells us that

√
ci

 Ū δic

W̄ic

−
 1 + θi

1

 d→ N2 (0, Σ∗i ) , where Σ∗i is as defined there.

Thus, by the ∆-method with si
′ = (1,−(1 + θi)), the assumption (2.1.8), and the inde-

pendence among Ū δic and W̄ic, we obtain (2.2.14).

Proof of Corollary 2.2.3

The proof follows directly from Theorem 2.2.2.

Proof of Theorem 3.1.2

Define Vδij = (U δij , Wij)′, V̄δic = (Ū δic, W̄ic)′, and V̄δC = (Ū δC , W̄C)′, where

U δij = σ2
ijnij(ēij· +

δij
σij

)2, Ū δic =
1
ci

ci∑
j=1

U δij , Ū δC =
1
C

r∑
i=1

ciŪ
δ
ic,

Wij =
σ2
ij

nij − 1

nij∑
k=1

(eijk − ēij·)2, W̄ic =
1
ci

ci∑
j=1

Wij , W̄C =
1
C

r∑
i=1

ciW̄ic.

Note that

Ū δC = MSδ +

 1
C − r

r∑
i=1

1
ni·

 ci∑
j=1

σijnij ēij·

2

− r

C − r
Ū δC

 , and
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W̄C = MSE∗∗ − r

C − r

r∑
i=1

1
C

ci∑
j=1

S2
ij +

1
C − r

r∑
i=1

1
ni·

ci∑
j=1

nijS
2
ij .

Under the assumptions in (3.1.3), it can be easily verified that, as min (ci)→∞,

√
C

1
C − r

r∑
i=1

1
ni·

 ci∑
j=1

σijnij ēij·

2

P→ 0,
√
C

r

C − r
Ū δC

P→ 0,

√
C

r

C − r

r∑
i=1

1
C

ci∑
j=1

S2
ij

P→ 0,
√
C

1
C − r

r∑
i=1

1
ni·

ci∑
j=1

nijS
2
ij

P→ 0.

Combining the above we have that, as min (ci)→∞ and r, nij remain fixed,

V̄δC ≈ M∗∗C ≡

 MSδ

MSE∗∗

 . (2.5.11)

Following the same derivation in the proof of Theorem 2.2.1, one can easily get the

asymptotic distribution of V̄δic as

√
ci(V̄δic − µ∗∗i ) d→ N2(0,Σ∗∗i ),

where µ∗∗i and Σ∗∗i are

E(V̄δic) =

 1
ci

∑
j σ

2
ij + 1

ci

∑
j nijδ

2
ij

1
ci

∑
j σ

2
ij

 ≈
 a1i + θ1i

a1i

 , µ∗∗i , and

ci · Cov(V̄δic)

=

 2 1
ci

∑
j σ

4
ij + 4 1

ci

∑
j nijσ

2
ijδ

2
ij 0

0 2 1
ci

∑
j

σ4
ij

nij−1

+
1
ci

∑
j

σ4
ij(κij − 3)
nij

 1 1

1 1



−→

 2b1i + 4θ2i 0

0 2b2i

+ b3i

 1 1

1 1

 , Σ∗∗i .
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By the independence among V̄δic, the assumptions in (3.1.3) and the asymptotic equiva-

lence shown in (2.5.11), we then have

√
C

M∗∗C −

 a1 + θ1

a1

 d→ N2

(
0,

r∑
i=1

λiΣ∗∗i

)
,

where a1 and θ1 are as defied in the theorem above. Finally, using the ∆-method with

s∗∗′ = (1,−(1 + θ∗∗))/a1, θ∗∗ = θ1/a1, one can easily get the limiting distribution of F ∗∗C

as shown in (2.2.19) and complete the proof.



Chapter 3
Testing for the Sub-classes Effect in

Two-fold Nested Model with large

numbers of sub-classes and classes

The purpose of this chapter is to extend the results in Chapter 2 to cases having a large

number of classes (r) and a large number of subclasses (ci), while the cell sizes remain

small. It is organized as follows. The first section that follows gives the asymptotic theo-

ries for the proposed test statistics in the two-fold nested model, both under homoscedas-

ticity and under heteroscedasticity (more specifically, under general heteroscedasticity,

as described in the previous chapter). In Section 3.2, simulations are used to compare

the corresponding procedures with the classical F test procedures. In Section 3.3, we

demonstrate an interesting application of our methodology for testing the lack-of-fit in

regression, which is in fact the core of this chapter.

3.1 Main Results

The proofs of the asymptotic theorems presented in this section are basically similar to

those in Section 2.5 (with some slightly more tedious calculations) and hence omitted.
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3.1.1 Homoscedastic Designs

Under homoscedastic assumption (i.e. σij = σ), we have the following theorem giving

the asymptotic distributions for the test statistic F δC , as defined in (2.1.7), when the

numbers of classes and sub-classes (i.e. r and all ci) are both large.

Theorem 3.1.1. Consider the model and assumptions given in (2.1.1), (2.1.2), and the

decomposition of the means given in (2.1.3). In addition, we assume that there exist κ,

n > 1, and n ∈ (0,∞) such that as r →∞ and min (ci)→∞,

E(e3
ijk) = 0, E(e4

ijk) = κ, and E|eijk|4+2ε <∞ for some ε > 0;

√
C

(
NC

C
− n

)
−→ 0,

1
C

r∑
i=1

ci∑
j=1

1
nij
−→ n <∞, (3.1.1)

Then, under alternatives δij which satisfy

√
C

 1
C

r∑
i=1

ci∑
j=1

nij
δ2
ij

σ2
− θ

 −→ 0,

as r →∞, min (ci)→∞ while nij stay fixed, we have

√
C
(
F δC − (1 + θ)

)
d→ N (0, Σs) ,

where

Σs = 2 + 4θ + 2
(1 + θ)2

n− 1
+ (κ− 3)

(n+ 2θ)(nn− 1) + θ2(n+ n− 2)
(n− 1)2

.

Under the null hypothesis H0 : δij = 0, which results in θ = 0, we then have

√
C
(
F δC − 1

)
d→ N

(
0, 2 +

2
n− 1

(κ− 3)(n2n− n)
(n− 1)2

)
. (3.1.2)

3.1.2 Heteroscedastic Designs

Consider the unbalanced two-fold nested model with (general) heteroscedasticity, as

described in (2.1.1). The following theorem giving the asymptotic distributions for the
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proposed statistic F ∗∗C , defined in (2.2.17), when the numbers of classes and sub-classes

are both large.

Theorem 3.1.2. Consider the model and assumptions given in (2.1.1), (2.1.2), and the

decomposition of the means given in (2.1.3). In addition, we assume that there exist κij,

a1, b1, b2 and b3 such that as r →∞ and min (ci)→∞,

E(e3
ijk) = 0, E(e4

ijk) = κij , and E|eijk|4+2ε <∞ for some ε > 0;

√
C

 1
C

r∑
i=1

ci∑
j=1

σ2
ij − a1

 −→ 0,
1
C

r∑
i=1

ci∑
j=1

σ4
ij −→ b1,

1
C

r∑
i=1

ci∑
j=1

σ4
ij

nij − 1
−→ b2,

1
C

r∑
i=1

ci∑
j=1

σ4
ij(κij − 3)
nij

−→ b3.

Then, under alternatives δij which satisfy

√
C

 1
C

r∑
i=1

ci∑
j=1

nijδ
2
ij − θ1

 −→ 0,
1
C

r∑
i=1

ci∑
j=1

nijδ
2
ijσ

2
ij −→ θ2,

as r →∞, min (ci)→∞ while nij stay fixed, we have, with θ∗ = θ1/a1,

√
C (F ∗∗C − (1 + θ∗)) d→ N

(
0,

1
a2

1

[
2(b1 + b2) + 4(θ2 + b2θ

∗) + (2b2 + b3)θ∗2
])

.

Under the null hypothesis H0 : δij = 0, which results in θ∗ = 0, we then have

√
C (F ∗∗C − 1) d→ N

(
0,

2b1 + 2b2
a2

1

)
. (3.1.3)

3.2 Simulation Studies

In this section, we use simulations to compare the achieved α-levels of several test proce-

dures when the number of classes, r, equal to 5, 30, and 60. For each r, we study different

combinations of numbers of sub-classes with the average c, defined as C/r =
∑

i ci/r,

equal to 5, 30, and 100 respectively. More specifically, for i = 1, · · · , r − 1, we use

ci = round(r c λi), where λi = 0.02 + (1 − 0.02 r) × 2 i
r (r+1) , and cr is so chosen that
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∑r
i=1 ci = r · c. Then the number of observation in each sub-class (nij) is generated by

truncated Poisson distributions: nij = Zij × [1 − I(Zij ≤ 3)] + νi × I(Zij ≤ 3), where

I is an indication function and Zij ∼ Poisson(νi), i = 1, · · · , r; j = 1, · · · , ci. The

values of νi used in our simulations are νi = 2 + 10 × I(i = 4, 14, · · · , 54) for cases

under homoscedasticity, while use νi = 5 + 7 × I(i = 4, 14, · · · , 54) for cases under

heteroscedasticity. As for the values of parameters in the decomposition (2.1.3), we use

µ = 0, αi = −(r/2) + i − 1 for i = 1, · · · , r − 1, and αr so chosen that
∑

i ni·αi = 0.

In addition, σij = σ = 1 are used in the cases under homoscedastic designs, while

σij = 5 × I(i = 3, 13, · · · , 53) + (j/ci), ∀i = 1, · · · , r; j = 1, · · · , ci, are used when the

designs are heteroscedastic.

For each case, four distributions of eijk are studies: (i) Normal : the standard

normal; (ii) Exponen: the exponential distribution with λ = 1; (iii) LogNorm: the

log-normal distribution whose logarithm has mean 0 and standard deviation 1; and (iv)

Mixture: the mixture distribution defined as U1 · X1 + (1 − U1) · Y1, where U1 ∼

Bernoulli(p = 0.9), X1 ∼ N(−1, 1) and Y1 ∼ N(9, 1).

3.2.1 Simulations under Homoscedastic Designs

First, simulations are used to compare two test procedures: the classical F-test procedure,

shown in (2.1.7), and the proposed test procedure of (3.1.2). Let CF and HOM denote

them respectively. For the latter one, procedure HOM, the empirical versions of n, n

and κ, denoted as n̂, n̂ and κ̂, are needed. More specifically,

n̂ =
1
C

r∑
i=1

ci∑
j=1

nij , n̂ =
1
C

r∑
i=1

ci∑
j=1

1
nij

, κ̂ =

∑r
i=1

∑ci
j=1

∑nij

k=1(Yijk − Ȳi··)4

NC · (MSE)2
.

The achieved simulated sizes, based on 10,000 simulation runs, are shown in Table 3.1.

From Table 3.1, we can see that the classical CF procedure is liberal in the unbal-

anced design at all non-normal distributions, especially in the case of the log-normal

distribution. On the other hand, the proposed HOM procedure performs well with all

distributions with the achieved α-levels approaching the nominal one as the number of

classes (r) and the average number of sub-classes (c) are both large.
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r = 5, c = 5 r = 30, c = 5 r = 60, c = 5

CF HOM CF HOM CF HOM
Normal 0.0500 0.0883 0.0480 0.0768 0.0488 0.0745
Exponen 0.0853 0.0978 0.1203 0.0983 0.1136 0.0921
LogNorm 0.1267 0.0998 0.2084 0.1135 0.2167 0.0997
Mixture 0.0827 0.0901 0.1062 0.0873 0.0938 0.0827

r = 5, c = 30 r = 30, c = 30 r = 60, c = 30

CF HOM CF HOM CF HOM
Normal 0.0446 0.0541 0.0500 0.0556 0.0463 0.0519
Exponen 0.1064 0.0690 0.1200 0.0641 0.1206 0.0630
LogNorm 0.1890 0.0681 0.2425 0.0683 0.2715 0.0705
Mixture 0.0911 0.0583 0.0941 0.0563 0.1035 0.0573

r = 5, c = 100 r = 30, c = 100 r = 60, c = 100

CF HOM CF HOM CF HOM
Normal 0.0477 0.0520 0.0511 0.0542 0.0504 0.0517
Exponen 0.1120 0.0588 0.1195 0.0555 0.1166 0.0527
LogNorm 0.2344 0.0673 0.2813 0.0659 0.2886 0.0637
Mixture 0.0949 0.0531 0.1005 0.0546 0.0972 0.0512

Table 3.1. Achieved α-levels over 10, 000 simulation runs under homoscedastic and unbalanced
design at nominal α = 0.05.

3.2.2 Simulations under Heteroscedastic Designs

In this section, we compare three test procedures: the classical F-test procedure, the

proposed test procedure of (3.1.2), and the proposed test procedure of (3.1.3). Let CF

and HOM denote the first two as before, while let HET denote the last one. Note

that the accuracy of procedure HET requires consistent estimation of b1 and b2, which

needs unbiased estimation of σ4
ij for all i, j. For such unbiased estimation we use the

U-statistics with the kernel (Yij1 − Yij2)2/2 × (Yij3 − Yij4)2/2. As a consequence, the

application of procedure HET requires nij ≥ 4, although Theorem 3.1.2 requires only

nij ≥ 2. The achieved simulated sizes, based on 10,000 simulation runs, are shown in

Table 3.2.

As expected, Table 3.2 reveals that the proposed procedure HET, although some-

what liberal as r and c are small, outperforms both of CF and HOM procedures in all

simulations.
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r = 5, c = 5 r = 30, c = 5 r = 60, c = 5

CF HOM HET CF HOM HET CF HOM HET
Normal 0.322 0.348 0.120 0.321 0.329 0.115 0.252 0.259 0.096
Exponen 0.313 0.329 0.102 0.301 0.289 0.096 0.244 0.230 0.087
LogNorm 0.284 0.282 0.087 0.285 0.239 0.088 0.242 0.190 0.075
Mixture 0.280 0.281 0.084 0.288 0.272 0.090 0.247 0.233 0.077

r = 5, c = 30 r = 30, c = 30 r = 60, c = 30

CF HOM HET CF HOM HET CF HOM HET
Normal 0.613 0.603 0.075 0.421 0.402 0.066 0.536 0.518 0.062
Exponen 0.626 0.570 0.072 0.430 0.367 0.065 0.538 0.473 0.057
LogNorm 0.605 0.437 0.057 0.417 0.246 0.052 0.533 0.332 0.050
Mixture 0.594 0.537 0.060 0.420 0.361 0.053 0.533 0.478 0.056

r = 5, c = 100 r = 30, c = 100 r = 60, c = 100

CF HOM HET CF HOM HET CF HOM HET
Normal 0.912 0.906 0.063 0.610 0.586 0.057 0.714 0.691 0.058
Exponen 0.908 0.875 0.058 0.609 0.536 0.054 0.720 0.651 0.052
LogNorm 0.905 0.745 0.050 0.586 0.347 0.043 0.682 0.421 0.045
Mixture 0.917 0.889 0.055 0.603 0.543 0.049 0.704 0.652 0.052

Table 3.2. Achieved α-levels over 10, 000 simulation runs under heteroscedastic and unbalanced
design at nominal α = 0.05.

3.3 Application: Ramification for Lack-of-Fit testing in

Regression

Consider the following heteroscedastic nonparametric regression model with two covari-

ates: conditioning on X1i = x1i and X2i = x2i,

Yi = m(x1i, x2i) + σ(x1i, x2i) εY i, i = 1, · · · , N,

where m(·, ·) and σ(·, ·) are unknown functions. The test of interest is to check whether

the second covariate, X2, should be included in the model. More specifically, the null

hypothesis of interest is H0 : m(x1, x2) = m(x1), ∀x1, ∀x2.

Consider the following decomposition:

m(x1, x2) = µ+ α(x1) + δ(x1, x2)
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µ = E[m(X1, X2)]

α(x1) = E[m(X1, X2)|X1 = x1]− µ

δ(x1, x2) = m(x1, x2)− E[m(X1, X2)|X1 = x1]

Then, testing

H0 : δ(x1, x2) = 0, ∀x1, ∀x2 ⇔ H0 : m(x1, x2) = C(x1), ∀x1, ∀x2.

The idea for constructing the test statistic in this regression setting is to discretise

the first covariate, X1, into r “windows” or classes, and then further discretise the second

covariate, X2, nested in class i, into ci “sub-windows” or sub-classes so that there are

nij observations in each of those sub-classes. Here, we consider the simplest case: when

the random errors are homoscedastic and normal (i.e. σ(·, ·) = 1 and εY ∼ N(0, σ2
Y ))

and the design is balanced (i.e. ci = c, and nij = n). We first independently generate

X1i and X3i from i.i.d Unif(0,1), i = 1, · · · , N , where N = r × c× n = 30× 30× 3. Let

X2 = 2 ·X1 + sin(4 π X3) + εX , where εX are i.i.d. N(0, σ2
X = 1). Then, generate the

response Y using Y = 2 ·X1 +β2 ·X2 +εY , where the random errors εY are i.i.d. standard

normal. In Table below, we compare our test for the homoscedastic cases (denoted as

HOM ) with the usual sequential test on the regression model Y = β1X1 +β3X3 + ε with

the null hypothesis H0 : β3 = 0 (denoted as REG).

β2 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

HOM .053 .143 .669 .995 1.00 1.00 1.00 1.00 1.00 1.00 1.00
REG .042 .404 .811 .899 .060 .112 1.00 .992 1.00 1.00 .246

Table 3.3. Achieved Powers/α-levels over 1, 000 simulation runs at nominal α = 0.05.

Two phenomenon are observed from Table 3.3. First, both procedures HOM and

REG achieve reasonable α-levels (i.e. β2 = 0). Second, The power of HOM increases

when the value of β2 increases, and achieves the power of 1.00 as β2 ≥ 0.40; however,

the performance of REG seems very unstable when β2 6= 0, suggesting its lack of power

to detect the effect of the additional covariate under alternatives.



Chapter 4
Asymptotic Theorems in Testing for

the Class Effect in Two-fold Nested

Model when the number of

sub-classes is large

4.1 The Hypotheses with arbitrary Weights

Unlike the crossed models, the nested models under homoscedasticity are orthogonal

designs for a particular set of weights. The classical two-fold model (2.1.1) with σij = σ

and the mean decomposition as specified in (2.1.3) is an example:

µij = µ+ αi + δij , assuming
r∑
i=1

ni·αi = 0 and
ci∑
j=1

nijδij = 0, ∀i,

where µ, αi, and δij are µ = µ̄··, αi = µ̄i· − µ̄··, δij = µij − µ̄i·,

µ̄i· =
1
ni·

ci∑
j=1

nijµij , µ̄·· =
1
NC

r∑
i=1

ni·µ̄i·.
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In this model, the null hypothesis of no sub-class effect is stated as “µij does not depend

on j”, or equivalently Hδ
0 : δij = 0, as shown in Section 2.1, while the null hypothesis

of no class effect is often specified as “µ̄i· does not depend on i”, or equivalently Hα
0 :

αi = 0 ⇔ µ̄i· = µ̄··. The classical F test statistic and the corresponding procedure under

normality and homoscedasticity for H0 : δij = 0 are given in (2.1.6) and (2.1.7). As for

the class effect, the classical F test statistic for testing H0 : αi = 0 is

FαC =
MSα

MSE
, where MSα =

∑r
i=1 ni·(Ȳi·· − Ȳ···)2

r − 1
, (4.1.1)

and MSE is as defined in (2.1.5). The Ȳ··· and Ȳi·· in the above definition (4.1.1) are the

unweighted sample overall means and the unweighted sample class means of Yijk, i.e.

Ȳ··· =
1
NC

r∑
i=1

ni·Ȳi··, Ȳi·· =
1
ni·

ci∑
j=1

nij Ȳij·, Ȳij· =
1
nij

nij∑
k=1

Yijk.

Then, under normality and homoscedasticity,

FαC ∼ Fr−1, NC−C , under H0 : αi = 0. (4.1.2)

It can be shown that the hypothesis of no sub-class effect is unaffected by the weights

in the definition; however, the hypothesis of no class effect is actually testing the equality

of µ̄i·, which is equivalently testing the weighted averages of the sub-class means weighted

by the sample sizes. This might not be a sensible way to test for the class effect, since two

researchers investigating the same class effects are in fact testing different hypotheses if

the sample sizes used in their studies are not the same. As a consequence, a better way

of testing for the class effect in the nested models might be to choose the appropriate

weights wij for the sub-classes, based on their relative importance within a class, and

then decide the sampling scheme accordingly. More details and examples can be found

in Arnold (1981). This chapter is established for providing the suitable test procedures

for such two-fold nested models with arbitrary weights.

We define the average performance of each class, based on the chosen weights wij on
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sub-classes, by

µ̄wi· =

∑ci
j=1wijµij∑ci
j=1wij

=
1
wi·

ci∑
j=1

wijµij , where wi· =
ci∑
j=1

wij , (4.1.3)

and test the equality of the weighted means µ̄wi· ,

Hw
0 : µ̄wi· does not depend on i ⇔ µ̄wi· = µ̄w·· , (4.1.4)

where

µ̄w·· =
1
Q·

r∑
i=1

Qiµ̄
w
i· ,

1
Qi

=
1
w2
i·

ci∑
j=1

w2
ij

nij
, Q· =

r∑
i=1

Qi,

as our null hypothesis of no class effect.

Further define

Ai =
1
wi·

ci∑
j=1

wij Ȳij·, Ā =
1
Q·

r∑
i=1

QiAi, (4.1.5)

where Ȳij· are the unweighted means of Yijk within each sub-class, as defined before. The

asymptotic results based on Ai and Ā for testing Hw
0 in the nested models, both under

homoscedasticity and under heteroscedasticity, are given in the next section, while the

details of these theoretical derivations can be found in Section 4.3.

4.2 Main Results

4.2.1 Homoscedastic Designs

In this subsection we consider the unbalanced two-fold nested models with arbitrary

weights under homoscedasticity, and derive the asymptotic results for testing for the

class effect both under the null hypothesis Hw
0 as specified in (4.2.3) and under some

alternatives. As a corollary of Theorem 4.2.1 below, we obtain that the usual, normal-

based, F -test procedure for the class effect is robust to departures from the normality

assumption if the number of sub-classes is large, no matter whether the model is unbal-
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anced.

Lemma 4.2.1. Consider the model and assumptions given in (2.1.1) with σij = σ,

(2.1.2), and (2.1.8). In addition assume that there exists some positive ε > 0 such that

lim sup
1
ni·

ci∑
j=1

nij∑
k=1

E|eijk|2+ε <∞, ∀i.

Then, under the null hypothesis Hw
0 : µ̄wi· = µ̄w·· with arbitrary wij, as specified in (4.1.4),

we have

1
σ2

r∑
i=1

Qi
(
Ai − Ā

)2 d→ χ2
(r−1), as min (ci)→∞, (4.2.1)

where Ai and Ā are as defined in (4.1.5).

In addition, under alternatives µ̄wi· satisfying

1
σ2

r∑
i=1

Qi (µ̄wi· − µ̄w·· )
2 → η, for some η ∈ (0,∞), (4.2.2)

as min (ci)→∞ while r, nij stay fixed,

1
σ2

r∑
i=1

Qi
(
Ai − Ā

)2 d→ χ2
(r−1)(η). (4.2.3)

Theorem 4.2.1. Consider the model and assumptions given in Lemma 4.2.1. Provided

that C−2
∑

j

∑
k E

(
e4
ijk

)
→ 0, ∀i, as min (ci) → ∞, under the null hypothesis Hw

0 of

no class effect, we have

∑r
i=1Qi

(
Ai − Ā

)2
MSE

d→ χ2
(r−1), as min (ci)→∞,

where MSE as defined in (2.1.5).

Corollary 4.2.1. Under the model and assumptions of Theorem 4.2.1, the classical,

normality-based, F -test procedure for the hypothesis Hα
0 : αi = 0, shown in (4.1.2), is

asymptotically valid even when the model is not normal.



51

4.2.2 Heteroscedastic Designs

Lemma 4.2.2. Consider the model and assumptions given in (2.1.1), (2.1.2), and

(2.1.8), and let µ̄i·, µ̄··, Qi, Q·, Ai and Ā be as defined in (4.1.3), (4.1.4) and (4.1.5) with

arbitrary weights wij. Assume that there exist some positive ε > 0 and σ2
Ai
∈ (0,∞), i =

1, · · · , k, such that

lim sup
1
ni·

ci∑
j=1

nij∑
k=1

E|eijk|2+ε <∞, ∀i.

and

V ar
(√

Q·Ai

)
=

Q·
w2
i·

ci∑
j=1

w2
ij

nij
σ2
ij −→ σ2

Ai
, as min (ci)→∞. (4.2.4)

Define the contrast matrix H as

H =


1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1


(r−1)×r

=
(
1
′
r−1 | −Ir−1

)
.

Let A = (A1, · · · , Ar)′, µA = (µ̄w1·, · · · , µ̄wr·)′, and VA = diag(σ2
A1
, · · · , σ2

Ar
). Then,

under the null hypothesis Hw
0 : µ̄wi· = µ̄w·· , which results in HµA

Hw
0= Hµ̄w·· 1r = 0r−1, we

have

Q· (HA)
′
(
HVAH

′
)−1

(HA) d→ χ2
(r−1), as min (ci)→∞. (4.2.5)

Under alternatives µ̄wi· satisfying

Q· (HµA)
′
(
HVAH

′
)−1

(HµA)→ η, for some η ∈ (0,∞), (4.2.6)
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as min (ci)→∞ while r, nij stay fixed, we obtain

Q· (HA)
′
(
HVAH

′
)−1

(HA) d→ χ2
(r−1)(η). (4.2.7)

Theorem 4.2.2. Consider the model and assumptions given in Lemma 4.2.1. Define

V̂A = diag(σ̂2
A1
, · · · , σ̂2

Ar
) where

σ̂2
Ai

=
Q·
w2
i·

ci∑
j=1

w2
ij

nij
σ̂2
ij , and σ̂2

ij =
1

nij − 1

nij∑
k=1

(
Yijk − Ȳij·

)2
. (4.2.8)

Provided that E
(
e4
ijk

)
are all bounded away from 0 and ∞, under the null hypothesis

Hw
0 of no class effect, we have

Q· (HA)
′
(
HV̂AH

′
)−1

(HA) d→ χ2
(r−1), as min (ci)→∞.

Using the Sherman-Marrison-Woodbury Theorem to obtain the inverse of HVAH
′
,

along with some algebra calculation (see Section 4.3), one can get

Q· (HA)
′
(
HVAH

′
)−1

(HA)

= Q·A
′

[
V−1
A −

1
1′rV

−1
A 1r

V−1
A JrV−1

A

]
A (4.2.9)

= Q·

(
r∑
i=1

A2
i

σ2
Ai

)
− Q·(∑r

i=1
1
σ2

Ai

) ( r∑
i=1

Ai
σ2
Ai

)2

where Jr = 1r1
′
r is a r × r matrix with all elements equal to one.

This relation is the main tool used to prove the asymptotic equivalence under Ho-

moscedasticity between the test procedures based on Theorem 4.2.1 and Theorem 4.2.2,

as stated in the corollary below.

Corollary 4.2.2. Consider the model and assumptions of Theorem 4.2.2. Under Ho-

moscedasticity, i.e. σij = σ, Q· (HA)
′
(
HVAH

′
)−1

(HA) in Lemma 4.2.2 is asymptot-

ically equivalent to
∑r

i=1Qi
(
Ai − Ā

)2
/σ2 in Lemma 4.2.1.
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In addition, Q· (HA)
′
(
HV̂AH

′
)−1

(HA) /(r−1) in Theorem 4.2.2 is asymptotically

equivalent to the classical F test statistic FαC , as defined in (4.1.2), under homoscedas-

ticity.

4.3 Proofs

Proof of Lemma 4.2.1

Recall that

Ai =
1
wi·

ci∑
j=1

wij Ȳij· =
1
wi·

ci∑
j=1

nij∑
k=1

wij
nij

Yijk

and note that

E(Ai) =
1
wi·

ci∑
j=1

wijµij = µ̄wi· ,

V ar(Ai) =
1
w2
i·

ci∑
j=1

w2
ij V ar(µij + σ · ēij·) =

σ2

Qi
.

Let

m = lim inf
(
wij
nij

)
, M = lim sup

(
wij
nij

)
.

To prove the asymptotic normality of Ai, or more specifically, for the limiting distri-

bution of
∑

j

∑
k wij(Yijk − µij)/nij , we check the Lyapounov condition: ∃ε ∈ (0,∞),

 LεC =
1(√∑ci

j=1

∑nij

k=1

w2
ij

n2
ij
σ2

)2+ε

ci∑
j=1

nij∑
k=1

E

∣∣∣∣wijnij (Yijk − µij)
∣∣∣∣2+ε

≤ M2+ε · σ2+ε

(σm)2+ε(ni·)ε/2
· 1
ni·

ci∑
j=1

nij∑
k=1

E |eijk|2+ε −→ 0, as min (ci)→∞.
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Since the Lyapounov condition holds, we know that, as min (ni)→∞,

Ai − µ̄wi·
σ/
√
Qi

=

∑
j

∑
k
wij

nij
(Yijk − µij)√∑

j

∑
k V ar

[
.
wij

nij
(Yijk − µij)

] d−→ N(0, 1).

Note that

Ā =
1
Q·

r∑
i=1

QiAi =⇒ E(Ā) = µ̄w·· and V ar(Ā) =
σ2

Q·
,

and hence as min (ci)→∞,

√
Q·
σ

(
Ā− µ̄w··

) d−→ N(0, 1) =⇒ Q·
σ2

(
Ā− µ̄w··

)2 d−→ χ2
(1).

In addition, note that

√
Qi
σ

(Ai − µ̄w·· ) =
√
Qi
σ

(Ai − µ̄wi· ) +
√
Qi
σ

(µ̄wi· − µ̄w·· ) ,

suggesting that

r∑
i=1

Qi
σ2

(Ai − µ̄w·· )
2 d−→ χ2

(r)(η),

where η is as defined in (4.2.2).

Then, (4.2.3) follows the fact that Ā and
∑

iQi(Ai − Ā)2 are independent, and

∑
i

Qi (Ai − µ̄w·· )
2 =

∑
i

Qi
(
Ai − Ā

)2 +
∑
i

Qi
(
Ā− µ̄w··

)2
, as

∑
i

Qi
(
Ai − Ā

)
= 0.

The null distribution (4.2.1) is a straightforward result from Hw
0 : µ̄wi· = µ̄w·· , ∀i ⇒ η = 0.

Proof of Theorem 4.2.1

By WLLN, MSE
P−→ σ2. The theorem then follows the Slutsky’s Theorem.
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Proof of Corollary 4.2.1

Take the weights wij = nij . Then, wi· = ni· = Qi, Q· = NC , µ̄wi· = µ̄i·, µ̄w·· = µ̄··,

Ai = Ȳi·· and Ā = Ȳ···. Hence, testing Hw
0 : µ̄wi· = µ̄w·· , ∀i is clearly equivalent to testing

H0 : αi = µ̄i· − µ̄·· = 0, ∀i, and

∑
i

Qi
(
Ai − Ā

)2 =
∑
i

ni·
(
Ȳi·· − Ȳ···

)2 = (r − 1)MSα.

Then, this corollary follows from Theorem 4.2.1.

Proof of Lemma 4.2.2

Let

mσ = lim inf
(
wij
nij

σij

)
, Mσ = lim sup

(
wij
nij

σij

)
,

and note that

E(Ai) = µ̄wi· , V ar(Ai) =
1
w2
i·

ci∑
j=1

w2
ij

nij
σ2
ij ⇒

√
Q·V ar(Ai) −→ σ2

Ai
,

where σ2
Ai

are as defined in (4.2.4).

Check the Lyapounov condition: ∃ε ∈ (0,∞),

 LεC =
1(√∑ci

j=1

∑nij

k=1

w2
ij

n2
ij
σ2
ij

)2+ε

ci∑
j=1

nij∑
k=1

E

∣∣∣∣wijnij (Yijk − µij)
∣∣∣∣2+ε

≤ (Mσ)2+ε

(mσ)2+ε(ni·)ε/2
· 1
ni·

ci∑
j=1

nij∑
k=1

E |eijk|2+ε −→ 0, as min (ci)→∞,

and hence

√
Q· (Ai − µ̄wi· )

d−→ N(0, σ2
Ai

), ∀i ⇒
√
Q· (A− µA) d−→ Nr(0r,VA).
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Under Hw
0 : µ̄wi· = µ̄w·· , ∀i ⇒ HµA

Hw
0= Hµ̄w·· 1r = 0r−1, we have

√
Q·HA d−→ Nr−1(0r−1,HVAH′) (4.3.1)

=⇒ Q· (HA)′
(
HVAH′

)−1 (HA) d−→ χ2
(r−1), as min (ci)→∞.

On the other hand, under alternatives µ̄wi· satisfying (4.2.6), in which η is defined,

Q· (HA)′
(
HVAH′

)−1 (HA) d−→ χ2
(r−1)(η).

Proof of Theorem 4.2.2

Since σ̂2
ij are unbiased estimators of σij and E(e4

ijk) are bounded, by WLLN,

σ̂2
Ai

P−→ σ2
Ai
, as min (ci)→∞, ∀i = 1, · · · , r.

As r is fixed/finite, we further have σ̂2
Ai
− σ2

Ai

P−→ 0, uniformly in i. Since VA and V̂A

are r × r diagonal matrices with elements σ2
Ai

and σ̂2
Ai

, V̂A −VA
P−→ 0 follows.

In addition, because for any r× r squared matrix C, the elements of HCH′ are con-

tinuous functions of the elements of C, and the dimension r is finite, by CMT (continuous

mapping theorem), we get

HV̂AH′ −HVAH′ P−→ 0, as min (ci)→∞.

Similarly, by the fact that the elements of any inverse matrix with finite dimensions are

continuous functions of the elements of the original matrix, CMT further tells us that

(
HV̂AH′

)−1
−
(
HVAH′

)−1 P−→ 0, as min (ci)→∞.

Under the null hypothesis Hw
0 , by (4.3.1) and the Slutsky’s theorem,

(√
Q·HA

)′ [(
HV̂AH′

)−1
−
(
HVAH′

)−1
](√

Q·HA
)

P−→ 0, as min (ci)→∞,
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which completes the proof.

Calculation of Relation (4.2.9)

Let D = diag(σ2
A2
, · · · , σ2

Ar
). Then,

HVAH′ = (1r−1 | −Ir−1)(r−1)×r

 σ2
A1

0′r−1

0r−1 D

 1′r−1

−Ir−1


r×(r−1)

= (1r−1 | −Ir−1)(r−1)×r

 σ2
A1

1′r−1

−D


= σ2

A1
1r−11′r−1 +D.

Recall the Sherman-Marrison-Woodbury Theorem:

(
Γp×p + θxp×1x′1×p

)−1 = Γ−1 − θ

1 + θx′Γ−1x
Γ−1xx′Γ−1.

Hence,

(
HVAH′

)−1 = D−1 −
σ2
A1

1 + σ2
A1

1′r−1D
−1 1r−1

D−11r−11′r−1D
−1

=⇒ H′
(
HVAH′

)−1 H = H′D−1H− 1(∑r
i=1

1
σ2

Ai

)H′D−11r−11′r−1D
−1H.

Because

H′D−1H =

 1′r−1

−Ir−1


r×(r−1)

D−1 (1r−1 | Ir−1)(r−1)×r

=

 1/σ2
A2

· · · 1/σ2
Ar

−D−1


r×(r−1)

(1r−1 | Ir−1)(r−1)×r
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=



ζ − 1
σ2

A2

· · · − 1
σ2

Ar

− 1
σ2

A2

− 1
σ2

A2

· · · 0
...

...
. . .

...

− 1
σ2

Ar

0 · · · − 1
σ2

Ar


r×r

, where ζ =

(
r∑
i=2

1
σ2
Ai

)
,

and

H′D−11r−11′r−1D
−1H =



ζ

− 1
σ2

A2
...

− 1
σ2

Ar


r×1

(
ζ, − 1

σ2
A2

, · · · , − 1
σ2

Ar

)
1×r

=



ζ2 − 1
σ2

A2

· ζ · · · − 1
σ2

Ar

· ζ

− 1
σ2

A2

· ζ 1(
σ2

A2

)2 · · · 1
σ2

A2

1
σ2

Ar

...
...

. . .
...

− 1
σ2

Ar

· ζ 1
σ2

A2

1
σ2

Ar

· · · 1

(σ2
Ar

)2


r×r

,

we obtain (
1∑r

i=1 σ
2
Ai

)
H′
(
HVAH′

)−1 H

=



1
σ2

A1

(∑
i 6=1

1
σ2

Ai

)
− 1
σ2

A1
σ2

A2

· · · − 1
σ2

A1
σ2

Ar

− 1
σ2

A2
σ2

A1

1
σ2

A2

(∑
i 6=2

1
σ2

Ai

)
· · · − 1

σ2
A2

σ2
Ar

...
...

. . .
...

− 1
σ2

Ar
σ2

A1

− 1
σ2

Ar
σ2

A2

· · · 1
σ2

Ar

(∑
i 6=r

1
σ2

Ai

)


r×r

.

On the other hand,

(
1′rV

−1
A 1r

)
V−1
A −V−1

A 1r1′rV
−1
A
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=

(
r∑
i=1

v
1
σ2
Ai

)
1/σ2

A1
· · · 0

...
. . .

...

0 · · · 1/σ2
Ar

−


1/σ2
A1

...

1/σ2
Ar

( 1/σ2
A1
· · · 1/σ2

Ar

)

= (mij)r×r , where mij =


1
σ2

Ai

(∑
l 6=i

1
σ2

Al

)
, if i = j;

− 1
σ2

Ai
·σ2

Aj

, if i 6= j;

which completes the proof of Relation (4.2.9).

REMARK Let W = V−1
A −V−1

A JrV−1
A /1

′
rV
−1
A 1r, which is a r × r square matrix of

rank (r − 1). It can be shown that (1) W1r = 0r and (2) WVAW = W, i.e. VA is a

generalized inverse of W ( see Lemma A.1. of Akritas et al. (1995)).

Hence, Relation (4.2.9) may be further extended to

Q· (HA)
′
(
HVAH

′
)−1

(HA) = Q·A
′
WA

= Q· (WA)
′
(
WVAW

′
)−

(WA) .

Note that under Hw
0 : µ̄wi· = µ̄w·· , ∀i, not only HA = 0r−1 but also WA = 0r.

Proof of Corollary 4.2.2

When σij = σ, (4.2.4) tells us that

Q·
Qi
σ2 −→ σ2

Ai
, as min (ci)→∞.

Using (4.2.9), it is clear that Q· (HA)
′
(
HVAH

′
)−1

(HA) is approximately equal to

Q·

(
r∑
i=1

A2
i

Q·σ2/Qi

)
− Q·(∑r

i=1
Qi

Q·σ2

) ( r∑
i=1

Ai
Q·σ2/Qi

)2

=
1
σ2

r∑
i=1

Qi
(
Ai − Ā

)2
.

The asymptotical equivalence between Q· (HA)
′
(
HVAH

′
)−1

(HA) /(r − 1) and FαC

follows similarly.



Chapter 5
Testing for the Covariate Effect in

the Fully Nonparametric ANCOVA

Consider the fully nonparametric ANCOVA model with the observed pairs (Xij , Yij), i =

1, · · · , k, j = 1, · · · , ni, as introduced in the beginning of this thesis (Section 1.2 in

particular), which specifies only that

Yij |Xij = x ∼ Fix(y) = M(y) +Ai(y) +Di(y;x), i = 1, · · · , k,

where the decomposition of Fix is defined in (1.2.7). In the present chapter, we de-

velop a test procedure for testing the null hypothesis of no covariate effect in the fully

nonparametric fashion:

H0(D) : Di(y;x) = 0 ⇔ Fix(y) = F 0
i (y), for all i, all x and all y. (5.0.1)

The basic idea used to construct the test procedure is to think of the continuous co-

variate variable as a factor with many levels and utilize suitable test statistics from the

heteroscedastic unbalanced two-fold nested model. As outlined in Section 1.3, there are

two possible approaches: non-overlapping windows approach and overlapping windows

approach. The former one applies directly the asymptotic results from Chapter 2 and

has been demonstrated on a real data set in Section 2.4.2. On the other hand, the
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technical derivation of the overlapping windows approach involves some complications

resulting from the augmented dependence in our design. New asymptotic tools based

on the projection principle are hence developed in this chapter to accommodate those

challenges.

The rest of this chapter is organized as follows. Section 5.1 introduces how to im-

plement the overlapping windows approach and the corresponding test statistic. In

Section 5.2 we present the asymptotic techniques and the main theoretical results, while

in Section 5.3 we summarize numerical results from several simulation studies. Three

real data sets are analyzes in Section 5.4: the Low Birth Weight data, the Ethanol data,

and the Acid Rain data from the National Atmospheric Deposition Program (NADP).

Finally, we provide proofs of the main theorems and some technical details in Section 5.5.

5.1 The Test Statistic

To implement the overlapping windows approach, we first enumerate the observed pairs

(Xij , Yij), i = 1, · · · , k; j = 1, · · · , ni, such that Xi1 < Xi2 < · · · < Xini (i.e. assuming

no ties) for each i. Thus, each ordered covariate value corresponds to a level of the

nested factor in the artificial two-fold nested design. The observations at each such level

(i,Xir) are augmented by including in it the responses corresponding to the w covariate

values Xij that are nearest to Xir in the sense that

|Ĝi(Xij)− Ĝi(Xir)| ≤
w − 1
2ni

, where Ĝi(x) =
1
ni

ni∑
j=1

I(Xij ≤ x).

Note that Ĝi(x) is the empirical distribution function of the covariate in group i. For

simplicity, we only consider w to be odd in this chapter.

Let Zirt denote the tth observation at level (i,Xir) of subclass factor group i in this

artificial two-fold nested design. In particular, letting

Wir =
{

1 ≤ j ≤ ni : |Ĝi(Xij)− Ĝi(Xir)| ≤
w − 1
2ni

}
,
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we have

Zirt = Yij iff
ni∑
l=1

I(Xil ≤ xij ; l ∈Wir) = t, (5.1.1)

i = 1, · · · , k; r = 1, · · · , ni; t = 1, · · · , wir.

Note that, for each i = 1, . . . , k, the number of observations in levels (i,Xir), r =

1, . . . , (w − 1)/2 and r = ni − (w + 1)/2 + 1, . . . , ni is less than w. More specifically,


wir = w−1

2 + r, if 1 ≤ r ≤ w−1
2 ;

wir = w, if w−1
2 + 1 ≤ r ≤ ni − w−1

2 ;

wir = w−1
2 + 1 + ni − r, if ni − w−1

2 + 1 ≤ r ≤ ni.

(5.1.2)

It can be shown that

wi· =
ni∑
r=1

wir

=

w−1
2∑

r=1

w − 1
2

+ r

+

 ni−w−1
2∑

r= w−1
2

+1

w

+

 ∑
r=ni−w−1

2
+1

ni
w − 1

2
+ 1 + ni − r


= w(ni − w + 1) + 2

[
w − 1

2
· w − 1

2
+

1
2
· w − 1

2
· w + 1

2

]
= w(ni − w + 1) +

(w − 1)(3w − 1)
4

⇒ wi· = niw −
w2 − 1

4

⇒ w·· =
k∑
i=1

wi· = Nw − k(w2 − 1)
4

,

where N =
∑k

i=1 ni.

Consider a heteroscedastic unbalanced two-fold nested design with k classes/groups

and ni sub-classes nested in class i, i = 1, · · · , k. Let Vir1, · · · , Virwir denote the wir
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observations of sub-class r in class i, i = i, · · · , k; r = 1, · · · , ni. Define

FD =
MSTD
MSED

, where MSTD =
1

N − k

k∑
i=1

ni∑
r=1

wir
(
V̄ir· − V̄i··

)2 ;

MSED =
1

N − k

k∑
i=1

ni∑
r=1

(
1− wir

wi·

)
1

wir − 1

wir∑
t=1

(
Virt − V̄ir·

)2
, (5.1.3)

where

V̄ir· =
1
wir

wir∑
t=1

Virt, V̄i·· =
1
wi·

ni∑
r=1

wirV̄ir·.

We replace Virt in (5.1.3) with Zirt, i = 1, · · · , k; r = 1, · · · , ni; t = 1, · · · , wir, and have

FD =
MSTD
MSED

, where MSTD =
1

N − k

k∑
i=1

ni∑
r=1

wir
(
Z̄ir· − Z̄i··

)2
,

MSED =
1

N − k

k∑
i=1

ni∑
r=1

(
1− wir

wi·

)
1

wir − 1

wir∑
t=1

(
Zirt − Z̄ir·

)2
, (5.1.4)

Z̄ir· =
1
wir

wir∑
t=1

Zirt, Z̄i·· =
1
wi·

ni∑
r=1

wirZ̄ir·.

Define the test statistic for the null hypothesis of no covariate effect (5.0.1) as

TD = MSTD −MSED. (5.1.5)

In this chapter we study the asymptotic distributions of TD under both the null and the

local alternative hypotheses. Although we do not use FD in (5.1.4) as our test statistic

here, one can easily prove that the MSED converges to some constant in probability

as min (ni) → ∞ under weak regularity conditions, and apply the Slutsky’s theorem to

obtain the asymptotic distributions of (FD − 1) if desired.
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5.2 Main Results

5.2.1 Some notations and Assumptions

Let Zir = (Zir1 , Zir2, · · · , Zirwir)′ be wir × 1 vectors, Zi = (Z
′
i1,Z

′
i2, · · · ,Z

′
ini

)′ be wi·× 1

vectors, and Z = (Z
′
1,Z

′
2, · · · ,Z

′
k)
′ be a w·· × 1 vector containing all observations in the

augmented design. In addition, let 1d denote the d× 1 vector of 1’s, Jd = 1d1
′
d, and Id

be the d-dimensional identity matrix. ⊕ denotes the operation of Kronecker sum.

It can be shown that MSED = Z′T1Z (as in Section 5.5.1) with

T1 =
1

N − k

k⊕
i=1

ni⊕
r=1

(
1− wir

wi·

)
1

wir − 1

[
Iwir −

1
wir

Jwir

]
, (5.2.1)

while MSTD = Z′T2Z with

T2 =
1

N − k

k⊕
i=1

[
ni⊕
r=1

1
wir

Jwir −
1
wi·

Jwi·

]
. (5.2.2)

Then, the test statistic TD = MSTD −MSED = Z′(T2 −T1)Z = Z′AZ, where

A = T2 −T1 =
1

N − k

k⊕
i=1

ni⊕
r=1

[
1
wir

+
(

1− wir
wi·

)
1

wir − 1
· 1
wir

]
Jwir

− 1
N − k

k⊕
i=1

1
wi·

Jwi· −
1

N − k

k⊕
i=1

ni⊕
r=1

(
1− wir

wi·

)
1

wir − 1
Iwir

= diag{A1, · · · ,Ak},

with Ai =
ni⊕
r=1

(αirJwir − γirIwir)− βiJwi·

=


Bi1 −βi1wi11

′
wi2

· · · −βi1wi11
′
wini

−βi1wi21
′
wi1

Bi2
...

...
. . .

...

−βi1wini
1
′
wi1

· · · · · · Bini


wi·×wi·

αir =
1

(N − k)(wir − 1)

(
1− 1

wi·

)
; βi =

1
(N − k) · wi·

;
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γir =
1

(N − k)(wir − 1)

(
1− wir

wi·

)
;

Bir = (bir,gh)wir×wir , bir,gh =

 0, if g = h;

αir − βi = γir, if g 6= h.

The following notations will be frequently used in this chapter:

Z∗ = Z− E(Z|X); Y ∗ij = Yij − E(Yij |Xij); σ2
i (x) = V ar(Yij | Xij = x).

To study the asymptotic distributions of TD, we need to further define two quadratic

forms, Z∗′ADZ∗ and Z∗′A∗DZ∗, where

AD =
k⊕
i=1

ni⊕
r=1

Bir and A∗D =
k⊕
i=1

ni⊕
r=1

B∗ir, (5.2.3)

with the B∗ir defined as Bir, with γir replaced by

κi =
1

(N − k)(w − 1)

(
1− 1

ni

)
. (5.2.4)

These two quadratic forms will serve as approximations of the test statistic TD = Z′AZ

in our asymptotic derivations. Z∗′ADZ∗ is obtained by an application of the projection

method, as introduced in Akritas and Papadatos (2004), while Z∗′A∗DZ∗ is designed to

simplify our calculations in the proofs. (The calculation of the projection matrix AD is

quite tedious and hence omitted here; see Section 5.5.1 for details.)

The asymptotic distributions of TD are derived under the following assumptions:

Assumption A1. (1) ∀i, ∃λi ∈ (0, 1), such that ni/N → λi, as n = min (ni)→∞;

(2) w ≥ 2 and n−1+aw → 0, for all 0 < a < 1;

Assumption A2. E(Y 4
ij | Xij = x) are uniformly bounded in i, x;

Assumption A3. The covariate X is a continuous random variable with bounded support Si, c.d.f

Gi, and p.d.f gi, i = 1, · · · , k. The density gi is bounded away from 0 on Si.
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5.2.2 Asymptotic Distribution under the Null

To obtain the asymptotic distribution of N1/2w−1/2TD under H0(D), we first show in

Lemma 5.2.1 that observations are (conditionally) centered under the null hypothesis. In

addition, Lemma 5.2.2 shows that this centered quadratic form can be approximated by

another (centered) quadratic form based on the projection matrix AD, while Lemma 5.2.3

tells us that this projection quadratic form can be further approximated by a simpler form

based on A∗D as defined in (5.2.3). The asymptotic variance of this simpler quadratic form

is then given in Lemma 5.2.4, while Theorem 5.2.1 provides the asymptotic distribution

of the proposed test statistic under H0(D) (see Section 5.5.2 for all corresponding proofs).

Lemma 5.2.1. Under H0(D),

Z′AZ = Z∗′AZ∗.

Lemma 5.2.2. Under H0(D) and Assumptions A1–A2,

N1/2w−1/2
[
Z∗′AZ∗ − Z∗′ADZ∗

] P→ 0, as min (ni)→∞.

Lemma 5.2.3. Under H0(D) and Assumptions A1–A2,

N1/2w−1/2
[
Z∗′ADZ∗ − Z∗′A∗DZ∗

] P→ 0, as min (ni)→∞.

Lemma 5.2.4. Under H0(D) and Assumption A1,

provided that σ2
i (x)

H0(D)
= σ2

i > 0, ∀x,
(
σ4
i = (σ2

i )
2
)

V ar(N1/2w−1/2Z∗′A∗DZ∗) =
2(2w − 1)
3(w − 1)

k∑
i=1

λiσ
4
i + o(1), as min (ni)→∞.

Theorem 5.2.1. [Asymptotic Null Distribution]

Under H0(D) as defined in (1.2.9) and Assumptions A1–A2,

provided that σ2
i (x)

H0(D)
= σ2

i > 0, ∀x,
(
σ4
i = (σ2

i )
2
)

(1) if w is fixed,
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N1/2w−1/2TD
d−→ N

(
0,

2(2w − 1)
3(w − 1)

k∑
i=1

λiσ
4
i

)
, as min (ni)→∞;

(2) if w →∞ as min (ni)→∞ (while Assumption A1 holds),

N1/2w−1/2TD
d−→ N

(
0,

4
3

k∑
i=1

λiσ
4
i

)
, as min (ni)→∞.

5.2.3 Asymptotic Distribution under Local Alternatives

The asymptotic power is investigated by considering the local alternative sequence:

Ha(D) : Di(y;x) = (ni · w)−1/4Ci(y;x), (5.2.5)

where Ci(y;x), i = 1, · · · , k, are chosen so that
∫
ydCi(y;x) are uniformly bounded

and uniformly Lipschitz continuous for all i and x. Note that (5.2.5) implies that the

alternatives need to approach the null at the rate of (infi niw)−1/4 to ensure nontrivial

power. Define

θD =
k∑
i=1

√
λi

{∫ [∫
ydCi(y;x)

]2

dGi(x)−
[∫ ∫

ydCi(y;x)dGi(x)
]2
}
. (5.2.6)

Recall that

N1/2w−1/2TD = N1/2w−1/2(Z′AZ− Z∗′AZ∗) +N1/2w−1/2(Z∗′AZ∗ − Z∗′ADZ∗)

+N1/2w−1/2(Z∗′ADZ∗ − Z∗′A∗DZ∗) +N1/2w−1/2Z∗′A∗DZ∗.

In this section we first show that, under the local alternative sequence as defined in

(5.2.5), the first term converges in probability to θD as min (ni) → ∞ in Lemma 5.2.5,

while the second and third terms remain negligible as shown in Lemmas 5.2.6 and 5.2.7.

Next, the asymptotic variance of the simpler quadratic form is given in Lemma 5.2.8.

Finally, Theorem 5.2.2 provides the asymptotic distribution of the proposed test statistic

under Ha(D) (see Section 5.5.2 for proofs).
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Lemma 5.2.5. Under Ha(D) and Assumptions A1–A3, as min (ni)→∞,

N1/2w−1/2
[
Z′AZ′ − Z∗′AZ∗

] P→ θD,

where θD is as defined in (5.2.6).

Lemma 5.2.6. Under Ha(D) and Assumptions A1–A3,

N1/2w−1/2
[
Z∗′AZ∗ − Z∗′ADZ∗

] P→ 0, as min (ni)→∞.

Lemma 5.2.7. Under Ha(D) and Assumptions A1–A3,

N1/2w−1/2
[
Z∗′ADZ∗ − Z∗′A∗DZ∗

] P→ 0, as min (ni)→∞.

Lemma 5.2.8. Under Ha(D) and Assumptions A1–A3, provided that σ2
i (x) is positive

and uniformly Lipschitz continuous in x and i,
(
σ4
i (x) = [σ2

i (x)]2
)

V ar(N1/2w−1/2Z∗′A∗DZ∗) =
2(2w − 1)
3(w − 1)

k∑
i=1

λiE[σ4
i (X)] + o(1), as min (ni)→∞.

Theorem 5.2.2. [Asymptotic Distribution under Local Alternatives]

Under Ha(D) as defined in (5.2.5) and Assumptions A1–A3, provided that σ2
i (x) is

positive and uniformly Lipschitz continuous in x and i,

(1) if w is fixed, as min (ni)→∞,

N1/2w−1/2TD
d→ N

(
θD,

2(2w − 1)
3(w − 1)

k∑
i=1

λiE[σ4
i (X)]

)
;

(2) if w →∞ as min (ni)→∞ (while Assumption A1 holds),

N1/2w−1/2TD
d→ N

(
θD,

4
3

k∑
i=1

λiE[σ4
i (X)]

)
,

where θD is as defined in (5.2.6).
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5.3 Simulation Studies

In this section, simulations are used to compare the achieved sizes and/or powers of

several test procedures for testing the null hypothesis of no (simple) covariate effect. Let

NP(w) denote the proposed nonparametric test using overlapping windows of size w. By

Theorem 5.2.1, NP(w) rejects at level α if

(
N

w

)1/2

TD >

√√√√2(2w − 1)
3(w − 1)

k∑
i=1

λ̂iσ̂4
i Zα,

where Zα is the (1 − α)100th percentile of the standard normal distribution and λ̂i is

the empirical versions of λi, namely λ̂i = ni/N . The σ̂4
i can be any consistent estimator

for σ4
i , and the one we use in the simulations studies shown in this section is

σ̂4
i =

1
ni

ni∑
r=1

σ̂4
i (Xir) ,

where σ̂4
i (Xir) is the U-statistic of the observations in window Wir (i.e. the window

centered around Xir) with the kernel h(z1, z2, z3, z4) = (z1−z2)2× (z3−z4)2/4. Another

possible simple estimator of σ4
i is

σ̂4∗
i =

1
4(ni − 3)

ni−3∑
j=1

(Yi,j − Yi,j+1)2 × (Yi,j+2 − Yi,j+3)2 , (5.3.1)

which can be thought of as a modified Rice’s estimator (1984). From simulations (not

shown here), the performance of NP(w) using σ̂4
i seems slightly better than the one using

σ̂4∗
i , so we only include the results using the former. In addition, for simplicity, we only

use windows of size 5 to compute the estimator σ̂4
i in our simulations, regardless of the

window size used in computing the test statistic TD.

All simulations are demonstrated using two groups (k = 2) and one continuous

covariate whose values are randomly generated from the standard uniform distribution

U(0, 1). The proposed NP(w) test is compared with two alternatives: the classical F

test (denoted as CF ) and the rank-based test of McKean and Sheather (1991) (denoted
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as Drop). Both of these tests can be directly implemented in R (2009). For more details

about the Drop test in R, see Terpstra and McKean (2005).

5.3.1 Simulations under Heteroscedasticity and Non-Normality

We first compare the achieved α-levels of these three test procedures when homoscedas-

ticity does not hold. The data for our two groups are generated from

Y1j = θ · e1j and Y2j = 2 + e2j ,

where eij ∼ N(0, 1), i = 1, 2, for θ = 1, 3, 5, 10. Note that, when θ = 1, the ho-

moscedastic assumption in fact holds. The achieved α-levels, based on 10, 000 simulation

runs, at nominal level of .05 are shown in Table 5.1.

Table 5.1. Achieved α-levels over 10, 000 simulation runs under homoscedasticity (θ = 1) and
under heteroscedasticity (θ 6= 1) at nominal α = 0.05.

(n1, n2) θ CF Drop NP(5) NP(7) NP(9)
(20, 30) 1 .0508 .0515 .0457 .0324 .0243

3 .1085 .1408 .0664 .0476 .0345
5 .1237 .2088 .0702 .0506 .0367
10 .1308 .3212 .0730 .0544 .0407

(40, 60) 1 .0462 .0464 .0482 .0402 .0340
3 .1007 .1358 .0692 .0546 .0481
5 .1159 .2158 .0681 .0570 .0480
10 .1258 .3352 .0728 .0609 .0526

(150, 200) 1 .0519 .0498 .0508 .0453 .0404
3 .0901 .1265 .0645 .0605 .0563
5 .1019 .2019 .0616 .0564 .0532
10 .1083 .3219 .0639 .0610 .0572

Table 5.1 makes it clear that both the CF test and the Drop test are too liberal

under heteroscedasticity, although the CF test appears to become less so when the num-

ber of observations, n1 and n2, increase. On the other hand, the proposed procedure

NP(w) performs reasonably well both under homoscedasticity and under heteroscedas-

ticity, though it is somewhat conservative in the case of homoscedasticity, especially

when the number of observations are small.
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In addition, we investigate the effect of normality by considering data generated from

some non-normal distributions. More specifically, we generate Yij from the exponential

distribution with rate equal to either .2 or 1 (denoted as exp(0.2) and exp(1.0)), and

from the the log-normal distribution whose logarithm has mean 0 and standard deviation

equal to either .2 or 1 (denoted as lnorm(0.2) and lnorm(1.0)) . The achieved α-levels,

based on 10, 000 simulation runs, at nominal level of .05 are shown in Table 5.2.

Table 5.2. Achieved α-levels over 10, 000 simulation runs under non-normality at nominal
α = 0.05.

(n1, n2) Y1j Y2j CF Drop NP(5) NP(7) NP(9)
(20, 30) exp(0.2) exp(1.0) .1186 .2138 .0557 .0399 .0275

exp(1.0) exp(1.0) .0502 .0461 .0445 .0318 .0227
lnorm(0.2) lnorm(1.0) .0528 .0922 .0516 .0407 .0302
lnorm(1.0) lnorm(1.0) .0541 .0451 .0358 .0232 .0168

(40, 60) exp(0.2) exp(1.0) .1137 .2247 .0550 .0446 .0362
exp(1.0) exp(1.0) .0495 .0445 .0421 .0325 .0285
lnorm(0.2) lnorm(1.0) .0533 .0987 .0469 .0376 .0344
lnorm(1.0) lnorm(1.0) .0504 .0449 .0356 .0271 .0216

(150, 200) exp(0.2) exp(1.0) .0978 .2069 .0553 .0483 .0466
exp(1.0) exp(1.0) .0518 .0484 .0434 .0381 .0360
lnorm(0.2) lnorm(1.0) .0637 .1131 .0463 .0410 .0388
lnorm(1.0) lnorm(1.0) .0517 .0456 .0362 .0309 .0293

Although it is well-known that the classical F test is robust to the departure from

the normality assumption when the number of observation goes to infinity (see Arnold

(1980)), Table 5.2 reveals something very interesting. When the underlying distributions

in the two groups are the same, even though non-normal, the classical CF test and the

rank-based Drop test do perform well. However, if the observations in the two groups

are generated from different distributions, like exp(0.2) vs exp(1.0) or lnorm(0.2) vs

lnorm(1.0), these two test procedures can become much too liberal, as seen in Table 5.2.

This seems to suggest that the insensitivity of the CF test and the Drop test to the

normality assumption only holds within groups, not between groups. As for the pro-

posed NP(w) test, its achieved α-levels are all reasonable under various data-generating

mechanisms, though a comparative conservativeness is still observed with smaller w.
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5.3.2 Simulations under Linearity and Non-Linearity

Due to the sensitivity of the CF and Drop procedures to departures from certain model

assumptions (see previous subsection), we only use homoscedastic normal errors in the

present subsection.

When the assumptions of the classical ANCOVA model all hold (i.e. under ho-

moscedasticity, normality and linearity), the CF test unsurprisingly outperforms the

other test procedures, as shown in Table 5.3, where the data are generated from

Y1j = .2e1j and Y2j = θ ·X2j + .2e2j , (5.3.2)

with eij ∼ N(0, 1), i = 1, 2, for θ = 0, 0.1, 0.3, 0.5. Note that when θ = 0, data in the

two groups are generated under the null hypothesis.

Table 5.3. Powers over 10, 000 simulation runs under linear alternatives at nominal α = 0.05.

(n1, n2) θ CF Drop NP(5) NP(7) NP(9) HOM(5)
(20, 30) 0.0 (level) .0521 .0502 .0464 .0347 .0260 .0964

0.1 (power) .0952 .0923 .0748 .0611 .0497 .1323
0.3 (power) .5197 .4775 .3187 .3198 .3109 .3849
0.5 (power) .9192 .8939 .7473 .7697 .7724 .7877

(40, 60) 0.0 (level) .0525 .0519 .0503 .0409 .0353 .0854
0.1 (power) .1470 .1370 .0768 .0739 .0705 .1171
0.3 (power) .8342 .8083 .4821 .5308 .5609 .4850
0.5 (power) .9988 .9979 .9489 .9674 .9757 .9419

(150, 200) 0.0 (level) .0513 .0501 .0521 .0479 .0459 .0670
0.1 (power) .4260 .4060 .1124 .1210 .1284 .1228
0.3 (power) .9999 .9997 .8757 .9279 .9527 .8097
0.5 (power) 1.000 1.000 1.000 1.000 1.000 1.000

To investigate the sensitivity of these test procedures to departures from the linearity

assumption, we further generate data from two non-linear alternatives:

Y1j = .2e1j versus Y2j = θ · (X2
2j −X2j) + .2e2j ; (5.3.3)

Y1j = .2e1j versus Y2j = θ · cos(2 π X2j) + .2e2j ; (5.3.4)
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where eij ∼ N(0, 1), i = 1, 2, and θ are as specified in the tables. As in the previous

simulation study, θ = 0 gives us the achieved α-levels. The achieved α-levels and powers,

based on 10, 000 simulation runs, at nominal level of .05 are shown in Table 5.4 and

Table 5.5, respectively.

Table 5.4. Powers over 10, 000 simulation runs under quadratic alternatives as specified in
(5.3.3) at nominal α = 0.05.

(n1, n2) θ CF Drop NP(5) NP(7) NP(9) HOM(5)
(20, 30) 0.0 (level) .0471 .0475 .0467 .0351 .0234 .0980

0.5 (power) .0503 .0488 .0753 .0584 .0428 .1385
1.0 (power) .0550 .0536 .1951 .1690 .1350 .2626
1.5 (power) .0633 .0582 .4247 .3957 .3389 .4888

(40, 60) 0.0 (level) .0508 .0506 .0527 .0439 .0364 .0837
0.5 (power) .0517 .0536 .1060 .0999 .0936 .1419
1.0 (power) .0564 .0528 .3387 .3610 .3671 .3693
1.5 (power) .0605 .0567 .7322 .7625 .7706 .7253

(150, 200) 0.0 (level) .0506 .0490 .0541 .0495 .0459 .0738
0.5 (power) .0520 .0532 .1685 .1900 .2050 .1651
1.0 (power) .0572 .0581 .7188 .7920 .8337 .6323
1.5 (power) .0641 .0651 .9917 .9953 .9979 .9769

Table 5.5. Powers over 10, 000 simulation runs under cosine alternatives as specified in (5.3.4)
at nominal α = 0.05.

(n1, n2) θ CF Drop NP(5) NP(7) NP(9) HOM(5)
(20, 30) 0.0 (level) .0483 .0458 .0498 .0346 .0253 .1010

0.1 (power) .0514 .0488 .1969 .1797 .1459 .2639
0.2 (power) .0514 .0515 .7023 .6952 .6513 .7281
0.3 (power) .0558 .0613 .9700 .9693 .9588 .9643

(40, 60) 0.0 (level) .0497 .0500 .0505 .0411 .0350 .0829
0.1 (power) .0495 .0501 .3160 .3422 .3544 .3357
0.2 (power) .0513 .0512 .9392 .9600 .9666 .9200
0.3 (power) .0550 .0592 .9999 .9999 .9999 .9995

(150, 200) 0.0 (level) .0515 .0482 .0506 .0478 .0422 .0692
0.1 (power) .0506 .0519 .6572 .7382 .7935 .5693
0.2 (power) .0513 .0505 1.000 1.000 1.000 1.000
0.3 (power) .0564 .0628 1.000 1.000 1.000 1.000

From Table 5.4 and Table 5.5, one can easily notice the superiority of the proposed
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NP(w) test under non-linear alternatives, regardless of the local window size w used.

Tables 5.4 and 5.5 also spotlight the lack of power in detecting non-linear covariate

effects when using the CF test and the Drop test; their achieved powers are very close

to the specified nominal level .05.

Also note that we include the simulation results using the non-overlapping windows

approach, which directly utilizes the asymptotic theorem from the two-fold nested model.

Since the errors used are homoscedastic, only the results of the HOM(5) procedure are

shown here, where the number 5 means that the non-overlapping windows used have

size 5 (i.e. the size of each ‘sub-class’ is 5); see Section 2.4.2 for a description of the

non-overlapping windows approach. Unsurprisingly, HOM(5) procedure performs too

liberally in all simulations shown here, due to the fact that the corresponding numbers

of ‘sub-classes’ are not large enough to make the asymptotic theorem work. For exam-

ple, for the case with (n1 = 40, n2 = 60), the corresponding numbers of sub-classes

are as small as c1 = 8 and c2 = 12. Even though the achieved α-levels of the HOM

procedure do decrease to about .07 (at the nominal level .05) in cases with n1 = 150

and n2 = 200, Tables 5.3 – 5.5 show that its achieved powers are not as promising as

those of the NP procedure, based on the overlapping windows approach. This indicates

that the newly-proposed overlapping windows approach does outperform the naive non-

overlapping windows approach in analysis of covariance when testing for the covariate

effect.

5.4 Data Analyses: Three Empirical Studies

5.4.1 Example using Low Birth Weight Data

In 1986, the Baystate Medical Center in Springfield, Massachusetts, collected data from

189 females, 59 of which had low birth weight babies (weighing less than 2500 grams)

while the other 130 of which had babies with normal birth weights. The main objective

of this study was to identify influential factors which would result in low birth weights,

and among all, two variables of interest were race (96 Whites, 26 Blacks, and 67 Others)

and weight of the mother in pounds at her last menstrual period (LWT). See Hosmer
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Figure 5.1. Scatterplot of Low Birth Weight Data.

and Lemeshow (2000) for more details on this data set. Here we would like to investigate

whether LWT has a significant effect on babies’ birth weights in grams (BWT) when the

factor RACE is being considered. Figure 5.1 is the scatter plot of BWT versus LWT,

where the circles represent the White group, the triangles represent the Black group,

and the crosses represent the Others group.

Due to recording purposes, the LWT values were rounded to integers in the data,

resulting in some ties on the covariate values in this study. To implement our method-

ology on this data set, we use the uniform random generator on (0.0001, 0.01) to add a

small random quantity on the LWT values, and then sorted the observed pairs of (origi-

nal LWT, BWT) for each of the three race groups separately, according to the modified

LWT values. The average p-values of NP(5), NP(7), and NP(9), over 100 repeat runs,

for the covariate effect are .2572, .3271, and .3065, respectively, indicating an insignifi-



76

100 150 200 250

−
3

−
2

−
1

0
1

2

Standardized Residual Plot

LWT

st
an

da
rd

iz
ed

 r
es

id
ua

ls
White
Black
Others

Figure 5.2. Low Birth Weight Data: Standardized Residual Plot from the classical ANCOVA
model.

cant LWT effect on BWT. However, the CF test gives a p-value of .0578 and the Drop

test gives a p-value of .0382, suggesting otherwise.

A closer examination of the data reveals a serious violation of the homoscedasticity

assumption in this study, which can be seen from Figure 5.2, the standardized residual

plot from the classical ANCOVA model. This is also suggested by Rice’s estimators, as

defined in (5.3.1), since σ̂4∗
white = 2.05×1011, σ̂4∗

black = 1.14×1011, and σ̂4∗
others = 1.18×1011.

As shown by simulations reported in Table 5.1, the CF test and the Drop test tend to

perform more liberally than they should be when the model is not homoscedastic, so the

small p-values they give in the study of low birth weight are in fact not surprising.
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5.4.2 Example using Ethanol Data

As another example, we analyze a data set which has been studied previously by Ku-

lasekera (1995). The data set consists of 88 observations from an experimental study in

which Ethanol fuel was used in a single-cylinder engine. Three variables were recorded:

the concentration of nitrogen oxides (NOx, in µg/J), the compression ratio (CR), and

the equivalence ratio (ER), a measure of the richness of the air and fuel mixture. Since

NOx is one of the major air pollutants, the main goal of the original study was to un-

derstand how the concentration of NOx depends on various settings of the compression

ratio and the equivalence ratio. For more details, see also Cleveland (1993). Following

Kulasekera (1995), we categorize the compression ratio as either Low : CR < 10 or High:

CR >= 10, which is then utilized to divide the observed pairs (ER,NOx) into two

groups. As a consequence, the Low group has 39 observations, while the High group has

49 observations. Figure 5.3 shows the relation between the equivalence ratio (ER) and

the concentration of NOx, where the circles represent the Low group and the asterisks

represent the High group. Local linear Gaussian kernel regression estimates are fitted for

the two groups separately, with bandwidths selected by the direct plug-in methodology

of Ruppert et al. (1995). The dashed line represents Group Low, while the solid line

represents Group High.

Note that the local kernel regression curves show a high nonlinearity for both groups.

Application of the two test procedures CF and Drop on this data set yields p-values of

.6373 and .6285 respectively, for the hypothesis of no ER effect. On the other hand, the

proposed NP test yields very small p-values (less than 10−12) for a wide range of window

sizes, suggesting that the effect of the equivalence ratio is in fact significant. Clearly, the

nonlinearity of the ER effect causes the failure of the CF and Drop tests in detecting a

significant covariate effect in this study. This result echoes our findings in the previous

section 5.3.2.

5.4.3 Example using NADP Data

The third real-world application for our methodology can be found through the National

Atmospheric Deposition Program (2009), which monitors geographical and temporal
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Figure 5.3. Scatterplot of Ethanol Data.

long-term trends on the chemistry of precipitation. Starting from only 22 stations in

1978, NAPD has grown as a nationwide network of over 250 sites at which precipitation

samples are collected and analyzed in the Central Analytical Laboratory (CAL) weekly.

For our data analysis, we chose to analyze the pH level (reported as the negative log of

hydrogen ion concentration) of precipitation samples as measured in the CAL from the

first week of January 2003 to the last week of January 2007. We consider comparing

the data in two North Carolina towns, Lewiston and Coweeta, and are interested in the

covariate effect of Time. The data, along with local linear kernel regression estimates,

are shown in Figure 5.4. The circles and the dash line are for Lewiston data, while the

asterisks and the solid line are for Coweeta data. Since a simple time series analysis does

not indicate meaningful correlation over time (see Appendix B), it appears reasonable

to implement our methodology in this study.
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It should be pointed out that there are several weeks in which data were missing

at one or both locations. One interesting feature in this data set is that there are 180

weeks of data in both Lewiston and Coweeta among the total 233 weeks, although this

balancedness of the design is simply a coincidence. A further examination reveals that

the missing data in fact happen at different time points in the two locations. This fact

does not cause any difficulties to the implementation of our methodology. However, it

does matter for some procedures which are applicable to studies like NADP, although

they were designed for different type of hypotheses. For instance, the bootstrap test of

Hall and Hart (1990) for the hypothesis of no location effect can be conducted using

only those weeks in which there are no missing data at both locations, meaning that it

can only use less than 150 weeks of data in this study. That is a loss of 30/180 = 1/6 of

the data. This constraint could be a crucial drawback in practice, especially when the
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number of observations in each group is smaller moderate.

For the covariate effect of time in our analysis, the CF test yields a p-value of .5737,

the Drop test yields a p-value of .7527, and the NP(w) test yields p-values of .0217,

.0239, and .0221, for w = 5, 7, 9, respectively. As seen in the previous two examples,

the choice of the local window size w does not seem to affect the testing result of the

proposed procedure NP. In addition, the failure of the CF and Drop tests in detecting

the time effect in this example again confirms their lack of power when the effect of

interest is not linear.

Recall that the application of the non-overlapping windows approach on this data set

is demonstrated in Section 2.4.2 and the HET procedure gives a p-value of 0.0508 for the

effect of time. The small p-values of the NP(w) procedures, compared with that of the

HET procedure, confirms the superiority of the overlapping windows approach over the

non-overlapping windows approach for detecting the effect of the covariate in analysis of

covariance.

5.5 Technical Details

5.5.1 Some Calculations

Calculation of T1 and T2

Firstly, for T1 in Equation 5.2.1,
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Secondly, for T2 in Equation 5.2.2,
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Calculation of the projection matrix AD

Let Uir = (Uir1, · · · , Uirwir)
′

be independent random vectors with independent compo-

nents; WLOG, assume that E(Uirt) = 0.

Let U
′
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′
1, · · · ,U

′
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′
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′
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)). Then,
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and the projection (Hájek’s projection) of U
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AU is defined as
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. . .
...

γir γir · · · 0




Uir1

Uir2
...

Uirwir




=

wir∑
t=1

E
(
U2
irt × 0

)
+ γir E

∑
t1

∑
t2 6=t1

Uirt1Uirt2


=⇒ E(U

′
irBirUir) = 0, ∀i, ∀r.

Therefore,

E(U
′
iAiUi|Uil) = U

′
ilBilUil

In addition,

∵ E(U
′
iAiUi) = E(E(U

′
iAiUi|Uil)) = E(U

′
ilBilUil) = 0

∴ E(U
′
AU|Uil) = E

(
k∑

i1=1

U
′
i1Ai1Ui1 |Uil

)
= E

(
U
′
iAiUi|Uil

)
+ E

∑
i1 6=i

U
′
i1Ai1Ui1 |Uil


= U

′
ilBilUil + E

∑
i1 6=i

U
′
i1Ai1Ui1


= U

′
ilBilUil

=⇒ E(U
′
AU) = E[E(U

′
AU|Uil)] = E(U

′
ilBilUil) = 0.

Therefore, the projection (Hájek’s projection) of U
′
AU is defined as

∑
i

∑
r

E(U
′
AU|Uir)− (N − k)E(U

′
AU) =

∑
i

∑
r

U
′
irBirUir

=⇒ ∴ AD =
k⊕
i=1

ni⊕
r=1

Bir.
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5.5.2 Proofs of Lemmas and Theorems

Here are some more notations used in the following proofs. Let Z0 = Z − EF 0
i
(Z|X)

where

EF 0
i
(Z|X) = E(Z|X; under H0(D) as defined in (1.2.9)).

In addition, let A∗ = A−AD, where AD is as define in (5.2.3).

Proof of Lemma 5.2.1

Write Fix(y) as Fi(y;x). Consider Zirt = Yij with the covariate Xij = xij ; in other

words,
∑ni

l=1 I(Xil ≤ xij ; l ∈Wir) = t. Although in general

E[Zirt − Z̄ir· | X = x] = E

[
Yij −

1
wir

ni∑
l=1

YilI(l ∈Wir) | X = x

]

=
∫
ydFi(y;xij)−

1
wir

ni∑
l=1

∫
ydFi(y;xil) · I(l ∈Wir)

6= 0,

under H0(D) : Fi(y;x) = F 0
i (y), ∀x,

E[Zirt − Z̄ir· | X = x]
H0(D)

=
∫
ydF 0

i (y)− 1
wir

ni∑
l=1

∫
ydF 0

i (y) · I(l ∈Wir)

H0(D)
= 0, ∀x, ∀i, ∀r, ∀t.

Similarly,

E[Z̄ir· − Z̄i·· | X = x]

=
1
wir

ni∑
j=1

∫
y dFi(y;xij) · I(j ∈Wir)−

1
wi·

ni∑
r=1

ni∑
j=1

∫
y dFi(y;xij) · I(j ∈Wir)

=
∫
y d

 1
wir

ni∑
j=1

Fi(y;xij) · I(j ∈Wir)−
1
wi·

ni∑
r=1

ni∑
j=1

Fi(y;xij) · I(j ∈Wir)


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H0(D)
=

∫
y dF 0

i (y)

 1
wir

ni∑
j=1

I(j ∈Wir)−
1
wi·

ni∑
r=1

ni∑
j=1

I(j ∈Wir)


H0(D)

= 0, ∀x, ∀i, ∀r.

Recall that A = T2−T1 with T1 and T2 as defined in (5.2.1) and (5.2.2). It can be

shown that

T1Z =
1

N − k

[
k⊕
i=1

ni⊕
r=1

(
1− wir

wi·

)
1

wir − 1

(
Iwir −

1
wir

Jwir

)]
Z

=
1

N − k



(1− w11
w1·

) 1
w11−1 (Z11 − Z̄11· 1w11)

...

(1− w1n1
w1·

) 1
w1n1−1 (Z1n1 − Z̄1n1· 1w1n1

)

(1− w21
w2·

) 1
w21−1 (Z21 − Z̄21· 1w21)

...

(1− wknk
wk·

) 1
wknk

−1 (Zknk
− Z̄knk· 1wknk

)


w··×1

=⇒ T1EF 0
i
(Z | X) = 0w··×1.

and

T2Z =
1

N − l

(
k⊕
i=1

ni⊕
r=1

1
wir

Jwir

)
Z− 1

N − k

(
k⊕
i=1

1
wi·

Jwi·

)
Z

=
1

N − k



(Z̄11· − Z̄1··)1w11

...

(Z̄1n1· − Z̄1··)1w1n1

(Z̄21· − Z̄2··)1w21

...

(Z̄knk· − Z̄k··)1wknk


w··×1

=⇒ T2EF 0
i
(Z | X) = 0w··×1.
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Hence,

A E(Z | X)
H0(D)

= (T2 −T1)EF 0
i
(Z | X) = 0w··×1. (5.5.1)

As a consequence,

Z∗′AZ∗ = (Z− E(Z | X))′A (Z− E(Z | X))

= Z
′
AZ− E(Z | X)′AZ− (Z− E(Z | X))′AE(Z | X)

H0(D)
= Z′AZ,

which completes the proof.

Proof of Lemma 5.2.5

First note that

Z∗′AZ∗ = [Z− E(Z|X)]′A[Z− E(Z|X)]

= Z′AZ− 2E(Z|X)′A[Z− E(Z|X)]− E(Z|X)′AE(Z|X).

From (5.5.1), we learned that AEF 0
i
(Z|X) = 0w··×1, so

Z′AZ− Z∗′AZ∗ = 2 E(Z|X)′AZ∗ + E(Z|X)′AE(Z|X)

= 2
[
E(Z|X)− EF 0

i
(Z|X)

]′
AZ∗ +

[
E(Z|X)− EF 0

i
(Z|X)

]′
A
[
E(Z|X)− EF 0

i
(Z|X)

]
= 2 d(X)′AE(Z|X) + d(X)′Ad(X),

where

d(X) ≡ E(Z|X)− EF 0
i
(Z|X).

Let dirt be the elements of d(X), i.e. dirt =
∫
ydDi(y;Xirt), and

dij =
∫
ydDi(y;Xij), and cij =

∫
ydCi(y;Xij). (5.5.2)
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Then, it is clear that dij = (niw)−1/4cij , i = 1, · · · , k; j = 1, · · · , ni.

To prove that N1/2w−1/2(Z′AZ−Z∗′AZ∗)→ θD in probability, it’s sufficient to show

that (1) N1/2w−1/2d(X)′Ad(X) = θD + op(1) and (2) N1/2w−1/2d(X)′AZ∗ = op(1).

We first prove (1). Note that

d(X)′Ad(X) =
1

N − k

k∑
i=1

ni∑
r=1

wir
(
d̄ir· − d̄i··

)2
− 1
N − k

k∑
i=1

ni∑
r=1

(
1− wir

wi·

)
1

wir − 1

wir∑
t=1

(
dirt − d̄ir·

)2
=

1
N − k

k∑
i=1

ni∑
r

wird̄
2
ir· −

1
N − k

k∑
i=1

wi·d̄
2
i··

− 1
N − k

k∑
i=1

ni∑
r=1

(
1− wir

wi·

)
1

wir − 1

{
wir∑
t=1

d 2
irt − wird̄ 2

ir·

}

Since
∫
ydCi(y;x) is uniformly Lipschitz continuous (by Assumption 3), Lemma 5.5.1

tells us that for all ni large enough,

d̄ir· =
1
wir

wir∑
t=1

dirt =
1
wir

ni∑
j=1

dij · I(j ∈Wir)

= (niw)−
1
4

1
wir

ni∑
j=1

∫
ydCi(y;Xij) · I(j ∈Wir)

= (niw)−
1
4

[∫
ydCi(y;Xir) +O

(
w

ni
+ n−1+δ

i

)]
, uniformly a.s.

= (niw)−
1
4 cir +O

(
n
− 5

4
i w

3
4 + n

− 5
4

+δ

i w−
1
4

)
, u.a.s.

for all δ > 0.

As a consequence, we have firstly,

d̄ 2
ir· = (niw)−

1
2 c2
ir +O

[
(niw)−

1
4

(
n
− 5

4
i w

3
4 + n

− 5
4

+δ

i w−
1
4

)]
, u.a.s.

= (niw)−
1
2 c2
ir +O

(
n
− 3

2
i w

1
2 + n

− 3
2

+δ

i w−
1
2

)
, u.a.s.;
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secondly,

d̄i·· =
1
wi·

ni∑
r=1

wird̄ir·

=
(niw)−

1
4

wi·

ni∑
r=1

wircir +O

(
n
− 5

4
i w

3
4 + n

− 5
4

+δ

i w−
1
4

)
, u.a.s.

=⇒ d̄ 2
i·· = (niw)−

1
2

(
1
wi·

ni∑
r=1

wircir

)2

+O

(
n
− 3

2
i w

1
2 + n

− 3
2

+δ

i w−
1
2

)
, u.a.s.;

and thirdly,

wir∑
t=1

d 2
irt =

ni∑
j=1

d2
ij × I(j ∈Wir) = (niw)−

1
2

ni∑
j=1

c2
ij × I(j ∈Wir)

=⇒
ni∑
r=1

(
1− wir

wi·

)
1

wir − 1

[
wir∑
t=1

d2
irt − wird̄ 2

ir·

]

= O

(
1
w

) ni∑
r=1

(niw)−
1
2

ni∑
j=1

c2
ij × I(j ∈Wir)

−wir
{

(niw)−
1
2 c2
ir +O

(
n
− 3

2
i w

1
2 + n

− 3
2

+δ

i w−
1
2

)}]
, u.a.s.

= O

(
1
w

)(niw)−
1
2

ni∑
j=1

wijc
2
ij − (niw)−

1
2

ni∑
j=1

wijc
2
ij

+O
(
niw

(
n
− 3

2
i w

1
2 + n

− 3
2

+δ

i w−
1
2

))]
, u.a.s.

= O
(
n−.5i w.5 + n−.5+δ

i w−.5
)
, u.a.s

Therefore,

N1/2w−1/2d(X)′Ad(X)

=
N .5w−.5

N − k
∑
i

∑
r

wir

[
(niw)−

1
2 c2
ir +O

(
n
− 3

2
i w

1
2 + n

− 3
2

+δ

i w−
1
2

)]

−N
.5w−.5

N − k
∑
i

wi·

(niw)−
1
2

(
1
wi·

ni∑
r=1

wircir

)2

+O

(
n
− 3

2
i w

1
2 + n

− 3
2

+δ

i w−
1
2

)
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−N
.5w−.5

N − k
∑
i

O
(
n−.5i w.5 + n−.5+δ

i w−.5
)
, u.a.s.

=
N

N − k

k∑
i=1

√
ni
N

wi·
niw

( 1
wi·

∑
r

wirc
2
ir

)
−

(
1
wi·

∑
r

wircir

)2


+O
[
N−.5w−.5

(
n
− 3

2
i w

1
2 + n

− 3
2

+δ

i w−
1
2

)]
+O

[
N−.5w−.5

(
n−.5i w.5 + n−.5+δ

i w−.5
)]
, u.a.s.

= O
(
N−1w +N−1+δ

)
, u.a.s.

= o(1)

By WLLN,

1
wi·

ni∑
r=1

wircir =
1
wi·

ni∑
r=1

wir

∫
ydCi(y;Xir)

P−→
∫ ∫

ydCi(y;x)dGi(x)

1
wi·

ni∑
r=1

wirc
2
ir

P−→
∫ [∫

ydCi(y;x)
]2

dGi(x)

Therefore, (
N

w

)1/2

d(X)′Ad(X) P−→ θD, as min (ni)→∞.

We now prove (2). Since A = AD + A∗, it is equivalent to prove that

R1 = N1/2w−1/2d(X)′ADZ∗ = op(1), (5.5.3)

and R2 = N1/2w−1/2d(X)′A∗Z∗ = op(1). (5.5.4)

To prove (5.5.3), first note that

d(X)′ADZ∗ =
k∑
i=1

ni∑
r=1

d′irBirZ∗ir =
k∑
i=1

ni∑
r=1

γir

w∑
t1=1

dirt1
∑
t2 6=t1

Z∗irt2

=
k∑
i=1

ni∑
r=1

γir
∑
j1 6=j2

dij1Y
∗
ij2I(j1, j2 ∈Wir).
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Because

E (R1|X) =
(
N

w

)1/2 k∑
i=1

ni∑
r=1

γir
∑
j1 6=j2

dij1E(Y ∗ij2 |X)I(j1, j2 ∈Wir) = 0,

and

E
(
R2

1|X
)

=
N

w
E
[(
d(X)′ADZ∗

)2 |X]
=

N

w

∑
i1

∑
i2

∑
r1

∑
r2

γi1r1γi2r2
∑
j1 6=j2

∑
l1 6=l2

di1j1di2l1E(Y ∗i1j2Y
∗
i2l2 |X)

×I(j1, j2 ∈Wi1r1)× I(l1, l2 ∈Wi2r2)

=
k∑
i=1

ni∑
r1=1

ni∑
r2=1

O
(
N−2w−2

) ni∑
m=1

∑
j 6=m

∑
l 6=m

dijdilE(Y ∗2im |X)× I(j,m ∈Wir1)× I(l,m ∈Wir2)

(
∵ E(Y ∗i1j2Y

∗
i2l2 |X) = 0 unless i1 = i2 and j2 = l2 = m; γir = O(N−1w−1)

)
= O

(
N−1w−3

) k∑
i=1

4
ni−1∑
m=1

wim−1∑
s1=1

wim−1∑
s2=1

di,m+s1di,m+s2E(Y ∗2im |X)

×
ni∑
r1=1

I(m,m+ s1 ∈Wir1) · γir1 ×
ni∑
r2=1

I(m,m+ s2 ∈Wir2) · γir2 .

Since dij = O((niw)−1/4), uniformly a.s.; by Assumption 2, E(Y ∗2ij |X) = O(1), u.a.s.;

and ∀m = 1, · · · , ni − 1,

ni∑
r=1

I(m,m+ s ∈Wir) ≤ w − s = O(w), ∀s = 1, · · · , w − 1,

we have

E
(
R2

1|X
)

= O
(
N−1w−3

)
·O
(
ni · w2 · (niw)−1/2 · w2

)
= O(N−1/2w1/2), u.a.s.

Then, by DCT, E(R1) = E[E(R1|X)] = 0 and E(R2
1) = E[E(R2

1|X)] = o(1), which

completes the proof of R1 = op(1).
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Similarly, to prove (5.5.4), note that

d(X)′A∗Z∗ = −
k∑
i=1

βi

ni∑
r1 6=r2

wir1∑
t1=1

wir2∑
t2=1

dir1t1Z
∗
ir2t2

= −
k∑
i=1

βi
∑
r1 6=r2

ni∑
j1=1

ni∑
j2=1

dij1Y
∗
ij2 × I(j1 ∈Wir1)× I(j2 ∈Wir2).

Since E(R2|X) = 0 and

E(R2
2|X) =

N

w
E
[(
d(X)′A∗Z∗

)2 |X]
=

N

w

∑
i1

∑
i2

βi1βi2
∑
r1 6=r2

∑
r3 6=r4

∑
j1, j2

∑
l1, l2

di1j1di2l1E(Y ∗i1j2Y
∗
i2l2 |X)

×I(j1 ∈Wi1r1)× I(j2 ∈Wi1r2)× I(l1 ∈Wi2r3)× I(l2 ∈Wi2r4)

=
N

w

k∑
i=1

β2
i

∑
r1 6=r2

∑
r3 6=r4

ni∑
j=1

ni∑
l=1

ni∑
m=1

dijdilE(Y ∗2im |X)

×I(j ∈Wir1)× I(l ∈Wir3)× I(m ∈Wir2 ∩Wir4)

≤ N

w

k∑
i=1

β2
i

∑
j

dij

2

·

(∑
m

E(Y ∗2im |X)

)
×O(w4)

= Nw−1O((N−2w−1)2 · (n3/4
i w−1/4)2 · ni · w4) = O(N−1/2w1/2), u.a.s.∵ βi = O(N−2w−1);

∑
j

dij = O(ni · (niw)−1/4), u.a.s.; E(Y ∗2im |X) = O(1), u.a.s.


by DCT, E(R2) = E[E(R2|X)] = 0 and E(R2

2) = E[E(R2
2|X)] = o(1), so R2 = op(1),

which completes the proof.

Proof of Lemmas 5.2.2 and 5.2.6

Since A∗ = A−AD,

Z∗′A∗Z∗ = −
k∑
i=1

βi ·

 ni∑
r1=1

ni∑
r2 6=r1

wir1∑
t1=1

wir2∑
t2=1

Z∗ir1t1Z
∗
ir2t2


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= −
k∑
i=1

βi

 ni∑
r1=1

ni∑
r2 6=r1

ni∑
j1=1

ni∑
j2=1

Y ∗ij1Y
∗
ij2I(j1 ∈Wir1)I(j2 ∈Wir2)


Let Q1 = N1/2w−1/2Z∗′A∗Z∗. To show Q1 = op(1), first note that, conditionally on

X, Yij1 and Yij2 are independent if j1 6= j2, and hence E(Y ∗ij1Y
∗
ij2
|X) 6= 0 only if j1 = j2.

This tells us that

E(Q1|X) = −
(
N

w

) 1
2

k∑
i=1

βi

ni∑
j=1

E
(
Y ∗2ij |X

) ni∑
r1=1

ni∑
r2 6=r1

I(j ∈Wir1 ∩Wir2)

= N1/2w−1/2 ·O(N−2w−1) ·O(ni · w2), uniformly a.s.(
∵ βi = O(N−2w−1); E(Y ∗2ij |X) = O(1), u.a.s.,by A2;

)
∵

∑
r1 6=r2

I(j ∈Wir1 ∩Wir2) = wij(wij − 1) ≤ w2.


= O(N−1/2w1/2), u.a.s.

In addition,

E(Q2
1|X) = E

[
(N1/2w−1/2Z∗′A∗Z∗)2|X

]
= Nw−1

k∑
i=1

ni∑
r1 6=r2

ni∑
r3 6=r4

ni∑
j1, j2=1

ni∑
j3, j4=1

β2
i E
(
Y ∗ij1Y

∗
ij2Y

∗
ij3Y

∗
ij4 |X

)
×I(j1 ∈Wir1 , j2 ∈Wir2 , j3 ∈Wir3 , j4 ∈Wir4)

+ Nw−1
k∑

i1 6=i2

ni1∑
r1 6=r2

ni2∑
r3 6=r4

ni1∑
j1, j2=1

ni2∑
j3, j4=1

βi1βi2E
(
Y ∗i1j1Y

∗
i1j2 |X

)
E
(
Y ∗i2j3Y

∗
i2j4 |X

)
×I(j1 ∈Wi1r1 , j2 ∈Wi1r2 , j3 ∈Wi2r3 , j4 ∈Wi2r4),

and because (1) E(Y ∗ij1Y
∗
ij2
Y ∗ij3Y

∗
ij4
|X) 6= 0 only if j1 = j2 = j3 = j4 or (j1, j2, j3, j4) are

two pairs of equal indices; (2) E(Y ∗i1j1Y
∗
i1j2
|X) · E(Y ∗i2j3Y

∗
i2j4
|X) 6= 0 only if j1 = j2 and

j3 = j4; (3)
∑ni

r=1 I(j ∈Wir) = wij ≤ w, ∀i, j, we know

E(Q2
1|X) ≤ Nw−1

k∑
i=1

β2
i

 ni∑
l=1

E(Y ∗4il |X) +
4!

2! 2!

ni∑
l1<l2

E(Y ∗2il1 |X)E(Y ∗2il2 |X)

 · w4
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+ Nw−1
k∑

i1 6=i2

βi1βi2

 ni1∑
j1=j2

ni2∑
j3=j4

E(Y ∗2i1j1 |X)E(Y ∗2i2j3 |X)

 · w4

= Nw−1O(N−4w−2){[O(ni) +O(n2
i )] +O(n2

i )} · w4, u.a.s. (by A2)

= O(N−1w), u.a.s.

Then, by DCT, E(Q1) = E[E(Q1|X)] = o(1) and E(Q2
1) = E[E(Q2

1|X)] = o(1), which

completes the proof.

Proof of Lemmas 5.2.3 and 5.2.7

First note that

Z∗′ (AD −A∗D) Z∗ =
k∑
i=1

ni∑
r=1

(γir − κi)
ni∑
j1=1

ni∑
j2 6=j1

Y ∗ij1Y
∗
ij2I(j1, j2 ∈Wir), where

γir =
1

(N − k)(wir − 1)

(
1− wir

wi·

)
, and κi =

1
(N − k)(w − 1)

(
1− 1

ni

)
.

Let Q2 = N1/2w−1/2Z∗′ (AD −A∗D) Z∗. since E(Y ∗ij1Y
∗
ij2
× I(j1, j2 ∈ Wir)|X), ∀j1 6= j2,

it’s clear that E(Q2|X) = 0. In addition,

E
{
Q2

2 | X
}

=
N

w

k∑
i=1

ni∑
r1=1

ni∑
r2=1

(γir1 − κi) (γir2 − κi)
∑
j1 6=j2

∑
l1 6=l2

E
(
Y ∗ij1Y

∗
ij2Y

∗
il1Y

∗
il2 | X

)
×I(j1, j2 ∈Wir1)× I(l1, l2 ∈Wir2)

=
N

w

k∑
i=1

ni∑
r1=1

ni∑
r2=1

(γir1 − κi) (γir2 − κi)
∑
j1 6=j2

E
(
Y ∗2ij1Y

∗2
ij2 | X

)
× I(j1, j2 ∈Wir1 ∩Wir2)

=
N

w

k∑
i=1

ni∑
r1=1

ni∑
r2=1

(γir1 − κi) (γir2 − κi)
ni−1∑
j1=1

∑
j2>j1

O(1)× I(j1, j2 ∈Wir1 ∩Wir2), u.a.s.

(
∵ By A2, E

(
Y ∗2ij1Y

∗2
ij2 | X

)
= O(1), uniformly a.s.,∀j1 6= j2.

)
=

N

w

k∑
i=1

ni−1∑
j=1

wij−1∑
s=1

min (j+ w−1
2
, ni)∑

r1, r2=max (1, j+s−w−1
2

)

(γir1 − κi) (γir2 − κi)×O(1), u.a.s.
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Recall that wi· = niw− (w2− 1)/4. It can be easily verified that, if 1 + (w− 1)/2 ≤ r ≤

ni − (w − 1)/2 (∵ wir = w),

γir − κi =
1

(N − k)(w − 1)

(
1− w

wi·
− 1 +

1
ni

)

=
1

(N − k)(w − 1)
×
niw − w2−1

4 − niw
niwi·

= O

(
w2

NwNNw

)
= O(N−3);

otherwise,

γir − κi ≤
1

(N − k)(wir − 1)

(
1− wir

wi·
− 1 +

1
ni

)
=

wi· − niwir
(N − k)(wir − 1)niwi·

≤ ni(w − wir)
(N − k)(wir − 1)niwi·

= O

(
w

Nwniw

)
= O(N−2w−1).

Hence,

E
(
Q2

2 | X
)

=
N

w

k∑
i=1

ni−w∑
j=w

w−1∑
s=1

j+ w−1
2∑

r1, r2=j+s−w−1
2

[
O(N−3)

]2

+
N

w

k∑
i=1

w−1∑
j=1

+
ni−1∑

j=ni−w+1

wij−1∑
s=1

min (j+ w−1
2
, ni)∑

r1, r2=max (1, j+s−w−1
2

)

[
O(N−2w−1)

]2
, u.a.s.

= O(N−4w2) +O(N−3w) = O(N−3w), u.a.s.

By DCT, E(Q2) = E[E(Q2|X)] = 0 and E(Q2
2) = E[E(Q2

2|X)] = o(1), so Q2 = op(1).

Proof of Lemmas 5.2.4 and 5.2.8

First note that E(Y ∗ij | X) = 0 ⇒ E[Z∗′A∗DZ∗ | X] = 0, and

σ2
i (Xij) = V ar(Yij |Xij) = E{[Yij − E(Yij |Xij)]2|Xij} = E(Y ∗2ij |Xij)
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= V ar(Y ∗ij |Xij)

In addition,

E[(Z∗′A∗DZ∗)2|X]

=
k∑
i=1

κ2
i

ni∑
r1=1

ni∑
r2=1

ni∑
j1 6=2

ni∑
l1 6=l2

E(Y ∗ij1Y
∗
ij2Y

∗
il1Y

∗
il2 |X)I(j1, j2 ∈Wir1)I(l1, l2 ∈Wir2)

=
k∑
i=1

κ2
i · 4

ni∑
r1=1

ni∑
r2=1

∑
j1=l1<2=l2

E(Y ∗2ij1Y
∗2
ij2 |X)× I(j1, j2 ∈Wir1 ∩Wir2)

=
k∑
i=1

κ2
i · 4

ni∑
r1=1

ni∑
r2=1

∑
j1<j2

σ2
i (Xij1) · σ2

i (Xij2)× I(j1, j2 ∈Wir1 ∩Wir2).

From the proof of Lemma 5.5.1, we learn that for all ni large enough,

XU
ir −XL

ir = O

(
n−1+δ
i +

w

ni

)
, uniformly a.s..

Since, by Assumption, σ2
i (x) are uniformly Lipschitz continuous in x, we know that

∀j1, j2 ∈Wir, there exists a positive constant C such that, for ni large enough,

|σ2
i (Xij1)− σ2

i (Xij1)| ≤ C|Xij1 −Xij2 |

≤ C(XU
ir −XL

ir) = O

(
n−1+δ
i +

w

ni

)
, u.a.s., ∀δ > 0,

implying that

σ2
i (Xij2) = σ2

i (Xij1) +O

(
n−1+δ
i +

w

ni

)
, u.a.s.

So,

E[(Z∗′A∗DZ∗)2|X]

=
k∑
i=1

κ2
i · 4

ni∑
r1=1

ni∑
r2=1

∑
j1<j2

σ2
i (Xij1)

[
σ2
i (Xij1) +O

(
n−1+δ
i +

w

ni

)]
×I(j1, j2 ∈Wir1 ∩Wir2), u.a.s.
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= 4
k∑
i=1

κ2
i

ni−1∑
j=1

[
σ4
i (Xij) +O

(
n−1+δ
i +

w

ni

)]

×
wij−1∑
s=1

ni∑
r1=1

ni∑
r2=1

I(j, j + s ∈Wir1 ∩Wir2), u.a.s.

Note that, if 1 + w−1
2 ≤ j ≤ ni − w−1

2 ⇒ wij = w,

w−1∑
s=1

ni∑
r1=1

ni∑
r2=1

I(j, j + s ∈Wir1 ∩Wir2) =
w−1∑
s=1

j+ w−1
2∑

r1,r2=j+s−w−1
2

I(j, j + s ∈Wir1 ∩Wir2)

=
w−1∑
s=1

(w − s)2 =
w(w − 1)(2w − 1)

6
;

otherwise,
∑

s

∑
r1

∑
r2
I(j, j + s ∈Wir1 ∩Wir2) = O(w3).

This tells us that

E[(Z∗′A∗DZ∗)2|X]

= 4
k∑
i=1

κ2
i

ni−w−1
2∑

j=1+ w−1
2

[
σ4
i (Xij) +O

(
n−1+δ
i +

w

ni

)]
× w(w − 1)(2w − 1)

6

+
k∑
i=1

O
(
N−2w−2

)
·

w−1
2∑
j=1

+
ni−1∑

j=ni−w−1
2

+1

 ·O (w3
)
, u.a.s.

=
k∑
i=1

4
(N − k)2(w − 1)2

(
1− 1

ni

)2 w(w − 1)(2w − 1)
6

ni−w−1
2∑

j=1+ w−1
2

σ4
i (Xij)

+O

(
N−2w−2ni · w3 ·

(
n−1+δ
i +

w

ni

))
+O

(
N−2w2

)
, u.a.s.

=
w

N − k
· 2(2W − 1)

3(w − 1)

k∑
i=1

(
1− 1

ni

)2

· ni
N − k

 1
ni

ni−w−1
2∑

j=1+ w−1
2

σ4
i (Xij)


+O

(
N−2+δw +N−2w2

)
, u.a.s.
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By WLLN,

1
ni

ni−w−1
2∑

j=1+ w−1
2

σ4
i (Xij) = E[σ4

i (X)] + op(1).

Therefore,

E

[(
N1/2w−1/2Z∗′ADZ∗

)2
| X
]

=
2(2w − 1)
3(w − 1)

k∑
i=1

λiE[σ4
i (X)] + op(1)

+O
(
N−1+δ +N−1w

)
, u.a.s.

By DCT,

V ar(N1/2w−1/2Z∗′ADZ∗)

= V ar[E(N1/2w−1/2Z∗′ADZ∗|X)] + E[V ar(N1/2w−1/2Z∗′ADZ∗|X)]

= E{E[(N1/2w−1/2Z∗′ADZ∗)2|X]} =
2(2w − 1)
3(w − 1)

k∑
i=1

λiE[σ4
i (X)] + o(1),

which completes the proof.

Proof of Theorems 5.2.1 and 5.2.2

The following is in fact the proof of Theorem 5.2.2, but the proof of Theorem 5.2.1 should

be similar (and in act easier).

Following Lemmas 5.2.5–5.2.8, it remains to verify the asymptotic normality of

N1/2w−1/2Z∗′A∗DZ∗ under Ha(D). Write N1/2w−1/2Z∗′A∗DZ∗ as follows:

(
N

w

)1/2

Z∗′A∗DZ∗

=
(
N

w

)1/2 k∑
i=1

1
(N − k)(w − 1)

(
1− 1

ni

) ni∑
r=1

ni∑
j1

∑
j2 6=j1

Y ∗ij1Y
∗
ij2I(j1, j2 ∈Wir)

=

√
N

N − k

k∑
i=1

(
1− 1

ni

)√
ni

N − k

[
1
√
niw

ni∑
r=1

Ti,r

]
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where Ti,r =
1

w − 1

∑
j1 6=j2

Y ∗ij1Y
∗
ij2I(j1, j2 ∈Wir).

We now first prove the asymptotic normality of N1/2w−1/2Z∗′A∗DZ∗, conditionally

on X. Due to the independence among different groups, it’s sufficient to prove the

asymptotic normality of (niw)−1/2
∑ni

r=1 Ti,r, ∀i, conditionally on X.

Define tni = bn2/3
i c, sni = bni/(tni + w)c, lni = sni(tni + w), where banc denotes the

largest integer which is not greater than an. Further define, ∀r = 1, · · · , sni ,

Uir = Ti,(r−1)(tni+w)+1 + · · ·+ Ti,r(tni+w)−w,

Vir = Ti,r(tni+w)−w+1 + · · ·+ Ti,r(tni+w).

Note that there are tni terms in each Uir while only w terms in each Vir. Hence, for all

ni large enough, conditionally on X, {Uir; r = 1, · · · , sni} are independent; so do {Vir}.

Now, decompose (niw)−1/2
∑ni

r=1 Ti,r as three parts:

(niw)−1/2
ni∑
r=1

Ti,r ≡ Qi1 +Qi2 +Qi3,

where

Qi1 = (niw)−1/2

sni∑
r=1

Uir, Qi2 = (niw)−1/2

sni∑
r=1

Vir, Qi3 = (niw)−1/2
ni∑

r=lni+1

Ti,r.

Our plan here is to show that, conditionally on X, both of Qi2 and Qi3 are op(1), and Qi1

converges in distribution to normal as min (ni)→∞. Then, Slusky’s theorem completes

the proof.

First note that

E (Ti,r | X) =
1

w − 1

∑
j1 6=j2

E
(
Y ∗ij1Y

∗
ij2 | X

)
· I(j1, j2 ∈Wir) = 0, ∀i, ∀r

=⇒ E(Qi1|X) = E(Qi2|X) = E(Qi3|X) = 0.
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Next, consider Ui1 =
∑tni

r=1 Ti,r ⇒ E(Ui1|X) = 0 and

E(U2
i1|X) = O(w−2)

tni∑
r1=1

tni∑
r2=1

∑
j1 6=j2

∑
l1 6=l2

E
(
Y ∗ij1Y

∗
ij2Y

∗
il1Y

∗
il2 |X

)
×I(j1, j2 ∈Wir1)× I(l1, l2 ∈Wir2)

= O(w−2)
tni∑
r1=1

tni∑
r2=1

4
∑
j1<j2

E(Y ∗2ij1Y
∗2
ij2 |X)× I(j1, j2 ∈Wir1 ∩Wir2)

= O(w−2)
t∗ni∑
j=1

wij−1∑
s=1

E(Y ∗2ij Y
∗2
i,j+s|X)

tni∑
r1=1

tni∑
r2=1

I(j, j + s ∈Wir1 ∩Wir2)

where t∗ni
= tni + (w − 1)/2− 1

= O(w−2 · tniw · w2)×O(1), u.a.s(
∵ E(Y ∗ij |X) = O(1), u.a.s., by A2;

∑
r1

∑
r2

I(j, j + s ∈Wir1 ∩Wir2) = O(w2)

)
= O(tniw), u.a.s.

Similarly, one can show that ∀r = 1, · · · , sni ,

E(U2
ir|X) = O(tni · w) = O(n2/3

i · w), u.a.s.; (5.5.5)

E(V 2
ir|X) = O(w2), u.a.s.; (5.5.6)

E

 ni∑
r=lni+1

Ti,r

2

|X

 ≤ O((tni + w) · w) = O(n2/3
i · w), u.a.s. (5.5.7)

Given that E(Qi2|X) = E(Qi3|X) = 0, (5.5.6) and (5.5.7) tell us that

V ar(Qi2|X) = (niw)−1

sni∑
r=1

V ar(Vir|X) = (niw)−1

sni∑
r=1

E(V 2
ir|X)

= (niw)−1O
(
sni · w2

)
, u.a.s. = o(1), u.a.s.
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and

V ar(Qi3|X) = E(Q2
i3|X) = (niw)−1E

 ni∑
r=lni+1

Ti,r

2

|X


= (niw)−1 ×O ((tni + w) · w) , u.a.s. = o(1), u.a.s.

Therefore, it’s clear that, conditionally on X, both Qi2 and Qi3 are op(1), uniformly a.s.

Now, we verify the asymptotic normality of Qi1, conditionally on X. Since condi-

tionally on X, Ui1, · · · , Uini are independent, it is sufficient to check the Lyapounov’s

condition:

 Lδ=2
n =

∑sni
r=1E(U4

ir|X)[∑sni
r=1E(U2

ir|X)
]2 .

Note that

E(U4
i1|X)

= O(w−4)
∑
r1

∑
r2

∑
r3

∑
r4

∑
a1 6=a2

∑
b1 6=b2

∑
c1 6=c3

∑
d1 6=d2

E
(
Y ∗ia1

Y ∗ia2
Y ∗ib1Y

∗
ib2Y

∗
ic1Y

∗
ic2Y

∗
id1Y

∗
id2 |X

)
×I(a1, a2 ∈Wir1) · I(b1, b2 ∈Wir2) · I(c1, c2 ∈Wir3) · I(d1, d2 ∈Wir4).

Since the nonzero expected terms in the above equation must be one of the follow-

ing forms: E(Y ∗4ia Y
∗4
ib |X), E(Y 4∗

ia Y
2∗
ib Y

2∗
ic |X), E(Y 3∗

ia Y
3∗
ib Y

2∗
ic |X), or E(Y 2∗

ia Y
2∗
ib Y

2∗
ic Y

2∗
id |X),

where a 6= b 6= c 6= d, we have

E(U4
i1|X)

= O(w−4)
t∗ni∑
a=1

wia−1∑
s=1

E(Y ∗4ia Y
∗4
i,a+s|X)×O(w4)

+ O(w−4)
t∗ni∑
a=1

wia−1∑
s2=1

∑
s1<s2

E(Y ∗4ia Y
∗2
i,a+s1Y

∗2
i,a+s2 |X)×O(w4)

+ O(w−4)
t∗ni∑
a=1

wia−1∑
s1 6=s2

E(Y ∗2ia Y
∗4
i,a+s1Y

∗2
i,a+s2 |X)×O(w4)
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+ O(w−4)
t∗ni∑
a=1

wia−1∑
s1 6=s2

E(Y ∗3ia Y
∗3
i,a+s1Y

∗2
i,a+s2 |X)×O(w4)

+ O(w−4)
t∗ni∑
a=1

wia−1∑
s1 6=s2

E(Y ∗2ia Y
∗3
i,a+s1Y

∗3
i,a+s2 |X)×O(w4)

+ O(w−4)

 t∗ni∑
a=1

wia−1∑
s1=1

E(Y ∗2ia Y
∗2
i,a+s1 |X)

 t∗ni∑
b 6=a

wib−1∑
s2=1

E(Y ∗2ib Y
∗2
i,b+s2 |X)

×O(w4)

where t∗ni
= tni + (w − 1)/(2)− 1

= O(tni · w) +O(tni · w2) +O(tni · w2) +O(t2ni
· w2), u.a.s.

= O(t2ni
· w2), u.a.s.

Similarly,

E(U4
ir|X) = O(t2ni

· w2), u.a.s., ∀r = 1, · · · , sni .

Combining with (5.5.5), we then have

 Lδ=2
n =

∑sni
r=1E(U4

ir|X)[∑sni
r=1E(U2

ir|X)
]2 =

O(sni · t2ni
w2)

[O(sni · tni w)]2
, u.a.s.

= O(s−1
ni

) = o(1), u.a.s.

This completes the proof of the asymptotic conditional normality of N1/2w−1/2Z∗′A∗DZ∗.

In other words, conditionally on X,

N1/2w−1/2Z∗′A∗DZ∗

V ar
[
N1/2w−1/2Z∗′A∗DZ∗|X

] d−→ N(0, 1).

By the proof of Lemma 5.2.8, we know that, as min (ni)→∞,

V ar
(
N1/2w−1/2Z∗′A∗DZ∗|X

)
−→ η, a.s.

for some positive constant η =
2(2w − 1)
3(w − 1)

k∑
i=1

λiE[σ4
i (X)].
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By the Slutsky’s Theorem that, conditionally on X,

N1/2w−1/2Z∗′A∗DZ∗ d−→ N(0, η).

Since the limiting distribution is the same for all X, this weak convergence also holds

unconditionally (see Lemma 5.5.2), which completes the proof.

5.5.3 Some Auxiliary Results

Lemma 5.5.1. Under Assumption 3, for any Lipschitz continuous function hi(x) on Si

and ni large enough,

1
wir

ni∑
j=1

hi(Xij)I(j ∈Wir)− hi(Xil) = O

(
n−1+δ
i +

w

ni

)
, uniformly a.s.,

∀δ > 0, ∀l ∈Wir, 1 ≤ i ≤ k, 1 ≤ r ≤ ni.

Proof. Let XU
ir = max (Xij , j ∈Wir) and XL

ir = min (Xij ; j ∈Wir) for an arbitrary

window Wir. For any l ∈Wir,∣∣∣∣∣∣ 1
wir

ni∑
j=1

hi(Xij)I(j ∈Wir)− hi(Xil)

∣∣∣∣∣∣ ≤ 1
wir

ni∑
j=1

|hi(Xij)− hi(Xil)| · I(j ∈Wir)

≤ 1
wir

ni∑
j=1

Ki · |Xij −Xil| · I(j ∈Wir), for some constant Ki > 0

(∵ hi are Lipschitz continuous functions.)

≤ 1
wir

ni∑
j=1

Ki · |XU
ir −XL

ir| · I(j ∈Wir) = Ki · (XU
ir −XL

ir).

Recall that

Ĝi(XU
ir)− Ĝi(XL

ir) =
wir − 1
ni

.

By Smirnov’s LIL (Laws of the Iterated Logarithm), we have (log2 = log log)

limni→∞

√
ni

log2 ni
sup
x

∣∣∣Ĝi(x)−Gi(x)
∣∣∣ =

1√
2
, a.s.
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⇒ limni→∞

√
ni

log2 ni

∣∣∣[Ĝi(XU
ir)−Gi(XU

ir)]− [Ĝi(XL
ir)−Gi(XL

ir)]
∣∣∣ ≤ √2, a.s.

⇒ limni→∞

√
ni

log2 ni

∣∣∣∣Gi(XU
ir)−Gi(XL

ir)−
wir − 1
ni

∣∣∣∣ ≤ √2, a.s.

Since by MVT (the mean value theorem),

|Gi(XU
ir)−Gi(XL

ir)| = gi(X̃ir) · |XU
ir −XL

ir|, for some XU
ir ≤ X̃ir ≤ XL

ir,

we know that, for all ni large enough,

∣∣∣∣gi(X̃ir) · [XU
ir −XL

ir]−
wir − 1
ni

∣∣∣∣ ≤
√

2 log2ni
ni

, a.s.

⇒ |XU
ir −XL

ir| ≤
1

gi(X̃ir)

(√
2 log2ni
ni

+
wir − 1
ni

)
, a.s.

⇒ |XU
ir −XL

ir| ≤M

(√
2 log2ni
ni

+
w − 1
ni

)
, a.s., for some M > 0.

(∵ gi are bounded away from 0, byAssumptionA3.)

Let

ani, 1 = M

(√
2 log2ni
ni

+
w − 1
ni

)
= O

(
n−.5+δ1
i +

w

ni

)
, ∀δ1 > 0.

Then, by Theorem 2.11 of Stute (1982), for all ni large enough,

√
ni

∣∣∣∣Gi(XU
ir)−Gi(XL

ir)−
wir − 1
ni

∣∣∣∣ ≤√2 ani, 1 log a−1
ni, 1, a.s.

⇒
∣∣∣∣gi(X̃ir) · (XU

ir −XL
ir)−

wir − 1
ni

∣∣∣∣ ≤√2
ani, 1

ni
log a−1

ni, 1, a.s. (byMV T )

⇒
∣∣XU

ir −XL
ir

∣∣ ≤M (√
2
ani, 1

ni
log a−1

ni, 1 +
w − 1
ni

)
, a.s. (byA3).

Let

ani, 2 = M

(√
2
ani, 1

ni
log a−1

ni, 1 +
w − 1
ni

)
= O

(
n−.75+δ2
i +

w

ni

)
, ∀δ2 > 0.
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Then, by Theorem 2.11 of Stute (1982) again, for all ni large enough,

√
ni

∣∣∣∣Gi(XU
ir)−Gi(XL

ir)−
wir − 1
ni

∣∣∣∣ ≤√2 ani, 2 log a−1
ni, 2, a.s.

⇒
∣∣XU

ir −XL
ir

∣∣ ≤M (√
2
ani, 2

ni
log a−1

ni, 2 +
w − 1
ni

)
, a.s.,

where

M

(√
2
ani, 2

ni
log a−1

ni, 2 +
w − 1
ni

)
= O

(
n
− 7

8
+δ3

i +
w

ni

)
, ∀δ3 > 0.

Repeatedly using Stute (1982), we can then obtain that, for ni large enough,

XU
ir −XL

ir = O

(
n−1+δ
i +

w

ni

)
, uniformly a.s., (5.5.8)

which completes the proof.

Lemma 5.5.2. Suppose that, conditionally on Un = (U1, · · · , Un)′,

θ̂n
(
Vn = (V1, · · · , Vn)′

) d−→ Z, as n→∞, (5.5.9)

where the distribution of Z is continuous and does not depend on X. If Ui, i = 1, · · · , n,

are from a continuous random variable with bounded support S, then the above weak

convergence holds unconditionally.

Proof. Since the limiting distribution is continuous, (5.5.9) implies that

P
(
θ̂n ≤ t | Un = u

)
−→ FZ(t), for all u,

where FZ(t) = P (Z ≤ t), which follows that the convergence is uniformly in u, i.e.

sup
u
|P
(
θ̂n ≤ t | Un = u

)
− FZ(t)| −→ 0, as n→∞.

This implies that

∀ε > 0, P
[
|P
(
θ̂n ≤ t | Un

)
− FZ(t)| > ε

]
→ 0, as n→∞
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⇐⇒ P
(
θ̂n ≤ t | Un

)
P−→ FZ(t), as n→∞.

This convergence i probability tells use that, for every subsequence {k1, k2, · · · } ⊆

{1, · · · , n}, there exists a further subsequence {m1, m2, · · · ,mj} ⊆ {k1, k2, · · · } such

that

P
(
θ̂n ≤ t | Umj

)
a.s.−→ FZ(t), as j →∞.

Then, by the Lebesgue Dominated Convergence Theorem (DCT),

E
{
P
(
θ̂n ≤ t | Umj

)}
−→ FZ(t), as j →∞.

Since the above equation holds for every subsequence of {1, · · · , n}, we have

P
(
θ̂n ≤ t

)
= E

{
P
(
θ̂n ≤ t | Un

)}
−→ FZ(t), as n→∞,

which completes the proof.



Chapter 6
Asymptotics in Testing for the

Group effect in the Fully

Nonparametric ANCOVA

Recall the fully nonparametric ANCOVA model as defined in Section 1.2, which assumes

only that

Yij |Xij = x ∼ Fix(y) = M(y) +Ai(y) +Di(y;x), i = 1, · · · , k,

where (Xij , Yij) are paired observable variables while the decomposition of Fix is defined

in (1.2.7). Also recall that, for any given distribution functions Gi(x), i = 1, · · · , k, we

define

F̄Gi
i· (y) =

∫
Fix(y) dGi(x),

and it is assumed that
∫
Di(y;x) dGi(x) = 0, ∀i, ∀y. The null hypothesis of no covariate-

adjusted group effect in the fully nonparametric fashion is then specified as:

H0(A) : Ai(y) = 0 ⇔ F̄Gi
i· (y) = F 0(y), for all i and all y. (6.0.1)
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As introduced in the previous chapter, there are two possible approaches to utilize the

similarity between the nested model and the analysis of covariate: non-overlapping

windows approach and overlapping windows approach. For testing (6.0.1), the non-

overlapping windows approach can apply directly the asymptotic results from Chapter 4,

while the present chapter is constructed to tackle the challenges coming with the aug-

mented dependence in the design of the overlapping windows approach, and to provide

an appropriate test procedure accordingly. We first introduce the test statistic in the

next section, and then provide its asymptotic distributions, both under the null and local

alternatives, in Section 6.2. All proofs can be found in Section 6.3.

6.1 The Test Statistic

For a k-group ANCOVA model with overlapping windows of a fixed size w (assuming to

be odd for simplicity), consider the notations in the hypothetical two-fold nested design

as introduced in Section 5.1: letting (Xij , Yij), i = 1, · · · , k; j = 1, · · · , ni, be the

enumerated pairs with Xi1 < Xi2 < · · · < Xini for each i,

Zirt = Yij iff
ni∑
l=1

I(Xil ≤ xij ; l ∈Wir) = t,

i = 1, · · · , k; r = 1, · · · , ni; t = 1, · · · , wir,

where wir are as shown in (5.1.2) and

Wir =
{

1 ≤ j ≤ ni : |Ĝi(Xij)− Ĝi(Xir)| ≤
w − 1
2ni

}
, Ĝi(x) =

1
ni

ni∑
j=1

I(Xij ≤ x).

Note that Wir are in fact functions of Xij ’s. Also recall that wi· =
∑

r wir = niw− (w2−

1)/4 and w·· =
∑

iwi· = Nw − k(w2 − 1)/4.

Define

Z̄ir· =
1
wir

wir∑
t=1

Zirt and Z̄i·· =
1
wi·

ni∑
r=1

wirZ̄ir·.

For testing the null hypothesis of no covariate-adjusted group effect (6.0.1), we consider a
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test statistic based on the random vector U = (U1, · · · , Uk)′ where Ui ≡ Z̄i··, i = 1, · · · , k.

More specifically, since the aforementioned hypothesis (6.0.1) is equivalent to

H0(H) : H F = 0k−1, where F = (F̄G1
1· , · · · , F̄

Gk
k· )′,

and the contrast matrix H is defined as

H =


1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1


(k−1)×k

=
(
1
′
k−1 | −Ik−1

)
, (6.1.1)

the test statistic we consider in this chapter for testing (6.0.1) is of the form

N (H U)′
(
H Σ̂ H′

)−1
(H U)

where H is the contrast matrix defined above, and Σ̂ is a suitable estimator of the

asymptotic covariance matrix of
√
NU. As shown in the next section, under the null

hypothesis H0(A), this test statistic converges in distribution to a χ2 distribution with

degree of freedom (k− 1), as min (ni)→∞. Its asymptotic distributions under suitable

local alternatives are also included in the next section.

6.2 The Main Results

6.2.1 Assumptions and Lemmas

Here are two notations which are frequently used in this chapter:

µi(x) ≡ E(Yij | Xij = x); σ2
i (x) ≡ V ar(Yij | Xij = x),

and all assumptions required for Lemmas and Theorems presented in this section are as

follows:

Assumption S1. ∀i, ∃λi ∈ (0, 1), such that ni/N → λi, as n = min (ni)→∞;
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Assumption S2. The covariate X is a continuous random variable with bounded support Si, c.d.f Gi,

and p.d.f gi, i = 1, · · · , k. The density gi is bounded away from 0 on Si uniformly

in i;

Assumption S3. E(Y 4
ij | Xij = x) are uniformly bounded in i and x;

Assumption S4. σ2
i (x) are bounded away from 0 and ∞ uniformly in i and x.

Assumption S5. µi(x) and σ2
i (x) are uniformly Lipschitz continuous in x.

The following four lemmas which are basic vehicles for deriving the asymptotic dis-

tributions of the test statistic under the null and the local alternatives.

Lemma 6.2.1. Under Assumptions S1–S4, for all i = 1, · · · , k, we have that,

conditionally on X,

√
N (Ui − E(Ui | X)) d−→ N

(
0, a2

i

)
, as min (ni)→∞,

where Ui = Z̄i·· and

a2
i =

1
λi

∫
σ2
i (x) dGi(x).

Lemma 6.2.2. Under Assumptions S1, S3–S4, for all i = 1, · · · , k,

√
N

(
E(Ui | X)−

∫ ∫
y dFix(y) dĜi(x)

)
−→ 0, a.s., as min (ni)→∞.

Lemma 6.2.3. Under Assumptions S1–S2, for all i = 1, · · · , k,

√
N

∫ ∫
y dFix(y) d

(
Ĝi(x)−Gi(x)

)
d−→ N

(
0, b2i

)
, as min (ni)→∞,

where

b2i =
1
λi

{∫ [∫
y dFix(y)

]2

dGi(x)−
[∫ ∫

y dFix(y) dGi(x)
]2
}
.
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Lemma 6.2.4. Under Assumptions S1–S5,

â2
i =

1

λ̂i
· 1
ni

ni∑
j=1

σ̂2
i (Xij) , where

σ̂2
i (Xij) =

1
wij − 1

ni∑
l=1

Y 2
il × I(l ∈Wij)−

wij
wij − 1

[
1
wij

ni∑
l=1

Yil × I(l ∈Wij)

]2

;

b̂2i =
1

λ̂i

 1
ni

ni∑
j=1

(
C
wij

2

)−1 ∑
l1 6=l2

Yil1 Yil2
2

× I(li, l2 ∈Wij)−

 1
ni

ni∑
j=1

µ̂i (Xij)

2 ,

where µ̂i (Xij) =
1
wij

ni∑
l=1

Yil × I(l ∈Wij);

are strongly consistent estimators of a2
i and b2i , as defined in Lemma 6.2.1 and in

Lemma 6.2.3, respectively.

6.2.2 Asymptotic Distribution under the Null

Let

U = (U1, · · · , Uk)′ = (Z̄1··, · · · , Z̄k··)′, (6.2.1)

Σ = diag
(
a2

1 + b21, · · · , · · · , a2
k + b2k

)
, (6.2.2)

where a2
i and b2i , i = 1, · · · , k, are as defined in Lemma 6.2.1 and in Lemma 6.2.3.

The following Lemma gives the asymptotic result under the null hypothesis of no

covariate-adjusted group effect when the covariance elements a2
i and b2i , i = 1, · · · , k,

are known, while Theorem 6.2.1 that follows states the asymptotic distribution of the

proposed test statistic under H0(A).

Lemma 6.2.5. Under H0(A) as defined in (6.0.1) and Assumptions S1–S4,

N (H U)′
(
H Σ H′

)−1 (H U) d−→ χ2
k−1, as min (ni)→∞,

where H is the contrast matrix as defined in (6.1.1) while U and Σ are as defined in

(6.2.1) and (6.2.2).
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Theorem 6.2.1. Under H0(A) as defined in (6.0.1) and Assumptions S1–S5,

N (H U)′
(
H Σ̂ H′

)−1
(H U) d−→ χ2

k−1, as min (ni)→∞,

where H is the (k − 1) × k contrast matrix as defined in (6.1.1), U is as defined in

(6.2.1), and Σ̂ = diag
(
â2

1 + b̂21, · · · , · · · , â2
k + b̂2k

)
, where the â2

i and b̂2i , i = 1, · · · , k,

are as defined in Lemma 6.2.4.

6.2.3 Asymptotic Distribution under Local Alternatives

The asymptotic power property is investigated by considering the local alternative se-

quence:

Ha(A) : Ai(y) = (ni)−1/2Bi(y), (6.2.3)

where Bi(y), i = 1, · · · , k, are so chosen that
∫
ydBi(y) are uniformly bounded for all i.

Note that (6.2.3) implies that the alternatives need to approach the null at the rate of

(infi ni)−1/2 to ensure nontrivial power. Define

ζ =

(
k∑
i=1

λi
∫
y dBi(y)
a2
i + b2i

)
− 1∑k

i=1 1/
(
a2
i + b2i

) ( k∑
i=1

√
λi
∫
y dBi(y)

a2
i + b2i

)2

. (6.2.4)

Then, Theorem 6.2.2 below provides the asymptotic distribution of the proposed test

statistic under the local alternatives Ha(A).

Theorem 6.2.2. Under Ha(A) as defined in (6.2.3) and Assumptions S1–S5,

N (H U)′
(
H Σ̂ H′

)−1
(H U) d−→ χ2

k−1 (ζ) , as min (ni)→∞,

where H, U, and Σ̂ are as defined in Theorem 6.2.1, while ζ is as defined in (6.2.4).
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6.3 Technical Details

Recall that Xij are ordered covariate variable. Letting X
(o)
ij be the original covariate

variable, i.e. the one without ordering, there is one fact which is repeated used in our

proofs: For any well-defined function f(x), it should be clear that
∑ni

j=1 f(Xij) has

the same distribution as
∑ni

j=1 f(X(o)
ij ), since the only difference between the original

{X(o)
ij , j = 1, · · · , ni} and the ordered {Xij , j = 1, · · · , ni} are the permutations. Note

that we take advantage of the X
(o)
ij ’s independent and identically distributed feature

(within the group i) to significantly simplify the proofs in this section. Similarly, let

(X(o)
ij , Y

(o)
ij ), j = 1, · · · , ni, denote the original un-ordered paired data, which are i.i.d.

Let

µG =
(∫ ∫

y dF1x(y) dG1(x), · · · ,
∫ ∫

y dFkx(y) dGk(x)
)′
. (6.3.1)

6.3.1 Proofs of Lemmas and Theorems

Proof of Lemma 6.2.1

First note that

Ui = Z̄i·· =
1
wi·

ni∑
r=1

wirZ̄ir· =
1
wi·

ni∑
r=1

wir∑
t=1

Zirt =
1
wi·

ni∑
r=1

ni∑
j=1

Yij × I(j ∈Wir),

which, conditionally on X,

Ui =
1
wi·

ni∑
j=1

wij · Yij .

So,

E (Ui | X) =
1
wi·

ni∑
j=1

wij µi (Xij) , V ar (Ui | X) =
1
w2
i·

ni∑
j=1

w2
ij σ

2
i (Xij) .

Also note that under Assumptions S3 and S4, both of µi(Xij) and σ2
i (Xij) are O(1),

uniformly almost surely.

For the limiting distribution of
∑

j wij [Yij − E(Yij | Xij)], check the Lyapounov con-
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dition : conditionally on X,

 Lδ=2
ni

=

∑ni
j=1E

{
|wij [Yij − E (Yij | Xij)]|4 | X

}
(√∑ni

j=1w
2
ij V ar (Yij | Xij)

)4

=
n−1
i(

1
ni

∑ni
j=1w

2
ijσ

2
i (Xij)

)2 ·
1
ni

ni∑
j=1

w4
ij E

(
Y ∗ij | Xij

)
,

where Y ∗ij = Yij − E (Yij | Xij) ,

= o(1), u.a.s., as min (ni)→∞.

Since the Lyapounov condition holds, we have that, conditionally on X,∑ni
j=1wij · Y ∗ij√∑ni

j=1w
2
ij · σ2

i (Xij)
=
√
N [Ui − E (Ui | X)]√
V ar

(√
N Ui | X

) d−→ N(0, 1), as min (ni)→∞.

Because by Lemma 6.3.1,

V ar
(√

NUi | X
)
−→ a2

i , a.s., as min (ni)→∞,

for some positive constant a2
i are as defined in Lemma 6.2.1, we know by the Slutsky’s

Theorem that, conditionally on X,

√
N (Ui − E(Ui | X)) d−→ N

(
0, a2

i

)
, as min (ni)→∞,

which completes the proof.

Proof of Lemma 6.2.2

First note that

E(Ui | X)−
∫ ∫

y dFix(y) dĜi(x) =
1
wi·

ni∑
j=1

wijE (Yij | Xij)−
1
ni

ni∑
j=1

E (Yij | Xij) .
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Since

wij
wi·
− 1
ni

=
ni · wij − wi·
ni · wi·

=
ni w −

(
ni w − w2−1

4

)
ni wi·

=

(
w2 − 1

)
/4

ni

(
ni w − w2−1

4

) ,
if w−1

2 + 1 ≤ j ≤ ni− w−1
2 ; otherwise, it’s O(n−1

i ). In addition, note that E (Yij | Xij) =

O(1), u.a.s. by Assumptions S3 and S4. Therefore,

E(Ui | X)−
∫ ∫

y dFix(y) dĜi(x)

=

w−1
2∑
j=1

O
(
n−1
i

)
+

ni−w−1
2∑

j= w−1
2

+1

O
(
n−2
i

)
+

ni∑
j=ni−w−1

2
+1

O
(
n−1
i

)×O(1), u.a.s.

= O(N−1), u.a.s.,

which completes the proof.

Proof of Lemma 6.2.3

First note that

∫ ∫
y dFix(y) dĜi(x) =

∫
E [Yij | Xij = x] dĜi(x) =

1
ni

ni∑
j=1

µi (Xij) ;

∫ ∫
y dFix(y) dGi(x) =

∫
E [Yij | Xij = x] dGi(x) = E [µi (Xij)] .

Let (X(o)
ij , Y

(o)
ij ), j = 1, · · · , ni, denote the original un-ordered paired data, and let

µi

(
X

(o)
ij

)
= E

(
Y

(o)
ij | X

(o)
ij

)
and σ2

i

(
X

(o)
ij

)
= V ar

(
Y

(o)
ij | X

(o)
ij

)
. Note that

1
ni

ni∑
j=1

µi

(
X

(o)
ij

)
d=

1
ni

ni∑
j=1

µi (Xij) =
∫ ∫

y dFix(y) dĜi(x).

In addition, by Lemma 13.1 of van der Vaart (2000),

E

 1
ni

ni∑
j=1

µi

(
X

(o)
ij

) = E

E
 1
ni

ni∑
j=1

µi

(
X

(o)
ij

)
| Rni

 ,
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where Rni are the vector of ranks of X(o)
ij , j = 1, · · · , ni;

= E

E
 1
ni

ni∑
j=1

µi (Xij)

 = E

 1
ni

ni∑
j=1

µi (Xij)

 .
Similarly,

V ar

 1
ni

ni∑
j=1

µi

(
X

(o)
ij

) = V ar

 1
ni

ni∑
j=1

µi (Xij)

 .
Since X(o)

ij are i.i.d., by CLT,

√
N
{

1
ni

∑ni
j=1

[
µi

(
X

(o)
ij

)
− E

(
µi

(
X

(o)
ij

))]}
V ar

(√
N
ni

∑ni
j=1 µi

(
X

(o)
ij

)) d−→ N(0, 1), as min (ni)→∞,

while

E

 1
ni

ni∑
j=1

µi

(
X

(o)
ij

) = E

 1
ni

ni∑
j=1

µi (Xij)

 =
∫ ∫

y dFix(y) dGi(x), and

V ar

√N
ni

ni∑
j=1

µi

(
X

(o)
ij

) =
N

ni
V ar

[
E
(
Y

(o)
ij | X

(o)
ij

)]
=
N

ni
λi · b2i ,

where b2i is as defined in Lemma 6.2.3. This completes the proof.

Proof of Lemma 6.2.4

Firstly,

µ̂i (Xij) =
1
wij

ni∑
l=1

Yil × I(l ∈Wij)

=⇒ 1
ni

ni∑
j=1

[µ̂i (Xij)− µi (Xij)] =
1
ni

ni∑
j=1

1
wij

ni∑
l=1

[Yil − µi (Xij)]× I(l ∈Wij)

=
1
ni

ni∑
j=1

1
wij

ni∑
l=1

[Yil − µi (Xil)]× I(l ∈Wij)
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+
1
ni

ni∑
j=1

1
wij

ni∑
l=1

[µi (Xil)− µi (Xij)]× I(l ∈Wij)

≡ M1i +M2i.

Note that

M1i =
1
ni

ni∑
l=1

[Yil − µi (Xil)]
ni∑
j=1

1
wij

I(l ∈Wij).

It can be shown that for any l,

w−1
2 + 1
w

<

ni∑
j=1

1
wij

I(l ∈Wij) =
min (ni,l+

w−1
2

)∑
j=max (1,l−w−1

2
)

1
wij

<
w

w−1
2 + 1

, (6.3.2)

and

E [Yil − µi (Xil)] = E [Yil − E (Yil | Xil)] = 0,

V ar [Yil − µi (Xil)] = E [V ar (Yil − µi (Xil) | Xil)] + V ar [E (Yil − µi (Xil) | Xil)] ,

where E (Yil − µi (Xil) | Xil) = 0

= E
[
σ2
i (Xil)

]
= O(1), uniformly.

Since
∑ni

l=1 [Yil − µi (Xil)]
d=
∑ni

l=1

[
Y

(o)
il − µi

(
X

(o)
il

)]
and the original (X(o)

ij , Y
(o)
ij ) are

i.i.d., by SLLN,

M1i −→ 0, a.s., as ni →∞.

On the other hand, under Assumption S5, we know by Lemma 5.5.1 that, for ni large

enough, ∀δ > 0,

1
wij

ni∑
l=1

µi(Xil)I(l ∈Wij)− µi(Xij) = O

(
n−1+δ
i +

w

ni

)
, uniformly a.s., ∀j,
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so

M2i =
1
ni

ni∑
j=1

O

(
n−1+δ
i +

w

ni

)
−→ 0, a.s., as ni →∞,

which completes the proof of

1
ni

ni∑
j=1

[µ̂i (Xij)− µi (Xij)] −→ 0, a.s., as ni →∞.

Moreover, under Assumptions S2–S4, by SLLN,

1
ni

ni∑
j=1

µi (Xij)− E [µi (Xij)] −→ 0, a.s., as ni →∞.

Therefore,

1
ni

ni∑
j=1

µ̂i (Xij) = E [µi (Xij)] + o(1), a.s. (6.3.3)

Secondly,

σ̂2
i (Xij) =

1
wij − 1

ni∑
l=1

Y 2
il × I(l ∈Wij)−

wij
wij − 1

[µ̂i (Xij)]
2 , where

[µ̂i (Xij)]
2 =

[
1
wij

ni∑
l=1

Yil × I(l ∈Wij)

]2

=
1
wij

{
1
wij

ni∑
l=1

Y 2
il × I(l ∈Wij)

}
+

1
w2
ij

∑
l1 6=l2

Yil1 Yil2 × I(l1, l2 ∈Wij)

=⇒ σ̂2
i (Xij) =

(
wij

wij − 1
− wij
wij − 1

× 1
wij

)
1
wij

ni∑
l=1

Y 2
il × I(l ∈Wij)

− wij
wij − 1

× 1
w2
ij

∑
l1 6=l2

Yil1 Yil2 × I(l1, l2 ∈Wij)

=
1
wij

ni∑
l=1

Y 2
il × I(l ∈Wij)−

1
wij(wij − 1)

∑
l1 6=l2

Yil1 Yil2 × I(l1, l2 ∈Wij)
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To prove that

1
ni

ni∑
j=1

[σ̂i (Xij)− σi (Xij)] −→ 0, a.s., as ni →∞, (6.3.4)

it suffices to show that

Q1i ≡
1
ni

ni∑
j=1

[
1
wij

ni∑
l=1

Y 2
il × I(l ∈Wij)− E

(
Y 2
ij | Xij

)]
= o(1), a.s.

and

Q2i ≡
1
ni

ni∑
j=1

 1
wij(wij − 1)

∑
l1 6=l2

Yil1 Yil2 × I(l1, l2 ∈Wij)− (E (Yij | Xij))
2

 = o(1), a.s.

Further write Q1i as

Q1i =
1
ni

ni∑
j=1

1
wij

ni∑
l=1

[
Y 2
il − E

(
Y 2
il | Xil

)]
× I(l ∈Wij)

+
1
ni

ni∑
j=1

1
wij

ni∑
l=1

[
E
(
Y 2
il | Xil

)
− E

(
Y 2
ij | Xij

)]
× I(l ∈Wij)

≡ T1i + T2i.

T1i = o(1), a.s., because by (6.3.2),

ni∑
j=1

1
wij

I(l ∈Wij) = O(1), uniformly in l, (6.3.5)

and by SLLN,

1
ni

ni∑
l=1

[
Y 2
il − E

(
Y 2
il | Xil

)]
−→ 0, as ni →∞.

In addition, by Lemma 5.5.1 and under Assumption S5, for ni large enough,

1
wij

ni∑
l=1

E
(
Y 2
il | Xil

)
× I(l ∈Wij)− E

(
Y 2
ij | Xij

)
= O

(
n−1+δ
i +

w

ni

)
, uniformly a.s.,
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∀δ > 0. Hence,

T2i =
1
ni

ni∑
j=1

O

(
n−1+δ
i +

w

ni

)
−→ 0, a.s., as ni →∞,

which completes the proof of Q1i = o(1), a.s.

Similarly, one can further decompose Q2i as

Q2i =
1
ni

ni∑
j=1

1
wij(wij − 1)

∑
l1 6=l2

[Yil1 Yil2 − E (Yil1Yil2 | Xil1 , Xil2)]× I(l1, l2 ∈Wij)

+
1
ni

ni∑
j=1

1
wij(wij − 1)

∑
l1 6=l2

[
E (Yil1Yil2 | Xil1 , Xil2)− (E (Yij | Xij))

2
]
I(l1, l2 ∈Wij)

≡ T3i + T4i.

We prove T3i = o(1), a.s. in Lemma 6.3.2. For T4i, note that under Assumption S5,

Equation (5.5.8) tells us that, for ni large enough, there exists some constant K > 0

such that, ∀l ∈Wij and ∀δ > 0,

|E (Yil | Xil)− E (Yij | Xij) | ≤ K · |Xil −Xij |

≤ K ·
(
XU
ij −XL

ij

)
= O

(
n−1+δ
i +

w

ni

)
, u.a.s.

where XU
ij = max (Xil, l ∈Wij) and XL

ij = min (Xil, l ∈Wij). Hence, ∀l1, l2 ∈Wij ,

E (Yil1 | Xil2)E (Yil2 | Xil2) =
[
E (Yij | Xij) +O

(
n−1+δ
i +

w

ni

)]2

= [E (Yij | Xij)]
2 + o(1), u.a.s.

which leads to

T4i =
1
ni

ni∑
j=1

o(1)× 1
wij(wij − 1)

∑
l1 6=l2

I(l1, l2 ∈Wij) =
1
ni

ni∑
j=1

o(1)

−→ 0, a.s., as ni →∞.

This also completes the proof of (6.3.4).
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Furthermore, under Assumptions S2–S4, by SLLN,

1
ni

ni∑
j=1

σ2
i (Xij)− E

[
σ2
i (Xij)

] a.s.−→ 0, as ni →∞.

Therefore,

λ̂i â
2
i =

∫
σ2
i (x) dGi(x) + o(1) = λi a

2
i + o(1), a.s.

which completes the proof of the asymptotic consistency of â2
i to a2

i .

To prove the asymptotic consistency of b̂2i to b2i , first note that by (6.3.3) and CMT,

 1
ni

ni∑
j=1

µ̂i (Xij)

2

−→
[∫ ∫

y dFix(y) dGi(x)
]2

, as min (ni)→∞.

In addition, using the proved fact that Q2i = o(1), a.s. and SLLN, one can easily get

that, under Assumptions S2–S5, as min (ni)→∞,

1
ni

ni∑
j=1

ni∑
j=1

(
C
wij

2

)−1 ∑
l1 6=l2

Yil1Yil2
2

× I(l1, l2 ∈Wij) −→
∫ [∫

y dFix(y)
]2

dGi(x),

which completes the proof.

Proof of Lemma 6.2.5

First by Lemma 6.2.2,

√
N

(
Ui −

∫ ∫
y dFix(y) dGi(x)

)
=
√
N [Ui − E (Ui | X)] +

√
N

∫ ∫
y dFix(y) d

[
Ĝi(x)−Gi(x)

]
+O(N−1/2), u.a.s.

Since conditionally on X, [Ui − E (Ui | X)] and
∫ ∫

y dFix(y) d
[
Ĝi(x)−Gi(x)

]
are in-

dependent, by Lemmas 6.2.1 and 6.2.3, we know: conditionally on X,

√
N

(
Ui −

∫ ∫
y dFix(y) dGi(x)

)
d−→ N(0, a2

i + b2i ), as min (ni)→∞.
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Since the limiting distribution is the same for all X, this weak convergence also holds

unconditionally (by Lemma 5.5.2). Hence,

√
N (U− µG) d−→ Nk(0,Σ), as min (ni)→∞,

where U, µG, and Σ are as defined in (6.2.1), (6.3.1), and (6.2.2), respectively.

Recall that

Fix(y) = M(y) +Ai(y) +Di(y;x), where
∫
Di(y;x) dGi(x) = 0, ∀i,∀y.

As a consequence,

∫ ∫
y dFix(y) dGi(x) =

∫
y d

[∫
Fix(y) dGi(x)

]
=

∫
y d

[∫
(M(y) +Ai(y) +Di(y;x)) dGi(x)

]
=

∫
y dM(y) +

∫
y dAi(y).

Under H0(A) as defined in (6.0.1),

∫ ∫
y dFix(y) dGi(x)

H0(A)
=

∫
y dM(y) =⇒ HµG

H0(A)
= H

(∫
y dM(y)

)
1k = 0k−1.

Hence,

√
N HU d−→ Nk−1

(
0, HΣH′

)
, under H0(A); (6.3.6)

=⇒ N (HU)′
(
HΣH′

)−1 (HU) d−→ χ2
k−1, under H0(A),

which completes the proof.

Proof of Theorem 6.2.1

First note that Σ̂ −Σ P−→ 0, as min (ni) → ∞, since they are k × k diagonal matrices

with diagonal elements â2
i + b̂2i and a2

i + b2i respectively, while â2
i + b̂2i are consistent
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estimators of a2
i + b2i by Lemma 6.2.4. In addition, note that for any k × k squared

matrix C, the elements of HCH′ are continuous functions of the elements of C, by the

Continuous Mapping Theorem (CMT), we get

HΣ̂H′ −HΣH′ P−→ 0, as min (ni)→∞.

By applying the CMT again along with the fact that the elements of any inverse matrix

with finite dimensions are continuous functions of the elements of the original matrix,

we further get

(
HΣ̂H′

)−1
−
(
HΣH′

)−1 P−→ 0, as min (ni)→∞.

Then, by the Slutsky’s Theorem and (6.3.6), we have that, under H0(A),

(√
NHU

)′ [(
HΣ̂H′

)−1
−
(
HΣH′

)−1
](√

NHU
)

P−→ 0, as min (ni)→∞,

which completes the proof.

Proof of Theorem 6.2.2

First recall that

µG =
(∫ ∫

y dF1x(y) dG1(x), · · · ,
∫ ∫

y dFkx(y) dGk(x)
)′

=
(∫

y dM(y) +
∫
y dA1(y), · · · ,

∫
y dM(y) +

∫
y dAk(y)

)′
.

Define

µA ≡
(∫

y dA1(y), · · · ,
∫
y dAk(y)

)′
≡ (µA1 , · · · , µAk

)′ ,

where µAi =
∫
y dAi(y), i = 1, · · · , k. It is clear that HµG = HµA, where H is the

contrast matrix as defined in (6.1.1). In addition, under the local alternatives Ha(A) as

defined in (6.2.3), µAi = (ni)−1/2
∫
y dBi(y) ≡ (ni)−1/2µBi , i = 1, · · · , k.
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The non-centrality of the asymptotic χ2 distribution is then decided by

N (HµG)′
(
HΣH′

)−1 (HµG) = N (HµA)′
(
HΣH′

)−1 (HµA)

= N

(
k∑
i=1

µ2
Ai

c2
i

)
− N(∑k

i=1 1/c2
i

) ( k∑
i=1

µAi

c2
i

)2

, where c2
i = a2

i + b2i , (6.3.7)

=

(
k∑
i=1

N
ni
µ2
Bi

c2
i

)
− 1(∑k

i=1 1/c2
i

)
 k∑
i=1

(
N
ni

)1/2
µBi

c2
i


2

−→ ζ, as min (ni)→∞,

where ζ is as defined in (6.2.4). For the calculation of (6.3.7), see Section 4.3.

Finally, we complete the proof using the fact that â2
i + b̂2i are consistent estimators

of a2
i + b2i ( see Lemma 6.2.4) and the arguments stated in the proof of Theorem 6.2.1.

6.3.2 Some Auxiliary Results

Lemma 6.3.1. Under Assumptions S1, S2 and S4,

V ar
(√

NUi | X
)
−→ a2

i , a.s., as min (ni)→∞,

where a2
i are as defined in Lemma 6.2.1.

Proof. Let ∆i = V ar
(√

NUi | X
)

and write ∆i as

∆i =
N

w2
i·

ni∑
j=1

V ar

[
Yij

ni∑
r=1

I(j ∈Wir) | X

]

=
N

ni

1
ni

w−1
2∑
j=1

+
ni−w−1

2∑
j= w−1

2
+1

+
ni∑

j=ni−w−1
2

+1

 w2
ij

(wi·/ni)2
σ2
i (Xij)

=
N

ni

 w2(
w − w2−1

4ni

)2 ·
1
ni

ni∑
j=1

σ2
i (Xij) +

1
ni

w−1
2∑
j=1

(
w−1

2 + j
)2 − w2(

w − w2−1
4ni

)2 σ2
i (Xij)

+
1
ni

ni∑
j=ni−w−1

2
+1

(
ni + w−1

2 + 1− j
)2 − w2(

w − w2−1
4ni

)2 σ2
i (Xij)


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≡ N

ni
{Λ1 + Λ2 + Λ3} .

Note that

1
ni

ni∑
j=1

σ2
i (Xij) =

1
ni

ni∑
j=1

σ2
i

(
X

(o)
ij

)
, for all X.

Since the original covariate X(o)
ij are i.i.d. and σ2

i (x) are uniformly bounded in x (by As-

sumptions S2 and S4), σ2
i

(
X

(o)
ij

)
, j = 1, · · · , ni, are i.i.d. with finite means. Therefore,

by SLLN,

Λ1 −→
∫
σ2
i (x) dGi(x), a.s., as min (ni)→∞.

In addition, by Assumption S4, it is clear that Λ2 = O
(
n−1
i

)
and Λ3 = O

(
n−1
i

)
, u.a.s.

Then the remaining part of the proof is completed by Assumption S1.

Lemma 6.3.2. Under Assumptions in Lemma 6.2.4,

T3i =
1
ni

ni∑
j=1

1
wij(wij − 1)

∑
l1 6=l2

[Yil1 Yil2 − E (Yil1Yil2 | Xil1 , Xil2)]× I(l1, l2 ∈Wij)

−→ 0, a.s., as ni →∞.

Proof. To simplify the notations, write E(Yij | Xij) as µij in this proof, and let Y ∗ij =

Yij − µij , which have zero means: E(Y ∗ij) = 0. Note that

Y ∗il1Y
∗
il2 = [Yil1 − µil1 ] [Yil2 − µil2 ]

= Yil1Yil2 − Yil1µil2 − µil1Yil2 + µil1µil2

∴ Yil1Yil2 − µil1µil2 = Y ∗il1Y
∗
il2 + Y ∗il1µil2 + µil1Y

∗
il2 .

Hence,

T3i = R1ni +R2ni +R3ni ,
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where

R1ni =
1
ni

ni∑
j=1

1
wij(wij − 1)

∑
l1 6=l2

Y ∗il1Y
∗
il2 × I(l1, l2 ∈Wij);

R2ni =
1
ni

ni∑
j=1

1
wij(wij − 1)

∑
l1 6=l2

Y ∗il1µil2 × I(l1, l2 ∈Wij);

R3ni =
1
ni

ni∑
j=1

1
wij(wij − 1)

∑
l1 6=l2

µil1Y
∗
il2 × I(l1, l2 ∈Wij).

To prove T3i = o(1), a.s., it is sufficient to prove that all of R1ni , R2ni and R3ni are

o(1), a.s. It is easy to prove the latter two. For example, R2ni = o(1), a.s. because

µil2 = O(1), uniformly in l2, and hence ∃K2 > 0 such that

R2ni =
1
ni

ni∑
l1=1

Y ∗il1

 ∑
|l2−l1|<w

µil2

ni∑
j=1

1
wij(wij − 1)

I(l1, l2 ∈Wij)


≤ K2 ·

1
ni

ni∑
l1=1

Y ∗il1 −→ 0, a.s., by SLLN.

Similarly, R3ni = o(1), a.s.

Now we prove R1ni = o(1), a.s. It suffices to show that ∀ε > 0,

∞∑
ni=1

P (|R1ni | > ε) <∞. (6.3.8)

Let

Si = ni ·R1ni = O(1)
ni∑
j=1

∑
l1 6=l2

Y ∗il1Y
∗
il2I(l1, l2 ∈Wij), as

1
wij(wij − 1)

≤ 4
w2 − 1

,

where the window size w is fixed. Then,

E(S4
i |X)

= O(1)
∑
j1

∑
j2

∑
j3

∑
j4

∑
a1 6=a2

∑
b1 6=b2

∑
c1 6=c3

∑
d1 6=d2

E
(
Y ∗ia1

Y ∗ia2
Y ∗ib1Y

∗
ib2Y

∗
ic1Y

∗
ic2Y

∗
id1Y

∗
id2 |X

)
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×I(a1, a2 ∈Wij1) · I(b1, b2 ∈Wij2) · I(c1, c2 ∈Wij3) · I(d1, d2 ∈Wij4)

= O(1)
ni−1∑
a=1

wia−1∑
s=1

E(Y ∗4ia Y
∗4
i,a+s|X)×O(w4)

+ O(1)
ni−1∑
a=1

wia−1∑
s2=1

∑
s1<s2

E(Y ∗4ia Y
∗2
i,a+s1Y

∗2
i,a+s2 |X)×O(w4)

+ O(1)
ni−1∑
a=1

wia−1∑
s1 6=s2

E(Y ∗2ia Y
∗4
i,a+s1Y

∗2
i,a+s2 |X)×O(w4)

+ O(1)
ni−1∑
a=1

wia−1∑
s1 6=s2

E(Y ∗3ia Y
∗3
i,a+s1Y

∗2
i,a+s2 |X)×O(w4)

+ O(1)
ni−1∑
a=1

wia−1∑
s1 6=s2

E(Y ∗2ia Y
∗3
i,a+s1Y

∗3
i,a+s2 |X)×O(w4)

+ O(1)

[
ni−1∑
a=1

wia−1∑
s1=1

E(Y ∗2ia Y
∗2
i,a+s1 |X)

]ni−1∑
b 6=a

wib−1∑
s2=1

E(Y ∗2ib Y
∗2
i,b+s2 |X)

×O(w4)

= O(n2
i ), u.a.s.

Therefore, E
(
S4
i

)
= O

(
n2
i

)
.

Then, by Markov’s Inequality with order 4, ∀ε > 0,

P (|R1ni | > ε) ≤
E
(
R4

1ni

)
ε4

=
E
(
S4
i

)
n4
i · ε4

≤ K1

n2
i

+ o
(
n−2
i

)
,

for some positive constant K1 which does not depend on ni.

Since
∑∞

ni=1 n
−2
i = π2/6 < ∞, the condition (6.3.8) holds. Therefore, R1ni =

o(1), a.s., which completes the proof.



Chapter 7
Summary and Future Work

7.1 Summary

In the context of a nonparametric model for the unbalanced heteroscedastic two-fold

nested design, we considered the problem of testing for the sub-class effect. We have

established, via theoretical derivations and numerical evidence, that, when the number

of sub-classes is large, the classical F-test (CF) procedure is very sensitive to departures

from homoscedasticity regardless of whether the model is balanced or unbalanced. Even

under homoscedasticity, it is still not asymptotically valid in unbalanced designs with

non-normal errors. For this reason, we developed procedures which are asymptotically

valid under heteroscedasticity.

We distinguished between what we call general heteroscedasticity and between-classes

heteroscedasticity. For the latter case we develop two test procedures, one based on un-

weighted (UW) and one on weighted observations (WT). The UW procedure is extended

also to the case of general heteroscedasticity (HET). Our simulations indicate that the

HET procedure is very competitive against the CF and the UW procedures in cases where

the last two are valid. Thus, we recommend the procedure HET for general applicability

provided nij ≥ 4 in all sub-classes. The procedure WT is preferable to HET when the

between-classes heteroscedasticity assumption appears tenable and there is either a very

large number of sub-classes, or large cell sizes. The procedure CF is preferable to HET

when the assumptions of normality and homoscedasticity appear tenable.
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A connection is made between testing for no sub-class effect in the nested model, and

testing for no covariate effect in nonparametric ANCOVA. We call this naive approach

the non-overlapping windows approach for analysis of covariance, which leads to the

more sophisticated nonparametric ANCOVA approach, called the overlapping windows

approach, described in the second half of the thesis. Testing for the class effect in the

two-fold nested model is also investigated.

In the second half of the thesis, we propose a new method to test for the covariate

effect in the context of the fully nonparametric ANCOVA model by capitalizing on the

connection, alluded to in the previous paragraph, to testing in nested designs. The basic

idea behind the proposed method can be briefly outlined as three steps:

• treat the levels of the categorical group variable as the classes in the two-fold nested

model;

• consider each distinct covariate value as a sub-class nested in each group/class;

• take a small “window” around each distinct covariate value which consists of the

w nearest covariate values nested in the same group to artificially create duplicates

within each sub-class.

The key advantage of this idea is allowing the covariate to behave differently and to have

possibly different ranges in each group. Of course the aforementioned asymptotic results

for the two-fold nested model cannot be directly applied here, due to the dependence of

the observations resulting from the overlapping windows. Some new asymptotic tools,

based on an application of the projection principle, are thus developed to obtain a new

class of quadratic forms, whose asymptotical approximation is then utilized to establish

the limiting distributions of the proposed test statistic under the null hypotheses and

local alternatives. Our simulations and real data analyses confirm that the proposed test

procedure, compared with other existing methodologies, is very powerful and has unique

flexibility. Testing for the group effect in the fully nonparametric ANCOVA model is

also investigated.
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7.2 Future Research

In the near future, we will investigate, among others, the following topics.

Lack-of-Fit Test in ANCOVA

When parametric assumptions can be validated, the usual parametric analysis of covari-

ance is more powerful than nonparametric ANCOVA. A general parametric ANCOVA

model is of the form Yij = µ + αi + gi(xij , θ) + σi(xij) εij , where gi(x, θ) are known

functions depending on the unknown parameter θ. A simple, yet common, version of

this model uses gi(x, θ) = β x, while more complicated models allow not only β to differ

among groups, but also gi to be of completely different form in different groups. To test

the feasibility of such a model, I plan to propose the statistic for testing for no covariate

effect in ANCOVA (see previous paragraph), applied on the residuals Yij − gi(xij , θ̂).

The dependence of the residuals should pose some new methodological challenges which

I plan to handle.

Generalizations of Fully Nonparametric ANCOVA

As a nature extension, I will focus on the development of higher-way ANCOVA model

(i.e. more than one factors) with multiple covariates. The main challenge may rest on the

construction of nearest-neighborhood windows among covariates, which requires appro-

priate ordering of a multivariate vector. This might be achieved via the incorporation of

data depth measurements or the application of some multivariate clustering techniques

(such as K-means).

Extension to Designs with Dependent Observations

The nested design considered in my thesis assumes independent observations. In many

applications it is reasonable to assume random sub-class effects. Successful application

of our methodology to designs with dependent data will also lead to lack-of-fit testing

for certain stochastic regression models. One example I plan to consider is lack-of-fit
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testing in nonlinear time series models such as the nonlinear autoregressive model

Yi = µ(Yi−1) + σ(Yi−1) εi,

which includes as special cases the AR Yi = γ Yi−1 +εi, ARCH Yi =
(
α2

0 + α2
1 Y

2
i−1

)1/2
εi,

EAR Yi =
[
u+ v exp (−wY 2

i−1)
]
Yi−1 + εi and TAR Yi = amax (Yi; 0) + bmin (Yi; 0) + εi

models. These tools can then be utilized to select the most appropriate model for

studying diverse issues such as global warming/environmental issues and problems in

financial econometrics.

More Statistical Learning: Classification and Clustering

In 2005 I proposed an innovative classification methodology in my master thesis, called

test-based classification (TBC), which applies to any dimensional, high or low, data set-

ting provided a suitable k-sample test exists and uses p-values to quantify the similarity

of a new observation to each of the training data sets. Because the performance of

this classification method relies heavily on the efficiency of the test procedure used, my

subsequent efforts have been concentrated in developing test procedures involving high-

dimensional alternatives. In particular, I have been working on test procedures in the

nested models and in the fully nonparametric ANCOVA models in this thesis. As a

natural next step, I plan to incorporate the asymptotic results of testing in this thesis

with the TBC rule, and apply the combined methodologies to different classification

challenges in bioinformatics, bio-medical research, statistical genetic/genomics studies,

and other data mining problems. I expect that these will simulate similar developments

in the cluster analysis as well.



Appendix A
Some comments on two procedures:

UW and WT

To understand why UW couldn’t perform as well as WT under the local alternatives,

we try more simulations (not shown here) under difference settings and found that the

UW procedure is comparatively sensitive to the departure of homoscedasticity under the

local alternatives. More specifically, if the value of σ3 decreases, given that the original σi

values used in Table 2.4 are (σ1, σ2, σ3, σ4, σ5) = (1, 1, 5, 1, 1), the resulting powers

of the UW procedure could change dramatically, especially when the value of σ3 is large.

Figure A.1 shows the achieved powers, over 10,000 simulation runs at each different value

of σ3, of the UW and WT procedures, under the normality and C = 500, from which

one can see that the smaller the value of σ3, the better powers of UW, while the achieved

powers of the WT procedure remains stably high at any values of σ3. Also note that the

difference in the achieved powers between UW and WT becomes less distinguishable as

the values of δij increases.

Two more simulation studies are done to investigate the performances of procedures

UW and WT under homoscedastic designs and under balanced designs. For the for-

mer one, we repeat the simulations done in Table 3.2 except let all σi = 1, to compare

procedures UW and WT with procedures HOM and CF under homoscedasticity. The

corresponding results are shown in Table A.1. Comparing Table A.1 with Table 3.1,
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Figure A.1. Sizes and Powers under Normality and between-classes Heteroscedasticity (unbal-
anced design with r = 5 and C = 500; α = 0.05)

one can easily see that procedure HOM still outperform both of UW and WT, al-

though the differences among them become smaller as C increases. Also note that

all three procedures (HOM, UW, and WT ) perform better than procedure CF in the

non-normal cases when C is large enough. Although the theory tells us that the WT

procedure is asymptotically equivalent to HOM under homoscedasticity (see Remark

before Corollary 2.2.3), as addressed in the previous paragraph, this asymptotic equiv-

alence highly depends on the accuracy of sample variance estimates, and hence needs

either larger numbers of sub-classes or the larger cell sizes to achieve. For instance, if

using (υ1, υ2, υ3, υ4, υ5)′ = (5, 5, 5, 12, 5) to generate nij , our simulations (not shown

here) indicates that, three procedures (HOM, UW and WT ) could in fact perform very
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c = 5 c = 30 c = 100 c = 500

α = 0.05 UW WT UW WT UW WT UW WT
Normal 0.0902 0.2536 0.0632 0.1408 0.0583 0.1029 0.0499 0.0827
Exponen 0.0988 0.2716 0.0713 0.1362 0.0611 0.0959 0.0564 0.0713
LogNorm 0.0946 0.2624 0.0791 0.1423 0.0726 0.1008 0.0658 0.0679
Mixture 0.0993 0.2649 0.0700 0.1466 0.0546 0.0913 0.0519 0.0698
Multi-d 0.0871 0.2438 0.0662 0.1315 0.0618 0.0975 0.0557 0.0732

Table A.1. Sizes over 10, 000 simulation runs under Homoscedasticity (r = 5, unbalanced
design)

similarly under the null when C is large.

For the case under balanced designs, we redo the simulation as in Table 3.2 except

letting all ci = c ≡ C/r and all nij = 3 while the number of classes remains the same

as before (r = 5). The goal of this simulation study is to see whether the balance of

the design would affect the performances of three procedures: UW, WT, and CF. The

achieved sizes are shown in Table A.2. Recall that under homoscedasticity, if the design

c=5 c=30

α = 0.05 CF UW WT CF UW WT
Normal 0.1763 0.1293 0.2224 0.1878 0.0810 0.0987
Exponen 0.1421 0.1090 0.1956 0.1807 0.0845 0.0991
LogNorm 0.1094 0.0861 0.1679 0.1509 0.0715 0.0954
Mixture 0.1017 0.0783 0.1546 0.1723 0.0806 0.1067
Multi-d 0.1467 0.1107 0.2041 0.1781 0.0847 0.1026

c =100 c=500

α = 0.05 CF UW WT CF UW WT
Normal 0.1931 0.0710 0.0751 0.2029 0.0604 0.0607
Exponen 0.1903 0.0684 0.0720 0.1950 0.0615 0.0660
LogNorm 0.1550 0.0664 0.0787 0.1731 0.0626 0.0622
Mixture 0.1858 0.0733 0.0866 0.1938 0.0616 0.0626
Multi-d 0.1938 0.0712 0.0787 0.1945 0.0602 0.0566

Table A.2. Sizes over 10, 000 simulation runs under between-classes heteroscedastic designs
(r = 5, balanced design with ci = c ≡ C/r and nij = 3).

is balanced, the classical F-test procedure is in fact asymptotically valid even when the

model is not normal (see Corollary 2.2.1). However, Table A.2 tells us that this asymp-
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totical validity of the classical F-test procedure no longer holds under between-classes

heteroscedastic designs, even when the design is balanced and the model is normal. This

confirms our findings in Corollary 2.2.2. In addition, comparing Table A.2 with Table 3.2,

once can easily see how much the balance of design could improve the performances of

procedures CF and WT, especially for the CF procedure, while its influence on the UW

procedure is comparatively limited.

To sum, based on simulations done above, we would in general recommend the un-

weighted test statistic and the corresponding UW procedure for the nested model under

heteroscedastic and unbalanced designs, while when C is large enough and the cell sizes

are not too small, procedure UW would be a good choice as well.



Appendix B
A simple Time Series Analysis on

NADP Data

In Section 2.4.2 and Section 5.4.3, we analyze the rain data from NADP (National

Atmospheric Deposition Program). The response variable of interest is the pH levels of

precipitation in two towns, Lewiston and Coweeta, while the effect of interest is Time.

To ensure the implementations of our methodologies on this data set are valid, a simple

time series analysis is performed to check the correlations of observations over time in

two locations. The easiest way to complete this mission is to check the plots of the

autocorrelation functions (ACF) for two locations, as shown in Figure B.1. The top

ACF plot is for Lewiston, while the bottom one is for Coweeta. The confidence limits in

the plots assume an MA(k-1), the moving average model of order k − 1, input for lag k,

instead of a white noise input.

As seen in Figure B.1, the absolute values of all autocorrelations at different lags in

two locations are less than .20 and all are not significant at level .05, except one. This

only exception is the lag 20 autocorrelation of Coweeta. Given that its value is as small

as −.2256 while the value of the lag is as large as 20, it does not seem meaningful to

take this small possible correlation into consideration in the analysis. We hence ignore

it in our empirical studies.
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Figure B.1. NADP Data. ACF plots of pH levels in two locations: Lewiston (left) and Coweeta
(right).
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