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Abstract

Ferroelectric LiNbO3 and LiTaO3 crystals have developed, over the last 50 years

as key materials for integrated and nonlinear optics due to their large electro-optic

and nonlinear optical coefficients and a broad transparency range from 0.4 µm - 4.5

µm wavelengths. Applications include high speed optical modulation and switching

in 40GHz range, second harmonic generation, optical parametric amplification, pulse

compression and so on. Ferroelectric domain microengineering has led to electro-optic

scanners, dynamic focusing lenses, total internal reflection switches, and quasi-phase

matched (QPM) frequency doublers. Most of these applications have so far been on

non-stoichiometric compositions of these crystals.

Recent breakthroughs in crystal growth have however opened up an entirely new

window of opportunity from both scientific and technological viewpoint. The growth of

stoichiometric composition crystals has led to the discovery of many fascinating effects

arising from the presence or absence of atomic defects, such as an order of magnitude

changes in coercive fields, internal fields, domain backswitching and stabilization phe-

nomenon. On the nanoscale, unexpected features such as the presence of wide regions

of optical contrast and strain have been discovered at 180◦ domain walls. Such strong

influence of small amounts of nonstoichiometric defects on material properties has led

to new device applications, particularly those involving domain patterning and shap-

ing such as QPM devices in thick bulk crystals and improved photorefractive damage

compositions.

The central focus of this dissertation is to explore the role of nonsotichiometry

and its precise influence on macroscale and nanoscale properties in lithium niobate

and tantalate. Macroscale properties are studied using a combination of in-situ and

high-speed electro-optic imaging microscopy and electrical switching experiments. Lo-

cal static and dynamic strain properties at individual domain walls is studied using

X-ray synchrotron imaging with and without in-situ electric fields. Nanoscale optical

properties are studied using Near Field Scanning Optical Microscopy(NSOM). Finite
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Difference Time Domain(FDTD) codes, Beam Propagation Method(BPM) codes and

X-ray tracing codes have been developed to successfully simulate NSOM images and

X-ray topography images to extract the local optical and strain properties, respectively.

A 3-D ferroelectric domain simulation code based on Time Dependent Ginzburg Lan-

dau(TDGL) theory and group theory has been developed to understand the nature of

these local wall strains and the preferred wall orientations. By combining these ex-

perimental and numerical tools, We have also proposed a defect-dipole model and a

mechanism by which the defect interacts with the domain walls. This thesis has thus

built a more comprehensive picture of the influence of defects on domain walls on

nanoscale and macroscale, and raises new scientific questions about the exact nature

of domain walls-defect interactions. Besides the specific problem of ferroelectrics, the

experimental and simulation tools, developed in this thesis will have wider application

in the area of materials science.
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Chapter 1

Introduction

1.1 Overview

The phenomenon of ferroelectricity was discovered in 1920 by Valasek on Rochelle

salt. During 1935 and 1938, a series of ferroelectric crystals were produced in Zurich

by Busch and Scherrer [6]. Potassium dihyddrogen phosphate, (KH2PO4 KDP), and

ammonium salts (NH4H2PO4, APD) were developed at that time. Because of the high

electromechanical coupling ratio, APD replaced underwater sound transducer and sub-

marine detectors in World War II. After the discovery of the KDP series there was no

breakthrough in the ferroelectrics area for a little while. In 1945, barium titanate ceramic

was discovered, with high dielectric constants up to 3000 at room temperature. It was

the first ferroelectric without hydrogen bond and with a non-piezoelectric prototype.

Later on ferroelectricity was discovered in KNbO3, KTaO3 [4], LiNbO3 [2] [3] [26] and

LiTaO3 [5], and in PbTiO3 [14]. Based on these new ferroelectric materials, Ander-

son [20] and Cochran [27] introduced the lattice mode (or ’soft’ mode) model, involving

the ionic motion of all constituent atoms to describe the displacive lattice instability. A

macroscopic theory was also developed. For example, in terms of the thermodynamical

framework of displacive or order-disorder phase transitions, the concepts of long or

short range interaction, and ionic or electronic displacements were introduced [18] [19].

Ginzburg and Devonshire [10]introduced the elastic energy, electrostrictive coupling en-

ergy, and polarization gradient energy terms into the total free energy for a ferroelectric.

This theory will be explained and applied to lithium niobate and lithium tantalate in

Ch. 3. Since 1960s, lattice dynamical or soft-mode description of ferroelectricity devel-

oped rapidly. Based on this theory, new experimental tools were developed, primarily,

scattering or resonance experiments involving X-ray, neutron, light, and ultrasound.
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A crystal is called a ferroelectric when it has two or more orientational states in

the absence of an external electric field and can be transformed from one of these states

to another by an external electric field. Any two of the orientation states are identical in

their crystal structure and differ only in the direction of their electric polarization vector,

Ps. The highest symmetry phase compatible with the ferroelectric structure is termed as

the prototype phase. Although this prototype phase need not necessarily be of non-polar

character, such is the case for a great majority of the known ferroelectrics. Since the

ferroelectric phase evolves as a result of small structural displacements from a non-

polar prototype. A typical ferroelectric possesses a spontaneous polarization Ps with

units of charge per unit area or total dipole moment per unit volume. A ferroelectric

phase change represents a special class of structural phase transitions denoted by the

appearance of spontaneous polarization. The higher temperature prototype phase is

typically the paraelectric phase and it transforms to the low temperature ferroelectric phase

at the Curie temperature. Cooling from above the Curie temperature, Tc, at which the

paraelectric to ferroelectric phase transition occurs, the approaching transition is often

signaled by diverging differential dielectric response or permittivity which follows the

Curie-Weiss law, given by ε=C/(T-T◦), where T◦ is the Curie-Weiss temperature which is

equal to the Curie temperature Tc, and C is Curie constant. In the ferroelectric phase, the

presence of bulk spontaneous polarization results in positively and negatively charged

surfaces in the crystal. These surface, whose maximum density is equal to Ps, cause a

depolarizing field that oppose the bulk spontaneous polarization and hence make them

unstable. In order to minimize the depolarizing fields, these surfaces need to be made

neutral. On of the ways this is achieved by a ferroelectric crystal is by creating multi-

domain structures. Within each domain, the spontaneous polarization in the crystal

lattice points in the same direction.

If the paraelectric-to-ferroelectric transition is continuous in terms of order param-

eter (spontaneous polarization, Ps), it is called a second order phase transition. It is called

a first order phase transition if the polarization, Ps changes discontinuously across the

phase transition. The Landau free energy, F, of a ferroelectric can be expressed as a

power series of the spontaneous polarization value P [7].
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F(P; T,E) = −EP + g0 +
1
2

g2P2 +
1
4

P4 +
1
6

g6P6 (1.1)

where gn is the temperature dependent constant. The minimum value of F gives the

spontaneous polarization value Ps. The equilibrium polarization value under an applied

electric field E satisfies

∂F
∂P
= 0 = −E + g2P + g4P3 + g6P5 + ... (1.2)

To obtain a ferroelectric state, g2 must pass through zero at some temperature T◦.

g2 = γ(T − T◦)

A small positive value of g2 means that the lattice is soft and is close to instability. A

negative value of g2 means that the unpolarized lattice is unstable. If g4 in Eqn. 1.1 is

positive, it becomes a second order phase transition. By using Eqn. 1.2 Ps will be either

0 or (γ/g4)1/2(T◦ − T)1/2. For T≥ T◦ only Ps=0 is allowed. For T< T◦,

|Ps| = (γ/g4)1/2(T◦ − T)1/2

As can be seem in Fig. 1.1, this polarization goes to zero at the critical temperature in

a continuous fashion. If g4 is negative, the transition becomes first order. The term g6

should be positive to restrain F from going to negative infinity. By using equilibrium

Eqn. 1.2, Ps will be 0 or γ(T − T◦) −
∣∣∣g4

∣∣∣ P2
s + g6P4

s = 0. Figure 1.2 shows how the free

energy varies with temperature. It is clear that polarization change is discontinuous at

the Curie temperature.

1.2 Lithium Niobate (LiNbO3) and Lithium Tantalate (LiTaO3)

With the development of the lasers and optical communications, materials with

large electro-optic, and large nonlinear optical responses are required. It is well known

that large nonlinear polarizability can be achieved in materials which have a large linear
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Fig. 1.1. Spontaneous polarization versus temperature, for a second order phase
transition

Fig. 1.2. Landau free energy function. At Tc Landau free energy has minimum in 0 and
finite P at the same time. Below Tc minimum will be large finite P value.

polarizability. Naturally ferroelectric materials receive attention. Among them, LiNbO3

and LiTaO3 received intense attention, because of their large linear and nonlinear optical

coefficients, a fast electro optical response (> 100GHz) and a large transparency window

from 0.4µm - 4.5µm wavelengths. These materials are uniaxial in all temperature ranges,

with only a single structural phase transition that corresponds to the Curie temperature,
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and exibit second order (or close to the second order) phase transition. Because of the

high Curie temperature (≈620 ◦C for LiTaO3 and≈1200 ◦C for LiNbO3), complex optical

modes of lattice vibration complicate the lattice dynamical picture of these systems.

Although LiNbO3 and LiTaO3 do not have the perovskite structure they are ABO3

lattices, with adjacent oxygen octahedral BO6 sharing common faces. Fig 1.3 shows

the basic room temperature ferroelectric state structure. Within the oxygen cages, the

cation appears in the sequence ... [Nb(Ta), vacancy, Li]... where the bracketed sequence

repeats along the uniaxial c (also called z) axis, and the spontaneous lattice polarization,

Ps, points here from left to right. The room temperature positions of the cations within

the oxygen cages are known by X-ray and neutron measurements [23], [25], [22]. Because

of the large offset of the cations from possible non-polar positions is quite large, they

have a high spontaneous polarization value (≈55µCcm−2 for LiTaO3, ≈75µCcm−2 for

LiNbO3). At room temperature, for LiNbO3 the coordinate of atoms are showed in

Table 1.1. Lattice constant of hexagonal axis a is 5.14829 Ȧ, and c is 13.8631 Ȧ. LiTaO3

also has a distorted cation position like LiNbO3.

Atom x y z

Nb 0 0 0

O 0.0492±0.0004 0.3446±0.0005 0.0647±0.0004

Li 0 0 0.2829±0.0023

Table 1.1. Coordinate of the atoms in the LiNbO3 at 297 K [24]

Two domain states exist in lithium niobate and tantalate, either +Ps (up domain)

or −Ps (down domain), pointing along +c and -c uniaxial directions, respectively. The

separation between two domains is called a domain wall, which in this case is a 180◦
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domain wall, since it separates two ferroelectric polarizations that are antiparallel to each

other.

Fig. 1.3. Two possible ferroelectric state structures in LiNbO3 crystal. Denpending on
cation location compared to oxygen plae determined dwon(a) or up(b) domain state.

Dielectric, thermal, and phyroelectric measurements on LiNbO3 and LiTaO3 es-

tablish that the phase transitions are of second order. The observed Curie constant, C,

for LiNbO3 and LiTaO3 are of the order of 105K and are typical for systems of broadly

displacive character. The detailed characterization of the physical properties of both

LiNbO3 and LiTaO3 is complicated by crystal-chemistry considerations. Since 1965,

when Ballman [1] reported the successful growth of single crystals by the Czochralski
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technique, considerable research was carried out on crystal growth and physical prop-

erties. After 1967, most work was devoted to the improvement of material quality. The

very large influence of compositional variation of LiNbO3 on its physical properties

had been established, and the successful growth of very homogeneous material from

the congruent melt was achieved. Figure 1.4 shows the phase diagram of the system

Li2O − Ta2O5 and Li2O − Nb2O5 phase diagram. Both LiNbO3 and LiTaO3 has close

congruent composition, but only congruent melting point is different.

Slight deficiency of the Li, and an accompanying excess of Nb or Ta makes

a significant difference to the structure and physical properties. Among the various

changes due to slight Li-deficiency, domain kinetics is very significant and important

for applications. The direct interaction between microscopic defect configuration and

macroscopic domain wall structure dramatically changes the coercive fields, creates

large defect related internal fields, and gives rise to wall stabilization time, wall gradient

energy, and different wall shapes. These effects on macroscale properties are detailed in

Ch. 2 and Ch. 3. In addition, the local nanoscale structre of a ferroelectric domain wall

changes, with additional long range strains and optical index differences across a 180◦

wall. These are explored in detail in Chapters 4 and 5.

1.3 Optical applications of ferroelectric domain walls

LiNbO3 and LiTaO3 crystals have become the workhorse materials for integrated

acoustic, integrated optical and nonlinear optical devices. Examples include Mach-

Zender interferometric switches [15], optical holography [11], and surface acoustic wave

devices [16]. However, presently, a majority of the commercial devices based on LiNbO3

crystals simply use a single domain state without any domain wall structure.

Recently, domain microengineering of LiNbO3 and LiTaO3 crystals has been ap-

plied to realize a new class of efficient linear and nonlinear optical devices. By domain

microengineering is meant shaping of ferroelectric domains and domain walls into di-

verse shapes and sizes to create optical elements such as gratings, lenses, prisms etc.

Examples include quasi-phase matched frequency converters [21], electro-optic scan-

ners [9], dynamic focusing lenses [17], total internal reflection mirrors, etc. Most of the
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Fig. 1.4. (a) Phase diagram of Li2O − Ta2O5 system. (b) Nb2O5 − Li2O phase diagram.
Congruent point is off set from stoichiometric composition in both (a) and (b).

recent ferroelectric domain engineered devices are second harmonic generators or para-

metric oscillators for nonlinear frequency conversion application. A second harmonic

generator converts light of frequency of ω to light of frequency 2 ω using a domain

grating. This is schematically shown in Figure 1.5 (a), where the period of the domain

grating is chosen to be twice the coherence length, 2lc, where coherence length is the

length over which the two frequencies of light (ω and 2ω) go π out-of-phase with each

other. A domain reversal after every coherence length resets this phase shift by provid-

ing an additional phase shift of π. Recently, pulse shaping, and pulse squeezing devices

have been made by using periodically domain inverted LiNbO3 (PPLN) crystals.

In addition to these domain engineered nonlinear optical devices,electro-optics

based integrated optical devices are made in LiNbO3 and LiTaO3 crystals [13] [8]. [12].

Electro-optic refers to the change in the refractive index in a material when an external

electric field is applied. For LiNbO3, an electric field E3 along the polarization direction

+c (also referred to by subscript 3), changes the extraordinary index n33=ne by an

amount ∆ ne = −(1/2)n3
e r33E3. The index decreases by this amount when the electric
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Fig. 1.5. Domain engineered micro optical devices. (a) frequency converter, (b) dynamic
focusing electro-optic lens stacks, and (c) dynamical beam deflectors stack. Arrows
inside the crystal indictae domain orientation.



10

Fig. 1.6. Schematic shwoing principle of electro-optic effect.

field is parallel to the polarization direction, and increases when it is antiparallel to

the polarization direction. Therefore, when a uniform electric field is applied across a

domain wall as shown in Fig. 1.6, an index change of 2 · ∆ne is created across the wall,

which is linearly electric field tunable. This can be used to create electro-optic tunable

devices. Figure 1.5 shows some such examples of electro optical devices made by

domain microengineering. The dynamic focusing lens shaped domains in Figure 1.5 (b)

can focus and defocus light under varying polarities and magnitudes of external electric

fields [17]. The prism shaped Figure 1.5 (c) can scan light beams under external electric

fields [9]. These integrated electro-optical devices have many advantages compared to

the traditional optical devices. They can be integrated in a small single crystal, and can

operate in the 100GHz range.

These are just some of the examples of numerous optical devices that can be

designed by the ability to arbitrarily shape ferroelectric domain walls. In domain engi-

neered nonlinear optical devices and electro-optical devices, micro domain engineering

is a key technology. As device shrinks, domain patterning becomes more challenging.

For example domain patterning below 5 µm sizes is a real challenge today. It is clear

that a detailed understanding of the domain wall properties will push the technological

limitations farther beyond. In order to do this, one has to understand the static and

dynamic structure of domain walls in lithium niobate and tantalate. This is the primary

focus of this thesis work.
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1.4 Research Objectives

It is the objective of my thesis work to shed light on one of the most fundamental

questions relating to these fascinating materials: How do the rich spectrum of electrical,

elastic and optical properties of ferroelectrics on nanoscale to macroscale depend on

atomic defects?

I focus on two prototypical ferroelectric materials, Lithium Niobate (LiNbO3) and

Lithium Tantalate (LiTaO3). In my dissertation, I have made a number of discoveries

that show that very small amount of point defects (missing atoms) in these crystals can

change the macroscopic properties (such a fields required to reorient domains), often

dramatically by an order of magnitude. The key bridge between these vastly different

length scales (atoms to bulk) is the mesoscale phenomenon of ferroelectric domains and

domain walls on nanometer length scales that mediate the influences from atomic defects

to macroscale properties. I have conducted experimental and theoretical investigations

of domains and domain walls on nano-to-micrometer length scales towards developing

this bridge. These experiments include dynamic properties of domain walls under

external fields, probing the local strain around domain walls using synchrotron X-

ray imaging, and probing local optical properties near domain walls using Near-field

Optical Microscopy (NSOM). My theoretical work involves modeling and simulation

of domain wall structure and motion using Time-Dependent Ginzburg-Landau (TDGL)

theory, and developing point defect models on atomic scales, simulating local strain

effects observed in X-ray experiments using dynamic theory of X-ray scattering, and

developing a Finite-Difference-Time-Domain(FDTD) simulation, and Beam Propagation

Method(BPM) code to simulate local optical effects observed using NSOM. Putting all

these efforts together, when the local electrical, elastic and optical effects at domain walls

are thoroughly understood at this level of detail and depth, a more general framework

can evolve for understanding ferroelectrics and the influence of atomic scale structure on

their properties. This work will hopefully shift our approach to technologies based on

these materials from an empirical trial-and-error method to a science-based approach.
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1.5 Thesis Organization

To investigate domains and domain walls on macroscales, I have studied in-situ

electrical field induced domain reversal experiments using optical microscopy as de-

tailed in chapter 2. I have employed the time dependent Ginzburg-landau (TDGL)

theory to understand the shape and dynamics of domains evolving in these crystal

systems under equilibrium and under external fields. Chapter 3 includes all detailed

derivations and simuation results from this TDGL analysis. To investigate the local

structure of domain wall strains, I’ve carried out static and dynamic synchrotron X-ray

topography experiments and simulated experimental images by using dynamical X-ray

scattering theory (Ch. 4). To study the nanoscale optical properties of a domain wall

that cannot be imaged by diffraction limited optical microscopy, I have employed Near

Field Optical Microscopy (NSOM). To analyze these NSOM images, I have developed

a new Finite Difference Time Domain based approach for calculating Optical Transfer

Function(OTF) of the NSOM tip. Using this analysis, in combination with Beam Prop-

agation method, I have quantitatively extracted the local optical index structure at a

domain wall. All these experimental and numerical NSOM studies are explained in

chapters 5. Finally all these experimental and theoretical results on different length

scales are compared and linked together in chapter 6.
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Chapter 2

Macroscale Domain Structure and Dynamics

and the Role of Non-Stoichiometric Defects

As explained in Ch. 1, ferroelectric lithium tantalate (LiTaO3) and lithium niobate

(LiNbO3) have emerged as key optical materials in nonlinear frequency conversion [1],

electro-optics [2], and holography [3]. Manipulation of ferroelectric domains into di-

verse shapes such as gratings, lenses, prisms, and other shapes are key to many of these

applications. This is primarily achieved by the application of an external electric field.

Recent discoveries [4], [5] show that the threshold coercive fields required for domain re-

versal change dramatically in these crystals with changes in lithium non-stoichiometry.

Lithium non-stoichiometry also strongly affects the optical, electrical, and elastic prop-

erties of crystal lattice near domain walls, and the dynamics of domain nucleation and

growth as recently reviewed in detail in a handbook chapter [6]. While the domain rever-

sal properties of the lithium-deficient congruent composition (C=Li/(Li+Ta,Nb)=0.485)

have been widely reported (see Ref. [6] and references therein), limited information is

available so far regarding domain reversal properties of stoichiometric (C=0.5) or near-

stoichiometric crystals [4], [5]. Any systematic understanding of the role of point defects

in domain reversal characteristics is also lacking at present.This chapter attempts to ad-

dress these two issues as follows. A systematic study of domain reversal characteristics

of near-stoichiometric (C=0.498) crystals of LiTaO3 is presented. Real-time experiments

are presented which track individual domain walls and their motion in real time on time

scales as small as 0.5 ms. The phenomena of domain stabilization time, domain ”back-

switching,” the changes in threshold coercive field with repeated cycling of external

electric field at different frequencies, the switching times, wall mobilities, and pinning

times are investigated. These results are then contrasted with those of congruent com-

position crystals of LiTaO3. Finally, we propose a qualitative defect model to interpret
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some of the observed phenomena, such as internal fields, domain backswitching and

stabilization times, and dependence of threshold coercive fields on polarization cycling.

Stoichiometric crystals of LiTaO3 were grown by the double crucible Czochralski

(DCCZ) technique as described in detail elsewhere. [5], [7] Here we briefly describe

the salient facts. In order to grow stoichiometric crystals, a lithium rich melt (60 mol

percent Li2O) is required. The double crucible geometry consists of an inner and

an outer iridium crucible connected by holes in the wall of the inner crucible. This

allows the growth melt to be replenished with material in the outer crucible, in exact

proportion to the weight of the crystal grown from the inner melt. This is done in

real-time using an automatic weighing and powder supply system. The crystals grown

along the crystallographic y axis (lying in the (1120) mirror plane) were transparent

and crack-free. The Curie temperature was measured as 685±1 ◦C, which is very

close to the Curie temperature of 690±1 ◦C for sintered stoichiometric LiTaO3 powder.

Assuming a linear relationship between Curie temperature and crystal composition [7],

the crystal composition Li/(Li+Ta) is estimated to be 0.4977-0.4992, which is quite close

to the stoichiometric composition of 0.5. We will, however, show that this deviation

from stoichiometry is nonetheless significant enough to introduce defect fields and

influence the physical properties of these crystals. An impurity concentration of 0.9

wt ppm Fe was measured. Copper and chromium were less than 0.1 and 0.2 wt ppm,

respectively. The as-grown crystals were observed to be multi-domain. The lattice

papameters of congruent LiTaO3 are 5.1543(Ȧ) and 13.7808(Ȧ) for ao and bo, respectively.

In stoichiometric crystal case, lattice parameters ao and bo are 5.1516(Ȧ) and 13.7744(Ȧ),

respectively. In stochiometric LiTaO3 crystal case, crystals show no growth striations

and have small refractive index chnages less than 10−5 throughout the 1cm3 cubic

sample. The crystal was cut into a z-cut block, which was annealed in air at 750 ◦C, and

subsequently cooled down at a rate of 2 ◦C/min to room temperature under a dc electric

field along the z direction. These blocks were cut into z-cut plates of 10×10×0.25 mm,

and optically polished, resulting in plates which were single crystal and single domain,

though some microdomains of 50 µm or less size were also observed. This starting state
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of the crystal will be referred to in the rest of this article as the ”virgin state” with a

ferroelectric polarization of -Ps .

2.1 Real-time observation of domain wall motion in near-stoichiometric

composition

Fig. 2.1. Optical microscope image, in unpolarized transmitted light, of a 180◦ domain
wall in z-cut near-stoichiometric LiTaO3 . (a) No electric field applied. The wall is not
visible. (b) An electric field of 10 kV/cm applied to the crystal along the z axis, rendering
the wall visible through the electro-optic effect. The polarization is normal to the image
plane.

Starting from the virgin state of a 0.25 mm thick z-cut crystal, electric field is

applied across the z faces to reverse the ferroelectric polarization at room temperature.

Tap water is used as electrodes, with no dissolved salts, since dissolution of KNO3

salt, for example, to any saturation level did not appear to change the observed results.

The application of an electric field E3 parallel to the z axis also gives rise to an index

difference 2∆n23 = n3
0r23E3 across a 180◦ domain wall where r23 is the electro-optic

coefficient and no the ordinary index. This index difference gives rise to scattering of

light at the wall which is optically imaged [8]. For example, the domain wall is not

visible in Fig. 2.1(a), but becomes visible in 2.1(b), when an electric field of 10 kV/cm

(which is less than the field required for wall motion) is applied along the z-axis of the
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Fig. 2.2. Tracking domain wall motion under external field in a z-cut near-stoichiometric
LiTaO3 crystal. Electrode area was 1.2 mm2. (a) The applied step field of≈20 kV/cm and
the corresponding transient current response, and (b) the corresponding optical images
of the moving wall recorded with a video camera (33 frames/s). The time instants of the
five frames shown in (b) are marked by F1F5 in (a).

crystal. Since the electric field employed for domain reversal can also aid in optically

imaging the domain wall, we can study the real-time motion of domain walls under

electric fields. The real-time movie was recorded using either a standard video recorder

with 30 frames/s or a high-speed camera (Kodak Ektapro) with 2000 frames/s. The

frames were then digitally extracted from the recorded movie using computer software.

Figure 2.2(a) shows a series of selected optical images showing the progres-

sion of domain wall creation and motion under an electric field. Also shown in Fig.

2.2(a) is the corresponding transient current, i, observed during domain reversal where

i=dq/dt=d/dt(2PsA). Here A is the area of reversed domain regions, Ps is the spon-

taneous polarization, q the charge, and t the time. The transient currents are in the

form of spikes, suggesting a very fast domain wall motion within a few milliseconds
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followed by no domain motion and so on. The video frames shown here, with only a

resolution of 33 ms per frame, nonetheless show the net domain motion correspond-

ing to the transient current spikes observed in the interval between two frames. F1

shows no domain walls. After one frame interval(33 ms) corresponding to F2, three

small domains have nucleated, corresponding most likely to the first three main current

spikes seen in Fig. 2.2(b). The domain merging process is observed between frames

F2 and F3, and therefore frame F3 shows two big merged domains. Finally these two

remaining domains merge between frames F3 and F4. It is interesting to note that even

though domain reversal is complete in frame F4, a faint trace of the original domain

wall position in F3 is still retained in F4. After ≈33 ms this contrast disappears resulting

in frame F5. This is the faint residual optical contrast at a location of a domain wall after

the wall has moved away. It arises from residual strains at the domain wall which in

turn arise from a small amount of lithium nonstoichiometry in the crystal and induce

optical contrast through elasto-optic effect as well as through coupled piezoelectric and

electro-optic effects [6]. Though faint, and difficult to observe under bright illumination

conditions [such as in Fig.2.1(a)], under careful observation, this contrast is visible at a

wall in near-stoichiometric crystals. The total time to reverse a domain in a given area

is called the switching time, ts , which in Fig. 2.2(a) is 80 ms as determined from the

transient current data.

2.2 Domain switching kinetics

Under an electric field, the first polarization reversal (or poling) of a virgin crystal

from the virgin state to a domain reversed state is termed forward poling (denoted by

symbol f1), and the second reversal back to virgin state is called reverse poling (denoted

by symbol r1). Subsequent forward and reverse poling operations are then successively

labeled f2, f3, f4,...,etc. and r1, r2, r3,...,etc., respectively. The polarization hysteresis loop

is measured by linearly ramping the electric field and tracking the transient currents

created during domain reversal. When the spontaneous polarization reverses from

+Ps to -Ps (or vice versa), the total charge q, observed under the transient current i, is

q=
∫

idt = 2PsA, where A is the electrode area and t the time. The threshold coercive
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field is arbitrarily chosen as the electric field value at which the integrated charge

under the transient current peak is 1 percent of the total integrated charge q under the

peak. The domain switching times are typically greater than 30 min at these measured

threshold coercive fields. This definition was chosen over the conventional definition

of coercive field at 50 percent domain reversed area, since we wanted to measure the

lowest threshold coercive fields at which reversal begins. In order to study the effect of

repeated cycling of ferroelectric polarization between+Ps and -Ps, another experimental

variable was introduced called the cycling time gap, tg, j, where j=f(for forward poling)

or j=r (for reverse poling). This time gap is a measure of the time gap allowed between

the beginning of one domain reversal sequence (as monitored by the transient current

peak) and the beginning of another. For example, tg,r is the time gap between the

beginning of f1 and the beginning of a successive r1, and tg, f is the time gap between

the beginning of r1 and the beginning of a successive f2. In other words, tg,r is the

longest time period that any part of the crystal under the electrode stays in domain state

+Ps (after its creation) before being reverse poled into the -Ps state. Similarly, tg, f is the

longest time period that a domain stays in the -Ps state (after its creation) before being

forward poled into the +Ps state.

2.2.1 Threshold coercive fields

Figure 2.3 shows the hysteresis loops of polarization versus electric field for

tg, j=300 and 60 s. The observed threshold coercive fields for tg, j=300 s are Ec, f 16.7

kV/cm and Ec,r 14.5 kV/cm. For tg, j=60 s, the threshold coercive fields decrease to

Ec, f=13.6 kV/cm and Ec,r=12.3 kV/ cm. The internal field, Eint=(Ec, f -Ec,r)/2” 1.1 kV/cm

for tg, j=300s and 0.7 kV/cm for tg, j=60s. In both cases, the offset of the hysteresis loop

is along the positive (forward poling) field axis. For tg, j=300s the threshold coercive

field shows a sharp decrease. Figures 2.4(a) and 2.4(b), respectively, show the forward

(Ec, f ) and reverse (Ec,r) threshold coercive fields as a function of total cycling time

tg, j. The data corresponding to the shortest time gap, tg, j, was obtained by measuring

the stabilization time, tstab, j, for forward and reverse poling. By the definition of

stabilization time (as explained in the following section), when tg,r=tstab, j, Ec,r=0; and
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Fig. 2.3. The polarization hysteresis loops of near-stoichiometric z-cut LiTaO3 crystals.
The outer and inner loops are measured for time gaps tg, j spent in any domain state
before successive polarization reversal of 300 and 60 s, respectively. Lower time gaps
reduce the coercive fields as well as the saturation polarizations ±Ps.

similarly, at tg, f=tstab,r, Ec, f=0. The solid line fits to the measurements (for tg, j > tstab, j′)

are based on a double exponential function of the form

Ec, j = ΣiEi, j[exp(−tstab, j′/τi, j) − exp(−tg, j/τi, j)] (2.1)

where i=1,2 and (j,j’)=(f,r) or (r,f), referring to forward (f) or reverse (r) poling directions.

Table I lists the time constants τi, j, tstab, j′ , and the preexponents Ei, j. Note that by

definition, at tg, j=tstab, j′ , Ec, j=0. The relaxation times τi, j are very similar for forward

and reverse poling suggesting similar relaxation mechanisms. An important aspect

of this figure is the presence of negative threshold coercive fields when tg, j < tstab, j′ .

The presence of negative threshold coercive fields in Figs. 2.4(a) and 2.4(b) appear

counterintuitive, but are physically real. In this regime the negative threshold coercive

field refers to the minimum baseline voltage that should be applied following the end of
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Fig. 2.4. The dependence of coercive field Ec, j on the cycling time gap tg, j for (a)
forward poling (j=f) and (b) reverse poling (j=r) for z-cut nearstoichiometric LiTaO3 .
The time axis crossings at Ec, j=0 are equal to the measured stabilization times of tstab, j′
, where (j,j’)=(f,r) or (r,f). These are shown more clearly in the insets. The solid lines are
double exponential fits as described by Eq. (1). The fitting parameters are given in Table
2.1. A single data point in the negative coercive field range as shown was measured for
both forward and reverse poling.
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the original pulse of width tg, j in order to prevent domain backswitching after the pulse.

Such baseline voltages are often used to stabilize domains created by short pulses while

fabricating domain microengineered devices [1]. The behavior of threshold coercive

fields with time gap, tg, j, appears in general to follow a different exponential time

constant for time gaps shorter and longer than the stabilization time, tstab, j′ . The

functional form for this behavior for tg, j < tstab, j′ is the same as Eq. 2.1. In near-

stoichiometric crystals, only one data point could be obtained for the negative threshold

coercive field regime due to the short times scales over which they occur. However, for

congruent crystals, negative threshold coercive fields show a clear trend with at least

one exponential (j=1) with a corresponding time constant, τi j (see Table I). Negative

threshold coercive fields are discussed further in the following section.

LiTaO3 composition E1, j(kV/cm) τ1, j(s) E2, j τ2, j(s) tstab, j′ (s)
Poling direction

near-stoichiometric 14.50 ± 1.50 26.4 ± 6 2.21 ± 1.49 177.5 ± 104 0.058 ± 0.043
forward poling(f)

tg, j > tstab, j′ ; ( j, j′) = ( f , r)
near-stoichiometric 14.38 ± 0.55 32.4 ± 2.6 0.33 ± 0.14 310.3 ± 200 0.55 ± 0.43

reverse poling(f)
tg, j > tstab, j′ ; ( j, j′) = (r, f )

congruent 175.66 ± 3.80 20.3 ± 0.9 31.29 ± 3.23 399.6 ± 68 0.05 ± 0.03
forward poling(f)

tg, j > tstab, j′ ; ( j, j′) = ( f , r)
congruent −37.78 ± 1.06 0.0027 ± 0.006 0.05 ± 0.03

forward poling(f)
tg, j < tstab, j′ ; ( j, j′) = ( f , r)

congruent 100.37 ± 8.25 26.5 ± 3.9 19.80 ± 7.83 316 ± 179 0.7 ± 0.2
reverse poling(r)

tg, j > tstab, j′ ; ( j, j′) = (r, f )
congruent −104.06 ± 4.19 0.06 ± 0.006 0.7 ± 0.2

reverse poling(r)
tg, j < tstab, j′ ; ( j, j′) = (r, f )

Table 2.1. The fitting parameters in Eq. 2.1 describing the experimental dependence of
coercive fields Ec, j on the time gap tg, j spent in the previous domain state as given in
Figs. 2.4 and 2.10.
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2.2.2 Domain backswitching and stabilization time

Domain backswitching and stabilization processes in congruent LiTaO3 crystals

have been previously reported [6]. A domain created by the application of an electric

field needs a certain minimum amount of time for which the electric field that created

it should remain and stabilize it. This time is called the stabilization time, or tstab, j,

for the domain and subscript j=(f,r) refers, respectively, to forward or reverse poling.

If the electric field is removed in a time tg, j < tstab, j′ , where (j,j’)=(f,r) or (r,f), then the

newly created domain shrinks and reverts back to the original domain configuration

that existed before the application of the field. This reversible domain wall motion is

called domain backswitching. In reality, a range of stabilization times is found such that

when, for example, tg, f < (tstab,r)start, complete domain backswitching is observed.

When tg, f > (tstab,r)end, no domain backswitching is observed. In the intermediate

pulse widths, partial domain backswitching is observed. The stabilization time was

measured by applying square electric field pulses with varying pulse widths and electric

field magnitudes and observing the transient currents.

Figure 2.5(a) shows the negative transient current response during domain back-

switching on application of a voltage pulse of 60 kV/cm and 10 ms duration. Figure

2.5(b) shows the corresponding optical images of the domain walls during the back-

switching process. These images were taken with a high-speed camera capable of 2000

frames/s. The time resolution was therefore 0.5 ms between frames, and the time instant

starting from the beginning of the voltage pulse at t=0 is indicated on each frame. Do-

main reversal takes place until the first 10 ms, when the voltage pulse is on, followed by

backswitching after the pulse disappears. In this case, the backswitching time was > 60

ms. When the external pulse is shorter, back switching time is ≈1-10 ms. If the external

pulse time is close to stabilization time, back switching time increases to several hun-

dred milliseconds. Figure 2.6(a) shows stabilization times (tstab, j)start and (tstab, j)end as

a function of electric field. Many interesting aspects can be observed. The stabiliza-

tion time decreases rapidly as the electric field exceeds the threshold coercive field for

domain reversal. If the external field exceeds 20 kV/cm in the forward poling and 17

kV/cm in reverse poling, the stabilization times are relatively insensitive to the electric
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Fig. 2.5. Tracking domain backswitching phenomenon in z-cut nearstoichiometric
LiTaO3 following the application of a forward poling electric field pulse of 60 kV/cm
and 10 ms width at time t=0 ms. Electrode area was 20 mm2. (a) Voltage (broken
line) and transient current (solid line). (b) The corresponding selected video frames
using a 2000 frames/s camera. The first six frames of optical microscope images show
forward switching domain motion. A large domain wall sweeps away smaller domain
nucleations starting from the top right corner to bottom left corner. After a 10 ms frame,
domain backswitching is captured starting from the bottom left corner. The time elapsed
from the start of the voltage pulse for each frame is marked.
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Fig. 2.6. (a) The forward and reverse stabilization times tstab, j where j=f for forward
poling and j=r for reverse poling in near-stoichiometric z-cut LiTaO3 crystals. The
subscript start refers to the time gap tg, j=tstab, j′ , (j,j’)=(f,r) or (r,f) below which complete
domain backswitching is observed, and end refers to the time gap above which no
backswitching occurs. (b) A log plot of the same information as in (a), linear fits are
according to Eq. 2.3. The coercive fields Ec, f=18.7kV/cm and Ec,r=14.4kV/cm.
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field magnitude and are approximately (tstab, f )start ≈300 ms, and (tstab,r)start ≈30 ms.

The stabilization time in forward poling is ≈10 times higher than in reverse poling at

the same electric field. Figure 2.6(b) shows a logarithmic plot of the dependence of sta-

bilization time on the electric field. An exponential dependence is found for (tstab, j)start

as a function of electric field for most of the field range except for fields very close to

the threshold coercive field in forward poling geometry. Dropping the subscript start,

we can write this dependence as

tstab, j = tstab, joexp(
δstab, j

E − Ec, j
) (2.2)

where j= f or r, the activation values are δstab, f = 1.72 ± 0.32kV/cm and δstab,r = 11.6 ±

1.67kV/cm. The pre-exponent values are ln[tstab, f o(ms)] = 5.6±0.05 and ln[tstab,ro(ms)] =

2.08 ± 0.53. Referring back to the discussion of Fig. 2.4, we now briefly discuss the neg-

ative threshold coercive fields when the cycling time tg, j is below the pulse stabilization

time tstab, j′ where (j,j’)=(f,r) or (r,f). As an example, let a square electric field pulse

with E > Ec, f and a pulse width of approximately equal to, but slightly smaller than,

(tstab, f )start be applied to the crystal in forward poling. Domain reversal (forward pol-

ing) takes place during the pulse duration, and domain backswitching (reverse poling)

takes place immediately after the pulse has ended and the electric field E is zero. In this

situation, the external electric field required for reverse poling is zero, i.e., Ec,r ≈ 0 and

tg,r ≈ (tstab, f )start. This defines the zero crossing of the threshold coercive field curve in

Fig. 2.4(b). When the pulse width of the external pulse is much less than (tstab, f )start ,

Ec,r < 0 in Fig. 2.4(b), implying that a short electric field pulse of magnitude ≥ Ec,r in

the forward poling direction would be needed to prevent domain reversal in the reverse

poling direction from taking place during backswitching. A similar case can also be

made for negative Ec, f in Fig. 2.4(a) by interchanging the phrase forward poling (and

subscripts f ) and the phrase reverse poling (and subscripts r) in the above arguments.
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Fig. 2.7. (a) The domain switching time for z-cut near-stoichiometric LiTaO3 crystals
in forward (f) and reverse (r) poling for various time gaps, tg, j, j=(f,r). The electrode

area was 20 mm2. (b) A log plot of the same information as in (a) the solid lines are
fits according to Eq. 2.3. The coercive fields Ec, f=18.7 kV/cm and Ec,r=14.4 kV/cm for
tg, j=300s and Ec, f=1.36 kV/cm and Ec,r=1.23 kV/cm for tg, j=40s. The activation field
and preexponents from the fit are listed in Table 2.2.
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Fig. 2.8. High speed, real-time tracking of domain motion in z-cut near-stoichiometric
LiTaO3 under a forward poling external field of 30 kV/cm. The transient current (a)
and the corresponding optical images (b) using a high speed camera (Kodak Ektapro)
capable of real-time 2000 frames/s. The time instant, t elapsed after the application of
field at t=0, is also marked in each frame.
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Crystal: Poling direction Field Regimes δ j(kV/cm) ln[ts, jo(ms)]
(coercive field) tg, f j=(f,r) j=(f,r)

near-stoichiometric forward(f) E − Ec, f >13.9kV/cm 26.48±2.1 2.1±0.1
LiTaO3 tg, f=300s E − Ec, f <13.9kV/cm 5.34±0.2 3.18±0.1

(Ec, f=18.7kV/cm reverse(r) E − Ec,r >16.1kV/cm 33.4±2.1 1.98±0.08
Ec,r=14.4kV/cm) tg,r=300s E − Ec,r <16.1kV/cm 19.85±1.4 2.2±0.34

forward(f) E > Ec, f 64.73±1.3 1.57±0.05
tg, f=40s

reverse(r) E > Ec,r 70.05±2.3 1.39±0.10
tg,r=40s

Congruent forward(f) E − Ec, f >3.8kV/cm 51.4±5.9 -0.4±1.04
LiTaO3 tg, f=300s E − Ec, f <3.8kV/cm 1.49±0.5 11.35±0.35

(Ec, f=211kV/cm) reverse(r) E − Ec,r >2.1kV/cm 36.93±5.0 -1.8±1.03
tg,r=300s E − Ec,r <2.1kV/cm 0.95±0.5 10.44±0.76

Table 2.2. The fitting parameters for switching times ts, j in Eq. 2.4 obtained from
transient current measurements in near-stoichiometric (Fig. 2.7) and congruent (Ref. [9])
compositions of LiTaO3.

2.2.3 Switching time

Figure 2.7 shows electric field E versus switching time, ts, f (during forward pol-

ing) and ts,r(during reverse poling), respectively. Switching time here is interpreted as

the total time required to switch the entire electrode area (20 mm2 in this case). Two sets

of data are shown, one for tg, j=300s and tg, j=40s. For tg, j=300s two distinct activation

fields appear to be present for each of the forward and reverse domain reversal processes

that follow the exponential switching time relationships given by

ts, j = tsb, joexp(
δ j

E − Ec, j
) (2.3)

where j= f or r. By this definition, when the electric field E=Ec, f or Ec,r, the switching

times ts, f and ts,r tend towards infinity. For practical purposes, the extrapolated switch-

ing times at the measured threshold coercive fields are greater than 30 min in our case.

A logarithmic plot of electric field E versus switching time ts, f in Fig. 2.7(b) shows the

different activation field regimes more clearly. Table 2.2 lists the activation fields δ f , δr
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and the pre-exponents t f o and tro . Some key observations are as follows. (1) Switching

time decreases with decreasing tg, j following a similar trend to the threshold coercive

fields in Fig. 2.4 As already shown (see Fig. 2.4), decreasing time gap tg, j results in a

decreasing threshold coercive field Ec, j. For a fixed external electric field, a decrease

in the threshold coercive field will result in a greater mobility of the domain wall and

therefore a decrease in the switching time, which qualitatively explains this observation.

(2) For tg, j=300s, the switching times in the forward and reverse poling regimes show

two distinct slopes (activation fields) for low and high external field regimes, the slope

being considerably higher in the high field regime. (3) For tg, j=40s, the distinction

between high and low field regimes disappears, resulting in only one field regime. In

this single regime, the switching times as well as the activation fields are equal for the

forward and reverse poling as listed in Table 2.2. For shorter time gaps, tg, j approaching

the stabilization time tstab, j′ , the difference between threshold coercive fields Ec, f and

Ec,r become similar as seen from Fig. 2.4, as both of these quantities rapidly tend to

zero. The switching times therefore become similar as will be seen here. The differences

in forward and reverse threshold coercive fields and switching times are accentuated

only for long time gaps, tg, j.

2.2.4 Wall mobility

As seen in Fig. 2.2, the transient current shows a series of very sharp spikes on

the order of milliseconds even at a constant driving field. Real-time video confirms

this to correspond to discrete and sporadic jumps of domain walls. In the very-low

field regime close to threshold coercive field (≈15.5-22kV/cm in the present samples),

the domain motion occurs over a few milliseconds or less during the occurrence of

transient current spikes. These spikes are sporadic and are often separated by seconds

or minutes, in which time, no domain motion is seen on the macroscopic length scales

(> 10µm). Since the regular VCRs with 30 frames/s do not have the dynamic time range

of milliseconds-to-minutes, real-time measurement of domain mobility is not feasible.

At higher electric fields of >22 kV/cm, which lie well within the high field regime

discussed in Ch 2.2.3, the switching times are in the millisecond range, and the transient
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current shows peaks which are merged into each other as shown in Fig. 2.8 (a). The fast

domain wall velocities were measured with a high-speed charge coupled device camera

(Kodak Ektapro) capable of 2000 frames per second in real time. Figure 2.8(b) shows a

series of images from real-time domain motion with a time resolution of 0.5 ms between

frames. It is noted that domain walls still show pinning and sporadic motion at these

high fields. At all the studied fields, a single domain wall front was observed to sweep

across the video screen in this particular sample area. Two parameters were measured

from these real-time images: the maximum domain wall velocity of this wall, vs, f and

the pinned time, tp, f , spent by this domain wall in a pinned state, when it is not moving.

Analyzing the video frames in Fig. 2.9(b) and other similar ones at different

electric fields shows that the measured maximum sideways wall velocities vs, f increase

with electric field. The maximum pinning time tp, f and switching time ts, f decrease

with electric field. These are plotted in Fig. 2.9(a). Figure 2.9(b) shows the relative

time fraction tp, f /ts, f that the domain front spends not moving, as a function of electric

field. It is clear that the domain wall pinning dominates the total switching time ts, f at

lower electric fields. Based on Miller-Weinreich analysis [10], we assume an exponential

velocity dependence on electric field as

vs, j = vs, joexp

− αs, j
E − Ec, j

 (2.4)

where j= f or r. The velocity data is re-plotted as a log plot in Fig. 2.9(c). Our

experimental measurements of the velocity have very low scatter in the high field regime

as compared to the larger scatter in the low field measurements where random regime

alone (E-Ec, f >19 kV/cm) gives ln[l/v f o(s/mm)]=-6.59±0.06 and αs, f 22.09±2.17 kV/cm,

which does not extrapolate well into low field regime data. Therefore we conclude that

the data really represents two field regimes. For E-Ec, f ¡19 kV/cm, the scatter in the

measured velocity data is large, and therefore a range of activation fields exists, with a

mean value of αs, f ≈6.8kV/cm. The fitting parameters are summarized in Table 2.3. We

assume an exponential behavior of the pinned time tp, f as a function of electric field E
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as

tp, f = tp, f oexp

 δp, f
E − Ec, f

 (2.5)

and overlay this plot as well in Fig. 2.9(c). In addition, for comparison we plot the

switching time ts, f obtained from the video data on the same plot. The fitting parameters

for switching time [Eq. 2.3], sideways wall velocity [Eq. 2.4], and pinning time [Eq. 2.5]

are presented together in Table 2.3. All three physical properties show a discontinuity

around the field range of E-Ec, f=18-20kV/cm. In the higher electric field regime (E-

Ec, f >19 kV/cm) the activation fields αs, f (≈22kV/cm) for the sideways domain wall

velocity and the activation field δ f (≈21kV/cm) for the total switching time are similar,

while that for pinning time δp, f (≈70.5 kV/cm) is significantly higher, indicating that

sideways domain wall motion dominates the switching time ts, f in this field regime.

In the low electric field regime (E-Ec, f <19 kV/cm), the activation fields deltap, f , αs, f ,

and δ f are all similar. However, the magnitude of switching time is dominated by the

pinning time in this regime as seen in Fig. 2.9(b).

Crystal: ts, f , vs, f Electric Field Activation f ieldδs, f Pre-exponential factors
(coercive field) tp, f regimes or αs, f (kV/cm) ln(ts, f o), ln(1/vs, f o), ln(tp, f o)

near-stoichiometric ts, f E − Ec, f >20kV/cm δs, f = 20.86 ± 0.75 ln[ts, f o(ms)] = 3.15 ± 0.22
LiTaO3 E − Ec, f <20kV/cm δs, f = 6.8 ± 0.54 ln[ts, f o(ms)] = 3.9 ± 0.6

(Ec, f=18.7kV/cm vs, f E − Ec, f >19kV/cm αs, f = 22.09 ± 2.17 ln[1/vs, f o(s/mm)] = −6.59 ± 0.06
Ec,r=14.4kV/cm) E − Ec, f <19kV/cm αs, f = 6.8 ± 2.39 ln[1/vs, f o(s/mm)] = 2.20 ± 0.34

tp, f E − Ec, f >18kV/cm δp, f = 70.5 ± 1.78 ln[tp, f o(ms)] = −0.58 ± 0.32
E − Ec, f <18kV/cm δp, f = 4.8 ± 0.91 ln[tp, f o(ms)] = 2.70 ± 0.10

Congruent ts, f E − Ec, f >3.8kV/cm δs, f = 51.4 ± 5.88 ln[ts, f o(ms)] = −0.40 ± 1.04
LiTaO3 E − Ec, f <3.8kV/cm δs, f = 1.49 ± 0.52 ln[ts, f o(ms)] = 11.35 ± 0.35

(Ec, f=211kV/cm) vs, f E − Ec, f >4kV/cm αs, f = 42.56 ln[1/vs, f o(s/mm)] = −2.95
E − Ec, f <2kV/cm αs, f = 0.46 ln[1/vs, f o(s/mm)] = 10.09

Table 2.3. The fitting parameters for switching time ts, f , pinning time tp, f , and sideways
wall velocity vs, f measured from the real-time video data in Fig. 2.8(b) during forward
poling in near-stoichiometric LiTaO3. The results for congruent crystals (Refs. [8] and
[9]) are also given for comparison.
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Fig. 2.9. (a) Analysis of the switching time ts, f , the maximum pinning time tp, f , and the
sideways wall velocity vs, f , analyzed from the video frames showing domain motion in
Fig. 2.8(b). (b) The ratio of the pinning time to the switching time, tp, f /ts, f , indicating
that at lower electric fields the pinning time dominates the switching time. (c) The log
plots of ts, f , vs, f , and tp, f plotted according to Eqs. 2.32.5, respectively. The coercive
fields Ec, f=18.7 kV/cm. The fitting parameters to the linear solid line fits are given in
Table 2.3.
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2.3 Comparison of near-stoichiometric and congruent composition crystal

Many of the polarization reversal properties depend strongly on the lithium

non-stoichiometry in LiTaO3 and LiNbO3. This section compares and contrasts the

congruent [Li/(Li+Ta)≈0.485] and near-stoichiometric [Li/(Li +Ta)≈0.4977-0.4992] com-

positions of LiTaO3 . The most dramatic difference is that the threshold coercive field

required for domain reversal in congruent LiTaO3 is ≈210-220 kV/cm for forward pol-

ing and 110-120 kV/cm for reverse poling direction at room temperature. The internal

field is therefore Eint ≈45-50 kV/cm. This contrasts with threshold coercive fields of 17

kV/cm for forward and 15 kV/cm for reverse poling directions, and therefore an internal

field Eint ≈1 kV/cm in the near-stoichiometric crystals studied here. In lithium niobate

similar large changes are observed, and the variation of threshold coercive fields with

lithium concentration, C=Li/(Li+Nb), is found to be approximately linear in this com-

position range [4]. This linearity, though not strictly confirmed in isostructural LiTaO3,

is also expected [5]. Another clear difference is the domain wall contrast under optical

microscope at room temperature. In congruent crystals, domain walls are easily ob-

served under an optical microscope without any external field. The region adjacent to

these walls has been shown to possess optical birefringence [11] of 105 to 104, lattice

strains [12], and local electric fields [6]. There features are explored in greater detail

in the subsequent chapters. On the other hand, in near-stoichiometric crystals, optical

birefringence is significantly lower (estimated well below 10−6), and strains can hardly

be observed even with x-ray synchrotron imaging. Therefore there is a close relationship

between lithium non-stoichiometry and domain wall structure. The local relaxation of

point defect dipoles arising from nonstoichiometry in the region of the domain wall

leads to the observed strains, fields, and optical birefringence.

The variation of threshold coercive fields with repeated polarization cycling

shows similarities and differences in congruent and near-stoichiometric composition

crystals. Figure 2.10 shows the threshold coercive field Ec, j versus time gap tg, j for

congruent LiTaO3. Like near-stoichiometric crystals, congruent crystals also show large

negative threshold coercive field when the time gap is shorter than its stabilization
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Fig. 2.10. The dependence of coercive field Ec, j as a function of the cycling time gap
tg, j for forward and reverse poling for z-cut congruent LiTaO3, where (a) j=f and (b)
j=r. The time axis crossings at Ec, j=0 is equal to the measured stabilization time of
tstab, j′ , where (a) (j,j’)=(f,r) and (b) (j,j’)=(r,f). This crossing and the negative coercive
fields are shown more clearly in the insets. The solid line is a double exponential fit for
tg, j > tstab, j′ and a single exponential fit for tg, j < tstab, j′ as described by Eq. 2.1. The
fitting parameters are given in Table 2.1. The inset schematic describes the meaning of
negative coercive field as a minimum baseline voltage following the main pulse needed
to prevent domain backswitching after the end of the pulse.
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times. Again, the data point for the zero crossing of the field axis was obtained from the

stabilization time tstab, j′ where (j,j’)=(f,r) or (r,f). Similar to the measurements on near-

stoichiometric crystals shown in Fig. 2.4(a), this measurement on congruent crystals

can be fit to multiple exponential curves given by Eq. 2.1. However, one clearly notes

that the fit for the negative threshold coercive fields is different from that for positive

threshold coercive field, with a discontinuity of the derivative at the zero field crossing

corresponding to the stabilization time. In Table 2.1 the parameters for this fit are shown,

with the caveat that the zero time gap intercept for the fit to negative coercive fields

has large uncertainty due to the very small time gaps involved. Both stoichiometric

and congruent crystals show an abrupt decrease in threshold coercive field at tg, f=5

min. For time gaps longer than stabilization time, near-stoichiometric compositions

exhibit time constants of τ1, f=26s and τ2, f=177s, while congruent compositions exhibit

τ1, f=29s and τ2, f=523s. The time constants τi, f are very similar for both compositions

even though the magnitudes of threshold coercive fields show an order of magnitude

difference. This implies that even though the defect densities in the two compositions

are very different, the relaxation mechanism occurs by the same underlying physical

phenomenon. In Ch.2.4 I propose such a mechanism based on slow reorientation of

defect dipoles following polarization reversal.

The switching times for congruent and stoichiometric compositions exhibit sim-

ilarities and differences as well. The switching time ts, j as a function of external electric

field E-Ec, j for congruent crystals is shown in Fig. 2.11. Shown overlapped are the

switching times for stoichiometric crystals as well. Note that these measurements for

congruent crystals were reported before in literature, but were plotted as a function

of E-Eint [9], [13]. However, based on the exponential relationship between switching

time and electric field [see Eq. 2.3], at E=Ec, j the switching time goes to infinity. This

is physically more realistic than assuming the same thing at E=Eint as was done in

Refs [9], [13]. Both congruent and stoichiometric crystals exhibit two distinct electric

field regimes of E-Ec, j , where the activation fields δ j are different. These activation

fields are listed in Table 2.2. Note that in the high field regime, the activation fields for

both congruent and near-stoichiometric LiTaO3 are similar indicating again a similar



38

Fig. 2.11. The domain switching times for z-cut congruent LiTaO3 crystals in forward
for time gaps tg, f=300 s. The linear solid line fits are according to Eq. 2.4. The coercive
fields Ec, f=211 kV/cm for congruent LiTaO3. The activation field and preexponents
from the fit are listed in Table 2.2. Also overlapped for comparison are the switching
times for z-cut nearstoichiometric LiTaO3 crystals from Fig. 2.7(b). The electrode area
was 20 mm2 for both cases.

mechanism for domain wall motion. In the low electric field regime, the domain wall

pinning dominates the switching time as shown earlier in Fig. 2.9(b). This is true for

both near-stoichiometric and congruent compositions. However, since the nonstoichio-

metric defect density is lower in the near-stoichiometric crystals, the pinning process

and hence the switching time is quite random and varies drastically from one area of the

same sample to another. With higher defect density in congruent LiTaO3 this variance

from area to area decreases. The difference in the switching time behavior with field in

the low field regime between the near-stoichiometric and congruent compositions is a

direct result of this process. Note that implicit in this argument, we are proposing that

the pinning sites are also correlated with nonstoichiometric defects or defect aggregates.

This proposition is supported by the fact that the threshold coercive field in congruent

crystal appears to be a pinning-depinning transition. Small reversible pinning and
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bending of a domain wall locally on micrometer length scales has been observed [11]

in congruent crystals at fields of E<20 kV/cm which is an order of magnitude lower

than the threshold coercive field of ≈210 kV/cm. Since the threshold coercive field also

changes drastically with point defect concentration, the process of pinning and the ac-

tual pinning sites themselves must be correlated with point defects. We propose below

that the point defect complexes have an electrical dipole, which prefer to orient parallel

to the lattice polarization. Simple electrostatic calculations then show that there is an

energy barrier associated with a domain wall having to cross a defect dipole in its path,

which is the precise role of a pinning site.

The concept of stabilization time also is closely related to the presence of point de-

fect dipoles in the crystal. At room temperature, the stabilization times for forward and

reverse poling in congruent LiTaO3 are tstab, f=1.4-2s and tstab,r=0.1-0.3s, respectively.

On the other hand, the near-stoichiometric composition exhibits stabilization times of

tstab, f=0.25-0.9s and tstab,r=0.015-0.1s. Both compositions show an order of magnitude

difference between tstab, f and tstab,r. In addition, the stabilization times for congru-

ent compositions are an order of magnitude larger than that for stoichiometric crystals

in both forward and reverse poling directions. In the following section we present a

model where the origin of domain stabilization time is proposed to be directly related

to the time taken for the slow reorientation of the electrical dipole moment associated

with the movement of TaLi defect ions through close packed oxygen planes. Longer

stabilization times in congruent crystals suggest that this movement of the defect ion is

slower in congruent crystals as compared to near-stoichiometric crystals. The difference

in forward versus reverse stabilization time in each composition arises from the fact that

the lithium vacancies VLi surrounding a TaLi defect ion do not rearrange around the

new TaLi position after domain reversal at room temperature, thus creating a frustrated

defect dipole. These are explained in greater detail in the following section.

Figure 2.12 shows the sideways wall velocity vs, f as a function of electric field

E-Ec, f for congruent LiTaO3 [10]. The wall velocity of independently growing domains

is an order of magnitude lower than merged, serrated domain fronts as reported earlier

due to preferential nucleations at the serrations at the domain walls [10], [13]. We
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note that the behavior of switching time ts, f and sideways wall velocity 1/vs, f , as a

function of electric field E-Ec, f , show similarities in both congruent and stoichiometric

compositions. Both switching times ts, f and inverse sideways wall velocity 1/vs, f show

two electric field regimes where the activation fields δ f and αs, f change from one regime

to another. These electric field regimes are similar, as are the activation fields δ f and

αs, f for the switching times and the sideways wall velocities, respectively. In congruent

composition, the high electric field regime is E-Ec, f >3.8 kV/cm for switching time and

E-Ec, f >4 kV/cm for sideways wall velocity. The activation fields are δ f ≈51 kV/cm

and αs, f ≈43 kV/cm in the high field regimes and δ f ≈1.5 kV/cm and αs, f ≈0.5 kV/cm

in the low field regime. In the near-stoichiometric composition, the high electric field

regime is E-Ec, f >14 kV/cm for switching time and E-Ec, f >17 kV/cm for sideways wall

velocity. The activation field values are δ f ≈26 kV/cm and αs, f ≈22 kV/cm in the high

field regime and δ f ≈5.4-6.8 kV/cm and αs, f ≈6.8 kV/cm in the low field regime. [The

αs, f in the low field regime is very approximate due to a large scatter in the velocity

data in Fig. 2.9(c)]. These comparisons show that while the actual magnitudes of the

threshold coercive fields and wall velocities are very different in the congruent and

stoichiometric compositions, there are strong similarities. Above the threshold coercive

field, the electric field shows at least two distinct ranges in both cases, which we denote

as low and high electric field ranges. The domain wall pinning is dominant in the low

field regime, and wall velocity is dominant in the high field regime in both compositions.

2.4 Defect dipoles and domain reversal

In this chapter, I present a defect model based on nonstoichiometric dipolar

defects in LiTaO3. This model is based on the basic concept of bulk dipolar defect com-

plexes giving rise to domain stabilization and internal fields in ferroelectrics as has been

detailed in the works of Arlt [14], Lambeck [15], and Warren [16]. The model provides

a qualitative explanation of the domain reversal processes such as the dependence of

threshold coercive field on defect density and on repeated cycling at different frequen-

cies, the phenomena of domain stabilization time, and that of domain backswitching in

lithium niobate and tantalate.
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Fig. 2.12. Sideways wall velocity vs, f as a function of electric field for z-cut congruent
LiTaO3. The measured coercive field Ec, f=213kV/cm. Solid line fits are according to Eq.
2.5. The fitting parameters are listed in Table 2.3.

2.4.1 Nonstoichiometric dipolar defect

A comparison of stoichiometric and congruent crystals makes it clear that non-

stoichiometry in LiTaO3 is intricately related to the domain wall structure and kinet-

ics [6]. The above discussion raises the question as to what the exact nature of non-

stoichiometric point defects or defect complexes is. Below, we will discuss defect

models in iso-structural congruent LiNbO3 which has been more extensively studied.

We will then draw a parallel between defect models in LiNbO3 and LiTaO3 based on

the fact that they have the same lattice structure, threshold coercive fields, switching

times, internal fields, domain wall contrast, and phenomena of domain wall pinning

and stabilization, differing only in the magnitudes of these effects [6]. In congru-

ent composition of LiNbO3 , Prokhorov and Kuzminov [17] concluded that lithium

vacancies (VLi)
+ and oxygen vacancies (VO)2+ dominate at room temperature, corre-

sponding to a congruent defect structure of [Li0.944V0.056]Nb[O2.972V0.028] which we
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refer to as model I. However, the density of LiNbO3 increases with increasing lithium

deficiency which is incompatible with the oxygen vacancy model [18]. Schirmer et

al. concluded that niobium antisites (NbLi)
4+ and niobium vacancies (VNb)5− are the

dominant point defects and that oxygen vacancy is present at most in negligible concen-

trations, except when brute force treatments such as high energy electron irradiation are

applied [19]. The chemical formula for this defect model suggested by Abrahams and

Marsh is [Li0.947Nb0.053] × [Nb0.9528V0.047]O3, to be referred to as model II. However,

Donnerberg et al [20] showed that the formation of a niobium vacancy was found to

be energetically unfavorable as compared to the formation of a lithium vacancy. The

third proposed defect model (model III) is the presence of niobium antisites (NbLi)
4+ and

lithium vacancies (VLi)
− [21]. The neutron diffraction studies by Iyi et al [22] and Zotov

et al [23] support this defect model with a chemical formula of [Li0.95V0.04Nb0.01]NbO3.

Schirmer et al. [19] point out that the niobium vacancy model and the lithium vacancy

model can be reconciled if it is assumed that there are ilmenite type stacking faults in

the regular LiNbO3 crystal structure. However, a different suggestion has come from

Ivanova and Yatsenko et al. [24], [25] who have recently interpreted the nuclear magnetic

resonance (NMR) spectra in congruent LiNbO3 . They conclude that at room temper-

ature, a combination of models I and III in a ratio of 1.1:1.0 would provide a ”rather

good qualitative and quantitative agreement with the NMR 7Li spectra.” However, the

authors assert that only the model III (with allowance for mobility of Li+ ions in LiO6

octahedra) can explain the temperature dependence of the experimental NMR 7Li and
93Nb spectra from 77 to 4.2 K. Accordingly, the authors propose the structure of a defect

complex as comprising of a niobium antisite surrounded by three Li+ vacancies in the

nearest neighborhood, plus one independent Li+ vacancy along the polar z direction.

Yatsenko [26] has also reported that the preliminary analysis of the structural distor-

tions caused by a NbLi antisite defect reveals a contraction of the nearest three oxygen

atoms, and a displacement from the c axis of the nearest three 93Nb nuclei. This defect

complex comprising of one NbLi with four VLi certainly possesses an electrical dipole

moment, arising primarily along the z axis from antisite NbLi itself as well as from the

relative arrangement of VLi around the antisite. This defect model is also supported
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by x-ray and neutron diffuse scattering of congruent LiNbO3 reported by Zhdanov et

al., [27] Ivanov et al., [28] and most recently by Zotov et al. [29] These studies con-

clude that the diffuse lines in scattering arise from a one-dimensional (1D) displacive

and substitutional disorder in the three pseduo-cubic directions along the Li-O-Li-...

chains. These directions correspond to pseudo-cubic directions [24.1], [22.1], and [42.1]

(in orthohexagonal notation) which are related to each other by the threefold symmetry

axis (polarization c axis) and are inclined at 52◦ to the c axis. Diffuse maxima around

the Bragg positions reflect some three-dimensional (3D) short-range order of the defect

elements and the homogeneous part of the diffuse planes indicate random distribution

of the defect clusters. Since each niobium antisite requires four lithium vacancies in

the neighborhood for overall charge neutrality, Zotov et al. [29] suggest chains such as

Li-NbLi-V-Li, Li-V-NbLi-V, Li-V-V-NbLi, etc. as possible combinations.

Fig. 2.13. Schematic of defect dipoles in nonstoichiometric lithium tantalate at room
temperature, composed of 4[Ta4+

Li ] = [V−Li]. Schematics (a) and (c) show stable low
energy defect configurations in +Ps and -Ps domain states, respectively. Schematic (b)
shows a frustrated defect state after domain reversal of state (a) by an external electric
field at room temperature. State (b) will relax to state (c) after (b) is annealed at >200◦C
and cooled back to room temperature.
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Figure 2.13 shows a possible schematic of the equilibrium states of a defect

complex for an up and a down domain. Upon domain reversal, the niobium antisite

defect moves to the neighboring octahedron by movement of NbLi through the close-

packed oxygen plane. The lithium vacancies around the original defect in Fig. 2.13(a)

need to rearrange around the new antisite position to reach the stable defect equilibrium

state of Fig. 2.13(c). At room temperature, a lack of lithium mobility can result in the

frustrated state of defect complex as shown in Fig. 2.13(b), which can be relieved

into state (c) after a high temperature anneal. However, as pointed out by Nassau

and Lines [30], the presence of two niobium ions in adjacent oxygen octahedra can be

energetically unfavorable due to dense positive charge around the cluster. They propose

extended stacking fault defects in the structure. Zotov et al. [29], however, restrict the

size of such clusters to ≈ 11.4Å (about four cation sites) in order to match the correlation

length Lc≈13Å along the chains calculated from the full width at half maximum of the

diffuse streaks in x-ray.The average spacing between defect clusters along the chains is

estimated to be≈76 Å. The temperature dependence of diffuse x-ray streaks [29] suggest

that at low temperatures, the lateral correlations between defect clusters become quite

substantial. With increasing temperature, these correlations decrease, resulting in more

random 1D disorder. The changes in the threshold coercive and internal fields with

temperature as reported by Battle et al. [31] also point to the breaking up of eating

followed by reformation of the defect dipole in an energetically favorable orientation

upon cooling down to room temperature.

2.4.2 Backswitching and internal fields

Following the approach and interpretation of Arlt and Neumann in Ref [14]. we

propose a qualitative defect model for explaining internal fields and stabilization times

in LiTaO3 and LiNbO3 . Drawing an analogy between LiNbO3 and LiTaO3 we will

assume a simple defect model primarily based on a tantalum antisite defect and lithium

vacancies in lithium tantalate as depicted in Fig. 2.13. With this physical basis we will

now proceed to build a model for domain reversal in LiTaO3 .The process of domain

reversal in LiTaO3 involves movement of lithium atoms, LiLi, through the adjacent
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Fig. 2.14. A schematic describing the process of forward domain reversal and domain
backswitching in the presence of dipolar defects shown in Fig. 2.13. Each of the five
schematics (a)-(e) shows the voltage pulse V and the transient current i (top), followed
by the corresponding potential energy well (below) for the lattice polarization in the
presence of defects at the time instant t denoted by a gray circle in the voltage pulse
schematic. The notations are lattice polarization Ps (denoted by dotted up or down
arrow), defect dipole associated with TaLi antisite defect (denoted by ↑ or ↓), defect
dipole associated with the arrangement of VLi (denoted by ⇑ or ⇓), the time gap tg,r
that domain spends in the -Ps state before being forward poled to the +Ps state, and
stabilization time tstab,r.

close-packed oxygen planes into the neighboring vacant oxygen octahedra. This is

accompanied by a simultaneous motion of the tantalum atom, TaTa, from its acentric

location within its normal oxygen octahedral site to a centrosymmetrically opposite site

within its octahedra. At room temperature, the lithium ion has to force its way through

the opening in the oxygen triangle formed by three adjacent oxygen ions. This process

is postulated to be anelastic, in the sense that this motion requires strain in the close-

packed oxygen planes of the lattice, creation and relaxation of which is expected to be

time dependent. At a constant external driving field, say E, the motion of the lithium

ion is a function of time, corresponding to time-dependent changes in the free energy

potential, G. Let us now consider the TaLi antisite defect. Upon domain reversal under

an electric field we now postulate that this tantalum atom also has to pass through the

adjacent close-packed oxygen layer and into the adjoining vacant oxygen octahedron.

We start with the premise that this anelastic process is driven by the domain reversal

caused by electric field, and that this is a key step that needs to occur for the newly created
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domain to be stable. Referring back to Figs. 2.13(a) and 2.13(b), while the TaLi atoms

move upon domain reversal, the lithium vacancies surrounding the antisite defects do

not move at room temperature. This is suggested by the fact that ionic conduction at

room temperature is negligible and becomes substantial only at temperatures above 150
◦C, primarily due to lithium-site ionic motion [31]. Therefore, at room temperature,

the lithium vacancies around a tantalum antisite are in a frustrated state [Fig. 2.131(b)]

after the tantalum antisite atom TaLi has moved into the adjoining octahedron under

electric field induced domain reversal. This configuration has higher energy, which can

be only lowered by rearrangement of lithium vacancies in a new configuration, achieved

by heating and cooling, for example, which yields the final stable configuration of Fig.

2.13(c). The defect complex in Fig. 2.13 is assumed to comprise of a dipole moment,

which has two contributions. These are (a) the contribution to the electrical dipole arising

only from the TaLi antisite defect, and (b) the contribution to the electrical dipole arising

from the relative arrangement of the lithium vacancies VLi around a tantalum antisite

defect TaLi. Upon domain reversal at room temperature, the electric field can move

the TaLi antisite defect through the neighboring oxygen triangle and therefore reverse

the component (a) of the electrical dipole moment associated with only TaLi. However,

the component (b) of the electrical dipole moment associated with the arrangement

lithium vacancies is not reversed by the electric field. This results in the frustrated

domain state shown in Fig. 2.13(b). This requires thermal activation at > 150◦C for

a few minutes followed by cooling to rearrange lithium vacancies to achieve the low

energy domain state shown in Fig. 2.13(c). Figures 2.14(a)-2.14(e) show a schematic of

the potential energy diagram at room temperature for the forward switching process at

various instants of time t on application of a voltage pulse of width tg,r . The energy

diagram represents the electrostatic energy of the lattice polarization, modified by the

interaction energy resulting from the interaction between defect polarization and bulk

lattice polarization, and due to external field contributions to the total lattice energy.

For a first order ferroelectric phase transition, the difference between the free energy G

per unit volume in a ferroelectric state and that in the paraelectric state Go can written

as [3]
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G − Go|±Ps = −
A
2

P2 +
B
4

P4
− ED(t)P − EP (2.6)

where P is the lattice polarization, A and B are positive physical constants, ED(t) is the

effective time dependent defect field, and E is the external field applied. Note that the

above equation is applicable near the ±Ps states only. Here Ps indicates spontaneous

lattice polarization at the minimum energy state. Before any external field is applied

[E=0 at t=0; see Fig. 2.14(a)], the -Ps lattice polarization state is stabilized by the defect

polarization by an amount of ∆w− per defect dipole, with respect to the +Ps state. If

all the defect dipoles are aligned parallel to the -Ps direction in Fig. 2.14(a), then the

magnitude of the defect field ED at time t=0 is given by [14]

ED(0) =
N∆w−

2Ps
(2.7)

where N is total number of defect dipoles per unit volume. As Arlt and Neumann

point out [14], this effective defect field is not an existing electric field in the material.

Rather, it is a formal equivalent to the energetic difference between the two poling

states. The defect that stabilizes the -Ps polarization is thought of as being comprised

of two components: one arising from TaLi (indicated by ⇓) and the other arising from

the relative arrangement of lithium vacancies around the antisite defect (indicated by

↓). The application of an external electric field, +E, decreases the energy of the +Ps

state by E·P and increases the energy of the -Ps state by a corresponding amount. This

results in the reversal of the lattice domain state from -Ps to +Ps state as shown in Fig.

2.14(b). However, at a time instant t < tstab, f , the defect polarizations ⇓ and ↓ have not

reversed from their original state in Fig. 2.14(a). We now consider three cases. (i) When

the applied voltage pulse width tg,r is less than the stabilization time tstab, f . At the

end of the pulse (time instant t=tg,r < tstab, f ), domain backswitching occurs as shown

in Fig. 2.14(c). This is directly due to the fact that the external field related energy

contribution E·P →0 on removal of the voltage pulse, and the system returns to the

-Ps state, stabilized by defect polarization. (ii) When the applied voltage pulse width,

tg,r is just equal to or greater than tstab, f [Fig. 2.14(d)], no backswitching occurs. In
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this case the defect polarization component ⇓ reverses to the ⇑ state, corresponding to a

movement of TaLi through close-packed oxygen planes. Referring to Table 2.1, the time

constant for the realignment of defect polarization relating to TaLi movement is proposed

to be of the order of τ1, f ≈ 20.3s for congruent and 26.4 s for near-stoichiometric

LiTaO3 during forward poling. The stabilization time tstab,r in this interpretation would

approximately correspond to the time taken for the TaLi atoms to cross the close-packed

oxygen plane. The new defect polarization component stabilizes the polarization state

+Ps, thus preventing the backswitching. Note, however, that the defect polarization

component ↓ still does not reverse due to the lack of rearrangement of VLi around the

new TaLi position at room temperature. (iii) When the applied voltage pulse width

tg,r >> tstab, f [Fig. 2.14(e)], no backswitching occurs as in case (ii). In addition, a

slow time-dependent relaxation of the lattice polarization takes place in the presence

of a frustrated defect dipole (a combination of ⇑ and ↓ in Fig. 2.14), in reaching a final

equilibrium state as shown in Fig. 2.14(e). Referring to Table 2.1, the time constant

for this slow relaxation is attributed to τ2, f ≈ 399.6s (congruent) and 177.5s (near-

stoichiometric) time constants observed from Eq. 2.1. The final effective defect field ED

in Fig. 2.14(e) is given by

ED(t >> tstab,r) =
N∆w+

2Ps
(2.8)

Note that the effective defect fields ED in Eqs. 2.7 and 2.8 are not equal, a direct

consequence of the frustrated defect dipole component ↓ related to lithium vacancies in

Fig.2.14(e). The threshold coercive field Ec can be written as Ec(t)=ED(t) + Eintrinsic(t),

where Eintrinsic is the intrinsic threshold coercive field of exactly stoichiometric LiTaO3

with no defects present. This immediately suggests many qualitative features of domain

reversal. First, changes in the threshold coercive field with time (see, for example, Figs.

2.4 and 2.10) are directly related, in part, to the time dependent changes in the effective

defect field ED arising from the reorientation of the defect dipole denoted by ⇑ in Fig.

2.14. Second, since the magnitude of the effective defect field ED is directly proportional

to the density of defects N [Eqs. 2.7 and 2.8], the threshold coercive field Ec is directly

proportional to defect density N. This has indeed been confirmed in LiNbO3 where
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the threshold coercive field varies linearly with the ratio Li/(Li+Nb) between congruent

and stoichiometric compositions [6]. Third, the internal field, Eint, given by the offset

in the hysteresis loop along the field axis arises directly from the difference in the

defect fields ED between times t=0 [Eq. 2.7] and t� tstab, j [Eq. 8]. Assuming that

magnitude of the intrinsic threshold coercive field, Eintrinsic, does not change between

domain state in Figs. 2.14(a) and 2.14(e), we can write the internal field [4], [5], [6]

Eint ≈ [ED(t = 0) − ED(t..tstab, j′)]/2 for slow polarization cycling (tg, j�tstab, j′) as

Eint ≈
N(∆w− − ∆w+)

4Ps
(2.9)

Again, the internal field clearly depends linearly on the density of defect dipoles as is

also experimentally observed [6].As mentioned before, it must be emphasized that the

defect and internal electric fields discussed above are not to be thought of actual electric

fields, but as energy equivalents to the differences in the energy levels between different

states. These energy differences can include not only electrostatic energy differences

but elastic energy differences as well due to lattice distortions. The electrical dipoles

associated with defect complexes can therefore also have elastic dipole components [14].

2.4.3 Domain wall pinning and backswitching at a dipolar defect

Based on the defect dipole model presented above, backswitching and stabilza-

tion time can be sucessfuly explained. To demonstrate this model, we present a simple

1-D Time Dependent Ginzburg Landau analysis. To intuitively understand the back-

switching effect, we consider only the 1-D case, and ignored the strain energy terms.
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Equations 2.10 to 2.13 shows all energy terms that were used in our 1-D modeling.

Fp = −
Ψ1P2

z
2
+
Ψ2P4

z
4

(2.10)

Fg = g · P2
z,1 (2.11)

Fext = −Eext · Pz (2.12)

Fde f = −Ede f · Pz (2.13)

(2.14)

where Fg is polarization energy, Fg is gradient energy, Fext is external field induced

energy, and Fde f is defect dipole induced energy. Ψ1 = 1/2ε33 and Ψ2 = Ψ1/P
2
s .

we used ε33 = 30, spontaneous polarization value for normal case is ±1C/m2, and

g=6×10−3C−2
·N ·m−4. Eext is an externally biased electric field, and Ede f is an electric

field induced by defect dipole. This equivalent defect dipole(PD)(=2C/m2) induced

field can be calculated by using defect dipole moment inside a crystal as can be seen in

Eqn. 2.15.

Ede f =
→
r

Q · L · cos(θ)

2 · πε33r3
+
→

θ
Q · L · sin(θ)

4 · πε33r3
(2.15)

Here,
→
r is a unit vector between defect dipole and lattice dipole, and

→

θ is a unit vector

for the angle between defect dipole and lattice dipole as can be seen in Fig. 2.15 (b).

Figure 2.15 show the schematic diagram of 1-D TDGL simulation. A one-dimensional

TDGL equation is given in Eq. 2.17

FTotal = Fp + Fg + Fext + Fde f (2.16)

∂
∂t

Pβ(r, t) = −µ
δFTotal
δPβ(r, t)

+ noise(r, t) (2.17)

The numerical code for the solving the above equation is given in Appendix A.

As an initial condition, a single sharp domain wall already exists. The left side domain

has a normalized Ps value of -1 and the right side has a value of +1. When t>0, the
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electric field Eext = 108V/m points towards the down direction , which is favorable to

the left side domain, as can be seen in Fig. 2.15. As explained in previous section,

a defect dipole takes more time to be poled by external field than normal dipole. In

simulation, we fixed defect dipole moment value 1C·m which does not change during

the simulation, even though the domain wall pass across the defect dipole area. This

would e the case if the entire simualtion is done within the stabilization time according

to the above described defect dipole model. We also incorporate a bulk crystal relaxation

effect. As soon as dipole is revered to other dipole, the double potential well height

decreases to 10 percent of the original value (Ψ1 and Ψ2 decrease to 10 percent of the

original value). This decreased potential well helps domain back-switching with the

defect dipole. Without this relaxation, the back switching becomes very difficult as can

be seen in Fig. 2.16. After we incorporate the relaxation term, domain backswitching

can be easily achieved by simulation. Figure 2.17 shows how a combination of defrect

dipole and relaxation effect results in domain backswitching.

2.4.4 The dependence of Coercive fields on domain walls and defects

In this chapter, we have seen an order of magnitude change in coercive fields

with the presence of a small amount of nonstoichiometric defects in lithium niobate and

tantalate crystals. It turns out that even these coercive fields (of 2-21 kV/mm) are one or

two orders of magnitude smaller than intrinsic coercive fields predicted from Landau

theory of ferroelectrics.

Why are the experimentally measured coercive fields for domain reversal in fer-

roelectrics many orders of magnitude smaller than theoretical estimates? The question

mirrors a similar one asked with regard to mechanical strength of materials, namely, why

is, for example, the measured critical resolved shear stress in materials (e.g.,≈ 1010N/m2

in metals) many orders of magnitude lower than experimentally observed deformation

shear stresses (e.g., ≈ 106N/m2 in metals) [32]. This discrepancy in mechanical strength

is explained by the presence of dislocations in materials. The discrepancy in ferro-

electrics has primarily been discussed through the recognition that while the simple

estimate of intrinsic coercive fields from the Landau-Ginzburg (LG) theory does not
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Fig. 2.15. (a) 1D TDGL modeling diagram when time equal 0(no bias). Down arrow
represent -1 dipole value and up arrow represent -1 dipole value. Lower figures shows
initial condition that contains a sharp domain wall. (b)Defect induced field at a distance
r and angle θ from defect dipole(QL).

account for the presence of domain walls or other defects, real single domain crystals

nonetheless possess defect sites where it is easier to nucleate domains [33] [34]. Once

a domain nuclei exists, the Miller and Weinreich theory [35] explains the effective lat-

eral motion of pre-existing, atomically sharp domain walls, in terms of the probability

of overcoming an energy barrier, U, to preferentially nucleate small wedge-shaped do-

mains adjoining the wall. Though not uniquely defined, one can consider the maximum

electric field, E=dU/dP required to completely overcome the steepest climb out of the
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Fig. 2.16. Domain switching without potential well relaxation. Backswitching is not
happening. Time is 10, 500, 1000, 1500, 2000, 2500 from (a) to (f). -105kV/m external
field is on t=1 and off at t>700.
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Fig. 2.17. Domain switching with potential well relaxation (90 percent decreasing).
Backswitching is really happening. Time is 10, 500, 700, 1000, 2000, 3500 from (a) to (f).
-105kV/m external field is on t=1 and off at t>700.



55

energy well, U versus P (polarization), as an estimate of the intrinsic coercive field. Do-

main wall pinning at physical defects can also contribute to the experimental coercive

fields, which manifests as the threshold field for wall depinning [36]. I explore the theo-

retical estimate of coercive field from the Landau-Ginzburg (LG) theory in the presence

of preexisting 180 domain walls with finite wall widths. Specifically, I wish to show that

a finite polarization gradient at the domain wall can lower the local intrinsic coercive

fields adjacent to the wall, thereby facilitating local wall motion. The problem is treated

generally for any ferroelectric with a second-order phase transition, and two possible

antiparallel domain states. Let us first calculate the theoretical coercive field for 180

domain reversal in these materials. The Ginzburg-Landau-Devonshire free energy per

unit volume, G, of a ferroelectric with a second order phase transition is given by [33]

G = −
α1
2

P2 +
α2
4

P4 (2.18)

where the order parameter is the polarization, P. One can calculate the effective α1

and α2 coefficients from the dielectric constant ε33 and the homogeneous spontaneous

polarization, Ps as α1=1/(2ε33) and α2≈ α1/P
2
s . These values at room temperature are

ε33=43.5εo and Ps=0.55 C/m2 for LiTaO3, ε33=30εo, Ps=0.55 C/m2, for LiNbO3. The

equation of state, E=dG/dP defines the theoretical P versus E hysteresis loop. The

coercive field E=Ec is defined as the turning point (dE/dP)E=Ec=0, which determines

the polarization Pc at the coercive field as Pc = ±
√
α1/(3α2). Substituting this value

back in the equation of state yields the coercive field Ec as

Ec = ±
2

3
√

3

√√
α3

1
α2
≈ 0.385α1Ps (2.19)

Substituting for the values of α1 and α2 in Eq. 2.19, the intrinsic coercive fields are

Ec≈2750kV/cm (LiTaO3) and Ec≈5420kV/cm (LiNbO3). In contrast, the coercive fields

for near-stoichiometric LiTaO3 is ≈17 kV/cm [37], for near-stoichiometric LiNbO3 is

≈ 40kV/cm [38], and for congruent compositions of both materials is≈210kV/cm [37] [38].

In the following analysis, we now consider the presence of pre-existing 180◦ domain
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Fig. 2.18. (a) A plot of the polarization gradients (Eq. 2.20), Pi (initial), P f (final), and
∆P = P f − Pi, of a 180 domain wall in LiTaO3 after movement of the wall by an amount
a under the influence of an external field E in the +x direction. (b) The corresponding
polarization energies (Eq. 2.18), Gi, and G f , and ∆G = G f − Gi are also shown. The
normalization term xo is the domain half width according to Eq. 2.20.

walls with a finite wall width of polarization gradient, P(x) defined as [33]

P = Pstanh(x/xo) (2.20)

where Ps is the spontaneous polarization, x is coordinate normal to the wall and 2xo

is the characteristic wall width. This polarization, P and the associated free energy, G

(from Eq. 2.18 is plotted in Fig. 2.18(a) for LiTaO3. Now we ask the following question:

What is the free energy change ∆G when such a domain wall moves by one lattice
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parameter, ∆x=a, resulting in a change of polarization and energy at every location x by

amounts ∆P=P f -Pi and ∆G=G f −Gi(Subscripts i and f stand for initial and final states,

respectively, as shown in Fig. 2.18). One can numerically calculate these quantities. On

the other hand, if one assumed that a/xo is small, then, one can analytically evaluate

∆P=(dP/dx)∆x from Eq. 2.20. The corresponding free energy change is calculated as

∆G=(∂G/∂P)∆P, using Eq.2.18 and ∆P. For example, from Fig.2.18, it is clear that for the

wall to move in the -x direction, there is a positive energy barrier, ∆G that the external

field, +E has to overcome, which is less than the original energy barrier, G for a graded

wall. The minimum external field required to overcome this barrier is therefore, the

steepest slope of the energy well DG versus P, i.e., E
′

c = (−d(∆G)/dP)max. This occurs

at the wall center (x=0). The negative sign reflects the negative slope of ∆G versus P at

the wall center under a positive field +E (see Fig. 2.18). The coercive field for domain

motion can therefore be simplified at the wall center as

E
′

c = Psα1a/xo (2.21)

where K=Psα1 was determined as 0.368 V for LiTaO3 and 0.726 volts for LiNbO3 .

Clearly, the coercive field contribution for this type of domain wall motion is inversely

proportional to the wall width, 2xo. Out of curiosity, if we presently ignore other

mechanisms, and calculate the values of the equivalent domain wall widths, xo required

to account for experimentally measured coercive fields in near-stoichiometric lithium

niobate and lithium tantalate [37], we arrive at the upper limits of domain wall widths

of xo ≈216 nm for near-stoichiometric LiTaO3 and xo ≈181 nm for near-stoichiometric

LiNbO3 . For congruent compositions, these widths would be 17.5 nm (LiTaO3) and

34.5 nm (LiNbO3).

Are these polarization widths at all reasonable? On the one hand, first-principle

calculations on 180 domain walls suggest that they may be just a unit cell (≈0.4 nm)

wide [39]. On the other hand, recent work on domain walls in LiNbO3 and LiTaO3

show unexpectedly wide regions of strain [40] and optical birefringence (extending over

micrometers) around individual domain walls, which are strongly correlated with the
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presence of nonstoichiometry in the crystal [36]. In situ x-ray synchrotron experiments

of individual domain wall strains under external fields in lithium niobate single crystals

show that extended domain wall strains develop over 10-50 mm around the wall at fields

an order of magnitude below experimental coercive fields as shown in Ch. 4.2.1. One

naturally enquires if the corresponding polarization gradient at the domain walls might

be broadened as well in these materials due to nonstoichiometry or in the presence of

an external field. A piezoelectric scanning probe microscopy image of domain walls

in congruent LiTaO3 is shown in Fig. 2.19. The principle of domain imaging in the

piezoresponse mode is described in detail elsewhere [41]. Figure 2.19 also shows a cross

section profile of the piezoresponse signal across the domain wall (i.e., along the black

line in the image). Due to possible artifacts related to sample leveling, we refer not just

to the distance between maximum and minimum values of the piezoresponse signal

(which is ≈400 nm wide) but also to the actual image of the wall, which was found

to be about 120 nm. The best resolution that could be expected can be as small as the

radius of the tip-sample contact area, i.e., of the order of several nanometers. However,

the observed widths should be treated as upper limits until a detailed modeling of the

image is performed.

In addition to wall broadening, other factors can contribute to coercive fields.

Taking some these into account, we can therefore write the net experimentally observed

coercive fields as,

Ec = E
′

c − Esc + Ede f ect (2.22)

where Esc is the space-charge field, and Ede f ect is the bulk dipolar defect field. Surface

polarization relaxation [42] can give rise to a polarization gradient and hence a space-

charge layer near the crystal surface as recently observed in LiNbO3 [43] [44]. Even

if the space-charge density (charge/area) in this layer is σ ≈ 10−2
− 10−3Ps, the space-

charge field, Esc = σ/ε would be of the same order of magnitude as the experimental

coercive fields in lithium niobate and tantalate, and will aid in domain wall motion.

The dipolar defects, which stabilize domains, such as defect complexes of Ta or Nb

antisites and lithium vacancies proposed here [37], will give rise to equivalent defect

fields, Ede f ect [45], which tend to increase the coercive fields. As noted in Refs. [37]
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and [45], the defect field Ede f ect is not an existing electric field in the material. Rather,

it is a formal equivalent to the energetic difference between the two domain states +Ps

and -Ps, one stabilized by the dipolar defects by an amount of energy -Ede f ect · Ps and

another raised in energy by the same amount.

Therefore, a very likely scenario for near-stoichiometric crystals, (Ede f ects ≈0) is

that the experimentally measured coercive field, Ec, may be equal to the net sum of the

first two terms in Eq. 2.22 (and perhaps further contributions arising from other types

of defects). Since the stoichiometric composition of LiTaO3 has a coercive field of ≤17

kV/cm, the defect field in the congruent composition would be ≥210-17=193 kV/cm,

which clearly dominates the experimentally observed coercive fields (210 kV/cm) in

congruent compositions.

The important conclusion of this discussion is that, compared with theoretical

estimates, the local coercive field in the presence of a polarization gradient at a 180◦

domain wall is reduced by a factor of ≈0.385 xo/a, where a is the lattice parameter and

2xo is the wall width. More generally, one could expect that any significant polar-

ization fluctuation in a ferroelectric crystal, not just limited to a domain wall, would

potentially reduce the coercive field for domain reversal in that region. The precise

experimental determination of polarization wall width (particularly in the presence of

small amounts of nonstoichiometry and under external fields) is central to resolving the

issue of theoretical coercive fields in ferroelectric crystals.

2.5 Conclusion

As conclusion, we showed that that the presence of nonstoichiometry in ferro-

electric LiTaO3 gives rise to large changes in the polarization reversal properties of

this material. In particular we have presented real-time studies of domain motion

in near-stoichiometric composition [C =Li/(Li+Ta)≈0.4977- 0.4992] crystals. We have

directly imaged and tracked the domain backswitching process in lithium tantalate.

We have systematically investigated the polarization hysteresis loops, threshold coer-

cive fields, stabilization times, switching times, and wall velocities of these crystals at
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Fig. 2.19. First harmonic piezoresponse signal image (left-hand side) of one vertex
of a triangular 180◦ domain in a congruent LiTaO3 crystal using a scanning probe
microscope. Polarization is normal to the image plane. The cross section profile of the
piezoresponse signal across the domain wall (i.e., along the black line in the image) is
shown on the right-hand side. The imaging voltage of 5 V, 10 kHz was applied using a
standard Au-coated Si3N4 cantilever with a spring constant of 0.1 N/m and a resonant
frequency of 34 kHz. The probing tip with an apex curvature radius of about 20 nm
was in mechanical contact with the sample surface during the measurements (repulsive
force regime). The image scan rate was 0.5 Hz.

room temperature. These results are then compared and contrasted with those for con-

gruent compositions (C=0.485). The threshold coercive field for domain reversal and

domain stabilization time increases by an order of magnitude with increasing lithium

deficiency from near-stoichiometric to congruent compositions. The presence of lithium

nonstoichiometry also introduces internal fields, which increase with increasing lithium

deficiency. The sideways domain wall velocities are two orders of magnitude higher

in nearstoichiometric crystals as compared to congruent crystals. There are similarities

between the dependence of switching times and wall velocities with electric field in

both nearstoichiometric and congruent compositions. In both compositions the domain

wall motion is dominated by wall pinning at electric fields close to threshold coercive

fields, and by wall velocity in the high field regime. We propose a physical defect dipole

composed of lithium vacancies and tantalum antisites. Based on the concept of domain

stabilization by bulk dipolar defects, this model qualitatively predicts many of the ob-

served features of domain reversal such as the dependence of threshold coercive field on
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defect density and on time spent in a domain state after its creation, the phenomenon of

domain stabilization time, domain backswitching, and internal fields. The experiments

and modeling results in this chapter can be applied to lithium niobate (LiNbO3) as well,

which shows very similar domain reversal properties.

We also showed that the local coercive field in the presence of a polarization

gradient at a 180 domain wall is reduced by a factor of ≈0.385 xo /a, where a is the lattice

parameter and 2xo is the wall width, compared with theoretical estimates.

The experiments and modeling results in this chapter can be applied to lithium

niobate (LiNbO3) as well, which shows very similar domain reversal properties.
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Chapter 3

Time Dependent Ginzburg Landau

Ferroelectric Domain Simulation

Ferroelectrics comprise of several domain states, such as 180◦ domain walls usu-

ally observed in trigonal, tetragonal and hexagonal crystal systems, and 90◦ walls in

tetragonal systems. More complex domain walls exist in other crystal systems [1]. Most

of the ferroelectric domain structures evolve while these crystals are cooled down from

a high temperature, higher symmetry paraelectric phase and undergo a paraelectric to

ferroelectric phase transition. A single domain region has a homogeneous spontaneous

polarization and a specific crystallographic orientation. Because of the spontaneous

polarization, it also has spontaneous strain that accompanies the creation of the po-

larization. When polarization value varies spatially (i.e. gradient of polarization), as

in the case near a domain wall, it creates electrical charge and therefore anisotropic

energy (or domain wall energy). A sum of all these energies (polarization, strain, and

gradient) will finally determine the domain structure. A useful technique to study

such a complex domain pattern formation and phase transitions is the Time Dependent

Ginzburg Landau (TDGL) theory. In the context of the ferroelectric phase transition,

this approach has been successfully used to study pattern formation and growth of

domains ( [2], [3], [4], [5]). The 3-D free energy including strain and electrostrictive

coupling is already well studied [6]. The uniqueness of my approach here is that it

also includes higher order anisotropic gradient energy terms. By using these higher

order anisotropic energy terms, various domain shapes, such as hexagonal or triangular

domains in LiNbO3 and LiTaO3 can be predicted.
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3.1 3D tdgl modeling

3.1.1 Free energy expressions for a Ferroelectric system

The high temperature prophase (paraelectric phase) of LiNbO3 and LiTaO3 have

a 3m (R3c:space group) point group symmetry. At room temperature, both crystals have

the lower symmetry 3m (R3c:space group). LiNbO3 becomes ferroelectric below 1210◦C,

and LiTaO3 below 665◦C. Because of inversion symmetry along the crystallographic z-

direction, only ±Pz spontaneous polarization is allowed. But it is possible that adjacent

to a domain wall, polarizations ±Px, and ±Py (in-plane) can exist. In the mutidomain

state of a ferroelectric, there are two kinds of long-range interactions: strain and electro-

static. Usually in a 180◦ domain system where polarization is along ±Pz, there is no

expected crystallographic restrictions on specific domain shapes within the x− y plane.

These preferences, if they exist, arise either electrostatic energy or anisotropy energy,

and are responsible for the unique domain shapes in LiNbO3 and LiTaO3 crystals. Even

though the primary order parameter is Pz in a 180◦ domain wall system, we include Px

and Py components here as well in order to account for the possible charged domain

walls.

The total free energy per unit volume of a ferroelectric system is given by,

fTotal = fl + fs + fc + fg + fd−d (3.1)

Here, the fl is the ferroelectric polarization energy (also called landau free energy), fs is

the elastic energy, fc is the electrostrictive energy that couples polarization and strain, fg

is the gradient energy, related to polarization gradients in the material, and fd−d is the

dipole-dipole interaction energy related to electrostatic charges at domain walls. Each

of these terms is now discussed in detail.

The Landau free energy is given by

fl = −
ψ1P2

z
2
+
ψ2P4

z
4
+
ψ3(P2

x + P2
y)

2
(3.2)
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The energy terms fl(r) and polarization Pz(r) are functions of location r(x,y,z). For

brevity, this dependence is not explicitly stated in the equations above and those that

follow. The coefficientsΨ are related to the physical constants of the material (dielectric

constant and spontaneous polarization). These relations are explicitly given as

Ψ1 = 1/(2 · ε33) (3.3)

Ψ2 ≈ Ψ1/P
2
s (3.4)

Relative clamped dielectric constants of 30 and 43.5 are used for LiNbO3 and LiTaO3,

respectively. The spontaneous polarization for LiNbO3 ia a 0.75[C/m2] and for LiTaO3

is 0.55[C/m2]. The energy term fl(r) and polarization P(r) are also a function of location

r(x,y,z), which is not explicitly shown for simplifying the notation. The Elastic energy,

fs is given by,

fs =
1
2

Ci jklεi jεkl (3.5)

where, Ci jkl is the elasticity tensor, and εi j the strain tensor. The terms fs and ε are also

functions of location, r, but not explicitly stated for brevity. The coupling energy can be

represented as

fc = Qi jklεi jPkPl (3.6)

where Qi jkl is the electrostrictive tensor.

The gradient free energy density is given by,

fg = g1

(∂Pz
∂x

)2
+

(
∂Pz
∂y

)2 + g2

(
∂Pz
∂z

)2
(3.7)

Here, g1 is an in-plane gradient energy coefficient for homogeneous case. The term g2

is a coefficient for the polarization variation in the z direction. Higher order gradient

energy will be derived in the later part of this chapter. The dipole-dipole interaction

free energy is given by,

fd−d = −P · E (3.8)
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Here E is a electric field which is generated by inhomogeneous polarization distribution.

Now stress σi j can be defined by

σi j =
1
2

Ci jklεkl +Qi jklPkPl (3.9)

Because of the mechanical equilibrium condition of no net forces,

∂σi j
∂x j
= 0 =

∂
∂x j

[
1
2

Ci jkl

(
∂uk
∂xl
+
∂ul
∂xk

)
+Qi jklPkPl

]

=
∂
∂x j

[
Ci jkl

∂
∂xl

∫
ũkei

→

k ·
→
r dk3 +Qi jkl

∫
P̃kPle

i
→

k ·
→
r dk3

]

=

∫ (
Ci jkl(ik jikl)ũk +Qi jkl(ik j)P̃kPl

)
ei
→

k ·
→
r dk3 = 0 (3.10)

To satisfy the above equation,

Ci jklk jklũk = iQi jklP̃kPlk j (3.11)

I can set

G−1
ik = Ci jklk jkl = |k|

2 Ci jkln jnl = |k|
2Ω−1

ik

T̃i j = Qi jklP̃kPl (3.12)

it makes simple equation,

G−1
ik ũk = iT̃i jk j (3.13)

So displacement field in Fourier space can be,

ũ(k) = iGkiT̃i jk j =
i
|k|
Ω−1

ki T̃i jn j (3.14)
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The real space displacement can be written as,

uk(
→
r ) = i

∫
dk3

(2π)3
1
|k|
ΩkiT̃i jn je

i
→

k
→
r (3.15)

Based on displacement field, I can get integrated eleastic(Fel) and coupling(Fcp) energy

in the system

Fel + Fcp =

∫
dr3( fs + fc)

=

∫
dr3

(1
2

Ci jklεi jεkl +Qi jklεi jPkPl

)
=

∫
dr3 1

2
Ci jkl

∫
(dk′3)ε̃i je

ik
′
r
∫

(dk′′3)ε̃kle
ik
′′

r

+Qi jkl

∫
(dk′3)ε̃i je

ik
′
r
∫

(dk′′3)P̃kPle
ik
′′

r

= −

∫
(dk3)

(1
2

Ci jklε̃i jε̃kl
∗ +Qi jklε̃i jP̃kPl

∗
)

= −

∫
(dk3)

(
−

1
2

Ci jklk jklũiũk
∗ + iQi jklk jũiP̃kPl

∗
)

=

∫
(dk3)

(1
2

G−1
ik ũiũk

∗
− iT̃∗i jk jũi

)
=

∫
(dk3)

(1
2

iT̃∗i jk jũi − iT̃∗i jk jũi

)
=

∫
(dk3)

(1
2

iT̃∗i jk jiGi jT̃ jlkl − iT̃∗i jk jiGi jT̃ jlkl

)
=

∫
(dk3)

(1
2

T̃∗i jk jGi jT̃ jlkl

)
(3.16)

The integrated Landau free energy can be easily represented by,

Flandau =

∫
(dx)3

−ψ1P2
z

2
+
ψ2P4

z
4
+
ψ3(P2

x + P2
y)

2

 (3.17)
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The integrated gradient and dipole-dipole interaction energies are similarly calculated

as

Fg =

∫
(dx)3

g1

(∂Pz
∂x

)2
+

(
∂Pz
∂y

)2 + g2

(
∂Pz
∂z

)2 (3.18)

Fd−d = −

∫
(dx)3 (P · E) (3.19)

3.1.2 Symmetry invariant terms in the energy

Because of the nature of the 180◦ domain walls, the gradient energy is dominant

in determining the domain wall orientation in the x−y plane. By using crystal symmetry,

we can deduce the invariant terms in the gradient energy. The gradient energy arises

from the gradient of the primary order parameter, Pz. All the energy terms, including

the gradient term, have to satisfy the point group symmetries of the prototype phase,

namely, 3-fold rotation axis about the polarization direction, mirror plane in the y − z

plane (a c-glide plane to be more precise), and finally the inversion symmetry. In other

words, the energy terms cannot change when the coordinates are transformed using an

allowed symmetry. To examine the tensor properties in the trigonal or hexagonal sys-

tems, it is often convenient to transform the real axes x and y into complex axes η and ξ

as follows.


ξ

η

z

 =


i −1 0

i 1 0

0 0 1




x

y

z

 (3.20)

A three-fold rotation symmetry operation in the [x,y,z] coordinate is

R =


cos(2π/3) sin(2π/3) 0

−sin(2π/3) cos(2π/3) 0

0 0 1
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and the mirror operation about the y − z plane is given by

M =


−1 0 0

0 1 0

0 0 1


The inversion operation in the [x,y,z] coordinate system is

I =


−1 0 0

0 −1 0

0 0 −1


By using similarity transformation, these above symmetry operations can be trans-

formed in the [ξ, η, z] coordinate system as follows. A three-fold symmetry operator in

[ξ, η, z] coordinate is

R′ =


e−(2πi/3) 0 0

0 e(2πi/3) 0

0 0 1


The mirror operation in [ξ, η, z] coordinate is

M′ =


0 −1 0

−1 0 0

0 0 1


and inversion operation is in [ξ, η, z] coordinate is

I′ =


−1 0 0

0 −1 0

0 0 −1
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Similarity matrix transformation makes R’ as a diagonal matrix, which is why complex

transformation is used. But the gradient energy element Pz,ξ (or ∂Pz
∂ξ

) should be treated

a bit carefully. Unlike a normal contravariant tensor, Pz,ξ becomes a mixed tensor.

Because the coordinate z coordinate and the in-plane axes ξ and η are independent,

therefore, Pz can be treated as a contravariant, and the derivative part can be treated

as a covariant tensor. For covariant transformation of the partial derivative term, the

inversion matrix of R’, M’, and I’ is used. Table 3.1 shows the results of such symmetry

transformation. By using Table 3.1, many invariant terms can be generated. As an

3fold Rotaion Inversion Mirror

P′z,ξ ei2π/3Pz,ξ Pz,ξ −Pz,η

P′z,η e−i2π/3Pz,η Pz,ξ −Pz,ξ

Table 3.1. symmetrical operation for the gradient energy term

example, P′z,ξP′z,η = Pz,ξPz,η is one of the invariant gradient terms. Due to the isotropy

in the x − y plane, the P′2z,ξ + P′2z,η invariant energy term exists. Similarly, P′3z,ξ − P′3z,η

(which contains a 3-fold symmetry), and P′6z,ξ +P′6z,η energy term (which contains 6-fold

symmetry) are allowed. For stoichiometric LiNbO3 and LiTaO3 crystals, and congruent

LiNbO3 crystals, one observes hexagonal shaped domains. It will be shown below

that this is explained by the presence of a 6-fold symmetry gradient energy term. In

stoichiometric LiTaO3 crystals, triangular domains are observed, which can be explained
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by including a 3 fold symmetry gradient energy term.

fg:isotropic = giso:xy(P2
z,ξ + P2

z,η) + giso:zP2
z,z (3.21)

fg:3 f old = g3 f old:xy(P3
z,ξ − P3

z,η) + giso:zP2
z,z (3.22)

fg:6 f old = g6 f old:xy(P6
z,ξ + P6

z,η) + giso:zP2
z,z (3.23)

Here g j:xy (j can be iso, 3-fold, or 6-fold) are in-plane gradient energy coefficients, and

giso:z is a z-direction gradient energy coefficient. By using the transformation matrix,

these gradient energy terms can be written in terms of x and y coordinates as follows:

fg:isotropic = giso:xy(P2
z,x + P2

z,y) + giso:zP2
z,z (3.24)

fg:3 f old = g3 f old:xy(6P2
z,xPz,y − 2P3

z,y) + giso:zP2
z,z (3.25)

fg:6 f old = g6 f old:xy(2P6
z,y − 2P6

z,x + 30P4
z,xP2

z,y − 30P2
z,xP4

z,y) + giso:zP2
z,z (3.26)

Integrated gradient energy is

Fgradient =

∫
(dx)3 fg: j (3.27)

Here, j can be isotropic, 3-fold, or 6-fold depending on the system. Now, the total

energy of the system can be calculated. Initially, this system is not in an equilibrium

state. But by using Time Dependent Ginzburg Landau equation, this system can be

moved towards the equilibrium state. This equation can be defined as

∂
∂t

Pβ(r, t) = −µ
δFTotal
δPβ(r, t)

+ noise(r, t) (3.28)

Here, µ is a mobility, and noise(r,t) is a Gaussian random noise to agitate the system so

that it does not rest in a local minimum, but rather tries to find the global minimum. In

our simulations, this noise term was not found to be necessary. F is the integrated total
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energy, given by,

FTotal = Flandau + Fel + Fcp + Fgradient + Fd−d (3.29)

The governing TDGL Eqn. 3.28 can be solved in either real space or reciprocal space.

First, the functional derivative of Landau free energy can be easily solved in real space

δFlandau
δPβ

=

∫
(dx)3

− ∂
∂Pβ

ψ1P2
z

2

 + ∂
∂Pβ

ψ2P4
z

4

 + ∂
∂Pβ

ψ3(P2
x + P2

y)

2


 (3.30)

In Pβ, β can be x, y, and z. Next, we need to solve the functional derivative of the elastic

and coupling energy terms.

δ(Fel + Fcp)

δPβ(r)
=

δ
δPβ(r)

∫
(dk)3

(
T̃∗i jk jG̃ilT̃lmkm

)

=

∫
(dk)3

 δ
δPβ(r)

(T̃∗i j)k jG̃i jT̃lmkm

 (3.31)

+

∫
(dk)3

T̃∗i jk jG̃i j
δ

δPβ(r)
(T̃lm)km


Let’s first solve first term of Eqn 3.31. To simplify this equation, let us introduce a new

variable Π.

Πi j(r) =
∫

(dk)3
(
k jG̃ilT̃lmkmei

→

k
→
r
)

(3.32)

Then the first term in Eqn. 3.31 can be written as

∫
(dk)3

δ
δPβ(r)


∫

(dr
′

)3T∗i j(r
′

)ei
→

k
→

r
′


∫

(dr
′′

)3Πi j(r
′′

)e−i
→

k
→
r
′′

(3.33)

⇔

∫
(dk)3

∫
(dr
′′

)3
δT∗i j(r)

δPβ(r)
Πi j(r

′′

)ei
→

k (
→
r −
→
r
′′

) (3.34)

⇔

δT∗i j(r)

δPβ(r)
Πi j(r) (3.35)
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From Eqn. 3.34 to 3.35
∫

(dk)3ei
→

k (
→
r −
→
r
′′

) = δ(
→
r −

→
r
′′

) is used. By applying same

process, second part of the Eqn 3.31 also can be written as

Π∗lm(r)
δT∗lm(r)

δPβ(r)
(3.36)

For the gradient energy functional derivative case, both the reciprocal space and the real

space can be used. But for higher order terms, real space functional derivative is more

flexible.

δFgradient
δPz(r)

=
δ

δPz(r)

∫
(dr)3 fg

P(r
′

),
∂Pβ(r

′
)

∂r′


=

∂ fg

(
P(r),

∂Pβ(r)
∂r

)
∂Pz

− ∂r


∂ fg

(
P(r),

∂Pβ(r)
∂r

)
∂

(
∂Pβ(r)
∂(r)

)
 (3.37)

Dipole-dipole interaction terms can be represented as a function of electric field, which

is generated by the polarization gradient. The Poisson’s equation relating the potential

φ generated by the gradient of polarization, is given by

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
=

1
ε0

(
∂Px
∂x
+
∂Py
∂y
+
∂Pz
∂z

)
(3.38)

By using Fourier transformation,

φ̃ =
i
ε0

kxP̃x + kyP̃y + kzP̃z

k2
x + k2

y + k2
z

(3.39)

In real space, the electric field is related to this potential as, E=-∇Φ. In reciprocal space,

electric field can be calculated. Foe example,

Ẽx =
1
ε0

k2
xP̃x + kxkyP̃y + kxkzP̃z

k2
x + k2

y + k2
z

(3.40)
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By using inverse Fourier transformation, the electric field Ex in real-space can easily be

calculated. Similarly, Ey, and Ez can be calculated by the same process.

3.1.3 Simulation Details

Till now, I have derived all the individual energy terms and calculated the func-

tional derivative of these energy terms in order to solve the TDGL time evolution equa-

tion (Eq. 3.28 ). Both LiNbO3 and LiTaO3 have the same crystal symmetry 3m. Because

of the crystal symmetry, all the matrix or tensor components also satisfy the symmetry

operations. Many of the coefficients disappear as a result. Elasticity coefficients Ci j and

electrostrictive coefficients Q
′

i j are represented by

Ci j =



C11 C12 C13 C14 • •

C12 C12 C13 −C14 • •

C13 C13 C33 • • •

C14 −C14 • C44 • •

• • • • C44 C14

• • • • C14 1/2(C11 − C12)



Q
′

i j =



• • Q
′

31 Q
′

41 • •

• • Q
′

31 Q
′

42 • •

Q
′

31 Q
′

31 Q
′

33 • • •

Q
′

41 Q
′

42 • Q
′

44 • •

• • • • • −2Q
′

42
• • • • −Q

′

42 •


The prime notation on the Q

′
coefficient is added to distinguish between two different

definitions of electrostrictive coefficients.

εi j = Q
′

i jklPkPl (3.41)
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and its dimension is [C2/m4]. But the Q-coefficient, which is used in TDGL equation is

given by,

Qi jmn = Ci jklQ
′

klmn (3.42)

And its dimensions are [NC2/m6]. The elastic coefficient of LiNbO3, and LiTaO3 crystal

are listed in the Table 3.2. The electrostrictive coefficients used for of LiNbO3, and

C11 C12 C13 C33 C44 C14

LiNbO3 2.03 0.53 0.75 2.45 0.60 0.09

LiTaO3 2.33 0.47 0.80 2.75 0.94 -0.11

Table 3.2. Elastic coefficient value [N/m2]×1011 (from Landolt Bornstein II)

LiTaO3 crystals are listed in Table 3.3 below.

Q
′

31 Q
′

33 Q
′

42 Q
′

44
LiNbO3 -0.003 0.016 0.02 0.065

LiTaO3 -0.0047 0.011 0.016 0.052

Table 3.3. Electrostrictive coefficient value [C2/m4](from Landolt Bornstein II)

The final TDGL equation 3.28 is solved based on the derived energy terms. For

isotropic gradient energy coefficient, I used giso:xy=1.25×10−3[C−2
·N ·m4]. In LiNbO3,

I used 6-fold symmetry gradient energy coefficient which is g6 f old:xy=1.25×10−27[C−6
·
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N ·m16]. For LiTaO3, 3-fold symmetry gradient energy coefficient was used which was

g3 f old:xy=3.15×10−9[C−6
·N·m16]. The isotropic energy term is very stable. I can use any

isotropic gradient energy coefficient value which is smaller than 1.25×10−2[C−2
·N ·m4].

But the stable range of higher order energy coefficients is very narrow. It is only stable

within less than ± 5 % percent of the above simulation values. This 3-D TDGL equation

is simulated by Matlab based code(see Appendix C).

First from Fig. 3.1 to 3.8 shows each strain component and the main Pz polariza-

tion for Lithium Niobate. Only after including higher order gradient energy term, one

can observe hexagonal domain patterns. This simulation is started from tiny nucleation

sites, and biased to be favorable to the inside domain. Even though the initial nuclei is

circular in shape, it transformed to hexagonal domain while it is growing. After it grows

into a regular hexagonal shape, the bias field was turned off to see the strain distribution

under no external field. Fig. 3.1 shows the Pz polarization distribution, and Fig. 3.2

shows the z-direction displacement. This displacement value shows a 3-fold symmetry

consistent with the trigonal symmetry of the lattice. From Fig. 3.3 to Fig. 3.7 are shown

various strain components εxx, εyy, εxy, εxz, and εyz for lithium niobate.

The first interesting observation is that the z-direction displacement field (see Fig.

3.2) or εzz has a very nice 3- fold symmetry. Because of the z- direction displacement,

εxz(Fig. 3.6) and εyz(Fig. 3.7) are induced. These results are experimentally observed

in X-Ray synchrotron experiments in Ch. 4.1.2.3. The strain component normal to the

domain walls is observed uniformly through the all domain wall orientations equally.

Figure 3.8 shows equal amounts of normal component of the displacement along the

domain wall, and has a maximum value at the domain wall.
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Fig. 3.1. Main polarization component Pz

Fig. 3.2. LiNbO3: z direction displacement



80

Fig. 3.3. LiNbO3: εxx

Fig. 3.4. LiNbO3: εyy
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Fig. 3.5. LiNbO3: εxy

Fig. 3.6. LiNbO3: εxz
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Fig. 3.7. LiNbO3: εyz

Fig. 3.8. LiNbO3: In plane displacement
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By simply changing elastic coefficient, electro strictive coefficient, and different

gradient energy polynominal(3-fold symmetry) in addition to isotropic symmetry term

, triangular domain structures can also be generated, as can be seen from Fig. 3.9 to 3.16.

. Again, the z-direction displacement shows a 3-fold symmetry. The main difference

between LiNbO3 and LiTaO3 is the in-plane strain distribution. We observed uniform

in- plane displacement in LiNbO3 along the domain boundary (see Fig. 3.8), but in

LiTaO3, three triangular corners show a strong displacement field (see Fig. 3.16) or

in-plane strain (see Fig. 3.11 and 3.12).

Fig. 3.9. LiTaO3: Main polarization component Pz

As a summary of the above results, both LiNbO3 and LiTaO3 domain patterns

were started from one small circular nucleation site at the center of the calculation

space. By applying a voltage that is larger than the coercive field, this domain nuclei

can be grown into hexagonal or triangular shapes depending on the gradient energy

polynominal. After the domain has fully grown into its desired shape, the external
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Fig. 3.10. LiTaO3: z direction displacement

Fig. 3.11. LiTaO3: εxx
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Fig. 3.12. LiTaO3: εyy

Fig. 3.13. LiTaO3: εxy
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Fig. 3.14. LiTaO3: εxz

Fig. 3.15. LiTaO3: εyz
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Fig. 3.16. LiTaO3: In plane displacement

field was turned off to stop the domain growth. The strain and the displacement

information is then saved. If only the isotropic gradient energy term is used, only circular

domain pattern is observed, since the minimum free energy can be achieved through

an isotropic circular domain pattern. Only after including higher order anisotropic

gradient energy terms, one can regenerate triangular and hexagonal domain patterns.

It implies that in 180◦ domain system, gradient energy is dominant in determining

domain wall orientations.
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Fig. 3.17. LiNbO3 pattern formation from random nucleation. The number labeled I is
the iteration number. From left top to right bottom I=25, 50, 75, 100, 200, 300
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Fig. 3.18. LiTaO3 pattern formation from random nucleation I is iteration number.
From left top to right bottom I=20, 30, 40, 70, 100, 300
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Figure 3.17 and 3.18 shows how domain pattern is formed from random nu-

cleations without any external field in LiNbO3 and LiTaO3 crystal, respectively. This

therefore reflects a steady-state configuration without external bias. In LiNbO3, arbi-

trary growing domain pattern, both positive and negative domain has a same preferred

domain wall direction. But in LiTaO3 crystal case, the domain pattern appears inverted

between positive and negative domains (see the direction of the triangular vertex). The

coordinate axes shown in both Fig. 3.1and 3.9 are for the positive domain area. If this

area is inverted to a negative domain, then the coordinate system should be rotated

180◦ holding the x-axis constant. Therefore, even though the triangular domain pat-

terns for the two domain states in LiTaO3 looks different, they are actually the same

crystallographic orientation.

Figure 3.19 shows the dynamics of how an external field can switch from one

domain state to the other domain state. At the beginning, a random domain microstruc-

ture is generated before T=300 under zero bias. After T=300, an external electric field

of +5 ∗ 107V/m is applied which is preferable to positive domain. Interestingly, while

domain switches from one state to the other, the preferred domain wall orientation does

not change. It always prefers the triangular shape. Another thing that can be easily

noticed is that the wall velocity is not uniform for all domain walls even at a constant

external electric field. As an example, a relatively small-sized domain, the walls move

faster. For example, the domain labeled A in Figure 3.19 is a small island domain. It

disappears very quickly as soon as the bias field is applied. This is probably because the

displacement fields of the vertices of the triangular domains interact strongly with each

other in small domains. For larger domains, the wall velocities may still vary depending

on their geometry. Domain wall B has a relatively flat wall shape, and domain wall C

has a saw-tooth type shape, formed out of multiple small vertices of domains merged

together. It is clear that the type C domain wall moves much faster than the type B wall.

This phenomenon has been experimentally observed in lithium tantalate as reported

in Ref. [7]. The difference in wall velocities again arises because the triangular ledges

formed by intersecting domains for a preferential low energy site for the nucleation of
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Fig. 3.19. LiTaO3 domain growing by applied exteranl field. From (a) to (h), T=300,
500, 700, 900, 1100, 1300, 1500, 2000, respectively. Before T=300, it transfroms from a
random domain state to a stable equilibrium condition. For T>300 the external field
turned on to grow domain.
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further domains, as compared to a flat domain surface. Larger the number of ledges,

larger the degree of serration, and faster the overall wall front moves forward.

In conclusion, we have developed a 3D TDGL code and successfully regenerated

hexagonal LiNbO3 and triangle LiTaO3 domain shapes by using higher order non-

isotropic gradient energy terms. By simulating the growth of a single domain, we get

the detailed strain distribution around the domain wall and the corners of a domain.

In addition, external fields are applied and the wall dynamics observed and compared

qualitatively with experiments.
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Chapter 4

Local Strains at a Domain Wall

4.1 Static image

This chapter discusses the imaging and simulation of local strains at individual

180◦ domain walls in lithium niobate. The technique of x-ray topography, using a

synchrotron source is used. Xray topography is simply x-ray pictures. It can be in

transmission (Laue) or reflection (Bragg) imaging geometries, depending on which

diffracted beams are studied. Usually, x-ray penetration depth is very small,(order of

10 µm) [1] since it has a strong absorption in most materials; therefore transmission

mode is not usual in normal x-ray experiments which are instead performed in Bragg

geometry. However, under specific conditions, called Borrmann effect, x-ray can be

transmitted through millimeter distances through the material. X-ray diffraction occurs

only when Bragg condition for wavevector matching is satisfied. Therefore, defects

or strain inside the crystal, or distortions of the lattice planes on the surface of the

crystal are easily imaged by x-ray topography as the changes in the diffracted beam

intensity. The sensitivity of this technique depends on the parallelism of the x-ray beam

as well as the camera resolutions. Traditionally x-ray topography used laboratory x-ray

sources, but the best images are now obtained using synchrotron source. Synchrotron

source has a very high brightness, and can be made to have very low beam divergence

(1 arc second), both of which are important for topography. The small divergence

provides a lattice strain sensitivity of 10−4. X-ray topography was performed on 500µm

thick LiTaO3 and LiNbO3 crystals in two places: Beam Line X-21 at Brook Haven

National Laboratory and 1-ID and 4-ID beamlines of the SRI-CAT at the Advanced

Photon Source, Argonne National Laboratory. Images were taken in both transmission

(Laue) and reflection (Bragg) geometries. In both geometries, a strong contrast was

observed around the domain walls, as well as detailed crystal imperfections such as
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dislocations and grain boundaries were imaged. Detailed experimental preparation

and results will be described in Section 4.1.1 and Section 4.1.2. These images have

been analyzed here by beam tracing methods based on x-ray dynamical theory [2] and

Eikonal theory [3].

4.1.1 Reflection geometry

The starting crystal is in a single domain virgin state. It is then is partially

polarized (forward poled) by using uniform water electrodes at room temperature.

X-ray reflection image shows unusually strong and broad domain image. Figure 4.1

shows symmetrical (0,0,.,12) plane and asymmetrical (1,0,.,10)Bragg geometry image of

the 1cm×1cm LiNbO3 crystal image, taken in Brookhaven National Laboratory. The

beam size was 1cm by 1 cm and the beam divergence was less than 1 arc second. The

image was collected using a high resolution silver halide film, with a lateral resolution

of 1µm. One observes low angle grain boundaries A and B in Fig 4.1 as shown by

arrows. Using the rocking curves, the grain misorientation with respect to the (0,0,.,12)

planes is estimated to be only few 10−3 degrees. This is seen by the series of images

shown in Fig 4.2, taken with a difference in incident angles of 3×10−3 degrees as can be

seen in Fig 4.2. However, one notices that domains and domain walls cut across such a

low angle boundary. The role of grain boundary is related to nucleation and pinning of

domain walls.

To analyze the detailed strain information around a domain wall, z-cut crystal

with a thickness of 0.5 mm were used to study reflection from stable domains with zero

applied field. A series of (0,0,.,12) Bragg reflection images are shown in Fig. 4.3 for three

slightly different angles of incidence. The ferroelectric polarization direction, Ps inside

the hexagonal domains is in the +z direction (outward normal to image plane in Fig.

4.3) and in the -z direction in the matrix domain(outside the hexagonal domains).

There are three mechanisms which contribute to the visibility of ferroelectric

domains in congruent LiNbO3: a) the difference in the structure factor between the

antiparallel domains and the surrounding completely polarized single crystal matrix,

b) any difference in the lattice spacing in the volume of diffraction, and c) distortions
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Fig. 4.1. Bragg Geometry (a) is (1,0,.,10) asymmetric reflection plane, and (b) is (0,0,.,12)
symmetrical reflection plane.

of the bulk resulting in a displacement of the surface normal from the ordinary crystal-

lographic axis. The presence of lithium vacancies and niobium antisite defects in the

congruent material give rise to a remnant internal field such that the antiparallel domain

is not simply a symmetry inversion of the polarized matrix [4]. One can estimate the



97

Fig. 4.2. (0,0,.,12) plane rocking image of LiNbO3 crystal in Bragg geometry is shown
from (a) to (e). Frame (f) shows a schematic of the rocking curves. Left rocking curve
corresponds to top right area which is enclosed by low ngle boundaries A and B. The
right rocking curve corresponds to the rest of the area. ∆θ between successive rocking
curve images is 0.003◦. Incident angle positions from (a) to (e) frames are marked in (f).

contribution to Bragg intensity contrast due to the different structure factors between

reversed domains in congruent LiNbO3.
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Fig. 4.3. (a) Bragg topograph of LiNbO3 crystal at position ’a’ ( θB-0.003 ) on the
(0,0,.,12) rocking curve; (b) Bragg topograph of LiNbO3 crystal at position ’b’(θB) on
the (0,0,.,12) rocking curve; (c) Bragg topograph of LiNbO3 crystal at position ’c’ ( θB
+ 0.003 ) on the (0,0,.,12) rocking curve; (d) (0,0,.,12) Bragg rocking curve for LiNbO3
sample crystal, arbitrary intensity as a function of nominal goniometer Bragg angle
(calculated θB=39.0 ). The region to the left of the left dashed line corresponds to the
observation of bright borders at walls 1 and 2; the region to the right of the right dashed
line corresponds to bright borders at walls 5 and 6. These pictures were taken at on
Argonne Photon Source

For the (0,0,.,12) and (0,0,.,12) reflections at 8.5 keV, this difference is 9 percent.

The remaining contrast between domains and their surrounding matrix is evidently the

result of surface distortions and changes in the lattice spacing. Figure 4.3(b) corresponds

to the reflection at the Bragg peak. The rocking curve of the reflection is shown as a
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function of the nominal value of the Bragg angle from the goniometer in Fig. 4.3(d) (the

calculated Bragg angle at this energy was θB= 39.0◦ ). Figs. 4.3(a,c) show the topograph

in the crystal region (area 1 mm×2 mm) when the crystal is rocked about the diffraction

peak. The measured full width at half-maximum (FWHM) of the rocking curve, which

included the distortion effect of domains, was ∆θB=0.0063◦ =110µrad. The incidence

plane in the image is vertical, being parallel to the crystallographic y-axis. From Fig.

4.3(a) to (c), we rotated the sample through 0.006◦ in steps of ∆θB=0.0005◦ towards

increasing incidence angles. The wall types 1,2,5, and 6 (labeled in Fig. 4.3(b)) in

every hexagonal domain are not parallel to the incidence plane, and show an enhanced

contrast over a wide region ( 10 µm wide) of associated strain. The wall types 3 and 4,

on the other hand, are parallel to the incidence plane and show the least contrast. This

contrast phenomenon reveals itself more clearly on moving away from the Bragg peak,

and suggests a curvature of lattice planes in the wall region in going from one domain to

the other that can be described by the strain component dz/dn, where n is the coordinate

normal to a wall and z is the coordinate along the direction of ferroelectric polarization

(normal to the image plane in Fig. 4.3). Such a wall curvature would be expected to

cause a deviation of the incidence angle, θ from θB and influences the Bragg diffraction

condition most strongly when the wall is perpendicular to the incidence plane, and least

when the wall is parallel to the incidence plane. This is consistent with the experimental

observations in Fig. 4.3.

A closer inspection reveals that the contrast of the set of walls (1,2) is opposite to

the contrast of the set of walls (5, 6). That is, if one set of walls (1,2), is bright, the other

set (5,6) is dark (seen in Fig. 4.3(a) and conversely, Fig. 4.3(c)). The projections of the

incident and diffracted X-ray wavevectors onto the image plane of Fig. 4.3 point in the

-y direction with respect to the domain. In Fig. 4.3(a), the local region near domain walls

(1,2) would appear to be closer to the Bragg diffraction peak, thus making them bright,

as compared to domain walls (5,6), which are farther from the Bragg peak, giving them

a darker contrast. This situation is reversed in Fig. 4.3(c). This provides additional

evidence for the domain wall curvature, which we now proceed to estimate. The

maximum in the Bragg peak of an average region (predominantly strain-free regions
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away from the walls) corresponds to Fig. 4.3(b). However, the Bragg peak for the

local region near walls (1,2) corresponds approximately to Fig 4.3(a) and that for walls

(5, 6) corresponds approximately to Fig. 4.3(c). Knowing the difference between the

Bragg angles between these frames, we therefore estimate that the ∆θB(1,2)=θB(1,2)-

θB(center)=-0.0030◦ ± 0.0015◦ and similarly, θB(5,6)=+0.0030◦ ± 0.0015◦. Converting

these angles to radians, and neglecting the angle the domain walls make with the

incidence angle, we therefore very roughly estimate the shear strain at these domain

walls as εzn ≈ ∆θB, where z is positive along the outward normal to the image plane in

Fig. 4.3, and n is the outward normal (pointing into the matrix domain) to the domain

wall in the image plane.

In LiNbO3, the domain walls are parallel to the crystallographic y-axis ([1100]

direction), and therefore, the observed shear strain is εzx. Therefore, εzx(1 and 2)≈

-5.2×10−5
±2.6×10−5 and εzx(5 and 6)≈ +5.2×10−5

±2.6×10−5. Given that ∆x 10µm is

the approximate strain width in the image plane observed in Fig. 4.3, the displacement

observed is given by ∆z=εzxδx ≈0.5 nm. This implies that when viewing the +z face of

the matrix domain, the region inside the hexagonal domains (with polarization along -z)

is raised by 0.5 nm in height with respect to the oppositely polarized surrounding matrix

region. This is also consistent with a similar surface step across a domain wall observed

using near-field optical microscopy (NSOM) in the isostructural LiTaO3 crystals [5].

X-ray imaging of the -z face of the matrix domain was not performed. However, from

NSOM studies, the other face (corresponding to the -z of the matrix domain and +z

of the hexagonal domain) in the isostructural LiTaO3 appears to show a depression of

≈0.5 nm inside the hexagonal domain area. In a cross-section of the crystal, therefore,

the inverted hexagonal domain region would appear to have shifted through the entire

thickness giving rise to a 0.5 nm step projection on the +z face of the matrix domain and

a depression on the -z face of the matrix domain.We finally note that the large observed

x-ray strains in congruent composition lithium niobate under no external fields are a

result of the interaction of point defect complexes with the domain wall.
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4.1.2 Transmission (Laue) geometry

In this section, the well-developed theory of dynamical x-ray transmission will

be first reviewed. The goal will be to develop expressions for the intensity of diffracted

beams inside the crystal within a two-beam approximation. Next, transmission of xray

through a strained lattice will be presented, and necessary theoretical development

for tracking xrays propagating through domain walls in transmission geometry will

be derived. The following section will then describe the experimental results and the

simulation of these results based on the developed theory.

4.1.2.1 Dynamical theory of x-ray diffraction in perfect lattice in Laue geometry

X-ray transmission topography images are more complex and contain more in-

formation than reflection topography, because x-ray penetrates the whole thickness

direction of the crystal through the anomalous effect described below. To understand

this transmission image, dynamical x-ray theory becomes an essential tool. If the crystal

thickness is thin enough to consider just the first scattering event, then kinematical theory

can explain most of the phenomena. Unlike the simple x-ray diffraction case, x-ray

beam inside the crystal shows dynamical interaction with the material in an exact Laue

condition. If the crystal is thick (compared with the absorption depth), x-ray beams

experience multiple scattering with transfer of energy from one scattered beam to the

other. Figure 4.1 shows a schematic of this dynamical two beam interaction inside

perfect crystal. If we just think of two beams, let’s say Ψo and Ψh inside crystal, the

intensity wavefield will be

|Ψ|2 = |Ψo|2 +
∣∣∣Ψh

∣∣∣2 + 2
∣∣∣ΨoΨh

∣∣∣ cos2π(h · r + φ) (4.1)

where,Ψo is the refracted wave with wavevector Ko, andΨh is the reflected wave with

wavevector Kh. The term φ is the phase of Eh/Eo. The term cos2π(h · r + φ) shows that

the node is on planes parallel to the lattice and their periodicity is equal to the distance

1/h = dhkl/n, which is the periodicity of the (hkl) family of lattice planes. The nodes

of standing wave can lie on the atomic plane or between atomic plane. When node is
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located on atomic plane, this standing wave can have very low loss. This is how the

two beams of X-rays can propagate with a very low loss through the crystal, which is

called the Borrmann effect. This can be seen schematically on Fig 4.4.

Fig. 4.4. Borrmann effect: The standing wave nodes lie on the atomic planes or antinode
located on atomic planes. Former has a very low absorption.

This dynamical x-ray process has a well-established theoretical basis, with several

good books, and review papers [6], [7], [2], [8]. In this section, we first describe the theory

of how x-ray beam interacts inside a perfectly periodical crystal, and how this process

is affected by small amount of the strain using Eikonal theory. More detailed discussion

will be found in references [6], [7], [2], [8]. The staring point is Maxwell’s equations,

since x-ray is an electromagnetic wave. This derivation is very similar to the band

theory in solid-state physics. By solving the Maxwell’s equation inside periodic atomic

structures, a dispersion relation ship between the energy and momentum for the x-ray

beam can be derived. In a neutral crystal, the local free electric charge and current

density are equal to zero. Then the Maxwell’s equation inside a crystal becomes

∇ ×H =
∂D
∂t

(4.2)
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∇ × E = −
∂B
∂t

(4.3)

∇ •D = 0 (4.4)

∇ • B = 0 (4.5)

Terms E and H are electric field and magnetic fields, respectively. Terms D and B are

displacement field and magnetic flux, respectively. If an electromagnetic wave, E(r)exp(-

2πiνt), is propagating in a material, (ν is the frequency), the medium is polarized under

the influence of the electric field creating a dielectric displacement, D in the material

where E=D/ε, and ε=εo(1+χ) varies with spatial coordinates, r. (χ is the dielectric

susceptibility). By eliminating D, H, and B in Maxwell’s equations 4.2,4.3,4.4,4.5, the

wave equation is obtained.

∇ × ∇ × E − 4π2k2(1 + χ)E = 0 (4.6)

Since the index of refraction for x-rays in a material is very close to 1, (typical index

values of 1-10−5), it is reasonable to assume that there is a continuity of both the normal

and the tangential components of D across any interface through which x-ray traverses.

Since index n2 = εo/ε, the susceptibility, χ is very small and lightly negative −10−5 for

x-rays, and the electric field can be written, to a first approximation, as

E =
D

ε0(1 + χ)
=

D
ε0

(1 − χ) (4.7)

By using this approximation and eliminating H, one can get the propagation equation,

∆D + ∇ × ∇ × χD + 4π2k2D = 0 (4.8)

where ∆ = ∇2. As an analogy, for electrons and neutrons in periodic solids, the prop-

agation equation of particle waves is the Schrodinger’s equation, which can be written

as

∆Ψ + 4π2k2[1 + χ(r)]ψ = 0 (4.9)
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It can be easily shown that Eq. 4.8 can be reduced to Eq. 4.9 as a scalar approximation.

This scalar approximation is posiible, because there is no interaction between different

field component. Because this equation is a linear, homogeneous, partial differential

equation,Ψ can be represented as

Ψ =
∑

j
A jD j (4.10)

The choice of the solution and the values of the coefficient A j can be determined by

boundary conditions for the problem. Even though it is based on a scalar approximation,

the results hold separately for each direction of polarization of incident X-ray wave in a

two-beam case. Polarization is taken into account by multiplying the Fourier coefficients

χh and χh of the polarizability (notation described further below) by a factor C, which

equals to 1 for σ-polarization(X-ray is perpendicular to incident plane) and cos2θ for

π-polarization(X-ray is parallel to incident plane). The wavefunction,Ψ can be written

as

Ψ(r) =
∑

h
Ψhexp(−2πiKh · r) (4.11)

with

Kh = Ko − h (4.12)

Equation 4.11 shows that the wave field is a sum of plane waves whose wavevec-

tors can be deduced from one another by a translation in the reciprocal space. In the

two beam case, there are two waves in the wavefield, Ψo and Ψh. Wavevector Ko and

Kh, as well as lattice reciprocal lattice, h are defined in Fig. 4.5 Far from the interaction

of the two sphere, there is only one wave propagating in the crystal. When it lies on the

connecting surface, there are two waves and their wave numbers are slightely different

from nk(length of LoO;n is refraction index and k is vaccume wavelength). This surface

is called dispersion surface. La is called Laue point, and Lo is called Lorentz point. Laue

point is for the pure air case, while the Lorentz point is for the case theof a negative

refraction coefficient as seen by Xrays. The P point has been called the tie point by Ewald

to stress that the two waves are closely linked together to form wavefield. Because the
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Fig. 4.5. Interaction of the refracted(OP) and incident (HP) waves. Solid
curve:dispersion surface; P:tie point

crystal is a periodic medium, we can express χ as a Fourier series,

χ =
∑

h
χhexp(2πih · r) (4.13)

χr =
∑

h
χrhexp(2πih · r) (4.14)

χi =
∑

h
χihexp(2πih · r) (4.15)

Here the subscripts r and i represent real and imaginary parts. The solution of the

propagation equation is obtained by substituting Eq.4.13 and Eq.4.11 into Eq.4.9.This

gives

∆Ψ = −4π2
∑
h

K2
hΨhexp(−2πi(Kh · r)) (4.16)

The product χ(r)Ψ(r) can be written as

χ(r)Ψ(r) =

∑
g

∑
h’
χgΨh′exp(2πi(g + h′) · r)

 exp(−2πi(Ko · r)) (4.17)
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The vector g and h’ are reciprocal lattice vectors and their sum g + h’ = h is also a

reciprocal lattice vector. Therefore, we can simplify the above as,

χ(r)Ψ(r) =
∑
h

exp(−2πi(Kh · r))
∑
h′
χh−h′Ψh′ (4.18)

By combining Eq.4.16 and 4.18 into 4.9, the final propagation equation is obtained.

∑
h

−4π2K2
hΨh + 4π2Ψh + 4π2k2

∑
h′
χh−h′Ψh′

 × exp(−2πi(Kh · r)) = 0 (4.19)

If both sides are multiplied by exp(2πi(Kh · r)) and integrated over the space coordinates

from −∞to +∞, then all the terms in the sum but one vanish, and the final fundamental

equation of dynamical theory is obtained.

Ψh =
k2

K2
h − k2

∑
h′
χh−h′Ψh′ (4.20)

It is easy to see that the resonance factor in Eq. 4.20 goes to infinity when

k=Kh. This is called the Ewald condition. Let us carefully check this solution. Under

experimental conditions, if only one resonance term is very large, Eq. 4.20 reduces to

Ψh =
k2

K2
h − k2

χoΨh (4.21)

To get nontrivial solution K2
h = k2(1+χo) should be satisfied. Sinceχo <<1, one can write

Kh = k(1 + χo
2 ). If two resonance terms are very large and two nodes lie simultaneously

on the Ewald sphere, Eq.4.20 becomes,

Ψo =
k2

K2
o − k2

[
χoΨo + χh

Ψh

]
(4.22)

Ψh =
k2

K2
h − k2

[
χhΨo + χoΨh

]
(4.23)
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where χ
h

is the Fourier coefficient of the polarizability corresponding to h, k, l reflection.

For non-trivial solutions of these linear, homogeneous, equations to exist, the determi-

nant should be zero. Thus the secular equation gives a relation between the lengths Ko

and Kh of the field and hence gives the loci of the tie points P and the equation of the

dispersion surface, as shown below.

[
K2

o−k2

2k −
kχo

2

]
Ψo −

kχ
h

2 Ψh = 0

−
kχ

h
2 Ψo +

K2
h−k2

2k −
kχo

2

Ψh = 0 (4.24)

and let’s set

Xo =
K2

o − k2

2k
−

kχo
2

(4.25)

Xh =
K2

h − k2

2k
−

kχo
2

(4.26)

Since Kh ≈k, Ko ≈ k, and K2
h − k2/2k ≈ (Kh − k), Xo and Xh can be rewritten as,

Xo ≈ Ko −
kχo

2
(4.27)

Xh ≈ Kh −
kχo

2
(4.28)

These Xo and Xh represent the distance of the tie point from original sphere as shown

in Fig. 4.5. Substituting Eq.4.27 and Eq. 4.28 into Eq. 4.24 gives Eq. 4.29 and Eq. 4.30.

XoΨo −
kχ

h
2
Ψh = 0 (4.29)

−
kχh

2
Ψo + XhΨh = 0 (4.30)
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The determinant of this equation is XoXh − k2χ
h
χh/4, and by equating it to zero, one

obtains the secular equation, which is the equation of the dispersion surface, given by

XoXh = k2χ
h
χh/4 (4.31)

Equation 4.31 is the equation of a hyperbola whose asymptotes are the two lines, To and

Th as shown in Fig 4.6.

Fig. 4.6. A plot of the dispersion surfaces given by Equation 4.31. Any point P on this
surface which is excited by the incoming xray is called the tie point of the wavefield. S
is the Poynting vector that determines the direction of energy flow of the wavefield. Xo
and Xh are the coordinates of the excited tie point. Ao1 and Ao2 are the vertices of the
dispersion surface.

The angle between the asymptotes is 2θB. The branch of the hyperbola which

lies on the same side of the asymptotes as the Laue points O and H, is called branch 1,

and the other is called branch 2.

If the tie point is on branch 1, the signs of Xo and Xh will be defined as positive

and on branch 2 they will be negative. Equation 4.29 and 4.30 can be written in the
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following way in order to obtain an expression for the ratio ξ of the amplitude of the

two waves (primary and refracted) in the wavefield.

ξ =
Ψh
Ψo
=

2Xo
kχ

h
=

kχh
2Xh

(4.32)

ξ2 =
χhXo
χ

h
Xh

(4.33)

This relation shows that the ratio ξ is determined by the position of the tie point on the

dispersion surface, given by Xo and Xh. The expression for the total Poynting vector, S

which determines the direction of energy flow, will be,

S ∝ so |Ψo|2 + sh
∣∣∣Ψh

∣∣∣2 = Ψ2
o
[
so + |ξ|2 sh

]
(4.34)

and it’s angle , α, with direction with reflecting plane is given by

tanα =
1 −

∣∣∣ξ2
∣∣∣

1 +
∣∣∣ξ2

∣∣∣ tanθB (4.35)

Now based on this important relation, many other interesting relations can be

deduced. If the incident angle of the X-ray departs from the exact Bragg condition, the

tie point of the incident beam deviates from the center of the hyperbola. Figure 4.7 shows

∆θ deviation of the incident beam from the exact Bragg condition. The wave number

of incident wave in vacuum is 1/λ and OM=K(a)
O is the wave vector. The superscript

(a) on Ko denotes air. Bragg’s condition is exactly satisfied according to the geometrical

theory of diffraction when M lies at La. The departure ∆θ from Bragg’s incidence wave

is measured by the angle between the corresponding wavevectors OM and OLa. Since

∆θ is very small as compared to the Bragg angle in most cases, it is possible to represent

∆θ as,

∆θ =
LaM

k
(4.36)
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Fig. 4.7. Departure form Bragg’s angle of an incident wave: ∆θ = LaM/k. La is the Laue
point from exact Bragg matching. T

′

o,T
′

h are the tangents to the spheres with centers O
and H and radius k. The primes in the superscript denote the tie lines for vaccum.

To better explain the dynamical theory, the concept of a deviation parameter η is intro-

duced.

η =
∆θ − ∆θOS

δOS
(4.37)

where

∆θOS =
LaI
k = −

χo(1−γ)
2sin2θB

δOS =
C

√∣∣∣γ∣∣∣χhχh
sin2θB

= λ
Λo

∣∣∣γh
∣∣∣

sin2θB

Λo =
λ
√
γo

∣∣∣γh
∣∣∣

C √
χhχh

(4.38)
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Here γo = cosΨo and γh = cosΨh are the cosines of the angles between the normal to

the crystal surface and the incident and reflected directions, respectively, as shown in

Figure 4.9. Their ratio, γ, called the asymmetric ratio is given by

γ =
γh
γo
=

cos(Ψn − θB)
cos(Ψn + θB)

(4.39)

TheΨn is explained in Fig 4.8 The factor C=1 (σ-polarization) or C=cos2θB (π-polarization).

Fig. 4.8. Definition of angleΨn. n is surface normal vector

Point I is at the intersection of the normal to the crystal surface (drawn from the Lorentz

point, Lo,) with the asymptote T
′

o. Now, as a next stage, tie point should be determined

by the incident beam condition. Figure 4.7 shows the excitation point M. By using

crystal surface normal vector n and initial excitation point M, the excitation points P1,

and P2 on dispersion curve are determined as can be seen in Fig 4.9.

Xoj = k
S(γh)

2
√∣∣∣γ∣∣∣

[
γhγh

] [
η ±

√
η2 + S(γh)

]
(4.40)



112

Fig. 4.9. Wavefield created inside crystal by the incident wave. M is excitation point, n
is normal crystal surface, P1 and P2 is tie point, and S1 and S2 is Poynting vector. (a) is
reciprocal space, and (b) is real space.

Where the plus sign corresponds to a tiepoint on branch 1(j=1) and the minus

sign to a tie point on branch 2(j=2). S(γh) means sign of γh (+1 for transmission and -1 for

reflection). The ratio ξ j of the amplitude of the waves of the corresponding wavefields
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is related to their coordinates by Eq4.32 and is

ξ =
Ψhj
Ψoj

=
S(γh)√∣∣∣γ∣∣∣

√
χhχh
χ

h

[
η ±

√
η2 + S(γh)

]
(4.41)

If this crystal is absorbing, absorption is taken into account by introducing an imaginary

part to the form factor [2] and to the polarizability. So the wave vector also needs to be

a complex number, given by, Kh = Kr
h + iKi

h, where superscripts r and i stand for real

and imaginary part. There is no absorption in vacuum and the oincident wavevector is

real, so Ki
o = Ki

h. Because of the boundary conditions at the surface (phase velocity of

the wave should be the same along the crystal-vacuum interface), the imaginary part of

the Ko should be normal to the surface. So

Ki
o = IM(MP j)n (4.42)

where IM ( ) means imaginary part. The subscript j is branch index. So the attenuation

factor can be written as

exp(4πKi
o · r) = exp(−

µez
γo

) (4.43)

where z is depth of the observation point along the normal n to the crystal surface, and

the effective absorption coefficient µe is

µe = −4πγoKi
o

Figure 4.9 shows that

γoMP1 = 1/2kχo + Xo

It follows that

µe = −4πγoKi
o = µo − 4πXi

o (4.44)

Now based on the previous equations, it is possible to derive the diffracted wave

propagation inside the crystal in transmission geometry. First, incident plane wave
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condition is needed. The normal to the crystal surface intersects both branches of the

dispersion curve, at P1, and P2, and two wavefields are excited in the crystal (Fig 4.7).

It creates double diffraction inside the crystal. The amplitude of these refracted and

reflected waves are Ψo1, Ψh1, respectively, for wavefield 1 and Ψo2, Ψh2 for wavefield

2. The boundary condition for the amplitudes at the surface are

ψ
(a)
o = Ψo1 +Ψo2

0 = Ψh1 +Ψh2

where Ψ(a)
o is the amplitude of the incident wave. The amplitude Ψhj and Ψoj at the

entrance surface can be expressed by means of their ratio ξ j

Ψh1 =
ξ1ξ2
ξ2 − ξ1

Ψ
(a)
o ; Ψh2 = −

ξ1ξ2
ξ2 − ξ1

Ψ
(a)
o ;

Ψo1 =
ξ2

ξ2 − ξ1
Ψ

(a)
o ; Ψo2 = −

ξ1
ξ2 − ξ1

Ψ
(a)
o ;

By substituting from Eq 4.41, it follows that

Ψhj = ±

√
χhχh

2
√
γχ

h

Ψ
(a)
o√

1 + η2
;

Ψoj = ∓
η ∓

√
1 + η2

2
√

1 + η2
Ψ

(a)
o (4.45)

Using Eq 4.41, 4.44, and 4.45, it can be shown that the intensities of the four waves are

∣∣∣∣Ψoj

∣∣∣∣2 = ∣∣∣∣Ψ(a)
o

∣∣∣∣2 exp
(
−µejz

γo

) [√
1 + η2

r ∓ ηr

]2
4(1 + η2

r )

∣∣∣∣Ψhj

∣∣∣∣2 = ∣∣∣∣Ψ(a)
o

∣∣∣∣2 exp
(
−µejz

γo

) ∣∣∣∣∣∣∣Fh
F

h

∣∣∣∣∣∣∣ γ−1

4(1 + η2
r )

(4.46)
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with

µej = µo

1
2

(1 + γ−1) ∓
1
2ηr(1 − γ−1) +

√
γ−1

∣∣∣Cχih/χio
∣∣∣ cosϕ√

1 + η2
r

 (4.47)

where ϕ is the phase difference between χrh and χih, which is real and imaginary part

of the χ, ηr is the real part of the deviation parameter η, the upper sign is for branch 1

and lower is for branch 2. Fig 4.10 shows the variation of the Poynting vector of the two

wavefields across the reflection domain.

Fig. 4.10. Variation across the reflection domain of the Poynting vectors of the two
wavefields excited by an incident plane wave. Symmetric transmission geometry, no
absorption
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4.1.2.2 Dynamical X-ray transmission through a strained lattice

In this section, the theory of Xray transmission through a weakly deformed lattice

is presented. Using this theory, a scheme for tracing X-ray trajectory in a deformed

crystal is developed and implemented.

If a perfect crystal is deformed, Poynting vector changes with propagation. While

it propagates through the crystal, it moves along the dispersion surface. If the crystal

strain is very small, then the X-ray propagation is very similar to optical wave packet

propagation inside the inhomogeneous refraction index medium. In this case, wave

vector δk ≈
→

∇ (n). It means that wave propagation direction is defined by the direction

of maximum index variation. Penning and Polder [9] and Kato [10] have applied this

principle to X-ray propagation under the condition of Bragg diffraction. If the crystal is

deformed, any point of position vector r is transformed into a point P’ of position vector

r’ as shown in Fig. 4.11.

The equation can also be written as

r = r’ − u(r)

With small angle approximation, valid if the coefficient of the strain tensor, ∂ui/∂x j, are

small then,

r � r’ − u(r’) (4.48)

let us set h’ as the reciprocal vector after deformation and h as the reciprocal lattice

before deformation. Then the reciprocal lattice vector, h’, is given by

h’ =
→

∇ H′ = h−
→

∇ (h · u) (4.49)

The local change δh of the reciprocal lattice is therefore,

δh = h’ − h = −
→

∇ (h · u) (4.50)

The δh is itself a function of the direct space coordinates in the deformed region and its

variations are given by
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Fig. 4.11. Deformation of material. u(r) is deformation vector, r’ is new position vector
after deformation.

(δh j) = (
→

∇ ⊗δh) · dr = −
→

∇ ⊗
→

∇ (h · u) · dr

where ⊗ denotes a tensor product. Its components are

d(δh j) = −
∂2(h·u)
∂xi∂x j

dxi

Now, based on Penning and Polder [9] paper, the following section will derive

the ray trajectory inside the deformed crystal. It is shown that the result of deformation

is a shift LaL′a = kδθ of the Laue point along the tangent T
′

o to the sphere of the center

O and radius k as can be seen in Fig. 4.12. The Lorentz point is shifted by the same

amount, LaL′a = LoL′o. First consider the wave which is passing through point p in Fig

4.11. Its tie point is P on the dispersion surface before deformation as can be seen in

Fig. 4.12. Because of the deformation, point P will be transformed into P’, and the same

wavefield, now passing through P’, will have tie point at Pd. The wavevector, Ko, of

the refracted wave has changed to K’
o by an amount δKo
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Fig. 4.12. Ray Theory. The dispersion surface after a deformation is represented by
dashed line. P is tie point before deformation, Pd is tie point after deformation, L

′

o is
Lorentz point after deformation, and δh is variation of the reciprocal lattice vector.

δKo = K’
o −Ko = OPd −OP = PPd

If one defines the effective misorientation as the difference between the deviation from

the Bragg angle in a deformed crystal and the deviation in an undeformed crystal,

then one can show that the effective misorientation is proportional to the quantity,

δh · sh [2]. Clearly, the effective misorientation is zero if this quantity is zero, or in other

words, when the local variation in the reciprocal lattice vector is normal to the reflected

direction. The invariant dispersion surface in that case is given by

h ·Kh = constant
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These surfaces can therefore be interpreted as the equation of constant index of refraction

and, by analogy with optical Eikonal theory, the variation of local wavevector is given

by

δKo ∝
→

∇ (h ·Kh) (4.51)

The reflected wavevector, Kh, changes accordingly,

δKh = K’
h −Kh = H’Pd −HP = H’H +HP + PPd −HP

= δKo − δh (4.52)

Instead of considering that the dispersion surface glides along To, one can equiv-

alently consider the tie point to be gliding as seen in Fig 4.13.The position P’ of the tie

point after deformation is obtained as follows: let Q be a point deduced from the tie

point P before deformation.

PQ = −LoL’
o

QP’ = PPd = δKo (4.53)

so that

PP’ = δKo − LoL’
o (4.54)

Let Po, P
′

o, Ph, P
′

h be the projection of P and P’ on To and Th, respectively. The coordinate

P and P’ are

P : Xo = PoP,Xh = PhP

P
′

: X
′

o = P′oP′ ,X
′

h = P′hP′ (4.55)

after projecting PP’ on so (unit vector normal to tie-line To), and sh (unit vector normal

to tie-line Th), it is possible to get dXo and dXh
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dXo = X
′

o − Xo = PP’
· so = δKo · so (4.56)

dXh = X
′

h − Xh = PP’
· sh = δKo · sh − δh · sh (4.57)

dXo and dXh are related by differentiation of Eq. 4.31 of the dispersion surface:

XodXh + XhdXo = 0 (4.58)

Substituting dXo and dXh from Eq. 4.57, then

δh · sh = δKo ·

(
Xh
Xo

so + sh

)
(4.59)

Let’s set

S
′

=
Xh
Xo

so + sh (4.60)

By using Xh/Xo = ξ−2 = (Do/Dh)2, (Eqn 4.33), and neglecting anomalous dispersion

(i.e. assuming χh = χh
), S
′

can be written as,

S
′

= ξ−2so + sh (4.61)

It is clear that S’ is proportinal to the Poynting vector(Eqn. 4.34), so it is parallel to the

local trajectory of wavefield. By using δh = (dr·
→

∇ )h Eqn. 4.59 can be written as

δKo ·

(
Xh
Xo

so + sh

)
=
→

∇ (h · sh) · dr (4.62)

δKo ·
(
ξ−2so + sh

)
=
→

∇ (h · sh) · dr (4.63)

Note that in the above, dr, represents an incremental distance along the direction of the

local trajectory of the Poynting vector.

The ray trajectory will be represented with respect to the axes Aζ and Aυ, respec-

tively parallel and perpendicular to the lattice planes as can be seen in Fig 4.14. Let s be
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Fig. 4.13. Ray Theory. An alternative way to explain the deformation process of a
crystal. (a) is reciprocal space: The dispersion surface is considered to be fixed but
the tie point is gliding. P is tie point before deformation and P’ is after deformation.
PQ = −LoL

′

o where L
′

o is represented in Fig. 4.12. s is a unit vector parallel to lattice
planes. (b) is direct space. The ray trajectory S′ at p’ is represented as solid line.

a unit vector parallel to Aζ. The projection of S’ on the lattice planes is

S’ · s = S′cosα

S’ · s = (ξ−2 + 1)cos(θB) (4.64)
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Fig. 4.14. Representation of the ray trajectory with respect to axes related to the lattice
planes. (a) Reciprocal space, (b) Real space. The ray trajectory is represented by a thick
dashed line. S is a poynting vector of wavefield at p’, Aζ, and Aυ is axes prallel and
perpendicular to the lattice planes, respectively.

It follows that

S’ = (ξ−2 + 1)
cosθB
cosα

dr
dr

(4.65)

where dr is an element prallel to the trajectory of the wavefield. Equation 4.63 becomes

(ξ−2 + 1)
cosθB
cosα

δKo
dr
· dr =

→

∇ (h · sh) · dr (4.66)
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By using Eqn. 4.51, δKo can be represented by

δKo = (ξ−2 + 1)−1 cosα
cosθB

→

∇ (h · sh)dr (4.67)

since local reciprocal lattice vector h is given in terms of undeformed reciprocal lattice

vector, ho by Eqn4.49,

δKo · so = −(ξ−2 + 1)−1 cosα
cosθB

∂2(h · u)
∂xo∂xh

dr (4.68)

The variation δKo of the position of the tie point corresponds to a variation dξ of the

amplitude ratio. By differentiating the first of the fundamental equation of the dispersion

surface, Eqn. 4.24,

K2
o = k2(1 + χo) + k2Cχ

h
ξ (4.69)

It follows, afetr differentiation and division by Ko � k,

δKo · so =
kCχ

h
2

dξ (4.70)

and, after substitution in Eq 4.68,

(ξ−2 + 1)dξ =
(
ξ −

1
ξ

)
= −

2
kCχ

h
cosθB

∂2(h · u)
∂xo∂xh

dζ

= −2βdζ (4.71)

where dζ = drcosα. The strain gradient

β =
1

kCχ
h

cosθB

∂2(h · u)
∂xo∂xh

(4.72)

The Equations 4.71 and 4.72 are the key equation we shall use. Together, they

allow us to track the trajectory of the Xray inside the deformed crystal. The parameter β

can be easily calculated from the z-invariant displacement, which is reasonable assumed
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to be true in the case of LiNbO3 domain wall structures, i.e. it is assumed that there

is no gradient in lattice strain in the crystallographic c-axis direction of the crystal. In

a thick c-cut single crystal, this is a reasonable assumption through the entire crystal

thickness, except perhaps close to the surfaces where surface relaxation may occur.

Figure 4.15 shows the geometry of the crystal, the crystal and the global coordinate

system, the domain wall, the crystallographic planes studied, and the incident and

diffracted beams below. From the geometry, the displacement of key interest are u(y),

and the reciprocal lattice vector h that is parallel to this displacement. One that therefore

simplify the expression for β in Eqn. 4.72 as

|h|
∂
∂yo

∂
∂yh

(
u(y)

)
=

∂
∂yo

[
∂y
∂yh

∂u(y)
∂y

]
|h|

=
∂y
∂yo

∂
∂y

[
∂y
∂yh

∂u(y)
∂y

]
|h|

=
∂y
∂o

∂y
∂yh

∂2u(y)

∂y2 |h|

= sin2θB
∂2u(y)

∂y2 |h| (4.73)

So β can be

β =
|h| sin2θB

kCχ
h

cosθB

∂2u(y)

∂y2
(4.74)

4.1.2.3 Simulation and analysis of transmission images of domain walls

By using this ray tracing method, now I can now explain some key features of

transmission X-ray topography images of domain walls in lithium niobate. Fig 4.16

shows (3,0,.,0) symmetrical transmission topography image. The diffraction planes in

this image are in the x−z planes whose projection would appear as vertical lines along x-

axis in the above image. The accompanying schematic explains the geometry of probing.

The projection of the incident wavevector Ko on the x-y plane of the image points in the

−y direction. This image shows dislocations and low angle grain boundaries (Fig 4.16(a)
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Fig. 4.15. Schematic (3,0,.,0) transmission diffraction diagram. (a) shows the X-ray
incident plane and the diffraction plane. (b) is a detailed X-ray incident plane of (a). It
shows original diffraction plane as vertical dotted line, and distorted diffraction plane
with amount of displacement u(y). It shows new coordinate yo and yh axis.
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and (b)) more clearly than the reflection geometry images. As also seen in reflection

images, the low angle grain boundary is pinning ferroelectric domains as can be seen

in Fig 4.16(a) and (b). Along the low angle grain boundaries (a), one of the biggest

domain wall is pinned. Also many other small domain is aligned along the low angle

grain boundaries (b). However, the dislocations appear to cut across domain walls.

Also, the contrast around a domain wall is stronger than in the reflection geometry.

Especially the corner vertices of hexagonal domains show a very strong and broad

strain, which was not observed in the reflection geometry. The most-straight forward

and simple explanation of this image is that the dark contrast in the image means that

the Bragg condition is not satisfied. That’s the main reason why dislocations are easily

detected as a dark thin line. But to understand this complex contrast more accurately in

transmission geometry, dynamical theory is necessary. By using basic dynamical theory

and Eikonal theory, complex topography images can be reasonably explained.

Though there are many interesting contrasts in Fig 4.16, we pick two of the most

interesting contrast distribution features and try to explain them semi-quantitatively.

These are (1) Small domains such as (c) in Fig 4.17, which have alternate bright and

dark vertices of the hexagon. We show below that this can be explained by the different

z-displacement strains at the adjacent vertices, which due to their proximity in a small

domain, interact with each other and provide alternating Xray contrast. (2) Larger

domain (d) in Fig 4.22 which clearly show asymmetric contrast between domain walls

to the left and to the right of the hexagon. We show below that such asymmetry can

arise simply from the incident wave vector geometry, and the asymmetric dispersion

points that are excited by this beam inside the bulk of the crystal for the two sets of

domain walls. This results is in different trajectories of the Xray beam for the two sets

of domain walls inside the crystal.

Case 1: Contrast at domain vertices: Let’s first carefully see domain (c) in Fig 4.16.

This domain image is expanded in Fig 4.17(a). As a reminder, the projection of the

incident wavevector Ko on the x-y plane of the image points in the −y direction, or in

other words, the incident beam is incident from the left side of the image. To get an

accurate contrast, this image was converted as a digitized matrix by using the MATLAB
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Fig. 4.16. (3 0.0)symmetrical transmission topography image. (a) and (b) is low angle
grain boundary, domain (c) and domain(d)is magnified in Fig 4.17 and 4.22 respectively.
The background consists of a large number of thin complex lines that are dislocations
inside the crystal. The coordinate represented in Figure is for the matrix domain. This
topography image is for the O beam.

command imread. Fig 4.17(b) shows scanning line profile of the line in Fig 4.17(a). The

vertical dashed lines indicate the approximate domain vertex positions in the hexagonal

domain. One notices that within the domain region, the region adjacent to the left vertex

is dark and the right vertex is bright. These features are now explained below. Figure

4.18 shows the flow chart or the simulation scheme for implementing the X-ray Eikonal

theory. First it requires the initial conditions both for the incident beams and for the

surface curvature. By using both these conditions, the initial tie point in dispersion curve

is determined. After getting this initial tie point, the ray will be propagate through the
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Fig. 4.17. (a) is magnified domain image of Fig 4.16(c). (b) is line scan of line in (a). It
is clear that contrast of corner(1) is opposite with corner(2)

crystal according to ray projection equation 4.76 until it reaches the exit surface. A new

variable aM is introduced to solve Eqn 4.71. It is defined as,

aM = ξ −
1
ξ

(4.75)

This definition gives the aM update equation as,

anew
M = aold

M − 2β∆z (4.76)
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Fig. 4.18. Flow chart of ray trajectory code.
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After updating aM, α is updated by using Eqn. 4.35, andµ is updated by using Eqn. 4.47.

The term µ describes how fast X-ray intensity will be decaying. The term α describes

the direction compared to surface normal direction. The term β describes the second

derivative of the displacement in new coordinates. Table 4.1 lists all the parameters

used for our simulation with 8.5391 KeV photon energy. Thus, the ray direction and the

intensity can be calculated at every point inside the crystal. The MATLAB code used

for simulating this process is given in Appendix D

LiNbO3 parameter

lattice contant a(10−10m) 5.1483

lattice contant c(10−10m) 13.863

lattice spacing d(10−10m) 1.4862

n=1+A+B*i A=1.2049×10−5

Complex refraction index B=4.2144×10−7

Bragg angle 29.2671◦∣∣∣χrh
∣∣∣, ∣∣∣χih

∣∣∣ (Sigma polarization) 0.12023×10−4, 0.79176×10−6

Relative intensity(χh/χo) 0.49967

Table 4.1. Data

In Fig. 4.17, the X-ray beam is incident from the left side of the image. The

difraction planes (3 0.0) are perpendicular to the y-axis. Therefore, the strain distribution

along the y-direction is the most important variable to analyze in this image. The tie-

point on the dispersion surface excited by the incident beam is strongly affected by

the surface curvature. If there is any surface curvature and surface relaxation is very

fast, then incident bragg angle deviation is directly related with surface curvature.

This surface curvature can be modeled by Time dependent Ginzburg Landau (TDGL)

simulations as described in detail in Ch. 3. Figure 4.19(a) shows the z-displacement on
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the top surface (x− y plane), and (b) shows the z-displacement along the y-domain wall.

The TDGL simulations indicate that the z-displacements, δz defined as the deviation

from a flat-surface alternates in sign between negative and positive values as one goes

around the six vertices of the hexagonal domain in lithium niobate. The vertices are

labeled from 1-6 in Figure 4.15 with vertices 1,3,5 having -z displacement, and 2,4,6

having +z displacement. Because the projection of the incident wavevector on the x− y

plane is in the -y direction, dz/dy( or ∆θ) determines the initial tie point. This surface

curvature, dz/dy, gives rise to a deviation from the flat-surface incident angle. Fig. 4.20

shows the incident angle deviation compared to a flat surface incident angle, and the

final exit surface X-ray O beam intensity. Vertical dashed lines indicate the hexagonal

domain vertex locations. Qualitatively speaking, the simulated exit beam’s intensity

is very similar to the experimental results in Fig.4.17 (b), exhibiting the characteristic

darker contrast near the left vertex, and a brighter contrast near the right vertex.

In order to understand the role of the strain interaction between the two vertices

due to their proximity, (100 µm in this case), we perform a second simulation with a

much large separation between the vertices. Figure 4.21 shows the deviation angle and

exit beam intensity for domain walls separated by 500µm. Even though the precise

position of the left vertex has a dark contrast and right vertex has a bright contrast,

overall the dark and the bright contrast is reduced by increasing the distance between

vertices. This effect is therefore expected to have the best contrast for smaller domains,

as is experimentally seen as well.

Case 2: Asymmetry in contrast between different sets of domain walls.: We now focus

on a somewhat larger domain (d) in Fig. 4.16. An interesting feature is that the Bragg-

peaks and the rocking curves for inside and outside hexagonal domains are different.

This is schematically shown in Fig 4.22 of the rocking image of domains (d), and (e) in

Fig. 4.16. In Fig. 4.22 (a), inside domain has a darker contrast, but in (d), inside domain

has brighter contrast. It means that in Fig. 4.23, curve 2 corresponds to the outside

(matrix)domain, and curve 1 to the inside (reversed) domain. We can roughly guess

that inside domain’s Bragg angle is smaller than the outside domain by an amount of

0.001◦. By using the simple relation, ∆d = −
cosθ
sinθdθ, the stain difference between the two
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Fig. 4.19. (a)A 2-dimensional plot of the time-dependent Ginzburg Landau simulation
of the z-displacement in a LiNbO3 domain wall. (b) A line scan of the z-scan profile
along a line in (a) parallel to the y-axis.
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Fig. 4.20. For hexagonal domain vertex positions 2 and 3 in Fig 4.19, indicated by
vertical dotted lines, the dotted line is the deviation angle compared to a flat surface
incident angle, and the solid line is the exit O-beam intensity after traversing a LiNbO3
crystal of 0.5 mm thickness

Fig. 4.21. For hexagonal domain vertex positions indicated by vertical dotted lines, the
dotted line is the deviation angle compared to a flat surface incident angle, and the solid
line is the exit beam intensity after traversing a LiNbO3 crystal of 0.5 mm thickness
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Fig. 4.22. Rocking image of domain (d), and (e) of Fig. 4.16. Incident angle from
(a) to (d) is 22.151◦, 22.149◦, 22.147◦, and 22.145 ◦, respectively, for (3,0,0) symmetrica
transmission.
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domain is roughly estimated to be εyy − 4 ∗ 10−5. Because of the negative sign, the

inside domain has a higher lattice spacing d(3,0,.,0) than the outside matrix domain.

Fig. 4.23. Schematic Rocking curve for the inside domain(1) and outside domain(2).

In addition to the constant strain or lattice constant difference between inside and

outside domains, the wall contrast also differs depending on the symmetrical position.

The domain walls 1 and 3 looks much sharper than domain walls 2 and in Fig. 4.16 for all

rocking curves around the Bragg peak. This asymmetrical contrast can only be explained

by the dynamical theory, because the left and right sides of the dispersion curve are not

symmetrical. Figure 4.24(a) shows the strain(εyy) distribution for different orientation

domains, and the simulated contrast at the exit surface. This simulated image also

shows an asymmetrical contrast for different domain walls, namely, Wall type 1 and 3

with smaller contrast width and walls 2 and 4 with broader contrast widths.

An additional source of asymmetric contrast can arise from the small shear strain

εzx ≈ 5 × 10−5 that was observed at the domain walls in the Bragg geometry (Section

4.1.1). This results in the entire hexagonal domain being slightly shifted in the z-direction

with respect to the matrix. If it is assumed that this strain exists throughout the entire

crystal depth in the z-direction, then for an incident wavevector from the left side of Fig.

4.22, the domain sets 1,3, verses 2,4 can result in different contrasts. Such a difference

is also seen in Bragg geometry in Fig. 4.3. It is important to note that such a shear



136

strain, εzx, observed in the Bragg geometry, is not predicted by the simple TDGL model

(Chapter 3) which does not include the effect of crystal non-stoichiometry or internal

fields. This shear strain, however is not inconsistent with the z-displacements predicted

by the TDGL model at the vertices of the hexagon as shown in Fig.4.19. In other words,

the two can co-exist.

But in the transmission geometry simulation, this effect is not modeled here for

the following reason. Because of the tightly localized shear strain(within tens of µm),

the spatial derivative of the shear strain is large. If this value is too high, namely very

high value of β, then the ray theory can’t be applied. This shear strain will effect the

transmission topological image, but this effect may be localized in a small area compared

to the other strains mentioned in case 1 and case 2 models.

As a conclusion, by using dynamical X-ray tracing program, we have explained

the asymmetrical contrast at the vertices of hexagonal domains in lithium niobate. We

also show that the overall lattice strain εyy seen inside the domains can explaint the

asymmetric contrast widths of different sets of domain walls in the same hexagonal

domain. Even though it is difficult to predict the exact strain values, the simulation

provides a qualitatively good agreement with the experimental data.
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Fig. 4.24. (a) εyy profile. Red arrow is spontaneous polarization direction.(b) is exit
beam’s intensity calculated by ray tracing method according to strain distribution in (a)

4.2 In situ experiment

By using static reflection and transmission x-ray topography, detailed local static

structure of domain walls was detected and described in previous sections. This section

probes the detailed dynamical strain evolution by applying an electric field under the

presence of X-rays. Both transmission and reflection geometry give very interesting

dynamical behavior of strain evolution as a function of external fields. In reflection ge-

ometry, long-range piezoelectric strains evolve and interact with neighboring domains

even well below the coercive field. By using ANSYS simulation and x-ray tracing simu-

lation, accurate dynamical strain values at the domain wall can be deduced as a function

of external field. In transmission in-situ experiments, a very complex strain evolution

is observed inside the crystal, which was not amenable to clear interpretations and
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simulation. This section therefore focuses only on the in-situ simulations in the Bragg

reflection geometry.

4.2.1 reflection geometry

The synchrotron beamline produce an x-ray beam with a vertical divergence of

less than 36 µrad. More importantly, the local divergence angle on a microscopic area of

the crystal due to the source size and distance from the undulator is 1.4 µrad. This is far

smaller than the width of the symmetric double crystal Si(111) monochromator Bragg

reflection (44.5 µrad ) or the intrinsic rocking curve width of LiNbO3 (16.3 µrad). It is

thus possible to do excellent topography using the symmetric crystal monochromator.

For diffraction with an applied electric field, conductive electrodes consisting of a 100

nm film of amorphous carbon were deposited on both sides of a z-cut crystal over an

approximately 1 cm x 1 cm area in the center of the crystal. The crystals were mounted

on an insulated stage in a 6-circle goniometer. Regions of the order of 1 mm2 -2 mm2

illuminated by the incident beam were imaged in the (0,0,.,12) Bragg reflection using a

magnifying x-ray camera. The camera consisted of a Gd oxysulfide sputtered fluorescent

film deposited on a magnifying optical taper which is coupled to a cooled CCD detector

with 12 bit readout accuracy. The fluorescent film was relatively insensitive to 3rd

harmonic radiation from the monochromator. The lateral resolution of the combination

was 6 m over a 3mm × 3mm field. The camera was mounted 0.47 m from the sample

crystal. The images were recorded with integration times of 50 ms-1s, depending on the

degree of attenuation employed downstream in the diffracted beam.

The evolution of these domain wall strains under a uniform external field is now

described. These experiments were conducted on a congruent z-cut crystal of thickness

0.5 mm after the amorphous carbon electrodes were deposited as described above. The

measured rocking curve width of the (0,0,.,12) Bragg reflection with electrodes in the

region of the image was θB=110 µrad as observed previously, although at places on this

sample, rocking curves showed structure resolvable into individual Bragg peaks with

widths of 27.2 µrad. Fig. 4.25 shows topographs with applied voltages of (a) 0 V, (b)

+4500 V, and (c) -4400 volts. The incidence plane is the y−z plane, whose projection with
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Fig. 4.25. (0 0 . 12) Bragg topograph of LiNbO3 crystal (a) at applied voltage V=0;
(b) at applied voltage V=+4500 V (forward bias: electric field parallel to polarization
inside the hexagonal domains); (c) at applied voltage V=-4400 V (reverse bias: electric
field antiparallel to polarization inside the hexagonal domains). The domain outlines as
seen for V=0 are shown in (b) and (c). The arrows show the apparent motion of defect
features from the position at V=0

the image plane is a vertical line along the y-axis. The xray is incident from bottom’s up

in the image plane. Fig. 4.25 (a) clearly shows several hexagonal ferroelectric domains

in addition to numerous dislocations and defects within an extinction depth of the

surface of the LiNbO3 crystal. Fig. 4.25 (b) shows an apparent growth in the domain
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size as well as a decrease in the spacing between the domains. The apparent growth

is a consequence of the application of a forward bias (positive voltage: applied electric

field E parallel to the polarization Ps inside the hexagonal domains). The domains as

observed with no applied field in Fig. 4.25 (a) are shown in outline. Fig. 4.25 (c) shows

an apparent shrinkage of the domains as well as an increase in the spacing between the

domains. The apparent shrinkage is the consequence of the application of a reverse bias

state (negative voltage; applied electric field E opposite to the polarization Ps inside the

hexagonal domains).

The coercive field for domain reversal in congruent LiNbO3 single crystals is

240kV/cm in the forward bias state and 150kV/cm in the reverse bias state. The difference

arises from the presence of internal fields as reported before [11]. Since our application

of ±90 kV/cm is considerably lower than the coercive fields for LiNbO3, no domain wall

motion is expected, consistent with prior in-situ optical experiments. [5]To check this,

we verified using optical microscopy after the experiment that the ferroelectric domain

walls had not moved at all by the application of the field. To clarify the effect in the

topographs, we tracked the changes in the apparent positions of dislocation features

as a result of the application of the external field. These deviations between the initial

state of no applied voltage and the final state of high applied voltage are shown as small

arrows in Figs. 4.25 (b) and (c). Under close inspection we see no major evidence of

domain walls moving relative to neighboring dislocations as a result of voltages applied

here. Furthermore, in Fig. 4.25 (b) we see apparent expansion of the distance between

dislocations in domains with the application of forward bias, and the contraction of

the distance between dislocations in the intervening matrix. In Fig. 4.25 (c) we see the

opposite effect, the apparent contraction of the distance between dislocations within a

domain under the action of a reverse bias, and the expansion of the distance between

dislocations in the intervening matrix.

It is significant that dislocation features far away from domain walls show the

least apparent motion under the application of the field, independent of whether inside

or outside a domain. Fig. 4.26 shows a larger area view of the same domain region

under the application of a forward bias of (a) 0 V, (b) +1500 V, (c) +3000 V, and (d) +4500
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Fig. 4.26. Detail of the (00.12) Bragg topograph for positive applied voltage (forward
bias) of (a) 0 V, (b) +1500 V, (c) +3000 V, and (d) +4500 V; for negative applied voltage
(reverse bias) of (e) 0 V; (f) -1500 V, (g) -3000 V, and (h) -4400 V.

V. The bias was then returned to (e) 0 V, and we applied a reverse bias of (f) -1500 V,

(g) 3000 V, and (h) 4400 V. The x-ray images of the hexagonal domains appear to be

growing continuously from Fig. 4.26(a) to (d), and appear to be shrinking continuously

from Figs. 4.26 (e) to (h).

In summary of the observed effects, large relative changes are observed in the

apparent domain size as well as distance between domains as a result of applied electric

fields less than the coercive field. The apparent growth or shrinkage of domain walls

are never observed to cross dislocations or other defects, and the change in the apparent

position of any random feature (such as a dislocation) in the images of Fig. 4.25 is

directly dependent on its proximity to a domain wall.

To understand these dynamic image changes, Finite Element Method based AN-

SYS simulations were performed, combined with X-ray tracing simulations. The sym-

metry of LiNbO3 is trigonal (3m). For a z-cut crystal with large surfaces normal to the

z-axis, the only nonzero piezoelectric coefficient is d333 along the z-axis [12]. In the

tensor notation, the piezoelectric strain is given by ε jk = di jkEi, where Ei is the applied

electric field, and di jk is the relevant piezoelectric tensor coefficient. For a uniform
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applied field E3, (where 3 refers to the z-axis of LiNbO3, the piezoelectric strain ε33 is

given by ε33 = d333E3, which therefore depends on the sign of E3 and d333. The field

E3 is positive when it is parallel to the polarization direction Ps (+z axis) of a domain

region, and E3 is negative when it is antiparallel to Ps. Since d333 is positive for LiNbO3,

in the forward bias field (E3 parallel to Ps inside the hexagonal domains and antiparallel

outside), the matrix shrinks in the z direction (negative ε33) and the regions inside of

the hexagonal domains expand along z direction (positive ε33).

Before proceeding further with discussing piezoelectric strains, we note the dis-

tinction between piezoelectric and electrostrictive strains. Electrostrictive strain, εel

(also called spontaneous strain) in the context of this paper, occurs due to atomic move-

ments that give rise to a spontaneous polarization, Ps in the crystal and requires no

external field. In calculating the strain tensor, we observe that εel ∝ P2
s . The piezo-

electric strain, εp arises from the interaction between an external electric field, E and

the polarization Ps,εp ∝ E · Ps. Far away on either side of a 180 ◦ domain wall, εel

has the same magnitude and sign; it varies only in the wall region itself, in response

to the variation of the polarization magnitude. On the other hand, the piezoelectric

strain, under a uniform external field, +E, though possessing symmetric magnitude

about the wall center, reverses sign across the domain wall. Solving for these strains

under elastic compatibility conditions, one finds that the εel (under no external field)

is confined in width to the same length scale over which the polarization varies, while

εp (under a uniform external field E) results in a broad piezoelectric shear strain, εzn

adjacent to domain walls. The lateral width and magnitude of the piezoelectric shear

strain εzn increases proportional to the external electric field and deforms the surface

(0001) lattice planes across a domain wall. In the present case, for forward bias field, the

hexagonal domain regions in lithium niobate bulge and behave like convex mirrors for

x rays in Bragg geometry. This is schematically shown in Fig. 4.27. Under a reverse bias

field they adopt a concave curvature and focus the diffracted x-ray beams. This is also

consistent with the observation that the interior of the large hexagonal domain becomes

dark under forward bias (in Fig. 4.26(d) ), and bright under reverse bias (Fig. 4.26(h)).
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Fig. 4.27. Surface of 180 ◦ domain showing surface normal and the effect on kinematical
diffraction of an incident x-ray beam.

To understand quantitatively the influence of piezoelectric strain at domain walls

on the distortion of x-ray images in Fig. 4.26, we have performed strain calculations

using commercial finite element analysis (FEA) software. As inputs to the calculation,

we use reported single crystal values for piezoelectric and elastic stiffness tensor coeffi-

cients for LiNbO3 [13]. We define a sharp domain wall by inverting the crystallographic

z- and the y- axes across a wall. A finite sample has stress-free boundary conditions.

After exact calculations of the lattice displacements at the domain walls using FEA, we

calculate the lattice normal vector for (0,0,1) planes at all the walls with an external

electric field. The calculated local surface lattice normal was then used as the input to

a ray- tracing program, assuming kinematical diffraction to simulate the actual x-ray

image of the distorted sample surface. The ray tracing is similar to a previously reported

method [14] for screw dislocation analysis, assuming that the lattice distortions at the

crystal surface are primarily contributing to the reflected image. We use a parallel input
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beam and track the diffracted intensity based on deviation from the Bragg condition.

If
→

K o is the incident x-ray wavevector, and
→

K G , the diffracted x-ray wavevector, then

from simple geometrical considerations,

→

K G=
→

K G −2
→

K G ·̂n (4.77)

where n̂ is the local unit surface normal vector for (0001) lattice planes. From the surface

displacement data obtained from FEA, we calculate the surface normal vector n̂ of the

distorted surface lattice of a crystal, and trace the reflected x-ray wavevector,
→

K G. At

the detector, we simply count the arriving flux of the diffracted beam.

Fig. 4.28. (a) Calculated surface displacement and (b) calculated (0 0.12) diffracted ray
projection from domain for V=+4400 V (forward bias).
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Fig. 4.28 shows (a) the calculated strain and (b) the simulated x-ray topograph

under a forward bias field of 90kV/cm. In this case, the magnitude of the normal

strain ε33 is +5×10−5 (domain), -5×10−5 (matrix) and the shear strain εzx is ±2 × 10−4 ,

where the piezoelectric coefficient d333 = 0.6× 10−11 C/N. The width of the shear strain

region is about 100 µm, and the step between walls is about 25 nm. The domain wall

itself is located in the region of maximum shear strain, and does not actually move.

The calculated strain and x-ray images demonstrate respectively, a bulge normal to the

crystal surface, and the domain with apparently convex walls as was recorded with

increasing field in Fig. 4.26 (b-d). The increased contrast arises primarily from the field

induced piezoelectric strain at the walls. Only a shear strain component can change the

shapes of x-ray domain images. As observed, this strain destroys the Bragg condition

most effectively at domain wall types 1,2,5, and 6 in Fig 4.26 that are at an angle to the

incidence plane. It is weak at walls 3 and 4, which are parallel to the incidence plane.

The other contrast mechanism under an external field at all wall types arises

from the change in the lattice parameter c with strain ε33. In the forward bias, c

increases inside the hexagonal domains, while it decreases in the matrix domain. With

a reverse field bias, the opposite is true. This lattice constant variation only changes

the contrast rather than changing the image shape. A compression or expansion of the

lattice parameter is the equivalent of an effective change in the Bragg angle [∆θB =

−(∆c/c)tanθB = ε33tanθB] which enhances the domain contrast. For the values of ε33

calculated above, we would expect the application of+4500 V to shift the Bragg angle by

∆θB = ±40µrad for a domain and surrounding matrix, respectively. This is significant

compared to the observed rocking curve width.

Simulated x-ray topographic images for the rocking curve angles θB = ±0.005◦

are shown in Figs. 4.29 (a) and (b). The simulated topographs accurately demonstrate

the bright and dark contrast of different sets of domain walls arising from domain edge

curvature effects similar to what is seen in Figs. 4.3 (a) and (c) without any external

field. However, we note specifically that the domain wall curvature effects in Fig. 4.3 are

under zero external electric field and are intrinsic to the material (with its point defects).
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Fig. 4.29. Calculated ray projection of (0 0.12) diffraction from the vicinity of the 180◦

domain in Fig.4.26 for (a)θ = θB − 0.005◦, (b)θ = θB + 0.005◦.

The curvature effects in Fig 4.29, on the other hand, are extrinsic in that they arise from

the piezoelectric effect due to the application of a uniform external electric field.

The calculated strain and simulated x-ray images under a reverse bias of 90 kV/cm

are shown in Figs. 4.30 (a) and (b) respectively. In addition to a dimpling of the surface
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Fig. 4.30. (a) Calculated surface displacement and (b) calculated (0 0.12) diffracted ray
projection from domain for V=-4400 V (reverse bias).

rather than a bulge, the calculations indicate that domain walls would appear concave

as was recorded with increasing reversed field in Fig. 4.26 (f-h).

A careful quantitative analysis of the data, however, reveals that the extent of

expansion or contraction in the simulated image exceeds that seen in experiments,

suggesting that the actual experimental surface displacements and shear strains at the

domain walls may be smaller than the values calculated from the FEA simulation.

The surface displacements and strains were obtained from the measurements of the

experimental images. Starting with Fig. 4.26(a) that corresponds to zero field-induced

strain as the reference, and comparing with the strained images 4.26(d) and 4.26(h),

we measured the displacement at every point on a horizontal line scan across the large
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hexagonal domain, tracking the movement of dislocations and defects. This is shown

in Figs. 4.31(a) (forward bias) and 4.32(a) (reverse bias) for image strains extracted from

Figs. 4.26(d) and 4.26(h), respectively, along with smooth spline fits. The domain wall

piezoelectric strain width as determined by this transition appear to be of the order of

100 µm thick.

Fig. 4.31. (a) Surface strain with forward bias measured by a displacement of details
between Fig. 4.26(d) and Fig. 4.26(a) by a line scan across a 180◦ domain in LiNbO3.
The line is a spline fit to the measured points. (b) Positive surface displacement (solid
line) derived by integrating the curve 4.31(a). The dashed line is the predicted effect
using bulk coefficients and a finite element calculation at room temperature.

Applying our ray-tracing in reverse from the image plane to the sample surface,

we calculated the surface normal vector n=- fxi- fyj+k, using Eq. 4.77, where fx = ∂z/∂x,



149

Fig. 4.32. (a) Surface strain with reverse bias measured by a displacement of details
between Fig. 4.26(h) and Fig. 4.26(a) by a line scan across a 180◦ domain in LiNbO3.
The line is a spline fit to the measured points. (b) Negative surface displacement (solid
line) derived by integrating the curve 4.32(a). The dashed line is the predicted effect
using bulk coefficients and a finite element calculation at room temperature.

fy = ∂z/∂y, and (i,j,k) are unit vectors along the crystallographic directions x, y, and z

of the matrix domain. For LiNbO3, the domain walls are y-walls , and therefore fy=0.

The surface normal is therefore determined only by the shear strain fx, given by
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fx =
−sinθB · l0 ±

√
sin2θB · l

2
0 − ∆

2 · cos2θb · (cos2θB − sin2θB)

cos2θB − sin2θB
(4.78)

where l0 is the distance between sample and detector, ∆ is a topography image change

between applied voltage and without external field along x direction. The derivation of

the above expression is given in Appendix B.

This vector gives the shear strain components, εzx, and the integration of the

components gives the profile of the bulge or depression of the domain under the influ-

ence of the applied field. Fig. 4.31(b) (solid line) shows the surface domain expansion

deduced by integrating the profile in Fig. 4.31(a). For comparison, the surface expansion

calculated from the FEA program for forward field bias is shown as well (dashed line).

Fig. 4.32(b) shows the measured surface displacement (solid line) for the reverse bias

obtained by integrating the curve in Fig. 4.32(a) compared with the value from the FEA

calculation (dashed line). Even for a 400 µm wide domain, the maximum displacements

observed experimentally, +14nm and -11 nm, for the forward and reverse bias fields,

are only 0.56 and 0.44 respectively, of the calculated values using bulk piezoelectric and

elastic constants. The shear strains, εzx observed experimentally are also suppressed

compared to the bulk predictions. The overall experimental piezoelectric response ap-

pears then to be significantly lower in magnitude than the calculated response for a

single crystal with a uniform d333 coefficient throughout and 400 µm wide inverted

domain region.

There are several reasons to consider for this discrepancy. One possibility is that

localized charge states near the surface of the crystal screen the bulk applied field in the

region between the electrodes by more than a factor of two. A second possibility is that

absorbed x-rays from the intense x-ray beam during the application of the electric field

could also locally screen the electric field by creating electron-hole pairs in the material.

Though we did observe some photoconductive current with x-rays [15], we were able

to rule out a large effect due to this type of screening by measurements with similar

graphite electrodes on thinner crystals. In those instances, the measured coercive field

for permanent domain reversal under x-ray illumination was close to the actual reported
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value with water-based electrodes without x-rays. A third possibility is that the size

of the domain may play a role in the mechanical clamping of the displacement, thus

suppressing it. This mechanical compatibility condition is accounted for by FEA, unless

the input material parameters are different from the bulk.

It is worth considering the possibility that perhaps the piezoelectric coefficients

d333 are lower (by about 2), and/or the stiffness coefficients, C3333 are higher, in the

vicinity of a domain wall. The presence of local strain and wall structure even in the

absence of external field (Fig. 4.3) arising from point defects in these crystals suggests

that the variation of defect fields across a wall may play some role in the observed

suppression of lattice displacement near the walls. Finally, there is also the possibility

of field-induced broadening of the polarization gradient at a domain wall, as has been

recently proposed [16]. Since the piezoelectric coefficient, d333 is linearly proportional

to the spontaneous polarization, Ps, a broadened polarization gradient across a domain

wall that goes through zero at the center of the wall can locally induce a gradient of d333

coefficient across the wall as well, thus suppressing the overall piezoelectric response

in that region. Pernot-Rejmnkov, Laprus, and Baruchel have previously described

an overall curvature of congruent LiNbO3 resulting in x-ray focusing which did not

include the effect of visible stable domains [12]. That effect was observed in fields

applied across x- and y-cut crystals but not z-cut crystals and their explanation requires

the assumption of an inhomogeneous crystal. The behavior observed here in a z-cut

crystal was consistent with the assumption of a single piezoelectric coefficient.
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Chapter 5

Local Optical Properties of a Domain Wall

5.1 Overview of Near-field Scanning Optical Microscopy

This chapter describes the qualitative and quantitative probing of the local optical

properties of a single 180 degree domain wall in single crystals of lithium niobate

and lithium tantalate. The primary experimental tool used in this study is Near-field

Scanning Optical Microscopy (NSOM).

After the first demonstration of NSOM in bell labs in 1982 [1], extensive exper-

imental and numerical research has been carried out in this area. NSOM can perform

most of the traditional optical microscopy functions, but with enhanced resolution up-

to 40nm length scales. From the simplest linear optical reflection and transmission

microscopy, to nonlinear optical [2], femto second pulse, [3] [4] and heterodyne experi-

ments [5], many conventional optical measurement methods have been adapted to the

NSOM system. Figure 5.1 shows the overall schematic of an NSOM system. [Ref] The

essential component of NSOM is a tapered fiber tip with a sub-wavelength aperture of

≈40nm at its end. Light is either forced through the fiber tip or collected through it.

The tip is scanned within ≈20nm over the surface of a sample, and either reflected or

transmitted light is used to image the optical properties of the sample. Simultaneously,

an electrical feedback circuit allows the fiber tip to follow the surface contours, [6] and

therefore provides the surface topography image as well. Based on its modes of oper-

ation, NSOM is categorized as collection mode, or illumination mode. In the illumination

mode, the input laser signal is forced through the fiber tip aperture. If the desired optical

signal is collected through NSOM tip aperture instead, it is called the collection mode.

The spatial resolution in both illumination and collection modes is determined by size

of the fiber tip aperture. Current technology can easily make aperture size as tens of

nanometers [7]. There are various methods to make nano aperture by using optical
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Fig. 5.1. Schematic of an NSOM system for (a) collection and (b) illumination mode
with the adopted simulation method

fibers. The most common method is to heat an optical fiber locally using a CO2 laser,

while it is simultaneously stretched till the point of necking and ultimate breakage,

resulting in an ≈40nm aperture at the end of the tapered tip [8]. Another frequently

used method is chemical etching [9] [10]. A drawback of these optical fiber tips is the

leakage of light around the fiber taper before it exits the tip. To confine light inside the

tapered aperture, the taper wall of the fiber is coated with a thin metal film of ≈100nm.

However, this additional coating degrades the topological resolution to 100nm scale,
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as well as effects the optical resolution of the images. To overcome this disadvantage,

apertureless NSOM imaging methods is currently being explored [11] [12] [13]. In this

dissertation, NSOM has been used with a tapered fiber tip coated with 100nm film of

aluminium.

Even though extensive research has been carried out using NSOM, there is still

no standard method to analyze the NSOM images. The inverse problem in simulation

is to start from the image and extract the optical characteristics of the sample studied

(index and absorption profiles, for example) by tracking the light in reverse through the

entire NSOM imaging process. A key element in solving this is the transfer function of the

tip, which determines how the amplitude and phase of light is affected by passing from

outside into the sub-wavelength fiber tip, or vice versa. There has been a significant

research effort to calculate the transfer function to calculate the inverse problem and

estimate the spatial resolution. If we can successfully estimate the transfer function,

we can calculate the actual field distribution underneath the aperture by using the

measured electric field amplitude and phase during imaging. This transfer function

itself gives the NSOM spatial resolution, because the inverse Fourier transform of this

transfer function is the point-spread function(PSF). This point spread function is delta

source response, whose full width half maximum (FWHM) gives the spatial resolution.

However, to calculate the transfer function is not a trivial process, especially if the

sample surface has large topological variations. Transfer function concepts are based on

the linearity properties of the tip. It means that for different tip locations over the sample,

the tip and the sample interaction changes, resulting in a different transfer function, and

therefore, a different proportion in which the amplitude and phase of light enters or exits

the fiber tip near the sample. If the sample surface has strong topological variations,

the tip and the sample surface interaction is not linear. Even though theoretically, a

general transfer function cannot exist, within some restrictions, certain averaged transfer

functions can be defined [14] [15] [16]. Other research groups have already shown that

in the case of weak topological variations, one can introduce pseudo-transfer function

concepts. To numerically calculate these transfer functions, many numerical methods

and assumptions have been tried [17] [18] [19] [20] [21] [22] [23].
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Among the numerous numerical techniques, Finite Difference Time Domain [24]

[25] method (FDTD) is the most versatile and accurate of tools. It can account for the

metal coating around the tip, the complex geometries near the tip-sample region, the

exact phase information, short laser pulse experiments, nonlinear optical responses from

the sample, etc [18] [19] [20] [21]. The primary drawback is the calculation domain size,

which is practically limited to regions of the order of 100x100 wavelengths of light. To

calculate larger areas of optical wave propagation, other methods should be linked with

FDTD. In this dissertation, I have introduced a hybrid method that seamlessly tailors

together FDTD and Beam Propagation Method (BPM) [26] for calculating accurately,

large area responses of sample to optical signals.

By using fiber-aperture NSOM, ferroelectric domains have been imaged in this

work in both collection (Ch. 5.4) and illumination geometries(Ch. 5.5). Also by apply-

ing electric fields to the sample while performing NSOM imaging, we study the domain

wall response to electric fields(Ch. 5.6). By combining these above experiments, with

simulations using FDTD(Ch. 5.2) and BPM numerical methods(Ch. 5.3), we quanti-

tatively map the refractive index profiles at individual ferroelectric domain walls in

LiNbO3 and LiTaO3 single crystals. We begin, however, by first calculating the transfer

function for our experimental geometry in Ch. 5.2.

5.2 NSOM transfer function calculation using FDTD method

To understand the data collection process in NSOM, and estimate the resolution

of the process, many numerical methods have been applied. The most common and

early approach was to calculate the optical response at a step topology, as a function

of sample refraction index, tip sample distance, and step height [27] [28]. This kind of

approach is, however, very restrictive for general applications. Every different scanning

and sample condition would require a different simulation. For a more general appoach,

the optical transfer function concept is required. In many experimental cases, the optical

signal is generated inside a dielectric sample, or as in our present case of domain wall

probing, the incident beam is modulated in passing through a dielectric sample. In these

cases, a lot of signal may not even reach the detector, because of a large component of
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evanescent waves in the modulated signal. In particular, if the incident angle is larger

than the critical angle for total internal reflection from the dielectric sample surface,

only evanescent waves exist outside the sample surface. If the detector is close to

the sample surface, some of the evanescent waves can be coupled into the fiber tip

aperture, resulting in enhanced resolution. Especially in ferroelectric domain imaging

experiments in the collection mode geometry described further on, most of the optical

signal is modulated while it is propagating through the sample thickness as shown

in figure 5.2(a). When sample surface is very flat and has a homogeneous dielectric

Fig. 5.2. FDTD NSOM tip simulation diagram

constant, the tip and sample interaction becomes linear. Theoretically, in such a case,

a transfer function does exist. In ferroelectric domain wall imaging experiments, the

sample surface has no strong topography, (1-2nm steps reported earlier [29]) and the

index contrast at the domain wall is small (≈ 10−4). Therefore, a numerical transfer

function can be introduced in our case. We describe below, such a calculation for

collection mode geometry, where light first passes through the sample and is then collects

by the fiber tip.
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In order to numerically calculate this transfer function, FDTD method is used in

this work. FDTD method can calculate very complicated geometries with good accuracy.

A 3- dimensional FDTD code was written for this purpose based on MATLABR. This

code includes Perfect Matching Layer (PML) boundary conditions, and multi-incident

beam method for Total/Scattering field simulation in a inhomogeneous medium. To

directly calculate the transfer function in the spatial frequency domain, we activate

different incident angle plane waves, with wavevector k1 underneath the sample surface.

After those plane waves hit the sample surface, FDTD code activates a second set of

waves (wavevector k2) in accordance with the analytical solutions. When the incident

angle, θ, is smaller than the critical angle sin−1(1/n) at the sample/air interface, the

wavevectors k1 and k2 are related through Snell’s law, given by k1 · sinθ = k2 · sinθt,

where θ(t)is the transmitted angle from the surface normal. If the incident angle, θ,

is higher than the critical angle, the transmitted k2 wave become an evanescent wave.

Equations 5.1 to 5.2 analytically describe these evanescent waves on sample surface.

The electric fields, ~E(~r) and magnetic fields, ~H(~r), of the evanescent waves as a function

of spatial coordinates, ~r, are given as

~ETE(~r) = Ei
TE

2 cosθ

cosθ − i
√

sin2 θ − n−2
· exp(−y/dp) · ~ex (5.1)

~HTE(~r) = Hi
TE

2 cosθ · (sinθ · ~ey + i
√

sin2 θ − n−2 · ~ez)

cosθ − i
√

sin2 θ − n−2
· exp(−y/dp) (5.2)

~ETM(~r) = Ei
TM
−2 cosθ · (sinθ · ~ey + i

√
sin2 θ − n−2 · ~ez)

n−2 cosθ − i
√

sin2 θ − n−2
· exp(−y/dp) (5.3)

~HTM(~r) = Hi
TM

n−2 cosθ

n−1 cosθ − i
√

n2 sin2 θ − 1
· exp(−y/dp) · ~ex (5.4)

those field decaying exponentially with dp decaying constant.
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dp =
λ

2π
√

n2 sin2 θ − 1
(5.5)

The polarizations of light can be either transverse electric, (subscript TE), or transverse

magnetic, (subscript TM). The incidence plane in figure 5.2 is y-z. The TM polarization

incident wave has Ey, Ez, Hx components and the TE polarization has Ex, Hy, Hz

components. Monochromatic incident light has a wavelength λ=600nm in air, and the

sample index n is varied between 2.286 and 2.386 for all directions. The fiber core is

assumed to have an isotropic refraction index coefficient of 1.586. Tip taper slope is set to

70◦. A total of 3000 time steps is used for each simulation. Because of the computational

size, simulation beyond the fiber taper was not possible. Our simulation domain size

was 2×2×2µm, with an overall simulated taper length of ≈ 1.7µm. In all the simulation

domains used, we observed good convergence of the field behavior well within the

taper, as will be shown later. Typically, in most cases, the field values reached a steady

state value after 1000 time steps. However, for time-domain fourier transform, we used

the time domain data only after>2500 time steps. We generated individual plane waves

k1 with incident angles from the surface normal varying between 0◦-80◦. The phase of

each incident plane wave was phase locked at 0◦ at the phase reference point, r0, that

lies at the intersection of the y=ysample surface and the axis of the fiber tip.

As an example, Figure 5.3 shows the simulation results forθ = 0◦ and 40◦ incident

angles using a TM wave. Surprisingly, the field distribution of the main polarization, Ez

parallel to the interface is similar for any incident angle case, as shown in figure 5.3(a),

and (c). When this simulation data is collected at a plane closer to the fiber aperture,

the field distributions become different for different incident angles. This can be easily

understood by seeing the phase distribution of the electric field component Ez on the

yx plane (figure 5.3(b,d)) which contains the axis of the tip. The phase distribution is

quite complicated near the tip aperture, but after some propagation distance through the

fiber tip, these fields are strongly guided by the metal coating. After about y=100(grid

number from the bottom of simulation domain), we can see a linear phase change with

distance as shown in figure 5.3 (b,d). We can assume that after y=100, no additional
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phase difference will be accumulated between individual plane waves coupled within

the taper. Another important result of this simulation is that most of the energy flow into

the detector depends mostly on the main polarization component(component with the

maximum magnitude of the field). In TE mode case, Ex·Hy poynting vector component

is much stronger than Ez·Hx, but Ez·Hx component becomes dominant in TM mode

case. This ratio between the main polarization and minor polarization components is

higher than 98 percent in both TE and TM modes. Based on FDTD simulations, we can

Fig. 5.3. NSOM Field distributions TM polarized light of 600nm, for θ = 0◦ (a,b)and
θ = 40◦ (c,d). The steady-state electric field amplitude, Ez, inside the taper is shown in
(a,c). The phase of light is shown in (b,d).

summarize that the main polarization components Ex, and Hz in TE mode, Ez, and Hx

in TM mode are quite similar in their overall shape of field distribution at y=ydet plane

for all incident angles considered. All the phase difference between individual plane

waves is induced before y=100, and after that point, there is no additional phase delay
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accumulation, and finally the energy flow inside the fiber is mainly dominated by the

main polarization component.

Now the complex NSOM data collection process can be explained by the col-

lected magnitude and phase information of each main polarization field component.

To calculate the final detector response for individual plane waves, we need only the

magnitude function M̃(k) and the phase functionΦ̃(k), both of which are measured at

the center point on the y=ydet plane, instead of requiring the complete field distribution

at that plane. Fig 5.4 (a) shows these functions, M̃(k) and Φ̃(k), for the main polariza-

tion field for the TE and the TM modes. The X-axis represents incident angle which is

equivalent to the spatial frequency kx=2 · π · n·sinθ/λ. The maximum value of kx in

our simulation is 2 · πn/λ, because only propagating incident waves can be simulated.

We extrapolate M̃(k) and Φ̃(k) data to get higher spatial frequency data than n·2 · π/λ

assuming it is decaying exponentially. Spatial frequencies higher than n·2 · π/Λ do not

contribute much to the actual signals because of their small magnitude. We note that for

both TE and TM modes (Figure 5.4), there is finite coupling magnitude even beyond the

critical angle for total internal reflection. This occurs due to the coupling of the evanes-

cent wave into an NSOM tip. This coupling becomes weaker if the tip-sample distance

increases. In this simulation, the critical angle θ = 25.9410◦ or θ = 24.7785◦ for n=2.286,

and n=2.386, respectively. Around this critical angle, the TE mode has a very strong

peak in the magnitude transfer function. This is due to the high transmitivity of the TE

mode near the critical angle. After the critical angle, the magnitude of the transfer func-

tion decreases exponentially, because the incident beam becomes an evanescent wave

at the dielectric/air boundary. Surprisingly, the phase function shows a very strong

dispersion as the spatial frequency increase. Since the phase difference for different

plane wave components can reach and exceed a phase shift of π, it implies that there

will be some destructive interference processes. This phase dispersion strongly limits

the NSOM spatial resolution. Now the complex NSOM data collection process can be

explained by the collected magnitude and phase information of each main polarization

field component. To calculate the final detector response for individual plane waves, we

need only the magnitude function M̃(k)and the phase functionΦ̃(k), both of which are
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measured at the center point on the y=ydet plane, instead of requiring the complete field

distribution on that plane. Fig 5.4 (a) shows these functions, M̃(k) and Φ̃(k), for the main

polarization field for the TE and the TM modes. The X-axis represents incident angle

which is equivalent to the spatial frequency kx=2 · π · n·sinθ/λ. The maximum value

of kx in our simulation is 2 · πn/λ, because of only propagation incident wave can be

simulated. We extrapolate M̃(k) and Φ̃(k) data to get higher spatial frequency data than

n·2 ·π/λ assuming it is decaying exponentially. Spatial frequencies higher than n·2 ·π/Λ

do not contribute much to the actual signals because of their small magnitude. We note

that for both TE and TM modes (Figure 5.4), there is finite coupling magnitude even

beyond the critical angle for total internal reflection. This occurs due to the coupling of

the evanescent wave into an NSOM tip. This coupling becomes weaker if the tip-sample

distance increases. In this simulation, the critical angle θ = 25.9410◦ or θ = 24.7785◦

for n=2.286, and n=2.386, respectively. Around this critical angle, the TE mode has a

very strong peak in the magnitude transfer function. This is due to the high transmi-

tivity of the TE mode near the critical angle. After the critical angle, the magnitude of

the transfer function decreases exponentially, because the incident beam becomes an

evanescent wave at the dielectric/air boundary. Surprisingly, the phase function shows

a very strong dispersion as the spatial frequency increase. Since the phase difference for

different plane wave components can reach and exceed a phase shift of π, it implies that

there will be some destructive interference processes. This phase dispersion strongly

limits the NSOM spatial resolution.

The tip coupling ratio diagram in Fig. 5.4 can indeed be interpreted as the

transfer function of the NSOM tip because of the assumed linear response of the tip-

sample interactions. We can easily prove that this tip response function is the true

transfer function. The spatial Fourier transform of the product of the incident field

with this transfer function gives the phase and magnitude information of the individual

plane wave components. First let’s get all plane wave components of incident field E(r)

on y=ysample plane by using Fourier transform.

Ẽ(k)re f erence=r0
=

∫
E(r) · exp(−ikr) · dr (5.6)
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Fig. 5.4. Magnitude and Phase Transfer function

If the tip is exactly located on top of this reference point r=r0, then total coupling field

S(r=r0) will be a summation of multiplexing of plane wave component with complex

tip response function T̃(k) = M̃(k) exp(iφ̃(k)).

Sr=r0 =

∫
Ẽ(k)re f erence=r0

· M̃(k) · exp(iφ̃(k)) · dk (5.7)

If the tip is moved to r=rt positions for scanning, then the new tip coupling field Sr=rt

will be

Sr=rt =

∫
Ẽ(k)re f erence=rt

· M̃(k) · exp(iφ̃(k)) · dk (5.8)

In the above step, we have made use of the fact that because of linearity, we can use

the same tip response function M̃(k) exp(iφ̃(k)) at r=rt. Therefore, the new plane wave

component referenced at r = rt point can be written as,

Ẽ(k)re f erence=rt
=

∫
E(r − rt) · exp(−ikr) · dr = E(k)re f erence=r0

· exp(−ikrt) (5.9)



165

Now, we can rewrite the total coupling field

S(r=rt) =

∫
Ẽ(k)re f erence=r0

· M̃(k) · exp(iφ̃(k)) · exp(−ikrt) · dk (5.10)

Because of the symmetrical tip structure M̃(k) and φ̃(k) can be considered as symmetrical

functions. Then S(r=rt) can be rewritten as

S(r=rt) =

∫
Ẽ(k)∗re f erence=r0

· M̃(k) · exp(iφ̃(k)) · exp(ikrt) · dk = =−1(Ẽ(k)∗re f erence=r0
·T̃(k))

(5.11)

The above equation states that the total field response at any point r = rt is simply the

inverse Fourier transform of the product of the reference field at r = ro and the total

transfer function T̃(k). We have therefore proven that complex tip response function

T̃(k) = M̃(k) exp(iφ̃(k)) is indeed the true transfer function. The inverse Fourier transform

of this transfer function yields the point spread function. This point-spread function

is actually the tip response to a delta function source. By calculating FWHM, we can

get NSOM tip spatial resolution. Figure 5.5 shows several point spread functions and

their FWHM values. For any tiny light source such as biological cells, or quantum well

lasers located inside the sample beneath the sample surface, the maximum resolution

for our simulation conditions of n=2.286, and tip sample distance 20nm will be 360nm.

The primary reason for lower resolution than the actual NSOM aperture size is that the

components of light source incident at the sample air interface at angles greater than

the the critical angle arcsin(1/n) become evanescent waves at the air-sample boundary.

Even though these evanescent waves are collected to tip, they have a stronger phase

dispersion and a weaker collection efficiency. In general therefore, whenever a light

source or signal originates inside a high dielectric constant (high index) medium, it’s

resolution is limited by the critical angle.

In summary, a successful calculation of the NSOM transfer function and the point

spread function has been demonstrated here, for the case of a flat sample surface and

an embedded light source. Even though this model uses the most simple of sample-tip

interactions, it gives a fundamental understanding of the NSOM data collection process
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and the limitations of spatial resolution. This resolution is strongly limited by the phase

dispersion of the light collected by the NSOM tip as well as by the critical angle for total

internal reflection determined by the sample refractive index.

Fig. 5.5. Point Spread Function=
∣∣∣=−1(T̃(k))

∣∣∣: dash line corresponds to half maximum
line

5.3 BPM wave modeling

Although FDTD modeling is very accurate and accommodates complex sample

topology, scattering, and non linearity, a limitation is that it can only simulate relatively

small areas of the order of 10x10x10 wavelengths in order to keep the computation

time reasonable. However, in domain imaging experiments described below in both
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collection and illumination modes, the domain wall image is built up while the beam

is traveling the crystal along the z or thickness direction. This distance is usually of the

order of 300-500 µm range. However FDTD can only compute light travel within a few

µm scale.

In order to handle light propagation over larger distances farther from the near-

field optical tip, another numerical method called the Beam Propagation Method (BPM)

is chosen in this study. Beam Propagation uses scalar Helmholtz equation which is much

simpler than the vectorial Maxwell’s equations. A MATLAB based Fourier Transform

Beam Propagation Method (FFT-BPM) code was written for this purpose to simulate

experimental NSOM images. Appendix E shows the detailed MATLAB code developed

here. This FFT-BPM [26] code is based on three dimensional scalar Helmholtz equation.

∂2E
∂z2
+ ∇2

t E + k2
0n2(x, y, z)E = 0 (5.12)

E is the transverse scalar field component, k0is free space wavevector, n is refractive

index, and ∇2
t is defined by

∇
2
t =

∂2

∂x2
+
∂2

∂y2
(5.13)

if ∂(n2)/∂z � 0, the traveling wave solution to 5.12 has the same behavior as the solution

of the first order partial differential equation

∂E
∂z
= − j(∇2

t + k2
on2)1/2E (5.14)

The field, E can be expressed as the product of a slowly varying complex amplitude E

and a fast changing term exp(-jkonoz) with respect to the propagating z direction

E = E(x, y, z)exp(− jkonoz) (5.15)

by using Eq. 5.14 we can get

∂E
∂z
= − j[(∇2

t + k2
on2)1/2 − kono]E (5.16)
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here no is averaging homogeneouse refraction index. Equation 5.16 can be rewritten as

∂E
∂z
= − j[

∇
2
t

(∇2
t + k2

on2)1/2 + kono
+ ko(n − no)] (5.17)

The propagating wave is calculated by dividing it into the homogeneous medium

diffraction part and phase rotation effect as can be seen in Eq. 5.18.

E(x, y,∆z) = exp(−ko(n − no)∆z)
∫

Ẽ(kt)exp(
jk2

t
(k2

on2 − k2
t )1/2 + kono

∆z)dkt (5.18)

The term k2
t is Fourier component of the∇2

t , Ẽ(kt)is the Fourier component of the E(x,y,z)

field in the previous time step. BPM program is just calculating Eq. 5.18 iteratively every

step until it propagates z = zmax.

In Section 5.5 and Section 5.4, experimental and simulated NSOM images of

domain walls will be compared. The approach is to first make an educated guess for

the refractive index profile within the domain wall, and then use a combination of FFT-

BPM and FDTD methods to calculate the expected NSOM images. The simulated images

are then compared with experimental images and the original index profile refined to

achieve convergence between the two. Uniqueness of the index profile is determined by

finding agreement between images using both collection and illumination geometries

of NSOM. Therefore, overall this process is a trial and error process in determining the

optimum refractive index profile.

The other approach for analyzing images is to solve the inverse problem. There

have been some attempts at extracting the refractive index profiles from experimental

images, but until now, no successful attempts have been reported in solving the inverse

problem. One of the fundamental reasons is that inverse Beam Propagation is not

possible since BPM tracks only the propagating wave component. The evanescent field

part is filtered out automatically at every time step. So in the reverse problem, one

cannot recover the lost evanescent components.
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In this work, for a complete regeneration of the experimental NSOM images, we

have combined the BPM approach with FDTD, Fourier optic code, and Fraunhaufer

code. Figure 5.1 shows this process. In Section 5.5, the detailed simulation process will

be described.

5.4 collection mode image

In the collection mode geometry, the tiny fiber aperture NSOM tip becomes the

light source. In this geometry, we uses He-Ne 632nm laser to detect linear optical

signal. In collection geometry, NSOM tip can collect significant evanescent wave signal

because of close tip and sample distance as can be seen in Fig. 5.4. If the sample surface

has a topological variation, it creates a strong evanescent wave near the surface. The

surface topological variation can change the NSOM image significantly. Therefore, both

topological information and optical signal should be collected simultaneously in order to

extract the pure optical image. Fortunately, in LiNbO3 and LiTaO3 ferroelectric domain

walls, topological structure is very small (less than 2nm). We can therefore assume that

NSOM optical images do not include topological effects. In our experiments, the NSOM

signal is build up by the incident beam propagating through a 500µm thick crystal.

Figure 5.6 shows the experimental transmission-collection mode setup.

Figure 5.7 (a) and (b) shows transmission-collection mode images of 180◦ domain

walls in LiNbO3 and LiTaO3. The first surprising observation to make is that any optical

contrast is present at all, since 180◦ domains must ideally possess the same refractive

index. However, the contrast indicates that a refractive index gradient exists at the

domain wall, and perhaps even between these two domain states. The hexagonal (tri-

angular) shaped ferroelectric domain states imaged here in congruent LiNbO3(LiTaO3)

were created by applying electric fields (higher than coercive field) to a single domain

crystal at room temperature. The matrix domain in the images is the virgin crystal, and

the inside of the hexagonal or triangular regions is the electrically reversed domain

state at room temperature. The bright and dark fringes indicate that the light is bending

while it is propagating along the domain wall. Based on the Eikonal theory, one can

predict that light bends from the low-index region to the higher index region [30]. One
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Fig. 5.6. NSOM Collection experimental and simulation diagram. Crystal thickness is
500µm. Near the tip, FDTD calculation is required. BPM simulation calculates the beam
profile while the beam is traveling in the z (thickness) direction

can therefore guess that bright side of the domain walls has a higher refractive index

than the darker side. By using this simple basic idea, we construct several possible

index distributions. These initial guesses for the index distribution are then tested and

refined using a combination of BPM and FDTD simulations Figure 5.8(a) shows the

refined index distribution model and the resultant BPM simulation data after light has

traveled through a 500µ m crystal. Figure 5.8(b)shows three experimental line scans

across the domain wall in LiNbO3 with the numerically simulated fit (solid thick line).

The agreement between the two is excellent. In order to get the final image collected

by the fiber tip, one needs to multiply the total field of the light after the propagation

through the crystal (calculated by BPM and shown in Figure 5.8), by the transfer function

of the tip. An important issue in NSOM imaging is whether NSOM tip can collect this

data without any additional distortion. This can be answered by the transfer function

which is calculated in Section 5.4 by using FDTD method. Fourier transformed BPM

simulation data from Figure 5.8 shows that all the important frequency data is inside
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Fig. 5.7. This is experimental transmission-collection mode image of 180◦ domains in
congruent LiNbO3 in (a), and congruent LiTaO3 in (b) domain. From inside to outside
the domain, (R to L), the contrast successively changes as bright-dark-bright-dark. The
inner dark and bright lines are narrower than the outer contrasts.

the very flat and dispersion-free range of plane-waves. This frequency domain data is

shown in Fig. 5.9. Multiplying the BPM simulated field by such a constant transfer

function for all its component plane waves results in no distortion of the resultant beam

in this case by the tip. Therefore, all the wave information at the sample surface can be

imaged by the NSOM tip without introducing any further distortions.

A closer look at the refined refractive index profile indicates that in LiNbO3, there

is a broader step-change in index of ≈ 10−3 across a domain wall, spread over a distance

of ≈ 20µm. The refractive index is higher (no ≈ 2.288) in the domain-inverted region as

compared to the matrix domain in the virgin state (no ≈ 2.287). This essentially explains

why the domain-inverted region is brighter than the matrix domain. In addition, there

is a finer rib-like dark and bright lines in going across the wall. This arises from a sharp

gradient of ≈ 3×10−3 in the refractive index at the wall. Though this index profile is not

a unique solution to the observed transmittance image spectrum in Fig. 5.8, it is indeed

shown to be uniquely determined for LiNbO3 by simulating the collection mode image

as well, as shown in a later section.

The origin of this index distribution origin can be from two possible sources.

The first may arise from the confined domain size effect, where a small hexagonal

or triangular domain in a large matrix domain crystal may be elastically confined to
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Fig. 5.8. (a) Numerically calculated NSOM collection scanning data. (b)Three experi-
mental line scans across a LiNbO3 domain wall as shown in the inset, and numerically
calculated fit as thick solid line. vertical arrow in (a) and (b) indicate domain wall
position
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Fig. 5.9. Comparision between Magnitude Transfer Function(MTF) and Phase Transfer
Function (PTF) with input beam’s spatial frequency component

give rise to index changes through the elasto-optic effect. The second possibility is

that the local light scattering at a domain wall may be related to the internal structure

and chemical defects within the domains and the wall. The defect dipole model and

internal field concepts are already explained in Ch. 2. The origin of the optical contrast

was confirmed to be the latter (defect dipoles inside the crystal), and not the former

(elastically constrained domains) by the following experiment.

For a virgin crystal, defect dipoles have the most stable configuration such as

those shown in figure 2.13 in Ch. 2. On the other hand, domains created in this

virgin crystal by an external electric field at room temperature consist of frustrated

defect structures, which make this domain state relatively less stable than the virgin

state. It can be seen from the polarization hysteresis loops(Fig. 5.10), that the electric

field required to create the reversed domains from a virgin state is much higher than

to re-invert this domain state back to a virgin domain state. This difference in the

coercive fields gives rise to internal fields that are effectively parallel to the virgin state.

Since this defect field of ≈ 2Eint ≈ 6kV/mm in LiNbO3 is biased antiparallel to the

domain-inverted state, an electro-optic increase in index of ∆n = 0.5 · n3
o · r13Eint can be
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Fig. 5.10. Hysterisis loop for stoichiometric(inside small one) and congruemt(out side
large one) LiTaO3

expected. Assuming bulk value of r13 ≈9.6 pm/V, one can calculate, ∆n ≈ 3.4 × 10−4

which is of the correct order of magnitude of index change, even though it is little bit

less, shown in Figure 5.8. Additional contributions from strain induced index changes

through the elasto-optic effect are also likely. The sharp localized change in refractive

index at the domain wall may arise from further index changes due to highly localized

strains or distortions at the wall. To conclusively prove that the internal fields related

to nonstoichiometric defect dipoles are responsible for the observed optical contrast,

the following experiment is performed. First a virgin LiNbO3 crystal is completely

domain inverted at room-temperature, such that the starting matrix domain can now be

considered in a domain-inverted state. Starting with this state, an applied field partially

creates hexagonal domain regions that have the same orientation as the original virgin

crystal, with the exception of having some domain reversal history. Now, the domain

region inside these hexagons have a more stable defect configuration, as compared to the

outside matrix domain. Therefore, the internal field is opposite to the outside domain

matrix and the electro-optic effect would therefore be expected to increase the index in

the matrix domain. This would result in a brighter matrix domain than the interior of

the hexagonal domain regions. Thus, the NSOM image contrast will be expected to be
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Fig. 5.11. Inverse contrast compared with Fig 5.7 (a). Inside the hexagonal domain
region has the same orientation as the original virgin state except with one cycle of
poling history. The matrix domain is the electric field induced domain-inverted state at
room temperature

reversed in this case as compared to the Figure 5.8. Indeed this is observed, as shown in

Figure 5.11.The sharp localized change in refractive index at the domain wall may arise

from further index changes due to highly localized strains or distortions at the wall.

5.5 illumination mode image

One way in which the index gradient extracted from the collection mode imaging

was tested for uniqueness was to check if the same gradient also explained the images in

the illumination mode geometry. In the illumination mode NSOM, the small nano-size

aperture fiber-tip becomes the light source. This tiny light source scans the desired

sample area. If the sample surface has a strong topological or index variation, the tip-

sample interaction changes dramatically while the sample is scanned. So the overall

intensity that is collected in the far-field objective is strongly affected by the surface

condition and hence the tip-sample surface interactions. In addition to the surface

and tip interactions, in the NSOM imaging of domains in LiNbO3 and LiTaO3, the

light modulation in propagating through the crystal thickness has an important role
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in generating the NSOM image. Like the collection geometry, BPM code is used to

simulate how this light emitted from a tiny source propagates through the crystal.

After this beam passes through the sample, it continues to propagate until the collection

objective lens. An infinity corrected microscopy objective lens with a numerical aperture

of 0.5, a working distance of 7mm, and 40x magnification is used. Depending on the

focal point of this objective lens, the beam propagation behavior after this objective lens

will change. This beam propagates until the detection system. This detection system is

composed of a focusing lens that focuses the light into a photo-multiplier tube. Figure

5.12 shows the experimental setup, which was also used for the simulation purposes.

Fig. 5.12. Detailed experimental and simulation setup. FDTD is used near the tip, BPM
is applied inside the inhomogeneous sample, and Hyugens-Fresnell equation is used to
calculate the free space beam propagation. At the last lens, we used Fourier optics to
calculate the detector response

The illumination image generation is completely different from the images col-

lected in the collection geometry. In the collection mode, the source beam is a collimated

beam and collection is through the tip which detects the signal very locally. In the illu-

mination mode, the source beam is a point source at the tip, and highly diverges through

the sample. Most of this diverging beam is again collected by high numerical aperture
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objective lens. Similar to the collection geometry case, both the tip-sample interaction

and the inhomogeneous index distribution inside the sample will affect the image re-

construction. Based on the topological data, it is reasonable to ignore the tip-sample

surface interaction terms in the illumination mode. Because of the flat sample surface,

light-coupling ratio will be mostly constant during the whole scanning process. So

most of the image contrast comes from an inhomogeneous index distribution inside the

sample. There will be two types of index distributions. One is the real part of the index,

and the other is the imaginary part of the index. Since the absorption of the material in

visible wavelengths is negligible, the imaginary part of the index can be ignored. In this

case, light diffraction due to index variation will be the main mechanism for the image

contrast. Again, as in the collection mode case, Beam propagation method will be the

most useful numerical technique for simulating this light diffraction inside the sample.

The same index distribution as shown in Figure 5.8(a) is used in the illumination

geometry to regenerate the NSOM contrast. But the BPM method can only can be used

for the beam propagation inside the sample, which is 500µm thick. Between the exit

surface of the sample and the first collection lens, the propagation distance is almost

8.7mm, and the medium is homogeneous air. Therefore it is unnecessary to use BPM in

that region. Usually, Fraunhofer approximation [31] can be used for wave propagation

in air or homogeneous medium. If propagation distance is much longer than aperture

size, Fraunhofer approximation is valid(z > 2D2
λ where z is the propagation distance,

D is input aperture, and λ is the wavelength) But in NSOM simulation, the wave front

changes very quickly, because of the extent of beam divergence starting from the small

size of the NSOM tip source. Therefore the Fraunhofer approximation is insufficient

in our case. Even though computationally expensive, the Huygens-Fresnel Integral

equation, given below is used:

U(P2) =
1
jλ

∫ ∫∑ U(P1)
exp( jkr12)

r12
cosθds (5.19)
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where the distance r12 is given exactly by

r12 =
√

z2 + (x − ξ)2 + (y − η)2 (5.20)

Detailed notation is described in Fig 5.13. where θ is the angle between the normal to

Fig. 5.13. Diffraction geometry for the Huygens-Fresnel integration

the input plane and the vector r12 pointing from P1 to P2. The quantity U is a field such

as electric field. Σ is an area of interest in ξ − η plane.

By combining BPM and Huygens-Fresnel equation, the NSOM illumination im-

age can be simulated. Fig 5.14, and Fig 5.15, respectively show the LiNbO3 and LiTaO3

experimental NSOM illumination images with the fiber tip at the focus of the objective

lens (the first lens in Fig 5.12). Both LiNbO3 and LiTaO3 images show the darkest
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boundary near the domain wall. But as can be seen in the intensity scale, the image

contrast is very weak. If the objective lens location is moved away form the position of

Fig. 5.14. (a) NSOM image of domain walls in LiNbO3 in illumination scanning
geometry. The objective lens is placed with focus at the fiber tip. (b) is line scan across
the different lines indicated in (a).

focus at the fiber tip toward detector, then the domain image contrasts in both LiNbO3

and LiTaO3 crystals improve significantly. Figure 5.16 shows a LiTaO3 domain and 5.17

LiNbO3 domain image taken with moving the objective lens from the exact focal point.

One notices in these images that in moving from the outside matrix domain to inside the

triangular (or hexagonal) domain, the line scans show a peak (bright fringe) followed
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Fig. 5.15. (a) NSOM image of domain walls in LiTaO3 in illumination scanning geom-
etry. The objective lens is placed with focus at the fiber tip. (b) is line scan across the
different lines indicated in (a).

by a valley (dark fringe). This contrast is similar to the two center fringes observed

at the domain wall in the collection geometry images in Fig 5.7. In Figure 5.16, the

matrix domain is in the virgin state, and the inside of the domain pattern is in the room

temperature domain-inverted state. If this order is reversed, by creating a sample with

virgin domain inside and domain-inverted matrix outside, the contrast also reverses

just as in the collection mode case (see Figure 5.11). This is shown in Figure 5.17 for

LibO3, where the inside domain is in virgin state.
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Fig. 5.16. Defocused NSOM illumination scanning image of domain walls in LiTaO3
in (a). Objective lens under the sample has been moved from exact focal point toward
detector. (b) is the line scan for the different lines shown in (a)

The domain walls in Figure 5.17 have a very interesting contrast. As can be seen

from the line scans in Figure 5.17 (b), the central bright and dark contrast is greater

than the background. The difference between Figures 5.16 and 5.17 is that the latter

depicts the defocusing effect of the collection optics. Even though a strong defocus has

weakened the overall signal (the background in Fig. 5.17 is much weaker than in Fig.

5.16), the contrast has been enhanced strongly.

To summarize the observations, we can pose the following questions. (1)Why

does the domain wall become dark at exact focus with a very small contrast. (2)Why

does the defocusing influence the magnitude of the contrast? To answer these questions,
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the following simulations were done. First, an inhomogeneous index distribution at the

domain walls was assumed, the same as in Figure 5.8(a) deduced from the collection

mode image simulation. If it is close to the real index distribution, then both collection

and illumination modes should match the experimental data. For the wave propagation

inside the sample, FFT-BPM was used. For regenerating the scanned images, the tip

location is fixed and the sample moved in the simulation, which is the same as in a real

NSOM system.

Figure 5.18 (a), (b), and (c) shows the electric field intensity at the exit surface of

the sample, and (d) shows the sample index distribution and the scanning positions.

When the tip is exactly on top of the domain wall, most of the light will be guided

through the high index regions. As the tip scans away from the center, some of the

light is guided, but most of the light will be reflected from the high index profile region

and create an interference pattern. This BPM simulation result is then the input to

the Huygens-Fresnel integral equation, in order to get the intensity just before the first

objective lens.

Figure 5.19 (a), (b), and (c) show the light intensity that reaches the first objective

lens. If the objective lens is placed such that the fiber aperture is at the exact focal

position, then the diverging light wave is collimated by the lens, and most of the signal

will be collected by the detector. To get the detector response, the intensity data from Fig

5.19 is integrated separately at each different tip location over the sample. A simulated

line scan is thus obtained. Figure 5.20 shows such a numerically calculated line scan

image. As can be seen in Fig 5.21, at the exact focus case, the detector response is

proportional to the integration of the whole aperture of the first lens. When the tip is

on low index region this simulation shows weak intensity, and in high index region

it shows high intensity as can be seen in Fig 5.20. In the low index region, the light

coming from tip will diverge more strongly than in the high index. In a real experiment,

we use a really high NA objective lens. This high numerical aperture (NA) objective

lens will collect most of the diverging beam. Therefore, the collected light intensity

in both low and high index regions will be similar. But in a BPM simulation, we use

absorbing boundary conditions. So a highly diverging beam will be absorbed more.
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Fig. 5.17. Defocused NSOM illumination scanning image of LiNbO3 in (a). (b) is line
scanning for each different line in (a)

This simulation boundary absorption will reduce the simulation scanning signal in

the low index region, which is not the real experimental case. In a real experiment

with the tip at the focus of the collection objective, we only see a sharp boundary

with one domain slightly darker than the other. We believe that this is a differential

absorption effect between the two domains, which can’t be simulated in the present

BPM simulation. For the defocusing case, only the center part of the wave can be

collected by the detector as explained in Fig 5.21. If the lens moves towards the detector,

it will converge. But if defocusing towards the detector increases, this converging beam

will change to a diverging beam. So either direction of defocusing will make the beam
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Fig. 5.18. BPM simulation results on the exit surface. (a), (b) , and (c) are the output
light intensity depending on domain wall location compared to tip location. (d) shows
the index profile and the three tip location is notated as a circle.
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Fig. 5.19. Intensity: Calculated from Huygens-Fresnal integration of the BPM data
from Fig. 5.18 (a), (b), and (c) up to first objective lens
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Fig. 5.20. Scanning simulation image. x axis is scanning range and y axis is integrated
intensity right behind first objective lens

diverge at the detector. In other words, only the wave propagating along the domain

wall can be collected in either direction of defocusing. This is because waves that are

not incident close to the center of the lens will diverge after the first objective lens,

because the objective lens cannot perfectly recover the diverging phase. Therefore, for

the defocus-imaging case, the experimental image closely resembles the index profile

at the wall. Figure 5.22 shows the simulated line scan image for the defocused case

for lithium niobate using an imaginary aperture of 375µm radius around the center

of the objective lens(focus case aperture size is 3mm). This simulation image closely

resembles the experimental image of Fig. 5.17. In addition, this simulated scan profile

also closely resembles the actual sample index profile. By using a combination of the

BPM and Huygens-Fresnel integration, the illumination NSOM experimental data can

be regenerated with the proper index profile model. This index profile model also gives

a reasonable collection simulation which is very close to the experiments.
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Fig. 5.21. Schematic diagram showing the effect of defocusing the objective lens on the
image collection process in NSOM. Dotted line and dotted lens is the ray trajectory and
objective lens location when the tip is located exactly at the focus of the first objective
lens. Solid ray trajectory line and filled lens depicts the defocus case. Only light inside
of the ray trajectory lines can be collected by the detector (PMT). In the defocus case,
only the signal inside the imaginary aperture is the useful data.

Fig. 5.22. A comparison of the experimental line scan across a domain wall in LiNbO3
in Fig. 5.17 with simulation results using an aperture in front of the collection lens.
Right side is virgin state.
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5.6 In situ NSOM scanning

If an external electric field is applied to a partially domain reversed crystal, it

creates a strain distribution at the domain walls due to the piezoelectric effect. In Ch.

4.2, x-ray imaging was used to study these strain distributions around the domain walls,

especially near the crystal surface. Unlike the x-ray studies, in-situNSOM experiments

gives dynamical index distribution inside crystals, because the image is generated while

it is propagating. Similar experiments have been reported by other groups [32] look-

ing at local motion and pinning of domain walls. Here we look at the wall contrast

changes with applied field. To apply an electric field, indium-tin-oxide thin film was

deposited on the bottom surface. On the top surface that is scanned by the gold tip, a

40nm Au/Pd(80/20 atomic percent) film was deposited with a smooth surface. In the

illumination mode, increased tip-sample surface distance destroys the detailed infor-

mation in the optical images. Even in the collection geometry, it’s difficult to image the

domain structure, because of scattering losses due to the deposited metal film. How-

ever, an applied electric field induces an additional index difference between different

domain orientations through the electro-optic effect, which can be imaged even with the

electrodes. Figure 5.23 (a), and (c) shows NSOM transmission-collection image under

different voltage bias conditions. A simulation of these images would require account-

Fig. 5.23. Collection mode NSOM images under an applied bias.
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ing for the top and bottom electrodes on the sample. However, even qualitatively, these

simulations verify that our previous analysis is reasonable. For example, if a positive

bias is applied to crystal, the field is parallel to the ferroelectric polarization inside the

domain-inverted region (inside the triangular domains), and will therefore decrease the

extraordinary index, nx and ny inside the domain. The light propagating parallel the

domain wall will therefore bend from inside the domain to the outside matrix domain.

This is confirmed by the experimental data is shown in Fig. 5.23 (c), and it’s line profile

is shown again in Fig. 5.24 (b). Similarly, for a negative bias, the index in the ma-

trix domain will decrease and light will bend away from the matrix and towards the

domain-inverted region, as seen from Fig. 5.24 (a).

Fig. 5.24. (a)Experimental setup for collection mode under bias, and (b)Schematic
explanation of the index change and light travel across a domain wall
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Chapter 6

Summary and Conclusions

6.1 Summary and Cross-Correlations

This thesis has investigated LiNbO3 and LiTaO3 ferroelectric domains and the

critical role of non-stoichiometric defects in determining the macro-to-nanoscale do-

main phenomena. Based on electrical switching experiments under optical microscopy,

the basics of domain wall dynamics, the possible structure, defect dipoles and the

mechanism by which they influence the phenomena of domain backswitching, domain

stabilization, and negative coercive fields is developed. By using 3-dimensional Time

Dependent Ginzburg Landau (TDGL) simulation, a detailed strain distribution along

the domain wall, the effect of anisotropic gradient energy, and domain wall kinetics

are investigated. This defect dipole model not only explains the macroscale electrical

switching data but also forms the basis for observing and understanding the induced

strain at domain walls on local scale, (confirmed by using X-ray topography) and local

optical index contrast (observed using Near Field Scanning Optical Microscopy, NSOM)

experiments. Detailed and accurate X-ray topography (especially for the strain) exper-

iments in congruent lithium niobate reveals that the defect dipole model and strain

distribution predicted by Time Dependent Ginzburg Landau (TDGL) are consistent. A

difference in lattice constant between virgin domain state and domain reversed states

at room temperature (see Ch. 4.1.2.3) was observed. The TDGL also shows that there

is a 3-fold symmetrical shear strain at the corners of hexagonal domains, with alter-

nating positive and negative shear strains at the vertices around the domain. This is

reflected in the 3-fold symmetry of the contrast at domain corners in Anomalous Laue

transmission geometry experiments(see Ch. 4.1.2.3). In addition, a very local structure

around domain wall is detected as a topological step(see Ch. 4.1.1). These features are

however not predicted by the TDGL simulation, which instead predicts that the y-walls
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for lithium niobate should have zero strain εxz, except at the corners. This discrepancy

originates from the presence of non-stoichiometry in the crystals, the influence of which

is not included in the free energy functionalism of the TDGL model.. However, in

stoichiometric crystals, no such shear strain or lattice step is experimentally observed,

consistent with the TDGL model.

Near Field Optical Microscopy (NSOM) experiment proves that there is real bias

strain(see Ch. 5.4) between two different domain states as expected by the defect-dipole

model and detected by X-Ray topography. This is reflected in an index difference

between the two domains. In addition to this broad strain distribution (which is order

of tens of microns), a narrow index kink within a micron range is observed to be

localized near the domain wall. This was deduced by simulating both illumination

and transmission NSOM images consistently to yield an index contrast at the wall.

We believe that this narrow kink in index is related to the strain data in the reflection

X-ray images, where a local topological step at the domain wall (see Ch. 4.1.1) was

concluded. This local strain data from NSOM was detected by piezo response Atomic

Force Microscopy [REF], recently.

Combining TDGL, NSOM and X-Ray measurements, it is easy to note that there

are two different types of strains. One is a long-range strain due to the piezo electric

effect due to the external or defect dipole induced local electric fields. This type of strain

propagates over hundreds of microns. The other strain type is a very localized strain,

which is on the micron scale or less. This is not related to the piezoelectric effect due

to bulk defect dipole state. It is related more to the actual distortion inside a domain

wall. Therefore its magnitude is very high and strongly localized at the domain wall.

But interestingly, this domain wall feature is also linked to defect dipoles. The clue

is that in NSOM transmission experiments, internal index distribution is reversed by

changing the polarization direction inside the domain and the matrix domain. This

contrast inversion can only be explained by frustrated defect states explained in Ch. 2.4.

Unfortunately, this strain can’t be modeled in the TDGL phenomenological theory. To

understand how the structures can be distorted inside a domain wall requires the use

of atomic scale simulation.
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6.1.1 In-plane defect dipole biased strain between two different domain regions

In chapter 2, a defect dipole model is proposed based on electrical switching

dynamics. The basic concept is that a virgin state domain is more stable than a reversed

domain at room temperature because of the difference in defect dipole configuration

between the two regions(see Ch. 2.4). The different dipole configurations give rise

to a potential difference between the energies of the two domain states and this can

be measured experimentally as an internal field. This internal field, in turn, induces

various strains such as εzz, εxx, and εyy.

When the matrix domain is in its virgin state and the inside domain is in domain

reversed state at room-temperature, the internal field is effectively parallel to the matrix

( or virgin state) domain polarization and antiparallel to the polarization of the domain

reversed state. Because of the piezoelectric and the electro-optic effect, differences in the

sign of εxx, εyy, and magnitude of index will occur between these two domain states.

This is observed in Xray ( see Ch. 4.1.2.3) and NSOM transmission geometry( see Fig.

5.8). These are discussed in some detail below.

In X-ray topography of hexagonal domains in congruent lithium niobate, a bias

strain of ∆εyy = −4 × 10−5 was measured across the wall, where the negative sign

indicates that the lattice parameter of the (3,0,.,0) planes is larger in the domain reversed

state than in the virgin state. The internal field is parallel to the outside matrix domain (in

virgin state), and antiparallel to the inside domain (domain reversed state). Piezoelectric

effect predicts that if the internal field is treated as a real electric field, the inside domain

should shrink in the z- direction (thickness direction) while the matrix domain should

expand in the z-direction(see Fig 6.1). The opposite is true for the in-plane strain

such as εxx, and εyy, i.e. the matrix domain should shrink and the inside domain

should expand. These changes in lattice parameter will result in Bragg angle deviation,

which is experimentally measured in Ch. 4.1.2.3 as a εyy = 4 × 10−5. If we consider

just the simple inverse- piezoelectric effect, we can calculate the expected strain by

using the inverse piezo relation (εi = d jiE j) with internal field (2Eint=6 kV/mm) and

d31 = −0.1 ∗ 10−11CN−1. It gives εyy = 6 × 10−6. This value is smaller than the X-ray

experimental measurement of εyy = 4×10−5. It implies that measured internal field may
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be smaller than actual local field inside the crystal. It may also suggest that additional

contributions to strain exist that is independent of piezoelectric effect. These are most

likely to be strain fields induced locally by the presence of defect sites themselves. In

NSOM modeling, we proved that index difference between two different domain is

about 10−3. But as calculated in Ch. 5.4,we got 3.4×10−4 by using internal field biased

electro-optic effect. The index change also comes from secondary effect photoelastic

effect. Based on strain(εyy) measured from x-ray, photoelastic induced index change

can be calculated by using ∆n = −
n3

o
2 · (p12 + p11) · εyy. This calculated value order is

10−5, which is much smaller than electro optic effect. So this photoelastic effect can’t

again explain the deviation.

Fig. 6.1. Schematic of interal field induced piezoelectric effect

6.1.2 Strain and index distribution in the corner regions of domains

TDGL simulation shows that there is a 3- fold symmetrical z direction displace-

ment in hexagonal LiNbO3 domain corners. This symmetrical shear strain is observed

by X-ray Transmission experiments (see Ch. 4.1.2.3). This strain can be detected by X-ray

topography, because X-ray is very sensitive to the incident beam condition. However,

neither illumination and collection NSOM images show any 3-fold symmetrical index
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contrast at the corners. It is probably because NSOM is relatively insensitive to the inci-

dent boundary condition a compared to X-ray topography. In addition, in both NSOM

illumination and collection modes, only index changes in the x and y (or in-plane) di-

rection can effectively influence the incident beam, and the small z-displacements do no

influence the images.

6.1.3 Stoichiometric and congruent issues on device fabrication

One of the most frequently used optical devices on domain engineered LiNbO3

and LiTaO3 is the quasi phase matching second harmonic generation(QPM-SHG) device.

For converting infrared (e.g. 840nm wavelength ) to blue light efficiently, a periodic

domain grating of 3.6m is required. This SHG device is operated without any external

external fields. For patterning a uniform domain grating, the small coercive field of

stoichiometric crystals is very attractive, as compared with the higher coercive field

congruent crystal. A related issue is the photorefractive effect or optical damage. In a

strong incident beam condition, these crystals experience a a refractive index gradient

in response to intensity gradients of the incident beam, resulting in beam distortion and

scattering. It is a serious problem in converting the YAG:Nd laser (1.064 µ m) to the

green laser (532 nm), where only low duty cycles for the pulsed laser are allowed. By

doping these crystals with ¡1 mole % of MgO [1] [2], the photorefractive effect decreases

considerably in stoichiometric crystals. In contrast, the congruent crystal require 5

mole % MgO doping, which decreases the crystal quality. Less photorefractive effect,

small coercive fields and weak strain around domain walls make stoichiometric crystals

favorable in QPM-SHG device fabrication.

In electro optic devices, high index contrast can be obtained only by applying high

enough electric field (5-10 kV/mm). In domain microengineered electro-optic devices,

large coercive fields which are higher than 10 kV/mm are therefore required, so that

once formed, the domain micro-optical elements are not destroyed by the operating

fields. So congruent composition is more useful in fabricating electro-optic devices

on LiNbO3 and LiTaO3. One issue is the high strain around domain wall and strong

asymmetric defect configuration between virgin and reversed domain state exists in
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congruent crystals, as can be seen in NSOM and X-ray experimental data. Fortunately,

this strain around domain wall and asymmetrical defect configuration can be reduced

by annealing this crystal to temperatures of 150-200◦C. Even in near-stoichiometric

crystal, annealing helps to reduce any remnant strain around domain walls. The long-

range step-index modulation and localized high index modulation which is observed

in congruent crystals by using NSOM can’t be imaged any more after annealing this

crystal.

6.2 Conclusions

1. Based on electrical switching and in-situ optical microscopy experiments, we

proposed a defect dipole model

2. Unique anisotropic gradient energy is adapted into phenomenological TDGL mod-

eling to regenerate domain patterns

3. Near Field Optical Microscopy experiment provides a detailed index distribution

across a domain wall, which is consistent with the proposed defect dipole model.

4. X-ray reflection topography provides surface lattice strain distribution at the wall

5. X-ray transmission topography clearly showed defect structures inside the crystal

and the domain wall clearly. It also detected different lattice parameters between

virgin versus domain reversed states, and a 3-fold shear strain around domain

corners which is predicted by the TDGL model combined with Eikonal theory.

6. By using unique two source total and scattering FDTD modeling, NSOM Optical

transfer Function is successfully calculated

7. By using FDTD, BPM, and Fourier Optic method, the entire NSOM experiment

was simulated and index distribution obtained.

8. By using dynamical X-ray theory and Eikonal Ray theory, an X-ray trajectory code

was developed and successfully used to analyze X-ray transmission topography

images
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6.3 Outstanding Issues

In terms of defect dipole modeling, TDGL is a phenomenological modeling

method. Even though it gives a very good intuition for the basic ferroelectric multi-

domain state interactions and phase transformations, a detailed modeling especially

for the structures within a domain wall should have to involve accurate atomic scale

modeling. This atomic scale modeling will provide the clue for how defect dipoles are

configured inside the crystal.

As domain patterned device size shrinks to sub-microns, a more accurate and

well understood control of domain kinetics required. Room temperature domain poling

involves high coercive fields, strong elastic energy, and large domain wall energy. High

temperature poling may provide a way to fabricate sub micron domain patterning

technique by reducing the coercive field and interactions between domain wall and

defect dipole. Also, the initial nucleation density also will be improved considerably by

heating, making domain switching more uniform.

In measuring domain structures, we applied Near Field Optical Microscopy(NSOM),

and X-ray topography methods. Theses two methods have a lot more application and

potential. Non-linear NSOM is one of way to improve resolution and sensitivity of

linear NSOM. Another approach to improve NSOM resolution is to use a sharp metal

tip. Instead of collecting through the tip, data can be collected in far field by using the

scattering field from the sharp metal tip. By using interferometric techniques, NSOM

also can detect phase information around a domain. That will give a much more de-

tailed index distribution information. All these kinds of NSOM techniques are still is

not fully understood and modeling technique is not well set up. Based on our FDTD

method for calculating NSOM OTF, many of these new problems can be approached.

X-ray topography experiment also has more potential to be used as an excellent

nice technique to detect very accurate strain distribution. By applying external fields

that are higher than coercive field, we can do in-situ strain detection during the poling

process by using X-ray topography. This experiment will give very nice intuition on

how defects interact with moving domain walls.
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Appendix A

1-D TDGL Matlab Code

This is 1-D TDGL code.
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Appendix B

Rflection Ray Tracing

Fig. B.1. Ewald sphere and modified reflected Ray vector Sg′ .

This is based on kinematical X-ray theory. Figure B.1 shows Ewald sphere with

unit radius. So is the incident ray unit vector, and Sg is a reflected ray unit vector

when the rystal is perfect. If crystal surface has a non uniform topology, reflected beam

direction will be modified to Sg’ which is the intersection between line AB and unit

sphere. Slope of the line AB will be the surface normal vector (− fx,− fy, 1). Function

f(x,y) is a z-direction topology, and fx, and fy are, respectively, the x, and y direction

derivatives of function f(x,y). The line AB equation will be

Sx
− fx
=

Sy − cosθB
− fy

= Sz + sinθB (B.1)
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Sx, Sy, Sz will be

Sx = − fx ·
2 · fycosθB + 2sinθB

f 2
x + f 2

y + 1
(B.2)

Sy = − fy ·
2 · fycosθB + 2sinθB

f 2
x + f 2

y + 1
+ cosθB (B.3)

Sz =
2 · fycosθB + 2sinθB

f 2
x + f 2

y + 1
− sinθB (B.4)

(B.5)

In real space, the beam location on detector can be calculated based on Sg’ vector as can

be seen in Fig. B.2. The distance between reference point in sample and detector is l0.

Fig. B.2. Real space Ray path. Plane contain point A, and B is sample surface, plane
include point C, D is detector. By using reflected Ray vector Sg’, we can Reflected ray’s
final destination D point.
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By using plane equation of detector and Ray vector we can calculate point D: (a,b,c).

a =
Sx
Sy

(b − y) + x (B.6)

c =
Sx
Sy

(b − y) (B.7)

b =

Sy
Sz
·

lo+cosθB·yc
sinθB

+ y

1 +
Sy
Sz
·

cosθB
sinθB

(B.8)

(B.9)

Now, new variable ∆ is introduced.

a − x = ∆ (B.10)

For convinience, we can set y=0, then ∆ can be represented by,

∆cosθB · (cos2θB − sin2θB) · f 2
x + 2sinθBcosθBl0 fx + cosθB · ∆ = 0 (B.11)

By solveing this equation, fx can be obtained

fx =
−sinθB · l0 ±

√
sin2θB · l

2
0 − ∆

2 · cos2θb · (cos2θB − sin2θB)

cos2θB − sin2θB
(B.12)
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Appendix C

3-D TDGL Matlab Code

It is composed of functions tdgl3d-v5LT, function tdgl3d-sub, and function der3d.

tdgl3d-v5LT is a main TDGL file. It gets free energy variation from tdgl3d-sub in every

time step. tdgl3d-sub calculates the free energy change in each iteration step. der3d is

a function for calculating the 1st and 2nd order derivatives.
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Appendix D

Transmission X-Ray Tracing Matlab Code

This is a Matlab code for transmission geometry X-ray tracing. Initial condition

is the strain distribution inside the crystal. While X-ray beam propagates through a

500µm sample, it will absorbed and bent depending on the strain distribution.
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Appendix E

3-D Fast Fourier Transform

Beam Propagation Method (FFT-BPM) Matlab Code

This is a Matlab based 3D FFT-BPM code. Initial beam will propagate through a

500µm thickness crystal.
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